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Thèse présentée et soutenue à Jouy-en-Josas, le 21 juin 2019, par

IBRAHIM SULTAN

Composition du Jury :

Denis Thieffry
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Juliette Martin
Chargée de Recherche, CNRS/Université Lyon, MMSB Examinatrice
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Abstract

Transcription factors play a key role in mediating the adaptation of bacteria to environmen-
tal conditions. Powerful algorithms and approaches have been developed for the discovery
of their binding sites but automatic de novo identification of the main regulons of a bac-
terium from genome and transcriptome data remains a challenge. The approach that we
propose here to address this task is based on a probabilistic model of the DNA sequence
that can make use of precise information on the position of the transcription start sites and
of condition-dependent transcription profiles. Two main novelties of our model are to allow
overlaps between motif occurrences and to incorporate covariates summarizing transcrip-
tion profiles into the probability of occurrence in a given promoter region. Each covariate
may correspond to the coordinate of the gene on an axis (e.g. obtained by PCA or ICA) or
to its position in a tree (e.g. obtained by hierarchical clustering). All the parameters are
estimated in a Bayesian framework using a dedicated trans-dimensional MCMC algorithm.
This allows simultaneously adjusting, for many motifs and with many transcription covari-
ates, the width of the corresponding position weight matrices, the number of parameters
to describe positions with respect to the transcription start site, and the covariates that
are relevant.

The thesis manuscript is divided into six chapters. The first and second chapters are
dedicated to the biological and methodological backgrounds, respectively. In the third
chapter, we present the methodological core of the new approach developed during this
thesis (probabilistic model, Bayesian inference). The fourth chapter is dedicated to data
collection and preparation (sequence and expression data), which encompasses the dimen-
sionality reduction techniques that served to summarize the position of the promoters in
the expression space. The fifth chapter is dedicated to the presentation of the results
obtained on the bacterium Listeria monocytogenes which was the focus of the European
project List_MAPS in which this work took place. In this chapter, the results are also
compared to those obtained with other motif discovery methods. The final chapter dis-
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cusses briefly the future directions that could be envisionned to continue the work realized
in this PhD project.
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Chapter 1

Biological background

Bacteria, like all living cells, have their inherited genetic information encoded in very long
desoxyribonucleic acid (DNA) double stranded molecules with a double helical structure
whose sequences of four desoxyribonucleotides A, C, G, T constitute their genomes (typical
size of a few millions of nucleotides). To multiply and survive through the different envi-
ronmental conditions, bacterial cells need to express this genetic information by producing
ribonucleic acid (RNA) molecules in the right time and right amount. Transcription is the
process by which a segment (typical size of hundreds to thousands of nucleotides) of the
DNA sequence called a gene serves as template for the synthesis of an RNA molecule. The
most prominent role of RNA molecules is to serve as template for the synthesis of pro-
teins consisting of sequences of amino-acids by a process named translation. These RNA
molecules that are translated are called messenger RNAs. The objective of this thesis is to
contribute to the identification of the elements (typically words of 5-25 nucleotides) in the
DNA sequence that are responsible for the modulation of the local transcriptional activity.

1.1 From transcription to transcriptional regulatory net-

works

Transcription is the first and essential step of gene expression carried out by the RNA
polymerase. In bacteria, a transcription unit (TU) is composed of a regulatory region
(containing the promoter), a transcription start site, one or more protein coding sequences
(CDSs) that are translated to proteins, and a transcription termination site in that order
(5’ to 3’) (Fig 1.1). Since it is common for genes to be transcribed by several promoters,
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TUs tend to overlap.
The regulatory region contains cis elements such as the promoter, where the RNA poly-

merase initially binds, and transcription factor binding sites (TFBSs), where transcription
factors (TFs) bind to modulate the recruitment of the RNA polymerase (Browning and
Busby, 2004). To recognize promoter regions, the RNA polymerase form a complex with a
protein subunit known as the sigma factor which binds to sequences with specific proper-
ties. Once transcription is initiated, the sigma factor can dissociate from the complex and
the RNAP continues elongation on its own (Maeda et al., 2000; Heimann, 2002; Paget and
Helmann, 2003; Kazmierczak et al., 2005). Most bacteria can express several sigma factors.
The so-called housekeeping sigma factor is responsible for the expression of the majority of
the genes in normal growth conditions. Alternative sigma factors are activated in specific
conditions upon environmental or physiological triggers and can redirect the transcription
to other sets of promoters which provides a first level of regulation of the transcriptional
activity. In bacteria, sigma factors are divided into two main phylogenetic families. Most
sigma factors, including the housekeeping sigma factor, belong to the family Sigma-70
that recognize bipartite sequence motif composed of two elements directly upstream the
transcription start site : the -10 and -35 boxes named after their respective positions with
respect to the TSS. The other family, Sigma-54, is usually represented in a bacterium by
a single member and recognizes a sequence motif located between positions -12 and -24.

TFs are proteins that can be classified into two groups, activators and repressors, where
an activator TF is the protein that aims to increase the transcription rate while on the other
hand a repressor TF is a protein that aims to reduce the transcription rate. Commonly,
repressors bind to the promoter, interfering directly with the binding of RNA polymerase;
while on the other hand, an activator typically binds to the promoter’s upstream region,
helping to recruit the polymerase and start transcription (Collado-Vides et al., 1991; Babu
and Teichmann, 2003). It is worth mentioning that there are TFs with a dual regulatory
role, these TFs act at the same time as an activator for some genes and as a repressor for
some other genes. A TF which is bound at a given site in the intergenic region between two
divergently transcribed units can regulate each one of them in a different manner (Balleza
et al., 2008). TFs modulate transcriptional activity in a condition-dependent manner.
They are activated in response to specific signals by protein modification such as phospho-
rylation/dephosphorylation and are themselves often also regulated at the transcriptional
level. TFs work together in harmony and it is not uncommon that a regulatory region
could be occupied by several TFs. Affinity of a TF for a particular TFBS defines how
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Figure 1.1: The elements of a bacterial transcription unit.

a promoter function, weak sites require high concentrations of TFs whereas strong sites
respond to lower amounts (Alon, 2006, 2007).

Many TFs form dimers and therefore bind to DNA sequence elements that harbor a
palindromic structure where the nucleotide composition properties that define the recog-
nized motif are mirrored with respect to a center of symmetry (Fig 1.3). At the level of
molecular three-dimensional structures, palindromic DNA recognition elements allow the
formation of symmetric protein/DNA complexes (Higgins et al., 1988).

Transcriptional regulatory networks (TRN) are networks that capture the direct in-
fluence of TFs over the transcription activity of different target genes (TG) (McAdams
and Arkin, 1998; Thieffry and Thomas, 1997; Lee et al., 2002). The network representa-
tion helps us to see the global organization of transcriptional regulation which has been
described as modular (distinct sets of target genes regulated by distinct TFs) and hier-
archical (the network typically consists of several layers with genes encoding TFs being
target of other TFs) (Balleza et al., 2008). One main element in TRNs are the regulons
defined as the sets of genes that are coregulated by each TF (Gutierrez-Rios et al., 2003).
It is important to remember that fixation of TFs in the promoter region is not the only
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Figure 1.2: Schematic representation of transcription regulation by sigma factors and transcription
factors

level of regulation, and not all the regulation is at the level of transcriptional activity. In
particular, RNA degradation and regulation of translation also play important roles.
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5'-CAGTGGTCTAGACCACTG-3'

3'-GTCACCAGATCTGGTGAC-5'

Figure 1.3: Cartoon representation of the 3D structure of dimerized Bacillus subtilis transcription
factor YvoA in complex with palindromic operator DNA. Crystal structure obtained by X-ray
diffraction, taken from the Protein data bank (Pdb accession number 4WWC). Each of the four
chains is represented by a different color (light and dark blue for proteins, red and yellow for
DNA). The sequence of the double stranded DNA molecule is also represented and its palindromic
structure highlighted by red arrows.
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1.2 Transcriptomics

Transcriptome is the complete set of RNA transcripts that are produced by the genome,
under a specific condition. Transcriptomics refers to experimental approaches that aim to
obtain a global picture of the transcriptome. Two main categories of approaches have been
used: microarrays and RNA-Seq (Fig 1.4). They have been widely applied to compare
growth conditions ("in vitro" stress, stage of growth, infection condition) and/or specific
mutants. Both types of data can be informative for transcriptional network reconstruction.

In the microarrays technology, different single-stranded DNA probes are designed and
arrayed to monitor the mRNA expression of different genes. Then transcriptional products,
isolated from a culture sample, are converted to cDNA tagged with fluorescent proteins
and hybridized on the microarray against their complementary sequences. The intensity
of the fluorescence, in the different locations of the array, gives an estimate of the abun-
dance of the different probed transcripts. Microarray technology has been refined since
its first appearance when they detected exclusively annotated ORFs (Schena et al., 1995).
The later versions of the microarray technology is represented by one-color high-density
whole-genome tiling arrays. In this implementation, the arrayed set of probes is richer,
containing, for example, DNA probes for both intragenic and intergenic regions and the
technology distinguishes transcription from the two DNA strands (Reppas et al., 2006).
The raw data generated from microarrays must be treated in two levels: correction for
background noise and normalization. The correction attempts to eliminate the contribu-
tion from unspecific hybridization; while the normalization intends to make gene intensities
from different experiments comparable (Quackenbush, 2002). The widespread use of this
technology has led to the appearance of useful databases with collections of hundreds of ar-
rays of different bacterial organisms under diverse experimental conditions (Demeter et al.,
2006; Faith et al., 2007; Kanehisa et al., 2007).

The second experimental approach to transcriptomics is based on sequencing of the
RNA molecules and has progressively replaced the microarrays during the last ten years
with the development of high-throughput sequencing. This technique, coined RNA-Seq,
consists of sequencing the transcripts that the cell expresses under a specific condition
and then to map the sequence reads back to their corresponding regions on the genome
to detect and quantify abundances of the transcripts (Nagalakshmi et al., 2008). Here,
the detection of transcripts is not conditioned on a possibly biased set of probes nor on
the resolution of the array, giving the possibility to discover new transcriptionally active
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Figure 1.4: Schematic view of tiling array transcriptomics and RNA-Seq workflows. The left side of
the figure shows the microarray technology, the conversion from RNA to cDNA is done via: reverse
transcription, optional PCR amplification, and labeling to obtain labelled cDNA. The right side
shows the RNA-Seq technology, the cDNA library preparation is done via: reverse transcription,
fragmentation, adapter ligation, and PCR amplification to obtain sequencing library.

regions. The RNA-Seq technology achieves higher dynamic ranges than microarrays in
transcript abundance measurements since unspecific hybridization is not present in the
sequencing and read counts does not saturate like hybridization signal for highly expressed
genes. The lower limit of quantification depends on the number of collected sequence reads
which is decided by the user (Fig 1.4).

Experimental approaches related to the global RNA-Seq described in the previous para-
graph have also been developed for genome-wide mapping of TSSs at single base resolution.
These data are particularly relevant in the context of this thesis since they provide a reper-
toire of promoter regions that can be aligned with respect to the TSS and thus will allow
to focus the search for sequence motifs recognized by TFs. The general idea consists of
ligating an adapter on the 5’-end of the RNA molecule during the library preparation and
sequencing from this adapter. Its implementation comes in different refinements (Wurtzel
et al., 2010; Irnov et al., 2010; Ettwiller et al., 2016).
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1.3 The Bacterium Listeria monocytogenes

L. monocytogenes bacterium was the focus of the European project whose this PhD is a
part of and applying our methodology on L. monocytogenes was one main objective of the
PhD. This section intends to give some elements of information on L. monocytogenes as
well as on the European network. In the first subsection, we speak about L. monocytogenes
and its different life styles. In the second subsection we introduce the European network,
its objective and how the work realized in this PhD fits in the objective of the overall
project.

1.3.1 L. monocytogenes

L. monocytogenes is a lethal food-borne pathogen. It is the agent of listeriosis, a severe
infection of humans that can result in meningoencephalitis, septicaemia and spontaneous
abortion. In the EU, listeriosis is a notifiable disease. A report published in 2013 by
the European Food Safety Authority (EFSA)1 on zoonoses, zoonotic agents and food-
borne outbreaks 2011.A total of 1476 cases of listeriosis were reported in 2011. Of all the
zoonotic diseases under EU surveillance, listeriosis caused the most severe human disease
with 93.6 % of the cases hospitalised and 134 fatal cases (case fatality rate 12.7 %). The
2017–18 South African listeriosis outbreak which resulted from contaminated processed
meats was the world’s worst-ever listeriosis outbreak. It caused around 200 deaths out of
973 confirmed infections2.

Following human consumption of L. monocytogenes-infected food, the pathogen must
adapt and survive to the acidic environment of the stomach and the hostile environment
of the upper gastrointestinal tract. It is emerging that the alternative sigma factor SigB
orchestrates molecular adaptation in this environment by activating transcription of genes
involved in tolerance of acid, salt and bile. SigB also triggers expression of the internalin
proteins that promote internalisation into host enterocytes (Ferreira et al., 2003; Abram
et al., 2008). It is most likely that the SigB regulon is then down-regulated and the
pathogen induces primary virulence genes that are regulated by the "master and comman-
der" transcriptional activator PrfA (de las Heras et al., 2011).

Beside being a pathogen, L. monocytogenes is a ubiquitous bacterium present in agri-
1https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2013.3129
2https://www.timeslive.co.za/news/south-africa/2018-05-18-death-toll-from-listeria-outbreak-rises-to-

more-than-200/
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cultural and food environments (soil, animals, food industry). The variety of environments
where L. monocytogenes can be detected is striking (Fig 1.5). It has been isolated from soil,
plants and vegetables, decaying vegetation, groundwater, biowastes, composts (Welshimer,
1960) and in some cases from environmental hosts such as protozoans and lower vertebrates.

As most bacteria, L. monocytogenes has the ability to attach and form biofilms on abi-
otic surfaces (Borucki et al., 2003). This is a major concern for the food industry where L.
monocytogenes can survive and persist on surfaces under harsh conditions. L. monocyto-
genes is able to survive harsh conditions and to withstand environmental stresses, including
food technology-related stresses. its ability to respond to a variety of suboptimal growth
conditions makes L. monocytogenes a very versatile pathogen found in many habitats. It
is well adapted to persistence in soil environments, in food-processing environments and
in chilled, processed foods. In addition, it is likely that stress-adapted cells of L. monocy-
togenes are better equipped to survive during infection of the host gastroontestinal tract
(Gahan and Hill, 2014). Very little molecular information is currently available concerning
the ability of L. monocytogenes to adapt to environmental stress within the food matrix.

Owing to its status as important human pathogen and model bacterium for the study
of host-pathogen interaction and bacterial transcriptomics (Sorek and Cossart, 2010), a
wealth of transcriptomics data has been collected on L. monocytogenes and will be used in
the context of this study. In particular, one could cite the use of RNA-Seq to detect new
transcribed regions and high-density tiling arrays to compare various in vitro and in vivo
conditions by Toledo-Arana et al. (2009), the use of genome-wide TSS mapping approach
by Wurtzel et al. (2012) providing a repertoire of 2299 TSSs, and the work done by Bécavin
et al. (2017) to aggregate the diversity of transcriptomics data in the Listeriomics database
(3159 genes and their expression profiles over 254 comparisons of experimental condition
pairs).

1.3.2 The European research network (List_MAPS)

List_MAPS is a European project funded by the Research and Innovation programme
of the European Union Horizon2020 under the Marie-Skłodowska Curie actions (ITN-
ETN). Coordinated by Université de Bourgogne, the project started on March 2015 and
associates nine full partners and two associated partners from five European countries
(France, Ireland, Germany, Netherlands, and Denmark) which belong to private and public
sectors.

List_MAPS focuses on L. monocytogenes which is costing the EU millions of euro
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Figure 1.5: Contamination cycle of L. monocytogenes.
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per annum in medical care and associated costs in the food sector. The research pro-
gramme is based on a combination of high throughput Epigenetics, RNA-Seq, Proteomics,
Bioinformatics, Mathematics and Microbiology (Fig 1.6). With the combination of these
expertises List_MAPS focuses on several ambitious objectives:

• To understand how environmental conditions in soil, plants, biofilms and food matri-
ces influence the capacity of L. monocytogenes to cause infection, and to study the
possible impact of "stress hardening" upon subsequent virulence potential.

• To develop an integrated model of the regulatory circuitry of the pathogenic bac-
terium L. monocytogenes in order to refine our knowledge of the environmentally-
dependent gene modules that underpin its ubiquitous nature and its capacity to
generate infection.

• To assess intraspecific diversity of virulence potential and biofilm in relation to envi-
ronmental cues.

• To develop a cost efficient, rapid semiconductor sequencing application designed to
assess the virulence potential of large numbers of isolates, sparing the cost, burden
and ethical issues related to animal models.

To achieve these objectives eleven Early-Stage Researchers (ESR) have been recruited
for 24 to 36 months to develop scientific expertise through an innovative Ph.D train-
ing, including mobility of researchers, participation to national and international events
like summer schools, workshops and conferences and transfer-of-knowledge in the areas of
Transcriptomics, Proteomics, Sequencing and Systems Biology.
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Figure 1.6: This schema represents the overall research project (List_MAPS). The contribution
done this PhD project is circulated with red line (reconstruction of the regulatory circuit of L.
monocytogenes) .
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1.4 Objective of the PhD project

The objective of this PhD is developing a new method that can integrate several types of
information (sequence data, TSS maps, and expression profiles over many conditions) for
de novo identification of the main regulons of a bacterium and to apply this methodology
to L. monocytogenes.

The available data was of a great help to us in applying our tool, specifically the genome-
wide TSS mapping approach by Wurtzel et al. (2012), and the work done by Bécavin et al.
(2017) to aggregate the diversity of transcriptomics results in the Listeriomics database.
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Chapter 2

Methodological background on DNA
regulatory motif discovery

Over the last four decades, since Korn et al. (1977) has published their computer algorithm
and until now, the motif discovery problem has been a major concern in the field of
bioinformatics. Given that it is a problem whose solution requires a multidisciplinary
approach, advances in the fields of applied statistics, computer science and computational
biology keep improving the proposed solutions.

I start this chapter by a global overview on the existing tools, making "a survey on
the available surveys" in the first section. I have dedicated the second and third sections
to discuss some modeling options and the different algorithms for parameter estimation.
In the second section, I focus on the probabilistic models to represent DNA motifs. The
methodology on how to estimate the model parameters is the focus of the third section,
in which I give some details on two classical approaches that differ by the type of al-
gorithm, deterministic algorithm (Expectation-Maximization) and randomized algorithm
(Gibbs sampling).

In the fourth section, I will focus on how different tools use different types of auxiliary
data to improve the search for sequence motifs. I will review the use the genome-wide
ChIP data and how their introduction has impacted this field of research. After that I
will detail several approaches that were proposed to make use of expression data for motif
discovery. I will finish the chapter by introducing the novelty about our approach and how
they overcome some of the limitations of the existing tools.
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2.1 Overview on the existing tools

There have been more than hundred(s) publications detailing motif discovery methods and,
by turn, there was a need for surveys of the existing methods. Since, there is no simple
global framework to classify all the existing approaches and to tell us how much they are
related to each other from methodological point of view, different publications have chosen
different approaches to classify the available algorithms. Examples for the approaches used
to classify the tool include the algorithm used (ex. deterministic or probabilistic), the type
of auxiliary data used (ex. expression data or ChIP data), the type of motif model (ex.
single or composite), and the motif model representation (probabilistic or word-based) (Das
and Dai, 2007; Sandve and Drabløs, 2006; Zambelli et al., 2012). Some of these angles are
detailed below.

The type of motif under search can be a direction to classify the tools. As done by
Sandve and Drabløs (2006) when they divided most of the existing tools by then (119
tools) into two sets, the first set contains tools that search for single motif models and the
second set contains tools that search for composite motif models. Where, the single motif
model refers to short contiguous sequence elements and the composite motif model refers
to clusters of elements in the DNA in proximity to each other, but with a certain flexibility
regarding distance between them.

Relating the development of new predictive tools to the available experimental data was
the focus of Slattery et al. (2014) who have presented the existing computational methods
along a timeline and related the prediction quality of these computational methods with
the availability of experimental data (Fig 2.1 on page 29).

The type of auxiliary data which is used by the search algorithm can be the criteria of
classification. For example, Das and Dai (2007) have divided many of the existing algo-
rithms by then (51 tools) into two sets, the first set contained algorithms that use promoter
sequences of genes that have similar expression activity from single genome and search for
statistically over-represented motifs, as co-regulated genes are more likely to contain some
common motifs, as discussed in subsection 1.2. The second set of algorithms contains
the ones designed to use phylogenetic footprinting or orthologous sequences. The simple
premise underlying phylogenetic footprinting is that selective pressure causes functional el-
ements to evolve at a slower rate than non-functional sequences. This means that usually
well conserved sites among a set of orthologous promoter regions are good candidates for
functional regulatory elements such as TFBSs. Several motif finding algorithms have been
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developed based on phylogenetic footprinting (Cliften et al., 2001; Blanchette and Tompa,
2002; Cliften et al., 2003; Wang and Stormo, 2005; Carmack et al., 2007).

Chromatin immunoprecipitation (ChIP) made it possible to assess experimentally which
sequences are bound by a given transcription factor. This technology had a deep impact
on the field of motif discovery and some have chosen to divide the tools into two groups,
one for the tools that make use of the ChIP data and the other is for those which do not
(Zambelli et al., 2012) (see section 2.4.1).

With the existence of many methods that share the same goal, benchmarks were ex-
pected to assess the relative performance of these methods. Weirauch et al. (2013) is a
good example for these benchmarks where, as a part of the DREAM5 challenge1, they
applied 26 different approaches to in vitro protein binding microarray data for 66 mouse
TFs belonging to various families. Their results indicated that simple models based on
mononucleotide position weight matrices trained by the best methods perform similarly to
more complex models for ∼ 90% of the TFs examined.

1http://dreamchallenges.org/project/dream-5-tf-dna-motif-recognition-challenge/
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2.2 Probabilistic models to represent DNA motifs

Most of the word-based methods for motif discovery start by computing the score of every
possible k-mer (ex. k = 7) and then proceed with a local optimization of the highest
scoring k-mers (seeds). Scoring usually implies a hypothesis testing framework aiming for
finding the unexpected words with respect to a null hypothesis H0. An example of H0 is
to assume that words are generated from a Markov model of order k′ < k− 1 which allows
to account for the frequency of words of length k′ + 1 (Schbath, 2000). Another example
of H0 is to assume that the frequency of a word is the same between two set of sequences
which can correspond to promoter regions of genes in different expression clusters (see
subsection 2.4.2). After local optimization of the seeds, these methods usually represent
motifs using consensus strings with degenerate symbols (IUPAC system). The IUPAC
notation uses the following ambiguity codes: W = {A,T}, S = {C,G}, M = {A,C}, K = {G,T},
R = {A,G}, Y = {C,T}, B = not A, D = not C, H = not G, V = not T, N = any Nucleotide (not
a gap).

Probabilistic models aim to offer more precise description of the motifs than afore-
mentioned word-based methods. The most common way to model or represent motifs in a
probabilistic way is the position weight matrix (PWM). A motif of lengthW is represented
by a 4∗W matrix, where the 4 rows correspond to the 4 possibilities of the DNA nucleotides
(A,C,G,T) and the W columns represent the different positions within the motif. We will
refer to a nucleotide as a residue and use the letter r to represent it. The value θrw at
the rth row and the wth column in the PWM reflects the probability of seeing residue r
in position w. Often the elements in PWMs are provided as log-likelihood ratio terms
(comparing motif and background) which permits to use them directly as additive scores.
In this manuscript, the elements will simply be probabilities of occurrence and, for every
column w in the PWM, we have thus (

∑
r θwr = 1). In this context, the motif discovery

task consists of estimating the parameters that represent the motif. One example for a
PWM is the following one that corresponds to the -35 box of L. monocytogenes alternative
sigma factor SigB as detected by our tool:

θᵀ =



1 2 3 4 5 6 7

A 0.111 0.003 0.090 0.001 0.001 0.324 0.791

C 0.223 0.116 0.001 0.027 0.006 0.074 0.063

G 0.431 0.878 0.001 0.001 0.001 0.203 0.068

T 0.235 0.003 0.908 0.971 0.992 0.399 0.078
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Since the basic PWM represents a motif where every position is independent from
the other positions, we can look at the PWM as an inhomogeneous fixed order Markov
model of order 0, where inhomogeneous here means position-dependent. The approach
of PWM to model the motif can be generalized to account for the dependencies between
adjacent residues, represented by Markov model (MM), or even the dependencies between
any positions inside the motif, represented by Bayesian Networks (BN), see Fig 2.2 on
page 29.

To generalize the concept of the PWM, some have proposed higher order Markov models
to represent the motif. When selecting the order of the Markov model, a specific trade-off
appears. Intuitively, the higher the order the better, since more parameters are used to
describe the model which can provide additional predictive power. On the other hand, the
higher the order, the less reliable the parameters estimates are, since less training data are
available to estimate the value of each parameter. The motif can as well be represented by
a variable order MM, in that case the order may depend not only on the position inside
the motif but also on the exact nucleotides found at the preceding positions (Bühlmann
et al., 1999; Ron et al., 1996).

The concept of modeling the dependencies between adjacent nucleotides can be gener-
alized even further by considering the dependencies between any pair of nucleotides within
a motif. This generaliztion can be modeled using Bayesian Networks (BN) (Ben-Gal et al.,
2005). The Dinucleotide Weight Matrices (DWMs) (Siddharthan, 2010) was presented to
model the motif in this manner, it is actually a first order BN. BNs, as well, can be divided
into fixed order or variable order (Boutilier et al., 1996; Friedman and Goldszmidt, 1998;
Friedman et al., 2000; Heckerman et al., 1995).

Beside a probabilistic representation of the motif, a full probabilistic method also in-
volves a background model representing the nucleotides outside the motif blocks referred
to hereafter as θ0 and a model for the position of the motif in the sequence. The first
background models assumed independent and identically distributed (iid) nucleotides as
in MEME (see subsection 2.3.1), and later homogeneous Markov models were shown to
provide better results (Thijs et al., 2001). Different modeling of the motif position will be
briefly mentioned in subsection 2.3.1 (OOPS, ZOOPS, TCM).
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Figure 2.1: Timeline relating the development of computational tools for detecting TFBSs below
the timeline axis and the availability of the experimental data above the timeline axis (Slattery
et al., 2014).

Motif model

Markov Model (MM) Bayesian Network (BN)

PWM First order MM Higher and variable 
        order MM

First order BN Higher order BN

Figure 2.2: The different models that are used in the literature to model the TFBSs. MM can be
seen as a generalization to PWM and also the BN can be seen as a generalization to MM.
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2.3 Motif discovery in sequence data

Here I am presenting two classical tools that can be regarded as representatives to the set
of tools that are based on EM and gibbs algorithms. These two tools are MEME which is
based on EM and Gibbs Motif Sampler (GMS) which is based on Gibbs sampling. I am
ending the Section by presenting a tool that is based on GMS with extensions, this tool
is called Repulsive Parellel MCMC and it can be regarded as representative for the set of
tool that are variations or extensions of GMS and MEME.

Both tools (MEME, GEMS) have made the choice of modeling the starting position of
the motif in the context of hidden variables, but this was done in two slightly different ways
by the two tools: MEME introduces a binary variable for every position in the sequence
equal to 1 if that position is the starting position of the motif and zero otherwise. GEMS
has one variable per sequence where its value (not binary in this case) represents the
starting position of the motif.

2.3.1 The MEME algorithm

MEME (standing for "Multiple EM for Motif Elicitation") is very popular and one of the
first unsupervised learning algorithms for discovering motifs in sets of protein or DNA
sequences. The two first versions of the algorithm were described in Bailey et al. (1994);
Bailey and Elkan (1995a). Here we base our description of MEME on the third publication
(Bailey and Elkan, 1995b) that presents more modeling options and provides more details
on the implementation.
Overview of MEME

In a nutshell, MEME algorithm is a combination of: Expectation Maximization (EM)
(Dempster et al., 1977) for parameter estimation via local maximization of the incomplete
log-likelihood; an EM-based heuristic for choosing the starting point for EM; multi-start
for searching over possible motif widths; greedy search for finding multiple motifs; and a
maximum likelihood ratio-based (LRT-based) heuristic for choosing the number of model’s
free parameters (depending on the width of the motif and on whether or not the DNA
palindrome constraints are in force).
OOPS, ZOOPS, and TCM models

MEME offers several options for the modeling of the number of occurrences per sequence
in the dataset. OOPS is the simplest model type, since it assumes that there is exactly one
occurrence of the motif per sequence. This type of model was introduced by Lawrence and
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Reilly (1990). The generalization of OOPS is called ZOOPS, which assumes zero or one
motif occurrence per dataset sequence. Finally, TCM (two-component mixture) models
assume that there can be any number (including zero) of non-overlapping occurrences of
the motif in each sequence in the dataset, as described by Bailey et al. (1994). All these
models assume a uniform distribution for the position of the motif inside each sequence.
Expectation Maximization

Consider searching for a single motif of widthW in a set of sequences. The dataset of N
sequences, each of length L, will be referred to as x = (xn,l), n = 1 : N , l = 1 : L. MEME
does not require that all the sequences have the same length but this assumption simplifies
the presentation of the method. There are T = L − W + 1 possible starting positions
for a motif occurrence in each sequence. The starting point(s) of the occurrence(s) of the
motif, if any, in each of the sequences are unknown and are represented by hidden variables
Z = Zn,l|1 ≤ n ≤ N , 1 ≤ l ≤ T where Zn,l = 1 if a motif occurrence starts in position l in
sequence xn, and Zn,l = 0 otherwise. MEME uses the EM algorithm to obtain a maximum
likelihood estimate of the model parameters including θ. This requires maximizing the
so-called incomplete likelihood since the value of Z are unknown and need to be integrated
out. This is done by iterating the following two steps until a convergence criterion is met.

The E-step. The E-step of EM computes for all n and l, π(Zn,l = 1|xn, θ(i)), the
probability that a motif occurrence starts in position l of sequence xn given the current
parameters θ(i). For an OOPS model,

π(Zn,l = 1|xn, θ(i)) =
π(xn|Zn,l = 1, θ(i))∑T
l=1 π(xn|Zn,l = 1, θ(i))

, (2.1)

where,

π(xn|Zn,l = 1, θ) = (
W∏
w=1

θw,xn,l+w−1
)I{Zn,l = 1}(

∏
k∈∆n,l

θ0,xn,k)I{Zn,k = 0}, (2.2)

here ∆n,l is the set of positions in sequence xn which lie outside the occurrence of the motif
when the motif starts at position l.

