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Introduction

Overview

For best productivity and less defaults, industrial systems have to be more and more

powerful [Zhou et al., 1996, Antoulas, 2005a, Youse�, 2007]. Hence, mechatronic sys-

tems appear to be increasingly useful. It is well-known that obtaining reasonable math-

ematical models is fundamental to the analysis and the design of dynamic systems.

Nowadays, modelling tools are leading to an increasing fairly complex models. However,

simpler models are easier to understand, to maintain and to implement. The process

of deriving a low-order model from a high order one is known as Model Order Reduc-

tion MOR. From control point of view, another problem is accrued with the signi�cant

progress work on robust and optimal control design. This latter has allowed to improve

considerably the controlled systems performance. Nevertheless, controllers stabilising

high order models and achieving a speci�ed high performance are generally of higher or-

der than the model itself. The complexity of the obtained high-order controllers restricts

their real-time operation in embedded systems and increases their implementation costs.

Then, the reduction of the controllers order is a needful design step. This gave rise to

the so-called Controller Order Reduction COR problem. This approximation step has

to preserve the closed-loop stability and the required performance. Generally, three

ways can be used to reduce the controllers order [Anderson and Liu, 1989] according to

Figure 1:

1. The �rst approach is to design a reduced-order model directly from the high order

system [Yeh et al., 1994, Ly et al., 1985, Gangsaas et al., 1986, Bernstein, 1989,

Hyland and Richter, 1990, Fischer and Gutman, 1991]. The main lack of this

kind of methods is that the order of the reduced-controller has to be chosen by

an ad-hoc way [Goddard, 1995].

2. The second way is to reduce the model using a MOR method [Antoulas, 2005b],

and then design a controller for the obtained reduced model. The disadvantage of

this indirect method is that the resulting error from reduction process will not be

taken into the controller design step. And as a result, the reduced order controller

is not guaranteed to stabilise the full order model [Kong, 2012].

3. The third way is to �rstly design a full-order controller and then, reduce it while

preserving the properties of the closed-loop system.

The proposed work will mainly focus on the third path.



xiv List of Tables

Contributions Organisation

H∞-Controller order reduction for LTI-systems has been pretty investigated in the last

four decades. However, a dearth of survey study exists in this �eld. In this disserta-

tion, we propose a global review synthesis study that handle every edge of the funda-

mental scheme in Figure 1 [Zebiri et al., 2013]. Moreover, a real engineering problem

derived from an industrial requirements speci�cation is considered to test the e�ec-

tiveness of the existing methods [Zebiri et al., 2014b]. We also perform a robustness

study to evaluate the validity of the methods regarding the possible parameters varia-

tion [Zebiri et al., 2014a]. Furthermore, and based on the signi�cant recent researches

for LTI-case, we propose a new extension study to the LPV-case. Indeed, from an

H∞-LPV-full-order controller, a reduced order one is derived. This latter is guaranteed

stabilising and the closed-loop performance are achieved. The new method allows a bet-

ter approximation in a limited frequency range. In addition, the approximation error

between the original full order and reduced-order closed-loops is guaranteed bounded.

Assumptions and the validation domain of the proposed method are carried out. Gen-

eralised Gramian framework is explored in order to keep the particular structure of the

this order reduction. Finally, the developed LPV-order reduction algorithm is evaluated

in an real engineering application. Indeed, an H∞-LPV-control design is considered for

an automotive-suspension system. This evaluation demonstrates that our proposed

technique is e�ective with better performance against an other methods available in the

literature [Zebiri et al., 2016b, Zebiri et al., 2016a] .
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Then, this thesis is divided into four chapters:

Chapter 1 presents some backgrounds on control theory. The mathematical framework of

the used signals and systems is �rst introduced. Then, essential linear algebra

notions are recalled. From the fact that this thesis deals with continuous LTI and

LPV-systems, the two classes are fully highlighted. Indeed, the LTI representation

and the associated norms are given. For LPV-systems, a non-exhaustive study on

their modelling is given in the end of this chapter.

Chapter 2 investigates the H∞-control theory. The continuous LTI case is �rst considered

where both stability and performance constraints can be guaranteed with an H∞-

controller. The H∞-control problem is presented and the synthesis procedure

is given. By stating that this procedure provide controllers with high order, a

second low order procedure is studied. In fact, the �xed-order way is presented

and existent algorithms are reviewed. Finally, a similar study is done for the

LPV-case where stability and control synthesis are discussed. A special attention

is given to the LPV-polytopic models.

Chapter 3 is devoted to a new controller order reduction method to LPV-systems. In this

chapter, model order reduction problematic for LTI-systems is �rst introduced.

Methods based on singular value decomposition are highlighted then used in a

closed-loop scheme to reduce the H∞-controllers order. Based on this, an exten-

sion to LPV-case is proposed. The obtained H∞-LPV-controller is guaranteed

stable and the approximation error is bounded. In addition, the big advantage of

this method is the possibility to perform the order reduction in a chosen limited

frequency range.

Chapter 4 gives a complete evaluation of the studied controller order reduction methods.

The COMPleib benchmark library is �rst considered. The �xed order techniques

are evaluated among some control problems of this benchmark. In addition, a

comparison with the order reduction way is also performed using the COMPleib

library problems. The second evaluation concerns the order reduction of an H∞-

LTI-controller for an active suspension system. The investigated techniques in the

previous chapter are implemented and tested. Finally, the developed method for

H∞-LPV-controller order reduction is evaluated on semi-active suspension sys-

tem. The stability of the reduced order controller is tested and the approximation

error si shown bounded. The e�ectiveness of the method is con�rmed by the per-

formance test where the obtained controller deals well with the comfort and the

read handling performance requirements.

Conclusive remarks with short outline about possible further developments are given

in the Conclusion and Perspective section. Finally, some details about the nu-
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merical considerations and algorithms for the H∞-�xed-order synthesis are given in

Appendix A.
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2 Chapter 1. Preliminaries and Background

Introduction

This chapter presents basic de�nitions and elementary results in linear algebra and

system theory. The treatment of this material is not exhaustive but should be su�cient

as a reference for the future chapters.

In Section 1.1, signals and systems spaces are de�ned. In fact, the several results and

methods presented in this dissertation, concern speci�c system classes. Then, a general

framework about the used signals and systems is presented in this section. In addition,

general background about norms is then highlighted.

In Section 1.2, essential results on linear algebra are given. Indeed, notions like Linear

Fractional Transformation or Hamiltonian matrices are very important for the sequel

of this dissertation. Several de�nitions about matrix manipulation are also given.

In Section 1.3, descriptions for Linear Time Invariant (LTI) systems and their norms

are presented. Moreover, important results in control theory are also given.

Thereafter, the Linear Parameter Varying (LPV) systems are introduced in Section 1.4.

Some historical facts are shown �rst. Then, a non exhaustive listing about the existing

LPV-models are presented .

1.1 Signal and System Descriptions

This section reviews some standard notations and de�nitions about signals and systems.

Essential elements about dynamical systems and theirs representations are recalled. In

particular, notions about norms are given.

1.1.1 Signal Spaces and Norms

The signal space used in this dissertation is the basic Lebesgue space L2 de�ned as

follows

De�nition 1.1.1 (L2-space) [Lee, 1997] The space L2 is the set of all real,

one sided measurable functions x : R+ → Rn ; t 7→ x(t) for which

‖x‖2 ∆
=
√∫ +∞

0 ‖x(t)‖22dt is �nite. The quantity ‖x‖2 is called the L2-norm of

x.

From this de�nition, an operator norm can be derived: the so-called induced L2-norm

is de�ned as follows
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De�nition 1.1.2 (Induced L2-norm) [Lee, 1997] Given the linear operator

H : L2 → L2, the quantity

‖H‖i,2 ∆
= sup

x∈L2
x 6=0

‖Hx‖2
‖x‖2

= sup
x∈L2
‖x‖2=1

‖Hx‖2 (1.1)

(if �nite) is called the induced L2-norm of H.

In connection with L2-norm space and their associated norms, the L∞-norm is given

as follows

De�nition 1.1.3 (L∞-norm) [Lee, 1997] the set space L∞ is called the set of all

real, one-sided, measurable functions x : R+ → Rn | t 7→ x(t) for which ‖x‖L∞
∆
=

supt≥0 ‖x(t)‖2 is �nite. ‖x‖L∞ is called the L∞-norm of x.

Then, referring to De�nition 1.1.2, a similar induced norm fo L∞-space is given as

follows.

De�nition 1.1.4 (Induced L∞-norm) [Lee, 1997] Given a bounded input,

bounded output linear operator H : L∞ → L∞, the quantity

‖H‖i,∞ ∆
= sup

x∈L∞

‖Hx‖L∞
‖x‖L∞

= sup
x∈L∞
‖x‖L∞=1

‖Hx‖L∞ (1.2)

(if �nite) is called the induced L∞-norm of H.

These various de�nitions about norms are very useful for Chapter 2 and Chapter 3.

1.1.2 System Spaces

In control theory, dynamical systems are mostly modelled and analysed in the context of

the behavioural approach, where physical phenomena are described as a set of possible

signal trajectories.
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De�nition 1.1.5 (Dynamical System) [Polderman and Willems, 1991] A dy-

namical system G is de�ned as a triple

G = (T,W,B), (1.3)

with T (often a subset of R or Z) called the time-axis, W a set called the signal

space, and B a subset of WT called the behaviour. Then, WT is the standard

notation for the set of all maps from T to W.

Remark that this de�nition cover a large systems classes like Linear Invariant-Time

(LTI) systems [Polderman and Willems, 1991], Linear Parameter Varying (LPV) sys-

tems 1.4.1, Linear Time Varying LTV-systems [Bourlés and Marinescu, 2011] and even

Nonlinear (NL) systems [Khalil, 2000]. Then, two major properties of dynamical sys-

tems namely linearity and time-variance are de�ned as follows

De�nition 1.1.6 (Linear Dynamical System) [Polderman and Willems, 1991]

A dynamical system G is called linear, if W is a vector space and B is a linear

subspace of WT.

For the time invariance property, the following de�nition is given

De�nition 1.1.7 (Time-Invariant Dynamical System)

[Polderman and Willems, 1991] A dynamical system G is called time-invariant,

if T is closed under addition and qτB = B for all τ ∈ T, where q is the forward

time-shift operator, qτw(t) = w(t+ τ).

A particularly important class of systems which has both of these properties, are the

LTI-systems.

1.1.2.1 State-Space Realisation

For a linear system Σ, a state-space realisation S can be given as

Σ: S =





ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

x(0) = x0

∀ t ≥ 0, (1.4)

where the vector x(t) ∈ Rn is the state, u(t) ∈ Rnu is the input and y(t) ∈ Rny is the

output. When ny = nu = 1, the system is Single-Input Single-Output (SISO). It is

assumed that A : R → Rn×n, B : R → Rn×nu , C : R → Rny×n and D : R → Rny×nu are

bounded piecewise continuous functions of time. Generally, a solution for state-space

realisation is denoted by the so-called state transition matrix.
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De�nition 1.1.8 (State Transition Matrix) [Callier and Desoer, 1991] De-

�ne Φ : R× R → Rn×n
(t, t0) 7→ Φ(t, t0)

as the unique continuous solution to the homo-

geneous di�erential equation

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0) ∀t ≥ 0, (1.5)

with Φ(t0, t0) = In. The function Φ is called the state transition matrix.

This essential notion is used in Section 2.1.

1.2 Linear Algebra

This section presents some de�nitions and useful properties that occur essentially in

matrix algebra.

1.2.1 Linear Fractional Transformation

Linear fractional transformations (LFTs) provide a useful framework to formulate nu-

merous control problems. They are particularly convenient in H∞-control and the

uncertainty modelling and they are used to provide elementary results regarding feed-

back interconnections of matrices or systems.

Considering Figure 1.1, the following de�nition is given:

M

∆`

y1u1

z1w1

(a) Lower-LFT

M

∆u

y2u2

z2w2

(b) Upper-LFT

Figure 1.1: Linear Fractional Representation LFT



6 Chapter 1. Preliminaries and Background

De�nition 1.2.1 [Zhou et al., 1996] Let M be a complex matrix partitioned as

M =

[
M11 M12

M21 M22

]
∈ C(p1+p2)×(q1+q2), (1.6)

and let ∆` ∈ Cq2×p2 and ∆u ∈ Cq1×p1 be two other complex matrices. Then,

assuming that (I −M22∆`) 6= 0, the lower-LFT can be de�ned with respect to ∆`

as the map
F`(M, •) : Cq2×p2 → Cp1×q1

∆` 7→ F`(M,∆`)

such that

F`(M,∆`)
∆
= M11 +M12∆`(I −M22∆`)

−1M21. (1.7)

Assuming that (I −M11∆u)−1 6= 0, the upper-LFT can be de�ned with respect to

∆u as the map
Fu(M, •) : Cq1×p1 → Cp2×q2

∆u 7→ Fu(M,∆u)

with

Fu(M,∆u)
∆
= M22 +M21∆u(I −M11∆u)−1M12. (1.8)

In Section 1.4, 2.1 and 2.3, The LFT notion is widely used .

1.2.2 Hamiltonian Matrix and Riccati Equation

The so-called Algebraic Riccati Equation (ARE) is more general equation than the well-

known Lyapunov equation. Similar to this latter which is used in system analysis, the

ARE is most useful in control system synthesis.

De�nition 1.2.2 [Zhou et al., 1996] Let A,Q and R be n× n real matrices with

Q and R symmetric. Then an algebraic Riccati equation (ARE) is the following

matrix equation

ATX +XA+XRX +Q = 0. (1.9)

where X ∈ Rn×n. This Riccati equation can be rewritten as

[
X −In

]
H

[
In
X

]
= 0 (1.10)

with H
∆
=

[
A R

−Q −AT

]
is a 2n× 2n matrix called Hamiltonian matrix.
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Then, the following de�nition is given to introduce the domain Ric

De�nition 1.2.3 [Zhou et al., 1996] Giving X, the solution of (1.9), let us de�ne

Ric: dom(Ric) ⊂ R2n×2n → Rn×n
H 7→ X

(1.11)

1.2.3 Polynomial Criterion

This subsection is given to provide a closeness measure to a rank constraint of matrix.

In other words, how a rank constraint of a matrix can be expressed as function of its

characteristic polynomial.

De�nition 1.2.4 [Helmersson, 2009] The characteristic polynomial of a matrix

Z ∈ Rn×n is de�ned by

det(λI − Z) =
n∑

i=0

ci(Z)λi, (1.12)

where the coe�cients, ci(Z) are polynomial continuous functions of the elements

in Z. Some known coe�cients are given as

c0(Z) = det(Z), cn−1(Z) = trace(Z), cn(Z) = 1.

More properties of the characteristic polynomial coe�cients of the positive matrix Z

will be presented in following theorem.

Theorem 1: [Helmersson, 2009]

Let Z ∈ Rn×n be matrix with non-negative real eigenvalues, λi(Z) ≥ 0, and let

ci(−Z) be the coe�cients of the characteristic polynomial of −Z as de�ned in

(1.12). Then, the following statements are equivalent if nk < n:

(i) cn−nk−1(−Z) = 0.

(ii) rank(Z) ≤ nk.

More speci�cally, if λi are ordered as λ1(Z) ≥ λ2(Z) ≥ · · · ≥ λn(Z) ≥ 0. Then,
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the following relations hold:

1

nk + 1

n∑

nk+1

λi(Z) ≤ cn−nk−1(−Z)

cn−nk(−Z)
≤

n∑

nk+1

λi(Z), (1.13)

or equivalently,

cn−nk−1(−Z)

cn−nk(−Z)
≤

n∑

nk+1

λi(Z) ≤ (nk + 1)
cn−nk−1(−Z)

cn−nk(−Z)
. (1.14)

This theorem is useful and will be used in Chapter 2.

1.2.4 Matrices Vectorisation Operators

Operation to transform matrices into equivalent vectors is presented as follows

De�nition 1.2.5 ([Henderson and Searle, 1979, Turkington, 1998])

Let X be a square matrix

X =




x11 x12 · · · x1n

x21 x22
...

...
. . .

xn1 xn2 · · · xnn




The vec of the matrix X stacks columns of X one under another in a single column,

and its operator inverse is the operator mat, i.e.

vec(X) =
[
x11 x21 · · ·xn1 x12 · · ·xn2 x13 · · ·x(n−1)1 x1n · · ·xnn

]T
(1.15)

X = mat(vec(X)). (1.16)

The vech of the symmetric matrix X stacks columns of X one under another in a

single column starting by a diagonal element of each column.

vech(X) = [x11 x21 · · ·xn1 x22 · · ·xn2 x33 · · ·xnn]T . (1.17)

Let D denotes the transformation matrix mapping the vech of the symmetric matrix X

into its vec representation by this relationship:

vec(X) = D vech(X) (1.18)
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with D ∈ Rn2× 1
2
n(n+1). For instance, D takes this form for n = 3,




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




. (1.19)

These tools are of big interest and will be used in Section 2.2

1.3 LTI-systems

The class of LTI systems is considered to be the collection of the simplest dynamical

systems. Systems belonging to this class have been successfully used in enumerable

engineering applications to describe or approximate a wide range of physical phenomena.

1.3.1 LTI-representaion

Let Σ, be an LTI-system of order n with nu inputs and ny outputs and expressed under

the state space realisation S given as

Σ: S =

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
∀ t ≥ 0, (1.20)

where A ∈ Rn×n, B ∈ Rn×nu ,∈ Rny×n and D ∈ Rny×nu . Then, the state transition

matrix de�ned in (1.5) becomes

Φ(t, t0) = eA(t−t0). (1.21)

Moreover, LTI-system can be represented with a transfer function. In fact, given U and

Y , the Laplace transform of u and y respectively, the transfer function matrix from the

input to the output is de�ned as G(s) considering its initial conditions and equilibrium

point to be zero. Then, for a complex variable s,

Y (s) = G(s)U(s). (1.22)

Then, from this de�nition it is easy to get

G(s) = C(sI −A)−1B +D. (1.23)
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In the sequel of this dissertation, the transfer function (1.23) is expressed under the

form

G
s
=

[
A B

C D

]
. (1.24)

1.3.2 Controllability and Observability

In this subsection two very important concepts in linear system theory are

given.

De�nition 1.3.1 (Reachability) A state x̄ is said to be reachable (from the

origin) if, given x(0) = 0, there exist a �nite time interval [0, T ] and an input

u(t), t ∈ [0, T ] such that x(T ) = x̄. If all states are reachable, the system is said to

be completely reachable.

De�nition 1.3.2 (Controllability) A state x0 is said to be controllable if there

exists a �nite time interval [0, T ] and an input u(t), t ∈ [0, T ] such that x(T ) = 0.

If all states are controllable, then the system is said to be completely controllable.

Moreover, the dual notion of the Controllability which is the observability is de�ned as

follows.

De�nition 1.3.3 (Observability) The LTI-system described by the equations

(1.20) or by the pair (C, A) is said to be observable if, for any t1 > 0, the initial

state x(0) = x0 can be determined from the time history of the input u(t) and the

output y(t) in the interval of [0 ; t1]. Otherwise, the system, or (C, A), is said to

be unobservable.

Note that an LTI-system has an in�nity number of state space realisations. From all

possible realisations, those which have the smallest state dimension are called mini-

mal.

De�nition 1.3.4 (Minimal Realisation) A state space realisation S given in

(1.20) is said to be a minimal realisation if the matrix A has the smallest possible

dimension.

Then, necessary and su�cient conditions to de�ne a minimal realisation are given as

follows



1.3. LTI-systems 11

Theorem 2: [Zhou et al., 1996]

A state space realisation S given in (1.20) is minimal if and only if (A,B) is

controllable and (C,A) is observable.

Finally, the following de�nition is given to express the conjugate transpose of a transfer

function. It will be used thereafter in the next chapters.

De�nition 1.3.5 ([Goddard, 1995]) The conjugate transpose of the transfer

function G given in (1.23), is denoted

G∼
s
=

[ −AT CT

−BT DT

]
. (1.25)

When evaluated on the imaginary axis, [G(ω)]∗ = [G(−ω)]T = G∼(ω).

Note that this notion about minimality is very important in the order reduction pro-

cedure. In Section 3.1, 3.2 and 3.3, order reduction methods require the minimality of

the high order model.

1.3.3 Norms

Results on norms viewed previously for general systems can be �tted for the LTI-systems

as follows.

De�nition 1.3.6 (H∞-norm) Given the LTI-system Σ represented by its trans-

fer function G denoted in (1.23). If G is Hurwitz, then it has a �nite H∞-norm

de�ned as

‖G‖H∞ = sup
s∈C+

σ̄(G(s)), (1.26)

where σ̄(G(s)) is the largest singular value of G(s).

For sake of simplicity, ‖.‖H∞ is denoted by ‖.‖∞ in the sequel for this dissertation. It

is easy to show that ‖G‖∞ = ‖G‖i,2 for LTI-systems [Goddard, 1995]. Moreover, the

induced L∞-norm of an LTI-system Σ with the transfer function G is given by

‖G‖i,∞ =

∫ +∞

0
|g(t)|dt ∀t ≥ 0 (1.27)
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where g : R+ → R is the impulse response of Σ. Throw the Laplace transform, the

transfer function G is given as

G(s) =

∫ +∞

0
g(t)e−stdt ∀s ∈ C. (1.28)

1.3.4 Schur Complement Formula

The Schur complement formula is a useful notion and with be used Chapter 2.

Lemma 1: [Boyd et al., 1994]

Giving the matrices R ∈ Sn, S ∈ Sm and G ∈ Rn×m, the following conditions are

equivalent

1.

R ≺ 0 and S −GTR−1G ≺ 0 (1.29)

2. [
S G

G R

]
≺ 0 (1.30)

where Sn (resp. Sm) is a cone of n× n (resp. m×m) symmetric matrices.

1.3.5 Bounded Real Lemma

In Chapter 2, the H∞-control problem will be discussed. Then, the so-called Bounded

Real Lemma BRL will be of big interest. Indeed, in the BRL, H∞-norm computation

problem can be transferred into a standard Linear Matrix Inequality LMI optimisation

formulation.

Lemma 2: [Scherer, 1990, Ankelhed et al., 2011]

Consider a continuous-time transfer function T (s) = D + C(sI − A)−1B of a not

necessarily minimal realisation and γ > 0. The following statements are equivalent:

1. ‖T‖∞ < γ and A is Hurwitz.

2. There exists a symmetric positive de�nite solution P (i.e. P ∈ Sn�0) to the

LMI: [
ATP + PA+ CTC PB + CTD

BTP +DTC DTD − γ2Inu

]
≺ 0. (1.31)
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The inequality (1.31) can be rewritten as

[
ATP + PA PB

BTP −γ2Inu

]
+

[
CT

DT

]
Iny
[
C D

]
≺ 0. (1.32)

Then, multiplying this last inequality by γ−1 and let P1 = γ−1P leads to

[
ATP1 + P1A P1B

BTP1 −γInu

]
+

[
CT

DT

]
γ−1Iny

[
C D

]
≺ 0. (1.33)

For later purposes, it is useful to reformulate the inequality in (1.33) to become linear

in state-space matrices A,B,C,D. The use of Lemma 1 gives the inequality in (1.33)

can be rewritten as


P1A+ATP1 P1B CT

BTP1 −γInu DT

C D −γIny


 ≺ 0 (1.34)

which is an LMI in the matrices A,B,C,D if the matrix P1 and γ are given. The

inequality (1.31) and (1.34) are equivalent for the solution matrix P1. The bounded

real lemma is of big interest to obtain the results in Section 2.2.

1.4 LPV-systems

LPV system is not a recent notion in control theory. In fact, the LPV-framework

is appeared �rst time in association with the gain scheduling notion. Then, the

global behaviour of systems is approximated by a set of �xed (frozen) LTI-systems

[Shamma and Athans, 1990]. The concept of frozen LTI-behaviours is an essential

viewpoint on LPV-systems and will be used for semi-active system developed in

Chapter 4.

Thereafter, LPV-systems have obtained their own framework structure

[Packard and Kantner, 1996]. Then, LPV-systems are de�ned as a large class of

dynamical systems for which the future evolution of the state depends on the current

state of the system plus some additional signals called parameters. These parameters

act as inputs to the system and shape its internal structure [Briat, 2015].

Hence, in this section the mathematical de�nition of the LPV-systems is given.

Then, according to the mathematical/physical properties or the role and structure of

parameters, a non exhaustive classi�cation is suggested.

1.4.1 LPV-modelling

Linear Parameter Varying models are representing systems whose dynamics are known

functions of varying parameters. LPV-systems are commonly described by the following
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the state-space realisation





ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)

x(0) = x0

∀ t ≥ 0, (1.35)

where x(t), u(t) and y(t) are the state, the input and the output of the system, re-

spectively. The vector ρ(t) is the exogenous parameter varying vector which is time

dependent.

The state-space representation (1.35) can be written as

G(ρ)
s
=

[
A(ρ) B(ρ)

C(ρ) D(ρ)

]
. (1.36)

Since LPV-framework apparition, many representation ways has been given. LPV-

models can be classi�ed regarding the mathematical properties or the physical meaning

of their parameters. The role of the varying parameters can engender another types

of LPV-models. In addition, and from a control point of view, the formulation of the

LPV-representation gives a third way to encapsulate the LPV-models. Then, a non-

exhaustive list of LPV-classes is proposed as follows

1.4.2 LPV-models regarding the Parameter Trajectories

By analysing the types of parameters, a �rst classi�cation can be given. Then, a variety

of LPV-models systems are de�ned according to their parameters trajectories.

