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Résumé

Cette thèse a pour objectif la compréhension de plusieurs aspects du caractère rugueux de la
volatilité observé de manière universelle sur les actifs financiers. Ceci est fait en six étapes.

Dans une première partie, on explique cette propriété à partir des comportements typiques
des agents sur le marché. Plus précisément, on construit un modèle de prix microscopique
basé sur les processus de Hawkes reproduisant les faits stylisés importants de la microstructure
des marchés. En étudiant le comportement du prix à long terme, on montre l’émergence d’une
version rugueuse du modèle de Heston (appelé modèle rough Heston) avec effet de levier.

En utilisant ce lien original entre les processus de Hawkes et les modèles de Heston, on calcule
dans la deuxième partie de cette thèse la fonction caractéristique du log-prix du modèle rough
Heston. Cette fonction caractéristique est donnée en terme d’une solution d’une équation
de Riccati dans le cas du modèle de Heston classique. On montre la validité d’une formule
similaire dans le cas du modèle rough Heston, où l’équation de Riccati est remplacée par sa
version fractionnaire. Cette formule nous permet de surmonter les difficultés techniques dues
au caractère non markovien du modèle afin de valoriser des produits dérivés.

Dans la troisième partie, on aborde la question de la gestion des risques des produits dérivés
dans le modèle rough Heston. On présente des stratégies de couverture utilisant comme
instruments l’actif sous-jacent et la courbe variance forward. Ceci est fait en spécifiant la
structure markovienne infini-dimensionnelle du modèle.

Étant capable de valoriser et couvrir les produits dérivés dans le modèle rough Heston, nous
confrontons ce modèle à la réalité des marchés financiers dans la quatrième partie. Plus
précisément, on montre qu’il reproduit le comportement de la volatilité implicite et historique.
On montre également qu’il génère l’effet Zumbach qui est une asymétrie par inversion du
temps observée empiriquement sur les données financières.

On étudie dans la cinquième partie le comportement limite de la volatilité implicite à la
monnaie à faible maturité dans le cadre d’un modèle à volatilité stochastique général (incluant
le modèle rough Bergomi), en appliquant un développement de la densité du prix de l’actif.

Alors que l’approximation basée sur les processus de Hawkes a permis de traiter plusieurs
questions relatives au modèle rough Heston, nous examinons dans la sixième partie une
approximation markovienne s’appliquant sur une classe plus générale de modèles à volatilité
rugueuse. En utilisant cette approximation dans le cas particulier du modèle rough Heston, on
obtient une méthode numérique pour résoudre les équations de Riccati fractionnaires.

Enfin, nous terminons cette thèse en étudiant un problème non lié à la littérature sur la
volatilité rugueuse. Nous considérons le cas d’une plateforme cherchant le meilleur système de
make-take fees pour attirer de la liquidité. En utilisant le cadre principal-agent, on décrit le
meilleur contrat à proposer au market maker ainsi que les cotations optimales affichées par ce
dernier. Nous montrons également que cette politique conduit à une meilleure liquidité et à
une baisse des coûts de transaction pour les investisseurs.
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Abstract

The aim of this thesis is to study various aspects of the rough behavior of the volatility observed
universally on financial assets. This is done in six steps.

In the first part, we investigate how rough volatility can naturally emerge from typical behav-
iors of market participants. To do so, we build a microscopic price model based on Hawkes
processes in which we encode the main features of the market microstructure. By studying the
asymptotic behavior of the price on the long run, we obtain a rough version of the Heston
model exhibiting rough volatility and leverage effect.

Using this original link between Hawkes processes and the Heston framework, we compute
in the second part of the thesis the characteristic function of the log-price in the rough
Heston model. In the classical Heston model, the characteristic function is expressed in
terms of a solution of a Riccati equation. We show that rough Heston models enjoy a similar
formula, the Riccati equation being replaced by its fractional version. This formula enables
us to overcome the non-Markovian nature of the model in order to deal with derivatives pricing.

In the third part, we tackle the issue of managing derivatives risks under the rough Heston
model. We establish explicit hedging strategies using as instruments the underlying asset and
the forward variance curve. This is done by specifying the infinite-dimensional Markovian
structure of the rough Heston model.

Being able to price and hedge derivatives in the rough Heston model, we challenge the model
to practice in the fourth part. More precisely, we show the excellent fit of the model to
historical and implied volatilities. We also show that the model reproduces the Zumbach’s
effect, that is a time reversal asymmetry which is observed empirically on financial data.

While the Hawkes approximation enabled us to solve the pricing and hedging issues under
the rough Heston model, this approach cannot be extended to an arbitrary rough volatility
model. We study in the fifth part the behavior of the at-the-money implied volatility for small
maturity under general stochastic volatility models.

In the same spirit as the Hawkes approximation, we look in the sixth part of this thesis for a
tractable Markovian approximation that holds for a general class of rough volatility models.
By applying this approximation on the specific case of the rough Heston model, we derive a
numerical scheme for solving fractional Riccati equations.

Finally, we end this thesis by studying a problem unrelated to rough volatility. We consider an
exchange looking for the best make-take fees system to attract liquidity in its platform. Using
a principal-agent framework, we describe the best contract that the exchange should propose
to the market maker and provide the optimal quotes displayed by the latter. We also argue
that this policy leads to higher quality of liquidity and lower trading costs for investors.
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Introduction

The aim of this work is to study various aspects of rough volatility models such as the
microstructural foundations of rough volatility, the pricing and hedging under these models
and finding relevant model approximations for numerical computations. We also discuss an
optimal make-take fees policy for market making regulation.

Motivations

The rough nature of the volatility is nowadays considered a universal feature of financial data.
It has been first discovered in [GJR18] and then confirmed in [BLP16]. Indeed, empirical studies
over a very wide range of assets of volatility time series have shown that the volatility exhibits
a dynamic that is rougher than that of a Brownian motion. Moreover, including this stylized
fact into financial models leads to a better fit of the volatility surface, see [BFG16, Fuk17]. The
first step of this thesis is to understand how such feature can be generated by answering the
following question:

Question 1. Can the rough behavior of the volatility be explained from microscopic interactions
between agents?

In order to answer this question, we build a tick by tick price model encoding the microscopic
stylized facts observed in the market in the context of high frequency trading. This model is
based on Hawkes processes. By studying the asymptotic behavior of our microscopic price
dynamic in the long run, we obtain in the limit a rough version of the Heston model.

Since the discovery of this empirical feature, many works aim at rethinking classical stochastic
volatility models in order to account for the rough behavior of the volatility. A way to do
so is by replacing the classical Brownian motion by a fractional one with a small Hurst
parameter around 0.1. However, due to the non-Markovian nature of the fractional Brownian
motion, difficulties are encountered in practice when it comes to derivatives pricing. Under the
classical Heston model, efficient numerical methods for option pricing have been developed in
[AMST07, CM99, KJ05, Lew01] by using the explicit formula for the characteristic function of
the asset log-price established in [Hes93]. The convergence result linking Hawkes processes
to rough volatility may help us to extend this formula to the rough case and to answer the
following question:

1



Introduction

Question 2. Can we obtain a formula of the characteristic function in the rough Heston model?

By answering the question above, numerical methods for option pricing can be developed.
However, in practice, a pricing procedure is not enough. We should also be able to manage
derivatives risks. This makes the question bellow important so that such model can be used in
the industry:

Question 3. How do we hedge derivatives in the rough Heston model?

Once we are able to price and hedge derivatives in the rough Heston model, it will be natural
to challenge the model to practice. By introducing the rough volatility feature into the Heston
framework, we expect a better fit of the model to the historical and implied volatility. Hence,
we raise the following issue:

Question 4. How does the rough Heston model behave in practice?

While the Hawkes approximation will enable us to answer the questions above, this approach is
only specific to the rough Heston case and cannot be extended to an arbitrary rough volatility
model. We can use a direct approach by applying small-time expansions of the density of the
asset price to answer our next question:

Question 5. How does the at-the-money implied volatility of rough volatility models behave in the
short term?

In the same spirit as the Hawkes approximation, it is also natural to look for a tractable
Markovian approximation that can be used to tackle derivatives pricing and hedging as well as
numerical simulation of a general class of rough volatility models. This leads to the following
question:

Question 6. Can we approximate a rough volatility model by a tractable Markovian one?

Finally, we end the thesis with a topic unrelated to rough volatility. Indeed, we study the
problem of optimal market making regulation. Nowadays, with the fragmentation of financial
markets, exchanges are in competition and look for the best way to attract liquidity in their
platforms. Hence, they apply a make-take fees system where they subsidize liquidity providers
and tax liquidity consumers. Such system led to the emergence of a new type of market makers,
such as high frequency traders, that aim at collecting fee rebates. However many studies have
shown that these market makers tend to leave the market in a period of stress, see [MSLR17].
Hence, they stop being liquidity providers during a period of time the market needs the most
liquidity. It is therefore natural to look for a way to avoid this kind of situation by answering
the following question:

Question 7. What is the optimal make-take fees system that the exchange should apply on its
platform?

2



Outline

Outline

Each question presented above corresponds to a part of the thesis.

In Part I, we answer Question 1 by building a Hawkes-based microscopic price model able
to reproduce the main features of market microstructure: high endogoneity of the market,
no-arbitrage property, buying/selling asymmetry of liquidity and presence of metaorders.
We prove in Chapter I that when the first three of these stylized facts are considered, the
microscopic price behaves in the long run as a Heston stochastic volatility model exhibiting
leverage effect. When we add the last property (presence of metaroders), we obtain in the
limit a rough version of the Heston model exhibiting both leverage effect and rough volatility.
Therefore we show that rough volatility is generated from the high endogeneity of the market
together with the metaorders splitting phenomenon. Furthermore, we obtain that leverage
effect can be at least partially explained from microstructural features.

We answer Question 2 in Part II by using the link between Hawkes processes and the rough
Heston model of Part I. While the characteristic function of the log-price under the classical
Heston model is given explicitly in terms of the solution of a Riccati equation, we show in
Chapter II that this formula can be extended to the rough Heston model, the Riccati equation
being replaced by a fractional one. In practice, fractional Riccati equations cannot be solved
explicitely, but numerical methods such as the Adams scheme, presented in Chapter II, can be
used.

In Part III, we tackle Question 3 by identifying the conditional law of the rough Heston model
and studying its infinite-dimensional Markovian structure. In particular, we obtain in Chapter
III explicit hedging strategies of derivatives by using as instruments the state variables of the
model, namely the underlying asset and the forward variance curve. We also look for a general
state space in which the forward variance curve lies in Chapter IV.

In Part IV, we treat Question 4 and examine the fit of the rough Heston model to the market.
More precisely, we summarize in Chapter V the results obtained in Parts II and III and show
the amazing fit of the rough Heston model to the SPX volatility surface. Then in Chapter
VI, we answer a question raised by Jean Philippe Bouchaud about the ability of the model to
reproduce a time reversal asymmetry observed in financial time series.

In Part V, we answer Question 5 by applying an Edgeworth small-time expansion of the asset
price density under a general stochastic volatility framework. In particular, we obtain the
behavior of the at-the-money implied skew and curvature for small maturity and apply these
results to the particular case of the rough Bergomi model, see Chapter VII.

Answers to Question 6 can be found in Part VI where we study in Chapter VIII the conver-
gence of multi-factor stochastic volatility models sequence to a general class of rough volatility
models. This multi-factor approximation is naturally obtained by smoothing the fractional

3
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kernel appearing in the dynamics of the variance process. By applying this approximation
on the specific case of the rough Heston model, we derive a numerical scheme for solving
fractional Riccati equations appearing in the characteristic function formula.

Finally, Question 7 is studied in Part VII. We consider a framework where one market maker
quotes bid and ask prices on a platform held by an exchange who earns transaction costs
from each market order. The intensity of market orders arrival is a deterministic function
of the spread. In order to attract liquidity in its platform, we provide in Chapter IX the
optimal contract that the exchange should propose to the market maker. This is done by
using a principal-agent framework: First we compute the market maker optimal quotes for any
contract proposed by the exchange. Then knowing the optimal quotes of the market maker,
we compute the best contract that the exchange should choose. We finally study the effect of
the optimal policy on the liquidity of the market, the profit and loss of the market maker and
the exchange and the transaction costs for investors.

Let us now rapidly review the main results of this thesis.

1 Part I: The microstructural foundations of leverage effect and
rough volatility.

A very wide range of assets exhibits a rough dynamic of the volatility with the same order of
magnitude for the roughness parameter around 0.1 in the Hölder sense. Understanding how
such a stylized fact can be generated is of course a natural question. Moreover, it will lead us
to rough volatility models that we can manage in practice.

In Chapter I, we aim at understanding how microscopic features of the market at the high
frequency scale can give rise in the long run to the crucial macroscopic stylized facts: leverage
effect and rough volatility. More precisely, we build a tick by tick price model based on Hawkes
processes. Then, we encode in this model the main features of market microstructure and
study its long run behavior.

1.1 Building the microscopic model

Inspired by [BDHM13a, JR15], we model the tick by tick price as follows:

Pt = N+
t −N−

t ,

where Nt = (N+
t , N−

t ) is a bi-dimensional Hawkes process with intensity λt = (λ+
t ,λ−

t ) defined
by (

λ+
t

λ−
t

)
=

(
µ+

µ−
)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
d N+

s

d N−
s

)
,

where µ+ and µ− are positive constants and

φ=
(
ϕ1 ϕ3

ϕ2 ϕ4

)
:R+ →M 2(R+).
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1. Part I: The microstructural foundations of leverage effect and rough volatility.

In this framework, λ+
t d t corresponds to the probability of an upward jump of P between times

t and t +d t . This probability has three components:

• µ+d t , the Poissonian part of the intensity, is the probability that the price goes up
because of some exogenous reason.

•
(∫ t

0
ϕ1(t − s)d N+

s

)
d t , is the probability of upward jump induced by past upward jumps.

•
(∫ t

0
ϕ3(t − s)d N−

s

)
d t , is the probability of upward jump induced by past downward

jumps.

Similar analysis can be made on λ−
t d t .

We now present the relevant stylized facts of market microstructure in our setting:

• Encoding the absence of statistical arbitrage: At the high-frequency scale, designing
a strategy that is profitable on average is a very intricate task, see [ALR14]. We model
this fact by assuming that the number of future upward jumps is on average equal to the
number of downward jumps, namely

E[N+
t ] = E[N−

t ].

This condition is satisfied by taking

µ+ =µ−, ϕ1 +ϕ3 =ϕ2 +ϕ4. (1)

• Dealing with the asymmetry of liquidity between the bid and ask side of the order
book: The fact that the ask side of the order book is more liquid than the bid side is a
stylized fact commonly observed in the market, see [BCST12, BP09, HS06, HS81, TT12].
In the Hawkes framework, this is translated by an asymmetry in the kernel matrix φ

such that
ϕ3 =βϕ2, β> 1. (2)

• The high degree of endogeneity of the market: Markets are highly endogenous. This
means that most of the orders have no real economic motivation but are rather sent
in reaction to past orders, see [FS15, HBB13]. Thanks to a population interpretation of
Hawkes processes, we can show that the stability condition

S (
∫ ∞

0
φ(s)d s) = ‖ϕ1‖1 +β‖ϕ2‖1 < 1,

where S denotes the spectral radius operator, should almost be violated in order to
take into account the high endogeneity of the market. Hence, we assume that this
spectral radius is smaller but close to unity. To do so, we index the Hawkes process by a

5
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parameter T > 0 meant to go to infinity. More precisely, we assume that the microscopic
price P T is given by

P T
t = N T,+

t −N T,−
t , (3)

where N T
t = (N T,+

t , N T,−
t ) is a bi-dimensional Hawkes process indexed by T , with intensity

λT
t = (λT,+

t ,λT,−
t ) defined by(

λT,+
t

λT,−
t

)
=

(
µT

µT

)
+

∫ t

0
φT (t − s).

(
d N T,+

s

d N T,−
s

)
,

with µT a positive constant. The kernel matrix φT :R+ →M 2(R+) is given by

φT = aTφ= aT

(
ϕ1 ϕ3

ϕ2 ϕ4

)
, aT ∈ (0,1),

and should satisfy

S (
∫ ∞

0
φ(s)d s) = 1, aT −→

T→∞
1, (4)

so that the high endogeneity of the market is obtained when T is large enough.

1.1.1 Final microscopic model

The final microscopic model for the price P T is given by (3). In order to encode the stylized
facts discussed above, Conditions (1), (2) and (4) shall be satisfied. These conditions impose
the following specific structure of the kernel matrix φT .

Assumption 1. We assume that

φT = aTφ= aT

(
ϕ1 βϕ2

ϕ2 (β−1)ϕ2 +ϕ1

)
,

with ϕ1,ϕ2 :R+ 7→R+ such that ‖ϕ1‖1 +β‖ϕ2‖1 = 1, and aT ∈ (0,1) converging to unity as T goes
to infinity.

1.2 Generating leverage effect

In order to obtain a first non-degenerate limit in the long run, we use the following additional
assumption on the asymptotic framework and the kernel matrix.

Assumption 2. There exist positive parameters λ, µ and m such that

T (1−aT ) →
T→∞

λ, µT =µ,

and

S (
∫ ∞

0
xφ(x)d x) = m <∞.
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1. Part I: The microstructural foundations of leverage effect and rough volatility.

After a suitable scaling in time and space, we show that the microscopic price converges to a
Heston dynamics exhibiting a negative correlation between price and volatility moves.

Result 1. Under Assumptions 1 and 2, as T tends to infinity, the rescaled microscopic price

1

T
P T

tT = N T,+
tT −N T,−

tT

T
, t ∈ [0,1],

converges in law for the Skorokhod topology to the following Heston model:

Pt = 1

1− (‖ϕ1‖1 −‖ϕ2‖1)

√
2

1+β
∫ t

0

√
XsdWs ,

with

d X t = λ

m

(
(β+1)

µ

λ
−X t

)
d t + 1

m

√
1+β2

1+β
√

X t dBt , X0 = 0,

where (W,B) is a correlated bi-dimensional Brownian motion with

d〈W,B〉t = 1−β√
2(1+β2)

d t .

Result 1 shows that when β > 1, we obtain leverage effect generated by the asymmetry of
liquidity between the bid and ask side of the order book. Note that Conditions (1) and (4)
are also important to obtain a non-degenerate macroscopic price limit. To our knowledge,
this result is the first in the literature relating in a non ad-hoc way the leverage effect to high
frequency dynamics.

1.3 Generating rough volatility

The microscopic price above does not take into account an important stylized fact: The wide
presence of metaorders in the market, see [AC01, LL13]. This property is a crucial feature of
the market microstructure. It is translated in the Hawkes framework by considering a kernel
matrix φT exhibiting a heavy tail as explained in [JR16b]. This leads us to replace Assumption
2 by the following one.

Assumption 3. There exist α ∈ (1/2,1) and C > 0 such that

αxα
∫ ∞

x
ϕ1(s)+βϕ2(s)d s →

x→∞ C .

Moreover, for some λ∗ > 0 and µ> 0,

Tα(1−aT ) →
T→∞

λ∗ > 0, T 1−αµT →
T→∞

µ.

By incorporating the effect of metaorders into our microscopic model, we obtain that the
limiting behavior of the price is different from that in Result 1.

7
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Result 2. Let λ=αλ∗/
(
CΓ(1−α)

)
. Under Assumptions 1 and 3, as T tends to infinity, the rescaled

microscopic price √
1−aT

µTα
P T

tT =
√

1−aT

µTα
(N T,+

tT −N T,−
tT ), t ∈ [0,1],

converges in the sense of finite dimensional laws to the following rough Heston model:

Pt = 1

1− (‖ϕ1‖1 −‖ϕ2‖1)

√
2

β+1

∫ t

0

√
YsdWs ,

with Y the unique solution of

Yt = 1

Γ(α)

∫ t

0
(t − s)α−1λ

(
(1+β)−Ys

)
d s + 1

Γ(α)

∫ t

0
(t − s)α−1λ

√
1+β2

λ∗µ(1+β)

√
YsdBs ,

where (W,B) is a correlated bi-dimensional Brownian motion with

d〈W,B〉t = 1−β√
2(1+β2)

d t .

Furthermore, the process Yt has Hölder regularity α−1/2−ε for any ε> 0.

Result 2 shows that the limiting behavior of the microscopic price is still of Heston-type.
However, a new fractional kernel (t − s)α−1 appears in the limiting dynamics and creates a
rough behavior of the volatility. Actually this kernel appears also in the Mandelbrot-van Ness
representation of the fractional Brownian motions W H

W H
t = 1

Γ(H +1/2)

∫ 0

−∞
(
(t − s)H− 1

2 − (−s)H− 1
2
)
dWs + 1

Γ(H +1/2)

∫ t

0
(t − s)H− 1

2 dWs .

Hence, the tail exponent α is linked to the Hurst parameter of the limiting model H =α−1/2.
In particular, this shows that the rough behavior of the volatility is explained by the high
degree of endogeneity of the market together with the wide presence of metaorders. Note that
even more fundamental arbitrage-based foundations of rough volatility have been recently
developed in [JR18].

2 Part II: Characteristic function of rough Heston models

By taking into account the main features of market microstructure, Result 2 shows that after
a suitable scaling in time and space, the microscopic price (3) converges in the long run
to a rough version of the Heston model. In Chapter II, we use this convergence result to
obtain the characteristic function of the rough Heston model. This is done by computing
the characteristic function of the microscopic price and then passing to the limit. From this
characteristic function formula, efficient numerical methods can be applied in order to price
derivatives, see [AMST07, CM99, KJ05, Lew01].
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2. Part II: Characteristic function of rough Heston models

2.1 Link between the rough Heston model and Hawkes processes

In the spirit of Chapter I, we define the rough Heston model as a rough generalization of the
celebrated Heston model, where the fractional kernel (t − s)α−1 is added in the definition of
the variance process:

dSt = St

√
Vt dWt

Vt =V0 + 1

Γ(α)

∫ t

0
(t − s)α−1λ(θ−Vs)d s + 1

Γ(α)

∫ t

0
(t − s)α−1ν

√
VsdBs . (5)

The parameters λ, θ, V0 and ν in (5) are positive and W and B are two Brownian motions
with correlation ρ. These parameters play the same role as in the classical Heston model. The
additional parameter α ∈ (1/2,1) governs the smoothness of the volatility sample paths. The
well-definition of this model is established by showing the weak existence and uniqueness of
a non-negative solution V of the fractional stochastic differential equation appearing in (5),
see Proposition 3 in Chapter II. Moreover, we show that the process V is α−1/2−ε Hölder
continuous for any ε> 0. Using the link between Hawkes processes and the Heston framework,
we aim at computing the characteristic function of the log-price

X t = log(St /S0) =
∫ t

0

√
VsdWs − 1

2

∫ t

0
Vsd s.

We consider the microscopic price P T defined in (3). We make the following choice of the
kernel matrix φT so that Assumptions 1 and 3 are met.

Assumption 4. There exists β≥ 0 such that

aT = 1−λT −α, φT =ϕTχ,

where

χ= 1

β+1

(
1 β

1 β

)
, ϕT = aTϕ, ϕ= f α,1,

with f α,1 the Mittag-Leffler density function defined in Section II.A of Chapter II.

Result 2 needs to be adapted so that the limiting process is the log-price X t :

• Result 2 states that
√

θ(1−aT )
2µT α P T

t converges to the martingale part of X t , namely∫ t
0

p
VsdWs . So that the drift part of X t appears in the limit, we consider the fol-

lowing modification of the microscopic price:

X T
t =

√
θλ

2µT 2αP T
t − θλ

2µT 2α N T,+
t .

• Result 2 leads to a vanishing initial variance in the long run. In order to avoid this
phenomenon, we need to change the Poissonian part of the intensity µT into a time
dependent one denoted by µ̂T (t ) satisfying the following assumption.
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Assumption 5. The baseline intensity µ̂T is given by

µ̂T (t ) =µT +ξµT
( 1

1−aT
(1−

∫ t

0
ϕT (s)d s)−

∫ t

0
ϕT (s)d s

)
,

with ξ> 0 and µT =µTα−1 for some µ> 0.

Under these new conditions, we obtain the following result.

Result 3. Under Assumptions 4 and 5, the sequence of processes (X T
t )t∈[0,1] converges in law for the

Skorokhod topology to (X t )t∈[0,1] with

V0 = θξ, ν=
√
λθ(1+β2)

µ(1+β)2 , ρ = 1−β√
2(1+β2)

.

2.2 The characteristic function of Hawkes processes

In order to compute the characteristic function of the log-price X t , we compute the character-
istic function of X T

t and then we pass to the limit. X T
t being a linear combination of N T,+

tT

and N T,−
tT , we need to be able to compute the characteristic function of a multivariate Hawkes

process.

Let us consider now a d-dimensional Hawkes process N = (N 1, ..., N d ) with intensity

λt =

λ
1
t
...
λd

t

=µ(t )+
∫ t

0
φ(t − s).d Ns ,

where µ :R+ →Rd+ is locally integrable and φ :R+ →Md(R+) has integrable components such
that

S
(∫ ∞

0
φ(s)d s

)< 1.

We give a population interpretation of this process, as in [HO74], in which we consider d types
of individuals and for for each type, an individual can be either a migrant or the descendant
of a migrant such that

• Migrants of type k ∈ {1, ..,d} arrive as a non-homogenous Poisson process with rate
µk (t ).

• Each migrant of type k ∈ {1, ..,d} gives birth to children of type j ∈ {1, ..,d} following a
non-homogenous Poisson process with rate φ j ,k (t ).

• Each child of type k ∈ {1, ..,d} also gives birth to other children of type j ∈ {1, ..,d}
following a non-homogenous Poisson process with rate φ j ,k (t ).

10



2. Part II: Characteristic function of rough Heston models

Then, for k ∈ {1, ..,d}, N k
t can be taken as the number up to time t of migrants and children

born with type k . Using this population interpretation, we are able to characterize the law the
Hawkes process and compute its characterisitic function.

Result 4. For any a ∈Rd

E[exp(i a.Nt )] = exp
(∫ t

0

(
C (a, t − s)−1

)
.µ(s)d s

)
,

where C :Rd ×R+ →Cd is solution of the following integral equation:

C (a, t ) = exp
(
i a +

∫ t

0
φ∗(s).(C (a, t − s)−1)d s

)
,

with φ∗(s) the transpose of φ(s).

2.3 The characteristic function of rough Heston models

From Result 4, we are able to compute the characteristic function of X T
t

LT (a, t ) = E[exp(i aX T
t )], a ∈R.

Moreover as a consequence of Result 3, LT (a, t ) converges to the characteristic function of the
log price X t

L(a, t ) = E[exp(i aX t )], a ∈R,

as T goes large. This enables us to obtain a formula for L(a, t ). Let I 1−α be the fractional
integral operator defined by

I 1−α f (t ) = 1

Γ(1−α)

∫ t

0
(t − s)−α f (s)d s,

and Dα be the fractional derivative operator defined by

Dα f (t ) = 1

Γ(1−α)

d

d t

∫ t

0
(t − s)−α f (s)d s.

We have the following result.

Result 5. Assume that ρ ∈ (−1/
p

2,1/
p

2]. Then, the characteristic function of the log price of the
rough Heston model is given by

L(a, t ) = exp
(∫ t

0
(θλ+V0

s−α

Γ(1−α)
)h(i a, t − s)d s

)
,

where h(i a, .) is the unique continuous solution of the following fractional Riccati equation

Dαh(i a, t ) = 1

2
(−a2 − i a)+ (i aρν−λ)h(i a, t )+ ν2

2
h2(i a, t ), I 1−αh(i a,0) = 0, (6)
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We call Equation (6) a fractional Riccati equation. It can be also written in a Volterra form as
follows,

h(i a, t ) =
∫ t

0

(t − s)α−1

Γ(α)

(1

2
(−a2 − i a)+ (i aρν−λ)h(i a, s)+ ν2

2
h2(i a, s)

)
d s.

When α= 1, we obtain a classical Riccati equation that can be solved explicitly leading to the
celebrated Heston formula of the characteristic function, see [Hes93]. For α< 1, (6) cannot
be solved explicitly. However, we can apply the Adams scheme on the Volterra form of (6) to
solve it numerically, see Section 5.1 in Chapter II.

Thanks to the semi-closed formula of the characteristic function, pricing vanilla options
becomes an easy task in this model. Finally note that this formula has been extended in
[AJLP17], to the general class of Volterra affine models in which the fractional kernel is replaced
by an arbitrary one.

3 Part III: Hedging under the rough Heston model

Thanks to Result 5, we are now able to price derivatives under the rough Heston model.
However in practice, the interest of pricing is limited if it does not go along with a hedging
strategy.

Remarking that the conditional law of a rough Heston model is still a rough Heston dynamic,
we are able to use again the Hawkes framework to compute the conditional characteristic
function of the rough Heston model in Chapter III. This leads us to identify the state variables
of the model, namely the underlying St and the forward variance curve (E[Vs+t |Ft ])s≥0. As
a result, any vanilla option can be perfectly hedged, in principle, using the underlying and
the forward variance curve. In Chapter IV, we generalize this result for any Volterra Heston
model and provide a general state space for the forward variance curve.

3.1 Conditional law of the rough Heston model

In order to derive a hedging strategy for a vanilla option with maturity T > 0 and payoff f (ST ),
we need to compute the dynamics of the process (E[ f (ST )|Ft ])t∈[0,T ], that is identifying the
law of the rough Heston model (5) conditional on Ft . We can show that the conditional law is
still a rough Heston dynamic such that the mean reversion level θ becomes a time dependent
one. Hence, it is convenient to extend the definition of the rough Heston model as follows:

dSt = St

√
Vt dWt

Vt =V0 + 1

Γ(α)

∫ t

0
(t − s)α−1λ(θ0(s)−Vs)d s + 1

Γ(α)

∫ t

0
(t − s)α−1ν

√
VsdBs . (7)

The parameters λ, V0 and ν are positive, α ∈ (1/2,1) and W and B are two Brownian motions
with correlation ρ. The new mean reversion level θ0 is allowed to be time dependent satisfying
some regularity conditions (for technical reasons).
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3. Part III: Hedging under the rough Heston model

Assumption 6. θ0 is a deterministic function, continuous on R∗+ satisfying

∀u > 0; θ0(u) ≥− V0

λΓ(1−α)
u−α,

and
∀ε> 0 ∃Kε > 0; ∀u ∈ (0,1]; θ0(u) ≤ Kεu− 1

2−ε.

Note that the fractional stochastic differential equation in (7) admits a unique weak solution,
see Theorem 2 in Chapter III. We have the following result.

Result 6. The law of the process (S t0
t ,V t0

t )t≥0 = (St+t0 ,Vt+t0 )t≥0 is that of a rough Heston model
with the following dynamic:

dS t0
t = S t0

t

√
V t0

t dW t0
t , S t0

0 = St0

V t0
t =Vt0 +

1

Γ(α)

∫ t

0
(t −u)α−1λ(θt0 (u)−V t0

u )du + 1

Γ(α)

∫ t

0
(t −u)α−1ν

√
V t0

u dB t0
u ,

with (W t0
t ,B t0

t )t≥0 = (Wt0+t −Wt0 ,Bt0+t −Bt0 )t≥0 a two-dimensional Brownian motion with corre-
lation ρ, independent of Ft0 and

θt0 (u) = θ0(t0 +u)+ α

λΓ(1−α)

∫ t0

0
(t0 − v +u)−1−α(Vv −Vt0 )d v + (u + t0)−α

λΓ(1−α)
(V0 −Vt0 ),

which is an Ft0 -measurable function satisfying Assumption 6.

3.2 Extending the characteristic function formula

In order to obtain the dynamic of the process (E[ f (ST )|Ft ])t∈[0,T ], we compute the conditional
characteristic function of XT = log(ST /S0). Thanks to Result 6, it is enough to extend the
characteristic function formula stated in Result 5 by using again the Hawkes framework.

Result 7. Let t > 0 and z ∈C. Assume

λ−ρνℜ(z) > 0, a−(t ) <ℜ(z) < a+(t ),

where

a−(t ) = ν2 −2ρνψ(t )+p
∆(t )

2ν2(1−ρ2)
, a+(t ) = ν2 −2ρνψ(t )−p

∆(t )

2ν2(1−ρ2)
,

with

ψ(t ) =λ+ αt−α

Γ(1−α)
, ∆(t ) = 4ν2ψ(t )2 +ν4 −4ρν3ψ(t ).

Then we have
E[(St )ℜ(z)] <∞.

Furthermore,
R(z, t ) = E[

exp(z log(St /S0))
]
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is given by

exp
(∫ t

0
h(z, t − s)(λθ0(s)+ V0s−α

Γ(1−α)
)d s

)
,

where h(z, .) is the unique continuous solution of the following fractional Riccati equation:

Dαh(z, s) = 1

2
(z2 − z)+ (zρν−λ)h(z, s)+ ν2

2
h(z, s)2, s ≤ t , I 1−αh(z,0) = 0.

Note that the mean reversion level θ0 is linked to the forward variance curve as follows:

λθ0(t ) = Dα(E[V.]−V0)(t )+λE[Vt ].

So, we can write the characteristic function of the log-price as a functional of (E[Vs])s≥0.

Result 8. Let t > 0 and z ∈C satisfying the assumptions of Result 7. Then

R(z, t ) = exp
(∫ t

0
χ(z, t − s)E[Vs]d s

)
with

χ(z, t ) = 1

2
(z2 − z)+ zρνh(z, t )+ ν2

2
h(z, t )2,

with h(z, .) the unique continuous solution of the fractional Riccati equation given in Result 7.

3.3 Hedging under the rough Heston model

We are now in position to compute the dynamic of a call price with maturity T > 0 and strike
K > 0 under the rough Heston model

Ct = E[(ST −K )+|Ft ].

Assuming that ρ ≤ 0, Result 7 shows that there exists a > 1 such that E[(St )a] is finite for any
time t ≥ 0. We are therefore able to use a Fourier inversion technique similar to [CM99] and
obtain that

Ct = 1

2π

∫
b∈R

ĝ (−b)P T
t (a + i b)db

with ĝ (b) = e(1−a+i b)log(K )

(i b−a)(i b−a+1) and

P T
t (a + i b) = E[exp

(
(a + i b) log(ST )

)|Ft ],

the conditional characteristic function process. Using the fact that conditional on Ft , the law
of (S,V ) is still a rough Heston model and the characteristic function formula of Result 8, we
deduce that

P T
t (a + i b) = exp

(
(a + i b) log(St )+

∫ T−t

0
χ(a + i b,T − t − s)E[Vs+t |Ft ]d s

)
is a deterministic function of underlying St and the forward variance curve (E[Vs+t |Ft ])s≥0.
Hence there exists a deterministic functional C such that

Ct =C (T − t ,St , (E[Vs+t |Ft ])s≥0).

The following result gives an explicit hedging formula for Ct .
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3. Part III: Hedging under the rough Heston model

Result 9. The functional C admits a derivative ∂SC according to the spot price St and a Fréchet
derivative ∂V C according to the forward variance curve (E[Vs+t |Ft ])s≥0. Furthermore, we have
that

Ct =C0 +
∫ t

0
∂SC (T −u,Su ,E[V.+u |Fu])dSu +

∫ t

0
∂V C (T −u,Su ,E[V.+u |Fu]).(dE[V.+u |Fu]),

where dE[Vx |Fu] is the Itô differential at time u of the martingale Mu = E[Vx |Fu], u ≤ x.

The importance of the last result is two-fold: It shows that we are able to hedge vanilla
options in principle using the underlying and the forward variance curve and that the rough
Heston model is Markovian in an infinite-dimensional space with state variables St and
(E[Vs+t |Ft ])s≥0. Of course, in practice, this strategy will be discretized and one will use liquid
variance swaps. We can also hedge the forward variance curve risk by using one European
option as the dynamics of the forward variance curve is produced by one Brownian noise.

3.4 The Markovian structure of the Volterra Heston model

After identifying the state variables of the rough Heston model, we investigate in Chapter IV a
suitable general state space in which the forward variance curve lies. To do so, we extend the
rough Heston model by replacing the fractional kernel (t − s)α−1 by an arbitrary one. This
leads to the Volterra Heston model defined below.

dSt = St

√
Vt dWt

Vt = g0(t )−λ
∫ t

0
K (t − s)Vsd s +

∫ t

0
K (t − s)ν

√
VsdBs . (8)

The parameters λ, V0 and ν are positive and W and B are two Brownian motions with
correlation ρ. The kernel K ∈ L2

loc(R+) is assumed to be completely monotone of the form

K (t ) =
∫ ∞

0
e−xtµ(d x), t > 0,

where µ is a positive measure of locally bounded variation such that∫ ∞

0
(1∧ (xh)−1/2)µ(d x) ≤C h(γ−1)/2,

∫ ∞

0
x−1/2(1∧ (xh))µ(d x) ≤C hγ/2; h > 0,

for some γ ∈ (0,2] and positive constant C . The function g0 is assumed to be continuous and
satisfies

g0(t ) = E[Vt ]+λ
∫ t

0
K (t − s)E[Vs]d s.

Hence, we can choose g0 so that the model is consistent with the market forward variance
curve.

15
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3.4.1 Existence and uniqueness result

We start by looking for a general condition on g0 to ensure the weak existence and uniqueness
of a non-negative solution of the Volterra stochastic equation in (8) and hence the well-
definition of the Volterra Heston model. Let H γ/2 be the set of locally Hölder continuous
functions of any order strictly smaller than γ/2 and L be the resolvent of the first kind of K
defined by the unique measure of locally bounded variation such that

L∗K (t ) = 1,

where ∗ is the convolution operator. We denote by ∆h the following operator ∆h : f 7→ f (h +·).
We can show that ∆hK ∗L is of bounded variation and we denote by d(∆hK ∗L) its associated
measure. Following the same approach as in [AJLP17], we obtain the following result.

Result 10. If g0 belongs to the following admissible set:

GK = {
g0 ∈H γ/2; g0(0) ≥ 0 and ∆h g0 − (∆hK ∗L)(0)g0 −d(∆hK ∗L)∗ g0 ≥ 0, for any h ≥ 0

}
,

there exists a unique weak non-negative solution V of the Volterra stochastic equation (8).

Although the definition of GK seems abstract, we can show that it contains many usual
parameterizations of the forward variance curve, see Example IV.1 in Chapter IV.

3.4.2 Markovian structure

Following the same approach as in Chapter III, we identify the conditional law of the Volterra
Heston model. More precisely, we obtain that the law of (S t0

t ,V t0
t )t≥0 = (St+t0 ,Vt+t0 )t≥0 is that

of a Volterra Heston model with the following dynamics:

dS t0
t = S t0

t

√
V t0

t dW t0
t , S t0

0 = St0

V t0
t = g t0 (t )−λ

∫ t

0
K (t −u)V t0

u du +
∫ t

0
K (t −u)ν

√
V t0

u dB t0
u ,

with (W t0
t ,B t0

t )t≥0 = (Wt0+t −Wt0 ,Bt0+t −Bt0 )t≥0 a two-dimensional Brownian motion with
correlation ρ, independent of Ft0 and g t0 linked to the forward variance curve observed at
time t0,

g t0 (t ) = E[V t0
t |Ft0 ]+λ

∫ t

0
K (t − s)E[V t0

s |Ft0 ]d s.

Hence, similarly to Result 6, the Volterra Heston model is Markovian with state variables the
underlying St and g t which is linked to the forward variance curve (E[Vs+t |Ft ])s≥0. Moreover,
we are able to provide the state space in which the process (g t )t≥0 evolves.

Result 11. GK is stochastically invariant according to (g t )t≥0, that is

g t ∈GK , t ≥ 0.
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4. Part IV: The rough Heston model in practice

4 Part IV: The rough Heston model in practice

We summarize in Chapter V the results obtained under the rough Heston model and show
the excellent fit of this model to the SPX volatility surface. We also study in Chapter VI
the consistency of this model with a feature raised in [Zum09] concerning the time reversal
asymmetry of financial time series.

4.1 Fitting the volatility surface

In Parts II and III, we build a rough version of the Heston model that appears naturally as a
limit of a microscopic price and show that it enjoys tractable formulas for derivatives pricing
and hedging. In Chapter V, we apply a calibration procedure on the SPX volatility surface
and show the amazing fit of the model to the actual volatility surface. We also suggest, by
a moments-matching procedure, an approximation method to compute instantaneously the
implied volatility for a given expiry T . More precisely, we approximate the characteristic
function by the one of a classical Heston model with flat forward variance curve given by
1
T

∫ T
0 E[Vs]d s, correlation ρ and volatility of volatility parameter given by

ν̃(T ) =
√

3

2H +2

ν

Γ
(
H + 3

2

) 1

T
1
2−H

.

4.2 Consistency with the time reversal asymmetry

In [CB14, Zum09], it is observed empirically that the time reversal symmetry is violated in
financial time series. This is the so-called Zumbach’s effect. It is done by studying the time
series of daily asset log-returns (rt )t≥0 and daily realized volatility (vt )t≥0. More precisely,
we observe that the empirical correlation between r 2

t−δ and vt is greater that the empirical
correlation between r 2

t and vt−δ for any δ> δ0 = 1 day. Under the rough Heston model (7),
the daily return is given by1

rt =
∫ t

t−δ0

√
VsdWs ,

and the daily realized volatility is

vt =
∫ t

t−δ0

Vsd s.

In Chapter VI, we show that the rough Heston model exhibits this phenomenon by computing

C (k, t ) =Cov(vt+kδ0 ,r 2
t )−Cov(r 2

t+kδ0
, vt ), t > δ0, k ∈N.

Result 12. For small δ0, C (k, t ) is given approximatively by

C (k, t ) ∼
δ0→0

2(ρν)2δ2α+1
0 g (k)E[Vt ], k ∈N, t > 0,

with g (k) = 1
Γ(α+1)2

∫ 1
0 ((k + s)α− (k + s −1)α) (1− s)αd s and α= H +1/2. In particular C (k, t ) >

0.
1For simplicity, we take only the martingale part of the log-return.
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We also compute the Zumbach’s effect in the stationary regime Z (k) defined by

Z (k) = lim
t→∞Cor r (vt+kδ0 ,r 2

t )−Cor r (r 2
t+kδ0

, vt ).

Result 13. Consider the case where E[Vt ] converges to a limiting variance V̄∞ when t goes to
infinity. Then, for small δ0,

Z (k) ∼ 2(ρν)2
√

V̄∞√
ν2

λ2

∫ ∞
0 f α,λ(s)2d s

√
2V̄∞+ 6ν2

λ2

∫ ∞
0 f α,λ(s)2d s

δ2α−1
0 g (k),

where f α,λ is the Mittag-Leffler density function, α= H+1/2 and g (k) = 1
Γ(α+1)2

∫ 1
0 ((k + s)α− (k + s −1)α) (1−

s)αd s.

Note that the Zumbach’s effect is of order δ2α−1
0 = δ2H

0 . Hence as δ0 is small, this effect is
negligible when H = 1/2, and this effect becomes more important when the volatility is rough,
i.e when H is close to zero.

5 Part V: Short-term behavior of the at-the-money implied
volatility under rough volatility

While the Hawkes framework enabled us to to understand the pricing and hedging under the
rough Heston model, this procedure cannot be applied for an arbitrary rough volatility model.
We show in Chapter VII that asymptotic formulas for short maturity for the at-the-money skew
and curvature can be obtained under a general class of stochastic volatility (that includes usual
rough volatility models). This is done by applying a small-time Edgeworth expansion of the
density of the asset price.

5.1 Model

We consider a general model such that the log-price is adapted to a filtration F= (Ft )t≥0 and
is given by

d X t =−1

2
Vt d t +

√
Vt dWt ,

where the variance process V is positive and adapted to a filtration G= (Gt )t≥0 smaller than

F. We assume that the Brownian motion is decomposed as Wt = ρt Bt +
√

1−ρ2
t B ′

t , with B ′

independent of G and B is a G-Brownian motion. Denoting by p(K ,θ) the put option price
with maturity θ and strike K , we have

p(Fezσ0(θ),θ)

Fσ0(θ)
=

∫ z

−∞
P(Zθ ≤ ζ)eζσ0(θ)dζ,

where F = e X0 is the forward price, σ0(θ) =
√∫ θ

0 E[Vs]d s and

Zθ =− 1

2σ0(θ)
〈M〉θ+

1

σ0(θ)
Mθ, Mθ =

∫ θ

0

√
Vt dBt , 〈M〉θ =

∫ θ

0
Vt dt .
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5. Part V: Short-term behavior of the at-the-money implied volatility under rough volatility

In order to apply a small-time expansion of the option prices, we need to make the following
technical assumption that settles the asymptotic behavior of the model.

Assumption 7. There exists a family of random vectors{
(M (0)

θ
, M (1)

θ
, M (2)

θ
, M (3)

θ
);θ ∈ (0,1)

}
such that

1. the law of M (0)
θ
is standard normal for all θ > 0,

2.

sup
θ∈(0,1)

‖M (i )
θ
‖p <∞, i = 1,2,3

for all p > 0 and

3. for some H ∈ (0,1/2] and ε ∈ (0, H),

lim
θ→0

θ−2H−2ε
∥∥∥∥ Mθ

σ0(θ)
−M (0)

θ
−θH M (1)

θ
−θ2H M (2)

θ

∥∥∥∥
1+ε

= 0,

lim
θ→0

θ−H−2ε
∥∥∥∥ 〈M〉θ
σ0(θ)2 −1−θH M (3)

θ

∥∥∥∥
1+ε

= 0.

Furthermore, we assume the existence of the derivatives

a(i )
θ

(x) = d

dx

{
E0[M (i )

θ
|M (0)

θ
= x]φ(x)

}
, i = 1,2,3,

bθ(x) = d2

dx2

{
E0[M (1)

θ
|M (0)

θ
= x]φ(x)

}
cθ(x) = d2

dx2

{
E0[|M (1)

θ
|2|M (0)

θ
= x]φ(x)

}
in the Schwartz space (i.e., the space of the rapidly decreasing smooth functions), where φ is the
standard normal density. Finally we assume that

sup
θ∈(0,1)

∥∥∥∥ 1

θ

∫ θ

0
Vt dt

∥∥∥∥
p
<∞, sup

θ∈(0,1)

∥∥∥∥∥
{

1

θ

∫ θ

0
Vt (1−ρ2

t )dt

}−1
∥∥∥∥∥

p

<∞,

where ‖ ·‖p denotes the Lp -norm under the probability measure P.

Note that regular stochastic volatility models satisfy Assumption 7, see Section 2.2 of Chapter
VII.
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5.2 Asymptotics results

Applying Assumption 7, we obtain an asymptotic expansion of the density of Zθ,.

Result 14. Under Assumption 7, the density pθ of Zθ satisfies

sup
x∈R

(1+x2)α|pθ(x)−qθ(x)| = o(θ2H )

as θ→ 0 for any α ∈N, where

qθ(x) =φ(x)−θH a(1)
θ

(x)−θ2H a(2)
θ

(x)− σ0(θ)

2
(xφ(x)−θH a(3)

θ
(x))

+ θ2H

2
cθ(x)− θHσ0(θ)

2
bθ(x)+ σ0(θ)2

8
(x2 −1)φ(x).

Under usual stochastic volatility models, we can in general approximate qθ by q̃θ such that

sup
x∈R

(1+x2)α|qθ(x)− q̃θ(x)| = o(θ2H ),

with

q̃θ(x) =φ
(

x + σ0(θ)

2

){
1+κ3(θ)

(
H3

(
x + σ0(θ)

2

)
−σ0(θ)H2

(
x + σ0(θ)

2

))
θH

}
+φ(x)

(
κ4(θ)H4(x)+ κ3(θ)2

2
H6(x)

)
θ2H ,

where κ3 and κ4 are bounded functions and Hk denotes the kth Hermite polynomial. This
enables us to compute the asymptotic behavior of the put price p(Fezσ0(θ),θ) for small θ,
leading to the following expansion of the implied volatility.

Result 15. For any z ∈R,

σBS(
p
θz,θ)

= κ2(θ)

{
1+κ3(θ)

(
z

κ2(θ)
+ κ2(θ)

p
θ

2

)
θH +

(
3κ2

3(θ)

2
−κ4(θ)+ (κ4(θ)−3κ2

3(θ))
z2

κ2
2(θ)

)
θ2H

}
+o(θ2H ),

where κ2(θ) = σ0(θ)/
p
θ and σBS(k,θ) denotes the implied volatility with log-moneyness k and

maturity θ. This leads to the following asymptotics of the at-the-money skew and curvature

∂kσBS(0,θ) = κ3(θ)θH−1/2 +o(θ2H−1/2),

∂2
kσBS(0,θ) = 2

κ4(θ)−3κ3(θ)2

κ2(θ)
θ2H−1 +o(θ2H−1).
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6. Part VI: Markovian approximation of rough volatility models

5.3 Application to the rough Bergomi model

We apply these results to the rough Bergomi model introduced in [BFG16], where the variance
process is defined as follows

Vt = E[Vt ]exp

{
ηH

p
2H

∫ t

0
(t − s)H−1/2dBs −

η2
H

2
t 2H

}
,

where d〈W,B〉t = ρd t . We can check then that Assumption 7 is satisfied and that q̃θ can be
computed explicitly with

κ3(θ) = ρηH

√
H

2

1

θHσ0(θ)3

∫ θ

0
exp

{
−η

2
H

8
t 2H

}∫ t

0
(t − s)H−1/2

√
E[Vs]dsE[Vt ]dt ,

κ4(θ) = (1+2ρ2)η2
H H

(2H +1)2(2H +2)
+ ρ2η2

H Hβ(H +3/2, H +3/2)

2(H +1/2)2 .

where β is the beta function.

6 Part VI: Markovian approximation of rough volatility models

In Chapter VIII, we consider the following general class of rough volatility models:

dSt = St

√
Vt dWt , t ∈ [0,T ],

Vt =V0 + 1

Γ(H +1/2)

∫ t

0
(t − s)H−1/2λ(θ0(s)−Vs)d s + 1

Γ(H +1/2)

∫ t

0
(t − s)H−1/2σ(Vs)dBs . (9)

The parameters λ, V0 are positive, H ∈ (0,1/2) is the Hurst parameter2, σ is a deterministic
function, θ0 is a mean reversion level allowed to be time dependent and W and B are two
Brownian motions with correlation ρ. Note that the rough Heston model (7) is a particular
case of (9) with σ(x) = νpx. The weak existence of such model is guaranteed by assuming
that θ0 satisfies Assumption 6 and that σ is a continuous function with linear growth such that
σ(0) = 0. In that case, the variance process V admits Hölder continuous paths of any order
strictly less than H .

Due to the fractional kernel (t − s)H−1/2, the variance process is neither Markovian nor a semi-
martingale. In the spirit of Parts II and III, we would like to overcome these difficulties in order
to manage the pricing and hedging of derivatives by looking for a tractable approximation
of (9). We expect from this approximation to display a Markovian structure such that the
variance process is a semi-martingale.

2Note the change of notations compared to (5) in the fractional kernel power where α is replaced by H +1/2.
This is to be consistent with the notations of Chapter VIII.
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6.1 Multi-factor approximation of rough volatility models

Inspired by [CC98, CCM00, HS15, Mur11], the key-idea of our multi-factor approximation
comes from the observation that the fractional kernel K (t ) = t H−1/2

Γ(H+1/2) is the Laplace transform
of a non-negative measure µ:

K (t ) =
∫ ∞

0
e−γtµ(dγ); µ(dγ) = γ−H− 1

2

Γ(H +1/2)Γ(1/2−H)
dγ.

Applying a stochastic Fubini Theorem, we obtain that

Vt = g (t )+
∫ ∞

0
V γ

t µ(dγ), t ∈ [0,T ],

with
dV γ

t = (−γV γ
t −λVt )d t +σ(Vt )dBt , V γ

0 = 0, γ≥ 0,

and

g (t ) =V0 +
∫ t

0
K (t − s)θ0(s)d s.

Heuristically, this exhibits an infinite-dimensional Markovian structure of the variance process
where the state variables are given by the factors (V γ

t )γ≥0. In order to reduce the number of
state variables, we shall approximate the measure µ by a weighted sum of Dirac measures

µn =
n∑

i=1
cn

i δγn
i

, n ≥ 1,

leading to the following approximation V n = (V n
t )t≤T of the variance process V :

V n
t = g n(t )+

n∑
i=1

cn
i V n,i

t , t ∈ [0,T ], (10)

dV n,i
t = (−γn

i V n,i
t −λV n

t )d t +σ(V n
t )dBt , V n,i

0 = 0,

where

g n(t ) =V0 +
∫ t

0
K n(t −u)θ0(u)du, (11)

and

K n(t ) =
n∑

i=1
cn

i e−γ
n
i t .

Before discussing the accuracy of this approximation, we first prove the existence and unique-
ness of (10) by writing it in a Volterra stochastic equation form:

V n
t = g n(t )+

∫ t

0
K n(t − s)

(−λV n
s d s +σ(V n

s )dBs
)

, t ∈ [0,T ]. (12)

Consequently, we adapt the arguments in [AJLP17] to prove the weak existence of a non-
negative solution of (12) and those in [YW71] to obtain the strong uniqueness under the
following assumption.
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6. Part VI: Markovian approximation of rough volatility models

Assumption 8. We assume that θ0 is a non-negative function satisfying Assumption 6 and that σ
is η-Hölder continuous with σ(0) = 0 and η ∈ [1/2,1].

This leads us to the following definition of the multi-factor approximation

dSn
t = Sn

t

√
V n

t dWt , t ∈ [0,T ],

with V n given by (10). This model is Markovian with n +1 state variables which are the spot
price Sn and the factors of the variance process V n,i for i ∈ {1, . . . ,n}.

6.2 Convergence of the multi-factor approximation

We now discuss the choice of the positive weights (cn
i )1≤i≤n and mean reversion coefficients

γn
1 < ·· · < γn

n , which is crucial for the accuracy of the approximation. From (12), we expect that
V n converges to V if the kernel K n is close to K for large n. Hence inspired by [CCM00], we
look for a condition on the weights and mean-reversions such that∫ T

0

∣∣K n(s)−K (s)
∣∣2 d s → 0,

holds as n goes to infinity. This is done by taking

cn
i =

∫ ηn
i

ηn
i−1

µ(dγ), γn
i = 1

cn
i

∫ ηn
i

ηn
i−1

γµ(dγ), i ∈ {1, . . . ,n}.

where (ηn
i )0≤i≤n are auxiliary parameters with ηn

0 = 0 and ηn
i−1 ≤ γn

i ≤ ηn
i for i ∈ {1, . . . ,n}. In

that case, we obtain the convergence of the approximated kernel K n to K under the following
assumption.

Assumption 9. We assume that the auxiliary parameters (ηn
i )0≤i≤n satisfy

ηn
n →∞,

n∑
i=1

∫ ηn
i

ηn
i−1

(γn
i −γ)2µ(dγ) → 0,

as n goes to infinity.

The next result shows that under this choice of the weights and mean-reversions, the multi-
factor approximation is accurate and converges to the proper rough volatility model.

Result 16. Under Assumptions 8 and 9, The sequence of multi-factor models (Sn ,V n)n≥1 is tight
for the uniform topology and any point limit (S,V ) is the rough volatility model (9).

This result is obtained by studying the stability of general d-dimensional stochastic Volterra
equations, see Section 3.4 in Chapter VIII.

In the same spirit as Result 16, Markovian lifts of general affine rough volatility models have
been developed in [CT18].
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6.3 Application to the rough Heston model

We now come back to the rough Heston case, i.e σ(x) = ν
p

x. Results 5 and 7 provide the
formula of the log-price characteristic function. It can be rewritten as follows:

exp

(∫ T

0
F (z,h(z,T − s))g (s)d s

)
,

where z ∈C with ℜ(z) ∈ [0,1], F (z, x) = 1
2 (z2 − z)+ (ρνz −λ)x + ν2

2 x2 and h(z, ·) is the unique
solution of the fractional Riccati equation given in Result 8. This fractional Riccati equation
can be solved numerically through the Adam schemes presented in Section 5.1 in Chapter II.
We show that the multi-factor approximation gives rise to another natural numerical scheme.

6.3.1 Multi-factor scheme for the fractional Riccati equations

Considering the multi-factor approximation (Sn ,V n)n≥1 of the rough Heston model, we can
use the characteristic function formula shown in [AJLP17] that generalizes Result 5 for Volterra
affine models to get

E[exp(z log(Sn
T /S0))] = exp(

∫ T

0
F (z,hn(z,T − s))g n(s)d s),

where hn(z, .) is the unique solution of the Volterra Riccati equation,

hn(z, t ) =
∫ t

0
K n(t − s)F (z,hn(z, s))d s.

As K n is close to K under Assumption 9 for large n, we expect the convergence of hn(z, .) to
the solution of the fractional Riccati equation h(z, .).

Result 17. There exists a positive constant C such that, for any a ∈ [0,1], b ∈R and n ≥ 1,

sup
t∈[0,T ]

|hn(a + i b, t )−h(a + i b, t )| ≤C (1+b4)
∫ T

0
|K n(s)−K (s)|d s.

This result suggests a new numerical method for the computation of the fractional Riccati
solution h(z, ·). In fact, defining

hn,i (z, t ) =
∫ t

0
e−γ

n
i (t−s)F (z,hn(z, s))d s, i ∈ {1, . . . ,n},

we get

hn(z, t ) =
n∑

i=1
cn

i hn,i (z, t ),

and (hn,i (z, ·))1≤i≤n solves the following n-dimensional system of ordinary Riccati equations

∂t hn,i (z, t ) =−γn
i hn,i (z, t )+F (z,hn(z, t )), hn,i (z,0) = 0, i ∈ {1, . . . ,n}.

This n-dimensional Riccati equation can be solved numerically by usual finite difference
methods leading to hn(z, ·) as an approximation of the fractional Riccati solution. Numerical
illustrations are given in Section 4.2 in Chapter VIII, where we compare the convergence speed
of this numerical for different choices of the weights (cn

i )1≤i≤n and mean reversion parameters
(γn

i )1≤i≤n .
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7. Part VII: Optimal make-take fees for market making regulation

6.3.2 Upper bound for call prices error

Using Result 17 and a Fourier transform method, we compute an upper bound of the difference
between the call price C n(T,k) under the multi-factor approximation and the call price C (T,k)
under the rough Heston model, where k denotes the log-strike and T the maturity. In order to
obtain an explicit upper bound, we consider a multi-factor approximation (Sn ,V n) where g n

initially defined by (11) is replaced by

g n(t ) =
∫ t

0
K n(t − s)

(
V0

s−H− 1
2

Γ(1/2−H)
+θ0(s)

)
d s.

Note that in that case, the convergence of (Sn ,V n)n≥1 stated in Result 16 does not hold
anymore. However, we may show the convergence in law for the Skorokhod topology of
(Sn ,

∫ ·
0 V n

s d s)n≥1 to (S,
∫ ·

0 Vsd s).

Result 18. There exists a positive constant c > 0 such that

|C (k,T )−C n(k,T )| ≤ c
∫ T

0
|K (s)−K n(s)|d s, n ≥ 1.

7 Part VII: Optimal make-take fees for market making
regulation

In Chapter IX, we consider the problem of an exchange aiming at attracting liquidity on its
platform. This is done by creating an incentive for the market maker to reduce the spread
through a compensation ξ proposed by the exchange. The aim of Chapter IX is to find the
optimal contract ξ that maximizes the utility of the exchange. We solve this problem using
a principal-agent framework developed in [Höl79, Mir74]. We argue that this optimal policy
leads to higher quality liquidity and lower trading costs for investors.

7.1 The model

Let T > 0 be a final time horizon. We consider a market where there is only one market maker
who has a view on the efficient price of the asset St given by a Bachelier dynamic:

St = S0 +σWt , t ∈ [0,T ], (13)

with S0 > 0, W a Brownian motion and σ> 0 the volatility of the price. This market maker
sets the bid and ask prices

P b
t = St −δb

t and P a
t = St +δa

t .

The arrival of the ask (resp. bid) market orders is modeled by a point process (N a
t )t∈[0,T ] (resp.

(N b
t )t∈[0,T ]) with intensity (λa

t )t∈[0,T ] (resp. (λb
t )t∈[0,T ]). Hence, assuming that the volume of

market orders is constant and equal to unity, the inventory of the market maker is

Qt = N b
t −N a

t , t ∈ [0,T ].
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We impose a critical absolute inventory q̄ ∈N above which the market maker stops quoting on
the ask or bid side. Moreover, we take the intensity of buy (resp. sell) market orders arrival as
a decreasing function of the ratio between the extra cost of each trade paid by the market
taker compared to the efficient price. This extra cost is the sum of the spread δa

t (resp. δb
t )

imposed by the market maker and the transaction cost c > 0 collected by the exchange for
each order. This leads us to assume that

λa
t = λ(δa

t )1I{Qt>−q̄}, and λb
t = λ(δb

t )1I{Qt<q̄}, with λ(x) = Ae−k (x+c)
σ ,

for fixed positive constants A and k .

7.1.1 Admissible controls and market maker’s problem

The market maker controls the spread (δt )t∈[0,T ] = (δa
t ,δb

t )t∈[0,T ] which can be any predictable
process that is uniformly bounded by a positive constant δ∞ that will be fixed later to a
sufficiently large value. We denote by A the set of such admissible controls and by Pδ the
probability measure associated to the control δ under which S follows (13) and

Ñδ,a
t = N a

t −
∫ t

0
λ(δa

r )1I{Qr >−q̄}dr, Ñδ,b
t = N b

t −
∫ t

0
λ(δb

r )1I{Qr <q̄}dr,

are martingales. Thanks to the uniform boundedness of the controls, we show that all the
probability measures Pδ indexed by δ ∈A are equivalent.

Under the control δ ∈A , the market maker profit and loss PLδt at time t is the sum of the cash
flow earned from each market order

X δ
t =

∫ t

0
P a

r d N a
r −

∫ t

0
P b

r d N b
r ,

and his inventory risk Qt St . Furthermore, we consider that the exchange is remunerated for
each market order arrival and so aims at keeping the market liquid. Thus, we assume that it
proposes to the market maker a contract, defined by an FT -measurable random variable ξ, in
order to create an incentive to attract liquidity on the platform by reducing his spread. Hence,
in addition to the realized profit and loss, the market maker receives this compensation ξ at
the final time T , and chooses the optimal spread by solving the following problem

VMM(ξ) = sup
δ∈A

JMM(δ,ξ) where JMM(δ,ξ) = Eδ
[
−e−γ(ξ+PLδT −PLδ0 )

]
, (14)

where γ > 0 is the absolute risk aversion parameter of the CARA utility function of the
market maker. For each compensation ξ, we show that there exists a unique optimal response
δ̂(ξ) = (δ̂a(ξ), δ̂b(ξ)) of the market marker.

7.1.2 Admissible contracts and exchange’s problem

The exchange is remunerated by c > 0 for each market order and pays the contract ξ at the
final time T . Hence, its profit and loss during the time interval [0,T ] is

c(N a
T −N a

0 +N b
T −N b

0 )−ξ.
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Thus the exchange optimally chooses the contract to maximize its CARA utility function with
absolute risk aversion parameter η> 0,

V E
0 = sup

ξ∈C

Eδ̂(ξ)
[
−e−η(c(N a

T −N a
0 +N b

T −N b
0 )−ξ)

]
, (15)

where C is the set of admissible contracts. It is chosen to be the set of any FT -measurable
random variable satisfying some integrability conditions to ensure the well-definition of the
problems (14) and (15), and VMM(ξ) > R, since we consider a market maker that accepts only
contracts with optimal utility above a threshold utility R .

7.2 Solving the market maker’s problem

We start by solving the problem (14) of the market maker facing an arbitrary contract ξ ∈C

proposed by the exchange. In order to do so, we first solve (14) when ξ has the following
representation

ξ= Y Y0,Z
T = Y0 +

∫ t

0
Z a

r d N a
r +Z b

r d N b
r +Z S

r dSr +
(1

2
γσ2(Z S

r +Qr )2 −H(Zr ,Qr )
)
dr, (16)

where Y0 ∈ R and Z = (Z a , Z b , Z S) belongs to the set Z of predictable processes satisfying
some integrability conditions. Here, H(z, q) denotes the Hamiltonian of (14) defined by

H(z, q) = sup
|δa |∨|δb |≤δ∞

h(δ, z, q),

with

h(δ, z, q) = 1−e−γ(za+δa )

γ
λ(δa)1I{q>−q̄} + 1−e−γ(zb+δb )

γ
λ(δb)1I{q<q̄},

for any δ= (δa ,δb) ∈ [−δ∞,δ∞]2 and z = (zS , za , zb) ∈R3 and q ∈Z.

When ξ= Y Y0,Z
T , we can show using Itô’s formula on

Uδ
T =−exp

(
−γ(Y Y0,Z

T +PLδT −PLδ0)
)

,

that Eδ[Uδ
T ] is optimal when δ= δ̂(ξ) = (δ̂a(ξ), δ̂b(ξ)) given by

δ̂a
t (ξ) =∆(Z a

t ), δ̂b
t (ξ) =∆(Z b

t ), where ∆(z) = (−δ∞)∨
{
− z + 1

γ
log

(
1+ σγ

k

)}
∧δ∞. (17)

In that case, the optimal utility is VM M (ξ) =−e−γY0 .

The following result states that any admissible contract ξ ∈C admits a unique representation
given by (16).

Result 19. For any admissible contract ξ, there exist a unique Y0 ∈ R and Z ∈ Z such that
ξ= Y Y0,Z

T . Under this representation, VM M (ξ) =−e−γY0 and the optimal spread δ̂(ξ) is given by
(17). In particular, the set of admissible contracts C coincides with

Ξ =
{

Y Y0,Z
T : Z ∈Z , and Y0 ≥ Ŷ0 = −1

γ
log(−R)

}
.
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7.3 Designing the optimal contract

Using Result 19, the exchange’s problem (15) reduces to

V E
0 = sup

Y0≥Ŷ0

sup
Z∈Z

Eδ̂(Y
Y0,Z

T )
[
−e−η

(
c(N a

T −N a
0 +N b

T −N b
0 )−Y

Y0,Z
T

)]
.

The objective function above being decreasing in Y0, we get that

V E
0 = eηŶ0 sup

Z∈Z
Eδ̂(Y

Ŷ0,Z
T )

[
−e−η

(
c(N a

T −N a
0 +N b

T −N b
0 )−Y 0,Z

T

)]
.

Hence, the exchange’s problem (15) is reduced to a classical stochastic control problem. The
HJB equation of this control problem is given by∂t v(t , q)+ γη2σ2

2(γ+η) q2v(t , q)−C v(t , q)
[

1I{q>−q̄}
( v(t ,q)

v(t ,q−1)

) k
ση +1I{q<q̄}

( v(t ,q)
v(t ,q+1)

) k
ση

]
= 0,

v(T, q) =−1,
(18)

with C = A ση
k exp

(
− k

σγ log(1+ σγ
k )+ (1+ k

ση ) log
(
1− σ2γη

(k+σγ)(k+ση)

))
, when δ∞ is large enough,

more precisely when

δ∞ ≥ ∆∞ =C∞+ σ

k
(2C2 +C1q̄2)T, (19)

see Proposition 1 in Chapter IX. Furthermore, the optimal control ẑ(t , q) = (ẑs(t , q), ẑa(t , q), ẑb(t , q))
is given by

ẑs(t , q) =− γ

γ+ηq, ẑa(t , q) = ζ0 + 1

η
log

( v(t , q)

v(t , q −1)

)
, and ẑb(t , q) = ζ0 + 1

η
log

( v(t , q)

v(t , q +1)

)
.

with ζ0 = c + 1
η log

(
1− σ2γη

(k+σγ)(k+ση)

)
.

Note that, applying the change of variable u = (−v)−
k
ση , this HJB equation (18) is reduced to a

linear one{
∂t u(t , q)−C1q2u(t , q)+C2

(
u(t , q +1)1I{q<q̄} +u(t , q −1)1I{q>−q̄}

) = 0, t ∈ [0,T ),

u(T, q) = 1,

leading to the existence of a unique solution to (18).

Result 20. Assume that δ∞ satisfies (19), then the optimal contract for the problem of the exchange
(15) is given by

ξ̂ = Ŷ0 +
∫ T

0
Ẑ a

r d N a
r + Ẑ b

r d N b
r + Ẑ S

r dSr +
(1

2
γσ2(Ẑ S

r +Qr
)2 −H

(
Ẑr ,Qr

))
dr,

with Ẑ S
r = ẑs(r,Qr−), Ẑ a

r = ẑa(r,Qr−), and Ẑ b
r = ẑb(r,Qr−). The market maker’s optimal effort is

given by

δ̂a
t = δ̂a

t (ξ̂) =−Ẑ a
t + 1

γ
log(1+ σγ

k
), δ̂b

t = δ̂b
t (ξ̂) =−Ẑ b

t + 1

γ
log(1+ σγ

k
).
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The optimal contract ξ̂ depends on the inventory trajectory of the market maker. More
precisely, we notice that Ẑ a (resp. Ẑ b ) is an increasing (resp. decreasing) function of Q . Hence,
when the inventory is highly positive (resp. negative), the exchange is encouraging the market
maker to attract buy (resp. sell) market orders. Furthermore, the presence of the integral∫ T

0 Ẑ S
r dSr means that the exchange shares the inventory risk of the market maker with the

rate γ
γ+η . This risk sharing has the role to encourage the market maker to take more inventory

risk by accepting more market orders.

From Result 20, the optimal spread is given

−2c + σ

k
log

( u(t ,Qt−)2

u(t ,Qt−−1)u(t ,Qt−+1)

)
− 2

η
log

(
1− σ2γη

(k +σγ)(k +ση)

)
+ 2

γ
log(1+ σγ

k
).

In practice,
u(t , q)2

u(t , q −1)u(t , q +1)

is close to unity and σγ/k is small. Thus, the optimal spread is approximated by

−2c + 2σ

k
.

Remarking that the optimal utility V E
0 does not depend on the transaction cost c , the exchange

may fix c so that the spread is fixed to its minimal value of one tick by taking

c ≈ σ

k
− 1

2
Tick.

7.4 Impact of the optimal policy

In Section 5 of Chapter IX, we compare the results obtained under the optimal policy with the
situation without incentive policy from the exchange towards the market maker activities, that
is the case ξ= 0, considered in [AS08, GLFT13]. In particular, we obtain that

• The incentive policy reduces the spread and hence increases the liquidity of the market
and the average number of market orders occurred in the platform.

• The incentive policy increases the expected total profit and loss of the market maker
and the exchange.

• The incentive policy reduces the total transaction costs paid by the market taker.
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The microstructural foundations of
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CHAPTER I

Microstructural foundations of leverage
effect and rough volatility

Abstract

We show that typical behaviors of market participants at the high frequency scale generate
leverage effect and rough volatility. To do so, we build a simple microscopic model for the
price of an asset based on Hawkes processes. We encode in this model some of the main
features of market microstructure in the context of high frequency trading: high degree
of endogeneity of market, no-arbitrage property, buying/selling asymmetry and presence
of metaorders. We prove that when the first three of these stylized facts are considered
within the framework of our microscopic model, it behaves in the long run as a Heston
stochastic volatility model, where leverage effect is generated. Adding the last property
enables us to obtain a rough Heston model in the limit, exhibiting both leverage effect
and rough volatility. Hence we show that at least part of the foundations of leverage effect
and rough volatility can be found in the microstructure of the asset.

Keywords: Market microstructure, high frequency trading, leverage effect, rough volatility,
Hawkes processes, limit theorems, Heston model, rough Heston model.

1 Introduction

Leverage effect is a well-known stylized fact of financial data. It refers to the negative correla-
tion between price returns and volatility increments: when the price of an asset is increasing,
its volatility drops, while when it decreases, the volatility tends to become larger. The name
“leverage" comes from the following interpretation of this phenomenon due to Black [Bla76] and
Christie [Chr82]: When an asset price declines, the associated company becomes automatically
more leveraged since the ratio of its debt with respect to the equity value becomes larger.
Hence the risk of the asset, namely its volatility, should become more important. Another
economic interpretation of the leverage effect, inverting causality, is that the forecast of an
increase of the volatility should be compensated by a higher rate of return, which can only be
obtained through a decrease in the asset value, see [CH92, FW00, FSS87].
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From an empirical viewpoint, leverage effect and the plausible interpretations for it have been
widely studied in the literature, see for example [BW00, BLT06, EN93, WX02]. Furthermore,
some statistical methods enabling us to use high frequency data have been built to measure
it, see [ASFL13, WM14]. From a modeling perspective, the will to reproduce the leverage
phenomenon has been a key motivation in the development of sophisticated time series
models, for example of ARCH type, see [BCK92, DGE93, Nel91, RR12, Zak94]. Finally, in
financial engineering, it has become clear in the late eighties that it is necessary to introduce
leverage effect in derivatives pricing frameworks in order to accurately reproduce the behavior
of the implied volatility surface. This led to the rise of famous stochastic volatility models,
where the Brownian motion driving the volatility is (negatively) correlated with that driving the
price, see for example [HKLW02, Hes93, HW87, SS91] for SABR, Heston, Hull and White and
Stein and Stein stochastic volatility models.

As mentioned above, traditional explanations for leverage effect are based on “macroscopic"
arguments from financial economics. In this paper, we wish to address the following question:
Could microscopic interactions between agents naturally lead to leverage effect at larger time
scales? Hence we would like to know whether part of the foundations for leverage effect
could be microstructural. To do so, our idea is to consider a very simple agent-based model,
encoding well-documented and understood behaviors of market participants at the microscopic
scale. Then we aim at showing that in the long run, this model leads to a price dynamic
exhibiting leverage effect. This would demonstrate that typical strategies of market participants
at the high frequency level naturally induce leverage effect.

One could argue that transactions take place at the finest frequencies and prices are revealed
through order book type mechanisms. Therefore, it is an obvious fact that leverage effect arises
from high frequency properties. However, what we wish to show here is that under certain
market conditions, typical high frequency behaviors, having probably no connection with the
financial economics concepts mentioned earlier, may give rise to some leverage effect at the
low frequency scales. It is important to emphasize that we do not claim that leverage effect
should be fully explained by high frequency features. What we simply say is that part of it
could be generated from the microstructure of the asset.

Another important stylized fact of financial data, which has been highlighted recently in
[GJR18], is the rough nature of the volatility process. Indeed, it is shown in [GJR18] that for a
very wide range of assets, historical volatility time-series exhibit a behavior which is much
rougher than that of a Brownian motion. More precisely, the dynamics of the log-volatility are
typically very well modeled by a fractional Brownian motion with Hurst parameter around 0.1,
that is a process with Hölder regularity of order 0.1. Furthermore, using a fractional Brownian
motion with small Hurst index also enables us to reproduce very accurately the features of the
volatility surface, see [BFG16, GJR18].

