N
N

N

HAL

open science

Model based testing techniques for software defined
networks

Asma Berriri

» To cite this version:

Asma Berriri. Model based testing techniques for software defined networks. Networking and Internet
Architecture [cs.NI]. Université Paris-Saclay, 2019. English. NNT': 2019SACLLO017 . tel-02374706v1

HAL Id: tel-02374706
https://theses.hal.science/tel-02374706v1
Submitted on 21 Nov 2019 (v1), last revised 22 Nov 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02374706v1
https://hal.archives-ouvertes.fr

[]
universite

PARIS-SACLAY

TELECOM

SudParis
—pt iy

Model Based Testing Techniques for
Software Defined Networks

These de doctorat de I'Université Paris-Saclay
préparée a Télécom SudParis

2019SACLLO17

Ecole doctorale n°580 Sciences et technologies de I'information et de la
communication (STIC)
Spécialité de doctorat: Réseaux, Information et Communications

NNT :

Thése présentée et soutenue a Evry, le 22 Octobre 2019, par

Asma BERRIRI

Composition du Jury :

Pierre SENS

Professeur, Université Paris 6 Président
Yacine GHAMRI-DOUDANE

Professeur, La Rochelle Université Rapporteur
Antoine ROLLET

Maitre de Conférences, HDR, Université de Bordeaux Rapporteur
Nikolai KOSMATOV

Chercheur, HDR, CEA LIST Saclay Examinateur
Djamal ZEGHLACHE

Professeur, Télécom SudParis Directeur de thése
Natalia KUSHIK

Maitre de Conférence, Télécom SudPAris Co-encadrante

fd
q
| -
O
fd
O
®
O
D
L®)
)
7p)
D
-
I_

Abstract

Having gained momentum from its concept of decoupling the traffic control from the underlying
traffic transmission, Software Defined Networking (SDN) is a new networking paradigm that
is progressing rapidly addressing some of the long-standing challenges in computer networks.
Since they are valuable and crucial for networking, SDN architectures are subject to be widely
deployed and are expected to have the greatest impact in the near future. The emergence
of SDN architectures raises a set of fundamental questions about how to guarantee their cor-
rectness. Although their goal is to simplify the management of networks, the challenge is that
the SDN software architecture itself is a complex and multi-component system which is failure-
prone. Therefore, assuring the correct functional behaviour of such architectures and related
SDN components is a task of paramount importance, yet, decidedly challenging.

How to achieve this task, however, has only been intensively investigated using formal ver-
ification, with little attention paid to model based testing methods. Furthermore, the relevance
of models and the efficiency of model based testing have been demonstrated for software en-
gineering and particularly for network protocols. Thus, the creation of efficient and reusable
model based testing approaches becomes an important stage before the deployment of virtual
networks and related components. The problem addressed in this thesis relates to the use
of formal models for guaranteeing the correct functional behaviour of SDN architectures and
their corresponding components. Formal and effective test generation approaches are in the
primary focus of the thesis. In addition, automation of the test process is targeted as it can
considerably cut the efforts and cost of testing.

The main contributions of the thesis relates to model based techniques for deriving high
quality test suites. Firstly, a method relying on graph enumeration is proposed for the functional
testing of SDN architectures. Secondly, a method based on logic circuit is developed for testing
the forwarding functionality of an SDN switch. Further on, the latter method is extended to test
an application of an SDN controller. Additionally, a technique based on an extended finite state
machine is introduced for testing the switch-to-controller communication. As the quality of a
test suite is usually measured by its fault coverage, the proposed testing methods introduce
different fault models and seek for test suites with guaranteed fault coverage that can be stated
as sufficient conditions for a test suite completeness / exhaustiveness.

Résumeé en francais

Les réseaux logiciels (connus sous I'appellation : Software Defined Networking, SDN), qui
s’appuient sur le paradigme de séparation du plan de contréle et du plan d’acheminement, ont
fortement progressé ces dernieres années pour permettre la programmabilité des réseaux et
faciliter leur gestion. Reconnu aujourd’hui comme des architectures logicielles pilotées par des
applications, offrant plus de programmabilité, de flexibilité et de simplification des infrastruc-
tures, les réseaux logiciels sont de plus en plus largement adoptés et graduellement déployés
par 'ensemble des fournisseurs. Néanmoins, 'émergence de ce type d’architectures pose un
ensemble de questions fondamentales sur la maniére de garantir leur correct fonctionnement.
Larchitecture logicielle SDN est elle-méme un systeme complexe a plusieurs composants vul-
nérables aux erreurs. Il est essentiel d’en assurer le bon fonctionnement avant déploiement
et intégration dans les infrastructures.

Dans la littérature, la maniére de réaliser cette tache n’a été étudiée de maniere appro-
fondie qu’a I'aide de vérification formelle. Les méthodes de tests s’appuyant sur des modéles
n‘ont guéere retenu l'attention de la communauté scientifique bien que leur pertinence et I'ef-
ficacité des tests associés ont été largement démontrés dans le domaine du développement
logiciel. La création d’approches de test efficaces et réutilisables basées sur des modéles
nous semble une approche appropriée avant tout déploiement de réseaux virtuels et de leurs
composants. Le probleme abordé dans cette thése concerne I'utilisation de modéles formels
pour garantir un comportement fonctionnel correct des architectures SDN ainsi que de leurs
composants. Des approches formelles, structurées et efficaces de génération de tests sont
les principales contributions de la thése. En outre, 'automatisation du processus de test est
mise en relief car elle peut en réduire considérablement les efforts et le codt.

La premiére contribution consiste en une méthode reposant sur I'énumération de graphes
et qui vise le test fonctionnel des architectures SDN. En second lieu, une méthode basée sur
un circuit logique est développée pour tester la fonctionnalité de transmission d’'un commu-
tateur SDN. Plus loin, cette derniere méthode est étendue pour tester une application d’'un
contréleur SDN. De plus, une technique basée sur une machine a états finis étendus est in-
troduite pour tester la communication commutateur-contréleur.

Comme la qualité d'une suite de tests est généralement mesurée par sa couverture de
fautes, les méthodes de test proposées introduisent différents modeles de fautes et générent
des suites de tests avec une couverture de fautes guarantie.

Vi

Acknowledgments

This thesis would not have been possible without the guidance of Professor Djamal ZEGH-
LACHE, whose broad vision and farsightedness have helped me sail my way through this
research work. The thing | find most amazing about Djamal is his foresight. Providing me sci-
entific support and professional advice, he has been a person who embodies characteristics
that | can only aim to model myself after. | offer my sincerest gratitude for making me aware
of the new perspectives that have found their way into this work, as well as enlightened my
mind.

| would like to offer my deepest thanks to Doctor Natalia KUSHIK. She has made this en-
deavor academically possible, shaped research, and instilled in me the quality to cultivate my
own potential. Her knowledge and suggestions have proven to be invaluable and have con-
tributed profoundly to the results presented in this thesis. It has been an exceptional privilege
to work with her. | dearly appreciate her personality, her work ethics, and the positive energy
that she always emits, as well as how it affects and impacts those around her. These all are
rare virtues. | would like to express my sincerest gratitude towards her. Thank you so much,
Natalia!

| am sincerely grateful to Professor Yacine GHAMRI-DOUDANE, Doctor Antoine ROLLET,
Professor Pierre SENS and Doctor Nikolai KOSMATOV for sparing the time to read and exam-
ine this thesis.

My sincere thanks go to Fondation Mines Télécom and Carnot Télécom & Société Numérique
for the financial grant within the Futur & Ruptures (Future and Disruptive Innovation) pro-
gramme.

My genuine appreciation goes out to my co-authors, Professor Nina YEVTUSHENKO and
Doctor Jorge LOPEZ for their invaluable, precise, and diligent contribution to improve this work.

In addition, | had the honor of discussing the topics related to this thesis with researchers
Igor BURDONOV and Alexander KOSSATCHEV. It is my privilege to extend my thanks to them
for inspiring me with their interest in my research.

Deep respect | express to my work colleagues at Télécom SudParis.

To my parents, Mustapha and Mennana, for accepting nothing less than excellence from
me. To my beloved brothers, Ghassen and Houssem, for always believing in me and encour-
aging me to follow my dreams.

Vii

viii

Contents

Abstract iii
Résumé en francais v
Acknowledgments vii
1 Introduction 1
1.1 Motivation. e 1
1.2 Problem Statement/ Research Questions 3
1.3 Contributions and Structure of the Thesis 5
1.4 DissertatonRoadmap L 7
Author's Publications & Talks 8
2 Background 11
2.1 Software Defined Networking 12
2.2 VerificationandTesting 16
23 ModelBased Testing 17
2.4 Mutation Analysis 23
2.5 BlackBoxand White Box Testing 24
2.6 Chapter Conclusions e 25
3 State Of The Art 27
3.1 Introduction 28
3.2 Verification Techniquesfor SDN 28
3.3 Testing Techniquesfor SDN 42
3.4 ChapterConclusions e 49
4 Model Based Testing for SDN Architectures: A Graph / Path Enumeration based
Approach 51
41 Introduction 52
4.2 Problem Statement 52
4.3 Formal Modelling for an SDN Architecture 53
4.4 Traffic Generation and Observation 55
4.5 Introducinga FaultModel L 56
4.6 Black Box and White Box Testing Approaches relying on Path Enumeration . . 57
4.7 Experimental Evaluation for Testing SDN Architectures 60
4.8 ChapterConclusions e 63
5 Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach 65
5.1 Introduction L L 66
5.2 Problem Statement L 67

5.3 Formal Representation of an SDN Switch and Notations 67

5.4 Introducinga FaultModel L. 69
5.5 Fault models for Logic Circuits 70
5.6 Deriving a Logic Circuit for a Switch Specification 71
5.7 Active and Passive Testing Approaches 73
5.8 Experimental Evaluation for Testing an SDN-enabled Switch 77
5.9 ChapterConclusions e 81
Test Generation for OpenFlow Switches: An Extended Finite State Machine based

Approach 83
6.1 Introduction L 84
6.2 Problem Statement 85
6.3 Extended Finite State Machine Model for an OF Switch 86
6.4 Introducing User-Defined Mutations and a Fault Model 88
6.5 EFSM based Technique for Test Generation 89
6.6 Experimental Evaluation for Testingan OF Switch 93
6.7 Chapter Conclusions 97
Test Derivation for a Controller Application: An Adaptation of the Logic Circuit

based Approach 99
7.1 Introduction L 100
7.2 Problem Statement 101
7.3 Formal Representation of a Controller Application and Notations 103
7.4 Deriving a Logic Circuit for a Controller Application Specification 105
7.5 TestSuite Generation 107
7.6 TestSuite Execution 107
7.7 ChapterConclusions e 109
Conclusion and Future Work 111
8.1 Contributions: Summary 111
8.2 Perspectives and Future Directions L. 113

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

4.4

5.1
5.2
5.3

6.1
6.2
6.3
6.4

6.5

7.1
7.2

List of Figures

SDN layered architecture. 13
RNCT of the network topology in Figure 2.1 and examples of its paths 18
An example of a partial logic circuit specification designed as an AIG (c.x) . . 20
A BLIF description of C, shownin Figure2.3 20
ExampleofanEFSM 22
An example of an SDN network topology L. 29
A symbolic execution encoding of the switch S; of the topology in Figure 3.1 . . 33
SDN verification techniques taxonomy 41
Example showing a log analysis for test generation technique 43
Example illustrating the test execution of tests (semi)-randomly generated . . . 45
SDN testing techniques taxonomy 48
Topology showing an SDN architecture asthe SUT 53
Traffic generation and flow observation w.r.t. the RNCT of Figure 4.1 56
RNCT of the network topology in Figure 4.1 and examples of two equivalent

paths 58
Testbed framework for an SDN architecture analysis 61
Topology showing an SDN-enabled switch asthe SUT 68
Examples of SSF, SBF, and HDF mutants of C,, shown in Figure 2.4 71
Experimental set up topology for testing an SDN-enabled switch 77
Topology showing a switch-to-controller communication as the SUT 85
Part of the specification EFSM of the switch 88
Mutation score as the depthincreases 94

Average mutation score and execution time for T'Ss derived by the proposed

approach Vs TSsrandomly generated 94
Testbed framework for an OF switch analysis 96
Topology showing a controller applicationasthe SUT 102
lllustration of the execution of a test case of the running example 110

Xi

Xii

2.1
2.2

3.1
3.2
3.3

5.1
5.2
5.3
54
5.5

6.1

7.1
7.2

List of Tables

Example of rules installedinaswitch 15
The look-up table (LUT) of the specification c,, illustrated in Figure 2.3 20
Comparison of SDN verification techniques w.r.t. checked properties 42
Comparison of verification techniques applied to various SDN components . . . 42
Comparison of testing techniques applied to various SDN components 48
Look-up table for the switch runningexample 73
Experimental platform foran SDN switch 78
Example of a look-up table entry for the rule in Equation5.11 78
Number of generated mutants, 79
Fault Coverage for traditional digital circuit fault models 79
The characteristics of the EFSM switchmodel 87
MAC addresses of the nodes of the topology illustrated in Figure 7.1 107
Look-up table for the controller application (Link_Translator) running example 107

Xiii

Xiv

List of Algorithms

White Box Test Suite Generation for an SDN Architecture 60
Logic Circuit Derivation from a Set of SwitchRules 72
Equivalence Check fora SwitchMutant 75
SDN-enabled Switch Monitoring oo 76
EFSM based Approach: Algorithm that derives a test suite 7S and a set # D of

distinguishable mutants L 91
DISTINGUISHINGSEQUENCEAPPEND(S, M, (s;,vi), length) 92
Logic Circuit Derivation from a Controller Application (Link_Translator) 106
Test Translation for the Controller Application Under Test 109

XV

XVi

Introduction

Contents

1.1 Motivation i it e e e e
1.2 Problem Statement / Research Questions
1.3 Contributions and Structure of the Thesis
1.4 DissertationRoadmap
Author’s Publications & Talks

R N N W

1.1 Motivation

Computer networks and Internet structure usually consist of different network devices such
as routers, switches and different types of middle-boxes. For managing and configuring such
network devices, a set of specific and predefined command lines based on embedded oper-
ating system is usually used. Thus, traditional networks are essentially hardware-based and
suffer from significant shortcomings regarding research and innovations, reliability, flexibility
and manageability. For example, it can be argued that managing a large number of network
devices is a big challenge and is prone to many errors. The emergence of new technologies,
such as cloud and virtualization, generated the need for networks with higher accessibility and
dynamic management. For solving the problems and limitations of traditional networks, the
concept of Software Defined Networking (SDN), that separates control and data planes, was
introduced along with an associated interaction protocol between the two planes known as
OpenFlow (OF) [102]. OF is an emerging standard for SDN that ensures a clear separation
of the data and control planes and provides central programmable control and management
of the network using an SDN controller. Although SDN and OpenFlow started as academic
experiments [102], they gradually gained the approval of the IT and telecommunications indus-
tries that have since adopted and started using and integrating the SDN paradigm into their
cloud and network infrastructures.

The emerging field of SDN has enabled network deployment and service upgrade on soft-
ware time scales which has huge benefits in the network domain. This is because in the future,

2 1. Introduction

the network operators will not compete on the basis of network coverage alone but on the ba-
sis of features and services. The initial impact of SDN was seen in the datacenters. As early
as 2012, Google had their full scaled datacenter running as an SDN based architecture. SDN
is now all set to integrate the wireless domain too. With SDN, network administrators can
adopt many new technologies and applications rapidly on hardware-independent network ar-
chitectures regardless of multiple vendor-dependent protocols. The architecture involves SDN
controller(s) residing in the control plane while the forwarding element(s) (switches) and hosts
make the data plane. The SDN architecture allows end-users (e.g., network administrators,
operators, etc.) to specify requested paths (e.g., network policies, services) that should be
implemented as routes or simply implemented paths followed by traffic in the data plane.

Consequently, the impact of SDN on the networking domain will be enormous. Kreutz et al.
[84] conclude that SDN is established as a key technology in the future of networking systems.

Although SDN goal is to simplify the management of networks, several challenges arise.
Firstly, the software SDN architecture itself is a complex multi-component system, operating in
heterogeneous and failure-prone environments. Additionally, the requirements defining these
architectures and their related components are also complex and evolving. Therefore, it be-
comes of the highest priority to further raise the quality of such architectures and components
before their wide deployment.

SDN architectures and their components are built on software and as a result, unlike tra-
ditional networking systems, they have become increasingly sophisticated. Such large and
complex software more likely contain bugs that may disrupt the network functioning and cor-
rupt its operation. A recent study on the hazards in SDN-based Google network architectures
[57] reported that software bugs contributed to more than 33% of the high impact failures
documented in postmortem reports, which they attribute mainly to a high speed of network
evolution, and the need to keep up with the growing user traffic and demand for new features
and services. Another large-scale study by Microsoft [94] on root causes of end-users im-
pacting incidents in their production networks reports similar results. It shows that software
bugs contributed to 36% of critical outages, being major problem, way ahead of hardware fail-
ures and human errors. To summarize, in terms of virtualized networking systems, increased
complexity and higher customer expectations of quality impose thorough testing before any
deployment. Indeed, the software nature of such complex networks makes them error prone,
so the process of defect detection plays a crucial role. The typical testing process applied
to SDN is nonetheless human-intensive and is as such usually unproductive and often inade-
quately realized. More importantly, this testing process does not provide any assurance about
the quality of the tests. Research on test techniques that guarantee the fault coverage is there-
fore essential and required to foster the adoption and deployment of SDN based solutions and
systems.

The requirements that must be fulfilled by the SDN architectures and their components are
extremely complex and evolving very fast with the support of open source developments and
communities. For example, in the OF protocol requirements [113], just the flow entries instal-
lation command (Flow_M od) is more than two pages long [113]. Thus, these requirements
can be subject to ambiguities. Further on, these requirements are expressed in informal lan-
guages which can cause different interpretations by developers. Therefore, all of these factors
would contribute to increasingly higher likelihood of implementations exhibiting diverging be-
haviours from their requirements. Consequently, informal reasoning does not lead to proving
the correctness of such architectures/components. Under these circumstances, the introduc-
tion of formal testing techniques in SDN domain becomes necessary and obvious and is the
focus of this thesis work.

Although, a number of valuable efforts in the context of formal verification and testing SDN

1.2. Problem Statement / Research Questions 3

architectures and their components already exist (see Chapter 3), there is still a lot of space to
improve the situation. In fact, prior research focusing on assuring the correctness/consistency
of SDN architectures/components has resulted in techniques that belong either to verification
or testing. The techniques of the former can ensure the respect of a given policy in the data
plane and can help checking configuration errors and problematic controller programs in the
control plane. Yet, as they check whether a model of the SDN architecture/component satisfies
a given set of properties, they can only guarantee that the properties hold for the model and
hence some implementation faults can still escape this check as no test cases are applied
to the implementations. The techniques of the latter alleviate this challenge by targeting the
implementation under test (IUT). However, they are either performed for checking the paths
/ networks implemented in the data plane rather than checking the functionality of a given
critical SDN component, or they do not provide any guarantee about the test effectiveness.
This brings to the picture model based testing methods where test generation is based on
the model of a system under test (SUT). This line of work in the context of SDN in particular
has not matured yet. Not only the proposed approaches are rare but also they mostly focus
on testing the correct packets pipeline processing when it comes to testing the data plane for
example rather than assuring the correct functioning of the switch as an integral component
of the SDN architecture.

In summary, we feel or contend that model based testing is one of the most convenient
testing method which helps in detecting errors and bugs and can assure the proper functioning
of SDN architectures and their components. Indeed, model based testing allows the creation
of consistent, reusable, and well-documented models on the one hand and the derivation of
test cases with guaranteed fault coverage on the other hand. This is an important stage in the
testing process of SDN.

1.2 Problem Statement / Research Questions

The goal of this thesis is to check that the implementations of an SDN architecture and cor-
responding components conform to their requirements. Due to their phenomenal success,
SDN implementations are becoming increasingly complex, with such features as accepting
complex inputs (end-user requests), packets processing and interaction with a logically cen-
tralized controller. In the quest for conformance, the task of guaranteeing their correctness is
becoming ever more challenging. Further on, it is not unusual that an entire SDN architecture
might exhibit a behaviour such that the requests are correctly implemented in the underlying
data plane while the SDN components of such architecture (e.g., switch, controller) are not
implemented and/or operating correctly (hidden bugs).

The main research issue this thesis is concerned with, relates to assuring the compliance
of Software Defined Networking architectures and their components with respect to their spec-
ifications by means of model based testing.

The first critical challenge is to guarantee the consistency between the high level requested
paths and the configurations’ implementations of these requests in the data plane. In other
words, given an SDN architecture as the system under test, i.e., the SDN controller translat-
ing end-user requested paths into flow rules and the SDN switches implementing these flow
rules in the data plane to correctly forward traffic to hosts, what inputs should be applied to
the controller and what outputs should be observed at the data plane level such that conclu-
sions about the correctness of the whole architecture can be drawn, i.e., whether the SDN
architecture is functioning as expected/desired.

Resolving this first challenge will increase the confidence in reliable SDN architectures

4 1. Introduction

deployment without which trust in their implementations and operation can not be established
or built.

However, resolving the first challenge does not guarantee the correctness of the SDN com-
ponents forming the architecture. Moreover, should a bug be discovered by testing the entire
architecture, it certainly becomes of interest to localize its cause (possible root cause) or re-
sponsible SDN components. Indeed, the functional correct behaviour of SDN components
should not be taken for granted. Therefore, a second critical challenge that needs to be ad-
dressed concerns guaranteeing the correct behaviour of crucial SDN components, particularly
the switch and the controller.

The switch exposes two interfaces, one to perform packet processing in the data plane
and the second to communicate with a controller that instructs it how to process these pack-
ets. Therefore, two major challenges arise. Firstly, given the switch specified as a set of
configurations to forward packets in the data plane, how the correctness of its forwarding func-
tionality can be guaranteed. Secondly, given the switch in its communication with the controller
as the system under test. The SUT takes as input OF messages from the controller and out-
puts replies to the controller as specified by the OF requirements. The correctness of such
interaction needs to be assured.

The controller in an SDN architecture is also a core SDN component responsible for mak-
ing decisions on managing switches in the underlying data plane. Therefore, ascertain the
correct implementation of the controller is crucial. To this end, it is important to guarantee the
correct behaviour of its modules / applications. One critical module considered in this work is
the one responsible for translating end-users requests, specifying two devices between which
a link should be implemented, to corresponding configurations. The SUT in this case has a
one-direction communication with a given application from which it receives a request. It has
also a one-direction communication with a given switch in the data plane. The challenge is
to guarantee that the controller module under investigation assigns correctly the ports of the
network devices as specified by the request.

Based on the previous analysis, we focus on the following arising research questions:

1. RQ1 How to assure the correct behaviour of SDN architectures?

2. RQ2 How to assure the correct forwarding behaviour of an SDN-enabled switch in the
data plane ?

3. RQ3 How to assure the correct behaviour of an SDN switch in its interaction and inter-
facing with a controller?

4. RQ4 How to assure the correct behaviour of the module/application of an SDN con-
troller responsible for translating, for a given switch in the data plane, requests into
corresponding ports of the switch of interest?

To tackle these questions and challenges, in the upcoming section, the structure of this
work will be related to the solutions proposed by this thesis for addressing each key question.

This thesis develops novel testing techniques for guaranteeing the correct behaviour of
SDN architectures and their components. The techniques combine model based testing and
mutation analysis. The proposed approaches allow testing the actual implementations rather
than checking some network properties by means of formal verification as done by most of
the state of the art.

1.3. Contributions and Structure of the Thesis 5

1.3 Contributions and Structure of the Thesis

To address the aforestated research questions, we opt for model based testing because it
systematically generates from the model a collection of tests (test suites) that, when run against
the SUT, will provide sufficient confidence that it behaves as the model predicted it would. The
difference between model based testing methods and verification methods (massively used in
the state of the art; Chapter 3) is basically about the stimulation of the system under test vs.
the checking of the model. Now, the complexity of SDN architectures and related components
is not low, which results in verification methods being hard to apply to such systems. Model
based testing on the other hand scales much better and has been used to test large systems.

Although model based testing requires more up-front effort in building the model, it offers
substantial advantages over traditional software testing methods. Firstly, once a model is
built, it is easier to generate and re-generate test cases than it is with hand-generated test
cases. Besides, the quality of the generated test cases is high in comparison to other testing
techniques. This helps in detecting subtle errors. Indeed, model based testing techniques
strive to automatically generate test cases that are able to reveal whether any modelled fault
has been implemented. As a result, these techniques guarantee a fault coverage of the model
and are able, and have shown, to produce high quality test suites.

The result of this thesis can be divided into four main facets and contributions:

1. Model based approach for testing the functional behaviour of entire SDN archi-
tectures;

2. Model based approach for testing the forwarding functionality of the switch as a
critical SDN component;

3. Model based approach for testing the switch in its interaction with the controller;

4. Model based approach for testing a module/application of the controller. Specif-
ically, the controller application responsible for translating requested paths into
pairs of ports of a given switch.

The thesis is organized as follows. This chapter gives an overview and motivation of the
research topics of this thesis. It introduces the problems that the work is dealing with, its
objectives, contributions and structure.

Next, Chapter 2 has a foundation nature and includes the background on Software De-
fined Networking architectures and their components and interfaces, verification and testing
concepts, model based testing, mutation analysis and black and white box testing approaches.
Additionally, while introducing these foundations and concepts, we point out which chapter(s)
they are used in and how they relate to the thesis work.

Chapter 3 examines the related work on verification and testing techniques with respect to
SDN architectures and their components. For that purpose, a taxonomy is provided. Herewith,
a link to the current chapter is done. The literature investigation has elicited a set of limitations
and concerns and a set of research directions that the work of this thesis follows. The observed
lack of model based testing techniques applied to SDN in the current literature and ensuing
analysis, has led to the model oriented testing methodologies adopted and proposed in this
thesis.

The four following chapters relate to these proposed testing approaches.

Chapter 4 characterizes a novel model based technique for testing entire SDN architec-
tures taking into account potential interoperability issues in the controller-to-switch commu-
nication. The technique aims to ensure that requests expressed by end-users are correctly

6 1. Introduction

implemented in the data plane. The approach relies on graph/path enumeration. The chapter
relates to the first challenge of answering the question of how to guarantee the correct func-
tioning of such architectures. In particular, a fault model is introduced where the fault domain
contains potential implementations of virtual paths requested by an end-user. Afterwards, ap-
proaches for test generation under black box and white box testing assumptions are proposed.
To guarantee the fault coverage, the conditions are proven such that when under both testing
assumptions, a complete test suite with respect to such fault model can be derived. Addition-
ally, Chapter 4 provides an experimental evaluation of the proposed approach. A discussion
on the obtained results is then given so as to support the effectiveness of the presented testing
method. Results show that the derived test suites were able to detect a number of functional
inconsistencies in the considered SDN architectures.

Now that we have provided a novel testing technique guaranteeing to check for the cor-
rectness of the entire SDN architecture, the question that automatically arises is how about
the correctness of its components. Further ahead, one might want to identify which exact
component is not working as expected. This is addressed in detail in Chapters 5, 6, and 7.

In particular, the second part of the thesis proposes novel model based techniques for
testing critical SDN components. At first, the thesis looks at testing the switch as a crucial
component of SDN architectures in two aspects, then a module of the controller is considered.

The forwarding functionality of the switch modelled and analyzed as a ‘stateless’ system
without considering its interaction with the controller is investigated in Chapter 5. For this
purpose, the chapter proposes a logic circuit based testing approach. An appropriate fault
model is introduced and a logic synthesis algorithm is presented. Some mutation operators
over the derived switch specification are introduced, then logic circuit based approach and
related SAT solving are utilized for detecting equivalent mutants. Further on, both active and
passive testing strategies are explored. Finally, the chapter demonstrates the effectiveness
of the approach using experimental evaluation. The results show for example that test suites
derived based on traditional logic circuit fault models have a high fault coverage for SDN-
enabled switch faults. This piece of work relates to the second challenge.

Despite the effectiveness potential of the solution presented in Chapter 5 in detecting im-
plementation forwarding errors, it does not cover the behaviour of the switch in its interaction
with the controller. This is tackled in Chapter 6. The chapter proposes an extended finite state
machine based test generation strategy for testing the functional behaviour of a switch in its
communication with an SDN controller with respect to requirements described in the Open-
Flow specification. A part of the requirements is formalized, then based on the derived model,
an appropriate fault model is introduced and a test generation method for deriving exhaustive
test suites with respect to such fault model is presented. To demonstrate the effectiveness of
the proposed approach, an experimental evaluation is performed which aims at the assess-
ment of the derived test suites fault coverage on one hand and at the execution of the derived
tests against an OF implementation under test, on the other hand. The conducted evaluation
shows the effectiveness of the approach; besides, experiments reveal several implementation
faults and specification ambiguities when a switch implementation is tested. By that, the third
challenge is covered.

Chapter 7 utilizes the results of Chapter 5 and addresses the further question of the out-
lined challenges. The model based approach presented and discussed in Chapter 5 is adapted
and adjusted to tackle one module of the controller, particularly the one responsible for translat-
ing end-user requests into corresponding pairs of ports of a switch of interest. First, the prob-
lem is described. Then, the formalization of the specification, the test generation approach,
and the test execution strategy follow subsequently. This relates to the fourth challenge.

Chapter 8 completes this work with a summary and outlook. The proposed testing ap-

1.4. Dissertation Roadmap 7

proaches’ capabilities and limitations are reviewed, the general trends of the quality assurance
for SDN architectures and their components are recalled and influences of the contributions
of this thesis are outlined.

1.4 Dissertation Roadmap

In this section, the dependencies between chapters throughout this thesis are outlined.

The detailed discussion on SDN, verification and testing in Chapter 2 serves mostly as a
foundation for the considered topics.

Chapter 3 includes a review of the state of the art work on verification and testing tech-
niques for SDN architectures and SDN components yielding to the position of our contributions
in the field.

Chapters 4, 5, 6 and 7 contain the central achievements of the presented work. Addition-
ally, the reader can refer to the summaries given at the end of each chapter, which provide the
essential overview of the subjects and results on their contents.

The concept of the Logic Circuit based approach which is presented in Chapter 5 is used
as the basis for Chapter 7.

1. Introduction

Author’s Publications & Talks

The work presented in this thesis is original work undertaken between October 2016
and September 2019 at SAMOVAR/CNRS, Télécom SudParis / Université Paris Saclay. It
has been financed by the “Futur & Ruptures® (Future and Disruptive Innovation) programme
grant awarded to the author by “Fondation Mines-Télécom* and “le Carnot Télécom & Société
Numérique“. The work resulted in the following publications.

Conferences

(1]

Asma Berriri, Jorge Ldpez, Natalia Kushik, Nina Yevtushenko, and Djamal Zeghlache. “Towards
Model based Testing for Software Defined Networks.” In: Proceedings of the 13th International
Conference on Evaluation of Novel Approaches to Software Engineering, ENASE, Funchal,
Madeira, Portugal, March 23-24. 2018, Pages 440—446.

[2] Jorge Ldpez, Natalia Kushik, Asma Berriri, Nina Yevtushenko, and Djamal Zeghlache. “Test

Derivation for SDN-Enabled Switches: A Logic Circuit Based Approach.” In: Proceedings of the

IFIP International Conference on Testing Software and Systems. Springer. 2018, Pages 69-84.
Archives

(1]

Asma Berriri, Natalia Kushik, and Zeghlache Djamal. “Extended Finite State Machine based
Test Generation for an OpenFlow Switch.” working paper or preprint. 2019. urL: https://
hal.archives-ouvertes. fr/hal-02262841.

