
HAL Id: tel-02372649
https://theses.hal.science/tel-02372649

Submitted on 20 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual machine experience design : a predictive
resource allocation approach for cloud infrastructures

Loïc Pérennou

To cite this version:
Loïc Pérennou. Virtual machine experience design : a predictive resource allocation approach for cloud
infrastructures. Distributed, Parallel, and Cluster Computing [cs.DC]. Conservatoire national des arts
et metiers - CNAM, 2019. English. �NNT : 2019CNAM1246�. �tel-02372649�

https://theses.hal.science/tel-02372649
https://hal.archives-ouvertes.fr

Ecole Doctorale Informatique, Télécommunications et électronique

Centre d’Études et de Recherche en Informatique et Communications

THÈSE DE DOCTORAT

présentée par : Löıc PÉRENNOU

soutenue le : 23 octobre 2019

pour obtenir le grade de : Docteur du Conservatoire National des Arts et Métiers

Discipline : Informatique

Virtual Machine Experience Design :

A Predictive Resource Allocation Approach

for Cloud Infrastructures

THÈSE dirigée par
M. Gressier-Soudan Éric Professeur, CNAM

et co-encadrée par
M. Lefebvre Sylvain Enseignant-Chercheur, ISEP

RAPPORTEURS
M. Hagimont Daniel Professeur, IRIT/ENSEEIHT
M. Lebre Adrien Professeur, IMT Atlantique

PRÉSIDENT DU JURY
M. Hagimont Daniel Professeur, IRIT/ENSEEIHT

EXAMINATEURS
Mme. Bouchenak Sara Professeure, INSA Lyon
M. Gaaloul Walid Professeur, TSP

MEMBRES INVITÉS
Mme. Chiky Raja Professeure, ISEP
Mme. Callau-Zori Mar Docteure, Outscale

Acknowledgments

Throughout this PhD, I received invaluable support and advice from academic supervisors, col-

leagues at Outscale, friends and family. I will forever be thankful to them.

First and foremost, I would like to thank Laurent Seror, Outscale’s founder and president, for his

trust and for the impetus given to this project.

Eric Gressier-Soudan (CNAM), Raja Chicky (ISEP), Sylvain Lefebvre (ISEP) and Mar Callau-Zori

(OUTSCALE), spent countless time advising me and providing warm support in difficult times. I am

incredibly grateful for patiently transmitting me your wisdom.

As a member of Outscale’s engineering team, I had the pleasure to work with Christophe, Fabien,

Evgeny, Nizar, Aurélien, Rahma, Salim and Quentin. The team meetings and informal discussions

with you were an amazing opportunity to benefit from your expertise on operating systems, networks,

programming languages, technology in general and even economy and politics. I would also like to

thank the development, quality assurance and operation teams who helped me acquire the data used

in this project. I owe you so much!

Big up to Sathyia, Manuel, Amadou, Rayane, and Denis. I have been lucky to share time at the

lab with you, and to become your friend.

I would never have completed this thesis without my family. Mom, Dad, Camille and Hugo, your

love always pushed me to do better.

I also acknowledge the french National Association of Research and Technology (ANRT) for fund-

ing this thesis through grant CIFRE N. 2015/0934.

3

ACKNOWLEDGMENTS

4

Résumé

L’un des principaux défis des infrastructures d’informatique en nuage (cloud computing) est d’offrir

aux utilisateurs une performance acceptable, tout en minimisant les besoins en matériel et énergie.

Cette thèse CIFRE, menée en collaboration avec Outscale, un fournisseur de services cloud, vise

à améliorer l’allocation des ressources de la plateforme grâce à de nouvelles sources d’information

pertinentes.

Les caractéristiques de la charge soumise à l’orchestrateur déterminent dans quelle mesure il est

possible d’allier performance et économie de ressources. La plateforme d’Outscale et sa charge de

travail possèdent des caractéristiques particulières : avec ∼ 150k machines virtuelles créées par mois,

la plateforme est un ordre de grandeur plus grande que des clouds privés, et un ordre de grandeur

plus petite que des clouds dits “hyperscale”, comme celui de Microsoft Azure. C’est pourquoi nos

trois contributions visent à optimiser l’allocation des ressources en tenant compte des spécificités de

la charge de travail.

En premier lieu, nous caractérisons la charge d’Outscale, d’après des traces d’exécution collectées

sur la plateforme et publiées après anonymisation. L’originalité de notre travail réside dans la caracté-

risation du déploiement des principales ressources virtuelles (machines virtuelles, volumes, instantanés

de volumes, groupes de sécurité, images systèmes) afin de comprendre leur association et le stress ré-

sultant sur l’orchestrateur. Par ailleurs, nous caractérisons l’utilisation de ressources matérielles ainsi

que les interférences liées à la sur-allocation du CPU et au surcoût de la virtualisation.

En seconde contribution, nous proposons un modèle de prédiction de la durée de vie des VMs à

partir de caractéristiques prédictives qui sont, ou pourraient être, disponibles à leur démarrage. En

plus de caractéristiques déjà connues, comme la quantité de ressources demandée, et l’historique de

consommation de l’utilisateur, nous proposons d’utiliser l’information contenue dans la configuration

5

RÉSUMÉ

réseau de la VM, les étiquettes textuelles attachées à la VM pour permettre son inventaire, ou encore

des contraintes de placement.

Notre troisième contribution est l’évaluation de la sensibilité d’un algorithme de placement des

VMs qui requiert une prédiction de leur durée de vie. Cet algorithme issu de la littérature, appelé

RTABF, avait préalablement été évalué en considérant des prédictions de durée de vie parfaites. Nous

avons donc évalué, via simulation, la sensibilité de RTABF à différents niveaux d’erreur de prédiction.

Notre travail invalide l’utilisation des prédictions de durée de vie avec l’algorithme RTABF. Ainsi, la

question de trouver une utilité aux prédictions se pose de nouveau.

En résumé, cette thèse contribue à l’amélioration des techniques d’allocation de ressources sur les

plateformes cloud, à travers la caractérisation de la charge de travail, la prédiction de la durée de vie

des VMs, et l’évaluation de la sensibilité d’un algorithme de placement de VMs aux erreurs de prédic-

tion. L’algorithme étudié ne permet pas de faire bon usage des prédictions de durée de vie des VMs.

Nous pensons néanmoins que de telles prédictions pourraient être utiles, notamment pour réduire le

nombre de migrations nécessaires lors des maintenances des serveurs.

Mots-clés : Infrastructure à la demande, placement de machine virtuelle, plateforme cloud, orches-

trateur

6

Abstract

One of the main challenges for cloud computing providers remains to offer trustable performance

for all users of a multi-tenant platform, while maintaining an efficient use of hardware and energy

resources. In the context of this CIFRE thesis conducted with Outscale, a French public cloud provider,

we performed an in-depth study aimed at making new sources of information available to improve

resource management algorithms.

Resource allocation at Outscale must take into account the particularities of the platform and

workload. With 150k VMs/month, Outscale’s workload is an order of magnitude smaller than the

workload of “hyperscale” providers such as Azure, and an order of magnitude larger than the workload

of on-premise platforms. This thesis contains three contributions that aim at adapting Outscale’s

resource allocation policies to the specificity of its workload.

The first contribution is the characterization of Outscale’s workload, based on traces that we

collected. We characterize the correlated utilization of virtual resources to understand their association

in user deployments and the resulting stress for the orchestrator. The originality of this work stands

in the analysis of the whole set of resources consumed by users (volumes, images, snapshots, security

groups), in addition to the virtual machines. Besides, we characterize the utilization of hardware

resources, and we discuss the implications of CPU overcommit and interferences.

The second contribution is the prediction of the runtime of VMs based on features which are

available when VMs start. We use well-known features from the literature, such as the amount of

resources requested or the user account history; and we propose new features such as text tags used

to describe VMs, or the network configuration.

The third contribution is the sensitivity analysis of Release-Time Aware Best-Fit (RTABF), a VM

placement algorithm that requires the prediction of VM runtime to minimize the energy usage of

7

ABSTRACT

servers. We analyze the performance sensitivity of RTABF with respect to the prediction error. This

work disproves the efficiency of the RTABF algorithm, and raises interesting questions on the utility

of prediction for scheduling purposes.

In summary, we contributed to the management of resources in IaaS with the characterization of

the workload, the prediction of VM runtime, and the sensitivity analysis of a VM placement algorithm

with respect to prediction error. We were unable to prove that VM runtime predictions can be used

by a placement algorithm to save energy. However, prediction models could serve other purposes,

such as the differentiation of overcommit policies, or the admission of short-running VMs on servers

scheduled for maintenance.

Keywords : Infrastructure as a Service, virtual machine placement, cloud platform, orchestrator

8

Contents

Acknowledgments 3

Résumé 5

Abstract 7

List of tables 15

List of figures 18

1 Introduction 19

1.1 Context . 20

1.2 Research Problems and Contributions . 22

1.2.1 Identify opportunities regarding the management of resources 23

1.2.2 Improve the allocation of resources to VMs by predicting the behavior of VMs 24

2 State of the Art 27

2.1 Introduction . 28

2.2 Bottom Up View of the Datacenter Architecture . 28

2.2.1 Hardware Architecture of a Server . 28

2.2.2 Virtualization . 30

2.2.3 Scaling Out The Architecture . 32

9

CONTENTS

2.3 Allocation of Resources to Virtual Machines . 32

2.3.1 Objectives . 33

2.3.1.1 Maximize Profitability . 33

2.3.1.2 Respect Service-Level Agreement on Performance 34

2.3.1.3 Multi-objective resource allocation . 34

2.3.2 Workload Models . 35

2.3.2.1 Static Resource Utilization Model . 35

2.3.2.2 Dynamic Resource Utilization Model 35

2.3.2.3 Clairvoyant Resource Utilization Model 35

2.3.2.4 Performance Model . 36

2.3.3 Solving of the resource allocation problem . 37

2.3.3.1 Problem Partitioning . 37

2.3.3.2 Exploring the Space of Candidate Solutions 38

2.3.4 Discussion . 39

2.4 Machine Learning Based Approaches . 40

2.4.1 Prediction of resource utilization . 40

2.4.1.1 Single VM Prediction Model . 41

2.4.1.2 Multiple VM Prediction Model . 41

2.4.1.3 Predictions served at startup . 42

2.4.2 Approximation of interference profiles . 42

2.4.2.1 Identification of groups of VMs with similar resource usage variations 43

2.4.2.2 Speeding up Interference Measurement 43

2.4.3 Discussion . 43

2.5 Characterization of Cloud Workload Traces . 44

2.5.1 Comparison of Workload Traces . 44

10

CONTENTS

2.5.1.1 VM Based Workload . 44

2.5.1.2 Job Based Workload . 45

2.5.2 Characterization of Workload Traces . 46

2.5.2.1 Server Management . 47

2.5.2.2 Storage Management . 47

2.5.2.3 Resource Pricing . 48

2.5.2.4 Failure Analysis . 48

2.5.2.5 Application Deployment . 48

2.5.3 Discussion . 49

2.6 Conclusion . 49

3 Characterization of Outscale’s Workload 51

3.1 Introduction . 52

3.2 Data Collection . 53

3.2.1 Traces of Resources Management Operations 53

3.2.2 Traces of The Resource Usage of VMs . 53

3.2.3 Implementation of Data Collection in Compliance With Security Standards . . 57

3.3 Understanding Management Operations . 58

3.3.1 Time Patterns in Virtual Resource Management 58

3.3.2 Resources requested by VMs . 59

3.3.3 Correlations Between Virtual Resource Requests 60

3.4 Understanding The Resource Usage of VMs . 62

3.5 Understanding Interferences Between VMs . 65

3.6 Comparative Study of The Consumption of Clients and Internal Users 66

3.7 Comparative Study With Other Traces . 68

3.7.1 Comparison With Azure . 68

11

CONTENTS

3.7.2 Comparison With Bitbrains . 70

3.8 Conclusions . 71

4 Prediction of VM runtime 73

4.1 Introduction . 74

4.2 Supervised Machine Learning . 74

4.2.1 Decision Trees . 75

4.2.2 Ensemble Methods . 77

4.2.3 Evaluation Metrics for Classification . 78

4.2.3.1 Accuracy . 78

4.2.3.2 F1 score . 78

4.2.4 Feature Encoding and Scaling . 79

4.3 Experimental Setup For Predicting VM Runtime . 80

4.3.1 Feature Search . 81

4.3.1.1 Features from the API call of the VM request 81

4.3.1.2 Features from the account state and history 82

4.3.1.3 Features extracted from text tags . 82

4.3.2 Dealing With Unbalanced Classes . 83

4.4 Implementation . 84

4.4.1 Presentation of Scikit-Learn . 84

4.4.2 Limitations of Scikit-Learn . 85

4.4.3 Implementation of our Scikit-Learn Extension 85

4.5 Results . 86

4.5.1 Importance of the feature set on model performance 87

4.5.2 Comparison of learning methods . 88

4.6 Conclusion . 92

12

CONTENTS

5 Sensitivity Evaluation of RTABF 95

5.1 Introduction . 96

5.2 Comparison of online VM placement algorithms . 96

5.2.1 Any Fit . 96

5.2.2 Best Fit . 96

5.2.3 Release-Time Aware Best Fit . 97

5.3 Experimental Setup . 99

5.3.1 Workload Trace . 99

5.3.2 Infrastructure Model . 100

5.3.3 Energy Consumption Model . 101

5.4 Results . 102

5.4.1 Conclusion . 103

6 Conclusion and Perspectives 105

6.1 Conclusion . 106

6.1.1 Identified Opportunities Regarding the Management of Resources 106

6.1.2 Predictions of VM Runtime to Improve VM Placement 108

6.2 Perspectives . 109

6.2.1 Maintenances . 109

6.2.2 First Class Upgrade . 110

6.2.3 Overcommitment . 110

7 Extended Summary in French 111

7.1 Introduction . 111

7.1.1 Contexte . 111

7.1.2 Contributions . 112

7.1.3 Caractérisation de la charge de travail . 113

13

CONTENTS

7.1.4 Amélioration de l’allocation des ressources aux VMs à partir de prédictions de

leur durée de vie . 113

7.2 Etat de l’art . 113

7.2.1 Caractérisation de la charge sur les plateformes 113

7.2.2 Placement des VMs . 114

7.2.3 Utilisation de l’apprentissage automatique pour le placement des VMs 115

7.3 Caractérisation de l’utilisation de la plateforme d’Outscale 116

7.3.1 Déploiement des ressources virtuelles . 116

7.3.2 Utilisation des ressources matérielles et interférences entre les VMs 117

7.3.3 Comparaison de la charge d’Outscale avec d’autres fournisseurs 117

7.3.4 Conclusion . 118

7.4 Prédiction de durée de vie des VMs . 118

7.4.1 Conditions expérimentales . 119

7.4.2 Résultats . 119

7.4.3 Conclusion . 121

7.5 Évaluation le a sensibilité de l’algorithme RTABF . 121

7.5.1 Présentation des algorithmes de placement des VMs en ligne 122

7.5.2 Conditions expérimentales . 122

7.5.3 Résultats . 122

7.5.4 Conclusion . 124

7.6 Conclusion Générale . 124

Bibliography 127

14

List of Tables

2.1 Comparison of the content of cloud workload traces . 47

3.1 Description of virtual resource management traces . 54

3.2 Description of VM resources usage traces . 57

3.3 Number of resources: clients vs. internal . 67

3.4 VMs consumption: clients vs. internal . 68

3.5 Statistics of resource consumption for Bitbrains and Outscale 71

4.1 Confusion matrix . 79

4.2 Dummy encoding of a categorical feature (color) into binary components 80

4.3 Runtime class definition . 80

4.4 Composition of the feature sets . 83

5.1 Server characteristics . 101

5.2 Energy consumed during server state switches . 102

15

LIST OF TABLES

16

List of Figures

1.1 Perimeter of resources management responsibility in the three cloud service models . . 21

1.2 Outscale’s IaaS platform . 21

2.1 The Symmetric Multi-Processing Architecture, from [1] 29

2.2 The Non-Uniform Memory Access Architecture . 29

2.3 Traffic encapsulation . 31

3.1 Stages of execution of the resource probe script . 55

3.2 Integration of the probe in the virtualization stack . 56

3.3 Resources creation time . 59

3.4 Resources lifetime . 60

3.5 Requested VMs resources . 60

3.6 Correlations between virtual resource requests . 61

3.7 VMs resources utilization . 63

3.8 Disk utilization . 63

3.9 Relative STD . 64

3.10 VMs interferences according to requested vCPU . 66

3.11 Start time . 69

3.13 CPU usage . 70

17

LIST OF FIGURES

4.1 A decision tree (left) and the resulting partitioning of the data space (right) on a

classification problem. 76

4.2 Proposed cascade classifier . 84

4.3 Implementation of the proposed feature processing and classification pipeline 86

4.4 Model performance with the incremental addition of features. The horizontal line cor-

responds to the baseline on the Azure workload [2]. 87

4.5 The twenty most important features . 88

4.6 Evolution of prediction performance with the number of tag features included in the

dataset . 89

4.7 Relationship between model performance and class cardinality 90

4.8 Relationship between model performance and learning method 91

4.9 Hyperparameter sweep over tree depth and number of trees in the ensemble 91

5.1 Comparison between Best Fit (BF) and Release Time-Aware Best Fit (RTABF). VMs

3 and 4 have to be placed on servers A and B, where VMs 1 and 2 are already running.

RTABF saves energy over BF by taking into account the runtime of VMs. With RTABF,

server A is turned off earlier than with BF. 98

5.2 Computation of the placement cost with Release Time-Aware Best Fit (RTABF) . . . 98

5.3 Number of virtual machines running over time in one trace sample 100

5.4 Implication of the non-energy-proportionality of servers. The most energy-efficient

states (in green) are when the server is turned off or highly utilized. 102

5.5 Percentage of energy saved by RTABF against any-fit and best fit, averaged over 10

simulations . 103

18

Chapter 1

Introduction

Contenu

1.1 Context . 20

1.2 Research Problems and Contributions . 22

1.2.1 Identify opportunities regarding the management of resources 23

1.2.2 Improve the allocation of resources to VMs by predicting the behavior of VMs 24

19

1.1. CONTEXT

1.1 Context

This industrial thesis was conducted in collaboration with Outscale, a public cloud provider. Cloud

computing was invented to enable easy and affordable access to computing resources. It is used, for

instance, to develop autonomous vehicles [3] or medical treatments [4], which have in common the need

to find meaningful information in large datasets. Since the amount of data that must be collected,

stored, and processed worldwide nearly doubles every two years [5], it is mandatory to optimize the

affordability of computing resources.

Cloud computing services provide on-demand access to a pool of processing and storage resources

accessible over the network, and shared by multiple users [6]. Resources are in self-service, thus users

can adapt their utilization to their needs. Resource utilization is measured and users pay exactly for

their usage. Hence, users are financially incentivized to release the resources they no longer need for

the benefit of other users. In 2011, the National Institute of Standards and Technology determined

three cloud computing service models, differentiated by the position of the boundary between the

provider and user management domains [6] (Figure 7.1):

— In Software as a Service (SaaS), users share an application that is maintained by the provider.

Users can parametrize restricted application settings.

— In Platform as a Service (PaaS), users deploy their application code in an execution environment

that includes the necessary software libraries.

— In Infrastructure as a Service (IaaS), users deploy their application code, libraries and operating

systems on the provider’s hardware. The hardware is made of fundamental computing resources

such as servers that embed RAM and CPU. Servers are connected, either physically or via a

network, to block storage devices.

Complementary service models have emerged, such as Storage, Function, Acceleration or Container

as a Service [7]. In this thesis, we focus on IaaS, the fastest-growing segment of the market [8], and

the specialty of Outscale, our industrial partner.

Outscale has two key assets: 1) the hardware infrastructure built in partnership with CISCO,

Intel, Netapp and Nvidia; and 2) a proprietary orchestrator, TINA OS, to manage the infrastructure

and allocate resources to users. As shown on Figure 7.2, the virtualization of the infrastructure allows

users to safely share hardware. For instance, the CPU and RAM of servers are allocated under the

20

1.1. CONTEXT

hardware
operating system
libraries
application

deployed by user
delivered by provider

Software as a Service Platform as a Service Infrastructure as a Service

Figure 1.1: Perimeter of resources management responsibility in the three cloud service models

form of virtual machines (VMs), which provide an isolated execution environment for an OS and

its applications [9]. Similarly, storage hardware is virtualized into volumes, images and snapshots.

Volumes store user data, images are system templates, and snapshots store the state of a volume at

some point in time. Network appliances are virtualized too, and they are configured with security

groups. In this virtualized context, resource allocation is therefore defined as the mapping between

the provider’s hardware resources and the users’ virtual resources [10].

virtual
machine 1

hypervisor

security
group 1

security
group 2

server

virtual
machine 2

controler

volume

disk arraynetwork

CPU RAM IO

snapshot image

controler

Disks

TINA OS
Outscale’s orchestrator

users

1- request (e.g: start VM)
2- allocate resources

virtual resources

hardware resources

Figure 1.2: Outscale’s IaaS platform

Resource allocation has three objectives:

— Service availability. In order to maximize user satisfaction, the provider seeks to maximize

21

1.2. RESEARCH PROBLEMS AND CONTRIBUTIONS

its ability to respond positively to resource provisioning requests. Consequently, the provider

seeks to minimize fragmentation, which is the existence of available resources distributed over

the infrastructure but in amounts too small to be allocable [11]. Since servers bundle CPU,

RAM, and possibly other resources such as GPUs, the fragmentation of a resource depends on

the utilization of others.

— Service cost. The provider seeks to minimize service costs, which encompass hardware and

energy expenditures. To maximize the utility of hardware, the provider can overcommit re-

sources. Overcommitment is defined as the allocation of an indivisible hardware resource, such

as a CPU core, to several users [12]. In addition, the provider seeks to minimize energy costs

by shutting down unused servers.

— Performance. The provider seeks to give stable performance to the different service classes.

Hence, the allocation of resources must take into account the heterogeneous performance of

hardware, which has been acquired over the years. Moreover, the provider seeks to minimize

performance interferences that arise when two users contend for a shared resource [13].

In summary, the orchestrator must take advantage of the complementarity between individual user

workloads to maximize the profit generated from the utilization of the infrastructure, while controlling

the Quality of Service (QoS) experienced by users. In the next section, we derive open problems

pertaining to resource allocation in the specific context of Outscale’s platform architecture and service

constraints, and we introduce our contributions.

1.2 Research Problems and Contributions

The goal of this thesis is to help Outscale optimize the management of its infrastructure. Outscale’s

platform must be able to host as many virtual resources as possible and enforce a controlled level of

QoS. The resource allocation algorithm is a heuristic, i.e., the translation of the expertise of admin-

istrators into a set of rules [14]. The quality of decisions depends on how well the heuristic suits the

workload. We address the problem of improving resource allocation in two steps: 1) characterize the

workload to identify opportunities regarding the management of resources, and 2) propose solutions

suited to the workload.

22

1.2. RESEARCH PROBLEMS AND CONTRIBUTIONS

1.2.1 Identify opportunities regarding the management of resources

Previous works in the literature have characterized the deployment of VMs [2, 15, 16], but neglected

the utilization of volumes, snapshots and security groups. Since these virtual resources are used in

association with VMs, there is a lot to discover from the characterization of co-deployments. For

instance, the characterization of the correlated utilization of volumes and snapshots is required to

optimize the management of storage.

Besides, workload characterizations in the literature focus on public hyperscale platforms hosting

millions of VMs per month such as Microsoft Azure [2], and on-premise platforms hosting in the

thousand of VMs [15, 16]. Neither hyperscale nor on-premise platforms have the same workload than

Outscale: Outscale operates a public non-hyperscale platform with ∼ 100k VMs/month, which is

an order of magnitude smaller than hyperscale platforms, and an order of magnitude bigger than

on-premise ones.

Focusing on VMs, previous works from the literature described their utilization of hardware re-

sources (CPU, RAM, IO) [15]. To our knowledge, there is no study of the QoS on an entire platform.

To characterize the utilization of hardware resources and the QoS, it is mandatory to comply with

Outscale’s privacy policy, which forbids the insertion of code in system images. Thus, all monitoring

must be done from the hypervisor.

The previous observations lead us to word four research questions: How do users deploy and

associate virtual resources? In terms of VMs, is the workload received by Outscale’s orchestrator

different from the workload of other providers? How can such differences be used to improve the

management of resources? Which QoS metrics are observable from the hypervisor, and what factors

influence them?

To identify opportunities regarding the management of resources, we characterize Outscale’s work-

load, based on traces that we collected. We characterize the correlated utilization of virtual resources

to identify the sources of stress for the orchestrator. We characterize the utilization of hardware

resources by VMs and the CPU contention and discuss the implications on QoS management. We

compare the VM workload at Outscale with the workloads at Azure and Bitbrains, who are respec-

tively hyperscale and small-scale providers. We find that bursty VM and snapshot creations stress

the orchestrator. Long-lived volumes define the long-term storage space requirements. A majority of

23

1.2. RESEARCH PROBLEMS AND CONTRIBUTIONS

VMs has an idle CPU utilization, but some VMs (especially small ones) experience CPU interferences.

Finally, VMs request and use different amounts of CPU, RAM and disk at Outscale than at Azure or

Bitbrains. This first contribution led to two publications:

— Löıc Perennou, Mar Callau-Zori, Sylvain Lefebvre, Raja Chiky. Workload Characterization for

a Non-Hyperscale Public Cloud Platform, short paper, Proceedings of the IEEE International

Conference on Cloud Computing (CLOUD ’19).

— Löıc Perennou, Mar Callau-Zori and Sylvain Lefebvre. Understanding Scheduler Workload

on Non-Hyperscale Cloud Platform, poster, Proceedings of the 19th ACM/IFIP Middleware

Conference (Middleware ’18).

1.2.2 Improve the allocation of resources to VMs by predicting the behavior of
VMs

For the placement of VMs on servers, the orchestrator has to make online decisions, i.e. with a

partial knowledge of the problem inputs [17, 18]. New problem inputs may come from user requests

such as starting or stopping VMs, or administrator requests such as preparing a server for maintenance.

To cope with an always changing problem definition, existing VM placement algorithms rely heavily

on migrations [19]. A VM migration is the transfer of a VM state from a server to another via the

network. Works in the state of the art proposed to use migrations to consolidate VMs on a minimum

number of servers [20], and turn off unused servers to save energy [21]. Migrations are also used to

perform server maintenance without requiring users to stop and restart their VMs. Unfortunately,

migrations take time, consume resources [22], degrade the QoS of VMs [23], and sometimes fail across

servers with heterogeneous characteristics. That is why administrators would rather “place the VMs

where they can stay” [2], which requires to predict the behavior of a VM at startup. Given that

Outscale’s IaaS service is accessible via an API, we make the hypothesis that users have automated

their deployments, and use VMs in a repeated and predictable fashion.

Three new questions arise: Can the behavior of a VM be predicted from information available

when it is started? How can predictions be used to serve the purpose of VM placement? What is the

impact of prediction errors on the placement of VMs? We answer these questions in two contributions:

1. We propose a model to predict the runtime of VMs based on metadata available at startup.

Being interested in the prediction of a range rather than an exact value, we formulate this as

24

1.2. RESEARCH PROBLEMS AND CONTRIBUTIONS

a classification problem. We show that the utilization of tags, which are freely-typed pieces of

text used to describe VMs, improves significantly classification results compared to approaches

which do not use tags. This contribution led to one publication:

— Löıc Perennou, Raja Chiky, Applying Supervised machine learning to predict virtual machine

runtime for a non-hyperscale cloud provider, Proceedings of the 11th International Conference

on Computational Collective Intelligence (ICCCI ’19).

2. We analyze the sensitivity of a VM placement algorithm from the literature which requires

predictions of VM runtimes to save energy. This VM placement algorithm, Release-Time Aware

Best Fit (RTABF [24]), was previously evaluated under the assumption of perfect predictions.

To complement the evaluation of RTABF and determine the required prediction accuracy, we

analyze the sensitivity of RTABF with respect to the prediction error. We simulate the execution

of RTABF for various levels of prediction error, and we compare the energy consumption of

servers against any-fit and best-fit, two well-known VM placement algorithms unaware of the

runtime. In order to compare our results with the original evaluation of RTATF, we use the

same workload trace provided by Google for our simulations. We find that RTABF does not

outperform best-fit even with perfect predictions, contrarily to what was reported in the original

paper. This contribution led to one publication:

— Löıc Perennou and Sylvain Lefebvre. Runtime Prediction Error Levels for Virtual Machine

Placement in IaaS Cloud, Proceedings of the 9th International Conference on Ambient Sys-

tems, Networks and Technologies (ANT ’18).

The remainder of this manuscript is organized as follows. In Chapter 2, we present the state of

the art on resource allocation algorithms in Infrastructure as a Service, the content and utilization of

existing workload traces, and the utilization of machine learning in the context of resource allocation.

In Chapter 3, we characterize Outscale’s workload, and compare it with the Azure’s and Bitbrains’

workloads, two providers who offer similar services. In Chapter 4, we present models that aim at

predicting the runtime of VMs when they start. Finally, in Chapter 5, we analyze the sensitivity of

Release-Time Aware Best-Fit (RTABF) with respect to runtime prediction errors. Conclusions and

future works are given in Chapter 6.

