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Introduction

The aim of this work is to study various aspects of rough volatility models such as the microstructural foundations of rough volatility, the pricing and hedging under these models and finding relevant model approximations for numerical computations. We also discuss an optimal make-take fees policy for market making regulation.

Motivations

The rough nature of the volatility is nowadays considered a universal feature of financial data. It has been first discovered in [START_REF] Gatheral | Volatility is rough[END_REF] and then confirmed in [START_REF] Bennedsen | Decoupling the short-and longterm behavior of stochastic volatility[END_REF]. Indeed, empirical studies over a very wide range of assets of volatility time series have shown that the volatility exhibits a dynamic that is rougher than that of a Brownian motion. Moreover, including this stylized fact into financial models leads to a better fit of the volatility surface, see [START_REF] Bayer | Pricing under rough volatility[END_REF][START_REF] Fukasawa | Short-time at-the-money skew and rough fractional volatility[END_REF]. The first step of this thesis is to understand how such feature can be generated by answering the following question:

Question 1. Can the rough behavior of the volatility be explained from microscopic interactions between agents?

In order to answer this question, we build a tick by tick price model encoding the microscopic stylized facts observed in the market in the context of high frequency trading. This model is based on Hawkes processes. By studying the asymptotic behavior of our microscopic price dynamic in the long run, we obtain in the limit a rough version of the Heston model.

Since the discovery of this empirical feature, many works aim at rethinking classical stochastic volatility models in order to account for the rough behavior of the volatility. A way to do so is by replacing the classical Brownian motion by a fractional one with a small Hurst parameter around 0.1. However, due to the non-Markovian nature of the fractional Brownian motion, difficulties are encountered in practice when it comes to derivatives pricing. Under the classical Heston model, efficient numerical methods for option pricing have been developed in [AMST07, CM99, KJ05, Lew01] by using the explicit formula for the characteristic function of the asset log-price established in [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. The convergence result linking Hawkes processes to rough volatility may help us to extend this formula to the rough case and to answer the following question:
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Question 2. Can we obtain a formula of the characteristic function in the rough Heston model?

By answering the question above, numerical methods for option pricing can be developed. However, in practice, a pricing procedure is not enough. We should also be able to manage derivatives risks. This makes the question bellow important so that such model can be used in the industry: Question 3. How do we hedge derivatives in the rough Heston model?

Once we are able to price and hedge derivatives in the rough Heston model, it will be natural to challenge the model to practice. By introducing the rough volatility feature into the Heston framework, we expect a better fit of the model to the historical and implied volatility. Hence, we raise the following issue:

Question 4. How does the rough Heston model behave in practice?

While the Hawkes approximation will enable us to answer the questions above, this approach is only specific to the rough Heston case and cannot be extended to an arbitrary rough volatility model. We can use a direct approach by applying small-time expansions of the density of the asset price to answer our next question: Question 5. How does the at-the-money implied volatility of rough volatility models behave in the short term?

In the same spirit as the Hawkes approximation, it is also natural to look for a tractable Markovian approximation that can be used to tackle derivatives pricing and hedging as well as numerical simulation of a general class of rough volatility models. This leads to the following question:

Question 6. Can we approximate a rough volatility model by a tractable Markovian one?

Finally, we end the thesis with a topic unrelated to rough volatility. Indeed, we study the problem of optimal market making regulation. Nowadays, with the fragmentation of financial markets, exchanges are in competition and look for the best way to attract liquidity in their platforms. Hence, they apply a make-take fees system where they subsidize liquidity providers and tax liquidity consumers. Such system led to the emergence of a new type of market makers, such as high frequency traders, that aim at collecting fee rebates. However many studies have shown that these market makers tend to leave the market in a period of stress, see [START_REF] Megarbane | The behaviour of high-frequency traders under different market stress scenarios[END_REF]. Hence, they stop being liquidity providers during a period of time the market needs the most liquidity. It is therefore natural to look for a way to avoid this kind of situation by answering the following question: Question 7. What is the optimal make-take fees system that the exchange should apply on its platform?

Outline

Outline

Each question presented above corresponds to a part of the thesis.

In Part I, we answer Question 1 by building a Hawkes-based microscopic price model able to reproduce the main features of market microstructure: high endogoneity of the market, no-arbitrage property, buying/selling asymmetry of liquidity and presence of metaorders. We prove in Chapter I that when the first three of these stylized facts are considered, the microscopic price behaves in the long run as a Heston stochastic volatility model exhibiting leverage effect. When we add the last property (presence of metaroders), we obtain in the limit a rough version of the Heston model exhibiting both leverage effect and rough volatility. Therefore we show that rough volatility is generated from the high endogeneity of the market together with the metaorders splitting phenomenon. Furthermore, we obtain that leverage effect can be at least partially explained from microstructural features.

We answer Question 2 in Part II by using the link between Hawkes processes and the rough Heston model of Part I. While the characteristic function of the log-price under the classical Heston model is given explicitly in terms of the solution of a Riccati equation, we show in Chapter II that this formula can be extended to the rough Heston model, the Riccati equation being replaced by a fractional one. In practice, fractional Riccati equations cannot be solved explicitely, but numerical methods such as the Adams scheme, presented in Chapter II, can be used.

In Part III, we tackle Question 3 by identifying the conditional law of the rough Heston model and studying its infinite-dimensional Markovian structure. In particular, we obtain in Chapter III explicit hedging strategies of derivatives by using as instruments the state variables of the model, namely the underlying asset and the forward variance curve. We also look for a general state space in which the forward variance curve lies in Chapter IV.

In Part IV, we treat Question 4 and examine the fit of the rough Heston model to the market. More precisely, we summarize in Chapter V the results obtained in Parts II and III and show the amazing fit of the rough Heston model to the SPX volatility surface. Then in Chapter VI, we answer a question raised by Jean Philippe Bouchaud about the ability of the model to reproduce a time reversal asymmetry observed in financial time series. Introduction kernel appearing in the dynamics of the variance process. By applying this approximation on the specific case of the rough Heston model, we derive a numerical scheme for solving fractional Riccati equations appearing in the characteristic function formula.

Finally, Question 7 is studied in Part VII. We consider a framework where one market maker quotes bid and ask prices on a platform held by an exchange who earns transaction costs from each market order. The intensity of market orders arrival is a deterministic function of the spread. In order to attract liquidity in its platform, we provide in Chapter IX the optimal contract that the exchange should propose to the market maker. This is done by using a principal-agent framework: First we compute the market maker optimal quotes for any contract proposed by the exchange. Then knowing the optimal quotes of the market maker, we compute the best contract that the exchange should choose. We finally study the effect of the optimal policy on the liquidity of the market, the profit and loss of the market maker and the exchange and the transaction costs for investors.

Let us now rapidly review the main results of this thesis.

Part I: The microstructural foundations of leverage effect and rough volatility.

A very wide range of assets exhibits a rough dynamic of the volatility with the same order of magnitude for the roughness parameter around 0.1 in the Hölder sense. Understanding how such a stylized fact can be generated is of course a natural question. Moreover, it will lead us to rough volatility models that we can manage in practice.

In Chapter I, we aim at understanding how microscopic features of the market at the high frequency scale can give rise in the long run to the crucial macroscopic stylized facts: leverage effect and rough volatility. More precisely, we build a tick by tick price model based on Hawkes processes. Then, we encode in this model the main features of market microstructure and study its long run behavior.

Building the microscopic model

Inspired by [START_REF] Bacry | Modelling microstructure noise with mutually exciting point processes[END_REF][START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF], we model the tick by tick price as follows:

P t = N + t -N - t ,
where N t = (N + t , N - t ) is a bi-dimensional Hawkes process with intensity λ t = (λ + t , λ - t ) defined by

λ + t λ - t = µ + µ -+ t 0 ϕ 1 (t -s) ϕ 3 (t -s) ϕ 2 (t -s) ϕ 4 (t -s) . d N + s d N - s ,
where µ + and µ -are positive constants and φ = ϕ 1 ϕ 3 ϕ 2 ϕ 4 : R + → M 2 (R + ).

1. Part I: The microstructural foundations of leverage effect and rough volatility.

In this framework, λ + t d t corresponds to the probability of an upward jump of P between times t and t + d t . This probability has three components:

• µ + d t , the Poissonian part of the intensity, is the probability that the price goes up because of some exogenous reason. Similar analysis can be made on λ - t d t .

We now present the relevant stylized facts of market microstructure in our setting:

• Encoding the absence of statistical arbitrage: At the high-frequency scale, designing a strategy that is profitable on average is a very intricate task, see [START_REF] Abergel | Understanding the stakes of high-frequency trading[END_REF]. We model this fact by assuming that the number of future upward jumps is on average equal to the number of downward jumps, namely

E[N + t ] = E[N - t ].
This condition is satisfied by taking µ + = µ -, ϕ 1 + ϕ 3 = ϕ 2 + ϕ 4 .

(1)

• Dealing with the asymmetry of liquidity between the bid and ask side of the order book: The fact that the ask side of the order book is more liquid than the bid side is a stylized fact commonly observed in the market, see [BCST12, BP09, HS06, HS81, TT12].

In the Hawkes framework, this is translated by an asymmetry in the kernel matrix φ such that

ϕ 3 = βϕ 2 , β > 1.
(2)

• The high degree of endogeneity of the market: Markets are highly endogenous. This means that most of the orders have no real economic motivation but are rather sent in reaction to past orders, see [START_REF] Filimonov | Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data[END_REF][START_REF] Hardiman | Critical reflexivity in financial markets: a Hawkes process analysis[END_REF]. Thanks to a population interpretation of Hawkes processes, we can show that the stability condition

S ( ∞ 0 φ(s)d s) = ϕ 1 1 + β ϕ 2 1 < 1,
where S denotes the spectral radius operator, should almost be violated in order to take into account the high endogeneity of the market. Hence, we assume that this spectral radius is smaller but close to unity. To do so, we index the Hawkes process by a Introduction parameter T > 0 meant to go to infinity. More precisely, we assume that the microscopic price P T is given by

P T t = N T,+ t -N T,- t , (3) 
where N T t = (N T,+ t , N T,- t ) is a bi-dimensional Hawkes process indexed by T , with intensity λ T t = (λ T,+ t , λ T,- t ) defined by

λ T,+ t λ T,- t = µ T µ T + t 0 φ T (t -s). d N T,+ s d N T,- s ,
with µ T a positive constant. The kernel matrix φ T : R + → M 2 (R + ) is given by

φ T = a T φ = a T ϕ 1 ϕ 3 ϕ 2 ϕ 4 , a T ∈ (0, 1),
and should satisfy

S ( ∞ 0 φ(s)d s) = 1, a T -→ T →∞ 1, (4) 
so that the high endogeneity of the market is obtained when T is large enough.

Final microscopic model

The final microscopic model for the price P T is given by (3). In order to encode the stylized facts discussed above, Conditions (1), ( 2) and (4) shall be satisfied. These conditions impose the following specific structure of the kernel matrix φ T .

Assumption 1. We assume that

φ T = a T φ = a T ϕ 1 βϕ 2 ϕ 2 (β -1)ϕ 2 + ϕ 1 ,
with ϕ 1 , ϕ 2 : R + → R + such that ϕ 1 1 + β ϕ 2 1 = 1, and a T ∈ (0, 1) converging to unity as T goes to infinity.

Generating leverage effect

In order to obtain a first non-degenerate limit in the long run, we use the following additional assumption on the asymptotic framework and the kernel matrix.

Assumption 2. There exist positive parameters λ, µ and m such that

T (1 -a T ) → T →∞ λ, µ T = µ,
and

S ( ∞ 0 xφ(x)d x) = m < ∞.
1. Part I: The microstructural foundations of leverage effect and rough volatility.

After a suitable scaling in time and space, we show that the microscopic price converges to a Heston dynamics exhibiting a negative correlation between price and volatility moves.

Result 1. Under Assumptions 1 and 2, as T tends to infinity, the rescaled microscopic price

1 T P T t T = N T,+ t T -N T,- t T T , t ∈ [0, 1],
converges in law for the Skorokhod topology to the following Heston model:

P t = 1 1 -( ϕ 1 1 -ϕ 2 1 ) 2 1 + β t 0 X s dW s , with d X t = λ m (β + 1) µ λ -X t d t + 1 m 1 + β 2 1 + β X t d B t , X 0 = 0,
where (W, B ) is a correlated bi-dimensional Brownian motion with

d 〈W, B 〉 t = 1 -β 2(1 + β 2 ) d t .
Result 1 shows that when β > 1, we obtain leverage effect generated by the asymmetry of liquidity between the bid and ask side of the order book. Note that Conditions (1) and (4) are also important to obtain a non-degenerate macroscopic price limit. To our knowledge, this result is the first in the literature relating in a non ad-hoc way the leverage effect to high frequency dynamics.

Generating rough volatility

The microscopic price above does not take into account an important stylized fact: The wide presence of metaorders in the market, see [START_REF] Almgren | Optimal execution of portfolio transactions[END_REF][START_REF] Lehalle | Market microstructure in practice[END_REF]. This property is a crucial feature of the market microstructure. It is translated in the Hawkes framework by considering a kernel matrix φ T exhibiting a heavy tail as explained in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF]. This leads us to replace Assumption 2 by the following one.

Assumption 3. There exist α ∈ (1/2, 1) and C > 0 such that

αx α ∞ x ϕ 1 (s) + βϕ 2 (s)d s → x→∞ C .
Moreover, for some λ * > 0 and µ > 0,

T α (1 -a T ) → T →∞ λ * > 0, T 1-α µ T → T →∞ µ.
By incorporating the effect of metaorders into our microscopic model, we obtain that the limiting behavior of the price is different from that in Result 1.
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Result 2. Let λ = αλ * / C Γ(1-α) . Under Assumptions 1 and 3, as T tends to infinity, the rescaled microscopic price

1 -a T µT α P T t T = 1 -a T µT α (N T,+ t T -N T,- t T ), t ∈ [0, 1],
converges in the sense of finite dimensional laws to the following rough Heston model:

P t = 1 1 -( ϕ 1 1 -ϕ 2 1 ) 2 β + 1 t 0 Y s dW s ,
with Y the unique solution of

Y t = 1 Γ(α) t 0 (t -s) α-1 λ (1 + β) -Y s d s + 1 Γ(α) t 0 (t -s) α-1 λ 1 + β 2 λ * µ(1 + β) Y s d B s ,
where (W, B ) is a correlated bi-dimensional Brownian motion with

d 〈W, B 〉 t = 1 -β 2(1 + β 2 ) d t .
Furthermore, the process Y t has Hölder regularity α -1/2 -ε for any ε > 0.

Result 2 shows that the limiting behavior of the microscopic price is still of Heston-type. However, a new fractional kernel (ts) α-1 appears in the limiting dynamics and creates a rough behavior of the volatility. Actually this kernel appears also in the Mandelbrot-van Ness representation of the fractional Brownian motions W H

W H t = 1 Γ(H + 1/2) 0 -∞ (t -s) H -1 2 -(-s) H -1 2 dW s + 1 Γ(H + 1/2) t 0 (t -s) H -1 2 dW s .
Hence, the tail exponent α is linked to the Hurst parameter of the limiting model H = α -1/2. In particular, this shows that the rough behavior of the volatility is explained by the high degree of endogeneity of the market together with the wide presence of metaorders. Note that even more fundamental arbitrage-based foundations of rough volatility have been recently developed in [START_REF] Jusselin | No-arbitrage implies power-law market impact and rough volatility[END_REF].

Part II: Characteristic function of rough Heston models

By taking into account the main features of market microstructure, Result 2 shows that after a suitable scaling in time and space, the microscopic price (3) converges in the long run to a rough version of the Heston model. In Chapter II, we use this convergence result to obtain the characteristic function of the rough Heston model. This is done by computing the characteristic function of the microscopic price and then passing to the limit. From this characteristic function formula, efficient numerical methods can be applied in order to price derivatives, see [AMST07, CM99, KJ05, Lew01].

2. Part II: Characteristic function of rough Heston models

Link between the rough Heston model and Hawkes processes

In the spirit of Chapter I, we define the rough Heston model as a rough generalization of the celebrated Heston model, where the fractional kernel (ts) α-1 is added in the definition of the variance process:

d S t = S t V t dW t V t = V 0 + 1 Γ(α) t 0 (t -s) α-1 λ(θ -V s )d s + 1 Γ(α) t 0 (t -s) α-1 ν V s d B s .
(5)

The parameters λ, θ, V 0 and ν in (5) are positive and W and B are two Brownian motions with correlation ρ. These parameters play the same role as in the classical Heston model. The additional parameter α ∈ (1/2, 1) governs the smoothness of the volatility sample paths. The well-definition of this model is established by showing the weak existence and uniqueness of a non-negative solution V of the fractional stochastic differential equation appearing in (5), see Proposition 3 in Chapter II. Moreover, we show that the process V is α -1/2 -ε Hölder continuous for any ε > 0. Using the link between Hawkes processes and the Heston framework, we aim at computing the characteristic function of the log-price

X t = log(S t /S 0 ) = t 0 V s dW s - 1 2 t 0 V s d s.
We consider the microscopic price P T defined in (3). We make the following choice of the kernel matrix φ T so that Assumptions 1 and 3 are met.

Assumption 4. There exists β ≥ 0 such that a T = 1 -λT -α , φ T = ϕ T χ, where

χ = 1 β + 1 1 β 1 β , ϕ T = a T ϕ, ϕ = f α,1 ,
with f α,1 the Mittag-Leffler density function defined in Section II.A of Chapter II.

Result 2 needs to be adapted so that the limiting process is the log-price X t :

• Result 2 states that θ(1-a T )

2µT α P T t converges to the martingale part of X t , namely t 0 V s dW s . So that the drift part of X t appears in the limit, we consider the following modification of the microscopic price:

X T t = θλ 2µT 2α P T t - θλ 2µT 2α N T,+ t .
• Result 2 leads to a vanishing initial variance in the long run. In order to avoid this phenomenon, we need to change the Poissonian part of the intensity µ T into a time dependent one denoted by μT (t ) satisfying the following assumption.
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Assumption 5. The baseline intensity μT is given by

μT (t ) = µ T + ξµ T 1 1 -a T (1 - t 0 ϕ T (s)d s) - t 0 ϕ T (s)d s ,
with ξ > 0 and µ T = µT α-1 for some µ > 0.

Under these new conditions, we obtain the following result.

Result 3. Under Assumptions 4 and 5, the sequence of processes (X T t ) t ∈[0,1] converges in law for the Skorokhod topology to (X t ) t ∈[0,1] with

V 0 = θξ, ν = λθ(1 + β 2 ) µ(1 + β) 2 , ρ = 1 -β 2(1 + β 2 )
.

The characteristic function of Hawkes processes

In order to compute the characteristic function of the log-price X t , we compute the characteristic function of X T t and then we pass to the limit. X T t being a linear combination of N T,+ t T and N T,- t T , we need to be able to compute the characteristic function of a multivariate Hawkes process.

Let us consider now a d -dimensional Hawkes process N = (N 1 , ..., N d ) with intensity We give a population interpretation of this process, as in [START_REF] Hawkes | A cluster process representation of a self-exciting process[END_REF], in which we consider d types of individuals and for for each type, an individual can be either a migrant or the descendant of a migrant such that • Migrants of type k ∈ {1, .., d } arrive as a non-homogenous Poisson process with rate µ k (t ).

λ t =    λ 1 t . . .
• Each migrant of type k ∈ {1, .., d } gives birth to children of type j ∈ {1, .., d } following a non-homogenous Poisson process with rate φ j ,k (t ).

• Each child of type k ∈ {1, .., d } also gives birth to other children of type j ∈ {1, .., d } following a non-homogenous Poisson process with rate φ j ,k (t ).

Part II: Characteristic function of rough Heston models

Then, for k ∈ {1, .., d }, N k t can be taken as the number up to time t of migrants and children born with type k. Using this population interpretation, we are able to characterize the law the Hawkes process and compute its characterisitic function. 

The characteristic function of rough Heston models

From Result 4, we are able to compute the characteristic function of

X T t L T (a, t ) = E[exp(i a X T t )], a ∈ R.
Moreover as a consequence of Result 3, L T (a, t ) converges to the characteristic function of the log price X t L(a, t ) = E[exp(i a X t )], a ∈ R, as T goes large. This enables us to obtain a formula for L(a, t ). Let I 1-α be the fractional integral operator defined by

I 1-α f (t ) = 1 Γ(1 -α) t 0 (t -s) -α f (s)d s,
and D α be the fractional derivative operator defined by

D α f (t ) = 1 Γ(1 -α) d d t t 0 (t -s) -α f (s)d s.
We have the following result.

Result 5. Assume that ρ ∈ (-1/ 2, 1/ 2]. Then, the characteristic function of the log price of the rough Heston model is given by

L(a, t ) = exp t 0 (θλ + V 0 s -α Γ(1 -α) )h(i a, t -s)d s ,
where h(i a, .) is the unique continuous solution of the following fractional Riccati equation
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We call Equation (6) a fractional Riccati equation. It can be also written in a Volterra form as follows,

h(i a, t ) = t 0 (t -s) α-1 Γ(α)
1 2 (-a 2i a) + (i aρν -λ)h(i a, s) + ν 2 2 h 2 (i a, s) d s.

When α = 1, we obtain a classical Riccati equation that can be solved explicitly leading to the celebrated Heston formula of the characteristic function, see [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. For α < 1, (6) cannot be solved explicitly. However, we can apply the Adams scheme on the Volterra form of (6) to solve it numerically, see Section 5.1 in Chapter II.

Thanks to the semi-closed formula of the characteristic function, pricing vanilla options becomes an easy task in this model. Finally note that this formula has been extended in [START_REF] Jaber | Affine Volterra processes[END_REF], to the general class of Volterra affine models in which the fractional kernel is replaced by an arbitrary one.

Part III: Hedging under the rough Heston model

Thanks to Result 5, we are now able to price derivatives under the rough Heston model. However in practice, the interest of pricing is limited if it does not go along with a hedging strategy.

Remarking that the conditional law of a rough Heston model is still a rough Heston dynamic, we are able to use again the Hawkes framework to compute the conditional characteristic function of the rough Heston model in Chapter III. This leads us to identify the state variables of the model, namely the underlying S t and the forward variance curve (E[V s+t |F t ]) s≥0 . As a result, any vanilla option can be perfectly hedged, in principle, using the underlying and the forward variance curve. In Chapter IV, we generalize this result for any Volterra Heston model and provide a general state space for the forward variance curve.

Conditional law of the rough Heston model

In order to derive a hedging strategy for a vanilla option with maturity T > 0 and payoff f (S T ), we need to compute the dynamics of the process (E[ f (S T )|F t ]) t ∈[0,T ] , that is identifying the law of the rough Heston model (5) conditional on F t . We can show that the conditional law is still a rough Heston dynamic such that the mean reversion level θ becomes a time dependent one. Hence, it is convenient to extend the definition of the rough Heston model as follows:

d S t = S t V t dW t V t = V 0 + 1 Γ(α) t 0 (t -s) α-1 λ(θ 0 (s) -V s )d s + 1 Γ(α) t 0 (t -s) α-1 ν V s d B s . (7)
The parameters λ, V 0 and ν are positive, α ∈ (1/2, 1) and W and B are two Brownian motions with correlation ρ. The new mean reversion level θ 0 is allowed to be time dependent satisfying some regularity conditions (for technical reasons).

3. Part III: Hedging under the rough Heston model Assumption 6. θ 0 is a deterministic function, continuous on R * + satisfying ∀u > 0; θ 0 (u) ≥ -V 0 λΓ(1 -α) u -α , and ∀ε > 0 ∃K ε > 0; ∀u ∈ (0, 1]; θ 0 (u) ≤ K ε u -1 2 -ε .

Note that the fractional stochastic differential equation in (7) admits a unique weak solution, see Theorem 2 in Chapter III. We have the following result.

Result 6. The law of the process (S t 0 t ,V t 0 t ) t ≥0 = (S t +t 0 ,V t +t 0 ) t ≥0 is that of a rough Heston model with the following dynamic:

d S t 0 t = S t 0 t V t 0 t dW t 0 t , S t 0 0 = S t 0 V t 0 t = V t 0 + 1 Γ(α) t 0 (t -u) α-1 λ(θ t 0 (u) -V t 0 u )d u + 1 Γ(α) t 0 (t -u) α-1 ν V t 0 u d B t 0 u ,
with (W t 0 t , B t 0 t ) t ≥0 = (W t 0 +t -W t 0 , B t 0 +t -B t 0 ) t ≥0 a two-dimensional Brownian motion with correlation ρ, independent of F t 0 and

θ t 0 (u) = θ 0 (t 0 + u) + α λΓ(1 -α) t 0 0 (t 0 -v + u) -1-α (V v -V t 0 )d v + (u + t 0 ) -α λΓ(1 -α) (V 0 -V t 0 ),
which is an F t 0 -measurable function satisfying Assumption 6.

Extending the characteristic function formula

In order to obtain the dynamic of the process (E[ f (S T )|F t ]) t ∈[0,T ] , we compute the conditional characteristic function of X T = log(S T /S 0 ). Thanks to Result 6, it is enough to extend the characteristic function formula stated in Result 5 by using again the Hawkes framework.

Result 7. Let t > 0 and z ∈ C. Assume

λ -ρνℜ(z) > 0, a -(t ) < ℜ(z) < a + (t ),
where

a -(t ) = ν 2 -2ρνψ(t ) + ∆(t )
Introduction is given by

exp t 0 h(z, t -s)(λθ 0 (s) + V 0 s -α Γ(1 -α) )d s ,
where h(z, .) is the unique continuous solution of the following fractional Riccati equation:

D α h(z, s) = 1 2 (z 2 -z) + (zρν -λ)h(z, s) + ν 2 2 h(z, s) 2 , s ≤ t , I 1-α h(z, 0) = 0.
Note that the mean reversion level θ 0 is linked to the forward variance curve as follows:

λθ 0 (t ) = D α (E[V . ] -V 0 )(t ) + λE[V t ].
So, we can write the characteristic function of the log-price as a functional of (E[V s ]) s≥0 .

Result 8. Let t > 0 and z ∈ C satisfying the assumptions of Result 7. Then

R(z, t ) = exp t 0 χ(z, t -s)E[V s ]d s with χ(z, t ) = 1 2 (z 2 -z) + zρνh(z, t ) + ν 2 2 h(z, t ) 2 ,
with h(z, .) the unique continuous solution of the fractional Riccati equation given in Result 7.

Hedging under the rough Heston model

We are now in position to compute the dynamic of a call price with maturity T > 0 and strike K > 0 under the rough Heston model

C t = E[(S T -K ) + |F t ].
Assuming that ρ ≤ 0, Result 7 shows that there exists a > 1 such that E[(S t ) a ] is finite for any time t ≥ 0. We are therefore able to use a Fourier inversion technique similar to [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF] and obtain that

C t = 1 2π b∈R ĝ (-b)P T t (a + i b)d b
with ĝ (b) = e (1-a+i b)log(K ) (i b-a)(i b-a+1) and

P T t (a + i b) = E[exp (a + i b) log(S T ) |F t ],
the conditional characteristic function process. Using the fact that conditional on F t , the law of (S,V ) is still a rough Heston model and the characteristic function formula of Result 8, we deduce that

P T t (a + i b) = exp (a + i b) log(S t ) + T -t 0 χ(a + i b, T -t -s)E[V s+t |F t ]d s
is a deterministic function of underlying S t and the forward variance curve (E[V s+t |F t ]) s≥0 . Hence there exists a deterministic functional C such that

C t = C (T -t , S t , (E[V s+t |F t ]) s≥0 ).
The following result gives an explicit hedging formula for C t .

3. Part III: Hedging under the rough Heston model Result 9. The functional C admits a derivative ∂ S C according to the spot price S t and a Fréchet derivative ∂ V C according to the forward variance curve (E[V s+t |F t ]) s≥0 . Furthermore, we have that

C t = C 0 + t 0 ∂ S C (T -u, S u , E[V .+u |F u ])d S u + t 0 ∂ V C (T -u, S u , E[V .+u |F u ]).(d E[V .+u |F u ]),
where d E[V x |F u ] is the Itô differential at time u of the martingale

M u = E[V x |F u ], u ≤ x.
The importance of the last result is two-fold: It shows that we are able to hedge vanilla options in principle using the underlying and the forward variance curve and that the rough Heston model is Markovian in an infinite-dimensional space with state variables S t and (E[V s+t |F t ]) s≥0 . Of course, in practice, this strategy will be discretized and one will use liquid variance swaps. We can also hedge the forward variance curve risk by using one European option as the dynamics of the forward variance curve is produced by one Brownian noise.

The Markovian structure of the Volterra Heston model

After identifying the state variables of the rough Heston model, we investigate in Chapter IV a suitable general state space in which the forward variance curve lies. To do so, we extend the rough Heston model by replacing the fractional kernel (ts) α-1 by an arbitrary one. This leads to the Volterra Heston model defined below.

d S t = S t V t dW t V t = g 0 (t ) -λ t 0 K (t -s)V s d s + t 0 K (t -s)ν V s d B s . (8) 
The parameters λ, V 0 and ν are positive and W and B are two Brownian motions with correlation ρ. The kernel K ∈ L 2 loc (R + ) is assumed to be completely monotone of the form

K (t ) = ∞ 0 e -xt µ(d x), t > 0,
where µ is a positive measure of locally bounded variation such that

∞ 0 (1 ∧ (xh) -1/2 )µ(d x) ≤ C h (γ-1)/2 , ∞ 0 x -1/2 (1 ∧ (xh))µ(d x) ≤ C h γ/2 ; h > 0,
for some γ ∈ (0, 2] and positive constant C . The function g 0 is assumed to be continuous and satisfies

g 0 (t ) = E[V t ] + λ t 0 K (t -s)E[V s ]d s.
Hence, we can choose g 0 so that the model is consistent with the market forward variance curve.

Existence and uniqueness result

We start by looking for a general condition on g 0 to ensure the weak existence and uniqueness of a non-negative solution of the Volterra stochastic equation in (8) and hence the welldefinition of the Volterra Heston model. Let H γ/2 be the set of locally Hölder continuous functions of any order strictly smaller than γ/2 and L be the resolvent of the first kind of K defined by the unique measure of locally bounded variation such that

L * K (t ) = 1,
where * is the convolution operator. We denote by ∆ h the following operator

∆ h : f → f (h + •).
We can show that ∆ h K * L is of bounded variation and we denote by d (∆ h K * L) its associated measure. Following the same approach as in [START_REF] Jaber | Affine Volterra processes[END_REF], we obtain the following result.

Result 10. If g 0 belongs to the following admissible set:

G K = g 0 ∈ H γ/2 ; g 0 (0) ≥ 0 and ∆ h g 0 -(∆ h K * L)(0)g 0d (∆ h K * L) * g 0 ≥ 0, for any h ≥ 0 , there exists a unique weak non-negative solution V of the Volterra stochastic equation (8).

Although the definition of G K seems abstract, we can show that it contains many usual parameterizations of the forward variance curve, see Example IV.1 in Chapter IV.

Markovian structure

Following the same approach as in Chapter III, we identify the conditional law of the Volterra Heston model. More precisely, we obtain that the law of (S t 0 t ,V t 0 t ) t ≥0 = (S t +t 0 ,V t +t 0 ) t ≥0 is that of a Volterra Heston model with the following dynamics:

d S t 0 t = S t 0 t V t 0 t dW t 0 t , S t 0 0 = S t 0 V t 0 t = g t 0 (t ) -λ t 0 K (t -u)V t 0 u d u + t 0 K (t -u)ν V t 0 u d B t 0 u ,
with (W t 0 t , B t 0 t ) t ≥0 = (W t 0 +t -W t 0 , B t 0 +t -B t 0 ) t ≥0 a two-dimensional Brownian motion with correlation ρ, independent of F t 0 and g t 0 linked to the forward variance curve observed at time t 0 ,

g t 0 (t ) = E[V t 0 t |F t 0 ] + λ t 0 K (t -s)E[V t 0 s |F t 0 ]d s.
Hence, similarly to Result 6, the Volterra Heston model is Markovian with state variables the underlying S t and g t which is linked to the forward variance curve (E[V s+t |F t ]) s≥0 . Moreover, we are able to provide the state space in which the process (g t ) t ≥0 evolves.

Result 11. G K is stochastically invariant according to (g t ) t ≥0 , that is

g t ∈ G K , t ≥ 0.

Part IV: The rough Heston model in practice

We summarize in Chapter V the results obtained under the rough Heston model and show the excellent fit of this model to the SPX volatility surface. We also study in Chapter VI the consistency of this model with a feature raised in [START_REF] Zumbach | Time reversal invariance in finance[END_REF] concerning the time reversal asymmetry of financial time series.

Fitting the volatility surface

In Parts II and III, we build a rough version of the Heston model that appears naturally as a limit of a microscopic price and show that it enjoys tractable formulas for derivatives pricing and hedging. In Chapter V, we apply a calibration procedure on the SPX volatility surface and show the amazing fit of the model to the actual volatility surface. We also suggest, by a moments-matching procedure, an approximation method to compute instantaneously the implied volatility for a given expiry T . More precisely, we approximate the characteristic function by the one of a classical Heston model with flat forward variance curve given by 1 T T 0 E[V s ]d s, correlation ρ and volatility of volatility parameter given by

ν(T ) = 3 2H + 2 ν Γ H + 3 2 1 T 1 2 -H .

Consistency with the time reversal asymmetry

In [START_REF] Chicheportiche | The fine-structure of volatility feedback i: Multi-scale self-reflexivity[END_REF][START_REF] Zumbach | Time reversal invariance in finance[END_REF], it is observed empirically that the time reversal symmetry is violated in financial time series. This is the so-called Zumbach's effect. It is done by studying the time series of daily asset log-returns (r t ) t ≥0 and daily realized volatility (v t ) t ≥0 . More precisely, we observe that the empirical correlation between r 2 t -δ and v t is greater that the empirical correlation between r 2 t and v t -δ for any δ > δ 0 = 1 day. Under the rough Heston model (7), the daily return is given by1 r t = t t -δ 0 V s dW s , and the daily realized volatility is

v t = t t -δ 0 V s d s.
In Chapter VI, we show that the rough Heston model exhibits this phenomenon by computing

C (k, t ) = C ov(v t +kδ 0 , r 2 t ) -C ov(r 2 t +kδ 0 , v t ), t > δ 0 , k ∈ N.
Result 12. For small δ 0 , C (k, t ) is given approximatively by

C (k, t ) ∼ δ 0 →0 2(ρν) 2 δ 2α+1 0 g (k)E[V t ], k ∈ N, t > 0, with g (k) = 1
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We also compute the Zumbach's effect in the stationary regime Z (k) defined by

Z (k) = lim t →∞
C or r (v t +kδ 0 , r 2 t ) -C or r (r 2 t +kδ 0 , v t ).

Result 13. Consider the case where E[V t ] converges to a limiting variance V∞ when t goes to infinity. Then, for small δ 0 ,

Z (k) ∼ 2(ρν) 2 V∞ ν 2 λ 2 ∞ 0 f α,λ (s) 2 d s 2 V∞ + 6ν 2 λ 2 ∞ 0 f α,λ (s) 2 d s δ 2α-1 0 g (k),
where f α,λ is the Mittag-Leffler density function, α = H +1/2 and g (k) = 1

Γ(α+1) 2 1 0 ((k + s) α -(k + s -1) α ) (1- s) α d s.
Note that the Zumbach's effect is of order δ 2α-1 0 = δ 2H 0 . Hence as δ 0 is small, this effect is negligible when H = 1/2, and this effect becomes more important when the volatility is rough, i.e when H is close to zero.

Part V: Short-term behavior of the at-the-money implied volatility under rough volatility

While the Hawkes framework enabled us to to understand the pricing and hedging under the rough Heston model, this procedure cannot be applied for an arbitrary rough volatility model. We show in Chapter VII that asymptotic formulas for short maturity for the at-the-money skew and curvature can be obtained under a general class of stochastic volatility (that includes usual rough volatility models). This is done by applying a small-time Edgeworth expansion of the density of the asset price.

Model

We consider a general model such that the log-price is adapted to a filtration F = (F t ) t ≥0 and is given by

d X t = - 1 2 V t d t + V t dW t ,
where the variance process V is positive and adapted to a filtration G = (G t ) t ≥0 smaller than F. We assume that the Brownian motion is decomposed as W t = ρ t B t + 1 -ρ 2 t B t , with B independent of G and B is a G-Brownian motion. Denoting by p(K , θ) the put option price with maturity θ and strike K , we have p(F e zσ 0 (θ) , θ) F σ 0 (θ) =

Asymptotics results

Applying Assumption 7, we obtain an asymptotic expansion of the density of Z θ ,.

Result 14. Under Assumption 7, the density p θ of Z θ satisfies

sup x∈R (1 + x 2 ) α |p θ (x) -q θ (x)| = o(θ 2H )
as θ → 0 for any α ∈ N, where

q θ (x) =φ(x) -θ H a (1) θ (x) -θ 2H a (2) θ (x) - σ 0 (θ) 2 (xφ(x) -θ H a (3) θ (x)) + θ 2H 2 c θ (x) - θ H σ 0 (θ) 2 b θ (x) + σ 0 (θ) 2 8 (x 2 -1)φ(x).
Under usual stochastic volatility models, we can in general approximate q θ by q θ such that

sup x∈R (1 + x 2 ) α |q θ (x) -q θ (x)| = o(θ 2H ), with q θ (x) =φ x + σ 0 (θ) 2 1 + κ 3 (θ) H 3 x + σ 0 (θ) 2 -σ 0 (θ)H 2 x + σ 0 (θ) 2 θ H + φ(x) κ 4 (θ)H 4 (x) + κ 3 (θ) 2 2 H 6 (x) θ 2H ,
where κ 3 and κ 4 are bounded functions and H k denotes the kth Hermite polynomial. This enables us to compute the asymptotic behavior of the put price p(F e zσ 0 (θ) , θ) for small θ, leading to the following expansion of the implied volatility.

Result 15. For any z ∈ R,

σ BS ( θz, θ) = κ 2 (θ) 1 + κ 3 (θ) z κ 2 (θ) + κ 2 (θ) θ 2 θ H + 3κ 2 3 (θ) 2 -κ 4 (θ) + (κ 4 (θ) -3κ 2 3 (θ)) z 2 κ 2 2 (θ) θ 2H + o(θ 2H ),
where κ 2 (θ) = σ 0 (θ)/ θ and σ BS (k, θ) denotes the implied volatility with log-moneyness k and maturity θ. This leads to the following asymptotics of the at-the-money skew and curvature

∂ k σ BS (0, θ) = κ 3 (θ)θ H -1/2 + o(θ 2H -1/2 ), ∂ 2 k σ BS (0, θ) = 2 κ 4 (θ) -3κ 3 (θ) 2 κ 2 (θ) θ 2H -1 + o(θ 2H -1 ). 20 
6. Part VI: Markovian approximation of rough volatility models

Application to the rough Bergomi model

We apply these results to the rough Bergomi model introduced in [START_REF] Bayer | Pricing under rough volatility[END_REF], where the variance process is defined as follows

V t = E[V t ] exp η H 2H t 0 (t -s) H -1/2 dB s - η 2 H 2 t 2H ,
where d 〈W, B 〉 t = ρd t . We can check then that Assumption 7 is satisfied and that q θ can be computed explicitly with

κ 3 (θ) = ρη H H 2 1 θ H σ 0 (θ) 3 θ 0 exp - η 2 H 8 t 2H t 0 (t -s) H -1/2 E[V s ]dsE[V t ]dt , κ 4 (θ) = (1 + 2ρ 2 )η 2 H H (2H + 1) 2 (2H + 2) + ρ 2 η 2 H H β(H + 3/2, H + 3/2) 2(H + 1/2) 2 .
where β is the beta function.

Part VI: Markovian approximation of rough volatility models

In Chapter VIII, we consider the following general class of rough volatility models:

d S t = S t V t dW t , t ∈ [0, T ], V t = V 0 + 1 Γ(H + 1/2) t 0 (t -s) H -1/2 λ(θ 0 (s) -V s )d s + 1 Γ(H + 1/2) t 0 (t -s) H -1/2 σ(V s )d B s . (9)
The parameters λ, V 0 are positive, H ∈ (0, 1/2) is the Hurst parameter2 , σ is a deterministic function, θ 0 is a mean reversion level allowed to be time dependent and W and B are two Brownian motions with correlation ρ. Note that the rough Heston model ( 7) is a particular case of (9) with σ(x) = ν x. The weak existence of such model is guaranteed by assuming that θ 0 satisfies Assumption 6 and that σ is a continuous function with linear growth such that σ(0) = 0. In that case, the variance process V admits Hölder continuous paths of any order strictly less than H . Due to the fractional kernel (ts) H -1/2 , the variance process is neither Markovian nor a semimartingale. In the spirit of Parts II and III, we would like to overcome these difficulties in order to manage the pricing and hedging of derivatives by looking for a tractable approximation of (9). We expect from this approximation to display a Markovian structure such that the variance process is a semi-martingale.
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Multi-factor approximation of rough volatility models

Inspired by [CC98, CCM00, HS15, Mur11], the key-idea of our multi-factor approximation comes from the observation that the fractional kernel

K (t ) = t H -1/2
Γ(H +1/2) is the Laplace transform of a non-negative measure µ:

K (t ) = ∞ 0 e -γt µ(d γ); µ(d γ) = γ -H -1 2 Γ(H + 1/2)Γ(1/2 -H ) d γ.
Applying a stochastic Fubini Theorem, we obtain that

V t = g (t ) + ∞ 0 V γ t µ(d γ), t ∈ [0, T ],
with

dV γ t = (-γV γ t -λV t )d t + σ(V t )d B t , V γ 0 = 0, γ ≥ 0, and 
g (t ) = V 0 + t 0 K (t -s)θ 0 (s)d s.
Heuristically, this exhibits an infinite-dimensional Markovian structure of the variance process where the state variables are given by the factors (V γ t ) γ≥0 . In order to reduce the number of state variables, we shall approximate the measure µ by a weighted sum of Dirac measures

µ n = n i =1 c n i δ γ n i , n ≥ 1,
leading to the following approximation V n = (V n t ) t ≤T of the variance process V :

V n t = g n (t ) + n i =1 c n i V n,i t , t ∈ [0, T ],
(10)

dV n,i t = (-γ n i V n,i t -λV n t )d t + σ(V n t )d B t , V n,i 0 = 0,
where

g n (t ) = V 0 + t 0 K n (t -u)θ 0 (u)d u, (11) 
and

K n (t ) = n i =1 c n i e -γ n i t .
Before discussing the accuracy of this approximation, we first prove the existence and uniqueness of (10) by writing it in a Volterra stochastic equation form:

V n t = g n (t ) + t 0 K n (t -s) -λV n s d s + σ(V n s )d B s , t ∈ [0, T ]. (12) 
Consequently, we adapt the arguments in [START_REF] Jaber | Affine Volterra processes[END_REF] to prove the weak existence of a nonnegative solution of (12) and those in [START_REF] Yamada | On the uniqueness of solutions of stochastic differential equations[END_REF] to obtain the strong uniqueness under the following assumption.

6. Part VI: Markovian approximation of rough volatility models Assumption 8. We assume that θ 0 is a non-negative function satisfying Assumption 6 and that σ is η-Hölder continuous with σ(0) = 0 and η ∈ [1/2, 1].

This leads us to the following definition of the multi-factor approximation

d S n t = S n t V n t dW t , t ∈ [0, T ],
with V n given by (10). This model is Markovian with n + 1 state variables which are the spot price S n and the factors of the variance process V n,i for i ∈ {1, . . . , n}.

Convergence of the multi-factor approximation

We now discuss the choice of the positive weights (c n i ) 1≤i ≤n and mean reversion coefficients

γ n 1 < • • • < γ n
n , which is crucial for the accuracy of the approximation. From (12), we expect that V n converges to V if the kernel K n is close to K for large n. Hence inspired by [START_REF] Carmona | Approximation of some Gaussian processes[END_REF], we look for a condition on the weights and mean-reversions such that

T 0 K n (s) -K (s) 2 d s → 0,
holds as n goes to infinity. This is done by taking

c n i = η n i η n i -1 µ(d γ), γ n i = 1 c n i η n i η n i -1 γµ(d γ), i ∈ {1, . . . , n}.
where (η n i ) 0≤i ≤n are auxiliary parameters with η n 0 = 0 and

η n i -1 ≤ γ n i ≤ η n i for i ∈ {1, . . . , n}.
In that case, we obtain the convergence of the approximated kernel K n to K under the following assumption.

Assumption 9. We assume that the auxiliary parameters (η n i ) 0≤i ≤n satisfy

η n n → ∞, n i =1 η n i η n i -1 (γ n i -γ) 2 µ(d γ) → 0,
as n goes to infinity.

The next result shows that under this choice of the weights and mean-reversions, the multifactor approximation is accurate and converges to the proper rough volatility model.

Result 16. Under Assumptions 8 and 9, The sequence of multi-factor models (S n ,V n ) n≥1 is tight for the uniform topology and any point limit (S,V ) is the rough volatility model (9).

This result is obtained by studying the stability of general d -dimensional stochastic Volterra equations, see Section 3.4 in Chapter VIII.

In the same spirit as Result 16, Markovian lifts of general affine rough volatility models have been developed in [START_REF] Cuchiero | Generalized feller processes and markovian lifts of stochastic volterra processes: the affine case[END_REF].
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Application to the rough Heston model

We now come back to the rough Heston case, i.e σ(x) = ν x. Results 5 and 7 provide the formula of the log-price characteristic function. It can be rewritten as follows:

exp T 0 F (z, h(z, T -s))g (s)d s , where z ∈ C with ℜ(z) ∈ [0, 1], F (z, x) = 1 2 (z 2 -z) + (ρνz -λ)x + ν 2 2
x 2 and h(z, •) is the unique solution of the fractional Riccati equation given in Result 8. This fractional Riccati equation can be solved numerically through the Adam schemes presented in Section 5.1 in Chapter II. We show that the multi-factor approximation gives rise to another natural numerical scheme.

Multi-factor scheme for the fractional Riccati equations

Considering the multi-factor approximation (S n ,V n ) n≥1 of the rough Heston model, we can use the characteristic function formula shown in [START_REF] Jaber | Affine Volterra processes[END_REF] that generalizes Result 5 for Volterra affine models to get

E[exp(z log(S n T /S 0 ))] = exp( T 0 F (z, h n (z, T -s))g n (s)d s),
where h n (z, .) is the unique solution of the Volterra Riccati equation,

h n (z, t ) = t 0 K n (t -s)F (z, h n (z, s))d s.
As K n is close to K under Assumption 9 for large n, we expect the convergence of h n (z, .) to the solution of the fractional Riccati equation h(z, .).

Result 17.

There exists a positive constant C such that, for any a

∈ [0, 1], b ∈ R and n ≥ 1, sup t ∈[0,T ] |h n (a + i b, t ) -h(a + i b, t )| ≤ C (1 + b 4 ) T 0 |K n (s) -K (s)|d s.
This result suggests a new numerical method for the computation of the fractional Riccati solution h(z, •). In fact, defining

h n,i (z, t ) = t 0 e -γ n i (t -s) F (z, h n (z, s))d s, i ∈ {1, . . . , n}, we get h n (z, t ) = n i =1 c n i h n,i (z, t ),
and (h n,i (z, •)) 1≤i ≤n solves the following n-dimensional system of ordinary Riccati equations

∂ t h n,i (z, t ) = -γ n i h n,i (z, t ) + F (z, h n (z, t )), h n,i (z, 0) = 0, i ∈ {1, . . . , n}.
This n-dimensional Riccati equation can be solved numerically by usual finite difference methods leading to h n (z, •) as an approximation of the fractional Riccati solution. Numerical illustrations are given in Section 4.2 in Chapter VIII, where we compare the convergence speed of this numerical for different choices of the weights (c n i ) 1≤i ≤n and mean reversion parameters

(γ n i ) 1≤i ≤n .

Upper bound for call prices error

Using Result 17 and a Fourier transform method, we compute an upper bound of the difference between the call price C n (T, k) under the multi-factor approximation and the call price C (T, k) under the rough Heston model, where k denotes the log-strike and T the maturity. In order to obtain an explicit upper bound, we consider a multi-factor approximation (S n ,V n ) where g n initially defined by ( 11) is replaced by

g n (t ) = t 0 K n (t -s) V 0 s -H -1 2 Γ(1/2 -H ) + θ 0 (s) d s.
Note that in that case, the convergence of (S n ,V n ) n≥1 stated in Result 16 does not hold anymore. However, we may show the convergence in law for the Skorokhod topology of

(S n , • 0 V n s d s) n≥1 to (S, • 0 V s d

s).

Result 18. There exists a positive constant c > 0 such that

|C (k, T ) -C n (k, T )| ≤ c T 0 |K (s) -K n (s)|d s, n ≥ 1.

Part VII: Optimal make-take fees for market making regulation

In Chapter IX, we consider the problem of an exchange aiming at attracting liquidity on its platform. This is done by creating an incentive for the market maker to reduce the spread through a compensation ξ proposed by the exchange. The aim of Chapter IX is to find the optimal contract ξ that maximizes the utility of the exchange. We solve this problem using a principal-agent framework developed in [START_REF] Hölmstrom | Moral hazard and observability[END_REF][START_REF] Mirrlees | Notes on welfare economics, information and uncertainty[END_REF]. We argue that this optimal policy leads to higher quality liquidity and lower trading costs for investors.

The model

Let T > 0 be a final time horizon. We consider a market where there is only one market maker who has a view on the efficient price of the asset S t given by a Bachelier dynamic:

S t = S 0 + σW t , t ∈ [0, T ], (13) 
with S 0 > 0, W a Brownian motion and σ > 0 the volatility of the price. This market maker sets the bid and ask prices

P b t = S t -δ b t and P a t = S t + δ a t .
The arrival of the ask (resp. bid) market orders is modeled by a point process (N a t ) t ∈[0,T ] (resp.

(N b t ) t ∈[0,T ] ) with intensity (λ a t ) t ∈[0,T ] (resp. (λ b t ) t ∈[0,T ]
). Hence, assuming that the volume of market orders is constant and equal to unity, the inventory of the market maker is

Q t = N b t -N a t , t ∈ [0, T ].

Introduction

We impose a critical absolute inventory q ∈ N above which the market maker stops quoting on the ask or bid side. Moreover, we take the intensity of buy (resp. sell) market orders arrival as a decreasing function of the ratio between the extra cost of each trade paid by the market taker compared to the efficient price. This extra cost is the sum of the spread δ a t (resp. δ b t ) imposed by the market maker and the transaction cost c > 0 collected by the exchange for each order. This leads us to assume that

λ a t = λ(δ a t )1I {Q t >-q} , and 
λ b t = λ(δ b t )1I {Q t < q} , with λ(x) = Ae -k (x+c) σ ,
for fixed positive constants A and k.

Admissible controls and market maker's problem

The market maker controls the spread

(δ t ) t ∈[0,T ] = (δ a t , δ b t ) t ∈[0,T ]
which can be any predictable process that is uniformly bounded by a positive constant δ ∞ that will be fixed later to a sufficiently large value. We denote by A the set of such admissible controls and by P δ the probability measure associated to the control δ under which S follows (13) and

N δ,a t = N a t - t 0 λ(δ a r )1I {Q r >-q} d r, N δ,b t = N b t - t 0 λ(δ b r )1I {Q r < q} d r,
are martingales. Thanks to the uniform boundedness of the controls, we show that all the probability measures P δ indexed by δ ∈ A are equivalent.

Under the control δ ∈ A , the market maker profit and loss PL δ t at time t is the sum of the cash flow earned from each market order

X δ t = t 0 P a r d N a r - t 0 P b r d N b r ,
and his inventory risk Q t S t . Furthermore, we consider that the exchange is remunerated for each market order arrival and so aims at keeping the market liquid. Thus, we assume that it proposes to the market maker a contract, defined by an F T -measurable random variable ξ, in order to create an incentive to attract liquidity on the platform by reducing his spread. Hence, in addition to the realized profit and loss, the market maker receives this compensation ξ at the final time T , and chooses the optimal spread by solving the following problem

V MM (ξ) = sup δ∈A J MM (δ, ξ) where J MM (δ, ξ) = E δ -e -γ(ξ+PL δ T -PL δ 0 ) , (14) 
where γ > 0 is the absolute risk aversion parameter of the CARA utility function of the market maker. For each compensation ξ, we show that there exists a unique optimal response δ(ξ) = ( δa (ξ), δb (ξ)) of the market marker.

Admissible contracts and exchange's problem

The exchange is remunerated by c > 0 for each market order and pays the contract ξ at the final time T . Hence, its profit and loss during the time interval

[0, T ] is c(N a T -N a 0 + N b T -N b 0 ) -ξ.
7. Part VII: Optimal make-take fees for market making regulation Thus the exchange optimally chooses the contract to maximize its CARA utility function with absolute risk aversion parameter η > 0,

V E 0 = sup ξ∈C E δ(ξ) -e -η(c(N a T -N a 0 +N b T -N b 0 )-ξ) , (15) 
where C is the set of admissible contracts. It is chosen to be the set of any F T -measurable random variable satisfying some integrability conditions to ensure the well-definition of the problems ( 14) and (15), and V MM (ξ) > R, since we consider a market maker that accepts only contracts with optimal utility above a threshold utility R.

Solving the market maker's problem

We start by solving the problem (14) of the market maker facing an arbitrary contract ξ ∈ C proposed by the exchange. In order to do so, we first solve ( 14) when ξ has the following representation

ξ = Y Y 0 ,Z T = Y 0 + t 0 Z a r d N a r + Z b r d N b r + Z S r d S r + 1 2 γσ 2 (Z S r +Q r ) 2 -H (Z r ,Q r ) d r, ( 16 
)
where Y 0 ∈ R and Z = (Z a , Z b , Z S ) belongs to the set Z of predictable processes satisfying some integrability conditions. Here, H (z, q) denotes the Hamiltonian of ( 14) defined by

H (z, q) = sup |δ a |∨|δ b |≤δ ∞ h(δ, z, q), with h(δ, z, q) = 1 -e -γ(z a +δ a ) γ λ(δ a )1I {q>-q} + 1 -e -γ(z b +δ b ) γ λ(δ b )1I {q< q} , for any δ = (δ a , δ b ) ∈ [-δ ∞ , δ ∞ ] 2 and z = (z S , z a , z b ) ∈ R 3 and q ∈ Z.
When ξ = Y Y 0 ,Z T , we can show using Itô's formula on

U δ T = -exp -γ(Y Y 0 ,Z T + PL δ T -PL δ 0 ) , that E δ [U δ T ] is optimal when δ = δ(ξ) = ( δa (ξ), δb (ξ)) given by δa t (ξ) = ∆(Z a t ), δb t (ξ) = ∆(Z b t ), where ∆(z) = (-δ ∞ ) ∨ -z + 1 γ log 1 + σγ k ∧ δ ∞ . (17) 
In that case, the optimal utility is V M M (ξ) = -e -γY 0 .

The following result states that any admissible contract ξ ∈ C admits a unique representation given by (16).

Result 19. For any admissible contract ξ, there exist a unique

Y 0 ∈ R and Z ∈ Z such that ξ = Y Y 0 ,Z T
. Under this representation, V M M (ξ) = -e -γY 0 and the optimal spread δ(ξ) is given by [START_REF]BFG +[END_REF]. In particular, the set of admissible contracts C coincides with

Ξ = Y Y 0 ,Z T : Z ∈ Z , and Y 0 ≥ Ŷ0 = -1 γ log (-R) .

Introduction

Designing the optimal contract

Using Result 19, the exchange's problem (15) reduces to

V E 0 = sup Y 0 ≥ Ŷ0 sup Z ∈Z E δ(Y Y 0 ,Z T ) -e -η c(N a T -N a 0 +N b T -N b 0 )-Y Y 0 ,Z T .
The objective function above being decreasing in Y 0 , we get that

V E 0 = e η Ŷ0 sup Z ∈Z E δ(Y Ŷ0 ,Z T ) -e -η c(N a T -N a 0 +N b T -N b 0 )-Y 0,Z T .
Hence, the exchange's problem ( 15) is reduced to a classical stochastic control problem. The HJB equation of this control problem is given by

   ∂ t v(t , q) + γη 2 σ 2 2(γ+η) q 2 v(t , q) -C v(t , q) 1I {q>-q} v(t ,q) v(t ,q-1) k ση + 1I {q< q} v(t ,q) v(t ,q+1) k ση = 0, v(T, q) = -1, (18) with C = A ση k exp -k σγ log(1 + σγ k ) + (1 + k ση ) log 1 - σ 2 γη (k+σγ)(k+ση) , when δ ∞ is large enough, more precisely when δ ∞ ≥ ∆ ∞ = C ∞ + σ k (2C 2 +C 1 q2 )T, (19) 
see Proposition 1 in Chapter IX. Furthermore, the optimal control ẑ(t , q) = ( ẑs (t , q), ẑa (t , q), ẑb (t , q)) is given by

ẑs (t , q) = - γ γ + η q, ẑa (t , q) = ζ 0 + 1 η log v(t , q) v(t , q -1) , and ẑb (t , q) = ζ 0 + 1 η log v(t , q) v(t , q + 1)
.

with ζ 0 = c + 1 η log 1 - σ 2 γη (k+σγ)(k+ση) .
Note that, applying the change of variable u = (-v) -k ση , this HJB equation ( 18) is reduced to a linear one

∂ t u(t , q) -C 1 q 2 u(t , q) +C 2 u(t , q + 1)1I {q< q} + u(t , q -1)1I {q>-q} = 0, t ∈ [0, T ), u(T, q) = 1,
leading to the existence of a unique solution to (18).

Result 20. Assume that δ ∞ satisfies (19), then the optimal contract for the problem of the exchange (15) is given by

ξ = Ŷ0 + T 0 Ẑ a r d N a r + Ẑ b r d N b r + Ẑ S r d S r + 1 2 γσ 2 Ẑ S r +Q r 2 -H Ẑr ,Q r d r, with Ẑ S r = ẑs (r,Q r -), Ẑ a r = ẑa (r,Q r -), and Ẑ b r = ẑb (r,Q r -).
The market maker's optimal effort is given by

δa t = δa t ( ξ) = -Ẑ a t + 1 γ log(1 + σγ k ), δb t = δb t ( ξ) = -Ẑ b t + 1 γ log(1 + σγ k ).
7. Part VII: Optimal make-take fees for market making regulation

The optimal contract ξ depends on the inventory trajectory of the market maker. More precisely, we notice that Ẑ a (resp. Ẑ b ) is an increasing (resp. decreasing) function of Q. Hence, when the inventory is highly positive (resp. negative), the exchange is encouraging the market maker to attract buy (resp. sell) market orders. Furthermore, the presence of the integral T 0 Ẑ S r d S r means that the exchange shares the inventory risk of the market maker with the rate γ γ+η . This risk sharing has the role to encourage the market maker to take more inventory risk by accepting more market orders.

From Result 20, the optimal spread is given

-2c + σ k log u(t ,Q t -) 2 u(t ,Q t --1)u(t ,Q t -+ 1) - 2 η log 1 - σ 2 γη (k + σγ)(k + ση) + 2 γ log(1 + σγ k ).
In practice,

u(t , q) 2 u(t , q -1)u(t , q + 1)
is close to unity and σγ/k is small. Thus, the optimal spread is approximated by

-2c + 2σ k .
Remarking that the optimal utility V E 0 does not depend on the transaction cost c, the exchange may fix c so that the spread is fixed to its minimal value of one tick by taking

c ≈ σ k - 1 2 Tick.

Impact of the optimal policy

In Section 5 of Chapter IX, we compare the results obtained under the optimal policy with the situation without incentive policy from the exchange towards the market maker activities, that is the case ξ = 0, considered in [AS08, GLFT13]. In particular, we obtain that

• The incentive policy reduces the spread and hence increases the liquidity of the market and the average number of market orders occurred in the platform.

• The incentive policy increases the expected total profit and loss of the market maker and the exchange.

• The incentive policy reduces the total transaction costs paid by the market taker.

Introduction

Leverage effect is a well-known stylized fact of financial data. It refers to the negative correlation between price returns and volatility increments: when the price of an asset is increasing, its volatility drops, while when it decreases, the volatility tends to become larger. The name "leverage" comes from the following interpretation of this phenomenon due to Black [START_REF] Black | Studies of stock price volatility changes[END_REF] and Christie [START_REF] Christie | The stochastic behavior of common stock variances: Value, leverage and interest rate effects[END_REF]: When an asset price declines, the associated company becomes automatically more leveraged since the ratio of its debt with respect to the equity value becomes larger. Hence the risk of the asset, namely its volatility, should become more important. Another economic interpretation of the leverage effect, inverting causality, is that the forecast of an increase of the volatility should be compensated by a higher rate of return, which can only be obtained through a decrease in the asset value, see [START_REF] Campbell | No news is good news: An asymmetric model of changing volatility in stock returns[END_REF][START_REF] Figlewski | Is the leverage effect a leverage effect? Available at SSRN[END_REF][START_REF] French | Expected stock returns and volatility[END_REF].

From an empirical viewpoint, leverage effect and the plausible interpretations for it have been widely studied in the literature, see for example [BW00, BLT06, EN93, WX02]. Furthermore, some statistical methods enabling us to use high frequency data have been built to measure it, see [START_REF] Ait-Sahalia | The leverage effect puzzle: Disentangling sources of bias at high frequency[END_REF][START_REF] Wang | The estimation of leverage effect with highfrequency data[END_REF]. From a modeling perspective, the will to reproduce the leverage phenomenon has been a key motivation in the development of sophisticated time series models, for example of ARCH type, see [START_REF] Bollerslev | ARCH modeling in finance: A review of the theory and empirical evidence[END_REF][START_REF] Ding | A long memory property of stock market returns and a new model[END_REF][START_REF] Nelson | Conditional heteroskedasticity in asset returns: A new approach[END_REF][START_REF] Rodríguez | Revisiting several popular garch models with leverage effect: Differences and similarities[END_REF][START_REF] Zakoian | Threshold heteroskedastic models[END_REF]. Finally, in financial engineering, it has become clear in the late eighties that it is necessary to introduce leverage effect in derivatives pricing frameworks in order to accurately reproduce the behavior of the implied volatility surface. This led to the rise of famous stochastic volatility models, where the Brownian motion driving the volatility is (negatively) correlated with that driving the price, see for example [HKLW02, Hes93, HW87, SS91] for SABR, Heston, Hull and White and Stein and Stein stochastic volatility models.

As mentioned above, traditional explanations for leverage effect are based on "macroscopic" arguments from financial economics. In this paper, we wish to address the following question: Could microscopic interactions between agents naturally lead to leverage effect at larger time scales? Hence we would like to know whether part of the foundations for leverage effect could be microstructural. To do so, our idea is to consider a very simple agent-based model, encoding well-documented and understood behaviors of market participants at the microscopic scale. Then we aim at showing that in the long run, this model leads to a price dynamic exhibiting leverage effect. This would demonstrate that typical strategies of market participants at the high frequency level naturally induce leverage effect.

One could argue that transactions take place at the finest frequencies and prices are revealed through order book type mechanisms. Therefore, it is an obvious fact that leverage effect arises from high frequency properties. However, what we wish to show here is that under certain market conditions, typical high frequency behaviors, having probably no connection with the financial economics concepts mentioned earlier, may give rise to some leverage effect at the low frequency scales. It is important to emphasize that we do not claim that leverage effect should be fully explained by high frequency features. What we simply say is that part of it could be generated from the microstructure of the asset.

Another important stylized fact of financial data, which has been highlighted recently in [START_REF] Gatheral | Volatility is rough[END_REF], is the rough nature of the volatility process. Indeed, it is shown in [START_REF] Gatheral | Volatility is rough[END_REF] that for a very wide range of assets, historical volatility time-series exhibit a behavior which is much rougher than that of a Brownian motion. More precisely, the dynamics of the log-volatility are typically very well modeled by a fractional Brownian motion with Hurst parameter around 0.1, that is a process with Hölder regularity of order 0.1. Furthermore, using a fractional Brownian motion with small Hurst index also enables us to reproduce very accurately the features of the volatility surface, see [START_REF] Bayer | Pricing under rough volatility[END_REF][START_REF] Gatheral | Volatility is rough[END_REF].

The fact that for basically all reasonably liquid assets, volatility is rough, with the same order of magnitude for the roughness parameter, is of course very intriguing. Thus we also aim in 1. Introduction this work at understanding how such a surprising feature can be generated. Some elements in this direction are already provided in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF]. Here we want to go further and investigate the behavior of the long term volatility in our microscopic model encoding the main stylized facts of modern market microstructure. We wish to show that the rough nature of the volatility naturally emerges from typical behaviors of market participants at the high frequency scale. 

λ + t λ - t = µ + µ -+ t 0 ϕ 1 (t -s) ϕ 3 (t -s) ϕ 2 (t -s) ϕ 4 (t -s) . d N + s d N - s .
Here µ + and µ -are positive constants and the functions (ϕ i ) i =1,...4 are non-negative with associated matrix called kernel matrix, see Section 2.1 for further details. Hawkes processes have been introduced by Hawkes in [START_REF] Hawkes | Point spectra of some mutually exciting point processes[END_REF]. They are said to be self-exciting, in the sense that the instantaneous jump probability depends on the location of the past events. 

P t = N + t -N - t .
Thus, in this approach, N + t corresponds to the number of upward jumps of the asset in the time interval [0, t ] and N - t to the number of downward jumps. Hence, the instantaneous probability to get an upward (downward) jump depends on the arrival times of the past upward and downward jumps. Furthermore, by construction, the price process lives on a discrete grid, which is obviously a crucial feature of high frequency prices in practice. Statistical properties of this model have been studied in details in [START_REF] Bacry | Modelling microstructure noise with mutually exciting point processes[END_REF]. In particular, it is shown that such dynamic is very convenient in order to reproduce the commonly observed bid-ask bounce effect. This simple tick-by-tick price model enables us to encode very easily the following important stylized facts of modern electronic markets in the context of high frequency trading: i ) Markets are highly endogenous, meaning that most of the orders have no real economic motivation but are rather sent by algorithms in reaction to other orders, see [START_REF] Filimonov | Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data[END_REF][START_REF] Hardiman | Critical reflexivity in financial markets: a Hawkes process analysis[END_REF] and Section 2.1.3 for more details.

i i ) Mechanisms preventing statistical arbitrages take place on high frequency markets. Indeed, at the high frequency scale, building strategies which are on average profitable is hardly possible, see [START_REF] Abergel | Understanding the stakes of high-frequency trading[END_REF].

i i i ) There is some asymmetry in the liquidity on the bid and ask sides of the order book. This simply means that buying and selling are not symmetric actions. Indeed, consider for example a market maker, with an inventory which is typically positive. He is likely to raise the price by less following a buy order than to lower the price following the same size sell order. This is because its inventory becomes smaller after a buy order, which is a good thing for him, whereas it increases after a sell order, see [BCST12, BP09, HS06, HS81, TT12].

i v) A significant proportion of transactions is due to large orders, called metaorders, which are not executed at once but split in time by trading algorithms, see [START_REF] Almgren | Optimal execution of portfolio transactions[END_REF][START_REF] Lehalle | Market microstructure in practice[END_REF].

In a Hawkes process framework, the first of these properties corresponds to the case of so-called nearly unstable Hawkes processes, that is Hawkes processes for which the stability condition is almost saturated. This means the spectral radius of the kernel matrix integral is smaller than but close to unity, see [START_REF] Filimonov | Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data[END_REF][START_REF] Hardiman | Critical reflexivity in financial markets: a Hawkes process analysis[END_REF][START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF][START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF]. The second and third ones impose a specific structure on the kernel matrix and the fourth one leads to functions ϕ i with heavy tails, see [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF]. The parametrization of our price process corresponding to the four properties above is developed in more details in Sections 2.1 and 3.1.

In this work, we study the long term behavior of such Hawkes-based ultra high frequency price models, for which the parameters are consistent with the four mentioned properties of market microstructure. Doing so, we investigate the macroscopic price dynamics arising from a situation where the four ingredients above are put together. More precisely, we start with the case of a Hawkes-based model where Properties i , i i and i i i only are satisfied. Our first result states that in this setting, the macroscopic dynamic of the price is that of a Heston stochastic volatility model as introduced in [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF], where the volatility is (negatively) correlated with the price. Hence leverage effect is produced. This extends some results in [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF] where a non-correlated Heston limit is obtained. Then, when in addition Property i v is encoded in our microscopic model, we show that a so-called rough-Heston model, where the volatility is rough and negatively correlated with the price, is generated at low frequency. More precisely, as in [START_REF] Gatheral | Volatility is rough[END_REF], the volatility process is driven by a fractional Brownian motion with Hurst parameter smaller than 1/2.