The M-step. The M-step of EM consists of updating θ(i) using the following formula

θ(i+1)
w,r =

cw,r + dw,r∑
r′∈{A,C,G,T} cw,r′ + dw,r′

, 0 ≤ w ≤ W , (2.3)
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where,

cw,r =


∑N

n=1

∑T
l=1 π(Zn,l = 1|xn, θ(i))I{xn,l+w−1 = r} if w > 0∑N

n=1

∑T
l=1 I{xn,l+w−1 = r} −

∑W
w=1 cw,r if w = 0,

(2.4)

and dw,r is a fixed value used to stabilize the estimate. As explained in section 2.3.1 the
E-step consists of computing the expected value of the complete likelihood and the M-step
of maximizing this quantity.
Finding multiple motifs

The three types of sequence model used by MEME assume, a priori, that motif oc-
currences are equally likely at each position l in sequence xn. That is, initially, MEME
assumes that π(Zn,l = 1) is a fixed value for all Zn,l in the first pass (the process of discov-
ering one motif). On the second and subsequent passes, MEME changes this assumption
to approximate a multiple-motif sequence model. A new probability distribution on each
Zn,l is used during the E-step, by multiplying formula (2.1) by the probability that a new
motif occurrence starting at position l might overlap occurrences of the motifs found on
previous passes of MEME.

2.3.2 Gibbs motif sampler

Gibbs motif sampler (Neuwald et al., 1995) is a popular algorithm that uses Gibbs sampling
(Gelfand and Smith, 1990) for sequence motif discovery. Given a set of DNA sequences,
assume that within the sequences there areM blocks (motifs) and each motif (m) has a
different width Wm. Let also A·,n be random variables that record the starting positions
of the M motifs in sequence xn. The goal of the Gibbs motif sampler is to sample from
the posterior distribution of all non-overlapping motifs given the sequence data of density
π(a|x) =

∫
θ
π(a, θ|x)dθ (for conciseness we write here a for A = a). Given the position

of the various elements within sequence xn recorded in a·,n, the probability of observing
sequence xn is

π(xn|A·,n, θ) = (
M∏
m=1

Wm∏
w=1

θm,w,xn,Am,n+w−1
)(

∏
k∈∆n,A·,n

θ0,xn,k), (2.5)

where θm,w,r represents nucleotide r in position w in motif m, and ∆n,A·,n is the set of
positions in sequence xn which lie outside the occurrence of the M motifs recorded in
A·,n. The Dirichlet distribution was chosen as the prior for θ. As a result of that choice,
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the conditional posteriors are also Dirichlet which facilitates the analysis. Specifically, if
the position of motif m is known in all but in sequence xn, the posterior distribution for
the parameters of the corresponding residue frequency model θm is the product of Wm

independent 4-parameter Dirichlet distributions,

(θm,w|x,A) ∼ Dir(cm,w,A + αw,A, cm,w,C + αw,C, cm,w,G + αw,G, cm,w,T + αw,T), (2.6)

where cm,w,r represents the count of residues of type r at position w of motif m in all the
sequences, and alphaw,r is a fixed value used to stabilize the estimate. The Gibbs algorithm
permits to sample the joint distribution π(θ, A|x) which is the distribution of interest by
iteratively sampling from the complete set of conditionals π(θ|x,A) and π(A|x, θ). To avoid
sampling from the Dirichlet distribution, Lawrence et al. (1994) showed how to integrate
out θ to sample directly π(A|x) =

∫
θ
π(A, θ|x)dθ using the following simple form

π(Am,n|x,Am,[−n]) ∝ (
Wm∏
w=1

∏
r

cm,w,r[−n] + αw,r)(
∏
r

c0,r[−n] + α0,r), (2.7)

where Am,[−n] represents the positions of motif m in all sequences except xn, and cm,w,r[−n]

represents the count of residues of type r at position w of motif m in all the sequences
except xn. Equation (2.7) uses the fact that

(θm,w|x[−n], A[−n]) ∼ Dir(cm,w,A[−n]+αw,A, cm,w,C[−n]+αw,C, cm,w,G[−n]+αw,G, cm,w,T[−n]+αw,T),

(2.8)
sampling using equation (2.7) requires only to maintain up-to-date the residue counts in
all motif occurrences at all steps of the algorithm. Marginalizing out θ can also improves
the convergence speed of the MCMC algorithm.

2.3.3 Repulsive Parallel MCMC (RPMCMC)

The Gibbs Motif Sampler is only one example of the possible application of the MCMC
method to the problem of motif discovery. Ikebata and Yoshida (2015) proposed an ex-
tension to search for different motifs at the same time (in a parallel manner). The main
idea of the Repulsive Parallel MCMC (RPMCMC) is to have several one-motif discovery
Markov chains (replicas in the author’s terminology) that run in parallel and interact in
order to avoid detecting the same motif (illustrated in fig 2.3). This is done by introducing
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Figure 2.3: A graphical representation of how an algorithm may work to prevent the repetition of
detecting the same TFBS without masking the discovered motifs using a repulsion force function.
The closer two PWMs get to each other according to a specific distance function, the bigger the
repulsion force between them; this will then will prevent the two matrices to converge to the same
local Maximum.

a parameter β that tunes the strength of the repulsive force between replicas.
In practice the RPMCMC samples from the adhoc joint distribution defined by a density

that depends on x and β, and writes

πβ,x(θ1, .., θM) ∝ ψ(θ1, ..., θM)β
M∏
m=1

π(θm), β ≥ 0. (2.9)

The function ψ increases with the dissimilarity between the different replicas and the
parameter β controls the force severity, i.e. a greater β produces a stronger repulsion. The
function ψ is defined by

ψ(θ1, ..., θM) =
M∏
m=1

exp(minm′<mD(θm, θm′)), (2.10)

where D is a dissimilarity between pairs of PWMs. Computing D(θm, θm′) requires to align
θm and θm′ .
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2.4 Motif discovery incorporating auxiliary data

2.4.1 Making use of ChIP data

The availability of ChIP data has taken the field of motif discovery many steps ahead
(Zambelli et al., 2012). ChIP is an experimental technique that permits the genome-wide
identification of protein-DNA interactions in vivo. ChIP, applied to transcription factors
and coupled with genome tiling arrays (ChIP on Chip) or High-throughput sequencing
technologies (ChIP-Seq) are the two types of data (Pillai and Chellappan, 2009; Mardis,
2007). ChIP-Seq has rapidly become the de facto standard in this field, since it can provide
maps of the binding of the TF studied with a much higher resolution than ChIP on Chip
in large genomes (Ho et al., 2011).

ChIP allows to single out a set of genomic regions whose binding sites from the same TF
are experimentally supported. These regions usually range in size around a few hundred
base pairs. Since the regions obtained by ChIP are larger than the actual TFBSs, outputs
of ChIP experiments are perfect case study for motif finding in order to identify and model
the actual binding specificity of the TF investigated. The sites bound by the TF are more
likely to be located near the center of the region extracted (Jothi et al., 2008) or within
a few base pairs from the point of maximum enrichment within the ‘peak’ region itself
(positional bias within the input sequences being a key factor for assessing the significance
of a motif). Analyzing the high number of regions identified by ChIP (typically, thousands
of regions) taking into account the peak heights and the position inside the region with
respect to the peak has posed new challenges to the developers of algorithms and tools
(Zambelli et al., 2012).

Motif discovery tools applied to the output data from ChIP experiments tend to be
more successful than the analysis of promoter sequences from co-expressed genes (Krig
et al., 2007; Zeller et al., 2006; Loh et al., 2006; Chen et al., 2008). The reason for that
is the challenge to delineate clusters in expression dataset and the absence of one-to-one
correspondence between co-expression clusters and TF regulons (see subsection 2.4.2). In
particular, it is a well-known fact that different regulatory motifs can have overlapping
gene sets (Wagner, 1999; Hobert, 2008).

Despite the power of ChIP experiments, methods based on ChIP data have their lim-
itations for de novo motif discovery. Indeed they require to know a priori the TFs that
are relevant for the biological question and dedicated ChIP experiments are needed for
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each of these TFs. Furthermore, ChIP analysis of a specific TF–DNA complex is usually a
heavy experiment, since it requires either a specific antibody to recognize the TF or genetic
engineering of a tagged TF that can be recognized by an already available antibody.

In a system biology framework, when the goal is to unravel globally with limited re-
sources the transcription regulatory network of an organism on which we have limited
knowledge, the methods that rely on expression data present some advantages over ChIP-
based method: for instance, expression profiles (e.g. RNA-Seq) across biologically relevant
growth and stress conditions can be obtained without focusing on specific TFs and with-
out genetic engineering. For this reasons, with the aim of developing generic tool for de
novo motif discovery in non-model bacteria, this PhD project focuses on making use of
expression data.

2.4.2 Making use of expression data

In this subsection we are going to review tools that have been specifically developed to
incorporate expression profiles as auxiliary data in motif discovery. Here I decided to
review tools that are either popular or related to our work. Given a set of N promoter
regions (sequences) each of which is associated with one or several values that summarize
the original expression data of the corresponding gene. These values, hereafter denoted
by y, can be either continuous or discrete. A continuous value will typically correspond
to the log ratio between expression levels between two biological conditions. A discrete
value typically represents the membership of a gene to a co-expression cluster that reflects
relative distances in the expression space.

The tools presented below proposed different approaches to take into account this type
of data: mutual information, enrichment test, or regression of expression data y given
sequence data x. The first two approaches involve transforming the expression data into
one-dimensional categorical values, while the third approach can directly accommodate
multidimensional continuous expression data.

Using mutual information

FIRE (standing for "Finding Informative Regulatory Elements") is an algorithm that tries
to find sequence motifs with maximum mutual information between their patterns of oc-
currence and expression values (Elemento et al., 2007). It starts by breaking the given
set of DNA sequences into all the possible k-mers (seeds) of a given length, say 7 (e.g.,
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CGATCAG). Then, it calculates the mutual information between the presence or absence of
every seed and the expression profiles of the sequences containing this seed. After that, it
sorts all the seeds according to their information scores and those seeds above a specific
threshold are then considered for more general motif representation.

The concept of mutual information is well defined, both for continuous and for discrete
random variables (Cover and Thomas, 2012). Nonetheless, in practice, estimating the
information when continuous variables are involved requires quantizing their values. FIRE
does this by transforming continuous expression values into equally populated bins, as
described by Slonim et al. (2005). Let’s define a random variable Yn that corresponds
to the expression value associated with sequence xn which can take Y possible values
(the number of bins or clusters), and a random variable Am,n that corresponds to the
presence/absence (encoded 1 and 0, respectively) of motif m in sequence n. The mutual
information between Am,n and Yn writes

I(Am;Y ) =
∑

am=0:1

∑
y=1:Y

π(am, y) log
π(am, y)

π(am)π(y)
(2.11)

where π(am, y) is the joint probability density of (Am, Y ) and π(am) and π(y) the corre-
sponding marginals for Am,n = am and Yn = y. The estimator of this mutual information
is obtained by plugging the empirical estimates π̂(am, y), π̂(am) =

∑
y=1:Y π̂(am, y), and

π̂(y) =
∑

am=0:1 π̂(am, y). The joint density estimate π̂(am, y) equals cm,y/N for am = 1

and (cy − cm,y)/N for am = 0, where cy is the number of sequences with expression value
y, and cm,y is the number of sequences with expression value y and containing at least one
occurrence of motif m.

Using enrichment test

Just like FIRE, GEMS (standing for "Gene Enrichment Motif Searching algorithm") starts
by considering all possible k-mers for specific range of k (e.g., k ∈ 6, 7, 8) and then performs
a local search starting from the best scoring seeds to define degenerate motifs (Young et al.,
2008). However, instead of using mutual information, GEMS uses the hyper-geometric
distribution to assess motif enrichment in each cluster, given a set of co-expression clusters.
Let cm,y denote the observed number of genes in cluster y containing the motif m. Under
the null hypothesis that the occurrences of motif m are distributed independently of the
expression data, the random variable Cm,y, representing the number of occurrences of motif
m in cluster y, follows an hyper-geometric distribution such that
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Pr(Cm,y ≥ cm,y) =

min(cy ,cm)∑
i=cm,y

(
cm
i

)(N−cm
cy−i

)(N
cy

) , (2.12)

where cy is the number of genes in cluster y, and cm is the number of genes with motif m
in N . For a given clustering with Y clusters, GEMS defines the motif enrichment score of
m as

s(m) = max
y∈{1:Y}

(− log π(Cm,y ≥ cm,y)). (2.13)

The criterion is local in the sense that only the cluster y in which the maximum is
reached is taken into account, in contrast to FIRE which uses a global criterion in the
sense that the score of the motif is based upon the whole dataset.

From clusters to neighborhoods

RED2 (standing for "Regulatory Element Discovery") algorithm (Lajoie et al., 2012) by-
passes the need to work with predefined clusters through replacing the clusters by the k
nearest neighbors of each gene. This criteria can be applied to both the global criterion of
FIRE and the local criterion of GEMS. The formula (2.11) that defines the global criterion
of FIRE is replaced by

I(Am;Y ) =
1

N
∑

am=0:1

∑
n∈N

π(am|yn) log
π(am|yn)

π(am)
. (2.14)

Here π(am = 1|yn) =
cm,n,k
k

= 1 − π(am = 0|yn), where cm,n,k is the number of sequences
containing the motif m in the k-neighborhood of gene n.

The formula (2.13) that defines the local criterion of GEMS is replaced by

s(m) = max
n∈N

(− log π(Cm,n,k ≥ cm,n,k)). (2.15)

The probability of seeing Cm,n,k ≥ cm,n,k sequences containing motif m in the k nearest
neighbors of sequence n is derived from the hyper-geometric distribution.
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Regression-based methods: modeling the expression data given sequence data
(Y |x)

REDUCE (standing for "Regulatory Element Detection Using Correlation with Expres-
sion") fits a multivariate model to gene expression across one or several conditions indexed
by h, where the explanatory variables are occurrences of sequence motifs within regulatory
regions (Bussemaker et al., 2001). This is done through the equation

yn,h = b+
∑
m∈M

em,hcm,n + εn,h, (2.16)

where b represents a baseline expression level common to all genes, em,h represents the
effect that the presence of motif m in the upstream region has on the expression level, it
can be increased or decreased in the value of the expression, cm,n represents the number of
occurrence of motif m in the upstream region of gene n, yn,h corresponds to the expression
level of gene n, and εn,h represents the error term.

Whereas, in the original MotifREDUCE (Bussemaker et al., 2001), cm,n simply repre-
sents the count of a particular oligonucleotide motif in the regulatory region of gene n,
MatrixREDUCE (Foat et al., 2006) uses a more powerful representation of the binding
specificity of the transcription factors in the form of a PWM. In this case, the algorithm
optimizes a matrix θm and the integer counts are replaced by

cm,n =
T∑
l=1

Wm∏
w=1

θm,w,xn,l , (2.17)

where θm,w,xn,l is the probability of seeing the nucleotide xn,l ∈ (A,C,G,T) in the wth

position of motif m, Wm is the width of motif m; and T = L − W + 1, where L is the
length of the sequence upstream of gene n.

Modeling the sequence data given expression data (X|y)

Modeling expression data given sequence data (Y |x) as proposed by the regression-based
approaches implemented in REDUCE is not the only option that exists to take into ac-
count expression data y in de novo motif discovery. Beyond the possible difficulty to find
appropriate models for expression data, an obvious limitation of this modeling framework
is that it entirely focuses on the discovery of sequence motifs that explain the expression
data. The alternative viewpoint, which is the one adopted in this PhD thesis (see subsec-
tion 2.5.2), consists in modeling the sequence data given the expression data (X|y). A key

38



benefit of this viewpoint is that it builds upon the powerful sequence modeling approaches
for de novo motif discovery described in section 2.3 which makes it possible to envision
algorithms that could simultaneously use the expression data and all the statistical prop-
erties of the sequence, establishing a continuum between discovery of motifs related and
unrelated to the available expression data.

Nicolas et al. (2012) proposed a statistical model for the discovery of Sigma factor
binding sites based on this idea of modeling X|y. The details of the model are illustrated
in Fig. 2.4. As an alternative to the use for y of a predefined set of co-expression clusters,
the statistical model intends to incorporate the full information of an ultra-metric tree
obtained by a hierarchical clustering procedure whose topology and branch lengths reflect
similarities between activity profiles. The tree was obtained by hierarchical clustering with
average link based on pairwise distance between expression profiles of the different genes.
Namely, the distance between the expression profiles of genes n1 and n2 was defined as
(1− rn1,n2)/2 where rn1,n2 is the Pearson correlation coefficient. This distance, sometimes
referred as the Pearson distance, gives a distance 0 for a perfect positive correlation and 1
for perfect negative correlation.

In order to model the fact that sequences that are close in the expression space (hence in
the tree) are more likely to harbor binding sites for the same sigma factors, the occurrences
of the different possible motifs are modeled as resulting from an “evolution” process along
the branches of the tree (see Fig. 2.4A). This evolution model involves a single parameter
corresponding to the rate of motif switches per unit of branch length is introduced for
this purpose. The model also account via a second parameter δ for the possibility of
outliers. The sequence model given the presence of the motif is illustrated in Fig. 2.4B
and accounts for specific properties of Sigma factor binding sites: bipartite motifs with
a preferred distance with respect to the TSS. Of note, the model assumes exactly one
occurrence of one of the possible motifs. This modeling assumption is probably relevant
for Sigma factor binding sites since each TSS is, in principle, associated with exactly one
Sigma factor binding site (see subsection 1.1) but does not hold for other types of TFs.
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A Model of the distribution of motif types in the promoter correlation tree
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M2

5'-end
3'-end
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α=(α∅,α1,...,αM)probability of each motif after a switch

δ probability of motif switch at the leaf level

λ rate of motif switches per unit of branch length

B Model of sequence i associated with motif m

approximate
TSS position

Figure 2.4: The promoter correlation tree (Nicolas et al., 2012). (A) Modeling the non-random dis-
tribution of motif types across the promoter activity correlation tree. (B) Modeling of a sequence
given its associated motif type.

40



2.5 Motivations for the novelties in our approach

Two main novelties of our model are to allow overlaps between motif occurrences and to
incorporate covariates summarizing transcription profiles into the probability of occurrence
in a given promoter region. Each covariate may correspond to the coordinate of the gene
on an axis (e.g. obtained by PCA or ICA) or to its position in a tree (e.g. obtained by
hierarchical clustering). This subsection is divided into two parts. First, I will discuss the
biological and computational motivations for modeling the possibility of overlap between
motif occurrences. Second, I will motivate a new way of incorporating expression data in
the de novo search for regulatory sequence motifs.

2.5.1 Modeling overlaps between motif occurrences

The literature showed in many occasions that the cis-regulatory regions are highly com-
plex and they consist of repetitive as well as overlapping transcription factor binding sites.
Hermsen et al. (2006) have performed statistical analysis of the frequency of overlap-
ping and repetitive binding sites in E.coli based on a dataset brought from the EcoCyc
database2 version 9.5 (Keseler et al., 2005). This database included more than 1000 mapped
transcription initiation sites, which are regulated by nearly 1400 binding sites for specific
transcriptional regulatory factors (TFs). They found that 37% of the genes are mediated
by more than one binding site (this situation is taken care of by almost all the methods
whether they are model-based or word-based) but they found as well that 39% of the bind-
ing sites overlap with at least another site (this situation is rarely taken care of by the
model-based methods). Accordingly, these findings indicate that without modeling motif
overlap we will miss the discovery of at least 20% of the binding sites in a well studied
bacteria like E.coli. We find it useful to introduce how these binding sites may work to-
gether to regulate the transcription level of some genes. The upper part of Fig 2.5 is taken
from Hermsen et al. (2006) and it shows an example of promoters for the bacterium E.coli.
Ezer et al. (2014) have described in more details how the clusters of transcription factor
binding sites may work together.

There are, as well, two main computational advantages for allowing the motif occur-
rences recorded in hidden variables (see subsection 2.3) to overlap. First, it permits to
update the motif one by one without having to change the position of other motifs. Sec-
ondly, it allows to update motifs’ widths without having collisions between different motifs.

2http://EcoCyc.org/
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Figure 2.5: The upper part of the figure shows an examples of E. coli promoters that shows a
complex structures which needs to be taken care of in the process of modeling. Green blocks
represent binding sites for activators and red ones represents those for repressors. The lower
part of the figure shows a graphical representation of modeling the distance between the motif
occurrence and the TSS. The main motivation about this modeling decision is the fact that some
motifs tends to bind a reserved site with a reserved distance to the TSS.

Another, but not main, novelty in our approach is that we modeled the distance between
the motif occurrence and the TSS. We did so by dividing the sequence into sub-regions and
introducing a dedicated set of estimated parameters that record the number of sub-regions
and the exact starting and ending position of each one of them, as well as the probability
of occurrence of each motif inside each sub-region (Fig 2.5).

2.5.2 Incorporating expression data

I discussed in the last part of subsection 2.4.2 that modeling the sequence data given
expression data (X|y) is the approach adopted in this PhD thesis and I talked about the
benefits of making that modeling choice. As well, I presented the work done by Nicolas
et al. (2012) in which they proposed an alternative approach to use y than the conventional
use of a predefined set of co-expression cluster. The work done in this PhD thesis can be
regarded as an extension to what Nicolas et al. (2012) did in their approach. In this PhD,
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we are incorporating covariates that summarize transcription profiles into the probability
of TFBS occurrence in a given promoter region. Each covariate corresponds either to a
numerical value, such as the coordinate of the gene on an axis obtained by Principal or
Independent Component Analysis (PCA or ICA), or to the position of the gene in a tree,
such as typically obtained by hierarchical clustering. Incorporating expression data is done
using the probit regression framework and the dimensionality of the model is adjusted using
trans-dimensional MCMC which allows the algorithms to activate only the covariates that
are relevant to each motif.

If the covariate corresponds to a numerical value over a PCA or an ICA axis, the
information can be incorporated directly into the probit regression model. Another option
on which we worked is to transform the information into binary values, by introducing a
cut (value) over the axis that will define two sets of genes, those on the right hand side
and those on the left hand side and the two sets of genes will be given different probability
of containing the motif.

When the covariate variable is representing a tree, the algorithm selects a branch that
will define two sets of genes (those leaves under the branch and those which are not) and
the two sets will be given different probability of containing the motif. Since different
branches in a same tree could be informative on the probability of occurrence of a same
motif we duplicated the two trees in the input of the algorithm (Ward tree on Euclidean
distance and average-link tree on Pearson correlation distance). Selecting this way to deal
with a clustering tree allows us to handle directly a whole tree and it fits in our model of
binarizing the expression covariate.

Among other characteristics, the modeling framework adopted in this PhD avoids the
classical way of defining clusters of genes from the transcription data and by turn avoids
the drawbacks of hard clustering as explained by Lajoie et al. (2012) and discussed in
subsection 2.4.2. Our approach also, beside the aforementioned advantage of avoiding the
hard clustering, has the ability to handle different types of ways selected to summarize the
expression data.
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Chapter 3

A new statistical model for promoter
sequences and the associated MCMC
algorithm

As stated in the biological and methodological introductions (Chapters 1 and 2), the goal
here is to propose a new approach for de novo discovery transcription factor binding sites
in promoter sequences that can make use of expression data.

The statistical model that was developed for this purpose is composed of two parts.
The first part is a model for a data-set of promoter sequences that involves interspersed
occurrences of several types of sequence motifs which are allowed to overlap and to have
preferred positions (sequences being aligned with respect to the transcription start sites).
This sequence model builds directly upon the already existing models for de novo motif
discovery presented in Section 2.3. As such, it allows already to identify statistically
over-represented sequence motifs that can correspond to transcription factor binding sites
(TFBS).

The second part of the developed model intends to relate the occurrences of the motifs
to the expression data available. As explained in Section 2.4 the point of view that we
decided to adopt is to try to use these data as predictors (covariates) that can improve the
representation of the promoter sequences by carrying information on where similar motifs
are more likely to occur (based on the idea that the genes which are co-regulated by the
same TF are more likely to present similarity in their expression profiles).

The chapter is divided into two sections that are dedicated to the two aspects of the
model (sequence data and expression data, respectively). These sections explain the mod-
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eling and describe the MCMC algorithm that we implemented to carry out the statistical
inference in a Bayesian framework. In the first section, after having introduced the ingre-
dients of the sequence model but before entering into the details of the algorithm, we also
briefly present the statistical concepts that were used for inference (Bayesian framework
and MCMC algorithms).

3.1 Improved models for bacterial promoter sequences

3.1.1 Ingredients of the sequence model

We introduce here the main assumptions of our probabilistic model and the notations
used for the data, hidden variables, and parameters. Some of the parameters are of direct
interest to us like the Position Weight Matrices (PWMs) that have generated the motifs.
The Directed Acyclic Gaph represented in Figure 3.1 can be used as a summary of the
notations for the different components of our model.

Probabilistic modeling of the sequences

The sequence data set that we consider is composed of a number N of DNA sequences,
each of the same length L. Let denote x = (xn)n=1:N the set of DNA sequences and xn,l the
nucleotide in position l of the sequence of index n 1 (xn,l ∈ {A, C, G, T}). Our probabilistic
representation for these sequences involves M + 1 unobserved components that capture
the heterogeneity of the nucleotide composition along the sequences. These components
consists ofMmotif models with respective widths (w1, ...., wM) and one background model.

The description of the probabilistic model for the sequences x contains two aspects:
the modeling of positions of motif occurrences and the modeling of the sequence given the
positions of these occurrences. The modeling of the positions of motif occurrences proceeds
as follows.

• The model assumes zero or one occurrence of each of theM motifs per sequence. In
a sequence, the occurrences of the M motifs are furthermore modeled as mutually
independent.

1We will use the terms “sequence n” to refer to the” sequence of index n” and the same for the other
components of the model (motifs, regions, . . .).
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• In this section, the probability that an occurrence of motif m occurs in sequence n is
denoted αm and is considered as the same for any sequence n. The focus of Section 3.2
is the extension of this model to incorporate expression data in this probability of
occurrence, thereby bringing an information which is specific of each sequence.

• The probability distribution for the position of motif m in a sequence is defined by
a piecewise constant function with km breakpoints. The positions of the breakpoints
are denoted dm = (dm,k)k=1:km , where 1 < dm,k < dm,k+1 ≤ L. The probability of
occurrence of the motif at a particular position l in region k (i.e. dm,k−1 ≤ l < dm,k)
is λm,k/(dm,k − dm,k−1) where dm,k − dm,k−1 corresponds to the length of region k.
Hence, for a given number of occurrences of motif m, the distribution of these oc-
currences between the km + 1 regions is described by a multinomial of parameters
λm = (λm,k)k=1:km+1, with λm,k ≥ 0 and

∑km+1
k=1 λm,k = 1, where λm,k is the probabil-

ity for an occurrence of motif m to be found in the region k.

• For practical reasons that pertain to the implementation of the update of the motif
width wm in the MCMC algorithm we do not always rely on the first position within
motif m to index its position. Instead, we use a reference position rm ∈ {1, . . . , wm}
that will allow the motif occurrences to overlap the sequence boundaries. According
to this modeling, a motif can extend up to rm−1 positions upstream of the sequence
(when its indexed position occurs at position 1 in the sequence) and up to wm − rm
positions downstream of the sequence (when its indexed position occurs at position
L in the sequence).

The modeling of the nucleotide sequence given the positions of motif occurrences in-
volves a set of parameter for each model component: (θ1, ...., θM) for theM motifs and θ0

for the background.

• In keeping with the simple PWM framework for motif modeling (see Section 2.2), the
nucleotide at position w ∈ {1, . . . , wm} inside an occurrence of motif m is drawn from
a multinomial distribution of parameters θm,w = (θm,w,r)r∈{A,C,G,T}, with θm,w,r ∈ [0, 1]

and
∑

r θm,w,r = 1, where θm,w,r is the probability to observe nucleotide r in the
position w of the motif m. As explained below the columns inside a PWM are not
necessarily modeled with wm independent vectors θm,w’s since we account for the
possibility of (fully or partially) palindromic motifs (see page 50).
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• Nucleotides outside motif occurrences are modeled as generated by a background
model. The background model that we choose is a homogeneous Markov model of
order v ∈ {0, 1, . . .}. We denote θ0 = ((θ0,s,r)s∈{A,C,G,T}k,r∈{A,C,G,T})k=0:v the parame-
ters of this model, where θ0,s,r corresponds to the probability of nucleotide r after
the word s of length v. This model involves 4v × 3 independent parameters (since∑

r∈{A,C,G,T} θ0,s,r = 1) that allow to account for the composition in word of length
v + 1; θ0 also encompasses the transitions matrices of order k from 0 to v − 1 that
serve to model the nucleotide sequences at position l ≤ v (i.e. the initial distribution
of the Markov model).

• The assumption of independence between the occurrences of the M motifs allows
overlaps. Two modeling options were envisioned to model nucleotide composition at
positions where two or more motif occurrences overlap.

– The simplest model consisted of considering a simple arithmetic mean of the
probability density functions associated with the different motifs that overlap.
We refer to this model as the equal weight mixture model for motif overlaps.

– A more general model was also implemented and consisted in a weighted mean
of the probability density functions associated with the different motifs. We
refer to this model as a θ-dependent weight mixture model for motif overlaps.
According to this model, each density function described by θm,w receives a
weight that increases with the level of constraint that it imposes on the nu-
cleotide to be generated. We considered for this purpose a quantity denoted
IC(θm,w) expressed in information bits and often referred to as the ’informa-
tion content’ of a column of a PWM in the literature on biological sequence
motifs. IC(θm,w) takes values from 0 when the randomness is maximum (i.e.
uniform distribution) to 2 in absence of randomness (i.e. θm,w,r = 1 for one of
the possible nucleotide r ∈ {A, C, G, T}). It is computed as

IC(θm,w) = 2−
∑

r∈{A,C,G,T}

θm,w,r log2 θm,w,r , (3.1)

where the sum term corresponds to the Shannon entropy of the nucleotide dis-
tribution described by θm,w.
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Hidden variables

In order to be able to work with this model, we introduced two layers of hidden variables
which are:

• A = (Am,n)m=1:M, n=1:N is a layer of random variables that encode the position of the
occurrences of the motifs, with Am,n ∈ {0, 1, . . . ,L} being the position of motif m in
sequence n (0 encodes the absence of occurrence).

• B = (Bn,l)n=1:N , l=1:L is a layer of random variables that encode the disambiguation
of the overlaps between motifs, with Bn,l ∈ {0, 1, . . . ,M} denoting the model compo-
nent (background or one of theM motifs) responsible for the probability distribution
function of the nucleotide xm,n,l. This idea of disambiguation by a dedicated hidden
variable is made possible by our choice of modeling the nucleotide emission proba-
bility at positions where motifs overlap as a mean since the resulting density can be
seen as the marginal of a mixture model (equal weight mixture model or θ-dependent
weight mixture model).

