
HAL Id: tel-02374706
https://theses.hal.science/tel-02374706v1
Submitted on 21 Nov 2019 (v1), last revised 22 Nov 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model based testing techniques for software defined
networks
Asma Berriri

To cite this version:
Asma Berriri. Model based testing techniques for software defined networks. Networking and Internet
Architecture [cs.NI]. Université Paris-Saclay, 2019. English. �NNT : 2019SACLL017�. �tel-02374706v1�

https://theses.hal.science/tel-02374706v1
https://hal.archives-ouvertes.fr

Abstract

Having gained momentum from its concept of decoupling the traffic control from the underlying

traffic transmission, Software Defined Networking (SDN) is a new networking paradigm that

is progressing rapidly addressing some of the long-standing challenges in computer networks.

Since they are valuable and crucial for networking, SDN architectures are subject to be widely

deployed and are expected to have the greatest impact in the near future. The emergence

of SDN architectures raises a set of fundamental questions about how to guarantee their cor-

rectness. Although their goal is to simplify the management of networks, the challenge is that

the SDN software architecture itself is a complex and multi-component system which is failure-

prone. Therefore, assuring the correct functional behaviour of such architectures and related

SDN components is a task of paramount importance, yet, decidedly challenging.

How to achieve this task, however, has only been intensively investigated using formal ver-

ification, with little attention paid to model based testing methods. Furthermore, the relevance

of models and the efficiency of model based testing have been demonstrated for software en-

gineering and particularly for network protocols. Thus, the creation of efficient and reusable

model based testing approaches becomes an important stage before the deployment of virtual

networks and related components. The problem addressed in this thesis relates to the use

of formal models for guaranteeing the correct functional behaviour of SDN architectures and

their corresponding components. Formal and effective test generation approaches are in the

primary focus of the thesis. In addition, automation of the test process is targeted as it can

considerably cut the efforts and cost of testing.

The main contributions of the thesis relates to model based techniques for deriving high

quality test suites. Firstly, a method relying on graph enumeration is proposed for the functional

testing of SDN architectures. Secondly, a method based on logic circuit is developed for testing

the forwarding functionality of an SDN switch. Further on, the latter method is extended to test

an application of an SDN controller. Additionally, a technique based on an extended finite state

machine is introduced for testing the switch-to-controller communication. As the quality of a

test suite is usually measured by its fault coverage, the proposed testing methods introduce

different fault models and seek for test suites with guaranteed fault coverage that can be stated

as sufficient conditions for a test suite completeness / exhaustiveness.

iii

iv

Résumé en français

Les réseaux logiciels (connus sous l’appellation : Software Defined Networking, SDN), qui

s’appuient sur le paradigme de séparation du plan de contrôle et du plan d’acheminement, ont

fortement progressé ces dernières années pour permettre la programmabilité des réseaux et

faciliter leur gestion. Reconnu aujourd’hui comme des architectures logicielles pilotées par des

applications, offrant plus de programmabilité, de flexibilité et de simplification des infrastruc-

tures, les réseaux logiciels sont de plus en plus largement adoptés et graduellement déployés

par l’ensemble des fournisseurs. Néanmoins, l’émergence de ce type d’architectures pose un

ensemble de questions fondamentales sur la manière de garantir leur correct fonctionnement.

L’architecture logicielle SDN est elle-même un système complexe à plusieurs composants vul-

nérables aux erreurs. Il est essentiel d’en assurer le bon fonctionnement avant déploiement

et intégration dans les infrastructures.

Dans la littérature, la manière de réaliser cette tâche n’a été étudiée de manière appro-

fondie qu’à l’aide de vérification formelle. Les méthodes de tests s’appuyant sur des modèles

n’ont guère retenu l’attention de la communauté scientifique bien que leur pertinence et l’ef-

ficacité des tests associés ont été largement démontrés dans le domaine du développement

logiciel. La création d’approches de test efficaces et réutilisables basées sur des modèles

nous semble une approche appropriée avant tout déploiement de réseaux virtuels et de leurs

composants. Le problème abordé dans cette thèse concerne l’utilisation de modèles formels

pour garantir un comportement fonctionnel correct des architectures SDN ainsi que de leurs

composants. Des approches formelles, structurées et efficaces de génération de tests sont

les principales contributions de la thèse. En outre, l’automatisation du processus de test est

mise en relief car elle peut en réduire considérablement les efforts et le coût.

La première contribution consiste en une méthode reposant sur l’énumération de graphes

et qui vise le test fonctionnel des architectures SDN. En second lieu, une méthode basée sur

un circuit logique est développée pour tester la fonctionnalité de transmission d’un commu-

tateur SDN. Plus loin, cette dernière méthode est étendue pour tester une application d’un

contrôleur SDN. De plus, une technique basée sur une machine à états finis étendus est in-

troduite pour tester la communication commutateur-contrôleur.

Comme la qualité d’une suite de tests est généralement mesurée par sa couverture de

fautes, les méthodes de test proposées introduisent différents modèles de fautes et génèrent

des suites de tests avec une couverture de fautes guarantie.

v

vi

Acknowledgments

This thesis would not have been possible without the guidance of Professor Djamal ZEGH-

LACHE, whose broad vision and farsightedness have helped me sail my way through this

research work. The thing I find most amazing about Djamal is his foresight. Providing me sci-

entific support and professional advice, he has been a person who embodies characteristics

that I can only aim to model myself after. I offer my sincerest gratitude for making me aware

of the new perspectives that have found their way into this work, as well as enlightened my

mind.

I would like to offer my deepest thanks to Doctor Natalia KUSHIK. She has made this en-

deavor academically possible, shaped research, and instilled in me the quality to cultivate my

own potential. Her knowledge and suggestions have proven to be invaluable and have con-

tributed profoundly to the results presented in this thesis. It has been an exceptional privilege

to work with her. I dearly appreciate her personality, her work ethics, and the positive energy

that she always emits, as well as how it affects and impacts those around her. These all are

rare virtues. I would like to express my sincerest gratitude towards her. Thank you so much,

Natalia!

I am sincerely grateful to Professor Yacine GHAMRI-DOUDANE, Doctor Antoine ROLLET,

Professor Pierre SENS and Doctor Nikolai KOSMATOV for sparing the time to read and exam-

ine this thesis.

My sincere thanks go to Fondation Mines Télécom and Carnot Télécom & Société Numérique

for the financial grant within the Futur & Ruptures (Future and Disruptive Innovation) pro-

gramme.

My genuine appreciation goes out to my co-authors, Professor Nina YEVTUSHENKO and

Doctor Jorge LOPEZ for their invaluable, precise, and diligent contribution to improve this work.

In addition, I had the honor of discussing the topics related to this thesis with researchers

Igor BURDONOV and Alexander KOSSATCHEV. It is my privilege to extend my thanks to them

for inspiring me with their interest in my research.

Deep respect I express to my work colleagues at Télécom SudParis.

To my parents, Mustapha and Mennana, for accepting nothing less than excellence from

me. To my beloved brothers, Ghassen and Houssem, for always believing in me and encour-

aging me to follow my dreams.

vii

viii

Contents

Abstract iii

Résumé en français v

Acknowledgments vii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement / Research Questions . 3

1.3 Contributions and Structure of the Thesis . 5

1.4 Dissertation Roadmap . 7

Author’s Publications & Talks . 8

2 Background 11

2.1 Software Defined Networking . 12

2.2 Verification and Testing . 16

2.3 Model Based Testing . 17

2.4 Mutation Analysis . 23

2.5 Black Box and White Box Testing . 24

2.6 Chapter Conclusions . 25

3 State Of The Art 27

3.1 Introduction . 28

3.2 Verification Techniques for SDN . 28

3.3 Testing Techniques for SDN . 42

3.4 Chapter Conclusions . 49

4 Model Based Testing for SDN Architectures: A Graph / Path Enumeration based

Approach 51

4.1 Introduction . 52

4.2 Problem Statement . 52

4.3 Formal Modelling for an SDN Architecture . 53

4.4 Traffic Generation and Observation . 55

4.5 Introducing a Fault Model . 56

4.6 Black Box and White Box Testing Approaches relying on Path Enumeration . . 57

4.7 Experimental Evaluation for Testing SDN Architectures 60

4.8 Chapter Conclusions . 63

5 Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach 65

5.1 Introduction . 66

5.2 Problem Statement . 67

ix

5.3 Formal Representation of an SDN Switch and Notations 67

5.4 Introducing a Fault Model . 69

5.5 Fault models for Logic Circuits . 70

5.6 Deriving a Logic Circuit for a Switch Specification 71

5.7 Active and Passive Testing Approaches . 73

5.8 Experimental Evaluation for Testing an SDN-enabled Switch 77

5.9 Chapter Conclusions . 81

6 Test Generation for OpenFlow Switches: An Extended Finite State Machine based

Approach 83

6.1 Introduction . 84

6.2 Problem Statement . 85

6.3 Extended Finite State Machine Model for an OF Switch 86

6.4 Introducing User-Defined Mutations and a Fault Model 88

6.5 EFSM based Technique for Test Generation 89

6.6 Experimental Evaluation for Testing an OF Switch 93

6.7 Chapter Conclusions . 97

7 Test Derivation for a Controller Application: An Adaptation of the Logic Circuit

based Approach 99

7.1 Introduction . 100

7.2 Problem Statement . 101

7.3 Formal Representation of a Controller Application and Notations 103

7.4 Deriving a Logic Circuit for a Controller Application Specification 105

7.5 Test Suite Generation . 107

7.6 Test Suite Execution . 107

7.7 Chapter Conclusions . 109

8 Conclusion and Future Work 111

8.1 Contributions: Summary . 111

8.2 Perspectives and Future Directions . 113

x

List of Figures

2.1 SDN layered architecture. 13

2.2 RNCT of the network topology in Figure 2.1 and examples of its paths 18

2.3 An example of a partial logic circuit specification designed as an AIG (cex) . . 20

2.4 A BLIF description of Cex shown in Figure 2.3 20

2.5 Example of an EFSM . 22

3.1 An example of an SDN network topology . 29

3.2 A symbolic execution encoding of the switch S1 of the topology in Figure 3.1 . . 33

3.3 SDN verification techniques taxonomy . 41

3.4 Example showing a log analysis for test generation technique 43

3.5 Example illustrating the test execution of tests (semi)-randomly generated . . . 45

3.6 SDN testing techniques taxonomy . 48

4.1 Topology showing an SDN architecture as the SUT 53

4.2 Traffic generation and flow observation w.r.t. the RNCT of Figure 4.1 56

4.3 RNCT of the network topology in Figure 4.1 and examples of two equivalent

paths . 58

4.4 Testbed framework for an SDN architecture analysis 61

5.1 Topology showing an SDN-enabled switch as the SUT 68

5.2 Examples of SSF, SBF, and HDF mutants of Cex shown in Figure 2.4 71

5.3 Experimental set up topology for testing an SDN-enabled switch 77

6.1 Topology showing a switch-to-controller communication as the SUT 85

6.2 Part of the specification EFSM of the switch 88

6.3 Mutation score as the depth increases . 94

6.4 Average mutation score and execution time for TSs derived by the proposed

approach Vs TSs randomly generated . 94

6.5 Testbed framework for an OF switch analysis 96

7.1 Topology showing a controller application as the SUT 102

7.2 Illustration of the execution of a test case of the running example 110

xi

xii

List of Tables

2.1 Example of rules installed in a switch . 15

2.2 The look-up table (LUT) of the specification cex illustrated in Figure 2.3 20

3.1 Comparison of SDN verification techniques w.r.t. checked properties 42

3.2 Comparison of verification techniques applied to various SDN components . . . 42

3.3 Comparison of testing techniques applied to various SDN components 48

5.1 Look-up table for the switch running example 73

5.2 Experimental platform for an SDN switch . 78

5.3 Example of a look-up table entry for the rule in Equation 5.11 78

5.4 Number of generated mutants . 79

5.5 Fault Coverage for traditional digital circuit fault models 79

6.1 The characteristics of the EFSM switch model 87

7.1 MAC addresses of the nodes of the topology illustrated in Figure 7.1 107

7.2 Look-up table for the controller application (Link_Translator) running example 107

xiii

xiv

List of Algorithms

1 White Box Test Suite Generation for an SDN Architecture 60

2 Logic Circuit Derivation from a Set of Switch Rules 72

3 Equivalence Check for a Switch Mutant . 75

4 SDN-enabled Switch Monitoring . 76

5 EFSM based Approach: Algorithm that derives a test suite TS and a set FD′ of

distinguishable mutants . 91

6 DistinguishingSequenceAppend(S,M, (si,vi), length) 92

7 Logic Circuit Derivation from a Controller Application (Link_Translator) 106

8 Test Translation for the Controller Application Under Test 109

xv

xvi

1
Introduction

Contents

1.1 Motivation . 1
1.2 Problem Statement / Research Questions 3
1.3 Contributions and Structure of the Thesis 5
1.4 Dissertation Roadmap . 7
Author’s Publications & Talks . 8

1.1 Motivation

Computer networks and Internet structure usually consist of different network devices such

as routers, switches and different types of middle-boxes. For managing and configuring such

network devices, a set of specific and predefined command lines based on embedded oper-

ating system is usually used. Thus, traditional networks are essentially hardware-based and

suffer from significant shortcomings regarding research and innovations, reliability, flexibility

and manageability. For example, it can be argued that managing a large number of network

devices is a big challenge and is prone to many errors. The emergence of new technologies,

such as cloud and virtualization, generated the need for networks with higher accessibility and

dynamic management. For solving the problems and limitations of traditional networks, the

concept of Software Defined Networking (SDN), that separates control and data planes, was

introduced along with an associated interaction protocol between the two planes known as

OpenFlow (OF) [102]. OF is an emerging standard for SDN that ensures a clear separation

of the data and control planes and provides central programmable control and management

of the network using an SDN controller. Although SDN and OpenFlow started as academic

experiments [102], they gradually gained the approval of the IT and telecommunications indus-

tries that have since adopted and started using and integrating the SDN paradigm into their

cloud and network infrastructures.

