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Abstract

The formulation of missions is the starting point to the development of Systems-of-Systems

(SoS), being used as a basis for the speci�cation, veri�cation and validation of SoS ar-

chitectures. Specifying, verifying and validating architectural models for SoS are complex

tasks compared to usual systems, the inner complexity of SoS relying specially on emer-

gent behaviors, i.e. features that emerge from the interactions among constituent parts

of the SoS which cannot be predicted even if all the behaviors of all parts are completely

known. This thesis addresses the synergetic relationship between missions and architec-

tures of software-intensive SoS, giving a special attention to emergent behaviors which

are created for achieving formulated missions. We propose a design approach for the ar-

chitectural modeling of SoS driven by the mission models. In our proposal, the mission

model is used to both derive, verify and validate SoS architectures. As �rst step, we de�ne

a formalized mission model, then we generate the structure of the SoS architecture by ap-

plying model transformations. Later, when the architect speci�es the behavioral aspects

of the SoS, we generate concrete SoS architectures that will be veri�ed and validated using

simulation-based approaches, in particular regarding emergent behaviors. The veri�cation

uses statistical model checking to verify whether speci�ed properties are satis�ed, within a

degree of con�dence. The formalization in terms of a temporal logic and statistical model

checking are the formal foundations of the developed approach. A toolset that implements

the whole approach was also developed and experimented.

Keywords : Software Architecture, Software-intensive Systems-of-Systems, Mission Mod-

eling, Semi-Automated Architecture Design
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Résumé

La formulation des missions est le point de départ du développement de systèmes-de-

systèmes, étant utilisée comme base pour la spéci�cation, la véri�cation et la valida-

tion d'architectures de systèmes-de-systèmes. Élaborer des modèles d'architecture pour

systèmes-de-systèmes est une activité complexe, cette complexité reposant spécialement

sur les comportements émergents, c'est-à-dire, des comportements issus des interactions

entre les parties constituantes d'un système-de-systèmes qui ne peuvent pas être prédits

même si on connaît tous les comportements de tous les systèmes constituants. Cette thèse

adresse le lien synergique entre mission et architecture dans le cadre des systèmes-de-

systèmes à logiciel prépondérant, en accordant une attention particulière aux comporte-

ments émergents créés pour réaliser les missions formulées. Nous proposons ainsi une

approche pour la conception d'architecture de systèmes-de-systèmes dirigée par le modèle

de mission. Dans notre approche, le modèle de mission sert à dériver et à valider les archi-

tectures de systèmes-de-systèmes. Dans un premier temps, nous générons la structure de

l'architecture à l'aide de transformations de modèles. Ensuite, lors que l'architecte spéci�e

les aspects comportementaux, la description de l'architecture résultante est validée à l'aide

d'une démarche conjointe qui comprend à la fois la véri�cation des propriétés spéci�ées et

la validation par simulation des comportements émergents. La formalisation en termes de

logique temporelle et la véri�cation statistique de modèles sont les fondements formels de

l'approche. Un outil mettant en ÷uvre l'ensemble de l'approche a été également développé

et expérimenté.

Mots-clés : Architecture logicielle, systèmes-de-systèmes à logiciel prépondérant, modéli-

sation de missions, conception architecturale semi-automatisée.
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1 Introduction

Software is everywhere. The rapid evolution of electronics allowed us to introduce

software components in the various unusual and unexpected elements of our daily life.

Such evolution also drastically improved computational power, thereby allowing software

systems to become more complex and bigger, at the same time as faster. Altogether, these

aspects woke an interest for integrating software systems in cooperation environments,

using a group of existing systems to form a larger, more complex, system that is capable

of performing new operations.

Many examples of cooperation-based systems as such can be found. One of the most

remarkable recent domains is Internet of Things (IoT) (ATZORI; IERA; MORABITO, 2010;

ALKHABBAS; SPALAZZESE; DAVIDSSON, 2017), in which the goal is to integrate many

�intelligent� things towards a cooperation environment to achieve a predetermined func-

tionality. Every thing is completely independent from each other and one of the design

challenge relies on how to de�ne a cooperation that would allow the integrated things to

provide the desired properties. One of the IoT applications are the smart city projects

(LEEM; KIM, 2013), that consists on integrating existing city systems and services to en-

hance urban life and development, including tra�c, public transportation, social services,

etc.

One of the most notorious initiatives for system integration and cooperation focus

on independent, heterogeneous constituent systems, therefore embracing domains as

IoT and smart cities. A system-of-systems (SoS) is de�ned as the result of the interaction

among independent heterogeneous constituent systems that cooperate to form a larger,

more complex system for accomplishing a given mission (MAIER, 1998).

From the system-of-systems perspective, a constituent system is an independent sys-

tem that is capable of interacting with other systems. Each constituent system has its own

objectives it will try to achieve by its own, the so-calledmission. The SoS as a whole also

have its missions, although di�erently from the individual missions of the constituent
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systems, the global missions of the SoS can only be achieve through cooperation between

the constituent parts.

Each global mission rely on an speci�c behavior that stems on cooperation, the emer-

gent behavior, a behavior that is only observable when the systems are interacting.

Although some of these behaviors can be expected, it is not possible to predict them based

on the constituent parts. Since the emergent behavior is more than the sum of the parts

(OQUENDO, 2018), they cannot be calculated based on the behaviors of the constituent

systems (BOARDMAN; SAUSER, 2006).

Once emergent behaviors cannot be associated to any single constituent system, nei-

ther the global missions that rely on that behavior can. Therefore, the global missions

can never be achieved by an individual constituent system, being then a characteristic of

the SoS as a whole (NAQVI et al., 2010).

Besides emergent behavior, there are other intrinsic characteristics that make SoS

distinct from other distributed, complex and large-scale systems. Regarding constituent

systems, they have (i) the operational and managerial independence, that consists

on providing their own functionalities even when they do not cooperate within the scope

of the SoS and can be managed independently, and are (iii) geographically distributed.

The SoS have an (ii) evolutionary development, that establishes that the systems

may evolve over time to respond to changes on its execution environment, or on its own

missions. Altogether, these characteristics have posed a set of challenges mainly related

to the development, dynamicity, and evolution of SoS, thereby making traditional system

engineering processes to be no longer suitable for constructing these systems (BOEHM;

LANE, 2006; CALINESCU; KWIATKOWSKA, 2010).

As a subset of SoS, Software-Intensive Systems of Systems (SiSoS) are a kind of SoS

in which software plays a key role (ISO 42010:2011, 2011). In this kind of systems, the

adoption of software engineering processes sightly impacts on development, implantation

and maintenance of the systems. The increasing complexity of software systems caused a

growing interest for SiSoS within the Software Engineering. Since the solutions for SiSoS

requires a complex, software-based integration for the constituent systems to form a SoS,

the traditional approaches are often ine�ective.

Although this work focus on SiSoS, the term SoS might be found along the text for

simpli�cation purposes. However, it is important to clarify that this thesis proposes a

solution and uses background speci�cally for SiSoS.
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This Chapter introduces the problem within the context. Section 1.1 gives an overview

and discuss the needs of the domain. Section 1.2 presents the research questions and goals

of this work. Section 1.3 presents the expected contributions of this work and Section 1.4

gives an overview of our evaluation proposal. Finally, Section 1.5 describes the outline of

this thesis.

1.1 Problem Statement

This Section introduces the problem, contextualizing and discussing the aspects re-

lated to this work. Section 1.1.1 presents the SoS context and the role missions play in it

and the architecture. Section 1.1.2 brie�y discusses architectural validation and veri�ca-

tion for SoS.

1.1.1 Bridging Missions and Software Architecture in SoS Mod-

eling

An important concern in the design of SiSoS is the systematic modeling of both global

and individual missions, as well as all relevant mission-related information. Missions play

a key role in the SoS context since they support the identi�cation of required capabilities

of constituent systems and the interactions among these systems that may potentially

lead to emergent behaviors towards the accomplishment of the global goals of the SoS.

Therefore, mission models can be viewed as a potential starting point to be adopted when

designing an SoS as they can be used as a basis of the whole development process (SILVA

et al., 2014).

In this context, mKAOS (SILVA; BATISTA; OQUENDO, 2015) is a pioneer mission de-

scription language, designed for the speci�cities of SoS. Mission models in mKAOS can be

seem as a complimentary requirements model that can be re�ned to the capability level,

expressing the functionalities the systems are able to perform. Such models can express

not only missions and capabilities, but also emergent behaviors and environment condi-

tions. Allowing the stakeholders to design and analyze the SoS from the most various

viewpoints. It is important to mention that mission models, in mKAOS, do not concern

on the implementation or behavior of the involved parts, focusing on the goals and what

are the potential contributions of each, instead.

In a mission-oriented approach for designing SoS, a next step towards the concretiza-

tion of the mission model is its re�nement to an architectural model, i.e., a model ex-
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pressing the SoS software architecture, that will de�ne how the desired functions will be

implemented. SoS software architectures have been recognized as a signi�cant element for

determining the success of these systems and contributing to their quality (GONCALVES

et al., 2014; NAKAGAWA M. GONCALVES; OQUENDO, 2013; GUESSI et al., 2015).

Mission models shall be used as a basis for the further elaboration of architectural

models by SoS software architects (SILVA et al., 2014), since they specify what the SoS is

intended to be. The process to produce an architecture based on the mission model can be

classi�ed as a re�nement process, since it maintains the coarse-grain-most properties as

it introduces new properties that are expected from the �ne-grain-most properties. These

properties can be used altogether in a veri�cation process, that might automatically detect

property violation (COUTO; FOSTER; PAYNE, 2014).

Since such a re�nement allows specifying the SoS software architecture in compliance

with the mission model, it is possible to establish traceability links between missions and

architectural elements. In this context, traceability between missions and architectural

elements is fundamental, speci�ably due to the unpredictable nature of emergent behav-

ior (OQUENDO, 2018). It is, therefore, necessary to simulate the architectural models to

observe which behaviors are emerging and which of those are desired or not. Furthermore,

thanks to traceability between models, it is possible to identify the subset of constituent

systems that are supporting each behavior. Through the simulation, it is possible to val-

idate the architecture within the mission model.

However, currently, there is a lack of studies that concerns on mission models. Hence,

existing architectural de�nition approaches tends to use traditional requirements engineer-

ing. Since constituent systems are the operational and managerial independent, i.e.

they have their own objectives and are managed by independent entities (MAIER, 1998),

such systems often present a behavioral uncertainty: the internal function and be-

havior of these systems are unknown or non-deterministic. Consequently, traditional

architectural approaches are particularly ine�ective due to its inability of to cope this

kind of circumstance and specially due to the nature of the emergent behavior.

In fact, every technique, framework or methodology we found up to this date com-

pletely neglects emergent behavior, focusing on properties as DANSe 1 or interoperability

as COMPASS 2. Further, these approaches rely on traditional architectural description

languages, that are often unable to express common characteristics of constituent sys-

1/http://www.danse-ip.eu/home
2http://www.compass-research.eu/index.html
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tems such as the inner dynamism and the behavioral uncertainty. In this context, SosADL

(OQUENDO, 2016a) is a novel ADL designed for the speci�cities of SoS. Formally grounded

in π-calculus (OQUENDO, 2016b), the language introduces new constructs that are key on

the SoS context, such as coordination elements.

1.1.2 Validation and Veri�cation of Software Architectures for

SoS

IEEE ISO 1012-2004 (IEEE ISO 1012-2004, 2005) de�nes a process for software veri�-

cation and validation (V&V) that determines whether the products on the development

process meet the requirements and therefore the user's needs with a given degree of quality.

Although related, validation and veri�cation are performed at di�erent moments of

software production and concerns on di�erent aspects of the system: veri�cation is related

to the properties that constraint the speci�cation, permeating between requirements (non-

functional requirements) and architectural model (architectural constraints). The veri�ca-

tion can be performed at any moment in the implementation process, even with un�nished

models. Validation regards the expectations and needs of the stakeholders, therefore it is

often performed as a �nal stage of implementation.

On one hand, validating Software Architectures is a challenge task even for traditional

systems, as it aims to guarantee quality degrees for the produced architecture. Therefore,

it is an essential part of the development process (MICHAEL; RIEHLE; SHING, 2009).

The validation process consists on checking whether an architecture does what it is

supposed to do. The challenge, that normally consists on checking the requirements, is

even more complicated for the SoS context. A validation process for SoS must be able

to identify when an architecture is capable of achieving the proposed missions, which is

a complex concept when compared to requirements. Since global missions depends on

emergent behavior, which are unpredictable, the validation process for SoS must rely on

simulation, di�erently from traditional systems.

Most of validation processes for software architecture are mostly manual, in which the

architect reads the requirements and identi�es whether the system implement it, relying

on traceability. In the SoS context, besides the identi�cation of the parts that implement

the missions, the architect must identify in which circumstances or contexts the missions

are achieved or might fail.

On the other hand, to verify correctness of a system the most popular veri�cation
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technique is model checking (CLARKE JR.; GRUMBERG; PELED, 1999; ZHANG; MUCCINI;

LI, 2010). Model checking consists on using a system speci�cation in a given notation

and a set of properties or constraints, then exhaustively testing the possible states of the

system towards the prede�ned set of properties on each of those states (TSAI; XU, 2000). A

model is considered correct, in the veri�cation context, if it complies with the constraints

in all possible states.

Traditional model checking, however, relies on building all possible states of a system

and are, therefore, subject to the state space explosion problem (HOLZMANN, 2002). Hence,

when it comes to systems with innate dynamism, uncertainty or intensive concurrency,

those traditional techniques becomes obsolete and ine�cient, often ine�ective. Since SoS

are essentially dynamic, concurrent and with some degree of uncertainty regarding the

behavior of the constituent systems, traditional model checking is not e�ective in this

context.

Furthermore, model check deeply depends on the notation used to specify the system,

since veri�cation techniques requires a notation that is checkable. There are some pro-

posals focused on formalization of architectural models, aiming to allow the architecture

to be automatically checked (LICHTNER; ALENCAR; COWAN, 2000). However, a formal

background is still one of the most desired features of an architectural description lan-

guage (ADL), which might support model checking of architectural models made using

an built-in formalism. In this context, most of the veri�cation approaches attempts to

introduce or use the existing formalism on ADLs, such as EAST-ADL (ENOIU et al., 2012)

and Wright] (ZHANG et al., 2012).

1.2 Research questions and Goals

Given the problem statement, the main objective of this work is to propose a method-

ology for developing SoS architectures. This methodology relies on the so-called mission

models and includes automated model transformations for producing the architectural

model and validation and veri�cation mechanisms for the produced architecture.

We walked through a sandy ground during the identi�cation of the problem to be

solved. Many pieces are missing to propose a solid architectural methodology that is

based on mission models. First, it was not clear how we could relate the missions and

architecture in order to re�ne the mission model maintaining the properties of the �rst.

Then, expressing an architectural model of SoS has proved to be a tricky activity, specially
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when trying to track the mission that would in�uence in each piece of the architecture.

Finally, on veri�cation and validation the problem proved to be tricker, since traditional

model checking is not an option and the observation of the emergent behaviors requires

simulation due to their unpredictability. We summarized these problems in six Research

Questions (RQ):

• RQ1: What are the common concepts that permeate between the mission model's

elements and the architectural model?

• RQ2: How can we relate mission model elements with architectural elements?

• RQ3: How to verify mission-related architectural properties in the SoS context?

• RQ4: How to validate an architectural model within a mission model?

• RQ5: How to validate an architecture produced through a mission-based process?

• RQ6: Which kind of architectural validation can be done regarding emergent be-

haviors?

RQ1 aims to identify some potential trace points that can be useful in a re�nement

methodology as the one intended by this work. Through the traceability supported by

these shared concepts, we can de�ne responsibilities throughout the methodology. RQ2

is complimentary to RQ1, focusing on the bigger picture: �can we relate mission-related

elements and properties and architectural elements?�. RQ3 and RQ4 concerns on veri�-

cation and validation, focusing on the techniques and technologies we could use to verify

and validate architectures of SoS, considering the properties de�ned in a mission model.

Finally, RQ6 focuses on the emergent behavior, that is often neglected by existing ap-

proaches, aiming to �nd a mean to validate the SoS on the speci�city of the emergent

behavior.

During the �rst steps of this study we choose some pieces that showed useful. Specif-

ically, this study is a continuation of a previous study in which we de�ned mKAOS, a

pioneer mission description language (SILVA; BATISTA; OQUENDO, 2015; SILVA; BATISTA;

CAVALCANTE, 2015). This language was built over a goal-oriented approach for require-

ments modeling, adding constructs to represent missions and re�ne it to the capability

level, which represents operations constituent systems provide. Also, we decided to use

SosADL (OQUENDO, 2016a): a pioneer formal language for SoS architectural description.

Due to the familiarity of the group with those languages and their pioneer nature, we
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decided to rely on them to de�ne our methodology. However, we are aware that other

languages can emerge on the context, therefore, we brie�y discuss how these languages

can be renewed in Chapter 8.

1.3 Contributions

This work permeated between many domains of software engineering. Our �ndings

regarding research questions are the main contribution of this study. These conclusions

led us to the de�nition of an architectural process that encompasses all steps of model

de�nition: description, validation, and veri�cation.

• RQ1: we identi�ed a set of common concepts that are present in both mission

and architectural models. Although these concepts are represented through di�erent

constructs and each model focus on a speci�c facet of such concept, we were able to

draw an automatic transformation that would simplify the modeling process. This

was a pioneer work, since automatic model transformation was never used in SoS

context;

• RQ2: the traceability promoted by the common concepts that permeates both mis-

sion and architectural model allows us to establish a direct link between missions

and the constituent systems that are involved in its achievement;

• RQ3: we identi�ed an alternative to traditional model checking that supports the

dynamism and behavioral uncertainty that hovers the constituent system in a SoS,

allowing us to verify the compliance of the architecture within properties described

in the mission model;

• RQ4: regarding validation, we propose a simulation-based validation that can be

partially automatized to validate the architecture within the mission model. For

doing so, we use the veri�cation mechanism to automatically check for mission

accomplishment and arrival of emergent behavior;

• RQ5: the simulation-based validation can also be used on manual processes of val-

idation, in which the stakeholders can observe how the SoS behaves as a whole,

determining whether it complies with their needs;

• RQ6: although it is not possible to predict emergent behaviors, we found that it

is possible to verify whether an expected emergent behavior is present or not, this
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] Contribution

1 Model-based re�nement methodology for SoS architecture
2 mKAOS to SosADL mapping mechanism
3 Simulator of SosADL
4 mKAOS formalism
5 Partial validation mechanism
6 Veri�cation mechanism using PlasmaLab
7 mKAOS textual editor
8 Graphical editor for SosADL

Table 1: Contributions of this work

Figure 1: Overview of the contributions

can be automatically checked using the veri�cation mechanism we propose, once the

emergent behavior is formally described.

Along the path to answer these research questions, we propose a set of enhance-

ments for the two modeling languages we decided to work with: mKAOS and SosADL.

Altogether, these contributions compose a mission-based methodology to design software

architectures of SoS. Table 1 summarizes the main contributions of this work, although

some additional minor improvements might be found along the manuscript. Figure 1 shows

an overview of the contributions, relating it with existing works.

The main contribution of this work is a pioneer model-based re�nement method-

ology to generate and validate architecture descriptions in SoSADL based on

mKAOS mission models. The generated architecture descriptions are partial in the
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sense that they only encompass the structural de�nition of the involved constituent sys-

tems and its topology, and the architect must introduce the behavioral de�nition of the

elements. Whenever the abstract architecture is enhanced with behavior, the methodol-

ogy provides mechanisms to validation and veri�cation. Further, we implemented a set of

tools that partially automatize the process and its steps.

Similarly to the existing approaches for deriving software architectures from require-

ments, such as KAOS (LAMSWEERDE; LETIER, 2004; LAMSWEERDE, 2001), the proposed

methodology relies on a top-down approach that allows producing SoS software ar-

chitectures based on a high-level description of the constituent systems. Such

methodology includes a mapping process that takes mKAOS models and partially gen-

erates SosADL models with the architecture's topology. Such mapping process ensures

traceability between the mission and architectural models as it is based on a model trans-

formation, thereby enabling architects to precisely identify which pieces of the software

architecture are responsible for each mission.

The contributions of this work also include a simulation mechanism for SosADL,

allowing the architect to evaluate the SoS within a controlled environment. This simulation

mechanism allow the architect to control the execution, step by step, introducing stimulus

or data at will.

Since the simulation mechanism is based on concrete architecture models, our method-

ology uses a mechanism developed in our research group to derive concrete architectures

from abstract architectures. This mechanism consists on producing all possible concrete

architectures that conforms to the abstract architecture, given a set of available systems.

A generated concrete architecture is used along the methodology, for validation and ver-

i�cation.

Regarding veri�cation and validation, essentially, we propose the formalization mKAOS

(SILVA; BATISTA; OQUENDO, 2015), allowing the formal de�nition of missions, emergent

behaviors, and SoS properties or constraints. Since the language from which mKAOS in-

herits of (KAOS (LAMSWEERDE, 2009)) is formally grounded in Linear Temporal Logic

(LTL ), we propose the use of the same kind of logic to mKAOS constructs. We adopted

DynBLTL (QUILBEUF et al., 2016; CAVALCANTE, 2016), an extension of LTL for dynamic

systems that showed promising as an hidden formalism. Using the formal de�nition of

missions and emergent behaviors, we are able to use the SosADL simulator to verify the

compliance of an architecture within the SoS properties using a simulation-based process

through PlasmaLab (LEGAY; SEDWARDS, 2014).
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Finally, the veri�cation mechanism based on PlasmaLab can be used to automatically

detect the occurrence of the emergent behaviors and calculate mission feasibility on a given

architecture, allowing the automatic validation of the architecture within the mission

model. A manual validation is also supported, based on the SosADL simulator, in which

stakeholders shall identify whether the SoS meet their needs.

During the evolution of this work, some publications were achieved concerning on the

contributions. These publications are listed in Appendix 8.3.

Along the manuscript we also report the problems we faced, such as our attempt

on using GEMOC 3 to develop our simulator for SosADL. The experience with these

problems might be valuable for the next generation of researchers and groups that work

on alternative approaches.

1.4 Evaluation

To evaluate our proposal we ran a case study, common to all mKAOS and SosADL

approaches: the Flood Monitoring SoS (FMSoS) (HUGHES et al., 2011). This system is

introduced in Chapter 2.8, since it is used along this manuscript as a running example.

Our case study encompasses the steps of the proposed methodology: (i) mission mod-

eling, (ii) mapping to architecture, (iii) architectural behavioral modeling, (iv) veri�cation

and validation. At some points of the evaluation, we compare the proposal with alternative

approaches, such as an alternative simulator for the veri�cation mechanism.

1.5 Outline

The remainder of this document is structured as follows. Chapter 2 provides all re-

quired background fundamental to the understanding of this work, including all involved

languages and the running example used to illustrate the proposal. Chapter 3 presents the

contributions in the context of the involved languages: mKAOS and SosADL, also pre-

senting a mapping mechanism between both languages. Chapter 4 presents the re�nement

methodology proposed by this thesis as a whole. Chapter 5 concerns on the implemen-

tation of the toolset that promotes the methodology. Chapter 6 presents an evaluation

of the proposal through a case study, showing the execution of the methodology along

the modeling of a system. Chapter 7 presents the current state of the art and related

3http://www.gemoc.org

Conception d’architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018



31

works. Finally, Chapter 8 presents the �nal remarks: conclusions, threats to validity and

limitations.
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2
Background

This chapter provides detailed information regarding the concepts and languages used

in this thesis. Section 2.1 presents a key concern for this work: systems-of-systems. Sec-

tion 2.2 brie�y introduces Software Architecture, another important concern of this work.

Section 2.3 brie�y explains Model-Driven Development, an approach used to partially

implement the proposal of this work. Sections 2.4 and 2.5 details the two main modeling

languages that will be used in this work: mKAOS and SosADL. Section 2.6 introduces

linear temporal logic, which is the base for the formalisms of this work. Section 2.7 brie�y

discusses about statistical model checking. Finally, Section 2.8 describes the running ex-

ample used in this work: the SoS Flooding Monitor.

2.1 System-of-Systems

The increasing complexity of systems demanded the need for composing existing sys-

tems into new ones, aiming to use the features from systems already deployed and under

execution, and also providing new features that arise from cooperation between the in-

volved systems. In this context, the study of systems-of-systems (MAIER, 1998) provides

solutions to the system composition process. By de�nition, a system-of-systems (SoS) is a

system composed of independent, functional constituent systems that cooperated among

themselves to achieve a greater mission.

SoS di�ers from traditional systems since it has emergent behavior, which is a com-

portment that emerges from constituent systems' interactions and is only observable dur-

ing cooperation. It cannot be predicted based on the capabilities of the constituent system

as it features functionalities of the architecture as a whole, instead of aggregation or union

of individual behaviors. In fact, an emergent behavior is observed to be more than the

sum of the constituent systems, such as coordination on drone �ocks (VASARHELYI et al.,

2018), that is a consequence of individual capabilities but cannot be predicted or derived
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Figure 2: Types of SoS

from these capabilities. The nature of the emergent behavior makes it di�cult to model

and implement SoS, since many of those behaviors are not predicted at the design time,

and some of them are undesirable.

Often found in the literature, the term system-of-systems is frequently used to refer to

systems that, in fact, are not SoS. An SoS is de�ned by its (MAIER, 1998) (i) geographical

distribution, meaning that the constituent systems are distributed in the physical space;

(ii) operational independence, each constituent system is capable of achieving its own

objectives and function by its own; (iii) managerial independence, the constituent

systems might be managed by di�erent companies with no communication between those;

(iv) evolutionary development, the constituent systems can, and often will, evolve

regardless of the SoS, meeting new requirements and con�gurations that matters only for

the constituent system; and �nally, (v) the emergent behavior, as aforementioned, a set

of behaviors that is only observable when the constituent systems are cooperating among

themselves. Furthermore, a SoS can be classi�ed in four kinds (BOEHM; LANE, 2006): (i)

directed ; (ii) collaborative; (iii) acknowledged and (iv) virtual. This classi�cation depends

essentially on two factors: (i) the awareness of the constituent systems regarding their

participation in an SoS, and (ii) the nature of the authority that manages the SoS. Fig.

2 plots the types of SoS in a authority versus awareness graph.

Directed SoS are systems-of-systems that are managed by a single authority that

controls all the constituent systems. The constituent systems are completely aware of

their participation within the SoS and often are projected and evolved aiming to better

meet the needs of the SoS. This kind of SoS is the most simple to handle, since the
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management authority accesses each detail of the constituent systems and can change it

anytime.Acknowledged SoS are systems-of-systems in which the constituent systems are

also aware of their participation and have a central authority, that is de�ned from mutual

agreements between the constituent systems' managers based on recognized objectives and

resources. This central authority does not have authority over constituent systems, simply

providing guidance to them. In Collaborative SoS, all the constituent systems are also

aware of their participation and work together to de�ne protocols and contracts to ful�ll

central purposes. In this kind of SoS, there is no central authority and the collaboration

is de�ned by the constituent systems individually. Virtual SoS, are the spontaneous

SoS, i.e. SoS whose constituent system are not aware of their participation and there is

no central authority. Virtual SoS are systems that are formed when constituent systems

shares a common space and interact in order to achieve their own goals. The SoS missions

are achieved without any acknowledge of the constituent parts and no control is possible,

although some guidelines might be agreeded between the constituent systems. Due to its

spontaneous nature, the current technology cannot manage virtual SoS.

When developing Directed SoS, there are not much di�erence from traditional systems.

Since a company or organization controls everything, traditional software development ap-

proaches might be e�ective in this case. However, for collaborative and acknowledged SoS

the reality is sightly di�erent, specially due to the potential uncertainty that hovers the

SoS, regarding constituent's behavior. Since there might be constituents with unknown

behavior, designing these kinds of system with traditional approaches is potentially in-

e�ective. Most of these traditional approaches uses modeling, validation and veri�cation

techniques that rely on the behavior of the elements, with an unknown behavior, the

results are inconclusive. Therefore, this work focuses on collaborative and acknowledged

SoS, in which solutions for modeling, validating and verifying are limited.

An essential concept in the SoS context is Mission. In SoS, a mission is a functional

objective or feature the system must achieve or provide (SILVA et al., 2014). It can be

classi�ed in two types: individual mission and global mission. An individual mission

is a mission that is assigned to a constituent system, which is responsible for achieving

it by its own. A global mission, in the other hand, is assigned to the SoS as a whole and

cannot be achieved without cooperation between its constituent systems. By de�nition,

no constituent system is able to achieve a global mission by its own.

Missions are closely related to requirements, in the sense that the SoS are designed

to achieve it. However, di�erently from requirements, missions are more related to the
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runtime and implementation than to design and might have a priority. Thus, it is not

possible to decide if a SoS achieves a mission by design and the SoS may fail to achieve a

given mission or choose to achieve a more important mission. Since the dynamic nature

of the SoS, global missions might often fail during recon�guration processes.

2.2 Software Architecture

Software Architecture (GARLAN; SHAW, 1994; PERRY; WOLF, 1992) is a sub-domain

of Software Engineering that concerns on the organization of software systems. It consists

on designing high-level structures and describing how those structures are related to each

other, abstracting some implementation aspects. The main objective is to reason about a

system model and solve problems at this level, taking complex and important decisions in

an early stage of development. A software architecture is intended to ease communication

between the stakeholders, by providing a clear, simple language that can be used across

many stages of development.

Essentially, a software architecture is composed of an homonymous document that de-

scribes the system in terms of components and connectors. Components are high-level

elements that represent any piece of the system responsible for producing or consuming

data, for doing so, components have their interfaces, usually called ports. Connectors

are communication elements: they carry data from one place to another. As components,

connectors have an interface, usually called role. Another fundamental part of a software

architecture is the con�guration, that speci�es how the components will interact with

each other through connectors. Besides structure, software architecture might also concern

on other aspects of the system, such as behavior (MAGEE; KRAMER; GIANNAKOPOULOU,

1999) and deployment environment (MIKIC-RAKIC; MEDVIDOVIC, 2002).

Further information can be associated to the software architecture document, the

so-called architectural model, such as properties to be ful�lled by some component,

connectors or con�guration itself. The structure of the document promotes modularization

and reuse of components, which quality can be measured by objective criteria, such as

number of dependencies.