The computations and techniques applied in this paper are partially inspired by the papers [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF][START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF]. In [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF][START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], a rigorous connection is established between one-dimensional nearly unstable Hawkes processes and (fractional) Cox-Ingersoll-Ross processes. This relation aimed at linking the behavior of the order flow to that of the integrated variance. Here we do not focus on the order flow and integrated variance but on a link between the microscopic price process and the macroscopic price dynamic. This requires to work in a more intricate multidimensional setting but enables us to derive more satisfactory microstructural foundations for the low frequency behavior of prices. Indeed, in practice, one observes prices and not volatility. Of course our results are not the first ones relating high frequency dynamics to long term behaviors with stochastic volatility. The most famous example is probably that of Nelson who shows in [START_REF] Nelson | ARCH models as diffusion approximations[END_REF] that in specific settings, GARCH processes converge to (uncorrelated)

2. From high frequency features to leverage effect stochastic volatility models, see also [START_REF] Corradi | Reconsidering the continuous time limit of the GARCH (1, 1) process[END_REF][START_REF] Duan | Augmented GARCH(p, q) process and its diffusion limit[END_REF][START_REF] Lindner | Continuous time approximations to garch and stochastic volatility models[END_REF]. However, to our knowledge, we provide the first natural, non ad-hoc approach allowing for leverage effect, and even rough volatility, in the long term limit of the price dynamic.

The paper is organized as follows. In Section 2, we parametrize our Hawkes-based microscopic price model so that Properties i , i i and i i i are satisfied. Then we show that after proper rescaling, this price converges in the long run to a Heston stochastic volatility model where leverage effect is observed. In Section 3, we incorporate Property i v into our microscopic model and prove that it leads to a rough Heston model at the macroscopic scale, where leverage effect is still generated. Some proofs are relegated to Section 4 and some useful technical results are given in an appendix.

Notations Let R + and R * + be respectively the set of real nonnegative and positive numbers and N * = N -{0} be the set of positive integers. For any (n, m) ∈ (N * ) 2 , M n,m (R) denotes the space of n × m matrices with values in R and M n (R) denotes M n,n (R) . For d ∈ N * , the space of d -dimensional vectors with real values R d will be identified with M d ,1 (R). For X ∈ M l ,m (R) and Y ∈ M m,n (R), X .Y stands for the usual matrix multiplication and X refers to the transpose of X . Finally we denote by • for the inner production, namely u

• v = u .v for any u, v ∈ R n .

From high frequency features to leverage effect

We build in this section a Hawkes-based microscopic tick-by-tick model in which Properties i , i i and i i i are satisfied. This leads us to a specific parametrization of our Hawkes process. We show that after suitable rescaling, the long term price dynamic becomes that of a Heston model. We start by defining our microscopic price model.

Building a suitable microscopic price model

The Hawkes process framework

We consider a tick-by-tick price model based on a bi-dimensional Hawkes process

N t = (N + t , N - t ), with intensity λ t = (λ + t , λ - t ) defined by λ + t λ - t = µ + µ -+ t 0 ϕ 1 (t -s) ϕ 3 (t -s) ϕ 2 (t -s) ϕ 4 (t -s) . d N + s d N - s ,
where µ + and µ -are positive constants and

φ = ϕ 1 ϕ 3 ϕ 2 ϕ 4 : R + → M 2 (R * + )
is a kernel matrix whose components ϕ i are positive and locally integrable. Inspired by [START_REF] Bacry | Modelling microstructure noise with mutually exciting point processes[END_REF][START_REF] Bacry | Some limit theorems for Hawkes processes and application to financial statistics[END_REF][START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF], our model for the ultra high frequency transaction price P t is simply given by

P t = N + t -N - t .
Thus N + t is the number of upward jumps of one tick of the asset in the time interval [0, t ] and

N -
t is the number of downward jumps of one tick of the asset in the time interval [0, t ].

Let us now interpret the intensity process λ + t (interpretation for λ - t goes similarly). At time t , the probability to get a new one-tick upward jump between t and t + d t is given by λ + t d t . This probability can be decomposed into three terms:

• µ + d t , which is the Poissonian part of the intensity and therefore corresponds to the probability that the price goes up because of some exogenous reason.

• t 0 ϕ 1 (t -s)d N + s d t ,
which is the probability of upward jump induced by past upward jumps.

• t 0 ϕ 3 (t -s)d N - s d t ,
which is the probability of upward jump induced by past downward jumps.

In particular, we see here that when the ϕ i have suitable shapes, it is easy to reproduce the bid-ask bounce effect by imposing a high probability of upward (resp. downward) jump right after a downward (resp. upward) jump.

Encoding Properties i i and i i i

We now provide a specific structure on the parameters of the intensity process so that Properties i i and i i i are satisfied in our model. Property i i is the no-statistical arbitrage condition. In a high frequency setting, this amounts to say that on average, there should be essentially as many upward as downward jumps on any given time-period. We translate this within our Hawkes framework noting that

E[N + t ] = t 0 E[λ + s ]d s, E[N - t ] = t 0 E[λ - s ]d s,
and

E[λ + t ] = µ + + t 0 ϕ 1 (t -s)E[λ + s ]d s + t 0 ϕ 3 (t -s)E[λ - s ]d s, E[λ - t ] = µ -+ t 0 ϕ 2 (t -s)E[λ + s ]d s + t 0 ϕ 4 (t -s)E[λ - s ]d s.
Therefore we obtain that a simple and natural way to implement the no-statistical arbitrage condition is to set

E[λ + t ] = E[λ - t ] by imposing µ + = µ -and ϕ 1 + ϕ 3 = ϕ 2 + ϕ 4 .
In terms of microscopic price movements, Property i i i , which states that the ask side is more liquid than the bid side, can be translated as follows: the conditional probability to observe an upward jump right after an upward jump is smaller than the conditional probability to observe 2. From high frequency features to leverage effect a downward jump right after a downward jump. In our Hawkes framework, it amounts to have ϕ 1 (x) < ϕ 4 (x) or similarly ϕ 3 (x) > ϕ 2 (x) when x is close to zero. For simplicity and technical convenience, we in fact make the more restrictive assumption that there exists some β > 1 such that

ϕ 3 = βϕ 2 .
Therefore we assume the following structure for the intensity process

λ + t λ - t = µ 1 1 + t 0 φ(t -s). d N + s d N - s , (1) 
where

φ = ϕ 1 βϕ 2 ϕ 2 ϕ 1 + (β -1)ϕ 2 ,
with µ > 0 and β ≥ 1. We now explain how to deal with Property i .

Dealing with Property i : Nearly unstable Hawkes processes

Property i states that modern markets are highly endogenous. To understand how this high degree of endogeneity can be translated through our Hawkes-based price model, let us consider for simplicity a one-dimensional Hawkes process Ñt with intensity

λt = μ + t 0 φ(t -s)d Ñs ,
where μ > 0 and φ is a non-negative measurable function such that its L 1 norm || φ|| 1 satisfies || φ|| 1 < 1. This last constraint is called stability condition and plays the same role as that which states that the coefficient of an order 1 auto-regressive process has to be smaller than one, see [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF]. In particular, this condition ensures the existence of a stationary solution for the intensity (when time starts at -∞). Such one-dimensional Hawkes processes are usually considered to model order flows, see [START_REF] Bacry | Hawkes processes in finance[END_REF] and the references therein. So Ñt can typically be viewed as the number of transactions in the time interval [0, t ].

From a probabilistic viewpoint, the cluster representation of Hawkes processes, see [START_REF] Hawkes | A cluster process representation of a self-exciting process[END_REF], enables to see Ñ as a population process. In this population, migrants arrive following a Poisson process with intensity μ. Each migrant gives birth to children according to an inhomogeneous Poisson process with intensity φ. Then each child also gives birth to children according to an inhomogeneous Poisson process with intensity φ and so on. Coming back to financial markets, let us consider a dichotomy between "economic" (or exogenous) orders, which are executed because some market participants have a fundamental will to buy or sell, and endogenous orders, which are just sent in reaction to other orders. In the Hawkes context, it is therefore very natural to make the following interpretation: exogenous orders correspond to migrants and endogenous orders to descendants of migrants, see [START_REF] Filimonov | Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data[END_REF][START_REF] Hardiman | Critical reflexivity in financial markets: a Hawkes process analysis[END_REF][START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF]. Now remark that each migrant, or descendant of a migrant, has on average φ 1 children. Hence a migrant has on average

k≥1 φ k 1 = φ 1 1 -φ 1
descendants. Now, the number of people in a "family" being the number of descendants plus one (the plus one corresponding to the initial migrant), the proportion of descendants in the whole population is given by || φ|| 1 . In our financial interpretation, it means that || φ|| 1 corresponds to the proportion of endogenous orders in the market. Hence, to get a model which is in agreement with Property i , we need to take || φ|| 1 smaller than but close to unity. This situation is called nearly unstable case, and is actually in agreement with the empirical measurements for || φ|| 1 made in [START_REF] Bacry | Non-parametric kernel estimation for symmetric Hawkes processes. application to high frequency financial data[END_REF][START_REF] Filimonov | Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data[END_REF][START_REF] Hardiman | Critical reflexivity in financial markets: a Hawkes process analysis[END_REF].

Let us now come back to our bi-dimensional Hawkes process of interest with intensity defined by (1). In the same way as in the one-dimensional case, one can define the degree of endogeneity as the spectral radius of the kernel matrix integral, that is

S ( ∞ 0 φ(s)d s) = ϕ 1 1 + β ϕ 2 1 ,
where S denotes the spectral radius operator. We want to assume that this spectral radius is smaller than but close to unity. To do so, we introduce an asymptotic framework, in the spirit of [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF][START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF]. More precisely, we work on a sequence of probability spaces (Ω T , F T , P T ) , indexed by T > 0, on which N T = (N T,+ , N T,-) is a bi-dimensional Hawkes process defined on [0, T ] and with intensity of the form

λ T t = λ T,+ t λ T,- t = µ T 1 1 + t 0 φ T (t -s).d N T s .
(2)

For given T , the probability space is equipped with the filtration (F T t ) t ≥0 , where F T t is the σ-algebra generated by (N T s ) s≤t . Respecting the constraints on the parameters given in (1) and taking into account the discussion above about the endogeneity of the market, we make the following assumption on λ T t .

Assumption 1. We have µ T > 0 and

φ T = a T φ, φ = ϕ 1 βϕ 2 ϕ 2 ϕ 1 + (β -1)ϕ 2 ,
where β ≥ 1, ϕ 1 and ϕ 2 are two positive measurable functions such that

S ( ∞ 0 φ(s)d s) = ϕ 1 1 + β ϕ 2 1 = 1
and a T is an increasing sequence of positive numbers converging to one.

From high frequency features to leverage effect

From now on, our microscopic price process is given by

P T t = N T,+ -N T,-.
Thus, under Assumption 1, we are indeed working in the nearly unstable case since

S ( ∞ 0 φ T (s)d s) = a T .
Therefore, our microscopic price process P T reproduces Properties i , i i and i i i . We now focus on the asymptotic behavior of P T .

The macroscopic limit of the high frequency model with leverage

We give in this section our convergence result for the microscopic price towards a Heston model. In fact such result can be found in [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF] in the case β = 1. As in [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF], we need to consider the following assumption on the asymptotic framework and the kernel function.

Assumption 2. There exist positive parameters λ, µ and m such that

T (1 -a T ) → T →∞ λ, µ T = µ,
and

S ( ∞ 0 xφ(x)d x) = m < ∞.
It is well-explained in [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF] that in the light-tailed case (which is characterized by the second part of Assumption 2), only one asymptotic setting enables us to recover a non-degenerate limit. This is when the kernel L 1 norm a T goes to unity such that T (1a T ) is of order one. Now let

ψ T = k≥1 (φ T ) * k ,
where

(φ T ) * 1 = φ T and for k > 1, (φ T ) * k (t ) = t 0 φ T (s)(φ T ) * (k-1) (t -s)d s.
The following technical assumption is also required in [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF].

Assumption 3. The function ψ T = k≥1 (φ T ) * k is uniformly bounded and φ is differentiable such that each component φ i j satisfies ||φ i j || ∞ < ∞ and ||φ i j || 1 < ∞.
The uniform boundedness assumption here is not really restrictive. Indeed, as it will be clear from the computations in Section 2.3.2, a sufficient condition for it is the fact that the largest eigenvalue of φ is non-increasing, see also [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF]. In our model, this is for example the case if both ϕ 1 and ϕ 2 are non-increasing.

When β = 1, under Assumptions 1, 2 and 3, it is proved in [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF] that the rescaled price process

1 T P T t T = N T,+ t T -N T,- t T
T converges in law over [0, 1] towards a Heston model defined by

P t = 1 1 -( ϕ 1 1 -ϕ 2 1 ) t 0 X s dW s , with d X t = λ m ( 2µ λ -X t )d t + 1 m X t d B t , X 0 = 0,
where W and B are two independent Brownian motions. Remark that in this setting, the time scale T is at the same time the reciprocal of price tick size. Thus as T goes to infinity, the price moves more frequently with smaller size. Such an asymptotic analysis enables us to derive a stochastic volatility process as a macroscopic model. Note also that µ T = µ > 0 in Assumption 2 is quite intuitive in this scaling, meaning that exogenous moves of size 1/T occur µT times on average in a unit time interval, maintaining non-zero contribution from exogenous activity in the limit.

However, when β = 1, the important Property i i i about the liquidity asymmetry between the bid and ask sides of the order book is not reproduced in the dynamic of the microscopic price.

Our first main theorem below shows that this property, encoded by the fact that β > 1, is the microscopic feature at the origin of leverage effect at low frequency.

Theorem 1. Under Assumptions 1, 2 and 3, as T tends to infinity, the rescaled microscopic price

1 T P T t T = N T,+ t T -N T,- t T T , t ∈ [0, 1],
converges in law for the Skorokhod topology to the following Heston model2 

P t = 1 1 -( ϕ 1 1 -ϕ 2 1 ) 2 1 + β t 0 X s dW s , with d X t = λ m (β + 1) µ λ -X t d t + 1 m 1 + β 2 1 + β X t d B t , X 0 = 0, where (W, B ) is a correlated bi-dimensional Brownian motion with d 〈W, B 〉 t = 1 -β 2(1 + β 2 ) d t .
Hence, putting Properties i , i i and i i i together in a simple but reasonable way (through the microscopic price P T ), we naturally obtain stochastic volatility and leverage effect in the long run. Indeed, when β > 1, the asymmetry in the liquidity at the microstructural level 2. From high frequency features to leverage effect generates a negative correlation between low frequency price returns and volatility increments. Nevertheless, Properties i and i i are also crucial in order to obtain Theorem 1. In fact, no stochastic volatility can be obtained without Property i and the failure of Property i i would lead to a drift process in the limit.

Finally, note that from a technical point of view, to our knowledge, this result is the first scaling limit of a microscopic price process inducing leverage effect in the long run in a non ad-hoc way.

We now give in the next section a general result about the convergence of nearly unstable multidimensional Hawkes processes. This result is the key element of the proof of Theorem 1.

Convergence of nearly unstable multidimensional Hawkes processes

Setting

In order to show Theorem 1, we study the convergence of a general sequence of nearly unstable d -dimensional Hawkes processes defined on [0, T ], with T tending to infinity and d ∈ N * . We keep the notation N T for our Hawkes process of interest whose intensity λ T is defined by

λ T t = µ T 1 + t 0 φ T (t -s).d N T s ,
where µ T > 0 and φ T = a T φ, with a T an increasing sequence of positive numbers converging to unity, and the matrix φ : R + → M d (R * + ) has integrable components such that

S ( ∞ 0 φ(s)d s) = 1.
We use also the notation

M T t = N T t - t 0 λ T s d s
for the martingale associated to N T . We furthermore assume that for any t ≥ 0, φ(t ) is diagonalizable on R. We write λ 1 (t ) ≥ • • • ≥ λ d (t ) for the eigenvalues of φ(t ) and v 1 , . . . , v d ∈ R d for the corresponding eigenvectors. We assume that these eigenvectors do not depend on t (as it is the case under Assumption 1). We also recall that from Frobenius-Perron theorem,

for i ≥ 2, |λ i (t )| < λ 1 (t ) = S φ(t ) and v 1 can be taken in R d + . Notice that in this setting, ∞ 0 λ 1 (s)d s = ∞ 0 S (φ(s))d s = S ( ∞ 0 φ(s)d s) = 1 and that for i ≥ 2, λ i 1 < 1.
Finally, we define an orthonormal basis (e 1 , . . . , e d ) of R d such that e 1 • v 1 > 0 and span(e 2 , . . . , e d ) = span(v 2 , . . . , v d )

and set v = e 1 -1 e 1 •v 1 v 1 . Note that v belongs to span(v 2 , . . . , v d ).

Intuition for the result and theorem

We now provide some non-rigorous developments which are helpful in order to understand the asymptotic behavior of the multidimensional process N T . We work under Assumptions 2 and 3 and the setting of Section 2.3.1. We have

λ T t = µ T 1 + t 0 φ T (t -s).d M T s + t 0 φ T (t -s).λ T s d s.
Using Lemma 2 in Appendix together with the Fubini theorem and the fact that the convolution product ψ T * φ T satisfies ψ T * φ T = ψ Tφ T , we get

λ T t = µ T 1 + µ T t 0 ψ T (t -s)d s.1 + t 0 ψ T (t -s).d M T s , (3) 
where

ψ T = k≥1 (φ T ) * k = k≥1 a k T φ * k .
The function ψ T being uniformly bounded and µ T being constant equal to µ > 0, we get by the same procedure used in [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF], that E[λ T t T ] is of order T . Thus a natural rescaling in time and space leads us to consider for t ∈ [0, 1] the process

C T t = 1 T λ T t T .
From (3), we obtain

C T t = µ T 1 + µ t 0 ψ T T (t -s) d s.1 + t 0 ψ T T (t -s) .d M T s , with M T t = M T t T /T . Note that since 〈M T , M T 〉 t = diag( t 0 λ T s d s),
we get that

E[〈M T , M T 〉 t ] = 1 T 2 E diag( t T 0 λ T s d s) = diag( t 0 E[C T s ]d s)
is bounded. Now remark that for each i ∈ {1, . . . , d }, using a recursion, we easily see that for

any k ≥ 1, v i .φ * k (t ) = λ * k i (t )v i . Consequently, defining for i ∈ {1, . . . , d } ψ T i = k≥1 a k T λ * k i ,
we have

v i .ψ T = ψ T i v i .
Hence we can write the dynamic of v i • C T t as follows

v i • C T t = µ T (v i • 1) + µ(v i • 1) t 0 ψ T i T (t -s) d s + t 0 ψ T i T (t -s) (v i • d M T s ). (4) 
2. From high frequency features to leverage effect Thus, to understand the asymptotic behavior of v i •C T as T goes to infinity, we need to study that of the functions ψ T i (T.). To do so, one can compute the Fourier transform ψT j (T.) of ψ T j (T.) for each j ∈ {1, . . . , d }. We have

ψT j (T.)(z) = x∈R + ψ T j (T x)e i xz d x = 1 T k≥1 a k T λj (z/T ) k = a T λj (z/T )
T 1a T λj (z/T ) .

Now, as T goes to infinity, λj (z/T ) tends to λ j 1 and recall that λ j 1 < 1 for j ≥ 2. Thus, for j ≥ 2, ψ T j (T.) should asymptotically vanish, as should consequently be the case for v j •C T .

For j = 1, using Assumption 2 and the same approach developed in [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF], we obtain that

ψT 1 (T.)(z) → T →∞ 1 λ -i zm ,
which is the Fourier transform of

x ∈ R + → 1 m e -λ m x .
Hence we can expect that ψ 1 (T x) converges to 1 m e -λ m x .

Let us now deduce from the preceding computation the behavior of v 1 • C T . From (4), this quantity can be written

v 1 • C T t = µ T (v 1 • 1) + µ(v 1 • 1) t 0 ψ T 1 T (t -s) d s + t 0 ψ T 1 T (t -s) v 2 1 • C T s d B T s , (5) 
where v 2 1 = (v 2 1,i ) 1≤i ≤d and

B T t = t T 0 v 1 • d M T s T v 2 1 • λ T s . (6) 
The sequence of processes B T has been specifically chosen since the associated sequence of quadratic variations converges to identity. Thus the limit of B T is a Brownian motion.

Decomposing v 2 1 in the basis (e 1 , . . . , e d ) defined in Section 2.3.1, we get

v 2 1 • C T t = e 1 • v 2 1 e 1 • v 1 (v 1 • C T t ) + (e 1 • v 2 1 )(v • C T t ) + 2≤i ≤d (e i • v 2 1 )(e i • C T t ).
Thus, since for any vector v ∈ span(v 2 , . . . , v d ), v •C T t converges to zero, we deduce that v 2 1 •C T t has the same asymptotic behavior as

e 1 • v 2 1 e 1 • v 1 (v 1 • C T t ).
Therefore, letting T go to infinity in (5), we can expect v 1 •C T t to be the solution of the following stochastic differential equation

X t = µ m t 0 e -λ m (t -s) d s(v 1 • 1) + 1 m e 1 • v 2 1 e 1 • v 1 t 0 e -λ m (t -s) X s d B s .
This exactly corresponds to a Cox-Ingersoll-Ross process since it can be rewritten

d X t = λ m µ λ (v 1 • 1) -X t d t + 1 m e 1 • v 2 1 e 1 • v 1 X t d B t , X 0 = 0.
Hence, using the decomposition of C T t in the basis (e 1 , . . . , e d ) given by

C T t = 1 e 1 • v 1 (v 1 • C T t )e 1 + (v • C T t )e 1 + 2≤i ≤d (e i • C T t )e i ,
we finally obtain the following theorem Theorem 2. Under the setting and notations of Section 2.3.1 together with Assumptions 2 and 3, the multidimensional process

(C T t , B T t ) = 1 T λ T t T , t T 0 v 1 • d M T s T v 2 1 • λ T s , t ∈ [0, 1]
converges in law for the Skorokhod topology to B ) where B is a Brownian motion and X satisfies the following (one-dimensional) Cox-Ingersoll-Ross dynamic

( 1 e 1 •v 1 X e 1 ,
d X t = λ m µ λ (v 1 • 1) -X t d t + 1 m e 1 • v 2 1 e 1 • v 1 X t d B t , X 0 = 0.
Theorem 2, whose rigorous proof is given in Section 4.1, is a general result about the asymptotic behavior of multidimensional nearly unstable Hawkes processes. We see in particular that the non-degeneracy concentrates around the first eigenvector. Also, from Theorem 2, we obtain an immediate corollary given below which will enable us to prove Theorem 1.

Application to our microscopic model

Let us consider a bi-dimensional Hawkes processes sequence N T = (N T,+ , N T,-) with intensity λ T = (λ T,+ , λ T,-) as in Assumption 1. In this case, the Hawkes processes sequence follows the setting of Section 2.3.1 with d = 2,

λ 1 = ϕ 1 + βϕ 2 , λ 2 = ϕ 1 -ϕ 2 ,
and

v 1 = 1 β , v 2 = 1 -1 .
We therefore have the following corollary of Theorem 2 which will lead us to the long term limit of our microscopic price model.

From high frequency features to rough volatility

Corollary 1. Under Assumptions 1, 2 and 3, the process

(C T,+ t ,C T,- t , B T t ) = 1 T λ T,+ t T , 1 T λ T,- t T , t T 0 d M T,+ s + βd M T,- s T (λ T,+ s + β 2 λ T,- s ) , t ∈ [0, 1]
converges in law for the Skorokhod topology to ( 1 β+1 X , 1 β+1 X , B ) where B is a Brownian motion and X satisfies the following (one-dimensional) Cox-Ingersoll-Ross dynamic

d X t = λ m ( µ λ (β + 1) -X t )d t + 1 m 1 + β 2 1 + β X t d B t , X 0 = 0.
Here X essentially corresponds to a limiting volatility process. The Brownian motion in the dynamic of X comes from the limit of B T , the process defined in (6) and driven by v 1 • d M T s . In our microscopic model, M T = (M T,+ , M T,-). As will be clear from the proof of Theorem 1, the Brownian motion driving the price in Theorem 1 arises from the limiting behavior of M T,+ -M T,+ . Hence, the emergence of leverage effect in the limit is due to the non-zero covariation between v 1 • d M T s and M T,+ -M T,+ .

3 From high frequency features to rough volatility

Encoding Property i v

In Section 2, we have built a microscopic Hawkes-based price model compatible with Properties i , i i and i i i . Theorem 1 states that it converges in the long run to a classical Heston model. However, Property i v, that is the wide presence of metaorders on the market, which is a crucial feature of high frequency markets, is not encoded in such models. As explained in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], this can be translated in the Hawkes framework by considering the model defined by Assumption 1 but under the condition that the kernel matrix exhibits a heavy tail, as observed in practice, see [START_REF] Bacry | Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling[END_REF][START_REF] Hardiman | Critical reflexivity in financial markets: a Hawkes process analysis[END_REF]. Consequently, we need to replace Assumption 2 in order to get a slowly decreasing behavior for the kernel matrix. This also implies a modification of the asymptotic setting in order to retrieve a non-degenerate scaling limit, see [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF]. More precisely, in this section, instead of Assumption 2 we consider the following one.

Assumption 4. There exist α ∈ (1/2, 1) and C > 0 such that

αx α ∞ x λ 1 (s)d s → x→∞ C .
Moreover, for some λ * > 0 and µ > 0,

T α (1 -a T ) → T →∞ λ * > 0, T 1-α µ T → T →∞ µ.
Of course, the first eigenvalue under Assumption 1 being ϕ 1 + βϕ 2 , Assumption 4 on λ 1 can also be expressed in term of the asymptotic behavior of ϕ 1 and ϕ 2 . Note that in practice, estimated values for α are actually close to 1/2, see [START_REF] Bacry | Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling[END_REF][START_REF] Hardiman | Critical reflexivity in financial markets: a Hawkes process analysis[END_REF]. We now give the asymptotic behavior of our price model under Assumption 4.

The rough macroscopic limit of the high frequency model

Let λ = αλ * / C Γ(1-α) . We have the following result for the long term limit of our microscopic model compatible with Properties i , i i , i i i and i v.

Theorem 3. Under Assumptions 1 and 4, as T tends to infinity, the rescaled microscopic price

1 -a T µT α P T t T = 1 -a T µT α (N T,+ t T -N T,- t T ), t ∈ [0, 1],
converges in the sense of finite dimensional laws to the following rough Heston model

P t = 1 1 -( ϕ 1 1 -ϕ 2 1 ) 2 β + 1 t 0 Y s dW s ,
with Y the unique solution of

Y t = 1 Γ(α) t 0 (t -s) α-1 λ (1 + β) -Y s d s + 1 Γ(α) t 0 (t -s) α-1 λ 1 + β 2 λ * µ(1 + β) Y s d B s , where (W, B ) is a correlated bi-dimensional Brownian motion with d 〈W, B 〉 t = 1 -β 2(1 + β 2 ) d t .
Furthermore, the process Y t has Hölder regularity α -1/2 -ε for any ε > 0.

Remark 1. Theorem 3 states the convergence in the sense of finite dimensional laws and not in Skorokhod topology. The latter does not hold in general. Nevertheless, we have the convergence for the Skorokhod topology of the integrated price t 0 1a T µT α P T sT d s to t 0 P s d s. Such convergence also holds for the rescaled microscopic price itself under the additional assumption ϕ 1 = ϕ 2 . Remark 2. In the heavy-tailed case, the tick size is taken of order T -α . The condition T 1-α µ T → µ > 0 means that the exogenous part still does not vanish in the limit since we have exogenous moves of size O(T -α ) for µ T T = O(T α ) times on average in a unit interval.

Compared to Theorem 1, the only significant difference in the limiting dynamic here is the kernel (ts) α-1 appearing in the two integrals in the volatility process Y t . Such kernel is similar to that which allows to define a fractional Brownian motion. Indeed, recall that a fractional Brownian motion W H with Hurst parameter H ∈ (0, 1) can be built through the Mandelbrot-van Ness representation

W H t = 1 Γ(H + 1/2) 0 -∞ (t -s) H -1 2 -(-s) H -1 2 dW s + 1 Γ(H + 1/2) t 0 (t -s) H -1 2 dW s . (7) 
3. From high frequency features to rough volatility Thus, the tail exponent α in Theorem 3 corresponds to a Hurst parameter α -1/2. Our α belonging to (1/2, 1) and in practice being close to 1/2, the Hurst parameter associated to our limiting volatility is (much) smaller than 1/2. Therefore, the volatility trajectories are much rougher than that of a Brownian motion and this is why we call our process rough Heston model.

Hence, we have finally shown that when put together in a simple but sufficiently realistic framework, Properties i , i i , i i i and i v, which are obvious stylized facts of market microstructure, lead to rough volatility and leverage effect. To our knowledge, this is the first result explaining from an agent-based point of view (although in reduced form) the rough stochastic nature of volatility and in addition leverage effect.

The proof of Theorem 3 is given in Section 4.4. As for Theorem 1 it is based on a result on general multidimensional Hawkes processes (but here with heavy tail) which we explain in the next section.

Convergence of heavy-tailed nearly unstable multidimensional Hawkes processes

We give in this section a general result for the asymptotic behavior of heavy-tailed nearly unstable multidimensional Hawkes processes. This result will be the key to the proof of Theorem 3. We consider the same setting as in Section 2.3.1 but we work here under Assumption 4. This will imply that the result we can obtain here is slightly weaker than that of Theorem 2. In particular the sequence of intensities is typically not tight and thus cannot converge. However, the same kind of non-rigorous computations as in Section 2.3.2 still enables us to obtain intuition about the result as explained below.

Intuition for the result and theorem

As in Section 2.3.2, we consider a suitable renormalization of the intensity, namely we work with the process

C T t = 1 -a T µ T λ T t T , t ∈ [0, 1].
Remark that in the setting of Section 2.3.2, the intensity is multiplied by 1/T . This can be done since under Assumption 2 the factor (1a T )/µ T is of order 1/T . This is no longer the case under Assumption 4.

Following the same computations as in Section 2.3.2, we obtain

v i • C T t = (1 -a T )(v i • 1) + (v i • 1) t 0 ρ T i (t -s)d s + t 0 ρ T i (t -s)(v i • d M T s )
,

where ρ T i = T (1-a T )ψ T i (T.) and M T t = M T t T /(T µ T ), which is a martingale such that E[〈 M T , M T 〉 t ] is bounded.
Hence we need to study the behavior of ρ T i .

In the same way as in Section 2.3.2, using its Laplace transform we get that ρ T i should vanish as T goes to infinity for i ≥ 2. For i = 1, we have

ρT 1 (z) = ∞ 0 ρ T 1 (x)e -zx d x = (1 -a T ) ψT 1 (z/T ) = (1 -a T ) a T λ1 (z/T ) 1 -a T λ1 (z/T ) .
Then, integrating by parts and using that λ 1 = 1, we get

λ1 (z) = ∞ 0 λ 1 (x)e -zx d x = 1 -z ∞ 0 ∞ x λ 1 (u)d ue -zx d x.
Therefore,

λ1 (z) = 1 -z α ∞ 0 ( x z ) α ∞ x/z λ 1 (u)d ux -α e -x d x.
Hence, using Assumption 4 together with the dominated convergence theorem we obtain

λ1 (z) = 1 - C α Γ(1 -α)z α + o z→0 (z).
From this, we easily deduce that for z > 0,

ρT 1 (z)→ λ λ + z α ,
which is the Laplace transform of the Mittag-Leffler density function f α,λ defined in Appendix I.C. Consequently, using the same arguments as in Section 2.3.2, we get that C T t should essentially satisfy

C T t → T →∞ 1 e 1 • v 1 Y t e 1 ,
where Y is solution of the following rough stochastic differential equation

Y t = (v 1 • 1)F α,λ (t ) + 1 µλ * e 1 • v 2 1 e 1 • v 1 t 0 f α,λ (t -s) Y s d B s , with F α,λ (t ) = t 0 f α,λ (s)d s.
In fact, this last equation is equivalent to that of a rough Cox-Ingersoll-Ross process,

Y t = 1 Γ(α) t 0 (t -s) α-1 λ(v 1 • 1 -Y s )d s + 1 Γ(α) t 0 (t -s) α-1 λ µλ * e 1 • v 2 1 e 1 • v 1 Y s d B s , see Proposition 9.
Thus, the preceding computations seem to indicate that in the heavy tailed case, the renormalized intensity process should converge to a rough Cox-Ingersoll-Ross process. Contrary to the light tailed case, this intuition is actually not correct in general when the kernel matrix has a slowly decreasing behavior. However, it still holds provided we consider the integrated 3. From high frequency features to rough volatility intensity instead of the intensity itself. We now give the rigorous result.

For t ∈ [0, 1], let us define

X T t = 1 -a T T α µ N T t T , Λ T t = 1 -a T T α µ t T 0 λ T s d s, Z T t = T α µ 1 -a T (X T t -Λ T t ). (8) 
We have the following theorem.

Theorem 4. Under the setting and notations of Section 2.3.1 together with Assumption 4, the process

(Λ T t , X T t , Z T t ) t ∈[0,1]
defined by (8) converges in law for the Skorokhod topology to (Λ, X , Z ) where

Λ t = X t = 1 e 1 • v 1 ( t 0 Y s d s)e 1
and for 1 ≤ i ≤ d ,

Z i t = t 0 e 1,i e 1 • v 1 Y s d B i s ,
where (B 1 , . . . , B d ) is a d -dimensional Brownian motion and Y is the unique solution of the following rough stochastic differential equation

Y t = 1 Γ(α) t 0 (t -s) α-1 λ(v 1 • 1 -Y s )d s + 1 Γ(α) t 0 (t -s) α-1 λ µλ * e 1 • v 2 1 e 1 • v 1 Y s d B s , with B = 1 e 1 • v 2 1 d i =1 e 1,i v 2 1,i B i ,
and λ = αλ * / C Γ(1 -α) . Furthermore, Y has Hölder regularity α -1 2 -ε for any ε > 0.

The rigorous proof of Theorem 4 is given in Section 4.3.

Application to our microscopic model

As for Theorem 2, Theorem 4 has an immediate corollary which will be crucial in the proof of Theorem 3. Let us consider a bi-dimensional Hawkes processes sequence N T = (N T,+ , N T,-) with intensity λ T = (λ T,+ , λ T,-) as in Assumption 1. We have the following result.

Corollary 2. Under Assumptions 1 and 4, the process (Λ T t , X T t , Z T t ) t ∈[0,1] defined by (8) converges in law for the Skorokhod topology to (X , X , Z ) where

X t = 1 β + 1 t 0 Y s d s 1 1 , Z t = t 0 1 β + 1 Y s d B 1 s d B 2 s ,
where (B 1 , B 2 ) is a bi -dimensional Brownian motion and Y is the unique solution of the following rough stochastic differential equation

Y t = 1 Γ(α) t 0 (t -s) α-1 λ((1 + β) -Y s )d s + 1 Γ(α) t 0 (t -s) α-1 λ 1 + β 2 λ * µ(1 + β) Y s d B s , with B = B 1 + βB 2 1 + β 2 .

Proofs

From now on, c denotes a positive constant independent of T that may vary from line to line.

Proof of Theorem 2

In this proof, which is quite inspired by [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF], the notations defined in Section 2.3.2 are in force. We start with a lemma often used in the sequel.

A useful lemma

We have the following result.

Lemma 1. Let f T : R + → R be a sequence of measurable functions such that for some c > 0 and any x 1 ≥ 0, x 2 ∈ R, x 3 ≥ 0, x 4 ≥ 0 and T > 0,

a) f T ∈ L 1 (R + ) ∩ L 2 (R + ) and x≥0 | f T (x)| 2 d x → T →∞ 0, b) | f T (x 1 )| ≤ c, c) | f T (x 2 )| ≤ c(1 ∧ 1 |x 2 | ), d ) | f T (x 3 ) -f T (x 4 )| ≤ cT |x 3 -x 4 |.
Then, under the setting of Section 2.3.1 together with Assumptions 2 and 3, the process

( t 0 f T (t -s)d M T s ) t ∈[0,1]
converges to zero in probability as T goes to infinity, uniformly over compact sets (u.c.p.).

The proof of Lemma 1 is given in Appendix I.A.1.

Convergence of

v i • C T for i ∈ {2, . . . , d }
We now consider the convergence of C T = 1 T λ T .T on the vector space span(v 2 , . . . , v d ). The following proposition holds.

Proofs

Proposition 1. Let 2 ≤ i ≤ d . Under the setting of Section 2.3.1 together with Assumptions 2 and 3, v i • C T converges u.c.p. to zero as T goes to infinity.

Proof:

Recall first Equation (4)

v i • C T t = µ T (v i • 1) + µ(v i • 1) t 0 ψ T i (T (t -s))d s + t 0 ψ T i (T (t -s))(v i • d M T s ).
To get the result, it is therefore enough to show that the family of functions (ψ T i (T.)) T >0 satisfies the four points of Lemma 1. Point b) is easily obtained from the fact that v i .ψ T = ψ T i v i together with the uniform boundedness of ψ T due to Assumption 3. Now remark that from Assumption 3, we deduce that λ i (x) tends to zero as x goes to infinity. Then, using integration by parts on the Fourier transform of λ i together with Assumption 3, we obtain

| λi (ω)| ≤ (|λ i (0)| + ∞ 0 |λ i (x)|d x) 1 |ω| ∧ λ i 1 . (9) 
Point c) follows using that

| ψT i (T.)(ω)| = |a T λi (ω/T )| |T 1 -a T λi (ω/T ) | ≤ |a T λi (ω/T )| T (1 -λ i 1 ) ≤ c(1 ∧ 1 |ω| ).
We also obtain from the previous inequality that ψT i (T.) is square-integrable and so is ψ T i (T.).

Moreover by Parseval equality, we have

x≥0 |ψ T i (T x)| 2 d x = 1 2π ω∈R | ψT i (T.)(ω)| 2 d ω ≤ c ω∈R | λi (ω/T )| 2 T 2 (1 -λ i 1 ) 2 d ω ≤ c T z∈R | λi (z)| 2 d z.
Since λi is square-integrable, the right hand side of the last inequality tends to zero and thus a) is obtained.

Finally d ) is shown using that ψ T i = a T λ i + a T λ i * ψ T i to write |(ψ T i ) (T x)| = T |a T λ i (T x) + a T (λ i * ψ T i )(T x) + a T λ i (0)ψ T i (T x)| ≤ T ( λ i ∞ + λ i 1 ψ T i ∞ + |λ i (0)| ψ T i ∞ ).

Convergence of v 1 • C T

We have just shown that v i • C T tends to zero for i ∈ {2, . . . , d }. The fact that λ i 1 < 1 for i ∈ {2, . . . , d } was crucial in order to obtain this result. We now treat the term v 1 •C T , recalling that λ 1 1 = 1. We have the following result.

Proposition 2. Under the setting of Section 2.3.1 together with Assumptions 2 and 3, the process

(v 1 • C T t , B T t ) t ∈[0,1]
converges in law for the Skorokhod topology to (X , B ) where B is a Brownian motion and X satisfies the following Cox-Ingersoll-Ross dynamic

d X t = λ m ( µ λ (v 1 • 1) -X t )d t + 1 m e 1 • v 2 1 e 1 • v 1 X t d B t , X 0 = 0.
Proof:

1. Rewriting v 1 • C T Let S T t = d i =2 (e i • C T t )(e i • v 2 1 ) + (v • C T t )(e 1 • v 2 1 ).
From Proposition 1, we get that S T t tends u.c.p. to zero. We have

v 2 1 • C T t = S T t + e 1 • v 2 1 e 1 • v 1 v 1 • C T t ,
which together with (5) leads to the following expression for

v 1 • C T v 1 • C T t = µ T (v 1 • 1) + µ(v 1 • 1) t 0 ψ T 1 (T s)d s + t 0 ψ T 1 T (t -s) S T s + e 1 • v 2 1 e 1 • v 1 (v 1 • C T s )d B T s .
2. Convergence of ψ T 1 (T.) For x ≥ 0, let us define

f T (x) = ψ T 1 (T x) - 1 m exp(- λx m ).
We have seen in Section 2.3.2 that f T (x) should be close to zero as T goes to infinity. More precisely, we have the following proposition whose proof is given in Corollaries 4.1, 4.2, 4.3 and 4.4 in [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF] Proposition 3. Under the setting of Section 2.3.1 together with Assumptions 2 and 3, f T satisfies Properties a), b), c) and d ) of Lemma 1.

The Cox-Ingersoll-Ross like dynamic of v

1 • C T We can write v 1 • C T t = R T t + µ m (v 1 • 1) t 0 exp(- λs 
m )d s + 1 m e 1 • v 2 1 e 1 • v 1 t 0 exp(- λ(t -s) m ) v 1 • C T s d B T s , with R T t = µ T (v 1 • 1) + µ(v 1 • 1) t 0 f T (s)d s + t 0 f T (t -s)(v 1 • d M T s ) (10) + 1 m t 0 exp(- λ(t -s) m ) S T s + e 1 • v 2 1 e 1 • v 1 (v 1 • C T s ) - e 1 • v 2 1 e 1 • v 1 (v 1 • C T s ) d B T s .

Proofs

Then, using integration by parts, we get that

t 0 exp(- λ(t -s) m ) v 1 • C T s d B T s is equal to t 0 v 1 • C T s d B T s - λ m t 0 s 0 exp(- λ(s -u) m ) v 1 • C T u d B T u d s.
This can be rewritten

t 0 v 1 • C T s d B T s -λ e 1 • v 1 e 1 • v 2 1 t 0 v 1 • C T s -R T s - µ λ (v 1 • 1) 1 -exp(- λs m ) d s.
Consequently,

v 1 • C T t = U T t + t 0 λ m µ λ (v 1 • 1) -v 1 • C T s d s + 1 m e 1 • v 2 1 e 1 • v 1 t 0 v 1 • C T s d B T s , (11) 
with

U T t = R T t + λ m t 0 R T s d s.

Convergence of U T

We now show that U T converges u.c.p. to zero. This vanishing behavior comes from that of f T and S T . Of course it is enough to prove that R T converges u.c.p to zero. From Proposition 3 together with Lemma 1, it is obvious that the first three terms in (10) tend to zero. We now treat the last term.

First, remark that

| S T s + βv 1 • C T s -βv 1 • C T s | ≤ |S T s |,
which tends to zero as T goes to infinity thanks to Proposition 1. Furthermore, observe that since 〈M T , M T 〉 = diag( . 0 λ T ) and λ T ≥ µ1, we have

E t T 0 v 2 1 • d M T s T v 2 1 • λ T s 2 = E t T 0 v 4 1 • λ T s d s T 2 (v 2 1 • λ T s ) 2 ≤ E t T 0 v 4 1 • λ T s d s T 2 µ(v 4 1 • λ T s ) . (12) 
We get that this is smaller than c/T and consequently goes to zero. Therefore, B T is a sequence of martingales with bounded jumps whose quadratic variation given by3 

[B T , B T ] t = t + t T 0 v 2 1 • d M T s T v 2 1 • λ T s ,
tends in probability to identity for any fixed t . Using Theorem VIII-3.11 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], this implies that B T converges in law towards a Brownian motion B for the Skorokhod topology. Moreover by Proposition 3.2 in [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace 1 de skorokhod[END_REF], the sequence B T satisfies the U.T condition. From Theorem 2.6 in [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace 1 de skorokhod[END_REF], the convergence for the Skorokhod topology to zero of

1 m t 0 exp(- λ(t -s) m ) S T s + e 1 • v 1 e 1 • v 2 1 (v 1 • C T s ) - e 1 • v 1 e 1 • v 2 1 (v 1 • C T s ) d B T s
follows and finally we get that U T tends to zero u.c.p.

End of the proof of Proposition 2

We have that v 1 • C T t can be written as in (11) and furthermore (B T ,U T ) converges in law for the Skorokhod topology to (B, 0). Proposition 2 readily follows from Theorem 5.4 in [START_REF] Kurtz | Weak limit theorems for stochastic integrals and stochastic differential equations[END_REF].

End of proof of Theorem 2

Decomposing C T in the basis (e 1 , . . . , e d ),

C T t = d i =2 (e i • C T t )e i + (v • C T t )e 1 + 1 e 1 • v 1 (v 1 • C T t )e 1 ,
we immediately obtain Theorem 2 from Proposition 1 together with Proposition 2.

Proof of Theorem 1 4.2.1 Convenient rewriting of P T

We start by writing conveniently our rescaled price P T t T /T . We have

1 T P T t T = N T,+ t T -N T,- t T T = t T 0 d M T,+ s -d M T,- s T (λ T,+ s + λ T,- s ) λ T,+ s + λ T,- s T + t T 0 λ T,+ s -λ T,- s T d s.
Furthermore,

λ T,+ t -λ T,- t = t 0 a T (ϕ 1 (t -s) -ϕ 2 (t -s))(d N T,+ s -d N T,- s ) = t 0 a T λ 2 (t -s)(d M T,+ s -d M T,- s ) + t 0 a T λ 2 (t -s)(λ T,+ s -λ T,- s )d s.
Thus, from Lemma 2, we obtain

λ T,+ t -λ T,- t = t 0 ψ T 2 (t -s)(d M T,+ s -d M T,- s ).
Then, using Fubini theorem, we get

x 0 λ T,+ s -λ T,- s d s = x 0 x-s 0 ψ T 2 (u)d u (d M T,+ s -d M T,- s ).

Proofs

Hence our rescaled price process P T t T /T can finally be written

t 0 C T,+ s +C T,- s dW T s - t 0 ∞ T (t -s) ψ T 2 (u)d u(d M T,+ s -d M T,- s ) + ∞ 0 ψ T 2 (u)d u(M T,+ t -M T,- t ),
with

W T t = t T 0 d M T,+ s -d M T,- s T (λ T,+ s + λ T,- s )
.

Since ∞ 0 ψ T 2 (u)d u = 1 1-a T ∞ 0 λ 2 (s)d s , we obtain 1 T P T t T = 1 1 -a T ( ϕ 1 1 -ϕ 2 2 ) t 0 C T,+ s +C T,- s dW T s -R T t , (13) 
with

R T t = t 0 ∞ T (t -s) ψ T 2 (u)d u(d M T,+ s -d M T,- s ).

Convergence of R T

We have the following proposition.

Proposition 4. Under Assumptions 1, 2 and 3, R T tends u.c.p. to zero.

Proof.

From Lemma 1, it is enough to show that the sequence of functions

g T (x) = ∞ T x ψ T 2 (u)d u satisfies Properties a), b), c) and d ) of Lemma 1. The fact that b) holds is obvious since |g T (z)| ≤ +∞ 0 |ψ T 2 (x)|d x ≤ ||λ 2 || 1 1 -||λ 2 || 1 .
Then we remark that

ĝ T (z) = a≥0 ψ T 2 (a) e i za/T -1 i z d a,
which shows that Property c) holds. Property d ) is obtained from the fact that

|(g T ) (x)| = T |ψ T 2 (T x)| ≤ cT.
Finally, we use Fubini theorem to write

x≥0 |g T (x)| 2 d x = x≥0;a,b>T x ψ T 2 (a)ψ T 2 (b)d ad bd x = 1 T a,b≥0 (a ∧ b)ψ T 2 (a)ψ T 2 (b)d ad b.
Consequently,

x≥0 |g T (x)| 2 d x ≤ 1 T a≥0 a|ψ T 2 (a)|d a b≥0 |ψ T 2 (b)|d b ≤ c T k≥1 a≥0 a|λ 2 | * k (a)d a.
By recursion, we get that for k ≥ 1,

a≥0 a|λ 2 | * k (a)d a = k||λ 2 || k-1 1 a≥0 a|λ 2 |(a)d a < ∞. Eventually x≥0 |g T (x)| 2 d x ≤ c/T
and a) easily follows.

Convergence of (W T , B T )

In the same way as for the quadratic variation of B T in the proof of Theorem 2, we easily get the following convergence in probability for any fixed t ∈ [0, 1]

[W T ,W T ] t → T →∞ t , [B T , B T ] t → T →∞ t .
Moreover, we have the following proposition.

Proposition 5. Under Assumptions 1, 2 and 3,

[W T , B T ] t → T →∞ 1 -β 2(1 + β 2 )
t in probability, for any fixed t ∈ [0, 1].

Proof.

Using [M T , M T ] = diag(N T ), we write

[W T , B T ] t = t T 0 d N T,+ s -βd N T,- s T λ T,+ s + λ T,- s λ T,+ s + β 2 λ T,- s = t 0 C T,+ s -βC T,- s C T,+ s +C T,- s C T,+ s + β 2 C T,- s d s + ε T t , with ε T t = t T 0 d M T,+ s -βd M T,- s T λ T,+ s + λ T,- s λ T,+ s + β 2 λ T,- s .
Since 〈M T , M T 〉 = diag( . 0 λ T ) and λ T ≥ µ1, we easily get

E[(ε T t ) 2 ] = E t T 0 1 T 2 (λ T,+ s + λ T,- s ) ≤ 1 2µT → T →∞ 0.

Proofs

Furthermore, from Corollary 1, (C T,+ ,C T,-) converges in law for the Skorokhod topology to 1 β+1 X , 1 β+1 X . Using Skorokhod's representation theorem, there exists a probability space on which one can duplicate in law the sequence (Z T , X T ) so that it converges almost surely for the Skorohod topology to a random variable with the same law as (Z , X ). The set of zeros of a Cox-Ingersoll-Ross process on a finite interval being of Lebesgue measure zero, we deduce that almost surely,

C T,+ t -βC T,- t C T,+ t +C T,- t C T,+ t + β 2 C T,- t tends for almost every t ∈ [0, 1] to 1 -β 2(1 + β 2 ) .
Thus we deduce by dominated convergence theorem4 that almost surely, for all t ∈ [0, 1],

t 0 C T,+ s -βC T,- s C T,+ s +C T,- s C T,+ s + β 2 C T,- s d s → T →∞ 1 -β 2(1 + β 2 ) t .
Therefore, for any t ∈ [0, 1], we have the following convergence in probability

[B T ,W T ] t → T →∞ 1 -β 2(1 + β 2 ) t .

End of the proof of Theorem 1

Consider (13). From Proposition 4, R T tends to zero. Then using Theorem VIII-3.11 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF] together with Proposition 5, we obtain that (W T , B T ) converges in law for the Skorokhod topology to a correlated bi-dimensional Brownian motion (W, B ) such that

〈W, B 〉 t = 1 -β 2(1 + β 2 ) t .
Furthermore, from Corollary 1 we get that ( C T,+ +C T,-, B T ) converges in law for the Skorokhod topology to ( 2 β+1 X , B ), where X is a Cox-Ingersoll-Ross process driven by B and defined in Corollary 1. Moreover, W T being a martingale with bounded jumps, it satisifies the U.T condition from Proposition 3.2 in [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace 1 de skorokhod[END_REF]. Using Theorem 2.6 in [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace 1 de skorokhod[END_REF], we deduce that 

Proof of Theorem 4

We now give the proof of our theorem on the convergence of general nearly unstable Hawkes processes with heavy tail. This proof is quite inspired from [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF].

4.3.1 C-tightness of (Λ T , X T , Z T )
We have the following proposition.

Proposition 6. Under the setting of Section 2.3.1 together with Assumption 4, the sequence

(Λ T , X T , Z T ) is C-tight and sup t ∈[0,1] Λ T t -X T t → T →∞ 0 in probability. Moreover if (X , Z ) is a possible limit point of (X T , Z T ), then Z is a continuous martingale with [Z , Z ] = diag(X ).
Proof:

1. C-tightness of X T and Λ T Recall that as in (3), we can write

λ T t = µ T 1 + µ T t 0 ψ T (t -s)d s.1 + t 0 ψ T (t -s).d M T s . Using that . 0 ( f * g ) = ( . 0 f ) * g , we get E[N T T ] = E[ T 0 λ T s d s] = T µ T 1 + µ T T 0 sψ T (T -s)d s.1.
Consequently,

1 • E[N T T ] = T µ T d + µ T 1 • ( T 0 sψ T (T -s)d s).1
and therefore

1 • E[N T T ] ≤ cT µ T 1 + S ( ∞ 0 ψ T (s)d s) ≤ c T µ T 1 -a T ≤ cT 2α .
Thus, we obtain that

E[X T 1 ] = E(Λ T 1 ) ≤ c.
Each component of X T and Λ T being increasing, we deduce the tightness of each component of (X T , Λ T ). Furthermore, the maximum jump size of X T and Λ T being 1-a T T α µ which goes to zero, the C-tightness of (X T , Λ T ) is obtained from Prop.VI-3.26 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF].

C-tightness of

Z T It is easy to check that 〈Z T , Z T 〉 = diag(Λ T ),
which is C-tight. From Theorem VI-4.13 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], this gives the tightness of Z T . The maximum jump size of Z T vanishing as T goes to infinity, we obtain that Z T is C-tight.

Proofs

Convergence of X

T -Λ T We have X T t -Λ T t = 1 -a T T α µ M T t T .
From Doob's inequality, we get for each component

E[ sup t ∈[0,1] |Λ T t -X T t | 2 ] ≤ cT -4α E[M T T ] 2 . Since [M T , M T ] = diag(N T ), we deduce E[ sup t ∈[0,1] |Λ T t -X T t | 2 ] ≤ cT -2α .
This gives the uniform convergence to zero in probability of X T -Λ T .

4. Limit of Z T Let (X , Z ) be a possible limit point of (X T , Z T ). We know that (X , Z ) is continuous and from Corollary IX-1.19 of [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], Z is a local martingale. Moreover, since

[Z T , Z T ] = diag(X T ),
using Theorem VI-6.26 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], we get that [Z , Z ] is the limit of [Z T , Z T ] and [Z , Z ] = diag(X ). By Skorokhod's representation theorem and Fatou's lemma, the expectation of [Z , Z ] is finite and therefore Z is a martingale.

Convergence of v i • X T for i ≥ 2

Here also, we observe a vanishing behavior in the direction of the eigenvectors v i for i ≥ 2.

More precisely, we have the following result.

Proposition 7. Under the setting of Section 2.3.1 together with Assumption 4, if X is a possible limit point of X T , then for i ≥ 2 we have v i • X = 0.

Proof: From (3), using Fubini theorem together with the fact that

. 0 ( f * g ) = ( . 0 f ) * g , we get t 0 λ T s d s = t µ T 1 + µ T t 0 sψ T (t -s)d s.1 + t 0 ψ T (t -s).M T s d s.
Therefore, for t ∈ [0, 1], we have the decomposition

Λ T t = T 1 + T 2 + T 3 , (14) 
with

T 1 = (1 -a T )t u T 1, T 2 = T (1 -a T )u T t 0 sψ T T (t -s) d s.1, T 3 = T 1-α/2 1 -a T µ t 0 ψ T T (t -s) .Z T s d s,
with u T = µ T /(µT α-1 ) tending to one. Now recall that for 1 ≤ i ≤ d ,

ψ T i = k≥1 a k T λ * k i , ρ T i = T (1 -a T )ψ T i (T.),
and define

F T i = . 0 ρ T i (s)d s.
For i ≥ 2, using that

|F T i (t )| ≤ t 0 T (1 -a T )|ψ T i (T s)|d s ≤ (1 -a T ) ∞ 0 |ψ T i (s)|d s ≤ (1 -a T ) λ i 1 1 -λ i 1 .
we get the uniform convergence to zero of F T i . Thanks to this together with integration by parts, we deduce the convergence to zero of

v i • T 2 since v i • T 2 = u T (v i • 1) t 0 F T i (s)d s.
For v i • T 3 we write

v i • T 3 = 1 µ(1 -a T )T α t 0 F T i (t -s)(v i • d Z T s ).
The quadratic variation of Z T being Λ T which is uniformly bounded in expectation, we have

E[(v i • T 3 ) 2 ] ≤ c µ(1 -a T )T α t 0 F T i (s) 2 d s.
The convergence of v i • T 3 to zero follows. Finally, from Proposition 6 we have that if X is a limit point of X T , then X is also a limit point of Λ T . Therefore, we obtain v i • X = 0.

Convergence of v 1 • X T

The term v 1 • X T is the non-vanishing one. Indeed, for (Z , X ) a possible limit point of (Z T , X T ), using the same approach as in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], we obtain

T 2 • v 1 → T →∞ (v 1 • 1) t 0 s f α,λ (t -s)d s
and

T 3 • v 1 → T →∞ 1 λ * µ t 0 f α,λ (t -s)(v 1 • Z s )d s.
Then, letting T go to infinity in the decomposition (14) we easily deduce the following proposition.

Proofs

Proposition 8. Under the setting of Section 2.3.1 together with Assumption 4, if (Z , X ) is a possible limit point of (Z T , X T ), then the process v 1 • X satisfies the following equation

v 1 • X t = (v 1 • 1) t 0 s f α,λ (t -s)d s + 1 λ * µ t 0 f α,λ (t -s)(v 1 • Z s )d s.

A first version of Theorem 4

We now prove a version of Theorem 4 where Y is specified in a different way. Let (X , Z ) be a possible limit point of (X T , Z T ). From Proposition 8, in the same way as the proof of Theorem 3.2 in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], we can show that

v 1 • X t = t 0 Y s d s,
where Y satisfies

Y t = (v 1 • 1)F α,λ (t ) + 1 λ * µ t 0 f α,λ (t -s)(v 1 • d Z s ).
Using Proposition 7 together with the decomposition of X t in the orthonormal basis (e 1 , . . . , e d ),

X t = d i =2 (e i • X t )e i + (v • X t )e 1 + 1 e 1 • v 1 (v 1 • X t )e 1 ,
we get

X t = 1 e 1 • v 1 (v 1 • X t )e 1 = 1 e 1 • v 1 ( t 0 Y s d s)e 1 .
From Proposition 6, we have that

[Z , Z ] = diag(X ) = 1 e 1 • v 1 ( t 0 Y s d s)diag(e 1 ).
Thus we can use Theorem V-3.9 in [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] to show the existence of a d -dimensional Brownian motion (B 1 , . . . , B d ) such that for 1 ≤ i ≤ d ,

Z i t = 1 e 1 • v 1 e 1,i t 0 Y s d B i s .
Finally, in the same way as the proof of Theorem 3.2 in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], we obtain that Y satisfies

Y t = (v 1 • 1)F α,λ (t ) + e 1 • v 2 1 λ * µ(e 1 • v 1 ) t 0 f α,λ (t -s) Y s d B s , (15) 
where B is a Brownian motion defined by

B = 1 e 1 • v 2 1 1≤i ≤d e 1,i v 1,i B i .
and that Y has Hölder regularity α -1/2 -ε, for any ε > 0.

End of the proof of Theorem 4

We eventually provide here the proposition showing that from (15), Y can be written under the form of the rough stochastic differential equation given in Theorem 4 and stating the uniqueness of the solution of this equation. Theorem 4 follows immediately.

Proposition 9. Let λ, ν, θ be positive constants, α ∈ (1/2, 1) and B a Brownian motion. The process V is solution of the following rough stochastic differential equation

V t = θF α,λ (t ) + ν t 0 f α,λ (t -s) V s d B s ( 16 
)
if and only if it is solution of

V t = 1 Γ(α) t 0 (t -s) α-1 λ(θ -V s )d s + λν Γ(α) t 0 (t -s) α-1 V s d B s . ( 17 
)
Furthermore, both equations admit a unique weak solution.

Proof:

The existence of a solution to (16) has already been proved deriving (15). Let V be a solution to (16) and write

K = I 1-α V,
where I 1-α is the fractional integral operator of order (1-α), see Appendix I.B. Using stochastic Fubini theorem, see for example [START_REF] Veraar | The stochastic fubini theorem revisited[END_REF], and integration by parts, we get

K t = θ t 0 I 1-α f α,λ (u)d u + ν t 0 I 1-α f α,λ (t -u) V u d B u .
Moreover, since I 1-α f α,λ (t ) = λ 1-F α,λ (t ) , see Appendix I.C, using stochastic Fubini theorem, we obtain

K t = λθ t 0 1 -F α,λ (u) d u + νλ t 0 V u d B u -λ t 0 ν s 0 V u f α,λ (s -u)d B u d s.
Hence,

K t = λθ t 0 1 -F α,λ (u) d u + νλ t 0 V u d B u -λ t 0 V s -θF α,λ (s) d s
and finally

K t = λ t 0 (θ -V u )d u + λν t 0 V u d B u .
Now recall that we have

V t = D 1-α K t ,
where the fractional differentiation operator D 1-α is defined in Appendix I.B. Thus we get

V t = 1 Γ(α) d d t t 0 λ s 0 (s -u) α-1 (θ -V u )d u d s + 1 Γ(α) d d t t 0 λν s 0 (s -u) α-1 V u d B u d s 4. Proofs
and finally, again from Fubini theorem,

V t = 1 Γ(α) λ t 0 (t -u) α-1 (θ -V u )d u + 1 Γ(α) λν t 0 (t -u) α-1 V u d B u .
Therefore V is solution of [START_REF]BFG +[END_REF]. Using a straightforward generalization of the main result in [START_REF] Mytnik | Uniqueness for volterra-type stochastic integral equations[END_REF], we deduce the uniqueness of such a solution.

Proof of Theorem 3

First, remark that in the same way as in Section 4.2, we can write

1 -a T T α µ P T t T = 1 1 -a T ( ϕ 1 1 -ϕ 2 1 ) (Z T,+ t -Z T,- t ) -R T t , with R T t = t 0 ∞ T (t -s) ψ T 2 (u)d u (d Z T,+ s -d Z T,- s ).
Using Corollary 2, we deduce that

1 1 -a T ( ϕ 1 1 -ϕ 2 1 ) (Z T,+ t -Z T,- t )
converges in law for the Skorokhod topology to the rough Heston dynamic P defined in Theorem 3.

Note that when ϕ 1 = ϕ 2 , R T = 0. Thus, in this case, we obtain the convergence in law for the Skorokhod topology of the rescaled microscopic price to P . For the general case, we can prove the convergence of R T to zero in the sense of finite dimensional laws as follows. We have

E[(R T t ) 2 ] ≤ c t 0 ∞ T s ψ T 2 (u)d u 2 d s. Let G = k≥1 |ϕ 1 -ϕ 2 | * k . Note that |ψ T 2 | ≤ G and that G is integrable since ∞ 0 |ϕ 1 -ϕ 2 | < 1. Hence E[(R T t ) 2 ] ≤ c T -1/2 0 ∞ T s G(u)d u 2 d s + 1 T -1/2 ∞ T s G(u)d u 2 d s . Then E[(R T t ) 2 ] ≤ c T -1/2 ( ∞ 0 G) 2 + ( ∞ T 1/2 G) 2 ,
which vanishes as T tends to infinity. The result follows.

Remark 3. Note that

sup t ∈[0,1] | t 0 ∞ T s ψ T 2 (u)d ud s| ≤ c T -1/2 ∞ 0 G + ∞ T 1/2 G ,
which vanishes as T goes to infinity. Then, using Fubini theorem, we get that

t 0 R T s d s = t 0 t -s 0 ∞ Tu ψ T 2 d u(d Z T,+ s -d Z T,- s )
converges u.c.p. to zero. Thus, as stated in Remark 1, the integrated rescaled microscopic price converges in law for the Skorokhod topology to t 0 P s d s.

I.A Technical results

I.A.1 Proof of Lemma 1.

This result has already been proved in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF] in dimension one. We need to generalize it for d ≥ 2. Inspection of the proof of Proposition 4.1 in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF] shows that the tightness of

H T t = t 0 f T (t -s)d M T s
with respect to the Skorokhod topology, holds the same way when the dimension is larger than one. So we just need to check the finite dimensional convergence of H T to zero. Using that

〈M T , M T 〉 = . 0 λ T , we get E[ H T t 2 2 ] = 1 T 2 E t T 0 f T (t -s/T ) 2 d i =1 λ T s,i d s = 1 T 2 t T 0 f T (t -s/T ) 2 d i =1 E[λ T s,i ]d s.
Using (3) together with the fact that v i .ψ T = ψ T i v i , we obtain that for any i ∈ {1, . . . , d } and

s ≥ 0, E[v i • λ T s ] = µ(v i • 1) 1 + s 0 ψ T i (u)d u .
Thus

|E[v i • λ T s ]| ≤ µ|v i • 1| 1 + k≥1 ∞ 0 a k T |λ i | * k (u)d u ≤ µ|v i • 1| 1 1 -a T λ i 1 ≤ cT.

Hence for any

i ∈ {1, . . . , d }, E[λ T s,i ] ≤ cT . Therefore E[ H T t 2 2 ] ≤ c ∞ 0 f T (s) 2 d s → T →∞ 0
and so H T t tends in probability to zero giving the finite dimensional convergence of the process.

I.A.2 Wiener-Hopf equations

The following result is used extensively in this work to solve Wiener-Hopf type equations, see for example [START_REF] Bacry | Some limit theorems for Hawkes processes and application to financial statistics[END_REF].

Lemma 2. Let g be a measurable locally bounded function from R to R d and φ : R + → M d (R) be a matrix-valued function with integrable components such that S ( ∞ 0 φ(s)d s) < 1. Then there exists a unique locally bounded function

f from R + to R d solution of f (t ) = g (t ) + t 0 φ(t -s). f (s)d s, t ≥ 0 given by f (t ) = g (t ) + t 0 ψ(t -s).g (s)d s, t ≥ 0, where ψ = k≥1 φ * k .

I.B Fractional integrals and derivatives

The fractional integral of order r ∈ (0, 1] of a function f is defined by

I r f (t ) = 1 Γ(r ) t 0 (t -s) r -1 f (s)d s,
whenever the integral exists. Its fractional derivative of order r ∈ [0, 1) is given by

D r f (t ) = 1 Γ(1 -r ) d d t t 0 (t -s) -r f (s)d s,
whenever it exists.

I.C Mittag-Leffler functions

Let (α, β) ∈ (R * + ) 2 . The Mittag-Leffler function E α,β is defined for z ∈ C by E α,β (z) = n≥0 z n Γ(αn + β) .
For (α, λ) ∈ (0, 1) × R + , we also define

f α,λ (t ) = λt α-1 E α,α (-λt α ), t > 0, F α,λ = t 0 f α,λ (s)d s, t ≥ 0.
The function f α,λ is a density function on R + called Mittag-Leffler density function.

For α ∈ (1/2, 1), f α,λ is square-integrable and its Laplace transform is given for z ≥ 0 by

f α,λ (z) = ∞ 0 f α,λ (s)e -zs d s = λ λ + z α .
Finally, we can show that

I 1-α f α,λ (t ) = λ 1 -F α,λ (t ) .
Further properties of f α,λ and F α,λ can be found in [START_REF] Haubold | Mittag-leffler functions and their applications[END_REF][START_REF] Mainardi | On some properties of the Mittag-Leffler function[END_REF][START_REF] Mathai | Special functions for applied scientists[END_REF].

Introduction

The celebrated Heston model is a one-dimensional stochastic volatility model where the asset price S follows the following dynamic:

d S t = S t V t dW t dV t = λ(θ -V t )d t + λν V t d B t .
(1)

Here the parameters λ, θ, V 0 and ν are positive, and W and B are two Brownian motions with correlation coefficient ρ, that is 〈dW t , d B t 〉 = ρd t .

The popularity of this model is probably due to three main reasons:

• It reproduces well several important stylized facts of low frequency price data, namely leverage effect, time-varying volatility and fat tails, see [BP03, Chr82, DY02, Man97].

• It generates very reasonable shapes and dynamics for the implied volatility surface. Indeed, the "volatility of volatility" parameter ν enables us to control the smile, the correlation parameter ρ to deal with the skew, and the initial volatility V 0 to fix the atthe-money volatility level, see [START_REF] Forde | The small-time smile and term structure of implied volatility under the Heston model[END_REF][START_REF]The volatility surface: a practitioner's guide[END_REF][START_REF] Janek | FX smile in the Heston model[END_REF][START_REF] Poon | The Heston option pricing model[END_REF]. Furthermore, as observed in markets and in contrast to local volatility models, in Heston model, the volatility smile moves in the same direction as the underlying and the forward smile does not flatten with time, see [Gat11, JR13, JR16a, MP15b].

• There is an explicit formula for the characteristic function of the asset log-price, see [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. From this formula, efficient numerical methods have been developed, allowing for instantaneous model calibration and pricing of derivatives, see [AMST07, CM99, KJ05, Lew01].

In the classical Heston model, the volatility follows a Brownian semi-martingale. However, it is demonstrated in [START_REF] Gatheral | Volatility is rough[END_REF] that for a very wide range of assets, historical volatility time-series exhibit a behavior which is much rougher than that of a Brownian motion. More precisely, the dynamic of log-volatility is typically very well modeled by a fractional Brownian motion with Hurst parameter of order 0.1. For example, it is shown in [START_REF] Gatheral | Volatility is rough[END_REF] that in practice, the empirical moment of order q > 0 of log-volatility increments

log(V t +∆ ) -log(V t ),
is proportional to ∆ q H with H of order 0.1, and this for any reasonable scale of interest ∆ (from ∆ equal to one day to hundreds of days). This corresponds to a rough fractional dynamic with Hurst parameter H = 0.1. Beyond moments, it is also established in [START_REF] Gatheral | Volatility is rough[END_REF] that the empirical correlation structure of volatility is very well reproduced when using rough fractional volatility models. These findings have been confirmed by further studies, see [START_REF] Bennedsen | Decoupling the short-and longterm behavior of stochastic volatility[END_REF][START_REF] Livieri | Rough volatility: evidence from option prices[END_REF]. Moreover, considering a fractional Brownian motion with small Hurst parameter also enables us to obtain remarkable fits for the whole volatility surface. In particular, contrary to most stochastic volatility models, rough volatility models generate an exploding term structure for the at-the-money skew when maturity goes to zero, which is very commonly observed in practice, see [START_REF] Bayer | Pricing under rough volatility[END_REF][START_REF] Gatheral | Volatility is rough[END_REF] and Section 5. Finally, convincing microstructural foundations for rough volatility models are provided in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF] and Chapter I, see also Section 2.

