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Résumé de la thèse

L’estimation structurelle des modèles de demande sur des marchés de produits

différenciés joue un rôle important en économie. Elle permet de mieux com-

prendre les choix des consommateurs (e.g., en estimant les élasticités-prix de la

demande). De plus, elle est le point de départ de l’étude de plusieurs questions

économiques d’intérêt, incluant celles relatives au pouvoir de marché des en-

treprises (Berry et al., 1995; Nevo, 2001), à la fusion d’entreprises (Nevo, 2000),

à l’introduction de nouveaux produits sur le marché (Petrin, 2002; Gentzkow,

2007), à la politique commerciale (Goldberg, 1995; Verboven, 1996; Berry et al.,
1999), et aux taxes (Griffith et al., 2019).

La littérature théorique a mis en évidence que les réponses à ces questions

dépendent de la forme de la fonction de demande, laquelle est décrite par sa

pente et sa courbature. Ainsi, étant donné un modèle d’offre (e.g., modèle sta-

tique de concurrence oligopolistique en prix), la qualité des réponses repose sur

la capacité du modèle de demande à être "flexible", i.e., sur sa capacité à capter

de manière flexible les substitutions qui existent entre les produits.

L’approche standard consiste à spécifier un modèle d’utilité aléatoire addi-

tif, à en calculer sa fonction de demande, et à estimer cette dernière en util-

isant la méthode développée par Berry (1994). Le modèle d’utilité aléatoire

additif est utilisé pour sa capacité à modéliser le comportement de consomma-

teurs hétérogènes choisissant parmi un grand nombre de produits différenciés
de manière parcimonieuse et flexible. La méthode de Berry (1994) est utilisée

pour estimer des modèles de demande pour des produits qui sont différenciés
de manières observée et inobservée par le modélisateur. Elle résout les prob-

lèmes d’endogénéité liés à la présence de termes d’erreurs structurels, lesquels

représentent les caractérististiques des produits qui sont inobservées par le mod-

élisateur mais observées et valorisées par les entreprises et les consommateurs.

Elle consiste à estimer les paramètres structurels de la fonction de demande à

partir du système d’équations qui égalise les demandes observées aux deman-

des prédites par le modèle. Or, les termes structurels d’erreurs entrent dans ce

système de manière non-linéaire, empêchant donc l’utilisation des techniques

standards des variables instrumentales. Berry (1994) propose ainsi d’inverser le

système afin d’obtenir des équations de demande inverse au sein desquelles les

termes d’erreurs structurels entrent de manière linéaire et de les utiliser comme

base pour l’estimation. Toutefois, en général, ces demandes inverses n’ont pas
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d’expression analytique. L’inversion doit donc être faite numériquement, ce qui

exige l’emploi de procédures d’estimation non-linéaire et la résolution de prob-

lèmes connexes d’optima locaux et de précision de l’inversion numérique (Knittel

& Metaxoglou, 2014).1

La méthode de Berry et al. (1995), connue sous le nom de méthode BLP, est

la méthode la plus populaire et la plus avancée de cette approche. Elle utilise

un modèle logit à coefficients aléatoires qu’elle estime par un algorithme réal-

isant une inversion numérique de la demande, imbriquée dans une procédure

d’estimation non-lineaire. Elle permet de capter de manière flexible les substitu-

tions entre les produits tout en résolvant les problèmes d’endogénéité. Toutefois,

elle est sujette à des difficultés pratiques : la flexibilité exige l’utilisation de nom-

breux coefficients qui peuvent être difficiles à identifier empiriquement ; de plus,

estimer un modèle logit à coefficients aléatoires peut être difficile et chronophage

puisque cela exige l’emploi de procédures d’estimation non-linéaire ainsi que la

simulation et l’inversion numérique des fonctions de demande.

L’autre méthode très répandue utilise le modèle logit emboîté, lequel évite

les difficultés associées à la méthode BLP en ayant uniquement recours à des

régressions linéaires. Toutefois, le modèle logit emboîté est critiqué aumotif qu’il

ne permet pas de capter de manière flexible les substitutions entre les produits et

qu’il demande aumodélisateur de définir la structure des nids avant l’estimation,

i.e., de déterminer les sources pertinentes de segmentation du marché.

Cette thèse poursuit l’objectif de proposer des modèles de choix des consom-

mateurs qui soient flexibles et qui aboutissent à des méthodes d’estimation sim-

ples et rapides. Pour cela, elle adopte une approche différente : elle développe

de nouveaux modèles de demande inverse qui sont cohérents avec un modèle

d’utilité de consommateurs hétérogènes. Cette approche permet de capter de

façon flexible les substitutions entre les produits, grâce à de simples régressions

linéaires basées sur des données incluant les parts de marché, les prix et les

caractéristiques des produits. Ces modèles peuvent être utilisés dans différents
domaines de l’économie, incluant l’économie industrielle, le commerce interna-

tional et l’économie publique pour, entre autres, mesurer les effets d’une fusion

d’entreprise, de l’introduction d’un nouveau produit sur le marché ou d’une nou-

velle régulation. Du fait de leur simplicité d’estimation, ces modèles devraient

intéresser les chercheurs ainsi que les praticiens antitrust des cabinets de conseil

1À ma connaissance, les seuls modèles d’utilité aléatoire additifs ayant une fonction de de-
mande inverse analytique sont le modèles logit et logit emboîté.
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et des autorités de concurrence qui souhaitent éviter des procédures d’estimation

complexes et/ou qui sont pressés par le temps.

Plus spécifiquement, cette thèse développe et étudie des modèles de demande

inverse pour J +1 produits différenciés j = 0, . . . , J de la forme

σj(s)
−1 = lnGj(s) + c, j = 0, . . . , J,

où s est un vecteur de parts de marché, lnGj est une fonction dont les propriétés

restent à définir et c est une constante commune aux différents produits.
Le premier chapitre de cette thèse construit la classe des modèles general-

ized inverse logit (GIL), lesquels sont des modèles de demande inverse de la forme

décrite par l’Equation ci-dessus où lnG ≡ (lnG0, . . . , lnGJ ) présente des propriétés

spécifiques: lnG est telle que G est homogène de degré un et sa matrice jacobi-

enne est définie positive et symétrique.2 Ce chapitre montre que chaque mod-

èle de cette classe est cohérent avec un modèle de consommateur représentatif

et inclut une grande majorité de modèles d’utilité aléatoire additifs. Il four-

nit également des méthodes générales pour construire des modèles GIL. Une

des méthodes développe des modèles basés sur la construction de nids (i.e., de

groupes de produits), lesquels sont analogues à des modèles d’utilité aléatoire

additifs qui ont été utilisés à des fins d’estimation de la demande (e.g., le mod-

èle logit ordonné de Small (1987) ou le modèle modèle logit emboîté croisé de

Vovsha (1997)). En particulier, il développe le modèle inverse product differen-
tiation logit (IPDL), lequel, de manière analogue au modèle de Bresnahan et al.
(1997), généralise les modèles logit emboîtés, permettant ainsi de capter de façon

plus flexible les substitutions entre les produits, y compris de la complémentar-

ité. Cette construction présente toutefois deux limites, lesquelles feront l’objet

d’une extension dans le deuxième chapitre. D’abord, elle demande au modélisa-

teur de choisir la structure des nids avant l’estimation. Ensuite, elle implique que

la substitution entre produits ne dépend pas directement des caractéristiques des

produits – sauf éventuellement celles utilisées pour la construction des nids.

Le second chapitre développe le modèle flexible inverse logit (FIL), lequel est
un modèle GIL qui dépasse les deux limites associées aux modèles basés sur la

construction de nids. Le modèle FIL utilise une structure de nids flexible avec

un nid pour chaque pair de produits et un paramètre de nid associé (voir Chu,

2Une fonction f de E dans F est dite homogène de degré un si pour tout x ∈ E, pour tout λ > 0,
f (λx) = λf (x). La matrice jacobienne est la matrice des dérivées partielles du premier ordre d’une
fonction vectorielle.
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1989; Koppelman & Wen, 2000; Davis & Schiraldi, 2014) ; il est cohérent avec

un modèle appartenant à la classe de modèles de consommateurs hétérogènes

maximisateur d’utilité étudiée par Allen & Rehbeck (2019). Les paramètres de

nid du modèle FIL sont ensuite projetés dans l’espace des caractéristiques. Basé

sur Pinkse et al. (2002), ces paramètres sont remplacés par une fonction de la

distance entre les produits dans l’espace des caractéristiques. Cette projection

permet d’obtenir une substitution entre les produits qui dépend directement des

caractéristiques des produits, comme c’est le cas du modèle logit à coefficients

aléatoires. La projection utilise également les polynômes de Bernstein afin que

la manière dont les substitutions dépendent des caractéristiques soit estimée à

partir des données et non postulée. Enfin, des simulations de Monte Carlo ont

été menés pour mesurer la capacité du modèle FIL à répliquer les élasticités-prix

de la demande de modèles logit à coefficients aléatoires pour des spécifications

de l’utilité répandues (absence d’effet revenu, utilité linéaire en le prix, un coef-

ficient aléatoire normalement distribué, etc.). Les résultats des simulations mon-

trent la capacité du modèle FIL à produire des substitutions flexibles.

Le troisième chapitre étudie la micro-fondation du modèle GIL développé

dans le premier chapitre de cette thèse. Il montre que les restrictions que le mod-

èle GIL impose sur la fonction de demande inverse sont des conditions néces-

saires et suffisantes de cohérence avec un modèle de consommateurs hétérogènes

maximisateur d’utilité, connu sous le nom de perturbed utility model (PUM) et

étudié, entre autres, par Allen & Rehbeck (2019). La preuve de ce résultat im-

plique deux résultats intermédiaires pouvant être considérés comme intéressants

en soi. Tout d’abord, tout PUM génère une fonction de demande qui satisfait

une légère variante des conditions de Daly-Zachary (voir Daly & Zachary, 1979),

laquelle permet de combiner substituabilité et complémentarité en demande.

Ensuite, toute fonction de demande satisfaisant ces conditions a une fonction de

demande inverse qui est un modèle GIL. Ainsi, par relation d’équivalence, il est

montré que les modèles GIL, les PUM et les modèles de demande satisfaisant la

variante des conditions de Daly-Zachary fournissent trois modélisations équiva-

lentes du comportement des consommateurs.
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Chapter 1

The Inverse Product Differentiation
Logit Model

1 Introduction

Estimating the demand for differentiated products is of great empirical relevance

in industrial organization and other fields of economics. It is important for un-

derstanding consumer behavior and for analyzing major economic issues such as

the effects of mergers and changes in regulation. Ideally, one would like to em-

ploy a model that accommodates rich patterns of substitution, while requiring

just regression for estimation.

This paper proposes the Inverse Product Differentiation Logit (IPDL) model,

which generalizes the nested logit model by allowing richer patterns of substi-

tution and in particular complementarity (i.e., a negative cross-price elasticity of

demand), while being estimable by linear instrumental variables regression.

The IPDL model is relevant for estimating demands for differentiated prod-

ucts that are segmented along multiple dimensions. It generalizes the nested

logit models by allowing the segmentation to be non-hierarchical, which is often

desirable in applications. At the same time, it maintains the important advan-

tages of the nested logit model. First, its inverse demand has closed form such

that numerical inversion of demand is not required. Second, it can be estimated

by two-stage least squares regression of market shares on product characteristics

and shares related to product segmentation. Third, it is consistent with util-

ity maximization. The IDPL model may therefore be an attractive option in the

many empirical applications where the nested logit model would otherwise be

1



CHAPTER 1. THE INVERSE PRODUCT DIFFERENTIATION LOGIT MODEL

used.

The current practice of the demand estimation literature with aggregate data

is to assume an additive random utility model (ARUM) (McFadden, 1974) and to

estimate it using Berry (1994)’s method to deal with endogeneity of prices and

market shares. The logit model is the simplest option, but exhibits the Indepen-

dence of Irrelevant alternatives (IIA) property. This implies that an improvement

in one product draws demand proportionately from all the other products and

makes cross-price elasticities independent of how close products are in charac-

teristics space, which is unreasonable in most applications.

The nested logit model with two or more levels generalizes the logit model

(see Goldberg, 1995; Verboven, 1996a). This model is commonly used to esti-

mate aggregate demand for differentiated products; some recent examples are

Björnerstedt and Verboven (2016) and Berry et al. (2016). The nested logit model

has closed-form inverse demand and is conveniently estimated by two-stage least

squares. It imposes, however, the restriction that the segmentation of products,

i.e., the nesting structure, must be hierarchical, meaning. that each nest on a

lower level must be contained within exactly one nest on a higher level. This

severely constrains the substitution patterns that the nested logit model can ac-

commodate, since the IIA property still holds within nests and at the nest level.

Furthermore, the sequence of segmentation dimensions in the hierarchy is not

unique and often not obvious.1

The logit and nested logit models belong to the wider class of Generalized

Extreme Value (GEV) models developed by McFadden (1978).2 A number of

recent papers have proposed members from this class in order to obtain mod-

els with richer substitution patterns. The product differentiation logit model of

Bresnahan et al. (1997) extends the nested logit model by allowing the grouping

of products to be non-hierarchical. The ordered logit model of Small (1987) and

the ordered nested logit model of Grigolon (2018) describe markets having a nat-

ural ordering of products.3 The seminal paper by Berry et al. (1995) overcomes

1Hellerstein (2008) writes, concerning the beers market, "[D]emand models such as the mul-
tistage budgeting model or the nested logit model do not fit this market particularly well. It is
difficult to define clear nests or stages in beer consumption because of the high cross-price elastic-
ities between domestic light beers and foreign light and regular beers. When a consumer chooses
to drink a light beer that also is an import, it is not clear if he categorized beers primarily as
domestic or imported and secondarily as light or regular, or vice versa."

2GEV models are ARUM in which the random utilities have a multivariate extreme value
distribution (Fosgerau et al., 2013).

3Other papers provide generalizations of the logit model by using semiparametric or nonpara-

2
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the limitations of the nested logit model by specifying a random coefficient logit

model, which breaks IIA at the population level. However, the inverse demands

of these more general models do not have closed form.

The richer substitution patterns of these models is obtained at the cost of

more complex and time-consuming nonlinear estimation procedures such as the

nested fixed point (NFP) approach of Berry et al. (1995) or the Mathematical

Program with Equilibrium Constraints (MPEC) approach of Dubé et al. (2012),

which are associated with issues of local optima and choice of starting values (see

e.g., Knittel and Metaxoglou, 2014).

In this paper, we depart from the standard practice by specifying a model

in terms of the inverse demand. Given linear-in-parameters utility indexes, the

model can then be directly estimated by linear regression using Berry (1994)’s

method. More specifically, we propose the IPDL model for products that are seg-

mented along multiple dimensions. The IPDL model extends the nested logit

model by allowing arbitrary, non-hierarchical grouping structures (i.e., any par-

titioning of the choice set in each dimension). It improves on the nested logit

model by allowing for richer patterns of substitution and, as we show, even com-

plementarity. This improvement is achieved by removing the constraint that the

segmentation should be hierarchical, and it is therefore costless. While the IPDL

model requires modelers to define the segmentation, the relative importance of

segmentation dimensions can be estimated.

Another important approach in demand estimation is the flexible functional

form approach (e.g., the AIDSmodel of Deaton andMuellbauer, 1980), where the

error term has no immediate structural interpretation. By contrast, in this paper,

the error term has the structural interpretation of Berry (1994) that it represents

product/market-level characteristics unobserved by the modeller but observed

by consumers and firms.

The IPDL model belongs to a wider class of inverse demand models, that

we label Generalized Inverse Logit (GIL) models. We show that any GIL model

is consistent with a representative consumer model (RCM) in which a utility-

maximizing representative consumer chooses a vector of nonzero demands, trad-

ing off variety against quality. We also show that any ARUM is equivalent to

some GIL model. However, the converse is not true, since some GIL models ex-

hibit complementarity, which cannot occur in an ARUM. We establish a new de-

mand inversion result, which extends Berry (1994) and Berry et al. (2013) by

metric methods, see Davis and Schiraldi (2014) for more details.

3
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allowing complementarity. It is often desirable to allow complementarity as im-

portant economic questions hinge on the extent to which products are substitutes

or complements. In particular, this directly affects the incentives to introduce a

new product on the market, to bundle, to merge, etc.4

The paper is organized as follows. Section 2 sets the context, introducing the

role of demand inversion with the inverse demand of the logit and nested logit

models as examples. Section 3 introduces the IPDL model as a generalization

of the inverse demand of the nested logit model and shows how to estimate it

with aggregate data. Section 4 applies the IPDL model to estimate the demand

for ready-to-eat cereals in Chicago, finding that complementarity is pervasive

in this market. Section 5 introduces the wider class of GIL models. Section 6

studies its linkages with the ARUM and RCM. Section 7 concludes. A supplement

provides Monte Carlo evidence on the IPDL model as well as general methods

and examples for building GIL models that go beyond the IPDL model.

2 Motivation

2.1 General Setting: the Role of Demand Inversion

Consider a population of consumers choosing from a choice set of J + 1 differ-
entiated products, denoted by J = {0,1, . . . , J}, where products j = 1, . . . , J are the

inside products and product j = 0 is the outside good. We consider aggregate

data on market shares sjt > 0, prices pjt ∈ R and K product/market characteris-

tics xjt ∈ RK for each inside product j = 1, . . . , J in each market t = 1, . . . ,T (Berry,

1994; Berry et al., 1995; Nevo, 2001). For each market t, the market shares sjt are

positive and sum to 1, i.e., st =
(
s0t, . . . , sJt

)
∈ int(∆), where int(∆) is the interior of

the unit simplex in RJ+1.

Based on Berry and Haile (2014), let δjt ∈ R be an index given by

δjt = δ
(
pjt,xjt,ξjt;θ1

)
, j ∈ J , t = 1, . . . ,T ,

where ξjt ∈ R is the jt-product/market unobserved characteristics term and θ1 is

a vector of parameters.

4See Gentzkow (2007), Ershov et al. (2018), and Iaria and Wang (2019) who investigate these
issues empirically.
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Consider the system of demand equations

st = σ (δt;θ2) , t = 1, . . . ,T , (1)

which relates the vector of observed market shares, st, to the vector of product

indexes in market t, δt = (δ0t, . . . ,δJt), through the model, σ =
(
σ0, . . . ,σJ

)
, where

θ2 is a vector of parameters and

σ (·;θ2) :D→ int(∆)

is an invertible function, with domain D ⊂ RJ+1.5

The market share of the outside good is determined by the identity

σ0 (δt;θ2) = 1−
J∑

k=1

σk (δt;θ2) , t = 1, . . . ,T .

We normalize the index of the outside good, setting δ0t = 0 in each market t =

1, . . . ,T .

Several remarks regarding the demand system (1) are in order. First, the un-

observed characteristics terms ξjt are scalars. Second, there is no income effect,
since σ does not depend on income, and income is implicitly assumed to be suffi-

ciently high that y >maxj∈J pj . Last, prices pjt and characteristics xjt enter only
through the indexes (in particular, we rule out random coefficients on prices and

product characteristics).

Since the function σ in Equation (1) is invertible in δt, then the inverse de-

mand, denoted by σ−1j , maps from market shares st to each index δjt with

δjt = σ−1j (st;θ2) , j ∈ J , t = 1, . . . ,T . (2)

For simplicity, we assume a linear index,

δjt = xjtβ −αpjt + ξjt, j ∈ J , t = 1, . . . ,T .

Then the unobserved product characteristics terms, ξjt, can be written as a

5Restricting the domain of σ to D enables the model to be normalized. E.g., D = {δt ∈ RJ+1 :
δ0t = 0} or D =

{
δt ∈ RJ+1 :

∑
j∈J δjt = 0

}
.

5
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function of the data and parameters θ1 = (α,β) and θ2 to be estimated,

ξjt = σ−1j (st;θ2) +αpjt − xjtβ, j ∈ J , t = 1, . . . ,T . (3)

The unobserved product characteristics terms ξjt represent the structural er-

ror terms of the model, since we assume that they are observed by consumers

and firms but not by the modeller. In addition, prices and market shares in the

right-hand side of Equation (3) are endogenous, i.e., they are correlated with the

structural error terms ξjt.6 Then, following Berry (1994), we can estimate de-

mands (1) based on the conditional moment restrictions

E
[
ξjt |zt

]
= 0, j ∈ J , t = 1, . . . ,T ,

provided that there exists appropriate instruments zt for the endogenous prices

and market shares.

2.2 Closed-Form and Linear-in-Parameters Inverse Demands

Since the seminal papers by Berry (1994) and Berry et al. (1995), the standard

practice of the demand estimation literature with aggregate data has been to

specify an ARUM and to compute the corresponding demands, which then must

be inverted numerically during estimation.7 In this paper, we instead directly

specify inverse demands of the form

σ−1j (st;θ2) = lnGj (st;θ2) + ct, j ∈ J , (4)

where the vector functionG = (G0, . . . ,GJ ) is invertible as a function of st ∈ int (∆),
and where ct ∈ R is a market-specific constant.8 Combining with Equation (2),

this amounts to

lnGj (st;θ2) = δjt − ct. (5)

6Prices are likely to be endogenous since firms may consider both observed and unobserved
product characteristics when setting prices. Market shares are endogenous by construction since
they are defined by the system of equations (1), where each demand depends on the entire vectors
of endogenous prices and unobserved product characteristics.

7To our knowledge, the logit and the nested logit models are the only ARUM that yield closed-
form inverse demands.

8Compiani (2019) adopts a similar approach, but proposing to nonparametrically estimate
inverse demands for differentiated products based on aggregate data.
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When lnGj is linear in parameters θ2, estimation amounts to linear regression,

which makes two-stage least squares (2SLS) easily applicable and (empirical)

identification clear.

The logit and the nested logit models have closed-form and linear-in-parameters

inverse demands that satisfy Equation (4). For the logit model,

lnGj (st) = ln
(
sjt

)
, j ∈ J ,

so that its inverse demand its given by the following well-known expression

(Berry, 1994)

σ−1j (st) = ln
(
sjt
s0t

)
= δjt.

For the two-level nested logit model, which partitions the choice set into

groups,

lnGj (st;µ) = (1−µ) ln
(
sjt

)
+µ ln

 ∑
k∈G(j)

skt

 , j ∈ J ,

where G(j) is the set of products grouped with product j and µ ∈ (0,1) is the

nesting parameter (see Berry, 1994).

For the three-level nested logit model, which extends the two-level nested

logit model by further partitioning groups into subgroups,

lnGj (st;µ1,µ2) =

1− 2∑
d=1

µd

 ln(
sjt

)
+µ1 ln

 ∑
k∈G1(j)

skt

+µ2 ln

 ∑
k∈G2(j)

skt

 ,
where the parameters satisfy

∑2
d=1µd < 1, µd ≥ 0, d = 1,2, and where G1(j) and

G2(j) are the sets of products belonging the same group and to the same subgroup

as product j, respectively.9

The logit and nested logit models have the important advantage that they boil

down to linear regression models (Berry, 1994). For example, for the logit model,

ln
(
sjt
s0t

)
= xjtβ −αpjt + ξjt, j = 1, . . . , J, t = 1, . . . ,T .

The logit model requires just one instrument for price and the two-level nested

9Indeed, setting γ1 = µ1 + µ2 and γ2 = µ1, we recover Equation (10) of Verboven (1996a) and
the model satisfies the constraint 0 ≤ γ2 ≤ γ1 < 1 that makes it consistent with random utility
maximization.
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logit model requires one instrument for price and one for the endogenous shares.

As a consequence, both models allow very large choice sets involving thousands

of products. However, the logit and nested logit models impose strong restric-

tions on the substitution patterns that can be accommodated.

In the next section, we introduce the inverse product differentiation logit

(IPDL) model, which extends the inverse demand of the nested logit model in the

same way that the product differentiation logit model of Bresnahan et al. (1997)

extends the nested logit model; we take the IPDL model to data on ready-to-eat

cereals in Section 4.

3 The Inverse Product Differentiation Logit (IPDL)

Specification of theModel Suppose that eachmarket exhibits product segmen-

tation along D dimensions, indexed by d. Each dimension d defines a finite num-

ber of groups of products, such that each product belongs to exactly one group

in each dimension. The grouping structure is exogenous and, for simplicity, as-

sumed to be common across markets.

Let θ2 = (µ1, . . . ,µD), where
∑D

d=1µd < 1 and µd ≥ 0, d = 1, . . . ,D , and let Gd (j)
be the set of products grouped with product j on dimension d. The IPDL model

has inverse demands that are given by Equation (4), where lnGj is defined as

lnGj (st;θ2) =

1− D∑
d=1

µd

 ln(
sjt

)
+

D∑
d=1

µd ln

 ∑
k∈Gd(j)

skt

 . (6)

We show below that inverse demands (6) are invertible, such that it is possible

to compute the IPDL demands.10 We show in Section 6 that the IDPL demand is

consistent with utility maximization.

We say that two products are of the same type if they belong to the same

group on all dimensions. We assume that the outside good is the only product of

its type, which implies that

lnG0 (st;θ2) = ln(s0t) = δ0t − ct = −ct. (7)

10Invertibility of lnG =
(
lnG0, . . . , lnGJ

)
is shown using Proposition 1. The key assumption that

ensures invertibility is that
∑D

d=1µd < 1, which means that a positive weight is assigned to the
terms ln(sjt).

8
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The IPDL model extends the nested logit model by allowing arbitrary, non-

hierarchical grouping structures, i.e., any partitioning of the choice set in each

dimension. Figure 1 illustrates the competing hierarchical and non-hierarchical

grouping structures used for the empirical application in Section 4. The freedom

in defining grouping structures can be used to build inverse demand models that

are similar in spirit to GEV models based on nesting, which have proved useful

for demand estimation purposes (Train, 2009, Chap. 4). For example, like Small

(1987) and Grigolon (2018), it is possible to define grouping structures that de-

scribe markets where products are naturally ordered.

It is important to note that the parametrization of the IPDL model does not

depend on the number of products, but instead on the number of segmentation

dimensions. This is important because it implies that the IPDL model can handle

markets involving very many products.

Estimation of the IPDL Model Combining Equations (6) and (7), the IPDL

model boils down to a linear regression model of market shares on product char-

acteristics and share terms

ln
(
sjt
s0t

)
= xjtβ −αpjt +

D∑
d=1

µd ln
(

sjt∑
k∈Gd(j) skt

)
+ ξjt, (8)

for all inside products j = 1, . . . , J in each market t = 1, . . . ,T .

Equation (8) has the same form as the logit and nested logit equations (see

Berry, 1994; Verboven, 1996a), except for the share terms. Under the standard

assumption that product characteristics xjt are exogenous, wemust therefore find

at least D + 1 instruments: one instrument for price and for each of the D share

terms.

Following the prevailing literature (see e.g., Berry and Haile, 2014; Reynaert

and Verboven, 2014; Armstrong, 2016), both cost shifters and BLP instruments

are good candidates for instruments. Cost shifters are appropriate instruments

for prices but may not be appropriate for market shares because costs affect the
market shares only through prices. BLP instruments, which are functions of

the characteristics of competing products and are commonly used to instrument

prices, are also useful to instrument market shares. In theory, BLP instruments

generally suffice for identification.11 However, in practice they may be weak and

11See Armstrong (2016) for a discussion on the validity of BLP instruments as the number of

9
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then cost shifters are required.

Following Verboven (1996a) and Bresnahan et al. (1997), the BLP instruments

of the IPDL model include, for each dimension, the sums of characteristics for

other products of the same group as well as the number of products within each

group. These instruments reflect the degree of substitution and the closeness

of products within a group and are therefore likely to affect prices and within-

group market shares. The same instruments can also be computed for products

of the same type. Lastly, we can exploit the ownership structure of the market

and compute the same instruments while distinguishing products of the same

firms from products of competing firms. The idea is that prices, and thus market

shares, depend on the ownership structure since multi-product firms set prices

so as to maximize their total profits.

Links to Discrete Choice Models We show below that the IPDL model is con-

sistent with a representative consumer model (RCM) with taste for variety and

without income effect. The RCM assumes the existence of a variety-seeking rep-

resentative consumer who aggregates a population of consumers and chooses

some quantity of every product, trading off variety against quality. It has been a

workhorse of the international trade literature since Dixit and Stiglitz (1977) and

Krugman (1979), and has also been used for demand estimation purposes (e.g.,

Pinkse and Slade, 2004).

Specifically, as shown below, the IPDL model is consistent with a represen-

tative consumer, endowed with income y, who chooses a vector st ∈ int(∆) of

nonzero market shares in market t so as to maximize the utility

αy +
∑
j∈J

δjtsjt −
∑
j∈J

sjt lnGj (st) , (9)

where Gj is defined by Equations (6) and (7), and where δj is a linear-in-price

index. The second term in Equation (9) captures the net utility derived from the

consumption of st in the absence of interaction among products and the last term

expresses taste for variety.

As mentioned above, the IPDL model has the nested logit model, and thus

the logit model, as special cases: the logit is obtained when product segmenta-

tion does not matter, and the nested logit model is obtained when the grouping

products increases.

10
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structure is hierarchical. Thus some IDPL models are ARUM. On the other hand,

as shown below and in contrast to any ARUM, some IDPL models allow comple-

mentarity.12

Complementarity We use the standard definition of complementarity and sub-

stitutability in the absence of income effect (Samuelson, 1974), defining com-

plementarity (resp., substitutability) as a negative (resp., positive) cross-price

derivative of demand.13 Proposition 4 in Appendix A.3 provides some properties

of the IPDL model regarding the patterns of substitution, including the matrix of

price derivatives of demand.

The IPDL model allows complementarity. To see this, suppose there are 3

inside products and one outside good. Inside products are grouped according to

two dimensions: for the first dimension, product 1 is in one group, and products

2 and 3 are in a second group; for the second dimension, products 1 and 2 are in

one group, and product 3 is in a second group. Products 1 and 3 are complements

if the derivative of the demand for product 3 with respect to the price of product

1 is negative, that is, if14

(1−µ1 −µ2) (s1 + s2) (s2 + s3)−µ1µ2s0s2 > 0,

which simplifies to 4/3 > µ1µ2/(1− µ1 − µ2) for s0 = 1/2 and s1 = s2 = s3 = 1/6. In

particular, products 1 and 3 are complements for µ1 = µ2 = 1/3, but are substi-

tutes for µ1 = µ2 = 0.45. With the representative consumer interpretation, the pa-

rameter µ0 = 1−
∑D

d=1µd measures taste for variety over all products of the choice

set and each parameter µd , for d ≥ 1, measures taste for variety across groups of

products according to dimension d: higher µd means that variety at the level of

groups of products matters more, meaning that products in the same group in

dimension d are more similar (see Verboven, 1996b, for a similar interpretation

of the nesting parameter of the nested logit model). Then complementarity in

the IPDL model arises in a very intuitive way, due to taste for variety at the group

level.

In Section 1 of the supplement, we provide some simulation results investi-

12It would be of interest to establish conditions under which the IDPL model is equivalent to
an ARUM.

13This definition is different from the one used by Gentzkow (2007) in the context of an ARUM
defined over bundles of products.

14See Proposition 4 in Appendix A.3.
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gating the patterns of substitution. We find that: (i) products of the same type

are always substitutes, while products of different types may be substitutes or

complements; and (ii) closer products into the characteristics space used to form

product types (i.e., higher values of µd and/or whether products belong to the

same groups or not) have higher cross-price elasticities.

4 Empirical Illustration: Demand for Cereals

In this section, we illustrate the IPDLmodel by estimating the demand for ready-

to-eat (RTE) cereals in Chicago in 1991 – 1992. This market has been studied

extensively (see e.g., Nevo, 2001; Michel andWeiergraeber, 2019) and it is known

to exhibit product segmentation. We compare the results (in terms of elasticities

and goodness-of-fit) from the IPDL model to those from two alternative nested

logit models.

4.1 Data

Databases Weuse store-level scanner data from the Dominick’s Database, made

available by the James M. Kilts Center, University of Chicago Booth School of

Business. We supplement with data on the nutrient content of the RTE cere-

als (sugar, energy, fiber, lipid, sodium, and protein) from the USDA Nutrient

Database for Standard Reference and with monthly sugar prices from the web-

site www.indexmundi.com.

