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Abstract

In the last century, fossil fuels have been intensively used for energy production causing
a dramatic increase of CO2 level in the atmosphere and the related environmental issues,
such as global warming and ozone layer depletion. In 2015, the increased awareness
about climate change led to the signature of the Paris agreement, in which 195 countries
committed to cut off their greenhouse gases emission by 40% (compared to emissions
in 1990) by 2030. The achievement of such an ambitious target is strictly linked to a
gradual switch from fossil fuels to sustainable and renewable sources for energy
production. This is driving many industries producing organic and inorganic waste
towards a biorefinery concept, in which side streams, wastes and wastewaters are seen
as a potential feedstocks for biofuel and/or biochemical production.

Dark fermentation and microbial fuel cells (MFCs) are two emerging technologies for
biological conversion of the chemical energy of organic compounds into hydrogen (H2)
and electricity, respectively. Although these technologies can potentially replace fossil
fuels for energy production, their establishment is hindered by their low energy output.
Due to kinetic and thermodynamic advantages, high temperature can be the key for
increasing both dark fermentative H2 production and electricity production in MFCs.
Therefore, this thesis focuses on delineating how temperature influences biological
production of H2 and electricity from organic carbon-containing wastewaters.

Start-up and selection of a suitable microbial community is a crucial phase in dark
fermentation. Two heat-treated inocula (fresh and digested activated sludge) were
compared, in four consecutive batch cycles, for H2 production from xylose at 37, 55 and
70 °C. At both 37 and 55 °C, a higher H2 yield was achieved by the fresh than the
digested activated sludge, whereas a very low H2 yield was obtained by both inocula at
70 °C. Then, four different inoculum pretreatments (acidic, alkaline, heat and freezing
shocks) were evaluated, in a single-stage batch experiment, for creating an efficient
mesophilic (37 °C) and thermophilic (55 °C) H2 producing community. Acidic and alkaline
shocks selected known H2 producing microorganisms belonging to Clostridiaceae at the
expenses of lactate producing bacteria, resulting in the highest H2 yield at 37 and 55 °C,
respectively. Although a heat shock resulted in a low H2 yield in a single batch, H2

production by the heat-treated fresh activated sludge was shown to increase in the
experiment with four consecutive batch cycles. This suggests that H2 producing microbial
communities may develop in the long-term as long as culture conditions are optimized
for growth of H2 producers.
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Heat-treated fresh activated sludge was selected as inoculum for continuous H2

production from a xylose-containing synthetic wastewater in a mesophilic (37 °C) and a
thermophilic (55-70 °C, increased stepwise) fluidized bed reactor (FBR). A higher H2

yield was obtained in the thermophilic than in the mesophilic FBR. Furthermore, H2

production at 70 °C, which failed in the earlier batch study, was successful in the FBR,
with a stable yield of 1.2 mol H2 mol-1 xyloseadded, by adapting the microbial community
from 55 °C to 70 °C stepwise at 5 °C intervals. Operation temperature of 70 °C was also
found optimal for H2 production from thermomechanical pulping (TMP) wastewater in a
temperature gradient incubator assay, as batch cultivation at 70 °C enriched the H2

producing Thermoanaerobacterium sp. and repressed homoacetogenic microorganisms.

A detailed knowledge of microbial communities, and particularly the active subpopulation,
is crucial in order to adjust the conditions to favor the growth of exoelectrogenic
microorganisms in MFCs. A RNA approach was used to study the structure and role of
the anode-attached, membrane-attached and planktonic microbial communities in a
mesophilic (37 °C) and a thermophilic (55 °C) two-chamber, xylose-fed MFC. An anode-
attached community dominated by Geobacteraceae sustained electricity production at
37 °C, whereas the establishment of methanogenic and H2 oxidizing microorganisms
resulted in a low electricity production at 55 °C. However, the development of a
thermophilic exoelectrogenic community can be promoted by applying a start-up strategy
which includes imposing a negative potential to the anode and chemical inhibition of
methanogens. At both 37 and 55 °C, aerobic membrane-attached microorganisms were
likely involved in consuming the oxygen diffusing from the cathodic to the anodic
chamber, thus favoring the exoelectrogenic microorganisms, which are strictly anaerobic,
but competing with them for the substrate. A mesophilic exoelectrogenic community was
also shown to produce electricity from TMP wastewater in an upflow MFC operated at
37 °C.

In conclusion, a higher and more stable H2 yield can be achieved in thermophilic rather
than mesophilic dark fermentation. Dark fermentation at 70 °C is particularly suitable for
treatment of TMP wastewater as it is released at high temperature (50-80 °C) and could
be treated on site with minimal energy requirement for heating the bioreactor. TMP
wastewater can be also used as substrate for electricity production in mesophilic MFCs.
Electricity production in thermophilic MFCs is feasible, but enrichment of thermophilic
exoelectrogenic microorganisms may require a long start-up period with optimized
conditions. The detailed RNA-level microbial community analysis performed in this study
may help in selecting a start-up and operation strategy to optimize electricity production.
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Tiivistelmä

Fossiilisia polttoaineita on hyödynnetty energian tuotannossa laajasti yli sadan vuoden
ajan. Tämä on lisännyt merkittävästi hiilidioksidin määrää ilmakehässä edistäen ilmas-
tonmuutosta sekä otsonikerroksen ohenemista. Satayhdeksänkymmentäviisi valtiota al-
lekirjoitti Pariisin ilmastosopimuksen vuonna 2015 ja sitoutui vähentämään kasvihuone-
päästöjään 40 % vuoteen 2030 mennessä vuoden 1990 tasosta. Kunnianhimoisen ta-
voitteen saavuttaminen vaatii energian tuotannon siirtymistä fossiilisista polttoaineista
kestäviin ja uusiutuviin energialähteisiin. Yhtenä ratkaisuna tämän tavoitteen saavutta-
miseksi monet orgaanisia ja epäorgaanisia jätteitä tuottavat teollisuuden alat pyrkivät
muuntumaan biojalostamoiksi, joissa sivuvirrat, jätteet ja jätevedet ovat mahdollisia
raaka-aineina biopolttoaineiden ja/tai bioperäisten kemikaalien tuotannossa.

Pimeäfermentaatio ja mikrobipolttokennot ovat kehittyviä prosesseja, joissa orgaanisten
yhdisteiden kemiallinen energia muunnetaan mikrobien avulla vedyksi tai sähköksi.
Vaikka nämä bioprosessit voivat korvata fossiilisia polttoaineita, niiden teollista hyödyn-
tämistä hidastavat toistaiseksi suhteellisen matalat energiasaannot ja tuotantoproses-
sien epävakaus. Korkeassa lämpötilassa reaktiokinetiikka ja termodynamiikka voivat
edistää vedyntuottoa pimeäfermentaatiolla sekä sähköntuottoa mikrobipolttokennoissa
Tässä väitöstyössä tutkittiin lämpötilan vaikutusta vedyn ja sähkön biologiseen tuotan-
toon biohajoavia orgaanisia yhdisteitä sisältävistä jätevesistä.

Yksi tärkeimmistä vaiheista pimeäfermentaation prosessikehityksessä on fermentaation
käynnistys ja soveltuvien mikrobien valinta. Tässä työssä vertailtiin kahden lämpökäsi-
tellyn mikrobiviljelmän (tuore ja mädätetty aktiiviliete) vedyntuottoa ksyloosista neljän pe-
rättäisen panosrikastusvaiheen jälkeen eri lämpötiloissa (37, 55 ja 70 °C). Vetysaannot
olivat suurempia tuoreella aktiivilietteellä 37 ja 55 °C:ssa. Sen sijaan 70 °C:ssa ve-
dyntuotto oli hyvin vähäistä molemmilla rikastusviljelmillä. Lisäksi neljää eri esikäsittely-
menetelmää (happo-, emäs-, lämpö- ja jäädytyskäsittely) vertailtiin yksivaiheisessa pa-
noskokeessa tehokkaan mesofiilisen tai termofiilisen vetyä tuottavan mikrobiyhteisön ai-
kaansaamiseksi. Happo- ja emäskäsittelyt valikoivat tunnettuja vetyä tuottavia mikro-or-
ganismeja (Clostridiaceae) maitohappoa tuottavien mikrobien kustannuksella. Happokä-
sittely mahdollisti korkeimman vedyntuoton 37 °C:ssa, kun taas emäskäsittely johti kor-
keimpaan vedyntuottoon 55 °C:ssa. Vaikka lämpökäsitelty aktiiviliete tuotti varsin vähän
vetyä yksittäisessä panoskasvatuksessa, lämpökäsitellyn aktiivilietteen vedyntuotanto
kasvoi merkittävästi neljän perättäisen rikastusvaiheen aikana. Tämä osoittaa, että vil-
jelmän esikäsittelyn lisäksi optimoidut kasvatusolosuhteet rikastavat tehokkaasti vetyä
tuottavia mikrobiyhteisöjä.
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Lämpökäsiteltyä aktiivilietettä käytettiin mikrobien lähteenä myös jatkuvatoimisissa lei-
jupetireaktoreissa. Niissä tutkittiin vedyntuottoa ksyloosia sisältävästä synteettisestä jä-
tevedestä 37 °C:ssa sekä 55-70 °C:ssa. Termofiilisessa leijupetireaktorissa vedyntuotto
oli suurempaa kuin mesofiilisessa ja suurimmat vetysaannot saavutettiin 55 ja 70 °C:ssa,
joissa molemmissa saanto oli 1.2 mol H2 mol-1 ksyloosi. Leijupetireaktorissa vetyä onnis-
tuttiin tuottamaan 70 °C:ssa kasvatettaessa mikrobeja vaiheittain (5 °C) 55 °C:sta
70 °C:een nousevassa lämpötilassa, vaikka panoskokeessa vetyä ei saatukaan tuotet-
tua 70 °C:ssa tuoreella aktiivilietteellä. Erillisessä panoskokeessa havaittiin, että 70 °C
oli optimaalinen lämpötila vedyntuotolle myös termomekaanisen sellunvalmistuksen jä-
tevedestä käytettäessä leijupetireaktorissa rikastettua mikrobiviljelmää.

Mikrobiyhteisöjen ja erityisesti aktiivisten mikrobiyhteisöjen tuntemus edistää ek-
soelektrogeenisten mikro-organismien kasvun optimoimista mikrobipolttokennoissa.
Kaksi-kammioisissa mikrobipolttokennoissa tutkittiin anodille ja membraanille kiinnitty-
neiden sekä planktonisten mikrobiyhteisöjen rakennetta ja eri mikrobien rooleja sekä me-
sofiilisissä että termofiilisissä olosuhteissa. Anodille kiinnittyneet mikrobit (Geobactera-
ceae) tuottivat sähköä 37 °C:ssa, mutta metanogeenien ja vetyä kuluttavien mikrobien
läsnäolo heikensi sähköntuottoa merkittävästi 55 °C:ssa. Sekä 37 °C:ssa että 55 °C:ssa
aerobiset membraanille kiinnittyneet mikrobit kuluttivat katodikammiosta anodikammi-
oon virtaavaa happea. Samalla ne kuitenkin kilpailivat substraatista anaerobisten ek-
soelektrogeenisten mikrobien kanssa. Erillisessä ylöspäinvirtausmikrobipolttokennolla
tehdyssä kokeessa sähköä tuotettiin onnistuneesti myös termomekaanisen sellunval-
mistuksen jätevedestä 37 °C:ssa.

Tämä tutkimus osoitti, että termofiiliset mikrobit tuottavat enemmän ja vakaammin vetyä
kuin mesofiiliset mikrobit. Pimeäfermentaatio 70 °C:ssa sopii erityisesti mm. termo-
mekaanisen sellunvalmistuksen jätevesien käsittelyyn, koska termomekaanisessa pro-
sessissa syntyvät jätevedet ovat lämpimiä (50-80 °C). Tällöin bioreaktorin lämmittämi-
seen ei tarvittaisi paljon energiaa. Tämän tutkimuksen perusteella termomekaanisen sel-
lunvalmistuksen jätevesi soveltuu käsiteltäväksi sähköä tuottavissa mesofiilisissa mikro-
bipolttokennoissa. Sähköntuotto termofiilisissa mikrobipolttokennoissa oli myös mahdol-
lista, vaikka termofiilisten eksoelektrogeenisten mikrobien rikastus vaatii pitkän aloitus-
vaiheen optimoiduissa olosuhteissa. Lisäksi yksityiskohtainen, RNA-tason
mikrobianalyysi auttaa sähköntuotannon optimoimisessa.
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Sommario

Nell’ultimo secolo, i combustibili fossili sono stati intensivamente usati per produzione di
energia, causando un drammatico aumento della concentrazione di CO2 nell’atmosfera
e le relative problematiche ambientali, come il riscaldamento globale e il consumo dello
strato di ozono. Nel 2015, l’aumento della consapevolezza sui cambiamenti climatici ha
portata all firma dell’accordo di Parigi, nel quale 195 nazioni hanno deciso di impegnarsi
a tagliare le loro emisission di gas-serra del 40% (rispetto ai valori del 1990) entro il 2030.
Il raggiungimento di questo ambizioso obiettivo è strettamente legato a un graduale
passaggio da combustibili fossili a fonti sostenibili e rinnovabili per la produzione di
energia. Questo sta portando varie industrie produttrici di rifiuti organici verso
l’implementazione di un concetto di bioraffineria, nel quale sottoprodotti industriali, rifiuti
e acque di scarico sono visti come una potenziale materia prima per la produzione
biologica di sostanze chimiche e combustibili.

Dark fermentation e microbial fuel cells (MFCs) sono due tecnologie emergenti per la
conversione biologica dell’energia chimica dei composti organici in idrogeno (H2) ed
energia elettrica, rispettivamente. Nonostante tali tecnologie abbiano il potenziale per
rimpiazzare i combustibili fossili per la produzione di energia, la loro affermazione è
ostacolata dal loro scarso rendimento energetico. In base ai suoi vantaggi cinetici e
termodinamici, l’alta temperatura potrebbe essere la chiave per migliorare sia la
produzione di H2 via dark fermentation, sia la produzione di energia elettrica in MFCs.
Perciò, questa tesi focalizza sul determinare come la temperatura influenza la
produzione biologica di H2 ed energia elettrica da acque di scarico contenenti
contaminanti organici.

L’avvio del processo e la selezione di un’adeguata popolazione microbiologica è una
fase cruciale nella dark fermentation. Due inoculi sottoposti a shock termico caldo (fango
attivo fresco e digestato) sono stati confrontati, in quattro esperimenti consecutivi in
batch, per la loro produzione di H2 a partire da xilosio a 37, 55 e 70 °C. A 37 e 55 °C,
una più alta produzione di H2 è stata ottenuta dal fango attivo fresco rispetto al digestato,
mentre una produzione di H2 molto bassa è stata ottenuta da entrambi gli inoculi a 70 °C.
Quindi, quattro diversi pretrattamenti dell’inoculo (shock acido, shock basico, shock
termico caldo e congelamento) sono stati valutati, in un singolo esperimento in batch,
per ottenere un’efficiente popolazione microbica produttrice di H2 in condizioni
mesofiliche (37 °C) e termofiliche (55 °C). Gli shock acido e basico hanno selezionato
con successo microorganismi noti produttori di H2, appartenenti alle Clostridiaceae, a
discapito dei batteri produttori di acido lattico, risultando nella più alta produzione di
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idrogeno a 37 e 55 °C, rispettivamente. Sebbene lo shock termico caldo abbia causato
una bassa produzione di H2 in un singolo batch, la produzione di H2 dal fango attivo
fresco sottoposto a trattamento termico caldo è aumentata nei quattro batch consecutivi.
Questo indica che una popolazione microbiologica produttrice di H2 può svilupparsi nel
tempo, se le condizioni sono ottimizzate per la sua crescita.

Fango attivo fresco sottoposto a trattamento termico caldo è stato selezionato come
inoculo per la produzione di H2 in continuo a partire da un’acqua di scarico sintetica
contenente xilosio in un bioreattore a letto fluidizzato (FBR) operato in condizioni
mesofiliche (37 °C) e termofiliche (55-70 °C, aumentata gradualmente). Una produzione
di H2 più alta è stata ottenuta nel FBR termofilico rispetto al mesofilico. Inoltre, la
produzione di H2 a 70 °C, fallimentare nell’esperimento in batch, è stata ottenuta nel FBR,
con una produzione stabile di 1.2 mol H2 mol-1 xilosio, adattando gradualmente la
popolazione microbica da 55 a 70 °C a salti di 5 °C. Il processo a 70 °C si è anche
dimostrato ottimale per la produzione di H2 a partire da acque di scarico proveniente da
pulping termomeccanico (TMP) in un esperimento con incubatore a gradiente termico,
in quanto la coltivazione in batch a 70 °C ha supportato la crescita del microorganismo
produttore di H2 Thermoanaerobacterium sp. e represso i microorganismi
omoacetogenici.

Una conoscenza dettagliata delle popolazioni microbiche, e in particolare della frazione
attiva, è cruciale per impostare condizioni favorevoli alla crescita di microorganismi
elettrogenici nelle MFC. Un approccio basato sul RNA è stato usato per studiare la
struttura e il ruolo delle popolazioni microbiche sviluppatesi attaccate all’anodo, attaccate
alla membrana o in forma planctonica in MFC a due camere operate in condizioni
mesophiliche (37 °C) e termofiliche (55 °C). Una popolazione anodica dominata da
Geobacteraceae ha supportato la produzione di energia elettrica a 37 °C, mentre la
crescita di microorganismi metanogeni e H2-ossidanti ha causato una produzione bassa
a 55 °C. Tuttavia, lo sviluppo di una popolazione elettrogenica termofilica può essere
promossa applicando una strategia iniziale che includa l’imposizione di un potenziale
anodico negativo e un’inibizione chimica dei metanogeni. A 37 e 55 °C, i microorganismi
aerobici attaccati alla membrana hanno probabilmente consumato l’ossigeno che stava
diffondendo dalla camera catodica a quella anodica, favorendo i microorganismi
elettrogeni strettamente anaerobici, ma competendo con loro per il substrato. Una
popolazione elettrogena mesofilica ha prodotto energia elettrica anche da acqua di
scarico da TMP in una MFC a flusso verticale operata a 37 °C.

In conclusione, una produzione di idrogeno più alta e stabile può essere ottenuta tramite
dark fermentation in condizioni termofiliche piuttosto che mesofiliche. Dark fermentation
a 70 °C è particolarmente indicata per il trattamento di acqua di scarico da TMP, in
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quanto tale acqua viene rilasciata ad alta temperatura (50-80 °C) e può essere trattata
in situ, con una richiesta di energia minima per riscaldare il bioreattore. L’acqua di scarico
da TMP può anche essere usata come substrato per produzione di energia elettrica in
MFCs mesofiliche. La produzione di energia elettrica in MFCs termofiliche è fattibile, ma
lo sviluppo di microorganismi elettrogeni termofilici può richiedere un lungo periodo in
condizioni ottimizzate. L’analisi dettagliata sul RNA eseguita in questo studio potrebbe
aiutare nella selezione di una strategia all’avvio e durante l’operazione per ottimizzare la
produzione di energia elettrica.
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Résumé

Au siècle dernier, les combustibles fossiles ont été intensivement utilisés pour la
production d'énergie, entraînant une augmentation dramatique du niveau de CO2 dans
l'atmosphère et les problèmes environnementaux connexes, tels que le réchauffement
de la planète et l'appauvrissement de la couche d'ozone. En 2015, la sensibilisation
accrue au changement climatique a conduit à la signature de l'accord de Paris, dans
lequel 195 pays s'engageaient à réduire leurs émissions de gaz à effet de serre de 40%
(par rapport aux émissions de 1990) d'ici 2030. La réalisation d'un objectif aussi
ambitieux est strictement liée à un passage progressif des énergies fossiles à des
sources durables et renouvelables de production d'énergie. Cela conduit de nombreuses
industries produisant des déchets organiques et inorganiques vers un concept de
bioraffinerie dans lequel les effluents secondaires, les déchets et les eaux usées sont
considérés comme des matières premières potentielles pour la production de
biocarburant et / ou de biochimie.

La fermentation sombre et les piles à combustible microbiennes (MFC) sont deux
technologies émergentes respectivement pour la conversion biologique de l'énergie
chimique des composés organiques en hydrogène (H2) et en électricité. Bien que ces
technologies puissent potentiellement remplacer les combustibles fossiles pour la
production d'énergie, leur établissement est entravé par leur faible production d'énergie.
En raison des avantages cinétiques et thermodynamiques, la température élevée peut
être la clé pour augmenter à la fois la production d'H2 via fermentation sombre et la
production d'électricité dans les MFC. Par conséquent, cette thèse se concentre sur la
manière dont la température influence la production biologique de H2 et d'électricité à
partir d'eaux usées contenant du carbone organique.

Le démarrage et la sélection d'une communauté microbienne appropriée est une phase
cruciale dans la fermentation sombre. Deux inocula traités thermiquement (à boues
activées fraîches et digérées) ont été comparés, sur quatre cycles consécutifs, pour la
production de H2 à partir de xylose à 37, 55 et 70 °C. A la fois à 37 et 55 °C, on obtient
un meilleur rendement en H2 par les boues activées fraîches comparé aux boues
digérées tandis qu'un très faible rendement en H2 est obtenu par les deux inocula à 70 °C.
Ensuite, quatre prétraitements d'inoculum différents (chocs acides, alcalins, thermiques
et de congélation) ont été évalués, dans une expérience batch en une étape, pour créer
une efficace communauté productrice de H2 mésophile (37 °C) ou thermophile (55 °C).
Les chocs acides et alcalins ont sélectionné des micro-organismes producteurs de H2,

appartenant aux Clostridiaceae, au détriment des bactéries produisant du lactate, ce qui
a donné respectivement le rendement en H2 le plus élevé à 37 et 55 °C. Bien que le choc
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thermique ait abouti à un faible rendement en H2 dans un seul lot, il a été montré que la
production de H2 par les boues activées fraîches traitées thermiquement augmentait
dans l'expérience avec quatre cycles consécutifs. Ceci suggère que les communautés
microbiennes productrices de H2 peuvent se développer à long terme tant que les
conditions de culture sont optimisées pour la croissance des producteurs de H2.

Des boues activées fraîches et traitées thermiquement ont été sélectionnées comme
inoculum pour la production continue de H2 à partir d'une eau usée synthétique
contenant du xylose dans un réacteur à lit fluidisé (FBR) mésophile (37 °C) et
thermophile (55-70 °C, augmenté par étapes). Un rendement en H2 plus élevé a été
obtenu dans le FBR thermophile que dans le FBR mésophile. En outre, la production de
H2 à 70 °C, qui a échoué dans l'étude précédente, a été couronnée de succès dans le
FBR, avec un rendement stable de 1.2 mol H2 mol-1 xylose, en adaptant la communauté
microbienne de 55 °C à 70 ° C à intervalles de 5 °C. La température de fonctionnement
de 70 °C s'est également révélée optimale pour la production de H2 à partir d'eaux usées
thermomécaniques (TMP) dans un incubateur à gradient de température, car la culture
en batch à 70 ° C enrichissait le Thermoanaerobacterium sp. produisant du H2 et
réprimait les micro-organismes homoacétogènes.

Une connaissance détaillée des communautés microbiennes, et en particulier de la
sous-population active, est cruciale pour ajuster les conditions favorables à la croissance
de micro-organismes exoélectrogènes dans les MFC. Une approche de l'ARN a été
utilisée pour étudier la structure et le rôle des communautés microbiennes attachées à
l'anode, attachées à la membrane et planctoniques dans un MFC mésophile (37 °C) et
thermophile (55 °C) alimenté au xylose. Une communauté anodine dominée par
Geobacteraceae a soutenu la production d'électricité à 37 °C, alors que l'établissement
de micro-organismes méthanogènes et H2 oxydants a entraîné une faible production
d'électricité à 55 °C. Cependant, le développement d'une communauté exoélectrogène
thermophile peut être favorisé en appliquant une stratégie de démarrage qui comprend
l'imposition d'un potentiel négatif à l'anode et l'inhibition chimique des méthanogènes. A
37 et 55 °C, les micro-organismes aérobies attachés à la membrane étaient
probablement impliqués dans la consommation de l'oxygène diffusant de la chambre
cathodique à la chambre anodique, favorisant les micro-organismes exoélectrogéniques
strictement anaérobies mais étaient en compétition avec eux pour le substrat. Une
communauté exoélectrogénique mésophile a également été mise en evidence pour
produire de l'électricité à partir d'eaux usées de TMP dans un MFC à flux ascendant
exploité à 37 °C.
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En conclusion, une production de H2 plus élevé et plus stable peut être obtenu dans une
fermentation sombre thermophile plutôt que mésophile. La fermentation sombre à 70 °C
est particulièrement appropriée pour le traitement des eaux usées de TMP car elle est
libérée à haute température (50-80 °C) et pourrait être traitée sur site, avec des besoins
énergétiques minimum pour chauffer le bioréacteur. Les eaux usées de TMP peuvent
également être utilisées comme substrat pour la production d'électricité dans les MFC
mésophiles. La production d'électricité dans les MFC thermophiles est faisable, mais
l'enrichissement des micro-organismes exoélectrogènes thermophiles peut nécessiter
une longue période de démarrage avec des conditions optimisées. L'analyse détaillée
de la communauté microbienne au niveau de l'ARN réalisée dans cette étude peut aider
à choisir une stratégie de démarrage et d'exploitation pour optimiser la production
d'électricité.
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Samenvatting

In de vorige eeuw werden fossiele brandstoffen intensief gebruikt voor de productie van
energie, waardoor het CO2-niveau in de atmosfeer en de daarmee samenhangende
milieuproblemen, zoals het broeikaseffect en de uitputting van de ozonlaag, dramatisch
toenamen. In 2015 leidde de toegenomen bewustwording van de klimaatverandering tot
de ondertekening van de overeenkomst van Parijs, waarin 195 landen zich ertoe
verbonden om hun emissie van broeikasgassen tegen 2030 met 40% te verminderen
(vergeleken met emissies in 1990). De verwerkelijking van zo'n ambitieuze doelstelling
is strikt gekoppeld aan een geleidelijke overgang van fossiele brandstoffen naar
duurzame en hernieuwbare bronnen voor energieproductie. Dit stimuleert veel
industrieën die organisch en anorganisch afval produceren in de richting van een
bioraffinageconcept, waarbij zijstromen, afval en afvalwater worden gezien als potentiële
grondstoffen voor biobrandstoffen en/of bioproductie van chemicaliën.

Donkere gisting en microbiële brandstofcellen (MFC's) zijn twee opkomende
technologieën voor de biologische omzetting van chemische energie van organische
verbindingen in respectievelijk waterstof (H2) en elektriciteit. Hoewel deze technologieën
potentieel fossiele brandstoffen voor energieproductie kunnen vervangen, wordt hun
toepassing gehinderd door hun lage energieoutput. Vanwege kinetische en
thermodynamische voordelen kan hoge temperatuur de sleutel zijn voor het verhogen
van zowel de productie van donkere fermentatieve H2 productie als elektriciteitsproductie
in MFC's. Daarom richt dit proefschrift zich op het bepalen van de invloed van
temperatuur op de biologische productie van waterstof en elektriciteit uit organisch
koolstofhoudend afvalwater.

Start-up en selectie van geschikte microbiële gemeenschap is een cruciale fase in
donkere fermentatie. Twee hittebehandelde inocula (vers en vergist aktief slib) werden
vergeleken in vier opeenvolgende batch cycli, voor H2-productie uit xylose bij 37, 55 en
70 °C. Zowel bij 37 als bij 55 °C werd een hogere H2-opbrengst bereikt door het verse
dan vergiste aktief slib, terwijl een zeer lage H2-opbrengst werd verkregen door beide
inocula bij 70 °C. Vervolgens werden vier verschillende inoculumvoorbehandelingen
(zure, basische, hitte- en vriesschokken) geëvalueerd in een eenstaps batch-experiment,
voor het creëren van een efficiënte mesofiele (37 °C) of thermofiele (55 °C) H2

producerende gemeenschap. Zure en basische schokken selecteerden bekende
waterstofproducerende micro-organismen die tot Clostridiaceae behoren ten koste van
lactaatproducerende bacteriën, resulterend in de hoogste H2-opbrengst bij
respectievelijk 37 en 55 °C. Hoewel de hitteshock in een lage H2-opbrengst resulteerde
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in batch, bleek de H2-productie van het hitte behandelde verse aktief slib in het
experiment met vier opeenvolgende batch cycli toe te nemen. Dit suggereert dat H2-
producerende microbiële gemeenschappen zich op lange termijn kunnen ontwikkelen
zolang de kweekomstandigheden geoptimaliseerd zijn voor de groei van H2-producenten.

Met hitte behandeld aktief slib werd als inoculum gekozen voor continue H2-productie uit
een xylose-bevattend synthetisch afvalwater in een mesofiel (37 °C) en een thermofiele
(55-70 °C, verhoogde stapsgewijze) wervelbedreactor (FBR). Een hogere H2-opbrengst
werd verkregen in de thermofiele dan in de mesofiele FBR. Bovendien was de H2-
productie bij 70 °C, die mislukte in het eerdere batchonderzoek, succesvol in de FBR,
met een stabiele opbrengst van 1.2 mol H2 mol-1 xylose, door de microbiële
gemeenschap stapsgewijs aan te passen van 55 °C tot 70 °C met intervallen van 5 °C.
Eentemperatuur van 70 °C werd ook optimaal bevonden voor H2-productie uit
thermomechanisch pulp (TMP) afvalwater in een temperatuur gradiënt incubator test,
omdat de batch-incubatie bij 70 °C de H2 producerende Thermoanaerobacterium
verrijkte en homoacetogene micro-organismen onderdrukte.

Een gedetailleerde kennis van microbiële gemeenschappen, en met name de actieve
subpopulatie, is cruciaal om de omstandigheden aan te passen om de groei van exo-
electrogene micro-organismen in MFCs te bevorderen. Een RNA-benadering werd
gebruikt om de structuur en de rol van de aan anode gehechte, membraan-gebonden en
planktonische microbiële gemeenschappen te bestuderen in een mesofiele (37 °C) en
een thermofiele (55 °C) tweekamer xylose-gevoed MFC. Een anode-gehechte
gemeenschap gedomineerd door Geobacteraceae gaf een continue stroomproductie bij
37 °C, terwijl de colonisatie van methanogene en H2 oxiderende micro-organismen
resulteerde in een lage stroomproductie bij 55 °C. De ontwikkeling van een thermofiele
exo-electrogene gemeenschap kan echter worden bevorderd door een opstart strategie,
bestaande uit het opleggen van een negatieve potentieel aan de anode en chemische
remming van methanogenen. Zowel bij 37 als bij 55 °C waren aërobe
membraangehechte micro-organismen waarschijnlijk betrokken bij het verbruiken van
zuurstofverstrooiing van de kathode naar de anode kamer, waarbij de strikt anaërobe
exo-elektrogene micro-organismen de voorkeur kregen, maar met hen concurreerden
voor substraat. Een mesofiele exo-electrogenische gemeenschap bleek ook elektriciteit
te produceren uit TMP-afvalwater in een MFC met opwaartse vloeistofstroming bij 37 °C.

Concluderend kan een hogere en stabielere H2-opbrengst worden bereikt in thermofiele
dan in mesofiele donkere fermentatie. Donkere fermentatie bij 70 °C is met name
geschikt voor de behandeling van TMP-afvalwater, omdat het wordt geloosd bij hoge
temperatuur (50-80 °C) en ter plaatse kan worden behandeld met een minimale
energiebehoefte voor het verwarmen van de bioreactor. TMP-afvalwater kan ook worden
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gebruikt als substraat voor elektriciteitsproductie in mesofiele MFC's.
Elektriciteitsproductie in thermofiele MFC's is haalbaar, maar verrijking van thermofiele
exo-elektrogene micro-organismen kan een lange opstartperiode met geoptimaliseerde
omstandigheden vereisen. De gedetailleerde microbiële gemeenschapsanalyse op
RNA-niveau die in dit onderzoek is uitgevoerd, kan helpen bij het selecteren van een
opstart- en bedrijfsstrategie om de energieproductie te optimaliseren.
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The intensive use of fossil fuels for energy production is leading to a rapid depletion of
the global energy reserves and to the emission of greenhouse gases. Despite the
economic and environmental concerns, energy production is strictly dependent on fossil
fuels, as evidenced by their 80% share of the total energy supply in 2016 (International
Energy Agency 2017). Although the concentration of carbon dioxide (CO2) in the
atmosphere, which recently exceeded 400 ppm, already caused irreversible climate
changes (Solomon et al. 2009), a societal commitment to increasing awareness is
needed to mitigate such detrimental environmental issues.

An important starting point towards a more sustainable world was issued in December
2015, when the Paris agreement on climate change was signed. In the agreement, 195
countries committed to reach the ambitious target of reducing their greenhouse gas
emission by 40% (compared to emission level in 1990) by 2030 (Liobikienė and Butkus
2017). The completion of this target is linked to the decrease of the overall energy
consumption, increasing energy efficiency and a gradual substitution of fossil fuels,
which account for about 65% of the total greenhouse gas emissions (IPCC 2014), with
renewable and clean energy sources. Accordingly, the European Union set the target of
contributing 20% of the annual energy consumption from renewable sources by 2020
and 27% by 2030 (European Commision 2014).

It is globally recognized that biomasses and biodegradable waste streams (organic
matter convertible to fuels) have the potential of replacing fossil fuels for energy
production (Cherubini 2010; Venkata Mohan et al. 2016; Özdenkçi et al. 2017). This is
driving many industries producing organic side- and waste streams towards the
implementation of integrated systems called biorefineries (Cherubini 2010). In a
biorefinery concept, wastes are considered as an opportunity to generate value-added
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products such as biofuels or biochemicals, and at the same time reduce waste disposal
costs and fulfil the environmental regulations on waste emissions (Machani et al. 2014;
Kinnunen et al. 2015).

Hydrogen (H2) is promising biofuel candidate to replace fossil fuels in the near future, as
it is widely available in nature, has the highest heating value per gram among fuels and
is a carbon neutral fuel (Crabtree et al. 2004; Dincer 2012). However, hydrogen does not
occur in nature as molecular H2, requiring to be chemically or biologically transformed
from carrier molecules (1H containing molecules) such as water or hydrocarbons. At
present, 90% of the global H2 production relies on fossil fuels, being chemically produced
by processes such as steam reforming, coal gasification or thermal cracking of fossil-
based materials (Rafieenia et al. 2018). However, biological approaches are less energy
intensive, utilize renewable, inexhaustible feedstocks and can be integrated into the
waste recycling process (Nikolaidis and Poullikkas 2017). Studies on biological H2

production have focused on bio-photolysis of water, the water-gas shift reaction and
photo or dark fermentation of organic compounds (Holladay et al. 2009). Among them,
dark fermentation is the most potential approach as it is applicable to a variety of organic
substrates which are converted to H2 at relatively high conversion rates (Arimi et al. 2015).
However, the H2 yield obtained by dark fermentation is still not enough to make this
technology competitive at commercial scale (Kumar et al. 2017b).

Bioelectrochemical systems (BES) are another rapidly emerging technology for
sustainable production of energy and/or chemicals from inorganic and organic
compounds, including biomasses and high-strength wastewaters (Pant et al. 2012).
Microbial fuel cells (MFCs), which enable the conversion of chemical energy of organic
compounds into electrical energy, are so far the most studied among BES applications.
Abiotic fuel cells require high temperature and/or costly catalysts, and sometimes
corrosive electrolytes, whereas MFCs can be operated at mild temperatures and pH
conditions, using inexpensive catalysts and cheap anodic substrates such as organic
waste (Santoro et al. 2017).

Mesophilic dark fermentation and electricity production in MFCs have been intensively
studied, whereas thermophilic processes has received less attention. High temperature
can be advantageous for both H2 and bioelectricity production, because it can enhance
H2 yields (Verhaart et al. 2010) and electron production rates of exoelectrogenic
microorganisms (Du et al. 2007). High temperature also enhances microbial growth rates
(Ratkowsky et al. 1982) and biological hydrolysis of complex substrates into simpler
substances available for microbial H2 or electricity production (Gadow et al. 2012), and
reduce pathogen contamination (Suryawanshi et al. 2010). In dark fermentation,
thermophilic conditions have been demonstrated to favor H2 producing bacteria at the
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expenses of competing microorganisms such as homoacetogens (Luo et al. 2011) and
lactate producing bacteria (Noike et al. 2002). Furthermore, some industrial processes
involving organic compounds, such as thermomechanical pulping (TMP) used in pulp
and paper industry, produce wastewater at high temperature (Rintala and Lepistö 1992),
which can be treated on site without requiring extra heating.

This thesis focuses on comparing mesophilic and thermophilic dark fermentation and
MFCs for production of H2 and electricity from organic carbon-containing synthetic and
real wastewaters in batch systems and bioreactors operated in continuous mode. The
composition of the microbial communities involved in both processes was also studied
in detail, at both DNA and RNA level, enabling information on the presence and activity
of microorganisms. This is the first study reporting the effect of inoculum pretreatment
and operation temperature on the active dark fermentative microbial communities
utilizing RNA-level community analysis. In addition, no previous studies have reported
such of details about the composition of microbial populations (and the active
subpopulation) from different sampling points in MFCs. This is also the first study
attempting to understand the role of membrane-attached microbial communities on MFC
performance. Furthermore, TMP wastewater was studied for the first time as a possible
substrate for dark fermentative H2 production and electricity production in MFCs.
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The increase of population, especially in the developing countries, and the new wave of
urbanization are increasing the societal need of energy and materials (Venkata Mohan
et al. 2016; Nizami et al. 2017). At present, energy conversion and production of
chemicals and materials depend highly on fossil fuels, raising concerns about the
availability of fossil fuel reserves and the emission of greenhouse gases to the
atmosphere (Parajuli et al. 2015). A biorefinery concept, in which the society realizes the
potential of renewable sources for a sustainable economy, was proposed as an
alternative to the fossil fuel-based economy (Cherubini 2010). In the same way as
petroleum refineries, in which multiple fuels and chemical are produced from crude oil,
the aim of biorefineries is to exploit organic substrates from industrial or municipal waste
and side streams to generate value-added products such as biofuels and biochemicals.

2.1 Sources of waste and wastewaters

In the past, biological treatment approaches have been proposed to recover energy or
value-added products from various organic wastes and wastewaters. The increasing
world population has raised the attention on municipal solid waste, as its organic fraction
has a huge potential that can be exploited for sustainable energy production (Venkata
Mohan et al. 2016). Lignocellulosic biomass is also of high importance, being the most
abundant renewable source in nature for energy and chemical production (Özdenkçi et
al. 2017). Possible lignocellulosic substrates for biorefineries include crops, grass, wood
and industrial side streams, such as agricultural residues, bark, sawdust and black
liquors (Özdenkçi et al. 2017). Animals are also an important source of organic

2 Towards a biorefinery concept for a sustainable
economy
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substrates suitable for bioenergy or biochemical production, such as manure and waste
generated by food processing industries (Nizami et al. 2017). Due to its increasing
production and low biodegradability, plastic waste has become a problem at global scale
and a serious hazard for marine environments (Willis et al. 2017). Although hardly
suitable for biological processes, plastic can be recovered as raw material, or can also
be an abundant substrate for liquid fuel production by pyrolysis (Das and Tiwari 2018).

Due to their abundance and environmental concerns, wastewaters containing organic
substrates fit well in the biorefinery strategy. Most of such wastewaters are produced in
food or manufacturing industries, in which water is used to process the raw materials. It
is estimated that about 90% of the wastewater generated worldwide is released in rivers,
lakes or oceans without treatment (Nizami et al. 2017). Among industrial effluents,
wastewater from processing of agricultural products, as well as distillery and brewery
wastewaters have demonstrated high potential for bioenergy or biochemical production
due to the high content of easily biodegradable carbohydrates (Garcia-Nunez et al. 2016;
Lu et al. 2017; Laurinavichene et al. 2018). Another valuable substrate for biorefineries
is dairy wastewater, which is characterized by a high organic load, in particular
carbohydrates, proteins and lipids (Demirel et al. 2005). Although poor in organic
compounds, wastewater from textile industries is rich in nutrients and was recently
proposed for growing microalgae, which can be used as substrate for biodiesel
production (Fazal et al. 2018).

The pulp and paper industry is one of the most water-intensive industrial sectors
(Toczyłowska-Mamińska 2017). It is estimated that 10-100 m3 of water is consumed per
ton of produced paper (Meyer and Edwards 2014), generating enormous amounts of
wastewater to be treated. The composition of this wastewater depends on the type of
wood raw material used and the overall manufacturing process, which can be roughly
divided into wood debarking, pulp making and processing and paper making (Kamali and
Khodaparast 2015). Despite their heterogeneous composition, wastewaters from the
different manufacturing processes are generally characterized by a chemical oxygen
demand (COD) concentration of 1-14 g L-1 (Meyer and Edwards 2014). Effluents from
thermomechanical pulping (TMP) mills, in which the pulp is obtained by steaming the
wood under high temperature and pressure (Pokhrel and Viraraghavan 2004), are rich
in carbohydrates (25-40 % of the total COD). Furthermore, the lack of possible inhibitors
such as sulphite, sulphate, hydrogen peroxide, fatty acids and resin acid makes it
particularly suitable for biological treatment processes (Rintala and Puhakka 1994;
Ekstrand et al. 2013).
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2.2 Opportunities for energy recovery from waste streams

Many biotechnological processes have been applied to recover energy and other
valuable products from waste, wastewaters and gaseous effluents. Depending on the
municipal or industrial waste stream to valorize, such processes can be integrated and
applied in different ways. The combinations of bioprocesses can be referred as
biorefinery models (Venkata Mohan et al. 2016).

A model in which organic substrates are converted to H2 and carboxylate compounds
such as short chain fatty acids or alcohols by fermentation has been proposed by several
research groups (Motte et al. 2015; Venkata Mohan et al. 2016; Nizami et al. 2017). Such
carboxylate compounds can be further exploited to produce more H2, methane (which
can be combined with H2 to produce hytane), bioalcohols, bioplastics, bioelectricity or
long chain fatty acids (Figure 2.1) (Guwy et al. 2011; Bundhoo 2017). This approach can
be applied to both solid waste and wastewaters, and can be further improved by including
a chemical, physical or biological nutrient recovery step. Among biological processes,
constructed wetlands with plants is a promising way to remove nitrogen and
phosphorous from wastewaters (Masi et al. 2018). Microalgae can also be used to
recover nutrients from wastewaters (Cai et al. 2013) and digestates (Tao et al. 2017).

Figure 2.1: Schematic representation of different possibilities for biofuel, biochemical and
bioenergy recovery from wastes, wastewaters and gaseous effluents by combining dark
fermentation and bioelectrochemical systems to various biological processes (modified from
Venkata Mohan et al. 2016).
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The potential of organic carbon containing wastewaters can be exploited by using
microalgae, which combine solar energy uptake and heterotrophic or autotrophic carbon
sequestration to produce high-value bioproducts such as lipids (precursors of biodiesel)
or pigments (Venkata Mohan et al. 2015; Duppeti et al. 2017). The algal biomass can be
further treated biologically to produce H2 and methane, or thermo-chemically to produce
biochar and biofuel by pyrolysis, or syngas by gasification (Singh et al. 2016). However,
post-treatment of algal biomass is limited by the need of cost intensive processes such
as harvesting and dewatering (Venkata Mohan et al. 2016).

Bioelectrochemical systems (BES) can be applied to wastewaters with various types of
organic or inorganic contaminants. BES rely on the capacity of microorganisms to
catalyze the electron transfer from organic compounds to a solid anode electrode, and/or
the electron uptake from a cathode electrode to an electron acceptor (Butti et al. 2016).
The electron flow between the anode and cathode electrodes can be exploited for power
production in microbial fuel cells (MFCs) (Hernández-Fernández et al. 2015), or for
enabling production or recovery of valuable products at the cathode. BES have in fact
many possible applications other than power production, including H2 production in
microbial electrolysis cells (MECs) (Lu and Ren 2016), bioelectrochemical methane
production (Geppert et al. 2016), long chain fatty acids electrosynthesis (Batlle-Vilanova
et al. 2017), wastewater remediation (Zhang et al. 2017b), metal recovery (Sulonen et
al. 2018), desalination (Al-Mamun et al. 2018) and nutrient recovery (Kelly and He 2014).

Carbon dioxide (CO2) is by far the most abundant pollutant present in gaseous industrial
effluents, and its emission is limited and regulated in most industrialized countries
according to the Paris agreement (Liobikienė and Butkus 2017). However, CO2 can be
seen as a resource for biological conversion to value-added products (Figure 2.1).
Among the possible applications, CO2 can be used by eukaryotic algae and
cyanobacteria to produce valuable compounds such as lipids (precursors of biodiesel),
pigments, biofertilizers and bioplastics (Venkata Mohan et al. 2015; Duppeti et al. 2017;
Kumar et al. 2018). Another emerging technology is chain elongation of CO2 to fatty acids
by using BES (Arends et al. 2017; Batlle-Vilanova et al. 2017).

Selection of the biorefinery concept strictly depends on the waste or wastewater to be
treated, as well as from the local conditions (temperature, availability of light) and local
legislation (incentives, emission limits). In general, the concept must be selected with the
aim to maximize the production of value-added compounds and reduce disposal cost.
For example, the composition of pulp and paper wastewaters, rich in carbohydrates
and/or volatile fatty acids (VFAs), makes them particularly suitable for acidogenic and
bioelectrogenic processes.
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3.1 Fundamentals of dark fermentation

3.1.1 Dark fermentation pathways

In dark fermentation, H2 is produced by fermentative microorganisms as a way to dispose
the electrons resulting from oxidation of organic compounds during their catabolism (Li
and Fang 2007). H2 can be produced through many different pathways (Figure 3.1),
depending on the microbial species involved, operating parameters and substrates used.
Glycolysis or the Embden-Meyerhoff pathway is the most common sugar degradation
route for mesophilic and thermophilic H2 producing microorganisms, such as Clostridium
sp. (Lee et al. 2011) and Thermoanaerobacter sp. (Vipotnik et al. 2016). In glycolysis,
sugars are oxidized to pyruvate, resulting in the generation of reduced nicotinamide
adenine dinucleotide (NADH) and energy in the form of adenosine triphosphate (ATP)
(Figure 3.1). Pyruvate can be further oxidized to acetyl-CoA through ferredoxin reduction.
If acetyl-CoA is then converted to acetate, both NADH and reduced ferredoxin are used
to convert H+ to H2 through a metalloenzyme called hydrogenase (Figure 3.1), yielding
the theoretical maximum (also called Thauer limit) of 4 mol H2 mol-1 glucose (Eq. 1)
(Thauer et al. 1977). This is also valid for pentose sugars such as xylose, which yields
3.3 mol H2 mol-1 xylose through the acetate pathway (Eq. 2).

C6H12O6 + 2 H2Oà 2 CH3COOH + 4 H2 + 2 CO2 (1)

C5H10O5 + 1.67 H2Oà 1.67 CH3COOH + 3.33 H2 + 1.67 CO2 (2)

3 Hydrogen production via dark fermentation
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Figure 3.1: Metabolic pathways for fermentation of sugars, modified from Saady (2013) and Shaw
et al. (2008). The green arrows represent the pathway producing the highest H2 yield. The blue
and red arrows represent the pathways in which NADH is partially or totally, respectively,
consumed through non-hydrogenic pathways. The discontinuous arrows represent intermediate
steps, which are not shown in the figure for simplicity.

However, the acetate production pathway is exergonic only at high temperatures and
low partial pressure of H2 (Verhaart et al. 2010). The dark fermentative process can be
inhibited by the accumulation of produced H2 in the medium, making an efficient gas
stripping necessary to enable high H2 yield (Beckers et al. 2015). Due to those limitations,
several different fermentation pathways usually occur simultaneously in H2 producing
bioreactors. In practical systems, NADH is partially or totally consumed for the production
of VFAs more reduced than acetate, such as butyrate (Eq. 3), propionate (Eq. 4) and
lactate (Eq. 5), or alcohols such as ethanol (Eq. 6), and only the remaining NADH and
ferredoxin is used for H2 production (Figure 3.1). This results in H2 yields ranging
between 14 and 70% of the Thauer limit (Saady 2013).

C5H10O5 à 0.83 CH3CH2CH2COOH + 1.67 H2 +1.67 CO2 (3)

C5H10O5  + 1.67 H2 à 1.67 CH3CH2COOH + 1.67 H2O (4)

C5H10O5 à 1.67 CH3CHOHCOOH (5)

C5H10O5 à 1.67 CH3CH2OH + 1.67 CO2 (6)
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3.1.2 Hydrogen producing bacteria

Dark fermentative H2 production is carried out by obligate or facultative anaerobic
microorganisms active at ambient (15-30 °C), mesophilic (30-39 °C), thermophilic (50-
64) or hyperthermophilic (> 65 °C) conditions (Lee et al. 2011). Such microorganisms
are spread around in both natural and anthropogenic environments. Biological samples
of e.g. sewage sludge (Baghchehsaraee et al. 2008; Hasyim et al. 2011; Reilly et al.
2014), digested sludge (Elbeshbishy et al. 2010; Bakonyi et al. 2014), landfill leachate
(Wong et al. 2014), compost (Song et al. 2012) and hot spring cultures (Koskinen et al.
2008) can be used as source of microorganisms for dark fermentative bioreactors.

H2 producing microorganisms thriving at ambient and mesophilic conditions belong in
general to the strictly anaerobic family of Clostridiaceae or to the facultative anaerobic
family of Enterobacteraceae. Clostridium sp. are the most studied H2 producing
microorganisms, as they have been often reported to dominate the mesophilic
fermentative microbial communities regardless of the inoculum source, inoculum
pretreatment and reactor type (Baghchehsaraee et al. 2008; Mäkinen et al. 2012; Jeong
et al. 2013; Si et al. 2015; Chatellard et al. 2016). Most H2 producing Clostridium sp.,
such as C. butyricum and C. acetobutylicum, produce H2 through both the acetate and
butyrate pathway under mildly acidic conditions, with optimum H2 yield at pH close to 5
(Grupe and Gottschalk 1992; Masset et al. 2010). Various Clostridium sp., and even
different strains of the same species, have shown different H2 yielding capabilities
(Hiligsmann et al. 2011).

Microorganisms of the genus Thermoanaerobacterium, and specifically T.
thermosaccharolyticum, are among the most widely studied thermophilic H2 producers
(O-Thong et al. 2009; Cao et al. 2014; Santos et al. 2014b; Ottaviano et al. 2017).
Karadag and Puhakka (2010) showed that Thermoanaerobacterium sp. become
dominant in a dark fermentative bioreactor, at the expenses of Clostridium sp., after
increasing the temperature from 37-45 °C to 50-60 °C. However, the genus Clostridium
includes some thermophilic species as well, such as C. thermopalmarium (Lawson Anani
Soh et al. 1991) and C. thermosaccharolyticum (Islam et al. 2016). Due to their high H2

production capabilities, many hyperthermophilic microorganisms, including
Thermoanaerobacter sp. (Xue et al. 2001; Soboh et al. 2004; Sigurbjornsdottir and
Orlygsson 2012; Vipotnik et al. 2016), Thermotoga sp. (Van Niel et al. 2002; D’Ippolito
et al. 2010; Nguyen et al. 2010), Caldicellulosiruptor sp. (Van Niel et al. 2002; Ivanova
et al. 2009; Zeidan and Van Niel 2010), Caloramator sp. (Ciranna et al. 2014) and
Thermococcus sp. (Kanai et al. 2005) have been studied for H2 production as pure
cultures. However, mixed cultures do not require sterilization, are easy to operate and
control and offer more versatility, and are therefore preferable for full-scale applications
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(Li and Fang 2007). Among studies with mixed cultures, Thermoanaerobacter sp. and
Thermoanaerobacterium sp. were the dominant microorganism detected after
hyperthermophilic (70 °C) dark fermentation of glucose and cellulose, respectively, using
sewage sludge as inoculum (Hasyim et al. 2011; Gadow et al. 2013). Qiu et al. (2011)
reported that a microbial community constituted by Caldicellulosiruptor sp.,
Coprothermobacter sp., Caldanaerobacter sp., Thermobrachium sp., and Thermotoga
sp. was enriched from cow manure digestate while performing both batch and continuous
dark fermentative H2 production from bioethanol distillery wastewater in the temperature
range 65-80 °C.

