Eduardo Alexandre Ferreira

PhD Thais Batista

PhD Flavio Oquendo

Mission-driven Software-intensive System-of-Systems Architecture Design

Keywords: Software Architecture, Software-intensive Systems-of-Systems, Mission Modeling, Semi-Automated Architecture Design

The formulation of missions is the starting point to the development of Systems-of-Systems (SoS), being used as a basis for the specication, verication and validation of SoS architectures. Specifying, verifying and validating architectural models for SoS are complex tasks compared to usual systems, the inner complexity of SoS relying specially on emergent behaviors, i.e. features that emerge from the interactions among constituent parts of the SoS which cannot be predicted even if all the behaviors of all parts are completely known. This thesis addresses the synergetic relationship between missions and architectures of software-intensive SoS, giving a special attention to emergent behaviors which are created for achieving formulated missions. We propose a design approach for the architectural modeling of SoS driven by the mission models. In our proposal, the mission model is used to both derive, verify and validate SoS architectures. As rst step, we dene a formalized mission model, then we generate the structure of the SoS architecture by applying model transformations. Later, when the architect species the behavioral aspects of the SoS, we generate concrete SoS architectures that will be veried and validated using simulation-based approaches, in particular regarding emergent behaviors. The verication uses statistical model checking to verify whether specied properties are satised, within a degree of condence. The formalization in terms of a temporal logic and statistical model checking are the formal foundations of the developed approach. A toolset that implements the whole approach was also developed and experimented.

Mission-driven Software-intensive System-of-Systems

Architecture Design

Auteur: Eduardo Alexandre Ferreira Silva Superviseur: Thais Batista, PhD Superviseur: Flavio Oquendo, PhD

Résumé

La formulation des missions est le point de départ du développement de systèmes-desystèmes, étant utilisée comme base pour la spécication, la vérication et la validation d'architectures de systèmes-de-systèmes. Élaborer des modèles d'architecture pour systèmes-de-systèmes est une activité complexe, cette complexité reposant spécialement sur les comportements émergents, c'est-à-dire, des comportements issus des interactions entre les parties constituantes d'un système-de-systèmes qui ne peuvent pas être prédits même si on connaît tous les comportements de tous les systèmes constituants. Cette thèse adresse le lien synergique entre mission et architecture dans le cadre des systèmes-desystèmes à logiciel prépondérant, en accordant une attention particulière aux comportements émergents créés pour réaliser les missions formulées. Nous proposons ainsi une approche pour la conception d'architecture de systèmes-de-systèmes dirigée par le modèle de mission. Dans notre approche, le modèle de mission sert à dériver et à valider les architectures de systèmes-de-systèmes. Dans un premier temps, nous générons la structure de l'architecture à l'aide de transformations de modèles. Ensuite, lors que l'architecte spécie les aspects comportementaux, la description de l'architecture résultante est validée à l'aide d'une démarche conjointe qui comprend à la fois la vérication des propriétés spéciées et la validation par simulation des comportements émergents. La formalisation en termes de logique temporelle et la vérication statistique de modèles sont les fondements formels de l'approche. Un outil mettant en ÷uvre l'ensemble de l'approche a été également développé et expérimenté.

Mots-clés: Architecture logicielle, systèmes-de-systèmes à logiciel prépondérant, modélisation de missions, conception architecturale semi-automatisée.

List of Figures

Introduction

Software is everywhere. The rapid evolution of electronics allowed us to introduce software components in the various unusual and unexpected elements of our daily life.

Such evolution also drastically improved computational power, thereby allowing software systems to become more complex and bigger, at the same time as faster. Altogether, these aspects woke an interest for integrating software systems in cooperation environments, using a group of existing systems to form a larger, more complex, system that is capable of performing new operations.

Many examples of cooperation-based systems as such can be found. One of the most remarkable recent domains is Internet of Things (IoT) (ATZORI; IERA; MORABITO, 2010; ALKHABBAS; SPALAZZESE; [START_REF] Alkhabbas | Architecting emergent congurations in the internet of things[END_REF], in which the goal is to integrate many intelligent things towards a cooperation environment to achieve a predetermined functionality. Every thing is completely independent from each other and one of the design challenge relies on how to dene a cooperation that would allow the integrated things to provide the desired properties. One of the IoT applications are the smart city projects (LEEM; [START_REF] Leem | Taxonomy of ubiquitous computing service for city development[END_REF], that consists on integrating existing city systems and services to enhance urban life and development, including trac, public transportation, social services, etc.

One of the most notorious initiatives for system integration and cooperation focus on independent, heterogeneous constituent systems, therefore embracing domains as

IoT and smart cities. A system-of-systems (SoS) is dened as the result of the interaction among independent heterogeneous constituent systems that cooperate to form a larger, more complex system for accomplishing a given mission [START_REF] Maier | Architecting principles for systems-of-systems[END_REF].

From the system-of-systems perspective, a constituent system is an independent system that is capable of interacting with other systems. Each constituent system has its own objectives it will try to achieve by its own, the so-called mission. The SoS as a whole also have its missions, although dierently from the individual missions of the constituent systems, the global missions of the SoS can only be achieve through cooperation between the constituent parts.

Each global mission rely on an specic behavior that stems on cooperation, the emergent behavior, a behavior that is only observable when the systems are interacting.

Although some of these behaviors can be expected, it is not possible to predict them based on the constituent parts. Since the emergent behavior is more than the sum of the parts [START_REF] Oquendo | On the emergent behavior oxymoron of system-of-systems architecture description[END_REF], they cannot be calculated based on the behaviors of the constituent systems [START_REF] Boardman | System of systems The meaning of of[END_REF][START_REF] Boardman | System of systems The meaning of of[END_REF].

Once emergent behaviors cannot be associated to any single constituent system, neither the global missions that rely on that behavior can. Therefore, the global missions can never be achieved by an individual constituent system, being then a characteristic of the SoS as a whole [START_REF] Naqvi | Cross-document dependency analysis for system-of-system integration[END_REF].

Besides emergent behavior, there are other intrinsic characteristics that make SoS distinct from other distributed, complex and large-scale systems. Regarding constituent systems, they have (i) the operational and managerial independence, that consists on providing their own functionalities even when they do not cooperate within the scope of the SoS and can be managed independently, and are (iii) geographically distributed.

The SoS have an (ii) evolutionary development, that establishes that the systems may evolve over time to respond to changes on its execution environment, or on its own missions. Altogether, these characteristics have posed a set of challenges mainly related to the development, dynamicity, and evolution of SoS, thereby making traditional system engineering processes to be no longer suitable for constructing these systems (BOEHM; [START_REF] Boehm | 21st century processes for acquiring 21st century softwareintensive systems of systems[END_REF][START_REF] Calinescu | Software Engineering techniques for the development of systems of systems[END_REF][START_REF] Calinescu | Software Engineering techniques for the development of systems of systems[END_REF].

As a subset of SoS, Software-Intensive Systems of Systems (SiSoS) are a kind of SoS in which software plays a key role (ISO 42010:2011(ISO 42010: , 2011)). In this kind of systems, the adoption of software engineering processes sightly impacts on development, implantation and maintenance of the systems. The increasing complexity of software systems caused a growing interest for SiSoS within the Software Engineering. Since the solutions for SiSoS requires a complex, software-based integration for the constituent systems to form a SoS, the traditional approaches are often ineective.

Although this work focus on SiSoS, the term SoS might be found along the text for simplication purposes. However, it is important to clarify that this thesis proposes a solution and uses background specically for SiSoS. This Chapter introduces the problem within the context. Section 1.1 gives an overview and discuss the needs of the domain. Section 1.2 presents the research questions and goals of this work. Section 1.3 presents the expected contributions of this work and Section 1.4

gives an overview of our evaluation proposal. Finally, Section 1.5 describes the outline of this thesis.

Problem Statement

This Section introduces the problem, contextualizing and discussing the aspects related to this work. Section 1.1.1 presents the SoS context and the role missions play in it and the architecture. Section 1.1.2 briey discusses architectural validation and verication for SoS.

Bridging Missions and Software Architecture in SoS Modeling

An important concern in the design of SiSoS is the systematic modeling of both global and individual missions, as well as all relevant mission-related information. Missions play a key role in the SoS context since they support the identication of required capabilities of constituent systems and the interactions among these systems that may potentially lead to emergent behaviors towards the accomplishment of the global goals of the SoS.

Therefore, mission models can be viewed as a potential starting point to be adopted when designing an SoS as they can be used as a basis of the whole development process [START_REF] Silva | On the characterization of missions of systems-of-systems[END_REF].

In this context, mKAOS (SILVA; BATISTA; OQUENDO, 2015) is a pioneer mission description language, designed for the specicities of SoS. Mission models in mKAOS can be seem as a complimentary requirements model that can be rened to the capability level, expressing the functionalities the systems are able to perform. Such models can express not only missions and capabilities, but also emergent behaviors and environment condi- In a mission-oriented approach for designing SoS, a next step towards the concretization of the mission model is its renement to an architectural model, i.e., a model ex-pressing the SoS software architecture, that will dene how the desired functions will be implemented. SoS software architectures have been recognized as a signicant element for determining the success of these systems and contributing to their quality [START_REF] Goncalves | Towards a conceptual model for software-intensive system-ofsystems[END_REF][START_REF] Nakagawa | The state of the art and future perpsectives in systems-of-systems software architectures[END_REF]OQUENDO, 2013;[START_REF] Guessi | A systematic literature review on the description of software architectures for systems of systems[END_REF].

Mission models shall be used as a basis for the further elaboration of architectural models by SoS software architects [START_REF] Silva | On the characterization of missions of systems-of-systems[END_REF], since they specify what the SoS is intended to be. The process to produce an architecture based on the mission model can be classied as a renement process, since it maintains the coarse-grain-most properties as it introduces new properties that are expected from the ne-grain-most properties. These properties can be used altogether in a verication process, that might automatically detect property violation (COUTO; FOSTER; PAYNE, 2014).

Since such a renement allows specifying the SoS software architecture in compliance with the mission model, it is possible to establish traceability links between missions and architectural elements. In this context, traceability between missions and architectural elements is fundamental, speciably due to the unpredictable nature of emergent behavior [START_REF] Oquendo | On the emergent behavior oxymoron of system-of-systems architecture description[END_REF]. It is, therefore, necessary to simulate the architectural models to observe which behaviors are emerging and which of those are desired or not. Furthermore, thanks to traceability between models, it is possible to identify the subset of constituent systems that are supporting each behavior. Through the simulation, it is possible to validate the architecture within the mission model.

However, currently, there is a lack of studies that concerns on mission models. Hence, existing architectural denition approaches tends to use traditional requirements engineering. Since constituent systems are the operational and managerial independent, i.e.

they have their own objectives and are managed by independent entities [START_REF] Maier | Architecting principles for systems-of-systems[END_REF], such systems often present a behavioral uncertainty: the internal function and behavior of these systems are unknown or non-deterministic. Consequently, traditional architectural approaches are particularly ineective due to its inability of to cope this kind of circumstance and specially due to the nature of the emergent behavior.

In fact, every technique, framework or methodology we found up to this date completely neglects emergent behavior, focusing on properties as DANSe 1 or interoperability as COMPASS 2 . Further, these approaches rely on traditional architectural description languages, that are often unable to express common characteristics of constituent sys-1 /http://www.danse-ip.eu/home 2 http://www.compass-research.eu/index.html tems such as the inner dynamism and the behavioral uncertainty. In this context, SosADL (OQUENDO, 2016a) is a novel ADL designed for the specicities of SoS. Formally grounded in π-calculus (OQUENDO, 2016b), the language introduces new constructs that are key on the SoS context, such as coordination elements.

1.1.2 Validation and Verication of Software Architectures for SoS IEEE ISO 1012-2004(IEEE ISO 1012-2004[START_REF] Hughes | A middleware platform to support river monitoring using wireless sensor networks[END_REF] denes a process for software verication and validation (V&V) that determines whether the products on the development process meet the requirements and therefore the user's needs with a given degree of quality.

Although related, validation and verication are performed at dierent moments of software production and concerns on dierent aspects of the system: verication is related to the properties that constraint the specication, permeating between requirements (nonfunctional requirements) and architectural model (architectural constraints). The verication can be performed at any moment in the implementation process, even with unnished models. Validation regards the expectations and needs of the stakeholders, therefore it is often performed as a nal stage of implementation.

On one hand, validating Software Architectures is a challenge task even for traditional systems, as it aims to guarantee quality degrees for the produced architecture. Therefore, it is an essential part of the development process [START_REF] Michael | The verication and validation of software architecture for systems of systems[END_REF][START_REF] Michael | The verication and validation of software architecture for systems of systems[END_REF][START_REF] Michael | The verication and validation of software architecture for systems of systems[END_REF].

The validation process consists on checking whether an architecture does what it is supposed to do. The challenge, that normally consists on checking the requirements, is even more complicated for the SoS context. A validation process for SoS must be able to identify when an architecture is capable of achieving the proposed missions, which is a complex concept when compared to requirements. Since global missions depends on emergent behavior, which are unpredictable, the validation process for SoS must rely on simulation, dierently from traditional systems.

Most of validation processes for software architecture are mostly manual, in which the architect reads the requirements and identies whether the system implement it, relying on traceability. In the SoS context, besides the identication of the parts that implement the missions, the architect must identify in which circumstances or contexts the missions are achieved or might fail.

On the other hand, to verify correctness of a system the most popular verication technique is model checking [START_REF] Clarke Jr | Model Checking[END_REF][START_REF] Clarke Jr | Model Checking[END_REF][START_REF] Clarke Jr | Model Checking[END_REF][START_REF] Zhang | Model checking software architecture design[END_REF][START_REF] Zhang | A classication and comparison of model checking software architecture techniques[END_REF][START_REF] Zhang | A classication and comparison of model checking software architecture techniques[END_REF]. Model checking consists on using a system specication in a given notation and a set of properties or constraints, then exhaustively testing the possible states of the system towards the predened set of properties on each of those states [START_REF] Tsai | A comparative study of formal verication techniques for software architecture specications[END_REF][START_REF] Tsai | A comparative study of formal verication techniques for software architecture specications[END_REF]. A model is considered correct, in the verication context, if it complies with the constraints in all possible states.

Traditional model checking, however, relies on building all possible states of a system and are, therefore, subject to the state space explosion problem [START_REF] Holzmann | The logic of bugs[END_REF]. Hence, when it comes to systems with innate dynamism, uncertainty or intensive concurrency, those traditional techniques becomes obsolete and inecient, often ineective. Since SoS are essentially dynamic, concurrent and with some degree of uncertainty regarding the behavior of the constituent systems, traditional model checking is not eective in this context.

Furthermore, model check deeply depends on the notation used to specify the system, since verication techniques requires a notation that is checkable. There are some proposals focused on formalization of architectural models, aiming to allow the architecture to be automatically checked (LICHTNER; ALENCAR; [START_REF] Lichtner | A framework for software architecture verication[END_REF]. However, a formal background is still one of the most desired features of an architectural description language (ADL), which might support model checking of architectural models made using an built-in formalism. In this context, most of the verication approaches attempts to introduce or use the existing formalism on ADLs, such as EAST-ADL [START_REF] Enoiu | Vital: A verication tool for east-adl models using uppaal port[END_REF] and Wright (ZHANG et al., 2012).

Research questions and Goals

Given the problem statement, the main objective of this work is to propose a methodology for developing SoS architectures. This methodology relies on the so-called mission models and includes automated model transformations for producing the architectural model and validation and verication mechanisms for the produced architecture.

We walked through a sandy ground during the identication of the problem to be solved. Many pieces are missing to propose a solid architectural methodology that is based on mission models. First, it was not clear how we could relate the missions and architecture in order to rene the mission model maintaining the properties of the rst.

Then, expressing an architectural model of SoS has proved to be a tricky activity, specially when trying to track the mission that would inuence in each piece of the architecture.

Finally, on verication and validation the problem proved to be tricker, since traditional model checking is not an option and the observation of the emergent behaviors requires simulation due to their unpredictability. We summarized these problems in six Research Questions (RQ):

• RQ1: What are the common concepts that permeate between the mission model's elements and the architectural model?

• RQ2: How can we relate mission model elements with architectural elements?

• RQ3: How to verify mission-related architectural properties in the SoS context?

• RQ4: How to validate an architectural model within a mission model?

• RQ5: How to validate an architecture produced through a mission-based process?

• RQ6: Which kind of architectural validation can be done regarding emergent behaviors?

RQ1 aims to identify some potential trace points that can be useful in a renement methodology as the one intended by this work. Through the traceability supported by these shared concepts, we can dene responsibilities throughout the methodology. RQ2 is complimentary to RQ1, focusing on the bigger picture: can we relate mission-related elements and properties and architectural elements?. RQ3 and RQ4 concerns on verication and validation, focusing on the techniques and technologies we could use to verify and validate architectures of SoS, considering the properties dened in a mission model.

Finally, RQ6 focuses on the emergent behavior, that is often neglected by existing approaches, aiming to nd a mean to validate the SoS on the specicity of the emergent behavior.

During the rst steps of this study we choose some pieces that showed useful. Specifically, this study is a continuation of a previous study in which we dened mKAOS, a pioneer mission description language (SILVA; BATISTA; [START_REF] Silva | A mission-oriented approach for designing system-of-systems[END_REF]SILVA;[START_REF] Batista | Challenges for SoS architecture description[END_REF][START_REF] Silva | A mission-oriented tool for systemofsystems modeling[END_REF]. This language was built over a goal-oriented approach for requirements modeling, adding constructs to represent missions and rene it to the capability level, which represents operations constituent systems provide. Also, we decided to use SosADL (OQUENDO, 2016a): a pioneer formal language for SoS architectural description.

Due to the familiarity of the group with those languages and their pioneer nature, we decided to rely on them to dene our methodology. However, we are aware that other languages can emerge on the context, therefore, we briey discuss how these languages can be renewed in Chapter 8.

Contributions

This work permeated between many domains of software engineering. Our ndings regarding research questions are the main contribution of this study. These conclusions led us to the denition of an architectural process that encompasses all steps of model denition: description, validation, and verication.

• RQ1: we identied a set of common concepts that are present in both mission and architectural models. Although these concepts are represented through dierent constructs and each model focus on a specic facet of such concept, we were able to draw an automatic transformation that would simplify the modeling process. This was a pioneer work, since automatic model transformation was never used in SoS context;

• RQ2: the traceability promoted by the common concepts that permeates both mission and architectural model allows us to establish a direct link between missions and the constituent systems that are involved in its achievement;

• RQ3: we identied an alternative to traditional model checking that supports the dynamism and behavioral uncertainty that hovers the constituent system in a SoS, allowing us to verify the compliance of the architecture within properties described in the mission model;

• RQ4: regarding validation, we propose a simulation-based validation that can be partially automatized to validate the architecture within the mission model. For doing so, we use the verication mechanism to automatically check for mission accomplishment and arrival of emergent behavior;

• RQ5: the simulation-based validation can also be used on manual processes of validation, in which the stakeholders can observe how the SoS behaves as a whole, determining whether it complies with their needs;

• RQ6: although it is not possible to predict emergent behaviors, we found that it is possible to verify whether an expected emergent behavior is present or not, this Along the path to answer these research questions, we propose a set of enhancements for the two modeling languages we decided to work with: mKAOS and SosADL.

Altogether, these contributions compose a mission-based methodology to design software architectures of SoS. Table 1 summarizes the main contributions of this work, although some additional minor improvements might be found along the manuscript. Figure 1 shows an overview of the contributions, relating it with existing works.

The main contribution of this work is a pioneer model-based renement methodology to generate and validate architecture descriptions in SoSADL based on mKAOS mission models. The generated architecture descriptions are partial in the sense that they only encompass the structural denition of the involved constituent systems and its topology, and the architect must introduce the behavioral denition of the elements. Whenever the abstract architecture is enhanced with behavior, the methodology provides mechanisms to validation and verication. Further, we implemented a set of tools that partially automatize the process and its steps.

Similarly to the existing approaches for deriving software architectures from requirements, such as KAOS (LAMSWEERDE; LETIER, 2004;[START_REF] Lamsweerde | Goal-Oriented Requirements Engineering: A guided tour[END_REF], the proposed methodology relies on a top-down approach that allows producing SoS software architectures based on a high-level description of the constituent systems. Such methodology includes a mapping process that takes mKAOS models and partially generates SosADL models with the architecture's topology. Such mapping process ensures traceability between the mission and architectural models as it is based on a model transformation, thereby enabling architects to precisely identify which pieces of the software architecture are responsible for each mission.