For our analysis, we use data from 83 Dominick’s stores and focus on the 50

largest products in terms of sales (e.g., Kellogg’s Special K), where a product is a

cereal (e.g., Special K) associated to its brand (e.g., Kellogg’s). We define a market

as a store-month pair. Prices of a serving (i.e., 35 grammes) and market shares

are computed following Nevo (2001). See Appendix B for more details on the

data.

Product Segmentation Based on the observations below, we consider two seg-

mentation dimensions. The first dimension is brand, where the brands are Gen-

eral Mills, Kellogg’s, Nabisco, Post, Quaker, and Ralston. The second dimension

is market segment, where the market segments are family, kids, health/nutrition,

and taste enhanced (see e.g., Nevo, 2001). These two dimensions are combined

to form 17 product types among the 50 products.

12
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Brands play an important role: Kellogg’s is the largest company and has large

market shares in all market segments; and General Mills, the second largest com-

pany, is especially popular in the family and kids segments. Taken together, Kel-

logg’s and General Mills account for around 80 percent of the market. As regards

market segments, the family and kids segments dominate and account for almost

70 percent of the market.

Table 1 shows the average nutrient content of the cereals grouped by brand

andmarket segment. As expected, cereals for health/nutrition contain less sugar,

more fiber, less lipid, and less sodium, and are less caloric. By contrast, cereals for

kids contain more sugar and more calories. Moreover, Nabisco offers cereals with

less sugar and less calories, while Quaker and Ralston offer cereals with more

calories. The two dimensions therefore proxy, at least partially, for the nutrient

content of the cereals.

Figure 1 illustrates the grouping structure of the IPDL model (left panel) and

of the three-level nested logit model where products are grouped first by brand

and then by market segment (right panel).

Figure 1: Product Segmentation on the Cereals Market

Each dot illustrates the location of a cereal in the grouping structure.

13
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Table 1: Average by Market Segment and by Brand

Dimensions Sugar Energy Fiber Lipid Sodium Protein N

g/serve kcal/serve g/serve g/serve mg/serve g/serve

Brand (dimension 1)

General Mills 9.92 132.09 1.99 1.51 230.69 2.65 17

(4.67) (7.69) (0.98) (0.82) (60.83) (0.83)

Kellogg’s 9.58 127.50 2.47 0.85 228.49 2.88 18

(5.52) (11.16) (2.81) (0.96) (103.93) (1.43)

Nabisco 0.25 125.48 3.43 0.58 2.10 3.83 2

(0.09) (0.74) (0) (0) (1.98) (0.02)

Post 12.02 130.76 2.09 1.03 212.03 2.49 5

(4.64) (14.83) (2.02) (0.78) (22.31) (1.15)

Quaker 8.50 139.44 2.26 2.43 159.88 3.59 5

(4.04) (9.20) (0.66) (1.86) (94.60) (1.15)

Ralston 7.09 138.48 0.58 0.51 305.43 2.04 3

(6.61) (1.41) (0.08) (0.65) (71.57) (0.39)

Market Segment (dimension 2)

Family 7.54 130.41 2.22 0.99 269.66 2.88 17

(5.27) (9.83) (2.61) (0.71) (88.64) (1.03)

Health/nutrition 5.03 122.54 3.16 0.54 168.54 3.84 9

(3.69) (5.78) (1.31) (0.21) (133.62) (1.35)

Kids 13.40 137.75 1.00 1.35 211.38 2.01 16

(4.17) (3.80) (0.69) (0.79) (44.77) (0.87)

Taste enhanced 9.70 129.28 3.32 2.22 166.43 3.16 8

(2.05) (15.50) (1.12) (1.93) (76.38) (0.34)

Total 9.31 131.16 2.17 1.22 216.29 2.82 50

(5.21) (10.21) (1.92) (1.08) (93.53) (1.15)

Notes: Standard deviations are reported in parentheses. Column "N" gives the number of

products by market segment and by brand. Averages and standard deviations are com-

puted over products (without taking into account of their market shares).

4.2 Demand Estimation

Specification We estimate Equation (8), where xjt includes a constant, the nu-

trients mentioned above and a dummy for promotion. Following Bresnahan et al.

(1997), we include fixed effects for brands (ξb) and market segments (ξs), which

14
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capture market-invariant observed and unobserved brand-specific and market

segment-specific characteristics, respectively. The advantages provided by the

two dimensions are therefore parametrized by the fixed effects ξb and ξs, which

measure the extent to which belonging to a group shifts the demand for the prod-

uct, as well as the parameters for groups µ1 and µ2, which measure the extent to

which products within a group are protected from substitution from products

in other groups along each dimension. Lastly, we include fixed effects for month

(ξm), and store (ξst), which capture monthly unobserved determinants of demand

and time-invariant store characteristics, respectively.

The unobserved product characteristics terms are therefore given by

ξjt = ξb + ξs + ξm + ξst + ξ̃jt,

where ξ̃jt, the structural error that remain in ξjt, capture the unobserved product

characteristics varying across products and markets that are not included into

the model (e.g., changes in shelf-space, positioning of the products among oth-

ers), which affect consumers utility and that consumers and firms (but not the

modeller) observe so that they are likely to be correlated with prices and market

shares.

Instruments We use two sets of instruments. First, as cost-based instruments,

we form the price of the cereal’s sugar content of a serve (i.e., sugar content in a

serve times the sugar monthly price), which we interact with brand fixed effects.
Multiplying the price of sugar by the sugar content allows the instrument to vary

by product; and interacting this with fixed effects allows the price of sugar to

enter the production function of each firm differently.
Second, we form BLP instruments by using other products’ promotional ac-

tivity in a given market, which varies both across stores for a given month and

across months for a given store: for a given product, other products’ promo-

tional activity should affect consumers’ choices, and should thus be correlated

with the price and market share of that product, but not with the error term.15

15We do not use functions of the nutrient content of the cereals as instruments since by con-
struction of the data they are invariant across markets. We treat promotion as an exogenous
variable since, at Dominick’s Finer Foods, the promotional calendar is known several weeks in
advance of the weekly price decisions. One concern about the use of promotions to form instru-
ments is that promotions could be advertised. If it was the case, this would mean that promotions
are not exogenous and cannot be used as instruments. However, we do not observe advertising
in the data, which is therefore part of the error term, and, in turn, we assume that promotions
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Specifically, we use the number of other promoted products of rival firms and

the number of other promoted products of the same firm, which we interact with

brand name fixed effects. We also use these numbers over products belonging to

the same market segment, which we interact with market segment fixed effects.
A potential problem is weak identification, which occurs when instruments

are only weakly correlated with the endogenous variables. With multiple en-

dogenous variables, the standard first-stage F-statistic is no longer appropriate to

test for weak instruments. We therefore use Sanderson and Windmeijer (2016)’s

F-statistic to test whether each endogenous variable is weakly identified. In each

estimated model, the F-statistics are far larger than 10, implying that we can be

confident that instruments are not weak.

Parameter Estimates Table 2 presents the 2SLS demand estimates from the

IPDL and the three-level nested logit models with groups for market segment

on top (3NL1) and with groups for brand on top (3NL2), in columns (1), (2), and

(3), respectively.

Consider first the results from the IPDL model. As expected, the estimated

parameters on the negative of price (α) and on promotion (β) are significantly

positive. The estimated parameters for groups have magnitude and sign that

conform to the assumptions of the IPDL model, µ1 ≥ 0, µ2 ≥ 0 and 1−µ1 −µ2 > 0;

no constraints were imposed on the parameters during the estimation. These

estimates imply that there is product segmentation along both dimensions: for

cereals of the same market segment, cereals of the same brand are closer substi-

tutes than cereals of different brands; and for cereals of the same brand, cereals

within the samemarket segment are closer substitutes than cereals from different
market segments. Overall, cereals of the same type are closer substitutes.

We find that the brand reputation of the cereals confers a significant advan-

tage to products from General Mills and Kellogg’s and that cereals for family

have a significant advantage. In addition, we find that µ1 > µ2, which means that

the market segments confer more protection from substitution than brand repu-

tation does (cereals of the same market segment are more protected from cereals

from different market segments than cereals of the same brand are from cereals

of different brands).

are not followed by advertising. See Michel and Weiergraeber (2019) who also use promotion to
form instruments.
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Table 2: Parameter Estimates of Demand

(1) (2) (3)
IPDL 3NL1 3NL2

Price (−α) -1.83 (0.12) -2.91 (0.12) -4.10 (0.16)
Promotion (β) 0.088 (0.003) 0.102 (0.003) 0.144 (0.004)
Constant (β0) -0.697 (0.059) -0.379 (0.065) -0.195 (0.076)
Nesting Parameters (µ)

Market Segment/Group (µ1) 0.626 (0.009) 0.771 (0.008) 0.668 (0.011)
Brand/Subgroup (µ2) 0.232 (0.009) 0.792 (0.007) 0.709 (0.010)

FE Brands (ξb)
Kellogg’s 0.024 (0.005) -0.056 (0.003) 0.104 (0.006)
Nabisco -0.754 (0.024) -0.218 (0.011) -2.11 (0.02)
Post -0.485 (0.014) -0.187 (0.008) -1.36 (0.01)
Quaker -0.553 (0.015) -0.329 (0.014) -1.51 (0.01)
Ralston -0.732 (0.025) -0.200 (0.011) -2.13 (0.02)

FE Market Segments (ξs)
Health/nutrition -0.672 (0.010) -0.855 (0.008) -0.069 (0.005)
Kids -0.433 (0.009) -0.529 (0.009) 0.071 (0.005)
Taste enhanced -0.710 (0.010) -0.903 (0.007) -0.088 (0.006)

Observations 99281 99281 99281
RMSE 0.210 0.242 0.270
Notes: The dependent variable is ln(sjt/s0t). Regressions include fixed effects (FE) for brands,
market segments, months, and stores, as well as a constant, the nutrients (fiber, sugar, lipid,
protein, energy, sodium) and a dummy for promotion. Robust standard errors are reported
in parentheses. The values of the F-statistics in the first stages suggest that weak instruments
are not a problem.

Model Selection andRobustness The estimates from the two nested logit mod-

els satisfy µ2 > µ1, which means that they are both consistent with random utility

maximization. Neither nested logit model can then be rejected on this criterion.

The three estimated models are non-nested and have the same number of

estimated parameters. Then the non-nested test of Rivers and Vuong (2002) can

be used to determine which best fits the data. We find that the test strongly rejects

both nested logit models in favor of the IPDL model.16

In many situations, consumers face choices involving a very large number

16The test statistic is given by
√
J × T

(
Q̂1 − Q̂2

)
/σ̂ , where Q̂i is the value of the 2SLS objective

function of model i evaluated at the demand estimates, and σ̂2 is the estimated value of the
variance of the difference between Q̂i ’s. The null hypothesis is that the two non-nested models are
asymptotically equivalent; the first (resp., second) alternative hypothesis is that model 1 (resp.,
model 2) is asymptotically better than model 2 (resp., model 1). This statistic must be evaluated
against the standard normal distribution and we estimate σ̂2 using 500 bootstrap replications.
The test statistics of the two nested logit models (model 1) against the IDPL model (model 2) are
1509.77 and 3644.43, respectively.
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of products (e.g., choice of a car or of a RTE cereal). We have estimated an al-

ternative specification in which we define products as cereal-brand-store combi-

nations, as it is commonly done in the vertical relationships literature (see e.g.,

Villas-Boas, 2007), and markets as months. The resulting specification, which

has more than 4,000 products, leads to very similar parameter estimates, thereby

indicating that the results are fairly robust to the definitions of products and

markets.

Substitution Patterns. Figure 2 presents the estimated density of the own- and

cross-price elasticities of demands of the IPDL and the two nested logit models

(see Section 3 of the supplement for the estimated own- and cross-price elastici-

ties of demands, averaged across markets and product types).

The estimated own-price elasticities are in line with the literature (see e.g.,

Nevo, 2001). On average, the estimated own-price elasticity of demands is −2.815
for the IPDL model, −3.187 for the 3NL1 model and −3.124 for the 3NL2 model.

However, there is an important variation in price responsiveness across product

types: for the IPDL model, own-price elasticities range from −3.560 for cereals

for kids produced by General Mills to −1.388 for cereals for health/nutrition pro-

duced by Post; for the 3NL1 model, they range from −3.923 for cereals for kids

produced by Ralston to −1.868 for cereals for health/nutrition produced by Post;

and for the 3NL2 model, they range from −3.975 for cereals for kids produced by

General Mills to −1.488 for cereals for health/nutrition produced by Post.

Consider now the cross-price elasticities. Among the 50 × 50 different cross-
price elasticities that the IPDLmodel yields, 49.5 percent (resp., 50.5 percent) are

negative (resp., positive), meaning about one half of all pairs of cereals are com-

plements. Note that the presence of complementarity is likely to reduce compe-

tition in the cereals market compared to a case with no complementarity. Iaria

and Wang (2019) also find that complementarity is pervasive in the RTE cereals

market. Complementarity can arise for many reasons, including taste for variety

and shopping costs.

Products of the same brand are always substitutes, which means that there is

cannibalization effect; likewise, products from the same market segment are all

substitutes. Products of different brands and of different market segments may

or may not be complements.
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Figure 2: Estimated Price Elasticities of Demands

5 The Generalized Inverse Logit Model

In this section, we introduce the Generalized Inverse Logit (GIL) class of models,

which includes the IPDL model as a special case and hence also the logit and

nested logit models. Proofs for this section are provided in Appendix A.4 along

with formal statements of the results. To ease exposition, we omit notation for

parameters θ2 and market t.

Definition 1. GIL models are inverse demands of the form (5), i.e.,

lnGj (s) = δj − c, j ∈ J , (10)

where c ∈ R is a market-specific constant and lnG =
(
lnG0, . . . , lnGJ

)
is an inverse

GIL demand.

An inverse GIL demand is a function lnG, where G : (0,∞)J+1 → (0,∞)J+1 is

homogeneous of degree one and where the Jacobian JlnG (s) is positive definite

and symmetric.

This definition immediately implies that the IDPL model is also a GIL model.

Section 2 of the supplement provides a range of general methods for building

inverse GIL demands along with illustrative examples that go beyond the IPDL
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model, which is the focus of the paper. As stated in the following proposition, an

inverse GIL demand is injective and hence invertible on its range.

Proposition 1. Let lnG be an inverse GIL demand. Then lnG is injective on

int(∆).

We denote the inverse function as H = G−1. Inverting Equation (10) and us-

ing that demands sum to one together with the homogeneity of G leads to the

demand functions

sj = σj (δ) =
Hj

(
eδ

)∑
k∈J Hk (eδ)

, j ∈ J . (11)

This expression generalizes the logit demands in a nontrivial way through the

presence of the function H.

In addition, consider any vector of market shares s ∈ int(∆). Then, hold-

ing δ0 = 0, the injectivity of the inverse GIL demand ensures that there exists a

unique vector of indexes δ =
(
0,δ1, . . . ,δJ

)
that rationalizes demand, i.e., s = σ (δ).

Using that demands satisfy Roy’s identity ∂CS
(
eδ

)
/∂δj = σj (δ), it can easily

be shown that the consumer surplus is

CS (δ) = ln

∑
k∈J

Hk

(
eδ

) ,
up to an additive constant. Note that the consumer surplus is simply the loga-

rithm of the denominator of the demands in Equation (11), just as in the case of

the logit model.

Using that demands sum to one, we obtain that the market-specific constant

is equal to the consumer surplus c = CS (δ), which combined with Equation (10),

shows that GIL models satisfy

δj = lnGj (s) +CS (δ) , j ∈ J . (12)

Differentiating (12) with respect to δ, we find that the matrix of demand

derivatives ∂σj /∂δi is given by

Jσ (δ) = [JlnG (s)]−1 − ss⊺, (13)

where s = σ (δ). Given the absence of income effects, the matrix (13) is the Slutsky

matrix. This is symmetric and positive semi-definite, which implies that GIL
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demands are non-decreasing in their own index δj , ∂σj /∂δj ≥ 0.

The class of GIL models accommodates patterns that go beyond those of stan-

dard ARUM. In particular, it allows for complementarity: this is for example the

case of the IPDL model, which is a member of the class of GIL models. Our in-

vertibility result in Proposition 1 therefore extends Berry (1994)’s invertibility

result, which restricts the products to be strict substitutes. Proposition 1 also

extends Berry et al. (2013), who show invertibility for demands that satisfy their

“connected substitutes” conditions, which rule out complementarity.17

6 Relationships between Models

This section puts the GIL and the IPDL models into perspective by showing how

they relate to the representative consumer model (RCM) and to the additive ran-

dom utility model (ARUM).

6.1 Representative Consumer Model

Consider a representative consumer facing the choice set of differentiated prod-

ucts, J , and a homogeneous numéraire good, with demands for the differentiated
products summing to one. Let pj and vj be the price and the quality of product

j ∈ J , respectively.
The price of the numéraire good is normalized to 1 and the representative

consumer’s income y is sufficiently high (y > maxj∈J pj) to guarantee that con-

sumption of the numéraire good is positive.

In this subsection, we show that the inverse GIL demand lnG is consistent

with a representative consumer who chooses a consumption vector s ∈ ∆ of mar-

ket shares of the differentiated product and a quantity z ≥ 0 of the numéraire

17The connected substitutes structure requires two conditions: (i) products are weak gross
substitutes, i.e., everything else equal, an increase in δi weakly decreases demand σj for all other
products; and (ii) the “connected strict substitution” condition holds, i.e., there is sufficient strict
substitution between products to treat them in one demand system. In contrast to ours, Berry
et al. (2013)’s result does not require that demand σ is differentiable. Demand systems with
complementarity may be covered by Berry et al. (2013)’s result in cases where a suitable trans-
formation of demand can be found such that the transformed demand satisfies their conditions.
They provide no general result on how such a transformation could be found. Our result allows
complementarity without requiring such a transformation to be found.
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good, so as to maximize her direct utility

αz+
∑
j∈J

vjsj −
∑
j∈J

sj lnGj (s) (14)

subject to the budget constraint and the constraint that demands sum to one,∑
j∈J

pjsj + z ≤ y and
∑
j∈J

sj = 1, (15)

where α > 0 is the marginal utility of income. The first two terms of the direct

utility (14) describe the utility that the representative consumer derives from

the consumption (s, z) of the differentiated products and the numéraire in the

absence of interaction among them. The third term is a strictly concave function

of s that expresses the representative consumer’s taste for variety (see Lemma 4

in Appendix A.5).

Let δj = vj −αpj be the net utility that the consumer derives from consuming

one unit of product j ∈ J . The utility maximization program (14)-(15) leads to

first-order conditions for interior solution

lnGj (s) + c = δj , (16)

which are of the form of Equation (10) defining the inverse GIL demand.

We state this observation as a proposition and give a detailed proof in Ap-

pendix A.5.

Proposition 2. The GIL model (16) is consistent with a representative consumer

who maximizes utility (14) subject to constraints (15).

This proposition thus extends Anderson et al. (1988) and Verboven (1996b)’s

results that the logit and the nested logit models are consistent with a utility

maximizing representative consumer.

6.2 Additive Random Utility Model

We now turn to the Additive Random Utility Model. A population of consumers

face the choice set of differentiated products, J , and associate a deterministic

utility component δj = vj −αpj to each product j ∈ J . Each individual consumer
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chooses the product that maximizes her indirect utility given by18

uj = δj + εj , j ∈ J , (17)

where the vector of random utility components ε =
(
ε0, . . . , εj , . . . , εJ

)
follows a

joint distribution with finite means that is absolutely continuous, fully supported

on RJ+1 and independent of δ. These assumptions are standard in the discrete

choice literature. They imply that utility ties occur with probability 0, that the

choice probabilities are all everywhere positive, and that random coefficients are

ruled out. Specific distributional assumptions for ε lead to specific models such

as the logit model, the nested logit model, the probit model, etc.

The probability that a consumer chooses product j is

Pj (δ) = Pr
(
uj ≥ ui , ∀i , j

)
, j ∈ J .

Let CS : RJ+1 → R be the consumer surplus, i.e. the expected maximum utility

given by

CS (δ) = E
(
max
j∈J

uj

)
.

By theWilliams-Daly-Zachary theorem (McFadden, 1981), the conditional choice

probabilities are equal to the derivatives of the consumer surplus, i.e. Pj (δ) =

∂CS (δ) /∂δj . Define a function H =
(
H0, . . . ,H J

)
, with H j : (0,∞)J+1 → (0,∞) as

the derivative of the exponentiated surplus with respect to its jth component, i.e.,

H j

(
eδ

)
=
∂eCS(δ)

∂δj
= Pj (δ)e

CS(δ), j ∈ J .

Summing over k ∈ J and using that probabilities sum to one, we can write the

ARUM choice probabilities and the consumer surplus in terms of H as

Pj (δ) =
H j

(
eδ

)
∑

k∈J Hk (eδ)
, j ∈ J , (18)

18Note that income does not enter utility (17), which means that there is no income effect.
This is equivalent to the case in which income enters linearly. The deterministic utilities, δj ,
are common across all consumers, which rules out heterogeneity in preferences apart from the
random utilities ϵj .
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and

CS (δ) = ln

∑
k∈J

Hk

(
eδ

) .
Lemma 6 in Appendix B shows thatH is invertible, with inverseG =H

−1
, and

that lnG is an inverse GIL demand. Then we can invert Equations (18) to obtain

the inverse ARUM demands, which coincide with the inverse GIL demands (10)

when G =G,

lnGj (s) + c = δj , j ∈ J ,

with c = CS (δ).

Products are always substitutes in an ARUM. In contrast, some GIL models

allow for complementarity and cannot therefore be rationalized by any ARUM.

This is in particular the case of the IPDL model introduced in Section 3 and used

in the empirical illustration in Section 4. We summarize the results as follows.

Proposition 3. The ARUM choice probabilities in Equation (18) coincide with

the GIL demands defined by Equation (11) when G =G =H−1 =H
−1
.

Then any ARUM is consistent with some GIL model. The converse does not

hold, since some GIL models are not consistent with any ARUM.

Lastly, any GILmodel is consistent with some perturbed utilitymodel (PUM).19

In a PUM, the consumer chooses a vector of choice probabilities s ∈ int(∆) to max-

imize her utility function defined as the sum of an expected utility component

and a concave and deterministic function of s, labeled as perturbation. Specifi-

cally, the GIL model (16) can be rationalized by a PUM with utility given by∑
j∈J

δjsj −
∑
j∈J

sj lnGj (s) ,

without the explicit structure of income and prices. However, the converse does

not hold. For example, for the concave perturbation function
∑

j∈J ln(sj), the

corresponding candidate inverse GIL demand is lnGj (s) = 1
sj
ln

(
sj
)
, which is not

homogeneous of degree one and thus is not an inverse GIL demand.

19See Hofbauer and Sandholm (2002), McFadden and Fosgerau (2012) and Fudenberg et al.
(2015) for more details on PUM. PUMhave been used tomodel optimization with effort (Mattsson
and Weibull, 2002), stochastic choices (Swait and Marley, 2013; Fudenberg et al., 2015), and
rational inattention (Matejka and McKay, 2015; Fosgerau et al., 2018). Allen and Rehbeck (2019)
show that some PUM allow for complementarity
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Proposition 3 shows that the choice probabilities generated by any ARUM

can be derived from some GIL model. As the class of GIL models is a strict

subset of the class of PUMmodels, we have therefore strengthened Hofbauer and

Sandholm (2002)’s result that the choice probabilities generated by any ARUM

can be derived from some PUM by showing that the GIL structure is sufficient to

recover any ARUM.

6.3 Overview of Relationships

The relationships between the GIL, IDPL, ARUM and RCM classes of models are

illustrated in Figure 3.

We have established that any GIL model is an RCM. An example suffices to

show that there are RCM that are not consistent with any GIL model. In partic-

ular, when lnGj (s) = 1
sj
ln

(
sj
)
, the direct utility (14) is consistent with a RCM but

not with a GIL model.

As mentioned above, the IPDL model is a GIL model and admits the logit

and nested logit models as special cases. We have also shown that any ARUM is

observationally equivalent to some GILmodel. However, the special case of IPDL

model shows that the converse does not hold, since it allows for complementarity

which is ruled out by any ARUM.

Figure 3: Relationships between RCM, ARUM and GIL models

Altogether, as Figure 3 shows, the class of GIL model is strictly larger than
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the class of ARUM, but strictly smaller than the class of RCM.

7 Conclusion

This paper has introduced the IPDL model, which is an inverse demand model

for differentiated products that are segmented according to multiple dimensions.

The IDPLmodel allows formore complex patterns of substitution than the nested

logit model, it even allows for complementarity, while being easily estimated by

linear regression using Berry (1994)’s method. The IDPL model provides an at-

tractive modelling framework in applications where the priority is to maintain

the computational simplicity of logit and nested logit models, while allowing

more realistic patterns of substitution that do not constrain products to be sub-

stitutes.

The IDPL model belongs to the wider class of GIL models, which is a class

of representative consumer models, large enough to comprise equivalents of all

ARUM as well as models in which products may be complements. Finding that

GIL demands are invertible even in the presence of complementarity extends the

previous literature on invertibility of demand.

There is ample room for future research on the IDPL model and the more

general GIL class of models. Generally, it is of interest to develop GIL mod-

els for various applications, exploiting the possibilities for constructing models

with structures that are tailored to specific circumstances. On the methodolog-

ical level, it is of interest to develop methods for estimating GIL models with

individual-level data. Another issue is to determine conditions on the inverse

GIL demand under which products are substitutes. Finally, the link to rational

inattention, pointed out in Fosgerau et al. (2018), remains to be explored theoret-

ically and empirically.
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Appendices

A Proofs and Additional Results

A.1 Mathematical Notation

We use italics for scalar variables and real-valued functions, boldface for vec-

tors, matrices and vector-valued functions, and calligraphic for sets. By default,

vectors are column vectors: s =
(
s0, . . . , sJ

)⊺
∈ RJ+1.

∆ ⊂ RJ+1 is the J-dimensional unit simplex: ∆ =
{
s ∈ [0,∞)J+1 :

∑
j∈J sj = 1

}
,

and int(∆) =
{
s ∈ (0,∞)J+1 :

∑
j∈J sj = 1

}
is its interior.

Let CS : RJ+1 → R be a function. Then, ∇δCS (δ), with elements j given by
∂CS(δ)
∂δj

, denotes its gradient with respect to the vector δ.

Let G =
(
G0, . . . ,GJ

)
: RJ+1→ RJ+1 be a vector function composed of functions

Gj : RJ+1→ R. Its Jacobian matrix JG (s) at s has elements ij given by ∂Gi(s)
∂sj

.

A univariate function R→ R applied to a vector is a coordinate-wise applica-

tion of the function, e.g., ln(s) =
(
ln(s0) , . . . , ln

(
sJ
))
. 1J = (1, . . . ,1)⊺ ∈ RJ is a vector

consisting of ones and IJ ∈ RJ×J denotes the J × J identity matrix.

A.2 Preliminary Results

This section states some preliminary mathematical results that are used in the

proofs below.

Lemma 1 (Euler equation for homogeneous functions). Suppose thatϕ : (0,∞)J+1→
R is homogeneous of degree one. Then

ϕ (s) =
J∑

i=0

∂ϕ (s)
∂si

si , for all s ∈ (0,∞)J+1 .
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Definition 2. A matrix A ∈ R(J+1)×(J+1) is positive quasi-definite if its symmetric

part, defined by 1
2 (A+A⊺), is positive definite.

It follows that a symmetric and positive definite matrix is positive quasi-

definite.

Lemma 2 (Gale and Nikaido 1965, Theorem 6). If a differentiable mapping F :

Θ→ RJ+1, where Θ is a convex region (either closed or non-closed) of RJ+1, has a

Jacobian matrix that is everywhere quasi-definite in Θ, then F is injective on Θ.

Lemma 3 (Simon and Blume, 1994, Theorem 14.4). Let F : RJ+1 → RJ+1 and G :

RJ+1→ RJ+1 be continuously differentiable functions. Let y ∈ RJ+1 and x =G (y) ∈
RJ+1. Consider the composite function

C = F ◦G : RJ+1→ RJ+1.

The Jacobian matrix JC (y) is given by

JC (y) = JF◦G (y) = JF (x)JG (y) .

A.3 Properties of the IPDL Model

Let Θd be the matrix encoding the grouping structure for dimension d with ele-

ments ij given by

(Θd)ij =

1, if i ∈ Gd (j) ,

0, otherwise,

where Gd(j) is the set of products that are grouped with product j in dimension

d. Let sGd(j) =
∑

k∈J (Θd)jk sk denote the market share of the group Gd (j).

Proposition 4. The IPDL model has the following properties.

1. The IIA property holds for products of the same type; but does not hold in

general for products of different types.

2. The matrix of own- and cross-price derivatives is given by

Jσ (δ) = −α (Ψ diag(s)− ss⊺) , (19)

where

Ψ =


1− D∑

d=1

µd

IJ+1 + D∑
d=1

µdΘdSGd


−1

, (20)
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where SGd is the diagonal matrix with elements jj given by
sj

sGd (j)
with sj =

σj (δ).

3. Products can be substitutes or complements.

Proof of Proposition 4

1. Using the relation (6) between indexes δ and market shares s, we obtain for

any pair of products j and k that

σj (δ)

σk (δ)
= exp

 δj − δk
1−

∑D
d=1µd

+
D∑
d=1

µd

1−
∑D

d=1µd
ln

(
σGd(k) (δ)

σGd(j) (δ)

) . (21)

For products j and k of the same type (i.e., with Gd (k) = Gd (j) for all d),

Equation (21) reduces to
σj (δ)
σk(δ)

= exp
(

δj−δk
1−

∑D
d=1µd

)
, which is independent of the

characteristics or existence of all other products, i.e., IIA holds for products

of the same type. When products are of different types, the ratio can depend

on the characteristics of other products, which means that IIA does not hold

in general.

2. Use Equation (25) in Proposition 5 below to show that the matrix of own-

and cross-price derivatives is given by Equations (19) and (20).

3. Suppose there are 3 inside products and one outside good. Inside products

are grouped according two dimensions. For the first dimension, product 1

is in one group, and products 2 and 3 are in a second group. For the second

dimension, products 1 and 2 are in one group, and product 3 is in a second

group.

Using Equation (19), we show that

∂σ1 (δ)
∂p3

= −α ((1−µ1 −µ2) (s1 + s2) (s2 + s3)−µ1µ2s0s2) ,

meaning that if

(1−µ1 −µ2) (s1 + s2) (s2 + s3)−µ1µ2s0s2 > 0,

then products 1 and 3 are complements.
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A.4 Results for Section 5

Proof of Proposition 1 The function lnG is differentiable on the convex region

int(∆) of RJ+1. In addition, JlnG is positive quasi-definite on int(∆), since by

assumption it is symmetric and positive definite on int(∆). Then lnG is injective

by Lemma 2.

Proposition 5. The GIL models defined by Equation (10) satisfy the following

properties.

1. The market-specific constant c is equal to

c = ln

∑
k∈J

Hk

(
eδ

) , (22)

where H(eδ) = (H0(eδ), . . . ,HJ (eδ)) =G−1(eδ).

2. The market shares functions are given by

σj (δ) =
Hj

(
eδ

)∑
k∈J Hk (eδ)

, j ∈ J . (23)

3. The Euler-type equation

∑
j∈J

sj
∂ lnGj (s)

∂sk
= 1, k ∈ J , s ∈ int (∆)

holds and can be written in matrix form as

JlnG (s)s = 1J+1, s ∈ int (∆) . (24)

4. Roy’s identity implies that the consumer surplus is given by the convex

function

CS (δ) = ln

∑
k∈J

Hk

(
eδ

) .
5. With s = σ (δ), the matrix of demand derivatives is given by

Jσ (δ) = [JlnG (s)]−1 − ss⊺, (25)
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which is symmetric and positive semi-definite, implying that GIL demands

have symmetric cross effects and are non-decreasing in their own index.

Proof of Proposition 5

1. Exponentiating and applying H on both sides of Equation (10) leads to

s =H(eδe−c) =H(eδ)e−c, (26)

where the last equality uses the homogeneity of H. Using that demands

sum to 1 leads to Equation (22).