25

1.2. RESEARCH PROBLEMS AND CONTRIBUTIONS

26

Chapter 2

State of the Art

Contenu

2.1 Introduction . 28

2.2 Bottom Up View of the Datacenter Architecture 28

2.2.1 Hardware Architecture of a Server . 28

2.2.2 Virtualization . 30

2.2.3 Scaling Out The Architecture . 32

2.3 Allocation of Resources to Virtual Machines 32

2.3.1 Objectives . 33

2.3.2 Workload Models . 35

2.3.3 Solving of the resource allocation problem . 37

2.3.4 Discussion . 39

2.4 Machine Learning Based Approaches . 40

2.4.1 Prediction of resource utilization . 40

2.4.2 Approximation of interference profiles . 42

2.4.3 Discussion . 43

2.5 Characterization of Cloud Workload Traces 44

2.5.1 Comparison of Workload Traces . 44

2.5.2 Characterization of Workload Traces . 46

2.5.3 Discussion . 49

2.6 Conclusion . 49

27

2.1. INTRODUCTION

2.1 Introduction

Clouds are large-scale platforms that offer compute, network and storage resources to multiple

users. In Section 2.2, we introduce the hardware and software architectures of clouds, and discuss the

implications regarding the allocation of resources. Then, in Section 2.3, we focus on the allocation

of compute resources of servers to VMs, which is also called VM placement. We survey state-of-

the-art VM placement methods that consider various objectives and resource utilization models. In

Section 2.4, we present methods that aim at predicting the resource utilization of VMs, or establish

performance profiles. Finally, in Section 2.5, we survey the content and utilization of cloud workload

traces for research on resource allocation.

2.2 Bottom Up View of the Datacenter Architecture

The section introduces the hardware and software architecture of a cloud datacenter from the

bottom up, starting with the most elementary resource (the server) up to the most abstract one, an

aggregate pool of compute, networking and storage resources managed by the orchestrator. Along the

description, we present the fundamental implications of architecture patterns on resource management

and QoS.

2.2.1 Hardware Architecture of a Server

In 1971, Intel invented the microprocessor, an integrated circuit embedding all the transistors

needed to process information in a computer. Since then, the improvement of chip manufacturing

processes led to a miniaturization of transistor size. As transistors become smaller, they dissipate less

heat, allowing an increase in microprocessor complexity and operating frequency. Until now, processor

performance has doubled every two years [25]. Multi-task operating systems were created to take

advantage of faster processors. A multi-task OS switches the process running on the processor. Multi-

tasking introduces a fundamental tradeoff in CPU allocation: A high number of processes sharing the

processor is cost-efficient, but processes risk to wait for the CPU.

Computer performance has also benefited from architectures with multiple processors working in

parallel. In the Symmetric Multi-Processing System (SMP) architecture [1], shown on Figure 2.1, all

processors have a uniform access cost to the memory and IO systems. Processors have a dedicated

28

2.2. BOTTOM UP VIEW OF THE DATACENTER ARCHITECTURE

cache, and may also share a second one, called the layer 2 cache (L2, not shown in the figure). In

this architecture, the tradeoff between high utilization and execution latency applies to the memory

bus and cache as well as processors. The memory can be accessed by a single processor at a time. A

processor can evict data put in the L2 cache by another processor. Thus, the QoS given to a process

depends on the behavior of all other processes.

Figure 2.1: The Symmetric Multi-Processing Architecture, from [1]

The Non-Uniform Memory Access (NUMA) architecture was designed to overcome the limitation of

the SMP architecture. As shown on Figure 2.2, the NUMA architecture divides the pool of processors

and memory in nodes. It is 50% faster for a processor in a given node to access the local memory in

the same node than the memory of remote nodes [26]. Provided that two processes do not share data,

NUMA zones help to isolate them.

cpu cpu

bus

memory

cpu cpu

bus

memory

interconnect

node 0 node1

Figure 2.2: The Non-Uniform Memory Access Architecture

29

2.2. BOTTOM UP VIEW OF THE DATACENTER ARCHITECTURE

In the next section, we explain how virtualization allows to securely execute the application pro-

cesses of several users on the same server.

2.2.2 Virtualization

Virtualization allows the concurrent execution of several Operating Systems (OSs) and their ap-

plication processes on the same server [27]. The advantage is that applications can be consolidated to

increase hardware utilization while keeping their own OS. They are isolated from each other, so if one

application or OS crashes, the others are not impacted. And since the guest (OS + applications) are

run by a software that emulates the behavior of hardware, their state can be duplicated or migrated

to another server like any data structure.

Virtualization consists in giving the illusion to competing guest OSs that they control the hardware,

by introducing a software agent called the hypervisor, or the virtual machine monitor [28]. The

hypervisor exposes an interface to each guest OSs. It receives control instructions via these interfaces,

arbitrates between them and performs the resulting operations on the hardware. As a result, hardware

is shared between VMs.

Kernel Virtual Machine (KVM) is one of the most popular hypervisor, thanks to its reliance on

hardware virtualization capabilities of modern CPUs, and the resource management capabilities of the

linux OS [29]. A CPU with hardware virtualization capabilities can trap privileged instructions sent

by a guest OS, signal the hypervisor and wait for further instructions [27]. This solution is easier to

implement than paravirtualization, used by the Xen hypervisor [28], which requires to modify the guest

OS such that privileged instructions are replaced by calls to the hypervisor [30]. And the overhead is

lower than with binary translations, which supposes that all the guest’s instructions are analyzed by

the hypervisor at runtime, so that privileged ones can be changed [31].

Let us illustrate the implementation and benefits of virtualization for two privileged operations:

network and the disk usage. For networking, one popular solution is VxLAN [32]. VxLAN is an

encapsulation format used to create and isolate several virtual networks within a single Ethernet

domain, and to propagate a virtual network across several Ethernet domains. The later feature

makes it popular in cloud infrastructures which commonly span multiple datacenters. In the VxLAN

specification, the hypervisor encapsulates the outgoing Ethernet frames of its VMs in a UDP datagram.

The encapsulation masks the inner source and destination addresses to the network equipment until

30

2.2. BOTTOM UP VIEW OF THE DATACENTER ARCHITECTURE

decapsulation, which is done by the receiving hypervisor (Figure 2.3). Thus, there is no conflict if two

VMs in different virtual networks (e.g., B and B’ on the figure) have the same address. Users can

freely configure their virtual networks.

inner header

VM A VM A’ VM B VM B’

hypervisor hypervisor

src a dst b payload

src a dst b payloadsrc S dst U

server S server U

outer header
Vx ID

Router

src a dst b payload

Figure 2.3: Traffic encapsulation

Disk virtualization consists in translating operations on block devices into operations on files. One

popular file format for virtual disks, QCOW, offers two advantages: 1) base disk images are read-only

files, so they may be shared among users to reduce storage space requirements; and 2) fresh data is

written to an initially empty file, so storage can be overcommitted if users do not fill their virtual

disks.

Both the virtualization of hardware resources and the consolidation of applications have implica-

tions on performance. Because the hypervisor is responsible for any operations made on hardware

on behalf of the guest OS, the hypervisor and the guest need to synchronize. Lettieri et. al study

the synchronization overhead of IO operations [33]. This is a first reason why the performance of a

VM does not reach that of bare metal. The performance of a VM degrades further when it shares

some resources with other VMs. This phenomenon is called performance interference [34]. Lee et al.

study CPU, cache, network and storage interferences independently [35]. Podzimek et al. analyze the

31

2.3. ALLOCATION OF RESOURCES TO VIRTUAL MACHINES

impact of CPU pinning on the aggregate performance of co-located workloads [36].

2.2.3 Scaling Out The Architecture

There is always a limit on the amount of resources per server. To overcome this limit, cloud

datacenters scale horizontally, and leverage the resources of thousands of servers connected via a

network. The network is also used to connect servers to remote storage (Figure 7.2 from Chapter 1).

Although remote storage introduces latency, is allows to execute a VM from any available server.

The orchestrator manages all the equipment - servers, network and storage - in coordination. Upon

reception of a request from a user or administrator, or from its own initiative, the orchestrator interacts

with the specific equipment controllers to perform management operations.

In this distributed architecture, server resources are fragmented. A VM running on a server cannot

leverage the CPU and memory resources from another server. Consequently, resources are wasted if

unused by the local VMs. Besides, servers have heterogeneous characteristics because they are acquired

over the years. In summary, in a distributed cloud architecture, the QoS given to a VM depends on

the characteristics of its server, the background load created by co-located VMs, and even the load of

VMs running on other servers in the case of networking and storage QoS.

2.3 Allocation of Resources to Virtual Machines

In this section, we survey the definitions and solutions of problems related to the placement of VMs.

In the literature, VM placement is treated as a variant of the traditional bin packing problem, where

the goal is to pack objects into bins [18]. Indeed, the orchestrator must pack VMs onto the minimal

number of servers in order to save resources. In this case, the problem is defined as follows: Given a

set of servers S with resource capacity C, and a set of VMs V with resource usage u1, · · · , un ≤ C,

find the minimum number of servers B and a B-partition of V such that
∑︁

vmi∈Sk
ui ≤ C, ∀k ∈ [1, B].

In some cases however, the cloud provider has other objectives than to minimize resource usage. We

now survey the objectives, the modeling of problem variables, and the methods to search through the

space of candidate solutions.

32

2.3. ALLOCATION OF RESOURCES TO VIRTUAL MACHINES

2.3.1 Objectives

Here, we list the objectives of resource allocation as well as the ways to combine them. Resource

allocation must benefit to the cloud provider, who seeks to maximize the profitability of the infras-

tructure; and to the users, who want to have the performance that they pay for (no more, no less).

2.3.1.1 Maximize Profitability

The cloud provider seeks to maximize the profitability of its infrastructure. This broad objective

can be decomposed in two parts: minimize resource wastage, and allocate resources to the users who

value them the most.

Wasted energy represents a significant fraction of data center operation costs [37]. Servers are

not energy proportional: an idle server consumes half the energy of a fully loaded one [38]. And for

every watt powering an idle server, an additional 0.6W is consumed by power supply and cooling

systems [39]. Hence, the provider aims to minimize the amount of wasted energy. In [14], the or-

chestrator consolidates VMs on the fewest number of servers, which are chosen based on their energy

efficiency. In [40], the orchestrator consolidates network flows between pairs of VMs onto physical

links, such that the minimum number of switches and interfaces have to be powered on. In [41], the

minimization of energy consumption by servers and switches is formulated as a joint optimization

problem. In [42, 43], the VMs are placed on servers to minimize the utilization of network links. This

objective allows to provide bandwidth to more VMs using the same network infrastructure, and hence

increases profitability. It also benefits to users, because network latency decreases when traffic remains

localized in the lowest network layers.

Another method to increase the profitability of the infrastructure is to lease spare resources at

a discount price, under the condition that the provider can claim them back to service other users

who are willing to pay more. The major public cloud providers have implemented this type of pre-

emptible VMs. They are called spot instances in EC2, low-priority VMs in Azure, and pre-emptible

VMs in Google Compute [44]. The problem then takes an economic aspect, because the objective is to

allocate resources to users who value them the most. The auction system presented in [45] allows users

to bid for VMs periodically. The provider then knows the demand and supply for each VM type. It

computes the spot price above which VMs can run. It is possible that some VMs are forcefully stopped

33

2.3. ALLOCATION OF RESOURCES TO VIRTUAL MACHINES

when demand and spot price increase above their users’ bids. One limitation is that the number of

available slots for each type is fixed. So, it is possible that demand does not fit supply for all types,

which would incur a loss of revenue. In [46], the scheduler adjusts the supply of VM types to their

respective demand. The spot market is useful to avoid wasting spare resources. But it does not allow

to fundamentally reduce resource consumption for a given workload.

2.3.1.2 Respect Service-Level Agreement on Performance

In the interest of users, the objective of resource allocation is to enforce an appropriate level of

performance for applications running onto VMs, or equivalently, to control the virtualization overhead

and interferences between VMs. To do so, Delimitrou et al. model the affinity of applications with

respect to various hardware configurations (e.g., CPU frequency, cache size . . .), and also their co-

location affinities [47]. In [48], the goal is to support different classes of service. The authors group

VMs by performance class. An agent continuously monitors the performance of applications running

onto VMs. If gold-class VMs are performing well, they give one of their dedicated CPU cores to

silver VMs. The CPU can be claimed back if needed. In [49], the goal is to provide a homogeneous

performance to identical tasks that are distributed across multiple servers. A statistical distribution

of their performance is collected. Tasks whose performance is much lower than their siblings are

detected, and their low-priority contenders are throttled. Further details on the modeling of application

performance will be given in Section 2.3.2, and we will discuss the feasibility in the context of IaaS.

2.3.1.3 Multi-objective resource allocation

The minimization of resource wastage and respect of performance SLAs are conflicting objectives.

There are several ways to combine them. The first possibility is to treat one objective as a constraint,

and evaluate solutions based on the second objective. For instance, in [50, 51], the algorithm minimizes

the number of servers under the constraint that the probability of server overload is below a threshold.

The second possibility is to combine the evaluation of multiple objectives with the same function.

In [52], the objective function combines the energy efficiency and performance objectives. In that

case, the difficulty is to determine the optimal weighting. The third possibility is to use the Pareto-

optimal policy [53, 54]. A solution candidate is Pareto-optimal if it is impossible to make one criterion

better off without making other criteria worsen off.

34

2.3. ALLOCATION OF RESOURCES TO VIRTUAL MACHINES

Solving these optimization problems requires a proper modeling of the workload. In the next

section, we present the resource utilization and performance models.

2.3.2 Workload Models

VM placement is an optimization problem where the orchestrator aims at minimizing resource

wastage and respect the performance SLA. The candidate solutions to this problem are compared

with an objective function which takes in input the utilization of resources and the performance of

VMs. This section compares how these two variables are modeled.

2.3.2.1 Static Resource Utilization Model

In this model, the footprint of a VM is modeled by a static utilization of resources. In [55], the

utilization is multi-dimensional and represents a fraction of a server’s resources (CPU, RAM, disk,

and bandwidth of the network access link). As observed by Rai et al. in [56], the problem with this

model is that it does not allow to model resources that are shared by VMs on different servers, such

as core network links. The authors propose to represent all datacenter resources as a large vector.

As a result, resource utilization needs more memory to be encoded. In these models, performance is

considered to be acceptable as long as the total utilization of a resource is less than a threshold [14].

The model is valid until the resource utilization changes, or existing VMs stop, or new VMs start.

When changes occur, the provider must re-optimize resource allocation via costly migrations.

2.3.2.2 Dynamic Resource Utilization Model

The dynamic utilization model aims long-term optimizations, as it captures changes in the resource

utilization of VMs. The footprint of a VM is modeled by a time series [57, 58, 59]. The performance

of a VM is estimated from the correlation of the resource utilization by the VM, and the aggregate

utilization of neighbor VMs [58, 60]. This model supposes that VMs run indefinitely, and that resource

utilization is periodic.

2.3.2.3 Clairvoyant Resource Utilization Model

A clairvoyant model assumes the provider knows both the resource usage and the timing of future

VM management requests. Zhao et al. consider a fully clairvoyant model where the provider knows the

35

2.3. ALLOCATION OF RESOURCES TO VIRTUAL MACHINES

timing of VM start and stop requests [61]. Srinivasan et al. consider that VMs start simultaneously

at t0, and their runtime is known [62]. Dabbagh et al. consider the case when the runtime of VMs is

known, but not the start time [24].

Resource utilization models have three inherent limitations. Firstly, the utilization of low-level

resources, like the L2 cache and the memory bus, cannot be measured. The lack of accountability can

lead the scheduler to make the wrong choices. Secondly, the performance degradation experienced by

an application running on a VM not only depends on the background load, but also on the nature

of the application itself. Thirdly, the acceptable level of interference also depends on the application.

Mars et al. differentiate user-facing, latency-sensitive applications such as web or database servers,

and batch applications such as offline data analytics [63]. They have different QoS requirements:

interferences are tolerated for batch applications, but latency-sensitive applications have a stringent

deadline. Next, we introduce models that capture heterogeneous performance profiles.

2.3.2.4 Performance Model

In this type of model, applications are profiled in a controlled environment to estimate their perfor-

mance sensitivity to competing applications, and the amount of interferences they cause themselves.

One of the main challenge is the profiling burden: it is too costly to benchmark all possible com-

binations of co-location. In [63], latency-sensitive applications are scheduled with a first benchmark

that behaves like a batch application, creating pressure on the memory bandwidth. The sensitivity of

the latency-sensitive application is measured. Then, batch applications are scheduled with a second

benchmark to measure their exerted pressure. The utilization of two benchmarks as proxy for the

two types of applications reduces the profiling costs to the total number of applications. However,

this approximation is not accurate. In [47], each latency-sensitive application is profiled against two

batch ones (in separate runs). Machine learning is used to infer the sensitivity of the latency-sensitive

application with other batch applications. The model assumes that interferences are additive, i.e.,

that it is possible to estimate the interferences from a group of applications by summing their individ-

ual contributions. In [64], machine learning is used to infer the degree of interference resulting from

multiple batch applications.

Performance models have a major limitation in the context of IaaS: due to the confidentiality

policy, the provider does not know if a given VM hosts a latency-sensitive or a batch application.

36

2.3. ALLOCATION OF RESOURCES TO VIRTUAL MACHINES

This section completes the definition of the VM placement optimization problem. The next section

surveys solving methods.

2.3.3 Solving of the resource allocation problem

According to Mann [18], the resource allocation is tackled under two types of initial conditions.

The initial conditions apply to :

— the number of VMs - The resource allocation problem may apply to a single VM, a group of

VMs related to a distributed application, or all the VMs in the datacenter.

— the timing - Resource allocation may apply to new VMs that are starting, or VMs that are

already running on servers.

The most complex variant is the re-optimization of resources for all running VMs. The problem is

NP-hard, i.e., the number of potential solutions is exponential with the number of VMs and servers [65].

In addition, migration cost must be accounted for. Architectural choices can help tackle the complexity.

For instance, the set of servers can be partitioned to allow solving independent problem instances in

parallel. Secondly, some methods speed up the exploration of the space of candidate solutions. In this

section, we present the different methods for partitioning the problem and guiding the evaluation of

candidate solutions.

2.3.3.1 Problem Partitioning

Under a centralized architecture [14, 66, 20, 55], the scheduler optimizes resource allocation on all

the infrastructure. The centralized problem definition allows to model complex constraints applied to

arbitrary sets of VMs or servers. For instance, in [55], a user can ask the scheduler to spread a set of

VMs on at least 3 servers, in order to guarantee that the application will be highly available. In theory,

the centralized scheduler is omniscient, so it can find the global optimum to the resource allocation

problem. But in practice, because of the NP-hardness, finding the solution in acceptable time (i.e.,

before the workload changes) for a large-scale datacenter is challenging [65]. Another limitation of the

centralized architecture is its lack of fault tolerance. If a group of servers gets disconnected from the

scheduler, then their resources cannot be managed.

Kesavan et al. describe a hierarchical architecture in [67]. In this architecture, servers are logically

partitioned in independent clusters. A cluster scheduler allocates the resources within each cluster.

37

2.3. ALLOCATION OF RESOURCES TO VIRTUAL MACHINES

A global manager balances the load between clusters. It removes server capacity from underloaded

clusters, and makes it available to overloaded ones. When a server is removed from a cluster, all its

VMs are migrated to its peers. In [68], clusters are formed periodically and at random using a gossip

protocol. Every time new clusters are formed, the different schedulers optimize resource allocation.

Randomness increases the likelihood of convergence to an optimum. In [69], servers monitor themselves

and, upon detection of an event (e.g., overload), initiate a ring cluster with their neighbors. If the

problem cannot be solved with the help of a neighbor, then another one is added to the cluster, and

so on until success. A deadlock may arise when two clusters cannot grow because there are no free

servers left. In this case, they are merged.

In the fully distributed consolidation approach, couples of servers (a source and a destination)

exchange one VM at a time. In [70, 71, 72], the source server chooses the destination. The scalability

is limited because the source must monitor all potential destinations. In [73, 74], the source proposes

its VM to all destinations, and they reply how much they would benefit from receiving it. Again, the

communication overhead is large. In addition, it is unclear how this architecture can handle placement

constraints applying to different VMs. Imagine, for instance, that VMs A,B,C,D should run on three

distinct servers to ensure high availability. Initially, server 1 runs VMs A and B; server 2 runs VM

C; and server 3 runs VM D. Imagine that server 1 is underloaded and offers to give VM A. Server 3

accepts the invitation. The exchange of VM A breaks the placement constraint because neither the

source nor the destination know that other VMs (B and C) are both on a third server.

As shown in this section, the scheduler can optimize resource allocation for the entire datacenter,

or just a partition. In the next section, we will present how the search for the best configuration can

be performed from an algorithmic point of view.

2.3.3.2 Exploring the Space of Candidate Solutions

When the scheduler manages an entire data center or cluster, the number of feasible solutions is

large. Here, we present three families of algorithms that aim to optimize the exploration of the space

of candidate solutions.

Greedy algorithms decompose the problem into stages and choose the local optimum for each

one. Both the method used to decompose the problem and the cost function used to compare partial

solutions are chosen according to past experience on similar problems. Hence, greedy algorithms are

38

2.3. ALLOCATION OF RESOURCES TO VIRTUAL MACHINES

heuristic methods that trade solving optimality for speed. For instance, the placement of a set of

VMs on a set of servers such that the number of servers is minimized can be solved with the First

Fit Decreasing (FFD) heuristic. The rationale behind FFD is that big VMs should be placed first,

and then small ones should fill the remaining “holes”. So, FFD first orders VMs by size, and then

from the biggest to the smallest one, puts them in the first available server with sufficient remaining

capacity. Modified versions of the algorithms have been proposed to benefit from the knowledge of

multiple resource dimensions [35] and runtime [62, 24]. Heuristics have two limitations. First, they

are designed by humans for whom reasoning about conflicting objectives at the same time is difficult.

Secondly, their performance is not guaranteed, and it depends on the assumptions made on the problem

inputs [35].

A metaheuristic makes less assumptions about the problem than a heuristic, and thus may perform

better on different problem variants. It randomly explores space of candidate solutions. A configura-

tion candidate is a mapping between the list of VMs and the list of servers. The search is guided by

probabilities such that the algorithm is more likely to explore the neighborhood of a good candidate

than a poor one. The Ant Colony Optimization metaheuristic, which is inspired by how ants find their

food, is used in [68, 53]. Each ant builds a candidate solution in parallel. Candidates are compared,

and a pheromone is deposited on the best VM/server pairs. Being guided by pheromones, ants are

likely to explore similar candidates in the next rounds.

In the constraint programming approach [20, 55], the solution search is exhaustive. It is nonetheless

driven by heuristics, such as the first-fail approach. This approach consists in assigning the variables

that have the tightest range first, so that the algorithm detects non-viable solutions as early as possible.

When a non-viable solution is encountered, the algorithm backtracks, i.e., it changes the last variable

assignment. A constraint solver that solves large-scale cloud resource allocation problems on a GPU

is presented in [56].

2.3.4 Discussion

This section introduced the different objectives, models and solving methods used for the optimiza-

tion of resource allocation. The main objectives are to minimize the amount of resources needed to

support the workload, and to maximize the performance of applications running onto VMs. From our

point of view, the main challenge is to find a common model accommodating both these objectives.

39

2.4. MACHINE LEARNING BASED APPROACHES

Modeling the performance of applications is challenging in IaaS because the provider does not know

what type of application runs on a VM. Currently, providers assume that performance is met if the

server load is under a given threshold. It is thus necessary to obtain a precise performance model for

IaaS. Besides, another challenge, inherent to combinatorial optimization problems, is to find the best

tradeoff between the optimality of resource allocation, and the speed of convergence. For instance, a

centralized scheduler architecture coupled with a constraint programming algorithm or metaheuristics

can find good configurations with few migrations, but they may need a long search time. In the next

section, we will study the utilization of machine learning to optimize resource allocation.

2.4 Machine Learning Based Approaches

Cloud datacenters offer a large pool of resources accessible on-demand. Consequently, VM place-

ment is online and large-scale. The risk, for the orchestrator, is to have the problem definition change

before an acceptable solution is found and enforced. Machine learning, which explores the design of

algorithms that learn to perform a task from experience instead of being explicitly programmed [75],

can be used to speed up the search of the optimal VM placement, or to anticipate changes in resource

utilization and take pro-active decisions. For instance, machine learning is used to predict future

resource utilization based on past observations, and to migrate VMs out of servers that will become

overloaded. Machine learning can also be used to approximate the performance profile of VMs, which

allows to compute a VM placement configuration faster than with an accurate performance model.

This section surveys the utilization of machine learning for the prediction of resource utilization and

the approximation of VM performance. Then, we discuss the applicability of approaches based on

machine learning to the context of IaaS.

2.4.1 Prediction of resource utilization

The resource utilization of VMs is dynamic. Machine learning is used to anticipate changes in

utilization, and optimize resource allocation pro-actively. We list three types of models. In the single

VM model, the resource utilization of each VM is modeled independently. In the multiple VM model,

a model predicts the resource usage of a group of VMs. While both models aim to make predictions

during the execution of VMs, a startup model gives a prediction when the VM is started.

40

2.4. MACHINE LEARNING BASED APPROACHES

2.4.1.1 Single VM Prediction Model

Many solutions have been proposed to predict the resource usage of a VM based on its past

utilization. A survey of time series forecasting techniques is given in [76]. The paper also presents a

decision tree allowing to choose the best technique based on the problem context, and feedback over

prediction quality.

Both Press [77] and Agile [78] make short term CPU usage predictions using signal processing.

Press applies a Fast Fourier Transform to time series in order to isolate their strongest periodic

components. If strong periodicity is found, the next sample of the series is extrapolated. Otherwise,

the series is modeled with a Markov chain. Agile uses wavelets instead of Fourier transform, because

wavelets are better at analyzing acyclic patterns. In [50], the time series of CPU usage is decomposed

into a periodic components and a residual. The residual is modeled as an Auto Regressive process:

its predicted value at t is a linear combination of the previous values.

In [79], the CPU utilization of a VM is modeled with a bag of neural network. The period of the

time series, measured with the autocorrelation, is used as a feature. Bagging, which is the process of

training several learners with random splits of data and combining their predictions, is used to reduce

overfitting.

Server utilization is modeled with a Bayesian classifier in [80]. The authors propose 10 high-level

features derived from the CPU load, compare them and show that keeping 3 particular ones gives

optimal results. The prediction window is divided exponentially such that a short-term interval is

small and benefits from a high resolution prediction.

2.4.1.2 Multiple VM Prediction Model

In [81], a single Hidden Markov Model is trained for a group of VMs. This choice is motivated by the

observation that individual VMs have a noisy resource usage. This noise can be filtered out by taking

advantage of load correlations that exist between VMs, which arise because VMs are collaborating to

support complex services. The same argument is used in [82], and a deep neural network is used to

predict the CPU load of all VMs. In [83], a method called “tracking the best expert” is used to predict

traffic demand. Traffic demand between all pairs of VMs is represented as a matrix. The future matrix

is estimated with a linear combination of past measurements. The weights are adjusted online every

41

2.4. MACHINE LEARNING BASED APPROACHES

hour.

2.4.1.3 Predictions served at startup

Predictive systems presented so far can only help to optimize resource allocation after the start of

the VM, because they require the observation of its past resource usage. Other systems are designed

to serve predictions when the VM starts, in order to optimize the initial resource allocation.

In [2], the CPU usage, running time, deployment size and workload class of VMs is predicted

with an Extreme Gradient Boosting Tree. A deployment is a cluster of collaborating VMs. The two

workload classes are delay-insensitive and latency-critical. The proposed scheduler uses the prediction

of maximum CPU usage to overcommit this resource.

On high performance computing and grid platforms, one of the scheduler’s objective is to minimize

the total execution time of the job waiting queue. Historically, users provided a maximum allowed

job run time to help scheduling. But, since their estimation is often too cautious, this is not optimal.

Yadwadkar et al. use support vector machines to predict the likelihood of a task of a data mining

job to be a straggler [84]. Straggler tasks are the ones that finish late due to contention for shared

resources, and they slow down the job completion. A differentiated resource allocation that depends on

job runtime is proposed in [85]. Short batch jobs are consolidated aggressively whereas long-running

and interactive ones have dedicated resources. A prediction of job runtime is made at startup, and

the model uses support vector machines too. The features correspond to the job’s resource request.

Linear regression is used in [86] to predict the exact job run time. Interestingly, many features are

related to the previous jobs of the same user, e.g. their running time, submission time, initial resource

request and user submission rate. In [87], decision trees are found to perform well on predictions of

runtime from only 6 days of training data.

2.4.2 Approximation of interference profiles

In Section 2.3, we presented placement techniques that respect performance SLAs. Finding the

interference level between all possible combinations of co-located VMs is cumbersome and hinders

scalability. In this section, we survey how machine learning simplifies the approximation of interference

profiles.

