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mes amis qui me suivent depuis la primaire pour certaines, notamment Raphaëlle pour
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Résumé long en français

La thèse étudie le risque météorologique et économique sous différents angles

principalement dans les pays en développement. Elle se décompose en trois cha-

pitres indépendants analysant dans diverses situations la corrélation des risques liés

aux aléas météorologique et climatique ou économique, et étudie le potentiel de la

région géographique étudiée pour mettre en place un système d’assurance contre le

risque étudié. En effet, cette thèse étudie des risques très susceptibles d’être fortement

corrélés : que cela concerne le risque météorologique ou climatique, ou le risque lié à

la volatilité des prix, les villes voire pays voisins sont exposés aux mêmes risques et

de façon simultanée. Cet aspect essentiel compromet la mutualisation du risque, pa-

ramètre primordial du modèle économique de l’assurance. A travers les trois chapitres

de la thèse, nous étudierons le bénéfice lié à la mutualisation de ces risques a priori

relativement corrélés. Le premier chapitre étudie la corrélation des prix du maı̈s entre

les principales villes en Tanzanie. A l’aide d’un modèle Copula-GARCH, la dépendance

entre les cours du maı̈s des 20 marchés principaux du pays est modélisée et nous pou-

vons voir si le prix moyen du maı̈s est lissé en agrégeant les marchés. Cela permet de

voir si l’intégration des marchés permet une efficace mutualisation du risque lié à la vo-

latilité des prix. Pour ce faire, nous calculons la Value-at-Risk (VaR), outil couramment

utilisé dans le domaine de la finance pour mesurer les percentiles correspondant aux

valeurs extrêmes d’une distribution. En l’occurrence, nous modélisons les prix sous

la forme de rendements en agrégeant plusieurs régions et regardons l’augmentation

ou la baisse de prix maximale arrivant avec une probabilité de 1% sur 20 ans. Si les

prix sont effectivement lissés, alors la VaR 1% doit diminuer en valeur absolue. Nous

réalisons ce calcul en agrégeant aléatoirement de plus en plus de marchés, ou en

agrégeant deux à deux les marchés venant de zones géographiques présentant des

climats différents. En moyenne, l’agrégation d’un nombre croissant de marchés a ten-
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dance à faire diminuer la VaR, mais on s’aperçoit que c’est surtout en mutualisant deux

marchés judicieusement choisis (ie avec des conditions climatiques différentes) que la

baisse de risque est optimale. Le second chapitre s’attache au risque cyclonique dans

les ı̂les Pacifique sud et son impact sur les infrastructures. Cette étude propose une

modélisation des cyclones tropicaux dans la région étudiée et la distribution de pro-

babilité des cyclones associés à leur force, permettant ainsi de tenir compte du climat

actuel pour modéliser les coûts. Cette modélisation synthétique des cyclones permet

de tenir compte des changements climatiques ayant eu lieux dans les trente dernières

années et ainsi de ne pas se référer aux données historiques suffisamment récentes

pour être extrapolées dans le futur mais trop peu nombreuses pour une étude statis-

tique. Avec les données liées aux infrastructures (nombre d’étages, matériau principal

de construction, etc.) et des courbes de fragilités données, nous établissons un lien

entre le vent maximal subi pendant un cyclone et les pertes sur chaque résidence.

Ainsi, nous pouvons connaı̂tre le coût des cyclones, y compris pour les événements

extrêmes de très faible probabilité. Nos résultats montrent que les risques importants

concernent des événements arrivant tous les cents voire mille ans. Le troisième cha-

pitre propose une extension d’un émulateur statistique des rendements agricoles selon

des variables climatiques. L’étude est réalisée sur huit cultures : le manioc, les ara-

chides, le millet, les légumineuses, le colza, la betterave sucrière, la cane à sucre et

le tournesol. Nous modélisons l’impact de l’accroissement marginal de la température,

des précipitations ou de la concentration en CO2 en faisant une estimation statistique

sur des modèles de culture et non sur des données historiques. Cela permet de prendre

en compte des effets extrêmes sur des valeurs météorologiques pas ou peu observées

jusqu’à présent. La robustesse du modèle est évaluée, entre autres, à l’aide de copules

pour comparer la dépendance spatiale entre le modèle et notre émulateur statistique

et vérifier que notre estimation capture bien la dépendance géographique.



Introduction

This thesis is an empirical approach of risk management and meteorological hazard

with a focus on developing countries cases. The three chapters consist in empirical

studies applied to agriculture and natural disasters. In many respects, uncertainty is

a major obstacle to development for low-income countries especially when their eco-

nomy mostly relies on agriculture. Setting apart the income generated by agriculture,

developing countries exposed to natural disasters such as tropical storms are facing an

additional major vulnerability : because of meteorological hazard generating sizeable

damages on local population and infrastructures, their slow economy is worsened at

the pace of natural disasters.

Regardless of the development of the country, uncertainty is always a factor against

development. Because the future is unpredictable, it is hard for the economic agents to

anticipate the outcomes of their decisions. In particular in developing countries, it has

been showed that people tend to be risk-adverse, that is agents who prefer having a

lower return for sure than an expected return including risk. Consequently, when eco-

nomic agents in developing countries face uncertainty for commodity prices, damages

caused by tropical storms, agricultural losses due to droughts or floods worsened by

climate change, etc., they are willing to find a protection against the risk. This protec-

tion consists in having a certain income instead of a higher but riskier income. Often,

an option to this issue is possible by the mean of an insurance that offers indemnity in

case of a loss, in exchange for premiums.

While insurance is common in developed countries for most types of losses, deve-

loping countries are facing a serious lack of financial products against risk. An explana-

tion for this is the institutional aspect : the overall political and economical context often
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does not allow for implementing competitive private or public insurance companies. The

political failure to establish an efficient insurance scheme can be explained by different

factors such as political instability, corruption or unfavorable diplomatic relations with

neighbored countries. This only adverse climate is enough to deter policy makers from

taking any action to provide financial tools against risk. The economical obstacles are,

among others, the lack of information and facilities to establish a business company.

Moreover, markets from remote areas or geographically hardly accessible are not well

integrated to each others, which jeopardizes transport, interregional purchases and

more generally national actions. On a technical aspect, it is often too costly to estimate

in the fields losses following a disaster, especially for correlated risks, which makes the

insurance unaffordable. This thesis proposes innovative solutions to tackle the issue of

affordability and feasibility.

A key parameter in estimating the feasibility of a loss insurance is correlation. The

cost of insuring a loss substantially different depending on the risk correlation among

the insured : for a highly correlated cost, like for flooding in a restricted area, losses

will occur at the same time. In this case, the insurer has to provide all the payouts

at the same time, which implies a sizeable reserve. Because of the opportunity cost

and reinsurance fees, holding enough reserve to fulfill its obligations is costly. Conse-

quently, it is more expensive to insure a correlated loss rather than losses occurring

independently (like health insurance, for instance). This parameter is essential when

dealing with natural disasters insurance at a localized area in the globe. For example

the CCRIF (Caribbean Catastrophe Risk Insurance Facility), that is providing a cer-

tain coverage to multiple countries in the Caribbean zone, is subject to a number of

studies estimating the extreme losses occurring with a very low probability. Usually in

developing countries, the losses that should be primarily covered are agriculture and

commodity products, infrastructures and health.

This thesis tackles the issue of spatial dependence for different risks or predictions

in developing countries or at a broader scale. These studies imply the use of statistical

tools called copulas to model multivariate dependency allowing variant correlation de-

pending on the values.
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In the first chapter, we look at spatial correlation of maize prices among markets in

Tanzania. We examine the potential for implementing a risk-sharing mechanism among

markets to smooth extreme prices variations. Indeed, potential price chock in the future

in a serious threat for farmers who cannot anticipate safely their income in the future

and change their production accordingly. Here, negative correlation is an advantage

compared to a null or positive correlation because, by integrating the markets of the

country, we expect to reduce the variance by averaging the prices. This type of scheme

has an interest only if the dependence among the markets is opposed enough to com-

pensate prices fluctuations. We study maize prices over 13 years for the 20 main mar-

kets in Tanzania. We model the price volatility and the dependence structure among the

20 regions using a multivariate DCC-GARCH model. From this model, we can generate

data for another time period and see if the extreme price variations can be smoothed

by pooling regions together. To assess the benefits of pooling regions, we take the

price returns from our simulation and compute the Value-at-Risk 1% and the Condi-

tional Value-at-Risk 1%, two values returning respectively the threshold exceeded by

1% of the highest (or lowest) data values, and the average value of the data exceeding

this threshold. We run our calculations on both increasing and decreasing prices. We

base our results on a similar methodology : we compare the VaR or CVaR from the

multivariate model and the average VaR or CVaR from the univariate models, that is

without accounting for the correlation. We then use the difference between the multiva-

riate and univariate model to draw our conclusions. Our first main result is that when

increasing the number of regions pooled together, the extreme price fluctuations are

more and more smoothed. More explicitly, when pooling more and more regions (from

two to ten), the difference between the multivariate and univariate models for CVaR 1%

increases significantly, meaning that the risk decreases. Our second main result is that

it is already efficient to pool only two regions together if they are properly paired up. We

show that pooling a market from the North and a market from the South of the country

is on average more efficient in reducing the risk, and we provide the ranking of the best

pairings.

In the same vein, the second chapter is examining the dependence structure of

infrastructures damages in the South Pacific islands with tropical cyclones. The final

purpose is similar to the CCRIF : since the South Pacific islands are very exposed to
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tropical cyclones, providing insurance coverage for losses generated by these storms is

essential. However, as explained above, a key parameter in premiums calculation is the

losses for an extreme event happening very rarely (say one-in-100-year event). Omit-

ting this potential loss could lead to the incapacity to pay the owed indemnities. In this

chapter, we model losses for extreme events occurring with a different probability. We

model losses by using synthetical storms rather than using historical data so as to ac-

count for the impact of climate change on hurricane frequency and strength. This model

provides the maximum wind speed experienced per storm. From this maximum wind

speed, we can derive the losses on each building using fragility curves. Having the pro-

bability of occurrence and the damage associated of each storm, we can calculate the

expected damage for each island. Our study is restricted to six islands since the wind

field simulations provide non null damages for six islands out of the initial group of 14

islands. From our calculations, we get a data set of 1000 storms with their probability of

occurrence and damages for each building (localized on each island). We fit the losses

distribution to three Archimedeans copulas : the Frank, Gumbel and Clayton copulas.

From these estimation, we can generate any number of losses simultaneously for the

six islands. From this larger data set, we compute the Value-at-Risk (or return period)

and Conditional Value-at-Risk at different confidence levels. We find that losses are

drastically increasing when dealing with extremely rare tropical storms : for instance,

with the Gumbel and Clayton copulas, a 1000-year storm would generate respectively

losses equal to 103MM and 113MM USD. When adding an estimation of storm surge,

we find 1,207MM and 332MM for the same copulas and events.

The third chapter provides a statistical estimation of crop yields in the future at the

grid-cell level. It uses crop models predictions for the next century and estimates the

impact on yields of a marginal increase of weather data (temperature, rainfall and CO2

concentration). The main motive for providing a statistical emulator rather than simply

using the crop models already available is mostly the ease of use and public availability.

The crop emulator fits the predictions of the GGCM (Global Gridded Crop Model) with a

multiple regression for each crop and each climate model. In this paper, the eight crops

studied are cassava, millet, sunflower, sugar cane, sugar beet, groundnut/peanut, rape

seed and pulses, and the two climate models are GCM (General Circulation Models)

taken for the RCP8.5, ie. the worse case scenario in terms of climate change. We
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test the accuracy of the predictions from the statistical emulator by comparing the de-

pendence structure of yields predictions in Africa from the emulator and from the crop

model. This accuracy is measured by common tools assessing the goodness-of-fit of

an estimation, such as RMSE or out-of-sample goodness-of-fit, but also using tools not

commonly used on this purpose. Capturing the spatial dependence in our estimation is

of the essence when considering implementing new policies or financial tools to redis-

tribute crops production depending on the stringency of climate change effects of the

different zones in Africa. To this end, we also look at the spatial dependence of crop

yields using copulas. Here, using Vine copulas, we fit a dependence structure to our

statistical emulator on the one hand and to the crop model on the other hand. We ge-

nerate simulations from our two models and look at the similarity of the two models. We

show that the dependence structure across Africa is captured by the statistical emula-

tor, ie. we can still predict the unequal impact of climate change on crop yields in the

different areas of Africa, and probably more generally, across the globe.
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Chapitre 1

Spatial Correlation among

Maize Markets in Tanzania : a

Risk Analysis

Introduction

Maize accounts for the major part of calorie intake and national production in Tan-

zania. Food security and farmers income strongly rely on maize consumption (Wilson,

Lewis, 2015)[17], eg. on maize affordability and availability. Importantly, since it is a

rain-fed crop produced on a large proportion by small-scale farmers, it is likely to be

very exposed to weather variability and climate change consequences (Arndt & al.,

2012)[1]. Like in most rural areas affected by poverty, Tanzanian farmers living with

very small income has tend to be risk-adverse (Mosley, Verschoor, 2005 ; Yesuf, Bluff-

stone, 2007)[10, 18]. Protecting farmers against maize price volatility is therefore an

essential challenge.

This paper aims at exploring maize prices correlation across the main markets in

Tanzania. We want to proof that, if price movements are weakly correlated, there is

potential for sharing the risk of extreme price increase or decrease by integrating the

markets. We focus on maize prices co-movement by using a Copula-GARCH model

13



14 CHAPITRE 1. MAIZE PRICES CORRELATION IN TANZANIA

that represents prices volatility by integrating pairwise correlations.

A major obstacle to protect farmers in developing countries against price and/or

weather shocks is that the risk is often highly correlated. However, the principle of in-

surance is risk pooling, as defined by Mehr, Cammack and Rose (1985) : ”Insurance

may be defined as a device for reducing risk by combining a sufficient number of expo-

sure units to make their individual losses collectively predictable.” [9] Hence, insuring a

strongly correlated risk means for an insurance company to have gathered a reserve

large enough since all the payouts will occur simultaneously, and keeping an important

reserve is costly (Goussebaı̈le, Louaas, 2017)[5]. Crop insurance is very costly and

leaves little room to private insurance for three main reasons : moral hazard, adverse

selection, and high administrative costs (Knights and Coble, 1997 ; Skees et al., 1997 ;

Goodwin and Smith, 1995)[8, 15, 4]. With a high demand for weather hazard protection

in developing countries, publicly provided crop yield insurances have been implemen-

ted with heavy government subsidization and have failed mainly because of managerial

issues (Hazell, Pomareda, Valdez, 1988 ; Skees, Hazell, Miranda, 1999)[6, 16]. It has

been shown for the case of China that spatial diversification of weather risk could sub-

stantially lower the premium price by reducing the buffer load (Okhrin, Odening, Xu,

2013)[12]. In parallel, a study made for the US case shows that efficient risk pooling

is possible and effective for a private crop insurance market if farmers insure their pro-

duction for a minimum amount (Wang, Zhang, 2013)[holly].

Commodity prices are particularly affected by volatility for three major market fun-

damentals (FAO, 2011)[14] :

— agricultural output varies depending on seasonal, weather and disease parame-

ters ;

— the demand for agricultural product is particularly inelastic, allowing prices to

vary a lot without affecting the demand ;

— in case of important price shift, supply cannot respond immediately because

production takes considerable time in agriculture.

Volatility becomes a serious threat to food security when consumers have a low

access to food. On the contrary, extremely low prices becomes an issue to farmers.

Since a major part of consumers are also farmers in Tanzania, both price movements
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pose a significant threat to food security, as illustrated by for the 2007-2008 food crisis

(FAO, 2011)[faoprice]. This observation is particularly true for less processed food and

is exacerbated in countries where social support remains virtually nonexistent. Another

key observation is that for traditional crops (such as millet, sorghum and cassava), do-

mestic prices have been more volatile during the crisis than marketed crops (such as

rice, wheat and maize). This is mainly explained by a lower reliability in traded crops :

the local food consumption of this variety of maize comes almost only from local pro-

duction, which is more vulnerable to weather and production fluctuations. However in

Africa, maize could almost be considered as a traditional crop since African consumers

eat white maize while the variety of maize traded on the world market is yellow maize.

Maize prices are consequently very prone to volatility in Tanzania.

Our first result shows that the risk sharing among the regions is decreasing when

aggregating more and more regions. When comparing the Conditional Value at Risk of

the multivariate model to the univariate model, we decrease the risk by 0.058 when poo-

ling only two regions, and by 0.157 for increasing prices 0.169 for decreasing prices by

pooling 10 regions. These benefits reaped by increasing the number of regions pooled

show that the risk is not very correlated. This correlation might at least not be a major

obstacle to the implementation of a risk sharing mechanism. Consequently, one can

infer from these results that we have a low probability of facing extreme price changes

at the same time for several regions. All the regions being very unlikely to be affected

by the same level of price volatility simultaneously, there is room for sharing the risk of

maize price volatility.

The second main result states that pooling only two regions with different climatic condi-

tions is sufficient to reduce the Value at Risk. Indeed, pooling several regions relatively

remote from each other in a same program can lead to high administrative costs and/or

can require a substantial amount of time to be fully implemented. We compare the first

and the last percentiles where we pool two regions taken in the same area where the

risk is higher (i.e. the South) and where we pool two regions on opposite areas (North

and South). Considering decreasing prices, the average first percentile per region of

the first case is equal to -0.20 and for the second -0.16. When taking two regions in the

less risky area (the North), the first percentile is reduced to -0.14, but the gain obtained

by reducing this percentile in the Southern area seems to offset the loss.
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The paper will be presented as followed : the next section describes the context

of maize in Tanzania and data used in the study. In the second part, we outline the

econometric method used to model prices. Finally, we show and explain the results

obtained in the third part.

1.1 Context and data

1.1.1 Maize in Tanzania : an essential crop

Maize is a major staple food mainly produced by small-scale farmers, and is hence

at the core of food security and agricultural challenges in Tanzania (Wilson, Lewis,

2015)[17]. Additionally, with climate change increasing meteorological variability, par-

ticularly in Sub-Saharan African countries, crops may be strongly affected by weather

shocks in the future.

Representing half of the country’s total calorie intake, maize is the most important

food staple and a key crop ensuring food security in Tanzania. It is cultivated both as

a cash and a food crop : Tanzania is an important exporter of maize to neighboring

countries, although it is noteworthy that between 65 and 80% of all maize production is

consumed within the producing household. Roughly 85% of producers are small-scale

farmers holding a land of less than one hectare with poor infrastructures. 1 In particu-

lar, productivity is on average very low, with less than one ton produced per hectare,

compared to 5 tons per hectare on average globally. 2 Moreover, being a rain-fed crop,

maize is very sensitive to weather variation and its producers are therefore highly vul-

nerable to extreme weather events.

