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Résumé 

Le lac Tonle Sap (TSL) est l'un des plus grands lacs du monde et est connu comme un hot-

spot de la biodiversité en Asie du Sud-Est. En raison de la grande diversité ainsi que de la 

productivité élevée de poissons, le lac contribue à un apport important en protéines pour la 

population cambodgienne. Cette étude vise principalement à étudier (1) la dynamique spatiale 

et temporelle de la composition des communautés de poissons, (2) les effets des facteurs 

environnementaux sur la distribution des espèces et (3) l'effet de l'abolition des lots de pêche 

sur la biomasse, les communautés de poissions et le structure des poissons. En utilisant des 

méthodes statistiques multivariées sur les données de poissons et de variables 

environnementales, je suis en mesure de mettre en évidence les principales conclusions 

suivantes:  

 Les communautés de poissons du TSL étaient composées de deux assemblages de 

poissons: l'assemblage du nord, principalement caractérisé par des poissons noirs, et 

l'assemblage du sud, principalement lié aux poissons blancs, gris et estuariens. Les 

assemblages de poissons de la période 1994-1995 étaient représentés par l'abondance 

de tous les groupes fonctionnels, c'est-à-dire les poissons noirs, blancs et gris, et pour 

la période de 1996 à 1999, les assemblages étaient liés aux poissons blancs et gris. 

 Les distributions des abondances espèces de poissons n'étaient pas homogènes dans le 

TSL. De plus, les aires de distributions des espèces étaient différentes et étaient régies 

par des combinaisons distinctes de caractéristiques de l'habitat et de facteurs 

climatiques. 

 H. lobatus et H. siamensis peuvent coexister ensemble, mais la synchronisation et la 

migration de H. lobatus conduisent toujours à celles de H. siamensis. Ces résultats 

suggèrent que la population de H. lobatus est plus sensible aux variations d'impulsion 

de flux que celles de H. siamensis. Ceci indique que les variations des impulsions 
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d'écoulement sont les principaux déterminants responsables de la dynamique 

temporelle de chaque espèce. 

 La réforme de la politique de la pêche menée par le gouvernement entre 2000 et 2012 

pour remplacer les lots de pêches commerciales par une pêche plus raisonnable a 

bénéficié aux espèces de petite taille avec une migration à courte distance, un niveau 

trophique bas, et préfèrant l'habitat de surface dans la colonne d'eau. En revanche, elle 

a affecté négativement les espèces de grande taille avec une migration à longue 

distance, un niveau trophique élevé et benthopelagique. 

Les résultats de cette étude fournissent des connaissances utiles qui pourraient être utilisées 

pour soutenir des actions de gestion et de conservation. Par exemple, en raison du déclin 

temporel des grandes espèces et de la biomasse totale du lac, nous recommandons une récolte 

équilibrée des espèces car cela pourrait réduire les effets de pêche sur les composantes de 

l'écosystème. Ainsi, le renforcement du droit de la pêche doit être fortement pris en 

considération pour éliminer les activités de pêche illégales dans le lac Tonle Sap afin de 

soutenir les ressources de pêche. De plus, il faudrait envisager des mesures de conservation 

axées sur les zones qui soutiennent constamment des niveaux élevés de biomasse de poissons. 

Les résultats suggèrent également de considérer les exigences environnementales de chaque 

espèce pour gérer efficacement les ressources halieutiques. En outre, la période de présence 

de certaines espèces clés devrait être prise en compte dans le cadre d'une règlementation ou 

d'une politique pour mieux gérer et conserver les espèces. La saisonnalité et la prévisibilité 

des inondations du Mékong devraient être maintenues pour soutenir la dynamique naturelle 

des espèces de poissons. 

Mots-clés: pêche à grande échelle, réforme de la politique de pêche, composition des  

communautés de poissons, structure des communautés, impulsion d'inondation, distribution 

spatiale, préférence d’habitat, synchronisation des poissons 
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Abstract 

Tonle Sap Lake (TSL) is one of the world’s largest lakes and is a biodiversity hotspot in 

Southeast Asia. It supports high fish productivity which sustains protein supply for millions 

of people in the region. This study aims to investigate (1) spatial and temporal dynamics of 

fish community composition, (2) the effects of environmental factors on fish distribution and 

(3) effects of fishing lot abolishment on fish biomass, community and structure in TSL. By 

using multivariate statistical methods on fish and environmental data, the thesis highlights that:  

 There were two fish assemblages in TSL: the northern assemblage, mostly 

characterised by black fishes, and the southern assemblage, mainly linked to white, 

grey and estuarine fishes. Fish assemblages from earlier years (1994 and 1995) were 

represented by the abundances of all functional groups, i.e. black, white and grey fishes, 

and from 1996 to 1999, the assemblages were linked only to white and grey fishes. 

 Fish species distributions were not homogeneous within TSL. In addition, species 

distribution areas were different and were governed by distinct combinations of the 

local habitat characteristics and regional climatic factors. 

 H. lobatus and H. siamensis can co-occur together, but synchronisation and migration 

of H. lobatus always lead those of H. siamensis. These results suggest that the 

population of H. lobatus is more responsive to flow pulse variations than those of H. 

siamensis. 

 The fisheries policy reform introduced by the government in 2000 and 2012 to remove 

all the commercial fishing lots in favour of subsistence fisheries positively benefited 

small-sized species with short distance migration, low trophic level, and prefer the 

surface habitat in the water column. In contrast, it negatively affected the large-sized 

species with long-distance migration, high trophic level and preferred deeper water 

column. 
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The results of this study provide useful knowledge, which could be used to support 

management and conservation actions. For instance, due to the temporal decline of the large 

species and the total fish biomass of the lake, we recommend focusing on the balanced 

harvesting because it could reduce the effects of the fishing on the fish community. Thus, the 

fisheries law reinforcement must be highly taken into consideration to eliminate the 

widespread illegal fishing activities in the TSL to sustain fisheries sources for long-term use. 

Moreover, conservation actions should be focused on the areas that consistently support high 

fish biomass levels. The results also suggest considering the environmental requirements of 

each species to efficiently manage fish resources. Also, the timing of the occurrence of some 

keystone species should be taken into account as a part of a regulation or policy consideration 

to better manage and conserve the species. Seasonality and predictability of the Mekong floods 

should be maintained to sustain the natural dynamics of fish species.  

Keywords: large-scale fisheries, fisheries policy reforms, fish community composition, 

community structure, flood pulse, spatial distribution, habitat preference, fish 

synchronisation 
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Chapter I: General Introduction 

 

1.1 Inland fisheries  

The fish resource provides one of the primary sources of animal protein consumed 

worldwide and income, especially for people in developing countries (Allan et al., 2005). In 

developing countries, fish protein sources are mainly derived from the harvest of natural fish 

stocks, while those in developed countries are produced by recreational fisheries or 

aquaculture (Allan et al., 2005; Welcomme et al., 2010). Among the natural fish stock, poor 

people in developing countries are more dependent on inland fisheries resources than marine 

sources (McIntyre, Reidy Liermann, & Revenga, 2016). The main of the global inland 

fisheries sources are derived from developing countries (Bartley, Graaf, Valbo-Jorgensen, & 

Marmulla, 2015; De Graaf, Bartley, Jorgensen, & Marmulla, 2015). Worldwide, inland 

capture fisheries are from the lakes and wetland that cover an approximately total area of 7.8 

million km2 (De Graaf et al., 2015; Welcomme et al., 2010). Inland capture fisheries refer to 

the catch or harvest of natural stock of freshwater fish and other living organisms from 

freshwater bodies (Allan et al., 2005; Welcomme et al., 2010). Geographically, the area 

covered with surface waters are relatively from Southeast Asia, North America, East and 

Central West Africa, the northern part of Asia, Europe and South America. Inland capture 

fisheries represent only 6.3% of the global fish production and 95% of which are from 

developing countries, i.e. Asia and Africa (Bartley et al., 2015; De Graaf et al., 2015; 

Welcomme et al., 2010). Inland fisheries are not only important for protein sources and global 

food supply, but they also are of paramount importance for livelihoods of people in many parts 

of the developed and developing countries, and it provides employment to 61 million people 

(Allan et al., 2005; Bartley et al., 2015; Welcomme et al., 2010). In addition, approximately 1 

billion people in the world, mostly in developing countries, depending on the protein sources 

derived from fish (Allan et al., 2005). Indeed, harvesting the natural fish stock has rapidly 
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increased in developing countries, but decreased in developed countries while many 

commercial inland fisheries were replaced by recreational fisheries (Allan et al., 2005; Cooke 

& Cowx, 2004). Overall, from the report data, the global catch of inland fisheries is increased 

because of an increase in the exploitation in Asia and Africa and an increase in human 

population density (FAO, 2014; McIntyre et al., 2016). Meanwhile, the global inland capture 

fisheries trend has been stable from 2000 to 2004 containing approximately 8.6 million tonnes, 

however its products reached 10 million tonnes in 2008 and increased up to 11.63 million 

tonnes in 2012, that the highest contribution is from developing countries (Bartley et al., 2015; 

De Graaf et al., 2015; Welcomme, 2011). Nonetheless, these statistical data is not accurate 

(Allan et al., 2005; Bartley et al., 2015; De Graaf et al., 2015; Welcomme, 2011; Welcomme 

et al., 2010). However, with the correct estimation, the global catch of fisheries has been 

declining (Pauly et al., 2002; Watson, Watson, & Pauly, 2014). Evidence revealed the collapse 

or decline in inland fisheries resources due to intensive fishing and multiple uses (Allan et al., 

2005; Bartley et al., 2015; Welcomme et al., 2010). Consequently, the excessive fishing of 

inland fisheries adversely influences human health, especially people in developing countries 

(Allan et al., 2005). 

1.2 A general overview of the Mekong River 

1.2.1 The Mekong River 

The Mekong River is the largest river in South-East Asia. From its sources in the 

Tibetan Himalaya China, it flows through six countries, i.e. China, Myanmar, Lao PDR, 

Thailand, Cambodia and Viet Nam, and conversa distance of more than 4880 km (Figure 1.1; 

MRC 2005). The Mekong River covers a total drainage area of 795,000 km2 (MRC, 2005). In 

term of mean water discharge, the Mekong River is ranked the eight world largest river, and 

it discharges approximately 475,000 million cubic meters of water into the South China Sea 

(Gupta, Hock, Xiaojing, & Ping, 2002; Matti Kummu & Sarkkula, 2008; Anders F Poulsen & 

Valbo-jørgensen, 2000). The Mekong River is classified into two parts: the Upper Mekong 
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River and the Lower Mekong Basin (MRC, 2005). The Lower Mekong Basin (LMB) includes 

portions of Thailand, Laos, Cambodia and Vietnam. The Mekong River is a typical floodplain 

river, dominated by the monsoon climate of Southeast Asia (A. Poulsen, Poeu, Viravong, 

Suntornratana, & Tung, 2002). It is a dynamic river system, alternating between a flood season 

from May to October and a dry season from November to April. The monsoon flood-pulse 

create the vast areas of seasonally inundated floodplains adjacent to the river channels every 

year. The hydrological cycle served as a determinant for seasonal migration of fish. 

Floodplains are extremely productive feeding habitats for most important fishes, whereas the 

river channels mainly serve as refuge habitats during the dry season (A. Poulsen et al., 2002). 

 

Figure 1.1 Geographical map of the Mekong River. (Sources: MRC 2010). 
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1.2.2 The Mekong fisheries  

The Mekong River lies within the Indo-Burma biodiversity hotspot (Allen, Smith, & 

Darwall, 2012; Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000) and is the second 

most diverse river system in the world, which host over 1200 fish species, after the Amazon 

River (Allan et al., 2005; Eric Baran, 2005; Brosse et al., 2013). However, only 50-100 species 

are common in the Mekong fishery. Moreover, many of which are still waiting for taxonomic 

identification and confirmation, thus the number of species is assumed to be higher than this. 

Apart from its important role as high diversity, the Mekong River is also one of the most 

intensive and productive inland fisheries in the world due to an extensive floodplain system 

nurtured by annual monsoons (Eric Baran, 2005; Eric Baran & Gallego, 2015) with annual 

yields of approximately 2.6 million tons, that have the largest contribution to the global inland 

capture fisheries (Hortle, 2007; Welcomme et al., 2010). It also has provided food sources and 

animal protein for 60 million people living in the region, that most of whom directly and 

indirectly rely on the fisheries resources of the Mekong River for their income and food 

security (MRC, 2010). In this regard, the average consumption of fish and other aquatic 

animals is estimated at 56 kilograms (kg) per capita per year in the lower Mekong Basin 

(Hortle, 2007). The system is highly productive due to an extensive floodplain system nurtured 

by annual monsoons (Eric Baran & Gallego, 2015). 

1.3 A brief of Tonle Sap Lake 

1.3.1 Tonle Sap Lake 

Tonle Sap Lake is situated in the central of Cambodian consisting of the largest 

wetland area in Southeast Asia and covers about 5 to 8 per cent of the total land area (Matti 

Kummu & Sarkkula, 2008; MRC, 2003, 2005). Tonle Sap Lake and the Mekong River are 

connected to each other by Tonle Sap River (TSR) with 120 km long (M. Kummu et al., 2014). 

Tonle Sap Lake was characterized by a tropical monsoon climate (Arias, Cochrane, Norton, 

Killeen, & Khon, 2013). Hydrological flows of Tonle Sap Lake are influenced by flood waters 
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of the Mekong River, and this creates a complex flood-pulse ecosystem (Arias et al., 2013; M. 

Kummu et al., 2014; MRC, 2005). The surface area of Tonle Sap Lake seasonally fluctuates 

from 2500 km2 to 15000 km2 driven by seasonal flood pulse from the Mekong River (M. 

Kummu et al., 2014). 

1.3.2 Tonle Sap flood pulse system 

Tonle Sap Lake is defined as a flood-pulse system due to its seasonal periodicity in 

hydrological flows. In the wet season (May-October), the water flows into Tonle Sap Lake 

through TSR due to increased water levels in the Mekong River, whereas in the dry season 

(November-April), a reverse flow occurs through TSR again due to the receding water levels 

in the Mekong River (MRC, 2005). The water levels highly vary between seasons; the water 

depth ranges from 0.5 metres in April (dry season) to 9 metres in September-October (rainy 

season). This variation leads to a varied surface area of Tonle Sap Lake throughout the year 

and thus creates more heterogeneous habitats compared to TSR (MRC, 2005). The flood pulse 

creates a substantial floodplain that is habitat for a variety of aquatic and terrestrial plant and 

animal species (Ian C. Campbell, Poole, Giesen, & Valbo-Jorgensen, 2006). A large number 

of floodplain areas were inundated and formed large breeding and spawning areas for the 

fishes (Eric Baran, Jantunen, & Kieok, 2007). Tonle Sap Lake also forms a natural reservoir 

that stores the floodwater for the Mekong system (Sarkkula et al., 2004). Tonle Sap Lake was 

characterized by a tropical monsoon climate (Arias et al., 2013). In these ecosystems, the 

pulsing is one of the major forces responsible for productivity and biotic interactions (Junk, 

Bayley, & Sparks, 1989). Here, the pulsing allow moving the littoral which enables the rapid 

recycling of organic matter and nutrient and then bring about the high productivities (Junk et 

al., 1989).  
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1.3.2 Tonle Sap Lake fisheries 

Tonle Sap Lake is the largest natural inland lake in Southeast Asia (MRC, 2005) and 

hosts a diverse fish fauna, with 296 fish species (Eric Baran, So, Degen, Chen, & Starr, 2013). 

Tonle Sap Lake is therefore considered a biodiversity hotspot (Allen et al., 2012) and has had 

the status of a UNESCO world heritage biosphere reserve since 1997 (UNESCO, 2018). This 

lake is the world’s fourth most productive inland fishery (Eric Baran, 2005) with annual 

estimated yields of 246,000 tons (Lieng & Zalinge, 2001).  

Tonle Sap Lake plays a crucial role in providing fish products and protein to nearly 

two million people in the region (Ahmed, Hap, Ly, & Tiongco, 1998), and Tonle Sap Lake 

fisheries account for 60% of the total protein intake of the approximately 15 million 

Cambodian people (Ahmed et al., 1998; Lieng & Zalinge, 2001). The average consumption of 

fish and other aquatic animals is estimated at 71 kg per capita per year around Tonle Sap Lake 

in Cambodia (Ahmed et al., 1998). Income from inland capture fisheries and other aquaculture 

contribute about 10% of Cambodia Gross Domestic Product (GDP) (E Baran, Schwartz, & 

Kura, 2009). 

1.4 Migration of fish in the Mekong River 

Migration is the movement of an animal during one part of its life cycle (A.F. Poulsen, 

Ouch, Viravong, Suntornratana, & Nguyen, 2002). Migration of fish is an important ecological 

aspect of many tropical rivers. Different migration behaviours result from adaptions to 

hydrological and environmental conditions (Anders F Poulsen & Valbo-jørgensen, 2000). 

Migration of the Mekong fish are divided into three longitudinal migration (long distance 

migration), lateral migration (short distance migration) and non-migration (or floodplain 

resident) (A.F. Poulsen et al., 2002). The longitudinal migration refers to movement of the fish 

in the main river channels and their main tributaries, while the lateral migration refers to the 

migration of fish from the main river and tributaries to floodplain area during the flood season 

and back again during the dry season (Anders F Poulsen & Valbo-jørgensen, 2000). The 
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migration of fish in the Mekong River serve the paramount importance for fisheries as the 

huge amount of fisheries resources are based on the exploitation of the migratory fishes 

(Anders F Poulsen & Valbo-jørgensen, 2000). 

Cambodian river fish species are classified into three functional groups: blackfish, 

white and grey fish according to their habitat characteristics (A.F. Poulsen et al., 2002). 

Blackfish in the Mekong River includes climbing perch (Anabas testudineus), the clarias 

catfishes (e.g. Clarias batrachus) and the striped snakehead (Channa striata) (A.F. Poulsen et 

al., 2002). Black-fishes mostly live in lakes and swamps on the floodplains near river channels 

and migrate to flooded areas during the flooded season (A.F. Poulsen et al., 2002). They are 

adapted to a low oxygen environment, which enables them to stay in swamps and small 

floodplain lakes during the dry season. Blackfish are considered non-migratory species even 

though they migrate between permanent and seasonal water bodies (A.F. Poulsen et al., 2002). 

White-fishes mostly inhabit the turbid water river channels for some part of the year (A.F. 

Poulsen et al., 2002). Most white-fish species migrate into flooded areas during the monsoon 

seasons, and back to their river habitats at the end of the flood season (A.F. Poulsen et al., 

2002). The Mekong white fish are cyprinids (e.g. Cyclocheilichthys enoplos and Cirrhinus 

microlepis), the river catfishes of the family Pangasiidae (A.F. Poulsen et al., 2002). During 

the dry season, larger white fish survive in deep pools of the main floodplain areas while 

blackfish spend their lives feeding and breeding in the floodplain water bodies (Deap, Degen, 

& Zalinge, 2003). 

1.5 Descriptions and ecology of the main commercial fish species in Tonle Sap Lake 

Striped snakehead Channa striata (Bloch, 1793) 

The striped snakehead Channa striata were distributed in tropical Africa and southern Asia, 

i.e., Pakistan to Thailand and South China (Figure 1.2; Froese & Pauly, 2017). In Cambodia, 

Channa striata are the common fish species that were found in many places throughout the 

country, i.e., the Mekong Basin, Tonle Sap Lake and Tonle Sap River (Maurice Kottelat, 1985, 
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1998). In addition, they have been commonly introduced in rice field farming, and they are 

very important in Cambodian aquaculture (Chheng, Touch, Baran, & Leng, 2005). 

Biologically, the striped snakehead prefers the flood-plain lakes and smaller streams than in 

the Mekong mainstream (S. Chan et al., 2000). Moreover, they were mainly recorded in the 

still water and stagnant and muddy fresh water of plains habitats of the ponds, swamp, streams 

and lowland rivers with 1-2 metre in depth (Chheng et al., 2005). As the blackfish, the striped 

snakehead could adapt to the low oxygen environment during the season by burrowing 

themselves in the bottom mud of lakes, canals and swamps (Chheng et al., 2005). During the 

rainy season, they migrate upstream from the Mekong mainstream toward the flooded areas 

and move back to the permanent water bodies at the receding water, especially the early of the 

dry season (S. Chan et al., 2000). Ditches, ponds and flooded paddy fields have been known 

the important breeding ground of the striped snakehead. Meanwhile, in Cambodia, the 

breeding periods of this species were reported in May-June and November-December (Chheng 

et al., 2005). The striped snakehead has been known the parent care species in which the 

parents protect their babies by hiding below the surface water while the babies swim at the 

surface (Froese & Pauly, 2017). The main food contents for this species are bony fish, frogs, 

insects, earthworms, tadpoles and crustaceans (Rahman, 1989). 

 

Figure 1.2 Photos of the striped snakehead Channa striata (Bloch, 1793). The photo were 

derived from Rainboth (1996). The maximum length of this species was 100 cm in standard 

length. 

Giant snakehead Channa micropeltes (Cuvier, 1831) 
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Similar to the striped snakehead Channa striata, the distribution of the giant snakehead 

Channa micropeltes was found in both tropical Africa (Figure 1.3; Froese & Pauly, 2017). 

Like the strip snakehead, the giant snakehead Channa micropeltes is important for 

aquaculture, and they are also commonly introduced in the rice field farming (Chheng et al., 

2005). The important habitats for Channa micropeltes were the standing or slowly flowing 

water of the deep and large streams and canals (Maurice Kottelat, 1998; Rainboth, 1996). They 

were also found in the swamp and the lowland river. In addition, small streams with dense 

vegetation habitats were important spawning ground for Channa micropeltes. They are 

Carnivorous top predator that forage primarily on fish and crustaceans (Froese & Pauly, 2017). 

 

Figure 1.3 Photos of the giant snakehead Channa micropeltes (Cuvier, 1831). This photo 

was retrieved from Rainboth (1996). The maximum length of this species was 130cm in 

standard length. 

 

Sutchi catfish Pangasianodon hypophthalmus (Sauvage, 1878)  

The sutchi catfish Pangasianodon hypophthalmus were recorded from the Mekong Basin, 

including Tonle Sap Lake and Tonle Sap River (Figure 1.4; Maurice Kottelat, 1985; Lim, Lek, 

Touch, Mao, & Chhouk, 1999). They have been the longitudinal migratory fish that undertake 

the long-distance migration from rearing areas to spawn in unknown areas during May-July 

and move back to the mainstream to search for the rearing habitats when the river water level 

recedes between September-December (Hill & Hill, 1994). During the rainy season, from May 

to August, they move downstream from the Mekong Stung Treng to Kandal in Cambodia and 
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continue migrating toward the Mekong Delta in Viet Nam (S. Chan et al., 2000). The purposes 

of this downstream migration were to spawn and feed and then migrate to the floodplain areas 

during the flooded season (S. Chan et al., 2000). The receding of the water, on the early of the 

dry season, appeared to be the main determinant that triggers this species to undertake the later 

migration from the flooded areas back into the Mekong at the end of the flood season (S. Chan 

et al., 2000). The young babies were commonly found in the lower Mekong while the large 

individuals were mainly observed in the in the Middle Mekong (Rainboth, 1996). They were 

reported to live in the deep and large rivers  They have been the Omnivorous fish that feed on 

a variety of food types such as fish, crustaceans and vegetable debris (Rainboth, 1996). 

 

Figure 1.4 Photos of the sutchi catfish Pangasianodon hypophthalmus (Sauvage, 1878). The 

photo was derived from Rainboth (1996). The maximum length of this species  

 

Cyclocheilichthys enoplos (Bleeker, 1850) 

Cyclocheilichthys enoplos has been known a longitudinal migratory species in the Mekong 

River that their distribution was found in the Mekong Basin, Stung Treng, the Tonle Sap River 

and the Tonle Sap Lake (Figure 1.5; Maurice Kottelat, 1985). The number of 

Cyclocheilichthys enoplos population start to be less and less below the Khone Fall to the 

Tonle Sap River and Tonle Sap Lake (Hill & Hill, 1994). During the flooded season, it was 

reported that Cyclocheilichthys enoplos migrate from the Mekong River toward the Tonle Sap 
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River and the Tonle Sap Lake (S. Chan et al., 2000). During the dry season, specifically when 

the water level recedes, the juveniles and adults move out of the lake flooded areas toward the 

river and migrate back toward the upstream in the Mekong. They were found at midwater to 

bottom levels of the mainstream and large tributaries of the Mekong River (Rainboth, 1996). 

The floodplain area or flooded riparian forests serve the important spawning grounds of 

Cyclocheilichthys enoplos (Froese & Pauly, 2017). The main food composition for young was 

zooplankton whereas the insect larvae, crustaceans and fish were the main foods for adults 

(Rainboth, 1996). 

 

Figure 1.5 Photos of Cyclocheilichthys enoplos (Bleeker, 1850). The photo was derived 

from Rainboth (1996). The maximum length of this species was 74cm in standard length. 

 

Trey Riel small mud carp Henicorhynchus spp  

Trey Riel Henicorhynchus spp contains two main important species: Henicorhynchus lobatus 

and H. siamensis. Both species form the keystone species within the Mekong River (Figure 

1.6; Froese & Pauly, 2017). The distribution of Trey Riel small mud carp was found in the 

Mekong River, Tonle Sap River and Tonle Sap Lake (M. Kottelat, 2001; Maurice Kottelat, 

1985; Lim et al., 1999). They were found in the rapids and slow flowing water habitat in the 

mid-water to bottoms depths in large and small rivers (Froese & Pauly, 2017; Singhanouvong, 
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Soulignavong, Vonghachak, Saadsy, & Warren, 1996). They undertook the longitudinal 

migration that moves into the floodplain area during the wet season for feeding and moves 

back to the rivers at receding water at the early October to December (Rainboth, 1996). The 

main food composition of Trey Riel small mud carp were plants, algae, periphyton and 

phytoplankton (Froese & Pauly, 2017). 

 

Figure 1.6 Photos of Trey Riel Siamese mud carp Henicorhynchus siamensis (Sauvage, 1881). 

This photo was extracted from Rainboth (1996). The maximum length of this species was 20 

cm in standard length. 

