
HAL Id: tel-02374970
https://theses.hal.science/tel-02374970

Submitted on 21 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Range imaging based obstacle detection for virtual
environment systems and interactive metaphor based

signalization
Peter Wozniak

To cite this version:
Peter Wozniak. Range imaging based obstacle detection for virtual environment systems and interac-
tive metaphor based signalization. Graphics [cs.GR]. Université de Strasbourg, 2019. English. �NNT :
2019STRAD013�. �tel-02374970�

https://theses.hal.science/tel-02374970
https://hal.archives-ouvertes.fr

Université de Strasbourg

École Doctorale 269 - Mathematiques Sciences
de l’information et de l’ingenieur

Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie
ICube (UMR7357)

THÈSE présentée par :

Peter Paul WOZNIAK
soutenue le : 27 juin 2019

pour obtenir le grade de : Docteur de l’Université de Strasbourg
discipline/ spécialité : Image et Vision

Range Imaging Based Obstacle Detection
for Virtual Environment Systems and

Interactive Metaphor Based Signalization

THÈSE dirigée par :

M. JAVAHIRALY Nicolas MCF-HDR, Université de Strasbourg
M. CURTICAPEAN Dan Prof. Dr., Offenburg University

RAPPORTEURS :

M. BUNGE Christian-Alexander Prof. Dr.-Ing., University for Telecommunication Leipzig -
University of Applied Sciences (HfTL)

M. ZENNER Erik Prof. Dr., Offenburg University

AUTRES MEMBRES DU JURY :

M. CAPOBIANCO Antonio MCF-HDR, Université de Strasbourg

Für Eva-Maria

ACKNOWLEDGEMENTS

This work could not have been finished without the support of many and I am deeply

grateful to all those involved.

First and foremost I want to thank my thesis advisers Nicolas Javahiraly and Dan

Curticapean for their invaluable assistance and the time they spent supporting my re-

search and this thesis. It was great to also have the opportunity to work with Antonio

Capobianco. I enjoyed very much our collaborative work and I am thankful for the

immensely useful advice he offered. Special thanks for our fruitful discussions and the

long teamwork go to my colleagues Avikarsha Mandal, Oliver Vauderwange, and Kai

Israel.

I would like to thank the University of Strasbourg, the ICube and the University Of-

fenburg for providing an academic environment that gave me the opportunity to conduct

my doctorate, and for the many opportunities that have arisen out of it. In particular, I

would like to thank all members of the media faculty and especially Lothar Schüssele

for his generous support. Also I like to express special thanks to Andreas Christ and the

Graduate School of Offenburg University. Without their priceless support parts of this

work would not have been possible.

This work would not have been possible without the support and motivation from

my family and my friends. It is also their contribution that I didn’t lose faith over the

last couple of years. Thanks go to Tobi, Mechthild and Michael for proof reading and

translating parts of this work.

I would like to express my deep gratitude to Eva-Maria. Without her guidance and

persistent help this doctorate would not have been possible.

i

ABSTRACT

With this generation of devices, Virtual Reality (VR) has actually made it into the

living rooms of end-users. These devices feature 6-DOF tracking, allowing them to

move naturally in virtual worlds and experience them even more immersively. How-

ever, for a natural locomotion in the virtual, one needs a corresponding free space in

the real environment. The available space is often limited, especially in everyday en-

vironments and under normal spatial conditions. Furnishings and objects of daily life

can quickly become obstacles for VR users if they are not cleared away. Since the idea

behind VR is to place users into a virtual world and to hide the real world as much

as possible, invisible objects represent potential obstacles. The currently available sys-

tems offer only rudimentary assistance for this problem. If a user threatens to leave the

space previously defined for use, a visual boundary is displayed to allow orientation

within the space. These visual metaphors are intended to prevent users from leaving the

safe area. However, there is no detection of potentially dangerous objects within this

part of space. Objects that have not been cleared away or that have been added in the

meantime may still become obstacles. This thesis shows how possible obstacles in the

environment can be detected automatically with range imaging cameras and how users

can be effectively warned about them in the virtual environment without significantly

disturbing their sense of presence. Four different interactive visual metaphors are used

to signalize the obstacles within the VE. With the help of a user study, the four signaling

variants and the obstacle detection were evaluated and tested.

Keywords: Virtual Reality, Notifications, Interaction metaphor, Collision Avoidance,

3D Interaction, Navigation, Range Imaging.

ii

RÉSUMÉ

Avec cette génération d’appareils, la réalité virtuelle (RV) s’est réellement installée

dans les salons des utilisateurs finaux. Ces appareils disposent de 6 degrés de liberté de

suivi, ce qui leur permet de se déplacer naturellement dans les mondes virtuels. Cepen-

dant, pour une locomotion naturelle dans le virtuel, il faut un espace libre correspondant

dans l’environnement réel. L’espace disponible est souvent limité. Les objets de la vie

quotidienne peuvent rapidement devenir des obstacles pour les utilisateurs de RV s’ils

ne sont pas éliminés. Les systèmes actuellement disponibles n’offrent qu’une aide rudi-

mentaire pour résoudre ce problème. Il n’y a pas de détection d’objets potentiellement

dangereux. Cette thèse montre comment les obstacles peuvent être détectés automa-

tiquement avec des caméras d’imagerie à distance et comment les utilisateurs peuvent

être avertis efficacement de leur présence dans l’environnement virtuel. 4 métaphores

visuelles ont été évaluées à l’aide d’une étude des utilisateurs.

Keywords: Réalité virtuelle, Notifications, Métaphore d’interaction, Évitement des

collisions, Interaction 3D, Navigation, Imagerie de distance.

iii

Bref résumé de la thèse

La réalité virtuelle (RV) connaît actuellement une période de prospérité. Déjà dans les

années 90, divers fabricants ont essayé de rendre la technologie prête pour la masse.

Malheureusement, l’équipement de l’époque ne répondait pas aux attentes élevées de

l’auditoire et la RV n’a donc pas réussi sur le marché de masse. L’état de l’art de

l’époque avait trop de limites. Le poids élevé des casques, un champ de vision très

réduit et des ordinateurs trop lents ont fait échouer les quelques produits sur le marché.

Les plus gros problèmes étaient le prix de l’équipement et l’apparition de maladies sur

simulateur chez de nombreux utilisateurs.

Néanmoins, la technologie a été perfectionnée et appliquée dans des installations

de recherche industrielle et scientifique. Ce n’est qu’au début des années 2010 que

l’intérêt du grand public pour la RV a refait surface. Les progrès techniques ont permis

à des fabricants comme Oculus et HTC de rendre les composants matériels nécessaires

pour la RV plus simples, moins chers et pourtant plus puissants. Avec cette génération

d’appareils, La RV s’est réellement rendu dans les salons des utilisateurs finaux. Ces

appareils disposent d’un suivi 6-DOF 1, ce qui leur permet de se déplacer naturellement

dans les mondes virtuels et de les vivre encore plus immersivement.

Définition du problème

Mais pour une locomotion naturelle dans le virtuel, il faut un espace libre correspondant

dans l’environnement réel. L’espace disponible est souvent limité, surtout dans les

environnements quotidiens et dans des conditions spatiales normales. L’ameublement

et les objets de la vie quotidienne peuvent rapidement devenir des obstacles pour les

utilisateurs de RV s’ils ne sont pas enlevés. Puisque l’idée derrière la RV est de placer

les utilisateurs dans un monde virtuel et de cacher le monde réel autant que possible,

les objets invisibles représentent des obstacles potentiels.

Les systèmes actuellement disponibles n’offrent qu’une aide rudimentaire pour ré-

soudre ce problème. Si un utilisateur menace de quitter l’espace précédemment défini

pour être utilisé, une limite visuelle est affichée pour permettre l’orientation dans l’espace.

Ces métaphores visuelles sont destinées à empêcher les utilisateurs de quitter la zone

16 degrés de liberté - mouvements de rotation et de translation

de sécurité. De plus, ils peuvent interférer avec le sentiment de présence, car ils four-

nissent des repères à l’environnement réel. Plus grave est le fait que ces systèmes ne

réagissent pas aux changements de l’environnement physique (EP). Il n’y a pas de dé-

tection d’objets potentiellement dangereux dans cette partie de l’espace. Par exemple,

les objets qui ont été supervisés doivent être supprimés de la zone de suivi. Il peut s’agir

de chaises, de portes ouvertes ou d’animaux domestiques errants, par exemple. Alors

qu’ils sont immergés dans la RV, les utilisateurs n’ont souvent pas d’autre chance de re-

connaître ces obstacles que de les rencontrer ou de trébucher sur eux. Il serait donc utile

de laisser le système de RV reconnaître automatiquement ces obstacles et d’en informer

les utilisateurs. Le type de notification doit être adapté à l’application et la perturber le

moins possible.

Il existe plusieurs techniques permettant de détecter des parties du EP et ses pro-

priétés et d’utiliser ces informations pour interagir avec et dans le monde virtuel. Cepen-

dant, aucun de ces systèmes ne combine la détection automatique d’obstacles basée sur

l’imagerie de distance pendant l’exécution et une signalisation utilisant des métaphores

interactives.

Cette thèse montre comment des obstacles éventuels dans l’environnement peuvent

être détectés automatiquement grâce à l’imagerie de distance et comment les utilisateurs

peuvent être avertis efficacement à leur sujet dans l’environnement virtuel (EV) sans

perturber de manière significative leur sens de la présence.

