
HAL Id: tel-02372711
https://theses.hal.science/tel-02372711

Submitted on 20 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global minmax optimization for robust H∞ control
Dominique Monnet

To cite this version:
Dominique Monnet. Global minmax optimization for robust H∞ control. Systems and Control [cs.SY].
ENSTA Bretagne - École nationale supérieure de techniques avancées Bretagne, 2018. English. �NNT :
2018ENTA0009�. �tel-02372711�

https://theses.hal.science/tel-02372711
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’ECOLE NATIONALE SUPERIEURE
DE TECHNIQUES AVANCEES BRETAGNE

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601

Mathématiques et Sciences et Technologies

de l'Information et de la Communication

Spécialité : Automatique, productique et robotique

Global minmax optimization for robust 𝑯∞ control

Thèse présentée et soutenue à Brest le 19/11/2018
Unité de recherche : LabSTICC – UMR 6285

Par

Dominique MONNET

Rapporteurs avant soutenance :

Tibor CSENDES Professor, University of Szeged
Gérard SCORLETTI Professor, Ecole Central de Lyon, Ampère Laboratory

Composition du Jury :

Président : Sorin OLARU Professor, Central Supélec, L2S
Examinateurs : Sophie TARBOURIECH Senior Researcher, LAAS-CNRS

 Alexandre GOLDSZTEJN Research Associate, LS2N

Dir. de thèse : Benoît CLEMENT Associate Professor, Lab-STICC
Co-dir. de thèse : Jordan NININ Associate Professor, Lab-STICC

Invité(s)
Véronique SERFATY Head of Information Engineering and Robotics Scientific Area, DGA

2

Acknowledgements

Puisque ce manuscrit est désormais dans sa forme définitive, j’adresse ici mes remerciements
aux personnes qui m’ont accompagnées jusqu’au terme de ces trois longues années de thèse,
pêle-mêle: encadrants, famille, collègues, co-bureau, amis, compagnons de bar. Les personnes
qui seront mentionnées ci-dessous peuvent se retrouver dans plusieurs des catérogies men-
tionnées ci-dessus, c’est selon, et je laisse à chacun d’eux la liberté de s’inclure dans celles qui
leur sembleront pertinentes.

En premier lieu, je tiens à remercier les deux personnes qui ont pariées sur moi en me
confiant le sujet de thèse qui a donné lieu au présent document. Ces deux personnes sont bien
sûr Benôıt et Jordan, qui ont su m’encadrer tout en me laissant une grande liberté dans mes
travaux de recherche. Plus particulièrement, je remercie Benôıt pour les conseils avisés qu’il
m’a dispensé, notament lors de longs et parfois un peu frais séminaires en rade de Brest. Je
remercie Jordan pour la patience, voir l’abnégation, dont il a fait preuve pour l’amélioration
des codes d’optimisation (mais en avons nous fini avec le code ?), et les quelques heures passées
ensemble à répondre à la question: ”et là, comment on contracte ?”, question qui a désormais
réponse dans les pages de ce manuscrit. Enfin, je leur suis redevable à tout les deux de m’avoir
envoyé en conférence de-ci de-là, de Berlin à Braga en passant pas les casinos de Las Vegas
et les plages de Santa Catarina.

Je remercie mes colocataires du bureau M111, qui lui ont donné une dimension résoluement
internationale : Gaspard, Juan, Lorenzo, Nisha et Federico. Nous avons passé ensemble de
nombreuses heures à mener nos recherche côte-à-côte, et partagé des moments allant de la
rigolage au désespoir quasi-catatonique. Mes pensées vont en particulier à Juan, avec qui
j’ai passé une excellente année pendant laquelle nous avons travailler ensemble. Je ne le re-
mercierai jamais assez de s’être occupé des manips. Et bien sûr, je n’oublie pas Gaspard, avec
qui j’ai passé la majorité de la thèse. Nous nous sommes bien souvent posés la question de
notre présence dans ce bureau lors de légers moments de doute quant à nos thèses. Je crois
qu’aucun de nous n’a jamais vraiment trouvé de réponse définitive, mais maintenant que plus
aucun de nous deux n’est dans ce bureau disons que la question n’a plus plus lieu d’être.

L’équipe au grand complet de la zone de réflexion scientifique, ou plus vulgairement salle
café, à toute sa place parmi ces lignes. Les nombreuses discussions qui y ont eu lieu, souvent
de hautes volées, ont été une source d’inspriration continue. Je remercie en particulier Michel
et Christophe pour leurs anecdotes qu’ils ont toujours eu à cœur de rendre plus savoureuses
avec soupçon de mauvais esprit ou de cynisme. J’espère m’être acquitté honorablement de ma
tâche de responsable café pendant mes deux dernières années de thèse, bien que mes réflexes
étudiants m’aient plus poussés vers les promotions que les considérations gustatives.

Je remercie chaudement Annick et Michèle, qui m’ont grandement aidées dans mes diverses
démarches administratives. Leurs facilités à gérer des situations dans lesquels un néophyte
tel que moi avait toutes les chances de s’empêtrer m’ont toujours stupéfié.

Je me dois aussi de remercier Alexandre, et plus récement Rui, qui donnent du sens à mes

3

travaux en les applicant sur des problèmes réels. J’espère ne pas avoir trop dégoûté Alexandre
de la commande robuste, car bien souvent il a joué le rôle de bêta-testeur pour les codes que
j’ai développé et il a du composer avec une interface, sinon austère, tout du moins rebutante
au premier abord. C’est, entre autre, grâce à ses encouragements et son enthousiasme pour
mes travaux que j’ai pu les mener jusqu’à leurs termes. Je tiens, en outre, à remercier Pierre
Simon pour son aide indispensable lors des manips avec le Ciscrea.

Agradezco al grupo de investigación de la Universidad Nacional de La Plata por la exce-
lente estada realizada. En particular quiero agradecerles a Fabricio, Hernán y Juan por su
afectuoso recibimiento y el tiempo que me han dedicado. Tengo la esperanza que nuestra
colaboración pueda continuar en el tiempo. Por muchos mas baratones juntos!

Je n’oublie pas les doctorants et ingénieurs de recherche du bâtiment M, bande de joyeux
drilles retrouvée autour d’un tas de gauffres ou de crèpes ou lors de pique-nique sur les plages
bretonnes : Auguste, Charles, Gaspard, Guillherme, Irène, Joris, Romain, Simon, Thomas.
Je souhaite bon courage aux doctorants en rédaction, et une bonne continuation à tous !

Ma famille mérite bien plus que ces quelques lignes pour le soutien qu’elle m’a apportée
durant cette thèse. Mes parents et mes soeurs m’ont toujours offert une place où m’échapper
et me ressourcer, un ailleurs pour prendre du recul sur la thèse, et tout le reste.

Je dédie mes dernières pensées à mes grand-parents, qui s’en sont allés au cours de ces
trois années de thèse, ainsi qu’à ma tante et mon ami, partis trop tôt.

Dominique.

4

“So we shall let the reader answer this question for himself: who is the happier man, he
who has braved the storm of life and lived or he who has stayed securely on shore and merely
existed ?”

Hunter S. Thompson.

5

Notations

Intervals

∅ : empty set.
x : vector of interval (or box)
IR : set of real intervals
x : lower bound of x
x : upper bound of x
f : inclusion function of f

Optimization

x : minimization variable
f : objective function, Rn 7→ R.
x∗ : minimizer (resp. maximizer) of a minimization problem (resp. maximization problem)
x̃ : best feasible point found
f∗ : global minimum (resp. maximum) of a minimization problem (resp. maximization problem)
C : contractor
Cf̃ : contractor based on the best feasible point

CJ : monotonicity contractor

Minmax Optimization

y : maximization variable
fx : fx(y) = f(x, y)
Yx : feasible domain of y for the maximization problem at x
Yx : ∪

x∈x
Yx

fsup : objective function of the minmax problem, fsup(x) = sup
y∈Yx

f(x, y)

y∗x : maximizer of fx over Yx
fx : set of functions fx, fx = {fx |x ∈ x}
f−x : lower bound of the hull of fx, f−x (y) = min

x∈x
f(x, y)

f−x : upper bound of the hull of fx, f+
x (y) = sup

x∈x
f(x, y)

CYx : contractor for Yx

Cf̃x : extension of Cf̃ to a set of functions

CJy : extension of CJ to a set of functions
Cl : adaptation of Cf̃ for the minmax problem

6

Control

s : Laplace’s variable
i : imaginary unit
ω : pulsation
k : vector of controller parameters
θ : vector of uncertain parameters
Θ : set of uncertain parameters
Tw→z : transfer from w to z
w̃ : weighted counterpart of the signal w
z̃ : (non weighted) performance output

7

Acronyms

Optimization

B&B : Branch and Bound
CSP : Constraint Satisfaction Problem
IBBA : Interval Branch and Bound Algorithm
SIBBA : Set Interval Branch and Bound Algorithm
MMIBBA : MinMax Interval Branch and Bound Algorithm
SIC : Semi Infinite Constraint
SIP : Semi Infinite Program

Control

SISO : Single Input Single Output
MISO : Multiple Input Single Output
SIMO : Single Input Single Output
MIMO : Multiple Input Multiple Output
LMI : Linear Matrix Inequality
SS : Structured Synthesis
IOSS : Independent Outputs Structured Synthesis
RA : Robustness Analysis
SSV : Structured Singular Value
RSA : Robust Stability Analysis
RHA : Robust H∞ Analysis
RSS : Robust Structured Synthesis

Contents

1 H∞ control problems 7

1.1 Dynamical systems . 7

1.2 Linear Time invariant systems . 8

1.2.1 Stability of LTI systems . 9

1.2.2 Systems and signals norms . 10

1.2.3 Interconnection of systems and internal stability 11

1.3 Systems with parametric uncertainties . 14

1.4 General H∞ synthesis problem . 15

1.5 Example of H∞ synthesis for tracking problem 15

1.6 Resolution of H∞ synthesis problem . 17

1.7 Uncertainty representation and robustness analysis 20

1.7.1 µ analysis approach . 20

1.7.2 Polytopic uncertain systems . 21

1.8 Robust structured synthesis . 22

1.8.1 Convex methods . 23

1.8.2 Worst-case minimization approaches . 23

1.8.3 Parametric approaches to robust synthesis 23

1.9 Proposed approach to H∞ problems . 25

2 Interval Analysis Tools and Branch and Bound algorithms 27

2.1 Interval arithmetic . 27

2.1.1 Intervals . 28

2.1.2 Interval Arithmetic . 30

2.1.3 Inclusion functions . 30

2.1.4 Natural inclusion functions . 31

2.2 Constraint Satisfaction Problem and contractors 33

2.2.1 Constraint propagation: Forward Backward 34

2.2.2 Contractors . 35

2.2.3 Contractors programming . 36

2.2.4 Proving feasibility and non-feasibility with contractors 37

2.3 Branch and Bound algorithms based on Intervals 38

2.3.1 Notations . 39

2.3.2 Interval Branch and Bound Algorithm 40

2.3.3 Monotonicity test . 43

9

10 CONTENTS

2.3.4 Feasible set characterization . 45

2.4 Conclusion . 47

3 Minmax optimization and semi infinite programming 49

3.1 Introduction . 49

3.1.1 MinMax problems . 49

3.1.2 Semi infinite programs . 50

3.1.3 Problem of interest . 51

3.2 General approach . 52

3.3 Branch and bound algorithm for a set of functions 53

3.3.1 Computing bounds of a set of maxima 53

3.3.2 Consistency w.r.t infinite number of constraints 57

3.3.3 Extension of contractors for the maximization of a set of functions . . . 59

3.3.4 Contractor for subsets of x . 64

3.3.5 SIBBA algorithm . 65

3.3.6 Numerical example . 70

3.4 MinMax problems subject to SIC . 70

3.4.1 Algorithm for minmax problems . 70

3.4.2 Inheritance strategy . 73

3.4.3 Taking semi infinite constraints into account 76

3.4.4 Sub-optimal set characterization . 78

3.5 Numerical Results . 79

3.6 Conclusion and outlooks . 81

4 Global optimization approach to H∞ synthesis and analysis 83

4.1 Global SS by performance output independence 83

4.1.1 Explicit formula of the H∞ norm of MISO systems 83

4.1.2 Internal stability . 86

4.1.3 Explicit formulation of the structured synthesis problem 88

4.1.4 Illustrative example . 88

4.1.5 Benchmark examples . 92

4.1.6 Discussion . 97

4.2 Solution to robustness analysis . 97

4.2.1 Robust stability analysis . 98

4.2.2 Robust H∞ analysis . 100

4.2.3 Discussion . 102

4.3 Robust structured H∞ synthesis . 103

4.3.1 Worst case minimization formulation . 105

4.3.2 Example . 106

4.3.3 Discussion . 107

4.4 Conclusion . 108

CONTENTS 11

5 Case study: robust control for underwater robot 111
5.1 AUV model and perturbations . 112

5.1.1 Linear model . 115
5.2 Design specifications, synthesis, and analysis . 116

5.2.1 Specifications . 117
5.2.2 Synthesis . 119
5.2.3 Two empirical solutions . 122

5.3 Simulations and experiments . 122
5.3.1 Simulations . 123
5.3.2 Experimental Results . 124

5.4 Conclusion . 128

6 Conclusion 129
6.1 Contributions . 129
6.2 Prospects . 130

Appendices 145

A Optimization benchmark problems 147
A.1 Semi infinite problems . 147
A.2 Minmax problems . 149

B Preliminary work on sliding mode control 153

Introduction

Control theory consists in controlling dynamical systems such as they behave as desired. This
is achieved by searching for a control law such that criteria, translating what is the desired
behavior, are met. Finding this control law is the synthesis problem: compute the best control
law with respect to the synthesis criteria. Formulating such a problem under a mathematical
form often requires a model of the dynamical system. This model may not describe exactly
the real system due to approximations, and as a consequence suffers from uncertainties. The
robustness analysis problem consists in verifying that the control law is robust to model un-
certainties, meaning that the synthesis criteria are met for all possible values of uncertainties.
Finally, the robust synthesis problem resides in synthesizing a control law taking the model
uncertainties into account, and in a sense merges both the synthesis and the analysis problems.

Those three problems are generally framed as optimization programs in order to be solved,
deriving from the synthesis criteria an objective function to minimize and constraints that
must be satisfied. Both the objective function and the constraints are in general not convex.
To this extent, several optimization methods/approaches can be considered.

• The initial non-convex problem is reformulated into a convex one. In this way, the new
problem has only one local minimum which is also the global minimum, and can be
solved easily. Such an approach is said to be conservative, since the problem solved is
different than the initial problem. Three kind of convex reformulation can be performed:

– A convex subset provides an upper bound of the objective over the search domain.

– A convex relaxation provides a lower bound on the objective function over the
search domain.

– A convex approximation has no guarantee to be lower or greater than the objective
function, their relative positions is not known over the search domain.

An enclosure of the global optimum of the initial problem can be derived from convex
subset and relaxation, but this enclosure can be pessimistic.

• Local optimization methods can be used to solve the initial non-convex problem. These
methods converge locally, and the solution provided depends in the starting point cho-
sen in the search domain. To avoid this drawback, a multi-start strategy is generally
adopted, starting the local optimization methods at several random points. Alterna-
tively to multi-start, meta-heuristics methods such as Tabu search provide strategies to
avoid falling in the same local minima. However, there is no guarantee that the global
optimum is found.

1

2 CONTENTS

• Global optimization methods are guaranteed to converge to the global minimum, in-
dependently from the initial condition of the method, and do not need starting point.
These methods are very interesting when one desire to find the global optimum with a
given accuracy. For non-convex problems, the probably most popular method for global
optimization is the branch and bound algorithm.

This thesis focuses in particular on H∞ control, and the three associated control problems,
namely the synthesis, the robustness analysis and the robust synthesis. Despite of the advan-
tage that global optimization presents over local optimization and convex reformulation, very
few attention has been given to this approach to solve H∞ problems. The aim of this thesis
is to investigate how these problems can be solved in a global way. The global optimization
method chosen is Branch and Bound algorithms based on interval analysis. This method
require explicit functions of the objective and the constraints, and it will appear that the
problems have, under certain conditions, an explicit minmax formulation and involve semi
infinite constraints. However, if the global resolution of this particular class of problems has
received some attention in the literature, no solver is available. As a consequence, this thesis
is dedicated to both the explicit formulation of the H∞ problems and the development of
algorithms to solve them in a global way. To do so, this thesis is organized as it follows.

Chapter 1 presents the principle of H∞ control and the related synthesis, robustness anal-
ysis and robust synthesis problems. First, the necessary mathematical tools of control theory
are introduced. Then, the H∞ control problems are presented, and a brief overview of the
existing methods to solve them is given. The chapter concludes by indicating the approach
chosen in this thesis to solve them in a global way.

Chapter 2 introduces the classical global optimization methods. More precisely, this chap-
ter focuses on Branch and Bound algorithms based on interval analysis. The interval methods
that enable to compute guaranteed bounds on a non-convex function as well as constraint
propagation techniques are presented. It is explained how these methods are integrated in a
Branch and Bound framework to compute the global optimum of a program or to characterize
the feasible set of a constraint satisfaction problem.

Chapter 3 is dedicated to the global resolution of continuous minmax optimization prob-
lems subject to semi infinite constraints, and strongly relies on the tools introduced in Chap-
ter 2. The chapter begins with a brief state of the art on continuous minmax and semi infinite
programs, and we propose a framework to deal with both the max objective function and
the semi-infinite constraints the same way. A special Branch and Bound algorithm is intro-
duced to compute bounds on the maximums of sets of functions, adapting the interval tools
presented in Chapter 2. This algorithm is embedded in a main Branch and Bound algorithm
to solve the minmax problem subject to semi infinite constraints. The performance of this
double Branch and Bound strategy is illustrated with minmax and semi infinite programs
benchmark examples.

Chapter 4 continues Chapter 1 by formulating the H∞ control problems in a new way
such that it can be dealt with the global optimization algorithms developed in Chapters 2
and 3. The synthesis is formulated as a minmax problem, the analysis as a maximization

CONTENTS 3

problem, and the robust synthesis as a minmax problem subject to semi infinite constraints.
Several examples are solved, and the results are discussed.

Chapter 5 presents an application of H∞ control. The regulation of the yaw angle of an
autonomous underwater vehicle subject to external disturbances is studied. A methodology
is proposed for the synthesis and the analysis of a control law from H∞ criteria. This control
law is validated through simulations and experiments, and compared with two other classical
empirical solutions.

Finally, Chapter 6 lists the contributions of this thesis in both optimization and control
fields. Some prospects for future works are also proposed.

Publications

International peer-reviewed journals

• Dominique Monnet, Jordan Ninin, and Luc Jaulin. Computing an inner and an outer
approximation of the viability kernel. Reliable Computing, 22:138–148, 2016

International peer-reviewed conferences with proceedings

• Dominique Monnet, Jordan Ninin, and Benôıt Clement. Global optimization of H∞
problems: Application to robust control synthesis under structural constraints. In In-
ternational Conference on Mathematical Aspects of Computer and Information Sciences,
pages 550–554. Springer, 2015

• Dominique Monnet, Jordan Ninin, and Benôıt Clement. A global optimization approach
to structured regulation design under H∞ constraints. In Proceedings of the IEEE 55th
Conference on Decision and Control, pages 658–663, 2016

• Dominique Monnet, Jordan Ninin, and Benôıt Clement. A global optimization approach
to H∞ synthesis with parametric uncertainties applied to auv control. Proceedings of
20th IFAC World Congress, IFAC-PapersOnLine, 50(1):3953–3958, 2017

• Juan Luis Rosendo, Dominique Monnet, Benôıt Clement, Fabricio Garelli, and Jordan
Ninin. Control of an autonomous underwater vehicle subject to robustness constraints.
In Accepted to 9th IFAC Symposium on Robust Control Design ROCOND. Elsevier,
September 2018

• Dominique Monnet, Juan Luis Rosendo, Hernán De Battista, Benôıt Clement, Fabricio
Garelli, and Jordan. Ninin. A global optimization approach for non-linear sliding mode
control analysis and design. In Accepted to 9th IFAC Symposium on Robust Control
Design ROCOND. Elsevier, September 2018

Other communications

• Juan Luis Rosendo, Dominique Monnet, Benôıt Clement, Fabricio Garelli, Irvin Probst
and Jordan Ninin. Control of an Autonomous Underwater Vehicule under Robustness
Constraints. Small Workshop on Interval Analysis. 2016

5

6 CONTENTS

• Dominique Monnet, Jordan Ninin and Benôıt Clement. Commande structurée ap-
prochée par l’optimisation globale et l’analyse intervalle. Séminaire GT MOSAR. 16
Mars 2016.

• Dominique Monnet, Jordan Ninin and Benôıt Clement. Global optimization of con-
tinuous minimax problem. XIII Global Optimization Workshop GOW16 4-8 September
2016, 16:175–178.

• Dominique Monnet, Jordan Ninin and Benôıt Clement. Optimisation globale de problèmes
Min-Max: Application à la synthèse de loi de commande robuste. ROADEF , 21-23
février 2018.

• Dominique Monent, Jordan Ninin and Benôıt Clement. Interval Branch-and-Bound
Algorithm for semi-infinite programming. International Symposium on Mathematical
Programming (ISMP). July 2018.

Chapter 1

H∞ control problems

This chapter presents the H∞ synthesis principle, and the underlying optimization problem.
This problem has received a lot of attention since it was introduced at the beginning of the
80’s. An additional difficulty occurs when systems depending on uncertain parameters are
considered, since the robustness of the control law must be taken into account. This rises two
other problems: the robustness analysis and the robust synthesis problems.
This chapter is organized as follows. Sections 1.1 to 1.3 provide the basics in control theory
needed to introduce the H∞ problems, and will also be useful in Chapter 4. These three
sections are mainly based on [133] and [123]. However, the reader can refer to numerous
books dedicated to control theory for further insights [134, 23, 76, 53]. Sections 1.4 to 1.8
introduce the H∞ problems that are addressed in this thesis, and the existing methods to
solve them. Finally, Section 1.9 describes how we propose to approach these problems to solve
them in a global way.

1.1 Dynamical systems

A dynamical system is described by two state equations: the evolution equation and the
observation equation.

dx(t)

dt
= f(x(t), u(t), t) evolution equation,

y(t) = g(x(t), u(t), t) observation equation,

where

• x(t) ∈ Rnx is the state vector,

• u(t), u : R+ 7→ Rnu is the vector of input signals,

• y(t), y : R+ 7→ Rny is the vector of output signals.

The evolution equation describes the dynamics of the system as an ordinary differential equa-
tion, generally derived from the physical laws that govern the system (Newton’s laws, electrical
laws, etc). The observation equation provides the signal y in function of the states and the
input signals. A system is said to be

7

8 CHAPTER 1. H∞ CONTROL PROBLEMS

• single input single output (SISO) if nu = ny = 1,

• multiple input single output (MISO) if nu > 1 and ny = 1,

• single input multiple output (SIMO) if nu = 1 and ny >,

• multiple input multiple output (MIMO) if nu > 1 and ny > 1.

A system is said to be time invariant (TI) if its state equations do not vary over the time
explicitly.

{
ẋ = f(x(t), u(t))
y(t) = g(x(t), u(t))

1.2 Linear Time invariant systems

Linear Time Invariant (LTI) systems represent a particular class of dynamical systems. Both
their evolution and observation functions depend linearly on the states and the inputs,

{
ẋ = Ax+Bu
y = Cx+Du,

where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu are real matrices.
The properties of observability and controllability are in general highly desirable. The con-
trollability ensures that all the states of the system can be controlled by a state feedback
controller. On the other hand, the observability ensures that, knowing the input signal u, it
is possible to retrieve the states of the system.

Definition. A LTI system is said to be controllable if, for any initial state x(0) = x0, any
time t1 > 0 and any final state x1, there exists an input u(t) such that x(t1) = x1. Otherwise,
the system is said to be uncontrollable.

Definition. An LTI system is said to be observable if, for any time t1 > 0, the initial state
x(0) = x0 can be determined from the time history of the input u(t) and the output y(t) in
the interval [0, t1]. Otherwise, the system is said to be unobservable.

LTI systems are of particular interest since they can be interpreted from a frequency point
of view thanks to the Laplace transform. The frequency representation of linear systems relies
on the transfer functions which are ratio of polynomials in s = iω with i the imaginary unit
and ω a real variable which corresponds to the pulsation in rad/s. The transfer from u(s) the
Laplace transform of u(t) to y(s) with zero initial condition (x0 = 0) is given by

u(s) = G(s)y(s), G(s) = C(sI −A)−1B +D,

where G(s) is a matrix of transfer functions of dimensions ny × nu.
Conversely, a state space realization (A,B,C,D) can be retrieved from a transfer matrix.
The realization is said to be minimal if the dimension of A is the smallest possible one. The
eigenvalues of A are called the modes of G. If G is SISO, then G(s) is a transfer function,
and the poles correspond to the roots of its denominator. The zeros of G correspond to the
roots of the numerator of G(s).

1.2. LINEAR TIME INVARIANT SYSTEMS 9

1.2.1 Stability of LTI systems

A major property of systems is the stability, which ensures that the states of the system do
not diverge to infinity over the time. The main objective of a control law is to ensure stability
of the system. The definition of stability as well as several ways to prove the stability of a
system are given here.

Definition. A LTI system is said asymptotically stable if its states converge to 0 provided
that the input is null at any time.

u(t) = 0, ∀t ≥ 0 =⇒ lim
t→+∞

x(t) = 0.

If u(t) = 0 at any time, then x(t) the solution to the state equation is

x(t) = eAtx0,

where x0 = x(0) is the initial condition. As a consequence, it follows that x(t) tends to zero
for any initial conditions x0 if and only if the eigenvalues of A have strictly negative real parts.
The stability of a LTI system can be proved in multiple ways, the following theorem provides
the commonly used ones:

Theorem 1.2.1. Let G be a LTI system. The four following statements are equivalent:

1. G is asymptotically stable.

2. The eigenvalue of A have negative real parts, in this case A is said to be Hurwitz.

3. The roots of the characteristic polynomial of A have negative real part.

4. There exists X positive definite such as ATX+XA is definite negative [23]. X is called
the Lyapunov matrix.

The link between statements 2 and 3 is straightforward since the eigenvalues of A are the
roots of its characteristic polynomial, given by Q(s) = det(sI −A). The last condition comes
from Lyapunov’s stability theory. Considering the third statement, the Hurwitz criterion
given by Theorem 1.2.2 allows to verify if the roots of the characteristic polynomial have
negative real parts.

Theorem 1.2.2. [48]
Consider the polynomial Q(s) =

∑n
i=0 ais

i with an > 0, and its associated Hurwitz matrix
H.

H = (hij) =

an−1 an−3 an−5 0 0 0

an an−2 an−4
...

...
...

0 an−1 an−3
...

...
...

... an an−2
. . . 0

...
...

... 0 an−1
. . . a0

...
...

...
... a0

. . . a1 0
...

...
... 0 a2 an

...
...

...
... a3 a1 0

0 0 0 a4 a2 a0

.

10 CHAPTER 1. H∞ CONTROL PROBLEMS

The real parts of the roots of Q(s) are strictly negative if all the leading principal minors ∆i

of H are positive.

∆i = det

h11 ... h1i

...
...

hn1 ... hni

The condition an > 0 is not constraining. If this condition is not ensured it suffices to
apply the Hurwitz criterion to the polynomial Q′(s) having the same roots as Q(s),

Q′(s) =
1

an

n∑

i=0

ais
i.

The Hurwitz criterion permits to express the stability condition of an LTI system as nx
polynomial inequalities, and will be of particular importance in Chapter 4.

Weaker notions of controllability and observability are the stabilizability and detectability.

Definition. A system is said to be stabilizable if there exists F such that A+BF is stable.

The stabilizability of a system ensures that, even if not all the states can be controlled,
the unstable states can be stabilized.

Definition. A system is said to be detectable if there exists H such that A+HC is stable.

The detectability of a system ensures that at least the unstable states can be observed.
In this case, the system has no hidden unstable mode. In this thesis, the systems considered
are stabilizable and detectable.

1.2.2 Systems and signals norms

The norms of LTI systems are of particular interest, since they characterize properties of the
system in terms of input-output signal relationship. To this extend, they can be used as
synthesis criteria for control laws.
The L2 space is the space of Lebesgue measurable signals, which have a finite energy given by
the 2-norm,

||u||2 ,
(∫ ∞

0
||x(t)||2dt

)1/2

.

A linear system is in fact an application from the space of signals into this same space. The
H∞ norm of an LTI system is defined as the maximal frequency response of the system,

||G||∞ , sup
Re(s)>0

σmax(G(s)HG(s)),

where G(s)H is the hermitian transpose of G(s) and σmax is the greatest singular value. If G
is stable, then

||G||∞ = sup
ω
σmax(G(jω)HG(jω)),

1.2. LINEAR TIME INVARIANT SYSTEMS 11

and the H∞ norm corresponds to the worst-case ratio between the energy of the output and
input signals,

||G||∞ = sup
u∈L2,||u||2>0

||y||2
||u||2

.

If G is SISO, then the H∞ norm is simply the maximum of the modulus of its transfer function
over the pulsations. To this extend, the maximal singular value can be viewed as an extension
of the gain to MIMO systems.

Theorem 1.2.3. Let G be a stable LTI system with input u and output y,

||G||∞ = sup
u∈L2,||u||2>0

||y||2
||u||2

.

For further details about systems and signals spaces and norms, the reader can refer to
Chapter 4 of [133].

As an example, consider a second order system G with ωn = 1 and ξ = 0.1.

G(s) =
ω2
n

s2 + 2ξωns+ ω2
n

The H∞ norm of G is equal to 5, obtained at the pulsation ωmax = 0.9899, and can be
retrieved either from the time response of G to an input sine wave u(t) = sin(ωmaxt) in
Figure 1.1b, or from the Bode diagram of G in Figure 1.1a.

1.2.3 Interconnection of systems and internal stability

The purpose of feedback control is to compute a controller, denoted K, which sends the
correct control input signal u from the measured output signal y such that the stability, and
possibly performance criteria, are achieved. That is, K is interconnected with the system to
control, and provides a third system.
The Linear Fractional Transform (LFT) [133] is a mathematical tool that enables to represent
the system resulting of the interconnection from two systems. Consider P and K two LTI
systems as represented on Figure 1.2, P (s) being partitioned as,

(
z(s)
y(s)

)
= P (s)

(
w(s)
u(s)

)
=

(
P11(s) P12(s)
P21(s) P22(s)

)(
w(s)
u(s)

)
.

The LFT of P (s) with K(s) is given by

F (P (s),K(s)) = P11(s) + P12(s)Gl(s)(I − P22(s)K(s))−1P21(s)

provided that P (s) and K(s) have compatible dimensions and (I − P22(s)K(s)) is invertible.
Consider now that P and K are given by their minimal state space representations,

P =

AP Bw Bu
Cz Dwz Duz

Cy Dwy Duy

 , K =

(
AK BK
CK DK

)

12 CHAPTER 1. H∞ CONTROL PROBLEMS

10 -1 10 0 10 1
-20

-15

-10

-5

0

5

10

15

20

ωmax

(a) Bode diagram of G.

0 5 10 15 20 25 30 35 40 45 50

-6

-4

-2

0

2

4

6

(b) Time response of G to a sine wave input.

Figure 1.1: Interpretation of the H∞ norm in the frequency and time domains.

1.2. LINEAR TIME INVARIANT SYSTEMS 13

w
P (s)

z

K(s)

u y

Figure 1.2: Linear fractional transform of two systems.

The system resulting from the interconnection of P with K has a (not necessarily minimal)
state space representation given by

(
Acl Bcl
Ccl Dcl

)
,

with

Acl =

(
AP +Bw(I −DKDuy)

−1DKCy, Bu(I −DKDuy)
−1CK

BK(I −DuyDK)−1Cz, AK +BK(I −DuyDK)−1DuyCK

)

Bcl =

(
Bw +Bu(I −DKD

−
uy1)DKDwy

BK(I −DuyDK)−1Dwy

)

Ccl =
(
Cz +Duz(I −DKduy)−1DKCy, Duz(I −DKDuy)

−1CK
)

Dcl =
(
Dwz +Duz(I −DKDuy)

−1DKDwy

)

When two systems are interconnected, an important notion is the internal stability. From
the transfer matrix representing the input-output transfers, only the Bounded Input Bounded
Output (BIBO) stability can be inferred. That is, the energy of output signal is bounded if the
energy of input signal is bounded. However, BIBO stability cannot ensure that the internal
signals are energy bounded. The internal stability can be defined as proposed in [123].

Definition. A system is internally stable if none of its components contain hidden unstable
modes and the injection of bounded external signals at any place in the system results in
bounded output signals measured anywhere in the system.

Following this definition, the internal stability of two interconnected systems can be ver-
ified via the generic interconnection scheme shown in Figure 1.3. The system is internally
stable if the transfer matrix

(
(I −K(s)G(s))−1 K(s)(I −G(s)K(s))−1

G(s)(I −G(s)K(s))−1 (I −G(s)K(s))−1

)
, (1.1)

from (w1, w2) to (z1, z2) is stable [133, p. 68], i.e. the poles of every transfers have negative
real parts.

Remark. In practice, it often suffices to check that the denominators of the elements of
the transfer matrix (I −K(s)G(s))−1 have roots with negative real parts. However, due to

14 CHAPTER 1. H∞ CONTROL PROBLEMS

possible unstable poles-zeros cancellation in the transfers, it is necessary to consider all the
transfers of the four blocks given by Equation (1.1). An illustrative example can be found
in [123, p. 144].

K

G

w2

w1

z1

z2

+

+

Figure 1.3: Generic regulation scheme for ensuring internal stability.

Alternatively, the small gain theorem, given by Theorem 1.2.4, also ensures internal sta-
bility from the infinity norm of K and G.

Theorem 1.2.4. Suppose that G and K are stable. The interconnected system is internally
stable if ||G||∞ · ||K||∞ < 1.

Remark. The internal stability can directly be inferred from the stability of the state space
realization of the interconnected system, but implies to compute this realization if the systems
are given under their transfer matrix forms.

1.3 Systems with parametric uncertainties

A particular class of LTI systems considered in this thesis are the systems subject to paramet-
ric uncertainties. Such systems depends on parameters which values are not known precisely,
but are within certain ranges. For example, the weight of a car varies in function of the num-
ber of passengers, or the aerodynamic drag coefficient of the vehicle is not known precisely.
An uncertain system G depends on the vector of its uncertain parameters, denoted as θ ∈ Rnθ .

Uncertain LTI system

{
ẋ = A(θ)x+B(θ)u
y(t) = C(θ)x+D(θ)y

The set of admissible values of θ is denoted Θ ⊂ Rnθ . It will be assumed in the sequel
that Θ is bounded. Uncertain systems are frequently met and are difficult to deal with since
properties, such as stability, must be proved for any value of θ, i.e. for an infinite number of
systems. This point is discussed in Section 1.7 dedicated to robustness analysis. Note that
the dependency on θ is not necessarily linear or even convex.

Remark. It is important to note that the uncertain parameters do not vary over the time,
they have a fixed value which is unknown. Systems which parameters vary over the time are
called Linear Parameter Varying (LPV) systems, and their related control problems represent
a particular field of control theory [118]. Only uncertain parameters are considered in this
thesis.

1.4. GENERAL H∞ SYNTHESIS PROBLEM 15

1.4 General H∞ synthesis problem

The H∞ synthesis problem can be formulated as first proposed by Zames [131]. Given an LTI
system P and a set K of LTI systems,

{
minimize

K∈K
||F (P,K)||∞,

subject to K ensures internal stability ,
(1.2)

where F (P,K) is the LFT that describes the closed loop system represented in Figure 1.4,
and ||F (P,K)||∞ is its H∞ norm.

w
P

z

K

u y

Figure 1.4: General H∞ synthesis scheme.

In Figure 1.4, w(t) ∈ Rnw represents the external input signals, z(t) ∈ Rnz the error or
performance output signals, u and y are the control and the measure outputs.
In the following and for the sake of clarity, F (P,K) the transfer matrix from w to z is denoted
Tw→z. The transfer from the ith input wi, being the ith element of the vector w, to the jth

output zj is denoted Twi→zj .

Tw→z =

Tw1→z1 . . . Twnw→z1

...
. . .

...
Tw1→znz . . . Twnw→znz

In addition, we also define the transfer matrix Tw→zj from w to the particular output zj .

Tw→zj = (Tw1→zj , ..., Twn→zj).

1.5 Example of H∞ synthesis for tracking problem

Consider for example a LTI system G and a controller K in a tracking error regulation loop
as shown in Figure 1.5, where e represents the tracking error signal, e(t) = r(t)− y(t), and d
and n are two signals that model external perturbations. In this case, we have w = (r, d) and
z = (z1, z2, z3).

The principle of H∞ synthesis is to minimize the infinity norm of objective channels Tw→zj .
In Figure 1.5, the signals e, u and y are weighted by transfer functions Z1, Z2 and Z3, such
as non-desired behaviors of the closed loop system are penalized. For example, a non-desired
behavior may be an important tracking error signal e at low frequencies (steady state). In this
case, a high gain of Z1 at low frequencies penalizes the sensitivity function Tw→e as desired.

16 CHAPTER 1. H∞ CONTROL PROBLEMS

r K G
y

d

W1

+

− +
e u

Z1

Z2

Z3z1

z2

z3

P

Figure 1.5: H∞ sensitivity approach.

In that respect, z is the weighted counterpart of the non weighted signal z̃ = (e, u, y).
When formulating the automatic control problem as an H∞ problem, design objectives are
expressed as bounds on the gain of objective channels. These bounds are frequency templates
designed from user specifications, and correspond to the inverse of weighting functions Zj .
An H∞ constraint is expressed as ||Tw→zj ||∞ ≤ 1.

In the SISO case (nw = nz = 1), we have that σmax(Tw→z)(s) = |Tw→z(s)| and an H∞
constraint can be interpreted as a frequency dependent upper bound on the gain,

||Tw→z||∞ ≤ 1 ⇐⇒ ∀ω, |Tw→z(iω)| ≤ 1
⇐⇒ ∀ω, |Zj(iω)Tw→z̃(iω)| ≤ 1
⇐⇒ ∀ω, |Zj(iω)||Tw→z̃(iω)| ≤ 1

⇐⇒ ∀ω, |Tw→z̃(iω)| ≤ 1

|Zj(iω)
|

⇐⇒ ∀ω, |Tw→z̃(iω)| ≤ |Z−1
j (iω)|

(1.3)

In addition, the inputs w can be also weighted with respect to their spectral content. In
conclusion, the weighting functions Zj express the design objectives and the Wi characterize
the spectral contents of the input signals.

Once weighting functions Zi and Wj are defined, the goal is to find K that minimizes every
objectives ||Tw→zj ||∞ all at once, so that the closed loop system offers the desired behavior.
In addition, K must internally stabilize the closed loop system. As a consequence the H∞
problem can be formulated as proposed by the constraint satisfaction problem (CSP) 1.4.

||Tw→zj ||∞ ≤ 1, ∀i ∈ {1, . . . , nz}
s. t. Kensures internal stability
K ∈ K

(1.4)

1.6. RESOLUTION OF H∞ SYNTHESIS PROBLEM 17

w
G

z

K

W Z

u y

w̃ z̃

P

Figure 1.6: Interconnected systems

Problem 1.2 can be retrieved from CSP 1.4 thanks to inequality (1.5).

||Tw→zj ||∞ ≤ ||Tw→z||∞, ∀j ∈ {1, . . . , nz}. (1.5)

If the solution of Problem 1.2 is lower than 1, then it is also a solution to CSP 1.4. Problem 1.2
presents the main advantage to frame the nz H∞ constraints of CSP 1.4 as a single objective,
and it is the classical way to present the H∞ synthesis problem.
External disturbances can be taken into account and their influence on the closed loop system
limited. This robustness w.r.t disturbances must not be misunderstood with the robustness
w.r.t system uncertainties, addressed in Section 1.7. The H∞ synthesis design process is
introduced in this section because the global optimization approach, presented in Chapter 4,
requires the understanding of its principle.