In this context, an Architectural Description Language (ADL) is a domain-

speci�c language de�ned to support the de�nition of architectural models. An ADL al-

lows the description of all elements of a software architecture and might provide some

additional mechanism depending on the domain it is intended for. Most of the ADLs
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are designed for a speci�c domain, such as AADL, that is directed to avionic systems,

and Rapide (LUCKHAM, 1996), speci�c for distributed systems. However, there are some

ADLs for general use, such as xADL (DASHOFY; HOEK; TAYLOR, 2001) or SysADL (LEITE;

OQUENDO; BATISTA, 2013) and also extensible ADLs such as Acme (GARLAN; MONROE;

WILE, 1997).

Although there is no consensus regarding which ADL to use, it is accepted that ADLs

must provide �rst order elements to represent the main concerns of software architecture

and might provide additional elements for domain-speci�c concerns. In this context, most

ADLs are semi-formal languages, providing more �exibility to the architect. However,

formal ADLs are gaining attention since they allow automatic checking of properties at

design time, increasing the degree of con�dence of the model.

Checking properties of an architectural model is an important step of the architectural

model. It is fundamental to maintain some quality attributes of software architecture

(IEC61508-3, 2010; ISO/IEC9126, 1995). In one hand, veri�cation (IEEE ISO 1012-2004, 2005)

consists in checking whether an architecture satis�es a set of properties. These properties

can be checked even with an incomplete architecture and it is expected to the model

to maintain its properties during evolution. In formal languages, these properties can be

described using some formalism and the veri�cation might be automatic, performed by

some model checker.

On the other hand, it is fundamental to validate the system's architecture (IEEE ISO

1012-2004, 2005). The process of validating an architecture consists of checking whether the

architecture does what it is supposed to, therefore it is usually performed at the end of

the modeling stage. Usually, validation techniques consists in identifying which elements

implements each requirement (KUMAR, 2016). Often, the architecture is only validated

at runtime, after all steps of implementation of the system. However, some initiatives

suggests an early, continuous validation of the architecture (GOLDSTEIN; SEGALL, 2015),

still at design time. For doing so, the architecture must be capable of being simulated, to

allow the architect to observe how it behaves.

2.3 Model-Driven Development

Among the issues of developing software, maintaining documentation is certainly one

of the most challenging and stressing tasks. Specially software models, among them the

software architecture model, often di�ers from the implementation and some solutions pro-
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Figure 3: Model-to-model transformation

jected at design time might be lost during the implementation process. To minimize this

problem, model-driven development (MDD ) (VöLTER T. STAHL; HELSEN., 2006) proposes

a visible change of perspective, promoting a model-level problem solving. The approach

relies on running a set of automated models transformation to ensure traceability and min-

imize translation errors. These transformations are usually from one language to another,

and might be used in a re�nement process, re�ning a coarse-grain model to a �ne-grain

model.

An important MDD concept is the so-called model-to-model transformations

(M2M) . It consists in mapping elements of two languages, based on the meta-models

of the involved languages. Fig. 3 illustrates the transformation mechanism, that takes a

model in language A and applies a set of transformation rules to produce a model in

language B.

There are several tools that provide M2M mechanisms, among them: ATL (ATL,

Eclipse.org, ) and QVT (QVT, Eclipse.org, ). ATL is a model transformation toolkit, with

an homonymous language. The toolkit includes the language implementation, an engine

to run the transformation and test mechanisms. On the other hand, QVT Operational is

also a powerful transformation language, and an OMG standard, part of the QVT toolkit.

Although both tools are similar, ATL documentation and community is larger than QVT,

thus, we choose ATL for our implementation.

MDD promotes a development methodology that consists in describing software through

coarse-grain models and apply several M2M transformations to obtain a �ne-grain model.

The transformation, that ensures traceability, might involve several kinds of languages,

including programming languages. As the mapping is complete, the �ne-grain model will

certainly re�ect all coarse-grain decisions and solutions.
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Figure 4: Conceptual Model for Missions in SoS

2.4 mKAOS

In a previous work, we conducted a literature review (SILVA et al., 2014) and proposed

a conceptual model for missions in SoS. This conceptual model encompasses speci�c ele-

ments for the SoS domain and relates those with missions. Figure 4 presents the conceptual

model in which mKAOS relies on. Its basic unit is the System, that may be the SoS

itself or a Constituent System. An SoS is a composition of Constituent Systems. The

central element of the model is theMission, that is specialized asGlobal, assigned to the

SoS, or Individual, assigned to the Constituent Systems. A mission encompasses a set

of �ve elements: (i) Priority, that de�nes the commitment degree of the system with the

mission; (ii) a Trigger, that de�nes the circumstances in which the system will pursuit

the achievement of the mission; (iii) Constraint, in form of Invariants and Heuristic;

(iv) a set of Parameters, data that the mission will use or produce as executed; and (v)

a set of Tasks, operational implementations that execute a functionality. Missions can

also be re�ned into sub-missions, and might contribute to each other.

We identi�ed that the KAOS (DARIMONT; LAMSWEERDE, 1996; LAMSWEERDE; LETIER,

2004; LAMSWEERDE, 2001) language supports several concepts involved in this conceptual

model. However, as the language uses requirements of basic unit, an extension is needed to
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Conceptual Element mKAOS Element

SoS System
Constituent System Constituent System
Global Mission Mission
Individual Mission Mission (leaf)
Priority Mission attribute
Trigger Mission attribute
Invariant Domain Invariant
Heuristic Domain Hypothesis
Task Operational Capability
Parameter Entity + Links
Emergent Behavior Emergent Behavior
Connectivity Input/Output Link
Cooperation Communicational Capability

Table 2: Relation between mKAOS elements and conceptual model

properly represent all the concepts from the model. As a design choice, this extension will

not handle implementation details, focusing on the description of mission and constituent

systems in terms of tasks, that we abstracted to capabilities.

mKAOS (SILVA; BATISTA; OQUENDO, 2015; SILVA; BATISTA; CAVALCANTE, 2015) is a

specialization of KAOS, a requirements engineering language and methodology. The basic

elements de�ned in KAOS are: goals, requirements, con�icts, obstacles, and expectations.

KAOS' methodology uses a set of diagrams to ensure that a requirement has at least one

operational function implementing it. Due to the existing similarity between the elements

de�ned in KAOS and the ones required to represent mission-related information, mKAOS

was derived from such a language aiming at supporting mission modeling in SoS. mKAOS

takes advantage of most properties of KAOS, such as its philosophy in terms of separating

models according to their respective concerns and overlapping them to have a cross-view of

the system. Besides specializing some concepts de�ned in KAOS, mKAOS creates speci�c

elements suited to the SoS context, such as emergent behaviors and missions. An SoS can

be described in mKAOS through six di�erent models, each one with its own syntax and

semantics.

Table 2 relates mKAOS elements with the conceptual model's elements. All the el-

ements have its representation in the language, although in some cases we choose to

implement a more abstract concept, in order to avoid detailing the implementation.

The main mKAOS model is the Mission Model, which describes missions and ex-

pectations. The Responsibility Model concerns the description of both constituent

systems, environment agents, and the assignment of missions/expectations to them. The
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mKAOS Model Model Elements

Mission Model Mission, expectation
Responsibility Model Constituent system, environment agent
Object Model Entity, event, domain hypothesis, do-

main invariant
Operational Capability Model Operational capability
Communicational Capability Model Communicational capability
Emergent Behavior Model Emergent behavior

Table 3: mKAOS models and respective elements

Object Model speci�es objects used by the system for data exchange and physical struc-

tures in terms of: (i) entities, which represent a data abstraction or physical entity; (ii)

events that can be handled by the systems; (iii) domain hypothesis, desirable features

of the system, de�ned as constraints; and (iv) domain invariants, which are constraints

that must hold during the whole system execution and further evolution. mKAOS also

provides two Capability Models: theOperational Capability Model de�nes a set of op-

erations that each constituent system is able to execute, i.e., their operational capabilities,

whereas the Communicational Capability Model speci�es the possible interactions

and cooperation among constituent systems, the so-called communicational capabilities.

Finally, the Emergent Behavior Model describes emergent behaviors, speci�c features

that are produced from the interaction between at least two constituent systems. Table 3

summarizes the elements of the mKAOS models.

TheMission Model follows a tree structure in which leaf nodes represent individual

missions and non-leaf nodes represent global missions, respectively assigned to constituent

systems and to the SoS as a whole. In this model, expectations represent objectives ex-

ternal to an SoS and that might in�uence the achievement of its missions. Re�nement

links establish a re�nement relationship among missions, so that a given mission can be

re�ned into other sub-missions and/or expectations. The assignment of missions to con-

stituent systems is de�ned in a corresponding mKAOS Responsibility Model, in which

each constituent system must have at least one assigned individual mission and each indi-

vidual mission must be assigned to exactly one constituent system. In turn, expectations

must be assigned to environment agents, which are external agents that somehow interfere

on the system. Fig. 5 depicts the overlapping of aMission Model and a Responsibility

Model representing missions of the �ood monitoring SoS. For instance, the Alert Citizen

in Risky Areas mission is re�ned into two other missions, namely Identify Citizens in Risky

Area and Alert Citizen. The �rst one is re�ned into two more missions, Calculate Risky

Areas and Identify Citizen. The Identify Citizen and Alert Citizen individual missions are
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Figure 5: Example of overlapped of mKAOS' Mission Model and Responsibility Model
representing missions and constituent systems of the �ood monitoring SoS

assigned to the Social Network system, while the Calculate Risky Area individual mission

is assigned to the Surveillance System. Fine-grained mission-related information can be

expressed in mKAOS by using the other models available in the language.

The notation provided by mKAOS also allows de�ning relationships among missions.

In Fig. 5, the Alert Citizen mission depends on the Identify Citizen in Risky Area mis-

sion, i.e., the �rst mission can only be achieved after achieving the second one. Another

relationship is between the Avoid False Positives and Detect Flood missions, in which the

former facilitates the achievement of the latter.

2.5 SosADL

A proper representation of SoS software architectures is quite important to the success

of such systems as it can provide a basis for architectural analysis and guide their evolu-

tion. When describing SoS software architectures, it is fundamental to consider: (i) both

structural and behavioral de�nitions for the SoS and its constituent systems; (ii) interac-

tions among constituent systems; (iii) adaptations due to the dynamic scenarios in which

an SoS operate; and (iv) properties, constraints, and quality attributes (BATISTA, 2013).

To cope with these concerns, SosADL (OQUENDO, 2016a) arises as a formal language to

comprehensively describe SoS software architectures while allowing for their automated,

rigorous analysis. The formal foundations of SosADL rely on an extension of the π-calculus
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process algebra (OQUENDO, 2016b), thereby being a universal model of computation (??)

enhanced with SoS concerns.

One of the main characteristics of SoS software architectures is that the concrete

constituent systems that will be part of the system are partially known or even unknown at

design time. For this reason, these systems need to be bound dynamically, thereby making

an SoS software architecture concretized only at runtime. To cope with this requirement,

SosADL allows the description of SoS software architectures in an intentional, abstract

way. This means that the architecture description expresses only the types of constituent

systems required to accomplish the missions of the SoS as a whole (at design-time), but

the concrete systems themselves will be identi�ed and evolutionarily incorporated into the

SoS at runtime. Furthermore, the communication among constituent systems is said to be

mediated in the sense that it is not solely restricted to communication (as in traditional

systems), but it also allows for coordination.

SosADL uses a set of eleven elements, namely: (i) systems; (ii) gates; (iii) connections;

(iv) assumptions; (v) guarantees; (vi) properties; (vii) behavior; (viii) mediators; (ix)

duties; (x) coalitions; and (xi) bindings. Despite possible similarities with respect to the

elements de�ned in traditional ADLs, the concepts de�ned in SosADL are aligned with

the terminology adopted in the literature about SoS to �t the semantics required in SoS

software architectures.

The system concept is an abstract representation of a constituent system that may be

part of the SoS, but that is not under its control due to its operational and managerial in-

dependences. A system encompasses gates, assumption, guarantees, properties, and

an internal behavior describing its mission. A gate groups interaction points of a

system with its environment, encompassing at least one connection. A connection is a

typed communication channel through which the system sends or receives data.Assump-

tions express properties expected by a gate of a system to be satis�ed by the environment,

e.g., rules related to provided/required data in gates. Guarantees describe properties

that must be enforced by the system, thereby being a way of representing speci�c re-

quirements at the architectural level. A behavior represents the functional capabilities

of the system and how it interacts with the environment by sending/receiving data. The

formally founded constructs for expressing behavior in SosADL are similar to the ones

de�ned in π-ADL (OQUENDO, 2004), another ADL based on π-calculus for formally de-

scribing dynamic software architectures of traditional systems under both structural and

behavioral viewpoints. Fig. 6 shows a partial example of a system described in SosADL.
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Figure 6: Partial example of a system described in SosADL

The Gateway system has a gate called noti�cation, which is composed of two connections,

measure (for receiving data) and alert (for sending data). The guarantee for this system

de�nes a protocol stating that the gate receives values via the measure input connection

and sends values via the alert output connection. These actions are performed repeatedly,

as expressed by the repeat construct.

In SosADL, a mediator is an architectural element under control of the SoS and

mediates the communication and coordination among constituent systems, thus also pro-

moting interoperability among them. Mediators di�er from traditional connectors as they

are used not only as mere communication channels, but also as elements responsible

for the coordination among the interacting constituent systems (ISSARNY; BENNACEUR,

2013). Therefore, mediators play a role in terms of allowing the SoS to achieve its mis-

sions through emergent behaviors arising from such interactions. Similarly to systems,

mediators can be also described abstractly, so that concrete mediators can be synthesized

and deployed at runtime in order to cope with the highly dynamic environment of an

SoS. A mediator de�nition encompasses a set of duties, which express obligations to be

ful�lled by gates of constituent systems that may interact with the mediator. Moreover, a

mediator allows de�ning assumptions, guarantees, and an internal behavior. Fig. 7 exem-

pli�es a mediator in SosADL, with a partial textual description and an example graphical

representation. A mediator is de�ned with a duty called replicate and a guarantee speci-

fying that the mediator will receive a Parameter and simultaneously send it through both

connections destionation1 and destination2.

A coalition represents the SoS itself and de�nes how constituent systems and mediators

can be temporarily arranged to compose the SoS. As systems are not under the SoS

Conception d’architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018



44

Figure 7: Partial example of a mediator described in SosADL

control, it is necessary to specify how the mediators can be created and which systems

will interact with them to de�ne a concrete SoS. For this purpose, coalitions are composed

by a set possible systems, mediators, and bindings that will be realized at runtime. A

binding is the construct responsible for establishing dynamic connections between systems

and mediators, in particular connections from gates to duties. Such a dynamic nature of

bindings is an important aspect for SoS since it is often not possible to foresee which

concrete constituent systems will be connected to the mediators at runtime.

It is important to highlight that SosADL focus on the architecture of an SoS as a whole,

therefore, the individual architectures of the constituent systems are, although desirable,

not mandatory in an SosADL description. This covers one important aspect of the SoS

domain: the internal architectures of the constituent systems are often unavailable. The

architecture of the SoS, however, strongly depends on the interfaces of each constituent

system, de�ned in terms of gates.

2.6 Linear Temporal Logic

Linear Temporal Logic (LTL) (PNUELI, 1977; EMERSON, 1990) is a modal logic in

which the statements refer to time. LTL formulae are composed of proposition variables

(PV), logical operators and temporal modal operators. By default, LTL encompasses the

logical operators: ¬ , ∧ , ∨ , =⇒ and ⇐⇒ .

Regarding temporal operators, LTL proposes the use of �ve operators, that are ex-

tended to seven by some authors.
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1. Next(ϕ ): the formula ϕ must be true in the next moment

2. Always(ϕ): the formula ϕ must remain true during all time

3. Eventually(ϕ): the formula ϕ must become true in the future

4. Until(ϕ,σ): condition ϕ must be true until σ becomes true, ϕ must become true

at some point

5. Release(ϕ,σ): once ϕ becomes true. σ must be true. ϕ may never become true

6. Weak Until(ϕ,σ): similar to Until. σ may never become true

7. Strong Release(ϕ,σ): Similar to Release. ϕ must become true at some point

In LTL, a proposition is satis�ed by the in�nite sequence of evaluations of a formula.

That may refer to future paths or states of the system, depending on the temporal modal

operators.

An extension of LTL is Bounded Linear Temporal Logic (BLTL) (KAMIDE, 2012),

that introduces the notion of time bound. In LTL, the propositions must be satis�ed

during an in�nite time sequence, which is often hard to proof. For tackling this issue,

BLTL uses prede�ned subset of time t, in which the formulae must be satis�ed.

Using the time bound, it is possible to de�ne properties that are maintained during

a �nite time lapse. The modal temporal operators are enhanced with this aspects, that

may use time units or steps to de�ne the duration of the bound. Using time bounds,

the evaluation process of BLTL always rely on a �nite set of states.

2.7 Statistical Model Checking

In software architecture, properties or constraints highly in�uence the design process

(GIESECKE; HASSELBRING; RIEBISCH, 2007), since they are limiting factors and often

restrict the available options in the decision making process. Architectural constraints

typically can be classi�ed as two kinds: (i) technical, that restricts the architecture due to

technical factors such as response time or physical infrastructure; and (ii) business, which

concerns on speci�cities of the domain of the system.

However, the most important thing about architectural properties is the possibility

of verifying these properties at design-time, decreasing the cost of the implementation
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process. In this context, model checking is typically adopted as a solution, since it

allows the veri�cation of such properties in a simple manner. Model checking (CLARKE

JR.; GRUMBERG; PELED, 1999; ZHANG et al., 2012) consists on verifying a model for some

predetermined properties expressed in a given notation. As a notable solution for archi-

tectural veri�cation, model checking is essential to identify possible faults in the model

at design-time, allowing an early correction of those.

Traditional model checking approaches uses the model and a set of properties as input,

building a representation of the possible state of the architecture (TSAI; XU, 2000) and

identifying whether any of these representations shows a constraint violation. The model

is considered correct if no violation is found. Otherwise the model checker may present the

state in which the property is violated. This approach is susceptible to the state explosion

problem (HOLZMANN, 2002), i.e., the number of states might grow in such way that makes

it impossible to analyze all possible states.

Furthermore, traditional model checking techniques have some limitations. Besides the

state explosion problem, the checkers needs to be able to produce states of the architecture,

which is particularly hampered by architectural dynamism. When the architecture can

change at runtime, producing states may become specially expensive and some times

inviable. Also, the exhaustive methods tends to be unfeasible unless the exact number

of components is known in advance (QUILBEUF et al., 2016). In the SoS context, the

problem becomes even more challenging due to the uncertainty regarding the constituents'

behavior: as they may behave in non-deterministic manners, using exhaustive methods

may become non-e�ective.

Alternatively, statistical model checking (SMC) (LEGAY; DELAHAYE; BENSALEM,

2010; LEGAY; SEDWARDS, 2014) is gaining a momentum because it provides a probabilistic,

simulation-based method for verifying properties on an architecture. SMC uses one or

multiple heuristics to estimate the degree of compliance of a system to a set of constraints.

Instead of building all possible states, this approach builds the more probable states and

rely on simulation. Instead of inferring new states based on available data, statistical

model checkers use an external simulator to analyze the e�ect of an event on a state. Such

external simulator might have unknown behavior or use non-determinism machines in its

processing.

SMC relies on simulation, using a set of stochastic models derived from the architec-

ture to calculate the probability of each bounded property to be satis�ed. Using statistical

analysis over the most probable states, statistical model checkers can calculate the com-
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pliance of the model to the properties with some degree of con�dence. Such degree of

con�dence might be predetermined or a goal for the checker, depending on the heuristic

adopted.

It is important to mention that there are some other alternatives to traditional model

checking that solves the state explosion problem, such as Adaptive States and Data Ab-

straction (DAMS et al., 1994). However, these approaches only solves one of the issues of

traditional model checking in SoS context. These approaches still require the behavior of

the systems to be known. Using SMC, the only requirement is that the system should be

able to be simulated.

2.8 Running Example: Flood Monitoring

Floods are one of the major problems in many countries around the world (HUGHES et

al., 2011; DEGROSSI; AMARAL; VASCONCELOS, 2013). In rainy seasons, this type of event

can be quite devastating in urban centers traversed by rivers as they may cause material,

human, and economic losses. Regardless of their magnitude, �oods represent a risk and

hence they must be detected as quickly as possible. This is important to ensure a better

planning of the management actions required to reduce possible damages caused by the

�ood, e.g., de�ning evacuation plans, rearranging tra�c in the proximities of �ooded

areas, and coordinating rescue actions.

In this context, an SoS can foster e�ective �ood monitoring, support timely response

from authorities, and contribute to alleviate impacts caused by �oods. To achieve these

purposes, such an SoS can combine information provided by multiple collaborating in-

dependent systems such as river monitoring systems and meteorological systems. Within

this SoS, river monitoring systems composed of a network of sensors spread in �ood-prone

areas near the river can be used to monitor the river water level as an indicator of �ooding.

In turn, meteorological systems comprising weather stations and satellites can be used to

collect and analyze atmospheric parameters (e.g., temperature, humidity, rain amount

and intensity, etc.) that also serve as input to the construction of prediction models for

supporting weather forecasting.

Despite these systems seem to be enough for enabling the SoS to determine the risk of

a potential �ood, false positives regarding a �ood risk may be caused by biased sensors or

other conditions on the river. Aiming at improving the accuracy of the measures collected

by the sensor nodes deployed in the monitored river area, a surveillance system based on
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Figure 8: Constituent systems and missions of the �ood monitoring SoS

the remote use of drones can be used to provide images of the river for estimating its �ow

rate. In this scenario, drones endowed with digital cameras can be used to record video

and/or capture images of the over�own area. These multimedia data are then processed

and combined with data provided by the meteorological systems and data provided by

the sensor nodes spread on the river, thus contributing to detect an imminent �ood with

maximum con�dence and avoid false positives.

Fig. 8 depicts the aforementioned constituent systems and its respective missions in

the scope of the Flood Monitoring SoS (FMSoS) , whose global missions are (i) to detect

�ood with maximum con�dence and (ii) to alert citizens in risky areas. To accomplish

such missions, the river monitoring system, the surveillance system, the meteorological

system, and a social network should collaborate among each other. River monitoring sys-

tems are responsible for monitoring the river level, meteorological systems can produce

weather forecasts indicating future conditions, and surveillance systems are responsible

for monitoring the city by recording videos and/or capturing images. Although both river

monitoring and meteorological systems are able to independently emit alert messages in-

dicating a critical condition for �ooding, only the interaction between these systems allows
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avoiding false positives by combining data provided by them. In addition, images provided

by the surveillance systems can support the con�rmation of the �ood risk. Therefore, this

emergent behavior resulted from the interaction among such systems enables the �ood

monitoring SoS to detect �oods with con�dence and to avoid false positives. It is worth

mentioning that all of these constituent systems are operationally independent, i.e., they

provide their own functionalities independently from each other and out of the scope of

the SoS.
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3
Enhancing mKAOS and SosADL

In order to propose a methodology to produce architectural models based on mission

models, it is fundamental to enhance the mission modeling language mKAOS and develop

a set of tools for the architecture description language SosADL. On one hand, we iden-

ti�ed that mKAOS lack a inner formalism that would support the derivation of software

architectures and promote veri�cation, also supporting validation of models. On the other

hand, due to the importance of simulation in the context of veri�cation and validation,

it was necessary to build a simulation engine for SosADL based on the formal semantics

de�ned in π-calculus. This chapter focuses on these aspects of mKAOS and SosADL,

providing solutions and enhancements that supports the de�nition of a mission-based

architectural methodology.

In Section 3.1 we discuss the formalism that is needed to mKAOS to allow automatic

validation and veri�cation. As a secondary contribution, we introduce a graphical language

for SosADL in Section 3.2. Further, as a simulation/execution mechanism is necessary to

support validation and veri�cation, we discuss SosADL simulation environment in Section

3.3.

3.1 mKAOS Formalism

Verifying mission-related properties is one of the goals of this work, we investigate

the notation used by the mission description language, mKAOS. Since veri�cation of

models depends on the notation used to de�ne the properties, we found a lack of formal

mechanism, in mKAOS, to describe the mission-related properties.

mKAOS was designed as a simple solution for SoS mission modeling. However, mKAOS

relies on several assumptions that might not be satis�ed. For instance, mKAOS assumes

that an emergent behavior arrives as soon as the required communicational capabilities

are present in the system. This assumption is very overweening and this is a potential
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point of failure of the de�nition language, that might compromise all approaches that uses

it.

Aware of this fact, we introduced a formalism for mKAOS, based on Linear Temporal

Logic (LTL ) (MANNA; PNUELI, 1992) to mitigate this limitation. This formalism raises

mKAOS to a formal language, from current semi-formal level, that allows the mission-

related properties and emergent behaviors to be checked.

To de�ne such formal mechanism for mKAOS, it was necessary to investigate the

SoS needs in terms of logical operators. This task was already done by Oquendo et al

(OQUENDO, 2016b), Cavalcante (CAVALCANTE, 2016) and Quibeuf et al. (QUILBEUF et

al., 2016), in dynamic systems context. However, Oquendo's solution applies π-calculus, a

process calculus and might be used as inspiration only. On the other hand, Quibeuf et al.

(CAVALCANTE, 2016; QUILBEUF et al., 2016) proposed DynBLTL, a dynamic extension for

BLTL (Bounded Linear Temporal Logic) that introduces a new value U that represents the

unde�ned value, allowing therefore the de�nition of transitional states in which variables

and formulas have its value yet to be de�ned.

This Section details the formalizing process of mKAOS. In Section 3.1.1 we describe

DynBLTL, the formal language we choose to introduce in mKAOS. Section 3.1.2 presents

the freeze operator, a new operator we needed to introduce in DynBLTL. Section 3.1.3

describes the mKAOS grammar, produced in the formalization process.

3.1.1 DynBLTL

Veri�cation mechanism, either using traditional model checking or not, deeply depends

on the notation used by the properties language. Any method for automatic property

checking implements the semantics of one or more property languages, therefore the choice

of property notation depends on the required method for veri�cation.

Aware of this fact, we decided to tackle the formal limitation of mKAOS introducing

a formalism that allows a model checking technique that is adequate to SoS models. In

this context, DynBLTL is a language for expressing the properties in such a manner

that they can be used by SMC tools in the veri�cation process. It allows the dynamic

bound of operations, allowing the system to maintain execution states with a degree of

uncertainness.

DynBLTL's main contribution is the introduction of a third value: U , that represents

unde�ned or inexistent values. Grounded on a three-value logic, the language supports
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Figure 9: Formal De�nition in DynBLTL

the expression of properties that depends on variables or states that may not be present

during some moment. With that, it is possible to express constraints without the previous

knowledge of the current state of the model, allowing dynamism to be supported by the

language.

The introduction of the value U changes the semantic of the binary operators of BLTL:

• ¬ works as usual with boolean values, U otherwise

• ∨ returns true if one of the operands are true and false otherwise, note that it

returns true even if the other one is U. It returns U if both operands are U

• ∧ ≡ ¬ (¬ ϕ1 ∨ ¬ ϕ2)

• =⇒ ≡ ¬ ϕ1 ∨ ϕ2

Each constraint in DynBLTL is composed of three main constructs: (i) a quanti�er;

(ii) a temporal bound; (iii) the property. The quanti�er determines the variables that

will be taken into account for the property, restraining the veri�cation set. The temporal

bound determines the time interval that will be considered for the property, in which the

variables will be bound and the property veri�ed. Finally, the property encompasses an

expression that will be evaluated with the values within the temporal bound. A system

complies with a constraint if the evaluation of its property results in true, under the

overmentioned conditions.

Fig. 9 shows a formal de�nition in DynBLTL. It de�nes a rule that speci�es that

eventually in 40 steps of the system's execution [temporal bound], for each constituent

system of type RiverMonitoringSystem [quanti�er], if there is aWarning then there should

be a constituent system SocialNetwork that will handle this warning [property].

For supporting a proper de�nition of the properties, DynBLTL also provides a set of
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built-in functions that supports the exploration of architectural models. These functions

are:

• allOfAType(type): returns a set with all components of type type;

• areConnected(a, b): returns true if the components a and b are connected;

• areLinked(a.c, b.c): returns true if the connection c of node a is connected to the

connection c of node b;

• lastValue(a.c): returns the last non-unde�ned value of connection c of node a

3.1.2 The Freeze Operator

During our studies over DynBLTL and mKAOS an important limitation on the con-

straint language was detected. In fact, since DynBLTL relies on dynamic bound of vari-

ables, some values that would be necessary for some future property might be lost in the

constraint de�nition process, due to the lack of mechanism to represent value persistence.

An example of this limitation was found on the speci�cation of an emergent behavior

for the FMSoS. This expected behavior establishes that every data produced by a Sen-

sor will eventually arrive at the RiverMonitoringSystem. With the current version of

DynBLTL, it is not possible to de�ne a property for such behavior, therefore the tools are

unable to check it.

However, this is a limitation of DynBLTL, not of temporal logics. We identi�ed some

studies on temporal logic that suggest the so-called freeze operator (DEMRI; SANGNIER,

2010). Such operator implements persistence on values to be bound, allowing these values

to be used in future timestamps.

Since DynBLTL is designed to evaluate models that rely on stochastic mechanisms,

the language focuses on the non-deterministic behavior of the systems. Therefore, storing

values for future use was found unnecessary so far for introducing a degree of complexity

the language was not designed to support. However, this emergent behavior of FMSoS

brought the need for such operation.

As a result, the freeze operator was introduced in DynBLTL with the following se-

mantics:

• freeze(var): returns the current value of var, that might be stored for further use
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Figure 10: Freeze Operator in DynBLTL

As an example, an application of this operator speci�es the overmentioned emergent

behavior. Illustrated by Fig. 10, the formal de�nition for the overmentioned emergent

behavior de�nes that: each value x in that occurs in s.c1 must eventually occur in rms.s1

before 100 time units.

Originally, the freeze operator takes two arguments: (i) var, the current value of a

connection; and (ii) time, a time bound that will de�ne the temporal interval for which

the value will be persisted. However, we decided to suppress the time bound, using the

time bound of the outermost quanti�er, for simpli�cation purposes. In the example of Fig.

10, the value x would be frozen for 100 time units.