Hence, in this paper, we are interested in the fractional versions of the Heston model. Our main goal is to design an efficient pricing methodology for such models, in the spirit of the one introduced by Heston in the classical case. This is particularly important in fractional volatility models where the use of Monte-Carlo methods can be quite intricate due to the non-Markovian nature of the fractional Brownian motion, see [START_REF] Bennedsen | Hybrid scheme for Brownian semistationary processes[END_REF].

We now define our so-called rough Heston model. Let us recall that a fractional Brownian motion W H with Hurst parameter H ∈ (0, 1) can be built through the Mandelbrot-van Ness representation

W H t = 1 Γ(H + 1/2) 0 -∞ (t -s) H -1 2 -(-s) H -1 2 dW s + 1 Γ(H + 1/2) t 0 (t -s) H -1 2 dW s .
(2)

1. Introduction

The kernel (t -s) H -1 2 in (2) plays a central role in the rough dynamic of the fractional Brownian motion for H < 1/2. In particular, one can show that the process

t 0 (t -s) H -1 2 dW s
has Hölder regularity H -ε for any ε > 0. In order to allow for a rough behavior of the volatility in a Heston-type model, we naturally introduce the kernel (ts) α-1 in a Heston-like stochastic volatility process as follows

d S t = S t V t dW t V t = V 0 + 1 Γ(α) t 0 (t -s) α-1 λ(θ -V s )d s + 1 Γ(α) t 0 (t -s) α-1 λν V s d B s .
(3)

The parameters λ, θ, V 0 and ν in (3) are positive and play the same role as in (1), and here also W and B are two Brownian motions with correlation ρ. The additional parameter α belongs to (1/2, 1) and governs the smoothness of the volatility sample paths. More precisely, we show in this paper that the model is well-defined and that the volatility trajectories have almost surely Hölder regularity α -1/2 -ε, for any ε > 0. When α = 1, Models (3) and (1) coincide, and we retrieve the classical Heston model. Therefore it is natural to view (3) as a rough version of the Heston model and to call it rough Heston model. In term of Hurst parameter H , α = H + 1/2. Nevertheless, note that other definitions of rough Heston models can make sense, see [START_REF] Guennoun | Asymptotic behaviour of the fractional Heston model[END_REF] for an alternative definition and some asymptotic results.

Our aim in this work is to derive a Heston-type formula for the characteristic function of the log-price in Model (3). In the classical case (α = 1, Model (1)), this formula is proved in [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. It is obtained using the fact that Model (1) is Markovian and time-homogeneous, and applying Itô's formula to the function

L(t , a,V t , S t ) = E[e i a log(S T ) |F t ], F t = σ(W s , B s ; s ≤ t ), a ∈ R.
The process L being a martingale, the following Feynman-Kac partial differential equation for L is easily obtained

-∂ t L(t , a, S,V ) = λ(θ -V )∂ v + 1 2 (λν) 2 V ∂ 2 v v + 1 2 S 2 V ∂ 2 ss + ρνλSV ∂ 2 sv L(t , a, S,V ),
with boundary condition L(T, a, S,V ) = e i a log(S) . From this PDE, it can be checked that the characteristic function of the log-price

X t = log(S t /S 0 ) satisfies E[e i a X t ] = exp g (a, t ) + V 0 h(a, t ) ,
where h is solution of the following Riccati equation

∂ t h(a, t ) = 1 2 (-a 2 -i a) + λ(i aρν -1)h(a, t ) + (λν) 2 2 h 2 (a, t ), h(a, 0) = 0, (4) 
and

g (a, t ) = θλ t 0 h(a, s)d s.

II. Characteristic function of rough Heston models

Solving this Riccati equation leads to the closed-form formula for the characteristic function of the log-price given in [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF].

In the case α < 1, the rough Heston model (3) is not Markovian and the variance process is no longer a semi-martingale. Hence the strategy initially used by Heston and presented above seems very hard to adapt to our setting. Here we resort to a completely different and original approach based on point processes. Indeed, our methodology finds its root in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF] and Chapter I which provide microstructural foundations for rough volatility models. In these papers, it is shown that some well-designed microstructure models, reproducing the stylized facts of modern financial markets at high frequency, give rise in the long run to rough volatility models. These microstructure models, that we describe in more details in Section 2, are based on so-called nearly unstable Hawkes processes. In this paper, inspired by these results and using again Hawkes processes, we design a suitable sequence of point processes which converges to Model (3). Exploiting the specific structure of our point processes, we derive their characteristic function, which leads us in the limit to that of the log-price in the rough Heston model (3).

Our main result is that, quite surprisingly, the characteristic function of the log-price in rough Heston models exhibits the same structure as the one obtained in the classical Heston model. The difference is that the Riccati equation ( 4) is replaced by a fractional Riccati equation, where a fractional derivative appears instead of a classical derivative. More precisely, we obtain

E[e i aX t ] = exp g 1 (a, t ) + V 0 g 2 (a, t ) ,
where

g 1 (a, t ) = θλ t 0 h(a, s)d s, g 2 (a, t ) = I 1-α h(a, t ),
and h(a, .) is a solution of the following fractional Riccati equation

D α h(a, t ) = 1 2 (-a 2 -i a) + λ(i aρν -1)h(a, t ) + (λν) 2 2 h 2 (a, t ), I 1-α h(a, 0) = 0,
with D α and I 1-α the fractional derivative and integral operators defined in (18) and ( 19). Remark that when α = 1, this result indeed coincides with the classical Heston's result. However, note that for α < 1, the solutions of such Riccati equations are no longer explicit. Nevertheless, they are easily solved numerically, see Section 5.

The paper is organized as follows. In Section 2, we build a sequence of Hawkes-type processes which converges to the rough Heston model (3). Then we study in Section 3 the characteristic function of these processes and show in Section 4 that it enables us to derive the characteristic function of the log-price in Model (3). Numerical illustrations are given in Section 5 and some proofs are relegated to Section 6. Finally, some useful technical results are given in an appendix.

From Hawkes processes to rough Heston models

We build in this section a sequence of Hawkes-type processes which converges to the rough Heston model (3). This construction is inspired by Chapter I. In this work, microstructural foundations for rough Heston models are provided. This is done designing suitable sequences of ultra high frequency price models which reproduce the stylized facts of modern markets microstructure and converge in the long run to rough Heston models. These microscopic price models are based on Hawkes processes. So that the reader can understand the genesis of our original methodology to compute the characteristic function in rough Heston models, we recall here the main ideas and results in Chapter I.

Microstructural foundations for rough Heston models

In Chapter I, we consider a sequence of bi-dimensional Hawkes processes (N T,+ , N T,-) indexed by T > 0 going to infinity 1 and with intensity 2

λ T t = λ T,+ t λ T,- t = µ T 1 1 + t 0 a T φ(t -s). d N T,+ s d N T,- s , (5) 
with

φ = ϕ 1 ϕ 3 ϕ 2 ϕ 4 .
Here the ϕ i are measurable non-negative deterministic functions and µ T and 0 < a T < 1 are some deterministic sequences of positive real numbers, see [START_REF] Bacry | Some limit theorems for Hawkes processes and application to financial statistics[END_REF] and the references therein for more details about the definition of Hawkes processes. Then in Chapter I, inspired by [BDHM13a, BDHM13b, JR15], we consider the following ultra high frequency tick-by-tick model for the transaction price P T t ,

P T t = N T,+ t -N T,- t . (6) 
Hence N T,+ t represents the number of upward jumps of one tick of the transaction price over the period [0, t ] and N T,- t the number of downward jumps. The relevance of this Hawkes-based modeling is that it enables us to encode very easily the most important stylized facts of high frequency markets in term of the parameters of the Hawkes process. We now give these stylized facts and their translation in terms of the model parameters, referring to Chapter I for more details.

• Markets are highly endogenous: In the high frequency trading context, most orders have no real economic motivation. They are rather sent by algorithms as reactions to other orders. In the Hawkes framework, this amounts to work with so-called nearly unstable Hawkes processes. This means that the stability condition

S ∞ 0 a T φ(s)d s < 1,
1 Of course by T we implicitly mean T n with n ∈ N tending to infinity.

2 From now on we write a dot between quantities to emphasize matrix product.

where S denotes the spectral radius operator, should almost be saturated and that the intensity of exogenous orders, namely µ T , should be small, see [START_REF] Hardiman | Critical reflexivity in financial markets: a Hawkes process analysis[END_REF][START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF][START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF] and Chapter I. In term of model parameters, suitable constraints are therefore

a T → 1, S ∞ 0 φ(s)d s = 1, µ T → 0.
• It is not an easy task to make money with high frequency strategies on highly liquid electronic markets. Hence some "no statistical arbitrage" mechanisms should be in force.

We translate this assuming that in the long run, there are on average as many upward as downward jumps. This corresponds to the assumption

ϕ 1 + ϕ 3 = ϕ 2 + ϕ 4 .
• Buying is not the same action as selling. This means that buy market orders and sell market orders are not symmetric orders. To see this, consider for example a market maker, with an inventory which is typically positive. After each order he receives, he modifies his bid and ask quotes, reflecting the market impact of the received order. This means that after a buy order, he will increase his ask quote and he will decrease his bid quote after a sell order. However, he typically raises the price by less following a buy order than he lowers the price following the same size sell order. Indeed, inventory becomes smaller after a buy order, which is a good thing for him, whereas it increases after a sell order. This creates a liquidity asymmetry on the bid and ask sides of the order book. This can be modeled in the Hawkes framework assuming that

ϕ 3 = βϕ 2 ,
for some β > 1. Hence, the matrix φ finally takes the form

φ = ϕ 1 βϕ 2 ϕ 2 ϕ 1 + (β -1)ϕ 2 .
• A significant amount of transactions is part of metaorders, which are large orders whose execution is split in time by trading algorithms. This is translated into a heavy tail assumption on the functions ϕ 1 and ϕ 2 , namely that there exists 1/2 < α < 1 (typically around 0.6 in practice, see [START_REF] Bacry | Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling[END_REF][START_REF] Hardiman | Critical reflexivity in financial markets: a Hawkes process analysis[END_REF]) and C > 0 such that

αx α ∞ x ϕ 1 (s) + βϕ 2 (s)d s → x→∞ C .
Furthermore, it is shown in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF] that for a given α, there is only one way to make µ T tends to zero and a T tends to one so that the limit of the price is not degenerate. More precisely,

(1 -a T )T α → T →∞ λ * , µ T T 1-α → T →∞ µ,
for some positive λ * and µ.

Under the above assumptions, it is proved in Chapter I that the properly rescaled microscopic price process

1 -a T µT α P T t T , t ∈ [0, 1],
where P T is defined in (11), converges in law as T tends to infinity to the following macroscopic price dynamic P ,

P t = 2 1 - ∞ 0 (ϕ 1 -ϕ 2 ) t 0 σ s dW s , σ 2 t = 1 Γ(α) t 0 (t -s) α-1 λ(1 -σ 2 s )d s + 1 Γ(α) λν t 0 (t -s) α-1 σ s d B s , (7) 
where (W, B ) is a bi-dimensional correlated Brownian motion with correlation

ρ = 1 -β 2(1 + β 2 )
and

ν = 2(1 + β 2 ) λ * µ(1 + β) 2 , λ = λ * α C Γ(1 -α) .
Hence this result shows that the main stylized facts of modern electronic markets naturally give rise to a very rough behavior of the volatility. Indeed, recall that the Hurst parameter corresponds to α -1/2.

Inspired by this result, our idea is to study the characteristic function of some kind of microscopic price processes in order to deduce that of our rough Heston macroscopic price of interest (3). However, the developments presented above cannot be directly applied and need to be adapted. Indeed, remark that in (7), σ 0 = 0. This does not correspond to the case of (3), where having a non-zero initial volatility is of course crucial for the model to be relevant in practice. Thus we need to modify the sequence of Hawkes-type processes to obtain a non-degenerate initial volatility in the limit. This is actually a non-trivial issue. However, this can be achieved replacing µ T in (5) by an inhomogeneous Poisson intensity μT (t ). We explain how such μT (t ) can be found in the next section.

The role of the Poisson rate

We work on a sequence of probability spaces (Ω T , F T , P T ), indexed by T > 0 (going to infinity), on which N T = (N T,+ , N T,-) is a bi-dimensional Hawkes process with intensity

λ T t = λ T,+ t λ T,- t = μT (t ) 1 1 + t 0 φ T (t -s).d N T s . (8) 
For a given T , the probability space is equipped with the filtration (F T t ) t ≥0 , where F T t is the σ-algebra generated by (N T s ) s≤t . Because our goal is to design a sequence of processes leading in the limit to a rough Heston dynamic, we consider the same kind of assumptions on the matrix φ T as those described in the previous section. However, here we can be very specific because we just need to find one convenient sequence of processes. That is why we make a particular choice for the heavy-tailed functions defining φ T , using Mittag-Leffler functions, see Section II.A in the Appendix for definition and some properties. Indeed, these functions are very convenient in order to carry out computations. More precisely, our assumptions on φ T are as follows.

Assumption 1. There exist β ≥ 0, 1/2 < α < 1 and λ > 0 such that

a T = 1 -λT -α , φ T = ϕ T χ,
where

χ = 1 β + 1 1 β 1 β , ϕ T = a T ϕ, ϕ = f α,1 ,
with f α,1 the Mittag-Leffler density function defined in Appendix.

Remark 1. From Appendix II.A, we get that we are working in the nearly unstable heavy tail case because

∞ 0 ϕ(s)d s = 1 and αx α ∞ x ϕ(t )d t -→ x→∞ α Γ(1 -α)
.

We now give intuitions about the need to use a non-constant Poisson intensity μT (t ). First, note that under Assumption 1,

λ T,+ t = λ T,- t .
The asymptotic behavior of the renormalized intensity processes λ T,+ t and λ T,- t will give us that of the volatility in our limiting macroscopic price model. Thus, we need to understand the long term limit of λ T,+ t . Let us write

M T t = (M T,+ t , M T,- t ) = N T t - t 0 λ T s d s
for the martingale associated to the point process N T t . We easily obtain

λ T,+ t = μT (t ) + t 0 ϕ T (t -s)λ T,+ s d s + 1 1 + β t 0 ϕ T (t -s)(d M T,+ s + βd M T,- s ).

Now let

ψ T = k≥1 (ϕ T ) * k ,
where

(ϕ T ) * 1 = ϕ T and for k > 1, (ϕ T ) * k (t ) = t 0 ϕ T (s)(ϕ T ) * (k-1) (t -s)d s.
Using Lemma 1 in the Appendix together with Fubini theorem and the fact that

ψ T * ϕ T = ψ T -ϕ T , we get λ T,+ t = μT (t ) + t 0 ψ T (t -s) μT (s)d s + 1 1 + β t 0 ψ T (t -s)(d M T,+ s + βd M T,- s ). (9) 
2. From Hawkes processes to rough Heston models Following Chapter I, the inhomogeneous intensity μT (t ) should be of order µ T with

µ T = µT α-1 ,
where µ is some positive constant. In Chapter I, it is shown that the right normalization for the intensity in order to get a non-degenerate limit, is to consider (1a T )λ T,+ t T /µ T . The same applies here and thus we define the renormalized intensity

C T t = 1 -a T µ T λ T,+ t T .
After obvious computations, this can be written

C T t = 1 -a T µ T μT (t T )+ t 0 T (1-a T )ψ T T (t -s) μT (T s) µ T d s+ν t 0 T (1-a T )ψ T T (t -s) C T s d B T s ,
where

B T t = t T 0 d M T,+ s + βd M T,- s T (λ T,+ s + β 2 λ T,- s ) , ν = 1 + β 2 λµ(1 + β) 2 .
Using the fact that the Laplace transform f α,λ of the Mittag-Leffler density function f α,λ is given by

f α,λ (z) = λ λ + z α ,
we easily obtain that

(1 -a T )T ψ T (T.) = a T f α,λ , (10) 
see Section II.A in Appendix. This leads to the following expression for C T :

C T t = 1 -a T µ T μT (t T ) + t 0 a T f α,λ (t -s) μT (T s) µ T d s + ν t 0 a T f α,λ (t -s) C T s d B T s .
Computing the quadratic variation of B T , it is easy to see that it converges to a Brownian motion B . Now, if as in Chapter I we take μT (t ) = µ T , we obtain that C T should then give in the limit a process with starting value equal to zero. Nevertheless, we also get the intuition that a non-constant μT can lead to a non-trivial initial value. From the computations in the proof of Theorem 1, it will become clear that the right choice of μT is as follows Assumption 2. The baseline intensity μT is given by

μT (t ) = µ T + ξµ T 1 1 -a T (1 - t 0 ϕ T (s)d s) - t 0 ϕ T (s)d s ,
with ξ > 0 and µ T = µT α-1 for some µ > 0.

Remark 2. Note that μT can also be written as follows

μT (t ) = µ T + ξµ T T α λ ∞ t ϕ(s)d s + λT -α t 0 ϕ(s)d s .
This shows that μT is a positive function and thus that the intensity process λ T t in (8) is well-defined.

The rough limits of Hawkes processes

We now give a rigorous statement about the limiting behavior of our specific sequence of bi-dimensional nearly unstable Hawkes processes with heavy tails. For t ∈ [0, 1], we define

X T t = 1 -a T T α µ N T t T , Λ T t = 1 -a T T α µ t T 0 λ T s d s, Z T t = T α µ 1 -a T (X T t -Λ T t ).
Using a similar approach as that in Chapter I, we obtain the following result whose proof is given in Section 6.

Theorem 1. As T → ∞, under Assumptions 1 and 2, the process

Λ T t , X T t , Z T t t ∈[0,1]
converges in law for the Skorokhod topology to (Λ, X , Z ) where

Λ t = X t = t 0 Y s d s 1 1 , Z t = t 0 Y s d B 1 s d B 2 s ,
and Y is the unique solution of the rough stochastic differential equation3 

Y t = ξ + 1 Γ(α) t 0 (t -s) α-1 λ(1 -Y s )d s + λ 1 + β 2 λµ(1 + β 2 ) 1 Γ(α) t 0 (t -s) α-1 Y s d B s , where B = B 1 + βB 2 1 + β 2
and (B 1 , B 2 ) is a bi-dimensional Brownian motion. Furthermore, for any ε > 0, Y has Hölder regularity α -1/2 -ε.

Hence Theorem 1 shows that designing our sequence of bi-dimensional Hawkes processes in a suitable way, its limit is differentiable and its derivative exhibits a rough Cox-Ingersoll-Ross like behavior, with non-zero initial value. This is exactly what we need for the limiting volatility of our microscopic price processes. Indeed, thanks to Theorem 1, we are now able to build such microscopic processes converging to the log-price in (3). More precisely, for θ > 0, let us define

P T = θ 2 1 -a T T α µ (N T,+ .T -N T,- .T ) - θ 2 1 -a T T α µ N T,+ .T = θ 2 (Z T,+ -Z T,-) - θ 2 X T,+ . (11) 
We have the following corollary of Theorem 1.

Corollary 1. As T → ∞, under Assumptions 1 and 2, the sequence of processes (P T t ) t ∈[0,1] converges in law for the Skorokhod topology to

P t = t 0 V s dW s - 1 2 t 0 V s d s,
where V is the unique solution of the rough stochastic differential equation

V t = θξ + 1 Γ(α) t 0 (t -s) α-1 λ(θ -V s )d s + λ θ(1 + β 2 ) λµ(1 + β) 2 1 Γ(α) t 0 (t -s) α-1 V s d B s , with (W, B ) a correlated bi-dimensional Brownian motion whose bracket satisfies d 〈W, B 〉 t = 1 -β 2(1 + β 2 ) d t .
Thus, we have succeeded in building a sequence of microscopic processes P T , defined by (11), which converges to (the logarithm of) our rough Heston process of interest (3). Now our goal is to use the result of Corollary 1 to compute the characteristic function of the log-price in the rough Heston model (3). This is done in the next two sections.

The characteristic function of multivariate Hawkes processes

We have seen in the previous section that our sequence of Hawkes-based microscopic price processes converges to the log-price in the rough Heston model (3). Therefore, if we are able to compute the characteristic function for the microscopic price, its limit will give us that of the log-price in a rough Heston model. We actually provide a more general result here, deriving the characteristic function of a multivariate Hawkes process (recall that a bi-dimensional Hawkes process is the building block for our microscopic price process ( 11)). Hence we extend here some results already proved in [START_REF] Hawkes | A cluster process representation of a self-exciting process[END_REF] in the one-dimensional case.

Cluster-based representation

To derive our characteristic function, the representation of Hawkes processes in term of clusters, see [START_REF] Hawkes | A cluster process representation of a self-exciting process[END_REF], is very useful. We recall it now. Let us consider a d -dimensional Hawkes process N = (N 1 , ..., N d ) with intensity

λ t =    λ 1 t . . . λ d t    = µ(t ) + t 0 φ(t -s).d N s , (12) 
where µ : R + → R d + is locally integrable and φ : R

+ → M d (R + ) has integrable components such that S ∞ 0 φ(s)d s < 1.
The law of such process can be described through a population approach. Consider that there are d types of individuals and for a given type, an individual can be either a migrant or the descendant of a migrant. Then the dynamic goes as follows from time t = 0:

• Migrants of type k ∈ {1, .., d } arrive as a non-homogenous Poisson process with rate µ k (t ).

• Each migrant of type k ∈ {1, .., d } gives birth to children of type j ∈ {1, .., d } following a non-homogenous Poisson process with rate φ j ,k (t ).

• Each child of type k ∈ {1, .., d } also gives birth to other children of type j ∈ {1, .., d } following a non-homogenous Poisson process with rate φ j ,k (t ).

Then, for k ∈ {1, .., d }, N k t can be taken as the number up to time t of migrants and children born with type k. Indeed, the population approach above and the theoretical characterization (12) define the same point process law.

The result

Let L(a, t ) be the characteristic function of the Hawkes process N ,

L(a, t ) = E[exp(i a.N t )], t ≥ 0, a ∈ R d ,
where a.N t stands for the scalar product of a and N t . The cluster-based representation of multivariate Hawkes processes enables us to show the following result, proved in Section 3.3, for their characteristic function.

Theorem 2. We have

L(a, t ) = exp t 0 C (a, t -s) -1 .µ(s)d s , where C : R d × R + → C d is solution of the following integral equation: C (a, t ) = exp i a + t 0 φ * (s).(C (a, t -s) -1)d s ,
with φ * (s) the transpose of φ(s).

From Theorem 2, we are able to derive in Section 4 the characteristic function of rough Heston models.

Proof of Theorem 2

We now give the proof of Theorem 2, exploiting the population construction presented in Section 3.1. We start by defining d auxiliary independent d -dimensional point processes ( Ñ k, j ) 1≤ j ≤d , k ∈ {1, ..., d }, defined as follows for each given k ∈ {1, .., d }:

• Migrants of type j ∈ {1, ..., d } arrive as a non-homogenous Poisson process with rate φ j ,k (t ).

• Each migrant of type j ∈ {1, .., d } gives birth to children of type l ∈ {1, .., d } following a non-homogenous Poisson process with rate φ l , j (t ).

• Each child of type j ∈ {1, .., d } also gives birth to other children of type l ∈ {1, .., d } following a non-homogenous Poisson process with rate φ l , j (t ).

The characteristic function of multivariate Hawkes processes

For a given k ∈ {1, .., d }, Ñ k, j t corresponds to the number, up to time t , of migrants and children with type j . A simple but crucial remark is that ( Ñ k, j ) 1≤ j ≤d is actually also a multivariate Hawkes process with migrant rate (φ j ,k ) 1≤ j ≤d and kernel matrix φ. We write L k (a, t ) for its characteristic function

L k (a, t ) = E exp(i a.( Ñ k, j t ) 1≤ j ≤d ) , t ≥ 0, a ∈ R d .
Now let us come back to the initial Hawkes process of interest N defined by (12). For each k ∈ {1, ..., d } and t ≥ 0, let N 0,k t be the number of its migrants of type k arrived up to time t . Recall that the N 0,k , 1 ≤ k ≤ d , are independent Poisson processes with rates µ k (t ). We also define T k

1 < ... < T k N 0,k t ∈ [0, t ]
the arrival times of migrants of type k of the Hawkes process N , up to time t . Using the population approach presented in Section 3.1, it is clear that at time t , the number of descendants of different types of a migrant of type k arrived at time T k u has the same law as ( Ñ k, j t -T k u ) 1≤ j ≤d , where Ñ is taken independent from N . Consequently,

N k t = l aw N 0,k t + 1≤ j ≤d 1≤l ≤N 0, j t Ñ j ,k,(l ) t -T j l , (13) 
where the

( Ñ j ,k,(l ) ) 1≤k≤d , 1 ≤ j ≤ d , l ∈ N are independent copies of ( Ñ j ,k ) 1≤k≤d , 1 ≤ j ≤ d , also independent of N 0 = (N 0,k ) 1≤k≤d .
From (13), we derive that conditional on N 0 ,

E exp(i a.N t )|N 0 = exp(i a.N 0 t ) 1≤ j ≤d 1≤l ≤N 0, j t E exp(i a.( Ñ j ,k,(l ) t -T j l ) 1≤k≤d |N 0 = exp(i a.N 0 t ) 1≤ j ≤d 1≤l ≤N 0, j t L j (a, t -T j l ). Now, for a given k ∈ {1, ..., d }, conditional on N 0,k t , it is well-known that (T k 1 , ..., T k N 0,k t ) has
the same law as (X (1) , ..., X (N 0,k t ) ) the order statistics built from iid variables (X 1 , ..,

X N 0,k t ) with density µ k (s)1 s≤t t 0 µ k (s)d s . Thus we get E exp(i a.N t )|N 0 t = exp(i a.N 0 t ) 1≤ j ≤d t 0 L j (a, t -s) µ j (s) t 0 µ j (s)d s d s N 0, j t .
Therefore,

L(a, t ) = 1≤ j ≤d exp ( t 0 e i a j L j (a, t -s) µ j (s) t 0 µ j (s)d s d s -1) t 0 µ j (s)d s .
Thus we finally obtain

L(a, t ) = exp 1≤ j ≤d t 0 (e i a j L j (a, t -s) -1)µ j (s)d s . (14) 
In the same way, because ( Ñ k, j ) 1≤ j ≤d is a multivariate Hawkes process with migrant rate (φ j ,k ) 1≤ j ≤d and kernel matrix φ, we get

L k (a, t ) = exp 1≤ j ≤d t 0 (e i a j L j (a, t -s) -1)φ j ,k (s)d s . (15) 
Let us define C (a, t ) = e i a j L j (a, t ) 1≤ j ≤d .

From ( 14), we have that

L(a, t ) = exp t 0 (C (a, t -s) -1).µ(s)d s
and from (15), we deduce that C is solution of the following integral equation

C (a, t ) = exp i a + t 0 φ * (s).(C (a, t -s) -1)d s .
This ends the proof of Theorem 2.

The characteristic function of rough Heston models

We give in this section our main theorem, that is the characteristic function for the log-price in rough Heston models (3). It is obtained combining the convergence result for Hawkes processes stated in Corollary 1 together with the characteristic function for multivariate Hawkes processes derived in Theorem 2. We start with some intuitions about the result.

Intuition about the result

We consider the rough Heston model (3). The parameters of the dynamic in (3) are here given in term of those of the sequence of processes P T defined in (11). More precisely, we set

V 0 = ξθ, ρ = 1 -β 2(1 + β 2 ) , ν = θ(1 + β 2 ) λµ(1 + β) 2 ,
and λ and θ are the same as those in the dynamic of P T . Remark that the fact that β ≥ 0 implies that ρ ∈ (-1/ 2, 1/ 2]4 .. We also write P t = log(S t /S 0 ). From Corollary 1, we know that

P T = λθ 2µ T -α (N T,+ .T -N T,- .T ) - λθ 2µ T -2α N T,+ .T
converges in law to P as T tends to infinity, where N T = (N T,+ , N T,-) is a sequence of bidimensional Hawkes processes satisfying Assumptions 1 and 2. Let us write L T ((a, b), u) for the 4. The characteristic function of rough Heston models characteristic function of the process N T at time u at point (a, b) and L p for the characteristic function of P . The convergence in law implies that of L T ((a + T , a - T ), t T ) towards L p (a, t ), where

a + T = a λθ 2µ T -α -a λθ 2µ T -2α , a - T = -a λθ 2µ T -α .
From Theorem 2, we know that

L T (a + T , a - T ), t T = exp t T 0 μT (s) (C T,+ ((a + T , a - T ), t T -s) -1) + (C T,-((a + T , a - T ), t T -s) -1) d s ,
where

C T ((a + T , a - T ), t ) = C T,+ ((a + T , a - T ), t ),C T,-((a + T , a - T ), t ) ∈ M 1×2 (C) is solution of C T (a + T , a - T ), t = exp i (a + T , a - T ) + t 0 C T ((a + T , a - T ), t -s) -(1, 1) .φ T (s)d s . Now let Y T (a, .) = Y T,+ (a, .), Y T,-(a, .) = C T (a + T , a - T ), .T : [0, 1] → M 1×2 (C).
Using a change of variables, we easily get that Y T (a, .) is solution of the equation

Y T (a, t ) = exp i (a + T , a - T ) + T t 0 Y T (a, t -s) -(1, 1) .φ T (T s)d s (16)
and that

L T (a + T , a - T , t T ) = exp t 0 T α (Y T,+ (a, t -s) -1) + T α (Y T,-(a, t -s) -1) T 1-α μ(sT ) d s . ( 17 
)
Thanks to Remarks 1 and 2, it is easy to see that

T 1-α μ(sT ) = T 1-α µ T + ξT 1-α µ T T α λ ∞ sT ϕ(u)d u + λT -α sT 0 ϕ(u)d u = µ 1 + ξ λ s -α (sT ) α ∞ sT ϕ(u)d u + µξλT -α sT 0 ϕ(u)d u -→ T →∞ µ 1 + ξ λΓ(1 -α) s -α .
Then the convergence of T α (Y T (a, t ) -(1, 1)) to some functions (c(a, t ), d (a, t )) solutions of Volterra-type equations is proved in Section 6.2. It is based on a Taylor expansion from ( 16). This will lead us to the expression of L p (a, t ).

Main result

We define the fractional integral of order r ∈ (0, 1] of a function f as

I r f (t ) = 1 Γ(r ) t 0 (t -s) r -1 f (s)d s, (18)
whenever the integral exists, and the fractional derivative of order r ∈ [0, 1) as

D r f (t ) = 1 Γ(1 -r ) d d t t 0 (t -s) -r f (s)d s, (19)
whenever it exists. The following theorem, proved in Section 6, is the main result of the paper. Theorem 3. Consider the rough Heston model (3) with a correlation between the two Brownian motions ρ satisfying ρ ∈ (-1/ 2, 1/ 2]. For all t ≥ 0 and fixed a ∈ R, we have

L p (a, t ) = exp θλI 1 h(a, t ) + V 0 I 1-α h(a, t ) , ( 20 
)
where h(a, .) is solution of the fractional Riccati equation

D α h(a, t ) = 1 2 (-a 2 -i a) + λ(i aρν -1)h(a, s) + (λν) 2 2 h 2 (a, s), I 1-α h(a, 0) = 0, (21) 
which admits a unique continuous solution.

Thus we have been able to obtain a semi-closed formula for the characteristic function in rough Heston models. This means that pricing of European options becomes an easy task in this model, see Section 5. For α = 1, we retrieve the classical Heston formula. For α < 1, the formula is almost the same. The difference is essentially only in that in the Riccati equation, the classical derivative is replaced by a fractional derivative. The drawback is that such fractional Riccati equations do not have explicit solutions. However, they can be solved numerically almost instantaneously, see Section 5. Finally, note that this strong link between Hawkes processes and (rough) Heston models is probably natural because both of them exhibit some kind of affine structure (although infinite-dimensional).

Numerical application

Numerical scheme

We explain in this section how to compute numerically the characteristic function of the log-price in a rough Heston model. By Theorem 3, L p (a, t ) is entirely defined through the fractional Riccati equation ( 21)

D α h(a, t ) = F a, h(a, t ) , I 1-α h(a, 0) = 0,
where

F (a, x) = 1 2 (-a 2 -i a) + λ(i aρν -1)x + (λν) 2 2 x 2 .
Several schemes for solving (21) numerically can be found in the literature. Most of them are based on the idea that (21) implies the following Volterra equation

h(a, t ) = 1 Γ(α) t 0 (t -s) α-1 F a, h(a, s) d s. (22)
Then one develops numerical schemes for (22). Here we choose the well-known fractional Adams method investigated in [DFF02, DFF04, DF99]. The idea goes as follows. Let us write g (a, t ) = F a, h(a, t ) . Over a regular discrete time-grid (t k ) k∈N with mesh ∆ (t k = k∆), we estimate

h(a, t k+1 ) = 1 Γ(α) t k+1 0 (t k+1 -s) α-1 g (a, s)d s by 1 Γ(α) t k+1 0 (t k+1 -s) α-1 ĝ (a, s)d s, where ĝ (a, t ) = t j +1 -t t j +1 -t j ĝ (a, t j ) + t -t j t j +1 -t j ĝ (a, t j +1 ), t ∈ [t j , t j +1 ), 0 ≤ j ≤ k.
This corresponds to a trapezoidal discretization of the fractional integral and leads to the following scheme ĥ(a, t k+1 ) = 0≤ j ≤k a j ,k+1 F a, ĥ(a, t j ) + a k+1,k+1 F a, ĥ(a, t k+1 ) ,

with

a 0,k+1 = ∆ α Γ(α + 2) k α+1 -(k -α)(k + 1) α , a j ,k+1 = ∆ α Γ(α + 2) (k -j + 2) α+1 + (k -j ) α+1 -2(k -j + 1) α+1 , 1 ≤ j ≤ k, (24) 
and

a k+1,k+1 = ∆ α Γ(α + 2) .
However, ĥ(a, t k+1 ) being on both sides of (23), this scheme is implicit. Thus, in a first step, we compute a pre-estimation of ĥ(a, t k+1 ) based on a Riemann sum that we then plug into the trapezoidal quadrature. This pre-estimation, called predictor and that we denote by ĥP (a, t k+1 ) is defined by

ĥP (a, t k+1 ) = 1 Γ(α) t 0 (t -s) α-1 g (a, s)d s, with g (a, t ) = ĝ (a, t j ), t ∈ [t j , t j +1 ), 0 ≤ j ≤ k. Therefore, ĥP (a, t k+1 ) = 0≤ j ≤k b j ,k+1 F a, ĥ(a, t j ) , where b j ,k+1 = ∆ α Γ(α + 1) (k -j + 1) α -(k -j ) α , 0 ≤ j ≤ k.
Thus, the final explicit numerical scheme is given by ĥ(a, t k+1 ) = 0≤ j ≤k a j ,k+1 F a, ĥ(a, t j ) + a k+1,k+1 F a, ĥP (a, t j ) , ĥ(a, 0) = 0,

where the weights a j ,k+1 are defined in (24). Theoretical guarantees for the convergence of this scheme are provided in [START_REF] Li | On the fractional Adams method[END_REF]. In particular, it is shown that for given t > 0 and a ∈ R,

max t j ∈[0,t ] | ĥ(a, t j ) -h(a, t j )| = o(∆)
and max

t j ∈[ε,t ] | ĥ(a, t j ) -h(a, t j )| = o(∆ 2-α ),
for any ε > 0.

Numerical illustrations

To compute L p (a, t ), we use the numerical scheme presented above to solve fractional Riccati equations and then plug the numerical solutions into (20). Once the characteristic function is obtained, classical methods are available to obtain call prices

C (K , T ) = E[(S T -K ) + ],
see [CM99, Itk05, Lew01] and the survey [START_REF] Schmelzle | Option pricing formulae using Fourier transform: Theory and application[END_REF]. In our case, we use Lewis method, see [START_REF] Lewis | A simple option formula for general jump-diffusion and other exponential lévy processes[END_REF].

The most costly operation is the computation of ( ĥ(a l , t j ), 1 ≤ l ≤ N a , 1 ≤ j ≤ n) from the scheme of Section 5.1, where n = T /∆ is the number of time steps and N a is the number of space steps a l used for the Fourier type method finally leading to C (T, K ). Hence the complexity of call price computation is O(N a n 2 ). Note that for the classical Heston model (α = 1), h(a, t ) has an explicit form and the complexity is then reduced to O(N a ).

We now give a calibration result on the S&P implied volatility surface of 7 January 2010. We obtain the following optimal parameters for the rough Heston model (3):

α = 0.62, λ = 0.1, ρ = -0.681, V 0 = 0.0392, ν = 0.331, θ = 0.3156.
We compare model and market implied volatility surfaces in We see that the rough Heston model provides remarkable fits for the smile, for all the considered maturities. Again, one very important point here is that the model volatility surface can be computed very efficiently thanks to our procedure.

Finally, we display the term structure of the at-the-money skew, that is the derivative of the implied volatility with respect to log-strike for at-the-money calls. We compute it for α = 1 (classical Heston) and α = 0.62 (rough Heston with optimal Hurst parameter equal to 0.12). In the rough case, the skew explodes when maturity goes to zero, whereas it remains flat with the classical Heston model. This is a remarkable feature of rough volatility models because this exploding behavior is commonly observed on real data and very important for practical applications, see [START_REF] Bayer | Pricing under rough volatility[END_REF][START_REF] Fukasawa | Asymptotic analysis for stochastic volatility: Martingale expansion[END_REF][START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF].

Proofs

In the sequel, c denotes a constant that may vary from line to line.

Proof of Theorem 1

The proof of Theorem 1 is close to the one given in Chapter I for the convergence of a microscopic price model to a Heston-like dynamic. The main difference is that we have to deal here with a time-varying baseline intensity μT , which we have introduced to get a non-zero initial volatility in the limit. As in Chapter I, we start by showing the C-tightness of (Λ T , X T , Z T ).

C-tightness of

(Λ T , X T , Z T )
We have the following proposition.

Proposition 1. Under Assumptions 1 and 2, the sequence

(Λ T , X T , Z T ) is C-tight and sup t ∈[0,1] Λ T t -X T t -→ T →∞ 0 in probability. Moreover, if (X , Z ) is a possible limit point of (X T , Z T ), then Z is a continuous martingale with [Z , Z ] = d i ag (X ).
Proof:

6. Proofs C-tightness of X T and Λ T Recall that as in (9), we can write

λ T,+ t = λ T,- t = μT (t ) + t 0 ψ T (t -s) μT (s)d s + 1 β + 1 t 0 ψ T (t -s)(d M T,+ s + βd M T,- s ),
where

M T t = (M T,+ t , M T,- t ) = N T t - t 0 λ T s d s is a martingale. Using that . 0 ( f * g ) = ( . 0 f ) * g , we get E[N T,+ T ] = E[N T,- T ] = E T 0 λ T,+ s d s = T 0 μT (s)d s + T 0 ψ T (T -s) s 0 μT (u)d u d s.
Consequently, μ being a positive function and using that

1 + ∞ 0 ψ T (s)d s = 1 + k≥1 ∞ 0 (ϕ T ) * k = k≥0 (a T ) k = T α λ ,
we obtain

E[N T,+ T ] ≤ T 0 μT (s)d s 1 + ∞ 0 ψ T (s)d s ≤ 1 λ T α+1 1 0 μT (T s)d s.
Moreover, from the definition of μT and Remark 1, we have

1 0 μT (T s)d s = µT α-1 1 + ξ 1 0 s -α (sT ) α λ ∞ sT ϕ(u)d ud s + λT -α 1 0 sT 0 ϕ(u)d ud s ≤ cT α-1 .
Hence E[N T,+ T ] ≤ cT 2α and therefore

E[X T 1 ] = E[Λ T 1 ] ≤ c,
for each component. Each component of X T and Λ T being increasing, we deduce the tightness of each component of (X T , Λ T ). Furthermore, the maximum jump size of X T and Λ T being 1-a T T α µ which goes to zero, the C-tightness of (X T , Λ T ) is obtained from Prop.VI-3.26 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF].

C-tightness of

Z T It is easy to check that 〈Z T , Z T 〉 = d i ag (Λ T ),
which is C-tight. From Theorem VI-4.13 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], this gives the tightness of Z T . The maximum jump size of Z T vanishing as T goes to infinity, we obtain that Z T is C-tight.

Convergence of X T -Λ T We have

X T t -Λ T t = 1 -a T T α µ M T t T .
From Doob's inequality, we get that for each component

E sup t ∈[0,1] |Λ T t -X T t | 2 ≤ cT -4α E[M T T ] 2 .
Because [M T , M T ] = N T , we deduce

E sup t ∈[0,1] |Λ T t -X T t | 2 ≤ cT -4α E[N T T ] ≤ cT -2α .
This gives the uniform convergence to zero in probability of X T -Λ T .

Limit of Z T Let (X , Z ) be a limit point of (X T , Z T ). We know that (X , Z ) is continuous and from Corollary IX-1.19 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], Z is a local martingale. Moreover, because

[Z T , Z T ] = d i ag (X T ), using Theorem VI-6.26 in [JS13], we get that [Z , Z ] is the limit of [Z T , Z T ] and [Z , Z ] = d i ag (X )
. By Fatou's lemma, the expectation of [Z , Z ] is finite and therefore Z is a martingale.

Convergence of X T and Z T

First remark that because

sup t ∈[0,1] |Λ T t -X T t | -→ T →∞ 0 and Λ T,+ t = Λ T,- t ,
we get

sup t ∈[0,1] |X T,+ t -X T,- t | -→ T →∞ 0.
Therefore, if a subsequence of X T,+ t converges to some X , then the associated subsequence of X T,- t converges to the same X . We have the following proposition for the limit points of X T,+ t and X T,- t .

Proposition 2. If (X , X , Z + , Z -) is a possible limit point for (X T,+ , X T,-, Z T,+ , Z T,-), then 

(X t , Z + t , Z - t ) can be written X t = t 0 Y s d s, Z + t = t 0 Y s d B 1 s , Z - t = t 0 Y s d B 2 s , 92 
Y t = ξ 1 -F α,λ (t ) + F α,λ (t ) + 1 + β 2 λµ(1 + β) 2 t 0 f α,λ (t -s) Y s d B s , (25) with B = B 1 + βB 2 1 + β 2 .
Furthermore, for any ε > 0, Y has Hölder regularity α -1/2 -ε.

Proof:

A convenient equality We first show the following equality

μT (t ) + t 0 ψ T (t -s) μT (s)d s = µ T + ξµ T 1 1 -a T + µ T (1 -ξ) t 0 ψ T (t -s)d s. ( 26 
)
To obtain this result, we consider (26) as an equation with unknown μT . From Lemma 1, it admits a solution. We now look for necessary condition for this solution, showing in the end that the specific μT given in Assumption 2 is the only possible choice. Using convolution by ϕ T and the fact that ψ T * ϕ T = ψ Tϕ T , we obtain from the left-hand side of (26):

t 0 μT (s)ϕ T (t -s)d s + t 0 s 0 ψ T (s -u) μT (u)d uϕ T (t -s)d s = t 0 μT (s)ϕ T (t -s)d s + t 0 t -u 0 ψ T (s)ϕ T (t -u -s)d s μT (u)d u = t 0 μT (s)ϕ T (t -s)d s + t 0 ψ T (t -u) -ϕ T (t -u) μT (u)d u = t 0 ψ T (t -s) μT (s)d s.
From the right-hand side of (26), we get

t 0 ϕ T (t -s)(µ T + ξµ T 1 1 -a T )d s + µ T (1 -ξ) t 0 ϕ T (t -s) s 0 ψ T (s -u)d ud s = µ T (1 + ξ 1 1 -a T ) t 0 ϕ T (t -s)d s + µ T (1 -ξ) t 0 t -u 0 ψ T (s)ϕ T (t -u -s)d sd u = µ T (1 + ξ 1 1 -a T ) t 0 ϕ T (t -s)d s + µ T (1 -ξ) t 0 ψ T (t -u) -ϕ T (t -u) d u.
Consequently, we necessarily have

t 0 ψ T (t -s) μT (s)d s = µ T ξ( 1 1 -a T + 1) t 0 ϕ T (t -s)d s + µ T (1 -ξ) t 0 ψ T (t -s)d s.
This last equation together with (26) gives that the only possible choice is

μT (t ) = µ T + ξµ T 1 1 -a T 1 - t 0 ϕ T (t -s)d s -µ T ξ t 0 ϕ T (t -s)d s.

II. Characteristic function of rough Heston models

End of the proof of Proposition 2 Recall that λ T,+ t = λ T,- t . Note that using similar computations as in Section 2.2 together with (26) we can write

λ T,+ t = µ T +µ T t 0 ψ T (t -s)d s+ξµ T 1 1 -a T - t 0 ψ T (t -s)d s + 1 β + 1 t 0 ψ T (t -s)(d M T,+ s +βd M T,- s ).
Then using Fubini theorem together with the fact that

. 0 ( f * g ) = ( . 0 f ) * g , we get t 0 λ T,+ s d s = µ T t + µ T t 0 ψ T (t -s)sd s + ξµ T t 1 -a T - t 0 ψ T (t -s)sd s + 1 β + 1 t 0 ψ T (t -s)(M T,+ s + βM T,- s )d s.
Therefore, for t ∈ [0, 1], we have the decomposition

Λ T,+ t = Λ T,- t = T 1 + T 2 + T 3 , (27) 
with

T 1 = (1 -a T )t , T 2 = T (1 -a T ) t 0 ψ T T (t -s) sd s + ξ t -T (1 -a T ) t 0 ψ T T (t -s) sd s , T 3 = 1 λµ(1 + β) 2 t 0 T (1 -a T )ψ T T (t -s) (Z T,+ s + βZ T,- s )d s.
Now recall that we have shown in (10) that

T (1 -a T )ψ(T.) = a T f α,λ .
Thus

T 2 -→ T →∞ t 0 f α,λ (t -s)sd s + ξ t - t 0 f α,λ (t -s)sd s and T 3 -→ T →∞ 1 λµ(1 + β) 2 t 0 f α,λ (t -s)(Z + s + βZ - s )d s.
Therefore, letting T go to infinity in (27), we obtain using Proposition 1 that X satisfies

X t = t 0 f α,λ (t -s)sd s + ξ t - t 0 f α,λ (t -s)sd s + 1 λµ(1 + β) 2 t 0 f α,λ (t -s)(Z + s + βZ - s )d s.
In the same way as for the proof of Theorem 3.2 in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], we show that

X t = t 0 Y s d s,
where Y satisfies

Y t = F α,λ (t ) + ξ 1 -F α,λ (t ) + 1 λµ(1 + β) 2 t 0 f α,λ (t -s)(d Z + s + βd Z - s ).

Proofs

Because, by Proposition 1,

[Z , Z ] = t 0 Y s d s 1 0 0 1 ,
we can apply Theorem V-3.9 in [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] to show the existence of a bi-dimensional Brownian motion (B 1 , B 2 ) such that

Z + t = t 0 Y s d B 1 s , Z - t = t 0 Y s d B 2 s .
Finally, we define the following Brownian motion:

B = B 1 + βB 2 1 + β 2 .
Then, in the same way as for the proof of Theorem 3.2 in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], we get that Y satisfies

Y t = F α,λ (t ) + ξ 1 -F α,λ (t ) + 1 + β 2 λµ(1 + β) 2 t 0 f α,λ (t -s) Y s d B s ,
and has Hölder regularity α -1/2 -ε for any ε > 0.

End of the proof of Theorem 1

We now recall the following proposition stating that the process Y is uniquely defined by Equation (25) and that this equation is equivalent to that given in Theorem 1. The proof of this result can be found in Chapter I. Theorem 1 is readily obtained from this proposition together with Proposition 1 and 2. Proposition 3. Let λ, ν, θ and V 0 be positive constants, α ∈ (1/2, 1) and B be a Brownian motion. The process V is solution of the following fractional stochastic differential equation

V t = V 0 1 -F α,λ (t ) + θF α,λ (t ) + ν t 0 f α,λ (t -s) V s d B s if and only if it is solution of V t = V 0 + 1 Γ(α) t 0 (t -s) α-1 λ(θ -V s )d s + λν Γ(α) t 0 (t -s) α-1 V s d B s .
Furthermore, both equations admit a unique weak solution.

Proof of Corollary 1

From Theorem 1, we know that P T converges in law for the Skorokhod topology to the process P given by

P t = θ 2 t 0 Y s (d B 1 s -d B 2 s ) - θ 2 t 0 Y s d s.

II. Characteristic function of rough Heston models

Let V t = θY t and

W t = 1 2 (B 1 t -B 2 t ). Then P t = t 0 V s dW s - 1 2 t 0 V s d s,
where

V t = ξθ + 1 Γ(α) t 0 (t -s) α-1 λ(θ -V s )d s + λ θ(1 + β 2 ) λµ(1 + β) 2 1 Γ(α) t 0 (t -s) α-1 V s dW s and (W, B ) is a correlated bi-dimensional Brownian motion with d 〈W, B 〉 t = 1 -β 2(1 + β 2 ) d t .

Proof of Theorem 3

We now give the proof of Theorem 3. We do it for t ∈ [0, 1] but the proof can obviously be extended for any t ≥ 0. We start by controlling the process Y T (a, t ) -(1, 1). In the sequel, c(a) denotes a positive constant independent of t and T that may vary from line to line.

Control of Y T (a, t ) -(1, 1)

We have the following proposition.

Proposition 4. For any t ∈ [0, 1],

T α Y T (a, t ) -(1, 1) ≤ c(a).
Proof:

Let us show that

T α |Y T,+ (a, t ) -1| ≤ c(a).
Recall that Y T (a, t ) is defined in Section 4.1 for a ∈ R by

Y T (a, t ) = Y T,+ (a, t ), Y T,-(a, t ) = C T,+ ((a + T , a - T ), t T ),C T,-((a + T , a - T ), t T ) , with a + T = a λθ 2µ T -α -a λθ 2µ T -2α , a - T = -a λθ 2µ T -α .
Using the elements in the proof of Theorem 2 in Section 3.3, we get that

C T,+ (a, b), t = E exp(i a + i a Ñ T,+ t + i b Ñ T,- t ) ,
where Ñ T, = ( Ñ T,+ , Ñ T,-) is a bi-dimensional Hawkes process with intensity ( λT , λT ) given by

λT t = 1 β + 1 ϕ T (t ) + 1 β + 1 t 0 ϕ T (t -s)(d Ñ T,+ s + βd Ñ T,- s ).

Proofs

As already seen, using Lemma 1, we can rewrite the intensity under the following form

λT t = 1 β + 1 ψ T (t ) + 1 β + 1 t 0 ψ T (t -s)(d M T,+ s + βd M T,- s ),
where

M T = ( M T,+ , M T,-) = Ñ T - . 0 λT (s)d s(1, 1) is a martingale. Using Fubini theorem, we get t T 0 λT s d s = 1 β + 1 T t 0 ψ T (T s)d s + 1 β + 1 t 0 T ψ T T (t -s) ( M T,+ sT + β M T,- sT )d s.
Then, from (10), we derive

t T 0 λT s d s = 1 λ(β + 1) a T T α F α,λ (t ) + 1 λ(β + 1) a T T α t 0 f α,λ (t -s)( M T,+ sT + β M T,- sT )d s. (28)
Consequently,

E t T 0 λT s d s ≤ 1 λ(β + 1) F α,λ (1)T α .
Let us now set

X T t = a + T Ñ T,+ t T + a - T Ñ T,- t T .
Using the last inequality, we deduce

|E X T t | ≤ c|a|T -α F α,λ (1). Now recall that T α (Y T,+ (a, t ) -1) = T α E exp(i a + T + i a + T Ñ T,+ t T + i a - T Ñ T,- t T ) -1 .
Using the fact that there exists c > 0 such that for any x ∈ R,

| exp(i x) -1 -i x| ≤ c|x| 2 ,
we obtain

T α |Y T,+ (a, t ) -1| = T α |E exp(i a + T + i X T t ) -1 -i X T t -i a + T + i X T t + i a + T | ≤ T α |E[ X T t ]| + T α |a + T | + T α E | exp(i a + T + i X T t ) -1 -i X T t -i a + T | ≤ c(a) 1 + T α (a + T ) 2 + T α E[( X T t ) 2 ] ≤ c(a) 1 + T α E[( X T t ) 2 ] .
Then, using that

X T t = a λθ 2µ T -α ( Ñ T,+ t T -Ñ T,- t T ) -a λθ 2µ T -2α Ñ T,+ t T
together with the fact that Ñ T,+ -Ñ T,-= M T,+ -M T,-, we deduce

T α E[( X T t ) 2 ] ≤ ca 2 T -α E[( M T,+ t T -M T,- t T ) 2 ] + c a 2 T -3α E[( Ñ T,+ t T ) 2 ].

II. Characteristic function of rough Heston models

Because [ M T,+ -M T,-, M T,+ -M T,-] = Ñ T,+ + Ñ T,-, we get

T α E[( X T t ) 2 ] ≤ ca 2 T -α E[ Ñ T,+ t T + Ñ T,- t T ] + c a 2 T -3α E[( Ñ T,+ t T ) 2 ] ≤ ca 2 T -α E[ t T 0 λT s d s] + T -3α E[( Ñ T,+ t T ) 2 ] . ≤ ca 2 1 + T -3α E[( Ñ T,+ t T ) 2 ] .
In order to control the term E[( Ñ T,+ t T ) 2 ], we now compute a bound for E ( t T 0 λT s d s) 2 . Using (28), this last quantity is equal to

1 λ 2 (β + 1) 2 a 2 T T 2α F α,λ (t ) 2 + 1 λ 2 (β + 1) 2 a 2 T T 2α E t 0 f α,λ (t -s)( M T,+ sT + β M T,- sT )d s 2 ,
which is smaller than

c(a)T 2α 1 + E t 0 f α,λ (t -s) 2 ( M T,+ sT + β M T,- sT ) 2 d s . Because [ M T,+ + β M T,-, M T,+ + β M T,-] = Ñ T,+ + β 2 Ñ T,-, we obtain E ( t T 0 λT s d s) 2 ≤ c(a)T 2α 1 + t 0 f α,λ (t -s) 2 E[ Ñ T,+ sT + β 2 Ñ T,- sT ]d s ≤ c(a)T 2α 1 + t 0 f α,λ (t -s) 2 E sT 0 λT u d u d s ≤ c(a)T 2α 1 + T α 1 0 f α,λ (s) 2 d s ≤ c(a)T 3α .
Thus

E ( Ñ T,+ t T ) 2 ≤ 2E ( M T,+ t T ) 2 + 2E t T 0 λT s d s 2 ≤ c(a)T 3α .
Finally, T α E[( X T t ) 2 ] ≤ c(a) and therefore

T α |Y T,+ (a, t ) -1| ≤ c(a).
The fact that

T α |Y T,-(a, t ) -1| ≤ c(a)
is proved similarly.

Convergence of T α (Y T -(1, 1))

Let κ = λθ/(2µ). We have the following proposition.

Proofs

Proposition 5. The sequence

T α (Y T (a, t )-(1, 1)) converges uniformly in t ∈ [0, 1] to c(a, t ), d (a, t ) , where (c, d ) are solutions of c(a, t ) = i a κ -i a κ λ(β + 1) F α,λ (t ) + 1 2λ(β + 1) t 0 c 2 (a, t -s) + d 2 (a, t -s) f α,λ (s)d s d (a, t ) = -i a κ -i a βκ λ(β + 1) F α,λ (t ) + β 2λ(β + 1) t 0 c 2 (a, t -s) + d 2 (a, t -s) f α,λ (s)d s.
Proof:

Convenient rewriting of T α (Y T -(1, 1
)) Using the fact that the complex logarithm 5 is analytic on the set C/R -, we can show that there exists c > 0 such that for any x ∈ C with

|x| < 1/2, | log(1 + x) -x + 1 2 x 2 | ≤ c|x| 3 .
Thus we can write

log Y T (a, t ) = Y T (a, t ) -(1, 1) - 1 2 Y T (a, t ) -(1, 1) 2 -ε T (a, t ), with |ε T (a, t )| ≤ c(a)T -3α
. Indeed, for large enough T , we have from Proposition 4 that

|Y T,+ (a, t ) -1| ≤ 1/2 and |Y T,-(a, t ) -1| ≤ 1/2, uniformly in t . Now, again from Proposition 4, it is easy to see that i (a + T , a - T ) + t 0 T Y T (a, t -s) -(1, 1) .φ T (T s)d s ≤ c(a)T -α -→ T →∞ 0.
Hence, for large enough T , the imaginary part of

i (a + T , a - T ) + t 0 T (Y T (a, t -s) -(1, 1)).φ T (T s)d s
has a norm which is smaller than π. Therefore

log exp i (a + T , a - T ) + t 0 T Y T (a, t -s) -(1, 1) .φ T (T s)d s is equal to i (a + T , a - T ) + t 0 T Y T (a, t -s) -(1, 1) .φ T (T s)d s.
Then, using Equation ( 16), we get

Y T (a, t ) -(1, 1) = 1 2 Y T (a, t ) -(1, 1) 2 + ε T (a, t ) + i a κT -α (1, -1) -i aκT -2α (1, 0) + T t 0 Y T (a, t -s) -(1, 1) .φ T (T s)d s.
5 The complex logarithm is defined on C/R -by log(z) = log(|z|) + i arg(z), with arg(z) ∈ (-π, π].

II. Characteristic function of rough Heston models

Using again the fact that

k≥1 T φ T (T.) * k = a T T α λ f α,λ χ,
together with Lemma 1, we derive

Y T (a, t ) -(1, 1) = 1 2 Y T (a, t ) -(1, 1) 2 + ε T (a, t ) + i a κT -α (1, -1) -i aκT -2α (1, 0) + a T 2 T α λ t 0 Y T (a, t -s) -(1, 1) 2 .χ f α,λ (s)d s + a T λ T α t 0 ε T (a, t -s).χ f α,λ (s)d s + i a κ a T λ (1, -1).χF α,λ (t ) -i aκT -α a T λ (1, 0).χF α,λ (t ). Let ε T 1 (a, t ) = 1 2 Y T (a, t ) -(1, 1) 2 + ε T (a, t ) -i aκT -2α (1, 0) + a T λ T α t 0 ε T (a, t -s).χ f α,λ (s)d s.
We have

Y T (a, t ) -(1, 1) = ε T 1 (a, t ) + i a κT -α (1, -1) + a T 2 T α λ t 0 Y T (a, t -s) -(1, 1) 2 .χ f α,λ (s)d s -i a T a κ λ(β + 1) T -α F α,λ (t )(1, β).
Let now

ε T 2 (a, t ) = - 1 2 t 0 Y T (a, t -s) -(1, 1) 2 .χ f α,λ (s)d s + i a κ (β + 1) T -2α F α,λ (t )(1, β).
We obtain

Y T (a, t ) -(1, 1) = ε T 1 (a, t ) + ε T 2 (a, t ) + i a κT -α (1, -1) + 1 2λ T α t 0 Y T (a, t -s) -(1, 1) 2 .χ f α,λ (s)d s -i a κ λ(β + 1) T -α F α,λ (t )(1, β).
Using Proposition 4, we easily see that T 2α ε T 1 and T 2α ε T 2 are uniformly bounded in t and T . We now set

θ T (a, t ) = θ T,+ (a, t ), θ T,-(a, t ) = T α Y T (a, t ) -(1, 1) and r T (a, t ) = T α ε T 1 (a, t ) + ε T 2 (a, t ) .
We have that T α r T is uniformly bounded in t and T and

θ T (a, t ) = r T (a, t ) + i a κ(1, -1) -i a κ λ(β + 1) F α,λ (t )(1, β) + 1 2λ t 0 θ T (a, t -s) 2 .χ f α,λ (s)d s. 100 6. Proofs
Convergence of θ T For fixed a, we now show that t → θ T (a, t ) is a Cauchy sequence in the space of continuous functions C ([0, 1], R 2 ) equipped with the sup-norm. Let δ > 0 and

T 0 > 1 such that for T > T 0 , r T (a, t ) ∞ ≤ δ 2 for any t ∈ [0, 1]. Then for T > T 0 , T > T 0 and t ∈ [0, 1], θ T (a, t ) -θ T (a, t ) ≤ δ + 1 2λ t 0 θ T (a, t -s) 2 .χ -θ T (a, t -s) 2 .χ f α,λ (s)d s.
Because θ T is uniformly bounded in t and T , we get

θ T (a, t ) -θ T (a, t ) ≤ δ +C (a) t 0 θ T (a, t -s) -θ T (a, t -s) f α,λ (s)d s.
Using Lemma 3 in Appendix, this enables us to show that θ T is a Cauchy sequence. Consequently, θ T (a, t ) converges uniformly in t to c(a, t ), d (a, t ) , where (c, d ) is solution to the following equation

c(a, t ) = i a κ -i a κ λ(β + 1) F α,λ (t ) + 1 2λ(β + 1) t 0 c 2 (a, t -s) + d 2 (a, t -s) f α,λ (s)d s d (a, t ) = -i a κ -i a βκ λ(β + 1) F α,λ (t ) + β 2λ(β + 1) t 0 c 2 (a, t -s) + d 2 (a, t -s) f α,λ (s)d s.

End of the proof of Theorem 3

Deriving the characteristic function Let a ∈ R. Recall that from Section 4.1, we have

L T (a + T , a - T , t T ) = exp t 0 T α (Y T,+ (a, t -s) -1) + T α (Y T,-(a, t -s) -1) T 1-α μ(sT ) d s
and furthermore, from Proposition 5,

T α (Y T,+ (a, t ) -1) + T α (Y T,-(a, t ) -1)
converges uniformly in t to c(a, t ) + d (a, t ). Also, using Remark 2, we have

T 1-α μ(t T ) = µ + µξ t -α λ (T t ) α ∞ t T ϕ(s)d s + λT -α t T 0 ϕ(s)d s and therefore T 1-α μ(t T ) converges towards µ 1 + ξ t -α λΓ(1 -α) .
In addition, using Proposition 4, we get that for given t ∈ [0, 1] and for any s

∈ [0, t ] |T α (Y T,+ (a, t -s) -1) + T α (Y T,-(a, t -s) -1)| T 1-α μ(sT ) ≤ c(a)(1 + s -α ).
The right hand side of the last inequality is integrable over [0, t ]. Therefore, using the convergence of L T (a + T , a - T , t T ) towards L p (a, t ) and applying the dominated convergence theorem, we obtain

L p (a, t ) = exp t 0 g (a, s)(1 + ξ (t -s) -α λΓ(1 -α) )d s ,
where g (a, t ) = µ c(a, t ) + d (a, t ) . Thus, we have shown that

L p (a, t ) = exp t 0 g (a, s)d s + V 0 θλ I 1-α g (a, t ) .
Integral equation for g We now prove that g is solution of an integral equation. First remark that

d (a, t ) = βc(a, t ) -i a(1 + β) κ.
Hence g (a, t ) = µ(β + 1)(c(a, t )i a κ), which can be written

-i a µκ λ F α,λ (t ) + µ 2λ t 0 (c(a, s) -i a κ + i a κ) 2 + β(c(a, s) -i a κ) -i a κ 2 f α,λ (t -s)d s.
Thus,

g (a, t ) = -i a µκ λ F α,λ (t ) + 1 + β 2 2µλ(1 + β) 2 t 0 g (a, s) 2 f α,λ (t -s)d s -a 2 µκ λ F α,λ (t ) + i a κ(1 -β) λ(β + 1) t 0 g (a, s) f α,λ (t -s)d s.
Using the definition of κ in Section 6.2, we deduce

g (a, t ) = θ 2 (-a 2 -i a)F α,λ (t ) + i a θ(1 -β) 2λµ(β + 1) t 0 g (a, s) f α,λ (t -s)d s + 1 + β 2 2µλ(1 + β) 2 t 0 g 2 (a, s) f α,λ (t -s)d s
and from those of ρ and ν in Section 4.1, we finally obtain that g (a, t ) is equal to

θ 2 (-a 2 -i a)F α,λ (t ) + i aρν t 0 g (a, s) f α,λ (t -s)d s + ν 2 2θ t 0 g (a, s) 2 f α,λ (t -s)d s.
Thus,

L p (a, t ) = exp t 0 g (a, s) 1 + ξ (t -s) -α λΓ(1 -α) d s with g (a, t ) = t 0 θ 2 (-a 2 -i a) + i aρνg (a, s) + ν 2 2θ g (a, s) 2 f α,λ (t -s)d s.
Let us now set h = g /(θλ). Then

L p (a, t ) = exp t 0 h(a, s) θλ + V 0 (t -s) -α Γ(1 -α) d s , II.A. Mittag-Leffler functions with h(a, t ) = t 0 1 2 (-a 2 -i a) + i aλρνh(a, s) + (λν) 2 2 h(a, s) 2 1 λ f α,λ (t -s)d s. ( 29 
)
Using Lemma 2, we have that Equation (29) can also be written under the following form

D α h(a, t ) = 1 2 (-a 2 -i a) + λ(i aρν -1)h(a, s) + (λν) 2 2 h(a, s) 2 , I 1-α h(a, 0) = 0.

Uniqueness of the solution of (21)

For a given a ∈ R, consider two continuous solutions h 1 (a, .) and h 2 (a, .) of ( 21) or equivalently of (29). We have that |h 1 (a, t )h 2 (a, t )| is smaller than

t 0 |aρν||h 1 (a, s) -h 2 (a, s)| + λν 2 2 | h 1 (a, s) 2 -h 2 (a, s) 2 | f α,λ (t -s)d s.
Using the continuity of h 1 (a, .) and h 2 (a, .), this is also smaller than

c(a) t 0 |h 1 (a, s) -h 2 (a, s)| f α,λ (t -s)d s.
Thanks to Lemma 3, this gives h 1 (a, .) = h 2 (a, .).

II.A Mittag-Leffler functions

Let (α, β) ∈ (R * + ) 2 . The Mittag-Leffler function E α,β is defined for z ∈ C by E α,β (z) = n≥0 z n Γ(αn + β)
.

For (α, γ) ∈ (0, 1) × R + , we also define

f α,γ (t ) = γt α-1 E α,α (-γt α ), t > 0, F α,γ = t 0 f α,γ (s)d s, t ≥ 0.
The function f α,γ is a density function on R + called Mittag-Leffler density function. The following properties of f α,γ and F α,γ can be found in [START_REF] Haubold | Mittag-leffler functions and their applications[END_REF][START_REF] Mainardi | On some properties of the Mittag-Leffler function[END_REF][START_REF] Mathai | Special functions for applied scientists[END_REF]. We have

f α,γ (t ) ∼ t →0 + γ Γ(α) t α-1 , f α,γ (t ) ∼ t →∞ α γΓ(1 -α) t -(α+1)
and

F α,γ (t ) = 1 -E α,1 (-γt α ), F α,γ (t ) ∼ t →0 + γ Γ(α + 1) t α , 1 -F α,γ (t ) ∼ t →∞ 1 γΓ(1 -α) t -α .
Finally, for α ∈ (1/2, 1), f α,γ is square-integrable and its Laplace transform is given for z ≥ 0 by

f α,γ (z) = ∞ 0 f α,γ (s)e -zs d s = γ γ + z α .

II.B Wiener-Hopf equations

The following result is used extensively in this work to solve Wiener-Hopf type equations, see for example [START_REF] Bacry | Some limit theorems for Hawkes processes and application to financial statistics[END_REF].

Lemma 1. Let g be a measurable locally bounded function from R to R d and φ : R + → M d (R) be a matrix-valued function with integrable components such that S ( ∞ 0 φ(s)d s) < 1. Then there exists a unique locally bounded function f from R to R d solution of

f (t ) = g (t ) + t 0 φ(t -s). f (s)d s, t ≥ 0 given by f (t ) = g (t ) + t 0 ψ(t -s).g (s)d s, t ≥ 0, where ψ = k≥1 φ * k .

II.C Fractional differential equations

We end this appendix with some useful results about fractional differential equations. The next lemma can be found in [START_REF] Samko | Fractional integrals and derivatives[END_REF].

Lemma 2. Let h be a continuous function from [0, 1] to R, α ∈ (0, 1] and γ ∈ R. There is a unique continuous solution to the equation

D α y(t ) = γy(t ) + h(t ), I 1-α y(0) = 0 given by y(t ) = t 0 (t -s) α-1 E α,α γ(t -s) α h(s)d s.
We also have the following useful result.