LPV-models with Fast Varying Parameters

LPV-systems with arbitrarily fast varying parameters have parameters in a bounded

set Pρ de�ned as

Pρ =

{
ρ : R+ → ∆ρ

t 7→ ρ(t)

}
, (1.37)

where ∆ρ is a compact and convex polytope (e.g. a box).

LPV-models with Slow Varying Parameters

LPV-systems with slowly varying parameters have parameters in the set Pv de�ned as

Pv =

{
ρ : R+ → ∆ρ and ρ̇(t) ∈∆v ∀ t ∈ R+

t 7→ ρ(t)

}
, (1.38)

where ∆v is a convex and compact polyhedron containing 0.
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LPV-models with Piecewise Constant Parameters

LPV-systems with piecewise constant parameters have parameters in the set Ppc de�ned
as

Ppc =

{
ρi : R+ → ∆ρ | ρi piecewise constant, i = 1, . . .

t 7→ ρi(t)

}
. (1.39)

LPV-models Representing Switched Models

Given A(ρ) =
∑N

i=1Aiρi with Ai are constant matrices, a switched system, with N

modes can be represented as an LPV-system with parameters in the set Pss such as

Pss =

{
ρi : R+ → {0, 1}N |

N∑
i=1

ρi = 1

t 7→ ρi(t)

}
, (1.40)

where, again, some conditions have to be satis�ed in order to obtain solutions at any

time.

LPV-models Representing Periodic Systems

Periodic systems, can be represented as LPV-systems with parameters in the set of

T -periodically varying parameters ∀ T > 0

PT =

{
ρ : R+ → ∆ρ | ρ(t) = ρ(t+ T )

t 7→ ρ(t)

}
. (1.41)

1.4.3 LPV-models regarding the Parameter Function

In this second classi�cation, the parameters role is the main criterion to di�erentiate

LPV-models. Then, models can approximate nonlinear dynamics, time-varying parts

or, even, introduce extra degrees of freedom to an existent LTI-model.

Quasi-LPV Systems

Whenever LPV-systems are considered as an approximation of nonlinear systems,

scheduling parameters are function of the system states. This particular type of LPV

systems is referred to a quasi -LPV systems, sometimes abbreviated as q-LPV systems.

As an example, the following scalar nonlinear system

ẋ(t) = x(t)2 ∀t > 0, (1.42)

can be represented as

ẋ(t) = ρ(t)x(t) ∀t > 0, (1.43)

with ρ(t)
∆
= x(t) ∈ R ∀t ∈ R+.



16 Chapter 1. Preliminaries and Background

LPV-models with Intrinsic Parameters

Parameters can also be used to embed time-varying components in order to use LPV-

gain-scheduling techniques for controlling the original system. For instance, the Linear

Time-Varying (LTV) system

ẋ(t) = [−a+ b sin(ωt)]x(t), ∀t > 0. (1.44)

can be represented

ẋ(t) = [a+ bρ(t)]x(t) ∀t > 0, (1.45)

where ρ(t)
∆
= sin(ωt) ∈ [−1, 1].

LPV-models with Arti�cial Intrinsic Parameters

Extrinsic parameters are mostly involved when design is the underlying objective. These

arti�cial parameters may then be used in the control law in order to shape its structure

according to objectives. To illustrate this, let us consider the following LTI system

{
ẋ(t) = x(t) + u(t)

y(t) = x(t)
∀ t ≥ 0, (1.46)

where x(t) ∈ R and u(t) ∈ R are the state and the control input, respectively. It is

proposed to determine a control law such that

• the output y tracks a di�erentiable reference signal r, and

• the bandwidth of the closed-loop system can be adjusted in real-time.

The control law

u(t) = − [1 + ρ(t)]x(t) + ρ(t)r(t), ρ(t) ≥ 0, (1.47)

where ρ is an external parameter yields the closed-loop system

ẋ(t) = −ρ(t) [x(t)− r(t)] . (1.48)

1.4.4 LPV-models regarding the System Representations

The LPV-system representations can have many forms. Some formulations are of par-

ticular importance when it comes to analysis and synthesis. A big part of LPV-systems

can be written under one of the following ways

LPV-a�ne Systems

By an a�ne LPV-system we mean an LPV-system whose matrices are a�ne functions

of the scheduling parameter. Then, the following de�nition is given
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De�nition 1.4.1 An LPV-system given in (1.36) is said to be a�ne if the system

matrices are represented by

A(ρ) = A0 +
∑N

i=1
Aiρi,

B(ρ) = B0 +
∑N

i=1
Biρi,

C(ρ) = C0 +
∑N

i=1
Ciρi,

D(ρ) = D0 +
∑N

i=1
Diρi.

(1.49)

ρi is the i
th element of ρ and Ai, Bi, Ci, Di are constant matrices.

LPV-polytopic Systems

The polytopic form gives a convenient framework for representing and analysing LPV-

systems (see [Apkarian et al., 1994]). Polytopic systems are expressed as time varying

convex combination of LTI-systems. This property can be operated to obtain stability

or stabilisation results using convex optimisation techniques.

De�nition 1.4.2 [Poussot-Vassal, 2008] An LPV-system given in (1.36) is said

to be polytopic if the system matrices are represented by

A(ρ) =
∑N

1
αi(ρ)Ai,

B(ρ) =
∑N

1
αi(ρ)Bi,

C(ρ) =
∑N

1
αi(ρ)Ci,

D(ρ) =
∑N

1
αi(ρ)Di,

(1.50)

where
∑N

i=1 αi(ρ) = 1, αi(ρ) ≥ 0 and Ai, Bi, Ci, Di are constant known matrices

(that represent the system evaluated at each vertex).

Then, the LPV-system can be represented by an equivalent polytopic form such

that

G(ρ)
s
=

[
A(ρ) B(ρ)

C(ρ) D(ρ)

]
=

N∑

i=1

αi(ρ)

[
A(ωi) B(ωi)

C(ωi) D(ωi)

]
, (1.51)

where ωi are the vertices of the polytope formed by all the extremities of each
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varying parameter ρ ∈ Pρ, and where αi(ρ) are de�ned as,

αi(ρ) =

∏`
k=1 |ρk − {(ωi)k|∏`
k=1(ρ̄k − ρk)

, (1.52)

where {(ωi)k is the kth component of the vector {(ωi) de�ned as,

{(ωi)k = {ρk : ρk = ρ̄k if (ωi)k = ρ
k

or ρk = ρ
k

otherwise}. (1.53)

N = 2` is the number of vertices of the polytope formed by ` varying parameters.

The polytopic systems are of interest in controller design and implementation. As in

this case, the LPV-system is a convex hull of a �nite number of LTI-systems, it allows

to solve a �nite number of LMI problems (see [Gahinet et al., 1996, Scherer, 2004]) to

�nd a global LPV-controller (which is also a convex hull of a �nite number of local

LTI-controllers).

LPV-LFT-systems

LPV-systems given under a LFT form are systems expressed as interconnection of two

subsystems (Figure 1.2).

θ(ρ)

[
A B
C D

]
zw

Figure 1.2: LPV-LFT-system

The main idea of this LFT form is to rewrite a complex system under an interac-

tion between a �simple linear system� and �complicated and annoying� one. The

�rst �simple nice part� should have convenient properties such as linearity, time in-

variance, etc. The other complicated part, contains non-linearities, time varying

terms, ect. This formulation has been emphasised in numerous papers. In fact, in

[Packard, 1994, Apkarian and Gahinet, 1995] a gain scheduling controllers for LPV-

LFT-form systems are proposed. Then, recently in [Scherer, 2001, Scherer, 2012], LPV-

controller based on dynamics D-scales is developed.



1.4. LPV-systems 19

De�nition 1.4.3 An LPV-system given in (1.36) is said to be in LFT-form, such

as the one depicted in Figure 1.2, state-space representation can be expressed as





ẋ(t) = Ax(t) +Bw(t)

z(t) = Cx(t) +Dw(t)

w(t) = θ(ρ(t))z(t)

∀ t ≥ 0, (1.54)

with I − θ(ρ)D is invertible for all ρ ∈∆ρ.

This LFT-form can be rewritten according to the following proposition

Proposition 2: [Briat, 2015]

The LPV-LFT-form system given in (1.2) is equivalent to the following LPV-

systems

ẋ =
[
A−B [I − θ(ρ)D]−1 θ(ρ)C

]
x (1.55)

ẋ =
[
A−Bθ(ρ) [I −Dθ(ρ)]−1C

]
x (1.56)

In this chapter a non-exhaustive notions were introduced. This choice to focus only

on a speci�c mathematical background is taken in the aim keep the clarity and the

readability of the thesis.
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Introduction

Robustness notion plays an essential role in system and control theory nowadays. The

emergence of this notion is basically motivated by the huge demand on performance

for new control laws. Optimisation approaches based on H∞ and H2 theory appear

of a big importance to �t the increasing speci�ed requirements. H∞-controllers are

knowing a big raise last twenty years whether in theoretical development or in practical

issue. In addition, the plant dynamics may vary to such an level that a single linear

model proves insu�cient to capture the essential features of the plant. Then, a series

of models describing the plant behaviour at a number of operating points is required.

Thus, H∞-controllers based on LPV-models appeared and seem to be of a great interest.

Nevertheless, the controllers stabilising complex models and achieving a speci�ed high

performance are generally at least as complex as the model itself. The complexity

of the obtained high-order controllers restricts their real-time operation in embedded

systems and increases their implementation costs. In fact, low-order controller requires

less complicated and more easy available hardware to understand, to maintain and to

implement in the real world. In this chapter, the H∞-control theory is introduced

for LTI-systems �rst. Indeed, after introducing the stability conditions, the LTI-H∞-

control design problem is formulated. Then, a survey about the existing methods to

design an H∞-controller is given. Then-after, the H∞ problem is reviewed to design

�xed-order controllers in Section 2.2. The extension to the LPV-case is then developed

in Section 2.3 and a special interest is allocated to the polytopic models.

2.1 H∞-LTI-Control Design

2.1.1 LTI-Systems Stability

Stability notion is fundamental for dynamical systems analysis in control theory. At

�rst sight this concept seems to be natural. However, closer examination shows that

a multitude of de�nitions can be given to stability [Lyapunov, 1992, Khalil, 2000,

Desoer and Vidyasagar, 2009]. In this Section, a no-exhaustive overview on the ques-

tion is given. In fact, for stability analysis, there are two fundamental theorems. The

�rst one gives su�cient conditions for asymptotic (exponential) stability. The second

one called the small gain theorem is the pillar of the input/output stability theory.

2.1.1.1 Global Asymptotic Stability

General Stability Results Stability of general systems cannot be analysed by look-

ing at the explicit solutions since they are, most of the time, di�cult or even impossible

to compute. Lyapunov theory allows to analyse stability implicitly from the expression

of the dynamical system through the use of a Lyapunov function.
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Theorem 3: Lyapunov's Stability Theorem [Lyapunov, 1992, Khalil, 2000]

Let us consider the general dynamical system

{
ẋ(t) = f(x(t)),

x(0) = x0,
∀t > 0 (2.1)

having x∗ = 0 as equilibrium point, i.e. f(x∗) = 0, let D ⊂ Rn be a domain

containing x∗ and V : D → R be a continuously di�erentiable function such that





V (x∗) = 0,

V (x) > 0 in D\{x∗},
V̇ (x) ≤ 0 in D.

(2.2)

Then, x∗ is a stable equilibrium point and V is called a Lyapunov function for

(2.1). Moreover, if

V̇ (x) < 0 in D\{x∗} (2.3)

then x∗ is an asymptotically stable equilibrium.

LTI-Systems Case Whenever LTI-systems are considered, The stability analysis

become easer. In fact, necessary and su�cient Lyapunov conditions for stability can be

easily stated

Theorem 4: [Briat, 2015]

Let us consider the LTI-system Σ with the state-space representation (1.20). Then,

the following statements are equivalent

• The system (1.20) is globally asymptotically stable.

• The system (1.20) is globally exponentially stable.

• The matrix A is Hurwitz, i.e. <(λi(A)) < 0.

• There exists a matrix P ∈ Sn�0 such that the Lyapunov inequality

ATP + PA ≺ 0, (2.4)

holds.
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• There exist matrices P,Q ∈ Sn�0 such that the Lyapunov equation

ATP + PA+Q = 0, (2.5)

holds.

2.1.1.2 Input-Output Stability

If you ask anyone to give his own de�nition of stability, there is a big chance to have

this answer: A system is stable if the output signal energy remains bounded for a

bounded input signal energy. Mathematically speaking, this approach was derived

from the Operator Theory [Kato, 1990]. It is noted that �rst theoretical development

on input-output stability notion are relatively recent [Desoer and Vidyasagar, 2009]. In

[Vidyasagar, 2002, Chapter 6], a synthetic view about input-output stability is given.

Unfortunately, there is no general result that allow a direct input-output stability anal-

ysis, except if all system trajectories are computed (Lyapunov approach). Then, this

approach is complementary to the previous one and the aim is to make easier the sta-

bility analysis of the interconnected systems. Thus, the Small Gain Theorem is given

as follows

∆(s)

M(s)

w1

w2

+

y1

+

y2

Figure 2.1: Closed-loop for Stability Analysis

Theorem 5: Small Gain Theorem [Zhou et al., 1996]

Suppose M ∈ RH∞ (i.e. with M a stable transfer matrix) and let γ > 0. Then,

the interconnected system shown in Figure 2.1 is well-posed and internally stable

for all ∆ ∈ RH∞ (i.e. stable transfer matrix) with ‖∆‖∞ < 1/ γ if and only if

‖M‖∞ < γ.

A typical application of this theorem is when considering M like a known transfer

function and ∆ as a unknown transfer function. Then, small gain theorem is classically

used to derive conditions for Robust Stability with respect to the uncertainty models

(represented by ∆).
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2.1.2 H∞-LTI-Synthesis

2.1.2.1 H∞-problem Formulation

In control theory, new methodologies in control theory focus on the research of a con-

troller that guarantee both closed-loop stability and performance. Then, such control

problem can be formulated under the LFT-scheme in Figure 2.2.

P

K

yu

zw

Figure 2.2: Lower-LFT for Closed-loop System

where P is the transfer function between input vector (exogenous and control signals)

and output vector (controlled and measured outputs).

[
Z

Y

]
=

[
P11 P12

P21 P22

] [
W

U

]
. (2.6)

Then, the goal is to �nd a controller K that compensate the in�uence of exogenous

inputs w on the controlled outputs z through the information given by the measured

signals y. This objective is achieved when the closed-loop norm of the transfer from

w to z namely Tzw is minimised. From a mathematical point of view, H∞-suboptimal

problem is to �nd a controller K that stabilise the closed-loop system internally and

guarantee

‖Tzw‖∞ < γ. (2.7)

where γ is pre-set attenuation level and Tzw is given according to (1.7) as

Tzw(s) = F`(P,K)(s)

= P11(s) + P12(s)K(I − P22(s)K(s))−1P21(s).
(2.8)

The optimal H∞-problem corresponds to the minimisation of γ. This minimal value

γopt can be approximated by dichotomic search algorithm.

In practice, the plant P consists of the system transfer function G and weighting func-

tions Wi and Wo associated the exogenous input w and the controlled output z re-

spectively as shown in Figure 2.3. These weighting functions allow to emphasise some

transfers in certain frequency ranges. Then, several frequency templates can be de�ned

as the inverse of the weighting functions. Thus, required performance like disturbance

or noise rejection can be expressed threw Wi and Wo.

It is well known that the major drawback of the H∞-control design is the order of
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G

K

Wi Wo
w e

P

Figure 2.3: Augmented System

obtained controllers which is typically at least of the same order as the plant.

Next section presents a solution to the H∞-problem based on Riccati equations.

2.1.2.2 H∞-problem Resolution

Various methods are developed to solve the standard H∞-control design problem.

Among them, two methods are widely used: the �rst one is based on the resolution

of two Riccati equations. Th second one deals with some Linear Matrix Inequalities

LMIs.

Riccati-based Solution One of the common tool to resolve this H∞-problem is

based on the resolution of Riccati equations. Suppose K is an nK-th order controller

which stabilises the closed-loop system and the n-th order generalised plant P is given

by

P =

[
P11 P12

P21 P22

]
s
=




A B1 B2

C1 D11 D12

C2 D21 D22


 . (2.9)

where A ∈ Rn×n, B1 ∈ Rn×nw , B2 ∈ Rn×nu , C1 ∈ Rnz×n, C2 ∈ Rny×n, D11 ∈
Rnz×nw , D12 ∈ Rnz×nu , D21 ∈ Rny×nw and D22 ∈ Rny×nu .
The following assumptions are made

A1: (A,B2) is stabilisable and (C2, A) is detectable.

A2: D12 has full column rank and D21 has full row rank.

A3:

[
A− ωIn B2

C1 D12

]
has full column rank for all ω ∈ R.

A4:

[
A− ωIn B1

C2 D21

]
has full row rank for all ω ∈ R.
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Tzw is the transfer function from w to z, de�ned as (2.8). According the Youla

parametrisation theory [Youla et al., 1976, Vidyasagar, 1985], all rational internally sta-

bilising controllers K satisfying ‖F`(P,K)‖∞ < γ are given by K(s) = F`(M∞, Q)(s)

for arbitrary Q ∈ RH∞ such that ‖Q‖∞ < γ, where

M∞ =

[
M11 M12

M21 M22

]
s
=




Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22


 .

All relevant parameters
(
Â, B̂1, B̂2, Ĉ1, Ĉ2, D̂11, D̂12, D̂21, D̂22

)
can be found in

[Zhou et al., 1996]. For a simple case, where

G =

[
G11 G12

G21 G22

]
s
=




A B1 B2

C1 0 D12

C2 D21 0


 .

The H∞-solution involves the following two Hamiltonian matrices:

H∞ =

[
A γ−2B1B

T
1 −B2B

T
2

−CT
1 C1 −AT

]
, J∞ =

[
AT γ−2CT

1 C1 − CT
2 C2

−B1B
T
1 −A

]
.

Theorem 6: [Glover and Doyle, 1988, Zhou et al., 1996]

There exists an admissible controller such that ‖Tzw(s)‖ < γ i� the following three

conditions hold

• H∞ ∈ dom(Ric) and X∞ = Ric(H∞) � 0.

• J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) � 0.

• ρ(X∞Y∞) < γ2.

Moreover, when these conditions hold, one such controller is

K
s
=

[
A∞ −Z∞L∞
F∞ 0

]
(2.10)

where
A∞ = A+ γ−2B1B

T
1 X∞ +B2F∞ + Z∞L∞C2,

F∞ = −BT
2 X∞,

L∞ = −Y∞CT
2 ,

Z∞ = (I − γ2Y∞X∞)−1.

Furthermore, the set of all admissible controllers such that ‖Tzw‖ is given by M∞
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such that

M∞ =

[
M11 M12

M21 M22

]
s
=



A∞ −Z∞L∞ Z∞B2

F∞ 0 Inu
−C2 Iny 0


 (2.11)

That is,
K = F` (M∞, Q)

= M11 +M12Q (I −M22Q)−1M21,
(2.12)

where Q ∈ RH∞ and ‖Q‖∞ ≤ γ.

Generally speaking, Q can be chosen to satisfy additional performance objectives.

However, how to �nd such Q is a challenging problem and still an active research

topic. In most cases, Q = 0 is chosen resulting in the so-called central H∞-controller

Kc = F`(M∞, 0) = M11.

LMI-based Solution Alternative to the Riccati-based solution for the H∞-control

problem is the LMI-based approach. In fact, necessary and su�cient conditions for

the existence of admissible controllers is expressed in terms of LMIs. Consequently,

Assumptions (A2) to (A4) may be omitted. Then, an advantage of this framework is

that no rank assumptions are required on D12 and D21 and hence singular problems

may be solved using the same machinery.

Furthermore, for the H∞-optimal problem, γopt can be found directly without iterative

procedure like in Riccati-based solution.

Theorem 7: [Gahinet, 1994, Gahinet and Apkarian, 1993]

Consider the plant of equation (2.9) and make assumption (A1) (Section 2.1.2.2),

and let NR and NS denote orthonormal bases of the null spaces of
(
BT

2 , D
T
12

)
and

(C2, D21) respectively.

There exists a solution to the H∞-problem if and only if there exist symmetric

matrices R and S satisfying the following system of LMIs

[ NT
R 0

0 Inw

]



AR+RAT RCT
1 B1

C1R −γInz D11

BT
1 DT

11 −γInw



[ NR 0

0 Inw

]
≺ 0 (2.13)
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[ NT
S 0

0 Inz

]



AS + SAT SB1 CT
1

BT
1 S −γInw DT

11

C1 D11 −γInz



[ NS 0

0 Inz

]
≺ 0 (2.14)

[
R In
In S

]
� 0 (2.15)

For a given γ, equations (2.13) to (2.15) are a�ne in R and S, and the set of pairs R

and S is convex. Methods to construct an admissible H∞-controller K given feasible

R and S can be found in [Gahinet and Apkarian, 1993, Gahinet, 1994].

2.1.3 Robustness Analysis

Robustness analysis aims at providing an accurate sensitivity estimation of

the several input/output transfers to the variability on the parameters. Var-

ious tools can be used to make this analysis. In this study, µ-analysis

[Zhou and Doyle, 1998, Skogestad and Postlethwaite, 2005] is chosen to study the

robustness via the measurement of the structured singular value µ.

On control design, the main property to check on a closed-loop system is the

closed-loop stability. The goal is to keep this stability although the presence of

uncertainties on parameters (due to neglected dynamics, ill-identi�cation . . . ) and is

called the Robust Stability (RS). The stability robustness is analysed by measuring the

lowest uncertainty that destabilises the system.

The performance of the nominal closed-loop system could also be analysed through

the µ measurement by neglecting the uncertainties when evaluating µ. Then, the

margins of the Nominal Performance(NP) are obtained.

Finally, the Robust Performance (RP) are analysed to check if the system satis�es

the performance speci�cations for the perturbed plant.

Let the transfer matrix N partitioned as follow (Figure 2.4 ):

N =

[
Nzv Nzw

Nev New

]

where w and e are the exogenous input and the controlled output respectively.

∆r is the uncertain matrix that could contain the model uncertainties, parametric

uncertainties, gain uncertainties, phase shifting or the delay on the inputs/outputs of

the nominal system.
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∆

N

∆r

∆f

z ∆v ∆

w e

Figure 2.4: LFT of the uncertain model

∆f is a �ctive uncertain block that relays the controlled outputs to the exogenous

inputs.

Then, the closed loop transfer matrix is:

Tew = New +New∆(I −Nzv)
−1Nzw (2.16)

As we consider structured uncertainties, a µ-analysis step is performed to study the

robustness:

New is the nominal closed-loop transfer matrix. It is used to analyse the NP of

the system.Note that if New is stable, the instability in (2.16) may only come from

(I − Nzv)
−1Nzw. Then, the Nzw is analysed to study the RS. By the way, the RP is

analysed by evaluating the whole N block.

Consider the set of matrices: ∆ that have the same structure as ∆ and de�ned as:

∆ : {∆ = diag(∆1, . . . ,∆q, δ1Ir1 , . . . , δrIrr , ε1Ic1 , . . . , εcIcc)}
where: ∆ ∈ Ck×k, ∆i ∈ Cki×ki , δ ∈ R, εi ∈ C.
Then, the structured singular value µ of N through the set ∆ is de�ned as:

µ∆(N) = ( inf
∆∈∆
{σ(∆), det(I −∆N) = 0})−1

Theorem 8: [Skogestad and Postlethwaite, 2005]

Assume that the nominal system New and the perturbations ∆ are stable.

Then, the feedback system is stable for all allowed perturbations ∆ such that
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‖∆‖∞ < 1/µ if and only if:

∀ω ∈ R, µ∆(Nzv(ω)) ≤ µ

For all perturbations, the following rules should be veri�ed ∀ω:

NP ⇐⇒ σ(New(ω)) = µ∆f
(New(ω)) < 1

RS ⇐⇒ σ(Nzv(ω)) = µ∆r
(Nzv(ω)) < 1

RP ⇐⇒ σ(N(ω)) = µ∆(N(ω)) < 1

(2.17)

In practice, the structured singular value cannot be calculated explicitly, so that the

method consists in �nding an upper bound and a lower bound, as closed as possible to

µ:

µ∆(N(ω)) ∈ [µlb∆(N(ω)); µub∆ (N(ω))]

µlb∆(N(ω)): µ-lower bound,

µub∆ (N(ω)): µ-upper bound.

2.2 Fixed-Order H∞-Controller Design

The H∞-synthesis is an important tool in robust control design. First techniques are

based on solving Riccati equations [Boyd et al., 1994]. Since that, the robust design

tools became much easier to use and gained popularity. Thereafter, LMIs were found

to be a suitable tool for solving these kinds of problems by using reformulations of the

Riccati equations [Gahinet and Apkarian, 1994]. The high requirements for robustness

and for disturbance rejection in control design, result controllers of very high order,

which complicates implementation. To overcame this drawback, constraint on the

maximum order of the controller is set to be lower than the order of the plant. However,

the problem is no longer convex and it is then relatively hard to solve. This motivates

the development of e�cient algorithms that can solve these kinds of problems.