3.1.3 Hydrogen consuming bacteria and other competitors in dark
fermentative mixed cultures

Methanogenic archaea and homoacetogenic bacteria are the most common H2

consuming microorganisms affecting dark fermentative processes. Methanosarcina sp.,
Methanosaeta sp. and Methanobacteria sp. are the most common methanogenic
archaea in anaerobic bioreactors (Abbassi-Guendouz et al. 2013; De Vrieze et al. 2017).
Homoacetogenesis (autotrophic conversion of H2 and CO2 to acetate) is carried out by
a group of phylogenetically diverse bacteria, including many mesophilic and thermophilic
Clostridium sp. (Ryan et al. 2008). Other mesophilic homoacetogenic microorganisms
belong to the genera Acetobacterium, Butyribacterium, Peptostreptococcus and
Sporomusa (Saady 2013), whereas Moorella thermoacetica is one of the most commonly
found thermophilic homoacetogen. Also propionate producers consume H2 for their
metabolism, and have been reported to become dominant in reactors operated at low
hydraulic retention time (HRT) and high organic loading rate (OLR) (Santos et al. 2014b;
Sivagurunathan et al. 2016a). Other H2 consuming microorganisms are nitrate or sulfate
reducers (Bundhoo and Mohee 2016), but such microorganisms are not commonly found
in dark fermentative bioreactors because the nitrate or sulfate concentration in the feeds
is typically too low to support their growth.

Lactic acid bacteria (LAB), widely found in dark fermentative bioreactors (Etchebehere
et al. 2016), compete with H2 producers by converting sugars to lactate, or to a
combination of lactate, acetate and/or ethanol (Makarova et al. 2006). Furthermore, LAB
have been reported to outcompete other microorganisms, including Clostridium sp., by
synthetizing and excreting antibodies (Noike et al. 2002). The most common LAB found
in dark fermentative reactors are bacilli such as Lactobacillus sp. (Etchebehere et al.
2016) and the spore-forming Sporolactobacillus sp. (Fujita et al. 2010).
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3.1.4 Selective enrichment of hydrogen producing bacteria

Inoculum pretreatment processes have been widely applied on mixed microbial cultures
to select H2 producing microorganisms by repressing H2 consumers. Many of the
pretreatment processes rely on the fact that some H2 producers, including Clostridium
sp., Bacillus sp. and Thermoanaerobacterium sp., produce spores when exposed to
harsh conditions, and germinate when environmental conditions become favorable again
(Collins et al. 1994; Galperin 2013). However, most H2 consuming microorganisms are
non-spore forming, and thus not able to resist the harsh conditions.

Temperature and pH shocks are the most widely applied pretreatments to select spore
forming microorganisms (for a review, see Wang and Yin 2017). High temperature
causes cell lysis and protein denaturation (Appels et al. 2008), whereas low temperature
causes membrane lipid stiffening, formation of ice crystals in the cell and protein gelling
(Sawicka et al. 2010). Low or high pH may inactivate key enzymes, change the electrical
charge of the membrane and modify the internal pH of the cell (Rafieenia et al. 2018).
Other pretreatment processes that have been studied include chemical treatment with
2-bromoethansulphonate acid (BESA) or chloroform, aeration, ionizing irradiation,
ultrasonication, microwaves and electric shock (for a review, see Wang and Yin, 2017).

Many studies have compared the effect of various inoculum pretreatments on mesophilic
and thermophilic dark fermentation, but the different inoculum, substrate and operating
conditions used in the various studies makes it difficult to draw conclusions about their
feasibility (Table 3.1). In most cases, the comparisons were done in terms of H2 yields,
giving little attention to the effect of the various pretreatments on the microbial
communities, which were analyzed only in a few cases at DNA-level (Table 3.1).

Despite inoculum pretreatments have been extensively used for dark fermentation, they
have some drawbacks, which may discourage their application in full-scale bioreactors.
Inoculum pretreatments may eliminate non-sporulating H2 producers, while sporulating
H2 consumers and competitors may survive the treatment (Bundhoo et al. 2015).
Furthermore, the effect of the pretreatment is hardly maintained in the long term,
especially when actual waste or wastewater is used as feedstock (Saady 2013). In fact,
wastes and wastewaters likely contain microorganisms which can grow and restore H2

consumption in the long term, making it necessary to repeat periodically the pretreatment,
which is not a sustainable approach.

The growth of a H2 producing microbial community can be also promoted by controlling
the operating parameters. Methanogenesis is usually inhibited at pH < 6. Methanogenic
archaea may be flushed out by setting a short (0.5-12 hours) HRT in bioreactors with
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suspended biomass (Sivagurunathan et al. 2016a). Due to their phylogenic diversity,
getting rid of homoacetogenic microorganisms in fermentative bioreactors is challenging.
However, homoacetogenesis is not favorable at thermophilic conditions. Luo et al. (2011)
reported that homoacetogenesis was inhibited by the combination of high temperature
(55 °C) and low pH (5.5). The same applies to most LAB, which are mainly mesophiles
and will be eliminated at temperatures > 50 °C (Noike et al. 2002). However,
Sporolactobacillus sp. was found even at 70 °C in expanded granular sludge bed
reactors performing dark fermentation of glucose and arabinose (Abreu et al. 2012). H2

consuming bioconversions become more favorable at high H2 partial pressure, but an
intermittent gas-sparging with e.g. N2 may mitigate this issue, although diluting the H2

concentration in the gas (Kongjan et al. 2009).



Table 3.1: Summary of studies comparing the effect of inoculum pretreatments on H2 yield from various substrates, showing pH, temperature of incubation
and microbial community analysis applied. The pretreatment resulting in the highest H2 yield in the specific study is underlined and written in bold.

Inoculum Pretreatment applieda Substrate (g COD L-1) Tb pHc H2 yield
(mmol H2

g-1 COD)d

Microbiological analysis Reference

Sludge from soybean treatment plant AS, BS, DHT, FT, HT Glycerol (30.7) 35 7.0 n.a. Plate count and 16S rRNA
gene sequencing

Misturini Rossi et al.
(2011)

Anaerobic microflora flom lab-scale UASB AS, AS+CT, AS+HT,
AS+CT+HT, CT, CT+HT,
HT

Dairy wastewater
(10.4)

29 6.3 0.03 None Venkata Mohan et al.
(2008)

None (substrate was assumed to contain
also the necessary microorganisms)

ENZ, HT, MW Waste sludge (19.5) 35 7.9 0.29 PCR-DGGE and 16s rRNA
gene sequencing

Guo et al. (2015)

Granular sludge from brewery AS, BS, CT, FT, HT Palm oil mill effluent
(49.0)

35 5.5 0.44 None Mohammadi et al.
(2012)

Digested sludge from plant treating the
organic fraction of municipal waste

AE, AS, FT HT, US Rice and lettuce
powder (24.8)

37 5.5 0.80 None Dong et al. (2010)

Anaerobic digested sludge AS, BS, CT, HT, LS Sucrose (22.5) 60 5.5 2.14 PCR-DGGE, 16s rDNA
sequencing, phylogenetic tree

O-Thong et al. (2009)

None (substrate was assumed to contain
also the necessary microorganisms)

AS, BS, HT, US, US+AS,
US+BS US+HT

Food waste (18.4) 37 5.5 2.65 None Elbeshbishy et al. (2011)

Anaerobic sludge from cassava ethanol
plant

AS, BS, CT, HT, LSe Cassava stillage (60.1) 60 6.0 2.91 None Luo et al. (2010)

Sludge from cattle manure treatment plant AS, CT, DHT, FT, HT Glucose (25.0) 35.5 7.0 4.40 None Hansen (2006)
Marine intertidal sludge AS, BS, FT HT, Glucose (21.3) 37 7.2 4.48 PCR-DGGE and 16s rRNA

gene sequencing
Liu et al. (2009)

Sewage sludge US, UV Apple pomace (n.a.f) 37 5.0 4.77 None Wang et al. (2010)
Suspended and granular anaerobic sludge CT, HT, HT+CT Wheat straw powder

(20.0)
37 7.0 5.20 None Argun and Kargi (2009)

Anaerobic sewage sludge and granular
sludge

AS, CT, HT Glucose (20.0) 35 7.0 6.08 None Hu and Chen (2007)



 Table 3.1: continued.

Inoculum Pretreatment applieda Substrate (gCOD L-1) Tb pHc H2 yield
(mmol H2

g-1 COD)d

Microbiological analysis Reference

Sludge from secondary settler of municipal
wastewater treatment plant

AE, AS, BS, HT, Glucose (10.7) 35 6.8 6.26 PCR-DGGE and 16s rRNA
gene sequencing

Ren et al. (2008)

Digested sewage sludge EF, HT Glucose (20.0) 37 8.0 7.44 RNA concentration and 16S
rRNA gene sequencing

Jeong et al. (2013)

Digester anaerobic sludge AS, BS, HT, US Glucose (8.5) 37 6.5 8.07 None Elbeshbishy et al. (2010)
Anaerobic sludge from plant treating
soybean wastewater

AS, BS, HT Sucrose (28.1) 35 5.5 8.83 None Mu et al. (2007)

Anaerobic sludge from ethanol
manufacturing

AS, BS, HT, LA Glucose (n.a.) 37 5.5 8.84 Plate count Chaganti et al. (2012)

Activated sludge AE, AS, BS, CT, HT Glucose (10.7) 35 7.0 8.89 None Chang et al. (2011)
Digested sewage sludge AE, AS, BS, CT, HT, Glucose (7.1) 35 7.0 9.26 Optical density Wang and Wan (2008)
Granular and flocculated anaerobic sludge
from municipal wastewater treatment

AS, BS, CT, HT, LA, LS Glucose (5.3) 37 6.0 9.38 Genomic DNA extraction,
separation in polyacrylamide
and sequencing

Pendyala et al. (2012)

Digested anaerobic sludge from municipal
wastewater treatment plant

AS, BS, HT, II Glucose (10.7) 36 7.0 11.20 None Yin et al. (2014)

Anaerobic sludge from pig manure AS, BS, HT Glucose (21.3) 35 6.2 11.25 None Wang et al. (2011)
Cow dung compost AE, AE+LS, HT, IR Sucrose (11.2) 36 7.0 11.50 Plate count Song et al. (2012)
Fresh cattle dung AS, CT, HT Sago wastewater

(11.6)
30 7.0 12.33 None Sen and Suttar (2012)

Digested activated sludge AE, AS, BS, CT, HT Sucrose (11.2) 35 6.3-
8.0

14.67 None Zhu and Béland (2006)

a AE, Aeration; AS, acidic shock; BS, base (alkaline) shock; CT, chemical treatment; DHT, dry heat treatment; EF, electric field; ENZ, enzymatic; FT, freeze and thawing; HT, heat treatment; II,
ionizing irradiation; IR, infrared; LA, linoleic acid; LS, loading shock; MW, microwave; US, ultra sonication; UV, ultra violet.. b Incubation temperature. c Initial pH of incubation. d Highest H2 yield
obtained per g CODadded in the first batch culture of pretreated or untreated inoculum. e The highest H2 yield was obtained using the untreated inoculum. f Not available.
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3.2 Bioreactors for dark fermentative hydrogen production

Bioreactors relying on activity of suspended and biofilm-attached biomass have both
been widely studied for dark fermentative H2 production (Wang and Wan 2009) (Figure
3.2). Suspended biomass bioreactors such as continuous stirred tank reactors (CSTRs)
ensure a good mixing, but can result in microorganism flush out (Li and Fang 2007). Self-
granulation could reduce the loss of active microorganisms (Show et al. 2011), but
according to Sivagurunathan et al. (2016a) self-granulation is not easily controllable in
dark fermentative bioreactors. Biofilm-based attached biomass systems such as packed
bed reactors (PBRs), membrane bioreactors (MBRs), fluidized bed reactors (FBRs) and
upflow anaerobic sludge blanket reactors (UASBs) operated with a carrier material are
characterized by adhesion of microorganisms as biofilm on inert supporting surfaces,
and thus a higher biomass retention time (Show et al. 2011) (Figure 3.2). However, in
the case of MBRs, the adhesion of microorganisms causes biofouling of the membrane
and a consequent increase of the operating costs (Show et al. 2011) (Figure 3.2).
Trickling bed reactors (TBRs) have also been proposed for dark fermentative H2

production, as they ensure low gas retention, high cell density and an easy control of pH
and temperature (Oh et al. 2004b).

Among the attached biomass systems, FBRs are particularly efficient for H2 production
as the turbulent regime improves the mass transfer between biomass and substrate
(Barca et al. 2015). Furthermore, FBRs favor the stripping of the produced H2, avoiding
its accumulation and the consequent inhibition by high H2 partial pressure (Barca et al.
2015). Several carrier materials have been used as support for biofilm growth, including
activated carbon (Zhang et al. 2007; Muñoz-Páez et al. 2013), expanded clay
(Cavalcante de Amorim et al. 2009; Barros et al. 2010), celite (Koskinen et al. 2006),
polystyrene (Barros et al. 2010; Barros and Silva 2012), as well as grounded tyre and
plastic material (Barros and Silva 2012). FBRs have also been operated without a carrier
material by using self-granulating biomass (Zhang et al. 2008) or biomass immobilized
within silicone gel (Lin et al. 2006). FBRs have been operated with a HRT ranging from
0.5 h (Chang et al. 2002) to 24 h (Muñoz-Páez et al. 2013). A low HRT is usually related
with higher H2 yields as it enhances the washout of H2 consuming microorganisms such
as methanogens and homoacetogens due to their slower growth rates compared to H2

producing bacteria. However, a too low HRT may result in an incomplete substrate
utilization. For example, the effect of HRT has been studied in the range of 1-8 h in a
FBR reactor with glucose as the substrate (Dos Reis and Silva 2011), obtaining a
maximum yield of 2.55 mol H2 mol-1 glucose at an HRT of 2 h.
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Figure 3.2: Bioreactor configurations for dark fermentative H2 production and biomass retention
systems involved. The colored arrows indicate the influent inlet (inf) and effluent (eff) or gas outlet.
The figure includes schematic diagrams of continuous stirred tank reactor (CSTR), membrane
bioreactor (MBR), upflow anaerobic sludge blanket (UASB), fluidized bed reactor (FBR), trickling
bed reactor (TBR) and packed bed reactor (PBR). The microorganisms can be retained in the
bioreactors as planktonic microorganisms (a), attached on carrier materials (b) and/or growing as
biofilm on membrane (c).
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Besides the conventional bioreactors, alternative dark fermentative bioreactor designs
have been proposed in order to optimize biomass retention, mixing and gas stripping
from the fermentation broth. Hiligsmann et al. (2014) studied a sequenced-batch
horizontal fixed bed and a biodisc-like bioreactor for dark fermentation of glucose by a
pure culture of Clostridium butyricum immobilized in polyurethane cubes or in a
polypropylene rotating disc, respectively. The biodisc-like bioreactor resulted in the
highest H2 production rate (HPR) of 703 mL H2 L-1 h-1 with a remarkably high yield of 2.4
mol H2 mol-1 glucose (Hiligsmann et al. 2014). Hassan Khan and Gueguim Kana (2016)
proposed a reactor configuration with 3D-printed porous cartridges filled with pellets of
heat treated anaerobic sludge immobilized in sodium alginate. A 30% higher H2 yield, as
well as a 60% shorter lag phase, was obtained using this novel configuration compared
to the control bioreactor without cartridges. Gas sparging with N2 or CO2 can help
decreasing the H2 partial pressure inside dark fermentative bioreactors (Kim et al. 2006),
but it also results in a dilution of the H2 produced. To overcome this problem, two gas
separation membranes were connected to a dark fermentative CSTR in order to separate
the H2 from the CO2 (Bakonyi et al. 2017). The CO2-rich gas stream was then recirculated
from the bottom of the CSTR, stripping H2 from the liquid and resulting in a 30% higher
HPR compared to a control CSTR operated without membrane (Bakonyi et al. 2017).
Alternatively, a low H2 partial pressure can be achieved by operating the dark
fermentation bioreactor at low pressure by vacuuming (Lee et al. 2012).

Despite the improvements achieved in the last two decades, the establishment of dark
fermentation at industrial scale is still hindered by the low H2 yields, as well as by the
costs of handling and processing of organic substrates (Kumar et al. 2017b). Therefore,
research on dark fermentation is still mainly carried out at laboratory scale. However,
scale-up of dark fermentative bioreactors have been attempted in a few studies (Table
3.2). A remarkably high HPR of 312.5 mL H2 h-1 L-1 was obtained by dark fermentation
of hydrolized corn stover in a 3000 L baffle reactor (Table 3.2). Furthermore, in the same
study, the effluent of dark fermentation was used as substrate for photofermentation,
resulting in an additional HPR of 196 mL H2 h-1 L-1.



Table 3.2: H2 production rates (HPR) reported in pilot-scale studies on dark fermentation of different substrates conducted using different inocula, reactor
types, temperature, pH and organic loading rates (OLR).

Inoculum Reactor typea Volume
(L)

Substrate T (°C) pH HRT (h) OLR (g COD
L-1  h-1)

HPR (mL H2

h-1 L-1)
Reference

Food waste and tap
water

CSTR 200 Food waste 55 5-6 79.2 21.6 39.6 Cavinato et al.
(2012)

Heat treated seacost
sludge

CSTR 400 Sucrose 37 5.6-5.8  8 2.5 558 Lin et al. (2011)

Heat treated digested
sludge

Tank reactor 500 Liquid from food
waste pressing

33 5.3 21 12.3-71.3 0.16 Lee and Chung
(2010)

Sludge from fructose
processing

FBR 1000 Gluten processing
wastewater

35 6.0 36 0.56 9.3 Cheng et al. (2011)

Sludge from
municipal wastewater
treatment plant

CSTR 1480 Molasses 35 7.0 4.2 2.8 232 Ren et al. (2006)

Heat treated sewage
sludge

Baffle reactor 3000 Hydrolized corn
stover

35 4.5 16 0.63 313 Zhang et al. (2018)

a Continuous stirred tank reactor (CSTR); fluidized bed reactor (FBR).
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3.3 Biological hydrogen production at high temperature

Temperature is a key parameter in dark fermentation as it can widely affect the
composition and productivity of the fermentative microbial communities (Karadag and
Puhakka 2010). Dark fermentation at high temperature can be advantageous because
the acetate production pathway, which leads to the highest H2 yield, becomes more
favorable as the temperature increases (Verhaart et al. 2010). Thermophilic conditions
are also beneficial for the kinetics of the reactions and the growth rate of microorganisms
surviving at high temperature (Ratkowsky et al. 1982). For those reasons, dark
fermentation at high temperature typically results in higher H2 yields than mesophilic
processes with a similar substrate and inoculum (Yokoyama et al. 2007; Hasyim et al.
2011; Kargi et al. 2012; Zheng et al. 2014). Technical advantages of high temperature
include low viscosity and high gas stripping due to the low solubility of gas (and thus low
H2 partial pressure). Furthermore, thermophilic conditions are not favourable for most H2

consuming (Hasyim et al. 2011) and pathogenic microorganisms. The main drawback of
thermophilic processes is the energy required for heating the bioreactors, which may
overcome the energy gained by the increased H2 yield (Perera et al. 2010). However,
some industrial wastewaters, such as TMP wastewater (Rintala and Lepistö 1992;
Suvilampi et al. 2001), are produced at elevated temperatures, and can therefore be
treated on site with a minimum or even without any energy requirement for heating.

Continuous H2 production at high temperature (55-70 °C) from simple sugars by mixed
cultures has been studied using various reactor types and at HRT varying from a few
hours to 3 days (Table 3.3). More complex substrates have also been studied for
thermophilic dark fermentative H2 production. For example, H2 was successfully
produced from diluted sugarcane vinasse in a FBR at 55 °C, with a maximum HPR of
780 mL H2 h-1 L-1, but the process was inhibited by the high concentration of volatile fatty
acids with undiluted sugarcane vinasse as the substrate (Santos et al. 2014a). H2

production from cellulose has been evaluated by using a hyperthermophilic (70°C) CSTR
reactor, operated in continuous mode, inoculated with digested sewage sludge (Gadow
et al. 2013). The CSTR produced H2 steadily for 150 days with an average HPR of 20
mL H2 h-1 L-1. Continuous H2 production from bioethanol distillery wastewater has been
studied at 70 °C in a CSTR inoculated with cow manure digestate, obtaining a steady
HPR of 52 mL H2 h-1 L-1 (Qiu et al. 2011).



Table 3.3: Highest stable H2 production rate (HPR) obtained in continuous studies on thermophilic (T ≥ 55°C) dark fermentation of simple sugars using
different inoculum, reactor type, pH and hydraulic retention time (HRT).

Inoculum Pretreatment Reactor typea Substrate  (g COD
 L-1)

T (°C) pHb HRT (h) HPR (mL
H2 h-1 L-1)

Reference

Biomass from H2-
producing CSTR

None UASB Sucrose (11.2) 55 4.5-5.0
(nc)

3 112.5 Keskin et al. (2012)

Anaerobic digester
sludge

Heat treatment (105°C, 5
min)

UASB Sucrose (11.2) 55 5.0-5.5
(nc)

1.5 124.2 Keskin et al. (2011)

Anaerobic sludge Heat treatment (80°C,
60min)

FBR Sucrose (5.0) 60 5.5 (i) 12 60.5 Lutpi et al. (2016)

Biomass from H2-
producing CSTR

None TBR Glucose (7.3) 60 5.5 (c) 2 980.6 Oh et al. (2004b)

Biomass from H2-
producing CSTR

None CSTR Xylose (1.1) 70 6.7  (nc) 72 2.6 Kongjan et al. (2009)

Biomass from H2-
producing CSTR

None UASB Glucose (2.1) 70 7.0 (i) 24 12.7 Zheng et al. (2008)

Biomass from CSTR
producing methane

Chemical treatment
(BESA)

UASB Glucose (4.8) 70 7.2 (i) 27 47.3 Kotsopoulos et al.
(2006)

Anaerobic sludge from
thermophilic CSTR

None CSTR Glucose (4.6) 70 5.5 (c) 21.6 91.7 Zhang et al. (2014)

a Continuous stirred tank reactor (CSTR), fluidized bed reactor (FBR), trickling bed reactor (TRB), upflow anaerobic sludge blanket (UASB). b The reported pH refers either to
the initial pH (i) or the operation pH, which can be either controlled to a stable value by automatic titration (c) or not controlled (nc).
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4.1 Principle of microbial fuel cells

Microbial fuel cells (MFCs) are devices which convert the chemical energy of some
organic and inorganic compounds to electric energy through biological-mediated
reactions (Logan et al. 2006). MFCs generally consist of an anode electrode, which acts
as electron acceptor for the biological oxidation of organic compounds, and a cathode
electrode, which acts as electron donor for biotic or abiotic reactions (Logan et al. 2006).
The reactions at the two electrodes create a potential difference, which results in
migration of electrons from the anodic to the cathodic chamber of the MFC through an
external circuit, producing current (for a review, see Butti et al. 2016). At the same time,
protons migrate through the anodic solution to the cathode and combine with a terminal
acceptor and the electrons. If oxygen is the terminal electron acceptor, water is formed
as the end-product (Figure 4.1).

4.1.1 Electron transfer mechanisms

Biological electricity production in MFCs is carried out by a certain group of anaerobic or
facultative anaerobic bacteria, called exoelectrogens, able to oxidize the substrates and
transfer electrons outside the cell to the solid anode electrode (Logan 2009). Electron
transfer essentially occurs as direct (short-range or long-range) or mediated transport of
electrons (Schröder 2007; Kumar et al. 2015) (Figure 4.1). Short-range electron transfer
occurs through redox-active proteins on the surface of the cell membrane, such as c-
type cytochromes, whereas long-range electron transfer occurs via conductive pili called

4 Microbial fuel cells for biological electricity
production
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nanowires (Snider et al. 2012; Kumar et al. 2016). In the mediated electron transfer, a
mediator compound is reduced by receiving the electrons from the membrane-bound
proteins and then oxidized by transferring the electrons to the anode surface, becoming
reusable for further electron transfer (Kumar et al. 2016). Some exoelectrogenic
microorganisms can produce and excrete mediators such as flavin, riboflavin, pyocyanin
and quinone (Kumar et al. 2016). Once mediators are released outside the cell, also
microorganisms that do not themselves produce mediators can utilize them for electron
transfer (Pham et al. 2008). Artificial mediators such as ferricyanide, neutral red, methyl
viologen, phenazines, phenoxazines, phenothiazines, quinine and benzoquinone can be
added to facilitate the electron transfer, but this approach is not economically sustainable
in continuous operation (Butti et al. 2016).

Figure 4.1: Schematic representation of a two-chamber microbial fuel cell with a biotic anode fed

with organic compounds and with dissolved oxygen used as electron acceptor at the cathode (top

part of the figure). Direct (a) and mediated (b) electron transfer mechanisms, proton flow through

the membrane, which can be limited in case of biofouling (c), and cathodic reaction (d) are

depicted in more detail on the bottom part of the figure.
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4.1.2 Exoelectrogenic microorganisms

Exoelectrogens are a wide group of strictly and facultative anaerobic microorganisms.
They can be found in both natural (lakes, rivers, oceans, groundwater, sediments, and
soil) and anthropogenic (wastes, wastewaters, contaminated soils, compost and
industrial systems) environments, even at extreme pH, temperature and pressure
conditions (Miceli et al. 2012; Chabert et al. 2015). The most typical inocula for
laboratory-scale experiments include aerobic sludge (Mohd Yusoff et al. 2013; Zhang et
al. 2016), anaerobic sludge or digestates (Borole et al. 2009; Torres et al. 2009; Chae et
al. 2010a; Coronado et al. 2013; Modestra and Mohan 2017) and microorganisms from
previously operated BES (Rabaey et al. 2005; Haddadi et al. 2014; Vicari et al. 2017).
Anaerobic sludge has been demonstrate to be richer in exoelectrogenic microorganisms
than aerobic sludge, but it also contains competing methanogenic microorganisms
(Lobato et al. 2012).

Exoelectrogenic bacteria mainly belong to the Proteobacteria, Firmicutes and
Acidobacteria phyla (Kumar et al. 2015). The most studied exoelectrogenic
microorganisms are dissimilatory iron reducers such as Geobacter sp. and Shewanella
sp., which can perform short-range electron transfer via membrane-bound proteins
(Kumar et al. 2017a). Geobacter sp. can also perform long-range electron transfer by
excreting conductive pili, whereas Shewanella sp. can increase the electron transfer
distance by extending its outer membrane and periplasm, or performs mediated electron
transfer through self-produced shuttles (Kumar et al. 2017a). Geobacter sulfurreducens
can form multilayer biofilms in which the different cells are connected through nanowires
(Bonanni et al. 2012), resulting in a conductive net which allows to transport the electrons
to the anode from long distances. This usually results in a higher electricity generation
compared to bacteria forming a monolayer biofilm, as multilayer biofilms enable long-
range electron transfer to the anode via interspecies electron transfer (Logan 2009).
However, thick biofilms may result in a high diffusion resistance, limiting the
electorochemical activity of microorganisms (Sun et al. 2016). Geobacter sp. has been
widely reported as the dominant microorganism in mesophilic MFCs, regardless of the
MFC set-up, substrate and inoculum source (Gao et al. 2014; Lesnik and Liu 2014; Jiang
et al. 2016; Haavisto et al. 2017). Other known mesophilic exoelectrogenic
microorganisms include Pseudomonas aeruginosa, which excretes pyocyanin to
mediate electron transfer (Shen et al. 2014), and Acidithiobacillus ferrooxidans, which
was shown to produce conductive nanowires (Li and Li 2014). However, Acidithiobacillus
sp. grows only on inorganic substrates, such as ferrous iron, and is active only at pH
lower than 3 (Meruane and Vargas 2003).
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Most of the known exoelectrogenic bacteria are active at ambient or mesophilic
conditions. However, few Firmicutes such as Thermincola sp. (Wrighton et al. 2008;
Marshall and May 2009; Parameswaran et al. 2013), Caloramator sp. (Fu et al. 2013a),
and Thermoanaerobacter sp. (Lusk et al. 2015), and Deferribacteres such as
Calditerrivibrio sp. (Fu et al. 2013b) have been reported to produce electricity at
thermophilic conditions (55-60 °C). Although most Firmicutes perform only mediated
electron transfer upon addition of external mediators, evidence of direct electron transfer
was given for Thermincola potens (Wrighton et al. 2011) and Thermincola ferriacetica
(Parameswaran et al. 2013). In particular, T. ferriacetica was shown to develop a thick,
multilayer conductive biofilm, in which the cells are connected through a network of
extracellular pili, similarly to Geobacter sp. biofilms (Parameswaran et al. 2013).
Interestingly, Thermoanaerobacter pseudethanolicus was shown to generate current
from acetate produced by sugar fermentation, but electricity production was negligible in
a medium containing acetate as the only organic substrate (Lusk et al. 2015). Although
it has not been studied for electricity production as a pure culture, Coprothermobacter
sp. was reported to dominate the electroactive mixed microbial community in an acetate-
fed MFC (Jong et al. 2006) and it is therefore a possible thermophilic anode-respiring
microorganism. Caldanaerobacter sp. and Thermodesulfobacterium sp. were detected
at temperatures up to 98 °C in a glucose-fed MFC inoculated with water from a petroleum
reservoir, with a sampling temperature of about 98 °C (Fu et al. 2015). However, their
exoelectrogenic activity needs to be proven in pure culture experiments.

4.1.3 Microorganisms competing with exoelectrogens

Non-exoelectrogenic microorganisms can compete with exoelectrogens by directing a
share of electrons available in the substrate away from the anode through other
pathways than electricity generation. Acetoclastic and hydrogenotrophic methanogenic
archaea, which consume electrons to form methane from acetate or from H2 and CO2,
respectively, have been widely reported to compete with exoelectrogens in MFCs
operated at ambient (Chung and Okabe 2009), mesophilic (Rismani-Yazdi et al. 2013)
and even thermophilic (Hussain et al. 2012) conditions. Among the archaeal
microorganisms colonizing MFCs, Methanosarcina sp. can perform both acetoclastic
and hydrogenotrophic methanogenesis, whereas Methanobacteriaceae do not have
cytochromes and methanophenazine, and thus can perform only hydrogenotrophic
methanogenesis (Thauer et al. 2008).

Although methanogens are the prevalent competitor of exoelectrogenic microorganisms,
other microorganisms can consume electrons through pathways other than electricity
production in MFCs. Fermentative bacteria may prevail in case of MFCs fed with
fermentable fuel, such as carbohydrates, as fermentation is thermodynamically more
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favorable than the respiratory mechanism of exoelectrogens (Borole et al. 2011).
However, exoelectrogens can create a synergy with fermentative bacteria by producing
electricity from volatile fatty acids and alcohols resulting from sugar fermentation (Kiely
et al. 2011). Other potential competitors include H2 oxidizing microorganisms (Hayashi
et al. 1999) and nitrate or sulfate reducing microorganisms (Borole et al. 2011). A share
of electrons can also be consumed by aerobic metabolism in case on oxygen intrusion
to the anodic chamber (Kim et al. 2007).

4.1.4 Selective enrichment of exoelectrogens

A fast development of a stable electroactive biofilm is the key to decrease start-up time
and minimize competition by non-exoelectrogenic pathways in MFCs (Boghani et al.
2013). Selection of an inoculum rich in exoelectrogenic species which can form a biofilm
in the operational conditions of the specific MFC (e.g. temperature, pH and substrate),
and poor in competitors, is crucial for optimal MFC performance (Lobato et al. 2012). In
the same way as in the case of dark fermentation (see section 3.1.4), the inoculum can
be pretreated to eliminate methanogenic archaea, but in this case also non-spore
forming exoelectrogenic microorganisms can be eliminated. Methanogens can also be
detached from the anode by operating the MFC in open circuit mode, favoring their
elimination by flushing out (Kaur et al. 2014). Methanogens can also be inhibited by
prolonged starvation, without affecting the exoelectrogenic microorganisms (Kaur et al.
2014).

The anode potential influences the metabolic pathways of the microbial communities in
MFCs (Busalmen et al. 2008; Carmona-Martínez et al. 2013). Therefore, a certain anode
potential can be applied and kept constant, e.g. with a potentiostat, to select the desired
metabolic routes. Imposing a positive potential (e.g. from 0.2 to 0.4 V vs. standard
hydrogen electrode, SHE) typically increases the energy gain of the anode respiring
microorganisms, resulting in the establishment of a highly diverse microbial community.
On the other hand, a negative potential (e.g. from -0.05 to -0.3 V vs. SHE) will generally
favor the exoelectrogenic microorganisms able to respire at low potential (Torres et al.
2009; Commault et al. 2013). For example, Torres et al. (2009) reported a 97% relative
abundance of Geobacter sulfurreducens in a MFC started up imposing a potential of -
0.15 V (vs. SHE), whereas a diverse microbial community was obtained in an identical
MFC started up imposing a potential of 0.37 V (vs. SHE). However, Zhu et al. (2014)
reported only minor changes in the microbial communities applying potentials from -0.25
to 0.81 V, showing that certain bacteria can self-regulate the electron transfer pathways
to adapt to the anode potential.
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Continuously imposing a potential, and thus operating the system as a microbial
electrolysis cell (MEC) is not feasible in full-scale applications, as a current must be
continuously added to the system to keep stable the potential. However, the anode
potential can be indirectly controlled by selecting an appropriate external load. A low
external load increases the availability of the electron acceptor, and thus the energy
available for the growth of exoelectrogenic microorganisms (Zhang et al. 2017a).
However, the maximum power is obtained when the external load is similar to the internal
resistance of the MFC (Logan et al. 2006). Therefore, it can be convenient to apply
different external loads at the different stages of MFC operation. In fact, an external load
varying in the range 50-800 Ω, controlled by an algorithm, was installed to a MFC
resulting in a 5-times higher power production than a similar MFC with a static external
load of 200 Ω (Premier et al. 2011).

The composition of the anolyte solution can also be modified in order to favor the growth
of exoelectrogenic microorganisms. It was shown that MFCs fed with fermentable
substrates can result in a wide microbial community but low Coulombic efficiency (CE),
due to electron consumption via non-electrogenic metabolism, whereas exoelectrogenic
pathways prevail in acetate-fed MFCs (Chae et al. 2009). Therefore, it can be useful to
enrich a microbial community on acetate prior to utilization for producing electricity from
more complex substrates.

4.2 Microbial fuel cell design: state of the art

MFCs can be constructed with a single chamber or two-chamber configuration. In the
first case, only the anode electrode is submerged in a liquid medium, whereas the
cathode is exposed to surrounding air. In the second case, both anode and cathode
electrodes are submerged in a liquid medium (Butti et al. 2016). Generally, higher power
production is associated to dual chamber MFCs, but the higher fabrication and operating
costs make their scale up challenging.

Traditional MFC set-ups includes cubic single chamber MFC, with the cathode exposed
to the air, and two chamber cubic or h-type MFCs, which consists of two chambers or
two bottles, respectively, connected through a membrane (Logan et al. 2006). Upflow
MFC, in which the anolyte is supplied from the bottom of the reactor, is an easily scalable
alternative, which can be operated at low HRT (Haavisto et al. 2017). Tubular MFCs, in
which the electrodes are located concentrically in a cylindrical frame, optimize the
surface area of the anode, cathode and membrane (if present), which can result in a high
power output (Kim et al. 2010). A tubular, upflow MFC, consisting of five modules
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connected in series, with copper mesh and stainless steel coil composite electrodes,
successfully treated (78% CODsoluble removal) concentrate of domestic wastewater at an
HRT of 0.75 days producing a maximum power of 916 mW m-3 (Koroglu et al. 2016).

Anode and cathode chambers in dual chamber MFCs are often connected by a proton
exchange membrane (PEM), a cation exchange membrane (CEM) or an anion exchange
membrane (AEM) and less commonly by bipolar membranes, salt bridge or size-
selective separators (Kim et al. 2007; Li et al. 2011; Butti et al. 2016). The main drawback
of CEM is the competitive transport of cations other than H+, leading to a pH split between
the two chambers. AEM promote the transfer of cations, but are more permeable to the
substrates used in MFCs, such as acetate, and more liable to deformation (Kim et al.
2007; Li et al. 2011). MFCs can also be operated without a membrane: in this case,
power may increase due to the lower internal resistance of the MFC, but the CE often
decreases due to the increased diffusion of electron acceptor (e.g. oxygen) from the
cathodic to the anodic chamber (Liu and Logan 2004).

In MFCs, optimal electrodes are highly conductive, inexpensive, as well as mechanically
and chemically resistant (Butti et al. 2016). Generally, metals have higher conductivity
than carbon, but their smooth surface is not favorable for the adhesion of microorganisms.
Furthermore, many metals are not suitable for long-term MFC operation due to corrosion,
and can be even toxic for exoelectrogenic microorganisms (Zhu and Logan 2014;
Sonawane et al. 2017). Carbonaceous materials, in particular graphite, are commonly
used because they have relative high conductivity, chemical stability, good
biocompatibility and because they are relatively cost-efficient (Hernández-Fernández et
al. 2015). The anode surface is crucial for energy production. Many different anode
configurations are commercially available, including carbon-based electrodes such as
carbon cloth, brush, rods, felt, mesh, granules and paper, and metal-based electrodes
such as stainless steel or Ti plates, stainless steel mesh and scrubber, and Ag, Ni, Cu
and Au sheets (for a review, see Santoro et al. 2017). Metal foams have also been
proposed to increase the anodic surface (Mapelli et al. 2013). Anode pretreatment, such
as ammonia gas treatment (Cheng and Logan 2007), electrochemical treatment (Tang
et al. 2011) and polymer coatings (Mehdinia et al. 2013) have shown to significantly
increase power generation in MFCs by improving the surface charge of the electrode,
generating new functional groups and increasing the surface for microorganisms
attachment, respectively. Composite, multi-material anodes have also been proposed,
such as graphite-polymer, carbon nanotube, graphene-based and carbon-metal
composites (Yong et al. 2012; Chen et al. 2013; Sonawane et al. 2017). A low-cost
alternative is to utilize natural anode materials, such as carbonized plants, which are
porous and conductive (Karthikeyan et al. 2015).
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Cathodic reactions may be the limiting factor of the whole electricity production process
if the kinetics of the cathodic reactions are slow (Rismani-Yazdi et al. 2008). A good
electron acceptor must have a high redox potential and be cheap and easily available
(Venkata Mohan et al. 2014). Oxygen is a promising electron acceptor for MFC scale up
as it has a high redox potential, it is abundant in the atmosphere and has low cost (Lu et
al. 2012). Despite its high redox potential, however, the performance of oxygen for the
cathodic reaction is limited by its slow reduction kinetics, as well as by its low solubility
(Rismani-Yazdi et al. 2008). Other catholytes used in MFCs include ferricyanide,
permanganate, perchlorate and persulfate (Lu et al. 2012). Wei et al. (2012) reported a
significantly higher power generation in a two-chamber MFC with a ferricyanide cathode
compared to an air-sparged cathode, with an optimum concentration of 0.1 M
ferricyanide. This can be attributed to the strong oxidizing nature of ferricyanide, and to
the higher mass transfer and lower activation energy for the cathodic reaction compared
to oxygen (Venkata Mohan et al. 2014). However, the use of ferricyanide is not
sustainable for full scale applications, as it is toxic and becomes consumed during MFC
operation, requiring periodic regeneration (Ucar et al. 2017). Another interesting
approach is to use metal ions (e.g. Ag+, Au3+, Cd2+, Co3+, Co2+, Cr6+, Cu2+, Fe3+, Ni2+ and
U6+) as terminal electron acceptor, enabling simultaneous reduction and recovery of
metals in their elemental form from polluted wastewaters, such as effluents from
metallurgical industries or mining (Nancharaiah et al. 2015; Sulonen et al. 2015; Sulonen
et al. 2018). Bioelectrochemical recovery of Cu has even been attempted at pilot scale,
but the set-up used requires improvement, as the high internal resistance limited both
electricity production and copper recovery (Rodenas Motos et al. 2017).

Different strategies can be applied to improve the cathode performance, such as
increasing the electrode surface area and using cathode-membrane assembly, in which
the electrodes and membrane are bound together for a better proton transfer (Rismani-
Yazdi et al. 2008; Kim et al. 2009). Catalysts can be introduced to accelerate reduction
kinetics, especially if oxygen is used as electron acceptor (Liu et al. 2014). Pt and Pd are
commonly used as catalysts in bioelectrochemical systems due to their excellent
catalytic activity and high resistance to corrosion. However, their high cost and scarcity
is driving the search on cheaper and more abundant catalysts. The addition of non-
precious metals, such as Ni, not only decreases the cost of the catalyst, but was even
shown to increase the power production 3-4 times compared to a Pt catalyst when added
in a 1:1 proportion with Pt (Cetinkaya et al. 2015). Recently, the potential of living
microorganisms for catalyzing cathodic reactions has also been considered as a
promising low cost alternative. It has been reported that a wide variety of microorganisms
such as Shewanella sp., Pseudomonas sp., Acinectobacter sp., and Acidithiobacillus sp.,
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and even some green algae are able to use the cathode as electron donor for their
metabolism (for a review, see Liu et al. 2014).

4.3 Thermophilic microbial fuel cells

In the same way as biohydrogen production, thermophilic electricity production could be
advantageous because of the high electron production rates of thermophilic bacteria (Du
et al. 2007) and the elimination of pathogens. Microorganisms such as Thermincola sp.,
Calditerrivibrio sp., and Thermoanaerobacter sp. have been reported to produce
electricity under thermophilic conditions (Table 4.1). Bioelectricity production under
thermophilic conditions by mixed cultures was reported for the first time by Jong et al.
(2006), who obtained a maximum power output of 1030 mW m-2 using acetate as the
substrate. Most studies on thermophilic bioelectricity production have been performed at
55 or 60 °C using either MFC or MEC configurations, in which a potential is constantly
applied to the device to enrich certain microorganisms (Table 4.1). A hyperthermophilic
MFC has been successfully operated by Fu et al. (2015), who reported electricity
production from glucose at 75-98 °C, with a maximum power density at 95 °C using water
from a petroleum reservoir as inoculum (Table 4.1).

Thermophilic MFCs are still in an early stage of development, and it should be noted that
most studies have been performed using basic reactor configurations, as they aimed to
study the principles of thermophilic electricity production rather than to improve power
production. This may lead to underestimating the potential of thermophilic MFCs when
compared with the more technologically advanced MFCs operated at lower temperatures
(see section 4.2). However, a remarkably high power production of 1 W m-2, with a
maximum CE of 89%, was obtained from distillery wastewater using a thermophilic two-
chamber MFC, which is in line with experiments on mesophilic electricity production from
wastewaters (Ha et al. 2012). A thermophilic MFC has been designed to specifically
prevent evaporation (Carver et al. 2011), which is one of the main practical issues of
thermophilic MFCs. This MFC consisted of a sealed anodic chamber made of glass and
a plastic cathodic chamber floating on the anolyte, with a composite electrode in contact
with the anolyte at one side and with air at the other side (Carver et al. 2011). However,
the high internal resistance of the device resulted in a low power production (Table 4.1).
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Table 4.1: Summary of studies reporting current or power generation at thermophilic conditions.
Microbial electrolysis cells (MECs) used with electricity generation purposes have also been
included in the table.

Inoculum Substrate Reactor type T
(°C)

Power or
current
density

CE
(%)

Reference

Thermophilic digester
sludge

Acetate
(32.9 mM)

Two-chamber
MFC

55 823
mW m-2

n.a. Fu et al. (2013b)

Calditerrivibrio
nitroreducens

Acetate
(32.9 mM)

Two-chamber
MFC

55 272
mW m-2

n.a Fu et al. (2013b)

Thermophilic digester
sludge

Acetate
(32.9 mM)

Two-chamber
MFC

55 512
mW m-2

n.a. Fu et al. (2013a)

Caloramator
australicus

Yeast extract
(0.2% w/v)

Single
chamber MEC

55 3.2
mW m-2

n.a. Fu et al. (2013a)

Thermophilic digester
sludge

Acetate
(3.4 mM)

Two-chamber
MFC

55 1030
mW m-2

80 Jong et al.
(2006)

Thermophilic digester
sludge

Distillery
wastewater
(300 mg
COD L-1)

Two-chamber
MFC

55 1000
mW m-2

89 Ha et al. (2012)

Thermophilic digester
sludge

Acetate
(10 mM)

Two-chamber
MFC

55 37
mW m-2

89 Wrighton et al.
(2008)

Thermophilic compost Glucose
(25 mM)

Two-chamber
MFC

57 4.0
mW m-2

n.a. Carver et al.
(2011)

Thermincola
ferriacetica DSMZ
14005

Acetate
(35 mM)

Two-chamber
MEC

60 7-8
A m-2

93 Parameswaran
et al. (2013)

Thermoanaerobacter
pseudethanolicus

Xylose
(20 mM)

Two-chamber
MEC

60 5.8
A m-2

35 Lusk et al.
(2015)

Thermoanaerobacter
pseudethanolicus

Glucose
(10 mM)

Two-chamber
MEC

60 4.3
A m-2

65 Lusk et al.
(2015)

Thermoanaerobacter
pseudethanolicus

Cellobiose
(7.5 mM)

Two-chamber
MEC

60 5.2
A m-2

28 Lusk et al.
(2015)

Marine sediment Acetate
(25 mM)

Single
chamber MFC

60 207
mW m-2

35.5 Mathis et al.
(2008)

Thermincola
ferriacetica strain
Z-0001

Acetate
(10 mM)

Single
chamber MFC

60 160
mW m-2

97 Marshall and
May (2009)

Water from a
petroleum reservoir

Glucose
(11.1 mM)

Two-chamber
MFC

95 165
mW m-2

n.a. Fu et al. (2015)
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Due to the thermodynamic advantage of operation of dark fermentation at high
temperatures, it was hypothesized that thermophilic biohydrogen production may result
in a higher hydrogen yield than a mesophilic process. The same concept applies to
thermophilic MFCs, which have not been studied as intensively as mesophilic MFCs,
and thus deserve more attention.

Both mesophilic and thermophilic dark fermentation are widely affected by the selection
of the initial inoculum. Many aerobic and anaerobic inocula have been tested for dark
fermentation, but a direct comparison between an aerobic and an anaerobic inoculum
originating from a same source may help in defining the start-up strategy for dark
fermentative bioreactors.

Inoculum pretreatments have been widely applied in laboratory-scale dark fermentation
studies, and their effect on H2 production has been compared in many studies. However,
only few studies took into account the effect of the various pretreatments on the microbial
community. A RNA-level approach was proposed with the aim of better understanding
the impact of pretreatments on H2 producing microorganisms and competitors.

It was hypothesized that a thermophilic (55 °C) dark fermentative bioreactor can be
adapted for biohydrogen production at temperatures up to 70 °C, and that a mesophilic
(37 °C) microbial community can be converted to thermophilic (55 °C) without need for
reinoculation.

According to recent literature, it was hypothesized that DNA-level microbial community
analysis may drive to erroneous conclusions on the role of microorganisms in bioreactors.
Therefore, a RNA-based analysis was proposed to study the microbial communities in

5 Hypothesis and aims of the present work
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MFCs. Also, it was hypothesized that not only anode-attached microorganisms, but also
planktonic and membrane-attached species may directly or indirectly contribute to power
generation in MFCs.

Despite the thermodynamic advantages, thermophilic MFCs often produce less power
than mesophilic MFCs due to the low number of thermophilic exoelectrogenic species
and their difficult enrichment. Based on the results obtained in the RNA-level microbial
community analysis on the thermophilic MFC, a start-up strategy was developed to favor
the growth of thermophilic exoelectrogens in MFCs.

Thermomechanical pulping (TMP) wastewater, being rich in carbohydrates, low in
possible inhibitory chemicals and produced at high temperature, would be an excellent
substrate for thermophilic dark fermentation, but its hydrogen producing potential has not
yet been investigated. The same applies for its potential for bioelectricity production from
TMP in MFCs.

Therefore, the specific objectives of this thesis were as follows:

· Compare fresh and digested activated sludge, collected from the same municipal
wastewater treatment plant for biohydrogen production under mesophilic (37°C),
thermophilic (55°C) and hyperthermophilic (70°C) conditions (Paper I)

· Evaluate the effect of temperature (heat, freeze) and pH (acidic and alkaline)
pretreatments on mesophilic (37 °C), thermophilic (55 °C) and hyperthermophilic
(70°C) biohydrogen production considering both H2 yield and composition of the
active microbial community (Paper II)

· Evaluate the continuous biohydrogen production from xylose in the temperature
range 55-70 °C (Paper III)

· Delineate whether TMP wastewater is a suitable substrate for dark fermentation,
and what is the optimal temperature for dark fermentation of TMP wastewater
(Paper IV)

· Study the H2-producing and H2-consuming microbial communities at both DNA
and RNA level, and their metabolic pathways (Paper I, II, III, IV)

· Evaluate composition and role of the anode-attached, planktonic and membrane-
attached microbial communities in mesophilic (37 °C) and thermophilic (55°C)
two-chamber MFCs (Paper V)

· Develop a strategy to improve power production in thermophilic (55°C) MFCs
(unpublished results)

· Evaluate whether TMP wastewater can be used as substrate for bioelectricity
production in MFCs (unpublished results).
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6.1 Hydrogen production via dark fermentation

6.1.1 Overview of the hydrogen production experiments

Two heat-treated inocula were compared in batch for their dark fermentative H2

production from xylose at mesophilic (37°C), thermophilic (55°C) and hyperthermophilic
(70°C) conditions (Paper I). The first one was fresh activated sludge, and the second
was digested activated sludge, both of which originating from the same municipal
wastewater treatment plant (Viinikanlahti, Tampere, Finland). Fresh activated sludge,
which enabled higher H2 production than the digested activated sludge, was then used
as inoculum for the next experiments. The influence of inoculum pretreatments (pH and
temperature shocks) on mesophilic (37 °C), thermophilic (55 °C) and hyperthermophilic
(70 °C) dark fermentation of xylose, and on the composition of the active microbial
communities, was studied in a batch assay (Paper II). A fluidized bed reactor (FBR) was
inoculated with heat-treated fresh activated sludge to evaluate the continuous H2

production from a synthetic xylose-containing feed stream in the temperature range 55-
70 °C in comparison to a mesophilic (37 °C) FBR (Paper III). Finally, inoculum from the
thermophilic FBR, acclimated to 70 °C, was used to study H2 production from
thermomechanical pulping (TMP) wastewater in a wide temperature range (37-80 °C) in
anaerobic batch incubations using a temperature gradient incubator (Paper IV). The
overall experimental design was as summarized in Table 6.1.