Lemma 3. Let h be a non-negative continuous function from

[0, 1] to R such that for any t ∈ [0, 1], h(t ) ≤ ε +C t 0 f α,γ (t -s)h(s)d s,
for some ε ≥ 0 and C ≥ 0. Then for any t ∈ [0, 1],

h(t ) ≤ C ε, with C = 1 +C γ 1 0 s α-1 E α,α γ(C -1)s α d s > 0.
In particular, if ε = 0 then h = 0.

II.C. Fractional differential equations

Proof:

Let

f (t ) = h(t ) -C t 0 f α,γ (t -s)h(s)d s.
and g = hf . The function g is solution of

g (t ) = C t 0 f α,γ (t -s) g (s) + f (s) d s.
Thus, from Lemma 2, g is the unique solution of

D α g (t ) = γ(C -1)g (t ) +C γ f (t ), I 1-α g (0) = 0.
Hence using again Lemma 2, we deduce that

g (t ) = C γ t 0 (t -s) α-1 E α,α γ(C -1)(t -s) α f (s)d s.
Therefore,

g (t ) ≤ C γε t 0 s α-1 E α,α γ(C -1)s α d s.
Using that h = f + g together with the fact that E α,α is non-negative, we get the result.

Introduction

It has been recently shown in [START_REF] Gatheral | Volatility is rough[END_REF] that rough fractional processes enable us to reproduce very accurately the behavior of historical volatility time-series. More precisely, the dynamic of their logarithm is quite similar to that of a fractional Brownian motion with Hurst parameter of order 0.1. Recall that a fractional Brownian motion W H with Hurst parameter H ∈ (0, 1) can be built from a classical two-sided Brownian motion W through the Mandelbrot-van Ness representation:

W H t = 1 Γ(H + 1/2) 0 -∞ (t -s) H -1 2 -(-s) H -1 2 dW s + 1 Γ(H + 1/2) t 0 (t -s) H -1 2 dW s .
The fractional Brownian motion has Hölder regularity H -ε for any ε > 0. Hence fractional volatility models with small Hurst parameter are referred to as rough volatility models.

Beyond historical data modeling, rough volatility models provide excellent fits and dynamics for the whole volatility surface, in particular for the at-the-money skew, with very few scalar parameters (typically three), see [START_REF] Bayer | Pricing under rough volatility[END_REF][START_REF] Fukasawa | Asymptotic analysis for stochastic volatility: Martingale expansion[END_REF][START_REF] Gatheral | Volatility is rough[END_REF]. One of the only potential drawbacks of such models in practice is the difficulty to price and hedge derivatives with them. Indeed, although some promising approaches have been recently introduced, see [BLP17], due to the non-Markovian nature of the fractional Brownian motion, running efficient Monte-Carlo methods remains an intricate task in the rough volatility context, see [START_REF] Neuenkirch | The order barrier for strong approximation of rough volatility models[END_REF].

However, it is shown in Chapter II that in the specific case of the so-called rough Heston model, instantaneous pricing of derivatives can be obtained. The rough Heston model of Chapter II is a natural extension1 to the rough framework of the classical Heston model of [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. Indeed, the dynamic of the price S on a probability space (Ω, F , F, P) is defined as follows:

d S t = S t V t dW t V t = V 0 + 1 Γ(α) t 0 (t -u) α-1 λ(θ -V u )d u + 1 Γ(α) t 0 (t -u) α-1 ν V u d B u .
(1)

Here the parameters λ, θ, V 0 , S 0 and ν are positive, α ∈ (1/2, 1) and

W = ρB + 1 -ρ 2 B ⊥ with (B, B ⊥ ) a two-dimensional F-Brownian motion and ρ ∈ [-1, 1].
From Chapter II, the fractional stochastic differential equation (1) admits a unique weak solution and this solution has sample paths with Hölder regularity α -1/2 -ε almost surely, for any ε > 0. Note also that in the case α = 1, we retrieve the classical Heston model. Surprisingly enough, it is proved in Chapter II that a semi-closed formula à la Heston also holds for the characteristic function of the log-price in the rough Heston model. This formula is very similar to that obtained in the classical Heston case, except that the classical time-derivative in the Riccati equation has to be replaced by a fractional derivative. Indeed, we have

E[exp i a log(S t /S 0 ) ] = exp g 1 (a, t ) + V 0 g 2 (a, t ) ,
where

g 1 (a, t ) = θλ t 0 h(a, s)d s, g 2 (a, t ) = I 1-α h(a, t ),
and h is the unique continuous solution of the following fractional Riccati equation:

D α h(a, s) = 1 2 (-a 2 -i a) + (i aρν -λ)h(a, s) + ν 2 2 h 2 (a, s), I 1-α h(a, 0) = 0,
with I 1-α and D α the fractional integral and derivative operators defined in Appendix III.A. When α = 1, this result does coincide with the classical Heston's result. Furthermore, efficient numerical pricing procedures for vanilla options can be easily designed from it, see Chapter II.

Thus, the relevance of the rough Heston model is twofold: it enjoys at the same time the nice modeling properties of rough volatility models and the computational advantages of the Heston framework. However, the interest of having a pricing procedure is of course limited if it does not go along with a hedging strategy. Being able to build a hedging portfolio 1. Introduction essentially means computing conditional expectations of the form

C t = E[ f (S T )|F t ],
where f is a deterministic payoff function. In the classical Heston case, the Markovian structure of the model is very helpful to do it. In the rough case, this task is much more intricate since the underlying fractional Brownian motion is neither a Markov process nor a semi-martingale.

To tackle this issue, we first study the conditional laws in rough Heston models. We actually prove a very nice stability property. Indeed, we show that conditional on F t , the law of the rough Heston model is still that of a rough Heston model, provided that the mean-reversion level θ is replaced by a time-dependent one. Hence we generalize our definition of the rough Heston model, allowing for the mean-reversion level to depend on time. Then using Hawkes processes as in Chapter II, we are able to compute the extended characteristic function of the log-price in generalized rough Heston models, that is

E exp zlog(S t /S 0 ) (2) 
for z = a + i b, with b ∈ R and a in some subset of R to be defined later. From an explicit expression of (2), we can deduce a semi-closed formula for C t , following for example the approach in [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF].

Our most important result is the fact that we are able to identify the relevant state variables in rough Heston models, namely the underlying and the so-called forward variance curve:

(E[V s+t |F t ]) 0≤s≤T -t
. Indeed, we show that C t can be written

C t = C T -t , S t , (E[V s+t |F t ]) s≥0 ,
with C () an explicit deterministic function. The above formula shows rigorously that the hedging instruments needed with rough models are the spot price and the forward variance curve, an idea already emphasized in [START_REF] Bayer | Pricing under rough volatility[END_REF]. Such result is also in the spirit of the approach developed in [START_REF] Bergomi | Smile dynamics II[END_REF]. More precisely, we show that the dynamic of the option price satisfies

dC t = ∂ S C T -t , S t , (E[V s+t |F t ]) s≥0 d S t + ∂ V C T -t , S t , (E[V s+t |F t ]) s≥0 . d E[V s+t |F t ]) s≥0 ,
where ∂ S C is the derivative of C with respect to the underlying (the so-called delta) and ∂ V C is the Fréchet derivative of C according to the forward variance curve. From this expression, we readily obtain hedging strategies in terms of underlying and forward variance curve. Of course, in practice, one cannot really trade the whole forward variance curve. However, approximations can be built using liquid variance swaps or vanilla options.

Note also that using generalized rough Heston models enables us to perfectly fit the initial forward variance curve through the time varying mean-reversion parameter. Thus, one reproduces with great accuracy the dynamics of historical data, the whole implied volatility surface, including the at-the-money skew and the forward variance curve, and has access to instantaneous pricing and hedging methods.

The paper is organized as follows. In Section 2, we investigate conditional laws of rough Heston models and introduce generalized rough Heston models with time-dependent mean-reversion level. Using Hawkes processes, we derive in Section 3 the characteristic function of the log-price in generalized rough Heston models, emphasizing the role of the forward variance curve. We also discuss useful sufficient conditions for finite moments of the underlying price. Finally, we design our hedging strategies in Section 4. Some proofs are relegated to Section 5 and some technical results are given in an Appendix.

Conditional laws of rough Heston models

The goal of this paper is to understand how to price and hedge vanilla options with maturity T > 0 and payoff f (S T ) in the rough Heston framework (1). Thus a first step is to characterize the law of the process (S t 0 t ,V t 0 t ) t ≥0 = (S t +t 0 ,V t +t 0 ) t ≥0 conditional on F t 0 , for a fixed t 0 > 0. Indeed, in order to derive the option price dynamic and to build hedging portfolios, one needs to be able to compute

E[ f (S T )|F t ], 0 ≤ t ≤ T .
To state our result on conditional laws of rough Heston models, it is convenient to introduce a generalized version of Model (1), allowing for time-varying mean-reversion level.

Definition 1 (Generalized rough Heston model). On a filtered probability space (Ω, F , F, P), we define a generalized rough Heston model by

d S t = S t V t dW t V t = V 0 + 1 Γ(α) t 0 (t -u) α-1 λ(θ 0 (u) -V u )d u + 1 Γ(α) t 0 (t -u) α-1 ν V u d B u .
(3)

Here the parameters λ, V 0 , S 0 and ν are positive, α ∈ (1/2, 1) and

W = ρB + 1 -ρ 2 B ⊥ with (B, B ⊥ ) a two-dimensional F-Brownian motion and ρ ∈ [-1, 1]. Moreover, θ 0 is a deterministic function, continuous on R * + satisfying ∀u > 0; θ 0 (u) ≥ - V 0 λΓ(1 -α) u -α , (4) 
and

∀ε > 0 ∃K ε > 0; ∀u ∈ (0, 1]; θ 0 (u) ≤ K ε u -1 2 -ε . (5) 
Note that under Conditions (4) and (5), the fractional stochastic differential equation (3) admits a unique weak solution, see Theorem 2 and associated references.

We now give our result for the conditional laws of generalized rough Heston models (which Model (1) is a particular case of). Let (S t ,V t ) t ≥0 be defined by (3). We have the following theorem, proved in Section 5.1.

Theorem 1. The law of the process (S t 0 t ,V t 0 t ) t ≥0 is that of a generalized rough Heston model with the following dynamic:

d S t 0 t = S t 0 t V t 0 t dW t 0 t , S t 0 0 = S t 0 112 3. Characteristic function of generalized rough Heston models V t 0 t = V t 0 + 1 Γ(α) t 0 (t -u) α-1 λ(θ t 0 (u) -V t 0 u )d u + 1 Γ(α) t 0 (t -u) α-1 ν V t 0 u d B t 0 u , with (W t 0 t , B t 0 t ) t ≥0 = (W t 0 +t -W t 0 , B t 0 +t -B t 0 ) t ≥0 a two-dimensional Brownian motion with corre- lation ρ, independent of F t 0 and θ t 0 (u) = θ 0 (t 0 + u) + α λΓ(1 -α) t 0 0 (t 0 -v + u) -1-α (V v -V t 0 )d v + (u + t 0 ) -α λΓ(1 -α) (V 0 -V t 0 ),
which is an F t 0 -measurable function continuous on R * + such that Conditions (4) and (5) (where the index 0 should be replaced by t 0 ) are satisfied.

Hence the class of generalized rough Heston models is stable with respect to conditioning. The conditional law of a rough Heston model is still that of a rough Heston model. The only difference is a modification in the mean-reversion level function. In particular, when considering the usual rough Heston model (1), the constant parameter θ becomes an F t 0 measurable function when taking conditional law at time t 0 . This result will be crucial to derive hedging strategies in the rough Heston framework, and more generally to understand the state variables associated to rough Heston type dynamics.

Characteristic function of generalized rough Heston models

The goal of this section is to derive the extended characteristic functions for the log-price in the rough Heston model (3). This together with Theorem 1 will enable us to derive conditional characteristic functions, leading to hedging strategies. The first step to achieve this goal is to build a suitable sequence of processes converging to the generalized rough Heston model of Definition 1. Then we will be able to do computations on these processes (notably deriving characteristic functions), and pass them to the limit to obtain results for generalized rough Heston models.

Generalized rough Heston models as limit of nearly unstable Hawkes processes

In Chapter II, a microscopic price model, based on two-dimensional Hawkes processes, is built so that it converges on the long run after suitable rescaling to a rough Heston log-price (with constant mean-reversion). Then, characteristic functions are obtained from this result. Such method could easily be extended to obtain a generalized rough Heston model in the limit. However, it would only enable us to compute (2) with a = 0. This is not enough so that classical Fourier inversion methods such as that in [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF] can be rigorously applied to compute prices and hedging portfolios.

Thus we use another approach in this section, quite similar to that of [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF]. We consider a sequence of one-dimensional Hawkes processes (N T t ) t ≥0 , indexed by T > 0 going to infinity, with intensity given by

λ T t = µ T + t 0 a T ϕ(t -s)d N T s ,
where µ T and a T are positive constants with a T < 1 and ϕ : R * + → R + is integrable such that ∞ 0 ϕ = 1. In [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], it is shown that provided

x α ∞ x ϕ(s)d s -→ x→∞ 1 Γ(1 -α) , α ∈ (1/2, 1), (6) 
and

T α (1 -a T ) -→ T →∞ λ, T 1-α µ T -→ T →∞ λ/ν 2 ,
for some positive constants λ and ν, a suitably rescaled version of the intensity process λ T t asymptotically behaves as the variance process of a rough Heston model with constant mean-reversion parameter such as (1) and with initial variance equal to zero. To obtain a time-dependent mean-reversion level and a non-zero starting value in the limit, we are inspired by an idea in Chapter II, where it is shown that a time-dependent µ T is a way to modify some parameters in the limit. More precisely, we consider the following assumption, where f α,1 denotes the Mittag-Leffler density function defined in Appendix III.A.1.

Assumption 1. There exist λ, ν > 0, α ∈ (1/2, 1) and V 0 > 0 such that for T > 1/λ -1/α and t ≥ 0,

λ T t = µ T ζ T (t ) + t 0 ϕ T (t -s)d N T s ,
where

a T = 1 -λT -α , µ T = (λ/ν 2 )T α-1 , ϕ T = a T ϕ, with ϕ = f α,1 and ζ T (t ) = V 0 1 1 -a T (1 - t 0 ϕ T (t -s)d s) - t 0 ϕ T (t -u)d u + t 0 ϕ T (t -u)θ 0 (u/T )d u,
where θ 0 () satisfies the assumptions of Definition 1.

Note that we are working in the so-called nearly unstable case for Hawkes processes since the L 1 norm of the kernel ϕ T converges to one. Furthermore remark that (6) is satisfied, see Appendix III.A.1.

Remark 1. Remark that ζ T can also be written as follows

ζ T (t ) = t 0 ϕ T (t -u)θ 0 (u/T )d u + V 0 T α λ ∞ t ϕ(s)d s + λT -α t 0 ϕ(s)d s .
Therefore using that

I 1-α ϕ T (t ) = ∞ t ϕ T , see Appendix III.A.1, together with Condition (4) we get ζ T (t ) ≥ - V 0 λΓ(1 -α) T α t 0 ϕ T (t -u)u -α d u + V 0 T α λ ∞ t ϕ(s)d s + λT -α t 0 ϕ(s)d s = - V 0 λ T α ∞ t ϕ T (s)d s + V 0 T α λ ∞ t ϕ(s)d s + λT -α t 0 ϕ(s)d s = V 0 µ T ( ∞ t ϕ(s)d s + λT -α t 0 ϕ(s)d s .
114

Characteristic function of generalized rough Heston models

This shows that ζ T is a positive function and thus that the intensity process λ T t is well-defined.

We define M T t = N T t -t 0 λ T s d s and

X T t = ν 2 1 -a T T α λ N T t T , Λ T t = ν 2 1 -a T T α λ t T 0 λ T s d s, Z T t = ν 1 -a T T α λ M T t T .
Conditions (4) and (5) on the function θ 0 allow us to adapt the proofs in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF] and Chapter II in a straightforward way to obtain the following result.

Theorem 2. Let t 0 > 0. As T → ∞, under Assumption 1, the process Λ T t , X T t , Z T t t ∈[0,t 0 ] converges in law for the Skorokhod topology to (Λ, X , Z ), where

• Λ t = X t = t 0 V s d s. • Z t = t 0 V s d B s which is a continuous martingale.
• V is the unique weak solution of the rough stochastic differential equation

V t = V 0 + 1 Γ(α) t 0 (t -s) α-1 λ(θ 0 (s) -V s )d s + ν Γ(α) t 0 (t -s) α-1 V s d B s ,
where B is a Brownian motion. Furthermore, the process V is non-negative and has Hölder regularity α -1/2 -ε for any ε > 0.

Theorem 2 will be one of the key results to obtain the extended characteristic function of the log-price in generalized rough Heston models.

Conditions for finite moments in generalized rough Heston models

Recall that we aim at computing (2) with ℜ(z) = 0. A preliminary step towards this is to derive sufficient conditions for the finiteness of the moments of S t and exp t 0 V s d s in generalized rough Heston models. To obtain such result, we use Theorem 2. Let a ∈ R. First, note that

(S t ) a = (S 0 ) a exp aρ t 0 V s d B s - a 2 t 0 V s d s + a 1 -ρ 2 t 0 V s d B ⊥ s .
Consequently, we have

E[(S t ) a ] = (S 0 ) a E exp(aρ t 0 V s d B s + 1 2 (-a + a 2 (1 -ρ 2 )) t 0 V s d s) .

Now define

M t = exp aρ t 0 V s d B s - a 2 ρ 2 2 t 0 V s d s .
The process M t is a positive local martingale and actually, by Proposition 3 in Appendix, a true martingale. Define the corresponding probability measure Q:

d Q d P F t = M t .
By Girsanov theorem, under Q, 3) is still the variance process of a generalized rough Heston model, but with different parameters:

B Q t = B t -aρ t 0 V s d s is a F-Brownian motion. Consequently, under Q, V defined in (
V t = V 0 + 1 Γ(α) t 0 (t -u) α-1 λ( θ0 (u) -V u )d u + 1 Γ(α) t 0 (t -u) α-1 ν V u d B Q u , (7) 
where

λ = λ -ρνa, θ0 (t ) = λθ 0 (t ) λ -ρνa , provided that λ -ρνa > 0. Hence we obtain E[(S t ) a ] = (S 0 ) a E Q [exp( 1 2 (-a + a 2 ) t 0 V s d s)]. (8) 
Therefore, a sufficient condition on a for

E Q [exp( 1 2 (-a + a 2 ) t 0 V s d s)] < ∞ (9) 
will readily imply a sufficient condition for the finiteness of E[(S t ) a ].

We now explain how to derive such condition. Recall that from Theorem 2,

ν 2 T -2α N T t T
converges in law to t 0 V s d s. Thus we look first for a condition on a ∈ R for which

E[exp(aν 2 T -2α N T t T )] < ∞, (10) 
for large enough T > 0 and fixed t > 0. This is done using a population interpretation of Hawkes processes, see Appendix III.C.1. It leads us to a sufficient condition on a ∈ R for (9). Furthermore, we are able to compute explicitly the expectation in (10), see Appendix III.C.1. Thus we can pass to the limit as T goes to infinity and then obtain an explicit expression for the expectation in (9). More precisely, we have the following result whose proof is given in Section 5.2, where a 0 (t ) is defined for t > 0 by

a 0 (t ) = 1 2ν 2 (λ + αt -α Γ(1 -α) ) 2 .
116 3. Characteristic function of generalized rough Heston models Theorem 3. Let V be the variance process of the generalized rough Heston model (3). For any t > 0 and a < a 0 (t ),

E exp(a t 0 V s d s) < ∞ and E exp(a t 0 V s d s) = exp t 0 g (a, t -s)(λθ 0 (s) + V 0 s -α Γ(1 -α) )d s ,
where g (a, .) is the unique continuous solution of the following fractional Riccati equation:

D α g (a, s) = a -λg (a, s) + ν 2 2 g (a, s) 2 , s ≤ t , I 1-α g (a, 0) = 0.
For any 0 ≤ s ≤ t , this function satisfies

g (a, s) ≤ c ν 2 αs -α Γ(1 -α) + ν a 0 (s) -a
for some constant c > 0. Furthermore, for fixed 0 ≤ s ≤ t , a → g (a, s) is non-decreasing and s → g (a, s) is non-increasing on [0, t ] if a < 0 and non-decreasing if a > 0.

Let S t denote the price in the generalized rough Heston model of Definition 1. Using (8), we obtain the following corollary on the moments of S t .

Corollary 1. Let t > 0. Assume λ -ρνa > 0, a -(t ) < a < a + (t ),
where

a -(t ) = ν 2 -2ρνX (t ) + ∆(t ) 2ν 2 (1 -ρ 2 ) , a + (t ) = ν 2 -2ρνX (t ) -∆(t ) 2ν 2 (1 -ρ 2 ) , with 
X (t ) = λ + αt -α Γ(1 -α) , ∆(t ) = 4ν 2 X (t ) 2 + ν 4 -4ρν 3 X (t ).
Then we have

E[(S t ) a ] < ∞.
Furthermore,

E[(S t ) a ] = (S 0 ) a exp t 0 h(a, t -s)(λθ 0 (s) + V 0 s -α Γ(1 -α) )d s ,
where h(a, .) is the unique continuous solution of the following fractional Riccati equation:

D α h(a, s) = a 2 -a 2 -(λ -ρνa)h(a, s) + ν 2 2 h(a, s) 2 , s ≤ t , I 1-α h(a, 0) = 0.
Remark 2. Note that if we formally take α = 1 in Corollary 1, our model coincides with the classical Heston model. In that case X (t ) = λ and therefore a -and a + do not depend on t . Moreover the set of a ∈ R such that

λ -ρνa > 0, a -≤ a ≤ a + ,
exactly corresponds to that of a ∈ R for which

∀t ≥ 0, E[(S t ) a ] < ∞,
see [START_REF] Andersen | Moment explosions in stochastic volatility models[END_REF] for further details on moment explosions for the classical Heston model.

Proof of Corollary 1:

Recall that from (8),

E[(S t ) a ] = (S 0 ) a E Q [exp( 1 2 (-a + a 2 ) t 0 V s d s)].
From Theorem 3 and the fact that under Q, V follows (7), this quantity is finite if λρνa > 0 and

1 2 (-a + a 2 ) < ã0 (t ) = 1 2ν 2 ( λ + αt -α Γ(1 -α) ) 2 = 1 2ν 2 (λ -ρνa + αt -α Γ(1 -α) ) 2 .
This is equivalent to

a 2 ν 2 (1 -ρ 2 ) + a(-ν 2 + 2X (t )ρν) -X (t ) 2 < 0.
The conditions on a ∈ R stated in Corollary 1 follow. Finally, the expression of E[(S t ) a ] is easily obtained using (8) together with Theorem 3.

Characteristic functions of generalized rough Heston models

We are now ready to derive the characteristic functions of generalized rough Heston models. Let t > 0. We want to compute

R(z, t ) = E exp z log(S t /S 0 ) , where z ∈ C satisfies z = a + i b, a, b ∈ R, λ -ρνa > 0, a -(t ) < a < a + (t ), (11) 
where a -(t ) and a + (t ) are defined in Corollary 1. Recall that from Corollary 1, (11) implies that exp z log(S t /S 0 ) is integrable and therefore R(z, t ) is well-defined.

Using the same computations as in the preceding sections, we get As already seen, under Q, V still follows the variance process of a generalized rough Heston model driven by the Brownian motion B Q , see (7). Thus, we need to study

R(z, t ) = E Q exp i bρ t 0 V s d B Q s + 1 2 (ρ 2 b 2 + z 2 -z) t 0 V s d s . (12 
G(z, x, t ) = E exp i x t 0 V s d B s + z t 0 V s d s ,
with x ∈ R, z ∈ C such that ℜ(z) < a 0 (t ), (a 0 (t ) is defined in Theorem 3), and V is the variance process of a generalized rough Heston model. To do so, we use again Theorem 2. Indeed (ν 2 T -2α N T t T , νT -α M T t T ) converges in law as T goes to infinity to

( t 0 V s d s, t 0 V s d B s ).
Computing

E[exp i xνT -α M T t T + zν 2 T -2α N T t T ]
and passing to the limit, we obtain the following result whose proof is given in Section 5.3.

Theorem 4. Let V be the variance process of the generalized rough Heston model (3).

For any t > 0, b ∈ R and z ∈ C such that ℜ(z) < a 0 (t ), G(z, x, t ) = exp t 0 ξ(z, x, t -s)(λθ 0 (s) + V 0 s -α Γ(1 -α) )d s ,
where ξ(z, x, .) is the unique continuous solution of the following fractional Riccati equation:

D α ξ(z, x, s) = z - x 2 2 + (i xν -λ)ξ(z, x, s) + ν 2 2 ξ(z, x, s) 2 , s ≤ t , I 1-α ξ(z, x, 0) = 0.
The following corollary is readily obtained from Theorem 4 together with (12).

Corollary 2. Let t > 0 and z ∈ C satisfying (11). We have

R(z, t ) = exp t 0 h(z, t -s)(λθ 0 (s) + V 0 s -α Γ(1 -α) )d s ,
where h(z, .) is the unique continuous solution of the following fractional Riccati equation:

D α h(z, s) = 1 2 (z 2 -z) + (zρν -λ)h(z, s) + ν 2 2 h(z, s) 2 , s ≤ t , I 1-α h(z, 0) = 0.

Connection with the forward variance curve

We now show how the characteristic function given in Corollary 2 can be written as a functional of the forward variance curve (E[V t ]) t ≥0 . This property will be crucial in the next section when computing hedging portfolios. We first remark that the time-dependent parameter θ 0 can be directly linked to the forward variance curve through the following result.

Proposition 1. Let V be the variance process of the generalized rough Heston model (3). For any t ≥ 0, we have

E[V t ] = V 0 1 -F α,λ (t ) + t 0 f α,λ (t -s)θ 0 (s)d s, ( 13 
)
where F α,λ and f α,λ are defined in Appendix III.A.1. Furthermore, θ 0 can be written as a functional of the forward variance curve as follows:

λθ 0 (t ) + V 0 t -α Γ(1 -α) = D α E[V t ] + λE[V t ], t > 0. (14) 
Proof of Proposition 1:

In the same way as in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], we can show that for any t ≥ 0,

E[ t 0 V s d s] < ∞.
So we have that t → E[V t ] is locally integrable. Moreover f α,λ is square-integrable, see Appendix III.A.1. Thus we obtain that for any t ≥ 0,

t 0 f α,λ (t -s) 2 E[V s ]d s < ∞.
Therefore,

E[ t 0 f α,λ (t -s) V s d B s ] = 0.
Writing the dynamic of V under the following form as in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF]:

V t = V 0 1 -F α,λ (t ) + t 0 f α,λ (t -s)θ 0 (s)d s + ν λ t 0 f α,λ (t -s) V s d B s , (15) 
we deduce (13). Now using Fubini theorem and noting that I 1-α f α,λ = λ(1-F α,λ ), see Appendix III.A.1, we get that for any t ≥ 0,

I 1-α E[V t ] = V 0 t 1-α (1 -α)Γ(1 -α) + t 0 λ 1 -F α,λ (t -s) (θ 0 (s) -V 0 )d s.
Using Fubini again, this can be rewritten

I 1-α E[V t ] = V 0 t 1-α (1 -α)Γ(1 -α) + t 0 λ(θ 0 (s) -V 0 )d s -λ t 0 s 0 f α,λ (s -u)(θ 0 (u) -V 0 )d ud s.
Then from (13) we derive

I 1-α E[V t ] = V 0 t 1-α (1 -α)Γ(1 -α) + t 0 λ(θ 0 (s) -V 0 )d s -λ t 0 (E[V s ] -V 0 )d s.
We finally obtain (14) by differentiating this last equality.

Remark 3. Assume that the forward variance curve t → E[V t ] is observed on the market through the implied volatility surface or liquid variance swaps, and that this curve admits a fractional derivative of order α. Then the mean-reversion function θ 0 can be chosen so that the model is consistent with this market forward variance curve by taking

λθ 0 (t ) = D α (E[V . ] -V 0 )(t ) + λE[V t ]. 120 
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From Corollary 2 together with Proposition 1, we can eventually write the characteristic function of the log-price as a functional of the forward variance curve. Thus, it indicates that the forward variance curve is a relevant state variable in generalized rough Heston models. Such type of phenomena also appears in the class of models developed in [START_REF] Bergomi | Smile dynamics II[END_REF]. More precisely, we have the following corollary.

Corollary 3. Let t > 0 and z ∈ C satisfying (11). We have

R(z, t ) = exp t 0 χ(z, t -s)E[V s ]d s ,
where

χ(z, t ) = 1 2 (z 2 -z) + zρνh(z, t ) + ν 2 2 h(z, t ) 2 ,
with h(z, .) the unique continuous solution of the fractional Riccati equation given in Corollary 2.

Thus, characteristic functions, and therefore conditional characteristic functions of the logprice can be written in term of the forward variance curve. This shows that this object plays the role of state variable in this infinite dimensional fractional setting. Actually, this result could probably be understood in a more general framework of affine processes, see [START_REF] Jaber | Affine Volterra processes[END_REF][START_REF] Cuchiero | Generalized feller processes and markovian lifts of stochastic volterra processes: the affine case[END_REF].

Proof of Corollary 3:

By Lemma 2 in Appendix, for any 0 ≤ s ≤ t ,

h(z, s) = s 0 1 λ f α,λ (s -u)χ(z, u)d u. ( 16 
)
Moreover, from (13) together with the fact that I 1-α f α,λ = λ(1 -F α,λ ), see Appendix III.A.1, we have

E[V s ] = s 0 1 λ f α,λ (s -u)(λθ 0 (u) + V 0 u -α Γ(1 -α) )d u.
Then, using Fubini theorem, we obtain

t 0 χ(z, t -s)E[V s ]d s = t 0 t -s 0 1 λ f α,λ (t -s -u)χ(z, u)d u (λθ 0 (s) + V 0 s -α Γ(1 -α) )d s and therefore t 0 χ(z, t -s)E[V s ]d s = t 0 h(z, t -s)(λθ 0 (s) + V 0 s -α Γ(1 -α) )d s.
The result follows from Corollary 2.

Hedging under generalized rough Heston models

We consider a generalized rough Heston model with the additional assumption that ρ ≤ 0. We show in this section how to compute explicitly hedging portfolios for vanilla options in such model. We treat here the case of a European call option with maturity T > 0 and strike K > 0.

Nevertheless, the approach can be easily extended to other vanilla payoffs.

It is easy to see that we can find a > 1 such that the conditions of Corollary 1 are satisfied for any t ≥ 0. Therefore, for any t ≥ 0,

E[(S t ) a ] < ∞.
We define the call option price process

C t = E[(S T -K ) + |F t ], 0 ≤ t ≤ T.
We write

X t = log(S t ), t ≥ 0 and g (x) = e -ax (e x -K ) + , x ∈ R.
We have g ∈ L 1 (R) ∩ L 2 (R) and therefore

g (x) = 1 2π b∈R ĝ (-b)e i bx d b,
where ĝ ∈ L 1 (R) ∩ L 2 (R) is the Fourier transform of g . Note that we are able to compute explicitly ĝ :

ĝ (b) = e (1-a+i b)log(K ) (i b -a)(i b -a + 1) , b ∈ R.
We then deduce by Fubini theorem that

C t = E[g (X T )e aX T |F t ] = 1 2π b∈R ĝ (-b)P T t (a + i b)d b, (17) 
where

P T t (a + i b) = E[exp (a + i b)X T |F t ].
Using the fact that conditional on F t , S still follows a generalized rough Heston dynamic together with Corollary 3, we obtain

E[exp (a + i b) log(S T /S t )|F t ] = exp T -t 0 χ(a + i b, T -t -s)E[V s+t |F t ]d s ,
where χ is defined in Corollary 3. Thus,

P T t (a + i b) = exp (a + i b) log(S t ) + T -t 0 χ(a + i b, T -t -s)E[V s+t |F t ]d s . ( 18 
)
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E[V t +u |F t ], 0 ≤ u ≤ T -t . Let V α,λ = {ξ : R + → R + , ξ(t ) = t 0 s -α λΓ(1 -α) f α,λ (t -s)θ ξ (s)d s, θ ξ is continuous on R + }.
The space V α,λ is a metric space containing

V + α,λ = {ξ ∈ V α,λ , θ ξ > 0 and for any t > 0, θ ξ (t ) = ξ(0)+t α λΓ(1-α)θ 0 ξ (t ), θ 0 ξ satisfies (5) },
which is the set of all possible forward variance curves produced by generalized rough Heston models. Note that from the same computations as for Proposition 1, we get the uniqueness of the function θ ξ for each ξ ∈ V α,λ since we have

θ ξ (t ) = D α ξ(t ) + λξ(t ) Γ(1 -α)t α , t > 0.
We equip V α,λ with the following complete metric:

d α,λ (ξ, ζ) = |θ ξ -θ ζ | ∧ 1 ∞ .
From ( 17) and (18), we get that the spot price and the forward variance curve are the relevant state variables for the call price process. Indeed, there exists a deterministic functional

C : R + × R * + × V α,λ → R such that C t = C T -t , S t , (E[V s+t |F t ]) s≥0 , t ∈ [0, T ],
where for any t ≥ 0, S ∈ R + and ξ ∈ V α,λ

C t , S, ξ = 1 2π b∈R ĝ (-b)L(a + i b, t , S, ξ)d b, (19) 
with

L(a + i b, t , S, ξ) = exp (a + i b) log(S) + t 0 χ(a + i b, t -s)ξ(s)d s .
In the following proposition, proved in Section 5.4, we give some useful regularity properties of the functional C .

Proposition 2. Let ξ ∈ V + α,λ , S > 0, t > 0 and assume |ρ| < 1. The function C (t , ., ξ) defined in (19) is differentiable in S and its derivative is given by

∂ S C t , S, ξ = 1 2π b∈R a + i b S ĝ (-b)L(a + i b, t , S, ξ)d b.
Moreover, the function C (t , S, .) is differentiable in the sense of Fréchet in ξ, with derivative such that for any ζ ∈ V α,λ ,

∂ V C t , S, ξ).ζ = t 0 1 2π b∈R ĝ (-b)L(a + i b, t , S, ξ)χ(a + i b, t -s)d b ζ(s)d s.
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We end this section by stating our result showing how one can build a hedging portfolio by trading the underlying and the forward variance curve.

Theorem 5. For any time t ∈ [0, T ], we have

C t = C 0 + t 0 ∂ S C (T -u, S u , E[V .+u |F u ])d S u + t 0 ∂ V C (T -u, S u , E[V .+u |F u ]).(d E[V .+u |F u ]),
where

∂ V C (T -u, S u , E[V .+u |F u ]).(d E[V .+u |F u ]) denotes T -u 0 1 2π b∈R ĝ (-b)L(a + i b, T -u, S u , E[V .+u |F u ])χ(a + i b, T -u -s)d b d E[V s+u |F u ]d s, with d E[V x |F u ] the Ito differential at time u of the martingale M u = E[V x |F u ], u ≤ x.
Remark 4. We actually also show that

d E[V s+u |F u ] = 1 λ f α,λ (s)ν V u d B u .
The proof of Theorem 5 is given in Section 5.5. This result shows that in an idealistic setting where the underlying asset and the forward variance curve can be traded (in continuous time), perfect replication can be obtained in generalized rough Heston models. Of course, in practice, this strategy will be discretized and one will use liquid variance swaps or European options instead of the forward variance curve.

Remark 5. It is interesting to remark that the price function C (t , S, ξ) is solution of a Feynman-Kac type path-dependent partial differential equation. Let us define the following derivative according to time t > 0:

∂ t C (t , S, ξ) = lim ε→0 + 1 ε C (t -ε, S, ξ ε+. ) -C (t , S, ξ) .
We easily have that L(a + i b, t , S, ξ) is solution of the following path-dependent PDE:

0 = ∂ t L + 1 2 (S ξ 0 ) 2 ∂ 2 S L + 1 2 (ν ξ 0 )∂ 2 V L.( 1 λ f α,λ , 1 λ f α,λ ) + ρ(S ξ 0 )(ν ξ 0 )∂ 2 S,V L.( 1 λ f α,λ ),
with the initial condition L(a + i b, 0, S, ξ) = S a+i b .

As in Proposition 2, we can show that C is twice differentiable in S and in V (in the sense of Fréchet for V ), and that ∂ t C is well-defined. So we can deduce that C satisfies the same path-dependent PDE:

0 = ∂ t C + 1 2 (S ξ 0 ) 2 ∂ 2 S C + 1 2 (ν ξ 0 )∂ 2 V C .( 1 λ f α,λ , 1 λ f α,λ ) + ρ(S ξ 0 )(ν ξ 0 )∂ 2 S,V C .( 1 λ f α,λ ), with the initial condition C (0, S, ξ) = (S -K ) + . Note that ∂ 2 V C .( 1 λ f α,λ , 1 λ f α,λ ) (resp. ∂ 2 S,V C .( 1 λ f α,λ )) is the second Fréchet derivative of C (resp. the first Fréchet derivative of ∂ S C ) applied on ( 1 λ f α,λ , 1 λ f α,λ ) (resp. 1 λ f α,λ
) which is well-defined even though 1 λ f α,λ does not belong to the metric space V α,λ . 124 5. Proofs

Proofs

The notion of fractional integrals and derivatives are heavily used in the proofs. Notations, definitions and useful results related to them are given in Appendix III.A.

Proof of Theorem 1

Finding the dynamic of V t 0 t conditional on F t 0 Using stochastic Fubini theorem, we can show that I 1-α V is a semi-martingale and for t > 0,

(I 1-α V ) t = V 0 t 0 s -α Γ(1 -α) d s + t 0 λ(θ 0 (s) -V s )d s + t 0 ν V s d B s .
Therefore,

1 Γ(1 -α) t +t 0 0 (t + t 0 -u) -α V u d u is equal to 1 Γ(1 -α) t 0 0 (t 0 -u) -α V u d u+V 0 t +t 0 t 0 1 Γ(1 -α) u -α d u+ t +t 0 t 0 λ(θ 0 (u)-V u )d u+ t +t 0 t 0 ν V u d B u .
Using a change of variable, this can be written

1 Γ(1 -α) t 0 0 (t 0 -u) -α V u d u+V 0 t 0 1 Γ(1 -α) (t 0 +u) -α d u+ t 0 λ(θ 0 (u+t 0 )-V t 0 u )d u+ t 0 ν V t 0 u d B t 0 u ,
where (B t 0 t ) t ≥0 = (B t +t 0 -B t 0 ) t ≥0 is a Brownian motion independent of F t 0 . Moreover, remarking that

I 1-α V t 0 t = 1 Γ(1 -α) t 0 (t -u) -α V t 0 u d u = 1 Γ(1 -α) t +t 0 t 0 (t + t 0 -u) -α V u d u is equal to 1 Γ(1 -α) t +t 0 0 (t + t 0 -u) -α V u d u - 1 Γ(1 -α) t 0 0 (t + t 0 -u) -α V u d u and that 1 Γ(1 -α) (t 0 -u) -α -(t + t 0 -u) -α = α Γ(1 -α) t 0 (t 0 -u + v) -1-α d v,
we derive

I 1-α V t 0 t = α Γ(1 -α) t 0 0 t 0 (t 0 -u + v) -1-α d vV u d u + t 0 1 Γ(1 -α) (t 0 + u) -α d uV 0 + t 0 λ(θ 0 (u + t 0 ) -V t 0 u )d u + t 0 ν V t 0 u d B t 0 u .
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This can be written as follows:

V t 0 t 1-α (1 -α)Γ(1 -α) + t 0 λ(θ t 0 (u) -V t 0 u )d u + t 0 ν V t 0 u d B t 0 u , (20) 
with (θ t 0 (u)) u≥0 a function which is F t 0 measurable and defined by

θ t 0 (u) = θ 0 (t 0 + u) + α λΓ(1 -α) t 0 0 (t 0 -v + u) -1-α (V v -V t 0 )d v + (u + t 0 ) -α λΓ(1 -α) (V 0 -V t 0 ).
Properties of θ t 0 It is clear that θ t 0 is continuous on R * + . Moreover it is easy to see that for any u > 0:

θ t 0 (u) = θ 0 (t 0 + u) + α λΓ(1 -α) t 0 0 (t 0 -v + u) -1-α V v d v + 1 λΓ(1 -α) (V 0 (u + t 0 ) -α -V t 0 u -α ).
Since V is a non-negative process and θ 0 satisfies (4), we obtain that θ t 0 also satisfies (4). Finally, for fixed ε > 0, V being α -1/2 -ε Hölder continuous, there exists for almost each ω ∈ Ω a positive constant c ε (ω) such that for any x, y ∈ [0, t 0 ]:

|V x -V y | ≤ c ε (ω)|x -y| α-1/2-ε .
Thus by integration by parts, we obtain for any u ∈ (0, t 0 ]

| t 0 0 (t 0 -v + u) -1-α (V v -V t 0 )d v| ≤ c ε (ω) t 0 0 (t 0 -v + u) -1-α (t 0 -v) α-1/2-ε d v = c ε (ω)u -1/2-ε t 0 /u 0 (x + 1) -1-α x α-1/2-ε d x ≤ c ε (ω)u -1/2-ε ∞ 0 (x + 1) -1-α x α-1/2-ε d x.
Thus θ t 0 satisfies Condition (5) almost surely.

End of the proof

We end the proof noting that from (20) and stochastic Fubini Theorem we have that

t 0 V t 0 s d s = 1 Γ(α) t 0 (t -s) α-1 I 1-α V t 0 s d s is equal to V t 0 t + 1 Γ(α) t 0 s 0 (s -u) α-1 λ(θ t 0 (u) -V t 0 u )d ud s + 1 Γ(α) t 0 s 0 (s -u) α-1 ν V t 0 u d B t 0 u d s.
Hence by differentiating the previous equality, we conclude that the dynamic of (S t 0 ,V t 0 ) is given by

S t 0 t = S t 0 exp t 0 V t 0 u dW t 0 u - 1 2 t 0 V t 0 u d u , V t 0 t = V t 0 + 1 Γ(α) t 0 (t -u) α-1 λ(θ t 0 (u) -V t 0 u )d u + 1 Γ(α) t 0 (t -u) α-1 ν V t 0 u d B t 0 u ,
where (W t 0 t ) t ≥0 = (W t +t 0 -W t 0 ) t ≥0 is a Brownian motion independent of F t 0 and with correlation ρ with B t 0 .

Proofs

Proof of Theorem 3

We work here with the sequence of Hawkes processes N T defined in Assumption 1. Recall that for t ≥ 0, from Theorem 2, ν 2 T -2α N T t T , converges in law as T goes to infinity to

t 0 V s d s,
where V is solution of the fractional stochastic differential equation (3). A key step for the proof of Theorem 3 is to show that for suitable a ∈ R,

E[exp(aν 2 T -2α N T t T )] -→ T →∞ E[exp(a t 0 V s d s)]. ( 21 
)
Applying (31) in Appendix III.C.1 on the Hawkes process N T , we write

E[exp(aν 2 T -2α N T t T )] = exp t 0 λζ T (T (t -s))g T (a, s)d s , with g T (a, t ) = ν -2 T α exp(aν 2 T -2α )E[exp(aν 2 T -2α N f ,T t T )] -1 ,
where N f ,T is the Hawkes process of children cluster (with migrant rate ϕ T and kernel ϕ T ), see Appendix III.C.1 for details. Moreover from Lemma 5, λζ T (T s) converges pointwise as T goes to infinity to

λθ 0 (s) + V 0 s -α Γ(1 -α) , 0 < s ≤ t .
Therefore, it is left to study the convergence of the function g T .

Uniform boundedness of g T From now on c denotes a positive constant that may vary from line to line.

From (30) in Appendix III.C, for each t > 0,

g T (a, t ) < ∞ (22) 
provided

aν 2 T -2α ≤ t T 0 ϕ T -1 -log( t T 0 ϕ T ).
Moreover note that from Appendix III.A.1,

T 2α t T 0 ϕ T -1 -log( t T 0 ϕ T ) -→ T →∞ 1 2 (λ + αt -α Γ(1 -α) ) 2 .
Thus Property ( 22) is satisfied for large enough T > T 0 (a, t , λ, ν) and a < a 0 (t ) with

a 0 (t ) = 1 2ν 2 (λ + αt -α Γ(1 -α) ) 2 .
Furthermore, as N f ,T ≤ N ∞,T (which is the Galton-Watson process defined in Appendix III.C.2), using (34) in Appendix III.C.2, we obtain

E[exp(aν 2 T -2α N f ,T t T )] ≤ n≥0 ν T (t ) n e -ν T (t )(n+1) n! (n + 1) n-1 e aν 2 T -2α n , with ν T (t ) = t T 0 ϕ T .
It is also easy to see from (34) (by taking a = 0 and ν = 1 in (34)) that

1 = n≥0 e -(n+1) n! (n + 1) n-1 .
Consequently, we obtain

g T (a, t ) ≤ ν -2 T α n≥0 e -(n+1) n! (n + 1) n-1 ν T (t ) n e (1-ν T (t ))(n+1) e aν 2 T -2α (n+1) -1 = 1 ν 2 ν T (t ) T α n≥0 e -(n+1) n! (n + 1) n-1 e x T (t )(n+1) -ν T (t ) ,
where

x T (t ) = 1 -ν T (t ) + log(ν T (t )) + aν 2 T -2α , which is non-positive for T > T 0 (a, t , λ, ν). Therefore g T (a, t ) ≤ 1 ν 2 ν T (t ) T α (1 -ν T (t )).
Assume now a ≤ 0, we use again N f ,T ≤ N ∞,T and (34) to get

ν -2 T α n≥0 e -(n+1) n! (n + 1) n-1 e x T (t )(n+1) -1 ≤ g T (a, t ) ≤ 0.
By Stirling formula,

e -(n+1) n! (n + 1) n-1 ∼ n→∞ 1 2π(n + 1) 3 . Thus, -c 1 ν 2 ν T (t ) T α n≥0 1 (n + 1) 3/2 (1 -e x T (t )(n+1) ) ≤ g T (a, t ) ≤ 0.
We deduce from Lemma 7 that

- c ν 2 ν T (t ) -T 2α x T (t ) ≤ g T (a, t ) ≤ 0.
Therefore, for any a < a 0 (t ):

|g T (a, t )| ≤ c 1 ν 2 ν T (t ) T α (1 -ν T (t )) + -T 2α x T (t ) .

Proofs

Finally, note that

T α (1 -ν T (t )) → αt -α Γ(1 -α) and T 2α x T (t ) → ν 2 (a 0 (t ) -a),
as T goes to infinity. Eventually, lim sup

T →∞ |g T (a, t )| ≤ cν -2 αt -α Γ(1 -α) + ν (a 0 (t ) -a) . ( 23 
)
Uniform convergence of g T We now fix t 0 > 0 and a < a 0 (t 0 ). The function t → g T (a, t ) being monotone and such that g T (a, 0) = 0, we have that for any

0 ≤ t ≤ t 0 |g T (a, t )| ≤ |g T (a, t 0 )|.
Moreover, from the previous section, there exists T 0 (t 0 , a, λ, ν) > 0 such that sup

T ≥T 0 |g T (a, t 0 )| < ∞.
Hence, g T (a, .) is uniformly bounded in 0 ≤ t ≤ t 0 and T ≥ T 0 . We now assume that T ≥ T 0 .

Applying (31) in Appendix III.C.1 on the Hawkes process N f ,T , we obtain that for any t ∈ [0, t 0 ],

ν 2 T -α g T (a, t ) + 1 = exp ν 2 T -2α a + ν 2 T 1-α t 0 ϕ T (T s)g T (a, t -s)d s .
By taking the logarithm of the previous expression, we write

ν 2 T -2α a + ν 2 T 1-α t 0 ϕ T (T s)g T (a, t -s)d s = ν 2 T -α g T (a, t ) - ν 4 2 T -2α g T (a, t ) 2 -ε T 1 (t ),
where

|T 3α ε T 1 | is uniformly bounded in t ∈ [0, t 0 ] and T ≥ T 0 . Hence g T (a, t ) = T t 0 ϕ T (T s)g T (a, t -s)d s + aT -α + ν 2 2 T -α g T (a, t ) 2 + T α ν 2 ε T 1 (t ).
Thanks to Lemma 1,

g T (a, t ) = aT 1-α t 0 ψ T (T s)d s + ν 2 2 T 1-α t 0 ψ T (T s)g T (a, t -s) 2 d s + ε T 2 (t ),
where

ε T 2 (t ) = aT -α + ν 2 2 T -α g T (a, t ) 2 + T α ν 2 ε T 1 (t ) + T α+1 ν 2 t 0 ψ T (T s)ε T 1 (t -s)d s 129 III.
Perfect hedging in rough Heston models and ψ T = k≥1 (ϕ T ) * k 2 . Note that T α ε T 2 is uniformly bounded in t ∈ [0, t 0 ] and T ≥ T 0 . Recall also that using Laplace transform computations as in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], we get

λT 1-α ψ T (T t ) = a T f α,λ (t ). (24) Thus g T (a, t ) = t 0 1 λ f α,λ (t -s)(a + ν 2 2 g T (a, s) 2 )d s + ε T (t ), with ε T (t ) = ε T 2 (t ) -T -α t 0 f α,λ (t -s)(a + ν 2 2 g T (a, s) 2 )d s.
As done in the proof of Proposition 5 in Chapter II, using that T α ε T and g T (a, .) are uniformly bounded in t ∈ [0, t 0 ] and T ≥ T 0 , together with Lemma 3, we deduce that g T (a, .) is a Cauchy sequence on C ([0, t 0 ], R). Therefore it converges to a continuous function g (a, .) solution of the following equation:

g (a, t ) = t 0 1 λ f α,λ (t -s)(a + ν 2 2 g (a, s) 2 )d s.
By Lemma 2, it is equivalent to the fractional Riccati equation

D α g (a, t ) = a -λg (a, t ) + ν 2 2 g (a, t ) 2 , I 1-α g (a, 0) = 0,
which admits a unique continuous solution (the uniqueness being an obvious corollary of Lemma 3). Finally remark that from (23),

|g (a, t )| ≤ c ν 2 αt -α Γ(1 -α) + ν a 0 (t ) -a .
Remark 6. Note that for a ≥ 0, t → g (-a, t ) is non-increasing and since g (-a, 0) = 0, we obtain the following inequality:

g (-a, t ) = t 0 1 λ f α,λ (t -s)(a + ν 2 2 g (-a, s) 2 )d s ≤ 1 λ F α,λ (t )(-a + ν 2 2 g (-a, t ) 2 ).
From this inequality, we get for t > 0

g (-a, t ) ≤ 1 -1 + 2ν 2 a λ 2 F α,λ (t ) 2 ν 2 λ F α,λ (t )
.

End of the proof

We know that for any t ∈ [0, t 0 ] and for fixed a < a 0 (t 0 ),

E[exp(aν 2 T -2α N T t T )] = exp t 0 λζ T (T (t -s))g T (a, s)d s .
Then, from the uniform convergence of g T (a, .) to g (a, .) together with Lemma 4, Lemma 5 and the dominated convergence theorem, we obtain

E[exp(aν 2 T -2α N T t T )] → exp t 0 g (a, t -s)(λθ 0 (s) + V 0 s -α Γ(1 -α) )d s 2 Recall that (ϕ T ) * 1 = ϕ and (ϕ T ) * k (t ) = t 0 ϕ(t -s).(ϕ T ) * k-1 (s)d s.
130 5. Proofs as T goes to infinity. By Fatou lemma, we deduce

E[exp a t 0 V s d s ] < ∞.
We end the proof by showing (21). The case a ≤ 0 being obvious, we assume that 0 < a < a 0 (t 0 ). Let ε > 0 such that a(1 + ε) < a 0 (t 0 ). From the computations above, there exists T 0 (t , a, λ, ν, ε) such that sup

T ≥T 0 E[exp(a(1 + ε)ν 2 T -2α N T t T )] < ∞.
Therefore exp(aν 2 T -2α N T t T ) T ≥T 0 is uniformly integrable and we conclude that

E[exp(aν 2 T -2α N T t T )] → E[exp(a t 0 V s d s)].
This ends the proof of Theorem 3.

Proof of Theorem 4

In this section, we place ourselves in the framework of generalized rough Heston models (3) and compute for 0

≤ t ≤ t 0 G(z, x, t ) = E[exp z t 0 V s d s + i x t 0 V s d B s ],
with x ∈ R and z ∈ C such that ℜ(z) < a 0 (t ), (a 0 (t ) is defined in Theorem 3). It has been shown in the proof of Theorem 3 that there exists T 0 > 0 such that

exp zν 2 T -2α N T t T + i xνT -α M T t T
is uniformly integrable for fixed t and T ≥ T 0 . We have that

E[exp zν 2 T -2α N T t T + i xνT -α M T t T ] (25) 
is equal to

E[exp (zν 2 T -2α + i xνT -α )N T t T -i xνT -α t T 0 s 0 ϕ T (s -u)d N T u d s -i xνT -α µ T t T 0 ζ T (s)d s ]. Let f T (t ) = zν 2 T -2α + i xνT -α -i xνT -α t 0 ϕ T (s)d s.
Using Fubini theorem, we get that (25) is also equal to

E[exp t T 0 f T (t T -s)d N T s -i x λ ν t 0 ζ T (sT )d s ].
Hence we deduce from Lemma 4 and Lemma 5 that

G(z, x, t ) = lim T →∞ E[exp zν 2 T -2α N T t T + i xνT -α M T t T ] = exp - i x ν t 0 λθ 0 (s) + V 0 s -α Γ(1 -α) d s lim T →∞ E[exp t T 0 f T (t T -s)d N T s ].
Passing to the limit Applying (35) in Appendix III.C.3 on the Hawkes process N T with the function f T , we have that for large enough T ,

exp t T 0 f T (t T -s)d N T s is integrable and E[exp t T 0 f T (t T -s)d N T s ] = exp t 0 λζ T (T (t -s))k T (z, x, s)d s
where

k T (z, x, t ) = 1 ν 2 T α e f T (t T ) E[e t T 0 f T (t T -u)d N f ,T u ] -1 .
Furthermore, from Lemma 5, λζ T (T s) converges pointwise as T tends to infinity to

λθ 0 (s) + V 0 s -α Γ(1 -α) , s ≤ t .
As in Section 5.2, we show the uniform boundedness of k T and then its uniform convergence.

Uniform boundedness of k T

We start by noting that for t ∈ [0, t 0 ],

|k T (z, x, t )| ≤ 1 ν 2 T α |e f T (t T ) E[e t T 0 f T (t T -u)d N f ,T u ] -e i ℑ[ f T (t T )] E[e t T 0 i ℑ[ f T (t T -u)]d N f ,T u ]| + |e i ℑ[ f T (t T )] E[e t T 0 i ℑ[ f T (t T -u)]d N f ,T u ] -1| .
Using that ℜ[ f T ] = ℜ(z)ν 2 T -2α together with the following inequality

|e f T (t T ) E[e t T 0 f T (t T -u)d N f ,T u ]-e i ℑ[ f T (t T )] E[e t T 0 i ℑ[ f T (t T -u)]d N f ,T u ]| ≤ |e ℜ[ f T (t T )] E[e t T 0 ℜ[ f T (t T -u)]d N f ,T u ]-1|, we derive |k T (z, x, t )| ≤ |k T (ℜ(z), 0, t )| + |k T (i ℑ(z), x, t )|.
In Section 5.2, we have already shown that k T (ℜ(z), 0, t ) is uniformly bounded in t ∈ [0, t 0 ], for large enough T . It is now left to show the uniform boundedness of k T (i ℑ(z), x, t ). So now we take z = i a where a ∈ R. First, remark that f T becomes

f T (t ) = i aν 2 T -2α + i xνT -α (1 - t 0 ϕ T (s)d s) = i (aν 2 + xνλ)T -2α + i xνT -α ∞ t ϕ T (s)d s.
We write

X T t = f T (t T ) + t T 0 f T (t T -s)d N f ,T s .
It is easy to see that

| f T (t T )| ≤ |a|ν 2 T -2α + |x|νT -α .

Proofs

Furthermore,

E[ t T 0 f T (t T -s)d N f ,T s ]
is equal to

T -2α i (aν 2 + λxν) t T 0 E[λ f ,T s ]d s + i xνT -α t T 0 ∞ t T -s ϕ T (u)d u E[λ f ,T s ]d s,
where λ f ,T is the intensity of the cluster of children Hawkes process N f ,T , see Appendix III.C.1. We recall its definition:

λ f ,T u = ϕ T (u) + u 0 ϕ T (u -s)d N f ,T s .
Using Lemma 1, we know that

λ f ,T u = ψ T (u) + u 0 ψ T (u -s)d M f ,T s ,
where

M f ,T = N f ,T -. 0 λ f ,T
s d s is the martingale associated to N f ,T . Thanks to (24), we obtain

E[λ f ,T t T ] = a T f α,λ (t ) λ T α-1 . Therefore t T 0 E[λ f ,T s ]d s ≤ F α,λ (t ) λ T α ≤ F α,λ (t 0 ) λ T α ≤ cT α .
Moreover, using that y ∈ R + → y α ∞ y ϕ T is uniformly bounded in y and T and I 1-α f α,λ = λ(1 -F α,λ ) (see Appendix III.A.1), we obtain

T t 0 ∞ T (t -s) ϕ T (u)d uE[λ f ,T sT ]d s ≤ c λ t 0 (t -s) -α f α,λ (s)d s ≤ c.
We deduce then that

|E[ X T t ]| ≤ cT -α (|a|ν 2 + |x|ν).
Using that there exists c > 0 such that for any y ∈ R,

|e i y -1 -i y| ≤ c y 2 , we get |E[e X T t -1]| ≤ c(|E[ X T t ]| + E[| X T t | 2 ]).
We have

E[| X T t | 2 ] ≤ 2| f T (t )| 2 + 2E[| t T 0 f T (t T -s)d N f ,T s | 2 ]), and 
E[| t T 0 f T (t T -s)d N f ,T s | 2 ] ≤ 2(E[| t T 0 f T (t T -s)d M f ,T s | 2 ] + E[| t T 0 f T (t T -s)λ f ,T s d s| 2 ]).
Since 〈M f ,T , M f ,T 〉 = . 0 λ f ,T (s)d s, we obtain

E[| t T 0 f T (t T -s)d M f ,T s | 2 ] = E[ t T 0 | f T (t T -s)| 2 λ f ,T s d s] ≤ cT -α (|a|ν 2 + |x|ν) 2 .
Using Fubini theorem, we derive

t T 0 f T (t T -s)λ f ,T s d s = t T 0 f T (t T -s)ψ T (s)d s + t T 0 t T -s 0 f T (t T -s -u)ψ T (u)d ud M f ,T s .
Therefore,

E[| t T 0 f T (t T -s)λ f ,T s d s| 2 ] ≤ 2| t T 0 f T (t T -s)ψ T (s)d s| 2 + 2 t T 0 | t T -s 0 f T (t T -s -u)ψ T (u)d u| 2 E[λ f ,T s ]d s ≤ c(|a|ν 2 + |x|ν) 2 T -2α (1 + t T 0 E[λ f ,T s ]d s) ≤ c(|a|ν 2 + |x|ν) 2 T -α .
We eventually deduce

|k T (i a, x, t )| ≤ c ν 2 c(a, x) + c(a, x) 2 , c(a, x) = ν 2 |a| + ν|x|.
End of the proof Using the same computations as in Section 5.2, we show that for fixed z ∈ C and x ∈ R such that ℜ(z) < a 0 (t 0 ), k T (z, x, .) is a Cauchy sequence in C ([0, t 0 ], C) and therefore converges uniformly to k(z, x, .) solution of k(z, x, t

) = i x 1 ν + t 0 1 λ f α,λ (t -s) z + ν 2 2 k(z, x, t ) 2 d s.
Therefore, we deduce

G(z, x, t ) = exp t 0 ξ(z, x, t -s)(λθ 0 (s) + V 0 s -α Γ(1 -α) )d s
where ξ(z, x, t ) = k(z, x, t )i x/ν, which is solution of the following equation:

ξ(z, x, t ) = t 0 1 λ f α,λ (t -s) z - x 2 2 + i bνξ(z, x, s) + ν 2 2 ξ(z, x, s) 2 d s.
By Lemma 2, this is equivalent to the following fractional Riccati equation:

D α ξ(z, x, t ) = z - x 2 2 + (i xν -λ)ξ(z, x, t ) + ν 2 2 ξ(z, x, t ) 2 , I 1-α ξ(z, x, 0) = 0.
We end this section with the following remarks which will be useful in the proof of Proposition 2.

Proofs

Remark 7. From the definition of k T , ℜ(k T (z, x, t )) ≤ k T (ℜ(z), 0, t ).

Passing to the limit as T goes to infinity, we get

ℜ(ξ(z, x, t )) ≤ ξ(ℜ(z), 0, t ) = g (ℜ(z), t ),
with g defined in Theorem 3.

Remark 8. From the proof of uniform boundedness of k T and using the inequality for g in Theorem 3, we get that for any t ∈ [0, t 0 ],

|ξ(z, x, t )| ≤ c(1 + |ℜ(z)| + ℑ(z) 2 + x 2 ),
where c is a positive constant, x ∈ R and z ∈ C such that ℜ(z) < a 0 (t 0 ).

Proof of Proposition 2

We fix S > 0, t > 0, ξ ∈ V + α,λ and a > 1 such that E[(S t ) a ] < ∞. Using the same computations as in the proof of Corollary 3, we get

L(a + i b, t , S, ξ) = exp (a + i b) log(S) + t 0 s -α Γ(1 -α) h(a + i b, t -s)θ ξ (s)d s ,
where h is the unique continuous solution of the fractional Riccati equation in Corollary 2. Moreover, thanks to Remark 7, we have that for any t > 0 and b ∈ R,

ℜ h(a + i b, s) ≤ q(b, s), s ≤ t ,
where q(b, .) is the unique continuous solution of the following fractional Riccati equation:

D α q(b, s) = a 2 -a 2 -(1 -ρ 2 ) b 2 2 -(λ -ρνa)q(b, s) + ν 2 2 q(b, s) 2 , s ≤ t , I 1-α q(b, 0) = 0.
Note also that for large |b|,

a 2 -a 2 -(1 -ρ 2 ) b 2
2 is negative and therefore, using Remark 6,

q(b, s) ≤ M (b, s) = 1 -1 + ν 2 (1-ρ 2 )b 2 -(a 2 -a) (λ-ρνa) 2 F α,λ-ρνa (s) 2 ν 2 λ-ρνa F α,λ-ρνa (s) , s ≤ t .
By dominated convergence theorem, we have

t 0 s -α Γ(1 -α) M (b, t -s)θ ξ (s)d s ∼ b→∞ -|b| 1 -ρ 2 ν t 0 s -α Γ(1 -α) θ ξ (s)d s.
Consequently there exists c(t , ξ) > 0 such that for any b ∈ R,

|L(a + i b, t , S, ξ)| ≤ S a exp -c(t , ξ)(-1 + |b|) .
Moreover, it is easy to see that for any b ∈ R, L(a + i b, t , ., ξ) is differentiable in S and that

∂ S L(a + i b, t , S, ξ) = a + i b S L(a + i b, t , S, ξ).
Using [START_REF]BFG +[END_REF] together with the dominated convergence theorem, we conclude that C is differentiable in the first variable S and that

∂ S C (t , S, ξ) = 1 2π b∈R ĝ (-b) a + i b S L(a + i b, t , S, ξ)d b. Now let ζ ∈ V α,λ and ε 0 > 0 such that θ ξ (s) -ε 0 |θ ζ (s)| > 0 for any s ∈ [0, t ]. We have that for any ε = 0, ε ∈ (-ε 0 , ε 0 ), 1 ε |L(a + i b, t , S, ξ + εζ) -L(a + i b, t , S, ξ)| (26)
is equal to

S a exp t 0 s -α Γ(1 -α) ℜ(h(a + i b, t -s))(θ ξ (s) -ε|θ ζ (s)|)d s 1 ε |exp t 0 s -α Γ(1 -α) εh(a + i b, t -s)θ ζ (s) -d s -exp t 0 s -α Γ(1 -α) εh(a + i b, t -s)|θ ζ (s)|d s |.
Recall that for large |b|, ℜ h(a + i b, s) is non-positive for any s ≤ t . Since there exists c > 0 such that for any z, z ∈ C such that ℜ(z) ≤ 0 and ℜ(z

) ≤ 0, |exp(z) -exp(z )| ≤ c|z -z |,
we conclude that (26) is dominated by

cS a t 0 s -α Γ(1 -α) |h(a+i b, t -s)||θ ζ (s)|d s exp t 0 s -α Γ(1 -α) ℜ(h(a+i b, t -s))(θ ξ (s)-ε 0 |θ ζ (s)|)d s .
Using the same arguments as previously, we get that there exists c(t , ξ, ζ, ε 0 ) > 0 such that

exp t 0 s -α Γ(1 -α) ℜ(h(a + i b, t -s))(θ ξ (s) -ε 0 |θ ζ (s)|)d s ≤ exp -c(t , ξ, ζ, ε 0 )(-1 + |b|) .
From Remark 8, we know that there exists c(t ) > 0 such that for any s ∈ [0, t ] and b ∈ R,

|h(a + i b, s)| ≤ c(t )(1 + b 2 ). Moreover, note that lim ε→0 1 ε L(a + i b, t , S, ξ + εζ) -L(a + i b, t , S, ξ) is equal to L(a + i b, t , S, ξ) t 0 χ(a + i b, t -s)ζ s d s.
Consequently, by the dominated convergence theorem, C (t , S, .) is differentiable in ξ in the direction of ζ in the Fréchet sense and

∂ V C (t , S, ξ).ζ = 1 2π b∈R ĝ (-b)L(a + i b, t , S, ξ) t 0 χ(a + i b, t -s)ζ s d s d b.
5. Proofs

Proof of Theorem 5

We first show that

T -t 0 χ(a + i b, s)E[V T -s |F t ]d s is equal to T 0 χ(a + i b, s)E[V T -s ]d s - t 0 χ(a + i b, T -s)V s d s + t 0 h(a + i b, T -s)ν V s d B s . (27) 
Recall that from Equation (15) we get

V s = E[V s ] + s 0 1 λ f α,λ (s -u)ν V u d B u .
This together with stochastic Fubini theorem give

t 0 χ(a+i b, T -s)V s d s = t 0 χ(a+i b, T -s)E[V s ]d s+ t 0 t -u 0 1 λ f α,λ (s)χ(a+i b, T -u-s)d s ν V u d B u .
We also have that for

s ∈ [0, T -t ], E[V T -s |F t ] = E[V T -s ] + t 0 1 λ f α,λ (T -s -u)ν V u d B u . (28) 
Then similarly,

T -t 0 χ(a + i b, s)E[V T -s |F t ]d s is equal to T -t 0 χ(a + i b, s)E[V T -s ]d s + t 0 T -t 0 1 λ f α,λ (T -s -u)χ(a + i b, s)d s ν V u d B u .
This can also be written

T t χ(a + i b, T -s)E[V s ]d s + t 0 T -u t -u 1 λ f α,λ (s)χ(a + i b, T -u -s)d s ν V u d B u .
Finally we obtain that

t 0 χ(a + i b, T -s)V s d s + T -t 0 χ(a + i b, s)E[V T -s |F t ]d s is equal to T 0 χ(a + i b, T -s)E[V s ]d s + t 0 T -u 0 1 λ f α,λ (s)χ(a + i b, T -u -s)d s ν V u d B u .
Thus ( 27) is directly deduced from the last relation and (16). Now using (27) together with Ito formula, we derive

P T t (a+i b) = P T 0 (a+i b)+ t 0 (a+i b)P T s (a+i b) V s dW s + t 0 P T s (a+i b)h(a+i b, T -s)ν V s d B s .
Then by [START_REF]BFG +[END_REF] together with stochastic Fubini theorem and Proposition 2, we get

C t = C 0 + t 0 ∂ S C (T -u, S u , E[V .+u |F u ])d S u + 1 2π t 0 b∈R ĝ (-b)P T u (a+i b)h(a+i b, T -u)d b ν V u d B u .
Furthermore, using again (16) together with Fubini theorem, we obtain that

1 2π t 0 b∈R ĝ (-b)P T u (a + i b)h(a + i b, T -u)d b ν V u d B u is equal to t 0 1 2π T -u 0 b∈R ĝ (-b)P T u (a + i b)χ(a + i b, T -u -s)d bd s 1 λ f α,λ (s)ν V u d B u .
This last quantity can be expressed in term of the forward variance curve thanks to (28).

III.A Fractional calculus

We define the fractional integral of order r ∈ (0, 1] of a function f as

I r f (t ) = 1 Γ(r ) t 0 (t -s) r -1 f (s)d s,
whenever the integral exists, and its the fractional derivative of order r ∈ [0, 1) as

D r f (t ) = 1 Γ(1 -r ) d d t t 0 (t -s) -r f (s)d s, whenever it exists.
We gather in this section some useful technical results related to fractional calculus.