3.1.3 mKAOS Grammar

Aiming to introduce formal mechanisms in mKAOS, a set of changes was necessary.

First, it was fundamental to de�ne a textual language for the graphical representation.

The grammar is based the one presented in Dardennes' work (DARDENNE; LAMSWEERDE;

FICKAS, 1993), although some di�erences might be noticed due to mKAOS-speci�c con-

structs. The complete mKAOS' grammar is available in Appendix B.

The central element in the language, a mission, is modeled by the rule presented by

Fig. 11 as an extended BNF. A mission essentially has a name, a priority, a informal

de�nition (informalDef ), a trigger that is expressed in terms of a DynBLTL expression.

Optionally, it may have a formal de�nition that is also de�ned as DynBLTL formulas,

and a re�nement.

Fig. 12 shows parts of a textual description of a mission model. In this example, the

mission AlertCitizenInRiskyArea is re�ned in two sub-missions: IdentifyCitizenInRisk-

yArea and AlertCitizen. The mission AlertCitizen depends on the mission IdentifyCiti-

zenInRiskyArea.
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Figure 11: Grammar rule for Mission

Figure 12: Textual Description in mKAOS
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Figure 13: Formal Mission Description

Formal descriptions of missions are always optional. Although it is important to for-

mally describe each individual mission, i.e. to de�ne the circumstances in which the mis-

sion is achieved, often the required information is not available, since the constituent

systems might be developed by a di�erent team and have no documentation available.

Fig. 13 shows an example of formal de�nition for a mission, specifying that the mission

MonitorRiverLevels will always be accomplished if eventually before 40 steps there exists

a RiverSensor that is providing the river level information.

For non-individual missions (i.e.: global missions and intermediary missions), the for-

mal de�nition is often unnecessary. In these cases, it is possible to formally describe how

the sub-missions are related to the accomplishment of this mission, which can be done

using the newly introduced Mission Re�nement.

The Mission Re�nement tackles one of the limitations of mKAOS. There was no

support for the various kinds of re�nements, for instance, it was not possible to de�ne

a set of sub-missions in which the achievement of some of those are su�cient for the

accomplishment of the root-most mission. Previously, the re�nement assumed all the sub-

missions must be achieved in order to achieve the root-most mission.

We introduced new kinds of re�nement to allow the representation of the various

types of relations: the mission re�nement. There are four di�erent types of mission

re�nements: (i) all, in which the mission requires all sub-missions to be accomplished; (ii)

at least one, in which the mission requires at least one sub-mission to be accomplished;

(iii) alternative, in which the mission requires exactly one of the sub-missions to be

accomplished; (iv) custom, in which the user de�nes a formal rule for achieving the

mission based on the status of the sub-missions. Notice that, in this context, expectations

might take place of sub-missions.

The syntactical de�nition of a mission re�nement is presented by Fig. 14. Custom

re�nements encompasses a DynBLTL formula that de�nes the rule for the re�nement.

Fig. 15 illustrates a mission re�nement. In this description, we use a variation of our
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Figure 14: Grammar rule for Mission Re�nement

Figure 15: Alternative Mission Re�nement Example

running example that uses several kinds of alerts to the citizen in risky areas. At least

one of these missions must be accomplished in order to achieve the AlertCitizen mission.

To introduce DynBLTL constructs in mKAOS, we choose few elements that might be

formally described. All these elements received a formalDef attribute, that consists on a

DynBLTL formal description. Besides missions, the formalDef attribute was introduced

into the following elements: (i) Emergent behavior; (ii) Domain Invariant; and (iii)

Domain Hypothesis. Fig. 16 shows a partial syntax for constraints in mKAOS (Domain

Invariant and Domain Hypothesis), that can be used to de�ne mission-related properties.

Emergent behaviors can also be formally described using DynBLTL formulas. The

formal description of an emergent behavior allows the automatic detection of such be-

haviors when they are expected. Fig. 17 presents the syntax of the emergent behavior in

mKAOS, that encompasses a name, an informal def, a set of emergence links that refers

to the communicational capabilities that are involved in the behavior and the formalDef.

Fig. 18 speci�es a expected, desirable emergent behavior that emerges from the in-

teraction between pair of Sensors, a sub-systems of RiverMonitoringSystem: the com-
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Figure 16: Grammar rule for Domain Invariant and Hypothesis

Figure 17: Grammar rule for Emergent Behavior

municational capability SensorDataForward. In this system, a set of sensors is disposed

over a river and might use its own communication mechanisms to forward messages from

other sensors, avoiding the need of gateways, routers or other communication compo-

nents. Therefore, a possible and desired behavior is that every information sent by any of

the sensors can eventually arrive at a controller, since all the sensors are connected, as a

requirement of RiverMonitoringSystem.

Finally, the Domain Invariant and Domain Hypothesis elements have the formalDef

attribute as mandatory. In fact, we changed the de�nition mechanism of these elements to

consists essentially of the formal de�nitions using DynBLTL's syntax. Since these elements

can be related to any object or capability of mKAOS, the extension of the formalization

covers the whole language.

3.2 SosADL Graphical Representation

One of the limitations of SosADL was the lack of a graphical representation for ar-

chitectural models. Without this representation, the architectural process in the language

was harder and more susceptible to human error, since the architect would have to cre-
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Figure 18: Formal De�nition for Emergent Behavior

ate a mental representation for the textual model being build. This impacts not only

on the architectural process, but also on validation, since it hampers the identi�cation

of the topology of the architecture and therefore the identi�cation of relations between

constituent systems.

For tackling this issue, we propose a graphical representation for SosADL, using a

widely used framework that is compatible with the existing implementation of the lan-

guage: Sirius. Sirius is a declarative framework for de�ning graphical language that in-

tegrates with EMF and Xtext, supporting automatic synchronization between graphical

and textual models.

Each graphical representation, in Sirius, is speci�ed through a viewpoint that is as-

sociated to one or more �le extensions. Each viewpoint encompasses a set of diagrams,

that are composed by graphical element de�nitions. Each diagram and element de�nition

is associated to an element in the metamodel of the language, the framework is then

responsible for building the graphical representation based on these de�nitions and the

provided model.

The SosADL graphical representation is organized into one Sirius' viewpoint, named

SosADL. We developed three diagrams, two de�nition diagrams and one architecture dia-

gram, to represent the concrete architecture. It is worth highlighting that the architectural

models can be made in both graphical or original textual view, since the frameworks are

capable of maintaining the correspondence between both views. Figure 19 show the Sir-
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Figure 19: SosADL Sirius' Viewpoint and Diagrams Speci�cation

Figure 20: SosADL De�nition Diagram

ius de�nition environment that speci�es the viewpoint and the diagrams. This graphical

speci�cation is based only on the SosADL meta-model, which is part of the SosADL tool,

generated by Xtext.

Based on the graphical speci�cation, Sirius is capable of generating visual represen-

tation for SosADL models de�ned textually. It is also capable of creating new elements

and maintaining changes made through the graphical editor. An Import Diagram is the

simplest diagram in the graphical view. It represents the whole model and its imports.

Since SosADL's import mechanism is not complete, this diagram is also incomplete. The

De�nition Diagram is responsible for de�ning the systems, mediators, gates, types,

etc. Figure 20 shows an example of the client-server architecture generated automati-

cally by Guessi's (GUESSI; OQUENDO; NAKAGAWA, 2016) tool. It de�nes three systems:

(i) clients1, (ii) clients2, and clients3 ; and two mediators: server20 and server10. The

type RangeType0 and the architecture Coalition0 are also de�ned in this diagram.

Finally, the Architecture Diagram is responsible for representing the concrete ar-
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(a)

(b)

Figure 21: Concrete Architecture in SosADL

chitectures and their topologies. Figure 21 shows the architecture diagram for Coalition0.

Figure 21(a) presents the textual de�nition of the system, and (b) shows the correspondent

graphical view of this architecture. Both representations were generated by the current

tools.

3.3 SosADL Execution

One of the major needs of ADLs for SoS is the possibility of simulation and/or exe-

cution. Specially due to the unpredictable nature of the emergent behavior, it is key for

the architect to be able to simulate the architecture to observe the behaviors that are

present in a given scenario. Simulation is also key for validation, since it allows architects

to observe the architecture in a controlled environment, beforehand of implementation.

In this context, SosADL was designed aiming to allow formal analysis and also sim-

ulation, with constructs that can only be tested on simulation environments, such as the

mediator. Therefore, a simulation mechanism is crucial to a design process that involves

the ADL. Such mechanism would allow the architect to foresee unpredicted emergent
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behaviors, but would also to support the validation process.

However, some considerations are necessary before we start discussing execution/sim-

ulation of SosADL models. First of all, SosADL supports modeling of both abstract and

concrete architectures, hence, it is fundamental to identify the di�erences between those

kinds of models.

In SosADL, concrete architectures represent a SoS in the context it will be deployed,

and abstract architectures represents a group or family of SoS. Hence, concrete architec-

tures should not be executed as an speci�c architecture. Therefore, concrete architectures

are those that must be executed. Guessi et al. (GUESSI; OQUENDO; NAKAGAWA, 2016)

worked with the ArchWare team in this context, in which the feasibility of an abstract

model is tested through exhaustive generation of concrete architectures. We decided to

use her solution to produce concrete architectures. Guessi's solution is further discussed

in Section 4.3.1.1.

With the clari�cation of which model we shall work with, we identi�ed a study that

proposes a simulation based on model transformation. Such approach, proposed by Gra-

ciano Neto (NETO, 2016) uses a transformation to DEVS (COURETAS; ZEIGLER; PATEL,

1999), an executable formalism for modeling and analyzing systems through statecharts

and timed events. This work was enlightening to our proposal and is brie�y discussed in

Section 3.3.1.

However, the Graciano Neto's approach consists on using an external simulator based

on a transformation process. We propose an evolution of such approach, that relies on an

integrated simulator for SosADL models.

For proposing so, we identi�ed the SosADL execution semantics, that is presented in

Section 3.3.2. The implementation of this semantics in a simulator did not came from a

�rst shot. Our attempts are presented in Sections 3.3.3 and 3.3.4. The �rst used GEMOC

(COMBEMALE; BARAIS; WORTMANN, 2017), an emerging framework for model execution,

and did not succeed. However, the lessons learned from this experience were valuable to

the later: a model simulator made from scratch over SosADL tools.

3.3.1 Execution through Model-Transformation

Executing SosADL is an under-development feature of the language. Graciano Neto

(NETO, 2016; NETO et al., 2018) proposes an execution mechanism for SosADL based

on MDD. The approach uses DEVS (COURETAS; ZEIGLER; PATEL, 1999), an executable
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SosADL Concept SosADL DEVS

Connection Connection Declaration DEVS Port
Constituent System System Declaration Atomic Model
Data Types Data Type Declaration Data Type
Gate Gate Declaration DEVS Port
Mediator Mediator Declaration Atomic Model
Architecture Coalition Coupled Mode

Table 4: SosADL to DEVS Mapping

formalism for modeling and analyzing systems through statecharts and timed events.

SosADL models are mapped to DEVS models using a simple MDD instrument, then the

produced DEVS model can be executed in speci�c tools, such as MS4ME (MS4 Systems, ).

It is important to highlight that Graciano Neto's solution was developed simultaneously

to this work and might present some similarities, since both works were produced by the

same research team.

Since this proposal relies on model transformation, it is based on a direct mapping

identi�ed by the authors. Since both SosADL and DEVS rely on rigorous formalizations,

this mapping process preserves the concepts in which the languages are grounded (NETO,

2016).

The mapping process is divided in two steps: (i) the generation of atomic models,

and (ii) generation of coupled models. The �rst step consists essentially in the automatic

transformation, that was made using Xtend1 and Xtext. The elements are transformed

using rules based on the correspondence Table 4. The only exception is the coupled mode,

that is generated by the second step. The second step requires some processing, and cal-

culates the transitions based on the dynamism and unify relations of the SosADL models.

After the production of the DEVS model, the model can be executed and analyzed.

Although functional and e�cient, even in large scale systems, due to the e�ciency

of all tools used in the process, the simulation through this method requires some ef-

fort from the user. It is necessary to build the SosADL model, transform it to DEVS,

execute in MS4ME, and track the results back to the architecture. Therefore using this

process to validate systems in constant evolution may be expensive, for requiring several

transformation processes and use of multiple tools.

The main issue, however, regards model checking. As we previously discussed, Statisti-

cal Model Checking is more e�ective in SoS scenarios, due to its dynamism and behavioral

uncertainty. However, SMC tools require an external simulator to execute the models and

1https://www.eclipse.org/xtend/
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Figure 22: Activities of Execution Work�ow

provide feedback of this execution. Using a transformation-based approach may impact

on the e�ectiveness of veri�cation, due to the potential semantic loss during the transfor-

mation process.

3.3.2 SosADL Execution Semantics

In order to implement the SosADL simulator, it was necessary to de�ne the execution

semantics we would implement. We divide the execution semantics into two scales: (i)

execution work�ow, and (ii) speci�c semantics. The general work�ow controls the

execution as a whole, establishing the activities that would be executed in order to sim-

ulate a SosADL model. On the other hand, the speci�c semantics rely on the semantics

statements and expressions of SosADL, de�ning how each construct must behave and the

impact they have on the execution.

The execution work�ow speci�es the activities the simulator must execute in order

to execute the model in macro scale. This work�ow is divided in 5 steps, as illustrated

by Fig. 22. The �rst step is load the model, in which the simulator must load the

architectural model to be executed and enhance it by allowing the connections to have

values. The next step is initialize variables, that consists in initializing the values on the

connections. Then a step propagates the values, must move values from one connection

to another, based on the unify relations on the model. Simultaneously, the simulator must

execute the constituent systems and mediators, that will be executed if the asserts

are ful�lled and the necessary data is available.

It is important to highlight that the step propagate the values, is also responsible
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for synchronization mechanisms, ensuring that a value will not be maintained or altered

by two di�erent constituents at the same time. When a value is propagated to the uni�ed

connections, the origin must be consumed and hence assume the value empty.

The speci�c semantics speci�es how the constituent systems and mediator perform

their operations. Speci�cally, it de�nes the execution semantic of the statements and

constructs of SosADL. These semantics were de�ned by Oquendo (OQUENDO, 2016b),

encompassing semantics of actions and behaviors in terms of π-calculus.

3.3.3 Execution through xDSML

Alternatively to Graciano Neto's proposal, another possibility is to implement a exe-

cutable model based on xDSML (eXecutable Domain Speci�c Modeling Language) frame-

works. Among the existing frameworks, GEMOC2 (COMBEMALE; BARAIS; WORTMANN,

2017) is one of the pioneer projects.

Due to the relevance of GEMOC within the community, we tried to build the xDSML

model of SosADL using the framework. However, the use of this approach failed due to

several limitations on the GEMOC framework. Nevertheless, we report our advances and

the limitations found for further use in this subsection.

GEMOC is a framework to build execution environments for modeling languages.

The framework is based on widely used frameworks, such as EMF3, Sirius4 and Xtext5.

It integrates various solutions to allow an easy manipulation and de�nition of execution

environments.

A GEMOC implementation can be divided into three phases, each one is brie�y de-

scribed in this subsection, focusing in our implementation. The framework integrates the

results of the phases to produce the execution environment. First phase is the de�nition

of languages, that will be used by �nal users, this phase is described in Section 3.3.3.1.

Second phase is the de�nition of the aspects, that described the execution semantics of the

language, detailed in Section 3.3.3.2. Third phase is the extension of the language, which

is optional and consists on producing a new model that encompasses not only the base

language de�nition, but also the execution semantics de�ned in step three, this phase is

detailed in Section 3.3.3.3. Finally, Section 3.3.3.4 presents our conclusions and learning

2http://www.gemoc.org
3http://www.eclipse.org/modeling/emf/
4http://www.eclipse.org/sirius/
5http://www.eclipse.org/Xtext/
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from the attempt of using this framework.

3.3.3.1 Language De�nition

The �rst phase of de�nition of a xDSML in GEMOC is the language de�nition. The

framework was built to allow reuse of existing languages, which was helpful since SosADL

already have a set of tools.

GEMOC is able to understand abstract models de�ned in EMF and concrete languages

speci�ed with Xtext and Sirius. Since SosADL already had the language de�nition in EMF

and Xtext, and we implemented a graphical language in Sirius, the framework is able to

handle SosADL models automatically.

3.3.3.2 Execution Semantics

GEMOC uses Kermeta3 (K3) 6 as action language to de�ne the execution semantics.

The framework allowed the extension of existing SosADL classes, injecting methods to

some elements such as Constituent System, Mediator and the architecture itself using

aspects.

Using K3, GEMOC requires the use of annotations to de�ne three main methods: (i)

the @Main method, that controls the whole execution; (ii) the @InitializeModel method,

that is invoked once to initialize the execution model; and (iii) @step method, that de�nes

a single step of the execution.

The InitializeModel method is responsible for implementing the two �rst activities

of the execution work�ow, previously presented in Section 3.3.2. Fig. 23 presents the

implementation of such method, in which the load of the model is performed automatically

by GEMOC, this methods just needs to invoke the execution semantics of unify.

The two remaining activities of the execution work�ow are invoked in the main

method, for parallel computing: (i) propagate, responsible for propagating values on the

connections, based on the operations of unify within the architectural model; and (ii)

executeConstituents, that veri�es the capability to execute each constituent system and

mediator. These methods are also de�ned as steps, to make it easier to use for the �nal

user. The whole K3 aspect �le is available at Appendix E

To allow a proper execution of the constituents (constituent systems and mediators),

6http://diverse-project.github.io/k3/
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Figure 23: K3 InitializeModel method

we de�ned modules for statements and expression interpretation. The execution semantics

invokes those modules whenever necessary, providing an abstraction we named Context,

that encompasses the current scope and status of constituents. The Statement Interpreter

and Expression Interpreter are responsible for, based on the current scope, calculating

the impact of each expression or statement in the execution context updating values on

variables whenever necessary.

3.3.3.3 Execution Model

GEMOC does not use the original model to perform the simulation. Instead, it creates

a runtime model based on the original model and the execution semantics. For doing so,

it uses the Melange framework7 for assembling the EMF metamodel de�nition and the

execution semantics de�ned using K3.

Melange creates a new metamodel and a new set of classes that implements it, and also

a set of adapters that allow automatic adaptation of the models to the newly generated

runtime model.

The Melange de�nition of SosADL speci�es which aspects (executions semantics de-

�ned in K3) will be used to produce the runtime model. Essentially, we de�ned aspects

for each runtime-relevant element, as observed in Fig. 3.3.3.3. The aspects encompasses

new abstractions of methods for connections, constituent systems, mediators, expressions,

statements and uni�es, describing how each of these elements are executed.

7http://melange.inria.fr/
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Figure 24: Melange �le for SosADL

3.3.3.4 Discussion

GEMOC proposes an easy to use framework to de�ne the execution semantics and

implement an execution environment for SosADL. Based on other frameworks such as Ker-

mata3 and Melange, GEMOC promotes a separation of concerns that sounds outstanding

for our work.

However, the framework is full of limitations. In fact, those limitations forced our

team to give up on the framework, due to its current immaturity. Many of the limitations

comes from Melange, but GEMOC itself also requires many interceding in the process of

developing the execution environment.

We found that Melange is unable to handle external tools, that means that every

method that is invoked by K3 aspects must be either in the metamodel or in the aspects

itself. For SosADL, this is a major limitation, since the language encompasses an external

type checker that is responsible for some syntax checking also. Melange was unable to

generate runtime models for SosADL, unless we disabled the type checker for the execution

environment, which was not possible since this type checker supports the core language.

This was a major problem that was reported in https://github.com/diverse-project/

melange/issues/102.

Also, by that time, Sirius was unable to handle the runtime model simultaneously with

the original model, even with de�nition of additional layers. Therefore, the framework

was unable to provide the runtime model in a way Sirius could understand, making it

impossible to display a graphical representation of such runtime model. We are not sure

whether this is a limitation of Sirius or GEMOC, since the later might be invoking the

�rst incorrectly.
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GEMOC provides a mechanism for monitoring the scope, presenting the variables and

their current values. However, this mechanism is full of limitations. The most important

one is that it is not possible to change the name display or �lter the variables, which often

becomes hard to read due to the complexity and scale of the models.

Those limitations, among other minor problems8,9, made unfeasible to persist on the

use of the framework. Instead, we chose to implement our own execution engine. Fortu-

nately, we could use or adapt the execution semantics in K3 to pure Java code, easing the

implementation process.

All the �les and projects we used to implemented SosADL in GEMOC are available

at https://github.com/eduardoafs/sosadl_melange.

3.3.4 Execution through built-in Simulator

Alternatively from the xDSML approach, we built a simulator in pure Java using the

existing plug-ins to provide the necessary infrastructure. For doing so, we were able to

reuse code snippets of the designed aspect in Kermetta3 and our learnings from GEMOC.

In this Section, we describe the SosADL simulator that was made using pure Java.

Section 3.3.4.1 presents the requirements elicited for the simulator, and Section 3.3.4.2

details the architecture of the plug-in that implements such simulator. Finally, Section

3.3.4.3 brie�y discusses the PlasmaLab connector, a key mechanism for veri�cation.

3.3.4.1 Requirements

The SosADL simulator was build aiming for some goals, specially to support sta-

tistical model checking and validation of software architectures. That said, we elicited

some requirements for the simulator, that we have described using a SysML requirements

diagram.

The main requirement of SosADL simulator is Simulate SosADL models, pre-

sented in Fig. 25. This requirement is a composition of six other requirements: (i) Load

SosADL Models, (ii) Initialization of Values, (iii) Support Stimuli Generators,

(iv) Control Execution, (v) Execute Model, and (vi) Monitor Activities.

Load SosADL Models is the �rst requiremente that composes Simulate SosADL

8https://github.com/diverse-project/melange/issues/106
9https://github.com/diverse-project/melange/issues/103
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Figure 25: Simulate SosADL Models Requirement
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Models, it speci�es that the simulator must be able to load any existing SosADL concrete

architecture. Initialization of Values speci�es that the simulator must allow the user

to prede�ne values that will be initialized on connections.

Stimuli generators were �rst introduced together with SosADL by (NETO et al., 2017),

aiming to allow the user to control the environment in which the SoS is. The requirement

Support Stimuli Generators speci�es that the SosADL simulator must support this

kind of mechanism, allowing the user to control the simulation environment.

The requirementMonitor Activities speci�es that the SosADL simulator must allow

the user to track every activity on the simulator, which consists of: (i) current values of

connections; and (ii) execution steps. The simulator must also produce reports in form of

logs, that will detail every execution step.

One of the most important requirements in SosADL simulator, Execute Model speci-

�es that the simulator must be able to execute SosADL models, implementing mechanisms

for executing the execution work�ow and the constituents, using SosADL semantics.

Finally, the simulator must allow the user to Control Execution. The user must be

able to start, stop, restart and run the simulation step-by-step at any moment.

Aside the SosADL Simulator, we propose an additional module to handle veri�ca-

tion and validation, using PlasmaLab (LEGAY; SEDWARDS, 2014; LEGAY; SEDWARDS;

TRAONOUEZ, 2016) as model checker. The so-called V&V Module bridges the SosADL

Simulator and PlasmaLab to support automatic veri�cation and model validation. The

requirements diagram for V&V module and further speci�cation details are fully available

at http://eduardoafs.github.io/m2arch.

3.3.4.2 Simulator Architecture

Based on the overmentioned requirements, we de�ned an architecture for the SosADL

simulator. Such architecture implements a layer-based structure, in which the layer ele-

ments can only interact with the layer immediately below. However, elements in the same

layer can also interact. Fig. 26 despicts an overview of the architecture.

The components in the �rst layer, namely SosADL Base Plugin and Value Manager,

correspond to the existing SosADL plugins and a module to control current values of

objects. Over these components, in the second layer, the Context Manager is built. The

Context Manager is probably the most important component in the simulator, since it

associates SosADL elements (connections, variables, etc) to their current values, within a
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Figure 26: SosADL Simulator Architecture

structure we called Context. The second layer also encompasses the Data Injector, that is

responsible for manipulating the context directly.

The third layer encompasses the components that manipulate context: (i) Expression

Interpreter, responsible for interpreting arithmetical expressions; (ii) Statements Inter-

preter, responsible for interpreting statements; (iii) Asserts Evaluator, that evaluates and

checks the asserts; (iv) Synchronization Module, that is able to lock/unlock values and

controls the parallelism in the execution; and (v) External Simulator Manager, that is

responsible for loading/unloading external controllers, which are plug-ins that are able to

replace an architectural element, allowing implementation of Stimuli Generators that

manipulate the context directly using the data injectors.

The fourth layer encompasses two elements: (i) the Simulation Con�guration Manager,

that loads con�guration �les and manipulate the external controllers, the con�guration

manager also contains an external controller that is responsible for directly manipulate the

context according to prede�ned instructions; and the (ii) Execution Engine, that controls

the whole model execution.

An Event Manager is a crosscutting component, that interacts with all components

in the architecture, allowing the execution engine to identify precisely what happened

in each level of the execution through the manipulation of Events. An Event can be

a (i) communication event, in which a constituent or mediator provides or consumes

data from another element; a (ii) synchronization event, in which a shared information is

synchronized or locked/unlocked; (iii) data events, like consumption or production of new

values; (iv) structural update, when the architecture changes for any reason; (v) execution
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event, which refers to the execution of a constituent system or mediator; (vi) other, a

non-speci�c event. The Event Mananger creates and organizes the events and might be

used to generate simulation reports.

Finally, the Simulation Environment layer encompasses a single homonymous com-

ponent, that provides a user interface and controls a Simulation Server, that will be used

for Statistical Model Checking. Currently, the user interface only provides textual outputs,

reporting the events of the simulation according to user-speci�ed con�gurations.

Details regarding the implementation of SosADL Simulator are further detailed in

Chapter 5.

3.3.4.3 Integration with PlasmaLab

Besides simulating SosADL models, the SosADL simulator needs to be capable of

integrating with PlasmaLab, for supporting statistical model checking for veri�cation

purposes.

PlasmaLab requires a set of four requests to be handled: (i) init, in which the tool

asks the simulator to initialize; (ii) new trace, that consists in requesting a new simulation

to start; (iii) new state, that consists in the execution of a single execution step; and (iv)

end, in which the simulation server terminates the execution.

These requests are made in a prede�ned order to the statistical model checking process,

illustrated by Fig. 27. First, the SMC tool will request a init once, then requests for new

trace will be sent eventually to start a new simulation. Once started, several new state

requests will be made. At the end of the checking process, an end request will be sent.

To implement the support for these requests, we decided to implement a Simulation

Server, PlasmaLab connector. This connector is responsible for bridging SosADL sim-

ulator and PlasmaLab, transforming the requests into commands for the simulator and

translating the response into the format required by PlasmaLab.
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Figure 27: PlasmaLab Interaction with Simulation Server
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4
M2Arch: A Mission-Based

Methodology for Designing SoS

Architectures

Proposing a method to support architectural description of SoS based on mission mod-

els is the main objective of this work. In this Chapter, we presents M2Arch, a method

that uses mKAOS mission models to produce architectural models. This method is par-

tially automated and encompasses the main activities of software architecture design: (i)

modeling, (ii) veri�cation and (iii) validation.

M2Arch gives special attention to emergent behaviors and traceability be-

tween missions and architectural elements. It also encompasses an automatic man-

ner to verify the architecture for domain properties and a semi automatic validation for

missions.

The outline of this Chapter is structured as follows: Section 4.1 provides an overview

of the proposal, presenting the method as a whole. Each of the following Sections describe

a single step of the method: Section 4.2 focuses on the �rst step: de�nition; Section 4.3

focuses on the properties veri�cation; and �nally, Section 4.4 describes the validation

mechanism we propose.

4.1 Process Overview

Re�ning mission models to architectural models demands a signi�cant e�ort from the

architects. Aiming to systematize this process, we propose a method that uses mKAOS

models as a basis to produce, in a semi-automatic manner, SosADL models.

The method for designing SoS architectures that is proposed by this work consists of

a three-step process. The �rst step, De�nition, consists on the de�nition of all involved

Conception d’architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018



76

models: (i) the Mission Model, and (ii) Architectural Model. The development of

these models are partially supported by an automatic transformation.

The Veri�cation step consists on checking constraints in the derived concrete ar-

chitectures, using the formalism of the involved models. The veri�cation process is fully

automated, using the tools that are associated to M2Arch. In this step, we verify domain-

related properties, described in mKAOS as Constraints, checking the conformance of the

architecture with this set of rules with a certain degree of con�dence. Architecture-related

properties (such as restrictions of the deployment environment or adopted technologies)

can also be veri�ed, however, we brie�y describe this activity since it was not the focus

of this work.

Finally, the Validation step uses some of the generated artifacts from the veri�cation

step to support the validation of the produced architecture. This step is semi automatic,

since we are able to automatically check the emergence of the emergent behaviors and the

achievability of the formally-described missions. Part of the validation, however, consists

on the simulation of the architecture and interpretation of the simulation reports, that will

indicate whether the system does what it is intended to do. This later activity is essentially

manual, since it depends on interpretation of requirements and the stakeholder's needs.

Fig.28 depicts an overview of M2Arch. In the De�nition step, the mission model

will be de�ned, then submitted to an automatic transformation. Based on the artifact

generated by the transformation, the abstract architectural model is produced. The Ver-

i�cation step starts with a derivation of a concrete architecture, using an automated

process. This concrete architecture is the one submitted to a automated veri�cation pro-

cess, based on the constraints of the SoS. Finally, theValidation is divided in two phases:

(i) the automatic validation, supported by our tools, consists on checking the achievability

of the missions and the emergence of expected emergent behaviors; (ii) then the simulator

can be executed alone, providing detailed information to the architect that can, manually,

identify how the SoS behaves. At any point of veri�cation or validation, the architect may

identify adjustments to be done in the mission model, returning to the de�nition step.

4.2 De�nition

We propose the �rst step of the method to be dedicated to the modeling of the missions

and the architecture. The main artifacts produced in this step are the mission model and

the architectural model.
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Figure 28: Overview of M2Arch
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Figure 29: Activities of the De�nition Step

The de�nition step is organized in three activities, as presented by Fig. 29: (i) Mission

Model De�nition; (ii) Automatic Transformation; (iii) Architectural Model De�nition.

Each activity produces an artifact that is used as input for the next activity.