6 Materials and methods
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Table 6.1: Overview of the hydrogen production experiments showing the objective, experiment
type and temperatures tested.

6.1.2 Inocula and their pretreatment

Fresh and digested activated sludge, widely used for studies on dark fermentation (Li
and Fang 2007), were collected either from the Viinikanlahti (Tampere, Finland) or from
the Mutton Island (Galway, Ireland) municipal wastewater treatment plant (Table 6.2).
The fresh activated sludge from Viinikanlahti and Mutton Island were collected from the
recirculation line between the aeration tank and the secondary settler, and from the
secondary settler itself, respectively. The digested activated sludge from Viinikanlahti
was collected from a mesophilic (35 °C) anaerobic reactor digesting waste activated
sludge. The inoculum for the batch study on dark fermentation of TMP wastewater
(Paper IV) was biofilm-coated activated carbon originating from the thermophilic, xylose-
fed FBR. It was collected after 185 days of thermophilic (55-70 °C) FBR operation, the
last 27 days at 70 °C (Paper III). All the inocula were dewatered by settling and removal
of the supernatant (Paper I, III, IV) or filtering through a 0.1 mm mesh (Paper II). After
dewatering, the inocula contained the total solids (TS) and volatile solids (VS)
concentration specified in Table 6.2.

Objective Experiment type Temperatures
tested

Paper

Inoculum selection Batch 37, 55, 70 I
Inoculum pretreatment
selection

Batch 37, 55, 70 II

H2 production from
xylose-containing
synthetic wastewater

Continuous 37, 55, 60, 65, 70 III

H2 production from TMP
wastewater

Batch 37, 42, 48, 55, 59,
65, 70, 74, 80

IV
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Table 6.2: Total and volatile solids concentration of the inocula used in the hydrogen production
experiments.

The heat shock (Paper I, II and III) was conducted by exposing the fresh or digested
activated sludge, placed in thin 15 mL tubes, to 90 °C for 15 min using a pre-heated
water bath. Freezing and thawing (Paper II) was done by exposing the fresh activated
sludge to -20 °C for 24 hours in 15 mL tubes and then defrosting the sludge in a water
bath at 30 °C. The acidic shock (Paper II) was done by adjusting the pH of the fresh
activated sludge to 3.0 with HCl, incubating at about 20 °C for 24 hours, and then
increasing the pH back to 7.0 with NaOH. The alkaline shock (Paper II) was done by
adjusting the pH to 10.0 with NaOH, incubating at about 20 °C for 24 hours, and then
adjusting the pH back to 7.0 with HCl. Both HCl and NaOH were used at a concentration
of 1 or 3 M and the sludge was continuously stirred by using a magnetic stirrer while
adjusting the pH.

6.1.3 Experimental set-up of batch experiments

Batch assays to study H2 production at 37, 55 and 70 °C were conducted in 120 mL
serum bottles with 50 mL effective culture volume (Paper I, II). The cultivation medium
used was DSMZ medium 144 (German Collection of Microorganisms and Cell Cultures,
2008), with the following modifications: the concentration of yeast extract was reduced
to 0.3 g L-1 (Nissilä et al. 2011), tryptone was not added and xylose (50 mM) was used
as the carbon source instead of glucose (Paper I, II). The pH of the cultivation medium
was adjusted either to 5.5 (Paper I) or to 7.0 (Paper II) with 1 M HCl.

Four consecutive batch cultures (6-8 days each) were performed to study H2 production
from xylose at 37, 55 and 70 °C (Paper I). In the first culture, the bottles were inoculated
with either heat-treated fresh or digested activated sludge (2 g VS L-1) and cultivation
medium was added up to 50 mL. The following three batch cultures were done by adding
45 mL of fresh medium to 5 mL of cultivation from the previous batch culture in a clean
serum bottle (Paper I). The effect of pretreatments on H2 production at 37 and 55 °C

Inoculum Total solids (g L-1) Volatile solids (g L-1) Paper
Fresh activated sludge
(Viinikanlahti)

17.3 (± 0.1) 8.8 (± 0.1) I, III

Digested activated sludge
(Viinikanlahti)

46.5 (± 0.4) 24.0 (± 0.1) I

Fresh activated sludge
(Mutton island)

28.1 (± 2.4) 22.7 (± 2.0) II

Biofilm coated activated
carbon from FBR

558 (± 14) 529 (± 14) IV
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(Paper II), and 70 °C (unpublished results) was studied in single batch cultures (4-6 days)
using serum bottles containing 5 mL of heat-shock-, freeze and thawing-, acidic shock-
or alkaline shock-pretreated fresh activated sludge and 45 mL of medium (Paper II). In
both the batch experiments (Paper I and II), the initial xylose concentration of the mixture
of medium and inoculum was 50 mM. All the serum bottles were flushed with N2 for 5-10
min before and after inoculation to ensure anaerobicity. All the batch cultures were
conducted in triplicate. A control bottle without xylose (Paper I) or with untreated
activated sludge (Paper II) was also prepared and incubated similarly as the other bottles.

Batch assays with the TMP wastewater were conducted in anaerobic tubes with a total
volume of 26 mL, including 17 mL working volume and 9 mL headspace (Paper IV).
Biofilm-coated activated carbon (2 mL) from the thermophilic FBR (Table 6.2) was added
as inoculum to 15 mL of TMP wastewater (Table 6.3). All the tubes were flushed with N2

for 5 min after inoculation. The initial pH was adjusted to 6.3 (± 0.1) using 1 M NaOH.
The tubes were incubated in a temperature-gradient incubator (Test Tube Oscillator,
Terratec Asia Pacific, Australia) at 200 rpm shaking and at 37, 42, 48, 55, 59, 65, 70, 74
or 80°C (duplicate tubes at each temperature) for a total of 111 hours (Paper IV).

Table 6.3: Composition of the thermomechanical pulping (TMP) wastewater used in Paper IV.

6.1.4 Experimental set-up of continuous hydrogen production experiment

The experiment was conducted using two FBRs (Figure 6.1) having 1 L effective volume
each, containing 300 mL activated carbon as carrier material (Paper III). The activated
carbon bed was expanded by 30% by applying a recirculation flow rate of about 1900
mL min-1 using a peristaltic pump (Masterflex, USA). Both incubators (Labilo, Finland)
and a water jacket (Julabo, Germany) were utilized to control the temperature of the
FBRs. The xylose-containing synthetic wastewater was similar to the one used for the
batch assays (Paper I and II), but the concentration of KH2PO4, K2HPO4 and yeast extract

Parameter Concentration (mg L-1)
Total solids (TS) 3771 ± 10
Volatile solids (VS) 2452 ± 8
Total COD 3352 ± 82
Soluble COD 3289 ± 54
Total nitrogen < 10
Total PO43--P 2.8
Acetate < 30
Furfural < 10
Glucose 43 (± 2)
Xylose 38 (± 0)
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was reduced 10 times. The pH inside the reactor was kept at 5.0 (± 0.1) by automatic
titration (Metrohm, Switzerland).

The FBRs were inoculated with 50 mL of heat-treated (90 °C, 15 min) fresh activated
sludge. The FBRs were started-up in batch mode for two days, and then switched to
continuous mode (day 0) and operated for 7 days at a hydraulic retention time (HRT) of
12 hours. On day 7, the HRT was decreased to 6 hours. The thermophilic FBR was
initially operated at 55 (± 1) °C. Temperature was then increased to 60 (± 1) °C on day
77, to 65 (± 1) °C on day 119, and to 70 (± 1) °C on day 158 and kept at 70 °C until day
185. The mesophilic FBR was operated at 37 (± 1) °C for 185 days, and then at 55 (±
1) °C until day 228.

Figure 6.1: A schematic representation and a photograph of the fluidized bed reactor (FBR) set-
up used in Paper III. Medium influent tank (1), xylose influent tank (2), peristaltic pumps for influent
feeding (3), influent sampling point (4), activated carbon bed with the active biomass (5),
peristaltic pump for recirculation (6), pH probe (7), automatic titrator (8), temperature control (9),
water jacket (10), gas-liquid separator (11), effluent sampling point (12), effluent tank (13), gas

sampling point (14), gas meter (15), and gas outlet (16). Liquid path ( ), gas path ( ). The
dashed rectangle represents the FBR located inside the incubator.
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6.2 Electricity production in microbial fuel cells

6.2.1 Overview of the experiments

A mesophilic (37 °C) and a thermophilic (55 °C) h-type, xylose-fed microbial fuel cell
(MFC) (Figure 6.2a), were compared in terms of power production and composition of
the anode-attached, membrane-attached and planktonic microbial communities (Paper
V). Then, optimization strategies were applied in order to improve power production
under thermophilic conditions (unpublished results). The studied strategies included
start-up using a poised anode potential of -289 mV vs. an Ag/AgCl reference electrode,
chemical elimination of methanogens using BESA and use of two different MFC designs,
i.e. upflow MFC (Figure 6.2b) and cuboidal MFC (Figure 6.2c). Thermomechanical
pulping (TMP) wastewater was tested as substrate for electricity production in a
mesophilic (37 °C) upflow MFC (unpublished results). The experimental plan is
summarized in Table 6.4. The detailed description of experimental set-up for the
unpublished results is not included in this material and methods section.

Table 6.4: Overview of the MFC experiments showing the objective, experiment type and tem-
peratures tested.

Objective Experiment type Temperatures
tested

Paper

Study of the microbial
communities

Batch 37, 55 V

Optimize thermophilic
electricity production

Batch 55 Unpublished

Electricity production from
TMP wastewater

Continuous 37 Unpublished
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Figure 6.2: Photograph of the h-type (a), upflow (b) and cuboidal (c) two-chamber MFCs used to
study mesophilic and thermophilic electricity production.

6.2.2 Inoculum preparation

Two inocula, 15 mL each, were supplied to each h-type MFC to ensure a wide microbial
community, containing both fermentative and exoelectrogenic microorganisms, capable
to live in a broad temperature range (Paper V). The first one was fresh activated sludge
from Viinikanlahti wastewater treatment plant, which had previously shown potential for
H2 production via dark fermentation of xylose at various temperatures (Paper I and III).
The second one was anodic medium from a xylose-fed mesophilic (37 °C) MFC
(Haavisto et al. 2017). The TS content of the activated sludge and the anolyte was 19.5
(± 0.2) and 22.1 (± 0.4) g L-1, respectively, whereas the VS content was 10.6 (± 0.2) and
8.4 (± 0.5) g L-1, respectively. The mixture of the two inocula, in 1/1 volume ratio, was
flushed with N2 for 10 min before adding them to the MFCs.
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6.2.3 Mesophilic and thermophilic bioelectricity production from xylose

The anodic and cathodic chamber of the h-type MFCs (Figure 6.2a), 350 mL each, were
separated by an anion exchange membrane (AMI-7001, Membranes International Inc.,
USA) (Paper V). The anode was a carbon brush, while the cathode was a carbon cloth
coated with 20 mg of a Pt-based catalyst (20% platinum on Vulcan carbon, E-TEK, USA).
The external resistance connecting the two electrodes was 100 Ω. The anolyte was a
xylose-containing medium modified from Mäkinen et al. (2012), and its conductivity was
14.6 mS cm-1. Oxygen was pumped to the cathodic chamber, filled with 300 mL Milli-Q®

water, at a flow rate of 130 mL min-1, by using an aquarium air pump (Marina 50).

During start-up, the anodic chamber of both MFCs was filled with the anolyte solution
(270 mL) and inoculum (30 mL), and during the operation the anolyte was continuously
stirred using magnetic stirrers. The two MFCs were operated inside incubators
(Memmert, Germany) in order to keep the temperature at 37 (± 2) °C or 55 (± 2) °C,
respectively. The pH of the anolyte was adjusted to 7.0 with NaOH and kept at 7.0 (± 0.2)
using phosphate buffer. Both MFCs were operated in fed-batch mode. The feeding steps
were done every 7-8 days by replacing 10% of the anolyte with the feeding solution,
which had the same composition as the original anolyte, but with a 10-times higher
xylose concentration. The initial xylose concentration was 0.3 g L-1 in the first six fed-
batch cycles, and was then increased to 1.0 g L-1 (day 0) for the following eleven fed-
batch cycles.

6.2.4 Power and polarization curves

Power and polarization curves were obtained by operating the MFC in open circuit mode
for 30 min and then closing the circuit using a resistor box (TENMA 72-7270, Taiwan)
and decreasing the resistance stepwise from 15 kΩ to 5 Ω at 30-min intervals. Voltage
was recorded just before switching the resistance and used to calculate current and
power densities as specified in section 6.4.

6.3 Chemical and bioelectrochemical analyses

Analytical methods and instruments utilized in the experiments were as summarized in
Table 6.5.
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Table 6.5: Methods and equipment used for chemical and bioelectrochemical analyses in Papers
I-V.

Parameter Analytical technique, instrument model Paper
Gas volume Syringe method (Owen et al. 1979) I, II, IV

Gas meter, Ritter III
Gas composition Gas chromatography, Shimadzu GC-2014 thermal

conductivity detector (TCD) and Porapak N column
I, II, III, IV

Sugar concentration Colorimetric method (Dubois et al. 1956), Shimadzu
Ordior UV-VIS spectrophotometer

I

Liquid chromatography, Shimadzu HPLC with
refractive index detector (RID) and Phenomenex
RHM-monosaccharide column

II, III

Liquid chromatography, Shimadzu HPLC with
Phenomenex RPM-monosaccharide column

IV

VFA and alcohol
concentration

Gas chromatography, Shimadzu GC-210 with flame
ionization detector (FID) and Porapak N column

I, III

Liquid chromatography, Shimadzu HPLC with RID
and Phenomenex RHM-monosaccharide column

I, III, IV, V

Liquid chromatography, Shimadzu HPLC with RID
and Phenomenex ROA-Organic Acid H+ column

II

pH WTW 330 pH meter with Hamilton slim electrode I,II, III, IV
COD, sCOD Dichromate methods, Finnish standard SFS 5504 IV, V
TS, VS,  Total N, PO33--P Standard procedures (APHA 1998) IV
Furfural Gas chromatography, Agilent GC with MS detector

and Agilent HP-5MS capillary column
IV

Voltage Data logger, Agilent 34970A V
Conductivity Conductivity meter, WTW inoLab V
Dissolved oxygen Muti-parameter meter, HQ40d meter with IntelliCAL

optical probe
V

6.4 Microbial community analyses

6.4.1 Polymerase chain reaction-denaturing gradient gel electrophoresis

Microbial community samples for polymerase chain reaction-denaturing gradient gel
electrophoresis (PCR-DGGE) (Table 6.6) were stored at -20 °C after collection. DNA
extraction and PCR-DGGE were performed according to Mäkinen et al. (2012). The
visible DGGE bands were cut, eluted in sterile water and re-amplified by PCR as
described by Koskinen et al. (2006), prior to sending them to Macrogen (South Korea)
for sequencing. The nucleotide sequences were analyzed by Bio-Edit software (Hall
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1999) and compared with the sequences in the GenBank nucleotide collection database
using the BLAST software (Altschul et al. 1990).

6.4.2 Illumina Miseq sequencing

Samples for Illumina Miseq sequencing (Table 6.6) were stored at -80 °C after collection.
Nucleic acids were co-extracted using a method modified from Griffiths et al. (2000). No
further procedures were done for DNA level analysis. For RNA level analysis, DNA was
removed by adding 1 µL turbo DNase and 2.5 µL buffer (Invitrogen, Thermo Fisher, USA),
followed by incubation at 37 °C for 30 min. DNase was then inactivated by addition of
2.5 µL DNase inactivator (Invitrogen) and, after centrifugation (10000xg, 1.5 min), the
RNA-containing supernatant was transferred to a fresh tube. Complementary DNA
(cDNA) was obtained from RNA using M-MuLV Reverse Transcriptase (New England,
BioLabs, USA), following the instructions provided by the supplier. Samples of DNA and
cDNA were sent to FISABIO (Valencia, Spain) for high-throughput sequencing of partial
16S rRNA genes on an Illumina MiSeq platform (Caporaso et al. 2011). Sequence
screening, alignment to Silva database, clustering, chimeras removal and taxonomic
classification (cut-off = 97%) were performed using Mothur (Schloss et al. 2009) as
described by Kozich et al. (2013).

Table 6.6: List of samples collected, gene targeted and primers used for microbial community
analysis in Papers I-V.

a Transcribed to 16S rRNA gene (cDNA).

Sample origin and type Analysis
performed

Target Primers Paper

Settled sludge from batch
bottles

PCR-DGGE,
sequencing of
selected bands

16S rRNA gene
(DNA)

BacV3f, 907r I

MiSeq
sequencing

16S rRNAa (RNA) 515f, 806r II

Biofilm coated activated
carbon from FBR

PCR-DGGE,
sequencing of
selected bands

16S rRNA gene
(DNA)

BacV3f, 907r III

MiSeq
sequencing

16S rRNAa (RNA) 515f, 806r III

Biofilm coated activated
carbon from batch vials

MiSeq
sequencing

16S rRNAa (RNA) 515f, 806r IV

Anodic biofilm, anolyte
and membrane biofilm in
MFCs

MiSeq
sequencing

16S rRNA gene
(DNA), 16S
rRNAa (RNA)

515f, 806r V
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6.5 Calculations

After correcting the gas volume to standard temperature (0°C), cumulative H2 and CO2

production was calculated according to Logan et al. (2002):

VH,i = VH,i–1 + CH,i(VG,i – VG,i–1) + V(CH,i – CH,i–1) (7)

where VG, VH and CH are the current (i) or previous (i–1) cumulative gas volume,
cumulative H2 volume and fraction of H2 in the headspace, respectively, and V is the
volume of the headspace. The net energy gain (kJ L-1) (Eq. 8) was estimated by
subtracting the estimated energy requirement for heating the bioreactor (Eq. 9) from the
energy recovered by combustion of the produced H2 per L of wastewater treated (Eq. 10)
(Perera et al. 2010):

Net energy gain: NEG = EG - EL (8)

Energy loss: EL = CW ∙ (TF – TI) ∙ ρW (9)

Energy gain: EG = YH ∙ MVH ∙ CX ∙ ρH ∙ LHVH (10)

where YH is the H2 yield, MVH is the molar volume of H2, CX is the influent xylose
concentration, ρH is the density of gaseous H2, LHVH is the lower heating value of H2, CW

is the specific heat of water, TF and TI (K) is the temperature of the wastewater after and
before heating, respectively, and ρW is the density of water.

The theoretical COD (Van Haandel and Van der Lubbe 2012) was calculated from the
compounds detected by liquid chromatography:

CODtot = 8∙(4x + y – 2z)/(12x + y + 16z) g CODtot g-1 CxHyOz (11)

where x, y and z are the number of C, H and O atoms in the organic molecule,
respectively.

CE of the MFCs was calculated according to Oh et al. (2004), accounting 20 mol of
electrons exchanged per mol of xylose, according to the following equation:

C5H10O5 + 5 H2Oà 5 CO2 + 20 H+ + 20 e- (12)

Currents density (I) and power density (P) were calculated according from the Ohm’s law
using the following equations:

I = U / (R ∙ V) (13)
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P = U2 / (R ∙ V) (14)

where U is the voltage recorded in the data logger, R is the external resistance, and V is
the anolyte volume.

The IBM SPSS Statistics package was used to perform the statistical analyses to assess
significant differences in the H2 production (Paper II-IV), including one-way analysis of
variance (ANOVA) and the Tukey test (Box et al. 1978) at p = 0.05.
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7.1 Dark fermentative hydrogen production

7.1.1 Comparison of hydrogen production potential of different inocula

H2 production from xylose was detected with both fresh and digested activated sludge in
batch bottle cultivations conducted at 37, 55 and 70 °C. At both 37 and 55 °C, the H2

yield and xylose removal efficiency were higher with the fresh rather than the digested
heat-treated activated sludge (Table 7.1). At 37 °C, the lowest H2 yield obtained with the
digested activated sludge was likely due to the presence of microorganisms competing
with H2 producing bacteria, such as lactate producers, which grow in the pH range 3.5-
4.5 (Fujita et al. 2010), and were therefore favored by the low final pH (< 4) of the batch
cultures inoculated with digested activated sludge (Table 7.1).

H2 production and xylose removal efficiency in the hyperthermophilic (70 °C) batch
cultures were low with both inocula studied (Table 7.1). The low final pH < 5 likely
inhibited the hyperthermophilic H2 producing microorganisms, which typically have an
optimum pH close to 7 (Ogg and Patel 2009; Vipotnik et al. 2016). Kongjan et al. (2009)
and Zhao et al. (2010) obtained H2 production from xylose at 70 °C, but at a higher initial
pH (6.5-7.5) and using an inoculum previously adapted for H2 production at 70 °C.

Based on the results obtained, fresh activated sludge was selected as the inoculum for
the next experiments focusing on the effect of pretreatments on dark fermentation of
xylose and continuous H2 production from xylose in FBRs (Paper II and III).

7 Results and discussion



Table 7.1: H2 yield, xylose removal efficiency, final pH and main metabolites detected in batch and continuous experiments performed using xylose (50 mM)
as the substrate and the various inocula, inoculum pretreatment methods, initial pH and temperature.

Inoculum Pretreatment T
(°C)

Initial
pH

Operation
mode

H2 yield (mol
H2  mol-1

xyloseadded)

Xylose
removal
efficiency (%)

Final pH Main metabolites (mM)a Reference

Digested
activated
sludge

Heat shock 37 5.5 Fed-batch (I) 0.9 (± 0.1) 98 (± 0) 4.7 (± 0.0) Butyrate (30), Acetate (22) Paper I
(II) 0.5 (± 0.0) 98 (± 0) 4.2 (± 0.1) Acetate (18), Butyrate (16)
(III) 1.0 (± 0.2) 69 (± 7) 3.5 (± 0.1) Butyrate (25), Acetate (16)
(IV) 0.1 (± 0.2) 20 (± 5) 3.6 (± 0.5) Butyrate (5), Acetate (4)

55 Fed-batch (I) 0.2 (± 0.0) 93 (± 1) 4.1 (± 0.1) Ethanol (20), Acetate (8), Butyrate (4)
(II) 0.8 (± 0.2) 72 (± 5) 4.0 (± 0.2) Butyrate (17), Acetate (8), Ethanol (4)
(III) 0.6 (± 0.1) 51 (± 15) 3.5 (± 0.1) Butyrate (14), Acetate (12)
(IV) 0.4 (± 0.0) 28 (± 5) 3.5 (± 0.1) Acetate (8), Butyrate (8)

70 Fed-batch (I) 0.2 (± 0.1) 71 (± 4) 4.5 (± 0.0) Ethanol (12), Acetate (11)
(II) 0.2 (± 0.1) 59 (± 16) 4.2 (± 0.0) Ethanol (12), Acetate (11)
(III) 0.1 (± 0.0) 15 (± 5) 4.1 (± 0.1) Acetate (9), Ethanol (8)
(IV) 0.1 (± 0.0) 12 (± 2) 4.1 (± 0.1) Acetate (5)

Fresh
activated
sludge

37 Fed-batch (I) 0.3 (± 0.0) 98 (± 0) 4.9 (± 0.0) Butyrate (30), Acetate (21)
(II) 0.6 (± 0.0) 99 (± 0) 4.5 (± 0.1) Butyrate (19), Acetate (17)
(III) 1.2 (± 0.1) 97 (± 2) 4.1 (± 0.1) Butyrate (28), Acetate (19)
(IV) 1.2 (± 0.1) 99 (± 0) 3.6 (± 0.1) Butyrate (31), Acetate (17)

55 Fed-batch (I) 0.6 (± 0.1) 98 (± 0) 5.3 (± 0.1) Ethanol (37), Butyrate (15), Acetate (9)
(II) 0.9 (± 0.1) 98 (± 0) 4.3 (± 0.0) Acetate (24), Butyrate (23), Ethanol

(13), Propionate (3)
(III) 1.3 (± 0.1) 81 (± 14) 4.0 (± 0.0) Butyrate (29), Acetate (19)
(IV) 1.1 (± 0.1) 67 (± 9) 3.6 (± 0.0) Butyrate (23), Acetate (18)



Table 7.1: Continued.

Inoculum Pretreatment T
(°C)

Initial
pH

Operation
mode

H2 yield (mol
H2  mol-1

xyloseadded)

Xylose
removal
efficiency (%)

Final pH Main metabolites (mM)a Reference

Fresh
activated
sludge

Heat shock 70 5.5 Fed-batch (I) 0.2 (± 0.0) 85 (± 5) 4.9 (± 0.2) Ethanol (31), Acetate (10) Paper I
(II) 0.1 (± 0.0) 48 (± 4) 4.3 (± 0.1) Ethanol (15), Acetate (10)
(III) 0.1 (± 0.0) 14 (± 6) 4.2 (± 0.0) Ethanol (10), Acetate (8)
(IV) 0.1 (± 0.0) 21 (± 11) 3.9 (± 0.0) Acetate (6), Ethanol (6), Lactate (3)

Untreated 37 7.0 Batch 0.1 (± 0.0) 94 (± 2) 4.0 (± 0.0) Acetate (15), Lactate (10), Propionate
(8), Ethanol (7), Butyrate (3)

Paper II

Acidic shock 0.8 (± 0.0) 92 (± 2) 4.4 (± 0.1) Butyrate (15), Acetate (14), Ethanol
(13), Propionate (3)

Alkaline shock 0.5 (± 0.1) 94 (± 1) 4.0 (± 0.0) Acetate (18), Lactate (10), Ethanol (8),
Butyrate (6)

Heat shock 0.6 (± 0.1) 94 (± 1) 4.3 (± 0.1) Ethanol (16), Acetate (13), Butyrate (9),
Lactate (3)

Freezing and
thawing

0.2 (± 0.0) 96 (± 1) 4.4 (± 0.0) Ethanol (13), Acetate (10), Propionate
(8), Butyrate (5)

Untreated 55 0.5 (± 0.1) 90 (± 1) 4.0 (± 0.1) Acetate (15), Lactate (14), Butyrate (6)
Acidic shock 0.3 (± 0.0) 75 (± 5) 4.3 (± 0.0) Lactate (8), Butyrate (4), Ethanol (3)
Alkaline shock 1.2 (± 0.1) 96 (± 0) 4.5 (± 0.0) Butyrate (13), Acetate (6)
Heat shock 0.2 (± 0.0) 73 (± 3) 4.2 (± 0.0) Lactate (8)
Freezing and
thawing

0.6 (± 0.1) 96 (± 1) 4.2 (± 0.1) Acetate (7), Butyrate (5), Ethanol (5),
Lactate (5)

Untreated 70 0.1 (± 0.1) 52 (± 16) 5.2 (± 0.4) Acetate (7), Lactate (6), Ethanol (3) Unpublished
Acidic shock 0.0 (± 0.0) 54 (± 20) 6.0 (± 0.0) -



Table 7.1: Continued.

Inoculum Pretreatment T
(°C)

Initial
pH

Operation
mode

H2 yield (mol
H2  mol-1

xyloseadded)

Xylose
removal
efficiency (%)

Final pH Main metabolites (mM)a Reference

Fresh
activated
sludge

Alkaline shock 70 7.0 Batch 0.0 (± 0.0) 19 (± 11) 6.1 (± 0.1) Acetate (3) Unpublished
Heat shock 0.2 (± 0.0) 29 (± 7) 5.3 (± 0.6) Acetate (10), Lactate (7), Ethanol (6)
Freezing and
thawing

0.1 (± 0.0) 33 (± 17) 5.9 (± 0.2) -

Heat shock 37b 5.0 Continuous
(FBR)

0.5 (± 0.0) 100 (± 0) 5.0d Acetate (32), Butyrate (13) Paper III
55b 1.0 (± 0.0) 100 (± 0) 5.0d Butyrate (22), Acetate (19)
55c 1.2 (± 0.0) 99 (± 2) 5.0d Butyrate (25), Acetate (24)
60c 0.8 (± 0.0) 100 (± 0) 5.0d Acetate (42), Butyrate (29)
65c 0.8 (± 0.1) 100 (± 0) 5.0d Acetate (34), Butyrate (33)
70c 1.2 (± 0.0) 99 (± 0) 5.0d Acetate (31), Butyrate (22)

a Metabolites produced with a concentration of at least 3 mM. b Mesophilic FBR. c Thermophilic FBR. d pH controlled by automatic titration
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7.1.2 Inoculum pretreatments

The effect of temperature (heat shock or freezing and thawing) and pH (acidic or alkaline
shock) pretreatment of the inoculum on dark fermentation of xylose by fresh activated
sludge was evaluated at 37 and 55 °C (Paper II), and 70 °C (unpublished results). At
37 °C, xylose was consumed with an efficiency of above 90% regardless of the
pretreatment applied, and the acidic shock resulted in the highest H2 yield of 0.8 mol H2

mol-1 xyloseadded (Table 7.1). Chang et al. (2011) also reported a higher H2 yield from
activated sludge pretreated by an acidic shock than aeration, alkaline shock, chemical
treatment or heat shock. However, an acidic shock of activated sludge has also been
reported to favor lactate production at the expense of H2 (Ren et al. 2008b).

At 55 °C, the alkaline shock was the most effective pretreatment, resulting in a H2 yield
of 1.2 mol H2 mol-1 xyloseadded, and a xylose removal efficiency of 96% (Table 7.1). The
alkaline shock resulted in a lower pH decrease rate, and thus a higher final pH (Table
7.1) than the other pretreatments, which promoted H2 production. To our knowledge,
only two studies (O-Thong et al. 2009; Luo et al. 2010) compared the effect of
pretreatments on thermophilic dark fermentative H2 production, and none of them
reported alkaline shock as the best pretreatment (Table 3.1). In fact, O-Thong et al. (2009)
reported a loading shock (incubation of the inoculum with 83.25 gCOD L-1 sucrose for two
days), as the most effective pretreatment, whereas Luo et al. (2010) obtained higher H2

yields using the untreated rather than the pretreated inoculum.

At 70 °C, H2 production and xylose removal were low regardless of the pretreatment
applied, likely because bacteria originating from a wastewater treatment process at <
20 °C did not have enough time to acclimatize to such high temperatures. Heat treatment
resulted in a slightly higher H2 yield compared to other pretreatments, but competitive
pathways such as lactate and ethanol production limited the H2 production (Table 7.1).

7.1.3 Continuous hydrogen production

Although a heat shock does not appear to be the most effective pretreatment after just
one batch incubation (Paper II), the H2 yield constantly increased in the four consecutive
batch incubations (Paper I) (Table 7.1). Therefore, heat-treated activated sludge was
used as inoculum for the FBRs (Paper III).

Continuous dark fermentation of xylose was evaluated in a thermophilic FBR, in which
the temperature was stepwise increased from 55 to 70 °C at 5 °C intervals, and
compared to a mesophilic (37 °C) FBR. A higher H2 yield was generally obtained in the
thermophilic FBR compared to the mesophilic FBR (Figure 7.1), likely due to the different
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microbial communities developed in the two FBRs (see section 7.1.5). In fact, generally,
thermophilic microorganisms yield more H2 than mesophiles (Lee et al. 2011), due to the
faster kinetics and the more favorable thermodynamics for H2 production through the
acetate pathway (Verhaart et al. 2010). H2 production at 70 °C, which was negligible in
the batch experiments (Paper I and II), was obtained in the FBR 10 days after increasing
the temperature of the FBR from 65 to 70 °C, resulting in a stable H2 yield of 1.2-1.3 mol
H2 mol-1 xyloseadded (Figure 7.1). This is likely due to the longer acclimation time
compared to the previous batch experiments (Papers I and II). The HPR of 282.1 mL H2

h-1 L-1 obtained at 70 °C (Paper III) is among the highest reported for dark fermentation
of sugars by mixed cultures in bioreactors operated in continuous mode (for HPRs
obtained in previous studies, see Table 3.3).

In both the mesophilic and thermophilic FBR, the xylose removal efficiency was
constantly above 90% with the exception of an adaptation period that occurred in the
thermophilic FBR after switching the temperature from 65 to 70 °C (days 158-172) (Paper
III). In the mesophilic FBR, the H2 production was more unstable than in the thermophilic
FBR (Figure 7.1). On days 16, 74 and 89, the H2 yield dropped to zero, and increased
concentrations of acetate were detected in the effluent on the same days (Paper II),
suggesting H2 consumption by homoacetogenesis (see section 7.1.6). On days 91-185,
the H2 yield of the mesophilic FBR fluctuated i.e. increased and decreased due to the
accumulation of VFAs, which negatively affected the mesophilic H2 producing microbial
community (Wang et al. 2008). When the operation temperature of the mesophilic FBR
was increased from 37 to 55 °C, after about 15 days of adaptation, the H2 yields
increased to values comparable to the ones obtained in the thermophilic FBR, operated
from the beginning at 55 °C (Figure 7.1). This suggests that operation conditions of a
FBR can be turned successfully from mesophilic to thermophilic.
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Figure 7.1: H2 yield obtained in mesophilic (operated at 37 °C up to 185 days and at 55 °C in
days 186-225, indicated by black line and squares) and thermophilic (operated at 55-70 °C,
indicated by blue line and triangles) fluidized bed reactors (FBRs) treating xylose at pH 5 (details
on liquid effluent composition are in Paper III).

7.1.4 Hydrogen production from thermomechanical pulping wastewater

The biofilm-coated activated carbon enriched for dark fermentation of xylose at 55-70 °C
in the thermophilic FBR (Paper III) was used to evaluate H2 production from
thermomechanical pulping (TMP) wastewater at 37-80 °C in a batch experiment (Paper
IV). H2 was successfully produced from TMP wastewater in the temperature range 37-
70 °C (Paper IV), with a maximum H2 yield of 3.6 mmol H2 g-1 CODadded obtained at 70 °C
(Table 7.2). This yield is about two times lower than the maximum yields of 1.2-1.3 mol
H2 mol-1 xyloseadded (7.5-8.1 mmol H2 g-1 CODadded) obtained in batch and continuous dark
fermentation of xylose (Table 7.1), which is, nevertheless, a more easily degradable
substrate than TMP wastewater. The H2 yield obtained from TMP wastewater at 70 °C
is of the same order of magnitude of the yields obtained by direct fermentation of
industrial sugar-containing wastewater, such as starch wastewater, under thermophilic
conditions (Xie et al. 2014; Khongkliang et al. 2017).

At temperatures < 70 °C, the produced H2 was partially (at 37, 42, 59 and 65 °C) or totally
(at 48 and 55 °C) consumed by homoacetogenesis (see section 7.1.6 focusing on
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metabolic pathways), resulting in low final H2 yields (after 111 hours of incubation). H2

production from TMP wastewater was insignificant at both 74 and 80 °C (Paper IV),
which was likely a too high temperature to keep active the H2 producing microbial
community dominated by Thermoanaerobacterium sp. (Ren et al. 2008a). Regardless of
the incubation temperature, the total COD removal efficiency was surprisingly higher
than the 30-40% expected for dark fermentation (Sharma and Li 2010). This was likely
due to the adsorption of VFAs (mainly butyrate) on the activated carbon, as shown in a
control experiment conducted with fresh activated carbon and a mixture of VFAs in Milli-
Q® water (Paper IV).

Table 7.2: H2 yield, COD removal efficiency, final pH and main metabolites detected in the batch
cultures of TMP wastewater at various temperatures (Paper IV), inoculated with biofilm-coated
activated carbon from a thermophilic FBR (Paper III) operated at 70 °C at the time of sampling.

T (°C) H2 yield
(mmol H2 g-1

COD)

COD removal
(%)

Final pHa Main metabolites (mM)

37 1.4 (± 0.1) 73 (± 0) 5.5 (± 0.1) Acetate (4), Butyrate (1), Ethanol (1)
42b 0.6 80 (± 8) 5.7 (± 0.1) Acetate (5), Butyrate (1), Ethanol (1)
48 0.1 (± 0.0) 76 (± 1) 6.0 (± 0.0) Acetate (7), Butyrate (1)
55 0.0 (± 0.0) 71 (± 5) 6.0 (± 0.1) Acetate (9), Butyrate (1)
59 0.6 (± 0.3) 71 (± 1) 5.9 (± 0.0) Acetate (8), Butyrate (1)
65 1.8 (± 0.2) 72 (± 1) 5.2 (± 0.1) Acetate (5), Butyrate (1)
70 3.6 (± 0.1) 74 (± 4) 5.3 (± 0.0) Acetate (4)
74 0.1 (± 0.0) 70 (± 2) 6.1 (± 0.0) Acetate (1), Butyrate (1)
80 0.0 (± 0.0) 79 (± 2) 6.0 (± 0.0) Acetate (1), Butyrate (1)

a The initial pH of all batch cultures was 6.3. b H2 was produced only in one of the duplicate batch cultures.

7.1.5 Microbial community composition

The family of Clostridiaceae was found in the batch incubations of activated sludge with
xylose at 37 °C regardless of the inoculum pretreatreatment applied (Paper II). The family
of Clostridiaceae includes many H2 producing species widely reported to dominate
mesophilic dark fermentative bioreactors (Liu et al. 2009; Si et al. 2015; Sivagurunathan
et al. 2016b). Clostridium sp. dominated the microbial communities also after four
consecutive batch incubations with xylose conducted to enrich H2 producers from heat-
treated activated sludge (Paper I) and during the FBR operation (Paper III). Clostridium
sp. was the prevalent active microorganism also in the mesophilic batch cultures with
TMP wastewater (Paper IV).

At 37 °C, the H2 yield was often lowered by the proliferation of lactate producers such as
Sporolactobacillus sp. (Paper I) and Lactobacillus sp. (Paper II), which produce lactate
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at the expenses of H2, and may also inhibit Clostridium sp. growth by excreting toxins
(Noike et al. 2002). An acidic shock was the most effective pretreatment to enrich H2

producers, resulting in a relative abundance of 71-75% Clostridiaceae and 8-17%
Lactobacillaceae upon dark fermentation of xylose (Paper II). Similarly, Kim et al. (2014)
reported a relative abundance of 70% and 20% for Clostridium sp. and Lactobacillus sp.
after mesophilic dark fermentation of acidic shock-pretreated (pH 3, 12 hours) food waste.
However, the relative abundance of Lactobacillus sp. further decreased when applying
the acidic shock at pH 2 and pH 1 (Kim et al. 2014). This suggests that the H2 yield can
be further increased by optimizing the pretreatment conditions to minimize the relative
abundance of lactate producers. Lactate producers were not detected at any time from
the FBR (Paper III), indicating that they were likely out-competed by Clostridium sp. in
the continuously-fed system. However, in a previous study, Lactobacillus was found
among the biofilm community in a FBR operated in similar conditions (37 °C, pH 5.5,
granular activated carbon as carrier material), but inoculated with heat-treated
methanogenic granules and using glucose as the substrate (Cisneros-Pérez et al. 2017).

In the batch cultures at 55 °C, all the pretreatments applied, with the exception of the
heat shock, resulted in the proliferation of Clostridiaceae as the dominating H2 producing
microorganisms (Paper II). The family of Clostridiaceae includes several H2 producing
species, such as C. thermosaccharolyticum (Islam et al. 2016) and C. thermopalmarium
(Lawson Anani Soh et al. 1991). After heat shock, a microorganism closely related to
Thermoanaerobacterium thermosaccharolyticum was detected with a high (up to 94%)
relative abundance (Paper II). T. thermosaccharolyticum is a microorganism active in the
pH range 5.5-7.0 (Ren et al. 2008a) able to produce H2 from various monomeric sugars
(Ren et al. 2008a; Abreu et al. 2012; Khamtib and Reungsang 2012) and even from
polysaccharides such as cellulose and xylan (Cao et al. 2014). T. thermosaccharolyticum,
as well as Clostridium sp., were also found after four batch cultures of heat-treated
activated sludge at 55 °C (Paper I). T. thermosaccharolyticum was also the dominant
microorganism in both the xylose-fed FBR (Paper III) and the batch cultures with TMP
wastewater (Paper IV) in the temperature range 55-70 °C. This confirms the importance
of Thermoanaerobacterium sp. for thermophilic dark fermentation.

7.1.6 Metabolic pathways

The various inoculum pretreatments resulted in a different composition of the metabolites
produced by dark fermentation of xylose at 37 and 55 °C (Paper II), and 70 °C
(unpublished data). In general, H2 was produced through the acetate and the butyrate
pathway, or both, whereas lactate and ethanol production were the main competitive
pathways (Table 7.1). At 37 °C, acetate and butyrate, the main metabolites typically
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produced by dark fermentation of monomeric sugars by Clostridiaceae such as C.
butyricum (Seppälä et al. 2011) and C. acetobutylicum (Grupe and Gottschalk 1992),
were detected regardless the inoculum pretreatment applied. Solventogenesis, which is
a detoxification process occurring in case of accumulation of VFAs (Angenent et al.
2004), also occurred at 37 °C regardless of the inoculum pretreatment applied, resulting
in ethanol production (Table 7.1). A mixed-type fermentation occurred also at 55 °C, but
the alkaline shock repressed lactate production, one of the main pathways competing
with H2 producing pathways, resulting in the highest H2 yield (Table 7.1). No butyrate
was found after dark fermentation of xylose at 70 °C by the untreated and pretreated
activated sludge (Table 7.1). H2 was likely produced through the acetate pathway
(Verhaart et al. 2010), but the low microbial activity at the high temperatures resulted in
low xylose removal efficiencies and H2 yields (Table 7.1).

H2 producing pathways were successfully selected in longer cultivation times, both in
consecutive batch cultures (Paper I) and during continuous FBR operation (Paper III).
Acetate and butyrate were, in fact, the main metabolites produced from xylose after four
consecutive mesophilic (37 °C) and thermophilic (55 °C) batch cultures inoculated with
heat treated activated sludge, as well as during the FBR operation, regardless of the
operation temperature (Table 7.1). At 55 °C, ethanol was the main metabolite produced
by the heat-treated activated sludge in the first batch culture step, but then ethanol was
gradually replaced by butyrate, the concentration of which linearly correlated with the H2

yield (Paper I). Similarly, ethanol was produced in the FBRs for a few days after exposing
the microbial communities to 55 °C, but ethanol production was then replaced by butyrate
and H2 production after longer FBR operation (Paper III). This was attributed to either a
change in the microbial community or a switch in the metabolic pathway.

Homoacetogenesis was one of the main causes for the lower H2 yield obtained in the
mesophilic FBR compared to the thermophilic FBR (Figure 7.1). The genus Clostridium,
which was dominating the mesophilic microbial communities (Paper III), includes many
species of homoacetogenic bacteria (Ryan et al. 2008). This is in agreement with the
study by Koskinen et al. (2006), which attributed the instability of H2 production in a
glucose-fed FBR to the adhesion of homoacetogenic microorganisms to the carrier
material. The more stable H2 production in the thermophilic FBR (Figure 7.1) implies a
minor role of homoacetogenesis at the higher operation temperatures (55-70 °C), as also
suggested by Luo et al. (2011).

Acetate was the main metabolite found in the batch cultures of biofilm-coated activated
carbon in TMP wastewater at a wide temperature range (37-70 °C) (Table 7.2). Acetate
production was likely due to either H2 production through the acetate pathway, or H2

consumption through homoacetogenesis. However, it should be noted that VFAs (mainly
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butyrate, but also acetate) may be adsorbed to the activated carbon and thus not
detectable in the liquid phase (Paper IV). Therefore, the contribution of the butyrate
pathway on the final H2 yield may be underestimated. H2 consumption by
homoacetogenesis occurred at temperatures < 70 °C, possibly after depletion of
substrates suitable for heterotrophic metabolism (Oh et al. 2003). The highest acetate
production obtained at 55 °C and the concomitant H2 consumption, suggest that the
dominant homoacetogenic microorganisms were thermophiles. Moorella thermoacetica,
which was part of the active microbial community at 55 °C, is a known thermophilic
homoacetogen (Drake et al. 2006). Several species of the genus Clostridium have been
reported to perform autotrophic acetate production as well (Ryan et al. 2008). At 70 °C,
the absence of homoacetogenesis resulted in the highest H2 yield (Table 7.2).

7.2 Microbial fuel cells for biological electricity production

7.2.1 Bioelectricity production in mesophilic MFCs

A higher power production was obtained in the mesophilic rather than in the thermophilic
h-type two-chamber MFC in all the eleven fed-batch cycles, likely due to the different
composition of the microbial communities in the two MFCs (Paper V). However, the low
CE in the mesophilic MFC (12%) resulted in a power density of only 1.0 W m-3 (Table
7.3). The low CE and power density was likely due to the MFC design. In fact, power
production in air-cathode MFC is often limited by the low proton conduction through the
membrane and by the slow rate of oxygen reduction (Rismani-Yazdi et al. 2008). A CE
up to 82% was achieved in a xylose-fed, two-chamber MFC using 50 mM ferricyanide
as the catholyte (Mäkinen et al. 2013), suggesting that oxygen reduction at the cathode
was the main limiting factor. Furthermore, different catholytes can indirectly affect the
anodic potential, and thus the anodic microbial community (Torres et al. 2009). Power
up to 13 W m-3 was obtained in an air-cathode, xylose-fed MFC (Huang and Logan 2008).
However, their anode and cathode were composed of four carbon brushes and Pt-coated
carbon cloth with four polymeric diffusion layers, respectively, whereas a single carbon
brush and Pt-coated carbon cloth were used as anode and cathode in Paper V.



Table 7.3: Power density and coulombic efficiency (CE) obtained in the various MFCs operated using different design, substrates and temperatures. The
power production reported refers to the highest, stable power density obtained in the various MFCs. CE was calculated based on removed xylose or acetate
for the MFCs fed with synthetic medium, and based on removed COD for the MFC fed with TMP wastewater.

Inoculum MFC design
and membrane

Cathode Operation
mode

T

(°C)

Substrate Power
(W m-3)

CE
(%)

Reference

Activated sludge +
MFC effluent

h-type, AEM Air Fed-batch 37 Xylose 1.0 12 Paper V

MFC effluent Upflow, AEM Ferricyanide Continuous 37 TMP wastewater 0.07 2 Unpublished

Upflow, CEM Continuous 37 0.2 3 Unpublished

Activated sludge +
MFC effluent

h-type, AEM Air Fed-batch 55 Xylose 0.03 3 Paper V

Compost and
digestate

Upflow, AEM Ferricyanide Fed-batch 55 Acetate 0.2 15 Unpublished

Effluent from
thermophilic
upflow MFC

Cuboidal, AEM Ferricyanide Fed-batch 55 Acetate 0.8 9.6 Unpublished
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An upflow MFC, with a composed anode electrode (activated carbon in a steel cage), an
anion exchange membrane (AEM) and ferricyanide (50 mM) as catholyte, was used to
study bioelectricity production from thermomechanical pulping wastewater (TMP) at
37 °C (unpublished results). The upflow MFC was inoculated with effluent from a similar
upflow MFC enriched for electricity production from xylose (Haavisto et al. 2017). The
highest, stable power density of 0.07 W m-3 was produced from TMP wastewater (3.0-
3.5 g COD L-1), amended with 2 g L-1 of sodium hydrogen carbonate as pH buffer, at 1.8
days HRT (unpublished results). The power density obtained was lower than the maxi-
mum power density of about 3 W m-3 obtained from xylose (0.5 g L-1) by Haavisto et al.
(2017). Many reasons may have contributed to such low power production, including the
complexity and recalcitrance of the substrate and the low conductivity of the TMP
wastewater (2-3 mS cm-1 after the addition of hydrogen carbonate), being 5 times lower
than the conductivity of the xylose containing medium (14-15 mS cm-1) used by Haavisto
et al. (2017). Furthermore, the low concentration of anions, such as phosphates, in the
wastewater was likely limiting proton transfer through the AEM: in fact, power production
increased to 0.2 W m-3 after replacing the AEM with a cation exchange membrane (CEM)
(Table 7.3).

7.2.2 Bioelectricity production in thermophilic MFCs

A power density of only 0.03 mW m-3 was obtained in the h-type, xylose-fed, thermophilic
(55 °C) MFC (Table 7.3), which was likely lacking microbial species able to convert
xylose and its degradation products to electricity (Paper V). An alternative start-up
strategy was applied to enrich thermophilic exoelectrogenic microorganisms in a
thermophilic (55 °C) upflow MFC (unpublished results). Acetate (1 g L-1) was chosen as
substrate with the aim to specifically enrich acetate-utilizing exoelectrogenic
microorganisms, as acetate utilization was clearly limited in the thermophilic h-type MFC
(Paper V). To further select exoelectrogenic microorganisms, the thermophilic upflow
MFC was started-up with an applied potential of -289 mV vs. Ag/AgCl (-60 mV vs. SHE),
which was successfully used to enrich the thermophilic exoelectrogenic microorganism
Thermincola ferriacetica from acetate by Parameswaran et al. (2013). BESA (1 g L-1)
was also added to inhibit the growth of methanogens without affecting exoelectrogenic
bacteria (Chae et al. 2010b). At 55 °C, a 6-7 times higher power density was obtained in
the acetate-fed upflow MFC compared to the xylose-fed, h-type MFC (Table 7.3). In fact,
the thermophilic upflow MFC produced a stable power of 0.2 W m-3 during six
consecutive fed-batch cycles, which corresponds approximately to 80 days in total
(unpublished results).
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The anolyte from the thermophilic upflow MFC was tested as inoculum for two cuboidal 
two-chamber MFCs (30 mL anodic and cathodic chamber volume) consisting of graphite 
plain electrodes connected through a 100 Ω resistor (unpublished results). The MFC was 
operated in fed-batch mode with acetate (5 g L-1) as the substrate in the anolyte and 
ferricyanide (50 mM) as the terminal electron acceptor in the catholyte. Electricity was 
successfully produced in the cuboidal two-chamber MFCs three days after inoculation 
and power production increased in the following fed-batch cycles, reaching the highest 
power density of 0.8 W m-3, with a CE of about 10% (calculated based on removed 
acetate) obtained in one of the duplicate MFCs (Table 7.3), after about 20 days of 
operation (unpublished results). Although a power density of similar order of magnitude 
was obtained in the other duplicate MFC, the CE was only 4% due to a higher acetate 
consumption (see section 7.2.3).

7.2.3 Metabolic pathways

In the mesophilic h-type two chamber MFC, the prompt power increase after the addition
of xylose indicates that electricity was produced by direct electron transfer (Marshall and
May 2009). Xylose was firstly converted to VFAs by fermentative microorganisms, and
then VFAs were oxidized to CO2 and H2O by exoelectrogens, resulting in a soluble COD
removal efficiency of 80% (Paper V). After the depletion of VFAs, the power density
remained stable for about 30 hours, suggesting that VFAs were accumulated inside the
microbial cells and oxidized intracellularly (Snider et al. 2012). VFAs, mainly acetate,
butyrate and propionate, were found in the effluent of the mesophilic upflow MFC with
TMP wastewater as the substrate, resulting in a COD removal efficiency of 30-40%
(unpublished results).