The contributions of this work also include a simulation mechanism for SosADL, allowing the architect to evaluate the SoS within a controlled environment. This simulation mechanism allow the architect to control the execution, step by step, introducing stimulus or data at will.

Since the simulation mechanism is based on concrete architecture models, our methodology uses a mechanism developed in our research group to derive concrete architectures from abstract architectures. This mechanism consists on producing all possible concrete architectures that conforms to the abstract architecture, given a set of available systems.

A generated concrete architecture is used along the methodology, for validation and verication.

Regarding verication and validation, essentially, we propose the formalization mKAOS (SILVA; BATISTA; [START_REF] Silva | A mission-oriented approach for designing system-of-systems[END_REF], allowing the formal denition of missions, emergent behaviors, and SoS properties or constraints. Since the language from which mKAOS inherits of (KAOS [START_REF] Lamsweerde | Requirements Engineering: From System Goals to UML Models to Software Specications[END_REF]) is formally grounded in Linear Temporal Logic (LTL), we propose the use of the same kind of logic to mKAOS constructs. We adopted DynBLTL [START_REF] Quilbeuf | A Logic for the Statistical Model Checking of Dynamic Software Architectures[END_REF]CAVALCANTE, 2016), an extension of LTL for dynamic systems that showed promising as an hidden formalism. Using the formal denition of missions and emergent behaviors, we are able to use the SosADL simulator to verify the compliance of an architecture within the SoS properties using a simulation-based process through PlasmaLab (LEGAY; SEDWARDS, 2014).

Finally, the verication mechanism based on PlasmaLab can be used to automatically detect the occurrence of the emergent behaviors and calculate mission feasibility on a given architecture, allowing the automatic validation of the architecture within the mission model. A manual validation is also supported, based on the SosADL simulator, in which stakeholders shall identify whether the SoS meet their needs.

During the evolution of this work, some publications were achieved concerning on the contributions. These publications are listed in Appendix 8.3.

Along the manuscript we also report the problems we faced, such as our attempt on using GEMOC3 to develop our simulator for SosADL. The experience with these problems might be valuable for the next generation of researchers and groups that work on alternative approaches.

Evaluation

To evaluate our proposal we ran a case study, common to all mKAOS and SosADL approaches: the Flood Monitoring SoS (FMSoS) [START_REF] Hughes | A middleware platform to support river monitoring using wireless sensor networks[END_REF]. This system is introduced in Chapter 2.8, since it is used along this manuscript as a running example.

Our case study encompasses the steps of the proposed methodology: (i) mission modeling, (ii) mapping to architecture, (iii) architectural behavioral modeling, (iv) verication and validation. At some points of the evaluation, we compare the proposal with alternative approaches, such as an alternative simulator for the verication mechanism.

Outline

The remainder of this document is structured as follows. Chapter 2 provides all required background fundamental to the understanding of this work, including all involved languages and the running example used to illustrate the proposal. Chapter 3 presents the contributions in the context of the involved languages: mKAOS and SosADL, also presenting a mapping mechanism between both languages. Chapter 4 presents the renement methodology proposed by this thesis as a whole. Chapter 5 concerns on the implementation of the toolset that promotes the methodology. Chapter 6 presents an evaluation of the proposal through a case study, showing the execution of the methodology along the modeling of a system. Chapter 7 presents the current state of the art and related works. Finally, Chapter 8 presents the nal remarks: conclusions, threats to validity and limitations.

Background

This chapter provides detailed information regarding the concepts and languages used in this thesis.

System-of-Systems

The increasing complexity of systems demanded the need for composing existing systems into new ones, aiming to use the features from systems already deployed and under execution, and also providing new features that arise from cooperation between the involved systems. In this context, the study of systems-of-systems [START_REF] Maier | Architecting principles for systems-of-systems[END_REF] provides solutions to the system composition process. By denition, a system-of-systems (SoS) is a system composed of independent, functional constituent systems that cooperated among themselves to achieve a greater mission.

SoS diers from traditional systems since it has emergent behavior, which is a comportment that emerges from constituent systems' interactions and is only observable during cooperation. It cannot be predicted based on the capabilities of the constituent system as it features functionalities of the architecture as a whole, instead of aggregation or union of individual behaviors. In fact, an emergent behavior is observed to be more than the sum of the constituent systems, such as coordination on drone ocks [START_REF] Vasarhelyi | Optimized ocking of autonomous drones in conned environments[END_REF], that is a consequence of individual capabilities but cannot be predicted or derived Often found in the literature, the term system-of-systems is frequently used to refer to systems that, in fact, are not SoS. An SoS is dened by its (MAIER, 1998) (i) geographical distribution, meaning that the constituent systems are distributed in the physical space;

(ii) operational independence, each constituent system is capable of achieving its own objectives and function by its own; (iii) managerial independence, the constituent systems might be managed by dierent companies with no communication between those;

(iv) evolutionary development, the constituent systems can, and often will, evolve regardless of the SoS, meeting new requirements and congurations that matters only for the constituent system; and nally, (v) the emergent behavior, as aforementioned, a set of behaviors that is only observable when the constituent systems are cooperating among When developing Directed SoS, there are not much dierence from traditional systems.

Since a company or organization controls everything, traditional software development approaches might be eective in this case. However, for collaborative and acknowledged SoS the reality is sightly dierent, specially due to the potential uncertainty that hovers the SoS, regarding constituent's behavior. Since there might be constituents with unknown behavior, designing these kinds of system with traditional approaches is potentially ineective. Most of these traditional approaches uses modeling, validation and verication techniques that rely on the behavior of the elements, with an unknown behavior, the results are inconclusive. Therefore, this work focuses on collaborative and acknowledged SoS, in which solutions for modeling, validating and verifying are limited.

An essential concept in the SoS context is Mission. In SoS, a mission is a functional objective or feature the system must achieve or provide [START_REF] Silva | On the characterization of missions of systems-of-systems[END_REF]. It can be classied in two types: individual mission and global mission. An individual mission is a mission that is assigned to a constituent system, which is responsible for achieving it by its own. A global mission, in the other hand, is assigned to the SoS as a whole and cannot be achieved without cooperation between its constituent systems. By denition, no constituent system is able to achieve a global mission by its own.

Missions are closely related to requirements, in the sense that the SoS are designed to achieve it. However, dierently from requirements, missions are more related to the runtime and implementation than to design and might have a priority. Thus, it is not possible to decide if a SoS achieves a mission by design and the SoS may fail to achieve a given mission or choose to achieve a more important mission. Since the dynamic nature of the SoS, global missions might often fail during reconguration processes.

Software Architecture

Software Architecture (GARLAN; SHAW, 1994; PERRY; WOLF, 1992) is a sub-domain of Software Engineering that concerns on the organization of software systems. It consists on designing high-level structures and describing how those structures are related to each other, abstracting some implementation aspects. The main objective is to reason about a system model and solve problems at this level, taking complex and important decisions in an early stage of development. A software architecture is intended to ease communication between the stakeholders, by providing a clear, simple language that can be used across many stages of development.

Essentially, a software architecture is composed of an homonymous document that describes the system in terms of components and connectors. , 1995). In one hand, verication (IEEE ISO 1012-2004[START_REF] Hughes | A middleware platform to support river monitoring using wireless sensor networks[END_REF] consists in checking whether an architecture satises a set of properties. These properties can be checked even with an incomplete architecture and it is expected to the model to maintain its properties during evolution. In formal languages, these properties can be described using some formalism and the verication might be automatic, performed by some model checker.

On the other hand, it is fundamental to validate the system's architecture (IEEE ISO 1012-2004[START_REF] Hughes | A middleware platform to support river monitoring using wireless sensor networks[END_REF]. The process of validating an architecture consists of checking whether the architecture does what it is supposed to, therefore it is usually performed at the end of the modeling stage. Usually, validation techniques consists in identifying which elements implements each requirement [START_REF] Kumar | Software architecture validation methods, tools support and case studies[END_REF]. Often, the architecture is only validated at runtime, after all steps of implementation of the system. However, some initiatives suggests an early, continuous validation of the architecture (GOLDSTEIN; SEGALL, 2015), still at design time. For doing so, the architecture must be capable of being simulated, to allow the architect to observe how it behaves.

Model-Driven Development

Among the issues of developing software, maintaining documentation is certainly one of the most challenging and stressing tasks. Specially software models, among them the software architecture model, often diers from the implementation and some solutions pro- There are several tools that provide M2M mechanisms, among them: ATL (ATL, Eclipse.org,) and QVT (QVT, Eclipse.org,). ATL is a model transformation toolkit, with an homonymous language. The toolkit includes the language implementation, an engine to run the transformation and test mechanisms. On the other hand, QVT Operational is also a powerful transformation language, and an OMG standard, part of the QVT toolkit.

Although both tools are similar, ATL documentation and community is larger than QVT, thus, we choose ATL for our implementation.

MDD promotes a development methodology that consists in describing software through coarse-grain models and apply several M2M transformations to obtain a ne-grain model.

The transformation, that ensures traceability, might involve several kinds of languages, including programming languages. As the mapping is complete, the ne-grain model will certainly reect all coarse-grain decisions and solutions. KAOS' methodology uses a set of diagrams to ensure that a requirement has at least one operational function implementing it. Due to the existing similarity between the elements dened in KAOS and the ones required to represent mission-related information, mKAOS was derived from such a language aiming at supporting mission modeling in SoS. mKAOS takes advantage of most properties of KAOS, such as its philosophy in terms of separating models according to their respective concerns and overlapping them to have a cross-view of the system. Besides specializing some concepts dened in KAOS, mKAOS creates specic elements suited to the SoS context, such as emergent behaviors and missions. An SoS can be described in mKAOS through six dierent models, each one with its own syntax and semantics. Object Model species objects used by the system for data exchange and physical structures in terms of: (i) entities, which represent a data abstraction or physical entity; (ii) events that can be handled by the systems; (iii) domain hypothesis, desirable features of the system, dened as constraints; and (iv) domain invariants, which are constraints that must hold during the whole system execution and further evolution. mKAOS also provides two Capability Models: the Operational Capability Model denes a set of operations that each constituent system is able to execute, i.e., their operational capabilities, whereas the Communicational Capability Model species the possible interactions and cooperation among constituent systems, the so-called communicational capabilities.

Finally, the Emergent Behavior Model describes emergent behaviors, specic features that are produced from the interaction between at least two constituent systems. Table 3 summarizes the elements of the mKAOS models.

The Mission Model follows a tree structure in which leaf nodes represent individual missions and non-leaf nodes represent global missions, respectively assigned to constituent systems and to the SoS as a whole. In this model, expectations represent objectives external to an SoS and that might inuence the achievement of its missions. Renement links establish a renement relationship among missions, so that a given mission can be rened into other sub-missions and/or expectations. The assignment of missions to constituent systems is dened in a corresponding mKAOS Responsibility Model, in which each constituent system must have at least one assigned individual mission and each individual mission must be assigned to exactly one constituent system. In turn, expectations must be assigned to environment agents, which are external agents that somehow interfere on the system. Fig. 5 The notation provided by mKAOS also allows dening relationships among missions.

In Fig. 5, the Alert Citizen mission depends on the Identify Citizen in Risky Area mission, i.e., the rst mission can only be achieved after achieving the second one. Another relationship is between the Avoid False Positives and Detect Flood missions, in which the former facilitates the achievement of the latter.

SosADL

A proper representation of SoS software architectures is quite important to the success of such systems as it can provide a basis for architectural analysis and guide their evolution. When describing SoS software architectures, it is fundamental to consider: (i) both structural and behavioral denitions for the SoS and its constituent systems; (ii) interactions among constituent systems; (iii) adaptations due to the dynamic scenarios in which an SoS operate; and (iv) properties, constraints, and quality attributes (BATISTA, 2013).

To cope with these concerns, SosADL (OQUENDO, 2016a) arises as a formal language to comprehensively describe SoS software architectures while allowing for their automated, rigorous analysis. The formal foundations of SosADL rely on an extension of the π-calculus The system concept is an abstract representation of a constituent system that may be part of the SoS, but that is not under its control due to its operational and managerial independences. A system encompasses gates, assumption, guarantees, properties, and an internal behavior describing its mission. A gate groups interaction points of a system with its environment, encompassing at least one connection. A connection is a typed communication channel through which the system sends or receives data. Assumptions express properties expected by a gate of a system to be satised by the environment, e.g., rules related to provided/required data in gates. Guarantees describe properties that must be enforced by the system, thereby being a way of representing specic requirements at the architectural level. A behavior represents the functional capabilities of the system and how it interacts with the environment by sending/receiving data. The formally founded constructs for expressing behavior in SosADL are similar to the ones dened in π-ADL (OQUENDO, 2004), another ADL based on π-calculus for formally describing dynamic software architectures of traditional systems under both structural and behavioral viewpoints. Fig. 6 shows a partial example of a system described in SosADL. Figure 6: Partial example of a system described in SosADL

The Gateway system has a gate called notication, which is composed of two connections, measure (for receiving data) and alert (for sending data). The guarantee for this system denes a protocol stating that the gate receives values via the measure input connection and sends values via the alert output connection. These actions are performed repeatedly, as expressed by the repeat construct.

In SosADL, a mediator is an architectural element under control of the SoS and mediates the communication and coordination among constituent systems, thus also promoting interoperability among them. Mediators dier from traditional connectors as they are used not only as mere communication channels, but also as elements responsible for the coordination among the interacting constituent systems (ISSARNY; BENNACEUR, 2013). Therefore, mediators play a role in terms of allowing the SoS to achieve its missions through emergent behaviors arising from such interactions. Similarly to systems, mediators can be also described abstractly, so that concrete mediators can be synthesized and deployed at runtime in order to cope with the highly dynamic environment of an SoS. A mediator denition encompasses a set of duties, which express obligations to be fullled by gates of constituent systems that may interact with the mediator. Moreover, a mediator allows dening assumptions, guarantees, and an internal behavior. Fig. 7 exemplies a mediator in SosADL, with a partial textual description and an example graphical representation. A mediator is dened with a duty called replicate and a guarantee specifying that the mediator will receive a Parameter and simultaneously send it through both connections destionation1 and destination2.

A coalition represents the SoS itself and denes how constituent systems and mediators can be temporarily arranged to compose the SoS. As systems are not under the SoS Figure 7: Partial example of a mediator described in SosADL control, it is necessary to specify how the mediators can be created and which systems will interact with them to dene a concrete SoS. For this purpose, coalitions are composed by a set possible systems, mediators, and bindings that will be realized at runtime. A binding is the construct responsible for establishing dynamic connections between systems and mediators, in particular connections from gates to duties. Such a dynamic nature of bindings is an important aspect for SoS since it is often not possible to foresee which concrete constituent systems will be connected to the mediators at runtime.

It is important to highlight that SosADL focus on the architecture of an SoS as a whole, therefore, the individual architectures of the constituent systems are, although desirable, not mandatory in an SosADL description. This covers one important aspect of the SoS domain: the internal architectures of the constituent systems are often unavailable. The architecture of the SoS, however, strongly depends on the interfaces of each constituent system, dened in terms of gates.

Linear Temporal Logic

Linear Temporal Logic (LTL) [START_REF] Pnueli | The temporal logic of programs[END_REF][START_REF] Emerson | Handbook of theoretical computer science[END_REF]) is a modal logic in That may refer to future paths or states of the system, depending on the temporal modal operators.

An extension of LTL is Bounded Linear Temporal Logic (BLTL) (KAMIDE, 2012), that introduces the notion of time bound. In LTL, the propositions must be satised during an innite time sequence, which is often hard to proof. For tackling this issue, BLTL uses predened subset of time t, in which the formulae must be satised.

Using the time bound, it is possible to dene properties that are maintained during a nite time lapse. The modal temporal operators are enhanced with this aspects, that may use time units or steps to dene the duration of the bound. Using time bounds, the evaluation process of BLTL always rely on a nite set of states.

Statistical Model Checking

In software architecture, properties or constraints highly inuence the design process (GIESECKE; HASSELBRING; RIEBISCH, 2007), since they are limiting factors and often restrict the available options in the decision making process. Architectural constraints typically can be classied as two kinds: (i) technical, that restricts the architecture due to technical factors such as response time or physical infrastructure; and (ii) business, which concerns on specicities of the domain of the system.

However, the most important thing about architectural properties is the possibility of verifying these properties at design-time, decreasing the cost of the implementation process. In this context, model checking is typically adopted as a solution, since it allows the verication of such properties in a simple manner. Furthermore, traditional model checking techniques have some limitations. Besides the state explosion problem, the checkers needs to be able to produce states of the architecture, which is particularly hampered by architectural dynamism. When the architecture can change at runtime, producing states may become specially expensive and some times inviable. Also, the exhaustive methods tends to be unfeasible unless the exact number of components is known in advance [START_REF] Quilbeuf | A Logic for the Statistical Model Checking of Dynamic Software Architectures[END_REF]. In the SoS context, the problem becomes even more challenging due to the uncertainty regarding the constituents' behavior: as they may behave in non-deterministic manners, using exhaustive methods may become non-eective.

Alternatively, statistical model checking (SMC) (LEGAY; DELAHAYE; BENSALEM, 2010; LEGAY; SEDWARDS, 2014) is gaining a momentum because it provides a probabilistic, simulation-based method for verifying properties on an architecture. SMC uses one or multiple heuristics to estimate the degree of compliance of a system to a set of constraints.

Instead of building all possible states, this approach builds the more probable states and rely on simulation. Instead of inferring new states based on available data, statistical model checkers use an external simulator to analyze the eect of an event on a state. Such external simulator might have unknown behavior or use non-determinism machines in its processing.

SMC relies on simulation, using a set of stochastic models derived from the architecture to calculate the probability of each bounded property to be satised. Using statistical analysis over the most probable states, statistical model checkers can calculate the com-pliance of the model to the properties with some degree of condence. Such degree of condence might be predetermined or a goal for the checker, depending on the heuristic adopted.

It is important to mention that there are some other alternatives to traditional model checking that solves the state explosion problem, such as Adaptive States and Data Abstraction [START_REF] Dams | Model checking using adaptive state and data abstraction[END_REF]. However, these approaches only solves one of the issues of traditional model checking in SoS context. These approaches still require the behavior of the systems to be known. Using SMC, the only requirement is that the system should be able to be simulated.

Running Example: Flood Monitoring

Floods are one of the major problems in many countries around the world [START_REF] Hughes | A middleware platform to support river monitoring using wireless sensor networks[END_REF][START_REF] Degrossi | Using wireless sensor networks in the sensor web for ood monitoring in brazil[END_REF][START_REF] Degrossi | Using wireless sensor networks in the sensor web for ood monitoring in brazil[END_REF][START_REF] Degrossi | Using wireless sensor networks in the sensor web for ood monitoring in brazil[END_REF]. In rainy seasons, this type of event can be quite devastating in urban centers traversed by rivers as they may cause material, human, and economic losses. Regardless of their magnitude, oods represent a risk and hence they must be detected as quickly as possible. This is important to ensure a better planning of the management actions required to reduce possible damages caused by the ood, e.g., dening evacuation plans, rearranging trac in the proximities of ooded areas, and coordinating rescue actions.

In this context, an SoS can foster eective ood monitoring, support timely response from authorities, and contribute to alleviate impacts caused by oods. To achieve these purposes, such an SoS can combine information provided by multiple collaborating independent systems such as river monitoring systems and meteorological systems. Within this SoS, river monitoring systems composed of a network of sensors spread in ood-prone areas near the river can be used to monitor the river water level as an indicator of ooding.

In turn, meteorological systems comprising weather stations and satellites can be used to collect and analyze atmospheric parameters (e.g., temperature, humidity, rain amount and intensity, etc.) that also serve as input to the construction of prediction models for supporting weather forecasting.

Despite these systems seem to be enough for enabling the SoS to determine the risk of a potential ood, false positives regarding a ood risk may be caused by biased sensors or other conditions on the river. Aiming at improving the accuracy of the measures collected by the sensor nodes deployed in the monitored river area, a surveillance system based on the remote use of drones can be used to provide images of the river for estimating its ow rate. In this scenario, drones endowed with digital cameras can be used to record video and/or capture images of the overown area. These multimedia data are then processed and combined with data provided by the meteorological systems and data provided by the sensor nodes spread on the river, thus contributing to detect an imminent ood with maximum condence and avoid false positives.