The emerging field of SDN has enabled network deployment and service upgrade on soft-

ware time scales which has huge benefits in the network domain. This is because in the future,

1

2 1. Introduction

the network operators will not compete on the basis of network coverage alone but on the ba-

sis of features and services. The initial impact of SDN was seen in the datacenters. As early

as 2012, Google had their full scaled datacenter running as an SDN based architecture. SDN

is now all set to integrate the wireless domain too. With SDN, network administrators can

adopt many new technologies and applications rapidly on hardware-independent network ar-

chitectures regardless of multiple vendor-dependent protocols. The architecture involves SDN

controller(s) residing in the control plane while the forwarding element(s) (switches) and hosts

make the data plane. The SDN architecture allows end-users (e.g., network administrators,

operators, etc.) to specify requested paths (e.g., network policies, services) that should be

implemented as routes or simply implemented paths followed by traffic in the data plane.

Consequently, the impact of SDN on the networking domain will be enormous. Kreutz et al.

[84] conclude that SDN is established as a key technology in the future of networking systems.

Although SDN goal is to simplify the management of networks, several challenges arise.

Firstly, the software SDN architecture itself is a complex multi-component system, operating in

heterogeneous and failure-prone environments. Additionally, the requirements defining these

architectures and their related components are also complex and evolving. Therefore, it be-

comes of the highest priority to further raise the quality of such architectures and components

before their wide deployment.

SDN architectures and their components are built on software and as a result, unlike tra-

ditional networking systems, they have become increasingly sophisticated. Such large and

complex software more likely contain bugs that may disrupt the network functioning and cor-

rupt its operation. A recent study on the hazards in SDN-based Google network architectures

[57] reported that software bugs contributed to more than 33% of the high impact failures

documented in postmortem reports, which they attribute mainly to a high speed of network

evolution, and the need to keep up with the growing user traffic and demand for new features

and services. Another large-scale study by Microsoft [94] on root causes of end-users im-

pacting incidents in their production networks reports similar results. It shows that software

bugs contributed to 36% of critical outages, being major problem, way ahead of hardware fail-

ures and human errors. To summarize, in terms of virtualized networking systems, increased

complexity and higher customer expectations of quality impose thorough testing before any

deployment. Indeed, the software nature of such complex networks makes them error prone,

so the process of defect detection plays a crucial role. The typical testing process applied

to SDN is nonetheless human-intensive and is as such usually unproductive and often inade-

quately realized. More importantly, this testing process does not provide any assurance about

the quality of the tests. Research on test techniques that guarantee the fault coverage is there-

fore essential and required to foster the adoption and deployment of SDN based solutions and

systems.

The requirements that must be fulfilled by the SDN architectures and their components are

extremely complex and evolving very fast with the support of open source developments and

communities. For example, in the OF protocol requirements [113], just the flow entries instal-

lation command (Flow_Mod) is more than two pages long [113]. Thus, these requirements

can be subject to ambiguities. Further on, these requirements are expressed in informal lan-

guages which can cause different interpretations by developers. Therefore, all of these factors

would contribute to increasingly higher likelihood of implementations exhibiting diverging be-

haviours from their requirements. Consequently, informal reasoning does not lead to proving

the correctness of such architectures/components. Under these circumstances, the introduc-

tion of formal testing techniques in SDN domain becomes necessary and obvious and is the

focus of this thesis work.

Although, a number of valuable efforts in the context of formal verification and testing SDN

1.2. Problem Statement / Research Questions 3

architectures and their components already exist (see Chapter 3), there is still a lot of space to

improve the situation. In fact, prior research focusing on assuring the correctness/consistency

of SDN architectures/components has resulted in techniques that belong either to verification

or testing. The techniques of the former can ensure the respect of a given policy in the data

plane and can help checking configuration errors and problematic controller programs in the

control plane. Yet, as they check whether a model of the SDN architecture/component satisfies

a given set of properties, they can only guarantee that the properties hold for the model and

hence some implementation faults can still escape this check as no test cases are applied

to the implementations. The techniques of the latter alleviate this challenge by targeting the

implementation under test (IUT). However, they are either performed for checking the paths

/ networks implemented in the data plane rather than checking the functionality of a given

critical SDN component, or they do not provide any guarantee about the test effectiveness.

This brings to the picture model based testing methods where test generation is based on

the model of a system under test (SUT). This line of work in the context of SDN in particular

has not matured yet. Not only the proposed approaches are rare but also they mostly focus

on testing the correct packets pipeline processing when it comes to testing the data plane for

example rather than assuring the correct functioning of the switch as an integral component

of the SDN architecture.

In summary, we feel or contend that model based testing is one of the most convenient

testing method which helps in detecting errors and bugs and can assure the proper functioning

of SDN architectures and their components. Indeed, model based testing allows the creation

of consistent, reusable, and well-documented models on the one hand and the derivation of

test cases with guaranteed fault coverage on the other hand. This is an important stage in the

testing process of SDN.

1.2 Problem Statement / Research Questions

The goal of this thesis is to check that the implementations of an SDN architecture and cor-

responding components conform to their requirements. Due to their phenomenal success,

SDN implementations are becoming increasingly complex, with such features as accepting

complex inputs (end-user requests), packets processing and interaction with a logically cen-

tralized controller. In the quest for conformance, the task of guaranteeing their correctness is

becoming ever more challenging. Further on, it is not unusual that an entire SDN architecture

might exhibit a behaviour such that the requests are correctly implemented in the underlying

data plane while the SDN components of such architecture (e.g., switch, controller) are not

implemented and/or operating correctly (hidden bugs).

The main research issue this thesis is concerned with, relates to assuring the compliance

of Software Defined Networking architectures and their components with respect to their spec-

ifications by means of model based testing.

The first critical challenge is to guarantee the consistency between the high level requested

paths and the configurations’ implementations of these requests in the data plane. In other

words, given an SDN architecture as the system under test, i.e., the SDN controller translat-

ing end-user requested paths into flow rules and the SDN switches implementing these flow

rules in the data plane to correctly forward traffic to hosts, what inputs should be applied to

the controller and what outputs should be observed at the data plane level such that conclu-

sions about the correctness of the whole architecture can be drawn, i.e., whether the SDN

architecture is functioning as expected/desired.

Resolving this first challenge will increase the confidence in reliable SDN architectures

4 1. Introduction

deployment without which trust in their implementations and operation can not be established

or built.

However, resolving the first challenge does not guarantee the correctness of the SDN com-

ponents forming the architecture. Moreover, should a bug be discovered by testing the entire

architecture, it certainly becomes of interest to localize its cause (possible root cause) or re-

sponsible SDN components. Indeed, the functional correct behaviour of SDN components

should not be taken for granted. Therefore, a second critical challenge that needs to be ad-

dressed concerns guaranteeing the correct behaviour of crucial SDN components, particularly

the switch and the controller.

The switch exposes two interfaces, one to perform packet processing in the data plane

and the second to communicate with a controller that instructs it how to process these pack-

ets. Therefore, two major challenges arise. Firstly, given the switch specified as a set of

configurations to forward packets in the data plane, how the correctness of its forwarding func-

tionality can be guaranteed. Secondly, given the switch in its communication with the controller

as the system under test. The SUT takes as input OF messages from the controller and out-

puts replies to the controller as specified by the OF requirements. The correctness of such

interaction needs to be assured.

The controller in an SDN architecture is also a core SDN component responsible for mak-

ing decisions on managing switches in the underlying data plane. Therefore, ascertain the

correct implementation of the controller is crucial. To this end, it is important to guarantee the

correct behaviour of its modules / applications. One critical module considered in this work is

the one responsible for translating end-users requests, specifying two devices between which

a link should be implemented, to corresponding configurations. The SUT in this case has a

one-direction communication with a given application from which it receives a request. It has

also a one-direction communication with a given switch in the data plane. The challenge is

to guarantee that the controller module under investigation assigns correctly the ports of the

network devices as specified by the request.

Based on the previous analysis, we focus on the following arising research questions:

1. RQ1 How to assure the correct behaviour of SDN architectures?

2. RQ2 How to assure the correct forwarding behaviour of an SDN-enabled switch in the

data plane ?

3. RQ3 How to assure the correct behaviour of an SDN switch in its interaction and inter-

facing with a controller?

4. RQ4 How to assure the correct behaviour of the module/application of an SDN con-

troller responsible for translating, for a given switch in the data plane, requests into

corresponding ports of the switch of interest?

To tackle these questions and challenges, in the upcoming section, the structure of this

work will be related to the solutions proposed by this thesis for addressing each key question.

This thesis develops novel testing techniques for guaranteeing the correct behaviour of

SDN architectures and their components. The techniques combine model based testing and

mutation analysis. The proposed approaches allow testing the actual implementations rather

than checking some network properties by means of formal verification as done by most of

the state of the art.

1.3. Contributions and Structure of the Thesis 5

1.3 Contributions and Structure of the Thesis

To address the aforestated research questions, we opt for model based testing because it

systematically generates from the model a collection of tests (test suites) that, when run against

the SUT, will provide sufficient confidence that it behaves as the model predicted it would. The

difference between model based testing methods and verification methods (massively used in

the state of the art; Chapter 3) is basically about the stimulation of the system under test vs.

the checking of the model. Now, the complexity of SDN architectures and related components

is not low, which results in verification methods being hard to apply to such systems. Model

based testing on the other hand scales much better and has been used to test large systems.

Although model based testing requires more up-front effort in building the model, it offers

substantial advantages over traditional software testing methods. Firstly, once a model is

built, it is easier to generate and re-generate test cases than it is with hand-generated test

cases. Besides, the quality of the generated test cases is high in comparison to other testing

techniques. This helps in detecting subtle errors. Indeed, model based testing techniques

strive to automatically generate test cases that are able to reveal whether any modelled fault

has been implemented. As a result, these techniques guarantee a fault coverage of the model

and are able, and have shown, to produce high quality test suites.

The result of this thesis can be divided into four main facets and contributions:

1. Model based approach for testing the functional behaviour of entire SDN archi-

tectures;

2. Model based approach for testing the forwarding functionality of the switch as a

critical SDN component;

3. Model based approach for testing the switch in its interaction with the controller;

4. Model based approach for testing a module/application of the controller. Specif-

ically, the controller application responsible for translating requested paths into

pairs of ports of a given switch.

The thesis is organized as follows. This chapter gives an overview and motivation of the

research topics of this thesis. It introduces the problems that the work is dealing with, its

objectives, contributions and structure.

Next, Chapter 2 has a foundation nature and includes the background on Software De-

fined Networking architectures and their components and interfaces, verification and testing

concepts, model based testing, mutation analysis and black and white box testing approaches.

Additionally, while introducing these foundations and concepts, we point out which chapter(s)

they are used in and how they relate to the thesis work.

Chapter 3 examines the related work on verification and testing techniques with respect to

SDN architectures and their components. For that purpose, a taxonomy is provided. Herewith,

a link to the current chapter is done. The literature investigation has elicited a set of limitations

and concerns and a set of research directions that the work of this thesis follows. The observed

lack of model based testing techniques applied to SDN in the current literature and ensuing

analysis, has led to the model oriented testing methodologies adopted and proposed in this

thesis.

The four following chapters relate to these proposed testing approaches.

Chapter 4 characterizes a novel model based technique for testing entire SDN architec-

tures taking into account potential interoperability issues in the controller-to-switch commu-

nication. The technique aims to ensure that requests expressed by end-users are correctly

6 1. Introduction

implemented in the data plane. The approach relies on graph/path enumeration. The chapter

relates to the first challenge of answering the question of how to guarantee the correct func-

tioning of such architectures. In particular, a fault model is introduced where the fault domain

contains potential implementations of virtual paths requested by an end-user. Afterwards, ap-

proaches for test generation under black box and white box testing assumptions are proposed.

To guarantee the fault coverage, the conditions are proven such that when under both testing

assumptions, a complete test suite with respect to such fault model can be derived. Addition-

ally, Chapter 4 provides an experimental evaluation of the proposed approach. A discussion

on the obtained results is then given so as to support the effectiveness of the presented testing

method. Results show that the derived test suites were able to detect a number of functional

inconsistencies in the considered SDN architectures.

Now that we have provided a novel testing technique guaranteeing to check for the cor-

rectness of the entire SDN architecture, the question that automatically arises is how about

the correctness of its components. Further ahead, one might want to identify which exact

component is not working as expected. This is addressed in detail in Chapters 5, 6, and 7.

In particular, the second part of the thesis proposes novel model based techniques for

testing critical SDN components. At first, the thesis looks at testing the switch as a crucial

component of SDN architectures in two aspects, then a module of the controller is considered.

The forwarding functionality of the switch modelled and analyzed as a ‘stateless’ system

without considering its interaction with the controller is investigated in Chapter 5. For this

purpose, the chapter proposes a logic circuit based testing approach. An appropriate fault

model is introduced and a logic synthesis algorithm is presented. Some mutation operators

over the derived switch specification are introduced, then logic circuit based approach and

related SAT solving are utilized for detecting equivalent mutants. Further on, both active and

passive testing strategies are explored. Finally, the chapter demonstrates the effectiveness

of the approach using experimental evaluation. The results show for example that test suites

derived based on traditional logic circuit fault models have a high fault coverage for SDN-

enabled switch faults. This piece of work relates to the second challenge.

Despite the effectiveness potential of the solution presented in Chapter 5 in detecting im-

plementation forwarding errors, it does not cover the behaviour of the switch in its interaction

with the controller. This is tackled in Chapter 6. The chapter proposes an extended finite state

machine based test generation strategy for testing the functional behaviour of a switch in its

communication with an SDN controller with respect to requirements described in the Open-

Flow specification. A part of the requirements is formalized, then based on the derived model,

an appropriate fault model is introduced and a test generation method for deriving exhaustive

test suites with respect to such fault model is presented. To demonstrate the effectiveness of

the proposed approach, an experimental evaluation is performed which aims at the assess-

ment of the derived test suites fault coverage on one hand and at the execution of the derived

tests against an OF implementation under test, on the other hand. The conducted evaluation

shows the effectiveness of the approach; besides, experiments reveal several implementation

faults and specification ambiguities when a switch implementation is tested. By that, the third

challenge is covered.