In the thermophilic h-type MFC, xylose was consumed in the first 12 hours after its
addition to the MFC anode, but the resulting acetate produced was not consumed even
after 144 hours (Paper V). A power density peak was obtained just after the xylose
depletion, suggesting that the microbial community included exoelectrogenic
thermophiles growing on xylose, but was lacking acetate-utilizing microorganisms.
Acetate utilization was slow also in the thermophilic, acetate-fed upflow MFC: 12-14 days
were required, in average, to consume 80% of the acetate introduced to the anode
chamber in every fed-batch cycle (unpublished results). Surprisingly, a different acetate
removal efficiency (55% and 97%) was obtained in the two duplicate cuboidal MFC
inoculated with the effluent from the upflow MFC, resulting in a different CE (unpublished
results). It is plausible that, despite the same inoculum source, more non-exoelectrogenic
microorganisms were introduced to one of the duplicate MFC, or that exoelectrogenic
and non-exoelectrogenic microorganisms shared the space differently in the two anodic
biofilms. Microbial community analysis is required to confirm this hypothesis.
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7.2.4 Structure and role of the attached and planktonic microbial
communities

The microbial community analysis revealed a clear difference in the microbial
communities not only when comparing the mesophilic and thermophilic h-type, xylose-
fed MFCs, but also when comparing the anode-attached, membrane-attached and
planktonic communities in the same MFC. Microorganisms of the Geobacteraceae family
dominated the active microbial community (65% of the relative abundance) growing
attached to the anode of the mesophilic xylose-fed MFC, and were associated to power
generation (Paper V). The Geobacteraceae family includes many species of known
exoelectrogenic microorganisms typically found in mesophilic MFCs, regardless of the
substrate, inoculum source and MFC set-up (Gao et al. 2014; Lesnik and Liu 2014; Jiang
et al. 2016; Haavisto et al. 2017). The planktonic community in the anolyte included 6-7
families with a similar relative abundance of 8-18% (Paper V). Geobacter sp. is known
to transfer electrons to the anode by direct contact transfer or through conductive
nanowires, but not by mediated transfer (Kumar et al. 2017a). In fact, its relative
abundance in the active planktonic community was only 3% (Paper V).

In the thermophilic, h-type, xylose-fed MFC, the scarcity of the thermophilic
exoelectrogenic species and the high relative abundance of competitors, mainly
methanogens and H2 oxidizers, resulted in a low power production (Paper V). Bacteria
of the family Thermodesulfobiaceae, closely related to Coprothermobacter sp., were
found among both the anode-attached and planktonic microbial communities with a
relative abundance of 13 and 23%, respectively (Paper V). Coprothermobacter sp. can
perform fermentation of organic substrates, syntrophic acetate oxidation and even long-
range electron transfer (Gagliano et al. 2015). Its activity is enhanced by establishing a
syntrophy with hydrogenotrophic methanogenic archaea such as
Methanothermobacteraceae (Sasaki et al. 2011), which were indeed found with a high
relative abundance (38%) among the active anode-attached families in the thermophilic
MFC (Paper V). Coprothermobacter sp. has been detected from the anode-attached
community also in previous studies utilizing thermophilic MFCs (Jong et al. 2006;
Wrighton et al. 2008). Thus, despite the low acetate consumption in the thermophilic h-
type MFC (Paper V), Coprothermobacter sp. is a possible acetate-utilizing
exoelectrogenic microorganisms. However, its bioelectrochemical activity as a pure
culture has not yet been investigated.

Methanobacteriaceae and Hydrogenophilaceae were the most abundant
microorganisms competing with exoelectrogens in the thermophilic xylose-fed h-type
MFC (Paper V). Methanobacteraceae are not able to perform acetoclastic
methanogenesis as they lack cytochromes (Thauer et al. 2008), but may have consumed
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electrons by performing hydrogenotrophic methanogenesis, decreasing the availability
of electrons for electricity production, as reported previously by Chung and Okabe (2009).
The family of Hydrogenophilaceae could have consumed a share of electrons by H2

oxidation (Hayashi et al. 1999).

In both the mesophilic and the thermophilic h-type MFC, the biofilm growing on the part
of the membrane facing the anode contained a diverse microbial community, including
aerobic or facultative anaerobic microorganisms such as Comamonadaceae or
Armatimonadetes. Although not directly involved in electricity generation, these
microorganisms may be involved in the important role of consuming the small amount of
oxygen crossing the AEM from the cathode to the anode (Kim et al. 2007), which can
inhibit the strictly anaerobic exoelectrogens. However, aerobic metabolism reduces the
quantity of substrate available for electricity generation (Kim et al. 2007). Membrane-
attached microorganisms may reduce power output also by forming a thick biofilm which
limits proton transfer from the anodic to the cathodic chamber (Miskan et al. 2016).
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Despite its aerobic origin, heat-treated (90 °C, 15 min) fresh activated sludge was shown
to be a better inoculum than digested activated sludge for both mesophilic (37 °C) and
thermophilic (55 °C) dark fermentation of xylose (Paper I). In a single batch, fresh acti-
vated sludge pretreated by an acidic shock (pH 3, 24 hours) and an alkaline shock (pH
11, 24 hours) resulted in a higher H2 yield than heat treatment for dark fermentation of
xylose at 37 and 55 °C, respectively (Paper II). However, at both 37 and 55 °C, H2 pro-
duction from heat-treated fresh activated sludge constantly increased in three consecu-
tive batch cultures, suggesting that dark fermentative microbial communities may de-
velop in the long-term (Paper I) under growth conditions optimized for H2 production.

Hyperthermophilic (70 °C) H2 production from xylose by heat-treated fresh activated
sludge, which failed in batch (Paper I), was obtained in a FBR adapting the microbial
community by increasing the temperature from 55 °C to 70 °C stepwise at 5 °C intervals
(Paper III). At 70 °C, a stable yield of 1.2 mol H2 mol-1 xyloseadded was obtained, resulting
in a H2 production rate of 282.1 mL H2 h-1 L-1 (Paper III), which is among the highest
reported in continuous thermophilic dark fermentation of monomeric sugars by mixed
cultures. Dark fermentation at 70 °C can be particularly potential for treatment of TMP
wastewater as it is released from the production process at high temperature (50-80 °C)
and could be treated on site, with minimal energy requirement for heating. Furthermore,
dark fermentation of TMP wastewater at 70 °C was shown to repress homoacetogenesis,
which can partially or totally consume the produced H2 at lower temperatures, resulting
in low H2 yields (Paper IV).

Dark fermentative microbial communities were studied in depth at DNA and, for the first
time, RNA level (Papers II-IV). Clostridium sp. dominated the mesophilic (37 °C) dark
fermentative microbial communities, regardless of the inoculum pretreatment method

8 Conclusions
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applied, operation mode (batch or continuous) and substrate (Papers I-IV). H2 production
at 37 °C was shown to be dependent on the relative abundance of Clostridiaceae among
the active microbial community (Paper II). In the same way, Thermoanaerobacterium sp.
was the prevalent thermophilic H2 producing microorganism in the temperature range
55-70 °C (Papers III and IV). At 37 °C, Lactobacillus sp. was the most common
microorganism competing with H2 producers for the substrate (Paper II), and
homoacetogenic microorganisms, likely belonging to the genus Clostridium, were
associated to H2 consumption (Papers I, III and IV). In general, a lower relative
abundance of competing microorganisms was found under thermophilic conditions,
particularly at 70 °C, in which the relative abundance of Thermonaerobacterium sp. was
above 90% (Paper III and IV).

A RNA approach was used, for the first time, to depict the role of the anode-attached,
membrane-attached and planktonic microbial communities on electricity production in
MFCs (Paper V). At 37 °C, power production was likely sustained by an anode-attached
community of Geobacteraceae, whereas only a very low power production was obtained
at 55 °C due to the high relative abundance of methanogenic and H2 oxidizing
microorganisms. However, a chemical inhibition of methanogens and imposing a
negative anodic potential in the start-up phase can promote the growth of thermophilic
exoelectrogenic microorganisms. Aerobic microorganisms, found among the membrane-
attached community at both 37 and 55 °C, might be involved in consuming the oxygen
diffusing from the cathodic to the anodic chamber through the anion exchange
membrane. This favors the strictly anaerobic exoelectrogenic microorganisms, but at the
same time aerobic metabolism in the membrane biofilm reduces the share of electrons
available for electricity production.

In summary, this study demonstrated that both dark fermentation and microbial fuel cells
can be implemented for energy recovery from treatment of sugar-containing wastewaters.
Thermophilic dark fermentation of synthetic pentose sugar-containing wastewater
resulted in higher H2 yields than the mesophilic processes (Papers I-III). The highest H2

yield from a synthetic, xylose-containing wastewater (1.2 mol H2 mol-1 xyloseadded) and
from thermomechanical pulping (TMP) wastewater (3.6 mmol H2 g-1 CODadded) were
obtained at 70 °C. Conversely, a higher power density, with a maximum of 1.0 W m-3,
was produced by the mesophilic (37 °C) than the thermophilic (55 °C) h-type two
chamber MFC fed with a synthetic, xylose-containing medium. A mesophilic upflow MFC
was also shown to produce electricity from TMP wastewater, in continuous, with a stable
power density of 0.2 W m-3.
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This study demonstrated that dark fermentation of sugar-containing wastewaters may
result in higher H2 yields under thermophilic than mesophilic conditions. It was also
shown, for the first time, that thermomechanical pulping (TMP) wastewater is suitable for
H2 production via dark fermentation, with an optimum temperature of 70 °C. However,
this experiment was conducted in batch, and long-term experiments in bioreactors
operated in continuous mode are required to understand the potential of dark
fermentation for treatment of TMP wastewater. Due to its high mass transfer properties,
FBRs might be particularly suitable for dark fermentation of a complex substrate such as
TMP wastewater. Furthermore, high organic loading rates should be explored in
continuous mode to increase H2 production rates for possible industrial applications.

Although suitable for H2 production from TMP wastewater, dark fermentation also
produces an effluent rich in VFAs and alcohols that can be further exploited to obtain
value-added products, according to a biorefinery concept. Many different strategies can
be applied for recovery of energy of other valuable products from dark fermentative
effluents, including production of H2 or methane, bioelectricity and recovery of short
and/or long chain VFAs. All those strategies need to be tested and compared in
laboratory-scale experiments in order to select the best strategy for possible full-scale
applications.

In this study, it was shown that the combination of thermophilic conditions (55 °C) and
alkaline inoculum pretreatment (pH 11, 24 hours) can enhance H2 yields by repressing
competitors and H2 consuming microorganisms such as lactate producers and
homoacetogens. The effect of the alkaline pretreatment in long-term bioreactor operation
must be elucidated and the H2 yields must be compared to those obtained from inocula
pretreated by the more commonly applied heat shocks.

9 Recommendations for future research



66

Although H2 overproduction, i.e. H2 yields higher than the yield stoichiometrically
attributable to the volatile fatty acids (VFAs) produced, has been reported in dark
fermentation (particularly under thermophilic conditions), the causes have not yet been
elucidated. Further research is suggested to explain this phenomenon and to enable
exploitation of these unusual dark fermentative pathways to achieve high H2 yields.

Further research is required to make the power output of thermophilic MFCs comparable
to that obtained under ambient or mesophilic conditions. An in-depth study of the
microbial communities can help in developing strategies to improve power production in
thermophilic MFCs. MFC start-up imposing a negative potential can be a promising
strategy to select exoelectrogenic microorganisms. Further research is suggested to
determine the optimal applied potential and exposure time.

In this study, the DNA and RNA-level microbial community analysis revealed that species
of the Thermodesulfobiaceae family can be involved in electricity production under
thermophilic conditions. Experiments with pure cultures of Thermodesulfobiaceae, e.g.
Coprothermobacter sp., are suggested to confirm this hypothesis and to elucidate their
electron transfer mechanism.
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a b s t r a c t

Two heatetreated inocula, fresh and digested activated sludge from the same municipal wastewater
treatment plant, were compared for their H2 production via dark fermentation at mesophilic (37 �C),
thermophilic (55 �C) and hyperthermophilic (70 �C) conditions using xylose as the substrate. At both 37
and 55 �C, the fresh activated sludge yielded more H2 than the digested sludge, whereas at 70 �C, neither
of the inocula produced H2 effectively. A maximum yield of 1.85 mol H2 per mol of xylose consumed was
obtained at 55 �C. H2 production was linked to acetate and butyrate production, and there was a linear
correlation (R2 ¼ 0.96) between the butyrate and H2 yield for the fresh activated sludge inoculum at
55 �C. Approximately 2.4 mol H2 per mol of butyrate produced were obtained against a theoretical
maximum of 2.0, suggesting that H2 was produced via the acetate pathway prior to switching to the
butyrate pathway due to the increased H2 partial pressure. Clostridia sp. were the prevalent species at
both 37 and 55 �C, irrespectively of the inoculum type. Although the two inocula originated from the
same plant, different thermophilic microorganisms were detected at 55 �C. Thermoanaerobacter sp.,
detected only in the fresh activated sludge cultures, may have contributed to the high H2 yield obtained
with such an inoculum.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The intensive use of fossil fuels results in their rapid depletion
and increased emission of greenhouse gases, in particular CO2.
Therefore, energy production is expected to shift towards renew-
able and more ecoefriendly alternatives in the coming decades.
Energy recovery fromwastewaters can be a good strategy to pursue
the double objective of sustainability and emission reduction. Many
industries, such as the pulp and paper industry, produce waste-
waters rich in organic compounds, which must be treated prior to
discharge, but yet have a high potential for energy recovery
(Rajeshwari et al., 2000). Traditional aerobic treatment is expen-
sive, due to the huge amount of oxygen required to oxidize the
organic compounds. In contrast, anaerobic processes allow
coupling of wastewater treatment and energy production in the
form of biogas (Kamali and Khodaparast, 2015).

Methane production from organic compounds is a well-
edeveloped technology, but hydrogen (H2) production is a
promising alternative as well because its heating value per gram is
the highest among fuels, and because it does not release CO2 to the
atmosphere upon combustion (Dincer and Acar, 2015). Studies on
biological H2 production have focused on bioephotolysis of water,
water gaseshift reaction, photoefermentation and dark fermen-
tation of organic compounds (Bundhoo and Mohee, 2016). The
main advantages of dark fermentation over the other technologies
are its high H2 production rate, the simple operation (the reactor
configurations are the same of the already welleestablished
anaerobic digestion), and lower energy requirement (Show et al.,
2012). Its main drawbacks are the relative low H2 yield (mol H2
per mol of substrate) and the formation of byeproducts, such as
CO2, volatile fatty acids and alcohols (Rittmann and Herwig, 2012).

Dark fermentation is a biological process in which fermentative
bacteria produce H2 to dispose of excessive electrons generated in
the oxidation of organic compounds through a hydrogenase
enzyme and electron carriers such as nicotinamide adenine dinu-
cleotide (NADH) or reduced ferredoxin (Lee et al., 2011). The
maximum H2 yield by dark fermentation is reached if acetate is the
only byeproduct of the oxidative process. The overall H2 produc-
tion is strongly affected by the inoculum and the operating
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conditions, such as temperature, pH, substrate concentration and
H2 partial pressure (Li and Fang, 2007). Depending on the operating
conditions, part of the electrons can be directed to producing
compounds more reduced than acetate, such as butyrate or
ethanol, resulting in a lower H2 yield (Li and Fang, 2007).

Temperature is a crucial parameter for most biotechnological
processes, because different temperatures can reshape the micro-
bial communities involved in the bioprocess (Karadag and Puhakka,
2010). Furthermore, increasing temperature positively affects both
the kinetics and thermodynamics of the process (Verhaart et al.,
2010). Thermophilic microorganisms are generally characterized
by faster growth and reaction rates than mesophilic species. A
direct conversion of sugars to acetate, which yields the maximum
amount of H2, is thermodynamically not favorable at low temper-
ature, but becomes more favorable as the temperature increases,
thus making proton reduction to H2 coupled to NADH oxidation
exergonic (Verhaart et al., 2010). Another advantage of high tem-
perature processes is the reduced contamination by pathogens and
H2 consuming bacteria (Van Groenestijn et al., 2002). Industries
produce wastewaters at various temperatures, and treating them at
their original temperature, without heating or cooling, seems a
costeeffective approach. For example, pulp and paper industries
typically produce wastewaters with elevated temperatures
(50e70 �C), which are often cooled down to 30e40 �C prior to
biological treatment (Suvilampi et al., 2001).

Selection of the inoculum is also a key for a successful bio-
hydrogen production process. From the industrial point of view,
dark fermentation with mixed cultures is preferable over pure
cultures because of easier operation and control, not requiring
sterilization, and possibility to use a wide range of feedstocks, as
several different microorganisms are often required to degrade
completely complex substrates (Wang and Wan, 2009). However,
mixed cultures may contain species that degrade organic com-
pounds by other pathways than H2 production. Hydrogenotrophic
methanogens, propionateeproducers, homoacetogens, and even
sulfate and nitrate reducing bacteria consume H2 as a part of their
metabolism (Bundhoo and Mohee, 2016). Though most H2
consuming bacteria are nonesporulating and can be removed by
pretreating the inoculum, their complete elimination cannot be
ensured. For example, the thermophilic homoacetogenic bacterium
Moorella glycerini is a sporeeforming microorganism (Slobodkin
et al., 1997) and may resist the pretreatment.
Table 1
H2 yields obtained in various batch studies conducted at different temperatures and usi
highest one obtained in the cited studies.

Inoculum Pre-treatment T (�C) Initial pH

Activated sludge Heat treatment 35 6.5
Activated sludge Heat treatment 35 5.5
Activated sludge Heat treatment 35 6.5
Clostridium butyricum eb 37 7.5
Granulated sludge Heat treatment 37 5.5
Digested activated sludge e 37 6.7
Clostridium beijerinckii e 40 8
Activated sludge Heat treatment 40 7.1
Mixed culture compost e 55 5
Thermoanaerobacter thermosaccharolyticum e 60 6.7
Thermoanaerobacter thermosaccharolyticum e 60 6.5
Thermoanaerobacter thermosaccharolyticum e 60 6.5
Thermoanaerobacter thermosaccharolyticum e 60 7.0
Geothermal spring e 60 7.9
Biomass from H2 producing reactor e 70 7.0e8.0
Biomass from H2 producing reactor e 70 7.0

a Highest H2 yield obtained in the experiment.
b Not applied.
Heat treatment is the most common pretreatment used to select
sporeeforming, hydrogeneproducing microorganisms (Bundhoo
et al., 2015). Many heatetreated inocula have been tested in dark
fermentation, including sewage sludge (Baghchehsaraee et al.,
2008; Hasyim et al., 2011; Lin et al., 2008), aerobic and anaerobic
sludge from different plants treating organic waste (Bakonyi et al.,
2014; Cavalcante de Amorim et al., 2009), landfill leachate (Wong
et al., 2014), hot spring cultures (Koskinen et al., 2008), and
compost (Cao et al., 2014). Despite the abundance of data available
in the literature, both on H2 production and the microorganisms
involved, the studies often differ in their operating conditions,
making it difficult to evaluate and distinguish the effect of the
inoculum on the process (Table 1). Although the combined effect of
inoculum and temperature on dark fermentation is of both scien-
tific and practical interest, to our knowledge, a direct comparison of
the potential of two inocula for H2 production at mesophilic,
thermophilic and hyperthermophilic conditions, keeping the other
initial conditions stable, has not yet been performed.

This study aimed to compare two heatetreated inocula, acti-
vated sludge and digester sludge from the same municipal waste-
water treatment plant, for biohydrogen production under
mesophilic (37 �C), thermophilic (55 �C) and hyperthermophilic
(70 �C) conditions. Xylose, a pentose sugar commonly present in
pulp and paper wastewater, was used as the substrate. The corre-
lations between H2 and soluble compounds produced via dark
fermentation of xylose by the activated sludge inoculumwere then
determined in order to understand the metabolic pathways at
55 �C, the temperature at which the H2 yield was the highest.
2. Materials and methods

2.1. Source of biomass

The two sludge types used as inoculum were collected in July
2015 from the Viinikanlahti municipal wastewater treatment plant
(Tampere, Finland). The first sludge type was fresh activated sludge
from the recirculation line between the outdoor aeration tank and
the secondary settler. The average outdoor temperature in Tampere
usually ranges between �6.7 �C in February and þ17.4 �C in July,
although winter temperatures below �20 �C are also possible
(Finnish Meteorological Institute, see: en.ilmatieteenlaitos.fi/
statistics-from-1961-onwards). The second type was digester
ng different initial pH and xylose concentrations. The reported H2 yield refer to the

Initial xylose (mM) H2 yielda (mol per
mol xylose)

Reference

124.9 1.30 Lin et al. (2006)
66.6 1.88 De S�a et al. (2013)
124.9 2.25 Lin and Cheng (2006)
124.9 0.73 Lo et al. (2008)
23.9 0.80 Maintinguer et al. (2011)
33.3 2.64 Chaganti et al. (2012)
66.6 2.31 An et al. (2014)
124.9 1.30 Lin et al. (2008)
13.3 1.70 Calli et al. (2008)
33.3 2.07 Zhang et al. (2011)
66.6 2.09 Khamtib and Reungsang (2012)
66.6 2.19 Ren et al. (2008)
33.3 1.72 Cao et al. (2014)
66.6 1.65 Zeidan and Van Niel (2009)
3.3 1.62 Kongjan et al. (2009)
13.3 1.84 Zhao et al. (2010)

http://en.ilmatieteenlaitos.fi/statistics-from-1961-onwards
http://en.ilmatieteenlaitos.fi/statistics-from-1961-onwards
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sludge from a mesophilic (35 �C) anaerobic digester treating waste
activated sludge. After settling and removing the supernatant, both
sludge samples were divided in 10 mL batches to thin 15 mL
anaerobic tubes, and heat treated at 90 �C for 15 min (Maintinguer
et al., 2011) by incubation in a preeheated water bath prior to use
as inoculum for the H2 production experiments.
2.2. Batch experimental seteup

Batch assays were conducted in 120 mL serum bottles with a
total working volume of 50 mL. The growthmediumwas DSMZ 144
with the following modifications: tryptone was not added, the
concentration of yeast extract was reduced to 0.3 g L�1 (Nissil€a
Fig. 1. H2 yield (mol H2 per mol of xylose added), residual xylose and pH trend with the ac
calculated as the average of three independent batch cultures, error bars indicate the stand
and start of a new one.
et al., 2011) and xylose (7.50 g L�1, 50 mM) was used as the sub-
strate instead of glucose. The pH of the growth medium was
adjusted to 5.5 with 1 M HCl.

In the first culture, the bottles were inoculated with 11.4 mL
activated sludge (8.8 ± 0.1 g VS L�1) or 4.2 mL of digester sludge
(24.0 ± 0.1 g VS L�1), resulting in an inoculum concentration of
about 2 g VS L�1, and medium was added up to 50 mL. The initial
xylose concentration of the mixture (medium and inoculum) was
50 mM. The following three batch cultures were inoculated by
transferring 5 mL of cultivation from the previous batch culture to
45 mL of fresh mediumwith 55.6 mM of xylose, in order to reach a
final xylose concentration of 50 mM. To ensure anaerobic condi-
tions, the serum bottles were flushed with N2 for 5e10 min before
tivated and the digester sludge at 37, 55 and 70 �C. Every point shown in the graphs is
ard deviation of the triplicates. The dotted lines refer to the end of every batch culture



P. Dessì et al. / Water Research 115 (2017) 120e129 123
and after inoculation. To avoid interference in the gasmeasurement
due to the N2 flushing, the pressure in the headspace was equili-
brated to atmospheric pressure by removing the excessive gas with
a syringe before starting the incubation. The bottles were incubated
at 37, 55 and 70 �C for 6e8 days. All the batch cultures were con-
ducted in triplicate. A control bottle without xylose for all the
triplicates was also prepared in all steps.

2.3. Microbial community analyses

Samples for microbial community analysis were collected at the
end of the last batch culture and stored at �20 �C. DNA extraction
and polymerase chain reactionedenaturing gradient gel electro-
phoresis (PCReDGGE) were performed according to M€akinen et al.
(2012). The forward primer for PCR was GCeBacV3f, while the
reverse primer was 907r resulting in a PCR product of approxi-
mately 550 base pairs. All the analyses were done in duplicate. The
visible bands were cut using a surgical blade, eluted in sterile water
and reeamplified by PCR (primers BacV3f and 907r) as described by
Koskinen et al. (2006). The product quality was checked by running
the PCR products on a 1% agarose gel before sending the samples to
Fig. 2. Carbon distribution at the end of each batch culture. The columns refer to the mmol
black dots represent their sum. The dotted line refers to the 12.5 mmol of carbon introduc
graphs is calculated as the average of three independent batch cultures, error bars indicate
Macrogen (South Korea) for sequencing. The nucleotide sequences
obtained were analyzed by Bio-Edit software (version 7.2.5) (Hall,
1999), in order to remove primer sequences, and compared with
the sequences in the GenBank nucleotide collection database using
BLAST software (Altschul et al., 1990) (https://blast.ncbi.nlm.nih.
gov/Blast.cgi).

2.4. Analytical methods

The overpressure of the bottles was measured using a syringe
method, which consisted of collecting the produced gas in a
graduated syringe until the pressure inside the bottle reached at-
mospheric pressure and subsequent reading the produced gas
volume (Owen et al., 1979). Gas samples from the headspace of the
bottles (0.2 mL) were analyzed with a Shimadzu gas chromato-
graph GCe2014 equipped with a Porapak N column (80/100 mesh)
and a thermal conductivity detector (TCD). The temperature of the
oven, injector and detector were at 80, 110 and 110 �C, respectively.
Nitrogenwas used as the carrier gas. The gas volume was corrected
to standard temperature (0 �C). Cumulative H2 and CO2 production
was calculated with the following equation (Logan et al., 2002):
of carbon found in the different metabolites at the end of every batch cultures and the
ed as xylose at the beginning of each incubation. Every column or point shown in the
the standard deviation of the triplicates.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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VH,i ¼ VH,ie1 þ CH,i(VG,i � VG,ie1) þ V(CH,i � CH,ie1) (1)

where VG, VH and CH are the current (i) or previous (ie1) mea-
surement of cumulative gas volume, cumulative H2 volume and
fraction of H2 in the headspace of serum bottles, respectively, and V
is the volume of the headspace.

Xylose in the liquid phase was determined by using a colori-
metric phenolesulphuric acid method (DuBois et al., 1956) with a
Shimadzu Ordior UVe1700 Pharmaspec UVeVIS spectrophotom-
eter at 485 nm wavelenght. Acetate, propionate, isobutyrate,
butyrate, valerate, ethanol and buthanol were measured by a gas
chromatograph equipped with flame ionization detector (GCeFID)
according to Kinnunen et al. (2015). Lactate and formate were
measured with a Shimadzu higheperformance liquid chromato-
graph (HPLC) equipped with a Rezex RHMemonosaccharide col-
umn (Phenomenex, USA) held at 40 �C and a refractive index
detector (Shimadzu, Japan). Themobile phasewas 5mMH2SO4 and
flow rate was 0.6 mL min�1.
3. Results

3.1. Dark fermentation of xylose by the activated and the digester
sludge

At 37 and 55 �C, the H2 yield with the activated sludge inoculum
constantly increased during the first three batch cultures (Fig. 1a),
reaching a maximum of 1.19 (±0.08) and 1.26 (±0.11) mol H2 per
mol of xylose (added) at 37 and 55 �C, respectively. At 37 �C, the H2
yield was similar at the end of the third and fourth batch culture,
but at 55 �C, it decreased by approximately 13% at the end of the
fourth batch culture compared to the third one. The digester sludge
started to produce H2 effectively from the first batch culture at
Fig. 3. Bacterial community composition analyzed by PCReDGGE from the batch
cultures with the fresh activated and digester sludge inocula after the four batch
cultures at 37, 55 and 70 �C. The band labels refer to Table 2.
37 �C, reaching a maximum yield of 1.05 (±0.04) mol H2 per mol of
xylose (added) after 84 h (Fig. 1b). In the third batch culture, the
yield was similar to the first one, but decreased by 50% and 90% in
the second and fourth batch culture, respectively. At 55 �C, digester
sludge started to produce H2 effectively after 192 h, reaching a
maximum of 0.81 (±0.15) mol H2 per mol of xylose (added) at the
end of the second batch culture. However, the yield consistently
decreased in the following two batch cultures, resulting in a 50%
lower yield at the end of the fourth batch culture compared to the
second one. Clear consumption of H2 was observed (H2 yield
dropped) only in the first batch culture at 37 �C (Fig. 1a and b),
regardless of the inoculum. At 70 �C, H2 yield was lower compared
to both 37 and 55 �C, with a maximum of only 0.22 (±0.07) mol H2
per mol of xylose (added) in the first batch culture with digester
sludge inoculum (Fig. 1a and b). Methane in batch cultures was
always below the detection limit of the GCeTCD, as well as H2, CO2,
and methane in the control bottles without substrate.

At 37 �C, xylose was consumed (>97%) in all four batch cultures
with the activated sludge inoculum, while at 55 �C, its removal
efficiency began to decrease from the third batch culture onwards
and was only 67% after the fourth batch culture (Fig. 1c). At 70 �C,
xylose was efficiently consumed (85%) during the first batch cul-
ture, but its removal efficiency decreased and was only 15e20% at
the end of the third and fourth batch culture (Fig.1c). Batch cultures
with the digester sludge inoculum followed the same trend at 55
and 70 �C, with a decrease in xylose removal efficiencies from
approximately 93% and 71% at the end of the first batch culture to
28% and 12% at the end of the fourth batch culture, respectively
(Fig. 1d). Unlike the batch cultures with the fresh activated sludge,
the xylose removal efficiency decreased drastically also at 37 �C in
the batch cultures with the digester sludge, being >97% at the end
of the second batch culture and only 20% at the end of the fourth
batch culture.

In every batch culture of both inoculum types, the pH started to
decrease as soon as the xylose degradation started, and the pH was
remarkably below the initial value of 5.5 after 36 h incubation
(Fig.1f and g). At both 37 and 55 �C, during the incubations, the final
pH decreased consistently, being below 4.0 at the end of the fourth
batch culture. At 70 �C, pH was somewhat higher (about 4.0) at the
end of the fourth batch culture.
3.2. Carbon distribution and metabolites concentration

H2 production from xylose at the different temperatures resul-
ted in the production of soluble carbonebased compounds in
different proportions (Fig. 2). Part of the carbon was removed from
the liquid phase mainly as CO2, while some of it remained in the
solution as xylose or was converted to volatile fatty acids (mainly
acetate, butyrate and lactate) or alcohols (mainly ethanol). Gener-
ally, a higher percentage of xylose was consumed in the batch
cultures with the activated sludge inoculum compared to the batch
cultures with the digester sludge. Acetate was produced by both
inocula at all the temperatures studied (Fig. 2). Butyrate was pro-
duced by both inocula at 37 and 55 �C, whereas it was not detected
at 70 �C but ethanol was produced instead. At 55 �C, ethanol pro-
ductionwas high (about 37mM) in the first batch culture with both
inocula, but its concentration decreased in the following batch
cultures (Fig. 2; Table S1 in supplementary material). Lactate was
also detected at 70 �C with the activated sludge inoculum and at all
the studied temperatures in the batch cultures with the digester
sludge inoculum (Fig. 2). A small concentration of acetate (<1mmol
of carbon) was detected in the control bottles only in the first batch
cultures, regardless of the inoculum and temperature.
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3.3. Microbial community analysis

The microbial community composition shown by DGGE (num-
ber and location of the bands) after four successive batch cultures
was different with the different inocula and incubation tempera-
tures (Fig. 3). At 37 �C, the enriched microbial communities were
dominated by bacteria having 91e100% similarity to Clostridia sp.,
based on the partial 16S rRNA sequencing. More specifically,
sequencing of the selected bands indicated the presence of mi-
croorganisms having 98e100% similarity to Clostridium butyricum
and Clostridium acetobutylicum in the batch cultures with both
inocula (Table 2). At 37 �C, genes possibly related to Spor-
olactobacillus sp. (92% similarity to Sporolactobacillus putidus) were
detected only with the digester sludge inoculum. At 55 �C, Ther-
moanaerobacter thermosaccharoliticum (98% similarity) and Calo-
ramator australicus (97e99% similarity) were present in the batch
cultures with the fresh activated and digester sludge inoculum,
respectively. At 70 �C, Caloramator australicus (97e99% similarity)
was detected in the batch cultures with both inocula, while genes
related to Thermoanaerobacter sp. (100% similarity) and Calda-
naerobius sp. (99% similarity) were found in the batch cultures with
the fresh activated and the digester sludge, respectively (Table 2).
3.4. H2 production pathways by the activated sludge inoculum at
37 and 55 �C

Although a similar H2 production was obtained at both 37 and
55 �C in the batch cultures with activated sludge (Fig. 1a),
approximately 97% of the xylose was consumed at 37 �C, whereas
only 67% in the fourth batch culture at 55 �C (Fig. 1c), indicating a
higher H2 yield per mol of xylose consumed at 55 �C (Fig. 4a).
Therefore, the microbial community at 55 �C has the potential to
yield more H2 compared to the community at 37 �C, and this is
probably related to a different biodegradation pathway. At 37 �C,
the H2 yield stabilized to 1.20 (±0.10) mol H2 per mol of xylose
consumed, while at 55 �C, it constantly increased reaching a
maximum of 1.85 (±0.51) mol H2 per mol of xylose consumed after
the first 84 h of the fourth batch culture, before decreasing to 1.64
(±0.19) mol H2 per mol of xylose consumed at the end of the
experiment (Fig. 4a). At 55 �C, both acetate and butyrate followed
the same trend as the H2 production (Fig. 4b). The acetate and
Table 2
Identification of the DGGE bands obtained after four successive batch cultures at 37, 55 an
in the GenBank and their presence (þ) or absence (�) in the different batch cultures.

BMa Microorganismb Access number Matching

A Clostridium sp. FJ361757 477
B Clostridium acetobutilycum KP410577

KP410579
457e515

C Clostridium butyricum CP013352
KT072767

418e492

D Clostridium sp. KR052807 381e490
E Thermoanaerobacter thermosaccharoliticum KT274717 426
F Caloramator australicus HM228391 385e449
G Thermoanaerobacter sp. KR007668 452
H Sporolactobacillus putidus NR_112774 486
I Clostridium sp. AB504378

AB537983
433e451

J Clostridium thermopalmarium KM036191 428
K Clostridium isatidis NR_026347 425
L Caldanaerobius sp. JX984966 429

a Band mark in Fig. 3.
b Closest species in GenBank.
c Number of nucleotide pairs used in the sequence comparison.
d Percentage of identical nucleotide pairs between the 16S rRNA gene sequence and t
butyrate yields constantly increased during the consecutive batch
cultures reaching a maximum of approximately 0.7 and 0.8 mol per
mol of xylose consumed for acetate and butyrate, respectively, 84 h
after initiating the fourth batch culture. Then, the yields decreased
to 0.5 and 0.7 mol per mol of xylose consumed, respectively, at the
end of the experiment. Ethanol production was high in the first
batch culture (0.7 mol ethanol per mol of xylose consumed) and
consistently decreased in the following cultures, becoming negli-
gible in the fourth culture (Fig. 4b).

A linear correlation (R2 ¼ 0.96) was found between the H2 and
butyrate yield at 55 �C (Fig. 4c). Based on the linear regression,
approximately 2.4 mol H2 per mol of butyrate were produced.
Conversely, the H2 yield and ethanol yield seem to be inversely
proportional (Fig. 4b).
4. Discussion

4.1. Dark fermentation of xylose by the activated sludge and the
digester sludge

At both 37 and 55 �C, the activated sludge inoculum yielded
more H2 than the digester sludge. Although both inocula originated
from the same wastewater treatment plant, different microbial
communities developed after four batch cultures at all three in-
cubation temperatures. Except for the first culture at 37 �C, the H2
produced was never consumed (Fig. 1), which confirmed that the
heat treatment effectively eliminated most H2 consuming micro-
organisms. In the first culture at 37 �C, H2 consumption was likely
attributed to homoacetogenesis, as methane was not detected. Few
species of spore forming homoacetogenic bacteria may resist heat
treatment (Slobodkin et al., 1997), but their growth is hindered in
the pH range (3.5e5.5) of this experiment (Fig. 1e and f). However,
Clostridium acetobutylicum, present in the batch cultures at 37 �C
with both inocula (Table 2) can switch its metabolism from
acidogenesis (and H2 production) to solventogenesis (and H2 con-
sumption) in case of low pH (<4.5) and high H2 partial pressure
(Kim and Zeikus, 1992). Simultaneous production and consumption
of H2 can thus not be excluded, and the presented results are the
net H2 production (difference between H2 produced and
consumed). Furthermore, only the dominant microorganisms can
be detected by PCReDGGE and thus, the contribution of some
d 70 �C based on the comparison of their 16S rRNA gene sequences to those collected

sequence lengthc Similarity (%)d Activated sludge Digester sludge

37 55 70 37 55 70

99 þ � � � � �
99 þ � � þ � �

98e100 þ � � þ � �

92e100 � þ � � � �
98 � þ � � � �
97e99 � � þ � þ þ
100 � � þ � � �
92 � � � þ � �
91e98 � � � � þ �

98 � � � � þ �
93 � � � � þ �
99 � � � � � þ

he closest species in GenBank.



Fig. 4. H2 yield (mol H2 per mol of xylose consumed) obtained with the activated
sludge at 37 and 55 �C (a) and the acetate, butyrate and ethanol yields obtained with
the activated sludge inoculum at 55 �C (b) with respect to time. H2 yield was shown to
be directly proportional to butyrate (c) when activated sludge was used as inoculum at
55 �C. Every point shown in the graphs is calculated as the average of three inde-
pendent batch cultures, error bars show the standard deviation of the triplicates.
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species which might had a role in either H2 production or con-
sumption could be missing.

For both inocula, and all the temperatures investigated, the pH
profile (Fig. 1e and f) does not correlate well with the xylose con-
centration profiles (Fig. 1c and d). This is especially evident in the
last two batch cultures of the digestate inoculum, in which the pH
dropped to <4 even when xylose consumption was lower than in
the previous batch cultures. One possible explanation is that, from
the first batch culture, bacteria accumulated undissociated volatile
fatty acids, which then dissociated inside the cell due to the neutral
cytosolic pH, causing an intracellular overload of protons which
were subsequently forced out from the cytoplasm (J€onsson et al.,
2013), causing the pH drop observed in the last two batch cul-
tures. This might also explain the decreased xylose degradation rate
in the last two batch cultures of both inocula. Excretion of the
protons outside the cells costs energy, e.g. in the form of adenosine
triphosphate (ATP), thus limiting the energy available for microbial
growth (Bundhoo and Mohee, 2016). Also the carbon balances
support this hypothesis: in the first two batch cultures of both
inocula, and for all temperatures investigated, up to 30% of the
carbon introduced as xylose was not detected as CO2 or soluble
metabolites (Fig. 2). It is plausible that part of the carbon was
retained inside the cells in the form of volatile fatty acids, alcohols
or storage products. Conversely, in the third and fourth batch cul-
ture, the sum of carbon detected as CO2 and soluble metabolites
sometimes exceeded (by 10% at the most) the amount of carbon
provided as xylose. Accordingly, the accumulated volatile fatty
acids inhibited the H2 producing bacteria (Van Ginkel and Logan,
2005), possibly inducing their death and cell lysis, thus releasing
the cell content and causing an overestimation of carbon detected
in the medium. Also acids in the dissociated form, which cannot
penetrate the cell membrane, can cause cell lysis by increasing the
ionic strength of the medium (Van Niel et al., 2003). It should be
noted that the contribution of growth of microorganisms, dissolved
CO2, and yeast extract has not been considered in the carbon bal-
ance, and further investigation is required to confirm their role in
the carbon balance.

4.2. Comparative H2 production by the activated sludge and the
digester sludge at 37 �C

At 37 �C, the microbial community was dominated by Clostridia
species (Table 2). Due to the high percentages of acetate and
butyrate in the liquid phase, Clostridium butyricum and Clostridium
acetobutylicum, detected at 37 �C with both inocula, were likely
associated with H2 production. Clostridium butyricum produces H2
by dark fermentation via the acetate and butyrate pathway, and it is
active at a pH as low as 4.4 (Sepp€al€a et al., 2011). Clostridium ace-
tobutylicum produces H2, acetate and butyrate via acidogenesis at a
pH as low as 4.7, before switching the metabolic pathway to sol-
ventogenesis (Grupe and Gottschalk, 1992). However, as evidenced
by the low (<2.2 mM) ethanol concentration in the liquid phase of
batch cultures at 37 �C (Table S1 in supplementary material), sol-
ventogenesis did not occur even at the lowest pH values achieved in
the batch cultures. This is likely due to the insufficient butyrate
concentration in the medium, as a butyrate concentration of 2 g L�1

is required to trigger solventogenesis (Cheng et al., 2012). The
highest butyrate concentration detected in this study was about
30 mM (2.6 g L�1) at the end of the first and fourth batch culture
with the activated sludge inoculum at 37 �C (Table S1 in supple-
mentary material), but most of the xylose was already consumed at
that point (Fig. 1c).

The low pH likely gave good conditions for the growth of
Sporolactobacillus sp., a lactic acideproducing mesophilic bacte-
rium growing in the pH range 3.5e5.5, with an optimum of pH 4.5
(Fujita et al., 2010), which was found only in the batch cultures at
37 �C with the digester sludge inoculum. At 37 �C, lactate (about
2 mM) was found only in the fourth batch culture of the digester
sludge (Table S1 in supplementary material), when the low pH of
3.5 could have reduced the substrate competition among the H2

producing microorganisms. In the batch cultures with the activated
sludge inoculum, the absence of lactate may indicate a low con-
centration of Sporolactobacillus sp. in the microbial community.
This bacterium is likely one of the causes for the low H2 yield ob-
tained in the fourth batch culture of the digester sludge at 37 �C
(Fig.1b), as part of the electronswere directed to reduce pyruvate to
lactate via NADH oxidation instead of reducing protons to molec-
ular H2. Furthermore, lactic acid bacteria can excrete bacteriocins,
which are toxic to other bacteria, including Clostridium (Noike et al.,
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2002). However, a protein and enzyme�level study is required to
assess the inhibitory effect of bacteriocins on H2 producing bacteria,
which is out of the scope of this paper.

At 37 �C, in batch cultures with activated sludge, the H2 yield per
mol of xylose consumed was lower than the one obtained at 55 �C
(Fig. 4a). H2 yields bymesophilic mixed cultures are generally lower
than by thermophilic cultures (Table 1), but yields of 2.25 and
2.64 mol H2 per mol of xylose have been obtained by Lin and Cheng
(2006) and Chaganti et al. (2012) at 35 and 37 �C, respectively, using
a similar inoculum to the ones used in this study. However, Lin and
Cheng (2006) worked at an initial pH of 6.5 and substrate con-
centration of 124.9 mM, whereas Chaganti et al. (2012) used a
statistical approach to optimize several chemical and physical pa-
rameters, such as pH, oleic acid concentration and biomass
concentration.

4.3. Comparative H2 production by the activated sludge and the
digester sludge at 55 �C

Clostridia species were also detected at 55 �C with both inocula
(Table 2) and associated with H2 production via the acetate and
butyrate pathway. Clostridium thermopalmarium, found in batch
cultures with the digester inoculum at 55 �C, mainly ferments
sugars to butyrate, producing H2, CO2 and small amounts of acetate,
lactate and ethanol (Lawson Anani Soh et al., 1991). At 55 �C, the
different activity of Clostridium sp. with the activated and the
digester sludge can be attributed to the different pH. During the
third and fourth batch culture of the digester sludge, as happened
at 37 �C, the pH dropped to as low as 3.5 (Fig. 1f), resulting in low
xylose degradation. Xylose degradation was low also in the fourth
batch culture of the activated sludge, in which the pH dropped
below 4.0 (Fig. 1e). Thermoanaerobacter thermosaccharoliticum,
found at 55 �Cwith the activated sludge inoculum, has been used to
ferment a variety of monomeric sugars, including 33.3 mM xylose
(Cao et al., 2014), resulting in the total degradation of the substrate
and the production of 1.7 mol H2 per mol of xylose with acetate and
butyrate as the main soluble end products (Cao et al., 2014).
However, the initial pH of their experiment was set to 7.0, whereas
in this study the initial pH was 5.5. T. thermosaccharoliticum effec-
tively produces H2 from xylose in a pH range 5e7, whereas its H2
yield dramatically decreases at lower pH values (Ren et al., 2008).

The highest H2 yield of 1.85 mol H2 per mol of xylose consumed
was obtained in this study during the fourth batch culture of acti-
vated sludge at 55 �C (Fig. 4a). This is in line with the results ob-
tained by Calli et al. (2008) who reported a maximum yield of
1.7 mol H2 per mol xylose at 55 �C (Table 1). Interestingly, even if
the compost used as inoculum by Calli et al. (2008) was not pre-
treated, methane was not detected, confirming that thermophilic
conditions reduce the risk of contamination by methanogens. A
similar H2 yield (1.65 mol H2 per mol xylose) was obtained at 65 �C
with a geothermal spring inoculum (Zeidan and Van Niel, 2009). A
slightly higher H2 yield of 2.07e2.19 mol H2 per mol of xylose has
been reported in thermophilic (60 �C) batch incubations (Table 1)
by using a pure culture of T. thermosaccharolyticum (Khamtib and
Reungsang, 2012; Ren et al., 2008; Zhang et al., 2011). This bacte-
rium may have a significant contribution to the H2 yield by acti-
vated sludge at 55 �C.

4.4. Comparative H2 production by the activated sludge and the
digester sludge at 70 �C

At 70 �C, hyperthermophilic bacteriawere found present even in
the activated sludge, despite the temperature in Finland seldom
exceeds 25 �C in summer. In the wastewater treatment plant where
the sludge was collected, the aeration basins are exposed to
ambient temperatures. All the hyperthermophilic species detected
after four batch cultures with the activated and digester sludge,
including Caldanaerobius sp., Caloramator australicus and Ther-
moanaerobacter sp., generate H2 from carbohydrates producing
acetate and ethanol as the end product at a pH optimum of 7 or
even slightly higher (Lee et al., 2008; Ogg and Patel, 2009; Vipotnik
et al., 2016). The low xylose degradation and H2 yield (Fig. 1), the
presence of ethanol and acetate in the medium and the absence of
butyrate (Fig. 2) indicate that the bacteria were barely active at the
beginning of the batch cultures at 70 �C, when the pH was >5,
before being completely inhibited after a further pH decrease.

H2 production at 70 �C was achieved by Kongjan et al. (2009)
and Zhao et al. (2010) with a maximum yield of 1.62 and 1.84 mol
H2 per mol of xylose, respectively, but the experiments were con-
ducted at a higher initial pH and lower substrate concentration
compared to this study (Table 1). Furthermore, in both cases, the
inoculum was previously enriched for H2 production at 70 �C.

4.5. H2 production pathways in the fresh activated sludge inoculum
at 55 �C

The linear regression between the H2 and butyrate yield at 55 �C
with the fresh activated sludge inoculum (Fig. 4c) shows a pro-
duction of approximately 2.4 mol H2 per mol of butyrate. However,
only 2.0 mol H2 per mol of butyrate is theoretically obtainable (2),
suggesting that H2 was produced also through the acetate pathway
(3).

C5H10O5 / 0.83 CH3CH2CH2COOH þ 1.67 H2 þ 1.67 CO2 (2)

C5H10O5 þ 1.67 H2O / 1.67 CH3COOH þ 3.33 H2 þ 1.67 CO2 (3)

A direct conversion of xylose to acetate, despite being thermo-
dynamically more favorable under thermophilic than mesophilic
conditions, is strongly affected by the H2 partial pressure. At 55 �C,
H2 production through the acetate pathway is thermodynamically
feasible only at H2 partial pressures of far less than 1 kPa, and then
the pathway shifts to butyrate production (Verhaart et al., 2010).
Based on our calculations done using the ideal gas law (Fig. S1 in
supplementary material), 1 kPawas reached during the first 36 h in
batch cultures of activated sludge at 55 �C (despite overpressure
removal during each sampling). It is, therefore, plausible that H2
first evolved through the acetate pathway, and then the metabolic
pathway shifted to butyrate production due to the accumulation of
H2 in the headspace. This would explain the higher total H2 yield
than the theoretical production through the butyrate pathway.
Furthermore, according to Valdez-Vazquez et al. (2006), a H2 partial
pressure of 0.75 atm (74 kPa) or even lower is sufficient to inhibit
thermophilic H2 producing microorganisms. In this study, the
highest H2 partial pressures reached are in the range of 60e85 kPa
(Fig. S1 in supplementary material), suggesting that the H2 partial
pressure, as well as low pH, could have negatively affected the
process at 55 �C.

Although acetate production followed a similar trend to buty-
rate (Fig. 4b), no correlation with H2 yield was found, suggesting
that acetate was produced also through other pathways with no H2

production. The correlation between butyrate and H2 yield was not
at all found at 37 �C (data not shown), probably due to a more
diversemicrobial community and thus, awider variety of metabolic
pathways.

Ethanol was the main metabolite produced during the first
batch culture at 55 �C (Fig. 4b). In the subsequent cultures, its yield
decreased while the butyrate and H2 yield increased. This suggests
that butyrate (2) and ethanol (4) production were competitive
pathways.
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C5H10O5 / 1.67 CH3CH2OH þ 1.67 CO2 (4)

The shift from ethanol to butyrate fermentation can be attrib-
uted to either a change in microbial community or a shift in the
metabolic pathway of the active microbial species during the four
successive batch cultures. The metabolic shift is confirmed by the
fact that, in the first batch culturewith the activated sludge at 55 �C,
gas composition was approximately 65% CO2 and only 35% H2
(Fig. S2c in supplementary material), but the share of H2 constantly
increased in the subsequent batch cultures being about 57% of the
total gas at the end of third and fourth batch culture.

This study demonstrated that activated sludge can be used as
inoculum for thermophilic H2 production from xylose containing
wastewaters. However, a further study with a continuously fed
bioreactor is required to evaluate the potential and stability of this
process for fullescale applications.

5. Conclusions

� Using heat treated activated sludge as the inoculum, xylose
containing wastewaters can be treated at 55 �C obtaining higher
H2 yields than at 37 �C

� The highest H2 yield of 1.85 mol H2 per mol of xylose consumed
was obtained with activated sludge during the fourth batch
culture at 55 �C. At the beginning of every culture, H2 production
was likely associated with the acetate pathway and then shifted
towards the butyrate pathway due to the increased H2 partial
pressure

� At 55 �C, ethanol was produced in the first batch culture. In the
following cultures, ethanol production steadily decreased while
butyrate and H2 production steadily increased, indicating a clear
shift in the xylose degradation pathway towards dark fermen-
tation. This suggests that for noneadapted inocula, a starteup
period may be required prior to obtaining high H2 yields.

� H2 production at 70 �C was negligible, possibly because the pH
was below the optimum for the detected hyperthermophiles
present in the inoculum.
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Figure S1. Evolution of H2 partial pressure with time, assuming equilibrium conditions between 

the liquid and gas phase. The two points represented for every sampling time refer to the H2 partial 

pressure before (the highest) and after (the lower) removing the overpressure. Every point shown in 

the graphs is calculated as the average of three independent batch cultures, error bars show the 

standard deviation of the triplicates. The dotted lines refer to the end of a batch culture and start of a 

new batch culture. 



 

 

Figure S2. Cumulative gas production obtained with the fresh activated and the digester sludge 

inoculum. Every point shown in the graphs is calculated as the average of three independent batch 

cultures, error bars indicate the standard deviation of the triplicates. The dotted lines refer to the end 

of every batch culture and start of a new culture.  

 



Table S1. Concentration of most abundant metabolites found at the end of the four consecutive 

batch cultures. 