2. Combine Equations (22) and (26) and use σj (δ) = sj to obtain Equation (23).

3. Note that

∑
j∈J

sj
∂ lnGj (s)

∂sk
=

∑
j∈J

sj
∂ lnGk (s)

∂sj
=

∑
j∈J sj

∂Gk(s)
∂sj

Gk (s)
=
Gk (s)
Gk (s)

= 1,

where the first equality relies on the symmetry of the Jacobian of lnG and

the third equality uses the Euler equation for the homogeneous functionG.

4. We verify that Roy’s identity holds. Set δ = lnG (s). Then (lnG)−1 (δ) =

H ◦ exp(δ) = s, and by Lemma 3,

JlnG (s) =
[
J(lnG)−1 (lnG (s))

]−1
=

[
JH◦exp (δ)

]−1
.

By assumption, the Jacobian JlnG(s) is positive definite and symmetric. Then

its inverse JH◦exp (δ) exists and is symmetric, i.e.,

∂Hi

(
eδ

)
∂δj

=
∂Hj

(
eδ

)
∂δi

.

Then Roy’s identity can be verified via

∂CS
(
eδ

)
∂δi

=

∑
k∈J

∂Hk(eδ)
∂δi∑

j∈J Hj (eδ)
=

∑
k∈J

∂Hi(eδ)
∂δk∑

j∈J Hj (eδ)
,

=

∑
k∈J

∂Hi(eδ)
∂eδk

eδk∑
j∈J Hj (eδ)

=
Hi

(
eδ

)∑
j∈J Hj (eδ)

= σi (δ) ,
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where the second equality uses symmetry of JH◦exp (δ) and the fourth equal-

ity uses the Euler equation for the homogeneous function H.

Convexity of the consumer surplus follows by property 5 since the Hessian,

Jσ (δ), is positive semidefinite.

5. Differentiate δj = lnGj (s) +CS (δ) with respect to δ to find that

IJ+1 = JlnG (s)Jσ (δ) + 1J+1s
⊺,

where s = σ (δ). Solving for Jσ (δ), we obtain that

Jσ (δ) = [JlnG (s)]−1
[
I− 1J+1s⊺

]
= [JlnG (s)]−1 − [JlnG (s)]−11J+1s

⊺,

since JlnG (s) is invertible.

Finally, use Equation (24) to show that [JlnG (s)]−11J+1s⊺ = ss⊺. Then Jσ (δ)

is symmetric.

As JlnG (s) is positive definite, the square-root matrix [JlnG (s)]1/2 exists and
is also positive definite. Then

[JlnG (s)]1/2Jσ (δ) [JlnG (s)]1/2 = [JlnG (s)]−1/2(IJ+1 − 1J+1s⊺)[JlnG (s)]1/2,

is symmetric and idempotent and hence positive semidefinite. Then also

Jσ (δ) is positive semidefinite.

A.5 Results for Section 6

Representative Consumer Model

Lemma 4. Let lnG be an inverse GIL demand. Then the function s→−s⊺ lnG(s) =
−
∑

j∈J sj lnGj (s) is strictly concave on int(∆).

Proof of Lemma 4 Consider s ∈ int(∆). By property 3 of Proposition 5, the

Hessian of −s⊺ lnG(s) is −JlnG (s), which is negative definite by assumption.

Proof of Proposition 2 Consider the representative consumer maximizing util-

ity (14) subject to constraints (15). The budget constraint is always binding since

α > 0 and y >maxj∈J pj . Substituting the budget constraint into the direct utility
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(14), the representative consumer then chooses s ∈ ∆ to maximize

u (s) = αy +
∑
j∈J

δjsj −
∑
j∈J

sj lnGj (s) ,

where δj = vj −αpj .
The Lagrangian of the utility maximization program given by

L (s,λ) = u (s) +λ

1−∑
j∈J

sj

 ,
yields

∑
j∈J sj = 1 and the first-order conditions

δj − lnGj (s)−
∑
k∈J

sk
∂ lnGk (s)

∂sj
−λ = 0, j ∈ J .

By property 3 of Proposition 5, the first-order conditions can be simplified to

δj − lnGj (s)− 1−λ = 0, j ∈ J .

The first-order condition for an interior solution has a unique solution, since the

objective is strictly concave by Lemma 4, hence the utility maximizing demands

exist uniquely.

Setting c = 1+λ, one obtains

lnGj (s) + c = δj ,

which then shows that the representative consumer model leads to the inverse

GIL demand.

Additive Random Utility Model

Since shifting all the δj ’s by a constant amount c ∈ R shifts the maximum ex-

pected utility CS by the same amount and does not affect choice probabilities

P, we may use the normalization
∑

j∈J δj = 0, i.e., we consider at no loss of gen-

erality the restrictions of G and P to Λ =
{
δ ∈ RJ+1 :

∑
j∈J δj = 0

}
. The following

lemma collects some properties of the expected maximum utility CS.

Lemma 5. The expected maximum utility CS has the following properties.
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1. It is twice continuously differentiable, convex and finite everywhere.

2. It satisfies the homogeneity property

CS
(
δ+ c1J+1

)
= CS (δ) + c, c ∈ R. (27)

3. Its Hessian is positive definite on Λ.

4. It is given in terms of the expected residual of the maximum utility product

by

CS (δ) =
∑
j∈J

Pj (δ)δj +E
(
εj∗ |δ

)
, (28)

where j∗ is the index of the chosen product.

Proof of Lemma 5 McFadden (1981) establishes convexity, finiteness, and the

homogeneity property (27). He also shows the existence of all mixed partial

derivatives up to order J ≥ 2, meaning that all second order mixed partial deriva-

tives are continuous. Hofbauer and Sandholm (2002) show that the Hessian of

CS is positive definite on Λ.

Let j∗ be the index of the chosen product. Property (28) follows from

CS (δ) =
∑
j∈J

E
(
max
j∈J

{
δj + εj

}
|j∗ = j,δ

)
Pj (δ) ,

=
∑
j∈J

(
δj +E

(
εj∗ |j∗ = j,δ

)
Pj (δ)

)
,

=
∑
j∈J

Pj (δ)δj +E
(
εj∗ |δ

)
,

where the first equality uses the law of iterated expectations.

It is well-known in the convex analysis literature that, for the logit model, the

convex conjugate of the negative Shannon entropy −CS∗ (s) =
∑

j∈J sj ln
(
sj
)
is the

log-sum CS (δ) = ln
(∑

j∈J e
δj
)
(see e.g., Boyd and Vandenberghe, 2004). Fosgerau

et al. (2018) extend this result to a class of "generalized entropies" which has

the Shannon entropy as special case. See also Matejka and McKay (2015), Chiong

et al. (2016) and Galichon and Salanié (2015) who use convex analysis in different
contexts.
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Lemma 6. The function H is invertible, and its inverse G =H
−1

is an inverse GIL

demand.

Lemma 6 is proved in Fosgerau et al. (2018) in a very similar setting. The

proof provided here applies to the exact setting of the current paper and has

independent value by being simpler.

Proof of Lemma 6 We first show that H is injective. Note that H is differen-
tiable. Consider the function δ → H

(
eδ

)
. Its Jacobian is positive definite on Λ

since it has elements ij given by{
eCS(δ)

∂CS (δ)
∂δi

∂CS (δ)
∂δj

}
+
{
eCS(δ)

∂2CS (δ)
∂δi∂δj

}
,

where the first term is a positive semi-definite matrix and where, by property 3

of Lemma 5, the second term is a positive definite matrix on Λ. As it is also sym-

metric, it follows that the Jacobian is positive quasi-definite. ThenH is invertible

by Lemma 2. By Norets and Takahashi (2013), the range of H is int(∆), which

then is the domain of the inverse function H
−1
.

We now show that lnG is an inverse GIL demand. Note that G is linearly ho-

mogeneous and that, as shown above, the Jacobian ofH is symmetric and positive

definite. Then, by Lemma 3, the same is true for the Jacobian of lnG.

B Data

Databases We use data from the Dominick’s Database made available by the

James M. Kilts Center, University of Chicago Booth School of Business. This

is weekly store-level scanner data, comprising information on 30 categories of

packaged products at the UPC level for all Dominick’s Finer Foods chain stores

in the Chicago metropolitan area over the period 1989-1997. For the application,

we consider the RTE cereals category during the period 1991–1992.

We supplement the data with the nutrient content of the RTE cereals using the

USDA Nutrient Database for Standard Reference. This dataset is made available

by the United States Department of Agriculture and provides the nutrient con-

tent of more than 8,500 different foods including RTE cereals (in particular, we

use releases SR11 (year 1996) and SR16 (year 2004) for sugar). We have collected

six characteristics: fiber, sugar, lipid and protein in g/serve, energy in kcal/serve,
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and sodium inmg/serve. We also supplement the data with monthly sugar prices

from the website www.indexmundi.com to form cost-based instruments.

Markets, Products, Market shares and Prices We aggregate UPCs into prod-

ucts (e.g., Kellogg’s Special K), so that different size boxes are considered one

product, where a product is a cereal (e.g., Special K) associated to its brand (e.g.,

Kellogg’s). We focus attention on the top 50 products in terms of sales, which

account for 73 percent of sales of the category in the sample we use.

We define a market as a store-month pair. Following Nevo (2001), we define

market shares of the inside products by converting volume sales into number of

servings sold, and then by dividing it by the total potential number of servings

at a store in a given month.

To compute the total potential number of servings at a store in a given month,

we assume that (i) an individual in a household consumes around 15 servings per

month, and (ii) consumers visit stores twice a week. Indeed, according to USDA’s

Economic Research Service, per capita consumption of RTE cereals was equal to

around 14 pounds (that is, about 6350 grammes) in 1992, which is equivalent

to 15 servings per month (without loss of generality, we assume that a serving

weight is equal to 35 grammes). Then, the potential (month-store) market size (in

servings) is computed as the weekly average number of households which visited

that store in that given month, times the average household size for that store,

times the number of servings an individual consumes in a month. The market

share of the outside good is then the difference between one and the sum of the

inside products market shares. As a robustness check, we have also estimated the

models with the alternative assumption that consumers visit stores once a week;

results do not change significantly.

Lastly, following Nevo (2001), we compute the price of a serving by dividing

the dollar sales by the number of servings sold, where the dollar sales reflect

the price consumers paid; we also convert the six nutrients into nutrients for a

serving.
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Supplements

Notation We use italics for scalar variables and real-valued functions, boldface

for vectors, matrices and vector-valued functions, and calligraphic for sets. By

default, vectors are column vectors: s =
(
s0, . . . , sJ

)⊺
∈ RJ+1.

∆J ⊂ RJ+1 is the J-dimensional unit simplex: ∆J =
{
s ∈ [0,∞)J+1 :

∑
j∈J sj = 1

}
,

and int
(
∆J

)
=

{
s ∈ (0,∞)J+1 :

∑
j∈J sj = 1

}
is its interior, where J = {0,1, . . . , J}.

Let CS : RJ+1 → R be a function. Then, ∇δCS (δ), with elements j given by
∂CS(δ)
∂δj

, denotes its gradient with respect to the vector δ.

Let G =
(
G0, . . . ,GJ

)
: RJ+1→ RJ+1 be a vector function composed of functions

Gj : RJ+1→ R. Its Jacobian matrix JG (s) at s has elements ij given by ∂Gi(s)
∂sj

.

A univariate function R→ R applied to a vector is a coordinate-wise applica-

tion of the function, e.g., ln(s) =
(
ln(s0) , . . . , ln

(
sJ
))
. 1J = (1, . . . ,1)⊺ ∈ RJ is a vector

consisting of ones and IJ ∈ RJ×J denotes the J × J identity matrix. Let |s̃| =
∑

j∈J |s̃j |
denotes the 1-norm of vector s̃.

1 Simulation Results for the IPDL Model

Let Θd be the matrix encoding the grouping structure for dimension d, with ele-

ments ij given by

(Θd)ij =

1, if i ∈ Gd (j) ,

0, otherwise,

where Gd (j) is the set of products that are grouped with product j in dimension

d. Let sGd(j) =
∑

k∈J (Θd)jk sk be the market share of Gd (j).
Recall that the matrix of own- and cross-price derivatives for the IPDL model

is

Jσ (δ) = −α (Ψ diag(s)− ss⊺) ,
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where

Ψ =


1− D∑

d=1

µd

IJ+1 + D∑
d=1

µdΘdSGd


−1

,

and where SGd is the diagonal matrix with elements jj given by
sj

sGd (j)
with sj =

σj (δ). We cannot obtain closed-form formulae for the entries of the matrix of

own- and cross-price derivatives. We therefore perform simulations to better

understand the substitution patterns of the IPDL model.

Simulated Data We simulate

• A market with 20 inside products and an outside good;

• 20 different grouping structures (i.e. allocations of products in groups)

along 3 dimensions, and with 3 groups per dimension. We obtain a group-

ing structure by simulating a 20×3 matrix of random numbers following a

generalized Bernoulli distribution;

• 20 different vectors of grouping parameters µ = (µ0, . . . ,µ3). We obtain a

vector of µ by simulating a 4-vector of uniformly distributed random num-

bers, where the first element is µ0, then normalizing so that µ ∈ int(∆3);

• 20 different vectors of market shares s = (s0, . . . , s20). We obtain a vector of

market shares by simulating a 21-vector of uniformly distributed random

numbers, where the first element is s0, then by normalizing the vector of

market shares of inside products so that s ∈ int (∆20).

This way of normalizing ensures that we simulate markets with very low and

very high values for µ0 and s0. Combining the grouping structures, the grouping

parameters, and the market shares, we form 8,000 markets. The following table

gives summary statistics on the simulated data.
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Table S1: Summary Statistics on the Simulated Data

Variable Mean Min Max

s0 0.5253 0.0064 0.9906

sj 0.0158 3e-06 0.0697

µ0 0.4662 0.0697 0.9532

µ1 0.2014 0.0135 0.8480

µ2 0.1420 0.0175 0.4036

µ3 0.1904 0.0059 0.5212

Grouping Structure Table S2 shows the distribution of the own- and cross-

price derivatives according to the number of common groups.

Own-price elasticities are always negative, while cross-price elasticities can

be either negative (complementarity) or positive (substitutability). Products of

the same type are always substitutes. Products that are very similar (i.e., that are

grouped together according to all dimensions, but one) are also always substi-

tutes. Products that are very different can be either substitutes or complements.

Products are less likely to be substitutes as they become more different.

Table S2: Distribution of Price Derivatives by Number of Common Groups

Common groups Jσ > 0 Median Min Max Freq.

Own-price derivatives
– 0.00% -0.0222 -0.7781 -3e-06 100.00%

Cross-price derivatives
0 (None) 45.33% -7e-07 -0.1539 0.0251 25.09%

1 90.38% 0.0002 -0.1114 0.2082 43.59%

2 100.00% 0.0006 -1e-09 0.2641 26.47%

3 (All) 100.00% 0.0009 -1e-09 0.3100 4.85%

Total 82.09% 0.0002 -0.1539 0.3100 100.00%

Notes: Column "Jσ > 0" gives the percentage of positive cross-price elasticities

according to the number of common groups (e.g., the row "2" concerns products

that are grouped together into 2 groups). Column "Freq." gives the frequencies

(in percentage) of the cross-price elasticities (e.g., 4.85 percent of the cross-price

elasticities involve products of the same type).

Grouping Parameters Table S3 shows the distribution of cross-price deriva-

tive according to the proximity of products into the characteristics space used
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to form product types, as measured by the sum of grouping parameters µjk =∑3
d=1µd1 {j ∈ Gd (k)} for two products j and k.

As the parameter µjk becomes larger, we observe that (i) the derivatives in-

crease in values, and that (ii) the share of substitutes increases. This is because

higher µd means that products of the same group in dimension d become more

similar.

Table S3: Percentage of Substitutes according to the Value of µjk

µjk Jσ > 0 Median Min Max

[0,0.1[ 65.60% 0.0000 -0.1539 0.0286

[0.1,0.2[ 96.37% 0.0002 -0.0538 0.1462

[0.2,0.3[ 93.52% 0.0003 -0.1114 0.1670

[0.3,0.4[ 94.16% 0.0007 -0.0673 0.2082

[0.4,0.5[ 93.89% 0.0009 -0.0432 0.2049

[0.5,1[ 100.00% 0.0020 1e-08 0.3100

Summary In the IPDL model,

1. (Grouping structure) Products of the same type are always substitutes. Prod-

ucts of different types may be substitutes or complements, depending on

the degree of closeness between products as measured by the value of the

parameters µd and by the closeness of the products into the characteristics

space used to form product types. The closer two products are, the more

likely they are to be substitutes.

2. (Grouping parameters) The size of the cross-derivatives depends on the de-

gree of closeness. The closer two products are, the higher is their cross-

derivative.

2 Construction of GIL Models

In this section, we provide a range of general methods for building members of

the class of GIL models, along with illustrative examples. They allow us to obtain

alternative models to the logit and nested logit models that have interesting fea-

tures: some of them can accommodate complementarity, others have closed form

for both the demands and their inverse.
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Definition 1. An inverse GIL demand is a function lnG, where G : (0,∞)J+1 →
(0,∞)J+1 is homogeneous of degree one and where the Jacobian JlnG (s) is positive
definite and symmetric.

Definition 2. An almost inverse GIL demand is a function that satisfies the re-

quirements for being an inverse GIL demand, except the Jacobian JlnG (s) is only
required to be positive semi-definite rather than positive definite.

2.1 General Methods and Illustrative Examples

The first result in this section shows that averaging an almost inverse GIL de-

mand with an inverse GIL demand yields a new inverse GIL demand.

Proposition S1 (Averaging). LetGk , k ∈ {1, . . . ,K}, be almost inverse GIL demands

with at least one being an inverse GIL demand. Let (α1, . . . ,αK ) ∈ int(∆K−1). Then

lnG (s) =
K∑
k=1

αk lnGk (s)

is an inverse GIL demand.

Proof of Proposition S1 The functionG is homogeneous of degree one since for

λ > 0,

G (λs) =
K∏
k=1

Gk (λs)
αk =

K∏
k=1

λαkGk (s)
αk ,

=

 K∏
k=1

λαk


 K∏
k=1

Gk (s)
αk

 ,
=

(
λ
∑K

k=1αk

) K∏
k=1

Gk (s)
αk

 = λG (s) ,

where the second equality uses the homogeneity of the functions Gk and the

fourth equality uses the restrictions on parameters
∑K

k=1αk = 1.

The Jacobian of lnG, given by JlnG =
∑K

k=1αkJlnGk
, is symmetric as the linear

combination of symmetric matrices, and positive definite as the linear combi-

nation of at most K − 1 positive semi-definite matrices and at least one positive

definite matrix.
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Proposition S1 leads to the following corollary.

Corollary S1 (General grouping). Let G ⊆ 2J be a finite set of groups with asso-

ciated parameters µg , where µ0j +
∑
{g∈G|j∈g}µg = 1 for all j ∈ J with µg ≥ 0 for all

g ∈ G and µ0j > 0 for all j ∈ J . Let lnG = (lnG0, . . . , lnGJ ) be given by

lnGj (s) = µ0j ln
(
sj
)
+

∑
{g∈G|j∈g}

µg ln

∑
i∈g

si

 .
Then lnG is an inverse GIL demand.

Proof of Corollary S1 Let T 0
j (s) = sj and for each g ∈ G, Tg =

(
T
g
1 , . . . ,T

g
J

)
with

T
g
j (s) =

(∑
i∈g si

)1{j∈g}
. The Jacobian of lnTg has elements jk given by 1{j∈g}1{k∈g}∑

i∈g si
,

and thus JlnTg =
1g1

⊺
g∑

i∈g si
where 1g = (1 {1 ∈ g} , . . . ,1 {J ∈ g})⊺. Each Tg is an almost

inverse GIL demand while T0 is the logit inverse demand. Lastly,
∑
{g∈G|j∈g}µg +

µ0j = 1. Then the conditions for application of Proposition S1 are fulfilled.

The grouping structure in Corollary S1 is arbitrary and therefore allows the

grouping structure that defines the IPDLmodel. The presence of the logit inverse

demand, due to µ0 > 0, ensures that the Jacobian JlnG(s) is always positive definite

and hence that the inverse demand is indeed invertible.

If the outside good 0 belongs only to one group and is the only member of

that group, then lnG0 (s) = ln(s0) = δ0 + c. Setting δ0 = 0 and assuming a linear

index, the model of Corollary S1 boils down to the linear regression model

ln
(
sj
s0

)
= xjβ −αpj +

∑
g∈G(j)

µg ln

∑
k∈g

sk

+ ξj , j = 1, . . . , J.

The following proposition shows how an inverse GIL demand can be trans-

formed into another inverse GIL demand by application of a location shift and a

matrix with non-negative elements that sum to one across rows and columns. Let

unnormalized demands s̃ be demands obtained before normalizing their sum to

one, i.e., s = s̃/ |s̃|.

Proposition S2 (Transformation). Let T be an inverse GIL demand and m ∈ RJ+1

be a location shift vector. Let A ∈ R(J+1)×(J+1) be an invertible matrix such that
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aij ≥ 0 and
∑

i∈J aij =
∑

j∈J aij = 1. Then the function lnG given by

lnG(s) =A⊺ [ln(T (As))] +m (1)

is an inverse GIL demand, and the corresponding unnormalized demands are

given by

s̃ =A−1T−1
(
exp

[
(A⊺)−1 (δ −m)

])
. (2)

Proof of Proposition S2 The function G defined by Equation (1) is homoge-

neous of degree one since for λ > 0,

G (λs) = exp(A⊺ lnT (A (λs)) +m) ,

= exp(A⊺ lnλ+A⊺ lnT (As) +m) ,

= exp(lnλ+A⊺ lnT (As) +m) = λG (s) ,

where the second equality uses the homogeneity of T, and the third equality uses

the feature that columns of A sum to 1.

The Jacobian of lnG is JlnG(s) = A⊺JlnT(s)A, which is symmetric and positive

definite. Unnormalized demands (2) follow from solving lnG (s̃) = δ.

Proposition S2 provides models where both demand and inverse demand

have closed form, as it is the case of the logit and nested logit models. We il-

lustrate this proposition with an inverse GIL demand that allows for comple-

mentarity. Let J +1 = 3, m = 0, T (s) = s, and

A =


p 1− p 0

1− p p 0

0 0 1

 ,
with p < 0.5. Then we obtain that

s̃ =A−1
(
exp

[
(A⊺)−1δ

])
=


p

2p−1e
p

2p−1δ1−
1−p
2p−1δ2 − 1−p

2p−1e
p

2p−1δ2−
1−p
2p−1δ1

p
2p−1e

p
2p−1δ2−

1−p
2p−1δ1 − 1−p

2p−1e
p

2p−1δ1−
1−p
2p−1δ2

eδ3

 ,
so that

s3 = σ3 (δ) =
eδ3

e
p

2p−1δ1−
1−p
2p−1δ2 + e

p
2p−1δ2−

1−p
2p−1δ1 + eδ3

,
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and ∂σ3(δ)
∂δ1

> 0 if and only if δ2 − δ1 > (2p − 1)ln
(1−p

p

)
.

2.2 Zero Demands

The constructions above rule out zero demands (this is also the case of the mod-

els discussed in the main text). The following proposition shows how we can

build models that allow zero demands by slightly modifying Proposition S1 and

applying it to functions G defined on [0,∞)J+1 instead of just (0,∞)J+1.

Proposition S3 (Invertible grouping). Let G =
{
g0, . . . , gJ

}
be a finite set of J + 1

groups (i.e., the number of groups is equal to the number of products). Let µg > 0,

for all g ∈ G, be the associated parameters, where
∑
{g∈G|j∈g}µg = 1 for all j ∈ J .

Let G = (G0, . . . ,GJ ) : [0,∞)J+1→ (0,∞)J+1 be given by

lnGj (s) =
∑

{g∈G|j∈g}

µg ln

∑
i∈g

si

 . (3)

Let W = diag
(
µg0 , . . . ,µgJ

)
and let M ∈ R(J+1)×(J+1) with entries Mjk = 1{j∈gk}

(where rows correspond to products and columns to groups). If M is invertible,

then lnG has all the properties of an inverse GIL demand, except that it is defined

on ∆J , and the unnormalized demands satisfy

δ = lnG (s̃)⇔ s̃ = (M⊺)−1 exp
(
W−1M−1δ

)
.

Proof of Proposition S3 Following the proof of Proposition S1, the function

G given by Equation (3) clearly has all the properties of an almost inverse GIL

demand. Thus, it remains to show that the Jacobian of lnG is positive definite if

M is invertible. Observe that

lnGj (s) =
∑
k∈J

µgk1 {j ∈ gk} ln

∑
i∈gk

si


=

∑
k∈J

µgk1 {j ∈ gk} ln

∑
i∈J

1 {i ∈ gk}si

 ,
and, in turn, that

∂ lnGj (s)

∂sl
=

∑
k∈J

µgk
1 {j ∈ gk}1 {l ∈ gk}∑

i∈gk si
,
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which can be expressed in matrix form as

JlnG (s) =MVM⊺,

with V = diag
(

µg0∑
i∈g0 si

, . . . ,
µgJ∑
i∈gJ si

)
. This is positive definite since all µg are strictly

positive and M is invertible.

Lastly, unnormalized demands solve lnG (s̃) = MW ln(M⊺s̃) = δ and, with M
invertible, are given by s̃ = (M⊺)−1 exp

(
W−1M−1δ

)
.

As it is illustrated in the following example and as it is the case in ARUM

where error terms have bounded support, Proposition S3 allows for zero de-

mands when there is no degenerate group (i.e, a group containing only one prod-

uct). Note that this proposition also allows to build models with closed form for

both the demands and their inverses.

Define groups from the symmetric matrix M with entries Mij = 1{i,j}, so that

each product belongs to J + 1 groups. Its inverse, M−1, has entries ij equal to
1

J+1 − 1{i=j}.
Let µg = 1/(J +1) for each group g = 0, . . . , J . Then the unnormalized demands

are given by s̃ = (M)−1 exp
[
(J +1)M−1δ

]
and lead to the following demands

σi (δ) =
s̃i∑
j∈J s̃j

=

∑
j∈J e

−(J+1)δj − (J +1)e−(J+1)δi∑
j∈J e

−(J+1)δj
. (4)

Demands (4) are non-negative only for values of δ within some set. To ensure

positive demands, it is sufficient to average with the simple inverse logit demand.

Demands (4) are not consistent with any ARUM since they do not exhibit the

feature of the ARUM that the mixed partial derivatives of σi (δ) alternate in sign.

Indeed, products are substitutes

∂σ1 (δ)
∂δ2

= −J2e−J(δ1+δ2)/

∑
j∈J

e−Jδj


2

< 0,

but

∂2σ1 (δ)
∂δ2∂δ3

= −2J3e−J(δ1+δ2+δ3)/

∑
j∈J

e−Jδj


3

< 0.
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3 Supplement for the Empirical Illustration

Table S4: Top 50 Brands

Nb. Brand Product Type Brand name Market segment Shares (%)

Dollars Volume

1 Apple Cinnamon Cheerios 1 General Mills Family 2.23 2.02

2 Cheerios 1 General Mills Family 7.67 6.76

3 Clusters 1 General Mills Family 1.03 0.89

4 Golden Grahams 1 General Mills Family 2.28 2.12

5 Honey Nut Cheerios 1 General Mills Family 4.82 4.47

6 Total Corn Flakes 1 General Mills Family 0.87 0.59

7 Wheaties 1 General Mills Family 2.59 2.75

8 Total 2 General Mills Health/nutrition 1.29 1.00

9 Total Raisin Bran 2 General Mills Health/nutrition 1.61 1.49

10 Cinnamon Toast Crunch 3 General Mills Kids 2.16 1.94

11 Cocoa Puffs 3 General Mills Kids 1.22 0.98

12 Kix 3 General Mills Kids 1.68 1.29

13 Lucky Charms 3 General Mills Kids 2.35 1.94

14 Trix 3 General Mills Kids 2.43 1.75

15 Oatmeal (Raisin) Crisp 4 General Mills Taste enhanced 2.05 2.09

16 Raisin Nut 4 General Mills Taste enhanced 1.60 1.60

17 Whole Grain Total 4 General Mills Taste enhanced 1.77 1.29

18 All Bran 5 Kellogg’s Family 0.97 1.11

19 Common Sense Oat Bran 5 Kellogg’s Family 0.49 0.46

20 Corn Flakes 5 Kellogg’s Family 4.12 6.96

21 Crispix 5 Kellogg’s Family 1.88 1.70

22 Frosted Flakes 5 Kellogg’s Family 6.01 6.77

23 Honey Smacks 5 Kellogg’s Family 0.85 0.84

24 Rice Krispies 5 Kellogg’s Family 5.58 6.06

25 Bran Flakes 6 Kellogg’s Health/nutrition 0.90 1.16

26 Frosted Mini-Wheats 6 Kellogg’s Health/nutrition 3.35 3.69

27 Product 19 6 Kellogg’s Health/nutrition 1.06 0.86

28 Special K 6 Kellogg’s Health/nutrition 3.07 2.53

29 Apple Jacks 7 Kellogg’s Kids 1.67 1.32

30 Cocoa Krispies 7 Kellogg’s Kids 0.99 0.85

31 Corn Pops 7 Kellogg’s Kids 1.80 1.52

32 Froot Loops 7 Kellogg’s Kids 2.66 2.22

33 Cracklin’ Oat Bran 8 Kellogg’s Taste enhanced 1.91 1.66

34 Just Right 8 Kellogg’s Taste enhanced 1.07 1.12

35 Raisin Bran 8 Kellogg’s Taste enhanced 3.96 4.83

36 Shredded Wheat 9 Nabisco Health/nutrition 0.77 0.88

37 Spoon Size Shredded Wheat 9 Nabisco Health/nutrition 1.59 1.63

38 Grape Nuts 10 Post Health/nutrition 2.27 3.06

39 Cocoa Pebbles 11 Post Kids 1.11 0.92

40 Fruity Pebbles 11 Post Kids 1.14 0.94

41 Honey-Comb 11 Post Kids 1.05 0.90

42 Raisin Bran 12 Post Taste enhanced 0.93 1.10

43 Oat Squares 13 Quaker Family 0.91 1.02

44 CapNCrunch 14 Quaker Kids 1.00 1.10

45 Jumbo Crunch (Cap’n Crunch) 14 Quaker Kids 1.27 1.35

46 Life 14 Quaker Kids 1.73 2.24

47 100% Cereal-H 15 Quaker Taste enhanced 1.42 1.84

48 Corn Chex 16 Ralston Family 0.81 0.72

49 Rice Chex 16 Ralston Family 1.15 1.03

50 Cookie-Crisp 17 Ralston Kids 0.89 0.68
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Elasticities for the Main Specifications. Tables S5 and S6 give the estimated

average (over product types and markets) price elasticities of demands for the

main specifications.