Contexte général

Le terme présence décrit le sentiment subjectif d’un utilisateur d’EV de faire l’expérience

de l’EV comme s’il y était réellement. On peut distinguer la présence spatiale de la

présence sociale. Avec une présence spatiale, le spectateur se perçoit comme transporté

dans l’espace médiatisé. La présence sociale décrit le sentiment de la présence d’autres

individus et la possibilité d’interagir avec eux. L’expérience de la présence est soumise à

de nombreux facteurs différents. Il peut s’agir de la plausibilité de l’expérience, des fac-

teurs technologiques (résolution, fréquence d’images, champ de vision, latences, etc.),

des aspects individuels (anxiété, créativité, imagination, empathie, émotivité, traitement

de l’information, troubles de la conscience, sexe, orientation sexuelle et connaissances

antérieures) et le degré d’interaction possible.

Le cas d’utilisation le plus évident de l’interaction est la possibilité de définir le

v

point de vue directement en tournant la tête et en changeant ainsi le point de vue. La cor-

respondance entre son propre mouvement et ce qui est observé favorise l’immersion et

la présence. La possibilité d’explorer un EV en marchant naturellement au lieu d’utiliser

un contrôleur résulte en une présence perçue plus élevée.

A l’instar des paradigmes bien connus pour les applications de bureau ou mobiles,

sur lesquels reposent de nombreuses interfaces utilisateur, il est également nécessaire de

développer des paradigmes pour les applications de RV qui sont adaptés à cette forme

d’interaction homme-machine. Dans le contexte de l’interaction homme-machine, les

modalités sont les canaux de communication individuels qui permettent l’entrée ou la

sortie et donc l’interaction avec le système informatique. Une correspondance peut être

trouvée dans les modalités sensorielles humaines, qui à leur tour correspondent aux ap-

pareils perceptuels physiologiques. Cette perception est basée sur différents sens, qui

représentent le fondement de la perception et permettent aux humains de recevoir et de

traiter l’information et donc d’interagir avec l’environnement. Pour réaliser une interac-

tion avec les utilisateurs, les systèmes informatiques utilisent également des modalités

qui peuvent être classées en modalités visuelles, auditives et sensorielles.

La perception humaine est basée sur la perception sensorielle. Un stimulus entraîne

une stimulation des cellules sensorielles. Les impulsions nerveuses générées sont trans-

mises au cerveau, dans lequel des réseaux neuronaux de différentes régions du cerveau

traitent l’information et lui donnent un sens. Les cellules sensorielles, les connexions

nerveuses et les zones cérébrales de traitement sont appelées l’appareil sensoriel. Même

si les différents organes sensoriels utilisent d’autres phénomènes physiques et sont con-

struits différemment, le schéma de perception reste similaire. La perception sensorielle

constitue la base de notre perception de la réalité. Mais le lien entre l’information

perçue et la réalité n’est pas toujours clair. Le processus de perception étant caractérisé

par de nombreux facteurs anatomiques, physiologiques et psychologiques, il ne peut y

avoir de perception objective. Si les sens et la perception peuvent être trompés, alors il

serait concevable de réaliser la tromperie consciemment afin de tromper délibérément

une personne qui perçoit en croyant une réalité. Une simulation idéale du monde per-

mettrait d’interagir avec la réalité perçue de la même manière que tout le monde est

habitué à interagir avec l’environnement. Il serait possible de se déplacer et d’interagir

avec des objets. Les actions affecteraient le modèle de simulation et provoqueraient des

vi

réactions plausibles. En principe, il serait concevable d’utiliser un système informa-

tique pour une telle simulation mondiale, mais ce n’est pas possible avec l’état actuel

de la technique.

Les modalités les plus importantes des systèmes EV actuels sont l’affichage, l’audio

et le suivi de la pose de la tête de l’utilisateur. Habituellement, les EV générés par

ordinateur sont représentés par un écran stéréoscopique avec une perspective centrée

sur le spectateur. Pour cette présentation 3D immersive, la position et l’orientation de la

tête de l’utilisateur sont enregistrées en continu par un système de suivi et utilisées pour

créer la vue de l’EV. Si l’utilisateur change de position ou de direction de visualisation,

l’affichage de l’EV est également modifié avec un minimum de retard. L’utilisateur

a l’impression de regarder autour de lui dans l’EV. L’immersion est considérablement

plus élevée qu’avec les interfaces d’affichage 2D et stéréoscopiques classiques.

En plus des modalités d’entrée et de sortie importantes pour les systèmes EV et les

dispositifs d’entrée et de sortie associés, diverses méthodes de perception de la pro-

fondeur et systèmes d’imagerie de distance sont présentés. Ceux-ci représentent un élé-

ment important pour la réalisation de la détection d’obstacles. Avec l’imagerie de dis-

tance, la géométrie de l’environnement peut être enregistrée par des mesures de distance

et cartographiée comme une carte de profondeur. Les cartes de profondeur combinent

une image projective et une mesure de profondeur de l’environnement sous la forme

d’une matrice de données 2D. Les méthodes diffèrent dans les principes physiques util-

isés, mais sont classées sous le terme d’imagerie de gamme en raison des données

générées. Les cartes de profondeur peuvent être facilement visualisées et interprétées

comme un nuage de points 3D. Les cartes de profondeur permettent de tirer des con-

clusions sur la géométrie de la pièce et les objets dans l’espace. Elles sont donc idéales

pour déterminer les obstacles - et en particulier leur position et leurs dimensions - dans

l’espace.

Mise en œuvre du système EV

Pour l’implémentation de notre système VE, l’environnement de développement de

jeux Unity 2 et SteamVR 3 (HTC Vive) ont été utilisés. Le capteur de caméra à temps

2Unity est un moteur de jeu 3D - https://unity.com/
3SteamVR est le nom du matériel RV également connu sous le nom de HTC Vive -

https://store.steampowered.com/steamvr

vii

https://unity.com/

de vol (time-of flight) Kinect 4 2 de Microsoft a été utilisé pour l’imagerie de la scène.

L’acquisition, le traitement et la visualisation des données de la carte de profondeur

ont été limités par l’exécution en tant que code de programme Unity et ont donc été

complétés par une implémentation C++, qui permet une exécution plus efficace et plus

rapide. Une réalisation en tant que bibliothèque de programmes C++ exécutée en natif

offre également l’avantage d’utiliser la bibliothèque de fonctions PCL 5, qui offre un

large éventail de fonctionnalités, notamment pour travailler avec des données de nuages

de points.

Le système développé est capable d’afficher les informations du capteur d’imagerie

de distance en temps réel sous la forme d’un nuage de points dans le EV. A l’aide du

modèle de caméra à sténopé, il est possible de transformer la matrice 2D des mesures

de distance en un nuage de points 3D, qui peut être visualisé en temps réel dans le EV.

Le modèle de caméra à sténopé décrit les propriétés projectives du système de caméra

utilisé.

Comme l’image de distance elle-même, le nuage de points généré représente princi-

palement une structure de données et contient des informations qui servent à la cartogra-

phie géométrique de l’environnement physique. Pour utiliser ces informations spatiales

pour signaler les obstacles à l’intérieur du EV, il est nécessaire de transformer correcte-

ment le nuage de points en espace virtuel. Il est obligatoire de positionner, d’orienter

et de mettre à l’échelle les données des nuages de points dans le monde virtuel. Cet en-

registrement tridimensionnel du EP et des informations de la carte de profondeur sous

la forme d’un nuage de points permet de cartographier les informations de l’espace

de mesure du capteur d’imagerie de distance dans l’espace de mesure du système EV-

tracking avec une précision de point précise. En connaissant la rotation et la translation

entre les espaces de mesure du capteur Kinect et le système de suivi Lighthouse 6, il est

possible de transformer les résultats d’un espace à l’autre. Il est ainsi possible d’aligner

le nuage de points dans le EV en fonction du EP dans lequel se déplace l’utilisateur.

Ainsi, il est également possible de transformer correctement dans l’espace les obstacles

détectés à partir des données d’image de distance dans le EV.

4Kinect est le nom d’un capteur d’imagerie de gamme - https://developer.microsoft.
com/en-us/windows/kinect

5Point Cloud Library est une bibliothèque de fonctions basée sur C++ pour le traitement des nuages
de points - http://www.pointclouds.org/

6Lighthouse est le nom du système de suivi 6-DOF utilisé par le système HTC Vive RV.

viii

https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
http://www.pointclouds.org/

Transformation rigide entre
les mesures de Kinect et
l'espace de Lighthouse

Figure 1 Visualisation des espaces de coordonnées Lighthouse et Kinect et détermina-
tion de la transformation rigide entre les deux espaces.

Une méthode a été développée qui permet de déterminer les paramètres nécessaires

pour effectuer la transformation et de représenter le nuage de points dans le monde

virtuel comme dans le monde réel. Afin d’obtenir les paires de coordonnées corre-

spondantes des deux systèmes de mesure, un réflecteur est monté sur une commande

manuelle Lighthouse. Le réflecteur est bien visible à l’intérieur de l’image et permet

une bonne estimation de sa position par rapport au capteur Kinect. Alors que le suivi

Lighthouse permet de déterminer la position des manettes par rapport à l’espace che-

nillé. La transformation recherchée permet d’aligner les positions 3D mesurées des

deux espaces de mesure ainsi que le positionnement correct des données du nuage de

points dans le EV (voir Figure 1).