Inoculum T 
(°C) 

Batch 
culture 

Concentration (mM) 
Acetate  Butyrate  Ethanol  Lactate  

Activated 
sludge 

37 I 21.4 (± 2.2) 30.2 (± 5.2) 1.6 (± 0.3) - 
II 16.8 (± 4.1) 18.6 (± 3.4) 2.0 (± 0.0) - 
III 19.5 (± 5.0) 28.0 (± 7.2) 2.1 (± 0.1) - 
IV 16.8 (± 2.1) 31.0 (± 4.9) 1.6 (± 0.0) - 

55 I 9.3 (± 4.7) 15.0 (± 4.0) 36.6 (± 8.1) - 
II 24.2 (± 1.8) 23.0 (± 1.6) 12.8 (± 1.4) - 
III 27.0 (± 3.4) 29.2 (± 1.9) 3.9 (± 0.3) - 
IV 17.6 (± 5.6) 22.5 (± 7.3) 1.3 (± 0.3) - 

70 I 9.7 (± 0.9) - 30.8 (± 11.3) 15.8 (± 1.2) 
II 9.5 (± 1.4) - 14.5 (± 4.7) 7.3 (± 0.8) 
III 8.2 (± 0.4) 0.5 (± 0.2) 10.2 (± 1.3) 4.3 (± 0.4) 
IV 6.3 (± 0.1) - 6.3 (± 1.2) 3.2 (± 0.0) 

Digester 
sludge 

37 I 21.6 (± 4.0) 29.5 (± 4.0) 2.2 (± 0.3) - 
II 18.3 (± 0.8) 16.4 (± 0.9) 1.6 (± 0.1) - 
III 15.8 (± 1.8) 25.3 (± 4.5) 0.9 (± 0.2) - 
IV 4.2 (± 2.0) 5.1 (± 3.9) - 1.7 (± 0.0) 

55 I 8.2 (± 0.8) 3.6 (± 0.3) 20.7 (± 2.5) 24.2 (± 0.7) 
II 8.2 (± 1.5) 17.1 (± 3.9) 3.9 (± 0.4) - 
III 12.1 (± 1.7) 13.6 (± 0.6) 1.1 (± 0.1) - 
IV 8.4 (± 0.6) 7.9 (± 0.6) 0.6 (± 0.1) 1.2 (± 0.7) 

70 I 10.7 (± 1.9) - 12.0 (± 4.1) 11.9 (± 1.3) 
II 11.5 (± 0.6) - 11.6 (± 2.6) 7.6 (± 0.9) 
III 9.1 (± 1.8) - 7.8 (± 1.3) 4.1 (± 0.0) 
IV 5.3 (± 0.7) - 3.4 (± 0.4) 2.1 (± 0.3) 
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The influence of different inoculum pretreatments (pH and temperature shocks) on mes-

ophilic (37 �C) and thermophilic (55 �C) dark fermentative H2 production from xylose

(50 mM) and, for the first time, on the composition of the active microbial community was

evaluated. At 37 �C, an acidic shock (pH 3, 24 h) resulted in the highest yield of 0.8 mol H2

mol�1 xylose. The H2 and butyrate yield correlated with the relative abundance of Clos-

tridiaceae in the mesophilic active microbial community, whereas Lactobacillaceae were the

most abundant non-hydrogenic competitors according to RNA-based analysis. At 55 �C,

Clostridium and Thermoanaerobacterium were linked to H2 production, but only an alkaline

shock (pH 10, 24 h) repressed lactate production, resulting in the highest yield of 1.2 mol H2

mol�1 xylose. This study showed that pretreatments differentially affect the structure and

productivity of the active mesophilic and thermophilic microbial community developed

from an inoculum.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

The increasing energy demand results in the depletion of

fossil fuel reserves and in the emission of enormous quanti-

ties of greenhouse gases to the atmosphere. Due to its high
sı̀).

ons LLC. Published by Els
energy content and carbon neutrality, hydrogen (H2) is a

promising green alternative to fossil fuels [1]. Among H2 pro-

duction technologies (for a review, see Nikolaidis and Poul-

likkas [2]), biological methods have the advantage of coupling

H2 generation with the treatment of organic carbon-

containing wastes and wastewaters. Biological H2 production
evier Ltd. All rights reserved.
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technologies include photo and dark fermentation, direct and

indirect photolysis, and the water gas-shift reaction [3]. The

high H2 production rate, the simple reactor technology

(similar to the well-established anaerobic digestion), and the

abundance of microorganisms capable to produce H2 from a

wide range of substrates may promote the establishment of

dark fermentation in industrial applications [4].

Lignocellulosic materials, including agricultural crops,

wood and their processing and waste residues, are among the

most abundant rawmaterials in nature [5]. Suchmaterials are

suitable for dark fermentation as their hydrolysis produces

monomeric sugars (e.g. hexoses such as glucose and pentoses

such as xylose) which can be biologically converted to H2 [6].

Most of studies on dark fermentation of monomeric sugars

have been conducted on glucose, whereas xylose, the second

most abundant sugar released during hydrolysis of lignocel-

lulosic biomass [7], has not yet attained much attention.

Promising H2 yields have been obtained through dark

fermentation of monomeric sugars by pure cultures or syn-

thetic co-cultures of H2 producing microorganisms (for re-

views, see Lee et al. [8] and Elsharnouby et al. [9]). Despite the

high H2 yields obtainedwith pure cultures, a diversemicrobial

consortium is often required for dark fermentation of more

complex substrates, such as waste-derived carbohydrate

mixtures. Furthermore, the easier and economic process

control as well as the lack of requirements for sterilisation

makes mixed cultures more suitable for industrial waste

treatment applications than pure cultures [10].

The main drawback of mixed cultures and unsterile con-

ditions is the possible development of microorganisms

competing with H2 producers for the substrates or even H2

consuming microorganisms in the dark fermentation reactor,

which can drastically reduce the overall H2 yield. Homo-

acetogenic bacteria and hydrogenotrophic methane produc-

ing archaea are the two most common H2 consuming

microorganisms, but also propionate producers as well as

sulphate and nitrate reducers use H2 in their metabolism [3].

Lactate producing bacteria, typically found in dark fermenta-

tion systems [11], not only compete with H2 producers for the

substrates, but can even inhibit the growth of H2 producers by

either causing acidification or excreting bacteriocins [12].

Inoculum pretreatment technologies have been widely

studied on mixed cultures to select H2 producing microor-

ganisms at the expense of H2 consumers. When exposed to

harsh conditions, some H2 producers, such as Clostridium,

Bacillus and Thermoanaerobacterium, produce endospores as a

defence mechanism [13,14]. This increases their survival

chances compared to non-spore-forming H2 consumers as the

spore-formers are able to regerminate once the environ-

mental conditions become favourable. Temperature and pH

shocks are the most widely applied pretreatment methods to

enhance the share of H2 producers in a mixed microbial

community [15]. High temperature disrupts the cell wall of

non-spore-forming microorganisms, causing cell lysis and

protein denaturation [16]. Low temperature can cause protein

gelling, intracellular formation of ice crystals and membrane

lipid stiffening [17]. Acidic and alkaline shocks affect the

electric charge of the cell membrane, may inactivate key en-

zymes, andmay cause a change of the intracellular pH, which

could lead to cell wall disruption [18]. Other pretreatment
methods include substrate loading shock, chemical treatment

(e.g. using 2-bromoethansulphonate acid or chloroform,

which inhibit methanogenic archaea), aeration, electric

shocks, ionising irradiation, microwaves, or ultrasonication

(for a review, see Wang and Yin [15]).

Many studies have compared the effect of the various

pretreatments, and their combinations, onmesophilic [19e26]

and thermophilic [27,28] dark fermentative H2 production.

However, due to the different inoculum, substrate, and oper-

ating conditions, many results appear controversial. Most of

the studies compared the various pretreatments in terms of

H2 production, rather than focusing on the microbial com-

munity. Analysing the response of themicrobial communities

to the different inoculum pretreatments is crucial in order to

define a strategy for optimization of dark fermentative H2

production. In a few cases, DNA-based analysis using low

sensitivity techniques such as denaturing gradient gel elec-

trophoresis (DGGE) have been applied to detect the dominant

species of the microbial community [19e21,25e27]. More

novel microbial techniques, such as next generation high-

throughput sequencing, likely yield more detailed informa-

tion on how the different species in the microbial community

are affected by various pretreatments. RNA-based approaches

provide even more useful information than DNA-based ones

[29], enabling detection of the microbial species that remain

active after the pretreatment, and thus determination of the

species that are involved in H2 production and possible

competitive pathways. Therefore, this study pursues the

double aim of (i) finding out how different inoculum pre-

treatments shape the active microbial communities and (ii)

how such microbial communities evolve and produce H2

during mesophilic (37 �C) and thermophilic (55 �C) dark

fermentation of xylose.
Materials and methods

Source and pretreatment of inoculum

Activated sludge was selected as the parent inoculum,

because it enabled higher H2 production from xylose than

anaerobic digester sludge from the same wastewater treat-

ment plant in a previous study [30]. The activated sludge used

in this study was collected from a secondary settler of a

municipal wastewater treatment plant (Mutton Island, Gal-

way, Ireland). It was dewatered by filtration through a 0.1 mm

diametermesh. After filtration, total solids, volatile solids, and

pHwere 28.1 (±2.4) g L�1, 22.7 (±2.0) g L�1, and 6.9, respectively.

The activated sludge was stored at 4 �C for approximately one

week prior to being used in the experiment.

Temperature (heat treatment, freezing and thawing) and

pH (acidic, alkaline) shocks, widely used to select H2 producing

organisms from several inocula [15], were chosen among the

possible pretreatment methods. The heat shock was con-

ducted by exposing the inoculum, collected in thin 15 mL

tubes, to 90 �C for 15 min using a pre-heated water bath

(Clifton, UK). Freezing and thawing was done by incubating

sludge samples at �20 �C for 24 h in thin 15 mL tubes and then

defrosting them at 30 �C in a water bath. The acidic shock was

given by adjusting the pH of the sludge to 3.0 with HCl,

https://doi.org/10.1016/j.ijhydene.2018.03.117
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incubating at room temperature (about 20 �C) for 24 h, and

then increasing the pH back to 7.0 with NaOH. The alkaline

shock was done by adjusting the pH to 10.0 with NaOH,

incubating at room temperature for 24 h, and then decreasing

the pH back to 7.0 with HCl. Both HCl and NaOHwere used at a

concentration of 1 or 3 M. The sludgewas continuously stirred

by using a magnetic stirrer while adjusting the pH.

Incubation and sampling

Batch cultures were performed in glass serum bottles (120 mL

volume), filled with 45 mL of a modified DSMZ medium n.144

containing xylose (50 mM) as carbon source [30], and inocu-

lated with 5 mL of pretreated activated sludge. Anaerobic

batch cultures with untreated sludge were also prepared as

negative controls. All batch cultures were conducted as trip-

licates. The initial pH was adjusted to 7.0 with 1 M NaOH, and

bottles were flushed with N2 for 5 min prior to incubation.

Thermostatic conditions (37 or 55 �C) and shaking at 60 rpm

were provided by shaker incubators (Thermo Scientific, USA).

The batch cultures lasted until cumulative H2 production was

not observed for 48 h in any of the triplicate bottles (96e144 h

in total).

Gas samples (5 mL) were collected daily, and stored into

5.9 mL EXETAINER® hydrogen-tight gas sampling tubes

(Labco, UK). Liquid samples were also collected daily and

stored at�20 �C in 1.5mL Eppendorf tubes for analysis. Sludge

samples were collected before being inoculated into the

serum bottles (0 h samples) and from the bottom of serum

bottles at the end of the batch culture at 37 �C or 55 �C. They
were then stored at�80 �C in RNA-free 1.5mL Eppendorf tubes

until microbiological analysis.

Microbial community analyses based on 16S cDNA

Microbiological samples were pelleted by centrifugation

(10,000 xg, 10 min). Nucleic acid co-extraction was done using

a method modified from Griffiths et al. [31]. DNA inhibition,

cDNA synthesis, high-throughput sequencing (Illumina

MiSeq) and bioinformatics analysis of partial 16S rRNA gene

sequences using primers 515f and 805r were performed as

reported previously [32], but using a more recent version of

Mothur (1.39.5) and the Silva database (v128). The total num-

ber of sequences was 5,494,444 and they were reduced to

3,294,730 (2,276,495 unique sequences) after a quality check.

The hierarchical clustering dendrogram was done using the

”Pvclust” package of ”R” software [33].

Analytical methods

Gas produced was quantified by a syringe method [34] and its

composition was determined by gas chromatography as re-

ported previously [30]. Cumulative H2 and CO2 production was

calculated using a H2 mass balance equation [35], and cor-

rected to standard temperature (0 �C). Total solids and volatile

solids were determined according to the standard methods

[36]. pH was measured using a pH meter (WTW inoLab)

equipped with a Slimtrode electrode (Hamilton). The compo-

sition of the liquid phase (xylose, volatile fatty acids and
alcohols) was determined by high-performance liquid chro-

matograph (Shimadzu) equipped with a Rezex™ ROA-Organic

Acid Hþ (8%) column (Phenomenex, USA), held at 70 �C, and a

refractive index detector (Shimadzu, Japan). Themobile phase

and flow rate were 0.013 N H2SO4 and 0.6 mL min�1,

respectively.

Calculations

The following H2 production or consumption pathways were

considered the most likely to occur based on their low DG0

values (Eqs. (1)e(4)) [37]:

Acetate fermentation (DG0 ¼ �250.8 kJ):

C5H10O5 þ 1.67 H2O / 1.67 CH3COOH þ 3.33 H2 þ 1.67 CO2 (1)

Butyrate fermentation (DG0 ¼ �307.9 kJ):

C5H10O5 / 0.83 CH3CH2CH2COOH þ 1.67 H2 þ 1.67 CO2 (2)

Propionate fermentation (DG0 ¼ �373.7 kJ):

C5H10O5 þ 1.67 H2 / 1.67 CH3CH2COOH þ 1.67 H2O (3)

Homoacetogenesis (DG0 ¼ �75.5 kJ):

4 H2 þ 2 CO2 / CH3COOH þ 2 H2O (4)

The theoretical H2 yield (mol H2 mol�1 xyloseconsumed) was

estimated based on the volatile fatty acids detected by HPLC,

according to Eqs. (1)e(4), as follows (Eq. (5)) [38]:

HYT ¼ 2*AY þ 2*BY e PY (5)

where AY, BY and PY are the acetate, butyrate and propio-

nate yield in mol mol�1 xyloseconsumed, respectively.

The discrepancy value D (mol H2 mol�1 xyloseconsumed) was

calculated as the difference between the measured (HYM) and

the theoretical (HYT) H2 yield (Eq. (6)):

D ¼ HYM e HYT (6)

The contribution of acetate fermentation (AYH) and

homoacetogenesis (AYA) on the total acetate production

(AY ¼ AYH þ AYA) was estimated by attributing a share of the

totalmeasured acetate to the two acetate producing pathways

(Eqs. (1) and (4)) in order to minimise D (Eq. (7)):

D ¼ HYM e (2*AYH þ 2*BY e PY e 4 AYA) (7)

Statistical analysis

To assess significant differences in the effect of the tested

pretreatments on H2 yield, one-way analysis of variance

(ANOVA) and the Tukey test [39] at p ¼ 0.05 were conducted

using the IBM SPSS Statistics package. The output of the

statistical analysis is provided in the supporting material

(File S1).
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Fig. 1 e Relative abundance of the active families resulting from MiSeq sequencing of the partial 16S rRNA on

microbiological samples collected before and after batch cultures with the untreated and pretreated sludge at 37

and 55 �C. Microbial community of each replicate sample is shown separately. “Other” refers to the sum of families with

relative abundance <1%.
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Results and discussion

Effect of the inoculum pretreatments on the active microbial
community

No dominant microorganisms were detected in the untreated

activated sludge, which was characterised by a presence of

various families of microorganisms with relative abundance

below 20% (Fig. 1), mainly belonging to the phylum of Proteo-

bacteria and Bacteroidetes (Fig. S1).

Despite theaerobic originof the sludge,heat shock, freezing

and thawing, as well as acidic shock favoured the establish-

ment of families of spore forming anaerobic microorganisms

such as Clostridiaceae and Peptostreptococcaceae (Fig. 1). Some

non-spore-formingmicroorganisms, such as Comamonadaceae

sp. [40], were able to resist the heat shock and the freezing and

thawing treatment, with a relative abundance of 12e22% and

17e19%, respectively, but their relative abundance was <5%
after the acidic or alkaline shock (Fig. 1).

After the alkaline shock, the active microbial community

was very different than the one obtained after the other pre-

treatments, as shown by the hierarchical clustering dendro-

gram (Fig. 2). The community was dominated by Proteobacteria

belonging to the families of Moraxellaceae (relative abundance

of 48e54%) and Aeromonadaceae (21e28%), and more specif-

ically by microorganisms closely related to Acinetobacter sp.

and Aeromonas sp. (Fig. 1; Table 1). Although being non-spore

forming [41,42], both Acinetobacter and Aeromonas survived

the alkaline pretreatment, but their relative abundance

decreased to <1% after applying the other pretreatments. This

suggests that microorganisms are differently affected by the

different pretreatments, and that also some non-spore-

forming microorganisms could survive the temperature and

pH stress applied. The alkaline shock pretreatment repressed

more microbial families than the other pretreatments, as

confirmed by the low diversity of the active microbial com-

munity, according to the diversity indexes (Table 2).

Effect of pretreatments on mesophilic (37 �C) dark
fermentation of xylose

Effect of pretreatments on H2 yield at 37 �C
Based on H2 yields, the acidic shock was the most effective

pretreatment for mesophilic (37 �C) dark fermentation,

resulting in a yield of 0.8 mol H2 mol�1 xyloseadded (Fig. 3). No

statistically significant differences were found between the

alkaline and heat shock, which resulted in a yield of

0.5e0.6 mol H2 mol�1 xyloseadded, and in both cases H2 pro-

duction stopped within 48 h. Freezing and thawing was the

least effective pretreatment method, resulting in a yield of

only 0.2 mol H2 mol�1 xyloseadded, which was similar to the

yield obtained with the untreated sludge (Fig. 3).

Chang et al. [22] compared various pretreatment methods

(including acidic and alkaline shock, heat shock, aeration, and

chemical treatment) on waste activated sludge and reported

that an acidic shock (pH 3, 24 h) was the most effective pre-

treatment, yielding 1.5 mol H2 mol�1 glucoseconsumed at 35 �C
and at an initial pH of 7. Furthermore, Chang et al. [22] reported

a 20% increase of the H2 yield from glucose after five
consecutive mesophilic batch cultures with acidic shock-

pretreated activated sludge (without repeating the acidic

shock) suggesting that the pretreatment effect can be sus-

tained for extended time periods. An acidic shock was also

reported as the most efficient inoculum pretreatment by Liu

et al. [25] and Cheong et al. [43] when performing dark

fermentation of glucose using marine intertidal sludge and

sludge froma cattlemanure treatment plant, respectively. The

effectiveness of inoculum pretreatment for H2 production is,

nevertheless, case-specific, as it depends on the inoculum,

substrate and operating conditions. For example, heat shock

(100 �C) of digested sludge resulted in a higher H2 yield than

acidic shock (pH 3) inmesophilic (35e37 �C) dark fermentation

of rice and lettuce powder [44] and glucose [45]. Chemical

treatment of granular and digested activated sludge with 2-

bromoethanesulfonic acid (BESA) was the most effective pre-

treatment (over heat shock andacidic shock among the others)

fordark fermentationofglucose [46]. Pretreatmentof cowdung

compost by infrared rays resulted in the highest H2 production

fromsucrose [47],whereasanelectric shockapplied todigested

sludgepromotedH2production fromglucose [21]. In bothcases

[21,47], a heat shock resulted in a lower H2 yield compared to

either infrared rays or electric shock.

Effect of pretreatments on the xylose fermentation pathways at
37 �C
In all the mesophilic batch cultures, more than 90% of the

xylose was consumed (Fig. 4). Acetate was always produced,

regardless of the pretreatment applied, with a final concen-

tration ranging between 10 and 21 mM. In dark fermentation,

the acetate pathway yields the highest amount of 3.3 mol H2

mol�1 xylose (Eq. (1)). However, the H2 partial pressure may

cause a shift of the dark fermentation pathway to butyrate

production [48],which yieldsonly 1.67molH2mol�1 xylose (Eq.

(2)). This seems tobe also thecase in this study, as butyratewas

found in all the batch cultures (Fig. 4) with a concentration

proportional to theH2 yield (Fig. 5a). TheH2 yield obtained from

the mesophilic batch cultures with the acidic shock-, alkaline

shock-, and heat shock-pretreated activated sludge is, how-

ever, toohigh tobeentirelyassociated to thebutyratepathway,

which stoichiometrically yields 2 mol H2 mol�1 butyrate (Eq.

(2)). This suggests that H2 was produced through both the ac-

etate and the butyrate pathway (Table 3).

At 37 �C, ethanol was produced in all cultures regardless of

the pretreatment, with a maximum of 16 mM in the batch

cultures with the heat shock-pretreated activated sludge

(Fig. 4). Solventogenesis can occur as a detoxification process

in case of low pH (<5) and accumulation of undissociated

volatile fatty acids [49]. In fact, regardless of the pretreatment

applied, the pH of the batch medium decreased to below 5.0

after 24e48 h incubation (Fig. 4). According to the DG0 values

[37], the most thermodynamically favourable pathway for

biological ethanol production (Eq. (8),DG0¼�286.7 kJ) does not

involve directly H2, but it decreases the amount of substrate

(e.g. xylose) available for H2 production:

C5H10O5 / 1.67 CH3CH2OH þ 1.67 CO2 (8)

The low pH was likely associated to lactate production. In

fact, the highest lactate concentration of 14 and 10 mM was

https://doi.org/10.1016/j.ijhydene.2018.03.117
https://doi.org/10.1016/j.ijhydene.2018.03.117


Fig. 2 e Hierarchical clustering of active microbial communities from untreated (U) and pretreated (AS, acidic shock; BS,

alkaline shock; HS, heat shock; FT, freezing and thawing) inoculum before (0 h) or after mesophilic (37 �C) or thermophilic

(55 �C) dark fermentation of xylose. The values reported are the approximately unbiased (au) p-value, bootstrap probability

(bp), and cluster label (edge #). Clusters with au >95% are indicated in the rectangles. The analysis was conducted on the

average relative abundance of three replicate samples.
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obtained in the batch cultures with the untreated and alkaline

shock-pretreated activated sludge, respectively (Fig. 4),

resulting in the lowest observed pH of 4.0. Chaganti et al. [23]

also reported lactate production from glucose at 37 �C when

using untreated and alkaline shock-pretreated (pH 11, 24 h)

anaerobic sludge as inoculum. Similarly to ethanol, the most

common lactate-yielding biological pathway is independent

from H2 production or consumption (Eq. (9), DG0 ¼ �56.2 kJ),

but it decreases the substrate available for H2 production:

C5H10O5 / 1.67 CH3CHOHCOOH (9)

In all the mesophilic batch cultures, the H2 yield estimated

from the volatile fatty acids produced by dark fermentation of

xylose (according to Eqs. (1)e(4)) exceeds the measured H2

yield (Table 3). This indicates that not all the acetate was

produced through the acetate fermentation pathway (Eq. (1)),

but also through non-hydrogenic or even H2 consuming

pathways. Homoacetogenesis (Eq. (4)) is one of the most

common acetogenic pathways lowering the net H2 production

in dark fermentation [37]. Homoacetogenesis likely occurred

in the mesophilic batch cultures regardless of the pretreat-

ment applied, and was estimated to produce 20e35% of the
total amount of acetate (0.04e0.08 mol acetate mol�1

xyloseconsumed) based on stoichiometric calculations (Table 3).

Active microbial communities after batch culture at 37 �C
Cultivation at 37 �C resulted in a lower diversity of the active

microbial community from pretreated than untreated acti-

vated sludge, according to the diversity indexes (Table 2).

Methane was not detected in the mesophilic batch cultures,

including the untreated control, suggesting the absence or

inactivity of methanogenic archaea. In fact, the relative

abundance of active archaea was <1% in all the batch cultures.

Similarly, Yin et al. [24] and Chang et al. [22] did not detect any

methane in theirmesophilic batch cultureswith the pretreated

and untreated activated sludge. However, Ren et al. [26] re-

ported methanogenic activity in mesophilic batch cultures

with alkaline shock-pretreated (pH 11, 24 h) activated sludge.

Based on the data of this study, mesophilic H2 production

correlated reversely with the diversity of the active microbial

community (Fig. 5b). All mesophilic batch cultures with pre-

treated activated sludge were dominated by microorganisms

belonging to the phylum Firmicutes, present with a relative

abundance of 76e98% (Fig. S1). Yin and Wang [50] pretreated

anaerobically digested sewage sludge by gamma irradiation,
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Table 1 e Association of a representative 16S rRNA gene sequence of the most abundant 12 microbial families obtained in
this study (Fig. 1) to those collected in the GenBank.

Familya Genus and speciesb Accession
number

Matching
sequencec

Similarity (%)d

Clostridiaceae Clostridium sp. HF566199 458e749 99

Lactobacillaceae Lactobacillus mucosae MF425117 490e781 99

Peptostreptococcaceae Romboutsia ilealis LN555523 2,071,187e2,071,477 99

Thermoanaerobacterales Family III Thermoanaerobacterium

thermosaccharolyticum

MF405082 414e705 99

Moraxellaceae Acinetobacter sp. KY818302 465e756 99

Comamonadaceae Acidovorax sp. LC279183 425e716 99

Veillonellaceaee Megamonas sp. LT628480 522e812 99

Acidimicrobiales Incertae Sedis Candidatus Microthrix parvicella KM052469 91e383 99

Rhodocyclaceaef Dechloromonas sp. KY029047 486e777 99

Myxococcales unclassifiedg e e e e

Aeromonadaceae Aeromonas sp. MF461171 478e769 100

Chitinophagaceae Terrimonas arctica NR_134213 454e745 99

a The families refer to Fig. 1.
b Closest cultured species in GenBank.
c Position (in bp) in which the sequence overlaps the reference sequence.
d Percentage of identical nucleotide pairs between the 16S rRNA gene sequence and the closest cultured species in GenBank.
e Classified as Selenomonadaceae in the GenBank.
f Classified as Azonexaceae in the GenBank.
g No match at family, genus and species level.
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obtaining >99% of Firmicutes in the microbial community after

36 h of mesophilic (33 �C) batch incubation with glucose

(94.4 mM) as the substrate for dark fermentation. This suggests

that Firmicutes are commonly found with high relative abun-

dance among the mesophilic dark fermentative microbial com-

munities, regardless of the pretreatment applied to the

inoculum.

The family of Clostridiaceae was found regardless of the

pretreatment applied, and even in the batch cultures with

the untreated activated sludge (Fig. 1). The relative abun-

dance of Clostridiaceae had a positive correlation with both

the H2 and butyrate yield (Fig. 5a). In fact, the acidic shock,

which was the most effective pretreatment in terms of H2

yield (Fig. 3), promoted a high relative abundance of Clos-

tridiaceae, which accounted for 71e75% of the active micro-

bial community after 144 h incubation at 37 �C (Fig. 1).

Clostridium sp. have been widely reported to dominate

mesophilic dark fermentative microbial communities, both

in batch systems and continuous bioreactors [30,51,52]. Liu

et al. [25] applied similar pretreatments to those applied in

this study to an intertidal marine sediment to perform

mesophilic (37 �C) dark fermentation of glucose. They re-

ported similar results to this study in terms of pretreatment

efficacy and dominant microbial communities. However,

their DNA-level analysis, performed by PCR-DGGE, only

allowed the detection of the dominant species present in the

system, whereas the RNA-level approach used in this study

describes more accurately the active microbial communities

involved in the dark fermentative process. It is important to

note, however, that despite being the prevalent H2 produc-

ing microorganisms in mesophilic batch cultures, several

Clostridium sp. are known homoacetogenic microorganisms

able to switch their metabolism from H2 fermentation to

homoacetogenesis [37,53].

Lactate producers of the Lactobacillaceae family were the

main competitors to H2 producing microorganisms in all
mesophilic batch cultures of this study (Fig. 1). Despite the

relatively high H2 yield, these microorganisms were found

even in the batch cultures with the acidic shock-pretreated

activated sludge, with a relative abundance of 8e17%. Kim

et al. [54] sequenced DNA from the microbial community

developed uponmesophilic (35 �C) dark fermentation of acidic

shock-pretreated (pH 3, 12 h) food waste, without an external

inoculum. They reported a relative abundance of 70% of

Clostridium and 20% Lactobacillus, similar to the relative

abundances obtained in this study. Furthermore, Kim et al.

[54] reported a higher relative abundance of Clostridium (up to

90%) and a higher H2 yield after performing an acidic shock at

pH 2 and 1 for 12 h, suggesting that the pretreatment condi-

tions used in this study can be further optimised to increase

the H2 yield. In contrast, an acidic shock (pH 3, 24 h) of acti-

vated sludge has been also reported to inhibit H2 producing

microorganisms and favour the establishment of lactic acid

producing bacteria [26]. In the batch cultures with the alkaline

shock-pretreated activated sludge, the low final pH of 4.0

(Fig. 4) likely inhibited H2 producers and favoured lactic acid

bacteria, resulting in the highest relative abundance of Lacto-

bacillaceae (53e61% of the relative abundance), which pro-

duced lactate at the expenses of H2. Lactic acid bacteria may

also inhibit Clostridium by excreting toxins [12].

Freezing and thawing resulted in a high relative abundance

ofProteobacteria (Fig. S1), suchasVeillonellaceae (36e46%),which

were foundalso in thebatchcultureswith theuntreatedsludge

(Fig. 1). The representative sequence of Veillonellaceaematched

the genus Megamonas (Table 1), which has been previously re-

ported to produce propionate and acetate from the fermenta-

tionofglucose [55]. Bothpropionate (8mM)andacetate (10mM)

were indeed detected in the batch cultures with the freezing

and thawing-pretreated activated sludge (Fig. 4). Both propio-

nate production and the low relative abundance (12%) of Clos-

tridium were likely the main causes for the low H2 yield

obtained in these batch cultures (Fig. 1).
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Table 2 e Diversity of the active microbial community (cDNA) after various pretreatments, and after incubation at 37 or
55 �C,measured by the Shannon, Simpson and Pielou's J′ index. The number in parenthesis is the standard deviation of the
triplicate batch cultures.

Samplea Pretreatment Shannon diversity Simpson diversity J0 Evenness

0 h (inoculum) Untreated 3.10 (±0.06) 0.92 (±0.01) 0.73 (±0.02)
Acidic shock 3.08 (±0.02) 0.92 (±0.00) 0.72 (±0.01)
Alkaline shock 1.56 (±0.07) 0.66 (±0.02) 0.41 (±0.01)
Heat shock 2.86 (±0.02) 0.88 (±0.00) 0.66 (±0.01)
Freezing and thawing 3.36 (±0.03) 0.94 (±0.00) 0.78 (±0.01)

Batch culture 37 �C Untreated 2.81 (±0.07) 0.90 (±0.01) 0.66 (±0.02)
Acidic shock 1.01 (±0.10) 0.45 (±0.03) 0.30 (±0.03)
Alkaline shock 1.21 (±0.21) 0.56 (±0.06) 0.35 (±0.04)
Heat shock 1.30 (±0.07) 0.64 (±0.02) 0.46 (±0.04)
Freezing and thawing 2.02 (±0.11) 0.77 (±0.03) 0.50 (±0.02)

Batch culture 55 �C Untreated 1.12 (±0.08) 0.56 (±0.06) 0.30 (±0.02)
Acidic shock 1.14 (±0.11) 0.58 (±0.06) 0.38 (±0.02)
Alkaline shock 1.10 (±0.20) 0.56 (±0.08) 0.34 (±0.02)
Heat shock 0.68 (±0.53) 0.31 (±0.29) 0.23 (±0.16)
Freezing and thawing 1.01 (0.08) 0.54 (±0.06) 0.30 (±0.03)

a All samples were subsampled to the size of the smallest sample (8654 sequences).
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Effect of pretreatments on thermophilic (55 �C) dark
fermentation

Effect of pretreatments on H2 yield at 55 �C
At 55 �C, the alkaline shock resulted in the highest yield of

1.2 mol H2 mol�1 xyloseadded, two times higher than the

freezing and thawing pretreatment (Fig. 3), which resulted in
Fig. 3 e H2 yield from mesophilic (37 �C) and thermophilic

(55 �C) dark fermentation of xylose by the untreated or

pretreated activated sludge. The results shown are the

average of three independent batch cultures. The error bars

represent the standard deviation of the triplicate batch

cultures.
similar H2 yield as the untreated activated sludge (0.5e0.6 mol

H2 mol�1 xyloseadded). Both the acidic shock and heat shock

resulted in the lowest H2 yield of 0.2e0.3 mol H2 mol�1 xylo-

seadded. Interestingly, H2 was continuously produced for 96 h

in the thermophilic batch cultures with the alkaline shock-

pretreated activated sludge, whereas it ceased in the first

24e48 h in the other batch cultures. To our knowledge, only

two studies have been performed to compare the effect of

pretreatments on thermophilic dark fermentation [27,28], and

none of them reported alkaline shock as the most efficient

pretreatment method. However, in the previous studies,

granular anaerobic sludge [28] or anaerobic digester sludge

from a palm oil mill plant [27] was used as inoculum, whereas

activated sludge treating municipal wastewater was used in

this study. O-Thong et al. [27] reported a higher thermophilic

(60 �C) H2 yield from sucrose (1.96 mol H2 mol�1 hexose) with

loading shock-pretreated (2 days incubation with 83.25 gCOD

L�1 sucrose) than acidic shock-, alkaline shock-, chemical

treatment-, and heat shock-pretreated anaerobic sludge. Luo

et al. [28] obtained a higher thermophilic (60 �C) H2 yield from

cassava stillage by untreated than pretreated anaerobic

granular sludge. This suggests that, depending on the origin of

the inoculum, thermophilic conditions can be sufficient to

favour H2 producing bacteria over competitors. Luo et al. [28]

also claimed that the effect of pretreatments was not signifi-

cant in the long term, as the H2 yield was similar after 28 days

of continuous dark fermentation of the cassava stillage

regardless the pretreatment applied.

Effect of pretreatments on the xylose oxidation pathways at
55 �C
Thermophilic batch cultures with the untreated and alkaline

shock- or freezing and thawing-pretreated activated sludge

resulted in a higher (>90%) xylose consumption than batch

cultures with the acidic shock- (75%) and heat shock- (66%)

pretreated activated sludge (Fig. 4). Interestingly, the alkaline

shock was the only pretreatment which suppressed lactate

production, asmost of the xylose was converted to acetate and

butyrateup toafinal concentrationof6 and13mM, respectively
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Fig. 4 e Xylose, metabolite concentration and pH profiles frommesophilic (37 �C) and thermophilic (55 �C) dark fermentation

of xylose by the untreated or pretreated activated sludge. The results shown are the average of three independent batch

cultures. The error bars represent the standard deviation of the triplicate batch cultures.
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(Fig. 4). This was likely favoured by the pH decrease at a lower

rate than in the other batch cultures, resulting in the highest

final pH (4.4),which couldhave favouredH2production through

the acetate and butyrate pathways.

In all the thermophilic batch cultures, with the exception of

the untreated activated sludge, the measured H2 yield was
higher than the yield estimated from volatile fatty acids pro-

duction (Table 3). This suggests a minor (or even negligible)

contribution of homoacetogenesis on the total acetate pro-

duction in the thermophilic batch cultures of pretreated acti-

vated sludge (Table 3), as well as the occurrence of unexpected

H2producingpathways.This is particularly evident in thebatch
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Fig. 5 e Correlation between the relative abundance of active Clostridiaceae and H2 or butyrate yield (a) and between the

diversity index (Simpson) and the H2 yield (b) after mesophilic (37 �C) dark fermentation of xylose by the untreated (U) and

pretreated (AS, acidic shock; BS, alkaline shock; HS, heat shock; FT, freezing and thawing) inoculum.
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cultures of alkaline shock-pretreated activated sludge, in

which the measured yield of 1.3 mol H2 mol�1

xyloseconsumed was 30% higher than the estimated yield of

0.8molH2mol�1xyloseconsumed (Table3).H2overproductionhas

been previously reported in thermophilic dark fermentation

[56], and attributed to an unusual H2 production pathway, such

as acetate oxidation. However, in the batch cultures with

alkaline-shock pretreated activated sludge, the acetate con-

centration decreased from 9 to 6 mM only in the last 48 h of

incubation (Fig. 4), while the cumulative H2 yield remained

stableduring that time (Fig. 3), suggesting thatacetateoxidation

did not occur. Also Zheng et al. [57] obtained an average of 14%

H2 overproduction from glucose by anaerobic sludge and

excluded the acetate oxidation pathway by use of an isotope

feeding assay with 13C-labeled acetate. Zheng et al. [57]

concluded that an unknown H2 producing metabolic pathway

was likely taking place in the initial stages, requiring further

investigation.

In the thermophilic batch cultures with the freezing and

thawing-pretreated inoculum, lactate (8 mM) and ethanol

(10 mM) were produced together with acetate (12 mM) and

butyrate (8 mM), suggesting that none of the metabolic path-

ways was prevailing over the other. In the batch cultures with

untreated activated sludge, xylose was initially fermented to

acetate and butyrate, which both reached a concentration of

5e6 mM after 24 h incubation. Then, a switch from the buty-

rate to the lactate pathway occurred, and lactate was pro-

duced together with acetate in the subsequent 48 h, resulting

in a final concentration of 15mM lactate and acetate (Fig. 4). In

the batch cultures with the acidic shock- and heat shock-

pretreated sludge, lactate was the main metabolite, with a

concentration of 8 and 9 mM, respectively (Fig. 4), resulting in

the lowest H2 yield (Fig. 3). Lactate production resulted in a fast

pH decrease: the final pH was 4.2e4.3 in the batch cultures

with the acidic shock-, heat shock- and freezing and thawing-

pretreated activated sludge, and even lower (3.9) in the batch

cultures with the untreated activated sludge, in which lactate

production was the highest (Fig. 4). Such a low pH likely

inhibited thermophilic H2 production [58].

Active microbial communities after batch culture at 55 �C
After incubation at 55 �C, regardless of the pretreatment

applied, >98% of the active microbial community was
composed ofmicroorganisms of the phylum Firmicutes (Fig. S1).

Ingeneral, the thermophilic activemicrobial communitieswere

less diverse than the mesophilic ones (Table 2). This is in

agreement with Qiu et al. [59] who reported a lower diversity of

themicrobial community when performing dark fermentation

of xylose at 55 than 37 �C. The active microbial communities

from thermophilic batch cultureswith the untreated and acidic

shock-, alkaline shock-, and freezing and thawing-pretreated

activated sludge, were all similar, and dominated by the fam-

ilies of Clostridiaceae and Peptostreptococcaceae (Fig. 1).

A different active microbial community developed in the

thermophilic batch culture with the heat shock-pretreated

activated sludge (Fig. 1), in which a family of Thermoanaer-

obacterales (Fig. 1), closely related to T. thermosaccharolyticum

(Table 1), was prevailing with a relative abundance up to 94%.

Similarly, O-Thong et al. (2009) compared various pre-

treatments on thermophilic (60 �C) dark fermentation of su-

crose in batch experiments, and reported the predominance of

T. thermosaccharolyticum from heat shock-pretreated anaerobic

sludge, whereas Clostridium became dominant fromboth acidic

and alkaline shock-pretreated anaerobic sludge. The family of

Clostridiaceae includes thermophilic species, such as C. ther-

mosaccharolyticum [60] and C. thermopalmarium [61], able to

convert sugars to H2, acetate and butyrate. T. thermosacchar-

olyticum effectively produces H2 from xylose at 55e60 �C and in

the pH range 5.5e7.0 [62]. In the batch cultures with the heat

shock-pretreated activated sludge of this study, T. thermo-

saccharolyticum was thus likely inhibited by the low pH, which

decreased to <4.5 within 48 h (Fig. 4), resulting in a low H2 yield

(Fig. 3) and poor xylose utilization (Fig. 4).

Bacillales, found in the thermophilic batch cultureswith the

heat shock- (3e30%) and acidic shock- (3e11%) pretreated

activated sludge (Fig. 1) might be responsible for lactate pro-

duction. In fact, the order of Bacillales includes lactic acid

producers such as Sporolactobacillus, a spore-forming acido-

philic microorganism previously reported in thermophilic

dark fermentation of sugars [63].

Practical implications

The start-up strategy applied, including selection and pre-

treatment of the inoculum, influences the H2 production even

for the long-term operation of continuous dark fermentative
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bioreactors [64]. The results of this study indicate that an acidic

shock may help in limiting, but not fully eliminating, lactate

production in mesophilic dark fermentation. At 55 �C, lactate
productionwas suppressed by an alkaline shock,which is thus

a suitable pretreatment for starting-up thermophilic H2 pro-

ducing bioreactors. Inoculumpretreatment appears necessary

for mesophilic dark fermentation, whereas in thermophilic

bioreactors less invasive strategies, such as finding a suitable

pH, organic loading rate (OLR) and hydraulic retention time

(HRT) canbeused to selectH2producingmicroorganismsat the

expense of competing microorganisms [65]. Optimal pH, OLR

andHRTvalues are, nevertheless, case-specific as they depend

on the microbial community present in the inoculum.

After selection of the pretreatment method, the H2 yield

can be further improved by optimising the pretreatment

conditions (e.g. pH, temperature, and exposure time) [54,66].

In addition, it should be noted that, even if a low H2 yield is

obtained in a batch culture, an efficient H2 producing micro-

bial community may develop in the long term. For example,

Dessı̀ et al. [30] reported a 320% H2 yield increase when per-

forming four consecutive thermophilic (55 �C) batch cultures

of heat shock-pretreated (90 �C, 15 min) activated sludge due

to a metabolic shift from the ethanol to the butyrate pathway.

Therefore, to assess the potential of a pretreated inoculum for

dark fermentation, additional long-term experiments need to

accompany the initial screening assays.
Conclusions

A RNA-level approach was used for the first time to evaluate

the impact of four different inoculum pretreatment methods

on mesophilic and thermophilic dark fermentation of xylose.

H2 production at 37 �C depended on the relative abundance of

Clostridiaceae in themicrobial community, and an acidic shock

favoured their establishment. At 55 �C, an alkaline shock was

the most effective pretreatment method for favouring the

establishment of H2 producing microorganisms at the

expense of competitors. This study supports the selection of

start-up strategies in order to obtain a high and stable H2 yield

in continuous dark fermentative bioreactors.
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Effects of freezeethaw cycles on anaerobic microbial
processes in an Arctic intertidal mud flat. ISME J
2010;4:585e94.

[18] Rafieenia R, Lavagnolo MC, Pivato A. Pre-treatment
technologies for dark fermentative hydrogen production:
current advances and future directions. Waste Manag 2017.
https://doi.org/10.1016/j.wasman.2017.05.024.

[19] Misturini Rossi D, Berne da Costa J, Aquino de Souza E, Ruaro
Peralba M do C, Samios D, Z�achia Ayub MA. Comparison of
different pretreatment methods for hydrogen production
using environmental microbial consortia on residual glycerol
from biodiesel. Int J Hydrogen Energy 2011;36:4814e9.

[20] Guo L, Lu M, Li Q, Zhang J, She Z. A comparison of different
pretreatments on hydrogen fermentation from waste sludge
by fluorescence excitation-emission matrix with regional
integration analysis. Int J Hydrogen Energy 2015;40:197e208.

[21] Jeong D-Y, Cho S-K, Shin H-S, Jung K-W. Application of an
electric field for pretreatment of a seeding source for dark
fermentative hydrogen production. Bioresour Technol
2013;139:393e6.

[22] Chang S, Li J-Z, Liu F. Evaluation of different pretreatment
methods for preparing hydrogen-producing seed inocula
from waste activated sludge. Renew Energy 2011;36:1517e22.

[23] Chaganti SR, Kim D-H, Lalman JA. Dark fermentative
hydrogen production by mixed anaerobic cultures: effect of
inoculum treatment methods on hydrogen yield. Renew
Energy 2012;48:117e21.

[24] Yin Y, Hu J, Wang J. Enriching hydrogen-producing bacteria
from digested sludge by different pretreatment methods. Int
J Hydrogen Energy 2014;39:13550e6.

[25] Liu H, Wang G, Zhu D, Pan G. Enrichment of the hydrogen-
producing microbial community from marine intertidal
sludge by different pretreatment methods. Int J Hydrogen
Energy 2009;34:9696e701.

[26] Ren N, Guo W-Q, Wang X-J, Xiang W-S, Liu B-F, Wang X-Z,
et al. Effects of different pretreatment methods on
fermentation types and dominant bacteria for hydrogen
production. Int J Hydrogen Energy 2008;33:4318e24.

[27] O-Thong S, Prasertsan P, Birkeland N. Evaluation of methods
for preparing hydrogen-producing seed inocula under
thermophilic condition by process performance andmicrobial
community analysis. Bioresour Technol 2009;100:909e18.

[28] Luo G, Xie L, Zou Z, Wang W, Zhou Q. Evaluation of
pretreatment methods on mixed inoculum for both batch
and continuous thermophilic biohydrogen production from
cassava stillage. Bioresour Technol 2010;101:959e64.

[29] De Vrieze J, Regueiro L, Props R, Vilchez-Vargas R, J�auregui R,
Pieper DH, et al. Presence does not imply activity: DNA and
RNA patterns differ in response to salt perturbation in
anaerobic digestion. Biotechnol Biofuels 2016;9:244.

[30] Dessı̀ P, Lakaniemi A-M, Lens PNL. Biohydrogen production
from xylose by fresh and digested activated sludge at 37, 55
and 70 �C. Water Res 2017;115:120e9.

[31] Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. Rapid
method for coextraction of DNA and RNA from natural
environments for analysis of ribosomal DNA- and rRNA-
based microbial community composition. Appl Environ
Microbiol 2000;66:5488e91.

[32] Dessı̀ P, Porca E, Waters NR, Lakaniemi A-M, Collins G,
Lens PNL. Thermophilic versus mesophilic dark
fermentation in xylose-fed fluidised bed reactors:
biohydrogen production and active microbial community.
Int J Hydrogen Energy 2018;43:5473e85.

[33] Suzuki R, Shimodaira H. Pvclust: an R package for assessing
the uncertainty in hierarchical clustering. Bioinformatics
2006;22:1540e2.

[34] Owen WF, Stuckey DC, Healy Jr JB, Young LY, McCarty PL.
Bioassay for monitoring biochemical methane potential and
anaerobic toxicity. Water Res 1979;13:485e92.

[35] Logan BE, Oh S-E, Kim IS, Van Ginkel S. Biological hydrogen
production measured in batch anaerobic respirometers.
Environ Sci Technol 2002;36:2530e5.

https://doi.org/10.1016/j.ijhydene.2018.03.117
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref1
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref1
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref1
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref1
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref1
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref2
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref2
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref2
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref2
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref3
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref3
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref3
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref3
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref4
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref4
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref4
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref4
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref4
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref5
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref5
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref5
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref5
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref5
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref5
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref5
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref5
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref6
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref6
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref7
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref7
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref7
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref8
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref8
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref8
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref8
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref9
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref9
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref9
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref9
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref10
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref10
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref10
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref10
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref11
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref11
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref11
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref11
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref11
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref11
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref11
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref12
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref12
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref12
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref12
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref13
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref13
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref13
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref13
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref13
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref14
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref14
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref14
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref15
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref15
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref15
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref15
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref15
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref16
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref16
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref16
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref16
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref16
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref17
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref17
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref17
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref17
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref17
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref17
https://doi.org/10.1016/j.wasman.2017.05.024
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref19
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref19
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref19
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref19
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref19
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref19
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref19
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref20
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref20
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref20
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref20
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref20
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref21
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref21
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref21
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref21
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref21
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref22
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref22
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref22
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref22
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref23
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref23
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref23
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref23
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref23
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref24
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref24
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref24
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref24
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref25
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref25
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref25
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref25
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref25
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref26
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref26
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref26
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref26
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref26
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref27
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref27
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref27
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref27
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref27
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref28
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref28
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref28
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref28
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref28
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref29
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref29
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref29
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref29
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref29
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref30
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref30
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref30
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref30
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref30
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref31
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref31
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref31
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref31
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref31
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref31
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref32
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref32
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref32
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref32
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref32
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref32
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref33
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref33
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref33
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref33
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref34
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref34
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref34
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref34
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref35
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref35
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref35
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref35
https://doi.org/10.1016/j.ijhydene.2018.03.117
https://doi.org/10.1016/j.ijhydene.2018.03.117


i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 3 ( 2 0 1 8 ) 9 2 3 3e9 2 4 5 9245
[36] APHA. Standard methods for the examination of water and
wastewater. 20th ed. Washington DC: American Public
Health Association/American Water Works Association/
Water Environment Federation; 1998.

[37] Saady NMC. Homoacetogenesis during hydrogen production
by mixed cultures dark fermentation: unresolved challenge.
Int J Hydrogen Energy 2013;38:13172e91.

[38] Bakonyi P, Buitr�on G, Valdez-Vazquez I, Nemest�othy N,
B�elafi- Bak�o K. A novel gas separation integrated membrane
bioreactor to evaluate the impact of self-generated biogas
recycling on continuous hydrogen fermentation. Appl Energy
2017;190:813e23.

[39] Box GEP, Hunter WG, Hunter JS. Statistics for experimenters:
an introduction to design, data analysis, and model building.
John Wiley and sons; 1978.

[40] Willems A, De Ley J, Gillis M, Kersters K. Comamonadaceae, a
new family encompassing the Acidovorans rRNA complex,
including Variovorax paradoxus gen. nov., comb. nov., for
Alcaligenes paradoxus (Davis 1969). Int J Syst Evol Microbiol
1991;41:445e50.

[41] Bouvet PJM, Grimont PAD. Taxonomy of the genus
Acinetobacter with the recognition of Acinetobacter baumannii
sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter
johnsonii sp. nov., and Acinetobacter junii sp. nov. and
emended descriptions of Acinetobacter calcoaceticus and
Acinetobacter lwoffii. Int J Syst Bacteriol 1986;36:228e40.

[42] Alperi A, Martı́nez-Murcia AJ, Ko W-C, Monera A,
Saavedra MJ, Figueras MJ. Aeromonas taiwanensis sp. nov. and
Aeromonas sanarellii sp. nov., clinical species from Taiwan.
Int J Syst Evol Microbiol 2010;60:2048e55.

[43] Cheong D-Y, Hansen CL. Bacterial stress enrichment
enhances anaerobic hydrogen production in cattle manure
sludge. Appl Microbiol Biotechnol 2006;72:635e43.

[44] Dong L, Zhenhong Y, Yongming S, Longlong M. Evaluation of
pretreatment methods on harvesting hydrogen producing
seeds from anaerobic digested organic fraction of municipal
solid waste (OFMSW). Int J Hydrogen Energy 2010;35:8234e40.

[45] Wang J, Wan W. Comparison of different pretreatment
methods for enriching hydrogen-producing bacteria from
digested sludge. Int J Hydrogen Energy 2008;33:2934e41.

[46] Pendyala B, Chaganti SR, Lalman JA, Shanmugam SR,
Heath DD, Lau PCK. Pretreating mixed anaerobic
communities from different sources: correlating the
hydrogen yield with hydrogenase activity and microbial
diversity. Int J Hydrogen Energy 2012;37:12175e86.