1.6 Resolution of H∞ synthesis problem

The first method developed to solve Problem 1.2 was proposed by Doyle, Glover, Khargonekar
and Francis, and relies on the resolution of an Algebraic Ricatti Equation (ARE) [42], and
is generally referred to as the DGKF method form the initials of its authors. Later, Gahinet
and Apkarian have shown in [47] that Problem 1.2 can be formulated as a Semi Definite
Problem (SDP), and thus can be solved efficiently with dedicated optimization tools such as
the interior point method [97]. However, both [42] and [47] impose that the order of K is equal
to the one of P in order to make the problem convex, and therefore computationally tractable
with the optimization methods and computer power available at this time. Therefore, this
two methods generally provide high order controller, referred to as full order or unstructured
controllers, since their structure cannot be chosen. In practice, small order controller are
preferred since they are easier to implement and their dynamic is simpler for interpretation.
These points have been the motivation of many publications about reduced order controller.

Remark. Structured controllers are also highly desirable to control LPV systems. Such
systems have their parameters varying over the time, and the classical approach to control
them is gain scheduling [46]. The principle lies in computing several controllers for possible
values of the parameters, and to extrapolate a parameter varying controller. In this way,
the final controller has its parameters varying along with the parameters of the LPV system,
ensuring the stability and design criteria. Extrapolating a parameter varying controller from
a set of controllers is much easier to achieve if they are structured.

18 CHAPTER 1. H∞ CONTROL PROBLEMS

In order to compute a low order controller, or structured controller, several approaches
can be considered as explained in Figure 1.7.

Model order reduction can be used either to reduce the order of P or to reduce the order

Full order
plant

Low order
plant

Full order
controller

Low order
controller

M
o
d

el
or

d
er

re
d

u
ct

io
n

Full order synthesis

Structured
synthesis

Full order synthesis

C
o
n
tro

ller
ord

er
red

u
ction

Figure 1.7: Low order controller synthesis process.

of the full order controller, resulting in a low order controller [132, 49]. However, it is often
more interesting to synthesize directly a low order controller, especially when the difference
between the orders of the controller and the system is large. A survey of model order reduction
is provided in [58], but this topic is beyond the scope of this thesis, which focuses on the
structured synthesis problem, given by Problem 1.6.1.

Problem 1.6.1. Structured Synthesis (SS) problem:

{
minimize

K∈Ks
||F (P,K)||∞

s. t. K ensures internal stability

where Ks denotes the set of structured controllers. Problem 1.6.1 is not convex and not
even smooth over Ks.

Remark. Most of the existing synthesis methods compute fixed-order controllers, i.e. pro-
vides the state space matrices of K. A structured controller is slightly different since it has
not only a fixed order but also a particular structure, and cannot necessarily be retrieved from
a fixed order controller.

It is important to note that convex reformulations with LMIs have been very popular in
the control field since the interior points method was developed, as evidenced by the num-
ber of citations of [23] (20,972 citations1) and [25] (40,937 citations 1), and therefore that a

1according to google scholar the 18st of July, 2018

1.6. RESOLUTION OF H∞ SYNTHESIS PROBLEM 19

Non convex Convex

Structured/fixed
order

Synthesis

Global
optimization

Quantifier
Elimination

Branch
and Bound

Local
optimization

DFO
Gradient

based

Gradient
sampling

HIFOO

Subdifferential

Hinfstruct

Full order
Synthesis

SDP/LMI

convexreformulations

Figure 1.8: Chart of optimization approaches to the H∞ synthesis problem.

large number of control problems, including Problem 1.6.1, has been approached with LMI.
In that respect, several convex reformulation for fixed order [15, 57, 63] or structured synthe-
sis [24, 115, 62] have been proposed until recently.

On the other hand, the fixed order/structured synthesis problem has also been addressed
under its initial non-convex form with several local optimization methods. A general survey of
those methods can be found in [6], to which can be added a recent work based on Derivative
Free Optimization [121]. The (probably) two most famous approaches to the structured
synthesis problem rely on line search methods [100], generalized to non-smooth problems:

• Burke et al.’s approach relies on a gradient sampling algorithm [28]. The idea is to
compute the search direction not only from the gradient at the current iterate but also
at nearby points. The HIFOO Matlab package [27] implements this algorithm for the

20 CHAPTER 1. H∞ CONTROL PROBLEMS

design of fixed order controller.

• Apkarian and Noll’s approach is based on the Clarke sub-differential [32], which is
a generalization of the gradient to non-smooth functions. The formula of the sub-
differential of ||F (P,K)||∞ has been proposed in [9]. The Hinfstruct Matlab package,
and more recently Systune package, are based on this result and enable to compute
structured controllers.

The few approaches based on global optimization to H∞ synthesis mainly focus on SISO
systems subject to parametric uncertainties [5, 85, 21], or does not consider the structured
synthesis directly but the sub-optimal problem given by Problem 1.4 [60]. Further details
about those method are provided in Section 1.8 dedicated to the robust structured synthesis.
Figure 1.8 summarizes the different approaches to the SS problem.

1.7 Uncertainty representation and robustness analysis

When designing a control law, as models derive from approximations, it is necessary to take
uncertainties into account. The uncertainties can come from the uncertain parameters of the
model, or dynamics that has been neglected during the modelization process. In this thesis,
only the first type of uncertainty are considered. If G(θ) is the uncertain system to control,
then the augmented system P (θ) also depends on θ since it is built from G. The robustness
analysis problem consists in verifying that, given a controller K, the H∞ norm of the closed
loop system is lower than one and the stability is achieved for any admissible value of θ. The
first part of the problem is called the robust performance analysis and the second part the
robust stability analysis.

Problem 1.7.1. Robustness analysis problem:

Given K, verify if

{
||F (P (θ),K||∞ ≤ 1, ∀θ ∈ Θ
K ensures internal stability , ∀θ ∈ Θ

The robustness analysis problem is not convex in the general case, since ||Tw→z(θ)||∞ is
not convex over Θ and the subset of stable systems over Θ is not convex either. The most
efficient tool for robustness analysis is the µ-analysis.

1.7.1 µ analysis approach

The µ-analysis is a robustness analysis method that was mainly developed during the 80’s
and the 90’s [41, 130, 129], and is probably the most commonly used one. This method is
based on the ∆-structure representation of the uncertainty. The initial closed loop system
being the interconnection of the uncertain system P (θ) with K, given on Figure 1.9a, is
rearranged as the interconnection of three LTI systems as shown on Figure 1.9a. P (θ) is
reformulated as the interconnection of a nominal LTI plant P̃ with another structured block
diagonal matrix ∆(s), such that ||∆||∞ is bounded by one. That is, the initial set of plant
{P (θ) | θ ∈ Θ} is reformulated as {F (P̃ ,∆) | ||∆||∞ ≤ 1}. This set of system is equivalent
to the set {P (θ) | θ ∈ Θ} if Θ is an hyper-rectangle, but is an over-approximation otherwise.

1.7. UNCERTAINTY REPRESENTATION AND ROBUSTNESS ANALYSIS 21

w
P (θ)

z

K

u y

(a) Initial problem for the robustness analysis.

w P̃ z

K

∆

u y

(b) ∆-structure reformulation.

Figure 1.9: ∆-structure representation of uncertainty.

Such an over-approximation may corresponds to disk centered on the nominal plant P̃ at a
given pulsation in the Nyquist plan, as shown on Figure 1.10.

Let M be the LFT of P̃ and K, M = F (P̃ ,K). The small gain theorem provides a
sufficient condition for the internal stability of the interconnection of M with ∆. In addition
the Structured Singular Value (SSV), generally denoted µ∆, generalizes the singular value σ
for F (M,∆). Consequently, the robust performance is achieved if

1

kmax
= sup

ω≥0
µ∆(M(iω)) ≤ 1,

where kmax is called the robustness margin. Computing the structured singular value at a
given pulsation is known to be NP-Hard [26]. However, an upper bound can be obtained by
solving an LMI. Moreover, computing the SSV requires to compute µ∆ at an infinite number
of pulsation. As a consequence, the maximal SSV is generally approximated by

max
j∈{1,...,N}

µ∆(M(iωj))}.

Such an approximation may lead to falsely conclude that the uncertain system achieves robust
performance, but a solution has been proposed in [43] to overcome this problem. However,
the ∆-structure is a conservative approximation of the initial system if Θ is not an hyper-
rectangle.

1.7.2 Polytopic uncertain systems

Another approach to robustness analysis is to consider matrix polytopes to describe an un-
certain system. A polytope A of Rn×n with N vertices Ai ∈ Rn is defined as

A =

{
A ∈ Rn×n|A =

N∑

i=1

αiAi, αi ≥ 0,

N∑

i=1

αi = 1

}
.

A polytopic uncertain system is described by a state space realization composed of four poly-
topes (A,B, C,D). Such a representation of uncertain systems provides a framework to relax
the stability and H∞ performance analysis as LMIs [104] by studying only the vertices of the
polytopes, that is a finite number of systems. One of the first method developed to analyze
the stability of such systems was proposed in [18], by using a unique Lyapunov matrix for

22 CHAPTER 1. H∞ CONTROL PROBLEMS

Re

Im

Figure 1.10: The exact regions of the uncertainty are delimited by hard line, and the convex
approximations are represented by dashed circle, plotted at 5 pulsations in the Nyquist plan.
The red curve represent the nominal system P̃ .

all the matrices in A. A less conservative approach relies on parameter-dependent Lyapunov
matrices [105, 106], In addition, a guaranteed upper bound on the H∞ norm of any systems
in the polytopic set is provided by solving an LMI problem [104], which enables to prove the
robust performance. However, the initial problem is relaxed to be formulated as an LMI one.
Consequently, a polytopic uncertain system can be robustly stable but it may not be possible
to prove it, and the H∞ norm upper bound is not necessarily a close approximation of the
exact value. Moreover, the interconnection of K with P (θ) cannot be described exactly by a
polytopic uncertain system in the general case.

Another way to represent and analyze uncertain systems, but limited to the SISO case, rely
on the frequency representation of the interconnection of P (θ) with K. This representation
is not discussed here but in subsection 1.8.3, since it is used for robust synthesis but rarely
for robustness analysis.

1.8 Robust structured synthesis

The structured H∞ synthesis problem can be extended to the uncertain plant case, to provide
Problem 1.6.1.

Problem 1.8.1. Robust Structured Synthesis (RSS) problem:
{

Find K ∈ Ks such that ||F (P (θ),K)||∞ ≤ 1
subject to K ensures internal stability , ∀θ ∈ Θ

1.8. ROBUST STRUCTURED SYNTHESIS 23

Several approaches has been proposed to find a solution to the RSS problem, relying on
the ∆-structure or the polytopic representation of the uncertainties.

1.8.1 Convex methods

The first approach to robust synthesis was the D −K iteration [103], also called µ-synthesis,
based on the minimization of the maximal SSV but provides full order controllers. Since
then, a significant number of papers have been dedicated to the synthesis of static output
feedback controllers (zero order controller) based either on the ∆-structure or on polytopic
uncertainties. A well documented survey of those methods is provided in [113]. However, the
general case where K has a fixed structured has received few attention due to the complexity
of the RSS problem. In effect, this problem gather the structured synthesis and the robustness
analysis problem. Several convex reformulations has been proposed in the SISO case with the
∆-structure uncertainty representation. For example, convex relaxations of the problem from
geometrical interpretations of the stability and H∞ norm in the Nyquist plan are proposed
in [72, 71, 62].

1.8.2 Worst-case minimization approaches

Several non convex approaches relies on the minimization of the worst-case H∞ norm. Under
the ∆-structure of the uncertainty, the worst-case corresponds to

max
∆∈∆

||Twz(∆)||∞,

where ∆ is the set of admissible uncertainty. Consequently, the RSS problem is reformulated
as a minmax problem, which is not convex.

{
min
K∈Ks

max
∆∈∆

||Twz(∆)||∞,
s. t. K ensures internal stability ∀∆ ∈∆

In particular, Apkarian and Noll have adapted local optimization algorithms, initially dedi-
cated to the SS problem, to solve this minmax problem [36, 10, 7].

1.8.3 Parametric approaches to robust synthesis

The parametric approaches to the RSS problem rely on the frequency representation and are
limited to SISO systems [40, 21]. The uncertain system G(θ) to control is given by a transfer
function which coefficients of the polynomials are uncertain,

G(θ, s) =
αns

n + · · ·+ α1s+ α0

βnsm + · · ·+ β1s+ β0
, (1.6)

with θ = (αn, . . . , α0, βm, . . . , β0). Not all coefficients are necessarily uncertain. Such a repre-
sentation of the uncertainty cannot describe systems not depending linearly on the uncertain
parameters, but is convenient for robust synthesis purpose as it will be explained in the sequel.

24 CHAPTER 1. H∞ CONTROL PROBLEMS

The controller K is given by its transfer function, parametrized by tunable real parameters.
For example a PID controller has three parameters,

K(k, s) = kp +
ki
s

+ kds,

with k = (kp, ki, kd)
T ∈ Rnk . The stability of the sensitivity function S, corresponding to

the transfer from r to e for the system depicted in Figure 1.5, is generally used as stability
criterion.

S(k, θ, s) =
1

1 +G(θ, s)K(k, s)
.

Due to the representation of G(θ), both the numerator and the denominator of S(k, θ, s) are
multivariate polynomials in s, k and θ. That is, the stability of the closed loop is ensured
if the poles of S(k, θ, s) have negative real parts. Taking advantage of the Hurwitz criterion
(see Theorem 1.2.2), the stability can be expressed as multivariate polynomials inequalities
in k and θ,

R(k, θ) ≤ 0, ∀θ ∈ Θ.

Concerning the H∞ criteria, they are expressed as objectives on SISO transfers Twi→zj of
the closed loop system, depending on k and θ. In this particular case, dealing with the H∞
norm does not require to compute the maximal singular value but only the modulus of the
transfer (see Equation 1.3). Hence, the H∞ constraints can also be expressed as multivariate
polynomial inequalities,

|Twi→zj (k, θ, iω)| ≤ 1, ∀θ ∈ Θ, ∀ω ≥ 0 ⇐⇒ |Nij(k, θ, iω)|
|Dij(k, θ, iω)| ≤ 1, ∀θ ∈ Θ, ∀ω ≥ 0

⇐⇒ |Nij(k, θ, iω)| − |Dij(k, θ, iω)| ≤ 0,
∀θ ∈ Θ, ∀ω ≥ 0.

In the end, the RSS problem, given by Problem 1.8.2, is formulated as multivariate polyno-
mial inequalities that must be satisfied ∀θ ∈ Θ and ∀ω ≥ 0, which are quantified constraints.

Problem 1.8.2.
Find k such that:

{
|Nij(k, θ, iω)| − |Dij(k, θ, iω)| ≤ 0, ∀θ ∈ Θ, ∀ω ≥ 0.
R(k, θ) ≤ 0, ∀θ ∈ θ.

Under this form, the parametric methods characterize Kr the subset of Rnk such as K(k) is
solution to Problem 1.8.2. This approach differs from the worst case minimization formulation
which provide an optimal (at least locally) controller w.r.t. the worst case. The parametric
methods are global in the sense that the whole set Kr is characterized instead of providing
only one feasible controller. To this extent, they are generally referred to as set-membership
methods. In [40], Dorato compares several of these methods.
In particular, Anai et al. proposes to use quantifier elimination techniques [3, 4, 5] to deal

1.9. PROPOSED APPROACH TO H∞ PROBLEMS 25

with the ∀ quantifier. Doing so, Kr is described exactly by a set of quantifier-free constraints.
Another approach proposed by Malan et al. relies on Bernstein Branch and Bound algo-
rithm [84, 85]. This algorithm has a classical Branch and Bound structure, and the Bernstein
polynomials are used to compute the range of the polynomial constraints over continuous sets.
This algorithm characterizes Kr by a set of interval vectors.
It is important to note that these methods, in order to be computationally tractable, require
the RSS problem to be formulated as inequalities on multivariate polynomials, such that tools
dedicated to polynomial analysis can be used [52, 96, 86]. In this way, the parametric methods
are limited to uncertain system as given by Equation 1.6.

1.9 Proposed approach to H∞ problems

In this chapter the three main problems related to H∞ control has been presented, namely
the structured synthesis, robustness analysis and robust structured synthesis problems, that
are recalled here.

Structured synthesis problem
{

minimize
K∈Ks

||F (P,K)||∞
subject to K(k) ensures internal stability

(1.7)

Robustness analysis problem

Given K, verify if

{
||F (P (θ),K||∞ ≤ 1, ∀θ ∈ Θ
K ensures internal stability , ∀θ ∈ Θ

Robust structured synthesis
{

Find K such that ||F (P (θ),K)||∞ ≤ 1
subject to K ensures internal stability , ∀θ ∈ Θ

One of the purpose of this thesis is to propose a unified approach of the three problems and
global optimization tools to solve them under their original non convex formulation. This is
done by following the parametric approach, on which are based the only known works relying
on global optimization methods, since it does not required approximation of the uncertainty
with the ∆-structure. However, we propose some improvements with respect to the parametric
methods:

• Our approach is not limited to the SISO case, but can deal with the MIMO case.

• The multivariate polynomial formulation is not needed, and therefore a larger class of
uncertain system can be dealt with.

• The RSS problem is solved under its worst case minimization.

In the sequel, Chapter 4 shows how the SS and the RSS problems can be formulated as
minmax problems, and solved in a global way using the algorithms developed in Chapter 3,
and how the robustness analysis problem can be expressed as a maximization problem that
can be solved with the methods introduced in Chapter 2.

Chapter 2

Interval Analysis Tools and Branch
and Bound algorithms

The purpose of this chapter is to introduce global optimization methods, namely branch and
bound algorithms based on interval analysis. These algorithms are able to solve globally
continuous non convex optimization problems, in the sense that they converge to the global
optimizer. In addition, they provide an enclosure of the global optimum. If the local opti-
mization methods are efficient in providing rapidly a good solution, they are unable to provide
such an enclosure, and have no guarantee to converge to the global optimizer. However, in
certain cases it is mandatory to have an enclosure of the global solution, as it will be shown
in Chapter 4 when addressing the robustness analysis problem.
The present chapter is organized as follows. Section 2.1 presents the basics of interval analy-
sis, and how reliable bounds can be computed on a functions over continuous set. Section 2.2
introduces advanced tools to deal with constraints. Finally, Section 2.3.2 gives two branch
and bounds algorithms, based on the tools provided in the two previous sections, to solve
constrained optimization problems in a global way. The purpose of this chapter is not only to
introduce global optimization algorithms, but also to provide the tools that will be necessary
in the next chapter dedicated to the global resolution of minmax problems.

2.1 Interval arithmetic

Interval arithmetic was first developed to deal with floating point numbers rounding errors.
Since it is impossible to represent all the real numbers in computers, numerical computations
necessarily lead to approximated numerical results. During the 50s and the 60s, methods to
bound the approximation errors were found by using intervals. The key idea is to represent a
real number by a couple of floating point numbers which enclosed it, and run the numerical
computations with intervals instead of scalars in order to get a guaranteed enclosure of the
result. In particular, Moore published Interval Analysis [95] in 1966 after his doctorate about
the use of intervals for numerical errors in computer, which can be considered as the reference
book on interval analysis.
An important property is that computations based on intervals provide guaranteed enclosure
of the numerical results not only for the non representable real of interest, but for all the

27

28 CHAPTER 2. INTERVAL ANALYSIS TOOLS AND B&B ALGORITHMS

reals in the interval. That is, operations on continuous sets are performed. This is of major
interest since guaranteed bounds of non-convex functions can be computed over continuous
sets, that can be taken advantage of for global optimization purposes.

2.1.1 Intervals

An Interval is a closed connected subset of R. Intervals are denoted using boldface letters x.
A non-empty interval x is represented by its endpoints:

x = [x,x] = {x |x ≤ x ≤ x},

with x ∈ R ∪ {−∞}, x ∈ R ∪ {+∞} and x ≤ x. x is the lower bound of the interval x and x
is its upper bound. If x = x, x is said to be degenerate. The set of real intervals is denoted
IR, x ⊂ IR.
The width of a non-empty interval x is

w(x) , x− x.

In the case where x = −∞ or x = +∞, w(x) =∞.
The midpoint of a bounded interval (x 6= −∞ and x 6= +∞) is

mid(x) ,
x− x

2
.

Since an interval is a set, the classical set operations can be defined for intervals. The union
of two intervals x and y is defined by

x ∪ y , {z| z ∈ x or z ∈ y}.

The intersection of x and y is

x ∩ y , {z| z ∈ x and z ∈ y}.

x deprived of y is

x \ y , {z, z ∈ x and z /∈ y}.

Note that the intersection of two intervals is an interval (possibly empty), but generally the
union and the set difference are not. In addition, we define the interval hull of two intervals
x and y as the smallest interval containing their union,

x t y , [min(x,y),max(x,y)].

A box x is the Cartesian product, denoted by ×, of intervals,

x , x1 × · · · × xn, xi ∈ IR.

Alternatively, a box is a vector of intervals, that is a subset of IRn

x =

x1
...

xn

 .

2.1. INTERVAL ARITHMETIC 29

For convenience, intervals and boxes are denoted using boldface since an interval is a box of
dimension one. The set of n-dimensional boxes is denoted by IRn.

The definition of midpoint can be extended to boxes. The midpoint of a bounded box
x ∈ IRn is the vector

mid(x) ,

mid(x1)

...
mid(xn)

 ,

and the width of a bounded non empty box x is defined by

w(x) , max
1≤i≤n

w(xi).

Also, the intersection of two boxes x and y is a box and is given by

x ∩ y , {x1 ∩ y1 × ...× xn ∩ yn}.

As for intervals, the union of two boxes x and y is not a box in the general case. The interval
hull operator is extended to boxes as the box hull operator, also denoted t. x t y is the
smallest box containing the union of x and y,

x t y , {x1 t y1 × ...× xn t yn}.

Figure 2.1a illustrates set operations on two boxes. The box hull is represented by the
hatched area and the intersection by the dark gray area.
The set difference of two boxes can be represented as the union of boxes as shown on Fig-
ure 2.1b.

x

y

x1

x2

x1 x1

x2

x2

y
1 y1

y
2

y2

(a) Intersection and box hull of two boxes

x

y

x1

x2

u

v

w

(b) Set difference of two boxes: x \ y = u ∪
v ∪w.

Figure 2.1: Set operations on boxes.

30 CHAPTER 2. INTERVAL ANALYSIS TOOLS AND B&B ALGORITHMS

2.1.2 Interval Arithmetic

Interval arithmetic extends the unary and binary operators from operation on real numbers
to the intervals, such that the resulting interval is the smallest one containing all the images
of the initial intervals.
Consider two intervals x and y, and a binary operator � being +,−,·, or /. The operator � is
extended to the intervals as it follows:

x � y , {x � y, x ∈ x, y ∈ y} ⊆ IR,
� : IR× IR 7→ IR.

The four basic binary operators are extended according to the following formulas,

x + y = [x + y,x + y],

x− y = [x− y,x− y],

x · y = [min(x · y,x · y,x · y,x · y),max(x · y,x · y,x · y,x · y)],

x/y = x · [1

y
,

1

y
] if 0 /∈ y.

The extension of monotonic unary operators to interval is straightforward, since the order
of the elements in the interval is either preserved or reversed. Here are some examples of
monotonic unary functions.

exp(x) = [exp(x), exp(x)],
log(x) = [log(x), log(x)],
x−1 = [x−1,x−1] if 0 /∈ x.

(2.1)

More generally, it is possible to extend the common operators, such as trigonometric ones, to
intervals. If the operators are not monotonic, the local monotonicity and known bounds can
be used. For example, the formula for the square function is

sqr(x) =

{
[min(sqr(x), sqr(x)),max(sqr(x), sqr(x))] if 0 /∈ x,
[0,max(sqr(x), sqr(x))] else.

The interval arithmetic has been implemented in several numerical libraries, such as INT-
LAB [111] (in Matlab), PROFIL/BIAS in C [78], GAOL [54] and Filib++ [82] in C++. All
these libraries implement the rounded interval arithmetic. The initial interval is approximated
by the smallest one which contains it and is represented by floating point numbers. In this
way, the computations can be performed by a computer and the results are guaranteed. The
IEEE 1788 standard is dedicated to interval computation and rounded interval arithmetic [2].
In this thesis, IBEX [30] library is used because it implements advanced tools such as con-
tractors, that will be presented in Section 2.2.1.

2.1.3 Inclusion functions

Let f be a function mapping Rn into Rm, and X a subset of Rn. The direct image of X by f
is defined by

f(X) = {f(x)|x ∈ X} .

2.1. INTERVAL ARITHMETIC 31

An inclusion function f of f maps IRn into IRm and respects the property

∀x ∈ IRn, f(x) ⊆ f(x).

Figure 2.2 illustrates the concept of inclusion function. f is said to be minimal if ∀x ∈ IRn, f(x)

x

f(x)

f(x)

fmin(x)

Figure 2.2: Inclusion function f and minimal inclusion function fmin

is the smallest box which contains f(x). In Figure 2.2, fmin illustrates a minimal inclusion
function of f . An inclusion function is not necessarily minimal, in that case the inclusion
function is said to be pessimistic. The difference between f(x) and fmin(x) is referred to
as the pessimism of the evaluation, and is not trivial to evaluate if any minimal function is
known [29]. f is inclusion monotonic if

x ⊂ y =⇒ f(x) ⊂ f(y),

and f is thin if for any vector x of Rn, f(x) = f(x).
In order to introduce another property of inclusion functions, consider xl a sequence of boxes.
f is convergent if

lim
l→∞

w(xl) = 0 =⇒ lim
l→∞

w(f(xl)) = 0.

2.1.4 Natural inclusion functions

Now that the concept of inclusion function is defined, the question is how to build one. One
way is to use interval arithmetic introduced in Subsection 2.1.2.

Definition. Consider the function

f : Rn → R
(x1, . . . , xn) 7→ f(x1, . . . , xn),

expressed as a finite composition of the operators +,−, ., / and elementary functions (sin, cos, log, exp,
...). Such a function will be referred to as explicit function in the sequel. The function

f : IRn → IR

obtained by replacing each real variable xi by an interval variable xi and each operator or
function by its interval counterpart is the natural inclusion function of f .

Theorem 2.1.1. [69]
f is an inclusion function for f . Moreover, f is thin and monotonic.

32 CHAPTER 2. INTERVAL ANALYSIS TOOLS AND B&B ALGORITHMS

x1

[−1, 1]

x2

[−1, 2]

x3

[0, 1]

+[−3, 2] − [−2, 2]

sqr[0, 9] exp[0.14, 7.39]

..
[0, 66.50]

Figure 2.3: Interval computation done by the natural inclusion function of f .

Proposition 2.1.1. [69]
If f involves only continuous operators and continuous elementary functions, then f is con-

vergent. If, moreover, each of the variables (x1, . . . , xn) occurs at most once in the formal
expression of f , then f is minimal.

In order to illustrate natural inclusion function, consider the function

f : R3 → R
(x1, x2, x3) 7→ sqr(x1 + x2) · exp(x2 − x3).

f can be represented by its expression tree which decomposes it in nodes as shown of Fig-
ure 2.3. Each node is either a variable or an operator. The bottom nodes, which correspond
to the variables, are called the leaves and the top node is called the root. In order to perform
an interval computation, the interval value of the leaves are propagated to the root by calling
repetitively the interval counterpart of the operators. This propagation is illustrated on Fig-
ure 2.3 with x1 = [−1, 1], x2 = [−1, 2], and x3 = [0, 1]. The result of the interval computation
is f([−1, 1], [−1, 2], [0, 1]) = [0, 32.64], with f the natural inclusion function of f .
The natural inclusion functions are not minimal in general, because the dependency between
the occurrences of the same variable in the expression is lost. When the interval computation
is done, if the same interval variable appears n times in the function, it will be replaced by n
intervals which are independent. For example, consider the function

f(x) = sqr(x).

We have that f([−1, 1]) = [0, 1]. However, if f is rewritten as

f(x) = x · x,

we obtain f([−1, 1]) = [−1, 1] · [−1, 1] = [−1, 1]. The result remains a reliable enclosure but f
is not minimal anymore.
When using natural inclusion functions, it is generally preferable to have as less variable
repetition as possible in order to limit the pessimism. Ideally, an expression where each
variable occurs only once is searched, for in this case the natural inclusion function is minimal

2.2. CONSTRAINT SATISFACTION PROBLEM AND CONTRACTORS 33

as stated in Theorem 2.1.1.
The natural inclusion functions can also be defined for a vector valued function

f : Rn → Rm
x 7→ f(x) = (f1(x), . . . , fm(x))T

by

f : Rn → Rm
x 7→ f(x) = (f1(x), . . . , fm(x))T

where fi is the natural inclusion function of fi. One important point to mention is that the
image of a box by a vector valued function f is generally not a box, due to the dependencies
of its coordinate functions fi to the same variable x, as illustrated on Figure 2.2. However,
inclusion functions can only compute a box which contains the exact image since they are
valued in IRm by definition. This approximation is known as the wrapping effect.
Although natural inclusion functions suffer from overestimation and wrapping effect, they re-
main an efficient tools to perform set-membership computations. The main inconvenience of
the natural inclusion functions and interval arithmetic is that the considered sets are limited
to boxes, but it is also an advantage since boxes are easy to represent in computer and set
operations can be easily done (see Subsection 2.1.1). In this thesis, only natural inclusion
functions will be used. However, there exist other inclusion functions based on the gradient
such as the centered form or the Baumann form [19], or using different arithmetics such as
affine arithmetic [37].

2.2 Constraint Satisfaction Problem and contractors

A constraint satisfaction problem (CSP) consists in finding solutions which are consistent with
respect to a set of rules or facts, called constraints. A CSP is composed of:

• a finite sequence of variables x = (x1, . . . , xn),

• an initial domain X,

• a list of constraints {C1, . . . , Cp}.
A vector x ∈ X is said to be consistent, or feasible, if it satisfies all the constraints Ci. On
the contrary, if at least one of the constraints is not satisfied, x is said to be inconsistent or
infeasible. The feasible set of a CSP is the set of all feasible elements of the initial domain.
By extension, a box will be said feasible if all its elements are feasible.
In this thesis, the constraints considered are inequalities or equalities on functions for which
natural inclusion functions can be defined. That is, a constraint Ci will be expressed as
gi(x) ≤ 0 or hj(x) = 0. Due to the rounding error inherent to the implementation of interval
arithmetic on computers, the equality constraints are practically almost impossible to prove.
That is why they are generally reformulated as ”almost” equalities with a small tolerance
error ε > 0, leading to two inequalities.

h(x) ∈ [−ε, ε] ⇐⇒
{
h(x) ≤ ε,
h(x) ≥ −ε.

34 CHAPTER 2. INTERVAL ANALYSIS TOOLS AND B&B ALGORITHMS

In the following, this reformulation is used and henceforth only inequality constraints are
considered.
Inclusion functions are particularly interesting to deal with CSP. By enclosing the exact range
of a function over a continuous set, inclusion functions enable to prove whether a constraint is
respected or not over a box, in a guaranteed way. Consider first a unique constraint g(x) ≤ 0.
Three cases are possible:

• g(x) ≤ 0 =⇒ ∀x ∈ x, g(x) ≤ 0, which proves that x is feasible,

• g(x) > 0 =⇒ ∀x ∈ x, g(x) > 0, which proves that x is non-feasible,

• 0 ∈ g(x), nothing can be concluded.

By extension, a box can be proved to be feasible with respect to a CSP if it is proved to be
feasible for all the constraints composing the CSP. On the contrary, the box is infeasible if
it is infeasible for at least one constraint. In the other cases, nothing can be concluded. In
these last cases, constraint propagation techniques can be used to reduce a box to its feasible
subset.

2.2.1 Constraint propagation: Forward Backward

When considering the initial domain of a CSP, constraint propagation resides in rejecting
any elements of this set that are not feasible with respect to the constraints. For example,
if you discard the Manhattan cocktail when choosing a drink in a bar because you think
mixing whisky with any other liquid is sacrilegious, you perform a constraint propagation.
In particular, interval arithmetic enables us to perform constraint propagation over a box.
In order to illustrate constraint propagation based on interval arithmetic, consider the CSP
given by

{
x1 + x2 ≤ 0,
x1 ∈ [−1.5, 1], x2 ∈ [0, 2].

Performing interval computation with the initial domains of x1 and x2, we obtain x1 + x2 ∈
[−1.5, 3]. However, we search (x1, x2) such that x1 + x2 ∈ [−∞, 0]. As a consequence, the
feasible values of x1 and x2 are such that x1 + x2 ∈ [−0.5, 3] ∩ [−∞, 0] = [−0.5, 0], which
implies that x1 belongs to the domain [−0.5, 0] − x2 for any value of x2 in [0, 2]. That is,
x1 ∈ [−0.5, 0] − [0, 2] = [−2.5, 0] reducing its domain to [−0.5, 1] ∩ [−2.5, 0] = [−0.5, 0]. The
same can be done with the domain of x2, x2 ∈ [0, 2] ∩ ([−0.5, 0]− [−1, 0]) = [0, 1.5].
This simple example shows how interval arithmetic allows to propagate constraints involving
binary operators. This constraint propagation technique can be extended to any constraint
involving a function which expression tree is available [87]. Consider the CSP

{
exp(x1 + x2)− x3 · x4 ≤ 0,
(x1, x2, x3, x4) ∈ [−2, 3]× [0, 2]× [−1, 2]× [1, 3].

The propagation procedure can be applied to the whole tree, as illustrated in Figure 2.4.
The first phase of the procedure is the forward evaluation, already presented in Section 2.1.4.
Then, the interval result is reduced with respect to the constraint. The second phase is the

2.2. CONSTRAINT SATISFACTION PROBLEM AND CONTRACTORS 35

x1

[0, 1]

x2

[0, 2]

x3

[−1, 2]

x4

[1, 3]

+[0, 3] · [−3, 6]

exp[1, 20.09]

−
[−5, 23.09]

fo
rw

ar
d

x1

[0, 1] ∩ ([0, 1.8]− [0, 2])
= [0, 1]

x2

[0, 2] ∩ ([0, 1.8]− [0, 1])
= [0, 1.8]

x3

[−1, 2] ∩ ([1, 6]/[1, 3])
= [0.33, 2]

x4

[1, 3] ∩ ([1, 6]/[0.33, 2])
= [1, 3]

+

[0, 3] ∩ log([1, 6])
= [0, 1.8] ·

[−3, 6] ∩ ([1, 6]− [−5, 0])
= [1, 6]

exp

[1, 23.09] ∩ ([−5, 0] + [−3, 6])
= [1, 6]

−

[−5, 23.09] ∩ [−∞, 0]
= [−5, 0]

b
ac

k
w

ar
d

Figure 2.4: Constraint propagation procedure.

backward propagation, which propagates the reduced interval from the root to the leaves.
At each node of the tree, the constraint propagation procedure explained for the unary and
binary operator in the first CSP example is applied. The constraint is finally propagated to
the initial domains at the leaves, reducing them. The procedure can be called successively
until a fixed point is reached. This constraint propagation technique will be referred to as the
forward-backward propagation.
Other constraint propagation techniques based on interval exist, most of them being based on
the resolution of linear programs in the interval case [98, 61]. More generally, such constraint
propagation procedures are called contractors or filtering algorithms.

2.2.2 Contractors

Contractors are mathematical functions that propose a formalism for constraint propagation,
providing a unified framework for different constraint propagation techniques. Hence, con-
tractors aim to reduce, or contract, an initial domain to its feasible subset. A contractor is
formally defined as follows.

Definition. Consider H a CSP and S the feasible set of H. The function

C : IRn → IRn
x 7→ C(x)

is a contractor for H if

{
S ⊆ C(x) (consistency),
C(x) ⊆ x (contraction).

The first property ensure that no solution of H is lost, and the second that non feasible
solutions are discarded or at least that the initial box does not grow. We will say equivalently
that C is a contractor for the CSP H or its feasible set S.

36 CHAPTER 2. INTERVAL ANALYSIS TOOLS AND B&B ALGORITHMS

x

C(x)

S

y

C(y)

Figure 2.5: Contractor.

Analogue properties of inclusion functions can be defined for contractors.
A contractor C is monotonic if

x ⊆ y =⇒ C(x) ⊆ C(y).

A contractor is minimal if it reduces the initial domain to the smallest box containing the
solutions. Figure 2.5 illustrates how a contractor performs. From the definition of contrac-
tor, the forward-backward propagation can be defined as a contractor, which will be called
the forward-backward contractor, since both the consistency and contraction properties are
respected [69]. In this thesis, only this contractor will be used due to its weak computational
cost.

2.2.3 Contractors programming

When dealing with a CSP composed of several constraints, it is convenient to define a unique
contractor for this CSP. To do so, the forward backward contractors defined for each particular
constraints of the CSP can be combined to provide a unique contractor for the feasible set
of the CSP. This concept of combining contractors is known as contractor programming, and
has been formalized in [30]. Consider two contractors C1 and C2 mapping IRn into IRn. C1

and C2 can be combined as it follows:

(C1 ∩ C2)(x) = C1(x) ∩ C2(x) (intersection),
(C1 ∪ C2)(x) = C1(x) t C2(x) (union),
(C1 ◦ C2)(x) = C1(C2(x)) (composition).

In the left hand side of the equations, the contractors must be understood (abusively) as
subsets of IRn, and define a third contractor.

Property 2.2.1. [30]
Let C1 be a contractor for S1 and C2 be a contractor for S2. Then,

2.2. CONSTRAINT SATISFACTION PROBLEM AND CONTRACTORS 37

• (C1 ∩ C2) is a contractor for S1 ∩ S2.

• (C1 ∪ C2) is a contractor for S1 ∪ S2.

• (C1 ◦ C2) is a contractor for S1 ∩ S2.

As an illustration, consider the CSP composed of two constraints:

{
x2

1 + x2
2 − 1 ≤ 0

x1 + x2 ≤ 0

Let C1 and C2 be two contractors for the first and the second constraint respectively. The
feasible set S is represented by the dark gray set. In Figure 2.6a, the hatched set corresponds
to the contraction of x by the contractor (C1 ∩ C2). The same box is obtained in Figure 2.6b
using the contractor defined as (C1 ◦ C2).

xC1(x)C2(x)

S

(a) Intersection of C1 and C2.

xC2(x)

C1(C2(x))

S

(b) Composition of C1 and C2.

Figure 2.6: Combination of two contractors.

By extension, a unique contractor can be defined for a CSP composed of several (more
than two) constraints by combining iteratively the primitive forward backward contractors.

2.2.4 Proving feasibility and non-feasibility with contractors

Consider a CSP H composed of p constraints {C1, . . . , Cp}. A unique contractor C for the
feasible set S of H can be defined. When C contracts a box, the subset of x discarded is proved
to be non-feasible due to the consistency property of the contractor. Considering it the other
way around, if Cinv is a contractor for S the complementary of S, then the subset discarded
by Cinv is proved to be feasible. If the whole box is discarded, then it is proved to be entirely
feasible. Property 2.2.1 recap the above mathematically, and is illustrated on Figure 2.7.