The fact that for basically all reasonably liquid assets, volatility is rough, with the same order
of magnitude for the roughness parameter, is of course very intriguing. Thus we also aim in
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this work at understanding how such a surprising feature can be generated. Some elements
in this direction are already provided in [JR16b]. Here we want to go further and investigate
the behavior of the long term volatility in our microscopic model encoding the main stylized
facts of modern market microstructure. We wish to show that the rough nature of the volatility
naturally emerges from typical behaviors of market participants at the high frequency scale.

Our tick-by-tick price model is based on a bi-dimensional Hawkes process, very much inspired
by the approaches in [BDHM13a, BDHM13b, JR15]. A bi-dimensional Hawkes process is a
bivariate point process (N+

t , N−
t )t≥0 taking values in (R+)2 and with intensity (λ+

t ,λ−
t ) of the

form (
λ+

t
λ−

t

)
=

(
µ+

µ−
)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
d N+

s

d N−
s

)
.

Here µ+ and µ− are positive constants and the functions (ϕi )i=1,...4 are non-negative with
associated matrix called kernel matrix, see Section 2.1 for further details. Hawkes processes
have been introduced by Hawkes in [Haw71]. They are said to be self-exciting, in the sense
that the instantaneous jump probability depends on the location of the past events. Hawkes
processes are nowadays of standard use in finance, not only in the field of microstructure but
also in risk management or contagion modeling, see among many others [ASCDL15, BDHM13a,
BH04, Bow07, CDDM05, ELL11, EGG10, JR15, JR16b]. It is explained in [BDHM13a] that a
relevant model for the ultra high frequency dynamic of the price Pt of a large tick asset1 is
simply given by

Pt = N+
t −N−

t .

Thus, in this approach, N+
t corresponds to the number of upward jumps of the asset in the

time interval [0, t ] and N−
t to the number of downward jumps. Hence, the instantaneous

probability to get an upward (downward) jump depends on the arrival times of the past upward
and downward jumps. Furthermore, by construction, the price process lives on a discrete grid,
which is obviously a crucial feature of high frequency prices in practice. Statistical properties
of this model have been studied in details in [BDHM13a]. In particular, it is shown that such
dynamic is very convenient in order to reproduce the commonly observed bid-ask bounce effect.

This simple tick-by-tick price model enables us to encode very easily the following important
stylized facts of modern electronic markets in the context of high frequency trading:

i ) Markets are highly endogenous, meaning that most of the orders have no real economic
motivation but are rather sent by algorithms in reaction to other orders, see [FS15, HBB13]
and Section 2.1.3 for more details.

i i ) Mechanisms preventing statistical arbitrages take place on high frequency markets.
Indeed, at the high frequency scale, building strategies which are on average profitable
is hardly possible, see [ALR14].

1A large tick asset is an asset whose bid-ask spread is almost always equal to one tick and therefore essentially
moves by one tick jumps, see [DR15].
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i i i ) There is some asymmetry in the liquidity on the bid and ask sides of the order
book. This simply means that buying and selling are not symmetric actions. Indeed,
consider for example a market maker, with an inventory which is typically positive.
He is likely to raise the price by less following a buy order than to lower the price
following the same size sell order. This is because its inventory becomes smaller after
a buy order, which is a good thing for him, whereas it increases after a sell order, see
[BCST12, BP09, HS06, HS81, TT12].

i v) A significant proportion of transactions is due to large orders, called metaorders, which
are not executed at once but split in time by trading algorithms, see [AC01, LL13].

In a Hawkes process framework, the first of these properties corresponds to the case of
so-called nearly unstable Hawkes processes, that is Hawkes processes for which the stability
condition is almost saturated. This means the spectral radius of the kernel matrix integral
is smaller than but close to unity, see [FS15, HBB13, JR15, JR16b]. The second and third ones
impose a specific structure on the kernel matrix and the fourth one leads to functions ϕi with
heavy tails, see [JR16b]. The parametrization of our price process corresponding to the four
properties above is developed in more details in Sections 2.1 and 3.1.

In this work, we study the long term behavior of such Hawkes-based ultra high frequency
price models, for which the parameters are consistent with the four mentioned properties of
market microstructure. Doing so, we investigate the macroscopic price dynamics arising from
a situation where the four ingredients above are put together. More precisely, we start with the
case of a Hawkes-based model where Properties i , i i and i i i only are satisfied. Our first result
states that in this setting, the macroscopic dynamic of the price is that of a Heston stochastic
volatility model as introduced in [Hes93], where the volatility is (negatively) correlated with
the price. Hence leverage effect is produced. This extends some results in [JR15] where a
non-correlated Heston limit is obtained. Then, when in addition Property i v is encoded in our
microscopic model, we show that a so-called rough-Heston model, where the volatility is rough
and negatively correlated with the price, is generated at low frequency. More precisely, as in
[GJR18], the volatility process is driven by a fractional Brownian motion with Hurst parameter
smaller than 1/2.

The computations and techniques applied in this paper are partially inspired by the papers
[JR15, JR16b]. In [JR15, JR16b], a rigorous connection is established between one-dimensional
nearly unstable Hawkes processes and (fractional) Cox-Ingersoll-Ross processes. This relation
aimed at linking the behavior of the order flow to that of the integrated variance. Here we do
not focus on the order flow and integrated variance but on a link between the microscopic
price process and the macroscopic price dynamic. This requires to work in a more intricate
multidimensional setting but enables us to derive more satisfactory microstructural foundations
for the low frequency behavior of prices. Indeed, in practice, one observes prices and not
volatility. Of course our results are not the first ones relating high frequency dynamics to long
term behaviors with stochastic volatility. The most famous example is probably that of Nelson
who shows in [Nel90] that in specific settings, GARCH processes converge to (uncorrelated)
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stochastic volatility models, see also [Cor00, Dua97, Lin09]. However, to our knowledge, we
provide the first natural, non ad-hoc approach allowing for leverage effect, and even rough
volatility, in the long term limit of the price dynamic.

The paper is organized as follows. In Section 2, we parametrize our Hawkes-based microscopic
price model so that Properties i , i i and i i i are satisfied. Then we show that after proper
rescaling, this price converges in the long run to a Heston stochastic volatility model where
leverage effect is observed. In Section 3, we incorporate Property i v into our microscopic
model and prove that it leads to a rough Heston model at the macroscopic scale, where
leverage effect is still generated. Some proofs are relegated to Section 4 and some useful
technical results are given in an appendix.

Notations Let R+ and R∗+ be respectively the set of real nonnegative and positive numbers
and N∗ = N− {0} be the set of positive integers. For any (n,m) ∈ (N∗)2, M n,m(R) denotes
the space of n ×m matrices with values in R and M n(R) denotes M n,n(R) . For d ∈ N∗,
the space of d-dimensional vectors with real values Rd will be identified with M d ,1(R). For
X ∈M l ,m(R) and Y ∈M m,n(R), X .Y stands for the usual matrix multiplication and X > refers
to the transpose of X . Finally we denote by · for the inner production, namely u · v = u>.v for
any u, v ∈Rn .

2 From high frequency features to leverage effect

We build in this section a Hawkes-based microscopic tick-by-tick model in which Properties
i , i i and i i i are satisfied. This leads us to a specific parametrization of our Hawkes process.
We show that after suitable rescaling, the long term price dynamic becomes that of a Heston
model. We start by defining our microscopic price model.

2.1 Building a suitable microscopic price model

2.1.1 The Hawkes process framework

We consider a tick-by-tick price model based on a bi-dimensional Hawkes process Nt =
(N+

t , N−
t ), with intensity λt = (λ+

t ,λ−
t ) defined by(

λ+
t

λ−
t

)
=

(
µ+

µ−
)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
d N+

s

d N−
s

)
,

where µ+ and µ− are positive constants and

φ=
(
ϕ1 ϕ3

ϕ2 ϕ4

)
:R+ →M 2(R∗

+)

is a kernel matrix whose components ϕi are positive and locally integrable. Inspired by
[BDHM13a, BDHM13b, JR15], our model for the ultra high frequency transaction price Pt is
simply given by

Pt = N+
t −N−

t .
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Thus N+
t is the number of upward jumps of one tick of the asset in the time interval [0, t ] and

N−
t is the number of downward jumps of one tick of the asset in the time interval [0, t ].

Let us now interpret the intensity process λ+
t (interpretation for λ−

t goes similarly). At time
t , the probability to get a new one-tick upward jump between t and t +d t is given by λ+

t d t .
This probability can be decomposed into three terms:

• µ+d t , which is the Poissonian part of the intensity and therefore corresponds to the
probability that the price goes up because of some exogenous reason.

•
(∫ t

0
ϕ1(t − s)d N+

s

)
d t , which is the probability of upward jump induced by past upward

jumps.

•
(∫ t

0
ϕ3(t−s)d N−

s

)
d t , which is the probability of upward jump induced by past downward

jumps.

In particular, we see here that when the ϕi have suitable shapes, it is easy to reproduce the
bid-ask bounce effect by imposing a high probability of upward (resp. downward) jump right
after a downward (resp. upward) jump.

2.1.2 Encoding Properties i i and i i i

We now provide a specific structure on the parameters of the intensity process so that Properties
i i and i i i are satisfied in our model. Property i i is the no-statistical arbitrage condition. In
a high frequency setting, this amounts to say that on average, there should be essentially as
many upward as downward jumps on any given time-period. We translate this within our
Hawkes framework noting that

E[N+
t ] =

∫ t

0
E[λ+

s ]d s, E[N−
t ] =

∫ t

0
E[λ−

s ]d s,

and

E[λ+
t ] =µ++

∫ t

0
ϕ1(t − s)E[λ+

s ]d s +
∫ t

0
ϕ3(t − s)E[λ−

s ]d s,

E[λ−
t ] =µ−+

∫ t

0
ϕ2(t − s)E[λ+

s ]d s +
∫ t

0
ϕ4(t − s)E[λ−

s ]d s.

Therefore we obtain that a simple and natural way to implement the no-statistical arbitrage
condition is to set E[λ+

t ] = E[λ−
t ] by imposing

µ+ =µ− and ϕ1 +ϕ3 =ϕ2 +ϕ4.

In terms of microscopic price movements, Property i i i , which states that the ask side is more
liquid than the bid side, can be translated as follows: the conditional probability to observe an
upward jump right after an upward jump is smaller than the conditional probability to observe
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2. From high frequency features to leverage effect

a downward jump right after a downward jump. In our Hawkes framework, it amounts to have
ϕ1(x) <ϕ4(x) or similarly ϕ3(x) >ϕ2(x) when x is close to zero. For simplicity and technical
convenience, we in fact make the more restrictive assumption that there exists some β> 1 such
that

ϕ3 =βϕ2.

Therefore we assume the following structure for the intensity process(
λ+

t
λ−

t

)
=µ

(
1
1

)
+

∫ t

0
φ(t − s).

(
d N+

s

d N−
s

)
, (1)

where

φ=
(
ϕ1 βϕ2

ϕ2 ϕ1 + (β−1)ϕ2

)
,

with µ> 0 and β≥ 1. We now explain how to deal with Property i .

2.1.3 Dealing with Property i : Nearly unstable Hawkes processes

Property i states that modern markets are highly endogenous. To understand how this high
degree of endogeneity can be translated through our Hawkes-based price model, let us consider
for simplicity a one-dimensional Hawkes process Ñt with intensity

λ̃t = µ̃+
∫ t

0
ϕ̃(t − s)d Ñs ,

where µ̃> 0 and ϕ̃ is a non-negative measurable function such that its L1 norm ||ϕ̃||1 satisfies
||ϕ̃||1 < 1. This last constraint is called stability condition and plays the same role as that
which states that the coefficient of an order 1 auto-regressive process has to be smaller than
one, see [JR15]. In particular, this condition ensures the existence of a stationary solution for
the intensity (when time starts at −∞). Such one-dimensional Hawkes processes are usually
considered to model order flows, see [BMM15] and the references therein. So Ñt can typically
be viewed as the number of transactions in the time interval [0, t ].

From a probabilistic viewpoint, the cluster representation of Hawkes processes, see [HO74],
enables to see Ñ as a population process. In this population, migrants arrive following
a Poisson process with intensity µ̃. Each migrant gives birth to children according to an
inhomogeneous Poisson process with intensity ϕ̃. Then each child also gives birth to children
according to an inhomogeneous Poisson process with intensity ϕ̃ and so on. Coming back
to financial markets, let us consider a dichotomy between “economic" (or exogenous) orders,
which are executed because some market participants have a fundamental will to buy or sell,
and endogenous orders, which are just sent in reaction to other orders. In the Hawkes context,
it is therefore very natural to make the following interpretation: exogenous orders correspond
to migrants and endogenous orders to descendants of migrants, see [FS15, HBB13, JR15].
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I. Microstructural foundations of leverage effect and rough volatility

Now remark that each migrant, or descendant of a migrant, has on average ‖ϕ̃‖1 children.
Hence a migrant has on average

∑
k≥1

‖ϕ̃‖k
1 = ‖ϕ̃‖1

1−‖ϕ̃‖1

descendants. Now, the number of people in a “family" being the number of descendants
plus one (the plus one corresponding to the initial migrant), the proportion of descendants
in the whole population is given by ||ϕ̃||1. In our financial interpretation, it means that ||ϕ̃||1
corresponds to the proportion of endogenous orders in the market. Hence, to get a model
which is in agreement with Property i , we need to take ||ϕ̃||1 smaller than but close to unity.
This situation is called nearly unstable case, and is actually in agreement with the empirical
measurements for ||ϕ̃||1 made in [BDM12, FS15, HBB13].

Let us now come back to our bi-dimensional Hawkes process of interest with intensity defined
by (1). In the same way as in the one-dimensional case, one can define the degree of endogeneity
as the spectral radius of the kernel matrix integral, that is

S (
∫ ∞

0
φ(s)d s) = ‖ϕ1‖1 +β‖ϕ2‖1,

where S denotes the spectral radius operator. We want to assume that this spectral radius is
smaller than but close to unity. To do so, we introduce an asymptotic framework, in the spirit
of [JR15, JR16b]. More precisely, we work on a sequence of probability spaces (ΩT ,F T ,PT ) ,
indexed by T > 0, on which N T = (N T,+, N T,−) is a bi-dimensional Hawkes process defined on
[0,T ] and with intensity of the form

λT
t =

(
λT,+

t

λT,−
t

)
=µT

(
1
1

)
+

∫ t

0
φT (t − s).d N T

s . (2)

For given T , the probability space is equipped with the filtration (F T
t )t≥0, where F T

t is the
σ-algebra generated by (N T

s )s≤t . Respecting the constraints on the parameters given in (1) and
taking into account the discussion above about the endogeneity of the market, we make the
following assumption on λT

t .

Assumption 1. We have µT > 0 and

φT = aTφ, φ=
(
ϕ1 βϕ2

ϕ2 ϕ1 + (β−1)ϕ2

)
,

where β≥ 1, ϕ1 and ϕ2 are two positive measurable functions such that

S (
∫ ∞

0
φ(s)d s) = ‖ϕ1‖1 +β‖ϕ2‖1 = 1

and aT is an increasing sequence of positive numbers converging to one.
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2. From high frequency features to leverage effect

From now on, our microscopic price process is given by

P T
t = N T,+−N T,−.

Thus, under Assumption 1, we are indeed working in the nearly unstable case since

S (
∫ ∞

0
φT (s)d s) = aT .

Therefore, our microscopic price process P T reproduces Properties i , i i and i i i . We now
focus on the asymptotic behavior of P T .

2.2 The macroscopic limit of the high frequency model with leverage

We give in this section our convergence result for the microscopic price towards a Heston
model. In fact such result can be found in [JR15] in the case β= 1. As in [JR15], we need to
consider the following assumption on the asymptotic framework and the kernel function.

Assumption 2. There exist positive parameters λ, µ and m such that

T (1−aT ) →
T→∞

λ, µT =µ,

and

S (
∫ ∞

0
xφ(x)d x) = m <∞.

It is well-explained in [JR15] that in the light-tailed case (which is characterized by the second
part of Assumption 2), only one asymptotic setting enables us to recover a non-degenerate
limit. This is when the kernel L1 norm aT goes to unity such that T (1−aT ) is of order one.
Now let

ψT = ∑
k≥1

(φT )∗k ,

where (φT )∗1 = φT and for k > 1, (φT )∗k (t ) = ∫ t
0 φ

T (s)(φT )∗(k−1)(t − s)d s. The following
technical assumption is also required in [JR15].

Assumption 3. The function ψT =∑
k≥1(φT )∗k is uniformly bounded and φ is differentiable such

that each component φi j satisfies ||φ′
i j ||∞ <∞ and ||φ′

i j ||1 <∞.

The uniform boundedness assumption here is not really restrictive. Indeed, as it will be clear
from the computations in Section 2.3.2, a sufficient condition for it is the fact that the largest
eigenvalue of φ is non-increasing, see also [JR15]. In our model, this is for example the case if
both ϕ1 and ϕ2 are non-increasing.

When β= 1, under Assumptions 1, 2 and 3, it is proved in [JR15] that the rescaled price process

1

T
P T

tT = N T,+
tT −N T,−

tT

T
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I. Microstructural foundations of leverage effect and rough volatility

converges in law over [0,1] towards a Heston model defined by

Pt = 1

1− (‖ϕ1‖1 −‖ϕ2‖1)

∫ t

0

√
XsdWs ,

with

d X t = λ

m
(

2µ

λ
−X t )d t + 1

m

√
X t dBt , X0 = 0,

where W and B are two independent Brownian motions. Remark that in this setting, the time
scale T is at the same time the reciprocal of price tick size. Thus as T goes to infinity, the price
moves more frequently with smaller size. Such an asymptotic analysis enables us to derive a
stochastic volatility process as a macroscopic model. Note also that µT =µ> 0 in Assumption
2 is quite intuitive in this scaling, meaning that exogenous moves of size 1/T occur µT times
on average in a unit time interval, maintaining non-zero contribution from exogenous activity
in the limit.

However, when β= 1, the important Property i i i about the liquidity asymmetry between the
bid and ask sides of the order book is not reproduced in the dynamic of the microscopic price.
Our first main theorem below shows that this property, encoded by the fact that β> 1, is the
microscopic feature at the origin of leverage effect at low frequency.

Theorem 1. Under Assumptions 1, 2 and 3, as T tends to infinity, the rescaled microscopic price

1

T
P T

tT = N T,+
tT −N T,−

tT

T
, t ∈ [0,1],

converges in law for the Skorokhod topology to the following Heston model2

Pt = 1

1− (‖ϕ1‖1 −‖ϕ2‖1)

√
2

1+β
∫ t

0

√
XsdWs ,

with

d X t = λ

m

(
(β+1)

µ

λ
−X t

)
d t + 1

m

√
1+β2

1+β
√

X t dBt , X0 = 0,

where (W,B) is a correlated bi-dimensional Brownian motion with

d〈W,B〉t = 1−β√
2(1+β2)

d t .

Hence, putting Properties i , i i and i i i together in a simple but reasonable way (through
the microscopic price P T ), we naturally obtain stochastic volatility and leverage effect in the
long run. Indeed, when β > 1, the asymmetry in the liquidity at the microstructural level

2Notice that the limit price is actually a “Bachelier" version of the Heston model. Furthermore, remark that
the definition of the rough Heston model is not a well-established one and other types of fractional Heston models
can be defined, see for example [GJR14].
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2. From high frequency features to leverage effect

generates a negative correlation between low frequency price returns and volatility increments.
Nevertheless, Properties i and i i are also crucial in order to obtain Theorem 1. In fact, no
stochastic volatility can be obtained without Property i and the failure of Property i i would
lead to a drift process in the limit.

Finally, note that from a technical point of view, to our knowledge, this result is the first scaling
limit of a microscopic price process inducing leverage effect in the long run in a non ad-hoc way.

We now give in the next section a general result about the convergence of nearly unstable
multidimensional Hawkes processes. This result is the key element of the proof of Theorem 1.

2.3 Convergence of nearly unstable multidimensional Hawkes processes

2.3.1 Setting

In order to show Theorem 1, we study the convergence of a general sequence of nearly unstable
d-dimensional Hawkes processes defined on [0,T ], with T tending to infinity and d ∈N∗. We
keep the notation N T for our Hawkes process of interest whose intensity λT is defined by

λT
t =µT 1+

∫ t

0
φT (t − s).d N T

s ,

where µT > 0 and φT = aTφ, with aT an increasing sequence of positive numbers converging
to unity, and the matrix φ :R+ →M d (R∗+) has integrable components such that

S (
∫ ∞

0
φ(s)d s) = 1.

We use also the notation

M T
t = N T

t −
∫ t

0
λT

s d s

for the martingale associated to N T . We furthermore assume that for any t ≥ 0, φ(t ) is diag-
onalizable on R. We write λ1(t ) ≥ ·· · ≥λd (t ) for the eigenvalues of φ(t )> and v1, . . . , vd ∈Rd

for the corresponding eigenvectors. We assume that these eigenvectors do not depend on t
(as it is the case under Assumption 1). We also recall that from Frobenius-Perron theorem,
for i ≥ 2, |λi (t )| < λ1(t ) = S

(
φ(t )

)
and v1 can be taken in Rd+. Notice that in this setting,∫ ∞

0 λ1(s)d s = ∫ ∞
0 S (φ(s))d s =S (

∫ ∞
0 φ(s)d s) = 1 and that for i ≥ 2, ‖λi‖1 < 1.

Finally, we define an orthonormal basis (e1, . . . ,ed ) of Rd such that e1 · v1 > 0 and

span(e2, . . . ,ed ) = span(v2, . . . , vd )

and set v ′ = e1 − 1
e1·v1

v1. Note that v ′ belongs to span(v2, . . . , vd ).
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I. Microstructural foundations of leverage effect and rough volatility

2.3.2 Intuition for the result and theorem

We now provide some non-rigorous developments which are helpful in order to understand
the asymptotic behavior of the multidimensional process N T . We work under Assumptions 2
and 3 and the setting of Section 2.3.1. We have

λT
t =µT 1+

∫ t

0
φT (t − s).d M T

s +
∫ t

0
φT (t − s).λT

s d s.

Using Lemma 2 in Appendix together with the Fubini theorem and the fact that the convolution
product ψT ∗φT satisfies ψT ∗φT =ψT −φT , we get

λT
t =µT 1+µT

∫ t

0
ψT (t − s)d s.1+

∫ t

0
ψT (t − s).d M T

s , (3)

where
ψT = ∑

k≥1
(φT )∗k = ∑

k≥1
ak

Tφ
∗k .

The function ψT being uniformly bounded and µT being constant equal to µ> 0, we get by
the same procedure used in [JR15], that E[λT

tT ] is of order T . Thus a natural rescaling in time
and space leads us to consider for t ∈ [0,1] the process

C T
t = 1

T
λT

tT .

From (3), we obtain

C T
t = µ

T
1+µ

∫ t

0
ψT (

T (t − s)
)
d s.1+

∫ t

0
ψT (

T (t − s)
)
.d M

T
s ,

with M
T
t = M T

tT /T . Note that since

〈M T , M T 〉t = diag(
∫ t

0
λT

s d s),

we get that

E[〈M
T

, M
T 〉t ] = 1

T 2 E
[
diag(

∫ tT

0
λT

s d s)
]= diag(

∫ t

0
E[C T

s ]d s)

is bounded. Now remark that for each i ∈ {1, . . . ,d}, using a recursion, we easily see that for
any k ≥ 1, v>

i .φ∗k (t ) =λ∗k
i (t )v>

i . Consequently, defining for i ∈ {1, . . . ,d}

ψT
i = ∑

k≥1
ak

Tλ
∗k
i ,

we have
v>

i .ψT =ψT
i v>

i .

Hence we can write the dynamic of vi ·C T
t as follows

vi ·C T
t = µ

T
(vi ·1)+µ(vi ·1)

∫ t

0
ψT

i

(
T (t − s)

)
d s +

∫ t

0
ψT

i

(
T (t − s)

)
(vi ·d M

T
s ). (4)
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2. From high frequency features to leverage effect

Thus, to understand the asymptotic behavior of vi ·C T as T goes to infinity, we need to study
that of the functions ψT

i (T.). To do so, one can compute the Fourier transform ψ̂T
j (T.) of

ψT
j (T.) for each j ∈ {1, . . . ,d}. We have

ψ̂T
j (T.)(z) =

∫
x∈R+

ψT
j (T x)e i xz d x = 1

T

∑
k≥1

ak
T

(
λ̂ j (z/T )

)k = aT λ̂ j (z/T )

T
(
1−aT λ̂ j (z/T )

) .

Now, as T goes to infinity, λ̂ j (z/T ) tends to ‖λ j‖1 and recall that ‖λ j‖1 < 1 for j ≥ 2. Thus,
for j ≥ 2, ψT

j (T.) should asymptotically vanish, as should consequently be the case for v j ·C T .

For j = 1, using Assumption 2 and the same approach developed in [JR15], we obtain that

ψ̂T
1 (T.)(z) →

T→∞
1

λ− i zm
,

which is the Fourier transform of

x ∈R+ → 1

m
e−

λ
m x .

Hence we can expect that ψ1(T x) converges to 1
m e−

λ
m x .

Let us now deduce from the preceding computation the behavior of v1 ·C T . From (4), this
quantity can be written

v1 ·C T
t = µ

T
(v1 ·1)+µ(v1 ·1)

∫ t

0
ψT

1

(
T (t − s)

)
d s +

∫ t

0
ψT

1

(
T (t − s)

)√
v2

1 ·C T
s dB T

s , (5)

where v2
1 = (v2

1,i )1≤i≤d and

B T
t =

∫ tT

0

v1 ·d M T
s√

T v2
1 ·λT

s

. (6)

The sequence of processes B T has been specifically chosen since the associated sequence of
quadratic variations converges to identity. Thus the limit of B T is a Brownian motion.

Decomposing v2
1 in the basis (e1, . . . ,ed ) defined in Section 2.3.1, we get

v2
1 ·C T

t = e1 · v2
1

e1 · v1
(v1 ·C T

t )+ (e1 · v2
1)(v ′ ·C T

t )+ ∑
2≤i≤d

(ei · v2
1)(ei ·C T

t ).

Thus, since for any vector v ∈ span(v2, . . . , vd ), v ·C T
t converges to zero, we deduce that v2

1 ·C T
t

has the same asymptotic behavior as

e1 · v2
1

e1 · v1
(v1 ·C T

t ).
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Therefore, letting T go to infinity in (5), we can expect v1 ·C T
t to be the solution of the following

stochastic differential equation

X t = µ

m

∫ t

0
e−

λ
m (t−s)d s(v1 ·1)+ 1

m

√
e1 · v2

1

e1 · v1

∫ t

0
e−

λ
m (t−s)

√
XsdBs .

This exactly corresponds to a Cox-Ingersoll-Ross process since it can be rewritten

d X t = λ

m

(µ
λ

(v1 ·1)−X t
)
d t + 1

m

√
e1 · v2

1

e1 · v1

√
X t dBt , X0 = 0.

Hence, using the decomposition of C T
t in the basis (e1, . . . ,ed ) given by

C T
t = 1

e1 · v1
(v1 ·C T

t )e1 + (v ′ ·C T
t )e1 +

∑
2≤i≤d

(ei ·C T
t )ei ,

we finally obtain the following theorem

Theorem 2. Under the setting and notations of Section 2.3.1 together with Assumptions 2 and 3,
the multidimensional process

(C T
t ,B T

t ) = ( 1

T
λT

tT ,
∫ tT

0

v1 ·d M T
s√

T v2
1 ·λT

s

)
, t ∈ [0,1]

converges in law for the Skorokhod topology to ( 1
e1·v1

X e1,B) where B is a Brownian motion and X
satisfies the following (one-dimensional) Cox-Ingersoll-Ross dynamic

d X t = λ

m

(µ
λ

(v1 ·1)−X t
)
d t + 1

m

√
e1 · v2

1

e1 · v1

√
X t dBt , X0 = 0.

Theorem 2, whose rigorous proof is given in Section 4.1, is a general result about the asymptotic
behavior of multidimensional nearly unstable Hawkes processes. We see in particular that the
non-degeneracy concentrates around the first eigenvector. Also, from Theorem 2, we obtain
an immediate corollary given below which will enable us to prove Theorem 1.

2.3.3 Application to our microscopic model

Let us consider a bi-dimensional Hawkes processes sequence N T = (N T,+, N T,−) with intensity
λT = (λT,+,λT,−) as in Assumption 1. In this case, the Hawkes processes sequence follows the
setting of Section 2.3.1 with d = 2,

λ1 =ϕ1 +βϕ2, λ2 =ϕ1 −ϕ2,

and

v1 =
(

1
β

)
, v2 =

(
1
−1

)
.

We therefore have the following corollary of Theorem 2 which will lead us to the long term
limit of our microscopic price model.
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3. From high frequency features to rough volatility

Corollary 1. Under Assumptions 1, 2 and 3, the process

(C T,+
t ,C T,−

t ,B T
t ) = ( 1

T
λT,+

tT ,
1

T
λT,−

tT ,
∫ tT

0

d M T,+
s +βd M T,−

s√
T (λT,+

s +β2λT,−
s )

)
, t ∈ [0,1]

converges in law for the Skorokhod topology to ( 1
β+1 X , 1

β+1 X ,B) where B is a Brownian motion and
X satisfies the following (one-dimensional) Cox-Ingersoll-Ross dynamic

d X t = λ

m
(
µ

λ
(β+1)−X t )d t + 1

m

√
1+β2

1+β
√

X t dBt , X0 = 0.

Here X essentially corresponds to a limiting volatility process. The Brownian motion in the
dynamic of X comes from the limit of B T , the process defined in (6) and driven by v1 ·d M T

s .
In our microscopic model, M T = (M T,+, M T,−). As will be clear from the proof of Theorem
1, the Brownian motion driving the price in Theorem 1 arises from the limiting behavior of
M T,+−M T,+. Hence, the emergence of leverage effect in the limit is due to the non-zero
covariation between v1 ·d M T

s and M T,+−M T,+.

3 From high frequency features to rough volatility

3.1 Encoding Property i v

In Section 2, we have built a microscopic Hawkes-based price model compatible with Properties
i , i i and i i i . Theorem 1 states that it converges in the long run to a classical Heston model.
However, Property i v , that is the wide presence of metaorders on the market, which is a crucial
feature of high frequency markets, is not encoded in such models. As explained in [JR16b], this
can be translated in the Hawkes framework by considering the model defined by Assumption 1
but under the condition that the kernel matrix exhibits a heavy tail, as observed in practice,
see [BJM16, HBB13]. Consequently, we need to replace Assumption 2 in order to get a slowly
decreasing behavior for the kernel matrix. This also implies a modification of the asymptotic
setting in order to retrieve a non-degenerate scaling limit, see [JR16b]. More precisely, in this
section, instead of Assumption 2 we consider the following one.

Assumption 4. There exist α ∈ (1/2,1) and C > 0 such that

αxα
∫ ∞

x
λ1(s)d s →

x→∞ C .

Moreover, for some λ∗ > 0 and µ> 0,

Tα(1−aT ) →
T→∞

λ∗ > 0, T 1−αµT →
T→∞

µ.

Of course, the first eigenvalue under Assumption 1 being ϕ1 +βϕ2, Assumption 4 on λ1 can
also be expressed in term of the asymptotic behavior of ϕ1 and ϕ2. Note that in practice,
estimated values for α are actually close to 1/2, see [BJM16, HBB13]. We now give the
asymptotic behavior of our price model under Assumption 4.
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I. Microstructural foundations of leverage effect and rough volatility

3.2 The rough macroscopic limit of the high frequency model

Let λ=αλ∗/
(
CΓ(1−α)

)
. We have the following result for the long term limit of our microscopic

model compatible with Properties i , i i , i i i and i v .

Theorem 3. Under Assumptions 1 and 4, as T tends to infinity, the rescaled microscopic price√
1−aT

µTα
P T

tT =
√

1−aT

µTα
(N T,+

tT −N T,−
tT ), t ∈ [0,1],

converges in the sense of finite dimensional laws to the following rough Heston model

Pt = 1

1− (‖ϕ1‖1 −‖ϕ2‖1)

√
2

β+1

∫ t

0

√
YsdWs ,

with Y the unique solution of

Yt = 1

Γ(α)

∫ t

0
(t − s)α−1λ

(
(1+β)−Ys

)
d s + 1

Γ(α)

∫ t

0
(t − s)α−1λ

√
1+β2

λ∗µ(1+β)

√
YsdBs ,

where (W,B) is a correlated bi-dimensional Brownian motion with

d〈W,B〉t = 1−β√
2(1+β2)

d t .

Furthermore, the process Yt has Hölder regularity α−1/2−ε for any ε> 0.

Remark 1. Theorem 3 states the convergence in the sense of finite dimensional laws and not in
Skorokhod topology. The latter does not hold in general. Nevertheless, we have the convergence for
the Skorokhod topology of the integrated price∫ t

0

√
1−aT

µTα
P T

sT d s

to
∫ t

0 Psd s. Such convergence also holds for the rescaled microscopic price itself under the additional
assumption ϕ1 =ϕ2.

Remark 2. In the heavy-tailed case, the tick size is taken of order T −α. The condition T 1−αµT →
µ> 0 means that the exogenous part still does not vanish in the limit since we have exogenous moves
of size O(T −α) for µT T =O(Tα) times on average in a unit interval.

Compared to Theorem 1, the only significant difference in the limiting dynamic here is the
kernel (t − s)α−1 appearing in the two integrals in the volatility process Yt . Such kernel is
similar to that which allows to define a fractional Brownian motion. Indeed, recall that a
fractional Brownian motion W H with Hurst parameter H ∈ (0,1) can be built through the
Mandelbrot-van Ness representation

W H
t = 1

Γ(H +1/2)

∫ 0

−∞
(
(t − s)H− 1

2 − (−s)H− 1
2
)
dWs + 1

Γ(H +1/2)

∫ t

0
(t − s)H− 1

2 dWs . (7)
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3. From high frequency features to rough volatility

Thus, the tail exponent α in Theorem 3 corresponds to a Hurst parameter α−1/2. Our α
belonging to (1/2,1) and in practice being close to 1/2, the Hurst parameter associated to our
limiting volatility is (much) smaller than 1/2. Therefore, the volatility trajectories are much
rougher than that of a Brownian motion and this is why we call our process rough Heston model.

Hence, we have finally shown that when put together in a simple but sufficiently realistic frame-
work, Properties i , i i , i i i and i v , which are obvious stylized facts of market microstructure,
lead to rough volatility and leverage effect. To our knowledge, this is the first result explaining
from an agent-based point of view (although in reduced form) the rough stochastic nature of
volatility and in addition leverage effect.

The proof of Theorem 3 is given in Section 4.4. As for Theorem 1 it is based on a result on
general multidimensional Hawkes processes (but here with heavy tail) which we explain in the
next section.

3.3 Convergence of heavy-tailed nearly unstable multidimensional Hawkes
processes

We give in this section a general result for the asymptotic behavior of heavy-tailed nearly
unstable multidimensional Hawkes processes. This result will be the key to the proof of
Theorem 3. We consider the same setting as in Section 2.3.1 but we work here under
Assumption 4. This will imply that the result we can obtain here is slightly weaker than
that of Theorem 2. In particular the sequence of intensities is typically not tight and thus
cannot converge. However, the same kind of non-rigorous computations as in Section 2.3.2
still enables us to obtain intuition about the result as explained below.

3.3.1 Intuition for the result and theorem

As in Section 2.3.2, we consider a suitable renormalization of the intensity, namely we work
with the process

C T
t = 1−aT

µT
λT

tT , t ∈ [0,1].

Remark that in the setting of Section 2.3.2, the intensity is multiplied by 1/T . This can be
done since under Assumption 2 the factor (1−aT )/µT is of order 1/T . This is no longer the
case under Assumption 4.

Following the same computations as in Section 2.3.2, we obtain

vi ·C T
t = (1−aT )(vi ·1)+ (vi ·1)

∫ t

0
ρT

i (t − s)d s +
∫ t

0
ρT

i (t − s)(vi ·d M̃ T
s ),

where ρT
i = T (1−aT )ψT

i (T.) and M̃ T
t = M T

tT /(TµT ), which is a martingale such that E[〈M̃ T , M̃ T 〉t ]
is bounded. Hence we need to study the behavior of ρT

i .
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I. Microstructural foundations of leverage effect and rough volatility

In the same way as in Section 2.3.2, using its Laplace transform we get that ρT
i should vanish

as T goes to infinity for i ≥ 2. For i = 1, we have

ρ̂T
1 (z) =

∫ ∞

0
ρT

1 (x)e−zx d x = (1−aT )ψ̂T
1 (z/T ) = (1−aT )

aT λ̂1(z/T )

1−aT λ̂1(z/T )
.

Then, integrating by parts and using that ‖λ1‖ = 1, we get

λ̂1(z) =
∫ ∞

0
λ1(x)e−zx d x = 1− z

∫ ∞

0

∫ ∞

x
λ1(u)due−zx d x.

Therefore,

λ̂1(z) = 1− zα
∫ ∞

0
(

x

z
)α

∫ ∞

x/z
λ1(u)dux−αe−x d x.

Hence, using Assumption 4 together with the dominated convergence theorem we obtain

λ̂1(z) = 1− C

α
Γ(1−α)zα+ o

z→0
(z).

From this, we easily deduce that for z > 0,

ρ̂T
1 (z)→ λ

λ+ zα
,

which is the Laplace transform of the Mittag-Leffler density function f α,λ defined in Appendix
I.C. Consequently, using the same arguments as in Section 2.3.2, we get that C T

t should
essentially satisfy

C T
t →

T→∞
1

e1 · v1
Yt e1,

where Y is solution of the following rough stochastic differential equation

Yt = (v1 ·1)Fα,λ(t )+ 1√
µλ∗

√
e1 · v2

1

e1 · v1

∫ t

0
f α,λ(t − s)

√
YsdBs ,

with Fα,λ(t ) =
∫ t

0
f α,λ(s)d s. In fact, this last equation is equivalent to that of a rough Cox-

Ingersoll-Ross process,

Yt = 1

Γ(α)

∫ t

0
(t − s)α−1λ(v1 ·1−Ys)d s + 1

Γ(α)

∫ t

0
(t − s)α−1 λ√

µλ∗

√
e1 · v2

1

e1 · v1

√
YsdBs ,

see Proposition 9.

Thus, the preceding computations seem to indicate that in the heavy tailed case, the renormal-
ized intensity process should converge to a rough Cox-Ingersoll-Ross process. Contrary to
the light tailed case, this intuition is actually not correct in general when the kernel matrix
has a slowly decreasing behavior. However, it still holds provided we consider the integrated
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3. From high frequency features to rough volatility

intensity instead of the intensity itself. We now give the rigorous result.

For t ∈ [0,1], let us define

X T
t = 1−aT

Tαµ
N T

tT , ΛT
t = 1−aT

Tαµ

∫ tT

0
λT

s d s, Z T
t =

√
Tαµ

1−aT
(X T

t −ΛT
t ). (8)

We have the following theorem.

Theorem 4. Under the setting and notations of Section 2.3.1 together with Assumption 4, the process
(ΛT

t , X T
t , Z T

t )t∈[0,1] defined by (8) converges in law for the Skorokhod topology to (Λ, X , Z ) where

Λt = X t = 1

e1 · v1
(
∫ t

0
Ysd s)e1

and for 1 ≤ i ≤ d ,

Z i
t =

∫ t

0

√
e1,i

e1 · v1
YsdB i

s ,

where (B 1, . . . ,B d ) is a d-dimensional Brownian motion and Y is the unique solution of the
following rough stochastic differential equation

Yt = 1

Γ(α)

∫ t

0
(t − s)α−1λ(v1 ·1−Ys)d s + 1

Γ(α)

∫ t

0
(t − s)α−1 λ√

µλ∗

√
e1 · v2

1

e1 · v1

√
YsdBs ,

with

B = 1√
e1 · v2

1

d∑
i=1

√
e1,i v2

1,i B i ,

and λ=αλ∗/
(
CΓ(1−α)

)
. Furthermore, Y has Hölder regularity α− 1

2 −ε for any ε> 0.

The rigorous proof of Theorem 4 is given in Section 4.3.

3.3.2 Application to our microscopic model

As for Theorem 2, Theorem 4 has an immediate corollary which will be crucial in the proof of
Theorem 3. Let us consider a bi-dimensional Hawkes processes sequence N T = (N T,+, N T,−)
with intensity λT = (λT,+,λT,−) as in Assumption 1. We have the following result.

Corollary 2. Under Assumptions 1 and 4, the process (ΛT
t , X T

t , Z T
t )t∈[0,1] defined by (8) converges

in law for the Skorokhod topology to (X , X , Z ) where

X t = 1

β+1

∫ t

0
Ysd s

(
1
1

)
, Zt =

∫ t

0

√
1

β+1
Ys

(
dB 1

s

dB 2
s

)
,
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I. Microstructural foundations of leverage effect and rough volatility

where (B 1,B 2) is a bi -dimensional Brownian motion and Y is the unique solution of the following
rough stochastic differential equation

Yt = 1

Γ(α)

∫ t

0
(t − s)α−1λ((1+β)−Ys)d s + 1

Γ(α)

∫ t

0
(t − s)α−1λ

√
1+β2

λ∗µ(1+β)

√
YsdBs ,

with

B = B 1 +βB 2√
1+β2

.

4 Proofs

From now on, c denotes a positive constant independent of T that may vary from line to line.

4.1 Proof of Theorem 2

In this proof, which is quite inspired by [JR15], the notations defined in Section 2.3.2 are in
force. We start with a lemma often used in the sequel.

4.1.1 A useful lemma

We have the following result.

Lemma 1. Let f T :R+ →R be a sequence of measurable functions such that for some c > 0 and any
x1 ≥ 0, x2 ∈R, x3 ≥ 0, x4 ≥ 0 and T > 0,

a) f T ∈ L1(R+)∩L2(R+) and
∫

x≥0 | f T (x)|2d x →
T→∞

0,

b) | f T (x1)| ≤ c,
c) | f̂ T (x2)| ≤ c(1∧ 1

|x2| ),

d) | f T (x3)− f T (x4)| ≤ cT |x3 −x4|.

Then, under the setting of Section 2.3.1 together with Assumptions 2 and 3, the process

(
∫ t

0
f T (t − s)d M

T
s )t∈[0,1]

converges to zero in probability as T goes to infinity, uniformly over compact sets (u.c.p.).

The proof of Lemma 1 is given in Appendix I.A.1.

4.1.2 Convergence of vi ·C T for i ∈ {2, . . . ,d}

We now consider the convergence of C T = 1
T λ

T
.T on the vector space span(v2, . . . , vd ). The

following proposition holds.
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Proposition 1. Let 2 ≤ i ≤ d . Under the setting of Section 2.3.1 together with Assumptions 2 and 3,
vi ·C T converges u.c.p. to zero as T goes to infinity.

Proof:

Recall first Equation (4)

vi ·C T
t = µ

T
(vi ·1)+µ(vi ·1)

∫ t

0
ψT

i (T (t − s))d s +
∫ t

0
ψT

i (T (t − s))(vi ·d M
T
s ).

To get the result, it is therefore enough to show that the family of functions (ψT
i (T.))T>0 satisfies

the four points of Lemma 1. Point b) is easily obtained from the fact that v>
i .ψT =ψT

i v>
i

together with the uniform boundedness of ψT due to Assumption 3.

Now remark that from Assumption 3, we deduce that λi (x) tends to zero as x goes to infinity.
Then, using integration by parts on the Fourier transform of λi together with Assumption 3,
we obtain

|λ̂i (ω)| ≤ (
(|λi (0)|+

∫ ∞

0
|λ′

i (x)|d x)
1

|ω|
)∧‖λi‖1. (9)

Point c) follows using that

|ψ̂T
i (T.)(ω)| = |aT λ̂i (ω/T )|

|T (
1−aT λ̂i (ω/T )

)| ≤ |aT λ̂i (ω/T )|
T (1−‖λi‖1)

≤ c(1∧ 1

|ω| ).

We also obtain from the previous inequality that ψ̂T
i (T.) is square-integrable and so is ψT

i (T.).
Moreover by Parseval equality, we have∫

x≥0
|ψT

i (T x)|2d x = 1

2π

∫
ω∈R

|ψ̂T
i (T.)(ω)|2dω≤ c

∫
ω∈R

|λ̂i (ω/T )|2
T 2(1−‖λi‖1)2 dω≤ c

T

∫
z∈R

|λ̂i (z)|2d z.

Since λ̂i is square-integrable, the right hand side of the last inequality tends to zero and thus
a) is obtained.

Finally d) is shown using that ψT
i = aTλi +aTλi ∗ψT

i to write

|(ψT
i )′(T x)| = T |aTλ

′
i (T x)+aT (λ′

i ∗ψT
i )(T x)+aTλi (0)ψT

i (T x)|
≤ T (‖λ′

i‖∞+‖λ′
i‖1‖ψT

i ‖∞+|λi (0)|‖ψT
i ‖∞).

4.1.3 Convergence of v1 ·C T

We have just shown that vi ·C T tends to zero for i ∈ {2, . . . ,d}. The fact that ‖λi‖1 < 1 for
i ∈ {2, . . . ,d} was crucial in order to obtain this result. We now treat the term v1 ·C T , recalling
that ‖λ1‖1 = 1. We have the following result.
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I. Microstructural foundations of leverage effect and rough volatility

Proposition 2. Under the setting of Section 2.3.1 together with Assumptions 2 and 3, the process
(v1 ·C T

t ,B T
t )t∈[0,1] converges in law for the Skorokhod topology to (X ,B) where B is a Brownian

motion and X satisfies the following Cox-Ingersoll-Ross dynamic

d X t = λ

m
(
µ

λ
(v1 ·1)−X t )d t + 1

m

√
e1 · v2

1

e1 · v1

√
X t dBt , X0 = 0.

Proof:

1. Rewriting v1 ·C T Let

ST
t =

d∑
i=2

(ei ·C T
t )(ei · v2

1)+ (v ′ ·C T
t )(e1 · v2

1).

From Proposition 1, we get that ST
t tends u.c.p. to zero. We have

v2
1 ·C T

t = ST
t + e1 · v2

1

e1 · v1
v1 ·C T

t ,

which together with (5) leads to the following expression for v1 ·C T

v1 ·C T
t = µ

T
(v1 ·1)+µ(v1 ·1)

∫ t

0
ψT

1 (Ts)d s +
∫ t

0
ψT

1

(
T (t − s)

)√
ST

s + e1 · v2
1

e1 · v1
(v1 ·C T

s )dB T
s .

2. Convergence of ψT
1 (T.) For x ≥ 0, let us define

f T (x) =ψT
1 (T x)− 1

m
exp(−λx

m
).

We have seen in Section 2.3.2 that f T (x) should be close to zero as T goes to infinity. More
precisely, we have the following proposition whose proof is given in Corollaries 4.1, 4.2, 4.3
and 4.4 in [JR15]

Proposition 3. Under the setting of Section 2.3.1 together with Assumptions 2 and 3, f T satisfies
Properties a), b), c) and d) of Lemma 1.

3. The Cox-Ingersoll-Ross like dynamic of v1 ·C T We can write

v1 ·C T
t = RT

t + µ

m
(v1 ·1)

∫ t

0
exp(−λs

m
)d s + 1

m

√
e1 · v2

1

e1 · v1

∫ t

0
exp(−λ(t − s)

m
)
√

v1 ·C T
s dB T

s ,

with

RT
t = µ

T
(v1 ·1)+µ(v1 ·1)

∫ t

0
f T (s)d s +

∫ t

0
f T (t − s)(v1 ·d M

T
s ) (10)

+ 1

m

∫ t

0
exp(−λ(t − s)

m
)
(√

ST
s + e1 · v2

1

e1 · v1
(v1 ·C T

s )−
√

e1 · v2
1

e1 · v1
(v1 ·C T

s )
)
dB T

s .
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Then, using integration by parts, we get that∫ t

0
exp(−λ(t − s)

m
)
√

v1 ·C T
s dB T

s

is equal to ∫ t

0

√
v1 ·C T

s dB T
s − λ

m

∫ t

0

∫ s

0
exp(−λ(s −u)

m
)
√

v1 ·C T
u dB T

u d s.

This can be rewritten∫ t

0

√
v1 ·C T

s dB T
s −λ

√
e1 · v1

e1 · v2
1

∫ t

0
v1 ·C T

s −RT
s − µ

λ
(v1 ·1)

(
1−exp(−λs

m
)
)
d s.

Consequently,

v1 ·C T
t =U T

t +
∫ t

0

λ

m

(µ
λ

(v1 ·1)− v1 ·C T
s

)
d s + 1

m

√
e1 · v2

1

e1 · v1

∫ t

0

√
v1 ·C T

s dB T
s , (11)

with

U T
t = RT

t + λ

m

∫ t

0
RT

s d s.

4. Convergence of U T We now show that U T converges u.c.p. to zero. This vanishing
behavior comes from that of f T and ST . Of course it is enough to prove that RT converges
u.c.p to zero. From Proposition 3 together with Lemma 1, it is obvious that the first three terms
in (10) tend to zero. We now treat the last term.

First, remark that

|
√

ST
s +βv1 ·C T

s −
√
βv1 ·C T

s | ≤
√

|ST
s |,

which tends to zero as T goes to infinity thanks to Proposition 1. Furthermore, observe that
since 〈M T , M T 〉 = diag(

∫ .
0λ

T ) and λT ≥µ1, we have

E
[∫ tT

0

v2
1 ·d M T

s

T v2
1 ·λT

s

]2 = E
[∫ tT

0

v4
1 ·λT

s d s

T 2(v2
1 ·λT

s )2

]
≤ E

[∫ tT

0

v4
1 ·λT

s d s

T 2µ(v4
1 ·λT

s )

]
. (12)

We get that this is smaller than c/T and consequently goes to zero. Therefore, B T is a sequence
of martingales with bounded jumps whose quadratic variation given by 3

[B T ,B T ]t = t +
∫ tT

0

v2
1 ·d M T

s

T v2
1 ·λT

s
,

tends in probability to identity for any fixed t . Using Theorem VIII-3.11 in [JS13], this implies
that B T converges in law towards a Brownian motion B for the Skorokhod topology. Moreover

3We use the fact that [MT , MT ]t = diag(N T
t ) and N T

t = MT
t +∫ t

0 λ
T
s d s.

55
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by Proposition 3.2 in [JMP89], the sequence B T satisfies the U.T condition. From Theorem 2.6
in [JMP89], the convergence for the Skorokhod topology to zero of

1

m

∫ t

0
exp(−λ(t − s)

m
)
(√

ST
s + e1 · v1

e1 · v2
1

(v1 ·C T
s )−

√
e1 · v1

e1 · v2
1

(v1 ·C T
s )

)
dB T

s

follows and finally we get that U T tends to zero u.c.p.

5. End of the proof of Proposition 2 We have that v1 ·C T
t can be written as in (11) and

furthermore (B T ,U T ) converges in law for the Skorokhod topology to (B ,0). Proposition 2
readily follows from Theorem 5.4 in [KP91].

4.1.4 End of proof of Theorem 2

Decomposing C T in the basis (e1, . . . ,ed ),

C T
t =

d∑
i=2

(ei ·C T
t )ei + (v ′ ·C T

t )e1 + 1

e1 · v1
(v1 ·C T

t )e1,

we immediately obtain Theorem 2 from Proposition 1 together with Proposition 2.

4.2 Proof of Theorem 1

4.2.1 Convenient rewriting of P T

We start by writing conveniently our rescaled price P T
tT /T . We have

1

T
P T

tT = N T,+
tT −N T,−

tT

T
=

∫ tT

0

d M T,+
s −d M T,−

s√
T (λT,+

s +λT,−
s )

√
λT,+

s +λT,−
s

T
+

∫ tT

0

λT,+
s −λT,−

s

T
d s.

Furthermore,

λT,+
t −λT,−

t =
∫ t

0
aT (ϕ1(t − s)−ϕ2(t − s))(d N T,+

s −d N T,−
s )

=
∫ t

0
aTλ2(t − s)(d M T,+

s −d M T,−
s )+

∫ t

0
aTλ2(t − s)(λT,+

s −λT,−
s )d s.

Thus, from Lemma 2, we obtain

λT,+
t −λT,−

t =
∫ t

0
ψT

2 (t − s)(d M T,+
s −d M T,−

s ).

Then, using Fubini theorem, we get∫ x

0
λT,+

s −λT,−
s d s =

∫ x

0

(∫ x−s

0
ψT

2 (u)du
)
(d M T,+

s −d M T,−
s ).
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Hence our rescaled price process P T
tT /T can finally be written∫ t

0

√
C T,+

s +C T,−
s dW T

s −
∫ t

0

∫ ∞

T (t−s)
ψT

2 (u)du(d M
T,+
s −d M

T,−
s )+

∫ ∞

0
ψT

2 (u)du(M
T,+
t −M

T,−
t ),

with

W T
t =

∫ tT

0

d M T,+
s −d M T,−

s√
T (λT,+

s +λT,−
s )

.

Since
∫ ∞

0 ψT
2 (u)du = 1

1−aT
∫ ∞

0 λ2(s)d s
, we obtain

1

T
P T

tT = 1

1−aT (‖ϕ1‖1 −‖ϕ2‖2)

∫ t

0

√
C T,+

s +C T,−
s dW T

s −RT
t , (13)

with

RT
t =

∫ t

0

∫ ∞

T (t−s)
ψT

2 (u)du(d M
T,+
s −d M

T,−
s ).

4.2.2 Convergence of RT

We have the following proposition.

Proposition 4. Under Assumptions 1, 2 and 3, RT tends u.c.p. to zero.

Proof.

From Lemma 1, it is enough to show that the sequence of functions

g T (x) =
∫ ∞

T x
ψT

2 (u)du

satisfies Properties a), b), c) and d) of Lemma 1. The fact that b) holds is obvious since

|g T (z)| ≤
∫ +∞

0
|ψT

2 (x)|d x ≤ ||λ2||1
1−||λ2||1

.

Then we remark that

ĝ T (z) =
∫

a≥0
ψT

2 (a)
e i za/T −1

i z
d a,

which shows that Property c) holds. Property d) is obtained from the fact that

|(g T )′(x)| = T |ψT
2 (T x)| ≤ cT.

Finally, we use Fubini theorem to write∫
x≥0

|g T (x)|2d x =
∫

x≥0;a,b>T x
ψT

2 (a)ψT
2 (b)d adbd x = 1

T

∫
a,b≥0

(a ∧b)ψT
2 (a)ψT

2 (b)d adb.
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Consequently,∫
x≥0

|g T (x)|2d x ≤ 1

T

∫
a≥0

a|ψT
2 (a)|d a

∫
b≥0

|ψT
2 (b)|db ≤ c

T

∑
k≥1

∫
a≥0

a|λ2|∗k (a)d a.

By recursion, we get that for k ≥ 1,∫
a≥0

a|λ2|∗k (a)d a = k||λ2||k−1
1

∫
a≥0

a|λ2|(a)d a <∞.

Eventually ∫
x≥0

|g T (x)|2d x ≤ c/T

and a) easily follows.

4.2.3 Convergence of (W T ,B T )

In the same way as for the quadratic variation of B T in the proof of Theorem 2, we easily get
the following convergence in probability for any fixed t ∈ [0,1]

[W T ,W T ]t →
T→∞

t , [B T ,B T ]t →
T→∞

t .

Moreover, we have the following proposition.

Proposition 5. Under Assumptions 1, 2 and 3,

[W T ,B T ]t →
T→∞

1−β√
2(1+β2)

t

in probability, for any fixed t ∈ [0,1].

Proof.

Using [M T , M T ] = diag(N T ), we write

[W T ,B T ]t =
∫ tT

0

d N T,+
s −βd N T,−

s

T
√
λT,+

s +λT,−
s

√
λT,+

s +β2λT,−
s

=
∫ t

0

C T,+
s −βC T,−

s√
C T,+

s +C T,−
s

√
C T,+

s +β2C T,−
s

d s +εT
t ,

with

εT
t =

∫ tT

0

d M T,+
s −βd M T,−

s

T
√
λT,+

s +λT,−
s

√
λT,+

s +β2λT,−
s

.

Since 〈M T , M T 〉 = diag(
∫ .

0λ
T ) and λT ≥µ1, we easily get

E[(εT
t )2] = E[∫ tT

0

1

T 2(λT,+
s +λT,−

s )

]≤ 1

2µT
→

T→∞
0.
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Furthermore, from Corollary 1, (C T,+,C T,−) converges in law for the Skorokhod topology to( 1
β+1 X , 1

β+1 X
)
. Using Skorokhod’s representation theorem, there exists a probability space on

which one can duplicate in law the sequence (Z T , X T ) so that it converges almost surely for
the Skorohod topology to a random variable with the same law as (Z , X ). The set of zeros of a
Cox-Ingersoll-Ross process on a finite interval being of Lebesgue measure zero, we deduce
that almost surely,

C T,+
t −βC T,−

t√
C T,+

t +C T,−
t

√
C T,+

t +β2C T,−
t

tends for almost every t ∈ [0,1] to
1−β√

2(1+β2)
.

Thus we deduce by dominated convergence theorem4 that almost surely, for all t ∈ [0,1],∫ t

0

C T,+
s −βC T,−

s√
C T,+

s +C T,−
s

√
C T,+

s +β2C T,−
s

d s →
T→∞

1−β√
2(1+β2)

t .

Therefore, for any t ∈ [0,1], we have the following convergence in probability

[B T ,W T ]t →
T→∞

1−β√
2(1+β2)

t .

4.2.4 End of the proof of Theorem 1

Consider (13). From Proposition 4, RT tends to zero. Then using Theorem VIII-3.11 in [JS13]
together with Proposition 5, we obtain that (W T ,B T ) converges in law for the Skorokhod
topology to a correlated bi-dimensional Brownian motion (W,B) such that

〈W,B〉t = 1−β√
2(1+β2)

t .

Furthermore, from Corollary 1 we get that (
p

C T,++C T,−,B T ) converges in law for the Sko-

rokhod topology to (
√

2
β+1 X ,B), where X is a Cox-Ingersoll-Ross process driven by B and

defined in Corollary 1. Moreover, W T being a martingale with bounded jumps, it satisifies the
U.T condition from Proposition 3.2 in [JMP89]. Using Theorem 2.6 in [JMP89], we deduce that∫ t

0

√
C T,+

s +C T,−
s dW T

s

converges in law for the Skorokhod topology to∫ t

0

√
2Xs

1+βdWs ,

which ends the proof.
4Notice that ∀(x, y) ∈ (R2+)∗, | x−βy

p
x+y

√
x+β2 y

| ≤ 1 by Cauchy-Schwarz inequality.
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4.3 Proof of Theorem 4

We now give the proof of our theorem on the convergence of general nearly unstable Hawkes
processes with heavy tail. This proof is quite inspired from [JR16b].

4.3.1 C-tightness of (ΛT , X T , Z T )

We have the following proposition.

Proposition 6. Under the setting of Section 2.3.1 together with Assumption 4, the sequence
(ΛT , X T , Z T ) is C-tight and

sup
t∈[0,1]

‖ΛT
t −X T

t ‖ →
T→∞

0

in probability. Moreover if (X , Z ) is a possible limit point of (X T , Z T ), then Z is a continuous
martingale with [Z , Z ] = diag(X ).

Proof:

1. C-tightness of X T and ΛT Recall that as in (3), we can write

λT
t =µT 1+µT

∫ t

0
ψT (t − s)d s.1+

∫ t

0
ψT (t − s).d M T

s .

Using that
∫ .

0
( f ∗ g ) = (

∫ .

0
f )∗ g , we get

E[N T
T ] = E[

∫ T

0
λT

s d s] = TµT 1+µT

∫ T

0
sψT (T − s)d s.1.

Consequently,

1 ·E[N T
T ] = TµT d +µT 1 · ((

∫ T

0
sψT (T − s)d s).1

)
and therefore

1 ·E[N T
T ] ≤ cTµT

(
1+S (

∫ ∞

0
ψT (s)d s)

)≤ c
TµT

1−aT
≤ cT 2α.

Thus, we obtain that
E[X T

1 ] = E(ΛT
1 ) ≤ c.

Each component of X T and ΛT being increasing, we deduce the tightness of each component
of (X T ,ΛT ). Furthermore, the maximum jump size of X T and ΛT being 1−aT

T αµ which goes to

zero, the C-tightness of (X T ,ΛT ) is obtained from Prop.VI-3.26 in [JS13].

2. C-tightness of Z T It is easy to check that

〈Z T , Z T 〉 = diag(ΛT ),

which is C-tight. From Theorem VI-4.13 in [JS13], this gives the tightness of Z T . The maximum
jump size of Z T vanishing as T goes to infinity, we obtain that Z T is C-tight.
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3. Convergence of X T −ΛT We have

X T
t −ΛT

t = 1−aT

Tαµ
M T

tT .

From Doob’s inequality, we get for each component

E[ sup
t∈[0,1]

|ΛT
t −X T

t |2] ≤ cT −4αE[M T
T ]2.

Since [M T , M T ] = diag(N T ), we deduce

E[ sup
t∈[0,1]

|ΛT
t −X T

t |2] ≤ cT −2α.

This gives the uniform convergence to zero in probability of X T −ΛT .

4. Limit of Z T Let (X , Z ) be a possible limit point of (X T , Z T ). We know that (X , Z ) is
continuous and from Corollary IX-1.19 of [JS13], Z is a local martingale. Moreover, since

[Z T , Z T ] = diag(X T ),

using Theorem VI-6.26 in [JS13], we get that [Z , Z ] is the limit of [Z T , Z T ] and [Z , Z ] = diag(X ).
By Skorokhod’s representation theorem and Fatou’s lemma, the expectation of [Z , Z ] is finite
and therefore Z is a martingale.

4.3.2 Convergence of vi ·X T for i ≥ 2

Here also, we observe a vanishing behavior in the direction of the eigenvectors vi for i ≥ 2.
More precisely, we have the following result.

Proposition 7. Under the setting of Section 2.3.1 together with Assumption 4, if X is a possible
limit point of X T , then for i ≥ 2 we have vi ·X = 0.

Proof:
From (3), using Fubini theorem together with the fact that

∫ .

0
( f ∗ g ) = (

∫ .

0
f )∗ g , we get

∫ t

0
λT

s d s = tµT 1+µT

∫ t

0
sψT (t − s)d s.1+

∫ t

0
ψT (t − s).M T

s d s.

Therefore, for t ∈ [0,1], we have the decomposition

ΛT
t = T1 +T2 +T3, (14)

with
T1 = (1−aT )tuT 1,

T2 = T (1−aT )uT

∫ t

0
sψT (

T (t − s)
)
d s.1,
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T3 = T 1−α/2

√
1−aT

µ

∫ t

0
ψT (

T (t − s)
)
.Z T

s d s,

with uT =µT /(µTα−1) tending to one.

Now recall that for 1 ≤ i ≤ d ,

ψT
i = ∑

k≥1
ak

Tλ
∗k
i , ρT

i = T (1−aT )ψT
i (T.),

and define
F T

i =
∫ .

0
ρT

i (s)d s.

For i ≥ 2, using that

|F T
i (t )| ≤

∫ t

0
T (1−aT )|ψT

i (Ts)|d s ≤ (1−aT )
∫ ∞

0
|ψT

i (s)|d s ≤ (1−aT )
‖λi‖1

1−‖λi‖1
.

we get the uniform convergence to zero of F T
i . Thanks to this together with integration by

parts, we deduce the convergence to zero of vi ·T2 since

vi ·T2 = uT (vi ·1)
∫ t

0
F T

i (s)d s.

For vi ·T3 we write

vi ·T3 = 1√
µ(1−aT )Tα

∫ t

0
F T

i (t − s)(vi ·d Z T
s ).

The quadratic variation of Z T being ΛT which is uniformly bounded in expectation, we have

E[(vi ·T3)2] ≤ c

µ(1−aT )Tα

∫ t

0

(
F T

i (s)
)2d s.

The convergence of vi ·T3 to zero follows. Finally, from Proposition 6 we have that if X is a
limit point of X T , then X is also a limit point of ΛT . Therefore, we obtain vi ·X = 0.

4.3.3 Convergence of v1 ·X T

The term v1 ·X T is the non-vanishing one. Indeed, for (Z , X ) a possible limit point of (Z T , X T ),
using the same approach as in [JR16b], we obtain

T2 · v1 →
T→∞

(v1 ·1)
∫ t

0
s f α,λ(t − s)d s

and

T3 · v1 →
T→∞

1√
λ∗µ

∫ t

0
f α,λ(t − s)(v1 ·Zs)d s.

Then, letting T go to infinity in the decomposition (14) we easily deduce the following
proposition.
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Proposition 8. Under the setting of Section 2.3.1 together with Assumption 4, if (Z , X ) is a possible
limit point of (Z T , X T ), then the process v1 ·X satisfies the following equation

v1 ·X t = (v1 ·1)
∫ t

0
s f α,λ(t − s)d s + 1√

λ∗µ

∫ t

0
f α,λ(t − s)(v1 ·Zs)d s.

4.3.4 A first version of Theorem 4

We now prove a version of Theorem 4 where Y is specified in a different way. Let (X , Z ) be a
possible limit point of (X T , Z T ). From Proposition 8, in the same way as the proof of Theorem
3.2 in [JR16b], we can show that

v1 ·X t =
∫ t

0
Ysd s,

where Y satisfies

Yt = (v1 ·1)Fα,λ(t )+ 1√
λ∗µ

∫ t

0
f α,λ(t − s)(v1 ·d Zs).

Using Proposition 7 together with the decomposition of X t in the orthonormal basis (e1, . . . ,ed ),

X t =
d∑

i=2
(ei ·X t )ei + (v ′ ·X t )e1 + 1

e1 · v1
(v1 ·X t )e1,

we get

X t = 1

e1 · v1
(v1 ·X t )e1 = 1

e1 · v1
(
∫ t

0
Ysd s)e1.

From Proposition 6, we have that

[Z , Z ] = diag(X ) = 1

e1 · v1
(
∫ t

0
Ysd s)diag(e1).

Thus we can use Theorem V-3.9 in [RY13] to show the existence of a d-dimensional Brownian
motion (B 1, . . . ,B d ) such that for 1 ≤ i ≤ d ,

Z i
t =

1p
e1 · v1

p
e1,i

∫ t

0

√
YsdB i

s .

Finally, in the same way as the proof of Theorem 3.2 in [JR16b], we obtain that Y satisfies

Yt = (v1 ·1)Fα,λ(t )+
√

e1 · v2
1

λ∗µ(e1 · v1)

∫ t

0
f α,λ(t − s)

√
YsdBs , (15)

where B is a Brownian motion defined by

B = 1√
e1 · v2

1

∑
1≤i≤d

p
e1,i v1,i B i .

and that Y has Hölder regularity α−1/2−ε, for any ε> 0.
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4.3.5 End of the proof of Theorem 4

We eventually provide here the proposition showing that from (15), Y can be written under
the form of the rough stochastic differential equation given in Theorem 4 and stating the
uniqueness of the solution of this equation. Theorem 4 follows immediately.

Proposition 9. Let λ, ν, θ be positive constants, α ∈ (1/2,1) and B a Brownian motion. The
process V is solution of the following rough stochastic differential equation

Vt = θFα,λ(t )+ν
∫ t

0
f α,λ(t − s)

√
VsdBs (16)

if and only if it is solution of

Vt = 1

Γ(α)

∫ t

0
(t − s)α−1λ(θ−Vs)d s + λν

Γ(α)

∫ t

0
(t − s)α−1

√
VsdBs . (17)

Furthermore, both equations admit a unique weak solution.

Proof:

The existence of a solution to (16) has already been proved deriving (15). Let V be a solution
to (16) and write

K = I 1−αV ,

where I 1−α is the fractional integral operator of order (1−α), see Appendix I.B. Using stochastic
Fubini theorem, see for example [Ver12], and integration by parts, we get

Kt = θ
∫ t

0
I 1−α f α,λ(u)du +ν

∫ t

0
I 1−α f α,λ(t −u)

√
VudBu .

Moreover, since I 1−α f α,λ(t ) =λ(
1−Fα,λ(t )

)
, see Appendix I.C, using stochastic Fubini theorem,

we obtain

Kt =λθ
∫ t

0

(
1−Fα,λ(u)

)
du +νλ

∫ t

0

√
VudBu −λ

∫ t

0
ν

∫ s

0

√
Vu f α,λ(s −u)dBud s.

Hence,

Kt =λθ
∫ t

0

(
1−Fα,λ(u)

)
du +νλ

∫ t

0

√
VudBu −λ

∫ t

0

(
Vs −θFα,λ(s)

)
d s

and finally

Kt =λ
∫ t

0
(θ−Vu)du +λν

∫ t

0

√
VudBu .

Now recall that we have
Vt = D1−αKt ,

where the fractional differentiation operator D1−α is defined in Appendix I.B. Thus we get

Vt = 1

Γ(α)

d

d t

∫ t

0
λ

∫ s

0
(s −u)α−1(θ−Vu)dud s + 1

Γ(α)

d

d t

∫ t

0
λν

∫ s

0
(s −u)α−1

√
VudBud s
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and finally, again from Fubini theorem,

Vt = 1

Γ(α)
λ

∫ t

0
(t −u)α−1(θ−Vu)du + 1

Γ(α)
λν

∫ t

0
(t −u)α−1

√
VudBu .

Therefore V is solution of (17). Using a straightforward generalization of the main result in
[MS15], we deduce the uniqueness of such a solution.

4.4 Proof of Theorem 3

First, remark that in the same way as in Section 4.2, we can write√
1−aT

Tαµ
P T

tT = 1

1−aT (‖ϕ1‖1 −‖ϕ2‖1)
(Z T,+

t −Z T,−
t )−RT

t ,

with

RT
t =

∫ t

0

(∫ ∞

T (t−s)
ψT

2 (u)du
)
(d Z T,+

s −d Z T,−
s ).

Using Corollary 2, we deduce that

1

1−aT (‖ϕ1‖1 −‖ϕ2‖1)
(Z T,+

t −Z T,−
t )

converges in law for the Skorokhod topology to the rough Heston dynamic P defined in
Theorem 3.

Note that when ϕ1 =ϕ2, RT = 0. Thus, in this case, we obtain the convergence in law for the
Skorokhod topology of the rescaled microscopic price to P . For the general case, we can prove
the convergence of RT to zero in the sense of finite dimensional laws as follows. We have

E[(RT
t )2] ≤ c

∫ t

0

(∫ ∞

Ts
ψT

2 (u)du
)2d s.

Let G =∑
k≥1 |ϕ1 −ϕ2|∗k . Note that |ψT

2 | ≤G and that G is integrable since
∫ ∞

0 |ϕ1 −ϕ2| < 1.
Hence

E[(RT
t )2] ≤ c

(∫ T −1/2

0

(∫ ∞

Ts
G(u)du

)2d s +
∫ 1

T −1/2

(∫ ∞

Ts
G(u)du

)2d s
)
.

Then

E[(RT
t )2] ≤ c

(
T −1/2(

∫ ∞

0
G)2 + (

∫ ∞

T 1/2
G)2),

which vanishes as T tends to infinity. The result follows.

Remark 3. Note that

sup
t∈[0,1]

|
∫ t

0

∫ ∞

Ts
ψT

2 (u)dud s| ≤ c
(
T −1/2

∫ ∞

0
G +

∫ ∞

T 1/2
G

)
,
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which vanishes as T goes to infinity. Then, using Fubini theorem, we get that∫ t

0
RT

s d s =
∫ t

0

∫ t−s

0

(∫ ∞

Tu
ψT

2

)
du(d Z T,+

s −d Z T,−
s )

converges u.c.p. to zero. Thus, as stated in Remark 1, the integrated rescaled microscopic price
converges in law for the Skorokhod topology to

∫ t
0 Psd s.

I.A Technical results

I.A.1 Proof of Lemma 1.

This result has already been proved in [JR16b] in dimension one. We need to generalize it for
d ≥ 2. Inspection of the proof of Proposition 4.1 in [JR16b] shows that the tightness of

H T
t =

∫ t

0
f T (t − s)d M

T
s

with respect to the Skorokhod topology, holds the same way when the dimension is larger than
one. So we just need to check the finite dimensional convergence of H T to zero. Using that
〈M T , M T 〉 = ∫ .

0λ
T , we get

E[‖H T
t ‖2

2] = 1

T 2 E
[∫ tT

0
f T (t − s/T )2

d∑
i=1

λT
s,i d s

]= 1

T 2

∫ tT

0
f T (t − s/T )2

d∑
i=1
E[λT

s,i ]d s.

Using (3) together with the fact that v>
i .ψT =ψT

i v>
i , we obtain that for any i ∈ {1, . . . ,d} and

s ≥ 0,

E[vi ·λT
s ] =µ(vi ·1)

(
1+

∫ s

0
ψT

i (u)du
)
.

Thus

|E[vi ·λT
s ]| ≤µ|vi ·1|(1+ ∑

k≥1

∫ ∞

0
ak

T |λi |∗k (u)du
)≤µ|vi ·1| 1

1−aT ‖λi‖1
≤ cT.

Hence for any i ∈ {1, . . . ,d}, E[λT
s,i ] ≤ cT . Therefore

E[‖H T
t ‖2

2] ≤ c
∫ ∞

0
f T (s)2d s →

T→∞
0

and so H T
t tends in probability to zero giving the finite dimensional convergence of the process.

I.A.2 Wiener-Hopf equations

The following result is used extensively in this work to solve Wiener-Hopf type equations, see
for example [BDHM13b].
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Lemma 2. Let g be a measurable locally bounded function from R to Rd and φ : R+ → M d(R)
be a matrix-valued function with integrable components such that S (

∫ ∞
0 φ(s)d s) < 1. Then there

exists a unique locally bounded function f from R+ to Rd solution of

f (t ) = g (t )+
∫ t

0
φ(t − s). f (s)d s, t ≥ 0

given by

f (t ) = g (t )+
∫ t

0
ψ(t − s).g (s)d s, t ≥ 0,

where ψ= ∑
k≥1

φ∗k .

I.B Fractional integrals and derivatives

The fractional integral of order r ∈ (0,1] of a function f is defined by

I r f (t ) = 1

Γ(r )

∫ t

0
(t − s)r−1 f (s)d s,

whenever the integral exists. Its fractional derivative of order r ∈ [0,1) is given by

Dr f (t ) = 1

Γ(1− r )

d

d t

∫ t

0
(t − s)−r f (s)d s,

whenever it exists.

I.C Mittag-Leffler functions

Let (α,β) ∈ (R∗+)2. The Mittag-Leffler function Eα,β is defined for z ∈C by

Eα,β(z) = ∑
n≥0

zn

Γ(αn +β)
.

For (α,λ) ∈ (0,1)×R+, we also define

f α,λ(t ) =λtα−1Eα,α(−λtα), t > 0,

Fα,λ =
∫ t

0
f α,λ(s)d s, t ≥ 0.