42

2.4. MACHINE LEARNING BASED APPROACHES

2.4.2.1 Identification of groups of VMs with similar resource usage variations

Some works [58] use the correlations between resource usage time series as a proxy for interfer-

ences. Instead of reasoning about the interferences between single VMs (which supposes computations

between all VM pairs), Verma et al. proposed to identify groups of VMs with similar resource usage

patterns thanks to clustering techniques [57]. They use k-means to find groups of VMs whose peak

utilization is correlated. In [60], a 2-phase method is proposed: first, VMs are clustered based on the

values of peak resource usage. Then, sub-clusters are found based on correlations. In [88], spectral

clustering is applied on the histograms of resource utilization. Multiple metrics are taken into account

(CPU, system call rate, cache miss rate and IO rate). In [89], hierarchical clustering is performed

to find groups of disks with uncorrelated access and consolidate them on the same array. The cost

of computing pairwise correlation remains, but reasoning about clusters instead of single disks still

reduces the complexity of resource allocation.

2.4.2.2 Speeding up Interference Measurement

In some works, the orchestrator minimizes the performance degradation of co-located applica-

tions [63]. Given the sheer arrival rate of new applications in the data center, it is impossible to profile

all combinations of co-locations. Delimitrou et al. argue for the use of collaborative filtering to speed

up interference profiling [47]. A new application is profiled against only two existing ones, and the

affinity with other applications is inferred. Linear regression is used in [64] to model the affinity of a

new application with respect to a group of existing ones. However, this technique cannot be used by

IaaS providers because the provider does not know which application runs on a VM.

2.4.3 Discussion

Machine Learning is used to predict resource utilization, or approximate interference profiles.

Predictions allow to make pro-active decisions and approximations allow to speed up the comparison

of VM placement configurations. Most approaches require VMs to run for some time before any

decision can be made. Given that cloud computing is best suited for users with temporary needs, it is

not certain that the orchestrator has sufficient time to model the behavior of VMs before they stop. A

promising approach is to make predictions at startup, based on the information contained in the VM

request, and the resource usage of other VMs that were executed previously. Only one paper applied

43

2.5. CHARACTERIZATION OF CLOUD WORKLOAD TRACES

this approach to a IaaS workload [2]. The ongoing research on the utilization of machine learning for

VM placement requires datasets for model design, training and evaluation. In the next section, we

survey the content and characterization efforts of cloud workload traces.

2.5 Characterization of Cloud Workload Traces

The ability of the orchestrator to achieve the optimal resource allocation depends on the fitness

between the algorithm and the characteristics of the received workload. This is why it it necessary to

take into account the characteristics of the workload for the design and evaluation of orchestrators [90].

Calzarossa et al. published a recent survey (2016) on workload characterization that covers cloud

platforms, among others [91]. The survey reports findings on workload characteristics, but not the

content of the different sources of data. In addition, since cloud computing is an emerging topic,

several new analyses have been published since then. In this section, we compare the content of

cloud workload traces and survey the insights obtained from their characterization. Then, we identify

remaining opportunities regarding workload characterization in the context of IaaS.

2.5.1 Comparison of Workload Traces

Here, we compare cloud traces related to the allocation of hardware resources to virtual ones. The

comparison is based on the workload type (VMs or jobs), the platform scale, the tenancy (public and

private), and the public availability of data. A summary is provided in Table 7.1.

2.5.1.1 VM Based Workload

Regarding public clouds, Azure published in 2017 a 30 days-long trace including 2M VMs [2]. This

hyperscale platform is used by numerous users for a wide range of applications. The trace contains

the number of cores and the amount of memory requested by VMs, their start and stop times, their

utilization of CPU (min, average and maximum utilization in 5-minutes windows) and deployment ID.

A deployment is a set of related VMs that belong to the same user and are located in the same cluster.

Bitbrains, a company that specializes in the application hosting business for the finance and insurance

sector, published two traces [15] from a non-hyperscale public platform. The first trace reports the

execution of 1250 VMs connected to a Storage Area Network (SAN), while the second reports the

execution of 500 VMs connected to SAN or to a slower Network Attached Storage (NAS). The traces

44

2.5. CHARACTERIZATION OF CLOUD WORKLOAD TRACES

include the resource request of VMs (number and speed of cores, memory) as well as the resource

utilization (CPU, memory, disk and network) sampled every 5 minutes. Since VMs run throughout

the duration of their respective trace (1 and 3 months), the trace does not contain VM state change

events.

Regarding private clouds, Eucalyptus Systems published traces from six customer platforms that

rely on the open-source Eucalyptus scheduler [92]. The traces contain a description of the hardware

(the largest platform has 31 servers with 32 cores each), the state of VMs (start and stop times), their

CPU request and placement, but no measurements of effective resource utilization. A trace including

11k VMs was collected over a year on the Czech scientific cloud CERIT-SC [16]. The platform is

managed by the OpenNebula scheduler [93]. Two use cases are given: cloud VMs are started and

managed by users to run the application of their choice, whereas grid VMs are used to run scientific

jobs. The trace contains the resource requested by VMs and their role but not their effective resource

utilization.

In this description, we include two traces that were not published, but were nonetheless charac-

terized (the characterization findings for all traces are given in the next section). Nutanix collected

traces from 2000 private enterprise clusters mainly deployed in remote and branch offices [94]. The

traces include the resource request and applicative role of VMs, hardware configurations and failure

events. Disk utilization is reported at the cluster level, but not for single Ms. Finally, IBM collected

traces from six cloud data centers. Traces report the correlated utilization of VMs and images, as well

as statistics on image content similarity at the block level [95].

2.5.1.2 Job Based Workload

In 2011, Google published a trace from one of its private and hyperscale cloud backend. The

platform ran two classes of workloads: user-facing jobs, such as a web service with stringent latency

requirements; and batch jobs such as offline data analysis. The 7M jobs were scheduled on 12.5k

servers during 29 days [96]. A job comprises one or more tasks, each of which is executed on a

container. The trace reports the relationship between users, jobs and tasks; the state of tasks (pending

in a queue, running, etc...), their attributes (resources requested, constraints guiding the choice of

server, and scheduling priority); the state of servers and their attributes (normalized resource capacity

and opaque hardware characteristics), and the resource usage of running tasks. Regarding resource

45

2.5. CHARACTERIZATION OF CLOUD WORKLOAD TRACES

utilization, CPU, IO and memory metrics are reported, as well as processor performance counters such

as the number of cycles per instruction (CPI) and the number of memory accesses per instruction

(MAI). Resource utilization was measured every second, which allows to report average and maximum

utilization every five minutes.

A similar job-based trace collected on 4k servers during 8 days was published by Alibaba [97].

Resource utilization is reported at the task and server levels. In addition to CPU, memory, disk

IOs and network bandwidth utilization, the CPI and the number of cache misses per kilo instruction

(MPKI) are reported to characterize performance.

In the Google and Alibaba traces, server resources are virtualized with containers. This is different

from the IaaS model where servers execute VMs. Because VMs run a guest OS, they provide more

isolation at the cost of having more overhead than containers [98]. Based on these differences, the de-

ployment patterns and resource utilization described here for containers is unlikely to be representative

of VMs.

The comparison of workload traces is summarized in Table 7.1. Google’s and Alibaba’s traces

report QoS metrics, but the job-based workloads has a different nature than IaaS workloads. Among

VM-based workloads, we can identify two types of contexts from the platform scale. The Azure trace

reports the utilization of a general-purpose, hyperscale platform (2M VMs/month). On the other hand,

the other traces describe specific use cases like finance or scientific computing on smaller platforms (1k

VMs/month for Bitbrains and SCERIT-SC). Being a general-purpose, non-hyperscale cloud platform

with still 100k VMs/month, Outscale’s context is not represented in the available workload traces.

Moreover, only the IBM trace, which is not published, reports the utilization of resources other than

VMs (images). The utilization of volumes, snapshots and security groups has not received attention

prior the collection of Outscale’s trace.

2.5.2 Characterization of Workload Traces

Here, we survey the characterization of public and private traces of cloud workloads. The works

surveyed shed light on the management of server and storage systems, failures at the hardware and

software levels, economics of resource pricing and patterns of application deployment.

46

2.5. CHARACTERIZATION OF CLOUD WORKLOAD TRACES

trace entity hyper
scale

state
events

virtual machine utilization
other
virtual

resources
CPU RAM Disk Net. interf.

Google [96] job yes yes yes yes yes – yes –
Alibaba [97] job yes yes yes yes yes yes yes –
Azure [2] VM yes yes yes – – – – –
Eucal. Sys. [92] VM – yes – – – – – –
SCERIT-SC [16] VM – yes – – – – – –
Bitbrains [15] VM – – yes yes yes yes – –
IBM [95] VM – yes – – – – – images
Nutanix [94] VM – – – – – – – –
Outscale VM – yes yes yes yes – yes yes

Table 2.1: Comparison of the content of cloud workload traces

2.5.2.1 Server Management

Reiss et al. characterize the heterogeneity of the Google workload [99]. Heterogeneity in hardware

configurations, job resource request and runtimes reduce the effectiveness of slot-based scheduling.

Comparisons of the Google workload with grid and HPC workloads are given in [100, 101]. Lu

et al. characterize the spatial and temporal server load imbalance resulting from the job churn at

Alibaba [97]. Statistical modeling of jobs [102] and VMs [92] allow the generation of synthetic traces

and the evaluation of VM placement algorithms. Cano et al. analyze the resource requests of VMs as

a function of their applicative role [94] in private entreprise clusters sold by Nutanix. Regarding the

characterization of effective resource usage, Mishra et al. identify groups of jobs with similar resource

usage [103], and Dumont et al. identify atypical VMs [104]. Cortez et al. characterize the CPU

utilization of VMs from the Azure trace [2]. They propose a system that predicts the CPU utilization

of starting VMs. Predictions are used to find the best server. Based on unnamed traces, Birke et

al. characterize the correlations of CPU, memory and disk utilization on the same server [105], while

Verma et al. explore the correlations between servers that host a distributed application [57].

2.5.2.2 Storage Management

Storage administrators must make several choices to optimize storage cost and performance. Cano

et al. quantify the size needed for storage caches, and the space savings obtained by using compression

47

2.5. CHARACTERIZATION OF CLOUD WORKLOAD TRACES

and deduplication [94] in Nutanix clusters. They also show that customers tend to fill storage space

progressively, hence storage requirements are often predictable. Peng et al. analyze the correlated uti-

lization of VMs and images in IBM datacenters [95]. They show that images are very good candidates

for deduplication for two reasons. Firstly, some images are used repeatedly. Secondly, the content of

two images can be similar, particularly if they contain successive OS releases.

2.5.2.3 Resource Pricing

The cloud provider fixes the price of resources such that revenue is maximized. Kilcioglu et

al. explain the current prevalence of static pricing models based on the low volatility of resource

requests [106]. They use a trace from an unnamed hyperscale platform. However, the stronger volatility

of effective resource usage implies that, in the future, customers will take advantage of elasticity to

minimize costs. Then, demand fluctuations will need to be balanced with dynamic prices, as in other

industries such as tourism.

2.5.2.4 Failure Analysis

Traces can be used to troubleshoot failures that hinder the proper execution of jobs and VMs.

In [107], Chen et al. investigate the presence of patterns in the characteristics of failed jobs. They

find that a significant fraction of resources are wasted on jobs that fail or get killed. They show that

the termination status of jobs is correlated with pre-launch attributes such as priority or user ID,

and post-launch attributes such as resource usage. To save resources, they propose to make failure

predictions based on features that can be measured early in the job lifecycle. Cano et al. characterize

the annual return rate for several categories of hardware components, and compare the mean repair

time for hardware and software failures [94] in Nutanix clusters. Schroeder et al. study the occurrence

of failures specific to DRAM memory chips in Google’s platform [108]. The authors describe the

incidence of several factors such as temperature, chip age, chip density and server load. Similarly,

Pinheiro et al. characterize the occurrence of disk failures [109].

2.5.2.5 Application Deployment

Traces are also used to characterize the deployment of applications. In 2013, He et al. showed that

few customers used value-added services managed by the provider, like load balancers or a domain

48

2.6. CONCLUSION

naming systems [110]. Moreover, the authors found that the majority of web service deployments

were made in a single availability zone. In a study performed in 2017, Cortez et al. argued that users

spread deployments across several zones to increase fault tolerance [2]. They showed that 80% of cloud

deployments were made of at most 5 VMs. As shown by these two consecutive studies, the utilization

of the cloud is evolving with time. Hence, providers need to characterize user deployment regularly to

decide of the development roadmap.

2.5.3 Discussion

The characterization of cloud workloads is critical to optimize the management of servers and

storage , minimize the occurrence of failures, and guide the service development roadmap. The sur-

vey of workload characterizations led us to identify requirements for a trace to be used in resource

management. In the context of IaaS, the trace must report a VM-based workload, with the state

of VMs changing as they are started and stopped by users. The trace must include the amount of

resources requested by VMs, and periodic measurements of the effective utilization. The first trace

matching these requirements was published by Azure in 2017, after the start of our project. Infor-

mation regarding interferences on shared resources (e.g., CPU or memory) would also be valuable to

characterize the quality of service provided to VMs. Some works measured the performance variability

of VMs by running benchmarks within them [111]. However, benchmarks reflect the point of view of

a single cloud user, not the point of view of the provider regarding the entire set of VMs. The latter

case requires to perform measurements from the host, and on the entire platform. In addition, we

observe that existing traces focus on virtual machines, but generally do not report the utilization of

other virtual infrastructure resources, such as images, volumes, snapshots and security groups. We

found a single exception in [95], where the correlated utilization of VMs and images is characterized

to optimize the management of storage. As Outscale’s storage system hosts ten times more snapshots

and volumes than images, it is crucial to characterize the lifecycle of all types of virtual resources.

2.6 Conclusion

The combination of the large platform size and dynamicity of VM workloads challenges the opti-

mization of server resource allocation in clouds. Current production systems like Openstack make the

allocation based on the request, but not on the effective utilization. Ideally, resource allocation should

49

2.6. CONCLUSION

be pro-active, lightweight considering the cost of migrations, and quick to enforce because load keeps

changing. As seen in Section 2.3, many works explore the tradeoffs between the solution quality and

search time. Works presented in Section 2.4 use machine learning to predict resource utilization or

approximate an interference model. Machine learning is essential to speed up the search and enforce-

ment of resource allocation. Yet, most approaches based on machine learning require to observe the

execution of VMs. In few works, predictions are based on the utilization of VMs that were executed

previously. This approach could be well adapted to enhance resource allocation for VMs that are just

starting and for which real utilization has not been observed yet. And the problem of finding the

features with the most predictive power is still opened.

50

Chapter 3

Characterization of Outscale’s
Workload

Contenu

3.1 Introduction . 52

3.2 Data Collection . 53

3.2.1 Traces of Resources Management Operations 53

3.2.2 Traces of The Resource Usage of VMs . 53

3.2.3 Implementation of Data Collection in Compliance With Security Standards . . 57

3.3 Understanding Management Operations . 58

3.3.1 Time Patterns in Virtual Resource Management 58

3.3.2 Resources requested by VMs . 59

3.3.3 Correlations Between Virtual Resource Requests 60

3.4 Understanding The Resource Usage of VMs 62

3.5 Understanding Interferences Between VMs 65

3.6 Comparative Study of The Consumption of Clients and Internal Users . . 66

3.7 Comparative Study With Other Traces . 68

3.7.1 Comparison With Azure . 68

3.7.2 Comparison With Bitbrains . 70

3.8 Conclusions . 71

51

3.1. INTRODUCTION

3.1 Introduction

As discussed in the previous chapter, workload characterization is essential to the optimization

of automated resource management by the orchestrator. So far, previous works have focused on

public, general-purpose, hyperscale platforms with 2M+ of VMs, or small on-premise platforms with

10k- of VMs. Besides, previous works focused on the lifecycle of VMs, their utilization of hardware

resources and their relationship with images. To our knowledge, previous works from the literature did

not characterize the utilization of virtual resources other than VMs and images, or the interferences

among VM and hypervisor threads that share the CPU.

To complement previous studies, we perform a comprehensive workload characterization of Outscale’s

public, general-purpose and non-hyperscale IaaS cloud platform. To this end, we collected a three-

month-long trace from Outscale’s European region. The contributions presented in this chapter are:

— We characterize user requests related to the management of virtual resources. We study the

lifecycle and correlated utilization of resources. We discuss the implications of the lifecycle of

volumes and snapshots on the management of storage hardware.

— Focusing on VMs, we characterize their individual utilization of hardware resources such as

CPU, memory and disk. We show that CPU and disk utilization are skewed, e.g., 70% of VMs

never use more than 20% of their requested CPU. This makes CPU overcommit for idle VMs

attractive, but we identify VM churn as an obstacle to its achievement.

— From a provider’s point of view, we characterize interferences resulting from the CPU over-

commitment and the virtualization overhead. We discuss the implications for the automated

optimization of the placement of VMs and hypervisor threads on CPU cores.

The rest of the chapter is organized as follows. In Sec. 3.2, we explain the methodology for the

collection of the workload traces from Outscale’s platform. Then, we characterize the workload in

terms of virtual resources management operations (Sec. 3.3), VMs’ utilization of hardware resources

(Sec. 3.4) and CPU interferences (Sec. 3.5). In Sec. 3.6 we compare the behavior of internal users (the

staff or the orchestrator itself) with clients; and in Sec. 3.7, we perform the comparison of Outscale’s

workload with Azure’s.

52

3.2. DATA COLLECTION

3.2 Data Collection

In order to provide an overview of the utilization of virtual resources, we have collected and

published 1 two workload traces from Outscale’s European region, from August to October 2017 (3

months). The first trace reports the virtual resource management operations performed by users, and

the second trace reports the hardware resource usage of VMs.

3.2.1 Traces of Resources Management Operations

We focus on the five most common virtual resources: VMs, images, volumes, snapshots, and

security groups. Table 3.1 describes the virtual resources along with the recorded fields and the allowed

management operations. To obtain the trace, we performed an offline parsing of data collected in the

scheduler’s centralized log repository (syslog). Logs are semi-structured messages with two different

formats (JSON and XML). The extraction of exploitable records from raw logs involved three steps.

First, we removed duplicate messages resulting from repeated requests for an idempotent operation.

Then, we correlated the user’s request log with the orchestrator response to filter out invalid operations

(e.g., clients requesting resources above their quota). Finally, we matched the logs that referenced the

same virtual resource in order to get the whole resource lifecycle and fields. For example, a volume

created from a snapshot inherits its size, so we matched the two records of resource creation. The

dependency to anterior actions is the main cause of missing information in our trace. Additionally,

we discarded less than 1% of logs because they were truncated.

3.2.2 Traces of The Resource Usage of VMs

Regarding the collection of hardware resource utilization metrics, we had the restriction to not

deploy any software inside the guests because of privacy policy. Hence, we deployed an ad hoc probe on

hosts. To perform periodic and synchronized measurements across servers, we scheduled the recurrent

execution of the probe with cron 2 instead of running a continuous service. The stages of execution

of the probe are shown on Figure 3.1. The probe first measures the resource usage of VMs during

5 minutes. Then, to avoid sending all measurements simultaneously to the centralized database, it

1. an anonymized sample of the collected workload traces will be downloadable at
http://www.github.com/outscale/OutscalePublicWorkloadTrace

2. cron allows users to schedule the execution of programs in Linux.

53

3.2. DATA COLLECTION

Virtual
resource

Description Record fields
Management
operation

VM emulated physical ma-
chine

ID
source image ID
number of vCPUs
amount of RAM
family
type
OS
taga

run
start
stop
terminate
put in sec. group

Image VM template with at
least a boot volume

ID
source VM ID
tag

create from VM
delete

Volume emulated block storage
device

ID
source snapshot ID
type
size
tag

create
delete
attach to VM
detach from VM

Snapshot point-in-time backup of a
volume

ID
source volume ID
size
tag

create from volume
delete

Security
group

virtual network filtering
applianceb

ID
tag

create
delete

aA tag is a freely-typed text describing a virtual resource
bWe did not collect network rules because they include confidential IPs

Table 3.1: Description of virtual resource management traces

54

3.2. DATA COLLECTION

sleeps during a random amount of time before transmission. We used flock 3 to ensure that there was

no more than one probe running in each phase (collect and sleep). In addition, we used timeout 4 to

prevent the existence of zombie probes hanging or hogging resources.

T0 300s 600s

COLLECT METRICS RANDOM SLEEP
(max 200s)

KILL IF TIMOUT
RELEASE LOCK

SEND
(max 30s)

900s

COLLECT METRICS RANDOM SLEEP
(max 200s)

KILL IF TIMOUT
RELEASE LOCK

SEND
(max 30s)

FLOCK ON
ODD

FLOCK ON
EVEN

COLLECT METRICS

FLOCK ON
EVEN

Figure 3.1: Stages of execution of the resource probe script

As shown on Figure 3.2, Outscale’s hosts run the open source KVM/QEMU hypervisor [112].

QEMU monitors resource utilization of VMs and exposes metrics through a management socket. The

socket was already used to receive commands from the orchestrator, therefore, it was not accessible to

the probe. Instead, the probe leveraged Python’s psutil library to read the utilization metrics reported

by the OS in the /proc filesystem. The probe retrieved the hardware resource utilization of the QEMU

processes, which encompasses both the utilization of guests, the management overhead, and a fraction

of the virtualization overhead. QEMU launches threads for the virtualization of CPU and disks, but

optionally relies on a separate process (vhost) to handle network virtualization. When we designed

the probe, we did not know the existence of the vhost process, so the network virtualization overhead

is not counted in the resource usage.

Table 3.2 summarizes fields collected about VM resource usage. The first metric is cpu utilization.

It is the sum of the utilizations of management, vCPU, and disk threads in user and system execution

3. flock places a lock on a file descriptor before calling a program, therefore it ensures that a single program instance
can exist at any time.

4. timeout kills a program after the timeout given in argument.

55

3.2. DATA COLLECTION

vhostQEMU

Linux OS

diskvCPU network

hardware

mgmt
socket

mgmt

orchestrator

/proc
filesystem

probeprocesses

threads

Figure 3.2: Integration of the probe in the virtualization stack

modes. To monitor memory utilization, we track the resident set size metric (rss), corresponding to

the amount of memory stored in RAM (i.e., not swapped). Since servers are configured not to swap

on disks, we are not losing memory traceability using rss. On the other hand, rss may overestimate

RAM utilization by considering memory shared by multiple QEMU processes. However, knowing that

two processes only share hypervisor libraries, the memory overestimation is reduced. In the case of

disk usage, we have measured the number of bytes per second for read and write operations. Since

disk operations go across the network, we have focused on the throughput instead of the IO rate.

Two final metrics were collected to study CPU interactions between VM processes. cpu_affinity

tracks the VMs that are using the same CPU cores. Involuntary context switches (ics) measure the

number of times the threads of a VM got their CPU pre-empted by the OS. This occurs when the

time slice of a thread expires and other threads need the CPU, or when kernel threads must handle a

hardware interrupt. Our measure of ics does not include the contribution of vCPU threads, because

their values could not be accessed until the termination of the VM. Hence, ics measures the CPU

contention between management and disk threads of VMs on the first hand, and the threads of other

VMs on the second hand.

Despite making probes connect to the database at random times, we have lost some records due to

high load on the database. The reason is that we had initially considered a one-month collection time,

but when we decided to extend measurements for two more months, we didn’t scale the database suf-

ficiently. We also discarded unreliable measurements taken at the beginning or end of VM executions,

56

3.2. DATA COLLECTION

Metric Description

cpu CPU utilization, in % of CPU requested
rss Resident Set Size, in % of RAM requested
read number of bytes read per second
write number of bytes written per second
cpu_affinity list indicating on what CPU cores the VM is running
ics number of involuntary CPU context switches per sec.

Table 3.2: Description of VM resources usage traces

or when some counters overflowed. However, the 270M measurements guarantee the robustness of the

analysis.

3.2.3 Implementation of Data Collection in Compliance With Security Standards

Outscale’s work and organization processes comply with state of the art security standards.

Outscale complies with the ISO 27001-2013 norm 5, and SecNumCloud 6 compliance is being eval-

uated by the French National Agency for Security of Information Systems (ANSSI).

We collected the workload trace in compliance with these security standards. The design and

implementation of the solution took four months: I developed the probe, the operation team developed

deployment scripts, and I developed a script to extract the logs of the scheduler every day because the

log repository only keeps a 15-day history. The operation team deployed and tested the solution on

an integration platform during two months, and then a pre-production platform during two months.

The team validated the accuracy of the measured resource utilization metrics, checked that the probe

did not interfere with the execution of VMs and that the access to the database was secure. We

then proceeded to the deployment on the production platform. Unfortunately, after one month of

data collection, we realized that we were missing one third of scheduler logs, because a new scheduler

front-end had been added without updating the log extraction scripts. As this prevented us from

correlating the logs to obtain the entire lifecycle of virtual resources, we had to restart the collection

of data. Therefore, because of the need to implement an ad-hoc solution, because of the obligation to

comply with the highest security standards, and because of an unexpected platform update, it took a

year to collect a three-month-long workload trace.

5. The ISO 27001-2013 norm is available at https://www.iso.org/fr/isoiec-27001-information-security.html
6. The SecNumCloud norm is available at https://www.ssi.gouv.fr/uploads/2014/12/secnumcloud referentiel v3.1 -

anssi.pdf

57

3.3. UNDERSTANDING MANAGEMENT OPERATIONS

3.3 Understanding Management Operations

In this section, we characterize the virtual resource requests. We analyze traces about the five

virtual resources described in Table 3.1. We study time patterns about creation time and lifetime, the

amount of VMs resources requested, and the correlation between different virtual resources.

3.3.1 Time Patterns in Virtual Resource Management

In presence of workload peaks, creation events can stress the orchestrator, since it requires to

allocate hardware resources suddenly. Figure 3.3 explores weekly patterns in the number of virtual

resources created. As VMs can be started several times, we consider each start event instead of creation

ones.

VM start events (black line) have a daily periodicity and a peak load at midnight. With an average

of 240 VM starts per hour and a maximum peak value of 890, the workload in terms of VMs varies

by a factor of 4. In the case of images (blue line), we also observe a daily periodicity, but this time

with two peaks per day, one in the afternoon and one at midnight. Given that there are fewer images

created than VMs, images are not usually used to back up VMs. Regarding volumes (purple line), we

see a drop in activity around 8 PM. In fact, lower demand around 8 PM is also observable for VMs and

images. Snapshots (yellow line) are the most often created virtual resources, and with the strongest

periodicity. There are six snapshot bursts per day, 5 minor ones (800/h), and a major one (1400/h)

at midnight. This reveals that users make automatic backups with scripted snapshots every 4 hours.

Besides, major snapshot bursts occur when daily VM bursts start to fade off. This suggests that some

users backup data once their VMs have finished their tasks. Given their popularity and periodicity,

snapshot creations could be an important source of stress for the orchestrator. Major snapshot bursts

represent four times the average workload, and two and a half for minor bursts. Finally, the number

of security groups (red line) created is stable during the trace (40/h).

The platform must have enough capacity to allocate resources during the runtime. Figure 3.4

presents the distribution of resource lifetime through a boxplot based on the 1st quantile (Q1), the

median (Q2), the 3rd quantile (Q3) and an interquartile range set to 1.5. We have only consid-

ered resources created and terminated within the 3-month collected interval, that is, resources that

completed their lifecycle. All the types of resources have items that reach the maximum observable

58

3.3. UNDERSTANDING MANAGEMENT OPERATIONS

mon. tue. wed. thu. fri. sat. sun.
day of week

0
200
400
600
800

1000
1200
1400

of

 re
so

ur
ce

s c
re

at
ed

 (p
er

 h
ou

r)

VMs
images
volumes
snapshots
security
groups

Figure 3.3: Resources creation time

lifetime, however, all their Q3 values are lower than 10 days. In the case of VMs, resources are usually

not used more than 2 hours (Q2 = 18min and Q3 = 2h 14min). Even images have larger lifetimes

than VMs (median = 1 day 4h and Q3 = 4 days 10h). That means, images are not used to create

VMs during a long period. In the case of volumes, the distribution is wider than for VMs, meaning

that volumes persist even when VMs to which they were attached have been terminated. Snapshots,

which we characterized as automatized backup mechanisms, survive a short period (Q3 ≤ 5 days).

Finally, security groups have a lifetime lower than VMs (Q3 = 5min), which seems to indicate that

they are created for short-time tasks.

3.3.2 Resources requested by VMs

Figure 3.5 presents the resources requested by VMs. The first two boxplots represent the requested

CPU and RAM. Q3 corresponds to 4 vCPU and 16GB. VMs requesting more than 8 vCPU (resp. 39

GB) are considered outliers. The third boxplot shows that VMs running more than 39min represent

less than 25% of the set. If we compare Q3 values of runtime and lifetime (resp. 39min and 2h

14min), we observe that runtime is notably shorter than lifetime. The reason is that VMs can be

run several times in their lifetime. The next boxplot shows the storage capacity attached to VMs;

knowing that Outscale’s default boot volume is 8GB, and the maximum volume capacity is 14TB. The

median attached capacity (9GB) indicates that nearly half the VMs have no other volume that the

59

3.3. UNDERSTANDING MANAGEMENT OPERATIONS

VMs images volumes snapshots security
groups

0

100

101

102

lif
et

im
e

(d
ay

s)

Figure 3.4: Resources lifetime

default one. The maximum (42TB) corresponds to 3 of the largest volumes. The last boxplot shows

the number of security groups assigned to the same VM. Having a security group for each application

is a good security practice to avoid mixed up rules. The figure shows that customers enforce security

with this technique (median = 4 and maximum = 11).