Having introduced these hidden random variables (A,B) allows to define the complete
data (x,A = a,B = b) whose density function given the parameters (θ0, θ1:M, α1:M, d1:M, λ1:M)

that we will simply write (θ, α, d, λ) decomposes as

π(x, a, b|θ, α, d, λ) =
∏

n=1:N

π(xn, bn, an|θ, α, d, λ)

=
∏

n=1:N

π(xn|bn, an, θ)π(bn|an, θ)π(an|α, d, λ) , (3.2)

where the terms π(xn|bn, an, θ), π(bn|an, θ), π(an|α, d, λ) are easy to compute as shown
below.

The density function of the sequence given the hidden variables writes

π(xn|bn, an, θ) =
∏
l=1:L

π(xn,l|bn,l, An, θ)

=
∏
l=1:L

[θbn,l,l−an,bn,l+1,xn,l ]
I{bn,l≥1}[θ0,xn,l−v:l−1,xn,l ]

I{bn,l=0} , (3.3)

where I{z} is the indicator function that takes value 1 if the Boolean variable z is true
and 0 otherwise, and xn,l−v:l−1 denotes the word of length v finishing at position l − 1 of
sequence n, i.e. xn,l−v:l−1 = (xn,l−v, . . . , xn,l−1).
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The density function of the disambiguation hidden variables given the position of the
motif occurrences writes

π(bn|an, θ) =
∏
l=1:L

π(bn,l|an, θ) , (3.4)

where to write π(bn,l|an, θ) it is easier to introduce a variable on,l corresponding to the
number of motif occurrences that overlap the position (n, l),

on,l ,
∑

m=1:M

I{an,m 6= 0, an,m ≤ l + rm − 1 < an,m + wm} . (3.5)

If one or several motif occurrences overlap the position (n, l), we further need to distinguish
the case of the equal weight mixture model for motif overlaps in which

π(Bn,l = m|an, on,l, θ) ∝ I{m = 0, on,l = 0}

+I{m > 0, an,m 6= 0, an,m ≤ l + rm − 1 < an,m + wm} ,

(3.6)

and the case of the θ-dependent weight mixture model for motif overlaps in which

π(Bn,l = m|an, on,l, θ)

∝ I{m = 0, on,l = 0}

+f(IC(θm,l+rm−an,m)I{m > 0, an,m 6= 0, an,m ≤ l + rm − 1 < an,m + wm} .

(3.7)

The density function of the motif occurrences writes

π(an,m|α, d, λ) = I{an,m = 0}(1− αm)

+I{an,m 6= 0}αm
∏

k=1:km+1

[
λm,k

dm,k − dm,k−1

]I{dm,k−1≤an,m<dm,k}

.

(3.8)

Dimension and palindromic constraints

The dimension of the model expressed as the number of parameters that serve for the
probabilistic description of the sequence data are not fixed and will be adjusted in the
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course of the estimation algorithm. In particular, the dimension of the model change with:

• the number of breakpoints used to describe the distribution of the occurrences of the
motifs (km)m=1:M,

• the widths of the m motifs (wm)m=1:M,

• the Markov order v of the background,

• the palindromic constraints that are applied to the PWMs.

We mentioned in Chapter 1 that many of the known binding motifs of TFs are palin-
dromic in the sense that pairs of columns at opposed positions with respect to the center
of the motif appeared as mirrored according to Watson-Crick base pairing rule (A : T and
C : G). We considered that modeling these palindromic constraints on PWMs could be
useful since they reduce the dimension of the model and therefore simultaneously increase
the amount of data available to estimate each parameter and decrease the size of the search
space for the parameter values.

Instead of imposing a strict palindromic constraint on all or a subset of the motifs
we developed a more flexible modeling approach that allows, for each motif m, smooth
transitions between palindromic and non palindromic structures. This approach relied on
the introduction of the following variables to define the active constraints on θm:

• pm, a binary variable taking value 1 if the motif m is allowed to have a (partially)
palindromic structure, 0 otherwise;

• cm ∈ {1.5, 2, 2.5, . . . , wm − 0.5}, a discrete variable used when pm = 1, to record
the position of the center of the palindromic structure; the range for cm allows two
types of palindromic structure (“even” and “odd” types, where the odd type contains
a central unpaired column at w = cm);

• qm,w, a binary variable used when w ≥ 2cm − wm and w < cm to indicate whether
columns w and 2cm − w are paired, i.e. θm,w,r = θm,2cm−w,r̄ when (r, r̄) is a Watson-
Crick pair.

The motivations for these modeling choices that allow intermediate levels of constraints
between the non palindromic and the fully palindromic structures stem from several con-
siderations. First, our overarching goal was to set up an algorithm that could identify
as many motifs as possible simultaneously which is incompatible with the idea of having
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all or none of the motifs palindromic. Second, allowing separate sub-populations of motif
components to coexist in our model (fully palindromic and non palindromic) would have
certainly caused convergence issues due to the size of the dimension jump needed to move
one motif from one population to another (dividing or multiplying by two the number of
free parameters in θm). In contrast, our model that allows smooth transitions between
non-palindromic and palindromic motif representation makes it possible to design algo-
rithms that gradually increase or decrease the number of free parameters in θm. Finally, it
should also be noticed that while some level of palindromic structure are often obvious it is
unclear to which extent the biological motifs are fully palindromic or partially palindromic.

3.1.2 Statistical concepts of parameter and dimension estimation

For the task of estimating the parameters of our probabilistic model and adjusting its
dimension, we adopted the methodological framework of Bayesian inference coupled with
Markov chain Monte Carlo (MCMC) algorithms for its remarkable ability to accommodate
complex models such as the one that we just presented for sequence data. The purpose
of this subsection is to briefly introduce the statistical concepts that we used. The reader
interested in a more detailed and more formal presentation can for instance read Robert
(2007). In this subsection we use θ and y as generic notation for the parameters and the
data, respectively.

Bayesian inference

The Bayesian inference is based on the "posterior distribution". In order to obtain this
distribution, the Bayesian framework starts by placing a probability distribution on the
parameters, called the “prior distribution”, that allows to account for the initial knowledge
on the parameters (if available), the prior is often written as

π(θ). (3.9)

When new data (y) become available, the information they contain regarding the model
parameters is expressed in the “likelihood”, which is the probability of the observed data
given the model parameters, written as

π(y|θ). (3.10)

This information is then combined with the prior to produce the “posterior distribution”.
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Bayes’ Theorem, an elementary identity in probability theory, states that the posterior is
proportional to the prior times the likelihood. More precisely,

π(θ|y) =
π(θ)π(y|θ)

π(y)

∝ π(θ)π(y|θ), (3.11)

where the symbol ∝ means “proportional to” in the sense that the equality holds up to a
constant (here π(y)) which does not depend on θ.

In theory, the posterior distribution is always available, but in realistically complex
models, the required analytic computations to obtain the normalizing constant, π(y), are
often intractable. Over several years, in the late 1980s and early 1990s, concomitantly with
the development of the computational resources, it was realized that methods for drawing
samples from the posterior distribution could be very widely applicable, since they do not
necessarily require to compute the normalizing constant.

MCMC algorithms in Bayesian inference

Markov chain Monte Carlo (MCMC) methods refer to a body of algorithms that to con-
struct Markov chains with an equilibrium distribution that correspond to the distribution
of interest, in the context of Bayesian inference π(θ|y). Such a Markovian (hence non-
independent) sample (θ(1), θ(2), . . . , θ(k), . . .) allows to study the characteristics of the tar-
get probability distribution and in particular to estimate integrals of interest (in particular
expected values and variances) since by the law of large numbers

1

K

K∑
k=1

f(θ(k)) →
K→+∞

Eπ(·|y)(f(θ)) . (3.12)

In our framework, the dimension of the posterior distribution is high, and thus each sam-
pling step updates one or a subset of the variables (block MCMC algorithm, see page 58)
while others stay unchanged, using one of the following MCMC steps:

• Gibbs steps consist of sampling directly from the target conditional distribution (e.g.
π(θ1|θ2, y) if the parameter can be divided in two blocks θ = (θ1, θ2). Gibbs sampling
is applicable when the joint distribution is difficult to sample from directly, but the
conditional distribution of each variable is known and easy or easier to sample from.
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• Metropolis–Hastings (MH) steps use a proposal density and reject some of the pro-
posed moves. A MH step decomposes into

1. Generate a candidate θ̃ for the next sample by drawing from an instrumen-
tal distribution of density q(θ; θ(k)), called the proposal. In multidimensional
settings, the proposal can modify only a subset (block) of variables.

2. Calculate the acceptance ratio

α(θ̃, θ(k)) = min

{
1;

π(θ̃|y)q(θ(k); θ̃)

π(θ(k)|y)q(θ̃; θ(k))

}
.

= min

1;
π(y|θ̃)
π(y|θ(k))︸ ︷︷ ︸

ratio of likelihoods

× π(θ̃)

π(θ(k))︸ ︷︷ ︸
ratio of priors

× q(θ(k); θ̃)

q(θ̃; θ(k))︸ ︷︷ ︸
ratio of proposals

 .

(3.13)

which will be used to decide whether to accept or reject the proposed candidate.
Of note, a Gibbs step can be seen as a MH step in which the proposal matches
the target distribution (acceptation ratio 1).

3. Accept with probability α(θ̃, θ(k)), i.e. set θ(k+1) = θ̃ if accepted, θ(k+1) = θ(k) if
rejected.

• Reversible-jump MH is a variant of the Metropolis–Hastings algorithm that allows
sampling from the distribution on spaces of varying dimensions (Green, 1995). Thus,
the estimation is possible even if the number of parameters in the model is not known,
which is the case in our model for cases like motif widths.

3.1.3 Prior settings and Directed Acyclic Graph of the hierarchical

Bayesian model for sequence data

Prior for the sequence model

As explained in the previous subsection, the starting point of Bayesian inference is the
definition of priors for the parameters of the model which will then be considered as random
variables. Furthermore, the Bayesian framework allows to treat the variables that tune the
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dimension of the model as other parameters. To avoid enriching the notations we will use
the same notation for the random variable and its value (i.e. not use upper case for the
random variable).

The priors that we used intend to be non-informative since we have little a priori
knowledge about the characteristics of the motifs. Their choice also takes into account
considerations on the tractability of the MCMC updates and thus, as usual in Bayesian
inference, most of these priors are mutually independent conjugate priors.

The priors for the parameters that affect the dimension of the model are defined as

km ∼ Geom(probability of success = pk) , (3.14)

wm ∼ Uniform({wmin, ..., wmax}) , (3.15)

v ∼ Uniform({0, ..., vmax}) , (3.16)

pm ∼ Bernoulli(pp) , (3.17)

and, when pm = 1,

π(cm|wm) ∝ a|cm−(wm+1)/2|
c for cm ∈ {1.5, 2, 2.5, . . . , wm − 0.5} , (3.18)

qm,w|cm ∼ Bernoulli(pq) for w ∈ {max(1, 2cm − wm), . . . , bcm − 0.5c} . (3.19)

The emission parameters that describe the nucleotide composition in the background
and in the motifs are modeled as drawn from the following independent Dirichlet distribu-
tions

θ0,s ∼ Dirichlet4(dθ0 , dθ0 , dθ0 , dθ0) for s ∈ {A, C, G, T}r, r = 0 : v , (3.20)

θm,w ∼ Dirichlet4(dθ, dθ, dθ, dθ) . (3.21)

The priors for the parameters that describe the distribution of the motif occurrences
are defined as

αm ∼ Beta(aα, bα) , (3.22)

λm | km ∼ Dirichletkm+1(dλ, . . . , dλ) , (3.23)

dm | km ∼ Uniform(km-combinations of {2, . . . ,L}) , (3.24)

rm | wm ∼ Uniform({1, . . . , wm}) . (3.25)

54



Of note, αm does not exist in the final implementation of our motif discovery algorithm
since it is replaced by a function of the covariates that summarize the expression data.
A typical choice that we used in our applications for the values for the parameters of the
priors are wmin = 3, wmax = 25, vmax = 6, pk = 0.25, dλ = 1, pp = 0.5, ac = 0.5, pq = 0.5,
dθ = 0.25, dθ0 = 1, aα = 1, bα = 100. The purpose of parameter ac ≤ 1 is to express
a preference for a center of the palindromic structure near the center of the PWM. The
choices of pk (favoring a small km), dθ (favoring PWM columns with high information
content), aα and bα (favoring motifs with small number of occurrences) are discussed in
Section 4.3.

Directed Acyclic Graph of the hierarchical Bayesian model for sequence data

The Directed Acyclic Graph (DAG) represents the factorization of the joint probability
distribution of the variables (parameters, hidden variables, observed data). The DAG
shown in Figure 3.1 corresponds to our probabilistic model of sequence data and the priors
that we have just defined. Namely, the joint probability distribution writes

π(x, a, b, α, d, λ, k, r, θ1:M, q, c, p, w, θ0, v)

= π(x|a, b, r, θ1:M, θ0)π(a|α, d, λ)π(b|a, r, w, θ1:M)

×π(r|w)π(d|k)π(λ|k)π(k)

×π(θ0|v)π(v)π(θ1:M|q, c, p, w)π(q|c, w)π(c|p, w)π(w)

=
∏
n,l

π(xn,l|xn,1:l−1, a, b, r, θ1:M, θ0)
∏
m,n

π(am,n|αm, dm, λm)
∏
n,l

π(bn,l|a, r, w, θ1:M)

×
∏
m

π(rm|wm)
∏
m

π(dm|km)π(λm|km)π(km)

×π(θ0|v)π(v)
∏
m

π(θm|qm, cm, pm, wm)π(qm|cm, wm)π(cm|pm, wm)π(wm) , (3.26)

where the term in red is specific to the θ-dependent weight mixture model for overlaps.
The DAG representation helps (via the construction of the corresponding undirected

Moral graph in which edges have been added between all pairs of nodes with a common
child) to visualize the Markov blanket for each variable and by turn the conditional in-
dependence relationships useful for the design of the MCMC steps targeting the different
blocks of variables.
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Figure 3.1: DAG of our model. Vertices represent the variables (parameters, hidden variables,
observed data) and edges show the factorization of the joint probability distribution (see Equa-
tion (3.26)). Colored areas highlight groups of variables that contribute to a same aspect of the
model. The upper-left part of the DAG dedicated to the incorporation of expression data in the
sequence model which is presented in Section 3.2. In this representation we show the variables
for only one motif m and one sequence n. The gray edge that links the disambiguation hidden
variable B to θ is specific to the model of overlap that takes into account information content
of the columns of the PWM (θ-dependent mixture). Of note, our implementation of the MCMC
algorithms makes this option incompatible with the modeling of palindromic structures via the
variables (pm, cm, qm).
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3.1.4 Strategy and overview of the MCMC algorithm for the se-

quence model

A block MCMC sampler

A Markov Chain Monte Carlo (MCMC) algorithm was built with the joint posterior
(a, b, v, θ, θ0, w, k, d, λ, α|x) as target distribution. Since the dimension of the target is
high, this MCMC algorithm is composed of many different steps whose purposes are to
update separate subsets of variables. This type of algorithm is known as a block MCMC
sampler (Andrieu et al., 2003) consists of a cycle through the different steps such as to
allow the update of all the variables. Each step is designed to preserve the target dis-
tribution by sampling from the conditional distribution of a block of variables given all
the other variables. Usually, the conditional independence properties make that condi-
tional distributions involve only a subset of the other variables. In some cases, variables
also disappear from the sampled conditional distribution because they are marginalized
out. A subsequent step is then needed to “restore” the status of these variables that were
marginalized out by sampling from their conditional distribution.

The steps of the block MCMC sampler that we implemented can be conveniently divided
into three types (see also page 53):

• Metropolis-Hastings steps (abbreviated MH steps) that rely on a proposal coupled to
an accept/reject procedure to preserve a target distribution (i.e. generating a Markov
chain with the target as stationary distribution if repeated);

• Gibbs steps that consists of sampling directly from the target (conditional distribu-
tion of the variable or block of variables);

• Reversible-Jump MH steps that are generalization of the Metropolis-Hastings steps
when the attempted moves change the dimension.

As already mentioned (page 53), Gibbs step can be seen as a special case of Metropolis-
Hastings step where the proposal coincides with the target conditional distribution. Sim-
ilarly, under circumstances where the probability distribution of the variables whose di-
mension is modified can be integrated-out, the Reversible-Jump MH steps can be done in
a Gibbs manner, i.e. direct sampling from the conditional distribution of the variable that
defines the dimension. We refer to this particular case as dimension-changing Gibbs step.
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Overview of the 13 steps of the MCMC algorithm

In total, 13 steps have been designed taking into account the structure of dependence
summarized in the DAG (Figure 3.1) and computational considerations. Using the notation
θ for (θ0, (θm)m=1:M) and in their order of appearance in the implemented sweeps, these
steps that compose our algorithm are:

• Update the palindromic structure of motif m, described by (pm, cm, qm) according to
pm, cm, qm | am, b, rm, wm, x (Dimension-changing Gibbs step, θm is marginalized out).
Details are provided page 75.

• Update the PWM θm, either according to
θm | a, b, r, w, pm, cm, qm, x (Gibbs step) if the equal weight mixture model for overlaps
is used; or preserving
θm | θ−m, a, b, r, w, pm, cm, qm, x (MH step) if the θ-dependent weight mixture model
for overlaps is used. Here, we use the notation θ−m to refer to all the components of
θ = (θ0, θ1, . . . , θM) but θm (the same notation will also be used for other variables).
Note that this update restores the status of θm which was marginalized out when
updating the palindromic structure. Details are provided page 63.

• Update the expected proportion of sequences containing motif m, αm, according to
αm | am (Gibbs step). Details are provided page 70.

• Update the position of the occurrences of the motifs, a, according to
am | a−m, θ, r, α, x (Gibbs step, b is marginalized out). Details are provided page 61.

• Update motif width wm, preserving
wm, θm, rm, cm, qm | a, r−m, θ−m, pm, x (Reversible-Jump MH step, b is marginalized
out). Details are provided page 65.

• Update the PWM θm by shifting motif m , preserving
θm, rm, cm, qm | a, r−m, θ−m, pm, x (Reversible-Jump MH step, with joint update of θm
and rm, b is marginalized out). This update which consists of removing one column
of the PWM on a side and adding a column on the other side, is simply the coupling
of two updates of motif width (decrease on left side coupled with increase on right
side, decrease on right side coupled with increase on left side) whose details are
provided page 65. It was introduced to allow the motif occurrences to “slide” along
the sequences even when wm = wmax.

58



• Update the disambiguation variables for motif overlaps, b, according to
b | a, r, θ, x (Gibbs step). Note that this update restores the status of b which was
marginalized out when updating a and w. Details are provided page 62.

• Update the Markov order of the background, v, preserving
v | a, r, w, x (Reversible-Jump step, θ0 is marginalized out). Details are provided
page 69.

• Update the nucleotide composition of the background, θ0, according to
θ0 | v, a, r, w, x (Gibbs step). Note that this update restores the status of θ0 which
was marginalized out when updating v. Details are provided page 68.

• Update the position of the breakpoints defining the piece-wise constant probability
density function modeling the positions of occurrences of motif m, dm, preserving
dm | km, am (MH step, λ is marginalized out). Details are provided page 72.

• Update the number of breakpoints in the piece-wise constant probability density
function, km, preserving
km, dm | am (Reversible-Jump MH step, note the joint update of d, while λ is
marginalized out). Details are provided page 74.

• Update the expected fraction of motif occurrences found in each region of the piece-
wise constant pdf, λ, according to
λm | km, dm, am (Gibbs step). Note that this step restores the status of λ which was
marginalized out when updating d and k. Details are provided page 71.

• Update the reference positions motif m, rm, preserving
rm, am | wm, dm, λm (MH step, note the joint update of a). Details are provided
page 71.

Of note, this ordering of the steps makes that the variables that were marginalized out
are restored before their reuse. Other orders would work provided that marginalized-out
variables are appropriately restored (which may induce extra-computation).

Detecting errors in the MCMC algorithm

Design and implementation of an MCMC algorithms with so many steps is an error prone
process.
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In order to detect errors in the equations or implementation of our MCMC algorithm
we also implemented a step consisting in simulating sequence x given all the other variables
(i.e. x | a, b, θ). When activated the MCMC algorithm targets the full joint distribution

x, a, b, α, d, λ, k, r, θ1:M, q, c, p, w, θ0, v

instead of the conditional

a, b, α, d, λ, k, r, θ1:M, q, c, p, w, θ0, v | x .

The marginal distribution of the parameters under this full joint distribution corresponds
to the injected priors. Many errors in the implementation or in the equations skew these
marginals and can thus be detected by comparing the marginals to the priors. For this
purpose we typically work in a space of small dimension (e.g. taking N = 10 andM = 2)
which considerably speeds up the convergence and thereby allows very precise comparisons
of the marginals to the priors after a relatively short run (typical length between 1 and 30
minutes).

3.1.5 Details of the steps of MCMC algorithm for the sequence

model

Instead of providing the details of the steps in their order of appearance in one sweep of
the MCMC algorithm, we adopt here an order that intends to make the presentation easier
to understand. We start by describing the update of the hidden variables a and b and then
continue by describing, for each group of variables related to a same aspect of the model,
the simple updates before the dimension-changing updates.

Update of a, the position of the occurrences of the motifs

This update is conducted as a Gibbs step, separately for each motif and each sequence, in
which b is marginalized out. The conditional density of am,n|a−m,n, θ, r, α, x, the position
of motif m in sequence n, is computed, up to a normalizing constant, at each point of the
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support {0, 1, . . . ,L} using the formula

π(am,n|a−m,n, θ, α, r, x) =
π(am,n, a−m,n, θ, r, x)

π(a−m,n, θ, α, r, x)

∝ π(xn|am,n, a−m,n, θ, r)π(am,n|α)

∝

[
am,n−rm+wm∏
l=am,n−rm+1

π(xn,l|am,n, a−m,n, θ, r)
π(xn,l|Am,n = 0, a−m,n, θ, r)

]I{am,n 6=0}

π(am,n|α) ,

(3.27)

where the term π(am,n|α) is given by Equation (3.8) and the term of the form π(xn,l|am,n =

k, a−m,n, θ, r) are obtained by summing over all possible values of bn,l

π(xn,l|a, θ, r) =
∑

m=1:M

π(xn,l|Bn,l = m, a, θ, r)π(Bn,l = m|a, θ, r) ,

=
∑

m=1:M

θm,l−(am,n−rm)+1,xn,lπ(Bn,l = m|a, θ, r) ,

(3.28)

where π(bn,l|a, θ, r) is given by Equation (3.6) or (3.7) (depending of the type of mixture
model chosen for overlaps). The new value of am,n is then drawn directly according to the
conditional density computed at the L+ 1 points of the support.

Update of b, the disambiguation variables for motif overlaps

This update is done successively for all positions (n, l) by direct sampling from the condi-
tional density of bn,l|a, r, θ, x (Gibbs step) obtained as

π(bn,l|a, r, θ, x) ∝ π(xn,l|bn,l, a, r, θ)π(bn,l|a, r, θ) ,

where the two types of terms are given by Equations (3.3) and by Equations (3.6) or (3.7),
depending of the type of mixture model chosen for motif overlaps. The new value of bn,l is
then drawn directly according to the conditional density computed at theM+ 1 points of
the support. Of note, this conditional distribution is trivial if zero or only one motif covers
the position (n, l), with probability of 1 for bn,l = 0 if zero motif, and probability of 1 for
bn,l = m if only motif m.
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Update of θm, the PWM of motif m

As already stated, this update can consists of a Gibbs or a MH step depending on the type
of mixture model chosen for motif overlaps (equal weight vs. θ-dependent weight). In all
cases, the parameters of the different m and of the different columns w within each motif
are updated successively (excepted for columns paired in a palindromic structure that re-
quires simultaneous update) and the conditional distribution θm|θ−m, a, b, r, w, pm, cm, qm, x
is preserved.

Let’s first describe the simple Gibbs step for the equal weight mixture. In this case,
we need to distinguish the case of a column (m,w) that is not paired in a palindromic
structure and the case of a paired column. The first case arises when the motif is not
palindromic (pm = 0), or the column cannot be paired due to its position relative to the
center of the palindrome (w < 2cm − wm, w = cm or w ≥ 2cm), or the column could
have been paired but is not paired (qm,min(w,2cm−w) = 0). In this first case, the conditional
distribution writes

θm,w|a, b, r, w, pm, cm, qm,min(w,2cm−w) = 0, x

∼ Dirichlet4(. . . , dθ + cm,w,r, . . .) , (3.29)

where cm,w,r is the count of the nucleotide r emitted from column (m,w) defined as

cm,w,r ,
∑
n,l

I{xn,l = r, bn,l = m, am,n − rm + w = l}

=
∑
n

I{xn,am,n−rm+w = r, bn,l = m} . (3.30)

If the column is paired (pm = 1 and qm,min(w,2cm−w) = 1), then θm,w,r = θm,2cm−w,r̄. This
implies the simultaneous update of the two PWM columns (w and 2cm − w) by a single
drawing from the conditional distribution obtained by aggregating the counts from the two
paired columns

θm,w | a, b, r, w, pm, cm, qm,w = 1, x

∼ Dirichlet4(. . . , dθ + cm,w,r + cm,2cm−w,r̄, . . .) . (3.31)

Equation (3.29) is a direct and well known (see Section 2.3.2) consequence of the choice
of a conjugate prior for θm,w. From Equations (3.3) and (3.21) and using Bayes’ rule, this
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conditional distribution is obtained as follows

π(θm,w|x, . . .) ∝ π(θm,w, x, . . .)

∝ π(x|θm,w, . . .)π(θm,w| . . .)

∝
∏
n,l

∏
r

θ
I{xn,l=r,bn,l=m,am,n−r+w=l}
m,w,r ×

∏
r

θdθ−1
m,w,r

∝
∏
r

θ
dθ+

∑
n,l I{xn,l=r,bn,l=m,am,n−r+w=l}−1

m,w,r , (3.32)

where “. . .” is a convenient notation to refer to all the other variables (i.e. here besides x
and θm,w). Using the notation cm,w,r defined in Equation (3.30), the normalized version of
this conditional density writes

π(θm,w|x, . . .) =
Γ(
∑

r dθ + cw,m,r)∏
r Γ(dθ + cw,m,r)

∏
r

θdθ+cw,m,r−1
m,w,r , (3.33)

and corresponds to the Dirichlet distribution of Equation (3.29). The same line of reasoning
leads to Equation (3.31) for paired columns in palindromic motifs.

The update of θm when the overlap model is a θ-dependent mixture is more complicated
due to the gray arrow linking from θm to b in the DAG (Figure 3.1). The analogous of
Equation (3.32) which gives the conditional density of θm,w is then

π(θm,w|x, b, . . .) ∝ π(θm,w, x, b, . . .)

∝ π(x|θm,w, b, . . .)π(b|θm,w, . . .)π(θm,w| . . .)

∝ π(b|θm,w, . . .)
∏
r

θ
dθ+

∑
n,l I{xn,l=r,bn,l=m,am,n−r+w=l}−1

m,w,r , (3.34)

where “. . .” refer to all the variables besides x, b and θm,w. This conditional density can
no longer be identified to the density of a Dirichlet distribution which precludes direct
sampling (Gibbs step).

The workaround that we implemented is to build a MH step using the Dirichlet of
Equation (3.29) as a proposal. In simple words, we propose a new value according to the
conditional distribution under the simple model and use an accept-reject method to match
it to the conditional under the more complex model. Denoting qb,a,x the density of this
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proposal, the probability of acceptation of the proposed value θ̃m,n writes

α(θm,n, θ̃m,n) = min

{
1;

π(θ̃m,w|b, . . .)qb,a,x(θm,w)

π(θm,w|b, . . .)qb,a,x(θ̃m,w,r)

}
. (3.35)

Using Equation (3.34), this probability of acceptation simplifies to

α(θm,n, θ̃m,n) = min

{
1;
π(b|θ̃m,w, . . .)
π(b|θm,w, . . .)

}
= min

{
1;
∏
n,l

(
π(bn,l|θ̃m,w, . . .)
π(bn,l|θm,w, . . .)

)I{am,n 6=0,l=am,n−rm+w}}
, (3.36)

which involves to compute a product whose number of terms equals to the number of
occurrences of motif m where column w is overlapped by an occurrence of another motif
(the terms corresponding to the other occurrences are equal to 1). Each of these individual
terms is easy to obtain from Equation (3.7).

Update of wm, the width of motif m

This update relies on a Reversible-Jump MH step in which a new values w̃m, θ̃m, r̃m, c̃m, q̃m
are proposed for wm, θm, rm, cm, qm. Importantly, the update does not change the position
of the motifs (a is given) and each motif are treated successively. The variable b is marginal-
ized out. The update preserves the conditional distribution wm, θm, rm, cm, qm|a, r−m, θ−m, pm, x.

The proposed move consists of adding or removing only one column, i.e. w̃m = wm + 1

or w̃m = wm − 1. Four “directions” of modification of the PWM are possible depending
on the sign (increase or decrease the width of the PWM) and on the side (modification
on the right side or on the left side of the PWM). In order to preserve the position of the
occurrences and since a is kept unchanged, if the modification is done on the left side the
reference position needs to be shifted of one bp, i.e. r̃m = rm + w̃m − wm. Of note, this
implies that a decrease on the left side is automatically rejected if rm = 1 and a decrease
on the right side is automatically rejected if rm = wm. If the modification is done on the
left side, rm is unchanged.

The update of the width preserves palindromic structures (pm is given). To preserve the
pairing of the columns, this implies, if the change is done on the left side of a palindromic
motif, to shift the center of the palindrome cm and the pairing variables qm,w, i.e. c̃m =

cm + w̃m − wm and q̃m,w+w̃m−wm = qm,w for 2cm − wm ≤ w < cm provided that w + w̃m −
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wm ≥ 0. This design of proposal means that we cannot accept a modification of the
width that would shift the center of the palindrome outside of its allowed range, which
happens when cm ∈ {1.5, 2} and a decrease of the width is attempted on the left side or
cm ∈ {wm−1, wm−0.5} and a decrease of the width is attempted on the right side. To cope
with the palindromic structure, we also need to define a proposal for the pairing status of
the added column when an increase of the motif width is proposed and the palindromic
structure defined by (pm, wm, cm) allows the pairing of this new column, which happens
with left increase when 2cm < wm + 1 and right increase 2cm > wm + 1 (this pairing
concerns q̃m,1 if left increase and q̃2c̃m−w̃m if right increase). For simplicity, we decided that
the new column will be unpaired (i.e. q̃m,1 = 0 or q̃2c̃m−w̃m = 0). A direct consequence of
this choice is to forbid decrease moves that remove paired columns (this constraint can be
seen in the ratio of proposal in the acceptation probability, Equation (3.40)).