En supposant que les deux ensembles de mesure présentent une distribution spatiale

comparable, il est possible de calculer un centre pour chaque ensemble de points et de

déplacer les ensembles de points à l’origine de leur système de coordonnées respectif

en utilisant ce point. Ces deux décalages représentent la transformation translation-

nelle entre les deux ensembles de points. Comme les correspondances des points sont

ix

connues, l’algorithme de Kabsch peut être utilisé pour déterminer la transformation de

rotation optimale entre les deux nuages de points qui sont alignés à leur point central.

L’algorithme nécessite au moins 3 mesures ponctuelles correspondantes. Le processus

n’a besoin d’être effectué que pour l’installation et lorsque le système de suivi ou le

capteur Kinect a été repositionné dans l’espace.

Les obstacles dans le EP peuvent être identifiés à l’aide des informations de la carte

de profondeur et peuvent être décrits avec leurs positions et dimensions dans l’espace.

Cette information est déterminée à l’aide du processus décrit ci-dessous. Tout d’abord,

les informations d’imagerie de portée du capteur Kinect sont transformées en une struc-

ture de données PCL de nuage de points. L’acquisition des données Kinect s’effectue

en continu et garantit que les données d’images de profondeur les plus récentes sont

toujours disponibles. Le processus de détection est déclenché à partir de l’application

Unity et est exécuté dans un thread dédié de la bibliothèque de fonctions C++.

Le premier objectif est de réduire la quantité de données. Tous les points qui ne

se trouvent pas dans une plage spécifiée sont supprimés de l’ensemble de données. La

portée doit être adaptée à l’espace disponible. Une réduction supplémentaire est effec-

tuée en résumant tous les points d’un espace cubique 3D donné en un seul point. Fon-

damentalement, il s’agit d’un échantillonnage vers le bas. L’objectif est de réduire la

quantité de données à l’avance et d’accélérer ainsi le traitement ultérieur. Dans l’étape

suivante, on tente de faire converger le modèle d’un plan vers les points de mesure don-

nés dans le nuage de points et de déterminer ainsi la position de la surface du sol dans

les données du nuage de points. L’hypothèse de base est que la caméra capture une

partie du sol et qu’il s’agit de la plus grande surface à voir dans les données d’image de

profondeur. L’algorithme RANSAC (random sample consensus) permet d’estimer les

paramètres d’un modèle afin de l’approcher aux valeurs mesurées données. C’est une

procédure itérative. Les paramètres du modèle sont estimés à l’aide d’un très petit sous-

ensemble aléatoire de mesures. Il vérifie ensuite dans quelle mesure le modèle estimé

correspond au reste des mesures. Une valeur seuil est fixée à cet effet, qui détermine

dans quelle mesure la valeur mesurée estimée par le modèle peut s’écarter des échantil-

lons. Le nombre de tentatives d’estimation est déterminé à l’avance (par ex. 1000). A

la fin, le modèle estimé qui correspond le mieux à l’ensemble des mesures est produit

comme résultat. Les résultats du calcul spécifient également tous les points inliers du

x

plan. Tous les points restants au-dessus du plan représentent les objets sur le dessus du

plancher. L’objectif est maintenant d’affecter ces points aux objets individuels et de les

diviser en groupes de points individuels. Le nuage de points restant est converti en une

représentation tridimensionnelle en kd-tree. Cela accélère la recherche de points spa-

tialement adjacents. Pour chacun des points du nuage de points d’entrée, l’algorithme

recherche les points voisins dans un rayon de recherche spécifié. Les groupes de points

qui en résultent représentent un objet sur le sol. Les groupes de points avec trop peu

de points sont écartés. Pour chaque groupe, une case de délimitation simplifiée est cal-

culée, qui représente la position et l’orientation d’un obstacle dans la zone de suivi.

Les informations de la boîte de délimitation sont transférées aux applications Unity et

sont utilisées pour signaler les obstacles dans le EP. La reconnaissance a été réalisée

à l’aide de la bibliothèque de fonctions PCL. Différentes possibilités d’optimisation

des vitesses d’exécution, qui sont critiques pour les applications EV, sont démontrées.

L’objectif était d’éviter les retards et les interruptions gênants de la génération d’images

et de réduire au minimum les risques de maladie sur simulateur. Cette forme de détec-

tion d’obstacle peut être particulièrement bien résolue avec les méthodes d’imagerie de

distance par caméra. Ils permettent de capturer des sections entières de l’espace à des

fréquences d’images élevées et sont suffisamment robustes et faciles à utiliser dans les

situations quotidiennes.

Le système EV a été développé en utilisant le moteur de jeu Unity. Un monde

virtuel a été créé, que l’on peut vivre dans l’EV. Le monde virtuel offre un cadre à

l’expérience et à ses participants. Afin de tester les différentes métaphores, il a été dé-

cidé de laisser les participants effectuer une tâche simple qui les obligeait à traverser

l’espace physiquement et pas seulement virtuellement. La tâche des sujets d’essai était

de saisir une pomme virtuelle à un endroit dans l’espace, de la transporter à un autre

endroit et de l’y placer. La zone accessible aux utilisateurs se limitait à la zone cou-

verte par le système de suivi Lighthouse et par la salle. Pour la mise en œuvre de

l’interaction avec la pomme, le système d’interaction SteamVR a été utilisé. Le sys-

tème d’interaction fait partie du SteamVR Unity Plug-In et est une collection de scripts

prêts à l’emploi et de préfabriqués pour les applications Unity. Le monde virtuel était

basé sur un paysage naturel qui pouvait également faire partie d’un jeu de RV fictif (voir

Figure 2).

xi

Station d'accueil du Lighthouse

Pomme
attachée à une
branche d'arbre
(non visible en
vue de dessus)

Station d'accueil du Lighthouse

57
4

cm

780 cm

3
6

 c
m

26 cm

280 cm

2
3

 c
m

2
8

0
 c

m

100 cm

KINECT

70°

Position de
départ de
l'utilisateur

400 cm80 cm

B
u

reau

P
C

Zone d'obstacles

1
6

0
 c

m

Tronc d'éléphants

Figure 2 Vue schématique de la salle d’expérimentation avec des éléments d’EV.

Quatre métaphores visuelles interactives sont utilisées pour signaler les obstacles

à l’intérieur de l’EV (voir Figure 3). La caractéristique la plus importante des quatre

métaphores est leur perceptibilité dans l’EV. Chacune des métaphores suivantes sert à

signaler les obstacles potentiels dans l’EP de l’utilisateur et devrait lui permettre de les

éviter. La métaphore du caractère générique représente un objet générique bien visible à

la position d’un obstacle dans l’espace. La métaphore peut être réalisée avec n’importe

quel objet 3D. Étant donné que le paysage de l’environnement d’essai virtuel est un

paysage naturel, un arbre a été choisi comme espace réservé. L’idée sous-jacente de la

métaphore est que les gens n’aiment pas marcher contre des arbres (ou d’autres objets

massifs similaires) et qu’ils prennent plutôt un chemin autour d’eux. Pour différents

scénarios, il est facile de définir des objets génériques correspondants. Par exemple, des

roches, des statues, des murs, des buissons, des fontaines, des bâtiments, etc. peuvent

être utilisés comme objets de remplissage. Pour chaque obstacle détecté et sa boîte de

délimitation, un objet placeholder est instancié dans la scène.

La métaphore de la flèche est basée sur une aiguille de boussole dans son apparence

xii

Figure 3 Les quatre métaphores telles que perçues dans le EV (dans le sens des aiguilles
d’une montre) : métaphore du caractère générique, métaphore de la flèche, métaphore
de le bande de caoutchouc et métaphore de l’indicateur de couleur.

et sa fonctionnalité. Le même principe est utilisé dans de nombreux jeux informatiques

pour alerter les joueurs d’une certaine position dans le jeu. La flèche n’est pas tou-

jours visible, mais n’apparaît que lorsque le participant a atteint une distance minimale

d’un bras de l’obstacle. La flèche flotte dans le champ de vision périphérique inférieur

du HMD 7 lorsqu’un utilisateur regarde normalement vers l’avant. L’objectif était de

positionner la flèche pas trop dominante devant le visage de l’utilisateur. Si plusieurs

obstacles se trouvent à proximité, la direction de l’obstacle le plus proche est indiquée

par la flèche.

7visiocasque (head-mounted display)

xiii

La troisième et la quatrième métaphore consistaient en une bande en forme d’anneau

flottant autour du centre virtuel du corps de l’utilisateur. Ils diffèrent dans leur interac-

tion avec les obstacles de l’EP. La métaphore de le bande de caoutchouc est constam-

ment visible pour l’utilisateur et est déformée et bosselée par contact virtuel avec un

obstacle comme un élastique en caoutchouc. Cette métaphore s’inspire des travaux de

Cirio et al. Mais, contrairement à leur travail, elle ne sert que d’indicateur d’obstacle et

ne permet pas de naviguer à l’intérieur de l’EV. L’élastique se présente sous la forme

d’un ruban de sécurité de couleur jaune-noir et est légèrement transparent afin de ne pas

couvrir complètement la vue de l’environnement. Si l’utilisateur se déplace à l’intérieur

de l’EV, la bande suit le centre du corps. L’utilisateur semble porter la bande autour de

lui. La bande apparaît toujours orthogonale à l’axe vertical du corps et ne s’incline pas

même lorsque l’utilisateur bascule. Si un utilisateur se rapproche de la position d’un

obstacle détecté, la bande se déforme en conséquence vers l’utilisateur. La déformation

de la bande indique la position et la direction des obstacles dans l’espace par rapport à

l’utilisateur. Plusieurs obstacles peuvent être visualisés simultanément, en déformant la

bande à plusieurs endroits. En s’éloignant d’un obstacle, la déformation de l’anneau est

inversée.