The function f α,λ is a density function on R+ called Mittag-Leffler density function.
For α ∈ (1/2,1), f α,λ is square-integrable and its Laplace transform is given for z ≥ 0 by

f̂ α,λ(z) =
∫ ∞

0
fα,λ(s)e−zsd s = λ

λ+ zα
.

Finally, we can show that
I 1−α f α,λ(t ) =λ(

1−Fα,λ(t )
)
.

Further properties of f α,λ and Fα,λ can be found in [HMS11, Mai, MH08].
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Pricing under the rough Heston
model
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CHAPTER II

Characteristic function of rough Heston
models

Abstract

It has been recently shown that rough volatility models, where the volatility is driven by a
fractional Brownian motion with small Hurst parameter, provide very relevant dynamics
in order to reproduce the behavior of both historical and implied volatilities. However,
due to the non-Markovian nature of the fractional Brownian motion, they raise new issues
when it comes to derivatives pricing. Using an original link between nearly unstable
Hawkes processes and fractional volatility models, we compute the characteristic function
of the log-price in rough Heston models. In the classical Heston model, the characteristic
function is expressed in terms of the solution of a Riccati equation. Here we show that
rough Heston models exhibit quite a similar structure, the Riccati equation being replaced
by a fractional Riccati equation.

Keywords: Rough volatility models, rough Heston models, Hawkes processes, fractional
Brownian motion, fractional Riccati equation, limit theorems.

1 Introduction

The celebrated Heston model is a one-dimensional stochastic volatility model where the asset
price S follows the following dynamic:

dSt = St

√
Vt dWt

dVt =λ(θ−Vt )d t +λν
√

Vt dBt . (1)

Here the parameters λ, θ, V0 and ν are positive, and W and B are two Brownian motions with
correlation coefficient ρ, that is 〈dWt ,dBt 〉 = ρd t .

The popularity of this model is probably due to three main reasons:

• It reproduces well several important stylized facts of low frequency price data, namely
leverage effect, time-varying volatility and fat tails, see [BP03, Chr82, DY02, Man97].
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• It generates very reasonable shapes and dynamics for the implied volatility surface.
Indeed, the “volatility of volatility" parameter ν enables us to control the smile, the
correlation parameter ρ to deal with the skew, and the initial volatility V0 to fix the at-
the-money volatility level, see [FJL12, Gat11, JKWW11, Poo09]. Furthermore, as observed
in markets and in contrast to local volatility models, in Heston model, the volatility
smile moves in the same direction as the underlying and the forward smile does not
flatten with time, see [Gat11, JR13, JR16a, MP15b].

• There is an explicit formula for the characteristic function of the asset log-price, see
[Hes93]. From this formula, efficient numerical methods have been developed, allowing
for instantaneous model calibration and pricing of derivatives, see [AMST07, CM99,
KJ05, Lew01].

In the classical Heston model, the volatility follows a Brownian semi-martingale. However, it is
demonstrated in [GJR18] that for a very wide range of assets, historical volatility time-series
exhibit a behavior which is much rougher than that of a Brownian motion. More precisely,
the dynamic of log-volatility is typically very well modeled by a fractional Brownian motion
with Hurst parameter of order 0.1. For example, it is shown in [GJR18] that in practice, the
empirical moment of order q > 0 of log-volatility increments

log(Vt+∆)− log(Vt ),

is proportional to ∆q H with H of order 0.1, and this for any reasonable scale of interest ∆
(from ∆ equal to one day to hundreds of days). This corresponds to a rough fractional dynamic
with Hurst parameter H = 0.1. Beyond moments, it is also established in [GJR18] that the
empirical correlation structure of volatility is very well reproduced when using rough fractional
volatility models. These findings have been confirmed by further studies, see [BLP16, LMPR18].
Moreover, considering a fractional Brownian motion with small Hurst parameter also enables
us to obtain remarkable fits for the whole volatility surface. In particular, contrary to most
stochastic volatility models, rough volatility models generate an exploding term structure
for the at-the-money skew when maturity goes to zero, which is very commonly observed in
practice, see [BFG16, GJR18] and Section 5. Finally, convincing microstructural foundations for
rough volatility models are provided in [JR16b] and Chapter I, see also Section 2.

Hence, in this paper, we are interested in the fractional versions of the Heston model. Our
main goal is to design an efficient pricing methodology for such models, in the spirit of the
one introduced by Heston in the classical case. This is particularly important in fractional
volatility models where the use of Monte-Carlo methods can be quite intricate due to the
non-Markovian nature of the fractional Brownian motion, see [BLP17].

We now define our so-called rough Heston model. Let us recall that a fractional Brownian
motion W H with Hurst parameter H ∈ (0,1) can be built through the Mandelbrot-van Ness
representation

W H
t = 1

Γ(H +1/2)

∫ 0

−∞
(
(t − s)H− 1

2 − (−s)H− 1
2
)
dWs + 1

Γ(H +1/2)

∫ t

0
(t − s)H− 1

2 dWs . (2)
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1. Introduction

The kernel (t−s)H− 1
2 in (2) plays a central role in the rough dynamic of the fractional Brownian

motion for H < 1/2. In particular, one can show that the process∫ t

0
(t − s)H− 1

2 dWs

has Hölder regularity H−ε for any ε> 0. In order to allow for a rough behavior of the volatility
in a Heston-type model, we naturally introduce the kernel (t − s)α−1 in a Heston-like stochastic
volatility process as follows

dSt = St

√
Vt dWt

Vt =V0 + 1

Γ(α)

∫ t

0
(t − s)α−1λ(θ−Vs)d s + 1

Γ(α)

∫ t

0
(t − s)α−1λν

√
VsdBs . (3)

The parameters λ, θ, V0 and ν in (3) are positive and play the same role as in (1), and here also
W and B are two Brownian motions with correlation ρ. The additional parameter α belongs
to (1/2,1) and governs the smoothness of the volatility sample paths. More precisely, we show
in this paper that the model is well-defined and that the volatility trajectories have almost
surely Hölder regularity α−1/2−ε, for any ε> 0. When α= 1, Models (3) and (1) coincide,
and we retrieve the classical Heston model. Therefore it is natural to view (3) as a rough
version of the Heston model and to call it rough Heston model. In term of Hurst parameter H ,
α= H +1/2. Nevertheless, note that other definitions of rough Heston models can make sense,
see [GJR14] for an alternative definition and some asymptotic results.

Our aim in this work is to derive a Heston-type formula for the characteristic function of the
log-price in Model (3). In the classical case (α= 1, Model (1)), this formula is proved in [Hes93].
It is obtained using the fact that Model (1) is Markovian and time-homogeneous, and applying
Itô’s formula to the function

L(t , a,Vt ,St ) = E[e i a log(ST )|Ft ], Ft =σ(Ws ,Bs ; s ≤ t ), a ∈R.

The process L being a martingale, the following Feynman-Kac partial differential equation for
L is easily obtained

−∂t L(t , a,S,V ) = (
λ(θ−V )∂v + 1

2
(λν)2V ∂2

v v +
1

2
S2V ∂2

ss +ρνλSV ∂2
sv

)
L(t , a,S,V ),

with boundary condition L(T, a,S,V ) = e i a log(S). From this PDE, it can be checked that the
characteristic function of the log-price X t = log(St /S0) satisfies

E[e i aX t ] = exp
(
g (a, t )+V0h(a, t )

)
,

where h is solution of the following Riccati equation

∂t h(a, t ) = 1

2
(−a2 − i a)+λ(i aρν−1)h(a, t )+ (λν)2

2
h2(a, t ), h(a,0) = 0, (4)

and

g (a, t ) = θλ
∫ t

0
h(a, s)d s.
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II. Characteristic function of rough Heston models

Solving this Riccati equation leads to the closed-form formula for the characteristic function
of the log-price given in [Hes93].

In the case α< 1, the rough Heston model (3) is not Markovian and the variance process is no
longer a semi-martingale. Hence the strategy initially used by Heston and presented above
seems very hard to adapt to our setting. Here we resort to a completely different and original
approach based on point processes. Indeed, our methodology finds its root in [JR16b] and
Chapter I which provide microstructural foundations for rough volatility models. In these
papers, it is shown that some well-designed microstructure models, reproducing the stylized
facts of modern financial markets at high frequency, give rise in the long run to rough volatility
models. These microstructure models, that we describe in more details in Section 2, are
based on so-called nearly unstable Hawkes processes. In this paper, inspired by these results
and using again Hawkes processes, we design a suitable sequence of point processes which
converges to Model (3). Exploiting the specific structure of our point processes, we derive their
characteristic function, which leads us in the limit to that of the log-price in the rough Heston
model (3).

Our main result is that, quite surprisingly, the characteristic function of the log-price in rough
Heston models exhibits the same structure as the one obtained in the classical Heston model.
The difference is that the Riccati equation (4) is replaced by a fractional Riccati equation,
where a fractional derivative appears instead of a classical derivative. More precisely, we obtain

E[e i aX t ] = exp
(
g1(a, t )+V0g2(a, t )

)
,

where

g1(a, t ) = θλ
∫ t

0
h(a, s)d s, g2(a, t ) = I 1−αh(a, t ),

and h(a, .) is a solution of the following fractional Riccati equation

Dαh(a, t ) = 1

2
(−a2 − i a)+λ(i aρν−1)h(a, t )+ (λν)2

2
h2(a, t ), I 1−αh(a,0) = 0,

with Dα and I 1−α the fractional derivative and integral operators defined in (18) and (19). Re-
mark that when α= 1, this result indeed coincides with the classical Heston’s result. However,
note that for α< 1, the solutions of such Riccati equations are no longer explicit. Nevertheless,
they are easily solved numerically, see Section 5.

The paper is organized as follows. In Section 2, we build a sequence of Hawkes-type processes
which converges to the rough Heston model (3). Then we study in Section 3 the characteristic
function of these processes and show in Section 4 that it enables us to derive the characteristic
function of the log-price in Model (3). Numerical illustrations are given in Section 5 and
some proofs are relegated to Section 6. Finally, some useful technical results are given in an
appendix.
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2. From Hawkes processes to rough Heston models

2 From Hawkes processes to rough Heston models

We build in this section a sequence of Hawkes-type processes which converges to the rough
Heston model (3). This construction is inspired by Chapter I. In this work, microstructural
foundations for rough Heston models are provided. This is done designing suitable sequences
of ultra high frequency price models which reproduce the stylized facts of modern markets
microstructure and converge in the long run to rough Heston models. These microscopic price
models are based on Hawkes processes. So that the reader can understand the genesis of our
original methodology to compute the characteristic function in rough Heston models, we recall
here the main ideas and results in Chapter I.

2.1 Microstructural foundations for rough Heston models

In Chapter I, we consider a sequence of bi-dimensional Hawkes processes (N T,+, N T,−) indexed
by T > 0 going to infinity1 and with intensity2

λT
t =

(
λT,+

t

λT,−
t

)
=µT

(
1
1

)
+

∫ t

0
aTφ(t − s).

(
d N T,+

s

d N T,−
s

)
, (5)

with

φ=
(
ϕ1 ϕ3

ϕ2 ϕ4

)
.

Here the ϕi are measurable non-negative deterministic functions and µT and 0 < aT < 1 are
some deterministic sequences of positive real numbers, see [BDHM13b] and the references
therein for more details about the definition of Hawkes processes. Then in Chapter I, inspired
by [BDHM13a, BDHM13b, JR15], we consider the following ultra high frequency tick-by-tick
model for the transaction price P T

t ,

P T
t = N T,+

t −N T,−
t . (6)

Hence N T,+
t represents the number of upward jumps of one tick of the transaction price over

the period [0, t ] and N T,−
t the number of downward jumps. The relevance of this Hawkes-based

modeling is that it enables us to encode very easily the most important stylized facts of high
frequency markets in term of the parameters of the Hawkes process. We now give these stylized
facts and their translation in terms of the model parameters, referring to Chapter I for more
details.

• Markets are highly endogenous: In the high frequency trading context, most orders have
no real economic motivation. They are rather sent by algorithms as reactions to other
orders. In the Hawkes framework, this amounts to work with so-called nearly unstable
Hawkes processes. This means that the stability condition

S
(∫ ∞

0
aTφ(s)d s

)< 1,

1Of course by T we implicitly mean Tn with n ∈N tending to infinity.
2From now on we write a dot between quantities to emphasize matrix product.
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II. Characteristic function of rough Heston models

where S denotes the spectral radius operator, should almost be saturated and that the
intensity of exogenous orders, namely µT , should be small, see [HBB13, JR16b, JR15] and
Chapter I. In term of model parameters, suitable constraints are therefore

aT → 1, S
(∫ ∞

0
φ(s)d s

)= 1, µT → 0.

• It is not an easy task to make money with high frequency strategies on highly liquid
electronic markets. Hence some “no statistical arbitrage" mechanisms should be in force.
We translate this assuming that in the long run, there are on average as many upward as
downward jumps. This corresponds to the assumption

ϕ1 +ϕ3 =ϕ2 +ϕ4.

• Buying is not the same action as selling. This means that buy market orders and sell
market orders are not symmetric orders. To see this, consider for example a market
maker, with an inventory which is typically positive. After each order he receives, he
modifies his bid and ask quotes, reflecting the market impact of the received order. This
means that after a buy order, he will increase his ask quote and he will decrease his
bid quote after a sell order. However, he typically raises the price by less following a
buy order than he lowers the price following the same size sell order. Indeed, inventory
becomes smaller after a buy order, which is a good thing for him, whereas it increases
after a sell order. This creates a liquidity asymmetry on the bid and ask sides of the
order book. This can be modeled in the Hawkes framework assuming that

ϕ3 =βϕ2,

for some β> 1. Hence, the matrix φ finally takes the form

φ=
(
ϕ1 βϕ2

ϕ2 ϕ1 + (β−1)ϕ2

)
.

• A significant amount of transactions is part of metaorders, which are large orders whose
execution is split in time by trading algorithms. This is translated into a heavy tail
assumption on the functions ϕ1 and ϕ2, namely that there exists 1/2 <α< 1 (typically
around 0.6 in practice, see [BJM16, HBB13]) and C > 0 such that

αxα
∫ ∞

x
ϕ1(s)+βϕ2(s)d s →

x→∞ C .

Furthermore, it is shown in [JR16b] that for a given α, there is only one way to make µT

tends to zero and aT tends to one so that the limit of the price is not degenerate. More
precisely,

(1−aT )Tα →
T→∞

λ∗, µT T 1−α →
T→∞

µ,

for some positive λ∗ and µ.
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2. From Hawkes processes to rough Heston models

Under the above assumptions, it is proved in Chapter I that the properly rescaled microscopic
price process √

1−aT

µTα
P T

tT , t ∈ [0,1],

where P T is defined in (11), converges in law as T tends to infinity to the following macroscopic
price dynamic P ,

Pt =
p

2

1−∫ ∞
0 (ϕ1 −ϕ2)

∫ t

0
σsdWs ,

σ2
t =

1

Γ(α)

∫ t

0
(t − s)α−1λ(1−σ2

s )d s + 1

Γ(α)
λν

∫ t

0
(t − s)α−1σsdBs , (7)

where (W,B) is a bi-dimensional correlated Brownian motion with correlation

ρ = 1−β√
2(1+β2)

and

ν=
√

2(1+β2)

λ∗µ(1+β)2 , λ=λ∗ α

CΓ(1−α)
.

Hence this result shows that the main stylized facts of modern electronic markets naturally
give rise to a very rough behavior of the volatility. Indeed, recall that the Hurst parameter
corresponds to α−1/2.

Inspired by this result, our idea is to study the characteristic function of some kind of
microscopic price processes in order to deduce that of our rough Heston macroscopic price
of interest (3). However, the developments presented above cannot be directly applied and
need to be adapted. Indeed, remark that in (7), σ0 = 0. This does not correspond to the
case of (3), where having a non-zero initial volatility is of course crucial for the model to be
relevant in practice. Thus we need to modify the sequence of Hawkes-type processes to obtain
a non-degenerate initial volatility in the limit. This is actually a non-trivial issue. However,
this can be achieved replacing µT in (5) by an inhomogeneous Poisson intensity µ̂T (t ). We
explain how such µ̂T (t ) can be found in the next section.

2.2 The role of the Poisson rate

We work on a sequence of probability spaces (ΩT ,F T ,PT ), indexed by T > 0 (going to infinity),
on which N T = (N T,+, N T,−) is a bi-dimensional Hawkes process with intensity

λT
t =

(
λT,+

t

λT,−
t

)
= µ̂T (t )

(
1
1

)
+

∫ t

0
φT (t − s).d N T

s . (8)

For a given T , the probability space is equipped with the filtration (F T
t )t≥0, where F T

t is the
σ-algebra generated by (N T

s )s≤t . Because our goal is to design a sequence of processes leading
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II. Characteristic function of rough Heston models

in the limit to a rough Heston dynamic, we consider the same kind of assumptions on the
matrix φT as those described in the previous section. However, here we can be very specific
because we just need to find one convenient sequence of processes. That is why we make a
particular choice for the heavy-tailed functions defining φT , using Mittag-Leffler functions, see
Section II.A in the Appendix for definition and some properties. Indeed, these functions are
very convenient in order to carry out computations. More precisely, our assumptions on φT

are as follows.

Assumption 1. There exist β≥ 0, 1/2 <α< 1 and λ> 0 such that

aT = 1−λT −α, φT =ϕTχ,

where

χ= 1

β+1

(
1 β

1 β

)
, ϕT = aTϕ, ϕ= f α,1,

with f α,1 the Mittag-Leffler density function defined in Appendix.

Remark 1. From Appendix II.A, we get that we are working in the nearly unstable heavy tail case
because ∫ ∞

0
ϕ(s)d s = 1

and
αxα

∫ ∞

x
ϕ(t )d t −→

x→∞
α

Γ(1−α)
.

We now give intuitions about the need to use a non-constant Poisson intensity µ̂T (t ). First,
note that under Assumption 1,

λT,+
t =λT,−

t .

The asymptotic behavior of the renormalized intensity processes λT,+
t and λT,−

t will give us
that of the volatility in our limiting macroscopic price model. Thus, we need to understand
the long term limit of λT,+

t . Let us write

M T
t = (M T,+

t , M T,−
t ) = N T

t −
∫ t

0
λT

s d s

for the martingale associated to the point process N T
t . We easily obtain

λT,+
t = µ̂T (t )+

∫ t

0
ϕT (t − s)λT,+

s d s + 1

1+β
∫ t

0
ϕT (t − s)(d M T,+

s +βd M T,−
s ).

Now let
ψT = ∑

k≥1
(ϕT )∗k ,

where (ϕT )∗1 =ϕT and for k > 1, (ϕT )∗k (t ) = ∫ t
0 ϕ

T (s)(ϕT )∗(k−1)(t − s)d s. Using Lemma 1 in
the Appendix together with Fubini theorem and the fact that ψT ∗ϕT =ψT −ϕT , we get

λT,+
t = µ̂T (t )+

∫ t

0
ψT (t − s)µ̂T (s)d s + 1

1+β
∫ t

0
ψT (t − s)(d M T,+

s +βd M T,−
s ). (9)
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2. From Hawkes processes to rough Heston models

Following Chapter I, the inhomogeneous intensity µ̂T (t ) should be of order µT with

µT =µTα−1,

where µ is some positive constant. In Chapter I, it is shown that the right normalization for
the intensity in order to get a non-degenerate limit, is to consider (1−aT )λT,+

tT /µT . The same
applies here and thus we define the renormalized intensity

C T
t = 1−aT

µT
λT,+

tT .

After obvious computations, this can be written

C T
t = 1−aT

µT
µ̂T (tT )+

∫ t

0
T (1−aT )ψT (

T (t−s)
) µ̂T (Ts)

µT
d s+ν

∫ t

0
T (1−aT )ψT (

T (t−s)
)√

C T
s dB T

s ,

where

B T
t =

∫ tT

0

d M T,+
s +βd M T,−

s√
T (λT,+

s +β2λT,−
s )

, ν=
√

1+β2

λµ(1+β)2 .

Using the fact that the Laplace transform f̂ α,λ of the Mittag-Leffler density function f α,λ is
given by

f̂ α,λ(z) = λ

λ+ zα
,

we easily obtain that
(1−aT )TψT (T.) = aT f α,λ, (10)

see Section II.A in Appendix. This leads to the following expression for C T :

C T
t = 1−aT

µT
µ̂T (tT )+

∫ t

0
aT f α,λ(t − s)

µ̂T (Ts)

µT
d s +ν

∫ t

0
aT f α,λ(t − s)

√
C T

s dB T
s .

Computing the quadratic variation of B T , it is easy to see that it converges to a Brownian
motion B . Now, if as in Chapter I we take µ̂T (t ) =µT , we obtain that C T should then give in
the limit a process with starting value equal to zero. Nevertheless, we also get the intuition
that a non-constant µ̂T can lead to a non-trivial initial value. From the computations in the
proof of Theorem 1, it will become clear that the right choice of µ̂T is as follows

Assumption 2. The baseline intensity µ̂T is given by

µ̂T (t ) =µT +ξµT
( 1

1−aT
(1−

∫ t

0
ϕT (s)d s)−

∫ t

0
ϕT (s)d s

)
,

with ξ> 0 and µT =µTα−1 for some µ> 0.

Remark 2. Note that µ̂T can also be written as follows

µ̂T (t ) =µT +ξµT
(Tα

λ

∫ ∞

t
ϕ(s)d s +λT −α

∫ t

0
ϕ(s)d s

)
.

This shows that µ̂T is a positive function and thus that the intensity process λT
t in (8) is well-defined.
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II. Characteristic function of rough Heston models

2.3 The rough limits of Hawkes processes

We now give a rigorous statement about the limiting behavior of our specific sequence of
bi-dimensional nearly unstable Hawkes processes with heavy tails. For t ∈ [0,1], we define

X T
t = 1−aT

Tαµ
N T

tT , ΛT
t = 1−aT

Tαµ

∫ tT

0
λT

s d s, Z T
t =

√
Tαµ

1−aT
(X T

t −ΛT
t ).

Using a similar approach as that in Chapter I, we obtain the following result whose proof is
given in Section 6.

Theorem 1. As T →∞, under Assumptions 1 and 2, the process (
ΛT

t , X T
t , Z T

t

)
t∈[0,1] converges in

law for the Skorokhod topology to (Λ, X , Z ) where

Λt = X t =
∫ t

0
Ysd s

(
1
1

)
, Zt =

∫ t

0

√
Ys

(
dB 1

s

dB 2
s

)
,

and Y is the unique solution of the rough stochastic differential equation3

Yt = ξ+ 1

Γ(α)

∫ t

0
(t − s)α−1λ(1−Ys)d s +λ

√
1+β2

λµ(1+β2)

1

Γ(α)

∫ t

0
(t − s)α−1

√
YsdBs ,

where

B = B 1 +βB 2√
1+β2

and (B 1,B 2) is a bi-dimensional Brownian motion. Furthermore, for any ε > 0, Y has Hölder
regularity α−1/2−ε.
Hence Theorem 1 shows that designing our sequence of bi-dimensional Hawkes processes in a
suitable way, its limit is differentiable and its derivative exhibits a rough Cox-Ingersoll-Ross like
behavior, with non-zero initial value. This is exactly what we need for the limiting volatility of
our microscopic price processes. Indeed, thanks to Theorem 1, we are now able to build such
microscopic processes converging to the log-price in (3). More precisely, for θ > 0, let us define

P T =
√
θ

2

√
1−aT

Tαµ
(N T,+

.T −N T,−
.T )− θ

2

1−aT

Tαµ
N T,+

.T =
√
θ

2
(Z T,+−Z T,−)− θ

2
X T,+. (11)

We have the following corollary of Theorem 1.

Corollary 1. As T →∞, under Assumptions 1 and 2, the sequence of processes (P T
t )t∈[0,1] converges

in law for the Skorokhod topology to

Pt =
∫ t

0

√
VsdWs − 1

2

∫ t

0
Vsd s,

3Note that we call this equation rough because of the presence of the kernel (t − s)α−1. However, it is not
directly related to rough paths theory.
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where V is the unique solution of the rough stochastic differential equation

Vt = θξ+ 1

Γ(α)

∫ t

0
(t − s)α−1λ(θ−Vs)d s +λ

√
θ(1+β2)

λµ(1+β)2

1

Γ(α)

∫ t

0
(t − s)α−1

√
VsdBs ,

with (W,B) a correlated bi-dimensional Brownian motion whose bracket satisfies

d〈W,B〉t = 1−β√
2(1+β2)

d t .

Thus, we have succeeded in building a sequence of microscopic processes P T , defined by (11),
which converges to (the logarithm of) our rough Heston process of interest (3). Now our goal is
to use the result of Corollary 1 to compute the characteristic function of the log-price in the
rough Heston model (3). This is done in the next two sections.

3 The characteristic function of multivariate Hawkes processes

We have seen in the previous section that our sequence of Hawkes-based microscopic price
processes converges to the log-price in the rough Heston model (3). Therefore, if we are able to
compute the characteristic function for the microscopic price, its limit will give us that of the
log-price in a rough Heston model. We actually provide a more general result here, deriving
the characteristic function of a multivariate Hawkes process (recall that a bi-dimensional
Hawkes process is the building block for our microscopic price process (11)). Hence we extend
here some results already proved in [HO74] in the one-dimensional case.

3.1 Cluster-based representation

To derive our characteristic function, the representation of Hawkes processes in term of clusters,
see [HO74], is very useful. We recall it now. Let us consider a d-dimensional Hawkes process
N = (N 1, ..., N d ) with intensity

λt =

λ
1
t
...
λd

t

=µ(t )+
∫ t

0
φ(t − s).d Ns , (12)

where µ :R+ →Rd+ is locally integrable and φ :R+ →Md(R+) has integrable components such
that

S
(∫ ∞

0
φ(s)d s

)< 1.

The law of such process can be described through a population approach. Consider that there
are d types of individuals and for a given type, an individual can be either a migrant or the
descendant of a migrant. Then the dynamic goes as follows from time t = 0:

• Migrants of type k ∈ {1, ..,d} arrive as a non-homogenous Poisson process with rate
µk (t ).
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II. Characteristic function of rough Heston models

• Each migrant of type k ∈ {1, ..,d} gives birth to children of type j ∈ {1, ..,d} following a
non-homogenous Poisson process with rate φ j ,k (t ).

• Each child of type k ∈ {1, ..,d} also gives birth to other children of type j ∈ {1, ..,d}
following a non-homogenous Poisson process with rate φ j ,k (t ).

Then, for k ∈ {1, ..,d}, N k
t can be taken as the number up to time t of migrants and children

born with type k . Indeed, the population approach above and the theoretical characterization
(12) define the same point process law.

3.2 The result

Let L(a, t ) be the characteristic function of the Hawkes process N ,

L(a, t ) = E[exp(i a.Nt )], t ≥ 0, a ∈Rd ,

where a.Nt stands for the scalar product of a and Nt . The cluster-based representation of
multivariate Hawkes processes enables us to show the following result, proved in Section 3.3,
for their characteristic function.

Theorem 2. We have

L(a, t ) = exp
(∫ t

0

(
C (a, t − s)−1

)
.µ(s)d s

)
,

where C :Rd ×R+ →Cd is solution of the following integral equation:

C (a, t ) = exp
(
i a +

∫ t

0
φ∗(s).(C (a, t − s)−1)d s

)
,

with φ∗(s) the transpose of φ(s).

From Theorem 2, we are able to derive in Section 4 the characteristic function of rough Heston
models.

3.3 Proof of Theorem 2

We now give the proof of Theorem 2, exploiting the population construction presented in
Section 3.1. We start by defining d auxiliary independent d-dimensional point processes
(Ñ k, j )1≤ j≤d , k ∈ {1, ...,d}, defined as follows for each given k ∈ {1, ..,d}:

• Migrants of type j ∈ {1, ...,d} arrive as a non-homogenous Poisson process with rate
φ j ,k (t ).

• Each migrant of type j ∈ {1, ..,d} gives birth to children of type l ∈ {1, ..,d} following a
non-homogenous Poisson process with rate φl , j (t ).

• Each child of type j ∈ {1, ..,d} also gives birth to other children of type l ∈ {1, ..,d}
following a non-homogenous Poisson process with rate φl , j (t ).
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3. The characteristic function of multivariate Hawkes processes

For a given k ∈ {1, ..,d}, Ñ k, j
t corresponds to the number, up to time t , of migrants and children

with type j . A simple but crucial remark is that (Ñ k, j )1≤ j≤d is actually also a multivariate
Hawkes process with migrant rate (φ j ,k )1≤ j≤d and kernel matrix φ. We write Lk (a, t ) for its
characteristic function

Lk (a, t ) = E[exp(i a.(Ñ k, j
t )1≤ j≤d )

]
, t ≥ 0, a ∈Rd .

Now let us come back to the initial Hawkes process of interest N defined by (12). For each
k ∈ {1, ...,d} and t ≥ 0, let N 0,k

t be the number of its migrants of type k arrived up to time t .
Recall that the N 0,k , 1 ≤ k ≤ d , are independent Poisson processes with rates µk (t ). We also
define T k

1 < ... < T k
N 0,k

t

∈ [0, t ] the arrival times of migrants of type k of the Hawkes process N ,

up to time t . Using the population approach presented in Section 3.1, it is clear that at time t ,
the number of descendants of different types of a migrant of type k arrived at time T k

u has the
same law as (Ñ k, j

t−T k
u

)1≤ j≤d , where Ñ is taken independent from N . Consequently,

N k
t =

l aw
N 0,k

t + ∑
1≤ j≤d

∑
1≤l≤N 0, j

t

Ñ j ,k,(l )

t−T j
l

, (13)

where the (Ñ j ,k,(l ))1≤k≤d , 1 ≤ j ≤ d , l ∈N are independent copies of (Ñ j ,k )1≤k≤d , 1 ≤ j ≤ d ,
also independent of N 0 = (N 0,k )1≤k≤d .

From (13), we derive that conditional on N 0,

E
[

exp(i a.Nt )|N 0]= exp(i a.N 0
t )

∏
1≤ j≤d

∏
1≤l≤N 0, j

t

E
[

exp(i a.(Ñ j ,k,(l )

t−T j
l

)1≤k≤d |N 0)]
= exp(i a.N 0

t )
∏

1≤ j≤d

∏
1≤l≤N 0, j

t

L j (a, t −T j
l ).

Now, for a given k ∈ {1, ...,d}, conditional on N 0,k
t , it is well-known that (T k

1 , ...,T k
N 0,k

t

) has

the same law as (X(1), ..., X(N 0,k
t )) the order statistics built from iid variables (X1, .., XN 0,k

t
) with

density
µk (s)1s≤t∫ t
0 µk (s)d s

. Thus we get

E
[

exp(i a.Nt )|N 0
t

]= exp(i a.N 0
t )

∏
1≤ j≤d

(∫ t

0
L j (a, t − s)

µ j (s)∫ t
0 µ j (s)d s

d s
)N 0, j

t .

Therefore,

L(a, t ) = ∏
1≤ j≤d

exp
(
(
∫ t

0
e i a j L j (a, t − s)

µ j (s)∫ t
0 µ j (s)d s

d s −1)
∫ t

0
µ j (s)d s

)
.

Thus we finally obtain

L(a, t ) = exp
( ∑

1≤ j≤d

∫ t

0
(e i a j L j (a, t − s)−1)µ j (s)d s

)
. (14)
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II. Characteristic function of rough Heston models

In the same way, because (Ñ k, j )1≤ j≤d is a multivariate Hawkes process with migrant rate
(φ j ,k )1≤ j≤d and kernel matrix φ, we get

Lk (a, t ) = exp
( ∑

1≤ j≤d

∫ t

0
(e i a j L j (a, t − s)−1)φ j ,k (s)d s

)
. (15)

Let us define
C (a, t ) = (

e i a j L j (a, t )
)

1≤ j≤d .

From (14), we have that

L(a, t ) = exp
(∫ t

0
(C (a, t − s)−1).µ(s)d s

)
and from (15), we deduce that C is solution of the following integral equation

C (a, t ) = exp
(
i a +

∫ t

0
φ∗(s).(C (a, t − s)−1)d s

)
.

This ends the proof of Theorem 2.

4 The characteristic function of rough Heston models

We give in this section our main theorem, that is the characteristic function for the log-price in
rough Heston models (3). It is obtained combining the convergence result for Hawkes processes
stated in Corollary 1 together with the characteristic function for multivariate Hawkes processes
derived in Theorem 2. We start with some intuitions about the result.

4.1 Intuition about the result

We consider the rough Heston model (3). The parameters of the dynamic in (3) are here given
in term of those of the sequence of processes P T defined in (11). More precisely, we set

V0 = ξθ, ρ = 1−β√
2(1+β2)

, ν=
√

θ(1+β2)

λµ(1+β)2 ,

and λ and θ are the same as those in the dynamic of P T . Remark that the fact that β≥ 0
implies that ρ ∈ (−1/

p
2,1/

p
2]4.. We also write Pt = log(St /S0). From Corollary 1, we know

that

P T =
√
λθ

2µ
T −α(N T,+

.T −N T,−
.T )− λθ

2µ
T −2αN T,+

.T

converges in law to P as T tends to infinity, where N T = (N T,+, N T,−) is a sequence of bi-
dimensional Hawkes processes satisfying Assumptions 1 and 2. Let us write LT ((a,b),u) for the

4Actually, using a more complex framework of Hawkes processes, one can show that the results still hold for
any ρ ∈ [−1,1], see Chapter III
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4. The characteristic function of rough Heston models

characteristic function of the process N T at time u at point (a,b) and Lp for the characteristic
function of P . The convergence in law implies that of LT ((a+

T , a−
T ), tT ) towards Lp (a, t ), where

a+
T = a

√
λθ

2µ
T −α−a

λθ

2µ
T −2α, a−

T =−a

√
λθ

2µ
T −α.

From Theorem 2, we know that

LT (
(a+

T , a−
T ), tT

)= exp
(∫ tT

0
µ̂T (s)

(
(C T,+((a+

T , a−
T ), tT − s)−1)+ (C T,−((a+

T , a−
T ), tT − s)−1)

)
d s

)
,

where C T ((a+
T , a−

T ), t ) = (
C T,+((a+

T , a−
T ), t ),C T,−((a+

T , a−
T ), t )

) ∈M 1×2(C) is solution of

C T (
(a+

T , a−
T ), t

)= exp
(
i (a+

T , a−
T )+

∫ t

0

(
C T ((a+

T , a−
T ), t − s)− (1,1)

)
.φT (s)d s

)
.

Now let

Y T (a, .) = (
Y T,+(a, .),Y T,−(a, .)

)=C T (
(a+

T , a−
T ), .T

)
: [0,1] →M 1×2(C).

Using a change of variables, we easily get that Y T (a, .) is solution of the equation

Y T (a, t ) = exp
(
i (a+

T , a−
T )+T

∫ t

0

(
Y T (a, t − s)− (1,1)

)
.φT (Ts)d s

)
(16)

and that

LT (a+
T , a−

T , tT ) = exp
(∫ t

0

(
Tα(Y T,+(a, t − s)−1)+Tα(Y T,−(a, t − s)−1)

)(
T 1−αµ̂(sT )

)
d s

)
. (17)

Thanks to Remarks 1 and 2, it is easy to see that

T 1−αµ̂(sT ) = T 1−αµT +ξT 1−αµT
(Tα

λ

∫ ∞

sT
ϕ(u)du +λT −α

∫ sT

0
ϕ(u)du

)
=µ(

1+ ξ

λ
s−α(sT )α

∫ ∞

sT
ϕ(u)du

)+µξλT −α
∫ sT

0
ϕ(u)du

−→
T→∞

µ
(
1+ ξ

λΓ(1−α)
s−α

)
.

Then the convergence of Tα(Y T (a, t )− (1,1)) to some functions (c(a, t ),d(a, t )) solutions of
Volterra-type equations is proved in Section 6.2. It is based on a Taylor expansion from (16).
This will lead us to the expression of Lp (a, t ).

4.2 Main result

We define the fractional integral of order r ∈ (0,1] of a function f as

I r f (t ) = 1

Γ(r )

∫ t

0
(t − s)r−1 f (s)d s, (18)
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II. Characteristic function of rough Heston models

whenever the integral exists, and the fractional derivative of order r ∈ [0,1) as

Dr f (t ) = 1

Γ(1− r )

d

d t

∫ t

0
(t − s)−r f (s)d s, (19)

whenever it exists. The following theorem, proved in Section 6, is the main result of the paper.

Theorem 3. Consider the rough Heston model (3) with a correlation between the two Brownian
motions ρ satisfying ρ ∈ (−1/

p
2,1/

p
2]. For all t ≥ 0 and fixed a ∈R, we have

Lp (a, t ) = exp
(
θλI 1h(a, t )+V0I 1−αh(a, t )

)
, (20)

where h(a, .) is solution of the fractional Riccati equation

Dαh(a, t ) = 1

2
(−a2 − i a)+λ(i aρν−1)h(a, s)+ (λν)2

2
h2(a, s), I 1−αh(a,0) = 0, (21)

which admits a unique continuous solution.

Thus we have been able to obtain a semi-closed formula for the characteristic function in
rough Heston models. This means that pricing of European options becomes an easy task
in this model, see Section 5. For α= 1, we retrieve the classical Heston formula. For α< 1,
the formula is almost the same. The difference is essentially only in that in the Riccati
equation, the classical derivative is replaced by a fractional derivative. The drawback is that
such fractional Riccati equations do not have explicit solutions. However, they can be solved
numerically almost instantaneously, see Section 5. Finally, note that this strong link between
Hawkes processes and (rough) Heston models is probably natural because both of them exhibit
some kind of affine structure (although infinite-dimensional).

5 Numerical application

5.1 Numerical scheme

We explain in this section how to compute numerically the characteristic function of the
log-price in a rough Heston model. By Theorem 3, Lp (a, t ) is entirely defined through the
fractional Riccati equation (21)

Dαh(a, t ) = F
(
a,h(a, t )

)
, I 1−αh(a,0) = 0,

where

F (a, x) = 1

2
(−a2 − i a)+λ(i aρν−1)x + (λν)2

2
x2.

Several schemes for solving (21) numerically can be found in the literature. Most of them are
based on the idea that (21) implies the following Volterra equation

h(a, t ) = 1

Γ(α)

∫ t

0
(t − s)α−1F

(
a,h(a, s)

)
d s. (22)
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5. Numerical application

Then one develops numerical schemes for (22). Here we choose the well-known fractional
Adams method investigated in [DFF02, DFF04, DF99]. The idea goes as follows. Let us write
g (a, t ) = F

(
a,h(a, t )

)
. Over a regular discrete time-grid (tk )k∈N with mesh ∆ (tk = k∆), we

estimate

h(a, tk+1) = 1

Γ(α)

∫ tk+1

0
(tk+1 − s)α−1g (a, s)d s

by
1

Γ(α)

∫ tk+1

0
(tk+1 − s)α−1ĝ (a, s)d s,

where

ĝ (a, t ) = t j+1 − t

t j+1 − t j
ĝ (a, t j )+ t − t j

t j+1 − t j
ĝ (a, t j+1), t ∈ [t j , t j+1), 0 ≤ j ≤ k.

This corresponds to a trapezoidal discretization of the fractional integral and leads to the
following scheme

ĥ(a, tk+1) = ∑
0≤ j≤k

a j ,k+1F
(
a, ĥ(a, t j )

)+ak+1,k+1F
(
a, ĥ(a, tk+1)

)
, (23)

with

a0,k+1 =
∆α

Γ(α+2)

(
kα+1 − (k −α)(k +1)α

)
,

a j ,k+1 =
∆α

Γ(α+2)

(
(k − j +2)α+1 + (k − j )α+1 −2(k − j +1)α+1), 1 ≤ j ≤ k, (24)

and

ak+1,k+1 =
∆α

Γ(α+2)
.

However, ĥ(a, tk+1) being on both sides of (23), this scheme is implicit. Thus, in a first step,
we compute a pre-estimation of ĥ(a, tk+1) based on a Riemann sum that we then plug into the
trapezoidal quadrature. This pre-estimation, called predictor and that we denote by ĥP (a, tk+1)
is defined by

ĥP (a, tk+1) = 1

Γ(α)

∫ t

0
(t − s)α−1g̃ (a, s)d s,

with
g̃ (a, t ) = ĝ (a, t j ), t ∈ [t j , t j+1), 0 ≤ j ≤ k.

Therefore,
ĥP (a, tk+1) = ∑

0≤ j≤k
b j ,k+1F

(
a, ĥ(a, t j )

)
,

where

b j ,k+1 =
∆α

Γ(α+1)

(
(k − j +1)α− (k − j )α

)
, 0 ≤ j ≤ k.

Thus, the final explicit numerical scheme is given by

ĥ(a, tk+1) = ∑
0≤ j≤k

a j ,k+1F
(
a, ĥ(a, t j )

)+ak+1,k+1F
(
a, ĥP (a, t j )

)
, ĥ(a,0) = 0,
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II. Characteristic function of rough Heston models

where the weights a j ,k+1 are defined in (24). Theoretical guarantees for the convergence of
this scheme are provided in [LT09]. In particular, it is shown that for given t > 0 and a ∈R,

max
t j∈[0,t ]

|ĥ(a, t j )−h(a, t j )| = o(∆)

and

max
t j∈[ε,t ]

|ĥ(a, t j )−h(a, t j )| = o(∆2−α),

for any ε> 0.

5.2 Numerical illustrations

To compute Lp (a, t ), we use the numerical scheme presented above to solve fractional Riccati
equations and then plug the numerical solutions into (20). Once the characteristic function is
obtained, classical methods are available to obtain call prices

C (K ,T ) = E[(ST −K )+],

see [CM99, Itk05, Lew01] and the survey [Sch10]. In our case, we use Lewis method, see
[Lew01].

The most costly operation is the computation of (ĥ(al , t j ),1 ≤ l ≤ Na ,1 ≤ j ≤ n) from the
scheme of Section 5.1, where n = T /∆ is the number of time steps and Na is the number
of space steps al used for the Fourier type method finally leading to C (T,K ). Hence the
complexity of call price computation is O(Nan2). Note that for the classical Heston model
(α= 1), h(a, t ) has an explicit form and the complexity is then reduced to O(Na).

We now give a calibration result on the S&P implied volatility surface of 7 January 2010. We
obtain the following optimal parameters for the rough Heston model (3):

α= 0.62, λ= 0.1, ρ =−0.681, V0 = 0.0392, ν= 0.331, θ = 0.3156.

We compare model and market implied volatility surfaces in Figure II.1.
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5. Numerical application

Figure II.1 – Implied volatility surface calibration with a rough-Heston model

We see that the rough Heston model provides remarkable fits for the smile, for all the consid-
ered maturities. Again, one very important point here is that the model volatility surface can
be computed very efficiently thanks to our procedure.

Finally, we display the term structure of the at-the-money skew, that is the derivative of the
implied volatility with respect to log-strike for at-the-money calls. We compute it for α= 1
(classical Heston) and α= 0.62 (rough Heston with optimal Hurst parameter equal to 0.12).
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II. Characteristic function of rough Heston models

Figure II.2 – At-the-money skew as a function of maturity for α= 1 and α= 0.62

In the rough case, the skew explodes when maturity goes to zero, whereas it remains flat with
the classical Heston model. This is a remarkable feature of rough volatility models because
this exploding behavior is commonly observed on real data and very important for practical
applications, see [BFG16, Fuk11, JR16b].

6 Proofs

In the sequel, c denotes a constant that may vary from line to line.

6.1 Proof of Theorem 1

The proof of Theorem 1 is close to the one given in Chapter I for the convergence of a
microscopic price model to a Heston-like dynamic. The main difference is that we have
to deal here with a time-varying baseline intensity µ̂T , which we have introduced to get a
non-zero initial volatility in the limit. As in Chapter I, we start by showing the C-tightness of
(ΛT , X T , Z T ).

6.1.1 C-tightness of (ΛT , X T , Z T )

We have the following proposition.

Proposition 1. Under Assumptions 1 and 2, the sequence (ΛT , X T , Z T ) is C-tight and

sup
t∈[0,1]

‖ΛT
t −X T

t ‖ −→
T→∞

0

in probability. Moreover, if (X , Z ) is a possible limit point of (X T , Z T ), then Z is a continuous
martingale with [Z , Z ] = di ag (X ).

Proof:
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C-tightness of X T and ΛT Recall that as in (9), we can write

λT,+
t =λT,−

t = µ̂T (t )+
∫ t

0
ψT (t − s)µ̂T (s)d s + 1

β+1

∫ t

0
ψT (t − s)(d M T,+

s +βd M T,−
s ),

where

M T
t = (M T,+

t , M T,−
t ) = N T

t −
∫ t

0
λT

s d s

is a martingale. Using that
∫ .

0
( f ∗ g ) = (

∫ .

0
f )∗ g , we get

E[N T,+
T ] = E[N T,−

T ] = E[∫ T

0
λT,+

s d s
]= ∫ T

0
µ̂T (s)d s +

∫ T

0
ψT (T − s)

(∫ s

0
µ̂T (u)du

)
d s.

Consequently, µ̂ being a positive function and using that

1+
∫ ∞

0
ψT (s)d s = 1+ ∑

k≥1

∫ ∞

0
(ϕT )∗k = ∑

k≥0
(aT )k = Tα

λ
,

we obtain

E[N T,+
T ] ≤

∫ T

0
µ̂T (s)d s

(
1+

∫ ∞

0
ψT (s)d s

)≤ 1

λ
Tα+1

∫ 1

0
µ̂T (Ts)d s.

Moreover, from the definition of µ̂T and Remark 1, we have

∫ 1

0
µ̂T (Ts)d s =µTα−1(1+ξ

∫ 1

0
s−α

(sT )α

λ

∫ ∞

sT
ϕ(u)dud s +λT −α

∫ 1

0

∫ sT

0
ϕ(u)dud s

)≤ cTα−1.

Hence E[N T,+
T ] ≤ cT 2α and therefore

E[X T
1 ] = E[ΛT

1 ] ≤ c,

for each component. Each component of X T and ΛT being increasing, we deduce the tightness
of each component of (X T ,ΛT ). Furthermore, the maximum jump size of X T and ΛT being
1−aT
T αµ which goes to zero, the C-tightness of (X T ,ΛT ) is obtained from Prop.VI-3.26 in [JS13].

C-tightness of Z T It is easy to check that

〈Z T , Z T 〉 = di ag (ΛT ),

which is C-tight. From Theorem VI-4.13 in [JS13], this gives the tightness of Z T . The maximum
jump size of Z T vanishing as T goes to infinity, we obtain that Z T is C-tight.
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Convergence of X T −ΛT We have

X T
t −ΛT

t = 1−aT

Tαµ
M T

tT .

From Doob’s inequality, we get that for each component

E
[

sup
t∈[0,1]

|ΛT
t −X T

t |2]≤ cT −4αE[M T
T ]2.

Because [M T , M T ] = N T , we deduce

E
[

sup
t∈[0,1]

|ΛT
t −X T

t |2]≤ cT −4αE[N T
T ] ≤ cT −2α.

This gives the uniform convergence to zero in probability of X T −ΛT .

Limit of Z T Let (X , Z ) be a limit point of (X T , Z T ). We know that (X , Z ) is continuous and
from Corollary IX-1.19 in [JS13], Z is a local martingale. Moreover, because

[Z T , Z T ] = di ag (X T ),

using Theorem VI-6.26 in [JS13], we get that [Z , Z ] is the limit of [Z T , Z T ] and [Z , Z ] =
di ag (X ). By Fatou’s lemma, the expectation of [Z , Z ] is finite and therefore Z is a martingale.

6.1.2 Convergence of X T and Z T

First remark that because
sup

t∈[0,1]
|ΛT

t −X T
t | −→

T→∞
0

and
ΛT,+

t =ΛT,−
t ,

we get
sup

t∈[0,1]
|X T,+

t −X T,−
t | −→

T→∞
0.

Therefore, if a subsequence of X T,+
t converges to some X , then the associated subsequence of

X T,−
t converges to the same X . We have the following proposition for the limit points of X T,+

t
and X T,−

t .

Proposition 2. If (X , X , Z+, Z−) is a possible limit point for (X T,+, X T,−, Z T,+, Z T,−), then
(X t , Z+

t , Z−
t ) can be written

X t =
∫ t

0
Ysd s, Z+

t =
∫ t

0

√
YsdB 1

s , Z−
t =

∫ t

0

√
YsdB 2

s ,
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where (B1,B2) is a bi-dimensional Brownian motion and Y is solution of

Yt = ξ
(
1−Fα,λ(t )

)+Fα,λ(t )+
√

1+β2

λµ(1+β)2

∫ t

0
f α,λ(t − s)

√
YsdBs , (25)

with

B = B 1 +βB 2√
1+β2

.

Furthermore, for any ε> 0, Y has Hölder regularity α−1/2−ε.
Proof:

A convenient equality We first show the following equality

µ̂T (t )+
∫ t

0
ψT (t − s)µ̂T (s)d s =µT +ξµT

1

1−aT
+µT (1−ξ)

∫ t

0
ψT (t − s)d s. (26)

To obtain this result, we consider (26) as an equation with unknown µ̂T . From Lemma 1, it
admits a solution. We now look for necessary condition for this solution, showing in the end
that the specific µ̂T given in Assumption 2 is the only possible choice. Using convolution by
ϕT and the fact that ψT ∗ϕT =ψT −ϕT , we obtain from the left-hand side of (26):∫ t

0
µ̂T (s)ϕT (t − s)d s +

∫ t

0

∫ s

0
ψT (s −u)µ̂T (u)duϕT (t − s)d s

=
∫ t

0
µ̂T (s)ϕT (t − s)d s +

∫ t

0

∫ t−u

0
ψT (s)ϕT (t −u − s)d sµ̂T (u)du

=
∫ t

0
µ̂T (s)ϕT (t − s)d s +

∫ t

0

(
ψT (t −u)−ϕT (t −u)

)
µ̂T (u)du

=
∫ t

0
ψT (t − s)µ̂T (s)d s.

From the right-hand side of (26), we get∫ t

0
ϕT (t − s)(µT +ξµT

1

1−aT
)d s +µT (1−ξ)

∫ t

0
ϕT (t − s)

∫ s

0
ψT (s −u)dud s

=µT (1+ξ 1

1−aT
)
∫ t

0
ϕT (t − s)d s +µT (1−ξ)

∫ t

0

∫ t−u

0
ψT (s)ϕT (t −u − s)d sdu

=µT (1+ξ 1

1−aT
)
∫ t

0
ϕT (t − s)d s +µT (1−ξ)

∫ t

0

(
ψT (t −u)−ϕT (t −u)

)
du.

Consequently, we necessarily have∫ t

0
ψT (t − s)µ̂T (s)d s =µT ξ(

1

1−aT
+1)

∫ t

0
ϕT (t − s)d s +µT (1−ξ)

∫ t

0
ψT (t − s)d s.

This last equation together with (26) gives that the only possible choice is

µ̂T (t ) =µT +ξµT
1

1−aT

(
1−

∫ t

0
ϕT (t − s)d s

)−µT ξ

∫ t

0
ϕT (t − s)d s.
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II. Characteristic function of rough Heston models

End of the proof of Proposition 2 Recall that λT,+
t =λT,−

t . Note that using similar compu-
tations as in Section 2.2 together with (26) we can write

λT,+
t =µT +µT

∫ t

0
ψT (t−s)d s+ξµT

( 1

1−aT
−

∫ t

0
ψT (t−s)d s

)+ 1

β+1

∫ t

0
ψT (t−s)(d M T,+

s +βd M T,−
s ).

Then using Fubini theorem together with the fact that
∫ .

0
( f ∗ g ) = (

∫ .

0
f )∗ g , we get

∫ t

0
λT,+

s d s =µT t +µT

∫ t

0
ψT (t − s)sd s +ξµT

( t

1−aT
−

∫ t

0
ψT (t − s)sd s

)
+ 1

β+1

∫ t

0
ψT (t − s)(M T,+

s +βM T,−
s )d s.

Therefore, for t ∈ [0,1], we have the decomposition

ΛT,+
t =ΛT,−

t = T1 +T2 +T3, (27)

with
T1 = (1−aT )t ,

T2 = T (1−aT )
∫ t

0
ψT (

T (t − s)
)
sd s +ξ(t −T (1−aT )

∫ t

0
ψT (

T (t − s)
)
sd s

)
,

T3 = 1√
λµ(1+β)2

∫ t

0
T (1−aT )ψT (

T (t − s)
)
(Z T,+

s +βZ T,−
s )d s.

Now recall that we have shown in (10) that

T (1−aT )ψ(T.) = aT f α,λ.

Thus

T2 −→
T→∞

∫ t

0
f α,λ(t − s)sd s +ξ(t −

∫ t

0
f α,λ(t − s)sd s

)
and

T3 −→
T→∞

1√
λµ(1+β)2

∫ t

0
f α,λ(t − s)(Z+

s +βZ−
s )d s.

Therefore, letting T go to infinity in (27), we obtain using Proposition 1 that X satisfies

X t =
∫ t

0
f α,λ(t − s)sd s +ξ(t −

∫ t

0
f α,λ(t − s)sd s

)+ 1√
λµ(1+β)2

∫ t

0
f α,λ(t − s)(Z+

s +βZ−
s )d s.

In the same way as for the proof of Theorem 3.2 in [JR16b], we show that

X t =
∫ t

0
Ysd s,

where Y satisfies

Yt = Fα,λ(t )+ξ(1−Fα,λ(t )
)+ 1√

λµ(1+β)2

∫ t

0
f α,λ(t − s)(d Z+

s +βd Z−
s ).
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Because, by Proposition 1,

[Z , Z ] =
∫ t

0
Ysd s

(
1 0
0 1

)
,

we can apply Theorem V-3.9 in [RY13] to show the existence of a bi-dimensional Brownian
motion (B 1,B 2) such that

Z+
t =

∫ t

0

√
YsdB 1

s , Z−
t =

∫ t

0

√
YsdB 2

s .

Finally, we define the following Brownian motion:

B = B 1 +βB 2√
1+β2

.

Then, in the same way as for the proof of Theorem 3.2 in [JR16b], we get that Y satisfies

Yt = Fα,λ(t )+ξ(1−Fα,λ(t )
)+√

1+β2

λµ(1+β)2

∫ t

0
f α,λ(t − s)

√
YsdBs ,

and has Hölder regularity α−1/2−ε for any ε> 0.

6.1.3 End of the proof of Theorem 1

We now recall the following proposition stating that the process Y is uniquely defined by
Equation (25) and that this equation is equivalent to that given in Theorem 1. The proof of this
result can be found in Chapter I. Theorem 1 is readily obtained from this proposition together
with Proposition 1 and 2.

Proposition 3. Let λ, ν, θ and V0 be positive constants, α ∈ (1/2,1) and B be a Brownian motion.
The process V is solution of the following fractional stochastic differential equation

Vt =V0
(
1−Fα,λ(t )

)+θFα,λ(t )+ν
∫ t

0
f α,λ(t − s)

√
VsdBs

if and only if it is solution of

Vt =V0 + 1

Γ(α)

∫ t

0
(t − s)α−1λ(θ−Vs)d s + λν

Γ(α)

∫ t

0
(t − s)α−1

√
VsdBs .

Furthermore, both equations admit a unique weak solution.

6.1.4 Proof of Corollary 1

From Theorem 1, we know that P T converges in law for the Skorokhod topology to the process
P given by

Pt =
√
θ

2

∫ t

0

√
Ys(dB 1

s −dB 2
s )− θ

2

∫ t

0
Ysd s.
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II. Characteristic function of rough Heston models

Let Vt = θYt and Wt = 1p
2

(B 1
t −B 2

t ). Then

Pt =
∫ t

0

√
VsdWs − 1

2

∫ t

0
Vsd s,

where

Vt = ξθ+ 1

Γ(α)

∫ t

0
(t − s)α−1λ(θ−Vs)d s +λ

√
θ(1+β2)

λµ(1+β)2

1

Γ(α)

∫ t

0
(t − s)α−1

√
VsdW ′

s

and (W,B) is a correlated bi-dimensional Brownian motion with

d〈W,B〉t = 1−β√
2(1+β2)

d t .

6.2 Proof of Theorem 3

We now give the proof of Theorem 3. We do it for t ∈ [0,1] but the proof can obviously be
extended for any t ≥ 0. We start by controlling the process Y T (a, t )− (1,1). In the sequel, c(a)
denotes a positive constant independent of t and T that may vary from line to line.

6.2.1 Control of Y T (a, t )− (1,1)

We have the following proposition.

Proposition 4. For any t ∈ [0,1],

Tα‖Y T (a, t )− (1,1)‖ ≤ c(a).

Proof:

Let us show that
Tα|Y T,+(a, t )−1| ≤ c(a).

Recall that Y T (a, t ) is defined in Section 4.1 for a ∈R by

Y T (a, t ) = (
Y T,+(a, t ),Y T,−(a, t )

)= (
C T,+((a+

T , a−
T ), tT ),C T,−((a+

T , a−
T ), tT )

)
,

with

a+
T = a

√
λθ

2µ
T −α−a

λθ

2µ
T −2α, a−

T =−a

√
λθ

2µ
T −α.

Using the elements in the proof of Theorem 2 in Section 3.3, we get that

C T,+(
(a,b), t

)= E[exp(i a + i aÑ T,+
t + i bÑ T,−

t )
]
,

where Ñ T, = (Ñ T,+, Ñ T,−) is a bi-dimensional Hawkes process with intensity (λ̃T , λ̃T ) given by

λ̃T
t = 1

β+1
ϕT (t )+ 1

β+1

∫ t

0
ϕT (t − s)(d Ñ T,+

s +βd Ñ T,−
s ).
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As already seen, using Lemma 1, we can rewrite the intensity under the following form

λ̃T
t = 1

β+1
ψT (t )+ 1

β+1

∫ t

0
ψT (t − s)(d M̃ T,+

s +βd M̃ T,−
s ),

where M̃ T = (M̃ T,+, M̃ T,−) = Ñ T −
∫ .

0
λ̃T (s)d s(1,1) is a martingale. Using Fubini theorem, we

get ∫ tT

0
λ̃T

s d s = 1

β+1
T

∫ t

0
ψT (Ts)d s + 1

β+1

∫ t

0
TψT (

T (t − s)
)
(M̃ T,+

sT +βM̃ T,−
sT )d s.

Then, from (10), we derive∫ tT

0
λ̃T

s d s = 1

λ(β+1)
aT TαFα,λ(t )+ 1

λ(β+1)
aT Tα

∫ t

0
f α,λ(t − s)(M̃ T,+

sT +βM̃ T,−
sT )d s. (28)

Consequently,

E
[∫ tT

0
λ̃T

s d s
]≤ 1

λ(β+1)
Fα,λ(1)Tα.

Let us now set X̃ T
t = a+

T Ñ T,+
tT +a−

T Ñ T,−
tT . Using the last inequality, we deduce

|EX̃ T
t | ≤ c|a|T −αFα,λ(1).

Now recall that

Tα(Y T,+(a, t )−1) = Tα
(
E
[

exp(i a+
T + i a+

T Ñ T,+
tT + i a−

T Ñ T,−
tT )

]−1
)
.

Using the fact that there exists c > 0 such that for any x ∈R,

|exp(i x)−1− i x| ≤ c|x|2,

we obtain

Tα|Y T,+(a, t )−1| = Tα|E[exp(i a+
T + i X̃ T

t )−1− i X̃ T
t − i a+

T + i X̃ T
t + i a+

T

]|
≤ Tα|E[X̃ T

t ]|+Tα|a+
T |+TαE

[|exp(i a+
T + i X̃ T

t )−1− i X̃ T
t − i a+

T |
]

≤ c(a)
(
1+Tα(a+

T )2 +TαE[(X̃ T
t )2]

)
≤ c(a)

(
1+TαE[(X̃ T

t )2]
)
.

Then, using that

X̃ T
t = a

√
λθ

2µ
T −α(Ñ T,+

tT − Ñ T,−
tT )−a

λθ

2µ
T −2αÑ T,+

tT

together with the fact that Ñ T,+− Ñ T,− = M̃ T,+− M̃ T,−, we deduce

TαE[(X̃ T
t )2] ≤ ca2T −αE[(M̃ T,+

tT − M̃ T,−
tT )2]+ ca2T −3αE[(Ñ T,+

tT )2].
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Because [M̃ T,+− M̃ T,−, M̃ T,+− M̃ T,−] = Ñ T,++ Ñ T,−, we get

TαE[(X̃ T
t )2] ≤ ca2T −αE[Ñ T,+

tT + Ñ T,−
tT ]+ ca2T −3αE[(Ñ T,+

tT )2]

≤ ca2(T −αE[
∫ tT

0
λ̃T

s d s]+T −3αE[(Ñ T,+
tT )2]

)
.

≤ ca2(1+T −3αE[(Ñ T,+
tT )2]

)
.

In order to control the term E[(Ñ T,+
tT )2], we now compute a bound for E

[
(
∫ tT

0
λ̃T

s d s)2]. Using

(28), this last quantity is equal to

1

λ2(β+1)2 a2
T T 2α(

Fα,λ(t )
)2 + 1

λ2(β+1)2 a2
T T 2αE

[(∫ t

0
f α,λ(t − s)(M̃ T,+

sT +βM̃ T,−
sT )d s

)2]
,

which is smaller than

c(a)T 2α
(

1+E[∫ t

0

(
f α,λ(t − s)

)2(M̃ T,+
sT +βM̃ T,−

sT )2d s
])

.

Because [M̃ T,++βM̃ T,−, M̃ T,++βM̃ T,−] = Ñ T,++β2Ñ T,−, we obtain

E
[
(
∫ tT

0
λ̃T

s d s)2]≤ c(a)T 2α
(

1+
∫ t

0

(
f α,λ(t − s)

)2
E[Ñ T,+

sT +β2Ñ T,−
sT ]d s

)
≤ c(a)T 2α

(
1+

∫ t

0

(
f α,λ(t − s)

)2
E
[∫ sT

0
λ̃T

u du
]
d s

)
≤ c(a)T 2α

(
1+Tα

∫ 1

0

(
f α,λ(s)

)2d s
)

≤ c(a)T 3α.

Thus

E
[
(Ñ T,+

tT )2]≤ 2E
[
(M̃ T,+

tT )2]+2E
[(∫ tT

0
λ̃T

s d s
)2]≤ c(a)T 3α.

Finally, TαE[(X̃ T
t )2] ≤ c(a) and therefore

Tα|Y T,+(a, t )−1| ≤ c(a).

The fact that
Tα|Y T,−(a, t )−1| ≤ c(a)

is proved similarly.

6.2.2 Convergence of Tα(Y T − (1,1))

Let κ=λθ/(2µ). We have the following proposition.
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Proposition 5. The sequence Tα(Y T (a, t )−(1,1)) converges uniformly in t ∈ [0,1] to
(
c(a, t ),d(a, t )

)
,

where (c,d) are solutions of

c(a, t ) = i a
p
κ− i a

κ

λ(β+1)
Fα,λ(t )+ 1

2λ(β+1)

∫ t

0

(
c2(a, t − s)+d 2(a, t − s)

)
f α,λ(s)d s

d(a, t ) =−i a
p
κ− i a

βκ

λ(β+1)
Fα,λ(t )+ β

2λ(β+1)

∫ t

0

(
c2(a, t − s)+d 2(a, t − s)

)
f α,λ(s)d s.

Proof:

Convenient rewriting of Tα(Y T − (1,1)) Using the fact that the complex logarithm5 is
analytic on the set C/R−, we can show that there exists c > 0 such that for any x ∈ C with
|x| < 1/2,

| log(1+x)−x + 1

2
x2| ≤ c|x|3.

Thus we can write

log
(
Y T (a, t )

)= Y T (a, t )− (1,1)− 1

2

(
Y T (a, t )− (1,1)

)2 −εT (a, t ),

with |εT (a, t )| ≤ c(a)T −3α. Indeed, for large enough T , we have from Proposition 4 that
|Y T,+(a, t )−1| ≤ 1/2 and |Y T,−(a, t )−1| ≤ 1/2, uniformly in t . Now, again from Proposition 4,
it is easy to see that

‖i (a+
T , a−

T )+
∫ t

0
T

(
Y T (a, t − s)− (1,1)

)
.φT (Ts)d s‖ ≤ c(a)T −α −→

T→∞
0.

Hence, for large enough T , the imaginary part of

i (a+
T , a−

T )+
∫ t

0
T (Y T (a, t − s)− (1,1)).φT (Ts)d s

has a norm which is smaller than π. Therefore

log
(

exp
(
i (a+

T , a−
T )+

∫ t

0
T

(
Y T (a, t − s)− (1,1)

)
.φT (Ts)d s

))
is equal to

i (a+
T , a−

T )+
∫ t

0
T

(
Y T (a, t − s)− (1,1)

)
.φT (Ts)d s.

Then, using Equation (16), we get

Y T (a, t )− (1,1) = 1

2

(
Y T (a, t )− (1,1)

)2 +εT (a, t )+ i a
p
κT −α(1,−1)

− i aκT −2α(1,0)+T
∫ t

0

(
Y T (a, t − s)− (1,1)

)
.φT (Ts)d s.

5The complex logarithm is defined on C/R− by log(z) = log(|z|)+ i arg(z), with arg(z) ∈ (−π,π].
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Using again the fact that ∑
k≥1

(
TφT (T.)

)∗k = aT
Tα

λ
f α,λχ,

together with Lemma 1, we derive

Y T (a, t )− (1,1) = 1

2

(
Y T (a, t )− (1,1)

)2 +εT (a, t )+ i a
p
κT −α(1,−1)− i aκT −2α(1,0)

+ aT

2

Tα

λ

∫ t

0

(
Y T (a, t − s)− (1,1)

)2.χ f α,λ(s)d s + aT

λ
Tα

∫ t

0
εT (a, t − s).χ f α,λ(s)d s

+ i a
p
κ

aT

λ
(1,−1).χFα,λ(t )− i aκT −α aT

λ
(1,0).χFα,λ(t ).

Let

εT
1 (a, t ) = 1

2

(
Y T (a, t )− (1,1)

)2 +εT (a, t )− i aκT −2α(1,0)+ aT

λ
Tα

∫ t

0
εT (a, t − s).χ f α,λ(s)d s.

We have

Y T (a, t )− (1,1) = εT
1 (a, t )+ i a

p
κT −α(1,−1)+ aT

2

Tα

λ

∫ t

0

(
Y T (a, t − s)− (1,1)

)2.χ f α,λ(s)d s

− i aT a
κ

λ(β+1)
T −αFα,λ(t )(1,β).

Let now

εT
2 (a, t ) =−1

2

∫ t

0

(
Y T (a, t − s)− (1,1)

)2.χ f α,λ(s)d s + i a
κ

(β+1)
T −2αFα,λ(t )(1,β).

We obtain

Y T (a, t )− (1,1) = εT
1 (a, t )+εT

2 (a, t )+ i a
p
κT −α(1,−1)+ 1

2λ
Tα

∫ t

0

(
Y T (a, t − s)− (1,1)

)2.χ f α,λ(s)d s

− i a
κ

λ(β+1)
T −αFα,λ(t )(1,β).

Using Proposition 4, we easily see that T 2αεT
1 and T 2αεT

2 are uniformly bounded in t and T .
We now set

θT (a, t ) = (
θT,+(a, t ),θT,−(a, t )

)= Tα
(
Y T (a, t )− (1,1)

)
and

r T (a, t ) = Tα
(
εT

1 (a, t )+εT
2 (a, t )

)
.

We have that Tαr T is uniformly bounded in t and T and

θT (a, t ) = r T (a, t )+ i a
p
κ(1,−1)− i a

κ

λ(β+1)
Fα,λ(t )(1,β)+ 1

2λ

∫ t

0

(
θT (a, t − s)

)2.χ f α,λ(s)d s.
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Convergence of θT For fixed a, we now show that t → θT (a, t ) is a Cauchy sequence in the
space of continuous functions C ([0,1],R2) equipped with the sup-norm. Let δ> 0 and T0 > 1
such that for T > T0 , ‖r T (a, t )‖∞ ≤ δ

2 for any t ∈ [0,1]. Then for T > T0, T ′ > T0 and t ∈ [0,1],

‖θT (a, t )−θT ′
(a, t )‖ ≤ δ+ 1

2λ

∫ t

0
‖(θT (a, t − s)

)2.χ− (
θT ′

(a, t − s)
)2.χ‖ f α,λ(s)d s.

Because θT is uniformly bounded in t and T , we get

‖θT (a, t )−θT ′
(a, t )‖ ≤ δ+C (a)

∫ t

0
‖θT (a, t − s)−θT ′

(a, t − s)‖ f α,λ(s)d s.

Using Lemma 3 in Appendix, this enables us to show that θT is a Cauchy sequence. Con-
sequently, θT (a, t ) converges uniformly in t to

(
c(a, t ),d(a, t )

)
, where (c,d) is solution to the

following equation

c(a, t ) = i a
p
κ− i a

κ

λ(β+1)
Fα,λ(t )+ 1

2λ(β+1)

∫ t

0

(
c2(a, t − s)+d 2(a, t − s)

)
f α,λ(s)d s

d(a, t ) =−i a
p
κ− i a

βκ

λ(β+1)
Fα,λ(t )+ β

2λ(β+1)

∫ t

0

(
c2(a, t − s)+d 2(a, t − s)

)
f α,λ(s)d s.

6.2.3 End of the proof of Theorem 3

Deriving the characteristic function Let a ∈R. Recall that from Section 4.1, we have

LT (a+
T , a−

T , tT ) = exp
(∫ t

0

(
Tα(Y T,+(a, t − s)−1)+Tα(Y T,−(a, t − s)−1)

)(
T 1−αµ̂(sT )

)
d s

)
and furthermore, from Proposition 5,

Tα(Y T,+(a, t )−1)+Tα(Y T,−(a, t )−1)

converges uniformly in t to c(a, t )+d(a, t ). Also, using Remark 2, we have

T 1−αµ̂(tT ) =µ+µξ( t−α

λ
(T t )α

∫ ∞

tT
ϕ(s)d s +λT −α

∫ tT

0
ϕ(s)d s

)
and therefore T 1−αµ̂(tT ) converges towards

µ
(
1+ξ t−α

λΓ(1−α)

)
.

In addition, using Proposition 4, we get that for given t ∈ [0,1] and for any s ∈ [0, t ]

|Tα(Y T,+(a, t − s)−1)+Tα(Y T,−(a, t − s)−1)|(T 1−αµ̂(sT )
)≤ c(a)(1+ s−α).
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The right hand side of the last inequality is integrable over [0, t ]. Therefore, using the
convergence of LT (a+

T , a−
T , tT ) towards Lp (a, t ) and applying the dominated convergence

theorem, we obtain

Lp (a, t ) = exp
(∫ t

0
g (a, s)(1+ξ (t − s)−α

λΓ(1−α)
)d s

)
,

where g (a, t ) =µ(
c(a, t )+d(a, t )

)
. Thus, we have shown that

Lp (a, t ) = exp
(∫ t

0
g (a, s)d s + V0

θλ
I 1−αg (a, t )

)
.

Integral equation for g We now prove that g is solution of an integral equation. First
remark that

d(a, t ) =βc(a, t )− i a(1+β)
p
κ.

Hence g (a, t ) =µ(β+1)(c(a, t )− i a
p
κ), which can be written

−i a
µκ

λ
Fα,λ(t )+ µ

2λ

∫ t

0

(
(c(a, s)− i a

p
κ+ i a

p
κ)2 + (

β(c(a, s)− i a
p
κ)− i a

p
κ
)2

)
f α,λ(t − s)d s.

Thus,

g (a, t ) =−i a
µκ

λ
Fα,λ(t )+ 1+β2

2µλ(1+β)2

∫ t

0

(
g (a, s)

)2 f α,λ(t − s)d s −a2µκ

λ
Fα,λ(t )

+ i a

p
κ(1−β)

λ(β+1)

∫ t

0
g (a, s) f α,λ(t − s)d s.

Using the definition of κ in Section 6.2, we deduce

g (a, t ) = θ

2
(−a2 − i a)Fα,λ(t )+ i a

p
θ(1−β)√

2λµ(β+1)

∫ t

0
g (a, s) f α,λ(t − s)d s

+ 1+β2

2µλ(1+β)2

∫ t

0
g 2(a, s) f α,λ(t − s)d s

and from those of ρ and ν in Section 4.1, we finally obtain that g (a, t ) is equal to

θ

2
(−a2 − i a)Fα,λ(t )+ i aρν

∫ t

0
g (a, s) f α,λ(t − s)d s + ν2

2θ

∫ t

0

(
g (a, s)

)2 f α,λ(t − s)d s.

Thus,

Lp (a, t ) = exp
(∫ t

0
g (a, s)

(
1+ξ (t − s)−α

λΓ(1−α)

)
d s

)
with

g (a, t ) =
∫ t

0

(θ
2

(−a2 − i a)+ i aρνg (a, s)+ ν2

2θ

(
g (a, s)

)2
)

f α,λ(t − s)d s.

Let us now set h = g /(θλ). Then

Lp (a, t ) = exp
(∫ t

0
h(a, s)

(
θλ+V0

(t − s)−α

Γ(1−α)

)
d s

)
,
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with

h(a, t ) =
∫ t

0

(1

2
(−a2 − i a)+ i aλρνh(a, s)+ (λν)2

2

(
h(a, s)

)2
) 1

λ
f α,λ(t − s)d s. (29)

Using Lemma 2, we have that Equation (29) can also be written under the following form

Dαh(a, t ) = 1

2
(−a2 − i a)+λ(i aρν−1)h(a, s)+ (λν)2

2

(
h(a, s)

)2, I 1−αh(a,0) = 0.

6.2.4 Uniqueness of the solution of (21)

For a given a ∈R, consider two continuous solutions h1(a, .) and h2(a, .) of (21) or equivalently
of (29). We have that |h1(a, t )−h2(a, t )| is smaller than∫ t

0

(|aρν||h1(a, s)−h2(a, s)|+ λν2

2
|(h1(a, s)

)2 − (
h2(a, s)

)2|) f α,λ(t − s)d s.

Using the continuity of h1(a, .) and h2(a, .), this is also smaller than

c(a)
∫ t

0
|h1(a, s)−h2(a, s)| f α,λ(t − s)d s.

Thanks to Lemma 3, this gives h1(a, .) = h2(a, .).

II.A Mittag-Leffler functions

Let (α,β) ∈ (R∗+)2. The Mittag-Leffler function Eα,β is defined for z ∈C by

Eα,β(z) = ∑
n≥0

zn

Γ(αn +β)
.

For (α,γ) ∈ (0,1)×R+, we also define

f α,γ(t ) = γtα−1Eα,α(−γtα), t > 0,

Fα,γ =
∫ t

0
f α,γ(s)d s, t ≥ 0.