First, let P be the plant introduced in (2.9) and de�ne K the linear H∞-controller

denoted by

K :

{
ẋK(t) = AKxK(t) +BKy(t)

u(t) = CKxK(t) +DKy(t)
∀t ≥ 0, (2.18)

where xK(t) ∈ RnK is the state vector of the controller. The state-space realisation K

is given as

K(s) = DK + CK(sI −AK)−1BK , (2.19)

with AK ∈ RnK×nK , BK ∈ RnK×ny , CK ∈ Rnu×nK , DK ∈ Rnu×ny . Then, a (not

necessarily minimal) realisation of the closed-loop transfer function from w to z is
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obtained as (Figure 2.2)

Tzw(s) = DCL + CCL(sI −ACL)−1BCL, (2.20)

where

ACL =

[
A+B2DKC2 B2CK

BKC2 AK

]
, BCL =

[
B1 +B2DKD21

BKD21

]
,

CCL =
[
C1 +D12DKC2 D12CK

]
, DCL = D11 +D12DKD21.

Let de�ne Θ, a matrix that contains all controller parameters

Θ =

[
AK BK
CK DK

]
∈ R(nK+nu)×(nK+ny). (2.21)

Before introducing the way to design a �xed order controller, the following lemma is

useful for afterwards.

Lemma 3: [Gahinet and Apkarian, 1994]

Given a symmetric matrix ψ ∈ SM and two matrices P and Q composed of M

columns, consider the problem of �nding some matrix Z of compatible dimensions

such that

ψ + PTZTQ+QTZP ≺ 0 (2.22)

Denote by WP , WQ any matrices whose columns form bases of the null spaces of

P and Q respectively, i.e. WP = P⊥ and WQ = Q⊥ respectively. Then, (2.22) is

solvable for Z if and only if

{
WT
PψWP ≺ 0

WT
QψWQ ≺ 0

(2.23)

2.2.1 Ankelhed Method

The approach proposed by Ankelhed is based on formulating the constraint on the

maximum order of the controller as a polynomial (or rational) equation. The problem

is then solved by reformulating it as an optimisation problem using a minimisation

algorithm.

2.2.1.1 Problem Formulation

Let the matrix Xa ∈ Sn+nK and its inverse be partitioned as

Xa =

[
X X2

XT
2 X3

]
, and X−1

a =

[
Y Y2

Y T
2 Y3

]
(2.24)
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where X, Y ∈ Sn�0, Then, insert Xa and the closed loop system matrices

ACL, BCL, CCL, DCL into the inequality in (1.34). After some rearrangements we

get the following matrix inequality.



XA+ATX ATX2 XBT
1 CT

1

XT
2 A 0 XT

2 B1 0

BT
1 X BT

1 X2 −γInz DT
11

C1 0 D11 −γInw




︸ ︷︷ ︸
Ψ
Xa

+




XB2 X2

XT
2 B2 X3

0 0

D12 0




︸ ︷︷ ︸
P

[
DK CK
BK AK

]

︸ ︷︷ ︸
F

[
C2 0 D21 0

0 InK 0 0

]

︸ ︷︷ ︸
QT

+

[
C2 0 D21 0

0 InK 0 0

]T

︸ ︷︷ ︸
Q

[
DK CK
BK AK

]

︸ ︷︷ ︸
FT




XB2 X2

XT
2 B2 X3

0 0

D12 0




T

︸ ︷︷ ︸
PT

≺ 0

(2.25)

The matrix inequality in (2.25) is bilinear in the controller variables, AK , BK , CK , DK

and the matrices X,X2, X3. Then, in order to apply Lemma 3, the orthogonal com-

plements WP and WQ need to be derived from P and Q respectively. Note that P in

(2.25) can be factorised as

P =




XB2 X2

XT
2 B2 X3

0 0

D12 0


 =

[
Xa 0

0 I(nw+nz)

]



B2 0

0 InK
0 0

D12 0


 (2.26)

and an orthogonal complement WP can now be constructed as

WP =




B2 0

0 InK
0 0

D21 0




⊥

[
X−1
a 0

0 I(nw+nz)

]
. (2.27)

Then, after some rearrangements, the inequality (2.25) is now equivalent to the two

LMIs

[ NT
X 0

0 Inw

]



XA+ATX XB1 CT
1

BT
1 X −γInz DT

11

C1 D11 −γInw



[ NX 0

0 Inw

]
≺ 0, (2.28a)
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[ NT
Y 0

0 Inz

]



AY + Y AT Y CT
1 B1

C1Y −γInw D11

BT
1 DT

11 −γInz



[ NY 0

0 Inz

]
≺ 0, (2.28b)

where NX and NY denote orthonormal bases of the null spaces of (C2, D21) and(
BT

2 , D
T
12

)
respectively. Now, the LMIs (2.28) are coupled by the relation of X and

Y through (2.24), which can be simpli�ed after using the following lemma.

Lemma 4: [Packard, 1994]

Suppose X,Y ∈ Sn�0 and nK being a nonnegative integer. Then, the following

statements are equivalent

1. There exist X2, Y2 ∈ Rn×nK and X3, Y3 ∈ RnK×nK such that

Xa =

[
X X2

XT
2 X3

]
, and X−1

a =

[
Y Y2

Y T
2 Y3

]
. (2.29)

2. The following inequalities hold.

[
X In
In Y

]
� 0 and rank

[
X In
In Y

]
≤ n+ nK . (2.30)

Finally, from all previous development, the solvability conditions for the H∞-problem

can be formulated as follows

Lemma 5

The problem of �nding a linear controller such that the closed-loop system Tzw
is stable and such that ‖Tzw‖∞ < γ, is solvable if and only if there exist positive

de�ned matrices X, Y ∈ Sn�0, which satisfy

[ NT
X 0

0 Inw

]



XA+ATX XB1 CT
1

BT
1 X −γInz DT

11

C1 D11 −γInw



[ NX 0

0 Inw

]
≺ 0, (2.31a)

[ NT
Y 0

0 Inz

]



AY + Y AT Y CT
1 B1

C1Y −γInw D11

BT
1 DT

11 −γInz



[ NY 0

0 Inz

]
≺ 0, (2.31b)
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[
X In
In Y

]
� 0, (2.31c)

rank(XY − In) ≤ nK, (2.31d)

where NY and NX denote orthonormal bases of the null spaces of
(
BT

2 , D
T
12

)
and

(C2, D21) respectively

In this formulation, LMIs (2.31a),(2.31b) and (2.31c) replace assumptions A1 to A4 in

Section 2.1.2.2 for H∞-controller design. Finally the condition (2.31d) seems to allow

the design of H∞-controllers with lower order. Either the condition (2.31d) is easy to

satisfy, however research of �xed-order controller is very di�cult to resolve. Indeed,

this constrain is not convex. and the problem is bilinear.

2.2.1.2 X and Y Searching

It could be desirable to replace the rank constraint in (2.31d) with a smooth function in

order to be able to apply gradient methods for optimisation. To do that, the following

lemma issued from Theorem 1 is used

Lemma 6: [Ankelhed, 2011]

Assume that the inequality [
X In
In Y

]
� 0 (2.32)

holds. Let

det(λI − (I −XY )) =
n∑
i=0

ci(I −XY )λi

= λn + cn−1(I −XY )λn−1 + · · ·+ c1(I −XY )λ

+c0(I −XY ),

(2.33)

be the characteristic polynomial of (I −XY ) where the functions ci(I −XY ) are

its coe�cients. Then the following statements are equivalent if nK < n:

1. rank(XY − I) ≤ nK.

2. cn−nK−1(I −XY ) = 0.

Additionally, all coe�cients are non-negative, i.e.

ci(I −XY ) ≥ 0, ∀i. (2.34)
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Combining Lemma 5 and Lemma 6, the resolvability conditions to �nd a nK-order

controller can be given in next theorem.

Theorem 9: [Ankelhed, 2011]

The problem of �nding an H∞-controller of order nK < n such that the closed

loop system Tzw is stable and ‖Tzw‖∞ < γ is equivalent to �nd X,Y ∈ Sn�0 which

satisfy

[ NT
X 0

0 Inw

]



XA+ATX XB1 CT
1

BT
1 X −γInz DT

11

C1 D11 −γInw



[ NX 0

0 Inw

]
≺ 0 (2.35a)

[ NT
Y 0

0 Inz

]



AY + Y AT Y CT
1 B1

C1Y −γInw D11

BT
1 DT

11 −γInz



[ NY 0

0 Inz

]
≺ 0 (2.35b)

[
X In
In Y

]
� 0 (2.35c)

cn−nK−1(XY − I)

cn−nK(XY − I)
= 0 (2.35d)

cn−nK(XY − I) 6= 0 (2.35e)

Where columns of NX and NY denote any bases of null spaces of (C2, D21) and

(BT
2 , D

T
12) respectively.

Optimisation Problem Conditions of Theorem 9 can be reformulated as an opti-

misation problem of a smooth function. It is recalled that the quotient in (2.35d) is

positive if XY − I � 0. Then, the problem of �nding a low-order H∞-controller can

be stated as
minimise γ

subject to q(X,Y ) = 0, and

(γ,X, Y ) ∈ X
(2.36)

where q(X,Y ) =
cn−nK−1(−Z)

cn−nK (−Z) , and X is the convex set de�ned by the LMIs in Theo-

rem 9.

This problem can be formulated in order to be solved using a Partial Augmented La-

grangian. Then, the constraint is relaxed and added to the objective function as follows

minimise λ+ λq(X, Y ) + µ
2 q2(X, Y ).

subject to (γ,X, Y ) ∈ X, (2.37)
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where λ is a Lagrangian multiplier and µ is a penalty multiplier. The augmented La-

grangian method was proposed independently by [Powell, 1969, Hestenes, 1969], this

algorithm is well-known in the context of mathematical programming with classical

equality and inequality constraints and has well-established convergence properties. The

global convergence of this algorithm is proved in [Conn et al., 1991, Noll et al., 2004].

For this Lagrangian equation, the augmentation part is added partially by only the

equality constraint while the LMIs remain unchanged in order to keep the struc-

ture of the problem. The solution to the original problem (2.36) is obtained by it-

eratively solving an approximation of (2.37) for a sequence of increasing values of

µ.

More details on augmented Lagrangian methods can be found in

[Bertsekas, 1982, Nocedal and Wright, 2006].
Remark

Using notations x =




vech(X)

vech(Y )

γ


 and γ = dTx where d is denoted as

d = [0 · · · 0 · · · 0 1]T, the optimisation problem (2.37) can be rewritten as

minimise Φq(x, λ, µ)

subject to x ∈ X, (2.38)

where

Φq(x, λ, µ) = dTx + λq(x) +
µ

2
q2(x). (2.39)

This reformulation of the original initial problem is also non-convex (q is non-convex)

and a resolution using a sequence of SDPs is not possible. However, X is a convex set

which make the problems less di�cult to solve.

One possible approach to tackle this problem is to approximately solve (2.38) for a

sequence of increasing values of µk using Newton's method. However, since the opti-

misation problem in (2.38) still includes constraints, we must make sure that the next

point also satis�es the constraints. Then, a search direction is computed as follows

Search Direction Computation One possible approach is to approximate the ob-

jective function Φq(x+dx, λ, µ) by a quadratic function related to the three �rst terms

in the Taylor series around the point x. Similarly to what is done in regular Newton

methods, we intend to �nd a step direction dx that minimises this second order model,

but the di�erence is that we also require that x + dx ∈ X, i.e. that the next point also
lies in the feasible set. This problem can be formulated as

arg min
dx
∇xΦq(x, λ, µ)Tdx +

1

2
dxTHδ(x, λ, µ)dx

subject to x + dx ∈ X.
(2.40)
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where ∇xΦq(x, λ, µ) is the gradient of the objective function Φq(x, λ, µ), and

Hδ(x, λ, µ) is a positive de�nite approximation of the Hessian of the objective func-

tion.

From now, the problem (2.40) can be solved using Yalmip [Lofberg, 2004]

with SDPT3 [Toh et al., 2001].
Remark

Gradient and Hessian of the Objective Function Φq [Ankelhed et al., 2011]

in order to obtain the gradient and approximation of the Hessian of Φq, lets di�erentiate

Φq(x, λ, µ) with respect to x. Then,

∇xΦq(x, λ, µ) = d + λ∇xq(x) + µq(x)∇xq(x)

∇xxΦq(x, λ, µ) = (λ+ µq(x))∇2
xxq(x) + µ∇xq(x)∇T

xq(x)

where the gradient ∇xq and Hessian ∇2
xxq of the quotient q(x) =

cn−nK−1(x)

cn−nK (x) are given

as follows

∇xq(x) =
1

cn−nK−1
∇xcn−nK−1 −

cn−nK−1

c2
n−nK

∇xcn−nK

∇2
xxq(x) = 1

cn−nK
∇2

xxcn−nK−1 − cn−nK−1

c2n−nK
∇2

xxcn−nK +
2cn−nK−1

c3n−nK
(∇xcn−nK∇T

xcn−nK)

− 1
c2n−nK

(∇xcn−nK−1∇T
xcn−nK) + (∇xcn−nK∇T

xcn−nK−1)

Since the constraint function q is non-convex, the Hessian is not always positive de�nite

which in turn might lead to that H(x, λ, µ) = ∇xxΦq(x, λ, µ) is not necessarily positive

de�nite, which has to be dealt with. Two common ways are to either use Newton

methods in which the Hessian is convexi�ed or to use Trust-region methods where

the non-convexity is dealt with by optimising over a limited region in each iteration.

The authors of [Apkarian et al., 2003] advice against using Trust-region methods since

the complexity of such a method is too large in this case. Therefore, the Hessian

∇xxΦq(x, λ, µ) could be convexi�ed as follows.

Hessian Modi�cations [Ankelhed et al., 2011] One method which can be used

to convexify the exact Hessian ∇xxΦq(x, λ, µ) is a modi�ed inde�nite symmetric fac-

torisation. To carry out this modi�cation, the inde�nite symmetric factorisation (LDL

decomposition) is given as ∇GN
xx Φq = PTLDLTP , where L is a lower triangular ma-

trix, P is a permutation matrix and D is a block diagonal of size (1 × 1) or (2 × 2).

Then we construct the modi�cation matrix Dm in order to ensure the positiveness of

L(D +Dm)LT by following these steps:

1. Compute the eigenvalue decomposition

D = QD̄QT. (2.41)
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2. Then, compute the modi�cation matrix

Dm = QEQT. (2.42)

The matrix E is diagonal and is de�ned by

Eii =

{
0, if D̄ii ≥ δ
δ − D̄ii, if D̄ii < δ

i = 1, 2 . . . (2.43)

where δ = 10−4
∥∥∇2

xxΦq

∥∥
∞, and

∥∥A
∥∥
∞ denotes the largest row sum of A. With these

notation the matrix Dm takes the minimal matrix in the Frobenius norm such that

δ ≤ D +Dm.

1. For gradient and Hessian detailed computation, see Appendix A.1

2. The approach to compute X and Y can be summarised as Algorithm 4

in Appendix A.1

Remark

2.2.1.3 Recovering the matrix Xa from X and Y

Assume that we have found X,Y ∈ Sn�0 that satisfy (2.31). We now wish to construct

Xa such that 2.24 holds. First note the equality

X−1
a =

[
Y Y2

Y T
2 Y3

]

=

[
(X −X2X

−1
3 XT

2 )−1 −X−1X2(X3 −XT
2 X

−1X2)−1

−X−1
3 XT

2 (X −X2X
−1
3 XT

2 )−1 (X3 −XT
2 X

−1X2)−1

] (2.44)

which is veri�ed by multiplying the expression in (2.44) by the matrix

Xa =

[
X X2

XT
2 X3

]
from the left. Equalling the upper left blocks in (2.44), the

following equality must hold.

X − Y −1 = X2X
−1
3 XT

2 . (2.45)

Now we intend to �nd X2 ∈ Rn×nK and X3 ∈ RnK×nK that satisfy the equality in

(2.45). Perform an upper Cholesky factorisation of X and Y such that X = RT
XRX

and Y = RT
YRY . Then we have that

RT
XRX −R−1

Y R−TY = X2X
−1
3 XT

3 (2.46)

which after multiplication by RY from the left and by RT
Y from the right becomes

RYR
T
XRX − I = RYX2X

−1
3 XT

3 R
T
Y . (2.47)
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Then, use a singular value decomposition RYR
T
X = UΣV T to obtain

U(Σ2 − I)UT = UΓ2UT = RYX2X
−1
3 XT

3 R
T
Y , (2.48)

where

Σ =

[
ΣnK 0

0 In−nK

]
, Γ2 = Σ2 − In, and Γ =

[
ΓnK 0

0 0

]
.

Let T = Σ−1/2V TRX be the balancing transformation matrix, i.e. T−TXT−1 =

TY TT = Σ. Now we can choose

X3 = ΣnK and X2 = TT

[
ΓnK

0

]
,

which satisfy (2.24) and (2.48).

2.2.1.4 Obtaining the Controller

In the previous section we recovered the matrix variable Xa. The controller state-

space matrices AK , BK , CK and DK can be obtained by solving the following convex

optimisation problem

minimise
β,AK ,BK ,CK ,DK

β

subject to ΨXa
+QTFTP + PTFQ < βI.

(2.49)

Note that the subject function is the left part of the inequality (2.25). The conditions

that validate the solvability of the optimisation problem (2.49) are:

1. The H∞ norm of the closed-loop system must be less then γ, ‖Tzw‖∞ < γ with

γ > 0.

2. The value of β must be negative.

2.2.1.5 A General Algorithm for H∞-synthesis

Now we summarise the contents of the proposed approach in an algorithm.
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Algorithm 1 Fixed-Order synthesis

Assume that nK and system matrices A, B, C, D are given.

1. Find X, Y ∈ Sn�0 that satisfy (2.31) using Algorithm 1.

2. Recover Xa from X and Y as described in Section 2.2.1.3

3. Solve (2.49) to get the controller system matrices AK , BK , CK , DK .

2.2.2 Apkarian Method [Apkarian et al., 2003]

The second method can be formulated as follows

2.2.2.1 Problem Formulation

Let us introduce

Â =

[
A 0nK

0nK 0nK

]
, B̂1 =

[
B1

0nK×nw

]
, B̂2 =

[
0n×nK B2

InK 0nK×nu

]
,

Ĉ1 =
[
C1 0nz×nK

]
, Ĉ2 =

[
0nK×n InK
C2 0ny×nK

]
,

D̂12 =
[

0nz×nK D12

]
, D̂21 =

[
0nK×nw
D21

]
.

(2.50)

Then, the closed-loop matrices ACL, BCL, CCL, DCL can be written as

ACL = Â+ B̂2ΘĈ2, BCL = B̂1 + B̂2ΘD̂21,

CCL = Ĉ1 + D̂12ΘĈ2, DCL = D11 + D̂12ΘD̂21.
(2.51)

Note that (2.50) involves only plant data and that ACL, BCL, CCL, DCL depend a�nely

on the controller data Θ given in (2.21).

Combining Lemma 2, Lemma 1 and Lemma 3, the following necessary and su�cient

conditions for the existence of γ-suboptimal controllers of order nK are given.

Theorem 10: [Gahinet and Apkarian, 1994]

Consider a proper plant P of minimal realisation corresponding to the state-

space equation (2.9) and assume that D22 = 0 and (A,B2, C2) stabilisable and

detectable. With the notation (2.50), de�ne

P =
[
B̂T

2 0(nK+nu)×nw D̂T
12

]
; Q =

[
Ĉ2 D̂21 0(nK+ny)×nz

]
, (2.52)

and let WP and WQ be two matrices whose columns span the null spaces of P and
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Q, respectively. There exists a set of controller of order nK if and only if there

exists some Xa ∈ Sn+nK
�0 matrix such that

WT
P ΥXa

WP ≺ 0; WT
Q Υ

X−1
a
WQ ≺ 0 (2.53)

where

ΥXa
=



ÂXa +XaÂ

T XaB̂1 ĈT
1

B̂T
1 Xa −γInw DT

11

Ĉ1 D11 −γInz


 , (2.54)

Υ
X−1
a

=



X−1
a ÂT + ÂX−1

a B̂1 X−1
a ĈT

1

B̂T
1 −γInw DT

11

Ĉ1X
−1
a D11 −γInz


 . (2.55)

Based on the previous theorem, the problem of �nding a �xed-order controller of order

nK is reduced to the following set of conditions: Find two positives de�nite matrices

Xa and Ya such that

WT
P



ÂXa +XaÂ

T XaB̂1 ĈT
1

B̂T
1 Xa −γI DT

11

Ĉ1 D11 −γI


WP ≺ 0, (2.56a)

WT
Q



YaÂ

T + ÂYa B̂1 YaĈ
T
1

B̂T
1 −γI DT

11

Ĉ1Ya D11 −γI


WQ ≺ 0, (2.56b)

[
Xa I(n+nK)

I(n+nK) Ya

]
� 0. (2.56c)

XaYa − I(n+nK) = 0. (2.56d)

Without loss of generality, this option helps stabilising algorithms

[Apkarian et al., 2003]. Let Xa denotes the convex set de�ned by the three LMIs

(2.56a), (2.56b) and (2.56c). The relation (2.56d) is denoted by a non-convex set X̄a.

2.2.2.2 Xa and Ya Searching

To design a nK �xed-order controller that stabilises the closed-loop system, we must

�nd an approach to �x the non-convex constraint (2.56d). Using De�nition 1.2.5, let us

de�ne a vector of decision variables that we search for solving the problem of �xed-order

H∞-controller de�ned by the set of convex and non-convex constraints Xa, X̄a:

xa =
[

vech(Xa)
T, vech(Ya)

T, γ
]T
. (2.57)
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Smooth Optimisation Problem As mentioned in the previous section, Xa rep-

resents a convex set which makes the problem somewhat less di�cult to solve than

a general non-convex problem. The non-convex constraint X̄a given in (2.56d) con-

tains a smooth function, so this yields the problem even more less di�cult but is also

non-convex. In order to convexify the problem of �nding a controller of order nK, it

is su�cient to de�ne an objective function to minimise. The original problem (2.56)

which is formed by convex and non-convex constraints becomes a convex optimisation

problem which can be reformulated as

minimise γ

subject to xa ∈ Xa, and
XaYa − I(n+nK) = 0.

(2.58)

As explained in Section 2.2.1.2 and using the PAL, the problem in (2.58) can be refor-

mulated as
minimise

xa
ΦAp(xa, λ, µ)

subject to xa ∈ Xa
(2.59)

where ΦAp(xa, λ, µ) is the augmented Lagrangian function de�ned as

ΦAp(xa, λ, µ) = γ+
∑

i,j

λi,j(XaYa− I(n+nK))i,j +
µ

2

∑

i,j

[
(XaYa − I(n+nK))i,j

]2
. (2.60)

in the matrix form, this objective function can be written as

ΦAp(xa, λ, µ) = γ + trace
(
λT(XaYa − I(n+nK))

)

+µ
2 trace

(
XaYa − I(n+nK))

T(XaYa − I(n+nK))
) (2.61)

where λ is a Lagrange multiplier matrix and µ is a positive penalty.

Search Direction As explained in Section 2.2.1.2, a search direction is computed

and the problem is be formulated as

arg min
dx
∇xaΦAp(xa, λ, µ)Tdxa +

1

2
dxT

aHδ(xa, λ, µ)dxa

subject to xa + dxa ∈ Xa.
(2.62)

Then, the objective function to minimise is formed by the gradient, Hessian of the La-

grangian function and the step direction. The mode�ed Hessian Hδ(xa, λ, µ) is obtained

after making some changes to the Gauss-Newton approximation of the exact Hessian

function as follows
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The problem (2.62) is a conic programming problem that can be solved

using Yalmip [Lofberg, 2004] with SDPT3 [Toh et al., 2001] or LMIlab

[Gahinet, 1994] included in Robust Control Toolbox of Matlab.
Remark

Gradient and Hessian Computation Before starting to compute the derivatives,

�rst we compute the Jacobian of the function e(xa) = XaYa − I,

J(xa) =
[

(Ya ⊗ I)D (I ⊗Xa)D 0
]

(2.63)

where D denotes the transformation mappping from vech to its vec representation as

shown in De�nition 1.2.5. The gradient of the Lagrangian function is given by

∇xaΦAp(xa, λ, µ) =



DTvec(λYa)

DTvec(Xaλ)

1


+ µ J(xa)

Tvec(XaYa − I). (2.64)

Applying the Gauss-Newton approximation method to the Lagrangian function, we

obtain

∇GN
xaxaΦAp(xa, λ, µ) =




0 DT(I ⊗ λ)D 0

DT(I ⊗ λT)D 0 0

0 0 0


+ µJ(xa)

TJ(xa) (2.65)

Hessian Modi�cations In the objective function, the modi�ed Hessian Hδ(xa, λ, µ)

is obtained after some modi�cation to the Gauss-Newton approximation of the exact

Hessian H(xa, λ, µ) = ∇2
xaxaΦAp(xa, λ, µ) in order to ensure the positiveness of the

Hessian. This approximation is detailed is Section 2.2.1.2.

Then to compute Xa and Ya, the Algorithm 5 in Section A.1 is given.Remark

Controller Synthesis In order to obtain the controller parameters AK , BK , CK , DK ,

the following convex optimisation must be solve

minimise
β,AK ,BK ,CK ,DK

β

subject to ΥXa
+ QTΘTPXa + PT

Xa
ΘQ ≺ βI.

(2.66)

The conditions that validate the solvability of the optimisation problem (2.66) are:

1. The H∞-norm of the closed-loop system must be less then γ,
∥∥Tzw

∥∥
∞ < γ with

γ > 0.