0

100

101

nu
m

be
r o

f v
CP

U
pe

r V
M

0

100

101

102

103

am
ou

nt
 o

f R
AM

 p
er

 V
M

 (G
B)

0

100

101

102

103

ru
nt

im
e

(h
ou

rs
)

0

100

101

102

103

104

105

st
or

ag
e

si
ze

 p
er

 V
M

 (
G

B
)

0

2

4

6

8

10

se

cu
rit

y
gr

ou
ps

 p
er

 V
M

Figure 3.5: Requested VMs resources

3.3.3 Correlations Between Virtual Resource Requests

In this section we study dependencies between resources, Figure 3.6 presents different correlations.

60

3.3. UNDERSTANDING MANAGEMENT OPERATIONS

Regarding the first boxplot, 75% of security groups are used by two VMs or less. This shows that

users generally do not reuse security groups for different deployments. For example, clients deploying

the same environment several times can simplify operations by creating a specific security group for

each environment (even if they could reuse the same). However, there is a security group used more

than 105 times. Another feature of virtualization is to reuse the same images to deploy several VMs.

The next boxplot shows the number of VMs deployed from the same image. Most of the images are

used once (median = Q3 = 1); outliers basically correspond to default images provided by Outscale.

The last two boxplots show snapshots/volumes correlations. The first of the two counts the number

of snapshots (i.e., backups) taken for the same volume. 75% of volumes are snapshotted less than

twice, but one has been snapshotted a thousand times. Finally, the last boxplot shows the number of

volumes deployed from the same snapshot. We observe similar outliers in the number of VMs deployed

from the same image. This effect is due to the fact, when a user creates an image from a VM, the

orchestrator snapshots the VM’s volumes on behalf of the user.

0
100

101

102

103

104

105

VM

s p
er

 se
cu

rit
y

gr
ou

p

0
100

101

102

103

104

105

VM

s p
er

 im
ag

e

0

100

101

102

103

sn

ap
sh

ot
s p

er
 v

ol
um

e

0
100

101

102

103

104

105

vo

lu
m

es
 p

er
 sn

ap
sh

ot

Figure 3.6: Correlations between virtual resource requests

Consequence 1 The utilization patterns of volumes and snapshots affect the management of storage

hardware. 90% of volumes live less than 5 days. They are seldom filled with data in this interval, and

consequently the average volume size is half the requested size. So, storage space can be overcommitted

by a factor of two. In addition, short-lived volumes do not have to be taken into account for long-

term capacity planning. The placement of the remaining volumes (8% of which are snapshotted more

than five times) is more complex. They fill up progressively, and recurrent snapshots require additional

space. In order to maximize the overcommitment of storage space and balance the effective

61

3.4. UNDERSTANDING THE RESOURCE USAGE OF VMS

utilization of equipment, the minority of long-lived volumes should be spread on separate

shards. This policy supposes that volume lifetime can be determined at creation time.

3.4 Understanding The Resource Usage of VMs

This section analyzes the effective vCPU, RAM and disk utilization of VMs, according to the first

four metrics of Table 3.2. For CPU and RSS, which are allocated by the scheduler based on a request,

we study the relative utilization (in % of the request). This enables us to compare utilization of VMs

whose requests vary by an order of magnitude. For each metric, we have studied the consumption per

VM through four indicators: 1st quantile (Q1), average, 3rd quantile (Q3) and maximum. We report

the cumulative distribution function (CDF) for each couple of metric and indicator.

Figure 3.7a presents the CDF of the CPU utilization (%). In general, 99% of VMs have low CPU

utilization with a maximum utilization lower than 50%. However, ∼2,600 VMs (0.9% of the trace)

consume on average 42% of their requested CPU. Some VMs even consume 100%. The generally

lower CPU consumption justifies the overcommitment of CPU resources; however, the provider must

pay attention to minimize the impact of interferences on the perceived QoS. We will study CPU

interferences in Sec. 3.5.

Figure 3.7b shows that the CDF of the RSS utilization (%) is close to linear. VMs have a larger

consumption of RSS than CPU. This can be explained by the fact that the guest OS never releases

memory to the host, since it prefers recycling it for cache, and no memory overcommit mechanism

is implemented. In general, the difference between VMs’ maximum and average RSS consumption is

10%, which indicates that RSS utilization is more stable than for CPU.

Figure 3.8 presents the disk utilization in terms of read load (kB/sec), write load (kB/sec), and

the ratio of write load over read load. 75% of VMs read at an average rate of 377 kB/s and write

at an average rate of 1900 kB/s. However, Q3 peaks at 1280 kB/s for reads and 4920 kB/s writes,

multiplying by four the average load. We observe a larger write load than read: on average, VMs

write 7 times more data than what they read. That could be due to two reasons. First, the guest

OS caches data for read operations while write ones cannot be cached. Also, the guest OS could be

configured such that any time it accesses a file, it updates the atime attribute (time of last access)

and eventually triggers a disk write.

62

3.4. UNDERSTANDING THE RESOURCE USAGE OF VMS

0 20 40 60 80 100
CPU consumption

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Q1
average
Q3
max

(a) CPU utilization

0 20 40 60 80 100
RSS consumption

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Q1
average
Q3
max

(b) RSS utilization

Figure 3.7: VMs resources utilization

0.00 0.25 0.50 0.75 1.00
read consumption (kB/s) 1e6

0.0

0.5

1.0

CD
F

Q1
average
Q3
max

0.00 0.25 0.50 0.75 1.00
write consumption (kB/s) 1e6

0.0

0.5

1.0

CD
F

Q1
average
Q3
max

0 200 400
write/read rate

0.0

0.5

1.0

CD
F

Q1
average
Q3
max

Figure 3.8: Disk utilization

63

3.4. UNDERSTANDING THE RESOURCE USAGE OF VMS

Finally, to characterize the dispersion of resource utilization, we compute the relative standard

deviation (RSD) as the ratio between the standard deviation and the average (for non-zero average)

in Figure 3.9. We observe that the largest dispersion is achieved on reads, and the lowest on RSS.

0 50 100 150
0.0

0.5

1.0

CD
F

mean: 1.38
median: 0.72
Q1: 0.24
Q3: 1.34
max: 161.77
min: 0.00

CPU

0 1 2 3
0.0

0.5

1.0

CD
F

mean: 0.20
median: 0.11
Q1: 0.05
Q3: 0.31
max: 3.22
min: 0.00

RSS

0 50 100 150
0.0

0.5

1.0

CD
F

mean: 5.34
median: 1.77
Q1: 0.86
Q3: 6.80
max: 161.77
min: 0.00

read

0 50 100 150
0.0

0.5

1.0

CD
F

mean: 2.03
median: 1.24
Q1: 0.56
Q3: 2.56
max: 161.76
min: 0.00

write

Figure 3.9: Relative STD

Consequence 2 70% of VMs never use more than 20% of the CPU they requested over 5-minute

windows. Up to three VMs using less than 20% of CPU could share this resource to target the 40-60%

utilization level recommended for mixed workloads [9], and to save 46% in CPU costs. A popular

approach is to monitor the resource utilization of VMs and then consolidate the ones with compatible

workloads through migrations [59]. At Outscale, the benefit of VM migration to manage

server resources could be reduced: 90% of VMs run less than an hour, and it is not

64

3.5. UNDERSTANDING INTERFERENCES BETWEEN VMS

worth consuming network resources to migrate the memory state of a VM that is about

to be deleted.

3.5 Understanding Interferences Between VMs

We have seen that a large number of VMs request more resources than they use. While resource

overcommitment has been presented as a common approach to avoid waste caused by over-sized

demand, providers must pay attention to the impact on QoS. Characterizing VMs interactions helps

to understand the tradeoff between high resource usage and performance.

This section analyses VMs interferences focusing on CPU. Given a VM, we study two metrics: 1)

the average number of VMs neighbors by core, or in other words, the number of VMs sharing CPU

with the current VM; and 2) the number of involuntary context switches per second, which is the

number of times the management and disk threads of a VM must release a CPU core for allowing

another VM or the hypervisor to perform work. Both measures give information about the QoS of

the VM. A large number of neighbors gives better hardware utilization and efficiency for the cloud

provider, at the expense of lower QoS for the client if/when its neighbors are fully using the CPU.

Therefore, we use involuntary context switches to evaluate the contention on the CPU resource.

This analysis aims to understand VM interactions according to the number of vCPU requested.

To this end, we have divided the dataset in four classes according to the number of vCPU requested

by each VM: [1,2],]2,4],]4,8], 8+ vCPU. Figure 3.10a shows the average number of neighbors by core

with a boxplot. VMs requesting up to 4 cores have a median of 2 neighbors, while other classes have

a lower median. However, in general, VMs have a low number of concurrent neighbors (Q3 ≤ 3).

Figure 3.10b presents the number of involuntary context switches per second. The largest number

of involuntary context switches per second is achieved for small VMs because most of these VMs are

sold as low performance resources. The largest VMs, sold as high performance ones, experience a

lower number of involuntary context switches per second. Finally, some VMs raise up to 1 involuntary

context switch every millisecond, we therefore argue that these are VMs performing CPU or disk-

intensive tasks, they are more impacted by resource overcommitment and the virtualization overhead.

Consequence 3 Users are interested in having VMs with acceptable and constant performance. In-

65

3.6. COMPARATIVE STUDY OF THE CONSUMPTION OF CLIENTS AND
INTERNAL USERS

[1,2]]2,4]]4,8] >8
requested vCPU

0

1

2

3

4

5

nb
. n

ei
gh

bo
ur

s

(a) VMs neighbors

[1,2]]2,4]]4,8] >8
requested vCPU

10 2

10 1

100

101

102

103

nb
. i

nv
ol

. c
on

te
xt

-s
wi

tc
he

s

(b) Involuntary context switch

Figure 3.10: VMs interferences according to requested vCPU

voluntary context switches measure the performance degradation resulting from virtualization and the

sharing of CPU between VMs. To control the performance of VMs as measured by the

number of involuntary context switches, a controller could map dynamically VM and

hypervisor threads to CPUs. Besides, a perfect performance model should make the distinction

between interferences between VMs and the virtualization overhead. By comparing the ics metric of

non-overcommitted VMs with the entire population, we estimate that the virtualization overhead rep-

resents, on average, 40% of the metric value. Additional work is required to obtain finer interference

models with metrics that are observable by the provider.

3.6 Comparative Study of The Consumption of Clients and Internal
Users

In this section, we compare the resource usage of clients and internal users in Outscale’s trace.

Internal users are responsible to maintain the cloud platform in an operational state as well as to

perform improvements. Some of the projects related with internal users are monitoring, logging, data-

warehousing, pre-sales demonstrations for clients, quality services. The provider has more information

66

3.6. COMPARATIVE STUDY OF THE CONSUMPTION OF CLIENTS AND
INTERNAL USERS

about applications and users’ behavior for internal users than for clients. We compare both kind of

users with respect to the utilization of virtual resources and VMs usage.

Table 3.3 reports the number of virtual resources created by clients and internal users. Clients

create 2/3rd of VMs, their footprint is larger if we consider the number of core-hours they requested

(80%). Clients are responsible for the creation of images, volumes and snapshots more than 90% of

the time. However, they create only 3% of security groups. More than half of the internal security

groups corresponds to quality validation of the platform. While clients make 1.5 snapshots per volume

on average, the rate falls down to 0.1 for internal users. In general, services deployed internally do not

require to backup volumes with high frequency due to two main reasons: some volumes do not store

important data, others are part of distributed and fault tolerant systems that can recover automatically

in case of failure.

Number of resources

Resource Clients Internal Total

VM 318,486 (66%) 161,905 (34%) 480,391
Image 131,730 (99%) 623 (1%) 132,353
Volume 428,722 (92%) 36,910 (8%) 465,632
Snapshot 634,673 (99%) 3,778 (1%) 638,451
Security group 2085 (2%) 87,278 (98%) 89,363

Table 3.3: Number of resources: clients vs. internal

Table 3.4 reports the utilization of hardware resources by VMs created by clients and internal users.

For each utilization metric, we compute two indicators: the average and the standard deviation of the

distributions. Relatively to their request, client VMs use on average six times less CPU that internal

ones. However, they use 15% more RSS. On average, client VMs read 8 times more and write 2.5

times more data than internal VMs. They experience 6 times more involuntary CPU context switches.

Regarding the dispersion of the distributions, we observe that read and write rates are highly variable

(σ ≥ 10µ) for both types of VMs.

We conclude that clients create the majority of virtual resources except for security groups where

the internal quality assurance service reverses the trend. Finally, client VMs use less CPU than internal

ones, but more memory and storage.

67

3.7. COMPARATIVE STUDY WITH OTHER TRACES

VMs consumption: average ± std

Metric Clients Internal All

cpu (% of request) 2 ± 7 12 ± 25 4 ± 12
rss (% of request) 52 ± 25 37 ± 26 50 ± 25
read (kB/s) 8 ± 721 1 ± 200 7 ± 670
write (kB/s) 53 ± 865 22 ± 1018 50 ± 890
ics (/s) 6 ± 9 1 ± 4 5 ± 8

Table 3.4: VMs consumption: clients vs. internal

3.7 Comparative Study With Other Traces

In this section we compare Outscale’s workload with those of Azure and Bitrbrains. The Azure and

Bitbrains traces were presented in Section 2.5.1. Similarly to Outscale, Azure and Bitbrains provide a

public VM-based service. Whereas Outscale operates a mid-sized platform and provides only generic

images, Azure has an hyperscale platform and some of its images are specialized. Specialized images

allow the provider to know the applicative role of a VM. On another hand, Bitbrains is specialized

in hosting business-critical applications in long-running VMs, contrary to cloud VMs that are mostly

short-running.

3.7.1 Comparison With Azure

We use a public sample of the Azure trace characterized in [2] to compare the start time of VMs,

the number of vCPU and amount of RAM they request, and the amount of CPU they effectively use.

In Figure 3.11, we plot the average number of VMs started per hour over a weekly basis. Since the

start time of the Azure trace is unknown, we cannot correlate daily patterns between Outscale and

Azure. However, we observe that both workloads have a daily periodicity. With 240 VMs/h on average,

the scheduling workload of Outscale is 11 times lower than at Azure (2600 VMs/h). Outscale’s peak

load (890 VMs/h) represents 4 times the average load, whereas Azure’s peak load (4400 VMs/h) is

two times its average one.

Figure 3.12a shows the percentage of VMs according to the number of vCPU requested. Both

providers have a majority of VMs (∼ 75%) asking 1 or 2 vCPU, and VMs bigger than 8 vCPU are

unusual (≤ 5%). Outscale clients request twice as many VMs with 4 vCPU than Azure, whereas VMs

with 8 vCPU are requested three times more often at Azure (15%) than Outscale (5%). Consequently,

68

3.7. COMPARATIVE STUDY WITH OTHER TRACES

0h 24h 48h 72h 96h 120h 144h
time (hours week-basis)

0
400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400

of

 V
M

 st
ar

ts

outscale
azure

Figure 3.11: Start time

Outscale VMs request 13% less vCPU than at Azure.

For RAM (Figure 3.12b), we observe more notable differences between providers than with the

distributions of vCPU. For instance, VMs with 4-8 GB are not very popular at Outscale (≤ 5%); but

represent 15% of Azure’s workload. On the other hand, VMs with 16-32 GB are more frequent at

Outscale (30%) than Azure (≤ 5%). On average, VMs at Outscale request 16% more RAM that at

Azure.

azure outscale0

20

40

60

80

100

VM
s f

re
qu

en
cy

 (%
)

1
2
]2,4]
]4,8]
>8

(a) vCPU requested

azure outscale0

20

40

60

80

100

VM
s f

re
qu

en
cy

 (%
)

[0,2[
[2,4[
[4,8[
[8,16[
[16,32[
>32

(b) RAM requested

69

3.7. COMPARATIVE STUDY WITH OTHER TRACES

Next, we study how the VMs in both clouds make use of the CPU they requested. Figure 3.13 shows

the distribution of mean CPU utilization (%) of VMs at Outscale and Azure. The CPU utilization of

VMs at Outscale is skewed, and 90% of VMs have a mean utilization lower than 10%. However, this

is the case for 40% of VMs at Azure. In summary, Azure’s VMs consume more than Outscale’s (10%

of Azure’s VMs use more than 50% of their CPU).

0 50 100
0

20

40

60

80

100
C
D
F

CPU utilisation (%)

outscale

azure

Figure 3.13: CPU usage

3.7.2 Comparison With Bitbrains

The comparison of Outscale’s and Bitbrains’ workloads is based on a prior characterization of the

Bitbrains trace [15]. In Table 3.5, we compare the two workloads in terms of CPU and RAM requested

per VM, as well as the effective utilization of disk. The main difference lies in disk utilization: whereas

the average read throughput is three times larger than the write throughput at Bitbrains, it is 15 times

smaller at Outscale.

Consequence 4 In this section, we showed that Outscale must handle a workload that is substantially

different from Azure and Bitbrains. Since the performance of a resource allocation algorithm

depends on the characteristics of the workload, we need to perform complementary evalu-

ations of state of the art algorithms, to evaluate if their performance remains acceptable

with Outscale’s workload.

70

3.8. CONCLUSIONS

Metric Traces Mean Min Q1 Median Q3 Max

Cores req.
Bitbrains 3.3 1 1 2 4 32
Outscale 2.3 1 1 1 4 64

RAM req.
(GB)

Bitbrains 10.7 0.0 1.27 3.98 15.59 511
Outscale 7.5 0.5 0.6 3.75 16 1440

read disk
(MB/s)

Bitbrains 0.3 0.00 0.00 0.00 0.00 1411
Outscale 0.39 0.00 0.01 0.07 0.38 980

write disk
(MB/s)

Bitbrains 0.1 0.00 0.00 0.00 0.01 188
Outscale 1.58 0.00 0.03 0.19 1.90 547

Table 3.5: Statistics of resource consumption for Bitbrains and Outscale

3.8 Conclusions

Characterizing cloud workloads is required to optimize resource management processes such as

capacity planning, resource allocation and performance control. Based on a three-month-long workload

trace collected on Outscale’s non-hyperscale public IaaS cloud, we characterized the utilization of

virtual resources (VMs, images, volumes, snapshots and security groups), the utilization of hardware

resources (CPU, memory and disk), and the CPU interferences. We discussed the implications of

skewed utilization patterns on resource management. Only 10% of volumes live more than 5 days, but

they have a larger footprint on storage backends because they fill up progressively and are snapshotted

recurrently. Periodic snapshot creations bursts require to design a scalable orchestrator that can

perform this operation transparently for users. 70% of VMs never use more than 20% of their requested

CPU. However, even a reasonable overcommit ratio (often less than 3) generates involuntary context

switches, especially for the smallest VMs. We doubt of the benefits of migrations to consolidate

VMs with compatible workloads and separate incompatible VMs, because 90% of them run less than

1h. Moreover, we showed that the characterized workload was different from the ones observed on

Azure, and Bitbrains, two providers with comparable VM-based services. This calls for the design of

workload-specific orchestrators. A major feature of Outscale’s workload is the high virtual resource

churn, which indicates users automatize their deployments. We argue that automated deployments are

repetitive, and therefore predictable. In the next chapters, we will seek to find if a machine learning

system can predict the runtime of a VM with sufficient accuracy to be used by a VM placement

algorithm.

71

3.8. CONCLUSIONS

72

Chapter 4

Prediction of VM runtime

Contenu

4.1 Introduction . 74

4.2 Supervised Machine Learning . 74

4.2.1 Decision Trees . 75

4.2.2 Ensemble Methods . 77

4.2.3 Evaluation Metrics for Classification . 78

4.2.4 Feature Encoding and Scaling . 79

4.3 Experimental Setup For Predicting VM Runtime 80

4.3.1 Feature Search . 81

4.3.2 Dealing With Unbalanced Classes . 83

4.4 Implementation . 84

4.4.1 Presentation of Scikit-Learn . 84

4.4.2 Limitations of Scikit-Learn . 85

4.4.3 Implementation of our Scikit-Learn Extension 85

4.5 Results . 86

4.5.1 Importance of the feature set on model performance 87

4.5.2 Comparison of learning methods . 88

4.6 Conclusion . 92

73

4.1. INTRODUCTION

4.1 Introduction

As seen in the previous chapter, one of the main characteristics of Outscale’s workload is the

heterogeneity of VM lifetime. Previous works from the literature argued for the need to choose

the placement of a VM based on its runtime [61, 62, 24]. Yet, VM runtime is unknown when the

orchestrator makes this choice. In this chapter, we use supervised machine learning to mitigate this

uncertainty. Supervised machine learning aims at making predictions about a phenomenon, based on

past observations. In this use case, we predict the runtime of VMs based on information that is, or

could be made available, when the VMs start, and based on the knowledge of past VM runtimes. We

present a feature engineering and modeling pipeline to predict the runtime of VMs. The proposed

features capture a variety of concepts. The novelty of our work is to leverage new parameters from

the VM creation request, and text tags, which are freely-typed text strings used to describe VMs for

their inventory. The combination of the proposed features with third-party features from the literature

allow our model to outperform previous works.

This chapter is structured as follows. Section 4.2 gives an overview of supervised machine learning.

Our experimental setup is presented in Section 4.3. Section 4.4 presents the implementation, and

results are presented in Section 4.5.

4.2 Supervised Machine Learning

Machine learning explores the design of algorithms that learn how to perform a task from experience

instead of being explicitly programmed [75]. The task is embodied by an unknown function. The goal

is to find the best possible approximation in a large set of hypothesis functions. The quality of the

approximation is computed from the experience given as numeric data, and from the cost function of

choice. In summary, machine learning is a combination of three components [113]:

— A representation of the space of possible hypothesis functions.

— A cost function required to distinguish good hypothesis functions from bad ones, given some

experience data.

— An optimization method to search the space of hypothesis functions.

In this Chapter, the task to be solved is the prediction of the runtime of VMs based on features

available when they start. The problem is an instance of supervised machine learning, because both the

74

4.2. SUPERVISED MACHINE LEARNING

input and the expected output of the hypothesis function are provided as experience. The experience

is therefore encoded with paired variables (x, y); where the runtime y is the expected output of the

hypothesis function evaluated on features x. Since the experience data includes runtime measurements,

it is generated from VMs whose execution is finished. Hence, the underlying assumption is that

historical patterns of cloud utilization can be used to estimate the runtime of new VMs.

Supervised machine learning problems are categorized according to the nature of the predicted

variable y. Binary classification stands for when y can only take two values, multiclass classification

stands for when x can take one value of a set, multilabel classification stands from when x takes several

values simultaneously, and regression stands for when x takes real values. Most algorithms handle

regression and classification problems with minor variations. In the rest of this chapter, we will focus

on classification.

In the next section, we present decisions trees, one of the most widely used class of supervised

machine learning algorithms.

4.2.1 Decision Trees

In decision trees, the hypothesis function is a series of tests performed on the input. The successive

tests and their outcome are represented by a downward tree, as shown in Figure 4.1. The nodes of the

tree are therefore partitions of the data space. The leaves are the most elementary partitions. The

observations that fall in a leaf are used to compute the output. The output is either a class prediction,

or class probability estimates. The first advantage of decision trees is that they are non-parametric,

i.e., they do not make any assumption about the data. They can also handle heterogeneous data

composed of ordered and categorical variables.

Building the tree is a greedy optimization. At every node, the algorithm chooses the test that

best discriminates observations with respect to the predicted variable. Hence, the features used in

the first tests (closest to the root) are the most informative. The conferred interpretability is another

advantage of decision trees.

For the sake of simplicity, we will consider the most common architecture for decision trees, where

a test applies to a single feature and has a binary outcome. In alternative architectures, tests apply to

a linear combination of features [114] and have non-binary outcomes [115, 116]. The interested reader

75

4.2. SUPERVISED MACHINE LEARNING

x2

x1

x1 < 5

x2 < 2

yes

no

5

2no

yes

=

Figure 4.1: A decision tree (left) and the resulting partitioning of the data space (right) on a classifi-
cation problem.

can find a survey of decision trees in [117].

Formally, let θ = (f, r) be a criteria that allows to split the set of observations in node S into

two children, Sr and Sl, by testing if the value of the feature f is in range r. The algorithm searches

the most discriminant criteria. The idea is to choose the criteria that leads to the largest decrease of

the impurity in the child nodes compared to the parent node (Equations 4.1 and 4.2). The impurity

of a child node is minimal (and the impurity decrease is maximal) when the child node contains

homogeneous observations. The formula of cross-entropy, the most popular impurity function for

classification, is given in Equation 4.3 for K classes.

θ⋆ = arg max
θ

∆Iθ(S) (4.1)

∆Iθ(S) = I(S) − 1
|S|

(|Sr|I(Sr) + |Sl|I(Sl)) (4.2)

I(S) = −
K∑︂

k=1
P [y = k|S]log(P [y = k|S]) (4.3)

Decision trees are interpretable because they allow to rank the contribution of individual features.

Node importance ∆I ′ is defined as the decrease in node impurity weighted by the fraction of samples

reaching that node (Equation 4.4). The importance Ff of a feature f is the sum of the importance of

nodes that split on that feature, normalized by the total node importance (Equation 4.5).

∆I ′(S) = |S|
N

∆I(S) = |S|
N

I(S) − 1
N

(|Sr|I(Sr) + |Sl|I(Sl)) (4.4)

76

4.2. SUPERVISED MACHINE LEARNING

Ff =
∑︁

S splits on f ∆I ′(S)∑︁
S ∆I ′(S) (4.5)

Depth is an important parameter of decision trees. There is a risk of underfitting with small trees.

They may fail to model even the training data. On the other hand, there is a risk of overfitting with

large trees: they may manage to model the training data very well, but fail to generalize on new data

because they have isolated small subspaces and are sensitive to noise. One solution to find the best

tradeoff is tree pruning. Pruning involves the utilization of a cross-validation dataset to test the model

on new data. There are two kinds of pruning methods. Pre-prunning consists in building the tree

until the cross-validation error stops decreasing as expected after a node split. With the post-pruning

method, the tree is fully grown, then leaves are merged until the cross-validation error stops decreasing.

Another approach to optimize the tradeoff between under and overfitting is to use ensemble meth-

ods.

4.2.2 Ensemble Methods

The goal of ensemble learning is to exploit the strengths of diverse models and mitigate individual

weaknesses [118].

There are two approaches to build ensemble models.

Bagging trains each model on a random subset of the data. Therefore, it provides implicit diversity.

Random forest train decision trees on random sets of samples drawn with replacement, and consider

node splitting on random subsets of features [119]. Extremely randomized trees go even further, as

they choose node splits based on random thresholds [120]. On the other hand, Boosting algorithms

explicitly control diversity, and ensure individual models are different with active measurements. The

most popular, Adaboost, trains models sequentially on a subset of samples drawn such that samples

that were previously misclassified have a higher probability to be included [121].

Bagging methods work best with complex models (e.g., fully grown decision trees), in contrast with

boosting methods which usually work best with weak models (e.g., shallow decision trees). Moreover,

bagging methods have a computational advantage over boosting methods, because they allow to train

models in parallel on random subsets of the data that fit in memory.

There are two methods for combining model outputs. A linear combination of outputs is done

77

4.2. SUPERVISED MACHINE LEARNING

when class probability estimates are expected, otherwise a majority vote for the most likely class is

used.

4.2.3 Evaluation Metrics for Classification

In this section, we present the most common metrics used to evaluate classification models.

4.2.3.1 Accuracy

Accuracy is the fraction of correct predictions (Equation 4.6). The shortcoming of accuracy is

when class cardinality is unbalanced. For, instance, if 90% of samples are in a class, a naive model

that always predict that class will have a 90% accuracy.

accuracy = 1
nsamples

nsamples∑︂
i=1

1(yî = yi) (4.6)

4.2.3.2 F1 score

The F1 score (Equation 4.7) is a popular classification metric when the problem involves unbalanced

classes. The F1 score is the harmonic mean of precision P and recall R. Precision is the fraction of

samples in a class X that are actually classified as belonging to X (Equation 4.8). Recall is the fraction

of samples classified as belonging to X that are actually in X (Equation 4.9). Precision and recall are

calculated from the confusion matrix which holds the fraction of true positives (TP), false positives

(FP), true negatives (TN) and false negatives (FN), shown in Table 4.1. The combination of precision

and recall makes the F1 score suited for problems with unbalanced classes, because a naive model that

always predicts the majority class will either obtain good precision and bad recall, or the opposite, but

cannot do well on both. And since the harmonic mean used in the computation is more conservative

than the arithmetic or geometric means, the F1 score will be closer to the lowest value, and will show

that the model is in fact not able to discriminate the classes. When the problem involves C > 2

classes, precision and recall are first computed for each class, and then averaged. The macro-averaged

precision is given in Equation 4.10. Class imbalance is not taken into account, so that classes with

relatively few samples contribute as much as others to the average score.

F1 = 2 P ∗ R

P + R
(4.7)

78

4.2. SUPERVISED MACHINE LEARNING

P = TP

TP + FP
(4.8)

R = TP

TP + FN
(4.9)

if C > 2, P = 1
C

C∑︂
c=1

Pc (same for R) (4.10)

Observation
positive negative

Prediction
positive true positive (TP) false positive (FP)
negative false negative (FN) true negative (TN)

Table 4.1: Confusion matrix

4.2.4 Feature Encoding and Scaling

Learning machines need numeric data to work with. In this section, we describe methods to encode

different sources of data, from sensors to human-generated text, into features acceptable by a machine.