The function f α,γ is a density function on R+ called Mittag-Leffler density function. The
following properties of f α,γ and Fα,γ can be found in [HMS11, Mai, MH08]. We have

f α,γ(t ) ∼
t→0+

γ

Γ(α)
tα−1, f α,γ(t ) ∼

t→∞
α

γΓ(1−α)
t−(α+1)

and

Fα,γ(t ) = 1−Eα,1(−γtα), Fα,γ(t ) ∼
t→0+

γ

Γ(α+1)
tα, 1−Fα,γ(t ) ∼

t→∞
1

γΓ(1−α)
t−α.

Finally, for α ∈ (1/2,1), f α,γ is square-integrable and its Laplace transform is given for z ≥ 0 by

f̂ α,γ(z) =
∫ ∞

0
fα,γ(s)e−zsd s = γ

γ+ zα
.

103



II. Characteristic function of rough Heston models

II.B Wiener-Hopf equations

The following result is used extensively in this work to solve Wiener-Hopf type equations, see
for example [BDHM13b].

Lemma 1. Let g be a measurable locally bounded function from R to Rd and φ :R+ →M d(R) be a
matrix-valued function with integrable components such that S (

∫ ∞
0 φ(s)d s) < 1. Then there exists

a unique locally bounded function f from R to Rd solution of

f (t ) = g (t )+
∫ t

0
φ(t − s). f (s)d s, t ≥ 0

given by

f (t ) = g (t )+
∫ t

0
ψ(t − s).g (s)d s, t ≥ 0,

where ψ= ∑
k≥1

φ∗k .

II.C Fractional differential equations

We end this appendix with some useful results about fractional differential equations. The
next lemma can be found in [SKM93].

Lemma 2. Let h be a continuous function from [0,1] to R, α ∈ (0,1] and γ ∈R. There is a unique
continuous solution to the equation

Dαy(t ) = γy(t )+h(t ), I 1−αy(0) = 0

given by

y(t ) =
∫ t

0
(t − s)α−1Eα,α

(
γ(t − s)α

)
h(s)d s.

We also have the following useful result.

Lemma 3. Let h be a non-negative continuous function from [0,1] to R such that for any t ∈ [0,1],

h(t ) ≤ ε+C
∫ t

0
f α,γ(t − s)h(s)d s,

for some ε≥ 0 and C ≥ 0. Then for any t ∈ [0,1],

h(t ) ≤C ′ε,

with

C ′ = 1+Cγ
∫ 1

0
sα−1Eα,α

(
γ(C −1)sα

)
d s > 0.

In particular, if ε= 0 then h = 0.
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Proof:

Let

f (t ) = h(t )−C
∫ t

0
f α,γ(t − s)h(s)d s.

and g = h − f . The function g is solution of

g (t ) =C
∫ t

0
f α,γ(t − s)

(
g (s)+ f (s)

)
d s.

Thus, from Lemma 2, g is the unique solution of

Dαg (t ) = γ(C −1)g (t )+Cγ f (t ), I 1−αg (0) = 0.

Hence using again Lemma 2, we deduce that

g (t ) =Cγ
∫ t

0
(t − s)α−1Eα,α

(
γ(C −1)(t − s)α

)
f (s)d s.

Therefore,

g (t ) ≤Cγε
∫ t

0
sα−1Eα,α

(
γ(C −1)sα

)
d s.

Using that h = f + g together with the fact that Eα,α is non-negative, we get the result.
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CHAPTER III

Perfect hedging in rough Heston models

Abstract

Rough volatility models are known to reproduce the behavior of historical volatility
data while at the same time fitting the volatility surface remarkably well, with very few
parameters. However, managing the risks of derivatives under rough volatility can be
intricate since the dynamics involve fractional Brownian motion. We show in this paper
that surprisingly enough, explicit hedging strategies can be obtained in the case of rough
Heston models. The replicating portfolios contain the underlying asset and the forward
variance curve, and lead to perfect hedging (at least theoretically). From a probabilistic
point of view, our study enables us to disentangle the infinite-dimensional Markovian
structure associated to rough volatility models.

Keywords: Rough volatility, rough Heston model, Hawkes processes, fractional Brownian
motion, fractional Riccati equations, limit theorems, forward variance curve.

1 Introduction

It has been recently shown in [GJR18] that rough fractional processes enable us to reproduce
very accurately the behavior of historical volatility time-series. More precisely, the dynamic of
their logarithm is quite similar to that of a fractional Brownian motion with Hurst parameter
of order 0.1. Recall that a fractional Brownian motion W H with Hurst parameter H ∈ (0,1)
can be built from a classical two-sided Brownian motion W through the Mandelbrot-van Ness
representation:

W H
t = 1

Γ(H +1/2)

∫ 0

−∞
(
(t − s)H− 1

2 − (−s)H− 1
2
)
dWs + 1

Γ(H +1/2)

∫ t

0
(t − s)H− 1

2 dWs .

The fractional Brownian motion has Hölder regularity H −ε for any ε> 0. Hence fractional
volatility models with small Hurst parameter are referred to as rough volatility models.

Beyond historical data modeling, rough volatility models provide excellent fits and dynamics
for the whole volatility surface, in particular for the at-the-money skew, with very few scalar
parameters (typically three), see [BFG16, Fuk11, GJR18]. One of the only potential drawbacks
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III. Perfect hedging in rough Heston models

of such models in practice is the difficulty to price and hedge derivatives with them. Indeed,
although some promising approaches have been recently introduced, see [BLP17], due to
the non-Markovian nature of the fractional Brownian motion, running efficient Monte-Carlo
methods remains an intricate task in the rough volatility context, see [NS16].

However, it is shown in Chapter II that in the specific case of the so-called rough Heston
model, instantaneous pricing of derivatives can be obtained. The rough Heston model of
Chapter II is a natural extension1 to the rough framework of the classical Heston model of
[Hes93]. Indeed, the dynamic of the price S on a probability space (Ω,F ,F,P) is defined as
follows:

dSt = St

√
Vt dWt

Vt =V0 + 1

Γ(α)

∫ t

0
(t −u)α−1λ(θ−Vu)du + 1

Γ(α)

∫ t

0
(t −u)α−1ν

√
VudBu . (1)

Here the parameters λ, θ, V0, S0 and ν are positive, α ∈ (1/2,1) and W = ρB+
√

1−ρ2B⊥ with
(B ,B⊥) a two-dimensional F-Brownian motion and ρ ∈ [−1,1]. From Chapter II, the fractional
stochastic differential equation (1) admits a unique weak solution and this solution has sample
paths with Hölder regularity α−1/2−ε almost surely, for any ε> 0. Note also that in the case
α= 1, we retrieve the classical Heston model. Surprisingly enough, it is proved in Chapter
II that a semi-closed formula à la Heston also holds for the characteristic function of the
log-price in the rough Heston model. This formula is very similar to that obtained in the
classical Heston case, except that the classical time-derivative in the Riccati equation has to be
replaced by a fractional derivative. Indeed, we have

E[exp
(
i a log(St /S0)

)
] = exp

(
g1(a, t )+V0g2(a, t )

)
,

where

g1(a, t ) = θλ
∫ t

0
h(a, s)d s, g2(a, t ) = I 1−αh(a, t ),

and h is the unique continuous solution of the following fractional Riccati equation:

Dαh(a, s) = 1

2
(−a2 − i a)+ (i aρν−λ)h(a, s)+ ν2

2
h2(a, s), I 1−αh(a,0) = 0,

with I 1−α and Dα the fractional integral and derivative operators defined in Appendix III.A.
When α= 1, this result does coincide with the classical Heston’s result. Furthermore, efficient
numerical pricing procedures for vanilla options can be easily designed from it, see Chapter II.

Thus, the relevance of the rough Heston model is twofold: it enjoys at the same time the
nice modeling properties of rough volatility models and the computational advantages of the
Heston framework. However, the interest of having a pricing procedure is of course limited
if it does not go along with a hedging strategy. Being able to build a hedging portfolio

1Actually there is no really standard definition for the rough Heston model and other versions can be
considered, see [GJR14].
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essentially means computing conditional expectations of the form Ct = E[ f (ST )|Ft ], where f
is a deterministic payoff function. In the classical Heston case, the Markovian structure of the
model is very helpful to do it. In the rough case, this task is much more intricate since the
underlying fractional Brownian motion is neither a Markov process nor a semi-martingale.

To tackle this issue, we first study the conditional laws in rough Heston models. We actually
prove a very nice stability property. Indeed, we show that conditional on Ft , the law of the
rough Heston model is still that of a rough Heston model, provided that the mean-reversion
level θ is replaced by a time-dependent one. Hence we generalize our definition of the rough
Heston model, allowing for the mean-reversion level to depend on time. Then using Hawkes
processes as in Chapter II, we are able to compute the extended characteristic function of the
log-price in generalized rough Heston models, that is

E
[
exp

(
zlog(St /S0)

)]
(2)

for z = a + i b, with b ∈ R and a in some subset of R to be defined later. From an explicit
expression of (2), we can deduce a semi-closed formula for Ct , following for example the
approach in [CM99].

Our most important result is the fact that we are able to identify the relevant state variables
in rough Heston models, namely the underlying and the so-called forward variance curve:
(E[Vs+t |Ft ])0≤s≤T−t . Indeed, we show that Ct can be written

Ct =C
(
T − t ,St , (E[Vs+t |Ft ])s≥0

)
,

with C () an explicit deterministic function. The above formula shows rigorously that the
hedging instruments needed with rough models are the spot price and the forward variance
curve, an idea already emphasized in [BFG16]. Such result is also in the spirit of the approach
developed in [Ber05]. More precisely, we show that the dynamic of the option price satisfies

dCt = ∂SC
(
T − t ,St , (E[Vs+t |Ft ])s≥0

)
dSt

+∂V C
(
T − t ,St , (E[Vs+t |Ft ])s≥0

)
.
(
dE[Vs+t |Ft ])s≥0

)
,

where ∂SC is the derivative of C with respect to the underlying (the so-called delta) and ∂V C
is the Fréchet derivative of C according to the forward variance curve. From this expression,
we readily obtain hedging strategies in terms of underlying and forward variance curve. Of
course, in practice, one cannot really trade the whole forward variance curve. However,
approximations can be built using liquid variance swaps or vanilla options.

Note also that using generalized rough Heston models enables us to perfectly fit the initial
forward variance curve through the time varying mean-reversion parameter. Thus, one re-
produces with great accuracy the dynamics of historical data, the whole implied volatility
surface, including the at-the-money skew and the forward variance curve, and has access to
instantaneous pricing and hedging methods.
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The paper is organized as follows. In Section 2, we investigate conditional laws of rough Heston
models and introduce generalized rough Heston models with time-dependent mean-reversion
level. Using Hawkes processes, we derive in Section 3 the characteristic function of the
log-price in generalized rough Heston models, emphasizing the role of the forward variance
curve. We also discuss useful sufficient conditions for finite moments of the underlying price.
Finally, we design our hedging strategies in Section 4. Some proofs are relegated to Section 5
and some technical results are given in an Appendix.

2 Conditional laws of rough Heston models

The goal of this paper is to understand how to price and hedge vanilla options with maturity
T > 0 and payoff f (ST ) in the rough Heston framework (1). Thus a first step is to characterize
the law of the process (S t0

t ,V t0
t )t≥0 = (St+t0 ,Vt+t0 )t≥0 conditional on Ft0 , for a fixed t0 > 0.

Indeed, in order to derive the option price dynamic and to build hedging portfolios, one needs
to be able to compute E[ f (ST )|Ft ], 0 ≤ t ≤ T .

To state our result on conditional laws of rough Heston models, it is convenient to introduce a
generalized version of Model (1), allowing for time-varying mean-reversion level.

Definition 1 (Generalized rough Heston model). On a filtered probability space (Ω,F ,F,P), we
define a generalized rough Heston model by

dSt = St

√
Vt dWt

Vt =V0 + 1

Γ(α)

∫ t

0
(t −u)α−1λ(θ0(u)−Vu)du + 1

Γ(α)

∫ t

0
(t −u)α−1ν

√
VudBu . (3)

Here the parameters λ, V0, S0 and ν are positive, α ∈ (1/2,1) and W = ρB +
√

1−ρ2B⊥ with
(B ,B⊥) a two-dimensional F-Brownian motion and ρ ∈ [−1,1]. Moreover, θ0 is a deterministic
function, continuous on R∗+ satisfying

∀u > 0; θ0(u) ≥− V0

λΓ(1−α)
u−α, (4)

and
∀ε> 0 ∃Kε > 0; ∀u ∈ (0,1]; θ0(u) ≤ Kεu− 1

2−ε. (5)

Note that under Conditions (4) and (5), the fractional stochastic differential equation (3) admits
a unique weak solution, see Theorem 2 and associated references.

We now give our result for the conditional laws of generalized rough Heston models (which
Model (1) is a particular case of). Let (St ,Vt )t≥0 be defined by (3). We have the following
theorem, proved in Section 5.1.

Theorem 1. The law of the process (S t0
t ,V t0

t )t≥0 is that of a generalized rough Heston model with
the following dynamic:

dS t0
t = S t0

t

√
V t0

t dW t0
t , S t0

0 = St0
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V t0
t =Vt0 +

1

Γ(α)

∫ t

0
(t −u)α−1λ(θt0 (u)−V t0

u )du + 1

Γ(α)

∫ t

0
(t −u)α−1ν

√
V t0

u dB t0
u ,

with (W t0
t ,B t0

t )t≥0 = (Wt0+t −Wt0 ,Bt0+t −Bt0 )t≥0 a two-dimensional Brownian motion with corre-
lation ρ, independent of Ft0 and

θt0 (u) = θ0(t0 +u)+ α

λΓ(1−α)

∫ t0

0
(t0 − v +u)−1−α(Vv −Vt0 )d v + (u + t0)−α

λΓ(1−α)
(V0 −Vt0 ),

which is an Ft0 -measurable function continuous on R
∗+ such that Conditions (4) and (5) (where the

index 0 should be replaced by t0) are satisfied.

Hence the class of generalized rough Heston models is stable with respect to conditioning.
The conditional law of a rough Heston model is still that of a rough Heston model. The
only difference is a modification in the mean-reversion level function. In particular, when
considering the usual rough Heston model (1), the constant parameter θ becomes an Ft0

measurable function when taking conditional law at time t0. This result will be crucial to
derive hedging strategies in the rough Heston framework, and more generally to understand
the state variables associated to rough Heston type dynamics.

3 Characteristic function of generalized rough Heston models

The goal of this section is to derive the extended characteristic functions for the log-price in
the rough Heston model (3). This together with Theorem 1 will enable us to derive conditional
characteristic functions, leading to hedging strategies. The first step to achieve this goal is to
build a suitable sequence of processes converging to the generalized rough Heston model of
Definition 1. Then we will be able to do computations on these processes (notably deriving
characteristic functions), and pass them to the limit to obtain results for generalized rough
Heston models.

3.1 Generalized rough Heston models as limit of nearly unstable Hawkes
processes

In Chapter II, a microscopic price model, based on two-dimensional Hawkes processes, is
built so that it converges on the long run after suitable rescaling to a rough Heston log-price
(with constant mean-reversion). Then, characteristic functions are obtained from this result.
Such method could easily be extended to obtain a generalized rough Heston model in the
limit. However, it would only enable us to compute (2) with a = 0. This is not enough so
that classical Fourier inversion methods such as that in [CM99] can be rigorously applied to
compute prices and hedging portfolios.

Thus we use another approach in this section, quite similar to that of [JR16b]. We consider a
sequence of one-dimensional Hawkes processes (N T

t )t≥0, indexed by T > 0 going to infinity,
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with intensity given by

λT
t =µT +

∫ t

0
aTϕ(t − s)d N T

s ,

where µT and aT are positive constants with aT < 1 and ϕ :R∗+ →R+ is integrable such that∫ ∞
0 ϕ= 1. In [JR16b], it is shown that provided

xα
∫ ∞

x
ϕ(s)d s −→

x→∞
1

Γ(1−α)
, α ∈ (1/2,1), (6)

and
Tα(1−aT ) −→

T→∞
λ, T 1−αµT −→

T→∞
λ/ν2,

for some positive constants λ and ν, a suitably rescaled version of the intensity process
λT

t asymptotically behaves as the variance process of a rough Heston model with constant
mean-reversion parameter such as (1) and with initial variance equal to zero. To obtain a
time-dependent mean-reversion level and a non-zero starting value in the limit, we are inspired
by an idea in Chapter II, where it is shown that a time-dependent µT is a way to modify some
parameters in the limit. More precisely, we consider the following assumption, where f α,1

denotes the Mittag-Leffler density function defined in Appendix III.A.1.

Assumption 1. There exist λ,ν> 0, α ∈ (1/2,1) and V0 > 0 such that for T > 1/λ−1/α and t ≥ 0,

λT
t =µT ζ

T (t )+
∫ t

0
ϕT (t − s)d N T

s ,

where
aT = 1−λT −α, µT = (λ/ν2)Tα−1, ϕT = aTϕ,

with ϕ= f α,1 and

ζT (t ) =V0
( 1

1−aT
(1−

∫ t

0
ϕT (t − s)d s)−

∫ t

0
ϕT (t −u)du

)+∫ t

0
ϕT (t −u)θ0(u/T )du,

where θ0() satisfies the assumptions of Definition 1.

Note that we are working in the so-called nearly unstable case for Hawkes processes since
the L1 norm of the kernel ϕT converges to one. Furthermore remark that (6) is satisfied, see
Appendix III.A.1.

Remark 1. Remark that ζT can also be written as follows

ζT (t ) =
∫ t

0
ϕT (t −u)θ0(u/T )du +V0

(Tα

λ

∫ ∞

t
ϕ(s)d s +λT −α

∫ t

0
ϕ(s)d s

)
.

Therefore using that I 1−αϕT (t ) = ∫ ∞
t ϕT , see Appendix III.A.1, together with Condition (4) we get

ζT (t ) ≥− V0

λΓ(1−α)
Tα

∫ t

0
ϕT (t −u)u−αdu +V0

(Tα

λ

∫ ∞

t
ϕ(s)d s +λT −α

∫ t

0
ϕ(s)d s

)
=−V0

λ
Tα

∫ ∞

t
ϕT (s)d s +V0

(Tα

λ

∫ ∞

t
ϕ(s)d s +λT −α

∫ t

0
ϕ(s)d s

)
=V0µT (

∫ ∞

t
ϕ(s)d s +λT −α

∫ t

0
ϕ(s)d s

)
.
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This shows that ζT is a positive function and thus that the intensity process λT
t is well-defined.

We define M T
t = N T

t −∫ t
0 λ

T
s d s and

X T
t = ν2 1−aT

Tαλ
N T

tT , ΛT
t = ν2 1−aT

Tαλ

∫ tT

0
λT

s d s, Z T
t = ν

√
1−aT

Tαλ
M T

tT .

Conditions (4) and (5) on the function θ0 allow us to adapt the proofs in [JR16b] and Chapter
II in a straightforward way to obtain the following result.

Theorem 2. Let t0 > 0. As T →∞, under Assumption 1, the process (
ΛT

t , X T
t , Z T

t

)
t∈[0,t0] converges

in law for the Skorokhod topology to (Λ, X , Z ), where

• Λt = X t =
∫ t

0
Vsd s.

• Zt =
∫ t

0

√
VsdBs which is a continuous martingale.

• V is the unique weak solution of the rough stochastic differential equation

Vt =V0 + 1

Γ(α)

∫ t

0
(t − s)α−1λ(θ0(s)−Vs)d s + ν

Γ(α)

∫ t

0
(t − s)α−1

√
VsdBs ,

where B is a Brownian motion. Furthermore, the process V is non-negative and has Hölder regularity
α−1/2−ε for any ε> 0.

Theorem 2 will be one of the key results to obtain the extended characteristic function of the
log-price in generalized rough Heston models.

3.2 Conditions for finite moments in generalized rough Heston models

Recall that we aim at computing (2) with ℜ(z) 6= 0. A preliminary step towards this is to derive
sufficient conditions for the finiteness of the moments of St and exp

(∫ t
0 Vsd s

)
in generalized

rough Heston models. To obtain such result, we use Theorem 2. Let a ∈R. First, note that

(St )a = (S0)aexp
(
aρ

∫ t

0

√
VsdBs − a

2

∫ t

0
Vsd s +a

√
1−ρ2

∫ t

0

√
VsdB⊥

s

)
.

Consequently, we have

E[(St )a] = (S0)aE
[
exp(aρ

∫ t

0

√
VsdBs + 1

2
(−a +a2(1−ρ2))

∫ t

0
Vsd s)

]
.

Now define

Mt = exp
(
aρ

∫ t

0

√
VsdBs − a2ρ2

2

∫ t

0
Vsd s

)
.
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The process Mt is a positive local martingale and actually, by Proposition 3 in Appendix, a
true martingale. Define the corresponding probability measure Q:

dQ

dP

∣∣∣
Ft

= Mt .

By Girsanov theorem, under Q,

BQ
t = Bt −aρ

∫ t

0

√
Vsd s

is a F-Brownian motion. Consequently, under Q, V defined in (3) is still the variance process
of a generalized rough Heston model, but with different parameters:

Vt =V0 + 1

Γ(α)

∫ t

0
(t −u)α−1λ̃(θ̃0(u)−Vu)du + 1

Γ(α)

∫ t

0
(t −u)α−1ν

√
VudBQ

u , (7)

where

λ̃=λ−ρνa, θ̃0(t ) = λθ0(t )

λ−ρνa
,

provided that λ−ρνa > 0. Hence we obtain

E[(St )a] = (S0)aEQ[exp(
1

2
(−a +a2)

∫ t

0
Vsd s)]. (8)

Therefore, a sufficient condition on a for

EQ[exp(
1

2
(−a +a2)

∫ t

0
Vsd s)] <∞ (9)

will readily imply a sufficient condition for the finiteness of E[(St )a].

We now explain how to derive such condition. Recall that from Theorem 2, ν2T −2αN T
tT

converges in law to
∫ t

0 Vsd s. Thus we look first for a condition on a ∈R for which

E[exp(aν2T −2αN T
tT )] <∞, (10)

for large enough T > 0 and fixed t > 0. This is done using a population interpretation of
Hawkes processes, see Appendix III.C.1. It leads us to a sufficient condition on a ∈R for (9).
Furthermore, we are able to compute explicitly the expectation in (10), see Appendix III.C.1.
Thus we can pass to the limit as T goes to infinity and then obtain an explicit expression for
the expectation in (9). More precisely, we have the following result whose proof is given in
Section 5.2, where a0(t ) is defined for t > 0 by

a0(t ) = 1

2ν2 (λ+ αt−α

Γ(1−α)
)2.
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3. Characteristic function of generalized rough Heston models

Theorem 3. Let V be the variance process of the generalized rough Heston model (3). For any t > 0
and a < a0(t ),

E
[
exp(a

∫ t

0
Vsd s)

]<∞

and

E
[
exp(a

∫ t

0
Vsd s)

]= exp
(∫ t

0
g (a, t − s)(λθ0(s)+ V0s−α

Γ(1−α)
)d s

)
,

where g (a, .) is the unique continuous solution of the following fractional Riccati equation:

Dαg (a, s) = a −λg (a, s)+ ν2

2
g (a, s)2, s ≤ t , I 1−αg (a,0) = 0.

For any 0 ≤ s ≤ t , this function satisfies

g (a, s) ≤ c

ν2

( αs−α

Γ(1−α)
+ν

√
a0(s)−a

)
for some constant c > 0. Furthermore, for fixed 0 ≤ s ≤ t , a → g (a, s) is non-decreasing and
s → g (a, s) is non-increasing on [0, t ] if a < 0 and non-decreasing if a > 0.

Let St denote the price in the generalized rough Heston model of Definition 1. Using (8), we
obtain the following corollary on the moments of St .

Corollary 1. Let t > 0. Assume

λ−ρνa > 0, a−(t ) < a < a+(t ),

where

a−(t ) = ν2 −2ρνX (t )+p
∆(t )

2ν2(1−ρ2)
, a+(t ) = ν2 −2ρνX (t )−p

∆(t )

2ν2(1−ρ2)
,

with

X (t ) =λ+ αt−α

Γ(1−α)
, ∆(t ) = 4ν2X (t )2 +ν4 −4ρν3X (t ).

Then we have

E[(St )a] <∞.

Furthermore,

E[(St )a] = (S0)aexp
(∫ t

0
h(a, t − s)(λθ0(s)+ V0s−α

Γ(1−α)
)d s

)
,

where h(a, .) is the unique continuous solution of the following fractional Riccati equation:

Dαh(a, s) = a2 −a

2
− (λ−ρνa)h(a, s)+ ν2

2
h(a, s)2, s ≤ t , I 1−αh(a,0) = 0.
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III. Perfect hedging in rough Heston models

Remark 2. Note that if we formally take α = 1 in Corollary 1, our model coincides with the
classical Heston model. In that case X (t ) =λ and therefore a− and a+ do not depend on t . Moreover
the set of a ∈R such that

λ−ρνa > 0, a− ≤ a ≤ a+,

exactly corresponds to that of a ∈R for which

∀t ≥ 0, E[(St )a] <∞,

see [AP07] for further details on moment explosions for the classical Heston model.

Proof of Corollary 1:

Recall that from (8),

E[(St )a] = (S0)aEQ[exp(
1

2
(−a +a2)

∫ t

0
Vsd s)].

From Theorem 3 and the fact that under Q, V follows (7), this quantity is finite if λ−ρνa > 0
and

1

2
(−a +a2) < ã0(t ) = 1

2ν2 (λ̃+ αt−α

Γ(1−α)
)2 = 1

2ν2 (λ−ρνa + αt−α

Γ(1−α)
)2.

This is equivalent to

a2ν2(1−ρ2)+a(−ν2 +2X (t )ρν)−X (t )2 < 0.

The conditions on a ∈R stated in Corollary 1 follow. Finally, the expression of E[(St )a] is easily
obtained using (8) together with Theorem 3.

3.3 Characteristic functions of generalized rough Heston models

We are now ready to derive the characteristic functions of generalized rough Heston models.
Let t > 0. We want to compute

R(z, t ) = E[exp
(
z log(St /S0)

)]
,

where z ∈C satisfies

z = a + i b, a,b ∈R, λ−ρνa > 0, a−(t ) < a < a+(t ), (11)

where a−(t ) and a+(t ) are defined in Corollary 1. Recall that from Corollary 1, (11) implies that
exp

(
z log(St /S0)

)
is integrable and therefore R(z, t ) is well-defined.

Using the same computations as in the preceding sections, we get

R(z, t ) = EQ
[
exp

(
i bρ

∫ t

0

√
VsdBQ

s + 1

2
(ρ2b2 + z2 − z)

∫ t

0
Vsd s

)]
. (12)
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3. Characteristic function of generalized rough Heston models

As already seen, under Q, V still follows the variance process of a generalized rough Heston
model driven by the Brownian motion BQ, see (7). Thus, we need to study

G(z, x, t ) = E[exp
(
i x

∫ t

0

√
VsdBs + z

∫ t

0
Vsd s

)]
,

with x ∈ R, z ∈ C such that ℜ(z) < a0(t ), (a0(t ) is defined in Theorem 3), and V is the
variance process of a generalized rough Heston model. To do so, we use again Theorem 2.
Indeed (ν2T −2αN T

tT ,νT −αM T
tT ) converges in law as T goes to infinity to (

∫ t
0 Vsd s,

∫ t
0

p
VsdBs).

Computing
E[exp

(
i xνT −αM T

tT + zν2T −2αN T
tT

)
]

and passing to the limit, we obtain the following result whose proof is given in Section 5.3.

Theorem 4. Let V be the variance process of the generalized rough Heston model (3). For any t > 0,
b ∈R and z ∈C such that ℜ(z) < a0(t ),

G(z, x, t ) = exp
(∫ t

0
ξ(z, x, t − s)(λθ0(s)+ V0s−α

Γ(1−α)
)d s

)
,

where ξ(z, x, .) is the unique continuous solution of the following fractional Riccati equation:

Dαξ(z, x, s) = z − x2

2
+ (i xν−λ)ξ(z, x, s)+ ν2

2
ξ(z, x, s)2, s ≤ t , I 1−αξ(z, x,0) = 0.

The following corollary is readily obtained from Theorem 4 together with (12).

Corollary 2. Let t > 0 and z ∈C satisfying (11). We have

R(z, t ) = exp
(∫ t

0
h(z, t − s)(λθ0(s)+ V0s−α

Γ(1−α)
)d s

)
,

where h(z, .) is the unique continuous solution of the following fractional Riccati equation:

Dαh(z, s) = 1

2
(z2 − z)+ (zρν−λ)h(z, s)+ ν2

2
h(z, s)2, s ≤ t , I 1−αh(z,0) = 0.

3.4 Connection with the forward variance curve

We now show how the characteristic function given in Corollary 2 can be written as a functional
of the forward variance curve (E[Vt ])t≥0. This property will be crucial in the next section when
computing hedging portfolios. We first remark that the time-dependent parameter θ0 can be
directly linked to the forward variance curve through the following result.

Proposition 1. Let V be the variance process of the generalized rough Heston model (3). For any
t ≥ 0, we have

E[Vt ] =V0
(
1−Fα,λ(t )

)+∫ t

0
f α,λ(t − s)θ0(s)d s, (13)

where Fα,λ and f α,λ are defined in Appendix III.A.1. Furthermore, θ0 can be written as a functional
of the forward variance curve as follows:

λθ0(t )+V0
t−α

Γ(1−α)
= DαE[Vt ]+λE[Vt ], t > 0. (14)
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III. Perfect hedging in rough Heston models

Proof of Proposition 1:

In the same way as in [JR16b], we can show that for any t ≥ 0,

E[
∫ t

0
Vsd s] <∞.

So we have that t → E[Vt ] is locally integrable. Moreover f α,λ is square-integrable, see
Appendix III.A.1. Thus we obtain that for any t ≥ 0,∫ t

0
f α,λ(t − s)2E[Vs]d s <∞.

Therefore,

E[
∫ t

0
f α,λ(t − s)

√
VsdBs] = 0.

Writing the dynamic of V under the following form as in [JR16b]:

Vt =V0
(
1−Fα,λ(t )

)+∫ t

0
f α,λ(t − s)θ0(s)d s + ν

λ

∫ t

0
f α,λ(t − s)

√
VsdBs , (15)

we deduce (13). Now using Fubini theorem and noting that I 1−α f α,λ =λ(1−Fα,λ), see Appendix
III.A.1, we get that for any t ≥ 0,

I 1−αE[Vt ] =V0
t 1−α

(1−α)Γ(1−α)
+

∫ t

0
λ
(
1−Fα,λ(t − s)

)
(θ0(s)−V0)d s.

Using Fubini again, this can be rewritten

I 1−αE[Vt ] =V0
t 1−α

(1−α)Γ(1−α)
+

∫ t

0
λ(θ0(s)−V0)d s −λ

∫ t

0

∫ s

0
f α,λ(s −u)(θ0(u)−V0)dud s.

Then from (13) we derive

I 1−αE[Vt ] =V0
t 1−α

(1−α)Γ(1−α)
+

∫ t

0
λ(θ0(s)−V0)d s −λ

∫ t

0
(E[Vs]−V0)d s.

We finally obtain (14) by differentiating this last equality.

Remark 3. Assume that the forward variance curve t → E[Vt ] is observed on the market through
the implied volatility surface or liquid variance swaps, and that this curve admits a fractional
derivative of order α. Then the mean-reversion function θ0 can be chosen so that the model is
consistent with this market forward variance curve by taking

λθ0(t ) = Dα(E[V.]−V0)(t )+λE[Vt ].
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3. Characteristic function of generalized rough Heston models

From Corollary 2 together with Proposition 1, we can eventually write the characteristic
function of the log-price as a functional of the forward variance curve. Thus, it indicates that
the forward variance curve is a relevant state variable in generalized rough Heston models.
Such type of phenomena also appears in the class of models developed in [Ber05]. More
precisely, we have the following corollary.

Corollary 3. Let t > 0 and z ∈C satisfying (11). We have

R(z, t ) = exp
(∫ t

0
χ(z, t − s)E[Vs]d s

)
,

where

χ(z, t ) = 1

2
(z2 − z)+ zρνh(z, t )+ ν2

2
h(z, t )2,

with h(z, .) the unique continuous solution of the fractional Riccati equation given in Corollary 2.

Thus, characteristic functions, and therefore conditional characteristic functions of the log-
price can be written in term of the forward variance curve. This shows that this object plays the
role of state variable in this infinite dimensional fractional setting. Actually, this result could
probably be understood in a more general framework of affine processes, see [AJLP17, CT18].

Proof of Corollary 3:

By Lemma 2 in Appendix, for any 0 ≤ s ≤ t ,

h(z, s) =
∫ s

0

1

λ
f α,λ(s −u)χ(z,u)du. (16)

Moreover, from (13) together with the fact that I 1−α f α,λ = λ(1−Fα,λ), see Appendix III.A.1,
we have

E[Vs] =
∫ s

0

1

λ
f α,λ(s −u)(λθ0(u)+V0

u−α

Γ(1−α)
)du.

Then, using Fubini theorem, we obtain

∫ t

0
χ(z, t − s)E[Vs]d s =

∫ t

0

(∫ t−s

0

1

λ
f α,λ(t − s −u)χ(z,u)du

)
(λθ0(s)+V0

s−α

Γ(1−α)
)d s

and therefore ∫ t

0
χ(z, t − s)E[Vs]d s =

∫ t

0
h(z, t − s)(λθ0(s)+V0

s−α

Γ(1−α)
)d s.

The result follows from Corollary 2.
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III. Perfect hedging in rough Heston models

4 Hedging under generalized rough Heston models

We consider a generalized rough Heston model with the additional assumption that ρ ≤ 0. We
show in this section how to compute explicitly hedging portfolios for vanilla options in such
model. We treat here the case of a European call option with maturity T > 0 and strike K > 0.
Nevertheless, the approach can be easily extended to other vanilla payoffs.

It is easy to see that we can find a > 1 such that the conditions of Corollary 1 are satisfied for
any t ≥ 0. Therefore, for any t ≥ 0,

E[(St )a] <∞.

We define the call option price process

Ct = E[(ST −K )+|Ft ], 0 ≤ t ≤ T.

We write
X t = log(St ), t ≥ 0

and
g (x) = e−ax (ex −K )+, x ∈R.

We have g ∈ L1(R)∩L2(R) and therefore

g (x) = 1

2π

∫
b∈R

ĝ (−b)e i bx db,

where ĝ ∈ L1(R)∩L2(R) is the Fourier transform of g . Note that we are able to compute
explicitly ĝ :

ĝ (b) = e(1−a+i b)log(K )

(i b −a)(i b −a +1)
, b ∈R.

We then deduce by Fubini theorem that

Ct = E[g (XT )eaXT |Ft ] = 1

2π

∫
b∈R

ĝ (−b)P T
t (a + i b)db, (17)

where
P T

t (a + i b) = E[exp
(
(a + i b)XT

)|Ft ].

Using the fact that conditional on Ft , S still follows a generalized rough Heston dynamic
together with Corollary 3, we obtain

E[exp
(
(a + i b) log(ST /St )|Ft

)
] = exp

(∫ T−t

0
χ(a + i b,T − t − s)E[Vs+t |Ft ]d s

)
,

where χ is defined in Corollary 3. Thus,

P T
t (a + i b) = exp

(
(a + i b) log(St )+

∫ T−t

0
χ(a + i b,T − t − s)E[Vs+t |Ft ]d s

)
. (18)
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4. Hedging under generalized rough Heston models

Hence, from (18), we deduce that P T
t (a + i b) is a deterministic functional of the underlying

spot price St and the forward variance curve until maturity T : E[Vt+u |Ft ], 0 ≤ u ≤ T − t .

Let

Vα,λ = {ξ :R+ →R+ , ξ(t ) =
∫ t

0

s−α

λΓ(1−α)
f α,λ(t − s)θξ(s)d s, θξ is continuous on R+}.

The space Vα,λ is a metric space containing

V +
α,λ = {ξ ∈ Vα,λ, θξ > 0 and for any t > 0, θξ(t ) = ξ(0)+tαλΓ(1−α)θ0

ξ(t ), θ0
ξ satisfies (5) },

which is the set of all possible forward variance curves produced by generalized rough Heston
models. Note that from the same computations as for Proposition 1, we get the uniqueness of
the function θξ for each ξ ∈ Vα,λ since we have

θξ(t ) = (
Dαξ(t )+λξ(t )

)
Γ(1−α)tα, t > 0.

We equip Vα,λ with the following complete metric:

dα,λ(ξ,ζ) = ‖|θξ−θζ|∧1‖∞.

From (17) and (18), we get that the spot price and the forward variance curve are the relevant
state variables for the call price process. Indeed, there exists a deterministic functional
C :R+×R∗+×Vα,λ→R such that

Ct =C
(
T − t ,St , (E[Vs+t |Ft ])s≥0

)
, t ∈ [0,T ],

where for any t ≥ 0, S ∈R+ and ξ ∈ Vα,λ

C
(
t ,S,ξ

)= 1

2π

∫
b∈R

ĝ (−b)L(a + i b, t ,S,ξ)db, (19)

with

L(a + i b, t ,S,ξ) = exp
(
(a + i b) log(S)+

∫ t

0
χ(a + i b, t − s)ξ(s)d s

)
.

In the following proposition, proved in Section 5.4, we give some useful regularity properties
of the functional C .

Proposition 2. Let ξ ∈ V +
α,λ, S > 0, t > 0 and assume |ρ| < 1. The function C (t , .,ξ) defined in

(19) is differentiable in S and its derivative is given by

∂SC
(
t ,S,ξ

)= 1

2π

∫
b∈R

a + i b

S
ĝ (−b)L(a + i b, t ,S,ξ)db.

Moreover, the function C (t ,S, .) is differentiable in the sense of Fréchet in ξ, with derivative such
that for any ζ ∈ Vα,λ,

∂V C
(
t ,S,ξ).ζ=

∫ t

0

( 1

2π

∫
b∈R

ĝ (−b)L(a + i b, t ,S,ξ)χ(a + i b, t − s)db
)
ζ(s)d s.
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III. Perfect hedging in rough Heston models

We end this section by stating our result showing how one can build a hedging portfolio by
trading the underlying and the forward variance curve.

Theorem 5. For any time t ∈ [0,T ], we have

Ct =C0 +
∫ t

0
∂SC (T −u,Su ,E[V.+u |Fu])dSu +

∫ t

0
∂V C (T −u,Su ,E[V.+u |Fu]).(dE[V.+u |Fu]),

where
∂V C (T −u,Su ,E[V.+u |Fu]).(dE[V.+u |Fu])

denotes∫ T−u

0

( 1

2π

∫
b∈R

ĝ (−b)L(a + i b,T −u,Su ,E[V.+u |Fu])χ(a + i b,T −u − s)db
)
dE[Vs+u |Fu]d s,

with dE[Vx |Fu] the Ito differential at time u of the martingale Mu = E[Vx |Fu], u ≤ x.

Remark 4. We actually also show that

dE[Vs+u |Fu] = 1

λ
f α,λ(s)ν

√
VudBu .

The proof of Theorem 5 is given in Section 5.5. This result shows that in an idealistic setting
where the underlying asset and the forward variance curve can be traded (in continuous time),
perfect replication can be obtained in generalized rough Heston models. Of course, in practice,
this strategy will be discretized and one will use liquid variance swaps or European options
instead of the forward variance curve.

Remark 5. It is interesting to remark that the price function C (t ,S,ξ) is solution of a Feynman-Kac
type path-dependent partial differential equation. Let us define the following derivative according to
time t > 0:

∂tC (t ,S,ξ) = lim
ε→0+

1

ε

(
C (t −ε,S,ξε+.)−C (t ,S,ξ)

)
.

We easily have that L(a + i b, t ,S,ξ) is solution of the following path-dependent PDE:

0 = ∂t L+ 1

2
(S

√
ξ0)2∂2

SL+ 1

2
(ν

√
ξ0)∂2

V L.(
1

λ
f α,λ,

1

λ
f α,λ)+ρ(S

√
ξ0)(ν

√
ξ0)∂2

S,V L.(
1

λ
f α,λ),

with the initial condition L(a + i b,0,S,ξ) = Sa+i b .

As in Proposition 2, we can show that C is twice differentiable in S and in V (in the sense of Fréchet
for V ), and that ∂tC is well-defined. So we can deduce that C satisfies the same path-dependent
PDE:

0 = ∂tC + 1

2
(S

√
ξ0)2∂2

SC + 1

2
(ν

√
ξ0)∂2

V C .(
1

λ
f α,λ,

1

λ
f α,λ)+ρ(S

√
ξ0)(ν

√
ξ0)∂2

S,V C .(
1

λ
f α,λ),

with the initial condition C (0,S,ξ) = (S −K )+.

Note that ∂2
V C .( 1

λ f α,λ, 1
λ f α,λ) (resp. ∂2

S,V C .( 1
λ f α,λ)) is the second Fréchet derivative of C (resp. the

first Fréchet derivative of ∂SC ) applied on ( 1
λ f α,λ, 1

λ f α,λ) (resp. 1
λ f α,λ) which is well-defined even

though 1
λ f α,λ does not belong to the metric space Vα,λ.
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5. Proofs

5 Proofs

The notion of fractional integrals and derivatives are heavily used in the proofs. Notations,
definitions and useful results related to them are given in Appendix III.A.

5.1 Proof of Theorem 1

Finding the dynamic of V t0
t conditional on Ft0 Using stochastic Fubini theorem, we can

show that I 1−αV is a semi-martingale and for t > 0,

(I 1−αV )t =V0

∫ t

0

s−α

Γ(1−α)
d s +

∫ t

0
λ(θ0(s)−Vs)d s +

∫ t

0
ν
√

VsdBs .

Therefore,
1

Γ(1−α)

∫ t+t0

0
(t + t0 −u)−αVudu

is equal to

1

Γ(1−α)

∫ t0

0
(t0−u)−αVudu+V0

∫ t+t0

t0

1

Γ(1−α)
u−αdu+

∫ t+t0

t0

λ(θ0(u)−Vu)du+
∫ t+t0

t0

ν
√

VudBu .

Using a change of variable, this can be written

1

Γ(1−α)

∫ t0

0
(t0−u)−αVudu+V0

∫ t

0

1

Γ(1−α)
(t0+u)−αdu+

∫ t

0
λ(θ0(u+t0)−V t0

u )du+
∫ t

0
ν

√
V t0

u dB t0
u ,

where (B t0
t )t≥0 = (Bt+t0 −Bt0 )t≥0 is a Brownian motion independent of Ft0 . Moreover, remark-

ing that

I 1−αV t0
t = 1

Γ(1−α)

∫ t

0
(t −u)−αV t0

u du = 1

Γ(1−α)

∫ t+t0

t0

(t + t0 −u)−αVudu

is equal to

1

Γ(1−α)

∫ t+t0

0
(t + t0 −u)−αVudu − 1

Γ(1−α)

∫ t0

0
(t + t0 −u)−αVudu

and that

1

Γ(1−α)

(
(t0 −u)−α− (t + t0 −u)−α

)= α

Γ(1−α)

∫ t

0
(t0 −u + v)−1−αd v,

we derive

I 1−αV t0
t = α

Γ(1−α)

∫ t0

0

∫ t

0
(t0 −u + v)−1−αd vVudu +

∫ t

0

1

Γ(1−α)
(t0 +u)−αduV0

+
∫ t

0
λ(θ0(u + t0)−V t0

u )du +
∫ t

0
ν

√
V t0

u dB t0
u .
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III. Perfect hedging in rough Heston models

This can be written as follows:

Vt0

t 1−α

(1−α)Γ(1−α)
+

∫ t

0
λ(θt0 (u)−V t0

u )du +
∫ t

0
ν

√
V t0

u dB t0
u , (20)

with (θt0 (u))u≥0 a function which is Ft0 measurable and defined by

θt0 (u) = θ0(t0 +u)+ α

λΓ(1−α)

∫ t0

0
(t0 − v +u)−1−α(Vv −Vt0 )d v + (u + t0)−α

λΓ(1−α)
(V0 −Vt0 ).

Properties of θt0 It is clear that θt0 is continuous on R∗+. Moreover it is easy to see that for
any u > 0:

θt0 (u) = θ0(t0 +u)+ α

λΓ(1−α)

∫ t0

0
(t0 − v +u)−1−αVv d v + 1

λΓ(1−α)
(V0(u + t0)−α−Vt0 u−α).

Since V is a non-negative process and θ0 satisfies (4), we obtain that θt0 also satisfies (4).
Finally, for fixed ε> 0, V being α−1/2−ε Hölder continuous, there exists for almost each
ω ∈Ω a positive constant cε(ω) such that for any x, y ∈ [0, t0]:

|Vx −Vy | ≤ cε(ω)|x − y |α−1/2−ε.

Thus by integration by parts, we obtain for any u ∈ (0, t0]

|
∫ t0

0
(t0 − v +u)−1−α(Vv −Vt0 )d v | ≤ cε(ω)

∫ t0

0
(t0 − v +u)−1−α(t0 − v)α−1/2−εd v

= cε(ω)u−1/2−ε
∫ t0/u

0
(x +1)−1−αxα−1/2−εd x

≤ cε(ω)u−1/2−ε
∫ ∞

0
(x +1)−1−αxα−1/2−εd x.

Thus θt0 satisfies Condition (5) almost surely.

End of the proof We end the proof noting that from (20) and stochastic Fubini Theorem we
have that ∫ t

0
V t0

s d s = 1

Γ(α)

∫ t

0
(t − s)α−1I 1−αV t0

s d s

is equal to

Vt0 t + 1

Γ(α)

∫ t

0

∫ s

0
(s −u)α−1λ(θt0 (u)−V t0

u )dud s + 1

Γ(α)

∫ t

0

∫ s

0
(s −u)α−1ν

√
V t0

u dB t0
u d s.

Hence by differentiating the previous equality, we conclude that the dynamic of (S t0 ,V t0 ) is
given by

S t0
t = St0 exp

(∫ t

0

√
V t0

u dW t0
u − 1

2

∫ t

0
V t0

u du
)
,

V t0
t =Vt0 +

1

Γ(α)

∫ t

0
(t −u)α−1λ(θt0 (u)−V t0

u )du + 1

Γ(α)

∫ t

0
(t −u)α−1ν

√
V t0

u dB t0
u ,

where (W t0
t )t≥0 = (Wt+t0 −Wt0 )t≥0 is a Brownian motion independent of Ft0 and with correla-

tion ρ with B t0 .

126



5. Proofs

5.2 Proof of Theorem 3

We work here with the sequence of Hawkes processes N T defined in Assumption 1. Recall that
for t ≥ 0, from Theorem 2, ν2T −2αN T

tT , converges in law as T goes to infinity to∫ t

0
Vsd s,

where V is solution of the fractional stochastic differential equation (3). A key step for the
proof of Theorem 3 is to show that for suitable a ∈R,

E[exp(aν2T −2αN T
tT )] −→

T→∞
E[exp(a

∫ t

0
Vsd s)]. (21)

Applying (31) in Appendix III.C.1 on the Hawkes process N T , we write

E[exp(aν2T −2αN T
tT )] = exp

(∫ t

0
λζT (T (t − s))g T (a, s)d s

)
,

with
g T (a, t ) = ν−2Tα

(
exp(aν2T −2α)E[exp(aν2T −2αN f ,T

tT )]−1
)
,

where N f ,T is the Hawkes process of children cluster (with migrant rate ϕT and kernel ϕT ),
see Appendix III.C.1 for details. Moreover from Lemma 5, λζT (Ts) converges pointwise as T
goes to infinity to

λθ0(s)+ V0s−α

Γ(1−α)
, 0 < s ≤ t .

Therefore, it is left to study the convergence of the function g T .

Uniform boundedness of g T From now on c denotes a positive constant that may vary
from line to line.

From (30) in Appendix III.C, for each t > 0,

g T (a, t ) <∞ (22)

provided

aν2T −2α ≤
∫ tT

0
ϕT −1− log(

∫ tT

0
ϕT ).

Moreover note that from Appendix III.A.1,

T 2α(∫ tT

0
ϕT −1− log(

∫ tT

0
ϕT )

) −→
T→∞

1

2
(λ+ αt−α

Γ(1−α)
)2.

Thus Property (22) is satisfied for large enough T > T0(a, t ,λ,ν) and a < a0(t ) with

a0(t ) = 1

2ν2 (λ+ αt−α

Γ(1−α)
)2.
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Furthermore, as N f ,T ≤ N∞,T (which is the Galton-Watson process defined in Appendix III.C.2),
using (34) in Appendix III.C.2, we obtain

E[exp(aν2T −2αN f ,T
tT )] ≤ ∑

n≥0

νT (t )ne−νT (t )(n+1)

n!
(n +1)n−1eaν2T −2αn ,

with νT (t ) = ∫ tT
0 ϕT . It is also easy to see from (34) (by taking a = 0 and ν= 1 in (34)) that

1 = ∑
n≥0

e−(n+1)

n!
(n +1)n−1.

Consequently, we obtain

g T (a, t ) ≤ ν−2Tα
∑

n≥0

e−(n+1)

n!
(n +1)n−1(νT (t )ne(1−νT (t ))(n+1)eaν2T −2α(n+1) −1

)
= 1

ν2νT (t )
Tα

∑
n≥0

e−(n+1)

n!
(n +1)n−1(exT (t )(n+1) −νT (t )

)
,

where
xT (t ) = 1−νT (t )+ log(νT (t ))+aν2T −2α,

which is non-positive for T > T0(a, t ,λ,ν). Therefore

g T (a, t ) ≤ 1

ν2νT (t )
Tα(1−νT (t )).

Assume now a ≤ 0, we use again N f ,T ≤ N∞,T and (34) to get

ν−2Tα
∑

n≥0

e−(n+1)

n!
(n +1)n−1(exT (t )(n+1) −1

)≤ g T (a, t ) ≤ 0.

By Stirling formula,
e−(n+1)

n!
(n +1)n−1 ∼

n→∞
1√

2π(n +1)3
.

Thus,

−c
1

ν2νT (t )
Tα

∑
n≥0

1

(n +1)3/2
(1−exT (t )(n+1)) ≤ g T (a, t ) ≤ 0.

We deduce from Lemma 7 that

− c

ν2νT (t )

√
−T 2αxT (t ) ≤ g T (a, t ) ≤ 0.

Therefore, for any a < a0(t ):

|g T (a, t )| ≤ c
1

ν2νT (t )

(
Tα(1−νT (t ))+

√
−T 2αxT (t )

)
.
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Finally, note that

Tα(1−νT (t )) → αt−α

Γ(1−α)

and
T 2αxT (t ) → ν2(a0(t )−a),

as T goes to infinity. Eventually,

limsup
T→∞

|g T (a, t )| ≤ cν−2( αt−α

Γ(1−α)
+ν

√
(a0(t )−a)

)
. (23)

Uniform convergence of g T We now fix t0 > 0 and a < a0(t0). The function t → g T (a, t )
being monotone and such that g T (a,0) = 0, we have that for any 0 ≤ t ≤ t0

|g T (a, t )| ≤ |g T (a, t0)|.

Moreover, from the previous section, there exists T0(t0, a,λ,ν) > 0 such that

sup
T≥T0

|g T (a, t0)| <∞.

Hence, g T (a, .) is uniformly bounded in 0 ≤ t ≤ t0 and T ≥ T0. We now assume that T ≥ T0.

Applying (31) in Appendix III.C.1 on the Hawkes process N f ,T , we obtain that for any t ∈ [0, t0],

ν2T −αg T (a, t )+1 = exp
(
ν2T −2αa +ν2T 1−α

∫ t

0
ϕT (Ts)g T (a, t − s)d s

)
.

By taking the logarithm of the previous expression, we write

ν2T −2αa +ν2T 1−α
∫ t

0
ϕT (Ts)g T (a, t − s)d s = ν2T −αg T (a, t )− ν4

2
T −2αg T (a, t )2 −εT

1 (t ),

where |T 3αεT
1 | is uniformly bounded in t ∈ [0, t0] and T ≥ T0. Hence

g T (a, t ) = T
∫ t

0
ϕT (Ts)g T (a, t − s)d s +aT −α+ ν2

2
T −αg T (a, t )2 + Tα

ν2 ε
T
1 (t ).

Thanks to Lemma 1,

g T (a, t ) = aT 1−α
∫ t

0
ψT (Ts)d s + ν2

2
T 1−α

∫ t

0
ψT (Ts)g T (a, t − s)2d s +εT

2 (t ),

where

εT
2 (t ) = aT −α+ ν2

2
T −αg T (a, t )2 + Tα

ν2 ε
T
1 (t )+ Tα+1

ν2

∫ t

0
ψT (Ts)εT

1 (t − s)d s
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and ψT = ∑
k≥1

(ϕT )∗k 2. Note that TαεT
2 is uniformly bounded in t ∈ [0, t0] and T ≥ T0. Recall

also that using Laplace transform computations as in [JR16b], we get

λT 1−αψT (T t ) = aT f α,λ(t ). (24)

Thus

g T (a, t ) =
∫ t

0

1

λ
f α,λ(t − s)(a + ν2

2
g T (a, s)2)d s +εT (t ),

with εT (t ) = εT
2 (t )−T −α ∫ t

0 f α,λ(t − s)(a + ν2

2 g T (a, s)2)d s. As done in the proof of Proposition
5 in Chapter II, using that TαεT and g T (a, .) are uniformly bounded in t ∈ [0, t0] and T ≥ T0,
together with Lemma 3, we deduce that g T (a, .) is a Cauchy sequence on C ([0, t0],R). Therefore
it converges to a continuous function g (a, .) solution of the following equation:

g (a, t ) =
∫ t

0

1

λ
f α,λ(t − s)(a + ν2

2
g (a, s)2)d s.

By Lemma 2, it is equivalent to the fractional Riccati equation

Dαg (a, t ) = a −λg (a, t )+ ν2

2
g (a, t )2, I 1−αg (a,0) = 0,

which admits a unique continuous solution (the uniqueness being an obvious corollary of
Lemma 3). Finally remark that from (23),

|g (a, t )| ≤ c

ν2

( αt−α

Γ(1−α)
+ν

√
a0(t )−a

)
.

Remark 6. Note that for a ≥ 0, t → g (−a, t ) is non-increasing and since g (−a,0) = 0, we obtain
the following inequality:

g (−a, t ) =
∫ t

0

1

λ
f α,λ(t − s)(a + ν2

2
g (−a, s)2)d s ≤ 1

λ
Fα,λ(t )(−a + ν2

2
g (−a, t )2).

From this inequality, we get for t > 0

g (−a, t ) ≤
1−

√
1+ 2ν2a

λ2 Fα,λ(t )2

ν2

λ Fα,λ(t )
.

End of the proof We know that for any t ∈ [0, t0] and for fixed a < a0(t0),

E[exp(aν2T −2αN T
tT )] = exp

(∫ t

0
λζT (T (t − s))g T (a, s)d s

)
.

Then, from the uniform convergence of g T (a, .) to g (a, .) together with Lemma 4, Lemma 5
and the dominated convergence theorem, we obtain

E[exp(aν2T −2αN T
tT )] → exp

(∫ t

0
g (a, t − s)(λθ0(s)+ V0s−α

Γ(1−α)
)d s

)
2Recall that (ϕT )∗1 =ϕ and (ϕT )∗k (t ) = ∫ t

0 ϕ(t − s).(ϕT )∗k−1(s)d s.
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as T goes to infinity. By Fatou lemma, we deduce

E[exp
(
a

∫ t

0
Vsd s

)
] <∞.

We end the proof by showing (21). The case a ≤ 0 being obvious, we assume that 0 < a < a0(t0).
Let ε> 0 such that a(1+ε) < a0(t0). From the computations above, there exists T0(t , a,λ,ν,ε)
such that

sup
T≥T0

E[exp(a(1+ε)ν2T −2αN T
tT )] <∞.

Therefore
(
exp(aν2T −2αN T

tT )
)

T≥T0
is uniformly integrable and we conclude that

E[exp(aν2T −2αN T
tT )] → E[exp(a

∫ t

0
Vsd s)].

This ends the proof of Theorem 3.

5.3 Proof of Theorem 4

In this section, we place ourselves in the framework of generalized rough Heston models (3)
and compute for 0 ≤ t ≤ t0

G(z, x, t ) = E[exp
(
z
∫ t

0
Vsd s + i x

∫ t

0

√
VsdBs

)
],

with x ∈R and z ∈C such that ℜ(z) < a0(t ), (a0(t ) is defined in Theorem 3). It has been shown
in the proof of Theorem 3 that there exists T0 > 0 such that

exp
(
zν2T −2αN T

tT + i xνT −αM T
tT

)
is uniformly integrable for fixed t and T ≥ T0. We have that

E[exp
(
zν2T −2αN T

tT + i xνT −αM T
tT

)
] (25)

is equal to

E[exp
(
(zν2T −2α+ i xνT −α)N T

tT − i xνT −α
∫ tT

0

∫ s

0
ϕT (s−u)d N T

u d s− i xνT −αµT

∫ tT

0
ζT (s)d s

)
].

Let

f T (t ) = zν2T −2α+ i xνT −α− i xνT −α
∫ t

0
ϕT (s)d s.

Using Fubini theorem, we get that (25) is also equal to

E[exp
(∫ tT

0
f T (tT − s)d N T

s − i x
λ

ν

∫ t

0
ζT (sT )d s

)
].

Hence we deduce from Lemma 4 and Lemma 5 that

G(z, x, t ) = lim
T→∞

E[exp
(
zν2T −2αN T

tT + i xνT −αM T
tT

)
]

= exp
(− i x

ν

∫ t

0
λθ0(s)+ V0s−α

Γ(1−α)
d s

)
lim

T→∞
E[exp

(∫ tT

0
f T (tT − s)d N T

s

)
].

131



III. Perfect hedging in rough Heston models

Passing to the limit Applying (35) in Appendix III.C.3 on the Hawkes process N T with the
function f T , we have that for large enough T ,

exp
(∫ tT

0
f T (tT − s)d N T

s

)
is integrable and

E[exp
(∫ tT

0
f T (tT − s)d N T

s

)
] = exp

(∫ t

0
λζT (T (t − s))kT (z, x, s)d s

)
where

kT (z, x, t ) = 1

ν2 Tα
(
e f T (tT )E[e

∫ tT
0 f T (tT−u)d N f ,T

u ]−1
)
.

Furthermore, from Lemma 5, λζT (Ts) converges pointwise as T tends to infinity to

λθ0(s)+ V0s−α

Γ(1−α)
, s ≤ t .

As in Section 5.2, we show the uniform boundedness of kT and then its uniform convergence.

Uniform boundedness of kT We start by noting that for t ∈ [0, t0],

|kT (z, x, t )| ≤ 1

ν2 Tα
(|e f T (tT )E[e

∫ tT
0 f T (tT−u)d N f ,T

u ]−e iℑ[ f T (tT )]E[e
∫ tT

0 iℑ[ f T (tT−u)]d N f ,T
u ]|

+ |e iℑ[ f T (tT )]E[e
∫ tT

0 iℑ[ f T (tT−u)]d N f ,T
u ]−1|).

Using that ℜ[ f T ] =ℜ(z)ν2T −2α together with the following inequality

|e f T (tT )E[e
∫ tT

0 f T (tT−u)d N f ,T
u ]−e iℑ[ f T (tT )]E[e

∫ tT
0 iℑ[ f T (tT−u)]d N f ,T

u ]| ≤ |eℜ[ f T (tT )]E[e
∫ tT

0 ℜ[ f T (tT−u)]d N f ,T
u ]−1|,

we derive
|kT (z, x, t )| ≤ |kT (ℜ(z),0, t )|+ |kT (iℑ(z), x, t )|.

In Section 5.2, we have already shown that kT (ℜ(z),0, t ) is uniformly bounded in t ∈ [0, t0], for
large enough T . It is now left to show the uniform boundedness of kT (iℑ(z), x, t ). So now we
take z = i a where a ∈R. First, remark that f T becomes

f T (t ) = i aν2T −2α+ i xνT −α(1−
∫ t

0
ϕT (s)d s) = i (aν2 +xνλ)T −2α+ i xνT −α

∫ ∞

t
ϕT (s)d s.

We write

X̃ T
t = f T (tT )+

∫ tT

0
f T (tT − s)d N f ,T

s .

It is easy to see that
| f T (tT )| ≤ |a|ν2T −2α+|x|νT −α.
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Furthermore,

E[
∫ tT

0
f T (tT − s)d N f ,T

s ]

is equal to

T −2αi (aν2 +λxν)
∫ tT

0
E[λ f ,T

s ]d s + i xνT −α
∫ tT

0

(∫ ∞

tT−s
ϕT (u)du

)
E[λ f ,T

s ]d s,

where λ f ,T is the intensity of the cluster of children Hawkes process N f ,T , see Appendix III.C.1.
We recall its definition:

λ
f ,T
u =ϕT (u)+

∫ u

0
ϕT (u − s)d N f ,T

s .

Using Lemma 1, we know that

λ
f ,T
u =ψT (u)+

∫ u

0
ψT (u − s)d M f ,T

s ,

where M f ,T = N f ,T −∫ .
0λ

f ,T
s d s is the martingale associated to N f ,T . Thanks to (24), we obtain

E[λ f ,T
tT ] = aT f α,λ(t )

λ
Tα−1.

Therefore ∫ tT

0
E[λ f ,T

s ]d s ≤ Fα,λ(t )

λ
Tα ≤ Fα,λ(t0)

λ
Tα ≤ cTα.

Moreover, using that y ∈ R+ → yα
∫ ∞

y ϕT is uniformly bounded in y and T and I 1−α f α,λ =
λ(1−Fα,λ) (see Appendix III.A.1), we obtain

T
∫ t

0

∫ ∞

T (t−s)
ϕT (u)duE[λ f ,T

sT ]d s ≤ c

λ

∫ t

0
(t − s)−α f α,λ(s)d s ≤ c.

We deduce then that
|E[X̃ T

t ]| ≤ cT −α(|a|ν2 +|x|ν).

Using that there exists c > 0 such that for any y ∈R,

|e i y −1− i y | ≤ c y2,

we get
|E[e X̃ T

t −1]| ≤ c(|E[X̃ T
t ]|+E[|X̃ T

t |2]).

We have

E[|X̃ T
t |2] ≤ 2| f T (t )|2 +2E[|

∫ tT

0
f T (tT − s)d N f ,T

s |2]),

and

E[|
∫ tT

0
f T (tT − s)d N f ,T

s |2] ≤ 2(E[|
∫ tT

0
f T (tT − s)d M f ,T

s |2]+E[|
∫ tT

0
f T (tT − s)λ f ,T

s d s|2]).
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Since 〈M f ,T , M f ,T 〉 = ∫ .
0λ

f ,T (s)d s, we obtain

E[|
∫ tT

0
f T (tT − s)d M f ,T

s |2] = E[
∫ tT

0
| f T (tT − s)|2λ f ,T

s d s] ≤ cT −α(|a|ν2 +|x|ν)2.

Using Fubini theorem, we derive∫ tT

0
f T (tT − s)λ f ,T

s d s =
∫ tT

0
f T (tT − s)ψT (s)d s +

∫ tT

0

∫ tT−s

0
f T (tT − s −u)ψT (u)dud M f ,T

s .

Therefore,

E[|
∫ tT

0
f T (tT − s)λ f ,T

s d s|2]

≤ 2|
∫ tT

0
f T (tT − s)ψT (s)d s|2 +2

∫ tT

0
|
∫ tT−s

0
f T (tT − s −u)ψT (u)du|2E[λ f ,T

s ]d s

≤ c(|a|ν2 +|x|ν)2T −2α(1+
∫ tT

0
E[λ f ,T

s ]d s)

≤ c(|a|ν2 +|x|ν)2T −α.

We eventually deduce

|kT (i a, x, t )| ≤ c

ν2

(
c(a, x)+ c(a, x)2), c(a, x) = ν2|a|+ν|x|.

End of the proof Using the same computations as in Section 5.2, we show that for fixed
z ∈ C and x ∈ R such that ℜ(z) < a0(t0), kT (z, x, .) is a Cauchy sequence in C ([0, t0],C) and
therefore converges uniformly to k(z, x, .) solution of

k(z, x, t ) = i x
1

ν
+

∫ t

0

1

λ
f α,λ(t − s)

(
z + ν2

2
k(z, x, t )2)d s.

Therefore, we deduce

G(z, x, t ) = exp
(∫ t

0
ξ(z, x, t − s)(λθ0(s)+ V0s−α

Γ(1−α)
)d s

)
where ξ(z, x, t ) = k(z, x, t )− i x/ν, which is solution of the following equation:

ξ(z, x, t ) =
∫ t

0

1

λ
f α,λ(t − s)

(
z − x2

2
+ i bνξ(z, x, s)+ ν2

2
ξ(z, x, s)2)d s.

By Lemma 2, this is equivalent to the following fractional Riccati equation:

Dαξ(z, x, t ) = z − x2

2
+ (i xν−λ)ξ(z, x, t )+ ν2

2
ξ(z, x, t )2, I 1−αξ(z, x,0) = 0.

We end this section with the following remarks which will be useful in the proof of Proposition
2.
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Remark 7. From the definition of kT ,

ℜ(kT (z, x, t )) ≤ kT (ℜ(z),0, t ).

Passing to the limit as T goes to infinity, we get

ℜ(ξ(z, x, t )) ≤ ξ(ℜ(z),0, t ) = g (ℜ(z), t ),

with g defined in Theorem 3.

Remark 8. From the proof of uniform boundedness of kT and using the inequality for g in Theorem
3, we get that for any t ∈ [0, t0],

|ξ(z, x, t )| ≤ c(1+
√

|ℜ(z)|+ℑ(z)2 +x2),

where c is a positive constant, x ∈R and z ∈C such that ℜ(z) < a0(t0).

5.4 Proof of Proposition 2

We fix S > 0, t > 0, ξ ∈ V +
α,λ and a > 1 such that E[(St )a] <∞. Using the same computations as

in the proof of Corollary 3, we get

L(a + i b, t ,S,ξ) = exp
(
(a + i b) log(S)+

∫ t

0

s−α

Γ(1−α)
h(a + i b, t − s)θξ(s)d s

)
,

where h is the unique continuous solution of the fractional Riccati equation in Corollary 2.
Moreover, thanks to Remark 7, we have that for any t > 0 and b ∈R,

ℜ(
h(a + i b, s)

)≤ q(b, s), s ≤ t ,

where q(b, .) is the unique continuous solution of the following fractional Riccati equation:

Dαq(b, s) = a2 −a

2
− (1−ρ2)

b2

2
− (λ−ρνa)q(b, s)+ ν2

2
q(b, s)2, s ≤ t , I 1−αq(b,0) = 0.

Note also that for large |b|, a2−a
2 − (1−ρ2) b2

2 is negative and therefore, using Remark 6,

q(b, s) ≤ M(b, s) =
1−

√
1+ν2 (1−ρ2)b2−(a2−a)

(λ−ρνa)2 Fα,λ−ρνa(s)2

ν2

λ−ρνa Fα,λ−ρνa(s)
, s ≤ t .

By dominated convergence theorem, we have∫ t

0

s−α

Γ(1−α)
M(b, t − s)θξ(s)d s ∼

b→∞
−|b|

√
1−ρ2

ν

∫ t

0

s−α

Γ(1−α)
θξ(s)d s.

Consequently there exists c(t ,ξ) > 0 such that for any b ∈R,

|L(a + i b, t ,S,ξ)| ≤ Saexp
(− c(t ,ξ)(−1+|b|)).
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Moreover, it is easy to see that for any b ∈R, L(a + i b, t , .,ξ) is differentiable in S and that

∂SL(a + i b, t ,S,ξ) = a + i b

S
L(a + i b, t ,S,ξ).

Using (17) together with the dominated convergence theorem, we conclude that C is differen-
tiable in the first variable S and that

∂SC (t ,S,ξ) = 1

2π

∫
b∈R

ĝ (−b)
a + i b

S
L(a + i b, t ,S,ξ)db.

Now let ζ ∈ Vα,λ and ε0 > 0 such that θξ(s)−ε0|θζ(s)| > 0 for any s ∈ [0, t ]. We have that for
any ε 6= 0, ε ∈ (−ε0,ε0),

1

ε
|L(a + i b, t ,S,ξ+εζ)−L(a + i b, t ,S,ξ)| (26)

is equal to

Saexp
(∫ t

0

s−α

Γ(1−α)
ℜ(h(a + i b, t − s))(θξ(s)−ε|θζ(s)|)d s

)
1

ε
|exp

(∫ t

0

s−α

Γ(1−α)
εh(a + i b, t − s)θζ(s)−d s

)−exp
(∫ t

0

s−α

Γ(1−α)
εh(a + i b, t − s)|θζ(s)|d s

)|.
Recall that for large |b|, ℜ(

h(a + i b, s)
)

is non-positive for any s ≤ t . Since there exists c > 0
such that for any z, z ′ ∈C such that ℜ(z) ≤ 0 and ℜ(z ′) ≤ 0,

|exp(z)−exp(z ′)| ≤ c|z − z ′|,
we conclude that (26) is dominated by

cSa(∫ t

0

s−α

Γ(1−α)
|h(a+i b, t−s)||θζ(s)|d s

)
exp

(∫ t

0

s−α

Γ(1−α)
ℜ(h(a+i b, t−s))(θξ(s)−ε0|θζ(s)|)d s

)
.

Using the same arguments as previously, we get that there exists c(t ,ξ,ζ,ε0) > 0 such that

exp
(∫ t

0

s−α

Γ(1−α)
ℜ(h(a + i b, t − s))(θξ(s)−ε0|θζ(s)|)d s

)≤ exp
(− c(t ,ξ,ζ,ε0)(−1+|b|)).

From Remark 8, we know that there exists c(t ) > 0 such that for any s ∈ [0, t ] and b ∈R,

|h(a + i b, s)| ≤ c(t )(1+b2).

Moreover, note that

lim
ε→0

1

ε
L(a + i b, t ,S,ξ+εζ)−L(a + i b, t ,S,ξ)

is equal to

L(a + i b, t ,S,ξ)
∫ t

0
χ(a + i b, t − s)ζsd s.

Consequently, by the dominated convergence theorem, C (t ,S, .) is differentiable in ξ in the
direction of ζ in the Fréchet sense and

∂V C (t ,S,ξ).ζ= 1

2π

∫
b∈R

ĝ (−b)L(a + i b, t ,S,ξ)
(∫ t

0
χ(a + i b, t − s)ζsd s

)
db.
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5.5 Proof of Theorem 5

We first show that ∫ T−t

0
χ(a + i b, s)E[VT−s |Ft ]d s

is equal to∫ T

0
χ(a + i b, s)E[VT−s]d s −

∫ t

0
χ(a + i b,T − s)Vsd s +

∫ t

0
h(a + i b,T − s)ν

√
VsdBs . (27)

Recall that from Equation (15) we get

Vs = E[Vs]+
∫ s

0

1

λ
f α,λ(s −u)ν

√
VudBu .

This together with stochastic Fubini theorem give∫ t

0
χ(a+i b,T−s)Vsd s =

∫ t

0
χ(a+i b,T−s)E[Vs]d s+

∫ t

0

(∫ t−u

0

1

λ
f α,λ(s)χ(a+i b,T−u−s)d s

)
ν
√

VudBu .

We also have that for s ∈ [0,T − t ],

E[VT−s |Ft ] = E[VT−s]+
∫ t

0

1

λ
f α,λ(T − s −u)ν

√
VudBu . (28)

Then similarly, ∫ T−t

0
χ(a + i b, s)E[VT−s |Ft ]d s

is equal to∫ T−t

0
χ(a + i b, s)E[VT−s]d s +

∫ t

0

(∫ T−t

0

1

λ
f α,λ(T − s −u)χ(a + i b, s)d s

)
ν
√

VudBu .

This can also be written∫ T

t
χ(a + i b,T − s)E[Vs]d s +

∫ t

0

(∫ T−u

t−u

1

λ
f α,λ(s)χ(a + i b,T −u − s)d s

)
ν
√

VudBu .

Finally we obtain that∫ t

0
χ(a + i b,T − s)Vsd s +

∫ T−t

0
χ(a + i b, s)E[VT−s |Ft ]d s

is equal to∫ T

0
χ(a + i b,T − s)E[Vs]d s +

∫ t

0

(∫ T−u

0

1

λ
f α,λ(s)χ(a + i b,T −u − s)d s

)
ν
√

VudBu .

Thus (27) is directly deduced from the last relation and (16). Now using (27) together with Ito
formula, we derive

P T
t (a+i b) = P T

0 (a+i b)+
∫ t

0
(a+i b)P T

s (a+i b)
√

VsdWs+
∫ t

0
P T

s (a+i b)h(a+i b,T −s)ν
√

VsdBs .
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Then by (17) together with stochastic Fubini theorem and Proposition 2, we get

Ct =C0+
∫ t

0
∂SC (T−u,Su ,E[V.+u |Fu])dSu+ 1

2π

∫ t

0

(∫
b∈R

ĝ (−b)P T
u (a+i b)h(a+i b,T−u)db

)
ν
√

VudBu .

Furthermore, using again (16) together with Fubini theorem, we obtain that

1

2π

∫ t

0

(∫
b∈R

ĝ (−b)P T
u (a + i b)h(a + i b,T −u)db

)
ν
√

VudBu

is equal to∫ t

0

( 1

2π

∫ T−u

0

∫
b∈R

ĝ (−b)P T
u (a + i b)χ(a + i b,T −u − s)dbd s

) 1

λ
f α,λ(s)ν

√
VudBu .

This last quantity can be expressed in term of the forward variance curve thanks to (28).

III.A Fractional calculus

We define the fractional integral of order r ∈ (0,1] of a function f as

I r f (t ) = 1

Γ(r )

∫ t

0
(t − s)r−1 f (s)d s,

whenever the integral exists, and its the fractional derivative of order r ∈ [0,1) as

Dr f (t ) = 1

Γ(1− r )

d

d t

∫ t

0
(t − s)−r f (s)d s,

whenever it exists.

We gather in this section some useful technical results related to fractional calculus.

III.A.1 Mittag-Leffler functions

Let (α,β) ∈ (R∗+)2. The Mittag-Leffler function Eα,β is defined and for z ∈C by

Eα,β(z) = ∑
n≥0

zn

Γ(αn +β)
.

For (α,λ) ∈ (0,1)×R+ we also define

f α,λ(t ) =λtα−1Eα,α(−λtα), t > 0,

Fα,λ(t ) =
∫ t

0
f α,λ(s)d s, t ≥ 0.

The function f α,λ is a density function on R+ called Mittag-Leffler density function. The
following properties of f α,λ and Fα,λ can be found in [HMS11, Mai, MH08]. We have

f α,λ(t ) ∼
t→0+

λ

Γ(α)
tα−1, f α,λ(t ) ∼

t→∞
α

λΓ(1−α)
t−(α+1)
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III.A. Fractional calculus

and

Fα,λ(t ) = 1−Eα,1(−λtα), Fα,λ(t ) ∼
t→0+

λ

Γ(α+1)
tα, 1−Fα,λ(t ) ∼

t→∞
1

λΓ(1−α)
t−α.