Chapter 7 utilizes the results of Chapter 5 and addresses the further question of the out-

lined challenges. The model based approach presented and discussed in Chapter 5 is adapted

and adjusted to tackle one module of the controller, particularly the one responsible for translat-

ing end-user requests into corresponding pairs of ports of a switch of interest. First, the prob-

lem is described. Then, the formalization of the specification, the test generation approach,

and the test execution strategy follow subsequently. This relates to the fourth challenge.

Chapter 8 completes this work with a summary and outlook. The proposed testing ap-

1.4. Dissertation Roadmap 7

proaches’ capabilities and limitations are reviewed, the general trends of the quality assurance

for SDN architectures and their components are recalled and influences of the contributions

of this thesis are outlined.

1.4 Dissertation Roadmap

In this section, the dependencies between chapters throughout this thesis are outlined.

The detailed discussion on SDN, verification and testing in Chapter 2 serves mostly as a

foundation for the considered topics.

Chapter 3 includes a review of the state of the art work on verification and testing tech-

niques for SDN architectures and SDN components yielding to the position of our contributions

in the field.

Chapters 4, 5, 6 and 7 contain the central achievements of the presented work. Addition-

ally, the reader can refer to the summaries given at the end of each chapter, which provide the

essential overview of the subjects and results on their contents.

The concept of the Logic Circuit based approach which is presented in Chapter 5 is used

as the basis for Chapter 7.

8 1. Introduction

Author’s Publications & Talks

The work presented in this thesis is original work undertaken between October 2016

and September 2019 at SAMOVAR/CNRS, Télécom SudParis / Université Paris Saclay. It

has been financed by the “Futur & Ruptures“ (Future and Disruptive Innovation) programme

grant awarded to the author by “Fondation Mines-Télécom“ and “le Carnot Télécom & Société

Numérique“. The work resulted in the following publications.

Conferences

[1] Asma Berriri, Jorge López, Natalia Kushik, Nina Yevtushenko, and Djamal Zeghlache. “Towards

Model based Testing for Software Defined Networks.” In: Proceedings of the 13th International

Conference on Evaluation of Novel Approaches to Software Engineering, ENASE, Funchal,

Madeira, Portugal, March 23-24. 2018, Pages 440–446.

[2] Jorge López, Natalia Kushik, Asma Berriri, Nina Yevtushenko, and Djamal Zeghlache. “Test

Derivation for SDN-Enabled Switches: A Logic Circuit Based Approach.” In: Proceedings of the

IFIP International Conference on Testing Software and Systems. Springer. 2018, Pages 69–84.

Archives

[1] Asma Berriri, Natalia Kushik, and Zeghlache Djamal. “Extended Finite State Machine based

Test Generation for an OpenFlow Switch.” working paper or preprint. 2019. url: https://

hal.archives-ouvertes.fr/hal-02262841.

Some of the research leading to this thesis has appeared previously in the following.

Journals

[1] Asma Berriri, Natalia Kushik, and Djamal Zeghlache. “On using finite state models for optimizing

and testing SDN controller components.” Russian Physics Journal 59.8/2 (2016), Pages 5–7.

Portions of this work have been already presented in the following.

Participation in Seminars and Conferences

[1] Asma Berriri. Formal Approaches for Testing in Software Defined Networks. Poster and pre-

sentation. Journée doctorants Samovar 2018, Paris, France. 2018. url: http://samovar.

telecom-sudparis.eu/spip.php?article1177.

[2] Asma Berriri. Formal Approaches for Testing in Software Defined Networks. Poster presentation.

Visite HCERES - évaluation laboratoire Samovar les 4 et 5 décembre 2018, Paris, France. 2018.

url: http://samovar.telecom-sudparis.eu/spip.php?article1158.

[3] Asma Berriri. Formal Approaches for Verification and Testing in Software Defined Networks.

Presentation. The 4th GDR RSD and ASF Winter School on Distributed Systems and Net-

works 2019,Pleynet, Sept Laux, France. 2019. url: https://sites.google.com/site/

rsdwinterschool/program-2019.

[4] Asma Berriri. Formal Approaches for Verification and Testing in Virtual Networks. Presentation.

Méthodes de Test pour la Vérification et la Validation (MTV2) du GdR GPL du CNRS, ENSIIE,

Paris, France. 2018. url: http://logimas.mics.centralesupelec.fr/wp-content/

uploads/2018/12/MTV2-A.Berriri-final-extended.pdf.

https://hal.archives-ouvertes.fr/hal-02262841
https://hal.archives-ouvertes.fr/hal-02262841
http://samovar.telecom-sudparis.eu/spip.php?article1177
http://samovar.telecom-sudparis.eu/spip.php?article1177
http://samovar.telecom-sudparis.eu/spip.php?article1158
https://sites.google.com/site/rsdwinterschool/program-2019
https://sites.google.com/site/rsdwinterschool/program-2019
http://logimas.mics.centralesupelec.fr/wp-content/uploads/2018/12/MTV2-A.Berriri-final-extended.pdf
http://logimas.mics.centralesupelec.fr/wp-content/uploads/2018/12/MTV2-A.Berriri-final-extended.pdf

Participation in Seminars and Conferences 9

[5] Asma Berriri. Testing and Verification for Software Defined Networks. Presentation. The 7th

Halmstad Summer School on Testing, HSST 2017 in cooperation with TOCSYC Network, Halm-

stad University, Sweden, June 12-15th. 2017. url: http://ceres.hh.se/mediawiki/

HSST_2017.

[6] Asma Berriri. Towards Testing and Verification in SDN. Poster presentation. Journée Futur &

Ruptures, février 2017, IMT, Télécom ParisTech, Paris, France. 2017. url: https://www.imt.

fr/journee-futur-ruptures-jeudi-2-fevrier-2017-a-limt/.

[7] Asma Berriri. Towards Testing and Verification in Software Defined Networks. Poster and pre-

sentation. Journée doctorants Samovar 2017, Paris, France. 2017. url: http://samovar.

telecom-sudparis.eu/spip.php?article1063.

[8] DigiCosme Spring School on Formal Methods and Machine Learning. ForMaL. 2019. url:

https://formal-paris-saclay.fr.

[9] GT LTP Langages Types et Preuves du GdR GPL du CNRS. ENSIIE, Paris, France. 2018. url:

http://web4.ensiie.fr/~guillaume.burel/ltp/journee_2018.html.

http://ceres.hh.se/mediawiki/HSST_2017
http://ceres.hh.se/mediawiki/HSST_2017
https://www.imt.fr/journee-futur-ruptures-jeudi-2-fevrier-2017-a-limt/
https://www.imt.fr/journee-futur-ruptures-jeudi-2-fevrier-2017-a-limt/
http://samovar.telecom-sudparis.eu/spip.php?article1063
http://samovar.telecom-sudparis.eu/spip.php?article1063
https://formal-paris-saclay.fr
http://web4.ensiie.fr/~guillaume.burel/ltp/journee_2018.html

10 1. Introduction

2
Background

Contents

2.1 Software Defined Networking . 12
2.1.1 Overview of the SDN Architecture and SDN Interfaces 12
2.1.2 Application Layer . 13
2.1.3 Control Plane . 14
2.1.4 Data Plane . 14

2.2 Verification and Testing . 16
2.2.1 Verification . 16
2.2.2 Testing . 17

2.3 Model Based Testing . 17
2.3.1 Formal Representation of an SDN Architecture 18
2.3.2 Logic Circuit . 19
2.3.3 Extended Finite State Machine 19
2.3.4 Fault Models . 23

2.4 Mutation Analysis . 23
2.5 Black Box and White Box Testing . 24
2.6 Chapter Conclusions . 25

In this chapter, the fundamentals and basic background information, on which we base our

work of testing SDN architectures/components, are provided. Firstly, in Section 2.1, the SDN

paradigm concepts, architecture, and components are presented. The necessary theoretical

background on the terminology and semantic of verification and testing used in the thesis is

covered in Section 2.2. Armed with these basics, we dig deeper into notions related to model

based testing in Section 2.3 with a brief insight into how these concepts will be used in our

contributions. Further on, in Section 2.4, the concepts of mutation analysis are introduced. An

overview of the black and white box testing approaches in Section 2.5 completes the theoretical

basics.

11

12 2. Background

2.1 Software Defined Networking

In this section, we provide a general description of SDN and give an overview of the compo-

nents and interfaces.

SDN is an emerging networking paradigm that is now growing in usage and popularity, pro-

gressing rapidly and addressing some of the long-standing challenges in computer networking.

SDN platforms are subject to be widely used and deployed. Recently, they are deployed into

several core and data center networks. This paradigm brings a major concept, namely it de-

couples the data control of the network from the data transmission. It moves the control logic

into a logically centralized component called controller. In contrast to the traditional network

architectures, the separation of roles in an SDN architecture is the key to achieving flexibility

and to making it easier to introduce new concepts in networking. One can certainly observe

that the abstraction offered by the SDN architecture provides wider flexibility on developing and

implementing new network functionalities and simplifies the configuration and management

of modern networks suggesting the opportunity for more innovations.

2.1.1 Overview of the SDN Architecture and SDN Interfaces

The foundation of SDN is proposed by the standardization organization called Open Network

Foundation (ONF) [142]. In an SDN architecture, a logically centralized control function (the

controller) translates the applications’ requirements and applies control instructions over the

forwarding devices (the switches) in the data plane, while providing relevant information up

to the SDN applications [102]. The forwarding devices in the data plane then reroute data

packets to other forwarding devices and to hosts according to these control instructions [132],

[54], more specifically, forwarding and filtering rules [134].

An SDN architecture is composed of three layers, i.e., (i) the network applications, (ii) the

control plane composed of one or multiple controllers, and (iii) the data plane composed of

the forwarding devices and hosts [142]. The interaction between these layers is performed

through Application Programming Interfaces (APIs). The SDN controller has mainly two APIs.

The southbound API responsible for collecting network status and updating forwarding rules

in the forwarding devices. The northbound API such as the ‘Representational State Transfer’

(REST) API handles interaction with the application layer, i.e., receiving requests/ policies de-

scribed in high level languages from SDN applications and providing a synchronized global

view. It enables direct expression of network behaviour and requirements. Northbound API

presents a programmable API to network control and management applications. The south-

bound API allows the exchange of control messages between the controller and the SDN

forwarding devices. This interface dictates the format of the exchanged control messages.

Multiple southbound interfaces exist such as OpenFlow (OF) [102], ForCES [44], and POF

[143]. The OpenFlow protocol is the most deployed SDN protocol as the southbound inter-

face [152]. Multiple OpenFlow protocol versions exist including versions 1.0, 1.3, 1.5. During

the thesis, we used the stable releases of OpenFlow at the time (versions 1.0 and 1.3). All OF

versions use the same structure of SDN rules, with some action and match field additions in

each version.

An example of an SDN architecture is depicted in Figure 2.1.

SDN network architectures allow end-user (e.g., a network administrator) requests/require-

ments representing network policies to be specified and implemented in the data plane. Net-

work applications can issue the requests on the shape of data paths that have to be imple-

mented between pairs of sources and destinations through the network architecture. The con-

troller then computes the appropriate flow rules and pushes them to the switches. A switch

2.1. Software Defined Networking 13

acts as a forwarding device receiving and sending network packets in accordance with the

configured rules. It also sends events such as traffic statistics, network changes and acknowl-

edgments to the controller. An end-user request might impose for example the traversal of a

given sequence of switches. An example of a request is ‘traffic from hosts in local area net-

work Subnet1 to the internet must traverse the switch S1 and one of the switches S6 and S7

(Figure 2.1).

In this thesis, we assume that the network architecture is functioning correctly if the network

policies (requests) defined by the network applications and translated by the controller are

correctly implemented by network devices in the data plane. In Chapter 4, we propose a

model based testing technique to guarantee such correctness.

In the following, we detail the layers of the SDN architecture.

Figure 2.1 – SDN layered architecture.

2.1.2 Application Layer

As illustrated in Figure 2.1, the application layer resides above the control layer. Through the

northbound API, SDN applications can conveniently access a global network view and can

implement different strategies to configure the underlying physical infrastructure (data plane)

using a high level language. The application layer mainly consists of the end-user network

applications or functions that consume the SDN network services. Examples of such applica-

tions include network visualization, load balancing and firewalls applications. Based on the

network configuration requirements and specific needs, a network administrator can program

new network applications (new network functionalities) in standard programming languages.

14 2. Background

2.1.3 Control Plane

The control layer bridges the application layer and the data plane. It consists of a set of

software based SDN controllers providing a consolidated control functionality through open

APIs [59]. This layer supervises the network forwarding behaviour.

The controller sets up all forwarding devices in the data plane, maintains topology informa-

tion, and monitors the overall status of the entire architecture [102]. It updates the flow table

by adding and removing rules using protocols such as OpenFlow [102]. Each forwarding de-

vice has a set of flow tables with rules. A rule has three parts: the matching condition to a

specific flow; the action to be applied to this flow, and counter to track the rule occurrence for

management purposes.

The Controller presents two behaviours, namely reactive and proactive. In the reactive

mode, the first packet of flow received by a forwarding element triggers the controller to insert

rules in each forwarding element of the data plane. In fact, the controller listens to switches

passively and configures routes on-demand (by installing the corresponding rules). It receives

messages of connected hosts from the switches. Upon receiving a Packet_In message from

the switch, the controller looks for the destination host location and sets the path by sending

Flow_Mod messages to affected switches in the path. In the proactive mode, the controller

pre-populates the flow tables in each forwarding element.

All functions of the control plane are performed by the controller. It has full network topology

information and the location of hosts. When a forwarding element receives a packet for which

there is no matching rule in its flow tables, it forwards it (using Packet_In) to the controller

asking for the action to take upon this new flow. The controller can define the port that the

flow must be forwarded to or take other actions, such as dropping the packet. The controller

must set the entire path by sending Flow_Mod messages to all switches from the source to

the destination.

The SDN controller allows the applications to communicate with the SDN forwarding de-

vices, and creates the global view of the network. The controller is also able to monitor all

the network forwarding elements regularly. It then informs the network applications of the net-

work changes using the northbound interface. Then, the network applications manage and

implement policies in the network devices using the northbound interface.