III.A.1 Mittag-Leffler functions

Let (α, β) ∈ (R * + ) 2 . The Mittag-Leffler function E α,β is defined and for z ∈ C by

E α,β (z) = n≥0 z n Γ(αn + β) .
For (α, λ) ∈ (0, 1) × R + we also define

f α,λ (t ) = λt α-1 E α,α (-λt α ), t > 0, F α,λ (t ) = t 0 f α,λ (s)d s, t ≥ 0.
The function f α,λ is a density function on R + called Mittag-Leffler density function. The following properties of f α,λ and F α,λ can be found in [START_REF] Haubold | Mittag-leffler functions and their applications[END_REF][START_REF] Mainardi | On some properties of the Mittag-Leffler function[END_REF][START_REF] Mathai | Special functions for applied scientists[END_REF]. We have

f α,λ (t ) ∼ t →0 + λ Γ(α) t α-1 , f α,λ (t ) ∼ t →∞ α λΓ(1 -α) t -(α+1)
and

F α,λ (t ) = 1 -E α,1 (-λt α ), F α,λ (t ) ∼ t →0 + λ Γ(α + 1) t α , 1 -F α,λ (t ) ∼ t →∞ 1 λΓ(1 -α) t -α .
Note also that from obvious computations, we get I 1-α f α,λ = λ(1-F α,λ ). Finally, for α ∈ (1/2, 1), f α,λ is square-integrable and its Laplace transform is given for z ≥ 0 by

f α,λ (z) = ∞ 0 f α,λ (s)e -zs d s = λ λ + z α .

III.A.2 Wiener-Hopf equations

The following result enables us to solve Wiener-Hopf type equations, see for example [START_REF] Bacry | Some limit theorems for Hawkes processes and application to financial statistics[END_REF] for details.

Lemma 1. Let g be a measurable locally bounded function from R to R d and φ : R + → M d (R) be a matrix-valued function with integrable components such that the spectral radius of ∞ 0 φ(s)d s is strictly smaller than 1. Then there exists a unique locally bounded function

f from R to R d solution of f (t ) = g (t ) + t 0 φ(t -s). f (s)d s, t ≥ 0 given by f (t ) = g (t ) + t 0 ψ(t -s).g (s)d s, t ≥ 0, where ψ = k≥1 φ * k 3 .

III.A.3 Fractional differential equations

We now give some useful results about fractional differential equations. The next lemma can be found in [START_REF] Samko | Fractional integrals and derivatives[END_REF].

Lemma 2. Let h be a continuous function from [0, 1] to R, α ∈ (0, 1] and λ ∈ R. There is a unique solution to the equation

D α y(t ) = λy(t ) + h(t ), y(0) = 0 given by y(t ) = t 0 (t -s) α-1 E α,α λ(t -s) α h(s)d s.
We also have the following result whose proof can be found in Chapter II.

Lemma 3. Let h be a non-negative continuous function from

[0, 1] to R such that for any t ∈ [0, 1], h(t ) ≤ ε +C t 0 f α,λ (t -s)h(s)d s,
for some ε ≥ 0 and C ≥ 0. Then for any t ∈ [0, 1],

h(t ) ≤ C ε, with C = 1 +C λ 1 0 s α-1 E α,α λ(C -1)s α d s > 0.
In particular, if ε = 0 then h = 0.

III.A.4 Further results

Lemma 4. There exists a positive constant c such that for any T > 1/λ -1/α and t ∈ (0, 1):

ζ T (t T ) ≤ c(1 + t -α Γ(1 -α)
).

Proof of Lemma 4:

Note that by Remark 1, we have

ζ T (t T ) = t T 0 ϕ T (t T -u)θ 0 (u/T )d u + V 0 T α λ ∞ t T ϕ(s)d s + λT -α t T 0 ϕ(s)d s .
Thanks to Appendix III.A.1, we have that for each t ∈ (0, 1]:

T α ∞ t T ϕ ≤ c t -α ,
Moreover by using condition (5) and the fact that α > 1/2, we write that for each t ∈ (0, 1]:

θ 0 (t ) ≤ c t -α .
Thus:

ζ T (t T ) ≤ c t T 0 ϕ(T t -u)(u/T ) -α d u + c(1 + t -α ).
Using Appendix III.A.1, we obtain

t T 0 ϕ(T t -u)(u/T ) -α d u = Γ(1 -α)T α ∞ t T ϕ ≤ c t -α ,
which ends the proof.

Lemma 5. For each t ∈ (0, 1], as T tends to infinity, ζ T (t T ) defined by Assumption 1 converges to

V 0 t -α λΓ(1 -α) + θ 0 (t ).
Proof of Lemma 5:

Let t > 0. We have

ζ T (t T ) = a T t 0 T ϕ(T (t -s))θ 0 (s)d s + V 0 T α λ ∞ t T ϕ(s)d s + λT -α t T 0 ϕ(s)d s .
Moreover, from Appendix III.A.1,

V 0 T α λ ∞ t T ϕ(s)d s + λT -α t T 0 ϕ(s)d s converges to V 0 t -α λΓ(1 -α)
.

Moreover, since θ 0 is continuous in t , for any ε > 0 there exists η > 0 such that for any

s ∈ [t -η, t ], |θ 0 (s) -θ 0 (t )| ≤ ε.
Hence from Appendix III.A.1 together with the fact that ϕ is non-increasing, we obtain

| t 0 T ϕ T (t -s) θ 0 (s) -θ 0 (t ) d s| ≤ ε T η 0 ϕ + t -η 0 T ϕ T (t -s) (|θ 0 (t )| + |θ 0 (s)|)d s ≤ ε + T ϕ(T η) t 0 (|θ 0 (t )| + |θ 0 (s)|)d s ≤ 2ε
for large enough T . Thus t 0 T ϕ(T (ts))θ 0 (s)d s converges to θ 0 (t ).

Lemma 6. If θ 0 : (0, 1] → R satisfies Condition (5), then for any 0

< ε < α -1/2, t → t 0 f α,λ (t -s)θ 0 (s)d s has Hölder smoothness α -1/2 -ε on [0, 1].

Proof of Lemma 6:

Using Proposition A.2 in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], we obtain that for any η ∈ (0, α),

t 0 f α,λ (t -s)θ 0 (s)d s = t 0 D η f α,λ (t -s)I η θ 0 (s).
Taking η = 1/2 + ε, we have that I η θ 0 is a bounded function. Then, using Proposition A.3 in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF], we obtain that our function has Hölder regularity equal to αη = α -1/2 -ε.

Let x ≥ 0. We define

S(x) = n≥0 1 (n + 1) 3/2 (1 -e -x(n+1) ).
We have the following lemma.

Lemma 7. There exists c > 0 such that for any x ≥ 0:

S(x) ≤ c x.
Proof of Lemma 7:

We have

S(x) = n≥0 1 (n + 1) 3/2 (1 -e -x ) 0≤k≤n e -kx .
This can be rewritten

S(x) = (1 -e -x ) k≥0 ξ k e -kx , with ξ k = n≥k 1 (n+1) 3/2
, which is equivalent to 2/ k + 1 as k tends to infinity. Thus there exists c > 0 such that for any x ≥ 0:

S(x) ≤ c(1 -e -x ) k≥0 1 k + 1 e -(k+1)x .
We conclude using that

k≥0 1 k + 1 e -(k+1)x ≤ k≥0 k+1 k 1 y e -y x d y = Γ(1/2)
x together with the fact that 1e -x ≤ c x.

III.B Martingale property of the price in the generalized rough Heston model

Proposition 3. The process S defined by the generalized rough Heston model in Definition 1 is a F-martingale.

Proof of Proposition 3: Let t 0 > 0 such that 1/2 < a 0 (t 0 ). Thanks to Theorem 3, Novikov's criterion holds:

E[exp( 1 2 t 0 0 V s d s)] < ∞.
Therefore (S u ) 0≤u≤t 0 is a martingale and E[S t 0 ] = S 0 . Now, assume that for a given n ∈ N, E[S nt 0 ] = S 0 . Recall that conditional on F nt 0 , the law of (S nt 0 t ,V nt 0 t ) t ≥0 = (S t +nt 0 ,V t +nt 0 ) t ≥0 is still that of a rough Heston model with the following dynamic:

d S nt 0 t = S nt 0 t V nt 0 t dW nt 0 t V nt 0 t = V nt 0 + 1 Γ(α) t 0 (t -u) α-1 λ(θ nt 0 (u) -V nt 0 u )d u + 1 Γ(α) t 0 (t -u) α-1 ν V nt 0 u d B nt 0 u ,
where θ nt 0 is a F nt 0 -measurable function satisfying almost surely Conditions (4) and (5), and (W nt 0 , B nt 0 ) = (W .+nt 0 -W nt 0 , B .+nt 0 -B nt 0 ) is a Brownian motion independent of F nt 0 . Since 1/2 < a 0 (t 0 ), we have again Novikov's criterion

E[exp( 1 2 t 0 0 V nt 0 s d s)|F nt 0 ] < ∞.
Therefore E[S nt 0 t 0 |F nt 0 ] = S nt 0 and so

E[S (n+1)t 0 ] = E[S nt 0 ] = S 0 .
Consequently, for any n ∈ N,

E[S nt 0 ] = S 0 ,
which ends the proof.

III.C Moments properties for Hawkes processes

Here we consider a one-dimensional Hawkes process N with intensity

λ t = µ(t ) + t 0 ϕ(t -s)d N s ,
such that µ, ϕ : R + → R + are locally integrable and ∞ 0 ϕ < 1. We are interested in a sufficient condition on a > 0 so that E[e aN t ] < ∞.

(29)

We will show that (29) holds provided

a ≤ t 0 ϕ -1 -log( t 0 ϕ). ( 30 
)
To do so, we recall the branching structure of Hawkes processes.

III.C.1 Branching structure of Hawkes processes

We recall that the Hawkes process N can be viewed as a population process in which migrants arrive according to a non-homogenous Poisson process N 0 with intensity µ. Each migrant gives birth to children according to a non-homogenous Poisson process with intensity ϕ and each child also gives birth to children according to non-homogenous Poisson process with the same intensity and so on. Therefore, it is easy to see that the cluster of children created by a migrant has the law of a Hawkes process N f with the same kernel function ϕ but with migrant rate ϕ. So, the intensity of N f is given by :

λ f t = ϕ(t ) + t 0 ϕ(t -s)d N f s .
Using the branching structure of the Hawkes process, we can see that we easily derive the following equality in law:

N t = N 0 t + 1≤k≤N 0 t N f ,k t -T k
where the (T k ) k≥1 are the arrival times of the migrants and (N f ,k ) k≥1 are independent copies of N f , independent of N 0 . Then, we can show that for a ≥ 0,

E[e aN t ] = exp t 0 µ(t -s)(e a E[e aN f s ] -1)d s , (31) 
see Chapter II. This is smaller than

exp t 0 µ(s)d s(e a E[e aN f t ] -1) .
Consequently, a sufficient condition to obtain ( 29) is

E[e aN f t ] < ∞. (32) 

III.C.2 Galton-Watson structure and exponential moments

Let us consider now the Hawkes process N f . Using the population interpretation given in the previous section on this process, N f t is the number of migrants and children arrived up to time t . Let t > 0. We define the process N ∞ from N f as follows.

• We consider N (0) t the number of migrants arrived up to time t , which is a Poisson variable with parameter ν = t 0 ϕ.

• For each migrant arrived at time T k < t , we consider the number of children of first generation made by the migrant during a period of time t , which is also a Poisson variable with parameter ν, independent of N (0) t . We denote by X 1 t the set of all those children and N (1) t = #(X 1 t ) their total number.

• For each child of n t h generation of the set X n t , we consider the number of its children that are made during a period of time t , which is also a Poisson variable with parameter ν, independent of the previous generations. We denote X n+1 t the set of all those children and

N (n+1) t = #(X n+1 t ) their total number. It is clear that X t = n≥0 X n
t contains all the individuals of the Hawkes process N f arrived up to time t . So,

N ∞ t = #(X t ) = n≥0 N (n) t ≥ N f t .
Thus a sufficient condition to obtain (32) is

E[e aN ∞ t ] < ∞. (33) 

III.C. Moments properties for Hawkes processes

Now remark that (N (n) t ) n≥0 is a Galton-Watson process. Indeed,

N (n+1) t = 1≤k≤N (n) t ξ k,n+1 ; n ≥ 0.
where (ξ k,n ) k,n≥1 are i.i.d Poisson random variables with parameter ν, independent of the

N (k) t .
We classically have, see for example [START_REF] Dwass | The total progeny in a branching process and a related random walk[END_REF],

P[N ∞ t = n] = ν n e -ν(n+1) n! (n + 1) n-1 .
Consequently,

E[e aN ∞ t ] = n≥0 ν n e -ν(n+1) n! (n + 1) n-1 e an . (34) 
Using Stirling formula, we get

ν n e -ν(n+1) n! (n + 1) n-1 e an ∼ n→∞ (νe 1-ν+a ) n 2πn 3 e 1-ν
Hence (33) holds if and only if

νe 1-ν+a ≤ 1,
which is equivalent to :

a ≤ t 0 ϕ -1 -log( t 0 ϕ).

III.C.3 A useful equality

Let us consider g : R + → R continuous and a ∈ R satisfying (30). We know that exp( t 0 f (ts)d N s ) is integrable, where f = a + i g . Using the branching structure of Hawkes processes presented in Appendix III.C.1, we deduce the following equality in law:

t 0 f (t -s)d N s = t 0 f (t -s)d N 0 s + 1≤k≤N 0 t t -T k 0 f (t -T k -s)d N f ,k s .
Therefore, we can show that

E[exp( t 0 f (t -s)d N s )] = exp t 0 µ(t -s)(e f (s) E[e s 0 f (s-u)d N f u ] -1)d s . ( 35 
)

Introduction

The Volterra Heston model is defined by the following dynamics

d S t = S t V t d B t , S 0 > 0, (1) 
V t = g 0 (t ) + t 0 K (t -s) -λV s d s + ν V s dW s , (2) 
with K ∈ L 2 loc (R + , R), g 0 : R + → R, λ, ν ∈ R + and B = ρW + 1 -ρ 2 W ⊥ such that (W,W ⊥ ) is a two-dimensional Brownian motion and ρ ∈ [-1, 1]. It has been introduced in [AJLP17]
for the purpose of financial modeling following the literature on so-called rough volatility models [START_REF] Gatheral | Volatility is rough[END_REF]. Hence S t typically represents a stock price at time t with instantaneous stochastic variance V t . This model nests as special cases the Heston model for K ≡ 1, and the rough Heston model of Chapter II, obtained by setting K (t ) = t α-1 Γ(α) for α ∈ ( 1 2 , 1) and

g 0 (t ) = V 0 + t 0 K (s)λθd s, t ≥ 0, for some V 0 , θ ≥ 0, (3) 
so that the only model parameters are V 0 , θ, λ, ρ, ν, α. Recall that the rough Heston model does not only fit remarkably well historical and implied volatilities of the market, but also enjoys a semi-closed formula for the characteristic function of the log-price in terms of a solution of a deterministic Riccati-Volterra integral equation.

In Chapter III, the authors highlight the crucial role of (3) in the design of hedging strategies for the rough Heston model. Here we consider more general input curves g 0 . Our motivation is twofold. In practice, the function g 0 is intimately linked to the forward variance curve (E[V t ]) t ≥0 . More precisely, taking the expectation in (2) leads to the following relation

E[V t ] + λ t 0 K (t -s)E[V s ]d s = g 0 (t ), t ≥ 0.
Thus, allowing for more general input curves g 0 leads to more consistency with the market forward variance curve. From a mathematical perspective, this enables us to understand the general picture behind the Markovian and affine nature of the Volterra Heston model (1)-(2).

More precisely, adapting the methods of [AJLP17], we provide a set of admissible input curves G K defined in (9) such that (1)-(2) admits a unique R 2 + -valued weak solution for any g 0 ∈ G K . In particular, we show that the Fourier-Laplace transform of (log S,V ) is exponentially affine in (log S 0 , g 0 ). Then we prove that, conditional on F t , the shifted Volterra Heston model (S t +• ,V t +• ) still has the same dynamics as in (1)-(2) provided that g 0 is replaced by the following adjusted forward process

g t (x) = E V t +x + λ x 0 K (x -s)V t +s d s F t , x ≥ 0. (4)
This leads to our main result which states that G K is stochastically invariant with respect to the family (g t ) t ≥0 . In other words, if we start from an initial admissible input curve g 0 ∈ G K , then g t belongs to G K , for all t ≥ 0, see Theorem 3. This in turn enables us to characterize the Markovian structure of (S,V ) in terms of the stock price and the adjusted forward process (g t ) t ≥0 . Furthermore, (g t ) t ≥0 can be realized as the unique G K -valued mild solution of the following stochastic partial differential equation of Heath-Jarrow-Morton-type

d g t (x) = d d x g t (x) -λK (x)g t (0) d t + K (x)ν g t (0)dW t , g 0 ∈ G K ,
and displays an affine characteristic functional.

As an application, we establish the existence and uniqueness of a Banach-space valued squareroot process and provide its state space. This leads to another representation of (V t , g t ) t ≥0 .

Existence and uniqueness of the Volterra Heston model

Moreover, the Fourier-Laplace transform of (log S,V ) is shown to be an exponential affine functional of this process. These results are in the spirit of the Markovian representation of fractional Brownian motion, see [START_REF] Carmona | Fractional Brownian motion and the Markov property[END_REF][START_REF] Harms | Affine representations of fractional processes with applications in mathematical finance[END_REF].

The paper is organized as follows. In Section 2, we prove weak existence and uniqueness for the Volterra Heston model and provide its Fourier-Laplace transform. Section 3 characterizes the Markovian structure in terms of the adjusted forward variance process. Section 4 establishes the existence and uniqueness of a Banach-space valued square-root process and provides the link with the Volterra framework. In Appendix IV.A we derive general existence results for stochastic Volterra equations. Finally, for the convenience of the reader we recall in Appendix IV.B the framework and notations regarding stochastic convolutions as in [START_REF] Jaber | Affine Volterra processes[END_REF].

Notations : Elements of C m are viewed as column vectors, while elements of the dual space (C m ) * are viewed as row vectors. For h ≥ 0, ∆ h denotes the shift operator, i.e. ∆ h f (t ) = f (t +h).

If the function f on R + is right-continuous and of locally bounded variation, the measure induced by its distribution derivative is denoted d f , so that f (t ) = f (0) + [0,t ] d f (s) for all t ≥ 0. Finally, we use the notation * for the convolution operation, we refer to Appendix IV.B for more details.

Existence and uniqueness of the Volterra Heston model

We study in this section the existence and uniqueness of the Volterra Heston model given by (1)-(2) allowing for arbitrary curves g 0 as input. When g 0 is given by (3), [AJLP17, Theorem 7.1(i)] provides the existence of a R 2 + -valued weak solution to (1)-(2) under the following mild assumptions on K :

K ∈ L 2 loc (R + , R), and there is γ ∈ (0, 2] such that h 0 K (t ) 2 d t = O(h γ ) and T 0 (K (t + h) -K (t )) 2 d t = O(h γ ) for every T < ∞, (H 0 )
K is nonnegative, not identically zero, non-increasing and continuous on (0, ∞), and its resolvent of the first kind L is nonnegative and non-increasing in the sense that s → L([s, s + t ]) is non-increasing for all t ≥ 0.

(H )

We show in Theorem 1 below that weak existence in R 2 + continue to hold for (1)-(2) for a wider class of admissible input curves g 0 . Since S is determined by V , it suffices to study the Volterra square-root equation (2). Theorem 6(ii) in the Appendix guarantees the existence of an unsconstrained continuous weak solution V to the following modified equation

V t = g 0 (t ) + t 0 K (t -s) -λV s d s + ν V + s dW s , (5) 
for any locally Hölder continuous function g 0 , where x + : x → max(0, x). Clearly, one needs to impose additional assumptions on g 0 to ensure the nonnegativity of V and drop the positive part in (5) so that V solves (2). Hence, weak existence of a nonnegative solution to (2) boils down to finding a set G K of admissible input curves g 0 such that any solution V to (5) is nonnegative.

To get a taste of the admissible set G K , we start by assuming that g 0 and K are continuously differentiable on [0, ∞). In that case, V is a semimartingale such that

dV t = g 0 (t ) + (K * d Z ) t -K (0)λV t d t + K (0)ν V + t dW t , (6) 
where

Z = • 0 (-λV s d s + ν V + s dW s ).
Relying on Lemma 1 in the Appendix2 , we have

K = (K * L)(0)K + d (K * L) * K ,
so that K * d Z can be expressed as a functional of (V, g 0 ) as follows

K * d Z = (K * L)(0)(V -g 0 ) + d (K * L) * (V -g 0 ). (7) 
Since V 0 = g 0 (0), it is straightforward that g 0 (0) should be nonnegative. Now, assume that V hits zero for the first time at τ ≥ 0. After plugging (7) in the drift of (6), a first-order Euler scheme leads to the formal approximation

V τ+h ≈ g 0 (τ) -(K * L)(0)g 0 (τ) -(d (K * L) * g 0 )(τ) + (d (K * L) * V ) τ h,
for small h ≥ 0. Since K * L is non-decreasing and V ≥ 0 on [0, τ], it follows that (d (K * L) * V ) τ ≥ 0 yielding the nonnegativity of V τ+h if we impose the following additional condition

g 0 -(K * L)(0)g 0 -d (K * L) * g 0 ≥ 0.
In the general case, V is not necessarily a semimartingale, and a delicate analysis should be carried on the integral equation (5) instead of the infinitesimal version (6). This suggests that the infinitesimal derivative operator should be replaced by the semigroup operator of right shifts leading to the following condition on g 0

∆ h g 0 -(∆ h K * L)(0)g 0 -d (∆ h K * L) * g 0 ≥ 0, h ≥ 0, 3 (8) 
and to the following definition of the set G K of admissible input curves

G K = g 0 ∈ H γ/2 satisfying (8) and g 0 (0) ≥ 0 , (9) 
where H α = {g 0 : R + → R, locally Hölder continuous of any order strictly smaller than α}. Recall that γ is the exponent associated with K in (H 0 ).

The following theorem establishes the existence of a R 2 + -valued weak continuous solution to (1)-(2) on some filtered probability space (Ω, F , F = (F t ) t ≥0 , P) for any admissible input curve g 0 ∈ G K . Since S is determined by V , the proof follows directly from Theorems 6-7.

Existence and uniqueness of the Volterra Heston model

Theorem 1. Assume that K satisfies (H 0 )-(H 1 ). Then, the stochastic Volterra equation (1)-(2) has a R 2 + -valued continuous weak solution (S,V ) for any positive initial condition S 0 and any admissible input curve g 0 ∈ G K . Furthermore, the paths of V are locally Hölder continuous of any order strictly smaller than γ/2 and (i) g ∈ H γ/2 non-decreasing such that g (0) ≥ 0. Since K is non-increasing and L is nonnegative, we have 0

sup t ≤T E[|V t | p ] < ∞, p > 0, T > 0.
≤ ∆ h K * L ≤ 1 for all h ≥ 0 (see the proof of [AJLP17, Theorem 3.5]) yielding, for all t , h ≥ 0, that ∆ h g (t ) -(∆ h K * L)(0)g (t ) -(d (∆ h K * L) * g )(t ) is equal to t 0 (g (t ) -g (t -s))(∆ h K * L)(d s) + g (t + h) -g (t ) + g (t )(1 -(∆ h K * L)(t )) ≥ 0 (ii) g = V 0 + K * θ, with V 0 ≥ 0 and θ ∈ L 2 l oc (R + , R) such that θ(s)d s + V 0 L(d s
) is a nonnegative measure. First, g ∈ H γ/2 due to (H 0 ) and the Cauchy-Schwarz inequality

(g (t + h) -g (t )) 2 ≤ 2 t 0 (K (s + h) -K (s)) 2 d s + h 0 K (s) 2 d s t +h 0 θ(s) 2 d s. Moreover, g (0) = V 0 ≥ 0 and ∆ h g -(∆ h K * L)(0)g -d (∆ h K * L) * g (11) is equal to V 0 (1 -∆ h K * L) + ∆ h (K * θ) -(∆ h K * L)(0)K * θ -d (∆ h K * L) * K * θ.
(8) now follows from Lemma 2 with F = ∆ h K , after noticing that (11) becomes

∆ h (K * (V 0 L + θ)) -∆ h K * (V 0 L + θ) = •+h • K (• + h -s)(V 0 L(d s) + θ(s)d s) ≥ 0.
We now tackle the weak uniqueness of (1)-(2) by characterizing the Fourier-Laplace transform of the process X = (log S,V ). Indeed, when g 0 is of the form (3), X is a two-dimensional affine Volterra process in the sense of [AJLP17, Definition 4.1]. For this particular g 0 , [AJLP17, Theorem 7.1(ii)] provides the exponential-affine transform formula

E[exp(uX T + ( f * X ) T )] = exp ψ 1 (T ) log S 0 + u 2 g 0 (T ) + T 0 F (ψ 1 , ψ 2 )(s)g 0 (T -s)d s (12)
for suitable u ∈ (C 2 ) * and f ∈ L 1 ([0, T ], (C 2 ) * ) with T > 0, where ψ = (ψ 1 , ψ 2 ) solves the following system of Riccati-Volterra equations

ψ 1 = u 1 + 1 * f 1 , (13) 
ψ 2 = u 2 K + K * F (ψ 1 , ψ 2 ), (14) 
with

F (ψ 1 , ψ 2 ) = f 2 + 1 2 ψ 2 1 -ψ 1 + (ρνψ 1 -λ)ψ 2 + ν 2 2 ψ 2 2 . (15) 
A straightforward adaptation of [AJLP17, Theorems 4.3 and 7.1] shows that the affine transform (12) carries over for any admissible input curve g 0 ∈ G K with the same Riccati equations ( 13)-( 14).

Theorem 2. Assume that K satisfies (H 0 ) and that the shifted kernels

∆ h K satisfy (H 1 ) for all h ∈ [0, 1]. Fix g 0 ∈ G K , S 0 > 0 and denote by (S,V ) a R 2 + -valued continuous weak solution to (1)-(2). For any u ∈ (C 2 ) * and f ∈ L 1 loc (R + , (C 2 ) * )) such that Re ψ 1 ∈ [0, 1], Re u 2 ≤ 0 and Re f 2 ≤ 0, (16) 
with ψ 1 given by (13), the Riccati-Volterra equation (14) admits a unique global solution ψ 2 ∈ L 2 loc (R + , C * ). Moreover, the exponential-affine transform (12) is satisfied. In particular, weak uniqueness holds for (1)-(2).

Markovian structure

Using the same methodology as in Chapter III, we characterize the Markovian structure of the Volterra Heston model (1)-(2) in terms of the F-adapted infinite-dimensional adjusted forward curve (g t ) t ≥0 given by (4) which is well defined thanks to (10). Furthermore, we prove that the set G K is stochastically invariant with respect to (g t ) t ≥0 . Theorem 3. Under the assumptions of Theorem 1, fix g 0 ∈ G K . Denote by (S,V ) the unique solution to (1)-(2) and by (g t ) t ≥0 the process defined by (4). Then, (S t 0 ,V t 0 ) satisfies

d S t 0 t = S t 0 t V t 0 t d B t 0 t , S t 0 0 = S t 0 , V t 0 t = g t 0 (t ) + t 0 K (t -s) -λV t 0 s d s + ν V t 0 s dW t 0 s , where (B t 0 ,W t 0 ) = (B t 0 +• -B t 0 ,W t 0 +• -W t 0 ) are two Brownian motions independent of F t 0 such that d 〈B t 0 ,W t 0 〉 t = ρd t . Moreover, G K is stochastically invariant with respect to (g t ) t ≥0 , that is g t ∈ G K , t ≥ 0.
Proof. The part for V t 0 is immediate after observing that

g t 0 (t ) = g 0 (t 0 + t ) - t 0 0 K (t + t 0 -s)λV s d s + t 0 0 K (t + t 0 -s)ν V s dW s , (17) 
for all t 0 , t , h ≥ 0. The part for S t 0 is straightforward. We move to proving the claimed invariance. Fix t 0 , t , h ≥ 0 and define Z = • 0 (-λV s d s + ν V s dW s ). By Lemma 2 and Remark 3 in the Appendix,

∆ h K = (∆ h K * L)(0)K + d (∆ h K * L) * K , (18) 
3. Markovian structure so that

(∆ h K * d Z ) = (∆ h K * L)(0)(V -g 0 ) + d (∆ h K * L) * (V -g 0 ).
Hence,

V t 0 t +h = g 0 (t 0 + t + h) + (∆ h K * d Z ) t 0 +t + h 0 K (h -s)d Z t 0 +t +s = g 0 (t 0 + t + h) + (∆ h K * L)(0)(V t 0 t -g 0 (t 0 + t )) + d (∆ h K * L) * (V -g 0 ) t 0 +t + h 0 K (h -s)d Z t 0 +t +s = g 0 (t 0 + t + h) -(∆ h K * L)(0)g 0 (t 0 + t ) -d (∆ h K * L) * g 0 (t 0 + t ) + (∆ h K * L)(0)V t 0 t + (d (∆ h K * L) * V ) t 0 +t + h 0 K (h -s)d Z t 0 +t +s ≥ (∆ h K * L)(0)V t 0 t + (d (∆ h K * L) * V ) t 0 +t - h 0 K (h -s)λV t 0 t +s d s + h 0 K (h -s)ν V t 0 t +s dW t 0 t +s , since g 0 ∈ G K . We now prove (8). Set G t 0 h = ∆ h g t 0 -(∆ h K * L)(0)g t 0 -d (∆ h K * L) * g t 0 .
The previous inequality combined with (4) yields

G t 0 h (t ) = E V t 0 t +h + (λK * V t 0 ) t +h -(∆ h K * L)(0)(V t 0 t + (λK * V t 0 ) t ) F t 0 -E d (∆ h K * L) * (V t 0 + λK * V t 0 ) t F t 0 ≥ E (d (∆ h K * L) * V ) t 0 +t -d (∆ h K * L) * V t 0 t - h 0 K (h -s)λV t 0 t +s d s F t 0 + E (λK * V t 0 ) t +h -((∆ h K * L)(0)K + d (∆ h K * L) * K ) * λV t 0 t F t 0 .
Relying on (18), we deduce

G t 0 h (t ) ≥ E t 0 +t t (d (∆ h K * L))(d s)V t 0 +t -s - h 0 K (h -s)λV t 0 t +s d s F t 0 + E t +h t K (t + h -s)λV t 0 s d s F t 0 = E t 0 +t t (d (∆ h K * L))(d s)V t 0 +t -s F t 0 .
Hence (8) holds for g t 0 , since V ≥ 0 and d (∆ h K * L) is a nonnegative measure, see Remark 3. Finally, by adapting the proof of [AJLP17, Lemma 2.4], we can show that for any p > 1, > 0 and T > 0, there exists a positive constant C 1 such that

E |V t +h -V t | p ≤ C 1 h p(γ/2-) , t , h ≥ 0, t + h ≤ T + t 0 ,
Relying on (H 0 ), (4) and Jensen inequality, there exists a positive constant C 2 such that

E |g t 0 (t + h) -g t 0 (t )| p ≤ C 2 h p(γ/2-) , t , h ≥ 0, t + h ≤ T,
By Kolmogorov continuity criterion, g t 0 ∈ H γ/2 so that g t 0 ∈ G K since g t 0 (0) = V t 0 ≥ 0.

Theorem 3 highlights that V is Markovian in the state variable (g t ) t ≥0 . Indeed, conditional on F t for some t ≥ 0, the shifted Volterra Heston model (S t ,V t ) can be started afresh from (S t , g t ) with the same dynamics as in (1)-(2). Notice that g t is again an admissible input curve belonging to G K . Therefore, applying Theorems 1 and 2 with (S t ,V t , g t ) yields that the conditional Fourier-Laplace transform of X = (log S,V ) is exponentially affine in (log S t , g t ):

E exp(uX T + ( f * X ) T ) F t = exp (∆ T -t f * X ) t + ψ 1 (T -t ) log S t + (u 2 g t + F (ψ 1 , ψ 2 ) * g t )(T -t ) , (19) 
for all t ≤ T , where F is given by (15), under the standing assumptions of Theorem 2.

Moreover, it follows from ( 17) and the fact that g • (0) = V that the process (g t ) t ≥0 solves

g t (x) = ∆ t g 0 (x) + t 0 ∆ t -s -λK g s (0) (x)d s + t 0 ∆ t -s K ν g s (0) (x)dW s . (20) 
Recalling that (∆ t ) t ≥0 is the semigroup of right shifts, (20) can be seen as a G K -valued mild solution of the following Heath-Jarrow-Morton-type stochastic partial differential equation

d g t (x) = d d x g t (x) -λK (x)g t (0) d t + K (x)ν g t (0)dW t , g 0 ∈ G K . (21) 
The following proposition provides the characteristic functional of (g t ) t ≥0 leading to the strong Markov property of (g t ) t ≥0 . Define 〈g , h〉 = R + g (x)h(x)d x, for suitable functions f and g .

Theorem 4. Under the assumptions of Theorem 2. Let

h ∈ C ∞ c (R + ) and g 0 ∈ G K . Then, E exp i〈g t , h〉 = exp 〈H t , g 0 〉 , t ≥ 0, ( 22 
)
where H solves

H t (x) = ih(x -t )1 {x>t } + 1 {x≤t } -λ〈H t -x , K 〉 + ν 2 2 〈H t -x , K 〉 2 , t , x ≥ 0. (23) 
In particular, weak uniqueness holds for (20) and (g t ) t ≥0 is a strong Markov process on G K .

Proof. Consider S t = 1 + t 0 S u V u dW u , for all t ≥ 0. Then, ( S,V ) is a Volterra Heston model of the form (1)-(2) with ρ = 1 and S 0 = 1. Fix t ≥ 0, 〈g t , h〉 is well defined since x → g t (x) is continuous. It follows from [START_REF]BFG +[END_REF] together with stochastic Fubini theorem, see [Ver12, Theorem 2.2], which is justified by (10), that

〈g t , h〉 = 〈g 0 (t + •), h〉 + ν 2 -λ t 0 〈K (t -s + •), h〉V s d s + ν t 0 〈K (t -s + •), h〉d (log S) s = 〈g 0 , h(-t + •)〉 + ν 2 -λ t 0 〈K , h(s -t + •)〉V s d s + ν〈K , h〉 log S t -ν t 0 〈K , h (s -t + •)〉 log S s d s,
where the last identity follows from an integration by parts. Hence, setting

u 2 = 0, u 1 = iν〈K , h〉, f 1 (t ) = -iν〈K , h (-t + •)〉, ψ 1 (t ) = u 1 + (1 * f 1 )(t ) = i ν〈K (t + •), h〉, f 2 (t ) = i ( ν 2 -λ)〈K (t + •), h〉, ψ 2 = K * F (ψ 1 , ψ 2 ),
with F as in (15), the characteristic functional follows from Theorem 2

E exp i〈g t , h〉 = e i〈h(-t+•),g 0 〉 E exp u 1 log S t + ( f 1 * log S) t + ( f 2 * V ) t = exp 〈H t , g 0 〉 where H t (x) = h(x -t )1 {x>t } + 1 {0≤x≤t } F (ψ 1 , ψ 2 )(t -x), x ≥ 0,
and (15) reads

F (ψ 1 , ψ 2 )(t ) = -λ〈K (t + •), h〉 + ν 2 2 〈K (t + •), h〉 2 + (ν 2 〈K (t + •), h〉 -λ)ψ 2 (t ) + ν 2 2 ψ 2 (t ) 2 . ( 24 
)
Now observe that

〈H t , K 〉 = 〈h(-t + •), K 〉 + t 0 F (ψ 1 , ψ 2 )(t -x)K (x)d x = 〈h, K (t + •)〉 + ψ 2 (t ).
Hence, after plugging ψ 2 (t ) = 〈H t , K 〉 -〈h, K (t + •)〉 back in (24) we get that

F (ψ 1 , ψ 2 )(t ) = -λ〈H t , K 〉 + ν 2 2 〈H t , K 〉 2 , yielding (23) 
. Weak uniqueness now follows by standard arguments. In fact, thanks to (10) and stochastic Fubini theorem, (g t ) t ≥0 solves (21) in the weak sense, that is

〈g t , h〉 = 〈g 0 , h〉 + t 0 〈g s , -h 〉 -λ〈K , h〉g s (0) d s + t 0 ν〈K , h〉 g s (0)dW s , h ∈ C ∞ c (R).
Therefore, combined with Theorem 3, (g t ) t ≥0 solves a martingale problem on G K . In addition, 

Ht (d x) = i h(x -t )1 {x>t } d x + t 0 δ 0 (d x -(t -s))(-λ〈 Hs , K 〉 + ν 2 2 〈 Hs , K 〉 2 )d s
which can be seen as the mild formulation of the following partial differential equation

d Ht (d x) = (- d d x Ht (d x) + δ 0 (d x)(-λ〈 Ht , K 〉 + ν 2 2 〈 Ht , K 〉 2 ))d t , H0 (d x) = ih(x)1 {x>t } d x. (25)
We refer to [START_REF] Cuchiero | Generalized feller processes and markovian lifts of stochastic volterra processes: the affine case[END_REF] for similar results in the discontinuous setting. The previous results highlight not only the correspondence between stochastic Volterra equations of the form (2) and stochastic partial differential equations ( 21) but also between their dual objects, that is the Riccati-Volterra equation ( 14) and the non-linear partial differential equation (25). One can establish a correspondence between (2) and other related stochastic partial differential equations which, unlike (g t ) t ≥0 , do not necessarily have a financial interpretation but for which the dual object satisfies a nicer non-linear partial differential equation than (25), see [START_REF] Mytnik | Uniqueness for volterra-type stochastic integral equations[END_REF].

Application: square-root process in Banach space

As an application of Theorems 1, 2, 3, we obtain conditions for weak existence and uniqueness of the following (possibly) infinite-dimensional system of stochastic differential equations

dU t (x) = -xU t (x) -λ ∞ 0 U t (z)µ(d z) d t + ν ∞ 0 U t (z)µ(d z)dW t , x ∈ supp(µ), ( 26 
)
for a fixed positive measure of locally bounded variation µ4 . This is achieved by linking (26) to a stochastic Volterra equation of the form (2) with the following kernel

K (t ) = ∞ 0 e -xt µ(d x), t > 0. ( 27 
)
We will assume that µ is a positive measure of locally bounded variation such that

∞ 0 (1 ∧ (xh) -1/2 )µ(d x) ≤ C h (γ-1)/2 , ∞ 0 x -1/2 (1 ∧ (xh))µ(d x) ≤ C h γ/2 ; h > 0, (H 2 )
for some γ ∈ (0, 2] and positive constant C . The reader may check that in that case K satisfies (H 0 ). Furthermore, [GLS90, Theorem 5.5.4] guarantees the existence of the resolvent of the first kind L of K and that (H 1 ) is satisfied for the shifted kernels ∆ h K for any h ∈ [0, 1]. Hence, K satisfies assumptions of Theorems 1 and 2.

By a solution U to (26) we mean a family of continuous processes

(U (x)) x∈supp(µ) such that x → U t (x) ∈ L 1 (µ) for any t ≥ 0, ( ∞ 0 U t (x)µ(d x)) t ≥0
is a continuous process and (26) holds a.s. on some filtered probability space. If such solution exists, we set

V = ∞ 0 U • (x)µ(d x) and g 0 = ∞ 0 U 0 (x)e -x(•) d x.
Thanks to (H 2 ), the stochastic Fubini theorem yields for each t ≥ 0

V t = g 0 (t ) + t 0 K (t -s)(-λV s d s + ν V s dW s ). (28) 
4. Application: square-root process in Banach space

The processes above being continuous, the equality holds in terms of processes. Thus, provided that g 0 belongs to G K , Theorem 2 leads to the weak uniqueness of (26) because for each

x ∈ supp(µ),

U t (x) = e -xt U 0 (x) + t 0 e -x(t -s) (-λV s d s + ν V s dW s ), t ≥ 0. ( 29 
)
On the other hand, if we assume that g 0 = ∞ 0 U 0 (x)e -x(•) µ(d x) ∈ G K for some initial family of points (U 0 (x)) x∈supp(µ) ∈ L 1 (µ), there exists a continuous solution V for (28) by Theorem 1. In that case, we define for each x ∈ supp(µ), the continuous process U (x) as in (29). Thanks to (H 2 ) and ( 10), another application of the stochastic Fubini theorem combined with the fact that V satisfies (28) yields that, for each t ≥ 0, (U t (x)) x∈supp(µ) ∈ L 1 (µ) and

V t = ∞ 0 U t (x)µ(d x).
(30) Moreover, by an integration by parts, we get for each x ∈ supp(µ),

U t (x) = e -xt U 0 (x) + Z t e -xt + t 0 xe -x(t -s) (Z s -Z t )d s, with Z = • 0 (-λV s d s + ν V s d B s ).
We know that for fixed T > 0, η ∈ (0, 1/2) and for almost any ω ∈ Ω there exists a positive constant

C T (ω) such that |Z s -Z t | ≤ C T (ω)|t -s| η for all t , s ∈ [0, T ]. Hence for any t ∈ [0, T ] and x ∈ supp(µ) |U t (x)| ≤ |U 0 (x)| +C T (ω)e -xt t η +C T (ω)x t 0 e -xs s η d s = |U 0 (x)| +C T (ω)η t 0 e -xs s η-1 d s.
Then,

sup t ∈[0,T ] |U t (x)| ≤ |U 0 (x)| +C T (ω)η T 0 e -xs s η d s ∈ L 1 (µ).
Therefore by dominated convergence theorem, the process ( ∞ 0 U t (x)µ(d x)) t ≥0 is continuous. In particular, (30) holds in terms of processes and it follows from (29) that U is a solution of (26). This leads to the weak existence and uniqueness of (26) if the initial family of points (U 0 (x)) x∈supp(µ) belongs to the following space D µ defined by

D µ = {(u x ) x∈supp(µ) ∈ L 1 (supp(µ)); ∞ 0 u x e -x(•) µ(d x) ∈ G K }, (31) 
with K given by ( 27). Notice that for fixed t 0 ≥ 0 and for any t ≥ 0 and x ∈ supp(µ),

U t +t 0 (x) = U t 0 (x)e -xt + t 0 e -x(t -s) -λ ∞ 0 U s+t 0 (z)µ(d z) + ν ∞ 0 U s+t 0 (z)µ(d z)dW s+t 0 and then by stochastic Fubini theorem ∞ 0 U t +t 0 (y)µ(d y) = g t 0 (t )+ t 0 K (t -s) -λ ∞ 0 U s+t 0 (z)µ(d z) + ν ∞ 0 U s+t 0 (z)µ(d z)dW s+t 0 ,
with g t 0 (t ) = ∞ 0 U t 0 (y)e -y t µ(d y). Thanks to Theorem 3, we deduce that g t 0 ∈ G K and therefore (U t 0 (x)) x∈supp(µ) belongs to D µ . As a conclusion, the space D µ is stochastically invariant with respect to the family of processes (U (x)) x∈supp(µ) .

Theorem 5. Fix µ a positive measure of locally bounded variation satisfying (H 2 ).There exists a unique weak solution U of (26) for each initial family of points (U 0 (x)) x∈supp(µ) ∈ D µ . Furthermore for any t ≥ 0, (U t (x)) x∈supp(µ) ∈ D µ .

K (t ) Parameter restrictions µ(d γ) Fractional c t α-1 Γ(α) α ∈ (1/2, 1) c x -α Γ(α)Γ(1-α) d x Gamma ce -λt t α-1 Γ(α) λ ≥ 0, α ∈ (1/2, 1) c (x-λ) -α 1 (λ,∞) (x) Γ(α)Γ(1-α) d x Exponential sum n i =1 c i e -γ i t c i , γ i ≥ 0 n i =1 c i δ γ i (d x)
Table IV.1 -Some measures µ satisfying (H 2 ) with their associated kernels K . Here c ≥ 0.

Remark 1 (Representation of V in terms of U ). In a similar fashion one can establish the existence and uniqueness of the following time-inhomogeneous version of (26)

dU t (x) = -xU t (x) -λ g 0 (t ) + 〈1,U t 〉 µ d t + ν g 0 (t ) + 〈1,U t 〉 µ dW t , x ∈ supp(µ), ( 32 
)
whenever

g 0 = g 0 + ∞ 0 e -x(•) U 0 (x)µ(d x) ∈ G K ,
with g 0 : R + → R. In this case,

g 0 (t + •) + ∞ 0 e -x(•) U t (x)µ(d x) ∈ G K , t ≥ 0.
In particular, for U 0 ≡ 0, g 0 = g 0 ∈ G K and K as in (27), the solution V to the stochastic Volterra equation (2) and the forward process (g t ) t ≥0 admit the following representations

V t = g 0 (t ) + 〈1,U t 〉 µ , g t 0 (t ) = g 0 (t 0 + t ) + 〈e -t (•) ,U t 0 〉 µ , t , t 0 ≥ 0, ( 33 
)
where we used the notation 〈 f , g 〉 µ = t 0 f (x)g (x)µ(d x). These results are in the spirit of [START_REF] Carmona | Fractional Brownian motion and the Markov property[END_REF][START_REF] Harms | Affine representations of fractional processes with applications in mathematical finance[END_REF].

When µ has finite support, (32) is a finite dimensional diffusion with an affine structure in the sense of [START_REF] Duffie | Affine processes and applications in finance[END_REF]. This underlying structure carries over to the case of infinite support and is the reason behind the tractability of the Volterra Heston model.

IV.A. Existence results for stochastic Volterra equations

Remark 2 (Affine structure of (log S,V ) in terms of U ). Let the notations and assumptions of Remark 1 be in force. Relying on the existence and uniqueness of the Riccati-Volterra equation (14) one can establish the existence and uniqueness of a differentiable (in time) solution χ 2 to the following (possibly) infinite-dimensional system of Riccati ordinary differential equations

∂ t χ 2 (t , x) = -xχ 2 (t , x) + F ψ 1 (t ), 〈χ 2 (t , •), 1〉 µ , χ 2 (0, x) = u 2 , x ∈ supp µ, t ≥ 0, ( 34 
)
such that χ 2 (t , •) ∈ L 1 (µ), for all t ≥ 0 and t → 〈χ 2 (t , •), 1〉 µ ∈ L 2 loc (R + ) with ψ 1 given by (13) and F by (15). Moreover, the unique global solution ψ 2 ∈ L 2 loc (R + , C * ) to the Riccati-Volterra equation (14) admits the following representation

ψ 2 = ∞ 0 χ 2 (•, x)µ(d x),
where χ 2 is the unique solution to (34). In particular, combining the equality above with (19) and the representation of (g t ) t ≥0 in (33) leads to the exponentially-affine functional

E exp uX T + ( f * X ) T F t = exp φ(t , T ) + ψ 1 (T -t ) log S t + 〈χ 2 (T -t , •),U t 〉 µ for all t ≤ T where φ(t , T ) = (∆ T -t f * X ) t + (u 2 ∆ t g 0 + F (ψ 1 , ψ 2 ) * ∆ t g 0 )(T -t ), (u, f ) as in (16)
and U solves (32).

The representations of this section lead to a generic approximation of the Volterra Heston model by finite-dimensional affine diffusions, see Chapter VIII for the rigorous treatment of these approximations.

IV.A Existence results for stochastic Volterra equations

In this section, we consider the following d -dimensional stochastic Volterra equation

X t = g (t ) + t 0 K (t -s)b(X s )d s + t 0 K (t -s)σ(X s )dW s , (35) 
where

K ∈ L 2 loc (R, R d ×d ), W is a m-dimensional Brownian motion, g : R d → R d , b : R d → R d , σ : R d → R d ×m
are continuous with linear growth. By adapting the proofs of [AJLP17, Appendix A] (there, g is constant), we obtain the following existence results. Notice how the domain G K defined in (9) enters in the construction of constrained solutions in Theorem 7 below. In both cases, X is locally Hölder continuous of any order strictly smaller than γ/2 and

sup t ≤T E[|X t | p ] < ∞, p > 0, T > 0. ( 36 
)
Theorem 7. Assume that d = m = 1 and that the scalar kernel K satisfies (H 0 )-(H 1 ). Assume also that b and σ are continuous with linear growth such that b(0) ≥ 0 and σ(0) = 0. Then (35) admits a nonnegative continuous weak solution for any g ∈ G K .

Proof. Theorem 6(ii) yields the existence of an unsconstrained continuous weak solution X to the following modified equation X t = g (t )

+ t 0 K (t -s)b(X + s )d s + t 0 K (t -s)σ(X + s )dW s .
As in the proof of of [AJLP17, Theorem 3.5], it suffices to prove the nonnegativity of X under the stronger condition, that, for some fixed n ∈ N,

x ≤ n -1 implies b(x) ≥ 0 and σ(x) = 0. ( 37 
) Set Z = (b(X )d t + σ(X )dW ) and τ = inf{t ≥ 0 : X t < 0}. Since g (0) ≥ 0, τ ≥ 0. On {τ < ∞}, X τ+h = g (τ + h) + (K * d Z ) τ+h = g (τ + h) + (∆ h K * d Z ) τ + h 0 K (h -s)d Z τ+s , h ≥ 0. ( 38 
)
Using Lemma 2 and Remark 3 below, together with the fact that X ≥ 0 on [0, τ],

g (τ + h) + (∆ h K * d Z ) τ = g (τ + h) + (∆ h K * L)(0)(X -g )(τ) + (d (∆ h K * L) * X ) τ -(d (∆ h K * L) * g )(τ) ≥ g (τ + h) -(d (∆ h K * L) * g )(τ) -(∆ h K * L)(0)g (τ),
which is nonnegative. In view of (38) it follows that

X τ+h ≥ h 0 K (h -s) (b(X τ+s )d s + σ(X τ+s )dW τ+s ) (39) 
on {τ < ∞} for all h ≥ 0. Now, on {τ < ∞}, X τ = 0 and X τ+h < 0 for arbitrarily small h. On the other hand, by continuity there is some ε > 0 such that X τ+h ≤ n -1 for all h ∈ [0, ε). Thus (37) and (39) yield X τ+h ≥ 0 for all h ∈ [0, ε). This shows that τ = ∞, ending the proof.

IV.B Reminder on stochastic convolutions and resolvents

For a measurable function K on R + and a measure L on R + of locally bounded variation, the convolutions K * L and L * K are defined by

(K * L)(t ) = [0,t ] K (t -s)L(d s), (L * K )(t ) = [0,t ] L(d s)K (t -s)
whenever these expressions are well-defined. If F is a function on R + , we write

K * F = K * (F d t ).
We can show that L * F is almost everywhere well-defined and belongs to L p loc (R + ), whenever

F ∈ L p loc (R + ). Moreover, (F * G) * L = F * (G * L) a.e., whenever F,G ∈ L 1 l oc (R + )
, see [GLS90, Theorem 3.6.1 and Corollary 3.6.2] for further details. 

F = (F * L)(0)K + d (F * L) * K .
Remark 3. The previous lemma will be used with

F = ∆ h K , for a fixed h ≥ 0. If K is continuous on (0, ∞), then ∆ h K * L is right-continuous. Moreover, if K is nonnegative and L is non-increasing in the sense that s → L([s, s + t ]) is non-increasing for all t ≥ 0, then ∆ h K * L is non-decreasing since ∆ h K * L = 1 -(0,h] K (h -s)L(• + d s), t ≥ 0.

The rough Heston model

The rough Heston model of Chapter II for a one-dimensional asset price S takes the form

d S t S t = V t ρ d B t + 1 -ρ 2 d B ⊥ t with V u = V t + λ Γ(H + 1 2 ) u t θ t (s) -V s (u -s) 1 2 -H d s + ν Γ(H + 1 2 ) u t V s (u -s) 1 2 -H d B s , u ≥ t , (1) 
where H ∈ (0, 1/2) is the Hurst exponent, ν is the volatility of volatility, ρ ∈ [-1, 1] is the correlation between spot and volatility moves, λ ≥ 0 and Γ denotes the Gamma function. The mean reversion level parameter θ t (•) is allowed to be an F t -measurable function which makes the model time consistent as explained in Chapter III. It is straightforward to verify that Equation (1) gives back the classical Heston model with time-dependent mean reversion level in the limit H → 1/2. From Chapter III, volatility sample paths have Hölder regularity H -ε for any ε > 0, hence the name rough Heston for this model.

It is also shown in Chapter III that λ θ t (•) can be directly inferred from the forward variance curve (ξ t (u)) u≥t observed at time t . By doing so, the model may be rewritten in the asymptotic setting λ → 0 in forward variance form as

d S t S t = V t ρ d B t + 1 -ρ 2 d B ⊥ t with V u = ξ t (u) + ν Γ(H + 1 2 ) u t V s (u -s) 1 2 -H d B s , u ≥ t .
(2)

Remark 1. Recall that the forward variance curve may in principle be obtained from the variance swap curve by differentiation. More practically, assuming continuous sample paths, it is well-known that the fair value of variance swaps can be obtained from an infinite log-strip of out-of-the-money options, see for example [START_REF]The volatility surface: a practitioner's guide[END_REF].

Pricing and hedging

Just as in the classical case, we can compute in quasi-closed form the characteristic function of the log-price of the stock in the rough Heston model. This makes the model highly tractable and easy to calibrate.

We define the fractional integral of order r ∈ (0, 1] of a function f as

I r f (t ) = 1 Γ(r ) t 0 (t -s) r -1 f (s)d s,
166 4. Calibration of the rough Heston model whenever the integral exists, and its fractional derivative of order r ∈ [0, 1) as

D r f (t ) = 1 Γ(1 -r ) d d t t 0 (t -s) -r f (s)d s,
whenever it exists. From Chapter III, the rough Heston model is Markovian in X t = log(S t ) and the forward variance curve (ξ t (u)) u≥0 , in the same spirit as the Bergomi model [START_REF] Bergomi | Smile dynamics II[END_REF]. In forward-variance form, the characteristic function of the terminal log-spot X T conditional on the time t initial state (X t , ξ t ) is given by

φ t (T, a) = E X t ,ξ t exp i aX T = exp i a X t + T t D α h(a, T -u) ξ t (u) d u , (3) 
where α = H + 1 2 and h(a, .) is the unique continuous solution of the fractional Riccati equation

D α h(a, t ) = - 1 2 a (a + i ) + i ρ ν ah(a, t ) + 1 2 ν 2 h 2 (a, t ); I 1-α h(a, 0) = 0. (4) 
Equation ( 4) is a rough version of the Riccati equation arising in the classical Heston model (with zero mean reversion). Indeed the only difference is that the time derivative is replaced by a fractional derivative. In contrast to the classical Heston case, there is no explicit solution to (4). This equation can be solved efficiently using numerical methods for fractional ordinary differential equations. We present one such method, the Adams scheme, in Appendix V.A, see [START_REF] Callegaro | Rough volatility is not so tough: fast hybrid schemes for fractional Riccati equations[END_REF] and Chapter VIII for newly developed alternative numerical methods. Moreover, as we explain in Section 5, the true solution may also be accurately approximated in closed-form by a scaled version of the classical Heston solution. Then European option prices may be obtained from the characteristic function using standard Fourier techniques, see for example [START_REF]The volatility surface: a practitioner's guide[END_REF].

With 

Calibration of the rough Heston model

In this section we present SPX volatility surface calibration results for two dates: August 14, 2013, to compare with the rough Bergomi calibration given for that day in [START_REF] Bayer | Pricing under rough volatility[END_REF], and May 19, 2017, to show that the model continues to fit the market very well.

Note that the only parameters that we calibrate are the Hurst parameter H , the volatility of volatility ν and the correlation ρ. The forward variance curve, being a state variable in the model, is fixed to match at-the-money volatilities.

SPX calibration on August 14, 2013

From Bloomberg, on August 14, 2013, there were 19 expirations from 1 day to over 2.5 years, for a total of 1,809 options quoted. After eliminating options for which the bid price (of either the put or the call) was zero, we are left with 1,290 strike-expiration pairs.

For each such strike-expiration pair, we compute bid and ask implied volatilities

σ ± i := σ ± BS (k i , T i ),
where k i denotes the log-strike. Given model parameters {H , ν, ρ}, we can obtain model implied volatilities σ M i (H , ν, ρ). We calibrate the parameters by minimizing

1 i [σ M i (H , ν, ρ) -σ + i ] 2 + [σ M i (H , ν, ρ) -σ - i ] 2 ,
subject to the constraints

H ∈ (0, 1/2], ν ≥ 0, ρ ∈ [-1, 1].
We obtain the following optimal parameters: H = 0.1216; ν = 0.2910; ρ = -0.6714. 

SPX calibration on May 19, 2017

From Bloomberg, on May 19, 2017, there were 27 expirations from 1 day to over 2.5 years, for a total of 2,743 options quoted. By applying the same calibration procedure, we obtain the following optimal parameters: H = 0.0474; ν = 0.4061; ρ = -0.6710.

On this particular day, the calibrated value of H is closer to zero and so corresponds to very rough volatility. 

Consistency with historical data

In addition, we have that the calibrated Hurst parameter on August 14, 2013 (see Section 4.1) is consistent with the one computed from historical data. Indeed, in [START_REF] Gatheral | Volatility is rough[END_REF], the authors show that the behavior of historical log-volatility of the SPX index is close to that of a fractional Brownian motion with small Hurst parameter of order 0.1. As explained in detail in [START_REF] Gatheral | Volatility is rough[END_REF], estimating the moment of order q of a log-volatility increment over a time interval of length ∆ by

m(∆, q) = 1 N N k=1 | log(σ k∆ ) -log(σ (k-1)∆ )| q ,
where the (σ k∆ ) 0≤k≤N are historical measurements of volatility, we obtain a strong linear relationship between log(m(∆, q)) and log(∆). In summary, we find

E[|σ ∆ -σ 0 | q ] ≈ K q ∆ q H ; H ≈ 0.14,
which is in theory what we have if the log-volatility is a fractional Brownian motion with Hurst parameter H = 0.14. We note that on both days for which we plotted smiles, August 14, 2013 and May 19, 2017, the calibrated values of H are small, consistent with the small H estimated from historical data. Thus, it is really true that rough volatility models are amazingly consistent with both historical and implied volatility data.

A poor man's rough Heston model

In this section, we present respectively fast and almost instantaneous approximation methods to compute the implied volatility for a given expiry T and parameters (H , ρ, ν). The realized variance of the rough Heston model is given from (2) by

T 0 V u d u = T 0 ξ 0 (u)d u + ν Γ(H + 3 2 ) T 0 (T -u) 1 2 +H V u d B u .
(5)

The variance of ( 5) is equal to

ν 2 T 0 (T -s) 2H +1 Γ(H + 3 2 ) 2 ξ 0 (s)d s.
(6)

A poor man's rough Heston model

This suggests that we approximate the rough Heston smile with the smile generated by a classical Heston-like model ( 2) with H = 1/2 and with a scaled volatility of volatility parameter ν(T ) matching the variance (6), that is

ν 2 T 0 (T -s) 2H +1 Γ(H + 3 2 ) 2 ξ 0 (s)d s = ν(T ) 2 T 0 (T -s) 2 ξ 0 (s)d s.
Thus,

ν(T ) = ν Γ(H + 3 2 ) T 0 (T -s) 2H +1 ξ 0 (s)d s T 0 (T -s) 2 ξ 0 (s)d s . ( 7 
)
For each expiry T , the characteristic function formula (3) is then approximated by the classical one

exp i a X 0 + T 0 ∂ u h (T ) (a, T -u) ξ 0 (u) d u (8)
where h (T ) (a, .) is now a solution of the classical Riccati equation:

∂ u h (T ) (a, u) = - 1 2 a (a + i ) + i ρ ν(T ) ah (T ) (a, u) + 1 2 ν(T ) 2 (h (T ) ) 2 (a, t ); h (T ) (a, 0) = 0.
This equation can be solved explicitly as on page 18 of [START_REF]The volatility surface: a practitioner's guide[END_REF]. The solution may be written as

h (T ) (a, t ) = r -(T ) 1 -e -A ν(T ) t 1 -r -(T ) r + (T ) e -A ν(T ) t with A = a (a + i ) -ρ 2 a 2 ; r ± (T ) = - 1 ν(T ) i ρ a ± A .
On the other hand, for a given expiry T , a poor man's almost instantaneous approximation of the rough Heston characteristic function is obtained by approximating the forward variance curve as flat with ξ 0 (u) = v 0 (T ), u ≥ 0. In practice, the obvious choice v 0 (T ) = 1

T T 0 ξ 0 (s)d s,
the fair value of the variance swap, works fine. In that case, (7) becomes

ν(T ) = 3 2H + 2 ν Γ H + 3 2 1 T 1 2 -H . (9)
With this choice of forward variance curve, the approximate characteristic function ( 8) is identical to the characteristic function of the classical Heston model with initial variance v 0 (T ), mean reversion λ = 0, correlation ρ and volatility of volatility ν(T ) given by (9). Option prices under rough Heston may thus be almost instantaneously approximated using any existing implementation of the classical Heston pricing model.

To demonstrate the quality of approximations (7) and (9), in Figure V.3, we have replotted the rough Heston smiles of Figure V.2 generated using the Adams scheme together with those generated using the above approximations. We note that the smiles generated using the approximate characteristic function (8) with approximation (7) appear to be closer to true rough Heston smiles than those generated by the poor man's Heston approximation, especially close to at-the-money. Nevertheless, the poor man's smiles are surprisingly good. An accurate rough Heston approximation with no quants required! 

V.A Numerical solution of the fractional Riccati equation

We recall here how to solve fractional ordinary differential equations like (4). This is needed in order to compute the characteristic function. Specifically, again with α = H + 1 2 , let

D α h(a, t ) = F (a, h(a, t )), h(a, 0) = 0. (10) 
V.A. Numerical solution of the fractional Riccati equation Several schemes for solving (10) numerically are available in the literature. Most of these are based on the idea that (10) implies the following Volterra equation:

h(a, t ) = 1 Γ(α) t 0 (t -s) α-1 F (a, h(a, s))d s.
(11) One way to solve (11) is to use the classical fractional Adams method presented in [START_REF] Diethelm | Detailed error analysis for a fractional Adams method[END_REF]. The idea goes as follows. Let us write g (a, t ) = F (a, h(a, t )). Over a regular discrete time-grid with mesh ∆, 0 ≤ t 0 , . . . ≤ t n ≤ t , we approximate

h(a, t k+1 ) = 1 Γ(α) t k+1 0 (t k+1 -s) α-1 g (a, s)d s by 1 Γ(α) t 0 (t -s) α-1 ĝ (a, s)d s, where ĝ (a, t ) = t j +1 -t t j +1 -t j ĝ (a, t j ) + t -t j t j +1 -t j ĝ (a, t j +1 ), t ∈ [t j , t j +1 ], 0 ≤ j ≤ k.
This corresponds to a trapezoidal discretization and leads to the following scheme: ĥ(a, t k+1 ) = 0≤ j ≤k a j ,k+1 F (a, ĥ(a, t j )) + a k+1,k+1 F a, ĥ(a, t k+1 ) ,

with

a 0,k+1 = ∆ α Γ(α + 2) [k α+1 -(k -α)(k + 1) α ], a j ,k+1 = ∆ α Γ(α + 2) [(k -j + 2) α+1 + (k -j ) α+1 -2(k -j + 1) α+1 ]; 1 ≤ j ≤ k (13)
and

a k+1,k+1 = (∆t ) α Γ(α + 2) .
However, ĥ(a, t k+1 ) being on both sides of (12), this scheme is implicit. Thus, in a first step, we compute a pre-estimation (or predictor) of ĥ(a, t k+1 ) based on a Riemann sum that we then plug into the trapezoidal quadrature. We define this predictor ĥP (a, t k+1 ) as follows.

ĥP (a,

t k+1 ) = 1 Γ(α) t 0 (t -s) α-1 g (a, s)d s, with g (a, t ) = ĝ (a, t j ); t ∈ [t j , t j +1 ), 0 ≤ j ≤ k. Therefore, ĥP (a, t k+1 ) = 0≤ j ≤k b j ,k+1 F a, ĥ(a, t j ) , where b j ,k+1 = ∆ α Γ(α + 1) (k -j + 1) α -(k -j ) α , 0 ≤ j ≤ k.
Thus, the final explicit numerical scheme is given by ĥ(a, t k+1 ) = 0≤ j ≤k a j ,k+1 F (a, ĥ(a, t j )) + a k+1,k+1 F a, ĥP (a, t j ) ,

where the weights a j ,k+1 are defined in (13).

V.B Call option prices using Fourier techniques

We explain now the way to deal numerically with the Fast Fourier Transform technique of [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF] for the computation of call option prices in the specific case of the rough Heston model. Recall that the price at time t , C t (T, S 0 e x ), of the call with expiration time T > t and strike S 0 e x is related to the characteristic function of the log price X T through the following expression:

C t (T, S 0 e x ) = exp(-βx) π ∞ 0 ℜ[ψ t (T, a)e -i ax ]d a, ( 14 
)
where

ψ t (T, a) = φ t (T, a -(β + 1)i ) β 2 + β -a 2 + i (2β + 1)a
and φ t is defined in (3). Such a method includes the choice of β > 0 such that

E t [S β+1 T ] < ∞. (15) 
In Chapter III, a sufficient condition for finite moments is given. In particular when ρ < 0, the existence of β > 0 satisfying (15) is guaranteed.

In practice, to apply the Fast Fourier Transform algorithm, we need to tackle the issue of the infinite upper limit of integration in (14) by looking for a max > 0 such that

exp(-βx) π ∞ a max |ψ t (T, a)|d a < ε,
where ε > 0 is the expected truncation error. In Chapter III, it is shown that

ℜ[ T t D α h(a -i (β + 1), T -u)ξ t (u)d u]
is asymptotically dominated as |a| goes to infinity by

-|a| 1 -ρ 2 νΓ(1 -α) T t (T -u) -α ξ t (u)d u. Hence from (3), it is enough to choose a max > 0 such that exp(-βx) π S β+1 t ∞ a max exp -a 1-ρ 2 νΓ(1-α) T t (T -u) -α ξ t (u)d u |β 2 + β -a 2 + i (2β + 1)a| d a < ε.

Introduction

In a series of papers [BBMZ05, LZ03, ZL01, Zum04, Zum09], Gilles Zumbach and co-authors identified several empirical features of financial time series that are not well replicated by conventional stochastic volatility models. In this paper, we focus on one particular such effect dubbed the Zumbach effect in [START_REF] Blanc | Quadratic Hawkes processes for financial prices[END_REF].

Denote the true integrated variance from the open to the close of day t by σ 2 t , the open to close return by r t , and let 〈•〉 represent a sample average. Then, for τ ∈ R, the statistic (6b) of [CB14]

C (2) (τ) = 〈 σ t 2 -〈σ t 2 〉 r 2 t -τ 〉
quantifies (under stationarity assumptions) the covariance of integrated variance with past squared returns. The particular measure of time-reversal asymmetry (TRA) that is found empirically to be positive in [START_REF] Chicheportiche | The fine-structure of volatility feedback i: Multi-scale self-reflexivity[END_REF] is given by

Z (τ) := C (2) (τ) -C (2) (-τ), τ > 0.
(1)

In words, the covariance between historical squared returns and future integrated variance is greater than the covariance between historical integrated variance and future squared returns.

The following quote from [START_REF] Blanc | Quadratic Hawkes processes for financial prices[END_REF] refers to this measure Z (τ) of TRA:

Interestingly, all continuous time stochastic volatility models, from the famous CIR-Heston model (Cox et al. 1985[START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF] to the Multifractal Random Walk model alluded to above, obey TRS1 by construction and therefore cannot account for the empirical TRA of financial time series.

In the present paper, we first confirm that Z (τ) is empirically nonzero. We then compute Z (τ) explicitly under rough Heston. We show that when the Hurst parameter H of the volatility process is small (H of order 0.1) as established empirically in [START_REF] Gatheral | Volatility is rough[END_REF] and confirmed in [START_REF] Bennedsen | Decoupling the short-and longterm behavior of stochastic volatility[END_REF], the Zumbach effect obtained under rough Heston is very consistent with empirical estimates. However, when H = 1/2, corresponding to the conventional Heston model, we get that Z (τ) is indeed numerically absolutely negligible.

Our paper proceeds as follows. In Section 2, we confirm that the Zumbach effect is empirically nonzero. In Section 3, we compute the Zumbach effect under rough Heston. Finally, in Section 4, we show that the rough Heston model is both qualitatively and quantitatively consistent with empirical estimates. Some additional detailed computations are relegated to the appendix.

Empirical estimation of the Zumbach effect

For our empirical study, we use opening and closing prices and precomputed realized kernel estimates of intraday (open to close) integrated variance from the Oxford-Man Institute of Quantitative Finance Realized Library from 2000, January 3 to 2018, July 25. 2 .