Note also that from obvious computations, we get I 1−α f α,λ =λ(1−Fα,λ). Finally, for α ∈ (1/2,1),
f α,λ is square-integrable and its Laplace transform is given for z ≥ 0 by

f̂ α,λ(z) =
∫ ∞

0
fα,λ(s)e−zsd s = λ

λ+ zα
.

III.A.2 Wiener-Hopf equations

The following result enables us to solve Wiener-Hopf type equations, see for example
[BDHM13b] for details.

Lemma 1. Let g be a measurable locally bounded function from R to Rd and φ :R+ →M d(R) be
a matrix-valued function with integrable components such that the spectral radius of

∫ ∞
0 φ(s)d s is

strictly smaller than 1. Then there exists a unique locally bounded function f from R to Rd solution
of

f (t ) = g (t )+
∫ t

0
φ(t − s). f (s)d s, t ≥ 0

given by

f (t ) = g (t )+
∫ t

0
ψ(t − s).g (s)d s, t ≥ 0,

where ψ= ∑
k≥1

φ∗k 3.

III.A.3 Fractional differential equations

We now give some useful results about fractional differential equations. The next lemma can
be found in [SKM93].

Lemma 2. Let h be a continuous function from [0,1] to R, α ∈ (0,1] and λ ∈R. There is a unique
solution to the equation

Dαy(t ) =λy(t )+h(t ), y(0) = 0

given by

y(t ) =
∫ t

0
(t − s)α−1Eα,α

(
λ(t − s)α

)
h(s)d s.

We also have the following result whose proof can be found in Chapter II.

3Recall that φ∗1 =φ and φ∗k (t ) = ∫ t
0 φ(t − s).φ∗k−1(s)d s.
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Lemma 3. Let h be a non-negative continuous function from [0,1] to R such that for any t ∈ [0,1],

h(t ) ≤ ε+C
∫ t

0
f α,λ(t − s)h(s)d s,

for some ε≥ 0 and C ≥ 0. Then for any t ∈ [0,1],

h(t ) ≤C ′ε,

with

C ′ = 1+Cλ
∫ 1

0
sα−1Eα,α

(
λ(C −1)sα

)
d s > 0.

In particular, if ε= 0 then h = 0.

III.A.4 Further results

Lemma 4. There exists a positive constant c such that for any T > 1/λ−1/α and t ∈ (0,1):

ζT (tT ) ≤ c(1+ t−α

Γ(1−α)
).

Proof of Lemma 4:

Note that by Remark 1, we have

ζT (tT ) =
∫ tT

0
ϕT (tT −u)θ0(u/T )du +V0

(Tα

λ

∫ ∞

tT
ϕ(s)d s +λT −α

∫ tT

0
ϕ(s)d s

)
.

Thanks to Appendix III.A.1, we have that for each t ∈ (0,1]:

Tα
∫ ∞

tT
ϕ≤ ct−α,

Moreover by using condition (5) and the fact that α> 1/2, we write that for each t ∈ (0,1]:

θ0(t ) ≤ ct−α.

Thus:

ζT (tT ) ≤ c
∫ tT

0
ϕ(T t −u)(u/T )−αdu + c(1+ t−α).

Using Appendix III.A.1, we obtain∫ tT

0
ϕ(T t −u)(u/T )−αdu = Γ(1−α)Tα

∫ ∞

tT
ϕ≤ ct−α,

which ends the proof.

Lemma 5. For each t ∈ (0,1], as T tends to infinity, ζT (tT ) defined by Assumption 1 converges to

V0
t−α

λΓ(1−α)
+θ0(t ).
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III.A. Fractional calculus

Proof of Lemma 5:

Let t > 0. We have

ζT (tT ) = aT

∫ t

0
Tϕ(T (t − s))θ0(s)d s +V0

(Tα

λ

∫ ∞

tT
ϕ(s)d s +λT −α

∫ tT

0
ϕ(s)d s

)
.

Moreover, from Appendix III.A.1,

V0
(Tα

λ

∫ ∞

tT
ϕ(s)d s +λT −α

∫ tT

0
ϕ(s)d s

)
converges to

V0
t−α

λΓ(1−α)
.

Moreover, since θ0 is continuous in t , for any ε > 0 there exists η > 0 such that for any
s ∈ [t −η, t ],

|θ0(s)−θ0(t )| ≤ ε.

Hence from Appendix III.A.1 together with the fact that ϕ is non-increasing, we obtain

|
∫ t

0
Tϕ

(
T (t − s)

)(
θ0(s)−θ0(t )

)
d s| ≤ ε

∫ Tη

0
ϕ+

∫ t−η

0
Tϕ

(
T (t − s)

)
(|θ0(t )|+ |θ0(s)|)d s

≤ ε+Tϕ(Tη)
∫ t

0
(|θ0(t )|+ |θ0(s)|)d s ≤ 2ε

for large enough T . Thus
∫ t

0 Tϕ(T (t − s))θ0(s)d s converges to θ0(t ).

Lemma 6. If θ0 : (0,1] →R satisfies Condition (5), then for any 0 < ε<α−1/2,

t →
∫ t

0
f α,λ(t − s)θ0(s)d s

has Hölder smoothness α−1/2−ε on [0,1].

Proof of Lemma 6:

Using Proposition A.2 in [JR16b], we obtain that for any η ∈ (0,α),∫ t

0
f α,λ(t − s)θ0(s)d s =

∫ t

0
Dη f α,λ(t − s)Iηθ0(s).

Taking η= 1/2+ε, we have that Iηθ0 is a bounded function. Then, using Proposition A.3 in
[JR16b], we obtain that our function has Hölder regularity equal to α−η=α−1/2−ε.

Let x ≥ 0. We define
S(x) = ∑

n≥0

1

(n +1)3/2
(1−e−x(n+1)).

We have the following lemma.
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Lemma 7. There exists c > 0 such that for any x ≥ 0:

S(x) ≤ c
p

x.

Proof of Lemma 7:
We have

S(x) = ∑
n≥0

1

(n +1)3/2
(1−e−x )

∑
0≤k≤n

e−kx .

This can be rewritten
S(x) = (1−e−x )

∑
k≥0

ξk e−kx ,

with ξk = ∑
n≥k

1
(n+1)3/2 , which is equivalent to 2/

p
k +1 as k tends to infinity. Thus there exists

c > 0 such that for any x ≥ 0:

S(x) ≤ c(1−e−x )
∑
k≥0

1p
k +1

e−(k+1)x .

We conclude using that

∑
k≥0

1p
k +1

e−(k+1)x ≤ ∑
k≥0

∫ k+1

k

1p
y

e−y x d y = Γ(1/2)p
x

together with the fact that
1−e−x ≤ cx.

III.B Martingale property of the price in the generalized rough
Heston model

Proposition 3. The process S defined by the generalized rough Heston model in Definition 1 is a
F-martingale.

Proof of Proposition 3:
Let t0 > 0 such that 1/2 < a0(t0). Thanks to Theorem 3, Novikov’s criterion holds:

E[exp(
1

2

∫ t0

0
Vsd s)] <∞.

Therefore (Su)0≤u≤t0 is a martingale and E[St0 ] = S0.

Now, assume that for a given n ∈N, E[Snt0 ] = S0. Recall that conditional on Fnt0 , the law
of (Snt0

t ,V nt0
t )t≥0 = (St+nt0 ,Vt+nt0 )t≥0 is still that of a rough Heston model with the following

dynamic:

dSnt0
t = Snt0

t

√
V nt0

t dW nt0
t
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V nt0
t =Vnt0 +

1

Γ(α)

∫ t

0
(t −u)α−1λ(θnt0 (u)−V nt0

u )du + 1

Γ(α)

∫ t

0
(t −u)α−1ν

√
V nt0

u dB nt0
u ,

where θnt0 is a Fnt0-measurable function satisfying almost surely Conditions (4) and (5), and
(W nt0 ,B nt0 ) = (W.+nt0 −Wnt0 ,B.+nt0 −Bnt0 ) is a Brownian motion independent of Fnt0 . Since
1/2 < a0(t0), we have again Novikov’s criterion

E[exp(
1

2

∫ t0

0
V nt0

s d s)|Fnt0 ] <∞.

Therefore E[Snt0
t0

|Fnt0 ] = Snt0 and so

E[S(n+1)t0 ] = E[Snt0 ] = S0.

Consequently, for any n ∈N,
E[Snt0 ] = S0,

which ends the proof.

III.C Moments properties for Hawkes processes

Here we consider a one-dimensional Hawkes process N with intensity

λt =µ(t )+
∫ t

0
ϕ(t − s)d Ns ,

such that µ, ϕ :R+ →R+ are locally integrable and
∫ ∞

0 ϕ< 1. We are interested in a sufficient
condition on a > 0 so that

E[eaNt ] <∞. (29)

We will show that (29) holds provided

a ≤
∫ t

0
ϕ−1− log(

∫ t

0
ϕ). (30)

To do so, we recall the branching structure of Hawkes processes.

III.C.1 Branching structure of Hawkes processes

We recall that the Hawkes process N can be viewed as a population process in which migrants
arrive according to a non-homogenous Poisson process N 0 with intensity µ. Each migrant
gives birth to children according to a non-homogenous Poisson process with intensity ϕ and
each child also gives birth to children according to non-homogenous Poisson process with the
same intensity and so on.

Therefore, it is easy to see that the cluster of children created by a migrant has the law of a
Hawkes process N f with the same kernel function ϕ but with migrant rate ϕ. So, the intensity
of N f is given by :

λ
f
t =ϕ(t )+

∫ t

0
ϕ(t − s)d N f

s .
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Using the branching structure of the Hawkes process, we can see that we easily derive the
following equality in law:

Nt = N 0
t +

∑
1≤k≤N 0

t

N f ,k
t−Tk

where the (Tk )k≥1 are the arrival times of the migrants and (N f ,k )k≥1 are independent copies
of N f , independent of N 0. Then, we can show that for a ≥ 0,

E[eaNt ] = exp
(∫ t

0
µ(t − s)(eaE[eaN f

s ]−1)d s
)
, (31)

see Chapter II. This is smaller than

exp
(∫ t

0
µ(s)d s(eaE[eaN f

t ]−1)
)
.

Consequently, a sufficient condition to obtain (29) is

E[eaN f
t ] <∞. (32)

III.C.2 Galton-Watson structure and exponential moments

Let us consider now the Hawkes process N f . Using the population interpretation given in the
previous section on this process, N f

t is the number of migrants and children arrived up to
time t . Let t > 0. We define the process N∞ from N f as follows.

• We consider N (0)
t the number of migrants arrived up to time t , which is a Poisson

variable with parameter ν= ∫ t
0 ϕ.

• For each migrant arrived at time Tk < t , we consider the number of children of first
generation made by the migrant during a period of time t , which is also a Poisson
variable with parameter ν, independent of N (0)

t . We denote by X 1
t the set of all those

children and N (1)
t = #(X 1

t ) their total number.

• For each child of nth generation of the set X n
t , we consider the number of its children

that are made during a period of time t , which is also a Poisson variable with parameter
ν, independent of the previous generations. We denote X n+1

t the set of all those children
and N (n+1)

t = #(X n+1
t ) their total number.

It is clear that X t = ⋃
n≥0

X n
t contains all the individuals of the Hawkes process N f arrived up to

time t . So,
N∞

t = #(X t ) = ∑
n≥0

N (n)
t ≥ N f

t .

Thus a sufficient condition to obtain (32) is

E[eaN∞
t ] <∞. (33)
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Now remark that (N (n)
t )n≥0 is a Galton-Watson process. Indeed,

N (n+1)
t = ∑

1≤k≤N (n)
t

ξk,n+1; n ≥ 0.

where (ξk,n)k,n≥1 are i.i.d Poisson random variables with parameter ν, independent of the
N (k)

t .

We classically have, see for example [Dwa69],

P[N∞
t = n] = νne−ν(n+1)

n!
(n +1)n−1.

Consequently,

E[eaN∞
t ] = ∑

n≥0

νne−ν(n+1)

n!
(n +1)n−1ean . (34)

Using Stirling formula, we get

νne−ν(n+1)

n!
(n +1)n−1ean ∼

n→∞
(νe1−ν+a)n

p
2πn3

e1−ν

Hence (33) holds if and only if
νe1−ν+a ≤ 1,

which is equivalent to :

a ≤
∫ t

0
ϕ−1− log(

∫ t

0
ϕ).

III.C.3 A useful equality

Let us consider g : R+ → R continuous and a ∈R satisfying (30). We know that exp(
∫ t

0 f (t −
s)d Ns) is integrable, where f = a + i g . Using the branching structure of Hawkes processes
presented in Appendix III.C.1, we deduce the following equality in law:∫ t

0
f (t − s)d Ns =

∫ t

0
f (t − s)d N 0

s +
∑

1≤k≤N 0
t

∫ t−Tk

0
f (t −Tk − s)d N f ,k

s .

Therefore, we can show that

E[exp(
∫ t

0
f (t − s)d Ns)] = exp

(∫ t

0
µ(t − s)(e f (s)E[e

∫ s
0 f (s−u)d N f

u ]−1)d s
)
. (35)
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CHAPTER IV

Markovian structure of the Volterra Heston
model

Abstract

We characterize the Markovian and affine structure of the Volterra Heston model in terms
of an infinite-dimensional adjusted forward process and specify its state space. More
precisely, we show that it satisfies a stochastic partial differential equation and displays an
exponentially-affine characteristic functional. As an application, we deduce an existence
and uniqueness result for a Banach-space valued square-root process and provide its state
space. This leads to another representation of the Volterra Heston model together with its
Fourier-Laplace transform in terms of this possibly infinite system of affine diffusions.

Keywords: Affine Volterra processes, stochastic Volterra equations, Markovian representation,
stochastic invariance, Riccati-Volterra equations, rough volatility.

1 Introduction

The Volterra Heston model is defined by the following dynamics

dSt = St

√
Vt dBt , S0 > 0, (1)

Vt = g0(t )+
∫ t

0
K (t − s)

(
−λVsd s +ν

√
VsdWs

)
, (2)

with K ∈ L2
loc(R+,R), g0 :R+ →R, λ,ν ∈R+ and B = ρW +

√
1−ρ2W ⊥ such that (W,W ⊥) is a

two-dimensional Brownian motion and ρ ∈ [−1,1]. It has been introduced in [AJLP17] for the
purpose of financial modeling following the literature on so-called rough volatility models
[GJR18]. Hence St typically represents a stock price at time t with instantaneous stochastic
variance Vt .
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IV. Markovian structure of the Volterra Heston model

This model nests as special cases the Heston model for K ≡ 1, and the rough Heston model of
Chapter II, obtained by setting K (t ) = tα−1

Γ(α) for α ∈ ( 1
2 ,1) and

g0(t ) =V0 +
∫ t

0
K (s)λθd s, t ≥ 0, for some V0,θ ≥ 0, (3)

so that the only model parameters are V0,θ,λ,ρ,ν,α. Recall that the rough Heston model does
not only fit remarkably well historical and implied volatilities of the market, but also enjoys a
semi-closed formula for the characteristic function of the log-price in terms of a solution of a
deterministic Riccati-Volterra integral equation.

In Chapter III, the authors highlight the crucial role of (3) in the design of hedging strategies
for the rough Heston model. Here we consider more general input curves g0. Our motivation
is twofold. In practice, the function g0 is intimately linked to the forward variance curve
(E[Vt ])t≥0. More precisely, taking the expectation in (2) leads to the following relation

E[Vt ]+λ
∫ t

0
K (t − s)E[Vs]d s = g0(t ), t ≥ 0.

Thus, allowing for more general input curves g0 leads to more consistency with the mar-
ket forward variance curve. From a mathematical perspective, this enables us to understand
the general picture behind the Markovian and affine nature of the Volterra Heston model (1)-(2).

More precisely, adapting the methods of [AJLP17], we provide a set of admissible input curves
GK defined in (9) such that (1)-(2) admits a unique R2+-valued weak solution for any g0 ∈GK .
In particular, we show that the Fourier-Laplace transform of (logS,V ) is exponentially affine
in (logS0, g0). Then we prove that, conditional on Ft , the shifted Volterra Heston model
(St+·,Vt+·) still has the same dynamics as in (1)-(2) provided that g0 is replaced by the following
adjusted forward process

g t (x) = E
[

Vt+x +λ
∫ x

0
K (x − s)Vt+sd s

∣∣∣ Ft

]
, x ≥ 0. (4)

This leads to our main result which states that GK is stochastically invariant with respect to
the family (g t )t≥0. In other words, if we start from an initial admissible input curve g0 ∈GK ,
then g t belongs to GK , for all t ≥ 0, see Theorem 3. This in turn enables us to characterize
the Markovian structure of (S,V ) in terms of the stock price and the adjusted forward process
(g t )t≥0. Furthermore, (g t )t≥0 can be realized as the unique GK -valued mild solution of the
following stochastic partial differential equation of Heath–Jarrow–Morton-type

d g t (x) =
(

d

d x
g t (x)−λK (x)g t (0)

)
d t +K (x)ν

√
g t (0)dWt , g0 ∈GK ,

and displays an affine characteristic functional.

As an application, we establish the existence and uniqueness of a Banach-space valued square-
root process and provide its state space. This leads to another representation of (Vt , g t )t≥0.
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2. Existence and uniqueness of the Volterra Heston model

Moreover, the Fourier-Laplace transform of (logS,V ) is shown to be an exponential affine
functional of this process. These results are in the spirit of the Markovian representation of
fractional Brownian motion, see [CC98, HS15].

The paper is organized as follows. In Section 2, we prove weak existence and uniqueness
for the Volterra Heston model and provide its Fourier-Laplace transform. Section 3 charac-
terizes the Markovian structure in terms of the adjusted forward variance process. Section 4
establishes the existence and uniqueness of a Banach-space valued square-root process and
provides the link with the Volterra framework. In Appendix IV.A we derive general existence
results for stochastic Volterra equations. Finally, for the convenience of the reader we recall
in Appendix IV.B the framework and notations regarding stochastic convolutions as in [AJLP17].

Notations : Elements of Cm are viewed as column vectors, while elements of the dual space
(Cm)∗ are viewed as row vectors. For h ≥ 0, ∆h denotes the shift operator, i.e. ∆h f (t ) = f (t+h).
If the function f on R+ is right-continuous and of locally bounded variation, the measure
induced by its distribution derivative is denoted d f , so that f (t ) = f (0)+ ∫

[0,t ] d f (s) for all
t ≥ 0. Finally, we use the notation ∗ for the convolution operation, we refer to Appendix IV.B
for more details.

2 Existence and uniqueness of the Volterra Heston model

We study in this section the existence and uniqueness of the Volterra Heston model given by
(1)-(2) allowing for arbitrary curves g0 as input. When g0 is given by (3), [AJLP17, Theorem
7.1(i)] provides the existence of a R2+-valued weak solution to (1)-(2) under the following mild
assumptions on K :

K ∈ L2
loc(R+,R), and there is γ ∈ (0,2] such that

∫ h
0 K (t )2d t =O(hγ) and∫ T

0 (K (t +h)−K (t ))2d t =O(hγ) for every T <∞,
(H0)

K is nonnegative, not identically zero, non-increasing and continuous on
(0,∞), and its resolvent of the first kind L is nonnegative and non-increasing

in the sense that s → L([s, s + t ]) is non-increasing for all t ≥ 0.

1 (H1)

We show in Theorem 1 below that weak existence in R2+ continue to hold for (1)-(2) for a
wider class of admissible input curves g0. Since S is determined by V , it suffices to study the
Volterra square-root equation (2). Theorem 6(ii) in the Appendix guarantees the existence of
an unsconstrained continuous weak solution V to the following modified equation

Vt = g0(t )+
∫ t

0
K (t − s)

(
−λVsd s +ν

√
V +

s dWs

)
, (5)

for any locally Hölder continuous function g0, where x+ : x → max(0, x). Clearly, one needs to
impose additional assumptions on g0 to ensure the nonnegativity of V and drop the positive

1We refer to Appendix IV.B for the definition of the resolvent of the first kind and some of its properties.
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IV. Markovian structure of the Volterra Heston model

part in (5) so that V solves (2). Hence, weak existence of a nonnegative solution to (2) boils
down to finding a set GK of admissible input curves g0 such that any solution V to (5) is
nonnegative.

To get a taste of the admissible set GK , we start by assuming that g0 and K are continuously
differentiable on [0,∞). In that case, V is a semimartingale such that

dVt =
(
g ′

0(t )+ (K ′∗d Z )t −K (0)λVt
)

d t +K (0)ν
√

V +
t dWt , (6)

where Z = ∫ ·
0(−λVsd s +ν

√
V +

s dWs). Relying on Lemma 1 in the Appendix2, we have

K ′ = (K ′∗L)(0)K +d(K ′∗L)∗K ,

so that K ′∗d Z can be expressed as a functional of (V , g0) as follows

K ′∗d Z = (K ′∗L)(0)(V − g0)+d(K ′∗L)∗ (V − g0). (7)

Since V0 = g0(0), it is straightforward that g0(0) should be nonnegative. Now, assume that V
hits zero for the first time at τ≥ 0. After plugging (7) in the drift of (6), a first-order Euler
scheme leads to the formal approximation

Vτ+h ≈ (
g ′

0(τ)− (K ′∗L)(0)g0(τ)− (d(K ′∗L)∗ g0)(τ)+ (d(K ′∗L)∗V )τ
)

h,

for small h ≥ 0. Since K ′∗L is non-decreasing and V ≥ 0 on [0,τ], it follows that (d(K ′∗L)∗
V )τ ≥ 0 yielding the nonnegativity of Vτ+h if we impose the following additional condition

g ′
0 − (K ′∗L)(0)g0 −d(K ′∗L)∗ g0 ≥ 0.

In the general case, V is not necessarily a semimartingale, and a delicate analysis should be
carried on the integral equation (5) instead of the infinitesimal version (6). This suggests that
the infinitesimal derivative operator should be replaced by the semigroup operator of right
shifts leading to the following condition on g0

∆h g0 − (∆hK ∗L)(0)g0 −d(∆hK ∗L)∗ g0 ≥ 0, h ≥ 0,3 (8)

and to the following definition of the set GK of admissible input curves

GK = {
g0 ∈H γ/2 satisfying (8) and g0(0) ≥ 0

}
, (9)

where H α = {g0 :R+ →R, locally Hölder continuous of any order strictly smaller than α}. Re-
call that γ is the exponent associated with K in (H0).

The following theorem establishes the existence of a R2+-valued weak continuous solution to
(1)-(2) on some filtered probability space (Ω,F ,F= (Ft )t≥0,P) for any admissible input curve
g0 ∈GK . Since S is determined by V , the proof follows directly from Theorems 6-7.

2Under (H1) one can show that K ′∗L is right-continuous, non-decreasing and of locally bounded variation (as
in Remark 3 in the Appendix), thus the associated measure d(K ′ ∗L) is well defined.

3 Recall that under (H1) one can show that ∆h K ∗L is right-continuous and of locally bounded variation (see
Remark 3 in the Appendix), thus the associated measure d(∆h K ∗L) is well defined.
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2. Existence and uniqueness of the Volterra Heston model

Theorem 1. Assume that K satisfies (H0)-(H1). Then, the stochastic Volterra equation (1)-(2) has a
R2+-valued continuous weak solution (S,V ) for any positive initial condition S0 and any admissible
input curve g0 ∈GK . Furthermore, the paths of V are locally Hölder continuous of any order strictly
smaller than γ/2 and

sup
t≤T

E[|Vt |p ] <∞, p > 0, T > 0. (10)

Example IV.1. The following classes of functions belong to GK .

(i) g ∈H γ/2 non-decreasing such that g (0) ≥ 0. Since K is non-increasing and L is nonnegative,
we have 0 ≤∆hK ∗L ≤ 1 for all h ≥ 0 (see the proof of [AJLP17, Theorem 3.5]) yielding, for all
t ,h ≥ 0, that ∆h g (t )− (∆hK ∗L)(0)g (t )− (d(∆hK ∗L)∗ g )(t ) is equal to∫ t

0
(g (t )− g (t − s))(∆hK ∗L)(d s)+ g (t +h)− g (t )+ g (t )(1− (∆hK ∗L)(t )) ≥ 0

(ii) g =V0 +K ∗θ, with V0 ≥ 0 and θ ∈ L2
loc (R+,R) such that θ(s)d s +V0L(d s) is a nonnegative

measure. First, g ∈H γ/2 due to (H0) and the Cauchy-Schwarz inequality

(g (t +h)− g (t ))2 ≤ 2

(∫ t

0
(K (s +h)−K (s))2d s +

∫ h

0
K (s)2d s

)∫ t+h

0
θ(s)2d s.

Moreover, g (0) =V0 ≥ 0 and

∆h g − (∆hK ∗L)(0)g −d(∆hK ∗L)∗ g (11)

is equal to

V0(1−∆hK ∗L)+∆h(K ∗θ)− (∆hK ∗L)(0)K ∗θ−d(∆hK ∗L)∗K ∗θ.

(8) now follows from Lemma 2 with F =∆hK , after noticing that (11) becomes

∆h(K ∗ (V0L+θ))−∆hK ∗ (V0L+θ) =
∫ ·+h

·
K (·+h − s)(V0L(d s)+θ(s)d s) ≥ 0.

We now tackle the weak uniqueness of (1)-(2) by characterizing the Fourier-Laplace transform
of the process X = (logS,V ). Indeed, when g0 is of the form (3), X is a two-dimensional
affine Volterra process in the sense of [AJLP17, Definition 4.1]. For this particular g0, [AJLP17,
Theorem 7.1(ii)] provides the exponential-affine transform formula

E[exp(uXT + ( f ∗X )T )] = exp
(
ψ1(T ) logS0 +u2g0(T )+

∫ T

0
F (ψ1,ψ2)(s)g0(T − s)d s

)
(12)

for suitable u ∈ (C 2)∗ and f ∈ L1([0,T ], (C 2)∗) with T > 0, where ψ = (ψ1,ψ2) solves the
following system of Riccati-Volterra equations

ψ1 = u1 +1∗ f1, (13)

ψ2 = u2K +K ∗F (ψ1,ψ2), (14)
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IV. Markovian structure of the Volterra Heston model

with

F (ψ1,ψ2) = f2 + 1

2

(
ψ2

1 −ψ1
)+ (ρνψ1 −λ)ψ2 + ν2

2
ψ2

2. (15)

A straightforward adaptation of [AJLP17, Theorems 4.3 and 7.1] shows that the affine transform
(12) carries over for any admissible input curve g0 ∈ GK with the same Riccati equations
(13)-(14).

Theorem 2. Assume that K satisfies (H0) and that the shifted kernels ∆hK satisfy (H1) for all
h ∈ [0,1]. Fix g0 ∈GK ,S0 > 0 and denote by (S,V ) a R2+-valued continuous weak solution to (1)-(2).
For any u ∈ (C2)∗ and f ∈ L1

loc(R+, (C2)∗)) such that

Reψ1 ∈ [0,1], Reu2 ≤ 0 and Re f2 ≤ 0, (16)

with ψ1 given by (13), the Riccati–Volterra equation (14) admits a unique global solution ψ2 ∈
L2
loc(R+,C∗). Moreover, the exponential-affine transform (12) is satisfied. In particular, weak
uniqueness holds for (1)-(2).

3 Markovian structure

Using the same methodology as in Chapter III, we characterize the Markovian structure of the
Volterra Heston model (1)-(2) in terms of the F-adapted infinite-dimensional adjusted forward
curve (g t )t≥0 given by (4) which is well defined thanks to (10). Furthermore, we prove that the
set GK is stochastically invariant with respect to (g t )t≥0.

Theorem 3. Under the assumptions of Theorem 1, fix g0 ∈GK . Denote by (S,V ) the unique solution
to (1)-(2) and by (g t )t≥0 the process defined by (4). Then, (S t0 ,V t0 ) satisfies

dS t0
t = S t0

t

√
V t0

t dB t0
t , S t0

0 = St0 ,

V t0
t = g t0 (t )+

∫ t

0
K (t − s)

(
−λV t0

s d s +ν
√

V t0
s dW t0

s

)
,

where (B t0 ,W t0 ) = (Bt0+·−Bt0 ,Wt0+·−Wt0 ) are two Brownian motions independent of Ft0 such
that d〈B t0 ,W t0〉t = ρd t . Moreover, GK is stochastically invariant with respect to (g t )t≥0, that is

g t ∈GK , t ≥ 0.

Proof. The part for V t0 is immediate after observing that

g t0 (t ) = g0(t0 + t )−
∫ t0

0
K (t + t0 − s)λVsd s +

∫ t0

0
K (t + t0 − s)ν

√
VsdWs , (17)

for all t0, t ,h ≥ 0. The part for S t0 is straightforward. We move to proving the claimed
invariance. Fix t0, t ,h ≥ 0 and define Z = ∫ ·

0(−λVsd s +νpVsdWs). By Lemma 2 and Remark
3 in the Appendix,

∆hK = (∆hK ∗L)(0)K +d(∆hK ∗L)∗K , (18)
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3. Markovian structure

so that

(∆hK ∗d Z ) = (∆hK ∗L)(0)(V − g0)+d(∆hK ∗L)∗ (V − g0).

Hence,

V t0

t+h = g0(t0 + t +h)+ (∆hK ∗d Z )t0+t +
∫ h

0
K (h − s)d Zt0+t+s

= g0(t0 + t +h)+ (∆hK ∗L)(0)(V t0
t − g0(t0 + t ))

+ (
d(∆hK ∗L)∗ (V − g0)

)
t0+t +

∫ h

0
K (h − s)d Zt0+t+s

= g0(t0 + t +h)− (∆hK ∗L)(0)g0(t0 + t )− (
d(∆hK ∗L)∗ g0

)
(t0 + t )

+ (∆hK ∗L)(0)V t0
t + (d(∆hK ∗L)∗V )t0+t +

∫ h

0
K (h − s)d Zt0+t+s

≥ (∆hK ∗L)(0)V t0
t + (d(∆hK ∗L)∗V )t0+t −

∫ h

0
K (h − s)λV t0

t+sd s

+
∫ h

0
K (h − s)ν

√
V t0

t+sdW t0
t+s ,

since g0 ∈ GK . We now prove (8). Set G t0

h = ∆h g t0 − (∆hK ∗L)(0)g t0 −d(∆hK ∗L)∗ g t0 . The
previous inequality combined with (4) yields

G t0

h (t ) = E
[

V t0

t+h + (λK ∗V t0 )t+h − (∆hK ∗L)(0)(V t0
t + (λK ∗V t0 )t )

∣∣∣ Ft0

]
−E

[(
d(∆hK ∗L)∗ (V t0 +λK ∗V t0 )

)
t

∣∣∣ Ft0

]
≥ E

[
(d(∆hK ∗L)∗V )t0+t −

(
d(∆hK ∗L)∗V t0

)
t −

∫ h

0
K (h − s)λV t0

t+sd s
∣∣∣ Ft0

]
+E

[
(λK ∗V t0 )t+h − (

((∆hK ∗L)(0)K +d(∆hK ∗L)∗K )∗λV t0
)

t

∣∣∣ Ft0

]
.

Relying on (18), we deduce

G t0

h (t ) ≥ E
[∫ t0+t

t
(d(∆hK ∗L))(d s)Vt0+t−s −

∫ h

0
K (h − s)λV t0

t+sd s
∣∣∣ Ft0

]
+E

[∫ t+h

t
K (t +h − s)λV t0

s d s
∣∣∣ Ft0

]
= E

[∫ t0+t

t
(d(∆hK ∗L))(d s)Vt0+t−s

∣∣∣ Ft0

]
.

Hence (8) holds for g t0 , since V ≥ 0 and d(∆hK ∗L) is a nonnegative measure, see Remark 3.
Finally, by adapting the proof of [AJLP17, Lemma 2.4], we can show that for any p > 1,ε> 0
and T > 0, there exists a positive constant C1 such that

E
[|Vt+h −Vt |p

]≤C1hp(γ/2−ε), t ,h ≥ 0, t +h ≤ T + t0,
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IV. Markovian structure of the Volterra Heston model

Relying on (H0), (4) and Jensen inequality, there exists a positive constant C2 such that

E
[|g t0 (t +h)− g t0 (t )|p]≤C2hp(γ/2−ε), t ,h ≥ 0, t +h ≤ T,

By Kolmogorov continuity criterion, g t0 ∈H γ/2 so that g t0 ∈GK since g t0 (0) =Vt0 ≥ 0.

Theorem 3 highlights that V is Markovian in the state variable (g t )t≥0. Indeed, conditional
on Ft for some t ≥ 0, the shifted Volterra Heston model (S t ,V t ) can be started afresh from
(St , g t ) with the same dynamics as in (1)-(2). Notice that g t is again an admissible input
curve belonging to GK . Therefore, applying Theorems 1 and 2 with (S t ,V t , g t ) yields that the
conditional Fourier-Laplace transform of X = (logS,V ) is exponentially affine in (logSt , g t ):

E
[

exp(uXT + ( f ∗X )T )
∣∣∣ Ft

]
= exp

(
(∆T−t f ∗X )t +ψ1(T − t ) logSt + (u2g t +F (ψ1,ψ2)∗ g t )(T − t )

)
,

(19)

for all t ≤ T , where F is given by (15), under the standing assumptions of Theorem 2.

Moreover, it follows from (17) and the fact that g ·(0) =V that the process (g t )t≥0 solves

g t (x) =∆t g0(x)+
∫ t

0
∆t−s

(−λK gs(0)
)

(x)d s +
∫ t

0
∆t−s

(
Kν

√
gs(0)

)
(x)dWs . (20)

Recalling that (∆t )t≥0 is the semigroup of right shifts, (20) can be seen as a GK -valued mild
solution of the following Heath–Jarrow–Morton-type stochastic partial differential equation

d g t (x) =
(

d

d x
g t (x)−λK (x)g t (0)

)
d t +K (x)ν

√
g t (0)dWt , g0 ∈GK . (21)

The following proposition provides the characteristic functional of (g t )t≥0 leading to the strong
Markov property of (g t )t≥0. Define 〈g ,h〉 = ∫

R+ g (x)h(x)d x, for suitable functions f and g .

Theorem 4. Under the assumptions of Theorem 2. Let h ∈C ∞
c (R+) and g0 ∈GK . Then,

E
[
exp

(
i〈g t ,h〉)]= exp

(〈Ht , g0〉
)

, t ≥ 0, (22)

where H solves

Ht (x) = ih(x − t )1{x>t } + 1{x≤t }

(
−λ〈Ht−x ,K 〉+ ν2

2
〈Ht−x ,K 〉2

)
, t , x ≥ 0. (23)

In particular, weak uniqueness holds for (20) and (g t )t≥0 is a strong Markov process on GK .

Proof. Consider S̃t = 1+∫ t
0 S̃u

p
VudWu , for all t ≥ 0. Then, (S̃,V ) is a Volterra Heston model

of the form (1)-(2) with ρ = 1 and S̃0 = 1. Fix t ≥ 0, 〈g t ,h〉 is well defined since x → g t (x) is con-
tinuous. It follows from (17) together with stochastic Fubini theorem, see [Ver12, Theorem 2.2],
which is justified by (10), that

〈g t ,h〉 = 〈g0(t +·),h〉+
(ν

2
−λ

)∫ t

0
〈K (t − s +·),h〉Vsd s +ν

∫ t

0
〈K (t − s +·),h〉d(log S̃)s

= 〈g0,h(−t +·)〉+
(ν

2
−λ

)∫ t

0
〈K ,h(s − t +·)〉Vsd s

+ν〈K ,h〉 log S̃t −ν
∫ t

0
〈K ,h′(s − t +·)〉 log S̃sd s,
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where the last identity follows from an integration by parts. Hence, setting

u2 = 0, u1 = iν〈K ,h〉, f1(t ) =−iν〈K ,h′(−t +·)〉,
ψ1(t ) = u1 + (1∗ f1)(t ) = i ν〈K (t +·),h〉,
f2(t ) = i (

ν

2
−λ)〈K (t +·),h〉, ψ2 = K ∗F (ψ1,ψ2),

with F as in (15), the characteristic functional follows from Theorem 2

E
[
exp

(
i〈g t ,h〉)]= e i〈h(−t+·),g0〉E

[
exp

(
u1 log S̃t + ( f1 ∗ log S̃)t + ( f2 ∗V )t

)]= exp
(〈Ht , g0〉

)
where

Ht (x) = h(x − t )1{x>t } + 1{0≤x≤t }F (ψ1,ψ2)(t −x), x ≥ 0,

and (15) reads

F (ψ1,ψ2)(t ) =−λ〈K (t +·),h〉+ ν2

2
〈K (t +·),h〉2

+ (ν2〈K (t +·),h〉−λ)ψ2(t )+ ν2

2
ψ2(t )2. (24)

Now observe that

〈Ht ,K 〉 = 〈h(−t +·),K 〉+
∫ t

0
F (ψ1,ψ2)(t −x)K (x)d x = 〈h,K (t +·)〉+ψ2(t ).

Hence, after plugging ψ2(t ) = 〈Ht ,K 〉−〈h,K (t +·)〉 back in (24) we get that

F (ψ1,ψ2)(t ) =−λ〈Ht ,K 〉+ ν2

2
〈Ht ,K 〉2,

yielding (23). Weak uniqueness now follows by standard arguments. In fact, thanks to (10)
and stochastic Fubini theorem, (g t )t≥0 solves (21) in the weak sense, that is

〈g t ,h〉 = 〈g0,h〉+
∫ t

0

(〈gs ,−h′〉−λ〈K ,h〉gs(0)
)

d s +
∫ t

0
ν〈K ,h〉√gs(0)dWs , h ∈C ∞

c (R).

Therefore, combined with Theorem 3, (g t )t≥0 solves a martingale problem on GK . In addition,
(22) yields uniqueness of the one-dimensional distributions which is enough to get weak
uniqueness for (20) and the strong Markov property by [EK86, Theorem 4.4.2].

We notice that (22)-(23) agree with [GKR18, Proposition 4.5] when λ= 0. Moreover, one can
lift (23) to a non-linear partial differential equation in duality with (21). Indeed, define the
measure-valued function H̄ : t → H̄t (d x) = Ht (x)1{x≥0}d x. Then, it follows from (23) that

H̄t (d x) = i h(x − t )1{x>t }d x +
∫ t

0
δ0(d x − (t − s))(−λ〈H̄s ,K 〉+ ν2

2
〈H̄s ,K 〉2)d s
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IV. Markovian structure of the Volterra Heston model

which can be seen as the mild formulation of the following partial differential equation

d H̄t (d x) = (− d

d x
H̄t (d x)+δ0(d x)(−λ〈H̄t ,K 〉+ ν2

2
〈H̄t ,K 〉2))d t , H̄0(d x) = ih(x)1{x>t }d x. (25)

We refer to [CT18] for similar results in the discontinuous setting. The previous results
highlight not only the correspondence between stochastic Volterra equations of the form (2)
and stochastic partial differential equations (21) but also between their dual objects, that is
the Riccati-Volterra equation (14) and the non-linear partial differential equation (25). One
can establish a correspondence between (2) and other related stochastic partial differential
equations which, unlike (g t )t≥0, do not necessarily have a financial interpretation but for which
the dual object satisfies a nicer non-linear partial differential equation than (25), see [MS15].

4 Application: square-root process in Banach space

As an application of Theorems 1, 2, 3, we obtain conditions for weak existence and uniqueness
of the following (possibly) infinite-dimensional system of stochastic differential equations

dUt (x) =
(
−xUt (x)−λ

∫ ∞

0
Ut (z)µ(d z)

)
d t +ν

√∫ ∞

0
Ut (z)µ(d z)dWt , x ∈ supp(µ), (26)

for a fixed positive measure of locally bounded variation µ4. This is achieved by linking (26)
to a stochastic Volterra equation of the form (2) with the following kernel

K (t ) =
∫ ∞

0
e−xtµ(d x), t > 0. (27)

We will assume that µ is a positive measure of locally bounded variation such that∫ ∞

0
(1∧ (xh)−1/2)µ(d x) ≤C h(γ−1)/2,

∫ ∞

0
x−1/2(1∧ (xh))µ(d x) ≤C hγ/2; h > 0, (H2)

for some γ ∈ (0,2] and positive constant C . The reader may check that in that case K satisfies
(H0). Furthermore, [GLS90, Theorem 5.5.4] guarantees the existence of the resolvent of the
first kind L of K and that (H1) is satisfied for the shifted kernels ∆hK for any h ∈ [0,1]. Hence,
K satisfies assumptions of Theorems 1 and 2.

By a solution U to (26) we mean a family of continuous processes (U (x))x∈supp(µ) such that
x →Ut (x) ∈ L1(µ) for any t ≥ 0, (

∫ ∞
0 Ut (x)µ(d x))t≥0 is a continuous process and (26) holds

a.s. on some filtered probability space. If such solution exists, we set V = ∫ ∞
0 U·(x)µ(d x) and

g0 =
∫ ∞

0 U0(x)e−x(·)d x. Thanks to (H2), the stochastic Fubini theorem yields for each t ≥ 0

Vt = g0(t )+
∫ t

0
K (t − s)(−λVsd s +ν

√
VsdWs). (28)

4We use the notation supp(µ) to denote the support of a measure µ, that is the set of all points for which
every open neighborhood has a positive measure. Here we assume that the support is in R+.
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The processes above being continuous, the equality holds in terms of processes. Thus, provided
that g0 belongs to GK , Theorem 2 leads to the weak uniqueness of (26) because for each
x ∈ supp(µ),

Ut (x) = e−xtU0(x)+
∫ t

0
e−x(t−s)(−λVsd s +ν

√
VsdWs), t ≥ 0. (29)

On the other hand, if we assume that g0 =
∫ ∞

0 U0(x)e−x(·)µ(d x) ∈GK for some initial family of
points (U0(x))x∈supp(µ) ∈ L1(µ), there exists a continuous solution V for (28) by Theorem 1. In
that case, we define for each x ∈ supp(µ), the continuous process U (x) as in (29). Thanks to
(H2) and (10), another application of the stochastic Fubini theorem combined with the fact that
V satisfies (28) yields that, for each t ≥ 0, (Ut (x))x∈supp(µ) ∈ L1(µ) and

Vt =
∫ ∞

0
Ut (x)µ(d x). (30)

Moreover, by an integration by parts, we get for each x ∈ supp(µ),

Ut (x) = e−xtU0(x)+Zt e−xt +
∫ t

0
xe−x(t−s)(Zs −Zt )d s,

with Z = ∫ ·
0(−λVsd s +νpVsdBs). We know that for fixed T > 0, η ∈ (0,1/2) and for almost

any ω ∈ Ω there exists a positive constant CT (ω) such that |Zs − Zt | ≤ CT (ω)|t − s|η for all
t , s ∈ [0,T ]. Hence for any t ∈ [0,T ] and x ∈ supp(µ)

|Ut (x)| ≤ |U0(x)|+CT (ω)e−xt tη+CT (ω)x
∫ t

0
e−xs sηd s = |U0(x)|+CT (ω)η

∫ t

0
e−xs sη−1d s.

Then,

sup
t∈[0,T ]

|Ut (x)| ≤ |U0(x)|+CT (ω)η
∫ T

0
e−xs sηd s ∈ L1(µ).

Therefore by dominated convergence theorem, the process (
∫ ∞

0 Ut (x)µ(d x))t≥0 is continuous.
In particular, (30) holds in terms of processes and it follows from (29) that U is a solution of (26).

This leads to the weak existence and uniqueness of (26) if the initial family of points
(U0(x))x∈supp(µ) belongs to the following space Dµ defined by

Dµ = {(ux )x∈supp(µ) ∈ L1(supp(µ));
∫ ∞

0
ux e−x(·)µ(d x) ∈GK }, (31)

with K given by (27). Notice that for fixed t0 ≥ 0 and for any t ≥ 0 and x ∈ supp(µ),

Ut+t0 (x) =Ut0 (x)e−xt +
∫ t

0
e−x(t−s)

(
−λ

∫ ∞

0
Us+t0 (z)µ(d z)+ν

√∫ ∞

0
Us+t0 (z)µ(d z)dWs+t0

)
and then by stochastic Fubini theorem∫ ∞

0
Ut+t0 (y)µ(d y) = g t0 (t )+

∫ t

0
K (t − s)

(
−λ

∫ ∞

0
Us+t0 (z)µ(d z)+ν

√∫ ∞

0
Us+t0 (z)µ(d z)dWs+t0

)
,
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IV. Markovian structure of the Volterra Heston model

with g t0 (t ) = ∫ ∞
0 Ut0 (y)e−y tµ(d y). Thanks to Theorem 3, we deduce that g t0 ∈GK and therefore

(Ut0 (x))x∈supp(µ) belongs to Dµ. As a conclusion, the space Dµ is stochastically invariant with
respect to the family of processes (U (x))x∈supp(µ).

Theorem 5. Fix µ a positive measure of locally bounded variation satisfying (H2).There exists a
unique weak solutionU of (26) for each initial family of points (U0(x))x∈supp(µ) ∈Dµ. Furthermore
for any t ≥ 0, (Ut (x))x∈supp(µ) ∈Dµ.

K (t ) Parameter restrictions µ(dγ)

Fractional c tα−1

Γ(α) α ∈ (1/2,1) c x−α
Γ(α)Γ(1−α) d x

Gamma ce−λt tα−1

Γ(α) λ≥ 0,α ∈ (1/2,1) c (x−λ)−α1(λ,∞)(x)
Γ(α)Γ(1−α) d x

Exponential sum
n∑

i=1
ci e−γi t ci ,γi ≥ 0

n∑
i=1

ciδγi (d x)

Table IV.1 – Some measures µ satisfying (H2) with their associated kernels K . Here c ≥ 0.

Remark 1 (Representation of V in terms of U ). In a similar fashion one can establish the
existence and uniqueness of the following time-inhomogeneous version of (26)

dUt (x) = (−xUt (x)−λ(
g0(t )+〈1,Ut 〉µ

))
d t +ν

√
g0(t )+〈1,Ut 〉µdWt , x ∈ supp(µ), (32)

whenever

g0 = g̃0 +
∫ ∞

0
e−x(·)U0(x)µ(d x) ∈GK ,

with g̃0 :R+ →R. In this case,

g̃0(t +·)+
∫ ∞

0
e−x(·)Ut (x)µ(d x) ∈GK , t ≥ 0.

In particular, for U0 ≡ 0, g0 = g̃0 ∈GK and K as in (27), the solution V to the stochastic Volterra
equation (2) and the forward process (g t )t≥0 admit the following representations

Vt = g0(t )+〈1,Ut 〉µ, g t0 (t ) = g0(t0 + t )+〈e−t (·),Ut0〉µ, t , t0 ≥ 0, (33)

where we used the notation 〈 f , g 〉µ =
∫ t

0 f (x)g (x)µ(d x). These results are in the spirit of [CC98,
HS15].

When µ has finite support, (32) is a finite dimensional diffusion with an affine structure in the
sense of [DFS03]. This underlying structure carries over to the case of infinite support and is
the reason behind the tractability of the Volterra Heston model.
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Remark 2 (Affine structure of (logS,V ) in terms of U ). Let the notations and assumptions of
Remark 1 be in force. Relying on the existence and uniqueness of the Riccati-Volterra equation
(14) one can establish the existence and uniqueness of a differentiable (in time) solution χ2 to the
following (possibly) infinite-dimensional system of Riccati ordinary differential equations

∂tχ2(t , x) =−xχ2(t , x)+F
(
ψ1(t ),〈χ2(t , ·),1〉µ

)
, χ2(0, x) = u2, x ∈ suppµ, t ≥ 0, (34)

such that χ2(t , ·) ∈ L1(µ), for all t ≥ 0 and t →〈χ2(t , ·),1〉µ ∈ L2
loc(R+) with ψ1 given by (13) and F

by (15). Moreover, the unique global solution ψ2 ∈ L2
loc(R+,C∗) to the Riccati–Volterra equation (14)

admits the following representation

ψ2 =
∫ ∞

0
χ2(·, x)µ(d x),

where χ2 is the unique solution to (34). In particular, combining the equality above with (19) and
the representation of (g t )t≥0 in (33) leads to the exponentially-affine functional

E
[

exp
(
uXT + ( f ∗X )T

) ∣∣∣ Ft

]
= exp

(
φ(t ,T )+ψ1(T − t ) logSt +〈χ2(T − t , ·),Ut 〉µ

)
for all t ≤ T where φ(t ,T ) = (∆T−t f ∗X )t + (u2∆t g0 +F (ψ1,ψ2)∗∆t g0)(T − t ), (u, f ) as in (16)
and U solves (32).

The representations of this section lead to a generic approximation of the Volterra Heston
model by finite-dimensional affine diffusions, see Chapter VIII for the rigorous treatment of
these approximations.

IV.A Existence results for stochastic Volterra equations

In this section, we consider the following d-dimensional stochastic Volterra equation

X t = g (t )+
∫ t

0
K (t − s)b(Xs)d s +

∫ t

0
K (t − s)σ(Xs)dWs , (35)

where K ∈ L2
loc(R,Rd×d ), W is a m-dimensional Brownian motion, g : Rd → Rd , b : Rd → Rd ,

σ :Rd →Rd×m are continuous with linear growth. By adapting the proofs of [AJLP17, Appendix
A] (there, g is constant), we obtain the following existence results. Notice how the domain GK

defined in (9) enters in the construction of constrained solutions in Theorem 7 below.

Theorem 6. Under (H0), assume that g ∈H γ/2.

(i) If b and σ are Lipschitz continuous, (35) admits a unique continuous strong solution X .

(ii) If b and σ are continuous with linear growth and K admits a resolvent of the first kind L,
then (35) admits a continuous weak solution X .

In both cases, X is locally Hölder continuous of any order strictly smaller than γ/2 and

sup
t≤T

E[|X t |p ] <∞, p > 0, T > 0. (36)
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IV. Markovian structure of the Volterra Heston model

Theorem 7. Assume that d = m = 1 and that the scalar kernel K satisfies (H0)-(H1). Assume also
that b and σ are continuous with linear growth such that b(0) ≥ 0 and σ(0) = 0. Then (35) admits
a nonnegative continuous weak solution for any g ∈GK .

Proof. Theorem 6(ii) yields the existence of an unsconstrained continuous weak solution X to
the following modified equation X t = g (t )+∫ t

0 K (t − s)b(X +
s )d s +∫ t

0 K (t − s)σ(X +
s )dWs . As in

the proof of of [AJLP17, Theorem 3.5], it suffices to prove the nonnegativity of X under the
stronger condition, that, for some fixed n ∈N,

x ≤ n−1 implies b(x) ≥ 0 and σ(x) = 0. (37)

Set Z = ∫
(b(X )d t +σ(X )dW ) and τ= inf{t ≥ 0: X t < 0}. Since g (0) ≥ 0, τ≥ 0. On {τ<∞},

Xτ+h = g (τ+h)+ (K ∗d Z )τ+h = g (τ+h)+ (∆hK ∗d Z )τ+
∫ h

0
K (h − s)d Zτ+s , h ≥ 0. (38)

Using Lemma 2 and Remark 3 below, together with the fact that X ≥ 0 on [0,τ],

g (τ+h)+ (∆hK ∗d Z )τ = g (τ+h)+ (∆hK ∗L)(0)(X − g )(τ)

+ (d(∆hK ∗L)∗X )τ− (d(∆hK ∗L)∗ g )(τ)

≥ g (τ+h)− (d(∆hK ∗L)∗ g )(τ)− (∆hK ∗L)(0)g (τ),

which is nonnegative. In view of (38) it follows that

Xτ+h ≥
∫ h

0
K (h − s) (b(Xτ+s)d s +σ(Xτ+s)dWτ+s) (39)

on {τ<∞} for all h ≥ 0. Now, on {τ<∞}, Xτ = 0 and Xτ+h < 0 for arbitrarily small h. On the
other hand, by continuity there is some ε> 0 such that Xτ+h ≤ n−1 for all h ∈ [0,ε). Thus (37)
and (39) yield Xτ+h ≥ 0 for all h ∈ [0,ε). This shows that τ=∞, ending the proof.

IV.B Reminder on stochastic convolutions and resolvents

For a measurable function K on R+ and a measure L on R+ of locally bounded variation, the
convolutions K ∗L and L∗K are defined by

(K ∗L)(t ) =
∫

[0,t ]
K (t − s)L(d s), (L∗K )(t ) =

∫
[0,t ]

L(d s)K (t − s)

whenever these expressions are well-defined. If F is a function on R+, we write K∗F = K∗(F d t ).
We can show that L∗F is almost everywhere well-defined and belongs to Lp

loc(R+), whenever
F ∈ Lp

loc(R+). Moreover, (F ∗G)∗L = F ∗ (G ∗L) a.e., whenever F,G ∈ L1
loc (R+), see [GLS90,

Theorem 3.6.1 and Corollary 3.6.2] for further details.

For any continuous semimartingale M = ∫ .
0 bsd s + ∫ .

0 asdBs the convolution (K ∗ d M)t =∫ t
0 K (t − s)d Ms is well-defined as an Itô integral for every t ≥ 0 such that

∫ t
0 |K (t − s)||bs |d s +∫ t

0 |K (t − s)|2|as |2d s <∞. By stochastic Fubini Theorem, see [AJLP17, Lemma 2.1], we have
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(L∗ (K ∗d M)) = ((L∗K )∗d M), a.s. whenever K ∈ L2
loc (R+,R) and a,b are locally bounded a.s.

We define the resolvent of the first kind of a d ×d-matrix valued kernel K , as the Rd×d -valued
measure L on R+ of locally bounded variation such that K ∗L = L∗K ≡ id, where id stands for
the identity matrix, see [GLS90, Definition 5.5.1]. The resolvent of the first kind does not always
exist. The following results are shown in [AJLP17, Lemma 2.6].

Lemma 1. Let K ∈ L2
loc(R+) and Z = ∫ .

0 bsd s + ∫ .
0σsdWs a continuous semimartingale with b

and σ locally bounded. Assume that X and K ∗d Z are continuous processes and that K admits a
resolvent of the first kind L. Then X = K ∗d Z if and only if L∗X = Z .

Lemma 2. Assume that K ∈ L1
loc(R+) admits a resolvent of the first kind L. For any F ∈ L1

l oc (R+)
such that F ∗L is right-continuous and of locally bounded variation one has

F = (F ∗L)(0)K +d(F ∗L)∗K .

Remark 3. The previous lemma will be used with F =∆hK , for a fixed h ≥ 0. If K is continuous
on (0,∞), then ∆hK ∗L is right-continuous. Moreover, if K is nonnegative and L is non-increasing
in the sense that s → L([s, s + t ]) is non-increasing for all t ≥ 0, then ∆hK ∗L is non-decreasing
since ∆hK ∗L = 1−∫

(0,h] K (h − s)L(·+d s), t ≥ 0.
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CHAPTER V

Roughening Heston

Abstract

Rough volatility models are known to fit the volatility surface remarkably well with very
few parameters. On the other hand, the classical Heston model is highly tractable allowing
for fast calibration. We present here the rough Heston model which offers the best of both
worlds. Even better, we find that we can accurately approximate rough Heston model
values by scaling the volatility of volatility parameter of the classical Heston model.

1 Introduction

Rough volatility models have succeeded in capturing the imagination of both practitioners
and academics with their remarkable ability to consistently model both historical and implied
volatilities with very few parameters. However, even with the introduction of the efficient
hybrid BSS scheme of [BLP17], practical implementation has proved to be difficult. In the recent
advances in Chapters I, II and III, the authors show how a natural rough generalization of
the Heston model emerges as the macroscopic limit of a simple high frequency trading model
which reflects the persistence of order flow, the high degree of endogeneity of the market,
and liquidity asymmetry between bid and ask sides of the limit order book. In addition, they
derive the characteristic function of the log-price as well as hedging strategies in this model.

In this note, we present the rough Heston model and explain how to use it in practice. As
in the rough Bergomi model of [BFG16], the forward variance curve ξt (u) = E [Vu |Ft ], where
Vu is the spot variance at time u, is a state variable so that the model can be made to match
at-the-money volatilities exactly. We are left with only three parameters to calibrate, defined
in Section 2: the Hurst exponent H , the volatility of volatility ν and the correlation ρ between
spot moves and volatility moves.
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V. Roughening Heston

2 The rough Heston model

The rough Heston model of Chapter II for a one-dimensional asset price S takes the form

dSt

St
=

√
Vt

{
ρdBt +

√
1−ρ2 dB⊥

t

}
with

Vu =Vt + λ

Γ(H + 1
2 )

∫ u

t

θt (s)−Vs

(u − s)
1
2−H

d s + ν

Γ(H + 1
2 )

∫ u

t

p
Vs

(u − s)
1
2−H

dBs , u ≥ t , (1)

where H ∈ (0,1/2) is the Hurst exponent, ν is the volatility of volatility, ρ ∈ [−1,1] is the
correlation between spot and volatility moves, λ≥ 0 and Γ denotes the Gamma function. The
mean reversion level parameter θt (·) is allowed to be an Ft -measurable function which makes
the model time consistent as explained in Chapter III. It is straightforward to verify that
Equation (1) gives back the classical Heston model with time-dependent mean reversion level
in the limit H → 1/2. From Chapter III, volatility sample paths have Hölder regularity H −ε
for any ε> 0, hence the name rough Heston for this model.

It is also shown in Chapter III that λθt (·) can be directly inferred from the forward variance
curve (ξt (u))u≥t observed at time t . By doing so, the model may be rewritten in the asymptotic
setting λ→ 0 in forward variance form as

dSt

St
=

√
Vt

{
ρdBt +

√
1−ρ2 dB⊥

t

}
with

Vu = ξt (u)+ ν

Γ(H + 1
2 )

∫ u

t

p
Vs

(u − s)
1
2−H

dBs , u ≥ t . (2)

Remark 1. Recall that the forward variance curve may in principle be obtained from the variance
swap curve by differentiation. More practically, assuming continuous sample paths, it is well-known
that the fair value of variance swaps can be obtained from an infinite log-strip of out-of-the-money
options, see for example [Gat11].

3 Pricing and hedging

Just as in the classical case, we can compute in quasi-closed form the characteristic function of
the log-price of the stock in the rough Heston model. This makes the model highly tractable
and easy to calibrate.

We define the fractional integral of order r ∈ (0,1] of a function f as

I r f (t ) = 1

Γ(r )

∫ t

0
(t − s)r−1 f (s)d s,
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4. Calibration of the rough Heston model

whenever the integral exists, and its fractional derivative of order r ∈ [0,1) as

Dr f (t ) = 1

Γ(1− r )

d

d t

∫ t

0
(t − s)−r f (s)d s,

whenever it exists. From Chapter III, the rough Heston model is Markovian in X t = log(St )
and the forward variance curve (ξt (u))u≥0, in the same spirit as the Bergomi model [Ber05].
In forward-variance form, the characteristic function of the terminal log-spot XT conditional
on the time t initial state (X t ,ξt ) is given by

φt (T, a) = EX t ,ξt

[
exp

{
i aXT

}]= exp
{
i a X t +

∫ T

t
Dαh(a,T −u)ξt (u)du

}
, (3)

where α= H + 1
2 and h(a, .) is the unique continuous solution of the fractional Riccati equation

Dαh(a, t ) =−1

2
a (a + i )+ i ρνah(a, t )+ 1

2
ν2 h2(a, t ); I 1−αh(a,0) = 0. (4)

Equation (4) is a rough version of the Riccati equation arising in the classical Heston model
(with zero mean reversion). Indeed the only difference is that the time derivative is replaced by
a fractional derivative. In contrast to the classical Heston case, there is no explicit solution to
(4). This equation can be solved efficiently using numerical methods for fractional ordinary
differential equations. We present one such method, the Adams scheme, in Appendix V.A, see
[CGP18] and Chapter VIII for newly developed alternative numerical methods. Moreover, as
we explain in Section 5, the true solution may also be accurately approximated in closed-form
by a scaled version of the classical Heston solution. Then European option prices may be
obtained from the characteristic function using standard Fourier techniques, see for example
[Gat11].

With the characteristic function now in the Markovian form (3), hedging European options
becomes obvious. Let Ct (T ) = E[

f (XT )
∣∣Ft

]
. Then, a European option with payoff f (XT ) can

be perfectly replicated. As of time t , the hedge portfolio has ∂St Ct (T ) of stock and ∂ξt Ct (T ) of
the forward variance curve ξt (s) for each s ∈ (t ,T ], where ∂ξt represents the Fréchet derivative,
roughly speaking the portfolio corresponding to bumping each of the forward variances ξt (s),
see Chapter III. From the above expressions, it is clear that perfect replication is in theory
only. In practice, as with interest rates, one holds a finite number of variance contracts. Note
however, that the rough Heston model has only one volatility factor. Thus one can hedge with
only one European option, as in the classical Heston case, provided the value of the option
component of the hedge portfolio coincides with the theoretical value of the forward variance
component.

4 Calibration of the rough Heston model

In this section we present SPX volatility surface calibration results for two dates: August 14,
2013, to compare with the rough Bergomi calibration given for that day in [BFG16], and May
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19, 2017, to show that the model continues to fit the market very well.

Note that the only parameters that we calibrate are the Hurst parameter H , the volatility of
volatility ν and the correlation ρ. The forward variance curve, being a state variable in the
model, is fixed to match at-the-money volatilities.

4.1 SPX calibration on August 14, 2013

From Bloomberg, on August 14, 2013, there were 19 expirations from 1 day to over 2.5 years,
for a total of 1,809 options quoted. After eliminating options for which the bid price (of either
the put or the call) was zero, we are left with 1,290 strike-expiration pairs.

For each such strike-expiration pair, we compute bid and ask implied volatilities σ±
i :=

σ±
BS(ki ,Ti ), where ki denotes the log-strike. Given model parameters {H ,ν,ρ}, we can obtain

model implied volatilities σM
i (H ,ν,ρ). We calibrate the parameters by minimizing1

∑
i

[σM
i (H ,ν,ρ)−σ+

i ]2 + [σM
i (H ,ν,ρ)−σ−

i ]2,

subject to the constraints

H ∈ (0,1/2], ν≥ 0, ρ ∈ [−1,1].

We obtain the following optimal parameters:

H = 0.1216; ν= 0.2910; ρ =−0.6714.

Figure V.1 shows a remarkable fit to the SPX volatility surface, which is as good as with the
rough Bergomi model in [BFG16].

4.2 SPX calibration on May 19, 2017

From Bloomberg, on May 19, 2017, there were 27 expirations from 1 day to over 2.5 years, for
a total of 2,743 options quoted. By applying the same calibration procedure, we obtain the
following optimal parameters:

H = 0.0474; ν= 0.4061; ρ =−0.6710.

On this particular day, the calibrated value of H is closer to zero and so corresponds to very
rough volatility.

1Alternatively, the parameters of the rough Heston model may be efficiently calibrated to the term structure of
leverage swaps using a closed-form formula, see [AGR17].
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Figure V.1 – Representative SPX volatility smiles as of August 14, 2013, with time to expiration
in years. Red and blue points represent bid and ask SPX implied volatilities; green smiles are
from the rough Heston model calibrated using the Adams scheme.

4.3 Consistency with historical data

In addition, we have that the calibrated Hurst parameter on August 14, 2013 (see Section 4.1) is
consistent with the one computed from historical data. Indeed, in [GJR18], the authors show
that the behavior of historical log-volatility of the SPX index is close to that of a fractional
Brownian motion with small Hurst parameter of order 0.1. As explained in detail in [GJR18],
estimating the moment of order q of a log-volatility increment over a time interval of length ∆
by

m(∆, q) = 1

N

N∑
k=1

| log(σk∆)− log(σ(k−1)∆)|q ,

where the (σk∆)0≤k≤N are historical measurements of volatility, we obtain a strong linear
relationship between log(m(∆, q)) and log(∆). In summary, we find

E[|σ∆−σ0|q ] ≈ Kq∆
q H ; H ≈ 0.14,

which is in theory what we have if the log-volatility is a fractional Brownian motion with Hurst
parameter H = 0.14.
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V. Roughening Heston

Figure V.2 – Representative SPX volatility smiles as of May 19, 2017, with time to expiration
in years. Red and blue points represent bid and ask SPX implied volatilities; green smiles are
from the rough Heston model calibrated using the Adams scheme.

We note that on both days for which we plotted smiles, August 14, 2013 and May 19, 2017, the
calibrated values of H are small, consistent with the small H estimated from historical data.
Thus, it is really true that rough volatility models are amazingly consistent with both historical
and implied volatility data.

5 A poor man’s rough Heston model

In this section, we present respectively fast and almost instantaneous approximation methods
to compute the implied volatility for a given expiry T and parameters (H ,ρ,ν). The realized
variance of the rough Heston model is given from (2) by∫ T

0
Vudu =

∫ T

0
ξ0(u)du + ν

Γ(H + 3
2 )

∫ T

0
(T −u)

1
2+H

√
Vu dBu . (5)

The variance of (5) is equal to

ν2
∫ T

0

(T − s)2H+1

Γ(H + 3
2 )2

ξ0(s)d s. (6)
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5. A poor man’s rough Heston model

This suggests that we approximate the rough Heston smile with the smile generated by a
classical Heston-like model (2) with H = 1/2 and with a scaled volatility of volatility parameter
ν̃(T ) matching the variance (6), that is

ν2
∫ T

0

(T − s)2H+1

Γ(H + 3
2 )2

ξ0(s)d s = ν̃(T )2
∫ T

0
(T − s)2ξ0(s)d s.

Thus,

ν̃(T ) = ν

Γ(H + 3
2 )

√√√√∫ T
0 (T − s)2H+1ξ0(s)d s∫ T

0 (T − s)2ξ0(s)d s
. (7)

For each expiry T , the characteristic function formula (3) is then approximated by the classical
one

exp

{
i a X0 +

∫ T

0
∂uh(T )(a,T −u)ξ0(u)du

}
(8)

where h(T )(a, .) is now a solution of the classical Riccati equation:

∂uh(T )(a,u) =−1

2
a (a + i )+ i ρ ν̃(T ) ah(T )(a,u)+ 1

2
ν̃(T )2 (h(T ))2(a, t ); h(T )(a,0) = 0.

This equation can be solved explicitly as on page 18 of [Gat11]. The solution may be written as

h(T )(a, t ) = r−(T )
1−e− A ν̃(T ) t

1− r−(T )
r+(T ) e− A ν̃(T ) t

with
A =

√
a (a + i )−ρ2 a2; r±(T ) =− 1

ν̃(T )

(
i ρ a ± A

)
.

On the other hand, for a given expiry T , a poor man’s almost instantaneous approximation of
the rough Heston characteristic function is obtained by approximating the forward variance
curve as flat with ξ0(u) = v0(T ), u ≥ 0. In practice, the obvious choice v0(T ) = 1

T

∫ T
0 ξ0(s)d s,

the fair value of the variance swap, works fine. In that case, (7) becomes

ν̃(T ) =
√

3

2H +2

ν

Γ
(
H + 3

2

) 1

T
1
2−H

. (9)

With this choice of forward variance curve, the approximate characteristic function (8) is
identical to the characteristic function of the classical Heston model with initial variance v0(T ),
mean reversion λ= 0, correlation ρ and volatility of volatility ν̃(T ) given by (9). Option prices
under rough Heston may thus be almost instantaneously approximated using any existing
implementation of the classical Heston pricing model.

To demonstrate the quality of approximations (7) and (9), in Figure V.3, we have replotted the
rough Heston smiles of Figure V.2 generated using the Adams scheme together with those
generated using the above approximations. We note that the smiles generated using the
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V. Roughening Heston

approximate characteristic function (8) with approximation (7) appear to be closer to true
rough Heston smiles than those generated by the poor man’s Heston approximation, especially
close to at-the-money. Nevertheless, the poor man’s smiles are surprisingly good. An accurate
rough Heston approximation with no quants required!

Figure V.3 – Representative SPX volatility smiles as of May 19, 2017, with time to expiration
in years. Green smiles are from the rough Heston model calibrated using the Adams scheme;
violet dashed smiles are generated using the approximate rough Heston characteristic function
(8); the brown dotted smiles are generated from the poor man’s existing Heston model with
scaled volatility of volatility parameter.

V.A Numerical solution of the fractional Riccati equation

We recall here how to solve fractional ordinary differential equations like (4). This is needed in
order to compute the characteristic function. Specifically, again with α= H + 1

2 , let

Dαh(a, t ) = F (a,h(a, t )), h(a,0) = 0. (10)
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V.A. Numerical solution of the fractional Riccati equation

Several schemes for solving (10) numerically are available in the literature. Most of these are
based on the idea that (10) implies the following Volterra equation:

h(a, t ) = 1

Γ(α)

∫ t

0
(t − s)α−1F (a,h(a, s))d s. (11)

One way to solve (11) is to use the classical fractional Adams method presented in [DFF04].
The idea goes as follows. Let us write g (a, t ) = F (a,h(a, t )). Over a regular discrete time-grid
with mesh ∆, 0 ≤ t0, . . . ≤ tn ≤ t , we approximate

h(a, tk+1) = 1

Γ(α)

∫ tk+1

0
(tk+1 − s)α−1g (a, s)d s

by
1

Γ(α)

∫ t

0
(t − s)α−1ĝ (a, s)d s,

where

ĝ (a, t ) = t j+1 − t

t j+1 − t j
ĝ (a, t j )+ t − t j

t j+1 − t j
ĝ (a, t j+1), t ∈ [t j , t j+1], 0 ≤ j ≤ k.

This corresponds to a trapezoidal discretization and leads to the following scheme:

ĥ(a, tk+1) = ∑
0≤ j≤k

a j ,k+1F (a, ĥ(a, t j ))+ak+1,k+1F
(
a, ĥ(a, tk+1)

)
, (12)

with

a0,k+1 =
∆α

Γ(α+2)
[kα+1 − (k −α)(k +1)α],

a j ,k+1 =
∆α

Γ(α+2)
[(k − j +2)α+1 + (k − j )α+1 −2(k − j +1)α+1]; 1 ≤ j ≤ k (13)

and

ak+1,k+1 =
(∆t )α

Γ(α+2)
.

However, ĥ(a, tk+1) being on both sides of (12), this scheme is implicit. Thus, in a first step,
we compute a pre-estimation (or predictor ) of ĥ(a, tk+1) based on a Riemann sum that we then
plug into the trapezoidal quadrature. We define this predictor ĥP (a, tk+1) as follows.

ĥP (a, tk+1) = 1

Γ(α)

∫ t

0
(t − s)α−1g̃ (a, s)d s,

with
g̃ (a, t ) = ĝ (a, t j ); t ∈ [t j , t j+1), 0 ≤ j ≤ k.

Therefore,
ĥP (a, tk+1) = ∑

0≤ j≤k
b j ,k+1F

(
a, ĥ(a, t j )

)
,

where

b j ,k+1 =
∆α

Γ(α+1)

(
(k − j +1)α− (k − j )α

)
, 0 ≤ j ≤ k.
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V. Roughening Heston

Thus, the final explicit numerical scheme is given by

ĥ(a, tk+1) = ∑
0≤ j≤k

a j ,k+1F (a, ĥ(a, t j ))+ak+1,k+1F
(
a, ĥP (a, t j )

)
,

where the weights a j ,k+1 are defined in (13).

V.B Call option prices using Fourier techniques

We explain now the way to deal numerically with the Fast Fourier Transform technique of
[CM99] for the computation of call option prices in the specific case of the rough Heston
model. Recall that the price at time t , Ct (T,S0ex ), of the call with expiration time T > t and
strike S0ex is related to the characteristic function of the log price XT through the following
expression:

Ct (T,S0ex ) = exp(−βx)

π

∫ ∞

0
ℜ[ψt (T, a)e−i ax ]d a, (14)

where

ψt (T, a) = φt (T, a − (β+1)i )

β2 +β−a2 + i (2β+1)a

and φt is defined in (3). Such a method includes the choice of β> 0 such that

Et [Sβ+1
T ] <∞. (15)

In Chapter III, a sufficient condition for finite moments is given. In particular when ρ < 0, the
existence of β> 0 satisfying (15) is guaranteed.

In practice, to apply the Fast Fourier Transform algorithm, we need to tackle the issue of the
infinite upper limit of integration in (14) by looking for amax > 0 such that

exp(−βx)

π

∫ ∞

amax

|ψt (T, a)|d a < ε,

where ε> 0 is the expected truncation error. In Chapter III, it is shown that

ℜ[
∫ T

t
Dαh(a − i (β+1),T −u)ξt (u)du]

is asymptotically dominated as |a| goes to infinity by

−|a|
√

1−ρ2

νΓ(1−α)

∫ T

t
(T −u)−αξt (u)du.

Hence from (3), it is enough to choose amax > 0 such that

exp(−βx)

π
Sβ+1

t

∫ ∞

amax

exp
(−a

p
1−ρ2

νΓ(1−α)

∫ T
t (T −u)−αξt (u)du

)
|β2 +β−a2 + i (2β+1)a| d a < ε.
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CHAPTER VI

Zumbach’s effect in rough Heston model

Abstract

Previous literature has identified an effect, dubbed the Zumbach effect, that is nonzero
empirically but conjectured to be zero in any conventional stochastic volatility model.
Essentially this effect corresponds to the property that past squared returns forecast future
volatilities better than past volatilities forecast future squared returns. We provide explicit
computations of the Zumbach effect under rough Heston and show that they are consistent
with empirical estimates. In agreement with previous conjectures however, the Zumbach
effect is found to be negligible in the classical Heston model.

Keywords: Zumbach effect, rough Heston model.

1 Introduction

In a series of papers [BBMZ05, LZ03, ZL01, Zum04, Zum09], Gilles Zumbach and co-authors
identified several empirical features of financial time series that are not well replicated by
conventional stochastic volatility models. In this paper, we focus on one particular such effect
dubbed the Zumbach effect in [BDB17].

Denote the true integrated variance from the open to the close of day t by σ2
t , the open to

close return by rt , and let 〈·〉 represent a sample average. Then, for τ ∈R, the statistic (6b) of
[CB14]

C̃ (2)(τ) = 〈(σt
2 −〈σt

2〉) r 2
t−τ〉

quantifies (under stationarity assumptions) the covariance of integrated variance with past
squared returns. The particular measure of time-reversal asymmetry (TRA) that is found
empirically to be positive in [CB14] is given by

Z (τ) := C̃ (2)(τ)− C̃ (2)(−τ), τ> 0. (1)

In words, the covariance between historical squared returns and future integrated variance is
greater than the covariance between historical integrated variance and future squared returns.
The following quote from [BDB17] refers to this measure Z (τ) of TRA:
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VI. Zumbach’s effect in rough Heston model

Interestingly, all continuous time stochastic volatility models, from the famous
CIR-Heston model (Cox et al. 1985, Heston 1993) to the Multifractal Random
Walk model alluded to above, obey TRS1 by construction and therefore cannot
account for the empirical TRA of financial time series.