38 CHAPTER 2. INTERVAL ANALYSIS TOOLS AND B&B ALGORITHMS

Proposition 2.2.1.

x \ C(x) ⊆ S,
x \ Cinv(x) ⊆ S,
C(x) = ∅ =⇒ x ⊆ S,
Cinv(x) = ∅ =⇒ x ⊆ S.

Since S = ∩
i
Si with Si the feasible set related to the constraint Ci, its complementary is

S = ∪
i
Si with Si the complementary of Si. Consequently, Cinv can be constructed as the union

of the forward backward contractors for the Si.

Remark. Since C(x) is a box, x \ C(x) can be represented as a union of boxes (see Sec-
tion 2.1.1).

S

S

x

(a) Initial box x.

S

S

C(x)

(b) Contraction done by C, the set proved to
be infeasible is in gray.

S

S

Cinv(x)

(c) Contraction done by Cinv, the dark gray
set is proved to be feasible.

Figure 2.7: Contractions performed by C and Cinv.

2.3 Branch and Bound algorithms based on Intervals

When searching for the global optimum of a non convex problem, an exhaustive search must
be performed. To do so, Branch and Bound (B&B) algorithms can be used. These algorithms

2.3. BRANCH AND BOUND ALGORITHMS BASED ON INTERVALS 39

were first developed to solve discrete problems [80], to avoid the exhaustive enumeration of
candidate solutions. The principle relies on splitting, or branching, repetitively the search
domain of solutions into smaller disjoint subsets. Bounds on the objective over these subsets
are computed, and enable to state whether the global solution is possibly contained in a subset
or not. In the last case, the subset is discarded, reducing the domain over which the global
solution is searched. One of the advantages of such an algorithm is that an enclosure of the
global optimum is provided, permitting to determine how far is a solution from the global
optimum.

2.3.1 Notations

The optimization problems addressed in this thesis are expressed in the general way as
{

min
x∈X

f(x),

subject to gi(x) ≤ 0, ∀i ∈ {1, . . . ,m}.

The objective function is denoted f , the constraints are restricted to inequalities (see Sec-
tion 2.2 for equality constraints). We assume that the functions f and gi have explicit ex-
pressions, and the initial domain X is a box. The feasible set defined by the constraints is
denoted S. The global optimizer is denoted x∗, and is defined as the feasible point where f is
minimal.

{
x∗ ∈ S,
∀x ∈ S, f∗ = f(x∗) ≤ f(x).

The global minimum is denoted f∗.

Remark. x∗ is also called the minimum argument, and is defined as

x∗ , argmin
x∈S

f(x).

Note that the global optimizer of an optimization problem is not necessarily unique. Fig-
ure 2.8 illustrates an optimization problem and the notations adopted. S is displayed in bold
on the x axis.

Remark. Considering a minimization problem, the optimizer is called the minimizer and the
optimum value the mimimum. Considering a maximization problem, the optimizer is called
the maximizer and the optimum value the maximum or the supremum.

An important property that will be needed in Chapter 3 is that the minimum of a function
over a set X1 is greater or equal to its minimum over a superset X2 of X1.

Proposition 2.3.1.

• X1 ⊆ X2 =⇒ min
x∈X1

f(x) ≥ min
x∈X2

f(x).

• X1 ⊆ X2 =⇒ max
x∈X1

f(x) ≤ max
x∈X2

f(x).

40 CHAPTER 2. INTERVAL ANALYSIS TOOLS AND B&B ALGORITHMS

x

f f

g1

g2

x∗

f∗

S S

Figure 2.8: Minimization of f subject to the constraints g1(x) ≤ 0 and g2(x) ≤ 0.

2.3.2 Interval Branch and Bound Algorithm

The B&B algorithms based on interval emerged during the 70’s [122], but were limited to
simple optimization problems due to the low computing power available at that time. Since
then, several works have been proposed to improve the convergence of interval B&B algo-
rithms [61, 73, 67, 75]. This section introduces the Interval Branch and Bound Algorithm
(IBBA), using the concept of inclusion functions and contractors. The IBBA structure given
by Algorithm 1, as well as the acceleration techniques, are presented in [108, 99].
IBBA is designed to solve constrained optimization problems globally as defined in the pre-
vious section. It takes as input an optimization problem (objective function, constraints and
initial domain), and returns a feasible solution x̃, a set of boxes containing the global optimum
x∗ and an enclosure [f, f] of the minimum f∗. IBBA can be decomposed in several steps:
extraction, contraction, bounds computation, solution search, bisection and insertion. The
algorithm is first described, and further details about its implementation are provided in the
dedicated paragraphs below.
IBBA is based on two data structures L and Ls in which boxes are stored. Initially, L con-
tains the initial domain X. At each iteration of the algorithm, a box is extracted from L and
contracted to discard subsets proved not to contain the global optimum x∗. Then, bounds
on the objective function are computed over the contracted box, and a feasible solution is
searched over x. This solution becomes the new best solution x̃ if it provides a lower value of
f than the current solution. Finally, the box is bisected into several non overlapping boxes
that are inserted either in L or in Ls whether their width is smaller than a minimal bisection
criterion ε. Ls is used as a memory structure. At any time, the union of boxes contained

2.3. BRANCH AND BOUND ALGORITHMS BASED ON INTERVALS 41

in L and Ls corresponds to the initial domain X deprived from the subsets discarded in the
contraction step. As a consequence, x∗ is contained in this set and a lower bound of f∗ is
given by

f = min
xi∈L∪Ls

f(xi).

An upper bound is provided by the value of f at a feasible solution x̃,

f = f̃ .

IBBA terminates either when a stopping criterion is reached, or when L is empty. The classical
stopping criterion is the reach of a given precision on the width of the enclosure of f∗. The
criterion chosen in this thesis is the relative precision εr, that is IBBA terminates if

f − f ≤ εr max(1, |f |).

If both L and Ls are empty when IBBA terminates, it means that the problem is infeasible
over the initial domain.

Algorithm 1 Interval Branch and Bound algorithm: IBBA.

Set L = {X}, Ls = ∅.
while Stop criterion not reached do

Extract a box x from L. . extraction
Contract x with acceleration techniques. . contraction
if x 6= ∅ then

Compute f(x). . bounds computation
Search for a feasible vector in x,
and update the best current solution x̃. . solution search

Bisect x into p boxes xi. . bisection
for i ∈ {1, . . . , p}. do

if w(xi) > ε then . insertion
Insert xi in L.

else
Insert xi in Ls

end if
end for

end if
end while

Extraction/Insertion. When boxes are inserted in L they are sorted with respect to a
priority criterion, deciding which box will be extracted first. This criterion can be the maximal
width of the box, the width of f(x), etc. A good order criterion is the lower bound of f(x).
That is, the box x extracted from L is such that

f(x) = min
xi∈L

f(xi).

42 CHAPTER 2. INTERVAL ANALYSIS TOOLS AND B&B ALGORITHMS

x

f

X

CS(X)

S

C(X)× f(C(X))

f

g
x̃

f̃

f(C(X))

x∗

f∗

(a) First iteration. The box X is contracted
by CS. f(C(X)) provides a lower bound on f∗,
the midpoint of C(X) is feasible and provides
an upper bound f̃ on f∗. C(X) is bisected into
x1 and x2.

x

f

x1 x2

Cf̃ (x2)

C(x1)× f(C(x1))

C(x2)× f(C(x2))

x̃

f̃

f(C(x2))

(b) Second and third iterations. x1 is not con-
tracted by any contractor, C(x1) = x1. x2 is
contracted by Cf̃ . The midpoint of x1 is not
better than x̃, and the midpoint of C(x2) is not
feasible. Therefore x̃ and f̃ are not updated.
The lower bound on f∗ becomes f(C(x2).

Figure 2.9: First steps of Interval Branch and Bound Algorithm.

Such a criterion allows to focus on increasing the lower bound f , and also enable to know at
any time the value of the lower bound on f∗. This criterion is the one that will be used in
the sequel.
The data structure L is generally a list. However, a sorting algorithm must be used when
inserting a box in L, and the complexity of such algorithms is at best linear with respect to
the number of elements in the list. We propose to use a binary heap structure instead, since
the complexity of the insertion is log2(n). Ls is also a binary heap with the same sorting
criterion. Doing so the first element of Ls provides the lowest lower bounds on f over the
boxes it contains. The lower bound f is given by the minimum between f(x1) and f(xs,1),
where x1 is the first box in L and xs,1 the first box in Ls.

Contraction. The contraction step aims to contract the box x so that subsets of x that do
not contain the global minimum are removed. The definition of the minimum provides two
constraints that a vector x must be satisfied to be the minimizer.

• The first one is that x must be feasible. For this constraint, a contractor CS for S can
be built as explained in Subsection 2.2.2

• The second constraint stands that f is minimal at x over the feasible set S. That is, it is

2.3. BRANCH AND BOUND ALGORITHMS BASED ON INTERVALS 43

possible to define the additional fictive constraint f(x) < f̃ = f(x̃), with x̃ any feasible
vector. In the IBBA, x̃ is computed at the step solution search. If no x̃ is available,
f̃ = +∞. For this constraint, another contractor Cf̃ is defined. If Cf̃ (x) = ∅, it implies

that ∀x ∈ x, feasible or not, f(x) > f̃ and therefore f(x) > f∗, implying that x∗ /∈ x.

• A last contractor CJ based on the monotonicity test of f , described in Subsection 2.3.3,
is also used to contract x.

A unique contractor C being the composition of the three contractors CS, Cf̃ , and CJ is defined.

C = CS ◦ Cf̃ ◦ CJ .

If C contracts x into ∅, x is discarded since it is proved that it does not contains x∗. These
three contractors compose the acceleration techniques.

Bounds computation. Once x is contracted, bounds on f(x) are computed. This is done
using the natural inclusion function f of f . This step is of major interest since it enables to
compute the lower bound f on f∗.

Solution search. In this step, a feasible vector x is searched such that it is better, with
respect to the value of f , than the current best feasible vector x̃. The most straightforward
way is to chose x = mid(x). If x is feasible and f(x) < f̃ , then x is assigned to x̃. This step
enables both to lower f̃ which is an upper bound of f∗, and to get better contraction from Cf̃ .
In the following, the candidate solution is chosen as the midpoint of x. When a new solution
is found, the elements of L and Ls having a lower bound strictly greater than f̃ are discarded
since they do not contain x∗.

Bisection. The bisection of x consists in splitting it into several non overlapping boxes xi,
i ∈ {1, . . . , p}.

x = x1 ∪ · · · ∪ xp.

In this way, any vector of x is lost in the bisection process. One of the most economical
way to perform a bisection in term of computational time is to bisect x along its largest
dimension, providing two sub-boxes. This is the strategy chosen in this thesis. However, other
bisection methods exist, relying on heuristics that enable to chose along which dimension
x should be bisected based on the local characteristics of the objective function and the
constraints [55, 12, 35]. These methods aim for a bisection so that the contractors to discard
quickly the resulting sub-boxes, but may be computationally expensive.

2.3.3 Monotonicity test

The monotonicity test permits to contract a box by studying the monotonicity of the objective
function. The principle lies in contracting each dimensions of a box x to the coordinate of
the minimizer of f over this box. The coordinates are deduced from the monotonicity of f .

44 CHAPTER 2. INTERVAL ANALYSIS TOOLS AND B&B ALGORITHMS

Consider the differentiable objective function f : Rn → R and a feasible box x = x1×· · ·×xn
in IRn. The Jacobian of f is

J , (
∂f

∂x1
, . . . ,

∂f

∂xn
)T = (J1, . . . , Jn)T .

Suppose that an inclusion function J of J is available, and Ji(x) ≥ 0. We have that the

projection of f on the ith axis is monotonous increasing,

Ji(x) ≥ 0 =⇒ ∀x ∈ x, f(x) ≥ f(x1, . . . ,xi, . . . , xn).

As a consequence, the ith coordinate of the minimizer of f over x is xi and xi can be contracted

to its lower bound xi. Following the same reasoning, if Ji(x) ≤ 0, then xi is contracted to xi.
Such contraction can be performed only if x is feasible. Indeed, x is contracted to the
coordinate of the minimizer of f over x but not to the minimizer of f over the feasible
subset of x, being x ∩ S. For example, consider the unconstrained minimization problem

{
min
x1,x2

f(x1, x2) = x1 · x2
2.

over the box [−1, 1]×[−1, 1]. The Jacobian of f is J(x1, x2) = (x2
2, 2x1x2)T , for which the nat-

ural inclusion function provides J([−1, 1], [−1, 1]) = ([0, 1], [−2, 2])T . Hence, f is monotonic
over the x1 axis as illustrated in Figure 2.10a by the projection of f on the (x1, f) plan for
several values of x2 . As a consequence the initial box can be contracted to [−1,−1]× [−1, 1].
However the function is not monotonous over x2 and the box cannot be contracted over its
second dimension.
Consider now an additional constraint x1 ≥ −0.5 as represented on Figure 2.10b. The problem
becomes

{
min

(x1,x2)
f(x1, x2) = x1 · x2

2,

s. t. x1 ≥ −0.5.

The first coordinate of the minimizer is now −0.5. The contraction cannot be performed
because the contracted box [−1,−1]× [−1, 1] does not contain the minimizer.

Algorithm 2 framed the monotonicity test as the contractor CJ .

Algorithm 2 Monotonicity contractor CJ .

Input: x.
Output: Contracted x.
1: if x is feasible. then
2: Compute J(x).
3: for i ∈ {1, . . . , n} do
4: if Ji(x) ≥ 0 then
5: xi = xi.

6: else if Ji(x) ≤ 0 then
7: xi = xi.
8: end if
9: end for

10: end if

2.3. BRANCH AND BOUND ALGORITHMS BASED ON INTERVALS 45

−1
0

1

0

2
−1

0

1

x2

x1

(a) The box is feasible, the initial box can be
contracted to −1 over the x-axis.

−1
0

1

0

2
−1

0

1

x2

x1

x1 = −0.5

(b) The box is not entirely feasible, the mono-
tonicity test cannot be used.

Figure 2.10: Contraction based on monotonicity test.

At the first line of Algorithm 2, the feasibility of x is verified either using the inclusion
function of the constraints functions or using a contractor on the complementary of the feasible
set (see Section 2.2 and 2.2.2, respectively). If x is feasible, the monotonicity test is performed
over the n dimensions of x.
CJ is a contractor for the minimizer of f over x since it respects the consistency and contraction
properties. By extension, CJ is also a contractor for the global minimizer of f over the initial
domain X. Indeed, if x∗ is contained in x then it is also the minimizer of f over x ∩ S.

2.3.4 Feasible set characterization

When solving an optimization problem, it may be interesting to compute not only a good
feasible solution, but also a sub-optimal region where the objective function is low enough to
be satisfying. To this extend, the optimization problem is reformulated by the CSP Sα by
transforming the objective function into a constraint.

Sα

f(x) ≤ α
gi(x) ≤ 0, ∀i ∈ {1, . . . ,m}
x ∈ X.

The feasible set Sα of Sα corresponds to a sub-optimal region, and can be characterized by a
sub-paving of X by adapting the IBBA. A sub-paving of X is a union of non-overlapping sub-
boxes of X [69]. This sub-paving is computed by the Feasible Set Characterization Algorithm
(FSCA), given by Algorithm 3.

Remark. A sub-optimal region can also be characterized by the near optimal set, composed
of the feasible points whose objective values are near the optimum. However, the optimum,
or at least an approximation, must be known to define such a set. Characterizing this set is

46 CHAPTER 2. INTERVAL ANALYSIS TOOLS AND B&B ALGORITHMS

thus more difficult than characterizing the feasible set of Sα. In this thesis, only sub-optimal
regions as defined by Sα are considered.

FSCA takes as input the CSP Sα and a minimal width ε. It returns a sub-paving of X
contained in three lists:

• Lin contains feasible boxes.

• Lout contains infeasible boxes.

• Lmb contains boxes not proved to be feasible or infeasible.

Two contractors Cα and Cinv are defined for Sα and its complementary Sα respectively. FSCA
works as follows. A box x is extracted from L and contracted with Cα and Cinv. The subset
discarded by the first contraction is proved to be infeasible and is stored in Lout. The second
contraction discards a subset proved to be feasible, which is stored in Lin. The box resulting
from these two contractions is not proved to be feasible or infeasible. It is hence bisected and
added to L if its width is greater than ε. On the contrary, the box is stored in Lmb. FSCA
terminates when L is empty. The initial domain X is then completely characterized by the
boxes contained in the lists Lin, Lout, and Lmb. The bisection step of FSCA is the same as
the one of IBBA. However, the boxes contained in L does not need to be sorted, simplifying
the extraction and insertion steps.

Algorithm 3 Feasible Set Characterization Algorithm: FSCA.

1: Set L = {X}, Lin = ∅, Lout = ∅, Lmb = ∅.
2: while L is not empty. do
3: Extract a box x from L. . extraction
4: Insert x \ Cα(x) in Lout . Feasible contraction
5: Insert x \ Cinv(x) in Lin . Non feasible contraction
6: Bisect xB into p boxes xi. . bisection
7: for i ∈ {1, . . . , p}. do
8: if w(xi) > ε then . Insertion
9: Insert xi in L.

10: else
11: Insert xi in Lmb
12: end if
13: end for
14: end while

Figure 2.11 illustrates a sub-paving obtained with FSCA. The first sub-paving in Fig-
ure 2.11a is obtained using only the feasibility test based on the inclusion function. The
second sub-paving in Figure 2.11b is computed using the contractors Cα and Cinv. Obtaining
he second sub-paving requires three time less iterations to terminate than the first one, and
illustrates the effectiveness of the contractors.

2.4. CONCLUSION 47

(a) Subpaving obtained with FSCA without
the contraction. 1811 iterations are needed
for FSCA to terminate.

(b) Subpaving obtained with FSCA with the
contraction step. 551 iterations are needed for
FSCA to terminate.

Figure 2.11: Subpaving obtained with FSCA with the contraction step.

2.4 Conclusion

This chapter has introduced interval analysis tools, and how they can be embedded in B&B
algorithms either to solve an optimization problem or to characterize the feasible set of a CSP
in a global way. The main point of the IBBA and FSCA algorithms is the reliability of the
results they provide, ensured by the guaranteed computations done with interval arithmetic.
The efficiency of those two algorithms rely on the acceleration techniques, framed as contrac-
tors, permitting to discard subsets of the search domain and hence improve the convergence.
The optimization problems considered in this chapter are minimization problems subject to
constraints. The next chapter is dedicated to the global resolution of continuous minmax
problems subject to semi infinite constraints, which is more difficult to handle. However, the
framework provided by the B&B and the contractors can be extended to minmax problems to
solve them globally. As a consequence, the next chapter strongly relies on the tools presented
in this chapter.

Chapter 3

Minmax optimization and semi
infinite programming

3.1 Introduction

This chapter is dedicated to the global resolution of minmax problem subject to semi infinite
constraints. The IBBA introduced in Chapter 2 is extended to solve this class of problems. It
will be shown in Chapter 4 that the structured synthesis, and the structured robust synthesis
problems can be formulated as minmax problems. As a consequence, this chapter introduced
the necessary tools to solve these two control problems in a global way.

3.1.1 MinMax problems

The minmax problem initially emerges from game theory and is stated as follows
{

min
x∈X

sup
y∈Y

f(x, y). (3.1)

Consider two players P1 and P2. The payoff of P1 is given by −f and the one of P2 by
f . P2 choses y to maximize its payoff while P1 aims to minimize the best payoff P2 could
obtain. The game is said to have an equilibrium point, called the Nash equilibrium from the
mathematician John Nash, if

min
x

sup
y
f(x, y) = sup

y
min
x
f(x, y).

This equilibrium point may not exists and only the following inequality holds in the general
case [14]:

min
x

sup
y
f(x, y) ≤ sup

y
min
x
f(x, y).

In addition, constraints on the problem can be considered representing rules that the players
must respect. The general minmax problem is stated as Mmm.

Mmm :

{
min
x∈X

sup
y∈Y

f(x, y),

s. t. gi(x, y) ≤ 0, ∀i ∈ {1, . . . ,m}.

49

50 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

In the following, we denote S ⊆ X × Y the feasible set defined by the constraints gi, and
Yx = {y ∈ Y | (x, y) ∈ S} the feasible subset of Y given x.

In game theory, the minmax problem has been studied mostly in the unconstrained convex-
concave case, i.e. f is convex with respect to x and concave with respect to y. Many papers
are dedicated to the resolution of the unconstrained minmax problem using evolutionary
approaches such as genetic algorithms [16, 17, 34] or particle swarm optimization [120, 79],
but few of them consider the constrained case [83, 119]. Those methods do not allow to solve
the minmax problem in a global way since evolutionary algorithms converge locally but not
globally. In this thesis, the minmax problem is aimed to be solved in a global way. However,
very few attention has been given to solve this problem globally. In [136], Zuhe proposes a
branch and bound algorithm based on interval analysis for the unconstrained case, and Sainz
approaches the constrained minmax problem with modal intervals [117].

3.1.2 Semi infinite programs

A Semi Infinite Program (SIP) is an optimization problem involving Semi Infinite Constraints
(SIC) [64], generally expressed as

SIP :

{
min
x∈X

f(x),

s. t. q(x, z) ≤ 0, ∀z ∈ F.

This constraint is called semi infinite because it involves a finite number of variable but an
infinite number of constraint.

Remark. F can be any subset of Rnz , possibly characterized by constraints. In the litterature,
the distinction is made whether F is a hyperrectangle or is defined by constraints. In the second
case, the problem is called a Generalized SIP (GSIP). In this section, we consider GSIP, but
simply called them SIP.

A SIP problem is closely related to minmax problems as pointed out in [22]. Indeed, a
SIC can be dealt with by considering a related maximization problem due to the following
equivalence,

∀z ∈ F, q(x, z) ≤ 0 ⇐⇒ sup
z∈F

q(x, z) ≤ 0.

The main difficulty with SIP is that q is not convex in the general case, meaning that the
maximization problem related to the SIC must be solved in a global way to ensure the satis-
faction of the SIC. To this extend, [20] and [44] propose a convex reformulation of the SIC,
and [101] takes advantages of the reliability of interval analysis tools. In [22], Blankenship
proposes an algorithm which approximates the infinite set of constraint by a finite one, by
replacing F by the solutions to the maximization problem for different values of x. In [89, 38],
a guaranteed version of the algorithm relying on the global resolution of the maximization
problem is proposed.

3.1. INTRODUCTION 51

Quantified constraints. More generally, a SIC is a quantified constraints involving the
quantifier ∀. The first approach of quantified constraints relies on the Cylindrical Algebraic
Decomposition (CAD), introduced in [33]. This method enables to reformulate quantified con-
straints as quantifier-free constraints, and is implemented in several solvers. As pointed out
in [107] CAD methods are generally slow to compute solutions, due to the doubly exponential
behavior of the underlying algorithm. In addition the resulting constraints, although being
quantifier-free, may not be used straightforwardly and need further processing. On the other
hand, branch and bound algorithms based on interval methods emerged during the 1990s to
solve problems subject to quantified constraints [70, 85]. During the 2000s, the branch and
bound methods gained in efficiency by integrating propagation methods [107, 51, 50].

In this thesis, we consider the case where F is defined by a set of constraints depending
both in x and z. That is, F = {z ∈ Z |hi(x, z) ≤ 0, ∀i}. For the sake of clarity, the notation
Zx instead of F is used in the following. Hence, a SIC is formulated as

q(x, z) ≤ 0, ∀z ∈ Zx.

The feasible subset of X defined by the SIC is denoted Q.

3.1.3 Problem of interest

Chapter 4 addresses the formulation of H∞ control problems as optimization ones. Those
problems have various formulations, involving SIC or not, having objectives expressed as
maxima or not, etc. In order to solve them in a global way with the same method, indepen-
dently of their objectives/constraints, we consider the very general case given by problemM.
For the sake of clarity, only one SIC is considered, Section 3.4 explains how multiple SICs can
be taken into account.

M :

min
x∈X

sup
y∈Yx

f(x, y),

s. t. pj(x) ≤ 0, ∀j,
q(x, z) ≤ 0, ∀z ∈ Zx.

We assume that:

• The initial domains X, Y and Z for the variable x, y, and z are subsets of IRnx , IRny ,
and IRnz , respectively,

• all the functions have an explicit expression.

We also recall that the sets Yx and Zx are defined by constraints.

• Yx = {y ∈ Y | gi(x, z) ≤ 0, ∀i}

• Zx = {z ∈ Z |hj(x, z) ≤ 0, ∀j}

Problem M is hence a minmax problem subject to regular constraints pj and a SIC.

52 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

3.2 General approach

The approach we propose to solveM relies on branch and bound algorithms and interval tools
presented in Chapter 2. This choice is motivated by the reliability of interval tools, and the
fact that such approaches have already proved their efficiency for dealing with the minmax
problem [136, 117], quantified constraints [51, 50], and SIP [101].
First of all, taking advantage of the reformulation of a SIC as a maximization problem,
problem M can be expressed equivalently as

M :

min
x∈X

sup
y∈Yx

f(x, y),

s. t. pj(x) ≤ 0, ∀j,
sup
z∈Zx

q(x, z) ≤ 0.

The last Problem M is therefore composed of two maximization problems sharing the same
formulation.
Consider the maximization problem of f . We denote

fx : Rny 7→ R,
y → f(x, y).

The maximization of f at x is given by problem Mx,

Mx :
{

sup
y∈Yx

fx(y).

The maximizer of Mx, depending on x, is denoted y∗x and the maximum is denoted f∗x . We
defined the function fsup as

fsup : Rnx → R,
x 7→ f∗x .

Given a box x, fsup(x) is the set of maxima of the problems Mx,

fsup(x) = {f∗x |x ∈ x} ⊂ R.

Using the same notations for the maximization problem related to the SIC, we define

qx : Rnz 7→ R,
z → q(x, z).

and

qsup : Rnx → R,
x 7→ q∗x.

With these notations, problem M can be reformulated as,

M :

min
x∈X

fsup(x),

s. t. pj(x) ≤ 0, ∀j,
qsup(x) ≤ 0.

3.3. BRANCH AND BOUND ALGORITHM FOR A SET OF FUNCTIONS 53

The minimizer of M is denoted x∗ and the minimum is f∗sup = fsup(x
∗). Under this form

M is a ”regular” minimization problem, and the IBBA structure can be used to solve it in a
global way. However, the contraction and bound computation steps need to be modified in
order to deal with the maximization problem Mx. Indeed, bounds on fsup and qsup must be
computable over a box x, implicitly meaning to solve two maximization problems for sets of
functions.

The rest of this chapter is organized as follows. Section 3.3 introduces a branch and bound
algorithm to compute guaranteed bounds on fsup and qsup. Section 3.4 presents an algorithm
to solve M, and Section 3.5 illustrates the performance of this algorithm on numerical ex-
amples. Section 3.6 discusses the performance and novelty of our approach, identify possible
improvements, and shed a light on other optimization problems to which our approach could
be used.

3.3 Branch and bound algorithm for a set of functions

This section is dedicated to the computation of bounds on fsup and qsup over a box x. The
function fsup is considered in this section, but all the results can be transposed to qsup.
This section is organized as follows: Section 3.3.1 introduces theorems to compute guaranteed
bounds on a set of maxima using inclusion functions. Section 3.3.2 proposes a way to prove
the feasibility of a box y ⊂ Y with respect to an infinite number of constraints. Sections 3.3.3
and 3.3.4 extend the contractors already introduced in Chapter 2 to the maximization of a set
of functions. Finally, Section 3.3.5 introduces the Set Interval Branch and Bound (SIBBA),
an algorithm to compute efficiently reliable bounds on fsup and Section 3.3.6 proposes a nu-
merical example.

3.3.1 Computing bounds of a set of maxima

Given a box x, we aim to compute bounds on fsup over x. That is, a lower bound and an
upper bound on the set fsup(x) are searched. The set of functions fx is defined as,

fx = {fx |x ∈ x}.

The proposed approach to compute a reliable enclosure of fsup relies on the hull of the set
of function fx, which is composed of two functions f+

x and f−x expressed as

f+
x : Rny 7→ R,

y → sup
x∈x

f(x, y).

f−x : Rny 7→ R,
y → min

x∈x
f(x, y).

For any y ∈ Y, the functions f+
x and f−x provides an enclosure of fx as shown on Figure 3.1.

Those functions are not known in the general case, and their expression will not be searched
for, but they propose a framework to make the connection between the set of maxima fsup(x)
and a practical way to compute bounds using inclusion functions.

54 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

Since the maximization problem Mx is considered for a set of functions, the feasible set Yx
must also be extended to the case where x is a set. The set being the union of all feasible sets
related to the vectors in x is denoted Yx,

Yx = ∪
x∈x

Yx = {y ∈ Y | ∃x ∈ x, y ∈ Yx}.

Hence, ∀x ∈ x, Yx ⊆ Yx. Theorem 3.3.1 proposes a first result to enclose fsup(x) using the
hull of fx.

Theorem 3.3.1.

fsup(x) ⊆ [min
y∈Yx

f−x (y), sup
y∈Yx

f+
x (y)].

Moreover, if ∀x ∈ x,Yx = Y, then

fsup(x) ⊆ [sup
y∈Y

f−x (y), sup
y∈Y

f+
x (y)].

Proof. Consider x ∈ x,

fsup(x) = sup
y∈Yx

fx(y) ≤ sup
y∈Yx

fx(y), (3.2)

since Yx ⊆ Yx.
In addition, we have by definition

∀y ∈ Y, fx(y) ≤ f+
x (y)

=⇒ sup
y∈Yx

fx(y) = fx(argmax
y∈Yx

fx(y)) ≤ f+
x (argmax

y∈Yx

fx(y))

=⇒ sup
y∈Yx

fx(y) ≤ sup
y∈Yx

f+
x (y).

(3.3)

From Equations 3.2 and 3.3, it follows that

fsup(x) ≤ sup
y∈Yx

f+
x (y). (3.4)

From the definition of f−x , we have

∀y ∈ Y, fx(y) ≥ f−x (y) =⇒ ∀y ∈ Yx, fx(y) ≥ f−x (y), (3.5)

and since Yx ⊆ Yx,

min
y∈Yx

f−x (y) ≥ min
y∈Yx

f−x (y). (3.6)

From Equation 3.5 and 3.6, it follows that

fsup(x) = fx(y∗x) ≥ f−x (y∗x) ≥ min
y∈Yx

f−x (y) ≥ min
y∈Yx

f−x (y). (3.7)

Ultimately, From Equation 3.4 and 3.7, we obtain

min
y∈Yx

f−x (y) ≤ fsup(x) ≤ sup
y∈Yx

f+
x (y)

which proves the first statement of Theorem 3.3.1.
The second statement of Theorem 3.3.1 corresponds to the unconstrained case. Its proof is
straightforward from the definition of f−x and f+

x . �

3.3. BRANCH AND BOUND ALGORITHM FOR A SET OF FUNCTIONS 55

y

f

Yx

f+
x

f−x

fx

g+
x

g−x gx

Yx

f∗x

max
y∈Yx

fx(y)

max
y∈Yx

f−x (y)

max
y∈Yx

f+
x (y)

min
y∈Yx

f−x (y)

Figure 3.1: Optimization of a family of function with IBBA

The first statement of Theorem 3.3.1 corresponds to the general case whereMx is subject
to constraints. In this case, sup

y∈Yx
f−x is not a reliable lower bound of fsup(x). In effect, given a

vector x ∈ x, since Yx ⊆ Yx, there possibly exists an infeasible vector y ∈ Yx \ Yx such that
f−x (y) > f∗x . Figure 3.1 illustrates this case, the set Yx is defined by a unique constraint and
is represented in bold on the y axis. The second part of Theorem 3.3.1 is the unconstrained
case, for which sup

y∈Yx

f−x (y) can be used as a reliable lower bound of fsup(x).

Theorem 3.3.2 generalizes Theorem 3.3.1 by replacing Yx by any set H which is guaranteed
to contain the set of maximizers {y∗x |x ∈ x}. This result will be needed further.

Theorem 3.3.2. Consider a set H ⊆ Y and a box x ∈ X. If ∀x ∈ x, y∗x ∈ H then

fsup(x) ⊆ [min
y∈H

f−x (y), sup
y∈H

f+
x (y)].

Moreover, if ∀x ∈ x,Yx = Y, then

fsup(x) ⊆ [sup
y∈H

f−x (y), sup
y∈H

f+
x (y)].

56 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

Proof. The proof of Theorem 3.3.1 relies on the fact that ∀x ∈ x, y∗x ∈ Yx and that the feasible
set Yx, which contains y∗x, is a subset of Yx.
In this theorem, the condition provides ∀x ∈ x, y∗x ∈ H. Consequently, y∗x ∈ H ∩ Yx. In
addition, we have that H ∩ Yx ⊆ H.
Therefore, the proof of Theorem 3.3.2 is the same as the proof of Theorem 3.3.1 replacing Yx

by H and Yx by H ∩ Yx. �

Corollary 3.3.2.1 provides a practical way, using inclusion functions, to compute guaran-
teed bounds of fsup(x). It relies on the fact that an inclusion function enables to compute
bounds enclosing the hull of fx over a box y.

Corollary 3.3.2.1. Consider H = ∪
i
yi a subset of Y, f an inclusion function of f and a box

x ⊆ X. If ∀x ∈ x, y∗x ∈ H, then

fsup(x) ⊆ [min
i

f(x,yi),max
i

f(x,yi)].

Moreover, if ∀x ∈ x,Yx = Y, then

fsup(x) ⊆ [max
i

f(x,yi),max
i

f(x,Yi)].

Proof. In order to prove Corollary 3.3.2.1, considering the statements of Theorem 3.3.2 it
suffices to prove the following three statements:

1. min
i

f(x,yi) ≤ min
y∈H

f−x (y),

2. max
i

f(x,yi) ≥ sup
y∈H

f+
x (y),

3. max
i

f(x,yi) ≤ sup
y∈H

f−x (y).

Proof of 2: Let ys = argmax
y∈H

f+
x (y). ∃j such as ys ∈ yj . From the definition of inclusion

function, we have

∀x ∈ x, ∀y ∈ yj , f(x,yj) ≥ f(x, y) =⇒ ∀x ∈ x, f(x,yj) ≥ f(x, ys) (for ys ∈ yj),

=⇒ f(x,yj) ≥ f+
x (ys),

=⇒ max
i

f(x,yi) ≥ f+
x (ys).

Proof of 3: Let m = argmax
i

f(x,yi) be the index of the box which provides the greatest lower

bound. From the definition of inclusion function, we have

∀x ∈ x, ∀y ∈ ym, f(x, y) ≥ f(x,ym) =⇒ ∀y ∈ ym, f
−
x (y) ≥ f(x,ym),

=⇒ sup
y∈H

f−x (y) ≥ f(x,ym).

Proof of 1: From 3, we have

max
i

f(x,yi) ≤ sup
y∈H

f−x (y) =⇒ min
i

f(x,yi) ≤ sup
y∈H

f−x (y).

�

3.3. BRANCH AND BOUND ALGORITHM FOR A SET OF FUNCTIONS 57

Corollary 3.3.2.1 makes the connection with branch and bound algorithms. The union of
boxes yi guaranteed to contains the set of solutions corresponds to the boxes contained in the
data structures L and Ls in the IBBA. Figure 3.2 illustrates Theorem 3.3.2 and its corollary.
The set H corresponds to the projection of the gray boxes on the y axis.

Theorem 3.3.3 proposes a second formula for the lower bound of fsup(x), and its corollary
offers a practical way to compute it using inclusion functions.

Theorem 3.3.3. Consider ỹ ∈ Y and x ⊆ X. If ∀x ∈ x, ỹ ∈ Yx then f−x (ỹ) is a lower bound
of fsup(x).

Proof.

∀x ∈ x, ỹ ∈ Yx =⇒ ∀x ∈ x, fx(ỹ) ≤ fsup(x) (def. of maximum)
=⇒ ∀x ∈ x, f−x (ỹ) ≤ fsup(x) (def. of f−x).

�

Corollary 3.3.3.1. Consider ỹ ∈ Y, x ⊆ X and f an inclusion function of f . If ∀x ∈ x, ỹ ∈
Yx then f(x, ỹ) is a lower bound of fsup(x).

Proof. It suffices to prove that f(x, ỹ) ≤ f−x (ỹ). This inequality arises directly from the

definition of f−x and the property of inclusion functions.
�

Corollary 3.3.3.1 is in fact the extension of the solution search step of IBBA to the case
of a set of functions.

In the end, this section provides practical tools to compute reliable bounds of fsup over a
box that can be directly embedded in a branch and bound algorithm, which is SIBBA describe
in Section 3.3.5.

3.3.2 Consistency w.r.t infinite number of constraints

In order to use Corollary 3.3.3.1, a vector ỹ must be proved to belong to Yx, ∀x ∈ x. Consid-
ering x ∈ x, Yx is the feasible set of CSP Sx composed of ng constraints.

Sx
{
gx,i(y) ≤ 0 ∀i ∈ {1, . . . , ng}
y ∈ Y

We recall that S ⊂ X× Y is the feasible set defined by the constraints gi.
Proving that ∀x ∈ x, ỹ ∈ Yx means to solve a CSP composed of an infinite number of con-
straints. This can be done thanks to the consistency property of contractors. Theorem 3.3.4
goes a step further by considering a box y instead of a vector.

Theorem 3.3.4. Consider x and y two boxes subset of X and Y respectively, and Cinv a
contractor for the complementary set S of S. If Cinv(x,y) = ∅ then ∀x ∈ x, y ⊆ Yx .

58 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

y

f

max
i

f(x,yi)

min
i

f(x,yi)

Yx

f+
x

f−x

∩
x∈x

Yx

max
y∈Yx

f−x (y)

max
y∈Yx

f+
x (y)

ỹ

f−x (ỹ)

f(x, ỹ)

ỹ × f(x, ỹ)

yi × f(x,yi)

f∗x

Figure 3.2: Optimization of a family of function with IBBA

3.3. BRANCH AND BOUND ALGORITHM FOR A SET OF FUNCTIONS 59

Proof. Consider a vector y ∈ y. Suppose ∃x ∈ x such as y /∈ Yx.

y /∈ Yx =⇒ (x, y) /∈ S
=⇒ (x, y) ∈ S.

This is false due to the consistency property of Cinv. As a consequence, ∀y ∈ y, it holds that
∀x ∈ x, y ∈ Yx which proves Theorem 3.3.4 �

Remark. The set defined by {y ∈ y | ∀x ∈ x, y ∈ Yx} is equal to the intersection of all the
sets Yx for x ∈ x,

{y ∈ y | ∀x ∈ x, y ∈ Yx} = ∩
x∈x

Yx.

It is important to note that even if y ⊂ ∩
x∈x

Yx, Cinv does not necessarily contract x×y to

the empty set since it is not minimal and because of the wrapping effect. In the following, a
box y or a vector y will be said to be feasible if it is subset of ∩

x∈x
Yx.

3.3.3 Extension of contractors for the maximization of a set of functions

In Chapter 2, IBBA was introduced to solve minimization problems. Its efficiency relies on
the acceleration techniques, framed as contractors. This section proposes the extension of
those contractors to the case of the maximization of a set of functions. For every contractors
introduced in this section, a particular care is being taken to prove that no maximizers y∗x are
discarded.

Contractor for the feasible set

Theorem 3.3.5 is the extension of the contractor CS introduced in Chapter 2. It enables to
contract a box y with respect to the set Yx.