Throughout the thesis, we consider architectures with controllers’ deployments logically

representing a single controller. However, the proposed approaches can easily be extended

with an architecture with multiple controllers.

2.1.4 Data Plane

The data plane consists of forwarding devices and hosts. The forwarding devices include

physical and virtual switches which are interconnected between each other and with hosts.

An example of an SDN switch is the software OpenvSwitch (OVS) [121].

The Switch

A switch exposes two interfaces allowing its interaction with packets in the data plane on one

hand (forwarding functionality) and its interaction with the controller on the other hand. A

switch does not have any built intelligence and relies on the controller to give it a set of rules

to know how to treat/forward incoming packets. These rules are then saved in the switch flow

tables [113]. When a packet arrives to the forwarding device, it is matched against rules in

the flow tables. The action is triggered if the matching is satisfied and then, the counter is

updated. If the packet does not match any entry in the flow tables, it is sent to the controller

2.1. Software Defined Networking 15

over a secure channel to ask for an action. Packets are matched against all rules based on

some prioritization scheme. The flow table could have a priority field associated with each

rule. Higher number indicates that the rule should be processed before.

An SDN forwarding rule (also called a flow entry) is composed of three parts [113]

• Matching fields: packet header values to match the incoming packets in addition to the

input port. We refer to the matching fields as matching parameters.

• Actions: set of instructions to apply to the matching packet such as forward to specific

output port, flood, drop, send to controller or modify packet headers.

• Locations / priorities: to control the rule hierarchy.

The Switch in its Data Plane Interface (Forwarding Functionality) The forwarding rules

are grouped in different flow tables and are considered to be the configurations of switches

with respect to packets and application flow management.

As an example of rules installed in a switch, consider the set of rules defined in Table 2.1.

The table includes the following matching parameters:

• Flow Table, a virtual partition for the installed rules;

• Priority, the order attributed to the rule to be applied with respect to other rules in the

flow table;

• Input Port (In_port), the ingress port of the incoming packets;

• Ethernet Type (Eth_type), the type of traffic carried by the Ethernet datagram;

• Source and Destination IP Addresses respectively (IP_source, IP_dest), define the IP

protocol source and destination addresses;

• Output ports (Output) defines the set of ports to which a matching packet should be

forwarded.

Flow Table Priority In_port Eth_type IP_source IP_dest Output

0 500 ∗ ARP (0x806) ∗ ∗ Port 1

0 500 1 ARP (0x806) ∗ ∗ “All”

1 501 1 IP (0x800) 10.0.0.1/32 10.0.0.2/32 Port 2

1 501 2 IP (0x800) 10.0.0.2/32 10.0.0.1/32 Port 1

Table 2.1 – Example of rules installed in a switch

For example, the third rule in Table 2.1 is specified in the flow table 1 with the priority 501.

When the packets having the source IP address 10.0.0.1 and destination IP address 10.0.0.2

arrive to Port 1 of the switch, these packets have to be forwarded through the (output) Port 2

of the switch.

Chapter 5 answers the question of how to guarantee the forwarding functionality of a switch

specified as a set of configurations in the data plane.

The Switch in its Southbound Interface

The OF specification [113] describes the behaviour of the switch and its communication

with the controller. It specifies OF messages handling via the southbound API. Examples

of messages received/sent by the switch include ofpt_hello message for connection estab-

lishment; ofpt_feature for advertising the supported capabilities; flow_mod for handling

modification of rules in the switch; ofpt_barrier to get the information about when a given

16 2. Background

command is applied; ofpt_multipart for reporting statistics and ofpt_echo for sensing the

liveness.

Before any messages can be exchanged, the connection establishment process takes

place implying OF version and capability negotiation. Both ends of the connection exchange

hello messages immediately after the lower layer (TCP/TLS) connection establishment. Af-

terwards, to be aware of the capabilities of the switch, feature is exchanged. In case this

message is not received by the controller and after a timeout, the latter disconnects the switch.

Once the connection is successfully established, different messages can be exchanged, e.g.,

echo, flow_mod, barrier and multipart. The actions of rules installed by the Flow_Mod

messages are defined by the OF requirements and include for example modification of ip and

vlan values.

If an OF implementation complies with the requirements, the exchange of these messages

should be performed correctly with the specified parameters. In Chapter 6, a model based

approach is proposed to test the switch in its communication with the controller.

2.2 Verification and Testing

It is necessary to evaluate or judge the ‘correctness’ of an SDN architecture and its related

SDN components, i.e., whether the SDN architetcure/component meets its requirements and

specifications and whether it fulfills its intended purpose.

In the following subsections, basic concepts related to verification and testing employed

throughout the thesis are briefly introduced.

2.2.1 Verification

Verification is a process that involves mathematical proof showing that a system satisfies a set

of desired properties. Formally, given a system M , verification aims at the creation of a set

of properties P that are iteratively checked during phases of development of M to determine

whether or not the behaviour of M meets the set of properties P [32, 46].

In the context of SDN, the network verification problem can be formulated as follows. Given

an abstract model of an SDN component(s) (or a composition of those) Model(N) and a set

of network properties P expressed in a given logic formulae, determine whether Model(N)

satisfies P.

We distinguish the different verification methods applied to SDN based on the mathemat-

ical formalism used in the reasoning process during the verification. In this work, under ver-

ification we understand a process that does not require any stimulation of the system under

verification.

Examples of network properties (referred to as invariants as well) to be verified include:

• Reachability [43] is concerned with whether the network always successfully delivers

packets to the intended end hosts. A definition of reachability property can be for ex-

ample that a packet pkt can get from the source host Host1 to the end host Host6 in

Figure 2.1.

• Forwarding Loop [97] occurs if the same packet returns to a location that it has visited

before. There are several possible definitions of this property, e.g., returning to the same

location with exactly the same header, or returning to the same location with a possibly

different header. The former case indicates the presence of an infinite loop, since this

packet will repeatedly return to this location. The latter case may also be undesirable

since there is usually no reason for a packet to return to the same location.

2.3. Model Based Testing 17

• Black-holes [141] means that packets are dropped because there is no destination con-

figured on one of the forwarding devices they traverse.

2.2.2 Testing

In software development methods, testing occupies a central position of ensuring software

quality. In order to judge the correctness of a system under test, one should observe or moni-

tor for each test execution what the system does, how it does it, and perhaps when it does it.

Active testing is defined when a system under test (SUT) is stimulated by appropriate inputs,

i.e., test sequences / cases, and the conclusion about its correctness is made based on the

observations of its output responses. Testing techniques applied to SDN architectures/com-

ponent (s) are based on stimulating the architecture/component(s) (or composition of those)

under test by test cases and observing their reactions with the intent of finding errors. Passive

testing is defined when one just monitors the SUT and observes that the behaviour is correct

or incorrect without stimulating the SUT. Debugging / troubleshooting is defined as stimulating

the SUT by appropriate inputs and observing its reactions in the objective of localizing errors

[10], [107].

Random testing [10] generates test cases in a (uniformly) random way with negligible effort.

A more evolved form, referred to herewith as ‘semi-random’ consists of ‘controlling’ the way

random test cases are generated. For example, starting with randomly generated inputs and

repeatedly modifying them, more or less at random, to produce new inputs. This increases

the probability of inputs found in this way being ‘interesting’.

2.3 Model Based Testing

Model based testing has received increasing attention due to its ability to improve produc-

tivity, by automating test planning, generation, and execution. In model based testing, test

cases/sequences forming a test suite are generated from an abstract model, which captures

the desired behaviour of the system. Then, the test cases/sequences are executed against a

real implementation of the system and the conformance of the implementation to the specifi-

cation is checked by comparing the observed outputs with the ones specified by the model,

for some suitable definition of conformance. The specification can be a formal model of the

system and might also be defined by a set of (end-user) requirements that should be correctly

implemented.

The central artifact of model based testing is the model. It serves as an abstraction of

the system under test (SUT), manageable by the test engineers. In this context, the primary

idea behind a model based method is the benefit of deriving a specification for a system that

might cover its functional behaviour. The model/specification may be utilized as the basis for

automating parts of the testing process and can lead to the generation of more efficient and

effective test cases/sequences.

A large number of possibilities is present with respect to how to model the SUT. For ex-

ample logic circuits or state based models such as Finite State Machines, Extended Finite

State Machines, Input/Output Transition Systems, etc., might be considered. For state based

models, most notations for test modeling are based on states and their identification.

In the following subsections, we provide a glance insight into preparatory ingredients for

the author contributions. In subsection 2.3.1, we give an introductory overview of a formal

representation of an SDN architecture that supports our first contribution in Chapter 4. In

subsections 2.3.2 and 2.3.3, we introduce logic circuit and extended finite state machine as

18 2. Background

models that we use in Chapter 5 and 6 respectively to support the proposed test generation

techniques. In subsection 2.3.4, definitions related to the notion of fault models are provided.

2.3.1 Formal Representation of an SDN Architecture

SDN architectures satisfy end-user requests/requirements by forwarding data in a given data

plane. At the level of a switch in the data plane, forwarding decisions are defined by rules.

To implement desired requirements during forwarding, network administrators/operators de-

fine requests to be implemented in the data plane. For instance, they impose some policies

to be applied to the flows. The ‘specification’ in this case is defined by a set of (end-user)

requirements that should be correctly implemented.

In the thesis, unless the context is explicitly indicated, we refer to the data plane as the

Resource Network Connectivity Topology (RNCT 1) for which a formal definition is given in

Chapter 4. An RNCT depicts the SDN components in the resource connectivity network. An

informal description of a path in an RNCT is depicted in Definition 2.1. A more formal definition

is provided in Chapter 4.

Figure 2.1 presents an example of a network topology consisting of one controller, seven

switches and six hosts. Each switch is connected to the SDN controller. S1 is connected to

hosts Host1 and Host2, S4 is connected to Host3 and Host4, S6 is connected to Host5 and

S7 is connected to Host6.

Definition 2.1.

A path in an RNCT between two given hosts is a sequence of network devices that starts

and ends with hosts and all other intermediary devices are switches.

Based on the topology of Figure. 2.1, the corresponding RNCT and some examples of

its paths are illustrated in Figure. 2.2. In this example, the RNCT is a network with seven

switches and six hosts.

Host1 S1 S2 S3 S4

S5S6S7

Host2 Host3

Host4

Host5Host6

RNCT

Host2 S1 S2

S6Host5

Path1

Host3 S4 S3

S2

S6S7Host6

Path2

Host6 S7 S6

S5S4Host4

Path3

Figure 2.2 – RNCT of the network topology in Figure 2.1 and examples of its paths

The presence of potential errors/bugs in the SDN architecture certainly breaks the intended

1Hosting infrastructures can be physical or virtualized.

2.3. Model Based Testing 19

network functions. The errors might be due to the inconsistencies between end-users’ (e.g.,

network administrators) logical requests and the actual flow-level implementations. Figure 2.1

shows a misbehaviour of an SDN architecture consisting in implementing a different request

(marked in red in the data plane) than the desired/specified one (marked in green). Chapter 4

tackles this problematic and proposes a model based testing approach aiming to the detection

of such misbehaviours.

2.3.2 Logic Circuit

The specification of a system can be represented by a logic circuit as the underlying model in

model based testing. We propose this model for the testing approach developed in Chapter 5.

A sequential logic circuit consists of combinational logic and memory elements, namely

latches. A combinational circuit is composed of logic gates (AND, OR, etc.); each logic gate

implements a Boolean function. Unlike sequential logic circuits whose outputs are dependant

on both their present inputs and their previous output, which gives them memory, i.e., state,

the outputs of combinational logic circuits are only determined by the logic function of their

current input, logic vectors of ‘0’ or ‘1’, at any given instant in time. Thus a combinational

circuit is memoryless.

Definition 2.2.

A logic circuit, representing the system specification, is said to be Complete (or completely

specified) if the output is defined for every possible input vector, otherwise, it is said to be

Partial.

There are different formats of logic circuit representation. In this work, we consider the

Berkley Logic Interchange Format (BLIF) [18]. In this format, a combinational circuit is de-

scribed by the corresponding look-up table (LUT). An LUT contains a set of input/output

Boolean vectors describing the circuit’s behaviour. The LUT table of the partial specification,

portrayed in Figure 2.3, is shown in Table 2.2.

Figure 2.4 shows an example of the BLIF file for the logic circuit of Figure 2.3. The names

of external inputs and outputs are listed in the file. Then, following those declarations, the truth

tables for each of the gates with their inputs and outputs are listed. For example, element n6

is a function of two arguments x0 and x2.

A logic circuit can be modelled as an AND-INVERTER Graph (AIG). In fact, a Boolean

network is a directed acyclic graph with nodes representing logic gates and directed edges

representing wires connecting the gates. AIG is a combinational Boolean network composed

of two-input AND-gates and inverters [106]. In an AIG, each node has at most two incoming

edges. A node with no incoming edges is a primary input. Primary outputs are represented

using special output nodes. Each internal node in the AIG represents a two-input AND func-

tion.

Example

Figure 2.3 illustrates an example of a partial specification (logic circuit) designed as an AIG.

2.3.3 Extended Finite State Machine

A state based model is one of the most powerful ways to represent a system Sys where a

number of stimuli (inputs) is received by Sys and actions (outputs) are produced by Sys. For

example, the specification of a system can be represented by a state based model such as

20 2. Background

8

7 11

6 10 9

z0 z1

12

x2 x0 x1

Figure 2.3 – An example of a

partial logic circuit specification

designed as an AIG (cex)

x0, x1, x2 z0, z1

0 1 0 0 1

0 1 1 1 0

1 1 1 1 1

1 1 0 1 0

Table 2.2 – The look-up

table (LUT) of the

specification cex illustrated

in Figure 2.3

. model cirex

. inputs x0 x1 x2

. outputs z0 z1

. names x0 x2 n6

10 1

. names x2 n6 n7

00 1

. names x1 n7 z0

10 1

. names x0 x2 n9

11 1

. names x0 x2 n10

00 1

. names n9 n10 n11

00 1

. names x1 n11 z1

10 1

. end

Figure 2.4 – A BLIF

description of Cex

shown in Figure 2.3

Finite State Machine (FSM) or Extended Finite State Machine (EFSM) as the underlying model

while testing.