As the de�nition produces an architecture, it is expected to be the most complex

step of M2Arch. In this Section, we describe all the activities that are involved in this

step, also presenting some guidelines to promote some features we expect the models to

contain. Section 4.2.1 describes the starting activity: de�nition of mission models, which is

done using the mission modeling language mKAOS. Section 4.2.2 presents an automatic

mapping that is responsible for partially generating the architectural model, based on

the mission model. This automatic mapping was implemented based on the equivalent

concepts that permeates the mission and architecture models. Section 4.2.3 describes a

third activity that uses the generated architecture as input to produce an architectural

model that encompasses both structure and behavior of the SoS.

The de�nition step outputs two artifacts that must be maintained during the whole

development of the SoS: the mission model and the architecture model. Thanks to the

traceability and the automatic mapping, the changes in one of those models can be auto-

matically re�ected in the other, whenever necessary.

4.2.1 Mission Model De�nition

Mission models are the core model for our method. Therefore, de�ning a detailed

mission model is the key to the successful use of our approach.

In mKAOS, Mission Models are structured in six models: (i) an homonymous model,

mission model responsible for describing individual and global missions, as well as ex-

pectations from the environment; (ii) responsibility model, that describes constituent

systems and their responsibilities over the missions; (iii) operational capability model,

that describes the capabilities of the constituent systems; (iv) communicational capa-

bility model, responsible for representing the cooperations among the constituent sys-

tems; (v) emergent behavior model, that de�nes the expected emergent behavior and

the conditions for their emergence; (vi) object model, that speci�es objects, events and
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Figure 30: De�ning a Mission Model

Figure 31: Formal De�nition of Mission PromoteCommunicationAmongPeople

constraints.

We suggest that the de�nition of the mission model starts by the homonymous model.

The stakeholders must be able to express the missions they want the system to achieve

and re�ne those missions to a set of lower level missions and expectations. Fig. 30 depicts

on the activity of de�ning a mission model, that starts by the de�nition of the global

missions. The global missions must be re�ned to intermediary missions, using Expecta-

tions as needed. Finally, the missions should be associated to individual missions and

Expectations.

The missions must be detailed as much as possible. A proper use of the Mission

Re�nements allow the stakeholders to express various kinds of re�nement relationships.

It is important for the individual missions to be formally described, using DynBLTL

constructs within the formalDef �eld, as shown by Fig. 31. A formal description of a

mission speci�es the conditions for the missions to be achieved. In Fig. 31, the mission

PromoteCommunicationAmongPeople is achieved when exists a server connected to each

user (SNUser). Formally described missions can be automatically checked by M2Arch,

easing the validation process.

Based on the missions, the stakeholders might identify the constituent systems that

are able to perform the individual missions, describing the Responsibility Model. Then, it
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Figure 32: Specifying Capabilities of a Constituent System

is possible to identify the capabilities of the constituent systems that must be described in

the Operational Capability Model. Since capabilities require an interface, at this moment it

is important to have an Object Model with all entities that will be exchanged between the

constituent systems. Using input and output links, the designers can de�ne the interface

of a capability. Fig. 32 depicts the process to describe the operational capabilities of a

Constituent System. It starts by the de�nition of the constituent system, based on the

mission it will be responsible for; then, the de�nition of the capabilities; �nally, it is

possible to de�ne the interface of each capability using the input and output links.

Following the de�nition of operational capabilities, the stakeholders must identify,

in the mission model, potential interaction points. Whenever an operational capability

produces a data, as in Fig. 33, and a data of same type is used by another operational ca-

pability, it is possible to establish a cooperation link between these capabilities. In Fig. 33,

the capability ToProvideHidrologicalModel produces an HidrologicalModel. An object of

type HidrologicalModel is used as input for the capability ToSimulateHidrologicalChanges,

from another constituent system. Therefore, this characterizes a possible cooperation point

between the involved constituent systems.

It is worth highlighting that this activity consists in specifying possible interaction

points, regardless of their real use by the constituent systems or not. Each interaction

point represents a communicational capability, which implies in a possible cooperation

between two or more constituent systems.

The cooperation points (communicational capabilities) allow some emergent behaviors
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Figure 33: Identifying Communicational Capabilities

to appear in the SoS. Each emergent behavior is de�ned on one or more communicational

capabilities, which is speci�ed in the Emergent Behavior Model. Since mKAOS is not

concerned with the implementation of the SoS, it is not capable of representing the oper-

ationalization of the emergent behaviors. However, it is strongly recommended to describe

a formal rule to check the emergence of each behavior, using DynBLTL constructs. Notice

that, as communicational capabilities, the stakeholders must identify as many emergent

behaviors as possible, no matter if they are desired or not.

Finally, it is possible to de�ne domain rules, Constraints, to focus on the SoS as a

whole. mKAOS allows two kinds of constraints: (i) domain invariants, and (ii) domain

heuristics. The only di�erence between them is the required commitment level. Domain

invariants are constraints that must be ful�lled at every moment. Domain heuristics

specify desirable, but not mandatory, properties. Syntactically, both constraint kinds are

de�ned using the same structure, in mKAOS, that consists in a DynBLTL rule.

4.2.2 M2Arch Automatic Mapping Process

mKAOS was designed as a descriptive language for missions in SoS, focusing on what

the system must be able to achieve instead of how it will achieve. Nonetheless, the descrip-

tive elements of mKAOS re�ne mission de�nitions to the system level, assigning respon-

Conception d’architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018



82

Figure 34: Overview of Equivalent Concepts

sibilities and obligations of each constituent system. At this point, no further description

related to how the system will achieve the existing missions is possible in mKAOS. There-

fore, the architectural description provides a new level of abstraction by re�ning mKAOS

models to an operational, coarse-grained level. Although the proposed re�nement relies on

a mapping from missions to architecture, neither the mission model nor the architectural

description provides su�cient information to represent the information from each other,

some data are not re�ected in the architectural description during the re�nement process

(e.g., missions) and, hence, both models must be maintained for its own purposes.

Considering that mKAOS and SosADL provide di�erent levels of abstraction for the

system, the mapping process is based on the equivalent concepts between both languages

(SILVA et al., 2016; SILVA; CAVALCANTE; BATISTA, 2017). Fig. 34 presents the association

between the equivalent concepts that permeate between both mission and architecture

models. The main equivalent concept is the capability, which is available in mKAOS

models in form of a homonymous element and in SosADL can be represented by the

set of interfaces of constituent systems : the gates. Capabilities, in mKAOS also, have an

interface, therefore a transformation process would rely on the interfaces of these and the

constituent systems in SosADL.
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In mKAOS, a capability is a �rst order element whose interface is de�ned by the

composition of the inputs and outputs links of the Operational Capabilities and Commu-

nicational Capabilities. These links are product of the overlapping between the Capabilities

Models and the Object Model and represents the nature of the data that is received or sent

by each Capability. On the other hand, SosADL de�nes interfaces as essential, explicit el-

ements for de�ning the architecture of an SoS. It represents the interfaces as connections,

which are used for both structural and behavioral speci�cations. A set of connections form

a gate, that can be directly related to a capability. Events in mKAOS are also mapped to

connections, in SosADL and handled as a special kind of data. However, it is possible to

represent Events as usual connections.

Since both mKAOS and SosADL provides representations for constituent systems,

namely Constituent System and System, a natural association is found between those ele-

ments. In mKAOS, each Constituent System is directly associated to a set of capabilities,

therefore, it is possible to identify which system implements each capability. On the other

hand, in SosADL, a System encompasses a set of gates that represent its interfaces. As

aforementioned, we are capable of relating capabilities with gates, which allows a syntacti-

cal relation between Constituent Systems (mKAOS) and Systems (SosADL). Since these

elements are already conceptually related, performing such kind of mapping strengths

traceability.

However, the representation of the capabilities depends on their nature. In mKAOS,

the representation of Operational Capabilities have a di�erent semantics compared to

those for Communicational Capabilities. This di�erence relies on the fact that Commu-

nicational Capabilities are better associated to obligations than to interfaces, when com-

paring to ADL concepts. Therefore, the interface of Communicational Capabilities are

more similar to channels for communication and cooperation, that specify some kind of

contract, although it is capable of performing some operations. Moreover, the Commu-

nicational Capabilities are not associated to Constituent Systems, hence they cannot be

transformed into gates for those Systems, as Operational Capabilities do. Due to these

characteristics, we found that Communicational Capabilities are more related tomediators

than constituent systems, as they are part of the SoS as a whole.

Further, regarding the mission models, mKAOS speci�es that a mission has a priority

and the SoS or the constituent systems might choose to achieve one mission instead of

another, depending on the available resources. This is a completely normal behavior and

must be taken into account when designing the architecture. In this regard, the mediator
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tackles this issue since it is resolved at runtime and has an inherently dynamic nature.

The mediator allows to specify a connection that may be active or not, depending on

the available resources: if a mission depends on this connection, we can associate its

achievement with the status of the mediator. Therefore, the mapping of communication

capabilities to mediators also supports traceability, such as the mapping of constituent

systems to systems.

Based on the relations we found, we de�ned a mapping process based on model-driven

development (MDD) (VöLTER T. STAHL; HELSEN., 2006), an approach that changes the

focus of problem solving from programming to abstract modeling. Modern MDD solutions

are mainly based on model-to-model (M2M) transformations (SENDALL; KOZACZYNSKI,

2003), which consist in automatically re�ning models to lower abstraction levels aiming

to re�ect solutions de�ned in higher levels. Most M2M implementations are implemented

upon Eclipse (ECLIPSE, Eclipse.org, a), in particular relying on the Eclipse Modeling Frame-

work (EMF) (EMF, Eclipse.org, b), a largely used framework that simpli�es the creation of

modeling tools and languages. As both mKAOS and SosADL implementations are based

on EMF, it is easy to establish traceability between models of these languages.

The mapping process is divided into �ve steps, as illustrated in the diagram depicted

in Fig. 35:

1. Identi�cation of the data types used in the Object Model (entities and events) and

their de�nition in SosADL;

2. Identi�cation of constituent systems from the Responsibility Model and their de�ni-

tion as systems in SosADL;

3. For each system, select the associated operational capabilities speci�ed in the Oper-

ational Capability Model and de�ne a gate whose connections are de�ned for each

input, output, and event. Input events will result in input connections whilst pro-

duced events will be mapped to output connections ;

4. For each communicational capability de�ned in the Communicational Capability

Model de�ne a mediator whose duties are de�ned based on the input and outputs

for the capability, similarly to the gate production. Inputs or outputs from commu-

nicational capabilities that are not used by any operational capability are described

as inputs/outputs for the SoS as a whole;

5. Connect constituent systems and mediators using the data association de�ned by

input and output links in mKAOS, thereby establishing bindings in SosADL for
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Figure 35: Mapping Process from mKAOS to SosADL

mKAOS SosADL

Constituent system System
Communicational capability Mediator
Operational capability Gate (in system)
Input/output/event Input/output connection
Entity Data type
Event Data type

Table 5: Correspondence Between the Elements of mKAOS and SosADL Languages

each of these links. This last step involves the Object Model and both Operational

and Communicational Capability Models, as well as the links between the objects

and capabilities;

Table 5 summarizes the correspondences between the mKAOS and SosADL elements,

implemented by the mapping process.

4.2.3 Architectural Model De�nition

Through the automatic mapping of mission models to architecture, the constituent

systems and its interfaces, as well as the mediators and the topology of the architecture

will be automatically generated. Therefore, at this stage, the architect focus only on the
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Figure 36: Behavioral De�nition of System Sensor

behavioral aspects of the architecture. However, if necessary, the architect may adjust the

generated topology and introduce new types or interfaces as needed.

Behavioral de�nition in SosADL encompasses three elements: (i) behavior, that de-

scribes how a system or mediator behaves; (ii) assume, specifying the assumptions a gate

will make about the environment; and (iii) guarantee, that speci�es a set of properties

that the system provides.

Behavioral declaration speci�es how a system or mediator behaves. It consists in a set

of behavioral statements, that might be: (i) setting/changing the value of a variable; (ii)

using external interaction constructs to specify sending or requesting some information;

(iii) sending or receiving an information; (iv) conditional statements (if-then-else); (v)

choosing one behavior depending on a given information (choose/switch); and (vi) loops.

A behavior can also be unobservable, to express situations in which the architect does not

have access to the behavior of a given system or mediator.

Fig. 36 shows an of a example behavior de�nition of the constituent system Sensor.

This behavior speci�es that the sensor will always transmit either the data it sensed or

another value that was transmitted to it. The de�nition of the behavior of each constituent

and mediator is fundamental to the further steps of M2Arch: veri�cation and validation.

De�ning the assumptions allows the architect to abstract some constraints of the envi-

ronment, simplifying the behavioral de�nition. The asserts (assumptions and guarantees)

consists in the de�nition of a set of properties that will be ful�lled by the environment.

These properties are de�ned using a set of statements similar to those used in behav-

ior. Asserts can be empty, using the construct anyaction to express that any state of

the environment/system (environment for assumptions, system for guarantees) will be
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Figure 37: Assert De�nition of Mediator Gateway

accepted.

Fig. 37 depicts the de�nition of a pair assumption-guarantee for the mediatorGateway,

this mediator assumes nothing and guarantees that the data transmitted is the same as

received.

Asserts can be used for veri�cation purposes, although currently M2Arch does not

supports it.

4.3 Veri�cation

The second step of M2Arch consists on checking the domain-related properties, de�ned

in Activity 1.1: de�nition of the mission model. This step is almost fully automated,

requiring some con�guration and sometimes the implementation of external controllers,

introduced in Sub-subsection 5.3.3.

De�nition step produces an abstract architecture and a mission model as outputs.

However, both veri�cation and validation must be performed over concrete architectures.

A concrete architecture is a runtime architecture, realized by the available resources

in a given environment. Such concrete architecture is fundamental to simulation, which

is used by the model checker to check the given properties.

SosADL simulation is further discussed in Section 4.3.1, in which we present the

mechanism to generate concrete architectures and how these are used on model simulation.

Section 4.3.2 presents the veri�cation mechanism that uses the statistical model checker

PlasmaLab to verify domain-speci�c properties.
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4.3.1 SosADL Model Simulation

SosADL simulation is the base for all automatic veri�cation and validation processes

proposed by M2Arch. It allows the architect to observe the architecture in a controlled

runtime environment. This process is supported by the SosADL Execution Engine, pre-

sented in Section 3.3.4.

Since the execution engine requires a concrete architecture to be able to perform

the simulation, before starting the simulation process, it is fundamental to produce a

concrete architecture. Such production is also automatized and requires the set of available

constituent systems in the environment to be simulated. This process is further discussed

in Sub-subsection 4.3.1.1.

Finally, after generated the concrete architecture, the model checker is able to verify

the model for a given set of domain-related constraints. This step is completely automated

and presented in Sub-subsection 4.3.2.

4.3.1.1 Generation of Concrete Architectures

Given the clear distinction between abstract and concrete architectures, presented in

Section 3.3, it is possible to establish a mechanism to automatically generate concrete

architectures based on an abstract architecture de�nition and the speci�cation of the

desired environment. This was done by Guessi et al (GUESSI; OQUENDO; NAKAGAWA,

2016) as a mechanism to verify feasibility of SoS architectures.

Guessi proposes the use of an exhaustive generator of concrete architectures to ver-

ify the feasibility of an abstract architecture. The approach reduces the problem to the

Boolean Satis�ability Problem (SAT) and evaluates the environment in terms of avail-

able constituent systems to generate all possible architectures that comply with the given

abstract architecture. If no solution is found, then an counterexample architecture is gen-

erated for each violation of the abstract architecture.

The approach uses Alloy, a SAT solver engine, to combine the provided environment

(i.e. a set of available constituent systems) and the abstract architecture to generates all

possible architectures that, combining the available systems, realizes the architecture. For

doing so, a metamodel for SosADL was build using Alloy constructs. This metamodel

(presented in Figure 381) enables the use of SosADL abstract models as inputs for the

solver.
1Extracted from (GUESSI; OQUENDO; NAKAGAWA, 2016)
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Figure 38: Alloy metamodel for SosADL

Since the solution uses this exhaustive approach, the execution might have a high cost

in time. The authors are currently working in improvements to lower that computational

cost. It is worth mentioning that, since Alloy is also formally grounded, it is able to

maintain all constraints de�ned in SosADL during the derivation process.

4.3.2 Verifying Domain-Speci�c Properties

Given a concrete architecture and a mission model, M2Arch supports automatic ver-

i�cation of the domain-speci�c properties, speci�ed as Constraints in mKAOS models.

Although the veri�cation relies on the simulation, it is not necessary to con�gure

the simulator at this stage. However, it is essential to con�gure the stimuli generators,

either in the simulation con�guration or using external controllers. We strongly suggest

the use of the external controllers for this purpose, since they allow a wider control over

the runtime model.

Each external controller must implement the ExternalController interface and be as-

sociated to a constituent in the concrete architecture. These activities were described in

Sub-subsection 5.3.3. Overall, the architect selects the concrete architecture to be veri�ed

and invokes the veri�cation.

The automatic veri�cation process is divided in three activities, illustrated by Fig. 39:

(i) setup, in which the involved tools are instantiated and con�gured; (ii) initialization,

that starts the services; and (iii) simulation, that runs the simulations to perform the
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Figure 39: Activities of Automatic Veri�cation

Figure 40: Initialization of PlasmaLab

checking.

First, in the setup activity, the veri�cation tool creates an instance of a SosADL Sim-

ulator and reads the mission model, extracting all DynBLTL rules within the constraints.

Each constraint is registered into a temporary �le that will be used by PlasmaLab.

During initialization, a SosADL Simulation Server is initialized and its access data

is saved into a temporary �le, then the process initializes PlasmaLab and connects it to

this simulator, using a set of parameters speci�ed in the Model Checking Con�gu-

ration, that can be automatically generated with default parameters. This con�guration

determines the number of simulation samples, algorithm and other optional parameters

depending on the algorithm selected. The default con�guration uses 100 samples and

MonteCarlo algorithm. Fig. 40 presents the request that initializes PlasmaLab with the

default parameters.

Finally, PlasmaLab takes over control the simulation and perform the veri�cation of

the properties. The properties will be veri�ed individually, therefore, whenever there is a

constraint violation, the tool is capable to report exactly which constraint was violated

and the circumstances in which that happened. The SosADL Simulator will keep registry

of all operations and allows the architect to track the whole execution to the original

violation, using the event report. Each simulation sample produces a report with all

activities executed in each simulation, as presented in Fig. 41.

Furthermore, at the end of the veri�cation process, a veri�cation report is gener-

ated, this report speci�cally contains the domain-speci�c constraints. Fig. 42 presents a

simulation report that checks for two constraints: heur1 and inv1. The report is generated

by PlasmaLab, although some �ltering is applied to avoid excessive data. Altogether, the

simulation and veri�cation report helps the architect to identify the faulty points in the

architecture.
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Figure 41: Simulation Report

Figure 42: Veri�cation Report
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4.4 Validation

Architectural validation is the activity that is responsible for identifying whether the

system implements what it is intended for. In the context of SoS, this activity is directly

related with the mission models. Since the objectives of a SoS are expressed in terms of

missions, analyzing the commitment of the system with these missions is probably the

most notorious task on a validation process.

However, there is another aspect of validation that does not concern on the mission

model, but on the system conception itself. Mission modeling is an activity similar to

requirements engineering, therefore it relies on the communication between stakeholders

and the capability of those to express the needs in the model. These aspects might lead the

stakeholders to produce a mission model that does not re�ect their actual expectations

or needs. Hence, we propose a process that not only validates the architecture within

the mission model, but also supports validation of both mission model and architecture

within the expectations and needs of the stakeholders.

We propose a two-step validation process: (i) automatic validation of missions and

emergent behaviors; and (ii) manual validation through simulation. These steps are com-

plementary and focus on di�erent aspects of validation. Altogether, these activities sup-

port the validation of the architecture and mission model, regarding the stakeholders'

needs.

It is important to highlight that our automatic validation relies on a veri�cation

process. In fact, although the automatic validation validates the architecture within

the mission model, the stakeholders need to validate its results and perform the manual

validation in order to validate the architecture within their needs.

In this Section we present our solution, in Section 4.4.1 we present the automatic

validation that is responsible for checking the compliance of the architecture with the

mission model. In Section 4.4.2 we introduce a method to manually validate both the

mission model and the architecture.

4.4.1 Automatic Validation of Missions and Emergent Behaviors

The automatic validation will detect whether the SoS architecture comply with its

mission model, using a similar process to the veri�cation. Indeed, for the �nal user the

only di�erence is the Model Checking Con�guration. Although the automatic validation
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Figure 43: Model Checking Con�guration for Model Validation

might use the default parameters of PlasmaLab, the con�guration must explicitly specify

that the process is a validation, as displayed in Fig. 43.

In M2Arch, the automatic validation is divided in four steps: (i) setup, tools initialized

and instantiation of involved objects; (ii) initialization, service start; (iii) simulation, that

will perform the simulation-checking of the missions and emergent behaviors; and (iv)

analysis, in which the output of the model checker will be analyzed to infer additional

information.

The automatic validation uses the same tools of veri�cation and the same process.

However, instead of checking constraints, the model checker will analyze the formal de�ni-

tion of missions and emergent behaviors. In the analysis step, M2Arch will de�ne a prior-

ity for mission achievement, based in Mission Priority : higher priority missions should be

achieved more often than lower priority missions. We called the frequency of achievement

of a mission as achievement rate, which is calculated by PlasmaLab during the property

checking process. Such achievement rate is essential to the analysis step.

The analysis step consists of analyzing the priorities of every mission and comparing

it with the achievement rate that is obtained at the end of the automatic validation. An

additional warning is produced whenever a lower priority mission is achieved more often

than a higher priority. It is important to highlight that this behavior does not indicate

the model is invalid, since a lower-priority mission might be easier to achieve and that

would justify such behavior.

Analysis is also responsible for triggering critical faults. These occur when a mission

achievement rate is su�ciently close to zero or zero. The architect must de�ne in the

Model Checking Con�guration the default threshold to be used by the tools. By default,

M2Arch considers a threshold of 0.5, which means that every mission must be achieved

in at least 50% of scenarios. The achievement rate is calculated based on PlasmaLab

responses, therefore it has the same con�dence level as the model checker.
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Figure 44: Validation Report

As a result, analysis produces a detailed report that encompasses not only the re-

sult of the property checking, but also the over mentioned analysis regarding mission

achievement. Fig. 44 depicts a partial validation report, in which global mission Detect-

FloodWithMaximumCon�dence displays an achievement rate of 97%, failing in simulations

sim34 and sim81. The report also includes the step in which the violation of the rule was

�rst detected.

4.4.2 Validating Concrete Architectures and Mission Models

The stakeholders must be able to foresee the overall behavior of the SoS, allowing them

to identify unexpected emergent behaviors and potential mistakes in the mission model.

We propose a simulation-oriented validation, that consists in executing the architecture

in a controlled environment, with a step-by-step feedback that allows the stakeholders

to track all activity of the system. For doing so, our simulator implements some types

of report that allow it to build reports that contains the various aspects of the system.

The stakeholders might choose to focus on the data operations, such as production or

consumption, communications between constituent systems or even a combination of these

two.

We propose the use of a combined set of reports to observe the overall behavior of the

architecture. As illustrated by Fig. 45, the �rst activity is to execute the simulator that re-

ports the data operations, that will allow the stakeholders to observe how each constituent

system is behaving, independently. This activity through the speci�cation of reportType

on the simulation con�guration. If any constituent system presents a misbehavior, it is

necessary to test its behavior de�nition in the architecture, if there is any. Constituent

systems with unobservable behaviors are operationalized by ExternalControllers, hence,
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Figure 45: Activities of Manual Validation

there might be an issue with its ExternalController or the use of that speci�c constituent

system is not adequate for the context of this SoS.

The second activity is to test the cooperation between the constituent systems, that

can be obtained from the simulator through the selection of reportType=communication.

This report type will concern on the mediators, that will be initialized and will operate

when necessary. Through the reviewing of the communication event, that stakeholders

are capable to observe faulty communication or cooperation between systems that should

not. Any issue on the communication might be caused by the mediators, therefore it is

fundamental to review the behavioral de�nition of the mediators in this context.

Altogether, these activities allow the stakeholder to identify adjustments to the mis-

sion model or architectural description of the SoS. Additional emergent behaviors might

be found and we encourage their description in the mission model, even when they are

not necessary to achieve of the SoS missions.

At the end of the validation activity, the stakeholders will have a validated mission

model and architecture that should be maintained and evolve together. M2Arch should be

restarted on every change in those models. Thanks to the associated toolkit, the method

produces most of the artifacts automatically.
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5
M2Arch Toolkit

Since M2Arch process provides an extensive, semi-automated methodology to produce

SosADL architectures from mKAOS models, to provide a set of tools is key to assist the

process. In this context, we introduce the M2Arch Toolkit, an Eclipse environment to

support the whole proposed modeling process.

The toolkit encompasses four tools, as illustrated in the package diagram in Fig. 46:

(i) the modeling environment, which includes modeling tools for both SosADL and

mKAOS, visual and textual editors; (ii) the mapping mechanism that requires the

modeling tools; (iii) the simulation environment, and (iv) the V&V module.

The outline of this chapter is organized as Section 5.1 describes the modeling envi-

ronment; Section 5.2 presents an automated mapping mechanism, capable of partially

generating SosADL models. Section 5.3 concerns on the implementation of the SosADL

simulator. Finally, Section 5.4 regards on the V&V Module. Altogether, they compose the

M2Arch Toolkit that supports every step of M2Arch.

Figure 46: M2Arch Toolkit Overview
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Figure 47: mKAOS Modeling Environment

5.1 Modeling Environment

The modeling environment of M2Arch Toolkit encompasses two main modeling tools.

The �rst is the mKAOS tool, that was extended with the formalism and deployed as an

Eclipse plug-in. mKAOS Modeling Environment encompasses the original graphical view

of the language and the textual support of the formal version of the language, presented in

Section 3.1. Figure 47 presents the mKAOS graphical modeling environment, introduced

by (SILVA; BATISTA; CAVALCANTE, 2015).

On the other hand, SosADL modeling was enhanced to allow a new graphical view-

point for the ADL. The modeling environment is based on the original SosADL tool,

developed by the ArchWare team. It also encompasses the graphical tools for the lan-

guage, described in Section 3.2.

Figure 48 despites the main screen of the modeling environment of SosADL, it presents

an architectural diagram and the associated textual description. In this �gure, it is possible

to identify the correspondence between the textual (left) and graphical (right) descrip-

tions, maintained by EMF. The tool also provides an outline view of the model for quick

navigation.

Altogether, these modeling environments provide the necessary tools for modeling,

visualization and edition of models in all languages involved in the process. Furthermore,

they provide the interface necessary for the implementation of the mapping mechanism.

Conception d’architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018



98

Figure 48: SosADL Modeling Environment

5.2 Mapping Mechanism

The mapping is implemented to be automatic, programmatically executed using a

M2M transformation. This ensures the traceability of the missions and simplify the ar-

chitecture design process: the architect is concerned only with describing behavior and

detailing further elements not related to the mission model. Although the transformation

does not encompass all mKAOS elements neither the SosADL elements, it still can be

realized in both directions. However, it is important to mention that both mission and

architectural models are complimentary to each other and they must be independently

maintained. In the proposed mapping process, we have chosen a constructive approach in

which the re�nement will produce a single architecture capable of achieving the required

missions and emerge the desired behaviors. An alternative is to build a set of possible

architectures and verify the conformance of each one with the mission model, but this

approach is computationally too expensive.

To implement the mapping process using EMF, we rely on the existing metamodels for

mKAOS and SosADL. The implementation was developed using the ATL Transformation

language 1, which was chosen due to two main reasons. First, the tools developed to

1http://www.eclipse.org/atl
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Figure 49: Main ATL transformation rule from mKAOS to SosADL

support both mKAOS and SosADL languages are based on the Eclipse environment,

thereby easing their integration along with the ATL transformations. Second, ATL is often

used in the community for model transformation approaches, thus having consolidated

tools and detailed documentation available. It is important to acknowledge that there

are other options for implementing the transformation with equivalent relevance, such as

QVT2. In this case our choice rely on personal experience.

In ATL, the transformation is based on a set of rules that are executed whenever

necessary, conducted by a main rule that leads the transformation. The main rule for

the transformation from mKAOS to SosADL is presented in Fig. 49. The ProduceSos

rule is responsible for controlling the transformation process as a whole, calling all other

transformation rules. This rule transforms a mKAOS model into an SoS architectural

model, generating datatypes from entities (step 1), systems from constituent systems

(step 2), and mediators from communicational capabilities (step 4).

Fig. 50 presents a part of an ATL rule that implements the third step (operational

capabilities to gates). This rule iterates over all possible inputs and outputs for each capa-

bility, producing a connection for each input or output relation. The produced connection

is identi�ed as an input or output connection and then the information is stored as the

connection mode. Finally, the produced connections are stored in a gate generated from

an operational capability.

Fig. 51 depicts an example of the mapping by showing the capability model in mKAOS

(Fig. 51a) and a corresponding architecture in SosADL (Fig. 51b). In Fig. 51a, Meteo-

2http://www.eclipse.org/qvt

Conception d’architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018



100

Figure 50: ATL transformation rule for producing connections in gates from operational
capabilities

rological and Social Network are constituent systems mapped to system elements with

the same name, realizing the second step of the mapping process. In the third step, the

ProvideLocation and FindCitizen operational capabilities are mapped to gates in the cor-

responding constituent systems. Each of the produced gates (PL and FC) will have a

single connection since the capabilities handle only one parameter. In the fourth step,

the FormatData communicational capability is mapped to a mediator, whose duties are

de�ned encompassing the Information connections. In the �nal step of the model trans-

formation, bindings are established based on the inputs and outputs of the capabilities

and the mediator.

The tool provides a simple mechanism to run the transformation, that consists on

simply selecting the mKAOS �le and invoking the transformation. Figure 52 shows how

this mechanism is provided to the user of the modeling environment: in a context menu

for mKAOS �les.