La métaphore de l’indicateur de couleur est basée sur l’idée de visualiser la distance

et la direction d’un obstacle à l’aide d’un fondu enchaîné. Comme pour la métaphore

de la flèche, l’indication de couleur n’apparaît que lorsque la distance est inférieure

à un espacement minimum. Dans la direction d’un obstacle, la zone inférieure à la

distance minimale est d’abord colorée en vert. Au fur et à mesure que la distance

diminue, la zone est colorée en jaune, orange et finalement rouge. Le rouge comme

couleur de signal intense représente le danger d’une collision directe. La métaphore

apparaît toujours dans le champ de vision inférieur de l’utilisateur et se trouve à environ

un bras du centre virtuel du corps. Si la distance minimale n’est pas sous-dépouillée,

l’indication de couleur reste invisible pour l’utilisateur. Plusieurs obstacles peuvent

être visualisés simultanément, en s’estompant dans l’information de couleur en forme

d’anneau à plusieurs endroits.

Etude

Les quatre variantes de signalisation et la détection des obstacles ont été testées à l’aide

d’une étude d’utilisateurs. L’objectif principal de l’étude était d’évaluer les métaphores

xiv

V
u

e
d

e
fa

ce
V

u
e

d
u

 d
es

su
s

a) Résultat précis = 3 b) Bon résultat = 2 c) Résultat faible = 1 d) Mauvais résultat = 0

Figure 4 Illustration de notre schéma d’évaluation pour la compréhension spatiale des
différentes métaphores.

de signalisation en fonction de leur précision dans la compréhension spatiale et de leur

influence sur la présence. Dans le cadre de l’expérience, les participants avaient pour

tâche de cueillir une pomme dans une branche d’arbre, de traverser la pièce avec elle

et de tenir la pomme dans le tronc d’un éléphant placé à l’autre extrémité de la pièce

et de la placer là. Pour accomplir cette tâche, une grande partie de la zone de suivi a

dû être traversée par des locomotives naturelles. Invisibles pour les personnes testées,

deux obstacles ont été placés au hasard dans la zone. Celles-ci étaient automatiquement

reconnues par le système et signalées visuellement à l’intérieur de l’EV. En plus de la

tâche superficielle de transporter un objet d’un endroit à un autre, on a demandé aux

participants à l’étude de contourner les obstacles et d’éviter les collisions avec eux. Les

participants n’avaient à leur disposition que la signalisation par les quatre métaphores.

L’objectif était de démontrer l’adéquation de base de l’approche choisie et d’examiner

les quatre métaphores choisies quant à leur précision, leur compréhension et leur influ-

ence sur la présence lorsqu’elles sont utilisées comme méthode de signalisation d’obstacles

dans les applications de RV. 20 participants (13 hommes, 7 femmes) âgés de 21 à 57

ans (moyenne : 34,16, écart-type : 8,38) ont participé à l’étude. L’expérience a été

conçue comme un test de conception intra-groupe, dans lequel les participants devaient

effectuer la même tâche en changeant les métaphores les unes après les autres. Après

chaque métaphore, l’évaluation subjective devait être déterminée au moyen d’un ques-

tionnaire. Pour chaque course, la métaphore à tester a été expliquée aux participants.

xv

Chaque participant a été conduit dans la zone de départ et le casque RV a été mis en

place. Deux obstacles ont été positionnés arbitrairement dans la zone de détection du

capteur Kinect 2 et l’expérience a commencé. Pendant que le participant effectuait la

tâche, on s’est penché sur la question de savoir s’il y avait eu ou non une collision

avec l’un des obstacles sur le chemin. Immédiatement après la tâche et avant le dé-

collage du HMD, on a demandé aux participants d’indiquer la position présumée des

deux obstacles à l’un des contrôleurs. La Figure 4 illustre le schéma d’évaluation util-

isé pour déterminer la compréhension spatiale des métaphores. Le résultat a été évalué

par les 2 expérimentateurs avec un système de notation de 0-3. Les mauvais résultats

ont été évalués avec un 0, les mauvais résultats (une mauvaise direction de l’objet était

soupçonnée mais la position était encore relativement proche de l’obstacle) ont été éval-

ués 1, et avec un 2, le résultat a été évalué "bon" si la direction était correcte mais la

position était soupçonnée être trop proche ou trop éloignée. Enfin, le 3 correspond à

une haute précision : le participant a déterminé exactement la direction et a également

indiqué la position très précisément. Chaque participant devait faire quatre descentes,

chacune avec une métaphore différente. La tâche était la même pour chaque manche.

Pour éviter tout effet d’ordre, une distribution carrée latine a été utilisée pour l’ordre

de présentation des métaphores. La position des obstacles placés a été déterminée de

manière aléatoire.

Les participants ont également été interrogés sur leurs perceptions subjectives de

l’influence des métaphores sur la difficulté d’exécuter la tâche, la difficulté de com-

prendre les métaphores, la difficulté de comprendre l’information spatiale fournie par

les métaphores et la confiance dans les métaphores. Enfin, des commentaires supplé-

mentaires ont été reçus des participants.

Résultats et discussion

Les résultats de l’étude montrent que les métaphores testées fonctionnent suffisamment

bien pour éviter les collisions avec des objets placés au hasard dans l’espace. Cepen-

dant, ils diffèrent clairement dans la précision spatiale avec laquelle les participants ont

été capables de localiser les métaphores signalées. Un test de Friedman a été effectué

pour évaluer l’influence de la métaphore sur la compréhension spatiale. Les résultats

indiquent une influence significative de la métaphore (χ2(3) = 39,88, p < 0,001).

Les comparaisons par paires montrent que les espaces réservés permettent une meilleure

xvi

compréhension spatiale de la position et de la direction des obstacles donnés par la

métaphore du caractère générique (médiane = 3) par rapport à l’indicateur de couleur

(médiane = 2, p < 0,001), le bande de caoutchouc (médiane = 2, p < 0,001) et la flèche

(médiane = 2, p < 0,001) (voir Figure 5). L’impact de la métaphore sur le sentiment

Figure 5 Répartition de la compréhension spatiale des utilisateurs avec chaque tech-
nique (0 = mauvaise, 1 = faible, 2 = moyenne, 3 = élevée).

de présence a également été évalué. L’échelle va de 0 (effet négatif très élevé sur la

présence) à 3 (aucun effet sur la présence). Un test de Friedman a été effectué pour

évaluer l’influence de la métaphore sur le classement subjectif. Le résultat indique une

influence significative de la métaphore sur la présence (χ2(3) = 13.237, p = 0.0041).

Figure 6 Effet mesuré sur la présence. Les chiffres indiquent l’impact négatif d’une
métaphore sur la présence (0 = très élevé, 1 = élevé, 2 = faible, 3 = aucun).

La comparaison par paires montre que la métaphore du caractère générique (médi-

ane = 2) entraîne une présence plus élevée que la métaphore de l’indicateur de couleur

xvii

(médiane = 2, p = 0,011), la métaphore de la flèche (médiane = 1, p = 0,022) et la

métaphore de le bande de caoutchouc (médiane = 2, p = 0,021) (voir Figure 6).

Après le dernier passage, on a demandé aux participants de trier les métaphores du

meilleur au pire. Il y a une influence significative de la métaphore (χ2(3) = 29.28, p <

0.001) sur ce classement. La comparaison par paires montre que les participants ont at-

tribué la métaphore du caractère générique (médiane = 3) une note nettement supérieure

à l’indicateur de couleur (médiane = 1, p = 0,043), les bandes de caoutchouc (médiane

= 2, p = 0,009) et les flèches (médiane = 0, p = 0,0013) (voir Figure 7). La métaphore de

la flèche était également significativement moins bien cotée qu’un indicateur de couleur

(p = 0,043) et qu’un bande de caoutchouc (p = 0,008), ce qui indique que c’était la tech-

nique la moins privilégiée. Aucune différence n’a été trouvée entre une métaphore de

le bande de caoutchouc et une métaphore d’indicateur de couleur (p = 1).

Figure 7 Répartition du classement subjectif des préférences (0 = cote la plus faible, 3
= cote la plus élevée).

Ces résultats indiquent que, dans toute la mesure du possible, la métaphore du car-

actère générique est la plus efficace et mène à une meilleure compréhension spatiale de

l’information. L’évaluation subjective indique également une forte préférence des su-

jets pour cette métaphore. Non seulement il a été classé comme la technique préférée.

Il a également été perçu comme le plus intuitif. Il n’est pas surprenant que ce soit

la technique qui ait le moins d’impact sur la présence. La métaphore de le bande de

caoutchouc s’est aussi bien comportée.

Les résultats de l’étude suggèrent que les participants préfèrent la métaphore de

l’espace réservé parce qu’ils estiment que le sentiment de présence est plus important

xviii

que la capacité d’une métaphore d’avertir d’un obstacle. Il est donc évident de concevoir

une signalisation d’obstacle basée sur la métaphore de manière à ce que ces deux as-

pects se complètent de manière optimale. Dans la mesure du possible, le monde virtuel

devrait représenter les zones non piétonnières de manière à ce qu’elles soient clairement

reconnaissables comme telles. Bien sûr, cela n’est pas possible avec toutes les appli-

cations et une métaphore comme la métaphore de le bande de caoutchouc peut donc

être utilisée comme supplément pour plus de sécurité. Les métaphores qui ne sont pas

constamment visibles ne représentent pas nécessairement une façon moins distrayante

de signaler les obstacles que les métaphores visibles en permanence.