2. β must be negative.
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2.2.3 Summary and Relationship between Methods

If we try to resume various steps for synthesising an H∞ controller of order nk in

schematic form in order to facilitate understanding methods presented in this report.

Plant P : (A,B,C,D)

Find (X,Y, γ) ∈ X

Set nK < n

Recover Xa and Ya
(XaYa − I = 0)

KnK s.t. ‖Tzw‖∞ < γ

Set nK ≤ n

Augmented (Â, B̂, Ĉ, D̂)

Find (Xa, Ya, γ) ∈ Xa
s.t. XaYa − I = 0

Ankelhed MethodApkarian Method

Figure 2.5: H∞-Controller Synthesis Methods Comparison
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2.3 LPV-Robust Control Design

The most important contribution of LPV-framework occurs when design is the main

purpose. Indeed, LPV-control design, has proven to be successful design methodology

in many engineering applications [Shamma and Athans, 1990].

In the beginning, only the gain scheduling fashion was used. The basic concept is to

linearise NL-systems at di�erent operating points which engender a collection of local

LTI controllers. To describe the changes of the operating points, a varying signal is

introduced, and the LPV-gain schudeling theory is appeared, giving rise to LPV gain-

scheduled controllers (Figure 2.6(a)). LPV gain-scheduling can be seen as an extension

of the LTI-robust control theory (Figure 2.6(b)) in which the controller is time-invariant

and without adaptation even the uncertainties values are changing. However in the

LPV-framework the LPV-controller is updating its values whenever the model changes.

Even if guarantees for overall stability of the designed LPV-controllers have not been

Uncertain Model

LTI-Controller

LTI-System

ρ(t)

(a) LTI Robust Controller

LPV-Controller

LPV-System

ρ(t)

(b) LPV Robust Controller

Figure 2.6: Robust Controller

available. The �rst gain scheduling ideas proposed in [Shamma and Athans, 1990] has

drawn a big attention for nonlinear systems control theory. Due to many successful ap-

plications of this design methodology, gain-scheduling has become popular in industrial

applications. However, the major di�culty at that time, was the lack of general theory

for analysing stability of LPV systems and designing LPV-based gain-scheduled control

laws.

Nowadays, this problem has been resolved when interpolation based methods seem to

guarantee global stability. The suitable framework for controlling LPV systems are

emerging from robust control theory, such as H∞-control, and the use of LMIs.

2.3.1 LPV-Stability

Similar to LTI-systems in Section 2.1.1, there exist various stability concepts of LPV

systems. Most of them are based on Lyapunov approach. Then, the notions of quadratic
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stability and robust stability, along their respective class of Lyapunov functions are

introduced in this section. Moreover, the connection with the input/output stability

notion can be used when analysing LPV-systems under LFT-form.

2.3.1.1 Quadratic Stability

The quadratic stability for LPV-systems does not make distinction between time-

invariant parameters, slowly-varying parameters and fast-varying parameters. There-

fore, quadratic stability may be very conservative.

De�nition 2.3.1 (Quadratic Stability) System (1.35) is said to be quadrati-

cally stable if the positive de�nite quadratic form

V : x 7→ xTPx, P ∈ Sn�0 (2.67)

is a Lyapunov function for (1.35). A such Lyapunov function is often referred to

a common Lyapunov function or a parameter-independent Lyapunov function.

Proposition 10: [Briat, 2015]

The system (1.35) is quadratically stable if and only if there exists a matrix

P ∈ Sn�0 such that the LMI

AT(ρ)P + PA(ρ) ≺ 0 (2.68)

holds for all ρ ∈∆ρ.

LPV-polytopic Case Thanks to the fact that LPV-polytopic systems are a�ne in

parameters, their stability could be checked in the same way as the generic LPV-systems.

Theorem 11: [Briat, 2015]

The polytopic LPV-systems (1.51) is quadratically stable if there exists a matrix

P ∈ Sn�0 such that the LMI

AT
i P + PAi ≺ 0, (2.69)

holds for all i = 1, . . . , N .
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2.3.1.2 Robust Stability

The robust stability is a stronger notion of the quadratic stability. Unlike the latter

one, robust stability makes distinction between constant and time-varying di�erentiable

parameters. Robust stability for LPV-systems also consider information on the param-

eters variation rates.

Theorem 12: [Briat, 2015]

The system (1.35) is robustly stable if there exists a di�erentiable matrix function

P : ∆ρ → Sn�0 ; ρ 7→ P (ρ) such that the condition

AT(ρ)P (ρ) + P (ρ)A(ρ) +

s∑

i=1

ρ̇i
∂P (ρ)

∂ρi
≺ 0, (2.70)

holds for all (ρ, ρ̇) ∈∆ρ ×∆v and where ∆v ∈ Rs is the subset of the parameters

rates and ρ̇i is the ith element of ρ̇.

LPV-polytopic Case Robust stability deals with parameters variation rate. In the

LPV-polytopic case, this rate is included in the term λ̇. But there is no de�nition for a

set that could contain the λ̇ trajectories. Then, the assumption that the LPV-systems

is approximated with Np parameter with known derivative bounds is made.

Proposition 12: [Briat, 2015]

Assume that ρ̇ ∈ ∆v = Co{Vd},Vd = {d1, . . . , dN}, N = 2Np and that

ρ(t) =

N∑

i=1

λ(t)vi,

holds with Vv = v1, . . . , vN . Then, the set of all λ̇'s is given by

Λ̇N =








V

1
T

N

0




+ 


D

0

1
T

N


 ξ : η ∈ ΛN





(2.71)

where ξ(t) ∈ ΛN , V = [v1, . . . , vN ] and D = [d1, . . . , dN ]. Moreover, the following

identity is given

ρ̇(t) =
N∑

i=1

ξi(t)di =
N∑

i=1

λ̇i(t)vi. (2.72)
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based on the letter characterisation of Λ̇N the following results is given

Theorem 13

The polytopic LPV-system given in (1.51) is robustly stable if there exist matrices

Pi ∈ Sn�0, i = 1, . . . , N , such that the parameter-dependent LMI

A(λ)TP (λ) + P (λ)A(λ) + P (θ) ≺ 0, (2.73)

holds for all (λ, θ) ∈ ΛN × vert{Λ̇N} where

P (λ) =

N∑

i=1

λiPi and A(λ) =

N∑

i=1

λiAi.

2.3.1.3 Stability of LPV-systems in LFT-Form

Let the system given under the LFT-form (Figure 1.2) with the following state space

realisation 



ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

w(t) = θ(ρ(t))z(t)

∀ t ≥ 0, (2.74)

where θ(ρ) is a possibly structured, matrix containing the time-varying parameters.

The lower part this LFT-form system is represented as an LTI-model with the following

transfer function

G(s) = C(sI −A)−1B +D. (2.75)

Given α ∈ L2, let us consider the multiplication operator Θρ de�ned as

Θρ(α(t)) = θ(ρ(t))α(t). (2.76)

Then, the small gain theorem for LPV-systems under LFT-form is stated as the follow-

ing

Theorem 14: Small Gain Theorem for LPV-Systems [Briat, 2015]

Assume that ‖Θρ‖i,2 for all ρ ∈P, then the LPV-system (2.74) is asymptotically

stable if

‖G‖∞ < 1, (2.77)

where P is the set parameter trajectories and ‖ . ‖i,2 is the induced L2-norm

de�ned in (1.1).
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As mentioned in the LTI-case, the small gain theorem is a very simple tool for stability

analysis. In fact, only gains are considered and no information on the phase are needed

(unlike the Nyquist test for example). However, it remains very conservative fo the LPV-

framework. Indeed, information about the interconnected structures are not caught. For

example, a simple structure (e.g. block diagonal matrix) of θ(ρ), can not be exploited

in the analysis conditions. To tackle this drawback, the scaled small-gain notion is

introduced. Then, information on the interconnection structure can be captured and the

explicit expression of θ(ρ) is considered (for more details, see [Packard and Doyle, 1993,

Briat, 2015]).

2.3.2 H∞-LPV-synthesis

Analysis and control of LPV-systems is directly inherited from robust control theory.

The main distinctness is in the fact that the parameters are assumed to be known

or measurable in the LPV-framework, whereas they are unknown, by assumption, in

robust control theory. The designed LPV-controllers should guarantee both stability

and performance for all scheduling parameters in the prede�ned set. To this end,

several control-laws for LPV-systems are developed : by considering the two parameters

classes (bounded parameters with bounded derivatives or arbitrary variation rates), two

control design categories are then given namely quadratic and robust stabilisation. On

the other hand, the controller representation (static or dynamic) and the controller-

input (output-feedback or state-feedback), generates several classes of control strategies.

Then, a various combinations of LPV-controllers are obtained and they are highlighted

in Figure 2.7

Quadratic Stability

Robust Stability

State-Feedback

Output-Feedback

Quatratic Stabilisation
by State-Feedback

Quatratic Stabilisation
by Output-Feedback

Robust Stabilisation
by Output-Feedback

Robust Stabilisation
by State-Feedback

Figure 2.7: LPV-controllers types

In addition, and according to the several LPV-representations mentioned in 1.4.4 (a�ne,

polytopic, etc), a third classi�cation can be given. Details on those controllers are given
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in [Briat, 2015] and presented in Appendix A.1.

In this section the quadratic approach with output feedback for polytopic systems is

presented.

Quadratic Stabilisation for LPV-polytopic Systems Consider a general LPV-

system represented under the following state-space realisation





ẋ(t) = A(ρ(t))x(t) + B1(ρ(t))w(t) + B2(ρ(t))u(t)

z(t) = C1(ρ(t))x(t) + D11(ρ(t))w(t) + D12(ρ(t))u(t)

y(t) = C2(ρ(t))x(t) + D21(ρ(t))w(t) + D22(ρ(t))u(t)

∀t > 0, (2.78)

where x(t) ∈ Rn, u(t) ∈ Rnu , w(t) ∈ Rnw , z(t) ∈ Rnz , y(t) ∈ Rny are respectively the

state, the input, the disturbance vectors, the controlled output and the measured

output. The vector ρ(t) is the exogenous parameter varying vector which is time

dependent and ∆ρ is the set of the parameter values, i.e. ρ(t) ∈∆ρ.

Then,

A : ∆ρ → Rn×n, B1 : ∆ρ → Rn×nw , B2 : ∆ρ → Rn×nu ,
C1 : ∆ρ → Rnz×n, C2 : ∆ρ → Rny×n, D11 : ∆ρ → Rnz×nw ,
D12 : ∆ρ → Rnz×nu , D21 : ∆ρ → Rny×nw and D22 : ∆ρ → Rny×nu .

The H∞-LPV-controller for the LPV-system (2.78) is de�ned by

K(ρ) :

{
ẋK(t) = AK(ρ(t))xK(t) + BK(ρ(t))y(t)

u(t) = CK(ρ(t))xK(t) + DK(ρ(t))y(t)
∀t > 0, (2.79)

where xK(t), y(t) and u(t) are respectively the states, the inputs and outputs

of the controller K(ρ). AK : ∆ρ → Rn×n, BK : ∆ρ → Rn×ny , CK : ∆ρ →
Rnu and DK : ∆ρ → Rnu×ny .
The H∞-LPV-controller synthesis concerns the design of an LPV-global-controller that

guarantees both stability and performance for all parameters variations de�ned in the

set ∆ρ.

To guarantee the closed-loop system quadratic stability and to satisfy H∞-performance

criterion, the approach developed in [Scherer et al., 1997] is used to design the H∞-

LPV-controller. This solution is on the polypotic formulation, and the global H∞-LPV

controller is a convex combination of local controllers like shown in 1.4.4. Those lo-

cale controllers are given as follows: by assuming that the system matrices B2, D12, C2

and D21 are parameter independent and D22 = 0. and for a pre-de�ned real positive

scalar γ and a parameter dependent quadruplet matrices (ÂK, B̂K, ĈK, D̂K), there ex-

ist two symmetric matrices X and Y such that the su�cient condition that solves the
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H∞-LPV-problem is given by the following LMIs




A(ωi)X +B2ĈK(ωi) + (∗) ∗
ÂK(ωi) +AT(ωi) + CT

2 D̂
T
K(ωi)B

T
2 Y A(ωi) + B̂K(ωi)C2 + (∗)

BT
1 (ωi) +DT

21D̂
T
K(ωi)B

T
2 BT

1 (ωi)Y +DT
21B̂

T
K(ωi)

C1(ωi)X +D12ĈK(ωi) C1(ωi) +D12D̂K(ωi)C2

. . .

. . .

∗ ∗
∗ ∗

−γInu ∗
D11(ωi) +D12D̂K(ωi)C2 −γIny


 ≺ 0,

(2.80)

[
X I

I Y

]
� 0, (2.81)

where ωi are the vertices of the polytope formed by all the extremities of each varying

parameter ρ ∈ Pρ and terms denoted (∗) are induced by symmetry, for example

[
M +N + (∗) ∗

K L

]
=

[
M +MT +N +NT KT

K L

]

The controller K(ωi) at vertex i is then reconstructed as

DK(ωi) = D̂K(ωi).

CK(ωi) = (ĈK(ωi)−DK(ωi)C2X)M−T.

BK(ωi) = N−1(B̂K(ωi)− Y B2DK(ωi)).

AK(ωi) = N−1(ÂK(ωi)− Y A(ωi)X − Y B2DK(ωi)C2X)M−T.

−BK(ωi)C2XM
−T −N−1Y B2CK(ωi).

(2.82)

where M and N are de�ned such that MNT = In − XY and which can be solved

through a singular value decomposition and a Cholesky factorisation. The �nal con-

troller K(ρ) de�ned in (2.79) is then the convex combination of local controllers (see

also [Sato and Peaucelle, 2013]).

Conclusion

In this chapter the H∞-control theory for LTI and LPV systems has been presented.

The stability issue and the H∞-synthesis procedure regarding the two system classes

have been discussed. The investigation on the resulted H∞-controllers shows the

Achilles heels of this advanced control technique which is the probable high order of the

controllers. One evident solution to remedy this drawback is to set this order before
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the design step. The big �exibility o�ered by the design method through the LMI tools

make the order constraint very easy to incorporate in the basic H∞-problem. However,

the problem become non-convex and by the way the controller is then harder to �nd.

Many approaches are recently developed and summarised in this chapter. As shown in

the last Section, convexi�cation step is achieved after many approximation. In addition,

the application of these algorithms has more chance to generate numerical di�culties.

This fact limits the use and the reliability of this direct path to get a low order con-

troller. This disadvantage come from the fact that the solutions are dependent on the

developed numerical solvers. These last are still developing. In the next chapter, The

order reduction way to get a low order controller is exterminated. Methods to reduce

the order of controllers are presented and could give some alternative to given ones on

this chapter. In fact numerical problems are less involved and optimisation problems

are avoided.

methods combining model-order reduction and controller synthesis are suggested as

more manageable way to get a low order controller.
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Introduction

As shown in Chapter 2, the obtained H∞-controllers have at least the same order as

the plant. Since this latter is built from the physical model and the frequency weight-

ing functions (for performance requirements), the order of plant may be very high. In

this case, the full-order controllers may be of limited use in practical applications. In

practice, low-order controllers are preferred to high-order controllers as they requires

less complicated and more easy available hardware to understand, to maintain and to

implement in the real world. In the early days, the development in this �eld has made

the order reduction for control a needful design step. In order to achieve these advan-

tages, new methods which yield low order controllers are developing. These methods

can be divided into three classes:

Full order plant Full order controller

Reduced order controllerReduced order plant

Control design

C
o
n
tro

ller
o
rd
er

red
u
ctio

n

Direct control design

M
o
d
el

o
rd
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red
u
ctio

n
Control design

Figure 3.1: Controller Order Reduction Scheme [Anderson and Liu, 1989]

1. The �rst approach is to design a reduced-order controller directly from

the high order system [Yeh et al., 1994, Ly et al., 1985, Gangsaas et al., 1986,

Bernstein, 1989, Hyland and Richter, 1990, Fischer and Gutman, 1991]. The

main lack of this kind of methods is that the order of the reduced-controller

has to be chosen by an ad-hoc way [Goddard, 1995].

2. The second way is to reduce the model using one of the existing open-loop model

order reduction methods [Antoulas, 2005b], and then design a controller for the

obtained reduced model. The disadvantage of this indirect method is that the

resulting error from reduction process will not be taken into the controller design

step. And as a result, the reduced order controller is not guaranteed to stabilise

the full order model [Kong, 2012].

3. The third way is to �rstly design a full-order controller and then, reduce it while

preserving the properties of the closed-loop system.
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Note that reducing the designed controller for a high order plant is more e�ective than

designing a controller for the reduced plant for many reasons:

• Error might expand when the reduction step is achieved before controller design.

• The plant approximation needs knowledges of the controller while the later has

not yet been designed.

Thus, in this dissertation the third way is used to design a low-order controller. In this

Chapter, well known methods of model order reduction methods are �rst reviewed in

Section 3.1. Based on this, controller order reduction method for LTI-systems is shown

in Section 3.2. Then, an extension to the LPV-systems is developed in Section 3.3.

3.1 Model Order Reduction

Model Order Reduction (MOR) is a very active research �eld in system and control

theory. Indeed, it allows the conception of compact systems from an initial complex

high order models. Mathematically speaking, the model reduction problem can be

formulated as follows: given Σ, the LTI system introduced in (1.20) with the transfer

function G given by G(s) = D +C(sI −A)−1B, �nd a reduced order model with the

transfer function Gr(s)

Gr(s) = Dr + Cr(sI −Ar)−1Br (3.1)

with Ar ∈ Rr×r, Br ∈ Rr×nu , Cr ∈ Rny×r, Dr ∈ Rny×nu and r < n, such that the

following properties are satis�ed

• Approximation error against the initial model is small.

• System stability is preserved.

• Reduction procedure is computationally e�cient and reliable.

Various approaches are developed. They deal on the error expression by deleting the

less important states or matching some parameters of the original and reduced order

systems. These methods can be classi�ed two main categories (Figure 3.2)

1. Eigenvalues decomposition based methods (Modal- and SVD-based techniques)

2. Moment matching methods (Krylov techniques)

These classes are broadly investigated in the literature, However, an attention is given

to the �rst category. Indeed, SVD-based methods are well grounded in theory and are

widely used. Among them, the unweighted/weighted balanced truncation approxima-

tions and the singular perturbation are the most popular methods. This section reviews
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Approximation methods

Moments matchingEigenvalues

Krylov methods

-Arnoldi/Lanczos
-Rational interpolation

SVD methods
-Balanced Truncation (BT)
-Singular Perturbation
-Frequency Weighted BT

Modal methods
-Eigenvalues, residues
-Dominant modes

Figure 3.2: Flowchart of Model Order Reduction Methods [Antoulas, 2005a]

them and show their performance and drawbacks in open-loop con�guration. Based on

this, a controller order reduction in closed loop scheme is performed in the next sections.

Before introducing these methods, a balancing step is needed. It helps to split the states

into two sets so-called dominant and non-dominant states:

3.1.1 Balancing Procedure

Let Σ, be the LTI-system of order n with nu inputs and ny outputs given in (1.20) with

G(s) = C(sI − A)−1B +D its transfer function. Then, let us associate to this system

the following Lyapunov equations

{
AWr +WrA

T +BBT = 0

ATWo +WoA+ CTC = 0.
(3.2)

If Σ is asymptotically stable (Re(λi(A)) < 0 ∀i) and its state space realisation (1.20)

is minimal (i.e. reachable and observable), then (3.2) has two unique de�nite positive

symmetric solutions Wr, Wo ∈ Sn�0 called: reachability Gramian and observability

Gramian respectively. The square root of the eigenvalues of the product WrWo gives

the so-called Hankel singular values, i.e.

σi(G) =
√
λi(WrWo). (3.3)
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De�nition 3.1.1 ([Moore, 1981]) The reachable, observable and stable LTI-

system Σ is called balanced if

Wr = Wo = diag(σ1Im1 , ....., σqImq). (3.4)

with σ1 > σ2 > · · · > σq > 0, mi : i = 1, · · · , q are the multiplicities of σi and

m1 + · · ·+mq = n.

To balance the system, a basis change matrix T can be de�ned so that
{

˙̃x = Ãx̃+ B̃u

y = C̃x̃+Du
(3.5)

with

x = T x̃, Ã = T−1AT, B̃ = T−1B and C̃ = CT.

In this new basis, Gramians are expressed as

W̃r = T−1WrT
−T and W̃o = TTWoT. (3.6)

Note that Moore & Laub procedure [Moore, 1981] is the historical well-known one to

compute the matrix T . It is given as follows

1. Compute Gramians Wr and Wo of a minimal realisation (A,B,C,D).

2. Compute R the Cholesky factor (upper triangular) of Wr, i.e. Wr = RRT.

3. Compute the singular value decomposition: RTWoR = UW 2UT.

4. Compute the basis change matrix T = RUW−1/2.

Note that another algorithm based on the use of the Cholesky factors of the two Grami-

ans is given in [Li, 2000].

3.1.2 Balanced Truncation

Balanced Truncation BT concept was introduced �rst by [Mullis and Roberts, 1976],

Then, generalisation for system theory is given in [Moore, 1981]. The main idea is

to �nd another equivalent state space representation where the system states are as

reachable as observable. In this new basis, the reduced order model is obtained by states

truncating at the desired order. Applied to stable systems, this approach preserves

stability with a guaranteed error bound [Pernebo and Silverman, 1982]. For medium

order models (dozens of states), this method is very e�cient however for very high order

model (� 100), the implementation of the BT seems to be expensive. Indeed, dense

matrices factorisation is required, which needs a higher memory capacity.
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Theorem 15: [Pernebo and Silverman, 1982]

Let S be a minimal realisation of the asymptotically stable LTI-system (1.20). It

can be expressed under its balanced realisation S̃ such as:

S̃ :



[
A11 A12

A21 A22

] [
B1

B1

]

[
C1 C2

]
D


 (3.7)

with

Wr = Wo = diag(Σ1,Σ2)

where

Σ1 = diag(σ1Im1 , . . . , σkImk) and Σ2 = diag(σk+1Imk+1
, . . . , σqImq)

with: σ1 > σ2 > · · · > σq > 0, mi : i = 1, · · · , q are multiplicities of σi and

m1 + · · ·+mq = n.

Then, the reduced order realisation:

[
Ar Br
Cr Dr

]
, obtained by truncation is

asymptotically stable, minimal and satisfy

‖G−Gr‖∞ ≤ 2

q∑

k+1

σi (3.8)

where G and Gr are the full and the reduced order model transfer functions re-

spectively. Note that r =
k∑
i=1

mi.

The presented approach is valid for all stable system with minimal realisation.

For unstable systems see [Zhou et al., 1999].
Remark

3.1.3 Singular Perturbation Approximation

The Singular Perturbation Approximation (SPA) method is an alternative to the trunca-

tion technique if the model is stable with minimal realisation and internally balanced.

These two methods constitute complementary model order reduction techniques for

continuous-time systems, and both of them conserve the stability. Even though, the

upper bound for both reduction methods is the same, the BT aims to reach a smaller

error at high frequencies and tends to be larger at low frequencies, whereas the reduced

order models through SPA method behave otherwise, i.e. the error goes to zero at low
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frequencies and tends to enlarge at high frequencies. In SPA method, all balanced states

are sorted and divided into the slow and fast modes by representing the smaller Hankel

singular values as the fast mode, and the rest as the slow mode. Thus, a reduced-order

model can be obtained by setting the derivative of all states corresponding to the fast

mode equal to zero.

Let S̃ be the balanced realisation of the LTI-system given in (3.7), i.e.

S̃ :





˙̃x1(t) = A11x̃1(t) +A12x̃2(t) +B1u(t)
˙̃x2(t) = A21x̃1(t) +A22x̃2(t) +B2u(t)

y(t) = C1x̃1(t) +C2x̃2(t) +Dru(t)

∀ t ≥ 0.

Since the system is balanced, x̃2 represents states corresponding to smaller HSV,

i.e. the fast dynamics of the system. Based on the concept of the SPA

method [Liu and Anderson, 1989], the derivative of all states corresponding to x̃2

are set to zero. Then, the reduced order model is given by the transfer function

Gr(s) = Cr(sI −Ar)−1Br +Dr with

Ar = A11 −A12A
−1
22 A21, (3.9)

Br = B1 −A12A
−1
22 B2, (3.10)

Cr = C1 − C2A
−1
22 A21, (3.11)

Dr = D − C2A
−1
22 B2 (3.12)

and assuming that A22 is invertible.

Theorem 16: [Glover, 1984]

Let S̃ be the minimal balanced state space representation of the asymptotically

stable system given in (3.7). Then, the reduced order model obtained by SPA is

asymptotically stable and satisfy

‖G−Gr‖∞ ≤ 2
n∑

i=k+1

σi. (3.13)

where G and Gr are the full and the reduced order model transfer functions re-

spectively and r =
k∑
i=1

mi

Example In order to showing the e�ectiveness of these approaches, a numerical ap-

plication to a physical system is given. Then, a building (the Los Angeles University

Hospital) with 8 �oors each having 3 degrees of freedom is modelled by a state space
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form of order 48 [Chahlaoui and Dooren, 2002].