Some of the research leading to this thesis has appeared previously in the following.

Journals

(1]

Asma Berriri, Natalia Kushik, and Djamal Zeghlache. “On using finite state models for optimizing
and testing SDN controller components.” Russian Physics Journal 59.8/2 (2016), Pages 5-7.

Portions of this work have been already presented in the following.

Participation in Seminars and Conferences

(1]

(2]

(3]

(4]

Asma Berriri. Formal Approaches for Testing in Software Defined Networks. Poster and pre-
sentation. Journée doctorants Samovar 2018, Paris, France. 2018. urL: http://samovar.
telecom-sudparis.eu/spip.php?articlell?77.

Asma Berriri. Formal Approaches for Testing in Software Defined Networks. Poster presentation.
Visite HCERES - évaluation laboratoire Samovar les 4 et 5 décembre 2018, Paris, France. 2018.
URL: http://samovar.telecom-sudparis.eu/spip.php?articlel158.

Asma Berriri. Formal Approaches for Verification and Testing in Software Defined Networks.
Presentation. The 4th GDR RSD and ASF Winter School on Distributed Systems and Net-
works 2019,Pleynet, Sept Laux, France. 2019. urL: https://sites.google.com/site/
rsdwinterschool/program-2019.

Asma Berriri. Formal Approaches for Verification and Testing in Virtual Networks. Presentation.
Méthodes de Test pour la Vérification et la Validation (MTV2) du GdR GPL du CNRS, ENSIIE,
Paris, France. 2018. urL: http://logimas.mics.centralesupelec. fr/wp-content/
uploads/2018/12/MTV2-A.Berriri-final-extended.pdf.

https://hal.archives-ouvertes.fr/hal-02262841
https://hal.archives-ouvertes.fr/hal-02262841
http://samovar.telecom-sudparis.eu/spip.php?article1177
http://samovar.telecom-sudparis.eu/spip.php?article1177
http://samovar.telecom-sudparis.eu/spip.php?article1158
https://sites.google.com/site/rsdwinterschool/program-2019
https://sites.google.com/site/rsdwinterschool/program-2019
http://logimas.mics.centralesupelec.fr/wp-content/uploads/2018/12/MTV2-A.Berriri-final-extended.pdf
http://logimas.mics.centralesupelec.fr/wp-content/uploads/2018/12/MTV2-A.Berriri-final-extended.pdf

Participation in Seminars and Conferences 9

[5] Asma Berriri. Testing and Verification for Software Defined Networks. Presentation. The 7th
Halmstad Summer School on Testing, HSST 2017 in cooperation with TOCSYC Network, Halm-
stad University, Sweden, June 12-15th. 2017. uRL: http://ceres.hh. se/mediawiki /
HSST_2017.

[6] Asma Berriri. Towards Testing and Verification in SDN. Poster presentation. Journée Futur &
Ruptures, février 2017, IMT, Télécom ParisTech, Paris, France. 2017. urL: https://www.imt.
fr/journee-futur-ruptures-jeudi-2-fevrier-2017-a-limt/.

[71 Asma Berriri. Towards Testing and Verification in Software Defined Networks. Poster and pre-
sentation. Journée doctorants Samovar 2017, Paris, France. 2017. urL: http://samovar.
telecom-sudparis.eu/spip.php?articlel®63.

[8] DigiCosme Spring School on Formal Methods and Machine Learning. ForMaL. 2019. uRL:
https://formal-paris-saclay. fr.

[9] GT LTP Langages Types et Preuves du GdR GPL du CNRS. ENSIIE, Paris, France. 2018. URL:
http://web4.ensiie.fr/~guillaume.burel/ltp/journee_2018.html.

http://ceres.hh.se/mediawiki/HSST_2017
http://ceres.hh.se/mediawiki/HSST_2017
https://www.imt.fr/journee-futur-ruptures-jeudi-2-fevrier-2017-a-limt/
https://www.imt.fr/journee-futur-ruptures-jeudi-2-fevrier-2017-a-limt/
http://samovar.telecom-sudparis.eu/spip.php?article1063
http://samovar.telecom-sudparis.eu/spip.php?article1063
https://formal-paris-saclay.fr
http://web4.ensiie.fr/~guillaume.burel/ltp/journee_2018.html

10

1.

Introduction

Background

Contents
2.1 Software Defined Networking 12
2.1.1 Overview of the SDN Architecture and SDN Interfaces 12
2.1.2 Application Layer 13
2.1.3 ControlPlane 14
2.14 DataPlane 14
2.2 Verificationand Testing, 16
2.2.1 Verification L 16
222 Testing e 17
23 ModelBased Testing v v v v i i ittt ennn 17
2.3.1 Formal Representation of an SDN Architecture 18
232 LogicCircuit i 19
2.3.3 Extended Finite State Machine 19
234 FaultModels 23
2.4 Mutation Analysis i e e e e 23
2.5 Black Box and White Box Testing 24
2.6 Chapter Conclusions v i vttt vttt enenns 25

In this chapter, the fundamentals and basic background information, on which we base our
work of testing SDN architectures/components, are provided. Firstly, in Section 2.1, the SDN
paradigm concepts, architecture, and components are presented. The necessary theoretical
background on the terminology and semantic of verification and testing used in the thesis is
covered in Section 2.2. Armed with these basics, we dig deeper into notions related to model
based testing in Section 2.3 with a brief insight into how these concepts will be used in our
contributions. Further on, in Section 2.4, the concepts of mutation analysis are introduced. An
overview of the black and white box testing approaches in Section 2.5 completes the theoretical
basics.

11

12 2. Background

2.1 Software Defined Networking

In this section, we provide a general description of SDN and give an overview of the compo-
nents and interfaces.

SDN is an emerging networking paradigm that is now growing in usage and popularity, pro-
gressing rapidly and addressing some of the long-standing challenges in computer networking.
SDN platforms are subject to be widely used and deployed. Recently, they are deployed into
several core and data center networks. This paradigm brings a major concept, namely it de-
couples the data control of the network from the data transmission. It moves the control logic
into a logically centralized component called controller. In contrast to the traditional network
architectures, the separation of roles in an SDN architecture is the key to achieving flexibility
and to making it easier to introduce new concepts in networking. One can certainly observe
that the abstraction offered by the SDN architecture provides wider flexibility on developing and
implementing new network functionalities and simplifies the configuration and management
of modern networks suggesting the opportunity for more innovations.

2.1.1 Overview of the SDN Architecture and SDN Interfaces

The foundation of SDN is proposed by the standardization organization called Open Network
Foundation (ONF) [142]. In an SDN architecture, a logically centralized control function (the
controller) translates the applications’ requirements and applies control instructions over the
forwarding devices (the switches) in the data plane, while providing relevant information up
to the SDN applications [102]. The forwarding devices in the data plane then reroute data
packets to other forwarding devices and to hosts according to these control instructions [132],
[54], more specifically, forwarding and filtering rules [134].

An SDN architecture is composed of three layers, i.e., (i) the network applications, (ii) the
control plane composed of one or multiple controllers, and (iii) the data plane composed of
the forwarding devices and hosts [142]. The interaction between these layers is performed
through Application Programming Interfaces (APIs). The SDN controller has mainly two APIs.
The southbound API responsible for collecting network status and updating forwarding rules
in the forwarding devices. The northbound API such as the ‘Representational State Transfer’
(REST) API handles interaction with the application layer, i.e., receiving requests/ policies de-
scribed in high level languages from SDN applications and providing a synchronized global
view. It enables direct expression of network behaviour and requirements. Northbound API
presents a programmable API to network control and management applications. The south-
bound API allows the exchange of control messages between the controller and the SDN
forwarding devices. This interface dictates the format of the exchanged control messages.
Multiple southbound interfaces exist such as OpenFlow (OF) [102], ForCES [44], and POF
[143]. The OpenFlow protocol is the most deployed SDN protocol as the southbound inter-
face [152]. Multiple OpenFlow protocol versions exist including versions 1.0, 1.3, 1.5. During
the thesis, we used the stable releases of OpenFlow at the time (versions 1.0 and 1.3). All OF
versions use the same structure of SDN rules, with some action and match field additions in
each version.

An example of an SDN architecture is depicted in Figure 2.1.

SDN network architectures allow end-user (e.g., a network administrator) requests/require-
ments representing network policies to be specified and implemented in the data plane. Net-
work applications can issue the requests on the shape of data paths that have to be imple-
mented between pairs of sources and destinations through the network architecture. The con-
troller then computes the appropriate flow rules and pushes them to the switches. A switch

2.1. Software Defined Networking 13

acts as a forwarding device receiving and sending network packets in accordance with the
configured rules. It also sends events such as traffic statistics, network changes and acknowl-
edgments to the controller. An end-user request might impose for example the traversal of a
given sequence of switches. An example of a request is ‘traffic from hosts in local area net-
work Subnet; to the internet must traverse the switch S| and one of the switches S¢ and S
(Figure 2.1).

In this thesis, we assume that the network architecture is functioning correctly if the network
policies (requests) defined by the network applications and translated by the controller are
correctly implemented by network devices in the data plane. In Chapter 4, we propose a
model based testing technique to guarantee such correctness.

In the following, we detail the layers of the SDN architecture.

w . . .
E NetApp, Met App, v Net App,
"
z
?L = { -
z -zi" -{_;-4 JH
a1 Northbound AP
5
n—; SDN Controller SDN Controller
=
c
S
4§ Southbound API (OpenFlow Protoco
.Hﬂstg‘ ., i lﬂ.‘ Hosts
10.1.2.1/24 /;/’_1‘0 e
9 Requested
\ s Subnet; h
& _ > :
& Hast; _ "'". 3
t 11].1.1.3.{24. Subnets
E F....a_n s
7 Host,
5
2 10.1.3.0/24
HOSH Implemented =
10.1.1.0/24 path Hosts
' 10.1.3.1/24

Figure 2.1 — SDN layered architecture.

2.1.2 Application Layer

As illustrated in Figure 2.1, the application layer resides above the control layer. Through the
northbound API, SDN applications can conveniently access a global network view and can
implement different strategies to configure the underlying physical infrastructure (data plane)
using a high level language. The application layer mainly consists of the end-user network
applications or functions that consume the SDN network services. Examples of such applica-
tions include network visualization, load balancing and firewalls applications. Based on the
network configuration requirements and specific needs, a network administrator can program
new network applications (new network functionalities) in standard programming languages.

14 2. Background

2.1.3 Control Plane

The control layer bridges the application layer and the data plane. It consists of a set of
software based SDN controllers providing a consolidated control functionality through open
APIs [59]. This layer supervises the network forwarding behaviour.

The controller sets up all forwarding devices in the data plane, maintains topology informa-
tion, and monitors the overall status of the entire architecture [102]. It updates the flow table
by adding and removing rules using protocols such as OpenFlow [102]. Each forwarding de-
vice has a set of flow tables with rules. A rule has three parts: the matching condition to a
specific flow; the action to be applied to this flow, and counter to track the rule occurrence for
management purposes.

The Controller presents two behaviours, namely reactive and proactive. In the reactive
mode, the first packet of flow received by a forwarding element triggers the controller to insert
rules in each forwarding element of the data plane. In fact, the controller listens to switches
passively and configures routes on-demand (by installing the corresponding rules). It receives
messages of connected hosts from the switches. Upon receiving a Packet_In message from
the switch, the controller looks for the destination host location and sets the path by sending
Flow_Mod messages to affected switches in the path. In the proactive mode, the controller
pre-populates the flow tables in each forwarding element.

All functions of the control plane are performed by the controller. It has full network topology
information and the location of hosts. When a forwarding element receives a packet for which
there is no matching rule in its flow tables, it forwards it (using Packet_In) to the controller
asking for the action to take upon this new flow. The controller can define the port that the
flow must be forwarded to or take other actions, such as dropping the packet. The controller
must set the entire path by sending Flow_M od messages to all switches from the source to
the destination.

The SDN controller allows the applications to communicate with the SDN forwarding de-
vices, and creates the global view of the network. The controller is also able to monitor all
the network forwarding elements regularly. It then informs the network applications of the net-
work changes using the northbound interface. Then, the network applications manage and
implement policies in the network devices using the northbound interface.

Throughout the thesis, we consider architectures with controllers’ deployments logically
representing a single controller. However, the proposed approaches can easily be extended
with an architecture with multiple controllers.

2.1.4 Data Plane

The data plane consists of forwarding devices and hosts. The forwarding devices include
physical and virtual switches which are interconnected between each other and with hosts.
An example of an SDN switch is the software OpenvSwitch (OVS) [121].

The Switch

A switch exposes two interfaces allowing its interaction with packets in the data plane on one
hand (forwarding functionality) and its interaction with the controller on the other hand. A
switch does not have any built intelligence and relies on the controller to give it a set of rules
to know how to treat/forward incoming packets. These rules are then saved in the switch flow
tables [113]. When a packet arrives to the forwarding device, it is matched against rules in
the flow tables. The action is triggered if the matching is satisfied and then, the counter is
updated. If the packet does not match any entry in the flow tables, it is sent to the controller

2.1. Software Defined Networking 15

over a secure channel to ask for an action. Packets are matched against all rules based on
some prioritization scheme. The flow table could have a priority field associated with each
rule. Higher number indicates that the rule should be processed before.

An SDN forwarding rule (also called a flow entry) is composed of three parts [113]

» Matching fields: packet header values to match the incoming packets in addition to the
input port. We refer to the matching fields as matching parameters.

» Actions: set of instructions to apply to the matching packet such as forward to specific
output port, flood, drop, send to controller or modify packet headers.

* Locations / priorities: to control the rule hierarchy.

The Switch in its Data Plane Interface (Forwarding Functionality) The forwarding rules
are grouped in different flow tables and are considered to be the configurations of switches
with respect to packets and application flow management.

As an example of rules installed in a switch, consider the set of rules defined in Table 2.1.
The table includes the following matching parameters:

* Flow Table, a virtual partition for the installed rules;

* Priority, the order attributed to the rule to be applied with respect to other rules in the
flow table;

* Input Port (In_port), the ingress port of the incoming packets;
 Ethernet Type (Eth_type), the type of traffic carried by the Ethernet datagram;

» Source and Destination IP Addresses respectively (IP_source, I P_dest), define the IP
protocol source and destination addresses;

» Output ports (Output) defines the set of ports to which a matching packet should be

forwarded.
Flow Table | Priority | In_port Eth_type IP_source IP_dest Output
0 500 s ARP (0x806) * ¢ Port 1
0 500 1 ARP (0x806) * * “All”
1 501 1 IP (0x800) | 10.0.0.1/32 | 10.0.0.2/32 | Port2
1 501 2 IP (0x800) | 10.0.0.2/32 | 10.0.0.1/32 | Port 1

Table 2.1 — Example of rules installed in a switch

For example, the third rule in Table 2.1 is specified in the flow table 1 with the priority 501.
When the packets having the source IP address 10.0.0.1 and destination IP address 10.0.0.2
arrive to Port 1 of the switch, these packets have to be forwarded through the (output) Port 2
of the switch.

Chapter 5 answers the question of how to guarantee the forwarding functionality of a switch
specified as a set of configurations in the data plane.

The Switch in its Southbound Interface

The OF specification [113] describes the behaviour of the switch and its communication
with the controller. It specifies OF messages handling via the southbound API. Examples
of messages received/sent by the switch include oFpPT_HELLO message for connection estab-
lishment; oFPT_FEATURE for advertising the supported capabilities; FLow_mob for handling
modification of rules in the switch; oFPT_BARRIER to get the information about when a given

16 2. Background

command is applied; oFPT_MULTIPART for reporting statistics and oFPT_EcHo for sensing the
liveness.

Before any messages can be exchanged, the connection establishment process takes
place implying OF version and capability negotiation. Both ends of the connection exchange
HELLO messages immediately after the lower layer (TCP/TLS) connection establishment. Af-
terwards, to be aware of the capabilities of the switch, FEATURE is exchanged. In case this
message is not received by the controller and after a timeout, the latter disconnects the switch.
Once the connection is successfully established, different messages can be exchanged, e.g.,
ECHO, FLOW_MOD, BARRIER and MULTIPART. The actions of rules installed by the FLow_Mob
messages are defined by the OF requirements and include for example modification of ip and
VLAN values.

If an OF implementation complies with the requirements, the exchange of these messages
should be performed correctly with the specified parameters. In Chapter 6, a model based
approach is proposed to test the switch in its communication with the controller.

2.2 Verification and Testing

It is necessary to evaluate or judge the ‘correctness’ of an SDN architecture and its related
SDN components, i.e., whether the SDN architetcure/component meets its requirements and
specifications and whether it fulfills its intended purpose.

In the following subsections, basic concepts related to verification and testing employed
throughout the thesis are briefly introduced.

2.2.1 Verification

Verification is a process that involves mathematical proof showing that a system satisfies a set
of desired properties. Formally, given a system M, verification aims at the creation of a set
of properties P that are iteratively checked during phases of development of M to determine
whether or not the behaviour of M meets the set of properties P [32, 46].

In the context of SDN, the network verification problem can be formulated as follows. Given
an abstract model of an SDN component(s) (or a composition of those) M odel(N) and a set
of network properties P expressed in a given logic formulae, determine whether Model(N)
satisfies P.

We distinguish the different verification methods applied to SDN based on the mathemat-
ical formalism used in the reasoning process during the verification. In this work, under ver-
ification we understand a process that does not require any stimulation of the system under
verification.

Examples of network properties (referred to as invariants as well) to be verified include:

» Reachability [43] is concerned with whether the network always successfully delivers
packets to the intended end hosts. A definition of reachability property can be for ex-
ample that a packet pkt can get from the source host Host; to the end host Hostg in
Figure 2.1.

» Forwarding Loop [97] occurs if the same packet returns to a location that it has visited
before. There are several possible definitions of this property, e.g., returning to the same
location with exactly the same header, or returning to the same location with a possibly
different header. The former case indicates the presence of an infinite loop, since this
packet will repeatedly return to this location. The latter case may also be undesirable
since there is usually no reason for a packet to return to the same location.

2.3. Model Based Testing 17

* Black-holes [141] means that packets are dropped because there is no destination con-
figured on one of the forwarding devices they traverse.

2.2.2 Testing

In software development methods, festing occupies a central position of ensuring software
quality. In order to judge the correctness of a system under test, one should observe or moni-
tor for each test execution what the system does, how it does it, and perhaps when it does it.
Active testing is defined when a system under test (SUT) is stimulated by appropriate inputs,
i.e., test sequences / cases, and the conclusion about its correctness is made based on the
observations of its output responses. Testing techniques applied to SDN architectures/com-
ponent (s) are based on stimulating the architecture/component(s) (or composition of those)
under test by test cases and observing their reactions with the intent of finding errors. Passive
testing is defined when one just monitors the SUT and observes that the behaviour is correct
or incorrect without stimulating the SUT. Debugging / troubleshooting is defined as stimulating
the SUT by appropriate inputs and observing its reactions in the objective of localizing errors
[10], [107].

Random testing [10] generates test cases in a (uniformly) random way with negligible effort.
A more evolved form, referred to herewith as ‘semi-random’ consists of ‘controlling’ the way
random test cases are generated. For example, starting with randomly generated inputs and
repeatedly modifying them, more or less at random, to produce new inputs. This increases
the probability of inputs found in this way being ‘interesting’.

2.3 Model Based Testing

Model based testing has received increasing attention due to its ability to improve produc-
tivity, by automating test planning, generation, and execution. In model based testing, test
cases/sequences forming a test suite are generated from an abstract model, which captures
the desired behaviour of the system. Then, the test cases/sequences are executed against a
real implementation of the system and the conformance of the implementation to the specifi-
cation is checked by comparing the observed outputs with the ones specified by the model,
for some suitable definition of conformance. The specification can be a formal model of the
system and might also be defined by a set of (end-user) requirements that should be correctly
implemented.

The central artifact of model based testing is the model. It serves as an abstraction of
the system under test (SUT), manageable by the test engineers. In this context, the primary
idea behind a model based method is the benefit of deriving a specification for a system that
might cover its functional behaviour. The model/specification may be utilized as the basis for
automating parts of the testing process and can lead to the generation of more efficient and
effective test cases/sequences.

A large number of possibilities is present with respect to how to model the SUT. For ex-
ample logic circuits or state based models such as Finite State Machines, Extended Finite
State Machines, Input/Output Transition Systems, etc., might be considered. For state based
models, most notations for test modeling are based on states and their identification.

In the following subsections, we provide a glance insight into preparatory ingredients for
the author contributions. In subsection 2.3.1, we give an introductory overview of a formal
representation of an SDN architecture that supports our first contribution in Chapter 4. In
subsections 2.3.2 and 2.3.3, we introduce logic circuit and extended finite state machine as

18 2. Background

models that we use in Chapter 5 and 6 respectively to support the proposed test generation
techniques. In subsection 2.3.4, definitions related to the notion of fault models are provided.

2.3.1 Formal Representation of an SDN Architecture

SDN architectures satisfy end-user requests/requirements by forwarding data in a given data
plane. At the level of a switch in the data plane, forwarding decisions are defined by rules.
To implement desired requirements during forwarding, network administrators/operators de-
fine requests to be implemented in the data plane. For instance, they impose some policies
to be applied to the flows. The ‘specification’ in this case is defined by a set of (end-user)
requirements that should be correctly implemented.

In the thesis, unless the context is explicitly indicated, we refer to the data plane as the
Resource Network Connectivity Topology (RNCT'!) for which a formal definition is given in
Chapter 4. An RNCT depicts the SDN components in the resource connectivity network. An
informal description of a path inan RNCT is depicted in Definition 2.1. A more formal definition
is provided in Chapter 4.

Figure 2.1 presents an example of a network topology consisting of one controller, seven
switches and six hosts. Each switch is connected to the SDN controller. S; is connected to
hosts Host; and Host,, S4 is connected to Hostz and Hosty, S is connected to Hosts and
§7 is connected to Hostg.

DEFINITION 2.1.
A pathin an RNCT between two given hosts is a sequence of network devices that starts
and ends with hosts and all other intermediary devices are switches.

Based on the topology of Figure. 2.1, the corresponding RNCT and some examples of
its paths are illustrated in Figure. 2.2. In this example, the RNCT is a network with seven
switches and six hosts.

Host,

Hosty

Path, Pathy Paths

Figure 2.2 — RNCT of the network topology in Figure 2.1 and examples of its paths

The presence of potential errors/bugs in the SDN architecture certainly breaks the intended

IHosting infrastructures can be physical or virtualized.

2.3. Model Based Testing 19

network functions. The errors might be due to the inconsistencies between end-users’ (e.g.,
network administrators) logical requests and the actual flow-level implementations. Figure 2.1
shows a misbehaviour of an SDN architecture consisting in implementing a different request
(marked in red in the data plane) than the desired/specified one (marked in green). Chapter 4
tackles this problematic and proposes a model based testing approach aiming to the detection
of such misbehaviours.

2.3.2 Logic Circuit

The specification of a system can be represented by a logic circuit as the underlying model in
model based testing. We propose this model for the testing approach developed in Chapter 5.

A sequential logic circuit consists of combinational logic and memory elements, namely
latches. A combinational circuit is composed of logic gates (AND, OR, etc.); each logic gate
implements a Boolean function. Unlike sequential logic circuits whose outputs are dependant
on both their present inputs and their previous output, which gives them memory, i.e., state,
the outputs of combinational logic circuits are only determined by the logic function of their
current input, logic vectors of ‘0’ or ‘1’, at any given instant in time. Thus a combinational
circuit is memoryless.

DEFINITION 2.2.

A logic circuit, representing the system specification, is said to be Complete (or completely
specified) if the output is defined for every possible input vector, otherwise, it is said to be
Partial.

There are different formats of logic circuit representation. In this work, we consider the
Berkley Logic Interchange Format (BLIF) [18]. In this format, a combinational circuit is de-
scribed by the corresponding look-up table (LUT). An LUT contains a set of input/output
Boolean vectors describing the circuit’s behaviour. The LUT table of the partial specification,
portrayed in Figure 2.3, is shown in Table 2.2.

Figure 2.4 shows an example of the BLIF file for the logic circuit of Figure 2.3. The names
of external inputs and outputs are listed in the file. Then, following those declarations, the truth
tables for each of the gates with their inputs and outputs are listed. For example, element n6
is a function of two arguments x0 and x2.

A logic circuit can be modelled as an AND-INVERTER Graph (AIG). In fact, a Boolean
network is a directed acyclic graph with nodes representing logic gates and directed edges
representing wires connecting the gates. AlG is a combinational Boolean network composed
of two-input AND-gates and inverters [106]. In an AIG, each node has at most two incoming
edges. A node with no incoming edges is a primary input. Primary outputs are represented
using special output nodes. Each internal node in the AlG represents a two-input AND func-
tion.

Example
Figure 2.3 illustrates an example of a partial specification (logic circuit) designed as an AlG.

2.3.3 Extended Finite State Machine

A state based model is one of the most powerful ways to represent a system Sys where a
number of stimuli (inputs) is received by Sys and actions (outputs) are produced by Sys. For
example, the specification of a system can be represented by a state based model such as

20 2. Background

. model cirex

. inputs x0 x1 x2
. outputs z0 z1

. names x0 x2 n6
10 1

. hames x2 n6 n7
2 a x0,x1,x2 | z0,z1 00 1
. hames x1 n7 z0
10 1
010 01 . hames x0 x2 n9
111
011 10 . names x0 x2 n10
00 1
.names n9 n10 n11
111 11 00 1
. hames x1 n11 z1
110 10 10 1
i .end
Table 2.2 — The look-up
Figure 2.3 — An example of a table (LUT) of the Figure 2.4 — A BLIF
partial logic circuit specification specification c,, illustrated description of C,,
designed as an AlG (c.y) in Figure 2.3 shown in Figure 2.3

Finite State Machine (FSM) or Extended Finite State Machine (EFSM) as the underlying model
while testing.

These models are used to describe behaviours of sequential systems where outputs de-
pend on inputs and the current state. This is to be opposed to combinational behaviours where
the output is only dependent on the set of inputs as described earlier with combinational logic
circuits in Subsection 2.3.2.

In this context, classical FSM for example can be used. An FSM is a transition system
with a finite number of inputs, outputs, states and transitions each labeled by an input/output
pair [48]. FSMs are widely used in various application domains, such as modeling and testing
communication protocols, and other reactive systems.

States, transitions, inputs, and outputs are the building blocks of an FSM. The collection
of states represents all the possible situations in which the FSM may be. The model goes
through a sequence of transitions to reach a certain state. A state is some kind of a memory
that represents the current state of the model. From a software point of view, a state can
be a set of specific values for a collection of variables. A transition is an allowable two-state
sequence that results in an output and must specify a starting state and a final state (of the
transition). A transition usually means a change in the value for state variables. An input
triggers a transition.

DEFINITION 2.3.
Formally, an FSM [48] is a quintuple (S, I, O, hs, S;;,), where

« S is a finite set of states with the set §;;, C .S of initial states;

[is afinite non-empty set of inputs;

O is a finite non-empty set of outputs;

hs C SXIx0 XS is atransition or behaviour relation, where a 4-tuple (s,i,0,s’) € hg is

2.3. Model Based Testing 21

a transition.

If |S;,| = 1, then the machine is initialized, otherwise it is non-initialized. In this work, we
consider initialized machines.

In spite of their good expressiveness, FSMs are not powerful enough to model in a suc-
cinct way practical systems. For example, systems which contain variables and where their
operations depend on the variable values. The EFSM model extends the classical FSM model
with input and output parameters, context variables, update functions and predicates defined
over context variables and input parameters. It is more adequate to model complex reactive
systems.

The contribution of Chapter 6 proposes an EFSM to model the switch-to-controller commu-
nication and investigates the problem of deriving input test sequences based on such model.

In the remaining of this subsection, we give formal definitions related to EFSM and a simple
illustrative example.

Let X and Y be finite sets of inputs and outputs; IN,, OUT,, and C, be finite disjoint sets of
input/output parameters and context variables respectively. Some inputs (outputs) are related
to subsets of parameters. For x € X, let IN,,, C IN,, be the set of input parameters of x and let
Djn,, be the set of input vectors, each component of an input vector corresponds to an input
parameter associated with x. The set of output parameters and vectors are similarly defined.
Let D¢, be the set of context vectors v. Given an input x and a (possibly empty) set of input
vectors, a parameterized input is a tuple (x,px) where px is an input parameter vector. A
sequence of parameterized inputs is called a parameterized input sequence. Parameterized
outputs and their sequences are defined similarly.

DEFINITION 2.4.

An EFSM [118] S over X,Y, IN,,, OUT,,, C,, Din,,, Dour,, and Dc, is a pair (8,T)
of a finite set of states S and a finite set of transitions T between states in .S, such that each
transition ¢ € T is a tuple t = (s, x, P, op, y,up, s1), where

+ 5,87 € § are the initial and final states of the transition, respectively;

* x € X is the input of the transition;

» y €Y is the output of the transition;

* P, op and up are functions, defined over input parameters and context variables

— P:Djn, X Dc, — {True, False} is the predicate of the transition;
- op: Dy, X D¢, = Dour,, is the output parameter function of the transition;
- up: Dy, XDc, — C, is the context update function of the transition.

If a transition ¢ has a predicate, the latter must be satisfied in order for ¢ to be enabled. A
configuration of S is a pair (s, V).

DEFINITION 2.5.
An EFSM S [118]is

» Deterministic if any two transitions outgoing from the same state with the same input
have mutually exclusive predicates;

« Complete if for each pair (s, x) € § X X, there exists at least one transition at state s with
the input x, otherwise S is called partial;

22 2. Background

« Initially connected if each state of S is reachable from the initial state.

In this thesis, we consider deterministic, initialized, initially connected but not necessarily
complete EFSMs.

Example

We illustrate the notion of an EFSM and how it operates through a simple example. Consider
an EFSM given in Figure 2.5 which is defined over state set S = {State, State,, States}, inputs
aand b, i.e., X = {a,b}, where b is non-parameterized and a is parameterized with an integer
parameter k with value a.k, outputs 0 and 1, i.e., Y = {0,1}. The set of context variables is
C, = {w}. In this example, we assume that D¢, (domain of the variable w) is the set of all non-
negative integers. The set of input parameters is /N, and we assume that the domain Dy,
(domain of the input parameter k) is the set of all non-negative integers, while Dy, = @ as
b is non-parameterized. The EFSM of this example is deterministic, initialized (State; is the
initial state), initially connected and partial.

For a parameterized input, for example a, let a(0) denote the fact that the EFSM receives
the input a with the parameter value a.k = 0. The machine has six transitions. For exam-
ple, it has #; = (Statej,a,1 < a.k <5,-,0,w := w+ 1,State,) with states State, and State,
as start and final states, respectively, the predicate 1 < a.k < 5, and variable update func-
tion w := w+ 1. Assume that (State;,w = 0) is a current configuration of the EFSM and the
machine receives a parameterized input a(k), then the machine checks the predicates of out-
going transitions from State; that are satisfied for the current configuration under the input a
with parameter value a.k. If the received value a.k = 3, then the machine checks predicate
1 <a.k <5. As1 <a.k <5 holds, the transition #; is executed according to the context up-
date function w := w + 1 with output 0, and the machine moves from State; to the final state
State, as specified by #,. In fact, the machine moves from configuration (State;,w = 0) to
configuration (State;,w = 1).

start —
t
[l <=a.k <=5]
a(k)/0
wi=w+l1
t
[w=0]
a(k)/0
L&]
b/1
wi=w+1

Figure 2.5 — Example of an EFSM

2.4. Mutation Analysis 23

2.3.4 Fault Models

As the quality of a test suite is usually measured by its fault coverage, i.e., the types and
number of faults that can be detected by the test suite, the proposed testing methods in this
thesis introduce different fault models and seek for test suites with guaranteed fault coverage
that can be stated as (necessary and) sufficient conditions [119] for a test suite exhaustiveness
/ completeness (Definition 2.6 below).