Table S5: Average Price Elasticities for the Three-Level NL Models

Type 3NL1 3NL2

Own Cross Own Cross

Same Same Different Same Same Different
subgroup group group subgroup group group

1 -3.442 0.152 0.118 0.005 -3.440 0.177 0.131 0.007

2 -3.462 0.378 0.207 0.003 -3.547 0.316 0.085 0.004

3 -3.907 0.314 0.234 0.004 -3.975 0.234 0.125 0.006

4 -2.900 0.372 0.269 0.004 -3.034 0.244 0.103 0.005

5 -2.758 0.119 0.095 0.004 -2.776 0.116 0.084 0.006

6 -2.865 0.370 0.296 0.004 -3.156 0.194 0.094 0.006

7 -3.632 0.270 0.182 0.003 -3.714 0.196 0.077 0.005

8 -2.898 0.346 0.272 0.004 -3.008 0.185 0.086 0.006

9 -2.807 0.307 0.167 – -2.026 1.106 – 0.003

10 -1.868 – 0.307 0.005 -1.488 – 0.624 0.007

11 -3.718 0.231 0.116 0.002 -3.503 0.468 0.313 0.003

12 -2.334 – 0.163 0.002 -2.139 – 0.286 0.003

13 -2.595 – 0.048 0.002 -2.333 – 0.234 0.003

14 -2.888 0.211 0.132 0.002 -2.709 0.440 0.333 0.004

15 -2.060 – 0.207 0.003 -1.842 – 0.360 0.004

16 -3.501 0.219 0.051 0.002 -2.723 1.019 0.790 0.003

17 -3.922 – 0.096 0.002 -3.186 – 0.717 0.003

Notes: Elasticities are averaged over product types and over markets.
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Table S6: Average Price Elasticities for the IPDL Model

O
w
n

C
ross

Typ
e

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17

1
-3.107

0.195
0.091

0.071
0.078

0.077
-0.026

-0.047
-0.039

0.004
0.010

-0.011
-0.003

0.108
-0.016

-0.008
0.064

-0.060

2
-3.203

0.059
0.323

0.064
0.068

-0.036
0.227

-0.032
-0.028

0.095
0.186

-0.073
-0.066

-0.008
-0.004

0.000
-0.006

-0.001

3
-3.560

0.068
0.093

0.334
0.084

-0.031
-0.006

0.235
-0.015

0.003
-0.055

0.186
-0.063

-0.110
0.157

-0.094
-0.051

0.216

4
-2.651

0.062
0.082

0.070
0.355

-0.037
-0.017

-0.028
0.256

0.003
-0.020

-0.032
0.249

-0.051
-0.042

0.242
-0.006

0.002

5
-2.513

0.062
-0.047

-0.027
-0.039

0.142
0.034

0.053
0.042

-0.006
-0.011

0.009
-0.003

0.085
-0.004

-0.016
0.050

-0.038

6
-2.581

-0.025
0.324

-0.006
-0.020

0.038
0.386

0.056
0.042

0.127
0.244

-0.086
-0.095

-0.013
0.005

-0.009
-0.009

0.009

7
-3.319

-0.035
-0.037

0.183
-0.028

0.047
0.046

0.266
0.055

-0.005
-0.063

0.158
-0.052

-0.090
0.129

-0.083
-0.043

0.176

8
-2.651

-0.032
-0.036

-0.013
0.259

0.043
0.038

0.061
0.334

-0.005
-0.036

-0.013
0.251

-0.055
-0.037

0.236
-0.006

0.012

9
-1.945

0.002
0.077

0.002
0.002

-0.004
0.072

-0.004
-0.003

0.912
0.060

-0.016
-0.014

0.005
0.005

0.006
0.005

0.005

10
-1.388

0.009
0.266

-0.051
-0.021

-0.013
0.244

-0.073
-0.043

0.107
–

0.489
0.501

0.036
-0.024

0.006
0.019

-0.040

11
-3.238

-0.005
-0.051

0.089
-0.020

0.004
-0.042

0.098
-0.011

-0.013
0.247

0.386
0.270

-0.029
0.065

-0.045
-0.012

0.082

12
-2.097

-0.002
-0.044

-0.029
0.146

-0.001
-0.044

-0.029
0.146

-0.011
0.233

0.248
–

-0.005
-0.032

0.143
0.011

-0.017

13
-2.379

0.043
-0.005

-0.047
-0.027

0.043
-0.006

-0.047
-0.027

0.004
0.015

-0.026
-0.006

–
0.199

0.219
0.036

-0.053

14
-2.492

-0.008
-0.003

0.086
-0.029

-0.003
0.002

0.092
-0.024

0.005
-0.015

0.075
-0.040

0.287
0.381

0.266
-0.013

0.081

15
-1.760

-0.006
0.001

-0.061
0.185

-0.012
-0.006

-0.067
0.179

0.007
0.004

-0.057
0.184

0.338
0.282

–
0.013

-0.041

16
-2.631

0.027
-0.004

-0.022
-0.003

0.027
-0.004

-0.022
-0.003

0.004
0.009

-0.009
0.010

0.040
-0.009

0.010
0.784

0.734

17
-3.287

-0.022
-0.001

0.084
0.001

-0.017
0.004

0.089
0.006

0.004
-0.018

0.067
-0.016

-0.049
0.057

-0.026
0.663

–

N
otes:E

lasticities
are

averaged
over

p
rodu

ct
typ

es
and

over
m
arkets.
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Chapter 2

The Flexible Inverse Logit Model

1 Introduction

Estimation of structural demand models for differentiated products plays an im-

portant role in economics. It allows to recover key parameters characterizing

consumers’ preferences so as to better understand their choices (e.g., by comput-

ing willingnesses to pay for product characteristics, price elasticities of demand,

etc.). On top of that, it is the starting point of many economic questions of in-

terest, including market power (Berry et al., 1995; Nevo, 2001), mergers (Nevo,

2000), products’ entry (Petrin, 2002; Gentzkow, 2007), trade policy (Goldberg,

1995; Verboven, 1996; Berry et al., 1999), taxes (Griffith et al., 2019), cost pass-

through (Miller et al., 2016), etc. As highlighted by the theoretical literature, the

shape of the demand function, described by its slope and its curvature, drives the

answers to these questions.1 Then, assuming a supply model (e.g., price compe-

tition), the accuracy of the answers hinges on the ability of the demand model to

yield general or unrestricted demand shape, i.e., on its ability to yield rich sub-

stitution patterns (roughly speaking, on its "flexibility"). Overall, this calls for

a demand model which yields substitution patterns that are data-driven, rather

than model-driven, and which ideally is easy and fast to estimate.

This paper pursues this goal by developing the flexible inverse logit (FIL)

model. The FIL model is an inverse demand model for products that are differen-
1In monopolistically competitive and in oligopolistic models, the profit maximizing level of

cost pass-through depends on both the slope (i.e., its first derivatives) and the curvature (i.e., its
second derivatives) of the demand function (see Bulow and Pfleiderer, 1983; Weyl and Fabinger,
2013; Mrázová and Neary, 2017). For example, in monopolistically competitive markets, absolute
pass-through is less than one if and only if log-demand is convex (Bulow and Pfleiderer, 1983;
Weyl and Fabinger, 2013).
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tiated in prices and in characteristics that may be observed or unobserved by the

modeller. It accommodates rich substitution patterns, including complementar-

ity, and is consistent with an underlying structural model of heterogeneous and

utility-maximizing consumers. With aggregate data at hand (i.e., data on mar-

ket shares, prices and product characteristics), the FIL model can be estimated

by a linear instrumental variable (IV) regression, which allows to deal with the

endogeneity of prices and market shares, due to the presence of structural error

terms that represent unobserved (by the modeller, but observed by consumers

and firms) product characteristics. The FIL model can be applied to various top-

ics in industrial organization, international trade, and public economics; and it

can be used to answer relevant policy questions, such as the effects of mergers,

products’ entry, and changes in regulation.2

The standard practice to structurally estimate demands for differentiated prod-

ucts based on aggregate data assumes an additive random utility model (ARUM).

It then computes the associated demands that are estimated using the method

developed by Berry (1994), which targets the inverse demands and thus involves

an inversion from demands to their inverse that must be performed numerically

when inverse demands are not closed form. Since Berry et al. (1995), the state-of-

the-art approach is the BLP method, which assumes an RCL model and estimates

it using a nested-fixed point algorithm.3 The popularity of the BLP method is

due to its ability to accommodate very rich substitution patterns while dealing

with the endogeneity of prices and market shares.4 However, the BLP approach

faces some practical difficulties. Flexibility of the RCL model can be difficult to

obtain in practice because it requires many random coefficients, which are not

easily identified in applications; besides estimating an RCL model can be painful

and time-consuming since it requires nonlinear optimization, numerical inver-

2In particular, it possesses the main features that make it appealing for merger evaluation
purposes, as highlighted by Pinkse and Slade (2004). It imposes no specific restriction on the
price elasticities; it is easily and fastly estimated by linear IV regression using standard computer
softwares; and it can handle very large choice sets. To demonstrate its use for merger simulation,
I provide, in Appendix E, a preliminary analysis of the Post-Nabisco merger in the ready-to-eat
cereals industry that occurred in January 1993. Assuming that the merger had no effect on non-
merging firm’s prices, I find that the structural model of demand (FIL model) and supply (static
oligopolistic price competition model) predicts pretty well the merging firms’ price increase, as
directly estimated using pre- and postmerger data.

3Since the RCL model yields inverse demands that are not closed form, Berry et al. (1995)
propose to estimate demands by inverting them using a contraction mapping nested into a gen-
eralized method-of-moments (GMM) minimization procedure.

4McFadden and Train (2000) shows that any random utility model can be approximated by an
RCL model.

55



CHAPTER 2. THE FLEXIBLE INVERSE LOGIT MODEL

sion and simulation of market shares.5 Another widely used approach uses the

nested logit models.6 Because they have linear-in-parameters inverse demands,

the nested logit models avoid the difficulties of the BLP approach by just re-

quiring linear instrumental variable (IV) regressions (see Berry, 1994; Verboven,

1996). However, they have been criticized on the ground that they yield substi-

tution patterns that are too restrictive and that they require the modeller to take

a stand on the relevant dimensions along which nests can be defined.

The approach of this paper contrasts with the standard practice by specifying

a linear-in-parameters inverse demand model, which just requires linear IV re-

gression for estimation, and then by showing that it is consistent with a (utility)

model of heterogeneous consumers.7 Fosgerau et al. (2019) propose a general

method to construct linear-in-parameters inverse demand models based on nest-

ing, which yield richer substitution patterns than the nested logit model by al-

lowing any nesting structure with overlapping and non-overlapping nests. How-

ever, this construction has two drawbacks with respect to the BLP approach: it

requires the modeller to choose the nesting structure before estimation; and it

yields substitutions patterns that do not depend on product characteristics di-

rectly – except those used to construct the nesting structure.8

5This implies dealing with their associated issues of local optima and choice of starting values,
accuracy of the contraction mapping and of numerical integration (see e.g., Skrainka and Judd,
2011; Dubé et al., 2012; Knittel and Metaxoglou, 2014). See Conlon and Gortmaker (2018) for the
current best practices in the estimation of structural demand models using BLP approach. Other
approaches have been proposed. Dubé et al. (2012) transform the BLP’s GMMminimization into
a mathematical programwith equilibrium constraints (MPEC), which minimizes the GMM objec-
tive function subject to the constraint that observed market shares be equal to predicted market
shares. Lee and Seo (2015) approximate by linearization the nonlinear system of market shares
for the RCL model and thus invert it analytically. Salanié and Wolak (2019) propose another
approximation which leads to a linear IV regression.

6The nested logit models are commonly used by antitrust practitioners and competition au-
thorities (e.g., the European Commission estimated nested logit models to simulate mergers for
the Lagardère/Natexis/VUP (2004), TomTom/Tele Atlas (2008), Unilever/Sara Lee (2010) cases;
see CCR - Competition Competence Report Autumn 2013/1) and by academics (see e.g., Björner-
stedt and Verboven, 2016; Berry et al., 2016, for recent papers that estimate nested logit models
with aggregate data).

7This paper adopts a fully parametric approach. By contrast, Compiani (2019) develops a
non-parametric approach to estimate inverse demands in differentiated products markets based
on aggregate data. His approach does not make any distributional assumptions on unobserv-
ables and imposes minimal functional form restrictions based on economic theory. However,
he rules out complementarity, as defined by a negative cross-price derivative of demand. Using
restrictions on inverse demands allows him to reduce the very large number of parameters to
be estimated required in non-parametric settings. However, it still requires a large number of
parameters and thus needs large enough datasets for estimation.

8In particular, Fosgerau et al. (2019) propose the inverse product differentiation logit (IPDL)
model based on a predetermined segmentation of the market in which the multiple dimensions
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The FIL model developed in the present paper overcomes these two draw-

backs. Based on the construction proposed by Fosgerau et al. (2019), the FIL

model uses a flexible nesting structure with a nest for each pair of products

and an associated nesting parameter (see Chu, 1989; Koppelman and Wen, 2000;

Davis and Schiraldi, 2014), which is consistent with a member of the class of

model of heterogeneous and utility-maximizing consumers studied by Allen and

Rehbeck (2019). Nesting in the FIL model is thus just a way to fully parametrize

the matrix of price elasticities of demand and does not require the modeller to

choose the nesting structure before estimation.9 Then, the nesting parameters

are projected into product characteristics space: in spirit to Pinkse et al. (2002),

each parameter is defined as a function of the distance between products into

the product characteristics space, known up to some parameters to be estimated.

This projection imposes the same restrictions on the (inverse) demand function

as the linear-in-characteristics ARUM – namely that only differences in charac-

teristics determine the (inverse) demand, not the identity of products ; otherwise,

it makes use of Bernstein polynomials for its shape to be data-driven.10

The FIL model is flexible in the sense of Diewert (1974) in a large class of in-

verse demand models imposing minimal restrictions on consumers’ behavior,11

except that it does not allow for income effect.12 It is easily estimated by lin-

ear IV regression, which clarifies its empirical identification (in terms of instru-

ments needed), and eases and accelerates its estimation (e.g., by application of

the two-stage least squares estimator). The FIL model allows for complementar-

ity in demand (i.e., negative cross-price derivatives of demand) and in utility (i.e.,

positive cross second-order partial derivatives of the utility function with respect

to quantity). This is an important feature of the FIL model since many important

economic questions hinge on the extent to which products are independent, sub-

stitutes or complements: in particular, it directly affects the incentive for firms to

of segmentation are allowed to cross in any way. The IPDL model extends the nested logit models
to allow richer substitution patterns, including complementarity, but requires the modeller to
choose the relevant dimensions of segmentation.

9This implies that its cross-price elasticities are not constrained by a predetermined segmen-
tation of the market; however, it can still exploit product segmentation by adding segment fixed
effects as product characteristics.

10Note that McFadden and Train (2000) use Bernstein polynomials to show the flexibility of the
RCL model.

11This means that, observing a vector of market shares, it can match that vector of market
shares as well as own- and cross-price elasticities.

12This is its main drawback. This is the case of any model derived from the construction based
on nesting proposed by Fosgerau et al. (2019). Extending it to allow for income effect is beyond
the scope of the present paper.
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introduce a new product on themarket (Gentzkow, 2007), to merge (Ershov et al.,

2018), to bundle their products (Iaria and Wang, 2019), etc.13 In this respect,

the nesting parameters are interaction parameters, similar to those of Gentzkow

(2007), determining the way products interact in utility and the type of relation-

ship between them: products are substitutes (resp., complements) in utility, if

their interaction parameter is positive (resp., negative).

Lastly, this paper studies the ability of the FIL model to provide rich substitu-

tion patterns. Using Monte Carlo simulations, it assesses its capacity to replicate

the substitution patterns of the RCL model, which is used on the ground that it

yields rich substitution patterns. They show that the FIL model provides a good

approximation of the RCL model for specifications that are commonly used in

the literature.

The remainder of the paper is organized as follows. Section 2 presents the

general setting used in this paper. Section 3 introduces and studies the FIL

model. Section 4 develops the methods to estimate it with data on market shares,

prices and product characteristics. Section 5 shows, using Monte-Carlo simula-

tions, the ability of the FIL model to replicate the substitution patterns of the

RCL model for specifications that are commonly used in the literature. Section 6

concludes.

Notation I use italics for scalar variables and real-valued functions, boldface

for vectors, matrices and vector-valued functions, and calligraphic for sets. By

default, vectors are column vectors.

Let J = {0, . . . , J}. A vector s ∈ RJ+1 refers to s ≡
(
s0, . . . , sJ

)⊺
∈ RJ+1, and s−0 ≡

(s1, . . . , sJ )⊺. |s| denotes the 1-norm of the vector s, |s| =
∑

j∈J |sj |.
∆J denotes the J-dimensional unit simplex: ∆J ≡

{
s ∈ [0,∞)J+1 :

∑
j∈J sj = 1

}
,

int
(
∆J

)
≡

{
s ∈ (0,∞)J+1 :

∑
j∈J sj = 1

}
is its interior, and bd(∆J ) ≡ ∆J\int

(
∆J

)
is its

boundary.

Let G =
(
G0, . . . ,GJ

)
: RJ+1→ RJ+1 be a vector function composed of functions

Gj : RJ+1→ R. The Jacobian matrix JsG (s) of G with respect to s at s has entries ij
given by ∂Gi(s)

∂sj
. The matrix

[
JsG (s)

]
0
corresponds to the matrix JsG (s) after remov-

ing its first row and its first column.

A univariate function R → R applied to a vector is a coordinate-wise ap-

plication of the function, e.g., ln(s) =
(
ln(s0) , . . . , ln

(
sJ
))
. 0J = (0, . . . ,0)⊺ ∈ RJ

and 1J = (1, . . . ,1)⊺ ∈ RJ are vectors consisting of zeroes and ones, respectively.

13For example, a merger between firms selling complements reduces prices (Cournot, 1838).

58



CHAPTER 2. THE FLEXIBLE INVERSE LOGIT MODEL

IJ,J ∈ RJ×J is the J × J identity matrix and 1J,J ∈ RJ×J is the J × J matrix consisting

of ones.

2 Setting

This section first presents the general setting used in this paper. It gives the main

ingredients required to identify and estimate demand models for differentiated
products using aggregate data. In particular, it highlights that it is the inverse de-

mand that is targeted during estimation. Then, it introduces the general method

developed by Fosgerau et al. (2019) to construct inverse demand models based

on nesting, which is used in Section 3 to build the flexible inverse logit model.

2.1 General Setting

Consider a population of consumers choosing from a choice set J ≡ {0, . . . , J} of
J+1 differentiated products, where products j ∈ J0 ≡ {1, . . . , J} are the inside prod-
ucts and product j = 0 is the outside good. Let pj ∈ R be the price of prod-

uct j and xj ∈ RK be the vector of K observed characteristics of product j, with

p ≡
(
p0, . . . ,pJ

)
and x ≡

(
x0, . . . ,xJ

)
.

Following the prevailing literature (Berry, 1994; Berry et al., 1995), let ξj ∈ R
be the j-product unobserved characteristics term, with ξ ≡

(
ξ0, . . . ,ξJ

)
. The vector

ξ contains the structural error terms of the demand model, which are considered

to be observed by consumers and firms but not by the modeller.

Consider the demand system

σ =
(
σ0, . . . ,σJ

)
: X → int

(
∆J

)
,

where X is the support of (p,x,ξ) and where the function σ gives the vector

s =
(
s0, . . . , sJ

)
∈ int

(
∆J

)
of nonzero observed market shares, that is, it yields the

system of market shares which equates the vector s of observed market shares to

the vector σ of predicted (by the model) market shares,

s = σ (p,x,ξ;θ) , (1)

where θ denotes the vector of structural parameters to be estimated. The struc-

tural parameters are the key parameters describing consumers’ preferences, which

are invariant to changes in economic policy, such as taxes, or in firms’ strategy,

59



CHAPTER 2. THE FLEXIBLE INVERSE LOGIT MODEL

such as pricing strategies, product characteristics, new products (see Hurwicz,

1966).

The demand system (1) assumes that the terms ξj , j ∈ J , are scalars, that

there is no income effect (since σ is independent of income), and that demands

are positive (i.e., σj > 0 for all j ∈ J ).

Index restriction Following Berry and Haile (2014), I further assume an index

restriction. Specifically, I partition the set of K product characteristics as x =(
x(1),x(2)

)
, where x(1) and x(2) are K1 linear product characteristics and K2 = K−K1

nonlinear product characteristics, respectively. Then, I define linear indexes as

δj ≡ x(1)j β −αpj + ξj , j ∈ J , (2)

where α > 0 is the consumers’ price sensitivity (i.e., their marginal utility of in-

come) and where β captures the consumers’ taste for characteristics x(1). The

vector (α,β) is often referred to as the vector of linear parameters. I normalize

the indexes of each inside product relative to that of the outside good by setting

δ0 = 0, so that δ belongs to RJ+1
0 ≡ {δ : δ0 = 0}. This normalization is required for

identification (see Proposition 1 for details).

This means that the system of market shares (1) can be rewritten as

s = σ
(
δ,x(2);µ

)
, (3)

where δ ≡
(
δ0, . . . ,δJ

)
and µ is often referred to as the vector of nonlinear param-

eters.

The index restriction implies that x(1), p and ξ enter demands only through

the product indexes δ. By constrast, x(2) can enter demands in an unrestrictive

way. In the logit model, there is no x(2). By contrast, in the RCL model, x(2) are
the characteristics that have a random coefficient. Demands (3) depending on x(2)

make the own- and cross-price elasticities depending on product characteristics

directly; otherwise, they do not depend on product characteristics directly, except

when parameters depend on product characteristics - as it is, for example, the

case of the nested logit model.

Inverse Demand Invertibility in δ of the system of market shares (3) is crucial

for identification and estimation. Berry et al. (2013) show that their "connected
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substitutes" structure is sufficient for invertibility.14 In Monardo (2019), I pro-

vide a new result of invertibility for demands that accommodate some substitu-

tion patterns that are not allowed by Berry et al. (2013), including complementar-

ity as defined by a negative cross-price derivative of demand; this result applies

to the FIL model developed in Section 3.

If σ is invertible in δ, there exists an inverse demand function σ−1 given by

δj = σ−1j

(
s,x(2);µ

)
, j ∈ J ,

so that the structural error terms ξj can be written as

ξj(θ) = σ−1j

(
s,x(2);µ

)
− x(1)j β +αpj , j ∈ J . (4)

where θ = (α,β,µ).

Equation (4), which gives each structural error term as a function of the data

(i.e., market shares, prices and product characteristics) and parameters θ to be

estimated, shows that the inverse demand function, not the demand function

itself, is the target of estimation.

Instruments Following the prevailing literature (Berry, 1994; Berry et al., 1995;

Nevo, 2001), I assume that product characteristics x are exogenous, i.e., they are

uncorrelated with the structural error terms. However, prices and market shares

in the right-hand side of Equation (4) are likely to be endogenous. Prices are en-

dogenous because, as it is typically assumed in price competition models with

differentiated products, firms consider both observed and unobserved product

characteristics when they set their prices. Market shares are endogenous since

they are determined by the system of equations (1), where each market share

depends on the entire vectors of endogenous prices and of unobserved product

characteristics, and because consumers choose products while considering unob-

served product characteristics.

Then, provided that there exists appropriate instruments z for prices andmar-

ket shares, following Berry (1994), one can estimate demands (3) based on the

14The connected substitutes structure requires that (i) products be weak substitutes, i.e., every-
thing else equal, an increase in δj weakly decreases demand σi for all other products; and (ii) the
“connected strict substitution” condition hold, i.e., there is sufficient strict substitution between
products to treat them in one demand system.
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following conditional moment restrictions

E
[
ξj(θ)|z

]
= 0, j ∈ J , (5)

where ξj(θ) is given by Equation (4).

Both cost-based instruments and BLP instruments can be used (see e.g., Berry

and Haile, 2014; Reynaert and Verboven, 2014; Armstrong, 2016; Gandhi and

Houde, 2017, etc.). Cost-based instruments separate exogenous variation in prices

due to exogenous changes in costs from endogenous variation in prices due to

changes in unobserved product characteristics. They are valid under the assump-

tion that variation in cost shifters is correlated with variation in prices, but not

with changes in unobservable product characteristics. However, they may not be

good instruments for market shares, since costs do not directly shift the endoge-

nous market shares but instead only affect them through prices.15

BLP instruments are functions of the characteristics of competing products

and are valid under the assumption that product characteristics x are exogenous.

They separate exogenous variation in prices due to changes in x from endoge-

nous variation in prices due to changes in unobserved product characteristics.

They are commonly used to instrument prices with the idea that characteristics

of competing products are correlated with prices since the (equilibrium) markup

of each product depends on how close products are into product characteristics

space (products with close substitutes tend to have low markups and thus low

prices relative to costs). They are also appropriate to instrument market shares.

BLP instruments can suffice for (theoretical) identification, but may be weak in

practice, thereby making cost-based instruments useful (see e.g., Reynaert and

Verboven, 2014).16

2.2 Linear-in-Parameters Inverse Demand Models

Equations (4) and (5), when combined with parametric functional form restric-

tions, serve as a basis for demand estimation. When inverse demands σ−1j have

a closed form, one can resort to IV regression techniques for estimation. If, in

addition, they are linear in parameters µ, then estimation just requires linear IV

15The weak instruments problem occurs when instruments are only weakly correlated with
the endogenous variables. See Andrews et al. (2018) on how to test for weak instruments in
applications.

16Note that Armstrong (2016) discusses the strength of the BLP instruments as the number of
products increases.
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regressions.

Fosgerau et al. (2019) show how to construct linear-in-parameter inverse de-

mand models based on nesting, thereby generalizing the nested logit models by

allowing any nesting structure, with overlapping or non-overlapping nests, while

just requiring linear IV regressions for estimation.17 Inverse demands of such

models are of the form of

σ−1j (s;µ) ≡ lnGj (s;µ) + c = δj , j ∈ J , (6)

where δj is given by Equation (2) and c ∈ R is a market-specific constant, and

where lnGj is defined by

lnGj (s;µ) ≡ µj ln
(
sj
)
+

∑
g∈G(j)

µg ln

∑
k∈g

sk

 , j ∈ J , (7)

where G (j) is the set of nests containing product j, andwhere µ ≡
(
(µj)j∈J , (µg)g∈G

)
,

with G the finite set of all nests, is such that µj +
∑

g∈G(j)µg = 1, for all j ∈ J , with

µj > 0 for all j ∈ J and µg ≥ 0 for all g ∈ G.
The logit and the nested logit models are the simplest special cases (see e.g.,

Berry, 1994; Verboven, 1996). For the logit model,

lnGj (s) ≡ ln(sj). (8)

Partition the choice set J into nests, and further partition each nest into sub-

nests. Then, one obtains the three-level nested logit model with

lnGj (s;µ1,µ2) ≡

1− 2∑
d=1

µd

 ln(
sj
)
+µ1 ln

∑
k∈g

sk

+µ2 ln

∑
k∈g |h

sk

 , (9)

for product j ∈ J0 in nest g and subnest h|g, where µ1,µ2 ≥ 0 with µ1 + µ2 < 1.

Indeed, setting γ1 = µ1 + µ2 and γ2 = µ1, one obtains Equation (10) of Verboven

(1996), with the constraints 0 ≤ γ2 ≤ γ1 < 1 that make it consistent with random

utility maximization. Note that, for the nested logit models, the inverse demand

of the outside good is given by

lnG0 (s) ≡ ln(s0) ,

17See Corollary A in the supplement of Fosgerau et al. (2019).
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since the outside good is assumed to be the only member of its nest.

The construction proposed in Equations (6) and (7) leads to models that have

several attractive features. They generalize the nested logit models by allowing

for richer substitution patterns, and in particular complementarity. They require

linear IV regressions for estimation, which clarifies their empirical identification

in terms of instruments needed, and eases and accelerates their estimation by

application of the two-stage least squares estimator. They can be sufficiently par-

simonious (i.e., their number of parameters does not grow with the number of

products), that they can fastly handle large choice sets.

However, this construction has two drawbacks with respect to the BLP ap-

proach. First, it requires the modeller to choose a nesting structure before es-

timation. For example, Fosgerau et al. (2019) build the inverse product differ-
entiation logit (IPDL) model which, similarly to the PDL model of Bresnahan

et al. (1997), generalizes the nested logit models by allowing an arbitrary, non-

hierarchical nesting structure in which dimensions of segmentation are allowed

to cross in any way. The IPDL model allows for richer substitution patterns than

the nested logit models, including complementarity; however, it still requires the

modeller to choose the relevant dimensions of segmentation.

The choice of the nesting structure can be problematic in applications. Con-

sider for example the market for cars, where cars are assumed to belong to five

segments: subcompact, compact, standard, intermediate, and luxury. Grigolon

(2018) suggests a natural ordering of cars from subcompact to luxury, while

Brenkers and Verboven (2006) consider a nested structure without prior order-

ing. Determining which of the two nesting structures best describes the market

is not obvious.

Second, it leads to models with substitution patterns that depend on product

characteristics only indirectly through the market shares, except for those used

to construct the nesting structure.

3 The Flexible Inverse Logit Model

This section develops the flexible inverse logit (FIL) model, which overcomes the

two drawbacks mentioned above. It is a flexible model that uses the construction

of Equations (6) and (7) to build a flexible nesting structure with a nest for each

pair of products and with an associated nesting parameter that drives the sub-

stitutions between these two products. Thus, in the FIL model, nesting does not
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require the modeller to identify relevant dimensions of segmentation.

Then, to make the substitution patterns depend on product characteristics

directly, I project the nesting parameters into product characteristics space. In

particular, in spirit to Pinkse et al. (2002), I replace each nesting parameter with

a function of a measure of distance between products i and j into the product

characteristics space formed by x(2).

3.1 Specification

The FIL model uses a flexible nesting structure with a nest for each pair of prod-

ucts (i, j) ∈ J0, i , j, and with an associated parameter µij for each nest. Its inverse

demands are given by

σ−1j (s;µ) ≡ lnGj (s;µ) + c = δj , j ∈ J0, (10)

where δj is given by Equation (2), and where lnGj is defined by

lnGj (s;µ) ≡ µj ln
(
sj
)
+
∑
i,j

µij ln
(
si + sj

)
, j ∈ J0, (11)

where µ ≡
(
µ1, . . . ,µJ ,µ11, . . . ,µJ−1,J

)
satisfies the following assumption.

Assumption 1. The vector µ satisfies the following constraints.

(i) µj +
∑

i,j µij = 1 for all j ∈ J0

(ii) µj > 0 for all j ∈ J0

(iii) µij = µji for all (i, j) ∈ J 2
0 , i , j.

In addition, the outside good is the only member of its nest, then

lnG0 (s;µ) = ln(s0) , (12)

and

σ−10 (s;µ) ≡ ln(s0) + c = 0, (13)

where I recall that normalization δ0 = 0 is used.

Assumption 1 has an economic content and can be expressed in terms of de-

mand shape restrictions. The FIL model yields positive demands that sum to

one, that are invariant to translation in δ (i.e, only differences in δ determine
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demands, not their absolute value), that satisfy Slutsky symmetry and positive

definiteness (i.e., the matrix of demand derivatives with respect to δ is symmetric

and positive definite) and the boundary condition that all the consumers choose a

product j ∈ J when that product becomes infinitely attractive (i.e., when δj goes

to infinity), while the others remain finitely attractive.

Several remarks are in order. First, Assumption 1 allows the nesting parame-

ters µij to be positive and negative. Then, the FIL model nests the logit model. It

boils down to the logit model when µij = 0 for all i, j ∈ J0, i , j. As a consequence,
the independence from irrelevance alternatives (IIA) property could be tested us-

ing standardWald tests.18 Lastly, one could also test (rather than impose) Slutsky

symmetry by testing whether or not Assumption (iii) holds. Note, however, that

Slutsky symmetry is key for rationalizability of the demand function, i.e., for it

to be consistent with utility maximization. Then, if Slutsky symmetry is rejected

by the data, any study based on the demand estimates (e.g., merger simulation)

would not rely on an underlying utility model.

Demand Invertibility The following proposition establishes invertibility of the

demand.

Proposition 1. Let Assumption 1 hold. Consider any vector s ∈ int
(
∆J

)
of nonzero

market shares. Then, there exists a unique δ ∈ RJ+1
0 such that

δ = σ−1 (s;µ) ⇔ s = σ (δ;µ) ,

where σ−1 is given by Equations (10) to (13).

Proof. See Appendix B.1.

Equations (10) to (13) describe the inverse demand of the FIL model, i.e., its

mapping from market shares s to product indexes δ. Proposition 1 establishes

existence and uniqueness of the inverse mapping from product indexes to market

shares (i.e., the demand), up to normalization. It states that product indexes δ

are identified up to an additive constant c from the vector of observed nonzero

market shares s by the relations (10) to (13), where c is fixed by normalizing δ0 to

zero. The need for normalization is due to the feature of the FIL model whereby

its demand function satisfies translation invariance in product indexes δ.

18However, the FIL model and the nested logit model are non-nested.
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Microfoundation The FIL model is consistent with a consumer choosing a vec-

tor s ∈ ∆J of market shares of the differentiated products so as to maximize her

quasi-linear utility given by19

u (s) =
∑
j∈J

δjsj −
∑
j∈J

sj ln
(
sj
)
+

∑
j∈J0

∑
i,j

µijsj ln
(

sj
si + sj

)
,

if s ∈ ∆J and u (s) = −∞ if s < ∆J , where δj is given by Equation (2).