The southern zone of Tanzania, including Iringa, Mbeya, Songea and Sumbawanga,

is the main production zone, accounting for one third of the total production in the coun-

try (Baffes, Kshirsagar, Mitchell, 2015)[2]. Despite its interesting production surplus for

exportation and local food security, it is a relatively isolated area, with a lack of trans-

1. http://www.world-grain.com/articles/news_home/World_Grain_News/2016/03/Tanzania_to_

increase_corn_prod.aspx?ID=\%7BE02287E6-D168-45FE-BA49-88C62E02B6CD\%7D&cck=1

2. USDA : http://usda.mannlib.cornell.edu/
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portation network toward the other centers. Hence, it is very unlikely that trade could

offset a one-off production loss in a remote region. Regarding marketed maize, the

production is accumulated by traders who sell on regional and urban markets (Wil-

son, Lewis, 2015)[17]. Although this represents a sizable advantage to consumers, this

market system can represent a disadvantage for producers who could probably sell

at a much higher price without this intermediary. Despite the income loss, it ensures

the sale of the production, which is a serious advantage for farmers working in remote

areas with inefficient transport network and store infrastructures.

To date, no affordable financial tool has been accessible to farmers. Yet, to avoid

food shortages and substantial losses, it is of particular importance to ensure farmers

a minimum income, even in case of a weather shock. A key feature in the design of an

insurance is to have a number of contracts large enough to mutualize the risk, which

is valid under the condition that the risk is weakly correlated. On the opposite, a highly

correlated risk event, such as natural disasters at the country scale, is much more

difficult to ensure because an important part of the insured will require indemnities at

the same time.

1.1.2 Objective of the study

Several tools exist to protect farmers against losses caused by weather anoma-

lies, and particularly extreme weather events such as droughts. Among other tools, like

microcredits, insurance is an interesting option and weather-based index insurances

are being developed to facilitate their implementation in places where the lack of in-

formation and affordable financial access prevail. More precisely, our study would be a

feasibility assessment to implement a revenue weather index insurance that would inte-

grate a price reference to protect farmers against price volatility. By taking into account

the prices in the payout, the level of indemnities in generally lower than that of a basic

weather index insurance (Mulangu, 2015)[11].

As a result of repeated drought events in the country, food security is weak and the

government has taken steps to improve weather anomaly resilience. For example, in

1999 the Tanzania Meteorological Agency has been created to provide weather fore-
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casts and contribute to the establishment of early warning systems. Other programs,

often managed by the United Nations Programs for Development, have also emerged

so as to limit the impacts of weather variation on yields and food security. The northern

and central regions, including Arusha, Manyara, Shinyanga, Simiyiu and Dodoma, are

more often affected by droughts (Osima)[13].

As mentioned previously, an important condition for a risk to be insurable is to be

weakly correlated. The aim of this study is to assess the extent to which prices co-move

together and to what extent a significant increase in price in a given region can spread

to other ones. By assessing the risk of facing extreme decreases or increases, the re-

sults of this price correlation can be considered as a preliminary condition to implement

a revenue or income insurance related to natural weather disasters. A weak correlation

would indicate a high potential for a national insurance scheme, whereas high correla-

tion among prices would be very expensive to insure.

To address this issue, we study price correlation with a Copula-GARCH model. This

combines Generalized Autoregressive Conditional Heteroskedasticity model introduced

by Bollerslev in 1986 with an improvement in the correlation feature by allowing condi-

tional correlation to be time-varying (Engle, 2001)[engledcc]. This model provides the

advantage of taking account of the volatility of prices combined with a powerful tool

measuring correlation. Indeed, copulas (Joe, 1997)[7] will add to the DCC GARCH mo-

del a correlation varying along the values of price change (in particular, we want to

include the fact that prices could be more strongly correlated when they are soaring

or droping). Copula-GARCH models are commonly used in financial econometrics on

stock market applications (Jondeau, Rockinger, 2006) to assess portfolio returns. Ho-

wever, the application of this model to crop insurance is still weak : correlation has

mainly been modeled between different crops (Zhu, Ghosh, Goodwin, 2008) without

including geographical features, and spatial approaches have been done through li-

near correlation (Wang, Zhang, 2003). The meteorological aspect will be mainly dealt

through linear regressions and empirical copulas.



1.1. CONTEXT AND DATA 19

1.1.3 Data

To estimate the model we rely on monthly maize price time series over 19 years

(from January 1995 to December 2013) for the 20 main regions of Tanzania. Prices

are deflated with respect to the year 2010 and are given for the main markets of each

region. Figure 1.1 gives an example of the distribution of maize prices over the market

by showing the prices at a given period (May 2005). Clearly, there is substantial varia-

tion in prices across regions, especially between the southern and the northern zones,

which would be encouraging for pooling risk in prices. One possible explanation for the

variation is that the transportation network is not efficient enough to distribute equally

the production among the regions. This price difference is mainly due to the fact that,

as mentioned before, the southern zone produces substantially more than the other

regions. Consequently, this difference in quantity leads to an equilibrium with higher

prices for the less productive regions.

To focus on price volatility rather than an average price (which is likely to move

because of seasonal or political reasons), one can convert prices into returns, that

is : log( Pt
Pt−1

). Often used in financial econometrics, returns are an interesting tool to

highlight prices dynamic. The right side of Figure 1.1 shows the example of the time

series of the monthly returns obtained for the markets of Babati and Kigoma. They are

respectively in the northern and the central zone and have similar levels of production.

However, price dynamics have different trends and these prices seem to be affected by

shocks at different times.
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FIGURE 1.1: Maize deflated prices in May 2005 for the main cities of the 20 studied regions showing different price levels depending on the

geographic areas
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FIGURE 1.2: Monthly maize price returns over 19 years in Babati

FIGURE 1.3: Monthly maize price returns over 19 years in Kigoma
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1.2 Method : modeling correlation through copulas

1.2.1 Modeling price volatility : the GARCH model

General principle of the GARCH model In the general case the univariate GARCH(p, q)

model estimates the conditional variance of εt, σ2
t , allowing dependence with the squa-

red residuals in the previous p periods and the conditional variance in the previous q

periods. The model is built by letting the εt’s be innovations in a linear regression of the

form :

yt = x′tb+ εt

εt = zt σt

εt | Ωt−1 ∼ N (0, σ2
t )

σ2
t = ω +

p∑
j=1

αj ε
2
t−j +

q∑
j=1

βj σ
2
t−j

ω > 0, αj ≥ 0, βj ≥ 0,
∑

αj +
∑

βj < 1

where yt is the dependent variable, xt a vector of explanatory variables, and b a vector

of unknown parameters (Bollerslev, 1986). zt is the surprise term, or the standardized

error term, having zero mean and unit variance, often assumed to follow a normal dis-

tribution. The case where q = 0 corresponds to an ARCH(p) model.

In financial econometrics, the GARCH(1,1) is used and easier to handle ; it is defi-

ned, for each time-series i, as :

σ2
it = ωi + αi1 ε

2
i(t−1) + βi1 σ

2
i(t−1)

A ”Dynamic Conditional Correlation” (DCC) GARCH model The DCC GARCH(1,1)

model consists of modeling the 20 time-series using a univariate GARCH(1,1) for each

variable and estimate the covariance matrix Ht :

Ht = DtRtDt = ρijσitσjt

where Dt is the k× k diagonal matrix of the time-varying standard deviations from uni-

variate GARCH models with σit on the ith diagonal (Dt = diag(σ1t, ..., σnt)), and Rt is

the time-varying correlation matrix.
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1.2.2 Multivariate copulas

Presentation of copulas

Definition. Let (X1, ..., Xn) be a random vector with continuous marginals. The random

vector (U1, ..., Un) = (F (X1), ..., F (Xn)) has uniformly distributed marginals. The co-

pula of (X1, ..., Xn) is defined as the joint cumulative distribution function of (U1, ..., Un) :

C(u1, ..., un) = P [U1 ≤ u1, ..., Un ≤ un]

Gaussian and Student-t copulas As mentioned before, the use of a copula mo-

del can be very interesting in our correlation approach since copulas can provide key

information on tail dependence and hence on the probability that prices drop or soar

together.

The Gaussian copula (or Normal copula) is constructed from a multivariate normal

distribution. Fitting our data to a Normal copula has important consequences on tail de-

pendence : the tail dependence of a Gaussian copula tends to zero for extreme values

of one variable.

As a comparison, a fitting estimation to the Student-t copula can be run. One of the

characteristics of this copula is to allow the presence of tails.

Tail dependence Before presenting the results, a brief definition of tail depen-

dence is necessary (Aas, 2004)[3] : bivariate tail dependence measures the amount of

dependence in the upper and lower quadrant tail of a bivariate distribution. For instance,

the upper tail distribution quantifies the probability to observe a large Y , assuming that

X is large :

λu(X,Y ) = lim
α→1

P (Y > F−1
Y (α) | X > F−1

X (α))

and similarly the lower tail is defined by

λl(X,Y ) = lim
α→0

P (Y ≤ F−1
Y (α) | X ≤ F−1

X (α))
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1.2.3 The Copula DCC GARCH model

The DCC GARCH model is an extension of the GARCH model in that it allows

for the correlation to be time-varying thanks to the linear regression model presented

previously. This feature represents a strong improvement in forecasting price volatility,

however it does not include the possibility of correlation depending on volatility values.

Therefore, the copula DCC GARCH will be used so as to bring a new method to calcu-

late the time-varying correlation matrix : here, Gaussian and Student copulas are used

to estimate the parameters. These elliptical copulas have a conditional correlation Rt

and constant shape parameter τ .

1.2.4 Assessing the extreme variations of prices with the Value-at-

Risk and Conditional Value-at-Risk

Calculating the first and the last percentiles on the returns will be useful to assess

the extent to which prices can reach extreme values at the same time. To this end, we

first simulate prices returns for the next 19 years for the markets considered. We then

generate one time series corresponding to the average of the simulated price returns of

these markets. Finally, we compute the distribution function of this new time series and

look at the first and last percentiles. For example, by focusing on the 99th percentiles,

we have an estimation of the joint probability to face soaring prices of maize in several

regions. We then compare the average first and last percentiles per region at the same

confidence level by including an increasing number of regions and looking how the

threshold for the highest increase in price evolves.

1.3 Results and conclusions

1.3.1 Preliminary results on price correlation

Pearson’s correlation coefficient This coefficient measures the linear correlation

between two variables and is commonly used in financial economics. Even though it

does not allow time-varying correlation and does not take volatility into account, it is

interesting to have an overview of the average correlation among the twenty markets

over time. Ranging from 0.01 to 0.70 for the extreme highest value, the major part of
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the results are mainly ranging between 0.20 and 0.45 (see appendix 1.3.5), which is

relatively low and leaves room for pooling the price risk.

Preliminary results on tail dependence with empirical multivariate copulas Tail

dependence can be measured empirically, with a non-parametric model giving the

conditional probability of observing the same price change between two markets. We

can divide this analysis into 3 cases :

— two neighboring markets in the less productive zones, that is the northern and

the central zones, which are more likely to be affected by droughts and hence

shortages

— two neighboring markets in the most productive zone in the South, where prices

can decrease because of unusually high yields

— two markets from a different zone

In all cases, the conditional probability for the two markets is represented by cal-

culating the probability of observing the same price for several levels of price, more or

less likely. Hence, the conditional probabilities for values close to 0 represents the like-

lihood of observing simultaneously important prices decrease, and conversely for high

price rises. We are therefore able to see to what extent extreme values can spread to

another market depending on price change.

The illustration of the tail dependence of each one of the three categories shows

very different trends : the two cases where the markets are close to each other high-

light asymmetric tail dependence while the case with two markets far from each other

has a smoother joint distribution. Figure 1.4 represents the first case with the example

of Arusha and Babati both in the northern zone : even if the conditional probability for

low values is higher than the tail of a Normal distribution, a stronger dependence is ob-

served for high price increases. Figure 1.5 illustrates the second case with the example

of Songea and Mtwara : it is clear here that important price decreases are highly cor-

related with a fat lower tail. Lastly, Figure 1.6 represents the third case with a northern

market, Arusha, and a southern market, Songea : the distribution is much smoother

and does not show fat tails.
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FIGURE 1.4: Tail

dependence for maize

prices between two

markets in the northern

zone (Arusha and Babati)

FIGURE 1.5: Tail

dependence for maize

prices between two

markets in the southern

zone (Songea and Mtwara)

FIGURE 1.6: Tail

dependence for maize

prices between two

markets in different regions

(Arusha and Songea)

We can infer from these graphs not only that the correlation is asymmetric but also

that the correlation depends on whether the markets are from the same geographic

region. Prices seems sensitive to quantities : regions where food shortages are more

likely to be observed are more correlated for prices spikes, and regions which have

good levels of production have prices changes strongly correlated when they substan-

tially decrease. However, the case of two markets in different regions shows a low corre-

lation with almost no tails. Hence, our historical data show a sizable correlation among

markets geographically close, while the different production zones seem to have prices

uncorrelated enough to allow for a price related insurance at the national level.

The Copula GARCH fitting (see Appendix at section 1.3.6) To estimate the re-

levance of the use of a GARCH model in our time series, we first run a test on the

autoregression of the terms (we assume here that no variable can explain the auto-

regressive trend). The Ljung-Box test confirms that there is dependence between the

terms at time t and t−1, thus using a GARCH model is consistent with our data. For the

following models, that is for the GARCH, DCC GARCH and Copula DCC GARCH mo-

dels, we always run the same Ljung-Box test on the residuals to check that the model

has well captured the autoregressive trend : in all our simulations, this trend is captured

by the model, with more significant results for the most appropriate models such as the

Copula DCC GARCH model.

To make a choice between the different copulas in the Copula DCC GARCH model
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(that is, between the Normal, the symmetric and the asymmetric Student-t copulas),

we use in addition information criteria often employed for this kind of study : the Akaike,

Bayes, Shibata and Hannan-Quinn criteria. We select the model with the lower values

for these criteria, and may also use the elapsed time if the values are close to each

other. Regarding these features, we have chosen to keep the Copula DCC GARCH

model for modeling the distribution of the residuals with an asymmetric Student-t co-

pula. The following results are presented for simulations made with that model.

1.3.2 Main results : reducing the risk of facing extreme price vola-

tility by pooling regions across Tanzania

Defined as the maximum loss not exceeded with a given probability over a given

period of time, the Value at Risk will determine in our study the maximum price in-

crease not exceeded for several confidence levels (here we will focus on the VaR 1%).

Since the VaR presents the major disadvantage of focusing on the threshold and not

accounting for the risk distribution beyond the threshold, we also look at the Conditio-

nal Value-at-Risk (CVaR) which is the expected return for returns beyond the VaR. This

tool presents the advantage of measuring risk compared to the VaR since it computes

the same threshold as the VaR but also computes the expectancy of the values above

the VaR. While the VaR omits the distribution of the extreme values, the CVaR differen-

tiates highly aggregated values to spread values and potential extreme values. Hence,

we will be able to assess how prices co-move together for an important increase in

maize price and see whether the co-movement is alleviated when pooling the markets.

Pooling the risk by randomly adding more and more regions We first show how

the risk is reduced for increasing and decreasing prices by including an increasing num-

ber of regions. This enables us to see the potential benefit of pooling the risk of facing

extreme shifts in maize price at the same time in Tanzania to design an insurance. For

this part of the study, we employ the Conditional Value-at-Risk.

Due to computation cost, we are unable to compute the CVaR for all the possible

combinations of n markets among 20 : as from 3 regions, that would imply fitting from
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1,140 to 184,756 multivariate GARCH models, which is computationally highly deman-

ding. We therefore restrict our comparisons by taking randomly 190 3 different com-

binations among all the possible and look at the difference in the average CVaR 1%

when the n markets are aggregated and when they are isolated. In other words, for the

same combination of n markets among 20, we look at the difference between the CVaR

1% for the multivariate GARCH model and the average CVaR 1% of the n univariate

GARCH models. We repeat the procedure for 190 possible combinations of n regions

and take the average difference between the two CVaR calculated for each combina-

tion.

Once this average difference between the aggregate and the isolated cases is ob-

tained for each value of n ranging from 2 to 10 (ie. taking from 2 to 10 markets among

20), we compare the differences and see whether the risk is significantly reduced when

increasing the number of regions. If the average difference between the two CVaR is

significantly higher with n markets than with n − 1, hence aggregating n significantly

reduces the risk of extreme price volatility compared to aggregating n− 1 markets.

A sample of 190 combination over thousands different possible combinations is so res-

tricted that the CVaR 1% could vary substantially from a set of n regions to another.

Hence, in order to be able to compare the comparable, one should restrict the analysis

by comparing the CVaR reduction within the same set of regions.

Table 1.1 and table 1.2 summarize the main results : the CVaR displayed are the

average Conditional Value-at-Risk 1% for the price increase and decrease and for the

markets taken randomly. Since we are not able to take every possible combination for

each n, our sample necessary has a risk trend that does not reflect exactly the average

risk profile off every possible combination of n markets among 20. For this reason,

we won’t analyze the results obtained with the CVaR only. However, when we look at

the difference, for every combinations picked up among all the possibilities, between

the CVaR for n combinations and the average CVaR with univariate GARCH models,

we can infer from the results whether the risk aggregation reap benefits. We calcu-

late CV aRmultivariate − CV aRunivariate for decreasing prices and CV aRunivariate −

CV aRmultivariate for increasing prices. Hence, a positive difference shows that, for a

3. 190 corresponds to the number of possible combinations of taking 2 elements among 20
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19-year time scale, pooling n regions is less risky and that the risk has potential benefits

to be exploited. The significance corresponds to the comparison between the average

difference with n markets and n− 1 markets. In the case n = 2, we compare the CVaR

from the multivariate model with the univariate model.

TABLE 1.1: Conditional Value-at-Risk (CVaR, or Expected Shortfall) for increasing

prices for an increasing number of regions

Number of markets included CVaR Difference with univariate model Significance

2 0.284 0.058 ∗∗

3 0.241 0.084 ∗∗∗

4 0.236 0.107 ∗∗∗

5 0.214 0.109

6 0.212 0.116 ∗∗∗

7 0.223 0.134 ∗∗∗

8 0.205 0.130 ∗

9 0.211 0.141 ∗∗∗

10 0.227 0.157 ∗∗∗

Note : Significance evaluated with a t − test between the average difference with n markets and

n − 1 markets. . Significant at 10% level. ∗ Significant at 5% level. ∗∗ Significant at 1% level. ∗∗∗ Si-

gnificant at 0.1% level.

Table 1.1 and table 1.2 display the results for the Conditional Value-at-Risk 1%.

Both tables show that the evolution of the CVaR is irregular when adding more and

more regions. This is attributable to the fact that we have selected only a few number

of combinations among all the possible ones, so the risk profiles are taken randomly.

However, the difference between the CVaR of the multivariate and the univariate mo-

dels is very clear : increasing from 0.058 with 2 regions to 0.157 for increasing prices

and 0.169 for decreasing prices with 10 regions, the difference between the aggregated

risk and the average individual risk is increasing. The multivariate model have a CVaR

decreasing with more regions included compared to the average CVaR of each region

considered.
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These results show that groups of regions taken randomly with an increasing num-

ber of regions have a risk profile less exposed to price volatility risk. Another result that

we will use for the next calculations is that pooling two regions is already beneficial in

terms of reducing the risk. The significance calculated for the case n = 2 measures the

significance of the difference between the CVaR with two aggregated regions and the

average CVaR with the two same regions taken independently.

TABLE 1.2: Conditional Value-at-Risk (CVaR, or Expected Shortfall) for decreasing

prices for an increasing number of regions

Number of markets included CVaR Difference with univariate model Significance

2 -0.280 0.058 ∗∗∗

3 -0.251 0.087 ∗∗∗

4 -0.229 0.099 ∗∗∗

5 -0.226 0.117 ∗∗∗

6 -0.210 0.119

7 -0.245 0.142 ∗∗∗

8 -0.212 0.137 .