Résultats et discussion

Cette thèse aborde le problème des obstacles non immédiatement visibles pour les util-

isateurs de systèmes EV immersifs en combinaison avec le suivi 6-DOF. L’objectif de

ce travail est de répondre à la question de savoir comment éviter les collisions avec les

choses quotidiennes. En termes simples, le système EV doit être capable d’identifier les

obstacles potentiels et de les rendre reconnaissables par l’utilisateur. Le présent travail

montre ce qui est nécessaire et comment cela peut être réalisé. Le système développé

et testé dans le cadre de cette thèse constitue une base solide pour la poursuite des

recherches sur les méthodes interactives de signalisation d’obstacles pour les systèmes

EV. Il met en œuvre les fonctionnalités nécessaires et les démontre sur la base de l’étude

réalisée.

Parmi les quatre méthodes de signalisation testées, la métaphore du caractère générique

se distingue par sa facilité de compréhension et sa grande acceptation. Pour les appli-

cations qui ne peuvent pas être étendues avec une métaphore de signalisation, la mé-

taphore de le bande de caoutchouc offre une bonne alternative. Il est facile à adapter,

indépendamment du contenu de l’application, et a atteint des niveaux d’acceptation

proches de la métaphore du caractère générique. L’extension du système existant pour

la détection d’objets en mouvement est une possibilité. Des capteurs de profondeur sup-

plémentaires pourraient minimiser la possibilité d’occlusion, car elle peut facilement se

produire lorsque quelque chose couvre la vue libre de la caméra. De plus, le système

peut être relativement facilement étendu en ajoutant diverses métaphores pour signaler

les obstacles, ce qui permet de les tester et de les comparer.

xix

Contents

ACKNOWLEDGEMENTS . i

ABSTRACT . ii

RÉSUMÉ . iii

Bref résumé de la thèse . iv

LIST OF FIGURES . xxiii

LIST OF TERMS AND ABBREVIATIONS xxvi

1 Introduction 1

1.1 Problem definition . 1

1.2 Approach . 2

1.3 Thesis outline and contributions . 2

1.4 Publications . 3

2 Background and related work 6

2.1 VE systems . 6

2.1.1 What are virtual environments? 6

2.1.2 History of virtual reality . 10

2.1.3 Human-computer interaction and multimodal interfaces 12

2.1.4 Input and output modalities for immersive virtual environments . . 14

2.1.5 Tracking . 20

2.1.6 Presence . 29

2.2 Range imaging . 30

2.2.1 Triangulation . 31

2.2.2 Structured-light projection . 32

2.2.3 Sheet of light projection . 33

2.2.4 Lidar . 34

2.2.5 Time-of-flight camera . 35

xx

2.2.6 Interferometry . 37

2.2.7 Coded aperture . 37

2.2.8 Light field or plenoptic camera 38

2.2.9 Structure from motion . 39

2.3 Collision avoidance for virtual environments 39

3 Implementation - Software Prototype 47

3.1 Classification of possible obstacle detection methods 47

3.2 Requirements . 49

3.3 Unity . 50

3.3.1 The Unity concept of development 51

3.3.2 Using external program libraries 54

3.4 SteamVR . 56

3.5 PCL function library . 57

3.5.1 Installation . 57

3.5.2 The PCL concept of development 58

3.6 CMake . 60

3.7 Creating native DLLs and embedding them in Unity 62

3.7.1 Create a dynamic-link library . 62

3.7.2 Embed a dynamic-link library in Unity 65

3.7.3 Dynamic-link libraries and multithreading 67

3.8 Access to a Kinect sensor and generation of a point cloud 71

3.8.1 Pinhole camera model . 71

3.8.2 Display a point cloud in Unity 74

3.8.3 Microsoft reference implementation 77

3.8.4 Mesh manipulation with a C++ native program library 81

3.8.5 Converting the depth image into a PCL point cloud 86

3.9 Registration of Kinect sensor and VR tracking system coordinate systems 90

3.9.1 The correct pose of the point cloud in the VE 90

3.9.2 Determination of the relationship between the coordinate spaces . 91

3.9.3 The calibration process . 92

3.9.4 Calculation of the transformation parameters 95

3.9.5 Calibration process implementation 98

xxi

3.10 Obstacle detection using range imaging data 100

3.10.1 Range image sensor positioning 100

3.10.2 Requirements on the object recognition 102

3.10.3 Implementation details . 102

3.11 VE system . 111

3.11.1 The virtual world . 112

3.11.2 SteamVR interaction system . 113

3.11.3 The four metaphors . 115

4 Study 126

4.1 Setup . 126

4.2 Experiment procedure . 127

4.3 Study participants . 129

4.4 Results . 130

4.4.1 Influence of metaphors on spatial understanding 130

4.4.2 Effects on presence . 131

4.4.3 Subjective preferences . 131

4.5 Discussion . 133

4.6 Summary . 134

5 Concluding remarks 135

5.1 Summary . 135

5.2 Conclusion . 137

5.3 Future work . 137

REFERENCES . 139

Appendices

Appendix A Unity GameObject lifecycle flowchart 158

Appendix B Unity Asset Store assets used for the VE scene 159

Appendix C Questionnaires 160

xxii

List of Figures

3.1 CMake configuration for a PCL project. 62

3.2 Pinhole camera model . 72

3.3 Generated point cloud with 200,000 randomly colored points placed

within a specific radius. On the right side is a closer view. 76

3.4 Procedure for generating a range image based point cloud. 78

3.5 The rendering times of the Microsoft Kinect 2 SDK Unity sample im-

plementation rendering a real-time point cloud (see figure 3.6) exceed

11 ms per frame. 80

3.6 A Unity application with a constantly updated visualization of a Kinect

2 point cloud with 512x424 vertices. 81

3.7 The rendering times for a Kinect 2 point cloud using the native program

library concept of Unity are on average less than 11ms. 86

3.8 Visualization of Lighthouse and Kinect coordinate spaces and the de-

termination of the rigid transformation between both spaces. 92

3.9 Vive controller with mounted disc target. 93

3.10 On the left: Vive controller with visualized coordinate origin. Red is

the x-axis, green the y-axis and blue is the z-axis. On the right: Vive

controller with coordinate origin shifted to the bottom tip, where the

target is mounted. 94

3.11 Visualization of the calibration process. 99

3.12 Various Kinect positionings relative to the tracking space. 101

xxiii

3.13 A visualized Kinect point cloud. The pose of the range imaging sen-

sor is indicated in the top right corner. Two different bounding boxes

(BBOXs) are drawn on top of the detected chairs point cluster. The red

BBOX visualizes an oriented bounding box (OBB) around the detected

obstacle. The Eigenvectors are indicated by e1, e2, e3. The yellow box

visualizes a corresponding axis aligned bounding box (AABB) for the

chair, that has been already fitted to the detected ground plane. 108

3.14 Calculation of an optimal BBOX using the Eigenvalues of a point cloud

and the rotating calipers algorithm. 108

3.15 VE system components and information streams 112

3.16 The created virtual world represents the setting for the experimental

series. The white box in the middle represents the walkable area. 113

3.17 Statechart for the Interactable: Apple. 114

3.18 The four metaphors as perceived in the VE (clockwise): Placeholder

Metaphor, Arrow Metaphor, Rubber Band Metaphor and Color Indica-

tor Metaphor. 115

3.19 Visualization of the Placeholder Metaphor interacting with the detected

obstacles. The point cloud is not visible in normal use. 116

3.20 Visualization of the Arrow Metaphor interacting with the detected ob-

stacles. The point cloud is not visible in normal use. 118

3.21 Visualization of the Rubber Band Metaphor interacting with the de-

tected obstacles. The point cloud is not visible in normal use. 120

3.22 Triangulation sequence of the 3D ribbon mesh for s ring segments. . . . 121

3.23 three dimensional (3D) ribbon mesh with 4, 10 and 40 ring segments. . 122

3.24 Visualization of the Color Indicator Metaphor interacting with the de-

tected obstacles. The point cloud is not visible in normal use. 124

4.1 Schematic view of the experiment room with elements of the virtual

environment (VE). 127

4.2 Illustration of our evaluation scheme for the spatial understanding of the

different metaphors. 128

4.3 Distribution of the users spatial understanding with each technique (0 = bad,

1 = low, 2 = medium, 3 = high). 131

xxiv

4.4 Measured effect on presence. The numbers indicate the negative impact

of a metaphor on presence (0 = Very high, 1 = High, 2 = Low, 3 = None). 132

4.5 Distribution of the subjective preference ranking (0 = lowest-rated, 3 = highest-

rated). 132

A.1 Execution order of event methods of MonoBehaviour based script com-

ponents in Unity. Figure taken from official documentation [106] 158

xxv

LIST OF TERMS AND ABBREVIATIONS

2D two dimensional . 14, 29, 30, 71, 72

3-DOF three degrees of freedom 15, 20, 21, 23, 26

3D three dimensional xxiv, 3, 14, 15, 20, 34, 39, 40, 43, 45, 50–52, 71, 72, 74–77, 79,