There are 31 indices in the Oxford dataset, as listed in Appendix VI.A. We proceed by computing C (2) (τ) and C (2) (-τ) for each of these indices and converting these to correlations by dividing by the relevant sample variances. That is, for each index, we compute

ρ(τ) = C (2) (τ) 〈(σ 2 t -〈σ 2 t 〉) 2 〉 〈(r 2 t -τ -〈r 2 t -τ 〉) 2 〉 .
We then average the ρ j across the indices j in the dataset to obtain

ρ(τ) = 1 31 31 j =1 ρ j (τ).
Finally, corresponding to Equation (25) of [START_REF] Chicheportiche | The fine-structure of volatility feedback i: Multi-scale self-reflexivity[END_REF], we further define the integrated difference

∆(τ) = τ i =1 ρ(i ) -ρ(-i ) .
In , we note that our correlations are in general significantly greater. We attribute this difference to the superior accuracy of the Oxford-Man realized kernel estimates of integrated variance that we use here relative to the Rogers-Satchell estimates computed in [START_REF] Chicheportiche | The fine-structure of volatility feedback i: Multi-scale self-reflexivity[END_REF].

3 The rough Heston model

Description of the model

We consider the rough Heston model introduced in Chapter II for the price S t of an asset at time t :

d S t = S t V t dW t , V t = g 0 (t ) - 1 Γ(H + 1/2) t 0 (t -s) H -1/2 λV s d s + 1 Γ(H + 1/2) t 0 (t -s) H -1/2 ν V s d B s . (2)
Here H ∈ (0, 1/2] is the Hurst exponent of the volatility, λ > 0 is the mean reversion parameter, ν > 0 is the volatility of volatility parameter and (W, B ) is a ρ-correlated Brownian motion with ρ ∈ [-1, 1]. The function g 0 is assumed to be continuous and is linked to the forward variance curve ξ 0 (t ) = E[V t ] as follows:

g 0 (t ) = ξ 0 (t ) + 1 Γ(H + 1/2) t 0 (t -s) H -1/2 λ ξ 0 (s)d s.
(3) Note that in Chapter IV, a general condition on g 0 is given to guarantee weak existence and uniqueness for the solution of the equation defining the rough Heston model.

In Chapters II and III, it is shown that there exists a semi-closed form expression for the characteristic function, just as in the classical Heston case, and that explicit hedging strategies can be derived. Fast and accurate option pricing is also possible, see [START_REF] Gatheral | Rational approximation of the rough Heston solution[END_REF]. Furthermore, the rough Heston model displays the rough behavior of the volatility observed empirically in [START_REF] Gatheral | Volatility is rough[END_REF]. More precisely, the variance process V admits Hölder continuous paths with regularity strictly less than H . In addition to the fit to historical data, it is shown in Chapter V that with suitably calibrated parameters (H, ν, ρ and λ), the rough Heston model typically fits the SPX volatility surface remarkably well.

The Zumbach effect under rough Heston: explicit computation

We provide in this section an explicit formula for the Zumbach effect in the rough Heston model (Theorem 1). We start with a discussion about the use of correlations or covariances when computing the Zumbach effect under rough Heston.

Correlations versus covariances

From a theoretical viewpoint, approximating theoretical quantities such as covariances and correlations by sample values makes sense only provided the underlying dynamics can be considered stationary. In the context of the rough Heston model (2), this would imply that the parameter λ should be large enough with respect to the observation time scale. However, whether rough volatility models are estimated under P or Q, λ is typically found to be small relative to this observation time scale, see Chapter V. In this case, under rough Heston, the very notion of the Zumbach effect may appear somehow ill-defined.

It turns out, as will be seen in Section 3.2.2, that under rough Heston, the Zumbach effect Z (τ) expressed as a difference of covariances (1), does not depend asymptotically on λ. This is in contrast to the effect Z Correl (•) expressed in terms of corrrelations as in Proposition 1. Consequently, we choose to focus on covariances and express the Zumbach effect in terms of the covariances C (2) rather than the correlations ρ. For the sake of completeness, computations based on correlation in the stationary regime are presented in Appendix VI.C.

Computation of the Zumbach effect

Denote the length of the trading day by δ. Under the rough Heston model, the open to close (log-)return is given by3 

r t = t t -δ V s dW s ,
and the daily integrated variance by

σ 2 t = t t -δ V s d s.

The rough Heston model

Our aim is to prove that in the rough Heston model, the counterpart of Z (τ) = C (2) (τ)-C (2) (-τ) is positive for τ = k δ with k ∈ N >0 . Hence, we write

Z t (k) = Cov[r 2 t , σ 2 t +kδ ] -Cov[r 2 t +kδ , σ 2 t ], k ∈ N >0 , t ≥ δ.
By Itô's isometry, E r 2 t = E σ 2 t for any time t so

Z t (k) = E[r 2 t σ 2 t +kδ ] -E[r 2 t +kδ σ 2 t ].
Applying Itô's formula, we get

r 2 t = 2 t t -δ V s s t -δ V u dW u dW s + σ 2 t .
This together with the fact that E r 2

t +kδ σ 2 t = E E r 2 t +kδ F t σ 2 t = E[σ 2 t +kδ σ 2 t ] leads to Z t (k) = 2 E σ 2 t +kδ t t -δ V s s t -δ
V u dW u dW s .

(4)

Substituting (3) into (2) with α = H + 1 2 gives V t = ξ 0 (t ) - 1 Γ(α) t 0 (t -s) α-1 λ (V s -ξ 0 (s)) d s + 1 Γ(α) t 0 (t -s) α-1 ν V s d B s .
From Lemma 1, the solution is given by

V t = ξ 0 (t ) + t 0 f α,λ (t -s) ν λ V s d B s (5)
where

f α,λ (x) = λx α-1 k≥0 (-λx α ) k Γ(α(k+1))
is the Mittag-Leffler density function. It follows that the future integrated variance satisfies

σ 2 t +k δ = t +k δ t +(k-1) δ V s d s = t +k δ t +(k-1) δ ξ 0 (s) d s + t +k δ 0 F α,λ (t + k δ -s) ν λ V s d B s - t +(k-1) δ 0 F α,λ (t + (k -1) δ -s) ν λ V s d B s ,
where F α,λ (x) = x 0 f α,λ (s)d s. Consequently (4) may be rewritten as

Z t (k) = 2 ρν λ t t -δ F α,λ (t + kδ -s) -F α,λ (t + (k -1)δ -s) E V s s t -δ V u dW u d s.
Again using (5), we have that for s ≥ t -δ,

E V s s t -δ V u dW u = ρν λ s t -δ f α,λ (s -u) ξ 0 (u) d u.
Thus,

Z t (k) = 2 (ρ ν) 2 λ 2 δ 0 F α,λ (s + kδ) -F α,λ (s + (k -1)δ) δ-s 0 f α,λ (u)ξ 0 (t -s -u) d u d s, ( 6 
)
which is positive if ρ is different from zero. Using the fact that

F α,λ (x) ∼ x→0 λ x α Γ(α + 1) ,
together with the dominated convergence theorem, we derive the following result.

Theorem 1. Assume that ρ is nonzero and that the forward variance curve is continuous. Then Z t (k) > 0 and as δ goes to zero,

Z t (k) ∼ δ→0 2(ρ ν) 2 δ 2α+1 g α (k) ξ 0 (t ), k ∈ N >0 , t > 0, with g α (k) = 1 Γ(α+1) 2 1 0 ((k + s) α -(k + s -1) α ) (1 -s) α d s.
We see that this measure of the Zumbach effect is indeed independent of λ. It is also independent of t in the flat forward variance curve case.

Numerical results

To compare model computations with empirical estimates, we adopt the following model parameters typical of calibrations to the SPX implied volatility surface: ρ = -0.7, ν = 0.45, H = 0.05, λ = 0.3.

We assume a flat forward variance curve setting ξ 0 (t ) = 0.025, the approximate sample mean of σ t 2 . In Figure VI.2, we superimpose empirical estimates Z (τ) = Z (kδ) and model computations Z t (k) for SPX (which do not depend on t here). Although model computations are somewhat higher than empirical estimates, we argue that this nevertheless represents good agreement between model and data. One factor no doubt contributing to the discrepancy is that we expect volatility of volatility and correlation under Q to be more extreme than their equivalents under P.

Dependence on H

We now examine the dependence of Z t (k) on the Hurst exponent H . We already showed that under rough Heston with reasonable parameters, the Zumbach effect is consistent with empirical estimates. In contrast, when H = 1/2, we see from Figure VI.3 that the Zumbach effect is negligible. Indeed, from Theorem 1, Z t (k) is of order δ 2α+1 = δ 2H for small δ. When H = 1/2, Z t (k) ∼ δ becomes very small, whereas as H → 0, that is when volatility is rough, the Zumbach effect remains significant. 

VI.A List of indices in the Oxford-Man Institute of Quantitative Finance Realized Library

The following table lists all of the index tickers included in the Oxford-Man Institute of Quantitative Finance Realized Library together with index descriptions. We see that the effect is negligible when H = 1/2. 

VI.B Proof of (5)

The following technical lemma slightly extends Proposition 4.10 in Chapter I.

Lemma 1. The process V is solution of the following rough stochastic differential equation

V t = ξ 0 (t ) - 1 Γ(α) t 0 (t -s) α-1 λ (V s -ξ 0 (s)) d s + 1 Γ(α) t 0 (t -s) α-1 ν V s d B s
if and only if it is solution of

V t = ξ 0 (t ) + t 0 f α,λ (t -s) ν λ V s d B s .
Proof. Suppose

V t = ξ 0 (t ) + t 0 f α,λ (t -s) ν λ V s d B s .
Then4 using fractional integration of order 1 -α (denoted by I 1-α ), the properties of the Mittag-Leffler density and the stochastic Fubini theorem, this is equivalent to

I 1-α V t = I 1-α ξ 0 (t ) + ν λ t 0 I 1-α f α,λ (t -s) V s d B s = I 1-α ξ 0 (t ) + ν λ t 0 λ 1 -F α,λ (t -s) V s d B s = I 1-α ξ 0 (t ) + ν t 0 V s d B s -ν t 0 d B s t s f α,λ (u -s) V s d u = I 1-α ξ 0 (t ) + ν t 0 V s d B s -ν t 0 d u u 0 f α,λ (u -s) V s d B s = I 1-α ξ 0 (t ) + ν t 0 V s d B s -λ t 0 (V u -ξ 0 (u)) d u.
Finally, applying fractional differentiation of order 1 -α together with the stochastic Fubini theorem we deduce the result.

VI.C The Zumbach effect in terms of correlations in the stationary regime

We now discuss the Zumbach effect in terms of correlations in the stationary regime, that is when t goes to infinity. In particular, we suppose that ξ 0 (t ) satisfies

ξ 0 (t ) -→ ξ 0 (∞), (7) 
as t goes infinity for some ξ 0 (∞) > 0. From Theorem 1, we have that for small δ, Z t (k) is equivalent to

2(ρν) 2 δ 2α+1 g α (k)ξ 0 (∞).
Moreover, from Appendix VI.D, the limit of E[r 4 t ] as t goes to infinity is

ξ 0 (∞) 12ρ 2 ν 2 λ 2 δ 0 F α,λ (s)F α,λ (δ -u)d u + 3ξ 0 (∞) 2 δ 2 + 3ν 2 λ 2 ξ 0 (∞) δ 0 F α,λ (u) 2 d u + 6ν 2 λ 2 ξ 0 (∞) ∞ 0 δ 0 F α,λ (s + u) -F α,λ (u) f α,λ (s + u)d s d u.
This limit is equivalent for small δ to

3ξ 0 (∞) 2 δ 2 + 3ν 2 λ 2 ξ 0 (∞)δ 2 ∞ 0 f α,λ (s) 2 d s.
In the same way, from Appendix VI.D, the limit of Var[σ 2 t ] as t goes to infinity is

ν 2 λ 2 ξ 0 (∞) ∞ 0 F α,λ (s + δ) -F α,λ (s) 2 d s + ν 2 λ 2 ξ 0 (∞) δ 0 F α,λ (s) 2 d s,
which is equivalent to

ν 2 λ 2 ξ 0 (∞)δ 2 ∞ 0 f α,λ (s) 2 d s.
Let us now define the correlation based Zumbach effect Z Correl (k) by

Z Correl (k) = lim t →∞ Z t (k) lim t →∞ Var[σ 2 t ]Var[r t ]
.

From previous computations, we deduce the following proposition.

Proposition 1. We have

Z Correl (k) ∼ δ→0 2(ρν) 2 ξ 0 (∞) ν 2 λ 2 ∞ 0 f α,λ (s) 2 d s 2ξ 0 (∞) + 3ν 2 λ 2 ∞ 0 f α,λ (s) 2 d s δ 2α-1 g α (k).

VI.D Variance computations

We compute in this section Var[σ 2 t ] and Var[r 2 t ]. Using (5) together with the stochastic Fubini theorem, we have that

σ 2 t = t t -δ ξ 0 (s)d s + t 0 ν λ F α,λ (t -s) V s d B s - t -δ 0 ν λ F α,λ (t -δ -s) V s d B s . (8) 
Hence, 

Var[σ 2 t ] = ν 2 λ 2 t -δ 0 F α,λ (s + δ) -F α,λ (s) 2 ξ 0 (t -δ -s)d s + ν 2 λ 2 δ 0 F α,λ (s) 2 ξ 0 (t -
E[r 4 t ] = 6 t t -δ E s t -δ V u dW u 2 V s d s.
Using again Itô's formula, we get that

E s t -δ V u dW u 2 V s is equal to 2E V s s t -δ V u u t -δ V w dW w dW u + E V s s t -δ V u d u . (9) 
From ( 5), the first term in ( 9) is given by

2ρν λ s t -δ f α,λ (s -u)E V u u t -δ V w dW w d u,
which is equal to

2ρ 2 ν 2 λ 2 s t -δ f α,λ (s -u) u t -δ f α,λ (u -w)ξ 0 (w)d w d u.
Hence the first term in ( 9) is equal to

2ρ 2 ν 2 λ 2 s-t +δ 0 f α,λ (u) s-u-t +δ 0 f α,λ (w)ξ 0 (s -u -w)d w d u.
Moreover, similarly to (8),

s t -δ V u d u = s t -δ ξ 0 (u)d u + s 0 ν λ F α,λ (s -u) V u d B u - t -δ 0 ν λ F α,λ (t -δ -u) V u d B u .
Therefore the second term of (9) is given by ξ 0 (s)

s-t +δ 0 ξ 0 (u + t -δ)d u + ν 2 λ 2 s-t +δ 0 f α,λ (u)F α,λ (u)ξ 0 (s -u)d u + ν 2 λ 2 t -δ 0 F α,λ (s -t + δ + u) -F α,λ (u) f α,λ (s -t + δ + u)ξ 0 (t -δ -u)d u. Consequently, E[r 4 t ] is equal to 12ρ 2 ν 2 λ 2 δ 0 s 0 f α,λ (u) s-u 0 f α,λ (w)ξ 0 (s -u + t -δ -w)d w d ud s + 6 δ 0 ξ 0 (s + t -δ) s 0 ξ 0 (u + t -δ)d ud s + 6ν 2 λ 2 δ 0 s 0 f α,λ (u)F α,λ (u)ξ 0 (s + t -δ -u)d ud s + 6ν 2 λ 2 t -δ 0 δ 0 F α,λ (s + u) -F α,λ (u) f α,λ (s + u)d s ξ 0 (t -δ -u)d u.

Introduction

A stochastic volatility model is an extension of the Black-Scholes model that incorporates an empirical evidence that the volatility of an asset price is not constant in its time-series data as well as in its option price data. The Heston and SABR models among others are popular in financial practices owing to (semi-)analytic (approximation) formulas for the vanilla option prices or the option-implied volatilities. See e.g., [START_REF]The volatility surface: a practitioner's guide[END_REF] for a practical guide on stochastic volatility modeling.

Recently, attracting much attention is a class of stochastic volatility models where the volatility is driven by a fractional Brownian motion. This is due to their consistency to a power law of the term structure in the implied volatility skew which has been empirically recognized; see [ALV07, BFG16, FZ17, Fuk11, Fuk17, GS17, GJR18, GJR14]. To be consistent, the fractional Brownian motion must be correlated with a Brownian motion driving the asset price and its Hurst parameter must be smaller than 1/2. The latter means in particular that the volatility path is rougher than a Brownian motion and so, this class of the models is often referred as the rough volatility models. Since the models do not admit of explicit expressions for option prices or implied volatilities, the above mentioned consistency has been discussed through asymptotic analyses.

The aim of this paper is to provide a general framework under which the short-term asymptotics of the at-the-money implied volatility is studied. The framework is for a general continuous stochastic volatility model. The rough Bergomi model introduced by [BFG16] is treated as an example. The asymptotic expansion of the at-the-money implied volatility is given up to the second-order, while the first order expansion was already given in [START_REF] Fukasawa | Short-time at-the-money skew and rough fractional volatility[END_REF] by a different method. For the SABR model Osajima [START_REF] Osajima | The asymptotic expansion formula of implied volatility for dynamic sabr model and fx hybrid model[END_REF] gave the expansion based on the Watanabe-Yoshida theory; see e.g., [KT + 03, Yos92]. The same expansion formula was also obtained in Medvedev and Scaillet [START_REF] Medvedev | Approximation and calibration of short-term implied volatilities under jump-diffusion stochastic volatility[END_REF] by a formal computation. Friz et al. [START_REF] Friz | Option pricing in the moderate deviations regime[END_REF] derived the asymptotic skew and curvature of the implied volatility that correspond to the first and the second order terms by assuming the asymptotic behavior of the density function of the underlying asset price. Here, we introduce a novel approach based on a conditional Gaussianity of the stochastic volatility model to prove the validity of a second order density expansion for a general stochastic volatility model. From this density expansion follow expansions of the option prices and the implied volatility as well as the asymptotic skew and curvature formula.

In contrast to [KT + 03, Osa07, Yos92], we do not rely on the Malliavin calculus, which enables us to treat effectively the rough volatility models. In contrast to the elementary method of [START_REF] Fukasawa | Short-time at-the-money skew and rough fractional volatility[END_REF], our approach can be extended to higher-order expansions without any additional theoretical difficulty. We choose the square root of the forward variance, that is, the fair strike of a variance swap, as the leading term of our asymptotic expansion, while a recent work [AS] studies the difference between the implied volatility and the fair strike of a volatility swap in terms of the Malliavin derivatives.

The paper is organized as follows. In Section 2, we describe the model framework. In Section 3, we derive the asymptotic expansions of the characteristic function, the density function, the put option prices and the at-the-money implied volatility function. In Section 4, we derive the asymptotic behavior of the at-the-money implied volatility skew and curvature. In Section 5, we show that the rough Bergomi model fits the framework and compute the coefficients of the expansion for this particular model.

Framework

Assumptions

Let (Ω, F , P ) be a probability space equipped with a filtration {F t ; t ∈ R} satisfying the usual assumptions. A log price process Z is assumed to follow

dZ t = r dt - 1 2 v t dt + v t dB t
under an equivalent measure Q, where r ∈ R stands for an interest rate and v is a positive continuous process adapted to a smaller filtration {G t ; t ∈ R}, of which the square root is called the volatility of Z . The Brownian motion B is decomposed as

dB t = ρ t dW t + 1 -ρ 2 t dW t , 2. Framework
where W is an {F t }-Brownian motion independent of G t for all t ∈ R, W is a {G t }-Brownian motion and ρ is a progressively measurable processes with respect to {G t } and taking values in [-1, 1]. A typical situation for stochastic volatility models, including the Heston, SABR and rough Bergomi models, is that (W,W ) is a two dimensional {F t }-Brownian motion and {G t } is the filtration generated by W , that is,

G t = N ∨ σ(W s -W r ; r ≤ s ≤ t ),
where N is the null sets of F .

An arbitrage-free price p(K , θ) of a put option at time 0 with strike K > 0 and maturity θ > 0 is given by

p(K , θ) = e -r θ E Q [(K -exp(Z θ )) + |F 0 ] = e -r θ K 0 Q(log x ≥ Z θ |F 0 )dx.
Denote by E 0 and • p respectively the expectation and the L p norm under the regular conditional probability measure of Q given F 0 , of which the existence is assumed. We impose the following technical condition: for any p > 0, sup θ∈(0,1)

1 θ θ 0 v t dt p < ∞, sup θ∈(0,1) 1 θ θ 0 v t (1 -ρ 2 t )dt -1 p < ∞. (1) 
The forward variance curve v 0 (t ) is defined by

v 0 (t ) = E 0 [v t ] = E Q [v t |F 0 ]. Let σ 0 (θ) = θ 0 v 0 (t )dt .
Changing variable as

x = F exp (ζσ 0 (θ)) , F = exp(r θ + Z 0 ), we have p(F e zσ 0 (θ) , θ) F σ 0 (θ) = e -r θ z -∞ Q (ζ ≥ X θ |F 0 ) e σ 0 (θ)ζ dζ,
where

X θ = - 1 2σ 0 (θ) 〈M 〉 θ + 1 σ 0 (θ) M θ , M θ = θ 0 v t dB t , 〈M 〉 θ = θ 0 v t dt .
We assume the following asymptotic structure: there exists a family of random vectors

(M (0) θ , M (1) θ , M (2) θ , M (3) θ ); θ ∈ (0, 1)
such that 1. the law of M (0) θ is standard normal for all θ > 0,

2.

sup θ∈(0,1)

M (i ) θ p < ∞, i = 1, 2, 3 (2) 
for all p > 0 and 3. for some H ∈ (0, 1/2] and ∈ (0, H ),

lim θ→0 θ -2H -2 M θ σ 0 (θ) -M (0) θ -θ H M (1) θ -θ 2H M (2) θ 1+ = 0, lim θ→0 θ -H -2 〈M 〉 θ σ 0 (θ) 2 -1 -θ H M (3) θ 1+ = 0. (3) 
Further, we assume the existence of the derivatives

a (i ) θ (x) = d dx E 0 [M (i ) θ |M (0) θ = x]φ(x) , i = 1, 2, 3, b θ (x) = d 2 dx 2 E 0 [M (1) θ |M (0) θ = x]φ(x) c θ (x) = d 2 dx 2 E 0 [|M (1) θ | 2 |M (0) θ = x]φ(x) (4)
in the Schwartz space (i.e., the space of the rapidly decreasing smooth functions), where φ is the standard normal density.

Regular stochastic volatility models

Here we briefly discuss that regular stochastic volatility models satisfy all the above assumptions.

Let us consider the volatility process v t = v(X t ), where X is a Markov process satisfying a stochastic differential equation

dX t = b(X t )dt + c(X t )dW t
and v is a smooth positive function defined on the state space of X . Let ρ ∈ (-1, 1) be a constant and {G t } be the augmented filtration generated by W . We assume (1), which is satisfied in the usual cases including the log-normal SABR and Heston models. Denote by L the generator of X . Put f = v, g = f c and h = v c. Then, by Itô's formula, we have

M θ = f (X 0 )B θ + θ 0 t 0 g (X s )dW s dB t + θ 0 t 0 L f (X s )dsdB t , 〈M 〉 θ = v(X 0 )θ + θ 0 t 0 h(X s )dW s dt + θ 0 t 0 Lv(X s )dsdt . Let B θ t = θ -1/2 B θt , W θ t = θ -1/2 W θt and X θ t = X θt . Then M θ θ = f (X 0 ) B θ 1 + θ 1 0 u 0 g (X θ v )d W θ v d B θ u + θ 1 0 u 0 L f (X θ v )dvd B θ u , 〈M 〉 θ θ = v(X 0 ) + θ 1 0 u 0 h(X θ v )d W θ v du + θ 1 0 u 0 Lv(X θ v )dvdu. 192 3. Asymptotic expansions It would follow that σ 0 (θ) 2 θ = E 0 [〈M 〉 θ ] θ = v(X 0 ) + 1 2 Lv(X 0 )θ + O(θ 3/2 ),
and so

σ 0 (θ) θ = f (X 0 ) + 1 4 Lv(X 0 ) f (X 0 ) θ + O(θ 3/2 )
under a mild regularity condition. Then, we have (3) with H = 1/2, M (0)

θ = B θ 1 and M (1) θ = g (X 0 ) f (X 0 ) 1 0 W θ u d B θ u , M (2) θ = - Lv(X 0 ) 4v(X 0 ) B θ 1 + g (X 0 )c(X 0 ) f (X 0 ) 1 0 u 0 W θ v d W θ v d B θ u + L f (X 0 ) f (X 0 ) 1 0 ud B θ u , M (3) θ = h(X 0 ) v(X 0 ) 1 0 W θ u du
again under a mild regularity condition. Further, the derivatives (4) exist in the Schwartz space because

E 0 [M (i ) θ |M (0) θ = x] and E 0 [|M (1) θ | 2 |M (0) θ =
x] are polynomials of x; see e.g., Nualart et al. [START_REF] Nualart | On the moments of a multiple wiener-itô integral and the space induced by the polynomials of the integral[END_REF] or Appendix A below.

Asymptotic expansions

Characteristic function expansion

Here we give an asymptotic expansion of the characteristic function of X θ . Let

Y θ = M (0) θ + θ H M (1) θ + θ 2H M (2) θ - σ 0 (θ) 2 1 + θ H M (3) θ . Lemma 1. For any α ∈ N ∪ {0}, sup |u|≤θ - |E 0 [X α θ e i uX θ ] -E 0 [Y α θ e i uY θ ]| = o(θ 2H + ). Proof. Since |e i x -1| ≤ |x|, we have |E 0 [X α θ e i uX θ ] -E 0 [Y α θ e i uY θ ]| ≤ E 0 [|X α θ -Y α θ |] + uE 0 [|Y θ | α |X θ -Y θ |] ≤ C (α, )(1 + |u|) X θ -Y θ 1+
for some constant C (α, ) > 0 by (2). Since σ 0 (θ) = O(θ 1/2 ), we obtain the result from (3).

Lemma 2. For any

δ ∈ [0, (H -)/3), sup |u|≤θ -δ E 0 [Y α θ e i uY θ ] -E 0 e i uM (0) θ (M (0) θ ) α + A(α, u, M (0) θ ) + B (α, u, M (0) θ ) = o(θ 2H + ),
Therefore, X θ admits a density p θ (x) under Q(•|F 0 ). Furthermore, the density function is in the Schwartz space S and each Schwartz semi-norm is uniformly bounded in θ by (1). Therefore,

sup θ∈(0,1) |u| j |E 0 [X α θ e i uX θ ]|du = sup θ∈(0,1) u j x α e i ux p θ (x)dx du = sup θ∈(0,1) e i ux ∂ j x (x α p θ (x))dx du < ∞
since the Fourier transform is a continuous linear mapping from S to S .

Theorem 1. Denote by p θ the density of

X θ under Q(•|F 0 ). Then, for any α ∈ N ∪ {0}, sup x∈R (1 + x 2 ) α |p θ (x) -q θ (x)| = o(θ 2H ) (6) 
as θ → 0, where q θ is defined by (5).

Proof. As seen in the proof of Lemma 4, the density p θ exists in the Schwartz space. By the Fourier identity,

(1 + x 2 ) α (p θ (x) -q θ (x)) = 1 2π e i u y (1 + y 2 ) α (p θ (y) -q θ (y))dye -i ux du
Combining the lemmas in the previous section, taking δ ∈ (0, min{ , (H -)/3}), we have

|u|≤θ -δ e i u y (1 + y 2 ) α (p θ (y) -q θ (y))dy du = o(θ 2H ).
On the other hand,

|u|≥θ -δ e i u y (1 + y 2 ) α p θ (y)dy du ≤ θ j δ |u|≥θ -δ |u| j |E 0 [(1 + X 2 θ ) α e i uX θ ]|du = O(θ j δ )
for any j ∈ N by Lemma 4. The remainder |u|≥θ -δ e i u y (1 + y 2 ) α q θ (y)dy du is handled in the same manner.

Put option price expansion

Here we consider put option prices. Denote by p θ the density of X θ as before and consider a normalized put option price

p(F e σ 0 (θ)z , θ) F σ 0 (θ) = e -r θ z -∞ ζ -∞ p θ (x)dxe σ 0 (θ)ζ dζ.
Lemma 5. Let q θ (x), θ > 0 be a family of functions on R (not necessarily the one given by ( 5)). If

sup x∈R (1 + x 2 ) α |p θ (x) -q θ (x)| = o(θ β )
for some α > 5/4 and β > 0, then for any z 0 ∈ R,

p(F e σ 0 (θ)z , θ) F σ 0 (θ) = e -r θ z -∞ ζ -∞ q θ (x)dxe σ 0 (θ)ζ dζ + o(θ β )
uniformly in z ≤ z 0 .

Proof. By the Cauchy-Schwarz inequality,

e -r θ z -∞ ζ -∞ |p θ (x) -q θ (x)|dze σ 0 (θ)ζ dζ ≤ e -r θ z -∞ ζ -∞ dx (1 + x 2 ) 2α-1 ζ -∞ (1 + x 2 ) 2α-1 |p θ (x) -q θ (x)| 2 dze σ 0 (θ)ζ dζ ≤ πe -r θ+σ 0 (θ)z sup x∈R (1 + x 2 ) α |p θ (x) -q θ (x)| z -∞ ζ -∞ dx (1 + x 2 ) 2α-1 dζ, which is o(θ β ) if α > 5/4.
Proposition 1. Suppose we have ( 6) with q θ of the form

q θ (x) =φ x + σ 0 (θ) 2 1 + κ 3 (θ) H 3 x + σ 0 (θ) 2 -σ 0 (θ)H 2 x + σ 0 (θ) 2 θ H + φ(x) κ 4 (θ)H 4 (x) + κ 3 (θ) 2 2 H 6 (x) θ 2H (7) 
with bounded functions κ 3 (θ) and κ 4 (θ) of θ, where H k is the kth Hermite polynomial:

H 1 (x) = x, H 2 (x) = x 2 -1, H 3 (x) = x 3 -3x, H 4 (x) = x 4 -6x 2 + 3, . . .

Then, for any

z 0 ∈ R, p(F e σ 0 (θ)z , θ) F e -r θ σ 0 (θ) = 1 σ 0 (θ) Φ z + σ 0 (θ) 2 e σ 0 (θ)z -Φ z - σ 0 (θ) 2 + κ 3 (θ)φ z + σ 0 (θ) 2 H 1 z + σ 0 (θ) 2 e σ 0 (θ)z θ H + φ(z) κ 4 (θ)H 2 (z) + κ 3 (θ) 2 2 H 4 (z) θ 2H + o(θ 2H ) uniformly in z ≤ z 0 .
Proof. This is a direct consequence of the previous lemma. For example,

d dz e -σ 0 (θ)z d dz 1 σ 0 (θ) Φ z + σ 0 (θ) 2 e σ 0 (θ)z -Φ z - σ 0 (θ) 2 = φ z + σ 0 (θ) 2 . The derivative of H k (z)φ(z) is -H k+1 (z)φ(z). Recall also σ 0 (θ) = O( θ).

Implied volatility expansion

Here we give an expansion formula for the Black-Scholes implied volatility. Denote by p BS (K , θ, σ) the put option price with strike price K and maturity θ under the Black-Scholes model with volatility parameter σ > 0. Given a put option price p(K , θ), K = F e k , the implied volatility σ BS (k, θ) is defined through

p BS (K , θ, σ BS (k, θ)) = p(K , θ).
Theorem 2. Suppose we have ( 6) with q θ of the form (7). Then, for any z ∈ R,

σ BS ( θz, θ) = κ 2 1 + κ 3 z κ 2 + κ 2 θ 2 θ H + 3κ 2 3 2 -κ 4 + (κ 4 -3κ 2 3 ) z 2 κ 2 2 θ 2H + o(θ 2H ),
where κ 2 = κ 2 (θ) = σ 0 (θ)/ θ, κ 3 = κ 3 (θ) and κ 4 = κ 4 (θ).

Proof.

Step 1). Fix z ∈ R. Note that

P θ (σ) := p BS (F e θz , θ, σ) F e -r θ θ = 1 θ Φ z σ + σ θ 2 e θz -Φ z σ - σ θ 2 (8) 
and that

P θ : [0, ∞] → (e θz -1) + θ , e θz
θ is a strictly increasing function. From (8) and Proposition 1, we have p(F e θz , θ)

F e -r θ θ =P θ (κ 2 ) + κ 2 κ 3 φ z κ 2 + κ 2 θ 2 H 1 z κ 2 + κ 2 θ 2 e θz θ H + κ 2 φ z κ 2 κ 4 H 2 z κ 2 + κ 2 3 2 H 4 z κ 2 θ 2H + o(θ 2H ) =P θ (κ 2 ) + O(θ H ).
Therefore

σ BS ( θz, θ) = P -1 θ (P θ (κ 2 ) + O(θ H )).
By (1), κ 2 is bounded in θ, say, by L > 0. The function P θ converges as θ → 0 to

P 0 (σ) := zΦ z σ + σφ z σ
pointwize, and by Dini's theorem, this convergence is uniform on [0, L]. Since the limit function P 0 is strictly increasing, the inverse functions P -1 θ converges to P -1 0 . Again by Dini's theorem, this convergence is uniform and in particular, P -1 θ are equicontinuous. Thus we conclude σ BS ( θz, θ) -κ 2 → 0 as θ → 0. Then, write σ BS ( θz, θ) = κ 2 + β(θ) and substitute this to the equation P θ (σ BS ( θz, θ)) = P θ (κ 2 ) + O(θ H ). The Taylor expansion gives β(θ) = O(θ H ).

Step 2). From (8) we have

P θ (σ) = σF 1 z σ + σ 2 θ 2 F 2 z σ + σ 3 θ 6 F 3 z σ + o(θ),
where

F 1 (x) = xΦ(x) + φ(x), F 2 (x) = x 2 Φ(x) + xφ(x), F 3 (x) = x 3 Φ(x) + x 2 - 1 4 φ(x).
Using that

∂ σ σF 1 z σ = φ z σ ,
we have

κ 2 F 1 z κ 2 + κ 2 2 θ 2 F 2 z κ 2 + κ 2 φ z κ 2 κ 3 H 1 z κ 2 e θz θ H = σ BS ( θz, θ)F 1 z σ BS ( θz, θ) + σ BS ( θz, θ) 2 θ 2 F 2 z σ BS ( θz, θ) + O(θ 2H ) = κ 2 F 1 z κ 2 + κ 2 2 θ 2 F 2 z κ 2 + φ z κ 2 (σ BS ( θz, θ) -κ 2 ) + O(θ 2H ), from which we conclude σ BS ( θz, θ) = κ 2 + κ 3 ze θz θ H + O(θ 2H ).
Step 3). Using that

∂ 2 σ σF 1 z σ = z 2 σ 3 φ z σ , ∂ σ σ 2 F 2 z σ = zφ z σ ,
we obtain

κ 2 φ z κ 2 + κ 2 θ 2 κ 3 H 1 z κ 2 + κ 2 θ 2 e θz θ H + κ 4 H 2 z κ 2 + κ 2 3 2 H 4 z κ 2 θ 2H = p(F e θz , θ) F e -r θ θ -P θ (κ 2 ) + o(θ 2H ) =P θ (σ BS ( θz, z)) -P θ (κ 2 ) + o(θ 2H ) =∂ σ σF 1 z σ | σ=κ 2 (σ BS ( θz, θ) -κ 2 ) + 1 2 ∂ 2 σ σF 1 z σ | σ=κ 2 (σ BS ( θz, θ) -κ 2 ) 2 + θ 2 ∂ σ σ 2 F 2 z σ σ=κ 2 (σ BS ( θz, θ) -κ 2 ) + o(θ 2H ) =φ z κ 2 (σ BS ( θz, θ) -κ 2 ) + θ 2 zφ z κ 2 (σ BS ( θz, θ) -κ 2 ) + z 2 2κ 3 2 φ z κ 2 (σ BS ( θz, θ) -κ 2 ) 2 + o(θ 2H )
4. Asymptotics for at-the-money skew and curvature from Proposition 1 and Step 2. The left hand side is further expanded as

κ 2 φ z κ 2 κ 3 H 1 z κ 2 e θz θ H -κ 3 H 2 z κ 2 κ 2 2 θ H +1/2 + κ 4 H 2 z κ 2 + κ 2 3 2 H 4 z κ 2 θ 2H + o(θ 2H ).
Denote γ(θ) = σ BS ( θz, θ) -κ 2 -κ 3 ze θz θ H and substitute this to obtain

γ(θ) = -κ 3 H 2 z κ 2 κ 2 2 2 θ H +1/2 + κ 2 κ 4 H 2 z κ 2 + κ 2 3 2 H 4 z κ 2 θ 2H - κ 3 2 z 2 θ H +1/2 - κ 2 3 2κ 3 2 z 4 θ 2H + o(θ 2H ) = κ 2 2 2 -z 2 κ 3 θ H +1/2 + κ 2 (κ 4 -3κ 2 3 ) z 2 κ 2 2 + 3 2 κ 2 3 -κ 4 θ 2H + o(θ 2H ),
from which we conclude the result.

Asymptotics for at-the-money skew and curvature

Here we derive the asymptotic behavior of at-the-money implied volatility skew and curvature. They are defined respectively as the first and the second derivatives of the implied volatility at k = 0. The skew behavior is especially important in order to argue the consistency of a model to the empirically observed power law.

Theorem 3. Suppose we have (6) with q θ of the form (7). Then,

∂ k σ BS (0, θ) = κ 3 (θ)θ H -1/2 + o(θ 2H -1/2 ), ∂ 2 k σ BS (0, θ) = 2 κ 4 (θ) -3κ 3 (θ) 2 κ 2 (θ) θ 2H -1 + o(θ 2H -1 ).
Proof. It is known (see e.g., Fukasawa [START_REF] Fukasawa | The normalizing transformation of the implied volatility smile[END_REF]) that

∂ k σ BS (k, θ) = Q(k ≥ σ 0 (θ)X θ |F 0 ) -Φ( f 2 (k, θ)) θφ( f 2 (k, θ)) , ∂ 2 k σ BS (k, θ) = p θ (k/σ 0 (θ)) σ 0 (θ) θφ( f 2 (k, θ)) -σ BS (k, θ)∂ k f 1 (k, θ)∂ k f 2 (k, θ), (9) 
where

f 1 (k, θ) = k θσ BS (k, θ) - θσ BS (k, θ) 2 , f 2 (k, θ) = k θσ BS (k, θ) + θσ BS (k, θ) 2 .
Since the condition of Proposition 1 is met, we have

Q(0 ≥ X θ |F 0 ) = Φ σ 0 (θ) 2 + κ 3 (θ)φ σ 0 (θ) 2 θ H + o(θ 2H ).
On the other hand, by Theorem 2,

f 2 (0, θ) = θ 2 κ 2 (θ) + O(θ 2H +1/2 )
and so,

Φ( f 2 (0, θ)) = Φ σ 0 (θ) 2 + O(θ 2H +1/2 ), φ( f 2 (0, θ)) = φ(0) -φ(0) θ 8 κ 2 (θ) 2 + O(θ 2H +1 ).
Then, it follows from (9) that

∂ k σ BS (0, θ) = κ 3 (θ)θ H -1/2 + o(θ 2H -1/2 ). (10) 
Further, under the condition, we have

p θ (0) = φ σ 0 (θ) 2 1 - κ 3 (θ) 2 σ 0 (θ)θ H + 3κ 4 (θ) -15 κ 3 (θ) 2 2 θ 2H + o(θ 2H ).
On the other hand, by Theorem 2 and (10),

σ BS (0, θ)∂ k f 1 (0, θ)∂ k f 2 (0, θ) = 1 σ BS (0, θ)θ + O(θ 2H ) = 1 κ 2 (θ)θ 1 - 1 2 κ 2 (θ)κ 3 (θ)θ H +1/2 - 3 2 κ 3 (θ) 2 -κ 4 (θ) θ 2H + o(θ 2H -1 ).
Then, it follows from (9) that

∂ 2 k σ BS (0, θ) = 2κ 4 (θ) -6κ 3 (θ) 2 κ 2 (θ) θ 2H -1 + o(θ 2H -1 ),
which completes the proof.

The rough Bergomi model

Here we show that the rough Bergomi model proposed by [START_REF] Bayer | Pricing under rough volatility[END_REF] fits the framework and compute the expansion terms. Let ρ t = ρ ∈ (-1, 1) be a constant and

d log v t = ηdW H t ,
where η > 0 is a constant and W H is a fractional Brownian motion with the Hurst parameter H ∈ (0, 1/2), given as

W H t = c H t 0 (t -s) H -1/2 dW s + 0 -∞ (t -s) H -1/2 -(-s) H -1/2 dW s 200 5
. The rough Bergomi model with a normalizing constant c H > 0. Since v t is log-normally distributed, (1) holds by Jensen's inequality. We have

v t = v 0 (t ) exp η H 2H t 0 (t -s) H -1/2 dW s - η 2 H 2 t 2H ,
where η H = ηc H / 2H . Now we state the main result of this section.

Theorem 4. We have (6) for q θ given by ( 7) with

κ 3 (θ) = ρη H H 2 1 θ H σ 0 (θ) 3 θ 0 exp - η 2 H 8 t 2H t 0 (t -s) H -1/2 v 0 (s)dsv 0 (t )dt , κ 4 (θ) = (1 + 2ρ 2 )η 2 H H (2H + 1) 2 (2H + 2) + ρ 2 η 2 H H β(H + 3/2, H + 3/2) 2(H + 1/2) 2 ,
where β is the beta function.

Proof. The conditions (2) and (3) follow from Lemma 6 below. The functions a (i ) θ and c θ are computed in Lemmas 7, 8, 9 and 10 below. The function b θ is obtained as the the derivative of a (1) θ . They are apparently rapidly decreasing smooth functions. Then, by Theorem 1, it suffices to show that q θ defined by (5) has the form (7) up to o(θ 2H ) with κ 3 (θ) and κ 4 (θ) specified above.

By the Taylor expansion, using that the derivative of a (1) θ is b θ and that σ 0 (θ) = O( θ), it is easy to verify

q θ (x) =φ x + σ 0 (θ) 2 -θ H a (1) θ x + σ 0 (θ) 2 -θ 2H a (2) θ (x) + θ 2H 2 c θ (x) + σ 0 (θ)θ H 2 a (3) θ x + σ 0 (θ) 2 + O(θ 1+H )
in the Schwarz space. The rest is straightforward.

Proposition 1 and Theorems 2 and 3 are therefore valid here. The resulting formula of the implied volatility expansion turns out reduce the Bergomi-Guyon expansion formula formally derived in [START_REF] Bayer | Pricing under rough volatility[END_REF] when H < 1/2 and the forward variance curve is flat, that is, when v 0 is constant. Note however that there is a typo in the second order term in [START_REF] Bayer | Pricing under rough volatility[END_REF]. Numerical experiments are given in that paper. When v 0 is constant, the same formula can be formally obtained also by expanding the rate function appeared in the large deviation result of [START_REF] Forde | Asymptotics for rough stochastic volatility models[END_REF]; see [BFG + 17] for a rigorous treatment in this approach.

In order to prove Lemmas below, we need some preparation. Let H k , k = 0, 1, . . . be the Hermite polynomials as before:

H k (x) = (-1) k e x 2 /2 d k dx k e -x 2 /2
and H k (x, a) = a k/2 H k (x/ a) for a > 0. As is well-known, we have

exp ux - au 2 2 = ∞ k=0 H k (x, a) u k k!
and for any continuous local martingale M and n ∈ N,

dL (n) t = nL (n-1) t dM t , (11) 
where

L (k) = H k (M , 〈M 〉) for k ∈ N.
See, e.g., Revuz and Yor [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF].

Define Ŵ , Ŵ , B by

Ŵt = 1 σ 0 (θ) τ -1 (t ) 0 v 0 (s)dW s , Ŵ t = 1 σ 0 (θ) τ -1 (t ) 0 v 0 (s)dW s and B = ρ Ŵ + 1 -ρ 2 Ŵ , where τ(s) = 1 σ 0 (θ) 2 s 0 v 0 (t )dt .
Then, ( Ŵ , Ŵ ) is a 2-dimensional Brownian motion under E 0 and for any square-integrable function f ,

a 0 f (s)dW s = σ 0 (θ) τ(a) 0 f (τ -1 (t )) v 0 (τ -1 (t )) d Ŵt .
Therefore,

M θ = σ 0 (θ) 1 0 exp θ H F t t - η 2 H 4 |τ -1 (t )| 2H d Bt
where

F t u = η H H 2 σ 0 (θ) θ H u 0 (τ -1 (t ) -τ -1 (s)) H -1/2 v 0 (τ -1 (s)) d Ŵs , u ∈ [0, t ]. Let G (k) t = H k (F t t , 〈F t 〉 t ).
Then, we have

M θ = σ 0 (θ) 1 0 exp - η 2 H 8 |τ -1 (t )| 2H exp θ H F t t - θ 2H 2 〈F t 〉 t d Bt = σ 0 (θ) 1 0 exp - η 2 H 8 |τ -1 (t )| 2H ∞ k=0 G (k) t θ H k k! d Bt .
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M (0) θ = B1 , M (1) θ = 1 0 h θ (t )G (1) t d Bt , M (2) θ = 1 0 h θ (t ) -1 θ 2H + h θ (t ) G (2) t 2 d Bt , M (3) θ = 2 1 0 F t t dt ,
where

h θ (t ) = exp - η 2 H 8 |τ -1 (t )| 2H . Proof. For M (i ) θ , i = 0, 1, 2, it suffices to show 1 0 h θ (t ) ∞ k=J G (k) t θ H k k! d Bt 2 = O(θ H J )
for any J ≥ 3. The proof for M (3) θ is similar and so omitted. It suffices to show

E 0 1 0 ∞ k=J G (k) t θ H k k! 2 dt = O(θ 2H J ).
By the Cauchy-Schwarz inequality, the left hand side is dominated by

∞ k=J θ H k ∞ k=J θ H k (k!) 2 1 0 E 0 [|G (k) t | 2 ]dt Let G (k) t ,s = H k (F t s , 〈F t 〉 s ), s ∈ [0, t ].
Then, by (11),

E 0 [|G (k) t | 2 ] = E 0 [|G (k) t ,t | 2 ] = k 2 t 0 E 0 [|G (k-1) t ,s | 2 ]d〈F t 〉 s = k 2 (k -1) 2 t 0 s 1 0 E 0 [|G (k-2) t ,s 2 | 2 ]d〈F t 〉 s 2 d〈F t 〉 s 1 ≤ (k!) 2 〈F t 〉 k t = (k!) 2 η 2 H 4 |τ -1 (t )| 2H θ 2H k . Note that τ -1 (t ) ≤ τ -1 (1) = θ. Therefore, for sufficiently small θ, ∞ k=J θ H k ∞ k=J θ H k (k!) 2 1 0 E 0 [|G (k) t | 2 ]dt ≤ η 2 H 4 J θ 2H J (1 -θ H )(1 -θ H η 2 H /4)
, which completes the proof. Now we compute a (i ) θ , b θ and c θ based on Lemma 6. The following lemmas follow from the results in Section VII.A by straightforward computations. Lemma 7.

a (1) θ (x) = -H 3 (x)φ(x)ρη H H 2 σ 0 (θ) θ H 1 0 h θ (t ) t 0 (τ -1 (t ) -τ -1 (s)) H -1/2 v 0 (τ -1 (s)) dsdt = -H 3 (x)φ(x)ρη H H 2 × 1 θ H σ 0 (θ) 3 θ 0 exp - η 2 H 8 t 2H t 0 (t -s) H -1/2 v 0 (s)dsv 0 (t )dt ∼ -H 3 (x)φ(x) ρη H 2H 2(H + 1/2)(H + 3/2) .
Lemma 8.

a (2) θ (x) = -H 2 (x)φ(x) 1 0 h θ (t ) -1 θ 2H dt -H 4 (x)φ(x)ρ 2 η 2 H H 4 σ 0 (θ) 2 θ 2H 1 0 h θ (t ) t 0 (τ -1 (t ) -τ -1 (s)) H -1/2 v 0 (τ -1 (s)) ds 2 dt ∼ H 2 (x)φ(x) 1 0 η 2 H 8θ 2H |τ -1 (t )| 2H dt -H 4 (x)φ(x)ρ 2 η 2 H H (2H + 1) 2 (2H + 2) .
Lemma 9.

a (3) θ (x) = -2H 2 (x)φ(x)ρη H H 2 σ 0 (θ) θ H 1 0 t 0 (τ -1 (t ) -τ -1 (s)) H -1/2 v 0 (τ -1 (s)) dsdt ∼ -2H 2 (x)φ(x) ρη H 2H 2(H + 1/2)(H + 3/2) .

VII.A. Conditional expectations of Wiener-Itô integrals

Lemma 10.

c θ (x) = H 6 (x)φ(x)ρ 2 η 2 H H 2 σ 0 (θ) 2 θ 2H 1 0 h θ (t ) t 0 (τ -1 (t ) -τ -1 (s)) H -1/2 v 0 (τ -1 (s)) dsdt 2 + H 4 (x)φ(x)ρ 2 η 2 H H 2 σ 0 (θ) 2 θ 2H 1 0 h θ (t ) 2 t 0 (τ -1 (t ) -τ -1 (s)) H -1/2 v 0 (τ -1 (s)) ds 2 dt + H 4 (x)φ(x)ρ 2 η 2 H H σ 0 (θ) 2 θ 2H 1 0 h θ (t ) t 0 (τ -1 (t ) -τ -1 (s)) H -1/2 v 0 (τ -1 (s))
ds

× 1 t h θ (u) (τ -1 (u) -τ -1 (t )) H -1/2 v 0 (τ -1 (t ))
dudt

+ H 4 (x)φ(x) η 2 H H 2 σ 0 (θ) 2 θ 2H 1 0 h θ (t ) 2 1 s (τ -1 (t ) -τ -1 (s)) H -1/2 v 0 (τ -1 (s)) dt 2 ds + H 2 (x)φ(x) η 2 H H 2 σ 0 (θ) 2 θ 2H 1 0 h θ (t ) 2 t 0 (τ -1 (t ) -τ -1 (s)) 2H -1 v 0 (τ -1 (s)) dsdt ∼ H 6 (x)φ(x)ρ 2 η 2 H H 2(H + 1/2) 2 (H + 3/2) 2 + H 4 (x)φ(x) 2(1 + ρ 2 )η 2 H H (2H + 1) 2 (2H + 2) + H 4 (x)φ(x) ρ 2 η 2 H H β(H + 3/2, H + 3/2) (H + 1/2) 2 + H 2 (x)φ(x) 1 0 η 2 H 4θ 2H |τ -1 (t )| 2H dt .

VII.A Conditional expectations of Wiener-Itô integrals

Here we collect results on the conditional expectations of Wiener-Itô integrals that follow from Proposition 3 of Nualart et al [START_REF] Nualart | On the moments of a multiple wiener-itô integral and the space induced by the polynomials of the integral[END_REF]. Let x ∈ R and B be a standard Brownian motion (B 0 = 0). Let f be a continuous function on

(s, t ) ∈ (0, 1) 2 ; s < t with 1 0 t 0 | f (s, t )| 2 dsdt < ∞. Lemma 11. E 1 0 t 0 f (s, t )dB s dt B 1 = x = H 1 (x) 1 0 t 0 f (s, t )dsdt , E 1 0 t 0 f (s, t )dB s dB t B 1 = x = H 2 (x) 1 0 t 0 f (s, t )dsdt , E 1 0 t 0 f (s, t )dB s 2 dB t B 1 = x = H 3 (x) 1 0 t 0 f (s, t )ds 2 dt + H 1 (x) 1 0 t 0 f (s, t ) 2 dsdt , E 1 0 1 s f (s, t )dB t 2 ds B 1 = x = H 2 (x) 1 0 1 s f (s, t )dt 2 ds + 1 0 1 s f (s, t ) 2 dt ds. Lemma 12. E 1 0 t 0 f (s, t )dB s dB t 2 B 1 = x - 1 0 t 0 f (s, t ) 2 dsdt = H 4 (x) 1 0 t 0 f (s, t )dsdt 2 + H 2 (x) 1 0 t 0 f (s, t )ds + 1 t f (t , u)du 2 dt .

Introduction

Empirical studies of a very wide range of assets volatility time-series in [START_REF] Gatheral | Volatility is rough[END_REF] have shown that the dynamics of the log-volatility are close to that of a fractional Brownian motion W H with a small Hurst parameter H of order 0.1. Recall that a fractional Brownian motion W H can be built from a two-sided Brownian motion thanks to the Mandelbrot-van Ness representation

W H t = 1 Γ(H + 1/2) t 0 (t -s) H -1 2 dW s + 1 Γ(H + 1/2) 0 -∞ (t -s) H -1 2 -(-s) H -1 2 dW s .
The fractional kernel (ts) H -1 2 is behind the H -ε Hölder regularity of the volatility for any ε > 0. For small values of the Hurst parameter H , as observed empirically, stochastic volatility models involving the fractional kernel are called rough volatility models.

Aside from modeling historical volatility dynamics, rough volatility models reproduce accurately with very few parameters the behavior of the implied volatility surface, see [START_REF] Bayer | Pricing under rough volatility[END_REF] and Chapter V, especially the at-the-money skew, see [START_REF] Fukasawa | Asymptotic analysis for stochastic volatility: Martingale expansion[END_REF]. Moreover, microstructural foundations of rough volatility are studied in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed hawkes processes[END_REF] and Chapter I.

In this paper, we are interested in a class of rough volatility models where the dynamics of the asset price S and its stochastic variance V are given by d S t = S t V t dW t , S 0 > 0,

(1)

V t = V 0 + 1 Γ(H + 1 2 ) t 0 (t -u) H -1 2 (θ(u) -λV u )d u + 1 Γ(H + 1 2 ) t 0 (t -u) H -1 2 σ(V u )d B u , (2) 
for all t ∈ [0, T ], on some filtered probability space (Ω, F , F, P). Here T is a positive time horizon, the parameters λ and V 0 are non-negative, H ∈ (0, 1/2) is the Hurst parameter, σ is a continuous function and

W = ρB + 1 -ρ 2 B ⊥ with (B, B ⊥ ) a two-dimensional F-Brownian motion and ρ ∈ [-1, 1].
Moreover, θ is a deterministic mean reversion level allowed to be time-dependent to fit the market forward variance curve (E[V t ]) t ≤T as explained in Section 2 and in Chapter III. Under some general assumptions, we establish in Section 2 the existence of a weak non-negative solution to the fractional stochastic integral equation in (2) exhibiting H -ε Hölder regularity for any ε > 0. Hence, this class of models is a natural rough extension of classical stochastic volatility models where the fractional kernel is introduced in the drift and stochastic part of the variance process V . Indeed, when H = 1/2, we recover classical stochastic volatility models where the variance process is a standard diffusion.

Despite the fit to the historical and implied volatility, some difficulties are encountered in practice for the simulation of rough volatility models and for pricing and hedging derivatives with them. In fact, due to the introduction of the fractional kernel, we lose the Markovian and semimartingale structure. In order to overcome theses difficulties, we approximate these models by simpler ones that we can use in practice.

In Chapters I, II and III, the rough Heston model (which corresponds to the case of σ(x) = ν x) is built as a limit of microscopic Hawkes-based price models. This allowed the understanding of the microstructural foundations of rough volatility and also led to the formula of the characteristic function of the log-price. Hence, the Hawkes approximation enabled us to solve the pricing and hedging under the rough Heston model. However, this approach is specific to the rough Heston case and can not be extended to an arbitrary rough volatility model of the form (1)-(2).

Inspired by the works of [CC98, CCM00, HS15, Mur11] and Chapter IV, we provide a natural Markovian approximation for the class of rough volatility models (1)-(2). The main idea is to write the fractional kernel

K (t ) = t H -1 2
Γ(H +1/2) as a Laplace transform of a positive measure µ

K (t ) = ∞ 0 e -γt µ(d γ); µ(d γ) = γ -H -1 2 Γ(H + 1/2)Γ(1/2 -H ) d γ.
(

We then approximate µ by a finite sum of Dirac measures µ n = n i =1 c n i δ γ n i with positive weights (c n i ) 1≤i ≤n and mean reversions (γ n i ) 1≤i ≤n , for n ≥ 1. This in turn yields an approximation of 1. Introduction the fractional kernel by a sequence of smoothed kernels (K n ) n≥1 given by

K n (t ) = n i =1 c n i e -γ n i t , n ≥ 1.
This leads to a multi-factor stochastic volatility model (S n ,V n ) = (S n t ,V n t ) t ≤T , which is Markovian with respect to the spot price and n variance factors (V n,i ) 1≤i ≤n and is defined as follows

d S n t = S n t V n t dW t , V n t = g n (t ) + n i =1 c n i V n,i t , (4) 
where

dV n,i t = (-γ n i V n,i t -λV n t )d t + σ(V n t )d B t ,
and g n (t ) = V 0 + t 0 K n (ts)θ(s)d s with the initial conditions S n 0 = S 0 and V n,i 0 = 0. Note that the factors (V n,i ) 1≤i ≤n share the same dynamics except that they mean revert at different speeds (γ n i ) 1≤i ≤n . Relying on existence results of stochastic Volterra equations in [START_REF] Jaber | Affine Volterra processes[END_REF] and Chapter IV, we provide in Theorem 1 the strong existence and uniqueness of the model (S n ,V n ), under some general conditions. Thus the approximation (4) is uniquely well-defined. We can therefore deal with simulation, pricing and hedging problems under these multi-factor models by using standard methods developed for stochastic volatility models.

Theorem 2, which is the main result of this paper, establishes the convergence of the multifactor approximation sequence (S n ,V n ) n≥1 to the rough volatility model (S,V ) in (1)-(2) when the number of factors n goes to infinity, under a suitable choice of the weights and mean reversions (c n i , γ n i ) 1≤i ≤n . This convergence is obtained from a general result about stability of stochastic Volterra equations derived in Section 3.4.

In [START_REF] Jaber | Affine Volterra processes[END_REF] and Chapters II and III, the characteristic function of the log-price for the specific case of the rough Heston model is obtained in terms of a solution of a fractional Riccati equation. We highlight in Section 4.1 that the corresponding multi-factor approximation (4) inherits a similar affine structure as in the rough Heston model. More precisely, it displays the same characteristic function formula involving a n-dimensional classical Riccati equation instead of the fractional one. This suggests solving numerically the fractional Riccati equation by approximating it through a n-dimensional classical Riccati equation with large n, see Theorem 4. In Section 4.2, we discuss the accuracy and complexity of this numerical method and compare it to the Adams scheme, see [DFF02, DFF04, DF99] and Chapter II.

The paper is organized as follows. In Section 2, we define the class of rough volatility models (1)-(2) and discuss the existence of such models. Then, in Section 3, we build a sequence of multi-factor stochastic volatility models of the form of (4) and show its convergence to a rough volatility model. By applying this approximation to the specific case of the rough Heston model, we obtain a numerical method for computing solutions of fractional Riccati equations that is discussed in Section 4. Finally, some proofs are relegated to Section 5 and some useful technical results are given in an Appendix.

We provide in this section the precise definition of rough volatility models given by (1)-(2). We discuss the existence of such models and more precisely of a non-negative solution of the fractional stochastic integral equation (2). The existence of an unconstrained weak solution V = (V t ) t ≤T is guaranteed by Corollary 2 in the Appendix when σ is a continuous function with linear growth and θ satisfies the condition

∀ε > 0, ∃C ε > 0; ∀u ∈ (0, T ] |θ(u)| ≤ C ε u -1 2 -ε .
(5)

Furthermore, the paths of V are Hölder continuous of any order strictly less than H and

sup t ∈[0,T ] E[|V t | p ] < ∞, p > 0. (6) 
Moreover using Theorem 6 together with Remarks 4 and 5 in the Appendix 1 , the existence of a non-negative continuous process V satisfying (2) is obtained under the additional conditions of non-negativity of V 0 and θ and σ(0) = 0. We can therefore introduce the following class of rough volatility models.

Definition 1. (Rough volatility models) We define a rough volatility model by any

R × R + -valued continuous process (S,V ) = (S t ,V t ) t ≤T satisfying d S t = S t V t dW t , V t = V 0 + 1 Γ(H + 1/2) t 0 (t -u) H -1 2 (θ(u) -λV u )d u + 1 Γ(H + 1/2) t 0 (t -u) H -1 2 σ(V u )d B u ,
on a filtred probability space (Ω, F , F, P) with non-negative initial conditions (S 0 ,V 0 ). Here T is a positive time horizon, the parameter λ is non-negative, H ∈ (0, 1/2) is the Hurst parameter and W = ρB + 1 -ρ 2 B ⊥ with (B, B ⊥ ) a two-dimensional F-Brownian motion and ρ ∈ [-1, 1]. Moreover, to guarantee the existence of such model, σ : R → R is assumed continuous with linear growth such that σ(0) = 0 and θ : [0, T ] → R is a deterministic non-negative function satisfying (5).

As done in Chapter III, we allow the mean reversion level θ to be time dependent in order to be consistent with the market forward variance curve. More precisely, the following result shows that the mean reversion level θ can be written as a functional of the forward variance curve (E[V t ]) t ≤T .

Proposition 1. Let (S,V ) be a rough volatility model given by Definition 1. Then, (E[V t ]) t ≤T is linked to θ by the following formula

E[V t ] = V 0 + t 0 (t -s) α-1 E α (-λ(t -s) α )θ(s)d s, t ∈ [0, T ], (7) 
1 Theorem 6 is used here with the fractional kernel

K (t ) = t H -1 2 Γ(H +1/2) together with b(x) = -λx and g (t ) = V 0 + t 0 K (t -u)θ(u)d u.
212 3. Multi-factor approximation of rough volatility models where α = H + 1/2 and E α (x) = k≥0

x k Γ(α(k+1)) is the Mittag-Leffler function. Moreover, (E[V t ]) t ≤T admits a fractional derivative 2 of order α at each time t ∈ (0, T ] and

θ(t ) = D α (E[V . ] -V 0 ) t + λE[V t ], t ∈ (0, T ]. (8)
Proof. Thanks to (6) together with Fubini theorem, t → E[V t ] solves the following fractional linear integral equation

E[V t ] = V 0 + 1 Γ(H + 1/2) t 0 (t -s) H -1 2 (θ(s) -λE[V s ])d s, t ∈ [0, T ], (9) 
yielding (7) by Theorem 5 and Remark 3 in the Appendix. Finally, (8) is obviously obtained from (9).

Finally, note that uniqueness of the fractional stochastic integral equation ( 2) is a difficult problem. Adapting the proof in [START_REF] Mytnik | Uniqueness for volterra-type stochastic integral equations[END_REF], we can prove pathwise uniqueness when σ is η-Hölder continuous with η ∈ (1/(1 + 2H ), 1]. This result does not cover the square-root case, i.e. σ(x) = ν x, for which weak uniqueness has been established in [START_REF] Jaber | Affine Volterra processes[END_REF][START_REF] Mytnik | Uniqueness for volterra-type stochastic integral equations[END_REF], see also Chapter IV.

Multi-factor approximation of rough volatility models

Thanks to the small Hölder regularity of the variance process, models of Definition 1 are able to reproduce the rough behavior of the volatility observed in a wide range of assets. However, the fractional kernel forces the variance process to leave both the semimartingale and Markovian worlds, which makes numerical approximation procedures a difficult and challenging task in practice. The aim of this section is to construct a tractable and satisfactory Markovian approximation of any rough volatility model (S,V ) of Definition 1. Because S is entirely determined by ( • 0 V s d s,

• 0 V s dW s ), it suffices to construct a suitable approximation of the variance process V . This is done by smoothing the fractional kernel. More precisely, denoting by K (t ) = t H -1 2 Γ(H +1/2) , the fractional stochastic integral equation (2) reads

V t = V 0 + t 0 K (t -s) ((θ(s) -λV s )d s + σ(V s )d B s ) ,
which is a stochastic Volterra equation. Approximating the fractional kernel K by a sequence of smooth kernels (K n ) n≥1 , one would expect the convergence of the following corresponding sequence of stochastic Volterra equations

V n t = V 0 + t 0 K n (t -s) (θ(s) -λV n s )d s + σ(V n s )d B s , n ≥ 1,
to the fractional one.

2 Recall that the fractional derivative of order α ∈ (0, 1) of a function f is given by

d d t t 0 (t -s) -α Γ(1-α) f (s)d s
whenever this expression is well defined.

The argument of this section runs as follows. First, exploiting the identity (3), we construct a family of potential candidates for (K n ,V n ) n≥1 in Section 3.1 such that V n enjoys a Markovian structure. Second, we provide convergence conditions of (K n ) n≥1 to K in L 2 ([0, T ], R) in Section 3.2. Finally, the approximation result for the rough volatility model (S,V ) is established in Section 3.3 relying on an abstract stability result of stochastic Volterra equations postponed to Section 3.4 for sake of exposition.

Construction of the approximation

In [CC98, HS15, Mur11], a Markovian representation of the fractional Brownian motion of Riemann-Liouville type is provided by writing the fractional kernel

K (t ) = t H -1 2
Γ(H +1/2) as a Laplace transform of a non-negative measure µ as in (3). This representation is extended in Chapter IV for the Volterra square-root process. Adopting the same approach, we establish a similar representation for any solution of the fractional stochastic integral equation (2) in terms of an infinite dimensional system of processes sharing the same Brownian motion and mean reverting at different speeds. Indeed by using the linear growth of σ together with the stochastic Fubini theorem, see [START_REF] Veraar | The stochastic fubini theorem revisited[END_REF], we obtain that

V t = g (t ) + ∞ 0 V γ t µ(d γ), t ∈ [0, T ],
with

dV γ t = (-γV γ t -λV t )d t + σ(V t )d B t , V γ 0 = 0, γ ≥ 0, and 
g (t ) = V 0 + t 0 K (t -s)θ(s)d s. ( 10 
)
Inspired by [START_REF] Carmona | Fractional Brownian motion and the Markov property[END_REF][START_REF] Carmona | Approximation of some Gaussian processes[END_REF], we approximate the measure µ by a weighted sum of Dirac measures

µ n = n i =1 c n i δ γ n i , n ≥ 1,
leading to the following approximation V n = (V n t ) t ≤T of the variance process V V n t = g n (t )

+ n i =1 c n i V n,i t , t ∈ [0, T ], (11) 
dV n,i t = (-γ n i V n,i t -λV n t )d t + σ(V n t )d B t , V n,i 0 = 0,
where

g n (t ) = V 0 + t 0 K n (t -u)θ(u)d u, ( 12 
)
and

K n (t ) = n i =1 c n i e -γ n i t . (13) 
The choice of the positive weights (c n i ) 1≤i ≤n and mean reversions (γ n i ) 1≤i ≤n , which is crucial for the accuracy of the approximation, is studied in Section 3.2 below. Before proving the convergence of (V n ) n≥1 , we shall first discuss the existence and uniqueness of such processes. This is done by rewriting the stochastic equation (11) as a stochastic Volterra equation of the form

V n t = g n (t ) + t 0 K n (t -s) -λV n s d s + σ(V n s )d B s , t ∈ [0, T ]. (14) 
The existence of a continuous non-negative weak solution V n is ensured by Theorem 6 together with Remarks 4 and 5 in the Appendix3 , because θ and V 0 are non-negative and σ(0) = 0. Moreover, pathwise uniqueness of solutions to (14) follows by adapting the standard arugments of [START_REF] Yamada | On the uniqueness of solutions of stochastic differential equations[END_REF], provided a suitable Hölder continuity of σ, see Proposition 8 in the Appendix. Note that this extension is made possible due to the smoothness of the kernel K n . For instance, this approach fails for the fractional kernel because of the singularity at zero. This leads us to the following result which establishes the strong existence and uniqueness of a non-negative solution of ( 14) and equivalently of (11).

Theorem 1. Assume that θ : [0, T ] → R is a deterministic non-negative function satisfying (5) and that σ : R → R is η-Hölder continuous with σ(0) = 0 and η ∈ [1/2, 1]. Then, there exists a unique strong non-negative solution V n = (V n t ) t ≤T to the stochastic Volterra equation (14) for each n ≥ 1. Due to the uniqueness of (11), we obtain that V n is a Markovian process according to n state variables (V n,i ) 1≤i ≤n that we call the factors of V n . Moreover, V n being non-negative, it can model a variance process. This leads to the following definition of multi-factor stochastic volatility models.

Definition 2. (Multi-factor stochastic volatility models). We define the following sequence of multi-factor stochastic volatility models

(S n ,V n ) = (S n t ,V n t ) t ≤T as the unique R × R + -valued strong solution of d S n t = S n t V n t dW t , V n t = g n (t ) + n i =1 c n i V n,i t , with dV n,i t = (-γ n i V n,i t -λV n t )d t + σ(V n t )d B t , V n,i 0 = 0, S n 0 = S 0 > 0,
on a filtered probability space (Ω, F , P, F), where F is the canonical filtration a two-dimensional Brownian motion (W,W ⊥ ) and

B = ρW + 1 -ρ 2 W ⊥ with ρ ∈ [-1, 1].
Here, the weights (c n i ) 1≤i ≤n and mean reversions (γ n i ) 1≤i ≤n are positive, σ : R → R is η-Hölder continuous such that σ(0) = 0, η ∈ [1/2, 1] and g n is given by (12), that is

g n (t ) = V 0 + t 0 K n (t -s)θ(s)d s,
with a non-negative initial variance V 0 , a kernel K n defined as in (13) and a non-negative deterministic function θ : [0, T ] → R satisfying (5).