The FILmodel can thus be seen as a representative consumermodel (Fosgerau

et al., 2019) or a standard continuous-choice model. It is worthwhile to mention

that this form of utility can be derived, after an aggregation across consumers,

from the utility model of heterogeneous and utility-maximizing consumers, stud-

ied by Allen and Rehbeck (2019). Parameters µij thus parametrize the distribu-

tion of taste in the population of consumers.

Complements and Substitutes The parameters µij of the FIL model relate to

two different (but related) definitions of complementarity used in the empirical

literature (see Appendix A.4). In the FIL model, the sign of the parameter µij
determines whether products i and j are complements or substitutes in utility.

Indeed,
∂2u (s)
∂si∂sj

= −
µij

si + sj
,

so that products i and j are substitutes in utility if µij > 0, complements in utility

if µij < 0, and independent in utility if µij = 0.

The nesting parameters are thus parameters, similar to those of Gentzkow

(2007), determining the way products interact in utility and thus the type of

relationship between them. Gentzkow (2007) uses a discrete analogue of this

definition in an ARUM based on bundles ij with utilities

uij = ui +uj + Γij ,

so that products i and j are complements in utility if Γij > 0, substitutes in utility

if Γij < 0 and independent in utility if Γij = 0.

Each parameter µij drives the cross-price elasticities between products i and

19Note that Assumption (i) has been used.
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j. To see this, let J = 3 with sj = 1/4 and pj = p. Then,

∂s1
∂p3

p3
s1

>
∂s1
∂p2

p2
s1
⇔ µ13 > µ12.

However, as suggested by preliminary simulations, there is no relationship

between the sign of µij and the sign of the cross-price derivative (or elasticity)

of demand between products i and j. Rather, whether or not products i and j

are complements or substitutes depends on the relation of these two products to

the other products, as already highlighted by the theoretical literature (see e.g.,

Samuelson, 1974; Ogaki, 1990). In particular, these simulations show that the

FIL model rules out complementarity when µij ≥ 0 for all i, j ∈ J0 and µj > 0.5 for

all j ∈ J0.20

Flexibility The FIL model can be shown to be flexible in the sense of Diewert

(1974) in the class of inverse demand models of the form of Equation (10), where

G is homogeneous of degree one, with G0(s) = s0, and where the Jacobian JslnG is

positive definite and symmetric on int(∆J ).21

A demand system is said to be flexible in the sense of Diewert (1974) if it

is able to provide a first-order approximation to any theoretically grounded de-

mand system at a point in price space.22 Equivalently, flexibility can also be

viewed as the ability of the (direct or indirect) utility function to provide second-

order approximations to any utility function. This is because the partial deriva-

tives of the demand function can be uniquely derived from the second partial

derivatives of the utility function.

Flexibility of the FIL model means that, observing market shares s∗, the FIL

can match that vector of market shares s∗ as well as the true matrix of price

derivatives of demand for inside products
[
Jpσ ∗

]
0
. That is, if the FIL model is

flexible, then one can choose δ∗, α∗ and µ∗ such that s∗ = σ (δ∗;µ∗) and
[
Jpσ ∗

]
0
=[

Jpσ (δ∗;µ∗)
]
0
.

Flexibility of the FIL model is best understood by focusing on its inverse de-

mand function and its corresponding matrix of derivatives. Indeed, flexibility

20Further simulations will be performed later.
21This is the class of generalized inverse logit (GIL) models developed by Fosgerau et al. (2019)

where it is further assumed that lnG0 = ln(s0), as it is the case of the logit, nested logit, and IPDL
models.

22See Appendix A.2 for more details.
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can be obtained by matching

σ−1j (s∗;µ∗) = lnGj (s
∗;µ∗) + c = δ∗j , j ∈ J ,

and23 [
Jpσ (δ∗;µ∗)

]−1
0

= − 1
α∗

[
1J,J
s∗0

+ [JlnG (s∗;µ∗)]0

]
=

[
Jpσ ∗

]−1
0

, (14)

where lnGj is given by Equations (11) and (12) so that
[
JslnG (s;µ)

]
0
is given by

[
JslnG (s;µ)

]
0
=



µ1
s1
+
∑

i,1
µi1
si+s1

µ12
s1+s2

· · · µ1J
s1+sJ

µ12
s1+s2

. . . . . .
...

...
. . . . . .

...
µ1J
s1+sJ

· · · · · · µJ
sJ
+
∑

i,J
µiJ
si+sJ


.

The FIL model yields flexible substitution patterns in the sense that it has a

sufficient number of parameters to fully parametrize
[
JslnG (s;µ)

]
0
. At the oppo-

site, the logit model fully sparsifies
[
JslnG (s)

]
0
,

[
JslnG (s)

]
0
=


1
s1
· · · 0

...
. . .

...

0 · · · 1
sJ

 ,
which does not depend on parameters µ.

Flexibility of the FIL model is obtained as follows. One can match the off-
diagonal entries ij of

[
Jpσ ∗

]−1
0
, by appropriately choosing µij = µ∗ij . Its diagonal

entries are then automatically matched since the FIL model satisfies the Euler-

type equation
∑

k∈J
∂ lnGj (s∗;µ∗)

∂sk
s∗k = 1 for all j ∈ J (see Fosgerau et al., 2019). One

can match the vector of market shares s∗ by choosing the unique vector δ∗ ∈ RJ+1
0

that is able to do so. The parameter α∗ can be chosen so that µj > 0 for all j ∈ J0.
The following proposition summarizes this discussion.

Proposition 2. The FILmodel is flexible in the sense of Diewert (1974) in the class

of inverse demand models of the form of Equation (10), whereG is homogeneous

of degree one, with G0 = s0, and where the Jacobian JslnG is positive definite and

symmetric on int(∆J ).
23See Appendix B.2 for details of computations.
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Proof. See Appendix B.3.

3.2 Projection into Product Characteristics Space

The FIL model yields substitution patterns that are flexible (in the sense of Diew-

ert (1974)), but that depend on product characteristics only indirectly (through

the market shares). I address this drawback by projecting the nesting parameters

µij into the product characteristics space formed by x(2), based on the idea that

the distance between products into this space drives substitution (closer products

into this space should be more substitutable).

In spirit to Pinkse et al. (2002), I replace µij with a function of a measure of

distance d(2)
ij ≡ (d(2)ij1, . . . ,d

(2)
ijK2

) between products i and j into the product charac-

teristics space formed by x(2),24

µij = µ
(
d(2)
ij ;γ

)
,

known up to some parameters γ to be estimated.

This projection makes the substitution patterns depending on characteristics

x(2). It maps the FILmodel from product space into product characteristics space;

therebymaking it appealing to perform counterfactual exercises, such as the sim-

ulation or evaluation of mergers, products’ entry, or changes in regulation. It also

makes the price elasticities functions of a small number of parameters γ to be es-

timated.

With this transformation, the parameters µij are no longer structural, since

they are not invariant to changes in product characteristics by firms. However,

the vector of parameters contained in the vector γ parametrizing the function µ

are structural; they are similar in spirit to the standard deviations of the random

coefficients in a RCL model, as they control for the distribution of valuation for

product characteristics x(2) in the population of consumers.

The relationship to other approaches, and in particular, with the ideal point

(or address) approach (Anderson et al., 1992), where in this case the ideal points

just consists of the locations of products into the product characteristics space

24This strategy has been successfully applied by Pinkse and Slade (2004) Slade (2004), Rojas
(2008) for demand estimation purposes. See also Pinkse and Slade (1998). Note that I do not im-
plement the semi-parametric estimator of Pinkse et al. (2002). In my model, their method would
use a series expansion to approximate µ, and in turn, this would introduce an additional source
of endogeneity. Indeed, in addition to the structural error ξ, their method adds an approximation
error, due neglected expansion errors, that is a function of characteristics x(2).
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formed by x(2), or with discrete-continuous models (e.g., Hanemann, 1984) will

be studied later.

Economic Restrictions The FIL model projected into product characteristics

space satisfies the same shape restrictions on the inverse demands as those that

are imposed in the linear-in-characteristics ARUM, including the RCL model

(Gandhi and Houde, 2017).

Observe first that the FIL model projected into product characteristics space

has inverse demands given by

σ−1j

(
s,x(2);γ

)
= lnG

(
sj , {sk ,d

(2)
kj }k,j ;γ

)
+C, (15)

where

lnG
(
sj , {sk ,d

(2)
kj }k,j ;γ

)
≡ ln

(
sj
)
−
∑
i,j

µ
(
d(2)
ij ;γ

)
ln

(
sj

si + sj

)
, (16)

with C ∈ R a market-specific constant (see Appendix C for more details).

Now, let yj ≡ (sj ,x
(2)
j ) and y−j ≡ (y1, . . . , yj−1, yj+1, . . . , yJ ). Then, the inverse de-

mands (15) can be rewritten in terms of yj as σ
−1
j

(
yj ,y−j ;γ

)
. One can easily show

that the FIL model projected into product characteristics space yields inverse de-

mands which are symmetric, that is,

σ−1j

(
yj ,y−j ;γ

)
= σ−1k

(
yj ,y−j ;γ

)
, j , k,

so that one can set σ−1j

(
yj ,y−j ;γ

)
= σ−1

(
yj ,y−j ;γ

)
; which are anonymous, that is,

σ−1
(
yj ,y−j ;γ

)
= σ−1

(
yj ,yρ(−j);γ

)
,

where ρ(−j) is any permutation of the product indexes −j; and which are invari-

ant to translation in x(2), that is,

σ−1
(
yj + (0, c),y−j + (0, c1);γ

)
= σ−1

(
yj ,y−j ;γ

)
.

Overall, these shape restrictions mean that that the identity of products does

not matter, only the differences in characteristics do.25 The following proposition

25This approach builds on Doraszelski and Pakes (2007) who use symmetry and anonymity
to reduce the dimensionality of value functions in the context of dynamic games, on Compiani
(2019) who uses anonymity to reduce the number of parameters of the inverse demand to be
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gives the properties of the FILmodel projected into product characteristics space.

Proposition 3. The FILmodel projected into product characteristics space has in-

verse demands given by Equations (15) and (16), which is symmetric, anonymous

and invariant to translation in product characteristics.

Proof. See Appendix C.

Measures of distance The measures of distance d(2)
ij can be continuous or dis-

crete. The paper focuses on continuous measures and uses the absolute value

d(2)
ij = |x(2)i − x

(2)
j | as measure.26 Other measures, such as the euclidian distance,

can also be used.

The projection can also exploit product segmentation, as the nested logit or

the IPDL models do, by using categorical variables that group products into dif-

ferent segments. In this case, the measure of distance is discrete: for a categorical

variable k, one can set d(2)ijk = 1 if products i and j belong to the same nest accord-

ing to dimension k and d
(2)
ijk = 0.

The FIL model can also be projected into other spaces. One can consider

market-level variablesm, such as demographics, with, e.g., µij = µ
(
d(2)
ij ,m;γ ,γm

)
or interact them with products characteristics. The projection into price space

with µij = µ
(
d(2)
ij ,d

p
ij ;γ ,γp

)
, where dp

ij is a measure of price distance between

products i and j, is left for future research, since it non-trivially changes the

shape of the Slutsky matrix, which is not ensured to be symmetric anymore.

4 Empirical Strategy

This section describes the methods to estimate the FILmodel with data onmarket

shares sjt, prices pjt and product characteristics xjt for T markets, indexed by t,

and J products per market (see e.g., Berry et al., 1995; Nevo, 2001).

estimated in a nonparametric setting, and on Gandhi and Houde (2017) who use anonymity and
symmetry of the ARUM choice probabilities to construct new approximations of the optimal
instruments.

26This measure is used in the Monte-Carlo simulations of Section 5 and in the empirical appli-
cation of Section E.
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4.1 Estimation by Linear Regression

Nested Logit-Type Linear Regression Using Equations (10) to (13) yields, for

each market t = 1, . . . ,T ,

µj ln
(
sjt

)
+
∑
i,j

µij ln
(
sit + sjt

)
= δjt − ct, j ∈ J0, (17)

and

ln(s0t) = −ct, (18)

where δj is given by Equation (2), and where it is assumed that δ0t = 0 for all

markets t = 1, . . . ,T .

Combining Equations (17) and (18) with Assumption (i), the FIL model yields

the log-odd ratio formula,

ln
(
sjt
s0t

)
= x(1)jt β −αpjt +

∑
i,j

µij ln
(

sjt
sit + sjt

)
+ ξjt

By comparison, for the logit model (8), the log-odd ratio formula is given by

ln
(
sjt
s0t

)
= x(1)jt β −αpjt + ξjt,

and, for the three-level nested logit model (9), it is given by

ln
(
sjt
s0t

)
= x(1)jt β −αpjt +µ1 ln

(
sjt∑
k∈g skt

)
+µ2 ln

(
sjt∑

k∈g |h skt

)
+ ξjt,

for product j in nest g and subnest g |h (Verboven, 1996).

Then, the FIL model boils down to the nested logit-like linear regression of

market shares on product characteristics, prices and shares terms related to the

flexible nesting structure.

Price and market shares are endogenous, implying that one needs at least

1 + J(J − 1)/2 instruments, one instrument for price and for each share term. The

number of parameters µij , equal to J (J − 1) /2, and thus the number of instru-

ments needed, quickly grows with the number of products.27 However, the pro-

jection of the nesting parameters µij into product characteristics space reduces

27For J = 3,4,5,10,25,50,100, there are J(J − 1)/2 = 3,6,10,45,300,1225,4950 parameters to be
estimated.
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the number of parameters, and thus the number of instruments needed.

Projection into Product Characteristics Space The FIL model, projected into

product characteristics space, boils down to the following linear IV regression

ln
(
sjt
s0t

)
= x(1)jt β −αpjt +

∑
i,j

µ
(
d(2)
ijt ;γ

)
ln

(
sjt

sit + sjt

)
+ ξjt

where the function µmust be specified up to some parameters γ to be estimated.

Specifically, I specify µ as a Bernstein polynomial of order M, which, with K2

product characteristics x(2), is defined by

µ
(
d(2)
ijt ;γ

)
=

M∑
k1=0

. . .
M∑

kK2=0

γkBk,M

(
d(2)
ijt

)
,

where k ≡ (k1, . . . , kK2
) and

Bk,M

(
d(2)
ijt

)
≡ bk1,M

(
d
(2)
ijt1

)
× . . .× bkK2 ,M

(
d
(2)
ijtK2

)
where bk,M is a Bernstein basis function, as defined in Appendix A.3 and where γ

is the vector of (M+1)K2 parameters. Bernstein polynomials are useful to approx-

imate a continuous function; besides, shape restrictions on µ, such as positivity,

monotonicity and concavity, can be easily enforced through linear constraints on

parameters γ (see e.g. Chak et al., 2005).

Overall, the FIL model projected into product characteristics space is esti-

mated by the following linear IV regression

ln
(
sjt
s0t

)
= x(1)jt β −αpjt +

∑
k

γk

∑
i,j

Bk,M

(
d(2)
ijt

)
ln

(
sjt

sit + sjt

)+ ξjt. (19)

4.2 Optimal Instruments

Assume the existence of exogenous variables zt such that the following condi-

tional moment restrictions hold

E
[
ξjt (θ) |zt

]
= 0, j ∈ J0, t = 1, . . . ,T ,
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where θ = (α,β,γ) and where ξjt = ξjt (θ) is the jt-product/market unobserved

characteristics term defined by Equation (19).

They lead to the following unconditional moment restrictions

E
[
hjt (zt)ξjt (θ)

]
= 0, j ∈ J0, t = 1, . . . ,T ,

where hjt (zt) are instruments.

In principle, any function hjt of the exogenous variables zt is a candidate as

instruments. However, an important practical issue is to choose the ("right") form

of hjt, especially to avoid the weak instrument problem.28

One solution is to use the optimal instruments of Chamberlain (1987), who

shows that the optimal instruments matrix for a single-equation GMM estimator

exploit the functional forms of the model and are given by

hjt (zt) = E
[
∂ξjt
∂θ
|zt

]⊺
Ω−1jt ,

whereΩjt = E
[
ξ2
jt |zt

]
. Following Newey (1990), I consider the homoscedastic case

where Ωjt =Ω, which, in the single-equation GMM estimator case, is a constant

that can be set equal to 1 at no loss of generality.

For the FIL model, optimal instruments are given by

E
[
∂ξjt
∂θ
|zt

]⊺
=

(
E
[
∂ξjt
∂β⊺ |zt

]
E
[
∂ξjt
∂α
|zt

]
E
[
∂ξjt
∂γ⊺ |zt

])⊺
, (20)

where

E
[
∂ξjt
∂β⊺ |zt

]
= −E

[
x(1)t |zt

]
= −x(1)t , (21)

E
[
∂ξjt
∂α
|zt

]
= E

[
pjt |zt

]
, (22)

and

E
[
∂ξjt
∂γk
|zt

]
= −E

∑
i,j

Bk,M

(
d(2)
ijt

)
ln

(
sjt

sit + sjt

)
|zt

 , k ∈ {0, . . . ,M}K2 . (23)

28Gandhi and Houde (2017) shows in the context of ARUM, that the form of hj may affect
their strength and that choosing the wrong form can lead to the weak instrument problem. Reiss
(2016) shows, for the linear regression case, that estimates may be very sensitive to the form of
the instruments.
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The optimal instruments given by Equations (20) to (23) can be computed in

two steps. The first step uses the instruments suggested by Gandhi and Houde

(2017) and Pinkse et al. (2002). The second step updates to the optimal instru-

ments of Chamberlain (1987). See Subsection 5.3 for an algorithm that approx-

imates the optimal instruments of the FIL model, based on existing algorithms

(Berry et al., 1999; Reynaert and Verboven, 2014; Conlon and Gortmaker, 2018).

5 Performances of the FIL Model

This section studies the ability of the FIL model to provide rich substitution pat-

terns. The RCLmodel is used for its ability to yield rich substitution patterns (see

McFadden and Train, 2000). The RCL and the FIL models are nonnested. Monte

Carlo simulations are therefore used to assess its capacity to replicate the substi-

tution patterns of the RCL model (i.e., its own- and cross-price elasticities) for

specifications widely used in the literature. To do so, I simulate data from a RCL

model and estimate a FIL model to compare the estimated FIL price elasticities

of demand to the true RCL price elasticities.29 30 Simulations are largely based

on Armstrong (2016) and allow to obtain wide ranges of RCL price elasticities.

5.1 Models

Two models are considered. The first model is a structural model of demand

with exogenous prices; abstracting from the issue of price endogeneity allows

to focus on the performances of the FIL model. The second model is a fully

structural model of demand and supply with endogenous prices, i.e., it solves for

equilibrium prices and market shares.

The demand side is a standard static RCL model with a single normally dis-

tributed random coefficient on an exogenous characteristic.31 32 The supply side

29This exercise contrasts with Wojcik (2000), who compares the performances of the nested
logit and RCL models for out-of-sample prediction of market shares. Instead, I follow Berry and
Pakes (2001)’s suggestions by comparing price elasticities.

30Another approach would be to compare the estimated FIL price elasticities to the estimated
RCL price elasticities. This would recognize that, even in case of no misspecification, the model
would be estimated with error (e.g., due to simulation error, strength/validity of the instruments,
etc.).

31In particular, this specification does not allow for a random coefficient on price.
32A future version of this paper will consider the case of several independent and correlated

random coefficients. In particular, it could be interesting to investigate how the FIL model per-
forms with respect to the RCL with independent random coefficients when the random coeffi-
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is a static oligopolistic price competition model with multiproduct firms.

Demand The conditional indirect utility of consumer n in market t from choos-

ing an inside product j is given by

unjt = β0 + βnxxjt −αpjt + ξjt + εnjt, (24)

where xjt is the exogenous characteristic, pjt is the price, and ξjt is the unobserved

product characteristic of product j in market t. The utility from choosing the

outside good j = 0 is normalized to un0t = εn0t, for all markets t = 1, . . . ,T .

The two parameters β0 and α are assumed to be equal for all consumers n:

β0 captures the value of choosing an inside product instead of the outside good,

and α is the marginal utility of income. The parameter βnx is the only random

coefficient, which captures consumer-specific valuation for characteristic xjt. The

term εnjt is a remaining consumer-specific valuation for product j. In the RCL

model, the εnjt’s are assumed to be distributed i.i.d. type I extreme value.

The random coefficient can then be decomposed as βnx = βx+σxvnx, where vnx
is a standardized random variable (i.e., with mean 0 and variance 1), so that βx
captures the mean valuation for product characteristic xjt and σx is its standard

deviation across consumers. Then, the indirect utility (24) can be rewritten as

unjt = β0 + βxxjt −αpjt + ξjt + σxxjtvnx + εnjt.

Each consumer n with random preferences βnx chooses one unit of the prod-

uct that provides her the highest utility. Then, the market share of product j

in market t is computed as the probability that product j provides the highest

utility across all products in market t. In the RCL model, it is given by

sjt = σj(xt,pt,ξt;θ) =
∫ exp(β0 + βxxjt −αpjt + ξjt + σxxjtv)

1 +
∑J

k=1 exp(β0 + βxxkt −αpkt + ξkt + σxxktv)
f (v)dv,

(25)

and

s0t = σ0(xt,pt,ξt;θ) ≡ 1−
J∑

k=1

σk(xt,pt,ξt;θ),

where θ ≡ (β0,α,βx,σx) and where f (v) denotes the distribution of vnx.

cients are actually correlated.
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Supply Consider F firms, indexed by f . The profit that firm f producing the

set of products Jf , with ∪Ff =1Jf = J0 and ∩Ff =1Jf = ∅, makes in market t is given

by

Πf t =
∑
j∈Jf

(
pjt − cjt

)
σj(xt,pt,ξt;θ), (26)

where cjt, the marginal cost, is parametrized as follows

cjt = γ0 +γxxjt +γwwjt +ωjt,

where xjt is the product characteristic, which affects utility and cost, wjt is a

variable which only affects cost, and ωjt is an unobserved cost component.

In the static oligopolistic price competition model, each firm f in market t

chooses the prices pjt of its products j ∈ Jf to maximize its profits (26), given

the characteristics and costs of its products and the prices, characteristics and

costs of its competing products in that market. Assuming that a pure-strategy

Nash equilibrium exists, prices pt ≡ (p1t, . . . ,pJt) solve the following first-order

conditions

σ (xt,pt,ξt;θ) +∇pt
(pt − ct) = 0J , t = 1, . . . ,T , (27)

where ∇pt
has entries ij given by

− ∂σi
∂pjt

(xt,pt,ξt;θ)Θij , (28)

with Θij = 1 if products i and j are produced by the same firm, and Θij = 0

otherwise. Note that this model rules out price coordination among firms (see

e.g., Michel andWeiergraeber, 2019, for a model allowing for price coordination).

5.2 Simulation Configurations

The simulations are largely based on those of Armstrong (2016). For each config-

uration, I construct 500 Monte Carlo datasets, and for each of them, I simulate T

markets, where each one consists of J products, N consumers (indexed by n), and

J/10 firms (indexed by f ) producing each one 10 products.

Each product j inmarket t is characterized by the vector (sjt,pjt,xjt,ξjt,wjt,ωjt),

where xjt and wjt are drawn from two independent standard uniform distribu-
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tions, and where the structural error terms, ξjt and ωjt, are computed as

ξjt = u1
jt +u3

jt − 1,

ωjt = u1
jt +u2

jt − 1,

where u1
jt, u

2
jt and u3

jt are drawn from three independent standard uniform dis-

tributions.

Exogenous Prices In the model with exogenous prices, prices are computed as

pjt = 0.5ηjt +4,

where ηjt is drawn from a standard normal distribution, so that the distribution

of prices thus obtained is very similar to that obtained in the model with en-

dogenous prices. Market shares (25) are computed as follows. I first generate

N = 2,000 draws vnx from a standard normal distribution. Then, I compute the

observed market share of product j in market t as

sjt (xt,pt,ξt |θ) =
1
N

N∑
n=1

exp(β0 + βxxjt −αpjt + ξjt + σxxjtvnx)

1 +
∑J

k=1 exp(β0 + βxxkt −αpkt + ξkt + σxxktvnx)
.

I consider 16 configurations by varying σx ∈ {0.5,1,2,3}, J ∈ {25,50} and T ∈
{25,50}, with (α,β0,βx,γ0,γx,γw) fixed at (1,3,6,2,1,1).

Endogenous Prices In the model with endogenous prices, for each market t,

prices pt and market shares st ≡
(
s1t, . . . , sJt

)
solve the structural model of demand

and supply, i.e., solve Equations (25) and (27). I consider 4 configurations by

varying σx ∈ {0.5,1,2,3}, with (α,β0,βx,γ0,γx,γw) fixed at (1,3,6,2,1,1).

5.3 Optimal Instruments

This subsection describes the algorithms used to compute the optimal instru-

ments of the FIL model given by Equations (20) to (23).

Exogenous Prices The first step uses instruments suggested by Pinkse et al.

(2002) and Gandhi and Houde (2017). The included instruments are the con-
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stant, xj and pj . The excluded instruments are of the form of∑
i,j

bk,M
(
dijt

)
zijt, k = 0, . . . ,M, (29)

where dijt ≡ |xjt − xit | and zijt ∈ {xjt,pjt,xjt − xit,pjt − pit} explain much of the

variation in ln
(
sjt/(sit + sjt)

)
, i.e., the relative popularity of product j with respect

to product i.

The second step updates to (an approximation of) the optimal instruments of

Chamberlain (1987), which are given by

∑
i,j

bk,M
(
dijt

)
ln

(
ŝjt

ŝit + ŝjt

)
, k = 0, . . . ,M, (30)

where ŝjt is the predicted market shares of product j in market t. The prediction

uses the estimated parameters of the first step and is evaluated at the expected

value of the unobservables, E[ξjt] = 0.

Endogenous Prices For the model with endogeneous prices, the algorithm is

a little bit different and exploits the supply side (in particular, the ownership

structure of the market).

The first step estimates the demand model and the marginal cost function.

For demand estimation, the included instruments are the constant and xjt, and

the excluded instruments are of the form of Equation (29), where zijt ∈ {xjt,xjt −
xit}, and p̂jt computed as the predicted value of the linear regression of pjt on xj ,

wj , x
2
j , w

2
j , xjwj ,

∑
k∈Jf (j)\{j}xjt,

∑
k∈J \Jf (j)xjt,

∑
k∈Jf (j)\{j}wjt,

∑
k∈J \Jf (j)wjt. Esti-

mation leads to demand estimates θ̂ ≡ (α̂, β̂0, β̂x, γ̂), from which one can compute

v̂jt = β̂0 + β̂xxjt.

The implied marginal cost cjt are obtained from the first-order conditions (27)

and (28) where σ defined by its inverse given by Equations (10) and (11). The pre-

dicted marginal costs are obtained as the predicted value of the linear regression

of cjt on a constant, xjt and wjt: ĉjt = γ̂0 + γ̂xxjt + γ̂wwjt.

The second step uses p̂jt and instruments given by Equation (30) as optimal

instruments, where p̂jt and ŝjt solve the first-order conditions as a function of x,
v̂, ĉ, and θ̂. The prediction uses the estimated parameters of the first step and is

evaluated at the expected value of the unobservables, E[ξjt] = E[ωjt] = 0.
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5.4 Results

This subsection studies the ability of the FIL model to replicate the substitution

patterns the RCLmodel for the configurations described in the previous sections.

For each configuration, µ is specified as a Bernstein polynomial of order 5. Re-

sults are summarized in Tables 1 and 2 for the 16 configurations with exogenous

prices and in Table 3 for the 4 configurations with endogenous prices. Elasticities

are computed based on the parameters estimates as given by the mean estimated

value of parameters across Monte-Carlo datasets, keeping all market-level vari-

ables at the values of the first Monte-Carlo dataset and using the first twenty

markets (for the sake of comparability between the configurations).

Consider first the results for the configurations with exogenous prices. They

confirm the ability of the FIL model to match the own- and cross-price from the

RCL models. The lower σx is, the better the fit is. Models with a higher number

of products (J = 50 versus J = 25) are better fitted, while the number of market T

does not significantly affect the results. The average value of the true own-price

elasticities ranges from −3.9021 to −3.8015 and the FIL model estimated these

elasticities with a bias ranging from −0.0132 to −0.2219. The average value of the
true cross-price elasticities ranges 0.0736 to 0.1520 and the FIL model estimated

these elasticities with a bias ranging from 0.0007 to 0.0139.

Turn now to the configurations with endogeneity. The FIL model provides

a good approximation – except maybe for the configuration with σx = 3 where

the MSE is high. The average value of the true own-price elasticities ranges from

−4.1208 to −4.0894 and the FIL model estimated these elasticities with a bias

ranging from 0.0207 to −0.1065. The average value of the true cross-price elas-

ticities ranges 0.1721 to 0.1855 and the FIL model estimated these elasticities

with a bias ranging from 0.0019 to 0.0109.

Several remarks are in order. First, the FIL model does not generate comple-

ments as defined by a negative cross-price derivative of demand, when, as it is

the case of the RCL model, there is only substitutes. then, Appendix D provides

further results about the simulations. Figures 1 to 5 represent the accuracy of

the estimation of the FIL model when the true model is the RCL model (after

removing outliers). They show the ability of the FIL model to mimic the substi-

tution patterns of the simulated RCLmodels. Tables 4 to 6 summarize the results

obtained using cruder instruments. They show the usefulness of the optimal in-

struments for fitting, since these latter allow to obtain better fits.
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Table 1: Simulation Results: Own-Price Elasticities with Exogenous Prices

T J σ Mean Percentiles Bias MSE

2.5th 97.5th 2.5th 97.5th

RCL FIL RCL FIL

20 25 0.5 -3.8338 -3.8769 -4.8205 -2.5582 -5.0968 -2.3005 -0.0430 0.0323

50 25 0.5 -3.8333 -3.8695 -4.8196 -2.5142 -5.0571 -2.3286 -0.0362 0.0341

20 50 0.5 -3.9021 -3.9154 -4.9011 -2.8028 -5.0224 -2.6916 -0.0132 0.0169

50 50 0.5 -3.9021 -3.9185 -4.8997 -2.7943 -5.0409 -2.6710 -0.0163 0.0190

20 25 1 -3.8314 -3.8863 -4.8191 -2.5578 -5.1908 -2.2778 -0.0549 0.0445

50 25 1 -3.8309 -3.8795 -4.8179 -2.5121 -5.1498 -2.3064 -0.0485 0.0477

20 50 1 -3.9009 -3.9183 -4.9014 -2.7982 -5.1053 -2.6696 -0.0174 0.0225

50 50 1 -3.9009 -3.9217 -4.9000 -2.7932 -5.0999 -2.6460 -0.0208 0.0254

20 25 2 -3.8201 -3.9228 -4.8144 -2.5156 -5.5502 -2.2665 -0.1027 0.1201

50 25 2 -3.8196 -3.9194 -4.8122 -2.5135 -5.5527 -2.2320 -0.0998 0.1362

20 50 2 -3.8948 -3.9310 -4.9015 -2.7790 -5.3540 -2.6058 -0.0362 0.0660

50 50 2 -3.8947 -3.9367 -4.8997 -2.7719 -5.3891 -2.5588 -0.0420 0.0768

20 25 3 -3.8018 -4.0176 -4.7905 -2.4682 -6.6121 -2.1862 -0.2158 0.4683

50 25 3 -3.8015 -4.0234 -4.8003 -2.5089 -6.6773 -2.1090 -0.2219 0.5479

20 50 3 -3.8839 -3.9761 -4.8957 -2.7562 -6.0543 -2.4848 -0.0922 0.2694

50 50 3 -3.8837 -3.9852 -4.8922 -2.7618 -6.1047 -2.4542 -0.1015 0.3069

Notes: Summary statistics across 500 Monte Carlo replications. The bias is measured by

the mean error. The mean square error (MSE) measures the accuracy.
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Table 2: Simulation Results: Cross-Price Elasticities with Exogenous Prices

T J σ Mean Percentiles Bias MSE

2.5th 97.5th 2.5th 97.5th

RCL FIL RCL FIL

20 25 0.5 0.1515 0.1542 0.0011 0.9628 0.0006 0.9399 0.0027 0.0004

50 25 0.5 0.1520 0.1544 0.0011 0.9060 0.0007 0.9208 0.0025 0.0004

20 50 0.5 0.0752 0.0759 0.0004 0.4714 0.0003 0.4866 0.0007 0.0001

50 50 0.5 0.0752 0.0760 0.0005 0.5038 0.0003 0.5023 0.0007 0.0001

20 25 1 0.1512 0.1546 0.0016 0.9224 0.0008 0.9153 0.0034 0.0005

50 25 1 0.1517 0.1549 0.0016 0.8845 0.0008 0.8875 0.0032 0.0005

20 50 1 0.0752 0.0760 0.0007 0.4548 0.0003 0.4710 0.0008 0.0001

50 50 1 0.0752 0.0761 0.0007 0.4820 0.0003 0.4902 0.0009 0.0001

20 25 2 0.1496 0.1560 0.0037 0.8192 0.0014 0.8135 0.0063 0.0012

50 25 2 0.1501 0.1564 0.0038 0.7880 0.0015 0.7668 0.0063 0.0013

20 50 2 0.0748 0.0763 0.0017 0.4083 0.0006 0.4235 0.0015 0.0004

50 50 2 0.0748 0.0764 0.0017 0.4216 0.0007 0.4468 0.0016 0.0004

20 25 3 0.1459 0.1594 0.0062 0.7109 0.0026 0.6754 0.0135 0.0034

50 25 3 0.1463 0.1601 0.0062 0.6927 0.0026 0.6327 0.0139 0.0038

20 50 3 0.0736 0.0771 0.0029 0.3514 0.0011 0.3684 0.0035 0.0009

50 50 3 0.0736 0.0773 0.0030 0.3696 0.0012 0.3886 0.0037 0.0010

Notes: Summary statistics across 500 Monte Carlo replications. The bias is measured

by the mean error. The mean square error (MSE) measures the accuracy.
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Table 3: Simulation Results with Endogenous Prices

T J σ Mean Percentiles Bias MSE

2.5th 97.5th 2.5th 97.5th

RCL FIL RCL FIL

Own-Price Elasticities

50 25 0.5 -4.1208 -4.1001 -5.4317 -2.6397 -5.4778 -2.6550 0.0207 0.0513

50 25 1 -4.1178 -4.0973 -5.4325 -2.6380 -5.6391 -2.6395 0.0205 0.0938

50 25 2 -4.1060 -4.0612 -5.4303 -2.6084 -6.4735 -2.4461 0.0448 0.3925

50 25 3 -4.0887 -4.1952 -5.4167 -2.5384 -9.2503 -2.2480 -0.1065 1.7778

Cross-Price Elasticities

50 25 0.5 0.1855 0.1874 0.0038 0.8959 0.0022 0.9031 0.0019 0.0007

50 25 1 0.1843 0.1862 0.0050 0.8627 0.0026 0.8472 0.0020 0.0008

50 25 2 0.1792 0.1812 0.0087 0.7678 0.0037 0.6914 0.0020 0.0027

50 25 3 0.1720 0.1829 0.0110 0.7035 0.0042 0.5806 0.0109 0.0087

Notes: Summary statistics across 500 Monte Carlo replications. The bias is measured by

the mean error. The mean square error (MSE) measures the accuracy.
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6 Conclusion

This paper has developed the FIL model, which is an inverse demand models

for differentiated products that accommodates rich substitution patterns, includ-

ing complementarity, thanks to a simple linear regression with data on market

shares, prices and product characteristics.