Our proposal gives the same probability 1/4 to each of the four directions of modification
(left vs. right, increase vs. decrease) and it keeps unchanged the values of θm,w for those
columns that are not directly concerned by the change. Namely, for a change on the right
side, we have thus θ̃m = (θm, θ̃m,wm+1) if w̃m = wm + 1 and θ̃m = (θm,−wm) if w̃m = wm− 1.
Similarly, for a change on the left side, θ̃m = (θ̃m,1, θm) if w̃m = wm + 1 and θ̃m = (θm,−1)

if w̃m = wm − 1. The proposal for a move that increases the width involves thus the
drawing of a single four dimensional vector θ̃m,w corresponding to the added PWM column.
To maximize the chance of accepting the proposed modification, our proposal takes into
account the nucleotide composition of the positions in the sequence that will be overlapped
by this new PWM column if the move is accepted as follow

θ̃m,wm+1 ∼ Dirichlet4(. . . ,max{dθ + c̃m,wm+1,r − õm,wm+1,r, 1}, . . .) if increase right

θ̃m,1 ∼ Dirichlet4(. . . ,max{dθ + c̃m,−1,r − õm,−1,r, 1}, . . .) if increase left,

(3.37)

where c̃m,w,r corresponds to the count of nucleotide r at the sequence positions covered by
the new column w (differing from cm,w,r of Equation (3.30) by the fact that b is not taken
into account), and õm,w,r corresponds to the expected contribution of the other motifs that
overlap the occurrences of motif m to the count of nucleotide r (according to the equal
weight mixture model for motif overlap). Equation (3.37) sets the lower boundary of the
parameters of the Dirichlet to 1. This avoids (very rare) cases were dθ + c̃m,w,r − õm,w,r is
negative and is therefore incompatible with the range of values allowed for the parameters
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of a Dirichlet. The count c̃m,w,r is obtained as

c̃m,w,r =
∑
n

I{am,n 6= 0, xn,am,n−rm+w = r} . (3.38)

and the expected count õm,w,r as

õm,w,r =
∑

n,m′ 6=m

{
I{am,n 6= 0, xn,am,n−rm+w = r}θm′,am,n−rm+w−am′,n−rm′ ,r

× I{am′,n 6= 0, 1 ≤ am,n − rm + w − am′,n − rm′ ≤ wm′}∑
m′′ I{am′′,n 6= 0, 1 ≤ am,n − rm + w − am′′,n − rm′′ ≤ wm′′}

}
.

(3.39)

Denoting by q the proposal described in the preceding paragraphs, the acceptation ratio
of the Reversible-Jump MH move writes

α((wm, θm, rm, cm, qm), (w̃m, θ̃m, r̃m, c̃m, q̃m))

= min

{
1;
π(w̃m, θ̃m, r̃m, c̃m, q̃m|a, r−m, θ−m, x)q(wm, θm, rm, cm, qm)

π(wm, θm, rm, cm, qm|a, r−m, θ−m, x)q(w̃m, θ̃m, r̃m, c̃m, q̃m)

}
= min

{
1;
π(x|w̃m, θ̃m, r̃m, a, r−m, θ−m)

π(x|wm, θm, rm, a, r−m, θ−m)
× π(w̃m, θ̃m, r̃m, c̃m, q̃m)

π(wm, θm, rm, cm, qm)

×q(wm, θm, rm, cm, qm)

q(w̃m, θ̃m, r̃m, c̃m, q̃m)

}
. (3.40)

Of note, many terms simplify in this ratio. To illustrate its computation, we can take the
example of an attempt to increase the width of the motif on the right side (i.e. w̃m = wm+1,
r̃m = rm, and θ̃m = (θm, θ̃m,wm+1)). In this case, the probability of acceptation

α((wm, θm, rm, cm, qm), (w̃m, θ̃m, r̃m, c̃m, q̃m)) = min{1, A} , (3.41)

is build on acceptation ratio

A =
∏

n:am,n 6=0

π(xn,am,n−rm+wm+1|w̃m, θ̃m, r̃m, a, r−m, θ−m)

π(xn,am,n−rm+wm+1|wm, θm, rm, a, r−m, θ−m)
× π(c̃m, q̃m|pm)

π(cm, qm|pm)

× wm
wm + 1

× Dir4(θ̃m,wm+1; . . . , dθ, . . .)

Dir4(θ̃m,wm+1; . . . ,max{dθ + c̃m,−1,r − õm,−1,r, 1}, . . .)
,

(3.42)
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where the term wm/(wm + 1) corresponds to π(r̃m|w̃m)/π(rm|wm). In this formula, the
terms of the form π(xn,l|wm, θm, rm, a, r−m, θ−m) are obtained by summing over all possible
values of bn,l (see Equation (3.28)). The reverse modification from (w̃, θ̃) to (w, θ) that
decreases the width on the right side has probability of acceptation min{1, 1/A}.

Update of θ0, the nucleotide composition of the background

The choice of a product of independent 4-dimensional Dirichlet priors for the parameter
θ0 of the Markov model of order v describing the background composition of the sequences
(outside motifs) makes that the posterior is also a product of independent 4-dimensional
Dirichlet distributions (property of conjugate prior). This allows direct sampling from the
conditional distribution θ0 | v, a, r, w, x (Gibbs step).

When we include the initial distribution (i.e. transitions for orders 0 ≤ k < v that
serve to model the first positions of the sequences), the number of Dirichlet distributions
is 40 + 41 + . . .+ 4v = (4v+1 − 1)/3, since θ0 = (((θ0,s,r)r∈{A,C,G,T})s∈{A,C,G,T}k)k=0:v.

Using the notation on,l for the number of motif occurrences that overlap position (n, l)

defined in Equation (3.5), the conditional density of θ0 decomposes as the following product
of conditional densities for each θ0,s,

π(θ0|v, a, r, w, x) ∝ π(x|θ0, a, r, w)π(θ0|v)

∝ π(θ0|v)
∏
n,l

π(xn,l|xn,max(1,l−v):l−1, θ0, a, r, w)I{on,l=0}

∝
∏

s∈({A,C,G,T}k)k=0:v

π(θ0,s)
∏

r∈{A,C,G,T}

θ
∑
n,l I{on,l=0xn,max(1,l−v):l−1=s,xn,l=r}

0,s,r︸ ︷︷ ︸
∝π(θ0,s|v,a,r,w,x)

.

(3.43)

The conditional density π(θ0,s|v, a, r, w, x) can be rewritten, up to a normalizing constant,
as

π(θ0,s|v, a, r, w, x) ∝
∏

r∈{A,C,G,T}

θ
dθ0+

∑
n,l I{on,l=0xn,max(1,l−v−1):l−1=s,xn,l=r}−1

0,s,r , (3.44)

which can be identified to the density of the Dirichlet distribution that we use to update
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θ0,s,

θ0,s|v, a, r, w, x

∼ Dirichlet4(. . . , dθ0 +
∑
n,l

I{on,l = 0xn,max(1,l−v):l−1 = s, xn,l = r}, . . .) .

(3.45)

Update of v, the Markov order of the background

This dimension changing update is carried out as Reversible-Jump MH step preserving
v | a, r, w, x in which θ0 is marginalized out.

Given the current Markov order v, a new value ṽ ∈ {v−1, v+1} is proposed, according
to proposal qv (in practice we use qv(v + 1) = 0.5 and qv(v − 1) = 0.5). This new value is
accepted with probability

α(v, ṽ) = min

{
1;
π(ṽ|a, r, w, x)qṽ(v)

π(v|a, r, w, x)qv(ṽ)

}
= min

{
1;
π(x|ṽ, a, r, w)

π(x|v, a, r, w)
× π(ṽ)

π(v)
× qṽ(v)

qv(ṽ)

}
= min

{
1;

∏
n,l π(xn,l|xn,max(1,l−ṽ):l−1, ṽ, a, r, w)I{on,l=1}∏
n,l π(xn,l|xn,max(1,l−v):l−1, v, a, r, w)I{on,l=1} ×

π(ṽ)

π(v)
× qṽ(v)

qv(ṽ)

}
,

(3.46)

where on,l corresponds to the number of motifs overlapping position (n, l) as defined in
Equation (3.5). The products of conditional densities in which θ0 is marginalized out that
appear in the probability of acceptation can be obtained in close form. Using the notation
c

(v)
0,s,r =

∑
n,l I{on,l = 0, xn,max(1,l−v−1):l−1 = s, xn,l = r} for the count of word (s, r) with
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last character r in the background, these products are computed as∏
n,l

π(xn,l|xn,max(1,l−v):l−1, v, a, r, w)I{on,l=1}

=

∫
θ0

π(θ0)
∏
n,l

π(xn,l|xn,max(1,l−v):l−1, θ0, v, a, r, w)I{on,l=1}dθ0

=
∏

s∈({A,C,G,T}k)k=0:v

∫
θ0,s

π(θ0,s)
∏

r∈{A,C,G,T}

θ
c
(v)
0,s,r

0,s,r dθ0,s

=
∏

s∈({A,C,G,T}k)k=0:v

Γ(
∑

r∈{A,C,G,T} dθ0)∏
r∈{A,C,G,T} Γ(dθ0)

∫
θ0,s

∏
r∈{A,C,G,T}

θ
dθ0+c

(v)
0,s,r−1

0,s,r dθ0,s

=

(
Γ(
∑

r∈{A,C,G,T} dθ0)∏
r∈{A,C,G,T} Γ(dθ0)

)(4v+1−1)/3 ∏
s∈({A,C,G,T}k)k=0:v

Γ(
∑

r∈{A,C,G,T} dθ0 + c
(v)
0,s,r)∏

r∈{A,C,G,T} Γ(dθ0 + c
(v)
0,s,r)

.

(3.47)

Update of αm, the expected proportion of sequences containing motif m

As explained in Section 3.1.3, the parameter α does not exist in the final model which
takes into account expression data but its update is presented here for completeness. The
expected fraction of the sequences containing the motif αm are updated successively for
each motif m by direct drawing from the conditional distribution αm | am. Such a Gibbs
step is allowed by the choice of Beta distribution as prior for αm (property of conjugate
prior). Namely,

π(αm|am, . . .) ∝ π(am|αm, . . .)π(αm)

∝ π(αm)
∏
n

π(am,n|αm, . . .)

∝ αaα−1
m (1− αm)bα−1

∏
n

αI{am,n 6=0}
m (1− αm)I{am,n=0}

∝ αaα+
∑
n I{am,n 6=0}−1

m (1− αm)bα+
∑
n I{am,n=0}−1 , (3.48)

where . . . denotes here all the variables but αm and am. The left term corresponds to the
density function of the Beta distribution that we used for the update of αm,n,

αm,n|am,n ∼ Beta(aα +
∑
n

I{am,n 6= 0}, bα +
∑
n

I{am,n = 0}) . (3.49)
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Update of rm, the reference positions motif m.

This update consists of a simple MH step preserving rm, am | wm, dm, λm in which new
values r̃m and ãm are proposed for rm and am. In practice, an attempt is made to increase
or decrease rm by 1 (with equal probabilities) and, simultaneously, to shift the positions of
the motif encoded in am such as to maintain the positions of the occurrences of the motifs.
Namely,

ãm,n = am,n + (r̃m − rm)I{am,n 6= 0} for n = 1 : N . (3.50)

Importantly, when shifting the am,n, we do not allow motif occurrences to disappear, i.e.
are moved outside of the range {1, . . . ,L}. Therefore, the attempted move is automatically
rejected when r̃m = rm− 1 if there exists (m,n) such as am,n = 1 and r̃m = rm + 1 if there
exists (m,n) such as am,n = L.

The probability of acceptation for this attempted move writes as

α((rm, am), (r̃m, ãm)) = min

{
1;
π(r̃m, ãm|x, . . .)qr̃m,ãm(rm, am)

π(rm, am|x, . . .)qrm,am(r̃m, ãm)

}
= min

{
1;
π(x|r̃m, ãm, . . .)π(r̃m| . . .)π(ãm | . . .)qr̃m,ãm(rm, am)

π(x|rm, am, . . .)π(rm| . . .)π(am | . . .)qrm,am(r̃m, ãm)

}
= min

{
1;
π(r̃m|wm)π(ãm | dm, λm)

π(rm|wm)π(am | dm, λm)

}
, (3.51)

where the ratio π(r̃m|wm)/π(rm|wm) is 1 if 1 ≤ r̃m ≤ wm and 0 otherwise, and the terms
of the form π(am | dm, λm) are given by Equation (3.8).

Update of λm, the expected fraction of motif occurrences found in each region
of the piecewise constant pdf

The expected fraction of motif occurrences found in each region of the piecewise constant
pdf, λm = (λm,1, . . . , λm,km+1) are updated for each motif m by direct drawing from the
conditional density λm | km, dm, am. Such a Gibbs step is allowed by the choice of Dirichlet
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distribution as prior for λm|km (property of conjugate prior). From Equation (3.8),

π(λm|km, dm, am) ∝ π(λm|km)π(am|dm, km)

∝
∏

k=1:km+1

λdλ−1
m,k

∏
n

λ
I{dm,k−1≤an,m<dm,k}
m,k

∝
∏

k=1:km+1

λ
dλ+

∑
n I{dm,k−1≤an,m<dm,k}−1

m,k , (3.52)

which corresponds to the density of the Dirichlet

λm|km, dm, am ∼ Dirichletkm+1(. . . , dλ + cm,k, . . .) , (3.53)

using the notation

cm,k =
∑
n

I{dm,k−1 ≤ an,m < dm,k} . (3.54)

Update of dm, the positions of the breakpoints defining the piecewise constant
pdf modeling the positions of occurrences of motif m

The positions dm = (dm,1, . . . , dm,k) of the km breakpoints defining the piecewise constant
pdf modeling the positions of occurrences of motif m are updated by a MH step preserving
dm | km, am in which λm is marginalized out. The proposed d̃m is obtained by choosing
one of the km breakpoints and assigning it a new position in {2, . . . ,L} among the L− km
positions not occupied by the km − 1 unchanged breakpoints. This proposal corresponds
to an uniform distribution over km(L− km) distinct d̃m that can be obtained by changing
the position of one of the breakpoints of dm,

qdm(d̃m) =
1

km(L − km)
. (3.55)
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The MH acceptation ratio simplifies due to the symmetry of the proposal (qdm(d̃m) =

qd̃m(dm)) and the uniform prior on dm over all the km-combinations in {2, . . . ,L},

α(dm, d̃m) = min

{
1;
π(d̃m|km, am, αm)qd̃m(dm)

π(dm|km, am, αm)qdm(d̃m)

}
= min

{
1;
π(d̃m|km)π(am|d̃m, αm)qd̃m(dm)

π(dm|km)π(am|dm, αm)qdm(d̃m)

}
= min

{
1;
π(am|d̃m, αm)

π(am|dm, αm)

}
(3.56)

where the terms of the form π(am|dm, αm) are obtained by marginalizing out λm, which
is made possible by the Dirichlet prior on this parameter. From Equation (3.8) and using
the notation cm,k defined in Equation (3.54), we obtain

π(am|dm, αm)

=

∫
λm

π(am|λm, dm, αm)π(λm|dm)dλm

=
α
∑
n I{an,m 6=0}

n∏
k=1:km+1(dm,k − dm,k−1)cm,k

×
∏

k=1:km+1 Γ(dλ)

Γ(
∑

k=1:km+1 dλ)
×
∫
λm

∏
k=1:km+1

λ
dλ+cm,k−1

m,k dλm

=
α
∑
n I{an,m 6=0}

n∏
k=1:km+1(dm,k − dm,k−1)cm,k

×
∏

k=1:km+1 Γ(dλ)

Γ(
∑

k=1:km+1 dλ)
×

Γ(
∑

k=1:km+1 dλ + cm,k)∏
k=1:km+1 Γ(dλ + cm,k)

.

(3.57)

Using this closed form for the marginalized density, the acceptation ratio of Equation (3.56)
writes

α(dm, d̃m) = min

{
1;

∏
k=1:km+1(dm,k − dm,k−1)cm,k∏
k=1:km+1(d̃m,k − d̃m,k−1)c̃m,k

×
Γ(
∑

k=1:km+1 dλ + c̃m,k)
∏

k=1:km+1 Γ(dλ + cm,k)

Γ(
∑

k=1:km+1 dλ + cm,k)
∏

k=1:km+1 Γ(dλ + c̃m,k)

}
,

(3.58)

where c̃m,k is the analogous of cm,k defined using d̃m instead of dm.
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Update of km, the number of breakpoints in the piecewise constant pdf

The update of km is a Reversible-Jump MH step based on the proposition of a couple
(k̃m, d̃m) whose acceptation probability preserves the conditional distribution km, dm|am
(λm is marginalized out). This update is very similar to the update of dm (page 72) but
consists of adding a removing (instead of moving) a breakpoint in dm. When the addition
of a new breakpoint is proposed (i.e. k̃m = km + 1) its position is selected randomly
among the L − km − 1 positions in {2, . . . ,L} that are not occupied by the km already
existing breakpoints. The proposal for the move that decreases km consists of removing
a randomly selecting and removing one breakpoint. The proposal density associated to
(k̃m, d̃m) generated by this procedure writes thus

qkm,dm(k̃m, d̃m) =
1

2km
I{k̃m = km − 1}+

1

2(L − km − 1)
I{k̃m = km + 1} .

(3.59)

Analogously to Equation (3.56), the probability of acceptation decomposes into

α((km, dm), (k̃m, d̃m)) = min

{
1;
π(k̃m)π(d̃m|k̃m)π(am|d̃m, αm)qk̃m,d̃m(km, dm)

π(km)π(dm|km)π(am|dm, αm)qkm,dm(k̃m, d̃m)

}
.

(3.60)

Taking the example of an increase move (i.e. k̃m = km + 1) and using the result of
Equation (3.57), this probability can be written

α((km, dm), (k̃m, d̃m))

= min

{
1; (1− pk)

(L−1
km

)( L−1
km+1

) × π(am|d̃m, αm)

π(am|dm, αm)
× L− km − 1

km

}
(3.61)

= min

{
1; (1− pk)

km + 1

km

×
∏

k=1:km+1(dm,k − dm,k−1)cm,k∏
k=1:k̃m+1(d̃m,k − d̃m,k−1)c̃m,k

×
Γ(dλ)Γ(

∑
k=1:km+1 dλ)

Γ(
∑

k=1:k̃m+1 dλ)

×
Γ(
∑

k=1:k̃m+1 dλ + c̃m,k)
∏

k=1:km+1 Γ(dλ + cm,k)

Γ(
∑

k=1:km+1 dλ + cm,k)
∏

k=1:k̃m+1 Γ(dλ + c̃m,k)

}
,

(3.62)

where c̃m,k and cm,k are defined by Equation (3.54).
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Update of (pm, cm, qm), the palindromic structure of motif m

The use of Dirichlet priors for the columns of θm allows, in the case of the equal weight mix-
ture model for overlaps, to sample directly from the conditional distribution pm, cm, qm|am, b, rm, wm, x
(θm is marginalized out). Of note, this Gibbs-type update changes the dimension of the
model. Such a joint update is very efficient but could not be implemented for the θ-
dependent mixture model for overlaps which precludes the use of this model when palin-
dromic structures are allowed (alternative updates have not been implemented). In prac-
tice, sampling from pm, cm, qm|a, b, rm, wm, x is done in two steps:

• sample from pm, cm|am, b, rm, wm, x (marginalizing out qm),

• sample from qm|cm, pm, am, b, rm, w, x.

The densities needed for these two steps are obtained by appropriate summing and
renormalization (for marginalization and conditioning) of the joint conditional density

π(pm, cm, qm|a, b, r, wm, x)

∝ π(pm, cm, qm|wm)π(x|a, b, r, wm, pm, cm, qm)

∝ π(pm, cm, qm|wm)

× π((xn,am,n−rm+w)(n,w):am,n 6=0,w∈{1,...,wm},bn,am,n−rm+w=m|a, b, r, wm, pm, cm, qm)︸ ︷︷ ︸
L(pm,cm,qm)

,

(3.63)

where L(pm, cm, qm) is a likelihood term that decomposes in a product of wm terms. If
pm = 0 (no palindromic structure), cm and qm are not defined and the likelihood can be
written

L(pm = 0, cm = ∅, qm = ∅) =
∏

w=1:wm

∫
θm,w

θcm,w,rm,w π(θm,w)dθm,w

=
∏

w=1:wm

Γ(
∑

r dθ)∏
r Γ(dθ)

∫
θm,w

θcm,w,r+dθ−1
m,w dθm,w

=
∏

w=1:wm

Γ(
∑

r dθ)∏
r Γ(dθ)

∏
r Γ(dθ + cm,w,r)

Γ(
∑

r dθ + cm,w,r)
. (3.64)

When pm = 1 (palindromic structure), we need to group the paired columns (where θm,w,r =
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θm,2cm−w,r̄) to marginalize over θm,w, which gives

L(pm = 0, cm, qm)

=
∏

w=1:wm

{[
Γ(
∑

r dθ)∏
r Γ(dθ)

∏
r Γ(dθ + cm,w,r)

Γ(
∑

r dθ + cm,w,r)

]I{w<2cm−wm}+I{w=cm}+I{w≥2cm}

×
[
I{qm,w = 0}

(
Γ(
∑

r dθ)∏
r Γ(dθ)

)2∏
r Γ(dθ + cm,w,r)

Γ(
∑

r dθ + cm,w,r)

∏
r Γ(dθ + cm,2cm−w,r)

Γ(
∑

r dθ + cm,2cm−w,r)

+I{qm,w = 1}Γ(
∑

r dθ)∏
r Γ(dθ)

∏
r Γ(dθ + cm,w,r + cm,2cm−w,r̄)

Γ(
∑

r dθ + cm,w,r + cm,2cm−w,r̄)

]I{2cm−wm≤w<cm}}
.

(3.65)

Using the formulas of Equations (3.64) and (3.65) for the likelihood terms, we ob-
tain the density needed for the step 1 sampling (pm, cm) by summing the joint density of
Equation (3.63) over all possible values of qm,

π(pm, cm|a, b, r, w, x)

∝
∑
qm

π(qm, cm, pm|a, b, r, w, x)

∝ π(pm)π(cm|pm)
∑
qm

π(qm|cm)L(pm, cm, qm)

∝ π(pm)π(cm|pm)
∏

w=1:wm

{[
Γ(
∑

r dθ)∏
r Γ(dθ)

∏
r Γ(dθ + cm,w,r)

Γ(
∑

r dθ + cm,w,r)

]I{w<2cm−wm}+I{w=cm}+I{w≥2cm}

×
[
(1− pq)

(
Γ(
∑

r dθ)∏
r Γ(dθ)

)2∏
r Γ(dθ + cm,w,r)

Γ(
∑

r dθ + cm,w,r)

∏
r Γ(dθ + cm,2cm−w,r)

Γ(
∑

r dθ + cm,2cm−w,r)

+pq
Γ(
∑

r dθ)∏
r Γ(dθ)

∏
r Γ(dθ + cm,w,r + cm,2cm−w,r̄)

Γ(
∑

r dθ + cm,w,r + cm,2cm−w,r̄)

]I{2cm−wm≤w<cm}}
. (3.66)

For those columns that can be paired (i.e. w such as min(1, 2cm−wm) ≤ w < cm), the
conditional density used in the step 2 of the update (sampling qm,w given cm) is obtained
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from Equations (3.63), (3.65), and (3.19) as

π(qm,w|cm, pm, a, b, r, w, x)

∝ I{qm,w = 0}(1− pq)
(

Γ(
∑

r dθ)∏
r Γ(dθ)

)2∏
r Γ(dθ + cm,w,r)

Γ(
∑

r dθ + cm,w,r)

∏
r Γ(dθ + cm,2cm−w,r)

Γ(
∑

r dθ + cm,2cm−w,r)

+I{qm,w = 1}pq
Γ(
∑

r dθ)∏
r Γ(dθ)

∏
r Γ(dθ + cm,w,r + cm,2cm−w,r̄)

Γ(
∑

r dθ + cm,w,r + cm,2cm−w,r̄)
.

(3.67)

3.2 Incorporating expression data in the sequence model

3.2.1 An extended probit model to use expression data as covari-

ates

We already discussed our choice of incorporating expression data in our model as covariates
that can carry information on the probability of occurrence of the motifs in the different
sequences. To establish this link between expression data and probability of occurrence
of a motif, we choose to adopt the methodological framework of the probit regression
which presents the advantage of being relatively simple to implement, compared to the
logit regression, in our context of Bayesian and MCMC-based inference. This simplicity
stems from the availability of a data augmentation scheme in which a Gaussian latent
variable model is introduced (Albert and Chib, 1993). We also realized that this model
could easily accommodate an extension that could be seen as a binarization of expression
covariates according to an automatically adjusted breakpoint which is very appealing in
our modeling context for two reasons. First, it allows to model sharp switches in the
probability of occurrences as a function of the position of the sequence in the expression
space without imposing the probability of occurrence to jump between 0 and 1 between the
sides of the breaks. Second, this binary representation of the covariate makes it possible
to incorporate whole tree structures in the regression model. In this case, the binarization
breakpoint is located along the branches of the tree instead of along a simple axis. In this
section we start by describing our model for incorporation of covariates that have the form
of a vector of continuous variables. Then, we describe (page 79) how the version of the
model in which the covariate is binarized can also handle trees.
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Vectors of continuous variables

We consider the case of a number C of vectors of continuous variables denoted y =

(yn,c)n=1:N ,c=1:C that are to be used as covariates in the modeling of the events I{Am,n > 0}
(i.e. an occurrence of motif m is found in sequence n) for n = 1 : N . Each motif m is
modeled independently. According to the standard probit model, we would write,

π(Am,n > 0|y) = Φ(βm,0 +
∑
c=1:C

βm,cyn,c) , (3.68)

where the β’s are the regression coefficients (βm,c ∈ R) and Φ is the cumulative distribution
function of the standard normal distribution which serves to map any value of βm,0 +∑

c=1:C βm,cyn,c into a probability between 0 and 1.
To allow the automatic selection of the covariates that are relevant to predict the

occurrences of motif m (choice of model dimension) and the aforementioned binarization
of the covariates, our model involves the following parameters (variables in our Bayesian
inference context),

• tm = (tm,1, . . . , tm,C) where tm,c ∈ {0, 1} indicates whether covariate c should be
taken into account in the probability of occurrence of motif m (i.e. Am,n > 0);

• βm = (βm,0, βm,1, . . . , βm,C) where βm,c ∈ R represents when tm,c = 1 the parameter
used in a probit regression that relates yn,c to the probability that Am,n > 0, βm,0 is
the intercept parameter;

• bm = (bm,1, . . . , bm,C) where bm,c ∈ {0, 1} indicates, when tm,c = 1, whether the values
in the vector y·,c are binarized (bm,c = 1) or enter directly as they are in the probit
model (bm,c = 0);

• ζm = (ζm,1, . . . , ζm,C) where ζm,c ∈ {1, . . . ,N − 1} indicates, when tm,c = 1 and
bm,c = 1, the rank in y·,c of the value used for binarization; we use the notation
y[ζm,c],c for the corresponding cut-off.

In keeping with the probit regression framework, we write the probability of occurrence
of motif m in sequence n as

π(Am,n > 0|y, t, β, b, ζ) = Φ
(
βm,0 +

∑
c

βm,cI{tm,c = 1}ỹn,c
)
, (3.69)
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where ỹn,c corresponds to yn,c after an eventual binarization and writes

ỹn,c , I{bm,c = 0}yn,c

+I{bm,c = 1}
[(ζm,c
N
− 1
)
I{yn,c ≤ y[ζm,c],c}+

ζm,c
N

I{yn,c > y[ζm,c],c}
]
.

(3.70)

When binarization is active (case bm,c = 1), this formula maps yn,c > y[ζm,c],c to ζm,c/N and
yn,c ≤ y[ζm,c],c to ζm,c/N − 1. Any mapping to other values than ζm,c/N and ζm,c/N − 1

would be equivalent in terms of the distribution of I{Am,n > 0} that it allows, provided
that the β are readjusted. However, this mapping was chosen because it presents a two-fold
advantage: it ensures the centering to 0 of ỹn,c whatever the value of ζm,c when bm,c = 1

and it ensures a difference of 1 between the two possible values of the binarized covariates
(hence preserving the interpretation of β across the possible values for ζm,c). The center-
ing is important for the mixing of the MCMC algorithm since the C groups of variables
(tm,c, bm,c, βm,c, ζm,c) are updated successively each c (see algorithm in Section 3.2.2).

Figures 3.2 and 3.3 intend to illustrate the shapes of the relationship between expression
covariates and the probability of motif occurrence that are allowed by the simple probit
model and by our extension based on covariate binarization. In one dimension (Figure 3.2),
the simple probit model can account for a sharp switch between a region of low probability
of occurrence and a region of high probability of occurrence but these regions have then
probabilities close to 0 and 1. In contrast, the extended probit model with its three
parameters ζm,c, βm,0 and βm,c can describe freely the position of the switch and the
probability of motif occurrence on both side of switch. In two dimensions (Figure 3.3),
the five parameters of the extended probit model can describe freely the position of the
switches on each axis, but only three parameters are used to describe the probability of
motif occurrence in the four regions defined by the switches. Indeed, when dimension C
increases the number (2C) of regions delineated by the switches increases exponentially but
the number (1 + 2C) of parameters increases only linearly as a result of the assumption
of additive effects (on the probit scale). This slow increase makes it possible to use this
model even when dimension C is relatively high.