Fig. 8 depicts the aforementioned constituent systems and its respective missions in the scope of the Flood Monitoring SoS (FMSoS) , whose global missions are (i) to detect ood with maximum condence and (ii) to alert citizens in risky areas. To accomplish such missions, the river monitoring system, the surveillance system, the meteorological system, and a social network should collaborate among each other. River monitoring systems are responsible for monitoring the river level, meteorological systems can produce weather forecasts indicating future conditions, and surveillance systems are responsible for monitoring the city by recording videos and/or capturing images. Although both river monitoring and meteorological systems are able to independently emit alert messages indicating a critical condition for ooding, only the interaction between these systems allows avoiding false positives by combining data provided by them. In addition, images provided by the surveillance systems can support the conrmation of the ood risk. Therefore, this emergent behavior resulted from the interaction among such systems enables the ood monitoring SoS to detect oods with condence and to avoid false positives. It is worth mentioning that all of these constituent systems are operationally independent, i.e., they provide their own functionalities independently from each other and out of the scope of the SoS.

Enhancing mKAOS and SosADL

In order to propose a methodology to produce architectural models based on mission models, it is fundamental to enhance the mission modeling language mKAOS and develop a set of tools for the architecture description language SosADL. On one hand, we identied that mKAOS lack a inner formalism that would support the derivation of software architectures and promote verication, also supporting validation of models. On the other hand, due to the importance of simulation in the context of verication and validation, it was necessary to build a simulation engine for SosADL based on the formal semantics dened in π-calculus. This chapter focuses on these aspects of mKAOS and SosADL, providing solutions and enhancements that supports the denition of a mission-based architectural methodology.

In Section 3.1 we discuss the formalism that is needed to mKAOS to allow automatic validation and verication. As a secondary contribution, we introduce a graphical language for SosADL in Section 3.2. Further, as a simulation/execution mechanism is necessary to support validation and verication, we discuss SosADL simulation environment in Section 3.3.

mKAOS Formalism

Verifying mission-related properties is one of the goals of this work, we investigate the notation used by the mission description language, mKAOS. Since verication of models depends on the notation used to dene the properties, we found a lack of formal mechanism, in mKAOS, to describe the mission-related properties.

mKAOS was designed as a simple solution for SoS mission modeling. However, mKAOS relies on several assumptions that might not be satised. For instance, mKAOS assumes that an emergent behavior arrives as soon as the required communicational capabilities are present in the system. This assumption is very overweening and this is a potential point of failure of the denition language, that might compromise all approaches that uses it.

Aware of this fact, we introduced a formalism for mKAOS, based on Linear Temporal Logic (LTL) (MANNA; [START_REF] Manna | The Temporal Logic of Reactive and Concurrent Systems[END_REF] to mitigate this limitation. This formalism raises mKAOS to a formal language, from current semi-formal level, that allows the missionrelated properties and emergent behaviors to be checked.

To dene such formal mechanism for mKAOS, it was necessary to investigate the SoS needs in terms of logical operators. This task was already done by Oquendo et al (OQUENDO, 2016b), Cavalcante (CAVALCANTE, 2016) and Quibeuf et al. [START_REF] Quilbeuf | A Logic for the Statistical Model Checking of Dynamic Software Architectures[END_REF], in dynamic systems context. However, Oquendo's solution applies π-calculus, a process calculus and might be used as inspiration only. On the other hand, Quibeuf et al. (CAVALCANTE, 2016;[START_REF] Quilbeuf | A Logic for the Statistical Model Checking of Dynamic Software Architectures[END_REF] proposed DynBLTL, a dynamic extension for BLTL (Bounded Linear Temporal Logic) that introduces a new value U that represents the undened value, allowing therefore the denition of transitional states in which variables and formulas have its value yet to be dened.

This Section details the formalizing process of mKAOS. In Section 3.1.1 we describe DynBLTL, the formal language we choose to introduce in mKAOS. Section 3.1.2 presents the freeze operator, a new operator we needed to introduce in DynBLTL. Section 3.1.3 describes the mKAOS grammar, produced in the formalization process.

DynBLTL

Verication mechanism, either using traditional model checking or not, deeply depends on the notation used by the properties language. Any method for automatic property checking implements the semantics of one or more property languages, therefore the choice of property notation depends on the required method for verication.

Aware of this fact, we decided to tackle the formal limitation of mKAOS introducing a formalism that allows a model checking technique that is adequate to SoS models. In this context, DynBLTL is a language for expressing the properties in such a manner that they can be used by SMC tools in the verication process. It allows the dynamic bound of operations, allowing the system to maintain execution states with a degree of uncertainness.

DynBLTL's main contribution is the introduction of a third value: U , that represents undened or inexistent values. Grounded on a three-value logic, the language supports The introduction of the value U changes the semantic of the binary operators of BLTL:

• ¬ works as usual with boolean values, U otherwise

• ∨ returns true if one of the operands are true and false otherwise, note that it returns true even if the other one is U. It returns U if both operands are U

• ∧ ≡ ¬ (¬ ϕ 1 ∨ ¬ ϕ 2) • =⇒ ≡ ¬ ϕ 1 ∨ ϕ 2
Each constraint in DynBLTL is composed of three main constructs: (i) a quantier; (ii) a temporal bound; (iii) the property. The quantier determines the variables that will be taken into account for the property, restraining the verication set. The temporal bound determines the time interval that will be considered for the property, in which the variables will be bound and the property veried. Finally, the property encompasses an expression that will be evaluated with the values within the temporal bound. A system complies with a constraint if the evaluation of its property results in true, under the overmentioned conditions. Fig. 9 shows a formal denition in DynBLTL. It denes a rule that species that eventually in 40 steps of the system's execution [temporal bound], for each constituent system of type RiverMonitoringSystem [quantier], if there is a Warning then there should be a constituent system SocialNetwork that will handle this warning [property].

For supporting a proper denition of the properties, DynBLTL also provides a set of built-in functions that supports the exploration of architectural models. These functions are:

• allOfAType(type): returns a set with all components of type type;

• areConnected(a, b): returns true if the components a and b are connected;

• areLinked(a.c, b.c): returns true if the connection c of node a is connected to the connection c of node b;

• lastValue(a.c): returns the last non-undened value of connection c of node a

The Freeze Operator

During our studies over DynBLTL and mKAOS an important limitation on the constraint language was detected. In fact, since DynBLTL relies on dynamic bound of variables, some values that would be necessary for some future property might be lost in the constraint denition process, due to the lack of mechanism to represent value persistence.

An example of this limitation was found on the specication of an emergent behavior for the FMSoS. This expected behavior establishes that every data produced by a Sensor will eventually arrive at the RiverMonitoringSystem. With the current version of DynBLTL, it is not possible to dene a property for such behavior, therefore the tools are unable to check it.

However, this is a limitation of DynBLTL, not of temporal logics. We identied some studies on temporal logic that suggest the so-called freeze operator [START_REF] Demri | When model-checking freeze ltl over counter machines becomes decidable[END_REF][START_REF] Demri | When model-checking freeze ltl over counter machines becomes decidable[END_REF]. Such operator implements persistence on values to be bound, allowing these values to be used in future timestamps.

Since DynBLTL is designed to evaluate models that rely on stochastic mechanisms, the language focuses on the non-deterministic behavior of the systems. Therefore, storing values for future use was found unnecessary so far for introducing a degree of complexity the language was not designed to support. However, this emergent behavior of FMSoS brought the need for such operation.

As a result, the freeze operator was introduced in DynBLTL with the following semantics:

• freeze(var): returns the current value of var, that might be stored for further use Originally, the freeze operator takes two arguments: (i) var, the current value of a connection; and (ii) time, a time bound that will dene the temporal interval for which the value will be persisted. However, we decided to suppress the time bound, using the time bound of the outermost quantier, for simplication purposes. In the example of Fig. 10, the value x would be frozen for 100 time units.

mKAOS Grammar

Aiming to introduce formal mechanisms in mKAOS, a set of changes was necessary.

First, it was fundamental to dene a textual language for the graphical representation.

The grammar is based the one presented in Dardennes' work [START_REF] Dardenne | Goal-directed requirements acquisition[END_REF]LAMSWEERDE;[START_REF] Dardenne | Goal-directed requirements acquisition[END_REF], although some dierences might be noticed due to mKAOS-specic constructs. The complete mKAOS' grammar is available in Appendix B.

The central element in the language, a mission, is modeled by the rule presented by Fig. 11 as an extended BNF. A mission essentially has a name, a priority, a informal denition (informalDef), a trigger that is expressed in terms of a DynBLTL expression.

Optionally, it may have a formal denition that is also dened as DynBLTL formulas, and a renement. Fig. 13 shows an example of formal denition for a mission, specifying that the mission MonitorRiverLevels will always be accomplished if eventually before 40 steps there exists a RiverSensor that is providing the river level information.

For non-individual missions (i.e.: global missions and intermediary missions), the formal denition is often unnecessary. In these cases, it is possible to formally describe how the sub-missions are related to the accomplishment of this mission, which can be done using the newly introduced Mission Renement.

The Mission Renement tackles one of the limitations of mKAOS. There was no support for the various kinds of renements, for instance, it was not possible to dene a set of sub-missions in which the achievement of some of those are sucient for the accomplishment of the root-most mission. Previously, the renement assumed all the submissions must be achieved in order to achieve the root-most mission.

We introduced new kinds of renement to allow the representation of the various types of relations: the mission renement. There are four dierent types of mission renements: (i) all, in which the mission requires all sub-missions to be accomplished; (ii) at least one, in which the mission requires at least one sub-mission to be accomplished;

(iii) alternative, in which the mission requires exactly one of the sub-missions to be accomplished; (iv) custom, in which the user denes a formal rule for achieving the mission based on the status of the sub-missions. Notice that, in this context, expectations might take place of sub-missions.

The syntactical denition of a mission renement is presented by Fig. 14. Custom renements encompasses a DynBLTL formula that denes the rule for the renement. To introduce DynBLTL constructs in mKAOS, we choose few elements that might be formally described. All these elements received a formalDef attribute, that consists on a DynBLTL formal description. Besides missions, the formalDef attribute was introduced into the following elements: (i) Emergent behavior; (ii) Domain Invariant; and (iii) Domain Hypothesis. Fig. 16 shows a partial syntax for constraints in mKAOS (Domain Invariant and Domain Hypothesis), that can be used to dene mission-related properties.

Emergent behaviors can also be formally described using DynBLTL formulas. The formal description of an emergent behavior allows the automatic detection of such behaviors when they are expected. Fig. 17 presents the syntax of the emergent behavior in mKAOS, that encompasses a name, an informal def, a set of emergence links that refers to the communicational capabilities that are involved in the behavior and the formalDef. Finally, the Domain Invariant and Domain Hypothesis elements have the formalDef attribute as mandatory. In fact, we changed the denition mechanism of these elements to consists essentially of the formal denitions using DynBLTL's syntax. Since these elements can be related to any object or capability of mKAOS, the extension of the formalization covers the whole language.

SosADL Graphical Representation

One of the limitations of SosADL was the lack of a graphical representation for architectural models. Without this representation, the architectural process in the language was harder and more susceptible to human error, since the architect would have to cre- For tackling this issue, we propose a graphical representation for SosADL, using a widely used framework that is compatible with the existing implementation of the language: Sirius. Sirius is a declarative framework for dening graphical language that integrates with EMF and Xtext, supporting automatic synchronization between graphical and textual models.

Each graphical representation, in Sirius, is specied through a viewpoint that is associated to one or more le extensions. Each viewpoint encompasses a set of diagrams, that are composed by graphical element denitions. Each diagram and element denition is associated to an element in the metamodel of the language, the framework is then responsible for building the graphical representation based on these denitions and the provided model.

The SosADL graphical representation is organized into one Sirius' viewpoint, named SosADL. We developed three diagrams, two denition diagrams and one architecture diagram, to represent the concrete architecture. It is worth highlighting that the architectural models can be made in both graphical or original textual view, since the frameworks are capable of maintaining the correspondence between both views. Figure 19 show the Sir-

SosADL Execution

One of the major needs of ADLs for SoS is the possibility of simulation and/or execution. Specially due to the unpredictable nature of the emergent behavior, it is key for the architect to be able to simulate the architecture to observe the behaviors that are present in a given scenario. Simulation is also key for validation, since it allows architects to observe the architecture in a controlled environment, beforehand of implementation.

In this context, SosADL was designed aiming to allow formal analysis and also simulation, with constructs that can only be tested on simulation environments, such as the mediator. Therefore, a simulation mechanism is crucial to a design process that involves the ADL. Such mechanism would allow the architect to foresee unpredicted emergent behaviors, but would also to support the validation process.

However, some considerations are necessary before we start discussing execution/simulation of SosADL models. First of all, SosADL supports modeling of both abstract and concrete architectures, hence, it is fundamental to identify the dierences between those kinds of models.

In SosADL, concrete architectures represent a SoS in the context it will be deployed, and abstract architectures represents a group or family of SoS. Hence, concrete architectures should not be executed as an specic architecture. Therefore, concrete architectures are those that must be executed. [START_REF] Guessi | Checking the architectural feasibility of systems-of-systems using formal descriptions[END_REF]OQUENDO;[START_REF] Guessi | Checking the architectural feasibility of systems-of-systems using formal descriptions[END_REF] worked with the ArchWare team in this context, in which the feasibility of an abstract model is tested through exhaustive generation of concrete architectures. We decided to use her solution to produce concrete architectures. Guessi's solution is further discussed in Section 4.3.1.1.

With the clarication of which model we shall work with, we identied a study that proposes a simulation based on model transformation. Such approach, proposed by Graciano Neto (NETO, 2016) uses a transformation to DEVS (COURETAS; ZEIGLER; PATEL, 1999), an executable formalism for modeling and analyzing systems through statecharts and timed events. This work was enlightening to our proposal and is briey discussed in Section 3.3.1.

However, the Graciano Neto's approach consists on using an external simulator based on a transformation process. We propose an evolution of such approach, that relies on an integrated simulator for SosADL models.

For proposing so, we identied the SosADL execution semantics, that is presented in Section 3.3.2. The implementation of this semantics in a simulator did not came from a rst shot. Our attempts are presented in Sections 3.3.3 and 3.3.4. The rst used GEMOC (COMBEMALE; BARAIS; WORTMANN, 2017), an emerging framework for model execution, and did not succeed. However, the lessons learned from this experience were valuable to the later: a model simulator made from scratch over SosADL tools.

Execution through Model-Transformation

Executing SosADL is an under-development feature of the language. Graciano Neto [START_REF] Neto | Validating emergent behaviors in systems-of-systems through model transformations[END_REF][START_REF] Neto | An approach to support simulation of smart systems[END_REF] SosADL models are mapped to DEVS models using a simple MDD instrument, then the produced DEVS model can be executed in specic tools, such as MS4ME (MS4 Systems,).

It is important to highlight that Graciano Neto's solution was developed simultaneously to this work and might present some similarities, since both works were produced by the same research team.

Since this proposal relies on model transformation, it is based on a direct mapping identied by the authors. Since both SosADL and DEVS rely on rigorous formalizations, this mapping process preserves the concepts in which the languages are grounded [START_REF] Neto | Validating emergent behaviors in systems-of-systems through model transformations[END_REF].

The mapping process is divided in two steps: (i) the generation of atomic models, and (ii) generation of coupled models. The rst step consists essentially in the automatic transformation, that was made using Xtend 1 and Xtext. The elements are transformed using rules based on the correspondence Table 4. The only exception is the coupled mode, that is generated by the second step. The second step requires some processing, and calculates the transitions based on the dynamism and unify relations of the SosADL models.

After the production of the DEVS model, the model can be executed and analyzed.

Although functional and ecient, even in large scale systems, due to the eciency of all tools used in the process, the simulation through this method requires some effort from the user. It is necessary to build the SosADL model, transform it to DEVS, execute in MS4ME, and track the results back to the architecture. Therefore using this process to validate systems in constant evolution may be expensive, for requiring several transformation processes and use of multiple tools.

The main issue, however, regards model checking. As we previously discussed, Statistical Model Checking is more eective in SoS scenarios, due to its dynamism and behavioral uncertainty. However, SMC tools require an external simulator to execute the models and 1 https://www.eclipse.org/xtend/

SosADL Execution Semantics

In order to implement the SosADL simulator, it was necessary to dene the execution semantics we would implement. We divide the execution semantics into two scales: (i) execution workow, and (ii) specic semantics. The general workow controls the execution as a whole, establishing the activities that would be executed in order to simulate a SosADL model. On the other hand, the specic semantics rely on the semantics statements and expressions of SosADL, dening how each construct must behave and the impact they have on the execution.

The execution workow species the activities the simulator must execute in order to execute the model in macro scale. This workow is divided in 5 steps, as illustrated by Fig. 22. The rst step is load the model, in which the simulator must load the architectural model to be executed and enhance it by allowing the connections to have values. The next step is initialize variables, that consists in initializing the values on the connections. Then a step propagates the values, must move values from one connection to another, based on the unify relations on the model. Simultaneously, the simulator must execute the constituent systems and mediators, that will be executed if the asserts are fullled and the necessary data is available.

It is important to highlight that the step propagate the values, is also responsible for synchronization mechanisms, ensuring that a value will not be maintained or altered by two dierent constituents at the same time. When a value is propagated to the unied connections, the origin must be consumed and hence assume the value empty.

The specic semantics species how the constituent systems and mediator perform their operations. Specically, it denes the execution semantic of the statements and constructs of SosADL. These semantics were dened by Oquendo (OQUENDO, 2016b), encompassing semantics of actions and behaviors in terms of π-calculus.

Execution through xDSML

Alternatively to Graciano Neto's proposal, another possibility is to implement a executable model based on xDSML (eXecutable Domain Specic Modeling Language) frameworks. Among the existing frameworks, GEMOC2 (COMBEMALE; BARAIS; WORTMANN, 2017) is one of the pioneer projects.

Due to the relevance of GEMOC within the community, we tried to build the xDSML model of SosADL using the framework. However, the use of this approach failed due to several limitations on the GEMOC framework. Nevertheless, we report our advances and the limitations found for further use in this subsection.

GEMOC is a framework to build execution environments for modeling languages.

The framework is based on widely used frameworks, such as EMF3 , Sirius4 and Xtext5 .

It integrates various solutions to allow an easy manipulation and denition of execution environments.

A GEMOC implementation can be divided into three phases, each one is briey described in this subsection, focusing in our implementation. The framework integrates the results of the phases to produce the execution environment. First phase is the denition of languages, that will be used by nal users, this phase is described in Section 3.3.3.1.

Second phase is the denition of the aspects, that described the execution semantics of the language, detailed in Section 3.3.3.2. Third phase is the extension of the language, which is optional and consists on producing a new model that encompasses not only the base language denition, but also the execution semantics dened in step three, this phase is detailed in Section 3.3.3.3. Finally, Section 3.3.3.4 presents our conclusions and learning from the attempt of using this framework.

Language Denition

The rst phase of denition of a xDSML in GEMOC is the language denition. The framework was built to allow reuse of existing languages, which was helpful since SosADL already have a set of tools.

GEMOC is able to understand abstract models dened in EMF and concrete languages specied with Xtext and Sirius. Since SosADL already had the language denition in EMF and Xtext, and we implemented a graphical language in Sirius, the framework is able to handle SosADL models automatically.

Execution Semantics

GEMOC uses Kermeta3 (K3) 6 as action language to dene the execution semantics.

The framework allowed the extension of existing SosADL classes, injecting methods to some elements such as Constituent System, Mediator and the architecture itself using aspects.

Using K3, GEMOC requires the use of annotations to dene three main methods: (i) the @Main method, that controls the whole execution; (ii) the @InitializeModel method, that is invoked once to initialize the execution model; and (iii) @step method, that denes a single step of the execution.

The InitializeModel method is responsible for implementing the two rst activities of the execution workow, previously presented in Section 3.3.2. Fig. 23 presents the implementation of such method, in which the load of the model is performed automatically by GEMOC, this methods just needs to invoke the execution semantics of unify.

The two remaining activities of the execution workow are invoked in the main method, for parallel computing: (i) propagate, responsible for propagating values on the connections, based on the operations of unify within the architectural model; and (ii) executeConstituents, that veries the capability to execute each constituent system and mediator. These methods are also dened as steps, to make it easier to use for the nal user. The whole K3 aspect le is available at Appendix E To allow a proper execution of the constituents (constituent systems and mediators), 6 http://diverse-project.github.io/k3/ However, the framework is full of limitations. In fact, those limitations forced our team to give up on the framework, due to its current immaturity. Many of the limitations comes from Melange, but GEMOC itself also requires many interceding in the process of developing the execution environment.