The FIL model uses a flexible nesting structure with a nest for each pair of

products. By contrast with the nested logit model, nesting in the FIL model is

just a way to fully parametrize the matrix of price elasticities of demand and does

not require the modeller to choose the nesting structure before estimation. This

means that the resulting cross-price elasticities of demand are not constrained by

the model, but instead are driven by the data.

The FIL model, projected into product characteristics space, makes the price

elasticities depending on product characteristics directly, as it is the case of the

"flexible" RCL model. On top of that, as shown using Monte Carlo simulations, it

is able to mimic the substitution patterns from the RCL model.

The FIL model can be applied to various topics in industrial organization, in-

ternational trade, public economics, etc. It can be used to answer relevant policy

questions, such as the effect of mergers, products’ entry, and changes in regula-

tion. Due to its simplicity of estimation, the likely audience of the FIL model

involves researchers as well as antitrust practitioners in consultancies and com-

petition authorities who wish to avoid complex procedures of estimation and/or

who are under time pressure.
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Appendices

A Preliminaries

This section summarizes useful results and definitions.

A.1 Demand Invertibility

Proposition 4. Assume that (i) G =
(
G0, . . . ,GJ

)
: [0,∞)J+1 → [0,∞)J+1 is contin-

uously differentiable and homogeneous of degree one on int
(
∆J

)
; (ii) JslnG (s) is

positive definite and symmetric on int
(
∆J

)
; and (iii) | lnG (s) | approaches infinity

as s approaches bd(∆J ).

(i) It follows that lnG is invertible on int(∆J ).

(ii) Consider any vector of market shares s ∈ int
(
∆J

)
. Then, there exists a unique

δ ∈ RJ+1
0 such that

δ = σ−1 (s) ⇔ s = σ (δ) .

Proof. See Proposition 2 in Monardo (2019).

A.2 Flexibility of Demands

Consider a demand system of (J +1) differentiated products σ (p). Absent income

effect, this demand system is said to be flexible in the sense of Diewert (1974)

if it is able to provide a first-order approximation to any theoretically grounded

demand system at a point in price space, i.e., if it can match the (J + 1) true (i.e.,

observed) market shares s∗, and the (J + 1)2 true own- and cross-price elastici-

ties.33

33See Barnett (1983, 1985) for the different definitions of flexibility and their relationship to
second-order approximations.
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However, only J + J(J + 1)/2 independent market shares and elasticities need

to be matched. Indeed, since the market shares sum to one, only J market shares

are independent. Once the market shares of J products are matched, the market

shares of the (J +1)th product is matched automatically using that market shares

sum to one. Then, given the market shares, by Slutsky symmetry, only J(J + 1)/2

cross-price elasticities are independent. Lastly, given the market shares and the

cross-price elasticities, one can infer all the own-price elasticities from

∂σi (p)
∂pi

= −
∑
j,i

∂σj (p)

∂pi
, i ∈ J ,

which is obtained by differentiating
∑

j∈J σj (p) = 1 with respect to price pi .

A.3 Bernstein Polynomials

For a positive integerM, the Bernstein basis functions defined over interval [a,b]

are defined by

bk,M (x) ≡
Mk

 (x − a)k (b − x)M−k(b − a)M
,

where k = 0, . . . ,M.34 In applications, Bernstein basis functions are often ex-

pressed over interval [0,1] as

bk,M (x) =

Mk
xk (1− x)M−k .

A univariate function defined over interval [a,b] can be approximated by a

linear combination of the Bernstein basis functions

M∑
k=0

θkbk,M (x) ,

for x ∈ [a,b] and for some coefficients θk, k = 0, . . . ,M.

The generalization to a multivariate function defined over [a1,b1]× . . .×[aL,bL]
34See Chapter 6 in Davis (1975) for more on Bernstein polynomials.
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is straightforward. A multivariate function can be approximated by

M∑
k1=0

. . .
M∑

kL=0

θk1,...,kLbk1,M (x1)× . . .× bkL,M (xL) ,

for (x1, . . . ,xL) ∈ [a1,b1]×. . .×[aL,bL] and for some coefficients θk1,...,kL , k1 = 0, . . . ,M,

. . . , kL = 0, . . . ,M.

The derivative of bk,M (x) is given by

∂bk,M (x)
∂x

=M
[
bk−1,M−1 (x)− bk,M−1 (x)

]
,

that is,
∂bk,M (x)

∂x
=

[
k

x − a
−M − k

b − x

]
bk,M (x) ,

which implies that approximation also works for the derivatives (see Chak et al.,

2005).

A.4 Defining Complementarity and Substitutability

There are different ways of defining complementarity (Samuelson, 1974; New-

man, 2008). The empirical literature has focused on two different but related
definitions, both relying on the idea of a positive interaction between the prod-

ucts.

The first definition asserts that products i and j are complements (resp., sub-

stitutes) in utility if the cross second-order partial derivative of the utility func-

tion with respect to quantities si and sj

∂2u (s)
∂si∂sj

=
∂2u (s)
∂sj∂si

is positive (resp., negative).

Absent income effect, the second definition, which is the textbook definition,

asserts that products i and j are complements (resp., substitutes) in demand if
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the cross-price derivative of demand35

∂σi (δ)
∂pj

=
∂σj (δ)

∂pi

is negative (resp., positive).36

This appendix does not discuss the advantages/disadvantages of both defini-

tions. However, just note that the utility-based definition has been criticized on

the ground that it is not invariant with respect to monotone increasing transfor-

mations of utility u. Regarding the demand-based definition, whether two prod-

ucts are complements or substitutes depends on the relation of the two products

to the other products, which may lead to a wrong classification (Samuelson, 1974;

Ogaki, 1990).

B Proofs

B.1 Proof of Proposition 1

The FIL model is defined by lnG ≡ (lnG0, . . . , lnGJ ) with

Gj (s;µ) ≡ s
µj
j

∏
i,j

(
si + sj

)µij
, j ∈ J0, (31)

and

G0 (s) = s0, (32)

where µ =
(
µ1, . . . ,µJ ,µ11, . . . ,µJ−1,J

)
satisfies Assumptions (i) – (iii).

For the proof, it is convenient to use the conventions µ0 = 1 and µj0 = µ0j = 0

for all j ∈ J0.
35In the standard definition of complementarity, two products are complements (resp., substi-

tutes) in demand if the compensative cross-price derivative of demand is negative (resp., posi-
tive). Absent income effect, the Slutsky matrix is just the matrix of own- and cross-price deriva-
tives of demand, and in turn, complementarity (resp., substitutability) is the only source of the
negative (resp., positive) cross-price derivative.

36The utility-based definition is known as the Edgeworth-Pareto (EP) or Auspitz-Lieben-
Edgeworth-Pareto (ALEP) definition of complementarity; the demand-based definition is known
as the Slutsky-Hicks-Allen-Schultz (SHAS) definition of complementarity.
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The Jacobian JlnG has diagonal entries j +1, j +1 given by

µj
sj

+
∑
i,j

µij
si + sj

,

and off-diagonal entries i +1, j +1 given by

µij
si + sj

.

The proof uses Proposition 4 as applied to the function G(.,µ) given by Equa-

tions (31) and (32). It thus consists in showing that the functionG(.,µ) is homoge-

neous of degree one and that the Jacobian JlnG is positive definite and symmetric.

It is homogeneous of degree one, since for λ > 0 and j ∈ J0,

Gj (λs) =
(
λsj

)µj ∏
i,j

[
λ(si + sj)

]µij
,

=

λµj
∏
i,j

λµij


(sj)µj ∏

i,j

(
si + sj

)µij  ,
=

[
λµj+

∑
i,j µij

]
Gj (s) ,

= λGj (s) ,

where the last equality uses Assumption (i). Likewise, for λ > 0,

G0 (λs) = λs0 = λG0 (s) .

The Jacobian JlnG is symmetric since, by Assumption (iii), its entry i +1, j +1

given by
µij

si + sj

is equal to its entry j +1, i +1 given by

µji
sj + si

.

The Jacobian JlnG is positive definite. To show this, let
⟨
i, j

⟩
be a vector with
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entry k given by

⟨
i, j

⟩
k =


1 k = i,

1 k = j,

0 otherwise,⟨
i,−j

⟩
be a vector with entry k given by

⟨
i,−j

⟩
k =


1 k = i

−1 k = j

0 otherwise,

and ⟨i⟩ be a vector with entry k given by

⟨i⟩k =

1 k = i,

0 otherwise.

Then, using Assumption (iii), one can write the Jacobian JlnG as

∑
i∈J

µi ⟨i⟩⟨i⟩⊺

si
+

∑
0<i<j,µij>0

|µij |
⟨
i, j

⟩⟨
i, j

⟩⊺
si + sj

+
∑

0<i<j,µij<0

|µij |
⟨
i,−j

⟩⟨
i,−j

⟩⊺
si + sj

,

which is positive definite since its first term is a positive definite matrix by As-

sumption (ii), and its second and third terms are two sums of positive semi-

definite matrices.

B.2 Proof of Inverse Slutsky Matrix

Consider the class of inverse demands given by

σ−1j (s) ≡ lnGj (s) + c = δj , j ∈ J0,

and

σ−10 (s) ≡ ln(s0) + c = δ0,

where c ∈ R is a market-specific constant, where G is homogeneous of degree one

and where the Jacobian JslnG is positive definite and symmetric. This is a subclass

of the class of GIL models, developed by Fosgerau et al. (2019).
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For this class of inverse models,[
Jδσ (δ)

]
0
= [JlnG (s)]−10

[
IJ − 1Js

⊺
−0

]
;

The inverse demand being the target of estimation, it is worthwhile to derive

the expression of the matrix of inverse demand derivatives, which, by the implicit

function theorem, satisfies [
Jsσ−1 (s)

]
0
=

[
Jδσ (δ)

]−1
0

,

where s = σ (δ). Then, [
Jsσ−1 (s)

]
0
=

[
IJ − 1Js

⊺
−0

]−1
[JlnG (s)]0 ,

where

[
IJ − 1Js

⊺
−0

]−1
=

1
s0


s0 + s1 s2 · · · sJ
s1 s0 + s2 · · · sJ
...

...
. . .

...

s1 s2 · · · s0 + sJ


.

Noting that ∂ lnG0(s)
∂sj

=
∂ lnGj (s)

∂s0
= 0 for all j ∈ J0, one obtains the requested ex-

pression (14) using
∑

j∈J sj
∂ lnGj (s)

∂sk
= 1 for all k ∈ J0, and that

[
Jpσ (δ)

]
0
= −α

[
Jδσ (δ)

]
0
.

B.3 Proof of Proposition 2

The proof consists in showing that, observing the vector of market shares s∗, the
FIL model can match that vector of market shares s∗ as well as the true (sym-

metric) matrix of own- and cross-price derivatives of demand for inside products[
Jp
∗

s
]
0
. In other words, one must show that one can choose δ∗, α∗ and µ∗ so that

s∗ = σ (δ∗;µ∗) , (33)

and [
Jps ∗

]
0
=

[
Jpσ (δ∗;µ∗)

]
0
, (34)

where σ is defined by its inverse in Equations (10) to (13).

Regarding the market shares, Equation (33) is invertible, with inverse given
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by

δ∗j = σ−1j (s∗;µ∗) = lnGj (s
∗;µ∗) + c,

where lnGj is given by Equation (11), and

δ∗0 = ln(s∗0) + c.

Setting δ∗0 = 0, one obtains c = − ln
(
s∗0
)
, so that, to match the vector of market

shares s∗, one can set

δ∗j = lnGj (s
∗;µ∗)− ln(s∗0) ,

that is

δ∗j = ln
( s∗j
s∗0

)
−
∑
i,j

µ∗ij ln

 s∗j
s∗i + s∗j

 .
Regarding the price derivatives, Equation (34) given by[

Jp
∗

s
]
0
= −α∗ [JlnG (s∗)]−10

(
IJ − 1Js∗−0

⊺) ,
with s∗ = σ (δ∗;µ∗), can be inverted to give

[JlnG (s∗;µ∗)]0 = −α
∗
(
IJ − 1Js∗⊺

) [
Jp
∗

s−0

]−1
0
≡ α∗Γ ∗ (s∗) ,

that is, for entry ij,
∂ lnGi (s∗)

∂sj
=

µ∗ij
s∗i + s∗j

= α∗Γ ∗ij (s
∗) ,

where Γ ∗ij is the entry ij of the matrix Γ ∗. This implies that, to match the off-
diagonal elements, one can set

µ∗ij = α∗
(
s∗i + s∗j

)
Γ ∗ij (s

∗) .

Once the off-diagonal elements are matched, the diagonal elements are auto-

matically, since, the FIL model satisfies the Euler-type equation

∑
k∈J

∂ lnGj (s∗)

∂sk
s∗k = 1, j ∈ J .

Lastly, the parameter α∗ can be chosen so that µj > 0 for all j ∈ J0.
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C Projection into Product Characteristics Space

Additive RandomUtilityModels (ARUM) Since McFadden (1974), the ARUM

has been employed in many fields of economics (see Table 1 in Berry and Haile,

2016). In particular, since at least Berry (1994) and Berry et al. (1995), it has been

the workhorse model in the structural demand estimation literature. The ARUM

relies on the single-unit purchase assumption that each consumer chooses one

unit of the product that maximizes her utility given by the sum of a deterministic

and a random utility terms.

Consider a linear-in-characteristics ARUMwhere the conditional indirect util-

ity of consumer n choosing a product j ∈ J0 is given by

unj = δj +
K2∑
k=1

σkvnkx
(2)
jk + εnj ,

where δj is given by Equation (2), σk, for k = 1, . . . ,K2, are K2 random coefficients,

vnk is a standardized random variable, x(2)jk are K2 exogenous characteristics, and

εnj is a remaining consumer-specific valuation for product j.

Gandhi and Houde (2017) show that such a model yields inverse demands of

the form

σ−1j

(
s,x(2);σ1, . . . ,σK2

)
= f

(
sj , {sk ,∆

(2)
j,k}j,k;σ1, . . . ,σK2

)
+ c, j ∈ J0, (35)

where c ∈ R is a market-specific constant and f is a symmetric function, with

∆
(2)
j,k = x(2)j −x

(2)
k the vector of nonlinear characteristic differences between products

j and k. They also show that inverse demands (35) exhibit symmetry, anonymity,

and translation invariance in x(2).

Economic Restrictions of the FIL Model Recall that inverse demands of the

FIL model are given by σ−1j (s;µ) = lnGj (s;µ) + c, where

lnGj (s;µ) ≡ µj ln
(
sj
)
+
∑
i,j

µij ln
(
si + sj

)
, j ∈ J0.

Then, using Assumption (i),

lnGj (s;µ) = ln
(
sj
)
−
∑
i,j

µij ln
(

sj
si + sj

)
, j ∈ J0.
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Setting µij = µ
(
d(2)
ij

(
x(2)i ,x(2)j

))
, one obtains, for all j ∈ J0,

lnGj

(
s,x(2)

)
= lnGj

(
s,d(2)

(
x(2)

))
= ln

(
sj
)
−
∑
i,j

µ
(
d(2)
ij

(
x(2)i ,x(2)j

))
ln

(
sj

si + sj

)
.

Then, lnGj is invariant to translation in x(2) since, for all c ∈ R,

lnGj

(
s,x(2) + c1J+1

)
= lnGj

(
s,d(2)

(
x(2) + c1J+1

))
= lnGj

(
s,d(2)

(
x(2)

))
= lnGj

(
s,x(2)

)
.

Now, rewrite lnGj

(
s;x(2)

)
as

lnGj

(
s,x(2)

)
= ln

(
sj
)
−
∑
i∈J0

µ
(
d(2)
ij

(
x(2)i ,x(2)j

))
ln

(
sj

si + sj

)
+C, j ∈ J0,

where the sum is over j ∈ J0, including product j, and C = µjj (0) ln(1/2) ∈ R is

product-invariant. Then,

lnGj

(
s,x(2)

)
= lnG

(
(sj ,x

(2)
j ), (s−j ,x

(2)
−j )

)
.

D Additional Results fromMonte Carlo Simulations

The scatter plots in Figures 1 to 5 represent the accuracy of the estimation of the

FIL model when the true model is the RCL model. Each blue dot represents a

price elasticity; its vertical position is the mean estimated elasticity across 500

Monte Carlo datasets and its horizontal position is the true elasticity. All market-

level variables are fixed at their values in the first 20 markets of the first Monte

Carlo dataset of each configuration. The red line corresponds to the 45-degree

line. The scatter plots remove the outliers in terms of fit as measured by the

absolute value between the estimated elasticity and its corresponding true one

(to be precise, I remove the 2.5% best and the 2.5% worst fits).

Tables 4 to 6 show that the optimal instruments allow to better fit the own-

and cross-price elasticities of the RCL model.
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Figure 1: Results with Exogenous Prices: Own-Price Elasticities (Part 1)

(a) T = 20, J = 25, σx = 0.5

(b) T = 50, J = 25, σx = 0.5

(c) T = 20, J = 50, σx = 0.5

(d) T = 50, J = 50, σx = 0.5

(e) T = 20, J = 25, σx = 1

(f) T = 50, J = 25, σx = 1

(g) T = 20, J = 50, σx = 1

(h) T = 50, J = 50, σx = 1
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Figure 2: Results with Exogenous Prices: Own-Price Elasticities (Part 2)

(a) T = 20, J = 25, σx = 2

(b) T = 50, J = 25, σx = 2

(c) T = 20, J = 50, σx = 2

(d) T = 50, J = 50, σx = 2

(e) T = 20, J = 25, σx = 3

(f) T = 50, J = 25, σx = 3

(g) T = 20, J = 50, σx = 3

(h) T = 50, J = 50, σx = 3
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Figure 3: Results with Exogenous Prices: Cross-Price Elasticities (Part 1)

(a) T = 20, J = 25, σx = 0.5

(b) T = 50, J = 25, σx = 0.5

(c) T = 20, J = 50, σx = 0.5

(d) T = 50, J = 50, σx = 0.5

(e) T = 20, J = 25, σx = 1

(f) T = 50, J = 25, σx = 1

(g) T = 20, J = 50, σx = 1

(h) T = 50, J = 50, σx = 1
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Figure 4: Results with Exogenous Prices: Cross-Price Elasticities (Part 2)

(a) T = 20, J = 25, σx = 2

(b) T = 50, J = 25, σx = 2

(c) T = 20, J = 50, σx = 2

(d) T = 50, J = 50, σx = 2

(e) T = 20, J = 25, σx = 3

(f) T = 50, J = 25, σx = 3

(g) T = 20, J = 50, σx = 3

(h) T = 50, J = 50, σx = 3
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Figure 5: Results with Endogenous Prices

(a) Own-price elasticities, σx = 0.5

(b) Own-price elasticities, σx = 1

(c) Own-price elasticities, σx = 2

(d) Own-price elasticities, σx = 3

(e) Cross-price elasticities, σx = 0.5

(f) Cross-price elasticities, σx = 1

(g) Cross-price elasticities, σx = 2

(h) Cross-price elasticities, σx = 3
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Table 4: Simulation Results: Own-Price Elasticities with Exogenous Prices

T J σx Mean Percentiles Bias MSE

2.5th 97.5th 2.5th 97.5th

RCL FIL RCL FIL

20 25 0.5 -3.8338 -3.9197 -4.8205 -2.5582 -5.3656 -2.1735 -0.0859 0.1090

50 25 0.5 -3.8333 -3.9039 -4.8196 -2.5142 -5.3293 -2.2422 -0.0705 0.0935

20 50 0.5 -3.9021 -3.9488 -4.9011 -2.8028 -5.3510 -2.5435 -0.0467 0.0922

50 50 0.5 -3.9021 -3.9473 -4.8997 -2.7943 -5.3660 -2.5309 -0.0452 0.0847

20 25 1 -3.8314 -3.9453 -4.8191 -2.5578 -5.5691 -2.1300 -0.1139 0.1666

50 25 1 -3.8309 -3.9288 -4.8179 -2.5121 -5.4481 -2.1851 -0.0979 0.1466

20 50 1 -3.9009 -3.9628 -4.9014 -2.7982 -5.4669 -2.4962 -0.0619 0.1317

50 50 1 -3.9009 -3.9614 -4.9000 -2.7932 -5.4985 -2.4784 -0.0605 0.1241

20 25 2 -3.8201 -4.2224 -4.8144 -2.5156 -8.1138 -1.9190 -0.4023 1.4402

50 25 2 -3.8196 -4.1949 -4.8122 -2.5135 -7.3852 -1.8856 -0.3753 1.2991

20 50 2 -3.8948 -4.1436 -4.9015 -2.7790 -7.2497 -2.1976 -0.2488 0.9905

50 50 2 -3.8947 -4.1461 -4.8997 -2.7719 -7.1414 -2.1844 -0.2515 1.0192

20 25 3 -3.8018 -4.6097 -4.7905 -2.4682 -11.7957 -1.8773 -0.8079 8.5887

50 25 3 -3.8015 -4.6165 -4.8003 -2.5089 -11.7504 -1.8228 -0.8150 10.0277

20 50 3 -3.8839 -4.4182 -4.8957 -2.7562 -10.1795 -2.1065 -0.5343 5.5795

50 50 3 -3.8837 -4.4463 -4.8922 -2.7618 -9.4595 -2.0887 -0.5626 10.2463

Notes: Summary statistics across 500 Monte Carlo replications. The bias is measured by the

mean error. The mean square error (MSE) measures the accuracy.
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Table 5: Simulation Results: Cross-Price Elasticities with Exogenous Prices

T J σx Mean Percentiles Bias MSE

2.5th 97.5th 2.5th 97.5th

RCL FIL RCL FIL

20 25 0.5 0.1515 0.1565 0.0011 0.9628 0.0006 0.8702 0.0050 0.0012

50 25 0.5 0.1520 0.1562 0.0011 0.9060 0.0007 0.8658 0.0042 0.0010

20 50 0.5 0.0752 0.0770 0.0004 0.4714 0.0003 0.4364 0.0017 0.0004

50 50 0.5 0.0752 0.0769 0.0005 0.5038 0.0003 0.4724 0.0017 0.0003

20 25 1 0.1512 0.1576 0.0016 0.9224 0.0007 0.8304 0.0064 0.0017

50 25 1 0.1517 0.1573 0.0016 0.8845 0.0008 0.8206 0.0056 0.0015

20 50 1 0.0752 0.0773 0.0007 0.4548 0.0003 0.4157 0.0021 0.0005

50 50 1 0.0752 0.0772 0.0007 0.4820 0.0003 0.4526 0.0021 0.0005

20 25 2 0.1496 0.1692 0.0037 0.8192 0.0010 0.6623 0.0196 0.0089

50 25 2 0.1501 0.1684 0.0038 0.7880 0.0011 0.6316 0.0183 0.0081

20 50 2 0.0748 0.0812 0.0017 0.4083 0.0004 0.3321 0.0065 0.0020

50 50 2 0.0748 0.0812 0.0017 0.4216 0.0005 0.3529 0.0065 0.0020

20 25 3 0.1459 0.1840 0.0062 0.7109 0.0015 0.6350 0.0381 0.0307

50 25 3 0.1463 0.1845 0.0062 0.6927 0.0015 0.6035 0.0382 0.0362

20 50 3 0.0736 0.0862 0.0029 0.3514 0.0007 0.3228 0.0126 0.0051

50 50 3 0.0736 0.0867 0.0030 0.3696 0.0009 0.3266 0.0130 0.0089

Notes: Summary statistics across 500 Monte Carlo replications. The bias is measured

by the mean error. The mean square error (MSE) measures the accuracy.
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Table 6: Simulation Results with Endogenous Prices

T J σx Mean Percentiles Bias MSE

2.5th 97.5th 2.5th 97.5th

RCL FIL RCL FIL

Own-Price Elasticities

50 25 0.5 -4.1208 -4.1352 -5.4317 -2.6397 -5.9828 -2.6511 -0.0145 0.2240

50 25 1 -4.1178 -4.1960 -5.4325 -2.6380 -6.6359 -2.5784 -0.0783 0.5488

50 25 2 -4.1060 -4.7652 -5.4303 -2.6084 -12.9322 -2.2572 -0.6592 14.0420

50 25 3 -4.0887 -4.7236 -5.4167 -2.5384 -14.4515 -2.1151 -0.6348 15.1808

Cross-Price Elasticities

50 25 0.5 0.1855 0.1881 0.0038 0.8959 0.0020 0.8246 0.0026 0.0018

50 25 1 0.1843 0.1892 0.0050 0.8627 0.0020 0.7429 0.0049 0.0038

50 25 2 0.1792 0.2072 0.0087 0.7678 0.0019 0.6499 0.0281 0.0433

50 25 3 0.1720 0.2035 0.0110 0.7035 0.0028 0.6214 0.0315 0.0452

Notes: Summary statistics across 500 Monte Carlo replications. The bias is measured by the

mean error. The mean square error (MSE) measures the accuracy.
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E The Post-Nabisco Merger

The FIL model possesses the main features that make it appealing for merger

evaluation according to Pinkse and Slade (2004): it imposes no specific restric-

tions on price elasticities; it is easily and fastly estimated by linear IV regression

using standard computer softwares; and it can handle very large choice sets.

This appendix shows the use of the FIL model for merger simulation purposes

through the study of the Post’s acquisition of the Nabisco cereal line in the ready-

to-eat (RTE) cereals industry that occurred in January 1993. This merger has been

extensively studied in the empirical literature (see Rubinfeld (2000), Nevo (2000)

and Michel and Weiergraeber (2019)).37 Using both pre- and post-merger data, I

directly estimate these price effects. Then, using pre-merger data, I estimate a FIL

model and, assuming a static oligopolistic price competition model, I simulate

the merging firm’s price effects. Lastly, I compare the results.

E.1 Data

Datasets and Variables I use data from the Dominick’s Database made avail-

able by the James M. Kilts Center, University of Chicago Booth School of Busi-

ness. This is a weekly store-level scanner data, comprising information on 30

categories of packaged products at the Universal Product Code (UPC) level for

all Dominick’s Finer Foods (DFF) chain stores in the Chicago metropolitan area

over the period 1989-1997. The data are supplemented by store-specific infor-

mation, including average household size and store traffic.

For the application, I focus on the RTE cereals and use data from 60 DFF

stores during the period 1992–1993, i.e., one year before and one year after the

merger. I use the whole sample, i.e., both pre- and post-merger data, for the

reduced form analysis, and only pre-merger data for the structural approach.

Following the prevailing literature, I aggregate UPCs into brands, where a

brand is a cereal (e.g., Special K) associated to its manufacturer (e.g., Kellogg’s),

so that different size boxes are considered one brand. I select 45 brands from

6 national manufacturers (General Mills, Kellogg’s, Nabisco, Post, Quaker and

Ralston), so that they represent around 75% of each manufacturer total sales on

the period. The 45 brands taken together account for around 60% of the national

market (see Corts, 1996; Shum, 2004, for information on national market shares).

37For an industry overview, see also Corts (1996), Nevo (2001) and Backus et al. (2018).
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Lastly, I group cereals into three market segments, namely Adults, Kids and Fam-

ily, according to the classification provided by the website www.cerealfacts.org.

I define a product as a brand and a market as a month-store pair. I compute

the market shares of the 45 brands in volume as follows. First, I select all package

sizes between 10 and 32 ounces. Then, I compute the total volume sold by a brand

in a market, which I divide by the potential market size to obtain the market

shares. The market share of the outside option is then obtained as the difference
between one and the sum of the 45 brands’ market shares.

I compute the potential market size as follows. According to the USDA’s Eco-

nomic Research Service, per capita US consumption of RTE cereals was equal to

13.9 pounds in 1992 and 14.6 pounds in 1993. I use this information to compute

the monthly per capita consumption. Then, assuming that people visit stores

twice a week, I compute the total number of persons in a market as the number

of households times average household size. The potential market size is thus

given by the total number of persons in a market multiplied by the monthly per

capita consumption of RTE cereals.

At no loss of generality, I define a serving weight as 1 ounce (i.e., 28.35g).

Prices in the analysis are weighted deflated retail prices calculated as the volume-

weighted average price per ounce of the UPCs that form the brand and where the

deflator is the monthly Consumer Price Index for All Urban Consumers (CPI-U)

in the Chicago-Naperville-Elgin area from the U.S. Bureau of Labor Statistics.38

I supplement the data with the fiber and sugar contents of one serve of cere-

als using release SR16 of the USDA Nutrient Database for Standard Reference.39

I use information regarding the presence or not of rice, wheat, corn and oats

using manufacturers’ websites and different websites collecting nutritional infor-

mation. I also use monthly prices for rice, wheat, sugar and corn from the web-

site www.indexmundi.com, and for oats from the website www.macrotrends.net,

which will be used to construct cost-based instruments.

Evolution of Retail Prices Before turning to the econometric analysis, observe

in Figure 6 how the weighted average prices of the merging firms’ and the non-

38The Consumer Price Index (CPI) is a measure of the average change over time in the prices
paid by urban consumers for a market basket of consumer goods and services. Indexes are avail-
able for the U.S. and various geographic areas. Average price data for select utility, automotive
fuel, and food items are also available.