Note that the strong existence and uniqueness of (S n ,V n ) follows from Theorem 1. This model is Markovian with n + 1 state variables which are the spot price S n and the factors of the variance process V n,i for i ∈ {1, . . . , n}.

An approximation of the fractional kernel

Relying on (14), we can see the process V n as an approximation of V , solution of (2), obtained by smoothing the fractional kernel

K (t ) = t H -1 2 Γ(H +1/2) into K n (t ) = n i =1 c n i e -γ n i t
. Intuitively, we need to choose K n close to K when n goes to infinity, so that (V n ) n≥1 converges to V . Inspired by [START_REF] Carmona | Approximation of some Gaussian processes[END_REF], we give in this section a condition on the weights (c n i ) 1≤i ≤n and mean reversion terms 0 < γ n 1 < ... < γ n n so that the following convergence K n -K 2,T → 0, holds as n goes to infinity, where • 2,T is the usual L 2 ([0, T ], R) norm. Let (η n i ) 0≤i ≤n be auxiliary mean reversion terms such that η n 0 = 0 and η n i -1 ≤ γ n i ≤ η n i for i ∈ {1, . . . , n}. Writing K as the Laplace transform of µ as in (3), we obtain that

K n -K 2,T ≤ ∞ η n n e -γ(•) 2,T µ(d γ) + n i =1 J n i , with J n i = c n i e -γ n i (•) - η n i η n i -1
e -γ(•) µ(d γ) 2,T . We start by dealing with the first term,

∞ η n n e -γ(•) 2,T µ(d γ) = ∞ η n n 1 -e -2γT 2γ µ(d γ) ≤ 1 H Γ(H + 1/2)Γ(1/2 -H ) 2 (η n n ) -H .

Moreover by choosing

c n i = η n i η n i -1 µ(d γ), γ n i = 1 c n i η n i η n i -1 γµ(d γ), i ∈ {1, . . . , n}, (15) 
and using the Taylor-Lagrange inequality up to the second order, we obtain

c n i e -γ n i t - η n i η n i -1 e -γt µ(d γ) ≤ t 2 2 η n i η n i -1 (γ -γ n i ) 2 µ(d γ), t ∈ [0, T ]. (16) 
Therefore,

n i =1 J n i ≤ T 5/2 2 5 n i =1 η n i η n i -1 (γ n i -γ) 2 µ(d γ).
This leads to the following inequality

K n -K 2,T ≤ f (2) n (η i ) 0≤i ≤n ,
where f (2) n is a function of the auxiliary mean reversions defined by

f (2) n ((η n i ) 1≤i ≤n ) = T 5 2 2 5 n i =1 η n i η n i -1 (γ -γ n i ) 2 µ(d γ) + 1 H Γ(H + 1/2)Γ(1/2 -H ) 2 (η n n ) -H . (17) 
Hence, we obtain the convergence of K n to the fractional kernel under the following choice of weights and mean reversions.

3. Multi-factor approximation of rough volatility models Assumption 1. We assume that the weights and mean reversions are given by (15) such that

η n 0 = 0 < η n 1 < . . . < η n n and η n n → ∞, n i =1 η n i η n i -1 (γ n i -γ) 2 µ(d γ) → 0, (18) 
as n goes to infinity.

Proposition 2. Fix (c n i ) 1≤i ≤n and (γ n i ) 1≤i ≤n as in Assumption 1 and K n given by (13), for all n ≥ 1. Then,

(K n ) n≥1 converges in L 2 [0, T ] to the fractional kernel K (t ) = t H -1/2 Γ(H + 1
2 ) as n goes to infinity.

There exists several choices of auxiliary factors such that condition (18) is met. For instance, assume that η n i = i π n for each i ∈ {0, . . . , n} such that π n > 0. It follows from

n i =1 η n i η n i -1 (γ -γ i ) 2 µ(d γ) ≤ π 2 n η n n 0 µ(d γ) = 1 (1/2 -H )Γ(H + 1/2)Γ(1/2 -H ) π 5 2 -H n n 1 2 -H , that (18) 
is satisfied for

η n n = nπ n → ∞, π 5 2 -H n n 1 2 -H → 0,
as n tends to infinity. In this case,

K n -K 2,T ≤ 1 H Γ(H + 1/2)Γ(1/2 -H ) 2 (η n n ) -H + H T 5 2 10(1/2 -H ) π 2 n (η n n ) 1 2 -H .
This upper bound is minimal for

π n = n -1 5 T 10(1 -2H ) 5 -2H 2 5 , (19) 
and

K n -K 2,T ≤ C H n -4H 5 ,
where C H is a positive constant that can be computed explicitly and that depends only on the Hurst parameter H ∈ (0, 1/2).

Remark 1. Note that the kernel approximation in Proposition 2 can be easily extended to any kernel of the form

K (t ) = ∞ 0 e -γt µ(d γ),
where µ is a non-negative measure such that

∞ 0 (1 ∧ γ -1/2 )µ(d γ) < ∞.

Convergence result

We assume now that the weights and mean reversions of the multi-factor stochastic volatility model (S n ,V n ) satisfy Assumption 1. Thanks to Proposition 2, the smoothed kernel K n is close to the fractional one for large n. Because V n satisfies the stochastic Volterra equation ( 14), V n has to be close to V and thus by passing to the limit, (S n ,V n ) n≥1 should converge to the rough volatility model (S,V ) of Definition 1 as n goes large. This is the object of the next theorem, which is the main result of this paper.

Theorem 2. Let (S n ,V n ) n≥1 be a sequence of multi-factor stochastic volatility models given by Definition 2. Then, under Assumption 1, the family (S n ,V n ) n≥1 is tight for the uniform topology and any point limit (S,V ) is a rough volatility model given by Definition 1.

Theorem 2 states the convergence in law of (S n ,V n ) n≥1 whenever the fractional stochastic integral equation (2) admits a unique weak solution. In order to prove Theorem 2, whose proof is in Section 5.2 below, a more general stability result for d -dimensional stochastic Volterra equations is established in the next subsection.

Stability of stochastic Volterra equations

As mentioned above, Theorem 2 relies on the study of the stability of more general ddimensional stochastic Volterra equations of the form 

X t = g (t ) + t 0 K (t -s)b(X s )d s + t 0 K (t -s)σ(X s )dW s , t ∈ [0, T ], (20) 
|g (t + h) -g (t )| 2 + h 0 |K (s)| 2 d s + T -h 0 |K (h + s) -K (s)| 2 d s ≤ C h 2γ , (21) 
for any t , h ≥ 0 with t + h ≤ T and for some positive constants C and γ, to guarantee the weak existence of a continuous solution X of (20).

More precisely, we consider a sequence X n = (X n t ) t ≤T of continuous weak solutions to the stochastic Volterra equation (20) with a kernel K n ∈ L 2 ([0, T ], R d ×d ) admitting a resolvent of the first kind, on some filtered probability space (Ω n , F n , F n , P n ),

X n t = g n (t ) + t 0 K n (t -s)b(X n s )d s + t 0 K n (t -s)σ(X n s )dW n s , t ∈ [0, T ],
with g n : [0, T ] → R d and K n satisfying (21) for every n ≥ 1. The stability of (20) means the convergence in law of the family of solutions (X n ) n≥1 to a limiting process X which is a 4. The particular case of the rough Heston model solution to (20), when (K n , g n ) is close to (K , g ) as n goes large.

This convergence is established by verifying first the Kolmogorov tightness criterion for the sequence (X n ) n≥1 . It is obtained when g n and K n satisfy (21) uniformly in n in the following sense.

Assumption 2. There exists positive constants γ and C such that

sup n≥1 |g n (t + h) -g n (t )| 2 + h 0 |K n (s)| 2 d s + T -h 0 |K n (h + s) -K n (s)| 2 d s ≤ C h 2γ , for any t , h ≥ 0 with t + h ≤ T ,
The following result, whose proof is postponed to Section 5.1 below, states the convergence of (X n ) n≥1 to a solution of (20).

Theorem 3. Assume that

T 0 |K (s) -K n (s)| 2 d s -→ 0, g n (t ) -→ g (t ),
for any t ∈ [0, T ] as n goes to infinity. Then, under Assumption 2, the sequence (X n ) n≥1 is tight for the uniform topology and any point limit X is a solution of the stochastic Volterra equation (20).

The particular case of the rough Heston model

The rough Heston model introduced in Chapters II and III is a particular case of the class of rough volatility models of Definition 1, with σ(x) = ν x for some positive parameter ν, that is

d S t = S t V t dW t , S 0 > 0, V t = g (t ) + t 0 K (t -s) -λV s d s + ν V s d B s ,
where

K (t ) = t H -1 2
Γ(H +1/2) denotes the fractional kernel and g is given by (10). Aside from reproducing accurately the historical and implied volatility, the rough Heston model displays a closed formula for the characteristic function of the log-price in terms of a solution to a fractional Riccati equation allowing to fast pricing and calibration, see Chapter V. More precisely, it is shown in Chapters II and III that

L(t , z) = E exp z log(S t /S 0 )
is given by

exp t 0 F (z, ψ(t -s, z))g (s)d s , (22) 
where ψ(•, z) is the unique continuous solution of the fractional Riccati equation Relying on the L 1 -convergence of (K n ) n≥1 to K under Assumption 1, see Proposition 2, we have the uniform convergence of (ψ n (•, z)) n≥1 to ψ(•, z) on [0, T ]. Hence, Theorem 4 suggests a new numerical method for the computation of the fractional Riccati solution (23) where an explicit error is given. Indeed, set

ψ(t , z) = t 0 K (t -s)F (z, ψ(s, z))d s, t ∈ [0, T ], (23) 
ψ n,i (t , z) = t 0 e -γ n i (t -s) F (z, ψ n (s, z))d s, i ∈ {1, . . . , n}.
Then,

ψ n (t , z) = n i =1 c n i ψ n,i (t , z),
and (ψ n,i (•, z)) 1≤i ≤n solves the following n-dimensional system of ordinary Riccati equations

∂ t ψ n,i (t , z) = -γ n i ψ n,i (t , z) + F (z, ψ n (t , z)), ψ n,i (0, z) = 0, i ∈ {1, . . . , n}. (26) 
Hence, (26) can be solved numerically by usual finite difference methods leading to ψ n (•, z) as an approximation of the fractional Riccati solution.

Numerical illustrations

In this section, we consider a rough Heston model with the following parameters λ = 0.3, ρ = -0.7, ν = 0.3, H = 0.1, V 0 = 0.02, θ ≡ 0.02.

We discuss the accuracy of the multi-factor approximation sequence (S n ,V n ) n≥1 as well as the corresponding Riccati Volterra solution (ψ n (•, z)) n≥1 , for different choices of the weights (c n i ) 1≤i ≤n and mean reversions (γ n i ) 1≤i ≤n . This is achieved by first computing, for different number of factors n, the implied volatility σ n (k, T ) of maturity T and log-moneyness k by a Fourier inversion of the characteristic function formula (24), see [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF][START_REF] Lewis | A simple option formula for general jump-diffusion and other exponential lévy processes[END_REF] for instance. In a second step, we compare σ n (k, T ) to the implied volatility σ(k, T ) of the rough Heston model. We also compare the Riccati Volterra solution ψ n (T, z) to the fractional one ψ(T, z).

Note that the Riccati Volterra solution ψ n (•, z) is computed by solving numerically the ndimensional Riccati equation ( 26) with a classical finite difference scheme. The complexity of such scheme is O(n × n ∆t ), where n ∆t is the number of time steps applied for the scheme, while the complexity of the Adam scheme used for the computation of ψ(•, z) is O(n 2 ∆t ). In the following numerical illustrations, we fix n ∆t = 200.

In order to guarantee the convergence, the weights and mean reversions have to satisfy Assumption 1 and in particular they should be of the form (15) in terms of auxiliary mean reversions (η n i ) 0≤i ≤n satisfying (18). For instance, one can fix

η n i = i π n , i ∈ {0, . . . , n}, ( 27 
)
where π n is defined by ( 19), as previously done in Section 3.2. For this particular choice, In order to obtain a more accurate convergence, we can minimize the upper bound f (2) n ((η n i ) 0≤i ≤n ) of K n -K 2,T defined in [START_REF]BFG +[END_REF]. Hence, we choose (η n i ) 0≤i ≤n to be a solution of the constrained Theorem 4 states that the convergence of ψ n (•, z) depends actually on the L 1 ([0, T ], R)-error between K n and K . Similarly to the computations of Section 3.2, we may show that,

T 0 |K n (s) -K (s)|d s ≤ f (1) n ((η n i ) 0≤i ≤n ),
where

f (1) n ((η n i ) 0≤i ≤n ) = T 3 6 n i =1 η n i η n i -1 (γ -γ n i ) 2 µ(d γ) + 1 Γ(H + 3/2)Γ(1/2 -H ) (η n n ) -H -1 2 .
This leads to choosing (η n i ) 0≤i ≤n as a solution of the constrained minimization problem

inf (η n i ) i ∈E n f (1) n ((η n i ) 0≤i ≤n ). ( 29 
)
It is easy to show that such auxiliary mean-reversions (η n i ) 0≤i ≤n satisfy (18) and thus Assumption 1 is met. 

Upper bound for call prices error

Using a Fourier transform method, we can also provide an error between the price of the call C n (k, T ) = E[(S n T -S 0 e k ) + ] in the multi-factor model and the price of the same call C (k, T ) = E[(S T -S 0 e k ) + ] in the rough Heston model. However, for technical reasons, this bound is obtained for a modification of the multi-factor approximation (S n ,V n ) n≥1 of Definition 2 where the function g n given initially by ( 12) is updated into

g n (t ) = t 0 K n (t -s) V 0 s -H -1 2 Γ(1/2 -H ) + θ(s) d s, ( 30 
)
where K n is the smoothed approximation (13) of the fractional kernel. Note that the strong existence and uniqueness of V n is still directly obtained from Proposition 8 and its nonnegativity from Theorem 6 together with Remarks 4 and 5 in the Appendix4 . Although for g n satisfying (30), (V n ) n≥1 can not be tight5 , the corresponding spot price (S n ) n≥1 converges as shown in the following proposition.

Proposition 3. Let (S n ,V n ) n≥1 be a sequence of multi-factor Heston models as in Definition 2 with σ(x) = ν x and g n given by (30). Then, under Assumption 1, (S n , • 0 V n s d s) n≥1 converges in law for the uniform topology to (S, • 0 V s d s), where (S,V ) is a rough Heston model as in Definition 1 with σ(x) = ν x.

Note that the characteristic function (24) still holds. Using Theorem 4 together with a Fourier transform method, we obtain an explicit error for the call prices. We refer to Section 5.5 below for the proof.

Proposition 4. Let C (k, T ) be the price of the call in the rough Heston model with maturity T > 0 and log-moneyness k ∈ R. We denote by C n (k, T ) the price of the call in the multi-factor Heston model of Definition 2 such that g n is given by (30). If |ρ| < 1, then there exists a positive constant c > 0 such that

|C (k, T ) -C n (k, T )| ≤ c T 0 |K (s) -K n (s)|d s, n ≥ 1.

Proofs

In this section, we use the convolution notations together with the resolvent definitions of Appendix VIII.A. We denote by c any positive constant independent of the variables t , h and n and that may vary from line to line. For any h ∈ R, we will use the notation ∆ h to denote the semigroup operator of right shifts defined by ∆ h f : t → f (h + t ) for any function f . We first prove Theorem 3, which is the building block of Theorem 2. Then, we turn to the proofs of the results contained in Section 4, which concern the particular case of the rough Heston model.

Proof of Theorem 3

Tightness of (X n ) n≥1 : We first show that, for any p ≥ 2, sup

n≥1 sup t ≤T E[|X n t | p ] < ∞. (31) 
Thanks to Proposition 7, we already have

sup t ≤T E[|X n t | p ] < ∞. (32) 
Using the linear growth of (b, σ) and (32) together with Jensen and BDG inequalities, we get

E[|X n t | p ] ≤ c sup t ≤T |g n (t )| p + T 0 |K n (s)| 2 d s p 2 -1 t 0 |K n (t -s)| 2 (1 + E[|X n s | p ])d s) .
Relying on Assumption 2 and the convergence of (g n (0), 

E[|X n t | p ] ≤ c 1 + t 0 |K n (t -s)| 2 E[|X n s | p ]d s) .
By the Grönwall type inequality in Lemma 5 in the Appendix, we deduce that

E[|X n t | p ] ≤ c 1 + t 0 E n c (s)d s) ≤ c 1 + T 0 E n c (s)d s)
, We now show that (X n ) n≥1 exhibits the Kolmogorov tightness criterion. In fact, using again the linear growth of (b, σ) and (31) together with Jensen and BDG inequalities, we obtain, for any p ≥ 2 and t , h ≥ 0 such that t + h ≤ T ,

where E n c ∈ L 1 ([0, T ],
E[|X n t +h -X n t | p ] ≤ c |g n (t +h)-g n (t )| p + T -h 0 |K n (h +s)-K n (s)| 2 d s p/2 + h 0 |K n (s)| 2 d s p/2 .
Hence, Assumption 2 leads to

E[|X n t +h -X n t | p ] ≤ ch pγ ,
and therefore to the tightness of (X n ) n≥1 for the uniform topology.

Proofs

Convergence of (

X n ) n≥1 : Let M n t = t 0 σ(X n s )dW n s . As 〈M n 〉 t = t 0 σσ * (X n s )d s, (〈M n 〉) n≥1
is tight and consequently we get the tightness of (M n ) n≥1 from [JS13, Theorem VI-4.13]. Let (X , M ) = (X t , M t ) t ≤T be a possible limit point of (X n , M n ) n≥1 . Thanks to [JS13, Theorem VI-6.26], M is a local martingale and necessarily

〈M 〉 t = t 0 σσ * (X s )d s, t ∈ [0, T ].
Moreover, setting Y n t = t 0 b(X n s )d s +M n t , the assoicativity property (50) in the Appendix yields

(L * X n ) t = (L * g n )(t ) + L * (K n -K ) * d Y n t + Y n t , (33) 
where L is the resolvent of the first kind of K defined in Appendix VIII.A.2. By the Skorokhod representation theorem, we construct a probability space supporting a sequence of copies of (X n , M n ) n≥1 that converges uniformly on [0, T ], along a subsequence, to a copy of (X , M ) almost surely, as n goes to infinity. We maintain the same notations for these copies. Hence, we have

sup t ∈[0,T ] |X n t -X t | → 0, sup t ∈[0,T ] |M n t -M t | → 0,
almost surely, as n goes to infinity. Relying on the continuity and linear growth of b together with the dominated convergence theorem, it is easy to obtain for any t ∈ [0, T ]

(L * X n ) t → (L * X ) t , t 0 b(X n s )d s → t 0 b(X s )d s,
almost surely as n goes to infinity. Moreover for each t ∈ [0, T ]

(L * g n )(t ) → (L * g )(t ),
by the uniform boundedness of g n in n and t and the dominated convergence theorem. Finally thanks to the Jensen inequality,

E[| L * ((K n -K ) * d Y n ) t | 2 ] ≤ c sup t ≤T E[| (K n -K ) * d Y n t | 2 ].
From (31) and the linear growth of (b, σ), we deduce

sup t ≤T E[| (K n -K ) * d Y n t | 2 ] ≤ c T 0 |K n (s) -K (s)| 2 d s,
which goes to zero when n is large. Consequently, we send n to infinity in (33) and obtain the following almost surely equality, for each t ∈ [0, T ],

(L * X ) t = (L * g )(t ) + t 0 b(X s )d s + M t . (34) 
Recall also that 〈M 〉 = • 0 σσ * (X s )d s. Hence, by [RY13, Theorem V-3.9], there exists a mdimensional Brownian motion W such that

M t = t 0 σ(X s )dW s , t ∈ [0, T ].
The processes in (34) being continuous, we deduce that, almost surely,

(L * X ) t = (L * g )(t ) + t 0 b(X s )d s + t 0 σ(X s )dW s , t ∈ [0, T ].
We convolve by K and use the associativity property (50) in the Appendix to get that, almost surely,

t 0 X s d s = t 0 g (s)d s + t 0 s 0 K (s -u)(b(X u )d u + σ(X u )dW u ) d s, t ∈ [0, T ].
Finally it is easy to see that the processes above are differentiable and we conclude that X is solution of the stochastic Volterra equation (20), by taking the derivative.

Proof of Theorem 2

Theorem 2 is easily obtained once we prove the tightness of (V n ) n≥1 for the uniform topology and that any limit point V is solution of the fractional stochastic integral equation (2). This is a direct consequence of Theorem 3, by setting d = m = 1, g and g n respectively as in ( 10) and ( 12), b(x) = -λx, K being the fractional kernel and K n (t ) = n i =1 c n i e -γ n i t its smoothed approximation. Under Assumption 1, (K n ) n≥1 converges in L 2 ([0, T ], R) to the fractional kernel, see Proposition 2. Hence, it is left to show the pointwise convergence of (g n ) n≥1 to g on [0, T ] and that (K n , g n ) n≥1 satisfies Assumption 2.

Lemma 1 (Convergence of g n ). Define g n : [0, T ] → R and g : [0, T ] → R respectively by (10) and (12) such that θ : [0, T ] → R satisfies (5). Under assumption (1), we have for any t ∈ [0, T ] g n (t ) → g (t ), as n tends to infinity.

Proof. Because θ satisfies (5), it is enough to show that for each t ∈ [0, T ]

t 0 (t -s) -1 2 -ε |K n (s) -K (s)|d s (35)
converges to zero as n goes large, for some ε > 0 and K n given by (13). Using the representation of K as the Laplace transform of µ as in (3), we obtain that (35) is bounded by

t 0 (t -s) -1 2 -ε ∞ η n n e -γs µ(d γ)d s + n i =1 t 0 (t -s) -1 2 -ε |c n i e -γ n i s - η n i η n i -1 e -γs µ(d γ)|d s. ( 36 
)
The first term in (36) converges to zero for large n by the dominated convergence theorem because η n n tends to infinity, see Assumption 1. Using the Taylor-Lagrange inequality (16), the second term in (36) is dominated by

1 2 t 0 (t -s) -1 2 -ε s 2 d s n i =1 η n i η n i -1 (γ -γ n i ) 2 µ(d γ),
which goes to zero thanks to Assumption 1.

Proofs

Lemma 2 (K n satisfying Assumption 2). Under Assumption 1, there exists C > 0 such that, for any t , h ≥ 0 with t + h ≤ T ,

sup n≥1 T -h 0 |K n (h + s) -K n (s)| 2 d s + h 0 |K n (s)| 2 d s ≤ C h 2H ,
where K n is defined by (13).

Proof. We start by proving that for any t , h ≥ 0 with t

+ h ≤ T h 0 |K n (s)| 2 d s ≤ ch 2H . (37) 
In fact we know that this inequality is satisfied for

K (t ) = t H -1 2 Γ(H +1/2
) . Thus it is enough to prove

K n -K 2,h ≤ ch H ,
where • 2,h stands for the usual L 2 ([0, h], R) norm. Relying on the Laplace transform representation of K given by (3), we obtain

K n -K 2,h ≤ ∞ η n n e -γ(•) 2,h µ(d γ) + n i =1 J n i ,h ,
where

J n i ,h = c n i e -γ n i (•) - η n i η n i -1 e -γ(•) µ(d γ) 2,h
. We start by bounding the first term,

∞ η n n e -γ(•) 2,h µ(d γ) ≤ ∞ 0 1 -e -2γh 2γ µ(d γ) = h H Γ(H + 1/2)Γ(1/2 -H ) 2 ∞ 0 1 -e -2γ γ γ -H -1 2 d γ.
As in Section 3.2, we use the Taylor-Lagrange inequality (16) to get

n i =1 J n i ,h ≤ 1 2 5 h 5 2 n i =1 η n i η n i -1 (γ -γ n i ) 2 µ(d γ).
Using the boundedness of

n i =1 η n i η n i -1 (γ -γ n i ) 2 µ(d γ) n≥1
from Assumption 1, we deduce (37). We now prove

T -h 0 |K n (h + s) -K n (s)| 2 d s ≤ ch 2H . (38) 
In the same way, it is enough to show

(∆ h K n -∆ h K ) -(K n -K ) 2,T -h ≤ ch H ,
Similarly to the previous computations, we get

(∆ h K n -∆ h K ) -(K n -K ) 2,T -h ≤ ∞ η n n e -γ(•) -e -γ(h+•) 2,T -h µ(d γ) + n i =1 J n i ,h ,
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J n i ,h = c n i (e -γ n i (•) -e -γ n i (h+•) ) - η n i η n i -1 (e -γ(•) -e -γ(h+•) )µ(d γ) 2,T -h . Notice that ∞ η n n e -γ(•) -e -γ(h+•) 2,T -h µ(d γ) = ∞ η n n (1 -e -γh ) 1 -e -2γ(T -h) 2γ µ(d γ) ≤ c ∞ 0 (1 -e -γh )γ -H -1 d γ ≤ ch H .
Moreover, fix h, t > 0 and set χ(γ) = e -γte -γ(t +h) . The second derivative reads χ (γ) = h t 2 γe -γt 1e -γh γh he -γ(t +h) -2t e -γ(t +h) , γ > 0.

(39)

Because x → xe -x and x → 1-e -x

x are bounded functions on (0, ∞), there exists

C > 0 inde- pendent of t , h ∈ [0, T ] such that |χ (γ)| ≤ C h, γ > 0.
The Taylor-Lagrange formula, up to the second order, leads to

|c n i (e -γ n i t -e -γ n i (t +h) ) - η n i η n i -1 (e -γt -e -γ(t +h) )µ(d γ)| ≤ C 2 h η n i η n i -1 (γ -γ n i ) 2 µ(d γ).
Thus

n i =1 J n i ,h ≤ C 2 h n i =1 η n i η n i -1 (γ -γ n i ) 2 µ(d γ).
Finally, (38) follows from the boundedness of n i =1

η n i η n i -1 (γ-γ n i ) 2 µ(d γ) n≥1 due to Assumption 1.
Lemma 3 (g n satisfying Assumption 2). Define g n : [0, T ] → R by (12) such that θ : [0, T ] → R satisfies (5). Under Assumption 1, for each ε > 0, there exists C ε > 0 such that for any t , h ≥ 0 with

t + h ≤ T sup n≥1 |g n (t ) -g n (t + h)| ≤ C ε h H -ε .
Proof. Because θ satisfies (5), it is enough to prove that, for each fixed ε > 0, there exists C > 0 such that

sup n≥1 h 0 (h -s) -1 2 -ε |K n (s)|d s ≤ C h H -ε , (40) 
and

sup n≥1 t 0 (t -s) -1 2 -ε |K n (s) -K n (h + s)|d s ≤ C h H -ε , (41) 
for any t , h ≥ 0 with t + h ≤ T . (40) being satisfied for the fractional kernel, it is enough to establish

h 0 (h -s) -1 2 -ε |K n (s) -K (s)|d s ≤ ch H -ε .

Proofs

In the proof of Lemma 1, it is shown that

h 0 (h -s) -1 2 -ε |K n (s) -K (s)|d s is bounded by (36), that is h 0 (h -s) -1 2 -ε ∞ η n n e -γs µ(d γ)d s + n i =1 h 0 (h -s) -1 2 -ε |c n i e -γ n i s - η n i η n i -1 e -γs µ(d γ)|d s.
The first term is dominated by

h 0 (h -s) -1 2 -ε ∞ 0 e -γs µ(d γ)d s = h H -ε B (1/2 -ε, H + 1/2) B (1/2 -H , H + 1/2) ,
where B is the usual Beta function. Moreover thanks to (16) and Assumption 1, we get

n i =1 h 0 (h -s) -1 2 -ε |c n i e -γ n i s - η n i η n i -1 e -γs µ(d γ)|d s ≤ ch 5 2 -ε , yielding (40) 
. Similarly, we obtain (41) by showing that

t 0 (t -s) -1 2 -ε (K n (s) -∆ h K n (s)) -(K (s) -∆ h K (s)) d s ≤ ch H -ε .
By similar computations as previously and using (39), we get that

t 0 (t -s) -1 2 -ε (K n (s) -∆ h K n (s)) -(K (s) -∆ h K (s)) d s is dominated by c t 0 (t -s) 1 2 -ε ∞ η n n (1 -e -γh )e -γs µ(d γ)d s + h n i =1 η n i η n i -1 (γ -γ n i ) 2 µ(d γ) .
The first term being bounded by

t 0 (t -s) 1 2 -ε ∞ 0 (1 -e -γh )e -γs µ(d γ)d s = t 0 (t -s) 1 2 -ε (K (s) -K (h + s))d s ≤ ch H -ε ,
Assumption 1 leads to (41).

Proof of Theorem 4

Uniform boundedness : We start by showing the uniform boundedness of the unique continuous solutions (ψ n (•, a + i b)) n≥1 of (25).

Proposition 5. For a fixed T > 0, there exists C > 0 such that

sup n≥1 sup t ∈[0,T ] |ψ n (t , a + i b)| ≤ C 1 + b 2 ,
for any a ∈ [0, 1] and b ∈ R.

Proof. Let z = a + i b and start by noticing that ℜ(ψ n (•, z)) is non-positive because it solves the following linear Volterra equation with continuous coefficients

χ = K n * f + ρνℜ(z) -λ + ν 2 2 ℜ(ψ n (•, z)) χ , where f = 1 2 a 2 -a -(1 -ρ 2 )b 2 - 1 2 (ρb + νψ n (•, z)) 2
is continuous non-positive, see Theorem 7. In the same way ℜ(ψ(•, z)) is also non-positive. Moreover, observe that ψ n (•, z) solves the following linear Volterra equation with continuous coefficients

χ = K n * 1 2 (z 2 -z) + (ρνz -λ + ν 2 2 ψ n (•, z))χ , and 
ℜ ρνz -λ + ν 2 2 ψ n (•, z) ≤ ν -λ.
Therefore, Corollary 4 leads to

sup t ∈[0,T ] |ψ n (t , z)| ≤ 1 2 |z 2 -z| T 0 E n ν-λ (s)d s,
where E n ν-λ denotes the canonical resolvent of K n with parameter νλ, see Appendix VIII.A.3. This resolvent converges in

L 1 ([0, T ], R) because K n converges in L 1 ([0, T ], R) to K , see [GLS90, Theorem 2.3.1]. Hence, ( T 0 E n ν-λ (s)d s) n≥1 is bounded, which ends the proof.
End of the proof of Theorem 4 : Set z = a + i b and recall that 

ψ n (•, z) = K n * F (z, ψ n (•, z)); ψ(•, z) = K * F (z, ψ(•, z)). with F (z, x) = 1 2 z 2 -z + (ρνz -λ)x + ν 2 2 x 2 . Hence, for t ∈ [0, T ], ψ(t , z) -ψ n (t , z) = h n (t , z) + K * F (z, ψ(•, z)) -F (z, ψ n (•, z)) (t ), with h n (•, z) = (K n -K ) * F (z, ψ n (•, z)).
= K * ρνz -λ + ν 2 2 (ψ + ψ n )(•, z) (χ + h n (•, z)) ,
and remark that the real part of ρνzλ + ν 2 2 (ψ + ψ n )(•, z) is dominated by νλ because ℜ(ψ(•, z)) and ℜ(ψ n (•, z)) are non-positive. An application of Corollary 4 together with (42) ends the proof.

Proof of Proposition 3

We consider for each n ≥ 1, (S n ,V n ) defined by the multi-factor Heston model in Definition 2 with σ(x) = ν x.

Tightness of (

• 0 V n s d s, • 0 V n s dW s , • 0 V n s d B s ) n≥1 : Because the process • 0 V n s d s is non- decreasing, it is enough to show that sup n≥1 E[ T 0 V n t d t ] < ∞, (43) 
to obtain its tightness for the uniform topology. Recalling that sup

t ∈[0,T ] E[V n t ] < ∞ from Proposition 7 in the Appendix, we get E t 0 V n s d B s = 0,
and then by Fubini theorem

E [V n t ] = g n (t ) + n i =1 c n i E[V n,i t ],
with

E[V n,i t ] = t 0 (-γ n i E[V n,i s ] -λE[V n s ])d s.
Thus t → E[V n t ] solves the following linear Volterra equation

χ(t ) = t 0 K n (t -s) -λχ(s) + θ(s) + V 0 s -H -1 2 Γ(1/2 -H ) d s,
with K n given by (13). Theorem 5 in the Appendix leads to

E[V n t ] = t 0 E n λ (t -s) θ(s) + V 0 s -H -1 2 Γ( 1 2 -H ) d s,
and then by Fubini theorem again

t 0 E[V n s ]d s = t 0 t -s 0 E n λ (u)d u θ(s) + V 0 s -H -1 2 Γ( 1 2 -H ) d s,
where E n λ is the canonical resolvent of K n with parameter λ, defined in Appendix VIII.A.3. Because (K n ) n≥1 converges to the fractional kernel K in L 1 ([0, T ], R), we obtain the convergence of E n λ in L 1 ([0, T ], R) to the canonical resolvent of K with parameter λ, see [GLS90, Theorem 2.3.1]. In particular thanks to Corollary 3 in the Appendix, t 0 E n λ (s)d s is uniformly bounded in t ∈ [0, T ] and n ≥ 1. This leads to (43) and then to the tightness of

( • 0 V n s d s,
• 0

V n s dW s ,

• 0

V n s d B s ) n≥1 by [JS13, Theorem VI-4.13]. Convergence of (S n , • 0 V n s d s) n≥1 : We set M n,1 t = t 0 V n s dW s and M n,2 t = t 0
V n s d B s . Denote by (X , M 1 , M 2 ) a limit in law for the uniform topology of a subsequence of the tight family

( • 0 V n s d s, M n,1 , M n,2 ) n≥1 . An application of stochastic Fubini theorem, see [Ver12], yields t 0 V n s d s = t 0 t -s 0 (K n (u) -K (u))d ud Y n s + t 0 K (t -s)Y n s d s, t ∈ [0, T ], (44) 
where

Y n t = t 0 (s -H -1 2 V 0 Γ(1/2-H ) + θ(s) -λV n s )d s + νM n,2 t . Because (Y n ) n≥1 converges in law for the uniform topology to Y = (Y t ) t ≤T given by Y t = t 0 (s -H -1 2 V 0 Γ( 1 2 -H ) + θ(s))d s -λX t + νM 2 t , we also get the convergence of ( • 0 K (•-s)Y n s d s) n≥1 to • 0 K (•-s)Y s d s. Moreover, for any t ∈ [0, T ], t 0 t -s 0 (K n (u) -K (u))d u s -H -1 2 V 0 Γ( 1 2 -H ) + θ(s) -λV n s d s is bounded by t 0 |K n (s) -K (s)|d s t 0 (s -H -1 2 V 0 Γ( 1 2 -H ) + θ(s))d s + λ t 0 V n s d s ,
which converges in law for the uniform topology to zero thanks to the convergence of

( • 0 V n s d s) n≥1 together with Proposition 2. Finally, E t 0 t -s 0 (K n (u) -K (u))d ud M n,2 s 2 ≤ c T 0 (K n (s) -K (s)) 2 d sE t 0 V n s d s ,
which goes to zero thanks to (43) and Proposition 2. Hence, by passing to the limit in (44), we obtain

X t = t 0 K (t -s)Y s d s,
for any t ∈ [0, T ], almost surely. The processes being continuous, the equality holds on [0, T ]. Then, by the stochastic Fubini theorem, we deduce that X = • 0 V s d s, where V is a continuous process defined by

V t = t 0 K (t -s)d Y s = V 0 + t 0 K (t -s)(θ(s) -λV s )d s + ν t 0 K (t -s)d M 2 s . 234 5. Proofs Furthermore because (M n,1 , M n,2 ) is a martingale with bracket • 0 V n s d s 1 ρ ρ 1 , [ JS13 
, Theorem VI-6.26] implies that (M 1 , M 2 ) is a local martingale with the following bracket

• 0 V s d s 1 ρ ρ 1 .
By [RY13, Theorem V-3.9], there exists a two-dimensional Brownian motion ( W , B ) with

d 〈 W , B 〉 t = ρd t such that M 1 t = t 0 V s d W s , M 2 t = t 0 V s d B s , t ∈ [0, T ].
In particular V is solution of the fractional stochastic integral equation in Definition 1 with σ

(x) = ν x. Because S n = exp(M n,1 -1 2 • 0 V n s d s)
, we deduce the convergence of (S n ,

• 0 V n s d s) n≥1 to the limit point (S, • 0 V s d s) that displays the rough-Heston dynamics of Definition 1. The uniqueness of such dynamics, see [START_REF] Jaber | Affine Volterra processes[END_REF][START_REF] Mytnik | Uniqueness for volterra-type stochastic integral equations[END_REF] and Chapter IV, enables us to conclude that (S n ,V n ) n≥1 admits a unique limit point and hence converges to the rough Heston dynamics.

Proof of Proposition 4

We use the Lewis Fourier inversion method, see [START_REF] Lewis | A simple option formula for general jump-diffusion and other exponential lévy processes[END_REF], to write

C n (k, T ) -C (k, T ) = S 0 e k 2 2π b∈R e -i bk b 2 + 1 4 L(T, 1 2 + i b) -L n (T, 1 2 + i b) d b.
Hence,

|C n (k, T ) -C (k, T )| ≤ S 0 e k 2 2π b∈R 1 b 2 + 1 4 L(T, 1 2 + i b) -L n (T, 1 2 + i b) d b. ( 45 
)
Because L(T, z) and L n (T, z) satisfy respectively the formulas ( 22) and (24) with g and g n given by

g (t ) = t 0 K (t -s) V 0 s -H -1 2 Γ(1/2 -H ) + θ(s) d s, g n (t ) = t 0 K n (t -s) V 0 s -H -1 2 Γ(1/2 -H ) + θ(s) d s,
and ψ(•, z) and ψ n (•, z) solve respectively (23) and (25), we use the Fubini theorem to deduce that

L(T, z) = exp T 0 ψ(T -s, z) V 0 s -H -1 2 Γ(1/2 -H ) + θ(s) d s , (46) 
and

L n (T, z) = exp T 0 ψ n (T -s, z) V 0 s -H -1 2 Γ(1/2 -H ) + θ(s) d s , (47) 
with z = 1/2+i b. Therefore, relying on the local Lipschitz property of the exponential function, it suffices to find an upper bound for ℜ(ψ n (•, z)) in order to get an error for the price of the call from (45). This is the object of the next paragraph.

Upper bound of ℜ(ψ n (•, z)) : We denote by φ n η (•, b) the unique continuous function satisfying the following Riccati Volterra equation

φ n η (•, b) = K n * -b + ηφ n η (•, b) + ν 2 2 φ n η (•, b) 2 , with b ≥ 0 and η, ν ∈ R. Proposition 6. Fix b 0 , t 0 ≥ 0 and η ∈ R. The functions b → φ n η (t 0 , b) and t → φ n η (t , b 0 ) are non-increasing on R + . Furthermore φ n η (t , b) ≤ 1 -1 + 2bν 2 ( t 0 E n η (s)d s) 2 ν 2 t 0 E n η (s)d s , t > 0,
where E n η is the canonical resolvent of K n with parameter η defined in Appendix VIII.A.3.

Proof. The claimed monotonicity of b → φ n η (t 0 , b) is directly obtained from Theorem 7. Consider now h, b 0 > 0. It is easy to see that ∆ h φ n η (•, b 0 ) solves the following Volterra equation

∆ h φ n η (b 0 , t ) = ∆ t K n * F (φ n η (•, b 0 )) (h) + K n * F (∆ h φ n η (•, b 0 )) (t ) with F (b, x) = -b + ηx + ν 2 2 x 2 . Notice that t → -∆ t K n * F (φ n η (•, b 0 )) (h) ∈ G K , defined in Appendix VIII.C, thanks to Theorem 7. φ n η (•, b) -∆ h φ n η (•, b
) being solution of the following linear Volterra integral equation with continuous coefficients,

x(t ) = -∆ t K n * F (b, φ n η (•, b 0 )) (h) + K n * η + ν 2 2 (φ n η (•, b) + ∆ h φ n η (•, b)) x (t ),
we deduce its non-negativity using again Theorem 7. Thus,

t ∈ R + → φ n η (t , b 0 ) is non- increasing and consequently sup s∈[0,t ] |φ η (s, b)| = |φ n η (t , b 0 )| as φ n η (0, b) = 0. Hence, Theorem 5 leads to φ n η (t , b) = t 0 E n η (t -s)(-b + ν 2 2 φ n η (s, b) 2 ) ≤ t 0 E n η (s)d s -b + ν 2 2 φ n η (t , b) 2 .
We end the proof by solving this inequality of second order in φ n η (t , b) and using that

φ n η is non-positive. Notice that t 0 E n η (s)d s > 0 for each t > 0, see Corollary 3. Corollary 1. Fix a ∈ [0, 1]. We have, for any t ∈ (0, T ] and b ∈ R, sup n≥1 ℜ(ψ n (t , a + i b)) ≤ 1 -1 + (a -a 2 + (1 -ρ 2 )b 2 )ν 2 m(t ) 2 ν 2 m(t ) where m(t ) = inf n≥1 t 0 E n ρνa-λ (s)d s > 0 for all t ∈ (0, T ] and E n η is the canonical resolvent of K n with parameter η defined in Appendix VIII.A.3. Proof. Let r = a -a 2 + (1 -ρ 2 )b 2 and η = ρνa -λ. φ n η (•, r ) -ℜ(ψ n (•, a + i b)
) being solution of the following linear Volterra equation with continuous coefficients

χ = K * 1 2 ρb + νℑ(ψ n (•, a + i b)) 2 + ρνa -λ + ν 2 2 ℜ(ψ n (•, a + i b)) + φ η (•, r ) χ ,
we use Theorem 7 together with Proposition 6 to get, for all t ∈ [0, T ] and b ∈ R,

ℜ(ψ n (t , a + i b)) ≤ 1 -1 + 2r ν 2 ( t 0 E n η (s)d s) 2 ν 2 t 0 E n η (s)d s . ( 48 
) Moreover for any t ∈ [0, T ], t 0 E n η (s)d s converges as n goes to infinity to t 0 E η (s)d s because K n converges to K in L 1 ([0, T ], R), see [GLS90, Theorem 2.3.1], where E η denotes the canonical resolvent of K with parameter η. Therefore, m(t ) = inf n≥1 t 0 E n η (s)d s > 0, for all t ∈ (0, T ], because t 0 E η (s)d s > 0 and t 0 E n η (s)d s > 0 for all n ≥ 1, see Corollary 3.
Finally we end the proof by using (48) together with the fact that x → 1-1+2r ν 2 x 2 ν 2 x is non-increasing on (0, ∞).

End of the proof of Proposition 4 : Assume that |ρ| < 1 and fix a = 1/2. By dominated convergence theorem,

T 0 1 -1 + (a -a 2 + (1 -ρ 2 )b 2 )ν 2 m(T -s) 2 ν 2 m(T -s) (θ(s) + V 0 s -H -1 2 Γ( 1 2 -H ) )d s is equivalent to -|b| 1 -ρ 2 ν T 0 (θ(s) + V 0 s -H -1 2 Γ( 1 2 -H ) )d s,
as b tends to infinity. Hence, thanks to Corollary 1, there exists C > 0 such that for any b ∈ R

sup n≥1 ℜ(ψ n (t , a + i b)) ≤ C (1 -|b|). (49) 
Recalling that 

∀z 1 , z 2 ∈ C such that ℜ(z 1 ), ℜ(z 2 ) ≤ c, |e z 1 -e z 2 | ≤ e c |z 1 -z 2 |, we obtain |L n (a +i b, T )-L(a +i b, T )| ≤ e C (1-|b|) sup t ∈[0,T ] |ψ n (t , a +i b)-ψ(t , a +i b)| T 0 (θ(s)+V 0 s -H -1 2 Γ( 1 2 -H ) )d s, from (46) 

VIII.A Stochastic convolutions and resolvents

We recall in this Appendix the framework and notations introduced in [AJLP17].

VIII.A.1 Convolution notation

For a measurable function K on R + and a measure L on R + of locally bounded variation, the convolutions K * L and L * K are defined by

(K * L)(t ) = [0,t ] K (t -s)L(d s), (L * K )(t ) = [0,t ] L(d s)K (t -s)
whenever these expressions are well-defined. If F is a function on R + , we write K * F = K * (F d t ), that is

(K * F )(t ) = t 0 K (t -s)F (s)d s.
We can show that L * F is almost everywhere well-defined and belongs to L p l oc (R + , R), whenever ), see [GLS90, Theorem 3.6.1 and Corollary 3.6.2] for further details. 

F ∈ L p loc (R + , R). Moreover, (F * G) * L = F * (G * L) a.e., whenever F,G ∈ L 1 l oc (R + , R
(K * d M ) t = t 0 K (t -s)d M s is well-defined as an Itô integral for every t ≥ 0 such that t 0 |K (t -s)||b s |d s + t 0 |K (t -s)| 2 |a s | 2 d s < ∞.
Using stochastic Fubini Theorem, see [AJLP17, Lemma 2.1], we can show that for each t ≥ 0, almost surely

(L * (K * d M )) t = ((L * K ) * d M ) t , (50) 
whenever K ∈ L 2 l oc (R + , R) and a, b are locally bounded a.s.

Finally from Lemma 2.4 in [START_REF] Jaber | Affine Volterra processes[END_REF] together with the Kolmogorov continuity theorem, we can show that there exists a unique version of (K * d M t ) t ≥0 that is continuous whenever b and σ are locally bounded. In this paper, we will always work with this continuous version.

Note that the convolution notation could be easily extended for matrix-valued K and L. In this case, the associativity properties exposed above hold.

VIII.A.2 Resolvent of the first kind

We define the resolvent of the first kind of a d × d -matrix valued kernel K , as the R d ×d -valued measure L on R + of locally bounded variation such that

K * L = L * K ≡ id,
where id stands for the identity matrix, see [GLS90, Definition 5.5.1]. The resolvent of the first kind does not always exist. In the case of the fractional kernel K (t ) = t H -1 2 Γ(H +1/2) the resolvent of the first kind exists and is given by

L(d t ) = t -H -1 2 Γ(1/2 -H ) d t ,
for any H ∈ (0, 1/2). If K is non-negative, non-increasing and not identically equal to zero on R + , the existence of a resolvent of the first kind is guaranteed by [GLS90, Theorem 5.5.5].

The following result shown in [AJLP17, Lemma 2.6], is stated here for d = 1 but is true for any dimension d ≥ 1.

Lemma 4. Assume that K ∈ L 1 loc (R + , R) admits a resolvent of first kind L. For any F ∈ L 1 l oc (R + , R)
such that F * L is right-continuous and of locally bounded variation one has

F = (F * L)(0)K + d (F * L) * K .
Here, d f denotes the measure such that f (t ) = f (0) + [0,t ] d f (s), for all t ≥ 0, for any rightcontinuous function of locally bounde variation f on R + .

Remark 2. The previous lemma will be used with

F = ∆ h K , for fixed h > 0. If K is continuous on (0, ∞), then ∆ h K * L is right-continuous. Moreover, if K is non-negative and L non-increasing in the sense that s → L([s, s + t ]) is non-increasing for all t ≥ 0, then ∆ h K * L is non-decreasing since (∆ h K * L)(t ) = 1 - [0,h) K (h -s)L(t + d s), t > 0.
In particular, ∆ h K * L is of locally bounded variation.

VIII.A.3 Resolvent of the second kind

We consider a kernel K ∈ L 1 loc (R + , R) and define the resolvent of the second kind of K as the unique function

R K ∈ L 1 loc (R + , R) such that K -R K = K * R K .
For λ ∈ R, we define the canonical resolvent of K with parameter λ as the unique solution

E λ ∈ L 1 loc (R + , R) of E λ -K = λK * E λ .
This means that E λ = -R -λK /λ, when λ = 0 and E 0 = K . The existence and uniqueness of R K and E λ is ensured by [GLS90, Theorem 2.3.1] together with the continuity of

K → E λ (K ) in the topology of L 1 loc (R + , R). Moreover, if K ∈ L 2 loc (R + , R) so does E λ due to [GLS90, Theorem 2.3.5].
We recall [GLS90, Theorem 2.3.5] regarding the existence and uniqueness of a solution of linear Volterra integral equations in L 1 loc (R + , R).

Theorem 5. Let f ∈ L 1 loc (R + , R). The integral equation x = f + λK * x admits a unique solution x ∈ L 1 loc (R + , R) given by x = f + λE λ * f .
When K and λ are positive, E λ is also positive, see [GLS90, Proposition 9.8.1]. In that case, we have a Grönwall type inequality given by [GLS90, Lemma 9.8.2].

Lemma 5. Let x, f ∈ L 1 loc (R + , R) such that x(t ) ≤ (λK * x)(t ) + f (t ), t ≥ 0, a.e.
Then,

x(t ) ≤ f (t ) + (λE λ * f )(t ), t ≥ 0, a.e.
Note that the definition of the resolvent of the second kind and canonical resolvent can be extended for matrix-valued kernels. In that case, Theorem 5 still holds.

Remark 3. The canonical resolvent of the fractional kernel

K (t ) = t H -1 2 Γ(H +1/2) with parameter λ is given by t α-1 E α (-λt α ), where E α (x) = k≥0 x k Γ(α(k+1)) is the Mittag-Leffler function and α = H + 1/2 for H ∈ (0, 1/2).

VIII.B Some existence results for stochastic Volterra equations

We collect in this Appendix existence results for general stochastic Volterra equations as introduced in [START_REF] Jaber | Affine Volterra processes[END_REF]. We refer to [START_REF] Jaber | Affine Volterra processes[END_REF] and Chapter IV for the proofs. We fix T > 0 and consider the d -dimensional stochastic Volterra equation

X t = g (t ) + t 0 K (t -s)b(X s )d s + t 0 K (t -s)σ(X s )d B s , t ∈ [0, T ], (51) 
where b : R d → R d , σ : R d → R d ×m are continuous functions with linear growth, K ∈ L 2 ([0, T ], R d ×d ) is a kernel admitting a resolvent of the first kind L, g : [0, T ] → R d is a continuous function and B is a m-dimensional Brownian motion on a filtered probability space (Ω, F , F, P). In order to prove the weak existence of continuous solutions to (51), the following regularity assumption is needed.

Assumption 3. There exists γ > 0 and C > 0 such that for any t , h ≥ 0 with t + h ≤ T ,

|g (t + h) -g (t )| 2 + h 0 |K (s)| 2 d s + T -h 0 |K (h + s) -K (s)| 2 d s ≤ C h 2γ .
The following existence result can be found in Theorem 6 of Chapter IV.

Proposition 7. Under Assumption 3, the stochastic Volterra equation (51) admits a weak continuous solution X = (X t ) t ≤T . Moreover X satisfies

sup t ∈[0,T ] E[|X t | p ] < ∞, p > 0, (52) 
and admits Hölder continuous paths on [0, T ] of any order strictly less than γ.

In particular, for the fractional kernel, Proposition 7 yields the following result.

Corollary 2. Fix H ∈ (0, 1/2) and θ : [0, T ] → R satisfying ∀ε > 0, ∃C ε > 0; ∀u ∈ (0, T ] |θ(u)| ≤ C ε u -1 2 -ε .
The fractional stochastic integral equation

X t = X 0 + 1 Γ(H + 1/2) t 0 (t -u) H -1 2 (θ(u) + b(X u ))d u + 1 Γ(H + 1/2) t 0 (t -u) H -1 2 σ(X u )d B u ,
admits a weak continuous solution X = (X t ) t ≤T for any X 0 ∈ R. Moreover X satisfies (52) and admits Hölder continuous paths on [0, T ] of any order strictly less than H .

Proof. It is enough to notice that the fractional stochastic integral equation is a particular case of (51

) with d = m = 1, K (t ) = t H -1 2
Γ(H +1/2) the fractional kernel, which admits a resolvent of the first kind, see Section VIII.A.2, and

g (t ) = X 0 + 1 Γ(1/2 + H ) t 0 (t -u) H -1/2 θ(u)d u.
As t → t 1/2+ε θ(t ) is bounded on [0, T ], we may show that g is H -ε Hölder continuous for any ε > 0. Hence, Assumption 3 is satisfied and the claimed result is directly obtained from Proposition 7.

We now establish the strong existence and uniqueness of (51) in the particular case of smooth kernels. This is done by extending the Yamada-Watanabe pathwise uniqueness proof in [START_REF] Yamada | On the uniqueness of solutions of stochastic differential equations[END_REF].

Proposition 8. Fix m = d = 1 and assume that g is Hölder continuous, K ∈ C 1 ([0, T ], R) admitting a resolvent of the first kind and that there exists C > 0 and η ∈ [1/2, 1] such that for any x, y ∈ R,

|b(x) -b(y)| ≤ C |x -y|, |σ(x) -σ(y)| ≤ C |x -y| η .
Then, the stochastic Volterra equation (51) admits a unique strong continuous solution.

Proof. We start by noticing that, K being smooth, it satisfies Assumption 3. Hence, the existence of a weak continuous solution to (51) follows from Proposition 7. It is therefore enough to show the pathwise uniqueness. We may proceed similarly to [START_REF] Yamada | On the uniqueness of solutions of stochastic differential equations[END_REF] by considering

a 0 = 1, a k-1 > a k for k ≥ 1 with a k-1 a k x -2η d x = k and ϕ k ∈ C 2 (R, R) such that ϕ k (x) = ϕ k (-x), ϕ k (0) = 0 and for x > 0 • ϕ k (x) = 0 for x ≤ a k , ϕ k (x) = 1 for x ≥ a k-1 and ϕ k (x) ∈ [0, 1] for a k < x < a k-1 . • ϕ k (x) ∈ [0, 2 k x -2η ] for a k < x < a k-1 .
Let X 1 and X 2 be two solutions of (51) driven by the same Brownian motion B . Notice that, thanks to the smoothness of K , X ig are semimartingales and for i = 1, 2

d (X i t -g (t )) = K (0)d Y i t + (K * d Y i ) t d t , with Y i t = t 0 b(X i s )d s + t 0 σ(X i s )d B s . Using Itô's formula, we write ϕ k (X 2 t -X 1 t ) = I 1 t + I 2 t + I 3 t ,
where

I 1 t = K (0) t 0 ϕ k (X 2 s -X 1 s )d (Y 1 s -Y 2 s ), I 2 t = t 0 ϕ k (X 2 s -X 1 s )(K * d (Y 1 -Y 2 )) s d s, I 3 t = K (0) 2 2 t 0 ϕ k (X 2 s -X 1 s )(σ(X 2 s ) -σ(X 1 s )) 2 d s.
Recalling that sup t ≤T E[(X i t ) 2 ] < ∞ for i = 1, 2 from Proposition 7, we obtain that

E[I 1 t ] ≤ E[K (0) t 0 |b(X 2 s ) -b(X 1 s )|d s] ≤ c t 0 E[|X 2 s -X 1 s |]d s,
and

E[I 2 t ] ≤ c t 0 E[(|K | * |b(X 2 ) -b(X 1 )|) s ]d s ≤ c t 0 E[|X 2 s -X 1 s |]d s,
because b is Lipschitz continuous and K is bounded on [0, T ]. Finally by definition of ϕ k and the η-Hölder continuity of σ, we have

E[I 3 t ] ≤ c k , which goes to zero when k is large. Moreover E[ϕ k (X 2 t -X 1 t )] converges to E[|X 2 t -X 1
t |] when k tends to infinity, thanks to the monotone convergence theorem. Thus, we pass to the limit and obtain

E[|X 2 t -X 1 t |] ≤ c t 0 E[|X 2 s -X 1 s |]d s. Grönwall's lemma leads to E[|X 2 t -X 1 t |] = 0 yielding the claimed pathwise uniqueness.
Under additional conditions on g and K one can obtain the existence of non-negative solutions to (51) in the case of d = m = 1. As in [AJLP17, Theorem 3.5], the following assumption is needed.

with g t 0 ,ε (t ) = ∆ t 0 g (t ) + (∆ t K * (zχ ε + w + ε))(t 0 ). Then, by using Lemma 4 with F = ∆ t K , we obtain

g t 0 ,ε (t ) = ∆ t 0 g (t ) -(d (∆ t K * L) * g )(t 0 ) -(∆ t K * L)(0)g (t 0 ) + (d (∆ t K * L) * χ ε )(t 0 ) + (∆ t K * L)(0)χ ε (t 0 ),
which is continuous and non-negative, because g ∈ G K and ∆ t K * L is non-decreasing for any t ≥ 0, see Remark 2. Hence, in the same way, ∆ t 0 χ ε is non-negative on a neighborhood of zero. Thus t 0 = ∞, which means that χ ε is non-negative.

Uniform convergence of χ ε : We use the following inequality

|χ -χ ε |(t ) ≤ K * ( z ∞,T |χ -χ ε | + ε) (t ), t ∈ [0, T ],
together with the Gronwall Lemma 5 to show the uniform convergence on [0, T ] of χ ε to χ as ε goes to zero. In particular, χ is also non-negative. 

Corollary 3. Let K ∈ L 2 loc (R + ,
∆ t 0 χ = g t 0 + K * (λ∆ t 0 χ + 1), with g t 0 (t ) = ∆ t K * (λ∆ t 0 χ + 1) (t 0 ) ∈ G K , see Theorem 7. It follows that ∆ t 0 χ -χ solves x = g t 0 + K * (λx).
Hence, another application of Theorem 7 yields that χ ≤ ∆ t 0 χ, proving that t → t 0 E λ (s)d s is non-decreasing.

We now provide a version of Theorem 7 for complex valued solutions. Proof. The existence and uniqueness of a continuous solution is obtained in the same way as in the proof of Theorem 7. Consider now, for each ε > 0, ψ ε the unique continuous solution of

ψ ε = |h 0 | + K * (ℜ(z)ψ + |w| + ε).
As done in the proof of Theorem 7, ψ ε converges uniformly on every compact to ψ as ε goes to zero. Thus, it is enough to show that, for every ε > 0 and t ≥ 0,

|h(t )| ≤ ψ ε (t ).
We start by showing the inequality in a neighborhood of zero. Because z, h, w and ψ ε are continuous, we get, taking h 0 = 0,

|h(t )| = |w(0)| t 0 K (s)d s + o( t 0 K (s)d s), ψ ε (t ) = (|w(0)| + ε) t 0 K (s)d s + o( t 0 K (s)d s),
for small t . Hence, |h| ≤ ψ ε on a neighborhood of zero. This result still holds when h 0 is not zero. Indeed in that case, it is easy to show that for t going to zero,

|h(t )| 2 = |h 0 | 2 + 2ℜ h 0 (z(0)h 0 + w(0)) t 0 K (s)d s + o( t 0 K (s)d s), and |ψ ε (t )| 2 = |h 0 | 2 + 2 ℜ(z(0))|h 0 | 2 + |w(0)||h 0 | + ε|h 0 |) t 0 K (s)d s + o( t 0 K (s)d s).
As |h 0 | is now positive, we conclude that |h| ≤ ψ ε on a neighborhood of zero by the Cauchy-Schwarz inequality.

Hence, t 0 = inf{t > 0; ψ ε (t ) < |h(t )|} is positive. If we assume that t 0 < ∞, we would get that |h(t 0 )| = ψ ε (t 0 ) by continuity of h and ψ ε . Moreover,

∆ t 0 h = φ h + K * (∆ t 0 z∆ t 0 h + ∆ t 0 w), and ∆ t 0 ψ ε = φ ψ ε + K * (∆ t 0 ℜ(z)∆ t 0 w + ∆ t 0 |w| + ε).

An application of Lemma 4 with

F = ∆ t K for t > 0, yields φ h (t ) = h 0 (1 -(∆ t K * L)(t 0 )) + (d (∆ t K * L) * h)(t 0 ) + (∆ t K * L)(0)h(t 0 ), and 
φ ψ ε (t ) = |h 0 |(1 -(∆ t K * L)(t 0 )) + (d (∆ t K * L) * ψ ε )(t 0 ) + (∆ t K * L)(0)|h(t 0 )|.
Relying on the fact that d (∆ t K * L) is a non-negative measure and ∆ t K * L ≤ 1, by Remark 2, together with the fact that |h(s)| ≤ ψ ε (s) for s ≤ t 0 , we get that |φ h (t )| ≤ φ ψ ε (t ). We now notice that in the case h(t 0 ) = 0, we have

∆ t 0 h(t ) = φ h (t ) + w(t 0 ) t 0 K (s)d s + o( t 0 K (s)d s),
and

∆ t 0 ψ ε (t ) = φ ψ ε (t ) + (|w(t 0 )| + ε) t 0 K (s)d s + o( t 0 K (s)d s),
and in the case |h(t 0 )| > 0, we have

|∆ t 0 h(t )| 2 = 2 ℜ(z(t 0 ))|h(t 0 )| 2 + ℜ(w(t 0 ))ℜ(h(t 0 )) + ℑ(w(t 0 ))ℑ(h(t 0 )) t 0 K (s)d s + |φ h (t )| 2 + o( t 0 K (s)d s), ∆ t 0 ψ ε (t ) 2 = 2 ℜ(z(t 0 ))|h(t 0 )| 2 + |w(t 0 )||h(t 0 )| + ε|h(t 0 )|) t 0 K (s)d s + φ ψ ε (t ) 2 + o( t 0 K (s)d s),
for small t , thanks to the continuity of z, w, h, φ h , φ ψ ε and ψ ε . In both cases, we obtain that |h| ≤ ψ ε on a neighborhood of t 0 . Therefore t 0 = ∞ and for any t ≥ 0

|h(t )| ≤ ψ ε (t ).
The following result is a direct consequence of Theorems 7 and 8. Corollary 4. Let h 0 ∈ C and z, w : R + → C be continuous functions such that ℜ(z) ≤ λ for some λ ∈ R. We define h : R + → C as the unique continuous solution of

h = h 0 + K * (zh + w).
Then, for any t ∈ [0, T ],

|h(t )| ≤ |h 0 | + ( w ∞,T + λ|h 0 |) T 0 E λ (s)d s,
where E λ is the canonical resolvent of K with parameter λ.

Proof. From Theorem 8, we obtain that |h| ≤ ψ 1 , where ψ 1 is the unique continuous solution of

ψ 1 = |h 0 | + K * (ℜ(z)ψ 1 + |w|).
Moreover define ψ 2 as the unique continuous solution of

ψ 2 = |h 0 | + K * (λψ 2 + w ∞,T ). Then, ψ 2 -ψ 1 solves χ = K * (λχ + f ), with f = (λ -ℜ(z))ψ 1 + w ∞,T -w, which is a non-negative function on [0, T ]. Theorem 7 now yields |h| ≤ ψ 1 ≤ ψ 2 .
Finally, the claimed bound follows by noticing that, for t ∈ [0, T ],

ψ 2 (t ) = |h 0 | + ( w ∞,T + λ|h 0 |) t 0 E λ (s)d s,
by Theorem 5 and that • 0 E λ (s)d s is non-decreasing by Corollary 3.

Introduction

With the fragmentation of financial markets, exchanges are nowadays in competition. Indeed the traditional international exchanges are now challenged by alternative trading venues, see [START_REF] Lehalle | Market microstructure in practice[END_REF]. Consequently, they have to find innovative ways to attract liquidity on their platforms. One solution is to use a make-taker fees system, that is a rule enabling them to charge in an asymmetric way liquidity provision and liquidity consumption. The most classical setting, used by many exchanges (such as Nasdaq, Euronext, BATS Chi-X...), is of course to subsidize the former while taxing the latter. In practice, this means associating a fee rebate to executed limit orders and applying a transaction cost for market orders.

In the recent years, the topic of make-take fees has been quite controversial. Indeed make-take fees policies are seen as a major facilitating factor to the emergence of a new type of market makers aiming at collecting fee rebates: the high frequency traders. As stated by the Securities and Exchanges commission in [S.E10]: "Highly automated exchange systems and liquidity rebates have helped establish a business model for a new type of professional liquidity provider that is distinct from the more traditional exchange specialist and over-the-counter market maker." The concern with high frequency traders becoming the new liquidity providers is two-fold. First, their presence implies that slower traders no longer have access to the limit order book, or only in unfavorable situations when high frequency traders do not wish to support liquidity. This leads to the second classical criticism against high frequency market makers: they tend to leave the market in time of stress, see [START_REF] Bellia | High-frequency market making: Liquidity provision, adverse selection, and competition[END_REF][START_REF] Megarbane | The behaviour of high-frequency traders under different market stress scenarios[END_REF][START_REF] Menkveld | High frequency trading and the new market makers[END_REF][START_REF] Riordan | Maker/taker pricing and high frequency trading[END_REF] for detailed investigations about high frequency market making activity.

From an academic viewpoint, studies of make-take fees structures and their impact on the welfare of the markets have been mostly empirical, or carried out in rather stylized models. An interesting theory, suggested in [START_REF] Angel | Equity trading in the 21st century[END_REF] and developed in [START_REF] Colliard | Trading fees and efficiency in limit order markets[END_REF] is that make-take fees have actually no impact on trading costs in the sense that the cum fee bid-ask spread should not depend on the make-take fees policy. This result is consistent with the empirical findings in [START_REF] Lutat | The effect of maker-taker pricing on market liquidity in electronic trading systems-empirical evidence from european equity trading[END_REF][START_REF] Malinova | Subsidizing liquidity: The impact of make/take fees on market quality[END_REF]. Nevertheless, it is clearly shown in these works that many important trading parameters such as depths, volumes or price impact do depend on the make-take fees structure, see also [START_REF] Harris | Maker-taker pricing effects on market quotations[END_REF]. Furthermore, the idea of the neutrality of the make-take fees schedule is also tempered in [START_REF] Foucault | Liquidity cycles and make/take fees in electronic markets[END_REF] where the authors show theoretically that make-take fees may increase welfare of markets provided the tick size is not equal to zero, see also [START_REF] Brolley | Informed trading and maker-taker fees in a lowlatency limit order market[END_REF].

In this work, our aim is to provide a quantitative and operational answer to the question of relevant make-take fees. To do so, we take the position of an exchange (or of the regulator) wishing to attract liquidity. The exchange is looking for the best make-take fees policy to offer to market makers in order to maximize its utility. In other words, it aims at designing an optimal contract with the market marker to create an incentive to increase liquidity. For simplicity, we consider a single market maker in a non-fragmented market.

Incentive theory has emerged in the 1970s in economics to model how a financial agent can delegate the management of an output process to another agent. Let us recall the formalism of principal-agent problems from the seminal works of Mirrlees [START_REF] Mirrlees | Notes on welfare economics, information and uncertainty[END_REF] and Holmström [START_REF] Hölmstrom | Moral hazard and observability[END_REF].

A principal aims at contracting with an agent who provides efforts to manage an output process impacting the wealth of the principal. The principal is not able to control directly the output process since he cannot decide the efforts made by the agent. In our case, the principal is the exchange, the agent is the market maker, the efforts correspond to the quality of the liquidity provided by the market maker (essentially the size of the bid-ask spread proposed by the market maker) and the output process is the transactions flow on the platform. Several economics papers have investigated this kind of problems by identifying it with a Stackelberg equilibrium between the two parties. More precisely, since the principal cannot control the work of the agent, he anticipates his best-reaction effort for a given compensation. Knowing that, the principal aims at finding the best contract.

In our work, we deal with a continuous-time principal-agent problem. Indeed, the exchange monitors the spread set by the market maker around a Brownian-type efficient price and the transactions flow in continuous-time. Thus, we follow the stream of literature initiated in 2. The model [START_REF] Hölmstrom | Aggregation and linearity in the provision of intertemporal incentives[END_REF]. Then in [START_REF] Sannikov | A continuous-time version of the principal-agent problem[END_REF], the author recasts such issue into a stochastic control problem which has been further developed using backward stochastic differential equation theory in [START_REF] Cvitanić | Dynamic programming approach to principal-agent problems[END_REF].

See also [START_REF] Cvitanic | Contract theory in continuous-time methods[END_REF] for related literature.

In this paper, although we work in a quite general and realistic setting, we are able to solve our principal-agent problem. More precisely, we provide a quasi-explicit expression for the optimal contract the exchange should propose to the market maker, and also for the quotes the market maker should set. The optimal contract depends essentially on the market maker inventory trajectory and on the volatility of the market. These simple formulas enable us to analyze in details the effects for the welfare of the market of optimal contracting with an exchange, compared to a situation without contract as in [AS08, GLFT13]. We notably show that using such contracts leads to reduced spreads and lower trading costs for investors.

The paper is organized as follows. Our modeling approach is presented in Section 2. In particular, we define the market maker's as well as the exchange's optimization framework. In Section 3, we compute the best response of the market maker for a given contract. Optimal contracts are designed in Section 4 where we solve the exchange's problem. Then, in Section 5, we assess the benefits for market quality of the presence of an exchange contracting optimally with a market maker. Finally, useful technical results are gathered in an appendix.