80, 82, 104, 112, 113, 117, 118, 122, 136

6-DOF six degrees of freedom 1, 12, 15, 20, 21, 23, 28, 48, 49, 94

AABB axis aligned bounding box xxiv, 108–110

API application programming interface 51, 52, 56, 57, 67, 68, 77, 79, 81, 82, 85–87,

103

app application . 22, 25

AR augmented reality . 11, 22, 25

BBOX bounding box xxiv, 107, 108, 110, 111, 116–118, 122

BSD Berkeley Software Distribution . 57

CAVE cave automatic virtual environment 12, 15–17, 20–23, 41

CIL Common Intermediate Language . 53, 54

CLI Common Language Infrastructure . 53

CPU central processing unit . 75

DLL dynamic-link library . 62, 63, 65–67

FLANN Fast Library for Approximate Nearest Neighbors 57

FOV field of view . 12, 16, 28, 34, 42, 126

fps frames per second . 38, 80, 85

GC garbage collection . 55, 80, 83, 85

GNSS global navigation satellite system . 22, 28

GPS Global Positioning System . 28

GPU graphics processing unit 38, 75–77, 80, 82

xxvi

GUI graphical user interface . 10

HCI human-computer interaction 2, 10–14, 18, 19, 21, 23, 28, 111, 135

HMD head-mounted display 11, 12, 14–17, 19–24, 26, 28, 29, 39, 40, 45, 46, 49, 51,

77, 117, 118, 126, 128, 130, 135

IMU inertial measurement unit . 21, 22, 27, 28

INS inertial navigation system . 27, 28

IR infrared . 79, 80, 138

JIT just-in-time . 54

LCD liquid crystal display . 15, 16

LED light emitting diode . 25, 36

MEMS micro-electro-mechanical systems 28, 35

OBB oriented bounding box . xxiv, 107–109

OLED organic light emitting diode . 15

PC personal computer . 45, 126

PCIe Peripheral Component Interconnect Express 77

PCL Point Cloud Library 57–61, 81, 86–88, 98, 102–106, 109, 136

PE physical environment 2, 42, 45–50, 71, 91, 116

RAM random-access memory . 76

RANSAC random sample consensus . 104, 105

RGB-D red green blue depth . 45

SAC sample consensus . 104

SDK software development kit . 26, 45, 52, 54–56, 58, 77, 79, 81, 86, 98, 100, 122

SLAM simultaneous localization and mapping 27, 39, 45, 46

SSQ simulator sickness questionnaire . 128

SVD singular value decomposition . 97, 99

TOF time of flight . 3, 28, 35–37, 73, 137, 138

xxvii

VE virtual environment . xxiv, 2, 8–10, 14–23, 26–30, 39–50, 52, 57, 67, 76, 80–82,

85, 90, 91, 98, 101, 102, 110–112, 115, 117, 119, 120, 126–128, 134–138

VR virtual reality 1–3, 6–12, 15, 16, 20, 23, 26, 29, 39, 40, 42, 44–46, 49, 51, 56, 77,

90, 100, 111, 112, 117, 126, 128, 130, 135

VS Visual Studio . 58, 61, 63

VTK Visualization Toolkit . 57

xxviii

Chapter 1

Introduction

Virtual reality (VR) is currently experiencing a time of prosperity. Already in the 90s

various manufacturers tried to make the technology mass-ready. Unfortunately, the

equipment at that time could not meet the high expectations of the audience and so VR

was not successful in the mass market. The state of the art at that time had too many

limitations. The high weight of the helmets, a very small field of view and too slow

computers have made the few products on the market fail. The biggest problems were

the pricing of the equipment and the occurrence of simulator sickness among many

users. Nevertheless, the technology has been further developed and has been applied in

industrial and scientific research facilities. A resurgence of broad public interest in the

VR was not seen until the early 2010s. The technical advancements made it possible for

manufacturers like Oculus and HTC to make the necessary hardware components for

VR simpler, cheaper and yet more powerful. With this generation of devices, VR has

actually made it into the living rooms of end-users. These devices have a six degrees
of freedom (6-DOF) tracking that enables users to move naturally in virtual worlds and

experience them with a higher degree of immersion.

1.1 Problem definition

For a natural locomotion in the VR, a corresponding free space in the real environment

is needed. The available space is often limited, especially in everyday environments

and under normal spatial conditions. Furnishings and objects of daily life can quickly

become obstacles for VR users if they are not cleared away. Since the idea behind VR

is to place users into a virtual world and to hide the real world as much as possible,

invisible objects represent potential obstacles. Users wearing a VR headset, have no

clear view of their immediate surroundings. Obstacles and tripping hazards can easily

lead to accidents and injuries. The currently available systems offer only rudimentary

assistance for this problem. It is necessary to leave a certain area free of all objects and

to mark it for the VR system as such. If a user threatens to leave the space previously

defined for use, a visual boundary is displayed to allow orientation within the space.

These visual metaphors are usually independent of the application and are intended to

1

prevent users from leaving the safe area. However, they may interfere with the feeling

of presence, as they provide cues to the real environment. More serious is the fact that

they do not react to changes in the physical environment (PE). There is no detection

of potentially dangerous objects within this part of space. An example are objects that

have been overseen to be cleared from the tracking area. These could be chairs, open

doors or roaming pets, for example. While they are immersed in the VE, users often

have no other chance of recognizing these obstacles than to encounter them or stumble

across them. It would therefore be helpful to let the VR system recognize such obstacles

automatically and to notify the users. The type of notification should be adapted to the

application and should disturb it as little as possible.

The aim of this thesis is to show how possible obstacles in the PE can be detected

automatically and how users can be effectively warned about them in the VE without

significantly disturbing their sense of presence.

1.2 Approach

Our goal was to design and implement a VE system able to detect obstacles in the im-

mediate PE using a range imaging sensor and to signal the obstacles within the VE.

In a first step, existing methods and techniques were identified. Building on existing

solutions, a basic functionality of obstacle detection was realized. In principle, the sim-

ulation of an obstacle detection would suffice for the investigation of different signaling

variants. However, a practical approach should be tested for feasibility and suitability.

Four different visual metaphors were implemented in the Unity game development envi-

ronment to signalize the obstacles. The metaphors should enable users of the system to

get an idea of the spatial position and the possible dimensions of the detected obstacles.

The system should enable users to find their own way in the VE and avoid obstacles and

collisions. Moreover, the use of metaphors should not reduce the feeling of presence

and should not cause simulator sickness. To test the metaphors, a test application was

created and equipped with the obstacle detection and signaling system. The benefit and

efficiency of such an approach in terms of precision, spatial understanding and sense of

presence should be assessed. This prototype was evaluated under controlled laboratory

conditions on the basis of a small series of experiments.

1.3 Thesis outline and contributions

Chapter 2 provides a broad overview of the various aspects of VR technology. In ad-

dition to possible definitions of VR, different methods for tracking, multimodal inter-

faces for human-computer interaction (HCI) and different VR-typical input and output

modalities are discussed. Also, the highly relevant topic of presence and its importance

2

for the experience of immersive virtual worlds will be discussed. A further focus of

the chapter is the presentation of different range imaging methods, which enable a spa-

tial detection of objects. Finally, an overview of existing publications with different

approaches to collision avoidance when using virtual reality systems will be presented.

Chapter 3 is dedicated to the description and documentation of the implemented

software system. Starting with a specification of the desired functionality, the most

important software components and concepts are explained below. This includes the

development of interactive 3D applications with Unity, the integration of SteamVR

compatible VR hardware, the access to a Kinect time of flight (TOF) range imaging

sensor as well as the processing of depth image data using the Point Cloud Library.

Particularly important and therefore explained in detail is the procedure for determin-

ing the transformation, with which the depth image data is correctly transferred into the

virtual space, and also the processing of the depth image data with regard to the recog-

nition of arbitrary objects in space. The chapter concludes with a description of the four

methods developed for obstacle signaling and the structure of the prototype application

into which they were integrated.

Chapter 4 describes the study that was carried out to test the four signaling methods,

also called metaphors. The results and conclusions are discussed.

Chapter 5 summarises the findings of this work and gives an outlook on possible

future research questions that this work has raised.

1.4 Publications

Parts of this thesis are based on the collaboration with other authors. The following list

gives an overview of the publications made and the persons involved.

• Peter Wozniak, Antonio Capobianco, Nicolas Javahiraly, Dan Curticapean, “Depth

Sensor Based Detection of Obstacles and Notification for Virtual Reality Sys-

tems”, AHFE 2019, (Submitted full paper and accepted to AHFE 2019 July 24-28

2019 in Washington DC)

• Peter Wozniak, Antonio Capobianco, Nicolas Javahiraly, Dan Curticapean. 2018.