5.3 SosADL Simulator

SosADL execution plug-in was build upon the existing tools without any change in

the original plugins. Hence, the tool can be integrated with those plugins and will be

able to execute every existing model unchanged. This section details the structure and

Conception d’architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018



101

Figure 51: Example of re�nement of a Capability Model in mKAOS to an architecture in
SosADL

Figure 52: Transforming Mechanism Invocation
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function of such execution plugin, which is responsible for the simulation of SosADL

models. Section 3.3.4.2 introduces the architecture of the plugin. Section 5.3.2 details how

each simulation is performed within the model execution plugin. Section 5.3.3 introduces

the simulation con�guration, a mechanism for the architect to control the simulation.

Finally, the Simulation Server that implements a connector to PlasmaLab, an SMC tool,

is presented in Section 5.3.4.

5.3.1 Context Manager

Probably the most important component of the SosADL Simulator, the context man-

ager is responsible for creating and managing a structure we called Context. A context

can be seen as an extension of a scope, including not only the variables, but also the data

that is manipulated by the environment, its events and the status of every constituent

and mediator.

The Context Manager controls the values that are used by the system, updating the

contexts and creating new contexts when an adaptation process demands it. The Context

Manager provides methods to verify the current value of any variable of the execution,

but also to check the current state of a given constituent, mediator or external controller.

This component is also responsible for monitoring the values, triggering new data

events whenever necessary. Context Manager's interface is presented by Fig. 53.

5.3.2 Simulating SosADL Architectures

The simulation is performed by the third and fourth layer. The third layer is respon-

sible for the interpretation of the expression, execution of statements and veri�cation of

asserts, but also for synchronization and control of the environment. The fourth layer

controls the execution and call those functionalities on demand.

Based on the execution work�ow de�ned in Section 3.3.2, the SosADL simulator

implements a derived work�ow to execute SosADL models. The execution is divided in

three steps: (i) setup, in which the Simulation Con�guration Manager and the Execution

Engine read the con�guration �le, de�ne the model to be executed and the external

controllers that will be loaded; (ii) initialization, which creates and initialize contexts,

and loads the model and the external controllers; (iii) step, that will be iterated until the

end of the execution, performing a single execution step.
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Figure 53: Context Manager Interface

Figure 54: Activities of Execution Step

The execution step, on the other hand, is also divided in 3 steps, which are executed

simultaneously, as illustrated by Fig. 54. A step propagates the values, based on the

unify relations of the model. If a value is consumed or produced in a connection, this value

(or the value empty) will be propagated to all connections that are uni�ed to it. The steps

also execute the constituent systems and mediators, which will be executed if the

asserts are ful�lled and the necessary data is available. A third activity is the execution

of external controllers, that will execute in the same circumstances as the constituent

systems and mediators. In this activity, the default external controller will also introduce

the data prede�ned in the con�guration. This later activity is better discussed in Section

5.3.3.

Every activity may produce events that are used to follow up the execution. The
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Figure 55: Starting SosADL Simulator

events are stored and managed by the Event Manager, that will add timestamps to the

events, allowing the events to be chronologically ordered.

To perform a simulation, the user uses the interface provided by the Simulation En-

vironment, simply selecting the �le with the concrete architecture to execute and starts

the simulator, as illustrated by Fig. 55.

5.3.3 Simulation Con�guration

The Simulation Con�guration is a special abstraction that stores information regard-

ing the simulation itself. For doing so, we use a �le with the extension .sosconf. If the

con�guration �le has the same name as the model �le, the Simulation Con�guration Man-

ager loads it automatically.

A con�guration �le is divided in three sections: (i) simulation control, in which the

user de�nes the maximum number of steps and selects the report mechanism; (ii) external

controllers de�nition, in which the user speci�es which controllers will be used and their

corresponding classpath; and (iii) prede�ned stimuli, in which the user may specify a value
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Figure 56: Simulation Control on Con�guration File

Figure 57: External Controller Interface

to be introduced in the model in a prede�ned step of the execution.

The simulation control section contains two �elds: (i) iterations, with the max num-

ber of iterations of the simulation; and (ii) reportType, that selects the detail level to

be reported by the Event Manager. The report type might be �all �, in which the event

manager reports every event in the textual output; �data�, in which only data production

and consumption will be reported, and �communication� that will report only data prop-

agation. Additional report types might be added in the future. Fig. 56 shows an example

simulation control section, that speci�es a simulation with a maximum of 100 iterations

that reports every event.

External controllers use a plug-in architecture to interact with the system. For doing

so, every controller must implement an interface, presented by Fig. 57. This interface

contains only two methods: (i) canExecute that returns true if the controller can execute,

and false otherwise; (ii) execute, in which the controller executes, manipulating the context

as needed.

The user must specify the plug-ins folder in which the external controllers artifacts

will be placed, the External Controllers Manager can only �nd controllers in this folder.

Each controller classpath will then be associated to an architectural element through its

quali�ed name, as illustrated in Fig. 58.

Finally, the prede�ned stimuli section contains associations between step numbers and

expressions, in SosADL. These stimuli are loaded to the default external controller, that

Figure 58: External Controllers in Con�guration File
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Figure 59: Prede�ned stimuli on Con�guration File

will evaluate and inject the value in the speci�ed �eld. In Fig. 59, two prede�ned values

will be injected: (i) the value 12 in connection clients0.rr2.req1, at step 29; and (ii) the

value null in the connection clients0.rr2.req2, at step 110.

Simulation Con�gurations are used during setup and initialize phases of the Execution

Engine.

5.3.4 Simulation Server � PlasmaLab Connector

The last piece of the SosADL Simulator is the Simulation Server. Our simulator was

built aiming at integration with Statistical Model Checking tools, speci�cally PlasmaLab3

(LEGAY; SEDWARDS; TRAONOUEZ, 2016). Since PlasmaLab integration interface relies on

TCP connections, we needed to implement a server able to handle some requests and

translate the events to PlasmaLab format.

TAMIS team4, responsible for the development and maintenance of PlasmaLab, pro-

vided a major support in this contribution, providing a set of common Java classes that

PlasmaLab is able to handle and detailed instructions on how to build this server. Hence,

in this context our contribution consists essentially on event translators.

SosADL Simulator was planned based on this interface, therefore, the Execution En-

gine has one method for each of these requests. The results of each call, that are events,

are then translated and sent to PlasmaLab.

5.3.4.1 Interpreting SosADL Behavior

One of the major contributions of SosADL is the formal behavioral description pro-

vided by the language. SosADL allows architects to describe the behavior of a constituent

system, mediator, gate, etc using constructs formally grounded in π-calculus. To enable

simulation of SosADL models, it is fundamental to develop a tool capable of use behav-

ioral description in SosADL to generate or manipulate data. In fact, an interpreter for the

3https://project.inria.fr/plasma-lab/
4https://www.irisa.fr/en/teams/tamis
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Figure 60: M2Arch Popup Menu

language is the main module for the simulation mechanism.

In this work, we are not concerned with this interpreter. However, the SosADL execu-

tion engine was structured to allow this interpreter to be implemented by future students.

Currently, a small subset of the statements are capable of being interpreted, such as: (i)

performing simple arithmetical operation; (ii) storing values in variables; and (iii) checking

boolean values on variables. Most of the statements requires some features of the SosADL

typechecker that are not currently available.

5.4 Veri�cation and Validation Tools

M2Arch toolkit also encompasses a module that automatically con�gures and starts

the automatic veri�cation and partial validation. Both processes are done by PlasmaLab,

and invoked by the user through a context menu. This context menu shown in Fig. 60 is

available for all SosADL �les.

5.4.1 V&V Module Overview

Since M2Arch proposes an extensive methodology that encompasses veri�cation and

validation, its associated toolkit supports the automation (partial or whole) of such ac-

tivities. For doing so, the so-called V&V module uses the SosADL Simulator and the

statistical model checker PlasmaLab (LEGAY; SEDWARDS; TRAONOUEZ, 2016).

The structure of the V&V module is simple, consisting essentially in a coordinator

that is responsible for setting up the two involved tools and preparing the inputs for

their initialization. This coordinator decides whether the operation is a veri�cation or

validation, based on a con�guration �le, and creates a set of temporary property �les

that will be provided as input to PlasmaLab. Fig. 61 presents an overview of the activities

performed by the coordinator.
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Figure 61: Model Checker Coordinator Activities

Initially, the coordinator will read the con�guration �les. Based on these �les, the

SosADL Simulation Server will be set up. Also based on the con�guration �les, the coor-

dinator decides if the process is a veri�cation or validation, depending on which process is

to be executed, the temporary �les will contain mission formal de�nitions or constraints

de�nitions. The set of these property �les and the informations concerning on the SosADL

Simulation Server are used to build the initialization parameters for PlasmaLab.

After starting PlasmaLab, the coordinator is put on hold until the execution is �n-

ished. Finally, it will use the PlasmaLab-generated report and create an M2Arch report,

depending on the type of the process (veri�cation or validation).

The whole process is automatic: the user selects the SosADL �le and accesses the

context menu after selecting Verify Model, the tool will setup the V&V module and start

the veri�cation, as illustrated by Fig. 62. The tool will initialize the required parameters

and start the veri�cation. Such veri�cation might be used by the veri�cation process or

the automatic validation.

The output of the veri�cation/validation process is a report �le, by default, although

the user might select between a report �le or the default textual output within M2Arch

environment.

5.4.1.1 Veri�cation Con�guration

To allow the user to have more control over the operations supported by M2Arch

toolkit, there is a set of con�guration �les that are used as input to the SosADL Simulator

and the V&V Module.
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Figure 62: Starting Veri�cation

It is important to highlight that both veri�cation and automatic validation are per-

formed by PlasmaLab. The simulation that is used along the process is hence controlled

by the statistical model checker. Therefore, the V&V module might override some param-

eters of the simulation con�guration on-the-�y. For instance, the number of steps of each

simulation can be altered depending on the needs of PlasmaLab.

In this context, there are two simulation �les that are somehow related: (i) simula-

tion con�guration and (ii) model checking con�guration. The �rst is responsible for the

parameters of the simulation and was described in Section 5.3.3.

The model checking con�guration, on the other hand, determines how the V&V mod-

ule will setup the checking and perform its activities. Unlike the simulation con�guration,

the tool is not capable of generating the model checking con�guration �le. Although some

parameters have a default value, some of them must be de�ned by the user. The parame-

ters of this con�guration �le are listed in Table 6, in which only the missionModel cannot

be generated by the tool.

Additionally, it is possible to force the overriding of any parameter on the simulator.

This allows the stakeholders to change the simulator for a given process of veri�cation or
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Param Values Description

missionModel - Path to the mission model to be used
in the process

type validation, veri�cation Determines the type of the checking
algorithm any supported by PlasmaLab Specify the algorithm to use on Plas-

maLab
plasmaParam - parameters to be passed to PlasmaLab

Table 6: Parameters of the V&V Con�guration File

Figure 63: Overriding Simulation Con�guration parameters

validation, without changing the existing con�guration for the simulator. Fig. 63 shows a

con�guration �le that overrides the simulator con�guration, changing the ExternalCon-

troller for the constituent server20 and the number of steps.

The con�guration �le is parsed by the V&V module itself, any syntactical misuse of

parameters will halt the checking process.

5.4.1.2 Reports

Key to the veri�cation and validation steps, M2Arch reports provide detailed infor-

mation about the processes that are automated by the tool. Speci�cally, there are two

natures of report: (i) simulation report and (ii) model checking report.

The Simulation Report is built by the Simulation Environment, it describes events

that occurred during every simulation. Using these reports, the user might follow up the

whole architectural execution.

The simulation reports support four kinds of events: (i) Data; (ii) Communication;

(iii) Execution; (iv) Structure. Fig. 64 presents a Class Diagram that speci�es the Events

involved in a SimulationReport. Every event has a timestamp, that relates the moment

in which the event was triggered. This timestamp is automatically generated by the class

constructor.

Execution and structure events are present in all reports. Execution events concerns

on constituents or external controllers, signalizing their execution. Structure events, on
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Figure 64: Events Classes that compose a Simulation Report

the other hand, report any change in the architectural structure, such as the leave or

discovery of a constituent. Execution and structure events have a single attribute: subject,

that refers to the element that was executed or changed.

Data events and communication events are present whenever the simulation con-

�guration specify so, as mentioned in Section 5.3.3.

Data events report a consumption or generation of a new value, which occur on the

connection according to the constituent behavior or a ExternalController intervention.

Data events encompass three attributes: (i) subject, that refers to the element responsible

for changing the value on a connection; (ii) new value, the new value of that connection;

(iii) previous value, that is not included in the report but is stored and may be monitored

for debugging.

Communication events regard in the data exchange between constituents. They are

triggered whenever a data is transmitted from one connection to another. Notice that

these events do not concern on the mediators, but on the uni�cations. In SosADL, a

mediator is a also constituent in the coalition context, hence, the execution of mediators

are also execution events. Communication events have three attributes: (i) source, that

refers to the connection from which the value was previously stored; (ii) target, referring to

the connection that will receive the value; and (iii) value, the value that was transmitted.

An example of a simulation report is available in Chapter 4, Fig. 41.

The second type of report is theModel Checking Report. This report is generated

by the V&V module, based on PlasmaLab output. A Model Checking Report depends on

the type of the process: validation or veri�cation.

It is important to highlight that PlasmaLab reports depends on the algorithm used

in the process, currently, our tool only supports montecarlo reports for building detailed
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reports. However, we consider this a minor limitation, since the V&V module will report

PlasmaLab results either way.

Veri�cation reports focus on properties and constraints. They are simpler than Vali-

dation reports, reporting only the set of constraints, with their respective number of simu-

lations and positive results. These reports will also notify constraint violations, indicating

in which simulation a given property was violated. Veri�cation reports were previously

introduced, by Fig. 42 in Chapter 4.

Validation reports are more complex. They provide a more detailed analysis on the

results of evaluation of formally described missions, combining the results with the mission

model. Validation reports were previously introduced by Fig. 44 in Chapter 4.
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6
Case Study: Proof of Concept

6.1 Foreword

To evaluate M2Arch we ran a case study with the FMSoS, introduced in Section

2.8. Applying the whole process to the SoS, we generated a concrete architecture that

was veri�ed and validated throughout the techniques hereby proposed. The resulting

architecture shown is very similar to the one previously modeled by the ArchWare team,

although some relevant di�erences were noticed.

It is important to highlight that, for didactic purposes, some examples presented

in this Chapter may be simpli�ed. The full version of our case study is available at

http://consiste.dimap.ufrn.br/projects/m2arch.

6.2 Application: FMSoS

The Flood Monitoring System-of-Systems (FMSoS) is an acknowledged SoS intro-

duced in Section 2.8. This section details the application of M2Arch to produce an archi-

tecture for FMSoS, detailing all steps and presenting the involved models.

The outline of this Section follows the overall steps of the methodology, Section 6.2.1

regards on the De�nition activity, that encompasses mission modeling and architectural

modeling, including the automatic mapping between these. Section 6.2.2 concerns on auto-

matic veri�cation of domain-related properties. Section 6.2.3 presents the validation pro-

cess, including the automatic validation of missions and behaviors and the manual analysis

of the simulation; �nally, Section 6.2.4 presents our conclusions about the methodology

usage, by comparing the resulting models with previously de�ned models.
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Constituent system Individual mission

Meteorological System Provide Weather Bulletin
Monitor Weather

River Monitoring System Monitor River Levels
Surveillance System Monitor City Areas

Calculate Risky Area
Social Network Identify Citizens

Table 7: Individual Missions of the Flood Monitoring SoS

Figure 65: Mission Model and Responsibility Model for FMSoS

6.2.1 De�nition

6.2.1.1 Mission Modeling

The �rst activity of the de�nition step is probably the most important activity in

M2Arch: the de�nition of the mission model. As output, it produces a mKAOS

mission model that describes the SoS as a whole, from its global missions to the capabilities

and the data objects exchanged by the involved parts.

The FMSoS was introduced in Section 2.8, as shown in Fig. 5, such an SoS has

two global missions, namely Detect Flood with Maximum Con�dence and Alert Citizen

in Risky Areas. These missions are re�ned into six individual missions assigned to four

constituent systems, as described in Table 7.

To model these missions in mKAOS, we started by the global missions, using the

top-down approach. These missions are re�ned into individual missions. Later, using the

Responsibility Model we de�ne the constituent systems and assign responsibilities over

the individual missions, using the information of Table 7.
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Figure 66: Capabilities of the meteorological system

Now, it is necessary to identify the capabilities of the constituent systems, that make

them capable of achieving their individual missions by its own. This is done through the

Operational Capability Model.

The �rst constituent system, the meteorological system, is capable of gathering data

regarding weather, such as temperature, humidity, wind speed, wind direction,and rain

amount. This information is collected by sensors and radars and provided in form of

bulletins. As the data depend on the geographical location, the system receives as in-

put the location and provides the data as soon as they become available. Fig. 66 shows

the operational capabilities of the system as designed in mKAOS. The Produce Weather

Bulletin capability receives a Location as input and produces a Weather Bulletin. It can

also trigger a Rain Alert event, which can be provided before the bulletin completion.The

Provide Information capability is responsible for providing a speci�c information (such as

temperature, wind speed, etc.) given a Location and a Parameter (type of desired infor-

mation). Finally, the Monitor Region capability receives a Location and keeps monitoring

this region, triggering the Rain Alert and the Flood Warning events.

A second constituent system, the surveillance system, is capable of taking aerial im-

ages (using balloons, airplanes, satellites, etc.) of a given area. Fig. 67 shows the opera-

tional capability model for the surveillance system. Its only capability: Provide Images,

receives a Location as input, providing an Image as output. The surveillance system is

also responsible for calculating a risky area, that is represented by a list of locations.

For doing so, it uses the capability Calculate Risky Area, taking a center Location and a

range (represented as Integer) as input.
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Figure 67: Capabilities of the surveillance system

Figure 68: Capabilities of the river monitoring system

The River Monitoring System is a constituent system that is also a SoS. It is composed

of a group of sensors and gateways and operate together to monitor river levels in di�erent

spots in a riverbed. It is not necessary, however, to model another SoS in this context.

Instead, we see it as a single constituent system, capable of providing the current water

level of the river. Fig. 68 depicts the operational capability model of the River Monitoring

System. This diagram presents a new concept: a capability that does not require any

input, Provide Water Level.

Finally, the Social Network is one of the most complexes constituent systems in

FMSoS. Some of the relevant capabilities are presented in Fig. 69. Receive Message is

a capability that triggers an event: Message Received, representing a message the user

received. The capability Send Message sends a Message to a given Participant. The Social

Networks also allows to search participants, based on a String (name of participant) or

Location. These two capabilities provides as output a list of Participants, that contains

all the participants that met the search criteria.

Regarding communicational capabilities, the �ood monitoring SoS has one important

communicational capability. The To Match Data capability is responsible for providing a

single accurate information based on two provided information. It represents the mech-

anism of fault tolerance of the system and it is also responsible for the implementation

of the Detect False Positive emergent behavior. Both communicational capability and

emergent behavior are de�ned in mKAOS as illustrated in Fig. 70. The To Match Data

communicational capability receives two Information objects and provides a single In-

formation. The information used by these communicational capabilities is provided by

the Meteorological System and River Monitoring System constituent systems through the

operational capabilities Provide Information and Provide River Level Information. The
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Figure 69: Capabilities of the social network

Figure 70: Communicational capability To Match Data

re�nement process for this communicational capability produces a mediator with a duty

and three connections, two input connections with the Information data type and one

output connection with the Information data type, as shown in Fig. 77.

An important communication capability is the one responsible for using an Alert,

produced by theMeteorological System and a Participant, provided by the Social Network,

to build up a message to be sent, containing an alert to the participants. Fig. 71 presents

this communicational capability: Send Alert.

Other communicational capabilities are present, regarding data exchange between

di�erent constituent systems, such as the capability Location to SN, described in Fig 72.

This capability uses a list of locations given by the Surveillance System to provide the

information to the Social Network, allowing the identi�cation of the participants in the

risky area.
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Figure 71: Communicational capability Send Alert

Figure 72: Communicational capability Location to SN
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Figure 73: Emergent Behavior Identi�cation of Citizen in Risky Area

Figure 74: Emergent Behavior Send Alert

The communicational capabilities enables emergent behaviors, that are de�ned in

Emergent Behavior Model. Emergent Behaviors have a major in�uence on the achievement

of a global mission. Therefore this diagram is fundamental for validation purposes.

One of the desired emergent behaviors is Identi�cation of Citizen in Risky Area, that

emerges from the interaction between the surveillance system and the social network,

through the communicational capability Location to SN. One or more interactions of this

kind emerges this behavior, as shown the mKAOS diagram in Fig 73. This emergent

behavior in�uences the mission Identify Citizen in Risky Area.

Another emergent behavior is homonymous to the communicational capabilities it

emerges from. Fig. 74 shows the emergent behavior Send Alert, that emerges from the

communicational capability Send Alert and in�uences the achievement of the global mis-

sion Alert Citizen in Risky Area.

Finally, the FMSoS has a single constraint: the triggering of an Alert event by the

Meteorological System must, eventually, trigger a Message Sent event on Social Network.

This ensures that every time there is an Alert, someone will receive this alert. Fig. 75

shows the description of this constraint as a Domain Invariant, in formal mKAOS.
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Figure 75: Domain Invariant for FMSoS

Figure 76: Partial de�nition of the MeteorologicalSystem in SosADL resulted from the
mapping process from mKAOS

6.2.1.2 Automatic Mapping

Based on the mission model, the automatic mapping is capable of generating a SosADL

architectural model that encompasses the element de�nitions and a coalition with the

structure of the architecture.

An example of element de�nition that is generated is presented in Fig. 76. This partial

description describe the Meteorological System, as well as the required data for the re-

quired connections. This construction includes a set of type de�nitions and a system with

four gates, each one related to an operational capability of the system. For instance, the

ProduceWeatherbulletin gate has three connections that represent the inputs and outputs

for this operational capability.

Figure 77: Mediator in SosADL generated from the To Match Data communicational
capability described in mKAOS
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Figure 78: Coalition in SosADL representing the architecture of the �ood monitoring SoS

The coalition representing the architecture of the �ood monitoring SoS is built using

the produced constituent systems and mediator. The bindings are based on the input/out-

put links in mKAOS, in which the systems will interact through the parameters of the

communicational capabilities. Additionally, the inputs and outputs of communicational

capabilities not used by any individual constituent systems are bound to the SoS gates,

through the relay instruction. Fig. 78 shows the produced architecture for the �ood mon-

itoring SoS based on the mKAOS mission models. In this partial description, two con-

stituent systems (MeteorologicalSystem and RiverMonitoringSystem) and one mediator

(ToMatchData) are de�ned, the latter handling the interaction between the former. The

mediator takes data from both systems and produces an Information object that is used

by the SoS.

6.2.1.3 Architectural Modeling

Although the overall structure is generated by the automatic mapping, it might be

necessary to do some adjustments. In this case, speci�cally, no major change was required.

However, it is still necessary to describe the behavior of the constituent systems and

mediators, that cannot be automatically generated since mKAOS does not concern on

system's behavior.

Except for the River Monitoring System, the internal behavior of the constituent

systems is unknown. We choose, however, to treat all constituents as if they have unknown

behavior, for simpli�cation purposes.

Even constituent systems with unknown behavior can be expressed in SosADL and
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hence supported by M2Arch. It is important, however, to be able to simulate their be-

havior, based on observation over these systems or their overall de�nitions. To simulate

their behavior it is possible to use the ExternalControllers, described in Section 3.3.4. The

automatic processes of veri�cation and validation will not be able to execute if there is

an unknown constituent system or mediator with no associated ExternalController.

We implemented a set of four ExternalControllers : MeteorologicalController, River-

MonitoringController, SurveillanceController and SocialNetworkController. These con-

trollers are be responsible for implementing the interfaces of the constituent systems,

reading the inputs and producing the outputs when requested.

Further, we know that sometimes a constituent system may be unable to respond. At

this stage of the modeling process, we are not sure about the causes and this anomalous

behavior do not happen often. Although the controllers are implemented to simulate the

constituent systems, we also implemented a failing mechanism that de�nes a response rate

of 99.9%, which means that the controller will respond properly to 99.9% of requests. In

the 0.1% left, the controller consumes the input but does not generate any result. This

allows us to simulate situations in which there is a network unavailability or any structural

issue, but also some misfunction in the constituent system.

Some of the controllers, as the one responsible for the River Monitoring System, uses

a stochastic process to produce the values for river levels. The produced values are in a

normal distribution, with a low probability of providing a water level that represents a

�ood.

Also, to allow a more accurate simulation, we implemented some data exchange be-

tween the controllers. The RiverMonitoringController interacts with the Meteorological-

Controller, to allow their data to be cohesive, since their associated constituent systems

make measurements in a common physical environment. If the MeteorologicalController

produces a rain alert, the RiverMonitoringController will provide higher river level mea-

sures. The opposite occurs if no rain alert was produced for some time: the RiverMoni-

toringController will provide lower river level measures.

On the other hand, the mediators are part of the constituent system and therefore

we can de�ne their guarantees, although an ExternalController could also be built in this

case. Since all mediators perform simple operations, we choose to describe their behavior

using SosADL.

One of the most important mediators in the FMSoS is the SendAlert mediator, au-
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Figure 79: Behavior of mediator SendAlert

tomatically generated based on the Send Alert communicational capability, previously

described in Fig. 71. Fig. 79 depicts the behavior of the SendAlert mediator, that takes

a Rain Alert and a set of Participants, generating a Message that will be sent to each

participant, containing is the message in the Rain Alert.

The mediator SendAlert receives a Participant, through either p1 or p2, and sends a

message that contains the RainAlert message and send it to this Participant.

6.2.2 Veri�cation

M2Arch V&Vmodule, responsible for veri�cation and validation, relies on the SosADL

Simulator and PlasmaLab. Therefore, it requires some con�guration to be able to perform

the automatic routines.

First, as the SosADL Simulator is able to simulate only concrete SosADL architec-

tures, it is necessary to generate these concrete architectures before starting. Currently,

we faced some issues to execute Guessi's solution (GUESSI; OQUENDO; NAKAGAWA, 2016)

to perform this generation. We succeeded after a few attempts and generated a concrete

architecture identical to the initial, meaning that the abstract architecture was also a con-

crete architecture for the given environment. In this context, our generator environment
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Figure 80: Simulator Con�guration for FMSoS

Figure 81: Veri�cation Con�guration for FMSoS

encompassed only a single possible constituent system of each kind, what explains the

production of a single concrete architecture.

With the concrete architecture ready, aiming to improve quality, M2Arch proposes

the use of automated veri�cation to check the architecture for domain properties and

constraints. For doing so, M2Arch requires a con�guration �le for the model checker and

simulator. The simulator con�guration �le for the FMSoS is presented in Fig. 80. This

�le de�nes the ExternalControllers for the constituent systems and the parameters of the

simulator, like, for instance, the number of iterations and report type.

The veri�cation con�guration is presented in Fig. 81. It speci�es that our model

checker will use the Morte Carlo algorithm to perform 100 simulations, verifying all con-

straints.

Finally, we started the procedure to automatically verify the property within the

architecture. Table 8 presents our results. We did three experimentations, varying the
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Constraint Success Rate Samples Time

AlertAlwaysSent 1.0 100 14281ms
AlertAlwaysSent 0.99 1000 182310ms
AlertAlwaysSent 0.9878 10000 2165701ms

Table 8: Results of automatic veri�cation

Figure 82: Veri�cation Con�guration for Validation of FMSoS

number of samples used by PlasmaLab, using a machine with a Intel i7 processor, 8gb

RAM, Windows 10 system. We ascribe the performance of this experiment mainly to the

SosADL Simulator, since PlasmaLab appears to request the new states faster than the

simulator is capable of processing it.

Based on Table 8, we found that the invariant AlertAlwaysSent is maintained in

around 99% of the simulations. The failing rate is associated with the implementations

of the ExternalControllers, that intentionally fail, eventually. We decided that this failing

rate acceptable in the context of this system.

6.2.3 Validation

Validation architectures, in M2Arch encompasses an automatic validation of formally

described missions and a manual validation based on the simulation.

Similarly to the veri�cation purpose, the automatic validation requires a con�guration

�le with some parameters for PlasmaLab. The con�guration for FMSoS is presented in

Fig. 82. In this con�guration, we specify that the V&V module will perform an automatic

validation, focusing on formally described missions, but it is also possible to focus on

formally described emergent behaviors.

However, we found some limitation on formal mKAOS regarding constraint de�nition.

Since the language does not contain any architecture-related information, it is necessary

to improve some of the constraints for the concrete architecture, detailing the connection

that will interact with the property, whenever it applies. Fig. 83 shows an example of
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(a)

(b)

Figure 83: Improvement of formal mKAOS Formal De�nition

formal description of the emergent behavior DetectFalsePositives. Fig. 83a, shows the

original formal de�nition, which is based on the mission model alone. Fig. 83b shows the

updated de�nition of this behavior, including information generated by the automatic

mapping.

Once updated the formal de�nitions of missions and emergent behaviors, the V&V

module is capable of isolating these formulas and invoking PlasmaLab to check the exis-

tence of the emergent behaviors and the achievement rate of the missions. After updating

the formal de�nition of the individual missions and some intermediary missions of FMSoS,

we obtained the results presented by Table 9. In this study, the global missions are simply

a combination of its sub-missions.

The V&V module took 11m22s to evaluate the model to produce these results, in a

Core i7, 8gb RAM, Windows 10 system, with 100 samples. We expect longer times for

more precise validations, using a higher number of samples.

After these automated processes, the manual validation consists on identifying mis-

leads in the simulation itself, checking if the architecture is behaving as planned. For this

case study, we found no misdirection in the planned execution path and no constituent

behave di�erently of its plans.
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Mission Rate

Detect Floods with Maximum Con�dence 95%
Alert Citizen in Risky Areas 99%
Avoid False Positives 98%
Detect Flood 97%
Identify Citizen in Risky Area 100%
Alert Citizen 99%
Identify Citizen 100%
Calculate Risky Area 100%
Monitor City Areas 99%
Monitor River Levels 98%
Provide Weather Bulletins 100%

Table 9: Mission achievement rate for FMSoS

Figure 84: Constituent System Fail in Simulation Report

For performing the manual validation, though, we use the simulation reports generated

by the automatic validation procedure. Since the validation report includes data regarding

in which circumstances the missions failed, it is possible to identify what caused the failure.

For this study, all the failures were caused by the intentional failing mechanism introduced

in the ExternalControllers. For instance, Fig. 84 shows a simulation report in which the

constituent RiverMonitoringSystem intentionally failed. Fig. 85 displays the source code

of the ExternalController that provoked this failure.