Physical quantities measured by sensors, are naturally expressed with numbers. When the algo-

rithm is based on distance computations, it is recommended to scale features so that each of them

contributes equally to computations. The main scaling method, standardization, gives each feature

component x a mean of 0 and a standard deviation of 1 (Equation 4.11).

x′ = x − µ

σ
(4.11)

Categorical features can take one value from a set. Unlike numeric features, the set cannot be

ordered. When the set cardinality is greater than two, the most popular encoding is dummy encoding,

i.e., the decomposition into a set of binary components. Table 4.2 shows the dummy encoding of a

categorical feature such as a color.

Text is unstructured, so text processing is more complex than for structured data. In order to

use text data, it is necessary to encode variable-length documents into fixed size feature vectors. This

process is called text vectorization. Text vectorization consists in the following steps [122]:

1. pre-processing: letters are written in lower-case, words are reduced to stems.

79

4.3. EXPERIMENTAL SETUP FOR PREDICTING VM RUNTIME

Gender component 1 component 2 component 3

green 1 0 0
yellow 0 1 0
red 0 0 1

Table 4.2: Dummy encoding of a categorical feature (color) into binary components

2. tokenizing: each stem in the corpus is given a token ID, using spaces and punctuation as token

separators.

3. counting: the occurrence of tokens is counted in each document.

4. normalizing: counts are normalized by the total document word count. Optionally, the result

is weighted to diminish the importance of words that occur frequently in the set of documents.

That is because very frequent words, like “the”, do not bring any specific information.

4.3 Experimental Setup For Predicting VM Runtime

In this section, we present our approach to predict the runtime of VMs. Given the wide range

of runtimes ([0s, ∞]), predicting an approximate value with a classification algorithm is sufficient for

the purpose of VM placement. Besides, the impact of prediction error depends on the actual VM

runtime: an over-prediction of one day for a VM that runs one hour is relatively larger than for a

VM that runs one month. To reflect the decreasing impact of absolute prediction error as runtime

increases, we define classes with increasingly large runtime ranges, as shown in Table 4.3. We set the

class boundaries such that they are easy for humans to work with, and they allow to compare our

results with an existing work [2].

class name S M L XL

runtime range [0, 15min]]15min, 1h] [1h, 24h] +24h
class cardinality (% of total) 52 21 17 10

Table 4.3: Runtime class definition

In a previous work [2], Cortez et al. predicted the runtime of VMs with an ensemble of decision

trees. The authors reported the prediction results, but did not explain precisely which features they

used nor how they trained the model. Yet, the search of the best features and algorithms is critical for

the development of VM placement solutions based on machine learning. For the feature search, our

contribution lies in the utilization of novel features extracted from the API call for the VM creation,

80

4.3. EXPERIMENTAL SETUP FOR PREDICTING VM RUNTIME

and features extracted from text tags, which are used to describe VMs. For the learning algorithm, we

focus on Extremely Randomized Trees [120], a bagging ensemble method based on decision trees and

presented in Section 4.2.2 We anticipate that unbalance class cardinality (Table 4.3) will be problematic

for Extremely Randomized Trees: since a tree is fitted on a random subset of samples, the majority

class is given more importance. To alleviate class unbalance, we will use adapted training methods

from the state of the art and we will propose a new approach. In the following paragraphs, we detail

the proposed approaches for the search of features and training methods robust to class unbalance.

4.3.1 Feature Search

To predict the runtime of VMs, we are looking for features that are available when the VMs start,

or could be made so with minimal impact on the user experience. Our work builds upon previous

works in grid and cloud platforms [2, 123]. We propose three feature sets with an increasing number

of features. In the first set, we include features extracted from the API call of the VM request. In

the second feature set, we add features presented in previous works, that synthesize the user account

state and history. In the third set, we include novel features extracted from text tags. The next three

sections detail the content of feature sets, and a summary is given in Table 4.4.

4.3.1.1 Features from the API call of the VM request

The most straightforward features are extracted from the API call. We class the features in

six groups, the first two groups were used in previous works from the literature, the next four are

proposed by us. The resource request group describes the amount of resources requested (vCPU,

RAM), the VM type and the system OS [2]. The time group describes the timing of the API call to

the orchestrator [123]. We extend these well-known features with the following four groups. Placement

affinity describes user inputs regarding the choice of server. For instance, to guarantee high availability

of an application, the user may ask the orchestrator to put its new VM on a different server than an

existing VM. Network features describe networking setup for the VM, such as the number of security

groups the VM belongs to. Ephemeral storage describes the amount of storage that will not persist

if the VM stops. We did not use features related to persistent storage, because it is provisioned after

the VM is started. Hence, this information cannot be used to make predictions at startup. Finally,

we include miscellaneous user inputs, such as the number of VMs requested simultaneously through

81

4.3. EXPERIMENTAL SETUP FOR PREDICTING VM RUNTIME

a single API call.

4.3.1.2 Features from the account state and history

Previous works from the literature show that current and historic user account state can be used

for job runtime prediction in grids. Tsafrir et al. estimate the runtime of a job by simply averaging the

last two jobs of the user [123]. Gaussier et al. propose an extended set of historic features including

the average resource request and average runtime of all previous jobs [86]. In addition, they also

synthesize the current account state with features like the sum of the runtime of currently running

jobs. The only feature that cannot be transposed from grids to clouds is the maximum allowed time

slot before killing the job. This comes from the fact that grids schedulers aim a fair resource allocation

(allocating equal resources to users) whereas clouds allow users to run VMs for as long as long as they

pay.

4.3.1.3 Features extracted from text tags

We propose to generate features from text tags. Text tags are strings of text that users attach

to VMs to simplify their inventory. We have inspected tags and observed that some of them provide

rich information on the context of VM deployments. For instance, consider the following set of tags

attached to three VMs:

DEPLOYMENT=MY_APPLICATION VM=WEB_SERVER

DEPLOYMENT=MY_APPLICATION VM=DATABASE

DEPLOYMENT=MY_APPLICATION VM=LOAD_BALANCER

The three VMs belong to the same web application deployment. Within a deployment, the VM tag

refers to the service name (web server, database or load balancer).

Currently, Outscale’s API does not allow users to pass tags as parameters to the VM creation call.

Users must first request a VM, then tag it with a subsequent call. We will measure the contribution of

tags to the prediction accuracy, and assess if it is worth modifying the API to allow their utilization for

runtime prediction at startup. To extract features from text tags, we performed the text vectorization

technique presented in Section 4.2.4.

Table 4.4 summarizes the composition of feature sets. In addition to the 25 features used in

82

4.3. EXPERIMENTAL SETUP FOR PREDICTING VM RUNTIME

previous works, we will use 14 features from the API call and more than 100 from text tags.

group name # summary of features origin

API call:
resource request

4 amount of CPU & RAM requested
VM type
OS

[2]

API call:
time

9 abolute components: day, hour, minute
sinusoidal components

[123]

API call:
server affinity

4 tenancy (shared or dedicated server)
attract/repulse

ours

API call:
network

5 number of security groups or bypass option
membership to a virtual private cloud (VPC)
attachment of elastic public IP(s)

ours

API call:
ephemeral storage

1 total size of ephemeral storage ours

API call:
miscellaneous

4 min and max number of VMs requested in the call
VM shutdown policy

ours

account state
and history

12 individual and averaged runtimes of the last 3 VMs
average runtime and CPU request of all finished VMs
maximum and sum of runtimes among running VMs
of VMs running and sum of their CPU requests
time elapsed since the last VM stop

[123]

text tags 100+ freely-typed text describing VMs
and their associated resources

ours

Table 4.4: Composition of the feature sets

4.3.2 Dealing With Unbalanced Classes

We implemented three approaches to deal with unbalanced classes. The first two approaches

are based on re-sampling the training data. In the first approach, we under-sample the majority

class to the cardinality of the second largest class. In the second approach, we over-sample the two

83

4.4. IMPLEMENTATION

minority classes by duplicating observations. The third approach, adapted from [124], is to change the

algorithm and split the multiclass classification task into several binary classification ones. As shown

on Figure 4.2, we propose a cascade of binary classifiers, where the output of a classifier is either the

final output, or a call to the next classifier in the cascade.

class
S ?

class
M ?

class
L ?

S

M

L XL

yes no

Figure 4.2: Proposed cascade classifier

4.4 Implementation

For the implementation, we used scikit-learn [125]. It is the standard python library for data mining

and machine learning. Scikit-learn includes feature processing procedures, learning algorithms, and

other methods to automatize model evaluation and selection. In this section, we present scikit-learn,

identify some of its limitations, and introduce our proposed extension.

4.4.1 Presentation of Scikit-Learn

Scikit-learn offers three main classes:

— A Transformer takes some input data, estimates some parameters, and transforms the input

based on the estimated parameters. For instance, a standardizer takes some input data X,

estimates µ and σ, and returns a transformed, standardized version of X.

— A Predictor predicts the output data y based on the input X and some estimated parameters.

For instance, a decision tree is implemented as a predictor.

84

4.4. IMPLEMENTATION

— A Pipeline is a chain of transformers with a final predictor. Pipelines are convenient because

they offer a single interface to assemble, train and test complex models.

4.4.2 Limitations of Scikit-Learn

Scikit-learn has the two following limitations:

— Transformers are applied on all columns of the input X. As we are working with heterogeneous

data (numeric and categorical variables, or even text variables), we want to apply different

transformers to subsets of features.

— Some transformers, e.g. the dummy encoder or text vectorizer, explode a feature column into

multiple ones. Scikit-learn loses the mapping between the original features and the final ones.

As we want to interpret the contribution of features to the learning task, we need the pipeline

to carry the meaning of the final features.

Ibex 1 and sklearn-pandas 2 are two libraries that seek to tackle these limitations. However, Ibex

does not allow to apply different transforms to subsets of features, and sklearn-pandas did not output

feature names until 2017-05-13 (after we started the implementation). Therefore, we implemented a

custom extension to scikit-learn.

4.4.3 Implementation of our Scikit-Learn Extension

In order to apply specific transformers according to the feature type, and to carry feature names

through the entire pipeline, we implemented the following classes:

— ColumnExtractor selects the features to be passed to the next transformer in a pipeline. It

allows to select the transform applied to a subset of features.

— FeatureUnion applies a list of transforms on the input and merges results column-wise. Each

transform in the list operates on a subset of features.

— Standardizer, Text vectorizer, or Dummy encoder are wrappers over the native scikit-learn

classes with the same names. We implemented wrappers to work with Pandas 3 data frames

instead of NumPy 4 matrices, which enables to carry feature names down the pipeline.

1. https://github.com/atavory/ibex
2. https://github.com/scikit-learn-contrib/sklearn-pandas
3. Pandas is a package for data analysis in Python
4. NumPy is the fundamental package for scientific computing with Python

85

4.5. RESULTS

— ColumnMemorizer memorizes column names as seen by the predictor, once all transforms have

been applied. This class is used to determine the most important features.

In addition, we implemented the CascadeClassifier class following the Predictor abstraction to mitigate

class unbalance.

The resulting pipeline is shown on Figure 4.3. For the experiments, we separated the dataset into

a training and a test set. The training set was composed of 80% of samples drawn at random, the test

set was composed of the remaining 20%.

all features in a
Pandas dataframe

extraction of
numeric
features

extraction of
boolean
features

extraction of
categorical

features

extraction of
text

features

standardization dummy
encoding

text
vectorization

feature union

feature name memorization

classification

Figure 4.3: Implementation of the proposed feature processing and classification pipeline

4.5 Results

In this section, we present the results obtained on the classification of VM runtime. We evaluate

the gain in prediction accuracy resulting from the utilization of features extracted from the API call,

the account state and history, and text tags. We compare our results, obtained on Outscale’s workload

trace, with the works of Cortez et al. [2]. In this previous work, the authors predicted the runtime of

VMs based on the Azure dataset. We choose this baseline because the runtime of VMs has no upper

bound on both platforms, and the same problem formulation is made (four-class classification).

86

4.5. RESULTS

4.5.1 Importance of the feature set on model performance

First, we evaluate the contribution of the three feature sets on the model performance. Figure 7.3

presents the classification performance, as measured by the F1 score, with the incremental addition of

features. The first model uses the features from the API call of the VM request and reaches an F1 score

of 0.76, which is 0.01 better than the baseline pictured by the black horizontal line. In the second

model, we added features that synthesize the current and historic user context. The performance

improves by 0.11 (F1=0.87). In the third model, we added the tag features and the performance

improves by 0.04 (F1 = 0.91). The results show that features extracted from the account state and

tags are useful for VM runtime prediction.

API
call

+account state
and history

+text tags

feature set

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Figure 4.4: Model performance with the incremental addition of features. The horizontal line corre-
sponds to the baseline on the Azure workload [2].

Next, we determine which individual features bring the most valuable information. Figure 7.4

shows the ranking of the top twenty features, by importance. To respect privacy, tag features are

indexed by increasing importance instead of being named. There is a tie for the first place between

the number of security groups associated with the VM and a tag word. This shows, again, that the

proposed networking and tag feature sets are valuable. The next three features relate to the user

87

4.5. RESULTS

context, including the number of VMs running and the total amount of CPU and RAM requested.

Then, 4 of the next 5 most important features describe the timing of the VM request. Among the top

20 features, 11 are related to the user account state and history, 6 describe the API call timing and

security group membership, and 3 are text tags. We observe that the most straightforward features,

like the CPU and RAM requested by a VM, do not belong to this set. This result demonstrates the

need to use a mix of complex features to obtain accurate predictions.

sg
s

te
x
t_

0

su
m

_c
o
re

n
b
_j

o
b
s_

a
ct

iv
e

su
m

_r
a
m

si
n
_t

_w
e
e
k

co
s_

t_
d
a
y

su
m

_r
u
n
ti

m
e
_a

ct
iv

e

si
n
_t

_d
a
y

co
s_

t_
w

e
e
k

co
re

_a
v
g
_a

ll

te
x
t_

1

m
a
x
_r

u
n
ti

m
e
_a

ct
iv

e

ru
n
ti

m
e
_a

v
g
_a

ll

co
re

_a
v
g
_a

ct
iv

e

te
x
t_

2

la
st

_c
o
m

p
le

ti
o
n

co
re

_n
o
rm

a
liz

e
d

ru
n
ti

m
e
_a

v
g
_3

st
a
rt

_h
o
u
r

feature category

0.00

0.02

0.04

im
p
o
rt

a
n
ce

Figure 4.5: The twenty most important features

One always prefers models with relatively few features, because they are easier to train and under-

stand. Figure 4.6 shows the evolution of prediction performance with respect to the number of text

features included in the dataset. The features are ranked by occurrence of the corresponding word in

the dataset, the most frequent words are included first. The performance quickly increases from 0 to

100 features, and then reaches a plateau. Hence, based on our data, it is sufficient to use the top 100

most frequent words as features. Using more words just slows down the training process.

4.5.2 Comparison of learning methods

To make accurate predictions, it is necessary to find the method that works best on the data. The

performance of a model is determined by several parameters. For Extreme Randomized Trees, our

chosen algorithm, performance is a function of the sampling of the training data, the number of trees

in the ensemble, and tree depth. In this section, we present the results of the search for the optimal

learning method.

88

4.5. RESULTS

0 100 200 300 400 500 600 700 800
of text features

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910
F1

 sc
or

e

Figure 4.6: Evolution of prediction performance with the number of tag features included in the
dataset

We anticipated class unbalance to be the main obstacle to learning. Figure 4.7 illustrates the

relationship between prediction performance per class and class cardinality, for an ensemble of ten trees

of depth ten. For the S, M and L classes, the per-class F1 score is correlated with class cardinality: the

smaller the class, the smaller the F1 score. As a result, the averaged F1 score reaches 0.65, which is

less than the 0.91 score of the best-performing model. Correlation does not imply causality. However,

class unbalance is a well-known problem in machine learning [126], and it manifests with the observed

correlation. Following the hypothesis that our model was suffering from class unbalance, we tested

alternative learning methods.

To tackle the effect of class unbalance, we modify the learning method at the data level and al-

gorithmic level. At the data level, we under-sample the majority class, or over-sample the minority

one. At the algorithmic level, we propose a cascade of extreme randomized trees. Figure 4.8 com-

pares model performance for the different learning methods. Model performance is comparable for

the default, under-sampling, and cascade methods (F1=0.65). Over-sampling achieves the worst per-

formance (F1=0.54). This could be explained by the fact that information of the minority class is

duplicated, making the algorithm prone to overfitting the data. Overall, none of the tested method

89

4.5. RESULTS

0.00

0.25

0.50

0.75

F1
 sc

or
e

S M L XL
class

0.0

0.2

0.4

ca
rd

in
al

ity

Figure 4.7: Relationship between model performance and class cardinality

brings a significant improvement over the default one. In light of these results, we re-considered our

initial hypothesis. Could the poor results obtained on the minority classes be explained by the choice

of hyperparameters, rather than skewed class cardinality?

The performance of a model depends on the choice of hyperparameters. For extremely randomized

trees, the two hyperparameters are the number of trees in the ensemble, and the tree depth. Fig-

ure 4.9 shows the influence of the hyperparameters values on model performance. The most impactful

parameter is tree depth. The F1 score increases with tree depth, until an asymptote is reached for a

depth of 75 (F1=0.91). From our point of view, a depth of 75 is relatively large with respect to the

number of variables, which is 190. This shows that in order to make good predictions, the algorithm

has to either test a large number of binary variables, or test continuous variables repeatedly. The

number of trees in the ensemble is less impactful than tree depth, but again, the F1 score increases

with it (+0.03 from 5 trees to 75 trees in the ensemble). The use of multiple trees allows to have a

complex model (deep trees), while preventing overfitting. The smaller sensitivity to the number of

trees suggests that data is not noisy, and therefore the model is not subject to much overfitting.

90

4.5. RESULTS

default under
sampling

over
sampling

cascade

learning method

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Figure 4.8: Relationship between model performance and learning method

5 25 50 75 100
number of trees

10
0.

0
75

.0
50

.0
25

.0
5.

0
tre

e
de

pt
h

0.88 0.91 0.91 0.91 0.9

0.88 0.9 0.91 0.91 0.91

0.86 0.88 0.88 0.88 0.88

0.79 0.81 0.76 0.8 0.81

0.46 0.41 0.44 0.44 0.44
0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Figure 4.9: Hyperparameter sweep over tree depth and number of trees in the ensemble

91

4.6. CONCLUSION

4.6 Conclusion

The runtime of VMs is heterogeneous. Taking VM runtime into account for the placement of VMs

could allow to optimize the management of resources. Yet, the runtime of a VM is unknown when it

starts.

In this chapter, we proposed an approach to predict the runtime of VMs at startup, using supervised

machine learning. Our contribution lies in the utilization of new features extracted from the parameters

of the API call of VM creation, and from text tags. Tags are currently not available at VM start time

because they are passed in a subsequent API call. Nonetheless, we evaluated their contribution to the

prediction model, to assert the potential benefit of an API change allowing to capture them at VM

start time. From the API call, we extracted novel features pertaining to the networking and storage

configuration of the VM, the placement affinity and other miscellaneous inputs. In addition, we added

features used in previous works that synthesize the user account state and history. With this extensive

set of features, we obtained an F1 score of 0.91 (0.87 without tags) on a runtime classification problem

with four classes. This is a significant improvement over the baseline model from the literature [2]

reporting F1=0.75.

To achieve a positive result, we compared several learning algorithms based on extremely random-

ized trees. Initially, we observed that prediction accuracy of the minority classes was lower than for

classes with many items. This observation is symptomatic of the class unbalance problem, therefore,

we tested alternative approaches at the data and algorithmic level. At the data level, we under-sampled

the majority classes, or over-sampled the minority classes. At the algorithmic level, we decomposed

the four-class classification problem into a cascade of four binary classification problems. None of these

approaches increased model performance. We then resorted to tune two hyperparameters, namely, the

number of trees in the model, and tree depth. We observed that tree depth needed to be set higher

than expected and found the best F1 score (0.91) for a depth of 75. Therefore, the symptom observed

initially (low accuracy for the minority class) was a consequence of model underfitting, rather than

class unbalance. Our work testifies that finding the optimal learning method and hyperparameters

is challenging, especially when the maximum achievable performance is unknown. We hope that this

work will be used by Outscale to optimize the placement of VMs based on predictions of their runtime.

We also hope that the hands-on experience gathered will be useful to researchers working on similar

92

4.6. CONCLUSION

problems.

Although we proved that tags are helpful to make predictions of VM runtimes, we still do not

know if it is absolutely necessary to change the API to acquire them at start time, because we do

not know what prediction accuracy is required. In the next chapter, we will determine the accuracy

required for the prediction system to be used for the placement of VMs.

93

4.6. CONCLUSION

94

Chapter 5

Sensitivity Evaluation of RTABF

Contenu

5.1 Introduction . 96

5.2 Comparison of online VM placement algorithms 96

5.2.1 Any Fit . 96

5.2.2 Best Fit . 96

5.2.3 Release-Time Aware Best Fit . 97

5.3 Experimental Setup . 99

5.3.1 Workload Trace . 99

5.3.2 Infrastructure Model . 100

5.3.3 Energy Consumption Model . 101

5.4 Results . 102

5.4.1 Conclusion . 103

95

5.1. INTRODUCTION

5.1 Introduction

In the previous chapter, we designed and evaluated a promising approach to predict the runtime

of VMs at startup. In this chapter, we aim to determine the level of accuracy required for a prediction

system to be used for the optimization of VM placement. In 2014, Dabbagh et al. proposed Release-

Time Aware Best Fit (RTABF), a VM placement heuristic that minimizes the energy consumption of

servers [24]. RTABF assumes a perfect knowledge of VM runtime on startup. The amount of energy

saved by RTABF is unknown in a real-world setup, where predictions of runtime may not be accurate.

While this work originally aimed at evaluating the suitability of integrating our prediction system with

the RTABF algorithm, we were unable to reproduce the results obtained by Dabbagh et al. in their

paper.

The remainder of this chapter is structured as follows: In Section 5.2, we detail two baseline VM

placement algorithms as well as RTABF. In Section 5.3 we present our comparison methodology and

experimental setup. We present results and conclusions in Sections 5.4 and 5.4.1, respectively.

5.2 Comparison of online VM placement algorithms

In this section, we present Any Fit (AF) and Best Fit (BF), the two most popular online VM

placement algorithms [74, 41, 127], as well as Release-Time Aware Best Fit (RTABF). The three

algorithms are used for the initial placement of new VMs, not for the consolidation of running VMs.

5.2.1 Any Fit

Any Fit (AF) simply chooses a random server among the set of servers with sufficient available

resources to host the new VM.

5.2.2 Best Fit

Best Fit (BF) is the most popular VM placement heuristic. It chooses the server with the minimum

- but sufficient - available resources.

96

5.2. COMPARISON OF ONLINE VM PLACEMENT ALGORITHMS

5.2.3 Release-Time Aware Best Fit

Release-Time Aware Best Fit (RTABF) was proposed by Dabbagh et al. [24] in 2014. RTABF

extends Best Fit by taking into account the runtime of VMs. RTABF assumes the runtime of a VM is

known when the start request is made. RTABF seeks to co-locate VMs that will stop simultaneously.

The authors argue that this approach is more energy-efficient than BF, because servers can execute

a given workload in less time than with BF. The time difference translates into saved energy because

servers are powered off.

To illustrate the potential superiority of RTABF against BF, consider the case where two VMs are

sequentially placed on two used servers. Server A already hosts VM 1 with 55% of CPU usage and

3h of remaining runtime. Server B already hosts VM2 with 50% of CPU usage and 15h of remaining

runtime. VM 3 (40% CPU, 12h runtime) and VM 4 (40% CPU, 4h) are started in sequence. Best

Fit (Figure 7.5a) places VM 3 on server A and then VM 4 on server B, based only on the CPU

utilization. With BF, server A is used for 12h and server B is used for 15h. On the other hand,

RTABF (Figure 7.5b) places VM 3 on server B because it avoids extending the utilization time on

server A. Server A receives VM 4, and is turned off when VM 4 stops. The energy saved by RTABF

with respect to BF is equal to the energy consumed by an idle server for 8 hours, because RTABF

allows to turn off server A before BF.

RTABF chooses the best server for a VM based on two metrics. The temporal slack α measures the

amount of resources available on the server. The difference with best fit is that instead of measuring

resources in cpu, slack is measured in cpu ∗ seconds. The rationale is that hosts with fewest available

and sufficient slack should be chosen. The uptime extension β is proportional to the additional time

a host would have to stay on if it received a new VMs. The uptime extension should be minimized,

to avoid keeping servers half used. The total cost γi,j of placing VM i on host j is the sum of the

temporal slack and uptime extension (Figure 5.2). It is computed as follows:

Let si the start time of VM i, ri the predicted stop time (release time) of VM i, and yi the

predicted runtime of VM i (Equation 5.1). For two VMs i and k (with k already running), let y′i
k be

the estimate of the remaining runtime of VM k bounded by the runtime of VM i (Equation 5.2). δi,j is

the estimated additional time host j would have to stay ON if it was to receive VM i (Equation 5.3).

αi,j is the temporal slack, with Cj the cpu capacity of host j and ck the cpu required by VM k and

97

5.2. COMPARISON OF ONLINE VM PLACEMENT ALGORITHMS

Pidle Pidle

server A server Bpower

time

VM 1:
55%,

3h
VM 2: 50%, 15h

VM 3: 40%, 12h VM 4:
40%, 4h

(a) Best Fit

Pidle Pidle

VM 1:
55%,

3h
VM 2: 50%, 15h

VM 3: 40%, 12h
VM 4:

40%, 4h

server A server Bpower

time

Psaved

(b) Release-Time Aware Best Fit

Figure 5.1: Comparison between Best Fit (BF) and Release Time-Aware Best Fit (RTABF). VMs 3
and 4 have to be placed on servers A and B, where VMs 1 and 2 are already running. RTABF saves
energy over BF by taking into account the runtime of VMs. With RTABF, server A is turned off
earlier than with BF.

VM 1 :
50%, 1h

temporal
slack

uptime
extension

CPU

time

VM 2: 25%, 2h

C

c2

c1

s2 r1 r2
y’2

1
!
1

y
2

Figure 5.2: Computation of the placement cost with Release Time-Aware Best Fit (RTABF)

98

5.3. EXPERIMENTAL SETUP

Nj the set of VMs on host j (Equation 5.4). βij , the uptime extension (Equation 5.5). Finally, γij is

the total cost for placing VM i on server j (Equation 5.6). RTABF chooses the server with minimum

cost (Equation 5.7).

ri = si + yi (5.1)

y′i
k = min{rk, ri} − si (5.2)

δi,j = max (0, ri − max
k∈Nj

{rk}) (5.3)

αi,j = Cj × yi −
∑︂

k∈Nj

cky′i
k (5.4)

βi,j = Cj × δi,j (5.5)

γi,j = αi,j + βi,j (5.6)

j⋆ = arg min
j

γi,j (5.7)

Although it is possible to feed RTABF with predictions of VM runtimes obtained from machine

learning systems, predictions will necessarily contain some error. In the next section, we present our

methodology to evaluate the sensitivity of RTABF with respect to the prediction error, as measured

per the energy savings against AF and BF.

5.3 Experimental Setup

In this section we present our experimental setup for the evaluation of the sensitivity of RTABF

with respect to the error in runtime prediction. In order to test RTABF with controllable error levels,

we simulate a cloud infrastructure and workload. We use the Google workload trace [96] to compare our

results with the original evaluation of RTABF [24], which was obtained assuming a perfect knowlege

of VM runtimes. This section presents the workload trace, the infrastructure model and the energy

consumption model.

5.3.1 Workload Trace

The Google workload trace, presented in details in Chapter 2, spans 29 days and reports the

execution of millions of tasks on a platform composed of 11k servers [96]. In order to speed up the

simulation but still obtain robust results, we make ten samples of the original trace. One sample is

99

5.3. EXPERIMENTAL SETUP

generated with a three-steps pipeline. Firstly, we select the tasks submitted by 10% of users chosen

at random. Then, we select the tasks started within a random five-day window. Finally, 20% of the

tasks of each user are deterministically selected (one out of 5 tasks ordered in time). The number of

VMs as a function of time for one generated trace is reported in figure 5.3. This Figure shows that the

workload goes through major peaks and troughs. The workload dynamicity is sufficient to compare

the performance of different VM placement heuristics.

700000 800000 900000 1000000 1100000
time (s)

0

20

40

60

80

100

nu
m

be
r o

f V
M

s r
un

ni
ng

Figure 5.3: Number of virtual machines running over time in one trace sample

To enable the evaluation of RTABF, we include the runtime y of a VM in the corresponding start

request. We then add to the runtime the prediction error e that would be inevitable if RTABF was

used in the real world (Equation 5.8). The error is randomly generated from a Gaussian distribution

with mean µ = 0s and standard deviation σ (Equation 5.9). The parameter σ therefore controls the

level of error. We apply ten error levels to each trace, from σ = 0s (no error) up to σ = 3000s. This

is a wide range considering that 90% of VMs run less than 1000s [128].