The main motivation for using fault models is to have tests which can detect, i.e., cover
certain types of implementation faults. Such tests offer a ‘guarantee’ for the test quality in
terms of fault coverage.

In a usual way, a fault model is defined as a tuple (S, @, F D) [120] where S is the specifi-
cation, @ is the conformance relation and 79 is the fault domain. In general, the specification
is a formal model of the system, however, it might also be defined by a set of (end-user) re-
quirements that should be correctly implemented.

The relation @ defines the conformance of a given implementation I to the specification
S. If the specification is complete (completely specified) then the conformance relation can
be chosen to be equivalence and can be represented for example by the equality. If the
specification is partial, then the conformance relation can be represented for example by the
quasi-equivalence denoted as ~. The fault domain ¥ D is a set of implementations. In model
based testing, the specification model can be altered (mutated) in order to model a fault in the
implementation. D can be defined to contain the resulting mutants. Checking that a mutant
from F D is not equivalent to the specification means to guarantee that the implementation
does not implement any of the incorrect behaviours. The conformance relation @ partitions
the set ¥ D into conforming and nonconforming implementations (mutants).

As usual, an implementation I € 9D is called conforming if /@S; otherwise, I is a non-
conforming implementation. Given the specification S, a test case is a finite input sequence
of S. An implementation under test passes a test case/sequence if the output response of
the implementation to the test case/sequence is contained in the set of output responses of
the specification S to the test case; otherwise, the implementation under test fails the test
case. As usual, a test suite is a finite set of test cases. An implementation under test passes
(fails) a test suite if the implementation passes each test case (or fails some test case). If an
implementation fails a test suite then we say that the implementation can be detected with the
test suite.

DEFINITION 2.6.

« Atest suite TS is said to be exhaustive w.r.t. the fault model (S, @, F D) if each imple-
mentation I € ¥ 9D such that /@ S can be detected with T'S.

 Atest suite 7'S is said to be sound w.r.t. the fault model (S, @, ¥ D) if each implemen-
tation I € ¥ D such that /@S passes T'S.

« A test suite T'S is said to be complete w.r.t. the fault model (S, @, F D) if T'S is exhaus-
tive and sound.

2.4 Mutation Analysis

Mutation analysis is a powerful approach for both evaluating test suites’ effectiveness and sup-
porting test generation [111]. The principle idea is to inject ‘artificial’ faults, called mutations,

24 2. Background

into the code or the specification model yielding mutants. It allows to measure test effective-
ness based on the number of detected mutants. Researchers have proven that detecting
mutants results in finding real faults [74]. In particular, this has been shown as well for model
based mutation [3]. Indeed, it has been demonstrated that specification model mutants lead
to tests that are able to reveal implementation faults that were neither found by manual tests,
nor by industrial tools [3]. Moreover, model based mutation’s power is to identify faults related
to missing functionality and misinterpreted specifications.

In model based testing, mutants are introduced based on model transformation operators
that alter the specification. When the faults injected in the specification model to obtain corre-
sponding mutants are defined by a user such as an expert, a test engineer, etc.; the resulting
mutants are referred to as user-defined mutants. There are two kinds of mutants, first-order
mutants when the specification and the mutant models differ by a single model transformation,
and higher-order mutants, derived from the specification model after multiple transformations.
When a mutant is detected by a test sequence (case), it is said to be killed. Otherwise, it is
said to be survived. To measure the adequacy of testing and assess the fault coverage of test
suites, a standard metric called mutation score is used. It is defined as the ratio of mutants
killed by the test suite under assessment to the total number of unique mutants [10]. This ratio
gives an evaluation of the fault revealing power of a test suite [111]. To calculate the mutation
score, one has to execute the whole test suite against every selected mutant.

In the thesis, we make use of mutation analysis. In chapter 4, the fault coverage of the
derived test suites is evaluated based on a code mutation. In Chapters 5 and 6, the established
models are mutated in order to support test generation, and experimental evaluations based
on mutation score metric are conducted in both chapters in order to prove the effectiveness of
the proposed testing approaches.

2.5 Black Box and White Box Testing

In testing, the black box approach is a technique for test case generation where test cases/se-
quences are constructed according to information derived from the specification or require-
ments without requiring knowledge of the internals of the system. In other words, a system
under test (SUT) is treated as a black box, i.e., we do not have any knowledge about the inter-
nal structure of the SUT. Only information about what inputs does the SUT expect and what
are the specified outputs is available, without knowledge of how the SUT derives those results.
This means Black Box testers do not have access to the source code and are oblivious of the
SUT architecture. Note that the requirements might be user-defined. For example, in Chap-
ter 4, while making use of this approach, the test cases are constructed based on the requests
of an end user (a network administrator/operator).

A Black Box tester typically interacts with an SUT through interfaces by providing inputs
(points of control) and examining outputs (points of observation) without knowing where and
how the inputs were operated upon. In Black Box testing, the SUT is exercised over a range
of inputs and the outputs are observed for testing correctness.

White box testing refers to the technique of testing an SUT with knowledge of the internals
of the system. White box testers have access to the source code and are aware of the system
architecture. A white box tester typically analyzes source code, derives test cases from knowl-
edge about the source code, and finally targets specific code paths to achieve a certain level
of code coverage. A white box tester with access to details about the SUT can readily craft
efficient test cases that exercise specific parts of the SUT for example. This allows the tester
to examine for example parts of a system that are ‘suspicious’, rarely tested or pointed out as

2.6. Chapter Conclusions 25

‘doubtful’ by an ‘expert’/’knowledgeable’ user.

Black box and white box testing approaches both choose test cases that investigate a par-
ticular characteristic of the system, however in white box testing, test cases can be generated
to test some implementation specific aspects of the system.

2.6 Chapter Conclusions

The aim of this chapter has been to discuss the backgrounds of SDN architectures and their
components on one hand and the basics of testing related notions on the other hand. Herein,
the details on SDN, verification and testing, model based testing, mutation analysis, and black
and white box testing approaches have been presented.

26

2. Background

State Of The Art

“Science arose from poetry. .. when times change the two can meet again on a higher
level as friends.”
— Johann Wolfgang von Goethe

Contents
31 Introduction ittt ittt eneennnn 28
3.2 Verification Techniques for SDN, 28
3.2.1 Off-Line SDN Verification Techniques 29
32.1.1 SATSolving 29
3.2.1.2 Symbolic Execution and SMT Solvers 31
3.2.1.3 Model Checking Over Temporal Logic 33
3.2.1.4 Deductive Verification and Theorem Provers 35
3.2.2 Run-Time SDN Verification 37
3.2.2.1 Application of ‘Off-line SDN Verification Techniques’
Online 37
3.2.2.2 Dependency Graph Traversal 39
3.2.3 Summary and Conclusions about Verification Techniques 41
3.3 Testing Techniquesfor SDN. 42
3.3.1 Log Analysis for Test Generation 42
3.3.2 ‘Specific’ Packets for Test Generation 44
3.3.3 (Semi)-Random Test Generation 44
3.3.4 Verification for Test Generation 46
335 ModelBased Testing 47
3.3.6 Summary and Conclusions about Testing Techniques 48
3.4 Chapter Conclusionsttt veeeneeenns 49

27

28 3. State Of The Art

3.1 Introduction

The process of verification/testing of an SDN architecture/component involves checking whether
the latter behaves in the way it was designed to behave. In this thesis, formal approaches for
testing SDN architectures/components are proposed. With this in mind, the first step is to
investigate the literature works that have contributed to developing techniques for SDN verifi-
cation and testing. This chapter reviews this field of research. At first, the current introduction
refers the reader to other related surveys in the field. Afterwards, the state of the art solutions
are presented with emphasis on their mode of operation, what objective they have addressed
and what solutions they have proposed.

It is worth mentioning that the literature study in this chapter does not include SDN security
and fault tolerance works. Indeed security and fault tolerance can be considered as an aspect
of overall network correctness or lead to network errors. However, we believe their related
techniques need independent reasoning and examination.

The general principles of SDN have been covered in several surveys that appeared as
early as 2012, e.g., [110, 84, 69, 167, 5]. However, in these works, the verification and testing
techniques applied to SDN have been briefly overviewed. A layered description of existing
work in this area has been covered in [156]. In the same line, some tools for SDN testing and
debugging have been covered in [65], [107], [55], [127], [110], and [84]. A brief overview of
the challenges related to SDN correctness has been provided in [72]. An insight into various
mathematical tools and verification methods used in the analysis of SDN has been covered in
[56]. A brief introduction of the works on the same topic has been presented in [124]. To the
best of our knowledge, the topic area of verification and testing SDN architectures and their
components has so far only been covered in detail by one survey. Li et al. [92] recently have
focused on the application of formal verification and testing methods to both traditional and
SDN architectures.

We note that in the majority of the aforementioned efforts, SDN verification and testing
techniques have either been barely discussed as part of the challenges SDN brings or have
been a part of a more wide study about networking in general. In this chapter, we present a
comprehensive survey of the research relating to this topic that has been carried out to date.
We analyze and summarize different solutions and categorize them w.r.t. the techniques they
involve.

The remainder of this chapter is structured as follows. Section 3.2 presents the first group
of existing solutions related to SDN verification. Section 3.3 is devoted to the group of existing
SDN testing techniques. Each of the aforementioned sections introduces the technique of
interest, investigates its application to SDN, illustrates it with an example and finally derives
some general conclusions. The Subsections 3.2.3 and 3.3.6 recapitulate the verification and
testing efforts and identify their limitations respectively. Finally, Section 3.4 summarizes the
analysis and concludes the chapter.

3.2 Verification Techniques for SDN

In this section, we summarize and classify existing SDN verification techniques. Subsequently,
we present two main categories namely Off-line and Run-time. To illustrate the underlying
mechanism behind a given technique, a simple example is usually provided based on the
network topology of Figure 3.1.

3.2.

Verification Techniques for SDN

29

Controller
Rules of §;:
Ryy: dst_ip=10.1.1.0/24 < Directto pi.
Host. . = 5
10'1.1‘0;24 _ Ry dst_!p—10.1.2.0/24 =>5 via port py,
=N Ry;:dst_ip=10.1.3.0/24 = 5, via port p5
% \&g--)

Host,
10.1.2.0/24

Rules of §,:

R;,;: dst_ip=10.1.2.0/24 - Directto p;,
R;;:dst ip=10.1.1.0/24 = 5, via port p,,
Ry;: dst_ip=10.1.3.0/24 = S, via port pa

“ Host;
10.1.3.0/24

Rules of 5;:

R;,:dst ip=10.1.3.0/24 = Directto ps,
R1y: dst_ip=10.1.1.0/24 = S, via port pa;
R,: dst_ip=10.1.2.0/24 = 5, via port p,

R, dst_ip=10.1.3.128/25 = Drop

Figure 3.1 — An example of an SDN network topology

3.2.1 Off-Line SDN Verification Techniques

These techniques are the most popular for checking the SDN correctness. They verify a fixed
configuration of the network by making the assumption that the forwarding behaviour remains
the same as far as the controller does not explicitly instruct new rules, update or remove rules in
the switch. In general, off-line verification techniques consider the global behaviour of the SDN
network topology as a snapshot of network state which they analyze and then the predefined
network properties are checked.

3.2.1.1 SAT Solving

SDN verification problem can be reduced to a satisfiability (SAT) problem and solved by SAT
solvers. SAT expresses the problem as Boolean expressions using propositional logic. The
interesting question here is: how does this technique reduce an SDN network verification
problem to a SAT one?

SAT solving has been applied to the data plane where in fact the forwarding rules in each
switch are represented by Boolean expressions. Next, the property to check (e.g., reachability)
is expressed a Boolean expression as well (see example). Note that usually a counterfactual
reasoning is used to enable a form of negation of a property in order to prove it holds. Once the
SDN verification problem is formulated using Boolean expressions, deciding the satisfiability of
such expressions, i.e., determining if there exists an assignment (or prove there does not exist)
of the Boolean variables that makes the expression logically True, allows to conclude whether
the property holds. This is done by feeding the resulting expression as input to a SAT solver. In
case the property is violated, a counterexample is returned. For example, to express the data
plane verification problem as a SAT one, the matching part of each rule can be encoded as a
Boolean expression in the following way. Consider the matching part of a given rule denoted
as (pr eViApyeVaA...Ap, €V,) where pi,pa,...,p, refer to the variables representing
the packet fields (e.g., MAC address, IP address, port number) and V1, V5, ..., V, refer to the
intervals wherein these variables can take values. For example, dst;, € 10.1.3.0/24 means
that the IP destination address is in the subnet 10.1.3.0/24. This matching part is represented
by a Boolean expression exp, = vary Avara A ... Avar, such that p; € V; is mapped to var;
that takes the value True if the value of p; is indeed in the interval V; and False otherwise. The
expression exp,, for a given assignment of truth values for the variables var;, results in one

30 3. State Of The Art

of the Boolean value True or False.

SAT solving technique has been first proposed by Mai et al. [97] who have shown how
network properties can be translated into SAT instances which are checked using a SAT solver
for detecting potential problems / issues in the data plane, in particular violations of properties
such as absence of routing loops and black-holes. The tool implementing this technique is
called Anteater. The experiments have shown that, for example for checking three standard
network invariants in a campus network, Anteater spends two hours. Then, McGeer [101] has
extended this idea to consider a network of OF switches as a network of Boolean expressions.
The network properties have been reduced to logic expressions over the variables of this
network. In the same line of applying this technique to the data plane, Zhang et al. [173] have
also formulated the verification problem as a SAT problem. Reachability and loops are the
properties checked in this work.

Example

Consider the network topology of Figure 3.1 and the SDN verification problem is to check
reachability between S and S3. This example is inspired by the paper of Mai et al. [97].
The matching part of each rule in each switch is encoded as a Boolean expression (in our
example, for simplicity, each Boolean expression includes one Boolean variable, indeed here
we use only the destination IP addresses). Rj, of switch §; that forwards packets to §; is
represented as the Boolean expression exp = var; where var; is a Boolean variable that
represents dst;, € 10.1.3.0/24. All the other rules are encoded similarly.

+ The Boolean expression that represents the forwarding between a host and a switch or
between a switch and a host is expros,s;, = €xXps;Hos;; = VarHos,s; Where vargg,.s; is
a Boolean variable that represents dst;, € 0.0.0.0/24.

+ The Boolean expression that represents the forwarding between two switches (e.g.,
S1 and 8y) is exps,s, = vars,s, where vars,s, is a Boolean variable that represents
dst;, € 10.1.2.0/24. The Boolean expressions that represent the forwarding between
St and S3, > and S1, $7 and S3, S5 and Sq, S3 and S are encoded similarly.

The resulting Boolean expression that expresses one possible path from Host; to Hosts is
then varpsi s, Avars,s, Avars,s, Avars,oss;, another path can be expressed by varg,s, s, A
vars,s, A vars,Hesr; and consequently to check the reachability between Hosty to Host, it
suffices to feed the Boolean expression depicted in Equation 3.1 to a SAT solver that will try
to find an assignment (if it exists) that makes Equation 3.1 evaluate to True.

€XPHost|Hostz :(VarHostlSl A varss, A vars, s, A VarS3HDSl‘3) \4

(3.1)
(varH()Sllsl A Va”Sl S3 A varS3HOSl3)

In this simple example, the Boolean expression depicted in Equation 3.1 is satisfied, hence
the property holds.

SAT solving technique determines whether a Boolean formula expressing SDN components
and properties is satisfiable. It has mostly been applied to the data plane layer and has been
used in checking properties such as reachability and loops.

3.2. Verification Techniques for SDN 31

3.2.1.2 Symbolic Execution and SMT Solvers

As any verification technique, symbolic execution [83, 21] checks whether certain properties
can be violated by the system. This is done by simultaneously exploring multiple paths that
the system could take under different inputs. The system can take symbolic (rather than con-
crete) input values. The execution is performed using a symbolic execution engine. For each
explored path, the engine maintains two important pieces of information: a logic formula that
describes the conditions satisfied by the branches taken along that path, and a symbolic vari-
able, say store that maps variables to symbolic expressions or values. The execution of a
‘oranch’ updates the formula, while ‘assignments’ update the symbolic variable store. A sat-
isfiability modulo theories (SMT) solver is then used to verify whether there are any violations
of the property along each explored path and if the path is feasible, i.e., if its formula can be
satisfied by some assignment of concrete values. In the following, we investigate how such a
technique is applied to solve an SDN network verification problem.

In fact, symbolic execution technique models the forwarding behaviour of an SDN architec-
ture (or component) by describing the behaviour of each forwarding table (and hence rules).
The packet header fields (e.g., IP address, MAC address) are expressed symbolically where
each variable representing a field is symbolic, i.e., assigned a set of values that is specified by
an associated constraint. To symbolically execute the whole model, the symbolic engine fol-
lows multiple branches on each encountered rule. It exercises all possible paths and records
the constraints of the symbolic input on each path. The constraints define which values of the
input vector lead to this path. Then, the path constraints are solved using a constraint solver
determining if the property is violated. For example, when switch §; of the network in Figure 3.1
receives a packet, it is handled according to its table. However because the packet fields do
not have a concrete value, no specific rule is applied to it, instead, the approach branches
out taking into account all possibilities of actions of S;. S; has three rules, namely: R;; that
forwards packets to Host;, Ry, that forwards packets to S> and R;3 that forwards packets to
S3. In this case four branches are considered; the first one is when R is applied, the second
is when R, is applied, the third one is when Ry3 is applied and the last one is when S; sends
Packet_Out message to the controller without applying any rule. Suppose that Host; wants to
send a packet pkt to Host,, this can be expressed by dst;,(pkt) == ip(Host,) (a). When pkt
arrives at Sy, the expression from the applied rule in the first branch is dst;,(pkt) == ip(Host;)
(b). Constraint solvers are used to solve these expressions along each path. In this example,
(a) and (b) are not satisfied simultaneously so the path that takes the first branch is not feasible.

This technique has first been introduced by Dobrescu et al. [43] where the pipeline pro-
cessing of a switch is modelled as a tree that consists of subtrees, one per table, and the
property to verify is crash-freedom. The model describing the behaviour of a switch is com-
posed of models describing the behaviour of each of its tables. A table model takes as input a
symbolic vector representing the fields of a network packet and outputs either the same vector
or a modified version of it, which in return is fed to the next table in the pipeline. A symbolic
vector is a vector of symbolic variables. Dobrescu et al. have extended this work in [42] where
they have added more properties to be checked. Panda et al. [114] have applied this approach
to the data plane as well. In their work, network properties such as reachability and isolation
have been expressed using formulae that imply constraints on data flow within the model, then,
the SMT solver Z3 [37] has been used to check if the specified properties hold. Wu et al. [153]
have followed the same approach to generate a model of the switch from its source code, the
resulting model can then be used to check a set of network properties. Yakuwa et al. [158]
have applied this approach to the SDN network modelled as a transition system and the SMT
solver Yices has been used to execute the paths and solve the constraints.

In the same line, Kazemian et al. [77] have proposed to simulate the network model using

32 3. State Of The Art

‘symbolic’ variables instead of concrete packet field values at the inputs of the network model
(the space of all possible packet headers localized at all possible input ports in the network
called ‘the network space’). The switches are modelled as transfer functions which map header
head arriving on port port to (header, outputport). During this process, expressions based
on the initial symbolic variables and the functionality of each of the switches are derived. The
set of expressions represents implicitly the set of states that are reachable by the set of packets
with an appropriate set of inputs. Therefore, this allows the behaviour of the network (in a
specific state) to be verified with a single execution step, simultaneously under all possible
input packets. This process is called ‘Header Space Analysis’ (HSA). Now for a given property
such as reachability, HSA computes it from source Host; to destination Host, via switches
S1,8,...,5,-1 as follows. First, a header space region at Host is created representing the
set of all possible packets Host; can send: a symbolic representation of packet fields. Next,
switch §;’s transfer function is applied to the representation of the packet to generate a set of
regions at its output ports, which in turn are fed to §;,1’s switch transfer function. The process
continues until a subset of the flows that left Host| reaches Host,. Wang et al. [150] have
applied the HSA approach for checking SDN firewall applications.

Canini et al. [26, 25] have modelled an SDN controller event handler application as a
transition system. At each state, the system exposes a set of possible transitions, each of
which evolves the system from one state to another. To check the application correctness, the
approach checks after traversal of each transition that predefined network properties (specified
as Python code snippets, e.g., loops and black-holes) hold in the current state. To accomplish
this, the resulting transition based model is subject to checking using symbolic execution where
the latter involves symbolic packets (defined as a group of symbolic integer variables that each
represents a header field). The algorithm that checks if the property holds in each state of
the model runs as follows. At any given state, each transition (modelling the event handler
application) is ‘symbolically’ executed. This allows the set of packets that exercise all code
paths in the event handler to be identified. For every feasible path, the symbolic execution
engine finds an equivalence class of packets that enable such a path. For each equivalence
class, one ‘concrete’ packet is chosen which will enable the next transition to the next state
of the controller application under verification. Therefore from each state, there are as many
transitions as the number of equivalence classes. In summary, while checking the properties,
the state space is exploded by ‘symbolically’ executing the transitions. Experimental results of
the work have shown that this approach (implemented as a tool called NICE) can be effective
only for relatively small networks due to potential state explosion.

Example

This example is motivated by Dobrescu et al. [43]. Let us suppose that the switch S} of Fig-
ure 3.1 is composed of two tables 71 and T,. The models of these tables and their correspond-
ing trees are shown on the left part of Figure 3.2. The resulting tree is shown on the right side.
In the first step of the verification of S|, each table is verified individually. In the second step,
the table is checked as a part of the pipeline. The verification in the first step is done as follows.
Each table model is executed with symbolic input (Pkt in this example) and the segments that
may cause the property to be violated are marked as ‘suspect’. At the end of this step, a con-
straint and a symbolic variable store are obtained for every feasible segment, e.g., for seg
the constraint is ¢; = (Pkt < 0) and the symbolic variable store is sym (Pkt) = Pkt,,; < 0,
for segs, the constraint is c3(Pkt) = (Pkt < 0) and the symbolic store is sym3(Pkt) = crash.
Segment seg3 causes a crash, it is marked as suspect. The verification in the second step
is done as follows. Each path p; (a sequence of segments seg;) that includes at least one
suspect segment is checked. In this case, the paths that include the suspect segment are p

3.2. Verification Techniques for SDN 33

and p4. The resulting constraint at py is ¢, = (c1(Pkt) A c3(symi(Pkt))) = (Pkt <0)A (0 <0)
which is always False and thus p; is not feasible, similarly for p4. However, all feasible paths
consist of non-suspect segments (never crash), therefore the property of crash-freedom holds
in switch Sj.

Pkt_out Ty (Pkt): Pkt_out 5, (Pkt):
If (Pkt< 0) then = : Pkt_out'& Ty(Pkt)
Pkt_out €0 & N Pkt_out € T>(Pki_out’)

Else return Pki_out

Pkt_out € Pkt return 0 return Pkt

End If segy Seg
return Pkt_out

Pkt_out T; (Pkt):
assert Pkt =0
If (Pkt< 10) then
Pkt_out € 10
Else
Pkt_out € Pkt

End If return 10 return Pkt
return Pkt_out Segy segs

P
b
45

Figure 3.2 — A symbolic execution encoding of the switch S| of the topology in Figure 3.1

Example adapted from Dobrescu et al. [42]

Not only has symbolic execution technique been applied to the data plane layer but also
to the control plane (e.g., Canini et al. [26, 25]) and to the whole architecture as well (e.g.,
Yakuwa et al. [158]). Symbolic execution technique has been employed to check properties
such as reachability, absence of loops, black-holes and crash-freedom.

3.2.1.3 Model Checking Over Temporal Logic

Model checking over Temporal Logic is a verification technique that provides an algorithmic
means of determining whether an abstract model (representing, for example, a hardware or
software design) satisfies a formal specification expressed as a temporal logic formula. More-
over, if the property does not hold, the method identifies a counterexample execution that
shows the source of the problem [31]. In the following, we discuss how such technique is
adopted to solve an SDN verification problem.

In fact, the SDN architecture/component in this case is represented as a finite state model
and the properties to be verified (e.g., reachability, absence of black-holes, absence of loops,
OF rule consistency, etc.) as temporal logic formulae, then a checking if the properties hold
for the resulting model is performed. To illustrate this technique, let us use Computation Tree
Logic (CTL) to model an SDN architecture as a transition system where a state of the net-
work can be specified by the pair (pkt, switch) such that pkt denotes the packet and switch
denotes its location. The transitions between the different states can be specified by the
rules installed in each switch of the topology. For example, the CTL formula dst;,(pkt) =
10.1.3.0&switch = S is satisfied by all packets with IP destination address 10.1.3.0 which
are located in the switch S;. The formula AF(pkt,switch = S3) states the formula (pkt,
switch = §3) holds at some points in the future. In this case, packets can always reach S3
from their current location. The formula (pkt, switch = S;) = AF(pkt,switch = S)) states
that all packets at switch S» must eventually be forwarded to S;. The different rules in each
switch of the network as well as the property can be expressed using CTL in this way and
then be fed to a model checker. If the model violates the property, the model checker returns
a counterexample.

For checking the forwarding behaviour of a switch or the whole data plane, the rules have
been modelled as a state based system and the properties have been expressed either in LTL
as done by Peresini et al. [116] or in CTL as performed by Gutz et al. [61] and Al-Shaer et al.

34 3. State Of The Art

[136, 135]. Model checkers such as SPIN [67], JPF [149], SMV, and NuSMV [28] have been
used.

For checking the control plane, certain applications of the controller have been modelled
either as a finite transition system or a timed automata (TA) [9] as performed by Croft et al.
[34]. Properties have been expressed for example in LTL as done by Skowyra et al. [140],
or CTL as done by Kim et al. [82]. Also model checkers such as SPIN, NuSMV and Alloy
(Nelson et al. [108, 109]) have been used.

For checking the whole SDN architecture, different models have been proposed. A transi-
tion system has been adopted by Majumdar et al. [98] and Skowyra et al. [141]. Properties
such as reachability and black-holes have been expressed using LTL. For example, GO is a
formula where @ is a formula over a set of atomic propositions and G is the operator of LTL
that means ‘globally’. Majumdar et al. have developed a model checker called ‘Kuai’ to solve
the verification problem. A network of finite timed automata (parallel composition of timed
automata) [8] has been used by both Kang et al. [76, 75] and Podymov et al. [123]. The
properties have been expressed using TCTL logic, i.e., CTL augmented which allows consid-
ering several possible future from a state of the system. VERSA [30] and UPPAAL have been
employed. Albert et al. [4] have encoded an SDN architecture into a specific language called
Abstract Behavioral Specification [73], then model checking has been used to check proper-
ties including rules consistency and absence of loops. Zakharov et al. [165] have proposed a
finite automata based model to capture the behaviour of an SDN architecture. The reachability
property has been specified using temporal logic. Shkarupylo et al. [139] have modelled an
SDN architecture using the Temporal Logic of Action (TLA) formalism [90]. The reachability
property has been verified. A TLA model checker has then been used in two different checking
modes namely breadth-first search (BFS) and depth-first search (DFS). Yuzhuang et al. [164]
have composed ‘already’ verified SDN components (separately) and have formulated the net-
work properties such as reachability and deadlock to verify them on the resulting model. The
result is subject to be verified by a model checker.

Example

We consider the network topology in Figure 3.1 and the property to check is reachability from
Host) to Host;. We provide a simple example showing the reduction of the problem of the
verification of this topology into a model checking problem. The example is depicted by Equa-
tion 3.2 (using CTL). The initial state represents all possible packets are at host Host;. The
forwarding rules on switches moving packets between ports can be viewed as state transitions.
For example, the first formula states that all packets with IP destination address 10.1.2.0 which
are located in the switch §; must eventually be forwarded to S>. The model and property can
be input to a model checker (e.g., SMV). If the latter returns pass, the property holds on the
model. If the model violates the property, a counterexample is returned. In this simple example,
the model satisfies the property.

(pkt,Hosty) (Initial state) Can packets from Host reach Hosts ?
(pkt,Host;) = (pkt,S)) Check:
(dstip(pkt) =10.1.2.0 & switch =S8) = AF(pkt,switch=S,) EF(pkt,S3)?
(dstip(pkt) =10.1.3.0 & switch =S8) = AF(pkt,switch = S3) E means that 3 at least one path starting from
(dstip(pkt) =10.1.1.0 & switch =S,) = AF(pkt,switch = Sp) the current state where the property holds.
(dstip(pkt) =10.1.3.0 & switch =S,) = AF(pkt,switch = S3) F means that the property eventually has to
(dstip(pkt) =10.1.1.0 & switch=S3) = AF(pkt,switch=S)) hold (somewhere on the subsequent path).
(dstip(pkt) =10.1.2.0 & switch=S3) = AF(pkt,switch=5,)

(3.2)

3.2. Verification Techniques for SDN 35

Model checking technique has been applied to the data plane, control plane and the whole
architecture. A variety of properties including reachability, loops and black-holes have been
checked using such technique.

3.2.1.4 Deductive Verification and Theorem Provers

Similar to model checking, theorem proving technique expresses the properties to be verified
as logic formulae, then axioms and inference rules serve to derive new formulae from existing
ones. The technique checks whether the property is valid with the axiom and derivation rules
[36]. How this technique is applied to solve an SDN verification problem will be our main focus
in this subsection.

We provide a simple example of theorem proving encoding illustrating how this technique
can be applied to an SDN architecture/component in the example below.

A first group of works applies this technique to SDN by expressing both the SDN architec-
ture and the property to be checked using a set of formulae in a given logic. Then the relation
between these two entities is verified as a proof using a theorem prover. Ball et al. [14]
have modelled the controller events (e.g., the receipt of a packet from a switch) and switch
events (e.g., executing a rule and forwarding an incoming packet to a certain port (or dropping
it)) as well as desired properties using first-order logic, and then have implemented classical
Floyd-Hoare-Dijkstra deductive verification. The tool implementing their work is called VeriCon
[14]. Examples of properties include the absence of black-holes. Anderson et al. [11] have
described network applications as functions using packet histories. Then the Coq proof assis-
tant [15] has been used to prove their correctness. The checked properties are reachability
and traffic isolation. Attiogbe [12] has proposed an approach to build correct SDN components
from the refinement of a global formal model of an SDN architecture, using the decomposition
of the global model into the target components. The whole SDN architecture has been viewed
as a discrete event system and modelled using set theory. Then, Rodin [47] prover has been
used to establish model consistency. Examples of checked properties include ‘the data pack-
ets received by any switch are sent by the controller or by the other switches’. Rodin supports
LTL, and CTL for expressing properties with the standard modal and temporal operators.

For data plane verification, a similar approach has been developed by Chen et al. [27]. The
approach uses a declarative language to describe the OF functionalities. Network properties
such as reachability have been expressed using LTL and decomposed into global and local
properties. The verification steps include specifying the global and local properties, generating
lemmas for proving that local properties are satisfied given the global ones.