 

Java barb Barbonymus gonionotus (Bleeker, 1850) 

Java barb Barbonymus gonionotus has been considered a migratory species that undertake the 

lateral migration moving from the Mekong River toward the small streams and tributaries and 

flooded area during the rainy reason and move back to the Mekong River during the dry season 

(Figure 1.7; S. Chan et al., 2000). They were found in at mid-water to bottom depths in rivers, 

streams, floodplains, and occasionally in reservoirs. Moreover, they live in the flooded forest 

during the flooded season (Rainboth, 1996). The first rain and rising water level were the 

important factors that trigger Barbonymus gonionotus to move from the Mekong River toward 

a tributary, canal or stream and then migrate to the flooded areas (S. Chan et al., 2000). The 

main food compositions for this species were planted matter leaves, weeds and invertebrates 

(Froese & Pauly, 2017). 
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Figure 1.7 Photos of the Java barb Barbonymus gonionotus. The photo was derived from 

(Rainboth, 1996). The maximum length of this species 

 

Moonlight gourami Trichopodus microlepis (Günther, 1861) 

The moonlight gourami Trichopodus microlepis has been known as a common species in the 

floodplain of the lower Mekong (Figure 1.8; Froese & Pauly, 2017). They were found in the 

Mekong River in Cambodia and Viet Nam and Chao Phraya basins (M. Kottelat, 2001). They 

were mainly found in ponds and swamps, especially in the shallow sluggish or standing water 

habitats with a lot of aquatic vegetation (Froese & Pauly, 2017). Zooplankton, crustaceans and 

aquatic insects were the main food contents for the moonlight gourami (Chheng et al., 2005). 
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Figure 1.8 Photos of the moonlight gourami Trichopodus microlepis (Günther, 1861). The 

photo was derived Rainboth (1996). The maximum length of this species 

 

1.6 Research problems, aims and objectives 

Tonle Sap Lake (TSL) is the largest natural lake in Southeast Asia, and it is a diverse 

and productive lake (MRC, 2005). However, the knowledge of the fisheries and fish ecology 

in Tonle Sap Lake is poorly known. Given the fact that the fisheries of Tonle Sap Lake is 

being threatened by various factors such as intensive fishing through population growth, 

insufficient effectiveness of fisheries resources, and habitat disturbance (Allan et al., 2005), 

thus, there is a need to investigate the spatio-temporal dynamics of fish community, the effects 

of the removal of the commercial fishing lots of, the effects of environmental descriptors on 

distribution of fish species, and the role of the flood pulse on the spatio-temporal dynamics of 

fish species in Tonle Sap Lake.  

On the other hand, regarding fish ecology, the distribution, and migration of fish 

species, many studies have been conducted in Tonle Sap Lake, e.g., fish species diversity and 

distribution (I.C. Campbell, Poole, Giesen, & Valbo-Jorgensen, 2006; Ian C. Campbell et al., 

2006; B. Chan, Ngor, So, & Lek, 2017; Lim et al., 1999), fish beta diversity (Kong, Chevalier, 

Laffaille, & Lek, 2017), and the water quality-fish composition relationship (Chea, 

Grenouillet, & Lek, 2016), data mining and stock assessment of fisheries resources (Enomoto 

et al., 2011). However, knowledge of the parameters affecting the spatial distribution, spatio-

temporal dynamics and migration of fish species in Tonle Sap Lake are poorly known. 

Therefore, determining the environmental factors on the distribution and migration of fish 

species is needed. 

Besides the species distribution and ecological study, many studies have been 

highlighted and discussed about the effectiveness of the Cambodian fisheries policy reforms 

in Tonle Sap Lake in terms of property right, governance, management policy and legislation, 
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and reviewed and expected the fisheries status based on the biological and ecological features 

of fish species, i.e. (Cooperman et al., 2012; Dina & Sato, 2014, 2015; Ratner, 2006; Ratner, 

Mam, & Halpern, 2014; Sok, 2014). However, providing the statistical evidence about the 

characteristics of fisheries and fish species impacted by this fisheries policy reforms is in the 

gap. Thus, providing evidence about the effects of the removal of the commercial fishing lots 

on fisheries and community and structure based on statistics data would be more informative.  

 

The aims and specific objectives (or question) of the present study are: 

1. Investigating the spatio-temporal changes in fish yields and fish communities in Tonle Sap 

Lake 

1.1. Illustrating the temporal trend of the main commercial fish and fish yields of Tonle 

Sap Lake. 

1.2. Investigating the relationship between the flood pulse and fish yields of Tonle Sap 

Lake 

1.3. Identifying the spatial and temporal patterns of fish community within Tonle Sap Lake. 

2. Investigating the importance of the local habitat and regional climatic factors on the 

distribution of fish species in Tonle Sap Lake. 

2.1. Illustrating the spatial distribution of the main commercial fish species in Tonle Sap 

Lake. 

2.2. Determining the influence of the environmental factors on the spatial distribution of 

the main commercial fish species in Tonle Sap Lake. 

3. Modelling the dynamics of fish species in the flood pulse system at spatial and time 

3.1. Is there any synchrony in occurrence between the two species, and is there a constant 

periodic occurrence of each species (e.g., re-occurring monthly or seasonally or 

annually)? 
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3.2. How is the period of synchronisation and movement patterns of each species varied 

across the Tonle Sap Ecosystem? 

3.3. Is there any time-lagged relationship between the synchronisation of each species and 

water levels?  

4. Assessing the effectiveness of the removal of the commercial fishing lots on fisheries, fish 

community composition and structure. 

4.1. Investigating the overall trends in fisheries in the two periods: before and after fishing 

lot abolishment. 

4.2. Analysing the variability or dynamics of fish community composition between two 

periods. 

4.3. Identifying the species that changed and linking the status of fish species (increasing, 

decreasing and non-change) with morphological and biological traits. 
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1.7 Hypotheses 

The fisheries reforms allow removing all commercial fishing lots in favour of 

subsistence fisheries. Given that fishes could freely migrate and conduct substantial spatial 

distribution, we hypothesised that this fisheries policy reforms positively affect the long-

distance migration of fish species. If the law enforcement is sufficient, it was expected that the 

removal of the commercial fishing lots that the fisheries policy reforms or the fishing lot 

abolishment might contribute to maintain fishery productivity and protect the biological 

diversity, and improve the sustainability of Tonle Sap Lake fisheries. In addition, the small 

fish species and floodplain residence fish species were expected to have benefitted from 

conservation area after the fisheries policy reforms (Cooperman et al., 2012). In contrast, while 

the area of the lake is open and free to access by all people, if the law enforcement is 

insufficient, the illegal fishing practices happen that lead the overfishing. Thus, the fisheries 

reforms would have negative effects on fisheries resources of TSL. 

Moreover, it was hypothesised that the distribution of fish species within Tonle Sap 

Lake are heterogeneous. Fish species have a different response to the habitat characteristics 

and climatic feature. All species do not have the same perception of the heterogeneity of their 

habitat (Kolosa, 1989). Thus, we hypothesised that the responses of fish species to their 

environmental determinants are species-specific. The distribution of each species was not 

determined by the same environmental factors (Buisson, Blanc, & Grenouillet, 2008). 

Additionally, the distribution of fish species is regulated by the combined environmental 

descriptors. It was hypothesised that both local habitat and regional climate have the potential 

effects on the spatial distribution of fish species. This observation leads us to discuss the 

ecological significance of such a fish species distribution. This work could contribute to the 

modelling assessment of the factors and processes controlling freshwater ecology within Tonle 

Sap System.  
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Furthermore, while Henicorhynchus lobatus and H. siamensis have dissimilarities in 

ecological preferences and life history traits (Hurwood, Adamson, & Mather, 2006), we 

expected distinct periods of the occurrence, synchronisation and time-lagged relationship to 

be observed for each species in different parts of the Tonle Sap Ecosystem, following the 

variations in water levels. It was hypothesised that the flood pulse leads the synchronisation 

and movement pattern of the small mud carp species. Thus, the variation of flood pulse plays 

an important role in regulating the spatial and temporal dynamics of two small mud carp 

species in a large flood pulse system.  
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Chapter II: Materials and Methods 

 

2.1 Study area 

This study covers the Tonle Sap System (TSE): Tonle Sap Lake and Tonle Sap River 

(Figure 2.1). Tonle Sap Lake is situated in the central of Cambodian consisting of the largest 

wetland area in Southeast Asia and covers about 5 to 8 percent of the total land area (Matti 

Kummu & Sarkkula, 2008; MRC, 2003, 2005). Tonle Sap Lake and the Mekong River are 

connected by Tonle Sap River (TSR) with 120 km long (M. Kummu et al., 2014). This study 

covers the spatial range approximately 300 x 300 km. 

2.2 Data collection 

 This study uses three different datasets: catch assessment data of fishing lots, catch 

assessment data of mobile gear fishing, and catch monitoring survey data. The fish data were 

provided by the Fisheries Programme of the Mekong River Commission (MRC) in 

collaboration with the Cambodian Department of Fisheries (currently called the Fisheries 

Administration [FiA]) and financially supported by the DANIDA (Danish International 

Development Agency) (Ly and VanZalinge, 1998). 

For catch assessment data of fishing lot, fish were collected from thirty-three fishing 

lots around TSL (Figure 2.1). Noticed that fishing lots are good fishing area demarcated by 

the government and give to the private sectors or fishers for commercial fisheries operation 

(Ly and VanZalinge, 1998). At each lot, the sampling was conducted during weekly sampling 

of thirty-three fishing lots around the lake from October to May each year from 1994-2000. 

The sampling method was designed and approved by the Department of Fisheries with 

technical support from MRC experts. At each lot, samplings were conducted by the provincial 

fisheries scientists and supervised by central fisheries scientists from the Cambodian 

Department of Fisheries. Herein, data collectors were trained in the basic concepts of sampling, 
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identification and data record. With the heterogeneity and complexity of habitat in the fishing 

lot, many types of fishing gears were applied according to the specific habitat characteristic. 

For instance, the river barrages with U-shaped bag-nets were used for riverine fishing lots, and 

arrow-shaped bamboo fence traps for the lake floodplain fishing lots to maximise the catches. 

The catch assessment attempted to estimate the maximum catches within each fishing lot. Fish 

were identified to species and identification was based on the consultation with MRC experts 

following the keys in (Rainboth, 1996). Complete details on the fish sampling techniques and 

the catch assessment data are available in Ly & VanZalinge (1998). This data was used to 

study the spatio-temporal changes in the fish assemblage (chapter III) and the influence of the 

environmental factors on the distribution of fish species (chapter IV). 

For catch assessment data of mobile fishing gear, the fish biomass data were monthly 

collected from TSL and TSR from 1994 to 2000. Here, the mobile fishing gear refers to the 

fishing that commonly used at the small-scale fishing at the family level (Deap, Degen, & 

VanZalinge, 2003). The sampling method was designed and approved by the Department of 

Fisheries with technical support from MRC’s expert. The data were collected by local 

fishermen, and they were trained in the basic concepts of gears, specific terminology, technical 

drawing and reporting (Deap et al., 2003). Samplings were conducted on a daily basis from 

1995 to June 2000 around TSL. In this study, we selected the fish data collected from the gill 

net with mesh size of <7 cm. Identification was based on the common names combined with 

a review of previous studies and consultation with MRC’s experts; further, identification 

followed the keys in Rainboth (1996). This dataset was used to compare overall fisheries and 

fish community and structure before and after fishing lot abolishment (chapter VI).  

For catch monitoring survey data, time series data were daily collected from January 

2012 to December 2015 at three sampling sites in the TSE (as indicated in red circle dot), one 

of which is located in the northern TSL (hereafter abbreviated to “NL”), one in the southern 

TSL (abbreviated to “SL”), and the other one in the outlet river (abbreviated to “OR”) of TSR 
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(Figure 2.1). The catch monitoring approach follows the MRC’s regional monitoring method 

applied in the Lower Mekong Basin (MRC, 2008; P.B. Ngor, Theng, Phem, & So, 2014). The 

catch monitoring approach follows the MRC’s regional monitoring method applied in the 

Lower Mekong Basin (MRC, 2008; P.B. Ngor et al., 2014). At each sampling site, nylon 

gillnets with 2 to 6.5 cm mesh sizes were used to capture as many fish species as possible 

(P.B. Ngor et al., 2014). Gillnets have been considered the most common and popular fishing 

gear used in the TSE and are suitable to be applied in different habitat types (MRC, 2008). 

The gillnets used had a length of 400 m ± 100 m (P.B. Ngor et al., 2014). The variation in the 

gillnet length is due to the habitat availability (e.g., inundated forest, open water of TSL, river, 

streams, and creeks), which varies according to the annual hydrological cycle. Fishes were 

identified to the species level following the identification guide by Rainboth (1996) and 

enumerated and recorded in a logbook. The logbooks were then collected from fishers on a 

quarterly basis and cross-checked by research specialists. Unidentified species were later 

identified by an expert taxonomist in the laboratory. This data was used for chapter V and VI. 

Moreover, the morphological traits and trophic level position of 55 fish species were 

derived from the FishBase (Froese & Pauly., 2017). The information about biological traits of 

fish species (i.e. migration, the position of water column) was reviewed and derived from 

(Froese & Pauly, 2017; Peng Bun Ngor, Legendre, Oberdorff, & Lek, 2018; Poulsen et al., 

2004). The migration and water column were orderly coded according to the characteristics. 

These attribute information were used for chapter VI.  

Regarding the environmental parameters, the local habitat, climatic feature and water 

level were used. The surface area of land-cover types of each fishing lot was calculated from 

the Cambodian Land Use 1993 map that best fits the fish catch period (1994-2000)(used for 

chapter IV). Three land-cover types were considered: flooded forest (FF), open water (OW), 

and agricultural field (AF). Land cover was expressed as a percentage of coverage of each 

fishing lot. Additionally, nineteen bioclimatic variables were extracted from the 1-km2-
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resolution WorldClim layers for the period 1950-2000 (Hijmans et al. 2005). Despite the 

limited spatial range of this study (approximately 200 x 200 km), climate variables 

demonstrated substantial variations across the lake; thus, these variables are relevant for 

analysing the correlations between fish biomass and climate features (chapter V). Moreover, 

the water level data measured from site WS1 was analysed with the fish data collected from 

the NL and SL sites, whereas that from WS2 was analysed with the fish data collected from 

the OR site (in chapter VI). 

 

 

Figure 2.1 Map showing the fishing lots surrounding the floodplain of Tonle Sap Lake in 

Cambodia. “Wetland” refers to the flooded area during the wet season. The first letter in the 

code represents the province name: B (Battambang), S (Siem Reap), P (Pursat) and T 

(Kampong Thom) and is followed by the lot numbers in each province. Sampling sites (red 

dots) of the study area: NL, the northern TSL; SL: the southern TSL; OR, the outlet river of 

Tonle Sap River. WS1: water measurement station (red dot with a cross), WS2: the water 

measurement station situated at the same location as the “OR” fish sampling site. 



30 
 

 

2.3 Statistical analyses 

2.3.1 Community clustering 

Hierarchical clustering based on the Euclidian dissymmetry distance on the NMDS 

scores with Ward linkage method allowed to identify the fish assemblages (in chapter III only). 

Hierarchical cluster analysis in combination with multiscale bootstrapping generated 

probabilities was applied to investigate consistent spatial distribution patterns within the eight 

species (in article 3). For this study, the Bray–Curtis dissimilarity measures were compared 

for each grouping of the analysis (Bray & Curtis, 1957). For each measure of dissimilarity, the 

distance was calculated with Ward’s linkage to compare the measures of dissimilarity for 

consistent grouping. 

2.3.2 Comparative analysis 

A Mann-Whitney test was used to test for significant differences between the two 

groups. Here, we used Mann-Whitney to test for significant difference in fish yields and 

species richness between the two assemblages (chapter III). 

2.3.3 Predictive models 

Linear models were used to detect temporal trends in yields of the most dominant fish 

species, the total fish yields of TSL over the past six years, and the relationship between fish 

yields and coefficient of variation in the water level (chapter III). 

Moreover, generalised linear models (GLM) were used to investigate the relationships 

between the spatial distribution of each species and the local habitat and regional climatic 

factors (article 3). GLM is an extension of linear regression. Before building the GLM models, 

the explanatory variables of the local habitat and regional climatic variables were to 

normalised get the same scale of the variable. The response was the mean value of the annual 
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biomass of each species. Step-wise approach with both backward and forward selection was 

applied to remove unimportant variables.   

2.3.4 Multivariate analyses 

Non-metric multidimensional scaling (NMDS) with Bray–Curtis similarities distance 

(Bray & Curtis, 1957) was performed to visualise sample of fish in a two-dimensional plot. 

For instance, NMDS was performed to illustrate the spatio-temporal change in the fish 

community (in chapter III) and a change in fish community composition between the BFA and 

AFA (in chapter VI), utilising the “vegan” package in R (Oksanen et al., 2015). The NMDS is 

a rank based method attempting to represent the pairwise dissimilarity between sampling units 

in a two-dimensional space. Stress ranges from 0 to 1 and any value less than 0.15 indicates a 

good fit (Clarke, 1993). In addition, three things the size of the convex hull, position (centroid) 

and structure were applied to test. 

A principal component analysis (PCA) was performed to relate the status of fish 

species (i.e. decreasing, increasing, and non-change) to the morphological and biological traits 

(in chapter VI). The analysis allows us to say something about the changes that were related 

to some specific groups or functional traits and size class of fish species. 

Analysis of similarity (ANOSIM, Clarke, 1993) was also used to test for significant 

difference in fish community composition between the two periods: before and after fishing 

lot abolishment. ANOSIM is a nonparametric multivariate procedure broadly analogous to 

analysis of variance (ANOVA) that has been widely used for testing whether or not groups of 

sites are statistically different with respect to their relative similarities in the community 

composition (Clarke, 1993). ANOSIM was conducted on Bray–Curtis dissimilarities matrix 

calculated among samples (Oksanen et al., 2015). The significance of the ANOSIM results 

was assessed according to the statistic-R value (correlation coefficients between groups) which 

provides a measure of effect size and a P-value (significant difference between groups) of the 
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statistical significance which determined whether or not the result was likely due to a result of 

chance (Clarke, 1993). A statistic-R that ranges from -1 to +1, and that is based on the rank 

similarities of samples within versus among a priori groups. A large R-value (close to 1) is 

indicative of complete separation between groups, while a small value (close to 0) implies 

little or no separation, and R-values below zero suggest that dissimilarities are greater within 

groups than between groups (Clarke & Warwick, 2001). We conducted 999 random 

permutations to assess the statistical significance of R (in chapter VI). 

Then, we further applied the similarity percentages (SIMPER, Clarke, 1993) procedure 

to assess which species was the most important contribution to the dissimilarity of the 

composition between the BFA and AFA. SIMPER identifies which fish species made the 

highest contribution to be different between the two groups in a Bray-Curtis dissimilarity 

matrix (Oksanen et al., 2015). The contribution of each species to Bray-Curtis measurement 

was calculated after root-root transformation, and then the species were ranked in two 

separated groups, percentage, and cumulative percentage (Clarke & Warwick, 2001). SIMPER 

produced average contribution from taxa to overall dissimilarity between two groups (i.e. a & 

b) (average), standard deviation of contribution (sd), ratio average to sd ratio (ratio), average 

abundances per group (av.a & av.b), and ordered cumulative contribution (cum) (Clarke & 

Warwick, 2001; Oksanen et al., 2015). We conducted 99 random permutations to assess the 

statistical significance of R (in chapter VI). 

2.3.5 Time-series analyses 

Cross-wavelet transform (CWT) was used to analyse occurrence correlation and 

recursivity (e.g., a recursive occurrence at an interval over a particular timescale) between the 

two time-series data of H. lobatus abundance (x) and H. siamensis abundance (y). The CWT 

analysis will also allow the determination of whether H. lobatus occurrence leads/or lags H. 

siamensis occurrence. Here, the 95% confidence interval was selected for the wavelet power 

as the significance criterion. Practically, the ability of the CWP to analyse coherency enabled 
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us to highlight the co-occurrence and synchronisation periodicity of the two species. The CCFs 

were then employed to determine a period (e.g., how many weeks) when H. lobatus 

synchronisation and peak abundance leads/lags those of H. siamensis. 

To investigate how periods of synchronisation and peak abundance vary across the 

studied sites, cross-correlation function (CCFs) were used to determine the time-lagged 

relationship of the abundance of each species between paired sites, e.g., H. lobatus abundance 

in NL (x) and SL (y). The results of this analysis were then used to identify the movement 

patterns of each species (e.g., a period it takes to migrate from NL to SL). 

Finally, the CCFs were also employed to examine the time-lagged relationship 

between the water levels and the abundance of each species at each site. In this analysis, the 

water level data measured from site WS1 was analysed with the fish data collected from the 

NL and SL sites, whereas that from WS2 was analysed with the fish data collected from the 

OR site. By the end of this analysis, we were able to estimate the movement periods of both 

species, e.g., how many weeks the peak water level leads/lags the peak abundance of each 

species. Here, we selected the lag containing the highest correlation coefficients between the 

two time series as the time lag. The CCF allowed us to determine the link between the flow 

pulse and fish abundance and identify the time lag between the water level peak and fish 

synchronisation. The CCF, thus, enables the determination of the role of flood pulse in 

temporal dynamics of fish species in the TSE to be made. 

All statistical analyses were performed using R program v.3.3.3 for Windows statistical 

software package (http://www.r-project.org)(R Core Team, 2017). 
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Abstract 

Although Tonle Sap Lake (TSL) is the largest natural inland lake in Southeast Asia, little is 

known about the spatio-temporal patterns of its composition and yields. The present paper 

aimed to investigate the temporal change of yields of the most dominant fish species and to 

evaluate the spatio-temporal changes in the fish community and the indicator species of 

assemblages. Fish catch data were collected from thirty-three fishing lots around the lake 

during the open season from October to May each year between 1994 and 2000. The fish yields 

were dominated by few commercial fish species: Channa micropeltes, Pangasianodon 

hypophthalmus, Channa striata, Cyclocheilichthys enoplos, Henicorhynchus spp., 

Barbonymus gonionotus, Micronema spp. and Trichopodus microlepis. The standard linear 

regression coefficients of the fish yields versus year were negative for all these commercial 

species except Trichopodus microlepis. Moreover, the total fish yields of the lake were 

temporally declined (standard coefficient=-2.410, adjusted r2=0.272). Nonmetric 

multidimensional scaling (NMDS) of the fish assemblage data showed a clear opposition 

between northern assemblage and southern assemblage along the first axis, and the temporal 

pattern of the samples from 1994-1999 was explained by the second axis. The fish species 

assemblage from earlier years (1994 and 1995) was characterised by the abundance of all 

functional groups of black-white-grey fish species, but more recent years (1996 to 1999) were 

linked to white and grey functional groups, which was explained by a decrease in many black 

fishes.  

KEYWORDS: fishing lots, Tonle Sap Lake, indicative species, inland fisheries, fish yields 

  



38 
 

3.1 Introduction 

The fish resource provides one of the primary sources of animal protein consumed 

worldwide, and income, especially for people in developing countries (Allan et al. 2005) 

(Welcomme et al. 2010). In developing countries, fish protein sources are mainly derived from 

the harvest of natural fish stocks, while those in developed countries are produced by 

recreational fisheries or aquaculture (Allan et al. 2005; Welcomme et al. 2010). Poor people 

in developing countries depend on inland fisheries sources more than marine sources 

(McIntyre et al. 2016). Harvesting natural fish stock has rapidly increased in developing 

countries, but decreased in developed countries (Allan et al. 2005). Overall, the global inland 

fish catch is reported to be increased because of an increase in the exploitation in Asia and 

Africa (FAO 2014) and an increase in human population density (McIntyre et al. 2016).  

The Mekong River Basin lies within the Indo-Burma Biodiversity Hotspot and is the 

second most diverse river system in the world (Ziv et al. 2012). It is also one of the most 

intensive and productive inland fisheries in the world, and the Mekong River has the second 

highest level of river fish biodiversity after the Amazon River (Baran et al. 2013a). It provides 

food sources for millions of people in the region (Baran & Myschowoda 2008; Baran et al. 

2013a). The Mekong capture fisheries made up two third of the inland fish production in the 

basin (Baran et al. 2007). The Mekong fisheries are not only important for capture fisheries, 

but also the economic value (Baran and Myschowoda, 2008).  

Tonle Sap Lake (TSL) is a major natural reservoir in the Mekong River, and it is the 

largest natural inland lake in Southeast Asia (Chea et al. 2016b) and a biodiversity hotspot and 

a World Heritage Biosphere Reserve (Lamberts 2006). After the African Great Lakes, TSL 

has the second highest freshwater fish biodiversity in the world (Baran et al. 2013a), and it is 

one of the world’s most productive fisheries and fish species-rich lakes (Arias et al. 2013). 

Furthermore, TSL plays a crucial role in providing fish products and protein to nearly two 

million people in the region (Holtgrieve et al. 2013), especially the communities living in the 
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Tonle Sap System that depend on natural resources of the lake (Lamberts 2006; Kimmu & 

Sarkkula 2008). Approximately half of Cambodian’s population obtain benefits both directly 

and indirectly from TSL’s fisheries resources (Keskinen et al. 2005). The lake is not only 

important for ecology, but also for the socio-economic and livelihood (Lamberts 2006). 

In the Mekong River, intensive exploitation has not only been threatening large fishes, 

but also the overall catch and freshwater biodiversity in the region (Allan et al. 2005; Kano et 

al. 2013). Moreover, the overfishing in the Mekong River threaten the capture fisheries in TSL 

because of the connection between the Mekong River and TSL via the Tonle Sap River 

(TSR)(Allan et al. 2005). The overall catch has increased twice in the last decade (Baran et al. 

2001), which has resulted from an increase in fishing activities, fishing effort and the use of 

modern and illegal fishing practice (Allan et al. 2005). Due to intensive fishing, the large 

migratory fishes (e.g., catfish and carp) have been reported to be declined, and the overall 

catch is dominated by small cyprinid fishes (i.e., Henicorhynchus spp.), which accounted for 

forty percent of the total captures (Allan et al. 2005). 