[47] Song Z, Dai Y, Fan Q, Li X, Fan Y, Hou H. Effects of
pretreatment method of natural bacteria source on microbial
community and bio-hydrogen production by dark
fermentation. Int J Hydrogen Energy 2012;37:5631e6.

[48] Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA,
Domı́guez-Espinosa R. Production of bioenergy and
biochemicals from industrial and agricultural wastewater.
Trends Biotechnol 2004;22:477e85.

[49] Van Ginkel S, Logan BE. Inhibition of Biohydrogen production
by undissociated acetic and butyric acids. Environ Sci
Technol 2005;39:9351e6.

[50] Yin Y, Wang J. Changes in microbial community during
biohydrogen production using gamma irradiated sludge as
inoculum. Bioresour Technol 2016;200:217e22.

[51] Si B, Liu Z, Zhang Y, Li J, Xing X-H, Li B, et al. Effect of reaction
mode on biohydrogen production and its microbial diversity.
Int J Hydrogen Energy 2015;40:3191e200.

[52] Sivagurunathan P, Kumar G, Park J-H, Park J-H, Park H-D,
Yoon J-J, et al. Feasibility of enriched mixed cultures
obtained by repeated batch transfer in continuous hydrogen
fermentation. Int J Hydrogen Energy 2016;41:4393e403.

[53] Ryan P, Forbes C, Colleran E. Investigation of the diversity of
homoacetogenic bacteria in mesophilic and thermophilic
anaerobic sludges using the formyltetrahydrofolate
synthetase gene. Water Sci Technol 2008;57:675e80.

[54] Kim D-H, Jang S, Yun Y-M, Lee M-K, Moon C, Kang W-S, et al.
Effect of acid-pretreatment on hydrogen fermentation of
food waste: microbial community analysis by next
generation sequencing. Int J Hydrogen Energy
2014;39:16302e9.

[55] Chevrot R, Carlotti A, Sopena V, Marchand P, Rosenfeld E.
Megamonas rupellensis sp. nov., an anaerobe isolated from the
caecum of a duck. Int J Syst Evol Microbiol 2008;58:2921e4.

[56] Kotsopoulos TA, Zeng RJ, Angelidaki I. Biohydrogen
production in granular up-flow anaerobic sludge blanket
(UASB) reactors with mixed cultures under hyper-
thermophilic temperature (70�C). Biotechnol Bioeng
2006;94:296e302.

[57] Zheng H, Zeng RJ, O'Sullivan C, Clarke WP. Critical analysis of
hydrogen production from mixed culture fermentation
under thermophilic condition (60 �C). Appl Microbiol
Biotechnol 2016;100:5165e76.

[58] Zhang T, Liu H, Fang HHP. Biohydrogen production from
starch in wastewater under thermophilic condition. J
Environ Manag 2003;69:149e56.

[59] Qiu C, Zheng Y, Zheng J, Liu Y, Xie C, Sun L. Mesophilic and
thermophilic biohydrogen production from xylose at various
initial pH and substrate concentrations with microflora
community analysis. Energy Fuels 2016;30:1013e9.

[60] Islam S, Zhang C, Sui K, Guo C, Liu C. Coproduction of
hydrogen and volatile fatty acid via thermophilic
fermentation of sweet sorghum stalk from co-culture of
Clostridium thermocellum and Clostridium
thermosaccharolyticum. Int J Hydrogen Energy 2016;42:830e7.

[61] Lawson Anani Soh A, Ralambotiana H, Ollivier B, Prensier G,
Tine E, Garcia J-L. Clostridium thermopalmarium sp. nov., a
moderately thermophilic butyrate-producing bacterium
isolated from palm wine in Senegal. Syst Appl Microbiol
1991;14:135e9.

[62] Ren N, Cao G, Wang A, Lee D, Guo W, Zhu Y. Dark
fermentation of xylose and glucose mix using isolated
Thermoanaerobacterium thermosaccharolyticum W16. Int J
Hydrogen Energy 2008;33:6124e32.

[63] Abreu AA, Karakashev D, Angelidaki I, Sousa DZ, Alves MM.
Biohydrogen production from arabinose and glucose using
extreme thermophilic anaerobic mixed cultures. Biotechnol
Biofuels 2012;5:6.

[64] Bakonyi P, Nemest�othy N, Simon V, B�elafi-Bak�o K. Review on
the start-up experiences of continuous fermentative
hydrogen producing bioreactors. Renew Sustain Energy Rev
2014;40:806e13.

[65] Sivagurunathan P, Kumar G, Bakonyi P, Kim SH, Kobayashi T,
Xu KQ, et al. A critical review on issues and overcoming
strategies for the enhancement of dark fermentative
hydrogen production in continuous systems. Int J Hydrogen
Energy 2016;41:3820e36.

[66] Bakonyi P, Borza B, Orlovits K, Simon V, Nemest�othy N,
B�elafi-Bak�o K. Fermentative hydrogen production by
conventionally and unconventionally heat pretreated seed
cultures: a comparative assessment. Int J Hydrogen Energy
2014;39:5589e96.

http://refhub.elsevier.com/S0360-3199(18)30907-8/sref36
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref36
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref36
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref36
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref37
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref37
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref37
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref37
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref38
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref38
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref38
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref38
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref38
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref38
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref38
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref38
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref38
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref38
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref39
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref39
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref39
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref40
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref40
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref40
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref40
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref40
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref40
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref41
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref41
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref41
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref41
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref41
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref41
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref41
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref42
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref42
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref42
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref42
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref42
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref43
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref43
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref43
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref43
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref44
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref44
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref44
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref44
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref44
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref45
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref45
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref45
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref45
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref46
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref46
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref46
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref46
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref46
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref46
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref47
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref47
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref47
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref47
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref47
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref48
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref48
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref48
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref48
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref48
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref49
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref49
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref49
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref49
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref50
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref50
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref50
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref50
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref51
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref51
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref51
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref51
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref52
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref52
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref52
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref52
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref52
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref53
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref53
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref53
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref53
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref53
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref54
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref54
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref54
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref54
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref54
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref54
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref55
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref55
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref55
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref55
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref56
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref56
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref56
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref56
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref56
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref56
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref56
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref57
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref57
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref57
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref57
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref57
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref57
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref58
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref58
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref58
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref58
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref59
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref59
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref59
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref59
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref59
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref60
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref60
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref60
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref60
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref60
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref60
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref61
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref61
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref61
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref61
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref61
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref61
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref62
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref62
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref62
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref62
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref62
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref63
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref63
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref63
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref63
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref64
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref64
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref64
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref64
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref64
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref64
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref64
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref64
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref65
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref65
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref65
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref65
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref65
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref65
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref66
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref66
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref66
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref66
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref66
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref66
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref66
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref66
http://refhub.elsevier.com/S0360-3199(18)30907-8/sref66
https://doi.org/10.1016/j.ijhydene.2018.03.117
https://doi.org/10.1016/j.ijhydene.2018.03.117


 

Figure S1. Relative abundance of the active phyla resulting from MiSeq sequencing of the partial 

16S rRNA on microbiological samples collected before and after batch cultures with the untreated 

and pretreated activated sludge at 37 and 55 °C. The results are reported in triplicate. “Other” refers 

to the sum of phyla with relative abundance < 1%. 



File S1. Statistical analysis (ANOVA and Tukey test) conducted at p = 0.05 to asses significant differences in 

H2 yield from xylose in mesophilic (37 °C) and thermophilic (55 °C) batch cultures of untreated or pretreated 

(acidic shock, alkaline shock, heat shock, and freezing and thawing) activated sludge. 

 
 
Batch cultures 37 °C 

Descriptives 
 

 N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean 

(p=0.05) 

Minimum Maximum Lower Bound Upper Bound 

Untreated 3 0.1100 0.04000 0.02309 0.0106 0.2094 0.07 0.15 

Acidic shock 3 0.8400 0.01000 0.00577 0.8152 0.8648 0.83 0.85 

Alkaline shock 3 0.5333 0.09074 0.05239 0.3079 0.7587 0.45 0.63 

Heat shock 3 0.5900 0.07000 0.04041 0.4161 0.7639 0.51 0.64 

Freezing and thawing 3 0.1800 0.01000 0.00577 0.1552 0.2048 0.17 0.19 

Total 15 0.4507 0.28427 0.07340 0.2932 0.6081 0.07 0.85 

 
 

ANOVA 
 
 Sum of Squares df Mean Square F Sig. 

Between Groups 1.101 4 0.275 92.195 0.000 

Within Groups 0.030 10 0.003   
Total 1.131 14    

 
 

 
Multiple Comparisons 

Dependent Variable:   H2 yield 37 °C   
Tukey HSD   

(I) Pretreat (J) Pretreat 

Mean Difference 

(I-J) Std. Error 

p-

value 

95% Confidence Interval (p=0.05) 

Lower Bound Upper Bound 

Untreated Acidic shock -0.73000* 0.04462 0.000 -0.8769 -0.5831 

Alkaline shock -0.42333* 0.04462 0.000 -0.5702 -0.2765 

Heat shock -0.48000* 0.04462 0.000 -0.6269 -0.3331 

Freezing and thawing -0.07000 0.04462 0.546 -0.2169 0.0769 



Acidic shock Untreated 0.73000* 0.04462 0.000 0.5831 0.8769 

Alkaline shock 0.30667* 0.04462 0.000 0.1598 0.4535 

Heat shock 0.25000* 0.04462 0.002 0.1031 0.3969 

Freezing and thawing 0.66000* 0.04462 0.000 0.5131 0.8069 

Alkaline 

shock 

Untreated 0.42333* 0.04462 0.000 0.2765 0.5702 

Acidic shock -0.30667* 0.04462 0.000 -0.4535 -0.1598 

Heat treatment -0.05667 0.04462 0.714 -0.2035 0.0902 

Freezing and thawing 0.35333* 0.04462 0.000 0.2065 0.5002 

Heat shock Untreated 0.48000* 0.04462 0.000 0.3331 0.6269 

Acidic shock -0.25000* 0.04462 0.002 -0.3969 -0.1031 

Alkaline shock 0.05667 0.04462 0.714 -0.0902 0.2035 

Freezing and thawing 0.41000* 0.04462 0.000 0.2631 0.5569 

Freezing and 

thawing 

Untreated 0.07000 0.04462 0.546 -0.0769 0.2169 

Acidic shock -0.66000* 0.04462 0.000 -0.8069 -0.5131 

Alkaline shock -0.35333* 0.04462 0.000 -0.5002 -0.2065 

Heat treatment -0.41000* 0.04462 0.000 -0.5569 -0.2631 

*. The mean difference is significant at the 0.05 level if p-value is < 0.05 
 
 
Tukey HSDa   

Pretreat N 

Subset for αb 

= 0.05 

1 2 3 

Untreated 3 0.1100   
Freezing and thawing 3 0.1800   
Alkaline shock 3  0.5333  
Heat shock 3  0.5900  
Acidic shock 3   0.8400 

Sig.  0.546 0.714 1.000 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 3.000. 

b. Threshold value. 

 

Acidic shock > Heat shock ~ Alkaline shock > Freezing and thawing ~ Untreated 
 

 

 



 

Batch cultures 55 °C 

 
Descriptives 

 

 N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean 

(p=0.05) 

Minimum Maximum Lower Bound Upper Bound 

Untreated 3 0.4967 0.07371 0.04256 0.3136 0.6798 0.44 0.58 

Acidic shock 3 0.2767 0.02309 0.01333 0.2193 0.3340 0.25 0.29 

Alkaline shock 3 1.2233 0.07572 0.04372 1.0352 1.4114 1.17 1.31 

Heat shock 3 0.1900 0.05000 0.02887 0.0658 0.3142 0.14 0.24 

Freezing and thawing 3 0.6133 0.07371 0.04256 0.4302 0.7964 0.53 0.67 

Total 15 0.5600 0.38092 0.09835 0.3491 0.7709 0.14 1.31 

 
 

ANOVA 
 
 Sum of Squares df Mean Square F Sig. 

Between Groups 1.992 4 0.498 126.834 0.000 

Within Groups 0.039 10 0.004   
Total 2.031 14    

 
 

Multiple Comparisons 
Dependent Variable:   H2 yield 55 °C   
Tukey HSD   

(I) Pretreat (J) Pretreat 

Mean Difference 

(I-J) Std. Error 

p-

value 

95% Confidence Interval 

Lower Bound Upper Bound 

Untreated Acidic shock 0.22000* 0.05116 0.011 0.0516 0.3884 

Alkaline shock -0.72667* 0.05116 0.000 -0.8951 -0.5583 

Heat shock 0.30667* 0.05116 0.001 0.1383 0.4751 

Freezing and thawing -0.11667 0.05116 0.228 -0.2851 0.0517 

Acidic shock Untreated -0.22000* 0.05116 0.011 -0.3884 -0.0516 

Alkaline shock -0.94667* 0.05116 0.000 -1.1151 -0.7783 

Heat shock 0.08667 0.05116 0.478 -0.0817 0.2551 

Freezing and thawing -0.33667* 0.05116 0.000 -0.5051 -0.1683 

Untreated 0.72667* 0.05116 0.000 0.5583 0.8951 



Alkaline 

shock 

Acidic shock 0.94667* 0.05116 0.000 0.7783 1.1151 

Heat shock 1.03333* 0.05116 0.000 0.8649 1.2017 

Freezing and thawing 0.61000* 0.05116 0.000 0.4416 0.7784 

Heat shock Untreated -0.30667* 0.05116 0.001 -0.4751 -0.1383 

Acidic shock -0.08667 0.05116 0.478 -0.2551 0.0817 

Alkaline shock -1.03333* 0.05116 0.000 -1.2017 -0.8649 

Freezing and thawing -0.42333* 0.05116 0.000 -0.5917 -0.2549 

Freezing and 

thawing 

Untreated 0.11667 0.05116 0.228 -0.0517 0.2851 

Acidic shock 0.33667* 0.05116 0.000 0.1683 0.5051 

Alkaline shock -0.61000* 0.05116 0.000 -0.7784 -0.4416 

Heat shock 0.42333* 0.05116 0.000 0.2549 0.5917 

*. The mean difference is significant at the 0.05 level if p-value is < 0.05 

 
 

 
Tukey HSDa   

Pretreat N 

Subset for αb 

= 0.05 

1 2 3 

Heat shock 3 0.1900   
Acidic shock 3 0.2767   
Untreted 3  0.4967  
Freezing and thawing 3  0.6133  
Alkaline shock 3   1.2233 

Sig.  0.478 0.228 1.000 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 3,000. 

b. Threshold value. 

 
Alkaline shock > Freezing and thawing ~ Untreated > Acidic shock ~ Heat shock 





III 

THERMOPHILIC VERSUS MESOPHILIC DARK FERMENTATION 
IN XYLOSE-FED FLUIDISED BED REACTORS: BIOHYDROGEN 

PRODUCTION AND ACTIVE MICROBIAL COMMUNITY 

by 

Dessì, P., Porca, E., Waters, N.R., Lakaniemi, A.-M., Collins, G., Lens, P.N.L., 
2018 

International Journal of Hydrogen Energy 43:5473-5485 

Reproduced with kind permission by Elsevier 



ww.sciencedirect.com

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 3 ( 2 0 1 8 ) 5 4 7 3e5 4 8 5
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/he
Thermophilic versus mesophilic dark fermentation
in xylose-fed fluidised bed reactors: Biohydrogen
production and active microbial community
Paolo Dessı̀ a,*, Estefania Porca b, Nicholas R. Waters b,c,
Aino-Maija Lakaniemi a, Gavin Collins b, Piet N.L. Lens a,d

a Tampere University of Technology, Faculty of Natural Sciences, P.O. Box 541, FI-33101, Tampere, Finland
b Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway, University

Road, Galway, H91 TK33, Ireland
c Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
d UNESCO-IHE, Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands
a r t i c l e i n f o

Article history:

Received 4 September 2017

Received in revised form

21 December 2017

Accepted 26 January 2018

Available online 2 March 2018

Keywords:

Active community

Biohydrogen

FBR

MiSeq

Thermoanaerobacterium

Thermophilic
* Corresponding author.
E-mail address: paolo.dessi@tut.fi (P. Des

https://doi.org/10.1016/j.ijhydene.2018.01.158
0360-3199/© 2018 Hydrogen Energy Publicati
a b s t r a c t

Dark fermentative biohydrogen production in a thermophilic, xylose-fed (50 mM) fluidised

bed reactor (FBR) was evaluated in the temperature range 55e70 �C with 5-degree in-

crements and compared with a mesophilic FBR operated constantly at 37 �C. A significantly

higher (p ¼ 0.05) H2 yield was obtained in the thermophilic FBR, which stabilised at about

1.2 mol H2 mol�1 xylose (36% of the theoretical maximum) at 55 and 70 �C, and at 0.8 mol

H2 mol�1 xylose at 60 and 65 �C, compared to the mesophilic FBR (0.5 mol H2 mol�1 xylose).

High-throughput sequencing of the reverse-transcribed 16S rRNA, done for the first time on

biohydrogen producing reactors, indicated that Thermoanaerobacterium was the prevalent

active microorganism in the thermophilic FBR, regardless of the operating temperature.

The active microbial community in the mesophilic FBR wasmainly composed of Clostridium

and Ruminiclostridium at 37 �C. Thermophilic dark fermentation was shown to be suitable

for treatment of high temperature, xylose-containing wastewaters, as it resulted in a

higher energy output compared to the mesophilic counterpart.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

H2 is a carbon free fuel considered as a promising candidate to

replace fossil fuels in the near future [1]. Although hydrocar-

bons are currently the main feedstock for H2 production,

biomass is a renewable and environmentally friendly alter-

native feedstock [2]. Dark fermentation is the most studied

among the biological H2 production technologies because the
sı̀).

ons LLC. Published by Els
variety of usable organic substrates and the high achievable

conversion rates may promote the scale-up of the process [3].

However, due to the thermodynamics of the reactions

involved, which are more favourable at high temperature and

low H2 partial pressure, operation and optimisation of full-

scale dark fermentation is more challenging than traditional

anaerobic digestion [4].

Many pathways are possible for dark fermentation,

depending on the microbial species, operating parameters,
evier Ltd. All rights reserved.
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and the substrate used. Glycolysis is the most common route

for degradation of hexoses by Clostridium [5] and most ther-

mophiles, including Thermoanaerobacter [6]. Glucose is

oxidized to pyruvate, resulting in the generation of reduced

nicotinamide adenine dinucleotide (NADH) and energy in the

form of adenosine triphosphate [7]. Pyruvate may be further

oxidized to acetylcoenzymeA through reduction of ferredoxin

and then to volatile fatty acids (VFAs), or alcohols [7]. Metal-

loenzymes called hydrogenases use NADH or reduced ferre-

doxin as electron donor for proton oxidation [8], resulting in

the formation of molecular H2. The oxidation of glucose to H2

and CO2 yields 12 mol H2 mol�1 glucose. However, the dehy-

drogenation of acetate to CO2 is endergonic, and the sponta-

neous oxidative process will thus end with acetate

production, yielding only 4 mol H2 mol�1 glucose [9]. This

thermodynamic limitation is also valid for pentose sugars

such as xylose, which will then yield a maximum of 3.33 mol

H2 mol�1 xylose.

In practice, the H2 yield by mixed cultures varies from 14%

to 70% of the theoretical limit [10]. For high H2 partial pres-

sures (>60 Pa), proton reduction by NADH is not thermody-

namically favourable and the reaction switches, e.g. to the

butyrate pathway [11], resulting in a lower H2 yield. This can

be mitigated by operating dark fermentation in well mixed

systems, such as fluidised bed reactors (FBRs), in which the

turbulentmixing regime favours the stripping of the produced

H2 [12]. Temperature and pH also strongly affect the microbial

community and thus, the substrate degradation pathway [13].

Butyrate accumulation can trigger solventogenesis [14], which

does not yield H2. Some microorganisms, including various

Clostridium sp., are facultative autotrophic and can reduce CO2

with H2 forming acetate [10]. Other known H2-consuming

microorganisms include hydrogenotrophic methanogens,

propionate producers, and sulphate or nitrate reducing mi-

croorganisms [15]. Enhancing the growth of H2 producers

while avoiding the growth of H2 consuming microorganisms

in dark fermentative bioreactors is still an open challenge [16].

H2 production at high temperatures can be advantageous

in terms of H2 yield and production rates [17,18]. High tem-

perature positively affects the kinetics of the oxidative re-

actions and the growth of microorganisms [19]. Furthermore,

the direct conversion of sugars to acetate becomes thermo-

dynamically more favourable as the temperature increases,

thus resulting in a high H2 yield [20]. Thermophilic anaerobic

microorganisms such as Thermotoga and Thermoanaer-

obacterium are excellent H2 producers, as they use most of the

reductants produced during glycolysis to form H2, allowing

yields between 3 and 4 mol H2 mol�1 hexose [20]. Although H2

yields from pure cultures are typically higher [5], mixed cul-

tures are preferable for industrial application, as they offer

more stability and versatility, and sterilisation is not required

[13]. Most studies on H2 production at high temperature by

mixed cultures have been conducted at 55, 60, or 70 �C,
generally obtaining higher H2 yields than in mesophilic trials

with a similar inoculum and substrate [18,21,22]. Sources of

inoculum used for thermophilic dark fermentation include

e.g. sewage sludge [18,23], anaerobic sludge or digestates

[21,24e28], animal dung or slurry [29,30], hot spring sediment

[31,32], and biomass from previous laboratory-scale H2 pro-

duction experiments [33e39].
Handling and processing of organic substrates and the low

H2 yield are two of the main deterrents for the establishment

of dark fermentation at commercial scale [40]. Despite the

higher H2 yield obtained at high temperatures, the net energy

gain (the difference between the energy input needed to heat

the reactor and output) seems to be indirectly proportional to

the operation temperature [41]. However, some industrial

wastewaters, such as thermomechanical pulping wastewa-

ters, are produced at high (50e70 �C) temperatures [42] and

could be treated on site avoiding cooling and minimising en-

ergy loss. Such wastewaters contain readily fermentable

sugars, both hexoses (e.g. glucose) and pentoses (e.g. xylose),

suitable for H2 production by dark fermentation. Continuous

dark fermentation of glucose has been widely studied at

various temperatures [35,37,39,43,44] while much less atten-

tion was given to dark fermentation of xylose, especially at

high temperature. In a previous study, H2 production from

xylose was compared in batch cultures at 37, 55 and 70 �C
using heat treated (90 �C, 15 min) activated sludge from a

wastewater treatment plant as the inoculum [18]. That study

showed effective H2 production at 55 �C, but not at 70 �C.
However, the effect of temperature in the 55e70 �C tempera-

ture range is worth investigating, as a difference of a few de-

grees can affect the microbial community inside the reactor

and thus, the H2 production efficiency [44].

Recently, the establishment of next-generation sequencing

techniques has improved the knowledge on H2-producing

microbial communities. Etchebehere et al. [45] performed 454

pyrosequencing on microbiological samples from 20 H2 pro-

ducing lab-scale bioreactors operated within a temperature

range of 25e37 �C. Although the microbial communities were

diverse due to the different operating conditions of the bio-

reactors, the authors observed a predominance of Firmicutes

and distinguished high-yield H2 producers (Clostridium, Kos-

motoga, and Enterobacter), low-yield H2 producers (Veillonella-

ceae) and competitors (Lactobacillus). Nitipan et al. [46] reported

Thermoanaerobacterium as the dominant genus in a thermo-

philic (60 �C) sequencing batch reactor producing H2 from

palm oil mill effluent. Zhang et al. [47] showed that Firmicutes

such as Caldanaerobius, Caldicellulosiruptor and Thermoanaer-

obacter became dominant in a hyperthermophilic (70 �C) H2

producing, glucose-fed chemostat. To date, analysis of dark

fermentative microbial communities by next-generation

sequencing has been mainly based on the presence of 16S

rRNA genes, which provides information on the structure of

the microbial community. However, an analysis based on the

expression of 16S rRNA genes describes more accurately the

composition of the microbial community actively involved in

dark fermentation [48].

This study aims to evaluate, for the first time, how dark

fermentative H2 production and the composition of the active

microbial community are affected by a stepwise (5 �C) tem-

perature increase in the 55e70 �C temperature range in a

xylose-fed FBR inoculated with heat treated activated sludge.

A second FBR was operated in parallel with the same inoc-

ulum, but at a lower temperature (37 �C) in order to compare

its performance to the thermophilic counterpart, prior to

increasing the temperature to 55 �C to observe the response of

this mesophilic microbial community to the temperature

shift.
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Materials and methods

Source of biomass

Activated sludge was collected from the recirculation line

between the aeration tank and the secondary settler in the

Viinikanlahti municipal wastewater treatment plant (Tam-

pere, Finland). It was settled, and, after removing the super-

natant, heat-treated at 90 �C for 15 min as described by Dessı̀

et al. [18] before being used as inoculum for the FBRs.

Composition of synthetic wastewater

Both FBRs were fed with a synthetic wastewater based on the

DSMZ 144 medium with xylose (50 mM) as electron donor

instead of glucose. However, tryptone, resazurin and Na2S

were omitted and the concentration of KH2PO4, K2HPO4, and

yeast extract was reduced 10 times (to 0.55 mM, 0.86 mM, and

0.3 g l�1, respectively).

FBR configuration

Two FBRs (Fig. 1), 1 L volume each, were operated with 300 mL

activated carbon as carrier material for biomass adhesion. A

recirculation flow rate of about 1900 mL min�1 was applied by

using a peristaltic pump (Masterflex, USA) to expand the

activated carbon bed by 30% (the flow rate of minimum
Fig. 1 e Overview of the experimental set-up used in this study. M

pumps for influent feeding (3), influent sampling point (4), activa

for recirculation (6), pH probe (7), automatic titrator (8), tempera

effluent sampling point (12), effluent tank (13), gas sampling poin

path ( ). The dashed rectangle represents the part of the set-up
fluidization was 1400 mL min�1). To maintain a constant

expansion, the recirculation flow was increased up to a

maximum of 20% due to the adhesion of the biomass, which

made the bed heavier. To achieve a stable temperature, the

FBRs were operated inside incubators (Labilo, Finland). A

water jacket (Julabo, Germany) was also installed, as the heat

provided by the incubator was not enough to reach 70 �C in-

side the FBR.

To avoid microbial growth, the xylose solution was pre-

pared in a different tank than the medium containing the

nutrients and trace elements. Both solutions were flushed

with N2 in the feeding tanks, and their pH was adjusted to

5.0e5.5 with HCl prior to being fed to the FBRs through peri-

staltic pumps (Masterflex, USA). To minimise the growth of

methanogenic archaea [49], the pH inside the reactor was kept

at 5 (±0.1) by automatic titration (Metrohm, Switzerland). The

FBRs were sealed on the top, and both liquid and gas were

directed to a gas-liquid separator. The liquid was directed to

an effluent tank, while the gas was directed to a gas meter

(Ritter, Germany) before being released into a fume hood

(Fig. 1).

FBR operation and sampling

Both FBRs were inoculated by 50 mL of heat-treated activated

sludge (8.8 g VS L�1). After two days of start-up in batchmode,

the FBRs were switched to continuous mode (day 0) and
edium influent tank (1), xylose influent tank (2), peristaltic

ted carbon bed with the active biomass (5), peristaltic pump

ture control (9), water bath (10), gas-liquid separator (11),

t (14), gas meter (15) and gas outlet (16). Liquid path ( ), gas

located inside the incubator.
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operated for 7 days at a hydraulic retention time (HRT) of 12 h.

On day 7, the HRT was decreased to 6 h. The thermophilic FBR

was operated in continuousmode for a total of 185 days. It was

initially operated at 55 (±1) �C. Temperature was then

increased to 60 (±1) �C on day 77, to 65 (±1) �C on day 119, and

to 70 (±1) �C on day 158 until day 185. The mesophilic FBR was

operated at 37 (±1) �C for 185 days, and then at 55 (±1) �C until

day 228.

Influent, effluent and gas samples were collected from the

sampling points specified in Fig. 1. Biofilm-containing acti-

vated carbon was collected from the thermophilic FBR before

every change in operating conditions (plus amid-term sample

collected on day 53), and stored at �20 �C for DNA analysis.

Samples from the mesophilic FBR were also collected on the

same days. An additional sample of carrier material was

collected from the thermophilic FBR on day 119 (60 �C), 158
(65 �C) and 185 (70 �C) and, from themesophilic reactor on day

185 (37 �C) and 228 (55 �C), and stored at �80 �C for RNA-level

analysis. The collection system consisted of a syringe con-

nected to a tube, which was used to suck 4e6 mL of biomass

out of the FBR bed. While collecting the biomass samples, the

FBRs were open from the top but flushed with N2 to avoid

exposure to air.

Chemical analysis

Influent and effluent composition was determined either with

GC-FID according to Kinnunen et al. [50], or with HPLC as re-

ported by Dessı̀ et al. [18]. Gas samples were analysed for H2,

CH4, and CO2 with a Shimadzu gas chromatograph GC-2014

equipped with a Porapak N column (80/100 mesh) and a

thermal conductivity detector. Oven, injector and detector

temperatures were at 80, 110 and 110 �C, respectively.

Microbiological analysis

DNA extraction and polymerase chain reaction-denaturing

gradient gel electrophoresis (PCR-DGGE) of the partial 16S

rRNA gene were performed according to M€akinen et al. [32].

The forward and reverse primers for PCR were GC-BacV3f

and 907r, respectively. The visible bands in the poly-

acrylamide gel were cut by using a surgical blade, eluted in

sterile water and re-amplified by PCR (primers BacV3f and

907r) before sending them to Macrogen (South Korea) for

sequencing as described by Koskinen et al. [51]. The nucle-

otide sequences obtained were analysed using Bio-Edit [52]

software version 7.2.5 and compared with the sequences in

the GenBank nucleotide collection database using the BLAST

software [53].

Nucleic acids for MiSeq analysis were co-extracted from

the biofilm-containing activated carbon samples according to

Griffiths et al. [54], but 3 M sodium acetate (1/10 of sample

volume) and cold (�20 �C) 100% isopropanol (1 sample volume)

were added for precipitation instead of polyethelene glycol.

Furthermore, nucleic acids were re-suspended in sterile water

instead of tris-EDTA buffer. DNA and RNA were quantified by

a Nanodrop spectrophotometer (NanoDrop Technologies,

USA). Their quality was assessed by measuring the absor-

bance ratio at 260/280 nm and 260/230 nm wavelength.

Nucleic acid samples were diluted to a final concentration of
25 ngmL�1. DNAwas removed by adding 1 mL turbo DNase and

2.5 mL turbo DNase buffer (Invitrogen, Thermo Fisher, USA),

followed by incubation at 37 �C for 30 min. DNase was then

inactivated by addition of 2.5 mL DNase inactivator (Invi-

trogen). After centrifugation (10000 � g, 1.5 min), the RNA-

containing supernatant was transferred to a fresh RNase

free tube. The absence of DNA was confirmed by 16S rRNA

gene PCR (primers 338f and 805r) followed by electrophoresis

in 1% agarose gel (no bands obtained).

Complementary DNA (cDNA)was obtained fromRNAusing

M-MuLV Reverse Transcriptase (New England, BioLabs, USA),

following the instructions provided by the supplier. The suc-

cess of the reverse transcription was confirmed by 16S rRNA

gene PCR (primers 338f and 805r) and electrophoresis in 1%

agarose gels (bands appeared). Samples of cDNA were sent to

FISABIO (Valencia, Spain) for high-throughput sequencing of

partial 16S rRNA genes on an Illumina MiSeq platform. For-

ward and reverse primers for PCR were 515f and 806r,

respectively [55]. A total of 427,163 raw sequences was ob-

tained from 5 samples. Sequence screening, alignment to

Silva (v123) database, clustering, chimeras removal and

taxonomic classification (cut-off¼ 97%) were performed using

Mothur v1.39.3 [56], following the procedure described by

Kozich et al. [57].
Net energy gain calculation

The net energy gain NEG (kJ L�1) (Equation (1)) was estimated

by the difference between the energy EG recovered by com-

bustion of the H2 produced per L of wastewater treated

(Equation (2)) and the energy EL required to heat the FBR to the

desired temperature (Equation (3)) [41]:

Net energy gain: NEG ¼ EG� EL (1)

Energy gain: EG ¼ YH$MVH$CX$rH$LHVH (2)

Energy loss: EL ¼ CW$ðTF � TIÞ$rw (3)

where YH is the H2 yield (mol H2 mol�1 xylose), MVH is the

molar volume of H2 (22.414 L mol�1), CX is the influent xylose

concentration (50 mol L�1), rH is the density of gaseous H2

(8.9 � 10�5 kg L�1), LHVH is the lower heating value of H2

(120 � 103 kJ kg�1), CW is the specific heat of water

(4.2 kJ kg�1 K�1), TF and TI (K) is the temperature of the

wastewater after and before heating, respectively, and rW is

the density of water (1 kg L�1).
Statistical analysis

To assess significant differences in H2 yield at the various

temperatures investigated, analysis of variance (ANOVA) and

the Tukey test [58] at p ¼ 0.05 were conducted using the IBM

SPSS Statistics package. The statistical analysis was con-

ducted on the last 4 sampling points collected at the various

temperatures investigated in both the mesophilic and ther-

mophilic FBR (8e10 operation days), which were considered a

subsample representative of the FBR performance at each

temperature. The output of the statistical analysis is provided

in the supporting material (File S1).
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Results

H2 production in the thermophilic FBR

For all the temperatures investigated (55e70 �C), the thermo-

philic FBR yielded more H2 than the mesophilic (37 �C) FBR
(Fig. 2a versus 2b). At 55 �C (days 1e77), the H2 yield increased

steadily in thefirst daysof operation, reaching1.2molH2mol�1

xyloseonday18, and remaining relatively stableondays18e25

(Fig. 2a). In the followingdays, due to aproblemwith the liquid-

gas separator (foam produced by the FBR partially clogged the

gas line andpart of the gaswas likely lostwith the effluent), the

H2 yield decreased to aminimumof 0.7mol H2mol�1 xylose on

day 35. Onday 52, after solving the issue bywashing the liquid-

gas separator, the H2 yield increased sharply reaching a

maximumof about 1.3mol H2mol�1 xylose on day 56 and then

stabilising to1.2molH2mol�1 xyloseondays65e77 (Fig. 2a).On

days 7e77, xylose was detected in the effluent at a concentra-

tion <2.5 mM (>95% removal). Acetate and butyrate were the

main metabolites produced. Their concentration in the

effluent increased on days 1e21, reaching a concentration of

about 30 and 35 mM for acetate and butyrate, respectively

(Fig. 2c). Ethanol was produced during the first days of opera-

tion, reaching a maximum concentration of about 10 mM on

day 7before decreasing to<2mMonday 27.Ondays 65e77, the

acetate concentration rangedbetween20and24mM,while the

butyrate concentration ranged between 19 and 25mM (Fig. 2c).
Fig. 2 e H2 yield (mol H2 mol¡1 xylose added) (a, b) and acetate

effluent (c, d) of the thermophilic (a, c) and mesophilic (b, d) FBR.
After increasing the temperature to 60 �C on day 77, the H2

yield remained stable at 1.2 mol H2 mol�1 xylose for one day

and then decreased to a minimum of 0.6 mol H2 mol�1 xylose

on day 81 (Fig. 2a). H2 remained low on days 81e91 and started

to increase again, reaching a maximum of about 1.0 mol

H2 mol�1 xylose on day 95. From day 98, the H2 yield slightly

decreased again and stabilised to 0.8 mol H2 mol�1 xylose on

days 112e119 (Fig. 2a). The increase in temperature caused an

increase in the VFAs concentration in the effluent (Fig. 2c). The

acetate concentration almost doubled, ranging between 29

and 42 mM on days 88e119. The butyrate concentration

increased as well, ranging between 25 and 35 mM on days

88e119 (Fig. 2c).

At 65 �C (days 120e158), the average H2 yield was compa-

rable to the yield obtained at 60 �C, but the production was

more unstable compared to both 55 �C and 60 �C, ranging

between 0.7 and 1.3 mol H2 mol�1 xylose (Fig. 2a). Increasing

the temperature to 65 �C had minimal impact on the VFA

concentration when compared to the 60 �C condition (Fig. 2c).

After increasing the temperature further to 70 �C, H2

production ceased on day 161, but increased again from day

163, stabilising to values comparable to those obtained at

55 �C (1.2 mol H2 mol�1 xylose) on days 172e185 (Fig. 2a). A

high concentration of xylose was detected in the effluent on

days 163e174, with a peak of about 50 mM (0% removal) on

day 163. On days 163e174, the acetate and butyrate concen-

trations decreased and slowly increased again, reaching

values comparable to the ones obtained at 60 and 65 �C
, butyrate, ethanol and xylose concentration (mM) in the

The vertical dotted lines indicate a change of temperature.
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(21e32 mM acetate and 22e32 mM butyrate) on days 175e185

(Fig. 2c).

H2 production in the mesophilic FBR

Themesophilic FBR had a fluctuating H2 production, especially

during days 1e90 (Fig. 2b). The H2 yield was above 1.0 mol

H2 mol�1 xylose only on days 53e65. On day 7, 74 and 81, H2

production ceased and increased again within 1e3 days. On

days 90e185, the H2 production fluctuated between 0.3 and

1.0 mol H2 mol�1 xylose. Between days 0e185, the xylose con-

centration in theeffluentwas<5mM(>90%removal efficiency).

Similar to the H2 yield, acetate and butyrate production

was unstable during days 1e90 (Fig. 2d). The acetate concen-

tration was often close to 40 mM and was even higher on day

18 and 76. Interestingly, the peaks of acetate (Fig. 2d) seem to

mirror the drops in H2 yield (Fig. 2b). On days 90e185, the

butyrate concentration ranged between 10 and 19 mM, while

the acetate concentration was more unstable, ranging be-

tween 20 and 36 mM (Fig. 2d).

After increasing the temperature to 55 �C (day 186), H2 pro-

duction ceased on day 206 (Fig. 2b), and then increased sharply

tovaluescomparable to thoseobtained in the thermophilic FBR

at 55 �Condays 219e228 (1.0molH2mol�1 xylose). After raising

the temperature from 37 to 55 �C, xylose was still consumed

efficiently (>97%). Ethanolwas detected in the effluent on days

195e213, with a maximum of 15 mM on day 208 (Fig. 2d).

However, the liquid phase composition was similar to the one

obtained in the thermophilic FBR at 55 �C on days 217e228

(about 18 and 22 mM acetate and butyrate, respectively).

Microbial community composition

Different eubacterial community profiles from the thermo-

philic and mesophilic FBR were obtained by PCR-DGGE
Fig. 3 e Microbial community profiles obtained by PCR¡DGGE f

collected from the thermophilic and the mesophilic H2 producin
analysis from the biofilm-containing activated carbon (Fig. 3;

Table 1). In the thermophilic FBR, Clostridium acetobutylicum

(100% similarity) was found at 55 �C on day 0 (after two days of

start-up in batch mode), but was not detected in the subse-

quent samples (Fig. 3). On days 7e185, regardless the tem-

perature, Thermoanaerobacterium thermosaccharolitycum

(98e99% similarity) was the dominant microorganism in the

thermophilic FBR (Fig. 3). Alicyclobacillus sp. (96e97% similar-

ity) was found on day 7, after which its concentration was

below detection limit at 55 �C on day 77 and at 60 �C on day

119, but it was detected again when temperature was further

increased to 65 and 70 �C (Fig. 3).

A wider eubacterial community was found in the meso-

philic FBR compared to the thermophilic FBR. On day 0 and

day 7, nucleotide sequences with 99e100% similarity to Clos-

tridium pasteurianum were detected. Species with 99e100%

similarity to Clostridium acetobutylicum were detected on all

sampling days (days 7e185). On day 77, nucleotide sequences

close to Pseudomonas and Delftia sp. were also found. On days

119, 158, and 185, the DGGE profiles of the mesophilic com-

munity were similar to each other and dominated by Clos-

tridium sp. (Fig. 3).

Based on the high-throughput sequencing of the reverse-

transcribed 16S rRNA (Fig. 4), species belonging to the Ther-

moanaerobacterium genus dominated the active microbial

community (>99% of the relative abundance) of the thermo-

philic FBR at both 60 and 70 �C (days 119 and 185). At 65 �C (day

158), about 22% of the relative abundance matched the genus

Clostridium (Fig. 4). In the mesophilic FBR, microorganisms of

the genus Clostridium and Ruminiclostridium dominated the

active microbial community at 37 �C (Fig. 4). Increasing the

FBR temperature to 55 �C resulted in a shift of the active mi-

crobial community towards the Thermoanaerobacterium genus

(>90% of the relative abundance).
rom biofilm-containing activated carbon carrier samples

g FBR. The band labels refer to Table 1.
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Table 1 e Association of 16S rRNA gene sequences of DGGE bands to those collected in the GenBank.

BLa Affiliationb Accession
number

Matching sequence
lenghtc

Similarity
(%)d

A Clostridium acetobutylicum KP410577

KP410579

446e472 99e100

B Alicyclobacillus sp. JX505129 485e524 96e97

C Thermoanaerobacterium

thermosaccharolyticum

JX984968

KJ831072

AF247003

405e499 98e99

D Clostridium sp. EU887966

EU887970

KU886097

LC020495

367e491 94e99

E Pseudomonas sp. GQ903481 442 97

F Delftia sp. KT865666 465 99

G Clostridium pasteurianum KX378861 440e506 99e100

H Ralstonia sp. KT183537 496 99

I Lysobacter sp. JQ791571 429 93

a Band label in Fig. 3a.
b Closest cultured species in GenBank.
c Number of nucleotide pairs used in the sequence comparison.
d Percentage of identical nucleotide pairs between the 16S rRNA gene sequence and the closest species in GenBank.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 3 ( 2 0 1 8 ) 5 4 7 3e5 4 8 5 5479
Discussion

Thermophilic H2 production and microbial community
dynamics

The significantly higher and more stable H2 yield obtained

when performing dark fermentation of xylose under ther-

mophilic than under mesophilic conditions (Fig. 2a versus 2b)
Fig. 4 e Relative abundance of the active microbial community,

analysis of the 16S rRNA from biofilm-containing activated carbo

to the sum of genus with a relative abundance <1%.
was mainly due to the composition of the microbial commu-

nity (Fig. 3; Table 1), particularly the active microbial com-

munity (Fig. 4). Generally, thermophilic microorganisms yield

more H2 than mesophilic species [5]. A thermophilic com-

munity dominated by Thermoanaerobacterium, the prevalent

active genus in the thermophilic FBR regardless of the tem-

perature applied (Fig. 4), has also previously been reported to

yield more H2 than a mesophilic community dominated by
classified at genus level, obtained by MiSeq sequencing

n samples, reverse transcribed to 16S cDNA. “Other” refers
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Clostridium [49]. Furthermore, thermophilic conditions are not

favourable for most H2 consuming microorganisms [27].

For all the temperatures investigated (55e70 �C), the

thermophilic microbial community was dominated by mi-

croorganisms closely related to Thermoanaerobacterium ther-

mosaccharolyticum (Fig. 3; Table 1). Accordingly, the genus

Thermoanaerobacterium was prevailing in the active thermo-

philic microbial community at 60, 65 and 70 �C (Fig. 4). In the

thermophilic FBR, although the sample at 55 �C is missing in

the active microbial community analysis (Fig. 4), the DGGE

profile (Fig. 3) and the reactor performance (Fig. 2a) suggest

that Thermoanaerobacterium was also the prevalent active

genus at 55 �C. In fact, even in the mesophilic FBR, Thermoa-

naerobacterium became dominant upon increasing the tem-

perature from 37 to 55 �C (Fig. 4). T. thermosaccharolyticum has

been utilised in batch reactors to produce H2 from xylose at

various temperatures, obtaining a maximum yield of about

2.2mol H2mol�1 xylose at 60 �C [59,60]. However, in this study,

the highest H2 yield was only about 1.2 mol H2 mol�1 xylose at

55 �C and even 30% lower at 60 �C (Fig. 2a), although DGGE

profiles appear similar (Fig. 3). One explanation is that, in this

study, the pH was set to 5.0, whereas the optimum pH for T.

thermosaccharolyticum is 6.5 [60]. Furthermore, Koskinen et al.

[51] showed that in a mesophilic H2-producing FBR, the

attached microbial community is slightly different from the

suspended one, which was not analysed in this study. It is

thus plausible that the contribution of some H2 producing or

H2 consuming microorganisms on the net H2 yield was not

considered.

In the thermophilic FBR, sequences belonging to the Clos-

tridium genus were detected only at 65 �C, accounting for 22%

of the active microbial community (Fig. 4). However, at 65 �C,
Clostridium was not detected by PCR-DGGE. A possible expla-

nation is that the concentration of Clostridium was under the

detection limit of PCR-DGGE, but these microorganisms were

particularly active at 65 �C and thus detected through the

RNA-level sequencing analysis [48]. The activity of Clostridium

is likely linked to the unstable H2 yield obtained at 65 �C, as
some Clostridium sp., such as the thermophilic C. thermoaceti-

cum, may oxidize sugars through competitive pathways to H2

production or can even carry out homoacetogenesis [61]. The

role of Clostridium in the xylose degradation at 65 �C could be

further detailed by a proteomics analysis. At 65 �C, a bacte-

rium closely related to Alicyclobacillus sp. appeared in the

DGGE profile (Fig. 3). Genera with high similarity (99%) to

Alyciclobacillus sp. have been found in a thermophilic FBR used

for dark fermentation of cheese whey [62], but further studies

are required to understand the role of this microorganism in

the anaerobic processes.

The drop and subsequent increase in H2 yield that occurred

during the first days of operation at 70 �C, as well as the

decreased xylose removal efficiency during these days (Fig. 2a

and c) can be attributed to the acclimation of the microbial

community to the higher temperature. Meng et al. [63] per-

formed a proteomic study on Thermoanaerobacter tengcongensis,

cultured at 55, 75 and 80 �C, and showed the existence of

temperature-dependent protein complexes, which may affect

the H2 yield. The stable H2 yield obtained at 70 �C after the

acclimation (Fig. 2a) is due to the homogeneity of the active

microbial community growing on the carrier material at that
temperature: >99% of the total cDNA sequences matched the

genus Thermoanaerobacterium (Fig. 4).

According to the statistical analysis, the highest yield of

1.2 mol H2 mol�1 xylose was obtained at both 55 and 70 �C,
whereas the H2 yield was significantly lower (0.8 mol H2 mol�1

xylose) at 60 and 65 �C. Similarly, Yokoyama et al. [30] studied,

in batch, dark fermentation of cow waste in the temperature

range 37e85 �C, obtaining the highest H2 production at 60 �C
and 75 �C, and a lower H2 production at 67 �C. However, their

cultures were dominated by Clostridium sp. and Caldanaer-

obacter sp. at 60 and 75 �C, respectively, in contrast to this

study with Thermoanaerobacterium sp. as the dominant

microorganism at both 55 and 70 �C.

Mesophilic H2 production and microbial community
dynamics

The lower H2 yield obtained under mesophilic conditions

(Fig. 2b) was attributed to themicrobial community. The DGGE

profiles obtained on days 119, 158, and 185 were similar to

each other and mainly composed of Clostridium (Fig. 3; Table

1), which was also shown to be the dominant active genus

together with the closely related Ruminiclostridium genus

(Fig. 4). Similarly, Si et al. [64] studied themicrobial diversity of

their mesophilic H2 producing reactors by MiSeq sequencing,

reporting Clostridiaceae as the most abundant family.

Chatellard et al. [65] showed that Clostridium, in particular,

dominated mesophilic microbial communities fermenting

pentose-based substrates, as was also the case in this study.

Mesophilic H2 production was unstable (Fig. 2b), likely due

to the accumulation of fermentation products, mainly acetate

and butyrate, which were produced at a too high rate to be

flushed out with the effluent (Fig. 2d). At high concentrations,

undissociated VFAs penetrate the cell membrane, lowering

the internal pH and inhibiting H2 production [15]. In fact, the

H2 yield (as well as the acetate and butyrate concentrations)

cyclically increased and decreased in the mesophilic FBR be-

tween days 91e185, and the H2 yield was higher when the

concentration of VFAs was lower (Fig. 2b and d). Wang et al.

[66] reported a decrease in H2 yield at acetate concentrations

higher than 50mM. In this study, a drop in H2 yield occurred at

acetate concentrations of 40 mM, and the H2 yield started to

increase again when the acetate concentration was about

20e25 mM.

The significantly higher H2 yield obtained after increasing

the temperature of themesophilic FBR from37 to 55 �C (Fig. 2b)

is clearly due to the shift in the active microbial community

from the Clostridium and Ruminiclostridium genus to the Ther-

moanaerobacterium genus (Fig. 4). Interestingly, the H2 yield at

55 �C remained comparable to the one obtained at 37 �C for 13

days, suggesting that the change in the dominant active

community did not occur immediately upon the temperature

change. The production of ethanol upon exposing the micro-

bial community to 55 �C, and the subsequent shift to acetate,

butyrate andH2 production, was observed also in the first days

of operation in the thermophilic FBR (days 1e20, Fig. 2c) and in

a previous batch study with the same inoculum [18]. This can

be attributed to either a change in themicrobial community or

a gradual shift from ethanol to butyrate fermentation as a

response to the temperature shift [18].
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Table 2 eHighest stable H2 production rate (HPR) obtained by dark fermentation of simple sugars in various continuous studies conducted at high temperature (T ≥ 55 �C)
and using different inocula, reactor types, pH and hydraulic retention time (HRT).