Trees: branch lengths and topology

Further extending the previous model described by Equations (3.69) and (3.70), we consider
that covariates can come not only in the form of vectors of continuous variables but also in
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Figure 3.2: Graphical illustration of our probit model of probability of motif occurrence for one
expression covariate. The probability of motif occurrence in sequence n is represented as a function
of the value of the covariate yn,c for five sets of parameters. Left: simple probit regression model
with two parameters βm,0 and βm,c that relate the value of expression covariate c available for
gene n (yn,c) to the probability of occurrence of motif m. Right: extended probit regression model
binarizing the expression covariate c according to a cut-off parameter ζm,c expressed as a rank
(value of the cumulative distribution function in the insert legend). The horizontally aligned gray
points at the bottom of the plot represents the values of yn,c that served for the binarization
according to ζm,c.
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Figure 3.3: Graphical illustration of our probit model of probability of motif occurrence for two
expression covariate. The probability of motif occurrence in sequence n is represented as a function
of the value of the covariates yn,c and yn,c′ for three sets of parameters. Left: simple probit
regression model with three parameters βm,0, βm,c and βm,c′ that relate the value of expression
covariates c and c′ to the probability of occurrence of motif m. Middle: extended probit regression
model binarizing the expression covariates c and c′ according to cut-off parameters ζm,c and ζm,c′
expressed as a rank (quantile in the insert legend). Right: extended probit regression model
binarizing the expression covariates c but not c′. The black dots represents the values of yn,c and
yn,c′ that served for the binarization according to ζm,c and ζm,c′ .
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the form of trees. For simplicity, we consider here rooted binary trees in which all the leaves
are at a same distance from the root. In our context, these trees are obtained by hierarchical
clustering of gene expression. Such a tree covariate c, contains a total of 2N −1 nodes that
decompose into N terminal nodes or leaves and N − 1 internal nodes. It can be entirely
encoded (topology and branch lengths) as a vector internal node heights hc = (hc,i)i=1:N−1

ordered such as hc,i ≤ hc,i+1 and a (N−1)×2 matrix sc = (sc,i,1, sc,i,2)i=1:N−1 that identifies
the subtrees merged at each internal node. In practice the 2N − 2 subtrees hanging below
each node are identified by values in the ranges {−N , . . . ,−1}∪ {1,N − 1}, with negative
values corresponding to terminal nodes (in our cases the indexes of the sequences) and
positive values corresponding to internal nodes ordered by height as in vector hc.

Taken together, the vector hc and the two-columns matrix sc replace the vector yc when
the covariate c is a tree. Furthermore, the trees can be accommodated by our model only in
the form of binarized covariates, hence bm,c = 1. Compared to a covariate of type “vector”,
the interpretation of the ζm,c is slightly changed such as it identifies a subtree (indexed as
in the rows of matrix sc). The mapping of the covariate to ỹn,c, is also adapted. We used,
ỹn,c = |ζm,c|/N −1 if sequence n belongs to the subtree ζm,c and |ζm,c|/N otherwise, where
we use the notation |ζm,c| for the number of sequences in the subtree |ζm,c|. Figure 3.4
illustrates how the selection of a subtree allows to associate different probability of motif
occurrence to different sequences.

Data augmentation

Following the data augmentation scheme described by Albert and Chib (1993), we intro-
duce a unit variance Gaussian random variable Zm,n such that the probability modeled by
the probit regression corresponds to the probability of Zm,n > 0. The distribution of this
random variable is

Zm,n|y, t, β, b, ζ ∼ N (mean = βm,0 +
∑
c

βm,cI{tm,c = 1}ỹn,c, var = σ2
z) , (3.71)

where σ2
z is set to 1 to match the variance of the standard Gaussian distribution whose

probability density function is used to define the probability of motif occurrence in Equa-
tion (3.68) and (3.69). In the context of our model, Zm,n > 0 means that an occurrence
of motif m is found in sequence n and is thus equivalent to Am,n > 0 while Zm,n ≤ 0 is
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sequence n
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Figure 3.4: A graphical representation of how the process of selecting a cut on the PCA or the
ICA can as well be applied on the clustering tree. In the case of the tree we are selecting a specific
subtree (branch or merge) and all the sequences hanging from this subtree will have a different
probability of having the motif compared to the rest of the tree.
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equivalent to Am,n = 0. This data augmentation scheme is justified by the fact that

π(Zm,n > 0|y, t, β, b, ζ) = 1− Φmean=βm,0+
∑
c βm,cI{tm,c=1}ỹn,c,var=σ2

z
(0)

= 1− Φmean=0,var=σ2
z
(−βm,0 −

∑
c

βm,cI{tm,c = 1}ỹn,c)

= Φmean=0,var=σ2
z
(βm,0 +

∑
c

βm,cI{tm,c = 1}ỹn,c) , (3.72)

where the right-hand side term is the same as in Equation (3.69) when σ2
z = 1.

3.2.2 Inference

Priors and DAG for the extended probit

We typically have many covariates of type “vector”, each summarizing one aspect of the
expression profiles; but few covariates of type “tree”, each providing a global summary of
the expression profiles. For this reason, our prior concerning the active covariates (status
encoded in variable tc) of the extended probit distinguishes these two types of covariates.

For the covariates of type “tree”, we simply use independent Bernoulli priors

tm,c ∼ Bernoulli(pt,tree) . (3.73)

For the covariates of type “vector”, we wanted a prior that favors the activation of a
small number of covariates which conducted us to use a model in which activation of the
different covariates are not independent. Namely, we use a geometric prior on the number
of active covariates coupled with a uniform prior on which covariates are active (given the
number of active covariates). The corresponding joint density function for the Cv covariates
of type “vector” is

π((tm,c)c=1:Cv) ∝ p
∑
c=1:Cv tm,c

t,vector
1( Cv∑

c=1:Cv tm,c

) , (3.74)

in which the sum is over the covariates of type “vector”, and pt,vector corresponds to the
parameter “probability of success” of the geometric prior. From Equation (3.74), the con-
ditional distribution for any particular tm,c given the status of all other covariates of type
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“vector” (denoted here tm,−c) writes

π(tm,c|tm,−c) ∝ I{tm,c = 1}pt,vector
Cv −

∑
−c tm,c′ − 1∑

−c tm,c′ + 1
+ I{tm,c = 0} ,

(3.75)

where
∑
−c tm,c′ corresponds to the number of active components among all covariates of

types “vector”, excepted c.
The prior used for the parameter βm,c are independent Gaussian distributions

βm,0 ∼ N (mean = mβ0 , sd = sβ0) , (3.76)

βm,c ∼ N (mean = mβ, sd = sβ) . (3.77)

A different prior is used for βm,0 because it correspond to the intercept parameter whose
meaning differs from those of the other coefficients of the probit model. In fact, the mean
of the prior for the intercept βm,0 tunes the expected number of occurrences for motif m
in absence of link to expression covariates, with 0 corresponding to a presence of the motif
in one half of the sequences (see Equation (3.69)). In contrast, mβ, the mean of the prior
for βm,c, will be set to 0, since the covariates are centered at 0 and have no reason to favor
positive or negative links between expression covariates and probability of motif occurrence
(the sign of a covariate such as obtained by PCA or ICA is arbitrary).

The prior used for the binarization of a covariate c of type “vector” is

bm,c|tm,c = 1 ∼ Bernoulli(pb) . (3.78)

The prior used for cut-off value used in the binarization process, ζm,c, which is encoded as
rank of the value in the vector or the index of the node in the tree, correspond to a uniform
with respect to the values taken by the covariate (in case of covariate of type “vector”) or
the length of the tree (in case of covariate of type “tree”). Hence, for a covariate of type
“vector”,

π(ζm,c|tm,c = 1, bm,c = 1) ∝ y[ζm,c]+1,c − y[ζm,c],c . (3.79)
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For a covariate of type “tree”, the prior writes

π(ζm,c|tm,c = 1, bm,c = 1) ∝ (hp(ζm,c),c − hζm,c,c)I{n(ζm,c) ≥ nζ,min,N − n(ζm,c) ≥ nζ,min} ,

(3.80)

where p(ζm,c) is the parent node of ζm,c and n(ζm,c) is the number of leafs in the subtree
hanging below ζm,c. In this prior, nζ,min is a parameter that avoids locating a breakpoint
in the tree at a position that would delineate a singleton or coexpression cluster that we
judge too small.

In practice we used pt,tree = 0.5, pt,vector = 0.5, pb = 0.5, mβ0 = Φ−1
0,1(0.01) (i.e. mβ0 ≈

−2.326), sβ0 =
√

0.2, mβ = 0, sβ = 1, and nζ,min = 10.
The Directed Acyclic Graph presented in Figure 3.1 encompasses the random variables

tm, βm, bm, ζm, and Zm.

Overview of MCMC updates for the extended probit

In total, 3 MCMC steps have been designed to update the zm,n’s, βm,c’s, ζm,c’s, tm,c’s, bm,c’s
taking into account the structure of dependence summarized in the DAG (Figure 3.1) and
computational considerations. These 3 steps replace the update of αm in the sweep of the
model without expression data described page 59. The update of a is also modified to be
conditioned on z. In their order of appearance in the sweep these steps are:

• Update the data augmentation variable zm,n of the probit model according to zm,n |
am,n, βm, tm, bm, ζm (Gibbs step). Details are provided page 87.

• Update the dimension changing variables tm,c, bm,c, ζm,c according to tm,c, bm,c, ζm,c |
zm, βm,−c, tm−c, bm,−c, ζm,−c (dimension changing Gibbs step in which βm,c is marginal-
ized out). Details are provided page 89.

• Update the coefficients of the probit regression βm,c according to βm,c | zm, βm,−c, tm, bm, ζm
(Gibbs step). Details are provided page 87.

• Update the position of the occurrences of the motif m, am, according to
am | a−m, tm, βm, bm, ζm, θ, r, α, x (Gibbs step, b and zm are marginalized out). Details
are provided page 87.

The 3 first steps are relatively fast (in particular compared to the update of a) but they
consider each covariate separately and they are done conditionally on am,n which can cause

85



relatively slow mixing. This sequence of 3 steps is repeated 10 times at each sweep of the
algorithm in our MCMC runs.

3.2.3 Details of the MCMC steps relative to the extended probit

model

As in Section 3.1.5, instead of providing the details of the steps in their order of appearance
in one sweep of the MCMC algorithm, we adopt for their detailed description an order that
intends to make the presentation easier to understand.

Update of a, the position of the occurrences of the motifs

This step is identical to the step presented in Section 3.1.5, excepted that during the update
of am,n (the am,n are updated successively), αm is replaced by the probability of occurrence
of motif m in sequence n given by the probit model. This probability of occurrence is
Φ(β0 +

∑
c I{tm,c = 1}βm,cỹn,c) (see Equation (3.69) and (3.70)).

Update of z, the data augmentation variable of probit model

The zm,n’s are updated successively by direct sampling from the conditional distribution
of zm,n given am,n, βm, tm, bm, ζm (Gibbs step). This distribution is a truncated Gaussian
since

π(zm,n|am,n, βm, tm, bm, ζm, . . .)

∝ π(am,n|zm,n, βm, tm, bm, ζm, . . .)π(zm,n|βm, tm, bm, ζm)

∝
(
I{am,n > 0, zm,n ≥ 0}+ I{am,n = 0, zm,n < 0}

)
× exp

{
− 1

2σ2
z

(
zm,n − β0 −

∑
c

I{tm,c = 1}βm,cỹn,c
)2
}
. (3.81)

Hence, given that σ2
z = 1 (see Equation (3.71), but is still written as σ2

z to make appar-
ent the homogeneity of the formulas), we draw zm,n from N (mean = β0 +

∑
c I{tm,c =

1}βm,cỹn,c, var = 1) truncated to R− if am,n = 0 and truncated to R+ if am,n > 0.

Update of β, the coefficients of probit regression

The βm,c are updated successively for the active covariates (tm,c = 1) by direct sampling
from the conditional distribution of βm,c given zm, βm,−c, tm, bm, ζm. This update is made
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possible by the choice of a Gaussian prior for β which is the conjugate prior for the mean of
a Gaussian distribution. The possibility of such a Gibbs step is the fundamental purpose
of the introduction of z. Of note, we update here each βm,c separately for simplicity but a
joint update would also be possible.

The conditional distribution of βm,c is easy to write up to a constant,

π(βm,c|zm, βm,−c, tm, bm, ζm)

∝ π(zm|βm,cβm,−c, tm, bm, ζm)π(βm,c)

∝
∏
n

exp
{
− 1

2σ2
z

(
zm,n − β0 −

∑
c′

I{tm,c′ = 1}βm,c′ ỹn,c′
)2
}

× exp
{
− 1

2s2
β

(βm,c −mβ)2
}

∝ exp

{
− 1

2s2
β

(βm,c −mβ

)2

− 1

2σ2
z

∑
n

(
zm,n − β0 − I{tm,c = 1}βm,cỹn,c −

∑
c′ 6=c

I{tm,c′ = 1}βm,c′ ỹn,c′
)2
}

∝ exp

{
− 1

2
β2
m,c

[
1

s2
β

+
I{tm,c = 1}

σ2
z

∑
n

ỹ2
n,c

]
−βm,c

[
mβ

s2
β

+
I{tm,c = 1}

σ2
z

∑
n

ỹn,c

(
zm,n − β0 −

∑
c′ 6=c

I{tm,c′ = 1}βm,c′ ỹn,c′
)]}

.

(3.82)

For the conciseness of the subsequent formulas, we will use the notation

zm,n,−c , zm,n − β0 −
∑
c′ 6=c

I{tm,c′ = 1}βm,c′ ỹn,c′ . (3.83)

The right-hand side term of Equation (3.82) corresponds to the density of the Gaussian
distribution that we use to update βm,c,

π(βm,c|zm, βm,−c, tm, bm, ζm) ∼ N (mean = µβm,c|..., var = σ2
βm,c|...) , (3.84)
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where

µβm,c|... =

[
mβ

s2
β

+
I{tm,c = 1}

σ2
z

∑
n

ỹn,czm,n,−c

]
×
[

1

s2
β

+
I{tm,c = 1}

σ2
z

∑
n

ỹ2
n,c

]−1

σ2
βm,c|... =

[
1

s2
β

+
I{tm,c = 1}

σ2
z

∑
n

ỹ2
n,c

]−1

. (3.85)

The update of βm,0 relies on analogous equations in which the ỹn,c’s are replaced by 1,

π(βm,0|zm, βm,−0, tm, bm, ζm) ∼ N (mean = µβm,0|..., var = σ2
βm,0|...) , (3.86)

with

µβm,0|... =

[
mβ0

s2
β0

+
1

σ2
z

∑
n

(
zm,n −

∑
c

I{tm,c = 1}βm,cỹn,c
)]
×
[

1

s2
β0

+
N
σ2
z

]−1

σ2
βm,0|... =

[
1

s2
β,0

+
N
σ2
z

]−1

. (3.87)

Update of the dimension changing variables tm,c, bm,c, ζm,c of the extended probit

The possibility to carry out at a relatively small computational cost this update in a Gibbs
manner (i.e. by direct sampling of the conditional) is a key ingredient of the usefulness
of the extended probit model. This part of the algorithm consists of the joint update
of the three variables tm,c, bm,c, ζm,c successively for each motif m and selected number of
covariates c. In practice, we randomly select one tenth of the covariates of type “vector”
and one covariate of type “tree”. The variable βm,c is marginalized out.

The conditional density needed for this update decomposes in three terms corresponding
to the mutually exclusive cases of a covariate c which is not active (tm,c = 0), a covariate
c which is active and not binarized (tm,c = 1, bm,c = 0), and a covariate c which is active
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and binarized (tm,c = 1, bm,c = 1). Namely, we can write

π(tm,c, bm,c, ζm,c|zm, βm,−c, tm,−c, bm,−c, ζm,−c)

∝ π(zm|tm,c, bm,c, ζm,c, βm,−c, tm,−c, bm,−c, ζm,−c)π(tm,c, bm,c, ζm,c|tm,−c)

∝ I{tm,c = 0}π(tm,c|tm,−c)π(zm|tm, βm,−c, bm,−c, ζm,−c, tm,c = 0)

+I{tm,c = 1, bm,c = 0}π(tm,c|tm,−c)π(bm,c|tm,c)

×
∫
βm,c

π(zm|tm, bm, βm, ζm,−c, tm,c = 1, bm,c = 0)π(βm,c|tm,c)dβm,c

+I{tm,c = 1, bm,c = 1}π(tm,c|tm,−c)π(bm,c, ζm,c|tm,c)

×
∫
βm,c

π(zm|tm,c, bm,c, ζm, βm, tm,c = 1, bm,c = 1)π(βm,c|tm,c)dβm,c .

(3.88)

We will now see how these three terms can be computed, and in particular the third term
which needs to be computed efficiently for every possible value of ζm,c to be able to draw
directly from the conditional distribution of tm,c, bm,c, ζm,c. The term needed for the first
case (tm,c = 0) writes simply

π(zm|tm, βm,−c, bm,−c, ζm,−c, tm,c = 0) =
∏
n

1

σz
√

2π
exp

{
− 1

2σ2
z

z2
m,n,−c

}
=

1

σNz (2π)N/2
exp

{
−
∑

n z
2
m,n,−c

2σ2
z

}
,

(3.89)

where zm,n,−c corresponds to the definition given by Equation (3.83).
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The term needed for the second case (tm,c = 1, bm,c = 0) is obtained as follow

π(zm|tm, βm,−c, bm,−c, ζm,−c, tm,c = 1, bm,c = 0)

=

∫
βm,c

π(zm|tm, bm, βm, ζm,−c, tm,c = 1, bm,c = 0)π(βm,c|tm,c)dβm,c

=

∫
βm,c

[∏
n

1

σz
√

2π
exp

{
− 1

2σ2
z

(
zm,n,−c − βm,cyn,c

)2
}

× 1

sβ
√

2π
exp

{
− 1

2s2
β

(βm,c −mβ)2
}]
dβm,c

=
1

sβσNz (2π)(N+1)/2
× exp

{
−
∑

n z
2
m,n,−c

2σ2
z

−
m2
β

2s2
β

}
×
∫
βm,c

exp
{
− 1

2
β2
m,c

(∑
n y

2
n,c

σ2
z

+
1

s2
β

)
+ βm,c

(∑
n yn,czm,n,−c

σ2
z

+
mβ

s2
β

)}
dβm,c

=
1

sβσNz (2π)N/2
exp

{
−
∑

n z
2
m,n,−c

2σ2
z

}
×
(∑

n y
2
n,c

σ2
z

+
1

s2
β

)−1/2

× exp

{
−
m2
β

2s2
β

+
1

2

(∑
n yn,czm,n,−c

σ2
z

+
mβ

s2
β

)2(∑
n y

2
n,c

σ2
z

+
1

s2
β

)−1
}
.

(3.90)

The derivation of the term needed for the third case (tm,c = 1, bm,c = 1) is similar to
Equation (3.90), excepted that ỹn,c replaces yn,c. However, it is important to note that ỹn,c
depends on ζm,c (see Equation (3.70)) and will therefore be written here ỹn,c,ζm,c to make
this dependence apparent.

π(zm|tm, βm,−c, bm,−c, ζm, tm,c = 1, bm,c = 1)

=
1

sβσNz (2π)N/2
exp

{
−
∑

n z
2
m,n,−c

2σ2
z

}
×
(∑

n ỹ
2
n,c,ζm,c

σ2
z

+
1

s2
β

)−1/2

× exp

{
−
m2
β

2s2
β

+
1

2

(∑
n ỹn,c,ζm,czm,n,−c

σ2
z

+
mβ

s2
β

)2(∑
n ỹ

2
n,c,ζm,c

σ2
z

+
1

s2
β

)−1
}
.

(3.91)

Using the expressions obtained for the three terms in Equations (3.89), (3.90), and (3.91),
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we can rewrite the conditional joint density of tm,c, bm,c, ζm,c (Equation (3.88)) as

π(tm,c, bm,c, ζm,c|zm, βm,−c, tm,−c, bm,−c, ζm,−c)

∝ π(zm|tm,c, bm,c, ζm,c, βm,−c, tm,−c, bm,−c, ζm,−c)π(tm,c, bm,c, ζm,c|tm,−c)

∝ I{tm,c = 0}π(tm,c|tm,−c)

+I{tm,c = 1, bm,c = 0}π(tm,c|tm,−c)π(bm,c|tm,c)(∑
n y

2
n,c

σ2
z

+
1

s2
β

)−1/2

× exp

{
−
m2
β

2s2
β

+
1

2

(∑
n yn,czm,n,−c

σ2
z

+
mβ

s2
β

)2(∑
n y

2
n,c

σ2
z

+
1

s2
β

)−1
}

+I{tm,c = 1, bm,c = 1}π(tm,c|tm,−c)π(bm,c|tm,c)π(ζm,c|tm,c, bm,c)

×
(∑

n ỹ
2
n,c,ζm,c

σ2
z

+
1

s2
β

)−1/2

× exp

{
−
m2
β

2s2
β

+
1

2

(∑
n ỹn,c,ζm,czm,n,−c

σ2
z

+
mβ

s2
β

)2(∑
n ỹ

2
n,c,ζm,c

σ2
z

+
1

s2
β

)−1
}
,

(3.92)

where the terms expressing the priors (π(tm,c|tm,−c), π(bm,c|tm,c) and π(ζm,c|tm,c, bm,c)) are
given by Equations (3.73), (3.75), (3.78), (3.79), and (3.80).

As already mentioned, a key point is to be able to sample directly from this conditional
density in order to compute efficiently (i.e. avoiding repeated summing over N ) the terms
corresponding to tm,c = 1, bm,c = 1 for all possible values of ζm,c. The computation of∑

n ỹ
2
n,c,ζm,c

does not necessitate summing over N since, from Equation (3.70), we have, in
the case of a covariate of type “vector” where ζm,c corresponds to the rank of the cut-off
value used for binarization,

∑
n

ỹ2
n,c,ζm,c = ζm,c

(
ζm,c
N
− 1

)2

+ (N − ζm,c)
(
ζm,c
N

)2

(3.93)

and, in the case of covariate of type “tree” where ζm,c represents the index of a branch
delineating a subtree whose size is denoted |ζm,c|,

∑
n

ỹ2
n,c,ζm,c = |ζm,c|

(
|ζm,c|
N
− 1

)2

+ (N − |ζm,c|)
(
|ζm,c|
N

)2

. (3.94)

Similarly, the sum
∑

n ỹn,c,ζm,czm,n,−c can be divided into two parts by separating the yn,c
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that are mapped to ζm,c
N − 1 and those that are mapped to ζm,c

N . In the case of a covariate
c of type tree, the binarization relies on the cut-off value denoted y[ζm,c],c. Hence,

∑
n

ỹn,c,ζm,czm,n,−c =

(
ζm,c
N
− 1

) ∑
n:yn,c≤y[ζm,c],c

zm,n,−c

+

(
ζm,c
N

)(∑
n

zm,n,−c −
∑

n:yn,c≤y[ζm,c],c

zm,n,−c

)
,

(3.95)

where the partial sums
∑

n:yn,c≤y[ζm,c],c
zm,n,−c corresponding to all possible values of ζm,c can

be computed in one pass, by adding the zm,n,−c’s in the order of increasing yn,c’s. Similarly,
in the case of a covariate of type “tree”, all the relevant partial sums are computed in a
single bottom-up recursion (i.e. taking the subtrees defining the binarization in the order
of increasing height as indexed in the rows of matrix sc).

Importantly, the time complexity of the computation and sampling of the joint con-
ditional of tm,c, bm,c, ζm,c is therefore only O(N ), and not O(N 2) as a first look at Equa-
tion (3.91) might have suggested.
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Chapter 4

Data collection and method
implementation

This chapter is dedicated to data collection, data preparation before making use of it, and
the practical implementation of our methodology (C++ and settings for Bayesian priors).
I discussed in Section 1.4 that the objective of the developed tool is to make simultaneous
use of expression data and sequence data around the Transcription Start Sites (TSSs).
In the first section, I discuss how we collected these data for L. monocytogenes as a first
step toward our goal of detecting the main regulons of this bacterium (see Section 1.3).
The second section is dedicated to expression data preparation, which includes applying
hierarchical clustering to summarize the relation between genes in the form of a tree,
and applying matrix factorization to summarize the relation between genes in the form
of coordinates in a space of smaller dimensions. In the third section, I review analysis
that were conducted in order to help us set the prior values on some important to-be-
estimated parameters. Section four is dedicated to the computational implementation of
the methodology discussed in Chapter 3, explaining how to access and run the tool, and
detailing the contents of the output files.

4.1 Data collection

In order to run our tool for finding TFBSs, we needed to collect and prepare the input
data. The tool handles two types of data as an input:

• Sequence data; the promoter regions around the TSSs (see subsection 4.1.1 for de-
tails).

93



• Expression data consisting of a large set of expression profiles for all the sequences
considered in the search process.

4.1.1 Promoter sequences

To define promoter sequences and to align them with respect to TSSs, we used the large
repertoire of 2,299 TSSs mapped by Wurtzel et al. (2012) at 1 bp resolution on L. mono-
cytogenes EGDe genome sequence (see Section 1.2). In practice, data were extracted from
Table S1 available online1. Each TSS was given a unique ID defined by its exact position in
the genome (TSS.4611.1 standing for TSS at position 4,611 on strand +1). The promoter
sequences were defined as the 121 bp spanning from position -100 to +20 relative to each
TSS in keeping with the size of the promoter regions analyzed for presence/absence of
motifs recognized by TFs in Mäder et al. (2016) on Staphylococcus aureus.

We further trimmed the list of TSSs to avoid overlaps of these sequences on a same
strand that could be misinterpreted as shared sequence features and thereby cause false
positive motif predictions. Since each TSS is accompanied by a read count (Wurtzel et al.,
2012) reflecting its level of experimental support and transcriptional activity, we decided
that when two promoter regions overlap, the trimming procedure should keep the TSS with
the highest read count. In practice, we used a simple greedy procedure that incorporated
non-overlapping promoter regions one-by-one in the order of decreasing read-count which
led us to a set of 1,545 non-overlapping promoter regions (67% of the initial list of TSSs).

4.1.2 Expression data set

The second step of data preparation was to collect expression profiles. For this purpose, we
relied on the work done by Bécavin et al. (2017) to aggregate many published data sets for
the listeriomics website2. As downloaded, the data had dimensions (3, 159∗254) where each
row corresponds to a gene of L.monocytogenes EGDe and each column corresponds to the
log2 of an expression ratio (log2 fold-change) comparing a pair of experimental conditions
that could correspond to different mutants, growth conditions, or strains measured in a
same study. The different studies aggregated in this data set used different technologies
(one-color or two-color microarrays, RNA-Seq) but always the genome and annotation of
L.monocytogenes EGDe as reference.

1http://www.weizmann.ac.il/molgen/Sorek/listeria_browser/
2https://listeriomics.pasteur.fr/Listeriomics/#bacnet.Listeria
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Since the studies used different technologies and versions it was not possible to always
assess the complete list of genes, which resulted in having some columns with many missing
values. To overcome that, the number of columns (pairs of conditions) was reduced from
254 to 165 after computing the median of the number of missing values per column and
removing the columns with a number of missing values higher than 1.5 times this median.
In parallel, rows (genes) were also trimmed based on the same criterion (decreasing the
number of genes from 3,159 to 2,825. Figure 4.1 shows a heat map of the missing values
inside the expression data matrix, highlighting the rows and columns that were kept and
those that were removed.

From this table, and using the set of promoter regions that Wurtzel et al. (2012)
associated to each of the TSSs, we matched the 1,545 non overlapping promoter regions to
the 2,825 genes with expression data and obtained our final expression data-set representing
1,512 TSSs with 165 expression values.

4.2 Building covariates summarizing expression data

As mentioned in section 2.5.2 and explained in technical details in chapter 3, our developed
tool incorporates covariates that summarize transcription where each covariate corresponds
either to a numerical value, that may corresponds to the coordinate of the gene on an
axis obtained by Principal or Independent Component Analysis (PCA or ICA), or to the
position of the gene in a tree, typically obtained by hierarchical clustering. In this section,
I explain the different approaches that were applied to summarize the expression data in
order to use them as inputs to our motif discovery tool.

4.2.1 Hierarchical clustering trees

Hierarchical clustering is an iterative procedure for forming hierarchical groups of mutually
exclusive subsets, each of which has members that are maximally similar with respect to
specified characteristics. Given n sets, this procedure permits their reduction to n − 1

mutually exclusive sets by considering the union of all possible n(n−1)/2 pairs and selecting
a union having a maximal value for an objective function, that reflects the criterion chosen
by the investigator. This process that starts with singleton groups containing only one
element is repeated until only one group containing all the element remains, the final
result of the process is usually represented in the form of a rooted tree (dendrogram).
Two very popular agglomerative algorithms, based on two different objective functions,
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Figure 4.1: Heat map of the missing values inside the expression data matrix. The red color
represents the missing values. The side bars are used to indicate rows and columns that were kept
in the expression matrix (green for kept, black for removed).
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were selected to perform hierarchical clustering on our data, Ward’s and average linkage
clustering. The explanation of the two methods is detailed below, and the resulting trees
are shown in Figure 4.2 on page 100.

Ward’s method (Ward Jr, 1963) or Ward’s minimum variance algorithm performs hi-
erarchical clustering by minimizing the total within-cluster variance. This method is im-
plemented by finding, at each step, the pair of clusters that leads to minimum increase in
total within-cluster variance after merging. This increase is a weighted squared distance
between cluster centers. To apply Ward’s algorithm, the initial distance between individual
elements must be (proportional to) the Euclidean distance.

Unweighted average linkage clustering (Sokal, 1958) or unweighted pair group method
with arithmetic mean (UPGMA) is the second method selected by us. The UPGMA
algorithm constructs a tree in which distances between leaves (genes) are approximation
of the values present in the initial pairwise distance matrix. To this end, at each step, the
nearest two clusters (based on a specific distance function) are combined into a higher-level
cluster. The distance between any two clusters A and B is given by:

1

|A||B|
∑
a∈A

∑
b∈B

D(a, b). (4.1)

D(a, b) is a distance function specified by the user (i.e. values in a pairwise distance
matrix). We selected D to be the "Pearson distance" D = 1 − r, where r is the Pearson
correlation coefficient. The Pearson distance can be connected to the Euclidean distance
(d) between centered and scaled vectors (here gene expression profiles) through equation

D = 1− r

=
d2

2n
. (4.2)

In practice, Ward’s method was implemented by running "Ward.D2" method of the R
function "hclust" on the matrix of Euclidean distances between genes after centering and
scaling expression profiles across conditions. Average-link clustering was implemented by
running the "average" method of the same R function on the matrix of Pearson correlation
distances (1−r), the relation between the two distance functions is shown in equation (4.2).

Before calculating the distance matrices, each column was duplicated with a reverse
sign. This was done because each column in the original data matrix corresponds to a
comparison between two conditions (log ratio), and the sign of the log ratio is arbitrary. As
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well, rows were centered and scaled, since we did not want to give overwhelming importance
to the magnitudes of the changes. Scaling is done by dividing the (centered) rows of the
matrix by their standard deviations. The missing values that were not removed from
the expression matrix in the cleaning process were replaced by "NA". When computing
the Euclidean distance between two vectors, pairs containing "NA" values are excluded,
and the sum is scaled up proportionally to the number of columns used. In the case of
computing the Pearson correlation between two vectors, the "NA" values are excluded
from each vector before the calculation.