The Tonle Sap fisheries are indiscriminate in that they exploit all types and size class 

of fish (McCann et al. 2015a). Indiscriminate fishing is common in developing countries where 

fish provide the main source of dietary protein. Despites the intense pressure of fishing, 

fisheries of the Mekong River and TSL are still productive. The short reproductive cycle of 

small fishes is believed to be the important factor influencing the fish production of the lake 

(Lamberts 2006). The life-history trait is the ecological driver that affects the population 

response to fishing pressure (Hsieh et al. 2006). Moreover, the health of the Mekong River 

and TSL system remain in good condition because the water regime and water quality are not 

much changed while the dam on the main Mekong River is not yet operated.  

Ichthyological information for TSL still lacks as little research has been conducted. 

Surveys of the fish fauna in TSL are needed to better understand the fisheries, the fish 

community, and ecosystem function. By using annual fish catch data collected at thirty-three 
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fishing lots from 1994 to 2000, the objectives of the present work were (i) to investigate the 

temporal change of yields of the most dominant species and (ii) to evaluate the spatio-temporal 

changes in the fish community and the indicator species of assemblages. 

3.2 Materials and methods 

3.2.1 Study area  

Studies were carried out in TSL located in the central of Cambodia. TSL is connected 

to the Mekong River by the TSR (Arias et al. 2013), and the water flows in the TSR contain 

two directions, namely, inflow and outflow. From May to October, water flows into the lake 

through the TSR due to a large volume of water from tropical monsoon rainfall combined with 

snowmelt from the Tibetan Plateau (MRC 2005). In contrast, the water flows out from the lake 

into the Mekong River from November to April as the water level in the river decreases 

(Campbell et al. 2006b). Reverse flow resulted from the alteration of the water level between 

seasons (MRC 2005). Seasonal flooding benefits primary and secondary production and the 

surface area of the lake also varies between seasons as a result of alterations to the water 

regime (Holtgrieve et al., 2013). 

3.2.2 Data collection 

TSL freshwater fish catch data were collected by the Mekong River Commission in 

collaboration with the Cambodian Inland Fisheries Administration and financially supported 

by DANIDA (Danish International Development Agency) (Ly and VanZalinge, 1998). Data 

were collected from thirty-three fishing lots around the lake (Figure 3.1). The sampling method 

was designed and approved by Department of Fisheries with technical supports from MRC’s 

experts. At each fishing lot, samplings were conducted on a weekly basis (four times per month) 

from October 1994 to May 2000 by the provincial fisheries researchers and supervised by 

central fisheries researchers from the Cambodian Department of Fisheries. Data collectors 

were trained in the basic concepts of sampling, identification and data record. The operation 



41 
 

of the fishing lot was performed using river barrages with U-shaped bag-nets for riverine 

fishing lots and arrow-shaped bamboo fence traps for the lake floodplain fishing lots. 

Sampling and other works for species composition were followed as the method used in the 

stationary trawl (Dai) fisheries (see in Halls et al., 2013). In each sample, if the catch per unit 

effort (CPUE) per lift is less than 10kg, fish were separated and identified. Fish were identified 

to species, except for nine taxa that were identified to genus for certain genera covering several 

species. Identification was based on the consultation with MRC experts following the keys in 

(Rainboth, 1996). Full details on the fish sampling technique are available in  Ly and 

VanZalinge (1998). A dataset of fish yields (kg.ha-1.y-1), which were measured as a function 

of the estimated catch per fishing lot per season (kg) divided by fishing lot area (ha) for a unit 

of time (year), was utilised for analyses. The water level was measured in the Tonle Sap River 

(Prek Kdam). 

 

Figure 3.1 Map showing the fishing lots surrounding the floodplain of Tonle Sap Lake in 

Cambodia. “Wetland” refers to the flooded area during the wet season. The first letter in the 
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code represents the province name: B (Battambang), S (Siem Reap), P (Pursat) and T 

(Kampong Thom) and is followed by the lot numbers in each province. 

 

 3.2.3 Statistical analyses 

A dot plot was used to create a rank-yields plot of fishes. Linear models were used to 

detect temporal trends in yields of the most dominant fish species, the total fish yields of the 

lake over the past six years, and the relationship between fish yields and coefficient of 

variation in the water level. 

Non-metric multidimensional scaling (NMDS) ordination with the Bray-Curtis 

dissimilarity was used to reveal the spatio-temporal changes in the fish community by using 

the “metaMDS()” function from the vegan R-package (Oksanen et al., 2015). Hierarchical 

clustering based on the Euclidian dissymmetry distance on the NMDS scores with Ward 

linkage method allowed to identify the fish assemblages. Then, the cluster values were mapped 

using GIS to display the clustering results and the spatial distribution of fish yields around 

TSL. A Mann-Whitney test was used to test for significant differences in fish yields and 

species richness between assemblages. Indicative species of assemblages were also defined 

using a multi-level pattern analysis index (R-package indicspecies, De Cáceres and Legendre, 

2009). 

All statistical analyses were performed using the R program v.3.1.2 for Windows 

statistical software package (R Core Team 2014). 

3.3 Results 

3.3.1 Temporal trends of main commercial fishes, TSL’s species richness, and fish 

yields 

The yields–species rank plot of fishes caught by fishing lot revealed eight dominant 

species (Figure 3.2a) that accounted for 58% of the overall fish yields from TSL: Channa 
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micropeltes, Pangasianodon hypophthalmus, Channa striata, Cyclocheilichthys enoplos, 

Henicorhynchus spp., Barbonymus gonionotus, Micronema spp. and Trichopodus microlepis. 

The standardised linear regression coefficients of fish yields versus year were negative 

(indicating a temporal decreasing trend in fish yields) for all species except Trichopodus 

microlepis (Table 3.1). Table 3.1 and Figure 3.2b showed the significant decreasing trends in 

3 species: Channa micropeltes, Henicorhynchus spp., and Micronema spp. (negative 

standardised regression coefficient) and significantly increasing trend for Trichopodus 

microlepis (positive standardised regression coefficient). Moreover, the linear model showed 

that the total fish yields of TSL were decreased between years (standard coefficient = -2.410, 

adjusted r2= 0.272, Figure 3.2c). 

 

Table 3.1 Results of the linear regression showing temporal changes in the yields of eight 

dominant fishes from 1994 to 2000 with the standard linear regression coefficient, the 

coefficient of determination and the p-values. 

Taxa Standard coefficient Adjusted r2 p-value 

Channa micropeltes -6.074 0.877 0.003 

Pangasianodon hypophthalmus -1.838 0.322 0.139 

Channa striata -0.997 0.198 0.375 

Cyclocheilichthys enoplos -0.658 0.097 0.546 

Henicorhynchus spp. -6.874 0.902 0.002 

Barbonymus gonionotus -0.559 0.072 0.606 

Micronema spp. -4.578 0.799 0.010 

Trichopodus microlepis 3.396 0.678 0.027 
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Figure 3.2 (a) Decreasing rank-yields plot of fish in Tonle Sap Lake caught by a fishing lot. 

(b) The significant temporal decrease/increase in the yields of four dominant species fitted by 

linear models. (c) Mean yields+- standard error showing the temporal change in total fish 

yields. Abbreviations are as follows: Chm: Channa micropeltes, Hes: Henicorhynchus spp., 

Mis: Micronema spp. and Trm: Trichopodus microlepis. 

 

3.3.2 The fish yields-flood pulse relationship 

Figure 3.3 showed that the fish yields of TSL are positively correlated with the water 

level variations, indicating that the water fluctuation is a key determinant regulating the fish 

yields of Tonle Sap Lake (adjusted r2=0.194). 
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Figure 3.3 Plot showing the correlation between fish yields and the coefficient of variation 

in the water level. 

3.3.3 Spatio-temporal variability in the fish community and its yields 

The ichthyofauna was composed of 76 fish species distributed across 28 families and 

nine orders. The NMDS ordination of the fish yields data provided a stress value of 0.154, 

indicating a good ordination pattern. Hierarchical clustering of the NMDS scores revealed two 

assemblages: northern assemblage (AN), mostly located in the north of TSL, and southern 

assemblage (AS) primarily found in the sites of the south (Figure 3.4b). The NMDS ordination 

map revealed opposition between these two fish assemblages along the first axis of the 

ordination plane (Figure 3.4a). The black fishes were mostly associated with AN, except 

Channa micropeltes, Channa lucius and Macrognathus siamensis which were linked to AS. 
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White and grey fishes had wide range distribution covering both AN and AS and the estuarine 

fishes were only present in AS. Additionally, AN was primarily composed of the grey fish 

Cyclocheilichthys apogon, and AS was mostly consisting of the estuarine fish Hyporhamphus 

limbatus, the blackfish Macrognathus siamensis, the grey fish Mystus wolffii and four white 

fishes: Devario aequipinnatus, Clupeichthys goniognathus, Botia spp. and Labiobarbus 

siamensis (Figure 3.4a). Also, the multi-level pattern analysis index revealed 36 indicative 

species for both assemblages: 3 in AN and 33 in AS. The indicator species for AN were 

gourami, Trichopodus microlepis, the climbing perch, Anabas testudineus, and Trichopodus 

pectoralis, all of which were black fishes. AS comprised 33 indicative species that were 

dominated by 19 species of white fishes followed by grey, estuarine and black fishes with 7, 

5 and 2 species, respectively (see details in Table 3.2). Moreover, the AS fish yields and 

species richness were significantly higher than those of AN (Mann-Whitney test, W=1032, 

p<0.001, Figure 3.4c and W=920, p<0.001, Figure 3.4d, respectively). 

Figure 3.5a revealed a temporal change in the samples along the second axis from 

1994-1999. Fish species from earlier years (1994 and 1995) were correlated with the negative 

values of axis 2 and determined by the abundance of all black-white-grey fish functional 

groups. However, the species from the more recent years (1996 to 1999) are in the positive 

part of axis 2 and linked to white and grey functional group species (Figure 3.5a). The 

distribution patterns of four fishing lots, namely S01, S02, S03, and P01, changed from AS to 

AN (Figure 3.5b, 3.5c, and 3.5d). These shifts occurred in the fishing lots located along the 

border between these two assemblages. 
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Table 3.2 The summary of the indicator species in each assemblage with the statistical and 

p-values. 

Northern assemblage (AN): 3 species 

Species Functional group Statistic-value p-value 

Trichopodus microlepis  Black 0.924 0.005 

Anabas testudineus  Black 0.891 0.005 

Trichopodus pectoralis  Black 0.692 0.005 

Southern assemblage (AS): 33 species 

 Functional group Statistic-value p-value 

Parambassis wolffii grey 0.927 0.005 

Pangasianodon 

hypophthalmus 

white 0.917 0.005 

Chitala ornata grey 0.906 0.005 

Cirrhinus microlepis  white 0.901 0.005 

Boesemania microlepis  grey 0.899 0.005 

Wallago attu  white 0.897 0.005 

Belodontichthys truncatus white 0.892 0.005 

Micronema spp.  grey 0.88 0.005 

Labeo chrysophekadion grey 0.864 0.005 

Setipinna melanochir estuarine 0.859 0.005 

Polynemus multifilis  estuarine 0.825 0.005 

Pangasius larnaudii white 0.815 0.005 

Albulichthys albuloides  white 0.786 0.005 
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Amblyrhynchichthys truncates white 0.751 0.005 

Coilia spp. estuarine 0.722 0.005 

Leptobarbus rubripinna white 0.691 0.005 

Probarbus jullieni  white 0.676 0.005 

Arius spp. white 0.668 0.005 

Pangasius spp.  white 0.66 0.005 

Hemibagrus filamentus  white 0.632 0.005 

Cosmochilus harmandi  white 0.601 0.005 

Parambassis apogonoides grey 0.574 0.005 

Achiroides leucorhynchos  white 0.495 0.005 

Labiobarbus siamensis  white 0.473 0.005 

Channa lucius  black 0.404 0.005 

Catlocarpio siamensis  white 0.399 0.005 

Mastacembelus spp. black 0.393 0.005 

Macrochirichthys 

macrochirus 

white 0.386 0.005 

Systomus rubripinnis  grey 0.385 0.01 

Bagarius spp.  white 0.372 0.005 

Botia spp. white 0.372 0.005 

Toxotes chatareus  estuarine 0.357 0.005 

Tenualosa thibaudeaui  estuarine 0.326 0.005 
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Figure 3.4 (a) Non-metric multidimensional scaling (NMDS) ordination of 172 samples in 

Tonle Sap Lake showing the spatial distribution of samples and species in two assemblages: 

AN and AS. (b) Hierarchical clustering dendrogram of the NMDS scores using the Euclidian 

similarity matrix and Ward agglomeration method. (c) Boxplot representing the median (----) 

and 25th and 75th percentiles of fish yields (kg/ha/year) at logarithm scale in both assemblages 

and (d) Boxplot representing the median (----) and 25th and 75th percentiles of species richness.  
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Figure 3.5 (a) The NMDS ordination map showing the temporal distribution pattern of 

samples from 1994 to 1999. (b) A map of Tonle Sap Lake showing the distribution of samples 

based on the assemblage identified by hierarchical clustering analysis in 1994, (c) in 1996 and 

(d) in1999. The green area represents AN, and the pink represents AS; grey indicates missing 

data.  
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3.4 Discussion 

3.4.1 Temporal trends in fish yields of the main commercial fishes and total fish yields of 

the lake 

The results suggested that the lake was dominated by few commercial fish species. 

Fish community composition follows the rule that a few species are highly abundant, many 

species are moderately abundant, and the remaining few species are rare (Welcomme 1999). 

Our results were consistent with the finding of the previous study which observed that few 

common species dominate TSL fisheries (Sverdrup-Jensen 2002). Channa striata were found 

to be the most common snakehead in Cambodia (Rainboth 1996) and distributed throughout 

TSL (Chheng et al. 2005). Channa micropeltes was found to be the second most dominant 

species in Cambodia (Chheng et al. 2005), and it is one of the ten most important fishes in 

TSL (Enomoto et al. 2011). Henicorhynchus spp. were the most important group regarding 

fisheries output for the Lower Mekong Basin (Poulsen et al. 2002b), and they accounted for 

fifty percent of the total annual catch of the Dai fisheries in the Tonle Sap River (Halls et al. 

2013). Additionally, Lim et al. (1999) explained that TSL floodplain and the inundated forest 

were of significant importance for supporting large fish species because these species use this 

area for reproduction, feeding and spawning activities. Among the eight most important fishes, 

six species (except Channa micropeltes and Channa striata) were herbivorous, and this was 

the most dominant group in the lake. 

The results contributed to provide evidence that the yields of some dominant fishes 

and the total fish yields have declined. Here, we discuss the fishing pressure as treatment effect 

on the decrease in the yields of the main commercial fishes. Fishing has a direct impact on the 

decline in fish population (Pauly et al. 2002; Hsieh et al. 2006). Overharvesting fish stock 

remains an intense pressure and result in the fisheries resources declined (Cooke & Cowx 

2004; Anderson et al. 2008; McIntyre et al. 2016). Furthermore, besides the large commercial 

fishing (i.e., fishing lot operation and Dai fisheries), the mobile gear fishing at the family level 
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is also presented in TSL (Bonheur and Lane, 2002). The large fish species are the primary 

target of catching by local fishers due to their high economic price in the market (Enomoto et 

al. 2011). At first, when the ecosystem is healthy, the fishermen prefer to harvest the large 

fishes. It is called “fishing down the food web” phenomenon (Pauly et al. 1998). Later, fishers 

attempt to catch all kind and size class of fish. The catch in the manner that all fish species 

and size class across the food webs were exploited is called the indiscriminate fishing 

(McCann et al. 2015a). Fishing has a direct influence on alteration of the fisheries production, 

fish composition and community, and ecosystem functioning (Anderson et al. 2008). Lambert 

(2006) said that, in TSL, due to the intensive pressure of fishing, the decline of the large fish 

species in the catch was found, and the catch was dominated by the small fishes with the short 

reproductive cycle. Fishing could alter the fish community and caused an increase in 

abundance or biomass of small fishes with rapid population growth (McCann et al. 2015a).  

The yields of Trichopodus microlepis increased in the recent years while the yields of 

the carnivorous Channa micropeltes declined. In the ecosystem, Channa micropeltes is the 

top predator, and Trichopodus microlepis serve as prey. An increase in Trichopodus 

microlepis yields could be a result of a decrease in predatory fishes, especially Channa 

micropeltes. The loss of predators could alter the community structure so that small prey fish 

became dominant. This result is consistent with those of previous studies stating that TSL 

fisheries are now dominated by small fishes while the large fishes have declined (Enomoto et 

al. 2011). Moreover, catch of opportunistic species or small white fishes in the Mekong fishery 

was recorded (Cooperman et al. 2012). For instance, the catch of Henicorhynchus spp. 

represented fifty percent of the Dai fishery in the Tonle Sap River (Halls et al. 2013). 

Among the eight most dominant species, Pangasianodon hypophthalmus, 

Cyclocheilichthys enoplos, Henicorhynchus spp., and Barbonymus gonionotus undertake the 

long migrations within Lower Mekong Basin (Rainboth 1996; Zalinge et al. 2003). Moreover, 

Halls et al. (2013) stated that these migratory species are challenged by the barrage system of 
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river-spanning fences for Dai fishery in the Tonle Sap River. Moreover, Enomoto et al. (2011) 

illustrated that Channa micropeltes are caught to be raised in the aquaculture farm around TSL.  

The results suggested that the total fish yields of the lake were temporally decreased. 

The sustainable fisheries have rarely been found (Jackson et al. 2001b). Additionally, (Allan 

et al. 2005) illustrated that the catch per fisherman, in the Tonle Sap System, had declined fifty 

percent. Moreover, overfishing in inland waters is occurring (Allan et al. 2005) and 

exploitation of fish stock appeard to have an adverse impact on the world’s inland aquatic 

resource (McIntyre et al. 2007, 2016; Welcomme et al. 2010). In TSL, the overfishing was 

deemed to be the major determinant affecting the volume of total fish catch (Lamberts 2006). 

3.4.2 Relationship between fish yields and flood pulse 

The results suggested that the fish yields are positively correlated with the water level 

fluctuation. The result is consistent with a previous study stating that the fish catch is positively 

linked with the flood index in the Cross River floodplain ecosystem, Nigeria (Moses, 1987). 

The level and duration of flood influenced the breeding, growth, and survival of fish 

(Welcomme 1999). The seasonal flood pulse appeared to be the key factor affecting the 

fisheries resources in TSL (Lamberts 2006). Seasonal flooding benefits primary and secondary 

production (Holtgrieve et al., 2013). Moreover, the fish catch, in the floodplain system, was 

correlated with the flooding in the previous years (Allan et al. 2005). 

3.4.3 Spatial and temporal change in fish communities and its yields 

The north of the lake is covered by a wetland area comprising a large flooded forest, a 

shrub forest and vegetation cover such as water hyacinth (Enomoto et al., 2011). Black fishes 

are non-migratory, and they inhabit the lakes or swamps during the dry season and migrate to 

the flooded areas during the wet season (Campbell et al. 2006b). Although AN was mainly 

composed of grey fish Cyclocheilichthys apogon, the important indicator species of the 

assemblage were Trichopodus microlepis, the climbing perch, Anabas testudineus, and 
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Trichopodus pectoralis. These three fishes were black fishes that migrate between the lake 

and the floodplain (Halls et al., 2013) and they spend most of their lifespans in the flooded 

forest (Campbell et al. 2006b). As stated above, the northern part of the lake covers includes 

an area with a large flooded forest containing healthy habitats for these black species. 

Trichopodus microlepis prefer to inhabit the areas containing vegetation cover (Lamberts 

2001). Furthermore, the results suggested that estuarine fishes were only present in AS, and 

the number of indicator species of AS was also higher than those in AN. This high species 

richness, a large number of indicator species, and large fish yields appeared to be impacted by 

the hydrological and geographical factors.  

Lim et al. (1999) demonstrated that when the water level decreased, the migratory 

fishes move from the lake to the Mekong River, and they migrate back to the lake at the 

beginning of the rainy season. The migration of fish appeared to be the main factor that 

resulted in the high amount of fish captured in the inlet-outlet area of the lake (Enomoto et al., 

2011). Therefore, it is logical that this area had a significant number of indicator species and 

high fish yields. White fishes undergo a long migration from the lake to the tributaries of the 

Mekong River (Zalinge et al., 2003). Most of the species that live in the Mekong River migrate 

to the lake during the rainy reason to reproduce; they spawn from May-August, likely move 

from the floodplain to the river in October, and migrate back in April or May (Lim et al., 1999). 

This migration occurs during the open fishing season, so migratory species were captured 

during the study period. The biological effects of streams appeared to be the factor that may 

influence the spatial change in the fish communities. The watershed for the southern part of 

the lake is larger than that of the north with a sureface area of 30098 km2 and 20184 square 

kilometres, respectively (Nguyen et al., 2008). Furthermore, Vanni et al. (2006) illustrated that 

the watershed area and the tributaries are the primary sources of the lake’s nutrients, which 

were observed to be the main factors influencing fish production. 
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3.5 Conclusion 

Based on the catch data from the fishing lot from 1994-2000, our study showed that 

the lake was dominated by few commercial fish species: Channa micropeltes, Pangasianodon 

hypophthalmus, Channa striata, Cyclocheilichthys enoplos, Henicorhynchus spp., 

Barbonymus gonionotus, Micronema spp. and Trichopodus microlepis. All these dominant 

fishes were temporally declined, except Trichopodus microlepis. We noticed that the large fish 

species were temporally decreased and small fish species increased. Catching the larger fishes 

should be considered and balanced. Removal of the largest fish species that are the top 

predators could have a substantial top-down effect on food web dynamics. The lack of 

consideration of large fish harvesting could have an adverse impact on the fish community 

and lead unstable population change (Anderson et al., 2008). Additionally, total fish yields of 

the lake were temporally declined. Balanced harvesting is recommended because it could 

reduce the ecological effects of fishing on components of the ecosystem. Also, the water 

fluctuation is a key driver characterising the fish yields of the lake. The results showed the 

spatial and temporal changes in the fish communities and fish yields present in TSL. Here, the 

Tonle Sap fish communities are divided into two assemblages: AS and AN. The fish yields, 

species richness and indicator species of the AS were significantly higher than those of AN. 

Thus, the AS is the potential area for both yields and species richess where should be 

considered for the protected area. Indicator species indicated the diversity of other species, 

taxa or communities within an area. This information is of importance that could be used in 

making the decision for the particular area protection.  
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Abstract  

The Tonle Sap Lake is the largest natural lake in Southeast Asia. Its high fish 

productivity makes it of paramount importance to sustain protein supply for the 15 million 

Cambodian people. Nevertheless, the ecology and spatial distribution of most fish species 

within the lake remain poorly known. Here we describe the spatial distribution of the eight 

most important commercial fish species in the lake and use Generalised Linear Models to 

correlate environmental descriptors to the biomass of the eight most abundant fish species. 

Fish species distributions differed between species and were governed by distinct 

combinations of habitat characteristics and climatic factors, suggesting that flooded forest 

areas and open waters play a crucial role, whereas agricultural lands do not sustain high fish 

biomasses. Consequently, some areas consistently host high fish biomasses across years and 

seasons and we therefore recommend to focus conservation actions to these area that sustain 

more than 40% of fish biomasses of the Tonle Sap Lake. 

KEYWORDS: habitat use, floodplain, snakehead, gourami, migratory fishes, management, 

floodplain resident 

  



64 
 

4.1 Introduction 

The Mekong River is the largest river in Southeast Asia and covers a drainage area of 

795,000 km2 (MRC, 2005). It lies within the Indo-Burma biodiversity hotspot (Allen, Smith, 

& Darwall, 2012) and is the second most diverse river system in the world after the Amazon 

River (Baran, 2005; Brosse et al., 2013). The Mekong River is also one of the most intensive 

and productive inland fisheries in the world (Baran, 2005) with annual yields of approximately 

2.6 million tons (Hortle, 2007), providing food sources and animal protein for 60 million 

people living in the region (MRC, 2010). A substantial part of the Mekong fishery yields 

comes from the Tonle Sap Lake (TSL), the largest natural inland lake in Southeast Asia (MRC, 

2005). This lake is the world’s fourth most productive inland fishery (Baran, 2005) and its 

fisheries resources represent approximately 60% of Cambodia’s total annual production of 

inland capture fisheries of 767,000 tonnes (Hortle & Bamrungrach, 2015). The TSL, therefore, 

plays a crucial role in providing fish products and protein to nearly two million people living 

in around TSL that rely on the fisheries resources as their primary food and economic 

resources (Ahmed, Hap, Ly, & Tiongco, 1998). Moreover, the TSL fisheries account for 60% 

of the total protein intake of approximately 15 million Cambodian people (Ahmed et al., 1998; 

Lieng & Zalinge, 2001). In addition to its crucial role as a protein resource, the TSL also hosts 

a diverse fish fauna, with 296 fish species (Baran, So, Degen, Chen, & Starr, 2013). The TSL 

is therefore considered as a biodiversity hotspot (Allen et al., 2012) and has had the status of 

a UNESCO world heritage biosphere reserve since 1997 (UNESCO, 2018). 

Despite the ecological, biological, and economic importance of the TSL, knowledge 

on fish distribution patterns and determinants within the lake is limited. Previous studies 

investigated fish spatial distributions in the TSL (Campbell, Poole, Giesen, & Valbo-

Jorgensen, 2006; Chan, Ngor, So, & Lek, 2017; Lim, Lek, Touch, Mao, & Chhouk, 1999) and 

considered stocks of the species (Enomoto et al., 2011; Yen, Sunada, Oishi, Ikejima, & Iwata, 

2009). The relationship between environmental factors and the spatial distribution of the fish 
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species has not been investigated to date in the TSL, although recognised as crucial for species 

management in lakes (Boulangeat, Gravel, & Thuiller, 2012; Olden & Jackson, 2001; Peoples 

& Frimpong, 2016). 

In this study, we present information on the spatial distribution of the eight most 

abundant species over the entire TSL. Then, we related the distribution of each species to 

habitat and climate descriptors that are known as being influential on species distributions 

(Jackson, Peres-Neto, & Olden, 2001; Pont, Hugueny, & Oberdorff, 2005). 