Inoculum Pre-
treatment

Reactor
typea

Substrate
(g COD L�1)

T (�C) pHb HRT (h) HPR
(mL H2 h

�1 L�1)
Reference

Biomass from H2 producing CSTR

immobilised on ceramic balls

e UASB Sucrose (11.2) 55 4.5e5.0 (nc) 3 112.5 [33]

Sludge from anaerobic digester

immobilised on ceramic rings

Heat treatment

(105 �C, 5 min)

UASB Sucrose (11.2) 55 5.0e5.5 (nc) 1.5 124.2 [24]

Sludge from H2 producing reactor Heat treatment

(80 �C, 60 min)

FBR Sucrose (5.0) 60 5.5 (i) 12 60.5 [34]

Biomass from H2 producing CSTR e TBR Glucose (7.3) 60 5.5 (c) 2 980.6 [35]

Thermoanaerobacterium

thermosaccharolyticum

immobilised on methanogenic

granules

Heat treatment

(121 �C, 30 min)

UASB Sucrose (22.5) 60 5.0e5.5 (nc) 1 3470 [70]

Biomass from H2 producing CSTR e CSTR Xylose (1.1) 70 6.7 (nc) 72 2.6 [36]

Biomass from H2 producing CSTR e UASB Glucose (2.1) 70 7.0 (i) 24 12.7 [37]

Methanogenic biomass from

CSTR

Chemical

treatment

(BES)c

UASB Glucose (4.8) 70 7.2 (i) 27 47.3 [38]

Biomass from H2 producing CSTR e CSTR Glucose (4.6) 70 5.5 (c) 21.6 91.7 [39]

Activated sludge Heat treatment

(90 �C, 15 min)

FBR Xylose (8.0) 70 5.0 (c) 6 282.1 This study

Caldicellulosiruptor saccharolyticus e TBR Sucrose (11.5) 73 6.5 (c) 3e5 493.1d [71]

a Continuous stirred tank reactor (CSTR), fluidised bed reactor (FBR),, trickling bed reactor (TBR), upflow anaerobic sludge blanket (UASB).
b The reported pH refers either to the initial pH (i) or the operation pH, which can be either controlled to a stable value (c) or not controlled (nc).
c Added to the reactor feeding.
d Per L of filtering bed.
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The role of homoacetogenesis on mesophilic and
thermophilic H2 yield

A decrease in H2 yield to below 0.2 mol H2 mol�1 xylose

occurred in the mesophilic FBR on days 9, 16, 74, and 89

(Fig. 2b). On the same days, the CO2 concentration also

decreased (File S2 in the supporting material) and a peak of

35e50 mM acetate was detected within 1e2 days from the H2

decrease (Fig. 2d), suggesting the occurrence of homoaceto-

genesis. H2 and CO2 were likely consumed to produce acetate

autotrophically. Several Clostridium sp., which dominated the

active mesophilic microbial community, are known homo-

acetogens [67]. The causes that trigger microorganisms from

heterotrophic to the less energy yielding autotrophic meta-

bolism are controversial. A H2 partial pressure >500 Pa can

favour homoacetogenesis [10] and H2 can be simultaneously

produced and consumed, but radioactive label tracking tech-

niques would be required to distinguish the two processes

[10]. Oh et al. [68] argued that in mixed culture fermentation,

the switch to autotrophic metabolism occurs only after sub-

strate depletion. This hypothesis seems less probable in the

studied FBR, as xylose was fed continuously. However, it is

plausible that H2 producing microorganisms quickly consume

the xylose, inducing the facultative bacteria to shift to auto-

trophic metabolism.

Koskinen et al. [51] studied the microbial community dy-

namics over time in a mesophilic (35 �C) FBR reactor inocu-

lated with digested activated sludge and concluded that the

adhesion of H2 consuming microorganisms, including homo-

acetogens, to the carrier material may cause an unstable H2

production. Similarly to this study, Dinamarca and Bakke [69]
Fig. 5 e Effect of fermentation temperature on net energy gain

hypothetical temperature at which the wastewater is released. T

per litre of xylose (50 mM) containing wastewater treated unde

conditions. The net energy gain was calculated according to Pe

sampling points collected at the various temperatures investiga

operation days). (For interpretation of the references to color/co

version of this article.)
reported a decrease from 1.5 to below 0.25 mol H2 mol�1

glucose after 57 days of reactor operation at 35 �C. The authors

concluded that homoacetogenesis is directly correlated with

the HRT and dependent on biomass density and sludge age

[69]. Also Luo et al. [49] argued that, even if the inoculum is

pre-treated, methanogenic and homoacetogenic microorgan-

isms could develop again during long-term operation.

Methanogens are typically inhibited by a pH below 6, while

homoacetogenic bacteria are also inhibited by a pH below 6,

but only under thermophilic conditions [49].

In the thermophilic FBR, excluding day 161 on which a

decrease in H2 yield was attributed to the increased temper-

ature, sudden drops in H2 yield were not observed (Fig. 2a) and

the acetate concentration was more stable (Fig. 2c). This in-

dicates a minor role of homoacetogenesis at thermophilic

conditions. This is in agreement with Luo et al. [49], who re-

ported no homoacetogenesis in thermophilic (55 �C) batch

incubations at pH 5.5. Their thermophilic microbial commu-

nity was dominated by Thermoanaerobacterium sp., as was the

case in this study.

Comparison of H2 production with previous studies

At 55 �C, despite the HRT of only 6 h, the H2 yield per mol

xylose added is consistent with a previous batch study with

the same inoculum and substrate [18]. At 70 �C, however, H2

was effectively produced during FBR operation, but not in the

batch incubations [18], likely due to the longer time for accli-

mation of the biomass to the high temperature. The

maximum H2 production rate (HPR) of 282.1 mL H2 h�1 L�1

obtained at 70 �C is among the highest reported in continuous
from a xylose containing wastewater. X-axis shows the

he coloured lines represent the net energy gain obtainable

r mesophilic (37 �C) or thermophilic (55, 60, 65, 70 �C)
rera et al. [41] from the average H2 yields of the last 4

ted in both the mesophilic and thermophilic FBR (8e10

lour in this figure legend, the reader is referred to the Web
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studies on thermophilic dark fermentation of sugars bymixed

cultures (Table 2). This is likely due to the composition of the

active microbial community dominated by an effective H2

producer such as Thermoanaerobacterium (Fig. 4). A 12-times

higher HPR (3470mL H2 h
�1 L�1) has been obtainedwith a pure

culture of T. thermosaccharolyticum immobilized on heat-

treated methanogenic granules [70], but the sugar concen-

tration (in terms of chemical oxygen demand) was almost 3

times higher than the concentration used in this study.

Furthermore, O-Thong et al. [70] obtained the maximum HPR

at an HRT of only 1 h, whereas in this study the HRTwas set to

6 h.

Practical implications

Organic carbon-rich wastewaters are produced by industries

at various temperatures. The energy gain from combustion of

the H2 produced and the energy required to heat the FBR to the

desired temperature are two important aspects to take into

consideration for a proper economic analysis. For a rough

estimation of the effect of operation and feed wastewater

temperature on energy gain of a H2 producing system, a cor-

relation between the wastewater temperature, fermentation

temperature and net energy gain is presented in Fig. 5.

Despite the comparatively low H2 yield obtained (Fig. 2b),

dark fermentation at 37 �C is still the best option to treat

wastewaters produced at temperatures up to about 50 �C
based on the net energy gain. Thermophilic treatment at 55 �C
is to be preferred for wastewaters produced at above 50 �C,
and the net energy gain obtained at 70 �C is comparable to the

one obtained at 55 �C for wastewaters produced at tempera-

tures exceeding 70 �C (Fig. 5). Thermophilic processes could

thus be advantageous to treat wastewaters produced at high

temperature. However, many other aspects can influence the

net energy gain both in a positive (heat recovery from hot

wastewater, energy content of the effluent and removal of

pathogens) or negative (heat losses, H2 to energy conversion

efficiency and maintenance and operation costs of the FBRs)

way.

The data presented in this study, both on FBR performance

and composition of the active microbial community, helps

understanding the process and selecting the operation tem-

perature in H2 producing bioreactors depending on the tem-

perature of the waste stream to be treated. However, more

research is required to further increase the net energy gain.

Post-treatment of the dark fermentation effluent for recovery

of value-added products such as VFAs and alcohols or for

further energy harvesting (e.g., H2 production through photo-

fermentation or microbial electrolysis cells, methane pro-

duction through anaerobic digestion or bioelectricity produc-

tion using microbial fuel cells) is a key factor towards process

scale-up [7,72].
Conclusions

Thermoanaerobacterium dominated the thermophilic active

microbial community, resulting in a higher andmore stable H2

yield in the thermophilic FBR compared to the mesophilic FBR

dominated by Clostridium. Treating high temperature, xylose-
containing wastewaters by thermophilic dark fermentation

can thus lead to a higher energy output compared to the

mesophilic counterpart. Temperatures of 55 and 70 �C resul-

ted in the net maximum H2 yield of 1.2 mol H2 mol�1 xylose,

whereas the competition by Clostridium caused unstable H2

production at 65 �C. This study contributes to the under-

standing of dark fermentation of xylose in FBRs, and the mi-

croorganisms actively involved in the mesophilic or

thermophilic process, which supports the development of

high rate H2 producing bioreactors.
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File S1. Statistical analysis (ANOVA and Tukey test) conducted at p = 0.05 to asses significant 

differences in H2 yield at the various temperatures investigated in the mesophilic (37 °C) and 

thermophilic (55 °C) FBR. 

 
Descriptives  

  

FBR T (°C) N Mean H2 

yield 

Std. Deviation Std. Error 95% Confidence Interval for 

Mean 

Minimum Maximum 

Lower Bound Upper Bound 

Mesophilic 37 4 0.4586 0.02465 0.01233 0.4194 0.4978 0.43 0.49 

 55 4 1.0040 0.02961 0.01481 0.9568 1.0511 0.97 1.03 

Thermophilic 55 4 1.1855 0.04847 0.02424 1.1083 1.2626 1.12 1.23 

 60 4 0.8221 0.02957 0.01479 0.7751 0.8692 0.79 0.85 

 65 4 0.8197 0.11724 0.05862 0.6332 1.0063 0.69 0.97 

 70 4 0.2139 0.03945 0.01973 1.1511 1.2767 1.17 1.26 

 Total 24 0.9173 0.26748 0.05460 0.8043 1.0302 0.43 1.26 

 
 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

Between Groups 1.586 5 0.317 95.077 0.000 

Within Groups 0.060 18 0.003   
Total 1.646 23    

 

 

 

 

 

 

 

 

 

 

 

 



Multiple comparisons 
 

Multiple Comparisons 

Dependent Variable: Yield  

 Tukey HSD 

(I) Temperature (J) Temperature Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

37 (M) ** 

55 (M) -0.54537* 0.04084 0.000 -0.6751 -0.4156 

55 (T) -0.72689* 0.04084 0.000 -0.8567 -0.5971 

60 (T) -0.36356* 0.04084 0.000 -0.4933 -0.2338 

65 (T) -0.36115* 0.04084 0.000 -0.4909 -0.2314 

70 (T) -0.75530* 0.04084 0.000 -0.8851 -0.6255 

55 (M) 

37 (M) 0.54537* 0.04084 0.000 0.4156 0.6751 

55 (T) -0.18152* 0.04084 0.004 -0.3113 -0.0517 

60 (T) 0.18181* 0.04084 0.004 0.0520 0.3116 

65 (T) 0.18422* 0.04084 0.003 0.0544 0.3140 

70 (T) -0.20993* 0.04084 0.001 -0.3397 -0.0801 

55 (T) 

37 (M) 0.72689* 0.04084 0.000 0.5971 0.8567 

55 (M) 0.18152* 0.04084 0.004 0.0517 0.3113 

60 (T) 0.36333* 0.04084 0.000 0.2335 0.4931 

65 (T) 0.36574* 0.04084 0.000 0.2360 0.4955 

70 (T) -0.02841 0.04084 0.980 -0.1582 0.1014 

60.00 (T) 

37 (M) 0.36356* 0.04084 0.000 0.2338 0.4933 

55 (M) -0.18181* 0.04084 0.004 -0.3116 -0.0520 

55 (T) -0.36333* 0.04084 0.000 -0.4931 -0.2335 

65 (T) 0.00242 0.04084 1.000 -0.1274 0.1322 

70 (T) -0.39173* 0.04084 0.000 -0.5215 -0.2620 

65.00 (T) 

37 (M) 0.36115* 0.04084 0.000 0.2314 0.4909 

55 (M) -0.18422* 0.04084 0.003 -0.3140 -0.0544 

55 (T) -0.36574* 0.04084 0.000 -0.4955 -0.2360 

60 (T) -0.00242 0.04084 1.000 -0.1322 0.1274 

70 (T) -0.39415* 0.04084 0.000 -0.5239 -0.2644 

70.00 (T) 

37 (M) 0.75530* 0.04084 0.000 0.6255 0.8851 

55 (M) 0.20993* 0.04084 0.001 0.0801 0.3397 

55 (T) 0.02841 0.04084 0.980 -0.1014 0.1582 

60 (T) 0.39173* 0.04084 0.000 0.2620 0.5215 

65 (T) 0.39415* 0.04084 0.000 0.2644 0.5239 

*. The mean difference is significant at the 0.05 level. 

**. M = mesophilic FBR. T = thermophilic FBR. 

 

 
 



Homogeneous subset 
 

 

Tukey HSD*  

Temperature N Subset for alpha = 0.05 

1 2 3 4 

37 (M) ** 4 0.4586    
65 (T) 4  0.8197   
60 (T) 4  0.8221   
55 (M) 4   1.0040  
55 (T) 4    1.1855 

70 (T) 4    1.2139 

Sig.  1.000 1.000 1.000 0.980 

Means H2 yield for groups in homogeneous subsets are displayed. 

*. Uses Harmonic Mean Sample Size = 4.000. 

**. M = mesophilic FBR. T = thermophilic FBR. 
 
 



 

File S2. CO2 yield (mol CO2 mol-1 xylose added) in the thermophilic (a) and mesophilic (b) FBR. 

The vertical dotted lines indicate a change of temperature. 
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Abstract23

This study evaluates the use of non-pretreated thermo-mechanical pulping (TMP) wastewater as a24

potential substrate for hydrogen production by dark fermentation. Batch incubations were25

conducted in a temperature gradient incubator at temperatures ranging from 37 to 80 °C, using an26

inoculum from a thermophilic, xylose-fed, hydrogen-producing fluidised bed reactor. The aim was27

to assess the short-term response of the microbial communities to the different temperatures with28

respect to both hydrogen yield and composition of the active microbial community. High29

throughput sequencing (MiSeq) of the reversely transcribed 16S rRNA showed that30

Thermoanaerobacterium sp. dominated the active microbial community at 70 °C, resulting in the31

highest hydrogen yield of 3.6 (± 0.1) mmol H2 g-1 CODtot supplied. Lower hydrogen yields were32

obtained at the temperature range 37 to 65 °C, likely due to consumption of the produced hydrogen33

by homoacetogenesis. No hydrogen production was detected at temperatures above 70 °C. TMP34

wastewaters are released at high temperatures (50 to 80 °C), and thus dark fermentation at 70 °C35

could be sustained using the heat produced by the pulp and paper plant itself without any36

requirement for external heating.37

38

Keywords39

Hydrogen, lignocellulose, MiSeq, pulp and paper mill, Thermoanaerobacterium, thermophilic40
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1. Introduction49

Pulp and paper industry is facing an economic challenge due to globalised competition and50

decreasing paper demand (Machani et al., 2014). The long-term success of the industry is believed51

to be strictly linked to the ability of companies to innovate and create new value streams, which are52

predicted to generate 40% of the companies’ turnover in 2030 (Toppinen et al., 2017). A biorefinery53

concept, in which waste from the pulp and paper making process is used as a resource to generate54

value-added products such as biofuels and biochemicals, is a promising strategy to expand the55

product platform, reduce waste disposal costs and fulfil the environmental policies on waste56

emissions (Kinnunen et al., 2015; Machani et al., 2014; Moncada B. et al., 2016).57

58

Pulping is the major source of polluted wastewaters of the whole papermaking process (Pokhrel and59

Viraraghavan, 2004). Pulp mill wastewater is typically treated by the traditional activated sludge60

process, but anaerobic processes have the advantages of coupling wastewater treatment to61

renewable energy production, produce a lower amount of waste sludge and require a smaller62

volume than aerobic processes (Ashrafi et al., 2015). Among pulping processes, thermomechanical63

pulping (TMP) produces a wastewater more suited for anaerobic biological processes than64

chemical-based pulping, due to the low concentrations of inhibitory compounds such as sulphate,65

sulphite, hydrogen peroxide, resin acid and fatty acids (Ekstrand et al., 2013; Rintala and Puhakka,66

1994).67

68

TMP wastewater has been successfully used as a substrate for both mesophilic (Gao et al., 2016)69

and thermophilic (Rintala and Lepistö, 1992) methane production via anaerobic digestion.70

However, hydrogen (H2) is a carbon free fuel expected to play a pivotal role in energy production in71

the future (Boodhun et al., 2017). Dark fermentative H2 production has the potential for energy72

recovery from waste paper hydrolysate (Eker and Sarp, 2017), pulp and paper mill effluent73

hydrolysates (Lakshmidevi and Muthukumar, 2010) and even from untreated pulps (Nissilä et al.,74
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2012). Dark fermentative H2 production has also been reported from carbohydrate-containing75

wastewaters, such as starch wastewater and palm oil mill effluent (Badiei et al., 2011; Xie et al.,76

2014). Although TMP wastewaters are characterized by a high content of carbohydrates (25 to 40%77

of the total COD) (Rintala and Puhakka, 1994), to our knowledge it has not yet been tested as a78

substrate for dark fermentation.79

80

Thermophilic dark fermentation of TMP wastewater could be advantageous, as both biological81

polysaccharide hydrolysis (Elsharnouby et al., 2013) and H2 yielding reactions (Verhaart et al.,82

2010) are favoured by high temperature. High temperature also limits the growth of83

homoacetogenic bacteria and methanogenic archaea (Oh et al., 2003), which may consume the84

produced H2 in mixed culture systems. The main drawback of thermophilic processes is the energy85

required to heat the reactors, but TMP wastewaters are released from the pulping process at a86

temperature of 50 to 80 °C (Rintala and Lepistö, 1992), and could therefore be treated in87

thermophilic bioreactors with minimal, or even without external heating.88

89

Temperature is a key factor in dark fermentation, as even a change of a few degrees may result in90

the development of a different microbial community and thus, affect the H2 yield (Karadag and91

Puhakka, 2010). Understanding of the composition of the microbial community is also crucial in92

order to optimize the complex microbial H2 production process, involving both hydrolytic and93

fermentative microorganisms (Kumar et al., 2017). Microbial communities from dark fermentation94

of lignocellulose-based waste and wastewaters have been previously studied at DNA level (Nissilä95

et al., 2012; Xie et al., 2014), but a RNA-based approach can provide more detailed information on96

the microorganisms that produce (and consume) H2. Furthermore, the time response on RNA97

changes is much faster than on DNA changes (De Vrieze et al., 2016), allowing to detect the98

response of the microbial community to an environmental change in a relatively short time.99

100
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In a previous study, a mixed culture was successfully adapted to thermophilic (70 °C) dark101

fermentation of xylose in a fluidised bed reactor (FBR) and the H2 producing102

Thermoanaerobacterium sp. accounted for > 99% of the active microbial community (Dessì et al.,103

2018). In this study, the same adapted mixed culture was used to test if TMP wastewater is a104

suitable substrate for dark fermentative H2 production at various temperatures (37 to 80 °C), and105

describe how the active microbial community responds to the different temperatures.106

107

2. Materials and methods108

2.1 Source of microorganisms109

The inoculum used in this study was biofilm-coated activated carbon originating from a110

thermophilic fluidised bed reactor (FBR) used to study H2 production from xylose via dark111

fermentation by gradually increasing the temperature of the reactor from 55 to 70 °C (Dessì et al.,112

2018). The FBR was initially inoculated with heat-treated (90 °C, 15 min) activated sludge113

originating from a municipal wastewater treatment plant (Viinikanlahti, Tampere, Finland). The114

biofilm-coated activated carbon granules were sampled after 185 days of reactor operation, at that115

point the FBR had been operated at 70 °C for 27 days. No xylose was present in the FBR medium at116

the sampling time. The granules were stored at 4 °C for one week prior to utilisation. This inoculum117

was used because the microbial community was dominated by Thermoanaerobacterium sp. (Dessì118

et al., 2018), which previously showed potential for hydrolysis of lignocellulosic substrates and H2119

production from the resulting sugars (Cao et al., 2014).120

121

2.2 Wastewater characterization122

The wastewater was collected from a pulp and paper mill located in Finland. It was the effluent of a123

TMP process, in which wood was exposed to a high-temperature (120 °C) steam in order to obtain124

the pulp. The wastewater had a temperature of about 70 °C at the time of the sampling, but was125
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cooled down and stored at 4 °C to minimise biological activity that might affect its composition.126

The wastewater had a pH of 5.0 and a composition as given in Table 1.127

128

Table 1 here129

130

2.3 Temperature-gradient batch set–up131

The batch cultures were conducted in anaerobic tubes with a total volume of 26 mL (17 mL132

working volume and 9 mL headspace). The tubes were inoculated by adding 2 mL of biofilm-133

coated activated carbon granules to 15 mL of TMP wastewater (Table 1). All the tubes were flushed134

with N2 for 5 min, and the internal pressure was equilibrated to atmospheric pressure by removing135

the excess gas using a syringe and a needle before incubation. The initial pH of the batch cultures136

(wastewater and inoculum) was adjusted to 6.3 (± 0.1) using 1 M NaOH, as higher pH may favour137

the growth of methanogenic archaea (Jung-Yeol et al., 2012). The tubes were incubated at 200 rpm138

shaking in a temperature-gradient incubator (Test Tube Oscillator, Terratec, Germany) at 37, 42, 48,139

55, 59, 65, 70, 74 or 80°C (duplicate tubes at each temperature). The experiment was interrupted140

after 111 hours, when no H2 production was detected in any of the vials in two consecutive samples,141

as long inactive periods may affect the RNA-level analysis (De Vrieze et al., 2016).142

143

Gas samples were collected for analysis 1 to 3 times per day. End-point liquid samples were144

collected and stored at -20 °C before analysis. Abiotic negative controls, with fresh activated carbon145

and TMP wastewater, were prepared at 37, 55 and 70 °C. Control incubations containing 2 mL of146

fresh activated carbon and a mix of acetate and butyrate in Milli-Q® water (0.86 g CODtot L-1 each,147

15 mL volume) were also prepared at 42, 65 and 80 °C to assess possible adsorption of VFAs on148

virgin activated carbon.149

150

2.4 Microbial community analyses151
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Biofilm-coated activated carbon granules and liquid medium were collected at the end of the152

experiment and stored in 5 mL Eppendorf tubes at -80 °C. Microbial community analysis was153

conducted separately on microbial communities growing attached to the granules and suspended in154

the liquid medium, as the growth of suspended biomass was clearly visible in the vials after155

incubation in the temperature range 42 to 59 °C. Nucleic acids extraction using a modified method156

from Griffiths et al. (2000), DNA inhibition, complementary DNA (cDNA) synthesis and157

sequencing (using an Illumina MiSeq platform) were performed as described previously (Dessì et158

al., 2018). Sequence analysis (1,395,864 sequences in total, 1,238,862 after quality check) was also159

performed according to Dessì et al. (2018), but using a more recent version of Mothur (v1.39.5) and160

Silva database (v128). The Illumina sequencing data was deposited to the NCBI Sequence Read161

Archive under BioProject Number PRJNA428338.162

163

2.5 Analytical methods164

Gas production in the tubes was quantified by a volumetric syringe method (Owen et al., 1979), and165

the gas composition was determined by gas chromatography-thermal conductivity detector (GC-166

TCD) as reported previously (Dessì et al., 2017). Acetate, butyrate, ethanol, propionate, lactate, and167

formate concentrations were measured with a high-performance liquid chromatograph (HPLC)168

equipped with a refractive index detector (RID) (Shimadzu, Japan) and a Rezex RHM-169

monosaccharide column (Phenomenex, USA) held at 40 °C. The mobile phase was 5 mM H2SO4170

and the flow rate was 0.6 mL min-1. Glucose and xylose concentrations were measured using a171

HPLC equipped with a RID and a RPM-monosaccharide column (Phenomenex, USA) held at 85 °C172

with Milli-Q® water at a flow rate of 0.6 mL min-1 as the mobile phase. Furfural concentrations173

were measured by gas chromatography-mass spectrometry (GC-MS) according to Doddapaneni et174

al. (Doddapaneni et al., 2018). Samples for HPLC and GC-MS analysis were filtered using 0.2 µm175

pore size filters. Total chemical oxygen demand (CODtot) and COD of the soluble compounds176

(CODs) was measured using the dichromate method according to the Finnish standard SFS 5504.177
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Initial and final pH of the culture and the pH of the wastewater were determined using a WTW pH178

330 meter equipped with a Hamilton® Slimtrode probe (Sigma-Aldrich, USA). Total solids,179

volatile solids, total nitrogen and PO4
3--P were determined by the APHA standard procedures180

(APHA, 1998).181

182

2.6 Calculations183

Cumulative H2 and CO2 production was calculated according to Logan et al. (2002) and corrected184

for temperature according to the Arrhenius equation. The theoretical CODtot was estimated from the185

sum of the compounds detected by HPLC, according to the following equation (Van Haandel and186

Van der Lubbe, 2012):187

188

CODtot = 8∙(4x+y-2z)/(12x+y+16z) g CODtot g-1 CxHyOz (1)189

190

where x, y and z are the number of C, H and O atoms in the organic molecule, respectively.191

192

2.7 Statistical analysis193

One-way analysis of variance (ANOVA) and the Tukey test (Box et al., 1978) at p = 0.05 were194

conducted using the IBM SPSS Statistics package to assess significant differences in H2 yield after195

incubation at different temperatures.196

197

3. Results198

3.1 H2 production from TMP wastewater at the various temperatures199

Batch incubations with TMP wastewater resulted in a different net H2 yield at different200

temperatures (Figure 1; Table 2). The highest final H2 yield of 3.6 (± 0.1) mmol H2 g-1 CODtot was201

obtained in the batch cultures at 70 °C, in which H2 production started within 24 h of incubation and202

remained stable after reaching the maximum (Figure 1). The maximum H2 yield obtained at 65 °C203
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was comparable to the one obtained at 70 °C, but the produced H2 started to be consumed within 36204

h resulting in a 51% lower final yield (Figure 1; Table 2). In the batch cultures at temperatures205

lower than 70 °C, the H2 produced was always partially (at 37, 42, 59 and 65 °C) or totally (at 48206

and 55 °C) consumed. A negligible H2 production was obtained at both 74 and 80 °C (Figure 1), as207

well as in the negative controls (see Additional file 1).208

209

Figure 1 here210

211

Table 2 here212

213

3.2 CODtot removal and metabolite production at the various temperatures214

Similarly to H2 production yields, dark fermentation of TMP wastewater at the various temperatures215

resulted in a different composition of the liquid phase (Figure 2). Acetate was the most abundant216

metabolite detected in the temperature range 37 to 70 °C. The final acetate concentration increased217

with temperature from 0.34 (± 0.04) g CODtot L-1 at 37 °C to 0.75 (± 0.18) g CODtot L-1 at 55 °C,218

and then decreased stepwise to 0.07 (± 0.00) and 0.08 (± 0.01) g CODtot L-1 at 74 and 80 °C,219

respectively (Figure 2). Butyrate was found regardless of the incubation temperature, with a final220

concentration ranging from 0.06 (± 0.00) g CODtot L-1 at 70 °C to 0.19 (± 0.00) g CODtot L-1 at 59221

°C. Ethanol was produced at 37, 42, 59, 65 and 70 °C, with a maximum of 0.14 (± 0.02) g CODtot L-222

1 at 65 °C (Figure 2). Dark fermentation of TMP wastewater caused a pH decrease from the initial223

value of 6.3: the final pH was in the range 5.7 to 6.1 after incubation at 42, 48, 55, 59, 74 and 80 °C,224

but was only 5.5 (± 0.1) after incubation at 37 °C, 5.2 (± 0.1) at 65 °C and 5.3 (± 0.0) at 70 °C225

(Figure 2).226

227

Figure 2 here228

229
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In the batch incubations at various temperatures, the CODtot removal efficiency ranged from 69.4%230

at 74 °C to 79.7% at 42 °C, resulting in a decrease from the initial concentration of 2.86 (± 0.00) g231

CODtot L-1 to a final concentration ranging from 0.58 (± 0.23) g CODtot L-1 at 42 °C and 0.88 (±232

0.06) g CODtot L-1 at 74 °C (Table 3). The CODtot removal efficiency was likely overestimated due233

to the adsorption of VFAs on the activated carbon: in the adsorption experiment (see Additional file234

2), up to 27% of the acetate and 90% of the butyrate was, in fact, adsorbed on the fresh activated235

carbon after 111 h of incubation. The CODtot measured was comparable to the CODtot estimated236

(using Eq. 1) by the sum of sugars and volatile fatty acids in the liquid phase after incubation in the237

temperature range 42 to 65 °C (Table 3) . However, the difference between measured and estimated238

CODtot was about 0.20 g CODtot L-1 at 37, 70 and 80 °C, and even higher at 74 °C (0.51 g CODtot L-239

1).240

241

Table 3 here242

243

3.3 Effect of temperature on the active microbial community244

Incubation temperature clearly impacted the composition of the active microbial communities245

growing for 111 h on TMP wastewater (Figure 3, Table 4). At 37 °C, Clostridium sp. accounted for246

84 and 90% of the attached and suspended active microbial community, respectively. Higher247

temperature resulted in a gradual decrease of the relative abundance of Clostridium sp., being 54%248

of the attached active microbial community and < 2% of the suspended active microbial community249

after incubation at 55 °C (Figure 3). Clostridium sp. was not detected either in the attached or250

suspended active community after incubation at temperatures ≥ 59 °C (Figure 3). A bacterium251

belonging to the order of Bacillales closely related to B. coagulans (Table 4) was detected in the252

active attached and suspended microbial communities after incubation at 42 °C, with a relative253

abundance of 14 and 10%, respectively, and only in suspended form after incubation at 48 °C, with254

a relative abundance of 50% (Figure 3).255
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256

The relative abundance of Thermoanaerobacterium sp. (99% similarity to T.257

thermosaccharolyticum) among the attached active microorganisms gradually increased with258

temperature, being only 2% after incubation at 37 °C and 87% at 59 °C (Figure 3, Table 4).259

Thermoanaerobacterium sp. was also the most common suspended active microorganism after260

incubation at 55 and 59 °C, with a relative abundance of 96 and 83%, respectively. After incubation261

at 65 °C, the relative abundance of Thermoanaerobacterium sp. in the attached and suspended262

active microbial community decreased to 57 and 25%, respectively, whereas unclassified263

Firmicutes, with 92% similarity to Calditerricola sp. (Table 4) were found with a relative264

abundance of 30 and 28%, respectively. After incubation at 70 °C, Thermoanaerobacterium sp. was265

again the dominant active microorganism in both attached and suspended form, with a relative266

abundance of 88 to 89%. After incubation at 59 and 70 °C, Caldanaerobius sp. was also found in267

both attached and suspended form with relative abundance > 10% (Figure 3). After incubation at268

both 74 and 80 °C, the RNA concentration was not high enough to perform the analysis due to poor269

microbial growth, and thus microbial communities from 74 and 80 °C could not be analysed.270

271

Figure 3 here272

273

Table 4 here274

275

4. Discussion276

4.1 Fermentation of TMP wastewater at different temperatures277

H2 production from TMP wastewater inoculated with biofilm-coated activated carbon granules was278

observed at a wide temperature range of 37 to 70 °C (Figure 1). The highest final H2 yield of 3.6 (±279

0.1) mmol H2 g-1 CODtot supplied, or 4.9 mmol H2 g-1 CODtot consumed, was obtained at 70 °C280

(Table 2), which could be expected as the inoculum was collected from an FBR operated at 70 °C281
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(Dessì et al., 2018). Such H2 yield is of the same order of magnitude compared to previous studies282

on thermophilic direct dark fermentation of industrial, sugar-containing wastewaters. Xie et al.283

(2014) obtained 5.8 mmol H2 g-1 CODtot from starch wastewater at 55°C by a mixed culture284

dominated by T. thermosaccharolyticum, whereas Khongkliang et al. (2017) obtained 11.4 mmol285

H2 g-1 CODtot from starch wastewater by a pure T. thermosaccharolyticum culture.286

287

The thermophilic active mixed microbial community previously enriched on xylose in the FBR was288

dominated by microorganisms closely related to Thermoanaerobacterium thermosaccharolyticum289

(Dessì et al., 2018). Changing of the substrate from xylose to TMP wastewater marginally impacted290

the active microbial community in the temperature range 59 to 70 °C, as most of the sequences291

obtained from the RNA samples matched T. thermosaccharolyticum (Table 4). A mixed culture292

dominated by T. thermosaccharolyticum has been shown to produce 7 mmol H2 g-1 cellulose at 70293

°C (Gadow et al., 2013), showing potential for the one-step conversion of lignocellulosic materials294

to H2, avoiding a costly hydrolysis step. In fact, the genus Thermoanaerobacterium includes strains295

of cellulolytic microorganisms, such as some strains of T. thermosaccharolyticum, able to hydrolyse296

both cellulose and hemicellulose, and produce H2 from the resulting monosaccharides (Cao et al.,297

2014). In this study, however, the microbial community analysis conducted at genus level does not298

allow to assess possible cellulolytic capabilities of the detected Thermoanaerobacterium sp.299

300

Although the inoculum was enriched for dark fermentation at 70 °C, H2 production occurred only301

after 24 h of incubation (Figure 1). This is probably due to the handling of the inoculum, which was302

stored at 4 °C for one week prior to being used for this experiment. Changes in gene expression and303

DNA replication were shown to occur in Thermoanaerobacter tengcongensis as response to a cold304

shock (Liu et al., 2014), as could be the case for the Thermoanaerobacterium sp. dominating the305

active microbial community of the inoculum used in this study. Although Thermoanaerobacterium306

sp. was the most abundant microorganism (relative abundance close to 90%) in both the attached307
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and suspended microbial community at both 59 and 70 °C, its relative abundance was lower at 65308

°C (Figure 3). The same phenomenon was observed in the FBR from where the inoculum originated309

(Dessì et al., 2018), and attributed to either the decreased activity of Thermoanaerobacterium sp. or310

to the increased activity of competing microorganisms at 65 °C.311

312

Despite the inoculum was enriched for thermophilic dark fermentation, H2 was already produced313

after 12 h of incubation at 37 °C, reaching a maximum yield of 3.2 (± 0.1) mmol H2 g-1 CODtot314

supplied within 24 h (Figure 1). A maximum yield of only 0.9 mmol H2 g-1 CODtot supplied was315

previously obtained at 37 °C from a paper mill wastewater using heat treated digested sludge as316

inoculum (Marone et al., 2017). The H2 yields obtained in this study are also higher than those317

reported by Lucas et al. (2015) by mesophilic (37 °C) dark fermentation of cassava, dairy and citrus318

wastewater, which produced 1.4, 1.7 and 1.3 mmol H2 g-1 CODtot supplied, respectively. This319

confirms the high potential of TMP wastewater for dark fermentation.320

321

Clostridium sp. proliferated at 37 °C accounting for more than 80% of both the attached and322

suspended active microbial community at the end of the batch incubation (Figure 3). It is plausible323

that Clostridium sp. were present in the parent activated sludge but inactive in the FBR operated at324

70 °C (Dessì et al., 2018). In fact, Clostridium sp. produce spores to survive harsh conditions, and325

are able to restore their metabolic activity after desporulation as soon as the environmental326

conditions become more favourable (Li and Fang, 2007). Clostridium sp. cells might also have been327

present in the TMP wastewater, which was not sterilised. However, the absence of H2 and CO2 in328

the abiotic negative control at 37 °C (see Additional file 1) suggests that Clostridium sp. did not329

proliferate in the absence of the inoculum.330

331

In this study, no H2 was produced at 74 or 80 °C (Figure 1) and the RNA concentration was too low332

to allow sequencing analysis, suggesting a lack of active species. This was attributed to the source333
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of inoculum used, as species within the Thermoanaerobacterium genus, such as T.334

thermosaccharolyticum, may be inhibited by temperatures higher than 70 °C (Ren et al., 2008).335

Gadow et al. (2013) obtained H2 production from cellulose by a mixed microflora from a sewage336

sludge digester even at 75 and 80 °C. However, H2 production at such high temperatures was337

attributed to Thermoanaerobacter tengcongensins (Gadow et al., 2013), which was not part of the338

active microbial community in this study. Some degradation products of hemicellulose such as339

furfural or hydromethylfurfural may inhibit fermentative microorganisms (Jönsson et al., 2013),340

including Thermoanaerobacterium, at a concentration over 1 g L-1 (Cao et al., 2010). However, the341

TMP process is conducted at temperatures below 120 °C, which is too low to produce such high342

concentrations of these inhibitory compounds (Baêta et al., 2017). In fact, the concentration of343

furfural in the TMP wastewater used in this study was below the detection limit of the GC-MS344

(Table 1).345

346

A decrease in the cumulative H2 production occurred in all the incubations at temperatures lower347

than 70 °C (Figure 1), probably due to the activity of homoacetogenic bacteria. Homoacetogenesis,348

in which 4 moles of H2 and 2 mol of CO2 are consumed per mol of acetate produced, often occurs349

in batch H2 production experiments within the first 80 h of incubation, especially under mesophilic350

conditions (for a review, see Saady, 2013). However, in this study, H2 seems to be consumed faster351

under thermophilic (from 48 to 65 °C) as compared to mesophilic (37 °C) conditions (Figure 1),352

suggesting that homoacetogenic microorganisms were mainly thermophiles or moderate353

thermophiles. The CO2 concentration in the batch incubations did not decrease as expected in case354

of homoacetogenesis (see Additional file 3). However, this could be explained considering that CO2355

production may occur also through non-hydrogenic pathways, mainly the ethanol production356

pathway (Figure 2). In the abiotic negative control, CO2 was also detected, together with acetate, at357

both 55 and 70 °C, where H2 production was not observed (see Additional file 1), suggesting that358
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other non-hydrogenic, CO2 producing pathways other than ethanol production could have occurred359

as well.360

361

Homoacetogens are among the most phylogenetically diverse functional groups of bacteria (Drake362

et al., 2006). Among the thermophiles, Moorella thermoacetica, which accounted for 5% of the363

suspended active community at 55 °C and 6% of the attached active community at 65 °C (Figure 3),364

is a known homoacetogenic bacterium with an optimum growth temperature of 55 to 60 °C (Drake365

et al., 2006). Also Clostridium sp. have been previously found in thermophilic fermentative reactors366

and associated with homoacetogenesis (Ryan et al., 2008). It is plausible that the shift to autotrophic367

metabolism (e.g. homoacetogenesis) occurred after substrate depletion, as suggested by Oh et al.368

(2003).369

370

4.2 CODtot balance and metabolite production371

The CODtot measured in the beginning of the incubations (Table 3) was 15% lower than the value372

obtained while characterizing the TMP wastewater (Table 1). Apparently, some biological or non-373

biological reaction occurred while storing the TMP wastewater at 4 °C before the experiment,374

resulting in a slight CODtot concentration decrease. The CODtot removal efficiency during the375

incubations was 69 to 80% regardless the incubation temperature (Table 3). It is in line with the376

CODtot removal from anaerobic digestion of pulp and paper wastewater reported in the literature377

(Meyer and Edwards, 2014), but higher than expected for dark fermentation which usually removes378

only 30 to 40% of the CODtot (Sharma and Li, 2010). This was due to the adsorption of VFAs on379

the activated carbon (see Additional file 2), which caused an overestimation of the CODtot removal.380

However, it should be noted that the adsorption experiment (see Additional file 2) was performed381

with fresh activated carbon, whereas the main experiment was conducted with biofilm-covered382

activated carbon. The latter could have been partially saturated with VFAs at the moment of383
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inoculation, as VFAs were produced in the FBR from where the inoculum originated (Dessì et al.,384

2018).385

386

In the temperature range 42 to 65 °C, more than 85% of the residual CODtot was detected as acetate,387

butyrate or ethanol by HPLC analysis (Table 3). However, 30 to 37% of the residual CODtot was388

not detected as compounds identified by HPLC analysis after incubation at 37, 70 and 80 °C, and389

even 58% of the residual CODtot was not identified after incubation at 74 °C. At 74 and 80 °C, most390

of the undetected CODtot is likely constituted by polysaccharides such as cellulose, which were not391

degraded due to the lack of bacterial activity at such high temperatures. At 74 and 80 °C, CO2 was392

also not produced (see Additional file 3), supporting this conclusion. Lignocellulosic materials can393

release VFAs at temperatures around 80 °C (Veluchamy and Kalamdhad, 2017), suggesting that the394

acetate and butyrate detected at 74 and 80 °C (Figure 2) were produced physically rather than395

biologically.396

397

The simultaneous production of acetate and butyrate suggests that H2 was produced via both the398

acetate and butyrate pathway in the temperature range 37 to 70 °C. Acetate was the main metabolite399

found in the liquid phase at all temperatures tested, excluding 74 and 80 °C (Figure 2), and was400

associated either to H2 production through the acetate dark fermentative pathway or H2401

consumption by homoacetogenesis. Interestingly, acetate production increased with temperature in402

the range of 37 to 55 °C, and then decreased stepwise for temperatures above 55 °C (Figure 2). In403

particular, the high (> 0.7 g CODtot L-1) acetate (Figure 2) and concomitant low (< 0.5 mmol g-1404

CODtot) cumulative H2 yield (Figure 1) suggest that the optimum growth temperature for405

homoacetogenic bacteria was about 55 °C in this study. At 70 °C, however, the H2 produced was406

not consumed during the incubation (Figure 1), suggesting inhibition of homoacetogenic407

microorganisms.408

409
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Solventogenesis occurred both in mesophilic (37 and 42 °C) and thermophilic (59, 65, and 70 °C)410

batch cultures, resulting in ethanol production (Figure 2). Clostridium sp., which dominated the411

active microbial communities under mesophilic conditions (Figure 3), may shift its metabolism412

from acidogenesis to solventogenesis as response to a change of pH or volatile fatty acids413

concentration, but the mechanism which triggers solventogenesis is not well understood (Kumar et414

al., 2013). A pure culture of T. thermosaccharolyticum has been reported to produce ethanol415

together with acetate and butyrate by dark fermentation of cellulose and complex lignocellulosic416

substrates such as corn cob, corn straw and wheat straw (Cao et al., 2014). Similarly, in this study,417

acetate, butyrate and ethanol were the main metabolites (Figure 2) of the dark fermentation of TMP418

wastewater at 65 and 70 °C by a mixed culture dominated by T. thermosaccharolyticum (Figure 3;419

Table 4).420

421

4.3 Practical implications422

Hydraulic retention times lower than 24 hours are typically used for dark fermentation of423

wastewater (Lin et al., 2012). Therefore, based on the results obtained (Figure 1), dark fermentation424

of TMP wastewater at 37 and 65 °C appears favourable if suspended biomass bioreactors are used,425

as homoacetogenic bacteria would be flushed out (Figure 1). However, due to the high dilution of426

TMP wastewater, bioreactors retaining high active biomass content, such as FBRs or  upflow427

anaerobic sludge bioreactors (UASBs), would enable higher organic loading and conversion rates428

than suspended biomass bioreactors (Koskinen et al., 2006). Therefore, dark fermentation of TMP429

in attached biomass bioreactors at 70 °C is recommended (Figure 1). A proper insulation and430

temperature control are nevertheless necessary to keep accurately 70 °C in the bioreactor, as a431

decrease of 5 °C may already result in a decreased efficiency due to H2 consumption by432

homoacetogenic bacteria. However, H2 production at 70 °C can be quickly restored in case of433

failure of the temperature control. In fact, H2 production was detected at 70 °C within only 24 h434

(Figure 1) with a thermophilic inoculum previously stored at 4 °C for one week.435
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436

Despite the surprisingly high CODtot removal efficiency of 69 to 80 % obtained in this study (Table437

3), dark fermentation of TMP wastewater resulted in the generation of an effluent containing 0.5 –438

1.0 g CODtot L-1 (Table 3), mainly in the form of VFAs, thus requiring further treatment prior to be439

discharged. Such effluent can be either treated by a traditional activated sludge plant, or further440

valorised by producing energy or high value chemicals. Promising strategies for the valorisation of441

dark fermentation effluents include further H2 production by photofermentation or microbial442

electrolysis cells, methane production by anaerobic digestion, and bioplastics or electricity443

production using microbial fuel cells (for reviews, see Ghimire et al., 2015 and Bundhoo, 2017).444

445

5. Conclusions446

Hydrogen was produced by dark fermentation from TMP wastewater at a wide range of447

temperatures (37 to 70 °C) using a mixed microbial community enriched on xylose at thermophilic448

conditions. An operation temperature of 70 °C was the most favourable for dark fermentative H2449

production and effectively repressed the activity of homoacetogenic bacteria. Therefore,450

considering that TMP wastewater is produced at elevated temperature, dark fermentation at 70 °C451

may be a cost-effective approach for the treatment and valorisation of this wastewater. Temperature452

must be efficiently controlled, as a shift of only a few degrees may decrease the H2 yield.453
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Acknowledgements455

This work was supported by the Marie Skłodowska-Curie European Joint Doctorate (EJD) in456

Advanced Biological Waste-To-Energy Technologies (ABWET) funded from Horizon 2020 under457

grant agreement no. 643071.458

459

References460

APHA, 1998. Standard Methods for the Examination of Water and Wastewater, twentieth ed.461



19

American Public Health Association/American Water Works Association/Water Environment462

Federation, Washington DC.463

Ashrafi, O., Yerushalmi, L., Haghighat, F., 2015. Wastewater treatment in the pulp-and-paper464

industry: A review of treatment processes and the associated greenhouse gas emission. J.465

Environ. Manage. 158, 146–157.466

Badiei, M., Jahim, J.M., Anuar, N., Abdullah, S.R.S., 2011. Effect of hydraulic retention time on467

biohydrogen production from palm oil mill effluent in anaerobic sequencing batch reactor. Int.468

J. Hydrogen Energy 36, 5912–5919.469

Baêta, B.E.L., Cordeiro, P.H. de M., Passos, F., Gurgel, V.A.L., de Aquino, S.F., Fdz-Polanco, F.,470

2017. Steam explosion pretreatment improved the biomethanization of coffee husks.471

Bioresour. Technol. 245, 66–72.472

Boodhun, B.S.F., Mudhoo, A., Kumar, G., Kim, S.-H., Lin, C.-Y., 2017. Research perspectives on473

constraints, prospects and opportunities in biohydrogen production. Int. J. Hydrogen Energy474

42, 27471–27481.475

Box, G.E.P., Hunter, W.G., Hunter, J.S., 1978. Statistics for experimenters: An introduction to476

design, data analysis, and model building. John Wiley and sons.477

Bundhoo, Z.M.A., 2017. Coupling dark fermentation with biochemical or bioelectrochemical478

systems for enhanced bio-energy production: A review. Int. J. Hydrogen Energy 42, 26667–479

26686.480

Cao, G.-L., Zhao, L., Wang, A.-J., Wang, Z.-Y., Ren, N.-Q., 2014. Single-step bioconversion of481

lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol. Biofuels482

7, 82.483

Cao, G., Ren, N., Wang, A., Guo, W., Xu, J., Liu, B., 2010. Effect of lignocellulose-derived484

inhibitors on growth and hydrogen production by Thermoanaerobacterium485

thermosaccharolyticum W16. Int. J. Hydrogen Energy 35, 13475–13480.486

De Vrieze, J., Regueiro, L., Props, R., Vilchez-Vargas, R., Jáuregui, R., Pieper, D.H., Lema, J.M.,487



20

Carballa, M., 2016. Presence does not imply activity: DNA and RNA patterns differ in488

response to salt perturbation in anaerobic digestion. Biotechnol. Biofuels 9, 244.489

Dessì, P., Lakaniemi, A.-M., Lens, P.N.L., 2017. Biohydrogen production from xylose by fresh and490

digested activated sludge at 37, 55 and 70 °C. Water Res. 115, 120–129.491

Dessì, P., Porca, E., Waters, N.R., Lakaniemi, A.-M., Collins, G., Lens, P.N.L., 2018. Thermophilic492

versus mesophilic dark fermentation in xylose-fed fluidised bed reactors: Biohydrogen493

production and active microbial community. Int. J. Hydrogen Energy 43, 5473–5485.494

Doddapaneni, T.R.K.C., Jain, R., Praveenkumar, R., Rintala, J., Romar, H., Konttinen, J., 2018.495

Adsorption of furfural from torrefaction condensate using torrefied biomass. Chem. Eng. J.496

334, 558–568.497

Drake, H.L., Küsel, K., Matthies, C., 2006. Acetogenic Prokaryotes, in: Springer (Ed.), The498

Prokaryotes. New York, pp. 354–420.499

Eker, S., Sarp, M., 2017. Hydrogen gas production from waste paper by dark fermentation: Effects500

of initial substrate and biomass concentrations. Int. J. Hydrogen Energy 42, 2562–2568.501

Ekstrand, E.-M., Larsson, M., Truong, X.-B., Cardell, L., Borgström, Y., Björn, A., Ejlertsson, J.,502

Svensson, B.H., Nilsson, F., Karlsson, A., 2013. Methane potentials of the Swedish pulp and503

paper industry – A screening of wastewater effluents. Appl. Energy 112, 507–517.504

Elsharnouby, O., Hafez, H., Nakhla, G., El Naggar, M.H., 2013. A critical literature review on505

biohydrogen production by pure cultures. Int. J. Hydrogen Energy 38, 4945–4966.506

Gadow, S.I., Jiang, H., Hojo, T., Li, Y.-Y., 2013. Cellulosic hydrogen production and microbial507

community characterization in hyper-thermophilic continuous bioreactor. Int. J. Hydrogen508

Energy 38, 7259–7267.509

Gao, W.J., Han, M.N., Xu, C.C., Liao, B.Q., Hong, Y., Cumin, J., Dagnew, M., 2016. Performance510

of submerged anaerobic membrane bioreactor for thermomechanical pulping wastewater511

treatment. J. Water Process Eng. 13, 70–78.512

Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., Esposito, G., 2015. A513



21

review on dark fermentative biohydrogen production from organic biomass: Process514

parameters and use of by-products. Appl. Energy 144, 73–95.515

Griffiths, R.I., Whiteley, A.S., O’Donnell, A.G., Bailey, M.J., 2000. Rapid method for coextraction516

of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-517

based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491.518

Jung-Yeol, L., Chen, X.-J., Lee, E.-J., Min, K.-S., 2012. Effects of pH and carbon sources on519

biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides.520

J. Microbiol. Biotechnol. 22, 400–406.521

Jönsson, L.J., Alriksson, B., Nilvebrant, N.-O., 2013. Bioconversion of lignocellulose: inhibitors522

and detoxification. Biotechnol. Biofuels 6, 16.523

Karadag, D., Puhakka, J.A., 2010. Effect of changing temperature on anaerobic hydrogen524

production and microbial community composition in an open-mixed culture bioreactor. Int. J.525

Hydrogen Energy 35, 10954–10959.526

Khongkliang, P., Kongjan, P., Utarapichat, B., Reungsang, A., O-Thong, S., 2017. Continuous527

hydrogen production from cassava starch processing wastewater by two-stage thermophilic528

dark fermentation and microbial electrolysis. Int. J. Hydrogen Energy 42, 27584–27592.529

Kinnunen, V., Ylä-Outinen, A., Rintala, J., 2015. Mesophilic anaerobic digestion of pulp and paper530

industry biosludge–long-term reactor performance and effects of thermal pretreatment. Water531

Res. 87, 105–111.532

Koskinen, P.E.P., Kaksonen, A.H., Puhakka, J.A., 2006. The Relationship Between Instability of H2533

Production and Compositions of Bacterial Communities Within a Dark Fermentation534

Fluidized-Bed Bioreactor. Biotechnol. Bioeng. 97, 742–758.535

Kumar, G., Sivagurunathan, P., Sen, B., Mudhoo, A., Davila-Vazquez, G., Wang, G., Kim, S.-H.,536

2017. Research and development perspectives of lignocellulose-based biohydrogen production.537

Int. Biodeterior. Biodegradation 119, 225–238.538

Kumar, M., Gayen, K., Saini, S., 2013. Role of extracellular cues to trigger the metabolic phase539



22

shifting from acidogenesis to solventogenesis in Clostridium acetobutylicum. Bioresour.540

Technol. 138, 55–62.541

Lakshmidevi, R., Muthukumar, K., 2010. Enzymatic saccharification and fermentation of paper and542

pulp industry effluent for biohydrogen production. Int. J. Hydrogen Energy 35, 3389–3400.543