In the present paper, we first confirm that Z (τ) is empirically nonzero. We then compute
Z (τ) explicitly under rough Heston. We show that when the Hurst parameter H of the volatility
process is small (H of order 0.1) as established empirically in [GJR18] and confirmed in [BLP16],
the Zumbach effect obtained under rough Heston is very consistent with empirical estimates.
However, when H = 1/2, corresponding to the conventional Heston model, we get that Z (τ) is
indeed numerically absolutely negligible.

Our paper proceeds as follows. In Section 2, we confirm that the Zumbach effect is
empirically nonzero. In Section 3, we compute the Zumbach effect under rough Heston. Finally,
in Section 4, we show that the rough Heston model is both qualitatively and quantitatively
consistent with empirical estimates. Some additional detailed computations are relegated to
the appendix.

2 Empirical estimation of the Zumbach effect

For our empirical study, we use opening and closing prices and precomputed realized kernel
estimates of intraday (open to close) integrated variance from the Oxford-Man Institute of
Quantitative Finance Realized Library from 2000, January 3 to 2018, July 25.2.

There are 31 indices in the Oxford dataset, as listed in Appendix VI.A. We proceed by
computing C̃ (2)(τ) and C̃ (2)(−τ) for each of these indices and converting these to correlations
by dividing by the relevant sample variances. That is, for each index, we compute

ρ̃(τ) = C̃ (2)(τ)√
〈(σ2

t −〈σ2
t 〉)2〉〈(r 2

t−τ−〈r 2
t−τ〉)2〉

.

We then average the ρ̃ j across the indices j in the dataset to obtain

ρ̄(τ) = 1

31

31∑
j=1

ρ̃ j (τ).

Finally, corresponding to Equation (25) of [CB14], we further define the integrated difference

∆(τ) =
τ∑

i=1

(
ρ̄(i )− ρ̄(−i )

)
.

In Figure VI.1, we present respectively ρ̄(τ), ρ̄(−τ) and ∆(τ), reproducing Figure 10 of [CB14],
and confirming empirically that the Zumbach effect is nonzero.

1Time-reversal symmetry
2http://realized.oxford-man.ox.ac.uk/data/download The Oxford-Man Institute of Quantitative

Finance Realized Library contains a selection of daily non-parametric estimates of volatility of financial assets,
including realized variance and realized kernel estimates. A selection of such estimators is described and their
performances compared in, for example, [GO10].
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3. The rough Heston model

Figure VI.1 – In the left panel, the ρ̄(τ) are in red, the ρ̄(−τ) in blue. In the right panel we
plot the integrated difference ∆(τ).

Remark 1. Comparing Figure VI.1 with Figure 10 of [CB14], we note that our correlations are in
general significantly greater. We attribute this difference to the superior accuracy of the Oxford-Man
realized kernel estimates of integrated variance that we use here relative to the Rogers-Satchell
estimates computed in [CB14].

3 The rough Heston model

3.1 Description of the model

We consider the rough Heston model introduced in Chapter II for the price St of an asset at
time t :

dSt = St

√
Vt dWt ,

Vt = g0(t )− 1

Γ(H +1/2)

∫ t

0
(t − s)H−1/2λVsd s + 1

Γ(H +1/2)

∫ t

0
(t − s)H−1/2ν

√
VsdBs . (2)

Here H ∈ (0,1/2] is the Hurst exponent of the volatility, λ> 0 is the mean reversion parameter,
ν > 0 is the volatility of volatility parameter and (W,B) is a ρ-correlated Brownian motion
with ρ ∈ [−1,1]. The function g0 is assumed to be continuous and is linked to the forward
variance curve ξ0(t ) = E[Vt ] as follows:

g0(t ) = ξ0(t )+ 1

Γ(H +1/2)

∫ t

0
(t − s)H−1/2λξ0(s)d s. (3)

Note that in Chapter IV, a general condition on g0 is given to guarantee weak existence and
uniqueness for the solution of the equation defining the rough Heston model.
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VI. Zumbach’s effect in rough Heston model

In Chapters II and III, it is shown that there exists a semi-closed form expression for the
characteristic function, just as in the classical Heston case, and that explicit hedging strategies
can be derived. Fast and accurate option pricing is also possible, see [GR18]. Furthermore,
the rough Heston model displays the rough behavior of the volatility observed empirically in
[GJR18]. More precisely, the variance process V admits Hölder continuous paths with regularity
strictly less than H . In addition to the fit to historical data, it is shown in Chapter V that with
suitably calibrated parameters (H , ν, ρ and λ), the rough Heston model typically fits the SPX
volatility surface remarkably well.

3.2 The Zumbach effect under rough Heston: explicit computation

We provide in this section an explicit formula for the Zumbach effect in the rough Heston
model (Theorem 1). We start with a discussion about the use of correlations or covariances
when computing the Zumbach effect under rough Heston.

3.2.1 Correlations versus covariances

From a theoretical viewpoint, approximating theoretical quantities such as covariances and
correlations by sample values makes sense only provided the underlying dynamics can be
considered stationary. In the context of the rough Heston model (2), this would imply that
the parameter λ should be large enough with respect to the observation time scale. However,
whether rough volatility models are estimated under P or Q, λ is typically found to be small
relative to this observation time scale, see Chapter V. In this case, under rough Heston, the
very notion of the Zumbach effect may appear somehow ill-defined.

It turns out, as will be seen in Section 3.2.2, that under rough Heston, the Zumbach effect
Z (τ) expressed as a difference of covariances (1), does not depend asymptotically on λ. This
is in contrast to the effect Z Correl(·) expressed in terms of corrrelations as in Proposition 1.
Consequently, we choose to focus on covariances and express the Zumbach effect in terms of
the covariances C̃ (2) rather than the correlations ρ̃. For the sake of completeness, computations
based on correlation in the stationary regime are presented in Appendix VI.C.

3.2.2 Computation of the Zumbach effect

Denote the length of the trading day by δ. Under the rough Heston model, the open to close
(log-)return is given by3

rt =
∫ t

t−δ

√
VsdWs ,

and the daily integrated variance by

σ2
t =

∫ t

t−δ
Vsd s.

3For simplicity, we take only the martingale part of the log-returns.
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3. The rough Heston model

Our aim is to prove that in the rough Heston model, the counterpart of Z (τ) = C̃ (2)(τ)−C̃ (2)(−τ)
is positive for τ= k δ with k ∈N>0. Hence, we write

Zt (k) =Cov[r 2
t ,σ2

t+kδ]−Cov[r 2
t+kδ,σ2

t ], k ∈N>0, t ≥ δ.

By Itô’s isometry, E
[
r 2

t

]= E[
σ2

t

]
for any time t so

Zt (k) = E[r 2
t σ

2
t+kδ]−E[r 2

t+kδσ
2
t ].

Applying Itô’s formula, we get

r 2
t = 2

∫ t

t−δ

√
Vs

(∫ s

t−δ

√
VudWu

)
dWs +σ2

t .

This together with the fact that E
[
r 2

t+kδσ
2
t

]= E[
E
[

r 2
t+kδ

∣∣Ft
]
σ2

t

]= E[σ2
t+kδσ

2
t ] leads to

Zt (k) = 2E

[
σ2

t+kδ

∫ t

t−δ

√
Vs

(∫ s

t−δ

√
VudWu

)
dWs

]
. (4)

Substituting (3) into (2) with α= H + 1
2 gives

Vt = ξ0(t )− 1

Γ(α)

∫ t

0
(t − s)α−1λ (Vs −ξ0(s))d s + 1

Γ(α)

∫ t

0
(t − s)α−1ν

√
VsdBs .

From Lemma 1, the solution is given by

Vt = ξ0(t )+
∫ t

0
f α,λ(t − s)

ν

λ

√
VsdBs (5)

where f α,λ(x) =λxα−1 ∑
k≥0

(−λxα)k

Γ(α(k+1)) is the Mittag-Leffler density function. It follows that the
future integrated variance satisfies

σ2
t+k δ =

∫ t+k δ

t+(k−1)δ
Vs d s

=
∫ t+k δ

t+(k−1)δ
ξ0(s)d s +

∫ t+k δ

0
Fα,λ(t +k δ− s)

ν

λ

√
VsdBs

−
∫ t+(k−1)δ

0
Fα,λ(t + (k −1)δ− s)

ν

λ

√
VsdBs ,

where Fα,λ(x) = ∫ x
0 f α,λ(s)d s. Consequently (4) may be rewritten as

Zt (k) = 2
ρν

λ

∫ t

t−δ

(
Fα,λ(t +kδ− s)−Fα,λ(t + (k −1)δ− s)

)
E

[
Vs

∫ s

t−δ

√
VudWu

]
d s.

Again using (5), we have that for s ≥ t −δ,

E

[
Vs

∫ s

t−δ

√
VudWu

]
= ρν

λ

∫ s

t−δ
f α,λ(s −u)ξ0(u)du.
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VI. Zumbach’s effect in rough Heston model

Thus,

Zt (k) = 2
(ρν)2

λ2

∫ δ

0

(
Fα,λ(s +kδ)−Fα,λ(s + (k −1)δ)

) ∫ δ−s

0
f α,λ(u)ξ0(t − s −u)du d s,

(6)

which is positive if ρ is different from zero. Using the fact that

Fα,λ(x) ∼
x→0

λxα

Γ(α+1)
,

together with the dominated convergence theorem, we derive the following result.

Theorem 1. Assume that ρ is nonzero and that the forward variance curve is continuous. Then
Zt (k) > 0 and as δ goes to zero,

Zt (k) ∼
δ→0

2(ρν)2δ2α+1 gα(k)ξ0(t ), k ∈N>0, t > 0,

with gα(k) = 1
Γ(α+1)2

∫ 1
0 ((k + s)α− (k + s −1)α) (1− s)αd s.

We see that this measure of the Zumbach effect is indeed independent of λ. It is also
independent of t in the flat forward variance curve case.

4 Numerical results

To compare model computations with empirical estimates, we adopt the following model
parameters typical of calibrations to the SPX implied volatility surface:

ρ =−0.7, ν= 0.45, H = 0.05, λ= 0.3.

We assume a flat forward variance curve setting ξ0(t ) = 0.025, the approximate sample mean
of σt

2.
In Figure VI.2, we superimpose empirical estimates Z (τ) = Z (kδ) and model computations

Zt (k) for SPX (which do not depend on t here). Although model computations are somewhat
higher than empirical estimates, we argue that this nevertheless represents good agreement
between model and data. One factor no doubt contributing to the discrepancy is that we
expect volatility of volatility and correlation under Q to be more extreme than their equivalents
under P.

4.1 Dependence on H

We now examine the dependence of Zt (k) on the Hurst exponent H . We already showed
that under rough Heston with reasonable parameters, the Zumbach effect is consistent with
empirical estimates. In contrast, when H = 1/2, we see from Figure VI.3 that the Zumbach
effect is negligible. Indeed, from Theorem 1, Zt (k) is of order δ2α+1 = δ2H for small δ. When
H = 1/2, Zt (k) ∼ δ becomes very small, whereas as H → 0, that is when volatility is rough, the
Zumbach effect remains significant.
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VI.A. List of indices in the Oxford-Man Institute of Quantitative Finance Realized Library

Figure VI.2 – With τ= k δ, the green points are the empirical estimates of Z (τ), the solid red
line is the model computation (6) of Zt (k), the dashed blue line is the small δ approximation
from Theorem 1 to Zt (k).

VI.A List of indices in the Oxford-Man Institute of
Quantitative Finance Realized Library

The following table lists all of the index tickers included in the Oxford-Man Institute of
Quantitative Finance Realized Library together with index descriptions.
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Figure VI.3 – The solid red line is Zt (k) computed with H = 0.05, the blue dashed line is the
approximation from Theorem 1, and the green line close to the x-axis is Zt (k) with H = 1/2.
We see that the effect is negligible when H = 1/2.

Index ticker Index description
.AEX Amsterdam Exchange Index
.AORD All Ordinaries Index
.BFX BEL 20 Index
.BSESN S&P Bombay Stock Exchange SENSEX Index
.BVLG Euronext PSI General Index
.BVSP BOVESPA Index
.DJI Dow Jones Industrial Average
.FCHI CAC 40
.FTMIB FTSE MIB Index
.FTSE FTSE 100 Index
.GDAXI DAX Index
.GSPTSE S&P/TSX Composite Index
.HSI Hang Seng Index
.IBEX IBEX 35 Index
.IXIC Nasdaq Composite Index
.KS11 KOSDAQ Composite Index
.KSE Karachi Stock Exchange 100 Index
.MXX Mexican Bolsa IPC Index
.N225 Nikkei 225 Index
.NSEI NIFTY 50 Index
.OMXC20 OMX Copenhagen 20 Index
.OMXHPI OMX Helsinki All-Share Index
.OMXSPI OMX Stockholm All-Share Index
.OSEAX Oslo Børs All-Share Index
.RUT Russell 2000 Index
.SMSI Madrid General Index
.SPX S&P 500 Index
.SSEC Shanghai Composite Index
.SSMI Swiss Market Index
.STI Straits Times Index
.STOXX50E Euro STOXX 50 Index
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VI.B Proof of (5)

The following technical lemma slightly extends Proposition 4.10 in Chapter I.

Lemma 1. The process V is solution of the following rough stochastic differential equation

Vt = ξ0(t )− 1

Γ(α)

∫ t

0
(t − s)α−1λ (Vs −ξ0(s))d s + 1

Γ(α)

∫ t

0
(t − s)α−1ν

√
VsdBs

if and only if it is solution of

Vt = ξ0(t )+
∫ t

0
f α,λ(t − s)

ν

λ

√
VsdBs .

Proof. Suppose

Vt = ξ0(t )+
∫ t

0
f α,λ(t − s)

ν

λ

√
VsdBs .

Then4 using fractional integration of order 1−α (denoted by I 1−α), the properties of the
Mittag-Leffler density and the stochastic Fubini theorem, this is equivalent to

I 1−αVt = I 1−αξ0(t )+ ν

λ

∫ t

0
I 1−α f α,λ(t − s)

√
VsdBs

= I 1−αξ0(t )+ ν

λ

∫ t

0
λ

(
1−Fα,λ(t − s)

) √
VsdBs

= I 1−αξ0(t )+ν
∫ t

0

√
VsdBs −ν

∫ t

0
dBs

∫ t

s
f α,λ(u − s)

√
Vsdu

= I 1−αξ0(t )+ν
∫ t

0

√
VsdBs −ν

∫ t

0
du

∫ u

0
f α,λ(u − s)

√
Vs dBs

= I 1−αξ0(t )+ν
∫ t

0

√
VsdBs −λ

∫ t

0
(Vu −ξ0(u)) du.

Finally, applying fractional differentiation of order 1−α together with the stochastic Fubini
theorem we deduce the result.

VI.C The Zumbach effect in terms of correlations in the
stationary regime

We now discuss the Zumbach effect in terms of correlations in the stationary regime, that is
when t goes to infinity. In particular, we suppose that ξ0(t ) satisfies

ξ0(t ) −→ ξ0(∞), (7)

4For definitions and properties of fractional integration and differentiation and of the Mittag-Leffler density
f α,λ, see for example Appendices A3 and A4 of Chapter I
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VI. Zumbach’s effect in rough Heston model

as t goes infinity for some ξ0(∞) > 0. From Theorem 1, we have that for small δ, Zt (k) is
equivalent to

2(ρν)2δ2α+1gα(k)ξ0(∞).

Moreover, from Appendix VI.D, the limit of E[r 4
t ] as t goes to infinity is

ξ0(∞)
12ρ2ν2

λ2

∫ δ

0
Fα,λ(s)Fα,λ(δ−u)du +3ξ0(∞)2δ2 + 3ν2

λ2 ξ0(∞)
∫ δ

0
Fα,λ(u)2du

+ 6ν2

λ2 ξ0(∞)
∫ ∞

0

(∫ δ

0

(
Fα,λ(s +u)−Fα,λ(u)

)
f α,λ(s +u)d s

)
du.

This limit is equivalent for small δ to

3ξ0(∞)2δ2 + 3ν2

λ2 ξ0(∞)δ2
∫ ∞

0
f α,λ(s)2d s.

In the same way, from Appendix VI.D, the limit of Var[σ2
t ] as t goes to infinity is

ν2

λ2 ξ0(∞)
∫ ∞

0

(
Fα,λ(s +δ)−Fα,λ(s)

)2
d s + ν2

λ2 ξ0(∞)
∫ δ

0
Fα,λ(s)2d s,

which is equivalent to
ν2

λ2 ξ0(∞)δ2
∫ ∞

0
f α,λ(s)2d s.

Let us now define the correlation based Zumbach effect Z Correl(k) by

Z Correl(k) =
lim

t→∞Zt (k)√
lim

t→∞Var[σ2
t ]Var[rt ]

.

From previous computations, we deduce the following proposition.

Proposition 1. We have

Z Correl(k) ∼
δ→0

2(ρν)2
√
ξ0(∞)√

ν2

λ2

∫ ∞
0 f α,λ(s)2d s

√
2ξ0(∞)+ 3ν2

λ2

∫ ∞
0 f α,λ(s)2d s

δ2α−1gα(k).

VI.D Variance computations

We compute in this section Var[σ2
t ] and Var[r 2

t ]. Using (5) together with the stochastic Fubini
theorem, we have that

σ2
t =

∫ t

t−δ
ξ0(s)d s +

∫ t

0

ν

λ
Fα,λ(t − s)

√
VsdBs −

∫ t−δ

0

ν

λ
Fα,λ(t −δ− s)

√
VsdBs . (8)

Hence,

Var[σ2
t ] = ν2

λ2

∫ t−δ

0

(
Fα,λ(s +δ)−Fα,λ(s)

)2
ξ0(t −δ− s)d s + ν2

λ2

∫ δ

0
Fα,λ(s)2ξ0(t − s)d s.
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In order to compute Var[r 2
t ], we need to get E[r 4

t ]. Note that by Itô’s formula,

E[r 4
t ] = 6

∫ t

t−δ
E

[(∫ s

t−δ

√
VudWu

)2

Vs

]
d s.

Using again Itô’s formula, we get that E
[(∫ s

t−δ
p

VudWu
)2

Vs

]
is equal to

2E

[
Vs

∫ s

t−δ

√
Vu

∫ u

t−δ

√
Vw dWw dWu

]
+E

[
Vs

∫ s

t−δ
Vudu

]
. (9)

From (5), the first term in (9) is given by

2ρν

λ

∫ s

t−δ
f α,λ(s −u)E

[
Vu

∫ u

t−δ

√
Vw dWw

]
du,

which is equal to

2ρ2ν2

λ2

∫ s

t−δ
f α,λ(s −u)

(∫ u

t−δ
f α,λ(u −w)ξ0(w)d w

)
du.

Hence the first term in (9) is equal to

2ρ2ν2

λ2

∫ s−t+δ

0
f α,λ(u)

(∫ s−u−t+δ

0
f α,λ(w)ξ0(s −u −w)d w

)
du.

Moreover, similarly to (8),∫ s

t−δ
Vudu =

∫ s

t−δ
ξ0(u)du +

∫ s

0

ν

λ
Fα,λ(s −u)

√
VudBu −

∫ t−δ

0

ν

λ
Fα,λ(t −δ−u)

√
VudBu .

Therefore the second term of (9) is given by

ξ0(s)
∫ s−t+δ

0
ξ0(u + t −δ)du + ν2

λ2

∫ s−t+δ

0
f α,λ(u)Fα,λ(u)ξ0(s −u)du

+ ν2

λ2

∫ t−δ

0

(
Fα,λ(s − t +δ+u)−Fα,λ(u)

)
f α,λ(s − t +δ+u)ξ0(t −δ−u)du.

Consequently, E[r 4
t ] is equal to

12ρ2ν2

λ2

∫ δ

0

∫ s

0
f α,λ(u)

(∫ s−u

0
f α,λ(w)ξ0(s −u + t −δ−w)d w

)
dud s

+6
∫ δ

0
ξ0(s + t −δ)

∫ s

0
ξ0(u + t −δ)dud s + 6ν2

λ2

∫ δ

0

∫ s

0
f α,λ(u)Fα,λ(u)ξ0(s + t −δ−u)dud s

+ 6ν2

λ2

∫ t−δ

0

(∫ δ

0

(
Fα,λ(s +u)−Fα,λ(u)

)
f α,λ(s +u)d s

)
ξ0(t −δ−u)du.

185





Part V
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CHAPTER VII

Short-term at-the-money asymptotics
under stochastic volatility models

Abstract

A small-time Edgeworth expansion of the density of an asset price is given under a
general stochastic volatility model, from which asymptotic expansions of put option prices
and at-the-money implied volatilities follow. A limit theorem for at-the-money implied
volatility skew and curvature is also given as a corollary. The rough Bergomi model is
treated as an example.

1 Introduction

A stochastic volatility model is an extension of the Black-Scholes model that incorporates an
empirical evidence that the volatility of an asset price is not constant in its time-series data
as well as in its option price data. The Heston and SABR models among others are popular
in financial practices owing to (semi-)analytic (approximation) formulas for the vanilla option
prices or the option-implied volatilities. See e.g., [Gat11] for a practical guide on stochastic
volatility modeling.

Recently, attracting much attention is a class of stochastic volatility models where the volatility
is driven by a fractional Brownian motion. This is due to their consistency to a power law
of the term structure in the implied volatility skew which has been empirically recognized;
see [ALV07, BFG16, FZ17, Fuk11, Fuk17, GS17, GJR18, GJR14]. To be consistent, the fractional
Brownian motion must be correlated with a Brownian motion driving the asset price and its
Hurst parameter must be smaller than 1/2. The latter means in particular that the volatility
path is rougher than a Brownian motion and so, this class of the models is often referred as
the rough volatility models. Since the models do not admit of explicit expressions for option
prices or implied volatilities, the above mentioned consistency has been discussed through
asymptotic analyses.
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VII. Short-term at-the-money asymptotics under stochastic volatility models

The aim of this paper is to provide a general framework under which the short-term asymp-
totics of the at-the-money implied volatility is studied. The framework is for a general
continuous stochastic volatility model. The rough Bergomi model introduced by [BFG16] is
treated as an example. The asymptotic expansion of the at-the-money implied volatility is
given up to the second-order, while the first order expansion was already given in [Fuk17] by
a different method. For the SABR model Osajima [Osa07] gave the expansion based on the
Watanabe-Yoshida theory; see e.g., [KT+03, Yos92]. The same expansion formula was also
obtained in Medvedev and Scaillet [MS07] by a formal computation. Friz et al. [FGP17] derived
the asymptotic skew and curvature of the implied volatility that correspond to the first and the
second order terms by assuming the asymptotic behavior of the density function of the under-
lying asset price. Here, we introduce a novel approach based on a conditional Gaussianity of
the stochastic volatility model to prove the validity of a second order density expansion for
a general stochastic volatility model. From this density expansion follow expansions of the
option prices and the implied volatility as well as the asymptotic skew and curvature formula.
In contrast to [KT+03, Osa07, Yos92], we do not rely on the Malliavin calculus, which enables
us to treat effectively the rough volatility models. In contrast to the elementary method of
[Fuk17], our approach can be extended to higher-order expansions without any additional
theoretical difficulty. We choose the square root of the forward variance, that is, the fair strike
of a variance swap, as the leading term of our asymptotic expansion, while a recent work [AS]
studies the difference between the implied volatility and the fair strike of a volatility swap in
terms of the Malliavin derivatives.

The paper is organized as follows. In Section 2, we describe the model framework. In Section 3,
we derive the asymptotic expansions of the characteristic function, the density function, the
put option prices and the at-the-money implied volatility function. In Section 4, we derive the
asymptotic behavior of the at-the-money implied volatility skew and curvature. In Section 5,
we show that the rough Bergomi model fits the framework and compute the coefficients of the
expansion for this particular model.

2 Framework

2.1 Assumptions

Let (Ω,F ,P ) be a probability space equipped with a filtration {Ft ; t ∈R} satisfying the usual
assumptions. A log price process Z is assumed to follow

dZt = r dt − 1

2
vt dt +p

v t dBt

under an equivalent measure Q, where r ∈ R stands for an interest rate and v is a positive
continuous process adapted to a smaller filtration {Gt ; t ∈R}, of which the square root is called
the volatility of Z . The Brownian motion B is decomposed as

dBt = ρt dWt +
√

1−ρ2
t dW ′

t ,
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2. Framework

where W ′ is an {Ft }-Brownian motion independent of Gt for all t ∈R, W is a {Gt }-Brownian
motion and ρ is a progressively measurable processes with respect to {Gt } and taking values
in [−1,1]. A typical situation for stochastic volatility models, including the Heston, SABR and
rough Bergomi models, is that (W,W ′) is a two dimensional {Ft }-Brownian motion and {Gt } is
the filtration generated by W , that is,

Gt =N ∨σ(Ws −Wr ;r ≤ s ≤ t ),

where N is the null sets of F .

An arbitrage-free price p(K ,θ) of a put option at time 0 with strike K > 0 and maturity θ > 0
is given by

p(K ,θ) = e−rθEQ [(K −exp(Zθ))+|F0] = e−rθ
∫ K

0
Q(log x ≥ Zθ|F0)dx.

Denote by E0 and ‖ · ‖p respectively the expectation and the Lp norm under the regular
conditional probability measure of Q given F0, of which the existence is assumed. We impose
the following technical condition: for any p > 0,

sup
θ∈(0,1)

∥∥∥∥ 1

θ

∫ θ

0
vt dt

∥∥∥∥
p
<∞, sup

θ∈(0,1)

∥∥∥∥∥
{

1

θ

∫ θ

0
vt (1−ρ2

t )dt

}−1
∥∥∥∥∥

p

<∞. (1)

The forward variance curve v0(t ) is defined by

v0(t ) = E0[vt ] = EQ [vt |F0].

Let

σ0(θ) =
√∫ θ

0
v0(t )dt .

Changing variable as
x = F exp(ζσ0(θ)) , F = exp(rθ+Z0),

we have
p(Fezσ0(θ),θ)

Fσ0(θ)
= e−rθ

∫ z

−∞
Q (ζ≥ Xθ|F0)eσ0(θ)ζdζ,

where

Xθ =− 1

2σ0(θ)
〈M〉θ+

1

σ0(θ)
Mθ, Mθ =

∫ θ

0

p
vt dBt , 〈M〉θ =

∫ θ

0
vt dt .

We assume the following asymptotic structure: there exists a family of random vectors{
(M (0)

θ
, M (1)

θ
, M (2)

θ
, M (3)

θ
);θ ∈ (0,1)

}
such that

1. the law of M (0)
θ

is standard normal for all θ > 0,
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VII. Short-term at-the-money asymptotics under stochastic volatility models

2.
sup
θ∈(0,1)

‖M (i )
θ
‖p <∞, i = 1,2,3 (2)

for all p > 0 and

3. for some H ∈ (0,1/2] and ε ∈ (0, H),

lim
θ→0

θ−2H−2ε
∥∥∥∥ Mθ

σ0(θ)
−M (0)

θ
−θH M (1)

θ
−θ2H M (2)

θ

∥∥∥∥
1+ε

= 0,

lim
θ→0

θ−H−2ε
∥∥∥∥ 〈M〉θ
σ0(θ)2 −1−θH M (3)

θ

∥∥∥∥
1+ε

= 0.
(3)

Further, we assume the existence of the derivatives

a(i )
θ

(x) = d

dx

{
E0[M (i )

θ
|M (0)

θ
= x]φ(x)

}
, i = 1,2,3,

bθ(x) = d2

dx2

{
E0[M (1)

θ
|M (0)

θ
= x]φ(x)

}
cθ(x) = d2

dx2

{
E0[|M (1)

θ
|2|M (0)

θ
= x]φ(x)

} (4)

in the Schwartz space (i.e., the space of the rapidly decreasing smooth functions), where φ is
the standard normal density.

2.2 Regular stochastic volatility models

Here we briefly discuss that regular stochastic volatility models satisfy all the above assumptions.
Let us consider the volatility process vt = v(X t ), where X is a Markov process satisfying a
stochastic differential equation

dX t = b(X t )dt + c(X t )dWt

and v is a smooth positive function defined on the state space of X . Let ρ ∈ (−1,1) be a
constant and {Gt } be the augmented filtration generated by W . We assume (1), which is
satisfied in the usual cases including the log-normal SABR and Heston models. Denote by L
the generator of X . Put f =p

v , g = f ′c and h = v ′c . Then, by Itô’s formula, we have

Mθ = f (X0)Bθ+
∫ θ

0

∫ t

0
g (Xs)dWsdBt +

∫ θ

0

∫ t

0
L f (Xs)dsdBt ,

〈M〉θ = v(X0)θ+
∫ θ

0

∫ t

0
h(Xs)dWsdt +

∫ θ

0

∫ t

0
Lv(Xs)dsdt .

Let B̄θ
t = θ−1/2Bθt , W̄ θ

t = θ−1/2Wθt and X θ
t = Xθt . Then

Mθp
θ
= f (X0)B̄θ

1 +
p
θ

∫ 1

0

∫ u

0
g (X θ

v )dW̄ θ
v dB̄θ

u +θ
∫ 1

0

∫ u

0
L f (X θ

v )dvdB̄θ
u ,

〈M〉θ
θ

= v(X0)+
p
θ

∫ 1

0

∫ u

0
h(X θ

v )dW̄ θ
v du +θ

∫ 1

0

∫ u

0
Lv(X θ

v )dvdu.
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It would follow that

σ0(θ)2

θ
= E0[〈M〉θ]

θ
= v(X0)+ 1

2
Lv(X0)θ+O(θ3/2),

and so
σ0(θ)p

θ
= f (X0)+ 1

4

Lv(X0)

f (X0)
θ+O(θ3/2)

under a mild regularity condition. Then, we have (3) with H = 1/2, M (0)
θ

= B̄θ
1 and

M (1)
θ

= g (X0)

f (X0)

∫ 1

0
W̄ θ

u dB̄θ
u ,

M (2)
θ

=−Lv(X0)

4v(X0)
B̄θ

1 + g ′(X0)c(X0)

f (X0)

∫ 1

0

∫ u

0
W̄ θ

v dW̄ θ
v dB̄θ

u + L f (X0)

f (X0)

∫ 1

0
udB̄θ

u ,

M (3)
θ

= h(X0)

v(X0)

∫ 1

0
W̄ θ

u du

again under a mild regularity condition. Further, the derivatives (4) exist in the Schwartz space
because E0[M (i )

θ
|M (0)

θ
= x] and E0[|M (1)

θ
|2|M (0)

θ
= x] are polynomials of x; see e.g., Nualart et

al. [NUZ88] or Appendix A below.

3 Asymptotic expansions

3.1 Characteristic function expansion

Here we give an asymptotic expansion of the characteristic function of Xθ . Let

Yθ = M (0)
θ

+θH M (1)
θ

+θ2H M (2)
θ

− σ0(θ)

2

(
1+θH M (3)

θ

)
.

Lemma 1. For any α ∈N∪ {0},

sup
|u|≤θ−ε

|E0[Xα
θ e i uXθ ]−E0[Y α

θ e i uYθ ]| = o(θ2H+ε).

Proof. Since |e i x −1| ≤ |x|, we have

|E0[Xα
θ e i uXθ ]−E0[Y α

θ e i uYθ ]| ≤ E0[|Xα
θ −Y α

θ |]+uE0[|Yθ|α|Xθ−Yθ|]
≤C (α,ε)(1+|u|)‖Xθ−Yθ‖1+ε

for some constant C (α,ε) > 0 by (2). Since σ0(θ) =O(θ1/2), we obtain the result from (3).

Lemma 2. For any δ ∈ [0, (H −ε)/3),

sup
|u|≤θ−δ

∣∣∣E0[Y α
θ e i uYθ ]−E0

[
e i uM (0)

θ

(
(M (0)

θ
)α+ A(α,u, M (0)

θ
)+B(α,u, M (0)

θ
)
)]∣∣∣= o(θ2H+ε),
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where

Aθ(α,u, x) =(
i uxα+αxα−1) (E0[Yθ|M (0)

θ
= x]−x),

Bθ(α,u, x) =
(
−u2

2
xα+ i uαxα−1 + α(α−1)

2
xα−2

)
×

(
θ2H E0[|M (1)

θ
|2|M (0)

θ
= x]−σ0(θ)θH E0[M (1)

θ
|M (0)

θ
= x]+ σ0(θ)2

4

)
.

Proof. This follows from the fact that∣∣∣∣e i x −1− i x + x2

2

∣∣∣∣≤ |x|3
6

for all x ∈R.

Lemma 3. Define qθ(x) by

qθ(x) =φ(x)−θH a(1)
θ

(x)−θ2H a(2)
θ

(x)− σ0(θ)

2
(xφ(x)−θH a(3)

θ
(x))

+ θ2H

2
cθ(x)− θHσ0(θ)

2
bθ(x)+ σ0(θ)2

8
(x2 −1)φ(x)

(5)

where a(i )
θ
, bθ and cθ are defined by (4). Then,∫

R
e i ux xαqθ(x)dx = E0

[
e i uM (0)

θ

(
(M (0)

θ
)α+ A(α,u, M (0)

θ
)+B(α,u, M (0)

θ
)
)]

.

Proof. Since the density of M (0)
θ

is φ by the assumption, this simply follows from integration
by parts.

3.2 Density expansion

Here we derive an asymptotic expansion of the density of Xθ .

Lemma 4. There exists a density of Xθ under Q(·|F0) and for any α, j ∈N∪ {0},

sup
θ∈(0,1)

∫
|u| j |E0[Xα

θ e i uXθ ]|du <∞

Proof. Note that the distribution of Xθ is Gaussian conditionally on Gθ under Q(·|F0), with
conditional mean

− 1

2σ0(θ)
〈M〉θ+

1

σ0(θ)

∫ θ

0

p
vtρt dWt

and conditional variance
1

σ0(θ)2

∫ θ

0
vt (1−ρ2

t )dt .
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Therefore, Xθ admits a density pθ(x) under Q(·|F0). Furthermore, the density function is
in the Schwartz space S and each Schwartz semi-norm is uniformly bounded in θ by (1).
Therefore,

sup
θ∈(0,1)

∫
|u| j |E0[Xα

θ e i uXθ ]|du = sup
θ∈(0,1)

∫ ∣∣∣∣∫ u j xαe i ux pθ(x)dx

∣∣∣∣du

= sup
θ∈(0,1)

∫ ∣∣∣∣∫ e i ux∂
j
x (xαpθ(x))dx

∣∣∣∣du <∞

since the Fourier transform is a continuous linear mapping from S to S .

Theorem 1. Denote by pθ the density of Xθ under Q(·|F0). Then, for any α ∈N∪ {0},

sup
x∈R

(1+x2)α|pθ(x)−qθ(x)| = o(θ2H ) (6)

as θ→ 0, where qθ is defined by (5).

Proof. As seen in the proof of Lemma 4, the density pθ exists in the Schwartz space. By the
Fourier identity,

(1+x2)α(pθ(x)−qθ(x)) = 1

2π

∫ ∫
e i uy (1+ y2)α(pθ(y)−qθ(y))dye−i ux du

Combining the lemmas in the previous section, taking δ ∈ (0,min{ε, (H −ε)/3}), we have∫
|u|≤θ−δ

∣∣∣∣∫ e i uy (1+ y2)α(pθ(y)−qθ(y))dy

∣∣∣∣du = o(θ2H ).

On the other hand,∫
|u|≥θ−δ

∣∣∣∣∫ e i uy (1+ y2)αpθ(y)dy

∣∣∣∣du ≤ θ jδ
∫
|u|≥θ−δ

|u| j |E0[(1+X 2
θ )αe i uXθ ]|du

=O(θ jδ)

for any j ∈N by Lemma 4. The remainder∫
|u|≥θ−δ

∣∣∣∣∫ e i uy (1+ y2)αqθ(y)dy

∣∣∣∣du

is handled in the same manner.

3.3 Put option price expansion

Here we consider put option prices. Denote by pθ the density of Xθ as before and consider a
normalized put option price

p(Feσ0(θ)z ,θ)

Fσ0(θ)
= e−rθ

∫ z

−∞

∫ ζ

−∞
pθ(x)dxeσ0(θ)ζdζ.
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Lemma 5. Let qθ(x), θ > 0 be a family of functions on R (not necessarily the one given by (5)). If

sup
x∈R

(1+x2)α|pθ(x)−qθ(x)| = o(θβ)

for some α> 5/4 and β> 0, then for any z0 ∈R,
p(Feσ0(θ)z ,θ)

Fσ0(θ)
= e−rθ

∫ z

−∞

∫ ζ

−∞
qθ(x)dxeσ0(θ)ζdζ+o(θβ)

uniformly in z ≤ z0.

Proof. By the Cauchy-Schwarz inequality,

e−rθ
∫ z

−∞

∫ ζ

−∞
|pθ(x)−qθ(x)|dzeσ0(θ)ζdζ

≤ e−rθ
∫ z

−∞

√∫ ζ

−∞
dx

(1+x2)2α−1

√∫ ζ

−∞
(1+x2)2α−1|pθ(x)−qθ(x)|2dzeσ0(θ)ζdζ

≤p
πe−rθ+σ0(θ)z sup

x∈R
(1+x2)α|pθ(x)−qθ(x)|

∫ z

−∞

√∫ ζ

−∞
dx

(1+x2)2α−1 dζ,

which is o(θβ) if α> 5/4.

Proposition 1. Suppose we have (6) with qθ of the form

qθ(x) =φ
(

x + σ0(θ)

2

){
1+κ3(θ)

(
H3

(
x + σ0(θ)

2

)
−σ0(θ)H2

(
x + σ0(θ)

2

))
θH

}
+φ(x)

(
κ4(θ)H4(x)+ κ3(θ)2

2
H6(x)

)
θ2H

(7)

with bounded functions κ3(θ) and κ4(θ) of θ, where Hk is the kth Hermite polynomial:

H1(x) = x, H2(x) = x2 −1, H3(x) = x3 −3x, H4(x) = x4 −6x2 +3, . . .

Then, for any z0 ∈R,
p(Feσ0(θ)z ,θ)

Fe−rθσ0(θ)
= 1

σ0(θ)

(
Φ

(
z + σ0(θ)

2

)
eσ0(θ)z −Φ

(
z − σ0(θ)

2

))
+κ3(θ)φ

(
z + σ0(θ)

2

)
H1

(
z + σ0(θ)

2

)
eσ0(θ)zθH

+φ(z)

(
κ4(θ)H2(z)+ κ3(θ)2

2
H4(z)

)
θ2H +o(θ2H )

uniformly in z ≤ z0.

Proof. This is a direct consequence of the previous lemma. For example,

d

dz

{
e−σ0(θ)z d

dz

{
1

σ0(θ)

(
Φ

(
z + σ0(θ)

2

)
eσ0(θ)z −Φ

(
z − σ0(θ)

2

))}}
=φ

(
z + σ0(θ)

2

)
.

The derivative of Hk (z)φ(z) is −Hk+1(z)φ(z). Recall also σ0(θ) =O(
p
θ).
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3. Asymptotic expansions

3.4 Implied volatility expansion

Here we give an expansion formula for the Black-Scholes implied volatility. Denote by
pBS(K ,θ,σ) the put option price with strike price K and maturity θ under the Black-Scholes
model with volatility parameter σ> 0. Given a put option price p(K ,θ), K = Fek , the implied
volatility σBS(k,θ) is defined through

pBS(K ,θ,σBS(k,θ)) = p(K ,θ).

Theorem 2. Suppose we have (6) with qθ of the form (7). Then, for any z ∈R,

σBS(
p
θz,θ)

= κ2

{
1+κ3

(
z

κ2
+ κ2

p
θ

2

)
θH +

(
3κ2

3

2
−κ4 + (κ4 −3κ2

3)
z2

κ2
2

)
θ2H

}
+o(θ2H ),

where κ2 = κ2(θ) =σ0(θ)/
p
θ, κ3 = κ3(θ) and κ4 = κ4(θ).

Proof. Step 1). Fix z ∈R. Note that

Pθ(σ) := pBS(Fe
p
θz ,θ,σ)

Fe−rθ
p
θ

= 1p
θ

(
Φ

(
z

σ
+ σ

p
θ

2

)
e
p
θz −Φ

(
z

σ
− σ

p
θ

2

))
(8)

and that

Pθ : [0,∞] →
[

(e
p
θz −1)+p
θ

,
e
p
θz

p
θ

]
is a strictly increasing function. From (8) and Proposition 1, we have

p(Fe
p
θz ,θ)

Fe−rθ
p
θ

=Pθ(κ2)+κ2κ3φ

(
z

κ2
+ κ2

p
θ

2

)
H1

(
z

κ2
+ κ2

p
θ

2

)
e
p
θzθH

+κ2φ

(
z

κ2

)(
κ4H2

(
z

κ2

)
+ κ2

3

2
H4

(
z

κ2

))
θ2H +o(θ2H )

=Pθ(κ2)+O(θH ).

Therefore
σBS(

p
θz,θ) = P−1

θ (Pθ(κ2)+O(θH )).

By (1), κ2 is bounded in θ, say, by L > 0. The function Pθ converges as θ→ 0 to

P0(σ) := zΦ
( z

σ

)
+σφ

( z

σ

)
pointwize, and by Dini’s theorem, this convergence is uniform on [0,L]. Since the limit
function P0 is strictly increasing, the inverse functions P−1

θ
converges to P−1

0 . Again by Dini’s
theorem, this convergence is uniform and in particular, P−1

θ
are equicontinuous. Thus we con-

clude σBS(
p
θz,θ)−κ2 → 0 as θ→ 0. Then, write σBS(

p
θz,θ) = κ2 +β(θ) and substitute this
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VII. Short-term at-the-money asymptotics under stochastic volatility models

to the equation Pθ(σBS(
p
θz,θ)) = Pθ(κ2)+O(θH ). The Taylor expansion gives β(θ) =O(θH ).

Step 2). From (8) we have

Pθ(σ) =σF1

( z

σ

)
+ σ2

p
θ

2
F2

( z

σ

)
+ σ3θ

6
F3

( z

σ

)
+o(θ),

where

F1(x) = xΦ(x)+φ(x), F2(x) = x2Φ(x)+xφ(x), F3(x) = x3Φ(x)+
(

x2 − 1

4

)
φ(x).

Using that

∂σ

{
σF1

( z

σ

)}
=φ

( z

σ

)
,

we have

κ2F1

(
z

κ2

)
+ κ2

2

p
θ

2
F2

(
z

κ2

)
+κ2φ

(
z

κ2

)
κ3H1

(
z

κ2

)
e
p
θzθH

=σBS(
p
θz,θ)F1

(
z

σBS(
p
θz,θ)

)
+ σBS(

p
θz,θ)2

p
θ

2
F2

(
z

σBS(
p
θz,θ)

)
+O(θ2H )

= κ2F1

(
z

κ2

)
+ κ2

2

p
θ

2
F2

(
z

κ2

)
+φ

(
z

κ2

)
(σBS(

p
θz,θ)−κ2)+O(θ2H ),

from which we conclude σBS(
p
θz,θ) = κ2 +κ3ze

p
θzθH +O(θ2H ).

Step 3). Using that

∂2
σ

{
σF1

( z

σ

)}
= z2

σ3φ
( z

σ

)
, ∂σ

{
σ2F2

( z

σ

)}
= zφ

( z

σ

)
,

we obtain

κ2φ

(
z

κ2
+ κ2

p
θ

2

)(
κ3H1

(
z

κ2
+ κ2

p
θ

2

)
e
p
θzθH +

(
κ4H2

(
z

κ2

)
+ κ2

3

2
H4

(
z

κ2

))
θ2H

)

=p(Fe
p
θz ,θ)

Fe−rθ
p
θ

−Pθ(κ2)+o(θ2H )

=Pθ(σBS(
p
θz, z))−Pθ(κ2)+o(θ2H )

=∂σ
{
σF1

( z

σ

)}
|σ=κ2

(σBS(
p
θz,θ)−κ2)+ 1

2
∂2
σ

{
σF1

( z

σ

)}
|σ=κ2

(σBS(
p
θz,θ)−κ2)2

+
p
θ

2
∂σ

{
σ2F2

( z

σ

)}∣∣∣
σ=κ2

(σBS(
p
θz,θ)−κ2)+o(θ2H )

=φ
(

z

κ2

)
(σBS(

p
θz,θ)−κ2)+

p
θ

2
zφ

(
z

κ2

)
(σBS(

p
θz,θ)−κ2)

+ z2

2κ3
2

φ

(
z

κ2

)
(σBS(

p
θz,θ)−κ2)2 +o(θ2H )
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from Proposition 1 and Step 2. The left hand side is further expanded as

κ2φ

(
z

κ2

){
κ3H1

(
z

κ2

)
e
p
θzθH−κ3H2

(
z

κ2

)
κ2

2
θH+1/2

+
(
κ4H2

(
z

κ2

)
+ κ2

3

2
H4

(
z

κ2

))
θ2H

}
+o(θ2H ).

Denote γ(θ) =σBS(
p
θz,θ)−κ2 −κ3ze

p
θzθH and substitute this to obtain

γ(θ) =−κ3H2

(
z

κ2

)
κ2

2

2
θH+1/2 +κ2

(
κ4H2

(
z

κ2

)
+ κ2

3

2
H4

(
z

κ2

))
θ2H

− κ3

2
z2θH+1/2 − κ2

3

2κ3
2

z4θ2H +o(θ2H )

=
(
κ2

2

2
− z2

)
κ3θ

H+1/2 +κ2

(
(κ4 −3κ2

3)
z2

κ2
2

+ 3

2
κ2

3 −κ4

)
θ2H +o(θ2H ),

from which we conclude the result.

4 Asymptotics for at-the-money skew and curvature

Here we derive the asymptotic behavior of at-the-money implied volatility skew and curvature.
They are defined respectively as the first and the second derivatives of the implied volatility at
k = 0. The skew behavior is especially important in order to argue the consistency of a model
to the empirically observed power law.

Theorem 3. Suppose we have (6) with qθ of the form (7). Then,

∂kσBS(0,θ) = κ3(θ)θH−1/2 +o(θ2H−1/2),

∂2
kσBS(0,θ) = 2

κ4(θ)−3κ3(θ)2

κ2(θ)
θ2H−1 +o(θ2H−1).

Proof. It is known (see e.g., Fukasawa [Fuk12]) that

∂kσBS(k,θ) = Q(k ≥σ0(θ)Xθ|F0)−Φ( f2(k,θ))p
θφ( f2(k,θ))

,

∂2
kσBS(k,θ) = pθ(k/σ0(θ))

σ0(θ)
p
θφ( f2(k,θ))

−σBS(k,θ)∂k f1(k,θ)∂k f2(k,θ),
(9)

where

f1(k,θ) = kp
θσBS(k,θ)

−
p
θσBS(k,θ)

2
, f2(k,θ) = kp

θσBS(k,θ)
+
p
θσBS(k,θ)

2
.

Since the condition of Proposition 1 is met, we have

Q(0 ≥ Xθ|F0) =Φ
(
σ0(θ)

2

)
+κ3(θ)φ

(
σ0(θ)

2

)
θH +o(θ2H ).
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On the other hand, by Theorem 2,

f2(0,θ) =
p
θ

2
κ2(θ)+O(θ2H+1/2)

and so,

Φ( f2(0,θ)) =Φ
(
σ0(θ)

2

)
+O(θ2H+1/2),

φ( f2(0,θ)) =φ(0)−φ(0)
θ

8
κ2(θ)2 +O(θ2H+1).

Then, it follows from (9) that

∂kσBS(0,θ) = κ3(θ)θH−1/2 +o(θ2H−1/2). (10)

Further, under the condition, we have

pθ(0) =φ
(
σ0(θ)

2

){
1− κ3(θ)

2
σ0(θ)θH +

(
3κ4(θ)−15

κ3(θ)2

2

)
θ2H

}
+o(θ2H ).

On the other hand, by Theorem 2 and (10),

σBS(0,θ)∂k f1(0,θ)∂k f2(0,θ)

= 1

σBS(0,θ)θ
+O(θ2H )

= 1

κ2(θ)θ

(
1− 1

2
κ2(θ)κ3(θ)θH+1/2 −

(
3

2
κ3(θ)2 −κ4(θ)

)
θ2H

)
+o(θ2H−1).

Then, it follows from (9) that

∂2
kσBS(0,θ) = 2κ4(θ)−6κ3(θ)2

κ2(θ)
θ2H−1 +o(θ2H−1),

which completes the proof.

5 The rough Bergomi model

Here we show that the rough Bergomi model proposed by [BFG16] fits the framework and
compute the expansion terms. Let ρt = ρ ∈ (−1,1) be a constant and

dlog vt = ηdW H
t ,

where η> 0 is a constant and W H is a fractional Brownian motion with the Hurst parameter
H ∈ (0,1/2), given as

W H
t = cH

{∫ t

0
(t − s)H−1/2dWs +

∫ 0

−∞
(t − s)H−1/2 − (−s)H−1/2dWs

}
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5. The rough Bergomi model

with a normalizing constant cH > 0. Since vt is log-normally distributed, (1) holds by Jensen’s
inequality. We have

vt = v0(t )exp

{
ηH

p
2H

∫ t

0
(t − s)H−1/2dWs −

η2
H

2
t 2H

}
,

where ηH = ηcH /
p

2H . Now we state the main result of this section.

Theorem 4. We have (6) for qθ given by (7) with

κ3(θ) = ρηH

√
H

2

1

θHσ0(θ)3

∫ θ

0
exp

{
−η

2
H

8
t 2H

}∫ t

0
(t − s)H−1/2

√
v0(s)dsv0(t )dt ,

κ4(θ) = (1+2ρ2)η2
H H

(2H +1)2(2H +2)
+ ρ2η2

H Hβ(H +3/2, H +3/2)

2(H +1/2)2 ,

where β is the beta function.

Proof. The conditions (2) and (3) follow from Lemma 6 below. The functions a(i )
θ

and cθ are
computed in Lemmas 7, 8, 9 and 10 below. The function bθ is obtained as the the derivative
of a(1)

θ
. They are apparently rapidly decreasing smooth functions. Then, by Theorem 1, it

suffices to show that qθ defined by (5) has the form (7) up to o(θ2H ) with κ3(θ) and κ4(θ)
specified above.

By the Taylor expansion, using that the derivative of a(1)
θ

is bθ and that σ0(θ) = O(
p
θ), it is

easy to verify

qθ(x) =φ
(

x + σ0(θ)

2

)
−θH a(1)

θ

(
x + σ0(θ)

2

)
−θ2H a(2)

θ
(x)+ θ2H

2
cθ(x)

+ σ0(θ)θH

2
a(3)
θ

(
x + σ0(θ)

2

)
+O(θ1+H )

in the Schwarz space. The rest is straightforward.

Proposition 1 and Theorems 2 and 3 are therefore valid here. The resulting formula of the
implied volatility expansion turns out reduce the Bergomi-Guyon expansion formula formally
derived in [BFG16] when H < 1/2 and the forward variance curve is flat, that is, when v0 is
constant. Note however that there is a typo in the second order term in [BFG16]. Numerical
experiments are given in that paper. When v0 is constant, the same formula can be formally
obtained also by expanding the rate function appeared in the large deviation result of [FZ17];
see [BFG+17] for a rigorous treatment in this approach.

In order to prove Lemmas below, we need some preparation. Let Hk , k = 0,1, . . . be the
Hermite polynomials as before:

Hk (x) = (−1)k ex2/2 dk

dxk
e−x2/2
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and Hk (x, a) = ak/2Hk (x/
p

a) for a > 0. As is well-known, we have

exp

{
ux − au2

2

}
=

∞∑
k=0

Hk (x, a)
uk

k !

and for any continuous local martingale M and n ∈N,

dL(n)
t = nL(n−1)

t dMt , (11)

where L(k) = Hk (M ,〈M〉) for k ∈N. See, e.g., Revuz and Yor [RY13].

Define Ŵ , Ŵ ′, B̂ by

Ŵt = 1

σ0(θ)

∫ τ−1(t )

0

√
v0(s)dWs , Ŵ ′

t =
1

σ0(θ)

∫ τ−1(t )

0

√
v0(s)dW ′

s

and B̂ = ρŴ +
√

1−ρ2Ŵ ′, where

τ(s) = 1

σ0(θ)2

∫ s

0
v0(t )dt .

Then, (Ŵ ,Ŵ ′) is a 2-dimensional Brownian motion under E0 and for any square-integrable
function f , ∫ a

0
f (s)dWs =σ0(θ)

∫ τ(a)

0

f (τ−1(t ))√
v0(τ−1(t ))

dŴt .

Therefore,

Mθ =σ0(θ)
∫ 1

0
exp

{
θH F t

t −
η2

H

4
|τ−1(t )|2H

}
dB̂t

where

F t
u = ηH

√
H

2

σ0(θ)

θH

∫ u

0

(τ−1(t )−τ−1(s))H−1/2√
v0(τ−1(s))

dŴs , u ∈ [0, t ].

Let

G (k)
t = Hk (F t

t ,〈F t 〉t ).

Then, we have

Mθ =σ0(θ)
∫ 1

0
exp

{
−η

2
H

8
|τ−1(t )|2H

}
exp

{
θH F t

t −
θ2H

2
〈F t 〉t

}
dB̂t

=σ0(θ)
∫ 1

0
exp

{
−η

2
H

8
|τ−1(t )|2H

} ∞∑
k=0

G (k)
t
θHk

k !
dB̂t .
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Lemma 6. We have (3) with

M (0)
θ

= B̂1,

M (1)
θ

=
∫ 1

0
hθ(t )G (1)

t dB̂t ,

M (2)
θ

=
∫ 1

0

{
hθ(t )−1

θ2H
+hθ(t )

G (2)
t

2

}
dB̂t ,

M (3)
θ

= 2
∫ 1

0
F t

t dt ,

where

hθ(t ) = exp

{
−η

2
H

8
|τ−1(t )|2H

}
.

Proof. For M (i )
θ

, i = 0,1,2, it suffices to show∥∥∥∥∥
∫ 1

0
hθ(t )

∞∑
k=J

G (k)
t
θHk

k !
dB̂t

∥∥∥∥∥
2

=O(θH J )

for any J ≥ 3. The proof for M (3)
θ

is similar and so omitted. It suffices to show

E0

[∫ 1

0

∣∣∣∣∣ ∞∑
k=J

G (k)
t
θHk

k !

∣∣∣∣∣
2

dt

]
=O(θ2H J ).

By the Cauchy-Schwarz inequality, the left hand side is dominated by

∞∑
k=J

θHk
∞∑

k=J

θHk

(k !)2

∫ 1

0
E0[|G (k)

t |2]dt

Let
G (k)

t ,s = Hk (F t
s ,〈F t 〉s), s ∈ [0, t ].

Then, by (11),

E0[|G (k)
t |2] = E0[|G (k)

t ,t |2]

= k2
∫ t

0
E0[|G (k−1)

t ,s |2]d〈F t 〉s

= k2(k −1)2
∫ t

0

∫ s1

0
E0[|G (k−2)

t ,s2
|2]d〈F t 〉s2 d〈F t 〉s1

≤ (k !)2〈F t 〉k
t = (k !)2

(
η2

H

4

|τ−1(t )|2H

θ2H

)k

.

Note that τ−1(t ) ≤ τ−1(1) = θ. Therefore, for sufficiently small θ,

∞∑
k=J

θHk
∞∑

k=J

θHk

(k !)2

∫ 1

0
E0[|G (k)

t |2]dt ≤
(
η2

H

4

)J
θ2H J

(1−θH )(1−θHη2
H /4)

,

which completes the proof.
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Now we compute a(i )
θ

, bθ and cθ based on Lemma 6. The following lemmas follow from the
results in Section VII.A by straightforward computations.

Lemma 7.

a(1)
θ

(x) =−H3(x)φ(x)ρηH

√
H

2

σ0(θ)

θH

∫ 1

0
hθ(t )

∫ t

0

(τ−1(t )−τ−1(s))H−1/2√
v0(τ−1(s))

dsdt

=−H3(x)φ(x)ρηH

√
H

2

× 1

θHσ0(θ)3

∫ θ

0
exp

{
−η

2
H

8
t 2H

}∫ t

0
(t − s)H−1/2

√
v0(s)dsv0(t )dt

∼−H3(x)φ(x)
ρηH

p
2H

2(H +1/2)(H +3/2)
.

Lemma 8.

a(2)
θ

(x) =−H2(x)φ(x)
∫ 1

0

hθ(t )−1

θ2H
dt

−H4(x)φ(x)ρ2η
2
H H

4

σ0(θ)2

θ2H

∫ 1

0
hθ(t )

(∫ t

0

(τ−1(t )−τ−1(s))H−1/2√
v0(τ−1(s))

ds

)2

dt

∼ H2(x)φ(x)
∫ 1

0

η2
H

8θ2H
|τ−1(t )|2H dt −H4(x)φ(x)ρ2 η2

H H

(2H +1)2(2H +2)
.

Lemma 9.

a(3)
θ

(x) =−2H2(x)φ(x)ρηH

√
H

2

σ0(θ)

θH

∫ 1

0

∫ t

0

(τ−1(t )−τ−1(s))H−1/2√
v0(τ−1(s))

dsdt

∼−2H2(x)φ(x)
ρηH

p
2H

2(H +1/2)(H +3/2)
.
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Lemma 10.

cθ(x) = H6(x)φ(x)ρ2η
2
H H

2

σ0(θ)2

θ2H

(∫ 1

0
hθ(t )

∫ t

0

(τ−1(t )−τ−1(s))H−1/2√
v0(τ−1(s))

dsdt

)2

+H4(x)φ(x)ρ2η
2
H H

2

σ0(θ)2

θ2H

∫ 1

0
hθ(t )2

(∫ t

0

(τ−1(t )−τ−1(s))H−1/2√
v0(τ−1(s))

ds

)2

dt

+H4(x)φ(x)ρ2η2
H H

σ0(θ)2

θ2H

∫ 1

0
hθ(t )

∫ t

0

(τ−1(t )−τ−1(s))H−1/2√
v0(τ−1(s))

ds

×
∫ 1

t
hθ(u)

(τ−1(u)−τ−1(t ))H−1/2√
v0(τ−1(t ))

dudt

+H4(x)φ(x)
η2

H H

2

σ0(θ)2

θ2H

∫ 1

0
hθ(t )2

(∫ 1

s

(τ−1(t )−τ−1(s))H−1/2√
v0(τ−1(s))

dt

)2

ds

+H2(x)φ(x)
η2

H H

2

σ0(θ)2

θ2H

∫ 1

0
hθ(t )2

∫ t

0

(τ−1(t )−τ−1(s))2H−1

v0(τ−1(s))
dsdt

∼ H6(x)φ(x)ρ2 η2
H H

2(H +1/2)2(H +3/2)2 +H4(x)φ(x)
2(1+ρ2)η2

H H

(2H +1)2(2H +2)

+H4(x)φ(x)
ρ2η2

H Hβ(H +3/2, H +3/2)

(H +1/2)2

+H2(x)φ(x)
∫ 1

0

η2
H

4θ2H
|τ−1(t )|2H dt .

VII.A Conditional expectations of Wiener-Itô integrals

Here we collect results on the conditional expectations of Wiener-Itô integrals that follow from
Proposition 3 of Nualart et al [NUZ88]. Let x ∈ R and B be a standard Brownian motion
(B0 = 0). Let f be a continuous function on

{
(s, t ) ∈ (0,1)2; s < t

}

with

∫ 1

0

∫ t

0
| f (s, t )|2dsdt <∞.
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Lemma 11.

E

[∫ 1

0

∫ t

0
f (s, t )dBsdt

∣∣∣ B1 = x

]
= H1(x)

∫ 1

0

∫ t

0
f (s, t )dsdt ,

E

[∫ 1

0

∫ t

0
f (s, t )dBsdBt

∣∣∣ B1 = x

]
= H2(x)

∫ 1

0

∫ t

0
f (s, t )dsdt ,

E

[∫ 1

0

(∫ t

0
f (s, t )dBs

)2

dBt

∣∣∣ B1 = x

]
= H3(x)

∫ 1

0

(∫ t

0
f (s, t )ds

)2

dt

+H1(x)
∫ 1

0

∫ t

0
f (s, t )2dsdt ,

E

[∫ 1

0

(∫ 1

s
f (s, t )dBt

)2

ds
∣∣∣ B1 = x

]
= H2(x)

∫ 1

0

(∫ 1

s
f (s, t )dt

)2

ds

+
∫ 1

0

∫ 1

s
f (s, t )2dtds.

Lemma 12.

E

[(∫ 1

0

∫ t

0
f (s, t )dBsdBt

)2 ∣∣∣ B1 = x

]
−

∫ 1

0

∫ t

0
f (s, t )2dsdt

= H4(x)

(∫ 1

0

∫ t

0
f (s, t )dsdt

)2

+H2(x)
∫ 1

0

(∫ t

0
f (s, t )ds +

∫ 1

t
f (t ,u)du

)2

dt .

206



Part VI

Markovian approximation of rough
volatility models

207





CHAPTER VIII

Multi-factor approximation of rough
volatility models

Abstract

Rough volatility models are very appealing because of their remarkable fit of both historical
and implied volatilities. However, due to the non-Markovian and non-semimartingale
nature of the volatility process, there is no simple way to simulate efficiently such models,
which makes risk management of derivatives an intricate task. In this paper, we design
tractable multi-factor stochastic volatility models approximating rough volatility models
and enjoying a Markovian structure. Furthermore, we apply our procedure to the specific
case of the rough Heston model. This in turn enables us to derive a numerical method
for solving fractional Riccati equations appearing in the characteristic function of the
log-price in this setting.

Keywords: Rough volatility models, rough Heston models, stochastic Volterra equations,
affine Volterra processes, fractional Riccati equations, limit theorems.

1 Introduction

Empirical studies of a very wide range of assets volatility time-series in [GJR18] have shown that
the dynamics of the log-volatility are close to that of a fractional Brownian motion W H with a
small Hurst parameter H of order 0.1. Recall that a fractional Brownian motion W H can be
built from a two-sided Brownian motion thanks to the Mandelbrot-van Ness representation

W H
t = 1

Γ(H +1/2)

∫ t

0
(t − s)H− 1

2 dWs + 1

Γ(H +1/2)

∫ 0

−∞
(
(t − s)H− 1

2 − (−s)H− 1
2
)
dWs .

The fractional kernel (t − s)H− 1
2 is behind the H −ε Hölder regularity of the volatility for any

ε> 0. For small values of the Hurst parameter H , as observed empirically, stochastic volatility
models involving the fractional kernel are called rough volatility models.

Aside from modeling historical volatility dynamics, rough volatility models reproduce accu-
rately with very few parameters the behavior of the implied volatility surface, see [BFG16]
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VIII. Multi-factor approximation of rough volatility models

and Chapter V, especially the at-the-money skew, see [Fuk11]. Moreover, microstructural
foundations of rough volatility are studied in [JR16b] and Chapter I.

In this paper, we are interested in a class of rough volatility models where the dynamics of the
asset price S and its stochastic variance V are given by

dSt = St

√
Vt dWt , S0 > 0, (1)

Vt =V0 + 1

Γ(H + 1
2 )

∫ t

0
(t −u)H− 1

2 (θ(u)−λVu)du + 1

Γ(H + 1
2 )

∫ t

0
(t −u)H− 1

2σ(Vu)dBu , (2)

for all t ∈ [0,T ], on some filtered probability space (Ω,F ,F,P). Here T is a positive time
horizon, the parameters λ and V0 are non-negative, H ∈ (0,1/2) is the Hurst parameter, σ is
a continuous function and W = ρB +

√
1−ρ2B⊥ with (B ,B⊥) a two-dimensional F-Brownian

motion and ρ ∈ [−1,1]. Moreover, θ is a deterministic mean reversion level allowed to be
time-dependent to fit the market forward variance curve (E[Vt ])t≤T as explained in Section 2
and in Chapter III. Under some general assumptions, we establish in Section 2 the existence of
a weak non-negative solution to the fractional stochastic integral equation in (2) exhibiting
H −ε Hölder regularity for any ε> 0. Hence, this class of models is a natural rough extension
of classical stochastic volatility models where the fractional kernel is introduced in the drift
and stochastic part of the variance process V . Indeed, when H = 1/2, we recover classical
stochastic volatility models where the variance process is a standard diffusion.

Despite the fit to the historical and implied volatility, some difficulties are encountered in
practice for the simulation of rough volatility models and for pricing and hedging derivatives
with them. In fact, due to the introduction of the fractional kernel, we lose the Markovian
and semimartingale structure. In order to overcome theses difficulties, we approximate these
models by simpler ones that we can use in practice.

In Chapters I, II and III, the rough Heston model (which corresponds to the case of σ(x) = νpx)
is built as a limit of microscopic Hawkes-based price models. This allowed the understanding
of the microstructural foundations of rough volatility and also led to the formula of the
characteristic function of the log-price. Hence, the Hawkes approximation enabled us to solve
the pricing and hedging under the rough Heston model. However, this approach is specific to
the rough Heston case and can not be extended to an arbitrary rough volatility model of the
form (1)-(2).

Inspired by the works of [CC98, CCM00, HS15, Mur11] and Chapter IV, we provide a natural
Markovian approximation for the class of rough volatility models (1)-(2). The main idea is to

write the fractional kernel K (t ) = t H− 1
2

Γ(H+1/2) as a Laplace transform of a positive measure µ

K (t ) =
∫ ∞

0
e−γtµ(dγ); µ(dγ) = γ−H− 1

2

Γ(H +1/2)Γ(1/2−H)
dγ. (3)

We then approximate µ by a finite sum of Dirac measures µn =∑n
i=1 cn

i δγ
n
i

with positive weights
(cn

i )1≤i≤n and mean reversions (γn
i )1≤i≤n , for n ≥ 1. This in turn yields an approximation of
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the fractional kernel by a sequence of smoothed kernels (K n)n≥1 given by

K n(t ) =
n∑

i=1
cn

i e−γ
n
i t , n ≥ 1.

This leads to a multi-factor stochastic volatility model (Sn ,V n) = (Sn
t ,V n

t )t≤T , which is Marko-
vian with respect to the spot price and n variance factors (V n,i )1≤i≤n and is defined as
follows

dSn
t = Sn

t

√
V n

t dWt , V n
t = g n(t )+

n∑
i=1

cn
i V n,i

t , (4)

where
dV n,i

t = (−γn
i V n,i

t −λV n
t )d t +σ(V n

t )dBt ,

and g n(t ) = V0 +
∫ t

0 K n(t − s)θ(s)d s with the initial conditions Sn
0 = S0 and V n,i

0 = 0. Note
that the factors (V n,i )1≤i≤n share the same dynamics except that they mean revert at dif-
ferent speeds (γn

i )1≤i≤n . Relying on existence results of stochastic Volterra equations in
[AJLP17] and Chapter IV, we provide in Theorem 1 the strong existence and uniqueness of
the model (Sn ,V n), under some general conditions. Thus the approximation (4) is uniquely
well-defined. We can therefore deal with simulation, pricing and hedging problems under
these multi-factor models by using standard methods developed for stochastic volatility models.

Theorem 2, which is the main result of this paper, establishes the convergence of the multi-
factor approximation sequence (Sn ,V n)n≥1 to the rough volatility model (S,V ) in (1)-(2) when
the number of factors n goes to infinity, under a suitable choice of the weights and mean
reversions (cn

i ,γn
i )1≤i≤n . This convergence is obtained from a general result about stability of

stochastic Volterra equations derived in Section 3.4.

In [AJLP17] and Chapters II and III, the characteristic function of the log-price for the specific
case of the rough Heston model is obtained in terms of a solution of a fractional Riccati
equation. We highlight in Section 4.1 that the corresponding multi-factor approximation (4)
inherits a similar affine structure as in the rough Heston model. More precisely, it displays
the same characteristic function formula involving a n-dimensional classical Riccati equation
instead of the fractional one. This suggests solving numerically the fractional Riccati equation
by approximating it through a n-dimensional classical Riccati equation with large n, see
Theorem 4. In Section 4.2, we discuss the accuracy and complexity of this numerical method
and compare it to the Adams scheme, see [DFF02, DFF04, DF99] and Chapter II.

The paper is organized as follows. In Section 2, we define the class of rough volatility models
(1)-(2) and discuss the existence of such models. Then, in Section 3, we build a sequence of
multi-factor stochastic volatility models of the form of (4) and show its convergence to a rough
volatility model. By applying this approximation to the specific case of the rough Heston
model, we obtain a numerical method for computing solutions of fractional Riccati equations
that is discussed in Section 4. Finally, some proofs are relegated to Section 5 and some useful
technical results are given in an Appendix.
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VIII. Multi-factor approximation of rough volatility models

2 A definition of rough volatility models

We provide in this section the precise definition of rough volatility models given by (1)-(2). We
discuss the existence of such models and more precisely of a non-negative solution of the
fractional stochastic integral equation (2). The existence of an unconstrained weak solution
V = (Vt )t≤T is guaranteed by Corollary 2 in the Appendix when σ is a continuous function
with linear growth and θ satisfies the condition

∀ε> 0, ∃Cε > 0; ∀u ∈ (0,T ] |θ(u)| ≤Cεu− 1
2−ε. (5)

Furthermore, the paths of V are Hölder continuous of any order strictly less than H and

sup
t∈[0,T ]

E[|Vt |p ] <∞, p > 0. (6)

Moreover using Theorem 6 together with Remarks 4 and 5 in the Appendix1, the existence of
a non-negative continuous process V satisfying (2) is obtained under the additional conditions
of non-negativity of V0 and θ and σ(0) = 0. We can therefore introduce the following class of
rough volatility models.

Definition 1. (Rough volatility models) We define a rough volatility model by any R×R+-valued
continuous process (S,V ) = (St ,Vt )t≤T satisfying

dSt = St

√
Vt dWt ,

Vt =V0 + 1

Γ(H +1/2)

∫ t

0
(t −u)H− 1

2 (θ(u)−λVu)du + 1

Γ(H +1/2)

∫ t

0
(t −u)H− 1

2σ(Vu)dBu ,

on a filtred probability space (Ω,F ,F,P) with non-negative initial conditions (S0,V0). Here T
is a positive time horizon, the parameter λ is non-negative, H ∈ (0,1/2) is the Hurst parameter
and W = ρB +

√
1−ρ2B⊥ with (B ,B⊥) a two-dimensional F-Brownian motion and ρ ∈ [−1,1].

Moreover, to guarantee the existence of such model, σ : R 7→ R is assumed continuous with linear
growth such that σ(0) = 0 and θ : [0,T ] 7→R is a deterministic non-negative function satisfying (5).

As done in Chapter III, we allow the mean reversion level θ to be time dependent in order
to be consistent with the market forward variance curve. More precisely, the following result
shows that the mean reversion level θ can be written as a functional of the forward variance
curve (E[Vt ])t≤T .

Proposition 1. Let (S,V ) be a rough volatility model given by Definition 1. Then, (E[Vt ])t≤T is
linked to θ by the following formula

E[Vt ] =V0 +
∫ t

0
(t − s)α−1Eα(−λ(t − s)α)θ(s)d s, t ∈ [0,T ], (7)

1Theorem 6 is used here with the fractional kernel K (t ) = t H− 1
2

Γ(H+1/2) together with b(x) = −λx and g (t ) =
V0 +

∫ t
0 K (t −u)θ(u)du.
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where α= H +1/2 and Eα(x) =∑
k≥0

xk

Γ(α(k+1)) is the Mittag-Leffler function. Moreover, (E[Vt ])t≤T

admits a fractional derivative2 of order α at each time t ∈ (0,T ] and

θ(t ) = Dα(E[V.]−V0)t +λE[Vt ], t ∈ (0,T ]. (8)

Proof. Thanks to (6) together with Fubini theorem, t 7→ E[Vt ] solves the following fractional
linear integral equation

E[Vt ] =V0 + 1

Γ(H +1/2)

∫ t

0
(t − s)H− 1

2 (θ(s)−λE[Vs])d s, t ∈ [0,T ], (9)

yielding (7) by Theorem 5 and Remark 3 in the Appendix. Finally, (8) is obviously obtained
from (9).

Finally, note that uniqueness of the fractional stochastic integral equation (2) is a difficult
problem. Adapting the proof in [MS15], we can prove pathwise uniqueness when σ is η-
Hölder continuous with η ∈ (1/(1+2H),1]. This result does not cover the square-root case,
i.e. σ(x) = νpx, for which weak uniqueness has been established in [AJLP17, MS15], see also
Chapter IV.

3 Multi-factor approximation of rough volatility models

Thanks to the small Hölder regularity of the variance process, models of Definition 1 are
able to reproduce the rough behavior of the volatility observed in a wide range of assets.
However, the fractional kernel forces the variance process to leave both the semimartingale
and Markovian worlds, which makes numerical approximation procedures a difficult and
challenging task in practice. The aim of this section is to construct a tractable and satisfactory
Markovian approximation of any rough volatility model (S,V ) of Definition 1. Because S is
entirely determined by (

∫ ·
0 Vsd s,

∫ ·
0

p
VsdWs), it suffices to construct a suitable approximation

of the variance process V . This is done by smoothing the fractional kernel.

More precisely, denoting by K (t ) = t H− 1
2

Γ(H+1/2) , the fractional stochastic integral equation (2)
reads

Vt =V0 +
∫ t

0
K (t − s) ((θ(s)−λVs)d s +σ(Vs)dBs) ,

which is a stochastic Volterra equation. Approximating the fractional kernel K by a sequence
of smooth kernels (K n)n≥1, one would expect the convergence of the following corresponding
sequence of stochastic Volterra equations

V n
t =V0 +

∫ t

0
K n(t − s)

(
(θ(s)−λV n

s )d s +σ(V n
s )dBs

)
, n ≥ 1,

to the fractional one.

2Recall that the fractional derivative of order α ∈ (0,1) of a function f is given by d
d t

∫ t
0

(t−s)−α
Γ(1−α) f (s)d s

whenever this expression is well defined.
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The argument of this section runs as follows. First, exploiting the identity (3), we construct a
family of potential candidates for (K n ,V n)n≥1 in Section 3.1 such that V n enjoys a Markovian
structure. Second, we provide convergence conditions of (K n)n≥1 to K in L2([0,T ],R) in
Section 3.2. Finally, the approximation result for the rough volatility model (S,V ) is established
in Section 3.3 relying on an abstract stability result of stochastic Volterra equations postponed
to Section 3.4 for sake of exposition.