These models are used to describe behaviours of sequential systems where outputs de-

pend on inputs and the current state. This is to be opposed to combinational behaviours where

the output is only dependent on the set of inputs as described earlier with combinational logic

circuits in Subsection 2.3.2.

In this context, classical FSM for example can be used. An FSM is a transition system

with a finite number of inputs, outputs, states and transitions each labeled by an input/output

pair [48]. FSMs are widely used in various application domains, such as modeling and testing

communication protocols, and other reactive systems.

States, transitions, inputs, and outputs are the building blocks of an FSM. The collection

of states represents all the possible situations in which the FSM may be. The model goes

through a sequence of transitions to reach a certain state. A state is some kind of a memory

that represents the current state of the model. From a software point of view, a state can

be a set of specific values for a collection of variables. A transition is an allowable two-state

sequence that results in an output and must specify a starting state and a final state (of the

transition). A transition usually means a change in the value for state variables. An input

triggers a transition.

Definition 2.3.

Formally, an FSM [48] is a quintuple (S, I,O, hS,Sin), where

• S is a finite set of states with the set Sin ⊆ S of initial states;

• I is a finite non-empty set of inputs;

• O is a finite non-empty set of outputs;

• hS ⊆ S× I ×O×S is a transition or behaviour relation, where a 4-tuple (s, i,o, s′) ∈ hS is

2.3. Model Based Testing 21

a transition.

If |Sin | = 1, then the machine is initialized, otherwise it is non-initialized. In this work, we

consider initialized machines.

In spite of their good expressiveness, FSMs are not powerful enough to model in a suc-

cinct way practical systems. For example, systems which contain variables and where their

operations depend on the variable values. The EFSM model extends the classical FSM model

with input and output parameters, context variables, update functions and predicates defined

over context variables and input parameters. It is more adequate to model complex reactive

systems.

The contribution of Chapter 6 proposes an EFSM to model the switch-to-controller commu-

nication and investigates the problem of deriving input test sequences based on such model.

In the remaining of this subsection, we give formal definitions related to EFSM and a simple

illustrative example.

Let X and Y be finite sets of inputs and outputs; INp, OUTp and Cv be finite disjoint sets of

input/output parameters and context variables respectively. Some inputs (outputs) are related

to subsets of parameters. For x ∈ X , let INpx ⊆ INp be the set of input parameters of x and let

DINpx
be the set of input vectors, each component of an input vector corresponds to an input

parameter associated with x. The set of output parameters and vectors are similarly defined.

Let DCv
be the set of context vectors v. Given an input x and a (possibly empty) set of input

vectors, a parameterized input is a tuple (x,px) where px is an input parameter vector. A

sequence of parameterized inputs is called a parameterized input sequence. Parameterized

outputs and their sequences are defined similarly.

Definition 2.4.

An EFSM [118] S over X,Y , INpx , OUTpy, Cv, DINpx
, DOUTpy

and DCv
is a pair (S,T)

of a finite set of states S and a finite set of transitions T between states in S, such that each

transition t ∈ T is a tuple t = (s, x,P,op, y,up, s′), where

• s, s′ ∈ S are the initial and final states of the transition, respectively;

• x ∈ X is the input of the transition;

• y ∈ Y is the output of the transition;

• P, op and up are functions, defined over input parameters and context variables

– P : DINpx
×DCv

→ {True,False} is the predicate of the transition;

– op : DINpx
×DCv

→ DOUTpy
is the output parameter function of the transition;

– up : DINpx
×DCv

→ Cv is the context update function of the transition.

If a transition t has a predicate, the latter must be satisfied in order for t to be enabled. A

configuration of S is a pair (s,v).

Definition 2.5.

An EFSM S [118] is

• Deterministic if any two transitions outgoing from the same state with the same input

have mutually exclusive predicates;

• Complete if for each pair (s, x) ∈ S×X , there exists at least one transition at state s with

the input x, otherwise S is called partial;

22 2. Background

• Initially connected if each state of S is reachable from the initial state.

In this thesis, we consider deterministic, initialized, initially connected but not necessarily

complete EFSMs.

Example

We illustrate the notion of an EFSM and how it operates through a simple example. Consider

an EFSM given in Figure 2.5 which is defined over state set S = {State1,State2,State3}, inputs

a and b, i.e., X = {a,b}, where b is non-parameterized and a is parameterized with an integer

parameter k with value a.k, outputs 0 and 1, i.e., Y = {0,1}. The set of context variables is

Cv = {w}. In this example, we assume that DCv
(domain of the variable w) is the set of all non-

negative integers. The set of input parameters is INp and we assume that the domain DINpa

(domain of the input parameter k) is the set of all non-negative integers, while DINpb
= � as

b is non-parameterized. The EFSM of this example is deterministic, initialized (State1 is the

initial state), initially connected and partial.

For a parameterized input, for example a, let a(0) denote the fact that the EFSM receives

the input a with the parameter value a.k = 0. The machine has six transitions. For exam-

ple, it has t1 = (State1,a,1 ≤ a.k ≤ 5,−,0,w := w + 1,State2) with states State1 and State2

as start and final states, respectively, the predicate 1 ≤ a.k ≤ 5, and variable update func-

tion w := w+ 1. Assume that (State1,w = 0) is a current configuration of the EFSM and the

machine receives a parameterized input a(k), then the machine checks the predicates of out-

going transitions from State1 that are satisfied for the current configuration under the input a

with parameter value a.k. If the received value a.k = 3, then the machine checks predicate

1 ≤ a.k ≤ 5. As 1 ≤ a.k ≤ 5 holds, the transition t1 is executed according to the context up-

date function w := w+1 with output 0, and the machine moves from State1 to the final state

State2 as specified by t1. In fact, the machine moves from configuration (State1,w = 0) to

configuration (State2,w = 1).

State1start

State2 State3

t1

[1 <= a.k <= 5]

a(k)/0

w := w + 1

t2

[w = 0]

a(k)/0

t3

b/1

w := w+1

t4

[w , 0]

a(k)/1

w := w+1

t6

[a.k >= 6]

a(k)/1

w := w − 1

t5

b/1

w := 0

Figure 2.5 – Example of an EFSM

2.4. Mutation Analysis 23

2.3.4 Fault Models

As the quality of a test suite is usually measured by its fault coverage, i.e., the types and

number of faults that can be detected by the test suite, the proposed testing methods in this

thesis introduce different fault models and seek for test suites with guaranteed fault coverage

that can be stated as (necessary and) sufficient conditions [119] for a test suite exhaustiveness

/ completeness (Definition 2.6 below).

The main motivation for using fault models is to have tests which can detect, i.e., cover

certain types of implementation faults. Such tests offer a ‘guarantee’ for the test quality in

terms of fault coverage.

In a usual way, a fault model is defined as a tuple ⟨S,@,FD⟩ [120] where S is the specifi-

cation, @ is the conformance relation and FD is the fault domain. In general, the specification

is a formal model of the system, however, it might also be defined by a set of (end-user) re-

quirements that should be correctly implemented.

The relation @ defines the conformance of a given implementation I to the specification

S. If the specification is complete (completely specified) then the conformance relation can

be chosen to be equivalence and can be represented for example by the equality. If the

specification is partial, then the conformance relation can be represented for example by the

quasi-equivalence denoted as ≃. The fault domain FD is a set of implementations. In model

based testing, the specification model can be altered (mutated) in order to model a fault in the

implementation. FD can be defined to contain the resulting mutants. Checking that a mutant

from FD is not equivalent to the specification means to guarantee that the implementation

does not implement any of the incorrect behaviours. The conformance relation @ partitions

the set FD into conforming and nonconforming implementations (mutants).

As usual, an implementation I ∈ FD is called conforming if I@S; otherwise, I is a non-

conforming implementation. Given the specification S, a test case is a finite input sequence

of S. An implementation under test passes a test case/sequence if the output response of

the implementation to the test case/sequence is contained in the set of output responses of

the specification S to the test case; otherwise, the implementation under test fails the test

case. As usual, a test suite is a finite set of test cases. An implementation under test passes

(fails) a test suite if the implementation passes each test case (or fails some test case). If an

implementation fails a test suite then we say that the implementation can be detected with the

test suite.

Definition 2.6.

• A test suite TS is said to be exhaustive w.r.t. the fault model ⟨S,@,FD⟩ if each imple-

mentation I ∈ FD such that I @/S can be detected with TS.

• A test suite TS is said to be sound w.r.t. the fault model ⟨S,@,FD⟩ if each implemen-

tation I ∈ FD such that I@S passes TS.

• A test suite TS is said to be complete w.r.t. the fault model ⟨S,@,FD⟩ if TS is exhaus-

tive and sound.

2.4 Mutation Analysis

Mutation analysis is a powerful approach for both evaluating test suites’ effectiveness and sup-

porting test generation [111]. The principle idea is to inject ‘artificial’ faults, called mutations,

24 2. Background

into the code or the specification model yielding mutants. It allows to measure test effective-

ness based on the number of detected mutants. Researchers have proven that detecting

mutants results in finding real faults [74]. In particular, this has been shown as well for model

based mutation [3]. Indeed, it has been demonstrated that specification model mutants lead

to tests that are able to reveal implementation faults that were neither found by manual tests,

nor by industrial tools [3]. Moreover, model based mutation’s power is to identify faults related

to missing functionality and misinterpreted specifications.

In model based testing, mutants are introduced based on model transformation operators

that alter the specification. When the faults injected in the specification model to obtain corre-

sponding mutants are defined by a user such as an expert, a test engineer, etc.; the resulting

mutants are referred to as user-defined mutants. There are two kinds of mutants, first-order

mutants when the specification and the mutant models differ by a single model transformation,

and higher-order mutants, derived from the specification model after multiple transformations.

When a mutant is detected by a test sequence (case), it is said to be killed. Otherwise, it is

said to be survived. To measure the adequacy of testing and assess the fault coverage of test

suites, a standard metric called mutation score is used. It is defined as the ratio of mutants

killed by the test suite under assessment to the total number of unique mutants [10]. This ratio

gives an evaluation of the fault revealing power of a test suite [111]. To calculate the mutation

score, one has to execute the whole test suite against every selected mutant.

In the thesis, we make use of mutation analysis. In chapter 4, the fault coverage of the

derived test suites is evaluated based on a code mutation. In Chapters 5 and 6, the established

models are mutated in order to support test generation, and experimental evaluations based

on mutation score metric are conducted in both chapters in order to prove the effectiveness of

the proposed testing approaches.

2.5 Black Box and White Box Testing

In testing, the black box approach is a technique for test case generation where test cases/se-

quences are constructed according to information derived from the specification or require-

ments without requiring knowledge of the internals of the system. In other words, a system

under test (SUT) is treated as a black box, i.e., we do not have any knowledge about the inter-

nal structure of the SUT. Only information about what inputs does the SUT expect and what

are the specified outputs is available, without knowledge of how the SUT derives those results.

This means Black Box testers do not have access to the source code and are oblivious of the

SUT architecture. Note that the requirements might be user-defined. For example, in Chap-

ter 4, while making use of this approach, the test cases are constructed based on the requests

of an end user (a network administrator/operator).

A Black Box tester typically interacts with an SUT through interfaces by providing inputs

(points of control) and examining outputs (points of observation) without knowing where and

how the inputs were operated upon. In Black Box testing, the SUT is exercised over a range

of inputs and the outputs are observed for testing correctness.

White box testing refers to the technique of testing an SUT with knowledge of the internals

of the system. White box testers have access to the source code and are aware of the system

architecture. A white box tester typically analyzes source code, derives test cases from knowl-

edge about the source code, and finally targets specific code paths to achieve a certain level

of code coverage. A white box tester with access to details about the SUT can readily craft

efficient test cases that exercise specific parts of the SUT for example. This allows the tester

to examine for example parts of a system that are ‘suspicious’, rarely tested or pointed out as

2.6. Chapter Conclusions 25

‘doubtful’ by an ‘expert’/‘knowledgeable’ user.

Black box and white box testing approaches both choose test cases that investigate a par-

ticular characteristic of the system, however in white box testing, test cases can be generated

to test some implementation specific aspects of the system.

2.6 Chapter Conclusions

The aim of this chapter has been to discuss the backgrounds of SDN architectures and their

components on one hand and the basics of testing related notions on the other hand. Herein,

the details on SDN, verification and testing, model based testing, mutation analysis, and black

and white box testing approaches have been presented.

26 2. Background

3
State Of The Art

“Science arose from poetry. . .when times change the two can meet again on a higher

level as friends.”

– Johann Wolfgang von Goethe

Contents

3.1 Introduction . 28

3.2 Verification Techniques for SDN . 28

3.2.1 Off-Line SDN Verification Techniques 29

3.2.1.1 SAT Solving . 29

3.2.1.2 Symbolic Execution and SMT Solvers 31

3.2.1.3 Model Checking Over Temporal Logic 33

3.2.1.4 Deductive Verification and Theorem Provers 35

3.2.2 Run-Time SDN Verification . 37

3.2.2.1 Application of ‘Off-line SDN Verification Techniques’
Online . 37

3.2.2.2 Dependency Graph Traversal 39

3.2.3 Summary and Conclusions about Verification Techniques 41

3.3 Testing Techniques for SDN . 42

3.3.1 Log Analysis for Test Generation 42

3.3.2 ‘Specific’ Packets for Test Generation 44

3.3.3 (Semi)-Random Test Generation 44

3.3.4 Verification for Test Generation 46

3.3.5 Model Based Testing . 47

3.3.6 Summary and Conclusions about Testing Techniques 48

3.4 Chapter Conclusions . 49

27

28 3. State Of The Art

3.1 Introduction

The process of verification/testing of an SDN architecture/component involves checking whether

the latter behaves in the way it was designed to behave. In this thesis, formal approaches for

testing SDN architectures/components are proposed. With this in mind, the first step is to

investigate the literature works that have contributed to developing techniques for SDN verifi-

cation and testing. This chapter reviews this field of research. At first, the current introduction

refers the reader to other related surveys in the field. Afterwards, the state of the art solutions

are presented with emphasis on their mode of operation, what objective they have addressed

and what solutions they have proposed.