Figure 3.3 shows the model Hankel singular values HSV that/whose can give a �rst idea

about the order of the reduced order model by eliminating the smallest HSV. Remark

that the �rst ten HSV are quite bigger than the rest of the values. Then, when truncat-

ing, the �rst ten states are kept. Figure 3.4 shows the model frequency response, where

states number
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Figure 3.3: Hankel Singular values

the two obtained reduced order models using BT and SPA are compared to the initial

model. Note that BT-based method shows good performance in high frequencies but

not for the static gain. As expected, the characteristics of both methods are contrary

to each other. Indeed, the SPA-reduced order model �ts the model in low frequency

but not over 10Hz.

3.1.4 Frequency Weighted Balanced Truncation

The BT and the SPA approaches are performed with the aim to limit the error be-

tween the full-order model and the reduced-order one in the whole frequency range.

However, for many applications, a reduction in speci�c frequency range is more im-

portant. To do this, a Frequency Weighted FW technique is given in order to �t

the reduction step to a limit frequency range. This idea has been introduced �rst in

[Enns, 1984] where the BT is extended to give birth to the so-called Frequency Weighted

Balanced Truncation FWBT. Nevertheless, the stability of the reduced order model is

not guaranteed. To tackle this problem, a second variant that guarantee the stability is

proposed in [Lin and Chiu, 1990]. However an additional assumption is needed which

limit its use. Thereafter, the method is modi�ed in [Sreeram and Anderson, 1995] and

[Kim et al., 1995] to introduce an explicit a priori upper bound of the approximation er-
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ror. In [Wang et al., 1999], then in [Varga and Anderson, 2001], a simpler upper bound

is given. Moreover, another version that focus on the relative approximation error is

proposed in [Zhou, 1995]. All these developed techniques require the determination of

an input and output weighting functions which is not an easy task. Thus, the classi-

cal version of the FWBT is modi�ed in [Gawronski and Juang, 1990] where a reduced

order model in a limited frequency range can be found without setting the input and

output weighting functions. However, the stability in this approach is not guaranteed.

Recently [Gugercin and Antoulas, 2004] propose an improved version that guarantee

the stability with an upper error bound.

3.1.4.1 Enns' Method

The FWBT technique can be achieved by introducing two weighting function V and

W in input and the output of the system. Then, the desirable approximation error is

W (G−Gr)V .
Let Σ be the square LTI-system and G(s) = C(sI − A)−1B + D its transfer function.

De�ne V (s) = CV (sI−AV )−1BV +DV andW (s) = CW (sI−AW )−1BW +DW a stable

input and output weighting functions respectively. Then, two augmented systems are

given as

GV (s) = Ci(sI −A−1
i )Bi +Di, (3.14)

WG(s) = Co(sI −A−1
o )Bo +Do, (3.15)
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where
[
Ai Bi

Ci Di

]
=



[
A BCV
0 AV

] [
BDV

BV

]

[
C DCV

]
DDV


 , (3.16)

and
[
Ao Bo

Co Do

]
=



[
AW BWC

0 A

] [
BWD

B

]

[
CW DWC

]
DWD


 . (3.17)

Then, let Pi =

[
P11 P12

PT
12 P22

]
and Qo =

[
Q11 Q12

QT
12 Q22

]
, be the solutions of following

Lyapunov equations {
AiPi + PiA

T
i +BiB

T
i = 0

AT
oQo +QoAo + CT

o Co = 0
(3.18)

Then, solving (3.18) is equivalent to solve

{
AP11 + P11A

T +X = 0

ATQ22 +Q22A+ Y = 0
(3.19)

with

X = BCV P
T
12 + P12C

T
VB

T +BDVD
T
VB

T (3.20)

and

Y = CTBT
WQ12 +QT

12BWC + CTDT
WDWC. (3.21)

The method is based on balancing P11 and Q22, i.e

P11 = Q22 = diag(σ̄1Im1 , . . . , σ̄qImq) (3.22)

with: mi : i = 1, · · · , q are multiplicities of σ̄i and m1 + · · ·+mq = n.

σ̄i are the weighted singular values of G(s).

In addition, in this basis, the system can be expressed under the following realisation:

S̃ :



[
A11 A12

A21 A22

] [
B1

B2

]

[
C1 C2

]
D


 . (3.23)

Finally,

[
A11 B1

C1 D

]
is the reduced-order system obtained by truncation.
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1. The reduced order model is not guaranteed stable but only when one

weighting function is identity, i.e. V = I or W = I.

2. It is noted that the equations system (3.19) has semi de�nite pair of

solutions PE and QE if D is not singular (D 6= 0). When the system

is singular, [Willems, 1972] proposes to replace D by (D+ ε
2I) for any

ε > 0.

Remark

Then-after, an upper error bound is expressed in [Kim et al., 1995], but it is very hard

to compute it:

Theorem 17: [Kim et al., 1995]

Consider the minimal realisation of the asymptotically stable LTI-system given in

(1.20). Then, the reduced order model obtained by the FWBT with Enns' method

satisfy

‖W (G−Gr)V ‖∞ ≤ 2

q∑

i=k+1

√
σ̄2
k + (αk + βk)σ̄

3/2
k + αkβkσ̄k (3.24)

where Gr is the reduced order model transfer function and αk, βk are H∞-norms

of certain functions dependant on W and V . In addition, if W = I or V = I, the

reduced-order model is guaranteed stable.

When W = V = I, relation (3.24) become ‖(G−Gr)‖∞ ≤ 2
q∑

i=k+1

σk which

is the absolute error given on the BT method.
Remark

3.1.4.2 Lin and Chiu's Method

Enns' method has been modi�ed in [Lin and Chiu, 1990] in order to con-

serve the system stability when reducing. Later, this method is modi�ed in

[Sreeram and Anderson, 1995] in order to give an upper error bound to the approxi-

mation error.

Let TLCi
=

[
I P12P

−1
22

0 I

]
and TLCo

=

[
I −Q22Q12

0 I

]
, two transformations ap-

plied to the augmented systems (3.14) and (3.15) respectively. Then, two transformed

systems are given as

[
Āi B̄i

C̄i D̄i

]
=




[
A X12

0 AV

] [
BLC

BV

]

[
C CP12P22 +DCV

]
DDV


 (3.25)
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and
[
Āo B̄o

C̄o D̄o

]
=



[
AW Y12

0 A

] [
B

BWD +Q−1
11 Q12B

]

[
CLC DW

]
DWD


 (3.26)

with

X12 = AP12P
−1
22 +BCV − P12P

−1
22 AV , (3.27)

Y12 = Q−1
22 Q12A+BWC −AWQ−1

11 Q12 (3.28)

and

BLC = BDV − P12P
−1
22 BV , (3.29)

CLC = DWC − CWQ−1
22 Q12. (3.30)

Then, transformed reachability and observability Gramians namely PLC and QLC

are satisfying the two Lyapunov equations

{
APLC + PLCA

T +BLCB
T
LC = 0

ATQLC +QLCA+ CT
LCCLC = 0.

(3.31)

Simultaneous diagonalisation of PLC and QLC gives

PLC = QLC = diag(σ̄1Im1 , . . . , σ̄qImq). (3.32)

The reduced order model is obtained by transforming and partitioning the original

system. Assuming no pole-zero cancellations between the weights and the original

system, the realisation {A,BLC, CLC} is then minimal and Lin and Chiu's technique

yields stable models in the case of double-sided weighting.

Theorem 18: [Lin and Chiu, 1990, Sreeram and Anderson, 1995]

Consider the minimal realisation of the asymptotically stable LTI-system given in

(1.20). Then, the reduced order model obtained by the Lin and Chiu's FWBT

method is stable and satisfy

‖W (G−Gr)V ‖∞ ≤ 2

q∑

i=k+1

√
(σ̄2
k + αk + λk)(σ̄k + βk + ωk) (3.33)

where αk, βk, λk and ωk are the H∞-norm of certain functions that depend on W

and V .

Note that the given upper bound is less easier to compute than the one introduced

previously and given by [Kim et al., 1995].
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3.1.4.3 Varga and Anderson's Method

As shown previously, the assumption that no pole-zero cancellations occur when forming

the augmented system limits the applicability of Lin and Chiu's method. A solution to

overcome this drawback has been proposed in [Varga and Anderson, 2001]. The idea is

to balancing Pva and Qva instead of P11 and Q22 where

{
Pva = P11 − α2P12P

−1
22 P

T
12,

Qva = Q22 − β2QT
12Q

−1
11 Q12,

(3.34)

with 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

Note that αc = αo = 0 corresponds to Enns' method and α = β = 1 leads

to Lin and Chiu's method.
Remark

3.1.4.4 Wang's et al. Method

The problem on stability in the case of two sided weighted method viewed in Enns'

method, is resolved here. Then, a method has been proposed in [Wang et al., 1999] in

order to guarantee that X and Y of (3.20) and (3.21) respectively are semi-positive

de�nite matrices. Then, the two Gramians of reachability and observability Pwsl and

Qwsl are obtained by solving the following two Lyapunov equations

{
APwsl + PT

wsl +BwslB
T
wsl = 0

ATQwsl +QwslA+ CT
wslCwsl = 0

(3.35)

where B
wsl

= U
wsl

√
|S

wsl
| and C

wsl
=
√
|R

wsl
|V T

wsl
. The matrices U

wsl
, S

wsl
, V

wsl
and

R
wsl

are obtained by an eigenvalue decomposition of X and Y given in (3.20) and (3.21),

i.e.

X = U
wsl
S
wsl
UT
wsl

(3.36)

Y = V
wsl
R
wsl
V T
wsl

(3.37)

with

S
wsl

= diag(s1, s2, . . . , sn) (3.38)

R
wsl

= diag(r1, r2, . . . , rn) (3.39)

where |s1| ≥ |s2| ≥ · · · ≥ |sn| ≥ 0 and |r1| ≥ |r2| ≥ · · · ≥ |rn| ≥ 0.

Theorem 19: [Wang et al., 1999]

Given G, let Gr be obtained by Wang's et. al frequency weighted balanced trun-
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cation as above. Then Gr is stable. In addition if

rank([B,Bwsl]) = rank(Bwsl) (3.40)

rank([CT, CT
wsl]) = rank(CT

wsl), (3.41)

then Gr is asymptotically stable and satis�es

‖W (G−Gr)V ‖∞ ≤ 2 ‖WL‖
∞
‖KV ‖

∞

n∑

i=r+1

κi (3.42)

with

L = CV
wsl

diag(|r1|
−1/2

, |r2|
−1/2

, . . . , |rni|
−1/2

, 0, . . . , 0) (3.43)

K = diag(|s1|
−1/2

, |s2|
−1/2

, . . . , |rno|
−1/2

, 0, . . . , 0)UT
wsl
B (3.44)

where ni = rank(X) and no = rank(Y ).

3.1.4.5 Gawronski's et al. Method

A scheme where the frequency weights are not prede�ned and approximation is consid-

ered in a given frequency interval is introduced in [Gawronski and Juang, 1990].

Let P and Q be the reachability and the observability Gramians introduced in (3.2).

Using Parseval's relationship it follows that in the frequency domain, P and Q are given

by

P =
1

2π

∫ +∞

−∞
H(w)BBTH∗(w)dw, (3.45)

Q =
1

2π

∫ +∞

−∞
H∗(w)CTCH(w)dw, (3.46)

where H(w) = (wI −A)−1 and H∗(w) = (−wI −A∗)−1. For a given frequency band

Ω = [ω1 ; ω2], the frequency weighted Gramians can be de�ned as

PΩ = P (ω2)− P (ω1) (3.47)

QΩ = Q(ω2)−Q(ω1) (3.48)

where

P (ω) =
1

2π

∫ +ω

−ω
H(w)BBTH∗(w)dw, (3.49)

Q(ω) =
1

2π

∫ +ω

−ω
H∗(w)CTCH(w)dw. (3.50)
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Note that P (ω) and P (ω) are both positive de�nite. From the fact that

BBT = −AP − PAT = (wI −A)P + P (wI −A)∗,

the weighted reachability Gramian can be expressed as

P (ω) =
1

2π

∫ +ω

−ω
[PH∗(w) +H(w)P ] dw (3.51)

The �nal equation yields

P (w) = PS∗(w) + S(w)P (3.52)

where

S(ω) =
1

2π

∫ +ω

−ω
H(w)dw =



2π
ln
(
(ωI +A)(−ωI +A)−1

)
(3.53)

A similar argument leads to

Q(w) = S∗(w)Q+QS(w). (3.54)

Based on the de�nitions of S(w) and P in (3.53) and (3.45), and from the fact that

H(ω1)H(ω2) = H(ω2)H(ω1) for any ω1, ω2 ∈ R, one obtains

S(w)P =
1

4π2

∫ +ω

−ω

∫ +∞

−∞
H(w)H(φ)BBTH∗(φ)dφdw

=
1

2π

∫ +∞

−∞
H(φ)S(ω)BBTH∗(φ)dφ.

(3.55)

Plugging this into (3.51) gives

P (w) = PS∗(w) + S(w)P =
1

2π

∫ +∞

−∞
H(φ)Wc(w)H∗(φ)dφ. (3.56)

where Wc(w) = S(w)BBT +BBTS∗(w). Since A is asymptotically stable, P (w) is the

solution to the Lyapunov equation

AP (w) + P (w)AT +Wc(w) = 0 (3.57)

Therefore, the frequency weighted Gramian PΩ in (3.47) is obtained by solving

APΩ + PΩA
T +Wc(Ω) = 0 (3.58)

where Wc(Ω) = Wc(ω2)−Wc(ω1). A similar argument yields

ATQΩ +QΩA
T +Wo(Ω) = 0 (3.59)
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whereWo(Ω) = Wo(ω2)−Wo(ω1) andWo(w) = S∗(w)CTC+CTCS(w). Therefore S(w)

can be computed whenever a balanced realisation can be computed. Gawronski and

Juang's frequency weighted method is obtained by balancing PΩ and QΩ, i.e. �nding a

basis so that

PΩ = QΩ = diag(σn1In1 , . . . , σnqInq) (3.60)

where ni are the multiplicities of each singular value σn1 and n1 + · · ·+ nq = n. Then

the reduced order model is obtained by truncation. The advantage of this method is

that the construction of input and output weights is avoided by de�ning the Gramians

over the speci�ed frequency range.

since Wc(Ω) and Wo(Ω) are not guaranteed to be positive de�nite, stability

of the reduced model cannot be guaranteed.
Remark

3.1.4.6 Gugercin's et al. Method

In this method, a modi�cation is introduced to Gawronski's method in order to obtain

a frequency balancing method which guarantees stability and provides a simple error

result.

Given the Lyapunov equation (3.58) and (3.59), letWc(Ω) andWo(Ω) have the following

EVD:

Wc(Ω) = MΛMT = M diag (λ1, . . . , λnK)MT, (3.61)

Wo(Ω) = N∆NT = N diag (δ1, . . . , δnK)NT, (3.62)

where MMT = NNT = In with |λ1| ≥ . . . |λn| ≥ 0 and |δ1| ≥ . . . |δn| ≥ 0. From the

fact that Wc(Ω) and Wo(Ω) are both symmetric, such decompositions exist. Let u ≤ n
and v ≤ n be respectively the ranks of Wc(Ω) and Wo(Ω). Based on these de�nitions,

let us de�ne the two quantities:

BG = M diag(|λ1|
1
2 , . . . , |λu|

1
2 , 0, . . . , 0), (3.63)

CG = diag(|δ1|
1
2 , . . . , |δv|

1
2 , 0, . . . , 0)NT. (3.64)

3.2 H∞-LTI-Controller Order Reduction

Methods proposed in the last section deal with an open-loop order reduction, where

only the stability of the model is considered. However, in a closed-loop con�guration

the stability of the closed-loop must be preserved when reducing. In addition, perfor-

mance of the reduced order should be kept as close as possible to the original controller

performance.
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3.2.1 Full Order Controller

First, let us recall the standard interconnected closed loop system of the Figure 3.5

where the augmented plant P is represented as follow:

P

K

yu

zw

Figure 3.5: H∞-controlled system

P =

[
Pzw Pzu
Pyw Pyu

]
s
=




A Bw Bu
Cz Dzw Dzu

Cy Dyw Dyu


 . (3.65)

Then, �nding the stabilising controller K is equivalent to reduce the H∞-norm of the

transfer Tzw such that:

‖Tzw‖∞ = ‖F`(P,K)‖∞ = ‖Pzw + PzuK(I − Pyu)−1Pyw‖∞ (3.66)

A general solution for this problem base in Youla parametrisation [Youla et al., 1976,

Vidyasagar, 1985] is given in [Zhou et al., 1996] (Fig. 3.6):

K = F`(M,Q) = M11 +M12(I −M22Q)−1M21, (3.67)

where M is a �xed transfer function matrix of the form:

M

K

Q

yu

Figure 3.6: LFT of the Controller K

M =

[
M11 M12

M21 M22

]
s
=




Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22


 . (3.68)
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D̂12 and D̂21 are invertible, and M−1
12 and M−1

21 are stable. Q is a free parameter which

should be stable and should satisfy the following inequalities:

{
Q ∈ RH∞
‖Q‖∞ < γ.

(3.69)

The solution obtained by setting Q = 0 is called the central controller Kc = M11. This

solution is used in general as H∞-controller [Zhou et al., 1996, Nagado and Usui, 2009].

3.2.2 FWBT for Controller Order Reduction

The problem to be considered here is to �nd a controller Kr with a minimal possible

order such that the H∞ performance requirement ‖F`(G,Kr)‖∞ ≤ γ is satis�ed

(Figure 3.7). This is clearly equivalent to �nding a Q so that it satis�es the above

constraint and the order of Kr is reduced. However, directly �nding such a Q has

proven to be very di�cult.

P

Kc

uy

wz

P

Kr

ũỹ

wz̃

(a). Full order controller (b). Reduced order controller

Figure 3.7: From Full to Reduced Order H∞-controller

Then, Kr can be presented as (Figure 3.8):

M

Kr

Qr

yu

Figure 3.8: Block Diagram Representation of Kr

Kr = M11 +M12Qr(Ir −M22Qr)
−1M21 (3.70)
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The reduction error ∆K is de�ned by ∆K , Kr −Kc. Then,

∆K = M12Qr(I −M22Qr)
−1M21. (3.71)

Based on this:

Qr = (Ir +M−1
12 ∆KM

−1
21 M22)−1M−1

12 ∆KM
−1
21 (3.72)

Then, �nding a low-order-H∞-controller is equivalent to search the stable free param-

eter Qr such that ‖Q‖∞ < γ. The expression (3.72) can be represented by the block

diagram in Figure 3.9:

∆KM−1
21 M−1

12

M−1
22

+

−

Figure 3.9: Block Diagram Representation of Qr

Based on the small gain theorem, the closed-loop system is stable if:

‖∆KM
−1
21 M22M

−1
12 ‖∞ < 1 (3.73)

or

‖M−1
21 M22M

−1
12 ∆K‖∞ < 1 (3.74)

Therefore, the above inequality can be interpreted as frequency-weighted model

reduction problem given in the previous section w.r.t. the following settings:

V = Ir and W = M−1
21 M22M

−1
12

or

V = M−1
21 M22M

−1
12 and W = Ir

3.2.3 Order Reduction Procedure

By considering the scheme in Figure 3.10, we summarise the contents of this approach

in Algorithm 2.
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‖(Kr −K)M−1
21 M22M

−1
12 ‖∞ < 1

‖Wo(Kr −K)Wi‖∞ < 1

Frequency weighted balanced truncation

Wi = M−1
21 M22M

−1
12 and Wo = I

Figure 3.10: FWBT for controller order reduction

Algorithm 2 H∞-LTI-controller order reduction

1. Compute the full order controller K = M11 as described in Section 2.1.

2. Compute M12,M21 and M22 given in (2.11).

3. By considering the Figure 3.10, compute the Gramians Pi and Qo as described in

(3.18).

4. Search a balanced realisation according to the Moore's algorithm giving in Sec-

tion 3.1.

5. Truncate the balanced realisation of K to obtain Kr at the order r.

In this section, the balanced truncation method is used to reduce the order of H∞-

LTI-Controller. In fact, the FWBT detailed in Section 3.1 is �tted to the controller order

reduction issue. The full order controller is �rstly designed as shown in Section 2.1, then

the FWBT with its various variants (Enns, Lin and Chiu, Wang, etc.) is used to obtain

a stabilising reduced order one. Performance of the used techniques will be checked in

Chapter 4
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3.3 H∞-LPV-Controller Order Reduction

Thanks to their shown good properties, BT method has been proposed to reduce the

order of controllers for LTI systems [Liu and Anderson, 1989, Zhou et al., 1995]. The

extension of these reduction techniques to LPV-systems is proposed in this section.

The idea is to substitute the use of LTI Gramians by using parameter/time varying

equivalents [Wood et al., 1996, Sandberg and Rantzer, 2004]. A generalised method

with unbounded rate parameter model is given in [El-Zobaidi and Jaimoukha, 1998].

Then-after, an e�ective BT method for H∞-LPV-controller order reduction is proposed

in [Widowati et al., 2004].

The proposed method adapts the FWBT to reduce the order of an H∞-LPV controller.

For the development of this approach, the generalised Gramian framework is used

[Shaker and Wisniewski, 2011]. Then, the closed-loop system represented by Tzw(ρ)

P

K

yu

zw

Figure 3.11: Closed-loop Scheme

can be expressed as

Tzw(ρ) =

[
A(ρ) B(ρ)

C(ρ) 0

]
(3.75)

where

A(ρ) =

[
A(ρ) +B2(ρ)DK(ρ)C2(ρ) B2(ρ)CK(ρ)

BK(ρ)C2(ρ) AK(ρ)

]
,

B(ρ) =

[
B1(ρ) +B2(ρ)DK(ρ)DK(ρ)D21(ρ)

BK(ρ)D21(ρ)

]
and

C(ρ) =
[
C1(ρ) +D12(ρ)DK(ρ)C2(ρ) D12(ρ)CK(ρ)

]
.

3.3.1 Gramians and Generalised Gramians

The proposed method is based on the FWBT method where the key notions are the

so-called reachability and observability Gramians.
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De�nition 3.3.1 (Gramians) Considering the quadratic stable and minimal re-

alisation of the closed-loop LPV-system Tzw(ρ) given in (3.75), Let us de�ne R(ρ)

and O(ρ), the related reachability and observability Gramians respectively, they are

de�ned as the solution of the two parameter dependent Lyapunov equations

−
s∑

i=1

vi
∂R(ρ)

∂ρi
+ A(ρ)R(ρ) +R(ρ)AT(ρ) + B(ρ)BT(ρ) = 0, (3.76)

s∑

i=1

vi
∂O(ρ)

∂ρi
+ AT(ρ)O(ρ) +O(ρ)A(ρ) + CT(ρ)C(ρ) = 0. (3.77)

For a given parameter trajectory ρ, let Φρ(t, 0) be the state-transition matrix. Then,

the functional R(ρ) and O(ρ), respectively the reachability and observability Gramians

of the closed-loop LPV-system (3.75), are expressed such that

R(ρ) =

∫ 0

−∞
Φρ(0, t)B(ρ(t))BT(ρ(t))ΦT

ρ (0, t) dt, (3.78)

O(ρ) =

∫ ∞

0
ΦT
ρ (t, 0)CT(ρ(t))C(ρ(t))Φρ(t, 0) dt. (3.79)

De�nition 3.3.2 (Generalised Gramians) Let P(ρ) and Q(ρ) be respectively

the generalised reachability and observability Gramians of the quadratic stable and

minimal closed-loop LPV-system (3.75) given as

∀(ρ, v) ∈∆ρ ×∆v

−
s∑

i=1

vi
∂P(ρ)

∂ρi
+ A(ρ)P(ρ) + P(ρ)AT(ρ) + B(ρ)BT(ρ) ≺ 0 (3.80)

s∑

i=1

vi
∂Q(ρ)

∂ρi
+ AT(ρ)Q(ρ) + Q(ρ)A(ρ) + CT(ρ)C(ρ) ≺ 0. (3.81)

Indeed, Lyapunov inequalities (rather than Lyapunov equations) are solved to compute

generalised Gramians. This linear matrix inequality (LMI) approach to the model

reduction problem is particularly useful when some structures need to be preserved

in the process of model reduction. Controller reduction is a typical example of this

type of problems[Shaker and Wisniewski, 2011]. Note that the physical interpretations

of generalised Gramians are similar to ordinary Gramians. Considering Tzw(ρ),R(ρ)

and O(ρ), the following lemma introduces useful results about the relation between

Gramians and generalised Gramians.



3.3. H∞-LPV-Controller Order Reduction 77

Lemma 7

Let Tzw(ρ) be a minimal state-space realisation of the quadratic stable and minimal

closed-loop system de�ned by (3.75). Then, ∀ρ ∈ Pρ

R(ρ) ≺ P(ρ(0))

O(ρ) ≺ Q(ρ(0)).
(3.82)

where R(ρ), O(ρ), P(ρ) and Q(ρ) are the solutions of (3.78), (3.79), (3.80) and

(3.81) respectively.

Proof: By multiplying on the left by Φρ(0, t) and on the right by ΦT
ρ (0, t), the relation

(3.80) yields

−Φρ(0, t)
s∑

i=1

vi
∂P

∂ρi
ΦT
ρ (0, t) + Φρ(0, t)A(ρ(t))P(ρ)ΦT

ρ (0, t) + Φρ(0, t)P(ρ)AT(ρ(t))ΦT
ρ (0, t)

+ Φρ(0, t)B(ρ(t))BT(ρ(t))ΦT
ρ (0, t) ≺ 0.