3.1 Construction of the approximation

In [CC98, HS15, Mur11], a Markovian representation of the fractional Brownian motion of

Riemann-Liouville type is provided by writing the fractional kernel K (t ) = t H− 1
2

Γ(H+1/2) as a
Laplace transform of a non-negative measure µ as in (3). This representation is extended in
Chapter IV for the Volterra square-root process. Adopting the same approach, we establish
a similar representation for any solution of the fractional stochastic integral equation (2) in
terms of an infinite dimensional system of processes sharing the same Brownian motion and
mean reverting at different speeds. Indeed by using the linear growth of σ together with the
stochastic Fubini theorem, see [Ver12], we obtain that

Vt = g (t )+
∫ ∞

0
V γ

t µ(dγ), t ∈ [0,T ],

with
dV γ

t = (−γV γ
t −λVt )d t +σ(Vt )dBt , V γ

0 = 0, γ≥ 0,

and

g (t ) =V0 +
∫ t

0
K (t − s)θ(s)d s. (10)

Inspired by [CC98, CCM00], we approximate the measure µ by a weighted sum of Dirac
measures

µn =
n∑

i=1
cn

i δγn
i

, n ≥ 1,

leading to the following approximation V n = (V n
t )t≤T of the variance process V

V n
t = g n(t )+

n∑
i=1

cn
i V n,i

t , t ∈ [0,T ], (11)

dV n,i
t = (−γn

i V n,i
t −λV n

t )d t +σ(V n
t )dBt , V n,i

0 = 0,

where

g n(t ) =V0 +
∫ t

0
K n(t −u)θ(u)du, (12)

and

K n(t ) =
n∑

i=1
cn

i e−γ
n
i t . (13)

The choice of the positive weights (cn
i )1≤i≤n and mean reversions (γn

i )1≤i≤n , which is crucial
for the accuracy of the approximation, is studied in Section 3.2 below. Before proving the
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convergence of (V n)n≥1, we shall first discuss the existence and uniqueness of such processes.
This is done by rewriting the stochastic equation (11) as a stochastic Volterra equation of the
form

V n
t = g n(t )+

∫ t

0
K n(t − s)

(−λV n
s d s +σ(V n

s )dBs
)

, t ∈ [0,T ]. (14)

The existence of a continuous non-negative weak solution V n is ensured by Theorem 6
together with Remarks 4 and 5 in the Appendix3, because θ and V0 are non-negative and
σ(0) = 0. Moreover, pathwise uniqueness of solutions to (14) follows by adapting the standard
arugments of [YW71], provided a suitable Hölder continuity of σ, see Proposition 8 in the
Appendix. Note that this extension is made possible due to the smoothness of the kernel K n .
For instance, this approach fails for the fractional kernel because of the singularity at zero.
This leads us to the following result which establishes the strong existence and uniqueness of a
non-negative solution of (14) and equivalently of (11).

Theorem 1. Assume that θ : [0,T ] 7→R is a deterministic non-negative function satisfying (5) and
that σ :R 7→R is η-Hölder continuous with σ(0) = 0 and η ∈ [1/2,1]. Then, there exists a unique
strong non-negative solution V n = (V n

t )t≤T to the stochastic Volterra equation (14) for each n ≥ 1.

Due to the uniqueness of (11), we obtain that V n is a Markovian process according to n state
variables (V n,i )1≤i≤n that we call the factors of V n . Moreover, V n being non-negative, it can
model a variance process. This leads to the following definition of multi-factor stochastic
volatility models.

Definition 2. (Multi-factor stochastic volatility models). We define the following sequence of
multi-factor stochastic volatility models (Sn ,V n) = (Sn

t ,V n
t )t≤T as the unique R×R+-valued strong

solution of

dSn
t = Sn

t

√
V n

t dWt , V n
t = g n(t )+

n∑
i=1

cn
i V n,i

t ,

with
dV n,i

t = (−γn
i V n,i

t −λV n
t )d t +σ(V n

t )dBt , V n,i
0 = 0, Sn

0 = S0 > 0,

on a filtered probability space (Ω,F ,P,F), where F is the canonical filtration a two-dimensional
Brownian motion (W,W ⊥) and B = ρW +

√
1−ρ2W ⊥ with ρ ∈ [−1,1]. Here, the weights

(cn
i )1≤i≤n and mean reversions (γn

i )1≤i≤n are positive, σ :R 7→R is η-Hölder continuous such that
σ(0) = 0, η ∈ [1/2,1] and g n is given by (12), that is

g n(t ) =V0 +
∫ t

0
K n(t − s)θ(s)d s,

with a non-negative initial variance V0, a kernel K n defined as in (13) and a non-negative
deterministic function θ : [0,T ] 7→R satisfying (5).

Note that the strong existence and uniqueness of (Sn ,V n) follows from Theorem 1. This model
is Markovian with n +1 state variables which are the spot price Sn and the factors of the
variance process V n,i for i ∈ {1, . . . ,n}.

3Theorem 6 is used here with the smoothed kernel K n given by (13) together with b(x) =−λx and g defined
as in (10)

215



VIII. Multi-factor approximation of rough volatility models

3.2 An approximation of the fractional kernel

Relying on (14), we can see the process V n as an approximation of V , solution of (2), obtained

by smoothing the fractional kernel K (t ) = t H− 1
2

Γ(H+1/2) into K n(t ) =∑n
i=1 cn

i e−γ
n
i t . Intuitively, we

need to choose K n close to K when n goes to infinity, so that (V n)n≥1 converges to V . Inspired
by [CCM00], we give in this section a condition on the weights (cn

i )1≤i≤n and mean reversion
terms 0 < γn

1 < ... < γn
n so that the following convergence∥∥K n −K

∥∥
2,T → 0,

holds as n goes to infinity, where ‖ · ‖2,T is the usual L2([0,T ],R) norm. Let (ηn
i )0≤i≤n be

auxiliary mean reversion terms such that ηn
0 = 0 and ηn

i−1 ≤ γn
i ≤ ηn

i for i ∈ {1, . . . ,n}. Writing
K as the Laplace transform of µ as in (3), we obtain that

∥∥K n −K
∥∥

2,T ≤
∫ ∞

ηn
n

‖e−γ(·)‖2,Tµ(dγ)+
n∑

i=1
J n

i ,

with J n
i = ‖cn

i e−γ
n
i (·) −∫ ηn

i

ηn
i−1

e−γ(·)µ(dγ)‖2,T . We start by dealing with the first term,

∫ ∞

ηn
n

‖e−γ(·)‖2,Tµ(dγ) =
∫ ∞

ηn
n

√
1−e−2γT

2γ
µ(dγ) ≤ 1

HΓ(H +1/2)Γ(1/2−H)
p

2
(ηn

n)−H .

Moreover by choosing

cn
i =

∫ ηn
i

ηn
i−1

µ(dγ), γn
i = 1

cn
i

∫ ηn
i

ηn
i−1

γµ(dγ), i ∈ {1, . . . ,n}, (15)

and using the Taylor-Lagrange inequality up to the second order, we obtain∣∣∣∣∣cn
i e−γ

n
i t −

∫ ηn
i

ηn
i−1

e−γtµ(dγ)

∣∣∣∣∣≤ t 2

2

∫ ηn
i

ηn
i−1

(γ−γn
i )2µ(dγ), t ∈ [0,T ]. (16)

Therefore,
n∑

i=1
J n

i ≤ T 5/2

2
p

5

n∑
i=1

∫ ηn
i

ηn
i−1

(γn
i −γ)2µ(dγ).

This leads to the following inequality

‖K n −K ‖2,T ≤ f (2)
n

(
(ηi )0≤i≤n

)
,

where f (2)
n is a function of the auxiliary mean reversions defined by

f (2)
n ((ηn

i )1≤i≤n) = T
5
2

2
p

5

n∑
i=1

∫ ηn
i

ηn
i−1

(γ−γn
i )2µ(dγ)+ 1

HΓ(H +1/2)Γ(1/2−H)
p

2
(ηn

n)−H . (17)

Hence, we obtain the convergence of K n to the fractional kernel under the following choice of
weights and mean reversions.
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3. Multi-factor approximation of rough volatility models

Assumption 1. We assume that the weights and mean reversions are given by (15) such that
ηn

0 = 0 < ηn
1 < . . . < ηn

n and

ηn
n →∞,

n∑
i=1

∫ ηn
i

ηn
i−1

(γn
i −γ)2µ(dγ) → 0, (18)

as n goes to infinity.

Proposition 2. Fix (cn
i )1≤i≤n and (γn

i )1≤i≤n as in Assumption 1 and K n given by (13), for all

n ≥ 1. Then, (K n)n≥1 converges in L2[0,T ] to the fractional kernel K (t ) = t H−1/2

Γ(H+ 1
2 )
as n goes to

infinity.

There exists several choices of auxiliary factors such that condition (18) is met. For instance,
assume that ηn

i = iπn for each i ∈ {0, . . . ,n} such that πn > 0. It follows from

n∑
i=1

∫ ηn
i

ηn
i−1

(γ−γi )2µ(dγ) ≤π2
n

∫ ηn
n

0
µ(dγ) = 1

(1/2−H)Γ(H +1/2)Γ(1/2−H)
π

5
2−H
n n

1
2−H ,

that (18) is satisfied for

ηn
n = nπn →∞, π

5
2−H
n n

1
2−H → 0,

as n tends to infinity. In this case,

‖K n −K ‖2,T ≤ 1

HΓ(H +1/2)Γ(1/2−H)
p

2

(
(ηn

n)−H + HT
5
2p

10(1/2−H)
π2

n(ηn
n)

1
2−H

)
.

This upper bound is minimal for

πn = n− 1
5

T

(p10(1−2H)

5−2H

) 2
5 , (19)

and
‖K n −K ‖2,T ≤CH n− 4H

5 ,

where CH is a positive constant that can be computed explicitly and that depends only on the
Hurst parameter H ∈ (0,1/2).

Remark 1. Note that the kernel approximation in Proposition 2 can be easily extended to any kernel
of the form

K (t ) =
∫ ∞

0
e−γtµ(dγ),

where µ is a non-negative measure such that∫ ∞

0
(1∧γ−1/2)µ(dγ) <∞.
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VIII. Multi-factor approximation of rough volatility models

3.3 Convergence result

We assume now that the weights and mean reversions of the multi-factor stochastic volatility
model (Sn ,V n) satisfy Assumption 1. Thanks to Proposition 2, the smoothed kernel K n is
close to the fractional one for large n. Because V n satisfies the stochastic Volterra equation
(14), V n has to be close to V and thus by passing to the limit, (Sn ,V n)n≥1 should converge to
the rough volatility model (S,V ) of Definition 1 as n goes large. This is the object of the next
theorem, which is the main result of this paper.

Theorem 2. Let (Sn ,V n)n≥1 be a sequence of multi-factor stochastic volatility models given by
Definition 2. Then, under Assumption 1, the family (Sn ,V n)n≥1 is tight for the uniform topology
and any point limit (S,V ) is a rough volatility model given by Definition 1.

Theorem 2 states the convergence in law of (Sn ,V n)n≥1 whenever the fractional stochastic
integral equation (2) admits a unique weak solution. In order to prove Theorem 2, whose proof
is in Section 5.2 below, a more general stability result for d-dimensional stochastic Volterra
equations is established in the next subsection.

3.4 Stability of stochastic Volterra equations

As mentioned above, Theorem 2 relies on the study of the stability of more general d-
dimensional stochastic Volterra equations of the form

X t = g (t )+
∫ t

0
K (t − s)b(Xs)d s +

∫ t

0
K (t − s)σ(Xs)dWs , t ∈ [0,T ], (20)

where b : Rd → Rd , σ : Rd → Rd×m are continuous and satisfy the linear growth condition,
K ∈ L2([0,T ],Rd×d ) admits a resolvent of the first kind L, see Appendix VIII.A.2, and W is a m-
dimensional Brownian motion on some filtered probability space (Ω,F ,F,P). From Proposition
7 in the Appendix, g : [0,T ] 7→Rd and K ∈ L2([0,T ],Rd×d ) should satisfy Assumption 3, that is

|g (t +h)− g (t )|2 +
∫ h

0
|K (s)|2d s +

∫ T−h

0
|K (h + s)−K (s)|2d s ≤C h2γ, (21)

for any t ,h ≥ 0 with t +h ≤ T and for some positive constants C and γ, to guarantee the weak
existence of a continuous solution X of (20).

More precisely, we consider a sequence X n = (X n
t )t≤T of continuous weak solutions to the

stochastic Volterra equation (20) with a kernel K n ∈ L2([0,T ],Rd×d ) admitting a resolvent of
the first kind, on some filtered probability space (Ωn ,F n ,Fn ,Pn),

X n
t = g n(t )+

∫ t

0
K n(t − s)b(X n

s )d s +
∫ t

0
K n(t − s)σ(X n

s )dW n
s , t ∈ [0,T ],

with g n : [0,T ] 7→ Rd and K n satisfying (21) for every n ≥ 1. The stability of (20) means the
convergence in law of the family of solutions (X n)n≥1 to a limiting process X which is a
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4. The particular case of the rough Heston model

solution to (20), when (K n , g n) is close to (K , g ) as n goes large.

This convergence is established by verifying first the Kolmogorov tightness criterion for the
sequence (X n)n≥1. It is obtained when g n and K n satisfy (21) uniformly in n in the following
sense.

Assumption 2. There exists positive constants γ and C such that

sup
n≥1

(
|g n(t +h)− g n(t )|2 +

∫ h

0
|K n(s)|2d s +

∫ T−h

0
|K n(h + s)−K n(s)|2d s

)
≤C h2γ,

for any t ,h ≥ 0 with t +h ≤ T ,

The following result, whose proof is postponed to Section 5.1 below, states the convergence of
(X n)n≥1 to a solution of (20).

Theorem 3. Assume that∫ T

0
|K (s)−K n(s)|2d s −→ 0, gn(t ) −→ g (t ),

for any t ∈ [0,T ] as n goes to infinity. Then, under Assumption 2, the sequence (X n)n≥1 is tight for
the uniform topology and any point limit X is a solution of the stochastic Volterra equation (20).

4 The particular case of the rough Heston model

The rough Heston model introduced in Chapters II and III is a particular case of the class of
rough volatility models of Definition 1, with σ(x) = νpx for some positive parameter ν, that is

dSt = St

√
Vt dWt , S0 > 0,

Vt = g (t )+
∫ t

0
K (t − s)

(
−λVsd s +ν

√
VsdBs

)
,

where K (t ) = t H− 1
2

Γ(H+1/2) denotes the fractional kernel and g is given by (10). Aside from
reproducing accurately the historical and implied volatility, the rough Heston model displays
a closed formula for the characteristic function of the log-price in terms of a solution to
a fractional Riccati equation allowing to fast pricing and calibration, see Chapter V. More
precisely, it is shown in Chapters II and III that

L(t , z) = E[exp
(
z log(St /S0)

)]
is given by

exp

(∫ t

0
F (z,ψ(t − s, z))g (s)d s

)
, (22)

where ψ(·, z) is the unique continuous solution of the fractional Riccati equation

ψ(t , z) =
∫ t

0
K (t − s)F (z,ψ(s, z))d s, t ∈ [0,T ], (23)
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VIII. Multi-factor approximation of rough volatility models

with F (z, x) = 1
2 (z2−z)+(ρνz−λ)x+ ν2

2 x2 and z ∈C such that ℜ(z) ∈ [0,1]. Unlike the classical
case H = 1/2, (23) does not exhibit an explicit solution. However, it can be solved numerically
through the Adam scheme developed in [DFF02, DFF04, DF99] and Chapter II for instance. In
this section, we show that the multi-factor approximation applied to the rough Heston model
gives rise to another natural numerical scheme for solving the fractional Riccati equation.
Furthermore, we will establish the convergence of this scheme with explicit errors.

4.1 Multi-factor scheme for the fractional Riccati equation

We consider the multi-factor approximation (Sn ,V n) of Definition 2 with σ(x) = νpx, where
the number of factors n is large, that is

dSn
t = Sn

t

√
V n

t dWt , V n
t = g n(t )+

n∑
i=1

cn
i V n,i

t ,

with
dV n,i

t = (−γn
i V n,i

t −λV n
t )d t +ν

√
V n

t dBt , V n,i
0 = 0, Sn

0 = S0.

Recall that g n is given by (12) and it converges pointwise to g as n goes large, see Lemma 1.

We write the dynamics of (Sn ,V n) in terms of a Volterra Heston model with the smoothed
kernel K n given by (13) as follows

dSn
t = Sn

t

√
V n

t dWt ,

V n
t = g n(t )−

∫ t

0
K n(t − s)λV n

s d s +
∫ t

0
K n(t − s)ν

√
V n

s dBs .

In [AJLP17] and Chapter IV, the characteristic function formula of the log-price (22) is extended
to the general class of Volterra Heston models. In particular,

Ln(t , z) = E[exp
(
z log(Sn

t /S0)
)]

is given by

exp

(∫ t

0
F (z,ψn(t − s, z))g n(s)d s

)
, (24)

where ψn(·, z) is the unique continuous solution of the Riccati Volterra equation

ψn(t , z) =
∫ t

0
K n(t − s)F (z,ψn(s, z))d s, t ∈ [0,T ], (25)

for each z ∈C with ℜ(z) ∈ [0,1].

Thanks to the weak uniqueness of the rough Heston model, established in several works
[AJLP17, MS15], and to Theorem 2, (Sn ,V n)n≥1 converges in law for the uniform topology to
(S,V ) when n tends to infinity. In particular, Ln(t , z) converges pointwise to L(t , z). Therefore,
we expect ψn(·, z) to be close to the solution of the fractional Riccati equation (23). This is the
object of the next theorem, whose proof is reported to Section 5.3 below.
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4. The particular case of the rough Heston model

Theorem 4. There exists a positive constant C such that, for any a ∈ [0,1], b ∈R and n ≥ 1,

sup
t∈[0,T ]

|ψn(t , a + i b)−ψ(t , a + i b)| ≤C (1+b4)
∫ T

0
|K n(s)−K (s)|d s,

where ψ(·, a + i b) (resp. ψn(·, a + i b)) denotes the unique continuous solution of the Riccati Volterra
equation (23) (resp. (25)).

Relying on the L1-convergence of (K n)n≥1 to K under Assumption 1, see Proposition 2, we
have the uniform convergence of (ψn(·, z))n≥1 to ψ(·, z) on [0,T ]. Hence, Theorem 4 suggests
a new numerical method for the computation of the fractional Riccati solution (23) where an
explicit error is given. Indeed, set

ψn,i (t , z) =
∫ t

0
e−γ

n
i (t−s)F (z,ψn(s, z))d s, i ∈ {1, . . . ,n}.

Then,

ψn(t , z) =
n∑

i=1
cn

i ψ
n,i (t , z),

and (ψn,i (·, z))1≤i≤n solves the following n-dimensional system of ordinary Riccati equations

∂tψ
n,i (t , z) =−γn

i ψ
n,i (t , z)+F (z,ψn(t , z)), ψn,i (0, z) = 0, i ∈ {1, . . . ,n}. (26)

Hence, (26) can be solved numerically by usual finite difference methods leading to ψn(·, z) as
an approximation of the fractional Riccati solution.

4.2 Numerical illustrations

In this section, we consider a rough Heston model with the following parameters

λ= 0.3, ρ =−0.7, ν= 0.3, H = 0.1, V0 = 0.02, θ ≡ 0.02.

We discuss the accuracy of the multi-factor approximation sequence (Sn ,V n)n≥1 as well as
the corresponding Riccati Volterra solution (ψn(·, z))n≥1, for different choices of the weights
(cn

i )1≤i≤n and mean reversions (γn
i )1≤i≤n . This is achieved by first computing, for different

number of factors n, the implied volatility σn(k,T ) of maturity T and log-moneyness k by a
Fourier inversion of the characteristic function formula (24), see [CM99, Lew01] for instance.
In a second step, we compare σn(k,T ) to the implied volatility σ(k,T ) of the rough Hes-
ton model. We also compare the Riccati Volterra solution ψn(T, z) to the fractional one ψ(T, z).

Note that the Riccati Volterra solution ψn(·, z) is computed by solving numerically the n-
dimensional Riccati equation (26) with a classical finite difference scheme. The complexity
of such scheme is O(n ×n∆t ), where n∆t is the number of time steps applied for the scheme,
while the complexity of the Adam scheme used for the computation of ψ(·, z) is O(n2

∆t ). In the
following numerical illustrations, we fix n∆t = 200.
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VIII. Multi-factor approximation of rough volatility models

In order to guarantee the convergence, the weights and mean reversions have to satisfy
Assumption 1 and in particular they should be of the form (15) in terms of auxiliary mean
reversions (ηn

i )0≤i≤n satisfying (18). For instance, one can fix

ηn
i = iπn , i ∈ {0, . . . , n}, (27)

where πn is defined by (19), as previously done in Section 3.2. For this particular choice, Figure

VIII.1 shows a decrease of the relative error
∣∣∣ψn (T,i b)−ψ(T,i b)

ψ(T,i b)

∣∣∣ towards zero for different values
of b.

Figure VIII.1 – The relative error
∣∣∣ψn (T,i b)−ψ(T,i b)

ψ(T,i b)

∣∣∣ as a function of b under (27) and for
different numbers of factors n with T = 1.

We also observe in the Figure VIII.2 below that the implied volatility σn(k,T ) of the multi-
factor approximation is close to σ(k,T ) for a number of factors n ≥ 20. Notice that the
approximation is more accurate around the money.

Figure VIII.2 – Implied volatility σn(k,T ) as a function of the log-moneyness k under (27)
and for different numbers of factors n with T = 1.

In order to obtain a more accurate convergence, we can minimize the upper bound f (2)
n ((ηn

i )0≤i≤n)
of ‖K n −K ‖2,T defined in (17). Hence, we choose (ηn

i )0≤i≤n to be a solution of the constrained

222



4. The particular case of the rough Heston model

minimization problem
inf

(ηn
i )i∈En

f (2)
n ((ηn

i )0≤i≤n), (28)

where En = {(ηn
i )0≤i≤n ; 0 = ηn

0 < ηn
1 < ... < ηn

n}.

Figure VIII.3 – The relative error
∣∣∣ψn (T,i b)−ψ(T,i b)

ψ(T,i b)

∣∣∣ as a function of b under (28) and for
different numbers of factors n with T = 1.

We notice from Figure VIII.3, that the relative error |ψn (T,i b)−ψ(T,i b)
ψ(T,i b) | is smaller under the choice

of factors (28). Indeed the Volterra approximation ψn(T, i b) is now closer to the fractional
Riccati solution ψ(T, i b) especially for small number of factors. However, when n is large, the
accuracy of the approximation seems to be close to the one under (27). For instance when
n = 500, the relative error is around 1% under both (27) and (28).

Figure VIII.4 – Implied volatility σn(k,T ) as a function of the log-moneyness k under (28)
and for different numbers of factors n with T = 1.

In the same way, we observe in Figure VIII.4 that the accuracy of the implied volatility approx-
imation σn(k,T ) is more satisfactory under (28) especially for a small number of factors.
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VIII. Multi-factor approximation of rough volatility models

Theorem 4 states that the convergence of ψn(·, z) depends actually on the L1([0,T ],R)-error
between K n and K . Similarly to the computations of Section 3.2, we may show that,∫ T

0
|K n(s)−K (s)|d s ≤ f (1)

n ((ηn
i )0≤i≤n),

where

f (1)
n ((ηn

i )0≤i≤n) = T 3

6

n∑
i=1

∫ ηn
i

ηn
i−1

(γ−γn
i )2µ(dγ)+ 1

Γ(H +3/2)Γ(1/2−H)
(ηn

n)−H− 1
2 .

This leads to choosing (ηn
i )0≤i≤n as a solution of the constrained minimization problem

inf
(ηn

i )i∈En

f (1)
n ((ηn

i )0≤i≤n). (29)

It is easy to show that such auxiliary mean-reversions (ηn
i )0≤i≤n satisfy (18) and thus Assump-

tion 1 is met.

Figure VIII.5 – The relative error
∣∣∣ψn (T,i b)−ψ(T,i b)

ψ(T,i b)

∣∣∣ as a function of b under (29) and for
different numbers of factors n with T = 1.

Figure VIII.6 – Implied volatility σn(k,T ) as a function of the log-moneyness k under (29)
and for different numbers of factors n with T = 1.
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5. Proofs

Figures VIII.5 and VIII.6 exhibit similar results as the ones in Figures VIII.3 and VIII.4
corresponding to the choice of factors (28). In fact, we notice in practice that the solution of
the minimization problem (28) is close to the one in (29).

4.3 Upper bound for call prices error

Using a Fourier transform method, we can also provide an error between the price of
the call C n(k,T ) = E[(Sn

T − S0ek )+] in the multi-factor model and the price of the same
call C (k,T ) = E[(ST −S0ek )+] in the rough Heston model. However, for technical reasons,
this bound is obtained for a modification of the multi-factor approximation (Sn ,V n)n≥1 of
Definition 2 where the function g n given initially by (12) is updated into

g n(t ) =
∫ t

0
K n(t − s)

(
V0

s−H− 1
2

Γ(1/2−H)
+θ(s)

)
d s, (30)

where K n is the smoothed approximation (13) of the fractional kernel. Note that the strong
existence and uniqueness of V n is still directly obtained from Proposition 8 and its non-
negativity from Theorem 6 together with Remarks 4 and 5 in the Appendix4. Although for g n

satisfying (30), (V n)n≥1 can not be tight5, the corresponding spot price (Sn)n≥1 converges as
shown in the following proposition.

Proposition 3. Let (Sn ,V n)n≥1 be a sequence of multi-factor Heston models as in Definition 2
with σ(x) = νpx and g n given by (30). Then, under Assumption 1, (Sn ,

∫ ·
0 V n

s d s)n≥1 converges in
law for the uniform topology to (S,

∫ ·
0 Vsd s), where (S,V ) is a rough Heston model as in Definition 1

with σ(x) = νpx.

Note that the characteristic function (24) still holds. Using Theorem 4 together with a Fourier
transform method, we obtain an explicit error for the call prices. We refer to Section 5.5 below
for the proof.

Proposition 4. Let C (k,T ) be the price of the call in the rough Heston model with maturity T > 0
and log-moneyness k ∈ R. We denote by C n(k,T ) the price of the call in the multi-factor Heston
model of Definition 2 such that g n is given by (30). If |ρ| < 1, then there exists a positive constant
c > 0 such that

|C (k,T )−C n(k,T )| ≤ c
∫ T

0
|K (s)−K n(s)|d s, n ≥ 1.

5 Proofs

In this section, we use the convolution notations together with the resolvent definitions of
Appendix VIII.A. We denote by c any positive constant independent of the variables t ,h and
n and that may vary from line to line. For any h ∈R, we will use the notation ∆h to denote

4Note that Theorem 6 is used here for the smoothed kernel K n , b(x) =−λx and g n defined by (30).
5In fact, V n

0 = 0 while V0 may be positive.
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VIII. Multi-factor approximation of rough volatility models

the semigroup operator of right shifts defined by ∆h f : t 7→ f (h + t ) for any function f .

We first prove Theorem 3, which is the building block of Theorem 2. Then, we turn to the
proofs of the results contained in Section 4, which concern the particular case of the rough
Heston model.

5.1 Proof of Theorem 3

Tightness of (X n)n≥1 : We first show that, for any p ≥ 2,

sup
n≥1

sup
t≤T

E[|X n
t |p ] <∞. (31)

Thanks to Proposition 7, we already have

sup
t≤T

E[|X n
t |p ] <∞. (32)

Using the linear growth of (b,σ) and (32) together with Jensen and BDG inequalities, we get

E[|X n
t |p ] ≤ c

(
sup
t≤T

|g n(t )|p +
(∫ T

0
|K n(s)|2d s

) p
2 −1 ∫ t

0
|K n(t − s)|2(1+E[|X n

s |p ])d s)

)
.

Relying on Assumption 2 and the convergence of (g n(0),
∫ T

0 |K n(s)|2d s)n≥1, supt≤T |g n(t )|p
and

∫ T
0 |K n(s)|2d s are uniformly bounded in n. This leads to

E[|X n
t |p ] ≤ c

(
1+

∫ t

0
|K n(t − s)|2E[|X n

s |p ]d s)

)
.

By the Grönwall type inequality in Lemma 5 in the Appendix, we deduce that

E[|X n
t |p ] ≤ c

(
1+

∫ t

0
E n

c (s)d s)

)
≤ c

(
1+

∫ T

0
E n

c (s)d s)

)
,

where E n
c ∈ L1([0,T ],R) is the canonical resolvent of |K n |2 with parameter c , defined in Ap-

pendix VIII.A.3, and the last inequality follows from the fact that
∫ ·

0 E n
c (s)d s is non-decreasing

by Corollary 3. The convergence of |K n |2 to |K |2 in L1([0,T ],R) implies the convergence of
E n

c to the canonical resolvent of |K |2 with parameter c in L1([0,T ],R), see [GLS90, Theorem
2.3.1]. Thus,

∫ T
0 E n

c (s)d s is uniformly bounded in n, yielding (31).

We now show that (X n)n≥1 exhibits the Kolmogorov tightness criterion. In fact, using again
the linear growth of (b, σ) and (31) together with Jensen and BDG inequalities, we obtain, for
any p ≥ 2 and t ,h ≥ 0 such that t +h ≤ T ,

E[|X n
t+h−X n

t |p ] ≤ c
(
|g n(t+h)−g n(t )|p+(∫ T−h

0
|K n(h+s)−K n(s)|2d s

)p/2+(∫ h

0
|K n(s)|2d s

)p/2
)
.

Hence, Assumption 2 leads to

E[|X n
t+h −X n

t |p ] ≤ chpγ,

and therefore to the tightness of (X n)n≥1 for the uniform topology.
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Convergence of (X n)n≥1 : Let M n
t = ∫ t

0 σ(X n
s )dW n

s . As 〈M n〉t =
∫ t

0 σσ
∗(X n

s )d s, (〈M n〉)n≥1

is tight and consequently we get the tightness of (M n)n≥1 from [JS13, Theorem VI-4.13]. Let
(X , M) = (X t , Mt )t≤T be a possible limit point of (X n , M n)n≥1. Thanks to [JS13, Theorem
VI-6.26], M is a local martingale and necessarily

〈M〉t =
∫ t

0
σσ∗(Xs)d s, t ∈ [0,T ].

Moreover, setting Y n
t = ∫ t

0 b(X n
s )d s+M n

t , the assoicativity property (50) in the Appendix yields

(L∗X n)t = (L∗ g n)(t )+ (
L∗ (

(K n −K )∗dY n))
t +Y n

t , (33)

where L is the resolvent of the first kind of K defined in Appendix VIII.A.2. By the Skorokhod
representation theorem, we construct a probability space supporting a sequence of copies
of (X n , M n)n≥1 that converges uniformly on [0,T ], along a subsequence, to a copy of (X , M)
almost surely, as n goes to infinity. We maintain the same notations for these copies. Hence,
we have

sup
t∈[0,T ]

|X n
t −X t |→ 0, sup

t∈[0,T ]
|M n

t −Mt |→ 0,

almost surely, as n goes to infinity. Relying on the continuity and linear growth of b together
with the dominated convergence theorem, it is easy to obtain for any t ∈ [0,T ]

(L∗X n)t → (L∗X )t ,
∫ t

0
b(X n

s )d s →
∫ t

0
b(Xs)d s,

almost surely as n goes to infinity. Moreover for each t ∈ [0,T ]

(L∗ g n)(t ) → (L∗ g )(t ),

by the uniform boundedness of g n in n and t and the dominated convergence theorem. Finally
thanks to the Jensen inequality,

E[|(L∗ ((K n −K )∗dY n)
)

t |2] ≤ c sup
t≤T

E[|((K n −K )∗dY n)
t |2].

From (31) and the linear growth of (b,σ), we deduce

sup
t≤T

E[|((K n −K )∗dY n)
t |2] ≤ c

∫ T

0
|K n(s)−K (s)|2d s,

which goes to zero when n is large. Consequently, we send n to infinity in (33) and obtain the
following almost surely equality, for each t ∈ [0,T ],

(L∗X )t = (L∗ g )(t )+
∫ t

0
b(Xs)d s +Mt . (34)

Recall also that 〈M〉 = ∫ ·
0σσ

∗(Xs)d s. Hence, by [RY13, Theorem V-3.9], there exists a m-
dimensional Brownian motion W such that

Mt =
∫ t

0
σ(Xs)dWs , t ∈ [0,T ].
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The processes in (34) being continuous, we deduce that, almost surely,

(L∗X )t = (L∗ g )(t )+
∫ t

0
b(Xs)d s +

∫ t

0
σ(Xs)dWs , t ∈ [0,T ].

We convolve by K and use the associativity property (50) in the Appendix to get that, almost
surely, ∫ t

0
Xsd s =

∫ t

0
g (s)d s +

∫ t

0

(∫ s

0
K (s −u)(b(Xu)du +σ(Xu)dWu)

)
d s, t ∈ [0,T ].

Finally it is easy to see that the processes above are differentiable and we conclude that X is
solution of the stochastic Volterra equation (20), by taking the derivative.

5.2 Proof of Theorem 2

Theorem 2 is easily obtained once we prove the tightness of (V n)n≥1 for the uniform topology
and that any limit point V is solution of the fractional stochastic integral equation (2). This
is a direct consequence of Theorem 3, by setting d = m = 1, g and g n respectively as in (10)
and (12), b(x) = −λx, K being the fractional kernel and K n(t ) = ∑n

i=1 cn
i e−γ

n
i t its smoothed

approximation. Under Assumption 1, (K n)n≥1 converges in L2([0,T ],R) to the fractional kernel,
see Proposition 2. Hence, it is left to show the pointwise convergence of (g n)n≥1 to g on [0,T ]
and that (K n , g n)n≥1 satisfies Assumption 2.

Lemma 1 (Convergence of g n ). Define g n : [0,T ] 7→R and g : [0,T ] 7→R respectively by (10) and
(12) such that θ : [0,T ] 7→R satisfies (5). Under assumption (1), we have for any t ∈ [0,T ]

g n(t ) → g (t ),

as n tends to infinity.

Proof. Because θ satisfies (5), it is enough to show that for each t ∈ [0,T ]∫ t

0
(t − s)−

1
2−ε|K n(s)−K (s)|d s (35)

converges to zero as n goes large, for some ε> 0 and K n given by (13). Using the representa-
tion of K as the Laplace transform of µ as in (3), we obtain that (35) is bounded by∫ t

0
(t − s)−

1
2−ε

∫ ∞

ηn
n

e−γsµ(dγ)d s +
n∑

i=1

∫ t

0
(t − s)−

1
2−ε|cn

i e−γ
n
i s −

∫ ηn
i

ηn
i−1

e−γsµ(dγ)|d s. (36)

The first term in (36) converges to zero for large n by the dominated convergence theorem
because ηn

n tends to infinity, see Assumption 1. Using the Taylor-Lagrange inequality (16), the
second term in (36) is dominated by

1

2

∫ t

0
(t − s)−

1
2−εs2d s

n∑
i=1

∫ ηn
i

ηn
i−1

(γ−γn
i )2µ(dγ),

which goes to zero thanks to Assumption 1.
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Lemma 2 (K n satisfying Assumption 2). Under Assumption 1, there exists C > 0 such that, for
any t ,h ≥ 0 with t +h ≤ T ,

sup
n≥1

(∫ T−h

0
|K n(h + s)−K n(s)|2d s +

∫ h

0
|K n(s)|2d s

)
≤C h2H ,

where K n is defined by (13).

Proof. We start by proving that for any t ,h ≥ 0 with t +h ≤ T∫ h

0
|K n(s)|2d s ≤ ch2H . (37)

In fact we know that this inequality is satisfied for K (t ) = t H− 1
2

Γ(H+1/2) . Thus it is enough to prove

‖K n −K ‖2,h ≤ chH ,

where ‖ · ‖2,h stands for the usual L2([0,h],R) norm. Relying on the Laplace transform repre-
sentation of K given by (3), we obtain

‖K n −K ‖2,h ≤
∫ ∞

ηn
n

‖e−γ(·)‖2,hµ(dγ)+
n∑

i=1
J n

i ,h ,

where J n
i ,h = ‖cn

i e−γ
n
i (·) −∫ ηn

i

ηn
i−1

e−γ(·)µ(dγ)‖2,h . We start by bounding the first term,

∫ ∞

ηn
n

‖e−γ(·)‖2,hµ(dγ) ≤
∫ ∞

0

√
1−e−2γh

2γ
µ(dγ)

= hH

Γ(H +1/2)Γ(1/2−H)
p

2

∫ ∞

0

√
1−e−2γ

γ
γ−H− 1

2 dγ.

As in Section 3.2, we use the Taylor-Lagrange inequality (16) to get

n∑
i=1

J n
i ,h ≤ 1

2
p

5
h

5
2

n∑
i=1

∫ ηn
i

ηn
i−1

(γ−γn
i )2µ(dγ).

Using the boundedness of
(∑n

i=1

∫ ηn
i

ηn
i−1

(γ−γn
i )2µ(dγ)

)
n≥1 from Assumption 1, we deduce (37).

We now prove ∫ T−h

0
|K n(h + s)−K n(s)|2d s ≤ ch2H . (38)

In the same way, it is enough to show

‖(∆hK n −∆hK )− (K n −K )‖2,T−h ≤ chH ,

Similarly to the previous computations, we get

‖(∆hK n −∆hK )− (K n −K )‖2,T−h ≤
∫ ∞

ηn
n

‖e−γ(·) −e−γ(h+·)‖2,T−hµ(dγ)+
n∑

i=1
J̃ n

i ,h ,
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with J̃ n
i ,h = ‖cn

i (e−γ
n
i (·) −e−γ

n
i (h+·))−∫ ηn

i

ηn
i−1

(e−γ(·) −e−γ(h+·))µ(dγ)‖2,T−h . Notice that

∫ ∞

ηn
n

‖e−γ(·) −e−γ(h+·)‖2,T−hµ(dγ) =
∫ ∞

ηn
n

(1−e−γh)

√
1−e−2γ(T−h)

2γ
µ(dγ)

≤ c
∫ ∞

0
(1−e−γh)γ−H−1dγ≤ chH .

Moreover, fix h, t > 0 and set χ(γ) = e−γt −e−γ(t+h). The second derivative reads

χ′′(γ) = h
(
t 2γe−γt 1−e−γh

γh
−he−γ(t+h) −2te−γ(t+h)), γ> 0. (39)

Because x 7→ xe−x and x 7→ 1−e−x

x are bounded functions on (0,∞), there exists C > 0 inde-
pendent of t ,h ∈ [0,T ] such that

|χ′′(γ)| ≤C h, γ> 0.

The Taylor-Lagrange formula, up to the second order, leads to

|cn
i (e−γ

n
i t −e−γ

n
i (t+h))−

∫ ηn
i

ηn
i−1

(e−γt −e−γ(t+h))µ(dγ)| ≤ C

2
h

∫ ηn
i

ηn
i−1

(γ−γn
i )2µ(dγ).

Thus
n∑

i=1
J̃ n

i ,h ≤ C

2
h

n∑
i=1

∫ ηn
i

ηn
i−1

(γ−γn
i )2µ(dγ).

Finally, (38) follows from the boundedness of
(∑n

i=1

∫ ηn
i

ηn
i−1

(γ−γn
i )2µ(dγ)

)
n≥1 due to Assumption

1.

Lemma 3 (g n satisfying Assumption 2). Define g n : [0,T ] 7→ R by (12) such that θ : [0,T ] 7→ R

satisfies (5). Under Assumption 1, for each ε> 0, there exists Cε > 0 such that for any t ,h ≥ 0 with
t +h ≤ T

sup
n≥1

|g n(t )− g n(t +h)| ≤CεhH−ε.

Proof. Because θ satisfies (5), it is enough to prove that, for each fixed ε> 0, there exists C > 0
such that

sup
n≥1

∫ h

0
(h − s)−

1
2−ε|K n(s)|d s ≤C hH−ε, (40)

and

sup
n≥1

∫ t

0
(t − s)−

1
2−ε|K n(s)−K n(h + s)|d s ≤C hH−ε, (41)

for any t ,h ≥ 0 with t +h ≤ T . (40) being satisfied for the fractional kernel, it is enough to
establish ∫ h

0
(h − s)−

1
2−ε|K n(s)−K (s)|d s ≤ chH−ε.
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In the proof of Lemma 1, it is shown that∫ h

0
(h − s)−

1
2−ε|K n(s)−K (s)|d s

is bounded by (36), that is∫ h

0
(h − s)−

1
2−ε

∫ ∞

ηn
n

e−γsµ(dγ)d s +
n∑

i=1

∫ h

0
(h − s)−

1
2−ε|cn

i e−γ
n
i s −

∫ ηn
i

ηn
i−1

e−γsµ(dγ)|d s.

The first term is dominated by∫ h

0
(h − s)−

1
2−ε

∫ ∞

0
e−γsµ(dγ)d s = hH−ε B(1/2−ε, H +1/2)

B(1/2−H , H +1/2)
,

where B is the usual Beta function. Moreover thanks to (16) and Assumption 1, we get

n∑
i=1

∫ h

0
(h − s)−

1
2−ε|cn

i e−γ
n
i s −

∫ ηn
i

ηn
i−1

e−γsµ(dγ)|d s ≤ ch
5
2−ε,

yielding (40). Similarly, we obtain (41) by showing that∫ t

0
(t − s)−

1
2−ε

∣∣(K n(s)−∆hK n(s))− (K (s)−∆hK (s))
∣∣d s ≤ chH−ε.

By similar computations as previously and using (39), we get that∫ t

0
(t − s)−

1
2−ε

∣∣(K n(s)−∆hK n(s))− (K (s)−∆hK (s))
∣∣d s

is dominated by

c

(∫ t

0
(t − s)

1
2−ε

∫ ∞

ηn
n

(1−e−γh)e−γsµ(dγ)d s +h
n∑

i=1

∫ ηn
i

ηn
i−1

(γ−γn
i )2µ(dγ)

)
.

The first term being bounded by∫ t

0
(t − s)

1
2−ε

∫ ∞

0
(1−e−γh)e−γsµ(dγ)d s =

∫ t

0
(t − s)

1
2−ε(K (s)−K (h + s))d s ≤ chH−ε,

Assumption 1 leads to (41).

5.3 Proof of Theorem 4

Uniform boundedness : We start by showing the uniform boundedness of the unique
continuous solutions (ψn(·, a + i b))n≥1 of (25).
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VIII. Multi-factor approximation of rough volatility models

Proposition 5. For a fixed T > 0, there exists C > 0 such that

sup
n≥1

sup
t∈[0,T ]

|ψn(t , a + i b)| ≤C
(
1+b2) ,

for any a ∈ [0,1] and b ∈R.
Proof. Let z = a + i b and start by noticing that ℜ(ψn(·, z)) is non-positive because it solves
the following linear Volterra equation with continuous coefficients

χ= K n ∗
(

f +
(
ρνℜ(z)−λ+ ν2

2
ℜ(ψn(·, z))

)
χ

)
,

where
f = 1

2

(
a2 −a − (1−ρ2)b2)− 1

2
(ρb +νψn(·, z))2

is continuous non-positive, see Theorem 7. In the same way ℜ(ψ(·, z)) is also non-positive.
Moreover, observe that ψn(·, z) solves the following linear Volterra equation with continuous
coefficients

χ= K n ∗
(

1

2
(z2 − z)+ (ρνz −λ+ ν2

2
ψn(·, z))χ

)
,

and

ℜ
(
ρνz −λ+ ν2

2
ψn(·, z)

)
≤ ν−λ.

Therefore, Corollary 4 leads to

sup
t∈[0,T ]

|ψn(t , z)| ≤ 1

2
|z2 − z|

∫ T

0
E n
ν−λ(s)d s,

where E n
ν−λ denotes the canonical resolvent of K n with parameter ν−λ, see Appendix

VIII.A.3. This resolvent converges in L1([0,T ],R) because K n converges in L1([0,T ],R) to
K , see [GLS90, Theorem 2.3.1]. Hence, (

∫ T
0 E n

ν−λ(s)d s)n≥1 is bounded, which ends the proof.

End of the proof of Theorem 4 : Set z = a + i b and recall that

ψn(·, z) = K n ∗F (z,ψn(·, z)); ψ(·, z) = K ∗F (z,ψ(·, z)).

with F (z, x) = 1
2

(
z2 − z

)+ (ρνz −λ)x + ν2

2 x2. Hence, for t ∈ [0,T ],

ψ(t , z)−ψn(t , z) = hn(t , z)+K ∗ (
F (z,ψ(·, z))−F (z,ψn(·, z))

)
(t ),

with hn(·, z) = (K n −K )∗F (z,ψn(·, z)). Thanks to Proposition 5, we get the existence of a
positive constant C such that

sup
n≥1

sup
t∈[0,T ]

|hn(t , a + i b)| ≤C (1+b4)
∫ T

0
|K n(s)−K (s)|d s, (42)
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for any b ∈R and a ∈ [0,1]. Moreover notice that (ψ−ψn −hn)(·, z) is solution of the following
linear Volterra equation with continuous coefficients

χ= K ∗
((
ρνz −λ+ ν2

2
(ψ+ψn)(·, z)

)
(χ+hn(·, z))

)
,

and remark that the real part of ρνz −λ+ ν2

2 (ψ+ψn)(·, z) is dominated by ν−λ because
ℜ(ψ(·, z)) and ℜ(ψn(·, z)) are non-positive. An application of Corollary 4 together with (42)
ends the proof.

5.4 Proof of Proposition 3

We consider for each n ≥ 1, (Sn ,V n) defined by the multi-factor Heston model in Definition 2
with σ(x) = νpx.

Tightness of (
∫ ·

0 V n
s d s,

∫ ·
0

√
V n

s dWs ,
∫ ·

0

√
V n

s dBs)n≥1 : Because the process
∫ ·

0 V n
s d s is non-

decreasing, it is enough to show that

sup
n≥1

E[
∫ T

0
V n

t d t ] <∞, (43)

to obtain its tightness for the uniform topology. Recalling that supt∈[0,T ]E[V n
t ] < ∞ from

Proposition 7 in the Appendix, we get

E

[∫ t

0

√
V n

s dBs

]
= 0,

and then by Fubini theorem

E [V n
t ] = g n(t )+

n∑
i=1

cn
i E[V n,i

t ],

with

E[V n,i
t ] =

∫ t

0
(−γn

i E[V n,i
s ]−λE[V n

s ])d s.

Thus t 7→ E[V n
t ] solves the following linear Volterra equation

χ(t ) =
∫ t

0
K n(t − s)

(
−λχ(s)+θ(s)+V0

s−H− 1
2

Γ(1/2−H)

)
d s,

with K n given by (13). Theorem 5 in the Appendix leads to

E[V n
t ] =

∫ t

0
E n
λ (t − s)

(
θ(s)+V0

s−H− 1
2

Γ( 1
2 −H)

)
d s,

and then by Fubini theorem again∫ t

0
E[V n

s ]d s =
∫ t

0

(∫ t−s

0
E n
λ (u)du

)(
θ(s)+V0

s−H− 1
2

Γ( 1
2 −H)

)
d s,
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where E n
λ

is the canonical resolvent of K n with parameter λ, defined in Appendix VIII.A.3.
Because (K n)n≥1 converges to the fractional kernel K in L1([0,T ],R), we obtain the conver-
gence of E n

λ
in L1([0,T ],R) to the canonical resolvent of K with parameter λ, see [GLS90,

Theorem 2.3.1]. In particular thanks to Corollary 3 in the Appendix,
∫ t

0 E n
λ

(s)d s is uni-
formly bounded in t ∈ [0,T ] and n ≥ 1. This leads to (43) and then to the tightness of
(
∫ ·

0 V n
s d s,

∫ ·
0

√
V n

s dWs ,
∫ ·

0

√
V n

s dBs)n≥1 by [JS13, Theorem VI-4.13].

Convergence of (Sn ,
∫ ·

0 V n
s d s)n≥1 : We set M n,1

t = ∫ t
0

√
V n

s dWs and M n,2
t = ∫ t

0

√
V n

s dBs .
Denote by (X , M 1, M 2) a limit in law for the uniform topology of a subsequence of the tight
family (

∫ ·
0 V n

s d s, M n,1, M n,2)n≥1. An application of stochastic Fubini theorem, see [Ver12],
yields ∫ t

0
V n

s d s =
∫ t

0

∫ t−s

0
(K n(u)−K (u))dudY n

s +
∫ t

0
K (t − s)Y n

s d s, t ∈ [0,T ], (44)

where Y n
t = ∫ t

0 (s−H− 1
2

V0
Γ(1/2−H) +θ(s)−λV n

s )d s +νM n,2
t . Because (Y n)n≥1 converges in law for

the uniform topology to Y = (Yt )t≤T given by Yt =
∫ t

0 (s−H− 1
2

V0

Γ( 1
2−H)

+θ(s))d s −λX t +νM 2
t , we

also get the convergence of (
∫ ·

0 K (·− s)Y n
s d s)n≥1 to

∫ ·
0 K (·− s)Ysd s. Moreover, for any t ∈ [0,T ],∣∣∣∣∣

∫ t

0

∫ t−s

0
(K n(u)−K (u))du

(
s−H− 1

2
V0

Γ( 1
2 −H)

+θ(s)−λV n
s

)
d s

∣∣∣∣∣
is bounded by

∫ t

0
|K n(s)−K (s)|d s

(∫ t

0
(s−H− 1

2
V0

Γ( 1
2 −H)

+θ(s))d s +λ
∫ t

0
V n

s d s

)
,

which converges in law for the uniform topology to zero thanks to the convergence of
(
∫ ·

0 V n
s d s)n≥1 together with Proposition 2. Finally,

E

[∣∣∣∣∫ t

0

∫ t−s

0
(K n(u)−K (u))dud M n,2

s

∣∣∣∣2
]
≤ c

∫ T

0
(K n(s)−K (s))2d sE

[∫ t

0
V n

s d s

]
,

which goes to zero thanks to (43) and Proposition 2. Hence, by passing to the limit in (44), we
obtain

X t =
∫ t

0
K (t − s)Ysd s,

for any t ∈ [0,T ], almost surely. The processes being continuous, the equality holds on [0,T ].
Then, by the stochastic Fubini theorem, we deduce that X = ∫ ·

0 Vsd s, where V is a continuous
process defined by

Vt =
∫ t

0
K (t − s)dYs =V0 +

∫ t

0
K (t − s)(θ(s)−λVs)d s +ν

∫ t

0
K (t − s)d M 2

s .
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5. Proofs

Furthermore because (M n,1, M n,2) is a martingale with bracket∫ ·

0
V n

s d s

(
1 ρ

ρ 1

)
,

[JS13, Theorem VI-6.26] implies that (M 1, M 2) is a local martingale with the following bracket∫ ·

0
Vsd s

(
1 ρ

ρ 1

)
.

By [RY13, Theorem V-3.9], there exists a two-dimensional Brownian motion (W̃ , B̃) with
d〈W̃ , B̃〉t = ρd t such that

M 1
t =

∫ t

0

√
VsdW̃s , M 2

t =
∫ t

0

√
VsdB̃s , t ∈ [0,T ].

In particular V is solution of the fractional stochastic integral equation in Definition 1
with σ(x) = ν

p
x. Because Sn = exp(M n,1 − 1

2

∫ ·
0 V n

s d s), we deduce the convergence of
(Sn ,

∫ ·
0 V n

s d s)n≥1 to the limit point (S,
∫ ·

0 Vsd s) that displays the rough-Heston dynamics of
Definition 1. The uniqueness of such dynamics, see [AJLP17, MS15] and Chapter IV, enables us
to conclude that (Sn ,V n)n≥1 admits a unique limit point and hence converges to the rough
Heston dynamics.

5.5 Proof of Proposition 4

We use the Lewis Fourier inversion method, see [Lew01], to write

C n(k,T )−C (k,T ) = S0
e

k
2

2π

∫
b∈R

e−i bk

b2 + 1
4

(
L(T,

1

2
+ i b)−Ln(T,

1

2
+ i b)

)
db.

Hence,

|C n(k,T )−C (k,T )| ≤ S0
e

k
2

2π

∫
b∈R

1

b2 + 1
4

∣∣∣∣L(T,
1

2
+ i b)−Ln(T,

1

2
+ i b)

∣∣∣∣db. (45)

Because L(T, z) and Ln(T, z) satisfy respectively the formulas (22) and (24) with g and g n given
by

g (t ) =
∫ t

0
K (t − s)

(
V0

s−H− 1
2

Γ(1/2−H)
+θ(s)

)
d s, g n(t ) =

∫ t

0
K n(t − s)

(
V0

s−H− 1
2

Γ(1/2−H)
+θ(s)

)
d s,

and ψ(·, z) and ψn(·, z) solve respectively (23) and (25), we use the Fubini theorem to deduce
that

L(T, z) = exp

(∫ T

0
ψ(T − s, z)

(
V0

s−H− 1
2

Γ(1/2−H)
+θ(s)

)
d s

)
, (46)

and

Ln(T, z) = exp

(∫ T

0
ψn(T − s, z)

(
V0

s−H− 1
2

Γ(1/2−H)
+θ(s)

)
d s

)
, (47)

with z = 1/2+i b. Therefore, relying on the local Lipschitz property of the exponential function,
it suffices to find an upper bound for ℜ(ψn(·, z)) in order to get an error for the price of the
call from (45). This is the object of the next paragraph.
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VIII. Multi-factor approximation of rough volatility models

Upper bound of ℜ(ψn(·, z)) : We denote by φn
η (·,b) the unique continuous function satisfying

the following Riccati Volterra equation

φn
η (·,b) = K n ∗

(
−b +ηφn

η (·,b)+ ν2

2
φn
η (·,b)2

)
,

with b ≥ 0 and η,ν ∈R.

Proposition 6. Fix b0, t0 ≥ 0 and η ∈ R. The functions b 7→ φn
η (t0,b) and t 7→ φn

η (t ,b0) are
non-increasing on R+. Furthermore

φn
η (t ,b) ≤

1−
√

1+2bν2(
∫ t

0 E n
η (s)d s)2

ν2
∫ t

0 E n
η (s)d s

, t > 0,

where E n
η is the canonical resolvent of K n with parameter η defined in Appendix VIII.A.3.

Proof. The claimed monotonicity of b 7→φn
η (t0,b) is directly obtained from Theorem 7. Con-

sider now h,b0 > 0. It is easy to see that ∆hφ
n
η (·,b0) solves the following Volterra equation

∆hφ
n
η (b0, t ) =

(
∆t K n ∗F (φn

η (·,b0))
)

(h)+
(
K n ∗F (∆hφ

n
η (·,b0))

)
(t )

with F (b, x) = −b +ηx + ν2

2 x2. Notice that t → −
(
∆t K n ∗F (φn

η (·,b0))
)

(h) ∈ GK , defined in
Appendix VIII.C, thanks to Theorem 7. φn

η (·,b)−∆hφ
n
η (·,b) being solution of the following

linear Volterra integral equation with continuous coefficients,

x(t ) =−
(
∆t K n ∗F (b,φn

η (·,b0))
)

(h)+
(
K n ∗

((
η+ ν2

2
(φn

η (·,b)+∆hφ
n
η (·,b))

)
x

))
(t ),

we deduce its non-negativity using again Theorem 7. Thus, t ∈ R+ → φn
η (t ,b0) is non-

increasing and consequently sups∈[0,t ] |φη(s,b)| = |φn
η (t ,b0)| as φn

η (0,b) = 0. Hence, Theorem
5 leads to

φn
η (t ,b) =

∫ t

0
E n
η (t − s)(−b + ν2

2
φn
η (s,b)2) ≤

∫ t

0
E n
η (s)d s

(
−b + ν2

2
φn
η (t ,b)2

)
.

We end the proof by solving this inequality of second order in φn
η (t ,b) and using that φn

η is

non-positive. Notice that
∫ t

0 E n
η (s)d s > 0 for each t > 0, see Corollary 3.

Corollary 1. Fix a ∈ [0,1]. We have, for any t ∈ (0,T ] and b ∈R,

sup
n≥1

ℜ(ψn(t , a + i b)) ≤ 1−
√

1+ (a −a2 + (1−ρ2)b2)ν2m(t )2

ν2m(t )

where m(t ) = infn≥1
∫ t

0 E n
ρνa−λ(s)d s > 0 for all t ∈ (0,T ] and E n

η is the canonical resolvent of K n

with parameter η defined in Appendix VIII.A.3.
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VIII.A. Stochastic convolutions and resolvents

Proof. Let r = a −a2 + (1−ρ2)b2 and η= ρνa −λ. φn
η (·,r )−ℜ(ψn(·, a + i b)) being solution of

the following linear Volterra equation with continuous coefficients

χ= K ∗
(

1

2

(
ρb +νℑ(ψn(·, a + i b))

)2 +
(
ρνa −λ+ ν2

2

(ℜ(ψn(·, a + i b))+φη(·,r )
))
χ

)
,

we use Theorem 7 together with Proposition 6 to get, for all t ∈ [0,T ] and b ∈R,

ℜ(ψn(t , a + i b)) ≤
1−

√
1+2rν2(

∫ t
0 E n

η (s)d s)2

ν2
∫ t

0 E n
η (s)d s

. (48)

Moreover for any t ∈ [0,T ],
∫ t

0 E n
η (s)d s converges as n goes to infinity to

∫ t
0 Eη(s)d s because

K n converges to K in L1([0,T ],R), see [GLS90, Theorem 2.3.1], where Eη denotes the canonical
resolvent of K with parameter η. Therefore, m(t ) = infn≥1

∫ t
0 E n

η (s)d s > 0, for all t ∈ (0,T ],

because
∫ t

0 Eη(s)d s > 0 and
∫ t

0 E n
η (s)d s > 0 for all n ≥ 1, see Corollary 3. Finally we end the

proof by using (48) together with the fact that x 7→ 1−
p

1+2rν2x2

ν2x is non-increasing on (0,∞).

End of the proof of Proposition 4 : Assume that |ρ| < 1 and fix a = 1/2. By dominated
convergence theorem,∫ T

0

1−
√

1+ (a −a2 + (1−ρ2)b2)ν2m(T − s)2

ν2m(T − s)
(θ(s)+V0

s−H− 1
2

Γ( 1
2 −H)

)d s

is equivalent to

−|b|
√

1−ρ2

ν

∫ T

0
(θ(s)+V0

s−H− 1
2

Γ( 1
2 −H)

)d s,

as b tends to infinity. Hence, thanks to Corollary 1, there exists C > 0 such that for any b ∈R
sup
n≥1

ℜ(ψn(t , a + i b)) ≤C (1−|b|). (49)

Recalling that

∀z1, z2 ∈C such that ℜ(z1),ℜ(z2) ≤ c , |ez1 −ez2 | ≤ ec |z1 − z2|,
we obtain

|Ln(a+i b,T )−L(a+i b,T )| ≤ eC (1−|b|) sup
t∈[0,T ]

|ψn(t , a+i b)−ψ(t , a+i b)|
∫ T

0
(θ(s)+V0

s−H− 1
2

Γ( 1
2 −H)

)d s,

from (46), (47) and (49). We deduce Proposition 4 thanks to (45) and Theorem 4 together with
the fact that

∫
b∈R

b4+1
b2+ 1

4

eC (1−|b|)db <∞.

VIII.A Stochastic convolutions and resolvents

We recall in this Appendix the framework and notations introduced in [AJLP17].
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VIII. Multi-factor approximation of rough volatility models

VIII.A.1 Convolution notation

For a measurable function K on R+ and a measure L on R+ of locally bounded variation, the
convolutions K ∗L and L∗K are defined by

(K ∗L)(t ) =
∫

[0,t ]
K (t − s)L(d s), (L∗K )(t ) =

∫
[0,t ]

L(d s)K (t − s)

whenever these expressions are well-defined. If F is a function on R+, we write K∗F = K∗(F d t ),
that is

(K ∗F )(t ) =
∫ t

0
K (t − s)F (s)d s.

We can show that L∗F is almost everywhere well-defined and belongs to Lp
loc (R+,R), whenever

F ∈ Lp
loc(R+,R). Moreover, (F ∗G)∗L = F ∗ (G ∗L) a.e., whenever F,G ∈ L1

loc (R+,R), see [GLS90,
Theorem 3.6.1 and Corollary 3.6.2] for further details.

For any continuous semimartingale M = ∫ .
0 bsd s +∫ .

0 asdBs the convolution

(K ∗d M)t =
∫ t

0
K (t − s)d Ms

is well-defined as an Itô integral for every t ≥ 0 such that∫ t

0
|K (t − s)||bs |d s +

∫ t

0
|K (t − s)|2|as |2d s <∞.

Using stochastic Fubini Theorem, see [AJLP17, Lemma 2.1], we can show that for each t ≥ 0,
almost surely

(L∗ (K ∗d M))t = ((L∗K )∗d M)t , (50)

whenever K ∈ L2
loc (R+,R) and a,b are locally bounded a.s.

Finally from Lemma 2.4 in [AJLP17] together with the Kolmogorov continuity theorem, we can
show that there exists a unique version of (K ∗d Mt )t≥0 that is continuous whenever b and σ

are locally bounded. In this paper, we will always work with this continuous version.

Note that the convolution notation could be easily extended for matrix-valued K and L. In
this case, the associativity properties exposed above hold.

VIII.A.2 Resolvent of the first kind

We define the resolvent of the first kind of a d ×d-matrix valued kernel K , as the Rd×d -valued
measure L on R+ of locally bounded variation such that

K ∗L = L∗K ≡ id,
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VIII.A. Stochastic convolutions and resolvents

where id stands for the identity matrix, see [GLS90, Definition 5.5.1]. The resolvent of the first

kind does not always exist. In the case of the fractional kernel K (t ) = t H− 1
2

Γ(H+1/2) the resolvent of
the first kind exists and is given by

L(d t ) = t−H− 1
2

Γ(1/2−H)
d t ,

for any H ∈ (0,1/2). If K is non-negative, non-increasing and not identically equal to zero on
R+, the existence of a resolvent of the first kind is guaranteed by [GLS90, Theorem 5.5.5].

The following result shown in [AJLP17, Lemma 2.6], is stated here for d = 1 but is true for any
dimension d ≥ 1.

Lemma 4. Assume that K ∈ L1
loc(R+,R) admits a resolvent of first kind L. For any F ∈ L1

loc (R+,R)
such that F ∗L is right-continuous and of locally bounded variation one has

F = (F ∗L)(0)K +d(F ∗L)∗K .

Here, d f denotes the measure such that f (t ) = f (0)+ ∫
[0,t ] d f (s), for all t ≥ 0, for any right-

continuous function of locally bounde variation f on R+.

Remark 2. The previous lemma will be used with F =∆hK , for fixed h > 0. If K is continuous on
(0,∞), then ∆hK ∗L is right-continuous. Moreover, if K is non-negative and L non-increasing in
the sense that s → L([s, s + t ]) is non-increasing for all t ≥ 0, then ∆hK ∗L is non-decreasing since

(∆hK ∗L)(t ) = 1−
∫

[0,h)
K (h − s)L(t +d s), t > 0.

In particular, ∆hK ∗L is of locally bounded variation.

VIII.A.3 Resolvent of the second kind

We consider a kernel K ∈ L1
loc(R+,R) and define the resolvent of the second kind of K as the

unique function RK ∈ L1
loc(R+,R) such that

K −RK = K ∗RK .

For λ ∈ R, we define the canonical resolvent of K with parameter λ as the unique solution
Eλ ∈ L1

loc(R+,R) of
Eλ−K =λK ∗Eλ.

This means that Eλ =−R−λK /λ, when λ 6= 0 and E0 = K . The existence and uniqueness of RK

and Eλ is ensured by [GLS90, Theorem 2.3.1] together with the continuity of K → Eλ(K ) in
the topology of L1

loc(R+,R). Moreover, if K ∈ L2
loc(R+,R) so does Eλ due to [GLS90, Theorem

2.3.5].

We recall [GLS90, Theorem 2.3.5] regarding the existence and uniqueness of a solution of
linear Volterra integral equations in L1

loc(R+,R).
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VIII. Multi-factor approximation of rough volatility models

Theorem 5. Let f ∈ L1
loc(R+,R). The integral equation

x = f +λK ∗x

admits a unique solution x ∈ L1
loc(R+,R) given by

x = f +λEλ∗ f .

When K and λ are positive, Eλ is also positive, see [GLS90, Proposition 9.8.1]. In that case,
we have a Grönwall type inequality given by [GLS90, Lemma 9.8.2].

Lemma 5. Let x, f ∈ L1
loc(R+,R) such that

x(t ) ≤ (λK ∗x)(t )+ f (t ), t ≥ 0, a.e.

Then,
x(t ) ≤ f (t )+ (λEλ∗ f )(t ), t ≥ 0, a.e.

Note that the definition of the resolvent of the second kind and canonical resolvent can be
extended for matrix-valued kernels. In that case, Theorem 5 still holds.

Remark 3. The canonical resolvent of the fractional kernel K (t ) = t H− 1
2

Γ(H+1/2) with parameter λ is
given by

tα−1Eα(−λtα),

where Eα(x) =∑
k≥0

xk

Γ(α(k+1)) is the Mittag-Leffler function and α= H +1/2 for H ∈ (0,1/2).

VIII.B Some existence results for stochastic Volterra equations

We collect in this Appendix existence results for general stochastic Volterra equations as
introduced in [AJLP17]. We refer to [AJLP17] and Chapter IV for the proofs. We fix T > 0 and
consider the d-dimensional stochastic Volterra equation

X t = g (t )+
∫ t

0
K (t − s)b(Xs)d s +

∫ t

0
K (t − s)σ(Xs)dBs , t ∈ [0,T ], (51)

where b :Rd 7→Rd , σ :Rd 7→Rd×m are continuous functions with linear growth, K ∈ L2([0,T ],Rd×d )
is a kernel admitting a resolvent of the first kind L, g : [0,T ] 7→Rd is a continuous function and
B is a m-dimensional Brownian motion on a filtered probability space (Ω,F ,F,P). In order to
prove the weak existence of continuous solutions to (51), the following regularity assumption is
needed.

Assumption 3. There exists γ> 0 and C > 0 such that for any t ,h ≥ 0 with t +h ≤ T ,

|g (t +h)− g (t )|2 +
∫ h

0
|K (s)|2d s +

∫ T−h

0
|K (h + s)−K (s)|2d s ≤C h2γ.

The following existence result can be found in Theorem 6 of Chapter IV.
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Proposition 7. Under Assumption 3, the stochastic Volterra equation (51) admits a weak continuous
solution X = (X t )t≤T . Moreover X satisfies

sup
t∈[0,T ]

E[|X t |p ] <∞, p > 0, (52)

and admits Hölder continuous paths on [0,T ] of any order strictly less than γ.

In particular, for the fractional kernel, Proposition 7 yields the following result.

Corollary 2. Fix H ∈ (0,1/2) and θ : [0,T ] 7→R satisfying

∀ε> 0, ∃Cε > 0; ∀u ∈ (0,T ] |θ(u)| ≤Cεu− 1
2−ε.

The fractional stochastic integral equation

X t = X0 + 1

Γ(H +1/2)

∫ t

0
(t −u)H− 1

2 (θ(u)+b(Xu))du + 1

Γ(H +1/2)

∫ t

0
(t −u)H− 1

2σ(Xu)dBu ,

admits a weak continuous solution X = (X t )t≤T for any X0 ∈ R. Moreover X satisfies (52) and
admits Hölder continuous paths on [0,T ] of any order strictly less than H .

Proof. It is enough to notice that the fractional stochastic integral equation is a particular

case of (51) with d = m = 1, K (t ) = t H− 1
2

Γ(H+1/2) the fractional kernel, which admits a resolvent of
the first kind, see Section VIII.A.2, and

g (t ) = X0 + 1

Γ(1/2+H)

∫ t

0
(t −u)H−1/2θ(u)du.

As t 7→ t 1/2+εθ(t ) is bounded on [0,T ], we may show that g is H −ε Hölder continuous for
any ε> 0. Hence, Assumption 3 is satisfied and the claimed result is directly obtained from
Proposition 7.

We now establish the strong existence and uniqueness of (51) in the particular case of smooth
kernels. This is done by extending the Yamada-Watanabe pathwise uniqueness proof in [YW71].

Proposition 8. Fix m = d = 1 and assume that g is Hölder continuous, K ∈C 1([0,T ],R) admitting
a resolvent of the first kind and that there exists C > 0 and η ∈ [1/2,1] such that for any x, y ∈R,

|b(x)−b(y)| ≤C |x − y |, |σ(x)−σ(y)| ≤C |x − y |η.

Then, the stochastic Volterra equation (51) admits a unique strong continuous solution.

Proof. We start by noticing that, K being smooth, it satisfies Assumption 3. Hence, the
existence of a weak continuous solution to (51) follows from Proposition 7. It is therefore
enough to show the pathwise uniqueness. We may proceed similarly to [YW71] by considering
a0 = 1, ak−1 > ak for k ≥ 1 with

∫ ak−1
ak

x−2ηd x = k and ϕk ∈C 2(R,R) such that ϕk (x) =ϕk (−x),
ϕk (0) = 0 and for x > 0
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• ϕ′
k (x) = 0 for x ≤ ak , ϕ′

k (x) = 1 for x ≥ ak−1 and ϕ′
k (x) ∈ [0,1] for ak < x < ak−1.

• ϕ′′
k (x) ∈ [0, 2

k x−2η] for ak < x < ak−1.

Let X 1 and X 2 be two solutions of (51) driven by the same Brownian motion B . Notice that,
thanks to the smoothness of K , X i − g are semimartingales and for i = 1,2

d(X i
t − g (t )) = K (0)dY i

t + (K ′∗dY i )t d t ,

with Y i
t = ∫ t

0 b(X i
s )d s +∫ t

0 σ(X i
s )dBs . Using Itô’s formula, we write

ϕk (X 2
t −X 1

t ) = I 1
t + I 2

t + I 3
t ,

where

I 1
t = K (0)

∫ t

0
ϕ′

k (X 2
s −X 1

s )d(Y 1
s −Y 2

s ),

I 2
t =

∫ t

0
ϕ′

k (X 2
s −X 1

s )(K ′∗d(Y 1 −Y 2))sd s,

I 3
t = K (0)2

2

∫ t

0
ϕ′′

k (X 2
s −X 1

s )(σ(X 2
s )−σ(X 1

s ))2d s.

Recalling that supt≤T E[(X i
t )2] <∞ for i = 1,2 from Proposition 7, we obtain that

E[I 1
t ] ≤ E[K (0)

∫ t

0
|b(X 2

s )−b(X 1
s )|d s] ≤ c

∫ t

0
E[|X 2

s −X 1
s |]d s,

and

E[I 2
t ] ≤ c

∫ t

0
E[(|K ′|∗ |b(X 2)−b(X 1)|)s]d s ≤ c

∫ t

0
E[|X 2

s −X 1
s |]d s,

because b is Lipschitz continuous and K ′ is bounded on [0,T ]. Finally by definition of ϕk

and the η-Hölder continuity of σ, we have

E[I 3
t ] ≤ c

k
,

which goes to zero when k is large. Moreover E[ϕk (X 2
t −X 1

t )] converges to E[|X 2
t −X 1

t |] when
k tends to infinity, thanks to the monotone convergence theorem. Thus, we pass to the limit
and obtain

E[|X 2
t −X 1

t |] ≤ c
∫ t

0
E[|X 2

s −X 1
s |]d s.

Grönwall’s lemma leads to E[|X 2
t −X 1

t |] = 0 yielding the claimed pathwise uniqueness.

Under additional conditions on g and K one can obtain the existence of non-negative solutions
to (51) in the case of d = m = 1. As in [AJLP17, Theorem 3.5], the following assumption is
needed.
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Assumption 4. We assume that K ∈ L2([0,T ],R) is non-negative, non-increasing and continuous
on (0,T ]. We also assume that its resolvent of the first kind L is non-negative and non-increasing in
the sense that 0 ≤ L([s, s + t ]) ≤ L([0, t ]) for all s, t ≥ 0 with s + t ≤ T .

In Chapter IV, the proof of [AJLP17, Theorem 3.5] is adapted to prove the existence of a
non-negative solution for a wide class of admissible input curves g satisfying6

∆h g − (∆hK ∗L)(0)g −d(∆hK ∗L)∗ g ≥ 0, h ≥ 0. (53)

We therefore define the following set of admissible input curves

GK = {
g : [0,T ] 7→R continuous satisfying (53) and g (0) ≥ 0

}
.

The following existence theorem is a particular case of Theorem 7 in Chapter IV.

Theorem 6. Assume that d = m = 1 and that b and σ satisfy the boundary conditions

b(0) ≥ 0, σ(0) = 0.

Then, under Assumptions 3, and 4, the stochastic Volterra equation (51) admits a non-negative weak
solution for any g ∈GK .

Remark 4. Note that any locally square-integrable completely monotone kernel 7 that is not
identically zero satisfies Assumption 4, see [AJLP17, Example 3.6]. In particular, this is the case for

• the fractional kernel K (t ) = t H−1/2

Γ(H+1/2) , with H ∈ (0,1/2).

• any weighted sum of exponentials K (t ) =∑n
i=1 ci e−γi t such that ci ,γi ≥ 0 for all i ∈ {1, . . . ,n}

and ci > 0 for some i .

Remark 5. Theorem 6 will be used with functions g of the following form

g (t ) = c +
∫ t

0
K (t − s)ξ(d s),

where ξ is a non-negative measure of locally bounded variation and c is a non-negative constant. In
that case, we may show that (53) is satisfied, under Assumption 4.

6Under Assumption 4 one can show that ∆h K ∗L is non-increasing and right-continuous thanks to Remark 2
so that the associated measure d(∆h K ∗L) is well-defined.

7A kernel K ∈ L2
loc(R+,R) is said to be completely monotone, if it is infinitely differentiable on (0,∞) such that

(−1) j K ( j )(t ) ≥ 0 for any t > 0 and j ≥ 0.
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VIII.C Linear Volterra equation with continuous coefficients

In this section, we consider K ∈ L2
loc(R+,R) satisfying Assumption 4 with T =∞ and recall the

definition of GK , that is

GK = {
g :R+ 7→R continuous satisfying (53) and g (0) ≥ 0

}
.

We denote by ‖.‖∞,T the usual uniform norm on [0,T ], for each T > 0.

Theorem 7. Let K ∈ L2
loc(R+,R) satisfying Assumption 4 and g , z, w : R+ 7→ R be continuous

functions. The linear Volterra equation

χ= g +K ∗ (
zχ+w

)
(54)

admits a unique continuous solution χ. Furthermore if g ∈GK and w is non-negative, then χ is
non-negative and

∆t0χ= g t0 +K ∗ (∆t0 z∆t0χ+∆t0 w)

with g t0 (t ) =∆t0 g (t )+ (∆t K ∗ (zχ+w))(t0) ∈GK , for all for t0, t ≥ 0.

Proof. The existence and uniqueness of such solution in χ ∈ L1
loc(R+,R) is obtained from

[AJLP17, Lemma C.1]. Because χ is solution of (54), it is enough to show the local boundedness
of χ to get its continuity. This follows from Grönwall’s Lemma 5 applied on the following
inequality

|χ(t )| ≤ ‖g‖∞,T + (
K ∗ (‖z‖∞,T |χ|(.)+‖w‖∞,T )

)
(t ),

for any t ∈ [0,T ] and for a fixed T > 0.