6.2.4 Discussion

The overall structure of the produced architecture, is very similar to the existing

architecture, they di�er on coupling and some gates presented a di�erent de�nition. Along

this Section, the previously existing architecture will be referred as Arch1, and the model

produced through M2Arch will be called Arch-M2Arch.

Arch1 was produced previously to the de�nition of M2Arch, using no speci�c method-

ology. This architecture was based on the textual descriptions and available documenta-

tion of the FMSoS (HUGHES et al., 2011; DEGROSSI; AMARAL; VASCONCELOS, 2013). This

architecture was used to analyze the needs of M2Arch, in terms of mechanisms and tech-
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Figure 85: External Controller for RiverMonitoringSystem

niques.

Fig. 86 presents an overview of Arch1, showing the structure of the architecture in the

SosADL view tool. This architecture encompasses four constituent systems, two mediators

and a set of 20 connections. The whole SosADL description of Arch1 architecture is

available at Appendix C.

On the other hand, the architecture Arch-M2Arch, produced through M2Arch have

its structure presented by Fig. 87. This architecture also encompasses four constituent

systems, however, it has six mediators and 17 connections. The whole SosADL description

of Arch-M2Arch is available at Appendix D.

The main di�erence between the architectures is the number of mediators. Since medi-

ators in Arch-M2Arch were generated based on the possible interactions, they have a sim-

pler interface and perform fewer operations. The mediators of Arch1 are very overloaded,

sometimes performing more complex operations. This severely impacts the resilience of

the architecture. Since Arch-M2Arch has simpler mediators, it has fewer failure points

and is easier to maintain.

Furthermore, we detected some additional relations between constituent systems in

Arch-M2Arch, that were caused by a transformation rule. The process to establish a unify

considers only the data types in mKAOS to produce a unify in SosADL. This may lead

to the creation of uni�cations that were not predicted. We minimized this behavior by

improving the mapping, double checking the data types and generated connections to

minimize its occurrence. It is important to highlight that, due to the dynamic nature of
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Figure 86: Overview of Arch1

Figure 87: Overview of Arch-M2Arch
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System

Arch1 Arch-M2Arch

IC OC IC OC

River Monitoring System 1 3 0 3
Meteorological System 1 6 0 3
Social Network 4 3 3 2
Surveillance System 3 2 1 3

Table 10: Connections of Constituent Systems of FMSoS

Mediator

Arch1 Arch-M2Arch

AC EC AC EC

Detect Flood 7 4 - -
Send Alert 3 3 - -
Area Monitor - - 1 1
LocationToSN - - 1 1
ParticipantsByLocation - - 1 1
SendAlert - - 3 1
ToMatchData - - 3 1
ParticipantsInArea - - 1 1

Table 11: Connections of Mediators of FMSoS

mediators that will perform a mediation only when the constituent systems require, we

observed no impact of this issue on simulation: the architecture behaves exactly in the

same way when we removed the �extra� relations.

To evaluate the architectures with an objective view, we performed an interactions

analysis. We evaluate how many interactions the constituent systems do with other con-

stituent systems, based on the number of connections that are being used by any relation.

We organized these connections as input connections (IC) and output connections

(OC), that are summarized by Table 10. Furthermore, we also evaluated the number of

connections of mediators, summarized by Table 11.

The number of connections were di�erent and, more speci�cally, larger in Arch1. Arch-

M2Arch uses a greater number of mediators, simplifying the communication between the

constituent systems. Arch1 has fewer mediators, but these are overloaded with several

connections. The increased number of connections hampers the evolution process of the

SoS, since a change in an overloaded mediator or constituent has impacts on several

interactions.

Finally, we evaluated the degree of commitment of the architecture within the mission

model. For doing so, we compared the achievement rate of both architectures using the

automatic validation process with the same mission model. For a better accuracy of Plas-
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Mission
Achievement Rate

Arch1 Arch-M2Arch

Detect Floods with Maximum Con�dence 74.87% 95.20%
Alert Citizen in Risky Areas 91.66% 98.91 %
Avoid False Positives 87.64% 98.22%
Detect Flood 85.44% 96.93%
Identify Citizen in Risky Area 91,78% 99,71%
Alert Citizen 99.3% 99.2%
Identify Citizen 99.88% 99.9%
Calculate Risky Area 99.91% 99.81%
Monitor City Areas 98.52% 98.6%
Monitor River Levels 98.91% 98.31%
Provide Weather Bulletins 98.72% 99.91%

Table 12: Mission Achievement Rates of Architectures for FMSoS

maLab on the automatic validation, the number of samples was increased to 10.000, that

increases the checking process time. Both architectures used the same simulation con�gu-

ration, external controllers and mission model. Therefore, any di�erence relies exclusively

on the architecture itself.

Table 12 presents the mission achievement rate of both con�gurations. Architecture

Arch1 presents a higher failure rate, we associate this to the overloaded mediator: when-

ever it fails, the architecture fails in multiple missions at once.

It is worth highlighting that Arch1 executes three times faster than Arch-M2Arch. We

assign this di�erence to the increased number of mediators in Arch-M2Arch, allowing faster

data exchange due to the parallelism that the simulator implements for the mediators.

Although we cannot associate the improved performance to M2Arch, this evaluation

allows us to make a few conclusions about the methodology. Since M2Arch generated the

topology of the system, with few or no changes to be made, the lower e�ort to develop using

the methodology, the e�cacy and the e�ciency of the produced architecture allows us to

suggest M2Arch accomplishes what it intends to, as a pioneer mission-based methodology

to develop SoS architectures.
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7
Related Work

This chapter discusses related and complimentary work found until September 2018.

We were looking for works that deals with a re�nement, methodology or process that

bridge missions and software architecture of SoS.

Although we found no study directly addressed to this topic, we looked for studies that

might somehow help answering the research questions presented in Section 1.2. We divided

these works in three categories: (i) alternative ADLs, that may provide a better solution

than SosADL; (ii) mission languages, that might present a di�erent representation

and an underlying formalism; and (iii) re�nement methodologies, that would provide

valuable knowledge for our work. During the production of this work, we found no relevant

works on (i) and (ii). However, regarding (iii), a bibliographic review found interesting

works, presented in Section 7.1. Finally, Section 7.3 presents a brief discussion about the

current state of art, emphasizing the perspectives for the domain.

In addiction, we are aware that missions are closely related to requirements, thus, we

choose a couple of works apart from SoS context, to illustrate the relationship between re-

quirements and architecture, presented in Section 7.2. These works are chosen speci�cally

since they use KAOS at some point of the modeling process or, at least, the goal-oriented

approach used by KAOS. Since mKAOS is an extension of KAOS, these works potentially

present some relevant topics to this study.

7.1 Systems-of-Systems Approaches

In this section we present the approaches for SoS, however, there is lack of works

that uses missions as starting points. A remarkable study in SoS domain is COMPASS,

that proposes a complete framework for developing SoS using a conventional requirements

approach, presented in Section 7.1.1. Another interesting work is more theoretical, Haley

and Nuseigeh (HALEY; NUSEIBEH, 2008) uses i* (YU, 2009) and Tropos (GIUNCHIGLIA;
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Figure 88: Overview of COMPASS approach

MYLOPOULOS; PERINI, 2003) as starting point for developing a methodology requirements

engineering process to develop SoS architectures.

7.1.1 COMPASS

Comprehensive Modeling for Advanced Systems of Systems (COMPASS) (FITZGER-

ALD; BRYANS; PAYNE, 2012; FITZGERALD; LARSEN; WOODCOCK, 2014) is a framework

and methodology for building and maintaining systems-of-systems. It encompasses a set

of tools, methods and formalisms for modeling and analyzing SoS with an underlying

formal notation.

COMPASS is the most advanced and complete work we found in the literature, it con-

cerns in SoS modeling from requirements to architecture. The approach encompasses all

development steps, from requirements to architecture, formal veri�cation and validation.

It uses SysML for the whole modeling process, from requirements engineering to ar-

chitectural description, although it presents an extension for the language to provide a

formal support for architectural descriptions. The architectural models are fully re�ned

into CML (COMPASS Modeling Language), a formal, executable language that allows

model simulation and analysis. CML is theoretically based on the Unifying Theories of

Programming (UTP), (HOARE; JIFENG, 1998) a model semantics framework. Fig. 88 1

summarizes the framework structure.

COMPASS relies on competency viewpoints to de�ne roles and activities to estab-

lish an speci�c development process for each domain of SoS. The competency viewpoints

are four: (i) Competency Framework De�nition, that essentially de�nes the ontology to be

used for the domain, (ii), Competency Level De�nition, that de�nes the roles for the im-

plementation process, (iii) Competency Scope De�nition, that de�nes responsibilities over

each activity of the development process, (iv) Competency Pro�le De�nition assigns roles

1Based on http://www.compass-research.eu/
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Figure 89: Example of CML code

to stakeholders. Based on these viewpoints, the roles and activities are de�ned to produce

a multi-view architecture. The combination of these four views produces a well-de�ned

process for SoS development.

In terms of requirements modeling, the approach uses traditional SysML requirements

model to de�ne the over-cited development process. The validation of the process is manual

and consists of checking whether this process is complying to the speci�ed requirements.

In terms of architectural modeling, COMPASS enhances SysML with CML code. CML

is a formal language that de�nes semantics logic for the actions and activities de�ned

in SysML. The embodiment of CML code within SysML allows the architecture to be

simulated and veri�ed. The process to produce architecture is based on a set of guidelines

using the competency viewpoints to re�ne the requirements to the architectural level, thus

supporting traceability between those requirements and elements in the architecture.

COMPASS also concerns in veri�cation, hence, CML includes mechanisms for de�ni-

tion of constraints and a state logic. To ensure the set of required properties of a given

communication, these contracts can be established in CML and are veri�ed at simulation

time. COMPASS suggests the use of contracts on communication processes, which can

be veri�ed using a formal simulator. Fig. 89 shows an example of CML speci�cation of

contract of a streaming service SoS: (i) �A valid interface implementation must always

reply on a request�, which is checked by most of the code; and (ii) �if a state transition

fails, a valid interface implementation stays in the current state�, which is veri�ed through

the �rst line, that skips the transition process if the state fails.

COMPASS approach is an extensive, well-de�ned process to architectural de�nition
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of SoS, so far, it is the most advanced methodology that exists. However, it uses the usual

concept of requirements instead of missions. Mission is a concept more adequate to the

SoS context, since it naturally handles the dynamic nature of this kind of system. Since

COMPASS project was developed before the arising of mission description languages,

the approach uses requirements as starting point for the modeling process. We consider

this decision outdated, since now we are capable of accurately describing missions and its

speci�cities.

Another important point is the mechanism used to produce and represent architec-

tures. COMPASS presents a set of guidelines to produce and validate architectures from

requirement diagrams, however, the process is mostly manual. The description process

is partially supported by descriptive tools, but instead of de�ning speci�c DSLs, the

proposal enhances existing ones. Speci�cally, in the architectural description, COMPASS

enhances SysML, a widely accepted ADL. However, SysML has some limitations regarding

dynamism, since it was designed to de�ne static systems.

CML extension adds formalism to the language, but it does not handle the dynamism

of SoS. Since SoS are systems which con�guration can change at runtime, constituent

systems can come and go. We believe the use of contracts on communications is a successful

decision, due to the potential heterogeneity and behavioral uncertainty of constituent

systems. These characteristics requires the architecture to be able to handle di�erent

systems and protocols, the use of contracts upholds this process. However, it does not

support dynamic recon�guration, we consider this as a major limitation of COMPASS.

7.1.2 Haley and Nuseibeh's Work

The approach proposed by Haley and Nuseibeh (HALEY; NUSEIBEH, 2008) proposes a

multidisciplinary process, using Software Engineering and Philosophy concepts together

to produce an enhancement to the i*/Tropos approaches to develop SoS requirements,

bridging the enhanced models with the software architecture through analysis.

Structured as a four-step process, the proposal aims to enhance requirements models

in order to obtain a more detailed, re�ned model. The main objective is to allow a better

understanding of the requirements, that will be used to describe software architecture.

The process iterates over both architectural and requirements models, which helps to

understand the impact of the requirements on the architecture as long as it is being build.

The process is not sequential, and the analyst can start by any step. It is necessary
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Figure 90: Example i* diagram

to: (i) de�ne the existing systems' behavior with i* (YU, 2009)/Tropos (BRESCIANI et

al., 2004; GIUNCHIGLIA; MYLOPOULOS; PERINI, 2003); (ii) describe the existing systems'

architecture, using problem diagrams (JACKSON, 2001); (iii) describe the future, post-

integration, SoS architecture; and (iv) describe the post-integration SoS behavior. After

these steps, the approach proposes an analysis mechanism for correctness.

To model the requirements, the proposal uses i*. The focuses of the requirements

model are the agents and intention points of view. i* shows delegation between agents and

responsibilities, allowing variation along levels of detail. Using this approach, agents may

be computer systems, humans or organizations. Fig. 90 2 shows an example i* diagram. In

this example, the intentional model is shown for a sales system. Circles represents actors,

ovals are goals the one actor delegate to another.

Architectural models are built using a variation of Jackson's problem diagrams (JACK-

2Extracted from (HALEY; NUSEIBEH, 2008)
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Figure 91: Twin Peaks Model

SON, 2001). In these diagrams, the systems are described in terms of physical domains

and connections between them. It is important to highlight that this approach is very

unusual, especially since it does not detail the interfaces of the systems in terms of data.

To produce the architecture, the proposal suggests the use of the Twin Peaks model

(NUSEIBEH, 2001), presented in Fig. 91 3. Twin Peaks model consists of building the

architecture a requirement per time, in a cyclic approach. This allows the architect to

foresee the impact of a requirement in the architecture and favors traceability. During the

architectural design, the architect must identify the capabilities of the constituent systems

and the required capabilities. To provide the required capabilities, the architecture must

ful�ll a set of assumptions, that are veri�ed in a �nal step of the architectural modeling.

Such process to de�ne the architecture lacks on speci�c guidelines or rules. The ar-

chitecture will be built without a well-de�ned framework, technique or methodology, in

a very subjective manner. Furthermore, the language used for architectural modeling is

not an ADL, therefore the concepts of software architecture are not present.

To validate the �nal architecture, the proposal simply veri�es each assumption. The

architecture is considered valid if every assumption is satis�able. However, such process is

completely manual without tool support. This work does not provide a clear mechanism

for veri�cation of architectural properties, although i*/Tropos are able to express some

constraints.

Another important limitation of this approach is the lack of concern in the dynamism

inner to SoS. Such as COMPASS, this approach does not give special attention to the

dynamism of SoS and lacks representations of dynamic structures. Also, the study does

3Extracted from (HALEY; NUSEIBEH, 2008)
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not concern on emergent behaviors and many aspects of SoS, such the heterogeneity and

the behavioral uncertainty on the constituent systems.

7.2 Requirements Engineering Approaches

The relation between requirements and architecture exists since the conception of

both domains. There are many tools, approaches and methods to derive and validate

requirements and architectures. In this Section, we will cite a few approaches to illustrate

the state-of-the-art.

The �rst approach we will discuss is KAOS (LAMSWEERDE, 2009). The methodology,

homonymous to the language we extended to produce mKAOS, is brie�y presented in

Section 7.2.1. We also present two additional approaches, gathered by Avgeriou et al

(AVGERIOU JOHN GRUNDY, 2011), that relates architecture and requirements. We present

these approaches in Sections 7.2.2 and 7.2.3. Among the existing studies, we choose those

two since they rely speci�cally on goal-oriented solutions, which appears to be closer to

mission modeling, as discussed in (SILVA; BATISTA; OQUENDO, 2015).

7.2.1 KAOS

van Lamswerde (LAMSWEERDE, 2003) proposed a goal-oriented approach for archi-

tectural design based on KAOS. It de�nes a mechanism for deriving architectures from

KAOS models, inspiring the solution proposed by this thesis.

KAOS' approach is based on the goal models, that must be de�ned following four

steps: (i) goal modeling: de�ning the tree-like structure for goals; (ii) object modeling:

entities, events, attributes derived from the goals; (iii) agent modeling: identi�cation

of agents and elicitation of its capabilities based on the goal models; (iv) operational-

ization: de�nition of operations in terms of capabilities that the agents are capable of

performing.

For quality evaluation, the goals are formalized using temporal logic, aiming to pre-

scribe intended behavior. This severely impacts in the process, guiding the architects

and enabling generation of behavioral descriptions. In this context, however, the author

super�cially describes how it could be done.

The approach is very straightforward, extending the operationalization step to the

architecture level. It consists on re�ning agents, entities, and events to an architectural
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description language. Furthermore, it uses pattern analysis to select architectural styles

that may achieve non-functional requirements. An abstract architecture is produced from

this approach, which is re�ned using domain-speci�c constraints to produce a concrete

architecture.

Validation of software architectures, using KAOS' approach, is essentially manual

and relies on the notable traceability promoted by the methodology. Due to KAOS' (the

language) structure, it is simple for the architect to identify how each requirement is

implemented. Regarding validation, this approach concerns only on the non-functional

requirements, that are expressed using the underlying formalism in LTL and can be veri�ed

using some tools, such as Objectiver 4. It is worth mentioning that Objectiver, the

main tool that implements the KAOS' methodology, is commercial with no free versions,

although a trial is possible.

7.2.2 Goal-Oriented Software Architecting

Goal-Oriented Software Architecting (GOSA) (CHUNG et al., 2011) is a high-level,

three-step process to derive architectures from goal models. Fig 92 5 shows an overview of

the development process, in which the �rst step: Goal-Oriented Requirements Analysis is

divided in three stages: (i) Domain Model ; (ii) Hardgoals ; (iii) Softgoals. The second step

is the Logical Architecture Derivation, followed by the Concrete Architecture Derivation.

During the �rst step, the requirements analyst must de�ne a goal model, using any

existing goal-modeling language, such as KAOS. Then, it is necessary to de�ne hardgoals

and softgoals. Hardgoals are goals that must be achieved. For this approach they are

essentially Functional Requirements (FR) that must be achieved by the system at the

design point. Given the importance and the impact of a hardgoal, the proposal includes

exploring alternative tasks to achieve each hardgoal, in order to select the most adequate

ones. The set of selected tasks are then assigned to agents, that will be responsible for

implementing it. Softgoals are goals that the system may be unable to achieve at some

point at runtime, although those goals are desirable. For this approach, they are essen-

tially Non-Functional Requirements (NFRs) , since they have less clear-cut de�nition and

achievement criteria. These softgoals are used to analyze the architecture, identifying the

decision that impacts on each softgoal and selecting the most adequate one.

The second step is the Logical Architecture Derivation. It involves establishing a

4http://http://www.objectiver.com
5Extracted from (CHUNG et al., 2011)
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Figure 92: The goal-oriented software architecting process
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hardgoal-entity relationship, in the sense of identifying how the hardgoals a�ect the enti-

ties of the goal model. After this �rst step, the architect can use the goal model and the

goal-entity to de�ne the logical architecture.

To establish the logical architecture, the architect starts by de�ning the process com-

ponents. A process component is de�ned based on the relationships of entities and goals.

Each entity that is related to goals as both consumer and producer will produce a process

component. After the de�nition of the process components, the interface components are

de�ned based on the agents: each agent that implements a task will produce an interface

component, and this task will be assigned to this component. Then, it is necessary to

derive the dependencies between process components. This dependency de�nes whether

a process component A consumes a data produced by process component B. Finally, the

process components are associated to interface components, based on the goal model. An

interface component is associated to a process component if a task of the producer goal or

the consumer goal related to the process component is assigned to an external agent being

communicated via the interface component. The completion of this process produces the

structural view of the system's abstract architecture.

Given the abstract architecture, the �nal step of the proposal is the Concrete Archi-

tecture Derivation. For doing so, it is necessary an analysis of the architecture and choice

of the architectural style that better tackles the system's needs. The selection is based

on the evaluation of each alternative style, analyzing the impact of the choice within

the softgoals. The selected style is then applied to the abstract architecture, producing a

concrete architecture.

It is important to highlight that all the steps proposed by GOSA are manual and

abstract, in the sense that there is no tool that implements it and the steps are not bound

to any language.

7.2.3 Adaptation Goals for Adaptive Service-Oriented Architec-

tures

Baresi and Pasquale (BARESI; PASQUALE, 2011) propose an adaptation mechanism

to support the dynamism of adaptive service-oriented architectures in goal models. The

proposal relies on extending the goal-oriented mechanisms to support dynamism at both

design time and runtime.

The proposal adopts KAOS and RELAX (WHITTLE et al., 2009) for representing goal
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Figure 93: Runtime infrastructure

models in a complimentary way: RELAX is used to describe fuzzy goals, for instance,

goals that can be partially satis�ed.

Extending KAOS through adaptation capabilities, the proposal relies on the speci�-

cation of adaptations to the goal model. For doing so, the adaptation capability is de�ned.

An adaptation capability is the ability of the system to modify its goal model, impacting

on both structure and operation of the system.

Each adaptation capability has its own trigger and set of conditions, similar to mis-

sions, and is operationalized by an action that can involve adding, removing or modifying

goals or other adaptation goals, operation or entities. Furthermore, an action can also

perform an operation, a goal, or substitute an agent.

Di�erently from traditional goals, missions are evaluated at runtime and can a�ect

each other, which is similar to the e�ect of adaptation capabilities over goals. The proposal

is very interesting to this thesis, since it proposes an infrastructure to runtime support

in this similar context. The proposed infrastructure works at two levels: the process level

and goal level, as illustrated by Fig. 93 6.

The process level involves an Business Process Execution Language (BPEL) (OASIS,

2007) engine capable of executing the tasks of the system. This engine collects data and

updates values for entities, detects events, and evaluates the satisfaction of goals. A data

collector is responsible for gathering data, using probes to gather information from the

6Extracted from (BARESI; PASQUALE, 2011)
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environment.

The goal level maintains a live goal model and updates it according to the infor-

mation gathered by the engine, recon�guring the system as needed. The goal level also

evaluates the triggers and conditions for executing the adaptations. The relations between

the processes and the goals are maintained by a supervisor, that can a�ect both levels.

The proposal also uses the engine to realize service compositions, in order to satisfy a

recently adapted goal model.

Self-adaptive service-oriented systems can provide many solutions for the speci�c case

of SoS that uses service-oriented constituent systems. The Baresi and Pasquale proposal

might contribute to the development of the simulation mechanism that is planned for

this work. The simulation mechanism may be very similar to the infrastructure proposed,

although it might need some additional information since the constituent systems can

change depending only on the environment.

This proposal focuses on service-oriented architectures, which is one possible archi-

tectural style for SoS. The approach uses a live goal model at runtime. This model guides

the recon�guration process for the architecture. However, this solution focuses on runtime

solutions and our focus is on the architectural process.

7.3 Discussion

As SoS is a recent concept (it �rst appeared in 1998 (MAIER, 1998)), thus it is not a

surprise that there are many gaps in the proposals for this domain. Since the industry is

showing some interest in the domain, many studies are being conducted in this context.

However, in a sandy domain as such the ideas evolve slowly. The concept of mission was

�rst modeled by a study of the group involved in this work (SILVA et al., 2016), therefore, it

was expectable that no methodology, process or framework considered this concept within

its de�nition.

Although some studies presented a notable contribution in the domain, of which COM-

PASS is worth highlighting, they rely on traditional requirements and techniques, lacking

on speci�c support for dynamism, emergent behaviors and missions, that are essential

concerns on the SoS domain.

The state-of-the-art shows a growing concern with veri�cation and validation, and

the studies tends to use some formalism to both support traceability and improve quality.
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Most of the studies presented involves some level of formalism. Furthermore, simulation

is also within the methodologies as the one we propose, as a support for the validation

process.

Also, we detected a lack of tools to support the architectural modeling process. Some

solutions present tools that partially support the process, but most of the approaches are

essentially manual. We acknowledge the importance of CASE applications, therefore the

development of such tools are a major work perspective in this context.

M2Arch di�ers from existing approaches for proposing a novel, tool-supported, mission-

based method to produce software architectures for software-intensive systems-of-systems,

that supports modeling, veri�cation and validation whilst giving a special attention to

emergent behavior.
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8
Final Remarks

This study permeates among several domains of software engineering for systems-

of-systems. We produced results in domains of: (i) mission modeling, (ii) architectural

modeling, (iii) architectural veri�cation, (iv) architectural validation, (v) modeling pro-

cesses, (vi) architecture simulation and (vii) computer-aided software engineering.

Our main contribution is a pioneer methodology to produce software architectures for

SoS, based on formally described mission models.We use many existing tools, languages

and initiatives in the most various contexts. At the same time, we propose a process that

is theoretically grounded, allowing then all involved tools and languages to be replaced

with reduced e�ort.

M2Arch is a methodology that uses mission models as starting point for architectural

modeling, using the language mKAOS (SILVA; BATISTA; OQUENDO, 2015; SILVA; BATISTA;

CAVALCANTE, 2015) that was de�ned based on a goal-oriented language and a systematic

review (SILVA et al., 2014) that identi�ed how missions are de�ned in SoS context. The

language was later enhanced, by adding a formalism coherent with the original one.

On the other hand, we produce architectures in SosADL (OQUENDO, 2016a), a pioneer

ADL directed for SoS that is formally grounded in π-calculus (OQUENDO, 2016b). To

establish a connection between the mission model and the architecture model, we identi�ed

a set of common concepts and developed a model-to-model transformation that generates

a basic architectural structure.

We went further, de�ning a veri�cation mechanism that uses Statistical Model Check-

ing to automatically verify the constraints de�ned in the mission model. This same mech-

anism is also used to partially automatize a validation mechanism, automatically testing

the achievement of formally described missions. The manual aspects of validation are also

covered in M2Arch, with a simulation environment that allows the architect to foresee

the actual behavior of the architecture.
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Such wide study, however, is full of limitations. First of all, for proposing a pioneer

methodology based on mission models, it was not possible to properly compare it to any

existing study. Although we have plans to perform further studies to enhance M2Arch,

incorporating positive aspects of other methodologies, it was not possible to do this yet due

to time limitations. We performed a case study to evaluate the methodology, comparing

the �nal result to the existing architecture of the system, as a result, we identi�ed a small

improvement in architectural quality.

The remainder of this chapter is structured as follows: Section 8.1 revisits our contri-

butions, discussing the research questions and implementation. Section 8.2 presents some

useful links, that can be consulted for additional information and details. Finally, Section

8.3 discusses our future works and evolution of M2Arch.

8.1 Revisiting the Contributions

8.1.1 Answering the Research Questions

We based this work on six research questions, presented in Section 1.2. We answered

these questions as follows:

• RQ1: What are the common concepts that permeate between the mission

model's elements and the architectural model?

Some concepts permeate between both models. Speci�cally, capabilities are present

in both mission model and architectural model. In mKAOS, they are explicit, rep-

resented as a �rst order element and divided into two kinds: communicational and

operational. In SosADL, on the other hand, this concept is implicit and can be

related to interfaces. A operational capability in SosADL can be de�ned through

the set of connections of a given constituent system, forming a gate. Gate encom-

passes the inputs and output connections that de�nes an interface of a constituent

system that implements a capability. Regarding communicational capabilities, they

can be mapped to mediators, since they specify an interaction between two or more

constituent systems. Based on this �nding, we could de�ne the M2Arch automatic

mapping, that was implemented using ATL and allows automatic generation of par-

tial architectural models.

• RQ2: How can we relate mission model elements with architectural ele-
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ments? The concept of capability, that permeates between both architectural and

mission model allowed us to draw an automatic mapping. Such automatic mapping

promotes the traceability as it de�nes a relation between the elements of di�erent

models. Speci�cally, we can associate a capability in mKAOS to a gate or duty in

SosADL.

• RQ3: How to verify mission-related architectural properties in the SoS

context?

Before verifying mission-related properties it is fundamental to express such prop-

erties. For doing so, we formalized mKAOS to introduce an extension of Linear

Temporal Logic, allowing therefore the de�nition of formal constraints. Then, we

adopted a strategy based on Statistical Model Checking and architectural simula-

tion to allow the veri�cation of such constraints. This solution handles the dynamism

and behavioral uncertainty that are present in SoS architectural models.

• RQ4: How to validate an architectural model within a mission model?

Based on the method we propose to veri�cation, we de�ned an automatic validation

for architectural models. This automatic veri�cation is, in a broader perspective,

a veri�cation that checks the compliance of the architecture with some properties.

However, in this case, the properties are formally described as missions. Hence,

we can automatically validate an architecture within a mission model, detecting

whether this architecture achieves the speci�ed missions.

• RQ5: How to validate an architecture produced through a mission-based

process?

Validating an architecture is an essentially manual process, that consists in identi-

fying whether an architecture meets stakeholders' needs. In case of SoS, this can be

done through simulation. Based on the reports of a simulation process, the stake-

holders are able to track, step-by-step, the execution of the architecture, hence

identifying if the architecture meets their needs and the emergent behaviors are

emerging as expected.

• RQ6: Which kind of architectural validation can be done regarding emer-

gent behaviors?

Validation of emergent behavior is a di�cult and key activity on validation of archi-

tectures of SoS. We developed a method to automatically detect the occurrence of

formally-described expected emergent behaviors, based on statistical model check-

ing and simulation. Using this method, the stakeholders are able to identify whether
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an architecture is emerging the expected behaviors and the frequency each behavior

manifests.

8.1.2 Tool Implementations

M2Arch is an extensive methodology for producing software architectures for SoS.

Due to its extension, it is fundamental to have a toolset that supports the application

of the methodology. Therefore, we also implemented a set of tools that integrate existing

tools into the so-called M2Arch toolkit.

Some features of M2Arch toolkit are worth highlight:

1. Textual and graphical description of mKAOS models

2. Textual and graphical description of SosADL models

3. Automatic mapping: mKAOS to SosADL

4. Automatic veri�cation of mission-based constraints using PlasmaLab

5. Automatic detection of formally described emergent behaviors

6. Automatic calculation of mission achievement rate, based on architectural sim-

ulation

7. Simulation of SosADL models

8. Generation of detailed simulation reports

The SosADL simulator, the main contribution of M2Arch toolkit, was designed to be

extensible, providing an event manager that can be extended or integrated on future

tools for simulation.

mKAOS and SosADL tools are in constant evolution. However, since M2Arch toolkit

was designed to operate over the existing tools, we expect the toolkit to continue to

function with future versions of the overmentioned tools.