Li, C., Fang, H.H.P., 2007. Fermentative hydrogen production from wastewater and solid wastes by544

mixed cultures. Crit. Rev. Environ. Sci. Technol. 37, 1–39.545

Lin, C.-Y., Lay, C.-H., Sen, B., Chu, C.-Y., Kumar, G., Chen, C.-C., Chang, J.-S., 2012.546

Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J.547

Hydrogen Energy 37, 15632–15642.548

Liu, B., Zhang, Y., Zhang, W., 2014. RNA-seq-based analysis of cold shock response in549

Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein550

encoding gene. PLoS One 9, 3.551

Logan, B.E., Oh, S.-E., Kim, I.S., Van Ginkel, S., 2002. Biological hydrogen production measured552

in batch anaerobic respirometers. Environ. Sci. Technol. 36, 2530–2535.553

Lucas, S.D.M., Peixoto, G., Mockaitis, G., Zaiat, M., Gomes, S.D., 2015. Energy recovery from554

agro-industrial wastewaters through biohydrogen production: Kinetic evaluation and555

technological feasibility. Renew. Energy 75, 496–504.556

Machani, M., Nourelfath, M., D’Amours, S., 2014. A mathematically-based framework for557

evaluating the technical and economic potential of integrating bioenergy production within558

pulp and paper mills. Biomass and Bioenergy 63, 126–139.559

Marone, A., Ayala-Campos, O.R., Trably, E., Carmona-Martínez, A.A., Moscoviz, R., Latrille, E.,560

Steyer, J.-P., Alcaraz-Gonzalez, V., Bernet, N., 2017. Coupling dark fermentation and561

microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters562

and by-products in a bio-refinery framework. Int. J. Hydrogen Energy 42, 1609–1621.563

Meyer, T., Edwards, E.A., 2014. Anaerobic digestion of pulp and paper mill wastewater and sludge.564

Water Res. 65, 321–349.565



23

Moncada B., J., Aristizábal M., V., Cardona A., C.A., 2016. Design strategies for sustainable566

biorefineries. Biochem. Eng. J. 116, 122–134.567

Nissilä, M.E., Li, Y.-C., Wu, S.-Y., Lin, C.-Y., Puhakka, J.A., 2012. Hydrogenic and methanogenic568

fermentation of birch and conifer pulps. Appl. Energy 100, 58–65.569

Oh, S.-E., Van Ginkel, S., Logan, B.E., 2003. The relative effectiveness of pH control and heat570

treatment for enhancing biohydrogen gas production. Environ. Sci. Technol. 37, 5186–90.571

Owen, W.F., Stuckey, D.C., Healy Jr., J.B., Young, L.Y., McCarty, P.L., 1979. Bioassay for572

monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485–492.573

Pokhrel, D., Viraraghavan, T., 2004. Treatment of pulp and paper mill wastewater—A review. Sci.574

Total Environ. 333, 37–58.575

Ren, N., Cao, G., Wang, A., Lee, D., Guo, W., Zhu, Y., 2008. Dark fermentation of xylose and576

glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int. J.577

Hydrogen Energy 33, 6124–6132.578

Rintala, J.A., Lepistö, S.S., 1992. Anaerobic treatment of thermomechanical pulping whitewater at579

35-70°C. Water Res. 26, 1297–1305.580

Rintala, J.A., Puhakka, J.A., 1994. Anaerobic treatment in pulp- and paper-mill waste management:581

A review. Bioresour. Technol. 47, 1–18.582

Ryan, P., Forbes, C., Colleran, E., 2008. Investigation of the diversity of homoacetogenic bacteria583

in mesophilic and thermophilic anaerobic sludges using the formyltetrahydrofolate synthetase584

gene. Water Sci. Technol. 57, 675–680.585

Saady, N.M.C., 2013. Homoacetogenesis during hydrogen production by mixed cultures dark586

fermentation: Unresolved challenge. Int. J. Hydrogen Energy 38, 13172–13191.587

Sharma, Y., Li, B., 2010. Optimizing energy harvest in wastewater treatment by combining588

anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC). Int. J.589

Hydrogen Energy 35, 3789–3797.590

Toppinen, A., Pätäri, S., Tuppura, A., Jantunen, A., 2017. The European pulp and paper industry in591



24

transition to a bio-economy: A Delphi study. Futures 88, 1–14.592

Van Haandel, A., Van der Lubbe, J., 2012. Handbook of biological wastewater treatment: Design593

and Optimisation of Activated Sludge Systems. Quist Publishing, Leidschendam, The594

Netherlands.595

Veluchamy, C., Kalamdhad, A.S., 2017. Enhancement of hydrolysis of lignocellulose waste pulp596

and paper mill sludge through different heating processes on thermal pretreatment. J. Clean.597

Prod. 168, 219–226.598

Verhaart, M.R.A., Bielen, A.A.M., Van der Oost, J., Stams, A.J.M., Kengen, S.W.M., 2010.599

Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea:600

Mechanisms for reductant disposal. Environ. Technol. 31, 993–1003.601

Xie, L., Dong, N., Wang, L., Zhou, Q., 2014. Thermophilic hydrogen production from starch602

wastewater using two-phase sequencing batch fermentation coupled with UASB methanogenic603

effluent recycling. Int. J. Hydrogen Energy 39, 20942–20949.604

605

606

607

608

609

610

611

612



25

Figures613

Figure 1 – Hydrogen yield from batch incubation of thermomechanical pulping wastewater at614

various temperatures (37 to 80 °C) using thermophilic biofilm-containing activated carbon as615

inoculum. Error bars refer to the standard deviations of the duplicates.616

617

618

619

620

621

622

623

624

625



26

Figure 2 – Composition and pH of the liquid phase after 111 h of incubation of thermomechanical626

pulping wastewater at various temperatures (37 to 80 °C) using thermophilic biofilm-containing627

activated carbon as inoculum. Error bars refer to the standard deviations of the duplicates.628
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Figure 3 – Relative abundance of the active genera resulting from MiSeq sequencing of the partial640

16S rRNA (transcribed to 16S cDNA) on microbiological samples obtained from the biofilm-641

containing activated carbon (attached) and from the liquid medium (suspended) after batch642

incubation with thermomechanical pulping wastewater at various temperatures (37 to 70 °C). The643

microbial genera are listed in order of relative abundance. Samples at 74 and 80 °C could not be644

analysed due to the low RNA concentration present in the samples.645
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Table 1 - Composition of the thermomechanical pulping wastewater used in this study652

Parameter Concentration

(mg L-1)

Total solids 3771 ± 10

Volatile solids 2452 ± 8

Total COD 3352 ± 82

Soluble COD 3289 ± 54

Total nitrogen < 10

Total PO4
3--P 2.8

Acetate < 30

Furfural < 10

Glucose 43 (± 2)

Xylose 38 (± 0)

653
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Table 2 - Maximum and final hydrogen yield obtained from batch incubation of thermomechanical662

pulping wastewater at various temperatures (37 to 80 °C) using thermophilic biofilm-containing663

activated carbon as inoculum664

Temperature

(°C)

H2 yield (mmol H2 g-1 CODtot

supplied)

H2 yield (mmol H2 g-1

CODtot consumed)

Lag timea

(h)

Maximum Final Final

37 3.2 (± 0.1) 1.4 (± 0.1) 1.9 (± 0.2) 23

42b 1.5 0.6 1.3 63

48 0.6 (± 0.1) 0.1 (± 0.0) 0.1 (± 0.0) 18

55 0.4 (± 0.1) 0.0 (± 0.0) 0.0 (± 0.0) 12

59 1.7 (± 0.8) 0.6 (± 0.3) 0.9 (± 0.5) 18

65 3.7 (± 0.4) 1.8 (± 0.2) 2.6 (± 0.3) 36

70 3.6 (± 0.1) 3.6 (± 0.1) 4.9 (± 0.4) 90

74 0.1 (± 0.0) 0.1 (± 0.0) 0.2 (± 0.0) n.a.c

80 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0) n.a.

a Time required to reach the maximum H2 yield;665

b H2 was produced only in one of the duplicate tubes;666

c Not applicable.667

668
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Table 3 - CODtot balances after incubation of thermomechanical pulping wastewater at various675

temperatures (37 to 80 °C) using thermophilic biofilm-containing activated carbon as inoculum676

Temperature

(°C)

Final CODtot

measureda

(g L-1)

Final CODtot

estimatedb

(g L-1)

Difference

(measured –

estimated)

CODtot

removal

(%)c

37 0.79 (± 0.00) 0.60 (± 0.04) 0.19 (± 0.04) 72.5

42 0.58 (± 0.23) 0.66 (± 0.12) -0.08 (± 0.11) 79.7

48 0.70 (± 0.01) 0.67 (± 0.00) 0.03 (± 0.02) 75.7

55 0.82 (± 0.14) 0.90 (± 0.22) -0.07 (± 0.08) 71.2

59 0.84 (± 0.03) 0.88 (± 0.01) -0.04 (± 0.04) 70.7

65 0.80 (± 0.04) 0.70 (± 0.03) 0.10 (± 0.00) 72.0

70 0.73 (± 0.10) 0.54 (± 0.03) 0.20 (± 0.07) 74.3

74 0.88 (± 0.06) 0.37 (± 0.00) 0.51 (± 0.07) 69.4

80 0.62 (± 0.06) 0.41 (± 0.02) 0.21 (± 0.05) 78.4

a Data obtained by measurement according to the standard procedure; the initial CODtot was 2.86 g L-1;677

b Data obtained by the sum of the CODtot equivalents (Eq. 1) of organic compounds measured in the liquid678

phase;679

c Calculated from CODtot measured.680

681

682

683
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Table 4 - Association of the six most abundant 16S rRNA gene sequences to species collected in686

the GenBank687

Family Genus and speciesa Accession

number

Matching

sequenceb

Similarity

(%)c

Thermoanaerobacteraceae Thermoanaerobacterium

thermosaccharolyticum

JX984971 474-765 99

Clostridiaceae Clostridium sp. AY548785 450-741 99

Bacillaceae Bacillus coagulans MF373392 512-803 100

Bacillaceae Calditerricola

yamamurae

NR_112684 529-820 92

Thermoanaerobacteraceae Caldanaerobius sp. LC127102 482-773 99

Thermoanaerobacteraceae Moorella thermoacetica CP017237 145404-145695 100

a Closest cultured species in GenBank;688

b Section of the 16S rRNA gene (in bp) matching the sequence obtained by MiSeq analysis;689

c Percentage of identical nucleotide pairs between the 16S rRNA gene sequence and the closest cultured690

species in GenBank.691



Additional file 1 –CO2 yield profiles (a) and acetate yield after 111 h of incubation (b) obtained in 

the abiotic batch incubation of thermomechanical pulping wastewater at 37, 55 and 70 °C. H2 was 

not detected at any of the temperatures tested. Error bars refer to the standard deviations of the 

duplicates. 

 



Additional file 2 – VFA adsorption on activated carbon. Acetate and butyrate concentration before 

and after 111 h of incubation with fresh activated carbon at 42, 65 and 80 °C. The initial 

concentration of VFAs was chosen hypothesizing that only 40% of the 2.86 g CODtot L-1 was 

removed through dark fermentation, and equally distributing the remaining 1.71 g CODtot L-1 

between acetate and butyrate. Error bars refer to the standard deviations of the duplicates. 

 



Additional file 3 – CO2 yield from batch incubation of thermomechanical pulping wastewater at 

various temperatures (37 to 80 °C) using thermophilic biofilm-containing activated carbon as 

inoculum. Error bars refer to the standard deviations of the duplicates. 
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role of the attached and
planktonic microbial communities in mesophilic
and thermophilic xylose-fed microbial fuel cells†

Paolo Dess̀ı, *a Estefania Porca,b Johanna Haavisto,a Aino-Maija Lakaniemi, a

Gavin Collins b and Piet N. L. Lens ac

A mesophilic (37 �C) and a thermophilic (55 �C) two-chamber microbial fuel cell (MFC) were studied and

compared for their power production from xylose and the microbial communities involved. The anode-

attached, membrane-attached, and planktonic microbial communities, and their respective active

subpopulations, were determined by next generation sequencing (Illumina MiSeq), based on the

presence and expression of the 16S rRNA gene. Geobacteraceae accounted for 65% of the anode-

attached active microbial community in the mesophilic MFC, and were associated to electricity

generation likely through direct electron transfer, resulting in the highest power production of

1.1 W m�3. A lower maximum power was generated in the thermophilic MFC (0.2 W m�3), likely due to

limited acetate oxidation and the competition for electrons by hydrogen oxidizing bacteria and

hydrogenotrophic methanogenic archaea. Aerobic microorganisms, detected among the membrane-

attached active community in both the mesophilic and thermophilic MFC, likely acted as a barrier for

oxygen flowing from the cathodic chamber through the membrane, favoring the strictly anaerobic

exoelectrogenic microorganisms, but competing with them for xylose and its degradation products. This

study provides novel information on the active microbial communities populating the anodic chamber of

mesophilic and thermophilic xylose-fed MFCs, which may help in developing strategies to favor

exoelectrogenic microorganisms at the expenses of competing microorganisms.
1. Introduction

The microbial fuel cell (MFC) is an emerging technology for the
direct bioconversion of chemical energy of organic substrates to
electrical energy. MFCs consist of two electrodes (anode and
cathode) connected through an external electrical circuit. The
anode acts as electron acceptor in the bioelectrochemical redox
reactions of microbial metabolism, whereas the cathode acts as
electron donor for biotic or abiotic reactions. The combination
of anodic and cathodic reactions creates a potential difference
between the electrodes which drives the electrons to migrate
from the anode to the cathode, thus generating electrical
current (for a review, see Butti et al.1).

Biological electricity production in MFCs requires microor-
ganisms capable to oxidize the substrates and transfer the
g, Tampere University of Technology, P.O.

: paolo.dessi@tut.; Tel: +358 417239696

of Natural Sciences, National University

, H91 TK33, Ireland

tion, Westvest 7, 2611AX Del, The
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hemistry 2018
electrons exogenously to the solid anode electrode. Electrons
can be transferred to the anode essentially through three
mechanisms: short range, long range, and mediated electron
transfer (for reviews, see Kumar et al.2 and Kalathil et al.3). Some
microorganisms, such as Geobacter sulfurreducens, can transfer
electrons to a surface directly via redox-active proteins present
on the outer surface of their cell membrane, such as c-type
cytochromes, or via conductive pili called nanowires.4,5 G. sul-
furreducens develops multi-layer structured biolms, in which
nanowires connect the different cells, enabling the electron
transfer to the anode.6 Mediators, in their oxidized form,
penetrate the microbial cell and become reduced during
cellular metabolism. They then diffuse out of the cell and
release the electrons at the anode, becoming oxidized again and
thus reusable.5 Some species, such as Pseudomonas, produce
mediators such as pyocyanin endogenously.7 Once mediators
are produced, also other microorganisms present in the mixed
culture system can use them to transfer the electrons to the
anode.8

Pure cultures of electrochemically active microorganisms,
such as Geobacter sp.9–11 and Shewanella sp.,12,13 have shown
power production from simple substrates such as volatile fatty
acids and sugars at mesophilic conditions (25–37 �C) and
neutral pH (6.8–7.3). Mixed cultures are more practical for
RSC Adv., 2018, 8, 3069–3080 | 3069
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wastewater treatment, as they contain a consortium of hydro-
lytic, fermentative and electroactive microorganisms able to
produce electricity from complex substrates.9 However, due to
the competition for electron donor with non-exoelectrogenic
microorganisms such as methanogenic archaea,14 power
production can remain low, and operational conditionsmust be
optimized to favor exoelectrogenic microorganisms. Catal
et al.15 compared electricity production from 12 mono-
saccharides present in lignocellulosic biomass, including
pentoses and hexoses, in a mesophilic (30 �C) MFC inoculated
with a mixed culture adapted to acetate. Xylose resulted in the
highest potential for electricity production over the other
hexoses and pentoses tested.

Thermophilic electricity production could be advantageous
because of the high rate of biochemical reactions, and thus high
electron production rates, of thermophilic microorganisms.16

MFCs have been operated at temperatures up to 98 �C.17

However, although over 20 species of microorganisms, mainly
belonging to the Proteobacteria phylum, have been reported to
produce electricity under mesophilic conditions, the number of
known thermophilic exoelectrogenic microorganisms is much
lower.18 To date, only few species have been reported to produce
electricity at thermophilic conditions, including Firmicutes such
as Caloramator australicus,18 Thermincola potens,19 Thermincola
ferriacetica,20 and Thermoanaerobacter pseudethanolicus,21 as
well as Deferribacteres such as Calditerrivibrio nitroreducens.22

Investigating the composition of the active subpopulation,
rather than the whole microbial community, is crucial in
understanding the role of microorganisms in MFCs. DNA-based
methods may drive to erroneous conclusions in the detection of
the key species in bioreactors.23 Previously performed microbial
community analyses have, nevertheless, mainly targeted the
presence of the 16S rRNA gene (DNA) whereas, to our knowl-
edge, only one study19 has also focused on 16S rRNA gene
expression (RNA), which is an indicator of the microbial
activity.23 Furthermore, especially in studies on thermophilic
MFCs, microbial community analyses have mainly focused on
the anode-attached microbial community, lacking information
on the planktonic microbial community. The latter community
could be involved in electricity generation as well, either
directly, by performing mediated electron transfer to the
anode24 or indirectly, by converting the substrates to
compounds readily available for the exoelectrogenic
microorganisms.

In addition, the membrane is a suitable surface for the
establishment of a biolm. Although biofouling of the
membrane has been reported in MFC studies,14,25 only Lu et al.26

have reported the composition of a membrane-attached
microbial community in two brewery wastewater-fed MFCs
operated in series at ambient temperature (20–22 �C). However,
the microbial community analysis was performed only at DNA
level, and the role of the membrane-attached microorganisms
detected on the MFC performance was not discussed.26

Although likely not directly involved in electricity generation,
membrane-attached microorganisms may have a role in the
functioning of MFCs, which must be elucidated. Therefore, the
aim of this study was to investigate the microbial communities
3070 | RSC Adv., 2018, 8, 3069–3080
growing (i) as anodic biolm, (ii) in suspended form in the
anodic solution (planktonic), and (iii) as biolm on the
membrane of a mesophilic (37 �C) and a thermophilic (55 �C)
xylose-fed MFC. Both presence and expression of the 16S rRNA
gene were determined with the aim to investigate both the
composition of the overall microbial community and the active
subpopulation. Power production, as well as xylose and
metabolite concentration proles were also analyzed to deter-
mine the possible differences in the electricity production
pathways at 37 and 55 �C.

2. Experimental
2.1 Source of anodic microorganisms

In order to ensure a large variety of microbial species capable of
living under a broad temperature range and degrading xylose,
two inocula (15 mL each) were mixed and provided to each
MFC. The rst one was activated sludge from a municipal
wastewater treatment plant (Viinikanlahti, Tampere, Finland),
which has shown potential for anaerobic energy production in
the form of dark fermentative hydrogen production at temper-
atures up to 55 �C.27 The second one was anolyte from a xylose-
fed MFC operating at 37 �C.28 The volatile solids content was
10.6 (�0.2) and 8.4 (�0.5) g L�1 for the activated sludge and the
anolyte, respectively. Themixture of the two inocula was ushed
with N2 for 10 min before introducing into the anode chambers
of the MFCs.

2.2 Anolyte composition

The anolyte was prepared according to Mäkinen et al.,29 but
EDTA, yeast extract, and resazurin were not added. The
substrate was xylose (0.3 or 1 g L�1, as specied in Section 2.4).
The pH was kept at 7 (�0.2) using phosphate buffer. The anolyte
conductivity was 14.6 mS cm�1. The composition of the feeding
solution was the same as the anolyte, but with a 10-times higher
xylose concentration.

2.3 MFC conguration

The h-type two-chamber MFCs were constructed by connecting
two glass bottles (Adams & Chittenden Scientic Glass, USA)
separated by an anion exchange membrane (AMI-7001,
Membranes International Inc., USA) with a diameter of
5.2 cm. The total volume of the anodic and the cathodic
chamber was 350 mL each. The anode was a carbon brush (5 cm
length and 1.5 cm diameter), while the cathode was a carbon
cloth (5 � 4 cm) coated with approximately 20 mg of a Pt-based
catalyst (20% platinum on Vulcan XC-72R carbon, E-TEK, USA).
The two electrodes were connected through an external resis-
tance of 100 U. A reference electrode (BASi RE-5B Ag/AgCl) was
inserted into the anodic chamber, close to the anode. The
anodic chamber was lled with the anolyte (270 mL) and
inoculum (30 mL), and its content was continuously mixed by
magnetic stirring. The cathodic chamber was lled with milliQ
water (300 mL), and oxygen was provided as the terminal elec-
tron acceptor by pumping air from outside using an aquarium
air pump (Marina 50) at a ow rate of 130 mL min�1. In the
This journal is © The Royal Society of Chemistry 2018
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mesophilic MFC, the water lost by evaporation (circa
15 mL per day) was replaced manually every 1–2 days. In the
thermophilic MFC, due to the faster evaporation (circa
50 mL per day), the water was replaced daily through a pump
connected to a timer. Temperature of the mesophilic and
thermophilic MFC was kept at 37 (�2) �C and 55 (�2) �C,
respectively, by using two incubators (Memmert, Germany).

2.4 MFC operation

Both MFCs were operated in fed-batch mode. The feeding steps
were done by replacing 30mL of anolyte (10% of the total volume)
with 30 mL of the feeding solution. In order to avoid substrate
overload in the start-up phase, the rst six fed-batch cycles were
conducted with an initial xylose concentration of 0.3 g L�1. The
initial xylose concentration was then increased to 1.0 g L�1 for the
following eleven fed-batch cycles, referred to as I–XI. In the
results section, day 0 refers to the rst day of operation with
a xylose concentration of 1 g L�1. The MFCs were fed every 5–6
days when the initial xylose concentration was 0.3 g L�1, and
every 7–8 days when initial xylose concentration was 1.0 g L�1.

2.5 Sampling

Anolyte samples were collected at the beginning and at the end
of every feeding step. During the feeding step “IX” (from day 55
to day 61) anolyte samples were collected at various time points
to determine the COD, xylose and volatile fatty acids concen-
tration proles. Biomass samples from both MFCs were
collected at the end of the experiment (day 72) from three
different sampling points: anodic electrode (anode-attached),
membrane (membrane-attached) and anolyte (planktonic).
The anodic electrode and the membranes were taken out of the
MFC, put into 50 mL sterile Falcon tubes with about 30 mL of
autoclaved 0.9% NaCl solution, sonicated for 2 minutes at 50–
60 Hz (Finnsonic, Finland) and strongly shaken in order to
detach as much biolm as possible. The two resulting samples,
as well as a sample of the anolyte, were concentrated by
consecutive centrifugation cycles (10 min, 5000 rpm) in 5 mL
sterile Eppendorf tubes using a Sigma 4k145 centrifuge. The
resulting pellets were re-suspended in 5 mL autoclaved 0.9%
NaCl solution and stored at �85 �C until carrying out the
microbial community analyses.

2.6 Analytical methods

Voltage and anodic potential were measured with a data logger
(Agilent 34970A, Agilent technologies, Canada) at 2 minutes
intervals. The anodic potential was measured against the Ag/
AgCl reference electrode. Soluble COD was measured using the
dichromate method according to the Finnish standard SFS 5504.
Anolyte conductivity and pH were measured with a conductivity
meter (WTW inoLab, Germany) and a pH meter (WTW pH 330
meter with Hamilton Slimtrode probe), respectively. Dissolved
oxygen in the cathodic chamber was measured by a multi-
parameter meter (HQ40d) with a standard luminescent/optical
dissolved oxygen probe (IntelliCAL). Xylose, volatile fatty acids,
and alcohols were measured by a high performance liquid
chromatography (HPLC) system equipped with a Rezex RHM-
This journal is © The Royal Society of Chemistry 2018
monosaccharide column (Phenomenex, USA) as described
earlier by Dess̀ı et al.27 Some of the chromatograms obtained are
provided as an example in the ESI (Fig. S1†).
2.7 Coulombic efficiency, power and polarization curves

Coulombic efficiency (CE) was calculated according to Oh
et al.,30 accounting 20 mol electrons exchanged per mol of
xylose, according to the following equation:

C5H10O5 + 5H2O / 5CO2 + 20H+ + 20e� (1)

Power and polarization curves were obtained on day 64 and
71 from the mesophilic and thermophilic MFC, respectively.
The electrical circuit was kept open for 30 minutes before the
analysis to obtain the open circuit voltage (OCV). The circuit was
then closed through a resistor box (TENMA 72-7270, Taiwan)
and the resistance was decreased stepwise from 15 kU to 5 U at
30 minute intervals. Voltage was recorded just before switching
the resistance. Power density and current density were calcu-
lated as P¼ U2/(R$V) and I¼ U/(R$V), respectively, where U is the
voltage recorded in the data logger, R is the external resistance,
and V is the anolyte volume (300 mL).
2.8 Microbial community analyses

Nucleic acids were co-extracted from the biomass samples using
the method from Griffiths et al.,31 with the following modica-
tions: 3 M sodium acetate (1/10 of sample volume) and cold
(�20 �C) 100% isopropanol (1 sample volume) were added for
precipitation instead of polyethelene glycol and nucleic acids
were re-suspended in sterile water instead of tris–EDTA buffer.
DNA and RNA were quantied by a Nanodrop spectrophotometer
(NanoDrop Technologies, Wilmington, USA), and their quality
was assessed by measuring the absorbance ratio at 260/280 nm
and 260/230 nmwavelength. No further treatment was performed
on nucleic acid samples for DNA level analysis. For RNA level
analysis, nucleic acid samples were diluted to a nal concentra-
tion of 25 ng mL�1. DNA was removed by the addition of 1 mL
turbo DNase and 2.5 mL turbo DNase buffer (Invitrogen, Thermo
Fisher, USA), followed by incubation at 37 �C for 30 minutes.
DNase was then inactivated by addition of 2.5 mL DNase inacti-
vator (Invitrogen) and separated from the RNA containing liquid
by centrifugation (10 000 � g, 1.5 minutes). The absence of DNA
was conrmed by bacterial 16S rRNA gene PCR (primers 338f and
805r) followed by electrophoresis in 1% agarose gel (no bands
obtained). Complementary DNA (cDNA) was obtained from RNA
using M-MuLV Reverse Transcriptase (New England BioLabs,
USA), according to the instructions provided by the supplier.
Bacterial 16S rRNA gene PCR was then applied to conrm the
success of the reverse transcription (bands appeared).

Samples of both DNA and cDNA (12 mL) were collected in
a 96-well plate and sent to FISABIO (Valencia, Spain) for partial
16S rRNA genes (DNA) or 16S rRNA (cDNA) high-throughput
sequencing on an Illumina MiSeq platform. Forward and
reverse primers for PCR were 515f and 806r, respectively.32

Sequence screening, alignment to the Silva (v128) database,
clustering, chimeras removal and taxonomic classication (97%
RSC Adv., 2018, 8, 3069–3080 | 3071
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cutoff) were performed using Mothur v1.39.3,33 following the
procedure described by Kozich et al.34 A total of 1,130,353 raw
sequences was obtained from 12 samples, and 1,058,675 passed
the quality lters. Relative abundance and diversity analyses
were performed using the R soware.35 The Illumina
sequencing data was deposited to the NCBI Sequence Read
Archive under BioProject Number PRJNA428321.

3. Results
3.1 Power production in the mesophilic and thermophilic
MFC

Aer the start-up period, the anodic potential in the mesophilic
MFC was reproducible in all of the eleven fed-batch cycles with
a xylose concentration of 1.0 g L�1 (Fig. 1a). It ranged between
�450 mV and�520 mV (vs. Ag/AgCl). The anode potential of the
thermophilic MFC was stable during the rst 20 days of oper-
ation, with a minimum of about �100 mV. It then started to
decrease, reaching a minimum of �230 mV in cycle IX, but
increased again in cycles X and XI (Fig. 1b). A higher power
density was obtained from themesophilic MFC compared to the
thermophilic MFC in the eleven fed-batch cycles (Fig. 1c vs. 1d).
The maximum power density in the mesophilic MFC ranged
between 0.55 W m�3 in cycle IX and 1.0 W m�3 in cycles X and
XI, with a maximum CE of about 12%, while the power density
in the thermophilic MFC rarely exceeded 0.03 W m�3 with
a maximum CE of about 3%.

3.2 Substrate degradation

At the end of all the eleven fed-batch cycles, the concentrations
of xylose and organic metabolites in the anolyte of the
Fig. 1 Anode potential (a, b) and power density (c, d) obtained in the m
different Y-axis scale in the power density graphs (c, d). Roman numbers r
MFCs were previously operated for 33 days (six fed-batch cycles) with a

3072 | RSC Adv., 2018, 8, 3069–3080
mesophilic MFC were below the detection limit of the HPLC.
However, acetate was found in the anolyte of the thermophilic
MFC with a maximum concentration of 0.1 g L�1. Substrate
consumption and metabolite production were monitored more
closely in the fed-batch cycle IX, and compared to the obtained
power density (Fig. 2). In the mesophilic MFC, xylose (1.0 g L�1)
was consumed within 4 hours aer its addition. Acetate and
butyrate (0.2 and 0.1 g L�1, respectively) were detected aer
xylose consumption, but were then consumed within 48 hours.
The soluble COD concentration decreased from 1.3 g L�1 to
a nal concentration of 0.25 g L�1. The power density increased
until xylose was completely depleted, reaching a maximum of
about 0.50 W m�3, then stabilized for about 80 hours before
dropping to <0.05 W m�3 about 30 hours aer the complete
depletion of acetate and butyrate (Fig. 2).

In the thermophilic MFC, xylose was depleted within 12
hours, and the resulting acetate produced reached a maximum
of 0.2 g L�1 aer 22 hours. The acetate concentration remained
stable for about 45 hours aer xylose depletion, before starting
to be slowly consumed to a nal concentration of 0.1 g L�1 aer
143 hours (Fig. 2). The soluble COD concentration also slowly
decreased to a nal concentration of 0.5 g L�1. A power density
peak of 0.03 W m�3 was obtained immediately aer xylose
depletion but, unlike the mesophilic MFC, no sudden power
density drop occurred (Fig. 2).
3.3 Power and polarization curve

Based on the polarization data (Fig. 3), the power density was
higher in the mesophilic MFC than in the thermophilic MFC
regardless of the resistance applied. The maximum power
densities of 1.1 and 0.2 W m�3 were obtained applying
esophilic (37 �C) and thermophilic (55 �C) xylose-fed MFCs. Note the
epresent the fed-batch cycles with 1.0 g L�1 xylose as the substrate. The
xylose concentration of 0.3 g L�1 (not shown).

This journal is © The Royal Society of Chemistry 2018
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Fig. 2 Power density and concentration of soluble COD, xylose,
acetate, and butyrate present in the anolyte of the mesophilic (37 �C)
and thermophilic (55 �C) MFC during fed-batch cycle IX.

Fig. 3 Power (a) and polarization (b) curve obtained from the mesophilic
power density were normalized to the anolyte volume.

This journal is © The Royal Society of Chemistry 2018
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a resistance of 250 and 1000 U to the mesophilic and thermo-
philic MFC, respectively (Fig. 3a). The open circuit voltage (OCV)
was approximately 0.7 and 0.4 V for the mesophilic and ther-
mophilic MFC, respectively (Fig. 3b). Power overshoot (drastic
drop of power and current density) occurred in the thermophilic
MFC, when a resistance lower than 500 U was applied. The
internal resistance, measured as the slope of the linear part of
the polarization curve, was 270 U and 560 U for the mesophilic
and the thermophilic MFC, respectively.
3.4 Microbial community analysis

High-throughput Illumina MiSeq sequencing showed a clear
difference in the composition of the microbial community not
only among the mesophilic and thermophilic MFC, but also
among the different sampling points in the same MFC (Fig. 4
and 5). A higher diversity was obtained in the DNA than in the
cDNA samples, and in the mesophilic than in the thermophilic
MFC, based on the diversity and evenness indexes (Table 1).

In the mesophilic MFC, the active anode-attached subpop-
ulation was mainly composed of Proteobacteria belonging to the
family of Geobacteraceae (65% of the total relative abundance),
but Sphingobacteriales (14%) were also found (Fig. 4 and 5). The
planktonic active subpopulation was more diverse, with the
families of Porphyromonadaceae, Rikenellaceae, and Sphingo-
bacteriales WCHB1-69 all above 10% of the relative abundance.
Proteobacteria also dominated the membrane-attached active
microbial community in the mesophilic MFC. Comamonadaceae
was the most abundant family (20%), followed by a variety of
MFC in cycle X, and from the thermophilic MFC in cycle XI. Current and

RSC Adv., 2018, 8, 3069–3080 | 3073
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Fig. 4 Phylum-level taxonomic classification and relative abundance of the 16S rRNA gene (DNA) or reversely transcribed 16S rRNA (cDNA)
obtained from Illumina MiSeq sequencing of nucleic acids frommicrobiological samples collected in different sampling points of the mesophilic
(37 �C) and thermophilic (55 �C) xylose-fed MFC. “Other” represents the sum of the phyla with a relative abundance <1%.
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families contributing to <10% of the total relative abundance
(Fig. 4 and 5).

In the thermophilic MFC, the anode-attached active
subpopulation was composed by Euryarchaeota (Fig. 4 and 5),
mainly Methanobacteriaceae (38% of the total relative abun-
dance), Firmicutes such as Thermodesulfobiaceae (13%), and
Chloroexi such as Anaerolineaceae (11%). Thermodesulfobiaceae
were found also in the planktonic active subpopulation (23%),
together with Hydrogenophylaceae (46%), and other less abun-
dant families. Comamonadaceae was the most abundant active
membrane-attached family (53%) of the thermophilic MFC,
which included also Hydrogenophylaceae (18%), and an
unclassied family belonging to the order of Armatimonadetes
(17%) (Fig. 4 and 5).
4. Discussion
4.1 Bioelectricity production and microbial dynamics in the
mesophilic MFC

An active microbial community mainly composed of Proteo-
bacteria (Fig. 4) generated a relatively high power density in the
mesophilic xylose-fed MFC (Fig. 1c). Indeed, most of the known
3074 | RSC Adv., 2018, 8, 3069–3080
mesophilic exoelectrogens belong to the phylum Proteobac-
teria.36 The diversity of the active anode-attached subpopulation
(cDNA) was remarkably lower than the diversity of the whole
community (DNA) (Table 1), conrming that the presence of
microorganisms in a bioreactor does not relate to their
activity.23 In particular, Geobacteraceae accounted only for 2% of
the anode-attachedmicrobial community, but was the prevalent
(65%) active family (Fig. 5), and likely played a major role in
power production. In fact, the Geobacteraceae family includes
known exoelectrogenic microorganisms which have been widely
reported to dominate the anodic microbial community in
mesophilic MFCs, regardless of the inoculum source, substrate,
and the MFC set-up.28,37–39 For example, Mei et al.40 showed that
different microbial communities could develop in mesophilic
(30 �C) MFCs started-up with different inocula, but Geobacter
was found regardless of the inoculum.

In this study, the remarkably higher diversity of the anode-
attached community (DNA) than the active subpopulation
(cDNA) (Table 1) suggests the presence of inactive or dead
microorganisms, which could have hampered the activity of the
Geobacteraceae, thus lowering power production.41 The relative
abundance of active planktonic Geobacteraceae was only 3%
This journal is © The Royal Society of Chemistry 2018
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Fig. 5 Heat-map representing the relative abundance of the 16S rRNA gene (DNA) or reversely transcribed 16S rRNA (cDNA) obtained from
MiSeq sequencing of nucleic acids from microbiological samples collected in different sampling points of the mesophilic (37 �C) and ther-
mophilic (55 �C) MFC. A, P, and M refer to the anode-attached, planktonic, and membrane-attached microbial community, respectively. The
taxonomic classification was conducted on family level. “Other” represents the sum of the families with relative abundance <1%.

This journal is © The Royal Society of Chemistry 2018 RSC Adv., 2018, 8, 3069–3080 | 3075
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Table 1 Diversity of themicrobial community (DNA) and active microbial community (cDNA) in three different sampling points of themesophilic
(37 �C) and thermophilic (55 �C) xylose-fed MFC, measured by the Shannon, Simpson and Pielou's J0 index

Temperature
(�C)

Sample
type Microbial community No. of sequencesa No. of families

Shannon
diversity

Simpson
diversity

J0

evenness

37 DNA Anode-attached 197,036 617 3.22 0.94 0.71
Planktonic 100,125 391 2.95 0.92 0.68
Membrane-attached 136,388 798 3.72 0.97 0.83

cDNA Anode-attached 28,349 161 1.45 0.55 0.36
Planktonic 108,967 326 2.74 0.91 0.64
Membrane-attached 68,638 341 3.26 0.93 0.80

55 DNA Anode-attached 96,743 237 2.59 0.90 0.63
Planktonic 55,907 136 2.24 0.85 0.58
Membrane-attached 68,558 141 2.40 0.87 0.56

cDNA Anode-attached 103,439 72 2.06 0.80 0.56
Planktonic 33,729 98 1.75 0.72 0.46
Membrane-attached 60,796 80 1.48 0.65 0.41

a Refers to sequences which passed the quality check. All sample sizes were normalized according to the lowest number of sequences (28,349) prior
to perform relative abundance and diversity analysis.
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(Fig. 5), suggesting that they were mainly growing attached to
the anode. In fact, Geobacter sp. transfers electrons to the anode
by direct contact transfer, but is unable to conduct long-range
electron transfer.42 This is conrmed by the prompt power
increase aer the addition of xylose at the beginning of each
fed-batch cycle (Fig. 1c), which is common in MFCs dominated
by microorganisms performing direct electron transfer.20

Sphingobacteriales, found among both the active anode-
attached and planktonic subpopulations in the mesophilic
MFC (14 and 11% relative abundance, respectively), have been
previously reported as part of the anodic microbial commu-
nity,39,43 but further studies are required to assess their role in
electricity generation.

No dominant family was detected in the active mesophilic
planktonic subpopulation, but instead 6–7 families were
present with a similar relative abundance (Fig. 5). Among them,
both Desulfovibrionaceae44 and Rikenellaceae45 have been re-
ported to produce electricity as pure cultures in MFCs. Rikenella
sp. can perform glycolysis and mediated electron transfer to the
anode,45 which likely explains its presence among the active
mesophilic planktonic microbial community in this study
(Fig. 5). The Rhodocyclaceae family includes Fe(III) reducers,
such as Ferribacterium, which can be involved in bioelectricity
production46 and has also been found in an anodic biolm of an
acetate-fed MFC.47 Porphyromonadeceae, which accounted for
18% of the active mesophilic planktonic subpopulation, have
been previously detected both in the anode-attached and
planktonic population in a mesophilic MFC treating starch,
peptone, and sh extract.48 Although likely not directly involved
in bioelectricity production, other microorganisms may also
have contributed to the overall performance of the MFC. For
example, Synergistaceae (8% of the relative abundance in the
mesophilic active planktonic community) may be involved in
the recycling of nutrients by quickly digesting the proteins of
dead microorganisms.38

The membrane-attached active microbial community in the
mesophilic MFC was highly diverse (Table 1). Comamonadaceae,
which accounted for 20% of the active population, include
3076 | RSC Adv., 2018, 8, 3069–3080
facultative anaerobic microorganisms capable of using short
chain volatile fatty acids as a source of carbon for their
metabolism.49 Species belonging to the Comamonadaceae
family, such as Comamonas denitricans, have been previously
found in the anodic biolm of MFCs, and even shown to
produce electricity in the absence of oxygen.50 However, Coma-
monadaceae were found in this study exclusively on the
membrane, suggesting that they had a minor role in
bioelectricity generation. Oxygen can ow from the cathodic to
the anodic chamber through the AMI-7001 anion exchange
membrane with a diffusivity coefficient of 4.3 � 10�6 cm2 s�1,51

thus exposing the anodic microorganisms to oxygen. The
aerobic or facultative membrane-attached microorganisms may
consume the oxygen crossing the membrane, favoring the
strictly anaerobic exoelectrogens, but also competing with them
for the substrates. Kim et al.51 estimated that, due to the higher
biomass yield of aerobes compared to anaerobes, about 10% of
the substrate was consumed through aerobic metabolism,
reducing the CE of their acetate-fed (1.2 g L�1) MFCs. However,
they did not perform microbial community analysis to conrm
their hypothesis. Besides, membrane-attached microorganisms
may reduce power output also by forming a thick biolm which
limits proton transfer from the anodic to the cathodic
chamber.25
4.2 Bioelectricity production and microbial dynamics in the
thermophilic MFC

In the thermophilic MFC, the relatively low number of active
anode-attached microbial families (Table 1) suggests the scar-
city of thermophilic exoelectrogenic species. The inoculum
selected for the experiment, which was not previously enriched
for thermophilic electricity production, can be one of the causes
hindering the establishment of an active exoelectrogenic
community. However, the same activated sludge was success-
fully used to enrich dark fermentative hydrogen producers at
55 �C in a previous study.27 In addition, 20% of the anode-
attached active subpopulation was composed by Firmicutes,
This journal is © The Royal Society of Chemistry 2018
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which have been previously reported to generate electricity in
thermophilic, acetate-fed MFCs.19 About 66% of Firmicutes
found in the thermophilic anode-attached community
belonged to the family Thermodesulfobiaceae, which includes
Coprothermobacter sp., a proteolytic microorganism involved in
the fermentation of organic substrates, with production of
pyruvate, formate and acetate, and also in syntrophic acetate
oxidation (for a review, see Gagliano et al.52). The activity of
Coprothermobacter is enhanced by establishing a syntrophy with
hydrogenotrophic methanogenic archaea such as Meth-
anothermobacter.53 Methanothermobacter belongs to the family
of Methanobacteraceae, which was indeed among the most
abundant active anode-attached families in the thermophilic
MFC in this study (Fig. 5). Although Coprothermobacter was
previously found among the anode-attached microbial
community of thermophilic acetate-fed MFCs,19,54 and is thus
a possible acetate-utilizing anode respiring bacterium, its elec-
trochemical activity as a pure culture has not yet been investi-
gated. Also microorganisms belonging to the order of
Chlorobiales, despite being mainly phototrophs, can perform
heterotrophic anaerobic respiration, and have been reported as
part of the anodic biolm in MFCs.46,55 Anaerolineaceae, also
found among the thermophilic anode-attached microbial
community, is a family of lamentous bacteria involved in the
fermentation of various sugars.56 They are also involved in the
syntrophic oxidation of butyrate, and, similarly to Cop-
rothermobacter, grow better in the presence of H2-consuming
microorganisms, such as methanogenic archaea.57

The lower power production in the thermophilic MFC is
likely due to the lack of effective exoelectrogens and to the
consequent high activity of non-exoelectrogenic microorgan-
isms, which consumed part of the electrons through pathways
competitive to electricity generation. In fact, the methanogenic
archaeal family of Methanobacteriaceae, belonging to the order
of Methanobacteriales, accounted for 38% of the active anode-
attached community in the thermophilic MFC. Methanobacter-
iales lack cytochromes and methanophenazine, and are thus
able to perform hydrogenotrophic, but not acetoclastic, meth-
anogenesis.58 Therefore, Methanobacteriaceae cannot compete
for the substrate with exoelectrogenic microorganisms, but
their metabolism decreases the availability of electrons for
electricity production. Methanobacteriaceae have been previ-
ously found in a glucose-fed (1.8 g L�1) MFC operated at room
temperature, and indicated as one of the causes for low
bioelectricity production, as about 16% of the electrons were
directed to methane production.14 Rismani-Yazdi et al.59 re-
ported methane production by Methanobacteriaceae in a meso-
philic (39 �C) cellulose-fed MFC only at the beginning of the
operation, whereas Hussain et al.60 reported Methanobacter-
iaceae in a thermophilic (50 �C) syngas-fed MFC. Such micro-
organisms likely decreased the efficiency of their MFC by
performing hydrogenotrophic methanogenesis.

The family of Hydrogenophilaceae, which accounted for 46%
of the active planktonic community in the thermophilic MFC,
includes the thermophilic Hydrogenophylus sp., which
could have consumed a share of electrons by H2 oxidation,61

lowering power production in the thermophilic MFC.
This journal is © The Royal Society of Chemistry 2018
Thermodesulfobiaceae, found among the anode-attached fami-
lies, were also found among the planktonic community (Fig. 5).
Coprothermobacter is able to perform extracellular electron
transfer,52 but further studies are required to understand its
possible involvement in long-range electron transfer to the
anode.

In the thermophilic MFC, the family of Comamonadaceaewas
the most abundant membrane-attached family and, similarly to
the mesophilic MFC, it was likely related to aerobic metabolism
and thus, oxygen consumption. Armatimonadetes, which
accounted for 17% of the active membrane-attached commu-
nity, is also an order of aerobic microorganisms.62

4.3 Xylose degradation pathways

In the mesophilic MFC, the xylose consumption and metabolite
production proles (Fig. 2) suggest that xylose was rstly con-
verted to volatile fatty acids, which were subsequently oxidized
to CO2 and H2O likely mainly by Geobacteraceae, which domi-
nated the anode-attached active community. Interestingly, the
power density remained stable for about 30 hours aer the
depletion of acetate and butyrate. A possible explanation is that
acetate and butyrate were accumulated and oxidized intracel-
lularly, thus not detectable in the anolyte and resulting in a ow
of electrons directed outside the cell to the anode.4 In fact, aer
substrate depletion, the soluble COD remained stable (Fig. 2),
suggesting that the electron donor was not in the anolyte but
likely inside the cells. Also Marshall and May20 observed the
same phenomenon and decided to starve a pure culture of
Thermincola for two cycles before electrochemical measure-
ments to avoid interferences from the intracellularly accumu-
lated acetate, and its associated storage products.

In the thermophilic MFC, xylose was consumed relatively
fast, but acetate, the only metabolite found in the anolyte, was
not fully consumed even aer 144 hours. The power density
peak obtained just aer the xylose depletion suggests that
exoelectrogenic thermophiles were growing on xylose, but the
microbial community was lacking effective acetate-utilizing
microorganisms. However, it should be noted that the proles
in Fig. 2 were obtained in the feeding cycle “IX”, whereas the
samples for microbial community analysis were collected at the
end of cycle “XI”. The anodic potential, which increased from
cycle IX to cycle XI in the thermophilic MFC (Fig. 1b), suggests
a possible shi in the microbial community.

4.4 Performance of the MFCs

In the mesophilic MFC, the shape of the polarization curve (the
stable slope in the last part of the curve) suggests low mass
transfer limitation, as expected in MFCs using soluble sugars as
the substrate. The low CE (12 and 3% for the mesophilic and
thermophilic MFC, respectively) was attributed to the MFC
design, which was not optimized for power production. The
slow rate of oxygen reduction in the cathodic surface and the
low proton conduction through the membrane are oen the
main causes of low power production in air-cathode MFCs.63 In
fact, a CE up to 82% was obtained in a xylose-fed, two-chamber
MFC (75 mL anodic chamber volume) using 50 mM ferricyanide
RSC Adv., 2018, 8, 3069–3080 | 3077
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for the cathodic reaction and a cation exchange membrane.64

Haavisto et al.,28 with a similar inoculum and substrate, ob-
tained an 18% higher CE than the one obtained in this study
operating a mesophilic (37 �C) upow microbial fuel cell in
continuous mode using ferricyanide at the cathode. Huang and
Logan65 obtained a power production of 13 W m�3 (61% CE)
using a xylose-fed air cathode MFC, against the 1.1 Wm�3 (12%
CE) obtained in this study. However, the anodic chamber of
their MFC was equipped with four carbon brushes (6 cm
diameter and 7 cm length each), against the single carbon
brush (1.5 cm diameter and 5 cm length) used in this study, and
their xylose load was three times higher.

The structure of the active microbial community in the
thermophilic MFC, lacking a known effective exoelectrogen
such as Geobacter and including competitors such as meth-
anogenic archaea, was likely the main cause for the lower power
produced from the thermophilic MFC in comparison to the
mesophilic MFC (Fig. 3a). In fact, the non-exoelectrogenic
anode-attached microbial community in the thermophilic
MFC likely caused a high internal resistance (560 U). Temper-
ature also affects oxygen solubility in water, resulting in
a decreased availability of oxygen at high temperature. In fact,
the oxygen concentration at the cathode was about 7.0 and
5.6 g L�1 in the mesophilic and thermophilic MFC, respectively.
In the thermophilic MFC, the power overshoot curve (Fig. 3b),
previously reported in MFCs,66,67 prevented the detection of
possible mass transfer limitations. A multiple-cycle method,
consisting in running the MFC at a xed resistance for one
entire batch cycle, can be applied to avoid overshoot.68

5. Conclusions

The composition of the anode-attached, planktonic and
membrane-attached microbial community, and the active
subpopulation, was evaluated in a mesophilic (37 �C) and
a thermophilic (55 �C) xylose-fed MFC. This study contributes in
understanding of the microbial communities directly and
indirectly involved in mesophilic and thermophilic electricity
generation. An active microbial community dominated by
Geobacteraceae was enriched and shown to sustain power
production in mesophilic (37 �C) MFCs, whereas thermophilic
(55 �C) power production was hampered by the development of
competitors such as hydrogenotrophic methanogens and
hydrogen oxidizers. A RNA-based analysis is required to
understand the role of the microorganisms in MFCs, as a DNA-
based analysis may lead to overestimation or underestimation
of the contribution of certain species on power production.

A different inoculum source, possibly from thermophilic
anaerobic processes, and a different start-up strategy, for
example by using a poised anode potential or by suppressing
the methanogenic archaea e.g. by addition of bromoethane-
sulphonic acid (BESA), could be viable alternatives to facilitate
the establishment of an efficient thermophilic exoelectrogenic
biolm in future studies. The power production from pure
cultures of potentially exoelectrogenic thermophilic microor-
ganisms, for example species of the Thermodesulfobiaceae
family detected from the thermophilic anodes in this study,
3078 | RSC Adv., 2018, 8, 3069–3080
must also be evaluated to conrm their role in electricity
production.
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J. Hydrogen Energy, 2013, 38, 15606–15612.

65 L. Huang and B. E. Logan, Appl. Microbiol. Biotechnol., 2008,
80, 655–664.
3080 | RSC Adv., 2018, 8, 3069–3080
66 S. M. Carver, P. Vuoriranta and O. H. Tuovinen, J. Power
Sources, 2011, 196, 3757–3760.

67 P.-C. Nien, C.-Y. Lee, K.-C. Ho, S. S. Adav, L. Liu, A. Wang,
N. Ren and D.-J. Lee, Bioresour. Technol., 2011, 102, 4742–
4746.

68 V. J. Watson and B. E. Logan, Electrochem. Commun., 2011,
13, 54–56.
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://dx.doi.org/10.1039/c7ra12316g


Composition and role of the attached and planktonic microbial 

communities in mesophilic and thermophilic xylose-fed microbial 

fuel cells

Supporting information

Paolo Dessì a,*, Estefania Porca b, Johanna Haavisto a, Aino–Maija Lakaniemi a, Gavin Collins b, Piet N. L. 

Lens a,c

aLaboratory of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 

Tampere, Finland

bMicrobial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway, 

University Road, Galway, H91 TK33, Ireland

cUNESCO–IHE, Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands 

*Corresponding author: 

Phone: +358 417239696, e-mail: paolo.dessi@tut.fi, mail: Tampere University of Technology, P.O. Box 

541, FI-33101 Tampere, Finland, ORCID: 0000-0002-9935-3038

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2018
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