Instead of cutting the tree at a given height such as to define a set of non-overlapping
clusters, our approach to incorporate expression data, based on the binarization of the
expression covariate, allows to directly handle a whole tree (see chapter 3). In this tree
context, a cut is made automatically at branch-level to define two sets of genes that differ
by the probability of occurrence of a motif. Since different branches in a same tree could
be informative on the probability of occurrence of a same motif, we duplicated the two
trees in the input file to the algorithm.
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Figure 4.2: The final two trees that were used by our MCMC algorithm to produce the results on
chapter 5. The left sub-figure shows the clustering tree that resulted from applying average-link
clustering on Pearson distances between gene expression profiles. The sub-figure on the right shows
the tree that resulted from applying Ward clustering on Euclidean distances between centered and
scaled gene expression profiles.
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4.2.2 Principle Component Analysis (PCA)

Principal component analysis (PCA) is a powerful and very popular dimensionality reduc-
tion procedure that uses an orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly uncorrelated variables called
principal components. See Alter et al. (2000) for an early application of PCA on expression
data in the search process for co-regulated genes.

PCA was one of the techniques applied by us to summarize expression data in the
form of vector covariates. Since the original data matrix had dimensions (1, 512 ∗ 165),
the output of the PCA analysis is 165 components decreasingly ordered according to the
variance percentage captured by each component out of the total variance in the data. We
choose to incorporate only the first 20 components (capturing almost 70% of the variance
of the original data). Figure 4.3 illustrates how somewhat similar information in the
expression data can be captured either by applying PCA or hierarchical clustering.

In practice, we used the "prcomp" function in R that applies PCA by a singular value
decomposition

Y = UΣW ᵀ, (4.3)

where Σ is a (1, 512 ∗ 165) rectangular diagonal matrix of positive numbers, called the
singular values of Y ; U is a (1, 512 ∗ 1, 512) matrix, the columns of which are orthogonal
unit vectors of length 1, 512 called the left singular vectors of Y ; andW is (165∗165) whose
columns are orthogonal unit vectors of length 165 and called the right singular vectors of
Y . The function "prcomp" outputs two matrices Y p = UΣ and W , equation (4.3) holds if
we consider all the principle components (K = 165). Using the notation Y p

K for the first
K columns of Y p, equation (4.3) writes

Y = Y p
KW

ᵀ
K + ε, (4.4)

where Y p
K has dimensions (1, 512 ∗K) and corresponds to the coordinates of the genes in

the subspace defined by the K first PC axes,WK has dimensions (165∗K) and corresponds
to the coefficients of the linear transformation used to define the PC axes, and ε represents
the residuals. Figure 4.4 shows the relation between the choice of K and the value of ε.
Of note, The missing values that were not removed in the cleaning process were replaced
by 0 since the function "prcomp" accepts only numeric values.
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Figure 4.3: On the top of the figure is a clustering tree of the whole set genes, before removing genes
with many missing values or those which do not match with the list of TSSs (see subsection 4.1.2),
the red line represents the correlation value at which we cut to define clusters containing 20 or
more genes (colored leaves). The figure on the bottom left shows the coordinates of the genes on
the first two axes of the Principle Component Analysis. The red dots on this figure correspond to
the big red cluster at the bottom of the tree. The figure on the bottom right shows the decreasing
percentage of the variance that is captured by each component of the PCA, this figure can help
us to decide how many components to keep according to how much variance a new component
adds to the overall captured variance.
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4.2.3 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is another matrix factorization method for data
dimension reduction. ICA defines a new coordinate system in the multi-dimensional space
such that the distributions of the data point projections on the new axes become as mu-
tually independent as possible (Hyvärinen and Oja, 2000). This independence between
axes can be achieved either by minimizing the mutual information or by maximizing the
non-Gaussianity. The recognized good performances of ICA to address source separation
problems, for instance in acoustic signals, has attracted the attention for blind separation
of biological, environmental and technical factors affecting gene expression. The first work
to apply ICA to define linear modes of genes expression was done by Liebermeister (2002).
Some authors have claimed ICA to be more biologically relevant than other dimension re-
duction techniques, including PCA, in the context of expression data analysis (Carpentier
et al., 2004).

In practice, ICA makes a decomposition analogous to PCA (see subsection 4.2.2), as-
suming that the data has been generated from independent K sources. It is usually written

Y = SA+ ε, (4.5)

where Y has dimensions (1, 512 ∗ 165), S is the source matrix (1, 512 ∗K), A is the mixing
matrix (K ∗ 165), and ε represents the residuals. The goal of ICA is to find the source
matrix S with number of columns K which correspond to number of sources that has
generated this data and a mixing matrix A with number of columns equals to 165.

Despite the similarity between equations (4.4) and (4.5), applying ICA differs from
PCA in two practical aspects. First, ICA requires defining the number of independent
components before applying the algorithm. Second, the output components of ICA algo-
rithms are not stable since they rely on local optimization from a random starting point,
which suggests to run the algorithm multiple times and applying some stability analysis in
order to identify the stable components (Kairov et al., 2017).

In order to determine the optimal number of independent components we conducted
some analysis to understand the relation between selected number of components and both
mean square error and stability of components. We started by calculating the mean square
error between the input matrix Y and the matrix that results from multiplying the source
matrix S and the mixing matrix A. In practice, we applied the "fastICA" algorithm
(Hyvarinen, 1999) for every possible value of K (from 1 to 165). Figure 4.4 shows the
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relationship between the mean square error and number of columns of the source matrix.
When calculating the mean square error for ICA we ended up having exactly the same
values as for PCA, which is due to the first step of the algorithm FastICA that consists
of applying PCA to reduce the dimensionality of the data to the number of components
selected by the user.

To assess the relationship between the number of selected components (K) and their
stability we applied some analysis for different values of K. For every K ∈ (5, 10, .., 120) we
ran the FastICA 100 times and clustered the output 100∗K components using average-link
clustering based on pairwise correlation (1 − |r|, the absolute value account here for the
arbitrary sign of the ICA components) computed on gene-specific coefficients found in the
columns of matrix S. The clustering tree was then cut at a Pearson correlation value of 0.8
to define clusters of similar components. Figure 4.5 presents the number and the ratio of
clusters containing a number of components greater than or equals to 80, thereby defining
"stable" components found in at least 80% of the runs. The figure shows that the number
of stable components increases steadily until K = 40 where it starts to plateau. We had
the goal of selecting a K which is as a good trade off between stability and mean square
error and K = 40 seemed to satisfy this goal.

To produce the input covariates for our motif discovery tool, we ran the FastICA 100
times setting K = 40, the resulted (40 ∗ 100) components were then clustered by applying
the same technique as used in the stability analysis. Cutting the tree at 0.8 lead to 26
clusters with more than 80 components. We kept a single representative component for
each of these 26 clusters. To select a representative component, we gave a score for every
component inside the cluster which reflects the correlation with the rest of the components
in the cluster. The representative component was the one that has maximum correlation
score with the rest of the cluster members. Mathematically, the selected component c?

satisfies the equation
c? = arg max

c

∑
c′

|rc,c′ |, (4.6)

where rc,c′ is the pairwise correlation between the two components, and c′ is an index for
components belonging to the cluster of interest except component c.
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Figure 4.4: Mean square error between the original expression matrix and the approximated
matrix using ICA and PCA for different values of K. The figure shows the evolution of the mean
square error in relation to selected number of components (K). Results are similar for PCA and
ICA (see subsection 4.2.3).

104



●

●

●

● ●

●

● ●

●

●
●

●
●

●

●

● ●

● ●
● ●

●

●
●

● ● ●
●

● ●

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of components

ra
tio

 o
f c

lu
st

er
s 

co
nt

ai
ni

ng
 8

0 
co

m
po

ne
nt

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

0 50 100 150

0
10

20
30

40
50

60

number of components

nu
m

be
r 

of
 c

lu
st

er
s 

co
nt

ai
ni

ng
 8

0 
co

m
po

ne
nt

s

Figure 4.5: TRelationship between component stability and selected number of components in
ICA. For everyK ∈ (5, 10, .., 120) we ran the FastICA 100 times. The resulting 100∗K components
of each K were clustered together, the dots in the figures correspond to ratio (upper) and number
(lower) of clusters containing at least 80 components (i.e. the number of stable components).
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4.3 Prior distribution and parameter tuning

The Bayesian framework allows a “learning” capability so that “historical” data can be
used in modeling a new, but similar problem. This can be important in building prior
distributions based on partial information for known motifs and improving estimation of
novel motifs. When this information is not available, it is intuitive to select one form of
uninformative prior. To avoid choosing uninformative prior that may cause the algorithm
to misbehave in the process of parameters estimation, including the uniform prior in some
cases, we analyzed the impact of the prior for some of the model parameters.

The first prior that we examined was the prior distribution for the number of regions
modeling the pdf of the motif occurrence positions in terms of piece-wise constant function
(hereafter referred to as position pdf). We tested two prior distributions (uniform and
geometric) as illustrated in figure 4.6. In order to analyze the impact of the prior on the
posterior distribution, we examined three very different scenarios for the distribution of
the motif occurrences in the sequences. These scenarios are: uniformly distributed, tend
to localize in a specific region of the sequence (piece-wise constant pdf), or occur with a
probability that varies linearly with the position in the sequence (see figure 4.6).

In practice, we simulated variable numbers of motif occurrences according to the three
scenarios, and implemented the relevant part of the algorithm (updating iteratively only
the set of parameters related to estimating the number of regions, considering the motif
occurrences as given). Figure 4.7 shows under the two priors, and for different numbers of
motifs, how accurately the model allows to estimate the position pdf. We analyzed as well
the posterior distribution of the number of regions. Figure 4.8 shows the posterior of the
estimated number of regions in the piece-wise case.

We verified (unsurprisingly) that the accuracy of our estimated position pdfs is im-
proved and the impact of the prior choice decreases as the sample size increases. For small
number of occurrences, we noticed that the geometric prior provided smoother position pdf
than the uniform prior (Figure 4.6), which can be explained by the fact that the geometric
prior favors smaller number of regions than the uniform prior. Our main conclusion is that
the choice of geometric prior on the number of regions is more relevant in our case because
it leads to smoother estimated posteriors for the position pdf.

Another main prior to select was the prior put on the PWMs, θm,w representing the
composition of motif m at position w. We have chosen the Dirichlet distribution as a prior
on θm,w since it is the conjugate prior of the multinomial distribution (see section 2.3.2).
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Yet, in practice we need to choose the concentration parameters γ of this Dirichlet. An
usual choice for γ in the case for the four DNA nucleotides is the uniform prior given by
(1, 1, 1, 1). We also tested the non-informative (objective) prior distribution referred to as
Jeffreys prior. Jeffreys prior in our case is (0.25, 0.25, 0.25, 0.25). When fixing the value of
γ to 0.25, we noticed that the produced results were substantially better. We interpreted
this as a consequence of focusing the search on motifs with higher information content (see
figure 4.9).

The prior set on the number of occurrence of each motif was also found to have a
significant impact on the behavior of the algorithm. If we are not taking expression data
into account, this prior value is represented by the two parameters of a Beta distribution.
These two parameters (α1, α2) incorporate our prior belief about the ratio (α1

α2
) between

the number of sequences containing the motif and those not containing the motif. At
the beginning we set (α1

α2
) to 1 (α1 = 1, α2 = 1), this choice caused very slow mixing of

the algorithm which limited the exploration of the search space and caused the algorithm
to get stuck on motifs with high number of occurrences and low information content.
To overcome this slow mixing and to allow the algorithm to discover motifs with high
information content, we made the choice of reducing this ratio to a much smaller value,
such as 0.01 (α1 = 1, α2 = 100). When we are incorporating expression data, the role of
the aforementioned ratio is played by β0, which is the intercept of the Probit regression
model, linking motif occurrences to expression data.
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Figure 4.6: Set up of the simulation study to explore the impact of the prior on the num-
ber of regions. The sub-figure on the left shows the two prior distributions that were tested,
Unifrom({1, ..., 21}) and Geom(mean = 4). The sub-figure on the right shows the three scenar-
ios for pdfs of motif occurrence posteriors.
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for PWMs. The sub-figure on the left shows the pdf of θm,w,r in the two cases of γ = 1 and
γ = 0.25. The sub-figure on the right shows the resulting pdf of the information content (IC) of
θm,w for the two choices of γ.
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4.4 The developed tool

The methodology was implemented in C++ programming language. The C++ source code
is available online at https://github.com/eisultan/Multiple. It can be downloaded
and reused under GNU General Public License.

Our developed tool for finding TFBSs is called Multiple. Multiple is a program that
searches for TFBSs. It requires as input the sequence data (DNA promoter regions around
the Transcription Start Sites (TSSs)) and the expression data (the expression profiles across
the conditions). The user have the choice to input the expression data either in its original
form or by first summarizing it into covariates. Each covariate may correspond to the
coordinate of the gene on an axis (e.g. obtained by PCA or ICA) or to its position in a
tree (e.g. obtained by hierarchical clustering).

4.4.1 Description of the command line arguments

Usage : multiple [-seq ] [-xvectors ] [-xtrees ] [-prefix ] [-nmotif <#(default 2)>] [-wmin
<#(default 3)>] [-wmax <#(default 25)>] [-breakpmax <#(default 20)>] [-Nsweep <#(de-
fault 10000)>] [-rngseed <#(default 2)>] [-ICbg <bool(default false)>] [-widthbg <#(de-
fault wmin+3)> <double(default 1)>] [-validate <bool(default false)>] [-TSS <bool(default
true)>] [-geo_prior_breakpoints <double(default 0.25)>] [-z <double(default 1)> <dou-
ble(default 1)> <double(default 1)>] [-probit <double(default 1)> <double(default 0.2)>
<double(default -2.3)>] [-palprior <double(default 0)> <double(default 0.5)> <#(default
1)> <double(default 0.5)>]

Main:
-seq <file> : the name of the sequence file, formatted as shown below.

Optional:

• -xvectors <file> : name of the expression file that contains the PCA/ICA covariates.

• -xtree <file> : name of the expression file that contains the clustering tree, see format
below.

• prefix <string> : the prefix to be added before every file name, the prefix allows the
user to run many jobs with different seeds or with different set of parameters without
having to change the directory by changing the prefix before starting the job.
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• -nmotif <#(default 2)> : number of motifs.

• -wmin <#(default 3)> : minimal allowed width for the motifs.

• -wmax <#(default 25)> : maximum allowed width for the motifs.

• -breakpmax <#(default 20)> : we divide the promoter regions into subregions with
different probability of finding the algorithm, this parameter will set an upper bound
for number of sub-regions.

• -Nsweep <#(default 10000)> : number of MCMC iterations.

• -rngseed <#(default 2)> : this parameter gives the freedom to change the seed which
is useful in case of performing stability analysis.

• -ICbg <bool(default false)> : In the case of overlap between two or more motifs, there
is a parameter that assign a membership of this nucleotide to one of the intersecting
motifs. By adjusting this parameter the user indicates whether the algorithm will use
the information content of the intersecting motifs for this assignment, or just assume
an equal probability for the nucleotide to be generated by any of the motifs.

• -widthbg <#(default wmin+3)> <double(default 1)> : prior for the width of the
motif, the motif will have piece-wise distribution the first part of the motif will have
a uniform distribution and the second part will have a geometric distribution. The
user will enter two values, the first will corresponds the width of the first part with
uniform distribution and the second value will be the parameter of the geometric
distribution. For example, if the user entered 8 and 0.9 this will mean the motif will
have a uniform probability to have a width between wmin and 8, and will be less
likely to extend after 8 and this likelihood for extension will be controlled by the 0.9
value.

• -validate <bool(default false)>] : this parameter may not be useful for the user, it
was used in the building of the code to validate that it is working as supposed to.

• -TSS <bool(default true)> : this parameter if deactivated, the algorithm will not
divide the sequence into sub-sequences with different probability of motif occurrence,
but rather will treat the whole sequence as one piece with uniform probability of
seeing a motif.

113



• -geo_prior_breakpoints <double(default 0.25)> : parameter of the geometric dis-
tribution to be put over the number of break points that divide the promoter region
between 0 (the sequence as one piece) and breakpmax. You can adjust this value to
1 to have a uniform distribution.

• -z <double(default 1)> <double(default 1)> <double(default 1)> : This is to adjust
the pseudo count of the of three Dirichlet distribution used in the algorithm. The
first is for the motif nucleotides’ count, the second is for the background nucletides’
count, and the third is for motif counts in the subregions.

• -probit <double(default 1)> <double(default 0.2)> <double(default -2.3)> : ad-
justing the values for the regression model (propit) used to summarize the expression
values into probabilities of occurrence. The first is for the probit model variance, the
second and the third are for for the variance and the mean values of the intercept
respectively. The mean of the intercept may thought of as the prior value on the
number of motifs without looking at the expression data, while the variance of the
intercept may thought of as how much we are expecting this value to vary from the
initial value. We can think of the variance of the probit model as how much we want
the shape of the model to change.

• -palprior <double(default 0)> <double(default 0.5)> <#(default 1)> <double(default
0.5)> : In the case that the user is interested specifically in the palindromic motif,
where the four parameters are respectively: probability for a motif to be "palin-
drome", probability for a pair of columns in a palindrome to be coupled, minimum
length for a half palindrome, a parameter that account for the centering of the palin-
drome (1 means no centering, all positions are equally likely for the center).

The sequence file should be formatted as:

1512 121

>lmo0001

TTAACTGGCTGTGGACAACCGTTTTTCACATCTGGACAGTTTTGTGGATAGA

>lmo0002

GCAGCATGGCTTGTAACCTACTTATCCACAAATCCACAGCGCCTATTACTATT

...

where 1512 specifies the number of sequences to be analyzed and 121 indicates the
nucleotide length of each sequence. The subsequent lines provide the sequence information:
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they are composed of a sequence identifier separated from the sequence itself by a tabulation
character.

Notice: all the sequences need to have the same length and that missing data is not
allowed.

The topology and branch length information about the tree should provided in a format
as shown below:

1

-20 -1231 0.0025

...

-982 6 0.0038

...

353 434 0.0155

...

1509 1510 0.5587

The first row has only the number of the inputted trees. The rows afterwards corre-
sponds to nodes, such as, the second row corresponds to the first node and so on. The first
two columns indicate the two children of this node and the last column gives the height of
the node. The n leaves (here 1512) are numbered negatively from -1 to -n, the n-1 internal
nodes are numbered positively from 1 to n-1. The nodes need to be ordered by increasing
height such that all the descendants of a node are found above the line that describes the
node.

Notice: this input format supposes an ultra-metric binary tree as all the leaves are
implicitly assumed to have height 0. These requirements are naturally fulfilled if the tree
was obtained by hierarchical clustering of the matrix of pair-wise correlation coefficients
using the average linkage algorithm. Modifying the program to allow other types of tree
should not be too difficult.

4.4.2 Output files

The standard output includes the user-specified parameters that were used.
The parameters file:
The parameter file is edited every ten sweeps by adding the new values for these pa-

rameters respectively:
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• sweep: the number of the sweep in which the file is being edited.

• motif: the index of the motif whose its value are written in the row.

• nb_regions: how many subregions correspond to the given motif.

• phi: in the case of not inputting expression data phi will indicate the probability of
seeing the motif in the input data.

• refpos: the reference position, since the position of the motif inside the sequence
does not refer to the first position but rather to a reference position and by turn
the reference position is need in order to align the motif occurrence. This kind of
referring to the motif gives the freedom to the motif to go outside the sequence.

• width: the width of the motif at the given sweep.

• bg_order: the order Markov model describing the background

• track_left: this value is increased or decreased by 1 according to the change hap-
pening to the most left nucleotide of the motif, this value combined with the width
allows us to imagine how the motif moved over the sequence across the iterations
which is good if we want to align the PWMs and also to access the convergence of
the motif.

• prob_x: This value is basically the multiplication of the probabilities of the nu-
cleotides in the data. If we initialize all the PWM for all the motifs and the param-
eters for the background to 0.25 which means equal probabilities to see the different
nucleotides (A,C,G,T) inside the motifs as well as in the background. The prob_x
value will equal to (log(0.25)* number of sequences * number of nucleotides in the
sequence) This value should improve across the iterations since the estimation of
the PWMs is improving and by turn the information content is improving. This
value will give us an indication on how fast this improvement is happening across the
iterations.

• T_probit: The next K columns in the parameter files are titles T_probit corre-
sponding to K-1 covariate and the intercept of the regression mode. The cells of
the T_probit columns take values between 0 and 3, where 0 means that the corre-
sponding covariate is inactive, 1 is given if the corresponding covariate represent a
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PCA/ICA axis and the inputs in this axis should be treat as they are without bina-
rizing them to only 2 values (having a motif or not) instead of degrees of believe. 2
As well is for the PCA/ICA axis but in case that the corresponding component will
be binarized. 3 is given if the corresponding component is representing the height of
the gene on a tree.

• beta: After the K T_probit column, the file contains K beta columns where the cells
of these columns contain the value that the covariate is influencing the regression
model final value (the value that tells if the gene has the motif or not).

The PWM file:
The PWM file is edited every ten sweeps by adding the new values for the position

weight Matrices describing the motifs and some other parameters related to the motif
shape, these parameters are respectively:

• sweep: the number of the sweep in which the file is being edited.

• motif: the index of the motif whose values are written in the row.

• width: the width of the motif in concern.

• refpos: the reference position (explained above).

• centerpal: tells which nucleotide within the motif represents the center of the palin-
drome (if there is any).

• npairedcolpal: the number of paired columns for the current motif in the current
iteration (even number).

• prob: after that, there are (maxw * 4) columns describing the probability of seeing
(A,C,G,T) respectively. For example, the first four columns are the probability to
see (A,C,G,T) in the first position and so on.

The position pdf file:
The position pdf file is edited every 100 sweeps and it contains a column for every

nucleotide in the sequence, this column represents the probability of seeing the motif (the
reference position) at this nucleotide. There are four other columns in the file, these
columns represent respectively:
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• sweep: the number of the sweep in which the file is being edited.

• motif: the index of the motif whose values are written in the row.

• phi: explained above.

• nb_regions: represent the amount of sub regions that the sequence has been divided
into, each sub region has a different probability of seeing the motif.

• pos_prob: after that, there are L columns corresponding to L nucleotides forming
the sequence. The values in the cells of these columns are the probability of seeing
the motif (the reference position) at this nucleotide.

The motif sequence file:
The motif sequence file is edited every 100 sweeps and it contains the positions of the

motif occurrences in all the sequences. There are another two columns describing the sweep
and the motif as before. The columns in the file are ordered in the following manner:

• sweep: the number of the sweep in which the file is being edited.

• motif: the index of the motif whose values are written in the row.

• position: After that, there are N columns called position for the N sequences in the
input data. The values in these columns are the the position of the motif in concern
in the corresponding sequence. When the motif is absent, the value (-1) is given.
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Chapter 5

Results

This chapter is dedicated to the results and performance of our developed tool. In the first
section, I show how we process the output files in order to detect the stable motifs. The
second section is dedicated to results on the bacterium L. monocytogenes where I discuss
the discovered motifs and their links to known regulons. In the third section, I review
some analysis performed by us to assess the quality of results in relation to the type of
information incorporated in the search process (TSS position data, expression data). The
fourth and final section of this chapter is dedicated to the relative performance of our tool
in comparison to other popular tools.

5.1 Processing of the output files to detect stable motifs

The procedures explained in this section were developed to process the output files that
resulted from applying our tool on the L. monocytogenes data set (presented in chapter 4)
but they should be applicable to output files produced from any data set. The data set is
composed of sequence data (1,512 DNA sequences, each of length 121 bp), and expression
data (a matrix of 1,512 rows and 165 columns).

The output files explained in section 4.4 contain all the necessary information, not
only to summarize our final findings, but also to make plots that help us to visualize and
understand the algorithm behavior. For instance, to produce the final PWM that is used
to plot the sequence logo, we needed to align the 100 matrices produced in the last 10,000
sweeps (thinning step = 100). To perform this alignment we needed to record the changes
that occurred on the 5’- and 3’-sides of the PWM. The width of the motif aside with a
variable called "track_left" provide us with these information. The value of the variable
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"track_left" is incremented by 1 each time the motif is shifted to the right or its width
is reduced from left, and decremented by 1 each time the motif width is shifted to the
left or its width extended from left. Figure 5.1 provides a graphical representation of this
alignment procedure, where changes that occurred on the 5’- and 3’-sides of the PWM are
represented respectively by the lower and higher borders of the polygon.

The total number of PWM columns covered by motif m throughout the last 10,000
sweeps (refereed to as K) is given by

max
k

(track_left(k)
m + w(k)

m )−min
k

(track_left(k)
m ). (5.1)

Figure 5.1 demonstrates that some components after discovering a motif and staying
stable for a number of sweeps disappear and converge to another motif, while some other
components have not converged to a specific motif by the time that maximum number of
sweeps is reached. To cope with this randomness, we decided to run the MCMC algorithm
multiple times with a different random seed for each run, then cluster the identified motifs
and keep only those that were found in more than one MCMC run.

We performed 10 independent parallel runs of our algorithm for de novo motif discovery,
each run consisting of 50,000 MCMC sweeps. Only the last 10,000 sweeps were used for our
analysis to estimate posterior distributions while the first 40,000 sweeps served as a burn-in
period to forget the starting point. The number of components corresponding to possible
motifs M in each run was fixed to 75 (however the prior gives a significant probability
for each motif to be empty). These runs produced information on 750 (10x75) possible
motifs that differed widely: with or without occurrences, stable across the last 10,000
sweeps or not, found in several independent runs or not. We analyzed and compared
these components to extract distinct well supported motifs (stable across the last 10,000
sweeps and found in at least two runs). For this purpose, we identified the positions in
each sequence that are predicted to be covered by each motif with estimated posterior
probability at least 0.5 and computed pairwise distances between motifs i and j as

dmean(i, j) = 1− 2O(i, j)

N(i) +N(j)
, (5.2)

whereN(i) andN(j) denote the total number of positions covered by each motif and O(i, j)

is the number of positions covered by both motifs. Mathematically, the total number of
positions covered by motif i with posterior probability at least 0.5 is defined by can be
written as
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Figure 5.1: Two different convergence plots that show the changes that occurred in the widths of
the corresponding PWMs across the 50,000 sweeps of the algorithm. Changes that occurred on
the 5’- and 3’-sides of the PWM are represented respectively by the lower and higher borders of
the polygon. A vertical line is drawn at sweep number 40,000 that delimited the end of our burn-in
period. For the sake for better presentation, the polygon is centered in the figure whenever its
center become greater than 15 or less than -15 and a dark grey vertical line is drown to indicate
the specific iteration in which this happened.
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N(i) =
∑
n

∑
l

I{p̂i,n,l ≥ 0.5}, (5.3)

where,

p̂i,n,l =
1

K

∑
k

I{a(k)
i,n − r

(k)
i ≤ l < a

(k)
i,n − r

(k)
i + w

(k)
i }, (5.4)

where K is the number of iterations used for the analysis (10,000 in this case), and p̂i,n,l is
the estimated posterior probability for position n, l to be covered by motif m. Similarly,

O(i, j) =
∑
n

∑
l

I{p̂i,n,l ≥ 0.5}I{p̂j,n,l ≥ 0.5}. (5.5)

With these formula, d(i, j) = 0 if the positions covered are exactly the same and
d(i, j) = 1 if they do not overlap (including if one motif has no occurrence). Motifs were
then compared using hierarchical clustering based on this distance and the average-link
method. To select only well distinct motifs found at least in two runs, we used procedure
relying on two levels of clustering obtained by cutting the tree at two different heights: 0.75
for high-level clusters, 0.25 for low-level clusters. The high-level clusters serve to ensure
that final stable motifs are not redundant. For each high-level cluster we examined if it
contained a low-level clusters of size at least two and selected in these low-level clusters a
single representative motif (arg maxiN(i)) per high-level cluster (when no low-level cluster
existed, the high-level cluster was not represented in our final list of motifs). Figure 5.2
shows a slice of the clustering tree along with, the number of occurrences, and the width
for each motif. The output result of these selection criteria is presented in section 5.2

Although the distance function of equation (5.2) was used to calculate the distance
between motifs, it is worth mentioning that we have tried alternative distance functions
before finally selecting this one. The other functions that were tested are:

dfrac(i, j) = 1− O(i, j)

N(i) +N(j)−O(i, j)
(5.6)

dmax(i, j) = 1− O(i, j)

max(N(i), N(j))
(5.7)

dmin(i, j) = 1− O(i, j)

min(N(i), N(j))
(5.8)

dEuclidean(i, j) =
√
N(i) +N(j)− 2O(i, j) (5.9)
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We chose the dmean as our final distance function since its behavior was the easiest to
interpret. For instance, using dmin tends to cluster two motifs together if one of them rep-
resent a part of the second. On the contrary, dmax will tend to distinguish such motifs. The
distance dEuclidean does not give results easily understandable between motifs of different
lengths and different numbers of occurrences. Another approach that we decided to avoid
is to compare the PWMs.
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Figure 5.2: Hierarchical clustering of motif components to extract stable motifs. Only a fraction
of the tree is represented here (75 motif components out of 750). First row: hierarchical clustering
tree. Colors distinguish the high-level clusters obtained by cutting the tree at height 0.75. The
selected representative stable motifs are indicated by closed circles (open circles for non selected
motifs). Second row: number of occurrences of each motif components across the 1,512 promoter
sequences (posterior probability cut-off 0.5). Third row: motif width as obtained by three different
approaches: average motif width across the last 10,000 MCMC sweeps (vertical bar), number of
columns included in the PWM with probability cut-off 0.5 (closed circle) or cut-off 1.0 (open
losange).
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5.2 Results on L. monocytogenes

5.2.1 Main characteristics of the sequence motifs and the corre-

sponding predicted regulons

The procedure described in subsection 5.1 identified 40 stable motifs. Table 5.1 summarizes
the main characteristics of the 40 motifs which were found to exhibit considerable diversity
in terms of abundance, preferred position with respect to the TSS, link with expression
data, and PWM structure (palindromic vs. non-palindromic). Figure 5.3 illustrates 3 of
these motifs. Similar figures for all motifs, as well, the list of genes associated with each
of the 40 motifs are made accessible to the community of biologist working on L. monocy-
togenes. The two files are supplementary file S1 and supplementary file S2, respectively.

5.2.2 Links to known transcription factors

Three complementary approaches were used to identify links between the 40 motifs dis-
covered by our de novo approach and known regulons. The first was the comparison with
lists of genes collected from tables published in several expression studies and positions
of transcription factor binding sites recorded in the RegPrecise database; the second ap-
proach was the systematic comparison with 188 reference PWMs derived from sequence
alignements extracted from the propagated RegPrecise database (Novichkov et al., 2013)
for different taxonomic groups in the Firmicutes phylum: Listeriaceae (25 PWMs) and
Staphylococcaceae (39 PWMs) and Bacillales (124 PWMs).