4.2 Materials and methods 

4.2.1 Data collection 

The TSL is located in the central part of Cambodia. It constitutes the largest wetland 

area in Southeast Asia (Matti Kummu & Sarkkula, 2008; MRC, 2003, 2005; Figure 4.1), and 

is connected to the Mekong River by the Tonle Sap River (TSR). The TSL area is characterised 

by a tropical monsoon climate (Arias, Cochrane, Norton, Killeen, & Khon, 2013), with a 

seasonal periodicity in hydrological flows, making the TSL a flood-pulse system. In the wet 

season (May-October), the water flows into TSL through TSR due to increased water levels 

in the Mekong River, whereas in the dry season (November-April), a reverse flow occurs 

through TSR again due to the receding water levels in the Mekong River (MRC, 2005). The 

surface area of TSL seasonally fluctuates from 2500 km2 to 15000 km2 driven by seasonal 

flood pulse from the Mekong River (M. Kummu et al., 2014; MRC, 2005). The water levels 

highly vary between seasons; the water depth ranges from 0.5 metres in April (dry season) to 

9 metres in September-October (rainy season). This variation leads to a varied surface area of 

TSL throughout the year and thus creates heterogeneous habitats (MRC, 2005), that are 

inhabited by a variety of aquatic and terrestrial plant and animal species (Campbell et al., 

2006). 
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The fish biomass data used in this study were provided by the Mekong River 

Commission (MRC) in collaboration with the Cambodian Department of Fisheries (currently 

called the Fisheries Administration [FiA]) and financially supported by DANIDA (Danish 

International Development Agency) (Ly and VanZalinge, 1998). The fish data were collected 

on thirty-three fishing areas delineated by the Royal Government of Cambodia for commercial 

fisheries, also called fishing lots (Figure 4.1). The sampling method was designed and 

approved by the Department of Fisheries with technical support from MRC experts. At each 

lot, samplings were conducted by the provincial fisheries scientists and supervised by central 

fisheries scientists from the Cambodian Department of Fisheries. Herein, data collectors were 

trained for sampling, identification and data record. With the heterogeneity and complexity of 

habitat in the fishing lot, many types of the fishing gears were applied according to the specific 

habitat characteristics. The data collections were conducted weekly from October to May 

(fishing period for the TSL fisheries) each year from 1994-2000. In each fishing lot, habitat 

characteristic is a complex combination of flooded forest, rice fields and open water. Therefore, 

multiple fishing techniques were used in each lot ensuring an equal fishing effort between lots 

(Ly and VanZalinge, 1998). For instance, the river barrages with U-shaped bag-nets were used 

for riverine fishing lots, and arrow-shaped bamboo fence traps for the lake floodplain fishing 

lots to maximise the catches (Ly and VanZalinge, 1998). These gears were used when the 

water recedes out of the inundated forest to capture fish migrating back to the lake (Ly and 

VanZalinge, 1998). Fish were identified to species and identification was validated by MRC 

experts following the keys in Rainboth (1996). 

In this study, we considered the eight most important commercial fish species (Channa 

micropeltes, Pangasianodon hypophthalmus, Channa striata, Cyclocheilichthys enoplos, 

Henicorhnychus spp., Barbonymus gonionotus, Micronema spp., and Trichopodus microlepis) 

that account for 227 tons of fish per year on average that captured from the commercial fishing 

lots only [see supporting information material Table S1], and these fish species account for 
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58% of the total fish catches of the commercial fishing lot in the TSL (Chan et al., 2017). In 

addition, these species have been known as the most commercial important species of 

Cambodian inland fisheries (Chheng, Touch, Baran, & Leng, 2005) as well as the dominant 

species in the TSL (Ngor, Chheng, & So, 2015). 

The biology of these species is well known, and each species has distinct habitat and 

ecological preferences. C. striata is a predator foraging on bony fish, frogs, insects, 

earthworms, tadpoles and crustaceans (Rahman, 1989). It inhabits flood-plain lakes and small 

streams. It is a common species in the still and stagnant areas of ponds, swamps, streams and 

lowland rivers with less than 2-metre depth (Chan et al., 2000; Chheng et al., 2005). During 

the rainy season, it migrates upstream from the Mekong mainstream toward the flooded areas 

and moves back to the permanent water bodies during the early dry season (Chan et al., 2000). 

C. micropeltes is a carnivorous top predator foraging primarily on fish and crustaceans (Froese 

& Pauly, 2017). It was observed in the standing or slowly flowing water of the deep and large 

streams and canals (Maurice Kottelat, 1998; Rainboth, 1996), but it also inhabits swamps and 

lowland rivers. P. hypophthalmus is a omnivorous fish feeding on a variety of food types such 

as fish, crustaceans and vegetable debris (Rainboth, 1996). It was observed in the deep and 

large rivers and undertake long-distance migration from rearing areas to spawn in unknown 

areas during May-July and move back to the mainstream to search for the rearing habitats 

when the river water level recedes between September-December (Hill & Hill, 1994). The 

adults of C. enoplos forage on the insect larvae, crustaceans and fish, whereas babies feed 

zooplankton (Rainboth, 1996). It was found at midwater to bottom levels of the mainstream 

and large tributaries of the Mekong River  and flooded riparian forests (Froese & Pauly, 2017; 

Rainboth, 1996). It is a longitudinal migratory species in the Mekong River migrating from 

the Mekong River toward the Tonle Sap system during the flooded season and back toward 

the Mekong upstream when the water level recedes (Chan et al., 2000; Maurice Kottelat, 

1985). Henicorhynchus spp. forage on plants, algae, periphyton and phytoplankton (Froese & 
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Pauly, 2017). It was found in the rapids and slow flowing water habitat in the mid-water to 

bottoms depths in large and small rivers (Froese & Pauly, 2017; Singhanouvong, 

Soulignavong, Vonghachak, Saadsy, & Warren, 1996a). It undertakes the longitudinal 

migration that moves into the floodplain area during the wet season for feeding and moves 

back to the rivers at receding water at the early October to December (Rainboth, 1996). B. 

gonionotus forages on plant leaves, weeds and invertebrates (Froese & Pauly, 2017). It is a 

migratory species that undertake the lateral migration moving from the Mekong River toward 

the small streams and tributaries and flooded area during the rainy reason and move back to 

the Mekong River during the dry season (Chan et al., 2000). It was found in mid-water to 

bottom depths in rivers, streams, floodplains, reservoirs and flooded forest flooded season 

(Rainboth, 1996). T. microlepis feeds on zooplankton, crustaceans and aquatic insects 

(Chheng et al., 2005). It is a common species in the floodplain of the Lower Mekong Basin 

and mainly found in ponds and swamps, especially in the shallow sluggish or standing water 

habitats with a lot of aquatic vegetation (Froese & Pauly, 2017).  
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Figure 4.1 Map of the sampling sites in the Tonle Sap Lake floodplain. The minimal area of 

TSL during the dry season is in dark-blue and light blue represent maximal area of TSL during 

the flooded season. Fishing lots are in grey. The first letter of the code of the fishing lot 

represents the province name: B (Battambang), S (Siemreap), P (Pursat), and T (Kampong 

Thom). The two other characters represent the fishing lot number within each province. 

4.2.2 Data preparation 

The fishing lots from which the fish were collected were not uniform in size. Thus, 

annual fish biomass per hectare (kg/ha) was used to account for differences in sizes of fishing 

lots. ArcGIS version 10.2.03348 was used to determine the surface area of the three main land-

cover types in each fishing lot, namely flooded forest (FF), open water (OW), and agricultural 

field (AF). Given that the fishing lots size are not uniform, each land cover type considered 

was expressed as a percentage cover (%). Land-cover data were extracted from the Cambodian 

Land Use 1993 map that best fits the fish catch period (1994-2000). Moreover, these data were 

strongly correlated to the data extracted from the land-use 2002 map for the flooded forest 

(Pearson correlation, r=0.979, p<0.001) and agricultural field (r=0.837, p<0.001), indicating 
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that land use did not strongly change during the sampling period. Additionally, nineteen 

bioclimatic variables were extracted from the 1-km2-resolution WorldClim layers for the 

period 1950-2000 (see supporting information material Table S2) (Hijmans, Cameron, Parra, 

Jones, & Jarvis, 2005). Despite the limited spatial range of this study (approximately 200 x 

200 km), climate variables demonstrated substantial variations across the lake; thus, these 

variables are relevant for analysing the correlations between fish biomass and climate features 

(supporting information Table S2). The 19 bioclimatic variables were summarised using a 

principal component analysis (PCA), and the first three axes of the PCA accounted for 90.3% 

of the total variance in the climate data (64.60%, 15.15% and 10.79% respectively [see 

supporting information material S3]). The first axis (clim1) represents the temperature and 

precipitation range, with higher values corresponding to higher temperatures and precipitation. 

The second axis (clim2) represents the temperature range in the warm season, and the higher 

values correspond to the high temperatures in the warm season. The third axis (clim3) 

represents the precipitation range in the wet season, and the higher values correspond to the 

high precipitation in the wet season.  

4.2.3 Statistical analyses 

A PCA was performed to see the general tendency of association between the fish 

species and environmental descriptors using the “vegan” package (Oksanen et al., 2015). 

Then, the environmental variables: the local habitat (i.e. FF, OW, and AF) and the regional 

climatic factors (clim1, clim2, and clim3) were fitted onto the PCA biplot using the “envfit” 

function. This technique enabled us to identify the overall tendency of the relationship between 

the observed fish species and environmental descriptors. 

Then, generalised linear models (GLM) were used to investigate the relationships 

between the spatial distribution of each species and the local habitat factors. GLM is an 

extension of linear regression. Before building the GLM models, the explanatory variables of 
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the local habitat and regional climatic variables were standardised to get the same scale of the 

variable. The response was the mean value of the annual biomass of each species. 

All statistical analyses were performed using R program v.3.1.2 for Windows 

statistical software package (http://www.r-project.org) (R Core Team 2014). 

4.3 Results 

4.3.1 Spatial distribution  

Figure 4.2 shows a strong variability in fish biomass across fishing lots. Moreover, 

some lots consistently had similar fish biomass levels across time, whereas other lots showed 

quite unstable fish biomass levels. Interestingly, for most of the species, most high biomass 

fishing lots, despite a substantial temporal variability among the catches, consistently had high 

biomass levels for the considered species (Figure 4.2). From a spatial perspective, the 

snakehead C. micropeltes was most abundant in the central-northern part of the lake, although 

low abundances were found in the extreme northern area of the lake (Figure 4.3). C. striata 

and T. microlepis were more abundant in the northern part of the lake. In contrast, C. enoplos, 

B. gonionotus, P. hypophthalmus, and Henicorhynchus spp. biomass levels were highest in 

the southern part of the lake. Micronema spp. was also abundant in a few southern areas of the 

lake but also occupied a few areas in the northern part of the lake (Figure 4.3). 
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Figure 4.2 Mean ± SE bar plots showing the temporal variation in biomass (kg/ha) of the eight 

fish species within each fishing lot in the Tonle Sap Lake. The first letter of the code represents 

the province name: B (Battambang), S (Siemreap), P (Pursat), and T (Kampong Thom). The 

number corresponds to the name or number of a fishing lot in each province. The location of 

each fishing lot within the lake is shown in Figure 4.1. 
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Figure 4.3 Bubble plots showing the spatial distribution of fish mean biomass of the eight fish 

species in the Tonle Sap Lake. The unit for the legends in the upper right of each plot are the 

mean annual fish biomass (kg/ha). The photos of fishes were redrawn from Rainboth (1996) 

and Froese & Pauly (2017). 



74 
 

4.3.2 Relationships between the local habitat and regional climatic factors with fish 

distribution 

The PCA biplot illustrates the association between the fish species and environmental 

descriptors (Figure 4.4). The two first axes of the PCA accounted for 72.85% of the total 

variance (52.50% and 20.34%, respectively). There was a similarity in spatial distribution 

among floodplain resident fishes C. micropeltes, C. striata, and T. microlepis and five 

migratory species P. hypophthalmus, C. enoplos, Henicorhynchus spp., B. gonionotus, and 

Micronema spp.  

In short, C. striata and T. microlepis were positively associated with the percentage 

cover of flooded forest (FF) and negatively correlated with temperature and precipitation range 

(clim1). Moreover, C. enoplos, P. hypophthalmus, B. gonionotus, Micronema spp., and 

Henicorhynchus spp. were positively correlated to the percentage cover of open water (OW) 

and temperature and precipitation range (clim1), but negatively associated to the percentage 

cover of flooded forest (FF). Moreover, C. micropeltes were negatively associated with the 

agricultural field (AF) and temperature range in the warm season (clim2) (Figure 4.4). 

The GLM models that predicted species biomass from habitat type and climate data, 

although significant for all the species, showed an important variability in the model quality 

among the species, with determination coefficients (adjusted-R2) ranging from 0.509 for T. 

microlepis to 0.836 for C. enoplos (Table 4.1). Then, the influence of each variable on fish 

species was assessed by the standardised coefficients of the variables in the GLMs. 

The biomass of C. enoplos was negatively correlated the percentage cover of the 

flooded forest (FF), the percentage cover of open water (OW) and temperature and 

precipitation range (clim1). Moreover, the biomass of P. hypophthalmus was significantly 

associated a high value of the percentage cover of flooded forest (FF), the percentage cover of 

open water (OW), and temperature and precipitation range (clim1), but negatively associated 
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with a temperature range in the warm season (clim2). The biomass of C. striata was positively 

correlated with the percentage cover of flooded forest (FF), the percentage cover of open water 

(OW), but negatively associated to the temperature and precipitation range (clim1), 

temperature range in the warm season (clim2), and the precipitation range in the wet season 

(clim3) (Table 4.1). In addition, the biomass of Micronema spp. was significantly correlated 

with a high value of the per cent cover of the flooded forest (FF) and the per cent cover of 

open water (OW), the precipitation range in the wet season (clim3). The biomass of B. 

gonionotus was positively associated with the percentage cover of open water (OW) and the 

precipitation range in the wet season (clim3). The biomass of Henicorhynchus spp. was 

negatively associated with the percentage cover of the agricultural field (AF), but positively 

correlated with temperature and precipitation range (clim1) and temperature range in the warm 

season (clim2). Also, the biomass of C. micropeltes was negatively associated with the 

temperature range in the warm season (clim2). Furthermore, the biomass of T. microlepis was 

significantly correlated with a low value of temperature range in the warm season (clim2) and 

the precipitation range in the wet season (clim3). 
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Figure 4.4 PCA biplot showing the association between fish species and environmental 

factors. Abbreviations are as follows: Chm: Channa micropeltes; Pah: Pangasianodon 

hypophthalmus; Chs: Channa striata; Cye: Cyclocheilichthys enoplos; Hes: Henicorhnychus 

spp.; Bag: Barbonymus gonionotus; Mis: Micronema spp.; Trm: Trichopodus microlepis; FF: 

the percentage cover of the flooded forest; OW: the percentage cover of the open water; AF: 

the percentage cover of the agricultural field; clim1: the temperature and precipitation range; 

clim2: the temperature range in the warm season; clim3:the precipitation range in the wet 

season; DSM: distance to the Mekong River. 
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Table 4.1 GLM standardized coefficients for the eight fish populations studied. Significant 

variables (p < 0.05) are in bold. Model performance for each species is indicated as the 

adjusted R². Chm = Channa micropeltes. Pah = Pangasianodon hypophthalmus. Chs = 

Channa striata. Cye = Cyclocheilichthys enoplos. Hes = Henicorhnychus spp. Bag = 

Barbonymus gonionotus. Mis = Micronema spp. Trm = Trichopodus microlepis. FF = the 

percentage cover of the flooded forest. OW = the percentage cover of the open water. AF = 

the percentage cover of the agricultural field. DSM = distance to the Mekong River. clim1 = 

the temperature and precipitation range. clim2 = the temperature range in the warm season. 

clim3 = the precipitation range in the wet season. 

 

Variables Chm Pah Chs Cye Hes Bag Mis Trm 

FF 0.702 4.117 1.883 2.711 -0.634 1.673 3.142 -0.859 

OW 0.481 5.986 0.283 4.035 1.596 2.721 4.864 -1.519 

AF -0.748 1.383 1.013 -0.498 -2.191 -0.198 -0.641 -1.15 

clim1 1.661 2.68 -2.578 2.583 4.252 1.203 0.97 -1.346 

clim2 -6.669 -2.238 -3.143 -1.682 4.623 -0.333 1.507 -2.359 

clim3 0.399 0.576 -3.463 1.771 -1.07 1.957 1.972 -2.708 

Adj-R2 0.685 0.833 0.627 0.836 0.709 0.741 0.760 0.509 
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4.4 Discussion 

We have provided evidence that the eight fish species demonstrate heterogeneous 

distribution patterns within the lake. Channa micropeltes was distributed throughout the lake, 

whereas Channa striata and Trichopodus microlepis occurred more in the northern part of the 

lake. In contrast, Pangasianodon hypophthalmus, Henicorhynchus spp., Cyclocheilichthys 

enoplos, Barbonymus gonionotus, and Micronema spp. were distributed preferentially in the 

southern part of the lake. Moreover, floodplain resident species or non-migratory fish species 

are abundant in the floodplain area in the northern section of the lake (Poulsen, Ouch, 

Viravong, Suntornratana, & Nguyen, 2002), which is covered by flooded forest, shrub and 

aquatic vegetation (Enomoto et al., 2011). Those floodplain resident fishes spend most of their 

lifespans in the flooded forest, inhabiting the lake or swamps during the dry season and 

migrating to the flooded area during the wet season (Campbell et al., 2006). In contrast, the 

inlet-outlet area between the TSL and the Tonle Sap River (south of the lake) are colonised 

preferentially by migratory fish species, e.g., C. enoplos, Henicorhynchus spp., B. gonionotus, 

Micronema spp. 

The observed fish distribution patterns were strongly related to local habitat 

characteristics. Each species is correlated to different habitat characteristic, supporting the 

hypothesis that the responses of fish species to their environmental determinants are species-

specific (Kolosa, 1989). Local habitat is known as a major determinant of fish species spatial 

distribution in temperate rivers (e.g. Angermeier & Winston, 1998; Dunham, Cade, & Terrell, 

2002) and lakes ( e.g. Brosse, Grossman, & Lek, 2007; Brosse, Lek, & Dauba, 1999). This 

pattern also applies in tropical rivers such as the Mekong (Lammert & Allan, 1999; MRC, 

2008). Within the TSL, we showed that the percentage cover of open water is positively 

correlated with the biomass of P. hypophthalmus, C. enoplos, B. gonionotus, Micronema spp. 

and C. striata, indicating that the open water is a significant habitat for these species. This 

result is consistent with previous studies demonstrating that the open water of the mainstream 
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is important grounds for C. enoplos, B. gonionotus, P. hypophthalmus and Micronema spp. 

(M. Kottelat, 1998; M. Kottelat & Widjanarti, 2005; Rainboth, 1996; Singhanouvong, 

Soulignavong, Vonghachak, Saadsy, & Warren, 1996b; Talwar & Jhingran, 1991). These fish 

species are known to feed on zooplankton, insect larvae, and crustaceans in open water areas 

(Froese & Pauly, 2017). Also, C. striata may use the open water habitat for feeding, i.e. prey 

on small white fishes and shrimp. Moreover, the flooded forest was also positively correlated 

with the biomass of C. striata, P. hypophthalmus, C. enoplos, and Micronema spp. Despite its 

open water habits, P. hypophthalmus, C. enoplos and Micronema spp. also benefit from the 

habitat complexity provided by flooded forest areas that likely favours shelters against 

predation as well as providing appropriate spawning grounds for most species (Poulsen et al., 

2004). Indeed, the flooded riparian forest is known as the principal spawning grounds for C. 

striata, P. hypophthalmus, C. enoplos, and B. gonionotus (Froese & Pauly, 2017; M. Kottelat 

& Widjanarti, 2005; Rainboth, 1996). The results are consistent with previous studies 

revealing that C. striata need flooded vegetation habitats for breeding and hatching (Menon, 

1999; Rainboth, 1996). Moreover, the inundated forest might constitute an appropriate feeding 

ground that provides a large diversity of terrestrial prey (insects, frogs, small mammals) for 

this opportunistic predator. Furthermore, the per cent agricultural field (AF) was negatively 

correlated with Henicorhynchus spp., suggesting that the agricultural fields is not surrogate to 

the flooded forest areas as AF do not host high fish biomasses for most species.  

Together with the physical environment, the distribution of fish was also related to 

climate factors. Although the link between climate and fish distribution is obvious in temperate 

rivers and streams (Buisson, Blanc, & Grenouillet, 2008; Heino, 2002), it has rarely been 

investigated in tropical environments, and the results of this study, together with those of Chea 

et al. (2016) on the Mekong mainstream, revealed that temperature and precipitation gradients 

associate with fish distributions in both the Mekong River and TSL. The temperature and 

precipitation were significantly associated with the distribution of the observed species. For 
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instance, C. striata were significantly correlated with a low value of the temperature and 

precipitation range (clim1), while P. hypophthalmus, C. enoplos, Henincorhynchus spp. were 

correlated to a high value of the temperature and precipitation range (clim1). The floodplain 

resident appeared to be less caught during the high-temperature period. The floodplain resident 

fishes mostly live in the lakes and marshes or swamps on the floodplains near river channels 

and migrate to flooded areas during the flooded season (Poulsen et al., 2002). Indeed, 

floodplain resident fishes could adapt to the low oxygen environment, which enables them to 

survive in the swamps and small floodplain lakes during the dry season (Poulsen et al., 2002). 

Moreover, the floodplain fishes spend most of their lives feeding and breeding in the 

floodplain water bodies (Deap, Degen, & VanZalinge, 2003). In contrast, longitudinal 

migratory fish fishes appeared to be positively correlated with a temperature range, indicating 

that they are abundantly captured during the high-temperature period. In this case, during the 

dry season, the water level recedes, and longitudinal migratory fishes migrate from the TSL 

to the deep pool of the Mekong River (Poulsen et al., 2004). The precipitation appeared to be 

positively significant for longitudinal migratory/open water species (i.e. Henicorhynchus spp. 

and B. gonionotus and Micronema spp.), but negative to floodplain resident species, i.e. C. 

micropeltes, C. striata and T. microlepis. Indeed, tropical monsoon rainfall contributes to an 

increase in the water level or floods in the lake, which enables the dispersal of fishes, especially 

the longitudinal migratory fishes, in the floodplain area (MRC, 2005). In contrast, the 

floodplain resident C. micropeltes, C. striata and T. microlepis may not migrate and disperse 

greatly in the floodplain area during the high precipitation period or flood. 

The spatial heterogeneity of fish biomass levels within the TSL provides important 

information for the management of the fish resources of the lake. First, some areas consistently 

have high fish biomass levels across years. For example, this is the case for lot T02, which is 

characterised by high biomasses of C. enoplos, B. gonionotus, Henicorhynchus spp., and 

Micronema spp. Herein, Lot T02 was characterised by two main habitat types, i.e. flooded 
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forest (70%) and open water (30%), and there was no agricultural fields habitat. The large 

percentage cover of the flooded forest and open water are therefore of particular of importance 

to sustain the abundant biomass of C. enoplos, B. gonionotus, Henicorhynchus spp., and 

Micronema spp. in this location. Thus, specific attention should be given to the conservation 

of the environmental quality of this lot to maintain the productivity of the four considered 

species that account for more than 42% of the TSL catches. Second, among the eight 

considered species, different distribution patterns were observed, and some specific lots could 

be very important for one species but not for the others. For instance, lot P06 sustains more 

than 71% of P. hypothalamus biomass, whereas all the other lots sustain low biomass levels 

(less than 29%) of this species. This lot were composed of three habitat types: flooded forest 

(50%), open water (45%) and agricultural field (5%). The local habitat, which was mainly 

characterised by flooded forest and open water, is a key factor sustaining P. hypothalamus 

abundance in this lot. Third, among the eight species, only C. micropeltes was abundant in a 

substantial part of the lake, and the seven other species have much more restricted distributions. 

Overall, this information confirms that focusing conservation actions on a few, well-designed 

lots that have a high level of fish biomass for each species might be profitable for sustaining 

the fish biomass and productivity of the eight major TSL species. 

Understanding the species-habitat relationships provides useful information to better 

understand the fish species environmental requirements and conserve local fish productivity, 

but this information might also be used to favour fish productivity in some areas of the lake 

that experience lower fish biomass levels. For instance, in this study, we showed that none of 

the fish species benefitted from agricultural landscapes, and therefore, these agricultural lands 

can be considered an equivalent to flooded forests to sustain fish populations. We, therefore, 

encourage not only conserving flooded forest areas that are known as crucial for tropical 

aquatic ecosystem functioning (Hughes, 2003; WWF, 2017) but also maintaining adequate 

habitats for most fish species benefit from flooded forest habitat. 
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Finally, the results, based on 1994-2000 fish catch data, might not reflect the current 

situation in the TSL, since human pressure has substantially changed over the past two decades 

(Baran & Gallego, 2015; NIS, 2013), with likely consequences on both aquatic habitats and 

land-use. It would, therefore, be useful to determine the extent to which the spatial distribution 

of current fish catches fit with the patterns we reveal and to analyse land-use changes 

experienced by the TSL during the past two decades. Similarly, global climate change likely 

affected fish distributions, and as demonstrated here, climate and precipitation are likely to 

affect species differentially. We, therefore, recommend an update of the fish and environment 

data on the TSL, while the results of the present paper could serve as a reference to quantify 

the changes in fish biomass levels and distributions in the lake. This need is of paramount 

importance to establish temporal trends on fish biomass in the TSL and therefore manage and 

sustain the fish resources of the lake that are crucial to a large part of the Cambodian people 

(Ahmed et al., 1998; Lieng & Zalinge, 2001). 
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Supporting information 

Table S1 Mean ± standard error of biomass (ton) of each species caught each year and the 

percentage of each species to the total catch. 

Year Chm Pah Chs Cye Hes Bag Mis Trm 

1994 114.16±20.90 27.80±10.92 41.05±11.51 19.39±4.44 17.81±6.33 14.34±3.40 10.63±4.62 12.77±9.13 

1995 105.00±24.04 40.43±15.12 30.42±11.33 16.90±3.09 17.38±7.51 14.09±3.25 11.08±4.2 4.25±2.52 

1996 64.49±18.74 15.54±5.10 31.13±11.8 26.75±5.32 11.37±4.78 12.10±2.39 7.44±2.59 39.54±27.98 

1997 76.98±19.38 20.54±6.10 40.34±17.71 25.63±7.2 11.20±2.82 12.99±4.03 9.25±3.81 21.13±11.34 

1998 59.08±14.01 18.36±5.34 51.57±25.73 24.18±6.78 11.38±3.24 16.31±4.01 10.24±3.85 50.55±41.01 

1999 38.20±10.24 20.31±8.03 44.58±21.15 17.27±4.74 7.02±2.76 10.96±2.87 1.50±0.61 52.30±31.85 

% 18.58 8.10 8.50 6. 90 5.06 4.03 3.70 4.10 
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Table S2 Summary of bioclimatic variables with their minimum and maximum values. 