The model

The framework considered throughout this paper is inspired by the seminal work [AS08] where the authors consider the problem of optimal market making, but without the intervention of an exchange. Let T > 0 be a final horizon time and (Ω, F ) be a measurable space such that Ω = Ω c × (Ω d ) 2 with Ω c the set of continuous functions from [0, T ] into R, Ω d the set of piecewise constant càdlàg functions from [0, T ] into N and F the Borel algebra on Ω. We consider the following canonical process

(χ t ) t ∈[0,T ] = (S t , N a t , N b t ) t ∈[0,T ] ∀ω = (s, n a , n b ) ∈ Ω S t (ω) = s(t ), N a t (ω) = n a (t ), N b t (ω) = n b (t ).
We endow the space (Ω,

F ) with F = (F t ) t ∈[0,T ] = (F c t ⊗ (F d t ) ⊗2 ) t ∈[0,T ] where (F c t ) t ∈[0,T ] and
(F d t ) t ∈[0,T ] are the right-continuous completed filtrations associated with the components of (χ t ) t ∈[0,T ] .

We consider a market where there is only one market maker. This market maker has a view on the efficient price of the asset given by S t . We assume that

S t = S 0 + σW t , t ∈ [0, T ], (1) 
with S 0 > 0, W a Brownian motion and σ > 0 the volatility of the price1 . For t ∈ [0, T ], the market maker fixes the bid and ask prices P b t and P a t as follows

P b t = S t -δ b t and P a t = S t + δ a t .
IX. Optimal make-take fees for market making regulation

We assume that the arrival of ask (resp. bid) market orders is modeled by a point process

(N a t ) t ∈[0,T ] (resp. (N b t ) t ∈[0,T ] ) with intensity (λ a t ) t ∈[0,T ] (resp. (λ b t ) t ∈[0,T ]
). We also suppose that the volume of market orders is constant and equal to unity. Hence, the inventory process of the market maker Q is given by

Q t = N b t -N a t , t ∈ [0, T ].
As in [START_REF] Guéant | Dealing with the inventory risk: a solution to the market making problem[END_REF], we impose a critical absolute inventory q ∈ N above which the market maker stops quoting on the ask or bid side, i.e.

λ a t = λ a t 1I {Q t >-q} , and 
λ b t = λ b t 1I {Q t < q} .
We expect the intensity of buy (resp. sell) market order arrivals to depend on the extra cost of each trade payed by the market taker compared to the efficient price. This extra cost is the sum of the spread δ a t (resp. δ b t ) imposed by the market maker and the transaction cost c > 0 collected by the exchange, as explained in Section 2.2. Moreover, we recall that from classical financial economics results, see [DR15, MRR97, WBK + 08], the average number of trades per unit of time is a decreasing function of the ratio between the spread and the volatility. Hence, we assume that

λ a t = λ(δ a t )1I {Q t >-q} , and λ b t = λ(δ b t )1I {Q t < q} , with λ(x) = Ae -k (x+c) σ , (2) 
for fixed positive constants A and k.

Admissible controls and market maker's problem

We work with the set A of admissible controls (δ t ) t ∈[0,T ] = (δ a t , δ b t ) t ∈[0,T ] where any δ ∈ A is predictable and satisfies

|δ a t | ∨ |δ b t | ≤ δ ∞ , t ∈ [0, T ].
Here, δ ∞ is a fixed positive constant which will be fixed later to a sufficiently large value.

For each control process δ = (δ a , δ b ) of the market maker, we denote by P δ the associated probability measure under which S follows (1) and

N δ,a t = N a t - t 0 λ(δ a r )1I {Q r >-q} d r, N δ,b t = N b t - t 0 λ(δ b r )1I {Q r < q} d r,
are martingales. In that case, the profit and loss process of the market maker is defined by

PL δ t = X δ t +Q t S t , where X δ t = t 0 P a r d N a r - t 0 P b r d N b r , t ∈ [0, T ]. (3) 
Here, X δ is the cash flow process and QS represents the inventory risk process2 .

The model

Next, we introduce the Doléans-Dade exponential

L δ t = exp t 0 log λ(δ a r ) A 1I {Q r ->-q} d N a r + log λ(δ b r ) A 1I {Q r -< q} d N b r -(λ(δ a r ) -A)1I {Q r >-q} d r -(λ(δ b r ) -A)1I {Q r < q} d r ,
which is a P 0 -local martingale3 as it can be verified by direct application of Itô's formula that

d L δ t = L δ t λ(δ a t ) -A A 1I {Q t ->-q} d N 0,a t + λ(δ b t ) -A A 1I {Q t -< q} d N 0,b t .
Since δ a and δ b are uniformly bounded, this local martingale satisfies the Novikov-type criterion in [START_REF] Sokol | Optimal Novikov-type criteria for local martingales with jumps[END_REF] and thus is a martingale. From Theorem III.3.11 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], it follows that

d P δ d P 0 F t = L δ t , for all t ∈ [0, T ]. (4) 
In particular, all the probability measures P δ indexed by δ ∈ A are equivalent. We therefore use the notation a.s for almost surely without ambiguity. We shall write E δ t for the conditional expectation with respect to F t with probability measure P δ .

We consider that the exchange is compensated for each market order arrival and so aims at keeping the market liquid. Thus, we assume that it proposes to the market maker a contract, defined by an F T -measurable random variable ξ, in order to create an incentive to attract liquidity on the platform by reducing his spread. In addition to the realized profit and loss (3) on [0, T ], the market maker receives a compensation ξ from the exchange at the final time T , thus leading to the maximization problem,

V MM (ξ) = sup δ∈A J MM (δ, ξ) where J MM (δ, ξ) = E δ -e -γ(ξ+PL δ T -PL δ 0 ) (5) = E δ -e -γ ξ+ T 0 (δ a t d N a t +δ b t d N b t +Q t d S t ) .
Here, γ > 0 is the absolute risk aversion parameter of the CARA market maker. For each compensation ξ, we show that there exists a unique optimal response δ(ξ) = ( δa (ξ), δb (ξ)) of the market marker.

Remark 1. The case ξ = 0 corresponds to the problem without exchange intervention treated in [AS08, GLFT13].

The exchange optimal contracting problem

We assume that the exchange is compensated by a fixed amount c > 0 for each market order that occurs in the market. In practice, some exchanges add to this fixed fee a component which is proportional to the traded amount in currency value. However, since we are anyway working on a short time interval, we take c independent of the price of the asset. Note that the fee schedule considered here for the taker side is simple. Indeed, in practice, complex fee policies are rather dedicated to market makers. Furthermore, we will in fact see that when acting optimally, the exchange is somehow indifferent to the value of c, see Section 4.3.

The exchange aims at maximizing the total number of market orders t +Q t d S t )) ] is not degenerate and hence the well-definition of the market maker problem (5). We will also assume that the latter only accepts contracts ξ such that the maximal utility V MM (ξ) is above a threshold value R < 0.

Hence, we denote by C the space of admissible contracts defined by C = ξ F T -measurable such that V MM (ξ) ≥ R and (7) and (8) are satisfied .

We will take -R large enough so that C contains the zero contract ξ = 0 and thus is nonempty.

Solving the market maker's problem

We start by solving the problem (5) of the market maker facing an arbitrary contract ξ ∈ C proposed by the exchange.

3. Solving the market maker's problem For (δ, z, q) ∈ [-δ ∞ , δ ∞ ] 2 × R 3 × Z, with δ = (δ a , δ b ) and z = (z S , z a , z b ), we define h(δ, z, q) = 1e -γ(z a +δ a ) γ λ(δ a )1I {q>-q} + 1e -γ(z b +δ b ) γ λ(δ b )1I {q< q} , and H (z, q) = sup Clearly, Z = as it contains all bounded predictable processes and

C ⊃ Ξ = Y Y 0 ,Z T : Y 0 ∈ R, Z ∈ Z , and V MM (Y Y 0 ,Z T ) ≥ R .
The next result shows that these sets are in fact equal, and identifies the market maker utility value and the corresponding optimal response. To prove equality of these sets, we are reduced to the problem of representing any contract ξ ∈ C as ξ = Y Y 0 ,Z T for some (Y 0 , Z ) ∈ R × Z , which is known in the literature as a problem of backward stochastic differential equation. We refrain from using this terminology, as our analysis does not require any result from this literature. with the following optimal bid-ask policy

δa t (ξ) = ∆(Z a t ), δb t (ξ) = ∆(Z b t ), where ∆(z) = (-δ ∞ ) ∨ -z + 1 γ log 1 + σγ k ∧ δ ∞ . (11) 
The proof of Part (i) of the previous result is reported in Section IX.B. This representation is obtained by using the dynamic continuation utility process of the market maker, following the approach of Sannikov [START_REF] Sannikov | A continuous-time version of the principal-agent problem[END_REF]. We prove that the continuation utility process satisfies the dynamic programming principle, so that the required representation follows from the Doob-Meyer decomposition of supermartingales together with the martingale representation theorem.

Proof of Theorem 1 (ii)

Let ξ = Y Y 0 ,Z T with (Y 0 , Z ) ∈ R×Z . We first prove that for an arbitrary bid-ask policy δ ∈ A , we have J MM (δ, ξ) ≤ -e On the other hand, equality holds in the last inequality if and only if δ is chosen as the maximizer of the Hamiltonian H (d t × d P 0 -a.e.), thus leading to the unique maximizer δ(ξ) given by (11), which then induces J MM ( δ(ξ), ξ) = -e -γY 0 . This completes the proof that V MM (ξ) = -e -γY 0 with optimal response δ(ξ).

Designing the optimal contract

Denote Ŷ0 = -1 γ log(-R). By Theorem 1, the exchange problem (6) reduces to the control problem

V E 0 = sup Y 0 ≥ Ŷ0 sup Z ∈Z E δ(Y Y 0 ,Z T ) -e -η c(N a T -N a 0 +N b T -N b 0 )-Y Y 0 ,Z T , (12) 
where Y Y 0 ,Z is given by (9). In the present context, notice that the market maker optimal response δ(Y Y 0 ,Z T ) given by ( 11 Our approach is to derive a solution v of the corresponding HJB equation, and to proceed by the standard verification argument in stochastic control to prove that the proposed solution v coincides with the value function v E 0 .

Applying the standard dynamic programming approach to the last control problem, we are led to the following HJB equation ∂ t v(t , q) + H E q, v(t , q), v(t , q + 1), v(t , q -1) = 0, q ∈ {-q, • • • q}, t ∈ [0, T ),

v(T, q) = -1, (15) 
where the Hamiltonian H E : [-q, q] × (-∞, 0] 3 → R is given by H E (q, y, y + , y -) = H 1 E (q, y) + 1I {q>-q} H 0 E (y, y -) + 1I {q< q} H 0 E (y, y + ),

with

H 1 E (q, y) = sup z s ∈R
h 1 E (q, y, z s ), and h 1 E (q, y, z s ) = ησ 2 2 y γ(z s + q) 2 + ηz 2 s ,

H 0 E (y, y ) = sup A direct calculation reported in Lemma 4 below reveals that the maximizers ẑ = ( ẑs , ẑa , ẑs ) of H E are ẑs (t , q) = -γ γ + η q, ẑa (t , q) = ζ v(t , q), v(t , q -1) , and ẑb (t , q) = ζ v(t , q), v(t , q + 1) , [START_REF]BFG +[END_REF] Here, we assume that δ ∞ is large enough so that Condition (37) of Lemma 4 is always met, namely

δ ∞ ≥ C ∞ + 1 η sup t ∈[0,T ]
sup q∈[-q, q-1] log v(t , q) v(t , q + 1) (18) with the hope that our candidate solution of the HJB equation will verify it. This will be checked in our verification argument. Recall from Lemma 4 that

C ∞ = c + ( 1 η + 1 γ ) log(1 + σγ k ) - 1 η log 1 - σ 2 γη (k + σγ)(k + ση) .
Using again the calculation reported in Lemma 4, we rewrite the HJB equation (15) as    ∂ t v(t , q) + γη 2 σ 2 2(γ+η) q 2 v(t , q) -C v(t , q) 1I {q>-q} v(t ,q) v(t ,q-1)

k ση + 1I {q< q} v(t ,q) v(t ,q+1) k ση = 0, v(T, q) = -1, (19) 
where the constant C is given by

C = A ση k exp - k σγ log(1 + σγ k ) + (1 + k ση ) log 1 - σ 2 γη (k + σγ)(k + ση) .
Inspired by [START_REF] Guéant | Dealing with the inventory risk: a solution to the market making problem[END_REF], we now make the key observation that this equation can be reduced to a linear equation by introducing u = (-v) -k ση . Indeed, by direct substitution, we obtain the following linear differential equation ∂ t u(t , q) -C 1 q 2 u(t , q) +C 2 u(t , q + 1)1I {q< q} + u(t , q -1)1I {q>-q} = 0, t ∈ [0, T ),

u(T, q) = 1, (20) 
with

C 1 = kγησ 2(γ + η)
and

C 2 = C k ση .
This equation can be written in terms of the R 2 q+1 -valued function u(t ) = u(t , q) q∈{-q,..., q} , of the variable t only, as the linear ordinary differential equation

∂ t u = -Bu, where B =          -C 1 q2 C 2 . . . . . . . . . C 2 -C 1 q 2 C 2 . . . . . . . . . C 2 -C 1 q2         
← q-th line, is a tri-diagonal matrix with lines labelledq, . . . , q. Denote by b q the vector of R 2 q+1 with zeros everywhere except at the position q, i.e. b q,i = 1I {i =q} for i ∈ {-q, . . . , q}, and 1 = q q=-q b q . Then, this ODE has a unique solution u(t ) = e (T -t )B 1, so that u(t , q) = b q •e (T -t )B 1, and v(t , q) =b q •e (T -t )B 1 -ση k .

(21)

In the next section, we shall prove that this solution v of the HJB equation (15) coincides with the value function of the reduced exchange problem (14), with optimal controls ẑ(t , q) given in [START_REF]BFG +[END_REF], thus inducing the optimal contract Y Ŷ0 , Ẑ T with Ẑt = ẑ(t ,Q t -).

We conclude this section by an alternative representation of the function u.

Proposition 1. Let u and v be defined by (21). The function u can be represented as u(t , q) = E e T t (-C 1 (Q t ,q s ) 2 +λ s +λ s )d s , where Q t ,q s = q + s t d (N u -N u ), and (N , N ) is a two-dimensional point process with intensity (λ s , λ s ) = C 2 (1I {Q s-< q} , 1I {Q s->-q} ). In particular, we have the following bounds for the function u, e -C 1 q2 T ≤ u ≤ e 2C 2 T . 260 4. Designing the optimal contract Moreover, Condition (18) is verified when

δ ∞ ≥ ∆ ∞ = C ∞ + σ k (2C 2 +C 1 q2 )T. (22) 
Proof. Notice that u is a smooth bounded function. Denote f (x) = -C 1 x 2 + C 2 (1I {x>-q} + 1I {x< q} ), and M s = e s t f (Q t ,q u )d u u(s,Q t ,q s ), t ≤ s ≤ T . We now show that M is a martingale, so that u(t , q) = M t = E[M T ] = E e -T t f (Q t ,q s )d s , as u(T, .) = 1. To see that M is a martingale, we compute by Itô's formula that

d M s = u(s,Q t ,q s ) f (Q t ,q s ) + ∂ t u(s,Q t ,q s ) d s +C 2 u(s,Q t ,q s-+ 1) -u(s,Q t ,q s-) d N s +C 2 u(s,Q t ,q s--1) -u(s,Q t ,q s-) d N s .
Since u is solution of (20), we get

d M s = C 2 u(s,Q t ,q s-+ 1) -u(s,Q t ,q s-) d M s +C 2 u(s,Q t ,q s--1) -u(s,Q t ,q s-) d M s ,
where (M , M ) = (N -• 0 λ s d s, N -• 0 λ s d s) is a martingale. The martingale property of M now follows from the boundedness of u as it can be verified from the expression (21). Finally, the bound |Q t ,q s | ≤ q induces directly the announced bounds on u, which in turn imply Condition (18) when ( 22) is satisfied because v = -u -ση k .

Main result

We are now ready to verify that the function v introduced in the previous section is the value function of the exchange, with optimal feedback controls ( ẑs , ẑa , ẑb ) as given in [START_REF]BFG +[END_REF], thus identifying a unique optimal contract to be proposed by the exchange to the market maker.

Recall that δ ∞ denotes the bound on the market maker bid and ask spreads. Our main explicit solution requires δ ∞ to be larger that the constant ∆ ∞ introduced in (22).

Theorem 2. Assume that δ ∞ ≥ ∆ ∞ , with ∆ ∞ given by (22) and define u and v by (21). Then the optimal contract for the problem of the exchange (6) is given by

ξ = Ŷ0 + T 0 Ẑ a r d N a r + Ẑ b r d N b r + Ẑ S r d S r + 1 2 γσ 2 Ẑ S r +Q r 2 -H Ẑr ,Q r d r, ( 23 
)
with Ẑ S r = ẑs (r,Q r -), Ẑ a r = ẑa (r,Q r -), and Ẑ b r = ẑb (r,Q r -) as defined in [START_REF]BFG +[END_REF]. The market maker's optimal effort is given by

δa t = δa t ( ξ) = -Ẑ a t + 1 γ log(1 + σγ k ), δb t = δb t ( ξ) = -Ẑ b t + 1 γ log(1 + σγ k ).
(24)

Proof. In order to prove this result, we verify that the function v introduced in (21) coincides at (0,Q 0 ) with the value function of the reduced exchange problem (14), with maximum achieved at the optimal control Ẑ .

The function v is negative bounded and has bounded gradient. Moreover, since δ ∞ ≥ ∆ ∞ , it follows that v is a solution of the HJB equation (15) of the exchange reduced problem, see Lemma 4. For Z ∈ Z , denote

K Z t = e -η c(N a t -N a 0 +N b t -N b 0 )-Y 0,Z t , t ∈ [0, T ].
By direct application of Itô's formula, and substitution of ∂ t v from the HJB equation satisfied by v, we see that

d v(t ,Q t )K Z t = K Z t -(h Z t -H t )d t + ηv(t ,Q t )Z s t d S t + i =a,b v(t ,Q t -+ ∆Q t )e -η(c-Z i t ) -v(t ,Q t -) d N δ(Y Ŷ0 ,Z ),i t , (25) 
where, using the notations of ( 16) and the subsequent equations,

H t = H E Q t , v(t ,Q t ), v(t ,Q t + 1), v(t ,Q t -1) ,
and

h Z t = h 1 E Q t , v(t ,Q t ), Z S t ) + 1I {Q t >-q} h 0 E v(t ,Q t ), v(t ,Q t -1), Z a t + 1I {Q t < q} h 0 E v(t ,Q t ), v(t ,Q t + 1), Z b t .
Exploiting the fact that v is bounded and that K Z is uniformly integrable, see Lemma 5, we get that v(t ,Q t )K Z t t ∈[0,T ] is a P δ(Y Ŷ0 ,Z T ) -supermartingale and by Doob-Meyer decomposition theorem, the local martingale term in (25) is a true martingale. Hence

v(0,Q 0 ) = E δ(Y Ŷ0 ,Z T ) v(T,Q T )K Z T + T 0 K Z t (H t -h Z t )d t ≥ E δ(Y Ŷ0 ,Z T ) v(T,Q T )K Z T = E δ(Y Ŷ0 ,Z T ) [-K Z T ],
by the boundary condition v(T, .) = -1. By arbitrariness of Z ∈ Z , this provides the inequality

v(0,Q 0 ) ≥ sup Z ∈Z E δ(Y Ŷ 0 ,Z T ) [-K Z T ] = v E 0 .
On the other hand, consider the maximizer Ẑ of the reduced exchange problem, induced by the feedback controls ẑ in [START_REF]BFG +[END_REF]. As Ẑ is bounded, it follows that Ẑ ∈ Z . Moreover, h Ẑ -H = 0, by definition, so that the last argument leads to the equality v(0,Q 0 ) = E δ(Y Ŷ0 , Ẑ T

) -K Ẑ T , instead of the inequality. This shows that v(0,Q 0 ) = v E 0 , the reduced exchange problem of (14), with optimal control Ẑ . From Theorem 1, the corresponding optimal market maker response of the market maker is given by ( 11) with ξ = Y Ŷ0 , Ẑ T . Moreover, Condition (18) implies that

-Z i t + 1 γ log 1 + σk k ≤ δ ∞ , i = a, b.
Hence the optimal effort could be reduced to (24).

Discussion

The processes Ẑ a , Ẑ b and Ẑ S allowing the exchange to build the optimal contract have actually quite natural interpretations. Indeed, using Lemma 1, we obtain that the quantities

-log u(t ,Q t -) u(t ,Q t --1)
andlog u(t ,Q t -) u(t ,Q t -+ 1) are roughly proportional respectively to Q t -and -Q t -. Thus, when the inventory is highly positive, the exchange provides incentives to the market-maker so that it attracts buy market orders and tries to dissuade him to accept more sell market orders, and conversely for a negative inventory. The integral

T 0 Ẑ S r d S r
can be understood as a risk sharing term. Indeed, t 0 Q r d S r corresponds to the price driven component of the inventory risk Q t S t . Hence in the optimal contract, the exchange supports part of this risk so that the market maker maintains reasonable quotes despite some inventory. The proportion of risk handled by the platform is γ γ+η .

Until now, we have focused on the maker part of the make-take fees problem since we have considered that the taker cost c is fixed. Nevertheless, our approach also enables us to suggest the exchange a relevant value for c. Actually, we see that when acting optimally, the exchange transfers the totality of the fixed taker fee c to the market maker. It is therefore neutral to the value of c as its optimal utility function v E 0 = v(0,Q 0 ) is independent of the taker cost, see (19). However, c plays an important role in the optimal spread offered by the market maker given by

-2c + σ k log u(t ,Q t -) 2 u(t ,Q t --1)u(t ,Q t -+ 1) - 2 η log 1 - σ 2 γη (k + σγ)(k + ση) + 2 γ log(1 + σγ k ).
Furthermore, from numerical computations, we remark that u(t , q) 2 u(t , q -1)u(t , q + 1) is close to unity for any t and q. Hence the exchange may fix in practice the transaction cost c so that the spread is close to one tick by setting c ≈ -1 2

Tick -

1 η log 1 - σ 2 γη (k + σγ)(k + ση) + 1 γ log(1 + σγ k ).
For σγ/k small enough, this equation reduces to

c ≈ σ k - 1 2 Tick. ( 26 
)
Equation ( 26) is a particularly simple formula to fix the taker constant c. We see that the higher the volatility, the larger the taker cost should be. It is also quite natural that this cost is 263 IX. Optimal make-take fees for market making regulation a decreasing function of k. Indeed, if k is large, the liquidity vanishes rapidly when the spread becomes wide, meaning that market takers are sensitive to extra costs relative to the efficient price. Therefore, the taker cost has to be small if the exchange wants to maintain a reasonable market order flow. Finally, note that the parameters σ and k can be easily estimated from market data. Therefore the formula (26) can be readily used in practice.

Impact of the presence of the exchange on market quality and comparison with [AS08, GLFT13]

In this section, we compare our setting with the situation without incentive policy from an exchange towards market making activities. The latter is considered in [AS08, [START_REF] Guéant | Dealing with the inventory risk: a solution to the market making problem[END_REF] where the authors deal with the issue of optimal market making without intervention of the exchange. The results in [AS08] are taken as benchmark for our investigation to emphasize the impact of the incentive policy on market quality. We will refer to this case as the neutral exchange case.

Let us first recall the results in [AS08, GLFT13]. The optimal controls of the market maker denoted by δ a and δ b are given as a function of the inventory Q t by

δ a t = σ k log u(t ,Q t -) u(t ,Q t --1) + 1 γ log(1 + σγ k ), δ b t = σ k log u(t ,Q t -) u(t ,Q t -+ 1) + 1 γ log(1 + σγ k ),
where u is the unique solution of the linear differential equation ∂ t u(t , q) + C 1 q 2 u(t , q) -C 2 ( u(t , q + 1)1I {q< q} + u(t , q -1)1I {q>-q} ) = 0, (t , q) ∈ [0, T ) × [-q, q] u(T, q) = 1, ) . In our case, the optimal quotes δa and δb are obtained from Theorem 2 and satisfy

δa t = σ k log u(t ,Q t -) u(t ,Q t --1) + 1 γ log(1 + σγ k ) -c - 1 η log 1 - σ 2 γη (k + σγ)(k + ση) , δb t = σ k log u(t ,Q t -) u(t ,Q t -+ 1) + 1 γ log(1 + σγ k ) -c - 1 η log 1 - σ 2 γη (k + σγ)(k + ση) ,
where u is solution of the linear equation (20).

Numerical experiments show that u and u can decrease quickly to zero when q becomes large. Hence, the computation of the following crucial quantities appearing in the optimal quotes: v + (t , q) = log u(t , q + 1) u(t , q) , v + (t , q) = log u(t , q + 1) u(t , q) , q ∈ {-q, • • • , q -1}.

264 5. Impact of the presence of the exchange on market quality and comparison with [AS08, GLFT13] can be intricate in practice. To circumvent this numerical difficulty, we remark that v + and v + are solution of the following differential equations ∂ t v + (t , q) +C 1 (2q + 1) -C 2 (e v + (t ,q+1) 1I {q< q-1} + e -v + (t ,q)e v + (t ,q)e -v + (t ,q-1) 1I {q>-q} ) = 0 v + (T, q) = 0, (27) and ∂ t v + (t , q) + C 1 (2q + 1) -C 2 (e v + (t ,q+1) 1I {q< q-1} + e -v + (t ,q)e v + (t ,q)e -v + (t ,q-1) 1I {q>-q} ) = 0 v + (T, q) = 0.

(28) We thus rather apply classical finite difference schemes to ( 27) and (28).

In the following numerical illustrations, in the spirit of [GLFT13, Section 6], we take T = 600s for an asset with volatility σ = 0.3 Tick.s -1/2 (unless specified differently). Market orders arrive according to the intensities (2) with A = 1.5s -1 and k = 0.3s -1/2 . We assume that the threshold inventory of the market maker is q = 50 units and we set his risk aversion parameter to γ = 0.01. The exchange is taken more risk averse with η = 1. Finally, we assume that the taker cost c = 0.5 Tick4 .

Impact of the exchange on the spread and market liquidity

We start by comparing the optimal spread δa We observe in Figure IX.1 that the initial spread does not depend a lot on the initial inventory (because the considered time interval [0, T ] is not too small) and that it is reduced thanks to the optimal contract between the market maker and the exchange. This is not surprising since in our case the exchange aims at increasing the market order flow by proposing an incentive contract to the market maker inducing a spread reduction. Actually this phenomenon occurs over the whole trading period [0, T ]. To see this, we generate 5000 paths of market scenarios and compute the average spread over reduce his inventory risk. On the contrary, if the inventory is negative and very large, in both situations, its ask quotes are well above the efficient price in order to repulse the arrival of buy market orders. However, since in our case the exchange remunerates the market maker for each arrival of market order, we get that the ask spread with contract δa is smaller than δ a . A symmetric conclusion holds for the bid part of the spread. We now turn to the impact of the volatility on the spread. The optimal contract obtained in (23) induces an inventory risk sharing phenomenon through the term Ẑ S . Hence, when the volatility increases, the spread difference between situations with/without incentive policy becomes less important, see Figure IX.5 in which we consider the optimal initial spread difference when the initial inventory is set to zero between both situations with/without incentive policy from the exchange to the market maker for different values of the volatility. 

Impact of the incentive policy on the profit and loss of the exchange and market maker

We assume that Q 0 = 0. Recall that PL δ defined in (3) denotes the trading part of the profit and loss (P&L) of the market maker for a given strategy δ. In our case, the underlying total P&L at time t of a market maker acting optimally, denoted by PL t , is given by

PL t = PL δ t + Y Ŷ0 , Ẑ t
, where Y Ŷ0 , Ẑ t corresponds to the quantity on the right hand side of (23) with T replaced by t . We now investigate the behavior of this quantity, notably with respect to the benchmark PL δ t which corresponds to the optimal profit and loss without intervention of the exchange.

To make PL t and PL δ t comparable, we choose Ŷ0 in (23) so that the market maker gets the same utility in both situations, that is Ŷ0 = k σ log( u(0,Q 0 )). Thus, the market maker is indifferent between the situation with or without exchange intervention. We generate 5000 paths of market scenarios and compare the average of both P&L in Since Ŷ0 is set to obtain the same utility in both cases, the two average P&L are very close at the end of the trading period. The variance of the P&L also seems to be the same in both situations. The only difference from the market maker viewpoint here is that in the case of a contract, the P&L is already made at time 0 thanks to the compensation of the exchange and then fluctuates slightly. This is because he is earning the spread but paying continuous "coupons" H ( Ẑt ,Q t )- σ 2 γ 2 ( Ẑ S t +Q t ) 2 d t from the contract. In the case without exchange intervention, the market maker increases his P&L over the whole trading period thanks to the spread.

We now compare the profit and loss of the exchange in the two considered cases. When it applies an incentive policy towards the market maker, the P&L of the exchange is given by 268 We see that the initial P&L of the contracting exchange is negative because of the initial payment Ŷ0 . However it finally exceeds, with a smaller standard deviation, the P&L in the situation without incentive policy from the exchange. Hence the incentive policy of the exchange proves to be successful. Indeed, both configurations are equivalent for market makers but the exchange obtains more revenues when contracting optimally. This is due to the fact that the contract triggers more market orders.

Finally, we plot the aggregated average P&L of the market maker and the exchange (independent of the choice of the initial payment). We observe that it is always greater in the optimal contract case. We see that, thanks to the incentive policy of the exchange, the reduced spreads lead to significantly smaller trading costs for investors.

IX.A Predictable representation

The following result is probably well-known, we report it here for completeness as we could not find a precise reference.

Lemma 1. Let (Ω, F , P, F) be a filtered probability space where F = F W ∨ F N is the right continuous completed filtration of a Brownian motion W and a d -dimensional integrable point process

N = (N 1 , • • • , N d ) with compensator A = (A 1 , • • • , A d ).
Then, for any F-martingale X there exists a predictable process Z = (Z W , Z 1 , • • • , Z d ) such that

X t = X 0 + t 0 Z W s dW s + d i =1 t 0 Z i s (d N i s -d A i s ).
Proof. For sake of simplicity, we take d = 1. Let P be a solution of the martingale problem associated to M t = N t -A t and W t . By Theorem III.4.29 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], to prove Lemma 1 we need to establish the uniqueness of P.

We denote by P W the law P conditional on W . We first show that M is still a martingale under P W . To do so we consider B s ∈ F s and want to prove that E P W 1I B s (M t -M s ) = 0, for 0 ≤ s ≤ t ≤ T . Let C ∈ F W T . We aim at showing that

E 1 C E P W 1I B s (M t -M s ) = E 1I C 1I B s (M t -M s ) = 0.
Thanks to the martingale representation theorem for Brownian martingales, we can write

1I C = α s + T s φ u dW u ,
where α s = E[1I C |F W s ] and (φ u ) u≥0 is F W predictable process. Using the martingale property of M , we obtain

E α s 1I B s (M t -M s ) = 0.
Then W and M being orthogonal martingales, we deduce E T s φ u dW u 1I B s (M t -M s ) = 0, Consequently, using Theorem III.1.21 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], P W is the unique probability measure such that M is an F-martingale conditional on W . Finally, by integration, the uniqueness of P W implies that of P.

By using again Bayes' Formula and by noticing that Since the previous inequality holds for all µ ∈ A τ we deduce from monotone convergence Theorem together with Lemma 2 that there exists a sequence (µ n ) n∈N of control in A τ such that 

V t ≥ lim n→+∞ ↑ E δ t e -

IX.B.2 Proof of Theorem 1 (i)

We proceed in several steps.

Step 1. For δ ∈ A , it follows from the dynamic programming principle of Lemma 3 that the process defines a P δ -supermartingale6 for all δ ∈ A . By standard analysis, we may then consider it in its càdlàg version (by taking right limits along rationals). By the Doob-Meyer decomposition, we write

U δ t = M δ t -A δ,c t -A δ,d t , (30) 
where M δ is a P δ -martingale and A δ = A δ,c + A δ,d is an integrable non-decreasing predictable process such that A δ,c 0 = A δ,d 0 = 0, with pathwise continuous component A δ,c , and a piecewise constant predictable process A δ,d .

By the martingale representation theorem under P δ , see Lemma 1, there exists a predictable process Z δ = ( Z δ,S , Z δ,a , Z δ,b ) such that

M δ t = V 0 + t 0 Z δ r .d χ r - t 0 Z δ,a r λ(δ a r )1I {Q r >-q} d r - t 0 Z δ,b r λ(δ b r )1I {Q r < q} d r, (31) 
where we recall that χ = (S, N a , N b ).

Step 2. We show that V is a negative process. In fact, thanks to the uniform boundedness of δ ∈ A , we show that (32)

Therefore,

V t ≤ E 0 -α t ,T e -γ δ ∞ (N a T -N a t +N b T -N b t )+ T t Q u d S u e -γξ < 0.
Step 3. Let Y be the process defined by V t = -e -γY t for all t ∈ [0, T ]. As A δ,d is a predictable point process and the jumps of (N a , N b ) are totally inaccessible stopping times under P 0 , we have [N a , A δ,d ] = 0 and [N b , A δ,d ] = 0 a.s, see Proposition I.2.24 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF]. Using Itô's formula, we obtain from (30) and (31) that ) -δ a t , Z b t = -

Y T = ξ,
1 γ log(1 + Z δ,b t U δ t - ) -δ b t , Z S t = - Z δ,b t γU δ t - -Q t -, and 
I t = t 0 h(δ r , Z r ,Q r )d r - 1 γU δ r d A δ,c r , A d t = 1 γ s≤t log 1 - ∆A δ,d t U δ t -
, with h(δ, z, q) = h(δ, z, q) -1 2 γσ 2 (z s ) 2 . In particular, the last relation between A d and A δ,d shows that ∆a t = -∆A δ,d t U δ t -≥ 0 is independent of δ ∈ A ; recall that U δ < 0.

In order to complete the proof, we argue in the subsequent steps that Z = (Z S , Z a , Z b ) ∈ Z and that for t ∈ [0, T ],

A δ,d t = -s≤t U δ s-∆a s = 0, (so that A d t = 0), and

I t = t 0 H (Z r ,Q r )d r, ( 33 
)
where H (z, q) = H (z, q) -1 2 γσ 2 (z s ) 2 .

Step 4. Since V T = -1, notice that (34)

Moreover, since the controls are uniformly bounded, we have

U δ t ≤ -β t := V t e -γδ ∞ (N a t -N a 0 +N b t -N b 0 )-γ t 0 Q r d S r < 0. (35) 
Then, since A δ,d ≥ 0, U δ ≤ 0, and d I th(δ t , Z t ,Q t ) ≥ 0, it follows from (34) together with the inequalities (32) and ( 35 In that case, we have 

IX.C Exchange Hamiltonian maximization

ϕ(z ) = -C v 2 exp k ση log(v 2 /v

IX.D On the verification argument for the exchange problem

The proof of the main result of Theorem 2 requires the following technical result. We observe that this is the place where Condition (7) is needed. 

t 0 ϕ

 0 1 (ts)d N + s d t , is the probability of upward jump induced by past upward jumps. • t 0 ϕ 3 (ts)d N - s d t , is the probability of upward jump induced by past downward jumps.

  s).d N s , where µ : R + → R d + is locally integrable and φ : R + → M d (R + ) has integrable components such that S ∞ 0 φ(s)d s < 1.

Result 4 . 0 C

 40 For any a ∈ R d E[exp(i a.N t )] = exp t (a, ts) -1 .µ(s)d s , where C : R d × R + → C d is solution of the following integral equation: C (a, t ) = exp i a + t 0 φ * (s).(C (a, ts) -1)d s ,with φ * (s) the transpose of φ(s).
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 1 Figure II.1 -Implied volatility surface calibration with a rough-Heston model

Figure

  Figure II.2 -At-the-money skew as a function of maturity for α = 1 and α = 0.62
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 3 Characteristic function of generalized rough Heston models

  The following classes of functions belong to G K .

Theorem 6 .

 6 Under (H 0 ), assume that g ∈ H γ/2 . (i) If b and σ are Lipschitz continuous, (35) admits a unique continuous strong solution X . (ii) If b and σ are continuous with linear growth and K admits a resolvent of the first kind L, then (35) admits a continuous weak solution X .

For

  any continuous semimartingale M = . 0 b s d s + . 0 a s d B s the convolution (K * d M ) t = t 0 K (ts)d M s is well-defined as an Itô integral for every t ≥ 0 such that t 0 |K (ts)||b s |d s + t 0 |K (ts)| 2 |a s | 2 d s < ∞. By stochastic Fubini Theorem, see [AJLP17, Lemma 2.1], we have 160 IV.B. Reminder on stochastic convolutions and resolvents(L * (K * d M )) = ((L * K ) * d M ), a.s. whenever K ∈ L 2 l oc (R + , R)and a, b are locally bounded a.s. We define the resolvent of the first kind of a d × d -matrix valued kernel K , as the R d ×d -valued measure L on R + of locally bounded variation such that K * L = L * K ≡ id, where id stands for the identity matrix, see [GLS90, Definition 5.5.1]. The resolvent of the first kind does not always exist. The following results are shown in [AJLP17, Lemma 2.6]. Lemma 1. Let K ∈ L 2 loc (R + ) and Z = . 0 b s d s + . 0 σ s dW s a continuous semimartingale with b and σ locally bounded. Assume that X and K * d Z are continuous processes and that K admits a resolvent of the first kind L. Then X = K * d Z if and only if L * X = Z . Lemma 2. Assume that K ∈ L 1 loc (R + ) admits a resolvent of the first kind L. For any F ∈ L 1 l oc (R + ) such that F * L is right-continuous and of locally bounded variation one has

Figure V. 1

 1 Figure V.1 shows a remarkable fit to the SPX volatility surface, which is as good as with the rough Bergomi model in[START_REF] Bayer | Pricing under rough volatility[END_REF].
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 1 Figure V.1 -Representative SPX volatility smiles as of August 14, 2013, with time to expiration in years. Red and blue points represent bid and ask SPX implied volatilities; green smiles are from the rough Heston model calibrated using the Adams scheme.

Figure V. 2 -

 2 Figure V.2 -Representative SPX volatility smiles as of May 19, 2017, with time to expiration in years. Red and blue points represent bid and ask SPX implied volatilities; green smiles are from the rough Heston model calibrated using the Adams scheme.

Figure V. 3 -

 3 Figure V.3 -Representative SPX volatility smiles as of May 19, 2017, with time to expiration in years. Green smiles are from the rough Heston model calibrated using the Adams scheme; violet dashed smiles are generated using the approximate rough Heston characteristic function (8); the brown dotted smiles are generated from the poor man's existing Heston model with scaled volatility of volatility parameter.

  Figure VI.1, we present respectively ρ(τ), ρ(-τ) and ∆(τ), reproducing Figure 10 of [CB14], and confirming empirically that the Zumbach effect is nonzero.
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 1 Figure VI.1 -In the left panel, the ρ(τ) are in red, the ρ(-τ) in blue. In the right panel we plot the integrated difference ∆(τ).

Figure

  Figure VI.2 -With τ = k δ, the green points are the empirical estimates of Z (τ), the solid red line is the model computation (6) of Z t (k), the dashed blue line is the small δ approximation from Theorem 1 to Z t (k).

Figure VI. 3 -

 3 Figure VI.3 -The solid red line is Z t (k) computed with H = 0.05, the blue dashed line is the approximation from Theorem 1, and the green line close to the x-axis is Z t (k) with H = 1/2. We see that the effect is negligible when H = 1/2.

  where b : R d → R d , σ : R d → R d ×m are continuous and satisfy the linear growth condition, K ∈ L 2 ([0, T ], R d ×d ) admits a resolvent of the first kind L, see Appendix VIII.A.2, and W is a mdimensional Brownian motion on some filtered probability space (Ω, F , F, P). From Proposition 7 in the Appendix, g : [0, T ] → R d and K ∈ L 2 ([0, T ], R d ×d ) should satisfy Assumption 3, that is

Theorem 4 .

 4 There exists a positive constant C such that, for any a ∈[0, 1], b ∈ R and n ≥ 1, sup t ∈[0,T ] |ψ n (t , a + i b) -ψ(t , a + i b)| ≤ C (1 + b 4 ) T 0 |K n (s) -K (s)|d s,where ψ(•, a + i b) (resp. ψ n (•, a + i b)) denotes the unique continuous solution of the Riccati Volterra equation (23) (resp. (25)).

  Figure VIII.1 shows a decrease of the relative error ψ n (T,i b)-ψ(T,i b) ψ(T,i b) towards zero for different values of b.
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 1 Figure VIII.1 -The relative error ψ n (T,i b)-ψ(T,i b) ψ(T,i b) as a function of b under (27) and for different numbers of factors n with T = 1. We also observe in the Figure VIII.2 below that the implied volatility σ n (k, T ) of the multifactor approximation is close to σ(k, T ) for a number of factors n ≥ 20. Notice that the approximation is more accurate around the money.

Figure VIII. 2 -

 2 Figure VIII.2 -Implied volatility σ n (k, T ) as a function of the log-moneyness k under (27) and for different numbers of factors n with T = 1.

Figure VIII. 5 -

 5 Figure VIII.5 -The relative error ψ n (T,i b)-ψ(T,i b) ψ(T,i b) as a function of b under (29) and for different numbers of factors n with T = 1.

Figure VIII. 6 -

 6 Figure VIII.6 -Implied volatility σ n (k, T ) as a function of the log-moneyness k under (29) and for different numbers of factors n with T = 1.

  R) is the canonical resolvent of |K n | 2 with parameter c, defined in Appendix VIII.A.3, and the last inequality follows from the fact that • 0 E n c (s)d s is non-decreasing by Corollary 3. The convergence of |K n | 2 to |K | 2 in L 1 ([0, T ], R) implies the convergence of E n c to the canonical resolvent of |K | 2 with parameter c in L 1 ([0, T ], R), see [GLS90, Theorem 2.3.1]. Thus, T 0 E n c (s)d s is uniformly bounded in n, yielding (31).

  Thanks to Proposition 5, we get the existence of a positive constant C such thatsup n≥1 sup t ∈[0,T ] |h n (t , a + i b)| ≤ C (1 + b 4 ) T 0 |K n (s) -K (s)|d s, for any b ∈ R and a ∈ [0, 1]. Moreover notice that (ψ -ψ nh n )(•, z) issolution of the following linear Volterra equation with continuous coefficients χ

  , (47) and (49). We deduce Proposition 4 thanks to (45) and Theorem 4 together with the fact that b∈R b 4 +1 b 2 + 1 4 e C (1-|b|) d b < ∞.

For

  any continuous semimartingale M = . 0 b s d s + . 0 a s d B s the convolution

Theorem 8 .

 8 Let z, w : R + → C be continuous functions and h 0 ∈ C. The following linear Volterra equation h = h 0 + K * (zh + w) admits unique continuous solution h : R + → C such that |h(t )| ≤ ψ(t ), t ≥ 0, where ψ : R + → R is the unique continuous solution of ψ = |h 0 | + K * (ℜ(z)ψ + |w|).

  time interval [0, T ], whose arrival intensities are controlled exclusively by the market maker. The role of the contract ξ proposed by the exchange to the market maker is to encourage the latter to increase the liquidity of the market. In this case, the profit and loss of the exchange is given byc(N a T -N a 0 + N b T -N b 0 ) -ξ.Thus the exchange optimally chooses the contract to maximize its CARA utility function with absolute risk aversion parameter η > 0,V E 0 = sup ξ∈C E δ(ξ)e -η(c(N a T -N a 0 +N b T -N b 0 )-ξ) .(6)We now define the set of admissible contracts C . Concerning the problem of the exchange, we need to ensure thatE δ(ξ)e -η(c(N a T -N a 0 +N b T -N b 0 )-ξ)is not degenerated. The natural condition that we need is then to assume that sup δ∈A E δ e η ξ < +∞, for some η > η.(7)Since N a and N b are point processes with bounded intensities, this condition together with a Hölder inequality ensure that the problem of the exchange (6) is well defined. Similarly, we will assume that sup δ∈A E δ e -γ ξ < +∞, for some γ > γ, (8) to ensure that E δ [-e -γ(ξ+ T 0 (δ a t d N a t +δ b t d N b

  |δ a |∨|δ b |≤δ ∞ h(δ, z, q), For an arbitrary constant Y 0 ∈ R and predictable processes Z = (Z S , Z a , Z b ), with T 0 |Z S t | 2 + |H (Z t ,Q t )|d t < ∞, we introduce the process Z S r +Q r ) 2 -H (Z r ,Q r ) d r,(9)and we denote by Z the collection of all such processes Z such that Condition (7) is satisfied with ξ = Y 0,Z T andsup δ∈A sup t ∈[0,T ] E δ [e -γ Y 0,Z t] < ∞, for some γ > γ.(10)

Theorem 1 .

 1 (i) Any contract ξ ∈ C has a unique representation as ξ = Y Y 0 ,Z T , for some (Y 0 , Z ) ∈ R × Z . In particular, C = Ξ.(ii) Under this representation, the market maker utility value isV MM ξ = -e -γY 0 , so that Ξ = Y Y 0 ,Z T : Z ∈ Z , and Y 0 ≥ -1 γ log (-R) ,

  ) does not depend on Y 0 , i.e δ(Y Y 0 ,Z T ) = δ(Y Ŷ0 ,Z T ). Hence, the objective function in (12) is clearly decreasing in Y 0 implying that the maximization under the participation constraint is achieved at Ŷ0 , HJB equation for the reduced exchange problem Motivated by (13), we study in this section the HJB equation corresponding to the stochastic control problem

ζ∈R h 0 E

 0 (y, y , ζ) and h 0 E (y, y , ζ) = λ ∆(ζ) y e η(ζ-c)y 1 + η 1e -γ(ζ+∆(ζ))γ .

  σγ)(k + ση) .

with C 1

 1 = σγk 2 and C 2 = A exp -(1 + σγ k ) log(1 + σγ k

  0 + δb 0 at time 0 obtained when contracting optimally with the spread without incentives towards market making activities δ a 0 + δ b 0 . The optimal spreads are plotted in Figure IX.1 for different initial inventory values Q 0 ∈ {-q, • • • , q}.
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 1 Figure IX.1 -Comparison of optimal initial spreads with/without incentive policy from the exchange.

  [0, T ] for an initial inventory Q 0 = 0. The results are given in Figure IX.2.

Figure IX. 2 -

 2 Figure IX.2 -Average spread on [0, T ] with 95% confidence interval, with/without incentive policy from the exchange toward the market maker. Since the spread is tighter during the trading period under an incentive policy from the exchange, the arrival intensity of market orders is more important and hence the market is more liquid as shown in Figure IX.3.

Figure IX. 3 -

 3 Figure IX.3 -Average order flow on [0, T ] with 95% confidence interval, with/without incentive policy from the exchange.We now consider in Figure IX.4 the bid and ask sides separately. We see that when the inventory is positive and very large, δa and δ a are negative. It means the market maker is ready to sell at prices lower than the efficient price in order to attract market orders and

Figure IX. 4 -

 4 Figure IX.4 -Optimal ask and bid spreads, with/without incentive policy from the exchange toward the market maker.
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 5 Figure IX.5 -The initial optimal spread difference between both situation with/without incentive policy from the exchange toward the market maker as a decreasing function of the volatility σ.

  Figure IX.6 with and without incentive policy.

Figure

  Figure IX.6 -Average P&L of the market maker on [0, T ] with 95% confidence interval, with/without incentive policy from the exchange.

5..

  Impact of the presence of the exchange on market quality and comparison with [AS08, GLFT13] c(N a t -N a 0 + N b t -N b 0 ) -Y Ŷ0 , Ẑ t When the exchange is neutral, its P&L is simply c(N a t -N a 0 + N b t -N b 0 ). We compare these two quantities in Figure IX.7.

Figure

  Figure IX.7 -Average P&L of the exchange on [0, T ] with 95% confidence interval, with/without incentive policy from the exchange.
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 8 Figure IX.8 -Average total P&L of the exchange and the market maker on [0, T ] with 95% confidence interval, with/without incentive policy from the exchange.
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  -d I rh(δ r , Z r ,Q r )d r + d a r γ = -E 0 α 0,T T 0 β r -d I r -H (Z r ,Q r )d r + d a r γ .The quantities α 0,TT 0 β r -d I r -H (Z r ,Q r )d r) and α 0,T T 0 β r d a r being non-negative random variables, this implies (33).275IX. Optimal make-take fees for market making regulationStep 5. We now prove that Z ∈ Z by showing thatsup δ∈A sup t ∈[0,T ] E δ [e -γ(p+1)Y t ] < ∞ for some p > 0.(36)Using Hölder inequality together with Condition (8) and the boundedness of the intensities of N a and N b , we have thatsup δ∈A E δ [|U δ T | p +1 ] < ∞ for some p > 0. Hence sup δ∈A sup t ∈[0,T ] E δ [|U δ t | p +1 ] = sup δ∈A E δ [|U δ T | p +1 ] < ∞,because U δ is a negative P δ -supermartingale. This leads to (36) using Hölder inequality, the uniform boundedness of the intensities of N a and N b and that e-γY = U δ e γ • 0 (δ a u d N a u +δ b u d N b u +Q u d S u ) .Step 6. We finally prove uniqueness of the representation. Let (Y 0 , Z ), (Y 0 , Z ) ∈ R × Z be such that ξ = Y Y 0 ,Z By following the line of the verification argument in the proof of Theorem 1 (ii), we obtain the equalityY Y 0 ,Z t = Y Y 0 ,Z tby considering the value of the continuation utility of the market makerexp(-γY Y 0 ,Z t ) =exp(-γY Y 0 ,Z t ) = ess sup δ∈A E δ t [-e -γ(PL δ T -PL δ t +ξ) ], t ∈ [0, T ].This in turn implies thatZ i t d N i t = Z i t d N i t = d [Y Y 0 ,Z , N i ] t , i ∈ {a,b}, and Z S t σ 2 d t = Z S t σ 2 d t = d 〈Y , S〉 t , t ∈ [0, T ]. Hence (Y 0 , Z ) = (Y 0 , Z ).
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Lemma 5 ....

 5 Let Z ∈ Z . There exists C > 0 and ε > 0 such thatsup t ∈[0,T ] E δ(Y Ŷ0 ,Z T ) [|K Z t | 1+ε ] ≤ C .Proof. We recall the definition ofK Z for Z ∈ Z K Z t = e -η c(N a t -N a 0 +N b t -N b 0 )-Y 0,Z t , t ∈ [0, T ].Let p > 1. By using Hölder's inequality and the uniform boundedness of the intensities of N a and N b , we deduce that there exists C > 0 such thatE δ(Y Ŷ0 ,Z T ) [|K Z t | p ] ≤ C E 0 [(e -γY 0,Z t ) any p > p. Thus, E δ(Y Ŷ0 ,Z T ) [|K Z t | p ] ≤ C 1 + E 0 [(e -γY 0,Z t )From Jensen's inequality and then Hölder's inequality, we deduce that for any p > p we haveE δ(Y Ŷ0 ,Z T ) [|K Z t | p ] ≤ C 1 + E 0 sup δ∈A E δ t [e p η(Y 0,Z T +P L δ T -P L δ t ) ] ≤ C 1 + E 0 sup δ∈A E δ t [e p ηY 0,Z T ] .By using a dynamic programming principle, similarly to the proof of Lemma 3 by noticing that the familyJ (µ, δ) = E δ τ [e p ηY 0,Z T ] µ∈A τis directly upwards, we getE δ(Y Ŷ0 ,Z T ) [|K Z t | p ] ≤ C 1 + sup δ∈A E δ e p ηY 0,Z T By setting ε = η -η3 , if we take p = 1 + ε, then p = p + ε and p = p + ε, we obtainE δ(Y Ŷ0 ,Z T ) [|K Z t | 1+ε ] ≤ C 1 + sup δ∈A E δ e η Y 0,Z TFrom the definition of Z (involving the condition (7)), we get for any t ∈ [0, T ]E δ(Y Ŷ0 ,Z T ) [|K Z t | 1+ε ] ≤ C , with C = C 1 + sup δ∈A E δ e η Y 0,Z T < +∞.

  22) yields uniqueness of the one-dimensional distributions which is enough to get weak uniqueness for (20) and the strong Markov property by [EK86, Theorem 4.4.2].

	We notice that (22)-(23) agree with [GKR18, Proposition 4.5] when λ = 0. Moreover, one can
	lift (23) to a non-linear partial differential equation in duality with (21). Indeed, define the
	measure-valued function H : t → Ht (d x) = H t (x)1 {x≥0} d x. Then, it follows from (23) that

  Note however, that the rough Heston model has only one volatility factor. Thus one can hedge with only one European option, as in the classical Heston case, provided the value of the option component of the hedge portfolio coincides with the theoretical value of the forward variance component.

the characteristic function now in the Markovian form (3), hedging European options becomes obvious. Let C t (T ) = E f (X T ) F t . Then, a European option with payoff f (X T ) can be perfectly replicated. As of time t , the hedge portfolio has ∂ S t C t (T ) of stock and ∂ ξ t C t (T ) of the forward variance curve ξ t (s) for each s ∈ (t , T ], where ∂ ξ t represents the Fréchet derivative, roughly speaking the portfolio corresponding to bumping each of the forward variances ξ t (s), see Chapter III. From the above expressions, it is clear that perfect replication is in theory only. In practice, as with interest rates, one holds a finite number of variance contracts.

  T 0 |K n (s)| 2 d s) n≥1 , sup t ≤T |g n (t )| p and T 0 |K n (s)| 2 d s are uniformly bounded in n. This leads to

  R) satisfying Assumption 4 and define E λ as the canonical resolvent of K with parameter λ ∈ R -{0}. Then, t → t 0 E The non-negativity of χ = • 0 E λ (s)d s is obtained from Theorem 7 and from the fact that χ is solution of the following linear Volterra equation χ = K * (λχ + 1), by Theorem 5. For fixed t 0 > 0, ∆ t 0 χ satisfies

λ (s)d s is non-negative and non-decreasing on R + . Furthermore t 0 E λ (s)d s is positive, if K does not vanish on [0, t ] Proof.

  -γY 0 . Denote Y t = Y Y 0 ,Z Q t d S t , t ∈ [0, T ]. By direct application of Itô's formula, we see thatd e -γY t = γe -γY t --(Q t + Z S t )d S t -(Z t ,Q t )h(δ t , Z t ,Q t ) d t .Hence e -γY is a P δ -local submartingale. Thanks to Condition (10), the uniform boundedness of the intensities of N a and N b and Hölder inequality, (e -γY t ) t ∈[0,T ] is uniformly integrable and hence is a true submartingale. By Doob-Meyer decomposition theorem, we conclude that MM (δ, ξ)= E δe -γY T = -e -γY 0 -E δ T 0 γe -γY t H (Z t ,Q t )h(δ t , Z t ,Q t ) d t ≤ -e -γY 0 .

									t	+	t 0 δ a t d N a t + δ b t d N b t +
					1 γ	(1 -e -γ(Z a t +δ a t ) )d N δ,a t -	1 γ	(1 -e -γ(Z b t +δ a t ) )d N δ,b
	0	•	γe -γY t --(Q t + Z S t )d S t -	1 γ	(1 -e -γ(Z a t +δ a t ) )d N δ,a t -	1 γ	(1 -e -γ(Z b t +δ a t ) )d N δ,b t	,
	is a true martingale. It follows that					
	J							

t + H

  and d Y t = Z a where Z a , Z b , Z S , I , A d are independent of δ, as they may be expressed asZ i t d N i t = d [Y , N i ] t , i ∈ {a, b}, Z S t σ 2 d t = d 〈Y t , S t 〉 t ,A d the predictable pure jumps of Y . Moreover, Itô's Formula yields

	Z a t = -	1 γ	log(1 +	Z δ,a t U δ t -
				t d N a t + Z b t d N b t + Z S t d S t -d I t -d A d t ,

  IX.D. On the verification argument for the exchange problemProof. Easy but tedious computations lead to prove that ϕ is non-decreasing on (-∞, -δ ∞ + By combining these two conditions, we get the result under Condition (37) on δ ∞ .

	1 γ log(1 +	σγ k )] and non-increasing on [δ ∞ + 1 γ log(1 +	σγ k ), ∞) if,
			δ ∞ ≥ c +	1 η	log(v 2 /v 1 ) -(	1 η	+	1 γ	) log(1 +	σγ k	) .
	Moreover, we notice that ϕ admits a maximum on [-δ ∞ + 1 γ log(1 + attained in z = c + 1 η log(v 2 /v 1 ) + 1 η log 1 -σ 2 γη (k + σγ)(k + ση) σγ k ), δ ∞ + 1 γ log(1 + ,	σγ k )]
	as soon as δ ∞ ≥ | -z + 1 γ log(1 +	σγ k )|.				
													1 ) ,
	where	C = A	ση k	exp -	k σγ	log(1 +	σγ k	) + (1 +	k ση	) log 1 -	σ 2 γη (k + σγ)(k + ση)	.

For simplicity, we take only the martingale part of the log-return.

Note the change of notations compared to (5) in the fractional kernel power where α is replaced by H + 1/2. This is to be consistent with the notations of Chapter VIII.

A large tick asset is an asset whose bid-ask spread is almost always equal to one tick and therefore essentially moves by one tick jumps, see[START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF].

Notice that the limit price is actually a "Bachelier" version of the Heston model. Furthermore, remark that the definition of the rough Heston model is not a well-established one and other types of fractional Heston models can be defined, see for example[START_REF] Guennoun | Asymptotic behaviour of the fractional Heston model[END_REF].

We use the fact that [M T , M T ] t = diag(N T t ) and N T t = M T t + t 0 λ T s d s.

Notice that ∀(x, y) ∈ (R 2 + ) * , | x-βy x+y x+β 2 y | ≤ 1 by Cauchy-Schwarz inequality.

Note that we call this equation rough because of the presence of the kernel (ts) α-1 . However, it is not directly related to rough paths theory.

Actually, using a more complex framework of Hawkes processes, one can show that the results still hold for any ρ ∈ [-1, 1], see Chapter III

Actually there is no really standard definition for the rough Heston model and other versions can be considered, see[START_REF] Guennoun | Asymptotic behaviour of the fractional Heston model[END_REF].

Recall that φ * 1 = φ and φ * k (t ) = t 0 φ(ts).φ * k-1 (s)d s.

We refer to Appendix IV.B for the definition of the resolvent of the first kind and some of its properties.

Under (H 1 ) one can show that K * L is right-continuous, non-decreasing and of locally bounded variation (as in Remark

in the Appendix), thus the associated measure d (K * L) is well defined.3 Recall that under (H 1 ) one can show that ∆ h K * L is right-continuous and of locally bounded variation (see Remark 3 in the Appendix), thus the associated measure d (∆ h K * L) is well defined.

We use the notation supp(µ) to denote the support of a measure µ, that is the set of all points for which every open neighborhood has a positive measure. Here we assume that the support is in R + .

Alternatively, the parameters of the rough Heston model may be efficiently calibrated to the term structure of leverage swaps using a closed-form formula, see[START_REF] Alòs | Exponentiation of conditional expectations under stochastic volatility[END_REF].

Time-reversal symmetry

http://realized.oxford-man.ox.ac.uk/data/download The Oxford-Man Institute of Quantitative Finance Realized Library contains a selection of daily non-parametric estimates of volatility of financial assets, including realized variance and realized kernel estimates. A selection of such estimators is described and their performances compared in, for example,[START_REF] Gatheral | Zero-intelligence realized variance estimation[END_REF].

For simplicity, we take only the martingale part of the log-returns.

For definitions and properties of fractional integration and differentiation and of the Mittag-Leffler density f α,λ , see for example Appendices A3 and A4 of Chapter I

Theorem 6 is used here with the smoothed kernel K n given by (13) together with b(x) = -λx and g defined as in(10) 

VIII. Multi-factor approximation of rough volatility models

Note that Theorem 6 is used here for the smoothed kernel K n , b(x) = -λx and g n defined by (30).

In fact, V n 0 = 0 while V 0 may be positive.

Under Assumption 4 one can show that ∆ h K * L is non-increasing and right-continuous thanks to Remark 2 so that the associated measure d (∆ h K * L) is well-defined.

A kernel K ∈ L 2 loc (R + , R) is said to be completely monotone, if it is infinitely differentiable on (0, ∞) such that (-1) j K ( j ) (t ) ≥ 0 for any t > 0 and j ≥ 0.

In practice, the efficient price can be thought of as the mid-price of the asset.

As in [AS08], for sake of simplicity, we assume that the market maker estimates his inventory risk using the efficient price S.

P 0 denotes the the probability measure P δ associated to a vanishing spread δ = (δ a , δ b ) = (0, 0).

Note that the taker cost is chosen according to Criteria (26). We expect the optimal spread to be close to one tick.

Note that E δ [U δ T ] = J T (0, δ) > -∞ using Hölder inequality together with (8) and the uniform boundedness of the intensities of N a and N b . Hence the process U δ is integrable.

Remerciements

Roughening Heston Abstract

Rough volatility models are known to fit the volatility surface remarkably well with very few parameters. On the other hand, the classical Heston model is highly tractable allowing for fast calibration. We present here the rough Heston model which offers the best of both worlds. Even better, we find that we can accurately approximate rough Heston model values by scaling the volatility of volatility parameter of the classical Heston model.

Introduction

Rough volatility models have succeeded in capturing the imagination of both practitioners and academics with their remarkable ability to consistently model both historical and implied volatilities with very few parameters. However, even with the introduction of the efficient hybrid BSS scheme of [START_REF] Bennedsen | Hybrid scheme for Brownian semistationary processes[END_REF], practical implementation has proved to be difficult. In the recent advances in Chapters I, II and III, the authors show how a natural rough generalization of the Heston model emerges as the macroscopic limit of a simple high frequency trading model which reflects the persistence of order flow, the high degree of endogeneity of the market, and liquidity asymmetry between bid and ask sides of the limit order book. In addition, they derive the characteristic function of the log-price as well as hedging strategies in this model.

In this note, we present the rough Heston model and explain how to use it in practice. As in the rough Bergomi model of [START_REF] Bayer | Pricing under rough volatility[END_REF], the forward variance curve

where V u is the spot variance at time u, is a state variable so that the model can be made to match at-the-money volatilities exactly. We are left with only three parameters to calibrate, defined in Section 2: the Hurst exponent H , the volatility of volatility ν and the correlation ρ between spot moves and volatility moves.

Part V

Short-term behavior of the at-the-money implied volatility under rough volatility models

Part VI

Markovian approximation of rough volatility models

with

Unlike the classical case H = 1/2, (23) does not exhibit an explicit solution. However, it can be solved numerically through the Adam scheme developed in [DFF02, DFF04, DF99] and Chapter II for instance. In this section, we show that the multi-factor approximation applied to the rough Heston model gives rise to another natural numerical scheme for solving the fractional Riccati equation. Furthermore, we will establish the convergence of this scheme with explicit errors.

Multi-factor scheme for the fractional Riccati equation

We consider the multi-factor approximation (S n ,V n ) of Definition 2 with σ(x) = ν x, where the number of factors n is large, that is

Recall that g n is given by ( 12) and it converges pointwise to g as n goes large, see Lemma 1.

We write the dynamics of (S n ,V n ) in terms of a Volterra Heston model with the smoothed kernel K n given by (13) as follows

In [START_REF] Jaber | Affine Volterra processes[END_REF] and Chapter IV, the characteristic function formula of the log-price ( 22) is extended to the general class of Volterra Heston models. In particular,

is given by

where ψ n (•, z) is the unique continuous solution of the Riccati Volterra equation

Thanks to the weak uniqueness of the rough Heston model, established in several works [START_REF] Jaber | Affine Volterra processes[END_REF][START_REF] Mytnik | Uniqueness for volterra-type stochastic integral equations[END_REF], and to Theorem 2, (S n ,V n ) n≥1 converges in law for the uniform topology to (S,V ) when n tends to infinity. In particular, L n (t , z) converges pointwise to L(t , z). Therefore, we expect ψ n (•, z) to be close to the solution of the fractional Riccati equation ( 23). This is the object of the next theorem, whose proof is reported to Section 5.3 below.

where | is smaller under the choice of factors (28). Indeed the Volterra approximation ψ n (T, i b) is now closer to the fractional Riccati solution ψ(T, i b) especially for small number of factors. However, when n is large, the accuracy of the approximation seems to be close to the one under (27). For instance when n = 500, the relative error is around 1% under both ( 27) and (28). Assumption 4. We assume that K ∈ L 2 ([0, T ], R) is non-negative, non-increasing and continuous on (0, T ]. We also assume that its resolvent of the first kind L is non-negative and non-increasing in the sense that 0 ≤ L([s, s + t ]) ≤ L([0, t ]) for all s, t ≥ 0 with s + t ≤ T .

In Chapter IV, the proof of [AJLP17, Theorem 3.5] is adapted to prove the existence of a non-negative solution for a wide class of admissible input curves g satisfying 6

We therefore define the following set of admissible input curves

The following existence theorem is a particular case of Theorem 7 in Chapter IV. Then, under Assumptions 3, and 4, the stochastic Volterra equation (51) admits a non-negative weak solution for any g ∈ G K .

Remark 4. Note that any locally square-integrable completely monotone kernel 7 that is not identically zero satisfies Assumption 4, see [START_REF] Jaber | Affine Volterra processes[END_REF]Example 3.6]. In particular, this is the case for

Γ(H +1/2) , with H ∈ (0, 1/2).

• any weighted sum of exponentials K (t ) = n i =1 c i e -γ i t such that c i , γ i ≥ 0 for all i ∈ {1, . . . , n} and c i > 0 for some i . Remark 5. Theorem 6 will be used with functions g of the following form

where ξ is a non-negative measure of locally bounded variation and c is a non-negative constant. In that case, we may show that (53) is satisfied, under Assumption 4.

VIII.C Linear Volterra equation with continuous coefficients

In this section, we consider K ∈ L 2 loc (R + , R) satisfying Assumption 4 with T = ∞ and recall the definition of G K , that is G K = g : R + → R continuous satisfying (53) and g (0) ≥ 0 .

We denote by . ∞,T the usual uniform norm on [0, T ], for each T > 0.

Theorem 7. Let K ∈ L 2 loc (R + , R) satisfying Assumption 4 and g , z, w : R + → R be continuous functions. The linear Volterra equation

admits a unique continuous solution χ. Furthermore if g ∈ G K and w is non-negative, then χ is non-negative and

for all for t 0 , t ≥ 0.

Proof. The existence and uniqueness of such solution in

Because χ is solution of (54), it is enough to show the local boundedness of χ to get its continuity. This follows from Grönwall's Lemma 5 applied on the following inequality

for any t ∈ [0, T ] and for a fixed T > 0.

We assume now that g ∈ G K and w is non-negative. The fact that g t 0 ∈ G K , for t 0 ≥ 0, is proved by adapting the computations of the proof of Theorem 3 in Chapter IV with ν = 0 provided that χ is non-negative. In order to establish the non-negativity of χ, we introduce, for each ε > 0, χ ε as the unique continuous solution of

It is enough to prove that χ ε is non-negative, for every ε > 0, and that (χ ε ) ε>0 converges uniformly on every compact to χ as ε goes to zero.

Positivity of χ ε :

It is easy to see that χ ε is non-negative on a neighborhood of zero because, for small t ,

as χ, z and w are continuous functions. Hence, t 0 = inf{t > 0; χ ε (t ) < 0} is positive. If we assume that t 0 < ∞, we get χ ε (t 0 ) = 0 by continuity of χ ε . χ ε being the solution of (55), we have

Part VII

Optimal make-take fees for market making regulation

Impact of the incentive policy on the trading cost

We now study the impact of the incentive policy on the investors, viewed as the market takers. We assume that there is only one market taker. In the case without exchange, with the specified parameters and under optimal reaction of the market maker, this investor buys on average 200 shares over [0, T ]. To make the comparison with the case with exchange intervention, we modify the parameter A appearing in the intensity (2) when simulating a market with optimal contract. This new value is chosen so that the investor buys on average the same number of assets (200) over the time period. This amounts to take A = 0.9s -1 . We confirm in Figure IX.9 that the average ask order flows agree in both situations. 

Lemma 2. Let τ be an F-stopping time with values in [t , T ]. Then, there exists a non-decreasing sequence

Proof. For µ and µ in A τ , define μ = µ1I {J T (τ,µ)≥J T (τ,µ )} + µ 1I {J T (τ,µ)<J T (τ,µ )} . Then μ ∈ A τ and by definition of

Hence J τ,T is directly upwards, and the required result folows from [Nev72, Proposition VI.I.I p121].

Lemma 3. Let t ∈ [0, T ] and τ be an F-stopping time with values in [t , T ]. Then,

Proof. Let t ∈ [0, T ] and set an F-stopping time τ with values in [t , T ]. The proof is similar to [CK93, Proof of Proposition 6.2]. First, by the tower property,

For all δ ∈ A , the quotient

does not depend on the values of δ before time τ. Then, We next prove the reverse inequality. Let δ ∈ A and µ ∈ A τ . We define (δ⊗ τ µ) u = δ u 1 0≤u<τ + µ u 1 τ≤u≤T . Then δ ⊗ τ µ ∈ A and From Bayes' Formula and by noticing that