It is worth mentioning that the literature study in this chapter does not include SDN security

and fault tolerance works. Indeed security and fault tolerance can be considered as an aspect

of overall network correctness or lead to network errors. However, we believe their related

techniques need independent reasoning and examination.

The general principles of SDN have been covered in several surveys that appeared as

early as 2012, e.g., [110, 84, 69, 167, 5]. However, in these works, the verification and testing

techniques applied to SDN have been briefly overviewed. A layered description of existing

work in this area has been covered in [156]. In the same line, some tools for SDN testing and

debugging have been covered in [65], [107], [55], [127], [110], and [84]. A brief overview of

the challenges related to SDN correctness has been provided in [72]. An insight into various

mathematical tools and verification methods used in the analysis of SDN has been covered in

[56]. A brief introduction of the works on the same topic has been presented in [124]. To the

best of our knowledge, the topic area of verification and testing SDN architectures and their

components has so far only been covered in detail by one survey. Li et al. [92] recently have

focused on the application of formal verification and testing methods to both traditional and

SDN architectures.

We note that in the majority of the aforementioned efforts, SDN verification and testing

techniques have either been barely discussed as part of the challenges SDN brings or have

been a part of a more wide study about networking in general. In this chapter, we present a

comprehensive survey of the research relating to this topic that has been carried out to date.

We analyze and summarize different solutions and categorize them w.r.t. the techniques they

involve.

The remainder of this chapter is structured as follows. Section 3.2 presents the first group

of existing solutions related to SDN verification. Section 3.3 is devoted to the group of existing

SDN testing techniques. Each of the aforementioned sections introduces the technique of

interest, investigates its application to SDN, illustrates it with an example and finally derives

some general conclusions. The Subsections 3.2.3 and 3.3.6 recapitulate the verification and

testing efforts and identify their limitations respectively. Finally, Section 3.4 summarizes the

analysis and concludes the chapter.

3.2 Verification Techniques for SDN

In this section, we summarize and classify existing SDN verification techniques. Subsequently,

we present two main categories namely Off-line and Run-time. To illustrate the underlying

mechanism behind a given technique, a simple example is usually provided based on the

network topology of Figure 3.1.

3.2. Verification Techniques for SDN 29

Figure 3.1 – An example of an SDN network topology

3.2.1 Off-Line SDN Verification Techniques

These techniques are the most popular for checking the SDN correctness. They verify a fixed

configuration of the network by making the assumption that the forwarding behaviour remains

the same as far as the controller does not explicitly instruct new rules, update or remove rules in

the switch. In general, off-line verification techniques consider the global behaviour of the SDN

network topology as a snapshot of network state which they analyze and then the predefined

network properties are checked.

3.2.1.1 SAT Solving

SDN verification problem can be reduced to a satisfiability (SAT) problem and solved by SAT

solvers. SAT expresses the problem as Boolean expressions using propositional logic. The

interesting question here is: how does this technique reduce an SDN network verification

problem to a SAT one?

SAT solving has been applied to the data plane where in fact the forwarding rules in each

switch are represented by Boolean expressions. Next, the property to check (e.g., reachability)

is expressed a Boolean expression as well (see example). Note that usually a counterfactual

reasoning is used to enable a form of negation of a property in order to prove it holds. Once the

SDN verification problem is formulated using Boolean expressions, deciding the satisfiability of

such expressions, i.e., determining if there exists an assignment (or prove there does not exist)

of the Boolean variables that makes the expression logically True, allows to conclude whether

the property holds. This is done by feeding the resulting expression as input to a SAT solver. In

case the property is violated, a counterexample is returned. For example, to express the data

plane verification problem as a SAT one, the matching part of each rule can be encoded as a

Boolean expression in the following way. Consider the matching part of a given rule denoted

as (p1 ∈ V1 ∧ p2 ∈ V2 ∧ . . .∧ pn ∈ Vn) where p1, p2, . . ., pn refer to the variables representing

the packet fields (e.g., MAC address, IP address, port number) and V1,V2, . . .,Vn refer to the

intervals wherein these variables can take values. For example, dstip ∈ 10.1.3.0/24 means

that the IP destination address is in the subnet 10.1.3.0/24. This matching part is represented

by a Boolean expression expn = var1∧ var2∧ . . .∧ varn such that pi ∈ Vi is mapped to vari

that takes the value True if the value of pi is indeed in the interval Vi and False otherwise. The

expression expn, for a given assignment of truth values for the variables vari, results in one

30 3. State Of The Art

of the Boolean value True or False.

SAT solving technique has been first proposed by Mai et al. [97] who have shown how

network properties can be translated into SAT instances which are checked using a SAT solver

for detecting potential problems / issues in the data plane, in particular violations of properties

such as absence of routing loops and black-holes. The tool implementing this technique is

called Anteater. The experiments have shown that, for example for checking three standard

network invariants in a campus network, Anteater spends two hours. Then, McGeer [101] has

extended this idea to consider a network of OF switches as a network of Boolean expressions.

The network properties have been reduced to logic expressions over the variables of this

network. In the same line of applying this technique to the data plane, Zhang et al. [173] have

also formulated the verification problem as a SAT problem. Reachability and loops are the

properties checked in this work.

Example

Consider the network topology of Figure 3.1 and the SDN verification problem is to check

reachability between S1 and S3. This example is inspired by the paper of Mai et al. [97].

The matching part of each rule in each switch is encoded as a Boolean expression (in our

example, for simplicity, each Boolean expression includes one Boolean variable, indeed here

we use only the destination IP addresses). R12 of switch S1 that forwards packets to S2 is

represented as the Boolean expression exp = var1 where var1 is a Boolean variable that

represents dstip ∈ 10.1.3.0/24. All the other rules are encoded similarly.

• The Boolean expression that represents the forwarding between a host and a switch or

between a switch and a host is expHostiSi = expSiHosti = varHostiSi where varHostiSi is

a Boolean variable that represents dstip ∈ 0.0.0.0/24.

• The Boolean expression that represents the forwarding between two switches (e.g.,

S1 and S2) is expS1S2
= varS1S2

where varS1S2
is a Boolean variable that represents

dstip ∈ 10.1.2.0/24. The Boolean expressions that represent the forwarding between

S1 and S3, S2 and S1, S2 and S3, S3 and S1, S3 and S2 are encoded similarly.

The resulting Boolean expression that expresses one possible path from Host1 to Host3 is

then varHost1S1
∧varS1S2

∧varS2S3
∧varS3Host3 , another path can be expressed by varHost1S1

∧

varS1S3
∧ varS3Host3 and consequently to check the reachability between Host1 to Host3, it

suffices to feed the Boolean expression depicted in Equation 3.1 to a SAT solver that will try

to find an assignment (if it exists) that makes Equation 3.1 evaluate to True.

expHost1Host3 =(varHost1S1
∧ varS1S2

∧ varS2S3
∧ varS3Host3) ∨

(varHost1S1
∧ varS1S3

∧ varS3Host3)
(3.1)

In this simple example, the Boolean expression depicted in Equation 3.1 is satisfied, hence

the property holds.

SAT solving technique determines whether a Boolean formula expressing SDN components

and properties is satisfiable. It has mostly been applied to the data plane layer and has been

used in checking properties such as reachability and loops.

3.2. Verification Techniques for SDN 31

3.2.1.2 Symbolic Execution and SMT Solvers

As any verification technique, symbolic execution [83, 21] checks whether certain properties

can be violated by the system. This is done by simultaneously exploring multiple paths that

the system could take under different inputs. The system can take symbolic (rather than con-

crete) input values. The execution is performed using a symbolic execution engine. For each

explored path, the engine maintains two important pieces of information: a logic formula that

describes the conditions satisfied by the branches taken along that path, and a symbolic vari-

able, say store that maps variables to symbolic expressions or values. The execution of a

‘branch’ updates the formula, while ‘assignments’ update the symbolic variable store. A sat-

isfiability modulo theories (SMT) solver is then used to verify whether there are any violations

of the property along each explored path and if the path is feasible, i.e., if its formula can be

satisfied by some assignment of concrete values. In the following, we investigate how such a

technique is applied to solve an SDN network verification problem.

In fact, symbolic execution technique models the forwarding behaviour of an SDN architec-

ture (or component) by describing the behaviour of each forwarding table (and hence rules).

The packet header fields (e.g., IP address, MAC address) are expressed symbolically where

each variable representing a field is symbolic, i.e., assigned a set of values that is specified by

an associated constraint. To symbolically execute the whole model, the symbolic engine fol-

lows multiple branches on each encountered rule. It exercises all possible paths and records

the constraints of the symbolic input on each path. The constraints define which values of the

input vector lead to this path. Then, the path constraints are solved using a constraint solver

determining if the property is violated. For example, when switch S1 of the network in Figure 3.1

receives a packet, it is handled according to its table. However because the packet fields do

not have a concrete value, no specific rule is applied to it, instead, the approach branches

out taking into account all possibilities of actions of S1. S1 has three rules, namely: R11 that

forwards packets to Host1, R12 that forwards packets to S2 and R13 that forwards packets to

S3. In this case four branches are considered; the first one is when R11 is applied, the second

is when R12 is applied, the third one is when R13 is applied and the last one is when S1 sends

Packet_Out message to the controller without applying any rule. Suppose that Host1 wants to

send a packet pkt to Host2, this can be expressed by dstip(pkt) == ip(Host2) (a). When pkt

arrives at S1, the expression from the applied rule in the first branch is dstip(pkt)== ip(Host1)

(b). Constraint solvers are used to solve these expressions along each path. In this example,

(a) and (b) are not satisfied simultaneously so the path that takes the first branch is not feasible.

This technique has first been introduced by Dobrescu et al. [43] where the pipeline pro-

cessing of a switch is modelled as a tree that consists of subtrees, one per table, and the

property to verify is crash-freedom. The model describing the behaviour of a switch is com-

posed of models describing the behaviour of each of its tables. A table model takes as input a

symbolic vector representing the fields of a network packet and outputs either the same vector

or a modified version of it, which in return is fed to the next table in the pipeline. A symbolic

vector is a vector of symbolic variables. Dobrescu et al. have extended this work in [42] where

they have added more properties to be checked. Panda et al. [114] have applied this approach

to the data plane as well. In their work, network properties such as reachability and isolation

have been expressed using formulae that imply constraints on data flow within the model, then,

the SMT solver Z3 [37] has been used to check if the specified properties hold. Wu et al. [153]

have followed the same approach to generate a model of the switch from its source code, the

resulting model can then be used to check a set of network properties. Yakuwa et al. [158]

have applied this approach to the SDN network modelled as a transition system and the SMT

solver Yices has been used to execute the paths and solve the constraints.

In the same line, Kazemian et al. [77] have proposed to simulate the network model using

32 3. State Of The Art

‘symbolic’ variables instead of concrete packet field values at the inputs of the network model

(the space of all possible packet headers localized at all possible input ports in the network

called ‘the network space’). The switches are modelled as transfer functions which map header

head arriving on port port to (header,outputport). During this process, expressions based

on the initial symbolic variables and the functionality of each of the switches are derived. The

set of expressions represents implicitly the set of states that are reachable by the set of packets

with an appropriate set of inputs. Therefore, this allows the behaviour of the network (in a

specific state) to be verified with a single execution step, simultaneously under all possible

input packets. This process is called ‘Header Space Analysis’ (HSA). Now for a given property

such as reachability, HSA computes it from source Host1 to destination Hostn via switches

S1,S2, . . .,Sn−1 as follows. First, a header space region at Host1 is created representing the

set of all possible packets Host1 can send: a symbolic representation of packet fields. Next,

switch Si ’s transfer function is applied to the representation of the packet to generate a set of

regions at its output ports, which in turn are fed to Si+1’s switch transfer function. The process

continues until a subset of the flows that left Host1 reaches Hostn. Wang et al. [150] have

applied the HSA approach for checking SDN firewall applications.

Canini et al. [26, 25] have modelled an SDN controller event handler application as a

transition system. At each state, the system exposes a set of possible transitions, each of

which evolves the system from one state to another. To check the application correctness, the

approach checks after traversal of each transition that predefined network properties (specified

as Python code snippets, e.g., loops and black-holes) hold in the current state. To accomplish

this, the resulting transition based model is subject to checking using symbolic execution where

the latter involves symbolic packets (defined as a group of symbolic integer variables that each

represents a header field). The algorithm that checks if the property holds in each state of

the model runs as follows. At any given state, each transition (modelling the event handler

application) is ‘symbolically’ executed. This allows the set of packets that exercise all code

paths in the event handler to be identified. For every feasible path, the symbolic execution

engine finds an equivalence class of packets that enable such a path. For each equivalence

class, one ‘concrete’ packet is chosen which will enable the next transition to the next state

of the controller application under verification. Therefore from each state, there are as many

transitions as the number of equivalence classes. In summary, while checking the properties,

the state space is exploded by ‘symbolically’ executing the transitions. Experimental results of

the work have shown that this approach (implemented as a tool called NICE) can be effective

only for relatively small networks due to potential state explosion.

Example

This example is motivated by Dobrescu et al. [43]. Let us suppose that the switch S1 of Fig-

ure 3.1 is composed of two tables T1 and T2. The models of these tables and their correspond-

ing trees are shown on the left part of Figure 3.2. The resulting tree is shown on the right side.

In the first step of the verification of S1, each table is verified individually. In the second step,

the table is checked as a part of the pipeline. The verification in the first step is done as follows.

Each table model is executed with symbolic input (Pkt in this example) and the segments that

may cause the property to be violated are marked as ‘suspect’. At the end of this step, a con-

straint and a symbolic variable store are obtained for every feasible segment, e.g., for seg1

the constraint is c1 = (Pkt < 0) and the symbolic variable store is sym1(Pkt) = Pktout ← 0,

for seg3, the constraint is c3(Pkt) = (Pkt < 0) and the symbolic store is sym3(Pkt) = crash.

Segment seg3 causes a crash, it is marked as suspect. The verification in the second step

is done as follows. Each path pi (a sequence of segments segi) that includes at least one

suspect segment is checked. In this case, the paths that include the suspect segment are p1

3.2. Verification Techniques for SDN 33

and p4. The resulting constraint at p1 is cp1
= (c1(Pkt)∧c3(sym1(Pkt))) = (Pkt < 0)∧(0 < 0)

which is always False and thus p1 is not feasible, similarly for p4. However, all feasible paths

consist of non-suspect segments (never crash), therefore the property of crash-freedom holds

in switch S1.