39This dataset is made available by the United States Department of Agriculture and provides
the nutrient content of more than 8,500 different foods including RTE cereals.
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merging firms’ separately evolved before and after the merger. It appears that

bothmerging and non-merging firm’s exhibit a slightly increasing trend in prices.

In addition, before the merger, the merging firms’ prices are lower than the non-

merging firms’ prices, while they are similar after merger.

This suggests that merging firms took advantage of the merger to increase

their prices relatively to non-merging firms. However, the increasing trend can

also be explained by changes in economic factors other than the merger, such that

increases in price inputs. The econometric analysis of the next subsection aims

at estimating the merging firms’ price effect, everything else being equal.

Figure 6: Prices Evolution by Merging Status
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E.2 Reduced-Form Analysis

I first estimate the price effects of the Post-Nabisco merger using both pre- and

post-merger data. Based on Björnerstedt and Verboven (2016), I estimate the

following regression

ln(pjsm) = αi + βiPostMergeri + ξj + ξs + ξm +∆ξjsm,
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where subscript i denotes a product group, and where pjsm is the price of brand

j = 1, . . . ,45, sold in store s = 1, . . . ,60 during monthm = 1, . . . ,24. I define product

groups i at two levels: (i) merging status: i ∈ {merging,non-merging}; (ii) at the
firm level: i ∈ {General Mills,Kellogg’s,Nabisco,Post,Quaker,Ralston}.

The following table presents the results.

Table 7: Price Effect

Coefficient SE Percent change CI

Regression at the level of merging vs. non-merging firms
MergingFirms × PostMerger 0.0477*** (0.00274) 4.77% [4.23% ; 5.31%]

(1-MergingFirms) × PostMerger 0.0220*** (0.00282) 2.20% [1.65% ; 2.76%]

(lower bound) Price effect 0.0257*** (0.00128) 2.66% [2.40% ; 2.92%]

MergingFirms fixed effects Yes

Observations 64654

R2 0.998

Regression at the level of the firm
General Mills × PostMerger 0.0112*** (0.00307) 1.13% [0.52% ; 1.74%]

Kellogg’s × PostMerger 0.0283*** (0.00300) 2.87% [2.26% ; 3.47%]

Nabisco × PostMerger 0.0556*** (0.00399) 5.72% [4.89% ; 6.55%]

Post × PostMerger 0.0459*** (0.00275) 4.70% [4.14% ; 5.27%]

Quaker × PostMerger 0.0117*** (0.00340) 1.18% [0.51% ; 1.86%]

Ralston × PostMerger 0.0386*** (0.00338) 3.94% [3.25% ; 4.63%]

Firms fixed effects Yes

Observations 64654

R2 0.998

Notes: Regressions include fixed effects for brands, stores, and months. Robust standard errors are

reported in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. The percentage price effects are obtained
from exp(βi)− 1 and the corresponding standard errors using the delta method.

The structural approach of the next subsection assumes that costs did not

change after the merger. To make the results consistent with the structural ap-

proach, based on Weinberg and Hosken (2013), I also estimate the following re-

gression which controls for cost changes

ln(pjsm) = αi + βiPostMergeri + ci
(
ωjm

)
+ ξj + ξs + ξm +∆ξjsm,

where ci
(
ωjm

)
is a cost function depending on price inputs which is merging

status-specific. I replace ci
(
ωjm

)
by a polynomial in ωjm (of orders 2 and 3, re-
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spectively). I distinguish between merging status to allow price inputs to enter

the production function of differently according to the merging status. Price in-

puts are prices for corn, oats, rice, wheat and sugar multiplied by the content of

one serving weight (in grammes for sugar and a dummy for the others).

If it is assumed that the merger has no effect on non-merging firm’s prices,

then the difference βmerging − βnon-merging measures the merging firms’ price ef-

fects. Otherwise, the difference must be viewed as a lower bound.

Table 8: Price Effect, by merging status and holding cost constant

Coefficient SE Percent change CI

Regression with a second-order polynomial cost function
MergingFirms × PostMerger 0.0726*** (0.00355) 7.53% [6.78% ; 8.28%]

(1-MergingFirms) × PostMerger 0.0580*** (0.00357) 5.98% [5.23% ; 6.72%]

(lower bound) Price effect 0.0145*** (0.00150) 1.55% [1.24% ; 1.87%]

Observations 64654

R2 0.998

Regression with a third-order polynomial cost function
MergingFirms × PostMerger 0.0444*** (0.00409) 4.54% [3.71% ; 5.38%]

(1-MergingFirms) × PostMerger 0.0245*** (0.00408) 2.48% [1.66% ; 3.30%]

(lower bound) Price effect 0.0199*** (0.00178) 2.06% [1.70% ; 2.42%]

Observations 64654

R2 0.998

Notes: Regressions include fixed effects for brands, stores, and months. Robust standard errors are

reported in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. The percentage price effects are obtained
from exp(βi)− 1 and the corresponding standard errors using the delta method.

E.3 Structural Approach using the FIL Model

The structural approach uses the structural model of demand and supply pre-

sented in subsection 5.1.

Demand Estimation I estimate the FIL model given by Equation (19) where

x(1) includes a constant as well as dummies for brands, stores and months, and

where x(2) includes the fiber and sugar contents of the cereals – product charac-

teristics x(1) and x(2) are invariant across markets, this is the reason for which I

omit notation for markets t.

I estimate the model following the two-step procedure described in Subsec-

tion 5.3. In the first step, I estimate the FIL model using a first-order Bernstein
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polynomial (with 2× 2 parameters), where instruments are given by

IVjt =

xj , p̂jt,
∑
i,j

bk1,1bk2,2p̂it


k1={0,1};k2={0,1}

 ,
where p̂jt is the predicted value of the linear regression of prices pjt on x(1)j ,

(
x(1)j

)2
,∑

i,j

(
x(2)i − x

(2)
j

)
and ωjt. Cost shifters are input prices (for sugar, corn, oats, rice

and wheat) multiplied by their content in one serving weight (in grammes for

sugar and a dummy for the others).40

In the second step, I use a second-order Bernstein polynomial (with 3× 3 pa-

rameters), with the optimal instruments of Chamberlain (1987). The Sanderson

andWindmeijer (2016)’s F-statistics of the 10 first-stage regressions are far higher

than 10, indicating that instruments are not weak.

The estimated median own-price elasticities are in line with the literature.

They range from −6.181 to −1.461 with an average of −3.362. Regarding the

cross-price elasticities, they range from −0.692 to 0.669, with an average of 0.038.

30% of the pairs of products are complements (see Iaria and Wang, 2019, who

find a large amount of complementarity in the RTE cereals industry). Note, how-

ever, that confidence intervals should be computed to determine whether or not

the small values for some of the cross-price elasticities are well significantly dif-

ferent from zero.

Merger Simulation Consider a static oligopolistic price competition model be-

tween the six manufacturers. Assuming that a pure-strategy Nash equilibrium

exists and using the associated first-order conditions, I compute marginal costs

and margins. The model predicts negative marginal costs only for less than

0.130% of the observations. Note that I use retail prices to simulate a merger

between manufacturers, while ignoring the retailers (DFF) – I abstract from the

vertical relationship between retailers and manufacturers. The median marginal

cost implied by the model is 0.13 dollars per serving, which, in line with Michel

and Weiergraeber (2019), implies median margin equal to 33 cents.

Given the demand estimates and the predicted marginal costs, I simulate the

merger by only changing the merging firms’ product ownership. I compute the

40Bernstein polynomials used in this application have lower orders than those used in the sim-
ulations. This is because with higher orders, instruments become weak. A future version of this
paper will consider Bernstein polynomials with higher orders.
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post-merger prices using the approximate solution of the first-order conditions

(see Hausman et al., 1994; Nevo, 1997), and then I compute the merging firms’

price effect as ∑
j∈M

60∑
s=1

12∑
m=1

wjsm

p
post
jsm − pjsm
pjsm

,

with
∑

j,s,mwjsm = 1, where M is the set of brands sold by the merging firms,

where wjsm are premerger volume shares, and where ppostjsm are the simulated post-

merger prices.

E.4 Comparison

Assuming that themerger has no effect on non-merging firm’s prices, the reduced-

form approach leads to an estimate of the merging firm’s price effect of 1.55%
when the cost function is approximated by a second-order polynomial in input

prices and of 2.06% when it is approximated by a third-order polynomial. These

results must be taken with caution, especially because there are cost factors that

are not considered in the analysis, such as cost of packaging, distribution, adver-

tising, etc.

The structural approach when the demand model is the FIL model and the

supply model is a static price competition model leads to an estimate of the

merging firm’s price effect of 2.03%, thereby indicating that the FIL model pre-

dicts a merger effect on retail prices in line with that found in the reduced-form

approach. However, several specifications and robustness checks should be run

before getting a reliable conclusion.
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Chapter 3

Shape Restrictions for Demand
Estimation

1 Introduction

Structural estimation of demandmodels for differentiated products allows to bet-

ter understand consumers’ behavior and to studymany economic questions of in-

terest (e.g., mergers, new products, trade policy, cost pass-through, etc.). Ideally,

one would like demand models to impose limited shape restrictions while be-

ing consistent with an underlying structural model of heterogeneous and utility-

maximizing consumers.

Most papers that structurally estimate demands assume an additive random

utility model (ARUM) from which the demand function is derived and then esti-

mated using the method developed by Berry (1994). The ARUM is ubiquitously

used due to its ability to model the behavior of heterogeneous consumers in the

presence of many differentiated products in a tractable and parsimonious way.1

Berry (1994)’s method is used to estimate demandmodels for differentiated prod-

ucts while handling endogeneity issues, due to the presence of structural error

terms that represent product characteristics that are unobserved by the modeller

but observed and valued by consumers and firms.

This paper is motivated by two observations. First, the ARUM imposes shape

1The ARUM relies on the single-unit purchase assumption that each consumer chooses one
unit of the product that maximizes her utility given by the sum of a deterministic and a random
utility terms. It has been widely applied in empirical industrial organization (see Berry, 1994;
Berry, Levinsohn, and Pakes, 1995) and in other fields to answer many questions (see e.g., Table
1 in Berry and Haile, 2016).
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restrictions on its associated demand function, known as the Daly-Zachary con-

ditions due to Daly and Zachary (1979).2 In particular, they rule out comple-

mentarity as defined by a negative cross-price derivative of demand, which may

be undesirable in applications where complementarity is likely to occur and to

qualitatively affect results (e.g, mergers, bundling, products’ entry).3 Second,

Berry (1994)’s method targets the inverse demand function, rather than the de-

mand function or the underlying utility function. This is because it starts from

the equation that equates the predicted to the observed market shares where the

structural errors enter nonlinearly, thereby preventing the use of standard instru-

mental variables (IV) methods to deal with endogeneity issues. The method thus

suggests to invert it to obtain inverse demand equations where the structural er-

rors enter linearly and to use them as a basis for estimation. However, since these

inverse demand equations have generally no closed form expression, estimation

requires numerical inversion and non-linear optimization, which can be painful

and time-consuming.4

Fosgerau et al. (2019b) contrasts with the standard practice by building novel

inverse demand models, called generalized inverse logit (GIL) models, which al-

low for complementarity and which are estimated by IV regression using Berry

(1994)’s method. Interestingly, Fosgerau et al. (2019b) show that any GIL model

can be derived from amodel of heterogeneous and utility-maximizing consumers,

called perturbed utility model (PUM) and studied by Allen and Rehbeck (2019a),

see arrow "Lemma 1" in Figure 1.5

The main goal of this paper is to show the converse, namely that, under mild

conditions, any PUM yields an inverse demand function that is a GIL model.

The proof of this result involves two intermediate results that are of independent

interest. First, any PUM yields a demand function satisfying a slight variant of

the Daly-Zachary conditions, referred to as the modified Daly-Zachary (MDZ)

2In this paper, I use interchangeably the terms "demands", "choice probabilities", and "market
shares".

3I use the standard definition of complementarity (substitutability), i.e. a negative (positive)
compensated cross-price derivative of demand. Since I rule out income effect, complementarity
(substitutability) is the only source of the negative (positive) cross-price derivative of demand.
See Samuelson (1974) for a discussion on the different ways of defining complementarity.

4To my knowledge, the logit and nested logit models are the only ARUM with a closed-form
inverse demand function.

5The PUM assumes that each consumer chooses a probability distribution over products so
as to maximize her utility given by the sum of an expected utility term and a non-linear, deter-
ministic function of probabilities. The PUM extends the ARUM to allow for richer substitution
patterns.
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conditions and allowing for complementarity, see arrow "Lemma 2" in Figure

1. Second, any demand function satisfying the MDZ conditions has an inverse

demand function that is a GIL model, see arrow "Lemma 3" in Figure 1. Overall,

by equivalence relations, PUM, GIL models and demands satisfying the MDZ

conditions are observationally equivalent.

The remainder of the paper is organized as follows. Section 2 introduces the

setting used in the paper. Section 3 defines the PUM and the GIL model. Section

4 establishes the main result of the paper, namely that the shape restrictions

that the GIL model imposes on the inverse demand function are necessary and

sufficient for consistency with PUMmaximization, and sketches its proof. Section

5 provides the proofs of the results of the paper. Section 6 concludes.

Figure 1: Relations between PUM, GIL Models and MDZ Conditions

PUM

GIL Model MDZ Conditions

Lemma 2

Lemma 3

Lemma 1

Conditions (PUM i) – (PUM iii)

Utility Model (8)

Conditions (MDZ i) – (MDZ iii)

Demand Model (3)

Conditions (GIL i) – (GIL iii)

Inverse Demand Model (7)

Notation I use italics for scalar variables and real-valued functions, boldface

for vectors, matrices and vector-valued functions, and calligraphic for sets. By

default, vectors are column vectors.

Let J = {0, . . . , J}. A vector s ∈ RJ+1 refers to s ≡
(
s0, . . . , sJ

)⊺
∈ RJ+1.

∆J denotes the J-dimensional unit simplex: ∆J ≡
{
s ∈ [0,∞)J+1 :

∑
j∈J sj = 1

}
,

int
(
∆J

)
≡

{
s ∈ (0,∞)J+1 :

∑
j∈J sj = 1

}
is its interior, and bd(∆J ) ≡ ∆J\int

(
∆J

)
is its

boundary.

Let CS : RJ+1 → R be a function. Then, ∇δCS (δ), with entries j given by
∂CS(δ)
∂δj

, denotes its gradient with respect to the vector δ.

Let G =
(
G0, . . . ,GJ

)
: RJ+1→ RJ+1 be a vector function composed of functions

Gj : RJ+1→ R. The Jacobian matrix JsG (s) of G with respect to s at s has entries ij
given by ∂Gi(s)

∂sj
.

119



CHAPTER 3. SHAPE RESTRICTIONS FOR DEMAND ESTIMATION

A univariate function R→ R applied to a vector is a coordinate-wise applica-

tion of the function, e.g., ln(s) =
(
ln(s0) , . . . , ln

(
sJ
))
. 1J = (1, . . . ,1)⊺ ∈ RJ is a vector

consisting of ones.

|s| denotes the 1-norm of the vector s: |s| =
∑

j∈J |sj |. δ−j denotes the vector δ

after deleting its j-th entry: δ−j ≡ (δ0 . . .δj−1,δj+1 . . .δJ ).

2 Setting

Consider a population of consumers choosing from a choice set J = {0, . . . , J} of J+
1 differentiated products, where products j = 1, . . . , J are the inside products and

product j = 0 is the outside good. Let pj ∈ R be the price of product j and xj ∈ RK

be the vector of K observed characteristics of product j. Following the structural

demand estimation literature (Berry, 1994; Berry et al., 1995), let ξj ∈ R be the

j-product unobserved characteristics term. The ξj ’s represent the structural error

terms of the demand model in the sense that they are assumed to be observed by

consumers and firms but not by the modeller.

Following Berry and Haile (2014), define for each product j ∈ J a linear index

δj = xjβ −αpj + ξj , j ∈ J , (1)

where β captures the consumers’ taste for characteristics
(
x0, . . . ,xJ

)
and α > 0

denotes the consumers’ marginal utility of income; and normalize the indexes of

each inside product relative to that of the outside good by setting δ0 = 0, so that

δ ∈ RJ+1
0 ≡ {δ ∈ RJ+1 : δ0 = 0}.6

Consider the demand system

σ =
(
σ0, . . . ,σJ

)
: RJ+1

0 → int
(
∆J

)
,

where the function σ gives the vector s of nonzero observed market shares as a

function of the vector of product indexes δ,

s = σ (δ;θ2) , (2)

known up to some parameters θ2 to be estimated. Demands (2) rule out income

effect (since they are independent of income); the implicit assumption behind

6Alternatively, one can normalize δ such that RJ+1
0 = {δ ∈ RJ+1 :

∑
j∈J δj = 0}.
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being that preferences are quasi-linear and that income is sufficiently high that

not all income is spent on the J + 1 differentiated products (see e.g., Nocke and

Schutz, 2017).

Demand estimation based on the system (2) that equates the predicted mar-

ket shares to the observed market shares is complicated by the fact that the error

terms ξ enter in a nonlinear way, thereby preventing the use of standard regres-

sion techniques. Berry (1994) suggests inverting system to obtain an inverse de-

mand system in which the error terms ξ enter linearly and to use it as a basis for

estimation. Indeed, if σ is invertible in δ, then there exists an inverse demand

σ−1 : int(∆J )→ RJ+1
0 given by

σ−1 (s;θ2) = δ,

in which the structural error terms ξj enter linearly as a function of the data (i.e.,

market shares, prices and product characteristics) and parameters α, β, and θ2

to be estimated,7

ξj = σ−1j (s;θ2)− xjβ +αpj , j ∈ J . (3)

Invertibility in δ of the system of market shares (2) is thus crucial for identifi-

cation and estimation. Berry et al. (2013) show that their "connected substitutes"

structure is sufficient for demand invertibility.8 Proposition 2 provides a result

of invertibility for demands that can accommodate some patterns of substitution

that are not allowed in Berry et al. (2013)’s setting, including complementarity as

defined by a negative cross-price derivative of demand.

Product characteristics are typically assumed to be exogenous (i.e., that they

are uncorrelated with the structural error terms). However, prices and mar-

ket shares in the right-hand side of Equation (3) are likely to be endogenous.

Then, provided that there exists appropriate instruments z for prices and market

shares, one can estimate demands (2) based on the following conditional moment

restrictions

E
[
ξj |z

]
= 0, j ∈ J ,

where ξj is given by Equation (3).

7To ease exposition, I hereafter omit notation for parameters θ2.
8The connected substitutes structure requires that (i) products be weak substitutes, i.e., every-

thing else equal, an increase in δi weakly decreases demand σj for all other products and (ii) the
“connected strict substitution” condition hold, i.e., there is sufficient strict substitution between
products to treat them in one demand system.
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3 Models

Most papers that structurally estimate demands assume an additive random util-

ity model (ARUM), derive the associated demand function, and invert it to obtain

the inverse demand equations (3). However, the ARUM rules out complementar-

ity by assumption and, in general, yields an inverse demand function that has no

closed-form expression, so that one needs to resort to numerical inversion and

non-linear optimization for estimation.

Fosgerau et al. (2019b)’s approach constrasts with this practice, obtaining

Equation (3) by directly developing novel (closed-form) inverse demand mod-

els, called generalized inverse logit (GIL), which allow for complementarity and

just require IV regression for estimation.9

Fosgerau et al. (2019b) shows that any GILmodel is consistent with amodel of

heterogeneous and utility-maximizing consumers, called perturbed utility model

(PUM) and studied by Allen and Rehbeck (2019a).10 The goal of this paper is to

show the converse, namely that the inverse demand function yield by any PUM is

a GIL model, to establish that the conditions that the GIL model imposes on the

inverse demand function are necessary and sufficient for consistency with PUM

maximization.

3.1 The Generalized Inverse Logit (GIL) Model

The GIL model is an inverse demand model of the form

σ−1j (s) = lnGj (s) + c = δj , j ∈ J , (4)

where δj is given by Equation (1), where c is equal, up to an additive constant, to

the consumer surplus and where the function lnG ≡ (lnG0, . . . , lnGJ ) satisfies the

following conditions.

Conditions GIL The function lnG satisfies the following conditions.

(GIL i) G : [0,∞)J+1 → (0,∞)J+1 is continuously differentiable and homoge-

neous of degree one on int
(
∆J

)
11

9Compiani (2019) adopts a similar approach. Using Berry and Haile (2014)’s setting, he pro-
poses to non-parametrically estimate inverse demand models.

10See also McFadden and Fosgerau (2012) and Fudenberg et al. (2015).
11The function G is homogeneous of degree one if, for all λ > 0, G (λs) = λG (s).
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(GIL ii) JslnG is positive definite and symmetric on int
(
∆J

)
12

(GIL iii) | lnG (s) | approaches infinity as s approaches bd(∆J ).

This form of inverse demand generalizes the inverse demand obtained from

the logit model through the presence of the functionG, and as shown by Fosgerau

et al. (2019b), allows for complementarity.

3.2 The Perturbed Utility Model (PUM)

The PUM is a utility model that admits a representative consumer choosing a

vector s ∈ ∆J of market shares of the differentiated products so as to maximize

her quasi-linear utility defined as the sum of an expected utility component and

a perturbation function (−Ω)

u (s) =
∑
j∈J

δjsj −Ω (s) , (5)

where δj is given by Equation (1) and where the perturbation function (−Ω) is a

deterministic function of s that satisfies the following conditions.

Conditions PUM The function Ω : [0,∞)J+1→ R∪ {+∞} satisfies the following

conditions.13

(PUM i) Ω is finite for s ∈ ∆J and infinite otherwise

(PUM ii) Ω is twice continuously differentiable and strictly convex on int(∆J ).

(PUM iii) |∇sΩ(s)| approaches infinity as s approaches bd(∆J ).

Conditions (PUM i) – (PUM iii) imply that the argmax of the utility maxi-

mization program is unique and that this maximizer is interior, i.e., σ ∈ int(∆J ).

Demands are then given by

σ (δ) = argmax
s∈∆J

{u (s)} , (6)

12JslnG is positive definite on int
(
∆J

)
if s⊺JslnGs > 0, for all s ∈ int

(
∆J

)
.

13Conditions (PUM i) to (PUM iii) imply that (int(∆J ),Ω) is a convex function of Legendre type.
See Appendix A.1. See, amongst others, Hofbauer and Sandholm (2002), Galichon and Salanié
(2015), Matějka and McKay (2015), Chiong et al. (2016), Allen and Rehbeck (2019a), Fosgerau
et al. (2019a) for economics papers that use convex analysis.
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where u is given by Equation (5).

As shown by Allen and Rehbeck (2019a), this form of utility can be derived,

after an aggregation across consumers, from amodel of heterogeneous and utility-

maximizing consumers called perturbed utility model (PUM). Indeed, in a PUM,

the utility that each consumer derives from choosing a vector s ∈ ∆J is the sum of

an expected utility
∑

j∈J δjsj term and a disturbance function (−Ω̃),

u (s;ε) =
∑
j∈J

δjsj − Ω̃ (s,ε) ,

where ε capture consumer heterogeneity, so that the utility (5) can be obtained

after integrating out the distribution of ε.14 15

The PUM is consistent with deliberate stochastic choice at the consumer level

(Fudenberg et al., 2015; Allen and Rehbeck, 2019b), with stochastic choice due

to rational inattention (Matějka and McKay, 2015; Fosgerau et al., 2019a) or due

to costly optimization (Mattsson and Weibull, 2002), and with taste for variety.16

As noted by Allen and Rehbeck (2019a), the ARUM is a special case of the

PUM, where Ω̃ (s,ε) = −
∑

j∈J sjεj , meaning that the class of PUM is strictly larger

than the class of ARUM (see also Hofbauer and Sandholm, 2002; Fosgerau et al.,

2019a,b).

The PUM allows for complementarity (Allen and Rehbeck, 2018), which is

ruled out by the ARUM. Complementarity in a PUM can be due to a variety

of consumer behavior, including taste for variety and one-stop shopping, and

can also be the manifestation of the attraction effect or the compromise effect
(Rieskamp et al., 2006).

14See Theorem 1 in Allen and Rehbeck (2019a) for the conditions under which this aggregation
holds and for the relationships between the functions Ω̃ andΩ and the distribution of ε. See also
Allen and Rehbeck (2019b).

15This specification assumes that the only source of consumer heterogeneity in preferences is
due to the vector of random utility terms ε whose distribution is parametrized by the vector θ2.
This assumption rules out observed heterogeneity in preferences related to observed individual
characteristics as well as unobserved heterogeneity in preferences through random coefficients on
price and product characteristics. This implies that the probability that each consumer chooses
product j ∈ J coincides with the market share of that product. For this reason, I omit notation
for consumers.

16See alsoMachina (1985), Clark (1990), Agranov andOrtoleva (2017) and Cerreia-Vioglio et al.
(2019).
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4 Conditions for Consistency with PUM Maximiza-

tion

This section establishes the main result of the paper. It also sketches its proof,

which is illustrated in Figure 1. The findings of this section are illustrated through

the logit example in Appendix C. For the purpose of this paper, the modified

Daly-Zachary (MDZ) conditions are introduced. They are demand shape restric-

tions extending the Daly-Zachary conditions due to Daly and Zachary (1979).

The following proposition states that the conditions that the GIL models im-

pose on the inverse demand function are necessary and sufficient for consistency

with PUM maximization.

Proposition 1. Any GIL model is consistent with a PUM, i.e., it can be derived

from the maximization of a utility function of the form of Equation (5). Con-

versely, any PUM yields an inverse demand function that is a GIL model.

The proof of this proposition uses three lemmas, stated in this section and

formally proved in the next section, which link the PUM, the GIL model and the

MDZ conditions.

The first lemma, shown in Fosgerau et al. (2019b), establishes that any GIL

model is consistent with a PUM. Specifically, the GIL model (4) is consistent with

a consumer choosing a vector s ∈ ∆J of market shares of the differentiated prod-

ucts so as to maximize her quasi-linear utility

u (s) =
∑
j∈J

δjsj −
∑
j∈J

sj lnGj (s) , (7)

which is a PUM where the perturbation −Ω given by

Ω (s) =


∑

j∈J sj lnGj (s) if s ∈ ∆J ,

+∞ otherwise,

satisfies Conditions (PUM i) – (PUM iii). This result is summarized as follows.

Lemma 1. The GIL model (4) is consistent is the PUM (7).

The second lemma shows that any PUM yields a demand function satisfying

the modified Daly-Zachary (MDZ) conditions given as follows.
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Conditions MDZ The demand function σ satisfies, for all δ ∈ RJ+1 and for all

j ∈ J ,

(MDZ i) σj (δ) > 0 and
∑

k∈J σk (δ) = 1 (positive unit demand)

(MDZ ii) σj (δ) = σj (δ+ c1) for all c ∈ R (translation invariance)

(MDZ iii) lim
δj→∞

σj (δ) = 1 and lim
δj→∞

σi (δ) = 0 with δi < ∞, i , j (boundary

conditions)

(MDZ iv) Jδσ is positive definite on RJ+1
0 (Slutsky positive definiteness)

(MDZ v) Jδσ is symmetric (Slutsky symmetry).

The MDZ conditions represent a slight variant of the Daly-Zachary condi-

tions, due to Daly and Zachary (1979), which are necessary and sufficient for

consistency with ARUM maximization (see Appendix B). As discussed below,

they are weaker than the Daly-Zachary conditions. The following lemma thus

helps understanding how the PUM extends the ARUM.

Lemma 2. The demand function (6) yield by the PUM (5) satisfies Conditions

(MDZ i) – (MDZ v).

The third lemma shows that any demand function satisfying the MDZ con-

ditions has an inverse function that is a GIL model. For this purpose, let, for all

j ∈ J ,
σj (δ) ≡ σ̃j

(
eδ

)
= sj ,

which, by translation invariance, is equivalent to

σj (δ+ c1) = σ̃j
(
eδ

)
= sj . (8)

By the inverse function theorem, Slutsky positive definiteness implies that σ

is one-to-one on RJ+1
0 , so that one can invert Equation (8) to obtain

σ−1j (s) = lnGj (s) + c = δj , (9)

where ln σ̃−1j (s) ≡ lnGj (s), which is of the form of Equation (4).

Using tools from convex analysis, one can further show (see Section 5) that

c is equal, up to an additive constant, to the consumer surplus and that lnG =

(lnG0, . . . , lnGJ ) satisfies Conditions (GIL i) – (GIL iii).
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The following lemma shows how the MDZ conditions imposed on a demand

function translate to its inverse.17

Lemma 3. Assume that the demand function σ satisfies Conditions (MDZ i) –
(MDZ v). Then, its inverse σ−1 is a GIL model.

Lemma 3 shows that any demand function satisfying the MDZ conditions

has an inverse demand that is a GIL model, thereby establishing that the GIL

structure is sufficient to recover all demand functions satisfying the MDZ condi-

tions. Since the MDZ conditions are weaker than the Daly-Zachary conditions,

this also implies that the class of GIL models is strictly larger than the class of

ARUM choice probabilities defined in Appendix B. This has already been shown

by Fosgerau et al. (2019b) but using a different line of proof.

Discussion on the MDZ Conditions The MDZ conditions are written in terms

of product indexes. However, since these latter are linear in prices (see Equation

(1)), they can easily be re-written in terms of prices.18 Except otherwise stated, in

this paper, Slutsky matrix refers to the matrix of demand derivatives with respect

to product indexes Jδσ (and not with respect to prices Jpσ ).
The MDZ conditions have an economic content. Condition (MDZ i) states

that all products are chosen with non-null probability and that demands sum

to one. Condition (MDZ ii) states that demands are invariant to translation in

product indexes δ, which implies that only differences in product indexes de-

termine demands, not their absolute values. Since product indexes are linear in

prices, this also implies that demands depend on price differences. As a conse-

quence, demand models satisfying this condition require a normalization on δ

for identification, i.e., for there to be a unique vector δ that rationalizes the vec-

tor of observed market shares s (see Proposition 2 below). This also implies that

one can restrict σ to the set RJ+1
0 without loss of generality. Condition (MDZ iii)

means that all consumers choose product j ∈ J with certainty when that prod-

uct becomes infinitely attractive (i.e., when δj goes to infinity), with the others

remaining finitely attractive (i.e., with δi finite for all i , j). Conditions (MDZ iv)

17Compiani (2019) discusses shape restrictions on inverse demands satisfying the “connected
substitutes” structure (see his Appendix D). In particular, he shows that it implies that the Slutsky
matrix Jpσ is an M-matrix and satisfies weak column diagonal dominance, so that its inverse is an
inverse M-matrix and is weakly diagonally dominant of its row entries.

18For example, Slutsky symmetry
∂σj (δ)
∂δi

= ∂σi (δ)
∂δj

is equivalent to
∂σj (δ)
∂pi

= ∂σi (δ)
∂pj

. Likewise, Slutsky

negative definiteness z⊺Jpσz < 0 for all z ∈ RJ+1 is equivalent to z⊺Jδσz > 0 for all z ∈ RJ+1.
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and (MDZ v) are key for rationalizability of demands, i.e., for them to be consis-

tent with utility maximization.

TheMDZ conditions relax the Daly-Zachary by replacing positivity with Slut-

sky positive definiteness. Positivity is a technical condition that has no economic

content and that is generally hard to verify in practice. It is required for the im-

plied distribution of the random utility components to have a positive density.

On top of that, it rules out complementarity, as defined by a negative cross-price

derivatives. By contrast, Slutsky positive definiteness accommodates substitu-

tion patterns that go beyond those obtained from ARUM. In particular, it allows

to obtain demands that combine substitutes and complements.

Slutsky symmetry and positive definiteness are well known conditions. Slut-

sky symmetry is already part of the Daly-Zachary conditions. In addition, as

shown by Hofbauer and Sandholm (2002), any demand function satisfying Con-

ditions (MDZ i) and (MDZ v) and only allowing for substitutes admits a Slut-

sky matrix that is positive definite on RJ+1
0 . Then, in ARUM, Slutsky positive

definiteness is not restrictive with respect to Slutsky positive semi-definiteness.