“Towards unobtrusive obstacle detection and notification for VR”. In Proceed-

ings of the 24th ACM Symposium on Virtual Reality Software and Technology

(VRST ’18), Stephen N. Spencer (Ed.). ACM, New York, NY, USA, Article 126,

2 pages. DOI: https://doi.org/10.1145/3281505.3283391

• Peter Wozniak, Antonio Capobianco, Nicolas Javahiraly, Dan Curticapean, “To-

wards Unobtrusive Obstacle Detection and Notification for Virtual Reality Using

Metaphors”, In Proceedings of the Symposium on Spatial User Interaction (SUI

3

’18), ACM, New York, NY, USA, 188-188, (2018);

https://doi.org/10.1145/3267782.3274682

• Peter Wozniak, Oliver Vauderwange, Avikarsha Mandal, Nicolas Javahiraly, Dan

Curticapean, “Possible applications of the LEAP motion controller for more in-

teractive simulated experiments in augmented or virtual reality”, Proc. SPIE

9946, Optics Education and Outreach IV, 99460P (27 September 2016); doi:

10.1117/12.2237673; https://doi.org/10.1117/12.2237673

• Peter Wozniak, Oliver Vauderwange, Dan Curticapean, Nicolas Javahiraly, Kai

Israel, “Perform light and optic experiments in Augmented Reality”, Proc. SPIE

9793, Education and Training in Optics and Photonics: ETOP 2015, 97930H (8

October 2015); doi: 10.1117/12.2223069; https://doi.org/10.1117/12.2223069

In the following an overview of further publications, which were also made in the period

of this thesis, but contributed less to this work.

• Peter Wozniak, Nicolas Javahiraly, Dan Curticapean, “Real-time augmented re-

ality overlay for an energy-efficient car study”, Proc. SPIE 10335, Digital Op-

tical Technologies 2017, 103350B (26 June 2017); doi: 10.1117/12.2270328;

https://doi.org/10.1117/12.2270328

• Avikarsha Mandal, Peter Wozniak, Oliver Vauderwange, Dan Curticapean, “Ap-

plication of visual cryptography for learning in optics and photonics”, Proc. SPIE

9946, Optics Education and Outreach IV, 99460X (27 September 2016); doi:

10.1117/12.2237923; https://doi.org/10.1117/12.2237923

• Dan Curticapean, Oliver Vauderwange, Peter Wozniak, Avikarsha Mandal, “The

International Year of Light 2015 and its impact on educational activities”, Proc.

SPIE 9946, Optics Education and Outreach IV, 994608 (27 September 2016);

doi: 10.1117/12.2237954; https://doi.org/10.1117/12.2237954

• Oliver Vauderwange, Peter Wozniak, Nicolas Javahiraly, Dan Curticapean, “A

blended learning concept for an engineering course in the field of color represen-

tation and display technologies”, Proc. SPIE 9946, Optics Education and Out-

reach IV, 99460Y (27 September 2016); doi: 10.1117/12.2237612;

https://doi.org/10.1117/12.2237612

• Oliver Vauderwange, Ulrich Haiss, Peter Wozniak, Kai Israel, Dan Curticapean,

“Active learning in optics and photonics: Liquid Crystal Display in the do-it-

yourself”, Proc. SPIE 9793, Education and Training in Optics and Photonics:

ETOP 2015, 97930Y (8 October 2015); doi: 10.1117/12.2223093;

https://doi.org/10.1117/12.2223093

4

• Kai Israel, Peter Wozniak, Oliver Vauderwange, Dan Curticapean, “Invisible

Light: a global infotainment community based on augmented reality technolo-

gies”, Proc. SPIE 9793, Education and Training in Optics and Photonics: ETOP

2015, 979306 (8 October 2015); doi: 10.1117/12.2223054;

https://doi.org/10.1117/12.2223054

• Oliver Vauderwange, Dan Curticapean, Paul Dressler, Peter Wozniak, “Digital

devices: big challenge in color management”, Proc. SPIE 9188, Optics Educa-

tion and Outreach III, 91880B (15 September 2014); doi: 10.1117/12.2061885;

https://doi.org/10.1117/12.2061885

• Dan Curticapean, Peter Wozniak, Kai Israel, Oliver Vauderwange, Paul Dressler,

“Increased knowledge transfer by using modern high-speed camera”, Proc. SPIE

9188, Optics Education and Outreach III, 91880G (15 September 2014); doi:

10.1117/12.2061875; https://doi.org/10.1117/12.2061875

• Paul Dressler, Heinz Wielage, Ulrich Haiss, Oliver Vauderwange, Peter Wozniak,

Dan Curticapean, “Microcontrollers and optical sensors for education in optics

and photonics”, Proc. SPIE 9188, Optics Education and Outreach III, 91880F (15

September 2014); doi: 10.1117/12.2061836; https://doi.org/10.1117/12.2061836

5

Chapter 2

Background and related work

2.1 VE systems

2.1.1 What are virtual environments?

The ideal conception of a VR allows to explain the underlying ideas of VR. Human

perception is based on sensory perception. For example, if light in our environment is

reflected by real objects and directed into our eyes, it is refracted by the eye lens and

projected onto the retina. Light-sensitive sensory cells located on the retina transform

the light stimuli into nerve impulses that are transmitted via specialized nerve pathways

to the posterior regions of the brain. The nerve impulses are subjected to parallel pattern

recognition and put together to form an overall picture. With the aid of memory, seen

patterns can be assigned to known objects. Various brain regions contribute to the fur-

ther processing of what has been seen. The actual vision does not take place directly in

our eyes, but as a complex processing of nerve impulses by means of a neural network

in our brain. The underlying scheme of sensory perception can also be transferred to

other human sensory organs. A stimulus leads to a stimulation of sensory cells. The

generated nerve impulses are transmitted to the brain, in which neuronal networks of

different brain regions process the information and give it meaning. The respective

sensory cells, nerve connections and the processing brain areas are called the sensory

apparatus. Even if the various sensory organs use other physical phenomena and are

constructed differently, the pattern of perception remains similar. Sensory perception

forms the basis for our perception of reality. But the connection between perceived

information and reality is not always clear. Since the process of perception is char-

acterized by numerous anatomical, physiological and psychological factors, there can

be no objective perception. Numerous sensory and perceptual illusions impressively

prove how difficult it can be to get an objective “picture” of reality. If the senses and

the perception can be deceived, then it would be conceivable to achieve the deception

consciously in order to deliberately deceive a perceiving person into believing a reality.

Besides the visual system, human beings possess further sensory apparatuses to

perceive reality:

6

• auditory system (hearing)

• the vestibular system (the sense of balance)

• olfactory and gustatory perception (smelling and tasting)

• haptic and tactile perception (feeling and palpation)

• proprioception (body perception, position and movement of the individual body

parts)

• thermoception (temperature perception)

• nociception (pain perception)

In order to create a perfect illusion of reality, it would be necessary to deceive all the

senses with corresponding simulated stimuli. It would also be conceivable to refrain

from using parts of the sensory apparatus and to directly stimulate the brain areas in-

volved with artificially generated nerve impulses. It is also well known from percep-

tual experiments such as Simons’ and Chabris’ Selective Attention Experiment, that

a strongly focused attention can greatly influence the perception of reality [27]. For

instance, in the case of the famous experiment, the person dressed as a gorilla is not

perceived by many, since concentration is limited solely to counting the passes of a bas-

ketball ball. Likewise, different perceptions are revealed in the attempt to reconstruct

objective facts on the basis of witness statements. Contradictory perceptions of reality

are rather the rule than the exception. To put it in the words of communication scien-

tist Paul Watzlawick: “Der Glaube, es gebe nur eine Wirklichkeit, ist die gefährlichste

Selbsttäuschung.” (German: The belief that there is only one reality is the most danger-

ous self-delusion.). In order to create this perceptual illusion and to establish a VR, a

simulation is required. Since humans are used to interacting with the environment and

reality, such a simulation should also make this possible. An ideal world simulation

would allow interacting with the perceived reality in the same way everybody is used

to interact with the environment. It would be possible to move around and interact with

objects. Actions would affect the simulation model and cause plausible reactions. In

principle, it would be conceivable to use a computer system for such a world simulation,

but this is not feasible with the current state of the art. Even the modelling of everyday

things, such as textiles, is a highly complex problem. The structure and composition

of different materials, their appearance, haptics, odor, etc. is a big challenge. A world

simulation would probably include other people. In addition to the numerous external

details that affect a realistic appearance or motion sequences, a simulation should also

be able to credibly model abstract concepts of human behavior or at least their mani-

festations. In addition, not only the calculation of the simulation model, but also the

7

stimulus generation based on it would have to be carried out in real time in order to

make a simulated reality appear credible. To make the human visual system credibly

perceive a sequence of images as continuous motion, usually at least 60 images per

second are required. However, higher frame rates can be perceived as less choppy or as

more fluid motion. Thus, fast motion sequences in particular benefit from higher image

generation rates. The generation of haptic sensory information for the perception of sur-

face structures requires 1000 Hz, under special circumstances even up to 5 to 10 kHz

are necessary to simulate the surface condition [34]. The requirements for a perfect

and realistic simulation of reality are therefore very high. Nevertheless, people tend to

immerse themselves in virtual worlds or fictitious representations of them. Already in

1817, the philosopher Samuel Taylor Cartridge stated that people were willingly pre-

pared to ignore obvious contradictions of a fictitious work and described this behavior

with his theory of “willing suspension of disbelief”. In conclusion, it can be said that

a perfect realistic virtual reality is not considered feasible at present. If a good book or

a feature film is sufficient for immersion in a fictitious world, this can also be achieved

with imperfect simulation and stimulation.

Today’s VR systems are computer-based and consist of different coordinated soft-

ware and hardware components, which serve to calculate a virtual world simulation and

make it available as stimulus information. A world simulation can also be called a vir-

tual world. Virtual worlds represent a simulation model that maps the contents and rules

of a simulation. VEs are virtual worlds that become perceptible by a VR system. Al-

though today existing VR systems are far away from the ideal of a VR described above,

they are still able to transfer users credibly into a virtual world. Even though users are

always aware of interacting with a virtual environment, this fact is often ignored and

the feeling of actually being in the virtual world arises.