We found that Melange is unable to handle external tools, that means that every method that is invoked by K3 aspects must be either in the metamodel or in the aspects itself. For SosADL, this is a major limitation, since the language encompasses an external type checker that is responsible for some syntax checking also. Melange was unable to generate runtime models for SosADL, unless we disabled the type checker for the execution environment, which was not possible since this type checker supports the core language.

This was a major problem that was reported in https://github.com/diverse-project/ melange/issues/102.

Also, by that time, Sirius was unable to handle the runtime model simultaneously with the original model, even with denition of additional layers. Therefore, the framework was unable to provide the runtime model in a way Sirius could understand, making it impossible to display a graphical representation of such runtime model. We are not sure whether this is a limitation of Sirius or GEMOC, since the later might be invoking the rst incorrectly.

GEMOC provides a mechanism for monitoring the scope, presenting the variables and their current values. However, this mechanism is full of limitations. The most important one is that it is not possible to change the name display or lter the variables, which often becomes hard to read due to the complexity and scale of the models.

Those limitations, among other minor problems 8 , 9 , made unfeasible to persist on the use of the framework. Instead, we chose to implement our own execution engine. Fortunately, we could use or adapt the execution semantics in K3 to pure Java code, easing the implementation process.

All the les and projects we used to implemented SosADL in GEMOC are available at https://github.com/eduardoafs/sosadl_melange.

Execution through built-in Simulator

Alternatively from the xDSML approach, we built a simulator in pure Java using the existing plug-ins to provide the necessary infrastructure. For doing so, we were able to reuse code snippets of the designed aspect in Kermetta3 and our learnings from GEMOC.

In this Section, we describe the SosADL simulator that was made using pure Java.

Section 3.3.4.1 presents the requirements elicited for the simulator, and Section 3.3.4.2 details the architecture of the plug-in that implements such simulator. Finally, Section 3.3.4.3 briey discusses the PlasmaLab connector, a key mechanism for verication.

Requirements

The SosADL simulator was build aiming for some goals, specially to support statistical model checking and validation of software architectures. That said, we elicited some requirements for the simulator, that we have described using a SysML requirements diagram.

The main requirement of SosADL simulator is Simulate SosADL models, presented in Fig. 25. This requirement is a composition of six other requirements: (i) Load SosADL Models, (ii) Initialization of Values, (iii) Support Stimuli Generators, (iv) Control Execution, (v) Execute Model, and (vi) Models, it species that the simulator must be able to load any existing SosADL concrete architecture. Initialization of Values species that the simulator must allow the user to predene values that will be initialized on connections.

Stimuli generators were rst introduced together with SosADL by [START_REF] Neto | Stimuli-sos: a model-based approach to derive stimuli generators for simulations of systems-of-systems software architectures[END_REF], aiming to allow the user to control the environment in which the SoS is. The requirement Support Stimuli Generators species that the SosADL simulator must support this kind of mechanism, allowing the user to control the simulation environment.

The requirement Monitor Activities species that the SosADL simulator must allow the user to track every activity on the simulator, which consists of: (i) current values of connections; and (ii) execution steps. The simulator must also produce reports in form of logs, that will detail every execution step.

One of the most important requirements in SosADL simulator, Execute Model species that the simulator must be able to execute SosADL models, implementing mechanisms for executing the execution workow and the constituents, using SosADL semantics. The third layer encompasses the components that manipulate context: (i) Expression Interpreter, responsible for interpreting arithmetical expressions; (ii) Statements Interpreter, responsible for interpreting statements; (iii) Asserts Evaluator, that evaluates and checks the asserts; (iv) Synchronization Module, that is able to lock/unlock values and controls the parallelism in the execution; and (v) External Simulator Manager, that is responsible for loading/unloading external controllers, which are plug-ins that are able to replace an architectural element, allowing implementation of Stimuli Generators that manipulate the context directly using the data injectors.

The fourth layer encompasses two elements: (i) the Simulation Conguration Manager, that loads conguration les and manipulate the external controllers, the conguration manager also contains an external controller that is responsible for directly manipulate the context according to predened instructions; and the (ii) Execution Engine, that controls the whole model execution.

An Event Manager is a crosscutting component, that interacts with all components in the architecture, allowing the execution engine to identify precisely what happened in each level of the execution through the manipulation of Events. An Event can be a (i) communication event, in which a constituent or mediator provides or consumes data from another element; a (ii) synchronization event, in which a shared information is synchronized or locked/unlocked; (iii) data events, like consumption or production of new values; (iv) structural update, when the architecture changes for any reason; (v) execution event, which refers to the execution of a constituent system or mediator; (vi) other, a non-specic event. The Event Mananger creates and organizes the events and might be used to generate simulation reports.

Finally, the Simulation Environment layer encompasses a single homonymous component, that provides a user interface and controls a Simulation Server, that will be used for Statistical Model Checking. Currently, the user interface only provides textual outputs, reporting the events of the simulation according to user-specied congurations.

Details regarding the implementation of SosADL Simulator are further detailed in Chapter 5.

Integration with PlasmaLab

Besides simulating SosADL models, the SosADL simulator needs to be capable of integrating with PlasmaLab, for supporting statistical model checking for verication purposes.

PlasmaLab requires a set of four requests to be handled: (i) init, in which the tool asks the simulator to initialize; (ii) new trace, that consists in requesting a new simulation to start; (iii) new state, that consists in the execution of a single execution step; and (iv) end, in which the simulation server terminates the execution.

These requests are made in a predened order to the statistical model checking process, illustrated by Fig. 27. First, the SMC tool will request a init once, then requests for new trace will be sent eventually to start a new simulation. Once started, several new state requests will be made. At the end of the checking process, an end request will be sent.

To implement the support for these requests, we decided to implement a Simulation Server, PlasmaLab connector. This connector is responsible for bridging SosADL simulator and PlasmaLab, transforming the requests into commands for the simulator and translating the response into the format required by PlasmaLab.

Architectures

Proposing a method to support architectural description of SoS based on mission models is the main objective of this work. In this Chapter, we presents M2Arch, a method that uses mKAOS mission models to produce architectural models. This method is partially automated and encompasses the main activities of software architecture design: (i) modeling, (ii) verication and (iii) validation.

M2Arch gives special attention to emergent behaviors and traceability between missions and architectural elements. It also encompasses an automatic manner to verify the architecture for domain properties and a semi automatic validation for missions.

The outline of this Chapter is structured as follows: Section 4.1 provides an overview of the proposal, presenting the method as a whole. Each of the following Sections describe a single step of the method: Section 4.2 focuses on the rst step: denition; Section 4.3 focuses on the properties verication; and nally, Section 4.4 describes the validation mechanism we propose.

Process Overview

Rening mission models to architectural models demands a signicant eort from the architects. Aiming to systematize this process, we propose a method that uses mKAOS models as a basis to produce, in a semi-automatic manner, SosADL models.

The method for designing SoS architectures that is proposed by this work consists of a three-step process. The rst step, Denition, consists on the denition of all involved models: (i) the Mission Model, and (ii) Architectural Model. The development of these models are partially supported by an automatic transformation.

The Verication step consists on checking constraints in the derived concrete architectures, using the formalism of the involved models. The verication process is fully automated, using the tools that are associated to M2Arch. In this step, we verify domainrelated properties, described in mKAOS as Constraints, checking the conformance of the architecture with this set of rules with a certain degree of condence. Architecture-related properties (such as restrictions of the deployment environment or adopted technologies) can also be veried, however, we briey describe this activity since it was not the focus of this work.

Finally, the Validation step uses some of the generated artifacts from the verication step to support the validation of the produced architecture. This step is semi automatic, since we are able to automatically check the emergence of the emergent behaviors and the achievability of the formally-described missions. Part of the validation, however, consists on the simulation of the architecture and interpretation of the simulation reports, that will indicate whether the system does what it is intended to do. This later activity is essentially manual, since it depends on interpretation of requirements and the stakeholder's needs. Fig. 28 depicts an overview of M2Arch. In the Denition step, the mission model will be dened, then submitted to an automatic transformation. Based on the artifact generated by the transformation, the abstract architectural model is produced. The Verication step starts with a derivation of a concrete architecture, using an automated process. This concrete architecture is the one submitted to a automated verication process, based on the constraints of the SoS. Finally, the Validation is divided in two phases:

(i) the automatic validation, supported by our tools, consists on checking the achievability of the missions and the emergence of expected emergent behaviors; (ii) then the simulator can be executed alone, providing detailed information to the architect that can, manually, identify how the SoS behaves. At any point of verication or validation, the architect may identify adjustments to be done in the mission model, returning to the denition step.

Denition

We propose the rst step of the method to be dedicated to the modeling of the missions and the architecture. The main artifacts produced in this step are the mission model and the architectural model. Each activity produces an artifact that is used as input for the next activity.

As the denition produces an architecture, it is expected to be the most complex step of M2Arch. In this Section, we describe all the activities that are involved in this step, also presenting some guidelines to promote some features we expect the models to contain. Section 4.2.1 describes the starting activity: denition of mission models, which is done using the mission modeling language mKAOS. Section 4.2.2 presents an automatic mapping that is responsible for partially generating the architectural model, based on the mission model. This automatic mapping was implemented based on the equivalent concepts that permeates the mission and architecture models. Section 4.2.3 describes a third activity that uses the generated architecture as input to produce an architectural model that encompasses both structure and behavior of the SoS.

The denition step outputs two artifacts that must be maintained during the whole development of the SoS: the mission model and the architecture model. Thanks to the traceability and the automatic mapping, the changes in one of those models can be automatically reected in the other, whenever necessary.

Mission Model Denition

Mission models are the core model for our method. Therefore, dening a detailed mission model is the key to the successful use of our approach.

In mKAOS, Mission Models are structured in six models: (i) an homonymous model, mission model responsible for describing individual and global missions, as well as expectations from the environment; (ii) responsibility model, that describes constituent systems and their responsibilities over the missions; (iii) operational capability model, that describes the capabilities of the constituent systems; (iv) communicational capability model, responsible for representing the cooperations among the constituent systems; (v) emergent behavior model, that denes the expected emergent behavior and the conditions for their emergence; (vi) object model, that species objects, events and We suggest that the denition of the mission model starts by the homonymous model.

The stakeholders must be able to express the missions they want the system to achieve and rene those missions to a set of lower level missions and expectations. Fig. 30 depicts on the activity of dening a mission model, that starts by the denition of the global missions. The global missions must be rened to intermediary missions, using Expectations as needed. Finally, the missions should be associated to individual missions and Expectations.

The missions must be detailed as much as possible. A proper use of the Mission Renements allow the stakeholders to express various kinds of renement relationships.

It is important for the individual missions to be formally described, using DynBLTL constructs within the formalDef eld, as shown by Fig. 31. A formal description of a mission species the conditions for the missions to be achieved. In Fig. 31, the mission PromoteCommunicationAmongPeople is achieved when exists a server connected to each user (SNUser). Formally described missions can be automatically checked by M2Arch, easing the validation process.

Based on the missions, the stakeholders might identify the constituent systems that are able to perform the individual missions, describing the Responsibility Model. Then, it Figure 32: Specifying Capabilities of a Constituent System is possible to identify the capabilities of the constituent systems that must be described in the Operational Capability Model. Since capabilities require an interface, at this moment it is important to have an Object Model with all entities that will be exchanged between the constituent systems. Using input and output links, the designers can dene the interface of a capability. Fig. 32 depicts the process to describe the operational capabilities of a Constituent System. It starts by the denition of the constituent system, based on the mission it will be responsible for; then, the denition of the capabilities; nally, it is possible to dene the interface of each capability using the input and output links.

Following the denition of operational capabilities, the stakeholders must identify, in the mission model, potential interaction points. Whenever an operational capability produces a data, as in Fig. 33, and a data of same type is used by another operational capability, it is possible to establish a cooperation link between these capabilities. In Fig. 33, the capability ToProvideHidrologicalModel produces an HidrologicalModel. An object of type HidrologicalModel is used as input for the capability ToSimulateHidrologicalChanges, from another constituent system. Therefore, this characterizes a possible cooperation point between the involved constituent systems.

It is worth highlighting that this activity consists in specifying possible interaction points, regardless of their real use by the constituent systems or not. Each interaction point represents a communicational capability, which implies in a possible cooperation between two or more constituent systems.

The cooperation points (communicational capabilities) allow some emergent behaviors Figure 33: Identifying Communicational Capabilities to appear in the SoS. Each emergent behavior is dened on one or more communicational capabilities, which is specied in the Emergent Behavior Model. Since mKAOS is not concerned with the implementation of the SoS, it is not capable of representing the operationalization of the emergent behaviors. However, it is strongly recommended to describe a formal rule to check the emergence of each behavior, using DynBLTL constructs. Notice that, as communicational capabilities, the stakeholders must identify as many emergent behaviors as possible, no matter if they are desired or not.

Finally, it is possible to dene domain rules, Constraints, to focus on the SoS as a whole. mKAOS allows two kinds of constraints: (i) domain invariants, and (ii) domain heuristics. The only dierence between them is the required commitment level. Domain invariants are constraints that must be fullled at every moment. Domain heuristics specify desirable, but not mandatory, properties. Syntactically, both constraint kinds are dened using the same structure, in mKAOS, that consists in a DynBLTL rule.

M2Arch Automatic Mapping Process

mKAOS was designed as a descriptive language for missions in SoS, focusing on what the system must be able to achieve instead of how it will achieve. Nonetheless, the descriptive elements of mKAOS rene mission denitions to the system level, assigning respon- sibilities and obligations of each constituent system. At this point, no further description related to how the system will achieve the existing missions is possible in mKAOS. Therefore, the architectural description provides a new level of abstraction by rening mKAOS models to an operational, coarse-grained level. Although the proposed renement relies on a mapping from missions to architecture, neither the mission model nor the architectural description provides sucient information to represent the information from each other, some data are not reected in the architectural description during the renement process (e.g., missions) and, hence, both models must be maintained for its own purposes.

Considering that mKAOS and SosADL provide dierent levels of abstraction for the system, the mapping process is based on the equivalent concepts between both languages [START_REF] Silva | Bridging missions and architecture in software-intensive systems-ofsystems[END_REF]SILVA;CAVALCANTE;BATISTA, 2017). Fig. 34 presents the association between the equivalent concepts that permeate between both mission and architecture models. The main equivalent concept is the capability, which is available in mKAOS models in form of a homonymous element and in SosADL can be represented by the set of interfaces of constituent systems: the gates. Capabilities, in mKAOS also, have an interface, therefore a transformation process would rely on the interfaces of these and the constituent systems in SosADL.

In mKAOS, a capability is a rst order element whose interface is dened by the composition of the inputs and outputs links of the Operational Capabilities and Communicational Capabilities. These links are product of the overlapping between the Capabilities Models and the Object Model and represents the nature of the data that is received or sent by each Capability. On the other hand, SosADL denes interfaces as essential, explicit elements for dening the architecture of an SoS. It represents the interfaces as connections, which are used for both structural and behavioral specications. A set of connections form a gate, that can be directly related to a capability. Events in mKAOS are also mapped to connections, in SosADL and handled as a special kind of data. However, it is possible to represent Events as usual connections.

Since both mKAOS and SosADL provides representations for constituent systems, namely Constituent System and System, a natural association is found between those elements. In mKAOS, each Constituent System is directly associated to a set of capabilities, therefore, it is possible to identify which system implements each capability. On the other hand, in SosADL, a System encompasses a set of gates that represent its interfaces. As aforementioned, we are capable of relating capabilities with gates, which allows a syntactical relation between Constituent Systems (mKAOS) and Systems (SosADL). Since these elements are already conceptually related, performing such kind of mapping strengths traceability.

However, the representation of the capabilities depends on their nature. In mKAOS, the representation of Operational Capabilities have a dierent semantics compared to those for Communicational Capabilities. This dierence relies on the fact that Communicational Capabilities are better associated to obligations than to interfaces, when comparing to ADL concepts. Therefore, the interface of Communicational Capabilities are more similar to channels for communication and cooperation, that specify some kind of contract, although it is capable of performing some operations. Moreover, the Communicational Capabilities are not associated to Constituent Systems, hence they cannot be transformed into gates for those Systems, as Operational Capabilities do. Due to these characteristics, we found that Communicational Capabilities are more related to mediators than constituent systems, as they are part of the SoS as a whole.

Further, regarding the mission models, mKAOS species that a mission has a priority and the SoS or the constituent systems might choose to achieve one mission instead of another, depending on the available resources. This is a completely normal behavior and must be taken into account when designing the architecture. In this regard, the mediator tackles this issue since it is resolved at runtime and has an inherently dynamic nature.

The mediator allows to specify a connection that may be active or not, depending on the available resources: if a mission depends on this connection, we can associate its achievement with the status of the mediator. Therefore, the mapping of communication capabilities to mediators also supports traceability, such as the mapping of constituent systems to systems.

Based on the relations we found, we dened a mapping process based on model-driven development (MDD) [START_REF] Völter | Model-Driven Software Development: Technology, engineering, management[END_REF][START_REF] Völter | Model-Driven Software Development: Technology, engineering, management[END_REF], an approach that changes the focus of problem solving from programming to abstract modeling. Modern MDD solutions are mainly based on model-to-model (M2M) transformations (SENDALL; KOZACZYNSKI, 2003), which consist in automatically rening models to lower abstraction levels aiming to reect solutions dened in higher levels. Most M2M implementations are implemented upon Eclipse (ECLIPSE, Eclipse.org, a), in particular relying on the Eclipse Modeling Framework (EMF) (EMF, Eclipse.org, b), a largely used framework that simplies the creation of modeling tools and languages. As both mKAOS and SosADL implementations are based on EMF, it is easy to establish traceability between models of these languages.

The mapping process is divided into ve steps, as illustrated in the diagram depicted in Fig. 35: 1. Identication of the data types used in the Object Model (entities and events) and their denition in SosADL; 2. Identication of constituent systems from the Responsibility Model and their denition as systems in SosADL; 3. For each system, select the associated operational capabilities specied in the Operational Capability Model and dene a gate whose connections are dened for each input, output, and event. Input events will result in input connections whilst produced events will be mapped to output connections;

Architectural Model Denition

Through the automatic mapping of mission models to architecture, the constituent systems and its interfaces, as well as the mediators and the topology of the architecture will be automatically generated. Therefore, at this stage, the architect focus only on the Behavioral denition in SosADL encompasses three elements: (i) behavior, that describes how a system or mediator behaves; (ii) assume, specifying the assumptions a gate will make about the environment; and (iii) guarantee, that species a set of properties that the system provides.

Behavioral declaration species how a system or mediator behaves. It consists in a set of behavioral statements, that might be: (i) setting/changing the value of a variable; (ii) using external interaction constructs to specify sending or requesting some information;

(iii) sending or receiving an information; (iv) conditional statements (if-then-else); (v) choosing one behavior depending on a given information (choose/switch); and (vi) loops.

A behavior can also be unobservable, to express situations in which the architect does not have access to the behavior of a given system or mediator. This behavior species that the sensor will always transmit either the data it sensed or another value that was transmitted to it. The denition of the behavior of each constituent and mediator is fundamental to the further steps of M2Arch: verication and validation.

Dening the assumptions allows the architect to abstract some constraints of the environment, simplifying the behavioral denition. The asserts (assumptions and guarantees) consists in the denition of a set of properties that will be fullled by the environment. These properties are dened using a set of statements similar to those used in behavior. Asserts can be empty, using the construct anyaction to express that any state of the environment/system (environment for assumptions, system for guarantees) will be Asserts can be used for verication purposes, although currently M2Arch does not supports it.

Verication

The second step of M2Arch consists on checking the domain-related properties, dened in Activity 1.1: denition of the mission model. This step is almost fully automated, requiring some conguration and sometimes the implementation of external controllers, introduced in Sub-subsection 5.3.3. Denition step produces an abstract architecture and a mission model as outputs.

However, both verication and validation must be performed over concrete architectures.

A concrete architecture is a runtime architecture, realized by the available resources in a given environment. Such concrete architecture is fundamental to simulation, which is used by the model checker to check the given properties.

SosADL simulation is further discussed in Section 4.3.1, in which we present the mechanism to generate concrete architectures and how these are used on model simulation.

SosADL Model Simulation

SosADL simulation is the base for all automatic verication and validation processes proposed by M2Arch. It allows the architect to observe the architecture in a controlled runtime environment. This process is supported by the SosADL Execution Engine, presented in Section 3.3.4.