Theorem 3.3.5. Let C be a contractor for S, and xc and yc the boxes resulting from the
contraction by C, C(xc,yc) = xc × yc. The function CYx defined by

CYx : IRm → IRm
y 7→ yc,

is a contractor for Yx. In addition, {y∗x |x ∈ x} ∩ y ⊆ CYx(y).

Proof. Suppose ∃y ∈ Yx such as y ∈ y \ yc.

y ∈ Yx =⇒ ∃x ∈ x, (x, y) ∈ S (def. of Yx)
=⇒ ∃(x, y) /∈ xc × yc, (x, y) ∈ S. (since y /∈ yc)

This statement is false due to the consistency property of C. As a consequence, y ∈ yc which
proves the consistency property. The contraction property of CYx arises from the one of C.
As a consequence, CYx is a contractor for Yx.
Consider x ∈ x such as y∗x ∈ y. From the definition of the optimizer, we have

y∗x ∈ Yx ∩ y =⇒ y∗x ∈ Yx ∩ y (since Yx ⊆ Yx)
=⇒ y∗x ∈ CYx(y) (consistency property of CYx)

�

60 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

It is important to note that CYx does not contract x. In effect, (x, y) /∈ S does not imply
that x∗ 6= x but only proves that x is not feasible at y. Figure 3.3a illustrates CYx . The boxes
y and y′ are contracted around Yx displayed in bold.

Monotonicity contractor

The next contractor to be extended to the maximization of a set of functions is the mono-
tonicity contractor. Note that this contractor is introduced for a minimization problem in
Chapter 2, but is here considered for a maximization problem. However, this difference does
not change the underlying principle of the contractor. Let Jy be the derivative of f with
respect to the variable y = (y1, . . . , ym).

Jy : Rn × Rm → Rm,
(x, y) 7→ (∂f∂y1 (x, y), . . . , ∂f

∂ym
(x, y))T = (Jy,1(x, y), . . . , Jy,m(x, y))T .

Algorithm 4 describes CJy the monotonicity contractor for the maximization of a set of func-
tions, and Theorem 3.3.6 ensures that no maximizers y∗x are discarded.

Algorithm 4 CJy Monotonicity contractor for set of function.

Input: x, y.
Output: Contracted y.
1: if ∀x ∈ x,y ⊆ Yx. then
2: Compute Jy(x,y).
3: for i ∈ {1, . . . ,m}. do
4: if Jy,i(x,y) ≥ 0. then
5: yi = yi.
6: else if Jy,i(x,y) ≤ 0. then
7: yi = yi.
8: end if
9: end for

10: end if

Theorem 3.3.6. Consider two boxes x and y. CJy is a contractor for the set {argmax
y∈y

fx(y) |x ∈
x}. In addition y ∩ {y∗x |x ∈ x} ⊆ CJy(y).

Proof. Consider i ∈ {1, . . . ,m}.

Jy,i(x,y) ≥ 0 =⇒ ∀x ∈ x,Jy,i(x,y) ≥ 0,

=⇒ ∀x ∈ x, ∀y ∈ y, fx(y) ≤ fx(y1, . . . ,yi, . . . , ym),
=⇒ ∀x ∈ x, (argmax

y∈y
fx(y))i = yi,

=⇒ ∀x ∈ x, argmax
y∈y

fx(y) ⊆ y1 × · · · × yi × · · · × ym.

3.3. BRANCH AND BOUND ALGORITHM FOR A SET OF FUNCTIONS 61

y

f

yy′

CYx(y)CYx(y′)

fx1
fx2
fx3

f+
x

f−x

(a) Contraction done by CYx . Yx is repre-
sented in bold over the y axis. Both y and
y′ are contracted.

y

f

y

CJy(y) = y

CJy(y′) = y′

(b) Contraction done by the monotonicity con-
tractor CJy

. y is contracted into its lower
bound since all functions are monotonically
decreasing. y′ is not contracted since fx1 is
not monotonous over this box.

y

y

f

ỹ

f(x, ỹ)

ỹ × f(x, ỹ)

Cf−x (y)Cf−x (y′)

y′

(c) Contraction done by Cf̃x . Subsets of y and
y′ are discarded for they do not maximize f
for any x ∈ x.

Figure 3.3: Illustration of the contraction done by the contractors for the maximization of
a set of functions under constraint. The solid, dotted and dashed curves represent three
particular functions taken in fx at x1, x2 and x3 respectively.

62 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

The same reasoning leads to

Jy,i(x,y) ≤ 0 =⇒ ∀x ∈ x, argmax
y∈y

fx(y) ⊆ y1 × · · · × yi × · · · × ym.

Let yc,i be the box resulting from the contraction of y along its ith dimension, that is:

yc,i =

y1 × · · · × yi × · · · × ym, if Jy,i(x,y) ≥ 0,

y1 × · · · × yi × · · · × ym, if Jy,i(x,y) ≤ 0,

y else.

(3.8)

Since argmax
y∈y

fx(y) ⊆ yc,i, ∀i ∈ {1, . . . ,m}, we have

∀x ∈ x, argmax
y∈y

fx(y) ⊆ yc,i ⊆ ∩
i∈{1,...,m}

yc,i = CJy(y),

which proves the consistency property. The contraction property is straightforward. As a
consequence, CJy is a contractor for {argmax

y∈y
fx(y) |x ∈ x}.

In order to prove the second statement of Theorem 3.3.6, consider x ∈ x such as y∗x ∈ y. Since
y ⊆ Yx (theorem hypothesis) we have from the definition of the maximizer

y∗x = argmax
y∈y

fx(y) =⇒ y∗x ⊆ CJy(y) (consistency of CJy)
=⇒ y ∩ y∗x ⊆ CJy(y).

Therefore, ∀x ∈ x, y ∩ y∗x ⊆ CJy(y), which proves the second statement. �

As for the monotonicity contractor CJ , CJy can only be used if y is feasible. Otherwise,
the maximizer of fx over y is not proved to be feasible, and the contraction could lead to the
deletion of y∗x. Note that the monotonicity test cannot be used to contract x. Indeed, if f
is monotonically increasing with respect to x over y, it does not prove that it is the case at
y /∈ y. This is illustrated Figure 3.3b which depicts the contraction performed by CJy . The
order of fx1 , fx2 , and fx3 changes over Y. Since fx1 is not monotonous over y′, this box is
not contracted.

Contractor based on feasible points

Theorem 3.3.7 introduces the contractor Cf̃x , the extension of the contractor Cf̃ introduced
in Chapter 2. It is based on the hull of fx, and its corollary provides a practical way to use
it by the mean of inclusion functions.

Theorem 3.3.7. Consider x a subset of X and y a subset of Y. Let ỹ ∈ Y be a feasible vector.
Consider C a contractor for the set defined by the inequality f(x, y) ≥ f−x (ỹ), C(x × y) =
xc × yc.
The function

Cf̃x : IRm → IRm

y 7→ yc

3.3. BRANCH AND BOUND ALGORITHM FOR A SET OF FUNCTIONS 63

is a contractor for the set

{y ∈ y | ∀x ∈ x, fx(y) ≥ f−x (ỹ)}.
In addition,

y ∩ {y∗x |x ∈ x} ⊆ Cf̃x(y).

Proof. Suppose {y ∈ y | ∀x ∈ x, fx(y) ≥ f−x (ỹ)} * yc, as a consequence

∃x ∈ x, ∃y /∈ yc, fx(y) ≥ f−x (ỹ) =⇒ ∃(x, y) /∈ xc × yc, fx(y) ≥ f−x (ỹ).

This statement is false due to the consistency property of C. Therefore,

{y ∈ y | ∀x ∈ x, fx(y) ≥ f−x (ỹ)} ⊆ yc,

which proves the consistency of Cf̃x . The contraction property of Cf̃x arises from the one of C.
Consider x ∈ x such that y∗x ∈ y. Since ỹ ∈ Yx, from the definition of maximum we have

fx(y∗x) ≥ fx(ỹ) =⇒ fx(y∗x) ≥ f−x (ỹ).

As a consequence y∗x ∈ Cf̃x(y) due to the consistency property of Cf̃x . Finally,

y ∩ {y∗x |x ∈ x} ⊆ Cf̃x(y).

�

Corollary 3.3.7.1. Let f be an inclusion function of f . If C is a contractor for

{(x, y) ∈ x× y | f(x, y) ≥ f(x, ỹ)},
then Cf̃x is a contractor for the set

{y ∈ y | ∀x ∈ x, fx(y) ≥ f−x (ỹ)}.
In addition,

y ∩ {y∗x |x ∈ x} ⊆ Cf̃x(y).

Proof. Replacing f−x (y) by f(x, ỹ) in the proof of Theorem 3.3.7, we obtain that Cf̃x is a
contractor for the set

{y ∈ y | ∀x ∈ x, fx(y) ≥ f(x, ỹ)}.
From the property of inclusion function, we have that

f−x (y) ≥ f(x, ỹ) =⇒ {y ∈ y | ∀x ∈ x, fx(y) ≥ f−x (y)} ⊆ {y ∈ y | ∀x ∈ x, fx(y) ≥ f(x, ỹ)}.
This proves the consistency of Cf̃x . The contraction property arises from the one of C.
The proof of the second statement is straightforward from the one of Theorem 3.3.7. �

Cf̃x does not allow to contract x. It simply enables to discard subset of y which are proved
not to maximize fx over Y for any x ∈ x, as shown on Figure 3.3c. Note that y does not
need to be feasible. A vector y, feasible or not, is not a maximizer if another feasible vector
ỹ provides a greater value of f .

64 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

3.3.4 Contractor for subsets of x

The contractor introduced here does not contract y but x, contrary to the other contractors
presented in this section.

Theorem 3.3.8. Consider two boxes x ∈ X and y ∈ ∩
x∈x

Yx, and b ∈ R. Let C be a contractor

for the inequality f(x, y) ≤ b, and xc, yc be the boxes resulting from the contraction, C(x,y) =
xc × yc.
Let Cl be a function defined by

Cl : IRn → IRn

x 7→
{
∅ if yc ⊂ y (strict inclusion)
xc else.

Cl is a contractor for the set {x ∈ x | f∗x ≤ b}. In addition, {x∗} ∩ x ⊆ Cl(x).

Proof. Consider first the case where yc ⊂ y. Due to the strict inclusion, y \ yc 6= ∅. Let yo
be a vector in y \ yc. Since C is a contractor, from the consistency property we have

yo /∈ yc =⇒ ∀x ∈ x, (x, yo) /∈ xc × yc,
=⇒ ∀x ∈ x, f(x, yo) > b, (consistency of C)
=⇒ ∀x ∈ x, f∗x > b. (def. of maximum)

As a consequence,

{x ∈ x | f∗x ≤ b} = ∅ ⊆ Cl(x).

Consider the second case where yc = y. Suppose that ∃x ∈ xc such as f∗x > b. It implies that

∃x /∈ xc, f(x, y∗x) ≥ b =⇒ ∃(x, y) /∈ xc × yc, f(x, y) ≥ b.
This statement is false due to the consistency property of C. As a consequence {x ∈ x | f∗x ≤
b} ⊆ Cl(x), which proves the consistency property Cl. The contraction property of Cl arises
from the one of C.

�

This contractor will play different roles, whether the objective fsup or the SIC function
qsup is considered.

• If fsup is considered. If b is an upper bound on the minimum f∗sup of problem M, then
Cl is a contractor for {x∗}.

x ∈ x \ xc =⇒ fsup(x) > b ≥ f∗sup,
=⇒ x 6= x∗.

• If qsup is considered. In this case, choosing b = 0 provides a contractor for Q the subset
of X defined by the SIC.

x ∈ x \ xc =⇒ qsup(x) > 0,
=⇒ ∃z ∈ Zx, q(x, z) > 0,
=⇒ x /∈ Q.

By extension Cl is also a contractor for {x∗} in this case, since x∗ ∈ Q.

3.3. BRANCH AND BOUND ALGORITHM FOR A SET OF FUNCTIONS 65

y

f

C(y′) = y’

b

(a) The forward backward contraction of x ×
y′ is performed with respect to the constraint
f(x, y) ≤ b. x is contracted to xc, resulting in
a smaller set of functions represented by the
new hull in bold. x3 has been discarded in the
contraction process since fx3

is strictly greater
than fsup(x̃) over y′. y′ is not contracted.

y

f

b

y

C(y)

(b) y is contracted by C, proving that x∗ /∈ x.
As a consequence, Cl contracts x to ∅.

Figure 3.4: Illustration of the contraction of x done by Cl.

Cl does not improve the convergence of the resolution of the maximization problem, but
instead improve the one of the minimization problem M. However, Cl is introduced here
because it will be used repeatedly during the resolution of the maximization problem done by
SIBBA. Figure 3.4 illustrates Cl with fsup.

3.3.5 SIBBA algorithm

In Section 3.3.1 it has been shown how bounds on the set of maxima can be computed, and in
Section 3.3.3 several contractors have been proposed to discard subsets proved not to contains
the maximizers y∗x. The Set Interval Branch and Bound Algorithm (SIBBA) integrates those
results in a branch and bound framework.
SIBBA takes as inputs:

• a maximization problem, given either by fsup or qsup,

• a box x defining the set of problems,

• an initial domain, either Y or Z,

• a minimum width εy for the bisection,

66 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

• the number of iterations iter ,

and returns

• Lx a heap containing the set of solutions {y∗x |x ∈ x} or {z∗x |x ∈ x},

• an enclosure [c−, c+] of the set of maxima fsup(x) or qsup(x),

• the box x contracted by Cl.

The extraction and insertion steps of SIBBA are similar to the ones of IBBA presented in
Chapter 2. Both Lx and Ls are binary heaps, the boxes y are sorted such that the first box
y has the greatest upper bound,

y = max
yi∈Lx

f(x,yi).

The bisection step is also the same as the one of IBBA, the boxes are stored in the memory
heap Ls when their widths is lower than εy.
Once a box y is extracted from Lx, it is first contracted by CYx to discard non feasible subsets
at line 3, and also by Cf̃x if a feasible solution ỹ has already been found. Then, y is verified to
be feasible or not as explained in Section 3.3.2. If y is feasible, then x is contracted by Cl, and
y is contracted by the monotonicity contractor CJy . At line 10, a feasible vector y is searched
in y. If such a vector is found, by virtue of Corollary 3.3.3.1 the lower bound of f(x, y) is
a lower bound of fsup(x). If this bound is greater than c−, this last takes this new value.
At line 11, if x has been contracted to the empty set by Cl, it means that x∗ /∈ x. In this
case, SIBBA terminates and returns the empty set. Otherwise, SIBBA terminates when Lx is
empty or the maximum number of iteration iter is reached. The elements of Ls are inserted
in Lx, such that the set of solutions {y∗x |x ∈ x} is contained in Lx. If Lx is empty, then Yx is
empty and x∗ /∈ x. In this case, SIBBA returns the empty set. Finally, the upper and lower
bounds on fsup(x) are computed at line 30 and line 32, based on the Corollaries 3.3.2.1 and
3.3.3.1. Note that a feasible solution is not necessarily found.

In the end, SIBBA enables to:

• contract x with respect to {x∗},

• compute an enclosure [c−, c+] of fsup(x) or qsup(x),

• compute a superset of {y∗x |x ∈ x} or {z∗x|x ∈ x}, contained in Lx.

Reliability Thanks to the consistency of the contractors Cf̃x , CYx , and CJy , it is guaranteed
that no solutions y∗x are discarded during the execution of SIBBA. Consequently, the union
of the boxes contained in Lx is proved to contain {y∗x |x ∈ x}. The union of boxes contained
in Lx corresponds to the set H of Corollaries 3.3.3.1 and 3.3.2.1. Those two corollaries ensure
the reliability of [c−, c+].

Remark. If x is contracted to xc by Cl, the contraction of a box y done by the other
contractors remains reliable.

3.3. BRANCH AND BOUND ALGORITHM FOR A SET OF FUNCTIONS 67

Algorithm 5 Set Interval Branch and Bound algorithm: SIBBA.

Input: Mx, x, b, Y, εy, iter
Output: Lx, [c−, c+], contracted x
1: while i ≤ iter and Lx not empty. do
2: Extract a box y from Lx. . extraction
3: Contract y with CYx . contraction any box
4: Contract y with Cf̃x
5: if y is feasible then . contraction feasible box
6: Contract x with Cl at y
7: Contract y with CJy
8: end if
9: Search a feasible solution y in y,

10: update c−. . solution search
11: if x = ∅ then
12: return ∅.
13: else if y 6= ∅ then
14: Compute f(x,y) . . bounds computation
15: Bisect y into x1 and x2. . bisection
16: for i ∈ {1, 2}. do
17: if w(yi) ≥ εy then . insertion
18: Insert yi in Lx.
19: else
20: Insert yi in Ls
21: end if
22: end for
23: end if
24: i++

25: end while
26: Insert element of Ls in Lx

27: if Lx is empty then
28: Return ∅
29: else
30: c+ := max

y∈Lx
f(y)

31: if No feasible ỹ has been found then
32: c− := min

y∈Lx
f(y)

33: end if
34: end if

68 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

• Yxc ⊆ Yx ⊆ CYx(y),

• {argmax
y∈y

fx(y) |x ∈ xc} ⊆ {argmax
y∈y

fx(y) |x ∈ x} ⊆ CJy(y),

• {y ∈ y | ∀x ∈ xc, fx(y) ≥ f−xc(ỹ)} ⊆ {y ∈ y | ∀x ∈ x, fx(y) ≥ f−x (ỹ)} ⊆ Cf̃x(y).

[c−, c+] is still a reliable enclosure for fsup(xc) since fsup(xc) ⊆ fsup(x).

Convergence of the bounds. The values to which c+ and c− converge are studied. First
of all, it must be noticed that the hull of fx defined by f−x and f+

x cannot provides an exact
enclosure of fsup(x) in the general case, as stated by Theorem 3.3.9.

Theorem 3.3.9. Consider x ∈ X.

• Unconstrained case: If ∀x ∈ x, Yx = Y, then

– fsup(x) = sup
y∈Y

f+
x (y),

– fsup(x) ≥ sup
y∈Y

f−x (y).

• Constrained case:

– fsup(x) ≤ sup
y∈Yx

f+
x (y),

– fsup(x) ≥ sup
y∈ ∩

x∈x
Yx
f−x (y).

Proof.

• Unconstrained case:

– fsup(x) = sup
x∈x

f∗x

= sup
x∈x

sup
y∈Y

f(x, y)

= sup
y∈Y

sup
x∈x

f(x, y)

= sup
y∈Y

f+
x (y) (def. of f+

x).

– fsup(x) = min
x∈x

f∗x

= min
x∈x

sup
y∈Y

f(x, y)

≤ sup
y∈Y

min
x∈x

f(x, y)

= sup
y∈Y

f−x (y) (def. of f−x).

• Constrained case:

3.3. BRANCH AND BOUND ALGORITHM FOR A SET OF FUNCTIONS 69

– fsup(x) = sup
x∈x

sup
y∈Yx

f(x, y),

≥ sup
x∈x

sup
y∈Yx

f(x, y), (because Yx ⊆ Yx)

= sup
y∈Yx

sup
x∈x

f(x, y),

= sup
y∈Yx

f+
x (y) (def. of f+

x).

– fsup(x) = min
x∈x

sup
y∈Yx

f(x, y),

≤ min
x∈x

sup
y∈ ∩

x∈x
Yx
f(x, y), (because ∩

x∈x
Yx ⊆ Yx)

≤ sup
y∈ ∩

x∈x
Yx

min
x∈x

f(x, y),

= sup
y∈ ∩

x∈x
Yx
f−x (y). (def. of f−x).

�

Only the upper bound provided by f+
x is exact for the unconstrained case. The other

bounds are exact only in particular cases. In addition, even if f is thin, it is not minimal and
suffers from pessimism. Consequently, given y ∈ Y, f−x (y) ≥ f(x, y) because x is a box. In

the end, c− and c+ converge to the following values as the width of the boxes y tends to 0.

• Unconstrained case:

lim
w(y)→0

c+ = sup
y∈Y

f(x, y),

lim
w(y)→0

c− = sup
y∈Y

f(x, y).

• Constrained case: Let N ⊂ Y be the set discarded by the contractors, and Px ⊆ ∩
x∈x

Yx
be the set that can be proved to be feasible.

lim
w(y)→0

c+ = sup
y∈Y\N

f(x, y),

lim
w(y)→0

c− =

sup
y∈Px\N

f(x, y) if Px 6= ∅

min
y∈Y\N

f(x, y) else.

In conclusion, SIBBA converges at best to the hull of fx over the subset Y\N, and the bounds
obtained from the hull are not equal to the one of fsup(x). The precision of the enclosure
[c−, c+] depends both on the expression of f and the width of x.

Remark. If w(x) = 0, then SIBBA performs the same as IBBA and [c−, c+] converges to
fsup(x).

70 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

3.3.6 Numerical example

Consider the constrained minmax problem taken from [117],

min
x∈X

sup
y∈Y

f(x, y) = (cos y + cos(2y + x))2,

s. t. g1(x, y) = y − x(x+ 6.28) ≤ 0,
g2(x, y) = y − x(x− 6.28) ≤ 0.

with X = Y = [−3.14, 3.14]. SIBBA is run with the box x = [−0.5,−0.2]. Figure 3.5 shows
the boxes yi contained in Lx and the bounds [c−, c+] at different iterations of SIBBA. Cl is
not used in this example and εy is set to 0. The contractor CYx discards completely the non
feasible set at the first iteration. The monotonicity contractor CJy is not efficient in this case
since the feasible set is very small (located on the left).The lower bound c− almost equal to
zero, since the feasible solutions provide low lower bound. It is represented by a cross on the
100th iteration. One can remark that c+ converges rapidly to a constant value, but does not
decrease after the 30th iteration.

In this section, SIBBA is introduced to compute bounds on fsup and qsup. In addition, it
enables to contract a box x for the solution x∗ of the problem M. Therefore, SIBBA can be
embedded into a classical branch and bound to solve minmax problems subject to SIC, which
is the topic of the next section.

3.4 MinMax problems subject to SIC

This section extends IBBA presented in Section 2 for the resolution of the problem M. The
problem is first considered without SIC in subsection 3.4.1 which proposes an adaptation of
IBBA integrating SIBBA for bounds computation and contraction. An acceleration technique
is proposed in subsection 3.4.2. The bisection and storage strategy in heap of IBBA are pre-
served.

3.4.1 Algorithm for minmax problems

Consider the minmax problem without SIC given by Mmm,

Mmm :

{
min
x∈X

fsup(x),

s. t. pj(x) ≤ 0, ∀j ∈ {1, . . . , np}

In Section 3.2, a strategy to solve M is proposed consisting in using two branch and bounds
algorithm. The main one is used to solve Mmm and the second one is SIBBA which enables
to compute bounds of the objective function fsup. The Min Max Interval Branch and Bound
Algorithm (MMIBBA), described by Algorithm 6, is the main algorithm. The feasible set of
Mmm defined by the constraints pj is denoted P and CP is the forward backward contractor
for P.
MMIBBA takes as inputs:

• the problem Mmm,

3.4. MINMAX PROBLEMS SUBJECT TO SIC 71

y

(a) First iteration of SIBBA.

y

(b) 10th iteration of SIBBA.

y

(c) 100th iteration of SIBBA.

20 40 60 80 100 iter

c+, c−

c+

(d) Evolution of c+ and c− over the iterations
of SIBBA.

Figure 3.5: Evolution of Lx and the bounds of fsup(x) over the iterations of SIBBA. f is
represented by the solid curves at several values of x, g1 by the dashed curves and g2 by the
dotted curves.

72 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

• the initial domains X and Y,

• the bisection precision εx,

• the relative precision εr,

and returns

• an enclosure [b−, b+] of f∗sup,

• the heaps L and Ls containing x∗,

• the best feasible solution found x̃.

Algorithm 6 Branch and Bound algorithm for Minmax problems.

Input: X, Y, Mmm, εx
Output: Enclosure of the minimum, heps L and Ls, best known solution x̃
1: while b+ − b− ≤ εr|b+| do
2: Extract a box x from L. . Extraction
3: Contract x with CP. . Contraction
4: if x 6= ∅ then
5: Contract x and

compute bounds of fsup(x) with SIBBA. . Bound computation
6: Search for a feasible vector x ∈ x,

compute an upper bound c+ of fsup(x) using SIBBA,
update the best current solution x̃ and b+. . Solution search

7: Bisect x into p boxes xi. . Bisection
8: for i ∈ {1, . . . , p}. do
9: if w(xi) ≥ εx then . Insertion

10: Insert xi in L.
11: else
12: Insert xi in Ls
13: end if
14: end for
15: end if
16: end while

MMIBBA is very similar to the IBBA. The only steps that change are the bound computa-
tion and the solution search steps. The computation of the bounds of the objective fsup is
performed by SIBBA over Y. At this step, SIBBA also performed a contraction of x with
respect to the set {x ∈ x | fsup(x) ≤ b+} with b+ the upper bound on f∗sup, as explained in
Section 3.3.4. This upper bound b+ is computed at the solution search step. If a feasible
vector x is found, SIBBA is run once again to compute an enclosure of fsup(x). If the upper
bound computed on fsup(x) is lower than the current best minimum b+, this last is updated
as well as the best solution x̃. When b+ is updated, the elements x of L such as

fsup(x) > b+,

3.4. MINMAX PROBLEMS SUBJECT TO SIC 73

are discarded. When MMIBBA terminates, L and Ls contain x∗, and [b−, b+] is a reliable
enclosure of f∗sup. As for IBBA, b− is the lowest lower bound on the objective given by the
boxes in L and Ls,

b− = min
x∈L∩Ls

fsup(x).

SIBBA parameters. SIBBA parameters εy and itermust be chosen at every execution.
Two cases are considered.

• If SIBBA is executed at the solution search step, that is for a vector x, iter is set to ∞
and εy is chosen sufficiently low. In this way, SIBBA terminates when all the boxes y
have reached the minimum width providing a small enclosure of fsup(x).

• The choice of SIBBA parameters when executed at the bound computation step, that
is for a box x, is discussed in the next subsection after an acceleration technique is
introduced.

3.4.2 Inheritance strategy

The acceleration strategy presented here is sometime referred to as propagation in the liter-
ature, and is a known acceleration technique employed in [51, 136] in particular. We have
chosen to named it the inheritance strategy in order to avoid confusion with constraint prop-
agation.
In MMIBBA, each boxes x are processed independently. SIBBA is applied to x, the list Lx

containing initially the search domain Y. As a consequence, the solutions y∗x are searched over
the whole initial domain Y. However, if two boxes x and x′ such as x′ ⊆ x are considered,
maximizing the set of functions fx and maximizing fx′ are two closely dependent problems.
In effect, the problem of maximizing fx′ is somehow contained in the problem of maximizing
fx. Consequently, the results given by SIBBA when executed to maximize the set of functions
fx are also consistent for fx′ , as stated by Theorem 3.4.1.

Theorem 3.4.1. Consider a box x, Lx the data structure returned by SIBBA when run for
x, and [c−, c+] the enclosure of fsup(x). If a box x′ is such that x′ ⊂ x, then

{y∗x |x ∈ x′} ⊆ ∪
y∈Lx

y,

and

fsup(x
′) ⊆ [c−, c+].

Proof. From Section 3.3, we have that

{y∗x |x ∈ x} ⊆ ∪
y∈Lx

y,

and

fsup(x) ⊆ [c−, c+].

74 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

Moreover, since x′ ⊆ x,

{y∗x |x ∈ x′} ⊆ {y∗x, x ∈ x},

and

fsup(x
′) ⊆ fsup(x).

As a consequence,

{y∗x |x ∈ x′} ⊆ ∪
y∈Lx

y,

and

fsup(x
′) ⊆ [c−, c+].

�

At this point, two major aspects must be considered together:

• The first one arises directly from Theorem 3.4.1. In MMIBBA, the data structure Lx

computed by SIBBA with a box x can be reused as SIBBA’s input for boxes xi stemming
from the bisection of x. This way, when SIBBA is run for a box xi, the solutions are
not searched over the whole search domain Y but only over the subset being the union
of boxes in Lx. Concretely, when SIBBA is run for xi, it can be resumed where it stops
when run for x.

• The second aspect comes from Section 3.3. The numerical example shows that during
the execution of SIBBA, the distance between the upper and lower bounds decreases sig-
nificantly during the first iterations, but converges slowly thereafter. This phenomenon
is in fact usual for most of branch and bound algorithms.

Considering these two points, the following strategy is adopted for MMIBBA. At the bound
computation step, only few iterations of SIBBA are run. When x is bisected into xi, Lx is
duplicated and associated to each xi. When MMIBBA processes one of the xi, Lxi is initial-
ized with Lx in SIBBA. That is, the boxes processed in MIBBA inherit the data structure
computed for the box they stemmed from. Consequently, the maximizations problems are not
solved by SIBBA from the beginning at each iteration of MMIBBA, but instead are solved
along with the minimization problem, solved by MMIBBA. This is the inheritance strategy,
depicted in Figure 3.6. For the sake of visibility, only the objective function f is plotted over
the y axis in the representation of SIBBA, no constraint is considered. The hulls of the sets of
functions in MMIBBA converge whilst X is bisected in smaller boxes, and SIBBA converges
simultaneously.

We propose to only choose the number of iterations of SIBBA at the bound computation
step. As a consequence, the bisection precision εy is chosen sufficiently small to ensure a thin
enclosure of fsup at the solution search step. A reasonable choice is to set εy ≤ εx in the
general case. Section 3.5 compares numerical results obtained for different values of iter ,
and emphasized the efficiency of the inheritance strategy.

3.4. MINMAX PROBLEMS SUBJECT TO SIC 75

X

f

y

f

y

SIBBA

for X

x1

x12

xn

x11

x2

Figure 3.6: Illustration of inheritance strategy in MMIBBA.

76 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

3.4.3 Taking semi infinite constraints into account

The minmax problem subject to SIC, M, is now considered.

M :

min
x∈X

fsup(x)

s. t. pj(x) ≤ 0, ∀j
qsup(x) ≤ 0.

We recall that the set defined by the SIC is denoted Q,

Q = {x ∈ X | qsup(x) ≤ 0} = {x ∈ X | q(x, z) ≤ 0, ∀z ∈ Zx}.
In order to prove that a box x is feasible with respect to the SIC, it suffices to prove that
an upper bound of qsup(x) is lower than 0. On the contrary, x is proved to be infeasible if
a lower bound of qsup(x) is strictly greater than 0. These bounds are computed by SIBBA,
which also enables to contract x with respect to Q by setting the parameter b of SIBBA to 0
(see Section 3.3.4).
Eventually, Algorithm 7 extends MMIBBA to take SIC into account and implements the
inheritance strategy. MMIBBA is therefore suited to solve problem M. To this extent,
MMIBBA takes as additional inputs iter and εz, and returns

• an enclosure [b−, b+] of f∗sup.

• the heaps L and Ls containing x∗,

• the best feasible solution found x̃.

For the sake of simplicity, the same number of iterations is performed whether SIBBA is
executed for fsup or qsup.

The contraction steps at lines 3 and 4 enable to contract a box x with respect to the
feasible set ofM being P∩Q. At the solution search step, a vector x is proved to be feasible
if x ∈ P and x ∈ Q. The first condition is easy to verify with CP, and the second one is verified
using SIBBA.
The inheritance strategy is implemented at line 11. The heaps Lx resulting form the execution
of SIBBA at the bound computation step, and L∀x resulting from the execution of SIBBA for
qsup at Line 4, are inserted in L with x.
When MMIBBA terminates, L and Ls contain x∗, and [b−, b+] is a reliable enclosure of f∗sup
thanks to the viable enclosure of fsup provided by SIBBA.

Taking multiple SICs into account. Suppose that M is subject to nq SICs

C∀i : qi(x, zi) ≤ 0, ∀zi ∈ Zx,i.

If the SICs share the same variables, z = zi ,∀i, and the sets Zx,i are equal, then they can be
reformulated as a single SIC being

C∀ : max
i∈{1,...,nq}

qi(x, z), ∀z ∈ Z.

If it is not the case, SIBBA can be used for every SIC and the inheritance strategy applied.
However, doing so is memory greedy since each of the SIC will provide a heap that will be
stored.

3.4. MINMAX PROBLEMS SUBJECT TO SIC 77

Algorithm 7 Minmax Interval Branch and Bound algorithm implementing inheritance:
MMIBBA.

Input: M,εr,X,Y,Z,εx,εy,εz,iter .
Output: Enclosure of the optimum, heaps L and Ls, best known solution x̃
1: while b+ − b− ≤ εr max(1,′ |b+|) do
2: Extract a box x from L. . Extraction
3: Contract x with CP. . Contraction
4: Contract x with SIBBA w.r.t Q.
5: if x 6= ∅ then
6: Contract x and compute bounds

of fsup(x) with SIBBA. . Bound computation
7: Search for a feasible vector x ∈ x,

compute an upper bound c+ of fsup(x) using SIBBA,
update the best current solution x̃ and b+. . Solution search

8: Bisect x into p boxes xi. . Bisection
9: for i ∈ {1, . . . , p} do

10: if xi respects insertion criterion then . Insertion
11: Insert (xi,Lx,L∀x) in L.
12: else
13: Insert xi in Ls.
14: end if
15: end for
16: end if
17: end while

78 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

Conclusion. MMIBBA is a direct adaptation of the IBBA. Only the methods to compute
bounds on the objective function and the contraction with respect to the feasible set are
different, but this is transparent for the algorithm. As a consequence, MMIBBA can solve
any problems having a maximum or a regular objective, being subject to SIC or not. It
suffices to use SIBBA when needed.

3.4.4 Sub-optimal set characterization

The sub-optimal set characterization of problem M is addressed. That is, the feasible set of
the Semi Infinite Constraint Satisfaction Problem (SICSP)Mα is aimed to be characterized.

Mα :

f(x, y) ≤ α, ∀y ∈ Yx,
pj(x) ≤ 0,
q(x, y) ≤ 0, ∀z ∈ Zx,
x ∈ X.

The feasible set ofMα is denoted by Mα. As emphasized in Chapter 2, using contractors for
the feasible set and its complementary improves the convergence speed of the FSCA.
Let Fα = {f(x, y) ≤ α | ∀y ∈ Yx} be the set defined by the first SIC of Mα. SIBBA can be
used as a contractor for Q and Fα, since Fα is defined by a SIC. As a consequence, SIBBA
can be used as two contractors CQ and CFα for these two sets. In addition, CP is a contractor
for P. In conclusion, Cin = CQ ◦ CFα ◦ CP is a contractor for Mα.
We now focus on defining a contractor of the complementary of Mα. To do so, two contractors
for the complementary of Q and Fα are needed. To this extent, Theorem 3.4.2 provides a
contractor for Fα = {x ∈ x | ∃y ∈ Yx, f(x, y) > α} the complementary of Fα. By extension,
Theorem 3.4.2 provides contractors for any complementary of a set defined by a SIC.

Theorem 3.4.2. Consider H = ∪
i
yi, yi ⊆ IRm, a subset of Y. Let x be a box in X, and C

be a contractor for {(x, y) ∈ X × Y | f(x, y) > α} such that C(x,yi) = xc,i × yc,i. If ∀x ∈ x,
y∗x ∈ H, then the function

C∃ : IRnx → IRnxx 7→ t
i
xc,i

is a contractor for {x ∈ x | ∃y ∈ Yx, f(x, y) > α}.
Proof. Consider x ∈ ∪

i
xc,i.

∃i, x ∈ xc,i

Suppose x /∈ {x ∈ x | ∃y ∈ H, f(x, y) > α},

x /∈ {x ∈ x | ∃y ∈ H, f(x, y) > α} =⇒ ∀y ∈ H, f(x, y) ≤ α,
=⇒ ∃y ∈ yc,i, f(x, y) ≤ α,
=⇒ ∃(x, y) ∈ xi × yc,i, f(x, y) ≤ α.

This statement is false due to the consistency property of C. As a consequence,

{x ∈ x | ∃y ∈ H, f(x, y) > α} ⊆ ∪
i
xc,i,

⊆ t
i
xc,i.

3.5. NUMERICAL RESULTS 79

C∃ is therefore a contractor for {x ∈ x | ∃y ∈ H, f(x, y) > α}. In addition

x ∈ {x ∈ x | ∃y ∈ Yx, f(x, y) > α} =⇒ ∃y ∈ Yx, f(x, y) > α,
=⇒ f(x, y∗x) > α, (def. of maximum)
=⇒ ∃y ∈ Hf(x, y) > α, (y∗x ∈ H by hyp.)
=⇒ x ∈ {x ∈ x | ∃y ∈ H, f(x, y) > α},
=⇒ {x ∈ x | ∃y ∈ Yx, f(x, y) > α},

⊆ {x ∈ x | ∃y ∈ H, f(x, y) > α}.

As a consequence, C∃ is also a contractor for {x ∈ x | ∃y ∈ Yx, f(x, y) > α}. �

Thanks to Theorem 3.4.2, two contractors CQ and CFα for Q and Fα can be defined. In

addition, a contractor CP for P the complementary of P can be obtained easily. In the end,
Cout = CQ ∪ CFα ∪ CP is a contractor for Mα.
Since two contractors Cin and Cout for Mα and its complementary are defined, the FSCA
introduced in Chapter 2 can be used directly to characterize Mα by a sub-paving.

Remark.

• If the upper bound on fsup(x) computed by SIBBA when CFα is used is lower than 0,
then x ⊆ Fα and there is no need to use CFα . The same remark holds for qsup(x).

• When CFα is used to contract x, SIBBA is executed and returns the heap Lx. The boxes
contained in Lx are then used as input for the contractor CFα . The same remark goes
for CQ.

• The inheritance strategy can also be used in the FSCA.

3.5 Numerical Results

We propose to test MMIBBA over several examples taken from the literature. Unfortu-
nately, no benchmark problems has been found for minmax problems subject to quantified
constraints. But, SIP and minmax problems can be found. MMIBBA is tested on 12 SIP
problems taken from [88], and 20 minmax problems taken from [112] and [119]. These prob-
lems are given in Appendix A.
MMIBBA is executed with the following parameters for all the problems:

• Bisection precision for x: εx = 1e−4,

• Bisection precision for y (minmax problems): εy = 1e−5,

• Bisection precision for z (SIP problems): εz = 1e−5,

• Relative precision on the objective: ε = 1e−1.

80 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

10 0 10 1 10 2 10 3

Performance ratio

0

10

20

30

40

50

60

70

80

90

100

%

it = 2
it = 5
it = 10
it = 100
it = 5 NH

Figure 3.7: Performance profiles of MMIBBA on the minmax problems.

In order to study the inheritance strategy, MMIBBA is executed for different numbers of
iterations iter of SIBBA : iter= 2,5,10,100. In addition, MMIBBA is executed without the
inheritance strategy. In this case, the number of iterations performed by SIBBA is incremented
by 5 between a box x and a sub-box xi resulting from the bisection of x. This way, SIBBA
performed the same number of iterations as if iter= 5 with the inheritance strategy. This
configuration is named 5NH.
The performance profiles obtained with the 5 different strategies for MMIBBA on the minmax
and SIP problems are depicted on Figure 3.7 and 3.8, respectively. A performance profile is a
graphical tools that represents the relative performances between different solvers on a set of
benchmark problems [39]. Given a problem and a solver, the performance ratio is the ratio
between the time taken by the solver to solve this problem and the time taken by the fastest
solver to solve the same problem. The performance profiles show the percentage of problems
solved within a given performance ratio.
The time limit for the resolution of the problems is set to 900 s. MMIBBA is stopped if it
uses more than 4 GB of Random Access Memory (RAM).