Variable Unit Variable type Minimum Maximum 

   B1 (°C) annual mean temperature 27.3 27.7 

   B2 (°C) 

mean diurnal range (mean of monthly (max temp - min 

temp)) 

8.8 9.6 

   B3 % isothermality (B2/B7) (* 100) 56 58 

   B4 (°C*100) temperature seasonality (standard deviation *100) 1424 1731 

   B5 (°C) max temperature of the warmest month 34.7 35.5 

   B6 (°C) min temperature of the coldest month 18.4 19.9 

   B7 (°C) temperature annual range (B5-B6) 15 16.9 

   B8 (°C) mean temperature of the wettest quarter 27.2 27.5 

   B9 (°C) mean temperature of the driest quarter 25.3 25.9 

   B10 (°C) mean temperature of the warmest quarter 29.2 29.4 

   B11 (°C) mean temperature of coldest quarter 24.7 25.7 

   B12 mm annual precipitation 1169 1481 

   B13 mm precipitation of the wettest month 221 279 

   B14 mm precipitation of the driest month 1 6 

   B15 mm precipitation seasonality (coefficient of variation) 70 79 

   B16 mm precipitation of the wettest quarter 549 696 

   B17 mm precipitation of the driest quarter 22 41 

   B18 mm precipitation of the warmest quarter 209 369 

   B19 mm precipitation of the coldest quarter 73 117 
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S3 (A) Plane of the PCA showing the nineteen bioclime variables: (A) the first and second axes of 

PCA. (B) The first and third axes of the PCA. (C) The second and third axes of the PCA. (D) 

Eigenvalues of PCA. The description of each variable is shown in the supporting information Table 

S2. 
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Abstract 

  The main challenges for ecological studies are the complexity and non-stationarity of 

data that are difficult to handle using traditional modelling methods. Thus, to address these 

problems, modern modelling techniques have been developed and introduced for applications. 

In time-series data, the cross-wavelet transform (CWT) and cross-correlation function (CCF) 

serve as promising tools to analyze the dynamics of fish populations through time and space. 

Here, we employed these two well-known time-series modelling approaches to model the 

spatial and temporal dynamics of small mud carp species (Henicorhynchus lobatus and 

Henicorhynchus siamensis) and examine the influence of flow pulses on their dynamics using 

spatial and time-series data collected from the Tonle Sap Lake and River System. The phase 

angle given by the CWT provided a useful tool for statistically detecting and reconstructing 

the phase relationship between the two time series of fish data. Moreover, the correlation 

coefficients at each lag between the water level and fish abundance identified by the CCF 

provided a mechanism to understand how the flow pulse influenced the dynamics of fish. The 

results showed that H. lobatus moved out of the floodplain and the lake earlier than H. 

siamensis. Herein, H. lobatus retreats slower than H. siamensis in the Tonle Sap Lake, but 

they retreated at similar speeds when they reach the Tonle Sap River. This suggests that the 

two species respond differently to the out-flow pulse only when they are inside the TSL, 

indicating the main role of flow pulses in determining the occurrence and movement of fish in 

the Tonle Sap Ecosystem. We also discussed the role and applications of these modelling 

approaches for linking the changes in environmental parameters and fish. The CWT and CCF, 

based on our results, are helpful modelling approaches for analyzing time-series data to 

understand the phase relationship and the periodicity of synchronisation (joint periodicity), i.e. 

the role of environmental factors in shaping fish occurrence and movement in a flood-pulse 

ecosystem. 

KEYWORDS: co-occurrence; migration patterns; fish synchronisation; phase relationship; 

cross-wavelet transform; cross-correlation function 
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5.1. Introduction 

Spatial and temporal dynamics of populations and communities have become an 

interesting research area for ecological studies (Mcgill et al., 2006; Vellend, 2010). This is 

because assessing the spatial and temporal dynamics of communities or a given species in an 

ecosystem can provide useful knowledge on how individuals of its population synchronise and 

migrate, e.g. before (leading), at the same time, or after (lagging) the synchronisation of its 

meta-community with which it interacts (Chevalier et al., 2018; Leibold et al., 2004; Wilson, 

1992). Moreover, knowledge on the spatial and temporal dynamics of a target species can lead 

to a greater understanding of variations in its population size (e.g. where and when it fluctuates 

over time) and movements (e.g. up and downstream of a river), and the driving forces that 

govern such variations and movements (Begon et al., 1991; Juliano, 2007; Ruokolainen et al., 

2009). 

In aquatic environments, flood-pulse ecosystems refer to water bodies that are 

regulated by periodic inundation (i.e. flood pulses) that is coupled and decoupled from their 

interconnected water bodies/rivers. In these ecosystems, the pulsing is one of the major forces 

responsible for productivity and biotic interactions (Junk et al., 1989; Sverdrup-Jensen, 2002). 

For fishes, flow pulses play a pivotal role in their ecology because they create habitat 

diversities and improve food supply (DeGrandchamp et al., 2008; Valbo-Jorgensen, 2003), 

which are crucial for the survival and development of fishes. Fishes mainly use the main 

channels and floodplains of the system as a migration route, spawning ground or refuge during 

the dry season. This indicates that variation in flow pulses or water levels may have a strong 

influence on the spatial and temporal dynamics of fish communities occurring at different 

locations in the system being studied (Ngor et al., 2018b; Sabo et al., 2017; Stoffels et al., 

2015). 

The Tonle Sap Lake (TSL) is the largest freshwater lake in Southeast Asia and is the 

largest floodplain water body of the Mekong River basin (MRC, 2005). The TSL is connected 
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to the Mekong River by the Tonle Sap River (TSR) (Figure 5.1). The TSL, the TSR, and their 

tributaries form a large natural ecosystem called the Tonle Sap Ecosystem (TSE) (Lamberts, 

2006). The TSL hydrological flows are influenced by flood waters of the Mekong River, and 

this creates a complex flood-pulse ecosystem (Kummu et al., 2014; MRC, 2005). Due to this 

fact, combined with other suitable habitat conditions (e.g. feeding and breeding grounds, many 

surrounding tributaries, and heterogeneous land covers), the TSE supports high biodiversity, 

and thus provides substantial contributions of fisheries resources to the people in the region 

(Lieng and Zalinge, 2001). For example, 296 fish species have been reported from the TSE 

(Baran et al., 2013), of which 7 species (e.g. Henicorhynchus spp., Labiobarbus spp. and 

Paralaubuca spp.) are among the dominant species in the annual fish catch from the TSR 

(Halls et al., 2013; Ngor et al., 2015). However, knowledge on fish communities and dynamics 

are relatively limited in this flood-pulse ecosystem. To date, only few studies have been 

conducted in this system, e.g. fish species diversity and distribution (Campbell et al., 2006; 

Chan et al., 2017; Lim et al., 1999), fish beta diversity (Kong et al., 2017), fish community 

structure (Ngor et al., 2018a) and physiochemical-fish composition relationship (Chea et al., 

2016). Moreover, no studies have attempted to investigate the spatial and temporal dynamics 

of key fisheries species and their relations to the water level variation over an extended period. 

For this reason, analyzing the spatial and temporal dynamics of keystone species, e.g. 

Henicorhynchus spp. (trey Riel) will provide essential knowledge and insights to better 

support fisheries monitoring and management. 

Cross-wavelet transform (CWT, Grinsted et al., 2004) with phase angle and coherency 

parameters, is a local bivariate analysis that is commonly used for time-series data to analyze 

the relationships in time-frequency space, phase relationships and coherency between the two 

time series (Grinsted et al., 2004; Maraun and Kurths, 2004; Prokoph and Bilali, 2008). The 

main components of the CWT are to compare the frequency contents of the two time series 

and highlight the synchronicity of the series at a given period and across given ranges of time 
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(Roesch and Schmidbauer, 2014a). Moreover, the cross-correlation function (CCF) has been 

used to determine the correlation between the two time series as a function of the time lag or 

delay (Zhang and Wu, 2006). It produces global correlation coefficients between two time-

series data at each lag. These two modelling techniques are useful tools to assess the influence 

of environmental variables (e.g. flow pulse) on the spatial and temporal dynamics of fish 

species. 

By using the CWT and CCF, we studied the dynamics, i.e. by means of occurrence, 

synchronisation (i.e. the collective swimming of fish individuals in a large school), peak 

abundance, and behavioural movement patterns, of two small mud carp species [i.e. H. lobatus 

(Smith, 1945) and H. siamensis (Sauvage, 1881)] in the TSE. Additionally, we investigated 

the influence of water levels on their spatial and temporal dynamics. Our questions of interest 

are: 1) Is there any synchrony in occurrence between the two species, and is there a constant 

periodic occurrence of each species (e.g. re-occurring monthly or seasonally or annually)? 2) 

How is the period of synchronisation and movement patterns of each species varied across the 

TSE? 3) Is there any time-lagged relationship between the synchronisation of each species and 

water levels? Since it has been shown that H. lobatus and H. siamensis have dissimilarities in 

ecological preferences and life history traits (Hurwood et al., 2006), we expected distinct 

periods of the occurrence, synchronisation and time-lagged relationship to be observed for 

each species in different parts of the TSE, following the variation in water levels. 

5.2. Materials and methods 

5.2.1. Site descriptions  

The study was carried out in the TSE, which is located in the northwest part of 

Cambodia (Figure 5.1). The TSE is a tropical flood-pulse system due to its seasonal and 

predictable periodicity in hydrological flows. In the wet season (May-October), the water 

flows into the TSL through the TSR due to increased water levels in the Mekong River, 

whereas in the dry season (November-April), a reverse flow occurs through the TSR again due 
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to the receding water levels in the Mekong River (MRC, 2005). The water levels highly vary 

between seasons; the water depth ranges from 0.5 metres in April (dry season) to 9 metres in 

September-October (rainy season). In 2011, one of the wettest years, the maximum water level 

in the TSL was recorded at 9.9 metres (Ngor et al., 2018a). This variation leads to a varied 

surface area of the TSL throughout the year and thus creates more heterogeneous habitats 

compared to the TSR (MRC, 2005). 

 

Figure 5.1 Sampling sites (red dots) of the study area: NL, the northern TSL; SL: the southern 

TSL; OR, the outlet river of the Tonle Sap River. WS1: water measurement station (red dot 

with a cross), WS2: the water measurement station situated at the same location as the “OR” 

fish sampling site. 

5.2.2. Data collection and processing 

The fish data used in this study were provided by the Mekong River Commission 

(MRC) Fisheries Programme. The fish catch monitoring approach follows the MRC’s fish 

monitoring method applied in the Lower Mekong Basin (MRC, 2008; Ngor et al., 2014). In 

the present study, daily fish catch monitoring from January 2012 to December 2015 was 
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selected from three sampling sites in the TSE (Figure 5.1) in the northern TSL (hereafter 

abbreviated to NL), in the southern TSL (SL), and the in the outlet river (OR) of the TSR 

(Figure 5.1). 

At each sampling site, nylon gillnets with 2 to 6.5 cm mesh sizes were used to capture 

as many fish species as possible. Gillnets have been considered the most common and popular 

fishing gear used in the TSE and are suitable to be applied in different habitat types (MRC, 

2008). The gillnets used had a length of 400 m ± 100 m. The variation in the gillnet length 

was due to the habitat availability (e.g. inundated forest, open water of the TSL, rivers, 

streams, and creeks), which varies according to the annual hydrological cycle. Fishes were 

identified to the species level following the identification guide by Rainboth (1996) in cross-

checking with FishBase (Froese and Pauly, 2017) and Kottelat (2013) and enumerated and 

recorded in a logbook. The logbooks were then collected from fishers on a quarterly basis and 

cross-checked for its correctness and completeness of the recorded data by research specialists. 

Unidentified species were later identified by an expert taxonomist in the laboratory.  

In this study, only two small mud carp species H. lobatus and H. siamensis were 

extracted from the fish monitoring database for analyses. Henicorhynchus spp. are indeed 

among the most ecologically and economically important species in the TSE (Fukushima et 

al., 2014; MRC, 2009; Ngor et al., 2015). They are significantly contributed to sustaining 

livelihoods and food security in the country and in the region, e.g. they make up the highest 

proportion (43%) by weight of Dai fishery catches in the TSR (Hall et al., 2007; Halls et al., 

2013). Moreover, Henicorhynchus spp. are of major importance to produce fish paste (Prahok), 

smoked fish, salted fish and fish sauce, which can be kept for use particularly during rice-

cultivation periods and when wild fish is scarce (Hall et al., 2007; Halls et al., 2013; MRC, 

2009, 2002). The water level dataset used in this study was registered by the MRC. The daily 

water levels were measured and recorded from two sites in the TSL and TSR (Figure 5.1).  
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5.2.3. Modelling techniques and analyses 

5.2.3.1. Modelling techniques 

The CWT can locally detect, extract, and reconstruct the relationship between two 

nonstationary signals in frequency and time (Grinsted et al., 2004). The CWT of the two time 

series x(t) and y(t), with cross-wavelet forms Wx and Wy, respectively, is calculated based on 

the formula Wxy(τ, s) = 1/s·Wx (τ, s)·Wy *(τ, s), where τ is the time localization and s is the 

scale factor that determines the characteristic frequency or wavelength, and * denotes the 

complex conjugate (Prokoph and Bilali, 2008; Roesch and Schmidbauer, 2014a). Monte Carlo 

simulations are a general post hoc analysis performed to provide frequency-specific 

probability distributions. 

The CWT provides an analogy of the cross-correlation with localization in time and 

scale. The correlation level between the two time series is measured using the cross-wavelet 

power (CWP), which is measured according to the norm of Wxy(τ, s): Pxy (τ, s) = |Wxy (τ, s)|. 

When the two time-series data have a high or a low CWP, it means that they have a high or 

low correlation, respectively. The contour line revealed by the CWT indicates the significance 

of the joint time interval (the interval of time containing a significant correlation between the 

two time series) (Roesch and Schmidbauer, 2014a).  

The phase angle describes the phase difference between the two time-series data, of 

which the phase difference of x over y at the time and scale is based on the formula: Angle(τ, 

s) = Arg(Wave.xy(τ, s)) (Roesch and Schmidbauer, 2014a). The phase angle in an interval 

[3π/2, π/2], as shown by arrows pointing right ( and ), illustrates the in-phase relationship, 

whereas the phase angle in an interval [π/2, 3π/2], as shown by arrows pointing left ( and ), 

illustrates the anti-phase or the out of phase relationship. Specifically, when the arrows are 

pointing right-up and left-down ( and ), the first series leads the second, and when the 

arrows are pointing left-up and right-down ( and ), the second series leads the first. See 

Roesch and Schmidbauer (2014a) for details. 
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The CCF is a bivariate method applied to analyze the global correlation between the 

two time-series data. The CCF is a promising method that can be used to determine a level of 

similarity or correlation between the two time series as a function of the time lag or delay 

(Zhang and Wu, 2006). The CCF produces correlation coefficients (i.e. a positive and negative 

correlation) between the two time series at each lag. In the CCFs, the “input” time-series data 

represent the influential time series, and the “output” time-series data represent the affected 

time series (Welsh, 1999). The CCF of the two time series (xt) and (yt) is given by: 𝐶𝐶𝐹(τ)  =

 ∫ 𝑥(𝑡)𝑦(𝑡 + τ)dt, where the lag τ is the size of the time shift (Welsh, 1999). 

In the CCF plot, the length of the vertical line indicates the value of the correlation 

coefficient between the two time series at each lag. The areas above and below the blue 

horizontal dashed-line represent a significant positive correlation and a significant negative 

correlation, respectively. In other words, the vertical line of the lag that is extended above the 

upper blue horizontal dashed-line represents a significant positive correlation, whereas the 

vertical line of the lag that is situated below the below blue horizontal dashed-line represents 

a significant negative correlation between the two time series. 

5.2.3.2. Data analyses 

The daily catch of the two species and water level data were summarised into a weekly 

basis based on mean, comprising a total of 210 weeks over the whole timescale of the study 

for the three sites. For each studied site, the CWT was used to analyze occurrence correlation 

and recursivity (e.g. a recursive occurrence at an interval over a particular timescale) between 

the two time-series data of H. lobatus abundance (x) and H. siamensis abundance (y) by 

utilising the function analyze.coherency in the “WaveletComp” package of R (Roesch and 

Schmidbauer, 2014b). Internally, the time series are standardised before they build the CWT. 

The CWT analysis also allows the determination of whether H. lobatus occurrence leads or 

lags H. siamensis occurrence. Here, the 95% confidence interval was selected for the wavelet 

power as the significance criterion. Practically, the ability of the CWT to analyze coherency 
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enabled us to highlight the co-occurrence and synchronisation periodicity of the two species. 

The CCFs were then employed to determine a period (e.g. how many weeks) when H. lobatus 

synchronisation and peak abundance leads or lags those of H. siamensis, using the function 

ccf in the “stats” package of R.  

To investigate how periods of synchronisation and peak abundance vary across the 

studied sites, the CCFs were used to determine the time-lagged relationship of the abundance 

of each species between paired sites, e.g. H. lobatus abundance in NL (x) and SL (y). The 

results of this analysis were then used to identify the movement patterns of each species (e.g. 

a period it takes to migrate from NL to SL). Swimming speed (km/day) of each species is 

therefore inferred from the time lags and distances between study sites.  

Finally, the CCFs were also employed to examine the time-lagged relationship 

between the water levels and the abundance of each species at each site. In this analysis, the 

water level data measured from site WS1 was analyzed with the fish data collected from the 

NL and SL sites, whereas that from WS2 was analyzed with the fish data collected from the 

OR site. By the end of this analysis, we were able to estimate the movement periods of both 

species, e.g. how many weeks the peak water level leads or lags the peak abundance of each 

species. Here, we selected the lag containing the highest correlation coefficients between the 

two time series as the time lag. The CCF allowed us to determine the link between the flow 

pulse and fish abundance and identify the time lag between the water level peak and fish 

synchronisation. The CCF, thus, enables the determination of the role of flood pulse in spatial 

and temporal dynamics of fish species in the TSE to be made. 

All statistical analyses were performed using R program v.3.3.3 for Windows statistical 

software package (http://www.r-project.org) (R Core Team, 2017). 

http://www.r-project.org/
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5.3. Results 

5.3.1. Occurrence correlations and periodicities 

There was a correlation between the occurrence of H. lobatus and H. siamensis, and 

their periodic occurrence was also observed at each studied site (Figure 5.2). In NL, a 

significant positive correlation (meaning that H. lobatus led H. siamensis) occurred at a high-

frequency periodicity of 46.9 to 52 weeks, as indicated by the in-phase relationship detected 

over the whole timescale of the study (Figure 5.2; Supplementary material S1). In SL, 

significant positive correlations were also observed at different periodicities (Figure 5.2). A 

rather weak, but significant, correlation that occurred at a high-frequency periodicity of 46.9 

to 52 weeks was observed for the whole timescale of study, and strong correlations that 

occurred at low-frequency periodicities (3.9 to 4.4 weeks) were observed over a short 

timescale of study between late 2012 and early 2013, and between late 2014 and early 2015. 

In OR, significant positive and negative correlations were detected, as indicated by the in- and 

anti-phase relationships of the CWT analysis, respectively. The results also indicated a 

significant positive correlation that occurred at the high-frequency periodicities of 46.9 to 52 

weeks. Stronger significant negative or positive correlations, which occurred at the lower-

frequency periodicities (3.9 to 4.4 weeks), were observed over three short timescales (i.e. 

between December and February) of the study (Figure 5.2). 
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Figure 5.2 Time-series data of H. lobatus and H. siamensis abundance (upper panel) and the 

corresponding CWT results (lower panel) at each site. Abbreviations are as follows: NL: the 

northern TSL, SL: the southern TSL, OR: the outlet river. The white contour line of the CWT 

plots indicates the significance at 95% confident interval. A high correlation was represented 

by red and weak correlation by blue. A significant in-phase relationship (i.e. a positive 
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correlation) is shown with arrows pointing right, and a significant anti-phase relationship (i.e. 

a negative correlation) with arrows pointing left. 

 

5.3.2. Synchronisation, peak abundance, and movement patterns 

In NL, significant synchronisation and peak abundance of H. lobatus occurred within 

6 weeks and 1 week, respectively, before those of H. siamensis (Figure 5.3). In SL and OR, 

the synchronisation of H. lobatus appeared to occur before that of H. siamensis but the peak 

abundance of both species occurred in the same week (Figure 5.3). 

 

Figure 5.3 The CCF plots showing the time-lagged relationships between the two time series 

of the synchronisation and peak abundance of H. lobatus and H. siamensis at each site. 

Abbreviations are as follows: NL: the northern TSL, SL: the southern TSL and OR: the outlet 

river. In the CCF models, H. lobatus was a predictor (x), and H. siamensis was a dependent 

variable (y). The vertical bold-line indicates the time lag at time zero showing the peak 

abundance period of H. siamensis, the vertical dashed-line indicates peak abundance period 

of H. lobatus, and the two horizontal dashed-lines indicate significant correlation values (i.e. 

a positive for the upper one and a negative for the below one) at the 95% confident interval. 

 

Based on the paired sites, the CCF bivariate plots (Figure 5.4) illustrated that after the 

peak abundance of H. lobatus observed in NL, it was detected again within 8 weeks in SL, 

and again within 1 week in OR. After the peak abundance of H. siamensis occurred in NL, it 

was detected again within 2 weeks in SL, and again within 1 week in OR. 
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Figure 5.4 The CCF plots showing the time-lagged relationship of abundance of each species 

between paired sites, e.g. between the northern and southern TSL sites with NL as a predictor 

(x) and SL (y). Abbreviations are as follows. NL: the northern TSL, SL: the southern TSL and 

OR: the outlet river. The vertical bold-line indicates the lag at time zero (the peak value of y), 

the vertical dashed-line indicates the period with the highest correlation (the peak value of x), 

and the two horizontal dashed-lines indicate significant correlation values (i.e. a positive for 

the upper and a negative for the lower) at the 95% confident interval. 

 

5.3.3. The time-lagged relationship with water levels  

The results of the CCFs revealed that the highest water level always led the peak 

abundance of both species. The highest water level was 7 weeks ahead of the peak abundance 

of H. lobatus in NL, 14 weeks in SL, and 15 weeks in OR (Figure 5.5). On the other hand, the 

highest water level led the synchronisation and peak abundance of H. siamensis for 12 weeks 

in NL, 14 weeks in SL and 13 weeks in OR (Figure 5.6). Summaries of the in- and out-flow 

pulses, the peak water level, the peak abundance of the two fish species, and fish movement 

speed in the TSL are provided in Fig. 7. 
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Figure 5.5 Time-series data of water levels (WL) and H. lobatus abundance (left panel), and 

the corresponding the time-lagged relationships obtained from CCF analysis (right panel) at 

each site. Abbreviations are as follows: NL: the northern TSL, SL: the southern TSL and OR: 

the outlet river. In the CCF models, WL was a predictor (x), and H. lobatus abundance was a 

dependent variable (y). On the CCF plots, the red vertical bold-line indicates the lag at time 

zero representing the peak period of fish abundance, the blue vertical dashed-line indicates the 

peak period of the water level, and the two blue horizontal dashed-lines indicate significant 

correlation values (i.e. a positive for the upper and a negative for the lower) at the 95% 

confident interval. 
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Figure 5.6 Time-series data of water levels (WL) and H. siamensis abundance (left panel), 

and the corresponding time-lagged relationships obtained from the CCF analysis (right panel) 

at each site. NL: the northern TSL, SL: the southern TSL and OR: the outlet river. In the CCF 

models, WL was a predictor (x), and H. siamensis abundance was a dependent variable (y). 

On the CCF plots, the red vertical bold-line indicates the lag at time zero representing the peak 

period of fish abundance, the blue vertical dashed-line indicates the peak period of the water 

level, and the two blue horizontal dashed-lines indicate significant correlation values (i.e. a 

positive for the upper one and a negative at the lower) at the 95% confident interval. 
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Figure 5.7 Summary of the synchronised movement pattern and speed of small mud carp 

species following flow pulses in the Tonle Sap Lake and Tonle Sap River. Abbreviations are 

as follows: t: time; WL: water levels; NL: the northern TSL; SL: the southern TSL; OR: the 

outlet river and AB: abundance. Photos of fish were retrieved from (Rainboth, 1996). 
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5.4. Discussion 

5.4.1. Performance and applications of time-series analyses 

The CWT and CCF play a significant role in our study. Explicitly, the CWT enabled 

us to highlight the co-occurrence and synchronisation of two species, whereas the CCF 

allowed us to determine the link between the flow pulse and fish abundance and identify the 

time lag between the peak of water level and fish synchronisation. The CCF thus allows us to 

identify the role of flood pulse in the dynamics of fish species in the TSE at both space and 

time. Our results could increase our understanding of how a flood-pulse system work. The 

CWT and CCF are helpful tools for time-series analysis to interpret how the flow pulse 

influences fish spatial and temporal dynamics. These two time-series modelling techniques 

provide complementary information for understanding the co-occurrence, synchronisation, 

and movement patterns of both fish species in a tropical flood-pulse ecosystem. The data used 

in this study were collected on a daily basis for four years (2012-2015), and such high-

resolution data are rarely found in ecology. These high-resolution time-series data are valuable 

to build the CWT and CCF to model the spatial and temporal dynamics of fish species. 

Therefore, we believe that the results of this study can be used to improve flow pulse 

management and fishery resources conservation in the system. 