Since the execution engine requires a concrete architecture to be able to perform the simulation, before starting the simulation process, it is fundamental to produce a concrete architecture. Such production is also automatized and requires the set of available constituent systems in the environment to be simulated. This process is further discussed in Sub-subsection 4.3.1.1.

Finally, after generated the concrete architecture, the model checker is able to verify the model for a given set of domain-related constraints. This step is completely automated and presented in Sub-subsection 4.3.2.

Generation of Concrete Architectures

Given the clear distinction between abstract and concrete architectures, presented in Section 3.3, it is possible to establish a mechanism to automatically generate concrete architectures based on an abstract architecture denition and the specication of the desired environment. This was done by Guessi et al (GUESSI; OQUENDO; NAKAGAWA, 2016) as a mechanism to verify feasibility of SoS architectures.

Guessi proposes the use of an exhaustive generator of concrete architectures to verify the feasibility of an abstract architecture. The approach reduces the problem to the Boolean Satisability Problem (SAT) and evaluates the environment in terms of available constituent systems to generate all possible architectures that comply with the given abstract architecture. If no solution is found, then an counterexample architecture is generated for each violation of the abstract architecture.

The approach uses Alloy, a SAT solver engine, to combine the provided environment (i.e. a set of available constituent systems) and the abstract architecture to generates all possible architectures that, combining the available systems, realizes the architecture. For doing so, a metamodel for SosADL was build using Alloy constructs. This metamodel (presented in Figure 38 1) enables the use of SosADL abstract models as inputs for the solver.

1 Extracted from (GUESSI; OQUENDO; NAKAGAWA, 2016) Since the solution uses this exhaustive approach, the execution might have a high cost in time. The authors are currently working in improvements to lower that computational cost. It is worth mentioning that, since Alloy is also formally grounded, it is able to maintain all constraints dened in SosADL during the derivation process.

Verifying Domain-Specic Properties

Given a concrete architecture and a mission model, M2Arch supports automatic verication of the domain-specic properties, specied as Constraints in mKAOS models.

Although the verication relies on the simulation, it is not necessary to congure the simulator at this stage. However, it is essential to congure the stimuli generators, either in the simulation conguration or using external controllers. We strongly suggest the use of the external controllers for this purpose, since they allow a wider control over the runtime model.

Each external controller must implement the ExternalController interface and be associated to a constituent in the concrete architecture. These activities were described in Sub-subsection 5.3.3. Overall, the architect selects the concrete architecture to be veried and invokes the verication.

The automatic verication process is divided in three activities, illustrated by Fig. 39: (i) setup, in which the involved tools are instantiated and congured; (ii) initialization, that starts the services; and (iii) simulation, that runs the simulations to perform the First, in the setup activity, the verication tool creates an instance of a SosADL Simulator and reads the mission model, extracting all DynBLTL rules within the constraints.

Each constraint is registered into a temporary le that will be used by PlasmaLab.

During initialization, a SosADL Simulation Server is initialized and its access data is saved into a temporary le, then the process initializes PlasmaLab and connects it to this simulator, using a set of parameters specied in the Model Checking Conguration, that can be automatically generated with default parameters. This conguration determines the number of simulation samples, algorithm and other optional parameters depending on the algorithm selected. The default conguration uses 100 samples and MonteCarlo algorithm. Fig. 40 presents the request that initializes PlasmaLab with the default parameters.

Finally, PlasmaLab takes over control the simulation and perform the verication of the properties. The properties will be veried individually, therefore, whenever there is a constraint violation, the tool is capable to report exactly which constraint was violated and the circumstances in which that happened. The SosADL Simulator will keep registry of all operations and allows the architect to track the whole execution to the original violation, using the event report. Each simulation sample produces a report with all activities executed in each simulation, as presented in Fig. 41.

Furthermore, at the end of the verication process, a verication report is generated, this report specically contains the domain-specic constraints. Fig. 42 presents a simulation report that checks for two constraints: heur1 and inv1. The report is generated by PlasmaLab, although some ltering is applied to avoid excessive data. Altogether, the simulation and verication report helps the architect to identify the faulty points in the architecture.

Validation

Architectural validation is the activity that is responsible for identifying whether the system implements what it is intended for. In the context of SoS, this activity is directly related with the mission models. Since the objectives of a SoS are expressed in terms of missions, analyzing the commitment of the system with these missions is probably the most notorious task on a validation process.

However, there is another aspect of validation that does not concern on the mission model, but on the system conception itself. Mission modeling is an activity similar to requirements engineering, therefore it relies on the communication between stakeholders and the capability of those to express the needs in the model. These aspects might lead the stakeholders to produce a mission model that does not reect their actual expectations or needs. Hence, we propose a process that not only validates the architecture within the mission model, but also supports validation of both mission model and architecture within the expectations and needs of the stakeholders.

We propose a two-step validation process: (i) automatic validation of missions and emergent behaviors; and (ii) manual validation through simulation. These steps are complementary and focus on dierent aspects of validation. Altogether, these activities support the validation of the architecture and mission model, regarding the stakeholders' needs.

It is important to highlight that our automatic validation relies on a verication process. In fact, although the automatic validation validates the architecture within the mission model, the stakeholders need to validate its results and perform the manual validation in order to validate the architecture within their needs.

In this Section we present our solution, in Section 4.4.1 we present the automatic validation that is responsible for checking the compliance of the architecture with the mission model. In Section 4.4.2 we introduce a method to manually validate both the mission model and the architecture.

Automatic Validation of Missions and Emergent Behaviors

The automatic validation will detect whether the SoS architecture comply with its mission model, using a similar process to the verication. Indeed, for the nal user the only dierence is the Model Checking Conguration. Although the automatic validation In M2Arch, the automatic validation is divided in four steps: (i) setup, tools initialized and instantiation of involved objects; (ii) initialization, service start; (iii) simulation, that will perform the simulation-checking of the missions and emergent behaviors; and (iv) analysis, in which the output of the model checker will be analyzed to infer additional information.

The automatic validation uses the same tools of verication and the same process.

However, instead of checking constraints, the model checker will analyze the formal denition of missions and emergent behaviors. In the analysis step, M2Arch will dene a priority for mission achievement, based in Mission Priority: higher priority missions should be achieved more often than lower priority missions. We called the frequency of achievement of a mission as achievement rate, which is calculated by PlasmaLab during the property checking process. Such achievement rate is essential to the analysis step.

The analysis step consists of analyzing the priorities of every mission and comparing it with the achievement rate that is obtained at the end of the automatic validation. An additional warning is produced whenever a lower priority mission is achieved more often than a higher priority. It is important to highlight that this behavior does not indicate the model is invalid, since a lower-priority mission might be easier to achieve and that would justify such behavior.

Analysis is also responsible for triggering critical faults. These occur when a mission achievement rate is suciently close to zero or zero. The architect must dene in the Model Checking Conguration the default threshold to be used by the tools. By default, M2Arch considers a threshold of 0.5, which means that every mission must be achieved in at least 50% of scenarios. The achievement rate is calculated based on PlasmaLab responses, therefore it has the same condence level as the model checker.

Validating Concrete Architectures and Mission Models

The stakeholders must be able to foresee the overall behavior of the SoS, allowing them to identify unexpected emergent behaviors and potential mistakes in the mission model.

We propose a simulation-oriented validation, that consists in executing the architecture in a controlled environment, with a step-by-step feedback that allows the stakeholders to track all activity of the system. For doing so, our simulator implements some types of report that allow it to build reports that contains the various aspects of the system.

The stakeholders might choose to focus on the data operations, such as production or consumption, communications between constituent systems or even a combination of these two.

We propose the use of a combined set of reports to observe the overall behavior of the architecture. As illustrated by Fig. 45, the rst activity is to execute the simulator that reports the data operations, that will allow the stakeholders to observe how each constituent system is behaving, independently. This activity through the specication of reportType on the simulation conguration. If any constituent system presents a misbehavior, it is necessary to test its behavior denition in the architecture, if there is any. Constituent systems with unobservable behaviors are operationalized by ExternalControllers, hence, there might be an issue with its ExternalController or the use of that specic constituent system is not adequate for the context of this SoS.

The second activity is to test the cooperation between the constituent systems, that can be obtained from the simulator through the selection of reportType=communication.

This report type will concern on the mediators, that will be initialized and will operate when necessary. Through the reviewing of the communication event, that stakeholders are capable to observe faulty communication or cooperation between systems that should not. Any issue on the communication might be caused by the mediators, therefore it is fundamental to review the behavioral denition of the mediators in this context.

Altogether, these activities allow the stakeholder to identify adjustments to the mission model or architectural description of the SoS. Additional emergent behaviors might be found and we encourage their description in the mission model, even when they are not necessary to achieve of the SoS missions.

At the end of the validation activity, the stakeholders will have a validated mission model and architecture that should be maintained and evolve together. M2Arch should be restarted on every change in those models. Thanks to the associated toolkit, the method produces most of the artifacts automatically.

5

M2Arch Toolkit

Since M2Arch process provides an extensive, semi-automated methodology to produce SosADL architectures from mKAOS models, to provide a set of tools is key to assist the process. In this context, we introduce the M2Arch Toolkit, an Eclipse environment to support the whole proposed modeling process.

The toolkit encompasses four tools, as illustrated in the package diagram in Fig. 46: (i) the modeling environment, which includes modeling tools for both SosADL and mKAOS, visual and textual editors; (ii) the mapping mechanism that requires the modeling tools; (iii) the simulation environment, and (iv) the V&V module.

Modeling Environment

The modeling environment of M2Arch Toolkit encompasses two main modeling tools.

The rst is the mKAOS tool, that was extended with the formalism and deployed as an Altogether, these modeling environments provide the necessary tools for modeling, visualization and edition of models in all languages involved in the process. Furthermore, they provide the interface necessary for the implementation of the mapping mechanism.

Mapping Mechanism

The mapping is implemented to be automatic, programmatically executed using a M2M transformation. This ensures the traceability of the missions and simplify the architecture design process: the architect is concerned only with describing behavior and detailing further elements not related to the mission model. Although the transformation does not encompass all mKAOS elements neither the SosADL elements, it still can be realized in both directions. However, it is important to mention that both mission and architectural models are complimentary to each other and they must be independently maintained. In the proposed mapping process, we have chosen a constructive approach in which the renement will produce a single architecture capable of achieving the required missions and emerge the desired behaviors. An alternative is to build a set of possible architectures and verify the conformance of each one with the mission model, but this approach is computationally too expensive.

To implement the mapping process using EMF, we rely on the existing metamodels for mKAOS and SosADL. The implementation was developed using the ATL Transformation language 1 , which was chosen due to two main reasons. First, the tools developed to 1 http://www.eclipse.org/atl In ATL, the transformation is based on a set of rules that are executed whenever necessary, conducted by a main rule that leads the transformation. The main rule for the transformation from mKAOS to SosADL is presented in Fig. 49. The ProduceSos rule is responsible for controlling the transformation process as a whole, calling all other transformation rules. This rule transforms a mKAOS model into an SoS architectural model, generating datatypes from entities (step 1), systems from constituent systems (step 2), and mediators from communicational capabilities (step 4).

Fig. 50 presents a part of an ATL rule that implements the third step (operational capabilities to gates). This rule iterates over all possible inputs and outputs for each capability, producing a connection for each input or output relation. The produced connection is identied as an input or output connection and then the information is stored as the connection mode. Finally, the produced connections are stored in a gate generated from an operational capability.

Fig. 51 depicts an example of the mapping by showing the capability model in mKAOS (Fig. 51a) and a corresponding architecture in SosADL (Fig. 51b). In Fig. 51a, Meteo- The tool provides a simple mechanism to run the transformation, that consists on simply selecting the mKAOS le and invoking the transformation. Figure 52 shows how this mechanism is provided to the user of the modeling environment: in a context menu for mKAOS les.

SosADL Simulator

SosADL execution plug-in was build upon the existing tools without any change in the original plugins. Hence, the tool can be integrated with those plugins and will be able to execute every existing model unchanged. This section details the structure and Finally, the Simulation Server that implements a connector to PlasmaLab, an SMC tool, is presented in Section 5.3.4.

Context Manager

Probably the most important component of the SosADL Simulator, the context manager is responsible for creating and managing a structure we called Context. A context can be seen as an extension of a scope, including not only the variables, but also the data that is manipulated by the environment, its events and the status of every constituent and mediator.

The Context Manager controls the values that are used by the system, updating the contexts and creating new contexts when an adaptation process demands it. The Context Manager provides methods to verify the current value of any variable of the execution, but also to check the current state of a given constituent, mediator or external controller. This component is also responsible for monitoring the values, triggering new data events whenever necessary. Context Manager's interface is presented by Fig. 53.

Simulating SosADL Architectures

The simulation is performed by the third and fourth layer. The third layer is responsible for the interpretation of the expression, execution of statements and verication of asserts, but also for synchronization and control of the environment. The fourth layer controls the execution and call those functionalities on demand.

Based on the execution workow dened in Section 3.3.2, the SosADL simulator implements a derived workow to execute SosADL models. The execution is divided in three steps: (i) setup, in which the Simulation Conguration Manager and the Execution Engine read the conguration le, dene the model to be executed and the external controllers that will be loaded; (ii) initialization, which creates and initialize contexts, and loads the model and the external controllers; (iii) step, that will be iterated until the end of the execution, performing a single execution step. (or the value empty) will be propagated to all connections that are unied to it. The steps also execute the constituent systems and mediators, which will be executed if the asserts are fullled and the necessary data is available. A third activity is the execution of external controllers, that will execute in the same circumstances as the constituent systems and mediators. In this activity, the default external controller will also introduce the data predened in the conguration. This later activity is better discussed in Section 5.3.3.

Every activity may produce events that are used to follow up the execution. The events are stored and managed by the Event Manager, that will add timestamps to the events, allowing the events to be chronologically ordered.

To perform a simulation, the user uses the interface provided by the Simulation Environment, simply selecting the le with the concrete architecture to execute and starts the simulator, as illustrated by Fig. 55.

Simulation Conguration

The Simulation Conguration is a special abstraction that stores information regarding the simulation itself. For doing so, we use a le with the extension .sosconf. If the conguration le has the same name as the model le, the Simulation Conguration Manager loads it automatically.

A conguration le is divided in three sections: (i) simulation control, in which the user denes the maximum number of steps and selects the report mechanism; (ii) external controllers denition, in which the user species which controllers will be used and their corresponding classpath; and (iii) predened stimuli, in which the user may specify a value The simulation control section contains two elds: (i) iterations, with the max number of iterations of the simulation; and (ii) reportType, that selects the detail level to be reported by the Event Manager. The report type might be all , in which the event manager reports every event in the textual output; data, in which only data production and consumption will be reported, and communication that will report only data propagation. Additional report types might be added in the future. Fig. 56 shows an example simulation control section, that species a simulation with a maximum of 100 iterations that reports every event.

External controllers use a plug-in architecture to interact with the system. For doing so, every controller must implement an interface, presented by Fig. 57. This interface contains only two methods: (i) canExecute that returns true if the controller can execute, and false otherwise; (ii) execute, in which the controller executes, manipulating the context as needed.

The user must specify the plug-ins folder in which the external controllers artifacts will be placed, the External Controllers Manager can only nd controllers in this folder.

Each controller classpath will then be associated to an architectural element through its qualied name, as illustrated in Fig. 58.

Finally, the predened stimuli section contains associations between step numbers and expressions, in SosADL. These stimuli are loaded to the default external controller, that

Simulation Server PlasmaLab Connector

The last piece of the SosADL Simulator is the Simulation Server. Our simulator was built aiming at integration with Statistical Model Checking tools, specically PlasmaLab 3 (LEGAY; SEDWARDS; TRAONOUEZ, 2016). Since PlasmaLab integration interface relies on TCP connections, we needed to implement a server able to handle some requests and translate the events to PlasmaLab format.

TAMIS team

4 , responsible for the development and maintenance of PlasmaLab, provided a major support in this contribution, providing a set of common Java classes that PlasmaLab is able to handle and detailed instructions on how to build this server. Hence, in this context our contribution consists essentially on event translators.

SosADL Simulator was planned based on this interface, therefore, the Execution Engine has one method for each of these requests. The results of each call, that are events, are then translated and sent to PlasmaLab.

Interpreting SosADL Behavior

One of the major contributions of SosADL is the formal behavioral description provided by the language. SosADL allows architects to describe the behavior of a constituent system, mediator, gate, etc using constructs formally grounded in π-calculus. To enable simulation of SosADL models, it is fundamental to develop a tool capable of use behavioral description in SosADL to generate or manipulate data. In fact, an interpreter for the 3 https://project.inria.fr/plasma-lab/ 4 https://www.irisa.fr/en/teams/tamis In this work, we are not concerned with this interpreter. However, the SosADL execution engine was structured to allow this interpreter to be implemented by future students.

Currently, a small subset of the statements are capable of being interpreted, such as: (i) performing simple arithmetical operation; (ii) storing values in variables; and (iii) checking boolean values on variables. Most of the statements requires some features of the SosADL typechecker that are not currently available.

Verication and Validation Tools

M2Arch toolkit also encompasses a module that automatically congures and starts the automatic verication and partial validation. Both processes are done by PlasmaLab, and invoked by the user through a context menu. This context menu shown in Fig. 60 is available for all SosADL les.

V&V Module Overview

Since M2Arch proposes an extensive methodology that encompasses verication and validation, its associated toolkit supports the automation (partial or whole) of such activities. For doing so, the so-called V&V module uses the SosADL Simulator and the statistical model checker PlasmaLab (LEGAY; SEDWARDS; TRAONOUEZ, 2016).

The structure of the V&V module is simple, consisting essentially in a coordinator that is responsible for setting up the two involved tools and preparing the inputs for their initialization. This coordinator decides whether the operation is a verication or validation, based on a conguration le, and creates a set of temporary property les that will be provided as input to PlasmaLab. Fig. 61 presents an overview of the activities performed by the coordinator. Initially, the coordinator will read the conguration les. Based on these les, the SosADL Simulation Server will be set up. Also based on the conguration les, the coordinator decides if the process is a verication or validation, depending on which process is to be executed, the temporary les will contain mission formal denitions or constraints denitions. The set of these property les and the informations concerning on the SosADL Simulation Server are used to build the initialization parameters for PlasmaLab.

After starting PlasmaLab, the coordinator is put on hold until the execution is nished. Finally, it will use the PlasmaLab-generated report and create an M2Arch report, depending on the type of the process (verication or validation).

The whole process is automatic: the user selects the SosADL le and accesses the context menu after selecting Verify Model, the tool will setup the V&V module and start the verication, as illustrated by Fig. 62. The tool will initialize the required parameters and start the verication. Such verication might be used by the verication process or the automatic validation.

The output of the verication/validation process is a report le, by default, although the user might select between a report le or the default textual output within M2Arch environment.

Verication Conguration

To allow the user to have more control over the operations supported by M2Arch toolkit, there is a set of conguration les that are used as input to the SosADL Simulator and the V&V Module. In this context, there are two simulation les that are somehow related: (i) simulation conguration and (ii) model checking conguration. The rst is responsible for the parameters of the simulation and was described in Section 5.3.3.

The model checking conguration, on the other hand, determines how the V&V module will setup the checking and perform its activities. Unlike the simulation conguration, the tool is not capable of generating the model checking conguration le. Although some parameters have a default value, some of them must be dened by the user. The parameters of this conguration le are listed in Table 6, in which only the missionModel cannot be generated by the tool.

Additionally, it is possible to force the overriding of any parameter on the simulator. The conguration le is parsed by the V&V module itself, any syntactical misuse of parameters will halt the checking process.

Reports

Key to the verication and validation steps, M2Arch reports provide detailed information about the processes that are automated by the tool. Specically, there are two natures of report: (i) simulation report and (ii) model checking report.

The Simulation Report is built by the Simulation Environment, it describes events that occurred during every simulation. Using these reports, the user might follow up the whole architectural execution.

The simulation reports support four kinds of events: (i) Data; (ii) Communication;

(iii) Execution; (iv) Structure. Fig. 64 presents a Class Diagram that species the Events involved in a SimulationReport. Every event has a timestamp, that relates the moment in which the event was triggered. This timestamp is automatically generated by the class constructor.

Execution and structure events are present in all reports. Execution events concerns on constituents or external controllers, signalizing their execution. Structure events, on Data events and communication events are present whenever the simulation conguration specify so, as mentioned in Section 5.3.3.