9 -0.218 0.143 ∗∗

10 -0.245 0.169 ∗∗∗

Note : Significance evaluated with a t−test between the average difference with n markets and n−1

markets. . Significant at 10% level. ∗ Significant at 5% level. ∗∗ Significant at 1% level. ∗∗∗ Significant

at 1% level

Pooling the risk taking into account the geographic distribution of the regions

We now focus on the geographic impact on prices correlation : since the regions are

unequal in terms of quantity produced, we know that the mean level of prices follows

a similar trend depending on the area. Moreover, since Tanzania has different climatic

zones, and assuming climate has a significant impact on prices, one can expect that

prices will be differently correlated for regions in different areas. However, we do not

know if these effects will be significant enough to overcome a common price move-

ment depending on policy, trade, etc. Therefore, we will proceed with the study on tail

dependence in subsection 1.3.1 and see if the correlation is higher for extreme price

variations in regions within the same area. If so, aggregating a small number of regions



1.3. RESULTS AND CONCLUSIONS 31

FIGURE 1.7: Difference between Conditional Value-at-Risk 1% for aggregated regions

and independent regions for increasing prices with increasing number of regions

included

FIGURE 1.8: Difference between Conditional Value-at-Risk 1% for aggregated regions

and independent regions for increasing prices with increasing number of regions

included
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located in different areas would be interesting to reap substantial benefits.

Table 1.5 shows the lower and upper VaR 1% per region by pooling the risk of

extreme price co-movement between two regions. We compare the results by taking

two regions randomly within the same area : the northern, southern or central area of

Tanzania.

TABLE 1.3: Average VaR 1% per region within bimodal area

Number of

markets included Price decrease Price increase

1 -0.301 0.332

2 -0.171∗∗∗ 0.200∗

3 -0.160 0.200

4 -0.111 0.155∗

5 -0.128 0.143

6 -0.126 0.130

7 -0.124 0.130

8 -0.111 0.130

9 -0.119 0.126

Note : Significance evaluated with a t − test between the

mean with n markets and n− 1 markets. ∗ Significant at 10%

level. ∗∗ Significant at 5% level. ∗∗∗ Significant at 1% level.

Pooling two regions, one from the northern zone and the other one from the sou-

thern zone, significantly reduces the average VaR in absolute value compared to the

situation where we take two regions within the southern zone (from 20.3% to 16.2%).

However, here, it is not sufficient enough to lower the VaR until the rate obtained when

the two regions are taken randomly across Tanzania (15%).

Optimization : selecting the combinations of 2 regions that reduces best the

Value-at-Risk Having observed that pooling two regions was sufficient to reduce si-

gnificantly the CVaR and VaR in absolute value, we now look for the ”best” combination.

For this part, we look at extreme variation in both decreasing and increasing prices. We

can consider the ”best” combination of two regions by looking at the combination where
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TABLE 1.4: Average VaR 1% per region within unimodal area

Number of

markets included Price decrease Price increase

1 -0.445 0.417

2 -0.305∗∗ 0.304∗∗

3 -0.248∗∗∗ 0.268

4 -0.255 0.232∗∗

5 -0.238 0.246

6 -0.221 0.241

7 -0.217 0.219∗

8 -0.220 0.226

9 -0.217 0.229

10 -0.205 0.224

11 -0.215 0.207∗

Note : Significance evaluated with a t − test between the

mean with n markets and n− 1 markets. ∗ Significant at 10%

level. ∗∗ Significant at 5% level. ∗∗∗ Significant at 1% level.

the CVaR and VaR are the smallest in absolute value. In table 1.6 and table 1.7, we

show the ten pairs of regions having the less risky profile when pooled together. That

is, we run a GARCH model for every possible combination of two regions in Tanza-

nia and select the pairs of regions where the CVaR 1% and VaR 1% for increasing or

decreasing prices is the lowest in absolute value. The least risky pairs of regions are

Arusha and Mwanza for decreasing prices with a CVaR 1% of -0.050 and a VaR 1% of

-0.0609, and Arusha and Mwanza for increasing prices with a CVaR 1% of 0.055 and

a VaR 1% of 0.0727. Mbeya and Moshi seems also to be a good composition for both

decreasing and increasing prices regarding the VaR 1%, respectively equal to -0.074

and 0.073. Mbeya and Moshi are on opposite sides of the country, which makes the

lack of correlation between the two prices times series relevant. However, Arusha and

Mwanza are relatively close to each other, which means that in a scheme that would

involve crop transportation, here transportation costs would not offset the advantages

in terms of risk in pooling those two regions.
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TABLE 1.5: Average Values-at-Risk 1% taking 2 regions from different zones

2 regions taken

Central zone Northern zone Southern zone randomly

Price decrease

-0.231 -0.152 -0.334 -0.232

Northern and Southern zones

-0.231 -0.232

Price increase

0.226 0.151 0.305 0.358

Northern and Southern zones

0.249 0.358

TABLE 1.6: Least risky combinations

Decreasing prices Increasing prices

Pair of regions CVaR 1% Pair of regions CVaR 1%

Arusha Mwanza -0.050 Arusha Mwanza 0.055

Arusha Morogoro -0.062 Arusha Morogoro 0.064

Bukoba Mwanza -0.092 Musoma Mwanza 0.103

Musoma Mwanza -0.099 Bukoba Mwanza 0.105

Dodoma Mwanza -0.107 Dodoma Mwanza 0.118

Arusha Bukoba -0.109 Arusha Bukoba 0.119

Morogoro Mwanza -0.111 Morogoro Mwanza 0.120

Bukoba Tabora -0.131 Bukoba Tabora 0.141

Bukoba Dodoma -0.135 Dar-es-Salaam Mwanza 0.143

Dar-es-Salaam Mwanza -0.135 Arusha Dar-es-Salaam 0.146

By calculating the minimum of the CVaR and VaR, we are very likely to find several

times the same markets in the combinations simply because they are not very expo-

sed to price volatility over time. Hence, we might not capture the benefit from pooling

the risk with another market compared to the baseline scenario. Consequently, we can

consider the best combination as being the one that improves best the CVaR or VaR

reduction. Here, we calculate the difference between the CVaR (VaR) when pooling

two regions with the average CVaR (VaR) of each region taken separately. Table 1.8
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TABLE 1.7: Least risky combinations

Decreasing prices Increasing prices

Pair of regions VaR 1% Pair of regions VaR 1%

Arusha Mwanza -0.0609 Mbeya Moshi 0.0727

Mbeya Moshi -0.0735 Arusha Mwanza 0.0733

Arusha Morogoro -0.0738 Arusha Morogoro 0.0749

Mbeya Morogoro -0.0850 Mbeya Morogoro 0.0851

Arusha Bukoba -0.104 Bukoba Morogoro 0.110

Bukoba Morogoro -0.104 Arusha Bukoba 0.111

Bukoba Mbeya -0.109 Bukoba Mbeya 0.113

Bukoba Lindi -0.138 Bukoba Lindi 0.139

Arusha Mbeya -0.138 Arusha Mbeya 0.140

Dodoma Mwanza -0.139 Dodoma Mwanza 0.144

and table 1.9 show the combinations that reduces the best the CVaR 1% (VaR 1%)

for increasing and decreasing prices. The CVaR (VaR) difference is obtained by com-

puting the CVaR 1% (VaR 1%) for the bivariate GARCH model and substracting it to

the average CVaR 1% (VaR 1%) of the univariate GARCH models for the two regions

considered. Mbeya and Moshi appear again in the best combinations for decreasing

prices, which means that not only are they the less risky duo, but they are also the

duo that reap the most benefits when paired together with a VaR reduction of 0.335

points, and a CVaR reduction of 0.645. On the opposite, it seems that the most per-

formant combinations are very different for increasing prices depending on whether we

look at the CVaR or the VaR : the pair Mbeya and Shinyanga reap substantial benefits

when paired together by reducing the VaR of 0.594 points (even though they did not

appear in the least risky regions) and the combination Mbeya Singida performs the best

when considering the CVaR with a decrease of 0.676 points. This result can be mainly

explained by the different season pattern of the two regions.
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TABLE 1.8: Best combinations that decrease the risk (CVaR)

Decreasing prices Increasing prices

Pair of regions CVaR difference Pair of regions CVaR difference

Mbeya Singida 0.676 Mbeya Songea 0.619

Mbeya Songea 0.645 Mbeya Mtwara 0.608

Mbeya Moshi 0.645 Songea Singida 0.605

Lindi Mbeya 0.627 Bukoba Mbeya 0.599

Mbeya Tanga 0.620 Mbeya Tanga 0.593

Bukoba Mbeya 0.605 Lindi Mbeya 0.591

Babati Mbeya 0.582 Mbeya Moshi 0.575

Dar-es-Salaam Mbeya 0.579 Mbeya Morogoro 0.568

Mbeya Mtwara 0.577 Babati Mbeya 0.548

Dodoma Mbeya 0.573 Dar-es-Salaam Mbeya 0.545

Note : VaR difference in absolute value obtained by subtracting the VaR 1% obtained for the biva-

riate GARCH model and the mean of VaR 1% obtained for the two univariate GARCH models for

each region.

Conclusion

We have been able to highlight a correlation weak enough among the twenty major

markets in Tanzania to consider the possibility of mutualizing the risk of extreme maize

price changes. The feasibility of implementing such a scheme and the cost of the po-

tential insurance would be very high if the risk was extremely correlated, since the

insurance company would be forced to gather important reserves. Our Copula-GARCH

model, applied on our twenty time-series, takes into account the pairwise correlations

and assesses a relatively low probability of facing extreme price changes in several

regions simultaneously. Including more and more regions helps reducing significantly

the risk but we have also shown that pooling two markets from different areas can be

sufficient to mutualize the risk. Given the divergence in terms of climatic and production

conditions, the southern area is less prone to climatic variability, diversifying the price

risk between the northern and the southern areas. This conclusion is interesting to find

an alternative to a national scheme that could have non negligible implementing and

administrative costs.
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TABLE 1.9: Best combinations that decrease the risk (VaR)

Decreasing prices Increasing prices

Pair of regions VaR difference Pair of regions VaR difference

Mbeya Moshi 0.335 Mbeya Shinyanga 0.594

Bukoba Mbeya 0.271 Mbeya Sumbawanga 0.477

Mbeya Morogoro 0.271 Songea Sumbawanga 0.0958

Bukoba Lindi 0.240 Kigoma Mbeya 0.0431

Mbeya Singida 0.201 Arusha Mtwara 0.0387

Arusha Mbeya 0.199 Arusha Lindi 0.0373

Singida Songea 0.199 Mtwara Mwanza 0.0338

Bukoba Morogoro 0.180 Morogoro Mtwara 0.0329

Dodoma Mbeya 0.180 Arusha Sumbawanga 0.0264

Arusha Morogoro 0.169 Lindi Morogoro 0.0263

Note : VaR difference in absolute value obtained by subtracting the VaR 1% obtained

for the bivariate GARCH model and the mean of VaR 1% obtained for the two univariate

GARCH models for each region.
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Appendix

1.3.3 The GARCH model

The general GARCH model The model is built by letting the εt’s be innovations

in a linear regression of the form :

yt = x′tb+ εt (1.1)

εt = zt σt (1.2)

εt | Ωt−1 ∼ N (0, σ2
t ) (1.3)

σ2
t = ω +

p∑
j=1

αj ε
2
t−j +

q∑
j=1

βj σ
2
t−j (1.4)

ω > 0, αj ≥ 0, βj ≥ 0,
∑

αj +
∑

βj < 1

where yt is the dependent variable, xt a vector of explanatory variables, and b a vector

of unknown parameters (Bollerslev, 1986). zt is the surprise term, or the standardized

error term, having zero mean and unit variance, often assumed to follow a normal dis-

tribution. The case where q = 0 corresponds to an ARCH(p) model.

The first two unconditional moments are constant, their expression does not include

a time component :

E(εt) = 0 (1.5)

E((εt − E(εt))
2) =

ω

1−
∑
αj −

∑
βj

(1.6)

The first conditional moment is, by definition, equal to zero and the second condi-

tional moment is time dependent :

E(εt | Ωt−1) = 0 (1.7)

E((εt − E(εt | Ωt−1))2 | Ωt−1) = ω +

p∑
j=1

αj ε
2
t−j +

q∑
j=1

βj σ
2
t−j (1.8)

In financial econometrics, the GARCH(1,1) is usually used and easier to handle ; it

is defined, for each time-series i, as :

σ2
it = ωi + αi1 ε

2
i(t−1) + βi1 σ

2
i(t−1)
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GARCH properties proofs

E((εt − E(εt))
2) =

ω

1−
∑
αj −

∑
βj

Démonstration. Let us define :

ε2t = E(ε2t | Ωt−1) + vt (1.9)

with vt being the surprise term such that : E(vt | Ωt−1) = 0 and E(vt) = 0. By definition,

E(ε2t | Ωt−1) = σ2
t , hence we can write :

ε2t = σ2
t + vt

hence :

E(ε2t ) = E(σ2
t ) (1.10)

Therefore, one can re-write the variance expression :

σ2
t = ω +

∑
αj ε

2
t−j +

∑
βj σ

2
t−j

⇐⇒ ε2t − vt = ω +
∑

αj ε
2
t−j +

∑
βj σ

2
t−j

=⇒ E(ε2t ) = ω +
∑

αj E(ε2t ) +
∑

βj E(σ2
t )

since E(vt) = 0. And thanks to equation 1.10 :

⇐⇒ E(ε2t ) = ω +
∑

αj E(ε2t ) +
∑

βj E(ε2t )

⇐⇒ E(ε2t ) = ω + E(ε2t )
∑

αj + E(ε2t )
∑

βj

⇐⇒ E(ε2t ) =
ω

1−
∑
αj −

∑
βj

⇐⇒ E((εt − E(εt))
2) =

ω

1−
∑
αj −

∑
βj

(1.11)

E((εt − E(εt | Ωt−1))2 | Ωt−1) = ω +

p∑
j=1

αj ε
2
t−j +

q∑
j=1

βj σ
2
t−j

Démonstration. By definition, E(εt | Ωt−1) = 0, hence :

E((εt − E(εt | Ωt−1))2 | Ωt−1) = E(ε2t ) | Ωt−1)

= E(σ2
t z

2
t | Ωt−1)

= σ2
t E(z2

t | Ωt−1)
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since σ2
t can be expressed as a function of elements depending only on the period t−1,

this term is constant. And since the moments of zt do not change over time, we have

E(z2
t | Ωt−1) = E(z2

t ) with zt ∼ N (0, 1), then we get :

σ2
tE(z2

t | Ωt−1) = σ2
t

= ω +

p∑
j=1

αj ε
2
t−j +

q∑
j=1

βj σ
2
t−j (1.12)

Coefficient of the DCC GARCH model In the DCC GARCH model, the dynamic

conditional correlation coefficient between two markets (1 and 2) at time t is expressed

as follows :

ρ12,t =
Et−1(ε1,t ε2,t)√

Et−1(ε21,t)Et−1(ε22,t)

1.3.4 Copulas properties

Sklar’s theorem. Let F ∈ F(F1, ..., Fn) be an n-dimensional distribution function with

marginals F (x1), ..., F (xn). Then there exist a copula C : [0; 1] → [0; 1]n such that, for

all x = (x1, ..., xn) ∈ Rn :

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn))

If F1, ..., Fn are continuous, then C is unique.

The Gaussian copula (or Normal copula) is constructed from a multivariate normal

distribution. Each parameter ρ is estimated thanks to the following bivariate formula :

Cρ(u, v) =

∫ φ−1(u)

−∞

∫ φ−1(v)

−∞

1

2π(1− ρ2)
1
2

exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
dx dy

ρ being the parameter of the copula and φ−1(.) the inverse of the standard univariate

Gaussian distribution function.

Fitting our data to a Normal copula has important consequences on tail depen-

dence : as shown in the next paragraph, the tail dependence of a Gaussian copula

tends to zero for extreme values of one variable.
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As a comparison, a fitting estimation to the Student-t copula can be run. The para-

meters are estimated according to the following formula :

Cρν(u, v) =

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π(1− ρ2)
1
2

(
1 +

x2 − 2ρxy + y2

ν(1− ρ2)

)− (ν+2)
2

dx dy

One of the characteristics of this copula is to allow the presence of tails (see next

paragraph).

Tail dependence Tail dependence is zero for a Normal copula :

λl(X,Y ) = λu(X,Y ) = 2 lim
x→−∞

φ

(
x

√
1− ρ√
1 + ρ

)
= 0

hence it is very likely that if prices soar or increase in a given market because of a

localized event, other markets prices will not be significantly impacted. Prices are very

unlikely to co-move together for extreme shifts.

For the Student-t copula, the presence of tail is allowed and is calculated as follows :

λl(X,Y ) = λu(X,Y ) = 2 tν+1

(
−
√
ν + 1

√
1− ρ
1 + ρ

)
where tν+1 corresponds to the distribution function of a univariate Student’s t-distribution

with ν + 1 degrees of freedom. In this case, the estimate for the degree of freedom (ν)

provides the main information : the lower degree of freedom, the higher the tail depen-

dence.