5.4.2. The role of flow pulse in the spatial and temporal dynamics of fishes 

We found a positive relationship of annual co-occurrence pattern between the two 

species at each site by the high-frequency periodicity of 46.9 to 52 weeks (corresponding to a 

period between October and December). However, the most distinctive pattern was found in 

only NL, as indicated by a very strong positive correlation (Figure 5.2; Supplementary material 

S1), suggesting that the most active and dynamic annual co-occurrence and synchronisation 

of the two species mainly happened in NL when their individuals are about to retreat to SL 

and then to OR, and finally to the Mekong River. For SL and OR, we found a strong and clear 

monthly co-occurrence pattern from December through February, as illustrated by the low-
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frequency periodicity of 3.9 to 4.4 weeks in the cross-wavelet analysis. This means that the 

monthly cycle of increasing (synchronisation and peak abundance) and decreasing trends in 

the abundance of each species occurs every month from December to February. Apart from 

falling water level, lunar phase appears to have a strong relationship with peak fish migration 

out of the TSL through the TSR as observed at the 100-year old Dai fishery (Ngor et al., 

2018c). Therefore, related flow-pulse conditions play a key role in facilitating fish migrations, 

e.g. migration for dry season refuges, spawning and rearing/feeding. Changes in flow-pulse 

condition that caused by anthropogenic activities would disrupt spawning, rearing and feeding 

success of fish and thus their natural stocks. 

Flow pulse is one of the main factors driving fish dynamics and their productions 

(Sverdrup-Jensen, 2002). Annual flow pulses, i.e. rising and falling water levels, play an 

important role in signalling fish migration and in opening up floodplain habitats for resources 

and fish reproduction (Poulsen et al., 2004, 2002; Sverdrup-Jensen, 2002; Welcomme, 1999). 

This pattern is also observed in our study, as inferred by the leading flow pulse over fish 

migrations into the TSL. The in-flow pulse from the Mekong River in the early wet season 

brings young individuals, newly hatched and countless larvae of Henicorhynchus spp. to the 

TSL and its surround floodplain area that are covered by flooded forest, shrub, and aquatic 

vegetation (Campbell et al., 2006; Poulsen et al., 2004; Sverdrup-Jensen, 2002). The area 

provides an array of food resources such as fruits, algae, aquatic vegetation and other 

macroinvertebrates (i.e. molluscs, insects, and crustaceans) (Sor et al., 2017). Additionally, 

the in-flow pulse also deposits a large volume of sediment flux into the TSL (Kummu et al., 

2005), which contains paramount nutrient resources (e.g. phosphorus and nitrate contents) 

supporting the food webs in the Tonle Sap ecosystem as a whole (Sarkkula et al., 2004, 2003). 

The rich resources combined with large living space and stable environment in the TSE 

enhance the outburst of fish growth, including young individuals of H. lobatus and H. 
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siamensis particularly for the period from five to six months following the first in-flow pulse 

(Poulsen, 2003).  

During the dry season, as expected, falling water lead to a more spontaneous response 

of small/short-bodied fishes. We found that the out-flow pulse triggers the retreat of each 

species to the Mekong River differently. Within the TSL, the out-flow pulse prompts the 

retreat of H. lobatus from NL to SL 7 weeks after the peak flow with the swimming speed of 

~2.3 km/day, whereas H. siamensis retreated 12 weeks after the peak flow with swimming 

speed of ~7.9 km/day (Figure 5.4 & 7). In the small route from SL to the OR, individuals of 

the two species retreat with more or less the same speed (i.e. 1 week or ~16 km/day). This 

movement patterns could be explained by the heterogeneous and homogeneous habitats 

observed in the floodplain of the TSL and the river channel, respectively. Moreover, the speed 

of the out-flow pulse can also influence the retreat of each species to the Mekong River. As 

such, after the out-flow pulse begins, the species synchronise and migrate in a large school 

back to the TSL, then the TSR, and finally to the Mekong River for the dry season refuges and 

possibly for the spawning grounds upstream (DeGrandchamp et al., 2007; Ngor et al., 2018b). 

Our results further suggest that during the period of migrating out of the TSE, H. lobatus, but 

not H. siamensis, prefers moving to different habitats/floodplain areas within the TSL, where 

possible, retreating along with the gradually decreased water levels. Besides, the two species 

share similar movement patterns in the rivers that are characterised by a smaller passage and 

less variation in habitat characteristics. Therefore, all these flow pulse-related conditions play 

a key role in facilitating adult fish recruitment, which can guarantee an increased abundance 

of fish species observed at ~5 months after the in-flow pulse begins, as observed in our study 

and by Poulsen (2003). 

5.4.3. Monitoring and management perspectives 

Understanding the occurrence, synchronisation, and movement patterns of fish species 

and the influence of water level variation on their spatial and temporal dynamics provides 
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useful knowledge to better understand fish species migration and behavioural ecology 

(Løkkeborg et al., 2002; Mcgill et al., 2006; Peoples and Frimpong, 2016; Pollock et al., 2014; 

Ruetz et al., 2005). This knowledge can be used to support more effective monitoring, 

management and conservation efforts at local and larger spatial and temporal scales. For 

instance, the timing of the retreat of the two species identified in this study delivers useful 

insights that can be used to support regulations and policy initiatives aiming for better 

management and conservation of the two species. Good initiatives will allow adult individuals 

to complete the next step of their life cycle, i.e. to freely pass through the TSR during their 

peak abundance. These individuals can consequently reach the refuge, spawning, rearing and 

feeding grounds in the upstream portions of the Mekong River, and its major tributaries and 

can thus sustain the annual production.  

Furthermore, our findings can act as a fundamental baseline for investigations of other 

economically and ecologically important species. In the case that further studies investigating 

different keystone species find similar synchronisation and peak abundance periods and 

similar movement patterns and timing in their retreats, these results will together provide key 

knowledge to support better monitoring and management of fisheries resources in the TSE. 

Also, the spatial and temporal dynamics of fish are found to be fine-turned with the natural 

flow-pulse variation. Maintaining such conditions are therefore necessary for fish species to 

migrate to complete their life cycles. Human actions such as hydropower dams that alter 

natural flow-pulses of the Mekong, i.e. change in flow seasonality and predictability is highly 

likely to also alter fish assemblage structure and their composition, fish migration patterns and 

spawning decisions which consequently have severe implication on fish reproductive, rearing 

and feeding successes (Ngor et al., 2018b). Finally, our study demonstrated that the CWT and 

CCF are useful time-series modelling approaches for investigating the phase relationship, joint 

periodicity, and the time-lagged relationship between environmental parameters (e.g. water 

level) and fish species in the flood-pulse ecosystems.  
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5.5. Conclusions 

Investigating the spatial and temporal dynamics of fish species enables ecologists and 

fisheries managers to better understand variation in their occurrence, synchronisation, peak 

abundance and movement patterns, and the key factors driving such variation. By using 

modern time-series modelling approaches, i.e. the CWT and CCFs, to analyze high-resolution 

time-series data, we found that for this study, the two small mud carp species can co-occur 

together, but the synchronisation and movements of H. lobatus always lead those of H. 

siamensis. The annual re-occurrence (a long periodicity) of each species was detected in NL 

between October and December, while their monthly re-occurrence (a short periodicity) was 

mainly observed in OR from December to February. Moreover, after water recession in the 

TSL, H. lobatus individuals began to retreat earlier than H. siamensis individuals. However, 

the former species retreats (~2.3 km/day) slower than the latter species (~7.9 km/day), but they 

retreated at similar speeds when they reached the outlet river (TSR) at ~16 km/day. These 

patterns were found to correspond to the variation in water levels across the TSE, suggesting 

that the flow pulse is one of the main factors responsible for the temporal dynamics of the 

small mud carp species in the TSE. Therefore, the seasonality and predictability of the Mekong 

River should be maintained to sustain the natural dynamics of fish species (e.g. the periods of 

recruitment, synchronisation, peak abundance and movements) that have long developed and 

adapted to such a flood-pulse system. The timing of migration and swimming speed of the two 

species identified in this study should be an important part of regulation or policy 

consideration to better manage and conserve the two species. The ability of the CWT to 

analyze coherency enabled us to highlight the co-occurrence and synchronisation periodicity 

of two species, whereas the CCF allowed us to determine the link between the flow pulse and 

fish abundance and identify the lag between the peak water peak and fish synchronisation. The 

CCF thus allows us to identify the role of flood-pulse in the dynamics of fish species in the 

TSE at spatial and temporal scales. 
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Supplementary 

Table S1: Mean of the cross-wavelet power showing synchronisation periods of two small 

mud carp species at three sampling sites. The period with high correlation and synchronisation 

are shown in bold. Abbreviations are as follows: mean-crs-pw: the mean of the cross-wavelet 

power between the two time series (i.e., H. lobatus and H. siamensis); NL: the northern TSL; 

SL: the southern TSL and OR: the outlet river. 

period (week)  mean-crs-pw-NL mean-crs-pw-SL mean-crs-pw-OR 

2.000 0.028 0.078 0.088 

2.071 0.034 0.095 0.105 

2.144 0.038 0.110 0.119 

2.219 0.042 0.121 0.130 

2.297 0.045 0.128 0.137 

2.378 0.047 0.130 0.141 

2.462 0.048 0.129 0.143 

2.549 0.049 0.126 0.144 

2.639 0.049 0.122 0.146 

2.732 0.050 0.120 0.149 

2.828 0.051 0.119 0.153 

2.928 0.052 0.121 0.158 

3.031 0.053 0.125 0.163 

3.138 0.056 0.132 0.168 

3.249 0.060 0.141 0.174 

3.364 0.064 0.153 0.179 

3.482 0.068 0.164 0.183 

3.605 0.072 0.175 0.187 

3.732 0.076 0.183 0.190 

3.864 0.078 0.188 0.192 

4.000 0.081 0.191 0.193 

4.141 0.083 0.191 0.194 

4.287 0.088 0.190 0.193 

4.438 0.092 0.188 0.192 

4.595 0.095 0.185 0.190 

4.757 0.098 0.181 0.188 

4.925 0.099 0.176 0.186 

5.098 0.100 0.169 0.183 

5.278 0.099 0.160 0.180 

5.464 0.097 0.151 0.178 

5.657 0.093 0.143 0.175 

5.856 0.087 0.135 0.172 

6.063 0.080 0.128 0.169 

6.277 0.074 0.121 0.166 

6.498 0.069 0.116 0.163 
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6.727 0.065 0.113 0.159 

6.964 0.063 0.111 0.156 

7.210 0.063 0.110 0.153 

7.464 0.064 0.108 0.150 

7.727 0.066 0.107 0.147 

8.000 0.067 0.107 0.145 

8.282 0.068 0.109 0.142 

8.574 0.067 0.112 0.139 

8.877 0.065 0.114 0.135 

9.190 0.062 0.115 0.131 

9.514 0.057 0.114 0.126 

9.849 0.052 0.113 0.121 

10.196 0.048 0.114 0.116 

10.556 0.048 0.115 0.112 

10.928 0.053 0.117 0.110 

11.314 0.061 0.120 0.109 

11.713 0.071 0.124 0.109 

12.126 0.080 0.126 0.110 

12.553 0.085 0.128 0.111 

12.996 0.087 0.127 0.112 

13.454 0.086 0.125 0.111 

13.929 0.082 0.124 0.108 

14.420 0.079 0.122 0.105 

14.929 0.075 0.120 0.105 

15.455 0.073 0.119 0.107 

16.000 0.073 0.121 0.110 

16.564 0.073 0.125 0.110 

17.148 0.074 0.128 0.106 

17.753 0.074 0.128 0.098 

18.379 0.072 0.125 0.088 

19.027 0.068 0.118 0.077 

19.698 0.062 0.109 0.067 

20.393 0.057 0.099 0.061 

21.112 0.053 0.092 0.059 

21.857 0.054 0.089 0.062 

22.627 0.058 0.090 0.066 

23.425 0.066 0.095 0.071 

24.251 0.075 0.100 0.074 

25.107 0.084 0.104 0.074 

25.992 0.090 0.104 0.070 

26.909 0.091 0.100 0.062 

27.858 0.089 0.091 0.052 

28.840 0.082 0.080 0.041 

29.857 0.075 0.069 0.030 

30.910 0.071 0.059 0.022 
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32.000 0.067 0.051 0.017 

33.128 0.063 0.044 0.015 

34.297 0.059 0.038 0.015 

35.506 0.055 0.034 0.017 

36.758 0.060 0.032 0.020 

38.055 0.072 0.033 0.024 

39.397 0.089 0.036 0.029 

40.786 0.112 0.041 0.035 

42.224 0.136 0.046 0.042 

43.713 0.160 0.050 0.049 

45.255 0.180 0.055 0.054 

46.851 0.195 0.062 0.059 

48.503 0.203 0.067 0.061 

50.213 0.201 0.069 0.061 

51.984 0.191 0.068 0.058 

53.817 0.172 0.063 0.054 

55.715 0.148 0.054 0.048 

57.680 0.120 0.044 0.040 

59.714 0.092 0.033 0.033 

61.820 0.068 0.024 0.025 

64.000 0.049 0.016 0.018 

66.257 0.037 0.012 0.013 

68.594 0.030 0.010 0.009 

71.012 0.023 0.010 0.007 

73.517 0.017 0.011 0.006 

76.109 0.012 0.011 0.004 

78.793 0.010 0.011 0.003 

81.572 0.009 0.010 0.003 

84.449 0.009 0.009 0.002 

87.427 0.008 0.008 0.002 

90.510 0.007 0.006 0.002 

93.701 0.007 0.005 0.002 

97.006 0.007 0.005 0.002 

100.427 0.007 0.004 0.001 

103.968 0.006 0.004 0.001 

107.635 0.006 0.003 0.001 

111.430 0.007 0.003 0.001 

115.360 0.009 0.003 0.001 

119.428 0.011 0.003 0.001 

123.640 0.012 0.003 0.001 

128.000 0.013 0.003 0.001 

132.514 0.013 0.003 0.001 

137.187 0.013 0.004 0.001 
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Abstract 

Tonle Sap Lake supports high fisheries products that are of paramount importance to supply 

protein for more than 15 million Cambodian people and export. Therefore, to sustain the 

fisheries resources, deal with conflicts raised between the local fishers and the owners of the 

commercial fishing lots, and ensure the equity of benefits from the resources derivation, the 

fisheries policy reforms was launched since 2005. It enabled the removal of all commercial 

fishing lots from Tonle Sap Lake in 2012. The fishing lot areas were apportioned to be 

conservation area and community fishing area that fisheries resources were managed by 

community fisheries. Meanwhile, both operation and removal of the commercial fishing lots 

have its own positive and negative effects on fish ecology and fisheries. Here, we investigated 

the effects of the fisheries policy reforms on the overall fisheries, fish community composition 

and structure in Tonle Sap Lake using time-series data of fish catch. We detected a stable trend 

in fish biomass in the before fishing lot abolishment period, whereas the temporally decreasing 

trend was observed in the after fishing lot abolishment period. Moreover, there was a 

significant change in fish community composition before and after fishing lot abolishment. 

Specifically, we found that although some species were not affected by the fisheries reform, 

others had an increasing or decreasing trend according to the species. Overall, the fisheries 

policy reforms positively benefited the small fish species with short distance migration, low 

trophic level, and inhabiting the surface of the water column. In contrast, the fisheries reforms 

negatively affected the large benthic fish species with long-distance migration and high trophic 

level. In conclusion, the decline in the fish biomass of the lake was affected by the fact that 

the local fishers attempt to exploit the common-pool fisheries resources of the lake as much 

as they can without thinking the adverse effects while the community fishing areas are freely 

accessible to fishing. This framework coined as “the tragedy of the commons”, could generate 

a decline of fish resources in the Tonle Sap Lake and we suggest to improve fisheries rules 

and law enforcement to manage, conserve and ensure sustainability of the biodiversity and 
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fisheries resources of the Tonle Sap Lake as well as Cambodia through improving the capacity 

for the local community, conserving the flooded forest and eliminating the illegal fishing 

practices.  

KEYWORDS: fishing lot abolishment, the tragedy of the commons, indiscriminate fishing, 

fish community structure, size effect 
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6.1 Introduction 

Tonle Sap Lake (TSL) is the largest natural inland lake in Southeast Asia (MRC 2005) 

and the world’s fourth most productive inland fishery (Baran 2005). TSL fisheries resources 

represent approximately 60% of Cambodia’s total annual production of inland capture 

fisheries of 767,000 tonnes (Hortle & Bamrungrach 2015). TSL, therefore, plays a crucial role 

in providing fish products and protein to nearly two million people in the region (Sabo et al. 

2017). In addition to its crucial role as a protein source, TSL also hosts some 296 fish species 

(Baran et al. 2013). It is, therefore, considered a biodiversity hotspot (Allen et al. 2012) and 

has had the status of a world heritage biosphere reserve of the United Nations Educational, 

Scientific and Cultural Organization (UNESCO) since 1997 (UNESCO 2018).  

The fishing areas delineated by the Royal Government of Cambodia for commercial 

fisheries are called fishing lots (Ly and VanZalinge, 1998). The operation system of the 

commercial fishing lots had been introduced since 1908 by French protectorate (MRC 2012). 

The procedures for the auction and management of the fishing lot are based on the sub-decree 

attached to the Cambodian fisheries law (Halls et al. 2013). Based on this law, the fishing lot 

operated from October to May. While generating national revenues from auctioning the 

productive fishing grounds, fisheries management through the application of fishing lot system 

was also a permanent source of conflicts between the commercial fishing lot owners and 

subsistence fishers on access rights to the fisheries resources (Bonheur & Lane 2002; Ratner 

2006; Cooperman et al. 2012; Dina & Sato 2014). 

For this reason, and to ensure the equity of benefits from the resources derivation, and 

sustain the fisheries resources, the Royal Government of Cambodia have introduced the 

fisheries policy reforms since 2001, and declared officially the removal of the commercial 

fishing lots from the Lower Mekong watershed in Cambodia on February 2012 (Ratner 2006; 

Cooperman et al. 2012; MRC 2012). Then, the area covered by the fishing lots (more than 1 

million hectares) were apportioned to be conservation area (~24%) and community-use areas 
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(~76%) for the family level fishing purpose (Cooperman et al. 2012; MRC 2012). The purpose 

of the fisheries reforms was to support the community-based management in fisheries or other 

natural resources (Ratner 2006). Given that the large-scale fishing were beneficial to only 

small group people, i.e. the lot owners, the transition from the commercial fishing lots 

operation to community fisheries was aiming at sharing the properties (i.e. fisheries products 

and aquatic resources) to all, especially the local fishers for subsitence, because the propterties 

do not belong to a small group of people (Dina & Sato 2014). 

There are positive and negative effects for both operation and removal of the 

commercial fishing lots on fish ecology and fisheries in Tonle Sap Lake. Within the 

commercial fishing lots system-based management, the barrage fishery limited the spatial 

distribution and migration of fish species. It was, moreover, believed that fish species had been 

intensively exploited in fishing lot system that represents 20% of the total Tonle Sap Lake area 

(Cooperman et al. 2012). Indeed, the barrage fishery systems of the fishing lots allow fishers 

to harvest fish population in the fishing lots boundary easily (Halls et al. 2013) resulting in an 

increase in fishing pressure on fisheries resources of the lake. However, the aquatic habitats, 

i.e. the inundated forest, grassland and shrubland and rice fields (Halls et al. 2013), were 

properly protected by the the commercial fishing lots owners to sustain the fisheries resources 

for their next harvest. In contrast, the removal of the commercial fishing lots allowed fish 

species to freely migrate and conduct a substantial spatial distribution which may facilitate for 

breeding and enhance the genetic pool. Nevertheless, the removal of the commercial fishing 

lots enabled the community fishing area to be freely accessible to all (Ratner 2006). Given that 

the fisheries law is poorly enforced, the illegal fishing practices prevail. Thus, fisheries 

resources had been intensively exploited by the local fishers (Ratner 2006). In addition, the 

aquatic habitats (i.e. flooded forest and shrubland) are degraded, e.g. through conversion of 

flooded forest into the agricultural fields (Cooperman et al. 2012). 
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To date, many studies have highlighted and discussed about the effectiveness of the 

Cambodian fisheries policy reforms in Tonle Sap Lake in terms of property right, governance, 

management policy and legislation, as well as reviewed and expected the fisheries status 

according to the biological and ecological features of fish species, i.e. (Ratner 2006; 

Cooperman et al. 2012; Dina & Sato 2014, 2015; Ratner et al. 2014; Sok 2014). However, 

providing the statistical evidence about the characteristics of fisheries and fish species that 

were impacted by this fisheries policy reforms are lacking. 

Thus, the present study, we investigate the effects of the commercial fishing lot 

abolishment on a temporal change in fish catch and fish community structure in Tonle Sap 

Lake. Specifically, we first investigate the temporal trends in fish catches before and after the 

fishing lot abolishment. Second, we compare fish community composition before and after the 

fishing abolishment period. Then, we identified fish species changed between the two periods 

(e.g. whether they increased, decreased and were stable?). Finally, we associate the status of 

each fish species (i.e. increase, decrease and stable before and after the fishing abolishment) 

with their morphological and biological traits to examine whether changes were related to 

some specific functional traits of fish species. 

6.2 Material and methods 

6.2.1 Sites description 

The study was carried out in Tonle Sap Lake located in the northwest part of Cambodia 

(Figure 6.1). TSL is the largest freshwater lake in Southeast Asia and is the largest floodplain 

of the Mekong basin. TSL is connected to the Mekong River by the Tonle Sap River (TSR). 

The lake area can be as large as 14,500 km2, while the amount of water in the lake can be as 

much as 80 km3, and the maximum water depth is 9 metres (MRC 2005). A large number of 

floodplain areas were inundated and formed large breeding, spawning, nursery and foraging 

areas for the fishes (Baran et al. 2007).  
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6.2.2 Data collection  

This study used monthly fish catch weight data (kg) from stationary gillnets that were 

monitored before (1995-2000) and after (2012-2015) fishing lot abolishment around Tonle 

Sap Lake (Figure 6.1). The fish data used in this study were provided by the Fisheries 

Programme of the Mekong River Commission (MRC) in collaboration with the Cambodian 

Department of Fisheries (currently called the Fisheries Administration [FiA]) and financially 

supported by Danish International Development Agency (DANIDA) (Ly and VanZalinge, 

1998). Our focus here was to compare fish community composition patterns between the two 

periods. We, thus, used only the datasets that contain the comparable method and fishing 

efforts between the two datasets, e.g. gillnet mesh size ranging from 2.5-7 cm for before lot 

abolishment data and gillnet mesh size ranging from 2 -6.5 cm for after lot abolishment data.  

For the before fishing lot abolishment (BLA) period, the fish biomass data was 

monthly collected from TSL from 1995 to 2000. For after fishing lot abolishment (ALA) 

period, data collection were carried out on a daily basis in Tonle Sap Lake from January 2012 

to December 2015, it later translated into monthly basis to be comparable between the two 

periods. The catch monitoring approach follows the MRC’s regional monitoring method 

applied in the Lower Mekong Basin (MRC 2008; Ngor et al. 2014). The data were collected 

by the local fishers trained in sampling technique, fish identification and recording (Deap et 

al. 2003). Identification was based on the common names combined with a review of previous 

studies and consultation with MRC’s experts; further, identification followed the keys in 

Rainboth (1996) and enumerated and recorded in a logbook. The logbooks were then collected 

from fishers on a quarterly basis and cross-checked by research specialists. Unidentified 

species were later identified by an expert taxonomist in the laboratory. 

Fish morphological traits and trophic level data were derived from the FishBase 

(Froese & Pauly. 2017). The information about fish biological traits (i.e. migration and the 

position of water column) was reviewed and derived from (Poulsen et al. 2004; Froese & Pauly 
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2017; Ngor et al. 2018a). The summary of fish morphological and biological traits are given 

in Supporting Information S1. 

 

Figure 6.1 Map showing the fishing lots in Tonle Sap Lake, Tonle Sap River, Basac River, 

and Mekong River. The minimal area of TSL during the dry season is in blue and the green 

represent maximal area of TSL during the flooded season. Fishing lots are in grey. 

6.2.3 Data preparation and statistical analyses 

In this study, we focused on the most commercial 55 fish species because they were 

recorded in detail from the fishing gear catch assessment during before fishing lot abolishment. 

Further, the monthly fish catch weight data were transformed into monthly relative weight 

catches to reduce the effects of sampling efforts before comparison.  

 

First, the temporal trend of fish biomass of the two periods was illustrated using the 

average monthly time-series data of fish biomass. Simple Moving Average (SMA) was 

performed to smooth the temporal trends in fish biomass.  
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Non-metric multidimensional scaling (NMDS) with Bray–Curtis similarities distance 

(Bray & Curtis 1957) was performed to illustrate a change in fish community composition 

between the BLA and ALA. The NMDS is a rank based method attempting to represent the 

pairwise dissimilarity between sampling units in a two-dimensional space. 

Analysis of similarity (ANOSIM, Clarke, 1993) was also used to test for significant 

difference in fish community composition between the two periods: the BLA and ALA. 

ANOSIM is a nonparametric multivariate procedure broadly analogous to analysis of variance 

(ANOVA) that has been widely used for testing whether or not groups of sites are statistically 

different with respect to their relative similarities in the community composition (Clarke 1993). 

ANOSIM was conducted on Bray–Curtis dissimilarities matrix calculated among samples 

(Oksanen et al. 2015). The ANOSIM result was assessed according to a P-value (significant 

difference between groups) of the statistical significance which determined whether or not the 

result was likely due to a result of chance and the statistic-R value (correlation coefficients 

between groups) which provides a measure of effect size (Clarke 1993). A statistic-R value 

ranges from -1 to +1, and that is based on the rank similarities of samples within versus among 

a priori groups. A large R-value (close to 1) is indicative of complete separation between 

groups, while a small value (close to 0) implies little or no separation, and R-values below 

zero suggest that dissimilarities are greater within groups than between groups (Clarke & 

Warwick 2001). We conducted 999 random permutations to assess the statistical significance.  

Then, we further applied the similarity percentages (SIMPER, Clarke, 1993) procedure 

to assess which species was the most significant contribution to the dissimilarity of the 

composition between the BLA and ALA. SIMPER identifies which fish species made the 

highest contribution to be different between the two groups in a Bray-Curtis dissimilarity 

matrix (Oksanen et al. 2015). The contribution of each species to Bray-Curtis measurement 

was calculated after square root transformation, and then the species were ranked in two 

separated groups, percentage, and cumulative percentage (Clarke & Warwick 2001). SIMPER 
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analysis produced average contribution from taxa to overall dissimilarity between two groups 

(i.e. a & b) (average), standard deviation of contribution (sd), ratio average to sd ratio (ratio), 

average abundances per group (av.a & av.b), and ordered cumulative contribution (cum) 

(Clarke & Warwick 2001; Oksanen et al. 2015). We conducted 99 random permutations to 

assess the statistical significance.  