A second group of works employs theorem proving technique by developing ‘new releases’
of the SDN component to be verified. In this way, the SDN component under verification is
verified in advance ‘once and for all’ before deployment. For example, McGeer [100] has pro-
posed a new protocol (based on the OF protocol) that is proved. The author has demonstrated
formally the correctness of this protocol based on theorems and lemmas. In particular, he has
proven that only a single set of rules is present on a switch at any time. Guha, Reitblatt and
Foster [60] have also developed a verified SDN controller in the Coq proof assistant [15] and
have proven it correct against a formal specification and a detailed model of an SDN architec-
ture. Gordon Stewart [144] has built upon Guha et al. work by providing a suite of tools for
verifying properties that are input to Guha et al.’s verified controller.

Example

To illustrate an example of the theorem proving technique operating on the SDN topology
of Figure 3.1, we use the propositional logic to model the forwarding behaviour (motivated

36 3. State Of The Art

by Ball et al. [14]) and we prove that the reachability property from Host; to Hostz holds
(Equation (u)). Let S; denote a switch, p;; a port of S; (k is the number of ports in S;) and
Host; a host. link(S;, pij, Host;) denotes that host Host; is directly connected to switch S;
via port p;;. link(S;, pix, pjr.S;) denotes that port p;; of switch §; is directly connected to port
pjk of switch §;. We propose to use reductio ad absurdum strategy for proving. Some of the
axioms are depicted as follows:

link(S1, p11, Hosty) (a) link(S1, p12, P22, 52) (d)
link(S2, p21, Host) (b) link(S2, p23, P32, S3) (e)
link(S3, p31, Hosts) (c) link(S1, p13, P33, S3) (f)
Si.forwardTab(dst;,(pkt) = 10.1.1.0, p11) S3. forwardTab(dst;,(pkt) = 10.1.1.0, p31)
(9) (m)
Si.forwardTab(dst;,(pkt) = 10.1.2.0, p12) S3.forwardT ab(dst;,(pkt) = 10.1.2.0, p3)
(h) (n)
S1.forwardTab(dst;,(pkt) = 10.1.3.0, p13) S3. forwardTab(dst;,(pkt) = 10.1.3.0, p32)
(i) (0)
link(S1, p13, P33, 53) A S1.send(dstip(pkt) = 10.1.3.0,p13) = S3.receive(dst;,(pkt) = 10.1.3.0, p33)
(P
link(S3, p31, Host3) A S3.send(dst;p(pkt) = 10.1.3.0, p31) = Hostz.receive(dst;p(pkt) = 10.1.3.0, p31)
(@

link(Hosty, p11,81) A Hosty.send(dst;,(pkt) = 10.1.3.0,p11) = Sy.receive(dst;p(pkt) = 10.1.3.0,p11)
(r)
Si.receive(dst;,(pkt) = 10.1.3.0, p11) A S1. forwardTab(dst;,(pkt) = 10.1.3.0, p13) = Si.send(dst;p(pkt) = 10.1.3.0,p13)
(s)
Sz.receive(dst;,(pkt) = 10.1.3.0, p33) A S3. forwardTab(dst;,(pkt) = 10.1.3.0, p31) = S3.send(dst;p(pkt) = 10.1.3.0,p31)
®
(3.3)

In order to prove the formula in Equation (u), we prove the contrapositive, that is the formula
in Equation (v).

Hosty.send(dst;,(pkt) = 10.1.3.0,p11) = Hostz.receive(dst;,(pkt) = 10.1.3.0, p31)
(u)

—Hostz.receive(dstp(pkt) = 10.1.3.0,p31) = —Host|.send(dst;,(pkt) = 10.1.3.0, p11)
(v)

To perform such a proof, we use the resolution inference rule until either we can derive
Equation (v) or we cannot apply the inference rule anymore.
First the implications in Equations (p), (q), (), (s), and (t) can be written as follows:

=link(S1, p13, p33,S3) V =S1.send(dstip(pkt) = 10.1.3.0, p13) V S3.receive(dstip(pkt) = 10.1.3.0, p33)
(aa)

=link(S3, p31, Host3) V —S3.send(dstip(pkt) = 10.1.3.0, p31) V Hosts.receive(dst;,(pkt) = 10.1.3.0, p31)
(bb)

=link(Hosty, p11,S1) V ~Hosty.send(dst;,(pkt) = 10.1.3.0, p11) V Sy.receive(dsti,(pkt) = 10.1.3.0, p11)
(cc)

=S1.receive(dstip(pkt) = 10.1.3.0, p11) V =S;. forwardT ab(dst;,(pkt) = 10.1.3.0, p13) V Si.send(dstip(pkt) = 10.1.3.0, py3)
(dd)

—83.receive(dstip(pkt) = 10.1.3.0, p33) V =S3. forwardT ab(dst;,(pkt) = 10.1.3.0, p31) V S3.send(dst;,(pkt) = 10.1.3.0, p31)
(ee)
(3.4)

We can apply resolution inference rule to Equations (aa) and (f), and by resolving away
link(S1, p13, P33, 53) and =link(S1, p13, p33, S3), we get Equation (aaa).

=S1.send(dst;p(pkt) = 10.1.3.0, p13) V S3.receive(dst;,(pkt) = 10.1.3.0, p33)
(aaa)

3.2. Verification Techniques for SDN 37

By applying also resolution inference rule to Equations (bb) and (c), we get Equation (bbb).

—S3.send(dstip(pkt) = 10.1.3.0, p31) V Hostz.receive(dst;,(pkt) = 10.1.3.0, p31)
(bbb)

Similarly for Equations (cc) and (a), we get Equation (ccc).

—Hosty.send(dst;,(pkt) = 10.1.3.0,p11) V Sy.receive(dst;,(pkt) = 10.1.3.0, p11)
(cce)

Also the resolution rule applied to Equations (bbb) and (ee), we get Equation (ddd).

Hosty.receive(dst;,(pkt) = 10.1.3.0, p31) V =S3.receive(dst;,(pkt) = 10.1.3.0, p33)V
=S3. forwardTab(dsti,(pkt) = 10.1.3.0, p31)
(ddd)

Similarly for Equations (ddd) and (m), we get Equation (eee).

Hosty.receive(dst;p(pkt) = 10.1.3.0, p31) V =S3.receive(dst;,(pkt) = 10.1.3.0, p33)
(eee)

And finally for Equations (eee) and (aaa), we get Equation (fff) which is equivalent to Equa-
tion (v) and thus the property is proven.

Hostz.receive(dsti,(pkt) = 10.1.3.0, p31) V =Sy .send(dst;p(pkt) = 10.1.3.0, p13)
(fff)

Theorem proving technique has been applied to both the data plane and control plane
layers. It can be used in checking a variety of properties such as reachability and the absence
of black-holes. When applied to SDN, interactive theorem provers (e.g., Coq) that demand
explicit user guidance in the proof have been utilized.

The next section examines and categorizes some of the run-time verification methods that
have been applied to SDN architectures/components.

3.2.2 Run-Time SDN Verification

Run-time SDN verification seeks to verify the properties of the network in the presence of ar-
bitrary updates from the controller. That is when rules’ insertion, modification, and deletion
are performed by the controller and thus the network changes over time. The solutions devel-
oped to solve this issue either extend the off-line verification or rely on traversal of dependency
graphs modelling the SDN network topology.

3.2.2.1 Application of ‘Off-line SDN Verification Techniques’ Online

Several researchers have applied ‘Offline SDN verification techniques’ presented earlier in
Subsection 3.2.1 and have added a solution to sketch the motion of the rules’ updates in
time in order to verify the properties guaranteeing that every packet traversing the network
is processed by exactly one consistent global network configuration/rule. Depending on the
proposed solutions to handle the updates, we classify the literature contributions using this
technique into three groups. The first group encloses the works proposing to revise the model
after each update and then apply off-line verification again. The second group encloses the
works proposing a modelling language that incorporate the dynamic of the updates. Finally,
the last group encompasses the works proposing the construction of a graph modelling the
network, the revision of this graph for each update and the application of one of the off-line
verification technique on the graph to check the property of interest.

In the first group, model checking and theorem proving techniques have been used to
check properties of static network configurations before and after the updates. To this end,

38 3. State Of The Art

a ‘monitor’ listens for incoming updates. Once a change happens, the model is updated ac-
cordingly and the off-line technique is run again over it. For example, Hussein et al. [71] have
used the model checker UPPAAL in this way to verify that no violations would occur, had the
rule update been installed in the switch. Examples of verified properties include loops and
the time delay for a controller to update a switch versus the switch to forward a packet. Sethi
et al. [133] have also used this method where a network model and the property have been
specified using propositional logic formulae. The model has been incrementally constructed
based on an abstraction that consists in focusing on the behaviour of the network in presence
of one packet and abstracting away all the rest. At a given time, all the packets (except one)
in the data plane are considered as the ones that trigger updates to the network state as they
are forwarded as events to the controller. Only one packet at a time is then to be forwarded in
the data plane. The switch table can then be abstracted to contain only rules about this packet
and only updates corresponding to these rules are incorporated in the model. Murphi model
checker [41] has been run over the resulting model. A combination of model checking and
theorem proving techniques has been used in this first group as well, as related in the work
by Reitblatt et al. [125]. In this case, a mathematical model that sketches the behaviour of
the SDN architecture has been formalized and proven in the Coq proof assistant. Then, prop-
erties such as loops have been expressed using CTL. To show that the model still satisfies
the desired properties after each update, NuSMV [28] model checker has been run over the
updated model.

The second group of works proposes to handle dynamic changes by adding semantics
to the used modelling language. This offers the ability to push new rules without modifying
the checking engine. After the model is established, symbolic execution/SMT for example, as
an off-line technique, can be applied. This has been done by Lopes et al. [95] where a given
language (Datalog) has been augmented to allow specifying network invariants and model the
forwarding behaviour of the changing network. Their solution has been implemented as an
extension of the SMT solver Z3 where a number of optimizations have been added. Another
work in this group has been proposed by Reitblatt et al. [126]. To guarantee that every packet
exclusively uses either the old rule or the new rule and not some combination of the two, an
abstraction mechanism has been incorporated in the modelling language, and then off-line
model checking has been applied. The main idea behind the abstraction consists in stamping
each packet with a version number at its ingress switch indicating which rule set should be
applied.

The third group of works suggests the construction of a graph modelling the network topol-
ogy, the revision of the graph upon a rule update, and the application for example of symbolic
execution/SMT by simulating the resulting graph over symbolic packets. This has been done
by Kazemian et al. [78] as an extension of their previous work on off-line symbolic execution
technique [77]. A ‘plumbing graph’ which captures all possible paths of packets through the
data plane has been constructed. Nodes in the graph correspond to the rules and directed
edges represent the next hop dependency of these rules. A rule is represented as a tuple
(match,action). A rule Ry; has a next hop dependency to rule R if (a) there is a physical
link from Rp;’s switch to rule Ry;’s switch; and (b) the domain of R,; has an intersection with
range of R;1. The domain of a rule is the set of headers that match on the rule and the range
is the region created by the action transformation on the rule’s domain. A directed edge from
rule Ry to Ry has a filter which is the intersection of the range of Ri; and the domain of
R>>. When a flow passes through a directed edge, it is filtered by the corresponding filter. A
filter represents all packet headers at the output of R;; that can be processed by Ry;. In re-
sponse to an update, nodes are added/updated in the plumbing graph. The work by Shelly
et al. [138] also fits in this third group. They have built upon the work of kazemian et al. [78].

3.2. Verification Techniques for SDN 39

The property to be checked is the capability of the controller to restore reachability in the pres-
ence of a link failure provided that the physical graph of the network is still connected. The
approach is based on computing failure scenarios (a scenario represents a set of links to fail
simultaneously) that maintain the reachability. For every link e, it checks if the network is still
connected without e, then, if yes, fails the physical link e and see if forwarding is still possible
between all nodes; if not, it reports the link failure. For this purpose, a monitor is interposed
in the southbound interface. It computes the failure scenarios and schedules them for execu-
tion while monitoring the network. After a failure scenario is executed, the verification engine
(simulation of the plumbing graph by symbolic packets [78]) verifies that the reachability still
holds.

Off-line verification techniques presented earlier have been applied to determine whether
the behaviour of the SDN architecture/component under verification satisfies the desired prop-
erties in the presence of updates. This approach has been applied to both data and control
planes. It has checked for example reachability, loops and rules’ consistency properties.

3.2.2.2 Dependency Graph Traversal

This technique reduces the SDN verification problem to the traversal of a ‘dependency’ graph
modelling the architecture/component. A dependency graph is a directed graph where vertices
may represent SDN components (e.g., switches) or rules in a switch, and edges represent
the dependency relation between these entities (components, rules). To capture the ‘live’
network activity, the dependency graph is constructed using a monitor placed between the
controller and the data plane. Two main solutions have been proposed depending on how this
graph is built. In the first solution, the graph is pre-built, then, after each update, the graph
is revised correspondingly, and the verification process is relaunched. The second solution
builds the dependency graph on the fly. We divide the works using this technique into two
groups correspondingly.

In the first group, Zeng et al. [170] for example have proposed a network policy checker
called ‘Libra’. To capture changes in the rules, the checker uses parallel processing to record
network event streams from the controller. A dependency graph has been constructed based
on all rules and recorded events. The nodes represent (local_switch,remote_switch) pairs
and the edges represent the forwarding relationship. Then a MapReduce [38] checker has
been used in order to check network properties based on the pre-built graph. In fact, Libra
partitions the graph into several sub-graphs corresponding to each subnet, then the properties
have been checked on those sub-graphs in parallel, using a graph library. Another example
of work in this first group has been related by El-Hassany et al. [64] where a happens-before
graph that captures the ordering of events (e.g., OF messages, packets) has been pre-built.
The violation of a property has been defined as the result of events concurrency (race) error.
Filters have been defined that can query the graph to check for properties violations. For
example, a ‘commutativity’ filter detects whether changing the order of two events affects the
network state. Example of a detected violation concerns races occurring when the controller
installs a set of rules and then sends a packet matching these rules without waiting for them
to be committed first. In the same line, Zhang et al. [175] have proposed a ‘Quantitative
Forwarding Graph’ (Q F'G) that represents how packets are forwarded. Ina Q F G, each node is
denoted as a tuple (H, D, S, G), representing any packet in the packet header space H arriving
at a network device D, when the network device is at a particular state S with performance G.
An edge pointing from one node to another means the modification of a packet. Whenever the
rules are updated, it is easier to find the affected QF G nodes as well as their dependencies,
thus, the verification can be limited to only those affected flows. To check reachability for

40 3. State Of The Art

example, a BFS is run on the QFG.Horn et al. [68] have constructed a directed edge-labelled
graph from the rules based on equivalence classes ECs of packets (EC are defined as the
set of packets that are treated the same across the data plane). The edges in this case are
labelled by the matching/action part of a rule. An insertion of a new rule for example results
in the creation of a new edge labelled with its matching part, and existing edges are updated
correspondingly. The verification of reachability is also performed by a traversal of the graph.

The second group of work constructs the dependency graph on the fly while the updates
are happening and checks if the property holds by a traversal of such graph. In this context,
khurshid et al. [80, 81] have used a multidimensional prefix tree (trie) structure from which
a dependency graph is generated each time an update from the controller is perceived. A
trie is an ordered tree that associates the set of packets matched by a rule with the rule itself.
Each level in the trie corresponds to a specific rule’s field. Each node has three branches
representing the possible values that the rule can match (0, 1, and * (wildcard)). The trie can
be seen as a composition of several sub-tries, each corresponding to a packet header field. A
path from the trie’s root to a leaf of one of the bottom most sub-tries thus represents the set of
packets that a rule matches. Each leaf stores the rules that match that set of packets, and the
devices at which they are located. When a new rule is to be inserted, a traversal of the trie is
performed to find all the rules that intersect it. These rules collectively define a set of packets
that could be affected by the incoming rule. This set will generate equivalent classes ECs of
packets. By traversing the trie for each EC, a dependency graph is generated where a node
represents an EC at a particular device, and a directed edge represents a forwarding decision
for a particular (EC, device) pair. To check reachability for example, a traversal of the resulting
dependency graph (e.g., using DFS) is effected. Yang et al. [159] have modelled each rule by
a predicate and an action. The variables of the predicate are packet header fields. The data
plane is modelled as a directed graph where nodes represent switches and each directed edge
represents the link from the output port of one switch to the input port of another. Each input
port is guarded by a list of rules predicates and each output port is guarded by the predicate
of the matching rule in that node followed by a list of rules predicates of the next node. Any
packet can pass through if a predicate is True. Reachability in presence of an update has
been checked by constructing a tree on the fly. The reachability tree from a given port to all
other ports is computed by performing a DFS on the graph . Beckett et al. [16] have extended
the work of Khurshid et al. [80, 81] to verify the network not only in the presence of updates
but also if the verification conditions change during the verification process, that is, when the
verification is suspended temporarily to add some changes and then is resumed. For example,
the programmer may want to suspend the verification temporarily to add a set of hosts to the
topology. Checking if the property holds in this case is performed using the same graph based
verification solution of [80, 81] augmented with the traversal of a new data structure, namely
a tree representation of regular expressions. In fact, the matching part of a rule as well as
the property to be checked are modelled as regular expressions describing the possible paths
that packets matching the condition may traverse. The regular expression formulae are then
represented as a tree. A node represents a ‘forall’ quantifier in the formula whose children
correspond to set elements, and whose result is the conjunction of the results of each of its
children. A leaf node represents a concrete property that is checked by the solution proposed
in [80, 81]. A truth value stored at each node represent the validity of the corresponding sub
formula. Afterwards, the result is propagated up to the parent of the node.

To capture the dynamic of rules updates, the technique based on dependency graph traver-
sal models an SDN network topology as a graph that is updated accordingly and the verification
problem is reduced to the traversal of such graph. The technique has been applied to the data
plane and can be used to check mainly reachability, loops and rules’ consistency properties.

3.2. Verification Techniques for SDN 441

3.2.3 Summary and Conclusions about Verification Techniques

Fig. 3.3 summarizes the taxonomy of the different verification techniques used in the literature
for SDN.

[SDN Verification Techniques]

{ Off-line SDN verification J { Run-time SDN verification]
SAT solving Applying ‘off-line SDN veri-
— Mai et al. [97], McGeer fication techniques’ online
[101], Zhang et al. [173] — Hussein et al. [71], Sethi et al. [133], Reitblatt

et al. in [125], Lopes et al. [95], Reitblatt et al.

Symbolic execution and SMT solvers
y [126], Kazemian et al. [78], Shelly et al. [138]

Dobrescu et al. [43], Dobrescu et al. [42],

Stoenescu et al. [146], Stoenescu et al. Dependency graph traversal
7 [145], Wu et al. [153], Panda et al. [114], Zeng et al. [170], El-Hassany et

Kazemian et al. [77], Wang et al. [150], L al. [64], Zhang et al. [175], Horn

Canini et al. [26, 25], Yakuwa et al. [158] et al. [68], khurshid et al. [80, 81],

Yang et al. [159], Beckett et al. [16]

Model checking over Temporal Logic
peresini et al. [116], Gutz et al. [61], Al-
Shaer et al. [136], AlShaer et al. [135],
Shkarupylo et al. [139], Ruchansky et al.
[129], Skowyra et al. [140], Nelson et al.

[108], Nelson et al. [109], Croft et al. [34],
Kim et al. [82], Majumdar et al. [98], Kang
et al. [76], Kang et al. [75], Podymov et al.
[1283], Albert et al. [4], Zakharov et al. [165],
Yuzhuang et al. [164], Skowyra et al. [141]

Deductive verification and theorem provers
Guha et al. [60], Stewart et al. [144], Ball
et al. [14], Chen at al. [27], Anderson
et al. [11], Attiogbe [12], McGeer [100]

Figure 3.3 — SDN verification techniques taxonomy

Table 3.1 compares the verification techniques w.r.t. the properties they can check. All
the techniques check reachability and loops.

Table. 3.2 compares the verification techniques w.r.t. what components these techniques
have been applied to. The main observation is that the whole data plane is by far the most
popular component to be verified. We also note that only model checking and symbolic exe-
cution have been applied to the whole architecture.

According to our analysis, some conclusions can be drawn. One can observe the large
usage of formal verification techniques for checking the consistency/correctness of SDN archi-
tectures/components. In fact, verification techniques can ensure the respect of a given policy
in the data plane and can help checking configuration errors and problematic controller pro-
grams in the control plane. Yet, there are two strong grounds of restrictions to them. First,
as they check whether a model of the SDN architecture/component satisfies a given set of
properties, they can only guarantee that the properties hold for the model and hence some
implementation faults can still escape this check as no test cases are applied to the implemen-
tations. Secondly, they usually aim at verifying the model of a single SDN component and
ignore the correctness of the entire SDN architecture, e.g., whether the architecture’s imple-
mentation violates the network policies/requests. Therefore, testing techniques that stimulate

42 3. State Of The Art

Black- | Traffic Rules’
holes | isolation | consistency
Off-Line SDN Verification Techniques

Technique Reachability | Loops

SAT Solving v v X X X
Symbolic Execution and v 4 v X X
SMT Solvers

Model Checking over Tem- v v v X X
poral Logic

Deductive Verification and v v v X X

Theorem Provers

Run-Time SDN Verification Techniques

Application of ‘Off-line v 4 X X v
SDN Verification’ Online

Dependency Graph Traver- v 4 X X v
sal

Table 3.1 — Comparison of SDN verification techniques w.r.t. checked properties

Verification Technique Controller | Switch Data Who.le SDN
plane | architecture
Off-Line SDN Verification Techniques
SAT Solving X X 4 X
Symbolic Execution and SMT Solvers v X 4 v
Model checking over Temporal Logic v X v v
Deductive Verification and Theorem v X 4 X
Provers
Run-Time SDN Verification Techniques
Application of ‘Off-line SDN Verification’ X X 4 X
Online
Dependency Graph Traversal X X 4 X

Table 3.2 — Comparison of verification techniques applied to various SDN components

the SDN components’ implementation are necessary to explore.In the next section, we inves-
tigate and categorize testing techniques applied to SDN.

3.3 Testing Techniques for SDN

This section encompasses the literature techniques that involve the system under examination
which is stimulated by inputs (note the contrast with the verification techniques presented
earlier which do not require any stimulation of the system). We categorize these techniques
depending on their underlying test generation mechanisms.

3.3.1 Log Analysis for Test Generation

This technique works around a buggy log and aims at automatically identifying/replaying the se-
quence of events (test sequence), that have generated an observed problem. This sequence

3.3. Testing Techniques for SDN 43

is then applied to the SUT, thus allowing to localize the cause of the problem. For example,
Scott et al. [131, 130] have applied this technique to the control plane. Given a log L (of the
controller) that contains a bug, the objective is to eliminate events from L that are not causally
related to the bug. The result is a minimal sequence of events that when executed reproduces
the bug. L is represented as a sequence of external (e.g., link failures) and internal (e.g., OF
messages) events. The ‘minimization’ procedure contains two phases. Phase (a) consists
of searching through subsequences of the logged external events of L. Phase (b) consists
of deciding when to inject external events for each subsequence such that, during replay, an
invariant violation is provoked again. Phase (a) is based on delta debugging algorithm [166],
a divide-and-conquer algorithm which, from an input sequence of events, denoted as segq, it-
eratively divide seq in two. Then, taking into consideration the invariant that was violated by
the execution of seq, if a subsequence successfully triggers the invariant violation, the other
subsequences are ignored and the algorithm keeps refining that one until it finds a minimal
one. Phase (b) is based on delaying event delivery to make sure that the replayed sequence
of events obeys to the original ‘happens-before’ order. Note that this technique can create a
shortened log without making assumptions about the language or instrumentation of the con-
troller under test. However, it is not guaranteed to always find such minimal sequence due to
partial visibility of internal events and non-determinism. Moreover, the minimization process
is not always possible when considering extremely large traces.

Example
Figure 3.4 shows an example of the operation of the log analysis for test generation technique.
A trace of events of a controller (POX) buggy module is shown in Listing 3.4a. We can see that
a single ‘SwitchFailure’ event is enough to cause the controller to crash. The derived minimal
causal sequence from the buggy trace is shown in Listing 3.4b, (only parts of the log and the
derived sequence are shown). This sequence can then be used as a test case to stimulate a
controller under test with the intention of finding bugs/errors.

{"class": "ControlMessageReceive", "dependent_labels": [], "dpid": 3, "timeout_disallowed": false, "time": [1359230214, 746195], "fingerprint": ["ControlMessageReceive", {"class": "
ofp_features_request"}, 3, ['127.0.0.1", 6633]], "controller_id": ['127.0.0.1", 6633], "label": "i17"}

{"class": "ControlMessageReceive", "dependent_labels": [], "dpid": 4, "timeout_disallowed": false, "time": [1359230214, 746482], "fingerprint": ["ControlMessageReceive", {"class": "
ofp_hello"}, 4, ["127.0.0.1", 6633]], "controller_id": ['127.0.0.1", 6633], "label": "i18"}

{"class": "ControlMessageReceive", "dependent_labels": [], "dpid": 2, "timeout_disallowed": false, "time": [1359230214, 746816], "fingerprint": ["ControlMessageReceive", {"class": "
ofp_features_request"}, 2, ["127.0.0.1", 6633]], "controller_id": ['127.0.0.1", 6633], "label": "i19"}

{"class": "ControlMessageReceive", "dependent_labels": [], "dpid": 1, "timeout_disallowed": false, "time": [1359230214, 747156], "fingerprint™: ["ControlMessageReceive", {"class™: "
ofp_features_request"}, 1, ["127.0.0.1", 6633]], "controller_id": ['127.0.0.1", 6633], "label": "i20"}

{"dependent_labels": [], "class": "SwitchFailure", "dpid": 4, "label": "e21", "time": [1359230214, 747398]}

{"class": "ControlMessageReceive", "dependent_labels": [], "dpid": 1, "timeout_disallowed": false, "time": [1359230214, 848838], "fingerprint": ["ControlMessageReceive", {"class™ "
ofp_barrier_request"}, 1, ["127.0.0.1", 6633]], "controller_id": ["127.0.0.1", 6633], "label": "i24"}

(a) Part of the original buggy log of POX controller

{"class": "ControlMessageReceive", "dependent_labels": [], "dpid": 1, "timeout_disallowed": false, "time": [1359230214, 747156], "fingerprint": ["ControlMessageReceive", {"class": "
ofp_features_request"}, 1, ["127.0.0.1", 6633]], "controller_id": ['127.0.0.1", 6633], "label": "i20"}
{"dependent_labels": ["€89"], "class": "SwitchFailure", "dpid": 1, "label": "e16", "time": [1356996714, 125807]}

(b) Part of the derived test sequence

Figure 3.4 — Example showing a test case derived using the ‘log analysis for test generation’
technique

44 3. State Of The Art

3.3.2 ‘Specific’ Packets for Test Generation

In order to localize the network failures, this technique generates specific packets (e.g., with
modified headers) and applies them against the SUT (data plane) in order to perform path
tracing capable of tracking packet trajectories/histories in the SDN data plane.

Handigol et al. [62] have introduced packet histories. A packet history is (1) the route
a packet takes through a network, (2) the switch modifications of the header at each hop.
This tracking mechanism can help administrators to diagnose a network problem. The packet
histories are obtained by means of Packet History Filters (PHFs), a regular-expression-like
language created to process and filter postcards. Example of PHFs is to match packets that
start at Host; or go through S, or experience a loop. Postcards are records created whenever
a packet passes by a switch. A postcard is formed mainly by the switch id and the output
ports.To generate a postcard, each packet entering the switch is duplicated and processed to
generate packet histories.

A mechanism of tagging packets (e.g., with VLAN IDs) and installing temporarily rules to
catch them to identify their paths has been proposed in several works. For example, this has
been performed by Avanesov et al. [13] and Csikor et al. [35] to accelerate the identification of
root causes of performance degradation in the data plane. Tseng et al. [147] have presented
a similar mechanism as well. This mechanism allows to detect for example network loops and
black-holes. Zhang et al. [172] have also used this mechanism. A ‘path table’ data structure
has been employed to record forwarding paths between any two ports in the network. The
approach first generates the path table based on the network topology and the installed rules.
Then, when a test packet traverses through the network, each switch generates the tag of the
packet.

Aljaedi et al. [6] have proposed to rewrite the packets’ headers so to include ingress port
numbers of the switches traversed and, thus, obtaining the followed path. Then probe packets
have been injected in the data plane. Zhang et al. [171] have proposed to dedicate unused bits
in a packet’s header to carry a path identifier across the followed path. Agarwal et al. [2] have
proposed an SDN ‘traceroute’ tool that reserves some bits of the packet headers exclusively
for its use. It injects probe packets to identify network paths. Wang et al. [151] have proposed
‘sTrace’ that works in a similar way.

Other works have taken advantage of usual debugger actions such as breakpoint and
backtrace. This is related for example in contributions by Handigol et al. [62] and Durairajan
et al. [45]. The approach attempts to reconstruct the sequence of events origin of a faulty
behaviour. A breakpoint is a filter defined on packet headers that applies to one or more
switches. A backtrace is constructed using postcards explained above [62]. When a packet
triggers a breakpoint along its path, a backtrace shows the sequence of forwarding actions
seen by that packet.

Wu et al. [154] have proposed an approach that relies on the concept of provenance
causality [24] (from the databases) to help find a causal explanation of a network problem.
The provenance of a packet that has been derived via a certain rule R consists of the packet
that triggered R and the rule R itself. The provenance is tracked based on a provenance graph
representing the changes to the packets (using history of packets).

3.3.3 (Semi)-Random Test Generation

This approach stimulates the SUT by inputs that are randomly or semi-randomly generated.
For example, the same inputs (OF messages randomly generated) are applied to several con-
trollers and conclusions about their correct behaviour are drawn by establishing a consensus
on their outputs (e.g., if all outputs from all the controller responses to the same input are the

3.3.

Testing Techniques for SDN

45

oDL ONOS Floodlight Three controllers (ODL. ONOS and
i S A Floodlight) forming the SUT.
Flow, iMod A Mld Packet_In i
- ow — A . .
IRUVRES TR AR P t....... Validator is playing the role of the tester

! Validator that

: 1) Replicates the Packet_In messagesto all controllers
i 2) Observes controllers’ responses

3) Concludes about the correctness of the controllers

sending (semi)-randomly generated
: Packet_Inmessages tothe SUT.

v'ODL and ONOS do have the same
outputresponses: Flow Mod
messages.

v’Floodlight doesnot have the same
outputresponse (noresponse).

This allows to conclude thatthe
behaviour of FloodLightis notcorrect.

Figure 3.5 — Example illustrating the test execution of tests (semi)-randomly generated

same). This has been performed for example by Zhang et al. [174] and Mahajan et al. [96].
The approach is based on the full consensus on the messages received from different con-
trollers by comparing their outputs’ reactions to the same applied input. The approach consists
in (i) intercepting the Packet_In messages, (ii) replicating them to a set of different controllers
(i) comparing their responses to reach consensus on every message. The test generation
approach is reduced to replication of OF events/messages. This is achieved for example by
the validator (that will serve as a tester stimulating the controllers with inputs) that intercepts
the Packet_In messages coming from a switch and replicating these messages to the other
controllers. If the outputs of all the controllers under test are the same, then their behaviour is
concluded to be ‘correct’, otherwise the controllers with the different responses are considered
to contain a bug. Similarly, Shalimov et al. [137] have performed the comparison of different
SDN controllers w.r.t. the number of failures/faults during a long period of test. A failure/fault
means that the controller sends a session termination or does not provide a reply to a given
request within a timeout. A test bed is presented that contains a number of OF switches and
hosts connected to a controller. The switches are playing the role of the tester here. The test
sequences in this case are formed by Packet_In messages sent by five switches.A similar
approach has been proposed by Lin et al. [93] where Packet In traffic has been randomly
generated to test the controller under test.