8.2 Relevant Links

Besides the contents of this document, additional information, source codes and mod-

els can be found on the following links:
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1. http://github.com/eduardoafs/mkaos: The o�cial GIT repository for mKAOS

2. http://github.com/eduardoafs/m2arch: A public GIT repository for M2Arch

Toolkit

3. http://eduardoafs.github.io/m2arch: The o�cial page of M2Arch

8.3 Future Work

M2Arch is a pioneer mission-based methodology for producing SoS architectures. Al-

though it uses two speci�c languages for modeling, the whole methodology relies on the

concepts that permeate between di�erent constructs and elements. Therefore, we expect

that the evolution of M2Arch also rely on these concepts, identifying additional concepts

or alternative representations to allow evolution of all subsequent methods.

For replacing mKAOS for another mission description language, for instance, it is

necessary to identify the representation of capabilities in this language, which must sup-

port detailing the interfaces. Then, it is necessary to adapt the formalism of the desired

mission description language to be compatible with PlasmaLab. Implementing the auto-

matic transformation to SosADL and a new module for producing PlasmaLab-compatible

constraints should be enough for completely replacing mKAOS without losing cohesion

with the rest of M2Arch.

Another important aspect that may be part of M2Arch evolution is the graphical an-

imation of SosADL models during simulation. Since SosADL simulator was implemented

as a layer-based architecture, it is possible to build additional layers to provide further

information to the user. The animation can be implemented as an additional layer, using

the event manager and Sirius animators 1.

A key future work, however, is the validation of the methodology within the industry.

Initially, it was part of the planning for this work to perform controlled experiments to

validate M2Arch. It was not possible due to time limitation and the lack of interaction

with the specialized industry. In this context, it is also important to run a scalability test

on the approach, to observe how it behaves when applied to large scale SoS.

Also, it is key to check expressiveness of DynBLTL in SoS context. Although the

language was designed for dynamic systems, when it comes to SoS the new characteristics

of this kind of system may required additional constructs, operations or functions.

1https://github.com/SiriusLab/ModelDebugging
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As a long-term future work, each step of M2Arch can be re�ned. These steps can

be detailed providing a set of guidelines and further instructions to allow stakeholders

to be involved during all steps of architectural design. Also is important to give further

attention to formal de�nitions, specially on missions, that can be automatically veri�ed

by M2Arch toolkit.
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APPENDIX A -- Publications

Our publications were achieved along the duration of the PhD, sharing our �ndings

with the community. Table 13 summarizes the publications. Fig. 94 relates these publica-

tions with the chapters of this thesis. As shown by Fig. 94, all contributions of this work

are grouped in Chapters 3, 4 and 5.
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Id Title Authors Mean

ICECSS'16 Bridging Missions and Archi-
tecture in Software-Intensive
Systems-of-Systems

Eduardo Silva,
Everton Cav-
alcante, Thais
Batista, Flavio
Oquendo

ICECSS'16

ECSA'17 Taming Missions and Archi-
tecture in Software Intensive
Systems-of-Systems

Eduardo Silva ECSA'17 Doc-
toral Sympo-
sium

SESoS'17 Re�ning Missions to Archi-
tectures in Software-Intensive
Systems-of-Systems

Eduardo Silva,
Everton Cav-
alcante, Thais
Batista

SESoS'17

SAC'18 Formal Modeling Systems-of-
Systems Missions with mKAOS

Eduardo Silva,
Thais Batista

ACM SAC'18

SCP'18 Expressing and Checking
Mission-Related Properties
on Systems-of-systems Design

Eduardo Silva,
Thais Batista,
Flavio Oquendo

Science of Com-
puter Program-
ming, to appear

- Simulating SosADL Concrete Ar-
chitectures

Eduardo Silva,
Thais Batista,
Flavio Oquendo

Under develop-
ment

Table 13: Publications derived from this work

Figure 94: Relation between Publications and Chapters

Conception d’architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018



161

APPENDIX B -- ATL Rules for mKAOS to

SosADL transformation

Fully available at: http://www.github.com/eduardoafs/mkaos

-- @path MKAOS=/Kaos/model/mkaos.ecore

-- @path SOSADL =/org.archware.sosadl.SosADL/model/generated/SosADL.ecore

module mkaos2sosadl;

create OUT: SOSADL from IN: MKAOS;

-- quick way to identify all the outputs of a capability

helper context MKAOS!OperationalCapability def: output (): Sequence(MKAOS

!Object) =

self.output.union(self.produces);

helper context MKAOS!CommunicationalCapability def: output (): Sequence(

MKAOS!Object) =

self.output.union(self.produces);

-- quick way to identify all the inputs from a capability

helper context MKAOS!OperationalCapability def: input (): Sequence(MKAOS!

Object) =

self.refImmediateComposite ().oclAsType(MKAOS!mKAOS).consistsOf () ->

select(p | p.

oclIsKindOf(MKAOS!Entity) and p.oclAsType(MKAOS!Entity).inputs.

contains(self));

helper context MKAOS!CommunicationalCapability def: input(): Sequence(

MKAOS!Object) =

self.refImmediateComposite ().oclAsType(MKAOS!mKAOS).consistsOf () ->

select(p | p.
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oclIsKindOf(MKAOS!Entity) and p.oclAsType(MKAOS!Entity).inputs.

contains(self));

-- all inputs or outputs of a capability

helper context MKAOS!CommunicationalCapability def : interface () :

Sequence(MKAOS!Object) =

self.output ()->union(self.input);

-- functions for isolate constituent systems , entities and capabilities

helper context MKAOS!mKAOS def: entities (): Sequence(MKAOS!Entity) =

self.consistsOf -> select(p | p.oclIsTypeOf(MKAOS!Entity));

helper context MKAOS!mKAOS def: constituent (): Sequence(MKAOS!

ConstituentSystem) =

self.consistsOf -> select(p | p.oclIsTypeOf(MKAOS!ConstituentSystem));

helper context MKAOS!mKAOS def: capabilities (): Sequence(MKAOS!

CommunicationalCapability)

=

self.consistsOf -> select(p | p.oclIsTypeOf(MKAOS!

CommunicationalCapability));

-- production rules for empty behaviors

helper def: emptyProtocol (): SosADL!ProtocolDecl =

let prot : SosADL!ProtocolDecl = SosADL!ProtocolDecl.newInstance(name =

'behavior ',

behavior = SosADL!Protocol.newInstance(statements = SosADL!

RepeatProtocol.

newInstance(repeated = SosADL!AnyAction.newInstance ())))

in prot;

helper def: emptyBehavior (): SosADL!BehaviorDecl =

let behavior : SosADL!BehaviorDecl = SosADL!BehaviorDecl.newInstance(

name =

'behavior ', body = SosADL!Behavior.newInstance(statements =

SosADL!RepeatProtocol.newInstance(repeated = SosADL!Unobservable.

newInstance ())))

in behavior;

helper def: emptyAssertion (): SosADL!AssertionDecl =

let assertion : SosADL!AssertionDecl = SosADL!AssertionDecl.newInstance(

name =

'behavior ', body = self.emptyProtocol ()) in assertion;
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helper def: emptyFunction (): SosADL!FunctionDecl =

let fun : SosADL!FunctionDecl = SosADL!FunctionDecl.newInstance(name = '

f1', type =

self , return = SosADL!Any.newInstance ()) in fun;

rule ProduceSos {

from

missions: MKAOS!mKAOS

to

eblock: SOSADL!EntityBlock (

datatypes <- missions.entities (),

systems <- missions.constituent (),

mediators <- missions.capabilities (),

architectures <- arch

),

sos: SOSADL!SoS (

name <- 'GeneratedSoS ',

decls <- eblock

),

arch: SOSADL!ArchitectureDecl (

behavior <- archb

),

archb: SOSADL!ArchBehaviorDecl (

constituents <- missions.constituent (),

bindings <- let bin : SosADL!Binding = self.buildBindings () in bin

)

}

rule DataTypesFromEntities {

from

entity: MKAOS!Entity

to

dtype: SOSADL!DataTypeDecl (

name <- entity.name

)

}

rule ProduceConstituentSystem {

from

mkaos_cs: MKAOS!ConstituentSystem

to

sos_cs: SOSADL!SystemDecl (
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name <- mkaos_cs.name ,

-- gates will be produced from operational capabilities

gates <- mkaos_cs.capableOf

)

}

rule ProduceGateFromCapability {

from

mkaos_operationalCapability: MKAOS!OperationalCapability

to

output_gate: SOSADL!GateDecl (

name <- mkaos_operationalCapability.name ,

protocols <-

let prot : SosADL!ProtocolDecl = self.emptyProtocol () in prot ,

)

}

rule ProduceInputConnectionFromEntity {

from

mkaos_entity : MKAOS!Entity

to

sos_connection : SOSADL!Connection (

valueType <- mkaos_entity ,

mode <- 'ModeTypeIn ',

name <- 'i0'

)

}

rule ProduceMediator {

from

mkaos_cs: MKAOS!CommunicationalCapability

to

sos_cs: SOSADL!MediatorDecl (

name <- mkaos_cs.name ,

-- gates will be produced from operational capabilities

duties <- mkaos_cs.interface ()

)

}

rule ProduceDutyFromCapability {

from

mkaos_com: MKAOS!CommunicationalCapability

to
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output_gate: SOSADL!GateDecl (

name <- mkaos_com.name ,

assume <-

let g : SosADL!Assertion = self.emptyAssertion () in g,

garantees <-

let g : SosADL!Assertion = self.emptyAssertion () in g

)

}
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APPENDIX C -- mKAOS Grammar

Also available at: http://www.github.com/eduardoafs/mkaos

// Made using Xtext

grammar mkaos.Language with org.eclipse.xtext.common.Terminals

import "platform :/ resource/Kaos/model/mkaos.ecore"

import "platform :/ resource/Kaos/model/kaos.ecore" as KAOSModel

import "http :// www.eclipse.org/emf /2002/ Ecore" as ecore

mKAOS returns mKAOS:

'Model' name=EString

(linkedBy +=Link

| consistsOf +=Nodes)*

;

Link returns KAOSModel ::Link:

AssignmentLink | ConflictLink | ObstructionLink | OutputLink | InputLink

| Refinement_Impl | AndRefinement | OrRefinement |

OperacionalizationLink | ResolutionLink | ResponsabilityLink;

Nodes returns KAOSModel ::Nodes:

EmergentBehavior | Mission | Operation | OperationNode_Impl | Event |

Entity | Associations | SoftwareAgent | EnvironmentAgent | Obstacle |

Goal_Impl | Expectation | DomainProperty_Impl | Requirement |

DomainHypothesis | DomainInvariant;

EmergentBehavior:

'EmergentBehavior ' name=EString '{'

(('informalDef ' '=' informal=EString)?

& ('formalDef ' '=' formal=expr)?

& 'emergesFrom ' emerge += EmergeLink (',' emerge += EmergeLink)*)

'}'

Conception d’architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018



167

;

EmergeLink returns EmergeLink:

capability =[ CommunicationalCapability|ID] '[' cardinality=EString ']'

;

Agent returns KAOSModel ::Agent:

SoftwareAgent | EnvironmentAgent;

Mission returns Mission:

'Mission ' name=EString '{'

(links += MissionLink (',' links+= MissionLink)*)?

& ('resolves ' resolve +=[ KAOSModel :: Obstacle|EString]

| 'conflicts ' conflicts +=[ KAOSModel ::Goal|EString]

| 'concerns ' concerns +=[ KAOSModel :: Object|EString ])*

& ('assigned ' 'to' assignedTo =[ ConstituentSystem|EString ])?

& ('priority ' '=' priority=INT

& 'informalDef ' '=' description=STRING

& 'trigger ' '=' trigger=expr

& ('formalDef ' '=' rule=expr)?)

(refinement=MissionRefinement)?

'}'

;

RefinableNode returns KAOSModel :: RefinableNode:

Mission | Obstacle | Goal_Impl | Expectation | DomainProperty_Impl |

Requirement | DomainHypothesis | DomainInvariant;

MissionLink returns MissionLink:

DisruptLink | SupportLink | BlockLink

;

DisruptLink returns DisruptLink:

'disrupt ' target =[ Mission|EString]

;

SupportLink returns SuportLink:

'support ' target =[ Mission|EString]

;

BlockLink returns BlockLink:

'block' target =[ Mission|EString]

;
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MissionRefinement returns MissionRefinement:

'refinement ' '[' (kind=MissionRefinementKind | custom=expr ) ']'

'{'

submissions += Mission*

'}'

;

enum MissionRefinementKind:

all='all' | atLeastOne='atLeastOne ' | alternative='alternative ' | custom

='custom '

;

Refinement returns KAOSModel :: Refinement:

Refinement_Impl | AndRefinement | OrRefinement | MissionRefinement;

Goal returns KAOSModel ::Goal:

Goal_Impl | Expectation | DomainProperty_Impl | Requirement |

DomainHypothesis | DomainInvariant;

Object returns KAOSModel :: Object:

Entity | Associations | SoftwareAgent | EnvironmentAgent;

EString returns ecore:: EString:

STRING | ID;

AssignmentLink returns KAOSModel :: AssignmentLink:

'assignment ' assignsGoalTo +=[ KAOSModel :: Agent|EString] (','

assignsGoalTo +=[ KAOSModel :: Agent|EString ])*;

//name=EString

// '{'

// 'assignsGoalTo ' '(' assignsGoalTo +=[ KAOSModel ::Agent|EString] ( ","

assignsGoalTo +=[ KAOSModel :: Agent|EString ])* ')'

// '}';

ConflictLink returns KAOSModel :: ConflictLink:

{KAOSModel :: ConflictLink}

'ConflictLink '

name=EString;

ObstructionLink returns KAOSModel :: ObstructionLink:

'ObstructionLink '
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name=EString

'{'

'relateKGoalTo ' '(' relateKGoalTo +=[ KAOSModel :: Obstacle|EString] ( ","

relateKGoalTo +=[ KAOSModel :: Obstacle|EString ])* ')'

'}';

OutputLink returns KAOSModel :: OutputLink:

{KAOSModel :: OutputLink}

'OutputLink '

name=EString;

InputLink returns KAOSModel :: InputLink:

'InputLink '

name=EString

'{'

'objectInputOn ' '(' objectInputOn +=[ KAOSModel :: Operation|EString] ( ","

objectInputOn +=[ KAOSModel :: Operation|EString ])* ')'

'}';

Refinement_Impl returns KAOSModel :: Refinement:

'refinement '

//name=EString

'{'

'refines ' refines =[ KAOSModel :: RefinableNode|EString]

'}';

AndRefinement returns KAOSModel :: AndRefinement:

'AndRefinement '

name=EString

'{'

'refines ' refines =[ KAOSModel :: RefinableNode|EString]

'}';

OrRefinement returns KAOSModel :: OrRefinement:

'OrRefinement '

name=EString

'{'

'refines ' refines =[ KAOSModel :: RefinableNode|EString]

'}';

OperacionalizationLink returns KAOSModel :: OperacionalizationLink:

'OperacionalizationLink '

name=EString
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'{'

'relateOperationTo ' '(' relateOperationTo +=[ KAOSModel :: Requirement|

EString] ( "," relateOperationTo +=[ KAOSModel :: Requirement|EString ])*

')'

'}';

ResolutionLink returns KAOSModel :: ResolutionLink:

'ResolutionLink '

name=EString

'{'

'assignObstacleTo ' '(' assignObstacleTo +=[ KAOSModel :: Requirement|EString

] ( "," assignObstacleTo +=[ KAOSModel :: Requirement|EString ])* ')'

'}';

ResponsabilityLink returns KAOSModel :: ResponsabilityLink:

'ResponsabilityLink '

name=EString

'{'

'assignAgentTo ' '(' assignAgentTo +=[ KAOSModel :: Requirement|EString] ( ",

" assignAgentTo +=[ KAOSModel :: Requirement|EString ])* ')'

'}';

Operation returns KAOSModel :: Operation:

'Operation ' name=EString

'{'

'produces ' '(' produces +=[ KAOSModel ::Event|EString] ( "," produces +=[

KAOSModel ::Event|EString ])* ')'

'output ' '(' output +=[ KAOSModel :: Entity|EString] ( "," output +=[

KAOSModel :: Entity|EString ])* ')'

'operationalize ' '(' operationalize +=[ KAOSModel :: Requirement|EString] (

"," operationalize +=[ KAOSModel :: Requirement|EString ])* ')'

'}';

SoftwareAgent returns KAOSModel :: SoftwareAgent:

'SoftwareAgent '

name=EString

'{'

'performs ' '(' performs +=[ KAOSModel :: Operation|EString] ( "," performs

+=[ KAOSModel :: Operation|EString ])* ')'

('composition ' '(' composition +=[ KAOSModel ::Agent|EString] ( ","

composition +=[ KAOSModel ::Agent|EString ])* ')' )?

'responsibleFor ' '(' responsibleFor +=[ KAOSModel :: Requirement|EString] (

"," responsibleFor +=[ KAOSModel :: Requirement|EString ])* ')'
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'}';

EnvironmentAgent returns KAOSModel :: EnvironmentAgent:

'EnvironmentAgent '

name=EString

'{'

('performs ' performs +=[ KAOSModel :: Operation|EString] ( "," performs +=[

KAOSModel :: Operation|EString ])*)?

('composition ' composition +=[ KAOSModel ::Agent|EString] ( "," composition

+=[ KAOSModel ::Agent|EString ])*)?

'}';

Event returns KAOSModel ::Event:

{KAOSModel ::Event}

'Event' name=EString;

Entity returns KAOSModel :: Entity:

'Entity ' name=EString

('{'

'composition ' '=' composition +=[ KAOSModel :: Entity|EString] ( ","

composition +=[ KAOSModel :: Entity|EString ])*

'}')?;

Requirement returns KAOSModel :: Requirement:

'Requirement '

name=EString

'{'

'refinedBy ' '(' refinedBy +=[ KAOSModel :: Refinement|EString] ( ","

refinedBy +=[ KAOSModel :: Refinement|EString ])* ')'

'resolve ' '(' resolve +=[ KAOSModel :: Obstacle|EString] ( "," resolve +=[

KAOSModel :: Obstacle|EString ])* ')'

'conflicts ' '(' conflicts +=[ KAOSModel ::Goal|EString] ( "," conflicts +=[

KAOSModel ::Goal|EString ])* ')'

'concerns ' '(' concerns +=[ KAOSModel :: Object|EString] ( "," concerns +=[

KAOSModel :: Object|EString ])* ')'

'}';

Obstacle returns KAOSModel :: Obstacle:

'Obstacle '

name=EString

'{'

'refinedBy ' '(' refinedBy +=[ KAOSModel :: Refinement|EString] ( ","

refinedBy +=[ KAOSModel :: Refinement|EString ])* ')'
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'obstruct ' '(' obstruct +=[ KAOSModel ::Goal|EString] ( "," obstruct +=[

KAOSModel ::Goal|EString ])* ')'

'}';

Goal_Impl returns KAOSModel ::Goal:

'Goal'

name=EString

'{'

'refinedBy ' '(' refinedBy +=[ KAOSModel :: Refinement|EString] ( ","

refinedBy +=[ KAOSModel :: Refinement|EString ])* ')'

'resolve ' '(' resolve +=[ KAOSModel :: Obstacle|EString] ( "," resolve +=[

KAOSModel :: Obstacle|EString ])* ')'

'conflicts ' '(' conflicts +=[ KAOSModel ::Goal|EString] ( "," conflicts +=[

KAOSModel ::Goal|EString ])* ')'

'concerns ' '(' concerns +=[ KAOSModel :: Object|EString] ( "," concerns +=[

KAOSModel :: Object|EString ])* ')'

'}';

Expectation returns KAOSModel :: Expectation:

'Expectation '

name=EString

'{'

'refinedBy ' '(' refinedBy +=[ KAOSModel :: Refinement|EString] ( ","

refinedBy +=[ KAOSModel :: Refinement|EString ])* ')'

'resolve ' '(' resolve +=[ KAOSModel :: Obstacle|EString] ( "," resolve +=[

KAOSModel :: Obstacle|EString ])* ')'

'conflicts ' '(' conflicts +=[ KAOSModel ::Goal|EString] ( "," conflicts +=[

KAOSModel ::Goal|EString ])* ')'

'concerns ' '(' concerns +=[ KAOSModel :: Object|EString] ( "," concerns +=[

KAOSModel :: Object|EString ])* ')'

'assignedTo ' '(' assignedTo +=[ KAOSModel :: EnvironmentAgent|EString] ( ","

assignedTo +=[ KAOSModel :: EnvironmentAgent|EString ])* ')'

'}';

DomainProperty_Impl returns KAOSModel :: DomainProperty:

'DomainProperty '

name=EString

'{'

'refinedBy ' '(' refinedBy +=[ KAOSModel :: Refinement|EString] ( ","

refinedBy +=[ KAOSModel :: Refinement|EString ])* ')'

'resolve ' '(' resolve +=[ KAOSModel :: Obstacle|EString] ( "," resolve +=[

KAOSModel :: Obstacle|EString ])* ')'

'conflicts ' '(' conflicts +=[ KAOSModel ::Goal|EString] ( "," conflicts +=[
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KAOSModel ::Goal|EString ])* ')'

'concerns ' '(' concerns +=[ KAOSModel :: Object|EString] ( "," concerns +=[

KAOSModel :: Object|EString ])* ')'

'usedIn ' '(' usedIn +=[ KAOSModel :: Refinement|EString] ( "," usedIn +=[

KAOSModel :: Refinement|EString ])* ')'

'}';

DomainHypothesis returns KAOSModel :: DomainHypothesis:

'DomainHypothesis '

name=EString

'{'

'refinedBy ' '(' refinedBy +=[ KAOSModel :: Refinement|EString] ( ","

refinedBy +=[ KAOSModel :: Refinement|EString ])* ')'

'resolve ' '(' resolve +=[ KAOSModel :: Obstacle|EString] ( "," resolve +=[

KAOSModel :: Obstacle|EString ])* ')'

'conflicts ' '(' conflicts +=[ KAOSModel ::Goal|EString] ( "," conflicts +=[

KAOSModel ::Goal|EString ])* ')'

'concerns ' '(' concerns +=[ KAOSModel :: Object|EString] ( "," concerns +=[

KAOSModel :: Object|EString ])* ')'

'usedIn ' '(' usedIn +=[ KAOSModel :: Refinement|EString] ( "," usedIn +=[

KAOSModel :: Refinement|EString ])* ')'

'}';

DomainInvariant returns KAOSModel :: DomainInvariant:

'DomainInvariant '

name=EString

'{'

'refinedBy ' '(' refinedBy +=[ KAOSModel :: Refinement|EString] ( ","

refinedBy +=[ KAOSModel :: Refinement|EString ])* ')'

'resolve ' '(' resolve +=[ KAOSModel :: Obstacle|EString] ( "," resolve +=[

KAOSModel :: Obstacle|EString ])* ')'

'conflicts ' '(' conflicts +=[ KAOSModel ::Goal|EString] ( "," conflicts +=[

KAOSModel ::Goal|EString ])* ')'

'concerns ' '(' concerns +=[ KAOSModel :: Object|EString] ( "," concerns +=[

KAOSModel :: Object|EString ])* ')'

'usedIn ' '(' usedIn +=[ KAOSModel :: Refinement|EString] ( "," usedIn +=[

KAOSModel :: Refinement|EString ])* ')'

'}';

Associations returns KAOSModel :: Associations:

{KAOSModel :: Associations}

'Associations '

name=EString;
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OperationNode_Impl returns KAOSModel :: OperationNode:

{KAOSModel :: OperationNode}

'OperationNode '

name=EString;

ConstituentSystem returns ConstituentSystem:

'System ' name=EString

'capableOf ' capableOf +=[ OperationalCapability|EString] (',' capableOf +=[

OperationalCapability|EString ])*

;

OperationalCapability returns OperationalCapability:

'OperationalCapability ' name=EString '{'

'in' input +=[ KAOSModel :: Entity|EString]

'out' output +=[ KAOSModel :: Entity|EString]

('description ' '=' desc=STRING)?

'}'

;

CommunicationalCapability returns CommunicationalCapability:

'CommunicationalCapability ' name=EString '{'

'in' input +=[ KAOSModel :: Entity|EString]

'out' output +=[ KAOSModel :: Entity|EString]

('description ' '=' desc=STRING)?

'}'

;

// All DynBLTL constructs , we don't need to store properly , just sintax

checking

expr returns DynBLTL: // returns [Expr val]:

q=RuleQuantifier val=ID COL c=function t=temporal //{ val = new

QuantExpr($q.q,new Var($ID.text),$c.val ,$e.val); }

| temporal //{ val = $temporal.val ;

}

;

enum RuleQuantifier: // returns [UnOp q]:

EXISTS='exists ' //{ q = UnOp.Exists ; }

| FORALL='forall ' //{ q = UnOp.Forall ; }

| COUNT='count ' //{ q = UnOp.Count ; }
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;

temporal returns RuleTemporal:// returns [Expr val]:

val1=implication //{val = $implication.val ; }

( o=RuleTempBinOp b=bound e=expr //{ val = new TemporalBinOpExpr(val

,$tempbinop.o,$expr.val ,$bound.b); }

)?

| o1=RuleTempUnOp b=bound e=expr //{ val = new TemporalUnOpExpr(

$tempunop.o,$expr.val ,$bound.b); }

;

bound returns RuleBound:// ; returns [Bound b]// @init{ Expr boundVal =

new UndefValue ();}:

( integerlit=INT //{ boundVal = new IntValue(

$integerlit.val) ; }

| floatlit=FLOAT //{ boundVal = new FloatValue(

$floatlit.val) ; }

| LP e=expr RP //{ boundVal = $expr.val; }

) ( STEPS //{ b = new Bound(boundVal ,false); }

| T_UNITS //{ b = new Bound(boundVal ,true) ; }

)

;

enum RuleTempBinOp: // returns [BinOp o]:

UNTIL='until ' //{ o = BinOp.Until ; }

| WEAK='weak until ' //{ o = BinOp.Weak ; } // FIXME remove _

;

enum RuleTempUnOp: // returns [UnOp o]:

FATALLY='eventually before ' //{ o = UnOp.Fatally ; }

| GLOBALLY='always during ' //{ o = UnOp.Globally ; }

| NEXT='in' //{ o = UnOp.Next ; }

;

implication returns RuleImplication: // returns [Expr val] @init{

UnOp undefOp = null; }

(undefop //{ undefOp = $undefop.val ; }

)? l=disjunction //{ val = $l.val; }

(IMP r+= disjunction //{ val = new BinOpExpr(val , BinOp.Imp , $r.

val); }
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)* //{ if(undefOp != null) { val = new UnOpExpr(undefOp ,val) ; } }

;

undefop: // returns[UnOp val]:

ISTRUE //{ val = UnOp.IsTrue; }

| ISNFLS //{ val = UnOp.IsNotFalse ; }

;

disjunction returns RuleDisjunction: // returns [Expr val]

l=conjunction // { val = $l.val; }

(OR r+= conjunction // { val = new BinOpExpr(val , BinOp.Or, $r.val

); }

)*

;

conjunction returns RuleConjunction: // returns [Expr val]:

l=equality //{ val = $l.val; }

( AND r+= equality //{ val = new BinOpExpr(val , BinOp.And , $r

.val); }

)*

;

equality returns RuleEquality: // returns [Expr val] @init{

boolean neg = false; }

(neg?=NOT //{ neg = true ; }

)? l=relExp //{ val = $l.val; }

(eop r=relExp //{ val = new BinOpExpr($l.val , $eop.val , $r.val

); }

)? //{ if(neg) {val = new UnOpExpr(UnOp.Not , val); } }

;

eop: // returns [BinOp val]

EQ //{ val = BinOp.Eq; }

| NEQ //{ val = BinOp.Neq; }

;

relExp returns RuleRelExp: // returns [Expr val]:

l=numExp //{ val = $l.val; }

(rop r=numExp //{ val = new BinOpExpr(val , $rop.val , $r.val); }

)?

;

rop // returns [BinOp val]
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: GT //{ val = BinOp.Gt; }

| LT //{ val = BinOp.Lt; }

| GE //{ val = BinOp.Ge; }

| LE //{ val = BinOp.Le; }

;

numExp returns RuleNumExp: // returns [Expr val]:

l=term //{ val = $l.val; }

(addop r+=term //{ val = new BinOpExpr(val , $addop.val , $r.val);

}

)*

;

addop: // returns [BinOp val]:

ADD //{ val = BinOp.Add; }

| MIN //{ val = BinOp.Min; }

;

term returns RuleTerm: // returns [Expr val]:

l=factor //{ val = $l.val; }

(mulop r+= factor //{ val = new BinOpExpr(val , $mulop.val , $r.val); }

)*

;

mulop: // returns [BinOp val]:

MUL //{ val = BinOp.Mul; }

| DIV //{ val = BinOp.Div; }

;

factor returns RuleFactor: // returns [Expr val] @init{ boolean neg =

false; }

MIN?