ŷ = y + e (5.8)

E ∼ N (µ = 0, σ2) (5.9)

5.3.2 Infrastructure Model

Cloud infrastructures are heterogeneous. The Google workload trace reports three types of servers

whose capacities are given relatively to the largest server capacity. We use the same model in our

100

5.3. EXPERIMENTAL SETUP

simulation. The characteristics of the simulated infrastructure are reported in Table 5.1.

server
class

cpu capacity
Idle Power

(P idl, in Watts)
Max Power

(P max, in Watts)
count

S 0.25 43 152 25
M 0.5 46 237 125
L 1 79 521 70

Table 5.1: Server characteristics

Since host configurations are heterogeneous, simply measuring the number of allocated hosts by

each policy would not be a very good efficiency indicator. Therefore, we use energy consumption as a

measure of efficiency of the studied heuristics. In the following section we detail our proposed energy

consumption model.

5.3.3 Energy Consumption Model

Modeling the energy consumption of individual servers [129], or whole data centers [130], is an

active research topic. It was shown in a large scale experiment that cpu load is the single metric that

allows to best approximate server power consumption [131]. The reason is that CPU is the server

component that has the most dynamic power range [38]. In numerous works [14, 73, 132, 127, 24], the

power draw of a server is modeled with an affine function of the CPU utilization u(t) (Equation 5.10).

The two parameters of the equation are P max, the maximum power draw, and P idl, the power drawn

when the server is powered on and idle.

P (t) = a ∗ u(t) + b (5.10)

a = P max − P idl (5.11)

b = P idl (5.12)

u(t) ∈ [0, 1] (5.13)

P idl captures the fact that servers are not energy-proportional, they consume energy even when they

do not perform any work [38]. The implication for the placement of VMs is that, to minimize the

energy consumption, servers should either be turned off or be highly utilized, as shown on Figure 5.4.

As in [132], we used different coefficient values according to server size. Bigger servers consume

more power than smaller ones in the idle state, and they have a larger power range. We used the

101

5.4. RESULTS

Pidle

Pmax

0

power

state/load
off on,

idle
on,
max

Figure 5.4: Implication of the non-energy-proportionality of servers. The most energy-efficient states
(in green) are when the server is turned off or highly utilized.

values given by the Cisco UCS power calculator [133] for a B200 M4 blade server with 6, 12 and 24

cores, given in Table 5.1. Based on the work of Orgerie et al. [134], our model accounts the energy

consumed during server state switches. We call Eon and Eoff the energy needed to turn a server on

and off, and give their values in Table 5.2. Finally, we note Non and Noff the number of times servers

are turned on and off during the execution of the simulation. These definitions enable to derive the

total energy consumption for a simulation as in Equation 5.14.

E =
∫︂ ∑︂

j

Pj(t)dt + NonEon + Noff Eoff (5.14)

symbol value description

Eon 24536 J energy spent for switching a server on
Eoff 1501 J energy spent for switching a server off

Table 5.2: Energy consumed during server state switches

5.4 Results

This section reports the energy savings of RTABF with respect to Any Fit and Best Fit, the two

baselines that do not use the knowledge of VM runtime. Figure 7.6 presents the average and dispersion

of energy savings over the ten sample traces. RTABF is evaluated for ten levels of Gaussian prediction

102

5.4. RESULTS

error, displayed on the horizontal axis. Figure 7.6a shows that RTABF consistently saves 25% energy

over Any Fit. Figure 7.6b shows that RTABF does not outperform Best Fit, even when the prediction

error is null. As expected, the performance of RTABF degrades once the prediction error reaches a

threshold (900s).

0 30 60 90 120 180 360 900 2000 3000
standard deviation of runtime prediction

0

10

20

30

40

%
 e

ne
rg

y
sa

ve
d

(a) against Any Fit

0 30 60 90 120 180 360 900 20003000
standard deviation of runtime prediction

20

10

0

10

%
 e

ne
rg

y
sa

ve
d

(b) against Best Fit

Figure 5.5: Percentage of energy saved by RTABF against any-fit and best fit, averaged over 10
simulations

These results highlight that Best Fit works well without using any information of VM runtime.

The use of VM runtime by RTABF does not bring significant improvement in energy consumption,

according to our model. The relationship between VM/job runtime and the share of resource consumed

might explain why the knowledge of runtime does not allow RTABF to outperform BF: “Most jobs are

short, but short jobs contribute little to utilization. Even though less than 2% of jobs run for longer

than one day, such jobs account for over 80% of the recorded usage by [...] requested CPU-or memory-

days” [135]. Because of the weight of long-running jobs, there may be insufficient opportunities to

shutdown servers and save energy.

5.4.1 Conclusion

In this chapter, we evaluated the sensitivity of RTABF, a VM placement algorithm that requires

predictions of VM runtimes. Through simulations based on the Google workload trace, we measured

the energy savings of RTABF with respect to Best Fit and Any Fit, for various levels of prediction

error. Our results show that RTABF does not outperform the Best Fit baseline, possibly because jobs

running more than one day consume 80% of resources and prevent the algorithm from shutting down

servers to save energy. From these results, we conclude that online VM placement with RTABF is

not a valid use case for a runtime prediction system. We believe that it is necessary to look for other

103

5.4. RESULTS

resource allocation algorithms to make use of predictions.

104

Chapter 6

Conclusion and Perspectives

Contenu

6.1 Conclusion . 106

6.1.1 Identified Opportunities Regarding the Management of Resources 106

6.1.2 Predictions of VM Runtime to Improve VM Placement 108

6.2 Perspectives . 109

6.2.1 Maintenances . 109

6.2.2 First Class Upgrade . 110

6.2.3 Overcommitment . 110

105

6.1. CONCLUSION

6.1 Conclusion

Cloud computing services provide a shared and highly-available pool of processing and storage

resources accessible on-demand, to anyone on the planet. Cloud platforms have become very popular

because they allow to amortize the cost of a computing infrastructure over several organizations. Be-

cause cloud infrastructures are large-scale, the allocation of resources to users is automated. Therefore,

the two main assets of a cloud provider are the infrastructure, and the orchestrator, which is the soft-

ware that manages the infrastructure and allocates resources. The orchestrator must take advantage

of the complementarity between user workloads to maximize the profit generated from the utilization

of the infrastructure, while guaranteeing an acceptable Quality of Service (QoS) to users. Since the

quality of resource allocation depends on the fitness between the algorithm and the workload, we

addressed the problem of improving resource allocation at Outscale in two steps: 1) characterize the

workload to identify opportunities regarding the management of resources, and 2) propose solutions

suited to Outscale’s workload.

6.1.1 Identified Opportunities Regarding the Management of Resources

In our survey of cloud workloads (Chapter 2), we showed that works from the literature focused

on the deployment of VMs, in hyperscale platforms (∼ 1M VMs/month) or small-scale ones (∼ 1k

VMs/month). However, Outscale’s platform is non-hyperscale (∼ 100k VMs/month), and deployments

are composed of multiple virtual resources (VMs, but also images, volumes, snapshots and security

groups). Each time a virtual resource is used, the orchestrator must allocate hardware resources

from compute, network, and storage equipment. Besides, focusing on VMs, previous works in the

literature characterized their hardware resource requests and effective usage, but not their QoS, which

is degraded when two VMs contend for a resource.

In order to characterize Outscale’s workload and identify opportunities regarding resource alloca-

tion, we have collected two traces from Outscale’s European region, from August to October 2017 (3

months). The first trace includes requests of virtual resource management operations sent by users,

the second includes measurements of hardware resource usage by VMs. To record the second trace,

we deployed an ad-hoc probe on servers in production. In addition to classic measurements of CPU,

RAM and disk utilization, we collected the number of involuntary context switches (ics), an interfer-

106

6.1. CONCLUSION

ence metric that counts the number of times the threads of a VM got their CPUs pre-empted by the

hypervisor to execute the threads of other VMs or to perform a management or virtualization task.

In Chapter 3, we characterized Outscale’s workload and found that resource creations are bursty,

virtual resource lifetimes and co-deployments are skewed, and so are the amounts of hardware resources

requested and effectively used.

Snapshot creation bursts stress the orchestrator 6 times a day. Outscale would gain from scaling the

orchestrator to the workload. 10% of volumes live more than 5 days. Yet, because long-lived volumes

fill up progressively and are snapshotted recurrently, they have a larger footprint on storage backends

than the majority of shorter-lived volumes. Predicting the lifetime of volumes could allow to spread

the long-lived ones on the storage backends and increase the overcommit ratio of storage space. 75%

of images and security groups are used by two VMs or less, but sometimes they are used by thousands

of VMs. The implementation of images and security groups must be scalable.

Regarding VMs alone, we compared their utilization at Outscale with Azure and Bitbrains, which are

respectively hyperscale and small-scale providers. We found that VMs at Outscale request 13% less

vCPU and 16% more RAM than at Azure. Given these differences, additional work is required to

evaluate if the output of state of the art VM placement algorithms remains acceptable at Outscale. At

Outscale, 70% of VMs never use more than 20% of their requested CPU, and an overcommit of three

allows to save 45% of CPU costs. However, CPU overcommit generates involuntary context switches,

especially for small VM. Besides, short VM runtimes (90% of VMs run less than 1h) limit the benefit

of state of the art VM placement techniques surveyed in Chapter 2. Current techniques place new

VMs based on their resource request, monitor the effective utilization, and then use migrations to

consolidate the VMs on a minimum number of servers. The orchestrator does not have sufficient time

to perform these steps for short-running VMs, hence, their allocation of resources is probably not

optimal. This characterization of Outscale’s workload led to two publications:

— Löıc Perennou, Mar Callau-Zori, Sylvain Lefebvre, Raja Chiky. Workload Characterization for

a Non-Hyperscale Public Cloud Platform, short paper, Proceedings of the IEEE International

Conference on Cloud Computing (CLOUD ’19).

— Löıc Perennou, Mar Callau-Zori and Sylvain Lefebvre. Understanding Scheduler Workload

on Non-Hyperscale Cloud Platform, poster, Proceedings of the 19th ACM/IFIP Middleware

Conference (Middleware ’18).

107

6.1. CONCLUSION

To solve the problem caused by short VM runtimes, we made the hypothesis that it was possible

to predict the behavior of VMs at startup because deployments in the cloud were automatized and

repetitive.

6.1.2 Predictions of VM Runtime to Improve VM Placement

In Chapter 4, we predicted the runtime of VMs at startup using supervised machine learning.

We used features proposed in previous works, such as the amount of resource requested, the timing

of the API request of VM creation, and the account state and history. We proposed the utilization

of features describing the network and ephemeral storage configuration of VMs, server affinity, and

text tags, which users attach to VMs to simplify their inventory. With this extensive set of features,

we obtained an F1 score of 0.91 on a four-class classification problem, using Outscale’s workload

trace. This is a significantly better than previous works that obtained F1=0.75 on the same four-class

classification problem, with the Azure trace. Initially, the F1 score was lower (0.65), especially for the

classes with a minority of items. As this is a symptom of class unbalance, we tried to train the model

on a dataset where the majority class was under-sampled, or the minority class was over-sampled.

In addition, we proposed to decompose the four-class classification problem into a cascade of binary

classification problems. None of these approaches increased model performance. We then tuned the

model hyperparameters, and found that tree depth needed to be increased to 75 to reach an optimal

score. This showed that our initial model was underfitting the data, rather than suffering from class

unbalance. This contribution led to the following publication:

— Löıc Perennou, Raja Chiky, Applying Supervised machine learning to predict virtual machine

runtime for a non-hyperscale cloud provider, Proceedings of the 11th International Conference

on Computational Collective Intelligence (ICCCI ’19).

In Chapter 5, we sought to determine what level of prediction error is required to benefit to the

placement of VMs. To answer this, we evaluated the sensitivity of a VM placement algorithm from

the literature with respect to the prediction error of VM runtime. The evaluated VM placement

heuristics, Release-Time Aware Best Fit (RTABF), co-locates VMs that finish simultaneously in order

to reduce server utilization time and save energy. In previous works, RTABF was evaluated with

the assumption that the runtime of VMs was perfectly known when they start. To complement the

evaluation of RTABF and determine the tolerance to prediction error, we analyzed the sensitivity of

108

6.2. PERSPECTIVES

RTABF with respect to the error of runtime prediction. We simulated the execution of RTABF for

various levels of synthetic prediction error, generated from a Gaussian distribution. We compared

RTABF with Any Fit and Best Fit with respect to the energy consumption of servers. In order to

compare our results with the original evaluation of RTATF, we simulated the execution of the Google

workload trace. Unexpectedly, we found that RTABF does not outperform Best Fit, even when

RTABF has access to perfect predictions of VM runtimes. This contribution led to one publication:

— Löıc Perennou and Sylvain Lefebvre. Runtime Prediction Error Levels for Virtual Machine

Placement in IaaS Cloud, Proceedings of the 9th International Conference on Ambient Systems,

Networks and Technologies (ANT ’18).

6.2 Perspectives

Although we didn’t find the RTABF algorithm to be a promising use case for predictions of the

behavior of VMs, we still think that predictions can be very useful.

6.2.1 Maintenances

The cloud provider needs to make periodic maintenances on servers, to correct a hardware fault

(e.g., ECC errors in memory chips), or update a software such as the hypervisor. Each maintenance

operation requires to reboot the server. To make maintenance transparent for the user, the orchestrator

must perform live migrations of the VMs out of the relevant servers. Hence, maintenances cannot be

made simultaneously on all servers, instead, they are scheduled in batches. In this context, there is

a conflict between the objective of minimizing the maintenance makespan, and minimizing the cost

of migrations. In practice, to make the migration cost acceptable, the orchestrator puts servers in a

staging mode preliminary to a maintenance. Servers in staging mode continue to run existing VMs

but do not accept new ones. This mode allows to lower the number of VMs running, and thus the

migration cost. However, it lengthens the maintenance makespan, and makes a fraction of resources

unavailable to users. We argue that the provider could obtain a better tradeoff if the placement of

VMs took into account the runtime of VMs and the maintenance schedules. Long-running VMs should

go on servers that will not need maintenance in the foreseeable future, whereas short-running VMs

should be allowed to run on servers that are in staging mode.

109

6.2. PERSPECTIVES

6.2.2 First Class Upgrade

Sometimes, the cloud platform lacks the sufficient resources to allow a VM of a given type to start.

In this case, the orchestrator has two possible choices: deny the service, or accept the VM on a better

server than initially requested (we assume this second option is available). It is not trivial to determine

what the optimal choice is. It seems preferable to accept the VM on an upgraded server class, provided

that, during runtime of the VM, there will be sufficient resources in the upgraded server class to serve

high-end VMs. All else being equal, it is preferable to upgrade the server class for short-running VMs

than long-running ones.

6.2.3 Overcommitment

The overcommitment of resources generates interferences between VMs when they need to use

resources simultaneously. In the long term, we think that we will need to use a combination of

existing unsupervised techniques with our proposed supervised approach to minimize interferences.

Existing unsupervised machine learning approaches allow to establish representative profiles of VMs,

through the clustering of their time series of resource utilization. Once representative profiles are

established, we believe that supervised machine learning could be used to predict the profile a VM

at startup. Thanks to the successive utilization of unsupervised and supervised machine learning, we

believe that it will be possible to optimize the co-location of VMs with compatible resource usage as

soon as they start.

110

Chapter 7

Extended Summary in French

7.1 Introduction

7.1.1 Contexte

Les progrès dans de nombreux secteurs d’activité, tels les transports et la médecine, sont condi-

tionnés par le besoin d’analyser un volume de données qui double tous les deux ans - un phénomène

appelé Big Data [4, 3]. Pour réduire les délais et les coûts de traitement des données, le cloud offre un

accès sur demande, via le réseau, à des ressources informatiques mutualisées, gérées par un fournisseur

et facturées à l’usage [6]. Ainsi, les utilisateurs peuvent ajuster leur consommation à leur besoin. Il

existe plusieurs types de services clouds pour lesquels le périmètre de responsabilité du fournisseur

varie. Les trois principaux, définis par le National Institute of Standards and Technology en 2011, sont

présentés en Figure 7.1.

hardware
operating system
libraries
application

deployed by user
delivered by provider

Software as a Service Platform as a Service Infrastructure as a Service

Figure 7.1: Périmètre de responsabilité des trois principaux types de services cloud

111

7.1. INTRODUCTION

Dans cette thèse, nous travaillons sur le modèle IaaS, qui constitue le coeur de métier d’Outscale,

notre partenaire industriel. Outscale possède deux actifs : 1) une infrastructure matérielle conçue

en partenariat avec CISCO, Intel, Netapp et Nvidia; et 2) un orchestrateur propriétaire, TINA OS,

qui coordonne la gestion du matériel, et alloue des ressources aux utilisateurs. Comme le montre la

Figure 7.2, les technologies de virtualisation sont au coeur de la plateforme, car elles permettent un

partage de toute ressource matérielle (serveurs, baies de stockage et réseaux) entre plusieurs utilisateurs

pour en optimiser l’utilisation.

virtual
machine 1

hypervisor

security
group 1

security
group 2

server

virtual
machine 2

controler

volume

disk arraynetwork

CPU RAM IO

snapshot image

controler

Disks

TINA OS
Outscale’s orchestrator

users

1- request (e.g: start VM)
2- allocate resources

virtual resources

hardware resources

Figure 7.2: Architecture de la plateforme IaaS d’Outscale

7.1.2 Contributions

L’objectif de cette thèse est d’aider Outscale à optimiser l’allocation des ressources sur sa plateforme

cloud. Outscale cherche à accueillir le plus grand nombre d’utilisateurs possibles pour maximiser le

profit généré par la plateforme, tout en veillant à ce que la Qualité de Service (QoS) reste conforme

aux attentes. L’algorithme d’allocation de ressources traduit l’expertise des administrateurs en un

ensemble de règles. Les performances de l’algorithme dépendent donc du degré de compréhension des

caractéristiques de la charge de travail. Dans un premier temps, nous chercherons à développer cette

expertise avant de proposer des améliorations de l’algorithme.

112

7.2. ETAT DE L’ART

7.1.3 Caractérisation de la charge de travail

Pour identifier des opportunités d’améliorer l’allocation des ressources, nous caractérisons la charge

sur la plateforme grâce à des traces que nous avons collectées. Nous caractérisons l’utilisation conjointe

des ressources virtuelles pour identifier les opérations qui stressent l’orchestrateur. Nous caractérisons

l’utilisation des ressources matérielles et discutons des implications sur le management de la QoS.

Enfin, nous comparons la charge d’Outscale avec la charge d’autres fournisseurs.

7.1.4 Amélioration de l’allocation des ressources aux VMs à partir de prédictions
de leur durée de vie

Le placement des VMs sur les serveurs est un problème en ligne, l’orchestrateur a une connaissance

partielle des données du problème [17]. Par exemple, la durée de vie de la VM à placer est inconnue.

La migration des VMs est couramment utilisée pour parer à l’imprévu. Les migrations servent à

consolider les VMs sur un ensemble minimal de serveurs pour économiser de l’énergie, ou bien pour

vider un serveur avant une maintenance [20]. Mais les migrations prennent du temps et consomment

des ressources, ainsi elles peuvent dégrader la qualité de service des VMs [23, 22]. Cette thèse apporte

deux autres contributions visant à améliorer l’allocation des ressources.

— Nous formulons l’hypothèse que la durée de vie des VMs peut être prédite à leur démarrage.

Nous montrons que les étiquettes textuelles (tags) décrivant les VMs peuvent être utilisées pour

améliorer la précision des modèles de prédiction.

— Nous cherchons à déterminer quelle précision est nécessaire pour utiliser les prédictions lors

de l’allocation de ressources. Pour ce faire, nous analysons la sensibilité d’un algorithme de

placement de VMs de la littérature à l’erreur de prédiction de durée de vie. Cet algorithme,

Release-Time Aware Best Fit (RTABF), avait précédemment été évalué en considérant des

prédictions parfaites.

7.2 Etat de l’art

7.2.1 Caractérisation de la charge sur les plateformes

Afin d’optimiser l’allocation des ressources de calcul [99, 97], l’allocation des ressources de stock-

age [94, 95], la fixation des prix [106], la tolérance aux pannes [107, 108], ou le développement de

113

7.2. ETAT DE L’ART

nouvelles fonctionnalités [110], il est nécessaire d’avoir une connaissance fine de l’utilisation de la

plateforme. Concernant les problématiques d’allocation des ressources, la littérature montre que la

principale difficulté tient à l’hétérogénéité et la variabilité temporelle des besoins [99, 97]. La Table 7.1

compare les traces d’exécution qui ont servi aux études. La table montre que les travaux s’intéressent

principalement au déploiement des machines virtuelles (VMs), mais négligent le déploiement des vol-

umes, instantanés, et groupes de sécurité utilisés conjointement. Par ailleurs, les plateformes à l’étude

sont de très grande taille, comme celle d’Azure (2M VMs/mois) [2], ou bien de petite taille [16]. Or,

Outscale opère une plateforme de taille intermédiaire (∼ 100k VMs/mois), ce qui pourrait influer sur

d’autres aspects de la charge. Enfin, les études précédentes ont caractérisé l’utilisation des ressources

matérielles (CPU, RAM, IO) [105], mais pas les interférences entre utilisateurs qui dégradent la QoS

fournie.

trace entity hyper
scale

state
events

virtual machine utilization
other
virtual

resources
CPU RAM Disk Net. interf.

Google [96] job yes yes yes yes yes – yes –
Alibaba [97] job yes yes yes yes yes yes yes –
Azure [2] VM yes yes yes – – – – –
Eucal. Sys. [92] VM – yes – – – – – –
SCERIT-SC [16] VM – yes – – – – – –
Bitbrains [15] VM – – yes yes yes yes – –
IBM [95] VM – yes – – – – – images
Nutanix [94] VM – – – – – – – –
Outscale VM – yes yes yes yes – yes yes

Table 7.1: Comparaison du contenu des traces cloud

7.2.2 Placement des VMs

Concernant le problème spécifique du placement des VMs sur les serveurs, il s’agit d’un problème

d’optimisation combinatoire [18]. Un tel problème fait intervenir une fonction objectif pour trouver

la meilleur solution parmi un ensemble discret de solutions acceptables. Dans la littérature, il existe

plusieurs approches pour définir l’objectif ainsi que la méthode d’exploration des solutions. Pour les

objectifs, on peut citer le besoin de consolider les VMs sur un minimum de serveurs pour éteindre

les serveurs inutilisés et ainsi économiser de l’énergie [14, 41, 136]. D’autres approches maximisent la

114

7.2. ETAT DE L’ART

profitabilité de l’infrastructure en ajustant les prix des VMs à la demande, et en n’exécutant que les

plus rentables [45, 46]. Enfin, certains travaux visent à respecter les accords de services passés sur la

QoS fournie [47, 49].

La définition d’une fonction objectif requiert de modéliser l’utilisation de ressources et la QoS

des VMs. Certains modèles considèrent que la QoS est acceptable tant que l’utilisation d’un serveur

ne dépasse pas un seuil [50, 51]. Ces modèles ont deux limitations. Premièrement, l’utilisation de

ressources micro-architecturales, comme les caches CPU ou le bus mémoire, ne peut pas être mesurée.

Ensuite, la tolérance aux interférences des applications qui s’exécutent sur les VMs est variable [63].

C’est pourquoi certains travaux s’appuient sur des mesures d’interférences collectées pour différentes

configurations de co-localisation des applications [47, 64]. Cependant, ces modèles de performance ne

peuvent pour l’instant pas être établis dans un cloud IaaS, car le fournisseur n’a pas connaissance de

l’identité de l’application qui s’exécute dans une VM.

Une fois que la fonction objectif et le modèle d’utilisation des ressources ont été choisis, il faut

déterminer comment explorer au mieux l’ensemble des solutions acceptables. La difficulté provient du

fait que le problème est NP-complet, l’ensemble de solutions crôıt exponentiellement avec le nombre de

serveurs, et l’on ne sait pas si il existe une méthode qui garantisse de trouver la solution optimale sans

toutes les tester [65]. Deux approches sont mises en oeuvre pour réduire la complexité du problème et

accélérer sa résolution. La première approche consiste à décomposer le problème, en divisant l’ensemble

des serveurs en clusters, qui peuvent être formés de manière statique [67] ou dynamique [68, 69]. La

seconde approche consiste à résoudre le problème de manière itérative. Les heuristiques placent les

VMs une par une [35, 55]. Les métaheuristiques partent d’un ensemble de solutions aléatoires et

explorent l’entourage des meilleures avec une probabilité plus forte que les moins bonnes [68, 53].

7.2.3 Utilisation de l’apprentissage automatique pour le placement des VMs

Avec l’évolution de l’état de la plateforme suite au démarrage/arrêt de VMs ou à un changement

d’utilisation, le fournisseur doit ré-optimiser l’allocation des ressources. Pour compenser le temps

nécessaire pour rechercher et implémenter une configuration optimale, il est nécessaire d’anticiper les

changements. Plusieurs travaux utilisent des techniques d’apprentissage automatique pour prédire

l’état du cloud. L’apprentissage automatique cherche à résoudre des problèmes en trouvant des règles

dans un ensemble de données, lorsque ces règles ne sont pas explicitement connues [75]. Nous recensons

115

7.3. CARACTÉRISATION DE L’UTILISATION DE LA PLATEFORME
D’OUTSCALE

dans la littérature deux façons d’anticiper la comportement d’une VM. L’on peut prédire l’utilisation

de ressources après le démarrage, en se basant sur l’historique d’utilisation depuis le lancement [77,

78, 82], ou bien on peut prédire au démarrage, grâce aux paramètres de lancement de la VM ainsi

que l’historique d’utilisation des VMs déjà exécutées [2, 85, 86]. On note que les travaux sur les

prédictions au démarrage s’appliquent majoritairement aux grilles de calcul et d’analyses de données,

où les paramètres de lancement ne sont pas les mêmes que dans le cloud. Le papier s’appliquant au

cloud ne révèle pas les caractéristiques prédictives utilisées. Enfin, à notre connaissance, aucun travail

existant n’a étudié la sensibilité de l’algorithme de placement de VMs aux erreurs de prédictions.

7.3 Caractérisation de l’utilisation de la plateforme d’Outscale

Optimiser l’allocation de ressources nécessite de prendre en compte la nature de la charge de travail

sur la plateforme. Jusqu’ici, la littérature s’est focalisée sur des plateformes de très grande taille (2M+

VMs), ou des plateformes spécialisées de petite taille (10k- VMs). Par ailleurs, les travaux s’intéressent

surtout au déploiement et à l’utilisation des VMs et images, mais pas aux autres ressources virtuelles

ni aux interférences entre les fils d’exécution des VMs et de l’hyperviseur, qui partagent le CPU.

Pour compléter les études précédentes, nous caractérisons la charge sur la plateforme publique, de

taille moyenne (100k VMs/mois) et à usage général d’Outscale. À cette fin, nous avons collecté,

sur la plateforme Européenne, deux trace d’exécution de trois mois entre Août et Octobre 2017. La

première trace rapporte les opérations de déploiement des ressources virtuelles, comme le lancement

d’une VM, ou la suppression d’un groupe de sécurité. La seconde trace rapport la consommation

de ressources matérielles des VMs (CPU, RAM, disque), ainsi que la fréquence des changements de

contextes involontaires. Ces derniers mesurent les interférences car ils comptent le nombre de fois où

l’hyperviseur a retiré le CPU d’une VM afin d’exécuter une tâche de virtualisation ou une autre VM.

Résumons maintenant les caractéristiques de la charge sur la plateforme, et leurs conséquences sur

l’allocation des ressources.

7.3.1 Déploiement des ressources virtuelles

La caractérisation de l’heure de création des ressources virtuelles nous permet d’observer des pics

de charge journaliers pour les VMs, et plus fréquents encore (4h) pour instantanés de volumes. Les

ressources de l’orchestrateur doivent donc être élastiques pour lui permettre de recevoir cette charge

116

7.3. CARACTÉRISATION DE L’UTILISATION DE LA PLATEFORME
D’OUTSCALE

variable. L’analyse de la durée de vie des ressources virtuelles et de leurs interdépendances met en

lumière des usages variés. Ainsi, 90% des volumes vivent moins de 5 jours. Comme ils ne sont pas

remplis de données, ils permettent de sur-allouer l’espace de stockage. En revanche, 8% des volumes

vivent plus de 5 jours et servent à plus de 5 instantanés. L’espace de stockage requis pour les volumes

à longue durée de vie et leurs instantanés peut crôıtre avec le temps, c’est pourquoi l’orchestrateur

doit les répartir sur les différents matériels pour ne pas manquer de ressources. Or, tout comme les

VMs, la durée de vie d’un volume n’est pas connue de l’orchestrateur lors de la création.

7.3.2 Utilisation des ressources matérielles et interférences entre les VMs

L’analyse de la consommation de ressources par les VMs montre, en accord avec les études précé-

dentes [2], que les utilisateurs demandent souvent plus de ressources que ce qu’ils consomment réelle-

ment. Ainsi, 70% des VMs n’utilisent jamais plus de 20% de leur CPU sur une fenêtre de 5 minutes.