(Semi-) random generation has also been employed for testing the switch as the SUT, in
works by for example Rotsos et al. [128], Kuzniar et al. [88, 86], and Wundsam et al. [155].
In all cases, a series of experiments on some of the OF switch implementations (including
OVS and hardware switches) has been conducted. In the work of Rotsos et al., test packet
generation has been assured by the ‘pkigen’ (the linux packet generator module [112]), and
an extension of the design of the NetFPGA Stanford Packet Generator [33]. Kuzniar et al. [86,
88] have built upon the work of Canini et al. [26, 25] and semi-randomly generated packets,
i.e., random packets but in a controlled order) have been applied to the SUT. Wundsam et al.
[155] have proposed to record and apply a subset of randomly generated packets to the data
plane. The traffic is recorded, partitioned and then different subsets of traffic are applied many
times to the SUT to reproduce the failure.

Example
Figure 3.5 illustrates an example of test execution and decision making based on the full con-
sensus on the responses received from the controllers.

46 3. State Of The Art

3.3.4 Verification for Test Generation

This technique involves the use of the verification techniques described earlier in Section 3.2 to
serve for deriving the test cases that are used to stimulate the SUT. We group works proposing
such a testing technique depending on the underlying verification method.

In the first group of works, SAT solving as the underlying verification technique is used
to generate probe packets in order to check data plane rules and detect forwarding faults.
It is assumed that a faulty rule does not act on some or all packets that it should process.
The cause could be either ‘rule missing’ faults or ‘rule priority’ faults. The generation of test
packets is done as follows. Based on a set of rules expressed as Boolean expressions, a set of
constraints (Boolean expressions over packet header fields) that a probe packet should satisfy
is created. Then a SAT solver is used to find a satisfying assignment of the packet header fields
(the constraints). These packets are then converted into ‘real’ probe packets using packet
generation libraries. To detect faults related to missing rules, Perevsini, kuzniar et al. [117,
87] have used the aforesaid technique. Further, Bu et al. have observed that without testing
a rule priority order, i.e., testing only rule existence, cannot guarantee forwarding correctness.
Similarly, their technique [23] has reduced the generation of probe packets problem into a SAT
problem taking into account the priorities of the rules.

The second group of works relies on symbolic execution as the underlying verification
method to generate test cases. This has been performed considering the switch in its OF
interface and the switch in its data plane interface as SUTs. Kuzniar et al. [89] have con-
sidered the switch-to-controller communication as the SUT. The objective is to find whether
there exists any sequence of inputs (OF messages) under which one switch implementation
behaves differently than another switch implementation which is considered as the ‘reference’
or ‘golden’ one. To this end, (1) sequences of inputs that cover all possible executions for
each implementation are constructed. Then, (2) an intersection of input subspaces belong-
ing to different implementations is computed to finally find the common input sequence that
causes the different implementations to produce different outputs (inconsistencies). Phase (1)
relies on symbolic execution technique that is run on each implementation and the outcomes
of such execution include a list of path conditions each of which summarizes the input con-
straints (over fields of OF messages) that must hold during the execution of a given path. For
each implementation, the path conditions that share the same output results are grouped and
a constraint solver is used to determine the input subspaces that satisfy the conjunction of
the grouped path conditions. The solver then computes an intersection of input subspaces
belonging to different implementations hence providing inputs that cause different behaviours
of different implementations.

When considering the switch in its data plane interface as the SUT, symbolic execution
has been used to generate test packets based on a model of the rules. A symbolic packet
(symbolic variables represent the packet fields) is injected at the desired source port, and this
packet is then propagated through the (rules) model. The output is a series of paths, where
each path places a number of constraints on the header fields of the injected packet. At each
port reached by the symbolic packet, the values and constraints on the header variables can
be inspected to discover which packets are allowed, what input packets can reach the output,
and how the packets look like at the output, on all the execution paths that reach that port. A
solver is then used to solve the constraints at each path and generate concrete values for all
the header fields, resulting in a concrete packet which is then injected into the network and
outputs are then observed. This technique has been used by Zeng et al. [169, 168] where an
Automatic Test Packet Generation (ATPG) framework has been proposed. The method has
also been used by Stoenescu et al. [146, 145] and Fayaz et al. [53, 52].

3.3. Testing Techniques for SDN 47

3.3.5 Model Based Testing

This technique relies on a formal model built to support the test generation activity. As models
play a crucial role in this technique, a major testing challenge moves to the modelling the SUT
itself [119]. According to whether the adopted model is a finite transition system or a tree, we
partition the state of the art efforts using this technique into two groups. We further partition
the works in the first group according to whether it is about a single finite state model or a
composition of those.

The first subgroup uses a single model, for example applied to the data plane (a switch or
a set of those in its data plane interface), Lebrun et al. [91] have formalized each rule in the net-
work and each network administrator/operator request as an automaton. The test generation
relies on mapping each formalized rule to test packets that match the conditions expressed by
the body of the rule. The resulting test packets are then injected into the data plane, the path
followed by each test packet is tracked. Then depending on whether the string representing
the data paths followed by each test packet is accepted or not by the corresponding automa-
ton, conclusion about whether the request is satisfied in the data plane is drawn. Alsmadi et
al. [7] have modelled one module of the controller behaviour, namely an SDN firewall, with
function nets (simplified high-level Petri nets), a modelling formalism in the MISTA tool [157].
The latter tool has been used to generate test cases from the model.

The second subgroup models the SDN component(s) as a composition of finite state mod-
els. For example, Fayaz et al. [51] have modelled the switches as a transition based system
where each state represents a state of the switch, then a model has been established as
logical preconditions that carry over from one switch model to the next. For example, if the
policy is to ensure that switch S| processes the traffic before switch S, then the ‘traffic being
processed by S’ is a precondition to enter the state model of S,. Test sequences generation
can be formulated as a problem of identifying a sequence of transitions that causes the set of
network switches to transition from their current states to a desired goal state. Yao et al. [160]
have modelled the pipeline processing in a switch as a pipeline of a finite set of state transi-
tion systems (machines) grouped in different ‘stages’ that communicate between each other
through a finite set of channels, a finite set of shared variables is defined at the level of the
global model and not in the machines. Global initial and final states are defined for the entire
model. In such model, a table in the OF switch is mapped to a ‘stage’ and each flow entry of
that table is mapped to a different state machine. The test generation technique is based on
three phases as follows. From the model, a high level abstraction description represented by a
graph is extracted. Then the test sequences are formed by finding and linking paths inside the
component machines starting from the global initial state and ending in the global final state.
The final phase of test generation consists of turning the test sequences into Testing and Test
Control Notation version 3 (TTCN-3) to be finally executed on the switch implementations un-
der test. Similar to [160], Zhang et al. [176] have modelled the pipeline processing inside the
switch as well, they have used also a state based model with variables. They have stated that
the test generation is based on Dijkstra algorithm but without giving further details. For testing
SDN applications (e.g., MAC-Learning), Yao et al. [161, 162] have applied their previous work
[160]. They have described the behaviour of the applications by the combination of a number
of state based machines and an abstract topology. First, model checking has been used to
verify the model against design faults. Second a test generation approach from the model has
been proposed based on partial composition and symmetry simplification.

The second group models the behaviour of an SDN component(s) as a tree based struc-
ture. For example, Zhao et al. [178, 177] have modelled the set of rules inside each switch as
a multi-rooted tree where each level of the tree represents a table in the switch. Since all the
packets entering the switch must be matched against the first flow table then the root nodes

48 3. State Of The Art

of the tree represent all the rules in the first flow table. Second, flow tables are sequentially
numbered, and the pipeline processing can only go forward and not backward, therefore it is
a directed acyclic graph. Third, the coTo_TABLE instruction of a given rule directs packets to
another table with a larger sequence number, therefore nodes are unidirectionally connected
by that kind of instructions. It is assumed that rules can be sequentially numbered and each
rule is mapped to one vertex and one edge set. Given this tree model, the probe genera-
tion problem is reduced to finding the minimum vertex sets to cover all the rules in the tree
and an algorithm based on DFS is developed to this end. These inputs are used to stimulate
four switch implementations (Open VSwitches residing in two Pica8 P5101 switches) and are
capable of detecting bugs such as black-holes.

3.3.6 Summary and Conclusions about Testing Techniques

Figure 3.6 summarizes the taxonomy of the different techniques used in the literature and
categorized under Testing umbrella. Table 3.3 compares the testing techniques w.r.t. what
components these techniques have been applied to. The main observation is that the whole
data plane is by far the most popular component that has been tested.

—[Testing Techniques for SDN]

Log Analysis for Test Generation
Scott et al. [131, 130]

‘Specific’ Packets for Test Generation
Handigol et al. [62], Avanesov et al. [13], Csikor et al. [35],
— Aljaedi et al. [6], Zhang et al. [171], Agarwal et al. [2],
Wang et al. [151], Tseng et al. [147], Handigol et al [63],
Wu et al. [154], Zhang et al. [172], Durairajan et al. [45]

(Semi)-Random Test Generation
Mahajan et al. [96], Zhang et al. [174], Shalimov et
al. [137], Rotsos et al. [128], Kuzniar et al. [88], Lin
et al. [93], Kuzniar et al. [86], Wundsam et al. [155]

Verification for Test Generation
Perevsini et al. [117], Kuzniar et al. [87], Bu et

al. [28], Kuzniar et al. [89], Zeng et al. [169, 168],
Stoenescu et al. [146, 145], Fayaz et al. [53, 52]

Model Based Testing
'— Lebrun et al. [91], Alsmadi et al.[7], Fayaz et al. [51], Yao et al. [160],
Zhang et al. [176], Yao et al. [161, 162], Zhao et al. [178, 177]

Figure 3.6 — SDN testing techniques taxonomy

Testing Technique Controller | Switch Data Who.le SDN

plane | architecture
Log Analysis for Test Generation X X v X
‘Specific’ Packets Generation X X 4 X
‘Semi’ Random Testing v v v X
Verification for Test Generation X v v X
Model Based Testing X v X X

Table 3.3 — Comparison of testing techniques applied to various SDN components

3.4. Chapter Conclusions 49

Where testing in SDN environments is concerned, researchers have investigated several strate-
gies for generating tests. In particular, the following test generation strategies have been
studied: analysis of the logs, special modification of packets, (semi-) random generation, ver-
ification, and model based testing. We notice however that model based techniques have not
been widely applied to SDN, in particular when a switch - controller or data plane - controller
composition represents the system under test.

3.4 Chapter Conclusions

In this chapter related work on SDN verification and testing has been introduced and its anal-
ysis has been performed. At first, a taxonomy has been elaborated, dividing the body of work
into two groups, namely verification techniques and testing techniques. Further, the first group
has been divided into off-line and run-time subgroups. The second group has been further
divided into five subgroups according to the underlying test generation method, namely, log
analysis, ‘specific’ packet, (semi-)random, verification and model based. Additionally, for each
group, a summary pointing out the corresponding limitations has been provided. For additional
research on related work, the reader has been suggested to refer to the surveys given in the
introduction of this chapter.

Our state of the art analysis shows that in the last decade, SDN verification techniques,
both off-line and at run-time, have been largely elaborated and applied for guaranteeing the
consistency/correctness of SDN components. Existing verification approaches mostly con-
cern the consistency of the configurations and the validation of the OpenFlow rules. However,
they are in two points limited when applied to SDN. First, as they do not target bugs/errors in
the (different) implementations; and secondly, as they usually aim at verifying a single SDN
component and ignore the correctness of the entire SDN architecture, e.g., whether the SDN
implementation violates the network operator policies. Moreover, these verification methods
face the challenge of complexity and scalability when applied to complex architectures such
as SDN. Further, these techniques perform their analysis on a model of the SDN system and
do not stimulate the implementations which limit their capacity to detect some subtle bugs.

Furthermore, the research challenges in SDN testing are still not appropriately tackled
because they do neither cover all functional aspects of the SDN components nor study the
functional behaviour of the compositions, such as switch - controller, data plane - controller,
etc.. Indeed, our analysis shows that existing testing techniques have not been widely stud-
ied and SDN testing in general is still a challenging hot research subject that needs more
elaborations.

This motivates our first contribution introduced in Chapter 4 to provide novel formal testing
solutions to comprehensively test the SDN architecture as a whole.

In addition, the idea of checking the implementations of SDN components (e.g., SDN-
enabled switch, controller) and finding some inconsistencies by applying conformance testing
is barely explored in the literature. For example, for testing the switch, the few research work
that focus on this area (mainly [160] and [176]), consider the pipeline processing inside the
switch as the system under test and do not consider the switch-to-controller link. Moreover,
model based testing has not been applied to the controller.

This sets another gap in the picture and thus highlights our next contributions (Chapters 5,
6 and 7).

50

3. State Of The Art

Model Based Testing for SDN
Architectures: A Graph / Path
Enumeration based Approach

“The true subject matter of the tester is not testing, but the design of test cases.”
— Paul Ammann, Jeff Offutt

Contents

41 Introductionttt eeneens 52
4.2 Problem Statement e 52
4.3 Formal Modelling for an SDN Architecture 53
4.4 Traffic Generation and Observation 55
4.5 Introducing a FaultModel, 56

4.6 Black Box and White Box Testing Approaches relying on Path Enu-
MEration v o i i i i e e e e e e e e e e e 57
4.6.1 Black Box Testing Approach 57
4.6.1.1 Equivalence Classesof Paths 57
4.6.2 White Box Testing Approach 59
4.7 Experimental Evaluation for Testing SDN Architectures. 60
471 Experimental SetUp 61
472 Results and Evaluation, 62
4721 Results 62
4.72.2 Mutation Testing 62
4723 Discussion 62
4.8 Chapter Conclusionsttt 63

51

4. Model Based Testing for SDN Architectures: A Graph / Path Enumeration based
52 Approach

The previous chapter shows that the current state of knowledge in the research field of
SDN verification and testing is rich but focused primarily on formal verification and testing
based on either (semi-) random test generation or testing techniques based on verification.

Further, prior research on SDN testing and particularly model based testing has resulted
in techniques that either model very specific SDN components or their composition (e.g., data
plane). These approaches, however, have not tested the entire SDN architecture. Even if
SDN components are well tested in isolation, their composition can still face interoperability
issues. Therefore, there is a need of methods and techniques for checking the entire SDN
architecture functionality.

This chapter provides the first contribution of the thesis and shows how such contribution
covers a significantly less explored area in SDN testing research, namely model based testing.

4.1 Introduction

It is crucial to have reliable network architectures, and this requirement does not change with
SDN. With the introduction of greater programmability, the chances of software faults (or bugs)
increase.

The first contribution of the thesis proposes a novel model based testing technique based
on graph enumeration. The technique is aimed at testing functional aspects of SDN architec-
tures (we do not consider non-functional SDN issues, such as security, trust, etc.). We focus
on so called active testing when a system under test (SUT) is stimulated by appropriate in-
puts, i.e., test sequences / cases, and the conclusion about its correctness is made based on
observations of its related outputs.

In particular, we define a fault model where the fault domain contains potential implemen-
tations of virtual paths (representing requests) requested by a user, i.e., the wrongly and cor-
rectly implemented paths allowed with respect to the underlying resource connectivity graph.
To guarantee the fault coverage, we prove the conditions when under black box and white box
testing assumptions a complete test suite with respect to such fault model can be derived.

The problem statement is described in Section 4.2 of this chapter. We present a formal
model for an SDN architecture as a whole in Section 4.3, and follow it with a description of the
method used for traffic generation and observation in Section 4.4. Section 4.5 introduces an
appropriate fault model. Section 4.6 describes in detail the black and white box approaches
adopted in this work. Finally, the experimental evaluation of the proposed approach is provided
in Section 4.7.

4.2 Problem Statement

A critical challenge in SDN architectures is to ensure the consistency between high level net-
work requirements’ definitions (paths) and low level configurations’ implementations. In other
words, how would a network administrator/operator know the network requirements and poli-
cies defined at the control plane are correctly implemented by network devices in the data
plane infrastructure.

Given the SDN architecture as the system under test, i.e., the SDN controller translating
end-user requests into flow rules and the SDN switches and hosts implementing these flow
rules in the data plane, we are interested in addressing what inputs should be applied to the
controller and what to observe in the data plane level so that we can draw conclusions about
the correctness, i.e., whether the SDN architecture is functioning as expected/desired.

4.3. Formal Modelling for an SDN Architecture 53

Figure 4.1 shows the system under test we are interested in. The figure illustrates how in
the applications layer, end-users define their policies / requests in form of paths. Suppose a
network policy specifying that traffic from the source host Host; to the destination host Hostg
should pass through the switches S;, S», 53, S5, S¢ and S7. The requested policies are then
fed as inputs to the SUT. In the data plane level, Figure 4.1 portrays two paths (from Host; to
Hostg) implementing the same aforementioned request. In this example, the path depicted in
dotted line and highlighted in green is the ‘correctly’ implemented one. The path highlighted
in solid pink is the ‘wrongly’ implemented one.

The research question being addressed in this chapter can then be formulated as follows.
How to ensure that the implemented requests in the data plane conform to the defined/expected
requests?

. . . A ——
| i
- 1
I Logical view & 1
! N 1
- N 1
I ®© I
] X
] OQ 1
C 1
- 1
- 1
: 1 I Southbound API (e.g., OpenFlow Protocol) I} 1
1 Subnet; I
Hosta 1
1 Host, -
: 10.1.1.1/2%” - BRL-2.0/24 :
1 Host; :
: 10.1.1.1/24 Subnets / Hosts I
I " Subnet; _10.13.0/24 & i
1 ; &
1 > T - > :
xS
) et "5 5 ¥= i I
1 10.1.1.0/24 Hosts I
10.1.3.1/24 1
L --- .4

Figure 4.1 — Topology showing an SDN architecture as the SUT

The architecture shows an example of requested Vs implemented paths in the data plane layer

4.3 Formal Modelling for an SDN Architecture

To tackle the aforementioned problematic and assure the functional correctness of SDN archi-
tectures, the major contribution of this chapter is a model based testing technique for testing
such complex and composite systems with respect to end-user defined requirements.

The technique relies on appropriate graph / path enumeration. It proposes two different
approaches for generating test suites for the architecture under test, namely a black box and
a white box approaches. Moreover, to ensure the fault coverage of the derived test suites, a
corresponding fault model is proposed.

The observed outputs are generated upon applying a corresponding test suite to the SUT
and (automatic) traffic generation allows to make the necessary observations, such as correct
or wrong configurations, correct or wrong flow tables, etc..

4. Model Based Testing for SDN Architectures: A Graph / Path Enumeration based
54 Approach

The topological structure of the SDN architecture represents the network components such
as controllers, switches and hosts while the traffic flows are generated by the dynamic features,
namely the packets. To capture this structure, our approach represents the data plane as
the Resource Network Connectivity Topology (RNCT), depicting the SDN components in the
resource network. Definition 4.1 formalizes this notion.

DEFINITION 4.1.

An RNCT is represented by an undirected (network links are assumed to be bidirectional)
and k-colored graph G = (V, E, c¢), where

» Vis the set of nodes representing network components (switches, hosts, etc.);

« E is the set of edges of the graph representing connections between two nodes (links)
in the RNCT. Edges are unordered pairs (x,y) | x,y € V;

« ¢ is a coloring function ¢ : V +— INU {0} such that given a node in the network, a cor-
responding color is assigned to it as a hashed integer. Note that the colors of adjacent
nodes can be the same, differently from the common graph coloring functions.

Every node a of the graph G (can be a host or a switch) has a set of ports which can be
input as well as output and each such port corresponds to some edge at the node a and vice
versa, each edge at the node a is associated with a corresponding port. Therefore, there is
one-to-one correspondence between edges at the node a and the set of its ports. Since G
has neither multiple edges nor self loops there is one-to-one correspondence between the set
of ports of a and the set of neighbour nodes of a.

Example

As an example, the previously depicted model (RNCT) can accurately represent the data
plane shown in Figure 4.1 by the binary-colored graph depicted in Equation 4.1.
RNCT =(V,E,c),where :
V ={S1, 82,83, 84, S5, S¢, S7, Hosty, Hosty, Hosts, Hosty, Hosts, Hoste}

(Hosty,$1),(Hosty,S1), (Host3, Sy), (Hosty, S4),(Hosts, Se),

E =4 (Hoste, 57),(S1,52), (82, 83), (S2,86), (S3,54), (53, S5), (4, S5),

"

(85,6, (S6, S7)

() 1, ifv=SlVv=Ssz=S3VV=S4VV=S5VV=S6VV=S7
clv)=
0, otherwise

Note that in the above example, ‘1’ represents a switch color, and ‘0’ represents a host
color, correspondingly.

4.4. Traffic Generation and Observation 55

In particular, Figure 4.1 presents an example of a network topology consisting of one con-
troller, seven switches and six hosts. Each switch is connected to the SDN controller. The
switch S; is connected to the hosts Host; and Host,, the switch Sy is connected to the hosts
Host; and Hosty, the switch Sg is connected to the host Hosts, and the switch S; is connected
to the host Hostg.

We model the end-user requests by virtual paths in the RNCT. Definition 4.2 specifies the
notion of a virtual path.

DEFINITION 4.2.
A virtual path (simply a path) inan RNCT G is a sequence of directed edges whose head
and tail nodes are hosts and all other intermediary nodes are switches.

Issuing a forwarding rule to a switch creates a virtual link from and to other component(-s)
adjacent to the switch if the rule forwards traffic to a given port. For example, assume that for
switch S; shown in Figure 4.1, Host; is connected to port 1 of S; and S, is connected to port
2 of §1. The rule R; shown in Equation 4.2 issued by the controller and installed in S} creates
avirtual link Host; — S| — S, if the destination MAC address is equal to 01:80:¢2:00:00:00.

Ry : table = 0, priority = 99,in_port = 1,

4.2
dl_dst=01:80:c¢2:00:00:00,actions : output = 1 (42)

More formally, the application of a forwarding rule creates a virtual link e € E* as a se-
quence of directed edges from the RNCT edges.

The reason for the specific Definition 4.2 for paths is that for testing purposes, observing
traffic generated from one host to another is how the resulting configuration is collected as an
‘output’, we develop this part in the next subsection. We assume the hosts in the RNCT do
not act as switches or relays of network packets, furthermore, we assume switches do not act
as hosts inthe RNCT. Note that at a physical level, the previous cases are possible, however,
the RNCT model must not consider such possibilities. The forwarding rules used to control
the traffic in the RNCT construct a virtual partial path (link) or a set of those.

We note that edges cannot be duplicated in a path, otherwise, infinite loops can be poten-
tially formed. Furthermore, in this chapter we consider that nodes cannot be duplicated in a
path as well, studying this possibility is left for future work.

4.4 Traffic Generation and Observation

Checking the output reaction of the SDN architecture can be performed through a network
traffic initiation.

As we aim to check that the paths are implemented correctly in the data plane, we focus
on specific traffic generation. For generating traffic, we propose to use the Internet Control
Message Protocol (ICMP) echo request / echo reply packets through the known ping utility.

Ping is one of the most common tools used as an administrator utility which can identify if
a targeted host in the data plane is reachable or not. Ping operates by generating and sending
ICMP packets, or echo requests, to the destination host and wait for an ICMP response, or an
echo reply. The experiments using this mechanism are provided in Section 4.7.

We however note the existence of different approaches for automatic traffic generation
(see, for example [169, 91, 52]).

4. Model Based Testing for SDN Architectures: A Graph / Path Enumeration based
56 Approach

The ICMP request / reply is performed for each pair of hosts that correspond to the head
and tail nodes of the paths. Later, the passing traffic is inspected at all node interfaces via a
simple network sniffer. The network traffic of all switches can be obtained in different ways,
starting from a simple Unix-like sniffer as the tcpdump utility and finishing with non-software-
based (physical / vendor) switches via protocols such as NetFlow [29] or sFlow [122].

Example

As an example, consider the requested path in Equation 4.3 with respect to the RNCT in
Figure. 4.1 (path highlighted in green in the figure).

(Host,S1) (S1,52) (52,53) (83, 55) (S5,56) (S6,57) (S7, Hoste) (4.3)

The corresponding traffic generation (through ICMP echo request) and the traffic observa-
tion are illustrated in Figure 4.2. We depict the messages and a timestamp when the message
is observed. In Figure 4.2, ‘t1’ denotes the first time instance after traffic generation started.
If the network flow follows the requested path, i.e., the expected output response is observed
during the traffic generation, then we consider that the applied test case has passed, otherwise
the test case has failed.

ICMP Req ™,
(t1)

ICMP Req ICMP Req 5

4
(t2) (ts)

- JCMP Req
" ta)

/. ICMP Req 55 ICMP Reg
A fte) fts)
* ICMP Req

L

Host, E«f . (ts)

10.1.3.0/24

Figure 4.2 — Traffic generation and flow observation w.r.t. the RNCT of Figure 4.1

4.5 Introducing a Fault Model

Given the SDN architecture in Figure. 4.1, we propose to test the entire SDN architecture,
including the controller(-s), switches, and connections between them. Namely, we propose to
derive an application that ‘is responsible’ for test generation and execution. In other words, a
tester is foreseen that sends specific requests to the SDN controller asking for different paths
to be implemented in the RNCT.

The test generation architecture is illustrated in Figure. 4.4, where the application layer is
executing only the tester. According to our assumptions, the inputs that need to be generated

4.6. Black Box and White Box Testing Approaches relying on Path Enumeration 57

by the orchestrator in order to guarantee that the SDN architecture is functioning properly are
paths limited by the RNCT.

We assume that the SDN architecture is functioning correctly when each requested path
and only it is created. In fact, mostly connectivity issues are tested and we consider the
specification, in this study, defined by a set of (end-user) requirements that should be correctly
implemented. In this case, we propose a fault model (similar to [50]) represented as a pair
(@, F D) where @ is a conformance relation (between what is requested and what is really
implemented). We define @ as the equality. 9D is the fault domain defined as a set of
potential implementations.

Another issue is about the fault domain 79 of the fault model. According to Definition 4.2,
the following types of faults can be considered:

1. A requested edge can be directed to a wrong node;
2. Additional edges can appear;

3. Some edges can disappear.
Thus, a fault domain F 9D contains all possible paths of the RNCT.

DEFINITION 4.3.

A test case is a path of the RNCT and a test suite is a finite set of paths. As usual, a test
suite is complete with respect to the fault model (=, ¥ D) if any difference between a requested
and implemented path can be detected. In other words, each correct implementation I} € FD
passes a complete test suite while each faulty implementation I, € FD (with respect to the
equality relationship) fails such a test suite.

4.6 Black Box and White Box Testing Approaches relying
on Path Enumeration

After the fault model is defined, usual testing approaches can be used for deriving test suites
with the guaranteed fault coverage. Below, we discuss how ‘black’ and ‘white’ box test deriva-
tion approaches can be employed for this purpose.

4.6.1 Black Box Testing Approach

As the set of all paths of the RCNT is finite, the simplest way to construct a complete test suite
with respect to the fault model (=, ¥ D) is to consider the set of all such paths.

PROPOSITION 4.4.
The set of all RCNT paths is a complete test suite with respect to the fault model (=, F D).

In general, this test suite is rather long especially when the number of switches and hosts
in the data plane is large, therefore we propose an approach for reducing its length based on
equivalence classes of paths.

4.6.1.1 Equivalence Classes of Paths

We make the assumption that each node in the network processes inputs independently of
the previous node, i.e., the node where packets come from. Definition 4.5 specifies when two
paths are equivalent.

4. Model Based Testing for SDN Architectures: A Graph / Path Enumeration based
58 Approach

DEFINITION 4.5.

Two paths are considered (i, j)-equivalent if both paths have a directed edge from node
i to node j. That is, all the packets that should be directed from i to j are either processed
correctly, i.e., are sent from node i to node j, or are processed wrongly, i.e., are sent anywhere
except to the j-th node.

Example

In Figure 4.3, the paths P1 and P2 shown in Equation 4.4 are considered to be equivalent
with respect to the edge (Host, S1) as well as with respect to the edge (57, Host).

P1 = (Host1,S1) (S1,52) (S2,56) (S6,57) (S7, Hoste))
P2 = (Host1,51) (51,52) (52,53) (53, 55) (S5,56) (S6,57) (S7, Hoste)

E:

RNCT

P1 P2

Figure 4.3 — RNCT of the network topology in Figure 4.1 and examples of two equivalent
paths

PROPOSITION 4.6.
The set of paths that contains a path of each (i, j)-equivalent class where (i, j) is an edge
inthe RCNT, is a complete test suite with respect to the fault model (=, F D).

Proof.
Indeed, a complete test suite has at least one request where a packet should be sent from

4.6. Black Box and White Box Testing Approaches relying on Path Enumeration 59

node i to node j. If the packet is processed correctly (according to the monitoring results),
then due to the testing assumptions, we conclude that each packet directed from node i to
node j will indeed be sent to the j-th node. O

Example

By direct inspection, one can confirm that the number of all paths for the RNCT example in
Figure 4.3 equals 90. However, the proposed equivalence classes approach allows to reduce
this test suite down to 30 paths only.

In order to cover all equivalence classes in an optimal way, an optimization problem should
be stated and solved. One option is to consider the Boolean (weighted) matrix and solve the
corresponding covering problem [148] for which many libraries and scalable software solutions
are developed.

If the node processes a packet depending on where it comes from then equivalence
classes could be considered with respect to path subsequences of length [> 2. Given a
sequence y of RNCT edges of length [between node i and node j, two paths are considered
v-equivalent if they both contain y. A test suite is complete if it has at least one path of each
equivalence class. A minimal cover of a corresponding Boolean matrix can also be used for
optimal test generation. However, such test suite minimization problem is left for future work.

4.6.2 White Box Testing Approach

In some cases, mainly for reducing testing complexity, it may be desired not to generate test
suites with respect to all possible edges in the RNCT. The complexity can be reduced if a
set of critical edges that need to be tested first can be defined; for example, critical edges that
include critical network services/requests.

For this reason, we propose Algorithm 1 that generates a test suite with guaranteed fault
coverage with respect to a set of critical edges, i.e., if a fault occurs at a given critical edge,
it is detected. The algorithm is based on generating a test case tc as shown in Equation 4.5
that traverses a critical edge (v;,v;) for all critical edges E’ C E.

te=nLva)...(viuv;) Vi, vis1) ... (Va=1, V) (4.5)

We consider in the fault domain ¥ 9 implementations that can potentially contain three
types of faults that need to be detected, namely

1. An edge is directed to a wrong node, i.e., from the edge of interest e = (v;,v;) to ¢’ = (v},
v;:) where j # j’.

2. Anedge e = (v;,v;) is deleted.

3. A non-existing edge e = (v;,vx) is created for a critical edge (v;,v;) where j # k.

As potential faults are enumerated explicitly, Algorithm 1 returns the test suite under the
white box testing assumption.
By construction, Proposition 4.7 holds.

PROPOSITION 4.7.
Algorithm 1 returns a complete test suite with respect to the fault model (=, ¥ D) where
F D has each path with a critical edge.