The third approach consisted in specific literature searches associated with a careful
manual examination of (i) the set of genes downstream of TSSs in which the motif was
predicted to occur (ii) the comparisons of conditions in which the log2 fold-change deviated
the most from 0 (iii) the characteristics of the PWM and the preferred position of motif
occurrences with respect to the TSS. For many of the identified transcription factors,
these lines of observation provided several convergent clues. The links to known regulons
that were identified with this combination of approaches are reported in the rightmost
column of Table 5.1. Most of the motifs with high number of occurrence were found to
describe general characteristics of promoter regions (variations on the themes of SigA -10
and -35 boxes, nucleotide composition around TSS, Ribosome Binding Site). Systematic
comparison with RegPrecise PWMs was particularly informative for the identification of
BglR2 CcpA, CcpB, Fur, LexA, LiaR, and Rex. Among the other identified transcription
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factors, SigB and SigL were identified based on position with respect to the TSS.
Comparison with sigma factor consensus defined for B. subtilis (Nicolas et al., 2012), as

well as overlap with previous experimental data on SigL (also known as RpoN or sigma54)
and SigB regulons in L. monocytogenes (Arous et al., 2004; Chaturongakul et al., 2011;
Palmer et al., 2011). Spx was identified based on (i) its position with respect to the TSS
just upstream of the SigA -35 box, (ii) sequence properties reported for Spx in B. subtilis
described as an AGCA element at position -44 (Rochat et al., 2012; Lin et al., 2013), and
(iii) literature data on the Spx-regulon of L. monocytogenes (Whiteley et al., 2017). PWMs
found for PrfA and VirR, two key transcription regulator involved in L. monocytogenes
virulence, were in line with previously described sequence properties (Mandin et al., 2005;
Scortti et al., 2007; de las Heras et al., 2011). The correspondences that we identified with
known motifs validate our approach for de novo discovery and suggest that other motifs
that we identified may also correspond to biologically relevant motifs.

Among the predicted regulons that we have not been able to connect to literature data,
the most spectacular by its size and the functional homogeneity of the regulated genes
(genes encoding ribosomal proteins), is associated with motif M58.7.

Importantly, even when motifs could be linked to previously known transcription fac-
tors, being able to identify them in a de novo and automated manner can shed a new light
on the corresponding regulons. For instance, our results suggest that LiaR regulon may
be about twice larger than previously identified by differential expression analysis of the
∆liaS mutant vs. wild-type (Fritsch et al., 2011). Ordered by the number of TSSs, the
predicted regulons for which we have identified a transcription factor are: SigB, CcpA,
Rex, LiaR, Fur, LexA, VirR, Spx, BglR2, SigL, PrfA.

125



Table 5.1: Summary of the 40 stable motifs identified in L. monocytogenes EGD-e
motifa #TSSsb #TSS(0.8-0.2)c wd ICe Palf Positiong FCh #ri Commentj

M71.2 1,325 1,174-1,435 9 3 1.3 -9 [1] 0.44 7:10 SigA -10

M71.8 1,308 848-1,506 6 2 1.6 1 [1] 0.46 13:16 TSS (A)

M36.4 1,033 552-1,382 6 3 0 -32 [2] 0.48 10:10 SigA -35 (TTG)

M55.7 836 117-1,486 5 0 1.7 -25 [40] 0.58 3:7 SigA -10 extension (CT) ?

M8.3 792 331-1,273 5 1 0 4 [1] 0.53 10:15 TSS (G)

M9.10 735 447-1,165 8 4 0.6 -13 [1] 0.50 7:8 SigA (extended -10, TG)

M61.5 561 171-1,153 5 5 0 14 [10] 0.41 6:8 RBS (GGAGG)

M59.9 297 96-844 21 7 0 -60 [42] 0.36 4:10 T-rich element

M26.1 252 107-640 13 5 2.1 -79 [23] 0.73 6:10 SigA -10 on reverse strand

M27.6 240 153-590 6 5 0.4 -33 [2] 0.48 6:6 SigA -35 (TTGAC)

M29.8 122 91-150 12 4 2.2 -13 [2] 3.06 10:10 SigB -10

M9.1 116 43-368 22 2 5.6 -75 [37] 1.18 2:8 loose

M18.2 108 47-355 6 6 0.3 9 [12] 0.52 2:8 RBS (GAGGTG)

M12.4 97 71-109 7 4 0.6 -32 [3] 3.87 10:10 SigB -35

M69.4 87 59-128 15 8 10.9 -30 [53] 1.75 10:10 CcpA (CRE-box)

M42.8 62 14-295 17 0 0.2 -86 [21] 0.61 2:4 loose

M31.4 39 16-81 23 8 18.8 -40 [61] 1.88 2:2 Rex

M68.1 31 20-47 20 5 15 -46 [25] 3.00 10:10 LiaR

M58.7 27 14-40 19 6 9.9 -47 [56] 3.23 9:10 Ribosomal protein genes

M62.3 26 18-34 20 13 16.2 -16 [67] 1.89 10:10 Fur

M38.10 22 18-38 15 8 12.1 -19 [28] 2.36 9:10 LexA

M53.9 20 8-50 20 8 15.1 -47 [60] 1.52 10:10 VirR

M2.6 19 12-53 9 4 1.1 -49 [2] 1.12 3:5 Spx

M13.7 19 7-48 21 5 1.4 -58 [69] 0.89 2:3 -

M61.6 14 9-16 25 14 16.3 -29 [3] 0.81 9:10 BglR2

M54.1 14 6-40 23 8 1 -56 [61] 1.04 2:5 -

M61.4 13 7-25 25 6 0.9 -37 [62] 1.20 2:2 -

M50.10 13 7-43 21 5 9.6 -77 [28] 0.93 2:2 -

M70.6 11 7-19 24 22 19.2 -44 [63] 1.28 10:10 -

M3.1 9 4-20 21 9 15.5 -43 [62] 1.52 10:10 -

M33.8 8 7-13 22 11 4.2 -24 [23] 2.78 9:10 SigL

M49.4 7 6-11 23 12 16.8 -35 [19] 10.55 10:10 PrfA

M20.1 7 5-7 25 16 5.4 -55 [3] 6.64 10:10 -

M17.4 7 5-14 24 9 14.8 -39 [61] 1.14 3:4 CcpB

M73.4 6 4-7 20 5 4.2 -44 [8] 5.03 6:6 -

M61.3 6 5-10 25 22 6.4 -33 [4] 3.14 10:10 -

M2.1 6 4-8 22 9 13 -33 [56] 1.05 2:5 -

M18.6 4 3-8 25 9 17.2 -51 [55] 1.25 6:7 -

M29.1 3 2-6 25 1 3 -39 [62] 1.64 9:10 loose

M59.2 2 0-13 23 2 5.1 -52 [63] 2.43 4:5 loose
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Legend for Table 5.1:
a unique motif identifier build as Mxx.yy where yy is the identifier of the run and xx is the
identifier of the motif in the run;
b number of TSSs with an occurrence of the motif of estimated posterior probability at
least 0.5, as computed across the last 10,000 MCMC sweeps; this number was used to order
the motifs;
c number of TSSs when the posterior probability cut-off is set to 0.8 (very likely) or 0.2
(possible);
d width of the PWM corresponding to the number of columns included with posterior
probability above 0.5;
e number of columns in the PWM with highly informative nucleotide composition, i.e.
information content expressed in bits, computed as 2+

∑
r∈{A,C,G,T} θm,w,r log2(θm,w,r), above

1;
f estimated number of Watson-Crick paired columns in the PWM reflecting the degree of
palindromness (highlighted in boldface when strong);
g median position for the middle of the motif with respect to the TSS, the number between
brackets corresponds to the inter-quartile range, both numbers are derived from the esti-
mated probability function for the position of the motif m described by the variables Km,
λm,. and sm,.;
h maximum across the 165 pairs of conditions for the median of the expression values
associated with the TSSs counted in the first column;
i number of parallel runs (out of 10) in which this motif was found as obtained by the
motif clustering procedure based on overlaps between motif occurrences, this information
is given in the format xx:yy where xx and yy are the numbers obtained with cut-offs of
0.25 and 0.75, respectively.
j a comment indicating the link to known transcription factors if identified or other obser-
vations that were made.
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Figure 5.3: Illustration of three motifs found with our algorithm for de-novo motif discovery.
From left to right, plots are organized in three columns corresponding respectively to motifs
M68.1, M69.4, and M29.8 identified as the binding sites of LiaR, CcpA (CRE-box), and SigB
(-10 box). First row: convergence plots that show the changes that occurred in the width of the
PWM across the 50,000 sweeps of the algorithm, detailed explanation is available in Figure 5.1.
Second row: sequence logo where the relative heights of the letters in one column represent the
nucleotide composition and the total height represnt the information content (in bits). Third
row: estimated probability distribution function for the 5’-end of the occurrence (in blue) and
probability of having the position covered by the occurrence (in orange). These probabilities are
conditional on the presence of the motif in the promoter sequences; position is reported as the
distance to the TSS (negative when upstream of TSS). Fourth row: log2 fold-changes across the
165 pairs of conditions that were used to define the expression covariates.
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5.3 Comparisons of different models

This section is dedicated to the analysis performed in order to assess the impact of incor-
porating auxiliary data in the process of de novo motif discovery. In practice, we examined
the importance of accounting for gene expression profiles (expression data), and modeling
the distance from the TSS (position data). To that end, we ran our algorithm with four
different settings incorporating: both expression data and position data (results presented
in section 5.2), only expression data, only position data, and neither expression data nor
position data. These four settings will be refereed to as T1E1, T0E1, T1E0, and T0E0,
respectively (where T stands for TSS and E for expression).

The analysis described in section 5.1 was performed separately on the output of 10
runs of 50,000 sweeps for each setting, and a total of 145 stable motifs were identified (40
for T1E1, 38 for T0E1, 37 for T1E0, and 30 for T0E0). We used Equation (5.2) to build
a distance matrix of dimensions (145 ∗ 145) for the total set of motifs. Figure 5.4 shows
the tree resulted from applying hierarchical clustering (average-linkage) on this distance
matrix. Table 5.2 shows a global view of the motifs obtained by the full setting, used as
reference, and their closest matches that was obtained by each of the other settings.

In order to identify the reference motifs whose discovery depended on incorporating one
type of auxiliary data, we accounted for distances in Table 5.2 to a threshold value. We
set this threshold value at 0.25, since it corresponds to a high level of correlation and, as
well, it is the value that we used in Section 5.1 to define two motifs from different runs as
matches. Table 5.3 shows a summary of these matches, their widths, number of columns
paired in palindromic structure, and numbers of occurrences. There were 11 out of the 40
motifs have matches in the T0E1 setting, 12 have matches in the T1E0 setting, and 6 have
matches in the T0E0 setting.

Somewhat unsurprisingly, motifs that were detected only when accounting for position
data (12 motifs), indeed have conserved distance from the TSS. Table 5.2 (column "pos")
highlights this fact for some of these motifs, such as M36.4_T1E1 (SigA -35 (TTG)),
M59.9_T1E1 (T-rich element in a reserved distance to the TSS), M27.6_T1E1 (SigA
-35 (TTGAC)), M61.6_T1E1 (BglR2), and M17.4_T1E1 (CcpB). Similarly, there are
motifs that were detected only when accounting for expression data, this set of motifs
includes M69.4_T1E1 (CcpA (CRE-box)), M68.1_T1E1 (LiaR), M33.8_T1E1 (SigL), and
M49.4_T1E1 (PrfA). These motifs tended to be linked with high variation in expression
levels, summarized as log2 of the fold change value (see column "FC" in Table 5.2).
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When examining the matches found by the setting which do not incorporate any aux-
iliary data, we found that 4 out of the 6 matches had a high number of paired columns.
For instance, M62.3_T1E1 (Fur) was detected in the T0E0 setting, most likely for its
palindromic structure. This finding highlights the relevance of modeling the palindromic
structure. Finally, as expected, a number of biologically relevant motifs were detected only
with the full setting, such as SigB (the two boxes), Rex, LexA, VirR, and Spx.
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Figure 5.4: Hierarchical clustering of motifs resulted from different models. The tree was divided
into two parts for the sake of better presentation.
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Table 5.2: The 40 motifs found by the T1E1 setting and their closest matches from other settings.
motifa #TSSsb Pal.f Pos.g FCh d_T0E1k c_T0E1l d_T1E0m c_T1E0n d_T0E0o c_T0E0p

M71.2 1,325 1.3 -9 [1] 0.44 0.522 M5.3 0.354 M4.2 0.546 M19.1

M71.8 1,308 1.6 1 [1] 0.46 0.857 M5.3 0.448 M0.2 0.770 M19.1

M36.4 1,033 0 -32 [2] 0.48 0.974 M15.10 0.108 M68.9 0.978 M54.6

M55.7 836 1.7 -25 [40] 0.58 0.976 M15.10 0.991 M67.7 0.986 M54.6

M8.3 792 0 4 [1] 0.53 0.939 M5.3 0.688 M0.2 0.871 M19.1

M9.10 735 0.6 -13 [1] 0.50 0.630 M5.3 0.418 M18.1 0.738 M19.1

M61.5 561 0 14 [10] 0.41 0.625 M71.3 0.332 M31.2 0.654 M2.10

M59.9 297 0 -60 [42] 0.36 0.463 M15.10 0.230 M65.2 0.512 M54.6

M26.1 252 2.1 -79 [23] 0.73 0.488 M62.7 0.546 M27.8 0.561 M7.5

M27.6 240 0.4 -33 [2] 0.48 0.931 M35.8 0.081 M41.3 0.974 M45.9

M29.8 122 2.2 -13 [2] 3.06 0.326 M5.2 0.349 M27.2 0.969 M19.1

M9.1 116 5.6 -75 [37] 1.18 0.504 M73.4 0.943 M24.6 0.471 M46.10

M18.2 108 0.3 9 [12] 0.52 0.327 M43.2 0.442 M18.10 0.970 M2.10

M12.4 97 0.6 -32 [3] 3.87 0.988 M9.9 0.946 M68.9 0.983 M63.3

M69.4 87 10.9 -30 [53] 1.75 0.226 M19.2 0.379 M24.1 0.349 M68.9

M42.8 62 0.2 -86 [21] 0.61 0.987 M62.7 0.355 M4.9 0.968 M52.2

M31.4 39 18.8 -40 [61] 1.88 0.331 M64.7 0.987 M58.3 0.988 M7.5

M68.1 31 15 -46 [25] 3.00 0.200 M62.8 0.914 M33.1 0.994 M7.5

M58.7 27 9.9 -47 [56] 3.23 0.425 M26.5 0.979 M7.5 0.966 M46.10

M62.3 26 16.2 -16 [67] 1.89 0.066 M73.8 0.085 M5.9 0.112 M40.1

M38.10 22 12.1 -19 [28] 2.36 0.371 M3.10 0.394 M35.8 0.409 M42.4

M53.9 20 15.1 -47 [60] 1.52 0.294 M6.4 0.297 M23.1 0.454 M45.9

M2.6 19 1.1 -49 [2] 1.12 0.982 M64.7 0.992 M65.2 0.993 M54.6

M13.7 19 1.4 -58 [69] 0.89 0.956 M65.7 0.434 M42.6 0.991 M46.10

M61.6 14 16.3 -29 [3] 0.81 0.560 M20.5 0.043 M61.9 0.572 M27.9

M54.1 14 1 -56 [61] 1.04 0.891 M53.6 0.158 M48.9 0.160 M52.2

M61.4 13 0.9 -37 [62] 1.20 1.000 M3.10 0.923 M48.9 0.963 M52.2

M50.10 13 9.6 -77 [28] 0.93 0.992 M5.2 0.863 M47.1 1.000 M6.10

M70.6 11 19.2 -44 [63] 1.28 0.282 M44.4 0.119 M58.5 0.277 M6.10

M3.1 9 15.5 -43 [62] 1.52 0.122 M20.8 0.112 M69.8 0.194 M31.5

M33.8 8 4.2 -24 [23] 2.78 0.224 M46.1 0.633 M25.6 0.413 M12.1

M49.4 7 16.8 -35 [19] 10.55 0.169 M53.8 0.992 M41.3 1.000 M6.10

M20.1 7 5.4 -55 [3] 6.64 0.057 M15.2 0.524 M5.1 0.554 M39.7

M17.4 7 14.8 -39 [61] 1.14 0.946 M52.6 0.081 M51.8 0.948 M31.10

M73.4 6 4.2 -44 [8] 5.03 0.998 M9.9 0.994 M68.9 0.998 M19.1

M61.3 6 6.4 -33 [4] 3.14 0.167 M66.2 0.252 M56.6 0.254 M29.10

M2.1 6 13 -33 [56] 1.05 0.110 M9.5 0.734 M61.9 0.152 M16.1

M18.6 4 17.2 -51 [55] 1.25 0.010 M13.5 0.005 M4.4 0.025 M64.8

M29.1 3 3 -39 [62] 1.64 0.401 M51.7 0.153 M7.5 0.000 M55.2

M59.2 2 5.1 -52 [63] 2.43 0.000 M41.7 0.246 M24.6 0.329 M62.4
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Legend for Table 5.2:
a unique motif identifier build as Mxx.yy where yy is the identifier of the run and xx is the
identifier of the motif in the run;
b number of TSSs with an occurrence of the motif of estimated posterior probability at
least 0.5, as computed across the last 10,000 MCMC sweeps; this number was used to order
the motifs;
f estimated number of Watson-Crick paired columns in the PWM reflecting the degree of
palindromness;
g median position for the middle of the motif with respect to the TSS, the number between
brackets corresponds to the inter-quartile range, both numbers are derived from the esti-
mated probability function for the position of the motif m described by the variables Km,
λm,. and sm,.;
h maximum across the 165 pairs of conditions for the median of the expression values
associated with the TSSs counted in the first column;
k smallest distance to a motif from the T0E1 setting;
l corresponding motif from the T0E1 setting, the one with the closest distance according
to Equation (5.2);
m smallest distance to a motif from the T1E0 setting;
n corresponding motif from the T1E0 setting;
o smallest distance to a motif from the T0E0 setting;
p corresponding motif from the T0E0 setting.
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Table 5.3: Motifs from other settings with distance < 0.25 to motifs obtained by the full setting.

motifa #TSSsb wd pal.f matchq m_#TSSsr m_ws m_pal.t

M2.1 6 22 13 M9.5_T0E1 7 25 14.2

M3.1 9 21 15.5 M20.8_T0E1 9 20 16.3

M33.8 8 22 4.2 M46.1_T0E1 8 20 3.4

M20.1 7 25 5.4 M15.2_T0E1 7 24 5.3

M69.4 87 15 10.9 M19.2_T0E1 83 18 11.7

M61.3 6 25 6.4 M66.2_T0E1 7 25 5.3

M49.4 7 23 16.8 M53.8_T0E1 8 21 14.6

M68.1 31 20 15 M62.8_T0E1 28 21 15.6

M62.3 26 20 16.2 M73.8_T0E1 22 21 16.1

M18.6 4 25 17.2 M13.5_T0E1 4 25 18.6

M59.2 2 23 5.1 M41.7_T0E1 2 24 4

M70.6 11 24 19.2 M58.5_T1E0 9 25 20.6

M3.1 9 21 15.5 M69.8_T1E0 9 21 16

M59.9 297 21 0 M65.2_T1E0 365 21 0.1

M36.4 1033 6 0 M68.9_T1E0 1102 6 0

M27.6 240 6 0.4 M41.3_T1E0 246 6 0.4

M29.1 3 25 3 M7.5_T1E0 4 24 2.6

M54.1 14 23 1 M48.9_T1E0 19 23 0.7

M61.6 14 25 16.3 M61.9_T1E0 15 25 16.3

M62.3 26 20 16.2 M5.9_T1E0 23 21 16

M17.4 7 24 14.8 M51.8_T1E0 8 25 15.2

M18.6 4 25 17.2 M4.4_T1E0 4 25 17

M59.2 2 23 5.1 M24.6_T1E0 3 24 4.2

M2.1 6 22 13 M16.1_T0E0 8 22 13

M3.1 9 21 15.5 M31.5_T0E0 8 20 16.6

M29.1 3 25 3 M55.2_T0E0 3 25 2.5

M54.1 14 23 1 M52.2_T0E0 13 23 0.9

M62.3 26 20 16.2 M40.1_T0E0 22 21 15.9

M18.6 4 25 17.2 M64.8_T0E0 4 25 17.4
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Legend for Table 5.3:
a unique motif identifier build as Mxx.yy where yy is the identifier of the run and xx is the
identifier of the motif in the run;
b number of TSSs with an occurrence of the motif of estimated posterior probability at
least 0.5, as computed across the last 10,000 MCMC sweeps; this number was used to order
the motifs;
d width of the PWM corresponding to the number of columns included with posterior
probability above 0.5;
f estimated number of Watson-Crick paired columns in the PWM reflecting the degree of
palindromness;
q matched motifs from other settings at a cutoff value of 0.25;
r number of TSSs (explained in b) for the corresponding motif;
s width of the PWM (explained in d) for the corresponding motif;
t estimated number of Watson-Crick paired columns in the PWM (explained in f ) for the
corresponding motif.
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5.4 Comparisons with other tools

In this section, I discuss the results obtained by applying some of the popular tools for de
novo motif discovery on our dataset. We wanted to assess the relative performance of our
developed method in comparison to these tools. Namely, we examined the following tools:
MEME, RPMCMC, FIRE, MatrixREDUCE, and RED2 (see Chapter 2 for a presentation
of these approaches). MEME and RPMCMC do not incorporate expression data in their
searches and they require as input only the set of sequences in which we are aiming to
detect motifs. On the contrary, FIRE, MatrixREDUCE, and RED2 are equipped to handle
expression data in their searches. Both MatrixREDUCE and RED2 accept two dimensional
expression data as an input. FIRE requires that the user cluster the expression data first,
since it accepts only one dimensional expression data.

5.4.1 Comparison with MEME

The first tool that was chosen for comparison was MEME. Here, I review the parameters
of interest to us, and those that needed to be changed for the sake of fair comparison with
our tool. After that, I show the final results for three different sets of settings.

MEME parameters

We used the default values for most of the parameters. Two parameters were specifically of
interest for us, "-bfile" and "-pal". The "-bfile" option incorporates a Markov background
model file in order to account for biased distribution of nucleotides and groups of nucleotides
in the sequences. A 0-order (by default) model adjusts for single letter biases, a 1-order
model adjusts for dimer biases (e.g., GC content in DNA sequences), etc. We tested
MEME for both 0-order and 3-order background models. The 0-order was selected in
order to assess the results of the tool under default parameters values, while the 3-order
was selected because the final results of our tool were obtained with a Markov background
model of order three. The "-pal" option forces MEME to search only for palindromic motifs
in the input DNA data. This parameter was of interest for us since we noticed that many
of the motifs discovered by our tool, when applied on data from L. monocytogenes, were
palindromic.

There were other set of parameters that needed to be changed for the sake of compar-
ison. For instance, "-maxw" is a parameter that set the maximum width for the motifs
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under search, by default this parameter is equal to 50, we adjusted it to 25 (similar to our
tool). The option "nmotifs" indicates the number of motifs under search, this parameter
was set to 75, since it is the number used by our tool to obtain the final results (justification
of this choice is available in section 5.1).

Results of MEME

We ran MEME three times with three different set of parameters: in the first run we used
the default parameters, in the second run we changed the background model to a 3rd order
Markov model, while in the third run we were searching for palindromic motifs. In the
three searches, "nmotifs" was set to 75, "maxw" was set to 25, and the rest of parameters
were kept at their default values.

The outputs of the three runs are shown in Figure 5.5, in sub-figures A,B, and C,
respectively. The motifs are ordered from top to bottom according to their E-value, we
presented only motifs above a cutoff E-value of 1.

5.4.2 Comparison with Rpmcmc

Rpmcmc takes as an input the sequence data and it produces two output files. One for the
PWMs of the discovered motifs, and the second is for the positions of these motifs inside
the sequences.

We performed three runs on our data using RPMCMC. The first one was applied using
the default set of parameters (number of replicas = 50, number of MCMC iterations =
520, and number of burn-in iterations = 20), the tool returned 158 motifs. On the second
run, we changed the number of replicas to 75 while keeping the rest of parameters to their
default values, the tool returned 56 motifs. In the third run, we changed the order of the
background model to 3 (similar to the Markov order estimated by a dedicated parameter
in our developed approach), while the rest of parameters where kept at their default values,
the tool returned 249 motifs. In the three runs, the maximum width allowed for motifs
was set to 25. In most of the cases, the discovered motifs were of short length.

The relation between the number of discovered motifs and the selected values for pa-
rameters was hard to understand. The results were not reproducible, in the sense that
running the tool twice using the same set of parameters produced different results. We
also noticed that Rpmcmc returned too many motifs and in a very short time relative
to any other tool. These observations have given us the impression that the results of
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A) 0-order background model

4.4e-283

8.8e-106

8.8e-039

8.2e-017

6.2e-008

1.3e-005

4.4e-003

B) 3-order background model

2.8e-262

7.5e-105

2.6e-033

5.0e-013

4.7e-011

6.4e-007

1.3e-003

C) 0-order model and searching 
for palindromic motifs

1.6e-045

8.3e-007

8.3e-007

8.3e-007

Figure 5.5: The output results of MEME in the three runs, ordered from top to bottom according
to their E-value (shown on the right of each motif). Sub-figure A shows the returned motifs
of running MEME with the default parameters, among the discovered motifs we could identify
matches with our results, from up to bottom: SigA (-10 box), M59.9 (T-rich element), RBS,
unknown, M70.6, CcpA, and Fur. Sub-figure B shows the returned motifs of running MEME
after setting the background model to a 3rd order Markov model, among the 7 presented motifs
there are 6 similar to the first run. Sub-figure C shows the returned motifs of running MEME
while specifically searching for palindromic motifs, no additional motifs were discovered.
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Rpmcmc are not reliable, accordingly we did not investigate the results any further.

5.4.3 Comparison with FIRE

We have downloaded the source code of FIRE to run it locally on our data. Since FIRE
makes use of expression data (but only one dimensional) in searching for statistically signif-
icant motifs, we prepared our expression data file before running the tool. The input files
were: sequence data file and another file containing cluster membership for each sequence.
The clustering was done using the average-linkage clustering method on the pairwise dis-
tances of the expression matrix. The tree was cut at a height value of 0.6 (corresponding
to Pearson correlation of 0.4), then all genes that belonged to a cluster containing at least
20 members kept the cluster number as their identifier (a total of 14 clusters satisfied this
criteria), and the rest of genes were assigned the same identifier, resulting in a total of 15
clusters.

Since applying this tool on our data using the default values did not result in discovering
any motifs, we tried to modify the set of parameters. The two parameters that were changed
from the default, after some analysis, were "k" and "jn_t". Where, "k" defines the length
of the k-mer seeds (default is 7), and it was set by us to 5, while jn_t takes values between
0 and 10. This parameter defines the robustness index threshold (default is 6), it was
set by us to 0 (thereby discarding the robustness test). Using this set of parameters, the
tool returned 5 short motifs, shown in Figure 5.6, that did not appear biologically relevant
which may not be surprising given that we discarded the robustness test.
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Figure 5.6: The motifs discovered by applying FIRE
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5.4.4 Comparison with REDUCE-Suite-v2.2

Out of the tested tools, MatrixREDUCE with RED2 are the most related to our method,
since they can handle two dimensional expression data. This makes their results more
relevant to compare with our developed method. When applying MatrixREDUCE, we
decided not to apply the tool on the original expression matrix composed of 165 columns
(log 2 expression ratio between pairs of conditions), but to use the output of the PCA
analysis (explained in subsection 4.2.2) as our expression data. The tool takes as input
beside this expression data file, the sequence data.

The results obtained by applying MatrixREDUCE, using the default set of parameters,
on our data are illustrated in figure 5.7. The tool returned only four motifs of maximum
width 8, out of which only SigB (-10 box) was in common with our discovered motifs.

Figure 5.7: The motifs discovered by applying MatrixREDUCE with the default set of parameters.
SigB (-10 box) is shown on the upper left of the figure.

5.4.5 Comparison with RED2

RED2 handles two dimensional expression data like MatrixREDUCE, but with as few
assumptions as possible about how the presence/absence of a specific motif is linked to the
expression profile (see subsection 2.4.2). These two facts, make RED2 the closest tool to
ours from this point of view. The input used for RED2 was similar to MatrixREDUCE, the
sequence data file and expression covariates resulted from applying PCA on the original
expression matrix.
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RED2 offers a user-friendly web interface, but with limited freedom on the choice of
parameters, for this reason it was necessary to download the software and run it locally.
When we applied RED2 on our sequence and expression data using the default parameters
we ended up finding no motifs. We had then to do analysis on the different parameters
individually in order to detect those that needed to be adjusted.

I briefly recall the procedure of RED2 because it will be needed for understating the
tuning of the parameters. RED2 starts by computing the score of every possible q-mer (q =
7 by default) according to one of the scoring function (mutual information by default, also
called global criteria) and then proceeds with a local optimization of the highest scoring
q-mers (those with an FDR below a given threshold), called the seeds, transforming them
into better scoring motifs.

Two parameters were specifically essential to adjust to our data size, "-F" which cor-
responds to the False Discovery Rate (FDR) and "-K" which represent the neighborhood
size. The FDR is set by default to 0.001 which is very low for our data set, this value
was set by us to 0.1. The neighborhood size is by default set to 200, which may not be
the most relevant value in the case of bacteria where the average number of occurrences is
usually less than that.

Figure 5.8 shows the results obtained when we applied RED2 on our data set. Using
the default values for parameters but changing only the false discovery rate (FDR) to be
0.1 instead of 0.001, the tool returned four short motifs, only SigB (-10 box) was common
with our discovered 40 motifs. When we set "-K" to 10, while keeping the FDR value at
0.1, the tool returned the 5 motifs, we could not link any of them with our results.
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id logo score #genes expression distances strand match GO terms

#1 21.639 324

→
1.42e-10

#2 11.662 79

#3 9.657 15

#4 8.185 32

id logo score #genes expression distances strand match GO terms

#1 20.306 11

#2 13.574 12

#3 13.049 7

#4 8.556 136

#5 8.124 14

A) Default parameters with FDR=0.1

 B) Default parameters with FDR=0.1 and neighbourhood size=10

Figure 5.8: The results of RED2 in two different settings of parameters. Sub-figure A shows the
results when only FDR is changed, while sub-figure B shows the results when both the FDR and
neighborhood size are changed. We noticed that accounting for a bigger neighborhood size has
resulted in discovering motifs that are highly associated with expression data (like SigB), while
in the case of a smaller neighborhood, the motif had more freedom to extend.
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Chapter 6

Discussion

This chapter aims to discuss the directions of future studies that may extend the work
realized during my PhD, including the possible extensions for our developed model and
the challenges that will accompany these extensions. The chapter is divided into three
parts. The first part discusses several choices that where made in the thesis. The second
part reviews possible extensions on the model. The third concerns the application of the
approach, including data preparation and analysis of other data-sets.