From the performance profiles, it can be inferred that the inheritance strategy improves
the convergence of MMIBBA. As expected from the numerical results of SIBBA presented
in Section 3.3.6, performing too many iterations in SIBBA is not a good strategy. The
configuration iter=2 provides good results on the SIP problems, but does not perform very
well on the minmax problems. This can be explained by the fact that X is very large compared
to Z for the SIP.
It seems that choosing a small value for iter is a reasonable choice. When MMIBBA is used
the next chapters, iter is set to 5.

3.6. CONCLUSION AND OUTLOOKS 81

10 0 10 1 10 2

Performance ratio

0

10

20

30

40

50

60

70

80

90

100

%

it = 2
it = 5
it = 10
it = 100
it = 5 NH

Figure 3.8: Performance profiles of MMIBBA on the SIP problems.

3.6 Conclusion and outlooks

Conclusion and contributions. In this Chapter an interval based algorithm, MMIBBA,
has been proposed to solve the general problem M. More generally, the proposed approach
allows to solve any optimization problem being a minimization problem or a minmax problem,
subject to SIC or not. It suffices to adapt the bound computation and contraction steps: if
a minmax problem is considered, SIBBA is used to compute the bounds of the objective, if
SICs are involved SIBBA is used for contraction. Thanks to SIBBA, MMIBBA is a direct
extension of IBBA implementing the inheritance strategy and does not change the inherent
structure of IBBA composed of the main steps: extraction, contraction, bound computation,
solution search, bisection and insertion.
The three main contributions of this chapter are:

• an algorithm to solve a set of maximization problems subject to constraint: SIBBA,

• the formalization of the inheritance strategy, and the proof of its effectiveness,

• an algorithm to solve minmax problems subject to SIC: MMIBBA.

Strictly speaking, this chapter does not offer innovative solutions for the resolution of SIP
or minmax problems since both have already been investigated with interval based branch
and bound algorithms as mentioned in the introduction [51, 136]. What is innovative is the
unified approach of those two problems that enables to deal with them at the same time by
solving a minmax problem subject to SICs.

Improvement prospects. By now, MMIBBA implements the acceleration techniques based
on constraint propagation, framed as contractors, and the inheritance strategy. Other ap-
proaches based on branch and bound propose solve SIPs by the convex reformulation of the

82 CHAPTER 3. MINMAX OPTIMIZATION AND SEMI INFINITE PROGRAMMING

SICs [44, 20]. Those convexification methods could easily be added to our approach which
is also based on a branch and bound algorithm. In addition bisection heuristics [35, 12, 55],
already mentioned in Chapter 2, can be used to bisect boxes in a ”smart” way. However the
difficulty when having several tools at disposal, that may be computationally expensive or
memory greedy, is to know which one should be used and in which case.
Another way to improve the convergence would be to tune dynamically the parameters iter ,
εy and εz during the execution of MMIBBA, or to choose others stop criterion for SIBBA.
Finding heuristics would require an extensive study of the influence of SIBBA’s parameters
on the convergence rate.
Although the inheritance strategy makes it possible to improve the convergence speed of
MMIBBA, it requires large amount of RAM. This is an issue especially on large scale prob-
lems, which can be addressed by limiting the size of the heap Lx for example.

Some outlooks. A minmax problem is a particular case of bi-level problems. A bi-level
problem is expressed as:

Mbi :

min
x∈X

F (x, y∗x),

s. t. G(x, y∗x) ≤ 0,
y∗x = argmin

y∈Y
f(x, y),

s. t. g(x, y) ≤ 0.

From a game theory point of view, P1 has an objective F different to the objective f of
P2, as well as different constraints limit their play given by the constraints g and G. The
bi-level problem is a minmax problem in the particular case where F (x, y) = −f(x, y), and
G(x, y) = g(x, y). The bi-level denomination refers to the two levels of the problem. The
upper level problem corresponds to the play of P1, that is the minimization of F subject
to the G constraint. The lower level problem corresponds to the play of P2, that is the
minimization of f subject to the g constraint.
One can remark that the lower level problem is expressed the same way as the maximization
problems related to fsup and qsup. As a consequence, given a set x, SIBBA can be used to
compute a heap of boxes Lx containing the set of minimizers {y∗x |x ∈ x}, corresponding to
the possible plays of P2. If an enclosure of F over x can be computed from Lx, then the
bi-level problem can be solved using IBBA, and the inheritance strategy can be used.
Of course, further investigations must be led, but it seems that the results proposed in this
section could be extended to the resolution of bi-level problems and propose new ways to solve
them [59, 77].

Chapter 4

Global optimization approach to
H∞ synthesis and analysis

This chapter proposes to solve the H∞ problems introduced in Chapter 1 with the global opti-
mization algorithms presented in Chapter 3. These problems are the structured synthesis, the
robustness analysis and the robust structured synthesis. They are expressed in a general way
as non convex problems, in contrast with numerous works dedicated to convex reformulations.
Following the works based on the parametric approaches [84, 5, 21], the three problems are
formulated as optimization ones having explicit objective functions and constraints. In this
way, they are suited to be solved in a global way with the algorithms developed in Chapters 2
and 3.

4.1 Global solution to structured H∞ synthesis by performance
output independence

The structured H∞ synthesis problem is recalled here.

Problem 4.1.1. Structured Synthesis (SS)

{
min
K∈Ks

||F (P,K)||∞,
s. t. K ensures internal stability,

where K is the controller, P the augmented system, and Ks the set of structured con-
trollers. It is supposed, without loss of generality, that the structured controllers are parametrized
by k ∈ Rnk . In order to solve the SS problem globally, using the algorithms of Chapter 2 and
3, explicit formula for the H∞ norm of F (P,K(k)) and the stability are required.

4.1.1 Explicit formula of the H∞ norm of MISO systems

In the following, the frequency representation of the interconnection of P with K is considered,
F (P,K) = Tw→z. Since the controller depends on the tunable parameters k, Tw→z(k) is a
matrix of transfer functions that also depends on k. More precisely, the coefficients of the
polynomials in s being the numerators and the denominators of the transfers depend on k.

83

84 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

From the definition of the H∞ norm, which is the maximum singular value of Tw→z over the
frequencies, no explicit formula is available. However, if each of the performance outputs zj
are considered separately, it is possible to express the H∞ norm of Tw→zj as the maximization
over the pulsations of a fraction of polynomials in ω, which coefficients depend on k.

Theorem 4.1.1. The infinity norm of a MISO system is the maximum over the pulsations
of the square root of a rational function.

Proof. Consider the MISO system,

M(s) = (M1(s), . . . ,Mn(s)). (4.1)

From the definition of the H∞ norm,

||M ||∞ = sup
ω≥0

σmax(M(iω))

= sup
ω≥0

(
λmax(M(iω)M(iω)H)

)1/2

= sup
ω≥0

λmax

(M1(iω), . . . ,Mn(iω))

M1(iω)

...

Mn(iω)

1/2

= sup
ω≥0

(∑n
j=1Mj(iω)Mj(iω)

)1/2

= sup
ω≥0

(∑n
j=1 |Mj(iω)|2

)1/2
.

Since Mj(iω) is a fraction of two polynomials in ω, its modulus is also a fraction of two
polynomials. By extension,

∑n
j=1 |Mj(iω)|2 is also a fraction of polynomials. �

Thanks to Theorem 4.1.1, ||Tw→zj (k)||∞ is expressed as the maximum over the pulsations
of the square root of a fraction of two polynomials in ω which coefficients depend on k, that
is the maximization of an explicit function.

We define fj as

fj(k, ω) =

√√√√
n∑

i=1

|Twi→zj (k, iω)|2,

and as a consequence

||Tw→zj ||∞ = sup
ω≥0

fj(k, ω).

Note that fj is not convex in the general case.

Recalling that Tw→zj is the weighted counterpart of Tw→z̃j , Tw→zj = Tw→z̃jZj (see Chap-
ter 1), Equation 4.2 provides an interpretation of the inequality ||Tw→zj ||∞ ≤ 1 as a bound

4.1. GLOBAL SS BY PERFORMANCE OUTPUT INDEPENDENCE 85

on the response of Tw→z̃j given by the maximal singular value.

||Tw→zj (k)||∞ ≤ 1 ⇐⇒ sup
ω

√∑n
i=1 |Twi→zj (k, iω)|2 ≤ 1

⇐⇒ ∀ω,
√∑n

i=1 |Twi→z̃j (k, iω)Zj(iω)|2 ≤ 1

⇐⇒ ∀ω,
√∑n

i=1 |Twi→z̃j (k, iω)|2|Zj(iω)|2 ≤ 1

⇐⇒ ∀ω,
√
|Zj(iω)|2∑n

i=1 |Twi→z̃j (k, iω)|2 ≤ 1

⇐⇒ ∀ω,
√∑n

i=1 |Twi→z̃j (k, iω)|2 ≤ 1

|Zj(iω)|
⇐⇒ ∀ω,

√∑n
i=1 |Twi→z̃j (k, iω)|2 ≤ |Z−1

j (iω)|
⇐⇒ ∀ω, σmax(Tw→z̃j (k, iω)) ≤ |Z−1

j (iω)|.

(4.2)

In Chapter 1, Equation (1.3) shows how an H∞ constraint is equivalent to a bound on the gain
of a SISO systems. Equation 4.2 extends this interpretation to the case of MISO systems.
Following this idea, the SS problem can be interpreted as a CSP involving semi infinite
constraints:

Problem 4.1.2.

||Tw→zj (k)||∞ ≤ 1 ∀j ∈ {1, . . . , nz},
s. t. K(k) ensures internal stability ,
k ∈ K.

⇐⇒

σmax(Tw→z̃j (k, iω)) ≤ |Z−1
j (iω)|, ∀j ∈ {1, . . . , nz}, ∀ω ≥ 0,

s. t. K(k) ensures internal stability ,
k ∈ K.

Actually Problem 4.1.2 can be considered as a closer formulation of the design objectives
than the one given by Problem 4.1.1. Indeed, when designing the frequency templates |Zj |
the user reasons in terms of bounds on the frequency response, that is having the equivalence
of Equation (4.2) in mind. As a consequence, Problem 4.1.2 can be viewed as the direct
expression of the user specifications as a CSP, whereas Problem 4.1.1 re-framed those nz
frequency constraints as a single objective being ||Tw→z||∞ ≤ 1, and introduced conservatism
due to the inequality given by Equation (4.3),

||Tw→zj ||∞ ≤ ||Tw→z||∞, ∀i ∈ {1, . . . , nz}. (4.3)

In the end, the formulation of the H∞ objectives considered in this thesis is given by CSP 4.1.2.
This formulation is closer to the design objectives, and provides an explicit formula for the
H∞ norms. CSP 4.1.2 can be also formulated as a minimization problem having as objective
function the maxima of the ||Tw→zj ||∞,

Problem 4.1.3.
{

min
k∈K

max
j

(||Tw→zj (k)||∞),

s. t. K(k) ensures internal stability.

86 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

Denoting f(k, ω) = max
j
fj(k, ω), we have

max
j

(||Tw→zj(k)||∞) = max
j

(sup
ω≥0

fj(k, ω))

= sup
ω≥0

(max
j
fj(k, ω))

= sup
ω≥0

f(k, ω).

(4.4)

Thanks to Equation (4.4), Problem 4.1.3 is equivalent to Problem 4.1.4.

Problem 4.1.4.
{

min
k∈K

sup
ω≥0

f(k, iω),

s. t. K(k) ensures internal stability.

f is an explicit function, for which an inclusion function can be defined. Using SIBBA
introduced in Chapter 3, it is possible to compute an enclosure of sup

ω≥0
f(k, iω) over a set of

controllers {K(k), k ∈ k} with k ⊂ IRnk , and by extension bounds on the H∞ norm of a
MISO system. Finally, the H∞ objective is formulated as a minimax problem.

Remark. In this Subsection, the initial mono-objective SS Problem 4.1.1 is reframed as an
explicit multi-objective problem, by considering every performance channel Tw→zj indepen-
dently. This explicit formulation enables to use the global optimization algorithm developed
in Chapter 4. It is also possible to consider each channel Twi→zj as objective, which is SISO
system, and has explicit formulation of its H∞ norm.

4.1.2 Internal stability

This Subsection is based on the sections of Chapter 1 dedicated to the stability and internal
stability. The internal stability can be expressed as explicit inequality constraints thanks to
the Hurwitz stability criterion. We considered two cases that will be met in the sequel:

• either the general regulation scheme being the interconnection of P with K(k) is con-
sider, and P is given by its state space realization,

• or the system to control G and the weighting functions W and Z are given as transfer
functions.

In the first case, P is given by its state space realization,

P =

AP Bw Bu
Cz Dwz Duz

Cy Dwy Duy

 .

Then, the state space realization of K(k) is also considered,

K =

(
AK(k) BK(k)

CK(k) DK(k)

)
.

4.1. GLOBAL SS BY PERFORMANCE OUTPUT INDEPENDENCE 87

As a consequence, the interconnection of P with K is given by
(
Acl(k) Bcl(k)

Ccl(k) Dcl(k)

)
,

where

Acl(k) =

(
AP +Bw(I −DK(k)Duy)

−1DK(k)Cy, Bu(I −DK(k)Duy)
−1CK(k)

BK(k)(I −DuyDK(k))−1Cz, AK(k) +BK(k)(I −DuyDK(k))−1DuyCK(k)

)
.

(4.5)

Hence, the coefficients of Acl(k) depend on k.

Remark. Computing Acl(k) requires to inverse a symbolic matrix if DK(k) and Duy are
not null. This point and the related issues are discussed in detail in the conclusion. For the
examples considered further, the matrices are computed with the Matlab symbolic toolbox.

Let nl be the dimension ofAcl, andQ(k, s) =
∑nl

i=0 αi(k)si be the characteristic polynomial
of Acl, the coefficients of which depends on k. The Hurwitz criterion applied to Q(k, s) enables
to express the stability of Acl as nl inequalities Rl(k) ≤ 0, with Rl multivariate polynomials
in the αi(k).

Remark. In order to ensure the internal stability, it suffices to prove that the interconnection
of K with P deprived from the weighting functions is stable. Indeed, the weighting functions
W and Z are virtual and are needed only to express the H∞ objectives. However, in the
benchmark examples considered in the sequel, only P is provided.

Consider now the second case where G and the weighting functions W and Z are given
by transfer matrices. Suppose that the interconnection of K with G can be rearranged as
the internal stability scheme represented in Figure 4.1. The system is internally stable if the

K(k)

G

z̃2

z̃1

w̃1

w̃2

+

+

Figure 4.1: Internal stability generic scheme.

transfers from (w̃1, w̃2)T to (z̃1, z̃2)T are all stable. These transfers are the elements of the
transfer matrix

(
(I −K(k, s)G(s))−1 K(k, s)(I −G(s)K(k, s))−1

G(s)(I −G(s)K(k, s))−1 (I −G(s)K(k, s))−1

)
. (4.6)

88 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

Using the Hurwitz criterion on the denominator of each transfers allows to express the internal
stability as a set of polynomial inequalities which coefficients depend on k.

Remark. Obtaining the polynomial inequalities can be automatized with any symbolic tool-
box, since it implies to compute the determinants of symbolic matrices. The computation of
the expression of the determinants is very fast, but simplifying the expressions can take some
times according to the size of the expression. Simplifying the expressions is not necessary
but helps reducing the number of occurrence of the variables, and hence reduces evaluation
pessimism of inclusion functions (see Chapter 2). This may help to improve the convergence
time of MMIBBA.

4.1.3 Explicit formulation of the structured synthesis problem

Considering each performance output independently, the SS problem is reformulated as the
Independent Outputs Structured Synthesis (IOSS) problem,

Problem 4.1.5. IOSS:
{

min
K

max
j
||Tw→zj ||∞,

s. t. K ensures internal stability .

The IOSS problem is equivalent to Problem 4.1.6, thanks to the Hurwitz criterion and
Equation (4.4).

Problem 4.1.6.
{

min
k∈K

sup
ω≥0

f(k, iω)

s. t. Rl(k) ≤ 0 ∀l ∈ {1, . . . , nl}.

Problem 4.1.6 is a minmax problem as introduced in Chapter 3. Both the objective f and
the constraints have explicit formulas, and therefore the IOSS problem can be solved with
MMIBBA, the branch and bound algorithm developed in Chapter 3.

Remark. The range of ω, which should be [0,∞[, must be limited to a bounded set in order to
run MMIBBA. This approximation is generally sufficient to compute the H∞ norm, provided
that the bounded domain of pulsations is large enough. This domain is denoted by Ω, and
will be systematically indicated in the sequel.

4.1.4 Illustrative example

In order to illustrate how the structured synthesis problem can be reformulated as in the form
of Problem 4.1.6, consider the system given on Figure 4.2. The problem consists in finding
the controller K which ensures the internal stability, such that the three transfers from the
external input r to the performance outputs z1, z2 and z3 have their H∞ norms lower than
one. In this case, w = w̃ = r, z̃1 = e, z̃2 = u, and z̃3 = y. The system G is given by its
transfer function

G(s) =
1

s2 + 1.4s+ 1
, (4.7)

4.1. GLOBAL SS BY PERFORMANCE OUTPUT INDEPENDENCE 89

r K G
y+

−
e u

Z1

Z2

Z3

z1

z2

z3

Figure 4.2: Mixed sensitivity problem.

and the weighting functions are

Z1(s) = 10s+100
1000s+1 , Z2(s) = 10s+1

s+10 , and Z3(s) = 100s+1
s+10 .

Their inverses appear as dotted curves in Figure 4.3.
The order of the augmented system P is equal to 5, which is the sum of the orders of G, W1,
W2, and W3. The controller K that is searched is a PID,

K(k, s) = kp +
ki
s

+
kds

1 + s
.

The tuning variable is therefore k = (kp, ki, kd)
T .

Remark. In the following, k is called the tuning variable and kp, ki and kd are called the
tuning parameters.

H∞ objectives. Let S(k, s) = (1+G(s)K(k, s))−1 be the sensitivity function. The transfers
from r to z1, z2, and z3 are given by

Tr→z1(k, s) = Z1(s)S(k, s)
Tr→z2(k, s) = Z2(s)K(k, s)S(k, s)
Tr→z3(k, s) = Z3(s)K(k, s)S(k, s)G(s)

and their H∞ norm is the maximum of their modulus since they are SISO,

||Tr→z1(k)||∞ = sup
ω
|Z1(iω)S(k, iω)| = sup

ω
f1(k, ω)

||Tr→z2(k)||∞ = sup
ω
|Z2(iω)K(k, iω)S(k, iω)| = sup

ω
f2(k, ω)

||Tr→z3(k)||∞ = sup
ω
|Z3(iω)K(k, iω)S(k, iω)G(iω)| = sup

ω
f3(k, ω),

90 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

with f1, f2, and f3 having the explicit expressions

f1(k, ω) =
(
100ω2(25ω8 + 2524ω6 + 2424ω4 + 2425ω2 + 2500)

)
/(

(1000000ω2 + 1)(25k2
dω

4 − 50kdkiω
2 + 50kdkpω

4 − 50kdω
6 + 120kdω

4 + 25k2
i ω

2 + 25k2
i−

70kiω
4 − 70kiω

2 + 25k2
pω

4 + 25k2
pω

2 − 50kpω
6 + 50kpω

2 + 25ω8 + 24ω6 + 24ω4 + 25ω2)
)

f2(k, ω) =
(
(2500ω6 − 75ω4 + 2499ω2 + 25)(k2

dω
4 − 2kdkiω

2 + 2kdkpω
4 + k2

i ω
2 + k2

i + k2
pω

4 + k2
pω

2)
)
/(

(ω2 + 100)(25k2
dω

4 − 50kdkiω
2 + 50kdkpω

4 − 50kdω
6 + 120kdω

4 + 25k2
i ω

2 + 25k2
i − 70kiω

4 − 70kiω
2+

25k2
pω

4 + 25k2
pω

2 − 50kpω
6 + 50kpω

2 + 25ω8 + 24ω6 + 24ω4 + 25ω2)
)

f3(k, ω) =
(
25(10000ω2 + 1)(k2

dω
4 − 2kdkiω

2 + 2kdkpω
4 + k2

i ω
2 + k2

i + k2
pω

4 + k2
pω

2)
)
/(

(ω2 + 100)(25k2
dω

4 − 50kdkiω
2 + 50kdkpω

4 − 50kdω
6 + 120kdω

4 + 25k2
i ω

2 + 25k2
i − 70kiω

4−
70kiω

2 + 25k2
pω

4 + 25k2
pω

2 − 50kpω
6 + 50kpω

2 + 25ω8 + 24ω6 + 24ω4 + 25ω2)
)
.

With our approach, we consider the outputs separately, that is the maxima of the three H∞
norms is minimized. However the classical approach consists in minimizing the H∞ norm of
F (P,K), given by the transfer matrix

Tw→z(k, s) =

Z1(s)S(k, s)
Z2(s)K(k, s)S(k, s)

Z3(s)K(k, s)S(k, s)G(s)

 .

Internal Stability The internal stability is ensured if the four transfers

(
(I +K(k, s)G(s))−1 −K(k, s)(I +G(s)K(k, s))−1

G(s)(I +G(s)K(k, s))−1 (I +G(s)K(k, s))−1

)
, (4.8)

are stable. Since G and K are SISO, (I + K(k, s)G(s))−1 = (I + G(s)K(k, s))−1, reducing
the number of transfer which stability has to be verified to three. Note that the sign of
K is different between Equation (4.8) and Equation (4.6), since a positive feedback action is
considered for the generic regulation scheme to ensure internal stability, depicted in Figure 4.1,
and in this example a negative feedback action is considered. The three transfers have the
same denominator being

Q(k, s) = 5s4 + 12s3 + (5kd + 5kp + 12)s2 + (5ki + 5kp + 5)s+ 5ki.

Since the leading coefficient of Q(k, s) is strictly positive, the Hurwitz criterion is directly
applied to Q(k, s) (see Chapter 1), and it provides the set of stability constraints:

12 > 0
R1(k) = 60kd − 25ki + 35kp + 119 > 0
R2(k) = 300kd − 250ki + 770kp + 300kdki + 300kdkp + 50kikp − 125k2

i + 175k2
p + 595 > 0

R3(k) = 25ki(60kd − 50ki + 154kp + 60kdki + 60kdkp + 10kikp − 25k2
i + 35k2

p + 119) > 0.

The first constraint is ignored in the following.

In the end, with the approach proposed in this chapter, the mixed sensitivity problem is
formulated as

4.1. GLOBAL SS BY PERFORMANCE OUTPUT INDEPENDENCE 91

Problem 4.1.7.

min
k

sup
ω

(max (f1(k, ω), f2(k, ω), f3(k, ω)))

s. t. R1(k) > 0
R2(k) > 0
R3(k) > 0.

Results and comparisons.
Problem 4.1.7 is solved using MMIBBA, introduced in Chapter 3, with the following param-
eters:

• The search domain of k is K = [−10, 10]3,

• The search domain of ω is limited to the bounded set Ω = [10−3, 103],

• The bisection precision on k is 10−4,

• The bisection precision on ω is 10−5,

• The number of bisection done by SIBBA to compute bounds on the objective function
is 5,

• The relative precision of the enclosure is set to 10−2.

MMIBBA converges in 125 seconds, and provides [0.978, 0.988] as an enclosure of the
minimum of Problem 4.1.7. The best solution found is kgo = (0.0348, 0.0993, 0.0625), and by
extension the PID controller

Kgo(s) = 0.0348 +
0.0993

s
+

0.0625s

1 + s
.

Consequently, we have sup
ω∈Ω

max
i

(fi(kgo, ω)) = 0.988. Using Matlab’s norm function, we obtain

max
i

(||Tw→zj (kgo)||∞) = 0.9982, which is greater than the initial result provided by MMIBBA,

but still lower than one ensuring that the H∞ constraints ||Tw→zj (kgo)||∞ ≤ 1 are respected.

We propose to compare kgo with the solutions provided by the classical full order and
the Matlab Hinfstruct toolbox to the classical formulation of the synthesis problem given
by Problem 4.1.1, having ||Tw→z||∞ has objective. The Matlab function hinfsyn [47] is
used to compute the full order controller Kfull solution to Problem 4.1.1 in its convex form,
using the LMI formulation. The order of Kfull, equal to the one of P , is 5. The local
optimization algorithm [9] of Hinfstruct toolbox is run 700 times to compute a PID, with
different initial points in [−10, 10]3 so that the computation time is equal to that of MMIBBA.
These two methods are denoted by LMI full and Hinfstruct in Table 4.1 that presents the
results. In addition, we also solve Problem 4.1.7 with the Matlab Systune toolbox based on
local optimization. As a consequence, Systune and MMIBBA solve the same problem.

The H∞ norm of Tw→z appears in the third column of Table 4.1, and the value of the
maximum of the H∞ norms of the three objectives are listed in the last column. The opti-
mization objectives of the three synthesis methods are indicated by the gray cells. Hinfstruct

92 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

Method CPU (s) ||Tw→z||∞ max
i

(||Tw→zj ||∞)

LMI full 2 1.0202 1.0161

Hinfstruct 118 1.0411 1.0411

Systune 122 1.0986 0.9912

MMIBBA 125 1.0801 [0.978,0.9982]

Table 4.1: Results obtained with the three different synthesis methods.

provides the solution kstruct = (0.0305, 0.0969, 0.0736), and the PID controller is

Kstruct(s) = 0.0305 +
0.0969

s
+

0.0736s

1 + s
.

The LMI Full method gives a result rapidly due to the convexity of the problem. Consider-
ing the ||Tw→z||∞ criterion, LMI Full provides a better result than Hinfstruct probably because
Kfull has a higher order (Kfull is order 5 and Ksys is order 2). MMIBBA and Systune show the
worst results, but these methods minimize max

i
(||Tw→zj ||∞) instead of ||Tw→z||∞, on the con-

trary to the other two methods. However, considering the max
i

(||Tw→zj ||∞) objective, one can

remark that MMIBBA and Systune are able to compute a solution lower than 1, i.e. to provide
a controller that respects all the three H∞ constraints ||Tw→zi(k)||∞ ≤ 1, i ∈ {1, 2, 3}. This re-
sults is particularly interesting, since it emphasizes the fact that minimizing max

i
(||Tw→zj ||∞)

and ||Tw→z||∞ are two different problems as discussed in subsection 4.1.1.
The bode diagrams of the three objective (non weighted) channels, as well as the frequency
templates Z−1

i are displayed on Figure 4.3. As expected from the H∞ norm values of the
weighted channels, that are close to one, the bode plots are also close to the Z−1

i ’s templates.

Remark. Obtaining the symbolic expression of the H∞ norm of the three objective channel
and the Hurwitz polynomials is done in less than one second with the Matlab’s symbolic
toolbox.

4.1.5 Benchmark examples

MMIBBA is now tested on several problems taken from COMPleib library [81]. Table 4.2 lists
the four examples we propose to solve. nx denotes the number of states of the system, nw the
number of external inputs, nu the number of control inputs, nz the number of performance
outputs and ny the number of measurement outputs. For each example, the state space
realization of P is provided. We propose to synthesize static output feedback controllers.
Therefore, the controllers K(k) have as state space realizations empty matrices AK , BK and
CK , and DK is parametrized by k,

K(k) = DK(k) =

k11 . . . k1ny
...

. . .
...

knu1 . . . knuny

 .

The four examples have been chosen such that the order of P is small, limiting the size of the
expressions of the Routh coefficients and the H∞ norms, and also such that the product ny

4.1. GLOBAL SS BY PERFORMANCE OUTPUT INDEPENDENCE 93

10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2

Pulsation (rad/s)

-60

-40

-20

0

20

40

M
ag

n
it
u
d
e

(d
B
)

Transfer from r to z1

Z!1
1

Sgo

Sstruct

Sfull

10 -2 10 -1 10 0 10 1 10 2

Pulsation (rad/s)

-25

-20

-15

-10

-5

0

5

10

15

20

M
ag

n
it
u
d
e

(d
B
)

Transfer from r to z2

Z!1
2

KgoSgo

KstructSstruct

KfullSfull

10 -2 10 -1 10 0 10 1 10 2

Pulsation (rad/s)

-120

-100

-80

-60

-40

-20

0

20

M
ag

n
it
u
d
e

(d
B
)

Transfer from r to z3

Z!1
3

KgoSgoG
KstructSstructG
KfullSfullG

Figure 4.3: Frequency specifications, displayed in dotted, and closed loop objective transfers
for the three controllers.

94 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

times nu is small, limiting the number of controllers parameters.
For every problem, we set MMIBBA parameters as follows.

• The search domain of k is K = [−10, 10]nu×ny ,

• the search domain of ω is limited to the bounded set Ω = [10−3, 103],

• the bisection precision on k is 10−4,

• the bisection precision on ω is 10−5,

• the number of bisection done by SIBBA (iterparameter) to compute bounds on the
objective function is 5,

• the relative precision of the enclosure is set to 10−2.

Problem nx nw nu nz ny K Ω

AC4 4 2 1 2 2 [−10, 10]2 [10−3, 103]

AC7 9 4 1 1 2 [−10, 10]2 [10−3, 103]

AC17 4 4 1 4 2 [−10, 10]2 [10−3, 103]

HE1 4 2 2 2 1 [−10, 10]2 [10−3, 103]

Table 4.2: COMPleib problems.

The results obtained with MMIBBA are compared with those obtained with the Systune
Matlab Toolbox [9] in the Table 4.3. Both MMIBBA and Systune solve the IOSS problem,
and therefore we have the same objective function being max

i
||Tw→zj ||∞. The second column

indicates the minimum obtained with Systune, and the third column the enclosure of the
minimum obtained with MMIBBA. The best solution found by MMIBBA is the upper bound
of the enclosure.

Results

Although the Systune solver is based on local optimization, it succeeds in finding a close
approximation of the global minimum. On those four examples, MMIBBA does not provide a
better solution than Systune, but it gives a lower bound on the minimum. This lower bound
provides two results. First, it proves that the best solution found by MMIBBA cannot be
lowered by more than ε, and indicates the quality of the solution found. Secondly, the lower
bound can prove that CSP (4.1.8) is not feasible over K. For example, it is proved that AC17
is not feasible over K since the lower bound on the minimum is greater than one.

Feasible set characterization

Beside solving the minimization problem, we also propose to characterize the sub-optimal
feasible set for those four problems,i.e. to characterize by a sub-paving the feasible set of the
CSP given by

4.1. GLOBAL SS BY PERFORMANCE OUTPUT INDEPENDENCE 95

Problem
max

i∈{1,...,nz}
||Tw→zj ||∞ ε α

cpu
time (s)

Systune MMIBBA

AC4 0.914 [0.905,0.916] 1e-2 1e-4 26

AC7 0.065 [0.056,0.066] 1e-2 1e-4 11

AC17 5.35 [5.23,5.35] 1e-2 1e-4 17

HE1 0.152 [0.142,0.152] 1e-2 1e-4 185

Table 4.3: MMIBBA benchmark results.

Problem 4.1.8.
{

max
j
||Tw→zj ||∞ ≤ 1,

Kensures internal stability.

This CSP is reformulated as
{
fj(k, ω) ≤ 1, ∀ω ∈ Ω, ∀j ∈ {1, . . . , nz}
Rl(k) > 0, ∀{1, . . . , nz},

so that it is proper to be solved with FSCA. Note that this CSP involves both quantified
constraints and regular constraints.
FSCA is run on the four problems to solve CSP (4.1.8), with the following parameters :

• the search domain of k is K = [−10, 10]nu×ny ,

• the search domain of ω is limited to the bounded set Ω = [10−3, 103],

• the bisection precision on k is 10−1,

• the bisection precision on ω is 10−2,

• the number of bisection done by SIBBA (iterparameter) to compute bounds on the
objective function is 5.

Table 4.4 indicates the computation time of FSCA to solve the problems. The sub-paving
of problems AC7 and HE1 are represented on Figures 4.4 and 4.5 respectively. The infeasible
boxes are displayed in gray, the feasible boxes in dark gray and the boxes not proved to be
feasible or infeasible in light gray.

FSCA results

One can remark that the computation time of FSCA for the problem AC17 is lower than the
one of MMIBBA. This is due to the fact that the minimum of problem AC17 is greater than
one, making easy to prove that CSP (4.1.8) has no feasible solution. Concerning problem AC4,
FSCA is not able to prove any box to belong to Strue for the given bisection precisions on k and
ω, but converge rapidly to two boxes [−0.36,−0.313]× [−0.085,−0.07] and [−0.313,−0.256]×
[−0.085,−0.07] for which nothing can be proved. On the contrary, the computation time of
FSCA is greater than MMIBBA on problems AC7 and HE1. This is due to the fact that

96 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

Problem cpu time (s)

AC4 22

AC7 702

AC17 < 1

HE1 3212

Table 4.4: FSCA benchmark time results.

FSCA has to characterize K entirely between the three sub-pavings instead of focusing only
on the regions of K that can contain the solution to the minimization problem as MMIBBA
does.
On Figures 4.4 and 4.5, one can see that the set of unproved boxes can be large. This is known
as the clustering effect, and illustrates the pessimism of the enclosure provided by SIBBA,
discussed in Chapter 3. From Figures 4.4 and 4.5, it can be inferred that the feasible set of
CSP 4.1.8 is a convex set for problems AC17 and HE1. However, nothing could indicate a
priori that the sets of feasible points are convex.

−10 10k11

−10

10

k12

Figure 4.4: Characterization of feasible tunable parameters for the AC7 problem.

4.2. SOLUTION TO ROBUSTNESS ANALYSIS 97

−10 10k11

−10

10

k21

Figure 4.5: Characterization of feasible tunable parameters for the HE1 problem.

4.1.6 Discussion

This section presents how the structured H∞ synthesis problem, by considering each per-
formance outputs zj separately, can be made in as an explicit minmax problem thanks to
Theorem 4.1.1. If this reformulation is not the classical way to consider the H∞ synthesis, it
is close to the design objectives as shown with the illustrative example. It can be remarked
that, with our problem formulation, the frequency templates can be any function of ω. In-
deed, fj(ω) ≤ b(ω), ∀ω ∈ Ω with b a scalar valued function being the frequency template, is

equivalent to fj(ω) · 1

b(ω)
≤ 1, ∀ω ∈ Ω which can be set as an H∞ constraint, since it has

an explicit expression. This constraint ensures that σmax(Tw→zj (iω)) ≤ b(ω). To this ex-
tent, the global optimization approach makes it possible to define non conventional frequency
templates, contrary to the existing approaches that require Zj to be an LTI system, and by
extension requires |Zj | to be a fraction of two polynomials in ω.

4.2 Solution to robustness analysis

Consider an uncertain LTI system G depending on an uncertain parameter θ ∈ Θ, Θ being the
set of possible values. Suppose that a controller K has been computed for a nominal system

98 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

G from H∞ criteria. The question is to decide if the design requirements, in our case the
stability of the close loop and respect of H∞ constraints, are met for all the possible values
of θ. This is equivalent to verify the satisfaction of semi-infinite constraints, which can be
reformulated as a maximization problem as shown in Chapter 3. The maximum corresponds
to the worst case over the uncertainties.
The robustness analysis problem is divided in two parts :

• the Robust Stability Analysis (RSA), and

• the Robust H∞ Analysis (RHA).

It will be shown that both problems are straightforward to express under explicit programs
from Subsections 4.1.1 and 4.1.2.

4.2.1 Robust stability analysis

The robust stability analysis problem is expressed in a general form as the semi infinite
constraint :

Problem 4.2.1. (RSA problem):

decide if K ensures internal stability , ∀θ ∈ Θ.

Like in Subsection 4.1.2, we shall consider two cases. G(θ) has a state space expression,
and its state matrix AG(θ) also depends on the uncertain variable, or G(θ) is represented by
a transfer matrix, the coefficients of the polynomials of the transfers depending in θ. It can
be noticed that those two cases correspond exactly to the ones considered in Subsection 4.1.2,
with the only difference that now G(θ) is parametrized by θ instead of K being parametrized
by k. Consequently, all the reasonings that have already been followed can be extended to the
present case, and in the end the internal stability can be expressed as polynomial inequalities
Rl(θ) ≤ 0 which coefficients depend on θ. Consequently, the RSA problem is equivalent to
Problem 4.2.2

Problem 4.2.2.
{

decide if Rl(θ) ≤ 0, ∀θ ∈ Θ, ∀l ∈ {1, . . . , nl}.
This problem can be handled by solving a maximization problem, the objective being the

maximum of the Rl polynomials:

Problem 4.2.3.{
sup
θ∈Θ

max
l

(Rl(θ)).

If the maximum of Problem 4.2.3 is strictly greater than 0, it proves that there exists at
least one polynomial Rl and one θ such that Rl(θ) > 0. On the contrary, if the maximum
is lower than 0, it proves that L is stable for any value of θ and thus robustly stable. The
main point is that the global maximum must be computed, and Problem 4.2.3 is non convex.
To this extent, IBBA presented in Chapter 2 can be used to compute an enclosure of the
maximum. If the stability analysis concludes that the system is not stable, one can consider
using FSCA in order to characterize the subset of Θ such that the system is stable in order
to provide further insights. This set corresponds to the feasible set of CSP 4.2.4.

4.2. SOLUTION TO ROBUSTNESS ANALYSIS 99

Problem 4.2.4.{
max
l

(Rl(θ)) ≤ 0,

θ ∈ Θ.

Example.

As an example, consider the problem taken from [68] consisting in studying the stability of
the uncertain LTI system L depending on θ = (θ1, θ2)T , θ ∈ [−10, 10]2, which characteristic
polynomial is

Q(θ, s) = s3 + sin(θ1θ2)s2 + θ2
1s+ θ1θ2.

Using IBBA to solve the maximization Problem 4.2.3, the enclosure provided is [100, 100]
meaning that L is not stable for all θ ∈ [−10, 10]2. In order to know which values of θ lead to
the instability of L, FSCA is run and providse the sub-paving shown in Figure 4.6.

−10 10θ1

−10

10

θ2

Figure 4.6: Characterization of the stable set of the uncertain parameters.

The stable set is displayed in dark gray, and the set of unstable parameters appears in gray.
Nothing is proved for the light gray set. Note that the stable set is clearly not convex, not
even connected, and emphasized the relevance of a non convex approach of the RSA problem.

100 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

4.2.2 Robust H∞ analysis

In order to study the robust performance, we consider the transfer matrix Tw→z from the
external inputs to the performance outputs. Following the outputs independence approach of
the H∞ criteria, the RHA consists in verifying that the H∞ norms of the transfers from w
to the outputs zj are lower than one for all possible values of θ. Since G(θ) depends in θ, we
also have that Tw→z(θ) depends in this variable. The RHA is formulated as the satisfaction
of nz constraints

Problem 4.2.5. RHA problem:

decide if ||Tw→zj (θ)||∞ ≤ 0, ∀j ∈ {1, . . . , nz}, ∀θ ∈ Θ.

As for the stability analysis, the related maximization problem having the maximum of
the H∞ norm as objective can be considered to decide the RHA problem. To this extent, the
function f which here depends on the parameter θ instead of k can be used as the objective
function of a maximization problem to ensure the robust performance. Indeed, we have

||Tw→zj (θ)||∞ ≤ 0,∀j ∈ {1, . . . , nz}, ∀θ ∈ Θ ⇐⇒ sup
ω≥0

f(θ, ω) ≤ 0, ∀θ ∈ Θ

⇐⇒ sup
θ∈Θ

sup
ω≥0

f(θ, ω) ≤ 0

⇐⇒ sup
θ∈Θ,ω≥0

f(θ, ω) ≤ 0.