These conditions are also well known conditions in continuous-choice models

(see e.g., Hurwicz, 1971; Lewbel, 2001; Nocke and Schutz, 2017). As shown

by Nocke and Schutz (2017), continuously differentiable demands are consistent

with quasi-linear utility maximization if and only if Jpσ is symmetric and negative

semi-definite, i.e., if and only if Jδσ is symmetric and positive semi-definite.

Invertibility of Demand As a by-product, the following proposition, which is

of independent interest, shows invertibility of GIL models.

Proposition 2. Assume that lnG satisfies Conditions (GIL i) – (GIL iii).

(i) It follows that lnG is invertible on int(∆J ).

(ii) Consider any vector of market shares s ∈ int
(
∆J

)
. Then, there exists a unique

δ ∈ RJ+1
0 such that

δj = σ−1j (s) = lnGj(s) + c, j ∈ J , (10)

or equivalently,

sj = σj (δ) =
Hj

(
eδ

)∑
k∈J Hk (eδ)

, j ∈ J , (11)

where Hj ≡ G−1j .
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Part (i) of Proposition 2 uses convex analysis to show the invertibility of any

function lnG satisfying Conditions (GIL i) – (GIL iii).
Equation (10) describes an inverse demand, i.e., a mapping frommarket shares

to product indexes, up to a normalizing additive constant due to Condition (MDZ
ii). Part (ii) of Proposition 2 establishes existence and uniqueness of its inverse

mapping (11) from product indexes to market shares (i.e., the demand function).

This proposition thus states that the vector of product indexes δ is identified up

to an additive constant c from the vector of observed nonzero market shares s by
the relation (10), where c is fixed by normalizing δ0 to zero.

Proposition 2 supplements, and in some cases extends, other results on de-

mand invertibility. Demands satisfying the MDZ Conditions allow for comple-

mentarity. This implies that Proposition 2 extends Berry (1994)’s invertibility

result, which assumes substitutability. It also supplements Berry et al. (2013) to

allow for complementarity. Their result holds for demands satisfying the “con-

nected substitutes” structure, which rules out complementarity as defined by a

negative cross-price derivative of demand but, by contrast to Proposition 2, does

not require demand differentiability. Complementarity violates the first condi-

tion of the connected substitutes structure, which, however, accommodates some

form of complementarity (see Example 1 in Berry et al. (2013) and Section 4.3.

in Compiani (2019)). A related invertibility result can be found in Fosgerau et al.

(2019b) (see Proposition 1), who use a different line of proof.
Using Equation (10), different inverse demand models can be obtained from

different specifications of the function G =
(
G0, . . . ,GJ

)
. Equation (10) can thus

serve as general-purpose specification tool: by specifying a function G, the mod-

eller determines the way products interact in utility (7) or in demand (11), and

thus the type of relationship between them. In other words, Equation (10) gives

a general method for parametrizing the cross-price elasticities of demands.

Combining Equations (10) for product 0 and product j, with the normaliza-

tion δ0 = 0, one obtains the following inverse demand equations to be estimated

ξj = − ln
(
Gj (s)

G0 (s)

)
+ xjβ −αpj , j = 1, . . . , J. (12)

Then, after parametrizing G with parameters θ2, Equations (12) can be esti-

mated using standard IV regression techniques. In addition, if lnG is linear in

parameters θ2, then one just requires linear IV regression for estimation; this is

the case of the logit and nested logit models (Berry, 1994; Verboven, 1996), of
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the inverse product differentiation logit model (Fosgerau et al., 2019b) and of the

flexible inverse logit model (Monardo, 2019). Alternatively, Equation (12) could

be estimated non-parametrically, imposing shape restrictions onG given by Con-

ditions (GIL i) – (GIL iii).

5 Proofs

This section provides the proofs of Lemmas 2 and 3 and of Proposition 2.

5.1 Proof of Lemma 2

Condition (MDZ i) By definition, σ satisfies
∑

j∈J σj(δ) = 1 with σj(δ) ≥ 0 for all

j ∈ J .
In the PUM, the representative consumer solves

max
s∈∆J


∑
j∈J

δjsj −Ω(s)

 . (13)

The corresponding Lagrangian is given by

L(s,λ,λ0, . . . ,λJ ) =
∑
j∈J

δjsj −Ω(s) +λ

1−∑
j∈J

sj

+∑
j∈J

λjsj ,

where λ ≥ 0 and λj ≥ 0 for all j ∈ J .
This utility maximization program leads to

∑
j∈J sj = 1 and the following first-

order conditions

δj −
∂Ω (s)
∂sj

−λ+λj = 0, j ∈ J .

Note that the objective function of the utility maximization program (13) is

continuous on the compact set ∆J . Then, by the Weierstrass theorem, the utility

maximizing program has a solution, either in the interior or on the boundary of

∆J .

Condition (GIL iii) ensures that this solution is interior. To see this, note

that for s ∈ bd(∆J ), |∇sΩ(s)| = +∞. This implies that s ∈ bd(∆J ) cannot solve

the first-order conditions, and, in turn, that the solution is interior, i.e., satisfies∑
j∈J σj(δ) = 1 with σj(δ) > 0 for all j ∈ J .
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Lastly, the strict concavity of Ω, which implies the strict concavity of the ob-

jective function, ensures that the solution is unique.

Condition (MDZ ii) is implied by the quasi-linearity of the utility function as

follows

argmax
s∈∆J


∑
j∈J

(
δj + c

)
sj −Ω(s)

 = argmax
s∈∆J


∑
j∈J

δjsj −Ω(s) + c

 ,
= argmax

s∈∆J


∑
j∈J

δjsj −Ω(s)

 .
(see also Allen and Rehbeck, 2019a, p.1031). This implies that the vector δ is

identified up to an additive constant, which, in turn, requires a normalization. In

the remainder of this proof, I consider, without loss of generality, that δ belongs

to RJ+1
0 ≡ {δ ∈ RJ+1 : δ0 = 0}.

Condition (MDZ iii) Assume that δj tends towards infinity, while the other δi ,

i , j, remain finite. Then, since Ω (s) is finite on ∆J , this implies that sj tends

towards its upper bound, i.e., one, and, then, that the other si , i , j, tend towards

zero (since s ∈ int(∆J )).

Condition (MDZ iv) One can use Lemma 1 of Allen and Rehbeck (2019a), since

the PUM considered in the present paper satisfies their Assumption 2. Then, the

PUM satisfies Roy’s identity, i.e., ∇δCS (δ) = σ (δ). In addition, as shown in the

proof of Proposition 2, (int(∆J ),Ω) is a convex function of Legendre type. Then,

by Proposition 4, (RJ+1
0 ,CS) is also a convex function of Legendre type, which

implies that CS is strictly convex on RJ+1
0 , and thus has a Hessian that is positive

definite. Overall, this implies that Condition (MDZ iv) is satisfied.

Condition (MDZ v) is implied by Lemma 2 of Allen and Rehbeck (2019a), since

the PUM considered in the present paper satisfies their Assumption 2.

5.2 Proof of Lemma 3

Note first, by Condition (MDZ ii), that one can consider without loss of general-

ity the restriction of σ and CS to RJ+1
0 . Then, by the inverse function theorem,
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Condition (MDZ iv) implies that σ is one-to-one on RJ+1
0 . Set

σj (δ) = σ j (δ) = sj , j ∈ J . (14)

By Condition (MDZ ii), this is equivalent to

σj (δ+ c1) = σ j (δ) = sj , j ∈ J ,

which, after inverting, gives

σ−1j (s) = σ−1j (s) + c = δj , j ∈ J .

Now, set σ j (δ) = σ̃j
(
eδ

)
, for all j ∈ J . Inverting gives σ−1j (s) = ln σ̃−1j (s) ≡

lnGj (s), so that one obtains the requested result

σ−1j (s) = lnGj (s) + c = δj , j ∈ J . (15)

Condition (MDZ v) implies that σ admits a function C̃S : RJ+1
0 → R such that

∇δC̃S = σ . By Roy’s identity, this function is, up to an additive constant, the

consumer surplus, C̃S = CS. In addition, Condition (MDZ iv) implies that CS is

differentiable and convex on RJ+1
0 . Then, by Proposition 3, ∇δCS(δ) = σ (δ) = s

implies that ∑
j∈J

δjsj =Ω(s) +CS(δ), (16)

where Ω : int(∆J )→ R is the convex conjugate of CS.

Now, note that c is in utility terms, that is, c = c (δ). Then, multiplying Equa-

tions (15) by sj and summing over j ∈ J yields∑
j∈J

δjsj =
∑
j∈J

sj lnGj (s) + c(δ). (17)

Comparing the Equations (16) and (17) leads to c(δ) = CS (δ).

Condition (GIL i) Using Equation (14), Conditions (MDZ iv) and (MDZ v) imply

that Jδσ is positive definite and symmetric on RJ+1
0 .

Recall that σ ≡ σ̃ ◦ exp is one-to-one; then set s = σ̃ ◦ exp(δ), so that δ =
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ln σ̃−1(s) ≡ lnG(s). Using the inverse function theorem, one obtains

Jδσ (δ) = Jδσ̃◦exp(δ) =
[
Js(σ̃◦exp)−1(σ̃ ◦ exp(δ))

]−1
=

[
Jsln σ̃−1(s)

]−1
=

[
JslnG(s)

]−1
,

i.e., JslnG(s) =
[
Jδσ (δ)

]−1
, which implies that JslnG is symmetric and positive definite

on int(∆J ).

Condition (GIL ii) Using Equation (17), Proposition 3 implies that s ∈ int(∆J )

maximizes ∑
j∈J

δjsj −
∑
j∈J

sj lnGj (s) ,

which yields the first-order conditions
∑

j∈J sj = 1 together with

δj = lnGj (s) +
∑
k∈J

sk
∂ lnGk (s)

∂sj
+λ, j ∈ J .

By symmetry of JslnG, this yields

δj = lnGj (s) +
∑
k∈J

sk
∂ lnGj (s)

∂sk
+λ, j ∈ J .

However, recall from Equation (15),

δj = lnGj(s) + c,

where c is common across products. This means that the quantity

∑
k∈J

sk
∂ lnGj (s)

∂sk

is independent of s and common across products. This also implies that it can be

set, e.g., equal to K ∈ R, so that

∑
k∈J

sk
∂ lnGj (s)

∂sk
= K,

which, by Lemma 4, means that G is homogeneous of degree K . Then,

δj = lnGj(s) +K +λ, j ∈ J ,
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which, after inverting, yields

sj =Hj

(
eδ−(K+λ)

)
= e−(K+λ)/KHj

(
eδ

)
,

where the second equality uses that H is homogeneous of degree 1/K , its inverse

G being homogeneous of degree K .

Using that demands sum to one yields sj =
Hj(eδ)∑

k∈J Hk(eδ)
and ln

(∑
k∈J Hk

(
eδ

))
=

(K + λ)/K , which implies that CS(δ) = K ln
(∑

k∈J Hk

(
eδ

))
. However, demands

must satisfy Roy’s identity, i.e., σj(δ) =
∂CS(δ)
∂δj

, which implies that K = 1.

Condition (GIL iii) By Proposition 4, (∇sΩ)−1(δ) = ∇δCS(δ) = σ (δ) = s. When s
approaches bd(∆J ), |∇sΩ(s)| = | lnG(s)+1| approaches infinity, which implies that

| lnG(s)| approaches infinity as well.

5.3 Proof of Proposition 2

The proof makes uses of Proposition 4 as applied to the function Ω : RJ+1 →
R∪ {+∞} defined by

Ω (s) =


∑

j∈J sj lnGj (s) if s ∈ ∆J ,

+∞ otherwise,

where lnG satisfies Conditions (GIL i) – (GIL iii).
I first show that (int(∆J ),Ω) is a convex function of Legendre type. Ω is strictly

convex on int(∆J ), since its Hessian is equal to JslnG(s) for any s ∈ int(∆J ) (see

Lemma 4 in Fosgerau et al., 2019b). Ω is essentially smooth, since it is differen-
tiable through the open convex set int(∆J ) with limi→∞ |∇siΩ (si) | = +∞whenever

s1,s2, . . . is a sequence in int(∆J ) converging to a point s ∈ bd(∆J ). The latter fea-

ture is shown by first noting that ∇sΩ(s) = lnG(s) + 1 for s ∈ int(∆J ) and then

using that lims→bd(∆J ) | lnG(s)| = +∞.

Then, using Proposition 4, ∇sΩ = lnG+1, and thus lnG, is a bijection between

int(∆J ) and RJ+1 with a continuous inverse mapping.
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6 Conclusion

This paper studies the relationships between the class of GIL models developed

by Fosgerau et al. (2019b) and the class of PUM studied by Allen and Rehbeck

(2019a). It establishes that the conditions that the GIL models impose on the

inverse demand function are necessary and sufficient for consistency with PUM

maximization.

The GILmodel can be used in different contexts. They can be used for demand

estimation purposes and to study economic questions, such as mergers, products’

entry, changes in regulations (e.g., taxes). In particular, Fosgerau et al. (2019b)

build the IPDLmodel and show its use by estimating the demand for ready-to-eat

cereals in Chicago in 1991-1992. Moreover, recalling that the inverse function is

the target of estimation in structural demand estimation, one could use the shape

restrictions imposed on GIL models for non-parametric estimation; alternatively,

these conditions could be tested after estimation.

Lastly, the GIL model could also be used to model consumer’s dynamic be-

havior in the spirit of De Groote and Verboven (2019) and matching in the spirit

of Galichon and Salanié (2015).
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Appendices

A Preliminaries

A.1 Elements of Convex Analysis

This subsection provides the elements of convex analysis used in the paper. See

Rockafellar (1970) and Boyd and Vandenberghe (2004) for a comprehensive treat-

ment of the topic.

Consider a convex function f that takes values in the extended real number

line and whose domain of definition is a subset X of RJ+1: f : X → R∪ {±∞}. Its
effective domain domf is defined by domf = {x ∈ X |f (x) < +∞} and is a convex set

in RJ+1. The convexity of f is equivalent to that of the restriction of f to domf .

A proper convex function f is a convex function that takes values in the ex-

tended real number line such that f (x) < +∞ for at least one x and f (x) > −∞
for every x. Then, f is proper if and only if its effective domain domf is non-

empty and the restriction of f to domf is finite. In other words, a proper convex

function on RJ+1 is a function obtained by taking a finite convex function f on

a non-empty convex set domf and then extending it to all of RJ+1 by setting

f (x) = +∞ for x < domf .

Let f : RJ+1→ R∪{+∞}. The convex conjugate of the function f is the function

f ∗ : RJ+1→ R∪ {+∞} defined as

f ∗ (x∗) = sup
x∈domf

{x∗⊺x− f (x)}.

Note that f ∗ is a convex function, regardless of whether f is convex. In addition,

when f is convex, the subscript x ∈ domf is not necessary since, by definition,

x∗⊺x−f (x) = −∞ for x < domf . The conjugate of a differentiable function f is also

called the Legendre transform of f .

A proper convex function f is essentially smooth if (i) int(domf ) is non-empty;
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(ii) f is differentiable throughout int(domf ), (iii) limi→∞ |∇xi f (xi)| = +∞ when-

ever x1,x2, . . . is a sequence in int(domf ) converging to a point x ∈ bd(domf ).

A pair (int(domf ) , f ) is a convex function of Legendre type if int(domf ) is an

open convex set and f is a strictly convex function on int(domf ) that is essen-

tially smooth.

The results of this paper make use of the following two propositions.

Proposition 3 (Theorems 23.5 and 26.1 in Rockafellar (1970)). Let f : RJ+1 →
R∪{+∞} be a proper convex function. Assume that f is continuous and essentially

smooth.The following five conditions are equivalent

1. x∗ = ∇f (x), x ∈ int (domf );

2. x = ∇f ∗(x∗), x∗ ∈ int (domf ∗);

3. x = supz{x∗⊺z− f (z)};

4. x∗ = supz∗{z∗⊺x− f ∗(z∗)};

5. f (x) + f ∗(x∗) = x∗⊺x.

Proposition 4 (Theorem 26.5 in Rockafellar (1970) ). Let f : RJ+1→ R∪ {+∞} be
a continuous convex function. Assume that (int(domf ), f ) is a convex function of

Legendre type. Then (int(domf ∗), f ∗) is also a convex function of Legendre type.

Furthermore, the gradient mapping ∇xf is a continuous bijection between

int(domf ) and int(domf ∗), with a continuous inverse mapping (∇xf )−1 = ∇x∗f ∗,
i.e., (∇xf )−1(x∗) = ∇x∗f ∗(x∗) for x∗ ∈ int(domf ∗).

A.2 An Euler-Type Equation

The following lemma, presented in a slightly different version in Fosgerau et al.

(2019b), establishes that the logarithm of a homogeneous function (which is a

homothetic function) satisfies a modification of the generalized Euler equation

for homothetic functions (McElroy, 1969).

Lemma 4. Consider a function G : [0,∞)J+1 → [0,∞)J+1. Assume that JslnG is

symmetric on int(∆J ). G is homogeneous of degree K if and only if it satisfies the

Euler-type equation

∑
j∈J

sj
∂ lnGj (s)

∂sk
= K, s ∈ int(∆J ). (18)
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Proof.
⇒ is shown by Fosgerau et al. (2019b) for the case of K = 1, but the proof can be

easily extended to any K as follows

∑
j∈J

sj
∂ lnGj (s)

∂sk
=

∑
j∈J

sj
∂ lnGk (s)

∂sj
=

∑
j∈J sj

∂Gk(s)
∂sj

Gk (s)
=
KGk (s)
Gk (s)

= K,

where the first equality uses the symmetry of JslnG and the third equality uses

uses the Euler equation for the homogeneous function G.

⇐ Assume that G satisfies the Euler-type Equation (18). Then, by symmetry of

JslnG ∑
j∈J

sj
∂ lnGk (s)

∂sj
= K,

that is ∑
j∈J

sj
∂Gk (s)
∂sj

1
Gk (s)

= K,

and ∑
j∈J

sj
∂Gk (s)
∂sj

= KGk (s) ,

which implies that G is homogeneous of degree K .

B On the Additive Random Utility Model (ARUM)

The ARUM was popularized by McFadden (1973). Due to its ability to model

the behavior of heterogeneous consumers in the presence of many differentiated
products in a tractable and parsimonious way, it has been ubiquitously used in

the literature on structural estimation of demand models for differentiated prod-

ucts since Berry (1994) and Berry et al. (1995).

The ARUM In the ARUM, the utility uj that each consumer derives from choos-

ing product j ∈ J is the sum of a deterministic utility term δj and a randomutility

term εj
uj = δj + εj , j ∈ J ,
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where δj is given by Equation (1).19 This specification assumes, as it is the case

for the PUM, that the only source of consumer heterogeneity in preferences is

due to the vector of random utility terms ε whose distribution is parametrized by

the vector θ2.

As it is standard in the discrete choice literature, I further assume that the

random vector ε follows a joint distribution with finite means that is absolutely

continuous, independent of δ, and fully supported on RJ+1. This implies that

utility ties ui = uj , i , j, occur with probability 0, meaning that the argmax set

of the ARUM is almost surely a singleton; that the choice probabilities are all

almost everywhere positive; and that demands depend on prices and product

characteristics only through product indexes δ.

In an ARUM, each consumer chooses the product that provides her the high-

est utility, so that demands are given by

σj (δ) = Pr
(
uj ≥ ui , ∀i , j

)
, j ∈ J . (19)

The Daly-Zachary Conditions Daly and Zachary (1979) provide the shape re-

strictions that any ARUM impose on their demands. These conditions, known as

the Daly-Zachary conditions, are given as follows.

Conditions DZ The demand function σ satisfies, for all δ ∈ RJ+1 and for all

j ∈ J ,

(DZ i) σj (δ) > 0 and
∑

k∈J σk (δ) = 1 (positive unit demand)

(DZ ii) σj (δ) = σj (δ+ c1) for all c ∈ R (translation invariance)

(DZ iii) lim
δj→∞

σj (δ) = 1 and lim
δj→∞

σi (δ) = 0 with δi <∞, i , j (boundary con-

ditions)

(DZ iv) The partial derivatives of σj with respect to any set of distinct product

indexes other than δj exist, are independent of the order of differentia-
tion, and satisfy

(−1)k
∂kσj (δ)

∂δk−j
> 0, k = 1, . . . , J, (20)

with δk−j any k-subvector of δ−j (positivity)

19This is equivalent to let the residual income (y − pj ) enter linearly with a coefficient α, which
implies unit demand and absence of income effect.
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(DZ v) Jδσ is symmetric (Slutsky symmetry)

Note that, with respect to the original Daly-Zachary conditions, Conditions

(DZ i) and (DZ iv) hold with strict inequality (i.e., the original Daly-Zachary con-

ditions allow zero demands and zero partial derivatives). This is a consequence

of the assumption that ε is fully supported on RJ+1, which, e.g., is satisfied by the

logit and nested logit models.

The following proposition, due to Daly and Zachary (1979) and restated by

Anderson et al. (1992) in their Theorem 3.1, states that Conditions (DZ i) – (DZ
v) are necessary and sufficient for consistency with ARUM maximization.20

Proposition 5. The ARUM choice probabilities (19) satisfy Conditions (DZ i) –
(DZ v). Conversely, any demand satisfying Conditions (DZ i) – (DZ v) can be

derived as ARUM choice probabilities (19).

Proof. See Proofs of Theorem 3.1. in Anderson et al. (1992) or of Theorem 3 in

Koning and Ridder (2003).

Comparisonwith theMDZConditions As highlighted by Hofbauer and Sand-

holm (2002), ARUM satisfies Slutsky symmetry and positive definiteness, plus

the additional positivity condition. This implies, as already noted by Koning and

Ridder (2003), that Slutsky symmetry and positive definiteness is weaker than

Slutsky symmetry and positivity.

Koning and Ridder (2003) show that Slutsky Jpσ symmetry and negative semi-

definiteness is weaker than Slutsky symmetry and non-negativity (i.e., Equation

(20) holds with weak inequality). As an illustration, they consider the simple

J +1 = 2 case (see their Appendix C). Their illustration can be easily extended to

show that Slutsky Jδσ symmetry and positive definiteness is weaker than Slutsky

symmetry and positivity.

20The Daly-Zachary conditions are also known as the Daly-Zachary-McFadden conditions, due
to McFadden (1981). They were re-stated by Anderson et al. (1992) in their Theorem 3.1 and
further studied by Koning and Ridder (2003). Other papers have investigated the restrictions on
demands that make them consistent with a random utility maximization (see e.g., Armstrong and
Vickers (2015), Jaffe and Weyl (2010), Jaffe and Kominers (2012), Bhattacharya (2019)).
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Slutsky Jδσ positive definiteness requires that the Slutsky matrix
∂σ0 (δ)
∂δ0

∂σ0 (δ)
∂δ1

∂σ1 (δ)
∂δ0

∂σ1 (δ)
∂δ1


be positive definite, which implies that the diagonal elements must be positive.

Positivity requires that

∂σ0 (δ)
∂δ1

< 0 and
∂σ1 (δ)
∂δ0

< 0.

Since Condition (i) holds, Slutsky symmetry implies

∂σ0 (δ)
∂δ0

= −∂σ0 (δ)
∂δ1

= −∂σ1 (δ)
∂δ0

=
∂σ1 (δ)
∂δ1

.

Assume that Condition (i) holds. Then, no-negativity and Slutsky Jδσ sym-

metry imply that the Slutsky matrix is positive definite and symmetric, with the

additional requirement that its off-diagonal elements negative. They are thus

stronger than Slutsky Jδσ symmetry and positive definiteness.

C The Logit Example

The standard logit model satisfies the properties of the ARUM defined in Ap-

pendix B. It rules out income effect and the only source of consumer heterogene-

ity in preferences is due to the vector of random utility terms ϵ where εj are i.i.d.

type I extreme value, so that ϵ follows a joint distributes with finite means that

is absolutely continuous, independent of δ, and fully supported on RJ+1. This

Appendix illustrates the findings of Section 4 through the logit example.

The Modified Daly-Zachary Conditions The logit model has demands given

by

σj (δ) =
eδj∑

k∈J e
δk

=
1

1+
∑

k∈J \{j} e
δk−δj

, (21)
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which satisfies the modified Daly-Zachary conditions. Indeed, demands (21) are

positive and sum to one. They are invariant to translation in δ since

σj (δ+ c1) =
1

1+
∑

k∈J \{j} e
(δk+c)−(δj+c)

= σj (δ) ,

and, with δk < ∞, k , j, lim
δj→∞

σj (δ) = 1 and lim
δj→∞

σk (δ) = 0, k , j. Its Slutsky

matrix given by

Jδσ =


s0 (1− s0) −s0s1 · · · −s0sJ
−s0s1

. . . . . .
...

...
. . . . . . −s0sJ−1

−s0sJ · · · −s0sJ−1 sJ
(
1− sJ

)


,

with s = σ (δ), is positive definite on RJ+1
0 , since

z⊺Jδσz =
∑
i∈J

∑
i<j

sisj
(
zi − zj

)2
> 0, for all z ∈ RJ+1

0 ,

and symmetric.

Shape Restrictions on the Inverse Demand The logit model has inverse de-

mands given by

σ−1j (s) = lnGj (s) + c, j ∈ J ,

with

lnGj (s) ≡ ln
(
sj
)
, j ∈ J .

where c is the consumer surplus, which is given by the log-sum-exp function

CS (δ) = ln

∑
j∈J

eδj

 ,
up to an additive constant (see Berry, 1994). Then, lnG(s) ≡

(
ln(s0), . . . , ln(sJ )

)
sat-

isfies Conditions (GIL i) – (GIL iii): G is continuously differentiable and homoge-

nous of degree one on int(∆J ), since for λ > 0,G(λs) =G(λs); JslnG = IJ+1 is positive
definite and symmetric on int(∆J ); and | lnG(s)| =

∑
j∈J | ln(sj)| approaches infinity

as s approaches bd(∆J ).
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The Logit Model as a Perturbed Utility Model As shown by Anderson et al.

(1988), the logit demands can also be obtained from a model of the form of Equa-

tion (6), where Ω is given by the Shannon entropy21

Ω (s) =


∑

j∈J sj ln(sj) if s ∈ ∆J ,

+∞ otherwise.

More precisely, Anderson et al. (1988) consider a representative consumer

choosing a vector of market shares, trading off variety against quality, so as to

maximize her utility composed of two terms: the first term,
∑

j∈J δjsj , captures

the net utility that she derives from consuming s in absence of interaction among

products and the second term, −Ω(s), expresses her taste for variety. Indeed,

if her utility were only composed of the first term, then she would only choose

the product j with the highest net utility δj . Likewise, if her utility were only

composed of the second term, then she would choose all the products with equal

shares (and she would minimize her utility by choosing only one product). This

last feature justifies why −Ω(s) expresses taste for variety and is a manifestation

of the IIA property of the logit model.

The logit model satisfies Conditions (PUM i) – (PUM iii). Indeed, the Shannon
entropy Ω is continuously differentiable and strictly convex since its Hessian,

equal to IJ+1, is positive definite; |∇sΩ(s)| =
∑

j∈J | ln(sj)+1| approaches infinity as

s ∈ bd(∆J ).

21Note that it is known, from the convex analysis literature, that CS is the convex conjugate of
the Shannon entropy (see Example 3.25 (p. 93) of Boyd and Vandenberghe, 2004).
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Titre : Essais sur l’estimation structurelle de la demande.

Mots clés : Econométrie structurelle ; économétrie industrielle empirique ; estimation de la demande.

Résumé :
L’estimation structurelle des modèles de demande sur des
marchés de produits différenciés joue un rôle important en
économie. Elle permet de mieux comprendre les choix des
consommateurs et, entre autres, de mesurer les effets d’une
fusion d’entreprise, de l’introduction d’un nouveau produit
sur le marché ou d’une nouvelle régulation. L’approche tra-
ditionnelle consiste à spécifier un modèle d’utilité, typique-
ment un modèle d’utilité aléatoire additif, à en calculer ses
demandes et à inverser ces dernières pour obtenir des
équations de demande inverse qui serviront de base pour
l’estimation. Toutefois, en général, ces demandes inverses
n’ont pas de forme analytique. L’estimation exige donc une
inversion numérique et l’emploi de procédures d’estimation
non-linéaire, qui peuvent être difficiles à mettre en oeuvre et
chronophages.
Cette thèse adopte une approche différente, en développant
de nouveaux modèles de demande inverse qui sont
cohérents avec un modèle d’utilité de consommateurs
hétérogènes. Cette approche permet de capter de façon
plus flexible les substitutions entre les produits, grâce à de
simples régressions linéaires basées sur des données in-
cluant les parts de marché, les prix et les caractéristiques
des produits.
Le premier chapitre de cette thèse développe le modèle in-
verse product differentiation logit (IPDL), qui généralise les

modèles logit emboı̂tés, permettant ainsi de capter de façon
flexible les substitutions entre les produits, y compris de la
complémentarité. Il montre que le modèle IPDL appartient à
une classe de modèles de demande inverse, nommée gene-
ralized inverse logit (GIL), laquelle inclut une grande majorité
de modèles d’utilité aléatoire additifs qui ont été utilisés à des
fins d’estimation de la demande.
Le second chapitre développe le modèle flexible inverse logit
(FIL), un modèle GIL qui utilise une structure de nids flexible
avec un nid pour chaque pair de produits. Il montre que le
modèle FIL, projeté dans l’espace des caractéristiques des
produits, permet d’obtenir des élasticités-prix qui dépendent
directement des caractéristiques des produits et, en utili-
sant des simulations de Monte-Carlo, qu’il est capable de
reproduire celles du ”flexible” modèle logit à coefficients
aléatoires.
Le troisième chapitre étudie la micro-fondation du modèle
GIL. Il montre que les restrictions que le modèle GIL im-
pose sur la fonction de demande inverse sont des conditions
nécessaires et suffisantes de cohérence avec un modèle de
consommateurs hétérogènes maximisant leur fonction d’uti-
lité, connu sous le nom de perturbed utility model (PUM). Il
montre également que tout modèle GIL génère une fonction
de demande qui satisfait une légère variante des conditions
de Daly-Zachary, laquelle permet de combiner substituabilité
et complémentarité en demande.

Title : Essays on Structural Demand Estimation.

Keywords : Structural econometrics; empirical industrial organization; demand estimation.

Abstract : Estimation of structural demand models in dif-
ferentiated product markets plays an important role in eco-
nomics. It allows to better understand consumers’ choices
and, amongst other, to assess the effects of mergers, new
products, and changes in regulation. The standard approach
consists in specifying a utility model, typically an additive
random utility model, computing its demands, and inverting
them to obtain inverse demand equations, which will serve
as a basis for estimation. However, since these inverse de-
mands have generally no closed form, estimation requires
numerical inversion and non-linear optimization, which can
be painful and time-consuming.
This dissertation adopts a different approach, developing no-
vel inverse demand models, which are consistent with a uti-
lity model of heterogeneous consumers. This approach al-
lows to accommodate rich substitution patterns thanks to
simple linear regressions with data on market shares, prices
and product characteristics.
The first chapter of this dissertation develops the inverse pro-
duct differentiation logit (IPDL) model, which generalizes the
nested logit models to allow for richer substitution patterns,

including complementarity. It also shows that the IPDL mo-
del belongs to the class of generalized inverse logit (GIL)
models, which includes a vast majority of additive random
utility models that have been used for demand estimation
purposes.
The second chapter develops the flexible inverse logit (FIL)
model, a GIL model that uses a flexible nesting structure with
a nest for each pair of products. It shows that the FIL model,
projected into product characteristics space, makes the price
elasticities depending on product characteristics directly and,
using Monte Carlo simulations, that it is able to mimic those
from the ”flexible” random coefficient logit model.
The third chapter studies the micro-foundation of the GIL mo-
del. It shows that the restrictions that the GIL model imposes
on the inverse demand function are necessary and sufficient
for consistency with a model of heterogeneous and utility-
maximizing consumers, called perturbed utility model. It also
shows that any GIL model yields a demand function that sa-
tisfies a slight variant of the Daly-Zachary conditions, which
allows to combine substitutability and complementarity in de-
mand.
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