1.3.5 Matrix correlation between raw returns

Arusha Babati Bukoba Dar Dodoma Iringa Kigoma Lindi Mbeya Morogoro Moshi Mtwara Musoma Mwanza Shinyanga Singida Songea Sumbawanga Tabora Tanga

Arusha 1.00 0.33 0.18 0.53 0.56 0.39 0.23 0.12 0.31 0.51 0.48 0.21 0.34 0.20 0.42 0.48 0.25 0.23 0.20 0.56

Babati 0.33 1.00 0.16 0.38 0.45 0.25 0.15 0.35 0.29 0.50 0.17 0.46 0.30 0.26 0.30 0.26 0.43 0.39 0.37 0.45

Bukoba 0.18 0.16 1.00 0.18 0.02 0.15 0.12 0.12 0.12 0.08 0.18 0.10 0.42 0.24 0.34 0.14 0.13 0.30 0.16 0.08

Dar 0.53 0.38 0.18 1.00 0.60 0.52 0.34 0.21 0.39 0.61 0.46 0.32 0.24 0.32 0.37 0.41 0.45 0.43 0.40 0.44

Dodoma 0.56 0.45 0.02 0.60 1.00 0.56 0.20 0.32 0.36 0.70 0.43 0.36 0.20 0.34 0.39 0.53 0.41 0.29 0.44 0.55

Iringa 0.39 0.25 0.15 0.52 0.56 1.00 0.13 0.20 0.45 0.52 0.33 0.28 0.09 0.21 0.38 0.44 0.39 0.35 0.35 0.41

Kigoma 0.23 0.15 0.12 0.34 0.20 0.13 1.00 0.37 0.23 0.27 0.25 0.30 0.24 0.21 0.41 0.37 0.26 0.39 0.52 0.01

Lindi 0.12 0.35 0.12 0.21 0.32 0.20 0.37 1.00 0.28 0.35 0.21 0.64 0.18 0.38 0.40 0.28 0.41 0.37 0.53 0.15

Mbeya 0.31 0.29 0.12 0.39 0.36 0.45 0.23 0.28 1.00 0.43 0.17 0.35 0.03 0.23 0.38 0.35 0.41 0.44 0.38 0.19

Morogoro 0.51 0.50 0.08 0.61 0.70 0.52 0.27 0.35 0.43 1.00 0.30 0.43 0.19 0.35 0.39 0.38 0.49 0.41 0.40 0.56

Moshi 0.48 0.17 0.18 0.46 0.43 0.33 0.25 0.21 0.17 0.30 1.00 0.01 0.32 0.17 0.29 0.53 0.12 0.19 0.37 0.23

Mtwara 0.21 0.46 0.10 0.32 0.36 0.28 0.30 0.64 0.35 0.43 0.01 1.00 0.18 0.29 0.34 0.10 0.58 0.44 0.36 0.36

Musoma 0.34 0.30 0.42 0.24 0.20 0.09 0.24 0.18 0.03 0.19 0.32 0.18 1.00 0.40 0.37 0.27 0.10 0.20 0.20 0.28

Mwanza 0.20 0.26 0.24 0.32 0.34 0.21 0.21 0.38 0.23 0.35 0.17 0.29 0.40 1.00 0.45 0.30 0.19 0.19 0.33 0.12

Shinyanga 0.42 0.30 0.34 0.37 0.39 0.38 0.41 0.40 0.38 0.39 0.29 0.34 0.37 0.45 1.00 0.45 0.38 0.38 0.49 0.28

Singida 0.48 0.26 0.14 0.41 0.53 0.44 0.37 0.28 0.35 0.38 0.53 0.10 0.27 0.30 0.45 1.00 0.31 0.28 0.50 0.29

Songea 0.25 0.43 0.13 0.45 0.41 0.39 0.26 0.41 0.41 0.49 0.12 0.58 0.10 0.19 0.38 0.31 1.00 0.43 0.31 0.32

Sumbawanga 0.23 0.39 0.30 0.43 0.29 0.35 0.39 0.37 0.44 0.41 0.19 0.44 0.20 0.19 0.38 0.28 0.43 1.00 0.47 0.32

Tabora 0.20 0.37 0.16 0.40 0.44 0.35 0.52 0.53 0.38 0.40 0.37 0.36 0.20 0.33 0.49 0.50 0.31 0.47 1.00 0.11

Tanga 0.56 0.45 0.08 0.44 0.55 0.41 0.01 0.15 0.19 0.56 0.23 0.36 0.28 0.12 0.28 0.29 0.32 0.32 0.11 1.00

TABLE 1.10: Correlation among markets prices (Pearson’s correlation coefficient)



1.3.6 GARCH goodness-of-fit

Stationarity To use an autoregressive model, the time-series must be stationary, i.e

with statistical properties such as mean, variance, autocorrelation, etc. all constant over

time. To check for stationarity, we use an Augmented Dickey-Fuller test and obtain the

results below :

Market Statistics p.value

Arusha -6.97 0.01

Babati -7.83 0.01

Bukoba -6.87 0.01

Dar -6.87 0.01

Dodoma -6.69 0.01

Iringa -6.57 0.01

Kigoma -5.60 0.01

Lindi -8.28 0.01

Mbeya -6.95 0.01

Morogoro -7.39 0.01

Moshi -6.44 0.01

Mtwara -8.49 0.01

Musoma -6.61 0.01

Mwanza -7.24 0.01

Shinyanga -6.65 0.01

Singida -7.55 0.01

Songea -8.07 0.01

Sumbawanga -7.78 0.01

Tabora -6.83 0.01

Tanga -6.96 0.01

TABLE 1.11: Augmented Dickey-Fuller test results for the 20 markets

The p-values are all lower than 0.01 so the 20 time-series are stationary. With this

condition, we can run a GARCH model.
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Autocorrelation To justify the use of an autoregressive model, we need to identify an

autocorrelation trend on the variance of returns (ie. the squared residuals). To this end,

we run a Portmanteau test (Ljung, Box, 1978) on each times series :

Market Statistics p-value

Arusha 0.16 0.688

Babati 14.06 0.000

Bukoba 4.14 0.0419

Dar 3.27 0.070

Dodoma 12.57 0.000

Iringa 0.19 0.666

Kigoma 0.07 0.787

Lindi 7.80 0.005

Mbeya 16.43 5.05e-05

Morogoro 5.15 0.023

Moshi 10.03 0.002

Mtwara 0.06 0.813

Musoma 0.61 0.434

Mwanza 7.51 0.006

Shinyanga 3.41 0.065

Singida 24.58 7.12e-07

Songea 0.44 0.506

Sumbawanga 4.01 0.045

Tabora 2.53 0.112

Tanga 10.98 0.001

TABLE 1.12: Portmanteau test results on the maize price returns

13 times series over 20 have a low p-value (lower than at least 0.05), so we observe

an autoregressive trend with one lag for 13 markets in Tanzania. Hence, the use of a

GARCH model is justified.

The goodness-of-fit of the selected GARCH model will determine whether the model
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has a stochastic trend. Therefore, if the GARCH model fits well to our data, we should

not observe any autoregression in the residuals. We check this condition by running

the same Portmanteau test as previously on the squared residuals of the DCC GARCH

model and of the Copula DCC GARCH model (choosing the Normal copula) :

Market Statistics p-value

Arusha 3.57 0.059

Babati 0.00 0.978

Bukoba 2.05 0.152

Dar 0.01 0.925

Dodoma 0.01 0.913

Iringa 0.01 0.937

Kigoma 1.01 0.315

Lindi 0.27 0.601

Mbeya 2.38 0.123

Morogoro 3.58 0.058

Moshi 3.24 0.072

Mtwara 3.90 0.048

Musoma 0.13 0.718

Mwanza 0.38 0.539

Shinyanga 1.69 0.193

Singida 3.41 0.065

Songea 5.03 0.025

Sumbawanga 1.56 0.212

Tabora 0.34 0.561

Tanga 0.07 0.788

TABLE 1.13: Portmanteau test results on the DCC GARCH model

All the p-values have substantially increased, indicating no autoregressive trend

remaining in the residuals and that both models are correct. However, for the second, all

the p-values are higher than 0.05 and generally higher than those of the first model (the

linear DCC GARCH model). Consequently, the Copula DCC GARCH model selected

fits well to our data.
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Market Statistics p-value

Arusha 2.66 0.103

Babati 1.81 0.179

Bukoba 1.11 0.292

Dar 0.08 0.774

Dodoma 0.05 0.820

Iringa 0.20 0.658

Kigoma 0.04 0.840

Lindi 0.06 0.812

Mbeya 0.12 0.724

Morogoro 0.07 0.785

Moshi 3.18 0.074

Mtwara 0.80 0.370

Musoma 0.50 0.478

Mwanza 0.03 0.868

Shinyanga 0.05 0.823

Singida 0.31 0.578

Songea 0.82 0.365

Sumbawanga 0.44 0.509

Tabora 0.69 0.406

Tanga 0.48 0.490

TABLE 1.14: Portmanteau test results on the Copula DCC GARCH model

Symmetry and tails We can strengthen this robustness looking at the symmetry and

the tails in the distribution of the returns and of the model residuals. To this end, we

look at the Skewness (for the symmetry) and Kurtosis (for the tails) values, which are

respectively equal to 0 and 3 for a Normal distribution.

1.3.7 Values-at-Risk

Significance in the difference in the Values-at-Risk For 10 markets and more, the

difference in the Value-at-Risk is not significant.
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TABLE 1.15: p-values of the t-tests comparing the average Value-at-Risk pooling n and

n+ 2 regions - Case of increasing prices

2 and 4 markets 4 and 6 markets 6 and 8 markets 8 and 10 markets

0.0003178 0.01117 0.008773 0.5286
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Chapitre 2

Cyclone Risk Correlation

Among the South Pacific

Islands

co-written with Ilan Noy and Eric Strobl

2.1 Introduction

Being part of the most affected and damaged countries in the world due to natural

disasters (World Bank, 2010, PCRAFI, 2013)[12, 5], the Pacific Island Countries (PICs)

struggle to develop and are typically among the most in need for disaster risk cove-

rage. In the same vein as the CCRIF (Caribbean Catastrophe Risk Insurance Facility)

formed in 2007 and including 16 Caribbean countries (CCRIF, 2017)[6], the PICs are

now joining together to form a multi-country insurance through the PCRAFI (Pacific Ca-

tastrophe Risk Assessment & Financing Initiative)(PCRAFI, 2015)[1]. A major obstacle

to this type of insurance is the occurrence of extremely rare and devastative event with

particularly high payout. These events happen with a very low probability and might

be seriously underestimated when calculating the reserve for example. Unlike health

or accident insurances for instance, the risk of facing a natural disaster for countries in
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the same area is very correlated, hence the insurance scheme cannot rely on risk mu-

tualization to offset the payout when a disaster occurs. Insuring such a risk for several

countries very exposed to tropical storm risk results in holding high reserve, which is

costly for the insurance scheme (and hence for the member governments).

To date, a strong literature is being developed to model the impacts of natural disas-

ters. Using the same wind field model as Strobl (2012)[22], studies have been carried

on to measure the impact of tropical storms in developing countries on the agriculture

sector (Blanc and Strobl, 2016 ; Mohan and Strobl, 2017)[3, 18], on properties (Sealy

and Strobl)[21] and on economic growth using nightlight imagery (Bertinelli, Mohan,

Strobl, 2016)[2]. Our paper brings a contribution to this literature by providing a risk

assessment for the PICs.

Our paper consists in modeling the impact of synthetical storms on buildings in the

South Pacific islands. Having a series of storms, we can model the risk correlation of

facing a devastating tropical storm over the studied islands. While climate change is

inducing key changes in meteorological parameters, it is necessary to generate a pro-

bability distribution of storm losses similar to the damages faced in the future. Indeed,

according to Emanuel (2011), tropical storms are bound to become less frequent and

with a higher intensity. In this context, using historical data to generate a density of

probability function is very likely to be inaccurate because observed storms in the past

may not be similar to the future ones. To this end, we use Boose et al.’s (2004)[4] ver-

sion of the well-known Holland (1980)[15] wind field model to generate 3000 synthetic

storms over the PICs. For each of these storms, we have the maximum wind speed

experienced on each building and the probability of occurrence of the storm.

To model the damages on the buildings, we have a data set with a number of va-

riables on each building : exact location, value (in USD), number of stories, frame mate-

rial and main use (residential or commercial). We use damage functions depending on

the maximum wind speed set for different types of building on the Hazus software so as

to determine Vhalf , which is the wind speed at which 50% of the building is damaged

(Vthresh, the maximum wind speed at which the building has no damage, is assumed

to be constant). Using Emanuel’s (2011) damage function, we are able from our values
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of Vthresh and Vhalf to determine the fraction of each property damaged by any storm

modeled. Since most of the losses caused by a natural disaster are explained by storm

surge and fresh water, we also create another data set where we add an estimation of

damages due to storm surge (with flood level). We use the estimation made for Hong

Kong by Chan and Walker (1979)[7] to infer flood level from maximum wind speed for

each building and for each storm.

We fit our data on expected losses to the Gumbel copula, an Extreme Value copula,

modeling the higher correlation among the PICs when facing extremely rare and devas-

tating tropical storms. Having null losses over a group of islands, we finally have a data

set of five islands : Cook, Niue, Samoa, Tonga and Vanuatu. Having fitted the losses to

their joint probability of occurrence over these five PICs, we are able to generate future

damages and compute the loss summed over the five islands.

After generating 1000 storm damages on the six islands studied, we compute the

losses for different return-periods (equivalent to a Value at Risk) and Conditional Va-

lue at Risk for different confidence levels. For the wind damages alone, damages are

respectively equal to 3,154M, 3,157M and 682M USD for a 100-year event for the

Gumbel, Clayton and Frank copulas, and equal to 103MM, 113MM and 5MM USD

for a 1000-year event. For the 0.1% most destructive storms the CVaR is respecti-

vely equal to 370MM, 250MM and 210MM USD. By adding an approximation of storm

surge damages, the losses for a 1000-year return period event it is equal to 832MM and

1,177MM USD for the Clayton and the Frank copulas. The CVaR 0.1% is respectively

equal on average to 970MM and 1,300MM USD (1,000MM USD represents roughly

42% of the GDP 1GDP 2016 of the six aggregated islands).

2.2 Context and data

2.2.1 Context

Over the last few years, the Pacific Island Countries have been severely affected by

extreme natural events, including tsunamis, flooding and earthquakes. Among others,

during 2012-2014, the PIC experienced extreme floods and a tsunami in the Solomon
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Islands and TC Ian in Tonga following a magnitude 8.0 earthquake. Storm surges and

floods affected more recently respectively the Marshall Islands and the Solomon Is-

lands [1]. Tropical cyclones have been the major cause of losses and damage over

the last sixty years with damage in excess of US$3.2 billion and more that 9.2 million

people affected in the PIC (World Bank, 2012)[24].

Several obstacles have prevented so far the PICs in raising post-disaster liquidity.

Being small size countries, they have very few capacity to spread risk within one coun-

try and have very small economies. Furthermore, being net importers and having li-

mited access to international insurance market, the PICs have limited options avai-

lable for post-disaster finance. To this end, a regional scheme similar to the CCRIF

is being implemented for all the PICs. The Pacific Disaster Risk Financing and Insu-

rance (DRFI) Program under the Pacific Catastrophe Risk Assessment and Financing

Initiative (PCRAFI) aims at discussing solutions for financing disaster resilience and

response. Ideally, a self-financed insurance scheme would be help the countries being

less dependent to foreign aid and investing in resilient infrastructures.

2.2.2 Data

We are considering in this study 14 islands (or groups of islands) : Cook, Federal

States of Micronesia (FSM), Fiji, Kiribati, Marshall, Nauru, Niue, Palau, Samoa, Solo-

mon, Tokelau, Tonga, Tuvalu, Vanuatu.

For each island, our data set includes the main residential and commercial buildings,

ranging from 1,106 to 65,535 buildings per island, with in total 343,053 buildings for all

the dataset. We can identify the geographical position of each building by its latitude

and longitude. A number of structural information on each building are described in

table ?? and allow for assessing the exposition to extreme wind speed.

2.3 Wind field model

We use a data set of 3000 synthetic storms over the Pacific islands generated fol-

lowing the method described by Emanuel, Sundararajan, Williams in 2008[11] with, for
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TABLE 2.1: Data on buildings

Variable Description

Latitude, longitude Values in degrees

Main Occupation Residential, commercial...

Occupation General commercial, education, government...

Construction Frame material

Number of stories Number

Floor area Square meters

Att type Modeled

Value in USD

TABLE 2.2: Main occupations of the buildings

Value Frequency

Commercial 89,201

Industrial 5,162

Infrastructure 7,946

Public 36,760

Residential 1,150,860

Others 7,820

each building coordinates, the maximum wind speed and the probability of occurrence

of the storm considered. Despite a good knowledge of past hurricanes as far back as

1855, the number of observations is insufficient to generate a probability distribution

function and the climate context is obviously very different from the now. To have a

more accurate view of the probability of occurrence of storms and their intensity, hy-

pothetical tropical storms are generated using recent historical data within a coupled

ocean-atmosphere tropical storm model. The tracks model takes into account a num-

ber of global meteorological parameters such as temperature, humidity, wind and sea

surface temperature. It uses the a version of the Holland (1980)[15] wind field model

strengthened by Boose et al.’s (2004)[4] described below. Several proto-storms are ge-

nerated at random time and location, and move according to large scale winds of a

given climate state. Under certain conditions, some of them develop into full scale hur-
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ricanes (ie., after passing the threshold of maximum wind speed equal to 119 km/h).

This methodology was here implemented so as to generate 3000 hurricane-strength

storms traversing the South Pacific islands using meteorological data of years 1980 -

2010. Each year has a given expected frequency of storms and each synthetic storm

is assigned to one of the 30 years climatology ; hence, we can calculate out the annual

probability of each possible storm. This model assumes that the climate in the future

will be similar to the climate observed during 1980 - 2010 with no more changes in the

future. Consequently, the wind field model might underestimate losses based on the

assumption that climate change would increase losses in the future.

Since the wind field model (of n storms) does not affect every island, we restrict our

study on the islands being affected by at least one storm in our data set. Consequently,

we are studying 6 islands for which we non-zero losses over our data set of storms.

The level of wind a field will experience during a passing typhoon depends crucially

on that field’s position relative to the storm and the storm’s movement and features.

It thus requires explicit wind field modeling. To calculate the wind speed experienced

because of typhoons within each pixel, we use Boose et al.’s (2004)[4] version of the

well-known Holland (1980)[15] wind field model. More specifically, the wind experienced

at time t because of typhoon j at any point P = i, that is, Wij , is given by :

Wijt = GF {Vm,jt− S [1− sin(Taijt)]
Vh,jt

2

}
{(

Rm,j,t
Rit

)Bjt
× exp

[
1−

(
Rm,j,t
Rit

)Bjt]}1/2 (2.1)

where Vm is the maximum sustained wind velocity anywhere in the typhoon, T is

the clockwise angle between the forward path of the typhoon and a radial line from the

typhoon center to the pixel of interest, P = i, Vh is the forward velocity of the hurricane,

Rm is the radius of maximum winds, and R is the radial distance from the center of the

hurricane to point P . The remaining ingredients in (2.1) consist of the gust factor G and

the scaling parameters F , S, and B, for surface friction, asymmetry due to the forward

motion of the storm, and the shape of the wind profile curve, respectively.
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Regarding the parameters calculated in equation (2.1), Vm is given by the storm-

track data available in our data set, Vh can be directly calculated by following the storm’s

movements between locations, and R and T are calculated depending on the location

of interest P = i. All other parameters are estimated or assumed. For example, we

have no information on the gust wind factor G and the surface friction F . Nevertheless,

a number of studies provide results that we use for these parameters : G can be esti-

mated to 1.5 (as Paulsen and Schroeder 2005[19] show) and Vickery et al. (2009)[25]

show that in open water the reduction factor is about 0.7 and reduces by 14% on the

coast and by 28% 50 km inland. Hence, we use a reduction factor that linearly de-

creases between 0 and 50 km inland. B is determined using Holland’s (2008)[15] ap-

proximation method and Rmax using the parametric model estimated by Xiao et al.

(2009)[26].

2.4 Calculation of the expected loss per island

2.4.1 Estimation of each building damages from wind data

Wind damage function Emanuel (2011)[10] proposes a damage function providing

the fraction of property bi affected (denoted fracbis) by a storm s given the minimum

wind speed at which damages start having non-zero value (Vthresh) and at which half

the property is destroyed (Vhalf ). This function is made on the assumption that the

hurricanes climate changes linearly with time and taking into account the three climate

scenarios published by the IPCC with increasing damages.

fracwindbis =
v3
bis

1 + v3
bis

where

vbis =
max[Vbis − Vthresh, 0]

Vhalf − Vthresh

where Vbis is the maximum wind experienced at property bi with storm s. i is the island

considered and does not impact our results so far.