Pour ne pas gaspiller de ressources, Outscale sur-alloue le CPU. Dans 75% des cas, un coeur physique

est partagé par 4 VMs au plus. La caractérisation de la fréquence des changements de contexte in-

volontaires révèle que les interférences CPU varient d’un facteur 100. Comme 90% des VMs vivent

moins d’une heure, il parâıt compliqué d’atténuer les interférences et d’optimiser la sur-allocation des

ressources via les migrations, comme proposé dans la littérature [50]. Cependant, il serait peut-être

possible qu’un contrôleur présent sur les serveurs optimise la co-location des fils d’exécution des VMs

sur les coeurs CPU.

7.3.3 Comparaison de la charge d’Outscale avec d’autres fournisseurs

Nous avons comparé la charge d’Outscale avec celle d’Azure, un fournisseur hyperscale [2], et Bit-

brains, qui est spécialisé dans l’hébergement des applications critiques pour l’industrie financière [15].

Chez Outscale, les VMs requêtent en moyenne 13% moins de CPU et 16% plus de RAM que chez

Azure, et elles écrivent plus de données sur disque qu’elles n’en lisent alors que c’est l’inverse chez

Bitbrains. Comme la performance d’un algorithme d’allocation de ressources dépend de la nature de

la charge, nous constatons qu’Outscale a besoin de mener sa propre évaluation des algorithmes de la

littérature pour déterminer si leurs performances restent acceptables.

117

7.4. PRÉDICTION DE DURÉE DE VIE DES VMS

7.3.4 Conclusion

Pour identifier des opportunités d’amélioration des algorithmes d’allocation de ressources, nous

avons caractérisé la charge de la plateforme d’Outscale grâce à des traces de déploiement des ressources

virtuelles et d’utilisation des ressources physiques. Nous avons identifié plusieurs motifs d’utilisation

de la plateforme qui impactent la qualité de service. Ainsi, l’orchestrateur doit faire face à des pics

de création de VMs et instantanés de volumes, allouer de l’espace de stockage à des volumes dont la

durée de vie et donc le taux de remplissage sont hétérogènes, ou bien sur-allouer le CPU des VMs

tout en contrôlant le niveau d’interférences. L’étude du cycle de vie des ressources virtuelles confirme

que le cloud est majoritairement utilisé pour des besoins temporaires. On peut donc faire l’hypothèse

que les déploiements sont répétitifs et donc prévisibles. Dans les chapitres suivants, nous avons voulu

améliorer l’allocation des ressources en utilisant les prédictions issues d’un systèmes d’apprentissage

automatique.

7.4 Prédiction de durée de vie des VMs

Dans la littérature, il a déjà été proposé de placer les VMs en fonction de leur durée de vie [61,

62, 24]. Le problème est que la durée de vie est à priori inconnue de l’orchestrateur. Dans ce chapitre,

nous résolvons ce problème en employant des techniques d’apprentissage automatique. L’apprentissage

automatique vise à trouver la solution d’un problème en évaluant un ensemble de solutions possibles

sur un ensemble de données qui encode l’expérience acquise sur le problème [75]. L’apprentissage

automatique est utilisé lorsque la solution ne peut pas être déterminées analytiquement. Ici, nous

faisons appel à l’apprentissage automatique supervisé, car nos données associent la durée de vie des

VMs s’étant exécutées dans la trace aux caractéristiques qui ont été, ou auraient éventuellement pu

être, connues au démarrage. La nouveauté de notre travail réside dans l’utilisation de nouvelles carac-

téristiques prédictives extraites de la requête de démarrage de la VM ainsi que l’utilisation d’étiquettes

textuelles (tags) permettant aux clients de faire l’inventaire des VMs. Les tags ne sont actuellement

pas disponibles au démarrage, mais nous voulons évaluer leur contribution à la précision du modèle

pour préconiser ou non une éventuelle modification de l’API.

118

7.4. PRÉDICTION DE DURÉE DE VIE DES VMS

7.4.1 Conditions expérimentales

L’une des difficultés associée à l’apprentissage automatique est la recherche des meilleures carac-

téristiques prédictives. Pour évaluer la contribution des caractéristiques à la précision du modèle, nous

comparons trois ensembles de caractéristiques à complétude croissante. Dans le premier ensemble fig-

urent toutes les caractéristiques extraites de la requête de démarrage. Ceci inclue des caractéristiques

déjà connues, comme la quantité de ressources [2]et l’horodatage de la requête [123]. Nous incluons

quatre nouveaux types de caractéristiques décrivant les contraintes de placement, la configuration

réseau de la VM, la configuration de stockage éphémère, ainsi que d’autres paramètres divers. Le

second ensemble de caractéristiques, issu de la littérature [86], résume le comportement historique et

le statut actuel du compte utilisateur. Le troisième ensemble comprend les caractéristiques extraites

des tags. Nous les avons obtenues en concaténant les tags de chaque VM dans un document, puis en

indexant les mots et en codant leur présence avec un vecteur.

Comme une approximation de la durée de vie est suffisante pour un algorithme de placement,

nous avons formulé le problème en une instance de classification. Nous adoptons le score F1 comme

métrique d’évaluation de la précision du modèle, car il est robuste quand les classes ont un effectif

hétérogène. Comme modèle, nous optons pour les arbres de décisions aléatoires extrêmes (extremely

randomized trees) [120]. Les arbres de décision ont l’avantage d’être interprétables car ils sont con-

struits en partitionnant l’espace des données. Les arbres de décisions extrêmes sont un ensemble

d’arbres de décisions, construits en parallèles sur un échantillon aléatoire des données, en considérant

des critères de partitionnement aléatoires eux aussi. L’aléa génère des arbres différents qui, une fois

combinés, permettent d’obtenir un excellent compromis entre biais et variance, c’est-à-dire qu’ils peu-

vent correctement modéliser la complexité des données sans pour autant être sensible au bruit. Pour

nos expériences, nous avons divisé nos données en un ensemble d’apprentissage (80% des individus

tirés au hasard) et de test (le reste).

7.4.2 Résultats

Nous présentons ici nos résultats sur la prédiction de la durée de vie des VMs de la plateforme

d’Outscale, et les comparons avec ceux précédemment obtenus sur les VMs de Microsoft Azure [2].

La figure 7.3 montre que la précision de la classification, mesurée par le score F1, crôıt avec

119

7.4. PRÉDICTION DE DURÉE DE VIE DES VMS

l’utilisation de nouvelles caractéristiques prédictives. Avec les caractéristiques extraites dans la requête

de démarrage uniquement, notre modèle atteint un score F1=0.76, soit autant que le modèle de

comparaison (ligne horizontale noire). Le score F1 atteint 0.87 en ajoutant des caractéristiques qui

résument l’historique et l’état actuel du compte utilisateur, et 0.91 en incluant les tags.

API
call

+account state
and history

+text tags

feature set

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Figure 7.3: Évolution de la précision de la prédiction avec ajout incrémental de caractéristiques prédic-
tives. La ligne horizontale correspond au modèle de comparaison évalué sur la plateforme de Microsoft
Azure [2].

La figure 7.4 présente la liste des 20 plus importantes caractéristiques prédictives. L’importance

maximale, 0.04, est largement inférieure à 1. Cela démontre donc la nécessité d’utiliser une variété de

caractéristiques prédictives. Nous observons aussi, de manière surprenante, que la quantité de CPU

et RAM demandées, qui sont les caractéristiques les plus couramment utilisées dans la littérature,

apportent en fait peu d’information car elles ne sont pas présentes dans la liste. 4 nouvelles caractéris-

tiques que nous avons proposées apparaissent dans la liste et deux sont en premières places, il s’agit

de nombre de groupes de sécurité appliqués à la VM et à la présence de tags.

120

7.5. ÉVALUATION LE A SENSIBILITÉ DE L’ALGORITHME RTABF

sg
s

te
x
t_

0

su
m

_c
o
re

n
b
_j

o
b
s_

a
ct

iv
e

su
m

_r
a
m

si
n
_t

_w
e
e
k

co
s_

t_
d
a
y

su
m

_r
u
n
ti

m
e
_a

ct
iv

e

si
n
_t

_d
a
y

co
s_

t_
w

e
e
k

co
re

_a
v
g
_a

ll

te
x
t_

1

m
a
x
_r

u
n
ti

m
e
_a

ct
iv

e

ru
n
ti

m
e
_a

v
g
_a

ll

co
re

_a
v
g
_a

ct
iv

e

te
x
t_

2

la
st

_c
o
m

p
le

ti
o
n

co
re

_n
o
rm

a
liz

e
d

ru
n
ti

m
e
_a

v
g
_3

st
a
rt

_h
o
u
r

feature category

0.00

0.02

0.04

im
p
o
rt

a
n
ce

Figure 7.4: Liste des 20 caractéristiques les plus utiles à la prédiction.

7.4.3 Conclusion

Nous avons proposé une méthode pour prédire la durée de vie des VMs grâce à l’apprentissage

automatique. Nous avons présenté de nouvelles caractéristiques prédictives, extraites de la requête de

lancement de VMs et des tags utilisés pour faire l’inventaire des VMs. Grâce à ces caractéristiques,

notre modèle obtient une meilleure précision que précédemment reporté dans la littérature (F1=0.91

vs F1=0.74). Les tags sont actuellement fournis après la création de la VM. Pour savoir s’il serait

utile de modifier l’API afin de bénéficier du gain de précision, nous devons déterminer quelle est la

précision requise par un algorithme de placement. Dans la section suivante, nous présentons notre

évaluation de la sensibilité d’un algorithme de placement aux erreurs de prédictions.

7.5 Évaluation le a sensibilité de l’algorithme RTABF

Nous avons cherché à déterminer quelle est la précision requise pour qu’un algorithme de placement

de VMs s’appuie sur des prédictions de durée de vie. En 2014, Dabbagh et al. ont proposé l’algorithme

Release-Time Aware Best Fit (RTABF), qui, en co-localisant les VMs qui s’arrêteront en même temps,

permet l’extinction des serveurs inutilisés et minimise la consommation d’énergie [24]. Comme RTABF

a été évalué en considérant des prédictions parfaites, nous proposons d’évaluer sa sensibilité aux

erreurs de prédiction. Comme dans l’évaluation originale, nous choisissons comme métrique la quantité

d’énergie économisée, relativement à l’utilisation d’algorithmes de placement classiques comme Any-

121

7.5. ÉVALUATION LE A SENSIBILITÉ DE L’ALGORITHME RTABF

Fit et Best-Fit. Dans le paragraphe suivant, nous présentons chacun de ces algorithmes.

7.5.1 Présentation des algorithmes de placement des VMs en ligne

Les algorithmes de placement en ligne sont utilisés pour le placement initial des VMs, pas pour la

consolidation des VMs existantes. Les deux algorithmes les plus connus sont Any-Fit (AF), qui choisit

un serveur au hasard parmi ceux disposant d’assez de ressources; et Best-Fit, qui choisit le serveur sur

lequel le placement de la VM laissera le moins de ressources libres [74, 41, 127].

Tandis que AF et BF se basent uniquement sur la quantité de ressources demandée, Release-Time

Aware Best Fit (RTABF) prend aussi en compte la durée de vie de la VM. RTABF combine l’objectif de

BF avec l’objectif de minimiser le temps d’utilisation des serveurs, et donc l’énergie consommée. Pour

cela, RTABF co-localise les VMs qui s’éteindront en même temps. La figure 7.5a compare l’exécution

des algorithmes BF et RTABF, et montre comment la prise en compte de la durée de vie peut servir

à économiser l’énergie.

7.5.2 Conditions expérimentales

Pour évaluer la capacité de RTABF à économiser de l’énergie en dépit des erreurs de prédiction,

nous avons simulé une infrastructure et une charge de travail avec un niveau contrôlable d’erreur de

prédiction. Pour l’infrastructure, nous adoptons un modèle de consommation d’énergie linéaire avec

la charge CPU des serveurs, en accord avec la littérature [14, 73]. Pour la trace d’exécution, nous

avons sélectionné dix échantillons aléatoires de la trace de Google [96] afin d’obtenir des résultats

statistiquement fiables à partir de simulations rapides, et aussi afin de comparer nos résultats avec

l’évaluation originale de RTABF. Nous avons simulé la présence d’erreur de prédiction en rajoutant à

la durée de vie des VMs un bruit Gaussien, et ce pour dix niveaux de bruits différents.

7.5.3 Résultats

La figure 7.6 présente la moyenne et la déviation standard des économies d’énergie réalisées par

RTABF, relativement à AF et BF, pour différents niveaux d’erreur de prédiction. Indépendamment du

niveau d’erreur de prédiction, RTABF économise 25% d’énergie par rapport à AF. Par contre, RTABF

n’économise pas d’énergie par rapport à BF, même lorsque l’on ajoute pas d’erreur aux durées de vie

des VMs.

122

7.5. ÉVALUATION LE A SENSIBILITÉ DE L’ALGORITHME RTABF

Pidle Pidle

server A server Bpower

time

VM 1:
55%,

3h
VM 2: 50%, 15h

VM 3: 40%, 12h VM 4:
40%, 4h

(a) Best Fit

Pidle Pidle

VM 1:
55%,

3h
VM 2: 50%, 15h

VM 3: 40%, 12h
VM 4:

40%, 4h

server A server Bpower

time

Psaved

(b) Release-Time Aware Best Fit

Figure 7.5: Comparaison entre Best-Fit(BF) et Release Time-Aware Best-Fit (RTABF). VMs 3 et 4
doivent être placées sur les serveurs A et B, tandis que les VMs 1 et 2 sont déjà en train de s’exécuter.
RTABF économise de l’énergie en prenant en compte la durée de vie des VMs, ce qui permet d’éteindre
le serveur A plus tôt qu’avec BF.

0 30 60 90 120 180 360 900 2000 3000
standard deviation of runtime prediction

0

10

20

30

40

%
 e

ne
rg

y
sa

ve
d

(a) against Any Fit

0 30 60 90 120 180 360 900 20003000
standard deviation of runtime prediction

20

10

0

10

%
 e

ne
rg

y
sa

ve
d

(b) against Best Fit

Figure 7.6: Pourcentage d’énergie économisée par RTABF, relativement à AF et BF, sur 10 simulations

123

7.6. CONCLUSION GÉNÉRALE

Ce résultat négatif pourrait être expliqué par la relation entre la durée de vie des VMs et la fraction

de ressources consommée sur l’infrastructure: “La plupart des VMs ont une durée de vie courte, mais

contribuent peu à l’utilisation. Ainsi, les 98% de VMs qui durent plus d’une journée consomment moins

de 20% des ressources” [135]. Le poids important des longues VMs pourrait empêcher l’algorithme

d’éteindre les serveurs pour économiser de l’énergie.

7.5.4 Conclusion

Pour étudier l’intérêt de couplet un système prédictif avec un algorithme de placement de VMs,

nous avons évalué la sensibilité de l’algorithme RTABF aux erreurs de prédiction. Nous avons simulé le

placement d’un flux de VMs d’après la trace de Google pour différents niveaux d’erreurs de prédiction,

et rapporté la consommation d’énergie sous RTABF avec celle sous Any-Fit et Best-Fit. Nos résultats

montrent que RTABF n’est pas meilleur que Best-Fit, possiblement parce que les VMs de longue durée

de vie consomment la plupart des ressources et empêchent donc l’algorithme d’éteindre les serveurs

pour économiser de l’énergie. Nous concluons donc que le placement d’une VM avec RTABF n’est pas

un cas d’usage viable pour les prédictions de durée de vie, et qu’il faut chercher d’autres cas d’usages.

7.6 Conclusion Générale

L’un des principaux défis des infrastructures d’informatique en nuage (cloud computing) est d’offrir

aux utilisateurs une performance acceptable, tout en minimisant les besoins en matériel et énergie.

Cette thèse CIFRE, menée en collaboration avec Outscale, un fournisseur de services cloud, visait

à améliorer l’allocation des ressources de la plateforme grâce à de nouvelles sources d’information

pertinentes.

Les caractéristiques de la charge soumise à l’orchestrateur déterminent dans quelle mesure il est

possible d’allier performance et économie de ressources. La plateforme d’Outscale et sa charge de

travail possèdent des caractéristiques particulières : avec 1̃50k machines virtuelles créées par mois, la

plateforme est un ordre de grandeur plus grande que des clouds privés, et un ordre de grandeur plus

petite que des clouds dits “hyperscale”, comme celui de Microsoft Azure. C’est pourquoi nos trois

contributions visaient à optimiser l’allocation des ressources en tenant compte des spécificités de la

charge de travail.

124

7.6. CONCLUSION GÉNÉRALE

En premier lieu, nous avons caractérisé la charge d’Outscale d’après des traces d’exécution collec-

tées sur la plateforme et publiées après anonymisation. Nous avons montré que les pics périodiques de

déploiement de VMs et instantanés de volumes stressent l’orchestrateur, la possibilité de sur-allouer

l’espace de stockage dépend du placement des volumes de longue durée de vie car ils sont plus à risque

de se remplir et d’être sauvegardés, la courte durée des VMs complique l’utilisation des techniques de

placement basées sur les migrations, et la sur-allocation du CPU génère des interférences que nous

avons quantifiées.

En seconde contribution, nous avons proposé un modèle de prédiction de la durée de vie des VMs

à partir de caractéristiques prédictives qui sont, ou pourraient être, disponibles à leur démarrage. En

plus de caractéristiques déjà connues, comme la quantité de ressources demandée, et l’historique de

consommation de l’utilisateur, nous avons utilisé la configuration réseau de la VM et les étiquettes

textuelles attachées à la VM pour permettre son inventaire. Notre modèle obtient une précision

mesurée par le score F1 de 0.91, tandis qu’un modèle de la littérature évalué sur la trace de Microsoft

Azure avait obtenu 0.74.

Enfin, pour savoir si nous pouvions utiliser ces prédictions pour optimiser le placement des VMs,

nous avons évalué la sensibilité d’un algorithme de placement de VMs de la littérature aux erreurs

de prédiction. Cet algorithme, appelé RTABF, avait préalablement été évalué en considérant des

prédictions de durée de vie parfaites. Nous avons donc évalué, via simulation, la sensibilité de RTABF

à différents niveaux d’erreur de prédiction. Notre travail invalide l’utilisation des prédictions de durée

de vie avec l’algorithme RTABF.

Dans de futurs travaux, nous chercherons à montrer que les prédictions de durée de vie pourraient

aider à réduire le nombre de migrations nécessaires lors des maintenances des serveurs. Les serveurs

doivent être mis en maintenance par lots pour éviter de rendre indisponible une trop grande fraction

des ressources. Au cours de ce processus, les serveurs prévus pour maintenance arrêtent de recevoir de

nouvelles VMs pour minimiser le nombre de migrations, mais ils sont donc sous-utilisés. D’autre part,

les VMs de longue durée de vie peuvent être migrées plusieurs fois en passant d’un lot à un autre, et

donc faire l’expérience d’une qualité de service dégradée. Nous proposons de placer les VMs de longue

durée de vie sur des serveurs qui ne nécessiteront pas de maintenance, tandis que les VMs de courte

durée de vie pourraient aller sur les serveurs en attente de maintenance afin de continuer à les utiliser.

125

7.6. CONCLUSION GÉNÉRALE

126

Bibliography

[1] F. Zabatta and K. Ying, “A thread performance comparison: Windows nt and solaris on a

symmetric multiprocessor,” in Proc. 2nd USENIX Windows NT Symposium, 1998, pp. 1–11.

[2] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R. Bianchini, “Resource

central: Understanding and predicting workloads for improved resource management in large

cloud platforms,” in Proceedings of the 26th Symposium on Operating Systems Principles,

ser. SOSP ’17. New York, NY, USA: ACM, 2017, pp. 153–167. [Online]. Available:

http://doi.acm.org/10.1145/3132747.3132772

[3] D. Bernstein, N. Vidovic, and S. Modi, “A cloud paas for high scale, function, and velocity mobile

applications - with reference application as the fully connected car,” in 2010 Fifth International

Conference on Systems and Networks Communications, Aug 2010, pp. 117–123.

[4] V. Marx, “The big challenges of big data,”Nature, no. 498, pp. 255–260, June 2013.

[5] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,”Mobile networks and applications, vol. 19,

no. 2, pp. 171–209, 2014.

[6] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.

[7] B. Varghese and R. Buyya, “Next generation cloud computing,” Future Gener. Comput. Syst.,

vol. 79, no. P3, pp. 849–861, Feb. 2018. [Online]. Available: https://doi.org/10.1016/j.future.

2017.09.020

[8] “Gartner cloud revenue forecast.” [Online]. Avail-

able: https://www.gartner.com/en/newsroom/press-releases/

2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019

[9] W. Vogels, “Beyond server consolidation,” Queue, vol. 6, no. 1, pp. 20–26, Jan. 2008. [Online].

Available: http://doi.acm.org/10.1145/1348583.1348590

127

http://doi.acm.org/10.1145/3132747.3132772
https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.1016/j.future.2017.09.020
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
http://doi.acm.org/10.1145/1348583.1348590

BIBLIOGRAPHY

[10] B. Jennings and R. Stadler, “Resource management in clouds: Survey and research challenges,”

Journal of Network and Systems Management, vol. 23, no. 3, pp. 567–619, Jul 2015. [Online].

Available: https://doi.org/10.1007/s10922-014-9307-7

[11] A. Verma, M. Korupolu, and J. Wilkes, “Evaluating job packing in warehouse-scale computing,”

in 2014 IEEE International Conference on Cluster Computing (CLUSTER), Sept 2014, pp.

48–56.

[12] C. Isci, J. E. Hanson, I. Whalley, M. Steinder, and J. O. Kephart, “Runtime demand estimation

for effective dynamic resource management,” in 2010 IEEE Network Operations and Management

Symposium - NOMS 2010, April 2010, pp. 381–388.

[13] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Heracles: Improving

resource efficiency at scale,” in 2015 ACM/IEEE 42nd Annual International Symposium on

Computer Architecture (ISCA), June 2015, pp. 450–462.

[14] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for

efficient management of data centers for cloud computing,” Future Gener. Comput. Syst.,

vol. 28, no. 5, pp. 755–768, May 2012. [Online]. Available: http://dx.doi.org/10.1016/j.future.

2011.04.017

[15] S. Shen, V. v. Beek, and A. Iosup, “Statistical characterization of business-critical workloads

hosted in cloud datacenters,” in 2015 15th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, May 2015, pp. 465–474.

[16] D. Klusáček and B. Parák, “Analysis of mixed workloads from shared cloud infrastructure,” in

Job Scheduling Strategies for Parallel Processing, D. Klusáček, W. Cirne, and N. Desai, Eds.

Cham: Springer International Publishing, 2018, pp. 25–42.

[17] S. Challita, F. Paraiso, and P. Merle, “A Study of Virtual Machine Placement Optimization

in Data Centers,” in 7th International Conference on Cloud Computing and Services Science

(CLOSER), ScitePress, Ed. Porto, Portugal: INSTICC, Apr. 2017, pp. 343–350.

[18] Z. Mann, “A taxonomy for the virtual machine allocation problem,” International Journal of

Mathematical Models and Methods in Applied Sciences, vol. 9, pp. 269–276, 2015.

[19] V. Kherbache, E. Madelaine, and F. Hermenier, “Planning Live-Migrations to Prepare Servers

for Maintenance,” in Euro-Par 2014: Parallel Processing Workshops, vol. 8806, no. 0302-9743,

Porto, Portugal, Aug. 2014, pp. 498 – 507. [Online]. Available: https://hal.inria.fr/hal-01096040

128

https://doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1016/j.future.2011.04.017
https://hal.inria.fr/hal-01096040

BIBLIOGRAPHY

[20] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “Entropy: A consolidation

manager for clusters,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, ser. VEE ’09. New York, NY, USA: ACM,

2009, pp. 41–50. [Online]. Available: http://doi.acm.org/10.1145/1508293.1508300

[21] E. Feller, C. Rohr, D. Margery, and C. Morin, “Energy Management in IaaS Clouds:

A Holistic Approach,” INRIA, Research Report RR-7946, Apr. 2012. [Online]. Available:

https://hal.inria.fr/hal-00692236

[22] Y. Wu and M. Zhao, “Performance modeling of virtual machine live migration,” in 2011 IEEE

4th International Conference on Cloud Computing, July 2011, pp. 492–499.

[23] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual machine live migration

in clouds: A performance evaluation,” in IEEE International Conference on Cloud Computing.

Springer, 2009, pp. 254–265.

[24] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Release-time aware vm placement,” in

2014 IEEE Globecom Workshops (GC Wkshps), Dec 2014, pp. 122–126.

[25] J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends in the

electrical efficiency of computing,” IEEE Annals of the History of Computing, vol. 33, no. 3, pp.

46–54, March 2011.

[26] C. Lameter, “Numa (non-uniform memory access): An overview,” Queue, vol. 11, no. 7, pp.

40:40–40:51, Jul. 2013. [Online]. Available: http://doi.acm.org/10.1145/2508834.2513149

[27] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V. Anderson, S. M. Bennett,

A. Kagi, F. H. Leung, and L. Smith, “Intel virtualization technology,”Computer, vol. 38, no. 5,

pp. 48–56, 2005.

[28] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield, “Xen and the art of virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp.

164–177, Oct. 2003. [Online]. Available: http://doi.acm.org/10.1145/1165389.945462

[29] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the linux virtual machine

monitor,” in Proceedings of the Linux symposium, vol. 1. Dttawa, Dntorio, Canada, 2007, pp.

225–230.

129

http://doi.acm.org/10.1145/1508293.1508300
https://hal.inria.fr/hal-00692236
http://doi.acm.org/10.1145/2508834.2513149
http://doi.acm.org/10.1145/1165389.945462

BIBLIOGRAPHY

[30] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Paravirtualization for hpc systems,” in Inter-

national Symposium on Parallel and Distributed Processing and Applications. Springer, 2006,

pp. 474–486.

[31] F. Rodŕıguez-Haro, F. Freitag, L. Navarro, E. Hernánchez-sánchez, N. Faŕıas-Mendoza, J. A.

Guerrero-Ibáñez, and A. González-Potes, “A summary of virtualization techniques,” Procedia

Technology, vol. 3, pp. 267–272, 2012.

[32] M. Mahalingam, D. G. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and

C. Wright, “Virtual extensible local area network (vxlan): A framework for overlaying virtualized

layer 2 networks over layer 3 networks.”RFC, vol. 7348, pp. 1–22, 2014.

[33] G. Lettieri, V. Maffione, and L. Rizzo, “A study of i/o performance of virtual machines,”

The Computer Journal, vol. 61, no. 6, pp. 808–831, 09 2017. [Online]. Available:

https://dx.doi.org/10.1093/comjnl/bxx092

[34] Q. Zhu and T. Tung, “A performance interference model for managing consolidated workloads

in qos-aware clouds,” in 2012 IEEE Fifth International Conference on Cloud Computing, June

2012, pp. 170–179.

[35] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar, L. Uyeda, and

U. Wieder, “Validating heuristics for virtual machines consolidation,” 01 2011.

[36] A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tuma, “Analyzing the impact of cpu

pinning and partial cpu loads on performance and energy efficiency,” in 2015 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, May 2015, pp. 1–10.

[37] D. Guyon, A.-C. Orgerie, and C. Morin, “Glenda: Green label towards energy proportionality

for iaas data centers,” in Proceedings of the Eighth International Conference on Future Energy

Systems, ser. e-Energy ’17. New York, NY, USA: ACM, 2017, pp. 302–308. [Online]. Available:

http://doi.acm.org/10.1145/3077839.3084028

[38] L. A. Barroso and U. Hölzle, “The case for energy-proportional computing,”Computer, vol. 40,

no. 12, 2007.

[39] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: Research problems

in data center networks,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec.

2008. [Online]. Available: http://doi.acm.org/10.1145/1496091.1496103

130

https://dx.doi.org/10.1093/comjnl/bxx092
http://doi.acm.org/10.1145/3077839.3084028
http://doi.acm.org/10.1145/1496091.1496103

BIBLIOGRAPHY

[40] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, “Vmplanner: Optimizing virtual

machine placement and traffic flow routing to reduce network power costs in cloud data

centers,” Comput. Netw., vol. 57, no. 1, pp. 179–196, Jan. 2013. [Online]. Available:

http://dx.doi.org/10.1016/j.comnet.2012.09.008

[41] H. Jin, T. Cheocherngngarn, D. Levy, A. Smith, D. Pan, J. Liu, and N. Pissinou, “Joint host-

network optimization for energy-efficient data center networking,” in 2013 IEEE 27th Interna-

tional Symposium on Parallel and Distributed Processing, May 2013, pp. 623–634.

[42] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros,“Scalable traffic-aware virtual machine

management for cloud data centers,” in 2014 IEEE 34th International Conference on Distributed

Computing Systems, June 2014, pp. 238–247.

[43] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center networks with

traffic-aware virtual machine placement,” in 2010 Proceedings IEEE INFOCOM, March 2010,

pp. 1–9.

[44] “What are your spot instance options on aws, azure, and google?”

date accessed: 2018-01-30. [Online]. Available: http://sixninesit.com/

what-are-your-spot-instances-options-on-aws-azure-and-google/

[45] A. Nadjaran Toosi, F. Khodadadi, and R. Buyya, “Sipaas: Spot instance pricing as a

service framework and its implementation in openstack,” Concurrency and Computation:

Practice and Experience, vol. 28, no. 13, pp. 3672–3690, 2016. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3749

[46] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic resource allocation for spot markets in cloud

computing environments,” in 2011 Fourth IEEE International Conference on Utility and Cloud

Computing, Dec 2011, pp. 178–185.