Figure 3.2 – A symbolic execution encoding of the switch S1 of the topology in Figure 3.1

Example adapted from Dobrescu et al. [42]

Not only has symbolic execution technique been applied to the data plane layer but also

to the control plane (e.g., Canini et al. [26, 25]) and to the whole architecture as well (e.g.,

Yakuwa et al. [158]). Symbolic execution technique has been employed to check properties

such as reachability, absence of loops, black-holes and crash-freedom.

3.2.1.3 Model Checking Over Temporal Logic

Model checking over Temporal Logic is a verification technique that provides an algorithmic

means of determining whether an abstract model (representing, for example, a hardware or

software design) satisfies a formal specification expressed as a temporal logic formula. More-

over, if the property does not hold, the method identifies a counterexample execution that

shows the source of the problem [31]. In the following, we discuss how such technique is

adopted to solve an SDN verification problem.

In fact, the SDN architecture/component in this case is represented as a finite state model

and the properties to be verified (e.g., reachability, absence of black-holes, absence of loops,

OF rule consistency, etc.) as temporal logic formulae, then a checking if the properties hold

for the resulting model is performed. To illustrate this technique, let us use Computation Tree

Logic (CTL) to model an SDN architecture as a transition system where a state of the net-

work can be specified by the pair (pkt, switch) such that pkt denotes the packet and switch

denotes its location. The transitions between the different states can be specified by the

rules installed in each switch of the topology. For example, the CTL formula dstip(pkt) =

10.1.3.0&switch = S1 is satisfied by all packets with IP destination address 10.1.3.0 which

are located in the switch S1. The formula AF(pkt, switch = S3) states the formula (pkt,

switch = S3) holds at some points in the future. In this case, packets can always reach S3

from their current location. The formula (pkt, switch = S2) =⇒ AF(pkt, switch = S1) states

that all packets at switch S2 must eventually be forwarded to S1. The different rules in each

switch of the network as well as the property can be expressed using CTL in this way and

then be fed to a model checker. If the model violates the property, the model checker returns

a counterexample.

For checking the forwarding behaviour of a switch or the whole data plane, the rules have

been modelled as a state based system and the properties have been expressed either in LTL

as done by Peresini et al. [116] or in CTL as performed by Gutz et al. [61] and Al-Shaer et al.

34 3. State Of The Art

[136, 135]. Model checkers such as SPIN [67], JPF [149], SMV, and NuSMV [28] have been

used.

For checking the control plane, certain applications of the controller have been modelled

either as a finite transition system or a timed automata (TA) [9] as performed by Croft et al.

[34]. Properties have been expressed for example in LTL as done by Skowyra et al. [140],

or CTL as done by Kim et al. [82]. Also model checkers such as SPIN, NuSMV and Alloy

(Nelson et al. [108, 109]) have been used.

For checking the whole SDN architecture, different models have been proposed. A transi-

tion system has been adopted by Majumdar et al. [98] and Skowyra et al. [141]. Properties

such as reachability and black-holes have been expressed using LTL. For example, GΦ is a

formula where Φ is a formula over a set of atomic propositions and G is the operator of LTL

that means ‘globally’. Majumdar et al. have developed a model checker called ‘Kuai’ to solve

the verification problem. A network of finite timed automata (parallel composition of timed

automata) [8] has been used by both Kang et al. [76, 75] and Podymov et al. [123]. The

properties have been expressed using TCTL logic, i.e., CTL augmented which allows consid-

ering several possible future from a state of the system. VERSA [30] and UPPAAL have been

employed. Albert et al. [4] have encoded an SDN architecture into a specific language called

Abstract Behavioral Specification [73], then model checking has been used to check proper-

ties including rules consistency and absence of loops. Zakharov et al. [165] have proposed a

finite automata based model to capture the behaviour of an SDN architecture. The reachability

property has been specified using temporal logic. Shkarupylo et al. [139] have modelled an

SDN architecture using the Temporal Logic of Action (TLA) formalism [90]. The reachability

property has been verified. A TLA model checker has then been used in two different checking

modes namely breadth-first search (BFS) and depth-first search (DFS). Yuzhuang et al. [164]

have composed ‘already’ verified SDN components (separately) and have formulated the net-

work properties such as reachability and deadlock to verify them on the resulting model. The

result is subject to be verified by a model checker.

Example

We consider the network topology in Figure 3.1 and the property to check is reachability from

Host1 to Host3. We provide a simple example showing the reduction of the problem of the

verification of this topology into a model checking problem. The example is depicted by Equa-

tion 3.2 (using CTL). The initial state represents all possible packets are at host Host1. The

forwarding rules on switches moving packets between ports can be viewed as state transitions.

For example, the first formula states that all packets with IP destination address 10.1.2.0 which

are located in the switch S1 must eventually be forwarded to S2. The model and property can

be input to a model checker (e.g., SMV). If the latter returns pass, the property holds on the

model. If the model violates the property, a counterexample is returned. In this simple example,

the model satisfies the property.

(pkt,Host1) (Initial state)

(pkt,Host1) =⇒ (pkt,S1)

(dstip(pkt) = 10.1.2.0 & switch = S1) =⇒ AF(pkt, switch = S2)

(dstip(pkt) = 10.1.3.0 & switch = S1) =⇒ AF(pkt, switch = S3)

(dstip(pkt) = 10.1.1.0 & switch = S2) =⇒ AF(pkt, switch = S1)

(dstip(pkt) = 10.1.3.0 & switch = S2) =⇒ AF(pkt, switch = S3)

(dstip(pkt) = 10.1.1.0 & switch = S3) =⇒ AF(pkt, switch = S1)

(dstip(pkt) = 10.1.2.0 & switch = S3) =⇒ AF(pkt, switch = S2)

Can packets from Host1 reach Host3 ?

Check:

EF(pkt,S3)?

E means that ∃ at least one path starting from

the current state where the property holds.

F means that the property eventually has to

hold (somewhere on the subsequent path).

(3.2)

3.2. Verification Techniques for SDN 35

Model checking technique has been applied to the data plane, control plane and the whole

architecture. A variety of properties including reachability, loops and black-holes have been

checked using such technique.

3.2.1.4 Deductive Verification and Theorem Provers

Similar to model checking, theorem proving technique expresses the properties to be verified

as logic formulae, then axioms and inference rules serve to derive new formulae from existing

ones. The technique checks whether the property is valid with the axiom and derivation rules

[36]. How this technique is applied to solve an SDN verification problem will be our main focus

in this subsection.

We provide a simple example of theorem proving encoding illustrating how this technique

can be applied to an SDN architecture/component in the example below.

A first group of works applies this technique to SDN by expressing both the SDN architec-

ture and the property to be checked using a set of formulae in a given logic. Then the relation

between these two entities is verified as a proof using a theorem prover. Ball et al. [14]

have modelled the controller events (e.g., the receipt of a packet from a switch) and switch

events (e.g., executing a rule and forwarding an incoming packet to a certain port (or dropping

it)) as well as desired properties using first-order logic, and then have implemented classical

Floyd-Hoare-Dijkstra deductive verification. The tool implementing their work is called VeriCon

[14]. Examples of properties include the absence of black-holes. Anderson et al. [11] have

described network applications as functions using packet histories. Then the Coq proof assis-

tant [15] has been used to prove their correctness. The checked properties are reachability

and traffic isolation. Attiogbe [12] has proposed an approach to build correct SDN components

from the refinement of a global formal model of an SDN architecture, using the decomposition

of the global model into the target components. The whole SDN architecture has been viewed

as a discrete event system and modelled using set theory. Then, Rodin [47] prover has been

used to establish model consistency. Examples of checked properties include ‘the data pack-

ets received by any switch are sent by the controller or by the other switches’. Rodin supports

LTL, and CTL for expressing properties with the standard modal and temporal operators.

For data plane verification, a similar approach has been developed by Chen et al. [27]. The

approach uses a declarative language to describe the OF functionalities. Network properties

such as reachability have been expressed using LTL and decomposed into global and local

properties. The verification steps include specifying the global and local properties, generating

lemmas for proving that local properties are satisfied given the global ones.

A second group of works employs theorem proving technique by developing ‘new releases’

of the SDN component to be verified. In this way, the SDN component under verification is

verified in advance ‘once and for all’ before deployment. For example, McGeer [100] has pro-

posed a new protocol (based on the OF protocol) that is proved. The author has demonstrated

formally the correctness of this protocol based on theorems and lemmas. In particular, he has

proven that only a single set of rules is present on a switch at any time. Guha, Reitblatt and

Foster [60] have also developed a verified SDN controller in the Coq proof assistant [15] and

have proven it correct against a formal specification and a detailed model of an SDN architec-

ture. Gordon Stewart [144] has built upon Guha et al. work by providing a suite of tools for

verifying properties that are input to Guha et al.’s verified controller.

Example

To illustrate an example of the theorem proving technique operating on the SDN topology

of Figure 3.1, we use the propositional logic to model the forwarding behaviour (motivated

36 3. State Of The Art

by Ball et al. [14]) and we prove that the reachability property from Host1 to Host3 holds

(Equation (u)). Let Si denote a switch, pik a port of Si (k is the number of ports in Si) and

Hosti a host. link(Si, pi j,Hosti) denotes that host Hosti is directly connected to switch Si

via port pi j . link(Si, pik, p j k,Sj) denotes that port pik of switch Si is directly connected to port

p j k of switch Sj . We propose to use reductio ad absurdum strategy for proving. Some of the

axioms are depicted as follows:

link(S1, p11,Host1) (a)

link(S2, p21,Host2) (b)

link(S3, p31,Host3) (c)

link(S1, p12, p22,S2) (d)

link(S2, p23, p32,S3) (e)

link(S1, p13, p33,S3) (f)

S1. f orwardTab(dstip(pkt) = 10.1.1.0, p11)

(g)

S1. f orwardTab(dstip(pkt) = 10.1.2.0, p12)

(h)

S1. f orwardTab(dstip(pkt) = 10.1.3.0, p13)

(i)

S3. f orwardTab(dstip(pkt) = 10.1.1.0, p31)

(m)

S3. f orwardTab(dstip(pkt) = 10.1.2.0, p32)

(n)

S3. f orwardTab(dstip(pkt) = 10.1.3.0, p32)

(o)

link(S1, p13, p33,S3)∧ S1.send(dstip(pkt) = 10.1.3.0, p13) =⇒ S3.receive(dstip(pkt) = 10.1.3.0, p33)

(p)

link(S3, p31,Host3)∧ S3.send(dstip(pkt) = 10.1.3.0, p31) =⇒ Host3.receive(dstip(pkt) = 10.1.3.0, p31)

(q)

link(Host1, p11,S1)∧Host1.send(dstip(pkt) = 10.1.3.0, p11) =⇒ S1.receive(dstip(pkt) = 10.1.3.0, p11)

(r)

S1.receive(dstip(pkt) = 10.1.3.0, p11)∧ S1. f orwardTab(dstip(pkt) = 10.1.3.0, p13) =⇒ S1.send(dstip(pkt) = 10.1.3.0, p13)

(s)

S3.receive(dstip(pkt) = 10.1.3.0, p33)∧ S3. f orwardTab(dstip(pkt) = 10.1.3.0, p31) =⇒ S3.send(dstip(pkt) = 10.1.3.0, p31)

(t)

(3.3)

In order to prove the formula in Equation (u), we prove the contrapositive, that is the formula

in Equation (v).

Host1.send(dstip(pkt) = 10.1.3.0, p11) =⇒ Host3.receive(dstip(pkt) = 10.1.3.0, p31)

(u)

¬Host3.receive(dstip(pkt) = 10.1.3.0, p31) =⇒ ¬Host1.send(dstip(pkt) = 10.1.3.0, p11)

(v)

To perform such a proof, we use the resolution inference rule until either we can derive

Equation (v) or we cannot apply the inference rule anymore.

First the implications in Equations (p), (q), (r), (s), and (t) can be written as follows:

¬link(S1, p13, p33,S3)∨¬S1.send(dstip(pkt) = 10.1.3.0, p13)∨ S3.receive(dstip(pkt) = 10.1.3.0, p33)

(aa)

¬link(S3, p31,Host3)∨¬S3.send(dstip(pkt) = 10.1.3.0, p31)∨Host3.receive(dstip(pkt) = 10.1.3.0, p31)

(bb)

¬link(Host1, p11,S1)∨¬Host1.send(dstip(pkt) = 10.1.3.0, p11)∨ S1.receive(dstip(pkt) = 10.1.3.0, p11)

(cc)

¬S1.receive(dstip(pkt) = 10.1.3.0, p11)∨¬S1. f orwardTab(dstip(pkt) = 10.1.3.0, p13)∨ S1.send(dstip(pkt) = 10.1.3.0, p13)

(dd)

¬S3.receive(dstip(pkt) = 10.1.3.0, p33)∨¬S3. f orwardTab(dstip(pkt) = 10.1.3.0, p31)∨ S3.send(dstip(pkt) = 10.1.3.0, p31)

(ee)

(3.4)

We can apply resolution inference rule to Equations (aa) and (f), and by resolving away

link(S1, p13, p33,S3) and ¬link(S1, p13, p33,S3), we get Equation (aaa).

¬S1.send(dstip(pkt) = 10.1.3.0, p13)∨ S3.receive(dstip(pkt) = 10.1.3.0, p33)

(aaa)

3.2. Verification Techniques for SDN 37

By applying also resolution inference rule to Equations (bb) and (c), we get Equation (bbb).

¬S3.send(dstip(pkt) = 10.1.3.0, p31)∨Host3.receive(dstip(pkt) = 10.1.3.0, p31)

(bbb)

Similarly for Equations (cc) and (a), we get Equation (ccc).

¬Host1.send(dstip(pkt) = 10.1.3.0, p11)∨ S1.receive(dstip(pkt) = 10.1.3.0, p11)

(ccc)

Also the resolution rule applied to Equations (bbb) and (ee), we get Equation (ddd).