(4.9)

In the end, the maximization problem is given by Problem 4.2.6.

Problem 4.2.6.

{
sup

θ∈Θ,ω≥0
f(θ, ω).

If the global maximum of Problem 4.2.6 is lower than one, then the system is robust to
uncertainties with respect to the H∞ objectives. On the contrary, if the maximum is strictly
greater than one, then L is not robust and in this case FSCA can be used to characterize the
set of uncertainty such that L(θ) respects the H∞ constraints ||Tw→zj (θ)||∞ ≤ 1. This set
corresponds to the feasible set of CSP 4.2.7, which has one semi infinite constraint.

Problem 4.2.7.

{
f(θ, ω) ≤ 1, ∀ω ≥ 0,
θ ∈ Θ.

The maximum of f corresponds actually to the worst case among the fj due to its max
formulation, the worst case over the uncertainties and the worst case over the pulsations.
The fact that the H∞ norm is a maximum over the pulsations, that is a worst case, enables
to easily adopt this paradigm for the other parameters of the problem being the uncertain
parameters and j the number of the output channels. From a mathematical point of view, this
worst case formulation implies to commute the priority oder of the variables when computing

4.2. SOLUTION TO ROBUSTNESS ANALYSIS 101

the wort-case, and provides interpretations in term of H∞ norms.

sup
θ

sup
ω

max
j
fj(θ, ω) = max

j
sup
θ

sup
ω
fj(θ, ω)

= sup
θ

max
j

sup
ω
fj(θ, ω)

⇐⇒
sup
θ

sup
ω

max
j
fj(θ, ω) = max

j
sup
θ
||Tw→zj (θ)||∞

= sup
θ

max
j
||Tw→zj (θ)||∞

In conclusion, the maximum of Problem 4.2.6 is the worst-case among the H∞ objectives and
over Θ, but the function f is used to adopt the formalism introduced in the optimization part.
Note that the RHA can be performed for every H∞ objectives independently by calculating

sup
θ∈Θ
||Tw→zj (θ)||∞.

This analysis provides more details since the wort-case value of the uncertainty may be dif-
ferent with respect to the H∞ objective considered.

Example

In order to illustrate the RHA, consider the uncertain MISO system having as inputs (w1, w2)
and one output z1, composed of two second order systems which damping ratio ξ1 and ξ2

depend on an uncertain parameter.

Tw→z1(s) =
(
Tw1→z1(s) Tw2→z1(s)

)

Tw1→z1(s) = 0.5
ω2

1

s2 + 2ξ1ω1s+ ω2
1

Tw2→z1(s) = 0.5
ω2

2

s2 + 2ξ2ω2s+ ω2
2

with

ξ1 = 0.2 + sin(θ1θ2)2 ξ2 = 0.2 + θ2
1 + θ2

2

ω1 = 1 ω2 = 10

The objective function f of Problem 4.2.6 for this example simply corresponds to f1,

f1(θ, ω)
√
|Tw1→z1(s)|2 + |Tw2→z1(s)|2.

Using IBBA to solve Problem 4.2.6 over the domain [−4, 4]2 × [10−2, 102], the best solution
obtained is

(θ̃1, θ̃2, w̃) = (−0.006, 0.002, 0.960)

and the enclosure of the global maximum is [1.8040, 1.8315]. IBBA takes 5 seconds to termi-
nate on this example. The worst case value of the uncertainty computed is θ̃ = (−0.006, 0.002).
In order to determine the values of θ so that ||Tw→z1 ||∞ is lower than one, FSCA is run to
characterize the feasible set of QCSP 4.2.7. The initial domain is the same as previously, the
minimum bisection precision on θ is set to 0.1. Figure 4.7 is obtained in 85 seconds.

102 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

−4 4θ1

−4

4

θ2

Figure 4.7: Set of parameters for which ||Tw→z1 ||∞ is lower than 1, in dark gray, and strictly
greater than 1, in gray. Nothing is proved for the light gray set.

4.2.3 Discussion

This section shows how the robustness analysis can be formulated as two explicit problems,
being the stability and H∞ analysis. Both can be formulated as maximization problems
that must be solved globally in order to prove the robustness in a guaranteed way. These
problems are actually reformulations of SICs involving the quantified variable θ. Solving the
maximization problems with IBBA corresponds to perform a worst case analysis, the best
solution returned by IBBA corresponding to the worst case. Concerning the stability analysis,
this worst case among uncertainty is not very relevant since the Hurwitz polynomials provide
conditions for stability but it is not a relevant metric for stability. Indeed, there is no direct link
between the values of Hurwitz polynomials and the distance to instability, that is the distance
between the real part of the poles and the imaginary axis. On the contrary, considering the
H∞ criterion, having the worst case is relevant since, contrary to the stability criterion, the
computation of the worst-case H∞ norm is performed directly and not reformulated as another
equivalent problem.
The two examples proposed in this section illustrate that a global optimization approach
enable to perform robustness analysis for systems that have non convex dependencies in the
uncertain variable, without the need of approximating the initial set of uncertain systems
by uncertain polytopic systems or the ∆-structure interconnection to perform the analysis.
In order to illustrate the conservatism of the ∆-structure representation of the uncertainty,

4.3. ROBUST STRUCTURED H∞ SYNTHESIS 103

consider the example taken from [133, p. 133]. The uncertain LTI system L depends on
uncertain parameters θ ∈ [−1, 1]2

L(θ, s) =
10((2 + 0.2θ1)s2 + (2 + 0.3θ1 + 0.4θ2)s+ (1 + 0.2θ2))

(s2 + 0.5s+ 1)(x2 + 2s+ 3)(s2 + 3s+ 6)
.

The set of uncertain systems is approximated as the nominal system L̃ plus a weighted additive
uncertainty ∆,

L(θ, s) ∈ L∆ = {L̃(s) +W (s)∆(s) | ||∆|| ≤ 1}

with

L̃(s) = L(0, s)
W (s) = P (s, 1, 1)− P (s, 0, 0)

=
10(0.2s2 + 0.7s+ 0.2)

(s2 + 0.5s+ 1)(s2 + 2s+ 3)(s2 + 3s+ 6)

The set L∆ is an over approximation of the exact set L([−1, 1]2) = {L(θ)|θ ∈ [−1, 1]2}, as
shown on Figure 4.8a representing L([−1, 1]2) and L∆ at several pulsation in the Nyquist plan.
The exact sets correspond to the polygons, and the L∆ approximation appears as circles of
radius |W (s)| centered on L̃ represented by the red curve.

On the contrary, defining a natural inclusion function for the real and imaginary parts of
L, the exact set of L([−1, 1]2) can be approximated by computing the image of [−1, 1]2. In
order to reduce the wrapping effect, the initial box can be divided into smaller boxes and the
union of their image by the inclusion function provides a closer approximation of the exact set.
Figure 4.8b shows the approximation of L obtained by dividing the initial domain in boxes of
diameter 0.1. The gray sets are the union of the images of these boxes by the inclusion func-
tions. Thanks to the convergence property of the inclusion function, these approximations
converge to the exact sets as the diameter of the boxes tends to zero. Figures 4.8a and 4.8b
emphasize the fact that an approach based on interval analysis is not conservative.

Remark. The problem of characterizing the feasible set of uncertain parameters with respect
to both stability and H∞ constraints is equivalent to Problem 4.1.8 introduced in the previous
section. In the first case the a set of uncertain parameters is searched, in the second case a
set of controllers is searched.

4.3 Robust structured H∞ synthesis

Section 4.1 has proposed a formulation of the SS problem and Section 4.2 provided a way
to analyze the robust stability and to compute the worst case among uncertainties with
respect to the H∞ objectives. The present section merges these two sections by proposing
a formulation of the Robust Structured H∞ Synthesis (RSS) problem expressed in a general
way by Problem 4.3.1.

104 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

ω = 0.5

ω = 1ω = 1.25

ω = 1.5

ω = 2

L̃

|W (i)|

Re

Im

(a) Conservative approximation of the set of the uncertain system L by L∆

Re

Im

(b) Approximation of the set of systems using the natural inclusion function extension of the real and
imaginary part of L at several pulsations.

Figure 4.8: Delta-structure and interval approximation of uncertain systems.

4.3. ROBUST STRUCTURED H∞ SYNTHESIS 105

Problem 4.3.1. Structured Robust H∞ Synthesis
Given P an uncertain LTI system depending on θ ∈ Θ, find the structured controller K such
that

{
||F (P,K)||∞ ≤ 1, ∀θ ∈ Θ
K ensures internal stability ∀θ ∈ Θ.

We suppose that P is built from an uncertain LTI system G depending on θ and weighting
functions Wi and Zj as shown on Figure 4.9.

w
G(θ)

z

K(k)

W Z

u y

w̃ z̃

P (θ)

Figure 4.9: General regulation scheme for robust H∞ synthesis.

4.3.1 Worst case minimization formulation

As proposed in Section 4.1, the structured controller is expressed as a parametric system
depending on the tunable variable k. In addition, P depends on the uncertain variable θ. As a
consequence, the interconnection of P with K depends both on the tunable and the uncertain
variable, and the transfer matrix Tw→z of F (P (θ),K(k)) has its transfers being rational
functions depending on k, θ, and s. Considering each performance output zj independently,
we have that the function f also depends on these three variables.

f : Rnk × Rnθ × R 7→ R
(k, θ, ω) → f(k, θ, ω)

One possible approach to solve the RSS problem is to minimize over the domain of k the
wort-case of the H∞ objectives over Θ, i.e. to minimize the objective

sup
ω≥0,θ∈Θ

f(k, θ, iω),

which is equivalent to minimize

sup
θ∈Θ

max
j
||Tw→zj (k, θ)||∞,

as discussed in the section dedicated to robustness analysis.
Concerning the stability criterion, it suffices to extend the calculus of Subsection 4.1.2 con-
sidering the dependency of G on θ. Hence, it follows that using the Hurwitz criterion the
internal stability can be expressed as polynomial inequalities Rl(k, θ) ≤ 0. The worst case
minimization problem is given by Problem 4.3.2, which is the extension of Problem 4.1.6
taking the uncertain parameter into account.

106 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

Problem 4.3.2.

{
min
k

sup
θ∈Θ,ω≥0

f(k, θ, ω)

s. t. Rl(k, θ) ≤ 0, ∀θ ∈ Θ.

The objective becomes the worst case of f over both ω and θ, and the stability constraints
become semi infinite constraints. In the end, Problem 4.3.2 is a minmax problem under
semi infinite constraints, that can be solved with MMIBBA that has been developed for
this purpose. If the best solution k̃ returned by MMIBBA is lower than one, then it means
that K(k̃) ensures both robust stability and robust H∞ performances with respect to the
uncertainties. Indeed, MMIBBA repeatedly try to compute a good solution at particular
points k̃ by verifying the constraints and evaluating the objective, that actually corresponds
to perform both the RSA and the RHA at this point. On the contrary, if the lower bound
on the minimum is strictly greater than one, then it means that the RSS problem has no
solution.

4.3.2 Example

As an example, we consider the problem of designed a filtered PID controller for an au-
tonomous robot taken from [128]. The robot is model by an uncertain system G depending
on two uncertain parameters.

G(θ, s) =
1

θ1s2 + θ2s

The range of the uncertain parameters is [0.3, 0.69]× [1.26, 2.34]. The controller K has three
tunable parameters, the filter coefficient being fixed to 1.

K(k, s) = kp +
ki
s

+
kds

1 + s

The H∞ objectives focus on the limitation of the tracking error and avoidance of actuator
saturation. Let S(k, θ) be the sensitivity function of the close loop. The two H∞ objectives
are given by:

||ZeS(k, θ)||∞, ||ZuK(k)S(k, θ)||∞,

with Ze and Zu the weighting functions for the error and the control signal respectively, chosen
as

Ze(s) = 0.5
s+ 0.92

s+ 0.0046
Zu(s) = 0.01.

The resolution of the RSS problem with MMIBBA over the search domain [0, 5]3 provides
[0.57, 0.84] as enclosure of the minimum in 30 minutes. The best solution found is k̃ =
(1.40885, 0.182807, 0.645285).

4.3. ROBUST STRUCTURED H∞ SYNTHESIS 107

4.3.3 Discussion

As it can be noticed, the computation time is important on this example. This is principally
due to the fact that every time MMIBBA evaluate a particular point k̃ both the RSA and the
RHA are performed, which takes non negligible time. In comparison, MMIBBA converges
to the lower bound in 50s if no feasible point is searched. However, as far as we know,
no global solution has been proposed to solve globally the worst-case minimization problem
until now. The main difference between our solution and previous work based on parametric
approaches [84, 5] lies in the facts that these methods characterize the sub-optimal feasible
set of Problem 4.3.2, which corresponds to the feasible set of the CSP

{
fj(k, θ) ≤ 1, ∀θ ∈ Θ, ∀ω > 0
Rl(k, ω) ≤ 0, ∀θ ∈ Θ.

The reasons is that the fj are fractions of two multivariate polynomials N and D,

fj(k, θ, ω) =
N(k, θ, ω)

D(k, θ, ω)
.

As a consequence an inequality constraints on fj can be reformulated as a polynomial in-
equality:

f(k, θ, ω) ≤ γ ⇐⇒ N(k, θ, ω)− γD(k, θ, ω) ≤ 0.

Having a polynomial constraint is more convenient than having a fraction of polynomial as
an objective function to minimize, since methods dedicated to polynomial analysis can be
used [52, 96, 86]. This may explain why the majority of works based on the parametric
approach are limited to the characterization of the sub-optimal set, but does not solve the
worst case minimization problem.
Another point to be mentioned is the relevance of the worst case H∞ norm, over Θ, as the
objective. The worst case over Θ, beside depending on the controller parameters, may not
correspond to the nominal case θ̃ of the system. The worst case minimization proposed by
Problem 4.3.2 is convenient since, if a solution lower than one is found, this solution ensures
the robust performances of the system. However, one can consider to minimize the H∞
norm of a nominal system G(θ̃) and to change the objective of Problem 4.3.2 as a constraint,
providing the new Problem 4.3.3.

Problem 4.3.3.

min
k

sup
ω≥0

f(k, θ̃, ω),

s. t. f(k, θ, ω) ≤ 0, ∀θ ∈ Θ,
Rl(k, θ) ≤ 0, ∀θ ∈ Θ.

In this way, the structured synthesis is performed for the nominal system and the H∞
robustness is guaranteed. Problem 4.3.3 is still a minmax problem subject to semi infinite
constraints.

108 CHAPTER 4. G.O. APPROACH TO H∞ SYNTHESIS AND ANALYSIS

4.4 Conclusion

In this chapter a new formulation of three H∞ related problems, namely the structured
synthesis, the robustness analysis, and the robust structure synthesis has been proposed.
This is possible thanks to the formulation of the H∞ norm of MISO systems as an explicit
maximization problem, by considering each performance outputs independently. This result
is the first contribution of this chapter, and is of major interest since it enables to extend the
existing parametric approaches [84, 5, 21], so far limited to SISO systems, to MISO systems.
Furthermore, we show that this formulation is closer to the design objectives than minimizing
the H∞ norm of the full MIMO system with the illustrative example of Section 4.1.
The second contribution is the formulations of the SS, RA, and RSS problems themselves as
explicit optimization and CSP problems. It has been shown over several examples that the
algorithms developed in Chapter 3 converges in reasonable amounts of time. However, on the
RSS problem, MMIBBA shows its limits.
Another point to mention is the explicit formulation of the stability and H∞ criteria. These
explicit formulas, obtained from LFT or the state space realization of interconnected systems,
require to inverse symbolic matrices depending on k and θ (see Equation 4.5). Those matrices
are in most cases sufficiently sparse to make their inverses easily computable by symbolic
software, but the symbolic expressions of the criteria, especially the stability inequalities, may
be huge. This can lead to badly conditioned problems, but the reliability of the numerical
results are guaranteed by the interval computation that takes rounding error into account
(see Chapter 2). In the end, the approach proposed in this thesis is suited for small scale
problems, but avoid the conservatism due to uncertainty reformulation. The approach is not
suited for large scale problem since:

• The expressions of the Routh’s coefficients and the H∞ norms grow with the order of the
closed loop system, and increase the pessimism of the bounds provided by the inclusion
functions. Our approach is limited to closed loop system of order 10 or less (order of
the controller plus order of the augmented system).

• The complexity of MMIBBA grows exponentially with respect to the dimension of k
and θ. Our approach is limited to problems where the dimension of k and θ are both
lower or equal than 3.

However, our approach is relevant since the structured controllers are generally wanted of
small order, and often with few tunable parameters.

Improvement prospects As explained in the discussion part of the section dedicated to
the RSS problem, the convergence issue of MMIBBA lies in the amount of time needed to eval-
uate the objective function at a particular point. MMIBBA does not implement a ”cleaver”
method to find a good solution, since it simply evaluates the objective function at the cen-
ter of the current box. A possible solution to overcome this problem could be to consider
derivative free or black box optimization methods [13]. These methods are adapted to solve
problems involving objective function requiring non negligible amount of time to be evaluated
and that are not known explicitly, i.e. the gradient is not available. In our case, the function
f is explicitly known but the objective function of the RSS problem is the maximum of f

4.4. CONCLUSION 109

over Θ and Ω, which is not known and must be computed by solving the RHA maximization
problem.
Another way to improve the convergence lies in the expressions of f and the stability polyno-
mials Rl. As the order of the system grows, these expressions become larger and the number
of occurrences of the variables increase. This is inconvenient due to the pessimism of inclu-
sion functions, generally increasing with respect to the number of occurrences. However, a
large number of common subexpressions appear in the expressions, which can be exploited to
improve the efficiency of constraints propagation techniques [11, 56, 125].

Outlooks For the SS problem and the RSS problem, we showed how the synthesis problems
can be considered either as minmax optimization problem or CSP problems involving SICs
by considering the objective as a constraint. However, any problem having a regular or a
max objective function subject to regular constraints and/or SICs is suited to be solved. As
a consequence the user can chose specifically which H∞ criterion is a constraint and which is
an objective function.
In Chapter 3, the general minmax problem is considered. This problem is subject to con-
straints involving both the minimization and the maximization variable, namely k and θ in
this chapter. Such constraints can be used to represent dependencies between the controller
and the uncertainty, or simply between the uncertain parameters of the system [114]. That is,
the domain of uncertain parameters can be any non convex set instead of the box Θ. In the
end, the tools developed in this thesis permit a large degree of freedom with respect to the
expressions of the problem. This enables to limit the difference between the design objectives
and their formulation as an optimization problem.
The performance outputs independence is used to obtain an explicit formulation of the prob-
lem, and use the global optimization tools developed in the two previous chapters. However,
the branch and bound structure of MMIBBA can be employed even if no explicit formula is
available, it suffices that reliable bounds on the objective function can be computed. In this
way, works dedicated to the enclosure of the eigenvalues of interval matrices [65, 66] could be
used to provide bounds on the singular values of Tw→z(k, θ, s) over boxes of k, θ, and ω. In
this way, ||Tw→z||∞ could be considered as an objective function, but MMIBBA would very
probably run slower since the accelerations techniques, relying on explicit functions, could not
be used anymore. This could be the topic of a future work.
The approach proposed in this chapter could be employed for the design of gain scheduling
controllers for LPV systems. The structured synthesis method developed in Section 4.1 per-
mits to obtain several controllers for different values of the varying parameters of the LPV
system to control. Suppose that a regression function r of the relation between the controller
parameters k and the varying parameters θ can be obtained, k = r(θ). The robustness analy-
sis tools can be used to verify that the closed loop system, being the interconnection of G(θ)
and K(r(θ)), is stable and respects the H∞ constraints, for any value of θ.

Chapter 5

Case study: robust control for
underwater robot

A practical example of H∞ control application is presented in this chapter. The control of an
Autonomous Underwater Vehicle (AUV) named Ciscrea is considered, and the whole process
from design objectives specification to experiments is performed. The first objective of this
chapter is to show how the analysis procedure presented in Chapter 4 can be used on a real
case in order to provide a detailed analysis of the system’s behavior. The second objective
is to emphasized the fact that H∞ synthesis is an adapted tool to compute control laws for
autonomous robots. Indeed autonomous robots generally evolve in unchecked environments
and may be subjected to external disturbances, and make robust H∞ synthesis a suitable
approach to control such systems for two reasons :

• several objectives can be taken into account to design the control law, for example
tracking error limitation and disturbance rejection,

• robots often suffer from model uncertainties that can be dealt with.

In particular, this chapter focuses on the control of the yaw angle of the Ciscrea subject to
external perturbations. In that respect, two objectives are considered :

• ensure a small tracking error between the reference yaw and the Ciscrea’s yaw,

• ensure perturbation rejection.

In addition, a simple structure of the control law is imposed. Doing so limits the computation
time of the control signal, since the controller, being a dynamical system, must be simulated
to obtained it. In addition, a low order structure of the controller ease the interpolation of
controllers for different operating point, if desired. For this application the controller is a
PID.
This chapter is organized as follows : Section 5.1 provides a non linear model of the Ciscrea,
and proposes a linear approximation of this model in order to use H∞ synthesis. Section 5.2
derives H∞ criteria from the control objectives and the synthesis of a controller is performed.
The performances of this controller are analyzed with the tools developed in Chapter 4. In

111

112 CHAPTER 5. CASE STUDY: ROBUST CONTROL FOR AUV

Figure 5.1: Ciscrea AUV.

addition, two other controllers are computed from empirical tuning rules taken from the lit-
erature. The performances of the three controllers are compared through simulations and
experiments in Section 5.3.

This work was performed in cooperation with the National University of La Plata (UNLP),
Argentina, with a scholarship granted by Université Bretagne Loire (UBL), and has led to a
publication [110].

5.1 AUV model and perturbations

The Ciscrea’s dynamical model is taken from [45] and the numerical values have been obtained
in [127] which proposes a rigorous modeling of the robot. Based on [45], two coordinate sys-
tems are introduced: a NED-frame (North East Down) and a B-frame (Body fixed reference)
for the localization as it is described in Fig. 5.2. In this model, all distances are expressed
in meters, angles in radians and positive clockwise. The position vector η, velocity vector ν,
and force vector τ are defined as is follows,

η = (x, y, z, φ, θ, ψ)T

ν = (u, v, w, p, q, r)T

τ = (X,Y, Z,K,M,N)T .
(5.1)

According to [45], rigid-body hydrodynamic forces and moments can be linearly superimposed.
Furthermore, the overall non-linear underwater model is characterized by two parts, the rigid-

5.1. AUV MODEL AND PERTURBATIONS 113

Figure 5.2: NED-frame and B-frame.

body dynamic (see Equation (5.2)) and hydrodynamic formulations included hydrostatics (see
Equations (5.3)). Parameter definitions are given in Table 5.1.

MRB ν̇ + CRB(ν)ν = τenv + τhydro + τpro (5.2)

τhydro = −MAν̇ − CA(ν)ν −D(|ν|)ν − g(η) (5.3)

Table 5.1: Nomenclature of AUV Model

Parameter Description

MRB AUV rigid-body mass and inertia matrix

MA Added mass matrix

CRB Rigid-body induced coriolis-centripetal matrix

CA Added mass induced coriolis-centripetal matrix

η Position vector

ν Velocity vector

D(|ν|) Damping matrix

g(η) Restoring forces and moments vector

τenv Environmental disturbances (wind,waves and currents)

τhydro Vector of hydrodynamic forces and moments

τpro Propeller forces and moments vector

In the present application MRB is obtained from [127]. In addition, since the vehicle speed
is low, CRB and CA are neglected, then C(ν) ≈ 0. The restoring forces and moments vector

114 CHAPTER 5. CASE STUDY: ROBUST CONTROL FOR AUV

g(η) are composed of the forces and torque produced by the weight and the buoyancy forces.
The assumption that both the buoyancy and gravity center are located at the geometrical
center of the robot is made.
The marine disturbances, such as wind, waves, currents contribute to τenv. Two hydrody-
namic parameters deserve a greater explanation:

• MA ∈ M6(R): added mass, is a virtual concept representing the hydrodynamic forces
and moments. Any accelerating emerged-object would encounter this MA due to the
inertia of the fluid.

• D(|ν|) ∈ M6(R): damping in the fluid, this parameter consists of four additive parts:
Potential damping, wave drift damping, skin friction, and vortex shedding damping.
The first two are dismissed in this application, and the others could be approximated
by a linear and a quadratic matrix, DL and DN , respectively, as it is shown in (5.4)
([127], [45]).

D(|ν|) = DL +DN |ν|. (5.4)

In the present work, we focus on the yaw direction to control. Due to the low coupling
in the model directions, it is possible to consider that there is no dependency between the
yaw dynamic and dynamics along the other axis. This last observation allows us to get the
non-linear model for the yaw dynamic:

(IY RB + IY A)ψ̈ + (DY L +DY N |ψ̇|)ψ̇ = τ + d, (5.5)

where the parameters are listed in Table 5.2. Since the yaw speed is mostly between 0 and 4
rad/s to dismiss the Coriolis effect in 5.5 is a reasonable approximation.

Table 5.2: Model parameters for Yaw dynamic

Parameter Description

IY RB = 0.2862 AUV inertia

IY A = 0.1104 Added inertia

DY L = 0.0945 Linear damping coefficient

DY N = 1.4676 Non-linear damping coefficient

d Disturbances

τ Resulting torque produced for all propellers

ψ Yaw position

To conclude the modeling of the Ciscrea robot, two other assumptions must be addressed:
(a) a delay in the compass sensor, which is estimated experimentally around 0.3 seconds. And
(b) the non-linear behaviour between the digital command torque Td and the real torque Ta,
in Newton, developed by the Ciscrea’s thrusters expressed by the following equation:

Ta =

4.7 if Td ≥ 127

3.2 max
(

Td
203.874 ,

Td−30.3781
65.6756

)
if 0 ≤ Td < 127

4.3 min
(

Td
203.874 ,

Td+30.3781
65.6756

)
if − 127 < Td < 0

−6.32 if Td ≤ −127

(5.6)

5.1. AUV MODEL AND PERTURBATIONS 115

-150 -100 -50 0 50 100 150

Digital torque

-8

-6

-4

-2

0

2

4

6

T
or

q
u
e

(N
:m

!
1
)

Figure 5.3: Generated torque in Newtons per meters versus digital control.

Figure 5.3 shows the torque over the digital control value. Further details about this model
and its validation can be found in [109]. This model has been implemented in Matlab.

5.1.1 Linear model

A non linear model of the Ciscrea has been obtained as well as the model of the perturbations,
considered as additional signal d on the control input u. In order to use H∞ control, a linear
model of the Ciscrea must be available. The two main sources of the non linear behavior of
the Ciscrea are due to:

• the dynamical model given by Equation (5.5) and the torque’s non linear behavior, and

• the compass delay.

The Ciscrea is approximated by a linear system by considering these two items separately.

Dynamical model and torque

We first consider the non linear differential equation of the Ciscrea and the torque control.
In order to obtain a linear model from a non linear model, one possible way to proceed is to
linearize the system around an operating point. That is, a system described by its evolution
function f , its observation g and its state vector x can be approximated by state space matrices
A, B, C and D.

A =
∂f(x̃)

∂x
B =

∂f(ũ)

∂u

C =
∂g(x̃)

∂x
D =

∂g(ũ)

∂u

(5.7)

116 CHAPTER 5. CASE STUDY: ROBUST CONTROL FOR AUV

The operating point is given by x̃ and ũ. In our case, the operating point simply corresponds
to a particular angular velocity which is the cause of non linearity in Equation (5.5). From
experiments [126], it is known that this angular velocity can vary between 0 and 4 rad/s.
Instead of linearizing around a single operating point, we propose to consider the operating
angular velocity as a time invariant uncertain parameter θ ∈ [0, 4]. Recalling that a Matlab
model implementing both the dynamical equation of the Ciscrea and the non linear behavior
of the torque is available, we directly linearized this model using Matlab’s linearize function
at several operating angular velocity. By extrapolation, we get an uncertain LTI system L.

L(θ, s) =
0.3931

s2 + 2.08θs

Remark. L is only an approximation of the dynamics of the Ciscrea, an uncertain LTI system
cannot describe the evolution of a non linear system. However, this approximation is generally
sufficient to compute efficient control laws, as it will be shown in Section 5.3.

Compass delay

A delay is modeled in the Laplace space by a transfer e−τs, with τ the delay time in seconds.
The Padé approximation for the exponential function can also be used to get a rational
function depending in s, i.e. a LTI system. This approximation is given by a series expansion,
and we consider here only the first order approximation,

e−τs =
1− s τ2
1 + s τ2

. (5.8)

Ultimately, the linear approximation of the whole system is given by the third order
uncertain LTI system G.

G(θ, s) =
0.3931

s2 + 2.08θs

1− s τ2
1 + s τ2

Figure 5.4 recaps the linearization process.

Remark. Other linearization processes can be employed to obtain a linear model. For ex-
ample, a feedback linearization coupled with a predictor to compensate the delay is proposed
in [128]. Further discussions about this topic can be found in [126].

Remark. The saturation of the propellers is not taken into account in the linear approx-
imation. It will appear that such a phenomenon is not met in the experiments, presented
in Section 5.3. However, actuator saturation is an issue often met, and might be critical in
certain applications [124].

5.2 Design specifications, synthesis, and analysis

The design objectives consist in

• Achieve a small tracking error between the reference angle, denoted r, and the yaw angle
of the robot.

5.2. DESIGN SPECIFICATIONS, SYNTHESIS, AND ANALYSIS 117

Torque

(IY RB + IY A)ψ̈+

(DY L +DY N |ψ̇|)ψ̇ = τ

Dynamics

e−0.3s

Delay

L(θ, s) =
0.3931

s2 + 2.08θs

1− s−0.3
2

1 + s−0.3
2

M
at

la
b

L
in

ea
ri

za
ti

on

P
ad

é
ap

p
ro

x
im

a
ti

o
n

Figure 5.4: Linearization process of the Ciscrea, represented as three non linear blocks.

r K G ψ

d
+

− +
e u

Figure 5.5: Regulation scheme for Ciscrea yaw angle control.

• Disturbance rejection.

The tracking error regulation scheme shown on Figure 5.5 is considered to achieve these
objectives. From Equation (5.5), the disturbances are described as an additional input d on
the control signal. In the end, Figure 5.5 shows a suitable configuration of the regulation
problem for the H∞ synthesis. The two objectives must now be translated to H∞ objectives.

5.2.1 Specifications

Tracking error objective

The channel of interest for this objective is the transfer from the reference to the error signal,
Tr→e, corresponding to the sensitivity function.

Tr→e(k, θ, s) =
1

1 +G(θ, s)K(k, s)

In most cases, the frequency template Z−1
e chosen to ensure a small tracking error is a high-

pass filter. In this way, Tr→e has low gain at low frequencies, and error is tolerated at high
frequencies. What is a low or a high frequency is determined by the cutoff frequency of Z−1

e .
A reasonable choice for this cutoff frequency is to have it around the cutoff frequency of G,

118 CHAPTER 5. CASE STUDY: ROBUST CONTROL FOR AUV

possibly lower. If it is higher, the relative H∞ constraint specifies that the system must track
the reference at high frequencies where G has less gain. The perverse effect of such a constraint
is that the H∞ synthesis may provide a controller which has a high gain at high frequency
to compensate the low gain of G, which can lead to actuator saturation issues. Figure 5.6
displays the bode diagram of G for several values of θ in [0,4]. The cutoff frequency ωc of G
depends on θ, and is around 1 rad/s. In the following, we assume that ωc = 1. Following the

10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3

Pulsation (rad/s)

-150

-100

-50

0

50

100

150

M
ag

n
it
u
d
e

(d
B
)

10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3

Pulsation (rad/s)

-180

-170

-160

-150

-140

-130

-120

-110

-100

-90

P
h
as

e
(d

eg
)

Figure 5.6: Bode diagram of G.

above, the weighting function Ze (being the inverse of the frequency specification) is chosen
as a low pass. The low frequency gain is set to 20 dB and the high frequency gain to -20 dB,
with a cutoff frequency at 1 rad/s.

Ze(s) =
0.1s+ 0.6283

s+ 0.06283

Z−1
e is displayed on Figure 5.7 with G at θ = 0.5. Ultimately, the specification on the tracking

error is expressed as the H∞ objective ||WeTr→e||∞ that must be minimized.

5.2. DESIGN SPECIFICATIONS, SYNTHESIS, AND ANALYSIS 119

10 -3 10 -2 10 -1 10 0 10 1 10 2
-100

-50

0

50

100

150

Figure 5.7: Gain of the frequency templates Z−1
e in red, disturbance weighting function Wd

in blue, and G in black at θ = 0.5.

Disturbance rejection

The rejection of external disturbances, modeled by d, can be translated as the non sensitivity
of e to d. The channel of interest is therefore Td→e. From the tracking error specification,
e is already weighted by Ze. That is, the objective ||Td→eWe||∞ ensure the rejection of the
perturbation at low frequencies. However, this objective can be improved by taking into
account the frequency content of d. The assumption is made that disturbances occur at low
frequencies, below 1 rad/s. It follows that d is weighted by a low pass filter Wd, displayed on
Figure 5.7 is

Wd(s) =
0.1s+ 0.06283

s+ 0.06283
.

In the end, the disturbance rejection specification is translated as the H∞ objective:

||ZeTd→eWd||∞.

5.2.2 Synthesis

The controller K is structured as a filtered PID.

K(k, s) = kp +
ki
s

+
kps

Tfs+ 1

The tunable variable is k = (kp, ki, kd, Tf). This choice is motivated by the fact that a PID
can be implemented easily, and its behavior can be understood directly from the value of its
tunable parameters. In addition, it will allow to compare the H∞ synthesis with other PID
tuning methods presented further.
The H∞ synthesis of the PID consists to solve the robust structured synthesis problem,
introduced in Chapter 4, since G is uncertain. The problem to solve is thus

120 CHAPTER 5. CASE STUDY: ROBUST CONTROL FOR AUV

Problem 5.2.1.

{
min
k∈K

sup
θ∈[0,4]

max(||ZeTr→e||∞, ||ZeTd→eWd||∞, ||Tr→u||∞Zu)

s. t. K(k)Ensure internal stability.

Unfortunately, MMIBBA cannot find a good solution in a reasonable amount of time,
for no heuristic is implemented to find rapidly a good solution (see Chapter 4). Instead,
the Matlab’s systune toolbox is used to compute a controller. Systune proceeds as follows: a
controller is computed by solving Problem 5.2.1 at a nominal value of θ, corresponding to solve
a structured synthesis problem. Then, a robustification procedure is run from this solution
to find a controller that minimizes the worst case H∞ norm while ensuring stability over the
domain of uncertain parameters. For detail, see [8, 1]. Since Systune relies on local search
optimization methods, solutions are fast to compute but are not guaranteed with respect to
the stability and H∞ criteria. That is why the strategy adopted is to perform the synthesis
with Systune and to perform a robustness analysis with the tools developed in Chapter 4.
The solution to Problem 5.2.1 provided by Systune is

k̃ = (4.68, 0.71, 4.68, 0.11)

The robustness analysis is performed over the pulsation range [0.01,ωc]. The following results
are obtained:

sup
θ∈[0,4]

||ZeTr→e||∞ ∈ [3.16, 3.22],

sup
θ∈[0,4]

||ZeTd→eWd||∞ ∈ [0.42, 0.57].

These results are confirmed by Figure 5.8 and 5.9 showing the Bode diagrams of Tr→e and
Td→eWd respectively, for ten values of θ. Tr→e overpass the frequency template given by Z−1

e ,
and Td→eWd remains below Ze.

In addition, the robust stability analysis proves that the stability of the close loop for any
value of θ in [0,4]. As a consequence, the solution provided by Systune respects the robust
stability condition, which is the most critical condition, the disturbance rejection objective is
met but not the tracking error objective. At this point, two options can be considered:

• Changing the H∞ objectives to less demanding ones, for example by lowering the cutoff
frequency of Ze, then run the synthesis and the analysis. This is repeated until a
controller that satisfies the H∞ constraints is found,

• or perform a detailed analysis in order to know for which values of θ the objectives are
not met and draw the conclusion.

As we developed the necessary analysis tools, we chose the second option. First, FSCA
is run in order to obtain a sub-paving informing the subset of the uncertainty domain [0, 4]
such that the H∞ constraints are respected. This sub-paving is displayed on Figure 5.10.

The results provided show that the H∞ constraints are respected over the subset [0, 1.21].
In other words, the specifications are met for low angular velocities, and the closed loop system
is stable at any angular velocities. We can conclude from this analysis, that the controller

5.2. DESIGN SPECIFICATIONS, SYNTHESIS, AND ANALYSIS 121

10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3

Pulsation (rad/s)

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

M
ag

n
it
u
d
e

(d
B
)

Tr!e

Z!1
e

Figure 5.8: Diagram of Tr→e and Z−1
e .

10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3

Pulsation (rad/s)

-160

-140

-120

-100

-80

-60

-40

-20

0

20

M
ag

n
it
u
d
e

(d
B
)

Td!eWd

Z!1
e

Figure 5.9: Diagram of Td→e and Z−1
e .

1.21
0 4

θ

Figure 5.10: Feasible subset of the uncertainty domain, in dark gray, with respect to the H∞
criteria.

122 CHAPTER 5. CASE STUDY: ROBUST CONTROL FOR AUV

K(k̃) is a suited control law at low angular velocities, and its performances declines as the
velocity increased. In addition, it must be noted that this analysis is limited since the Ciscrea
is a non linear system, and the model G use for the synthesis is an approximation of the
real system. Ultimately, we propose to keep this controller and to validate its performances
through simulations with the non-linear model and experiments in the next section.
Before doing so, two other PID controllers are synthesized in order to provide comparisons
between the H∞ solution and other synthesis processes.

5.2.3 Two empirical solutions

When tuning a PID controller, empirical methods can be found in the literature to compute
the coefficients. In particular, we consider the Ziegler-Nichols tuning method which is well-
known in automatic control since 1942 [135], and another tuning method allowing to take
delay into account taken from [102]. Both methods are based on the time response of the
system, that is considering the yaw angle time response to a step reference signal. These two
methods are chosen on purpose as they consider only one tuning objective, the tracking error,
and cannot take into account a second objective, the external perturbations. In this way, it is
possible to discuss the advantages and disadvantages of H∞ synthesis compare to two other
easy to use methods.
Following the Ziegler Nichols design process, we obtain the controller

kZN = (1.32, 0.22, 1.89, 0.5).

The tuning rules taken from [102, p 395], based on Chien’s work [31] require a second
order linear model, and provide the coefficients of the PID in function of the time delay. To
do so, L(θ = 2), the Ciscera’s dynamical model linearized at 2 rad/s, is considered, and the
controller K(kChien) is obtained,

kChien = (1.82, 0.12, 6.4, 0.35).

5.3 Simulations and experiments

The three controllers are compared over simulations and real experiments. The main objective
is to show the robustness of the proposed controller against perturbations. The performances
of the controllers are evaluated with respect to two criteria.

• The root mean square error,

√√√√
N∑

i=1

|ri − yi|
N

• and the bias,

N∑

i=1

ri − yi
N

.

5.3. SIMULATIONS AND EXPERIMENTS 123

Here N is the number of measures provided by the Ciscrea’s compass during the experiments
or the simulations outputs. yi is the yaw angle and ri is the reference. Concerning the
experiments, since the compass suffers from delay, the measures are shifted over the time by
the delay of the compass.

5.3.1 Simulations

The simulations were done using the non-linear model described in Subsection 5.1. Three
simulations are performed:

• step response,

• response to step disturbance, and

• response to a random disturbance.