Data events report a consumption or generation of a new value, which occur on the connection according to the constituent behavior or a ExternalController intervention.

Data events encompass three attributes: (i) subject, that refers to the element responsible for changing the value on a connection; (ii) new value, the new value of that connection;

(iii) previous value, that is not included in the report but is stored and may be monitored for debugging.

Communication events regard in the data exchange between constituents. They are triggered whenever a data is transmitted from one connection to another. Notice that these events do not concern on the mediators, but on the unications. In SosADL, a mediator is a also constituent in the coalition context, hence, the execution of mediators are also execution events. Communication events have three attributes: (i) source, that refers to the connection from which the value was previously stored; (ii) target, referring to the connection that will receive the value; and (iii) value, the value that was transmitted.

An example of a simulation report is available in Chapter 4, Fig. 41.

The second type of report is the Model Checking Report. This report is generated by the V&V module, based on PlasmaLab output. A Model Checking Report depends on the type of the process: validation or verication.

It is important to highlight that PlasmaLab reports depends on the algorithm used in the process, currently, our tool only supports montecarlo reports for building detailed reports. However, we consider this a minor limitation, since the V&V module will report PlasmaLab results either way.

Verication reports focus on properties and constraints. They are simpler than Validation reports, reporting only the set of constraints, with their respective number of simulations and positive results. These reports will also notify constraint violations, indicating in which simulation a given property was violated. Verication reports were previously introduced, by Fig. 42 in Chapter 4.

Validation reports are more complex. They provide a more detailed analysis on the results of evaluation of formally described missions, combining the results with the mission model. Validation reports were previously introduced by Fig. 44 in Chapter 4.

6

Case Study: Proof of Concept

Foreword

To evaluate M2Arch we ran a case study with the FMSoS, introduced in Section 2.8. Applying the whole process to the SoS, we generated a concrete architecture that was veried and validated throughout the techniques hereby proposed. The resulting architecture shown is very similar to the one previously modeled by the ArchWare team, although some relevant dierences were noticed.

It is important to highlight that, for didactic purposes, some examples presented in this Chapter may be simplied. The full version of our case study is available at http://consiste.dimap.ufrn.br/projects/m2arch.

Application: FMSoS

The Flood Monitoring System-of-Systems (FMSoS) is an acknowledged SoS introduced in Section 2.8. This section details the application of M2Arch to produce an architecture for FMSoS, detailing all steps and presenting the involved models.

The outline of this Section follows the overall steps of the methodology, Section 6.2.1 regards on the Denition activity, that encompasses mission modeling and architectural modeling, including the automatic mapping between these. Section 6.2.2 concerns on automatic verication of domain-related properties. Section 6.2.3 presents the validation process, including the automatic validation of missions and behaviors and the manual analysis of the simulation; nally, Section 6.2.4 presents our conclusions about the methodology usage, by comparing the resulting models with previously dened models.

Mission Modeling

The rst activity of the denition step is probably the most important activity in M2Arch: the denition of the mission model. As output, it produces a mKAOS mission model that describes the SoS as a whole, from its global missions to the capabilities and the data objects exchanged by the involved parts.

The FMSoS was introduced in Section 2.8, as shown in Fig. 5, such an SoS has two global missions, namely Detect Flood with Maximum Condence and Alert Citizen in Risky Areas. These missions are rened into six individual missions assigned to four constituent systems, as described in Table 7.

To model these missions in mKAOS, we started by the global missions, using the top-down approach. These missions are rened into individual missions. Later, using the Responsibility Model we dene the constituent systems and assign responsibilities over the individual missions, using the information of Table 7.

Figure 66: Capabilities of the meteorological system Now, it is necessary to identify the capabilities of the constituent systems, that make them capable of achieving their individual missions by its own. This is done through the Operational Capability Model.

The rst constituent system, the meteorological system, is capable of gathering data regarding weather, such as temperature, humidity, wind speed, wind direction,and rain amount. This information is collected by sensors and radars and provided in form of bulletins. As the data depend on the geographical location, the system receives as input the location and provides the data as soon as they become available. Fig. 66 shows the operational capabilities of the system as designed in mKAOS. The Produce Weather Bulletin capability receives a Location as input and produces a Weather Bulletin. It can also trigger a Rain Alert event, which can be provided before the bulletin completion.The Provide Information capability is responsible for providing a specic information (such as temperature, wind speed, etc.) given a Location and a Parameter (type of desired information). Finally, the Monitor Region capability receives a Location and keeps monitoring this region, triggering the Rain Alert and the Flood Warning events.

A second constituent system, the surveillance system, is capable of taking aerial images (using balloons, airplanes, satellites, etc.) of a given area. Fig. 67 shows the operational capability model for the surveillance system. Its only capability: Provide Images, receives a Location as input, providing an Image as output. The surveillance system is also responsible for calculating a risky area, that is represented by a list of locations.

For doing so, it uses the capability Calculate Risky Area, taking a center Location and a range (represented as Integer) as input. The River Monitoring System is a constituent system that is also a SoS. It is composed of a group of sensors and gateways and operate together to monitor river levels in dierent spots in a riverbed. It is not necessary, however, to model another SoS in this context.

Instead, we see it as a single constituent system, capable of providing the current water level of the river. This capability uses a list of locations given by the Surveillance System to provide the information to the Social Network, allowing the identication of the participants in the risky area. Another emergent behavior is homonymous to the communicational capabilities it emerges from. Fig. 74 shows the emergent behavior Send Alert, that emerges from the communicational capability Send Alert and inuences the achievement of the global mission Alert Citizen in Risky Area.

Finally, the FMSoS has a single constraint: the triggering of an Alert event by the Meteorological System must, eventually, trigger a Message Sent event on Social Network. This ensures that every time there is an Alert, someone will receive this alert. Fig. 75 shows the description of this constraint as a Domain Invariant, in formal mKAOS. An example of element denition that is generated is presented in Fig. 76. This partial description describe the Meteorological System, as well as the required data for the required connections. This construction includes a set of type denitions and a system with four gates, each one related to an operational capability of the system. For instance, the ProduceWeatherbulletin gate has three connections that represent the inputs and outputs for this operational capability. The coalition representing the architecture of the ood monitoring SoS is built using the produced constituent systems and mediator. The bindings are based on the input/output links in mKAOS, in which the systems will interact through the parameters of the communicational capabilities. Additionally, the inputs and outputs of communicational capabilities not used by any individual constituent systems are bound to the SoS gates, through the relay instruction. Fig. 78 shows the produced architecture for the ood monitoring SoS based on the mKAOS mission models. In this partial description, two constituent systems (MeteorologicalSystem and RiverMonitoringSystem) and one mediator (ToMatchData) are dened, the latter handling the interaction between the former. The mediator takes data from both systems and produces an Information object that is used by the SoS.

Architectural Modeling

Although the overall structure is generated by the automatic mapping, it might be necessary to do some adjustments. In this case, specically, no major change was required. However, it is still necessary to describe the behavior of the constituent systems and mediators, that cannot be automatically generated since mKAOS does not concern on system's behavior.

Except for the River Monitoring System, the internal behavior of the constituent systems is unknown. We choose, however, to treat all constituents as if they have unknown behavior, for simplication purposes.

Even constituent systems with unknown behavior can be expressed in SosADL and Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018 hence supported by M2Arch. It is important, however, to be able to simulate their behavior, based on observation over these systems or their overall denitions. To simulate their behavior it is possible to use the ExternalControllers, described in Section 3.3.4. The automatic processes of verication and validation will not be able to execute if there is an unknown constituent system or mediator with no associated ExternalController.

We implemented a set of four ExternalControllers: MeteorologicalController, River-MonitoringController, SurveillanceController and SocialNetworkController. These controllers are be responsible for implementing the interfaces of the constituent systems, reading the inputs and producing the outputs when requested.

Further, we know that sometimes a constituent system may be unable to respond. At this stage of the modeling process, we are not sure about the causes and this anomalous behavior do not happen often. Although the controllers are implemented to simulate the constituent systems, we also implemented a failing mechanism that denes a response rate of 99.9%, which means that the controller will respond properly to 99.9% of requests. In the 0.1% left, the controller consumes the input but does not generate any result. This allows us to simulate situations in which there is a network unavailability or any structural issue, but also some misfunction in the constituent system. Some of the controllers, as the one responsible for the River Monitoring System, uses a stochastic process to produce the values for river levels. The produced values are in a normal distribution, with a low probability of providing a water level that represents a ood.

Also, to allow a more accurate simulation, we implemented some data exchange between the controllers. The RiverMonitoringController interacts with the Meteorological-Controller, to allow their data to be cohesive, since their associated constituent systems make measurements in a common physical environment. If the MeteorologicalController produces a rain alert, the RiverMonitoringController will provide higher river level measures. The opposite occurs if no rain alert was produced for some time: the RiverMoni-toringController will provide lower river level measures.

On the other hand, the mediators are part of the constituent system and therefore we can dene their guarantees, although an ExternalController could also be built in this case. Since all mediators perform simple operations, we choose to describe their behavior using SosADL.

One of the most important mediators in the FMSoS is the SendAlert mediator, au- The mediator SendAlert receives a Participant, through either p1 or p2, and sends a message that contains the RainAlert message and send it to this Participant.

Verication

M2Arch V&V module, responsible for verication and validation, relies on the SosADL Simulator and PlasmaLab. Therefore, it requires some conguration to be able to perform the automatic routines.

First, as the SosADL Simulator is able to simulate only concrete SosADL architectures, it is necessary to generate these concrete architectures before starting. Currently, we faced some issues to execute Guessi's solution (GUESSI;OQUENDO;[START_REF] Guessi | Checking the architectural feasibility of systems-of-systems using formal descriptions[END_REF] to perform this generation. We succeeded after a few attempts and generated a concrete architecture identical to the initial, meaning that the abstract architecture was also a concrete architecture for the given environment. In this context, our generator environment Finally, we started the procedure to automatically verify the property within the architecture. Table 8 presents our results. We did three experimentations, varying the Based on Table 8, we found that the invariant AlertAlwaysSent is maintained in around 99% of the simulations. The failing rate is associated with the implementations of the ExternalControllers, that intentionally fail, eventually. We decided that this failing rate acceptable in the context of this system.

Validation

Validation architectures, in M2Arch encompasses an automatic validation of formally described missions and a manual validation based on the simulation.

Similarly to the verication purpose, the automatic validation requires a conguration le with some parameters for PlasmaLab. The conguration for FMSoS is presented in Fig. 82. In this conguration, we specify that the V&V module will perform an automatic validation, focusing on formally described missions, but it is also possible to focus on formally described emergent behaviors.

However, we found some limitation on formal mKAOS regarding constraint denition.

Since the language does not contain any architecture-related information, it is necessary to improve some of the constraints for the concrete architecture, detailing the connection that will interact with the property, whenever it applies. Fig. 83 shows an example of Once updated the formal denitions of missions and emergent behaviors, the V&V module is capable of isolating these formulas and invoking PlasmaLab to check the existence of the emergent behaviors and the achievement rate of the missions. After updating the formal denition of the individual missions and some intermediary missions of FMSoS, we obtained the results presented by Table 9. In this study, the global missions are simply a combination of its sub-missions.

The V&V module took 11m22s to evaluate the model to produce these results, in a Core i7, 8gb RAM, Windows 10 system, with 100 samples. We expect longer times for more precise validations, using a higher number of samples.

After these automated processes, the manual validation consists on identifying misleads in the simulation itself, checking if the architecture is behaving as planned. For this case study, we found no misdirection in the planned execution path and no constituent behave dierently of its plans. For this study, all the failures were caused by the intentional failing mechanism introduced in the ExternalControllers. For instance, Fig. 84 shows a simulation report in which the constituent RiverMonitoringSystem intentionally failed. Fig. 85 displays the source code of the ExternalController that provoked this failure.

Discussion

The overall structure of the produced architecture, is very similar to the existing architecture, they dier on coupling and some gates presented a dierent denition. Along this Section, the previously existing architecture will be referred as Arch1, and the model produced through M2Arch will be called Arch-M2Arch.

Arch1 was produced previously to the denition of M2Arch, using no specic methodology. This architecture was based on the textual descriptions and available documentation of the FMSoS [START_REF] Hughes | A middleware platform to support river monitoring using wireless sensor networks[END_REF][START_REF] Degrossi | Using wireless sensor networks in the sensor web for ood monitoring in brazil[END_REF][START_REF] Degrossi | Using wireless sensor networks in the sensor web for ood monitoring in brazil[END_REF][START_REF] Degrossi | Using wireless sensor networks in the sensor web for ood monitoring in brazil[END_REF] Furthermore, we detected some additional relations between constituent systems in Arch-M2Arch, that were caused by a transformation rule. The process to establish a unify considers only the data types in mKAOS to produce a unify in SosADL. This may lead to the creation of unications that were not predicted. We minimized this behavior by improving the mapping, double checking the data types and generated connections to minimize its occurrence. It is important to highlight that, due to the dynamic nature of Table 12 presents the mission achievement rate of both congurations. Architecture

Arch1 presents a higher failure rate, we associate this to the overloaded mediator: whenever it fails, the architecture fails in multiple missions at once.

It is worth highlighting that Arch1 executes three times faster than Arch-M2Arch. We assign this dierence to the increased number of mediators in Arch-M2Arch, allowing faster data exchange due to the parallelism that the simulator implements for the mediators.

Although we cannot associate the improved performance to M2Arch, this evaluation allows us to make a few conclusions about the methodology. Since M2Arch generated the topology of the system, with few or no changes to be made, the lower eort to develop using the methodology, the ecacy and the eciency of the produced architecture allows us to suggest M2Arch accomplishes what it intends to, as a pioneer mission-based methodology to develop SoS architectures.

Related Work

This chapter discusses related and complimentary work found until September 2018.

We were looking for works that deals with a renement, methodology or process that bridge missions and software architecture of SoS.

Although we found no study directly addressed to this topic, we looked for studies that might somehow help answering the research questions presented in Section 1.2. We divided these works in three categories: (i) alternative ADLs, that may provide a better solution than SosADL; (ii) mission languages, that might present a dierent representation and an underlying formalism; and (iii) renement methodologies, that would provide valuable knowledge for our work. During the production of this work, we found no relevant works on (i) and (ii). However, regarding (iii), a bibliographic review found interesting works, presented in Section 7.1. Finally, Section 7.3 presents a brief discussion about the current state of art, emphasizing the perspectives for the domain.

In addiction, we are aware that missions are closely related to requirements, thus, we choose a couple of works apart from SoS context, to illustrate the relationship between requirements and architecture, presented in Section 7.2. These works are chosen specically since they use KAOS at some point of the modeling process or, at least, the goal-oriented approach used by KAOS. Since mKAOS is an extension of KAOS, these works potentially present some relevant topics to this study.

Systems-of-Systems Approaches

In this section we present the approaches for SoS, however, there is lack of works that uses missions as starting points. A remarkable study in SoS domain is COMPASS, that proposes a complete framework for developing SoS using a conventional requirements approach, presented in Section In terms of requirements modeling, the approach uses traditional SysML requirements model to dene the over-cited development process. The validation of the process is manual and consists of checking whether this process is complying to the specied requirements.

In terms of architectural modeling, COMPASS enhances SysML with CML code. CML is a formal language that denes semantics logic for the actions and activities dened in SysML. The embodiment of CML code within SysML allows the architecture to be simulated and veried. The process to produce architecture is based on a set of guidelines using the competency viewpoints to rene the requirements to the architectural level, thus supporting traceability between those requirements and elements in the architecture.

COMPASS also concerns in verication, hence, CML includes mechanisms for denition of constraints and a state logic. To ensure the set of required properties of a given communication, these contracts can be established in CML and are veried at simulation time. COMPASS suggests the use of contracts on communication processes, which can be veried using a formal simulator. Fig. 89 shows an example of CML specication of contract of a streaming service SoS: (i) A valid interface implementation must always reply on a request, which is checked by most of the code; and (ii) if a state transition fails, a valid interface implementation stays in the current state, which is veried through the rst line, that skips the transition process if the state fails.

COMPASS approach is an extensive, well-dened process to architectural denition of SoS, so far, it is the most advanced methodology that exists. However, it uses the usual concept of requirements instead of missions. Mission is a concept more adequate to the SoS context, since it naturally handles the dynamic nature of this kind of system. Since COMPASS project was developed before the arising of mission description languages, the approach uses requirements as starting point for the modeling process. We consider this decision outdated, since now we are capable of accurately describing missions and its specicities.

Another important point is the mechanism used to produce and represent architectures. COMPASS presents a set of guidelines to produce and validate architectures from requirement diagrams, however, the process is mostly manual. The description process is partially supported by descriptive tools, but instead of dening specic DSLs, the proposal enhances existing ones. Specically, in the architectural description, COMPASS enhances SysML, a widely accepted ADL. However, SysML has some limitations regarding dynamism, since it was designed to dene static systems.

CML extension adds formalism to the language, but it does not handle the dynamism of SoS. Since SoS are systems which conguration can change at runtime, constituent systems can come and go. We believe the use of contracts on communications is a successful decision, due to the potential heterogeneity and behavioral uncertainty of constituent systems. These characteristics requires the architecture to be able to handle dierent systems and protocols, the use of contracts upholds this process. However, it does not support dynamic reconguration, we consider this as a major limitation of COMPASS.

Haley and Nuseibeh's Work

The approach proposed by [START_REF] Haley | Bridging requirements and architecture for systems of systems[END_REF][START_REF] Haley | Bridging requirements and architecture for systems of systems[END_REF] proposes a multidisciplinary process, using Software Engineering and Philosophy concepts together to produce an enhancement to the i*/Tropos approaches to develop SoS requirements, bridging the enhanced models with the software architecture through analysis.

Structured as a four-step process, the proposal aims to enhance requirements models in order to obtain a more detailed, rened model. The main objective is to allow a better understanding of the requirements, that will be used to describe software architecture.

The process iterates over both architectural and requirements models, which helps to understand the impact of the requirements on the architecture as long as it is being build.

The process is not sequential, and the analyst can start by any step. It is necessary SON, 2001). In these diagrams, the systems are described in terms of physical domains and connections between them. It is important to highlight that this approach is very unusual, especially since it does not detail the interfaces of the systems in terms of data.

To produce the architecture, the proposal suggests the use of the Twin Peaks model [START_REF] Nuseibeh | Weaving together requirements and architectures[END_REF], presented in Fig. 91 3 . Twin Peaks model consists of building the architecture a requirement per time, in a cyclic approach. This allows the architect to foresee the impact of a requirement in the architecture and favors traceability. During the architectural design, the architect must identify the capabilities of the constituent systems and the required capabilities. To provide the required capabilities, the architecture must fulll a set of assumptions, that are veried in a nal step of the architectural modeling.

Such process to dene the architecture lacks on specic guidelines or rules. The architecture will be built without a well-dened framework, technique or methodology, in a very subjective manner. Furthermore, the language used for architectural modeling is not an ADL, therefore the concepts of software architecture are not present.

To validate the nal architecture, the proposal simply veries each assumption. The architecture is considered valid if every assumption is satisable. However, such process is completely manual without tool support. This work does not provide a clear mechanism for verication of architectural properties, although i*/Tropos are able to express some constraints.

Another important limitation of this approach is the lack of concern in the dynamism inner to SoS. Such as COMPASS, this approach does not give special attention to the dynamism of SoS and lacks representations of dynamic structures. Also, the study does 3 Extracted from (HALEY; NUSEIBEH, 2008) not concern on emergent behaviors and many aspects of SoS, such the heterogeneity and the behavioral uncertainty on the constituent systems.

Requirements Engineering Approaches

The relation between requirements and architecture exists since the conception of both domains. There are many tools, approaches and methods to derive and validate requirements and architectures. In this Section, we will cite a few approaches to illustrate the state-of-the-art.

The rst approach we will discuss is KAOS [START_REF] Lamsweerde | Requirements Engineering: From System Goals to UML Models to Software Specications[END_REF]. The methodology, homonymous to the language we extended to produce mKAOS, is briey presented in KAOS' approach is based on the goal models, that must be dened following four steps: (i) goal modeling: dening the tree-like structure for goals; (ii) object modeling: entities, events, attributes derived from the goals; (iii) agent modeling: identication of agents and elicitation of its capabilities based on the goal models; (iv) operationalization: denition of operations in terms of capabilities that the agents are capable of performing.