( vallit=literal // { val = $literal.val ;}

| valvar=var //{ val = $var.val ;}

| valfun=function //{ val = $function.val;}

| LP par=expr RP //{ val = $par.val; }

| LC curl=expr RC //{ val = $curl.val; }

) //{ if(neg) { val = new UnOpExpr(UnOp.Neg ,val);

} }

;

var returns RuleVar: // returns [Var val]:

val+=ID //{ val = new Var($ID.text); }
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| val+=ID DOT val+=ID //{ ArrayList <Expr > index = new

ArrayList <Expr >(); }

('[' i+= numExp ']' //{ index.add(i);}

)* //{ val = new ConnectionVar($c.text , new Var($n.

text),index); }

;

function returns RuleFunction: // returns [FuncExpr val]:

ID LP l=params RP // { val = FuncExpr.createFunction($ID.text ,$params.l)

; }

;

params returns RuleParams: // returns [List <Expr > l]:

l+=var //{ l= new ArrayList <Expr >() ; l.add($v1.val); }

( COMMA l+=var //{ l.add($v2.val) ; }

)*

;

literal returns RuleLiteral:// returns [Value val]:

floatlit //{ val = new FloatValue(f); }

| integerlit //{ val = new IntValue(i); }

| stringlit //{ val = new StringValue(s); }

| booleanlit //{ val = new BooleanValue(b); }

| tuplelit //{ val = t; }

| seqlit //{ val = l; }

| nodelit //{ val = new NodeValue(n); }

;

integerlit returns RuleIntegerLit: // returns [int val]:

val=INT //{ val = Integer.parseInt($DIGITS.text); }

;

floatlit returns RuleFloatLit:

val=FLOAT

;

terminal FLOAT returns ecore :: EFloat:

('-')? INT '.' INT

;

stringlit: // returns [String val]:

STRING //{ val=$STRING.text ; }
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;

nodelit: // returns [String val]:

'node <' ID '>' //{ val = $name.text ; }

;

booleanlit: // returns [boolean val]:

TRUE //{ val = true; }

| FALSE //{ val = false; }

;

tuplelit returns RuleTupleLit: // returns [TupleValue val] @init{

ArrayList <Value > vals = new ArrayList <Value >();}

'tuple <' vals+= literal //{ vals.add(m);}

( ',' vals+= literal //{ vals.add(m);}

)+

'>' //{ val = new TupleValue(vals); }

;

seqlit returns RuleSeqLit: // returns [SequenceValue val] @init{

ArrayList <Value > vals = new ArrayList <Value >();}

'seq <' vals+= literal //{ vals.add(m);}

( ',' vals+= literal //{ vals.add(m);}

)+

'>' //{ val = new SequenceValue(vals);

}

;

// MODALITIES

STEPS: 'steps ' ;

T_UNITS: 'time' 'units ' ;

// ATOMS

FALSE : 'false ';

TRUE : 'true';

// ARITH

ADD: '+';

MIN: '-';

MUL: '*';

DIV: '/';

// BOOL
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NOT: 'not';

AND: 'and';

OR: 'or';

IMP: 'implies ';

// 3 valued to 2 valued logic

ISTRUE: 'isTrue ';

ISNFLS: 'isNotFalse ';

// COMPARISONS

EQ: '=';

NEQ: '!=';

LT: '<';

LE: '<=';

GE: '>=';

GT: '>';

// OTHER SYMBOLS

LP: '(';

RP: ')';

LB: '[';

RB: ']';

LC: '{';

RC: '}';

//SH: '#';

COL:':';

SEMI:';';

COMMA:',';

DQ: '"';

COLEQ: ':=';

DOT: '.';

Conception d’architecture de système-de-systèmes à logiciel prépondérant dirigée par les missions Eduardo Ferreira Silva 2018



181

APPENDIX D -- Arch1 SosADL Description

with A1_ServersXor_library

sos ServersXor0 is {

// fmsos

datatype Location is integer {0..0} {

function (self:Location)::f():Location is {

return self

}

}

datatype String is integer {0..0} {

function (self:String)::f():String is {

return self

}

}

datatype Participant is integer {0..0} {

function (self:Participant)::f():Participant is {

return self

}

}

datatype RainAlert is integer {0..0} {

function (self:RainAlert)::f():RainAlert is {

return self

}

}

datatype FloodWarning is integer {0..0} {

function (self:FloodWarning)::f():FloodWarning is {

return self

}

}

datatype Parameter is integer {0..0} {
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function (self:Parameter)::f():Parameter is {

return self

}

}

datatype Message is integer {0..0} {

function (self:Message)::f():Message is {

return self

}

}

datatype WaterLevel is integer {0..0} {

function (self:WaterLevel)::f():WaterLevel is {

return self

}

}

datatype Image is integer {0..0} {

function (self:Image)::f():Image is {

return self

}

}

datatype Information is integer {0..0} {

function (self:Information)::f():Information is {

return self

}

}

datatype WeatherBulletin is integer {0..0} {

function (self:WeatherBulletin)::f():WeatherBulletin is {

return self

}

}

// constituents

system MeteorologicalSystem () is {

gate ack is {

connection ack is in{Information}

}

guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}
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gate ProduceWeatherBulletin is {

connection i1 is in{Location}

connection o1 is out{WeatherBulletin}

connection e1 is out{RainAlert}

}

guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate ProvideInformation is {

connection i1 is in{Location}

connection i2 is in{Parameter}

connection o1 is out{Information}

} guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate MonitorRegion is {

connection i1 is in{Location}

connection e1 is out{RainAlert}

connection e2 is out{FloodWarning}

} guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

behavior main is {

done

}

}

system SurveillanceSystem () is {

gate ack is {

connection ack is in{Information}
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}

guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate ProvideImages is {

connection i1 is in{Location}

connection o1 is out{Image}

} guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate CalculateRiskyArea is {

connection i1 is in{Location}

connection i2 is in{integer {0..0}}

connection o1 is out{sequence{Location }}

} guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

behavior main is {

done

}

}

system RiverMonitoringSystem () is {

gate ack is {

connection ack is in{Information}

}

guarantee {

protocol behavior0 is {

repeat {

anyaction

}
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}

}

gate ProvideRiverLevel is {

connection o1 is out{Information}

} guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

behavior main is {

done

}

}

system SocialNetwork () is {

gate ack is {

connection ack is in{Information}

}

guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate ReceiveMessage is {

connection e1 is out{Message}

}guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate SendMessage is {

connection i1 is in{Message}

}guarantee {

protocol behavior0 is {

repeat {

anyaction

}
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}

}

gate SearchParticipantsByName is {

connection i1 is in{String}

connection o1 is out{sequence{Participant }}

}guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate SearchParticipantsByLocation is {

connection i1 is in{Location}

connection o1 is out{sequence{Participant }}

}guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

behavior main is {

done

}

}

mediator DetectFlood () is {

duty WarningAndLocation is {

connection warning is in{FloodWarning}

connection location is in{Location}

connection locationOut is out{Location}

} assume {

protocol behavior0 is {

repeat { anyaction }

}

}

guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

duty ConfirmWarning is {
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connection rain is in{RainAlert}

connection warning is in {FloodWarning}

connection riverLevel is in{Information}

connection whetherBulletin is in{Information}

connection trueWarning is out{FloodWarning}

} assume {

protocol behavior0 is {

repeat { anyaction }

}

}guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

duty CalculateRiskyArea is {

connection location is in{Location}

connection range is in{Parameter}

connection area is out{Parameter}

}assume {

protocol behavior0 is {

repeat { anyaction }

}

}guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}duty ack is {

connection msg is out{Information}

}assume {

protocol behavior0 is {

repeat { anyaction }

}

}guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

behavior main is {

done

}

}

mediator SendAlert () is {
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duty sendAlert is {

connection alert is in{FloodWarning}

connection msg is in{Message}

}assume {

protocol behavior0 is {

repeat { anyaction }

}

}guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

duty authorizeAlert is {

connection alert is out{FloodWarning}

connection authorization is in{Information}

}assume {

protocol behavior0 is {

repeat { anyaction }

}

}guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

duty ack is {

connection msg is out{Information}

}assume {

protocol behavior0 is {

repeat { anyaction }

}

}guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

behavior main is {

done

}

}

// architecture

architecture fmsos() is {
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gate unusedGate0 is {

connection unusedConnection0 is in{RangeType0}

}

guarantee {

protocol allowAll is {

repeat {

anyaction

}

}

}

behavior coalition is compose {

meteo is MeteorologicalSystem

rms is RiverMonitoringSystem

sn is SocialNetwork

surv is SurveillanceSystem

df is DetectFlood

sa is SendAlert

} binding { unify one { surv :: ack :: ack } to one { df :: ack :: msg }

and unify one { df :: ack :: msg } to one { rms :: ack :: ack } and

unify one {df:: WarningAndLocation :: warning} to one{rms:: MonitorRegion

::e2}

}

}

}
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APPENDIX E -- Arch-M2Arch SosADL

Description

with A1_ServersXor_library

sos ServersXor0 is {

// fmsos

datatype Location is integer {0..0} {

function (self:Location)::f():Location is {

return self

}

}

datatype String is integer {0..0} {

function (self:String)::f():String is {

return self

}

}

datatype Participant is integer {0..0} {

function (self:Participant)::f():Participant is {

return self

}

}

datatype RainAlert is integer {0..0} {

function (self:RainAlert)::f():RainAlert is {

return self

}

}

datatype FloodWarning is integer {0..0} {

function (self:FloodWarning)::f():FloodWarning is {

return self

}
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}

datatype Parameter is integer {0..0} {

function (self:Parameter)::f():Parameter is {

return self

}

}

datatype Message is integer {0..0} {

function (self:Message)::f():Message is {

return self

}

}

datatype WaterLevel is integer {0..0} {

function (self:WaterLevel)::f():WaterLevel is {

return self

}

}

datatype Image is integer {0..0} {

function (self:Image)::f():Image is {

return self

}

}

datatype Information is integer {0..0} {

function (self:Information)::f():Information is {

return self

}

}

datatype WeatherBulletin is integer {0..0} {

function (self:WeatherBulletin)::f():WeatherBulletin is {

return self

}

}

// constituents

system MeteorologicalSystem () is {

gate ProduceWeatherBulletin is {

connection i1 is in{Location}

connection o1 is out{WeatherBulletin}

connection e1 is out{RainAlert}

}

guarantee {

protocol behavior0 is {

repeat {
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anyaction

}

}

}

gate ProvideInformation is {

connection i1 is in{Location}

connection i2 is in{Parameter}

connection o1 is out{Information}

} guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate MonitorRegion is {

connection i1 is in{Location}

connection e1 is out{RainAlert}

connection e2 is out{FloodWarning}

} guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

behavior main is {

done

}

}

system SurveillanceSystem () is {

gate ProvideImages is {

connection i1 is in{Location}

connection o1 is out{Image}

} guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}
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gate CalculateRiskyArea is {

connection i1 is in{Location}

connection i2 is in{integer {0..0}}

connection o1 is out{sequence{Location }}

} guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

behavior main is {

done

}

}

system RiverMonitoringSystem () is {

gate ProvideRiverLevel is {

connection o1 is out{Information}

} guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

behavior main is {

done

}

}

system SocialNetwork () is {

gate ReceiveMessage is {

connection e1 is out{Message}

}guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate SendMessage is {

connection i1 is in{Message}
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}guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate SearchParticipantsByName is {

connection i1 is in{String}

connection o1 is out{sequence{Participant }}

}guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

gate SearchParticipantsByLocation is {

connection i1 is in{Location}

connection o1 is out{sequence{Participant }}

}guarantee {

protocol behavior0 is {

repeat {

anyaction

}

}

}

behavior main is {

done

}

}

mediator ToMatchData () is {

duty duty0 is {

connection i1 is in{Information}

connection i2 is in{Information}

connection o1 is out{Information}

} assume {

protocol behavior0 is {

repeat { anyaction }

}

} guarantee {

protocol behavior0 is {
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repeat { anyaction }

}

}

behavior main is {

done

}

}

mediator SendAlert () is {

duty duty0 is {

connection e1 is in{RainAlert}

connection i1 is in{sequence{Participant }}

connection i2 is in{sequence{Participant }}

connection o1 is out{Participant}

connection o2 is out{Message}

} assume {

protocol behavior0 is {

repeat { anyaction }

}

} guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

behavior main is {

done

}

}

mediator LocationToSN () is {

duty duty0 is {

connection i1 is in{sequence{Location }}

connection o1 is out{Location}

} assume {

protocol behavior0 is {

repeat { anyaction }

}

} guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

behavior main is {

done
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}

}

mediator AreaMonitor () is {

duty duty0 is {

connection i1 is in{sequence{Location }}

connection o1 is out{Location}

} assume {

protocol behavior0 is {

repeat { anyaction }

}

} guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

behavior main is {

done

}

}

mediator ParticipantsByLocation () is {

duty duty0 is {

connection i1 is in{sequence{Location }}

connection o1 is out{Location}

} assume {

protocol behavior0 is {

repeat { anyaction }

}

} guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

behavior main is {

done

}

}

mediator ParticipantsInArea () is {

duty duty0 is {

connection i1 is in{sequence{Location }}

connection o1 is out{Location}

} assume {
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protocol behavior0 is {

repeat { anyaction }

}

} guarantee {

protocol behavior0 is {

repeat { anyaction }

}

}

behavior main is {

done

}

}

// architecture

architecture coalition () is {

gate unusedGate0 is {

connection unusedConnection0 is in{RangeType0}

}

guarantee {

protocol allowAll is {

repeat {

anyaction

}

}

}

behavior coalition is compose {

meteo is MeteorologicalSystem

rms is RiverMonitoringSystem

sn is SocialNetwork

surv is SurveillanceSystem

toMatch is ToMatchData

sa is SendAlert

loc is LocationToSN

am is AreaMonitor

pbl is ParticipantsByLocation

pia is ParticipantsInArea

} binding { ( unify one { meteo :: ProvideInformation :: i1 } to one

{ toMatch :: duty0 :: i1 } and unify one { surv ::

CalculateRiskyArea :: o1 } to one { loc :: duty0 :: o1 } and

unify one { sa :: duty0 :: o1 } to one { sn :: SendMessage :: i1

} and unify one { pbl :: duty0 :: o1 } to one { sa :: duty0 :: o2
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} and unify one { sn :: SearchParticipantsByLocation :: i1 } to

one { pbl :: duty0 :: i1 } and unify one { loc :: duty0 :: i1 }

to one { sn :: SearchParticipantsByLocation :: o1 } and unify one

{ toMatch :: duty0 :: i2 } to one { sa :: duty0 :: e1 } and

unify one { meteo :: MonitorRegion :: e1 } to one { sa :: duty0

:: i2 } and unify one { pbl :: duty0 :: i1 } to one { sn ::

SearchParticipantsByLocation :: i1 } and unify one { surv ::

CalculateRiskyArea :: i2 } to one { toMatch :: duty0 :: o1 } and

unify one { rms :: ProvideRiverLevel :: o1 } to one { surv ::

CalculateRiskyArea :: i1 } and unify one { rms ::

ProvideRiverLevel :: o1 } to one { pbl :: duty0 :: o1 } and (

unify one { rms :: ProvideRiverLevel :: o1 } to one { sa :: duty0

:: i1 } and unify one { am :: duty0 :: o1 } to one { meteo ::

MonitorRegion :: e2 } ) and unify one { surv :: ProvideImages ::

o1 } to one { am :: duty0 :: i1 } and ( unify one { loc :: duty0

:: i1 } to one { sn :: SendMessage :: i1 } and unify one { meteo

:: MonitorRegion :: i1 } to one { loc :: duty0 :: o1 } ) and (

unify one{meteo :: ProvideInformation ::o1} to one {toMatch ::duty0 ::

i1})

)

}

}

}
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APPENDIX F -- K3 aspect �le for SosADL

Made using Kermetta3.

package sosADL.aspects

import fr.inria.diverse.k3.al.annotationprocessor.Aspect

import fr.inria.diverse.k3.al.annotationprocessor.InitializeModel

import fr.inria.diverse.k3.al.annotationprocessor.Main

import fr.inria.diverse.k3.al.annotationprocessor.Step

import java.util.LinkedList

import java.util.List

import org.archware.sosadl.sosADL.ArchitectureDecl

import org.archware.sosadl.sosADL.BinaryExpression

import org.archware.sosadl.sosADL.Connection

import org.archware.sosadl.sosADL.Constituent

import org.archware.sosadl.sosADL.Expression

import org.archware.sosadl.sosADL.GateDecl

import org.archware.sosadl.sosADL.IdentExpression

import org.archware.sosadl.sosADL.MediatorDecl

import org.archware.sosadl.sosADL.SystemDecl

import org.archware.sosadl.sosADL.Unify

import org.eclipse.emf.common.util.EList

import org.eclipse.emf.ecore.EObject

import java.util.Random

import org.archware.sosadl.sosADL.DutyDecl

import org.archware.sosadl.utility.ModelUtils

// import org.eclipse.gemoc.executionframework.engine.annotations.

EventHandler

// import org.eclipe.gemoc.executionframework.engine.annotations.

EventEmitter
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// import org.eclipse.gemoc.executionframework.engine.annotations.

EventHandler

@Aspect(className=ArchitectureDecl)

class ArchitectureDeclAspect {

// private Map <String , String > context;

@Main

// @EventHandler // handles NEW_STATE and END

// @EventEmitter

def public void main() {

// propagate values from input gates

for (GateDecl g : _self.gates) {

for (Connection c : g.connections) {

ConnectionAspect.propagateValue(c)

}

}

// try to execute component 's behavior

for (Constituent c : _self.behavior.constituents) {

val EObject o = ModelUtils.resolve(c.value as IdentExpression)

if (o instanceof SystemDecl) {

SystemDeclAspect.run(o)//, _self.context)

} else if (o instanceof MediatorDecl) {

MediatorDeclAspect.run(o)//, _self.context)

}

}

}

@InitializeModel

// @EventHandler // handles INIT and NEW_TRACE

def public void init(EList <String > args) {

for (GateDecl gate : _self.gates) {

// random values into connections

for (Connection c : gate.connections) {

ConnectionAspect.value(c, Values.empty) // initialize values with empty

}

}

// unify gates

ExpressionAspect.performAction(_self.behavior.bindings)

println("Started")

}
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}

@Aspect(className=SystemDecl)

class SystemDeclAspect {

@Step

def public void run(){//Map <String , String > context) {

println("Running "+_self.name)

}

}

@Aspect(className=MediatorDecl)

class MediatorDeclAspect {

@Step

def public void run(){//Map <String , String > context) {

println("Running "+_self.name)

}

}

@Aspect(className=Unify)

class UnifyAspect extends ExpressionAspect {

public def void performAction () {

val Connection left = ModelUtils.resolve(_self.connLeft) as Connection

val Connection right = ModelUtils.resolve(_self.connRight) as Connection

if (ConnectionAspect.unifiedConnections(left) === null)

ConnectionAspect.unifiedConnections(left , new LinkedList <Connection >())

if (ConnectionAspect.unifiedConnections(right) === null)

ConnectionAspect.unifiedConnections(right , new LinkedList <Connection >())

ConnectionAspect.unifiedConnections(left).add(right)

ConnectionAspect.unifiedConnections(right).add(left)

}

}

@Aspect(className=BinaryExpression)

class BinaryExpressionAspect extends ExpressionAspect {

public def void performAction () {

_self.left.performAction // recursive call to unify

_self.right.performAction // recursive call to unify

}

}

@Aspect(className=Expression)

abstract class ExpressionAspect {
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public def Object evaluate () {

println("Evaluating expression "+_self)

return null

}

abstract def void performAction ()

}

@Aspect(className=Connection)

class ConnectionAspect {

protected String value

protected List <Connection > unifiedConnections

def public void propagateValue () {

for (Connection c : unifiedConnections(_self)) {

if (ConnectionAspect.value(c) != ConnectionAspect.value(_self)) {

// copy value

ConnectionAspect.value(c, ConnectionAspect.value(_self))

// propagate recursivelly

ConnectionAspect.propagateValue(c)

}

}

}

}

@Aspect(className=GateDecl)

class DateDeclAspect {

public Object value

}

@Aspect(className=DutyDecl)

class DutyDeclAspect {

public Object value

}

class StatementAspect {

}
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ANEXO A -- SosADL Grammar

Made using Xtext.

grammar org.archware.sosadl.SosADL with org.eclipse.xtext.common.

Terminals

generate sosADL 'http ://www -archware.irisa.fr/sosadl/SosADL '

SosADL: (imports += Import)* content =( NewNamedLibrary | NewSoS)

;

Import: 'with' importedLibrary=Name

;

NewNamedLibrary returns Unit: {Library} 'library ' name=Name 'is' '{'

decls=EntityBlock '}'

;

NewSoS returns Unit: {SoS} 'sos' name=Name 'is' '{'

(decls=EntityBlock)

'}'

;

EntityBlock: {EntityBlock}

(datatypes += DataTypeDecl)*

(functions += FunctionDecl)*

(systems += SystemDecl)*

(mediators += MediatorDecl)*

(architectures += ArchitectureDecl)*

;

SystemDecl: 'system ' name=Name '(' (parameters += FormalParameter (','

parameters += FormalParameter)*)? ')' 'is' '{'
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(datatypes += DataTypeDecl)*

(gates += GateDecl)+

behavior=BehaviorDecl

'}' ('guarantee ' '{' assertions += AssertionDecl+ '}')?

;

ArchitectureDecl: 'architecture ' name=Name '(' (parameters +=

FormalParameter (',' parameters += FormalParameter)*)? ')' 'is' '{'

(datatypes += DataTypeDecl)*

(gates += GateDecl)+

behavior=ArchBehaviorDecl

'}' ('guarantee ' '{' assertions += AssertionDecl+ '}')?

;

MediatorDecl: 'mediator ' name=Name '(' (parameters += FormalParameter (','

parameters += FormalParameter)*)? ')' 'is' '{'

(datatypes += DataTypeDecl)*

(duties += DutyDecl)+

behavior=BehaviorDecl

'}'

('assume ' '{' assumptions += AssertionDecl+ '}')?

('guarantee ' '{' assertions += AssertionDecl+ '}')?

;

GateDecl:

'gate' name=Name 'is' '{'

(connections += Connection)+

'}' 'guarantee ' '{' protocols += ProtocolDecl+ '}'

;

DutyDecl:

'duty' name=Name 'is' '{'

(connections += Connection)+

'}'

'assume ' '{' assertions += AssertionDecl+ '}' // WAS: 'require ' '{'

assertion=AssertionDecl '}'

'guarantee ' '{' protocols += ProtocolDecl+ '}' // WAS: 'assume ' '{'

protocol=ProtocolDecl '}'

;

Connection:

(environment ?='environment ')? 'connection ' name=Name 'is' mode=ModeType

'{' valueType=DataType '}'
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;

AssertionDecl:

('property '|'protocol ') name=Name 'is' body=Protocol

;

ProtocolDecl:

('property '|'protocol ') name=Name 'is' body=Protocol

;

Protocol:

'{' (statements += ProtocolStatement)+ '}'

;

ProtocolStatement:

{ValuingProtocol} valuing=Valuing

| {AssertProtocol} assertion=Assert

| ProtocolAction

| {AnyAction} 'anyaction '

| {RepeatProtocol} 'repeat ' repeated=Protocol

| {IfThenElseProtocol} 'if' condition=Expression 'then' ifTrue=Protocol

('else' ifFalse=Protocol)?

| {ChooseProtocol} 'choose ' branches += Protocol ('or' branches += Protocol

)+

| {ForEachProtocol} 'foreach ' variable=Name 'in' setOfValues=Expression

repeated=Protocol

| {DoExprProtocol} 'do' expression=Expression

| {DoneProtocol} 'done'

;

ProtocolAction:

'via' complexName=ComplexName suite=ProtocolActionSuite

;

ProtocolActionSuite:

({ SendProtocolAction} 'send' expression=FinalExpression)

| ('receive ' ({ ReceiveAnyProtocolAction} 'any'

|{ ReceiveProtocolAction} variable=Name))

;

BehaviorDecl:

'behavior ' name=Name 'is' body=Behavior

// WAS: 'behavior ' name=Name '(' (parameters += FormalParameter (','
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parameters += FormalParameter)*)? ')' 'is' body=Behavior

;

Behavior:

'{' (statements += BehaviorStatement)+ '}'

;

BehaviorStatement:

{ValuingBehavior} valuing=Valuing

| {AssertBehavior} assertion=Assert

| Action

| {RepeatBehavior} 'repeat ' repeated=Behavior

| {IfThenElseBehavior} 'if' condition=Expression 'then' ifTrue=Behavior

('else' ifFalse=Behavior)?

| {ChooseBehavior} 'choose ' branches += Behavior ('or' branches += Behavior

)+

| {ForEachBehavior} 'foreach ' variable=Name 'in' setOfValues=Expression

repeated=Behavior

| {DoExprBehavior} 'do' expression=Expression

| {DoneBehavior} 'done'

| {RecursiveCall} 'behavior ' '(' (parameters += Expression (',' parameters

+= Expression)*)? ')'

| {UnobservableBehavior} 'unobservable '

;

Assert:

{TellAssertion} 'tell' name=Name 'is' '{' expression=Expression '}'

| {UntellAssertion} 'untell ' name=Name

| {AskAssertion} 'ask' name=Name 'is' '{' expression=Expression '}'

;

Action:

'via' complexName=ComplexName suite=ActionSuite

;

ActionSuite:

{SendAction} 'send' expression=FinalExpression

| {ReceiveAction} 'receive ' variable=Name

;

ArchBehaviorDecl:

// WAS: 'behavior ' name=Name '(' (parameters += Expression (',' parameters

+= Expression)*)? ')'
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'behavior ' name=Name

'is' 'compose ' '{' (constituents += Constituent)+ '}'

'binding ' '{' bindings=Expression '}'

;

Constituent:

name=Name 'is' value=Expression

;

Binding returns Expression:

{Relay} 'relay ' connLeft=ComplexName 'to' connRight=ComplexName

| {Unify} 'unify ' multLeft=Multiplicity '{' connLeft=ComplexName '}' 'to

' multRight=Multiplicity '{' connRight=ComplexName '}'

| {Quantify} quantifier=Quantifier '{' elements += ElementInConstituent ('

,' elements += ElementInConstituent)* 'suchthat ' bindings=Expression '}

'

;

enum Quantifier:

QuantifierForall='forall ' | QuantifierExists='exists '

;

ElementInConstituent:

variable=Name 'in' constituent=Name

;

enum Multiplicity:

MultiplicityOne='one'

| MultiplicityNone='none'

| MultiplicityLone='lone'

| MultiplicityAny='any'

| MultiplicitySome='some'

| MultiplicityAll='all'

;

DataTypeDecl: 'datatype ' name=Name ('is' datatype=DataType)? ('{'

functions += FunctionDecl+ '}')?;

DataType:

BaseType

| ConstructedType

| {NamedType} name=Name // name of another type

;
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FunctionDecl:

'function ' '(' data=FormalParameter ')' '::'

name=Name '(' (parameters += FormalParameter (',' parameters +=

FormalParameter)*)? ')' ':' type=DataType 'is' '{'

(valuing += Valuing)*

'return ' expression=Expression

'}'

;

FormalParameter:

name=Name ':' type=DataType

;

BaseType returns DataType:

{IntegerType} 'integer '

;

ConstructedType returns DataType:

{TupleType} 'tuple ' '{' fields += FieldDecl (',' fields += FieldDecl)* '}'

| {SequenceType} 'sequence ' '{' type=DataType '}'

| {RangeType} 'integer ' '{' vmin=Expression '..' vmax=Expression '}' //

range of Integer

| {ConnectionType} mode=ModeType '{' type=DataType '}'

;

FieldDecl:

name=Name ':' type=DataType

;

enum ModeType:

ModeTypeIn='in' | ModeTypeOut='out' | ModeTypeInout='inout ';

Name: ID ;

ComplexName:

name+=Name ('::' name+=Name)*

;

Valuing:

'value' name=Name (':' type=DataType)? '=' expression=Expression;

Value returns Expression:
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BaseValue

| ConstructedValue

;

BaseValue returns Expression:

IntegerValue

| {Any} 'any'

;

// IntegerValue is a natural integer (>=0). Use a UnaryExpression to get

a negative value.

IntegerValue:

absInt=INT // INT == ('0'..'9')+ rend une valeur ecore::EInt;

;

ConstructedValue returns Expression:

{Tuple} 'tuple ' '{' elements += TupleElement (',' elements += TupleElement)*

'}'

| {Sequence} 'sequence ' '{' (elements += Expression (',' elements +=

Expression)*)? '}'

;

TupleElement:

label=Name '=' value=Expression

;

Expression:

BinaryExpression0

;

BinaryExpression0 returns Expression:

BinaryExpression1 ({ BinaryExpression.left=current} op=BinaryOp0 right=

BinaryExpression0)?

;

BinaryExpression1 returns Expression:

BinaryExpression2 ({ BinaryExpression.left=current} op=BinaryOp1 right=

BinaryExpression2)*

;

BinaryExpression2 returns Expression:

BinaryExpression3 ({ BinaryExpression.left=current} op=BinaryOp2 right=

BinaryExpression3)*
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;

BinaryExpression3 returns Expression:

BinaryExpression4 ({ BinaryExpression.left=current} op=BinaryOp3 right=

BinaryExpression4)*

;

BinaryExpression4 returns Expression:

BinaryExpression5 ({ BinaryExpression.left=current} op=BinaryOp4 right=

BinaryExpression5)*

;

BinaryExpression5 returns Expression:

BinaryExpression6 ({ BinaryExpression.left=current} op=BinaryOp5 right=

BinaryExpression6)*

;

BinaryExpression6 returns Expression:

BinaryExpression7 ({ BinaryExpression.left=current} op=BinaryOp6 right=

BinaryExpression7)*

;

BinaryExpression7 returns Expression:

FinalExpression ({ BinaryExpression.left=current} op=BinaryOp7 right=

FinalExpression)*

;

FinalExpression returns Expression:

UnaryExpression

| CallExpression

| '(' Expression ')'

| Binding

;

UnaryExpression:

op=UnaryOp right=FinalExpression

;

CallExpression returns Expression:

(

{IdentExpression} ident=Name

| {CallExpression} function=Name '(' (parameters += Expression (','

parameters += Expression)*)? ')'
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| LitteralExpression

)

('::'

(

{Field.object=current} field=Name

| {Select.object=current} 'select ' '{' variable=Name 'suchthat '

condition=Expression '}'

// WAS: {Map.object=current} 'map' '{' variable=Name 'to' expression=

Expression '}'

| {Map.object=current} 'collect ' '{' variable=Name 'suchthat ' expression

=Expression '}'

| {MethodCall.object=current} method=Name '(' (parameters += Expression ('

,' parameters += Expression)*)? ')'

)

)*

;

LitteralExpression returns Expression:

Value

;

BinaryOp0: 'implies ' ;

BinaryOp1: 'or' ;

BinaryOp2: 'xor' ;

BinaryOp3: 'and' ;

BinaryOp4: '=' | '<>' ;

BinaryOp5: '<' | '<=' | '>' | '>=' ;

BinaryOp6: '+' | '-' ;

BinaryOp7: '*' | '/' | 'mod' | 'div' ;

UnaryOp:

BooleanUnaryOp

| ArithmeticUnaryOp

;
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BooleanUnaryOp: 'not';

ArithmeticUnaryOp: '+' | '-';

HiddenBooleanType returns DataType:

{BooleanType}

;

// the end.
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formalization in terms of a temporal logic and 
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