(3.83)

Using fact that ∂
∂t0

Φρ(t, t0) = −Φρ(t, t0)A(ρ(t0)), then (3.83) yields

− d

dt

(
Φρ(0, t)P(ρ)ΦT

ρ (0, t)
)

+ Φρ(0, t)B(ρ(t))BT(ρ(t))ΦT
ρ (0, t) ≺ 0. (3.84)

which on integrating over the semi-in�nite time axis (−∞, 0] and considering that

limt→−∞Φρ(0, t) = 0, gives

P(ρ(0)) �
∫ 0

−∞
Φρ(0, t)B(ρ(t))BT(ρ(t))ΦT

ρ (0, t) dt

︸ ︷︷ ︸
R(ρ)

(3.85)

Similarly, let us multiply on the right by the closed-loop state-transition matrix Φρ(t, 0)

and on the left by ΦT
ρ (t, 0), the relation (3.81):

ΦT
ρ (t, 0)

s∑

i=1

vi
∂Q

∂ρi
Φρ(t, 0) + ΦT

ρ (t, 0)AT(ρ(t))Q(ρ)Φρ(t, 0) + ΦT
ρ (t, 0)Q(ρ)A(ρ(t))Φρ(t, 0)

+ ΦT
ρ (t, 0)CT(ρ(t))C(ρ(t))Φρ(t, 0) ≺ 0

(3.86)

Using the fact that ∂
∂tΦρ(t, t0) = A(ρ(t))Φρ(t, t0), then (3.86) yields

d

dt

(
ΦT
ρ (t, 0)Q(ρ)Φρ(t, 0)

)
+ ΦT

ρ (t, 0)CT(ρ(t))C(ρ(t))Φρ(t, 0) ≺ 0. (3.87)
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Integrating the last expression from 0 to +∞ gives

Q(ρ(0)) �
∫ +∞

0
ΦT
ρ (t, 0)CT(ρ(t))C(ρ(t))Φρ(t, 0) dt

︸ ︷︷ ︸
O(ρ)

(3.88)

�

3.3.2 Frequency-Limited Order Reduction by FWBT

For a given parameter trajectory ρ, let consider Φρ(t, 0) the state-transition matrix of

the closed-loop system (3.75). Then, let us de�ne

fρ(t) = Φρ(0, t)B(ρ(t))H(−t)
gρ(t) = C(ρ(t))Φρ(t, 0)H(t)

∀t, (3.89)

where H is the heaviside step function.

By considering Ω = [ω1 ; ω2] the frequency range where order-reduction is desired to be

better, the following de�nition is given

De�nition 3.3.3 (Frequency Limited Gramians) Let RΩ(ρ) and OΩ(ρ) two

frequency dependent terms de�ned as

RΩ(ρ) = Rω2(ρ)−Rω1(ρ) and OΩ(ρ) = Oω2(ρ)−Oω1(ρ)

where

Rω(ρ) =

∫ +ω

−ω
Fρ(w)F ∗ρ (w)dw (3.90)

Oω(ρ) =

∫ +ω

−ω
G∗ρ(w)Gρ(w)dw (3.91)

with Fρ (resp. Gρ) is the Fourier transform of fρ (resp. gρ). Then, the functional

R̂Ω(ρ) and ÔΩ(ρ), respectively the frequency limited reachability and observability

Gramians of the closed-loop LPV-system (3.75), are de�ned as the solutions of

∀(ρ, v) ∈∆ρ ×∆v

−
s∑

i=1

vi
∂R̂Ω(ρ)

∂ρi
+ A(ρ)R̂Ω(ρ) + R̂Ω(ρ)AT(ρ) +RΩ(ρ) = 0 (3.92)

s∑

i=1

vi
∂ÔΩ(ρ)

∂ρi
+ AT(ρ)ÔΩ(ρ) + ÔΩ(ρ)A(ρ) +OΩ(ρ) = 0. (3.93)
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The quantities RΩ(ρ) and OΩ(ρ) have the following eigenvalues decomposition

RΩ(ρ) = UΩ(ρ) diag (λ1(ρ), . . . , λnK(ρ))UT
Ω (ρ) (3.94)

OΩ(ρ) = VΩ(ρ) diag (δ1(ρ), . . . , δnK(ρ))V T
Ω (ρ) (3.95)

with |λ1| ≥ . . . |λnK | ≥ 0 and |δ1| ≥ . . . |δnK | ≥ 0. Let uρ ≤ nK and vρ ≤ nK be

respectively the ranks of RΩ(ρ) and OΩ(ρ). Based on these de�nitions, let us de�ne

the two quantities:

BΩ(ρ) = UΩ(ρ) diag(|λ1(ρ)| 12 , . . . , |λuρ(ρ)| 12 , 0, . . . , 0), and (3.96)

CΩ(ρ) = diag(|δ1(ρ)| 12 , . . . , |δvρ(ρ)| 12 , 0, . . . , 0)V T
Ω (ρ). (3.97)

De�nition 3.3.4 (Modi�ed Frequency Limited Generalised Gramians)

Consider K(ρ), the full-order stabilising LPV-controller given in (2.79). Let

P̂Ω(ρ) =

[
P̂1(ρ) 0

0 P̂2(ρ)

]
� 0 and Q̂Ω(ρ) =

[
Q̂1(ρ) 0

0 Q̂2(ρ)

]
� 0 be the

modi�ed frequency limited reachability and observability Gramians de�ned as the

solutions of the following Lyapunov equations

∀(ρ, v) ∈∆ρ ×∆v

−
s∑

i=1

vi
∂P̂Ω(ρ)

∂ρi
+ A(ρ)P̂Ω(ρ) + P̂Ω(ρ)AT(ρ) + BΩ(ρ)BT

Ω(ρ) = 0 (3.98)

s∑

i=1

vi
∂Q̂Ω(ρ)

∂ρi
+ AT(ρ)Q̂Ω(ρ) + Q̂Ω(ρ)A(ρ) + CT

Ω(ρ)CΩ(ρ) = 0. (3.99)

For the generalisation, we have the following inequalities:

−
s∑

i=1

vi
∂PΩ(ρ)

∂ρi
+ A(ρ)PΩ(ρ) + PΩ(ρ)AT(ρ) + BΩ(ρ)BT

Ω(ρ) ≺ 0 (3.100)

s∑

i=1

vi
∂QΩ(ρ)

∂ρi
+ AT(ρ)QΩ(ρ) + QΩ(ρ)A(ρ) + CT

Ω(ρ)CΩ(ρ) ≺ 0. (3.101)

with PΩ(ρ) =

[
P1(ρ) 0

0 P2(ρ)

]
� 0 and QΩ(ρ) =

[
Q1(ρ) 0

0 Q2(ρ)

]
� 0.

If the block diagonal solutions PΩ(ρ) and QΩ(ρ) exist, then let T1(ρ) and T2(ρ) be two
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nonsingular matrices given such that

T−1
1 (ρ)P1(ρ)T−T1 (ρ) = TT

1 (ρ)Q1(ρ)T1(ρ)

= Σ1(ρ)

= diag(ξ1(ρ), . . . , ξn(ρ)),

(3.102)

with ξ1(ρ) ≥ ξ2(ρ) ≥ · · · ≥ ξn(ρ), and

T−1
2 (ρ)P2(ρ)T−T2 (ρ) = TT

2 (ρ)Q2(ρ)T2(ρ)

= Σ2(ρ)

= diag(γ1(ρ), . . . , γr(ρ)︸ ︷︷ ︸
Σ21

, γr+1(ρ), . . . , γnK(ρ)︸ ︷︷ ︸
Σ22

),
(3.103)

with γ1(ρ) ≥ γ2(ρ) ≥ · · · ≥ γr(ρ) > γr+1(ρ) ≥ γr+2(ρ) ≥ · · · ≥ γnK(ρ) are the frequency

limited generalised Hankel singular values of K(ρ) and r is the desired order for the

reduced-order controller. The balanced realisation of K(ρ) can be written as

K̃(ρ) =

[
T−1

2 (ρ)AK(ρ)T2(ρ) T−1
2 (ρ)BK(ρ)

CK(ρ)T2(ρ) DK(ρ)

]
=

[
ÃK(ρ) B̃K(ρ)

C̃K(ρ) D̃K(ρ)

]
. (3.104)

Further, K̃(ρ) is partitioned as conformably with Σ2(ρ) as

K̃(ρ) =




[
ÂK(ρ) ÃK12(ρ)

ÃK21(ρ) ÃK22(ρ)

] [
B̂K(ρ)

B̃K2(ρ)

]

[
ĈK(ρ) C̃K2(ρ)

]
D̂K(ρ)


 . (3.105)

Finally, a truncation step is performed to obtain a reduced-order controller.

De�nition 3.3.5 Given the balanced realisation K̃(ρ) de�ned in (3.116), let K̂(ρ)

be the truncated realisation to the rth order and denoted as follows

K̂(ρ) =

[
ÂK(ρ) B̂K(ρ)

ĈK(ρ) D̂K(ρ)

]
(3.106)
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Furthermore, the reduced-order parameter dependent closed-loop system is given as

T̂zw(ρ) =

[
Â(ρ) B̂(ρ)

Ĉ(ρ) D̂(ρ)

]

=




A(ρ) +B2D̂K(ρ)C2 B2ĈK(ρ) B1(ρ) +B2D̂K(ρ)D̂K(ρ)D21

B̂K(ρ)C2 ÂK(ρ) B̂K(ρ)D21

C1(ρ) +D12D̂K(ρ)C2 D12ĈK(ρ) D11(ρ) +D12D̂K(ρ)D21


 .

(3.107)

Theorem 20

Suppose K(ρ) is the stabilising parameter dependent controller de�ned in (2.79)

such that the closed-loop transfer Tzw(ρ) de�ned in (3.75) is minimal, quadratic

stable and there exist Lyapunov inequality solutions PΩ(ρ) and QΩ(ρ) such that

(3.100) and (3.101) are satis�ed. Let K̂(ρ) be the reduced-order controller de�ned

in (3.106) and obtained by truncation. Then, the closed-loop system with the

reduced-order controller T̂zw(ρ) de�ned in (3.107) is stable. If in addition

rank[B(ρ),BΩ(ρ)] = rank[BΩ(ρ)], (3.108)

and

rank[CT(ρ),CT
Ω(ρ)] = rank[CT

Ω(ρ)], (3.109)

then, T̂zw(ρ) is quadratic stable and satis�es

‖Tzw(ρ)− T̂zw(ρ)‖i,2 ≤ 2‖JB(ρ)‖∞‖JC(ρ)‖∞
nK∑

i=r+1

γi,ρ (3.110)

where JB(ρ) := diag(|λ1|−
1
2 (ρ), . . . , |λuρ |−

1
2 (ρ), 0, . . . , 0)UΩ(ρ)B(ρ) and

JC(ρ) := C(ρ)VΩ(ρ) diag(|δ1|−
1
2 (ρ), . . . , |δvρ |−

1
2 (ρ), 0, . . . , 0),

Proof: The reachability and the observability Gramians given in (3.78),(3.79) can be

expressed as

R(ρ) =

∫ +∞

−∞
fρ(τ)f∗ρ (τ) dτ (3.111)

O(ρ) =

∫ ∞

−∞
g∗ρ(τ)gρ(τ) dτ (3.112)
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where fρ(τ) and gρ(τ) are given in (3.89).

Then, using Parseval relationship, the reachability and the observability Gramians could

be expressed as follows

R(ρ) =
1

2π

∫ +∞

−∞
Fρ(w)F ∗ρ (w)dw (3.113)

O(ρ) =
1

2π

∫ +∞

−∞
G∗ρ(w)Gρ(w)dw. (3.114)

By considering Fρ(resp.gρ) the Fourier transform of fρ(resp.gρ), we can de�ne Rω(ρ)

and Oω(ρ) as the limited reachability and observability Gramians given in (3.91) and

(3.91). Then, by setting Ω = [ω1 ; ω2] the frequency range where approximation is

desired to be better. Then, a new modi�ed terms RΩ(ρ) and OΩ(ρ) are de�ned.

Since RΩ(ρ) and OΩ(ρ) are not guaranteed to be positive de�nite, stability of

the reduced-order controller is not guaranteed. Then, an idea based on eigenvalues

decomposition presented in [Gugercin and Antoulas, 2004] is proposed here to guaran-

tee stability by providing an upper error bound. Indeed, the solution of (3.100) and

(3.101) is performed instead of (3.92) and (3.93). In addition, the modi�ed frequency

limited Gramians in (3.98) and (3.99) are used instead of the ordinary ones de�ned

in (3.98) and (3.99). In fact, Lemma 7 shows that the generalised Gramians could be

an approximation of the ordinary Gramians. The transition to generalised Gramian

framework might induce less accurate approximation but the order-reduction error still

bounded. Finally the expression of the upper error bound given in (3.110) is found

according to this

Let T̃zw(ρ) be the frequency limited balanced realisation of the full-order closed-loop

system. Then, T̃zw(ρ) is de�ned by

T̃zw(ρ) =

[
T−1(ρ)A(ρ)T (ρ) T−1(ρ)B(ρ)

C(ρ)T (ρ) D(ρ)

]
=




[
Â(ρ) Ã12(ρ)

Ã21(ρ) Ã22(ρ)

] [
B̂(ρ)

B̃2(ρ)

]

[
Ĉ(ρ) C̃2(ρ)

]
D̃(ρ)


 ,

(3.115)

where T (ρ) = diag(T1(ρ), T2(ρ)).

By considering the assumptions (3.108) and (3.109), there exist JB(ρ) and JC(ρ) such

that B(ρ) = BΩ(ρ)JB(ρ) and C(ρ) = JC(ρ)CΩ(ρ). On the other hand, the reduction

error is expressed as

‖Tzw(ρ)− T̂zw(ρ)‖i,2 = ‖C(ρ)(sI −A(ρ))−1B(ρ)− Ĉ(ρ)(sI − Â(ρ))−1B̂(ρ)‖i,2
= ‖JC(ρ)

[
CΩ(ρ)(sI −A(ρ))−1BΩ(ρ)− Ĉ(ρ)(sI − Â(ρ))−1B̂(ρ)

]
.JB(ρ)‖i,2

≤ 2‖JB(ρ)‖∞‖JC(ρ)‖∞
∑nK

i=r+1 γi,ρ

�
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The Assumptions (3.108) and (3.109) mean that there exist JB(ρ) and JC(ρ)

such that B(ρ) = BΩ(ρ)JB(ρ) and C(ρ) = JC(ρ)CΩ(ρ). In addition,

by following the steps in [Anderson and Clements, 1981, Wang et al., 1999,

Imran et al., 2014] it was shown that assumptions (3.108) and (3.109) are

almost always true. Hence we expect that our approach will apply in most

of the cases. Indeed, during our simulations, the assumptions have always

been satis�ed.

Remark

Algorithm 3 H∞-LPV-Controller Order Reduction

Considering the LPV-plant described in (2.78) the reduced-order controller can be com-

puted as follows

Inputs: (A(ρ), B(ρ), C(ρ), D(ρ)).

Outputs: (Â(ρ), B̂(ρ), Ĉ(ρ), D̂(ρ)).

Assumptions: (A(ρ),B(ρ),C(ρ),D(ρ)) minimal.

Algorithm:

1. Compute K(ρ) the full-order controller according Section 2.3.2.

2. Compute the closed-loop system Tzw given in (3.75).

3. Compute the generalised Gramians P(ρ) and Q(ρ) solutions of (3.80) and (3.81)

respectively.

4. Compute the balanced realisation K̃(ρ) of the full-order controller K(ρ) by:

(a) Find T2, the basis change matrix according to (3.103).(For instance, Proce-

dure in [Moore et al., 1988] can be used).

(b) Compute the balanced realisation K̃(ρ) as de�ned in (3.116).

5. Compute the reduced-order controller K̂(ρ) from K̃(ρ) by truncation.
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3.3.3 Frequency-Limited Order Reduction by SPA

The balanced realisation of K(ρ) given in (3.116) can be partitioned as conformably

with Σ2(ρ) as

K̃(ρ) =




[
ÃK11(ρ) ÃK12(ρ)

ÃK21(ρ) ÃK22(ρ)

] [
B̃K1(ρ)

B̃K2(ρ)

]

[
C̃K1(ρ) C̃K2(ρ)

]
D̃K(ρ)


 (3.116)

Then, the equation (3.116) can be written as

[
ẋK1(t)

ẋK2(t)

]
=

[
ÃK11(ρ) ÃK12(ρ)

ÃK21(ρ) ÃK22(ρ)

] [
xK1(t)

xK2(t)

]
+

[
B̃K1(ρ)

B̃K2(ρ)

]
y(t)

u(t) =
[
C̃K1(ρ) C̃K2(ρ)

] [
xK1(t)

xK2(t)

]
+ D̃K(ρ) y(t)

(3.117)

In this balanced realisation, states corresponding to the �rst smallest singular values

represent the fast dynamics of the system (i.e. states that have fast transient dynamics

and decay rapidly to certain steady value). based on this concept of SPA method

[Oh et al., 1997], the system (3.117) is approximated by setting xK2 = 0. Then (3.117)

becomes





ẋK1(t) = ÃK11(ρ)xK1(t) + ÃK12(ρ)xK2(t) + B̃K1(ρ)y(t)

0 = ÃK21(ρ)xK1(t) + ÃK22(ρ)xK2(t) + B̃K2(ρ)y(t)

u(t) = C̃K1(ρ)xK1(t) + C̃K2(ρ)xK2(t) + D̃K(ρ)y(t)

(3.118)

De�nition 3.3.6 Given the balanced realisation K̃(ρ) de�ned in (3.116), let K̂(ρ)

be the Frequency Weighted Singular Perturbation Approximation FWSPA to the

rth-order and denoted as follows

K̂(ρ) =

[
ÂK(ρ) B̂K(ρ)

ĈK(ρ) D̂K(ρ)

]
(3.119)

where

ÂK(ρ) = ÃK11(ρ)− ÃK12(ρ)Ã−1
K22(ρ)ÃK21(ρ), (3.120)

B̂K(ρ) = B̃K1(ρ)− ÃK12(ρ)Ã−1
K22(ρ)B̃K2(ρ), (3.121)

ĈK(ρ) = C̃K1(ρ)− C̃K2(ρ)Ã−1
K22(ρ)ÃK21(ρ), (3.122)

D̂K(ρ) = −C̃K2(ρ)Ã−1
K22(ρ)B̃K2(ρ). (3.123)
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Furthermore, the reduced-order parameter dependent closed-loop system is given as

T̂zw(ρ) =

[
Â(ρ) B̂(ρ)

Ĉ(ρ) D̂(ρ)

]
(3.124)

=




A(ρ) +B2D̂K(ρ)C2 B2ĈK(ρ) B1(ρ) +B2D̂K(ρ)D̂K(ρ)D21

B̂K(ρ)C2 ÂK(ρ) B̂K(ρ)D21

C1(ρ) +D12D̂K(ρ)C2 D12ĈK(ρ) D11(ρ) +D12D̂K(ρ)D21




Theorem 21

Suppose K(ρ) is the stabilising parameter dependent controller de�ned in (2.79)

such that the closed-loop transfer Tzw(ρ) de�ned in (3.75) is minimal, quadratic

stable and there exist Lyapunov inequality solutions PΩ(ρ) and QΩ(ρ) such that

(3.100) and (3.101) are satis�ed. Let K̂(ρ) be the reduced-order controller de�ned

in (3.119). Then, the closed-loop system with the reduced-order controller T̂zw(ρ)

de�ned in (3.107) is stable. If in addition the assumptions (3.108) and (3.109) are

satis�ed, then, T̂zw(ρ) is quadratic stable and satis�es

‖Tzw(ρ)− T̂zw(ρ)‖i,2 ≤ 2‖JB(ρ)‖∞‖JC(ρ)‖∞
nK∑

i=r+1

γi,ρ (3.125)

where JB(ρ) := diag(|λ1|−
1
2 (ρ), . . . , |λuρ |−

1
2 (ρ), 0, . . . , 0)UΩ(ρ)B(ρ) and

JC(ρ) := C(ρ)VΩ(ρ) diag(|δ1|−
1
2 (ρ), . . . , |δvρ |−

1
2 (ρ), 0, . . . , 0),

similar to the previous proof

Proof

Conclusion

In this chapter, order reduction issue is discussed. The model order-reduction prob-

lem is �rst stated in Section 3.1 where an open-loop con�guration is considered. Ap-

proaches based on the Singular Value Decomposition SVD are introduced. Speci�cally,

the Balanced Truncation BT and the Singular Perturbation Approximation SPA are

both highlighted. After a detailed review on these methods, it is shown that they are

more e�cient in quite high frequency or rather in low frequency only. Then, a third

variant is introduced which performs in a limited speci�c frequency range. In fact, the
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Frequency Weighted Balanced Truncation FWBT allows better order-reduction in a

speci�c frequency range. Thus, the several existing methods that deals with the FWBT

are reviewed and discussed while showing their advantages and drawbacks. This study,

leads to perform the controller order-reduction in closed-loop scheme in the rest of the

chapter.

In Section 3.2, the LTI-case is considered. In fact, after analysing the FWBT methods.

It appeared that a link can be established between the H∞-control synthesis approach

and the relative bounded H∞-relative error in the FWBT technique. Then, a method

to reduce the order of an LTI-H∞-controller is derived. Regarding the various vari-

ants of the FWBT approach, a comparison between these variants is achieved in the

next chapter. Finally, in Section 3.3, a new method is proposed in order to extend

the study to the LPV-case. Indeed, the limited frequency BT and SPA are managed

to reduce the order of an H∞-LPV controller. To do this, the generalised Gramian

framework is introduced and shown to be of big interest. The obtained reduced-order

controller is proven stable and the degradation in the closed-loop performance is guar-

anteed bounded. An application of the proposed method to reduce the order of a

semi-active suspension-controller is given in the next chapter.
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Introduction

In this chapter, the numerical evaluations of the presented methods in Chapter 2 and

Chapter 3 are given.

• In Section 4.1, the �xed-order methods studied in Section 2.2 are evaluated on

some benchmark examples of the COMPleib library. The evaluation is completed

by two other available Matlab toolboxes namely HIFOO and HINFSTRUT.

Finally, a comparison between the �xed-order way and the reduced order one is

performed (Figure 3.1).

• In Section 4.2, an H∞-LTI-control problem is considered. It consists of an active

suspension system. The mathematical model is �rst given. Then, the full-order

H∞-controller is designed. Based on this, the FWBT approach is used to reduce

the designed controller order. Numerical simulations are performed and results

are analysed in the frequency and the time domain. The evaluation is completed

by a comparison with the �xed-order approaches.

• In Section 4.3, the developed method to reduced the order of an H∞-LPV-

controller presented in Section 3.3 is evaluated. A problem of a semi-active sus-

pension control is considered. Then, an LPV-model of a magneto-rheological

suspension is �rst set. Then, a reduced-order controller is obtained from the full-

order one. Finally, performance of the reduced-order controller are tested and

approximation error evaluated.

4.1 Benchmark Library COMPleib

The synthesis of an H∞-�xed order-controller has been reviewed in Section 2.2. Then,

the studied methods are evaluated in this section. First, a description of the bench-

mark problems library COMPleib is given. Then, the two design methods are tested

and compared on the COMPleib examples. In addition, comparison with two other

existing toolbox namely hifoo and hinfstruct is also performed. This evaluation is

performed by testing the performance parameter γ and the H∞-norm of the closed-

loop system. Finally, a comparison between the direct �xed-order way and the indirect

order-reduction one is performed.

Note that the simulations are performed on a intel core i7 CPU (3.07 GHz) running

with Matlab 2015a.

4.1.1 COMPleib Problems

The evaluation of methods in Section 2.2 is achieved over the benchmark problem library

COMPleib (COnstraint Matrix-optimization Problem library), which is presented in
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[Leibfritz, 2006]. This library contains systems collected from engineering literature

and also pure academic problems. The set of problems includes for instance models

of aircraft, helicopters, jet engines and reactors. Higher is the dimension, harder is to

solve this problems. The library is easily available from a website1.

4.1.2 Fixed-Order Controller Evaluation

In this section, the comparison between the studied methods and their performance is

performed on 11 systems. The problems included in COMPleib library are of di�erent

order from 4 to 24 states. The systems chosen for the evaluation are: Aircraft models

(AC2 and AC5 and AC18), Helicopter models (HE1 and HE3), Jet Engines model

(JE3), Euler Bernoulli Beams (EB4), Reduced Order Control (ROC1), Academic test

problems (NN11) and mathematical model of position and velocity control for a string

of high speed vehicles (IH).

4.1.2.1 Numerical Considerations for Augmented Lagrangian Method

The studied methods in Section 2.2 are based on the augmented Lagrangian approach.

Algorithms used to implement these methods are given in Appendix A. For their im-

plementation, some numerical considerations about parameter initialisation are given.

The initial penalty parameter has been set to µ0 = 10−3 and the multiplier is set to

λ0 = µ0(X0
aY

0
a −I) for the Apkarian's method and λ0 = µ0q(X0, Y 0) for the Ankelhed's

method, where X0
a , Y

0
a and X0, Y 0 are solutions of the convex set X, Xa respectively.

The parameters ρ and ρ0 determine the updating rules for the penalty and multiplier

in general tests. They are chosen as ρ = 9 and ρ0 = 0.9. However, in other few tests

these parameters have to be changed in order to improve the results. Then, the values

of these parameters are changed and low values in the case where γ � ‖Tzw‖∞ are

given (remember that our objective is to �nd ‖Tzw‖∞ < γ). Then, the idea is to slow

down the optimisation process to achieve the objective by obtaining ‖Tzw‖∞ < γ. This

technique is valid for the greater part of tests when γ � ‖Tzw‖∞.