4. Model Based Testing for SDN Architectures: A Graph / Path Enumeration based
60 Approach

Algorithm 1: White Box Test Suite Generation for an SDN Architecture

Input :RNCT = (V,E,c), a binary-colored graph where hosts are “0” colored.
E’ C E, a set of critical edges.

Output : A complete test suite 7'S,, w.r.t. the explicitly enumerated edges of interest.

TS, «— @

foreach f = (v;,v;) € E' do

e

N

3 Find (backtrack) p, = (vi,v2)...(v;,v}), the shortest sequence of edges such that
c(vy) =0, i.e., the shortest sequence that starts in a host and finishes at the node
Vj.

> Note that if c¢(v;)=0 then p, = (v;,v;)
4 Find (forwardtrack) ps = (v;,v;)...(va-1,vn), the shortest sequence of edges such

that c¢(v,) = 0, i.e., the shortest sequence that finishes in a host and starts at node
VJ'.

> Note that if c(v;)=0 then p;=(v;,v;)

5 | TS, (—TSWU{pbpf}

6 return TS,

Despite its conceptual simplicity, Algorithm 1 is successful at deriving a complete test suite
with respect to the defined fault model which has each path with a critical edge.

Its underlying principle is to construct a test case tc € T'S,, in the following way. For each
critical edge (v;,v;) in the RNCT, firstly, it uses backtracking to find the shortest sequence
of edges starting in a given host and finishing at the node v; (line 3). This is performed in
an incremental fashion where candidate edges are first appended to the potential z¢ solution,
one edge at a time, then those edges that fail to satisfy the constraints of the problem (i.e.,
starting node is a host, ending node is the node v;) at any point of time are removed and the
search continues until a shortest sequence is found. Secondly, it uses forward-tracking to find
the shortest sequence of edges starting at the node v; and finishing at a given host (line 4).
This is performed in a similar way as backtracking but using inverted constraints.

Note that a test minimization can be performed similar to the black box testing approach,
via solving a covering problem. In this case, a minimal set of paths that cover all critical edges
can be identified. We intend to investigate this direction in future work as well.

4.7 Experimental Evaluation for Testing SDN Architectures

To evaluate and demonstrate the effectiveness of our proposed approach, we aim to perform
experiments showing how it is possible to certify that a given SDN architecture is functioning
correctly.

The Mininet [105] SDN emulator, is chosen to emulate real-world SDN network environ-
ments for our evaluation and proof of concept experimentation. Indeed, Mininet is usually
utilized to emulate SDN architectures, and represents an accurate means to mimic networks
effectively [70]. Mininet provides an easy way to emulate and prototype SDN networks using
Open vSwitch (OVS) [121] switches.

4.7. Experimental Evaluation for Testing SDN Architectures 61

We chose Open Network Operating System (ONOS) [17] and OpenDaylight (ODL) [104]
controllers. Both controllers are open source. They manage network traffic by handling and
processing network events through different APls. They also offer developers the possibility to
implement their network applications and to run them on the controller. Both also offer to SDN
applications many services that handle and process network events, parse packets or interact
with the network switches in the data plane through southbound API such as OpenFlow.

4.7.1 Experimental Set Up

Experiments are carried out in a virtualized environment as portrayed in Figure 4.4. The envi-
ronment consists of two virtual machines. The first machine (virtual machine #1) is emulating
the network data plane by nodes which run software switches, in our setup Open vSwitch ver-
sion 2.0.2 is used. Here, the topology consists of the different nodes tied (stitched) together
and with the SDN controller.

The emulated SDN network is connected to a CentOS 7 virtual machine (#2) with 8 cores
and 12GB of RAM running alternatively an instance of one of the real controllers used here.
In fact, to prove the validity of our approach, real SDN controllers were utilized for the experi-
ments, especially an ODL Boron-S3, and an ONOS version 1.10.4.

___ :
1
Tester Application layer i
1
_________ .A________________________________%____________I
S 2, 2
Controller i
on virtual SDN controller i
machine #2 ! i
""""""" L Y Y

":}outhbnur{d API (e.g.‘lgOpenFlo"w)

\ i 1
I [———— soss — = o mmmmmmmmm s !
1 1
1 1
1 1
! i
Emulated ! i
network on i '
virtual ! i
machine #1 i '
! i
I I
! i

Figure 4.4 — Testbed framework for an SDN architecture analysis

The machine used for the experimental evaluation is an Ubuntu 14.04 LTS virtual machine
running on VirtualBox version 5.1.14 r112924 (Qt5.6.2) for Mac OS X, with 2GB of RAM and
1 core of a 2.3 GHz Intel Core i5. The emulated networking environment in Mininet is used
here to provide a well controlled but realistic testbed.

As depicted in Figure 4.4, four OpenFlow switches steer network traffic between various
hosts.

4. Model Based Testing for SDN Architectures: A Graph / Path Enumeration based
62 Approach

The tester (runin the application layer) sends specific requests to the SDN controller asking
for different paths to be implemented in the RNCT.

To be able to observe output reactions, traffic generation and observation is based on the
ICMP echo request / echo reply packets through the ping utility as explained in Section 4.4.

4.7.2 Results and Evaluation
4.7.2.1 Results

Considering Proposition 4.6, we have derived a test suite T'S for (i, j)-equivalence classes,
including each edge (i, j) at least once.

When the test suite has been executed against the SDN architecture composed by the
experimental set up and the ODL controller, all tests have failed. The test suite has been
executed by requesting the proper flow instantiation via the ODL REST interface. In fact, none
of the requested paths of the test suite were implemented. The controller have given positive
replies (HTTP 201 - created) to the creation of all individual flow entries, however, none have
been installed in the Open vSwitches. Positively replying to a request for flow creation and
not implementing it in the data plane indicates an incorrect functionality, independently of any
potential misconfigurations.

On the other hand, when the test suite was executed against the SDN architecture with the
experimental set up using the ONOS controller, all tests successfully passed and the requested
paths were correctly implemented in the data plane.

4.7.2.2 Mutation Testing

The test suite T'S is indeed a complete test suite with respect to the presented fault model
(=, FD), and therefore, its execution against an SDN architecture (implementation) provides
a guarantee regarding the correct functioning of that SDN architecture, if the test suite passes
it.

To further evaluate the fault detection effectiveness of each test sequence « in the derived
test suite T'S (test sequence ‘power’ / effectiveness), we have deliberately introduced a bug
in the ONOS controller to provide positive replies to the creation of flow entries which are not
installed on the devices.

To obtain a faulty implementation with the previously described bug, a single statement
has been deleted from the ONOS controller's source code. Note that statement deletion is
often considered in mutation testing [40] when the test suite quality is estimated. Particularly,
in the ONOS implementation, the statement has been deleted in the FlowsWebResource.java
file. As ONOS compiles with regression tests, a special compilation process ignoring such
tests has been executed. Given the modified code source of the ONOS controller, the fault
coverage of each test sequence in the test suite has been assessed.

As a result, all the test sequences have failed when being executed against the modified
SDN architecture. This demonstrates that each test case in the test suite is ‘capable’ of detect-
ing the introduced bug by its own. Therefore, these preliminary experiments also showcase
the power of the obtained test cases and motivate to consider the test minimization in the
future.

4.7.2.3 Discussion

Although the experiments were not performed for realistic SDN architectures, some conclu-
sions can be drawn.

4.8. Chapter Conclusions 63

Firstly, the SDN architecture composed by the experimental set up together with the ONOS
controller is guaranteed to be free of the faults considered in the defined fault domain ¥ D. In
particular, it is guaranteed to be free of the wrong redirection, edge deletion and edge creation
faults.

Further on, the obtained test suite is proven to be effective. Moreover, it has proven to
detect other types of bugs (for example, a single statement deletion). However, an interesting
direction for future work could be to investigate the relationship between the single statement
deletion fault and the errors listed above (the wrong redirection, edge deletion and edge cre-
ation faults).

Secondly, the SDN architecture composed by the experimental set up together with the
ODL controller seems not to be free of the bugs under consideration. Note that even if the
second conclusion may be considered as trivial, the proposed approach can be seen as a
helpful mechanism to ‘certify’ the correct functionality of a given SDN architecture under certain
conditions and assumptions.

4.8 Chapter Conclusions

In this chapter, we have focused on model based testing techniques for checking the function-
ality of SDN architectures.

As the inputs of the SDN architectures are user-defined requests / policies, we have pro-
posed to represent them by paths, then formal approaches for effective test generation for
such non-trivial inputs have been presented. Namely, specific graph / path enumeration tech-
niques under black box and white box testing assumptions have been discussed for testing
an SDN architecture.

To formally prove the fault coverage, a fault model has been defined where the fault domain
contains different implementations of the requested paths. Further on, conditions have been
established, under which a complete test suite with respect to the defined fault model can be
derived.

The experimental results have shown that the proposed approaches can detect implemen-
tation bugs in the SDN architecture under test. Moreover, the derived test suites have been
proven to be efficient (‘powerful’) as each sequence of the test suite of interest has been ca-
pable of detecting by itself an artificially introduced bug in the case of the architecture with the
ONOS set up.

It is worth noting that, at the time the author has focused on developing new formal ap-
proaches for testing SDN components as portrayed in Chapters 5, 6, and 7, an interesting
direction of the work started in this chapter has been explored by the team involved in this
work and led by Natalia Kushik.

Namely, more equivalent classes for testing have been explored and discussed by Yev-
tushenko et al. [163]. Their work has extended the contribution of this chapter by propos-
ing several fault models (under different testing assumptions) with respect to the underlying
RNCT. Some conditions for deriving a complete test suite as well as the complexity upper
bounds with respect to the defined fault models have also been established. The effectiveness
of their proposals has been planned to be investigated experimentally in future works.

The next chapter proposes a model based technique for testing a critical component of the
SDN architecture, namely an SDN-enabled switch. More precisely, as a first step, we focus on
testing the forwarding functionality of the switch modelled and analyzed as a stateless system
without considering its interaction with the controller. Appropriate logic circuits are proposed
to model the switch behaviour, an adequate fault model is introduced and then both active and

4. Model Based Testing for SDN Architectures: A Graph / Path Enumeration based
64 Approach

passive testing approaches are proposed.

Test Derivation for SDN-enabled
Switches: A Logic Circuit based
Approach

Contents

5.1 Introduction ittt ittt eeneenn 66
5.2 Problem Statement00 000 67
5.3 Formal Representation of an SDN Switch and Notations 67
5.4 Introducinga FaultModel, 69
5.5 Fault models for Logic Circuits 70
5.6 Deriving a Logic Circuit for a Switch Specification 71
5.7 Active and Passive Testing Approaches 73
Active Testing Approach 73
5.7.1.1 Test Suite Generation 73
5.7.1.2 SAT Solving for Equivalent Mutant Detection 74
5.7.2 Passive Testing Approach 76
5.8 Experimental Evaluation for Testing an SDN-enabled Switch 77
Experimental SetUp 77
5.8.2 Resultsand Evaluation 78

5.8.2.1 Logic Circuit Fault Models for SDN-enabled Switch Fault
Model 78
5.8.2.2 Using Logic Circuits for Monitoring 80
5823 Discussion Lo 80
5.9 Chapter Conclusions ittt eeeeenenn 81

65

66 5. Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach

In the previous chapter, a testing method has been presented to guarantee the correct
functional behaviour of an entire SDN architecture. Unfortunately, this does not automatically
imply that the SDN components forming the architecture under test are functionally correct.
The presented method thereby would not permit concluding on the faulty components, had it
detected a misbehaviour in the whole architecture. For this reason, we now turn the attention
to testing some critical SDN components forming the whole architecture. As a first step, we
focus on the switch; firstly we propose to check its forwarding functionality in this chapter, and
then we aim at testing its interaction with a controller in the next Chapter 6. Later on, we
propose to examine another critical component, namely the controller in Chapter 7.

This chapter proposes a model based test generation technique that relies on Logic Cir-
cuits to test the forwarding functional behaviour of the SDN-enabled forwarding elements an-
alyzed and modelled as ‘stateless’ systems.

5.1 Introduction

Network configuration and management are notoriously difficult due to the size and complex-
ity of the network and it has been shown that 62% of the network downtime is caused by
configuration errors [79]. An important consequence of the SDN principles is the separation
of concerns introduced between the definition of network policies, their implementation in the
data plane, and the forwarding of traffic. Although this separation is key to the desired flexibility,
the risk of misconfigurations is even more exacerbated.

The behaviour of an SDN-enabled switch in the data plane strongly depends on the set of
rules it has to enforce. With appropriate rules, an SDN-enabled switch can act like a Layer-2
switch or a router for example. Moreover, several network applications can be implemented,
e.g., monitoring, accounting, traffic shaping, routing, access control, and load balancing [103].
Therefore, to ascertain the correct implementation of these applications and operators policies,
it is important to guarantee the correct forwarding behaviour of the switch based on these rules.

We focus on testing SDN-enabled switches that act as forwarding devices receiving and
sending network packets in accordance with a set of configured rules. In modern networks,
such devices are predominantly implemented in software, and therefore different software
bugs can induce different functional faults.

In this chapter, we propose a logic circuit (model) based technique for testing the forward-
ing functionality of an SDN-enabled switch. In particular, we propose to model the switch
behaviour as a corresponding logic circuit in order to take advantage of various scalable ma-
nipulations over such circuits as well as to benefit from well-established techniques for their
testing.

We contend that both active and passive testing can take advantage of such representation.
In particular, we estimate the usefulness of logic circuit based fault models for detecting bugs
and misconfigurations in the SDN-enabled switch implementations. To this end, we propose
an active testing approach detailed in Section 5.7.1. Firstly, we introduce potential mutations
over the switch rules and then we discover which of these mutations can be effectively detected
using the proposed logic circuit based approach. Furthermore, we discuss how Boolean Satis-
fiability (SAT) solvers can be utilized for detecting equivalent mutants. Afterwards, we present
a passive testing approach relying on a scalable solution for the switch monitoring on the basis
of logic circuits and related operations in Subsection 5.7.2.

Section 5.2 of this chapter motivates and states the problem. Section 5.3 presents the
formal representation of an SDN-enabled switch and includes necessary notations and defini-
tions. A fault model is introduced in Section 5.4. Section 5.6 presents a specification model

5.2. Problem Statement 67

for an SDN-enabled switch. We present two logic circuit based approaches for testing the
switch in Section 5.7, namely, an active testing approach presented in Subsection 5.7.1 and a
passive testing approach described in Subsection 5.7.2. Preliminary experimental results for
a set of switch rules are presented in Section 5.8. Finally, section 5.9 concludes the chapter.

5.2 Problem Statement

The continuous SDN architectures innovation introduces a need for testing its components.
Moreover, developing testing methods to guarantee that the entire architecture functions cor-
rectly as achieved in Chapter 4 is not enough. Indeed, an SDN component implemented with
best available hardware and software features still may not be ready to be deployed unless it
undergoes a testing phase. Further on, if the testing method presented in Chapter 4 reveals
some faults, it is important to be able to localize them by pointing out the component causing
the faulty behaviour (e.g., if it is the switch or the controller).

To achieve compliant and functional SDN components, effort must be put into all parts
constituting the architecture. One of the critical component is the SDN-enabled switch.

While testing high level network functionality, the functional correct behaviour of an SDN-
enabled switch might be taken for granted. To ensure correct architecture operation, all
switches must work correctly. In other words, it may take just one buggy switch to cause
problems in the form of incorrect forwarding for example. If failures start occurring in SDN
architectures, the hard-earned ability to innovate in the networking space will be severely ham-
pered by mistrust.

Motivating Example

For example, while using the ONOS controller [17] and Open vSwitch (OVS) [121] we have
detected a potential overflow with respect to the switch port numbers. Namely, any request
with an output port number which is greater than or equal to 2'® produces inconsistent results.
Each of such requests gets the assigned port number modulus 216, The OpenFlow switch
specification [113] states that the maximal physical and logical port number is 4294967040
(Oxffffff00). Therefore, one can conclude there is a bug in the OVS implementation!. Such
software bugs lead to the incorrect packet processing, i.e., the specification given as a set of
rules for the switch is not respected. This type of issues only raise the importance of detecting
such bugs. Thus the behaviour of such switch is critical to the correct functioning of the whole
architecture and its correctness must be proven so as to avoid failures.

The research question we are addressing in this chapter can be formulated as follows.
Given the switch specified as a set of configurations to steer packets in the data plane, how to
guarantee the correctness of its forwarding functionality ?

5.3 Formal Representation of an SDN Switch and Notations

We define the switch state as the collection of all the extracted rules stored in the switch. While
the controller can change the rules in the switches, in this chapter, we consider a snapshot of
the switch state in the network.

In other words, in this chapter we are interested in testing the switch in its data plane
interface only and we check if its implementation complies with the set of rules defining its

Version 2.0.2 used with the ONOS controller version 1.10.4.

68 5. Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach

behaviour, i.e., we assume that the switch is stateless. In the next chapter, we examine the
system under test considering the switch in interaction with an SDN controller.

ule Rl pIEVI&p2€V2&...&piEVi&...@

SDN-enabled Switch

[ule Ry 171€V1&172€V2&---&1>i€Vi&»--®J >
Incomlng [Rule Rz PLEVI&preVy& ... &p;eV;& ... &pn EV”] OUthIng
packets 7 output_ports packets
[Rule Rl’l PLEVI&preVr& ... &p;eVi&...&pn EV,I} >

Figure 5.1 — Topology showing an SDN-enabled switch as the SUT

DEFINITION 5.1.
A rule R as a part of the switch configuration is defined by the implication described in
Equation 5.1.

R=(p1€V1&p2€V2&...&pl‘EVi&...&anVn)

= output_ports ={01,02,...,0,} S
Where
« p; refers to an input parameter (e.g., IP_source, IP_dest, In_port, etc.);
« o; refers to an output port;
» The sets Vi, V,, ..., V, define a range or an interval for each switch parameter p;, p»,

.., Pn, correspondingly?.

DEFINITION 5.2.

() We denote as 11, the projection operator characterized with a parameter p; such that
for a given rule R (defined in Equation 5.1), I1,,, is specified by Equation 5.2.

I, =V (5.2)
(1) Similarly, we denote by I1,,; the output projection of R defined in Equation 5.3.

yu = {01502a---50m} (5.3)

2The defined intervals are assumed to contain integers, without loss of generality.

5.4. Introducing a Fault Model 69

DEFINITION 5.3.

(I) An output mutant for the rule R is defined in Equation 5.4.

preVi&peVk...&pieVi&k...&p,eV,)
= output_ports ={0"1,...,0' w} (5.4)
suchthat {o',....0"w} #{01,...,0m}

() A parameter value mutant for the rule R is defined by Equation 5.5

(pl EVl&pQEVZ& &p,-eV,.’& &pnGVn)
= output_ports ={01,02,...,0n}, (5.5)
suchthat V! #V;

Example

In the example illustrated in Table 2.1 in Chapter 2, the number of parameters is n = 6, and
[Vi|=1, i € {l,...,6}. The number of output ports m for each rule R in Table 2.1 is 3.

5.4 Introducing a Fault Model

We assume that the switch implementation has no faults if each packet is processed exactly in
the way the switch configuration requires. Moreover, if for a given packet pkt there is no rule
R in the switch configuration such that the matching part of R shown in Equation 5.6 contains
the necessary preamble, the packet pkt is simply dropped by the switch, i.e., should not be
forwarded anywhere.

preVi&preVhL&...&p,eV,) (5.6)

Note however that a switch can output the packet to ‘consult’ with the SDN controller about
the action applied to an ‘unknown’ packet [103]. Nevertheless, the controller might alter the
rules in the switch configuration as a result. In this chapter, we assume this is a different speci-
fication and we propose a different approach for testing the switch-to-controller communication
in Chapter 6.

We introduce a fault model that has three items, namely ¥ M = (S,=,F D) where S,
the specification, is the set of switch rules, i.e., the rule forwarding configuration of the switch
(referred along the chapter simply as switch configuration); = is the conformance relation repre-
sented by the equality, and ¥ D is the fault domain where the potential switch implementations
are explicitly enumerated.

As usual, we are interested in deriving exhaustive test suites, such that V. € FD, 1 # S,
is detected by the test suite.

We also note that the system specification in this case can be complete (completely speci-
fied) or partial as defined in Definition 5.4. We further discuss how completeness and partiality
of § affect the exhaustiveness of the test suites derived using well-known logic circuit based
fault models.

70 5. Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach

DEFINITION 5.4.

Complete if it satisfies Equation 5.7.

The set S of switch rules is said to be
Partial, otherwise.

YV preamble (p1 eVi&preVh & ... & p,eV,)
Jarule ReS such that (5.7)
R=(p1eVi&preVhL& ... &p,eV,) = output_ports ={01,02,...,0n}

5.5 Fault models for Logic Circuits

Three types of faults can occur in the circuit implementation, namely Single Stuck-At Faults,
Single Bridge Faults, and Hardly Detectable Faults. We refer to a circuit that contains a fault
as a mutant.

» Single Stuck-At Fault (SSF) The most common model used for logic faults is the single
stuck-at fault. It assumes that a fault in a logic gate results in one of its inputs or the
output to be fixed at either a logic ‘0’ (stuck-at-0) or at logic ‘1’ (stuck-at-1).

The fault of this type arises when the value of a certain gate ‘gets stuck’ at logic one or
zero. This error type is reproduced in the corresponding BLIF file by replacing all input
values of a certain gate by the symbol “dash” (-) with the corresponding output (‘1’ or
‘0).

Recall the example given in Chapter 2 where the BLIF file for the logic circuit of Figure 2.3
is given in Listing 2.4. An example of the single stuck-at fault at which the value of the
gate z1 is stuck at 1 is shown in Figure 5.2a;

» Single Bridge Fault (SBF) The fault of this type arises when the input of a certain
gate is erroneously connected (disconnected) to (from) another gate. Such fault type is
reproduced in the corresponding BLIF file by replacing the input name of a given gate
with another.

Figure 5.2b shows an example of a single bridge fault in which input nl11 of gate z1 is
replaced by output of gate z0;

* Hardly Detectable Fault (HDF) This type of fault is meant to have slight differences
with respect to the overall behaviour of the original circuit. The goal is to make a single
gate change its output value for a single input.

In order to produce these mutants in the BLIF files a single output cover is modified.
Within this single output cover a single input is selected. The value of the input is modi-
fied to a distinct input value. This distinct input value can be ‘1’ or ‘0’ if the value is don’t
care (*-'); ‘1’ or *-’ if the value is ‘0’; and finally ‘0’ or *-’ if the value is ‘1.

To illustrate HDF mutants, Figure 5.2c shows an example of the hardly detectable fault
of our running example. In this example, the gate n9 is modified such that only when x0
is ‘1”7 and x2 is ‘0’ then n9 is ‘1°. In the original circuit specification, n9 corresponds to
the Boolean function n9 = x0 AND x2. In the mutant, n9 corresponds to the Boolean
function n9 = xO AND NOT x2.

5.6. Deriving a Logic Circuit for a Switch Specification

71

. model cirex

. inputs x0 x1 x2

. outputs z0 z1

. names x0 x2 n6
10 1

. hames x2 n6 n7
001

. hames x1 n7 z0
10 1

. hames x0 x2 n9
111

. names x0 x2 n10
001

.names n9 n10 n11
001

. hames x1 n11 z1
— 1

.end

(a) SSF mutant

. model cirex

. inputs x0 x1 x2

. outputs z0 z1

. names x0 x2 n6
10 1

. names x2 n6 n7
001

. hames x1 n7 z0
10 1

. names x0 x2 n9
111

. names x0 x2 n10
001

.names n9 n10 n11
001

. names x1 z0 z1
10 1

.end

(b) SBF mutant

. model cirex

. inputs x0 x1 x2

. outputs z0 z1

. names x0 x2 n6
10 1

. names x2 n6 n7
001

. names x1 n7 z0
10 1

. names x0 x2 n9
10 1

. names x0 x2 n10
001

.names n9 n10 n11
001

. names x1 n11 z1
101

. end

(c) HDF mutant

Figure 5.2 — Examples of SSF, SBF, and HDF mutants of C,, shown in Figure 2.4

5.6 Deriving a Logic Circuit for a Switch Specification

The specification S represented by a set of switch rules is not scalable for solving different
problems, such as for example, searching for two rules in possibly different tables that coincide
or that on the contrary, contradict each other. We therefore, propose to build a logic circuit that
preserves the behaviour of S on one hand, but allows taking advantage of several scalable
manipulations over the Boolean vectors (logic circuits) on the other hand.

Such logic circuit LC can be derived in different ways and in this work, we focus on the use
of logic synthesis solutions from a Look-up-Table (LUT) for a system of (partially specified)
Boolean functions3. The corresponding procedure is described in Algorithm 2.

Given a set of rules forming the specification S, Algorithm 2 derives a logic circuit simulat-
ing the behaviour of S as follows.

First, it determines the set of parameters P = {p1, p2, ..., pn} such that at least one pream-
ble of at least one rule of S uses each p;,Vi € {1,2,...,n} (line 1). Then, the numbers of
primary inputs and outputs of the logic circuit (lines 2 and 3) are computed. The number of pri-
mary inputs is the sum 3.7, [log2(1+max(Ugesp;))] where max(|Jges I1,,) is the maximal
element in all sets for the parameter p; where all values of p; are non-negative. The symbol [x]
denotes the ceiling function applied to x. The number of primary outputs is max({Jges Hour),
which denotes the maximum output port number used in S.

Next, an empty LUT is derived (line 4). The variables of the LUT correspond to the
computed number of primary inputs. The partially specified Boolean functions of the LUT
correspond to the computed number of primary outputs.

Afterwards, for each rule R € S, the preamble and the output ports are encoded as follows.
A corresponding Boolean vector B; of length [logy(1 +max({ges I1p,))1 encoding the pream-
ble is derived (line 7). Also, for the output ports’ set, a corresponding Boolean vector B_port

31t is intuitively right to consider Boolean representations for values transmitted in network packets as they rep-
resent data in binary strings.

72 5. Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach

Algorithm 2: Logic Circuit Derivation from a Set of Switch Rules

Input :A specification S represented by a set of switch rules

Output : A logic circuit £C simulating S

Define the set of parameters P = {p1,p2, ..., pn} such that each parameter p; € P is
used in at least one preamble of at least one rule R € S.

e

2 Determine the number of the primary inputs for the logic circuit as
= Moga(1+max(Uges I1),))] such that max({Jges I1,,) is the maximal element in
all sets for the parameter p; where all values of p; are non-negative, and [x] denotes
the ceiling function applied to x.

3 The number of the primary outputs for the logic circuit equals to max(|Jges Hour),
where max(|Jges [our) denotes the maximum output port number used in S.

a4 Derive an empty LUT L for a system of max(|Jges I1ou:) partially specified Boolean

n

functions of 37", [loga(1 +max(|UgesI1,,))] variables

5 foreach rule R € S do

6 foreach r = (vi,vo,...,v,) € ViIXVa X...xV,, where V; =11,,,Vi € {1,2,...,n} do
7 Encode each v;, i € {1,2,...,n} by a Boolean vector B; of length
[loga(1 +max(Uges Ip,;))]
8 Set the Boolean vector B_port to (00...0), |B_port| = max(|Jges Hour)
9 foreach output port o; € {o1,...,0,} do
10 L Set o;-th bit of B_port to 1 (the first bit starts at the rightmost position with
index 1)
11 | Add a new line to the LUT, i.e., set L to LU {B1B;...B,|B_port}

12 Run a logic synthesis solution for deriving a logic circuit LC from the LUT L

13 return LC

of length |B_port| = max(|Jges our) €ncoding the output ports is derived (lines 8, 9 and 10).
Then, for each rule in S, these derived Boolean vectors are added to the LUT (line 11). Fi-
nally, a logic synthesis solution is run and a logic circuit LC simulating the behaviour of S is
returned (lines 12 and 13).

For the running example of the set of switch rules listed in Table 2.1, the LUT derived
by Algorithm 2 has four lines illustrated in Table 5.1. Note that dashes (—) denote ‘don’t care’
terms*.

4The netmasks of the IP addresses are taken into consideration by the dashes in the corresponding field.

5.7. Active and Passive Testing Approaches 73

X1X2...Xg9 fifafs

0111110100--100000000110- - - - - - - - - - - - o oo oo oo oo oo oL L Lo Lo oo oo oo 001

011111010001 100000000 110« - o ceonnnennennneeeneeeeeneeesseeeneeeeseseneeeseesensnesnesnns 110

1111110101011000000000000000101000000000000000000000000100001010000000000000000000000010 010

1111110101101000000000000000101000000000000000000000001000001010000000000000000000000001 001

Table 5.1 — Look-up table for the switch running example

5.7 Active and Passive Testing Approaches

5.7.1 Active Testing Approach
5.7.1.1 Test Suite Generation

Once a logic circuit £C that simulates the behaviour of the switch with the rules S is derived,
one can apply different techniques for test generation. In this work, we propose a technique in
which the circuit LC representing the switch rules is ‘altered’ in order to obtain a set of mutants
of different kinds. The test suite derived to kill each mutant of a particular type can later be
applied to the implementation of an SDN switch. The goal of deriving such test suite is to
distinguish the output of a correct implementation from an assumed incorrect implementation
(mutant)>.

In our approach, we consider three types of faults that can occur in the switch circuit imple-
mentation, namely Single Stuck-At Faults (SSF), Single Bridge Faults (SBF), and Hardly De-
tectable Faults (HDF) and we derive corresponding test suites. The advantage of this ap-
proach is that logic circuit testing techniques are well studied and elaborated and there exist
a number of tools for such automatic test derivation. For instance, several test generation
strategies against the aforementioned circuit faults have been proposed in the last decades.
The interested reader can, for example, refer to [99] and [115]. In our work, we used the tool
developed by Kushik et al. [85] together with the logic synthesis and verification tool called
ABC by Brayton et al. [22].

Moreover, test suites derived against the Single Stuck-At Fault mutants are claimed to have
high fault coverage with respect to other types of circuit mutants. Our approach investigates
the fault coverage of the derived test suites when testing SDN-enabled switches effectively
described by corresponding logic circuits.

Furthermore, in some cases, certain properties for a test suite fault coverage can be guaran-
teed. For example, for SSF mutants Propositions 5.5 and 5.6 hold.

PROPOSITION 5.5.
If S is complete and Equation 5.8 is satisfied then each output fault in the rule R is detected
by an exhaustive test suite with respect to SSFs.

die{l,...,m} such that

A'Re S,

R=((p1eVi&preVh& ... &p,€V,) = output_ports ={01,0,...,0,}) 58)
and o; ¢ {01,02,...,0}

Proof.
The completeness of the specification S automatically implies the completeness of the system

5Note that we do not focus in this work on testing unsupported ports: the port number(-s) of an implementation
under test (IUT) should belong to the set of supported port numbers.

74 5. Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach

of Boolean functions implemented by the circuit £ZC (Algorithm 2). Each output fault, repre-
sented in Equation 5.9, is only detected by a test suite if this test suite includes the input pattern
B1B;... B, that corresponds to the rule R.

PreVi&peh& ... &p,eV,) = output_ports ={0},0,...,0,,}, (5.9)
and {0},05,...,0,,} #{01,02,...,0m}

As the test suite T'S contains a pattern that distinguishes each SSF mutant of the logic circuit
LC, for the output i of LC this pattern can only be BB; ... B,, otherwise the stuck-at-one
fault in the i-th output cannot be detected (due to the uniqueness of the rule R). O

Note that whenever the set S of switch rules is not complete, the logic circuit LC is derived
for a system of partially specified Boolean functions. Therefore, the behaviour of the circuit
over the undefined patterns can be specified in different ways. In our approach and in our
experiments, we use ABC, which sets the corresponding outputs to 0. This fact allows to
guarantee the fault coverage for output mutants of the rules when initially the specification S
is not complete.