Note that Vhalf will vary among our different building categories depending on their

building features.
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TABLE 2.3: Estimations of V half

Number of stories

1 2 3 4 5 6 8

Timber frame 259 229 a a a a a

Masonry/Concrete

frame

296 399 303 280 259 a a

Steel frame
Residential

Commercial

263

219

266

224

269

229

273

235

277

240

274

245

268

256

a = average wind speed = 261km.h−1

Vthresh = 92km.h−1

Estimation of Vhalf A number of building features are provided in our dataset and

can be linked to features used in damage assessments depending on maximum wind

experienced. The software HAZUS®[8] models hurricane and provides a manual with

fragility curves depending on some key building features, such as walls material, roof

material, number of stories, building height, etc. For each case, fragility curves provide

a percentage of building loss as a function of wind speed. Hence, by matching our data

to a part of building features provided in the manual, we can determine Vhalf for each

building category. The values showed on table 2.3 obtained are estimated by hand

on the fragility curves drawn on the manual of the HAZUS software. Hence, because

we don’t have the same number of building features as the ones used for drawing the

fragility curves, and because of the error we make in assessing the value by hand, we

include a lecture error.

Estimating storm surge impact from our data Tropical cyclones have an impact on

buildings through wind field and especially fresh water and storm surge. To date, fresh

water and storm surge can only be modeled through specified software with non openly

accessible data. Since their impact depends on many different variables and their inter-

actions, it can be hardly estimated with the data used for our wind field model. However,

some research has been conducted to estimate a link between variables such as the

maximum wind speed experienced or the central pressure, and storm surge (Chan,
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Walker, 1979 ; Irish, Resio, Ratcliff, 2008 ; Pradhan, Mitra, De, 2012)[7, 17, 20]. Ho-

wever, since storm surge height is also explained by variables such as the bathymetry,

these studies are specific to one region, and results when applied to other regions must

be interpreted with caution.

To have an insight of the order of magnitude of the losses due to storm surge, we

decide to apply the storm surge height model designed by Chan and Walker (1979)[7]

for Hong Kong. Using our results for maximum wind speed experienced by building, we

can have a rough estimate of the storm surge height :

Sbis =

 0.3048× (0.088× Vbis
1.85 − 0.75) for Vbis < 185 km/h

0.3048× (0.00217× (
Vbis
1.85 )2 + 0.43) for Vbis > 185 km/h

Sbis being the storm surge height in meters for building bi in island i with storm s, and

Vbis the maximum wind experienced at property bi with storm s.

We can then calculate, for each building bi and storm s, the fraction damaged due

to storm surge :

fracsurgebis
=


1
nbi

Sbis
3 if Sbis

3 < n

1 if Sbis
3 > n

with n the number of stories of the building bi and we assume the average height of a

story being equal to 3 meters.

2.4.2 Estimation of the islands expected losses

Wind field damages only We estimate the annual expected loss for each island and

for each storm. It is important for our case study not to aggregate the data over the dif-

ferent storms to calculate one unique annual expected loss accounting for every storm

probability of occurrence since we need to focus on the loss correlation among the

islands. Hence, we will need to have one vector per island with the expected loss as-

sociated with each synthesized storm. Having this data matrix will enable us to assess

the correlation evolution depending on the level of damages among the islands with

copulas (see section 2.5).
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We keep the probability of occurrence of each storm to weight the impact of a given

storm given the likelihood that it occurs. Nevertheless, this probability of occurrence is

the same for every island, the specific impact on each building is specified through the

wind field model that design the maximum wind speed for each geographic coordinate.

E(Lis) =
∑
bi

E(Lbis) =
∑
bi

fracwindbis × valuebi × probs

i the island considered

s the synthetic storm

bi the buildings in island i

Lis the losses over island i during storm s

fracbis fraction of building bi affected given its properties and wind of storm s

valuebi total value of building bi

probs probability of occurrence for storm s

As mentioned before, since our wind field model outputs provide null damages over

the storms simulated for 8 islands (Federal States of Micronesia (FSM), Fiji, Marshall,

Nauru, Palau, Solomon, Tokelau and Tuvalu), we are dropping them for the remaining

study on correlation. We keep the 6 remaining islands : Cook, Kiribati, Niue, Samoa,

Tonga and Vanuatu. One can infer from this observation that risk is relatively weakly

correlated among the islands : indeed, we have generated a large number of tropical

storms that accounts for extreme event with low probability and we still have null vectors

for the 8 islands cited above. We can make the assumption that, whatever the storm

size and intensity, the islands are sufficiently spread so that they are not all impacted

at the same time.

Wind field damages and estimation of storm surge damages By adding the esti-

mated effect of storm surge, we can compute the new expectancy of losses as follow :

E(Lis) =


∑
bi

(fracwindbis
+ fracsurgebis

)× valuebi × probs if fracwindbis
+ fracsurgebis

< 1∑
bi
valuebi × probs if fracwindbis

+ fracsurgebis
> 1
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2.5 Risk profiles and correlation between each pair of

islands

2.5.1 Presentation of copulas

General concepts

Definition 2.5.1. copula Let (X1, ..., Xn) be a random vector with continuous marginals.

The random vector (U1, ..., Un) = (F (X1), ...F (Xn)) has uniformly distributed margi-

nals. The copula of (X1, ..., Xn) is defined as the joint cumulative distribution function

of (U1, ..., Un) :

C(u1, ..., un) = P [U1 ≤ u1, ..., Un ≤ un]

Tail dependence Bivariate tail dependence measures the amount of dependence in

the upper and lower quadrant tail of a bivariate distribution (Aas, 2004). For instance,

the upper tail distribution quantifies the probability to observe a large Y , assuming that

X is large :

λu(X,Y ) = lim
α→1

P (Y > F−1
Y (α) | X > F−1

X (α))

and similarly the lower tail is defined by

λl(X,Y ) = lim
α→0

P (Y ≤ F−1
Y (α) | X ≤ F−1

X (α))

Sklar’s theorem 1. Let F ∈ F(F1, ..., Fn) be an n-dimensional distribution function with

marginals F (x1), ..., F (xn). Then there exist a copula C : [0; 1] → [0; 1]n such that, for

all x = (x1, ..., xn) ∈ Rn :

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn))

If F1, ..., Fn are continuous, then C is unique.

Expression of the copulas in the bivariate case

Fitting the copulas to our data Several multivariate copulas exist to model the de-

pendence across the islands. We chose to fit our data to three Archimedean copulas

with different dependence patterns, in particular different tail dependence.
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Linear correlation The multivariate copulas use the linear correlation parameters

to be estimated, hence it is indispensable to estimate the linear matrix correlation as a

first step.

Table 2.5 displays the Kendall correlation coefficients for each pair of islands. We

can observe that the pair Kiribati / Niue has a negative correlation equal to -0.003 which,

even if relatively low in absolute value, will prevent the estimation calculation to work

properly with an Extreme Value Copula. Because Extreme Value Copula only handle

variables with positive correlation, we can’t fit the data to this category of copulas.

Consequently, we fit our data to Archimedean copulas, which allow negative correlation.

However, we show our results obtained by fitting to an Extreme Value Copula the data

set minus the Kiribati data.

Fitting result and robustness We fit our data to three Archimedean of copulas :

the Gumbel copula, the Clayton copula and the Frank copula. Table 2.6 summarizes

the goodness-of-fit results with the parameters and p-value. As we can see, the Gum-

bel copula does not fit to our data set as well as the Clayton and Frank copula. Given

the linear correlations computed for the six islands displayed in table 2.5, the average

correlation over the losses reached for each pair of islands is lower than 0.35 for most

of the pairs. The Gumbel copula is an asymmetric copula with greater dependence in

the positive tail than in the negative. High correlation for positive values should fit to the

extreme values since natural disasters cause highly correlated losses geographically,

however we assume that this copula doesn’t fit because the rest of the dependence

pattern doesn’t represent the rest of the values. The Clayton and the Frank copula both

fit very well to our data, with a p-value lower than 0.05%. They both represent weaker

correlation, the Clayton copula representing greater correlation in the negative tail, and

Copula name C(u, v) φ(t) Range of θ

Gumbel exp(−log(u)−θ + log(v)−θ)1/θ −log(t)θ [1;∞)

Clayton (u−θ + v−θ − 1)−1/θ θ−1(t−θ − 1) (0;∞)

Frank − 1
θ log

(
1 + (e−θu−1)(e−θv−1)

(e−θ−1)

)
log
(
e−θt−1
e−θ−1

)
(−∞,∞)

TABLE 2.4: Copulas distributions in the bivariate case
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TABLE 2.5: Kendall correlation coefficients for the 6 islands studied

Cook Kiribati Niue Samoa Tonga Vanuatu

Cook 1.00 0.04 0.07 0.09 0.34 0.06

Kiribati 0.04 1.00 -0.003 0.16 0.08 0.10

Niue 0.07 -0.003 1.00 0.11 0.13 0.11

Samoa 0.09 0.16 0.11 1.00 0.15 0.77

Tonga 0.34 0.08 0.13 0.15 1.00 0.12

Vanuatu 0.06 0.10 0.11 0.77 0.12 1.00

the Frank copula representing symmetric dependence. We will comment our results

mostly based on these two copulas results.

TABLE 2.6: Goodness-of-fit of the three copulas to the two data sets

Wind field Wind field and storm surge

Parameter p-value Parameter p-value

Gumbel copula 1.3211 0.066 1.3307 0.2822

Clayton copula 0.6417 0.0005 0.6809 0.0005

Frank copula 1.9254 0.0005 2.0025 0.0005

2.5.2 Return period losses (or Values-at-Risk) and Conditional Values-

at-Risk

Return period losses and Value-at-Risk

Definition 2.5.2. A return period, also known as a recurrence interval, is an estimate

of the likelihood of an event. The return period R can be expressed as follows :

R =
n+ 1

m

n number of years on record ;

m number of occurrence of the considered event.

Definition 2.5.3. Value at Risk (VaR) is the maximum loss not exceeded with a given

probability defined as the exceedance probability, over a given period of time.
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V aRα(L) = inf{l ∈ R : P (L > l) ≤ 1− α}

Having fitted our data to the three Archimedean copulas, we are now able to ran-

domly simulate n values of losses accounting for the dependence among our six va-

riables[9]. From these new vectors generated, we obtain for each simulation an aggre-

gated loss associated for the six islands obtained by adding the simultaneous losses

of each island. From this time series giving the aggregated loss for the six islands, we

can calculate the Value-at-Risk or losses for several return periods.

TABLE 2.7: Values-at-Risk for different exceedance probabilities : 5%, 2.5%, 1% and

0.01% with 1000 random simulations

VaR 95% 97.5% 99% 99.9%

Return period 20-year 40-year 100-year 1000-year

Gumbel copula 9,455.86 127,641.8 3,154,349 1.03e08

Clayton copula 42,027.58 543,744.9 3,156,899 1.13e08

Frank copula 62,866.98 253,650.7 682,406.5 5,628,445

Table 2.14 highlights that the risk profile of the islands regarding storm damages is

very oriented towards low probability of extreme events. Indeed we can observe that

the 95th percentile of loss distribution in our simulation is very low : 9,455, 42M and

62M USD respectively for the Gumbel, Clayton and Frank copulas for a 20-year event.

Damages are increasing exponentially when dealing with very low probability of large

events : damages are respectively equal to 3,154M, 3,157M and 682M USD for a 100-

year event, and equal to 103MM, 113MM and 5MM USD for a 1000-year event.

Importantly, one has to note that the fact that our calculations are made with only

6 islands over the 14 initially studied does not mean that we are omitting potential

additional loss. Indeed, the reasons why we have removed the other islands were either

null damages over the n storms simulated. Consequently, our results can be extended

to the 14 islands with very unlikely potential changes.

Conditional Value-at-Risk

Definition 2.5.4. The upper Conditional Value at Risk (CVaR), also called Mean Ex-
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cess Loss and Expected Shortfall, is the expected losses strictly exceeding VaR :

CV aRα(L) = E[Li|L ≥ V aRα]

This measure brings two information that the VaR alone does not provide : it ac-

counts for the value of extreme losses and it weights the potential losses by their pro-

bability of occurrence. In other words, it takes into account the shape of the losses

density function after the threshold given by the VaR.

Table ?? shows the results we obtain for the CVaR for the same exceedance pro-

bability as the VaR previously computed. Unsurprisingly, since the extreme losses si-

mulated occur with a very low probability (non-zero losses arising with a probability of

less than 5% and increasing significantly with a probability of less than 1%), the CVaR

significantly increases with the exceedance probability : the average losses for the 5%

most destructive storms is equal to 13MM, 11MM and 4.8MM USD respectively for

the Gumbel, Clayton and Frank copulas, and the for the 0.1% most destructive storms

is respectively equal to 370MM, 250MM and 210MM USD. 210MM USD represent

roughly 9% of the GDP 2 of the six aggregated islands.

TABLE 2.8: Conditional Values-at-Risk for different exceedance probabilities : 5%, 2.5%,

1% and 0.01% with 1000 random simulations

CVaR 95% 97.5% 99% 99.9%

Gumbel copula 13e06 27e06 66e06 370e06

Clayton copula 11e06 21e06 53e06 250e06

Frank copula 4.8e06 9.4e06 23e06 210e06

Measures by adding the estimated effects of storm surge Our estimation presen-

ted above allows us to include the significant effect of storm surge in the losses. Here,

we keep the six islands taken for the wind field model so as to be able to compare

the results (Cook, Kiribati, Niue, Samoa, Tonga and Vanuatu). Since it is calculated

with a strong link with the maximum wind experienced for each building, it increases

the losses already experienced for each storm and each building with the wind. Tables

2.16 and 2.17 show the estimated losses when accounting for the wind and the storm

2. GDP 2016
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surge impacts. Here when adding the effect of storm surge, the losses are much hi-

gher even for the average 5% worst storms. Indeed, the losses associated to a 20-year

return period event is exceeding 300MM USD for the Clayton and Frank copulas, and

for a 1000-year return period event it is equal to 832MM and 1,177MM USD. When

looking at the CVaR, the figures are a bit higher with losses occurring with a probabi-

lity lower than 0.1% respectively equal on average to 970MM and 1,300MM USD. By

comparison, 1,000MM USD represents roughly 42% of the GDP 3GDP 2016 of the six

aggregated islands.

TABLE 2.9: Values-at-Risk with wind field and storm surge impacts

95% 97.5% 99% 99.9%

Return period 20-year 40-year 100-year 1000-year

Gumbel copula 6.7 e06 59 e06 228 e06 1,207 e06

Clayton copula 26 e06 111 e06 338 e06 832 e06

Frank copula 27 e06 144 e06 330 e06 1,177 e06

TABLE 2.10: Conditional Values-at-Risk with wind field and storm surge impacts

95% 97.5% 99% 99.9%

Gumbel copula 200 e06 370 e06 750 e06 1,800 e06

Clayton copula 190 e06 320 e06 500 e06 970 e06

Frank copula 250 e06 400 e06 750 e06 1,300 e06

2.6 Conclusion

Using a wind field model, we have been able to generate a series of synthetical

tropical storms over the PICs with the maximum wind speed for each building and the

probability of occurrence of the storms. So as to have an order of magnitude of the

combined effect of storm surge, we generate another dataset with the same storms

by adding to the losses due to the wind an estimation of storm surge damages. After

inferring the expected losses from the damage function for each island, we fit our data

to three Archimedean copula, the Gumbel, Clayton and Frank copulas. Copulas let us

accounting for a different correlation among the time series when a rare and extreme
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disaster occurs. Having modeled the correlation among the six islands (Cook, Kiribati,

Niue, Samoa, Tonga and Vanuatu) we kept for our study, we have generated a signifi-

cant number of observations that allowed us to calculate the losses for several return

periods : for the Gumbel, Clayton and Frank copulas, damages are respectively equal

to 3,154M, 3,157M and 682M USD for a 100-year event, and equal to 103MM, 113MM

and 5MM USD for a 1000-year event. For the 0.1% most destructive storms the CVaR

is respectively equal to 370MM, 250MM and 210MM USD. By adding an approximation

of storm surge damages, the losses for a 1000-year return period event it is equal to

832MM and 1,177MM USD for the Clayton and the Frank copulas. The CVaR 0.1%

is respectively equal on average to 970MM and 1,300MM USD (1,000MM USD repre-

sents roughly 42% of the GDP 4GDP 2016 of the six aggregated islands).

These figures show that a significant part of the GDP of the five PICs studied will

be lost due a very extreme tropical cyclone occurring with a very low probability. This

loss tends to be under-estimated because it has not been experienced so far and be-

cause these events are more complicated to value in an insurance scheme, mostly

because of their very low probability of occurrence and the uncertainty associated with

the estimation of the loss associated.
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2.7 Appendix

FIGURE 2.1: Example of fragility curve drawn from HAZUS and used to determine Vhalf

TABLE 2.11: GDP of the six islands kept for the risk assessment (Source : World Bank)

Country GDP (MM USD 2016)

Cook 290

Kiribati 181.6

Niue 32.8

Samoa 685.9

Tonga 395.2

Vanuatu 773.5

Total 2,359
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2.7.1 Results with an Extreme Value Copula

Extreme value copulas

In the same vein as classic copulas, extreme value copulas have been designed so

as to model positive dependence between two or more variables during rare events.

Extreme value copulas arise in the domain of extreme value theory and can be mainly

applied to finance, insurance and environmental science. We expose here the main

theory of extreme value copulas (Gudendorf, Segers, 2010, and Hougaard, 1986)[13,

16].

Let Xi = (Xi1, ..., Xid), i ∈ {1, ..., n} be a sample of independent and identically

distributed (iid) random vectors with common distribution function F , margins F1, ..., Fd,

and copula CF .We assume F is continuous and consider the vector of componentwise

maxima :

Mn = (Mn,1, ...,Mn,d) where Mn,j = max
1≤i≤n

Xij

and j ∈ {1, ..., d}. Fn is the joint distribution function of Mn and Fn1 , ..., Fnd the marginal

distribution functions of Mn. The copula Cn of Mn is given by

Cn(u1, ..., ud) = CF (u
1/n
1 , ..., u

1/n
d )n, (u1, ..., ud) ∈ [0, 1]d

When the sample size n tends to infinity, the limits of copulas Cn belong to the family

of extreme value copulas.

Definition 2.7.1. A copula C is called an extreme value copula if there exists a copula

CF such that

CF (u
1/n
1 , ..., u

1/n
d )n → C(u1, ..., ud) (n→∞)

for all (u1, ..., ud) ∈ [0, 1]d. The copula CF is said to be in the domain of attraction of C.

The Gumbel-Hougaard copula

Theory Consider the Archimedean copula

CΦ(u1, ..., ud) = Φ←(Φ(u1) + ...+ Φ(ud)), (u1, ..., ud) ∈ [0, 1]d

with function Φ : [0, 1] → [0,∞[ and inverse Φ←(t) = inf{u ∈ [0, 1] : Φ(u) ≤ t} ; the

function Φ should be strictly decreasing and convex and satisfy Φ(1) = 0, and Φ←
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should be d-monotone on [0,∞[.

If the following limit exists,

θ = − lim
s→0

sΦ′(1− s)
Φ(1− s)

∈ [1,∞[

then the domain-of-attraction condition is verified for CF equal to CΦ, the tail depen-

dence function being

`(x1, ..., xd) =

 (xθ1 + ...+ xθd)
1/θ if 1 ≤ θ ≤ ∞

x1 ∨ ... ∨ xd if θ =∞

for (x1, ..., xd) ∈ [0,∞)d. The parameter θ measures the degree of dependence ranging

from independence (θ = 1) to complete dependence (θ =∞).