Finally, a principal component analysis (PCA) was performed to relate the status of 

fish species (i.e. decreasing, increasing, and stable) to their morphological and biological traits. 

The analysis allows us to summarise information about the changes that were related to some 

specific groups or functional traits and size class of fish species. 

We selected the 95% confidence interval as a significance criterion for ANOSIM and 

SIMPER. Also, NMDS, ANOSIM, SIMPER, and PCA were performed using the “vegan” 

package (Oksanen et al., 2015). The SMA was carried out using the “ggplot2” package 

(Wickham 2009). All statistical analyses were performed using R program v.3.3.3 for 

Windows statistical software package (http://www.r-project.org)(R Core Team 2017). 

6.3 Results 

We detected a stable trend in fish biomass collected from the before fishing lot 

abolishment period. In contrast, we observed a decreasing trend in fish biomass after the 

removal of the commercial fishing lots. Moreover, a lower seasonal variation in fish biomass 

was observed after the fishing lot abolishment (Figure 6.2) 

 

http://www.r-project.org/
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Figure 6.2 (A) A time-series of monthly fish biomass over a 6-yr period collected from the 

before fishing lot abolishment (1995-2000). (B) A time series of monthly fish biomass over a 

4-yr period collected from the after fishing lot abolishment (2012-2015). A red line represents 

the mean fish biomass at the zero to one scale, whereas the black line represents the general 

trends of fish biomass performed by the simple moving average. 

 

NMDS (stress=0.215) showed the difference in fish community composition between 

the two periods along the first axis. There was a significant change in fish community 

composition between the BLA and ALA as indicated by ANOSIM (global RANOSIM=0.377, P-

value=0.001; Figure 6.3). 
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Figure 6.3 A two-dimensional NMDS plot showing the fish assemblages from the before 

after fishing lot abolishment. The red dots and black dots symbolise the samples of fish 

collected before and after fishing lot abolishment period, respectively. The ellipse represents 

the first standard deviation (1SD confident interval). 

 

SIMPER analysis showed the species that contributed to the change between the BLA 

and ALA (Table 6.1). In short, some species had an increasing trend, whereas others species 

had a decreasing trend between the two periods, while other species are stable.  
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Table 6.1 SIMPER results showing the dynamics of fish species according to a pairwise 

comparison between before and after fishing lot abolishment. Abbreviations are as follows: 

av.before= average biomass for the before fishing lot abolishment period; av.after= average 

biomass for the after fishing lot abolishment period; comsum= ordered cumulative 

contribution; “-”=decreasing trend; “+”=increasing trend; “n”= non-change or stable. Fish 

species with significant change (p-value < 0.05) are in bold. 

Species code av. before av. after cumsum p-value Change 

Henicorhynchus spp. Hespp 11.960 16.280 0.096 0.010 + 

Cyclocheilichthys enoplos Cyeno 13.397 2.791 0.181 0.010 - 

Puntioplites proctozysron Pupro 2.951 10.612 0.247 0.010 + 

Mystus spp. Myspp 3.575 8.897 0.301 0.010 + 

Channa micropeltes Chmic 7.044 0.696 0.351 0.010 - 

Trichopodus microlepis Trmic 5.163 4.168 0.398 0.010 - 

Osteochilus vittatus Osvit 4.503 7.930 0.445 0.010 + 

Hypsibarbus spp. Hyspp 6.358 4.640 0.483 0.010 - 

Channa striata Chstr 3.092 3.103 0.516 0.130 n 

Labiobarbus leptocheilus Lalep 3.991 0.939 0.547 0.010 - 

Hemibagrus spilopterus Hespi 4.172 1.743 0.578 0.010 - 

Notopterus notopterus Nonot 0.913 3.831 0.605 0.010 + 

Xenentodon cancila Xecan 0.358 3.284 0.631 0.010 + 

Anabas testudineus Antes 1.242 3.563 0.656 0.010 + 

Cyclocheilichthys armatus Cyarm 2.410 1.610 0.677 0.010 - 

Labeo chrysophekadion Lachr 1.653 2.760 0.696 0.010 + 

Labiobarbus siamensis Lasia 0.377 2.429 0.715 0.010 + 

Clarias spp. Clspp 0.516 2.233 0.733 0.010 + 

Thynnichthys thynnoides Ththy 1.894 1.543 0.749 0.010 - 

Osteochilus melanopleurus Osmel 2.291 0.974 0.765 0.010 - 

Pangasianodon hypophthalmus Pahyp 1.528 1.355 0.780 0.010 - 

Paralaubuca typus Patyp 0.842 1.579 0.795 0.030 + 

Pristolepis fasciata Prfas 0.780 2.136 0.809 0.010 + 

Cirrhinus microlepis Cimic 1.872 0.304 0.823 0.010 - 
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Parambassis wolffii Pawol 1.523 1.503 0.837 0.320 n 

Setipinna melanochir Semel 1.837 0.000 0.850 0.010 - 

Boesemania microlepis Bomic 0.748 0.974 0.860 0.260 n 

Hampala dispar Hadis 1.359 0.188 0.870 0.010 - 

Puntius brevis Pubre 1.136 0.243 0.879 0.010 - 

Coilia spp. Cospp 0.922 0.383 0.888 0.010 - 

Albulichthys albuloides Alalb 0.671 0.504 0.896 0.030 - 

Amblyrhynchichthys truncatus Amtru 0.482 0.877 0.904 0.130 n 

Oxyeleotris marmorata Oxmar 0.043 1.077 0.912 0.010 + 

Belodontichthys truncatus Betru 0.966 0.145 0.919 0.010 - 

Pangasius larnaudii Palar 0.423 0.803 0.926 0.030 + 

Wallago attu Waatt 0.940 0.167 0.934 0.010 - 

Parachela siamensis Pasia 0.719 0.217 0.940 0.010 - 

Pangasius spp. Paspp 0.381 0.602 0.946 0.700 n 

Polynemus multifilis Pomul 0.802 0.032 0.952 0.010 - 

Micronema spp. Mispp 0.639 0.105 0.957 0.010 - 

Ompok hypophthalmus Omhyp 0.634 0.010 0.961 0.010 - 

Systomus orphoides Syorp 0.368 0.267 0.966 0.100 n 

Chitala ornata Chorn 0.516 0.121 0.970 0.010 - 

Leptobarbus hoevenii Lehoe 0.279 0.429 0.974 0.140 n 

Trichopodus pectoralis Trpec 0.062 0.530 0.978 0.010 + 

Pao cambodgiensis Pacam 0.517 0.009 0.982 0.010 - 

Kryptopterus cryptopterus Krcry 0.462 0.028 0.986 0.010 - 

Cosmochilus harmandi Cohar 0.130 0.381 0.989 0.010 + 

Yasuhikotakia spp. Yaspp 0.067 0.397 0.992 0.010 + 

Probarbus jullieni Prjul 0.273 0.085 0.995 0.130 n 

Parambassis apogonoides Paapo 0.100 0.249 0.997 0.590 n 

Barbonymus altus Baalt 0.048 0.132 0.998 0.060 n 

Gyrinocheilus pennocki Gypen 0.002 0.133 0.999 0.070 n 

Achiroides leucorhynchos Acleu 0.066 0.010 1.000 0.010 - 

Channa lucius Chluc 0.002 0.002 1.000 0.710 n 
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The two first axes of the PCA accounted for 64.81% of the total variance (37.89% and 

26.92%, respectively; Figure 6.4). The water column depth opposite to trophic level of fish 

species in the first axis, and negative values correspond to the water column and positive value 

to the trophic level position. The migration distance and maximum total length of fish species 

were linked to the positive values of the second axis, and corresponding to the longer migration 

distance and larger fish species. The increasing changes were mainly found for the small fish 

species with short-distance migration, low trophic level, and surface water column position, 

e.g. Henicorhynchus spp. (Hespp), Labiobarbus siamensis (Lasia), Clarias spp. (Clspp) and 

Anabas testudineus (Antes) (Figure 6.4). However, an increasing change was found for the 

large fishes: Xenentodon cancila (Xecan), Oxyeleotris marmorata (Oxmar) and Pangasius 

larnaudii (Palar). Furthermore, the decreasing changes were observed mainly the large, long-

distance migration, and higher trophic level fish species, e.g. Cyclocheilichthys enoplos 

(Cyeno), Cirrhinus microlepis (Cimic), Channa micropeltes (Chmic), Wallago attu (Waatt) 

and Pangasianodon hypophthalmus (Pahyp). However, there is still some mix while the 

decreasing change was observed for small fishes: Trichopodus mirolepis (Trmic), 

Kryptopterus cryptopterus (Krcry), Hampala dispar (Hadis), Ompok hypophthalmus (Omhyp), 

Puntius brevis (Pubre), Labiobarbus leptocheilus (Lalep), Hypsibarbus spp. (Hyspp), 

Thynnichthys thynnoides (Ththy), Cyclocheilichthys armatus (Cyarm), Hemibagrus 

spilopterus (Hespi) and Parachela siamensis (Pasia).  
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Figure 6.4 PCA biplot showing the association between the status of fish species (increase, 

decrease, and stable in catches before and after fishing lot abolishment) and their 

morphological and biological traits. The blue, red and green dots symbolise species with the 

increasing trends, decreasing trends, and stable, respectively. The size of the dot represents 

the level of change (proportion) of fish species between the two periods. Abbreviations include: 

T.Length= maximum total length; T.level= trophic level; W.colum= water column; Migrat= 

the distance of migration. The full names of fish species were given in Table 6.1. 
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6.4 Discussion 

The Cambodian fisheries reforms allows the removals of the commercial fishing lots 

from the Tonle Sap Lake to be made. Thus, the area covered by the commercial fishing lots 

were converted into the conservation area and community fishery area (Cooperman et al. 2012; 

MRC 2012). The purpose of the commercial fishing lots removal is to share the properties (i.e. 

fisheries and aquatic resources) to the local fishers because the fisheries resources are not 

belong to a small group of people. Then, the management of the Tonle Sap fisheries resources 

was based on a number of community fisheries around the lake.  

The results showed that the removal of the commercial fishing lots within Tonle Sap 

Lake enabled a decreasing trend of fish biomass. Inland fisheries are generally dynamic and 

rarely sustainable (Pauly et al. 2002; Welcomme et al. 2010). In this regards, overfishing is 

caused by an intensive fishing pressure formed the treatment effect on the decrease in fisheries 

resources of the Tonle Sap system (Ngor et al. 2018b) as well as in overall fisheries (Cooke & 

Cowx 2004; Anderson et al. 2008; McIntyre et al. 2016). While the community fishing areas 

are freely accessible, the fishers attempt to harvest the common-pool fisheries resources as 

much as they can without thinking the adverse effects, and this scenario is called “the tragedy 

of the commons”(Hardin 1968). The tragedy of the commons has become a central item to 

understand the local and global ecological problems (Vugt 2009). Within the public property, 

people are less responsible for the management and conservation of the resources. Thus, while 

law enforcement is inefficient, the illegal fishing practices and overexploitation exist (Ratner 

2006). In this case, the fisheries resources of the lake were indiscriminately fished (Ngor et al. 

2018b). Indiscriminate fishing refers to exploitation of fishes at all class and species and size 

class (McCann et al. 2015). Indiscriminate fishing resulted in changes in fish community and 

food web structure, i.e. the large species were decreased, and the community was dominated 

by the small fish species. Furthermore, illegal fishing practices are believed the main 

threatened factors on the fisheries resources through an increase in fishing effort. 
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Overharvesting fisheries resources due an increase in demand has been the threaten factor by 

human activity on the collapse or decline of the global fisheries (Jackson et al. 2001; 

Welcomme et al. 2010). Overharvesting fisheries resources across the assemblage tend to 

occur in tropical regions, where the poor are highly dependent on natural inland fisheries 

(Allan et al. 2005). Ideally, fishing has a direct impact on the decline in the fish population or 

the abundance of the target fish species (Pauly et al. 2002; Hsieh et al. 2006). 

Moreover, the removal of the commercial fishing lots enabled also the high possibility 

of the inundated forest destruction because the local people moved in the area and cleared the 

inundated forest and converted the area into the agricultural field (Ratner 2006). In contrast, 

the flooded forest within the fishing lots area was protected properly by of the commercial 

fishing lots owners to sustain the fisheries resources for their next harvests. The policies on 

exploitation and habitat conservation within the commercial fishing lots were given in the log-

book designed by the fisheries law, i.e. where the fisheries resources allowed to be harvested 

and where the flooded forest are suggested to keep conservation.  

The results also illustrated that the removal of the commercial fishing lots enabled a 

change in fish community composition in the Tonle Sap Lake. Indeed, we observed that 

although some species are stable, some species hosted an increasing trend, and others had 

decrease trend. Also, principal component analysis provided statistical evidence and concise 

assessement of the change in fish community structure (Figure 6.4). The fisheries policy 

reforms negatively affected the large benthic fish species with long-distance migration, and 

high trophic level, e.g. C. enoplos, C. microlepis, C. micropeltes, Wallago attu, P. 

hypophthalmus, B. truncatus (Betru) and C. ornata (Chorn). In contrast, the success of the 

fisheries policy reforms was for the small fish with short distance migration, e.g. Pristolepis 

fasciata, Clarias spp., Anabas testudineus, Mystus spp and Trichopodus pectoralis.  

In ecological aspects, removal of the commercial fishing lots gains the possibility for 

the longitudinal fish species to migrate freely in/across the Lower Mekong Basin, which 
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enables fishes to occupy the substantial spatial distribution, breed and spawn in the upper 

stream of the Mekong River, exchange genetic components and enhance the genetic pool. 

Nevertheless, the long-distance migration of fish species gains high risk to be captured by 

many fishing gears along the migration routes toward the upstream of the Mekong River (Ngor 

et al. 2015). For instance, an estimated 7,000 boats of artisanal and subsistence fishers were 

catching fish in the Tonle Sap River in January 2005 (Halls et al. 2013). Furthermore, the 

stationary trawl (Dai) fishery in the Tonle Sap River gains high risk for the long-distance 

migratory species through the non-selective fishing by the barge-mounted drift net and their 

barrage system (Halls et al. 2013). 

After the commercial fishing lots removal, the conservation area (non-fishing zone) 

were assigned to provide habitats for fish species to conserve the fishery resources 

(Cooperman et al. 2012). However, the conservation area appeared to benefit only some 

species, while other species were vulnerable to be harvested (Cooperman et al. 2012). 

Specifically, the small fish species and floodplain resident fish species i.e. Clarias spp., 

Anabas testudineus, Pristolepis fasciata, and Mystus spp., were expected to have benefitted 

from conservation area after the fisheries policy reforms (Cooperman et al. 2012). Moreover, 

Russ & Alcala (2015) revealed that the conservation area (non-harvest zone) benefit for 

sedentary fish species that utilise that habitat for a long period or permanently, while the 

migratory fish species were vulnerable to be harvested. Our results confirmed the hypothesis 

claimed by Cooperman et al. (2012) articulating that the conservation area in the Tonle Sap 

floodplains have benefited for the small, short lifespan and rapid growth fish species, while 

the long-distance migration fishes appeared to be problematic to fishing. 

Decline in the large predatory fish not only affected the subset of the target species, 

but also the entire fish community of ecosystem (Friedlander & Demartini 2002; Frank et al. 

2005) because decline in predatory fish could reduce the mortality rate of predation and gain 

a high probability of survival for prey or small fish species (Andersen & Gislason 2017). 
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Consequently, depletion of the large fish or top predators of the community has a potential 

top-down effects on the food web and influences an alteration of fish community and food 

web structure of the ecosystem in which the assemblage was replaced by small fish at the 

lower trophic levels (Pauly et al. 2002; Allan et al. 2005; Frank et al. 2005; Welcomme et al. 

2010). Moreover, small fish species, i.e. opportunist, host short reproductive cycle which are 

less impacted by intensive fishing because smaller fish are more biologically productive 

(Lamberts 2006; Welcomme et al. 2010). There was also clear evidence that the dynamics of 

fish community and structure happened in the Tonle Sap River in which the catch of the large 

and medium fish was declined, and the catch of small fish species was increased (Ngor et al. 

2015). In addition, indiscriminate fishing resulted in a decrease in the trophic level, total length 

and weight of fish in the dai fishery in the Tonle Sap River (Ngor et al. 2018b). For instance, 

we detected a temporal decline in total length and weight of the large and medium species, i.e. 

Pangasianodon hypophthalmus, Cyclocheilichthys enoplos, and Cirrhinus microlepis, 

whereas the catch of small Henicorhynchus spp. had been increasing (Ngor et al. 2015, 2018b). 

In conclusion, we found that the fisheries policy reforms/commercial fishing lots 

abolishment in the Tonle Sap Lake enabled a decreasing trend in overall fish biomass of the 

lake. Such pattern could be explained by the fact that while the community fishing area is 

freely accessible to fishing, the local fishers attempt to harvest the common-pool resources of 

fisheries as much as they can without thinking the adverse effects; this scenario is called “the 

tragedy of the commons” (Hardin 1968). In this regards, within the public or open access 

resources, people are less responsible for the management and conservation of the resources 

and less consideration of regulation (Welcomme et al. 2010). Likewise, while the fishers still 

had some fishing gears in their hands, the large-scale operation was still happening in the 

Tonle Sap Lake as the law enforcement was insufficient (Cooperman et al. 2012). Moreover, 

the management capability of community fisheries is limited, in which the abilities to control 

and detect illegal fishing practices is low (Ratner 2006). In management perspective, designing 
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the responsibility and accountability for the stakeholders for Tonle Sap Lake fisheries 

management, i.e. community, fishers, authorities, NGOs, and others institutions, was not 

precise (Ratner 2006; Cooperman et al. 2012). With the transition from commercial fishing 

lots to the community, the management was shifted from the private sector to under control of 

the local communities (for community fisheries and protected area) and the centralised 

authority (for open area). Ineffectiveness of the management generally lies with the centralised 

authorities because they cannot access the substantial area comprising complex habitat, 

multiple species and fishing gear (Welcomme et al. 2010). 

Moreover, the results illustrated that the fisheries policy reforms enabled a change in 

fish community composition and structure in the Tonle Sap Lake. Specifically, we found that 

although some species were not affected by the fisheries reform, others had an increasing or 

decreasing trend according to the species. Overall, the fisheries policy reforms positively 

benefited the small fish species with short distance migration, low trophic level, and inhabiting 

the surface of the water column. In contrast, the fisheries reforms negatively affected the large 

benthic fish species with long-distance migration and high trophic level. Meanwhile, the 

dynamics of fish community composition and structure were influenced by the fact that the 

fish population had been indiscriminately fished (McCann et al. 2015; Ngor et al. 2018b). 

Furthermore, removing the top predators of the community enables an alteration of community 

structure and food web of the ecosystem (Frank et al. 2005). The failure of the Cambodian 

fisheries policy reforms were affected by the low effectiveness of fisheries resource 

management and insufficient law enforcement capacity that drive the overharvesting, and 

illegal fishing practices, and flooded forest habitat loss (Ratner 2006). If the law enforcement 

is sufficient, the fisheries policy reforms or the commercial fishing lot abolishment might 

significantly and positively contribute to maintain fishery productivity and protect the 

biological diversity, and improve the sustainability of the Tonle Sap Lake fisheries 

(Cooperman et al. 2012). 
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The overall fisheries trend and community structure of the Tonle Sap Lake provided 

by this study are of paramount importance for initiating the management policies and decision 

making. Moreover, the results from this study provided a baseline and lesson learn for fisheries 

resources management for other lakes. The failure of the removal of the commercial fishing 

lots that allows a decline in fish biomass from the Tonle Sap Lake provided a message for 

fisheries ecologists, policymakers and Royal Government of Cambodian for fisheries 

resources managment. Given that the removal of the commercial fishing lots negatively 

impacted on the large benthic fish species with the long-distance migration, thus we 

recommend focusing on the management and conversation of the species considered that form 

the top predators through the balanced harvesting or reducing the fishing effort or capacity to 

an acceptable level (Pauly et al. 2002). The balanced harvesting, by fishing individual of 

species according to their productivity status, could reduce the adverse ecological effects of 

fishing on the community and sustain fisheries resources (Garcia et al. 2012; Jacobsen et al. 

2014). The protection and conservation of the large fish contributed to support the 

sustainability of fisheries and ecosystem (Birkeland & Dayton 2005). Moreover, law 

enforcement and regulation should be highly taken into consideration because it could avoid 

the overharvesting and could maintain and sustain the fisheries resources (Welcomme et al. 

2010). We also suggest considering the conservation of the flooded forest to maintain fish 

productivity and ensure sustainability of the fisheries resources in the lake.  
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Supporting Information 

S1: Summary of morphological and biological traits for fish species. T.length: the maximum total 

length; T.level: the trophic level 

species T.Length T.evel water column migration Feeding 

Henicorhynchus spp. 24.4 2 benthopelagic longitudinal algivore/detritivore 

Cyclocheilichthys enoplos 90.3 3.2 benthopelagic longitudinal Omnivorous 

Puntioplites proctozysron 30 2.7 benthopelagic Lateral Omnivorous 

Mystus spp. 15.9 3.1 demersal Lateral invertivorous 

Channa micropeltes 158.6 3.85 benthopelagic floodplain resident piscivorous 

Trichopodus microlepis 25 2.8 benthopelagic floodplain resident Omnivorous 

Osteochilus vittatus 39 2 benthopelagic floodplain resident Omnivorous 

Hypsibarbus spp. 40.5 2.4 benthopelagic Lateral Omnivorous 

Channa Striata 122 3.4 benthopelagic floodplain resident piscivorous 

Labiobarbus leptocheilus 36.6 2.34 benthopelagic Lateral Omnivorous 

Hemibagrus spilopterus 37.7 3.5 demersal Lateral invertivorous 

Notopterus notopterus 73.2 3.6 demersal floodplain resident invertivore/piscivore 

Xenentodon cancila 40 3.9 pelagic-neritic longitudinal Carnivorous 

Anabas testudineus 25 3 demersal floodplain resident invertivore/piscivore 

Cyclocheilichthys armatus 25 2.9 benthopelagic Lateral Omnivorous 

Labeo chrysophekadion 90 2 benthopelagic Lateral algivore/detritivore 

Labiobarbus siamensis 22 2.3 benthopelagic Lateral Omnivorous 

Clarias spp. 47 3.4 demersal floodplain resident invertivore/piscivore 

Thynnichthys thynnoides 25 2.3 benthopelagic Lateral Omnivorous 

Osteochilus melanopleurus 73.2 2.3 benthopelagic Lateral Omnivorous 

Pangasianodon hypophthalmus 158.6 3.1 benthopelagic longitudinal Omnivorous 

Paralaubuca typus 22 3.3 benthopelagic Lateral invertivorous 

Pristolepis fasciata 20 3.2 demersal floodplain resident invertivorous 

Cirrhinus microlepis 79.3 2.4 benthopelagic longitudinal Omnivorous 

Parambassis wolffii 24.4 3.7 demersal floodplain resident invertivore/piscivore 

Setipinna melanochir 40.3 3.88 pelagic-neritic longitudinal Carnivorous 

Boesemania microlepis 122 3.7 benthopelagic Lateral invertivore/piscivore 

Hampala dispar 42.7 3.7 benthopelagic floodplain resident invertivorous 

Puntius brevis 14.6 2.91 benthopelagic floodplain resident Omnivorous 
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Coilia spp. 31.7 3.7 pelagic longitudinal Carnivorous 

Albulichthys albuloides 36.6 2.8 benthopelagic longitudinal Omnivorous 

Amblyrhynchichthys truncatus 48.8 2.4 benthopelagic longitudinal Omni/Herbivorous 

Oxyeleotris marmorata 79.3 3.9 demersal longitudinal Carnivorous 

Belodontichthys truncatus 73.2 4.1 demersal longitudinal piscivorous 

Pangasius larnaudii 130 3.3 benthopelagic longitudinal Omnivorous 

Wallago attu 240 3.68 demersal Lateral piscivorous 

Parachela siamensis 18.3 3.4 pelagic Lateral Canivorous/insectivorous 

Pangasius spp. 36.6 3.2 benthopelagic longitudinal Omnivorous 

Polynemus multifilis 30.5 3.5 demersal longitudinal Carnivorous 

Micronema spp. 24 3.7 benthopelagic longitudinal Carnivorous 

Ompok hypophthalmus 36.6 3.9 demersal floodplain resident invertivore/piscivore 

Systomus orphoides 30.5 2.9 benthopelagic longitudinal Omnivorous 

Chitala ornata 122 3.7 pelagic floodplain resident invertivore/piscivore 

Leptobarbus hoevenii 122 2.8 pelagic Lateral Omnivorous 

Trichopodus pectoralis 25 2.8 benthopelagic floodplain resident Omnivorous 

Pao cambodgiensis 18.7 3.3 demersal Lateral Omnivorous 

Kryptopterus cryptopterus 35 3.5 benthopelagic floodplain resident invertivore/piscivore 

Cosmochilus harmandi 100 2 benthopelagic longitudinal Omnivorous 

Yasuhikotakia spp. 30.5 3.4 demersal longitudinal invertivorous 

Probarbus jullieni 183 3.17 demersal longitudinal Omnivorous 

Parambassis apogonoides 12.2 2.87 demersal floodplain resident invertivore/piscivore 

Barbonymus altus 24.4 2.4 benthopelagic Lateral Omnivorous 

Gyrinocheilus pennocki 34.2 2.5 demersal longitudinal algivore/detritivore 

Achiroides leucorhynchos 9.8 3.5 demersal longitudinal invertivorous 

Channa lucius 48.8 3.9 benthopelagic floodplain resident Carnivorous 
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Chapter VII: Summary, conclusion and perspectives 

 

7.1 Summary 

Overall aims: Fish and fisheries resources have been the primary protein resources and 

consumed worldwide and income for people living in developing countries. In Cambodia, a 

large amount of resources are exploited from Tonle Sap Lake, which is the largest natural lake 

in Southeast Asia. Tonle Sap Lake is also a diverse and productive lake that host more than 

296 fish species. Therefore, this lake plays an important role in supporting protein sources for 

nearly two million Cambodians and other people in the region and contribute approximately 

60% to the total protein intake of Cambodian people. Moreover, fish species also served the 

significant role in the ecological and biological process of the system. Despite the ecological, 

biological, and economic importance of the Tonle Sap Lake, knowledge on fish distribution 

patterns, temporal changes, migration and the habitats of the fish were little known.  