PROPOSITION 5.6.
If for a set of rules S, Equation 5.10 is satisfied, then each output fault in the rule R is detected
by an exhaustive test suite w.r.t. SSFs.

3ie{l,...,m} such that
AReS,R=((p1eVi&preVa& ... &p, €V,) = output_ports ={01,02,...,0,})
and o; € {01,02,...,0,}

(5.10)

Proof.

Similar to Proposition 5.5, a test suite 7'S which detects each stuck-at-zero fault on the i-
th output of £C must contain a pattern B; B, ... B, that corresponds to the preamble (p; €
Vi&kpreVh& ... &p, €V, of rule R. This exact pattern detects each output fault in the
rule R. |

COROLLARY 5.7.
If in the set S of switch rules, each output port is used in at most one rule, then an exhaustive
test suite w.r.t. SSFs is also exhaustive w.r.t. rule output mutants.

We note however, that the above statements do not necessarily hold for the parameter value
mutations. Such faults can in some cases be detected by other mutants of logic circuits such
as, bridges or hardly detectable faults. Nevertheless, thorough investigation of the correlation
between the mutations of rules and those of logic circuit still needs to be performed. Such
investigation is left for future work.

5.7.1.2 SAT Solving for Equivalent Mutant Detection

Whenever possible rule mutations are enumerated explicitly and therefore, a test suite T'S is
derived under the white box testing assumption aiming at killing all the mutants of certain type,
the question of equivalent mutants automatically rises [58].

Indeed, mutations of different orders (especially second and higher) have a high probability
of deriving an equivalent mutant. However, as the number of patterns can be rather high

5.7. Active and Passive Testing Approaches 75

(2Zi=i [toga(1+max(UresTlp DTy - applying / checking all such patterns can be a time consuming
task, and thus, detecting equivalent mutants by direct (brute force) search becomes unfeasible.
Correspondingly, such equivalent mutants can be effectively detected whenever two logic cir-
cuits LC and LC), for both the specification S and the mutant M under investigation, are
derived.

Indeed, the equivalence decision problem can be reduced to the well-known SAT problem. For
this reason, a miter of two circuits can be derived. For two logic circuits £C and LC), with the
set X = {xi,..., x¢} of inputs and the sets O = {0y,...,0,} and O’ ={0],...,0},} of outputs, a
miter Mit with the set X = {x1,..., x; } of inputs and a single output is derived as follows. The
output function of Mit is the result of a logic OR operation of the functions fi,..., f, that are
implemented as the XORs of output functions gi,...,g, and hy,..., h, of the circuits LC and
LCy correspondingly, i.e., fj =g;®h;, j €{1,2,...,p}. Circuits LC and LC), are equivalent,
and so are the sets of rules S and M, if each output of the miter Mit always equals 0, i.e.,
when the corresponding Boolean function is UNSAT. Algorithm 3 implements this strategy to
detect equivalent mutants.

Algorithm 3: Equivalence Check for a Switch Mutant

Input :A specification S represented by a set of switch rules and its mutant M
Output : The verdict about the mutant equivalence or a test case killing M
1 Run Algorithm 2 for both, specification S and its mutant M, obtain the logic circuits £LC
and LCy;, correspondingly
2 Construct the miter Mit on the circuits LC and LCy
3 Run a SAT solver for the Boolean function f implemented by Mit
4 if UNSAT then

5 L return the verdict ‘The mutant M is equivalent to S’

6 return A satisfying pattern B for the Boolean function f

The correctness of the proposed equivalence check is established by Proposition 5.8.

PROPOSITION 5.8.
For a given set S of switch rules and a given mutant M, of this specification, Algorithm 3
returns a test case killing M if and only if the mutant M is not equivalent to S.

Proof.

Indeed, the circuit Mit implements a constant O if and only if the outputs B_port coincide
for all input patterns BB, ... B, (Algorithm 2). Thus, a satisfying pattern B for the function f
returns an input B; B, ... B, for the preamble (p; e Vi & pp e Vo & ... & p, € V,,)) where the
output ports differ. O

We note that such equivalence check can be performed over the logic circuit representations
in a scalable manner. The reason is that both circuits LC and LC), are combinational, i.e.,
without latches or internal memory.

For sequential circuits, the derivation of the miter as well as the the SAT problem formulation
is in fact much more complex. The latter means, that if modelling a switch as a stateful system,
for example when taking into account its potential communication with an SDN controller, the

76 5. Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach

solution of the equivalence check might not be scalable. More research and experiments are
needed in this area, and these tasks are left for the future work.

5.7.2 Passive Testing Approach

We previously discussed the use of logic circuits for active test generation for an SDN-enabled
switch. In fact, whenever the access to the switch is limited and its behaviour can only be
observed, a logic circuit £C modelling the specification S can still be effectively utilized. The
reason is that the simulation of £C can in some cases be much faster than the search of the
particular switch rule and its further application to conclude about the expected output port(-s).
In other words, the task of the switch monitoring that verifies that the packets are forwarded
to the exact ports specified by S, can be reduced to the problem of the circuit simulation®, i.e.,
obtaining an output pattern for a given input one. This approach is described in Algorithm 4.

Algorithm 4: SDN-enabled Switch Monitoring

Input :The switch implementation under test 7 and S the corresponding
specification 7 must implement

Output : Alerts for the packets processed wrongly by the given IUT

-y

Run Algorithm 2 on S, obtain a logic circuit LC
2 while working do

> working is a Boolean flag to control the execution of the
monitoring process
3 packet_observed «— input(1)

> input returns the processed input of the IUT
4 Extract the Boolean vector B_packet from the packet_observed header
parameters, including the encoded value for the input port of the IUT

5 port_observed «— output(1)

> output returns the port number for the input
6 Encode port_observed as the Boolean vector B_port

7 if port_observed # sim(LC,B_packet)

> sim is a function that simulates the circuit behaviour over
a given input
8 then
9 \; alert(packet_observed)

> Alert an incorrect processing of packet_observed

Algorithm 4 takes as input the switch implementation under test 7 and S the corresponding
specification 7 must implement. It calls Algorithm 2 to derive the corresponding LC from
S (line 1). Then, it stores the header being processed of the received input packet (line 3)
in the variable packet_observed. Next, the algorithm extracts the different parameters of

éUnder the assumption that the circuit simulation is correct.

5.8. Experimental Evaluation for Testing an SDN-enabled Switch 77

the stored header leading to the construction of a Boolean vector B_packet (line 4). Then it
observes and stores the output ports of the implementation under test (lines 5) in the variable
port_observed and encodes the latter as a Boolean vector B_port (6). Finally, if the output
ports are different from those returned by the function that simulates the circuit behaviour over
a given input, then, an alerts is emitted indicating that the packets are processed wrongly by
the given implementation under test (line 9).

As we will discuss in Section 5.8, in many cases, the verdict about the correct or incorrect
application of a given switch rule can be made much faster when the logic circuit representation
is exploited.

5.8 Experimental Evaluation for Testing an SDN-enabled Switch

As in the previous chapter, the experiments have been performed on the widely-known SDN-
enabled switch, namely Open vSwitch (OVS) [121] version 2.0.2, in an emulated networking
environment using Mininet.

5.8.1 Experimental Set Up

The topology of the emulated network is similar to the one shown in Figure 5.3. This topology
models the data plane as a graph where all switches are connected to an SDN controller. In
Figure 5.3, hosts and switches are labeled with strings starting with the word Host and letter
S respectively. For each edge in the graph, the corresponding port number used by the two
nodes is depicted; for example, in the edge (5>, 53), the label ‘3 3’ indicates that the port 3 at
switch S, is connected to the port 3 at switch S3.

In addition, the Ethernet MAC addresses for each of the hosts are shown above or below each
host. For our experiments, without loss of generality, we have chosen the switch S3 (depicted
with a dotted pattern) as the system under test. The ONOS [17] controller version 1.10.4 has
been used for all the experiments.

9a:d8:73:d8:90:6a 9a:d8:73:d8:90:6b

9a:d8:73:d8:90:6¢ 9a:d8:73:d8:90:6d

Figure 5.3 — Experimental set up topology for testing an SDN-enabled switch

The experiments have been executed under different virtual machines running under a Virtu-
alBox Version 5.2.8 r121009 for Mac OS X 10.13.4. The characteristics of the used virtual
machines are shown in Table 5.2.

78 5. Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach

ID Operating System CPUs RAM

VM1 Cent0S 6.9 2 Intel(R) Core(TM) i5-2415M CPU | 3GB
@ 2.30GHz processors

VM?2 | Ubuntu 14.04.4 LTS (Mininet Dist.) Intel(R) Core(TM) i5-2415M CPU 2GB
@ 2.30GHz processors

Table 5.2 — Experimental platform for an SDN switch

5.8.2 Results and Evaluation
5.8.2.1 Logic Circuit Fault Models for SDN-enabled Switch Fault Model

There exist a large number of possibilities how an SDN network can be (re) configured, and
therefore how to obtain the switch rule set specification S. In fact, as studied in Chapter 4,
network applications in the application layer query the SDN controller for information of the
data plane and request the implementation of different rule sets for the forwarding devices
(e.g., SDN-enabled switches).

The network applications can have different goals; for example, one application can monitor
the data plane in order to balance the traffic load between the network links (edges). One of
the most common applications for an SDN network is the Layer 2 switching application; this
application forwards Layer 2 packets (e.g., Ethernet) between hosts using the shortest paths.
To provide meaningful results, we have programmed the data plane with a Layer 2 switching
application. The rules have been pushed through the controller using the REST interface.
After pushing the rules, communication from / to any host has been successfully achieved via
the Ethernet protocol.

A logic circuit LC has been derived from the specification S using Algorithm 2. The logic
synthesis tool used for deriving £C has been the ABC tool [22].

Example

As an example, one rule R € S installed on S is depicted in Equation 5.11.

R =((INPUT_PORT € {1} & ETH_SRC € {9a:d8:73:d8:90:6a} &

5.11
ETH_DST € {ft:ff:ff:.ff:ff.ff} = output_ports = {2,3}) 511

Note that after the logic synthesis of the specification, the corresponding LUT entry for the
rule in Equation 5.11 is depicted in Table 5.3.

X1X2...X89 f1f2f3

0110011010110110000111001111011000100100000110101011 110

Table 5.3 — Example of a look-up table entry for the rule in Equation 5.11

Once the logic synthesis accomplished, LC has 99 inputs and 4 gates. The logic circuit has
then been saved into the Berkeley Logic Interchange Format (BLIF). A BLIF Mutant Genera-
tor (BMG) [85] tool has been executed to generate mutants for the SSF, SBF, and HDF types.
The total number of mutants is 214, where 206 mutants are all SSF mutants, 4 are randomly
chosen SBF, and likewise 4 are randomly chosen HDF mutants. A distinguishing pattern has
been found for each non-equivalent mutant. For each of the fault models, a test suite has

5.8. Experimental Evaluation for Testing an SDN-enabled Switch 79

been obtained, i.e., TSssr, TSspr, and TSy pr. Furthermore, the union of all three test suites

has been used to obtain T'Sacr, a test suite for all circuit faults”’. The original BLIF circuit

representing £C contains a sum of products, hence, only 4 gates (the output gates).

In order to check whether the fault coverage increases with different circuit representations, the

original BLIF file representing £C has been re-synthesized as an AND-INVERTER graph (AIG).
We hereafter refer to this circuit as LC’ modelling the specification S’ where S and S’ are

functionally equivalent, (LC’ is functionally equivalent to £C modelling S). £LC’ has 99 in-
puts and 395 gates, and therefore, the total number of mutants is 1778, where 998 mutants

are all SSF mutants, 395 are randomly chosen SBF, and likewise 395 are randomly chosen

HBF mutants. The same procedure of test generation applied to LC has been performed on

L’ to obtain the corresponding test suites.

Table 5.4 summarizes the numbers of generated mutants for £LC (modelling S) and LC’

(modelling S").

Circuit | SSF | SBF | HDF | Total
S 206 4 4 214
S’ 998 | 395 | 395 | 1778

Table 5.4 — Number of generated mutants

To check the fault coverage of traditional digital circuit fault models, a set M of 45 mutants
of S has been generated. The set of mutants contains different (higher) order mutants. After
running Algorithm 3 to remove from M the equivalent mutants (1 equivalent mutant has been
removed), each pattern p in each of the test suites TSssr, TSspr, TSupr, TSacr has been
used to simulate the behaviour of S and compare it to the behaviour of each mutant M in the
non-equivalent mutant set, Vv M € M.

The mutation score / fault coverage® obtained for each of the test suites is shown in Table 5.5.

Circuit | SSF | SBF | HDF | ACF (total)

S 79% | 45% | 18% 86%
S’ 95% | 97% | 95% 100%

Table 5.5 — Fault Coverage for traditional digital circuit fault models

As shown in Table 5.5, the fault coverage of traditional logic circuit fault models reaches 100%
for a Layer 2 switching specification. Therefore, we conclude that test suites derived based on
traditional logic circuit fault models have a high fault coverage for SDN-enabled switch faults.
An interesting aspect is that the fault coverage highly increases when the original circuit speci-
fication is transformed into an AIG. It is reasonable to assume that AlGs have more gates, and
therefore more mutants, hence more distinguishing patterns are obtained with such represen-
tations. Thus, different functional errors in the SDN-enabled switch rules can be covered by a
larger test suite when derived based on such AlGs.

7ACF stands for ‘all circuit faults’.
8Calculated as the ratio of killed mutants to total number of (non-equivalent) mutants.

80 5. Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach

5.8.2.2 Using Logic Circuits for Monitoring

As discussed earlier, run-time monitoring for verifying functional properties of a given IUT 1
requires that the monitor (in this case LC) is not slower than 7.

On one hand, an observation one can make is that it can be presumed that a combinational
circuit has a constant (or near to constant) computational time for any input pattern. On the
other hand, another observation is that the switch implementations such as Open vSwitch
effectively work by caching the corresponding actions to be applied to a subsequent matching
packet, and thus, these cached actions are applied to ulterior packets matching the rule [121].
The match look-up (and corresponding action to be applied) is performed using a set of hash
tables which size is increased with each unique match [121].

Therefore, a priori and based on the intuition these observations can induce, one can make the
hypothesis that the simulation of a logic circuit for the implementation of the switch behaviour
should be faster than the described inherent caching mechanism.

To validate our hypothesis and prove that logic circuits are indeed suitable for run-time moni-
toring of SDN-enabled switches, we have performed the following experiment. On one hand,
10000 rules have been pushed into the switch S3 (IUT) using the ONOS controller. On the
other hand, a logic circuit has been obtained using Algorithm 2 for the specification containing
the same 10000 rules installed in the IUT. Then, a comparison has been made between the
time taken by Open vSwitch to process one packet and the time taken to simulate a single
pattern of the logic circuit.

The time Open vSwitch takes to process one packet and the time taken to simulate a single
pattern of the logic circuit have been measured as follows. To determine the time to process
one packet, monitors have been installed on each switch port (interface). The time difference
between the packet ingress and the packet egress has been measured to be ~ 0.29ms while
executing Open vSwitch under VM2 (Table 5.2).

For measuring the time taken to simulate a single pattern of the logic circuit, some concerns
should be taken into consideration. Indeed, as the time to simulate a single pattern in ABC
(given a synthesized circuit) is considerably low, precision issues may occur. Furthermore,
reading the file and writing the response to the standard output take most of the simulation
time. For this reason, the relevant values have been extracted from the packet used, and the
Open vSwitch has been simulated one thousand times. Finally, the average time taken to
simulate a single pattern has been computed to be ~ 0.003408ms.

5.8.2.3 Discussion

As a conclusion of the presented experiments, it can be seen that the logic circuit simulation is
more than 85 times faster compared to the switch packet processing. Arguably, the difference
in the input / output interfaces for the different environments (packet input in a switch vs. file
read in a circuit simulation) can also affect the time estimations.

However, capturing packets at a network interface is done when the packet has been pro-
cessed by the interface and processed by the operating system, therefore, reading a packet
is done from the internal (RAM) memory of the devices. On the other hand, the file used to
simulate a pattern in the circuit simulation is performed from a hard drive (HD). For that rea-
son, it is reasonable to assume the time measurements performed over the switch have an
inherent advantage (RAM access is much faster than HD access). Therefore, theoretically,
the speed-up may be even larger when considering the same input / output interfaces.

It is of special interest to accurately estimate the obtained speed-up due to its potential appli-
cations not only for testing reasons but, for optimizing the switch implementations. Performing

5.9. Chapter Conclusions 81

such investigation of the speed-up obtained via the logic circuit representation of a set of rules
is left for the future work.

5.9 Chapter Conclusions

In this chapter, we have proposed a logic circuit based approach for testing SDN-enabled
devices. It allows to take advantage of well established test generation strategies for logic
circuits as well as of scalable manipulation over Boolean vectors and functions. The switch
has been tested for its forwarding functionality in the data plane and has been modelled as
a stateless system. We have also introduced some mutation operators over the switch rules
and have discussed how logic circuit and related SAT solving can be utilized for detecting
equivalent mutants.

Finally, we have considered run-time verification of switches and have investigated the use of
logic circuits in this case.

Preliminary experiments with Open vSwitch have confirmed the effectiveness of the proposed
approach. The meaningful results motivate us to apply such approach for testing other SDN
components. Thus, in Chapter 7, we adapt the proposed approach of this chapter to test a
specific controller application.

In the next chapter, we consider the switch-to-controller communication as the system under
test where we take into consideration its behaviour in the southbound interface. In contrast to
the present work, the switch in this case is modelled and analyzed as a ‘stateful’ system.

82

5. Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach

Test Generation for OpenFlow Switches:
An Extended Finite State Machine based
Approach

Contents

6.1 Introduction ittt eeneenn 84
6.2 Problem Statement e 85
6.3 Extended Finite State Machine Model for an OF Switch 86
6.4 Introducing User-Defined Mutations and a Fault Model 88
6.5 EFSM based Technique for Test Generation 89
6.6 Experimental Evaluation for Testing an OF Switch. 93

6.6.1 Evaluation ofthe Approach 93

6.6.2 Experiments on Testing an OVS Implementation 95
6.7 Chapter Conclusions i ittt vt eeeeeesss 97

In the previous chapter, we have presented a novel formal testing approach to certify the
correctness of the forwarding functionality of an SDN-enabled switch, i.e., we have considered
the switch as a stateless system, defined by a set of pre-configured rules. Notwithstanding
the effectiveness potential of the presented solution in detecting implementation forwarding
errors, it does not cover the behaviour of the switch in its interaction with the controller.

In this context, we intend to address this challenge by proposing an appropriate model based
approach that allows testing the interaction of the switch with the controller. For this purpose,
the method has the potential of generating test suites with guaranteed fault coverage.

83

6. Test Generation for OpenFlow Switches: An Extended Finite State Machine based
84 Approach

6.1 Introduction

The literature has mostly overlooked the problem of errors that might occur in the switch link
with the controller. Nevertheless, unexpected bugs still happen at this level and must be ad-
dressed. Further on, the OF specification is extremely complex and lacks uniform standard-
ization. For example, just the rule installation command (Flow_M od) is more than two pages
long [113]. This might increase misinterpretation or cause conflicts due to multiple or dupli-
cated requirements.

To address this challenge, in this chapter, we propose an EFSM based technique for test gen-
eration that aims to verify the OF switch-to-controller interaction with respect to requirements
described in the OF specification. Correspondingly, the EFSM model is derived based on the
OF requirements. Potential incorrect implementations are also modelled as EFSMs that are
obtained by injecting specific types of (user-driven) faults into the model, i.e., through mutants’
generation. For each mutant, a distinguishing sequence (DS) is sought that separates the
original specification from the mutated one. We present an effective algorithm that derives a
test suite T'S formed by the corresponding distinguishing sequences.

Several approaches have been proposed in the literature for deriving conformance tests when
the system specification is represented by an EFSM. On one hand, a group of these works
have proven to be effective in deriving tests with guaranteed fault coverage. For example,
these approaches have been proposed in the works by Bochmann et al. [20], El-Fakih et
al. [49], and Petrenko et al. [118]. However, the author is not aware of the corresponding
techniques being applied to tackle the correctness of SDN-enabled components. On the other
hand, another group of works relying on EFSM for test generation have been proposed for SDN
application area [160, 176], however, no related fault model has been introduced and thus, no
fault coverage has been proven (see Chapter 3).

This chapter proposes to lessen this gap and advance the state of the art research on model
based testing applied to SDN. An effective heuristic approach to derive distinguishing se-
quences for the specification EFSM and its mutants is presented for testing SDN switch-to-
controller communication.

The main contributions of this chapter are the following. Firstly, we formalize a part of the
OF requirements and propose an EFSM based test generation approach that is applied to an
OF switch in its northbound interface (or controller southbound). Secondly, to demonstrate
the effectiveness of the proposed approach, an experimental evaluation is performed. The
evaluation aims at the assessment of the derived test suites fault coverage on one hand and
at the execution of the derived tests against an OF implementation under test, on the other
hand.

The conducted evaluation has shown on the one hand the effectiveness in terms of fault cover-
age of the derived test suites. Indeed, compared to randomly generated test suites, the ones
derived by our approach have shown an average mutation score of 60.07% against 21.75%
for the randomly generated T'Ss. Further on, the average mutation score is even significantly
higher than the maximal score with random test suites. On the other hand, experiments have
revealed several implementation faults and specification ambiguities when we have tested a
switch implementation, namely Open vSwitch 2.5.0. Examples of detected faults include sev-
eral misbehaviours when rules with some specific values of the ‘action’ field of the Flow_Mod
input have been installed, in addition, a misbehaviour in updating the statistics about the in-
stalled rules has been observed.

Section 6.2 describes the problem statement, the context of our contribution and its objectives.
Section 6.3 describes the formal specification of the switch EFSM model. Section 6.5 presents
the test generation approach and details the proposed algorithms. Section 6.6 defines the

6.2. Problem Statement 85

evaluation metrics used to assess the performance of our solution, reports the evaluation
results, and then presents the experimental results with an emphasis on the revealed errors
with a switch implementation. Finally, Section 6.7 concludes the chapter.

6.2 Problem Statement

In an SDN architecture, the switch component not only assures a forwarding functionality to
steer traffic flows in the data plane, but also interacts constantly with the SDN controller to
acquire forwarding rules that determine this forwarding behaviour. The process of acquiring
these rules defines the behaviour of the switch with respect to the controller. The interaction
is performed via the controller southbound protocol. The protocol defines the communica-
tion between the control plane and the data plane. The agreed protocol (OpenFlow require-
ments) suggests ensuring the southbound communication and specifies the corresponding
interchanged messages.

Nonetheless, the OF specification is extremely complex, lacks uniform standardization and is
expressed in informal language. This might increase misinterpretation or cause conflicts due
to multiple or duplicated requirements, etc. Therefore, all of these factors would result in a
high likelihood of the implementations of the switch exhibiting diverging behaviours from their
OF requirements.

We consider an OF switch in its communication with the controller as the system under test as
shown in Figure 6.1. The system under test takes as input OF messages from the controller
and outputs replies (OF messages) to the controller as specified by the OF requirements.
We propose to investigate how to guarantee the correct behaviour of the switch communica-
tions with the controller.

A=
NetApp, NetApp, NetApp, =
=
.]
Jf\d A A S
; 3
W
Morthbound API

A
E
SDN Controller z
k e E
\ : !‘ Southbound AP -
! 1 (e.g., OpenFlow Protocol) ™

'.‘ I I]
} : A

A :

' o e Host

Hosts" =] 1 Lt g
! w
=
w
3
o
W

Figure 6.1 — Topology showing a switch-to-controller communication as the SUT

6. Test Generation for OpenFlow Switches: An Extended Finite State Machine based
86 Approach

The research question we are addressing in this chapter can then be formulated as follows.
Given the switch specified by its communication with the controller, how to guarantee the cor-
rectness of its behaviour, i.e., how to ascertain the implementation of the switch meets the
defined set of requirements?

6.3 Extended Finite State Machine Model for an OF Switch

Formal models may be used as the basis for automating parts of the testing process and
can lead to more efficient and effective testing [66]. Moreover, FSMs/EFSMs are widely used
and have proven their effectiveness in various application domains, such as modeling and
testing communication protocols, and other reactive systems. These formal models can be
successfully adopted in specifying the properties of the OF switch and in capturing its function-
ing, particularly its communication with the controller. It is therefore of paramount importance
to have a model which can capture the main interaction part between the controller and the
switch, is able to model the main communication messages going from switch to controller
(and vice versa), and can be easily extended to include additional parts of the OF specifica-
tion or even the entire specification. The model proposed in this chapter is an attempt in that
direction.

The proposed EFSM model (i.e., the specification S) for the switch is derived from the OF
requirements [113] only considering its interaction with the controller because in this chapter
our goal is to test a switch at the controller southbound interface (and not at the data plane
interface as achieved in Chapter 5).

The model is partially illustrated in Figure 6.2. The characteristics of the EFSM are depicted in
Table 6.1. The model is composed of five states, two non parameterized inputs and nine pa-
rameterized inputs, eleven non parameterized and seven parameterized outputs. It contains
also two context variables, seven output parameter functions, fifteen predicates and three
context update functions. Note a level of abstraction in the model, for example not all input-
s/outputs of the original protocol are modelled.

As the requirements do not describe precisely what the switch should reply in case of the
success of a request received from the controller (e.g., response to a successful FLow_Mob),
in our model, we assume that the reply is a non-parameterized NuLL,, output.

The sets of states S, inputs X and outputs Y are depicted in Equation 6.1.

S ={CLOSED, WAIT_HELLO, WAIT_FEATURE, CONNECTION_ESTABLISHED, FAIL_MODE};
X ={connected, HELLO;, NULL;, disconnected, FEATURE_REQ, ADD, DELETE,
MULTIPART_REQ, BARRIER_REQ, ECHO_REQ, PACKET_OUT};
(6.1)
Y ={HELLO,, Error, ERROR{, ERROR), ERROR3, ERROR4, ERROR5, ERRORg, ERROR7,

ERRORg, ERRORg, ERROR|(), MULTIPART REP, FEATURE_REP, ECHO_REP,

BARRIER_REP,NULL,, FLOW_REMOVED}.

The EFSM reflects that the switch supports connection version negotiation (parameterized
input HELLO;) and preserves the behaviour of correct exchange of FEATURE; ADD and DELETE
(modelling the FLow_Mob message); BARRIER; ECHO; PACKET_OUT and MULTIPART messages.

6.3. Extended Finite State Machine Model for an OF Switch 87

The handshake and version negotiation are handled by predicates of ¢y, #; and #,. For example,
transition #, in Figure 6.2 is depicted in Equation 6.2 where WAIT_HELLO and WAIT_FEATURE
are the initial and final states of #, respectively, HELLO; is the parameterized input. P; is the
predicate checking the values of parameters type and version of the input. NuULL,, is the output
sent by the switch representing a success of the HELLO; request.

tp = (WAIT_HELLO, HELLO;, P>, —,NULL,, —, WAIT_FEATURE) (6.2)

Once in the waIT_FEATURE state and upon receipt of the parameterized input FEATURE_REQUEST
(t5 in Equation 6.3), if the predicate of #5 is evaluated to True (indicating the non expiry of a time-
out), the machine produces the parameterized output FEATURE_REPLY (containing the switch
capabilities) and moves to the state CONNECTION_ESTABLISHED. In case FEATURE_REPLY is not
sent after a timeout (predicate of 3 evaluates to True), the machine moves to the initial state
cLOSED indicating a disconnection (transition #3 in Figure 6.2).

ts =(WAIT_FEATURE, FEATURE_REQUEST, Ps, 0ps, FEATURE_REPLY, (6.3)
ups, CONNECTION_ESTABLISHED) '

Being in the waIT_FEATURE state and upon receipt of one of the parameterized inputs CONNECTED

or HELLO;, the machine stays in the same state and produces non parameterized ERROR,

and ERROR, replies respectively (transitions #3p and 31 in Figure 6.2).

Once the connection is successfully established and the machine being in the CONNECTION_ESTABLISHED
state, some of the exchanged messages are modelled as self-looping transitions in state
CONNECTION_ESTABLISHED (transitions from 4 to #,3) including for example transition 75 de-

picted in Equation 6.4.

t¢ = (CONNECTION_ESTABLISHED, ADD, Pg, 0pg, NULL,, UPg, CONNECTION_ESTABLISHED)
(6.4)

We note that the values of input/output parameters have rather small domains. For example,
the input parameter version of HELLO; input takes only the single value 0x04 and the input
parameters for the input ADD are [type table match action flags| and their values
have small domains as well. The same for output parameters.

The machine has the set of two context variables; C, = {nbrlows,TLs_timeout} denoting re-
spectively the number of rules in the switch and the TLS session timeout. nbrlows can take
distinct values in the range [0..max_entries| where max_entries is a constant that denotes
the maximal number of rules the switch can insert and depends on the switch characteristics
(takes the value of 10° in our model). In case TLs_timeout expires, the switch loses the con-
nection with the controller and the machine moves to state cLOSED (transition #4 in Figure 6.2).
The OF requirements specify that the connection maintenance is done by the underlying TL-
S/TCP connection mechanisms and since currently supported protocols have the same default
timeout value of 300 seconds, we set TLs_timeout to this value.

No. of states No. of transitions | No. of predicates | No. of update functions

5 31 15 3

Table 6.1 — The characteristics of the EFSM switch model

Note that the finite state model proposed in this chapter can be extended to model additional
parts of the OF requirements, or even the entire specification. For example, the configuration

6. Test Generation for OpenFlow Switches: An Extended Finite State Machine based
88 Approach

TTIAN/TIAN
€1

01y

CTIAN/I'TTNN

Figure 6.2 — Part of the specification EFSM of the switch

messages handling groups, queues, and meters can be added as self-looping transitions after
the connection establishment, or other states can be added as well. The model allows the
detection of potential faults and misinterpretations as it will be shown by our experiments.
However, its expanding would eventually require more significant upfront time. Naturally, an
evaluation of such expanding is needed and hence can form a direction of future work.

6.4 Introducing User-Defined Mutations and a Fault Model

In this work, we assume that the specification machine S has a set of selected transitions,
referred to as suspicious that are defined by a ‘user’ (can be an expert, tester, developer, etc.).
We focus on output, transfer, predicate and update function faults at these transitions.

Given a ‘suspicious’ transition ¢ = (s;, x, P, op, y,up,s;) of S, t has:

« An output fault if its (parameterized) output is distinct from that specified in S.

6.5. EFSM based Technique for Test Generation 89

« A transfer fault if its final state is different from that specified by S.
» An update function fault if its update function is omitted.
» A predicate fault if its predicate is negated!.

Note that the introduced faults could be more sophisticated. For example, one can consider
altering the operators of an update function. Nonetheless, even with these types of faults, we
show that our approach is able to detect faults in an OVS implementation. Also, we note that
in this work, only first-order mutants are considered.

As in Chapter 5, we introduce a fault model as the tuple of the specification, conformance
relation and fault domain, (S, ~, ¥ D) [120].