4.1.2.2 Results and Discussion

The studied methods are �rst tested between them on some chosen COMPleib Problems.

Then, an extended evaluation against another existing toolboxes is performed. Finally,

the general scheme in Figure 3.1 is considered and a comparison between the direct

�xed-order control and the controller order reduction is achieved.

Ankelhed and Apkarian's Methods Comparison After implementing the two

methods, the evaluation results are shown in Table 4.1. To evaluate and to compare

1Available from: http://www.compleib.de/
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methods, we focus our reviews only on results shown in bold in order to simplify ex-

planation and avoid repeating the same remarks. The �rst column presents the system

name, the system order, the number of the control inputs and outputs, and the order of

the designed controller. The second and the third columns show the γ and H∞-norm

obtained by each method. N.P. means Numerical Problems. The �rst evaluation is

done using the systems HE1 and HE3. Note that similar results are obtained for both

methods and for di�erent orders. The evaluation using the system ROC1 shows that

the Apkarian's method give slightly better result than the Ankelhed's method. For this

test, the Ankelhed's method give worse results in the case nK = 2 where the objective

of the H∞-synthesis is not achieved (i.e. γ > ‖Tzw‖∞). However, the evaluation from

the system JE3 and for nK = 0 (static gain) shows that the Ankelhed's method has

better results compared to the Apkarian's method which fails with this system.

As conclusion, both methods almost give the same results when synthesising H∞-

controllers for systems of order n ≤ 20. However, in few cases one of them can gives

better results than the other. When 20 ≤ n ≤ 24, the Ankelhed's method give better

results compared to Apkarian's method. Note that, in some cases, methods do not show

any results. This can be explained by the high number of decision variables.

Once the order of the system begins to be higher n ≥ 24, several problems encountered

in the algorithm initialisation. In fact, it is even di�cult to �nd a starting point of

decision vector x0 and x0
a for both methods. This problem can be explained also by the

fact that decision vectors x0, x0
a contain many decision variables, and it is very di�cult

to solve this problem by one of the existing solvers. Even if a starting point of decision

vectors is found, but in optimisation step more numerical problems are encountered.

In few words, we can say that studied methods achieve good results for medium order

systems. (i.e. n ≤ 24)

Comparison with Other Existing Methods In addition of the studied techniques,

two numerical toolboxes namely hinfstruct and hifoo are evaluated

hinfstruct is included in the Robust Control Toolbox of Matlab and based

on [Apkarian and Noll, 2006] work. The method uses subgradient calculus to solve the

problem [Clarke, 1990]. First, it minimises the spectral abscissa of the closed-loop

system in order to �nd parameters for a stable controller. Then, these parameters are

used as a starting point to minimise the H∞-norm. hinfstruct is a deterministic

technique which does not involve any random elements. However, extra starting points

can be randomised upon request.

hifoo (H-In�nity Fixed-Order Optimisation) is a software package that can be run

in Matlab. hifoo is described in [Burke, 2006], [Gumussoy and Overton., 2008] and

[Gumussoy et al., 2009].
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Table 4.1: Evaluation and Comparison between Apkarian's and Ankelhed's methods

Sys(n, nu, ny, nk)
Apkarian Ankelhed

γ
∥∥Tzw

∥∥
∞ γ

∥∥Tzw
∥∥
∞

HE1(4,2,1,0) 0.19 0.16 0.20 0.18

HE1(4,2,1,1) 0.20 0.17 0.20 0.12

HE1(4,2,1,2) 0.19 0.16 0.22 0.15

HE1(4,2,1,3) 0.19 0.16 0.23 0.16

HE3(8,4,6,0) 0.95 0.92 0.97 0.92

HE3(8,4,6,1) 0.94 0.93 0.91 0.87

HE3(8,4,6,2) 0.95 0.93 0.97 0.89

HE3(8,4,6,3) 0.95 0.94 1.01 0.91

HE3(8,4,6,4) 0.94 0.93 0.97 0.90

ROC1(9,2,2,2) 2.63 2.48 1.34 5.24

ROC1(9,2,2,3) 2.11 1.96 1.28 2.09

ROC1(9,2,2,4) 1.82 1.71 3.46 3.29

ROC1(9,2,2,5) 1.78 1.60 3.45 3.28

ROC1(9,2,2,7) 1.95 1.80 3.42 4.21

NN11(16,3,5,0) 0.10 0.10 0.10 0.10

NN11(16,3,5,1) 0.10 0.10 0.11 0.11

NN11(16,3,5,2) 0.10 0.10 0.11 0.11

NN11(16,3,5,3) 0.10 0.10 0.11 0.10

NN11(16,3,5,4) 0.10 0.10 0.12 0.11

NN11(16,3,5,5) 0.10 0.10 0.41 0.17

JE3(24,3,6,0) 9.10 8.60 5.10 5.10

JE3(24,3,6,3) N.P N.P 2.90 2.89
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hifoo �rst chooses three random starting points to initialise the algorithm. Then,

it tries to �nd stabilising controllers before optimising it locally with respect to the

closed-loop H∞-norm. Both optimisation problems are non-smooth and non-convex.

The later optimisation problem can be written as

minimise
AK ,BK ,CK ,DK

‖Tzw‖∞.

When hifoo has �nished the optimisation, the controller with the best H∞-norm

of the three candidates is the output. Due to the randomisation of the initial

points and the randomisation in gradient sampling phase, the experiments are not

repeatable with the same result each time. In [Gumussoy and Overton., 2008], the

authors suggested that hifoo is evaluated by running it ten times on each prob-

lem and choosing the best result. The hifoo is also shown very well compared to

several others methods, and it has also been used several times in di�erent applications.

It is noted that the hinfstruct should be initialised with two extra starting points

when comparing its performance with hifoo, since this last one uses three randomised

starting points.

Results and Discussion The comparison between studied methods and available

toolboxes is giving according to Table 4.2. From the system AC2 and EB4, Note that all

methods achieve good results but without forgetting that systems order is between 4 ≤
n ≤ 20. In general, the examined methods achieve a comparable results in most cases.

hifoo performs well but the best results are obtained by hinfstruct. From the system

IH where the orders of the controller are nK = 5 and nK = 7, hinfstruct achieves

better results than the other methods. Then, we can say that this method keeps good

properties when augmenting the order of the controller. For the controllers obtained

from the system JE3, hinfstruct and hifoo show good performance. However, as

said previously, the studied methods encounter numerical problems due to the high

number of decision variables when n ≤ 24.

4.1.3 Fixed-Order vs. Reduced-Order Controllers

As shown in Section 3.2, there are two di�erent ways to obtain a low order controller

even if the model has a high order. These two approaches are evaluated here on some

COMPleib problems. Then, results are presented in Table 4.3. Since all methods in

this evaluation attempts to minimise the closed-loop H∞-norm ‖Tzw‖∞, this latter is
compared at several orders for di�erent examples. The comparison is done with the best

results given by each way. Note that, for very low orders, the �xed-order approach deals

better and gives a smaller H∞-norm. However, for medium or higher orders, the order

reduction methods gives better results than the �xed-order one. This can be explained
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Table 4.2: Comparison between hinfstruct, hifoo, Apkarian's and Ankelhed's Meth-

ods.

Sys(n, nu, ny, nk)
‖Tzw‖∞

Apkarian Ankelhed hinfstruct hifoo

AC2(5,3,3,0) 0.11 0.11 0.11 0.11

AC5(4,2,2,0) 658 660 665 669

AC5(4,2,2,3) 665 662 658 643

EB4(20,1,1,0) N.P 2.46 2.06 2.06

EB4(20,1,1,3) 1.81 1.80 1.82 1.82

IH(21,11,10,0) 4.45 2.34 1.59 1.90

IH(21,11,10,1) 4.12 1.96 1.80 1.80

IH(21,11,10,3) 3.69 1.97 1.57 1.74

IH(21,11,10,5) 4.01 1.86 1.15 1.69

IH(21,11,10,7) 3.88 1.75 0.79 1.72

JE3(24,3,6,0) 8.6 5.10 5.10 5.10

JE3(24,3,6,3) N.P 2.89 2.90 2.89

by the fact that, the number of decision variables is increasing when nK increases for

�xed-order case.

4.2 Quarter Vehicle LTI-Model

After having introduced the LTI model, an H∞-control law is designed with respect to

the performance speci�cations. Once the full-order controller is obtained, the controller

order reduction method based on FWBT (Section 3.2) is used to reduce the controller

order. The obtained reduced-order controller is �rst compared with a similar reduced-

order one based on the unweighted BT. Then, a comparison between the several variants

of the FWBT methods is given according to Section 3.2. Results are discussed in both

frequency and time domain. Finally the robustness of the reduced-order controller is

analysed by considering uncertainties on the system physical parameters.

4.2.1 System Modelling

A quarter-vehicle model (Figure 4.1) can be used to represent the vertical physical

behaviour for the suspension system.
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Table 4.3: ‖Tzw‖∞ in Direct and Indirect Low-order Approaches

SYS(n, nu, ny, nK) Fixed-order controller Reduced-order controller

AC2(5,3,3,0) 1.01 2.16

AC2(5,3,3,1) 0.12 0.43

AC2(5,3,3,2) 0.24 0.21

AC2(5,3,3,3) 0.23 0.22

AC2(5,3,3,4) 0.14 0.14

AC2(5,3,3,5) N.P 0.14

HE1(4,2,1,0) 0.16 0.55

HE1(4,2,1,1) 0.12 0.15

HE1(4,2,1,2) 0.12 0.08

HE1(4,2,1,3) 0.15 0.08

HE1(4,2,1,4) N.P 0.07

AC18(10,2,2,0) N.P 140.33

AC18(10,2,2,1) N.P 48.28

AC18(10,2,2,2) N.P 17.80

AC18(10,2,2,3) 2.09 19.74

AC18(10,2,2,4) 2.34 4.51

AC18(10,2,2,5) 2.48 4.99

AC18(10,2,2,6) 3.28 4.98

AC18(10,2,2,7) 13.4 10.30

AC18(10,2,2,8) 13.3 4.31

AC18(10,2,2,9) 13.56 2.01

AC18(10,2,2,10) N.P. 2.02
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ms
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ks cs fs

kus

zs

zus

zr

Figure 4.1: Quarter Vehicle Model

The model is then, described by the following motion equations:

msz̈s = ks(zus − zs) + cs(żus − żs) + fs (4.1)

musz̈us = ks(zs − zus) + cs(żs − żus) + kus(zr − zus)− fs (4.2)

The parameters values, chosen accordingly to [Sammier, 2001] are presented in Ta-

ble 4.4:

Parameter Value

Sprung mass (ms) 415 [kg]

Unsprung mass (mus) 52 [kg]

Tyre sti�ness coe�cient (ks) 270000 [N/m]

Spring sti�ness coe�cient (kus) 22000 [N/m]

Viscous damping coe�cient (cs) 1500 [N.s/m]

Table 4.4: Parameter Values

Then, the system can be expressed by the following state-space representation:

{
ẋ = Ax+Bww +Buu

y = Cx+Du
(4.3)

where the states, the disturbance, the input and the measured output signals are re-

spectively : x = [zs zus żs żus]
T, w = zr, u = fs and y = [zs zus z̈s]

T respectively.

4.2.2 Performance Speci�cation

The main objective of an active suspension system is to improve the comfort in the vehi-

cle simultaneously to the performance on road handling. The passenger comfort can be

improved by isolating the vibrations transmitted from the road surface. It is evaluated
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considering the response of the vehicle chassis with excitation coming from the vertical

disturbances. According to industrial performance speci�cations [Sammier, 2001], the

main objective is to mitigate the resonance peak in low frequencies without degradation

at the high frequencies:

• The maximal gain of the transfer Zsacc/Zr should be limited to 2 in the frequency

range [1 ; 5] Hz, where Zsacc = Zs.s
2 is the Laplace transform of z̈s.

• The road holding is evaluated from the unsprung mass (wheel) oscillations with

respect to the road pro�le. The maximal gain of the transfer Zus/Zr should be 2

in the frequency range [1 ; 15] Hz.

4.2.3 H∞-Controller Design

The standard H∞-control problem is formulated according to the Figure 4.2 where the

vector of output variables to be regulated is chosen as: z = [zs zus z̈s]
T. Then,W = zr,

U = u = fs,

Z = [uTWT
u zTWT

z ]T,

Y = (zs − zus).
The weighting functions are parametrised according to Section 4.2.2 in order to re-

1/4 vehicle model

Wu

Wz

Z

YW

U
ezsezusez̈s

u

zr y

eu

Figure 4.2: H∞-control Scheme for the Active Suspension

spect the natural invariant points ([Hedrick and Butsuen, 1990, Sammier, 2001]) for

the transfer Zs/Zr and Zus/Zr in speci�c frequencies. The weighting function Wu pe-

nalises the control signal for frequencies higher than 20 Hz. The transfer Zs/Zr and

Zus/Zr are templated by the inverse of Wzs and Wzus respectively, in order to reduce

their gains in the low frequencies ([1 ; 10] Hz and [5 ; 15] Hz respectively). The weighting

function Wz̈s is chosen constant. Hence, Wz = diag(Wzs ,Wzus ,Wz̈s).

Note that Wzs and Wzus are second order �lters (for more details see [Sammier, 2001])

which increase the order of the plant. Then, the Figure 4.3 gives the weighting functions

frequency representation.

Considering the above speci�cations, a 14-order H∞- controller is obtained. It has a

high order considering such systems. Then, a reduction step will be of great interest.
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Figure 4.3: Weighting Functions

4.2.4 Simulation Results and Discussion

The simulations are given in this section to evaluate the performance of the reduced-

order H∞-controller. Experiments are performed on a intel core i7 CPU (3.07 GHz)

running with Matlab 2012b.

Then, the following systems are compared:

• Passive suspension system (open-loop).

• Active suspension system based on 14 order H∞-controller.

• Active suspension system based on reduced 5 order H∞-controller.

Note that the designed full-order controller is singular. According to Remark 2

(page 65), a small singular perturbation is applied to D with ε = 0.08.

As shown in Section 3.2, method based on the FWBT is used to reduce the order of the

LTI-controller. Then, a �rst evaluation is represented in Table 4.5. where the applied

method is compared to the classical BT method that reduces the H∞-norm of the ab-

solute error ∆K .

Note that, the closed-loop system is unstable below the tenth order for the BT reduced

order controller. However, the FWBT method maintains the stability of the closed loop
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nK 14 12 10 8 5 4 3 2

BT S S S U U U U U

FWBT S S S S S S U U

Table 4.5: Closed-loop Stability of the Reduced-order Controllers (S: stable, U: unsta-

ble)

at lower order. This �rst result con�rms the choice of this approach.

In Table 4.6. The following indicators are analysed:

• Rising time (step response): The time it takes for the output to �rst reach 90%,

from 10% of its �nal value, which is usually required to be small.

• Settling time (step response): the time after which the output remains within

± 2% of its �nal value, which is usually required to be small.

• Storage memory: the memory allocated to the controller.

Simulation results from a step response applied on the full-order (K14) and the reduced-

order one (K5) are shown. Note that the time-rise for K5 is 61% rise-time of the one

obtained with K14. The settling-time of K5 remains close to the K14. It is shown also

that the required memory for the designed reduced-order controller is reduced to less

than the half of the memory for the full order which is very interesting when packaging

the controller in a simple calculator.

Rise time Settling time Storage memory

[ms] % [ms] % [Bytes] %

K14 5.50 100 2000 95 2586 100

K5 3.4 61 2100 100 1074 41.5

Table 4.6: Results from Simulation of H∞-controller Step Response

The third evaluation is represented in Table 4.7 where the approximation errors obtained

using the several methods are compared. The test on stability of the closed-loop system

is also given.

Note that although the FWBT by Enns' method can produce unstable reduced-order

controller (closed-loop stability), it yields the lower approximation error. The Lin and

Chiu's method already gives a stable reduced-order controller. However, the increased

weighted error can a�ects the frequency behaviour of the stabilising controller. Enns
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Controller order 12 8 5 3

Enns 9.5 6.9 1.4 x 102 2.6 x 102

stable unstable stable unstable

Lin & Chiu 9 x 107 6.9 x 1010 5 x 1010 6.8 x 1010

stable stable stable stable

Varga & Anderson 3 x 106 1.4 x 109 2 x 1010 3.5 x 1010

unstable stable unstable unstable

Wang 1.5 x 103 3.6 x 105 9 x 108 7.6 x 109

stable stable unstable unstable

Table 4.7: Closed-loop Stability of Reduced-order Controllers and Error Approximation

and Lin and Chiu's methods are elected to be compared in frequency and time domain

for the order 5.

4.2.4.1 Frequency Domain Analysis

In the Figure 4.4, the frequency response magnitude of Zs to the road disturbance Zr
is plotted. Note that the template γ/Wz designed in Section 4.2.2 limits the ampli�-

cation of this transfer in the frequency range [1; 10] Hz where the human sensitivity

to vertical vibrations is important. The other techniques are less e�ective. Moreover,

the reduced-order H∞-controller by Enns' method is very closed to the full-order one.

However, the Lin and Chiu's method ampli�es the response in [1; 5] Hz.

Figure 4.5 shows the performance of the full order and the reduced-order controllers

with respect to the road holding speci�cations. The full-order controller and the

reduced-order controller by Enns mitigate the frequency response in [8; 14] Hz which

is ampli�ed in the passive case. In this frequency range, the maximal gain is reduced

to 1.5 which responds to the performance speci�cations in Section 4.2.2 as shown in

Figure 4.7 and Figure 4.6.

4.2.4.2 Time Domain Analysis

For the time domain analysis, the road pro�le Zr is set with a bump of 0.01 m x 2

m and the vehicle is travelling with a constant velocity of 30 km/h. The response of

the several designed controllers is shown in Figure 4.8. It is observed that the time
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Figure 4.4: Bode-diagram of the Transfer Function Zs/Zr
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Figure 4.6: Frequency Response of Zr to Zs

response con�rms the contribution of the H∞-control design. In fact, the wheel is

stabilised rapidly without overtake on the suspension de�ection, The most important

observation is that reduced-controller by Enns gives similar performance as the full-

order controller on the diverse controlled outputs. However, with the Lin and Chiu's

method, the controller fails to steer the system correctly, which is an expected result

according to the increased weighted error.

4.2.5 Robustness Analysis

Variations on model parameters are considered as follows:

k = k(1 + pkδk)

kp = k(1 + pkpδkp)

ms = k(1 + psδs)

mus = k(1 + pusδus)

where

{pk, pkp, ps, pus} ∈ [−1; 1],

{δk, δkp, δs, δus} ∈ [ 0; 1].
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Figure 4.7: Frequency Response of Zr to Zus

Those parametric uncertainties can be expressed in the block ∆r =

diag(δs, δus, δk, δkp) (Figure 4.9) and are used to analyse the RS .

For NP analysis, the input and the output weights Pi and Po respectively, are taken the

same as the given ones for performance speci�cation, i.e. Wz = diag(Wzs ,Wzus ,Wz̈s)

for the outputs, but not Wu. In addition, a normalisation is performed to obtain:

||New||∞ = ||PoHPi||∞ = 1

Then, the upper µ measurement of the transfer matrix N (Figure 4.10) determines

the admissible interval for the RP. For the presented example, the uncertain model

parameters are initially chosen as follow: ms = 415±15% kg, mus = 15±15% kg, ks =

22000 ± 5% N/m, and kus = 270000 ± 5% N/m. A �rst test is shown in Figure 4.11

where a set of closed-loop systems is generated. It consists of the nominal system with

a frequency-dependent amount of uncertainty. The stability margin analysis indicates

that the reduced order closed-loop remains stable and tolerates variability in k,m and

c. More consistently, the µ-analysis tool is used to get a reliable test on the controller

robustness. Then, the NP, RS and RP problems of the reduced-order closed-loop

system are evaluated:
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Figure 4.9: ∆r(s) block

NP: the nominal performance problem is independent from the chosen uncertainties

of the parameters. Figure 4.12 shows that the maximal measurement µ is lower than

1 which means that nominal performance are reached. This was expected because the

nominal performance are the same as the closed-loop performance.



104 Chapter 4. Application to Automotive-suspension Control

∆

N

G

K

Pi Po

∆r

∆f

z∆v∆

w e

Figure 4.10: Real and �ctive uncertainties of ∆

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−2

0

2

4

6

8

 

 
Time response

Time (sec) (seconds)

z us

uncertain

nominal

100 102 104
−20

−10

0

10

20

30

40

50

60

70
M

ag
ni

tu
de

 (
dB

)

 

 
Z̈s/Zr

Frequency  (Hz)

γ/W zr
Passive

K5-uncertain

K5-nominal

Figure 4.11: K5-time and Frequency Analysis with Uncertainties

RS: in Figure 4.13 the maximal value of the µ is less than 1 (Max. µ of RS = 0.28).

Consequently, the closed-loop remains stable for larger margins of uncertainties. By

dividing by 0.28 the margins for RS are: ms = 415±50% kg, mus = 52±50% kg, ks =

22000± 17% N/m and kus = 270000± 17% N/m.

RP: �nally, in Figure 4.14 the maximal µ measurement for RP is upper than 1 (Max.

µ of RS = 1.2), which means that these initial uncertainty margins do not guarantee

the stability performance.

Then, a new uncertainty range are rede�ned as: ms = 415 ± 10% kg, mus = 52 ±
10% kg, ks = 22000 ± 4% N/m, and kus = 270000 ± 4% N/m. The new upper µ

measurement value show that performance robustness are satis�ed for these margins

(Figure 4.15).
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Figure 4.12: Upper and Lower µ for Nominal Performance

10
−1

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

µ
u
p
p
er
/
lo
w
er

b
o
u
n
d
s
(a
b
s)

 

 
Bode Diagram

Frequency (Hz)

µ upper bound
µ lower bound

Figure 4.13: Upper and Lower µ for Robust Stability

4.2.6 Fixed-Order vs. Reduced-Order Controllers

Similar to the previous section where the �xed-order methods have been compared

to the reduced-order ones for some COMPleib examples, a comparative analysis is also
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Figure 4.14: Upper and Lower µ for Robust Performance
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Figure 4.15: Upper and Lower µ for Robust Performance

given here. Then, comparison is done with the best results given by each way. From the

fact that, this example gives details about performance speci�cation, then a frequency

and time domain analysis can be performed. This allows a better evaluation compared
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to the previous section where just the H∞-norm errors have been compared. Indeed,

Figure 4.16 show the frequency behaviour at order 5. Note that the reduced order

controller gives better performance in the frequency and the time domain simulation

(Figure 4.17). The �xed-order one has almost the same transfer as the open-loop.

4.3 Semi-Active Suspension LPV-Model

4.3.1 LPV-Model

In this section, the given method to reduce the LPV-controller is applied on a semi-

active automotive suspension presented in [Do et al., 2011]. Actually, when suspension

modelling and control are considered, the vertical quarter car model is often used. This

model allows to study the vertical behaviour of a vehicle according to the suspension

characteristic (passive or controlled). Figure 4.18 shows the so-called vertical quarter

car. Then, the dynamical equations of the system are given by
{

msz̈s = −kszdef − Fmr
musz̈us = kszdef + Fmr − kt(zus − zr)

(4.4)

where Fmr is the magneto-rheological force generated by the semi active suspension.

According to the non-linear model of Guo [Guo et al., 2006], Fmr can be expressed as

follows

Fmr = a2

(
żdef +

v0

x0
zdef

)
+ a1 tanh

(
a3

(
żdef +

v0

x0
zdef

))
(4.5)

with zdef = zs − zus is the damper de�ection (must be measured or estimated) and

żdef = żs − żus is the damper velocity. Parameters a2, a3, v0 and x0 are constant, and

a1 is the controllable force such that a1 ∈ [a1min ; a1max].
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By de�ning

ρ1 = tanh
(
a3

(
żdef + v0

x0
zdef

))
,

cmr = a2, MR damping coe�cient,

kmr = a2
v0
x0
, MR sti�ness coe�cient.

Then, a state-space representation can be given by considering the state vector xs =

[zs żs zus żus]
T and the exogenous input w = zr, as follows





ẋs = Asxs +Bsρ1a1 +Bs1w

z = Cs1xs +Ds1ρ1a1

y = Csxs

(4.6)

with

As =




0 1 0 0

−ks+kmr

ms
− cmr

ms

ks+kmr

ms

cmr

ms

0 0 0 1
ks+kmr

mus

cmr

mus
−ks+kmr+kt

mus
− cmr

mus


 , Bs =




0
−1
ms

0
1
mus


 , Bs1 =




0

0

0
kt
mus


 .

The measurement output is y = zs − zus, and the controlled outputs are chosen as

z = [z̈s zs]
T, respectively the acceleration and the displacement of the sprung mass.

Then

Cs1 =

[ −ks+kmr

ms
− cmr

ms

ks+kmr

ms

cmr

ms

1 0 0 0

]
, Ds1 =

[ − 1
ms

0

]
, Cs =

[
1 0 −1 0

]
.