The extreme value Gumbel-Hougaard copula associated to ` is

C(u1, ..., ud) = exp{−((− log u1)θ + ...+ (− log ud)
θ)1/θ}

It is noteworthy that the Gumbel-Hougaard copula is both an Archimedean copula

and an extreme value copula at the same time. Extreme Value Copula don’t fit data

with negative correlation ; we need therefore to drop one of them from the data we will

aggregate in our multivariate Gumbel copula. To determine whether we drop Kiribati or

Niue, we calculate the correlation matrix with the Pearson coefficient. We see in table

2.12 that, with this other correlation coefficient, Kiribati and Niue are still negatively

correlated and in addition, Kiribati has 2 other negative correlations (with Samoa and

Vanuatu). Based on this supplementary observation, we make the decision to drop

Kiribati.

TABLE 2.12: Pearson correlation coefficients for the 6 islands studied

Cook Kiribati Niue Samoa Tonga Vanuatu

Cook 1.00 0.00 0.00 0.00 0.01 0.00

Kiribati 0.00 1.00 -0.0008 -0.0008 0.00 -0.0007

Niue 0.00 -0.0008 1.00 0.43 0.00 0.50

Samoa 0.00 -0.0008 0.43 1.00 -0.0018 0.95

Tonga 0.01 0.00 0.00 -0.0018 1.00 -0.0018

Vanuatu 0.00 -0.0007 0.50 0.95 -0.0018 1.00
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Result for fitting the data with wind field to the Gumbel copula We use R soft-

ware[23] to fit our data to a Gumbel copula with dimension 5. Following the observation

of the previous paragraph, we have a dataset of 5 variables corresponding to Cook,

Niue, Samoa, Tonga and Vanuatu. We first generate a Gumbel copula of dimension 5

and then use the function fitCopula from package copula[14] to fit the copula para-

meter to our data (see appendix).

TABLE 2.13: Results of fitting data to Gumbel copula

Parameter Maximized loglikelihood

Estimates 7.88 13108

The robustness is assessed with the maximized loglikelihood, which is equal to

13108. However, due to our limited choice to that copula, this robustness parameter

will not be compared to another potential model of dependence.

Call: fitCopula(copula, data = data, method = "mpl")

Fit based on "maximum pseudo-likelihood" and 3106 5-dimensional observations.

Copula: gumbelCopula

alpha

7.88

The maximized loglikelihood is 13108

Optimization converged

Result for fitting the data with wind field and storm surge losses to the Gumbel co-

pula

Call: fitCopula(copula, data = data, method = "mpl")

Fit based on "maximum pseudo-likelihood" and 3105 5-dimensional observations.

Copula: gumbelCopula

param

6.655

The maximized loglikelihood is 11333
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Optimization converged

TABLE 2.14: Values-at-Risk for different exceedance probabilities : 5%, 2.5%, 1% and

0.01% with 1000 random simulations

95% 97.5% 99% 99.9%

Return period 20-year 40-year 100-year 1000-year

VaR 2,091.17 51,171.23 1,036,699 84,540,742

TABLE 2.15: Conditional Values-at-Risk for different exceedance probabilities : 5%,

2.5%, 1% and 0.01% with 1000 random simulations

95% 97.5% 99% 99.9%

CVaR 1.2e07 2.4e07 5.9e07 3.5e08

Wind field effect

TABLE 2.16: Values-at-Risk with wind field and storm surge impacts

95% 97.5% 99% 99.9%

Return period 20-year 40-year 100-year 1000-year

VaR 3,008,749 25,139,836 2.62e08 9.78e08

TABLE 2.17: Conditional Values-at-Risk with wind field and storm surge impacts

95% 97.5% 99% 99.9%

CVaR 1.6e08 3.1e08 6.5e08 1e09
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Chapitre 3

Statistical Emulator of Eight

Crops Yields from Global

Gridded Crop Models

co-written with Elodie Blanc

3.1 Introduction

Predicting crop yields accounting for climate change is a challenge that researchers

and policymakers are taking up with more and more interest. An important number of

studies on this topics (Roudier & al., 2011 ; Kang & al., 2009)[9, 4] is leading to rising

concern about the distribution of positive and negative impacts of climate change on

agriculture across the globe.

So far, two types of crop models can be found in the literature :

— process-based models, which are designed at the plant scale using a bench of

biologic and physical parameters to predict the plant growth in a certain context.

These models present the advantage of accounting for the physiology of the

plant and provide in general very accurate results. However, they are often pri-
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vately owned and their utilisation requires specific skills.

— statistics models, which are estimated using historical observation and making

a link between the weather and crop yields with time series. While this type

of model is easier to handle, it has the major inconvenient of being limited to

observed data. Hence, predicting the effect of out-of-sample weather values on

crop yields is inaccurate.

The purpose of our study is to provide a crop emulator that benefits from the easi-

ness to handle and accessibility of statistics models and the accuracy of process-based

models. Following Blanc & Sultan (2015)[2] and Blanc (2017)[1], we run a statistical

model on the projections made by the process-based model available for the crops stu-

died, the Global Gridded Crop Model (GGCM) LPJmL. On the one hand, by generating

our data with a model and not using historical observations, we take into account future

changes with extreme effects of weather on crop yields not observed so far. On the

other hand, since our model provides accurate results with a limited number of features

and without requiring any restricted access to a data base, running the model is very

facilitated and accessible.

Facilitating the availability to accurate data on crop yields predictions is of particular

importance in developing countries where the economy is strongly relying on agricul-

ture and where financial means are limited. Furthermore, predicting crop yields at this

level of accuracy is of a crucial interest for smallholders who are more risk adverse (Ye-

suf & Bluffstone, 2007)[13]. Here we are focusing on subsistence crops in developing

countries, hence paying attention to future yields and anticipate means face climate

change impacts is in the core of the problem.

We take a couple of studies on statistical models predicting crop yields in the future

as examples (Schlenker & Roberts, 2009 ; Lobell & Burke, 2010)[10, 5] to measure the

goodness-of-fit of our results, such as RMSE, NRMSE and the log-ratio between the

crop emulator and the crop model. We also take into account the non linear effect of

weather variables in our estimation (Schlenker & Roberts, 2009)[10] and the potential

particular effect of extreme weather values (Moriondo & al, 2011)[6]. Indeed, crop yield

response might increase or decrease exponentially for extreme weather values that

have not been observed so far.
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Our results show that the crop emulator statistically designed provides accurate re-

sults very close to the GGCM. Following Blanc (2017)[1], we keep only the monthly

mean temperature and precipitation, and the mid-year CO2 concentration as explana-

tory variables. Using a fractional polynomial model to take into account the non-linear

effect of weather variables, we fit very accurately our model, with a general average

tendency to underestimate the effects of climate change assessed by the GGCM.

3.2 Context and data

3.2.1 Context

Accounting for more than a quarter of the global total production and 36% of the

production in Africa in 2016 (FAOSTAT)[8], the eight groups of crops we are studying

here play a major role in agriculture production at the global scale. They also represent

a key role in food production in developing countries, after the crops studied in the

previous paper of Blanc(2017)[1], maize, sorghum, wheat and rice. The importance of

agricultural production in developing countries is mostly due to their higher vulnerability

and exposure to the effects of climate change : beyond the natural climatic conditions

(desert, mangrove, fragile ecosystems, etc.) that are more sensitive to climate changes,

poor countries won’t be able to invest within durable infrastructure to cope with the

consequences of climate change.

Predicting yields is of particular importance to be able to anticipate crisis and im-

plement policies that could redistribute food crops where climate change has opposite

impacts. But even if models exist so as to predict accurately yields at a very localised

scale, making it available to the most is of the essence. Indeed, assuming that crop

models are the most precise model existing, the lack of accessibility and easiness to

handle might be a serious obstacle to knowledge dissemination, including to countries

with poor technology resources. By fitting a statistical model to the predictions of the

GGCM with fewer variables and easy to handle model, we intend to provide the accu-

racy of the crop models to the most.
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TABLE 3.1: Crop production (in tons) in the world in 2016 (source : FAO)

Crop Production (t) Percentage of total production

Cassava 281,896,830 2.63%

Groundnuts/nuts 61,755,728 0.58%

Millet 30,353,830 0.28%

Pulses 4,093,581 0.04%

Rapeseed 84,137,080 0.79%

Sugar beet 285,326,548 2.64%

Sugar cane 2,013,721,491 18.80%

Sunflower 49,932,460 0.47%

Total 2,811,217,548 26.24%

3.2.2 Climate models and data

Data are used are the grid cell level at the 0.5 × 0.5◦ resolution 1.

Daily weather data are used to make our estimations and predictions. To this end,

we use two climate models from the CMIP5 climate models, or General Circulation Mo-

dels (GCMs) : HadGEM2-ES (designed by the Met Office Hadley Centre and Instituo

Nacional de Pesquisas Espaciais)) and GFDL-ESM2 M (provided by the NOAA Geo-

physical Fluid Dynamics Laboratory). These two models represent respectively high

and low levels of global warming (Warszawski & al., 2007)[12]. Both models provide

two data periods from 1975 to 2099 : the ’historical’ data from 1975 to 2005 and ’future’

data from 2006 to 2099 and for different climate scenarios. We base our estimations

on the RCP8.5, which is the Representation Concentration Pathway (RCP) with the hi-

ghest level of global warming. We include the concentration of CO2 from this data base.

These climate models are used first as an input for the GGCM, mainly using the

daily precipitation, minimum and maximum temperatures so as to obtain the yields pre-

dictions according to the GGCM. These climate data are used a second time, with this

time the monthly average of precipitation (Pr), temperature (Tmean) and the annual

1. Equal to a 30 arc-minute resolution
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mid-year CO2 concentration, in our regressions to make a link between these variables

on crop yields generated by the GGCM.

TABLE 3.2: Statistic summary information for the weather data by GCM

GFDL Had GEM 2

Crop Unit Mean Variance Min Max Mean Variance Min Max

Pr 1 mm/day 2.89 3.82 0 147.08 2.81 3.62 0 152.08

Pr 2 mm/day 3.23 4.14 0 175.98 3.25 4.24 0 174.54

Pr 3 mm/day 3.26 4.10 0 127.33 3.25 4.06 0 174.54

Tmean 1 ◦C 20.20 9.78 -6.48 45.09 21.56 9.51 -7.19 46.82

Tmean 2 ◦C 22.05 8.49 -3.57 45.25 23.36 8.42 -3.51 47.52

Tmean 3 ◦C 21.28 8.92 -6.11 45.89 22.59 8.81 -7.34 46.68

CO2 ppm 527.48 176.11 325.86 926.67 527.35 176.05 325.86 926.67



FIGURE 3.1: Change in temperature, precipitations and CO2 concentration between years 2001 and 2100 with model GFDL
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FIGURE 3.2: Change in temperature, precipitations and CO2 concentration between years 2001 and 2100 with model HadGEM 2
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As shown on figure 3.1 and figure 3.2, temperature and CO2 variations in the two

climate models are very similar and the main difference between the two models lie

on rainfall predictions. Because plant growth is strongly sensitive to water availability,

including irrigation in our model would impact very significantly the magnitude of yields

changes. However, irrigation remains very uncertain in the future because we don’t

know the extent to which governments will invest and foster it and how much technology

progress and availability will be until 2100. Hence, accounting for irrigation would imply

strong assumptions or omissions that will shift sizably the results. Since we are dealing

with long term effects with a lot of uncertainty on this parameter, we don’t consider

irrigation in our study.

3.2.3 Soil classification

Combining simultaneously solid, liquid and gaseous states of different elements,

soils have an extremely broad range of characteristics across the world. Twelve soil

orders have been defined by the FAO-UNESCO so as to group soils with common cha-

racteristics : since significant differences in climate change responses have been ob-

served (Blanc and Sultan, 2015), we use these data for our regressions, at the grid cell

level. Indeed, crop yields will have significantly different responses to climate change

due to the different soil composition and reactions to changes in the atmosphere.

Hence we distribute our data among 12 orders of soil taxonomy of FAO-UNESCO[11].

3.2.4 Crop model and data

Data base We carry on this statistical estimation for eight crops : cassava, millet,

sunflower, sugar cane, sugar beet, rape seed/canola, groundnuts/peanuts and pulses.

Data for these crops are available in one of the Global Gridded Crop Models (GGCMs)

as part of the ISI-MIP Fast Track. In this study, we will therefore use the predictions

provided by the Lund Potsdam-Jena managed Land (LPJmL) dynamic global vegeta-

tion and water balance model. Like other GGCM, this model simulates processes such

as photosynthesis, plant growth, maintenance and regeneration losses, soil moisture,

runoff, evapotranspiration and vegetation structure [3].
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In the GGCM, as well as in the statistical emulator that will be generated from our

estimations, we have a data set of crop yields across the globe through 125 years. This

data set represents the crop yields estimated in the ‘historical’ and ‘future’ periods for

a certain number of grid cells (presented in the next paragraph) if the crop into ques-

tion was harvested in this grid cell. In the end, for a large majority of grid cells on the

globe, we have data and run our estimation as if the crop considered was harvested

in these area. This present the advantage of having an overview, for a given crop, of

how yields evolve in the future across the globe and see the differences among the

different regions. In our results, we present the evolution of both the crop yields if it was

harvested everywhere in the world and the average of crop yields weighted by area

harvested. Using the MIRCA2000 dataset (Portmann & al., 2010)[7], we have data for

each grid cell, we can therefore weight our result by area harvested at the grid cell level.

Also, an interesting feature in this GGCM is that it takes into account soil charac-

teristics from the Harmonized Solid Database, hence we will be able to separate our

estimations depending on the soil type of each grid cell. With more than 15,000 soil

mapping units combining national and regional soil profiles with the FAO-UNESCO Soil

Map of the World, the LPJmL model provides an extensive integration of soil interaction

with plant growth.

Statistical description of the data Table 3.3 and 3.4 describe the data from the

GGCM (LPJmL). Table 3.3 with the number of observations recorded and the number

of grid cells. For each grid cell and for each crop, we have several observations since we

are running our model on several years and with several climate models. We have the

most extended data across the globe for sugar beet and pulses with more than 64,000

grid cells and the most observations for sugar beet, rape seed/canola and pulses, with

more than 16,000,000 observations.

Table 3.4 shows the summary of crop yields obtained with the GGCM over the data

set for both models GFDL and Had GEM 2. In general, the average yields are higher for

the GCM Had GEM 2, where for example the average yields of sugar cane are equal

to 5.48 t/ha while it is equal to 5.01 t/ha with the GFDL model.
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TABLE 3.3: Statistic summary information on the crop data from the LPJmL model with

the two climate models

Crop Observations Grid cells

Cassava 11,383,804 50,876

Millet 15,042,276 58,953

Sunflower 15,726,235 62,040

Sugar cane 14,665,355 58,932

Sugar beet 16,451,553 64,517

Rape seed/canola 16,593,806 64,930

Groundnuts/peanuts 13,858,337 54,279

Pulses 16,404,485 64,488

TABLE 3.4: Statistic summary information for the crop yields (t/ha) by GCM

GFDL Had GEM 2

Crop Mean Variance Min Max Mean Variance Min Max

Cassava 1.03 2.24 0 35 1.48 2.36 0 34.82

Millet 0.39 0.56 0 8.05 0.44 0.57 0 8.05

Sunflower 0.73 1.01 0 11.35 0.80 0.97 0 13.09

Sugar cane 5.01 7.78 0 35 5.48 8.22 0 35

Sugar beet 2.68 3.82 0 35 2.85 3.79 0 35

Rape seed/canola 1.08 1.13 0 22.04 1.09 1.09 0 23.19

Groundnuts/peanuts 0.61 0.93 0 20.61 0.65 0.92 0 24.25

Pulses 1.01 1.28 0 32.56 1.08 1.25 0 31.86
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3.3 Method

For each crop considered, and since we have only one GGCM, we run our estima-

tions with all the data set, from ‘historical’ to ‘future’ data, and with both GCM described

before. We use the GGCM (LPJmL) to run our regression and obtain estimates for

each variable considered. Once our estimation is done, we can project the yields for

each crop with the statistical crop emulator so as to compare the projections from our

model and the GGCM. Finally, we will have in our statistical projection, a different esti-

mation for the 8 crops studied (cassava, millet, sunflower, sugar cane, sugar beet, rape

seed/canola, groundnuts/peanuts and pulses). The yields projected will be available for

every grid cell where the GGCM provides estimation, regardless of whether the crop

is actually grown in the grid cell considered. To account for the area where the crop is

grown, we provide afterwards results by taking the weighted average on area harvested

using the MIRCA2000 dataset (Portmann & al., 2010)[7].

Following the method presented by Blanc & Sultan (2015)[2] and Blanc (2016)[1],

we favor the estimation that takes into account soil orders instead of running one es-

timation for the globe. Therefore, we run for each crop a different estimation for each

soil. While the study by Blanc & Sultan (2015)[2] makes an estimation with an extensive

number of variables (such as the number of days of rain, etc), we chose a parsimonious

set of weather variables with the mean monthly temperature and the mean monthly pre-

cipitation during the three growing months, and the annual midyear CO2 concentration.

Following these studies, and so as to be able to make a uniform data base of crop

yields projections for all the crops, we keep the same polynomial model (that we will

call S1fpint) that takes a fifth order polynomial specification for each meteorological va-

riable. The fifth order polynomial specification is described Appendix at section 3.8.1.
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Y ieldslat,lon,gcm,y = α+
3∑
i=1

βiPr ilat,lon,gcm,y +
3∑
i=1

θiTmean ilat,lon,gcm,y

+ νCO2gcm,y +
3∑
i=1

γiPr ilat,lon,gcm,y ∗ Tmean ilat,lon,gcm,y

+
3∑
i=1

ωiPr ilat,lon,gcm,y ∗ CO2gcm,y

+
3∑
i=1

κTmean ilat,lon,gcm,y ∗ CO2gcm,y

+ δlat,lon + εlat,lon,gcm,y

(3.1)

where for each year y, Y ields corresponds to crop yields simulated by process-

based crop models for each grid cell (defined by its longitude lon and latitude lat)

under each climate model, gcm ; Pr and Tmean variables correspond to monthly mean

precipitation and temperature variables. The indices i correspond to the month of gro-

wing season (composed of three months depending on the hemisphere). CO2 is the

annual midyear CO2 concentration level in the atmosphere ; δ is a grid cell fixed effect ;

and ε an error term.

As mentioned before, a polynomial specification is made for each one of the three

weather variables considered. Indeed, as shown in the previous studies (Blanc & Sul-

tan, 2015 ; Blanc, 2016)[2, 1], the weather variables studied here have a non-linear

effect and including a quadratic effect allows a better fitting to the data. Indeed, they

show that they have a better fit to the crop model when employing a quadratic function

to model crop yields response to each weather variable. The quadratic term in its sim-

plest form presents the advantage of allowing non-linear effects of weather on yields

but is constrained to symmetric effects. To allow for greater flexibility and asymmetry in

the response of yields to weather variation, we use a fifth order polynomial specification

(S1fpint). However, since this specification only doesn’t take into account the effect of

extreme weather events, we relax the symmetry constraint and allow a non-parametric

flexibility by using a fractional polynomial specification.