Figure 5.11a shows the step response obtained with the three controllers. In this figure,
the Hinf controller has a higher over pass than Chien controller, but at the same time the
settling time is shorter. This overshoot is a consequence of the design objectives of the Chien
and H∞ tuning: the Chien controller has been designed specifically from the step response in
contrast to the Hinf controller.

Figure 5.11b shows the response of the system to a step perturbation filtered by Wd,
applied to the control input. It appears that the Hinf controller rejects this perturbation
well, contrary to ZN and Chien controllers which do not take into account perturbation
rejection as a constraint in their design process.

In the last simulation a white uniform noise signal filtered by the weight function Wd

(in this way the system is excited in the bandwidth where the disturbances are expected) is
applied as a disturbance to the control input. Figure 5.11c shows the yaw output. The Hinf
controller has the best performance in these conditions. The values of the Root-Mean-Square
Error (RMSE) and the bias given in Table 5.3 confirms this observation.

Table 5.3: Random perturbation errors

Simulation RMSE Bias

ZN 1.7132 -0.1263

Hinf 0.6017 -0.0480

Chien 1.6816 -0.1334

From these simulations, it can be concluded that Hinf controller is good at rejecting
perturbation contrary to the ZN and Chien controllers. These results emphasized two aspects:

• The sensitivity of the Ciscrea to perturbations cannot be ignored in the design process
if one wants a robust controller. ZN and Chien controllers does not take perturbations
into account and are sensitive to them.

• The Hinf controller shows the performances expected from the design specifications and
the robustness analysis, despite it has been synthesized from a linear approximation of
the Ciscrea.

124 CHAPTER 5. CASE STUDY: ROBUST CONTROL FOR AUV

Time [s]

0 20 40 60 80 100
Y
aw

[r
a
d
]

0

0.5

1

1.5

Reference

Hinf

Chien

ZN

(a) Step response simulation

100 120 140 160 180 200 220 240

Y
aw

[r
a
d
]

0.8

1.2

1.6

2

2.4

Reference

Hinf

Chien

ZN

Time [s]

100 120 140 160 180 200 220 240

T
o
rq
u
e
[N

m
]

-0.6

-0.2

0.2

0.6

Perturbation

Hinf

Chien

ZN

(b) Step perturbation simulation

20 40 60 80 100 120 140 160 180

Y
aw

[r
a
d
]

-3
-1
1
3
5
7
9 Refeerence

Hinf

Chien

ZN

Time [s]

20 40 60 80 100 120 140 160 180

T
o
rq
u
e
[N

m
]

-3

-1.5

0

1.5

3

4.5 Perturbation

Hinf

Chien

ZN

(c) Random perturbation simulation.

Figure 5.11: Simulation results.

Since the simulations validate the performances of the Hinf controller, the next step is to
perform real experiments.

5.3.2 Experimental Results

Experiments setup

The three controllers are compared over three experiments conducted at the ENSTA-Bretagne
facilities. Each experiment consists in testing the performance of the three controllers on the
real robot subject to perturbations. In all the cases, the perturbation was generated by
an external 12 Volts propeller with a constant rotational speed. The setup is depicted on
Figure 5.12.

The Cisrea is hanged to a winch chain in order to keep it in the center of the pool.
Indeed, only the yaw angle is aimed to be controlled, and the perturbation caused by the
propeller tends to push the Ciscrea in the opposite side of the pool. In addition, the Ciscrea

5.3. SIMULATIONS AND EXPERIMENTS 125

Figure 5.12: Experimental setup at ENSTA Bretagne pool.

is ballasted so that its pitch and roll angles remain low when the Ciscrea swing because of
the generated flow disturbance. Particular care has been given to keep the torque resulting
from the mechanical link between the Ciscrea and the winch chain as low as possible.
The experiments consist in creating a current with the propeller to disturb the Ciscrea while
this last keep a steady yaw angle. Doing so, the angle velocity remains low, where the Hinf
controller should perform best as suggested by the robustness analysis. The reference signal
is thus constant. The disturbance generated by the propeller is oriented in three different
directions with respect to the reference yaw angle, corresponding to a front current (surge
direction), a 45 degree orientated current and a side current (sway direction). Figure 5.13
summarized the three experiment setups. In all cases, the perturbation is generated by the
same constant rotational speed of the propeller. The first experiment consists in undergoing
the AUV to an external perturbation aligned to its sway direction (see A in Fig. 5.13). In
Figure 5.14a, the yaw measurement is displayed for each controller. In this case between 0 to
40s, the experimental step response is appreciated, and then at 40s, the external perturbation
is applied. From this figure, we can observe the same behaviour as the one predicted by the
simulation with respect to the step response, and a good rejection of the perturbation for all
the techniques employed.

126 CHAPTER 5. CASE STUDY: ROBUST CONTROL FOR AUV

CiscreaA

B

C

Sway
direction

Surge
direction

Yaw
reference

Figure 5.13: Top view of experiment setup

Table 5.4: Errors: Perturbation in sway direction

Experiment RMSE BIAS

ZN 0.2166 -0.0204

Hinf 0.1355 -0.0230

Chien 0.1738 -0.0137

The second experiment consists in exposing the AUV to a perturbation at 45 degree of
sway direction (see B in Fig. 5.13). Figure 5.14b shows the results and Table 5.5 provides
the error values. In this case, Hinf and Chien controllers have good performances but ZN is
clearly sensitive to the perturbation.

Table 5.5: Errors: Perturbation at 45 degree of surge direction

Experiment RMSE Bias

ZN 0.1742 0.0137

Hinf 0.0650 0.0037

Chien 0.0755 0.0172

The last experience consists in applying a perturbation in the surge direction (see C in
Fig. 5.13). In Figure 5.14c, the worst perturbation condition is observed. The errors for this
experiment are provided in Table 5.6. This experiment clearly shows from the plot of the yaw
angle and the RMSE value that Hinf is better at rejecting perturbation, which was not so
obvious from the two other experiments.

Those three experiments highlight that the Hinf controller is the best at rejecting pertur-
bations, and that the Ciscrea sensitivity to the perturbation depends on its orientation. The
step response for the three controllers obtained by simulations and experiments are similar,
proving the validity of the non linear model. On the contrary, the behavior of the Ciscrea

5.3. SIMULATIONS AND EXPERIMENTS 127

0 40 80 120 160 200

Y
aw

[r
a
d
]

0

1

2

3

4
Reference

Hinf

Chien

ZN

Time [s]

0 40 80 120 160 200

D
ig
it
a
l
T
o
rq
u
e

-30

-15

0

15

30 Hinf

Chien

ZN

(a) Perturbation in sway direction

50 100 150 200

Y
aw

[r
a
d
]

2

2.25

2.5

2.75

3

3.25
Reference

Hinf

Chien

ZN

Time [s]

50 100 150 200

D
ig
it
a
l
T
o
rq
u
e

-35

-20

-5

10

25

40 Hinf

Chien

ZN

(b) Perturbation at 45 degree of surge direction

85 105 125 145 165 185 205

Y
aw

[r
a
d
]

2

3

4

5

6

7 Reference

Hinf

Chien

ZN

Time [s]

85 105 125 145 165 185 205

D
ig
it
a
l
T
o
rq
u
e

-25

-10

5

20

35

50 Hinf

Chien

ZN

(c) Perturbation in surge direction

Figure 5.14: Experiment results.

128 CHAPTER 5. CASE STUDY: ROBUST CONTROL FOR AUV

Table 5.6: Errors: Perturbation in surge direction

Experiment RMSE Bias

ZN 0.3957 -0.0037

Hinf 0.0371 -7.161e-04

Chien 0.2548 0.0256

subject to perturbation differs a bit between simulations and experiments. In that respect, the
perturbation generated by the propeller cannot be simply modeled by an additional torque
if precise simulations are wanted. Nevertheless, this assumption is sufficient to tune a robust
controller for H∞ objectives as demonstrated by the experiments.

5.4 Conclusion

This chapter shows that the H∞ synthesis is a relevant method to control the Ciscrea. As
emphasized by the comparison with two controllers designed from single objective, the main
advantage of the H∞ approach is that several specifications can be taken into account in
the synthesis process. However, the main limitation of H∞ synthesis is that a linear model is
needed and the robots’ dynamics are generally non linear. The solution we proposed here is to
approximate the non-linear system by a set of linear systems. Unfortunately, MMIBBA cannot
provide a good feasible solution in a reasonable amount of time, and the Systune toolbox have
to be used to compute a controller. However, using robust analysis tools, it is possible to study
the performances of the H∞ objectives with respect to the uncertain parameter in detail.To
this extent both the optimization tools of Chapter 2 and the formulation of the robustness
analysis problem of Chapter 4 was necessary. The experiments show that with a constant yaw
angle reference, ensuring low angular velocity, Hinf rejects the perturbations well as expected
from the robustness analysis.

Future studies

Additional experiments would be needed to validate the robustness analysis over the full range
of angular velocity. To do so, the behavior of the Ciscrea to non constant yaw reference must
be studied. According to the robustness analysis result, the tracking error should grow ac-
cordingly with the angular velocity.
Further studies are also needed to model the disturbance properly. By now, they are only
considered as additional torque on the Ciscrea. However, it can be expected that the per-
turbations also modified the flow around the Ciscrea, influencing the added inertia coefficient
and the damping coefficients. In addition, the disturbance simulated by the propeller may
not describes the one the Ciscrea might face during missions in the ocean. Hence experiments
in real environment are also necessary to correctly model the perturbation.

Chapter 6

Conclusion

This thesis proposes to deal with the three classical H∞ problems: the synthesis, the robust
analysis and robust synthesis problems. It is shown how these problems can be reformulated
as minmax, maximization and semi-infinitely constrained minmax problems respectively. The
necessary algorithms to solve such problems are proposed, and applied on several H∞ control
examples. Finally, H∞ synthesis is employed to compute a structured control law for an un-
derwater robot. This control law is compared with two other control laws through simulations
and experiments.

6.1 Contributions

The contributions of this thesis can be divided between the contributions in optimization and
the ones in H∞ control.

Contribution in control

Concerning the structured synthesis problem, a method is proposed to solve it in a global
way. Strictly speaking, this method does not solve the structured synthesis problem as stated
in Section 1, but the problem is reformulated by considering each performance inputs inde-
pendently. From an optimization point of view, our solution is conservative since the initial
problem is modified. However, from a control point of view, such a formulation can be more
interesting since it is closer to the H∞ design objectives. In addition, our approach makes it
possible to compute a lower bound on the global minimum which guarantees, if it is greater
than one, that no controller in a bounded set can achieve the required H∞ performances.
Concerning the robustness analysis problem, it is shown how it can be cast as a regular maxi-
mization problem. Although this problem is not convex, it can be solved in a global way with
IBBA or efficient existing global optimization solvers [116, 74]. The main advantage of this
formulation is that the worst case H∞ norm is directly computed over the uncertain param-
eters. This avoid to use the ∆-structure reformulation of the uncertainty, which is unable to
represent the set of parametric uncertain systems, and lead to conservative analysis results.
The robust synthesis problem is approached under its worst-case minimization formulation.
To this extent, our approach differs from the majority of the other approaches based on global
optimization that characterize the feasible set of the sub-optimal problem. Indeed, MMIBBA

129

130 CHAPTER 6. CONCLUSION

permits to find the controller that minimizes the worst-case H∞ norm, which might be more
interesting than having a set of sub-optimal controllers. In addition, MMIBBA provides a
lower bound on the global minimum, which, if it is greater than one, enable to prove in a
reliable way that no controller exists such that the H∞ criteria are respected for all the values
of uncertainties.

Contribution in optimization

The H∞ synthesis problem, in order to be solved in a global way under its non-convex form,
is formulated as a continuous min-max problem. Unfortunately, few attention has been given
to the global resolution of this class of problems. The main difficulty lies in computing an
enclosure of all the global maxima of a set of functions. To do so, the SIBBA is proposed,
and the common acceleration techniques (monotonicity test and constraints propagation) are
extended to the maximization of a set of function to improve the convergence. SIBBA pro-
vides bounds on the maximum objective function, which enables to integrate it directly in a
classical branch and bound algorithm being MMIBBA.
As a semi infinite constraint can be reformulated as a maximization problem, SIBBA is also
used to prove the feasibility or the infeasibility of a box. As a consequence, minmax prob-
lems subject to semi infinite constraints can be solved in a global way by MMIBBA, and by
extension the robust structured synthesis problem which is expressed under this form.
The convergence of MMIBBA is improved by using the inheritance (or propagation) strategy.
The efficiency of this strategy is illustrated on several minmax and SIP examples.

6.2 Prospects

This thesis proposes the necessary tools to solve the H∞ problems globally under their initial
non-convex formulation. However, these problems are difficult to solve, which has motivated
the numerous different reformulations and resolution methods. To this extent, a global opti-
mization approach is suited for small scale problems (few tunable parameters). In order to
enable the resolution of larger problems, the convergence of MMIBBA can be improved by
implementing advanced heuristics or using other methods to compute bounds than natural
inclusion functions. In addition, the choice of the parameters of MMIBBA plays a major role
for the convergence of the algorithm as illustrated by the benchmark results of Section 3.
Further tests could be led to find good heuristics to tune these parameters.
Although the development of algorithms to solve minmax problems subject to semi infinite
constraints is motivated by the resolution of the H∞ problems, other control problems can be
framed under this form. In this way a preliminary work [94] in cooperation with the National
University of La Plata, given in Appendix B, shows how sliding mode control synthesis and
analysis problems can be expressed as SIP and solved with MMIBBA.

Bibliography

[1] Systune webpage. https://fr.mathworks.com/help/slcontrol/ug/systune.html. Ac-
cessed: 2018-08-3.

[2] IEEE Standard for Interval Arithmetic. IEEE Std. 1788, 2015.

[3] Hirokazu Anai and Shinji Hara. Fixed-structure robust controller synthesis based on
sign definite condition by a special quantifier elimination. In Proceedings of the 2000
IEEE American Control Conference, volume 2, pages 1312–1316, 2000.

[4] Hirokazu Anai and Shinji Hara. Linear programming approach to robust controller
design by a quantifier elimination. In Proceedings of the 41st IEEE Society of Instrument
and Control Engineers of Japan Annual Conference, volume 1, pages 656–661, 2002.

[5] Hirokazu Anai and Shinji Hara. A parameter space approach to fixed-order ro-
bust controller synthesis by quantifier elimination. International Journal of Control,
79(11):1321–1330, 2006.

[6] Daniel Ankelhed. On low order controller synthesis using rational constraints. PhD
thesis, Linköping University, 2009.

[7] Pierre Apkarian. Nonsmooth µ-synthesis. International Journal of Robust and Nonlinear
Control, 21(13):1493–1508, 2011.

[8] Pierre Apkarian, Minh Ngoc Dao, and Dominikus Noll. Parametric robust structured
control design. IEEE Transactions on Automatic Control, 60(7):1857–1869, 2015.

[9] Pierre Apkarian and Dominikus Noll. Nonsmooth H∞ synthesis. IEEE Transactions
on Automatic Control, 51(1):71–86, 2006.

[10] Pierre Apkarian and Dominikus Noll. Worst-case stability and performance with mixed
parametric and dynamic uncertainties. International Journal of Robust and Nonlinear
Control, 27(8):1284–1301, 2017.

[11] Ignacio Araya, Bertrand Neveu, and Gilles Trombettoni. Exploiting common subexpres-
sions in numerical csps. In Proceedings of the International Conference on Principles
and Practice of Constraint Programming, pages 342–357. Springer, 2008.

[12] Ignacio Araya, Victor Reyes, and Cristian Oreallana. More smear-based variable selec-
tion heuristics for ncsps. In Proceedings of the 25th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI), pages 1004–1011, 2013.

131

132 BIBLIOGRAPHY

[13] Charles Audet and Warren Hare. Derivative-free and blackbox optimization. Springer,
2017.

[14] Robert J Aumann and Sergiu Hart. Handbook of game theory with economic applica-
tions, volume 2. Elsevier, 1992.

[15] Maryam Babazadeh and Amin Nobakhti. Direct synthesis of fixed-order controllers.
IEEE Transactions on Automatic Control, 60(10):2704–2709, 2015.

[16] Helio JC Barbosa. A genetic algorithm for min-max problems. In Proceedings of the
First IEEE International Conference on Evolutionary Computation and its Applications
(EvCA96), pages 99–109, 1996.

[17] Helio JC Barbosa. A coevolutionary genetic algorithm for constrained optimization. In
Proceedings of the 1999 IEEE Congress on Evolutionary Computation (CEC), volume 3,
pages 1605–1611, 1999.

[18] B Ross Barmish. Necessary and sufficient condition for quadratic stabilizability of an
uncertain system. J. Optimization Theory and Applications, 46(4), August 1985.

[19] Eckart Baumann. Optimal centered forms. BIT Numerical Mathematics, 28(1):80–87,
1988.

[20] Binita Bhattacharjee, Panayiotis Lemonidis, William H Green Jr, and Paul I Barton.
Global solution of semi-infinite programs. Mathematical Programming, 103(2):283–307,
2005.

[21] Shankar P Bhattacharyya and Lee H Keel. Robust control: the parametric approach.
Prentice Hall, 1997.

[22] Jerry W Blankenship and James E Falk. Infinitely constrained optimization problems.
Journal of Optimization Theory and Applications, 19(2):261–281, 1976.

[23] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear matrix inequalities in system and control theory, volume 15. SIAM, 1994.

[24] Stephen Boyd, Martin Hast, and Karl Johan Åström. Mimo PID tuning via iterated
LMI restriction. International Journal of Robust and Nonlinear Control, 2015.

[25] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[26] Richard P Braatz, Peter M Young, John C Doyle, and Manfred Morari. Computational
complexity of µ calculation. IEEE Transactions on Automatic Control, 39(5):1000–1002,
1994.

[27] James V Burke, Didier Henrion, Adrian S Lewis, and Micheal L Overton. Hifoo-a
matlab package for fixed-order controller design and H∞ optimization. In Fifth IFAC
Symposium on Robust Control Design, IFAC Proceedings Volumes, volume 39, pages
339–344. Elsevier, 2006.

BIBLIOGRAPHY 133

[28] James V Burke, Adrian S Lewis, and Michael L Overton. A robust gradient sampling
algorithm for nonsmooth, nonconvex optimization. SIAM Journal on Optimization,
15(3):751–779, 2005.

[29] Gilles Chabert and Luc Jaulin. Computing the pessimism of inclusion functions. Reliable
computing, 13(6):489–504, 2007.

[30] Gilles Chabert and Luc Jaulin. Contractor programming. Artificial Intelligence,
173(11):1079–1100, 2009.

[31] I Lung Chien. IMC-PID controller design an extension. IFAC Proceedings Volumes,
21(7):147–152, 1988.

[32] Frank H Clarke. Optimization and nonsmooth analysis, volume 5. SIAM, 1990.

[33] George E Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In Automata Theory and Formal Languages 2nd GI Conference Kaiser-
slautern, pages 134–183. Springer, 1975.

[34] Aaron M Cramer, Scott D Sudhoff, and Edwin L Zivi. Evolutionary algorithms for
minimax problems in robust design. IEEE Transactions on Evolutionary Computation,
13(2):444–453, 2009.

[35] Tibor Csendes and Dietmar Ratz. Subdivision direction selection in interval methods
for global optimization. SIAM Journal on Numerical Analysis, 34(3):922–938, 1997.

[36] Raquel Stella da Silva de Aguiar, Pierre Apkarian, and Dominikus Noll. Structured
robust control against mixed uncertainty. IEEE Transactions on Control Systems Tech-
nology, 2017.

[37] Luiz Henrique De Figueiredo and Jorge Stolfi. Affine arithmetic: concepts and applica-
tions. Numerical Algorithms, 37(1-4):147–158, 2004.

[38] Hatim Djelassi and Alexander Mitsos. A hybrid discretization algorithm with guar-
anteed feasibility for the global solution of semi-infinite programs. Journal of Global
Optimization, 68(2):227–253, 2017.

[39] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with per-
formance profiles. Mathematical Programming, 91(2):201–213, 2002.

[40] Peter Dorato. Quantified multivariate polynomial inequalities. the mathematics of prac-
tical control design problems. IEEE Control Systems, 20(5):48–58, 2000.

[41] John Doyle. Analysis of feedback systems with structured uncertainties. In IEE Pro-
ceedings D-Control Theory and Applications, volume 129, pages 242–250, 1982.

[42] John C Doyle, Keith Glover, Pramod P Khargonekar, and Bruce A Francis. State-space
solutions to standard H2 and H∞ control problems. IEEE Transactions on Automatic
Control, 34(8):831–847, 1989.

134 BIBLIOGRAPHY

[43] Gonzalez T Ferreres and Jean M Biannic. A µanalysis technique without frequency
gridding. In Proceedings of the IEEE 1998 American Control Conference, volume 4,
pages 2294–2298, 1998.

[44] Christodoulos A Floudas and Oliver Stein. The adaptive convexification algorithm: a
feasible point method for semi-infinite programming. SIAM Journal on Optimization,
18(4):1187–1208, 2007.

[45] Thor I Fossen. Marine control systems: Guidance, navigation and control of ships, rigs
and underwater vehicles. Marine Cybernetics Trondheim, 2002.

[46] Vincent Fromion and Gérard Scorletti. A theoretical framework for gain schedul-
ing. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal,
13(10):951–982, 2003.

[47] Pascal Gahinet and Pierre Apkarian. A linear matrix inequality approach to H∞ control.
International journal of Robust and Nonlinear control, 4(4):421–448, 1994.

[48] Felix R Gantmacher. The theory of matrices, vol. 2, volume 220. Chelsea, New York,
1959.

[49] Philip J Goddard and Keith Glover. Controller approximation: approaches for preserv-
ing H∞ performance. IEEE transactions on Automatic Control, 43(7):858–871, 1998.

[50] Alexandre Goldsztejn and Luc Jaulin. Inner and outer approximations of existentially
quantified equality constraints. In International Conference on Principles and Practice
of Constraint Programming, pages 198–212. Springer, 2006.

[51] Alexandre Goldsztejn, Claude Michel, and Michel Rueher. Efficient handling of univer-
sally quantified inequalities. Constraints, 14(1):117–135, 2009.

[52] Laureano González-Vega, Tomás Recio, Henri Lombardi, and Marie F Roy.
Sturmhabicht sequences, determinants and real roots of univariate polynomials. Quan-
tifier Elimination and Cylindrical Algebraic Decomposition, pages 300–316, 1998.

[53] Graham C Goodwin, Stefan F Graebe, and Mario E Salgado. Control system design.
Prentice Hall, 2001.

[54] Frédéric Goualard. How do you compute the midpoint of an interval? ACM Transac-
tions on Mathematical Software (TOMS), 40(2):11, 2014.

[55] Laurent Granvilliers. Adaptive bisection of numerical CSPs. Principles and Practice of
Constraint Programming, pages 290–298, 2012.

[56] Laurent Granvilliers, Eric Monfroy, and Frédéric Benhamou. Symbolic-interval cooper-
ation in constraint programming. In Proceedings of the 2001 international symposium
on Symbolic and algebraic computation, pages 150–166. ACM, 2001.

[57] Karolos M Grigoriadis and Robert E Skelton. Low-order control design for LMI problems
using alternating projection methods. Automatica, 32(8):1117–1125, 1996.

BIBLIOGRAPHY 135

[58] Serkan Gugercin and Athanasios C Antoulas. A survey of model reduction by balanced
truncation and some new results. International Journal of Control, 77(8):748–766, 2004.

[59] Zeynep H Gümüş and Christodoulos A Floudas. Global optimization of nonlinear bilevel
programming problems. Journal of Global Optimization, 20(1):1–31, 2001.

[60] Sangjin Han, Lee H Keel, and Shankar P Bhattacharyya. PID controller design with
an H∞ criterion. 51(4):400–405, 2018.

[61] Eldon Hansen. Bounding the solution of interval linear equations. SIAM journal on
Numerical Analysis, 29(5):1493–1503, 1992.

[62] Martin Hast, Karl J Åström, Bo Bernhardsson, and Stephen Boyd. PID design by
convex-concave optimization. In Proceedings of the 2013 European Control Conference,
pages 4460–4465, 2013.

[63] Didier Henrion. LMI optimization for fixed-order H∞ controller design. In Proceedings
of the 42nd IEEE Conference on Decision and Control, volume 5, pages 4646–4651,
2003.

[64] Rainer Hettich and Kenneth O Kortanek. Semi-infinite programming: theory, methods,
and applications. SIAM review, 35(3):380–429, 1993.

[65] Milan Hlad́ık. Bounds on eigenvalues of real and complex interval matrices. Applied
Mathematics and Computation, 219(10):5584–5591, 2013.

[66] Milan Hlad́ık, David Daney, and Elias Tsigaridas. Bounds on real eigenvalues and
singular values of interval matrices. SIAM Journal on Matrix Analysis and Applications,
31(4):2116–2129, 2010.

[67] Kozo Ichida and Yasuo Fujii. An interval arithmetic method for global optimization.
Computing, 23(1):85–97, 1979.

[68] Luc Jaulin. Solution globale et guarantie de problèmes ensemblistes: Application à
l’estimation non léaire et à la commande robuste. PhD thesis, Université de Paris Sud,
1994.

[69] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Applied Interval Analysis.
Springer London, 2001.

[70] Luc Jaulin and Éric Walter. Guaranteed tuning, with application to robust control and
motion planning. Automatica, 32(8):1217 – 1221, 1996.

[71] Alireza Karimi and Gorka Galdos. Fixed-order H∞ controller design for nonparametric
models by convex optimization. Automatica, 46(8):1388–1394, 2010.

[72] Alireza Karimi, Gorka Galdos, and Roland Longchamp. Robust fixed-order H∞ con-
troller design for spectral models by convex optimization. In Proceedings of the 47th
IEEE Conference on Decision and Control, pages 921–926, 2008.

136 BIBLIOGRAPHY

[73] R Baker Kearfott. An interval branch and bound algorithm for bound constrained
optimization problems. Journal of Global Optimization, 2(3):259–280, 1992.

[74] R Baker Kearfott. Globsol user guide. Optimization Methods & Software, 24(4-5):687–
708, 2009.

[75] R Baker Kearfott. Rigorous global search: continuous problems, volume 13. Springer
Science & Business Media, 2013.

[76] Hassan K Khalil. Nonlinear systems. Prentice Hall, 2002.

[77] Polyxeni-Margarita Kleniati and Claire S Adjiman. Branch-and-sandwich: a determin-
istic global optimization algorithm for optimistic bilevel programming problems. part i:
Theoretical development. Journal of Global Optimization, 60(3):425–458, 2014.

[78] Olaf Knüppel. Profil/bias-a fast interval library. Computing, 53(3-4):277–287, 1994.

[79] Renato A Krohling and Leandro dos Santos Coelho. Coevolutionary particle swarm
optimization using gaussian distribution for solving constrained optimization problems.
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(6):1407–
1416, 2006.

[80] Ailsa H Land and Alison G Doig. An automatic method of solving discrete programming
problems. Econometrica: Journal of the Econometric Society, pages 497–520, 1960.

[81] F Leibfritz. Compleib: Constrained matrix-optimization problem library, a collection
of test examples for nonlinear semidefinite programs, control system design and related
problems. Technical report, 2003.

[82] Michael Lerch, German Tischler, Jürgen Wolff Von Gudenberg, Werner Hofschuster, and
Walter Krämer. FILIB++, a fast interval library supporting containment computations.
ACM Transactions on Mathematical Software (TOMS), 32(2):299–324, 2006.

[83] Baiquan Lu, Yuan Cao, Min jie Yuan, and Jianzhen Zhou. Reference variable methods
of solving min–max optimization problems. Journal of Global Optimization, 42(1):1–21,
2008.

[84] Stefano Malan, Mario Milanese, and Michele Taragna. Robust tuning for PID controllers
with multiple performance specifications. In Proceedings of the 33rd IEEE Conference
on Decision and Control, volume 3, pages 2684–2689, 1994.

[85] Stefano Malan, Mario Milanese, and Michele Taragna. Robust analysis and design of
control systems using interval arithmetic. Automatica, 33(7):1363–1372, 1997.

[86] Stefano Malan, Mario Milanese, Michele Taragna, and Jürgen Garloff. B3 algorithm
for robust performances analysis in presence of mixed parametric and dynamic pertur-
bations. In Proceedings of the 31st IEEE Conference on Decision and Control, pages
128–133, 1992.

[87] Frederic Messine. Deterministic global optimization using interval constraint propaga-
tion techniques. RAIRO-Operations Research, 38(4):277–293, 2004.

BIBLIOGRAPHY 137

[88] Alexander Mistos. A test set for semi-infinite programs.
http://web.mit.edu/mitsos/www/pubs/siptestset.pdf. Accessed: 2018-06-20.

[89] Alexander Mitsos. Global optimization of semi-infinite programs via restriction of the
right-hand side. Optimization, 60(10-11):1291–1308, 2011.

[90] Dominique Monnet, Jordan Ninin, and Benôıt Clement. Global optimization of H∞
problems: Application to robust control synthesis under structural constraints. In In-
ternational Conference on Mathematical Aspects of Computer and Information Sciences,
pages 550–554. Springer, 2015.

[91] Dominique Monnet, Jordan Ninin, and Benôıt Clement. A global optimization approach
to structured regulation design under H∞ constraints. In Proceedings of the IEEE 55th
Conference on Decision and Control, pages 658–663, 2016.

[92] Dominique Monnet, Jordan Ninin, and Benôıt Clement. A global optimization approach
to H∞ synthesis with parametric uncertainties applied to auv control. Proceedings of
20th IFAC World Congress, IFAC-PapersOnLine, 50(1):3953–3958, 2017.

[93] Dominique Monnet, Jordan Ninin, and Luc Jaulin. Computing an inner and an outer
approximation of the viability kernel. Reliable Computing, 22:138–148, 2016.

[94] Dominique Monnet, Juan Luis Rosendo, Hernán De Battista, Benôıt Clement, Fabricio
Garelli, and Jordan. Ninin. A global optimization approach for non-linear sliding mode
control analysis and design. In Accepted to 9th IFAC Symposium on Robust Control
Design ROCOND. Elsevier, September 2018.

[95] Ramon E Moore. Interval analysis. Prince-Hall, Englewood Cliffs, NJ, 1966.

[96] D Nesic. Two algorithms arising in analysis of polynomial models. In Proceedings of
the 1998 IEEE American Control Conference, volume 3, pages 1889–1893, 1998.

[97] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programming, volume 13. SIAM, 1994.

[98] Arnold Neumaier. Interval methods for systems of equations, volume 37. Cambridge
university press, 1990.

[99] Jordan Ninin, Frédéric Messine, and Pierre Hansen. A reliable affine relaxation method
for global optimization. 4OR, 13(3):247–277, 2015.

[100] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 2006.

[101] Jean-Marie Normand, Alexandre Goldsztejn, Marc Christie, and Frédéric Benhamou. A
branch and bound algorithm for numerical max-csp. Constraints, 15(2):213–237, 2010.

[102] Aidan O’Dwyer. Handbook of PI and PID controller tuning rules. Imperial College
Press, 2009.

138 BIBLIOGRAPHY

[103] Andy Packard, John Doyle, and Gary Balas. Linear, multivariable robust control with a
µ perspective. Journal of Dynamic Systems, Measurement, and Control, 115(2B):426–
438, 1993.

[104] Dimitri Peaucelle. Formulation Générique de Problèmes en Analyse et Commande Ro-
buste par les Fonctions de Lyapunov Dépendant des Paramètres. PhD thesis, Université
Toulouse III – Paul Sabatier, France, July 2000.

[105] Dimitri Peaucelle, Denis Arzelier, Olivier Bachelier, and Jacques Bernussou. A new
robust D-stability condition for real convex polytopic uncertainty. Systems and Control
Letters, 40(1):21–30, May 2000.

[106] Dimitri Peaucelle, Denis Arzelier, Didier Henrion, and Frederic Gouaisbaut. Quadratic
separation for feedback connection of an uncertain matrix and an implicit linear trans-
formation. Automatica, 43:795–804, 2007.

[107] Stefan Ratschan. Approximate quantified constraint solving by cylindrical box decom-
position. Reliable Computing, 8(1):21–42, 2002.

[108] Helmut Ratschek and Jon Rokne. New computer methods for global optimization. Hor-
wood, Chichester, 1988.

[109] Juan L Rosendo, Benôıt Clement, and Fabricio Garelli. Sliding mode reference con-
ditioning for path following applied to an auv. In 10th IFAC Conference on Control
Applications in Marine Systems, volume 49, pages 8–13, 2016.

[110] Juan Luis Rosendo, Dominique Monnet, Benôıt Clement, Fabricio Garelli, and Jordan
Ninin. Control of an autonomous underwater vehicle subject to robustness constraints.
In Accepted to 9th IFAC Symposium on Robust Control Design ROCOND. Elsevier,
September 2018.

[111] Siegfried M Rump. INTLAB–interval laboratory. In Developments in reliable computing,
pages 77–104. Springer, 1999.

[112] Berc Rustem and Melendres Howe. Algorithms for worst-case design and applications
to risk management. Princeton University Press, 2002.

[113] Mahdieh S Sadabadi and Dimitri Peaucelle. From static output feedback to structured
robust static output feedback: A survey. Annual reviews in control, 42:11–26, 2016.

[114] Arash Sadeghzadeh, Hamidreza Momeni, and Alireza Karimi. Fixed-order H∞ con-
troller design for systems with ellipsoidal parametric uncertainty. International Journal
of Control, 84(1):57–65, 2011.

[115] Masami Saeki. Fixed structure PID controller design for standard H∞ control problem.
Automatica, 42(1):93–100, 2006.

[116] Nikolaos V Sahinidis. Baron: A general purpose global optimization software package.
Journal of Global Optimization, 8(2):201–205, 1996.

BIBLIOGRAPHY 139

[117] Miguel Á Sainz, Pau Herrero, Joaquim Armengol, and Josep Veh́ı. Continuous minimax
optimization using modal intervals. Journal of Mathematical Analysis and Applications,
339(1):18–30, 2008.

[118] Gerard Scorletti and Laurent El Ghaoui. Improved LMI conditions for gain scheduling
and related control problems. International Journal of Robust and Nonlinear Control:
IFAC-Affiliated Journal, 8(10):845–877, 1998.

[119] Gilberto AS Segundo, Renato A Krohling, and Rodrigo C Cosme. A differential evolu-
tion approach for solving constrained min-max optimization problems. Expert Systems
with Applications, 39(18):13440–13450, 2012.

[120] Yuhui Shi and Renato A Krohling. Co-evolutionary particle swarm optimization to
solve min-max problems. In Proceedings of the 2002 IEEE Congress on Evolutionary
Computation, volume 2, pages 1682–1687, 2002.

[121] Emile Simon. A perspective for optimization in systems and control: from LMIs to
derivative-free methods. PhD thesis, Université catholique de Louvain, 2012.

[122] Stig Skelboe. Computation of rational interval functions. BIT Numerical Mathematics,
14(1):87–95, 1974.

[123] Sigurd Skogestad and Ian Postlethwaite. Multivariable feedback control: analysis and
design, volume 2. Wiley New York, 2007.

[124] Sophie Tarbouriech, Germain Garcia, João Manoel Gomes da Silva Jr, and Isabelle
Queinnec. Stability and stabilization of linear systems with saturating actuators.
Springer, 2011.

[125] Xuan-Ha Vu, Hermann Schichl, and Djamila Sam-Haroud. Using directed acyclic graphs
to coordinate propagation and search for numerical constraint satisfaction problems. In
Proceedings of the 16th International Conference on Tools with Artificial Intelligence,
pages 72–81. IEEE, 2004.

[126] Rui Yang. Modeling and robust control approach for autonomous underwater vehicles.
PhD thesis, Université de Bretagne Occidentale-Brest, 2015.

[127] Rui Yang, Benôıt Clement, Ali Mansour, Ming Li, and Nailong Wu. Modeling of a
complex-shaped underwater vehicle for robust control scheme. Journal of Intelligent &
Robotic Systems, 2015.

[128] Rui Yang, Benôıt Clement, Ali Mansour, Ming Li, and Nailong Wu. Robust heading
control and its application to ciscrea underwater vehicle. In IEEE OCEANS’15, 2015.

[129] Peter M Young and John C Doyle. Computation of mu with real and complex uncer-
tainties. In Proceedings of the 29th IEEE Conference on Decision and Control, pages
1230–1235, 1990.

[130] Peter M Young, Matthew P Newlin, and John C Doyle. µ-analysis with real parametric
uncertainty. In Proceedings of the 30th IEEE Conference on Decision and Control, pages
1251–1256, 1991.

140 BIBLIOGRAPHY

[131] George Zames. Feedback and optimal sensitivity: Model reference transformations,
multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic
Control, 26(2):301–320, 1981.

[132] Kemin Zhou. A comparative study of H∞ controller reduction methods. In Proceedings
of the IEEE 1995 American Control Conference, volume 6, pages 4015–4019, 1995.

[133] Kemin Zhou and John C Doyle. Essentials of robust control, volume 104. Prentice Hall,
1998.

[134] Kemin Zhou, John Comstock Doyle, and Keith Glover. Robust and optimal control,
volume 40. Prentice Hall, 1996.

[135] John G Ziegler and Nathaniel B Nichols. Optimum settings for automatic controllers.
Trans. ASME, 64(11), 1942.

[136] Shen Zuhe, A Neumaier, and MC Eiermann. Solving minimax problems by interval
methods. BIT Numerical Mathematics, 30(4):742–751, 1990.

List of Figures

1.1 Interpretation of the H∞ norm in the frequency and time domains. 12

1.2 Linear fractional transform of two systems. 13

1.3 Generic regulation scheme for ensuring internal stability. 14

1.4 General H∞ synthesis scheme. 15

1.5 H∞ sensitivity approach. 16

1.6 Interconnected systems . 17

1.7 Low order controller synthesis process. 18

1.8 Chart of optimization approaches to the H∞ synthesis problem. 19

1.9 ∆-structure representation of uncertainty. 21

1.10 Approximation of the ∆-structure representation 22

2.1 Set operations on boxes. 29

2.2 Inclusion function f and minimal inclusion function fmin 31

2.3 Interval computation done by the natural inclusion function of f 32

2.4 Constraint propagation procedure. 35

2.5 Contractor. 36

2.6 Combination of two contractors. 37

2.7 Contractions performed by C and Cinv. 38

2.8 Minimization problem s. t. constraints . 40

2.9 First steps of Interval Branch and Bound Algorithm. 42

2.10 Contraction based on monotonicity test. 45

2.11 Subpaving obtained with FSCA with the contraction step. 47

3.1 Optimization of a family of function with IBBA 55

3.2 Optimization of a family of function with IBBA 58

3.3 Contractors for the maximization of a set of functions 61

3.4 Illustration of the contraction of x done by Cl. 65

3.5 Illustration of SIBBA . 71

3.6 Illustration of inheritance strategy in MMIBBA. 75

3.7 Performance profiles of MMIBBA on the minmax problems. 80

3.8 Performance profiles of MMIBBA on the SIP problems. 81

4.1 Internal stability generic scheme. 87

4.2 Mixed sensitivity problem. 89

141

142 LIST OF FIGURES

4.3 Frequency specifications, displayed in dotted, and closed loop objective trans-
fers for the three controllers. 93

4.4 Characterization of feasible tunable parameters for the AC7 problem. 96
4.5 Characterization of feasible tunable parameters for the HE1 problem. 97
4.6 Characterization of the stable set of the uncertain parameters. 99
4.7 Characterization of the feasible set w.r.t H∞ constraints 102
4.8 Delta-structure and interval approximation of uncertain systems. 104
4.9 General regulation scheme for robust H∞ synthesis. 105

5.1 Ciscrea AUV. 112
5.2 NED-frame and B-frame. 113
5.3 Generated torque in Newtons per meters versus digital control. 115
5.4 Linearization process of the Ciscrea, represented as three non linear blocks. . . 117
5.5 Regulation scheme for Ciscrea yaw angle control. 117
5.6 Bode diagram of G. 118
5.7 Frequency templates for H∞ synthesis . 119
5.8 Diagram of Tr→e and Z−1

e . 121
5.9 Diagram of Td→e and Z−1

e . 121
5.10 Characterization of the feasible subset w.r.t design objectives 121
5.11 Simulation results. 124
5.12 Experimental setup at ENSTA Bretagne pool. 125
5.13 Top view of experiment setup . 126
5.14 Experiment results. 127

List of Algorithms

1 Interval Branch and Bound algorithm: IBBA. 41
2 Monotonicity contractor CJ . 44
3 Feasible Set Characterization Algorithm: FSCA. 46
4 CJy Monotonicity contractor for set of function. 60
5 Set Interval Branch and Bound algorithm: SIBBA. 67
6 Branch and Bound algorithm for Minmax problems. 72
7 Minmax Interval Branch and Bound algorithm implementing inheritance: MMIBBA. 77

143

Appendices

145

Appendix A

Optimization benchmark problems

This appendix gathers the benchmark problems used to obtained the numerical results pre-
sented in Chapter 3.