For quality evaluation, the goals are formalized using temporal logic, aiming to prescribe intended behavior. This severely impacts in the process, guiding the architects and enabling generation of behavioral descriptions. In this context, however, the author supercially describes how it could be done.

The approach is very straightforward, extending the operationalization step to the architecture level. It consists on rening agents, entities, and events to an architectural description language. Furthermore, it uses pattern analysis to select architectural styles that may achieve non-functional requirements. An abstract architecture is produced from this approach, which is rened using domain-specic constraints to produce a concrete architecture.

Validation of software architectures, using KAOS' approach, is essentially manual and relies on the notable traceability promoted by the methodology. Due to KAOS' (the language) structure, it is simple for the architect to identify how each requirement is implemented. Regarding validation, this approach concerns only on the non-functional requirements, that are expressed using the underlying formalism in LTL and can be veried using some tools, such as Objectiver 4 . It is worth mentioning that Objectiver, the main tool that implements the KAOS' methodology, is commercial with no free versions, although a trial is possible.

Goal-Oriented Software Architecting

Goal-Oriented Software Architecting (GOSA) [START_REF] Chung | Goal-oriented software architecting[END_REF] is a high-level, three-step process to derive architectures from goal models. During the rst step, the requirements analyst must dene a goal model, using any existing goal-modeling language, such as KAOS. Then, it is necessary to dene hardgoals and softgoals. Hardgoals are goals that must be achieved. For this approach they are essentially Functional Requirements (FR) that must be achieved by the system at the design point. Given the importance and the impact of a hardgoal, the proposal includes exploring alternative tasks to achieve each hardgoal, in order to select the most adequate ones. The set of selected tasks are then assigned to agents, that will be responsible for implementing it. Softgoals are goals that the system may be unable to achieve at some point at runtime, although those goals are desirable. For this approach, they are essentially Non-Functional Requirements (NFRs) , since they have less clear-cut denition and achievement criteria. These softgoals are used to analyze the architecture, identifying the decision that impacts on each softgoal and selecting the most adequate one. hardgoal-entity relationship, in the sense of identifying how the hardgoals aect the entities of the goal model. After this rst step, the architect can use the goal model and the goal-entity to dene the logical architecture.

To establish the logical architecture, the architect starts by dening the process components. A process component is dened based on the relationships of entities and goals.

Each entity that is related to goals as both consumer and producer will produce a process component. After the denition of the process components, the interface components are dened based on the agents: each agent that implements a task will produce an interface component, and this task will be assigned to this component. Then, it is necessary to derive the dependencies between process components. This dependency denes whether a process component A consumes a data produced by process component B. Finally, the process components are associated to interface components, based on the goal model. An interface component is associated to a process component if a task of the producer goal or the consumer goal related to the process component is assigned to an external agent being communicated via the interface component. The completion of this process produces the structural view of the system's abstract architecture.

Given the abstract architecture, the nal step of the proposal is the Concrete Architecture Derivation. For doing so, it is necessary an analysis of the architecture and choice of the architectural style that better tackles the system's needs. The selection is based on the evaluation of each alternative style, analyzing the impact of the choice within the softgoals. The selected style is then applied to the abstract architecture, producing a concrete architecture.

It is important to highlight that all the steps proposed by GOSA are manual and abstract, in the sense that there is no tool that implements it and the steps are not bound to any language. 7.2.3 Adaptation Goals for Adaptive Service-Oriented Architectures [START_REF] Baresi | Adaptation goals for adaptive service-oriented architectures[END_REF][START_REF] Baresi | Adaptation goals for adaptive service-oriented architectures[END_REF] propose an adaptation mechanism to support the dynamism of adaptive service-oriented architectures in goal models. The proposal relies on extending the goal-oriented mechanisms to support dynamism at both design time and runtime.

The proposal adopts KAOS and RELAX [START_REF] Whittle | Relax: Incorporating uncertainty into the specication of self-adaptive systems[END_REF] for representing goal Extending KAOS through adaptation capabilities, the proposal relies on the specication of adaptations to the goal model. For doing so, the adaptation capability is dened.

An adaptation capability is the ability of the system to modify its goal model, impacting on both structure and operation of the system.

Each adaptation capability has its own trigger and set of conditions, similar to missions, and is operationalized by an action that can involve adding, removing or modifying goals or other adaptation goals, operation or entities. Furthermore, an action can also perform an operation, a goal, or substitute an agent.

Dierently from traditional goals, missions are evaluated at runtime and can aect each other, which is similar to the eect of adaptation capabilities over goals. The proposal is very interesting to this thesis, since it proposes an infrastructure to runtime support in this similar context. The proposed infrastructure works at two levels: the process level and goal level, as illustrated by Fig. 93 6 .

The process level involves an Business Process Execution Language (BPEL) (OASIS, 2007) engine capable of executing the tasks of the system. This engine collects data and updates values for entities, detects events, and evaluates the satisfaction of goals. A data collector is responsible for gathering data, using probes to gather information from the 6 Extracted from (BARESI; PASQUALE, 2011)

environment.

The goal level maintains a live goal model and updates it according to the information gathered by the engine, reconguring the system as needed. The goal level also evaluates the triggers and conditions for executing the adaptations. The relations between the processes and the goals are maintained by a supervisor, that can aect both levels.

The proposal also uses the engine to realize service compositions, in order to satisfy a recently adapted goal model.

Self-adaptive service-oriented systems can provide many solutions for the specic case of SoS that uses service-oriented constituent systems. The Baresi and Pasquale proposal might contribute to the development of the simulation mechanism that is planned for this work. The simulation mechanism may be very similar to the infrastructure proposed, although it might need some additional information since the constituent systems can change depending only on the environment.

This proposal focuses on service-oriented architectures, which is one possible architectural style for SoS. The approach uses a live goal model at runtime. This model guides the reconguration process for the architecture. However, this solution focuses on runtime solutions and our focus is on the architectural process.

Discussion

As SoS is a recent concept (it rst appeared in 1998 (MAIER, 1998)), thus it is not a surprise that there are many gaps in the proposals for this domain. Since the industry is showing some interest in the domain, many studies are being conducted in this context.

However, in a sandy domain as such the ideas evolve slowly. The concept of mission was rst modeled by a study of the group involved in this work [START_REF] Silva | Bridging missions and architecture in software-intensive systems-ofsystems[END_REF], therefore, it was expectable that no methodology, process or framework considered this concept within its denition.

Although some studies presented a notable contribution in the domain, of which COM-PASS is worth highlighting, they rely on traditional requirements and techniques, lacking on specic support for dynamism, emergent behaviors and missions, that are essential concerns on the SoS domain.

The state-of-the-art shows a growing concern with verication and validation, and the studies tends to use some formalism to both support traceability and improve quality.

Most of the studies presented involves some level of formalism. Furthermore, simulation is also within the methodologies as the one we propose, as a support for the validation process.

Also, we detected a lack of tools to support the architectural modeling process. Some solutions present tools that partially support the process, but most of the approaches are essentially manual. We acknowledge the importance of CASE applications, therefore the development of such tools are a major work perspective in this context.

M2Arch diers from existing approaches for proposing a novel, tool-supported, missionbased method to produce software architectures for software-intensive systems-of-systems, that supports modeling, verication and validation whilst giving a special attention to emergent behavior.

Final Remarks

This study permeates among several domains of software engineering for systemsof-systems. We produced results in domains of: (i) mission modeling, (ii) architectural modeling, (iii) architectural verication, (iv) architectural validation, (v) modeling processes, (vi) architecture simulation and (vii) computer-aided software engineering.

Our main contribution is a pioneer methodology to produce software architectures for SoS, based on formally described mission models.We use many existing tools, languages and initiatives in the most various contexts. At the same time, we propose a process that is theoretically grounded, allowing then all involved tools and languages to be replaced with reduced eort.

M2Arch is a methodology that uses mission models as starting point for architectural modeling, using the language mKAOS (SILVA; BATISTA; OQUENDO, 2015; SILVA; BATISTA; CAVALCANTE, 2015) that was dened based on a goal-oriented language and a systematic review [START_REF] Silva | On the characterization of missions of systems-of-systems[END_REF] that identied how missions are dened in SoS context. The language was later enhanced, by adding a formalism coherent with the original one.

On the other hand, we produce architectures in SosADL (OQUENDO, 2016a), a pioneer ADL directed for SoS that is formally grounded in π-calculus (OQUENDO, 2016b). To establish a connection between the mission model and the architecture model, we identied a set of common concepts and developed a model-to-model transformation that generates a basic architectural structure.

We went further, dening a verication mechanism that uses Statistical Model Checking to automatically verify the constraints dened in the mission model. This same mechanism is also used to partially automatize a validation mechanism, automatically testing the achievement of formally described missions. The manual aspects of validation are also covered in M2Arch, with a simulation environment that allows the architect to foresee the actual behavior of the architecture.

Such wide study, however, is full of limitations. First of all, for proposing a pioneer methodology based on mission models, it was not possible to properly compare it to any existing study. Although we have plans to perform further studies to enhance M2Arch, incorporating positive aspects of other methodologies, it was not possible to do this yet due to time limitations. We performed a case study to evaluate the methodology, comparing the nal result to the existing architecture of the system, as a result, we identied a small improvement in architectural quality.

The remainder of this chapter is structured as follows: Section 8.1 revisits our contributions, discussing the research questions and implementation. Section 8.2 presents some useful links, that can be consulted for additional information and details. Finally, Section 8.3 discusses our future works and evolution of M2Arch.

Revisiting the Contributions

Answering the Research Questions

We based this work on six research questions, presented in Section 1.2. We answered these questions as follows:

• RQ1: What are the common concepts that permeate between the mission model's elements and the architectural model? Some concepts permeate between both models. Specically, capabilities are present in both mission model and architectural model. In mKAOS, they are explicit, represented as a rst order element and divided into two kinds: communicational and operational. In SosADL, on the other hand, this concept is implicit and can be related to interfaces. A operational capability in SosADL can be dened through the set of connections of a given constituent system, forming a gate. Gate encompasses the inputs and output connections that denes an interface of a constituent system that implements a capability. Regarding communicational capabilities, they can be mapped to mediators, since they specify an interaction between two or more constituent systems. Based on this nding, we could dene the M2Arch automatic mapping, that was implemented using ATL and allows automatic generation of partial architectural models.

• RQ2: How can we relate mission model elements with architectural ele-ments? The concept of capability, that permeates between both architectural and mission model allowed us to draw an automatic mapping. Such automatic mapping promotes the traceability as it denes a relation between the elements of dierent models. Specically, we can associate a capability in mKAOS to a gate or duty in SosADL.

• RQ3: How to verify mission-related architectural properties in the SoS context?

Before verifying mission-related properties it is fundamental to express such properties. For doing so, we formalized mKAOS to introduce an extension of Linear Temporal Logic, allowing therefore the denition of formal constraints. Then, we adopted a strategy based on Statistical Model Checking and architectural simulation to allow the verication of such constraints. This solution handles the dynamism and behavioral uncertainty that are present in SoS architectural models.

• RQ4: How to validate an architectural model within a mission model?

Based on the method we propose to verication, we dened an automatic validation for architectural models. This automatic verication is, in a broader perspective, a verication that checks the compliance of the architecture with some properties.

However, in this case, the properties are formally described as missions. Hence, we can automatically validate an architecture within a mission model, detecting whether this architecture achieves the specied missions.

• RQ5: How to validate an architecture produced through a mission-based process?

Validating an architecture is an essentially manual process, that consists in identifying whether an architecture meets stakeholders' needs. In case of SoS, this can be done through simulation. Based on the reports of a simulation process, the stakeholders are able to track, step-by-step, the execution of the architecture, hence identifying if the architecture meets their needs and the emergent behaviors are emerging as expected.

• RQ6: Which kind of architectural validation can be done regarding emergent behaviors?

Validation of emergent behavior is a dicult and key activity on validation of architectures of SoS. We developed a method to automatically detect the occurrence of formally-described expected emergent behaviors, based on statistical model checking and simulation. Using this method, the stakeholders are able to identify whether an architecture is emerging the expected behaviors and the frequency each behavior manifests.

Tool Implementations

M2Arch is an extensive methodology for producing software architectures for SoS.

Due to its extension, it is fundamental to have a toolset that supports the application of the methodology. Therefore, we also implemented a set of tools that integrate existing tools into the so-called M2Arch toolkit.

Some features of M2Arch toolkit are worth highlight:

1. Textual and graphical description of mKAOS models The SosADL simulator, the main contribution of M2Arch toolkit, was designed to be extensible, providing an event manager that can be extended or integrated on future tools for simulation.

mKAOS and SosADL tools are in constant evolution. However, since M2Arch toolkit was designed to operate over the existing tools, we expect the toolkit to continue to function with future versions of the overmentioned tools.

Relevant Links

Besides the contents of this document, additional information, source codes and models can be found on the following links:

1. http://github.com/eduardoafs/mkaos: The ocial GIT repository for mKAOS 2. http://github.com/eduardoafs/m2arch: A public GIT repository for M2Arch Toolkit 3. http://eduardoafs.github.io/m2arch: The ocial page of M2Arch

Future Work

M2Arch is a pioneer mission-based methodology for producing SoS architectures. Although it uses two specic languages for modeling, the whole methodology relies on the concepts that permeate between dierent constructs and elements. Therefore, we expect that the evolution of M2Arch also rely on these concepts, identifying additional concepts or alternative representations to allow evolution of all subsequent methods.

For replacing mKAOS for another mission description language, for instance, it is necessary to identify the representation of capabilities in this language, which must support detailing the interfaces. Then, it is necessary to adapt the formalism of the desired mission description language to be compatible with PlasmaLab. Implementing the automatic transformation to SosADL and a new module for producing PlasmaLab-compatible constraints should be enough for completely replacing mKAOS without losing cohesion with the rest of M2Arch.

Another important aspect that may be part of M2Arch evolution is the graphical animation of SosADL models during simulation. Since SosADL simulator was implemented as a layer-based architecture, it is possible to build additional layers to provide further information to the user. The animation can be implemented as an additional layer, using the event manager and Sirius animators 1 .

A key future work, however, is the validation of the methodology within the industry.

Initially, it was part of the planning for this work to perform controlled experiments to validate M2Arch. It was not possible due to time limitation and the lack of interaction with the specialized industry. In this context, it is also important to run a scalability test on the approach, to observe how it behaves when applied to large scale SoS.

Also, it is key to check expressiveness of DynBLTL in SoS context. Although the language was designed for dynamic systems, when it comes to SoS the new characteristics of this kind of system may required additional constructs, operations or functions. Cette thèse adresse le lien synergique entre mission et architecture dans le cadre des systèmes-de-systèmes à logiciel prépondérant, en accordant une attention particulière aux comportements émergents créés pour réaliser les missions formulées. Nous proposons ainsi une approche pour la conception d'architecture de systèmes-de-systèmes dirigée par le modèle de mission.

Dans notre approche, le modèle de mission sert à dériver et à valider les architectures de systèmes-de-systèmes. Dans un premier temps, nous générons la structure de l'architecture à l'aide de transformations de modèles. Ensuite, lors que l'architecte spécifie les aspects comportementaux, la description de l'architecture résultante est validée à l'aide d'une démarche conjointe qui comprend à la fois la vérification des propriétés spécifiées et la validation par simulation des comportements émergents. La formalisation en termes de logique temporelle et la vérification statistique de modèles sont les fondements formels de l'approche. Un outil mettant en oeuvre l'ensemble de l'approche a été également développé et expérimenté. Specifying, verifying and validating architectural models for SoS are complex tasks compared to usual systems, the inner complexity of SoS relying specially on emergent behaviors, i.e. features that emerge from the interactions among constituent parts of the SoS which cannot be predicted even if all the behaviors of all parts are completely known.

This thesis addresses the synergetic relationship between missions and architectures of software-intensive SoS, giving a special attention to emergent behaviors which are created for achieving formulated missions. We propose a design approach for the architectural modeling of SoS driven by the mission models.

In our proposal, the mission model is used to both derive, verify and validate SoS architectures. As first step, we define a formalized mission model, then we generate the structure of the SoS architecture by applying model transformations. Later, when the architect specifies the behavioral aspects of the SoS, we generate concrete SoS architectures that will be verified and validated using simulation-based approaches, in particular regarding emergent behaviors. The verification uses statistical model checking to verify whether specified properties are satisfied, within a degree of confidence. The formalization in terms of a temporal logic and statistical model checking are the formal foundations of the developed approach. A toolset that implements the whole approach was also developed and experimented.

 tions. Allowing the stakeholders to design and analyze the SoS from the most various viewpoints. It is important to mention that mission models, in mKAOS, do not concern on the implementation or behavior of the involved parts, focusing on the goals and what are the potential contributions of each, instead.

Figure 1 :

 1 Figure 1: Overview of the contributions

Figure 2 :

 2 Figure 2: Types of SoS

 themselves. Furthermore, a SoS can be classied in four kinds (BOEHM;LANE, 2006): (i) directed ; (ii) collaborative; (iii) acknowledged and (iv) virtual. This classication depends essentially on two factors: (i) the awareness of the constituent systems regarding their participation in an SoS, and (ii) the nature of the authority that manages the SoS. Fig.2plots the types of SoS in a authority versus awareness graph.Directed SoS are systems-of-systems that are managed by a single authority that controls all the constituent systems. The constituent systems are completely aware of their participation within the SoS and often are projected and evolved aiming to better meet the needs of the SoS. This kind of SoS is the most simple to handle, since the management authority accesses each detail of the constituent systems and can change it anytime. Acknowledged SoS are systems-of-systems in which the constituent systems are also aware of their participation and have a central authority, that is dened from mutual agreements between the constituent systems' managers based on recognized objectives and resources. This central authority does not have authority over constituent systems, simply providing guidance to them. In Collaborative SoS, all the constituent systems are also aware of their participation and work together to dene protocols and contracts to fulll central purposes. In this kind of SoS, there is no central authority and the collaboration is dened by the constituent systems individually. Virtual SoS, are the spontaneous SoS, i.e. SoS whose constituent system are not aware of their participation and there is no central authority. Virtual SoS are systems that are formed when constituent systems shares a common space and interact in order to achieve their own goals. The SoS missions are achieved without any acknowledge of the constituent parts and no control is possible, although some guidelines might be agreeded between the constituent systems. Due to its spontaneous nature, the current technology cannot manage virtual SoS.

Figure 3 :

 3 Figure 3: Model-to-model transformation

Figure 5 :

 5 Figure 5: Example of overlapped of mKAOS' Mission Model and Responsibility Model representing missions and constituent systems of the ood monitoring SoS

 which the statements refer to time. LTL formulae are composed of proposition variables (PV), logical operators and temporal modal operators. By default, LTL encompasses the logical operators: ¬ , ∧ , ∨ , =⇒ and ⇐⇒ .Regarding temporal operators, LTL proposes the use of ve operators, that are extended to seven by some authors.1. Next(ϕ): the formula ϕ must be true in the next moment 2. Always(ϕ): the formula ϕ must remain true during all time 3. Eventually(ϕ): the formula ϕ must become true in the future 4. Until(ϕ,σ): condition ϕ must be true until σ becomes true, ϕ must become true at some point 5. Release(ϕ,σ): once ϕ becomes true. σ must be true. ϕ may never become true 6. Weak Until(ϕ,σ): similar to Until. σ may never become true 7. Strong Release(ϕ,σ): Similar to Release. ϕ must become true at some point In LTL, a proposition is satised by the innite sequence of evaluations of a formula.

Figure 8 :

 8 Figure 8: Constituent systems and missions of the ood monitoring SoS

Figure 9 :

 9 Figure 9: Formal Denition in DynBLTL

Figure 10 :

 10 Figure 10: Freeze Operator in DynBLTL

Fig

 Fig.12shows parts of a textual description of a mission model. In this example, the mission AlertCitizenInRiskyArea is rened in two sub-missions: IdentifyCitizenInRisk-yArea and AlertCitizen. The mission AlertCitizen depends on the mission IdentifyCiti-zenInRiskyArea.

Figure 11 :

 11 Figure 11: Grammar rule for Mission

Figure 13 :

 13 Figure 13: Formal Mission Description

Fig

 Fig.15illustrates a mission renement. In this description, we use a variation of our

Figure 14 :

 14 Figure 14: Grammar rule for Mission Renement

Fig

 Fig.18species a expected, desirable emergent behavior that emerges from the interaction between pair of Sensors, a sub-systems of RiverMonitoringSystem: the com-

Figure 16 :

 16 Figure 16: Grammar rule for Domain Invariant and Hypothesis

Figure 18 :

 18 Figure 18: Formal Denition for Emergent Behavior

Figure 19 :

 19 Figure 19: SosADL Sirius' Viewpoint and Diagrams Specication

Figure 21

 21 Figure 21(a) presents the textual denition of the system, and (b) shows the correspondent graphical view of this architecture. Both representations were generated by the current tools.