As mentioned in the data description, the GGCM used to make our estimations

accounts for soil features, so we add another specification to our model by running a
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different estimation per soil type (and per crop). Since we run a new estimation for each

soil type, we necessary have to reduce the number of soil types compared to the data

available in the GGCM. Therefore we simplify this interaction by considering the 12 ge-

neral soil orders of the USDA soil taxonomy [11]. Since the soil type is time invariant,

its effects will be captured in the grid cell fixed effect δ, enabling us to isolate the effect

of weather variation on crop yields. In addition to this fixed effect that we isolate, we run

one estimation per soil type since the weather variation may have significant different

impacts on crop yields depending on the soil order.

Our model runs the estimation taking into account the 3 months most important

in the growing season, so we also define the growing season period for each crop.

Figure 3.3 to figure 3.10 show, for each hemisphere and for each crop, the planting

and maturity frequency over months. We observe a trend in most of the crops : in the

North the growing season is in June, July and August and in the South, the growing

season is in December, January and February. For sugar cane, we observe an overlap

between the planting and the maturity seasons. This is mainly explained by the fact that

sugar cane is not sowed every year, so the planting season is not always linked to the

maturity season. Cassava also has a different trend in the North : it has two growing

seasons at different moments : a smaller growing season in April and a second one in

October and November. We take this difference into account in our estimations.
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FIGURE 3.3: Cassava seasonality

FIGURE 3.4: Millet seasonality

FIGURE 3.5: Sunflower seasonality

FIGURE 3.6: Sugar cane seasonality

FIGURE 3.7: Sugar beet seasonality

FIGURE 3.8: Rape seed/canola seasonality

FIGURE 3.9: Groundnuts/peanuts seasonality

FIGURE 3.10: Pulses seasonality



3.4 Results

3.4.1 Global average evolution of yields

FIGURE 3.11: Comparison between GGCM and emulator of yields for cassava, millet,

groundnuts, pulses, rape seeds and sunflowers
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FIGURE 3.12: Comparison between GGCM and emulator of yields for sugar beet and

sugar cane
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Figure ?? shows the prediction of the global average of yields for all crops in the

next century, with both the statistical emulator and the GGCM. Figure ?? is the same
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representation weighted by area harvested using the data base MIRCA 2000 [7]. This

data base provides the area harvested and the total area of each grid cell, allowing to

compute this weighted average. The global average without weighting by area harves-

ted gives a good overview of how crop yields evolve in general, without accounting for

the most harvested crops. Hence, we can infer from figure ?? that crop yields increase

on average across the globe. On both graphs, we see that sugar cane and sugar beet

are the crops that have higher yields compared to the others. For average yields re-

gardless of the area harvested, we observe a general trend of increasing yields for all

the crops studied. That trend is strengthened when averaging with the area harvested :

keeping sugar cane apart, all crops have on average much higher yields and increasing

yields at an even higher rate than the world average. This results show that the distri-

bution of crops harvested areas is relatively efficient since we have on average better

yields and better increase in the future. Sugar cane is the exception since it shows a

decreasing yield over the next century when averaging crop yields by the area harves-

ted. However, with yields between 20 and 30 t/ha over the 21st century, it still clearly

has the highest yields among the 8 crops studied.

3.4.2 Change in yields at the grid cell level and comparison bet-

ween the statistical crop emulator and GGCM

Figures ?? to ?? show, for each crop, the change in yields at the grid cell level ex-

pressed as a percentage of the difference between the years 2010s and 2090s. The

results provided here correspond to the average between both GCM. Orange colors

correspond to a decrease in yields and blue colors represent an increase. Yellow color

corresponds to almost no change. White areas can correspond either to no data or to

non significant yields, ie. equal to less than 1 t/ha in the GGCM. We have also removed

areas where the crop emulator and the GGCM provided projections of opposite signs.

Changes are displayed both for the statistical emulator (S1fpint) and the GGCM (LP-

JmL) with the same legend. Here, we don’t account for the area harvested.

To see precisely where the statistical emulator over- or underestimate the strength

of the impacts of climate change on yields compared to the GGCM, we compute the

log ratio of yields of the statistical emulator over the GGCM. Using the log-ratio rather
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than a simple ratio presents the advantage of highlighting places where the climate

change effects are unerestimated or overestimated. For example, if yields increase by

20% with the GGCM against 10% with the crop emulator, the ratio would be equal to

0.5. On the opposite, if the GGCM predicts yields increase by 10% against 20% with

the crop emulator, the ratio equals 2. In these symmetric cases, the log-ratio would be

equal to, respectively, -0.3% and 0.3%. Green colors correspond to an underestimation

of the statistical emulator and brown colors correspond to an underestimation. If yields

are increasing, an overestimation of the extend of climate change impact corresponds

to higher yields in the statistical emulator than in the GGCM. On the opposite, in cells

where yields are decreasing, the overestimation of the statistical emulator corresponds

to lower yields than in the GGCM. We consider that a log ratio higher than 1 or lower

than -1 corresponds to a notable difference between the crop emulator and the GGCM.

Cassava Significant yields are observed for cassava mostly in tropical regions : South

America, Southern Africa and South Eastern Asia. Yields are expected to increase in

most of these regions, except in some parts of the Amazonian forest and of Central

Africa. Under- and overestimation made by the statistical emulator are evenly distri-

buted across the globe. The average log-ratio is pretty low and equal to -0.64 with a

variance of 2.14, which means that the statistical emulator estimates relatively well the

effects of climate change compared to the GGCM.

Millet Millet has a lot of blank observations since its yields are very low across the

globe. Indeed, table 3.4 on the data from the GGCM show that millet has the lowest

mean among the 8 crops with a mean equal to 0.39t/ha with the GFDL ESM2 M mo-

del and to 0.44t/ha with the Had GEM 2 model. We observe significant data for the

South-East of Asia, the East of North America and some parts of Eurasia. Yields are

increasing in general, except on the west coast of America and the South East of Asia

where yields are decreasing. For both increasing and decreasing yields, the crop emu-

lator tends to underestimate the impacts of climate change compared to the GGCM.

On average, the logarithm ratio is equal to -1.47.

Sunflowers Significant data are observed almost everywhere in the globe, with no si-

gnificant or no data in Central Asia, Australia and the Sahara. Yields are predominantly
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increasing in every place where data is available. Most of the grid cells considered have

predictions were yields are supposed to increase by more than 50% over the next cen-

tury. With an average of the logarithm ratio of -0.14, the statistical emulator estimate

almost equally the impacts of climate change as the GGCM.

Sugar cane Like for sunflowers, we have non significant data observed in the Sahara

but a good coverage of data across the globe. Yields are also mostly increasing on

the available data. We observe decreasing yields on the Amazonian forest, in a part of

the Sub-Saharan Africa and in the South East of Asia. In these regions, the statistical

emulator tend to overestimate the decreasing yields due to climate change compared

to the GGCM. Concerning the increasing yield regions, the statistical emulator under-

or overestimated the effects predicted by the GGCM evenly across the globe. With a

standard deviation of the logarithm ratio of 2.15, it has the highest variance in term of

difference between the statistical emulator and the GGCM among all the crops. The

average logarithm ratio is equal to -1.13.

Sugar beet For sugar beet, we have a very good coverage of significant and non

null data in the globe. Again, we observe mostly increasing yields at the global scale

and decreasing yields in the Amazonian forest and in part of the Sub-Saharan Africa,

and here in Australia. The crop emulator strongly overestimates the effects of climate

change in Africa and in Russia. On the American continent, it tends to underestimate

the effects compared to the GGCM. With a mean of -0.14 for the log-ratio, the statistical

emulator makes on average very similar predictions to the GGCM.

Rape seeds / canola Here we observe significant data in most of the American conti-

nent, Europe and in a part of the South East of Asia. We have no significant data in all

Africa. Climate change has different impacts across the America : it leads to decrea-

sing yields over the Amazonian forest and in the eastern part of the North of America.

In the remaining areas of America, we observe increasing yields. In Europe, rape seeds

and canola yields tend to decrease, while they are overall increasing in the parts of the

South East of Asia where we have observations. Compared to the GGCM predictions,

the statistical emulator underestimate the impacts of climate change for both decrea-

sing and increasing yield cells. On average, the global log-ratio is equal to -0.73.
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Groundnuts / peanuts Here we observe significant data distributed across the globe.

Most of the data are gathered in the South of America, the East of Northern America,

Europe and part of the South East of Asia. We also observe significant points along the

coast of Africa. Except for the Amazonian forest where yields are decreasing, yields

are increasing for most of the observations. The strength of climate change tends to

be overestimated by the statistical emulator in the South of Asia and underestimated in

the remaining observations. With a log-ration averaging at -1.11, the statistical emulator

makes a strong underestimation compared to most of the other crops studied.

Pulses All the significant observations are gathered in America, Europe and most

parts of Asia. In most of the observations, pulses yields are increasing. In general, the

crop emulator underestimates the effects of climate change in America (in both the

North and the South) and overestimate it in Asia and Europe. With a mean of the log-

ratio of -0.20 and a standard deviation equal to 1.39, the statistical emulator makes

predictions for pulses that are in general pretty close to the GGCM.
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FIGURE 3.13: Change in yields between years 2001 and 2100 for each crop with S1fpint and GGCM models
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FIGURE 3.14: Change in yields between years 2001 and 2100 for each crop with S1fpint and GGCM models
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FIGURE 3.15: Comparison (with log ratio) between the statistical emulator and the crop model
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TABLE 3.5: Logarithm ratio of crop yields as predicted by the statistical crop emulator

over the GGCM

Crop Mean Significance from zero Variance Minimum value Maximum value

Cassava -0.64 ∗∗∗ 2.14 -10.62 14.87

Millet -1.43 ∗∗∗ 1.39 -8.88 9.45

Sunflower -0.14 ∗∗∗ 1.58 -8.22 9.76

Sugar cane -1.13 ∗∗∗ 2.15 -13.63 10.18

Sugar beet -0.14 ∗∗∗ 1.68 -9.13 14.92

Rape seed/canola -0.73 ∗∗∗ 1.73 -10.65 9.47

Groundnuts/peanuts -1.11 ∗∗∗ 2.05 -9.05 8.38

Pulses -0.20 ∗∗∗ 1.39 -8.13 8.61

3.5 Goodness-of-Fit and interpretation

3.5.1 RMSE

We use the root mean square error (RMSE) to measure the error margin between

our estimations and the model. But since the samples scales might differ depending on

the climate model, we also employ the normalized root mean square error (NRMSE),

which normalizes the RMSE by the range of measured yields. The formulas are descri-

bed Appendix at section 3.8.2.

3.5.2 Linear correlation

We compute the linear correlation between the values generated by our estimations

and the GGCM. A positive correlation close to one means that our estimation repro-

duces the variations observed in the GGCM. To this end, we calculate the Pearson’s

correlation coefficient for each crop and for each climate model for the years 2030s,

2050s, 2070s and 2090s.

Table 3.6 shows the results obtained for the coefficients. In most cases, the cor-
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FIGURE 3.16: RMSE an NRMSE by crop averaged on the world
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relation coefficient is significantly different from 0 and decreasing as far as we go in

the future. On average, the correlation coefficients are equal to 0.81 for the 2030s and

equal to 0.55 for the 2090s. This can be mainly explained by the fact that there is more

uncertainty and noise in the future, so linear correlation is necessary affected. However,

despite that decreasing correlation in the future, we still have a significant and positive

linear correlation higher than 0.5 for a large majority of the coefficients, which shows a

conform prediction of the GGCM by the statistical emulator.

3.5.3 Out-of-sample validation

We use in our estimations two specific GCM (the GFDL ESM2M and Had GEM2

ES) with the scenario RCP8.5, inferring specific weather values. However, we must en-

sure that the model can still provide accurate projections in the future for out-of-sample

weather data. To this end, we re-estimate the yields with exactly the same conditions,

except that we exclude data with one of the two GCMs. Once this estimation is done,

we use the weather data of the excluded model to project yields in the future and can

compare it to the GGCM.

We then compute the RMSE and the NRMSE by comparing the results obtained
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TABLE 3.6: Linear correlation between the statistical crop emulator and the GGCM for

different segments of time in the future

Crop 2030s 2050s 2070s 2090s

Cassava 0.55∗ 0.62∗ 0.68∗ 0.55∗

Millet 0.93∗ 0.91∗ 0.91∗ 0.52∗

Sunflower 0.83∗ 0.90∗ 0.77∗ 0.45

Sugar cane 0.70∗ 0.70∗ 0.43 0.71∗

Sugar beet 0.77∗ 0.95∗ 0.89∗ 0.65∗

Rape seed/canola 0.92∗ 0.93∗ 0.40 0.37

Groundnuts/peanuts 0.91∗ 0.79∗ 0.81∗ 0.69∗

Pulses 0.84∗ 0.94∗ 0.85∗ 0.49

with the GGCM and both GCMs and with the model estimated excluding that GCM.

Figure 3.17 summarizes the results obtained. In blue is the statistics computed for

the leave-one-GCM-out sample and in blue is the statistics for the overall sample. The

GCM displayed is the omitted GCM. There is a clear decline in both RMSE and NRMSE

values, for each GCM and for each crop. The greatest difference observed between the

restricted sample and the overall sample is for sugar cane for Had GEM2 ES, where

the RMSE is increased by 1 and the NRMSE by 0.3.

We also plot yields obtained over the 21st century with the excluded GCM and with

the overall sample to visualize the difference. Figure 3.18 to figure 3.33 show, for the

average on the globe and for the weighted average by area harvested, three graphs :

with each GCM excluded and with the overall sample. On each case, the light color

line corresponds to the GGCM and the full color corresponds to the statistical emulator.

As expected, the correspondence between the GGCM and the statistical emulator is

better with the overall sample than with the restricted sample. When a considerable

difference is already observed on the global average for the leave-one-GCM-out graph,

like for example for the sugar cane, this difference tends to be exacerbated with the

weighted average.
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TABLE 3.7: Ratio between out-of-sample and in-sample RMSE and NRMSE

Crop GCM excluded Ratio for RMSE Ratio for NRMSE

Cassava
GFDL 1.23 1.29

HaDGEM 1.30 1.31

Groudnuts
GFDL 1.15 1.17

HaDGEM 1.39 1.41

Millet
GFDL 1.10 1.08

HaDGEM 1.43 1.46

Pulses
GFDL 1.32 1.24

HaDGEM 1.12 1.18

Rape seed
GFDL 1.62 1.51

HaDGEM 1.15 1.25

Sugar beet
GFDL 1.13 1.16

HaDGEM 1.41 1.37

Sugar cane
GFDL 1.28 1.28

HaDGEM 1.45 1.45

Sun seed
GFDL 1.24 1.30

HaDGEM 1.14 1.09
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FIGURE 3.17: RMSE an NRMSE by crop and GCM excluded in comparison with

in-sample results

The GCM excluded is not used for the estimation and then re-used as an input to

compare the output with the in-sample output
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3.5.4 Interpretation

On average for the different grid cells we find that our projections with the statistical

emulator are close to the results of the GGCM. The RMSE and NRMSE tests have

showed a good robustness (i.e., values under 1 for most of the crops) and the corre-

lation is close to one and significant. On the maps, we have seen uneven distribution

of the errors (whether the statistical emulator was under- or overestimating the effects

of climate change) that we will deal with at the next section. More importantly, when

running the model with out-of-sample data, the statistical emulator still perform.
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This means that the crop emulator provides projections very similar to our bench-

mark, the GGCM, with very restricted and accessible variables. For instance, the use

of this emulator could be used to project yields in the future with different climate sce-

narios or by government agencies to predict yields for the next years and adjust their

local and international food policies. By being overall accessible and easy to handle,

this model has the advantage of providing the accuracy of the GGCM to the widest

audience, including countries with little means.

3.6 Analysis on the dependence performance

3.6.1 Motivation

The crop emulator provides an estimation of the marginal effect of climate change

on crop yields at the grid cell level. This statistical estimation aims at reproducing the

results of accurate and complex Global Gridded Crop Models which simulates the res-

ponse to climate change on crop yields with a restricted number of weather variables.

The previous parts of this paper show an overall acceptable goodness-of-fit of the sta-

tistical emulator to the GGCM. However, the specifications and the analysis of perfor-

mance so far do not take into account the dependence across regions. As a matter of

fact, we can observe on the maps representing the log-ratio of the predictions made by

the GGCM and the crop emulator that regions are overall over- and under-estimating

the effects of climate change compared to the GGCM.

Dependence across the regions can be of particular importance when considering

potential trade between neighbored regions if climate change has opposite effects for

the same crop. We have to make sure that the crop emulator provides the appropriate

yields distribution in the future (compared to the benchmark, the crop model) so that

policymakers, or insurers, could know how to redistribute food in the future depending

on which regions are more or less affected. If culture habits change more slowly than

climate change, the demand for certain types of food might be the same in the next

century, even if the supply is shifted. Correlation is implicitly taken into account with

the correlation of weather change between grid cells, but does not appear in our esti-
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mation. For example, if the crop emulator tends to underestimate crop yields increase

in the East of Africa (i.e., yields increase by 2t/ha instead of 4t/ha) and overestimate

them in the West of Africa (i.e., increase of 6t/ha instead of 4t/ha), on average, the

difference is null but the dependence pattern is very different between the two models.

Typically in our example, we would have a higher correlation between the two areas

with the statistical emulator than on the GGCM, the benchmark. If governments were

to simulates crop yields in the future to define a trade scheme to offset climate change

impacts, modeling the dependence across areas is of the essence. Consequently, we

have to check whether our estimations reproduces the same dependence patterns as

the GGCM.

3.6.2 Methodology

Data For this part of the study, we focus on Africa. Given the economic and politi-

cal context, this continent is very likely to be one of the most affected by agricultural

changes and losses due to climate change. For computational matters, we subdivide

Africa into nine groups and not into countries. We take the mean of crop yield res-

ponses between the two climate scenario used for the estimation, for both the GGCM

and S1fpint crop emulator. For the GGMC and S1fpint, we have nine groups with crop

yields for eight crops over 125 years.

ARMA model For the validity of the model and so as to focus on dependence in

changes, we fit our data to an ARMA model and then use the residuals to assess the

dependence. The ARMA(p,q) is expressed as followed :

Xt = c+ εt +

p∑
i=1

φiXt−1 +

q∑
i=1

θiεt−1

For the eight crops studied, we look for the model that offers the best performance with

the most parsimonious expression and fits to both the crop emulator and the GGCM.

We choose ARMA(1,1) or ARMA(1,2) depending on the data (see appendix for the

robustness tests), according to the distribution presented on table 3.9.