A.1 Semi infinite problems

The SIP problems are taken from [88]. Only the first twelve examples are considered, and
reproduced here. The problems are formulated as

{
min
x∈X

f(x)

s. t. g(x, y) ≤ 0, ∀y ∈ Y

• Problem 1.

f(x) = x2
1/43 + x2

2 + x1/2
g(x, y) = (1− x2

2y
2)2 − x1y

2 − x2
2 + x2

X = [−1000, 1000]2

Y = [0, 1]

• Problem 2.

f(x) = exp(x1) + exp(x2) + exp(x3)
g(x, y) = 1/(1 + y2)− x1− x2y − xy2

X = [−1000, 1000]2

Y = [0, 1]

• Problem 3.

f(x) = (x1 − 2x2 + 5x2
2 − x2

2x2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2

g(x, y) = x2
1 + 2x2y2 + exp(x1 + x2)− exp(y)

X = [−1000, 1000]2

Y = [0, 1]

147

148 APPENDIX A. OPTIMIZATION BENCHMARK PROBLEMS

• Problem 4.

f(x) = x2
1 + x2

2 + x2
3

g(x, y) = x1(y1 + y2
2 + 1) + x2(y1y2 − y2

2) + x3(y1y2 + y2
2 + y2) + 1

X = [−1000, 1000]3

Y = [0, 1]2

• Problem 5.

f(x) = x1 + x2/2 + x3/2 + x4/3 + x5/4 + x6/3
g(x, y) = exp(y2

1 + y2
2)− x1 − x2y1 − x3y2 − x4y

2
1 − x5y1y2 − x6y

2
2

X = [−1000, 1000]6

Y = [0, 1]2

• Problem 6.

f(x) = −4x1 − 2/3(x4 + x6)
g(x, y) = x1 + x2y1 + x3y2 + x4y

2
1 + x5y1y2 + x6y

2
2 − 3− (y2

1 − y2
2))2

X = [−1000, 1000]6

Y = [−1, 1]2

• Problem 7.

f(x) = x2

g(x, y) = −(x1 − y)2 − x2

X = [0, 1]× [−1000, 1000]
Y = [−1, 1]

• Problem 8.

f(x) = x2

g(x, y) = 2x2
1y

2 − y4 + x2
1 − x2

X = [0, 1]× [−1000, 1000]
Y = [−1, 1]

• Problem 9.

f(x) = x1 + x2/2 + x3/3
g(x, y) = exp(y − 1)− x1 − x2y − x3y

2

X = [−1000, 1000]3

Y = [0, 1]

• Problem 10.

f(x) = x1 + x2/2 + x3/3 + x4/4 + x5/5 + x6/6
g(x, y) = exp(y − 1)− x1 − x2y − x3y

2 − x4y
3 − x5y

4 − x6y
5

X = [−1000, 1000]6

Y = [0, 1]

A.2. MINMAX PROBLEMS 149

• Problem 11.

f(x) = −1/((x1 − 4)2 + (x2 − 4)2 + 0.1)− 1/((x1 − 1)2 + (x2 − 1)2 + 0.2)
−1/((x1 − 82) + (x2 − 82 + 0.2))
g(x, y) = 0.1− (x1 − y)2 − (x2 − y)2

X = [−1000, 1000]2

Y = [−10, 10]

• Problem 12.

f(x) = 10− x
g(x, y) = y2/(1 + exp(−40(x− y))) + x− y − 2
X = [0, 6]
Y = [2, 6]

A.2 Minmax problems

The unconstrained minmax problems 1-16 are taken from [112] and the constrained minmax
problems 17-20 from [119].
The minmax problems are expressed as:

min
x∈X

max
y∈Y

f(x, y)

s. t. gi(x, y) ≤ 0.
(A.1)

• Problem 1.

f(x, y) = 5
∑2

i=1 x
2
i −

∑2
i=1 y

2
i + x1(−y1 + y2 + 5) + x2(y1 − y2 + 3)

X = [−100, 100]2

Y = [−5, 5]2

• Problem 2.

f(x, y) = 4(x1 − 2)2 − 2y2
1 + x2

1y1 − y2
2 + 2x2

2y2

X = [−100, 100]2

Y = [−5, 5]2

• Problem 3.

f(x, y) = x4
1y2 + 2x3

1y1 − x2
2y2(y2 − 3)− 2x2(y1 − 3)2

X = [−100, 100]2

Y = [0, 3]2

• Problem 4.

f(x, y) = −∑3
i=1(yi − 1)2 +

∑2
i=1(xi − 1)2 + y3(x2 − 1) + y1(x1 − 1) + y2x1x2

X = [−100, 100]2

Y = [−3, 3]3

150 APPENDIX A. OPTIMIZATION BENCHMARK PROBLEMS

• Problem 5.

f(x, y) = −(x1 − 1)y1 − (x2 − 2)y2 − (x3 − 1)y3 + 2x2
1 + 3x2

2 + x2
3 −

∑3
i=1 y

2
i

X = [−100, 100]3

Y = [−1, 1]3

• Problem 6.

f(x, y) = y1(x2
1 − x2 + x3 − x4 + 2) + y2(−x1 + 2x2

2 − x2
3 + 2x4 + 1) + y3(2x1 − x2 + 2x3 − x2

4 + 5)+

5x2
1 + 4x2

2 + 3x2
3 + 2x2

4 −
∑3

i=1 y
2
i

X = [−100, 100]4

Y = [−2, 2]3

• Problem 7.

f(x, y) = 2x5x1 + 3x4x2 + x5x3 + 5x2
4 + 5x2

5 − x4(y4 − y5 − 5) + x5(y4 − y5 + 3)

+
∑3

i=1(yi(x
2
i − 1))−∑5

i=1 y
2
i

X = [−100, 100]5

Y = [−3, 3]5

• Problem 8.

f(x, y) =
2

3
(
1

2
x1 + (4 + x1)y1)2

X = [−100, 100]
Y = [−2, 2]

• Problem 9.

f(x, y) =
1

2
((2x2 + 4y1 + x1y1)2 + (x1 + 2x1y1 + x2y2)2)

X = [−100, 100]2

Y = [−5, 5]2

• Problem 10.

f(x, y) =
1

2
((5x2 + 5x1 + 3x1y1)2 + (2x1 + 5x1y1 + 3x2y2)2)

X = [−100, 100]2

Y = [−5, 5]2

• Problem 11.

f(x, y) =
1

2
((x1x2 − y1(1− x3x4))2 + (x2x3 − y2(2 + x4x1))2 +

∑2
i=1 y

2
i)

X = [−100, 100]4

Y = [−5, 5]2

• Problem 12.

f(x, y) =
∑3

i=1 y
2
i + y1(x2

1 − x2 + x3 − x4 + 2) + y2(−x1 + 2x2
2 − x2

3 + 2x4 − 10)

+y3(2x1 − x2 + 2x3 − x2
4 − 5) + 5

∑4
i=1 x

2
i

X = [−100, 100]4

Y = [−2, 2]3

A.2. MINMAX PROBLEMS 151

• Problem 13.

f(x, y) =
∑4

i=1 y
2
i + y1(x2

1 − x2 + x3 − x4 + 2) + y2(−x1 + x2
2 − x2

3 + 2x4 − 10)

+y3(2x1 − x2 + 2x3 − x2
4 − 5) + 5y4(x2

1) + 5
∑4

i=3 x
2
i

X = [−100, 100]4

Y = [−2, 2]4

• Problem 14.

f(x, y) =
∑4

i=1 y
2
i + y1(x2

1 − 2.2x2 + x3 − 10x4 + 10) + y2(−2x1 + 2x2
2 − x2

3 + 3x4 − 10)

+y3(2x1 − x2 + 6x3 − x2
4 − 5) + 5y4(x2

1 + x2
2) + 5

∑4
i=3 x

2
i

X = [−100, 100]4

Y = [−2, 2]4

• Problem 15.

f(x, y) =
∑4

i=1 y
2
i + y1(x2

1 − 2.2x2 + x3 − 10x4 + 10) + y2(−2x1 + 2x2
2 − x2

3 + 3x4 − 10)

+y3(2x1 − x2 + 5.91x3 − x2
4 − 15) + 5y4(x2

1 + x2
2) + 5

∑4
i=3 x

2
i

X = [−100, 100]4

Y = [−2, 2]4

• Problem 16.

f(x, y) =
1

2

∑4
i=1 y

2
i + y1(x2

1 − 2x2 + x3 − 10x4 + 2) + y2(−2x1 + 2x2
2 − x2

3 + 3x4 − 5)

+y3(2x1 − x2 + 5x3 − x2
4 + 2) + y4(x2

1 + x2
2 +

∑4
i=3 x

2
i)

X = [−100, 100]4

Y = [−2, 2]4

• Problem 17.

f(x, y) = (cos(y) + cos(2y + x))2

g1(x, y) = y − x(x+ 6.28)
g2(x, y) = y − x(x− 6.28)
X = [−3.14, 3.14]
Y = [−3.14, 3.14]

• Problem 18.

f(x, y) = x2 + y2 + 2xy − 20x− 20y + 100
g1(x, y) = −(x− 5)2 − (y − 3)2 + 4
g2(x, y) = (x− 5)2 + (y − 3)2 − 16
X = [0, 6]
Y = [2, 8]

152 APPENDIX A. OPTIMIZATION BENCHMARK PROBLEMS

• Problem 19.

f(x, y) = sin(x)2 − x cos(y) + 2 sin(x)− cos(y)2 + y − 1
g1(x, y) = −x2 − y2 + 25
X = [−5, 5]
Y = [−5, 5]

• Problem 20.

f(x, y) =
(x1 + y1)(x2 + y2)

1 + x1y1 + x2y2

g1(x, y) = x2
1 + x2

2 − 100
g2(x, y) = y1 − x1

g3(x, y) = y2 − x2

X = [0, 10]2

Y = [0, 10]2

Appendix B

Preliminary work on sliding mode
control

153

A global optimization approach for
non-linear sliding mode control analysis

and design ?

Dominique Monnet ∗ Juan Luis Rosendo ∗∗

Hernán De Battista ∗∗ Benoit Clement ∗ Jordan Ninin ∗

Fabricio Garelli ∗∗

∗ ENSTA Bretagne / Lab-STICC UMR CNRS 6285, 2 rue Francois
Verny, F-29200 Brest, France, (e-mail:
dominique.monnet@ensta-bretagne.org)

∗∗GCA, LEICI, University of La Plata (UNLP), 1900 La Plata,
Argentina, (e-mail: juanluisrosendo@gmail.com).

Abstract: The design of sliding mode (SM) comprises the selection of a sliding manifold on
the state space and a switching logic. The sliding manifold design is associated with the desired
dynamics and closed loop specifications, whereas the switching logic is designed to drive and keep
the state on the prescribe manifold. The classical design can lead to over or underestimation of
the sliding domain, the closed loop robustness and the necessary control power. Here the design
of SM is addressed from the global optimization approach using interval arithmetic. A solution to
the analysis and synthesis problems of SM design is provided, where the necessary and sufficient
conditions are fulfilled in a guaranteed way. For the analysis problem the proposed methodology
allows checking sliding mode behaviour over given state domain and parameter sets. For the
synthesis problem, the methodology allows designing the sliding manifold and switching logic
with a given optimization criterion. The methodology is illustrated with a concluding example.

Keywords: Sliding Modes, Robust control design, Global optimization, Interval analysis.

1. INTRODUCTION

The application of SM to the control of non linear system
is well known. Several examples of application could be
found in the literature (Khalil (2002), Sira-Ramrez (1993),
Rosendo et al. (2016)). The behaviour of this kind of
control is composed of two phases. The first phase consists
in reaching the sliding surface, and the second one in
sliding over it (Utkin et al. (2009)). The design of this
control requires choosing an adequate switching function
and an appropriate sliding surface, in accordance with the
desired dynamics and the SM establishing conditions.

Knowledge of state and parameter excursions are essential
in the SM control design. Usually the states and param-
eters imperfectly known are estimated by their maximal
values, and then the resulting control design is tested
through simulation. However, even a great number sim-
ulations from different initial conditions cannot prove in a
guaranteed way that the control law satisfied the sliding
condition over the state space. In addition, the design
parameters chosen by the operator may not be optimal
with respect to criteria such as energy consumption.

In this paper, a control design method based on global op-
timization and interval analysis techniques is proposed. As
a result we derive a method to check in a guaranteed way if

? This research is supported by DGA (French Defense Procurement
Agency), the city of Brest (Brest Metropole), CONICET (PIP0837)
and UNLP(I216) (Argentina).

the SM necessary and sufficient conditions are fulfilled over
bounded state domain and parameter ranges. Concerning
the synthesis SM problem, our methodology provides an
optimized design based on a given criterion (such as min-
imal energy consumption, or maximal possible dynamic
of the system). Contrary to stochastic methods Wu et al.
(2012); Niu et al. (2005); Li et al. (2014) which model
uncertain systems as a finite set of deterministic ones, our
approach enables to consider continuous uncertainties i.e.
to consider an infinite set of systems. However, our method
does not applies to time delay systems.

Interval analysis has been applied in the context of SM
by Rauh and Aschemann (2012) and Senkel et al. (2014).
Their objectives were to obtain online controllers based
on interval arithmetic, where the control amplitude is
continuously adapted. On the other hand, our approach
uses the traditional SM design but we add robustness to
the design and give guarantees of the proposed solutions
for any initial condition over the given domain.

This paper is organized as follows: Section 2 recalls the SM
theory and its associated analysis and synthesis problems.
Section 3 introduces global optimization tools and for-
mulates analysis and synthesis problems as optimization
ones. Section 4 illustrates our approach with an example.
Finally, Section 5 provides some comments and future
works.

154 APPENDIX B. PRELIMINARY WORK ON SLIDING MODE CONTROL

2. SM CONTROL THEORY

The sliding modes were originally developed for dynamic
systems whose essential open-loop behavior can be mod-
eled with ordinary differential equations (Utkin et al.
(2009)). In these systems, it is possible to determinate
a robust closed-loop dynamics by applying a discontin-
uous control action. According to the sign of a switching
function, the control signal can take one of two different
values, leading to a discontinuous control law with an
associated manifold on the state-space (sliding surface).
The idea is to enforce the state to reach the prescribed
sliding surface and then to slide on it through a very
fast switching action. Once this particular mode of opera-
tion is established, known as sliding mode, the prescribed
manifold imposes the new and desired system dynamics.
Among other attractive features sliding regimes are easy to
implement, reduce the order of the system dynamics, and
provide robustness to matched uncertainties and external
disturbances.

The design procedure consists of two stages. First, the
equation of the manifold where the system slides is selected
in accordance with some performance criterion for the
desired dynamics. Then, the discontinuous control should
be found such that the system states reach the manifold
and sliding mode exists on this manifold.

In order to present the theory, let us consider the dynamic
system: {

ẋ = f(x) + g(x)u
y = h(x)

(1)

where x ∈ Rn is the system state, u is the control signal, y
is the output system, and f(x), g(x), h(x) are vector fields
in Rn. The variable structure control law is defined as

u =

{
u− if σ(x) < 0
u+ if σ(x) > 0

(2)

according to the sign of the auxiliary output σ(x). The
sliding surface S is defined as the manifold where the
auxiliary output, also called switching function, vanishes:

S = {x ∈ Rn | σ(x) = 0} . (3)

As a result of the switching policy in (2), the reaching
condition {

σ̇(x) < 0 if σ(x) > 0
σ̇(x) > 0 if σ(x) < 0

(4)

locally holds on both sides of the surface, a switching
sequence of very high frequency (ideally infinite) occurs,
constraining the system state trajectory to slide on S.

For sliding motion to exist on S (i.e. for satisfying con-
dition (4)), the auxiliary output σ(x) must have unitary
relative degree with respect to the discontinuous signal,
i.e. its first derivative must explicitly depend on u (Utkin
et al. (2009)).

Also, it is possible to define the ideal sliding mode using the
equivalent control concept. Taking the invariant conditions
over the SM surface, we get:

{
σ(x) = 0
σ̇(x) = dσ

dx ẋ = Lf+gueqσ = Lfσ + Lgσueq = 0
(5)

where the generic operator Lfh(x) : Rn → R (directional
or Lie derivative) denotes the derivative of a scalar field
h(x) : Rn → R in the direction of a vector field f(x) :
Rn → Rn

Lfh(x) =
∂h

∂x
f(x). (6)

From (5) is possible to obtain ueq(x) a soft control law
which makes S an invariant subset.

ueq(x) = −Lfσ
Lgσ

(7)

Following this approach is possible to arrive to the neces-
sary and sufficient condition for the SM. It is observed in
(7) that Lgσ 6= 0 is necessary for the existence of ueq and,
therefore of SM. Furthermore, a necessary and sufficient
condition for the local existence of the sliding mode over
S can be derived from (4) and (5). If we consider (without
loss of generality) u+ > u− it must hold:

u−(x) < ueq(x) < u+(x) (8)

From (8), ueq(x) can be interpreted as an average control
action between the maximal and minimal of the system.

From the control designer point of view, it is possible to
divide the SM control design into two separate problems:

Problem 1. SM analysis problem: Given a desired sliding
surface σ(x,k) with x states of the system and k a vector
of fixed tuning parameters (σ with relative degree one with
respect to the discontinuous signal u). Verify if ueq fulfills
condition given by (8).

Problem 2. SM synthesis problem: Given a system with
constrained control actions (u+ and u−), and an expres-
sion of σ(x,k) with x states of the system and k a vector of
free tuning parameters (σ with relative degree one with re-
spect to the discontinuous signal u). Find the best possible
sliding surface σ (k values) according to a design criterion,
which fulfill condition given by (8).

3. GLOBAL OPTIMIZATION APPROACH

Let us consider a continuous constrained optimization
problem formulated as:

{
min
x∈Rn

f(x)

subject to C(x) ≤ 0,
(9)

where f is the objective function which maps Rn into R,
x ∈ Rn is the optimization variable, and C is a function
that maps Rn into R used to define a subset of Rn in
which the solution is searched. The solution, also called
the minimizer, is denoted as x∗ and is the point where f is
minimum over the set defined by {x ∈ Rn, C(x) ≤ 0}. The
minimum is denoted as f∗ = f(x∗). From the definition of
the minimum, Property (10) holds.

155

∀x ∈ Rn such as C(x) ≤ 0, f(x) ≥ f∗. (10)

If f and C are not convex functions, local optimization
techniques have no warranty to converge to the global so-
lution x∗. On the other hand, global optimization methods
converge to the global minimum and provide an enclosure
[f∗, f∗] of f∗. One well-known technique from global op-
timization is the Branch and Bound algorithm based on
interval arithmetic Kearfott (1992).

3.1 Branch and Bound based on interval arithmetic

In order to present the Interval Branch and Bound Algo-
rithm (IBBA), several definitions must be given.

Definition 1. An interval x is a closed connected subset
of R (Moore et al. (2009)), described by its endpoints x
and x:

x = [x, x] = {x | x ≤ x ≤ x},
with x ∈ R ∪ {−∞} and x ∈ R ∪ {+∞}

The set of real intervals is denoted by IR and the set of n-
dimensional interval vectors, also called boxes, is denoted
by IRn.

Definition 2. Let x ∈ IRn be a box. An inclusion function
[f] of f maps IRn into IR and respects the following
property:

f(xi) = {f(x), x ∈ xi} ⊆ [f](xi).

Interval arithmetic extends common operators (+, −, ×,
sin, cos, exp, log,...) to IR and provide inclusion function
of most of analytic functions. Let us suppose that inclusion
functions of f and C can be defined, and the x∗ is searched
in X ∈ IRn. The IBBA computes a guaranteed lower
bound f and an upper bound f of f∗. To do so, IBBA
repeatedly bisects X in smaller boxes xi and discards them
if it is proven that x∗ /∈ xi. This happens if the constraint
is not satisfied over xi:

[C](xi) > 0 ⇐⇒ ∀x ∈ xi, C(x) > 0,
⇐⇒ x∗ /∈ xi, (11)

or if a feasible point x̃ has been found such that any points
in xi can provide a better feasible solution:

[f](xi) > f(x̃) ≥ f∗ ⇐⇒ x∗ /∈ xi. (12)

The IBBA stops when the distance between f and f
reaches the desired precision d, with

f = min
i

[f](xi), f = f(x̃) (13)

Fig. 1 illustrates IBBA. The box x11 is proved not to
contain x∗ due to Property (11), as well as boxes x12 and
x21 due to Property (12).
The Set Inversion Via Interval Analysis (SIVIA) algorithm
is a branch and bound and allows to approximate the
feasible region of X, described by the constraints, by a sub-
paving, which is a union of non-overlapping boxes. SIVIA
algorithm bisects X in smaller boxes xi until the constraint

f, C

x0

f(x)

C(x)

x̃

f
f

X
x11 x12 x21 x22

x12 × [f](x12)

x12 × [C](x12)

Fig. 1. Illustration of IBBA and SIVIA algorithms.

is proved to be fulfilled over xi thanks to (14) or not to be
fulfilled thanks to (11).

[C](xi) ≤ 0 ⇐⇒ ∀x ∈ xi, C(x) ≤ 0 (14)

SIVIA algorithm stops when boxes xi reach a minimum
size ε. In Figure 1, SIVIA returns the sub-paving made of
x11, x12, x21 and x22 indicating that x11 is not a subset of
the feasible set, x22 is a subset of the feasible set, and that
nothing could be proved for x12 and x21. That is, x11 is
an inner approximation the feasible set and x11∪x12∪x21

is an outer approximation. These approximations can be
improved by bisecting x12 and x21 in smaller boxes.
Finally, IBBA has [f], [C], X and d as inputs and provides
a feasible point x̃ and a guaranteed enclosure [f, f] of the
global minimum f∗. SIVIA algorithm has [C], X and ε as
inputs and provides a sub-paving which characterizes the
feasible region.

3.2 Analysis problems

Let us consider the analysis problem defined in Section 2.
This problem can be rewritten as (15), where IBBA

can provide an enclosure [ueq(θ), ueq(θ)] of the minimum

ueq(θ)
∗. Being θ the vector of tuning parameters given by

the operator, δ a set of variable parameters and ∆ a subset
of IRnδ with nδ the dimension of δ.

{
min
δ∈∆

min(ueq(θ, δ)− u−,−ueq(θ, δ) + u+) (15)

We will show how IBBA can be used to ensure that θ is
a feasible solution of this constraint satisfaction problem
(CSP).

From Property (10), we can derive Property (16) and
Property (17)

ueq(θ) > 0

=⇒ ueq(θ)
∗ > 0

⇐⇒ ∀δ ∈ ∆,min(ueq(θ, δ)− u−,−ueq(θ, δ) + u+) > 0
⇐⇒ ∀δ ∈ ∆, ueq(θ, δ)− u− > 0 and ,−ueq(θ, δ) + u+ > 0
⇐⇒ ∀δ ∈ ∆, u− < ueq(θ, δ) and , ueq(θ, δ) < u+

(16)

156 APPENDIX B. PRELIMINARY WORK ON SLIDING MODE CONTROL

ueq(θ) < 0
=⇒ ueq(θ)

∗ < 0⇒ ueq(θ, δ
∗) < 0

⇐⇒ min(ueq(θ, δ
∗)− u−,−ueq(θ, δ∗) + u+) < 0

⇐⇒ ueq(θ, δ
∗)− u− < 0 or ,−ueq(θ, δ∗) + u+ < 0

⇐⇒ ∃δ ∈ ∆, u− > ueq(θ, δ) or , ueq(θ, δ) > u+

(17)

According to Proposition (16), if ueq(θ) > 0, θ is a feasible

solution to Problem (1), which ensures that the system will
slide on the sliding surface S over the subset ∆. According
to Proposition (17), if ueq(θ) < 0, θ is a not feasible
solution to Problem 1, which means that the system will
not slide over S in all ∆. Actually, the system will leave S
at least at δ∗ the solution to Problem (15).

If 0 ∈ [ueq(θ), ueq(θ)], it is not possible to prove whether

or not θ is a feasible solution. In the case where θ is
not a feasible solution, SIVIA algorithm can be used to
characterize the largest subset of ∆ where the sliding
condition is established. That is, the set:

{
δ ∈ ∆|ueq(θ, δ) < u+ and u− < ueq(θ, δ)

}

can be approximated by a sub-paving.

3.3 Synthesis problems

Synthesis problems consist either in characterizing the
set of feasible tuning parameters with respect to SM
conditions and let the operator choose θ in this set, or
in minimizing a given cost function over this feasible set.
SIVIA algorithm and IBBA are suited to perform such
computation.

Let Θ be a subset of IRnθ , f : Rnθ 7→ R be a cost
function given by the system designer, and C∗θ be the
minimum of Problem (15) with θ fixed. We suppose that
an inclusion function of f is available. Let C∗ : Rnθ 7→ R be
the function that maps θ into C∗θ . The synthesis problem
can be expressed in a general way as the optimization
problem (18).

{
min
θ∈Θ

f(θ)

s.t. C∗(θ) ≤ 0
(18)

The constraint of Problem (18) implies the resolution of
an analysis problem over ∆. Using interval analysis, it is
possible to provide an enclosure of C∗ over a box θ Monnet
et al. (2016). As a consequence IBBA can be used to solve
Problem (18) and SIVIA to characterized the set defined
by the constraint:

{θ ∈ Θ, C∗(θ) < 0} (19)

More generally, such a constraint is called a Semi Infinite
Constraint (SIC), since it is equivalent to the infinite set of
constraint C(θ, δ) ≤ 0, ∀δ ∈ ∆, but involves only a finite
number of variables. Optimization problems involving SIC
are called Semi Infinite Programs (SIP) and can be solved
in a global way with different methods Mitsos (2011);
Bhattacharjee et al. (2005), and the characterization of the
set defined by SICs has been studied in several works Gold-
sztejn et al. (2009); Ratschan (2002).

4. CASE STUDY

In this section we illustrate the application of the proposed
approach to a non-linear system. This is a simplified
version of the angular control of a satellite based on the
Cayley-Rodriguez parameter.

The system behaviour is modeled in a simplified way by
the following equations:

{
ẋ1 = 1

2 (1 + x2
1)x2

ẋ2 = 1
J u

(20)

where the parameters involved are:

• x1 Cayley-Rodrigues parameter to define orientation.
• x2 angular velocity.
• u control action.
• J system inertia.

Assuming it is desired to impose a closed loop dynamics
given by:

ẋ1 = −λ(x1 − r) (21)

with r the position reference and λ an approaching rate
tuning parameter. Then, we can propose a sliding mode
control with: u = sign(σ) and a sliding surface of the
form:

Σ =

{
x =

[
x1

x2

]
: σ(x) = −x2 − 2λ(x1−r)

1+x2
1

= 0

}
(22)

It is possible to observe that the necessary condition for
SM is fulfilled:

Lgσ =
∂σ

∂x1

∂σ

∂x2

[
0
1
J

]
=

1

J
6= 0 (23)

And given σ it is possible to find ueq as:

ueq =
2Jλ2(x1 − r)(−x2

1 + 2rx1 + 1)

(1 + x2
1)2

(24)

Resulting the necessary and sufficient condition for the
SM:

u− < ueq < u+ (25)

In the following, we pose this system according to a given
operating condition in the form of the problems explained
in Section 2, and an analysis of the results is made.

Example 1. Analysis SM:

Given u+ = 1, u− = −1, J = 1, λ = 0.5, r = 1
we desire to know if the selected configuration results in
a satisfactory sliding behaviour. This means to solve the
problem establish by (15). In this case, we could establish
the following relations to the problem as:

{
θ ↔ no variable: fixed by the operator
δ ↔ x1

∆ ↔ [−5, 5]
(26)

157

As a result we get the enclosure of the global minimum

min(ueq(θ, δ
∗)− u−,−ueq(θ, δ∗) + u+)

∈ [0.527, 0.517]

proving satisfactory that it is a good choice for the domain
∆ tested.

Remark : From this result, it is possible to conclude
that u+ = −u− = 1 − 0.527 = 0.473 is the smallest
value of the control input such that the sliding condition
holds over x1 ∈ [−5, 5]. Choosing this value of control
input over the initial value u+ = −u− = 1 will result
in energy consumption savings. In addition, with IBBA
one can compute the global minimum of ueq over ∆ and
also the global maximum. These two values correspond to
the greatest value of u− and the lowest value of u+ which
ensure the sliding condition, respectively.

Example 2. Synthesis SM:

Given u+ = 1, u− = −1, J = 1, we desire to know what is
the highest possible value of λ that result in a satisfactory
sliding behaviour for a position reference in [−1, 1]. This
can be done by solving Problem (18). In this case, we can
establish the variable relation to the problem as:

θ ↔ λ
Θ ↔ [0, 5]
δ ↔ (x1, r)

T

∆ ↔ ([−10, 10], [−1, 1])T

(27)

The objective function is given by f : λ → −λ in order
to have a minimization problem. The IBBA algorithm
provides [−0.70,−0.69] as an enclosure of the minimum.
The best feasible point found, with respect to the sliding
condition, is λ = 0.69. In addition it is guaranteed that
no value of λ greater than 0.7 exists such as the sliding
condition holds over ∆.

Example 3. Synthesis SM:

Given u+ = 1, u− = −1, J = 1, we now want to know
which are the possible values of λ and r that result in
a satisfactory sliding behaviour. This means to solve the
problem established by (19). In this case, we can establish
the variable relation to the problem as:

θ ↔ (λ, r)T

Θ ↔ ([0, 5], [−5, 5])T

δ ↔ x1

∆ ↔ [−5, 5]

(28)

As a result we get the sub-paving of Fig. 2, where red boxes
imply no satisfaction of the conditions imposed, green
boxes satisfaction of them, and finally blue boxes indicate
that the algorithm cannot determine the conditions. One
can remark that the solution of the synthesis problem
proposed for Example 2 is consistent with the sub-paving of
Fig. 2, since the subset defined by {(λ, r), λ = 0.69 and r ∈
[−1, 1]} belongs to the union of the green and blue sets.

r

-5 -2.5 0 2.5 5

λ

0

0.5

1

1.5

2

Fig. 2. SM guaranteed existence domain for Example 3

In Fig. 3, it is possible to see the system behaviour with
different sliding surfaces (different λ values) for a refer-
ence r = 2. Notes from Fig. 2 that for r = 2 over λ = 0.4
the SM condition is no longer satisfied with the given ∆,
which is also verified by the blue trajectory of Fig.3 which
leaves the sliding surface once it is reached.

x1

0 0.5 1 1.5 2

x
2

0

0.5

1

1.5

2
System trayectory λ = 0.5

SM surface λ = 0.5

System trayectory λ = 0.3

SM surface λ = 0.3

System trayectory λ = 0.1

SM surface λ = 0.1

Fig. 3. SM surfaces for different λ values

Remark : Although the reference signal cannot be really
considered as a tuning variable, it is the case in this
example. Doing so, we get Figure 2 which indicates for
which values of r the SM condition holds given a value of λ.
Variables that would normally belong to δ can be changed
as tuning variables to provide additional information about
the system.

158 APPENDIX B. PRELIMINARY WORK ON SLIDING MODE CONTROL

Example 4. Synthesis SM:

Given the same conditions of Example 3, now, we are con-
cerned about the parameter uncertainty over the system,
and its effect over the SM conditions. Here it is considered
a J parameter variation bounded in the interval [0.5, 1.5].
In this case we can also establish the problem as in (19).
In this case, we can establish the variable relation to this
problem as:

θ ↔ (λ, r)T

Θ ↔ ([0, 5], [−5, 5])T

δ ↔ (x1, J)T

∆ ↔ ([−5, 5], [0.5, 1.5])T

(29)

As a result, we get the sub-paving shown in Fig. 4 where it
is possible to see how the area satisfying the SM conditions
is smaller than in Fig. 2 due to the uncertainty of J.

r

-5 -2.5 0 2.5 5

λ

0

0.5

1

1.5

2

Fig. 4. SM guaranteed existence domain for Example 4

5. CONCLUSIONS

The chosen approach presented in this work shows to be
an efficient method to complement the traditional SM
control design. Using the interval analysis tools to solve
a non-convex global optimization problem, our approach
optimizes the SM design for a given criterion. Furthermore,
it adds robustness and guarantees the SM set up in front
of the process variations and the constrained analyzed
state space. To do so, global optimization methods must
be used since the synthesis and analysis problems are not
convex contrary to the problems emerging in the stochastic
approaches which are generally formulated as linear matrix
inequalities (therefore convex). The complexity of IBBA
grows exponentially with the number of variables, and may
fails to solve very large problems.

A particular point to mention is the construction of the
sub-paving graphics as design tools. They allow not only
to know a particular solution but also to know which is

the domain, with respect to the analyzed variables, where
the solution is valid.

REFERENCES

Bhattacharjee, B., Lemonidis, P., Green Jr, W.H., and
Barton, P.I. (2005). Global solution of semi-infinite
programs. Mathematical Programming, 103(2), 283–307.

Goldsztejn, A., Michel, C., and Rueher, M. (2009). Ef-
ficient handling of universally quantified inequalities.
Constraints, 14(1), 117–135.

Kearfott, R.B. (1992). An interval branch and bound
algorithm for bound constrained optimization problems.
Journal of Global Optimization, 2(3), 259–280.

Khalil, H.K. (2002). Nonlinear Systems, 3rd ed. Prentice
Hall.

Li, H., Gao, H., Shi, P., and Zhao, X. (2014). Fault-
tolerant control of markovian jump stochastic systems
via the augmented sliding mode observer approach.
Automatica, 50(7), 1825–1834.

Mitsos, A. (2011). Global optimization of semi-infinite
programs via restriction of the right-hand side. Opti-
mization, 60(10-11), 1291–1308.

Monnet, D., Ninin, J., and Clément, B. (2016). A global
optimization approach to structured regulation design
under h∞ constraints. 55th IEEE Conference on Deci-
sion and Control (CDC), Las Vegas.

Moore, R.E., Kearfott, R.B., and Cloud, M.J. (2009).
Introduction to Interval Analysis. Society for Industrial
and Applied Mathematics.

Niu, Y., Ho, D.W., and Lam, J. (2005). Robust integral
sliding mode control for uncertain stochastic systems
with time-varying delay. Automatica, 41(5), 873–880.

Ratschan, S. (2002). Approximate quantified constraint
solving by cylindrical box decomposition. Reliable Com-
puting, 8(1), 21–42.

Rauh, A. and Aschemann, H. (2012). Interval-based slid-
ing mode control and state estimation for uncertain
systems. 17th International Conference on Methods and
Models in Automation and Robotics (MMAR), Miedzyz-
drojie, Poland.

Rosendo, J.L., Clément, B., and Garelli, F. (2016). Sliding
mode reference conditioning for path following applied
to an auv. 10th IFAC Conference on Control Applica-
tions in Marine Systems (CAMS), 49(23), 8–13.

Senkel, L., Rauh, A., and Aschemann, H. (2014). Robust
sliding mode techniques for control and state estimation
of dynamic systems with bound and stochastic uncer-
tainty. Second International Conference on Vulnerability
and Risk Analysis and Management (ICVRAM) and the
Sixth International Symposium on Uncertainty, Model-
ing, and Analysis (ISUMA), Liverpool, UK.

Sira-Ramrez, H. (1993). On the dynamical sliding mode
control of nonlinear systems. International Journal of
Control, 57(5), 1039–1061.

Utkin, V., Guldner, J., and Shi, J. (2009). Sliding mode
control in electro-mechanical systems, volume 34. CRC
press.

Wu, L., Su, X., and Shi, P. (2012). Sliding mode control
with bounded L2gain performance of markovian jump
singular time-delay systems. Automatica, 48(8), 1929–
1933.

159

Titre : Optimisation Globale Minmax pour la commande robuste ��

Mots clés : Optimisation globale, Optimisation minmax, Commande ��, Systèmes incertains

Résumé : La commande �� est de nos jours
utilisée pour la régulation de nombreux systèmes.
Cette technique de contrôle permet de
synthétiser des lois de commande robustes, dans
le sens où le comportement du système régulé
est peu sensible aux perturbations externes. De
plus, la commande �� permet de prendre en
compte des incertitudes liés au modèle décrivant
le système à réguler. Par conséquence, cette
technique de contrôle est robuste vis-à-vis des
perturbations et des incertitudes de modèle.
 Afin de synthétiser une loi de commande
robuste, les spécifications des performances du
système en boucle fermée sont traduites en
critères �� à partir desquels est formulé un
problème d'optimisation. La loi de commande est
une solution de ce problème, qui est non
convexe dans le cas général.

 Les deux principales approches pour la
résolution de ce problème sont basées sur la
reformulation convexe et les méthodes
d'optimisations locales, mais ne garantissent
pas l'optimalité de la loi de commande vis-à-vis
des critères �� .
 Cette thèse propose une approche de la
commande �� par des méthodes d'optimisation
globales, rarement considérées jusqu'à présent.
Contrairement aux approches classiques, bien
qu'au prix d'une complexité algorithmique
supérieure, la convergence vers la loi de
commande optimale est garantie par les
méthodes globales. De plus, les incertitude de
modèle sont prises en compte de manière
garantie, ce qui n'est pas nécessairement le cas
avec les approches convexes et locales.

Title : Global Minmax Optimization for robust �� control

Keywords : Global optimization, Minmax optimization, �� control, Uncertain systems

Abstract : �� control is nowadays used in many
applications. This control technique enables to
synthesize control laws which are robust with
respect to external disturbances. Moreover, it
allows to take model uncertainty into account in
the synthesis process. As a consequence, ��
control laws are robust with respect to both
external disturbances and model uncertainty.
 A robust control law is a solution to an
optimization problem, formulated from
�� criteria. These criteria are the mathematical
translations of the desired closed loop
performance specifications. The two classical
approaches to the optimization problem rely on
the convex reformulation and local optimization
methods. However, such approaches are unable
to guarantee the optimality, with respect to the
�� criteria, of the control law.

This thesis proposes to investigate a global
optimization approach to �� control. Contrary to
convex and local approaches, global
optimization methods enable to guarantee the
optimality of the control, and also to take into
account model uncertainty in a reliable way.