Here, this study intends to  

(1) Investigate the spatial and temporal dynamics of fish community composition.  

(2) The effects of the environmental factors on the spatial and temporal distribution of 

fish species. 

(3) The effects of fishing lot abolishment on fish biomass, and community structure in 

the Tonle Sap Lake. 

Locations: The study has been conducted in the Tonle Sap System (TSE): Tonle Sap Lake and 

Tonle Sap River, a tropical flood pulse system, Cambodia. Herein, the study the spatial range 

approximately 300 x 300 km. Tonle Sap Lake is situated in the central of Cambodian 

consisting of the largest wetland area in Southeast Asia. Also, the Tonle Sap River, with 120 

km long, connects the Tonle Sap Lake to the Mekong River. Tonle Sap System is a complex 
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flood-pulse system which its water level was characterized by the flood waters of the Mekong 

River regulated by tropical monsoon climate.  

Data collection: In this study, we used three different data sets: 

 The commercial fishing lot operation data (large-scale fishing): Data were collected 

from the 33 fishing lots around the Tonle Sap Lake from 1994-2000. This dataset was 

used in chapter III and chapter IV (please see details). 

 The catch monitoring data (small-scale fishing): Data were collected from Tonle Sap 

Lake and TSR from 2012-2015. Statistical analyses applied in this study included.  

 The small-scale fishing (mobile gear fishing) around Tonle Sap Lake: Data were 

collected from the mobile gear from 1995-2000.  

Statistical analyses: In this study, we used many statistical and modelling approaches: 

 Clustering analysis: Hierarchical Clustering. 

 Multivariate analyses: Non-metric Multidimensional Scaling (NMDS), Principal 

Component Analysis (PCA), Analysis of Similarity (ANOSIM) and Similarity 

Percentage (SIMPER). 

 Predictive models: Linear Model (LM) and Generalised Linear Model (GLM).  

 Time-series analyses: cross-wavelet transform (CWT) and cross-correlation function 

(CCF). 
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Main results: 

Spatial and temporal changes in fish yields and fish community 

Overall, the results showed that fish communities of fishing lots (a large-scale fishery) 

in Tonle Sap Lake from 1994 to 2000 were dominated by a few main commercial fish species: 

Channa micropeltes, Pangasianodon hypophthalmus, Channa striata, Cyclocheilichthys 

enoplos, Henicorhynchus spp., Barbonymus gonionotus, Micronema spp. and Trichopodus 

microlepis that accounted for 58% of the overall fish catch of the lake. Their total catches are 

temporally declining, except Trichopodus microlepis. The total biomass was found to be 

positively correlated with the water level fluctuation, indicating its significant role in shaping 

fish biomass in lot fisheries. There were two fish assemblages: northern assemblage, that 

mostly characterised by black fishes, and southern assemblage, that was mainly linked to white, 

grey and estuarine fishes. The fish species assemblage from earlier years (1994 and 1995) was 

characterised by the abundance of all functional groups of black-white-grey fish species, but 

more recent years (1996 to 1999) were linked to white and grey functional groups, which was 

explained by a decrease in many blackfish species. 

The effects of the local habitat and climate descriptors on fish distribution 

Regarding the spatial distribution of the main commercial species, there was a strong 

variability in fish biomass across fishing lots. Some lots consistently had similar fish biomass 

levels across time, whereas other lots showed quite unstable fish biomass levels. Interestingly, 

for most of the species, most high biomass fishing lots, consistently had high biomass levels 

for the considered species, despite a substantial temporal variability among the catches. From 

a spatial perspective, fish species distributions were not homogeneous within Tonle Sap Lake 

differed among species. The snakehead C. micropeltes was most abundant in the central-

northern part of the lake, although low abundances were found in the extreme northern area 

of the lake. C. striata and T. microlepis were more abundant in the northern part of the lake. 
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In contrast, C. enoplos, B. gonionotus, P. hypophthalmus, and Henicorhynchus spp. biomass 

levels were highest in the southern part of the lake. Micronema spp. was also abundant in a 

few southern areas of the lake but also occupied a few areas in the northern part of the lake. 

The heterogeneous distributions of fish species were governed by distinct combinations of 

habitat characteristics and climatic factors. The biomass of C. micropeltes, C. striata and B. 

gonionotus were negatively correlated with the percentage cover of the agricultural field. P. 

hypophthalmus were positively correlated with the percentage cover of flooded forest and 

open water. C. enoplos and T. microlepis were positively associated with the percentage cover 

of open water. In term of climate condition, the temperature was negative to longitudinal 

migratory fishes, but positive to floodplain resident fishes. Moreover, the longitudinal 

migratory fish were positively correlated with precipitation, but negatively associated to 

floodplain resident fishes. 

Temporal dynamics of small mud carp species Henicorhynchus lobatus and H. siamensis in 

the flood pulse system 

The results illustrated that H. lobatus and H. siamensis can co-occur together, but the 

synchronisation and movement of H. lobatus always lead those of H. siamensis. The annual 

re-occurrence (a long periodicity) of each species was detected in NL between October and 

December, while their monthly re-occurrence (a short periodicity) was mainly observed in OR 

from December to February. Moreover, after water recession in Tonle Sap Lake, H. lobatus 

individuals began to retreat earlier than H. siamensis individuals. However, H. lobatus species 

retreats (~2.3 km/day) slower than H. siamensis species (~7.9 km/day), but they retreated at 

similar speeds when they reached the outlet river (TSR) at ~16 km/day. These patterns were 

found to correspond to the variations in water levels across the TSE, suggesting that the flow 

pulse is one of the main factors responsible for the temporal dynamics of the small mud carp 

species in the TSE. 
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The effects of fishing lot abolishment on fisheries and fish community structure 

We detected a stable trend in fish biomass in the before fishing lot abolishment period, 

whereas the temporally decreasing trend was observed in the after fishing lot abolishment 

period. Moreover, there was a significant change in fish community composition before and 

after fishing lot abolishment. Specifically, we found that although some species were not 

affected by the fisheries reform, others had an increasing or decreasing trend according to the 

species. Overall, the fisheries policy reforms positively benefited the small fish species with 

short distance migration, low trophic level, and inhabiting the surface of the water column. In 

contrast, the fisheries reforms negatively affected the large benthic fish species with long-

distance migration and high trophic level. To sum up, the decline in the fish biomass of the 

lake was affected by the fact that the local fishers attempt to exploit the common-pool fisheries 

resources of the lake as much as they can without thinking the adverse effects while the 

community fishing areas are freely accessible to fishing. This framework coined as “the 

tragedy of the commons”, could generate a decline of fish resources in the Tonle Sap Lake.  
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7.2 Main conclusion and remarks 

Spatial and temporal change in fish yields and fish assemblage 

The results provided evidence that Tonle Sap Lake was dominated by few  commercial 

fish species: Channa micropeltes, Pangasianodon hypophthalmus, Channa striata, 

Cyclocheilichthys enoplos, Henicorhynchus spp., Barbonymus gonionotus, Micronema spp. 

and Trichopodus microlepis. In short, we found that all these dominant fishes were temporally 

declined, except Trichopodus microlepis. Meanwhile, we noticed that the large fish species 

were temporally decreased and small fish species increased, thus creating the change in fish 

community structure and food web. Removal of the predatory fish could reduce the mortality 

rate of predation and gain a high probability of survival for prey or small fish species 

(Andersen & Gislason, 2017). The prey or small fish species, which is usually controlled by 

the predatory fish, appeared to have benefitted from the collapse of the large top predator fish 

species from the ecosystem (Andersen & Gislason, 2017). Thus, removal of the largest fish 

species that are the top predators could have a substantial top-down effect on food web 

dynamics. The collapse of the large predatory fish affects not only the subset of the target 

species but also the entire fish community of ecosystem. Also, fish yields of Tonle Sap Lake 

are positively correlated with the water level variations, indicating that the water fluctuation 

is a key determinant regulating the fish yields of Tonle Sap Lake. Also, Tonle Sap fish 

communities are divided into two assemblages: northern assemblage (mainly characterised by 

black floodplain residence fish species) and southern assemblage (mainly characterised by the 

white-migratory fish species). Specifically, the fish yields, species richness and indicator 

species of the southern assemblage were significantly higher than those of northern 

assemblage. Thus, the results suggest that southern assemblage is the potential area for both 

yields and species richness where should be considered for the protected area, especially this 

area form the crucial zone that connects the fish species between lake and river. This 
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information is of importance that could be used in making the decision for the particular area 

protection.  

The influence of the local habitat and climatic factor on the distribution of fish species 

Overall, there was a strong variability in fish biomass across fishing lots. Some lots 

consistently hosted similar fish biomass levels across time, whereas other lots showed quite 

unstable fish biomass levels. Interestingly, for most of the species, most high biomass fishing 

lots, consistently had high biomass levels for the considered species, despite a substantial 

temporal variability among the catches. From a spatial perspective, fish species distributions 

were not homogeneous within Tonle Sap Lake and differed among species. The distribution 

of species was governed by distinct combinations of local habitat characteristics and regional 

climatic factors. Thus, the local habitats and regional climatic descriptors play a significant 

role in shaping the distribution of considered fish species in Tonle Sap Lake. Moreover, the 

results demonstrated that each species had distinct habitat preferences, supporting the 

hypothesis emphasised that the responses of fish species to their environmental determinants 

are species-specific (Kolosa, 1989). The distribution of each species was not determined by 

the same environmental factors (Buisson, Blanc, & Grenouillet, 2008). Thus, responses of 

considered fish species to their environmental determinants are species-specific.  

The spatial heterogeneity of fish biomass levels within the Tonle Sap Lake provides 

important information for the management of the fish resources of the lake. First, some areas 

consistently have high fish biomass levels across years. For example, this is the case for lot 

T02, which is characterised by high biomasses of C. enoplos, B. gonionotus, Henicorhynchus 

spp., and Micronema spp. Herein, Lot T02 was characterised by two main habitat types, i.e. 

flooded forest (70%) and open water (30%), and there was no agricultural fields habitat. The 

large percentage cover of the flood forest and open water are very important to sustain the 

abundant biomass of C. enoplos, B. gonionotus, Henicorhynchus spp., and Micronema spp. in 

this location. Thus, specific attention should be given to the conservation of the environmental 
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quality of this lot to maintain the productivity of the four considered species that account for 

more than 42% of the Tonle Sap Lake catches. Second, among the eight considered species, 

different distribution patterns were observed, and some specific lots could be very important 

for one species but not for the others. For instance, lot P06 sustains more than 71% of P. 

hypothalamus biomass, whereas all the other lots sustain low biomass levels (less than 29%) 

of this species. This lot were composed of three habitat types: flooded forest (50%), open water 

(45%) and agricultural field (5%). The local habitat, which mainly characterised by flooded 

forest and open water, is a key factor that makes P. hypothalamus abundantly present in this 

lot. Third, among the eight species, only C. micropeltes was abundant in a substantial part of 

the lake, and the seven other species have much more restricted distributions. Overall, this 

information confirms that focusing conservation actions on a few, well-designed lots that have 

a high level of fish biomass for each species might be profitable for sustaining the fish biomass 

and productivity of the eight major Tonle Sap Lake species. 

Understanding the species-habitat relationships provides useful information to better 

understand the fish species environmental requirements and conserve local fish productivity, 

but this information might also be used to favour fish productivity in some areas of the lake 

that experience lower fish biomass levels. For instance, in this study, we showed that C. 

micropeltes, C. striata and B. gonionotus were adversely correlated with agricultural field and 

none of the fish species benefitted from agricultural landscapes, and therefore, these 

agricultural lands could be considered an equivalent to flooded forests to sustain fish 

populations. We, therefore, encourage not only conserving flooded forest areas that are known 

as crucial for tropical aquatic ecosystem functioning (Hughes, 2003; WWF, 2017) but also 

maintaining adequate habitats for most fish species. 

Finally, the results, based on 1994-2000 fish catch data, might not reflect the current 

situation in the Tonle Sap Lake, since human pressure has substantially changed over the past 

two decades (Baran & Gallego, 2015; NIS, 2013), with likely consequences on both aquatic 
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habitats and land-use. It would, therefore, be useful to determine the extent to which the spatial 

distribution of current fish catches fit with the patterns we reveal and to analyse land-use 

changes experienced by the Tonle Sap Lake during the past two decades. Similarly, global 

climate change likely affected fish distributions, and as demonstrated here, climate and 

precipitation are likely to affect species differentially. We, therefore, recommend an update of 

the fish and environment data on the Tonle Sap Lake, while the results of the present paper 

could serve as a reference to quantify the changes in fish biomass levels and distributions in 

the lake. This need is of paramount importance to establish temporal trends on fish biomass in 

the Tonle Sap Lake and therefore manage and sustain the fish resources of the lake that are 

crucial to a large part of the Cambodian people (Ahmed, Hap, Ly, & Tiongco, 1998; Lieng & 

Zalinge, 2001). 

Temporal dynamic of two small mud carp species in the flood pulse system 

Investigating the spatial and temporal dynamics of fish species enables ecologists and 

fisheries managers to better understand variation in their occurrence, synchronisation, peak 

abundance and movement patterns, and the key factors driving such variation. By using 

modern time-series modelling approaches, i.e. the CWT and CCFs, to analyse high-resolution 

time-series data, we found that for this study, the two small mud carp species can co-occur 

together, but the synchronisation and movements of H. lobatus always lead those of H. 

siamensis. The annual re-occurrence (a long periodicity) of each species was detected in NL 

between October and December, while their monthly re-occurrence (a short periodicity) was 

mainly observed in OR from December to February. Moreover, after water recession in the 

Tonle Sap Lake, H. lobatus individuals began to retreat earlier than H. siamensis individuals. 

However, the former species retreats (~2.3 km/day) slower than the latter species (~7.9 

km/day), but they retreated at similar speeds when they reached the outlet river (TSR) at ~16 

km/day. These patterns were found to correspond to the variation in water levels across the 

TSE, suggesting that the flow pulse is one of the main factors responsible for the temporal 
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dynamics of the small mud carp species in the TSE. Therefore, the seasonality and 

predictability of the Mekong River should be maintained to sustain the natural dynamics of 

fish species (e.g. the periods of recruitment, synchronisation, peak abundance and movements) 

that have long developed and adapted to such a flood-pulse system. The timing of migration 

and swimming speed of the two species identified in this study should be an important part of 

regulation or policy consideration to better manage and conserve the two species. The ability 

of the CWT to analyze coherency enabled us to highlight the co-occurrence and 

synchronisation periodicity of two species, whereas the CCF allowed us to determine the link 

between the flow pulse and fish abundance and identify the lag between the peak water peak 

and fish synchronisation. The CCF thus allows us to identify the role of flood-pulse in the 

dynamics of fish species in the TSE at spatial and temporal scales. 

Understanding the occurrence, synchronisation, and movement patterns of fish species 

and the influence of water level variation on their spatial and temporal dynamics provides 

useful knowledge to better understand fish species migration and behavioural ecology 

(Løkkeborg et al., 2002; Mcgill et al., 2006; Peoples and Frimpong, 2016; Pollock et al., 2014; 

Ruetz et al., 2005). This knowledge can be used to support more effective monitoring, 

management and conservation efforts at local and larger spatial and temporal scales. For 

instance, the timing of the retreat of the two species identified in this study delivers useful 

insights that can be used to support regulations and policy initiatives aiming for better 

management and conservation of the two species. Good initiatives will allow adult individuals 

to complete the next step of their life cycle, i.e. to freely pass through the TSR during their 

peak abundance. These individuals can consequently reach the refuge, spawning, rearing and 

feeding grounds in the upstream portions of the Mekong River, and its major tributaries and 

can thus sustain the annual production.  

Furthermore, our findings can act as a fundamental baseline for investigations of other 

economically and ecologically important species. In the case that further studies investigating 
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different keystone species find similar synchronisation and peak abundance periods and 

similar movement patterns and timing in their retreats, these results will together provide key 

knowledge to support better monitoring and management of fisheries resources in the TSE. 

Also, the spatial and temporal dynamics of fish are found to be fine-turned with the natural 

flow-pulse variation. Maintaining such conditions are therefore necessary for fish species to 

migrate to complete their life cycles. Human actions such as hydropower dams that alter 

natural flow-pulses of the Mekong, i.e. change in flow seasonality and predictability is highly 

likely to also alter fish assemblage structure and their composition, fish migration patterns and 

spawning decisions which consequently have severe implication on fish reproductive, rearing 

and feeding successes (Ngor et al., 2018b). Finally, our study demonstrated that the CWT and 

CCF are useful time-series modelling approaches for investigating the phase relationship, joint 

periodicity, and the time-lagged relationship between environmental parameters (e.g. water 

level) and fish species in the flood-pulse ecosystems.  

The effects of the commercial fishing lots abolishment on fisheries, fish community 

composition and structure 

We found that the fisheries policy reforms/commercial fishing lots abolishment in the 

Tonle Sap Lake enabled a decreasing trend in overall fish biomass of the lake. Such pattern 

could be explained by the fact that while the community fishing area is freely accessible to 

fishing, the local fishers attempt to harvest the common-pool resources of fisheries as much 

as they can without thinking the adverse effects; this scenario is called “the tragedy of the 

commons” (Hardin, 1968). In this regards, within the public or open access resources, people 

are less responsible for the management and conservation of the resources and less 

consideration of regulation (Welcomme et al., 2010). Likewise, while the fishers still had some 

fishing gears in their hands, the large-scale operation was still happening in the Tonle Sap 

Lake as the law enforcement was insufficient (Cooperman et al., 2012). Moreover, the 

management capability of community fisheries is limited, in which the abilities to control and 
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detect illegal fishing practices is low (Ratner, 2006). In management perspective, designing 

the responsibility and accountability for the stakeholders for Tonle Sap Lake fisheries 

management, i.e. community, fishers, authorities, NGOs, and others institutions, was not 

precise (Cooperman et al., 2012; Ratner, 2006). With the transition from commercial fishing 

lots to the community, the management was shifted from the private sector to under control of 

the local communities (for community fisheries and protected area) and the centralised 

authority (for open area). Ineffectiveness of the management generally lies with the centralised 

authorities because they cannot access the substantial area comprising complex habitat, 

multiple species and fishing gear (Welcomme et al., 2010). 

Moreover, the results illustrated that the fisheries policy reforms enabled a change in 

fish community composition and structure in the Tonle Sap Lake. Specifically, we found that 

although some species were not affected by the fisheries reform, others had an increasing or 

decreasing trend according to the species. Overall, the fisheries policy reforms positively 

benefited the small fish species with short distance migration, low trophic level, and inhabiting 

the surface of the water column. In contrast, the fisheries reforms negatively affected the large 

benthic fish species with long-distance migration and high trophic level. Meanwhile, the 

dynamics of fish community composition and structure were influenced by the fact that the 

fish population had been indiscriminately fished (McCann et al., 2015; Ngor, McCann, et al., 

2018). Furthermore, removing the top predators of the community enables an alteration of 

community structure and food web of the ecosystem (Frank, Petrie, Choi, & Leggett, 2005). 

The failure of the Cambodian fisheries policy reforms were affected by the low effectiveness 

of fisheries resource management and insufficient law enforcement capacity that drive the 

overharvesting, and illegal fishing practices, and flooded forest habitat loss (Ratner, 2006). If 

the law enforcement is sufficient, the fisheries policy reforms or the commercial fishing lot 

abolishment might significantly and positively contribute to maintain fishery productivity and 
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protect the biological diversity, and improve the sustainability of the Tonle Sap Lake fisheries 

(Cooperman et al., 2012). 

The overall fisheries trend and community structure of the Tonle Sap Lake provided 

by this study are of paramount importance for initiating the management policies and decision 

making. Moreover, the results from this study provided a baseline and lesson learn for fisheries 

resources management for other lakes. The failure of the removal of the commercial fishing 

lots that allows a decline in fish biomass from the Tonle Sap Lake provided a message for 

fisheries ecologists, policymakers and Royal Government of Cambodian for fisheries 

resources management. Given that the removal of the commercial fishing lots negatively 

impacted on the large benthic fish species with the long-distance migration, thus we 

recommend focusing on the management and conversation of the species considered that form 

the top predators through the balanced harvesting or reducing the fishing effort or capacity to 

an acceptable level (Pauly et al., 2002). The balanced harvesting, by fishing individual of 

species according to their productivity status, could reduce the adverse ecological effects of 

fishing on the community and sustain fisheries resources (Garcia et al., 2012; Jacobsen, 

Gislason, & Andersen, 2014). The protection and conservation of the large fish contributed to 

support the sustainability of fisheries and ecosystem (Birkeland & Dayton, 2005). Moreover, 

law enforcement and regulation should be highly taken into consideration because it could 

avoid the overharvesting and could maintain and sustain the fisheries resources (Welcomme 

et al., 2010). We also suggest considering the conservation of the flooded forest to maintain 

fish productivity and ensure sustainability of the fisheries resources in the lake.  
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7.3 Perspectives 

The information and insight of the fish ecology, distribution, migration and fisheries 

management and implication provided by this study are of paramount importance contributing 

to gain knowledge from Tonle Sap Lake. However, there are much more works needed to be 

studied and taken into consideration. In the future, I am interested to assess the overall fisheries, 

fish community composition and structure captured from the large-scale fishing (the operation 

of the commercial fishing lots) and small-scale fishing (mobile gear fishing at family level). 

This assessment can contribute to providing useful and fundamental evidence responding to 

the research questions: (1) Is the large-scale fisheries had more intensive pressure on the TLS 

fisheries than the small-scale fisheries? (2) Is there a difference in fish community composition 

and structure between these two fisheries types (large and small-scale fisheries)? (3) Is the fish 

captured from the different fisheries related to the morphological types? Does large scale 

fisheries capture large fishes and does the small-scale fisheries capture small fishes? Or both 

fisheries capture mixed small and large fishes?  It was believed that the large-scale fishing is 

more pressure on Tonle Sap fisheries than small-scale fishing resulting in the removal of the 

commercial fishing lots from Tonle Sap Lake as well the Cambodian Mekong watershed. Then, 

if the results provide the evidence that the small-scale fishing had more pressure on Tonle Sap 

Lake fisheries than the large-scale fishing, we can provide more evidence to convince the 

failure of the government decision in the transition of the fishing lot-based management to 

community fisheries along with the results of chapter IV. In addition, this analysis could 

provide evidence about the characteristics of fish community composition and structure of 

these two kinds of fishing. Thus, the results would provide evidence about types of fishing in 

each, i.e. selective fishing or indiscriminate fishing or fishing down the food web? 

Moreover, there is a need to understand the relationship between the fish market price 

and body length and size of fish species. This study would allow us to define how the fish 

market prices affected the catch of the large fish species by the fishers in Tonle Sap Lake while 
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it was believed that the fish market prices have potential effects on the removal of the large 

fish (Tsikliras & Polymeros, 2014). Moreover, it is recommended to use the stage-based model 

to estimate the effects on stocks and revenues from the harvest (Reddy et al., 2014). It is also 

interesting to study the temporal trend in fish market prices and define their mediating effects 

on fish population and a change in fish community composition and structure in Tonle Sap 

Lake following the framework in (Reddy et al., 2014). If the data is available, it is more 

interesting to investigate the influence of the fish market prices on the fish consumption for 

food.  

 In addition to the effects on environmental factors on species distribution (chapter V), 

it is interesting to study the combined effects of the local habitat and biotic interaction on 

species distribution. For instance, it was suggested to highlight the biotic interaction and 

habitat drive positive co-occurrence between a paired-wise species (Peoples & Frimpong, 

2016). Thus, we can use a two-species occupancy modelling approach to decouple the relative 

effects of biotic and abiotic interactions on co-occurrence of a paired-wise species. Using this 

approach, we the importance of negative biotic interactions (predation) and positive 

interactions (mutualism and facilitation) on co-occurrence of fish species. For instance, the 

biotic interaction and habitat descriptors shape the positive/negative co-occurrence between 

Channa stratia and Trichopodus microlepis, as well as those drive co-occurrence between 

Channa micropeltes and Henicorhnychus spp. Furthermore, many species in the system may 

be related to each other, thus it is also recommended to understand co-occurrence by modelling 

species simultaneously with a joint species distribution model (JSDM) (Pollock et al., 2014) 

and to understand more interaction between species using a multispecies occupancy model 

(Rota et al., 2016). 

 In order to give complementary information with temporal dynamic and migration of 

fish species in flood pulse system (chapter VI), it is needed to investigate the population 

dynamics of species in Tonle Sap Lake and its tributaries. For instance, how much the 
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population of Henicorhynchus spp migrate to each tributary, i.e. Steueng Sangke River, 

Steueng Siem Steueng Reap River, Stueng Sen River, Steung Chinit River and Steung Pursat 

River.  

 Moreover, the linkage between gear selectivity and fish morphological traits. Then, we 

predict the fish species from different fishing gears (e.g. trap, gillnet, seine net, hook…) 

according to the morphological traits of fish species (body length, body depth, eye diameter 

and others). The details of morphological traits were given in (Toussaint, Charpin, Brosse, & 

Villéger, 2016). This analysis enabled us to define how the fish species in fishing gears related 

to morphological traits.   

Finally, it is more interesting to deeply highlight functional diversity by linking the 

abundance data and morphological traits (see more morphological traits in Toussaint et al. 

2016). With this perspective, we can investigate the spatial variations of the functional indices 

(functional richness, evenness, divergence and dispersal) in Tonle Sap Lake (i.e. the northern 

Tonle Sap Lake, southern Tonle Sap Lake or transitional zone, and TSR) and identify the 

environmental determinants shaping the changes in functional indices in Tonle Sap Lake, 

following the framework provided in (Brown et al., 2017). This analysis would give additional 

information in complement to the spatio-temporal change in beta-diversity provided by (Heng, 

Chevalier, Laffaille, & Lek, 2017). It is much more interesting to highlight the assembly rule, 

the comparison of the taxonomic richness and functional richness. 
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