Figure 22 :

 22 Figure 22: Activities of Execution Workow

Figure 23 :Figure 24 :

 2324 Figure 23: K3 InitializeModel method

Finally, the simulator

 Figure 26: SosADL Simulator Architecture

Figure 27 :

 27 Figure 27: PlasmaLab Interaction with Simulation Server

 Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo FerreiraSilva 2018

Figure 28 :

 28 Figure 28: Overview of M2Arch

Figure 29 :

 29 Figure 29: Activities of the Denition Step

Figure 30 :

 30 Figure 30: Dening a Mission Model

Figure 34 :

 34 Figure 34: Overview of Equivalent Concepts

Figure 36 :

 36 Figure 36: Behavioral Denition of System Sensor

Fig. 36

 36 Fig.36shows an of a example behavior denition of the constituent system Sensor.

Figure 37 :

 37 Figure 37: Assert Denition of Mediator Gateway

 Section 4.3.2 presents the verication mechanism that uses the statistical model checker PlasmaLab to verify domain-specic properties.Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo FerreiraSilva 2018

Figure 38 :

 38 Figure 38: Alloy metamodel for SosADL

Figure 39 :

 39 Figure 39: Activities of Automatic Verication

Figure

 Figure 41: Simulation Report

Figure 43 :

 43 Figure 43: Model Checking Conguration for Model Validation

Figure 44 :

 44 Figure 44: Validation Report

Figure 45 :

 45 Figure 45: Activities of Manual Validation

 The outline of this chapter is organized as Section 5.1 describes the modeling environment; Section 5.2 presents an automated mapping mechanism, capable of partially generating SosADL models. Section 5.3 concerns on the implementation of the SosADL simulator. Finally, Section 5.4 regards on the V&V Module. Altogether, they compose the M2Arch Toolkit that supports every step of M2Arch.

Figure 46 :

 46 Figure 46: M2Arch Toolkit Overview

 Eclipse plug-in. mKAOS Modeling Environment encompasses the original graphical view of the language and the textual support of the formal version of the language, presented in Section 3.1. Figure47presents the mKAOS graphical modeling environment, introduced by (SILVA; BATISTA; CAVALCANTE, 2015).On the other hand, SosADL modeling was enhanced to allow a new graphical viewpoint for the ADL. The modeling environment is based on the original SosADL tool, developed by the ArchWare team. It also encompasses the graphical tools for the language, described in Section 3.2.

Figure 48

 48 Figure 48 despites the main screen of the modeling environment of SosADL, it presents an architectural diagram and the associated textual description. In this gure, it is possible to identify the correspondence between the textual (left) and graphical (right) descriptions, maintained by EMF. The tool also provides an outline view of the model for quick navigation.

Figure 48 :

 48 Figure 48: SosADL Modeling Environment

Figure 49 :

 49 Figure 49: Main ATL transformation rule from mKAOS to SosADL

Figure 50 :

 50 Figure 50: ATL transformation rule for producing connections in gates from operational capabilities

Figure 51 :

 51 Figure 51: Example of renement of a Capability Model in mKAOS to an architecture in SosADL

Figure 53 :

 53 Figure 53: Context Manager Interface

Figure 55 :

 55 Figure 55: Starting SosADL Simulator

Figure 56 :Figure 57 :

 5657 Figure 56: Simulation Control on Conguration File

Figure 58 :

 58 Figure 58: External Controllers in Conguration File

Figure 59 :

 59 Figure 59: Predened stimuli on Conguration File

Figure 60 :

 60 Figure 60: M2Arch Popup Menu

Figure 61 :

 61 Figure 61: Model Checker Coordinator Activities

Figure 62 :

 62 Figure 62: Starting Verication

 Figure 63: Overriding Simulation Conguration parameters

Figure 64 :

 64 Figure 64: Events Classes that compose a Simulation Report

Figure

 Figure 65: Mission Model and Responsibility Model for FMSoS

Figure 67 :

 67 Figure 67: Capabilities of the surveillance system

 Figure 69: Capabilities of the social network

Figure 71 :

 71 Figure 71: Communicational capability Send Alert

Figure 75 :

 75 Figure 75: Domain Invariant for FMSoS

Figure 77 :

 77 Figure 77: Mediator in SosADL generated from the To Match Data communicational capability described in mKAOS

Figure 78 :

 78 Figure 78: Coalition in SosADL representing the architecture of the ood monitoring SoS

Figure 79 :

 79 Figure 79: Behavior of mediator SendAlert

Figure 80 :

 80 Figure 80: Simulator Conguration for FMSoS

Figure 82 :

 82 Figure 82: Verication Conguration for Validation of FMSoS

Figure 83 :

 83 Figure 83: Improvement of formal mKAOS Formal Denition

Figure 84 :

 84 Figure 84: Constituent System Fail in Simulation Report

Figure 85 :

 85 Figure 85: External Controller for RiverMonitoringSystem

Fig. 86

 86 Fig. 86 presents an overview of Arch1, showing the structure of the architecture in the SosADL view tool. This architecture encompasses four constituent systems, two mediators and a set of 20 connections. The whole SosADL description of Arch1 architecture is available at Appendix C.

Figure 86 :

 86 Figure 86: Overview of Arch1

Figure 88 :

 88 Figure 88: Overview of COMPASS approach

Figure 89 :

 89 Figure 89: Example of CML code

Figure 90 :

 90 Figure 90: Example i* diagram

 Fig 92 5 shows an overview of the development process, in which the rst step: Goal-Oriented Requirements Analysis is divided in three stages: (i) Domain Model ; (ii) Hardgoals; (iii) Softgoals. The second step is the Logical Architecture Derivation, followed by the Concrete Architecture Derivation.

Figure 93 :

 93 Figure 93: Runtime infrastructure

7 .

 7 2. Textual and graphical description of SosADL models 3. Automatic mapping: mKAOS to SosADL 4. Automatic verication of mission-based constraints using PlasmaLab 5. Automatic detection of formally described emergent behaviors 6. Automatic calculation of mission achievement rate, based on architectural simulation Simulation of SosADL models 8. Generation of detailed simulation reports

Figure 94 :NOT

 94 Figure 94: Relation between Publications and Chapters

 Title: Mission-driven Software-intensive System-of-Systems Architecture Design Keywords: Software Architecture, Software-intensive Systems-of-Systems, Mission Modeling, Semi-Automated Architecture Design Abstract: The formulation of missions is the starting point to the development of Systems-of-Systems (SoS), being used as a basis for the specification, verification and validation of SoS architectures.

1

 Overview of the contributions . p. 2 Types of SoS . p. 3 Model-to-model transformation . p. Problem Statement . Research questions and Goals . The Freeze Operator . p. 3.1.3 mKAOS Grammar . Validation . SosADL Simulator . p. Discussion . p.

	4.4	3.1.2 6.2.4			p.
	3.2 7 Related Work SosADL Graphical Representation . 4.4.2 Validating Concrete Architectures and Mission Models Contents 4.4.1 Automatic Validation of Missions and Emergent Behaviors . . .	p. p. p. p. p.
	7.1	Systems-of-Systems Approaches .	p.
	3.3 5 M2Arch Toolkit SosADL Execution . 7.1.1 COMPASS .	p. p. p.
		3.3.1	Execution through Model-Transformation	p.
	3.3.2 1 Introduction SosADL Execution Semantics 5.1 Modeling Environment . 7.1.2 Haley and Nuseibeh's Work .	p. p. p. p.
	5.2 7.2	Mapping Mechanism . Requirements Engineering Approaches	p. p.
	1.1	3.3.3	Execution through xDSML .	p. p.
	5.3	7.2.1	KAOS .	p.
		1.1.1	Bridging Missions and Software Architecture in SoS Modeling . 3.3.3.1 Language Denition	p. p.
		7.2.2	Goal-Oriented Software Architecting	p. p.
		1.1.2	Validation and Verication of Software Architectures for SoS . . 3.3.3.2 Execution Semantics	p. p.
		5.3.2 7.2.3	Simulating SosADL Architectures Adaptation Goals for Adaptive Service-Oriented Architectures .	p. p.
	1.2 7.3	p. Execution Model . p. Simulation Conguration . 3.3.3.3 p. Simulation Server PlasmaLab Connector p. 5.3.4.1 Interpreting SosADL Behavior p. Discussion . . p. 5.3.3 5.3.4
	p. p. p. p. p. p. p. p. p. Process Overview . p. Alternative Mission Renement Example 2 Background 15 2.1 2.6 Linear Temporal Logic . 2.7 Statistical Model Checking . 3.3.4.2 Simulator Architecture 3.3.4.3 Integration with PlasmaLab 4 M2Arch: A Mission-Based Methodology for Designing SoS Archi-tectures 4.1 4.2.1 Mission Model Denition . p. 4.2.2 M2Arch Automatic Mapping Process p. 5.4 8.1.1 Answering the Research Questions p. Verication and Validation Tools . p. 8.1.2 Tool Implementations .
	16 2.8	Grammar rule for Domain Invariant and Hypothesis Running Example: Flood Monitoring 4.2.3 Architectural Model Denition 6.2.1.1 Mission Modeling .	p. p. p. p.
	17 4.3	Grammar rule for Emergent Behavior Verication . 6.2.1.2 Automatic Mapping	p. p. p.
	3 Enhancing mKAOS and SosADL	
					p. p. p.

4 Conceptual Model for Missions in SoS p. 5 Example of overlapped of mKAOS' Mission Model and Responsibility Model representing missions and constituent systems of the ood monitoring SoS . p. 6 Partial example of a system described in SosADL p. 7 Partial example of a mediator described in SosADL p. 8 Constituent systems and missions of the ood monitoring SoS p. 9 Formal Denition in DynBLTL . p. 10 Freeze Operator in DynBLTL . p. 11 Grammar rule for Mission . p. 12 Textual Description in mKAOS . p. 13 Formal Mission Description . p. 14 Grammar rule for Mission Renement 18 Formal Denition for Emergent Behavior p. 19 SosADL Sirius' Viewpoint and Diagrams Specication p. 20 SosADL Denition Diagram . p. p. 1.3 Contributions . p. 1.4 Evaluation . p. 1.5 Outline . System-of-Systems . p. 2.2 Software Architecture . p. 2.3 Model-Driven Development . p. 2.4 mKAOS . p. 2.5 SosADL . p. 3.1 mKAOS Formalism . p. 3.1.1 DynBLTL . p. 3.3.3.4 Discussion . p. 3.3.4 Execution through built-in Simulator p. 3.3.4.1 Requirements . p. 4.2 Denition . 4.3.1 SosADL Model Simulation . p. 4.3.1.1 Generation of Concrete Architectures p. 4.3.2 Verifying Domain-Specic Properties 5.3.1 Context Manager . p. 5.4.1 V&V Module Overview . p. 5.4.1.1 Verication Conguration p. 5.4.1.2 Reports . p. 6 Case Study: Proof of Concept p. 6.1 Foreword . p. 6.2 Application: FMSoS . p. 6.2.1 Denition . 6.2.1.3 Architectural Modeling p. 6.2.2 Verication . p. 6.2.3 Validation . p. 8 Final Remarks p. 8.1 Revisiting the Contributions . p. 8.2 Relevant Links . p. 8.3 Future Work . p.

Table 1 :

 1 Contributions of this work

		Contribution
	1	Model-based renement methodology for SoS architecture
	2	mKAOS to SosADL mapping mechanism
	3	Simulator of SosADL
	4	mKAOS formalism
	5	Partial validation mechanism
	6	Verication mechanism using PlasmaLab
	7	mKAOS textual editor
	8	Graphical editor for SosADL

Table 2

 2

	relates mKAOS elements with the conceptual model's elements. All the el-
	ements have its representation in the language, although in some cases we choose to
	implement a more abstract concept, in order to avoid detailing the implementation.
	The main mKAOS model is the Mission Model, which describes missions and ex-
	pectations. The Responsibility Model concerns the description of both constituent
	systems, environment agents, and the assignment of missions/expectations to them. The

 depicts the overlapping of a Mission Model and a Responsibility Model representing missions of the ood monitoring SoS. For instance, the Alert Citizen in Risky Areas mission is rened into two other missions, namely Identify Citizens in Risky Area and Alert Citizen. The rst one is rened into two more missions, Calculate Risky Areas and Identify Citizen. The Identify Citizen and Alert Citizen individual missions are

 Model checking (CLARKE JR.;[START_REF] Clarke Jr | Model Checking[END_REF][START_REF] Clarke Jr | Model Checking[END_REF][START_REF] Zhang | Model checking software architecture design[END_REF] consists on verifying a model for some predetermined properties expressed in a given notation. As a notable solution for architectural verication, model checking is essential to identify possible faults in the model at design-time, allowing an early correction of those.Traditional model checking approaches uses the model and a set of properties as input, building a representation of the possible state of the architecture (TSAI; XU, 2000) and identifying whether any of these representations shows a constraint violation. The model is considered correct if no violation is found. Otherwise the model checker may present the

state in which the property is violated. This approach is susceptible to the state explosion problem

[START_REF] Holzmann | The logic of bugs[END_REF]

, i.e., the number of states might grow in such way that makes it impossible to analyze all possible states.

Table 4 :

 4 SosADL to DEVS Mapping formalism for modeling and analyzing systems through statecharts and timed events.

	SosADL Concept SosADL	DEVS
	Connection	Connection Declaration	DEVS Port
	Constituent System	System Declaration	Atomic Model
	Data Types	Data Type Declaration	Data Type
	Gate	Gate Declaration	DEVS Port
	Mediator	Mediator Declaration	Atomic Model
	Architecture	Coalition	Coupled Mode

proposes an execution mechanism for SosADL based on MDD. The approach uses DEVS (COURETAS; ZEIGLER; PATEL, 1999), an executable

 Monitor Activities. Load SosADL Models is the rst requiremente that composes Simulate SosADL

8 https://github.com/diverse-project/melange/issues/106 9 https://github.com/diverse-project/melange/issues/103 Figure 25: Simulate SosADL Models Requirement Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018

Table 5 :

 5 4. For each communicational capability dened in the Communicational CapabilityModel dene a mediator whose duties are dened based on the input and outputs for the capability, similarly to the gate production. Inputs or outputs from communicational capabilities that are not used by any operational capability are described Correspondence Between the Elements of mKAOS and SosADL Languages each of these links. This last step involves the Object Model and both Operational and Communicational Capability Models, as well as the links between the objects

	Constituent system	System
	Communicational capability	Mediator
	Operational capability	Gate (in system)
	Input/output/event	Input/output connection
	Entity	Data type
	Event	Data type
	and capabilities;	
	Table 5 summarizes the correspondences between the mKAOS and SosADL elements,
	implemented by the mapping process.	

as inputs/outputs for the SoS as a whole; 5. Connect constituent systems and mediators using the data association dened by input and output links in mKAOS, thereby establishing bindings in SosADL for Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018

Figure 35: Mapping Process from mKAOS to SosADL mKAOS SosADL

Table 7 :

 7 Individual Missions of the Flood Monitoring SoS

	Constituent system	Individual mission
	Meteorological System	Provide Weather Bulletin
		Monitor Weather
	River Monitoring System	Monitor River Levels
	Surveillance System	Monitor City Areas
		Calculate Risky Area
	Social Network	Identify Citizens

Table 8 :

 8 Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018 Results of automatic verication

	Constraint	Success Rate Samples Time
	AlertAlwaysSent 1.0	100	14281ms
	AlertAlwaysSent 0.99	1000	182310ms
	AlertAlwaysSent 0.9878	10000	2165701ms

Table 9 :

 9 Mission achievement rate for FMSoS

	Mission	Rate
	Detect Floods with Maximum Condence	95%
	Alert Citizen in Risky Areas	99%
	Avoid False Positives	98%
	Detect Flood	97%
	Identify Citizen in Risky Area	100%
	Alert Citizen	99%
	Identify Citizen	100%
	Calculate Risky Area	100%
	Monitor City Areas	99%
	Monitor River Levels	98%
	Provide Weather Bulletins	100%

 . This architecture was used to analyze the needs of M2Arch, in terms of mechanisms and tech-

Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira

Silva 2018

Table 12 :

 12 Mission Achievement Rates of Architectures for FMSoS maLab on the automatic validation, the number of samples was increased to 10.000, that increases the checking process time. Both architectures used the same simulation conguration, external controllers and mission model. Therefore, any dierence relies exclusively on the architecture itself.

	Mission	Achievement Rate Arch1 Arch-M2Arch
	Detect Floods with Maximum Condence	74.87%	95.20%
	Alert Citizen in Risky Areas	91.66%	98.91 %
	Avoid False Positives	87.64%	98.22%
	Detect Flood	85.44%	96.93%
	Identify Citizen in Risky Area	91,78%	99,71%
	Alert Citizen	99.3%	99.2%
	Identify Citizen	99.88%	99.9%
	Calculate Risky Area	99.91%	99.81%
	Monitor City Areas	98.52%	98.6%
	Monitor River Levels	98.91%	98.31%
	Provide Weather Bulletins	98.72%	99.91%

Table 13 :

 13 Publications derived from this work

	Id ICECSS'16	Title Bridging Missions and Archi-	Authors Eduardo Silva,	Mean ICECSS'16
		tecture in Software-Intensive	Everton	Cav-
		Systems-of-Systems		alcante,	Thais
					Batista,	Flavio
					Oquendo
	ECSA'17	Taming Missions and Archi-	Eduardo Silva ECSA'17 Doc-
		tecture in Software Intensive			toral	Sympo-
		Systems-of-Systems				sium
	SESoS'17	Rening Missions to Archi-	Eduardo Silva,	SESoS'17
		tectures in Software-Intensive	Everton	Cav-
		Systems-of-Systems		alcante,	Thais
					Batista	
	SAC'18	Formal Modeling Systems-of-	Eduardo Silva,	ACM SAC'18
		Systems Missions with mKAOS	Thais Batista
	SCP'18	Expressing	and	Checking	Eduardo Silva,	Science of Com-
		Mission-Related	Properties	Thais	Batista,	puter Program-
		on Systems-of-systems Design	Flavio Oquendo	ming, to appear
							Under develop-
					Thais	Batista,	ment
					Flavio Oquendo

1 https://github.com/SiriusLab/ModelDebugging -Simulating SosADL Concrete Architectures

Eduardo Silva,

Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo FerreiraSilva 2018

Activities of Manual Validation . p.

M2Arch Toolkit Overview . p. Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018

http://www.gemoc.org Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018

http://www.gemoc.org

http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/sirius/

http://www.eclipse.org/Xtext/

http://www.eclipse.org/qvt Conception d'architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018

BooleanUnaryOp : ' not '; ArithmeticUnaryOp : '+ ' | ' -'; HiddenBooleanType returns DataType : { BooleanType } ; // the end .

Table 11: Connections of Mediators of FMSoS mediators that will perform a mediation only when the constituent systems require, we observed no impact of this issue on simulation: the architecture behaves exactly in the same way when we removed the extra relations.

To evaluate the architectures with an objective view, we performed an interactions analysis. We evaluate how many interactions the constituent systems do with other constituent systems, based on the number of connections that are being used by any relation.

We organized these connections as input connections (IC) and output connections (OC), that are summarized by Table 10. Furthermore, we also evaluated the number of connections of mediators, summarized by Table 11.

The number of connections were dierent and, more specically, larger in Arch1. Arch-M2Arch uses a greater number of mediators, simplifying the communication between the constituent systems. Arch1 has fewer mediators, but these are overloaded with several connections. The increased number of connections hampers the evolution process of the SoS, since a change in an overloaded mediator or constituent has impacts on several interactions.

Finally, we evaluated the degree of commitment of the architecture within the mission model. For doing so, we compared the achievement rate of both architectures using the automatic validation process with the same mission model. For a better accuracy of Plas-As a long-term future work, each step of M2Arch can be rened. These steps can be detailed providing a set of guidelines and further instructions to allow stakeholders to be involved during all steps of architectural design. Also is important to give further attention to formal denitions, specially on missions, that can be automatically veried by M2Arch toolkit.

APPENDIX A --Publications

Our publications were achieved along the duration of the PhD, sharing our ndings with the community. Table 13 summarizes the publications.