Host3.receive(dstip(pkt) = 10.1.3.0, p31)∨¬S3.receive(dstip(pkt) = 10.1.3.0, p33)∨

¬S3. f orwardTab(dstip(pkt) = 10.1.3.0, p31)

(ddd)

Similarly for Equations (ddd) and (m), we get Equation (eee).

Host3.receive(dstip(pkt) = 10.1.3.0, p31)∨¬S3.receive(dstip(pkt) = 10.1.3.0, p33)

(eee)

And finally for Equations (eee) and (aaa), we get Equation (fff) which is equivalent to Equa-

tion (v) and thus the property is proven.

Host3.receive(dstip(pkt) = 10.1.3.0, p31)∨¬S1.send(dstip(pkt) = 10.1.3.0, p13)

(fff)

Theorem proving technique has been applied to both the data plane and control plane

layers. It can be used in checking a variety of properties such as reachability and the absence

of black-holes. When applied to SDN, interactive theorem provers (e.g., Coq) that demand

explicit user guidance in the proof have been utilized.

The next section examines and categorizes some of the run-time verification methods that

have been applied to SDN architectures/components.

3.2.2 Run-Time SDN Verification

Run-time SDN verification seeks to verify the properties of the network in the presence of ar-

bitrary updates from the controller. That is when rules’ insertion, modification, and deletion

are performed by the controller and thus the network changes over time. The solutions devel-

oped to solve this issue either extend the off-line verification or rely on traversal of dependency

graphs modelling the SDN network topology.

3.2.2.1 Application of ‘Off-line SDN Verification Techniques’ Online

Several researchers have applied ‘Offline SDN verification techniques’ presented earlier in

Subsection 3.2.1 and have added a solution to sketch the motion of the rules’ updates in

time in order to verify the properties guaranteeing that every packet traversing the network

is processed by exactly one consistent global network configuration/rule. Depending on the

proposed solutions to handle the updates, we classify the literature contributions using this

technique into three groups. The first group encloses the works proposing to revise the model

after each update and then apply off-line verification again. The second group encloses the

works proposing a modelling language that incorporate the dynamic of the updates. Finally,

the last group encompasses the works proposing the construction of a graph modelling the

network, the revision of this graph for each update and the application of one of the off-line

verification technique on the graph to check the property of interest.

In the first group, model checking and theorem proving techniques have been used to

check properties of static network configurations before and after the updates. To this end,

38 3. State Of The Art

a ‘monitor’ listens for incoming updates. Once a change happens, the model is updated ac-

cordingly and the off-line technique is run again over it. For example, Hussein et al. [71] have

used the model checker UPPAAL in this way to verify that no violations would occur, had the

rule update been installed in the switch. Examples of verified properties include loops and

the time delay for a controller to update a switch versus the switch to forward a packet. Sethi

et al. [133] have also used this method where a network model and the property have been

specified using propositional logic formulae. The model has been incrementally constructed

based on an abstraction that consists in focusing on the behaviour of the network in presence

of one packet and abstracting away all the rest. At a given time, all the packets (except one)

in the data plane are considered as the ones that trigger updates to the network state as they

are forwarded as events to the controller. Only one packet at a time is then to be forwarded in

the data plane. The switch table can then be abstracted to contain only rules about this packet

and only updates corresponding to these rules are incorporated in the model. Murphi model

checker [41] has been run over the resulting model. A combination of model checking and

theorem proving techniques has been used in this first group as well, as related in the work

by Reitblatt et al. [125]. In this case, a mathematical model that sketches the behaviour of

the SDN architecture has been formalized and proven in the Coq proof assistant. Then, prop-

erties such as loops have been expressed using CTL. To show that the model still satisfies

the desired properties after each update, NuSMV [28] model checker has been run over the

updated model.

The second group of works proposes to handle dynamic changes by adding semantics

to the used modelling language. This offers the ability to push new rules without modifying

the checking engine. After the model is established, symbolic execution/SMT for example, as

an off-line technique, can be applied. This has been done by Lopes et al. [95] where a given

language (Datalog) has been augmented to allow specifying network invariants and model the

forwarding behaviour of the changing network. Their solution has been implemented as an

extension of the SMT solver Z3 where a number of optimizations have been added. Another

work in this group has been proposed by Reitblatt et al. [126]. To guarantee that every packet

exclusively uses either the old rule or the new rule and not some combination of the two, an

abstraction mechanism has been incorporated in the modelling language, and then off-line

model checking has been applied. The main idea behind the abstraction consists in stamping

each packet with a version number at its ingress switch indicating which rule set should be

applied.

The third group of works suggests the construction of a graph modelling the network topol-

ogy, the revision of the graph upon a rule update, and the application for example of symbolic

execution/SMT by simulating the resulting graph over symbolic packets. This has been done

by Kazemian et al. [78] as an extension of their previous work on off-line symbolic execution

technique [77]. A ‘plumbing graph’ which captures all possible paths of packets through the

data plane has been constructed. Nodes in the graph correspond to the rules and directed

edges represent the next hop dependency of these rules. A rule is represented as a tuple

⟨match,action⟩. A rule R11 has a next hop dependency to rule R21 if (a) there is a physical

link from R11’s switch to rule R21’s switch; and (b) the domain of R21 has an intersection with

range of R11. The domain of a rule is the set of headers that match on the rule and the range

is the region created by the action transformation on the rule’s domain. A directed edge from

rule R11 to R22 has a filter which is the intersection of the range of R11 and the domain of

R22. When a flow passes through a directed edge, it is filtered by the corresponding filter. A

filter represents all packet headers at the output of R11 that can be processed by R22. In re-

sponse to an update, nodes are added/updated in the plumbing graph. The work by Shelly

et al. [138] also fits in this third group. They have built upon the work of kazemian et al. [78].

3.2. Verification Techniques for SDN 39

The property to be checked is the capability of the controller to restore reachability in the pres-

ence of a link failure provided that the physical graph of the network is still connected. The

approach is based on computing failure scenarios (a scenario represents a set of links to fail

simultaneously) that maintain the reachability. For every link e, it checks if the network is still

connected without e, then, if yes, fails the physical link e and see if forwarding is still possible

between all nodes; if not, it reports the link failure. For this purpose, a monitor is interposed

in the southbound interface. It computes the failure scenarios and schedules them for execu-

tion while monitoring the network. After a failure scenario is executed, the verification engine

(simulation of the plumbing graph by symbolic packets [78]) verifies that the reachability still

holds.

Off-line verification techniques presented earlier have been applied to determine whether

the behaviour of the SDN architecture/component under verification satisfies the desired prop-

erties in the presence of updates. This approach has been applied to both data and control

planes. It has checked for example reachability, loops and rules’ consistency properties.

3.2.2.2 Dependency Graph Traversal

This technique reduces the SDN verification problem to the traversal of a ‘dependency’ graph

modelling the architecture/component. A dependency graph is a directed graph where vertices

may represent SDN components (e.g., switches) or rules in a switch, and edges represent

the dependency relation between these entities (components, rules). To capture the ‘live’

network activity, the dependency graph is constructed using a monitor placed between the

controller and the data plane. Two main solutions have been proposed depending on how this

graph is built. In the first solution, the graph is pre-built, then, after each update, the graph

is revised correspondingly, and the verification process is relaunched. The second solution

builds the dependency graph on the fly. We divide the works using this technique into two

groups correspondingly.

In the first group, Zeng et al. [170] for example have proposed a network policy checker

called ‘Libra’. To capture changes in the rules, the checker uses parallel processing to record

network event streams from the controller. A dependency graph has been constructed based

on all rules and recorded events. The nodes represent (local_switch,remote_switch) pairs

and the edges represent the forwarding relationship. Then a MapReduce [38] checker has

been used in order to check network properties based on the pre-built graph. In fact, Libra

partitions the graph into several sub-graphs corresponding to each subnet, then the properties

have been checked on those sub-graphs in parallel, using a graph library. Another example

of work in this first group has been related by El-Hassany et al. [64] where a happens-before

graph that captures the ordering of events (e.g., OF messages, packets) has been pre-built.

The violation of a property has been defined as the result of events concurrency (race) error.

Filters have been defined that can query the graph to check for properties violations. For

example, a ‘commutativity’ filter detects whether changing the order of two events affects the

network state. Example of a detected violation concerns races occurring when the controller

installs a set of rules and then sends a packet matching these rules without waiting for them

to be committed first. In the same line, Zhang et al. [175] have proposed a ‘Quantitative

Forwarding Graph’ (QFG) that represents how packets are forwarded. In a QFG, each node is

denoted as a tuple (H,D,S,G), representing any packet in the packet header space H arriving

at a network device D, when the network device is at a particular state S with performance G.

An edge pointing from one node to another means the modification of a packet. Whenever the

rules are updated, it is easier to find the affected QFG nodes as well as their dependencies,

thus, the verification can be limited to only those affected flows. To check reachability for

40 3. State Of The Art

example, a BFS is run on the QFG.Horn et al. [68] have constructed a directed edge-labelled

graph from the rules based on equivalence classes ECs of packets (EC are defined as the

set of packets that are treated the same across the data plane). The edges in this case are

labelled by the matching/action part of a rule. An insertion of a new rule for example results

in the creation of a new edge labelled with its matching part, and existing edges are updated

correspondingly. The verification of reachability is also performed by a traversal of the graph.

The second group of work constructs the dependency graph on the fly while the updates

are happening and checks if the property holds by a traversal of such graph. In this context,

khurshid et al. [80, 81] have used a multidimensional prefix tree (trie) structure from which

a dependency graph is generated each time an update from the controller is perceived. A

trie is an ordered tree that associates the set of packets matched by a rule with the rule itself.

Each level in the trie corresponds to a specific rule’s field. Each node has three branches

representing the possible values that the rule can match (0, 1, and * (wildcard)). The trie can

be seen as a composition of several sub-tries, each corresponding to a packet header field. A

path from the trie’s root to a leaf of one of the bottom most sub-tries thus represents the set of

packets that a rule matches. Each leaf stores the rules that match that set of packets, and the

devices at which they are located. When a new rule is to be inserted, a traversal of the trie is

performed to find all the rules that intersect it. These rules collectively define a set of packets

that could be affected by the incoming rule. This set will generate equivalent classes ECs of

packets. By traversing the trie for each EC, a dependency graph is generated where a node

represents an EC at a particular device, and a directed edge represents a forwarding decision

for a particular (EC, device) pair. To check reachability for example, a traversal of the resulting

dependency graph (e.g., using DFS) is effected. Yang et al. [159] have modelled each rule by

a predicate and an action. The variables of the predicate are packet header fields. The data

plane is modelled as a directed graph where nodes represent switches and each directed edge

represents the link from the output port of one switch to the input port of another. Each input

port is guarded by a list of rules predicates and each output port is guarded by the predicate

of the matching rule in that node followed by a list of rules predicates of the next node. Any

packet can pass through if a predicate is True. Reachability in presence of an update has

been checked by constructing a tree on the fly. The reachability tree from a given port to all

other ports is computed by performing a DFS on the graph . Beckett et al. [16] have extended

the work of Khurshid et al. [80, 81] to verify the network not only in the presence of updates

but also if the verification conditions change during the verification process, that is, when the

verification is suspended temporarily to add some changes and then is resumed. For example,

the programmer may want to suspend the verification temporarily to add a set of hosts to the

topology. Checking if the property holds in this case is performed using the same graph based

verification solution of [80, 81] augmented with the traversal of a new data structure, namely

a tree representation of regular expressions. In fact, the matching part of a rule as well as

the property to be checked are modelled as regular expressions describing the possible paths

that packets matching the condition may traverse. The regular expression formulae are then

represented as a tree. A node represents a ‘forall’ quantifier in the formula whose children

correspond to set elements, and whose result is the conjunction of the results of each of its

children. A leaf node represents a concrete property that is checked by the solution proposed

in [80, 81]. A truth value stored at each node represent the validity of the corresponding sub

formula. Afterwards, the result is propagated up to the parent of the node.

To capture the dynamic of rules updates, the technique based on dependency graph traver-

sal models an SDN network topology as a graph that is updated accordingly and the verification

problem is reduced to the traversal of such graph. The technique has been applied to the data

plane and can be used to check mainly reachability, loops and rules’ consistency properties.

	Abstract
	Résumé en français
	Acknowledgments
	Introduction
	Motivation
	Problem Statement / Research Questions
	Contributions and Structure of the Thesis
	Dissertation Roadmap
	Author's Publications & Talks

	Background
	Software Defined Networking
	Verification and Testing
	Model Based Testing
	Mutation Analysis
	Black Box and White Box Testing
	Chapter Conclusions

	State Of The Art
	Introduction
	Verification Techniques for SDN
	Testing Techniques for SDN
	Chapter Conclusions

	Model Based Testing for SDN Architectures: A Graph / Path Enumeration based Approach
	Introduction
	Problem Statement
	Formal Modelling for an SDN Architecture
	Traffic Generation and Observation
	Introducing a Fault Model
	Black Box and White Box Testing Approaches relying on Path Enumeration
	Experimental Evaluation for Testing SDN Architectures
	Chapter Conclusions

	Test Derivation for SDN-enabled Switches: A Logic Circuit based Approach
	Introduction
	Problem Statement
	Formal Representation of an SDN Switch and Notations
	Introducing a Fault Model
	Fault models for Logic Circuits
	Deriving a Logic Circuit for a Switch Specification
	Active and Passive Testing Approaches
	Experimental Evaluation for Testing an SDN-enabled Switch
	Chapter Conclusions

	Test Generation for OpenFlow Switches: An Extended Finite State Machine based Approach
	Introduction
	Problem Statement
	Extended Finite State Machine Model for an OF Switch
	Introducing User-Defined Mutations and a Fault Model
	EFSM based Technique for Test Generation
	Experimental Evaluation for Testing an OF Switch
	Chapter Conclusions

	Test Derivation for a Controller Application: An Adaptation of the Logic Circuit based Approach
	Introduction
	Problem Statement
	Formal Representation of a Controller Application and Notations
	Deriving a Logic Circuit for a Controller Application Specification
	Test Suite Generation
	Test Suite Execution
	Chapter Conclusions

	Conclusion and Future Work
	Contributions: Summary
	Perspectives and Future Directions