[47] C. Delimitrou and C. Kozyrakis, “Qos-aware scheduling in heterogeneous datacenters with

paragon,” ACM Trans. Comput. Syst., vol. 31, no. 4, pp. 12:1–12:34, Dec. 2013. [Online].

Available: http://doi.acm.org/10.1145/2556583

[48] L. Tomás and J. Tordsson, “Cloud service differentiation in overbooked data centers,” in 2014

IEEE/ACM 7th International Conference on Utility and Cloud Computing, Dec 2014, pp. 541–

546.

131

http://dx.doi.org/10.1016/j.comnet.2012.09.008
http://sixninesit.com/what-are-your-spot-instances-options-on-aws-azure-and-google/
http://sixninesit.com/what-are-your-spot-instances-options-on-aws-azure-and-google/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3749
http://doi.acm.org/10.1145/2556583

BIBLIOGRAPHY

[49] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes, “Cpi2: Cpu

performance isolation for shared compute clusters,” in Proceedings of the 8th ACM European

Conference on Computer Systems, ser. EuroSys ’13. New York, NY, USA: ACM, 2013, pp.

379–391. [Online]. Available: http://doi.acm.org/10.1145/2465351.2465388

[50] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual machines for managing sla

violations,” in 2007 10th IFIP/IEEE International Symposium on Integrated Network Manage-

ment, May 2007, pp. 119–128.

[51] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with dynamic bandwidth

demand in data centers,” in 2011 Proceedings IEEE INFOCOM, April 2011, pp. 71–75.

[52] J. Xu and J. Fortes, “A multi-objective approach to virtual machine management in

datacenters,” in Proceedings of the 8th ACM International Conference on Autonomic

Computing, ser. ICAC ’11. New York, NY, USA: ACM, 2011, pp. 225–234. [Online]. Available:

http://doi.acm.org/10.1145/1998582.1998636

[53] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony system algorithm

for virtual machine placement in cloud computing,” J. Comput. Syst. Sci., vol. 79, no. 8, pp.

1230–1242, Dec. 2013. [Online]. Available: http://dx.doi.org/10.1016/j.jcss.2013.02.004

[54] Q. Zheng, R. Li, X. Li, and J. Wu, “A multi-objective biogeography-based optimization for

virtual machine placement,” in 2015 15th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, May 2015, pp. 687–696.

[55] F. Hermenier, J. Lawall, and G. Muller, “Btrplace: A flexible consolidation manager for highly

available applications,” IEEE Transactions on Dependable and Secure Computing, vol. 10, no. 5,

pp. 273–286, Sept 2013.

[56] A. Rai, R. Bhagwan, and S. Guha, “Generalized resource allocation for the cloud,” in Proceedings

of the Third ACM Symposium on Cloud Computing, ser. SoCC ’12. New York, NY, USA:

ACM, 2012, pp. 15:1–15:12. [Online]. Available: http://doi.acm.org/10.1145/2391229.2391244

[57] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server workload analysis for

power minimization using consolidation,” in Proceedings of the 2009 Conference on USENIX

Annual Technical Conference, ser. USENIX’09. Berkeley, CA, USA: USENIX Association,

2009, pp. 28–28. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855807.1855835

132

http://doi.acm.org/10.1145/2465351.2465388
http://doi.acm.org/10.1145/1998582.1998636
http://dx.doi.org/10.1016/j.jcss.2013.02.004
http://doi.acm.org/10.1145/2391229.2391244
http://dl.acm.org/citation.cfm?id=1855807.1855835

BIBLIOGRAPHY

[58] Z. Gong and X. Gu, “Pac: Pattern-driven application consolidation for efficient cloud comput-

ing,” in 2010 IEEE International Symposium on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems, Aug 2010, pp. 24–33.

[59] H. Lin, X. Qi, S. Yang, and S. Midkiff, “Workload-driven vm consolidation in cloud data centers,”

in 2015 IEEE International Parallel and Distributed Processing Symposium, May 2015, pp. 207–

216.

[60] X. Li, A. Ventresque, J. O. Iglesias, and J. Murphy, “Scalable correlation-aware virtual machine

consolidation using two-phase clustering,” in 2015 International Conference on High Perfor-

mance Computing Simulation (HPCS), July 2015, pp. 237–245.

[61] Y. Zhao, H. Liu, Y. Wang, Z. Zhang, and D. Zuo, “Reducing the upfront cost of private

clouds with clairvoyant virtual machine placement,” The Journal of Supercomputing, Jan 2019.

[Online]. Available: https://doi.org/10.1007/s11227-018-02730-4

[62] S. Srinivasan, U. Bellur, and R. Badrinath, “Debunking the myth that tight packing is energy

conserving,” in Proceedings of the 17th International Conference on Distributed Computing and

Networking. ACM, 2016, p. 20.

[63] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up: Increasing

utilization in modern warehouse scale computers via sensible co-locations,” in Proceedings

of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO-44. New York, NY, USA: ACM, 2011, pp. 248–259. [Online]. Available:

http://doi.acm.org/10.1145/2155620.2155650

[64] R. Xu, S. Mitra, J. Rahman, P. Bai, B. Zhou, G. Bronevetsky, and S. Bagchi,

“Pythia: Improving datacenter utilization via precise contention prediction for multiple

co-located workloads,” in Proceedings of the 19th International Middleware Conference, ser.

Middleware ’18. New York, NY, USA: ACM, 2018, pp. 146–160. [Online]. Available:

http://doi.acm.org/10.1145/3274808.3274820

[65] Z. Mann, “Approximability of virtual machine allocation: Much harder than bin packing,” in

9th Hungarian-Japanese Symposium on Discrete Mathematics, 2015.

[66] A. Verma, P. Ahuja, and A. Neogi, “pmapper: Power and migration cost aware application

placement in virtualized systems,” in Middleware 2008, V. Issarny and R. Schantz, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008, pp. 243–264.

133

https://doi.org/10.1007/s11227-018-02730-4
http://doi.acm.org/10.1145/2155620.2155650
http://doi.acm.org/10.1145/3274808.3274820

BIBLIOGRAPHY

[67] M. Kesavan, I. Ahmad, O. Krieger, R. Soundararajan, A. Gavrilovska, and K. Schwan, “Prac-

tical compute capacity management for virtualized datacenters,” IEEE Transactions on Cloud

Computing, vol. 1, no. 1, pp. 1–1, Jan 2013.

[68] E. Feller, C. Morin, and A. Esnault, “A case for fully decentralized dynamic vm consolidation

in clouds,” in 4th IEEE International Conference on Cloud Computing Technology and Science

Proceedings, Dec 2012, pp. 26–33.

[69] F. Quesnel, A. Lèbre, and M. Südholt, “Cooperative and reactive scheduling in

large-scale virtualized platforms with dvms,” Concurrency and Computation: Practice

and Experience, vol. 25, no. 12, pp. 1643–1655, June 2012. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.2848

[70] Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti, and Y. Coady,

“Dynamic resource allocation in computing clouds using distributed multiple criteria decision

analysis,” in 2010 IEEE 3rd International Conference on Cloud Computing, July 2010, pp. 91–

98.

[71] M. Khelghatdoust, V. Gramoli, and D. Sun, “Glap: Distributed dynamic workload consolidation

through gossip-based learning,” in 2016 IEEE International Conference on Cluster Computing

(CLUSTER), Sept 2016, pp. 80–89.

[72] J. O. Gutierrez-Garcia and A. Ramirez-Nafarrate, “Collaborative agents for distributed load

management in cloud data centers using live migration of virtual machines,” IEEE Transactions

on Services Computing, vol. 8, no. 6, pp. 916–929, Nov 2015.

[73] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consolidation of virtual machines in

self-organizing cloud data centers,” IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp.

215–228, July 2013.

[74] S. S. Masoumzadeh and H. Hlavacs, “A cooperative multi agent learning approach to man-

age physical host nodes for dynamic consolidation of virtual machines,” in 2015 IEEE Fourth

Symposium on Network Cloud Computing and Applications (NCCA), June 2015, pp. 43–50.

[75] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and

prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015. [Online]. Available: http:

//science.sciencemag.org/content/349/6245/255

134

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.2848
http://science.sciencemag.org/content/349/6245/255
http://science.sciencemag.org/content/349/6245/255

BIBLIOGRAPHY

[76] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-adaptive workload classification

and forecasting for proactive resource provisioning,” in Proceedings of the 4th ACM/SPEC

International Conference on Performance Engineering, ser. ICPE ’13. New York, NY, USA:

ACM, 2013, pp. 187–198. [Online]. Available: http://doi.acm.org/10.1145/2479871.2479899

[77] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for cloud systems,” in

2010 International Conference on Network and Service Management, Oct 2010, pp. 9–16.

[78] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “AGILE: Elastic distributed resource

scaling for infrastructure-as-a-service,” in Proceedings of the 10th International Conference

on Autonomic Computing (ICAC 13). San Jose, CA: USENIX, 2013, pp. 69–82. [Online].

Available: https://www.usenix.org/conference/icac13/technical-sessions/presentation/nguyen

[79] J. Xue, F. Yan, R. Birke, L. Y. Chen, T. Scherer, and E. Smirni, “Practise: Robust predic-

tion of data center time series,” in 2015 11th International Conference on Network and Service

Management (CNSM), Nov 2015, pp. 126–134.

[80] S. Di, D. Kondo, and W. Cirne, “Google hostload prediction based on bayesian model with

optimized feature combination,” Journal of Parallel and Distributed Computing, vol. 74, no. 1,

pp. 1820 – 1832, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0743731513002128

[81] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization and prediction in the

cloud: A multiple time series approach,” in 2012 IEEE Network Operations and Management

Symposium, April 2012, pp. 1287–1294.

[82] F. Qiu, B. Zhang, and J. Guo, “A deep learning approach for vm workload prediction in the

cloud,” in 2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD), May 2016, pp. 319–324.

[83] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner, “Cicada: Introducing predictive

guarantees for cloud networks,” in 6th USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud 14). Philadelphia, PA: USENIX Association, 2014. [Online]. Available:

https://www.usenix.org/conference/hotcloud14/workshop-program/presentation/lacurts

[84] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz, “Wrangler: Predictable and faster

jobs using fewer resources,” in Proceedings of the ACM Symposium on Cloud Computing,

135

http://doi.acm.org/10.1145/2479871.2479899
https://www.usenix.org/conference/icac13/technical-sessions/presentation/nguyen
http://www.sciencedirect.com/science/article/pii/S0743731513002128
http://www.sciencedirect.com/science/article/pii/S0743731513002128
https://www.usenix.org/conference/hotcloud14/workshop-program/presentation/lacurts

BIBLIOGRAPHY

ser. SOCC ’14. New York, NY, USA: ACM, 2014, pp. 26:1–26:14. [Online]. Available:

http://doi.acm.org/10.1145/2670979.2671005

[85] J. Liu, H. Shen, and H. S. Narman, “Ccrp: Customized cooperative resource provisioning for

high resource utilization in clouds,” in 2016 IEEE International Conference on Big Data (Big

Data), Dec 2016, pp. 243–252.

[86] E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving backfilling by using machine

learning to predict running times,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, ser. SC ’15. New York, NY, USA:

ACM, 2015, pp. 64:1–64:10. [Online]. Available: http://doi.acm.org/10.1145/2807591.2807646

[87] R. McKenna, S. Herbein, A. Moody, T. Gamblin, and M. Taufer, “Machine learning predictions

of runtime and io traffic on high-end clusters,” in 2016 IEEE International Conference on Cluster

Computing (CLUSTER), Sept 2016, pp. 255–258.

[88] C. Canali and R. Lancellotti, “Automatic virtual machine clustering based on bhattacharyya

distance for multi-cloud systems,” in Proceedings of the 2013 International Workshop on

Multi-cloud Applications and Federated Clouds, ser. MultiCloud ’13. New York, NY, USA:

ACM, 2013, pp. 45–52. [Online]. Available: http://doi.acm.org/10.1145/2462326.2462337

[89] R. Zhang, R. Routray, D. M. Eyers, D. Chambliss, P. Sarkar, D. Willcocks, and P. Pietzuch,

“Io tetris: Deep storage consolidation for the cloud via fine-grained workload analysis,” in 2011

IEEE 4th International Conference on Cloud Computing, July 2011, pp. 700–707.

[90] A. Lebre, J. Pastor, A. Simonet, and M. Südholt, “Putting the next 500 vm placement algorithms

to the acid test: The infrastructure provider viewpoint,” IEEE Transactions on Parallel and

Distributed Systems, vol. 30, no. 1, pp. 204–217, Jan 2019.

[91] M. C. Calzarossa, L. Massari, and D. Tessera, “Workload characterization: A survey

revisited,” ACM Comput. Surv., vol. 48, no. 3, pp. 48:1–48:43, Feb. 2016. [Online]. Available:

http://doi.acm.org/10.1145/2856127

[92] R. Wolski and J. Brevik, “Using parametric models to represent private cloud workloads,” IEEE

Transactions on Services Computing, vol. 7, no. 4, pp. 714–725, Oct 2014.

[93] D. Milojičić, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud management tool,” IEEE

Internet Computing, vol. 15, no. 2, pp. 11–14, March 2011.

136

http://doi.acm.org/10.1145/2670979.2671005
http://doi.acm.org/10.1145/2807591.2807646
http://doi.acm.org/10.1145/2462326.2462337
http://doi.acm.org/10.1145/2856127

BIBLIOGRAPHY

[94] I. Cano, S. Aiyar, and A. Krishnamurthy, “Characterizing private clouds: A large-scale

empirical analysis of enterprise clusters,” in Proceedings of the Seventh ACM Symposium on

Cloud Computing, ser. SoCC ’16. New York, NY, USA: ACM, 2016, pp. 29–41. [Online].

Available: http://doi.acm.org/10.1145/2987550.2987584

[95] C. Peng, M. Kim, Z. Zhang, and H. Lei, “VDN: Virtual machine image distribution network for

cloud data centers,” in INFOCOM ’12.

[96] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces: format + schema,”

Google Inc., Mountain View, CA, USA, Technical Report, Nov. 2011, revised 2014-11-17 for

version 2.1. Posted at https://github.com/google/cluster-data.

[97] C. Lu and al., “Imbalance in the cloud: An analysis on alibaba cluster trace,” in 2017 IEEE

International Conference on Big Data (Big Data), 2017.

[98] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison of

virtual machines and linux containers,” in 2015 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), March 2015, pp. 171–172.

[99] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Heterogeneity and

dynamicity of clouds at scale: Google trace analysis,” in Proceedings of the Third ACM

Symposium on Cloud Computing, ser. SoCC ’12. New York, NY, USA: ACM, 2012, pp.

7:1–7:13. [Online]. Available: http://doi.acm.org/10.1145/2391229.2391236

[100] S. Di, D. Kondo, and W. Cirne, “Characterization and comparison of cloud versus grid work-

loads,” in 2012 IEEE International Conference on Cluster Computing, Sept 2012, pp. 230–238.

[101] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman, and N. DeBardeleben,

“On the diversity of cluster workloads and its impact on research results,” in 2018 USENIX

Annual Technical Conference (USENIX ATC 18). Boston, MA: USENIX Association, 2018,

pp. 533–546. [Online]. Available: https://www.usenix.org/conference/atc18/presentation/

amvrosiadis

[102] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis, modeling and simulation of

workload patterns in a large-scale utility cloud,” IEEE Transactions on Cloud Computing, vol. 2,

no. 2, pp. 208–221, April 2014.

137

http://doi.acm.org/10.1145/2987550.2987584
https://github.com/google/cluster-data
http://doi.acm.org/10.1145/2391229.2391236
https://www.usenix.org/conference/atc18/presentation/amvrosiadis
https://www.usenix.org/conference/atc18/presentation/amvrosiadis

BIBLIOGRAPHY

[103] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards characterizing cloud backend

workloads: Insights from google compute clusters,” SIGMETRICS Perform. Eval. Rev., vol. 37,

no. 4, pp. 34–41, Mar. 2010. [Online]. Available: http://doi.acm.org/10.1145/1773394.1773400

[104] F. Dumont and J.-M. Menaud, “Synthesizing realistic cloudworkload traces for studying

dynamic resource system management,” in Revised Selected Papers of the Second

International Conference on Cloud Computing and Big Data - Volume 9106, ser. CloudCom-

Asia 2015. Berlin, Heidelberg: Springer-Verlag, 2015, pp. 29–41. [Online]. Available:

https://doi.org/10.1007/978-3-319-28430-9 3

[105] R. Birke, L. Y. Chen, and E. Smirni, “Multi-resource characterization and their (in)dependencies

in production datacenters,” in 2014 IEEE Network Operations and Management Symposium

(NOMS), May 2014, pp. 1–6.

[106] C. Kilcioglu, J. M. Rao, A. Kannan, and R. P. McAfee, “Usage patterns and the

economics of the public cloud,” in Proceedings of the 26th International Conference on World

Wide Web, ser. WWW ’17. Republic and Canton of Geneva, Switzerland: International

World Wide Web Conferences Steering Committee, 2017, pp. 83–91. [Online]. Available:

https://doi.org/10.1145/3038912.3052707

[107] X. Chen, C. Lu, and K. Pattabiraman, “Failure analysis of jobs in compute clouds: A google

cluster case study,” in 2014 IEEE 25th International Symposium on Software Reliability Engi-

neering, Nov 2014, pp. 167–177.

[108] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild: A large-scale

field study,” Commun. ACM, vol. 54, no. 2, pp. 100–107, Feb. 2011. [Online]. Available:

http://doi.acm.org/10.1145/1897816.1897844

[109] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a large disk drive population,”

in 5th USENIX Conference on File and Storage Technologies (FAST 2007), 2007, pp. 17–29.

[110] K. He, A. Fisher, L. Wang, A. Gember, A. Akella, and T. Ristenpart, “Next stop, the cloud:

Understanding modern web service deployment in ec2 and azure,” in Proceedings of the 2013

Conference on Internet Measurement Conference, ser. IMC ’13. New York, NY, USA: ACM,

2013, pp. 177–190. [Online]. Available: http://doi.acm.org/10.1145/2504730.2504740

[111] P. Leitner and J. Cito, “Patterns in the Chaos: A Study of Performance Variation and Pre-

dictability in Public IaaS Clouds,”ACM TOIT ’16.

138

http://doi.acm.org/10.1145/1773394.1773400
https://doi.org/10.1007/978-3-319-28430-9_3
https://doi.org/10.1145/3038912.3052707
http://doi.acm.org/10.1145/1897816.1897844
http://doi.acm.org/10.1145/2504730.2504740

BIBLIOGRAPHY

[112] I. Habib, “Virtualization with kvm,” Linux Journal ’08.

[113] P. Domingos, “A few useful things to know about machine learning,” Commun. ACM, vol. 55,

no. 10, pp. 78–87, Oct. 2012. [Online]. Available: http://doi.acm.org/10.1145/2347736.2347755

[114] C. E. Brodley and P. E. Utgoff, “Multivariate decision trees,”Machine Learning, vol. 19, no. 1,

pp. 45–77, 1995. [Online]. Available: https://doi.org/10.1007/BF00994660

[115] B. Leo, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, 1984.

[116] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106, Mar

1986. [Online]. Available: https://doi.org/10.1007/BF00116251

[117] W.-Y. Loh, “Fifty years of classification and regression trees,” International Statistical Review,

vol. 82, no. 3, pp. 329–348, 2014. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/

10.1111/insr.12016

[118] G. Brown, Ensemble Learning. Boston, MA: Springer US, 2010, pp. 312–320.

[119] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct 2001. [Online].

Available: https://doi.org/10.1023/A:1010933404324

[120] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”Machine Learning, vol. 63,

no. 1, pp. 3–42, Apr 2006. [Online]. Available: https://doi.org/10.1007/s10994-006-6226-1

[121] R. E. Schapire, Explaining AdaBoost. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,

pp. 37–52. [Online]. Available: https://doi.org/10.1007/978-3-642-41136-6 5

[122] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez, and K. Kochut, “A

brief survey of text mining: Classification, clustering and extraction techniques,” arXiv preprint

arXiv:1707.02919, 2017.

[123] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using system-generated predictions rather

than user runtime estimates,” IEEE Transactions on Parallel and Distributed Systems, vol. 18,

no. 6, pp. 789–803, June 2007.

[124] T. Kopinski, S. Magand, U. Handmann, and A. Gepperth, “A pragmatic approach to multi-class

classification,” in 2015 International Joint Conference on Neural Networks (IJCNN), July 2015,

pp. 1–8.

139

http://doi.acm.org/10.1145/2347736.2347755
https://doi.org/10.1007/BF00994660
https://doi.org/10.1007/BF00116251
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12016
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12016
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/978-3-642-41136-6_5

BIBLIOGRAPHY

[125] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Pret-

tenhofer, A. Gramfort, J. Grobler et al., “Api design for machine learning software: experiences

from the scikit-learn project,” arXiv preprint arXiv:1309.0238, 2013.

[126] C. X. Ling and V. S. Sheng, Class Imbalance Problem. Boston, MA: Springer US, 2010, pp.

171–171. [Online]. Available: https://doi.org/10.1007/978-0-387-30164-8 110

[127] P. Svärd, W. Li, E. Wadbro, J. Tordsson, and E. Elmroth, “Continuous datacenter consolida-

tion,” in 2015 IEEE 7th International Conference on Cloud Computing Technology and Science

(CloudCom), Nov 2015, pp. 387–396.

[128] P. Minet, E. Renault, I. Khoufi, and S. Boumerdassi, “Analyzing traces from a google data

center,” in 2018 14th International Wireless Communications Mobile Computing Conference

(IWCMC), June 2018, pp. 1167–1172.

[129] W. Lin, W. Wu, H. Wang, J. Z. Wang, and C.-H. Hsu, “Experimental and quantitative analysis

of server power model for cloud data centers,” Future Generation Computer Systems, 2016.

[130] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling: A survey,”

IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 732–794, 2016.

[131] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized computer,”

in ACM SIGARCH Computer Architecture News, vol. 35, no. 2. ACM, 2007, pp. 13–23.

[132] S. Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang, “Particle swarm optimization for energy-aware

virtual machine placement optimization in virtualized data centers,” in Parallel and Distributed

Systems (ICPADS), 2013 International Conference on. IEEE, 2013, pp. 102–109.

[133] “Cisco ucs power calculator.” [Online]. Available: https://ucspowercalc.cloudapps.cisco.com

[134] A. Orgerie, L. Lefèvre, and J. Gelas,“Chasing gaps between bursts: Towards energy efficient large

scale experimental grids,” in 2008 Ninth International Conference on Parallel and Distributed

Computing, Applications and Technologies, Dec 2008, pp. 381–389.

[135] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Towards understanding

heterogeneous clouds at scale: Google trace analysis,” Intel Science and Technology Center for

Cloud Computing, Tech. Rep, vol. 84, 2012.

140

https://doi.org/10.1007/978-0-387-30164-8_110
https://ucspowercalc.cloudapps.cisco.com

BIBLIOGRAPHY

[136] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual machines consolidation in

cloud data centers using reinforcement learning,” in 2014 22nd Euromicro International Confer-

ence on Parallel, Distributed, and Network-Based Processing, Feb 2014, pp. 500–507.

141

Löıc PÉRENNOU

Virtual Machine Experience Design:
A Predictive Resource Allocation

Approach for Cloud Infrastructures

Résumé : L’un des principaux défis des fournisseurs de services cloud est d’offrir
aux utilisateurs une performance acceptable, tout en minimisant les besoins en
matériel et énergie. Dans cette thèse CIFRE menée avec Outscale, un fournisseur
de cloud, nous visons à optimiser l’allocation des ressources en utilisant de nouvelles
sources d’information. Nous caractérisons la charge de travail pour comprendre le
stress résultant sur l’orchestrateur, et la compétition pour les ressources disponibles
qui dégrade la qualité de service. Nous proposons un modèle pour prédire la
durée d’exécution des VMs à partir de caractéristiques prédictives disponibles au
démarrage. Enfin, nous évaluons la sensibilité aux erreurs d’un algorithme de place-
ment des VMs de la littérature qui se base sur ces prédictions. Nous ne trouvons
pas d’intérêt à coupler note système prédictif avec cet algorithme, mais nous pro-
posons d’autres façons d’utiliser les prédictions pour optimiser le placement des VMs.

Mots clés : Infrastructure à la demande, placement de machine virtuelle, plateforme
cloud, orchestrateur

Abstract : One of the main challenges for cloud computing providers remains to offer
trustable performance for all users, while maintaining an efficient use of hardware
and energy resources. In the context of this CIFRE thesis lead with Outscale, a
public cloud provider, we perform an in-depth study aimed at making management
algorithms use new sources of information. We characterize Outscale’s workload to
understand the resulting stress for the orchestrator, and the contention for hardware
resources. We propose models to predict the runtime of VMs based on features
which are available when they start. We evaluate the sensitivity with respect to
prediction error of a VM placement algorithm from the literature that requires such
predictions. We do not find any advantage in coupling our prediction model and the
selected algorithm, but we propose alternative ways to use predictions to optimize
the placement of VMs.

Keywords : Infrastructure as a Service, virtual machine placement, cloud plat-
form, orchestrator

	Acknowledgments
	Résumé
	Abstract
	List of tables
	List of figures
	Introduction
	Context
	Research Problems and Contributions
	Identify opportunities regarding the management of resources
	Improve the allocation of resources to VMs by predicting the behavior of VMs

	State of the Art
	Introduction
	Bottom Up View of the Datacenter Architecture
	Hardware Architecture of a Server
	Virtualization
	Scaling Out The Architecture

	Allocation of Resources to Virtual Machines
	Objectives
	Maximize Profitability
	Respect Service-Level Agreement on Performance
	Multi-objective resource allocation

	Workload Models
	Static Resource Utilization Model
	Dynamic Resource Utilization Model
	Clairvoyant Resource Utilization Model
	Performance Model

	Solving of the resource allocation problem
	Problem Partitioning
	Exploring the Space of Candidate Solutions

	Discussion

	Machine Learning Based Approaches
	Prediction of resource utilization
	Single VM Prediction Model
	Multiple VM Prediction Model
	Predictions served at startup

	Approximation of interference profiles
	Identification of groups of VMs with similar resource usage variations
	Speeding up Interference Measurement

	Discussion

	Characterization of Cloud Workload Traces
	Comparison of Workload Traces
	VM Based Workload
	Job Based Workload

	Characterization of Workload Traces
	Server Management
	Storage Management
	Resource Pricing
	Failure Analysis
	Application Deployment

	Discussion

	Conclusion

	Characterization of Outscale's Workload
	Introduction
	Data Collection
	Traces of Resources Management Operations
	Traces of The Resource Usage of VMs
	Implementation of Data Collection in Compliance With Security Standards

	Understanding Management Operations
	Time Patterns in Virtual Resource Management
	Resources requested by VMs
	Correlations Between Virtual Resource Requests

	Understanding The Resource Usage of VMs
	Understanding Interferences Between VMs
	Comparative Study of The Consumption of Clients and Internal Users
	Comparative Study With Other Traces
	Comparison With Azure
	Comparison With Bitbrains

	Conclusions

	Prediction of VM runtime
	Introduction
	Supervised Machine Learning
	Decision Trees
	Ensemble Methods
	Evaluation Metrics for Classification
	Accuracy
	F1 score

	Feature Encoding and Scaling

	Experimental Setup For Predicting VM Runtime
	Feature Search
	Features from the API call of the VM request
	Features from the account state and history
	Features extracted from text tags

	Dealing With Unbalanced Classes

	Implementation
	Presentation of Scikit-Learn
	Limitations of Scikit-Learn
	Implementation of our Scikit-Learn Extension

	Results
	Importance of the feature set on model performance
	Comparison of learning methods

	Conclusion

	Sensitivity Evaluation of RTABF
	Introduction
	Comparison of online VM placement algorithms
	Any Fit
	Best Fit
	Release-Time Aware Best Fit

	Experimental Setup
	Workload Trace
	Infrastructure Model
	Energy Consumption Model

	Results
	Conclusion

	Conclusion and Perspectives
	Conclusion
	Identified Opportunities Regarding the Management of Resources
	Predictions of VM Runtime to Improve VM Placement

	Perspectives
	Maintenances
	First Class Upgrade
	Overcommitment

	Extended Summary in French
	Introduction
	Contexte
	Contributions
	Caractérisation de la charge de travail
	Amélioration de l'allocation des ressources aux VMs à partir de prédictions de leur durée de vie

	Etat de l'art
	Caractérisation de la charge sur les plateformes
	Placement des VMs
	Utilisation de l'apprentissage automatique pour le placement des VMs

	Caractérisation de l'utilisation de la plateforme d'Outscale
	Déploiement des ressources virtuelles
	Utilisation des ressources matérielles et interférences entre les VMs
	Comparaison de la charge d'Outscale avec d'autres fournisseurs
	Conclusion

	Prédiction de durée de vie des VMs
	Conditions expérimentales
	Résultats
	Conclusion

	Évaluation le a sensibilité de l'algorithme RTABF
	Présentation des algorithmes de placement des VMs en ligne
	Conditions expérimentales
	Résultats
	Conclusion

	Conclusion Générale

	Bibliography