6.1 Looking backward: comparison with TreeMM and

choices made for the validation of the approach

One of the aims of this PhD project was to develop a coherent statistical framework to
address the task of discovering the main regulons of a bacteria by making use of two types
of increasingly available transcriptome data : precise information of TSS and a wealth of
information on condition-dependent expression profiles. From the beginning, our goal was
to build this approach on PWM-based statistical models of the DNA sequences and to
incorporate transcriptome data as an additional source of information on the sequences.
As already discussed in Section 2.4.2, this point of view contrasts with another, more
mechanistic, point of view that consider the transcription factor binding motifs as sequence
features that should be able to explain the transcriptome data. Our rational was to preserve
the benefits of the use of simple well-established probabilistic sequence models, making it
also possible to find motifs that are not connected to the transcriptome data. By adopting
this modeling point of view, our work can be seen as an extension of the TreeMM model
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developed by Nicolas et al. (2012).
The generality of the previous model (TreeMM) was however limited since it was specif-

ically tailored for the discovery of Sigma factor binding sites whose specificity is to define
and partition the promoter space (Gruber and Gross, 2003). Indeed, for Sigma factors,
there is (or at least we expect) only one motif occurrence per sequence. This fact, per se,
make it unnecessary to model motifs overlaps which is a huge complication in the algorithm
and makes that the C++ code for the work described in this thesis had to be developed
from scratch.

Besides motif occurrences overlap, the other most significant difference between the two
models is in the specific framework that serves to incorporate the expression data. The
TreeMM model takes as input a single hierarchical clustering tree which seems particularly
relevant when the goal is to find Sigma factor binding sites since Sigma factors do partition
the promoter space and implement a very first and strong level of regulation of the ex-
pression. Furthermore since only one occurrence of Sigma factor binding motifs is modeled
per sequence, the distribution of all the motifs in the sequence set given the tree needs
to be modelled jointly by a single probabilistic model. The model proposed by Nicolas
et al. (2012) adds only two parameters compared to a simple mixture model. In contrast,
our approach adopted a different modeling framework whose goal is to accommodate more
subtle effects that could result from the regulation of a same gene by multiple factors.
Such cases might be better represented by a position in a multidimensional space than by
the position in a tree structure. The extended Probit model that we propose is able to
incorporate information on the position of the genes in the expression space encoded both
in the form of a tree and in the form of coordinates in a multidimensional space. It allows
the simultaneous use of different representations of the expression space and automatic
selection of those that are the most relevant for each motif.

When listing the differences between our model and TreeMM, one should also note
that Sigma factors are composite (two-element) motifs that are found at a very specific
distance from the TSS and this distance is common to all Sigma factors. In Nicolas et al.
(2012), the modeling of the positions of motif occurrences in the sequence relied therefore
on a single set of parameters instead of one set of parameters km, dm, λm per motif in our
model. Furthermore, most of the randomness in the positions of occurrences of the sigma
factor binding motifs stemmed from uncertainty on the exact position of the TSS which
did not have the 1 bp resolution allowed by the dedicated RNA-Seq protocol for genome-
wide TSS mapping that we used here (Wurtzel et al., 2012). We can also note that Sigma
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factor binding motifs do not exhibit palindromic structures and this aspect of our model
is therefore completely new with respect to TreeMM (while the modeling of two-element
motifs is specific to TreeMM).

As part of the List_Maps project (see section 1.3), one goal of the PhD work was to
refine our knowledge of the main regulons of the bacterium L. monocytogenes. While the
transcriptional regulatory network of this bacterium is not known as well as those of the
two main model bacteria (the gram-negative E. coli and the gram-positive B. subtilis),
a substantial body of knowledge is nevertheless available due to experimental work on
this bacterium and its proximity to other well-known gram-positive bacteria including B.
subtilis. We decided to use this knowledge as a reference point to validate the practical
relevance of our approach after carefully checking the mathematics and implementation of
the algorithm by the simulation approach briefly described in section 3.1.4. In this process,
we bypassed a study of synthetic data sets that would have been particularly tedious to
simulate given the considerable diversity of (and uncertainty on) the characteristics of the
motifs by which we are interested. These are expected to differ in terms of characteristics
of the PWM (width, information content, palindromic structure), but also number of
occurrences and randomness of the distance to the TSS, and type of link to the expression
covariates. In practice, we did several back-and-forth between the development and tuning
of the methodology and the analysis of the results on this real data set until finding the
settings described in this work that give results that are interesting in terms of biology.

6.2 Extensions of the model and improvements of the

algorithm

In the biological literature (see chapters 1 and 2), it has been shown that multiple occur-
rences of the same motif per sequence is a common phenomenon in the bacterial promoter
regions. Accordingly, accounting for multiple occurrences when developing a de novo motif
discovery tool is indeed a desirable element. Our developed tool, in its current version,
assumes one or zero motif occurrences per sequence. A workaround to this issue without
having to change the current model is to consider motifs that were already discovered in
one run of the algorithm, and search for further occurrences of them in the post processing
of the results. Alternatively, a model extension that would account for multiple occurrence
is possible but would be faced with many challenges. Out of these challenges, there are:
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• Modeling overlaps between motifs of the same kind, since the global mechanism
of the algorithm overlapping between motifs should be allowed (reasons explained in
Section 2.5), but when two motifs of the same kind overlap, updating some parameters
(ex. motif width) will be more complicated compared to the case of overlaps between
two different motifs.

• Extending the regression model used to incorporate expression data is another model-
ing obstacle, since the used model gives a probability that a specific sequence contains
the motif, it would not be straightforward to extend this model to a more complex
one that as well gives an indication on the number of motifs contained by a sequence.
One option could be to introduce a new independent variable taking values in {1, . . .}
that would serve, when the motif is predicted present based on the probit model, to
account for the number of occurences found in the sequence (e.g. via a Geometric
distribution). In this case, no link is established between expression data and the
presence of more than one occurrence.

Modeling the variable B, which is responsible on assigning membership for nucleotides
when motif occurrences overlap, can be either θ-dependent weight mixture model (account-
ing for information content), or equal-weight mixture model. This can easily be extended
even further by introducing a tuning parameter that indicates to which extent should the
assignment of B be dependent on the information content. In our current framework,
updating B according to the information content is not applicable in the case of search-
ing for palindromic motifs. Accounting simulateneously for θ-dependent weight mixture
model and palindromic structures would require to develop a new MCMC step to up-
date the palindromic structure. This is challenging, and would probably come at a cost
in terms of mixing of the MCMC algorithm, since direct sampling from the conditional
distribution of the parameters that describe the palindromic structure seems impossible
with the θ-dependent weight mixture model for motif overlaps. Therefore, a Reversible-
Jump Metropolis-Hastings step would have to be used instead of the dimension-changing
Gibbs-step.

Updating the reference position of a motif is done without updating the positions of the
breakpoints of the piecewise constant probability density function that model the position
of occurrence of the motif in the sequence. As a result of this choice, for an undetermined
number of iterations the update of the reference position was probably rejected. One
extension would be to do a simultaneous adjustment of the positions of the breakpoints
with the update of reference positions, which should, in principle, improve the mixing of
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the algorithm. Another relatively easy, and probably useful, improvement of the MCMC
algorithm would be to implement the simultaneous update of the coefficients of the probit
model that link the values of the active expression covariates to the probability of motif
occurrence.

Modeling two-component (aka bipartite) motifs with a gap between them is another
possible extension, Although, there are other ways to detect such kind of motifs without
directly modeling them. For instance, accounting for dependency between occurences of
different motifs may be another, and more general way, to address the problem, since these
motifs can be regards as two motifs that always appear together. Of note, even without
explicit modelling dependencies between motif occurences, we were able to detect bipartite
motifs such as the sigma factor binding sites (SigA and SigB), probably helped by the
modeling of exact distance to the TSS and of accounting for expression data.

6.3 Additional analyses

In chapter 4, we presented three different approaches that were used by us to summarize the
expression matrix (PCA, ICA, and hierarchical clustering). These dimensionality reduction
techniques are known to remove the redundancy of the data and reduced the columns of the
expression matrix to 50 covariates instead of 165 covariates (number of comparisons in the
original expression matrix). We do not know which approaches are the best to summarize
expression data, nor even to which extent summarizing the dimension reduction is really
useful. Thus, comparing the different ways of incorporation expression data, including
using the original expression matrix without summarizing, in terms of the quality of the
output results, would be indeed interesting.

One other type of auxiliary data, beside expression and positional data, that can be
incorporated to our tool is the available information on known motifs (motifs tend to be
more conserved than regulons). This extension would not require important modifications
to the model since it can be envisioned to incorporate this information into the priors for
the PWMs. It would probably improve the sensitivity of the motif discovery.

The results presented in this thesis consisted of the output of applying our methodology
to the bacterium (Listeria monocytogenes) which was the main focus of the European
project (List_MAPS). An obvious direction for future works would be to apply our method
on other data sets. To name few candidates, Bacillus subtilis, Staphylococcus aureus, and
Flavobacterium psychrophilum, are bacteria on which a high quality expression data sets
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have been collected as a result of collaborations between MaIAGE and wet biology labs.
The algorithm for updating the model parameters is written in the C++ language and

it has been uploaded online with an open access, one possible future direction is to build
a dedicated website to provide a more friendly interface for the developed tool. Among
the challenges, is the running time of the algorithm (a couple of weeks) which may not be
expected from a user of a web interface.

The way we extended the probit regression model to binarize the vector of predictors
and to take into account trees is, to our knowledge, new and could be generalized to other
applications. One benefit, as it has been explained in Chapter 3 is that it is possible to
use this model even when the dimension of the data used as predictors is relatively high.
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Résumé en français

Les facteurs de transcription jouent un rôle clé dans la médiation de l’adaptation des
bactéries aux conditions environnementales. Des algorithmes puissants et des approches
sophistiquées ont été développés pour la découverte de leurs sites de liaison à l’ADN, mais
l’identification de novo automatique des principaux régulons d’une bactérie à partir des
données du génome et du transcriptome reste un défi. L’approche que nous proposons ici
pour traiter cette tâche est fondée sur un modèle probabiliste de la séquence d’ADN qui
peut utiliser des informations précises sur la position des sites de départ de la transcription
et des profils de transcription mesurés dans une collection de conditions expérimentales. Les
principales nouveautés introduites consistent à permettre les chevauchements d’occurrences
de motifs et à incorporer des covariables résumant les profils de transcription dans la prob-
abilité d’occurrence dans une région promotrice donnée. Chaque covariable peut corre-
spondre à la coordonnée du gène sur un axe (obtenu par exemple par PCA ou ICA) ou à
sa position dans un arbre (obtenue par exemple par un regroupement hiérarchique). Tous
les paramètres sont estimés dans un cadre bayésien à l’aide d’un algorithme MCMC trans-
dimensionnel dédié. Cela permet d’ajuster simultanément, pour de nombreux motifs et
avec de nombreuses covariables de transcription, la largeur des matrices de poids-position
correspondantes, le nombre de paramètres permettant de décrire les positions par rapport
au site de début de la transcription, et la sélection des covariables pertinentes.

Le manuscrit de thèse est divisé en six chapitres. Le premier et deuxième chapitres
introduisent, respectivement, le contexte biologique et le contexte méthodologique de ce
travail. Le troisième chapitre présente le noyau méthodologique de la nouvelle approche
développée au cours de cette thèse (modèle probabiliste, inférence bayésienne). Le qua-
trième chapitre est dédié à la collecte et à la préparation des données (séquences et profils
de transcription), qui englobe les techniques de réduction de dimensionnalité ayant servi à
résumer la position des promoteurs dans l’espace des profils de transcription . Le cinquième
chapitre est consacré à la présentation des résultats obtenus sur la bactérie Listeria mono-

149



cytogenes qui était au centre du projet européen List_MAPS dans lequel ce travail a eu
lieu. Dans ce chapitre, les résultats sont également comparés à ceux obtenus avec d’autres
méthodes de découverte de motifs. Le dernier chapitre aborde brièvement les orientations
futures qui pourraient être envisagées pour poursuivre le travail réalisé dans le cadre de ce
projet de thèse.

Le dernier chapitre a pour objectif de discuter des orientations d’études futures suscep-
tibles de prolonger le travail réalisé durant ma thèse, y compris les possibles extensions pour
notre modèle développé et les défis qui seront accompagner ces extensions. Le chapitre est
divisé en trois pièces. La première partie traite de plusieurs choix qui ont été faits dans le
thèse. La deuxième partie examine les extensions possibles du modèle. Le troisième con-
cerne l’application de l’approche, y compris la préparation et analyse d’autres ensembles
de données.
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Regard en arrière: comparaison avec TreeMM et choix

effectués pour la validation de l’approche

L’un des objectifs de ce projet de thèse était de développer une approche cohérente cadre
statistique permettant de découvrir les principales régulons d’une bactérie en utilisant deux
types de plus en plus données de transcriptome disponibles : informations précises sur le
TSS et richesse d’informations sur les profils d’expression dépendants de la condition. Du
Au départ, notre objectif était de construire cette approche sur la base de PWM. modèles
statistiques des séquences d’ADN et à incorporer le transcriptome les données en tant
que source d’information supplémentaire sur les séquences. Comme déjà discuté dans la
section 2.4.2, ce point de Cette vision contraste avec un autre point de vue, plus mécaniste,
qui considérer les motifs de liaison du facteur de transcription comme des caractéristiques de
séquence cela devrait pouvoir expliquer les données du transcriptome. Notre rationnel était
de préserver les avantages de l’utilisation de techniques simples et bien établies. modèles
de séquence probabilistes, permettant également de trouver des motifs qui ne sont pas
connectés aux données du transcriptome. En adoptant cette modélisation, notre travail
peut être considéré comme une extension de la Modèle TreeMM développé par Nicolas
et al. (2012).

La généralité du modèle précédent (TreeMM) était cependant limitée car il a été spé-
cialement conçu pour la découverte du facteur Sigma sites de liaison dont la spécificité est
de définir et de partitionner le promoteur space (Gruber and Gross, 2003). En effet, pour
les facteurs Sigma, il n’existe (ou du moins on s’y attend) qu’une seule occurrence de motif
par séquence. Ce fait, per se, rend inutile la modélisation motifs se chevauchent qui est une
énorme complication de l’algorithme et fait que le code C++ pour le travail décrit dans
cette thèse devait être développé à partir de zéro.

Outre les occurrences de motifs qui se chevauchent, l’autre plus important La dif-
férence entre les deux modèles se situe dans le cadre spécifique sert à incorporer les données
d’expression. Le modèle TreeMM prend comme entrer un seul arbre de clustering hiérar-
chique qui semble particulièrement pertinent lorsque l’objectif est de trouver des sites de
liaison au facteur Sigma puisque Les facteurs Sigma partitionnent l’espace promoteur et
implémentent une premier et fort niveau de régulation de l’expression. en outre dans la
mesure où une seule occurrence de motifs de liaison au facteur Sigma est modélisée par
séquence, la distribution de tous les motifs de l’ensemble de séquences étant donné que
l’arbre doit être modélisé conjointement par un seul probabiliste modèle. Le modèle pro-

151



posé par Nicolas et al. (2012) n’ajoute que deux paramètres comparés à un modèle de
mélange simple. En revanche, notre Cette approche a adopté un cadre de modélisation
différent visant à prendre en compte des effets plus subtils pouvant résulter de la réglemen-
tation d’un même gène par plusieurs facteurs. Ces cas pourraient être mieux représenté par
une position dans un espace multidimensionnel que par le position dans une arborescence.
Le modèle Probit étendu que nous proposer est capable d’intégrer des informations sur la
position du des gènes dans l’espace d’expression codé à la fois sous la forme d’un arbre et
sous la forme de coordonnées dans un espace multidimensionnel. Cela permet au utilisation
simultanée de différentes représentations de l’espace d’expression et sélection automatique
de ceux qui sont les plus pertinents pour chaque motif.

En énumérant les différences entre notre modèle et TreeMM, il convient de Notez égale-
ment que les facteurs Sigma sont des motifs composites (à deux éléments) qui se trouvent
à une distance très précise du TSS et cette distance est commun à tous les facteurs Sigma.
Dans Nicolas et al. (2012), le modélisation des positions des occurrences de motif dans
la séquence utilisée donc sur un seul ensemble de paramètres au lieu d’un ensemble de
paramètres km, dm, lambdam par motif dans notre modèle. En outre, la majeure partie
du caractère aléatoire des positions de la présence de motifs de liaison au facteur sigma
est due à l’incertitude sur la position exacte du TSS qui n’avait pas le 1 bp résolution
autorisée par le protocole dédié RNA-Seq pour le génome entier Le mappage TSS que nous
avons utilisé ici (Wurtzel et al., 2012). nous pouvons noter également que les motifs de
liaison au facteur Sigma ne présentent pas de trouble palindromique. structures et cet
aspect de notre modèle est donc complètement nouveau par rapport à TreeMM (alors que
la modélisation de motifs à deux éléments est spécifique à TreeMM).

Dans le cadre du projet List_Maps (voir la section 1.3), L’objectif du travail de doctorat
était d’affiner nos connaissances des principaux régulons de la bactérie L. monocytogenes.
Tandis que le réseau de régulation de la transcription de cette bactérie n’est pas connu
ainsi que ceux des deux principales bactéries modèles (la bactérie gram-négative E. coli
et le gram-positif B. subtilis), une valeur substantielle un corpus de connaissances est
néanmoins disponible grâce au travail expérimental sur cette bactérie et sa proximité avec
d’autres bactéries à Gram positif bien connues bactéries comprenant sl B. subtilis. Nous
avons décidé d’utiliser cette connaissance comme point de référence pour valider la perti-
nence pratique de notre approche après avoir soigneusement vérifié les mathématiques et
la mise en œuvre de l’algorithme par la méthode de simulation brièvement décrite dans
section 3.1.4. Dans ce processus, nous avons contourné une étude sur des ensembles de
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données synthétiques qui auraient particulièrement fastidieux de simuler étant donné la
diversité considérable (et incertitude sur) les caractéristiques des motifs par lesquels nous
sont intéressés. Ceux-ci devraient différer en termes de caractéristiques du PWM (largeur,
contenu informationnel, palindrome structure), mais aussi le nombre d’occurrences et le
caractère aléatoire des distance au TSS et type de lien aux covariables d’expression. Dans
pratique, nous avons fait plusieurs allers-retours entre le développement et mise au point
de la méthodologie et de l’analyse des résultats sur ce réel ensemble de données jusqu’à
trouver les paramètres décrits dans ce travail qui donnent des résultats intéressants en
biologie.
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Extensions du modèle et améliorations de l’algorithme

Dans la littérature biologique (voir les chapitres 1 et 2), il a été démontré que plusieurs
occurrences du même motif par séquence sont un phénomène courant dans les régions
promotrices bactériennes. En conséquence, la comptabilisation de plusieurs occurrences
lors du développement d’un outil de découverte de motif de novo est en effet un élément
souhaitable. Notre outil développé, dans sa version actuelle, suppose une ou zéro occur-
rences de motif par séquence.

Une solution de contournement à ce problème sans avoir à changer le modèle actuel
consiste à prendre en compte les motifs déjà découverts dans une exécution de l’algorithme
et à en rechercher d’autres occurrences dans le post-traitement des résultats. Alternative-
ment, une extension de modèle qui prend en compte plusieurs occurrences est possible mais
serait confrontée à de nombreux défis.

Parmi ces défis, il y a:

• La modélisation chevauche des motifs du même type, car le mécanisme global de
l’algorithme se chevauchant doit être autorisé (raisons expliquées à la section 2.5),
mais lorsque deux motifs du même type se chevauchent, actualise certains paramètres.
(ex. largeur du motif) sera plus compliqué que dans le cas de chevauchements entre
deux motifs différents.

• Extension du modèle de régression utilisé pour incorporer une expression les données
sont un autre obstacle à la modélisation, car le modèle utilisé donne une probabilité
qu’une séquence spécifique contienne le motif, il serait pas simple d’étendre ce modèle
à un modèle plus complexe qui donne également une indication sur le nombre de
motifs contenus par une séquence.

• Une option pourrait être d’introduire un nouveau variable prenant des valeurs dans
{1, . . .} qui serviraient, lorsque le motif est prédit présent sur la base du modèle
probit, pour tenir compte de le nombre d’occurrences trouvées dans la séquence (par
exemple via un fichier géométrique) Distribution).

• Dans ce cas, aucun lien n’est établi entre données d’expression et la présence de plus
d’une occurrence.

Modélisation de la variable B, responsable de l’affectation l’adhésion aux nucléotides
lorsque les occurrences de motifs se chevauchent, peut être soit un modèle de mélange
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pondéral dépendant de theta (représentant contenu de l’information), ou un modèle de
mélange à poids égal. Cela peut facilement être étendu encore plus loin en introduisant un
paramètre de réglage qui indique dans quelle mesure l’affectation de B devrait dépendre
de le contenu de l’information.

Dans notre cadre actuel, mettre à jour B selon le contenu de l’information n’est pas
applicable dans le cas de recherche de motifs palindromiques.

Comptabilité simultanément pour Modèle de mélange pondéral theta et structures
palindromiques développerait une nouvelle étape MCMC pour mettre à jour le système
palindromique structure.

C’est un défi et aurait probablement un coût en termes de mélange de l’algorithme
MCMC, car l’échantillonnage direct à partir de la distribution conditionnelle des paramètres
décrivant la structure palindromique semble impossible avec le theta -dependent modèle
de mélange pondéral pour les recouvrements de motifs. Par conséquent, un saut réversible
L’étape Metropolis-Hastings devrait être utilisée à la place du changement de dimension
Gibbs-step.

La mise à jour de la position de référence d’un motif se fait sans mise à jour les positions
des points d’arrêt de la probabilité constante par morceaux fonction de densité qui modélise
la position d’occurrence du motif dans la séquence. A la suite de ce choix, pour un nombre
indéterminé itérations, la mise à jour de la position de référence était probablement rejeté.

Une extension serait de faire un ajustement simultané de les positions des points d’arrêt
avec la mise à jour de référence positions, qui devraient, en principe, améliorer le mélange
des algorithme.

Une autre amélioration relativement facile, et probablement utile, l’algorithme MCMC
consisterait à mettre en œuvre la mise à jour simultanée de les coefficients du modèle probit
qui relient les valeurs du expression active covarie à la probabilité d’occurrence du motif.

Modélisation de motifs à deux composants (ou bipartites) avec un espace entre eux
est une autre extension possible, bien qu’il existe d’autres moyens de détecter ce genre de
motifs sans les modeler directement. Pour exemple, la prise en compte de la dépendance
entre les occurrences de différentes les motifs peuvent être un autre moyen, plus général,
de résoudre le problème, puisque ces motifs peuvent être considérés comme deux motifs
qui apparaissent toujours ensemble.

À noter, même sans dépendances de modélisation explicites entre occurrences de motifs,
nous avons pu détecter des motifs bipartites tels que comme sites de liaison du facteur sigma
(SigA et SigB), probablement aidés par la modélisation de la distance exacte au TSS et de

155



la comptabilisation des données d’expression.
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6.4 Analyses supplémentaires

Dans le chapitre 4, nous avons présenté trois différents les approches que nous avons
utilisées pour résumer la matrice d’expression (PCA, ICA et classification hiérarchique).
Ces dimensionnalité les techniques de réduction sont connues pour éliminer la redondance
des données et réduit les colonnes de la matrice d’expression à 50 covariables au lieu de 165
covariables (nombre de comparaisons dans le rapport initial matrice d’expression). Nous
ne savons pas quelles approches sont les meilleures pour résumer les données d’expression,
ni même dans quelle mesure résumant les la réduction des dimensions est vraiment utile.
Ainsi, en comparant les différents moyens d’incorporer des données d’expression, y compris
l’utilisation du matrice d’expression sans résumer, en termes de qualité de la résultats de
sortie, serait effectivement intéressant.

Un autre type de données auxiliaires, à côté de l’expression et de la position Les don-
nées pouvant être intégrées à notre outil sont les données disponibles. informations sur les
motifs connus (les motifs ont tendance à être plus conservés que les régulons). Cette exten-
sion ne nécessiterait pas de modifications importantes le modèle puisqu’il est envisageable
d’intégrer cette information dans les priors pour les PWM. Cela améliorerait probablement
la sensibilité de la découverte du motif.

Dans la plupart des cas, les valeurs précédentes ont été sélectionnées pour être non
informatives en raison du manque de connaissances. Une autre approche consisterait à
intégrer les informations disponibles sur les motifs connus lors de la sélection des priorités
pour les PWM.

Les résultats présentés dans cette thèse consistaient en la sortie de appliquer notre
méthodologie à la bactérie (Listeria monocytogenes) qui était au centre du projet européen
(Liste_MAPS). Une direction évidente pour les travaux futurs serait d’appliquer notre
méthode sur d’autres ensembles de données. Pour nommer quelques candidats, textit
Bacillus subtilis, Staphylococcus aureus et textit Flavobacterium psychrophilum, sont des
bactéries sur lesquelles une grande des ensembles de données d’expression de qualité ont
été collectés à la suite de les collaborations entre MaIAGE et les laboratoires de biologie
humide.

L’algorithme de mise à jour des paramètres du modèle est écrit en C++ langue et il
a été téléchargé en ligne avec un accès ouvert, un L’orientation future possible consiste à
créer un site Web dédié offrant une interface plus conviviale pour l’outil développé. Parmi
les défis, est la durée d’exécution de l’algorithme (quelques semaines) qui peut ne pas être
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être attendu d’un utilisateur d’une interface Web.
La façon dont nous avons étendu le modèle de régression probit pour binariser le vecteur

de prédicteurs et de prendre en compte les arbres est, à notre connaissance, une nouvelle
et pourrait être généralisé à d’autres applications. Un avantage, comme il a expliquée
au chapitre 3 est qu’il est possible de utiliser ce modèle même lorsque la dimension des
données utilisée comme prédicteurs est relativement élevé.

Dans deux dimensions, les cinq paramètres du modèle probit étendu peuvent décrire
librement la position des commutateurs sur chaque axe, mais seuls trois paramètres sont
utilisés pour décrire la probabilité d’occurrence de motif dans les quatre régions définies
par les commutateurs. En effet, lorsque la dimension d augmente le nombre (2d) de régions
délimitées par les commutateurs augmente de façon exponentielle, mais le nombre (1 + 2d)

de paramètres n’augmente que de manière linéaire. Cela permet d’utiliser ce modèle même
lorsque la dimension est relativement élevée.
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Supplementary materials

Supplementary file 1 (S1): Convergence plot, sequence
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Titre : La construction du réseau de régulation transcriptionnelle

Mots clés : élément régulateur; profil d’expression; Facteur de transcription; construction; Biologie des
systèmes

Résumé : Une part prépondérante de la régulation
au niveau transcriptionnelpasse par la modulation du
taux d’initiation de la transcription. Chez les bactéries,
l’initiation de la transcription implique la reconnais-
sance par le facteur sigma de l’ANR polymérase d’un
motif de séquence particulier localisé approximative-
ment 10 bp enamont du site d’initiation de la transcrip-
tion (TSS). Elle est modulée par la fixation de facteurs
de transcription qui reconnaissent d’autres motifs à
proximité. La technologie RNA-Seq donne accès au
repertoire des TSSet des unités de transcriptions et
offre donc des perspectives renouvelées pour s’atta-
quer au problème de l’identification des motifs de fixa-
tion des facteurs de transcription. Ce travail de thèse
viser à évaluer les outils existants et à développer
de nouvelles méthodes pour la prédiction des sites
de fixation des facteurs de transcription en combi-
nant l’information des profils d’expression et des po-
sitions des TSS. Plusieurs approches fondées sur les
modèles de matrices poids-position (PWM) vont être

explorées pour étendre le modèle de mélange clas-
siquement utilisé en relâchant l’hypothèse selon la-
quelle les motifs correspondants aux différents sites
de fixations apparaissent indépendamment dans les
différentes régions promotrices. Dans les nouveaux
modèles, nous prendrons explicitement en compte
une probabilité supérieure d’apparition d’un même
motif dans des promoteurs dont les profils d’activité
sont similaires. Une attention particulière sera aussi
portée à la position du motif par rapport au TSS
et au site de fixation du facteur sigma. En parallèle
des développements méthodologiques nous travaille-
rons aussi sur l’utilisation de ces approches pour
reconstruire le réseau des régulations transcription-
nelles chez L. monocytogenes en s’appuyant sur les
données de la littérature et du projet List MAPS. En-
fin, nous envisageons d’utiliser l’information sur le
réseau de régulation pour étudier un point particulier
qui serait pertinent pour le projet List MAPS avec un
modèle dédié.

Title : Transcriptional regulatory network construction

Keywords : regulatory element; Systems biology; expression profile; Transcription factor; constructions

Abstract : This PhD project takes place in List MAPS
, a Horizon 2020-funded Marie Curie Actions Inno-
vative Training Network (ITN) with the goal of un-
derstanding of the ecology of Listeria monocytogenes
through the combination of high throughput Epigene-
tics, Deep sequencing of transcripts, Proteomics, Bio-
informatics, Mathematics and Microbiology. Acentral
objective of the ITN is to decipher the mechanisms
underlying adaptation and virulence of L. monocy-
togenes “from farm to fork”.This PhD project (sub-
project 9) aims to tackle the task of transcription regu-
latory network construction. A significant part of regu-
lation at the transcriptional level is achieved by modu-
lation of transcription initiation rate. In bacteria, trans-
cription initiation relies on recognition of particular se-
quence motif by a Sigma-factor approximately 10 bp
upstream of the transcription start site (TSS) and is
modulated by the binding of transcription factors reco-
gnizing other sequence motifs located nearby. RNA-
Seq transcriptomics provides direct information on the
repertoire of TSSs and transcription units and thereby
offers renewed perspectives to address the problem
of transcription factor binding sites identification. The

goal of this PhD project is to assess existing tools
and to develop new methods for prediction of TF bin-
ding sites by combining expression profiles and pre-
cise information on the location of the TSSs. Several
approaches based on position weight matrix (PWM)
models will be investigated to extend the classical
mixture model by relaxing the hypothesis that motifs
corresponding to different TF binding sites occur in-
dependently between TSS regions.In the new model,
we will explicitly account for the increased probability
of occurrence of a same motif in two promoters when
their profiles of activity across conditions are similar.
A particular attention will also be paid to the position
of the motif with respect to the TSS and the sigma
factor binding site. In parallel to the methodological
developments we will also work on the use of these
approaches to build the transcription regulatory net-
work of L. monocytogenes based on data form the
literature and from the List MAPS project. Finally, we
wish to use the information on the regulatory network
to tackle a particular point relevant for the List MAPS
project using a dedicated model.
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