In this chapter, the specification machine S is represented by an EFSM, and the conformance
relation =~ is the quasi-equivalence, i.e., an implementation M conforms to the specification S
if for each input sequence for which S is defined, M produces the same output sequence as
defined by S. ¥ D is a set of implementation machines; faulty implementations are simulated
by the mutants of interest.

As usual, we are interested in deriving exhaustive test suites for (S,=~, ¥ D), i.e., such test
suites that detect each non-conforming (faulty) implementation M € ¥ D.

6.5 EFSM based Technique for Test Generation

DEFINITION 6.1.

() A pathin S is the set of (parameterized) inputs of the successive transitions that are
enabled from one configuration to another.

() Let S have the initial configuration (so, Vo). A test sequence is the sequence of input /
output pairs of S that starts from (s, vo) to a given configuration (s, v) (i.e., a path from

(50, Vo) to (s,V)).

DEFINITION 6.2.

Given a (parameterized) input sequence «, if a is defined at the initial states for machines
S and M, configurations (s,v) of S and (s7,v7) of M are distinguishable by a (DS) if the
(parameterized) output sequences produced respectively by S and M in response to a are
different, i.e.,

out(S, @) # out(M, @).

We furthermore refer to S as the specification machine describing the desired behaviour of an
OF switch, while M denotes a potential faulty implementation of it. M is distinguishable from
S (can be detected) if there exists such a DS «@. Otherwise, M is quasi-equivalent to S.

Our approach is a depth first search (DFS) based heuristic that progressively constructs a test
suite T'S. As a first step, a set of user-defined mutants for suspicious transitions is derived.

IThe specification can stay deterministic if other outgoing transitions are mutated accordingly. In our model,
no more than two transitions with the same (parameterized) input (and different predicates) are defined at a
state, thus when introducing a predicate fault we can simply change the predicates assigned to such two out-
going transitions. We assume this mutant is still of first order because it can correspond to a single fault in an
implementation, e.g., unintentional swapping of the ‘if-then-else’ statements.

6. Test Generation for OpenFlow Switches: An Extended Finite State Machine based
90 Approach

Some examples of the hand-seeded faults are as follows. An example considers a variable
that exceeds its extreme value, for the very simple reason that software developers often just
forget to check such condition. Another example considers a type of fault that consists in swap-
ping the predicates of two outgoing transitions from the same state with same (parameterized)
input which corresponds to developers unintentionally swapping the condition to check (in the
‘if-then-else’ statements for example). Another relevant example is linked to the coding activity
such as potential mistakes in the action part in the Flow_M od message or small differences
in the matching fields which might ‘tickle’ subtle bugs [26]. Other faults concern misunder-
standing or misinterpretation of the requirements. Such faults are deliberately seeded into the
specification.

Then as a second step, for each mutant M; of the set, for checking the distinguishability
between a reached configuration (s, v) where the suspicious transition is defined in S and the
corresponding configuration reached in M;, the approach tries to append the DSs if they exist
up to a certain predefined positive depth /.

The construction of a distinguishing sequence, say o, of S and a given M; is performed in
the following way. It is formed of a preamble @ and a postamble that is appended to a to form
the distSeq. The preamble « is an input sequence that takes S from the initial configuration
(s0, Vo) to the configuration where the suspicious transition is defined. The postamble distSeq
is constructed by a depth first search that will repeatedly expand deeper configuration nodes in
the EFSM and explore the successive configurations. In other words, configurations at depth /
(which corresponds to length || + [starting from the initial configuration) are treated as if they
have no outgoing transitions (successors). The algorithm therefore progressively increases
the depth until it finds that the outputs of S and M, are different or that the limit / for the depth
is reached (i.e., the length |a| + [is reached).

The approach is formalized in the following algorithms.

Algorithm 5 captures the main flow of the proposed approach. It first assigns 7S and ¥ Dr to
empty sets. Then for each mutant M; in the set ¥ D, it looks for the corresponding DS. Since
our EFSMis initially connected, we are only interested in configurations that are reachable from
the initial configuration. A preamble « is generated to first reach the suspicious transition.
The specification S is then simulated over a and the sequence o is first empty and is later
extended with the (parameterized) sequence pISTSEQ if it exists to satisfy the distinguishability
between the two configurations reached in S and the mutant respectively.

Therefore, for a length going from || to (|a| +1), i.e., from the depth of the starting suspi-
cious transition to the defined depth limit, the algorithm repeatedly calls DISTINGUISHINGSE-
QUENCEAPPEND illustrated in Algorithm 6 which takes care of suitable extensions. Eventually,
Algorithm 5 will find a DS if one exists up to depth [(i.e., up to length (|a| +) from the initial
configuration). Finally, if such sequence exists, it is added to T'S while the mutant is marked as
distinguishable, i.e., added to the set ¥ D7 C ¥ D. When all derived mutants are considered,
TS is returned along with ¥ 2 containing distinguished mutants.

PROPOSITION 6.3.
If Algorithm 5 returns a test suite 7'S then this test suite is exhaustive with respect to the fault
model (S, =, F D).

Proof.

Indeed, ¥ D contains only distinguishable mutants. Moreover, the derived test suite 7S is
formed by all the input sequences that distinguishes the specification S and each mutant of
the set of mutants ¥ 9. Therefore, each faulty implementation / mutant is detected by the
derived test suite T'S. O

6.5. EFSM based Technique for Test Generation 91

Algorithm 5: EFSM based Approach: Algorithm that derives a test suite TS and a
set ¥ D of distinguishable mutants

Input :EFSM S, initially connected and deterministic
A set ¥ D of mutants
An upper bound positive integer [> 0

Output : A test suite 7'S and a set of mutants ¥ 9 that can be detected or NoSolution
1 TS0
2 FDr— @

3 foreach M; € ¥ D representing a fault at a ‘suspicious’ transition
ti = (sis Xi» Pi, opi, i, upi, sir) do

4 Let a be a (parameterized) input sequence that takes S from the initial
configuration (so, vo)° to the configuration (s;, vi)° where the predicate P; of #; can
be evaluated to True and a (parameterized) input x; is defined

5 Simulate S applying @ and reach configuration (s;, v;)°

6 o «— empty
7 for length «— |a| to (|| +1) do
8 DisTSEQ «— DISTINGUISHINGSEQUENCEAPPEND(S, M;, (s;, vi)S, length)
> depth limited search
9 if DiIsTSEQ # NoSolution then
10 L o « o0.DIsTSEQ
11 if |o| > || then
12 TS «—TSU{o}
13 | FDr —=FDru{M;}

14 if |T'S|==0 then

15 return NoSolution

16 return T'S and F D

Example

Below, we show an example of a mutant and the corresponding distinguishing sequence DS
returned by Algorithm 5.

Consider the transition depicted in Equation 6.6 where upg indicates that nbrlows is increased
by one. A mutant M, considers an issue that sometimes developers forget to verify the update
of a variable. The idea here is that M is derived by omitting the updating function upg, shown
in Equation 6.5, of #.

upe - AR S/AL
(6.5)
nbrlows < nbrlows + 1

It suggests the switch will not update its statistics after adding a new rule. The corresponding

6. Test Generation for OpenFlow Switches: An Extended Finite State Machine based
92 Approach

Algorithm 6: DISTINGUISHINGSEQUENCEAPPEND(S, M, (s;,Vi), length)

Input :Initially connected and deterministic EFSMs S and M
A configuration (s;, v;)
An upper bound positive integer length

Output : A test sequence or NoSolution

-y

NoSolutionHappen « False

2 seq « input sequence of the path up to (s;, v;)

w

if out(S, seq) # out(M, seq) then

4 return seq

(4]

if |seq|==Llength then

6 L return NoSolution

~

foreach transition t = (s;, x;, P;, op;, yi, up;, si) outgoing from the configuration (s;, vi)
with P; evaluating to True do

8 successor «— (s;7,Vi’) ; > vi is the result of up; applied to v;
9 path « DISTINGUISHINGSEQUENCEAPPEND(S, M, successor, length)

10 if path == NoSolution then

11 B NoSolutionHappen « True

12 else

13 if path # NoSolution then

14 L return path

15 if NoSolutionHappen then

16 return NoSolution

distinguishing sequence o returned by Algorithm 5 is shown in Equation 6.7.

t¢ = (CONNECTION_ESTABLISHED, ADD, Pg, 0pg, NULL,, i Pg, CONNECTION_ESTABLISHED) (6.6)

o =connected(oFPT_HELLO,0x04)
HELLO; (OFPT_HELLO, 0x04)
FEATURE_REQ(FEATURE_REQUEST,0x04)
BARRIER_REQ(BARRIER_REQUEST)
ADD(OFPT_FLOW_MoOD, 0, any, 1,0)
BARRIER_REQ(BARRIER_REQUEST)
MULTIPART_REQ(OFPMP_TABLE)
BARRIER_REQ(BARRIER_REQUEST).

6.6. Experimental Evaluation for Testing an OF Switch 93

6.6 Experimental Evaluation for Testing an OF Switch

6.6.1 Evaluation of the Approach

In the first part of the evaluation, given the depth [to which Algorithm 5 is allowed to explore
the generated transitions tree starting from the suspicious transition of interest, we investigate
the impact of this depth on the effectiveness of the generated test suites (fault coverage). For
this purpose, we vary the depth / and we generate corresponding test suites, then we measure
the mutation score of each generated test suite.

In the second part, we further assess the effectiveness of the test suites derived by the pro-
posed approach by comparing them to test suites generated randomly, i.e., an approach that
randomly selects inputs from the input set to form test suites. We refer to this approach as RG
(Random Generation). The goal is to compare the test suites derived by our test generation
method with size-equivalent test suites that do not follow any systematic test generation strat-
egy. Though this provides only a baseline and a comparison with alternative testing methods
is definitely relevant, it is a necessary starting point.

In order to perform an experimental evaluation, a number of software tools have been de-
veloped. The experimentation process is composed of four main steps. The first step is to
generate mutants of different kinds. The second step is to generate the test suites based on
the two approaches, namely the proposed EFSM based approach and the random test gener-
ation approach (RG). The third step of the experiment is to produce JUnit files that can run the
test suites. The fourth and final step is running the generated test suites against the generated
mutants.

To conduct our evaluation, automation of test suite generation is paramount. Alternatively,
one can produce them manually though this is very time consuming and likely error-prone.
Similarly, mutant generation must be automated. However in our experiments, we generate
two sets of mutants. A first set of user-defined mutants are manually generated and added to
the second set of automatically (randomly) generated ones.

We have therefore developed a testing framework. The framework is composed of two main
modules. The first module allows the test engineer to produce test suites according to two
different test generation methods; using our proposed approach and using the random gen-
eration approach (RG). The mutants have been generated and the test suites have been au-
tomatically constructed. The second module of the testing framework helps executing the
randomly generated test suites against the different generated mutants.

Note that the random test suites generation is based on the random function provided by the
Java programming language.

We discuss our measurement of performance and effectiveness (at finding faults) using two
metrics as follows. On one hand, concerning the performance, we focus precisely on the
execution CPU time metric. On the other hand, to assess the effectiveness of our testing tech-
nique, we use fault coverage, specifically mutation analysis is used to compare the capability
(of fault detection) of the derived test suites based on our approach against the capability of
randomly generated test suites in terms of the number of killed mutants.

One issue to be addressed is the detection of equivalent mutants, i.e., mutants that have the
same behaviour as the specification machine and therefore cannot be killed by test sequences.
There are studies proposing techniques to automate the detection of equivalent mutants, and
a commonly used heuristic is to consider survived mutants not killed by any test suite in the
overall test pool (i.e., in test suites being compared) as equivalent mutants [39]. In this work, we
have used this heuristic. Since we compare test suites between one another, this assumption
should not introduce a significant threat to validity of our results.

6. Test Generation for OpenFlow Switches: An Extended Finite State Machine based
94 Approach

In our experiments, we produce output, transfer, predicate and update function mutants.

We have created a total of 288 mutants where 70 have been manually generated. 20 of them
(not killed by any of our test suites) have been manually checked to be equivalent. Overall,
we have therefore used 268 mutants where 67 are output, 67 are transfer, 67 are predicate,
and 67 are update function. 10 test suites have been generated using our approach. This has
been performed by increasing the depth / until 10 and for each fixed depth [= {1,...,10}, a
corresponding test suite has been generated.

To generate size-equivalent random test suites, for each generated test suite using our ap-
proach, we have measured the average length of all of its test sequences. For each of these
length values, a corresponding test suite of that same length has been randomly generated
using the RG approach. Hence, 10 test suites have been randomly generated.

Figure 6.3 illustrates the mutation score as the depth increases. The mean mutation score
and the execution CPU time (in minutes) are shown in Figure 6.4.

80

70 e

60 /

\

Mutation score (%)
w Iy
(=] (=]

(=]
=]

[
=]

(=}

0 2 4 6 8 10 12
Depth |

Figure 6.3 — Mutation score as the depth increases

70 1

60 1

so 1
a0 V7 M EFSM based Approach
30 _ Random Approach
20 ¢

10 17

Mutation score (%) CPU time (min)

Figure 6.4 — Average mutation score and execution time for 7'Ss derived by the proposed
approach Vs T'Ss randomly generated

The choice of the depth [, to limit the test sequence length, impacts the number of detected
mutants and hence detected faults as shown in Figure 6.3. We can observe that the mutation
score increases when [increases.

The results from randomly generated test suites show a mean mutation score of 21.75% (Fig-
ure 6.4). This is significantly lower than the 60.07% average that has been obtained with the

6.6. Experimental Evaluation for Testing an OF Switch 95

proposed EFSM based method (with the depth / varying from 1 to 10). The average muta-
tion score is even significantly higher than the maximal score with random test suites. We
can then conclude that, factoring out the cost of testing, the EFSM based testing technique
is rather relevant. It is able to outperform the effectiveness of randomly generated test suites
and achieve the highest mutation score. We conjecture that this is due to not only the ability of
our technique to cover more transitions in the EFSM model, but also to its ability to distinguish
between configurations which the random approach does not do.

However, as shown in Figure 6.4, the CPU time that our proposed technique requires com-
pared to the RG approach is high. Therefore, there is a trade-off between the performance
and the quality of the generated test suites using the two methods.

Our main conclusion is that the proposed EFSM based heuristic is reasonably effective at de-
tecting faults (60.07% average as opposed to 21.75% for size-equivalent random test suites).
The next subsection presents the evaluation of the effectiveness of the EFSM based approach
in revealing OF switch implementation faults.

6.6.2 Experiments on Testing an OVS Implementation

To evaluate the effectiveness of the EFSM based approach in revealing OF switch implemen-
tation faults, we have developed another module part of our testing framework including two
main components. First, there is a translation module that maps the generated test sequences
described in Section 6.5 into OF-syntax messages. It uses an input file specifying the derived
inputs to fill the different input parameter values and construct a 7'S ready to be executed
against the SUT. A second component takes care of the comparison of observed and ex-
pected outputs specified in the input file as well. The framework allows to send T'Ss to the
QVS, collect the observed outputs and compare them against the specified expected ones to
finally print a conclusion displaying ‘OK’ or ‘Fail’ message to the user.

Experiments have been performed on OVS version 2.5.0. As in the previous chapters, Mininet
tool has been utilized. In the testing set up, Mininet has been executed under Mint 18.1 with
8GB of RAM and 1 core of a 2.4 GHz Intel Core i7. The Floodlight 1.1 controller has been used.
Communication with the SUT happens at the level of the southbound interface. The SUT is
connected to a testing engine containing an emulated controller that is capable of sending and
capturing OF messages in a controlled manner.

Figure 6.5 shows the SUT (VM;) and the testing engine (VM;). The source code of OVS
2.5.0 has been directly cloned from its Git repository on the virtual machine VM;. The SUT
may receive any of the inputs from the input alphabet X emitted from the controller set on the
virtual machine VM?2.

The test suites T'Ss of interest have been executed against the OVS implementation. In the
following, we present the bugs detected in OVS 2.5.0 implementation along with the related
DSs and their lengths.

The existence of a fault in OVS 2.5 implementation has been revealed by a test sequence
(DS) of one of the generated T'Ss. It concerns the installation of a new rule with parameter
action set to ‘OFPActionPushVlan’ which pushes a new vLAN tag onto the packet matching
the entry. In this case, the SUT has replied with an error message with parameters type =
OFPET_BAD_ACTION and code = OFPBAC_BAD_ARGUMENT. The observed reply reveals a fault
in the SUT in association with installing a new rule having an action that pushes a new vLAN tag
to the matching packet. The switch has behaved as if an action in the Flow_Mod message
ADD had a value that is invalid, however the ‘OFPActionPushVlan’ action is specified to be
supported. The length of the DS capable of detecting such fault is 7.

Another fault has been detected by another test sequence and concerns the installation of a

6. Test Generation for OpenFlow Switches: An Extended Finite State Machine based
96 Approach

SDN Controller VM2

Test Scripts QD

Controller Interface

[

Switch Under ‘l'
Test

VM1

Switch running

OpenFlow 1.3

Figure 6.5 — Testbed framework for an OF switch analysis

new rule with parameter action set to oFPP_ALL which is supposed to forward the matching
packet to all ports of the switch under test. In this case, the SUT has replied with an error
message as well instead of a NuLL, reply. The parameters of the observed Error reply are
type = OFPET_BAD_ACTION and code = OFPBAC_BAD_ARGUMENT. In this case, the length of
the DS capable of detecting this fault is 7 as well.

A similar fault has been detected which concerns the installation of a new rule with parameter
action set to oFPP_IN_PORT. When the SUT receives a Flow_Mod message with the indi-
cated parameter, it is supposed to reply with a NuLL,, reply and install the rule which forwards
the matching packet to all ports except the input one. However, the observed reply has been
an error message similar to the previously mentioned one. The length of the DS capable of
detecting such fault is also 7.

The next detected fault concerns the MULTIPART_REQ for reporting statistics about installed
rules. The input sequence a € TS is intended to add a rule to the SUT (when nbrlows is less
than max_entries) and request the SUT about statistics. The expected reply should show
increment of the total number of rules nbrlows by one. However, the SUT reply contains the
exact same number of rules than before applying the DS. This means that the switch when
adding the rule to its table, does not update statistics. The DS capable of detecting such
fault is derived based on an update function mutant and it contains a Flow_M od input and a
MULTIPART_REQ input for adding a new rule and then getting the statistics. The type parameter
of the MULTIPART_REQ is set to oFPMP_TABLE. The reply to this DS contains the active number
of installed rules. The DS in this case has length 8.

Another type of fault has been detected as well. It concerns a table overflow. The DS of
interest includes the parameterized input App 10° times followed by another input Abp. In
this case, the SUT has replied with 10® NuLL messages followed by a NuLL and has added
the ‘extra’ rule. Note that in section 6.4 of the OpenFlow requirements [113], it is stated
that “If a switch cannot find any space in the requested table in which to add the incoming
flow entry, the switch must send an o fp_error_msg with OFPET_FLOW_MOD_FAILED type and
OFPFMFC_TABLE_FULL code”. This indeed reports a fault in the OVS 2.5 under test and con-
firms our intuition that in the implementation, the variable nbrlows is not checked for reaching

6.7. Chapter Conclusions 97

its extreme value max_entries. The DS has length 10%+ 6. Thus it has not been derived by
our implementation but rather derived manually using our model. Once the configuration of
interest is reached in the model, the transition with the parameterized input Abp and having
the predicate [nbFlows < max_entries] has been simulated to be traversed 10° times.

Discussion

There are several threats that could potentially affect the validity of our study.

One of the threats susceptible to affect our study is the one referring to generalizability of our
findings. In this preliminary study, it is clear that the results we have obtained are a priori limited
as they are based on one case study (as a baseline) involving the comparison of our approach
to the RG approach. Therefore, more investigations and comparisons are necessary in order
to be able to generalize.

Another point worth mentioning is related to checking the scalability of the proposed approach
with respect to the size and complexity of the built model. In other words, if the proposed model
is extended to incorporate additional parts of the OF requirements, it would be interesting to
investigate how the complexity of the proposed test derivation algorithm will grow accordingly.
This question also forms a direction of planned future work.

In contrast, as we have used mutation score being a surrogate metric of evaluating the effec-
tiveness at detecting faults and as a test suite mutation score has proven to be correlated with
its real fault detection rate [3], we believe there is little threat to the validity in general. Besides,
we have experimented on an OF switch implementation which has allowed us to detect some
faults.

6.7 Chapter Conclusions

In this chapter, an EFSM based testing technique for an OF switch-to-controller communica-
tion has been presented. Given an EFSM model of the switch-to-controller interaction derived
from OF requirements, and a set of mutants representing faults defined by a user at suspi-
cious transitions, the method derives a test suite formed by distinguishing sequences aiming
at detecting the mutants of interest.

We have evaluated the proposed test derivation technique by comparing it to a random gen-
eration approach. The results have shown that the designed algorithm is efficient compared
to the random algorithm. Further, preliminary experiments with Open vSwitch have confirmed
the effectiveness of the proposed approach in revealing some implementation faults. However,
the findings presented in this work should be interpreted in the context of limitations related
to the model design decisions and the number of user-driven mutants. In the future, we plan
to improve the operation efficiency of the approach and apply it to larger SDN models on one
hand and compare it to other (EFSM based) test generation techniques on the other hand.
After presenting novel model based testing techniques for testing the switch in its forwarding
functionality and in its interaction with the controller, we turn to another crucial SDN compo-
nent, namely the SDN controller. The next chapter proposes an adaption of the model based
technique presented in Chapter 5 to a module of the controller. In fact, we consider a specific
module of the controller responsible for translating requested virtual links into pairs of ports
through a given switch. We identify that the module of interest exhibits a ‘stateless’ behaviour.
Therefore, appropriate logic circuit is designed to model its behaviour in order to derive high
quality test suites.

6. Test Generation for OpenFlow Switches: An Extended Finite State Machine based
98 Approach

Test Derivation for a Controller

Application: An Adaptation of the Logic

Circuit based Approach

Contents
7.1 Introductionttt it ittt 100
7.2 Problem Statement 0o 101
7.3 Formal Representation of a Controller Application and Notations . . 103
7.4 Deriving a Logic Circuit for a Controller Application Specification . . 105
7.5 TestSuite Generationttt 107
7.6 TestSuite Executiont 107
7.7 Chapter Conclusionsttt eeee.n 109

Having successfully addressed the challenges of testing an SDN switch in its data plane in-
terface functionality and in its OF interface interaction with an SDN controller in the previous
chapters, we now tackle another critical SDN component, particularly the controller. Indeed, to
ascertain the correct implementation of the controller, it is important to guarantee the correct
behaviour of its modules / applications.

The testing method presented in the current chapter is related to the one of Chapter 5 since
the logic circuit notions introduced there, are used here. In particular, this chapter presents a
proposal for the adaptation of the model based test generation technique elaborated in Chap-
ter 5 to test one module of an SDN controller that is responsible for ‘translating’ requests from
the application layer into virtual links in the data plane level. The testing technique relies on

Logic Circuits.

99

7. Test Derivation for a Controller Application: An Adaptation of the Logic Circuit based
100 Approach

7.1 Introduction

The controller in an SDN architecture is a core SDN component responsible for making de-
cisions on managing forwarding devices in the underlying data plane. An SDN controller
monitors the state of the network by gathering statistics from forwarding devices, makes the
global routing decisions, and reacts on events such as link congestion. In order to fulfill the
long list of tasks, controllers have grown to be rather complex pieces of software, consisting
of more than a million lines of code [17], [104]. The proposals put forth for different controllers
in the literature do not modify the basic controller architecture and modules, rather they differ
in terms of features and capabilities.

The core sub-modules of the controller are mainly related to topology and traffic flow. The
‘link discovery’ sub-module for example regularly transmits inquiries on external ports utilizing
Packet_Out messages. These inquiry messages return in the from of Packet_In messages,
which allows the controller to build the topology of the network [113]. The topology itself is
maintained by the ‘topology manager’ sub-module. This provides the ‘decision making’ sub-
module to find optimal paths between nodes of the data plane. The paths are built such that
the different requests / policies can be implemented during the path installation. In addition,
the controller may also have ‘statistics manager’ and ‘queue manager’ for collecting perfor-
mance information and management of different incoming and outgoing packets, respectively.
‘Flow manager’ is another sub-module which directly interacts with the forwarding devices and
installs rules in their flow tables. It utilizes southbound interface for this purpose [113]. Note
that the controller also has other sub-modules and modules which are not mentioned here.
The controller as a large and complex software inevitably contains bugs that may disrupt its
functioning when triggered.

In previous research, the author et al. have proposed and discussed the use of finite state
models for optimizing and testing SDN controller sub-modules / components [19]. Namely, in
the mentioned work, the ‘queue manager’ or ‘scheduler’ sub-module has been taken as a run-
ning example and a discussion on the properties of appropriate non-classical state models has
been introduced. The author et al. have presented how optimization of the non-functional pa-
rameters and testing of the functional ones can be performed when a state model describes the
controller ‘queue manager’ sub-module. In contrast, in this chapter, the author discusses the
use of another appropriate model and a corresponding test generation approach for another
controller module, further, only functional aspects of the module of interest are considered in
the current work.

In the current chapter, we are rather interested in the specific behaviour of the controller module
responsible for the translation of a requested virtual link with respect to a given switch in the
data plane into a rule!. A requested virtual link with respect to a switch is specified by a pair
of nodes of the topology. More precisely, we are interested in testing the behaviour of the
controller module that given a requested virtual link with respect to a given switch, implements
it through this switch. In other words, a virtual link is created, i.e., a rule is pushed in the
corresponding switch such that the traffic is forwarded accordingly. We refer to this specific
module of the controller as Link Translator.

Note that the functionality of the module of interest, i.e., the Link_Translator, is implemented
in many actual controllers. It involves, among others, the aforementioned ‘device manager’,
‘topology manager’ and ‘flow installation manager’ sub-modules. For example, in the Flood-
light controller [1], the Link_Translator is the core module behind the controller application

INote that the implementation of such virtual link in the underlying RNCT is reflected by the installation of one
rule in the switch of interest and hence the creation of a ‘virtual’ edge from the previous node to the next node
(specified in the request) through the switch.

7.2. Problem Statement 101

referred to as ‘circuit pusher’. In fact, the ‘circuit pusher’ takes as input a pair of hosts, it com-
putes a path between them and pushes a corresponding rule in each switch of that path such
that a virtual link is implemented with respect to each switch of the path.

We discuss the adaptation of the model based testing technique proposed in Chapter 5 to test
the described controller module, i.e., the Link _Translator. We first formalize the behaviour
of the module and present an algorithm for logic circuit synthesis that builds the corresponding
specification. This model can later serve to generate test cases.

The author is aware that an experimental evaluation is needed to study the effectiveness of
the proposal and the effectiveness of the derived test suites. This part is left open for further
investigations in future work.

Section 7.2 states the problematic the chapter is addressing. Section 7.3 formalizes the con-
troller module under test. Section 7.4 presents the circuit logic synthesis solution for the con-
troller Link_Translator module of interest. Section 7.5 presents a proposal on the test gener-
ation approach. Section 7.6 discusses the test suites execution. Finally, Section 7.7 concludes
the chapter.

7.2 Problem Statement

In Chapter 4, we have represented a request emitted from end-users (applications) as a path
(e.g., from Hosts to Hostp as shown in Equation 7.1). In this work, the requested virtual
links shown in Equation 7.2 and corresponding to that path need to be created / implemented.
These requested virtual links are of the form of triples (i, S, v) including always a node of type
switch § that is linked with two other nodes u and v that can be of type switch or host.

(Hosta, So) (S0,81) - .. (86, Six1) - .. (Sk=1.Sk) (Sk, Hostp) (7.1)
(Hosta, S0,51) (50,51,82) «.. (Si=1,85Si+1) - -+ (Sk=2,Sk—1,Sk) (Sk-1, Sk, Hostg) (7.2)

For example, in Path, shown in Equation 7.3 (one of the paths of the data plane in Figure 7.1),
the requested links can be represented as (Host1,S1,52), (81,52, 53) and (S, S3, Hosts).

Path, = (HOSI],S]) (S],SQ) (SQ, S3) (S3,HOSl3) (7.3)

The Link_Translator module receives a request from a given application as a requested
virtual link for any pair of nodes. A requested virtual link in this case extends the definition of a
virtual link defined in Chapter 4 by considering any given nodes in the topology. More formally,
the Link_Translator receives a requested virtual link of the form (u, S, v) for any given nodes
u and v.

The request is received from a given application (in the application layer). Then, Link_Trans-
lator translates that requested link with respect to a switch S. This is performed by assigning
a pair of ports of § linking it to its neighbours in such a way that there exists a path between
the initial pair of nodes (u,v) (specified by the request) that passes through § via its neigh-
bours (note that this comes down to the translation of a virtual link in its definition specified in
Chapter 4). The Link_Translator outputs a rule represented here by a pair of ports speci-
fying (i) the input port of the rule as the one of the switch S linking it to the previous node (u)
corresponding to the requested link; (ii) the output port specified by the rule action as the port
linking the switch S to the next node (v) corresponding to the requested link. Therefore, the
implementation of a requested virtual link with respect to a switch S means the installation of
a forwarding rule in S assigning correctly the ports of S.

The topology showing the Link_Translator module is depicted in Figure 7.1.

7. Test Derivation for a Controller Application: An Adaptation of the Logic Circuit based
102 Approach

M h
! =
Requested virtual link | 5 g"-
(EI', V) ! =3
! @
I Northbound API N
i g
| =
: SDN Controller 3
r=(p*x), PHy))| 3
! ; L
Southbounr‘APl (e.g.,0pe rI:Flow Protocol)
4 :
A
o
2
o
)
]
3
)
W

Figure 7.1 — Topology showing a controller application as the SUT

The input to the SUT is a requested virtual link, i.e., a pair (u,v).
The output of the SUT is a rule to switch Sj.
u and v are nodes of the topology.
The rule r is a pair of ports of S;.

7.3. Formal Representation of a Controller Application and Notations 103

The system under test has a one-direction communication with a given application from which
it receives a requested virtual link for any pair of nodes. It has also a one-direction communi-
cation with a given switch in the data plane. It sends a rule to the switch of interest specified
in the received requested link.

The point of control in the topology is the northbound interface where a request can be sent
to the Link_Translator module, the observation point is the southbound interface where we
can observe the input port and the output port of the Flow M od generated by the SUT for
the switch of interest S.

The research question we are addressing in this chapter can be formulated as follows.

Given the Link_Translator controller module accepting as input requested virtual links for
any pair of nodes from an application; given also that a requested virtual link is specifying any
two devices between which a virtual link (through one switch) should be created / implemented;
how to guarantee that the Link_Translator assigns correctly the ports of the network devices
as specified by the request?

7.3 Formal Representation of a Controller Application and
Notations

Similar to the representation adopted in Chapter 4, the data plane is represented as an RNCT,
i.e., an undirected graph G = (V, E) where E C {{u,v} | u € V & v € V} with no multiple edges
and no self loops.

The implementation of a requested virtual link for any pair of nodes with respect to a switch
S then means the ‘translation’, i.e., the creation of a virtual data link from and to other node
(-s) adjacent to S. We refer to the set of neighbours of S as Adj(S). We assume that the
different nodes Vv € V are identified by their MAC addresses. We refer to the set of ports of
S as Ports(S).

As we are interested in checking a requested virtual link for any pair of nodes with respect to
a given switch S, we further refer to a requested link as simply a pair of network devices (u,v).
Given a requested virtual link (1, v),u € V, v € V, with respect to a given switch S, the problem
of translation of the virtual link (u, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>