However, two constraints must be satis�ed

1. The control signal a1 must be positive (dissipative constraint)

2. The input matrices Bsρ1 and Ds1ρ1 must be constant to satisfy the LPV-H∞
synthesis assumption.

The passivity problem is solved by de�ning a new control signal u = a1−F0 where F0 is

the mean value of a1 (F0 = (a1max−a1min)/2). Then, the problem of the passivity on a1

is recast to a simple saturation problem on u (u ∈ [−F0 ; F0]). With these modi�cations,

(4.7) yields 



ẋs = (As +Bs2

ρ1

Cs2xs
Cs2)xs +Bsρ1u+Bs1w

z = Cs1xs +Ds1ρ1u

y = Csxs

(4.7)

where

Bs2 =
[

0 − F0
ms

0 F0
mus

]T
and Cs2 =

[
−a3v0

x0
a3 −a3v0

x0
−a3

]T
.
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To overcome the second problem, [Apkarian and Gahinet, 1995] proposes to add a

strictly proper �lter F to make the controlled output matrices independent of the

scheduling parameters

F :

[
ẋf
u

]
=

[
Af Bf
Cf 0

] [
xf
uc

]
(4.8)

Then, by de�ning ρ2 = ρ1
Cs2xs

and x = (xs xf)
T the system (4.7) can be represented as





ẋ = A(ρ1, ρ2)x+Buc +B1w

z = C1(ρ1, ρ2)x

y = Cx

(4.9)

where

A(ρ1, ρ2) =

[
As + ρ2Bs2Cs2 ρ1BsCf

0 Af

]
, B =

[
0

Bf

]
, B1 =

[
Bs1

0

]
,

C1(ρ1, ρ2) =
[
Cs1 ρ1Ds1Cf

]
and C =

[
Cs 0

]
.

4.3.2 H∞-Controller Synthesis

By considering the LPV-model (4.9), an H∞-controller is designed to guarantee the

internal closed-loop stability and to satisfy some required performance. In fact, the

main objective and challenge of a controlled suspension system is to improve the comfort

for car passengers simultaneously to the performance on road holding. The passenger

comfort can be improved by isolating the vibrations transmitted from the road surface.

Then, the frequency response from the road pro�le zr to the vehicle chassis acceleration

z̈s must be kept small in the low frequency range. Then, a weighting function is designed

as

Wz̈s = wz̈s
s2 + ξ11w11s+ w2

11

s2 + 2ξ12w12s+ w2
12

Furthermore, the road holding is evaluated from the unsprung mass (wheel) oscillations

with respect to the road pro�le. This transfer should be kept small at high frequencies.

Then, Wzus is designed as

Wzus = wzus
s2 + ξ21w21s+ w2

21

s2 + 2ξ22w22s+ w2
22

Wzr = 5 × 10−3 is the road pro�le gain. Finally, the �lter introduced in (4.8) is given

as: F =
wf
s+wf

. It is designed with a large bandwidth to decouple the input and the

varying parameters, where

wz̈s = 1, ξ11 = 0.1, ξ12 = 1, w11 = 2π × 1 rad.s−1, w12 = 2π × 3 rad.s−1,
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wzus = 10, ξ21 = 0.3, ξ22 = 1, w21 = 2π×9 rad.s−1, w22 = 2π×9 rad.s−1, wf = 90.34.

Then, an interconnection between the LPV-model and these weighting functions are

presented in Figure 4.19.

Model parameters are obtained by considering experimental data in

1/4 vehicle model

Wz̈s

Wzus

Wzr

Wu

K(ρ)F

ρ

z̈s z1zrw

zs z2z3

zdef

żdefu

Figure 4.19: H∞-control Scheme

[Tudon-Mart�nez et al., 2013] and given as Table 4.8 To carry out a controller

Table 4.8: Parameter Values

Parameter Value

Sprung mass (ms) 470 [kg]

Unsprung mass (mus) 110 [kg]

Tyre sti�ness coe�cient (kt) 270000 [N/m]

Spring sti�ness coe�cient (ks) 86378 [N/m]

satisfying these objectives, the H∞-LPV-synthesis is designed by using solution for

polytopic systems: it consists in �nding a global LPV-controller K(ρ1, ρ2) which is

a convex combination of local controllers obtained by solving the LMIs set at each

vertex (formed by limits values of the varying parameters). All varying parameters are

bounded: ρ1 ∈ [−1 ; 1], ρ2 ∈ [0 ; 1].

For more details and explanation on H∞-LPV-control synthesis, see

[Apkarian and Gahinet, 1995, Scherer et al., 1997]. The design method for LPV-

systems is used like in [Apkarian et al., 1994].
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4.3.3 Numerical Issue

The proposed method requests the solution of two Lyapunov inequalities with an in�nite

number of constraints. These sets of in�nite LMIs can be solved by gridding techniques.

Then, some approximations must be made by gridding the set ∆ρ with �nite number

L of points {ρi}Li=1 [Lee, 1997]. Moreover, the in�nite variables PΩ(ρ) and QΩ(ρ) in

LMIs (3.100),(3.101) are approximated by combinations of scalar basis functions such

as

PΩ(ρ) =

NP∑

j=1

φj(ρ)Pj � 0

QΩ(ρ) =

NQ∑

j=1

ϕj(ρ)Qj � 0

where Pj = PT
j , Qj = QT

j . There is a large freedom in the choice of basis functions

[Wood, 1995]. For this example, the following choice is made:

{φj}13
j=1 = {ϕj}13

j=1 = {1, ρ1, ρ2, ρ
2
1, ρ

2
2, ρ1ρ2, ρ1ρ

2
2, ρ

2
1ρ2, ρ

2
1ρ

2
2, ρ

3
1, ρ

3
2, ρ1ρ

3
2, ρ

3
1ρ2}.

The main consequence of this approximation is that the number of LMIs to be solved is

�nite and is 2L(2s+1 + 1) where s is the number of parameters, i.e. s = 2 and L = 13.

The full-order controller is designed using the procedure developed in

[Scherer et al., 1997]. Then, an 8-order controller Kfull is obtained. The pro-

posed method is used to reduce Kfull. Then, KFWBT is produced.

To test its e�ectiveness, a comparison with the method developed in

[Widowati et al., 2004] (LPV balanced truncation) namely KBT, is performed.

The feasibility problems (3.100)(3.101) are convex. Using (Matlab LMI Control Tool-

box), controllers are reduced to the 5th order obtained heuristically by trial-and-error

approach. Therefore, a frequency and time analysis are performed.

4.3.4 Results and Discussion

The �rst evaluation is represented in Table 4.9 where �rst the assumption (3.108) and

(3.109) are checked. Note that for 25 frozen values of (ρ1, ρ2), the rank assumption is

satis�ed for all these points. This fact con�rms Remark 3.3.2 and allows us compute

an upper bound. Precisely, Table 4.10 express the upper bounds and H∞-norm of the

error values. These results evince that the upper bound is correctly positioned (the gap

is positive). However, we note that this upper bound is not tight to error H∞-norm.

Table 4.9: Values of
(
rank[B(ρ),BΩ(ρ)]/rank[BΩ(ρ)] ; rank[CT(ρ),CT

Ω(ρ)]/rank[CT
Ω(ρ)]

)

for Several Frozen Values of (ρ1, ρ2)
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HH
HHHρ1

ρ2 −1.0 −0.5 0.0 0.5 1.0

0 (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14)

0.25 (14/14 ; 14/14) (13/13 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14)

0.5 (11/11 ; 14/14) (13/13 ; 14/14) (11/11 ; 14/14) (12/12 ; 14/14) (11/11 ; 14/14)

0.75 (12/12 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14)

1.0 (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14) (14/14 ; 14/14)

Table 4.10: Values of the ‖Tzw(ρ)− T̂zw(ρ)‖i,2 and the Upper bound for Several Frozen

Values of (ρ1, ρ2)
HH

HHHHρ1

ρ2 −1.0 −0.5 0.0 0.5 1.0

0.0 1.36 ≤ 5.07 1.35 ≤ 3.32 1.33 ≤ 4.08 1.31 ≤ 3.37 1.30 ≤ 3.72

0.25 0.32 ≤ 9.88 0.32 ≤ 9.93 0.32 ≤ 10.38 0.31 ≤10.39 0.31 ≤ 9.80

0.5 0.00 ≤ 1.79 0.00 ≤ 0.13 0.00 ≤ 2.22 0.00 ≤11.81 0.00 ≤ 2.03

0.75 0.31 ≤ 9.97 0.31 ≤ 9.92 0.30 ≤10.58 0.30 ≤9.86 0.29 ≤ 9.89

1.5 1.22 ≤ 3.77 1.20 ≤ 3.04 1.19 ≤ 4.46 1.18 ≤ 2.88 1.17 ≤ 2.90

Frequency analysis:

The Bode diagrams at several frozen values of ρ1 and ρ2 (25 points) of the three transfer

function Tzs , Tz̈s and Tzus are shown respectively in Figure 4.20, 4.21 and 4.22. In fact,

the frequency behaviours of the chassis position zs and acceleration z̈r are chosen to be

analysed in order to observe the comfort performance regarding the road pro�le input

zr. The wheel position signal zus is also analysed to test the road holding. Then, the

weighting functionsWz̈s andWzs designed in Section 4.3.2, limit the ampli�cation of the

previously cited transfers in low frequency range (around [1 ; 10] Hz). In fact, the human

sensitivity to vertical vibrations is important in this frequency range [Do et al., 2010].

For this reason, the frequency interval of the proposed frequency limited FWBT method

is chosen as [1 ; 8] Hz.

In Figure 4.20, note the reduced-order closed-loop system produced by FWBT ap-

proximate well the full-order closed-loop system in the chosen frequency range [1 ; 10]

Hz. In this interval, the reduced-order closed-loop system produced by the unweighted

BT fails. In fact, an important gap appears a 2 Hz and 3 Hz which is exacted as th

BT is known to guarantee good approximation at high frequency. The same comment

is given in Figure 4.21 where FWBT �ts the full order closed-loop system in all the

shown range unlike BT method that miss the peak around 2 (a resonance frequency).

These results are more explicit when observing Figure 4.22. Indeed, FWBT gives a

good approximation when BT fails (2 Hz and 8 Hz). The other important fact stated

by these results, is the sensitivity against the parameters variation. Actually, a disper-

sion of ρ1 and ρ2 values is induced by the reduction step. This degradation is expected

since the given application is a qLPV system where ρ1 and ρ2 are depending on the
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Figure 4.20: Bode-diagram Magnitude of the Transfer Tzszr

state vector. Then, every decrease in the order (states) a�ects the ρ1 and ρ2 values.

However, this loss when reducing is under control for two reasons: the �rst one, the

stability of reduced-order closed-loop is preserved and the error is guaranteed limited.

The second one is that this dispersion is weak in the required frequency range. Thus,

performance are not a�ected.

As Bode diagram for non-linear systems is not possible, a pseudo-Bode plot

is then proposed in [Poussot-Vassal, 2008].
Remark

Time analysis:

In the time domain, the several controlled suspensions are travelling a bump of 0.01

m x 2 m for a vehicle speed 8.3 m/s (i.e. 30 km/h). It is observed that the time

response con�rms the contribution of the FWBT reduction method. In fact, in Figure

4.23, the chassis is stabilised rapidly (1 sec. after the perturbation) without overtake

on the suspension unlike the suspension with KBT. This observation, preserves the

required `comfort' performance. Moreover, for zus, the wheel equipped with a KFWBT-

suspension, keeps almost the same pro�le of the road although its variations which which

respects the `road handling' performance. The KBT-suspension generate an in�nite

perturbation just after the bump (after 1 sec.). Note also, that temporal test draw two

output signals (chassis and wheel positions) regarding the input (the road pro�le) and

by the way there will be just one plot of each transfer besides the several plots in the

frequency responses.
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Figure 4.21: Bode-diagram Magnitude of the Transfer Tz̈szr
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Conclusion

In this chapter, the studied approaches in previous chapters are implemented and eval-

uated on several engineering problems.
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The di�erent methods to obtain a �xed-order controller have been �rst tested: the Ap-

karian and the Ankelhed's algorithms are implemented and tested on some COMPleib

benchmark problems. From the fact that the main objective is to minimise ‖Tzw‖∞,
this H∞-norm of the closed-loop system is evaluated for di�erent orders. First anal-

ysis, shows similar good results for the two techniques. On the contrary, they failed

for some models with quit high order which was expected regarding the big number of

decision variables. This evaluation has been completed by an additional comparison

with two available Matlab toolboxes. These latters show a bit better result in most

cases. Evaluation on COMPleib benchmark has been �nished by a macro test where

best results in the direct �xed order way have been compared the ones of the indirect

way. As expected, the �xed order way show some numerical problems in many cases

unlike the order reduction approach which give a stable results even if the order is big.

It has been noted also that the �xed order way give better results than the reduced

order approach for very low orders (0 or 1) . However for higher orders (> 2) reduction

the best results are obtained by the reduced order controller.

Thereafter, The indirect way in turn is evaluated. An automotive-suspension with

a controlled damper is consider. The system is �rst represented with an LTI-model.

Then, performance speci�cations have been achieved with a full-orderH∞-controller.

This latter has been the subject of an order reduction step where the FWBT technique

is used. As shown in Section 3.2, various versions have been used to perform the or-

der reduction. Then, these variants are implemented and tested through this system.
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The shown results have con�rmed their e�ectiveness and comparable good results have

been obtained for each method. In fact, a remarkable gain in time and memory has

been observed. Finally, a time and frequency domain analysis have been performed.

This evaluation has conformed the e�ectiveness of the implemented methods, Indeed,

the performance speci�cation have been respected even the controller is reduced to one

third of its order.

Finally, the most important contribution concerning the H∞-LPV-controller order re-

duction, has been validated in the last section. The control of a car magneto-rheological

damper is considered. This semi-active suspension system has been written under an

LPV-model. Then, an H∞-LPV-controller has been designed. Thereafter, the devel-

oped method has been implemented and a reduced order controller is derived. Similar

examination to the previous example is done by performing a time and frequency do-

main analysis. Subject to bump road pro�le, the controlled semi-active suspension

shows good performance even the controller order is reduced. Unlike the �xed order

way, the developed method guarantee an upper bound of the approximation error. This

latter has been computed and shown to be always bounded by the introduced upper

bound.





Conclusion and Perspectives

The work presented in this dissertation is related to the H∞-LPV-controller order

reduction. This latter consists of the design of a robust reduced-order LPV-controller

for LPV-systems. The order reduction issue has been very fairly investigated, However,

the case of LPV-control design is slightly discussed. This thesis focuses primarily

on two topics : How to obtain an LPV-reduced-order controller even the high order

generated by the classical synthesis and how this reduced order controller can deal

with a practical engineering problem (semi-active suspension control). In view of

this, The order-reduction topic and the H∞-synthesis theory have been widely

studied in this thesis. This study, has allowed the development of a new method for

H∞-LPV-controller order reduction.

In Chapter 1, De�nitions and basic notions on system and control theory have

introduced. Mathematical framework has been well detailed and required notions have

been detailed. Essential notions in the linear algebra have been �rst recalled. Then,

the interested systems classes namely the LTI and LPV systems, have been described.

In Chapter 2, H∞-control design has been investigated. Firstly, the LTI-case has

been considered. The stability and the performance requirements have been shown

guaranteed by the H∞-controller. The examination of this design methodology has

shown its drawback regarding the high order of the resulting synthesised controller.

One way to tackle this problem was to set the order when synthesising the controller.

This approach has been examined in this chapter. Finally, the LPV-case is considered

where the stability and the performance issues have been also treated. The same

observation has been stated i.e. the high order of the LPV-controller. Then, reducing

this latter has conducted to de�ne the main objective of this thesis.

In Chapter 3, the primary contribution of this thesis has been given. To achieve

this latter, The model order-reduction matter has been �rst introduced and discussed.

Methods based on singular value decomposition have been then studied and compared.

Their analysis has shown their usefulness for the control order reduction (instead of the

model order reduction). Hence, they have been used to obtain H∞-LTI-reduced-order

controllers. This study has completed the main summery scheme on how to get a

low-order controllers given in Figure 1. Indeed, comparison work has been planned in

the last chapter to evaluate every edge of the scheme for the LTI-case. Inspired by

these stated developments of H∞-LTI-controller order reduction, a new method has

been derived to achieve this objective for H∞-LPV controllers. A big advantage of

this approach was to perform the order reduction in oriented limited frequency range.
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The obtained reduced-order controller is guaranteed stabilising and the approximation

error has been proven bounded.

Finally in Chapter 4, All the treated methods and algorithms have been implemented

and evaluated. First, various engineering problems from the COMPleib benchmark li-

brary have been considered. The studied algorithms in Section 2.2 have been tested and

compared on some of the library examples. This comparison has been extended to other

existing Matlab tools that have the same objective. The evaluation has shown good

performance with comparable results for each method. However, considerable numeri-

cal resources and some technical troubles have been encountered when applying them.

Thereafter, the control of an automotive suspension has been concerned. According

the actuator technology, two control laws are derived: an H∞-LTI controller for an

active-suspension and H∞-LPV-controller for a magneto-rheological semi-active one.

For the �rst one, methods reviewed in Section 3.2 has been evaluated with this system.

Performance regarding the passenger comfort and the road handling are tested and re-

sults have shown their e�ectiveness. The frequency and time analysis have shown also

their e�cacy comparing to the �xed-order methods. Ultimately, the developed H∞-

LPV-controller method with its two variants developed in the Section 3.3 have been

evaluated. The several tests of the approximation error and the performance in time

and frequency time have shown the contribution of the given order reduction methods.

Perspectives

Among the presented work, several improvements are proposed

• The H∞-synthesis for LTI-systems is known to ensure the controller robustness.

This latter is investigated in this thesis and a Robustness analysis is performed

through the µ-analysis tool in Section 2.1 and Section 4.2. Then, the stability and

the performance robustness of the reduced-order controllers have been tested.

However, no guarantee is ensured by such control approach. Recently, various

techniques are developing that guarantee a robustness degree while synthesising

the controller. The most known one to achieve this objective is the so-called

DK-iteration procedure [Doyle et al., 1987]. It would be interesting if the order-

reduction procedure and this controller synthesis would be mixed in order to

ensure the robustness even the order-reduction.

• The frequency limited method for LPV-case proposed in Section 3.3 is developed

with two variants: the BT way that approximate better in high frequency and the

SPA one that approximate error in low frequency. The two variant have tested

for medium frequency range. It will be of great interest if the method would be
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tested in all the possible cases, e.g. chose a very low frequency and test the BT

or chose a very high frequency range and test the SPA.

• It has shown in Section 2.1 that the weighting functions derived from the perfor-

mance speci�cations are the primary reason to increase the controller order. Then,

the link between the several proposed methods and these weighting functions

should be investigated with the aim to limit the order before the H∞-controller

design.

• Almost all the proposed work in this thesis concerns the H∞-control. An ex-

tension to the H2-control seems to be feasible and could give an interesting con-

tribution. Moreover, mixed H∞/H2 control design problem could be treated

and reduced-order controller procedure for this type of control design would be

derived.

• The proposed method in Section 3.3 concerns the order-reduction way for LPV-

controllers. Even if research for a such complicated problem, the �xed-order way

for H∞-LPV-controller should be investigated and evaluated.

• Passivity notion is essential in dynamical systems. Unlike the proprieties like

stability and performance, this passivity criterion has not been discussed. It

would be useful if a study could be conducted in this direction. Some recent

contributions are treating this issue [Li et al., 2015, Li and Gao, 2015].

• Even thought the design of an H∞-LPV controller is considered robust against

the parameters variation, it is more consistent to consider uncertainties for LPV-

systems. This uncertain LPV-controllers would necessary have a higher order,

Then, approximating such controllers would be very useful.
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Appendix A

Numerical Considerations

A.1 Gradient and Hessian

A.1.1 Gradient computation, [Helmersson, 2009]

Let Ci ∈ Rn×n and de�ne

Cn = 0,

Cn−1 = I,

Cn−2 = Z + cn−1(Z)I,
...

Ck = Ck+1Z + ck+1(Z)I,
...

C0 = C1Z + c1(Z)I

These matrices can be computed easily using the coe�cients ck. The �rst-order deriva-

tives of a coe�cient ck(Z) in (1.12) are given by

∂ck
∂Xij

= traceCkEijY, (A.1a)

∂ck
∂Yij

= traceCkXEij , (A.1b)

with the matrix Eij de�ned as

eij =

{
eie

T
j , if i = j,

eie
T
j + eje

T
i , if i 6= j

(A.2)

where ei, ej ∈ Rn are the ith and jth unit vectors respectively. The expressions in

(A.1) can be written in another form using the invariance under cyclic (trace(ABC) =

trace(CAB) = trace(BCA)). For an example where i 6= j, we get the following relations

∂ck
∂Xij

= eTj Y Ckei + eTi Y Ckej , (A.3a)

∂ck
∂Yij

= eTj CkXei + eTi CkXej , (A.3b)
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which is equivalent to extract two elements from X,Y and Eij and summing them.

A.1.2 Hessian computation, [Helmersson, 2009]

∂2ck
∂Xij∂Xpq

= (trace Cx−1EpqY )(trace Zx−k−2EijY )− trace Cx−1EpqY Z
x−k−2EijY

+ · · ·
+(trace Ck+2EpqY )(trace ZEijY )− trace Ck+2EpqY ZEijY

+(trace Ck+1EpqY )(trace EijY )− trace Ck+1EpqY EijY

∂2ck
∂Yij∂Ypq

= (trace Cx−1XEpq)(trace Zx−k−2XEij)− trace Cx−1XEpqZ
x−k−2XEij

+ · · ·
+(trace Ck+2XEpq)(trace ZXEij)− trace Ck+2XEpqZXEij
+(trace Ck+1XEpq)(trace XEij)− trace Ck+1XEpqXEij

∂2ck
∂Xij∂Ypq

= (trace Cx−1XEpq)(trace Zx−k−2EijY )− trace Cx−1XEpqZ
x−k−2EijY

+ · · ·
+(trace Ck+2XEpq)(trace ZEijY )− trace Ck+2XEpqZEijY

+(trace Ck+1XEpq)(trace EijY )− trace Ck+1XEpqEijY

+ trace CkEijEpq

∂2ck
∂Yij∂Xpq

= ∂2ck
∂Xij∂Ypq

.
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Algorithm 4 X and Y searching

1. Initial phase.

(a) Find a starting point by solving the convex SDP

minimise
x

γ + trace(X + Y )

subject to x ∈ X

and denote the X0, Y 0 matrices associated to this solution. Solving this

optimisation problem means, �nd a solution of minimal norm
∥∥XY − I

∥∥
F

and a low value of γ.

(b) De�ne the variable k and set k = 0. Choose starting value for α, λ0, µ0, ρ, ρ0

and the tolerance ε (ρ > 1, 0 < ρ0 < 1, α = 0.98).

2. Optimisation phase: Set k = k + 1 and let dxX , dxY ∈ Sn, dxγ ∈ R

(a) Using λ = λk−1 and µ = µk−1, solve (2.40) for the solution

dx =
[

vech(dxX ) vech(dxY ) dxγ
]T

(A.4)

(b) Update variable as

Xk = Xk−1 + αdxX , Yk = Yk−1 + αdxY , γk = γk−1 + αdxγ

or equivalently:

xk = xk−1 + αdx.

3. Update penalty and multiplier.

λk = λk−1 + µk−1(XkYk − I) (A.5)

µk =

{
ρµk−1, if q(xk) > ρ0 q(xk−1)

µk−1, if q(xk) ≤ ρ0 q(xk−1)
(A.6)

4. Terminating phase: If q(x) > ε, go to the phase 2, else check the following

• If γk < 0.99 γk−1 for three consequent iterates, it can be that we are near a

local optimum. Finish the program.

• Otherwise, the objective function value is still decreasing, hence we continue

the optimisation, i.e. go back to phase 2.
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Algorithm 5 Xa and Ya searching

1. Initial phase:

(a) Find a starting point by solving the convex SDP

minimise
xa

γ + trace(Xa + Ya)

subject to xa ∈ Xa

and denote the solution X0
a and Y 0

a . Solving this optimisation problem

means, �nd a solution of low rank and a low value of γ.

(b) De�ne the variable k and set k = 0. Choose starting value for λ0, µ0, ρ, ρ0

and the tolerance ε (ρ > 1, 0 < ρ0 < 1).

2. Optimisation phase: Set k = k + 1 and let dxXa , dxYa ∈ Sn, dxγ ∈ R

(a) Using λ = λk−1 and µ = µk−1, solve (2.62) for the solution

dx =
[

vech(dxXa ) vech(dxYa ) dxγ
]T

(A.7)

which is the step direction.

(b) Update variable as

Xak = Xak−1
+ αdxXa , Yak = Yak−1

+ αdxYa , γk = γk−1 + αdxγ

or equivalently: xk = xk−1 + αdx, where α = 0.98.

3. Update penalty and multiplier

λk = λk−1 + µk−1(XakYak − In+nK ) (A.8)

µk =

{
ρµk, if

∥∥XakYak − In+nK

∥∥
F
> ρ0

∥∥Xak−1
Yak−1

− In+nK

∥∥
F

µk, if
∥∥XakYak − In+nK

∥∥
F
≤ ρ0

∥∥Xak−1
Yak−1

− In+nK

∥∥
F

(A.9)

4. Stopping test: In the case where ‖XaYa − In+nK‖F < ε and the necessary

optimality conditions are satis�ed then the algorithm stops progress. Otherwise

increase the counter k and go to phase 2.

5. Terminating phase: If ‖XaYa − In+nK‖F < ε, we give the solution xa and try

to construct the controller as explained in the next subsection, but if this fails,

reduce ε, increase k and go to phase 2.
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