Vine Copula To represent the dependence across the nine groups of countries in

Africa, we employ a Vine copula. This copula family allows a flexible fit of multivariate
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TABLE 3.8: Groups of countries used

Group Countries aggregated

North 1 Western Sahara - Algeria - Morocco - Tunisia - Libyan Arab Jamahiriya

- Egypt

North 2 Senegal - Gambia - Guinea-Bissau - Mali - Burkina Faso - Niger - Chad

- Sudan - Eritrea - Mauritania

North 3 Guinea - Sierra Leone - Liberia - Cote d’Ivoire - Ghana - Togo - Benin

- Nigeria - Cameroon - Central African Republic

East Kenya - Somalia - Ethiopia - United Republic of Tanzania - Djibouti

Center Gabon - Equatorial Guinea - Democratic Republic of the Congo - Congo

- Rwanda - Burundi - Uganda

South 4 Mozambique - Madagascar

South 3 Angola - Zambia - Malawi

South 2 Zimbabwe - Namibia - Botswana

South 1 Swaziland - South Africa - Lesotho

TABLE 3.9: ARMA models chosen for each crop

Crop ARMA model

Cassava (1,1)

Millet (1,2)

Sunflower (1,2)

Sugar cane (1,1)

Sugar beet (1,1)

Rape seed (1,1)

Groundnuts (1,1)

Pulses (1,2)
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dependence. Using the model developed by Joe (1996), Bedford and Cooke (2001),

Aas et al. (2009), Czado (2010), we use the Vine Copula form as followed :

f(x1, ..., xd) =
d−1∏
j=1

d−j∏
i=1

ci,(i+j)|(i+1),...,(i+j−1)

d∏
k=1

fk(xk)

3.6.3 Results

We fit the crop yields obtained for the nine regions for both the GGCM and the

S1fpint and then compare the results to each other. If the copula outputs are signifi-

cantly similar, the statistical model does not omit dependence. We run the goodness

of fit test of the copula object fitted to one the models to the data of the actual model,

and look at the significance of the difference between S1fpint (or GGCM) when GGCM

(respectively S1fpint) has been used to fit the copula. To complete this goodness-of-

fit, we also simulate the values from the copula fitted, compute the difference for each

vector (ie. each group of countries) and see whether the mean is significantly different

from zero.

Table 3.10 shows the goodness-of-fit of the copula model estimated to a certain

data set. This goodness-of-fit uses the information matrix equality of White (1982).

This estimation requires a data set used to estimate the copula and the copula object

estimated. We run the goodness-of-fit of the copulae estimated with the GGCM and

the S1fpint models and check if the dependence is not significantly different. To mea-

sure the similarity between the statistical emulator and the GGCM, we also run the

goodness-of-fit by crossing data from GGCM and S1fpint in the copula estimation and

in the goodness-of-fit estimation. For example, we can use the GGCM to estimate the

copula model, and then run the goodness-of-fit using the data from the S1fpint. If it is

not significantly different, it means that the copula estimated with one model is also

very close to the dependence trend of the other data set.

To evaluate the goodness of fit of our statistical model regarding the dependence

pattern, we also look at the difference in the series of values for the copulas fitted with

the GGCM and the S1fpint emulator. To this end, we simulate values for each crop from

the copula fitted to both the GGCM and the S1fpint, and we then run a Student test to

measure the significance of the difference between both series. Table 3.11 shows the

p-value of the test, using either 50 or 100 values simulated from the two copulas. In
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TABLE 3.10: Goodness-of-fit for fitted copula with different data sets

Crop Data used to fit copula Data compared p-value

Cassava

GGCM GGCM 0.43

S1fpint S1fpint 0.89

GGCM S1fpint 0.045

S1fpint GGCM 0.78

Millet

GGCM GGCM 0.265

S1fpint S1fpint 0.49

GGCM S1fpint 0.37

S1fpint GGCM 0.81

Sunflower

GGCM GGCM -

S1fpint S1fpint 0.76

GGCM S1fpint -

S1fpint GGCM 0.66

Sugar cane

GGCM GGCM -

S1fpint S1fpint 0.76

GGCM S1fpint -

S1fpint GGCM 0.21

Sugar beet

GGCM GGCM 0.295

S1fpint S1fpint -

GGCM S1fpint 0.365

S1fpint GGCM -

Rapeseed

GGCM GGCM 0.21

S1fpint S1fpint 0.585

GGCM S1fpint 0.18

S1fpint GGCM 0.64

Groundnut

GGCM GGCM 0.39

S1fpint S1fpint 0.565

GGCM S1fpint 0.685

S1fpint GGCM -

Pulses

GGCM GGCM 0.865

S1fpint S1fpint -

GGCM S1fpint 0.15

S1fpint GGCM 0.905
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most cases where we observe a significant different (ie. at the 10% significance level),

it is in the case of 100 points simulated, corresponding to a 100-year prediction. In

these cases, and when no significant difference is observed for 50 points, it shows that

the statistical emulator is good for predictions out of 50 years but diverges too much

for longer predictions. This is for example the case for groundnuts in five areas (South

and North mostly). The only case where we observe significant difference for both 50

and 100 simulations is for sugar cane and for the eastern part of Africa. Apart from

very isolated cases like this one, significant differences are rarely observed and mostly

for the cases with 100 observations. Hence, in a large majority of the cases, the crop

emulator provides predictions in the future with a similar dependence pattern as the

GGCM. More generally, the overall fitting makes more sense than interpreting each

region for each crop separately since we are looking at the interdependence across

Africa. Here, groundnuts would be the most questionable case with five regions out of

nine being significantly different as from a sample of 100 years.
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TABLE 3.11: p-value of the t-test between the data generated from the copulas fitted on GGCM and S1fpint

Crop Number of simulations Center East North 1 North 2 North 3 South 1 South 2 South 3 South 4

Cassava
50 0.62 0.71 0.35 0.33 0.11 0.47 0.16 0.81 0.44

100 0.65 0.12 0.88 0.15 0.26 0.54 0.38 0.54 0.70

Millet
50 0.08 0.31 0.98 0.30 0.47 0.77 0.02 0.99 0.89

100 0.19 0.43 0.55 0.50 0.05 0.42 0.55 0.13 0.63

Sunflower
50 0.84 0.50 0.14 0.39 0.72 0.38 0.87 0.63 0.98

100 0.09 0.05 0.15 0.82 0.85 0.31 0.75 0.28 0.11

Sugar cane
50 0.07 0.58 0.13 0.31 0.65 0.66 0.71 0.13 0.29

100 0.04 0.45 0.10 0.70 0.42 0.06 0.85 0.43 0.31

Sugar beet
50 0.46 0.99 0.40 0.38 0.81 0.37 0.45 0.47 0.37

100 0.47 0.63 0.51 0.91 0.70 0.13 0.18 0.55 0.01

Rape seed
50 0.66 0.53 0.39 0.23 0.80 0.94 0.91 0.82 0.83

100 0.98 0.51 0.75 0.71 0.90 0.31 0.01 0.93 0.04

Groundnuts
50 0.35 0.87 0.65 0.49 0.39 0.65 0.60 0.75 0.83

100 0.36 0.04 0.00 0.93 0.60 0.02 0.07 0.25 0.01

Pulses
50 0.58 0.21 0.03 0.65 0.75 0.41 0.88 0.71 0.48

100 0.74 0.97 0.13 0.40 0.81 0.30 0.51 0.90 0.36



3.7 Concluding remarks

This statistical emulator made for cassava, millet, sunflower, sugar cane, sugar beet,

rape seed/canola, groundnuts/peanuts and pulses at the grid-cell level provides an

accurate estimation of crop yields in the future initially made by the GGCM. Using

statistical estimations for each crop, soil and climate scenario, we obtain estimates for

the marginal impacts of changes in mean temperature, mean precipitation and CO2

concentration that could be generalized to other climate scenarios. Our measure of the

goodness-of-fit (through many common tools such as RMSE, log-ratio between the two

models, out-of-sample validation, etc) shows an acceptable fit to the ‘perfect’ model

represented by the GGCM. Moreover, in addition to the goodness-of-fit averaged on

the grid cells, we have showed that the crop emulator also captures the dependence

pattern of the crop model. Hence, the crop emulator as designed here, could be used

as an input for future regional food redistribution or insurance scheme.
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3.8 Appendix

3.8.1 The fractional polynomial model

A fractional polynomial model of degree m is defined by the following equation :

Y = α0 +
m∑
i=1

αiX
(pi) + µ

X(pi) =

 Xpi if pi 6= 0

lnX if pi = 0

Following Royston and Sauerbrei (2008), powers are chosen among the set {-2, -1,

-0.5, 0, 0.5, 1, 2, 3} and the maximum allowed degree will be m = 2. The selection is

made using the Royston and Altman model-selection algorithm.

3.8.2 Goodness-of-fit

The Root-Mean-Square Error (RMSE) is a measure of the differences between va-

lues predicted by the statistical model and the crop model. With N predictions, predic-

ted values ŷ and a dependent variable ŷ, it is calculated as followed :

RMSE =

√∑T
t=1 (ŷ − y)

2

N

The normalized RMSE (NRMSE) allows the comparison between datasets with dif-

ferent scales (ymax and ymin being respectively the maximum and the minimum values

of the observed data) :

NRMSE =
RMSE

ymax − ymin

3.8.3 Geographic dependence
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TABLE 3.12: Results of the t-tests to compare the average log-ratios with zero

Crop Mean P (|T | > |t|)

Cassava -0.64 0.00

Millet -1.43 0.00

Sunflower -0.14 0.00

Sugar cane -1.13 0.00

Sugar beet -0.14 0.00

Rape seed/canola -0.73 0.00

Groundnuts/peanuts -1.11 0.00

Pulses -0.20 0.00

FIGURE 3.18: Average cassava crop yields projections from GGCM and statistical

emulator with leave-one-GCM-out validation and overall sample

FIGURE 3.19: Average cassava crop yields projections weighted by area harvested
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FIGURE 3.20: Average millet crop yields projections from GGCM and statistical

emulator with leave-one-GCM-out validation and overall sample

FIGURE 3.21: Average millet crop yields projections weighted by area harvested

FIGURE 3.22: Average sunflowers crop yields projections from GGCM and statistical

emulator with leave-one-GCM-out validation and overall sample
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FIGURE 3.23: Average sunflowers crop yields projections weighted by area harvested

FIGURE 3.24: Average sugar cane crop yields projections from GGCM and statistical

emulator with leave-one-GCM-out validation and overall sample

FIGURE 3.25: Average sugar cane crop yields projections weighted by area harvested
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FIGURE 3.26: Average sugar beet crop yields projections from GGCM and statistical

emulator with leave-one-GCM-out validation and overall sample

FIGURE 3.27: Average sugar beet crop yields projections weighted by area harvested

FIGURE 3.28: Average rape seeds / canola crop yields projections from GGCM and

statistical emulator with leave-one-GCM-out validation and overall sample
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FIGURE 3.29: Average rape seeds / canola crop yields projections weighted by area

harvested

FIGURE 3.30: Average groundnuts / peanuts crop yields projections from GGCM and

statistical emulator with leave-one-GCM-out validation and overall sample

FIGURE 3.31: Average groundnuts / peanuts crop yields projections weighted by area

harvested
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FIGURE 3.32: Average pulses crop yields projections from GGCM and statistical

emulator with leave-one-GCM-out validation and overall sample

FIGURE 3.33: Average pulses crop yields projections weighted by area harvested

FIGURE 3.34: African climate zones (Source : United Nations)??
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FIGURE 3.35: R Vine Copula matrix fitted to the crop emulator data

3,2 ; 9,8,7,6,4,5,1

9,2 ; 8,7,6,4,5,1 3,4 ; 9,8,7,6,1,5

8,2 ; 7,6,4,5,1 9,4 ; 8,7,6,1,5 3,5 ; 9,8,7,6,1

7,2 ; 6,4,5,1 8,4 ; 7,6,1,5 9,5 ; 8,7,6,1 3,1 ; 9,8,7,6

6,2 ; 4,5,1 7,4 ; 6,1,5 8,5 ; 7,6,1 9,1 ; 8,7,6 3,6 ; 9,8,7

4,2 ; 5,1 6,4 ; 1,5 7,5 ; 6,1 8,1 ; 7,6 9,6 ; 8,7 3,7 ; 9,8

5,2 ; 1 1,4 ; 5 6,5 ; 1 7,1 ; 6 8,6 ; 7 9,7 ; 8 8,3 ; 9

1,2 5,4 1,5 6,1 7,6 8,7 9,3 9,8
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FIGURE 3.36: R Vine Copula matrix fitted to the GGCM data

4,1 ; 6,7,8,9,3,5,2

6,1 ; 7,8,9,3,5,2 4,2 ; 6,7,8,9,3,5

7,1 ; 8,9,3,5,2 6,2 ; 7,8,9,3,5 4,3 ; 6,7,8,9,5

8,1 ; 9,3,5,2 7,2 ; 8,9,3,5 6,3 ; 7,8,9,5 5,4 ; 6,7,8,9

9,1 ; 3,5,2 8,2 ; 9,3,5 7,3 ; 8,9,5 6,4 ; 7,8,9 5,6 ; 9,8,7

3,1 ; 5,2 9,2 ; 3,5 8,3 ; 9,5 7,4 ; 8,9 9,6 ; 8,7 5,7 ; 9,8

5,1 ; 2 3,2 ; 5 9,3 ; 5 8,4 ; 9 8,6 ; 7 9,7 ; 8 8,5 ; 9

2,1 5,2 5,3 9,4 7,6 8,7 9,5 9,8
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TABLE 3.13: p-values of the Box tests on the residuals of the chosen ARMA model for each crop, by group of countries -

Case of the crop emulator

Crop cassava millet sunflower sugar cane sugar beet rape seed groundnuts pulses

ARMA model (1,1) (1,2) (1,2) (1,1) (1,1) (1,1) (1,1) (1,2)

Center 0.42 0.99 0.31 0.58 0.51 0.36 0.54 0.99

East 0.41 0.26 0.75 0.99 0.54 0.95 0.70 0.71

North 1 0.37 0.86 0.13 0.85 0.03 0.14 0.10 0.31

North 2 0.99 0.99 0.54 0.94 0.39 0.73 0.49 0.47

North 3 0.52 0.65 0.67 0.74 0.17 0.22 0.67 0.79

South 1 0.49 0.97 0.56 0.73 0.96 0.30 0.96 0.98

South 2 0.15 0.99 0.16 0.95 0.37 0.10 0.34 0.88

South 3 0.62 0.60 0.22 0.70 0.62 0.88 0.70 0.85

South 4 0.12 0.97 0.58 0.99 0.19 0.27 0.11 0.94



TABLE 3.14: p-values of the Box tests on the residuals of the chosen ARMA model for each crop, by group of countries -

Case of the GGCM

Crop cassava millet sunflower sugar cane sugar beet rape seed groundnuts pulses

ARMA model (1,1) (1,2) (1,2) (1,1) (1,1) (1,1) (1,1) (1,2)

Center 0.65 0.00 0.44 0.03 0.52 0.55 0.29 0.80

East 0.64 0.98 0.02 0.32 0.18 0.13 0.18 0.03

North 1 0.61 0.10 0.28 0.66 0.89 0.99 0.02 0.94

North 2 0.62 0.92 0.74 0.38 0.31 0.77 0.80 0.14

North 3 0.71 0.07 0.33 0.66 0.12 0.29 0.99 0.19

South 1 0.03 0.99 0.16 0.41 0.39 0.17 0.38 0.15

South 2 0.57 0.93 0.23 0.44 0.91 0.91 0.45 0.59

South 3 0.86 0.06 0.68 0.87 0.67 0.69 0.80 0.95

South 4 0.36 0.99 0.87 0.59 0.83 0.61 0.58 0.93
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Titre : Trois chapitres sur la gestion et la corrélation du risque, et le risque météorologique

Mots clés : Risque, agriculture, corrélation, catastrophes naturelles, développement

Résumé : La thèse étudie le risque météorologique

et économique sous différents angles principalement

dans les pays en développement. Elle se décompose

en trois chapitres indépendants analysant dans di-

verses situations la corrélation des risques liés aux

aléas météorologique et climatique ou économique, et

étudie le potentiel de la région géographique étudiée

pour mettre en place un système d’assurance contre

le risque étudié. En effet, cette thèse étudie des

risques très susceptibles d’être fortement corrélés :

que cela concerne le risque météorologique ou cli-

matique, ou le risque lié à la volatilité des prix, les

villes voire pays voisins sont exposés aux mêmes

risques et de façon simultanée. Cet aspect essentiel

compromet la mutualisation du risque, paramètre pri-

mordial du modèle économique de l’assurance. A tra-

vers les trois chapitres de la thèse, nous étudierons

le bénéfice lié à la mutualisation de ces risques a

priori relativement corrélés. Le premier chapitre étudie

la corrélation des prix du maı̈s en Tanzanie. A l’aide

d’un modèle Copula-GARCH, la dépendance entre

les cours du maı̈s des 20 marchés principaux du pays

est modélisée et nous pouvons voir si le prix moyen

du maı̈s est lissé en agrégeant les marchés. Cela

permet de voir si l’intégration des marchés permet

une efficace mutualisation du risque lié à la volati-

lité des prix. Le second chapitre s’attache au risque

cyclonique dans les ı̂les Pacifique sud et son im-

pact sur les infrastructures. Ce papier propose une

modélisation des cyclones tropicaux dans la région

étudiée et la distribution de probabilité des cyclones

associés à leur force, permettant ainsi de tenir compte

du climat actuel pour modéliser les coûts. Avec les

données liées aux infrastructures, nous calculons le

coût des cyclones, y compris pour les événements

extrêmes de très faible probabilité. Le troisième cha-

pitre propose une extension d’un émulateur statis-

tique des rendements agricoles selon des variables

climatiques. Nous modélisons l’impact de l’accroisse-

ment marginal de la température, des précipitations

ou de la concentration en CO2 en faisant une es-

timation statistique sur des modèles de culture et

non sur des données historiques. Cela permet de

prendre en compte des effets extrêmes sur des va-

leurs météorologiques pas ou peu observées jus-

qu’à présent. La robustesse du modèle est évaluée,

entre autres, à l’aide de copules pour comparer

la dépendance spatiale entre le modèle et notre

émulateur statistique et vérifier que notre estimation

capture bien la dépendance géographique.
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Title : Three essays on risk management and correlation, and meteorological hazard
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Abstract : The PhD dissertation studies meteoro-

logical and economic hazard under different angles

and mostly in developing countries. It is composed

of three independent chapters analyzing different si-

tuations dealing with meteorological and climatic or

economic hazard correlation. It estimates the poten-

tial of the studied regions for implementing an insu-

rance scheme for the risk. Indeed, this thesis studies

risks very likely to be highly correlated: whether this is

for the meteorological or climatic hazard, or the price

volatility risk, neighbored cities or even countries are

exposed to the same risk simultaneously. This essen-

tial aspect jeopardizes risk mutualization, a key para-

meter of the economic insurance model. Through the

three chapters of this thesis, we study the benefits lin-

ked to the mutualization of a priori correlated risks.

The first chapter deals with maize price correlation in

Tanzania. Using a Copula-GARCH model, we model

the dependence among the 20 main markets of the

country and assess if the mean maize price is smoo-

thed by aggregating the markets. Hence, we see whe-

ther markets integration allows an efficient risk mutua-

lization against the risk of price volatility. The second

chapter deals with tropical storms risk in the South Pa-

cific islands and their impact on infrastructures. This

paper proposes an artificial tropical cyclones mode-

ling in the region studied as well as the probability

distribution of the cyclone’s occurrence and strength.

This enables us accounting for the current climate for

modeling costs. With data on infrastructures, we cal-

culate the cost due to tropical storms, including for

very low probability extreme events. The third chap-

ter proposes an extension for a statistical emulator

of crop yields depending climatic variables. We mo-

del the marginal impact of an increase of tempera-

ture, precipitations and CO2 concentration by running

a statistical estimation on crop models rather than his-

torical data. It allows accounting for extreme effects

caused by meteorological data values not observed

so far. The model robustness is assessed, among

others, with copulas to compare the spatial depen-

dence between the model and our statistical emulator

and check that our estimation captures the geogra-

phic dependence.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