We assume now that g ∈ GK and w is non-negative. The fact that g t0 ∈ GK , for t0 ≥ 0, is
proved by adapting the computations of the proof of Theorem 3 in Chapter IV with ν = 0
provided that χ is non-negative. In order to establish the non-negativity of χ, we introduce,
for each ε> 0, χε as the unique continuous solution of

χε = g +K ∗ (
zχε+w +ε) . (55)

It is enough to prove that χε is non-negative, for every ε > 0, and that (χε)ε>0 converges
uniformly on every compact to χ as ε goes to zero.

Positivity of χε : It is easy to see that χε is non-negative on a neighborhood of zero because,
for small t ,

χε(t ) = g (t )+ (
z(0)g (0)+w(0)+ε)∫ t

0
K (s)d s +o(

∫ t

0
K (s)d s),

as χ, z and w are continuous functions. Hence, t0 = inf{t > 0; χε(t ) < 0} is positive. If we
assume that t0 <∞, we get χε(t0) = 0 by continuity of χε. χε being the solution of (55), we
have

∆t0χε = g t0,ε+K ∗ (∆t0 z∆t0χε+∆t0 w +ε),
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with g t0,ε(t ) =∆t0 g (t )+ (∆t K ∗ (zχε+w +ε))(t0). Then, by using Lemma 4 with F =∆t K , we
obtain

g t0,ε(t ) =∆t0 g (t )− (d(∆t K ∗L)∗ g )(t0)− (∆t K ∗L)(0)g (t0)

+ (d(∆t K ∗L)∗χε)(t0)+ (∆t K ∗L)(0)χε(t0),

which is continuous and non-negative, because g ∈GK and ∆t K ∗L is non-decreasing for any
t ≥ 0, see Remark 2. Hence, in the same way, ∆t0χε is non-negative on a neighborhood of
zero. Thus t0 =∞, which means that χε is non-negative.

Uniform convergence of χε : We use the following inequality

|χ−χε|(t ) ≤ (
K ∗ (‖z‖∞,T |χ−χε|+ε)

)
(t ), t ∈ [0,T ],

together with the Gronwall Lemma 5 to show the uniform convergence on [0,T ] of χε to χ as
ε goes to zero. In particular, χ is also non-negative.

Corollary 3. Let K ∈ L2
loc(R+,R) satisfying Assumption 4 and define Eλ as the canonical resolvent

of K with parameter λ ∈R− {0}. Then, t 7→ ∫ t
0 Eλ(s)d s is non-negative and non-decreasing on R+.

Furthermore
∫ t

0 Eλ(s)d s is positive, if K does not vanish on [0, t ]

Proof. The non-negativity of χ = ∫ ·
0 Eλ(s)d s is obtained from Theorem 7 and from the fact

that χ is solution of the following linear Volterra equation

χ= K ∗ (λχ+1),

by Theorem 5. For fixed t0 > 0, ∆t0χ satisfies

∆t0χ= g t0 +K ∗ (λ∆t0χ+1),

with g t0 (t ) = (
∆t K ∗ (λ∆t0χ+1)

)
(t0) ∈GK , see Theorem 7. It follows that ∆t0χ−χ solves

x = g t0 +K ∗ (λx).

Hence, another application of Theorem 7 yields that χ≤∆t0χ, proving that t → ∫ t
0 Eλ(s)d s is

non-decreasing.

We now provide a version of Theorem 7 for complex valued solutions.

Theorem 8. Let z, w :R+ 7→C be continuous functions and h0 ∈C. The following linear Volterra
equation

h = h0 +K ∗ (zh +w)

admits unique continuous solution h :R+ 7→C such that

|h(t )| ≤ψ(t ), t ≥ 0,

where ψ :R+ 7→R is the unique continuous solution of

ψ= |h0|+K ∗ (ℜ(z)ψ+|w |).

245



VIII. Multi-factor approximation of rough volatility models

Proof. The existence and uniqueness of a continuous solution is obtained in the same way as
in the proof of Theorem 7. Consider now, for each ε> 0, ψε the unique continuous solution
of

ψε = |h0|+K ∗ (ℜ(z)ψ+|w |+ε).

As done in the proof of Theorem 7, ψε converges uniformly on every compact to ψ as ε goes
to zero. Thus, it is enough to show that, for every ε> 0 and t ≥ 0,

|h(t )| ≤ψε(t ).

We start by showing the inequality in a neighborhood of zero. Because z,h, w and ψε are
continuous, we get, taking h0 = 0,

|h(t )| = |w(0)|
∫ t

0
K (s)d s +o(

∫ t

0
K (s)d s), ψε(t ) = (|w(0)|+ε)

∫ t

0
K (s)d s +o(

∫ t

0
K (s)d s),

for small t . Hence, |h| ≤ψε on a neighborhood of zero. This result still holds when h0 is not
zero. Indeed in that case, it is easy to show that for t going to zero,

|h(t )|2 = |h0|2 +2ℜ(
h0(z(0)h0 +w(0))

)∫ t

0
K (s)d s +o(

∫ t

0
K (s)d s),

and

|ψε(t )|2 = |h0|2 +2
(ℜ(z(0))|h0|2 +|w(0)||h0|+ε|h0|)

)∫ t

0
K (s)d s +o(

∫ t

0
K (s)d s).

As |h0| is now positive, we conclude that |h| ≤ψε on a neighborhood of zero by the Cauchy-
Schwarz inequality.

Hence, t0 = inf{t > 0; ψε(t ) < |h(t )|} is positive. If we assume that t0 <∞, we would get that
|h(t0)| =ψε(t0) by continuity of h and ψε. Moreover,

∆t0 h =φh +K ∗ (∆t0 z∆t0 h +∆t0 w),

and
∆t0ψε =φψε

+K ∗ (∆t0ℜ(z)∆t0 w +∆t0 |w |+ε).

An application of Lemma 4 with F =∆t K for t > 0, yields

φh(t ) = h0(1− (∆t K ∗L)(t0))+ (d(∆t K ∗L)∗h)(t0)+ (∆t K ∗L)(0)h(t0),

and
φψε

(t ) = |h0|(1− (∆t K ∗L)(t0))+ (d(∆t K ∗L)∗ψε)(t0)+ (∆t K ∗L)(0)|h(t0)|.
Relying on the fact that d(∆t K ∗L) is a non-negative measure and ∆t K ∗L ≤ 1, by Remark
2, together with the fact that |h(s)| ≤ψε(s) for s ≤ t0, we get that |φh(t )| ≤ φψε

(t ). We now
notice that in the case h(t0) = 0, we have

∆t0 h(t ) =φh(t )+w(t0)
∫ t

0
K (s)d s +o(

∫ t

0
K (s)d s),
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and

∆t0ψε(t ) =φψε
(t )+ (|w(t0)|+ε)

∫ t

0
K (s)d s +o(

∫ t

0
K (s)d s),

and in the case |h(t0)| > 0, we have

|∆t0 h(t )|2 = 2
(ℜ(z(t0))|h(t0)|2 +ℜ(w(t0))ℜ(h(t0))+ℑ(w(t0))ℑ(h(t0))

)∫ t

0
K (s)d s

+|φh(t )|2 +o(
∫ t

0
K (s)d s),

∆t0ψε(t )2 = 2
(ℜ(z(t0))|h(t0)|2 +|w(t0)||h(t0)|+ε|h(t0)|))∫ t

0
K (s)d s

+φψε
(t )2 +o(

∫ t

0
K (s)d s),

for small t , thanks to the continuity of z, w,h,φh ,φψε
and ψε. In both cases, we obtain that

|h| ≤ψε on a neighborhood of t0. Therefore t0 =∞ and for any t ≥ 0

|h(t )| ≤ψε(t ).

The following result is a direct consequence of Theorems 7 and 8.

Corollary 4. Let h0 ∈C and z, w :R+ →C be continuous functions such that ℜ(z) ≤ λ for some
λ ∈R. We define h :R+ →C as the unique continuous solution of

h = h0 +K ∗ (zh +w).

Then, for any t ∈ [0,T ],

|h(t )| ≤ |h0|+ (‖w‖∞,T +λ|h0|)
∫ T

0
Eλ(s)d s,

where Eλ is the canonical resolvent of K with parameter λ.

Proof. From Theorem 8, we obtain that |h| ≤ψ1, where ψ1 is the unique continuous solution
of

ψ1 = |h0|+K ∗ (ℜ(z)ψ1 +|w |).

Moreover define ψ2 as the unique continuous solution of

ψ2 = |h0|+K ∗ (λψ2 +‖w‖∞,T ).

Then, ψ2 −ψ1 solves
χ= K ∗ (λχ+ f ),

with f = (λ−ℜ(z))ψ1 +‖w‖∞,T −w , which is a non-negative function on [0,T ]. Theorem 7
now yields

|h| ≤ψ1 ≤ψ2.
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Finally, the claimed bound follows by noticing that, for t ∈ [0,T ],

ψ2(t ) = |h0|+ (‖w‖∞,T +λ|h0|)
∫ t

0
Eλ(s)d s,

by Theorem 5 and that
∫ ·

0 Eλ(s)d s is non-decreasing by Corollary 3.
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CHAPTER IX

Optimal make-take fees for market making
regulation

Abstract

We consider an exchange who wishes to set suitable make-take fees to attract liquidity on
its platform. Using a principal-agent approach, we are able to describe in quasi-explicit
form the optimal contract to propose to a market maker. This contract depends essentially
on the market maker inventory trajectory and on the volatility of the asset. We also
provide the optimal quotes that should be displayed by the market maker. The simplicity
of our formulas allows us to analyze in details the effects of optimal contracting with an
exchange, compared to a situation without contract. We show in particular that it leads to
higher quality liquidity and lower trading costs for investors.

Keywords: Make-take fees, market making, financial regulation, high-frequency trading,
principal-agent problem, stochastic control.

1 Introduction

With the fragmentation of financial markets, exchanges are nowadays in competition. Indeed
the traditional international exchanges are now challenged by alternative trading venues, see
[LL13]. Consequently, they have to find innovative ways to attract liquidity on their platforms.
One solution is to use a make-taker fees system, that is a rule enabling them to charge in
an asymmetric way liquidity provision and liquidity consumption. The most classical setting,
used by many exchanges (such as Nasdaq, Euronext, BATS Chi-X...), is of course to subsidize
the former while taxing the latter. In practice, this means associating a fee rebate to executed
limit orders and applying a transaction cost for market orders.

In the recent years, the topic of make-take fees has been quite controversial. Indeed make-take
fees policies are seen as a major facilitating factor to the emergence of a new type of market
makers aiming at collecting fee rebates: the high frequency traders. As stated by the Securities
and Exchanges commission in [S.E10]: “Highly automated exchange systems and liquidity
rebates have helped establish a business model for a new type of professional liquidity provider
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IX. Optimal make-take fees for market making regulation

that is distinct from the more traditional exchange specialist and over-the-counter market
maker." The concern with high frequency traders becoming the new liquidity providers is
two-fold. First, their presence implies that slower traders no longer have access to the limit
order book, or only in unfavorable situations when high frequency traders do not wish to
support liquidity. This leads to the second classical criticism against high frequency market
makers: they tend to leave the market in time of stress, see [Bel17, MSLR17, Men13, RP12] for
detailed investigations about high frequency market making activity.

From an academic viewpoint, studies of make-take fees structures and their impact on the
welfare of the markets have been mostly empirical, or carried out in rather stylized models. An
interesting theory, suggested in [AHS11] and developed in [CF12] is that make-take fees have
actually no impact on trading costs in the sense that the cum fee bid-ask spread should not
depend on the make-take fees policy. This result is consistent with the empirical findings in
[Lut10, MP15a]. Nevertheless, it is clearly shown in these works that many important trading
parameters such as depths, volumes or price impact do depend on the make-take fees structure,
see also [Har13]. Furthermore, the idea of the neutrality of the make-take fees schedule is also
tempered in [FKK13] where the authors show theoretically that make-take fees may increase
welfare of markets provided the tick size is not equal to zero, see also [BM13].

In this work, our aim is to provide a quantitative and operational answer to the question of
relevant make-take fees. To do so, we take the position of an exchange (or of the regulator)
wishing to attract liquidity. The exchange is looking for the best make-take fees policy to
offer to market makers in order to maximize its utility. In other words, it aims at designing
an optimal contract with the market marker to create an incentive to increase liquidity. For
simplicity, we consider a single market maker in a non-fragmented market.

Incentive theory has emerged in the 1970s in economics to model how a financial agent can
delegate the management of an output process to another agent. Let us recall the formalism of
principal-agent problems from the seminal works of Mirrlees [Mir74] and Holmström [Höl79].
A principal aims at contracting with an agent who provides efforts to manage an output
process impacting the wealth of the principal. The principal is not able to control directly the
output process since he cannot decide the efforts made by the agent. In our case, the principal
is the exchange, the agent is the market maker, the efforts correspond to the quality of the
liquidity provided by the market maker (essentially the size of the bid-ask spread proposed by
the market maker) and the output process is the transactions flow on the platform. Several
economics papers have investigated this kind of problems by identifying it with a Stackelberg
equilibrium between the two parties. More precisely, since the principal cannot control the
work of the agent, he anticipates his best-reaction effort for a given compensation. Knowing
that, the principal aims at finding the best contract.

In our work, we deal with a continuous-time principal-agent problem. Indeed, the exchange
monitors the spread set by the market maker around a Brownian-type efficient price and the
transactions flow in continuous-time. Thus, we follow the stream of literature initiated in
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[HM87]. Then in [San08], the author recasts such issue into a stochastic control problem which
has been further developed using backward stochastic differential equation theory in [CPT15].
See also [CZ13] for related literature.

In this paper, although we work in a quite general and realistic setting, we are able to solve our
principal-agent problem. More precisely, we provide a quasi-explicit expression for the optimal
contract the exchange should propose to the market maker, and also for the quotes the market
maker should set. The optimal contract depends essentially on the market maker inventory
trajectory and on the volatility of the market. These simple formulas enable us to analyze
in details the effects for the welfare of the market of optimal contracting with an exchange,
compared to a situation without contract as in [AS08, GLFT13]. We notably show that using
such contracts leads to reduced spreads and lower trading costs for investors.

The paper is organized as follows. Our modeling approach is presented in Section 2. In
particular, we define the market maker’s as well as the exchange’s optimization framework. In
Section 3, we compute the best response of the market maker for a given contract. Optimal
contracts are designed in Section 4 where we solve the exchange’s problem. Then, in Section 5,
we assess the benefits for market quality of the presence of an exchange contracting optimally
with a market maker. Finally, useful technical results are gathered in an appendix.

2 The model

The framework considered throughout this paper is inspired by the seminal work [AS08] where
the authors consider the problem of optimal market making, but without the intervention
of an exchange. Let T > 0 be a final horizon time and (Ω,F ) be a measurable space such
that Ω=Ωc × (Ωd )2 with Ωc the set of continuous functions from [0,T ] into R, Ωd the set of
piecewise constant càdlàg functions from [0,T ] into N and F the Borel algebra on Ω. We
consider the following canonical process (χt )t∈[0,T ] = (St , N a

t , N b
t )t∈[0,T ]

∀ω= (s,na ,nb) ∈Ω St (ω) = s(t ), N a
t (ω) = na(t ), N b

t (ω) = nb(t ).

We endow the space (Ω,F ) with F= (Ft )t∈[0,T ] = (F c
t ⊗ (F d

t )⊗2)t∈[0,T ] where (F c
t )t∈[0,T ] and

(F d
t )t∈[0,T ] are the right-continuous completed filtrations associated with the components of

(χt )t∈[0,T ].

We consider a market where there is only one market maker. This market maker has a view on
the efficient price of the asset given by St . We assume that

St = S0 +σWt , t ∈ [0,T ], (1)

with S0 > 0, W a Brownian motion and σ > 0 the volatility of the price1. For t ∈ [0,T ], the
market maker fixes the bid and ask prices P b

t and P a
t as follows

P b
t = St −δb

t and P a
t = St +δa

t .

1In practice, the efficient price can be thought of as the mid-price of the asset.
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We assume that the arrival of ask (resp. bid) market orders is modeled by a point process
(N a

t )t∈[0,T ] (resp. (N b
t )t∈[0,T ]) with intensity (λa

t )t∈[0,T ] (resp. (λb
t )t∈[0,T ]). We also suppose that

the volume of market orders is constant and equal to unity. Hence, the inventory process of
the market maker Q is given by

Qt = N b
t −N a

t , t ∈ [0,T ].

As in [GLFT13], we impose a critical absolute inventory q̄ ∈N above which the market maker
stops quoting on the ask or bid side, i.e.

λa
t =λa

t 1I{Qt>−q̄}, and λb
t =λb

t 1I{Qt<q̄}.

We expect the intensity of buy (resp. sell) market order arrivals to depend on the extra cost of
each trade payed by the market taker compared to the efficient price. This extra cost is the
sum of the spread δa

t (resp. δb
t ) imposed by the market maker and the transaction cost c > 0

collected by the exchange, as explained in Section 2.2. Moreover, we recall that from classical
financial economics results, see [DR15, MRR97, WBK+08], the average number of trades per
unit of time is a decreasing function of the ratio between the spread and the volatility. Hence,
we assume that

λa
t = λ(δa

t )1I{Qt>−q̄}, and λb
t = λ(δb

t )1I{Qt<q̄}, with λ(x) = Ae−k (x+c)
σ , (2)

for fixed positive constants A and k .

2.1 Admissible controls and market maker’s problem

We work with the set A of admissible controls (δt )t∈[0,T ] = (δa
t ,δb

t )t∈[0,T ] where any δ ∈A is
predictable and satisfies

|δa
t |∨ |δb

t | ≤ δ∞, t ∈ [0,T ].

Here, δ∞ is a fixed positive constant which will be fixed later to a sufficiently large value.
For each control process δ = (δa ,δb) of the market maker, we denote by Pδ the associated
probability measure under which S follows (1) and

Ñδ,a
t = N a

t −
∫ t

0
λ(δa

r )1I{Qr >−q̄}dr, Ñδ,b
t = N b

t −
∫ t

0
λ(δb

r )1I{Qr <q̄}dr,

are martingales. In that case, the profit and loss process of the market maker is defined by

PLδt = X δ
t +Qt St , where X δ

t =
∫ t

0
P a

r d N a
r −

∫ t

0
P b

r d N b
r , t ∈ [0,T ]. (3)

Here, X δ is the cash flow process and QS represents the inventory risk process2.

2As in [AS08], for sake of simplicity, we assume that the market maker estimates his inventory risk using the
efficient price S.
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Next, we introduce the Doléans-Dade exponential

Lδt = exp
(∫ t

0
log

(
λ(δa

r )

A

)
1I{Qr−>−q̄}d N a

r + log

(
λ(δb

r )

A

)
1I{Qr−<q̄}d N b

r

−(λ(δa
r )− A)1I{Qr >−q̄}dr − (λ(δb

r )− A)1I{Qr <q̄}dr
)
,

which is a P0−local martingale3 as it can be verified by direct application of Itô’s formula that

dLδt = Lδt

(
λ(δa

t )− A

A
1I{Qt−>−q̄}d Ñ 0,a

t + λ(δb
t )− A

A
1I{Qt−<q̄}d Ñ 0,b

t

)
.

Since δa and δb are uniformly bounded, this local martingale satisfies the Novikov-type
criterion in [Sok13] and thus is a martingale. From Theorem III.3.11 in [JS13], it follows that

dPδ

dP0

∣∣∣
Ft

= Lδt , for all t ∈ [0,T ]. (4)

In particular, all the probability measures Pδ indexed by δ ∈A are equivalent. We therefore
use the notation a.s for almost surely without ambiguity. We shall write Eδt for the conditional
expectation with respect to Ft with probability measure Pδ.

We consider that the exchange is compensated for each market order arrival and so aims at
keeping the market liquid. Thus, we assume that it proposes to the market maker a contract,
defined by an FT -measurable random variable ξ, in order to create an incentive to attract
liquidity on the platform by reducing his spread. In addition to the realized profit and loss (3)
on [0,T ], the market maker receives a compensation ξ from the exchange at the final time T ,
thus leading to the maximization problem,

VMM(ξ) = sup
δ∈A

JMM(δ,ξ) where JMM(δ,ξ) = Eδ
[
−e−γ(ξ+PLδT −PLδ0 )

]
(5)

= Eδ
[
−e−γ

(
ξ+∫ T

0 (δa
t d N a

t +δb
t d N b

t +Qt dSt )
)]

.

Here, γ > 0 is the absolute risk aversion parameter of the CARA market maker. For each
compensation ξ, we show that there exists a unique optimal response δ̂(ξ) = (δ̂a(ξ), δ̂b(ξ)) of
the market marker.

Remark 1. The case ξ = 0 corresponds to the problem without exchange intervention treated in
[AS08, GLFT13].

2.2 The exchange optimal contracting problem

We assume that the exchange is compensated by a fixed amount c > 0 for each market order
that occurs in the market. In practice, some exchanges add to this fixed fee a component

3P0 denotes the the probability measure Pδ associated to a vanishing spread δ= (δa ,δb ) = (0,0).
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which is proportional to the traded amount in currency value. However, since we are anyway
working on a short time interval, we take c independent of the price of the asset. Note that
the fee schedule considered here for the taker side is simple. Indeed, in practice, complex fee
policies are rather dedicated to market makers. Furthermore, we will in fact see that when
acting optimally, the exchange is somehow indifferent to the value of c , see Section 4.3.

The exchange aims at maximizing the total number of market orders N a
T −N a

0 +N b
T −N b

0
arrived during the time interval [0,T ], whose arrival intensities are controlled exclusively by
the market maker. The role of the contract ξ proposed by the exchange to the market maker is
to encourage the latter to increase the liquidity of the market. In this case, the profit and loss
of the exchange is given by

c(N a
T −N a

0 +N b
T −N b

0 )−ξ.

Thus the exchange optimally chooses the contract to maximize its CARA utility function with
absolute risk aversion parameter η> 0,

V E
0 = sup

ξ∈C

Eδ̂(ξ)
[
−e−η(c(N a

T −N a
0 +N b

T −N b
0 )−ξ)

]
. (6)

We now define the set of admissible contracts C . Concerning the problem of the exchange, we

need to ensure that Eδ̂(ξ)
[
−e−η(c(N a

T −N a
0 +N b

T −N b
0 )−ξ)

]
is not degenerated. The natural condition

that we need is then to assume that

sup
δ∈A

Eδ
[

eη
′ξ
]
<+∞, for some η′ > η. (7)

Since N a and N b are point processes with bounded intensities, this condition together with a
Hölder inequality ensure that the problem of the exchange (6) is well defined. Similarly, we
will assume that

sup
δ∈A

Eδ
[

e−γ
′ξ
]
<+∞, for some γ′ > γ, (8)

to ensure that Eδ[−e−γ(ξ+∫ T
0 (δa

t d N a
t +δb

t d N b
t +Qt dSt ))] is not degenerate and hence the well-definition

of the market maker problem (5). We will also assume that the latter only accepts contracts ξ
such that the maximal utility VMM(ξ) is above a threshold value R < 0.

Hence, we denote by C the space of admissible contracts defined by

C =
{
ξ FT -measurable such that VMM(ξ) ≥ R and (7) and (8) are satisfied

}
.

We will take −R large enough so that C contains the zero contract ξ= 0 and thus is nonempty.

3 Solving the market maker’s problem

We start by solving the problem (5) of the market maker facing an arbitrary contract ξ ∈C

proposed by the exchange.

256



3. Solving the market maker’s problem

For (δ, z, q) ∈ [−δ∞,δ∞]2 ×R3 ×Z, with δ= (δa ,δb) and z = (zS , za , zb), we define

h(δ, z, q) = 1−e−γ(za+δa )

γ
λ(δa)1I{q>−q̄} + 1−e−γ(zb+δb )

γ
λ(δb)1I{q<q̄},

and

H(z, q) = sup
|δa |∨|δb |≤δ∞

h(δ, z, q),

For an arbitrary constant Y0 ∈R and predictable processes Z = (Z S , Z a , Z b), with
∫ T

0 |Z S
t |2 +

|H(Zt ,Qt )|d t <∞, we introduce the process

Y Y0,Z
t = Y0 +

∫ t

0
Z a

r d N a
r +Z b

r d N b
r +Z S

r dSr +
(1

2
γσ2(Z S

r +Qr )2 −H(Zr ,Qr )
)
dr, (9)

and we denote by Z the collection of all such processes Z such that Condition (7) is satisfied
with ξ= Y 0,Z

T and

sup
δ∈A

sup
t∈[0,T ]

Eδ[e−γ
′Y 0,Z

t ] <∞, for some γ′ > γ. (10)

Clearly, Z 6= ; as it contains all bounded predictable processes and

C ⊃ Ξ = {
Y Y0,Z

T : Y0 ∈R, Z ∈Z , and VMM(Y Y0,Z
T ) ≥ R

}
.

The next result shows that these sets are in fact equal, and identifies the market maker utility
value and the corresponding optimal response. To prove equality of these sets, we are reduced
to the problem of representing any contract ξ ∈C as ξ= Y Y0,Z

T for some (Y0, Z ) ∈R×Z , which
is known in the literature as a problem of backward stochastic differential equation. We refrain
from using this terminology, as our analysis does not require any result from this literature.

Theorem 1. (i) Any contract ξ ∈C has a unique representation as ξ= Y Y0,Z
T , for some (Y0, Z ) ∈

R×Z . In particular, C =Ξ.
(ii) Under this representation, the market maker utility value is

VMM
(
ξ
)=−e−γY0 , so that Ξ =

{
Y Y0,Z

T : Z ∈Z , and Y0 ≥ −1

γ
log(−R)

}
,

with the following optimal bid-ask policy

δ̂a
t (ξ) =∆(Z a

t ), δ̂b
t (ξ) =∆(Z b

t ), where ∆(z) = (−δ∞)∨
{
− z + 1

γ
log

(
1+ σγ

k

)}
∧δ∞. (11)

The proof of Part (i) of the previous result is reported in Section IX.B. This representation is
obtained by using the dynamic continuation utility process of the market maker, following
the approach of Sannikov [San08]. We prove that the continuation utility process satisfies
the dynamic programming principle, so that the required representation follows from the
Doob-Meyer decomposition of supermartingales together with the martingale representation
theorem.
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Proof of Theorem 1 (ii) Let ξ= Y Y0,Z
T with (Y0, Z ) ∈R×Z . We first prove that for an arbitrary

bid-ask policy δ ∈A , we have JMM(δ,ξ) ≤−e−γY0 . Denote Y t = Y Y0,Z
t +∫ t

0 δ
a
t d N a

t +δb
t d N b

t +
Qt dSt , t ∈ [0,T ]. By direct application of Itô’s formula, we see that

de−γY t = γe−γY t−
(
− (Qt +Z S

t )dSt − 1

γ
(1−e−γ(Z a

t +δa
t ))d Ñδ,a

t − 1

γ
(1−e−γ(Z b

t +δa
t ))d Ñδ,b

t

+ (
H(Zt ,Qt )−h(δt , Zt ,Qt )

)
d t

)
.

Hence e−γY is a Pδ-local submartingale. Thanks to Condition (10), the uniform boundedness
of the intensities of N a and N b and Hölder inequality, (e−γY t )t∈[0,T ] is uniformly integrable
and hence is a true submartingale. By Doob-Meyer decomposition theorem, we conclude that∫ ·

0
γe−γY t−

(− (Qt +Z S
t )dSt − 1

γ
(1−e−γ(Z a

t +δa
t ))d Ñδ,a

t − 1

γ
(1−e−γ(Z b

t +δa
t ))d Ñδ,b

t

)
,

is a true martingale. It follows that

JMM(δ,ξ) = Eδ[−e−γY T
]=−e−γY0 −Eδ

[∫ T

0
γe−γY t

(
H(Zt ,Qt )−h(δt , Zt ,Qt )

)
d t

]
≤−e−γY0 .

On the other hand, equality holds in the last inequality if and only if δ is chosen as the
maximizer of the Hamiltonian H (d t ×dP0−a.e.), thus leading to the unique maximizer
δ̂(ξ) given by (11), which then induces JMM(δ̂(ξ),ξ) = −e−γY0 . This completes the proof that
VMM(ξ) =−e−γY0 with optimal response δ̂(ξ).

4 Designing the optimal contract

Denote Ŷ0 = − 1
γ log(−R). By Theorem 1, the exchange problem (6) reduces to the control

problem

V E
0 = sup

Y0≥Ŷ0

sup
Z∈Z

Eδ̂(Y
Y0,Z

T )
[
−e−η

(
c(N a

T −N a
0 +N b

T −N b
0 )−Y

Y0,Z
T

)]
, (12)

where Y Y0,Z is given by (9). In the present context, notice that the market maker optimal

response δ̂(Y Y0,Z
T ) given by (11) does not depend on Y0, i.e δ̂(Y Y0,Z

T ) = δ̂(Y Ŷ0,Z
T ). Hence, the

objective function in (12) is clearly decreasing in Y0 implying that the maximization under the
participation constraint is achieved at Ŷ0,

V E
0 = eηŶ0 sup

Z∈Z
Eδ̂(Y

Ŷ0,Z
T )

[
−e−η

(
c(N a

T −N a
0 +N b

T −N b
0 )−Y 0,Z

T

)]
. (13)

4.1 The HJB equation for the reduced exchange problem

Motivated by (13), we study in this section the HJB equation corresponding to the stochastic
control problem

vE
0 = sup

Z∈Z
Eδ̂(Y

Ŷ0,Z
T )

[
−e−η

(
c(N a

T −N a
0 +N b

T −N b
0 )−Y 0,Z

T

)]
. (14)
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4. Designing the optimal contract

Our approach is to derive a solution v of the corresponding HJB equation, and to proceed by
the standard verification argument in stochastic control to prove that the proposed solution v
coincides with the value function vE

0 .

Applying the standard dynamic programming approach to the last control problem, we are led
to the following HJB equation{

∂t v(t , q)+HE
(
q, v(t , q), v(t , q +1), v(t , q −1)

) = 0, q ∈ {−q̄ , · · · q̄}, t ∈ [0,T ),

v(T, q) =−1,
(15)

where the Hamiltonian HE : [−q̄ , q̄]× (−∞,0]3 →R is given by

HE (q, y, y+, y−) = H 1
E (q, y)+1I{q>−q̄}H 0

E (y, y−)+1I{q<q̄}H 0
E (y, y+), (16)

with

H 1
E (q, y) = sup

zs∈R
h1

E (q, y, zs), and h1
E (q, y, zs) = ησ2

2
y

(
γ(zs +q)2 +ηz2

s

)
,

H 0
E (y, y ′) = sup

ζ∈R
h0

E (y, y ′,ζ) and h0
E (y, y ′,ζ) =λ(

∆(ζ)
)[

y ′eη(ζ−c) − y
(
1+η 1−e−γ(ζ+∆(ζ))

γ

)]
.

A direct calculation reported in Lemma 4 below reveals that the maximizers ẑ = (ẑs , ẑa , ẑs) of
HE are

ẑs(t , q) =− γ

γ+ηq, ẑa(t , q) = ζ̂(v(t , q), v(t , q −1)
)
, and ẑb(t , q) = ζ̂(v(t , q), v(t , q +1)

)
, (17)

where

ζ̂(y, y ′) = ζ0 + 1

η
log

( y

y ′
)
, ζ0 = c + 1

η
log

(
1− σ2γη

(k +σγ)(k +ση)

)
.

Here, we assume that δ∞ is large enough so that Condition (37) of Lemma 4 is always met,
namely

δ∞ ≥C∞+ 1

η
sup

t∈[0,T ]
sup

q∈[−q̄ ,q̄−1]

∣∣∣∣log

(
v(t , q)

v(t , q +1)

)∣∣∣∣ (18)

with the hope that our candidate solution of the HJB equation will verify it. This will be
checked in our verification argument. Recall from Lemma 4 that

C∞ = c + (
1

η
+ 1

γ
) log(1+ σγ

k
)− 1

η
log

(
1− σ2γη

(k +σγ)(k +ση)

)
.

Using again the calculation reported in Lemma 4, we rewrite the HJB equation (15) as∂t v(t , q)+ γη2σ2

2(γ+η) q2v(t , q)−C v(t , q)
[

1I{q>−q̄}
( v(t ,q)

v(t ,q−1)

) k
ση +1I{q<q̄}

( v(t ,q)
v(t ,q+1)

) k
ση

]
= 0,

v(T, q) =−1,
(19)
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where the constant C is given by

C = A
ση

k
exp

(
− k

σγ
log(1+ σγ

k
)+ (1+ k

ση
) log

(
1− σ2γη

(k +σγ)(k +ση)

))
.

Inspired by [GLFT13], we now make the key observation that this equation can be reduced to

a linear equation by introducing u = (−v)−
k
ση . Indeed, by direct substitution, we obtain the

following linear differential equation{
∂t u(t , q)−C1q2u(t , q)+C2

(
u(t , q +1)1I{q<q̄} +u(t , q −1)1I{q>−q̄}

) = 0, t ∈ [0,T ),

u(T, q) = 1,
(20)

with

C1 = kγησ

2(γ+η)
and C2 =C

k

ση
.

This equation can be written in terms of the R2q̄+1−valued function u(t ) = (
u(t , q)

)
q∈{−q̄ ,...,q̄},

of the variable t only, as the linear ordinary differential equation

∂t u =−Bu, where B =



−C1q̄2 C2
. . . . . . . . .

C2 −C1q2 C2
. . . . . . . . .

C2 −C1q̄2

← q-th line,

is a tri-diagonal matrix with lines labelled −q̄ , . . . , q̄ . Denote by bq the vector of R2q̄+1 with

zeros everywhere except at the position q , i.e. bq,i = 1I{i=q} for i ∈ {−q̄ , . . . , q̄}, and 1 =∑q̄
q=−q̄ bq .

Then, this ODE has a unique solution

u(t ) = e(T−t )B1, so that u(t , q) = bq ·e(T−t )B1, and v(t , q) =−(
bq ·e(T−t )B1

)− ση

k . (21)

In the next section, we shall prove that this solution v of the HJB equation (15) coincides with
the value function of the reduced exchange problem (14), with optimal controls ẑ(t , q) given in

(17), thus inducing the optimal contract Y Ŷ0,Ẑ
T with Ẑt = ẑ(t ,Qt−).

We conclude this section by an alternative representation of the function u.

Proposition 1. Let u and v be defined by (21). The function u can be represented as

u(t , q) = E
[

e
∫ T

t (−C1(Q t ,q
s )2+λs+λs )d s

]
,

where Q t ,q
s = q + ∫ s

t d(N u −N u), and (N , N ) is a two-dimensional point process with intensity
(λs ,λs) =C2(1I{Qs−<q̄},1I{Qs−>−q̄}). In particular, we have the following bounds for the function u,

e−C1 q̄2T ≤ u ≤ e2C2T .
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4. Designing the optimal contract

Moreover, Condition (18) is verified when

δ∞ ≥ ∆∞ =C∞+ σ

k
(2C2 +C1q̄2)T. (22)

Proof. Notice that u is a smooth bounded function. Denote f (x) = −C1x2 +C2(1I{x>−q̄} +
1I{x<q̄}), and Ms = e

∫ s
t f (Q t ,q

u )duu(s,Q t ,q
s ), t ≤ s ≤ T . We now show that M is a martingale, so

that u(t , q) = Mt = E[MT ] = E[e−
∫ T

t f (Q t ,q
s )d s

]
, as u(T, .) = 1. To see that M is a martingale, we

compute by Itô’s formula that

d Ms = [
u(s,Q t ,q

s ) f (Q t ,q
s )+∂t u(s,Q t ,q

s )
]
d s

+C2
[
u(s,Q t ,q

s− +1)−u(s,Q t ,q
s− )

]
d N s +C2

[
u(s,Q t ,q

s− −1)−u(s,Q t ,q
s− )

]
d N s .

Since u is solution of (20), we get

d Ms = C2
[
u(s,Q t ,q

s− +1)−u(s,Q t ,q
s− )

]
d M s +C2

[
u(s,Q t ,q

s− −1)−u(s,Q t ,q
s− )

]
d M s ,

where (M , M) = (N −∫ ·
0λsd s, N −∫ ·

0λsd s) is a martingale. The martingale property of M now
follows from the boundedness of u as it can be verified from the expression (21). Finally, the
bound |Q t ,q

s | ≤ q̄ induces directly the announced bounds on u, which in turn imply Condition
(18) when (22) is satisfied because v =−u− ση

k .

4.2 Main result

We are now ready to verify that the function v introduced in the previous section is the value
function of the exchange, with optimal feedback controls (ẑs , ẑa , ẑb) as given in (17), thus
identifying a unique optimal contract to be proposed by the exchange to the market maker.
Recall that δ∞ denotes the bound on the market maker bid and ask spreads. Our main explicit
solution requires δ∞ to be larger that the constant ∆∞ introduced in (22).

Theorem 2. Assume that δ∞ ≥∆∞, with ∆∞ given by (22) and define u and v by (21). Then the
optimal contract for the problem of the exchange (6) is given by

ξ̂ = Ŷ0 +
∫ T

0
Ẑ a

r d N a
r + Ẑ b

r d N b
r + Ẑ S

r dSr +
(1

2
γσ2(Ẑ S

r +Qr
)2 −H

(
Ẑr ,Qr

))
dr, (23)

with Ẑ S
r = ẑs(r,Qr−), Ẑ a

r = ẑa(r,Qr−), and Ẑ b
r = ẑb(r,Qr−) as defined in (17). The market maker’s

optimal effort is given by

δ̂a
t = δ̂a

t (ξ̂) =−Ẑ a
t + 1

γ
log(1+ σγ

k
), δ̂b

t = δ̂b
t (ξ̂) =−Ẑ b

t + 1

γ
log(1+ σγ

k
). (24)

Proof. In order to prove this result, we verify that the function v introduced in (21) coincides at
(0,Q0) with the value function of the reduced exchange problem (14), with maximum achieved
at the optimal control Ẑ .

261



IX. Optimal make-take fees for market making regulation

The function v is negative bounded and has bounded gradient. Moreover, since δ∞ ≥ ∆∞,
it follows that v is a solution of the HJB equation (15) of the exchange reduced problem, see
Lemma 4. For Z ∈Z , denote

K Z
t = e−η

(
c(N a

t −N a
0 +N b

t −N b
0 )−Y 0,Z

t

)
, t ∈ [0,T ].

By direct application of Itô’s formula, and substitution of ∂t v from the HJB equation satisfied
by v , we see that

d
[
v(t ,Qt )K Z

t

]= K Z
t−

(
(hZ

t −H t )d t +ηv(t ,Qt )Z s
t dSt

+ ∑
i=a,b

[
v(t ,Qt−+∆Qt )e−η(c−Z i

t ) − v(t ,Qt−)
]
d Ñ δ̂(Y Ŷ0,Z ),i

t

)
, (25)

where, using the notations of (16) and the subsequent equations,

H t = HE
(
Qt , v(t ,Qt ), v(t ,Qt +1), v(t ,Qt −1)

)
,

and

hZ
t = h1

E

(
Qt , v(t ,Qt ), Z S

t )+1I{Qt>−q̄}h
0
E

(
v(t ,Qt ), v(t ,Qt −1), Z a

t

)
+1I{Qt<q̄}h

0
E

(
v(t ,Qt ), v(t ,Qt +1), Z b

t

)
.

Exploiting the fact that v is bounded and that K Z is uniformly integrable, see Lemma 5, we

get that
(
v(t ,Qt )K Z

t

)
t∈[0,T ] is a Pδ̂(Y

Ŷ0,Z
T )-supermartingale and by Doob-Meyer decomposition

theorem, the local martingale term in (25) is a true martingale. Hence

v(0,Q0) = Eδ̂(Y
Ŷ0,Z

T )
[

v(T,QT )K Z
T +

∫ T

0
K Z

t (H t −hZ
t )d t

]
≥ Eδ̂(Y

Ŷ0,Z
T )[v(T,QT )K Z

T

] = Eδ̂(Y
Ŷ0,Z

T )[−K Z
T ],

by the boundary condition v(T, .) =−1. By arbitrariness of Z ∈Z , this provides the inequality

v(0,Q0) ≥ supZ∈Z E
δ̂(Y Ŷ 0,Z

T )[−K Z
T ] = vE

0 .

On the other hand, consider the maximizer Ẑ of the reduced exchange problem, induced by
the feedback controls ẑ in (17). As Ẑ is bounded, it follows that Ẑ ∈Z . Moreover, h Ẑ −H = 0,

by definition, so that the last argument leads to the equality v(0,Q0) = Eδ̂(Y
Ŷ0,Ẑ

T )
[−K Ẑ

T

]
, instead

of the inequality. This shows that v(0,Q0) = vE
0 , the reduced exchange problem of (14), with

optimal control Ẑ . From Theorem 1, the corresponding optimal market maker response of

the market maker is given by (11) with ξ= Y Ŷ0,Ẑ
T . Moreover, Condition (18) implies that∣∣∣∣−Z i

t +
1

γ
log

(
1+ σk

k

)∣∣∣∣≤ δ∞, i = a,b.

Hence the optimal effort could be reduced to (24).
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4.3 Discussion

The processes Ẑ a , Ẑ b and Ẑ S allowing the exchange to build the optimal contract have
actually quite natural interpretations. Indeed, using Lemma 1, we obtain that the quantities

− log
( u(t ,Qt−)

u(t ,Qt−−1)

)
and − log

( u(t ,Qt−)

u(t ,Qt−+1)

)
are roughly proportional respectively to Qt− and −Qt−. Thus, when the inventory is highly
positive, the exchange provides incentives to the market-maker so that it attracts buy market
orders and tries to dissuade him to accept more sell market orders, and conversely for a
negative inventory. The integral ∫ T

0
Ẑ S

r dSr

can be understood as a risk sharing term. Indeed,
∫ t

0 Qr dSr corresponds to the price driven
component of the inventory risk Qt St . Hence in the optimal contract, the exchange supports
part of this risk so that the market maker maintains reasonable quotes despite some inventory.
The proportion of risk handled by the platform is γ

γ+η .

Until now, we have focused on the maker part of the make-take fees problem since we have
considered that the taker cost c is fixed. Nevertheless, our approach also enables us to suggest
the exchange a relevant value for c . Actually, we see that when acting optimally, the exchange
transfers the totality of the fixed taker fee c to the market maker. It is therefore neutral to the
value of c as its optimal utility function vE

0 = v(0,Q0) is independent of the taker cost, see (19).
However, c plays an important role in the optimal spread offered by the market maker given by

−2c + σ

k
log

( u(t ,Qt−)2

u(t ,Qt−−1)u(t ,Qt−+1)

)
− 2

η
log

(
1− σ2γη

(k +σγ)(k +ση)

)
+ 2

γ
log(1+ σγ

k
).

Furthermore, from numerical computations, we remark that

u(t , q)2

u(t , q −1)u(t , q +1)

is close to unity for any t and q . Hence the exchange may fix in practice the transaction cost
c so that the spread is close to one tick by setting

c ≈−1

2
Tick− 1

η
log

(
1− σ2γη

(k +σγ)(k +ση)

)
+ 1

γ
log(1+ σγ

k
).

For σγ/k small enough, this equation reduces to

c ≈ σ

k
− 1

2
Tick. (26)

Equation (26) is a particularly simple formula to fix the taker constant c . We see that the
higher the volatility, the larger the taker cost should be. It is also quite natural that this cost is
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a decreasing function of k . Indeed, if k is large, the liquidity vanishes rapidly when the spread
becomes wide, meaning that market takers are sensitive to extra costs relative to the efficient
price. Therefore, the taker cost has to be small if the exchange wants to maintain a reasonable
market order flow. Finally, note that the parameters σ and k can be easily estimated from
market data. Therefore the formula (26) can be readily used in practice.

5 Impact of the presence of the exchange on market quality and
comparison with [AS08, GLFT13]

In this section, we compare our setting with the situation without incentive policy from an
exchange towards market making activities. The latter is considered in [AS08, GLFT13] where
the authors deal with the issue of optimal market making without intervention of the exchange.
The results in [AS08] are taken as benchmark for our investigation to emphasize the impact
of the incentive policy on market quality. We will refer to this case as the neutral exchange case.

Let us first recall the results in [AS08, GLFT13]. The optimal controls of the market maker
denoted by δ̃a and δ̃b are given as a function of the inventory Qt by

δ̃a
t = σ

k
log

( ũ(t ,Qt−)

ũ(t ,Qt−−1)

)
+ 1

γ
log(1+ σγ

k
),

δ̃b
t = σ

k
log

( ũ(t ,Qt−)

ũ(t ,Qt−+1)

)
+ 1

γ
log(1+ σγ

k
),

where ũ is the unique solution of the linear differential equation{
∂t ũ(t , q)+ C̃1q2ũ(t , q)− C̃2(ũ(t , q +1)1I{q<q̄} + ũ(t , q −1)1I{q>−q̄}) = 0,(t , q) ∈ [0,T )× [−q̄ , q̄]

ũ(T, q) = 1,

with C̃1 = σγk
2 and C̃2 = A exp

(− (1+ σγ
k ) log(1+ σγ

k )
)
. In our case, the optimal quotes δ̂a and

δ̂b are obtained from Theorem 2 and satisfy

δ̂a
t = σ

k
log

( u(t ,Qt−)

u(t ,Qt−−1)

)
+ 1

γ
log(1+ σγ

k
)− c − 1

η
log

(
1− σ2γη

(k +σγ)(k +ση)

)
,

δ̂b
t = σ

k
log

( u(t ,Qt−)

u(t ,Qt−+1)

)
+ 1

γ
log(1+ σγ

k
)− c − 1

η
log

(
1− σ2γη

(k +σγ)(k +ση)

)
,

where u is solution of the linear equation (20).

Numerical experiments show that u and ũ can decrease quickly to zero when q becomes large.
Hence, the computation of the following crucial quantities appearing in the optimal quotes:

v+(t , q) = log
(u(t , q +1)

u(t , q)

)
, ṽ+(t , q) = log

( ũ(t , q +1)

ũ(t , q)

)
, q ∈ {−q̄ , · · · , q̄ −1}.
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can be intricate in practice. To circumvent this numerical difficulty, we remark that v+ and ṽ+
are solution of the following differential equations{
∂t v+(t , q)+C1(2q +1)−C2(ev+(t ,q+1)1I{q<q̄−1} +e−v+(t ,q) −ev+(t ,q) −e−v+(t ,q−1)1I{q>−q̄}) = 0

v+(T, q) = 0,
(27)

and{
∂t ṽ+(t , q)+ C̃1(2q +1)− C̃2(e ṽ+(t ,q+1)1I{q<q̄−1} +e−ṽ+(t ,q) −e ṽ+(t ,q) −e−ṽ+(t ,q−1)1I{q>−q̄}) = 0

ṽ+(T, q) = 0.
(28)

We thus rather apply classical finite difference schemes to (27) and (28).

In the following numerical illustrations, in the spirit of [GLFT13, Section 6], we take T = 600s
for an asset with volatility σ= 0.3 Tick.s−1/2 (unless specified differently). Market orders arrive
according to the intensities (2) with A = 1.5s−1 and k = 0.3s−1/2. We assume that the threshold
inventory of the market maker is q̄ = 50 units and we set his risk aversion parameter to
γ= 0.01. The exchange is taken more risk averse with η= 1. Finally, we assume that the taker
cost c = 0.5 Tick4.

5.1 Impact of the exchange on the spread and market liquidity

We start by comparing the optimal spread δ̂a
0 + δ̂b

0 at time 0 obtained when contracting
optimally with the spread without incentives towards market making activities δ̃a

0 + δ̃b
0 . The

optimal spreads are plotted in Figure IX.1 for different initial inventory values Q0 ∈ {−q̄ , · · · , q̄}.

Figure IX.1 – Comparison of optimal initial spreads with/without incentive policy from the
exchange.

We observe in Figure IX.1 that the initial spread does not depend a lot on the initial inventory
(because the considered time interval [0,T ] is not too small) and that it is reduced thanks to

4Note that the taker cost is chosen according to Criteria (26). We expect the optimal spread to be close to one
tick.
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the optimal contract between the market maker and the exchange. This is not surprising since
in our case the exchange aims at increasing the market order flow by proposing an incentive
contract to the market maker inducing a spread reduction. Actually this phenomenon occurs
over the whole trading period [0,T ]. To see this, we generate 5000 paths of market scenarios
and compute the average spread over [0,T ] for an initial inventory Q0 = 0. The results are
given in Figure IX.2.

Figure IX.2 – Average spread on [0,T ] with 95% confidence interval, with/without incentive
policy from the exchange toward the market maker.

Since the spread is tighter during the trading period under an incentive policy from the
exchange, the arrival intensity of market orders is more important and hence the market is
more liquid as shown in Figure IX.3.

Figure IX.3 – Average order flow on [0,T ] with 95% confidence interval, with/without incen-
tive policy from the exchange.

We now consider in Figure IX.4 the bid and ask sides separately. We see that when the
inventory is positive and very large, δ̂a and δ̃a are negative. It means the market maker is
ready to sell at prices lower than the efficient price in order to attract market orders and
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reduce his inventory risk. On the contrary, if the inventory is negative and very large, in both
situations, its ask quotes are well above the efficient price in order to repulse the arrival of buy
market orders. However, since in our case the exchange remunerates the market maker for
each arrival of market order, we get that the ask spread with contract δ̂a is smaller than δ̃a . A
symmetric conclusion holds for the bid part of the spread.

Figure IX.4 – Optimal ask and bid spreads, with/without incentive policy from the exchange
toward the market maker.

We now turn to the impact of the volatility on the spread. The optimal contract obtained in (23)
induces an inventory risk sharing phenomenon through the term Ẑ S . Hence, when the volatility
increases, the spread difference between situations with/without incentive policy becomes less
important, see Figure IX.5 in which we consider the optimal initial spread difference when the
initial inventory is set to zero between both situations with/without incentive policy from the
exchange to the market maker for different values of the volatility.

Figure IX.5 – The initial optimal spread difference between both situation with/without in-
centive policy from the exchange toward the market maker as a decreasing function of the
volatility σ.
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5.2 Impact of the incentive policy on the profit and loss of the exchange and
market maker

We assume that Q0 = 0. Recall that PLδ defined in (3) denotes the trading part of the profit
and loss (P&L) of the market maker for a given strategy δ. In our case, the underlying total
P&L at time t of a market maker acting optimally, denoted by PL?t , is given by

PL?t = PLδ̂t +Y Ŷ0,Ẑ
t ,

where Y Ŷ0,Ẑ
t corresponds to the quantity on the right hand side of (23) with T replaced by t .

We now investigate the behavior of this quantity, notably with respect to the benchmark PLδ̃t
which corresponds to the optimal profit and loss without intervention of the exchange.

To make PL?t and PLδ̃t comparable, we choose Ŷ0 in (23) so that the market maker gets
the same utility in both situations, that is Ŷ0 = k

σ log(ũ(0,Q0)). Thus, the market maker is
indifferent between the situation with or without exchange intervention. We generate 5000
paths of market scenarios and compare the average of both P&L in Figure IX.6 with and
without incentive policy.

Figure IX.6 – Average P&L of the market maker on [0,T ] with 95% confidence interval,
with/without incentive policy from the exchange.

Since Ŷ0 is set to obtain the same utility in both cases, the two average P&L are very close at
the end of the trading period. The variance of the P&L also seems to be the same in both
situations. The only difference from the market maker viewpoint here is that in the case of
a contract, the P&L is already made at time 0 thanks to the compensation of the exchange
and then fluctuates slightly. This is because he is earning the spread but paying continuous

“coupons"
(
H(Ẑt ,Qt )− σ2γ

2 (Ẑ S
t +Qt )2

)
d t from the contract. In the case without exchange inter-

vention, the market maker increases his P&L over the whole trading period thanks to the spread.

We now compare the profit and loss of the exchange in the two considered cases. When it
applies an incentive policy towards the market maker, the P&L of the exchange is given by
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[AS08, GLFT13]

c(N a
t −N a

0 +N b
t −N b

0 )−Y Ŷ0,Ẑ
t . When the exchange is neutral, its P&L is simply c(N a

t −N a
0 +

N b
t −N b

0 ). We compare these two quantities in Figure IX.7.

Figure IX.7 – Average P&L of the exchange on [0,T ] with 95% confidence interval,
with/without incentive policy from the exchange.

We see that the initial P&L of the contracting exchange is negative because of the initial
payment Ŷ0. However it finally exceeds, with a smaller standard deviation, the P&L in the
situation without incentive policy from the exchange. Hence the incentive policy of the
exchange proves to be successful. Indeed, both configurations are equivalent for market makers
but the exchange obtains more revenues when contracting optimally. This is due to the fact
that the contract triggers more market orders.

Finally, we plot the aggregated average P&L of the market maker and the exchange (independent
of the choice of the initial payment). We observe that it is always greater in the optimal contract
case.

Figure IX.8 – Average total P&L of the exchange and the market maker on [0,T ] with 95%
confidence interval, with/without incentive policy from the exchange.
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5.3 Impact of the incentive policy on the trading cost

We now study the impact of the incentive policy on the investors, viewed as the market takers.
We assume that there is only one market taker. In the case without exchange, with the specified
parameters and under optimal reaction of the market maker, this investor buys on average
200 shares over [0,T ]. To make the comparison with the case with exchange intervention, we
modify the parameter A appearing in the intensity (2) when simulating a market with optimal
contract. This new value is chosen so that the investor buys on average the same number of
assets (200) over the time period. This amounts to take A = 0.9s−1. We confirm in Figure IX.9
that the average ask order flows agree in both situations.

Figure IX.9 – Setting similar average ask order flows on [0,T ] by taking different intensity
basis A in the case with and in the case without incentive policy; 95% confidence interval.

We finally compare in Figure IX.10 the average cost of trading for the market taker

Eδ
[∫ T

0
δa

t d N a
t

]
,

with and without incentive.
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Figure IX.10 – Average trading cost on [0,T ] with 95% confidence interval, with/without
incentive policy from the exchange.

We see that, thanks to the incentive policy of the exchange, the reduced spreads lead to
significantly smaller trading costs for investors.

IX.A Predictable representation

The following result is probably well-known, we report it here for completeness as we could
not find a precise reference.

Lemma 1. Let (Ω,F ,P,F) be a filtered probability space where F= FW ∨FN is the right continuous
completed filtration of a Brownian motion W and a d-dimensional integrable point process
N = (N 1, · · · , N d ) with compensator A = (A1, · · · , Ad ). Then, for any F−martingale X there exists a
predictable process Z = (Z W , Z 1, · · · , Z d ) such that

X t = X0 +
∫ t

0
Z W

s dWs +
d∑

i=1

∫ t

0
Z i

s (d N i
s −d Ai

s).

Proof. For sake of simplicity, we take d = 1. Let P be a solution of the martingale problem
associated to Mt = Nt − At and Wt . By Theorem III.4.29 in [JS13], to prove Lemma 1 we need
to establish the uniqueness of P.

We denote by PW the law P conditional on W . We first show that M is still a martingale
under PW . To do so we consider Bs ∈Fs and want to prove that

EP
W [

1IBs (Mt −Ms)
]= 0,

for 0 ≤ s ≤ t ≤ T . Let C ∈FW
T . We aim at showing that

E
[

1CE
PW [

1IBs (Mt −Ms)
]]= E[1IC 1IBs (Mt −Ms)

]= 0.

Thanks to the martingale representation theorem for Brownian martingales, we can write

1IC =αs +
∫ T

s
φudWu ,

where αs = E[1IC |FW
s ] and (φu)u≥0 is FW predictable process. Using the martingale property

of M , we obtain
E
[
αs1IBs (Mt −Ms)

]= 0.

Then W and M being orthogonal martingales, we deduce

E
[∫ T

s
φudWu1IBs (Mt −Ms)

]
= 0,

Consequently, using Theorem III.1.21 in [JS13], PW is the unique probability measure such that
M is an F-martingale conditional on W . Finally, by integration, the uniqueness of PW implies
that of P.
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IX.B Dynamic programming principle and contract
representation

IX.B.1 Dynamic programming principle

For all F-stopping time τ with values in [t ,T ] and for any µ ∈Aτ, we define5

JT (τ,µ) = Eµτ
[
−e−γ

∫ T
τ (µa

u d N a
u +µb

u d N b
u+Qu dSu )e−γξ

]
, and Jτ,T = (

JT (τ,µ)
)
µ∈Aτ

,

where Aτ denotes the restriction of A to controls on [τ,T ]. The continuation utility of the
market maker is defined for all F-stopping time τ by

Vτ = esssup
µ∈Aτ

JT (τ,µ).

Lemma 2. Let τ be an F-stopping time with values in [t ,T ]. Then, there exists a non-decreasing
sequence (µn)n∈N in Aτ such that Vτ = lim

n→+∞↑ JT (τ,µn).

Proof. For µ and µ′ in Aτ, define µ̂= µ1I{JT (τ,µ)≥JT (τ,µ′)} +µ′1I{JT (τ,µ)<JT (τ,µ′)}. Then µ̂ ∈Aτ and
by definition of µ̂

JT (τ, µ̂) ≥ max
(

JT (τ,µ), JT (τ,µ′)
)

.

Hence Jτ,T is directly upwards, and the required result folows from [Nev72, Proposition VI.I.I
p121].

Lemma 3. Let t ∈ [0,T ] and τ be an F-stopping time with values in [t ,T ]. Then,

Vt = esssup
δ∈A

Eδt

[
−e−γ

∫ τ
t (δa

u d N a
u +δb

u d N b
u+Qu dSu )Vτ

]
.

Proof. Let t ∈ [0,T ] and set an F-stopping time τ with values in [t ,T ]. The proof is similar to
[CK93, Proof of Proposition 6.2]. First, by the tower property,

Vt = esssup
δ∈A

Eδt

[
e−γ

∫ τ
t (δa

u d N a
u +δb

u d N b
u+Qu dSu )Eδτ

[
−e

−γ
(∫ T
τ (δa

u d N a
u +δb

u d N b
u+Qu dSu )+ξ

)]]
.

For all δ ∈A , the quotient
LδT
Lδτ

does not depend on the values of δ before time τ. Then,

Eδτ

[
−e

−γ
(∫ T
τ (δa

u d N a
u +δb

u d N b
u+Qu dSu )+ξ

)]
= E0

τ

[
−LδT

Lδτ
e
−γ

(∫ T
τ (δa

u d N a
u +δb

u d N b
u+Qu dSu )+ξ

)]

≤ esssup
µ∈Aτ

E
µ
τ

[
−e

−γ
(∫ T
τ (µa

u d N a
u +µb

u d N b
u+Qu dSu )+ξ

)]
= Vτ,

5From (4), notice that for any δ ∈A , the conditional expectation Eδτ depends only on the restriction of δ on
[τ,T ]. Hence Eµτ is defined without ambiguity for µ ∈Aτ.
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Then,

Vt ≤ esssup
δ∈A

Eδt

[
Vτe−γ

∫ τ
t (δa

u d N a
u +δb

u d N b
u+Qu dSu )

]
.

We next prove the reverse inequality. Let δ ∈A and µ ∈Aτ. We define (δ⊗τµ)u = δu10≤u<τ+
µu1τ≤u≤T . Then δ⊗τµ ∈A and

Vt ≥ E
δ⊗τµ
t

[
−e−γ

(∫ τ
t (δa

u d N a
u +δb

u d N b
u+Qu dSu )+∫ T

τ (µa
u d N a

u +µb
u d N b

u+Qu dSu )
)
e−γξ

]
= E

δ⊗τµ
t

[
e−γ

∫ τ
t (δa

u d N a
u +δb

u d N b
u+Qu dSu )E

δ⊗τµ
τ

[
−e−γ

∫ T
τ (µa

u d N a
u +µb

u d N b
u+Qu dSu )e−γξ

]]
. (29)

From Bayes’ Formula and by noticing that
Lδ⊗τµT

Lδ⊗τµτ

= LµT
Lµτ

, we get

E
δ⊗τµ
τ

[
−e−γ

∫ T
τ (µa

u d N a
u +µb

u d N b
u+Qu dSu )e−γξ

]
= E0

τ

[
Lδ⊗τµ

T

Lδ⊗τµ
τ

(
−e−γ

∫ T
τ (µa

u d N a
u +µb

u d N b
u+Qu dSu )e−γξ

)]
= JT (τ,µ).

Thus, Inequality (29) becomes

Vt ≥ E
δ⊗τµ
t

[
e−γ

∫ τ
t (δa

u d N a
u +δb

u d N b
u+Qu dSu ) JT (τ,µ)

]
.

By using again Bayes’ Formula and by noticing that Lδ⊗τµτ

Lδ⊗τµt

= Lδτ
Lδt

, we have

Vt ≥
E0

t

[
Lδ⊗τµ

T e−γ
∫ τ

t (δa
u d N a

u +δb
u d N b

u+Qu dSu ) JT (τ,µ)
]

Lδ⊗τµ
t

= E0
t

[
E0
τ

[Lδ⊗τµ

T

Lδ⊗τµ
τ

Lδ⊗τµ
τ

Lδ⊗τµ
t

e−γ
∫ τ

t (δa
u d N a

u +δb
u d N b

u+Qu dSu ) JT (τ,µ)
]]

= E0
t

[
E0
τ

[Lδ⊗τµ

T

Lδ⊗τµ
τ

]Lδ⊗τµ
τ

Lδ⊗τµ
t

e−γ
∫ τ

t (δa
u d N a

u +δb
u d N b

u+Qu dSu ) JT (τ,µ)

]

= E0
t

[
Lδ⊗τµ
τ

Lδ⊗τµ
t

e−γ
∫ τ

t (δa
u d N a

u +δb
u d N b

u+Qu dSu ) JT (τ,µ)

]

= Eδt

[
e−γ

∫ τ
t (δa

u d N a
u +δb

u d N b
u+Qu dSu ) JT (τ,µ)

]
.

Since the previous inequality holds for all µ ∈ Aτ we deduce from monotone convergence
Theorem together with Lemma 2 that there exists a sequence (µn)n∈N of control in Aτ such
that

Vt ≥ lim
n→+∞↑ E

δ
t

[
e−γ

∫ τ
t (δa

u d N a
u +δb

u d N b
u+Qu dSu ) JT (τ,µn)

]
= Eδt

[
e−γ

∫ τ
t (δa

u d N a
u +δb

u d N b
u+Qu dSu ) lim

n→+∞↑ JT (τ,µn)
]
= Eδt

[
e−γ

∫ τ
t (δa

u d N a
u +δb

u d N b
u+Qu dSu )Vτ

]
,

thus concluding the proof.
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IX.B.2 Proof of Theorem 1 (i)

We proceed in several steps.
Step 1. For δ ∈A , it follows from the dynamic programming principle of Lemma 3 that the
process

Uδ
t = Vt e−γ

∫ t
0 (δa

u d N a
u +δb

u d N b
u+Qu dSu ), t ∈ [0,T ],

defines a Pδ-supermartingale6 for all δ ∈A . By standard analysis, we may then consider it in
its càdlàg version (by taking right limits along rationals). By the Doob-Meyer decomposition,
we write

Uδ
t = Mδ

t − Aδ,c
t − Aδ,d

t , (30)

where Mδ is a Pδ-martingale and Aδ = Aδ,c + Aδ,d is an integrable non-decreasing predictable
process such that Aδ,c

0 = Aδ,d
0 = 0, with pathwise continuous component Aδ,c , and a piecewise

constant predictable process Aδ,d .

By the martingale representation theorem under Pδ, see Lemma 1, there exists a predictable
process Z̃ δ = (Z̃ δ,S , Z̃ δ,a , Z̃ δ,b) such that

Mδ
t = V0 +

∫ t

0
Z̃ δ

r .dχr −
∫ t

0
Z̃ δ,a

r λ(δa
r )1I{Qr >−q̄}dr −

∫ t

0
Z̃ δ,b

r λ(δb
r )1I{Qr <q̄}dr, (31)

where we recall that χ= (S, N a , N b).

Step 2. We show that V is a negative process. In fact, thanks to the uniform boundedness of
δ ∈A , we show that

LδT
Lδt

≥αt ,T = e−
kδ∞
σ

(N a
T −N a

t +N b
T −N b

t )−2Ae− kc
σ (e

kδ∞
σ +1)(T−t ) > 0. (32)

Therefore,

Vt ≤ E0
[
−αt ,T e−γ

(
δ∞(N a

T −N a
t +N b

T −N b
t )+∫ T

t Qu dSu

)
e−γξ

]
< 0.

Step 3. Let Y be the process defined by Vt =−e−γYt for all t ∈ [0,T ]. As Aδ,d is a predictable
point process and the jumps of (N a , N b) are totally inaccessible stopping times under P0, we
have [N a , Aδ,d ] = 0 and [N b , Aδ,d ] = 0 a.s, see Proposition I.2.24 in [JS13]. Using Itô’s formula,
we obtain from (30) and (31) that

YT = ξ, and dYt = Z a
t d N a

t +Z b
t d N b

t +Z S
t dSt −d It −d Ãd

t ,

6Note that Eδ[Uδ
T ] = JT (0,δ) >−∞ using Hölder inequality together with (8) and the uniform boundedness of

the intensities of N a and N b . Hence the process Uδ is integrable.
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where Z a , Z b , Z S , I , Ãd are independent of δ, as they may be expressed as Z i
t d N i

t = d [Y , N i ]t ,
i ∈ {a,b}, Z S

t σ
2d t = d〈Yt ,St 〉t , Ãd the predictable pure jumps of Y . Moreover, Itô’s Formula

yields

Z a
t =−1

γ
log(1+ Z̃ δ,a

t

Uδ
t−

)−δa
t , Z b

t =−1

γ
log(1+ Z̃ δ,b

t

Uδ
t−

)−δb
t , Z S

t =− Z̃ δ,b
t

γUδ
t−

−Qt−,

and

It =
∫ t

0

(
h(δr , Zr ,Qr )dr − 1

γUδ
r

d Aδ,c
r

)
, Ãd

t = 1

γ

∑
s≤t

log
(
1− ∆Aδ,d

t

Uδ
t−

)
,

with h(δ, z, q) = h(δ, z, q)− 1
2γσ

2(zs)2. In particular, the last relation between Ãd and Aδ,d

shows that ∆at = −∆Aδ,d
t

Uδ
t−

≥ 0 is independent of δ ∈A ; recall that Uδ < 0.

In order to complete the proof, we argue in the subsequent steps that Z = (Z S , Z a , Z b) ∈Z

and that for t ∈ [0,T ],

Aδ,d
t =−∑

s≤t
Uδ

s−∆as = 0, (so that Ãd
t = 0), and It =

∫ t

0
H(Zr ,Qr )dr, (33)

where H(z, q) = H(z, q)− 1
2γσ

2(zs)2.

Step 4. Since VT =−1, notice that

0 = sup
δ∈A

Eδ[Uδ
T ]−V0 = sup

δ∈A

Eδ[Uδ
T −Mδ

T ]

= γsup
δ∈A

E0
[

LδT

∫ T

0
Uδ

r−
(
d Ir −h(δr , Zr ,Qr )dr + d ar

γ

)]
. (34)

Moreover, since the controls are uniformly bounded, we have

Uδ
t ≤−βt := Vt e−γδ∞(N a

t −N a
0 +N b

t −N b
0 )−γ∫ t

0 Qr dSr < 0. (35)

Then, since Aδ,d ≥ 0, Uδ ≤ 0, and d It −h(δt , Zt ,Qt ) ≥ 0, it follows from (34) together with the
inequalities (32) and (35) that

0 ≤ sup
δ∈A

E0
[
α0,T

∫ T

0
−βr−

(
d Ir −h(δr , Zr ,Qr )dr + d ar

γ

)]
=−E0

[
α0,T

∫ T

0
βr−

(
d Ir −H(Zr ,Qr )dr + d ar

γ

)]
.

The quantities α0,T
∫ T

0 βr−
(
d Ir −H(Zr ,Qr )dr ) and α0,T

∫ T
0 βr d ar being non-negative random

variables, this implies (33).

275



IX. Optimal make-take fees for market making regulation

Step 5. We now prove that Z ∈Z by showing that

sup
δ∈A

sup
t∈[0,T ]

Eδ[e−γ(p+1)Yt ] <∞ for some p > 0. (36)

Using Hölder inequality together with Condition (8) and the boundedness of the intensities of
N a and N b , we have that supδ∈A Eδ[|Uδ

T |p
′+1] <∞ for some p ′ > 0. Hence

sup
δ∈A

sup
t∈[0,T ]

Eδ[|Uδ
t |p

′+1] = sup
δ∈A

Eδ[|Uδ
T |p

′+1] <∞,

because Uδ is a negative Pδ-supermartingale. This leads to (36) using Hölder inequality, the
uniform boundedness of the intensities of N a and N b and that e−γY =Uδeγ

∫ ·
0(δa

u d N a
u +δb

u d N b
u+Qu dSu ).

Step 6. We finally prove uniqueness of the representation. Let (Y0, Z ), (Y ′
0, Z ′) ∈ R×Z be

such that ξ= Y Y0,Z
T = Y

Y ′
0 ,Z ′

T . By following the line of the verification argument in the proof

of Theorem 1 (ii), we obtain the equality Y Y0,Z
t = Y

Y ′
0 ,Z ′

t by considering the value of the
continuation utility of the market maker

−exp(−γY Y0,Z
t ) = −exp(−γY

Y ′
0 ,Z ′

t ) = ess sup
δ∈A

Eδt [−e−γ(PLδT − PLδt +ξ)], t ∈ [0,T ].

This in turn implies that Z i
t d N i

t = Z ′i
t d N i

t = d [Y Y0,Z , N i ]t , i ∈ {a,b}, and Z S
t σ

2d t = Z ′S
t σ

2d t =
d〈Y ,S〉t , t ∈ [0,T ]. Hence (Y0, Z ) = (Y ′

0, Z ′).

IX.C Exchange Hamiltonian maximization

Lemma 4. Let c ∈R, γ,η,k,σ> 0 and v1, v2 < 0. We define for z ∈R
ϕ(z) = Ae−k ∆(z)+c

σ

(
v1eη(z−c) − v2

(η
γ

(
1−e−γ(z+∆(z)))+1

))
,

with ∆(z) = (−δ∞)∨ (− z + 1
γ log(1+ σγ

k )
)∧δ∞ and δ∞ > 0. Provided

δ∞ ≥C∞+ 1

η
| log(

v2

v1
)|, (37)

with C∞ = |c|+ ( 1
η + 1

γ ) log(1+ σγ
k )− 1

η log
(
1− σ2γη

(k+σγ)(k+ση)

)
, the function ϕ is nondecreasing on

(−∞,−δ∞+ 1
γ log(1+ σγ

k )] and non-increasing on [δ∞+ 1
γ log(1+ σγ

k ),∞). It admits a maximum

on [−δ∞+ 1
γ log(1+ σγ

k ),δ∞+ 1
γ log(1+ σγ

k )] attained in z? given by

z? = c + 1

η
log(v2/v1)+ 1

η
log

(
1− σ2γη

(k +σγ)(k +ση)

)
.

In that case, we have

ϕ(z?) =−C v2 exp
( k

ση
log(v2/v1)

)
,

where

C = A
ση

k
exp

(
− k

σγ
log(1+ σγ

k
)+ (1+ k

ση
) log

(
1− σ2γη

(k +σγ)(k +ση)

))
.
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Proof. Easy but tedious computations lead to prove that ϕ is non-decreasing on (−∞,−δ∞+
1
γ log(1+ σγ

k )] and non-increasing on [δ∞+ 1
γ log(1+ σγ

k ),∞) if,

δ∞ ≥
∣∣∣c + 1

η
log(v2/v1)− (

1

η
+ 1

γ
) log(1+ σγ

k
)
∣∣∣.

Moreover, we notice that ϕ admits a maximum on [−δ∞+ 1
γ log(1+ σγ

k ),δ∞+ 1
γ log(1+ σγ

k )]
attained in

z? = c + 1

η
log(v2/v1)+ 1

η
log

(
1− σ2γη

(k +σγ)(k +ση)

)
,

as soon as δ∞ ≥ |− z?+ 1
γ log(1+ σγ

k )|. By combining these two conditions, we get the result
under Condition (37) on δ∞.

IX.D On the verification argument for the exchange problem

The proof of the main result of Theorem 2 requires the following technical result. We observe
that this is the place where Condition (7) is needed.

Lemma 5. Let Z ∈Z . There exists C > 0 and ε> 0 such that

sup
t∈[0,T ]

Eδ̂(Y
Ŷ0,Z

T )[|K Z
t |1+ε] ≤C .

Proof. We recall the definition of K Z for Z ∈Z

K Z
t = e−η

(
c(N a

t −N a
0 +N b

t −N b
0 )−Y 0,Z

t

)
, t ∈ [0,T ].

Let p > 1. By using Hölder’s inequality and the uniform boundedness of the intensities of N a

and N b , we deduce that there exists C ′ > 0 such that

Eδ̂(Y
Ŷ0,Z

T )[|K Z
t |p ] ≤C ′E0[(e−γY 0,Z

t )−
p′η
γ ]

p
p′ ,

with any p ′ > p . Thus,

Eδ̂(Y
Ŷ0,Z

T )[|K Z
t |p ] ≤C ′

(
1+E0[(e−γY 0,Z

t )−
p′η
γ ]

)
=C ′

(
1+E0

[
(−sup

δ∈A

Eδt [−e−γ(Y 0,Z
T +PLδT −PLδt )])−

p′η
γ

])
.

From Jensen’s inequality and then Hölder’s inequality, we deduce that for any p ′′ > p ′ we have

Eδ̂(Y
Ŷ0,Z

T )[|K Z
t |p ] ≤C ′

(
1+E0

[
sup
δ∈A

Eδt [ep ′η(Y 0,Z
T +PLδT −PLδt )]

])
≤C ′

(
1+E0

[
sup
δ∈A

Eδt [ep ′′ηY 0,Z
T ]

])
.
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IX. Optimal make-take fees for market making regulation

By using a dynamic programming principle, similarly to the proof of Lemma 3 by noticing

that the family
(

J̃ (µ,δ) = Eδτ[ep ′′ηY 0,Z
T ]

)
µ∈Aτ

is directly upwards, we get

Eδ̂(Y
Ŷ0,Z

T )[|K Z
t |p ] ≤C ′

(
1+ sup

δ∈A

Eδ
[

ep ′′ηY 0,Z
T

])
.

By setting ε= η′−η
3 , if we take p = 1+ε, then p ′ = p +ε and p ′′ = p ′+ε, we obtain

Eδ̂(Y
Ŷ0,Z

T )[|K Z
t |1+ε] ≤C ′

(
1+ sup

δ∈A

Eδ
[

eη
′Y 0,Z

T

])
.

From the definition of Z (involving the condition (7)), we get for any t ∈ [0,T ]

Eδ̂(Y
Ŷ0,Z

T )[|K Z
t |1+ε] ≤C ,

with C =C ′
(
1+ supδ∈A Eδ

[
eη

′Y 0,Z
T

])
<+∞.
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