No uniform definition has yet been established for VR. As a very young field of

research and based on rapidly advancing developments in the field of computer technol-

ogy, VR is also subject to continuous further development. For this reason, a definition

that is too narrow can quickly become obsolete as technical development progresses.

Especially if a definition refers to certain components of a VR system. Visionary defi-

nitions of VR, on the other hand, are often oriented towards the ideal and do not describe

the actual circumstances accurately enough. A good example is Ivan Sutherland’s essay

The Ultimate Display [2], in which he stated: “The ultimate display would, of course,

be a room within which the computer can control the existence of matter. A chair dis-

played in such a room would be good enough to sit in. Handcuffs displayed in such a

room would be confining, and a bullet displayed in such a room would be fatal. With

appropriate programming such a display could literally be the Wonderland into which

Alice walked.”

8

Sutherland’s idea marks the beginning of a computer-aided simulation of virtual

reality. He proposes an “Ultimate Display”, which is able to influence matter and re-

ality, thus enabling an immersive simulation that is indistinguishable from reality. The

large discrepancy between vision and feasibility is an obstacle to a sufficiently precise

definition of VR that keeps pace with developments. The different VR characteris-

tics of the technology can be viewed from different angles. Also possible definitions

can be constructed from these perspectives. In addition, there is a broad consensus

about the desired properties of VR systems, so that these can serve for a possible def-

inition. From a technology-oriented perspective, VR systems are often characterized

by computer-generated visualizations of a simulated environment being made percep-

tible in real time using display technology. Another feature of many VR systems is

a stereoscopic representation and viewer-centered perspective. These features enable

spatial visual depth perception within the virtual environment. A further aspect is the

possibility of interaction within the virtual environment, whereby the simplest form of

interaction can take place by changing the position and direction of the gaze. In ad-

dition, a VR system can also allow input via special input devices. A multisensory

output of a VR system usually means the possibility of a visual and auditory percep-

tion. Auditive output devices make it possible to hear contents of the virtual world. An

auditory perception provides additional information about events that are not currently

in the field of vision, facilitates spatial orientation and allows attention to be directed

auditively. In principle, the remaining human sensory organs can also be stimulated us-

ing special output devices and correspondingly simulated sensory stimuli. The defined

goal of this comprehensive addressing of as many senses as possible is the immersion

of a user in the VR. If one increases the proportion of artificial stimuli in relation to the

entirety of the perceived sensory information, it can be easier to immerse oneself in the

VR.

Cruz-Neira defined VR as follows: “Virtual Reality refers to immersive, interac-

tive, multi-sensory, viewer-centered, three-dimensional computer generated environ-

ments and the combination of technologies required to build these environments.” [15].

In another publication Cruz-Neira et al. extended their definition as follows: “A VR

system is one which provides real-time viewer-centered head-tracking perspective with

a large angle of view, interactive control, and binocular display” [16]. This definition

concentrates on a computer-generated interactive environment that is primarily visually

perceptible, but which, unlike that defined by Sutherland [2] or Henry Rheingold [9], is

not tangible and does not represent a reality perceptible by all the senses. Due to this

discrepancy between what is technically possible and the promise of a virtual reality,

many used the competing term virtual environment. The term VE thus represents a dis-

tinction from VR and refers to a more feasible technology with a “real-time interactive

9

graphics with three-dimensional models, when combined with a display technology that

gives the user immersion in the model world and direct manipulation.” [13].

Stephen Ellis also remarks, that oxymoronic terms like Virtual Reality or Artifi-

cial Reality “suggest much higher performance than current technology can generally

provide” [18]. He therefore prefers to use more conservative terms like VE or virtual

world, which also relate to the denotation of the virtual image. He defines VEs “as inter-

active, virtual image displays enhanced by special processing and by nonvisual display

modalities, such as auditory and haptic, to convince users that they are immersed in a

synthetic space” [18].

Besides a technology-oriented point of view, VR can also be seen as a form of HCI.

The currently most dominant forms of HCI are graphical user interfaces (GUIs). For

desktop computers the main components necessary for interaction are display, keyboard

and mouse. For mobile devices, these are increasingly replaced by touch displays. Al-

though many have learned to use a computer mouse and consider it natural, this is not

the case for many interaction processes. The two-dimensional movement of the mouse

is translated to the position of a virtual pointer. The drawbacks become apparent when

processing three-dimensional data. Not without reason do special input devices exist

for three-dimensional input or drawing devices for a more natural form of interaction.

VR—as a technological interface between computer systems and humans—can possi-

bly enable new and more intuitive forms of interaction for certain applications.

“The primary defining characteristic of VR is inclusion; being surrounded by an

environment. VR places the participant inside information.” [8] Bricken describes VR

as a technology that can put a user inside the “information”. Depending on the type of

information to be processed, new possibilities open up which are based on the special

perception possibilities of the VR interface. The consideration of a building plan, for

example, provides an overview, but is not comparable with a three-dimensional repre-

sentation. The VR now allows people to walk through the blueprint and experience it in

a natural way. An interactive design of certain elements of a building plan in VR would

also be conceivable.

2.1.2 History of virtual reality

The history of VR is closely linked to the development of the necessary hardware. At

the end of the 19th century, large 360° paintings were created with the aim of immersing

viewers in the scene. These panorama paintings could be viewed from a central plat-

form. While the painted panorama forms the background, additional elements placed

in the foreground—similar to a diorama—represent a spatial component. One example

of such an installation is the Bourbaki Panorama in Lucerne (Switzerland).

In 1920 Edwin Link invented a flight simulator. The trainees were able to practice

10

piloting an aircraft sitting in a mobile cabin modelled on an aircraft cockpit.

The Sensorama by Morton Heilig was publicly presented in 1957. It allowed multi-

sensory and stereoscopic film viewing. There was also a stereo sound output, an air

blower for the face and a scent output to simultaneously address different human senses

and increase the immersive level of presentation.

In 1965 Ivan Sutherland described with his well-known essay “The Ultimate Dis-

play” a technology that makes it possible to convey a computer-generated virtual reality

so realistically that it could not be distinguished from the real world. It is not so much

the visionary idea of an absolutely realistic virtual world that should be emphasized, but

the use of computers to simulate it [2].

Ivan Sutherland invented the first head-mounted display (HMD) in 1968 as part

of his research into immersive technologies. It was so heavy that it was mounted on a

ceiling-mounted suspension arm, which was also used to track the viewing direction and

head position. The impressive appearance of this HMD contributed to its name—The

Sword of Damocles. The HMD allowed the wearer to view a stereoscopic representa-

tion of a very simple computer-generated virtual world consisting of simple geometric

shapes. The HMD did not obscure the view of the environment, which is why this sys-

tem is considered by many to be the forerunner of augmented reality (AR) systems. In

addition, an ultrasonic-based tracking system was developed for the HMD, which made

it possible to dispense with mechanical tracking. However, it proved to be very suscep-

tible to interference. Sutherland’s work represented a milestone in the development of

VR and the basis for further development.

In the 1980s, VR systems and especially their system components were continu-

ously developed and improved. In addition to lighter and more powerful HMDs, faster

computers and improved tracking technologies, new input devices were developed and

new forms of HCI were researched on them. Data gloves and sensors worn on the body

made it possible to track the whole body spatially and to represent it in the virtual world.

The term “Virtual Reality” was first mentioned in Damien Broderick’s 1982 novel

Judas Mandala. However, the technology was much more strongly influenced and

made publicly known by the company JPL. The company, founded by Jaron Lanier and

Thomas Zimmerman in 1984, introduced a relatively inexpensive data glove in 1987,

which was able to detect the position and movement of the individual finger joints by

means of optical fibers attached to the back of the hand. Later the EyePhone named

VR HMD came on the market. In the mid-1980s, a VR system for the simulation of

virtual space activities was developed in cooperation with VPL Research as part of

NASA’s VIEW (Virtual Environment Interface Workstations) program. The goal was

a multi-sensory simulation of a virtual space station. A complete VR system was de-

veloped for this purpose. It consisted of a stereoscopic HMD, data gloves and a full

11

body suit equipped with sensors which recorded the movements, limb positions, spatial

orientation and gestures of the user.

In the late eighties, noticeably faster workstations for graphics applications came

onto the market, of which Silicon Graphics became particularly well known. Based on

the improved 3D real-time capabilities, complete VR systems were offered. VPL was

offering its VR system called “RB2” in the middle of the 90s. Further systems were

“dVS” from Division or “WorldToolKit” from Sense8.

Myron Krueger’s “Videoplace” implemented an artificial reality. The basic idea was

to create a place where people could perceive an artificial digital reality and interact with

it in an immersive way without additional input devices. Krueger used video projections

and video cameras and developed his own hardware for processing the video signals, the

logic based on them and the video output. Krueger’s work dates back to the late 1960s

and is regarded as an important pioneer in the development history of VR systems with

a projection-based representation.

At the beginning of the 90s, the projection-based display was further developed for

VR systems. The most important systems are the cave automatic virtual environment
(CAVE), which had three side screens and a floor projection, and the Powerwall, which

has one screen. These systems allow the viewer a perspective correct stereographic

view of the virtual world.

The broad interest in VR waned after a phase of high public interest. The deficits

and limitations of the technology at that time were too severe and as a result the tech-

nology could not meet the high expectations. But even beyond the public interest, the

technology has been constantly developed further and is now part of many industrial

and scientific development and simulation processes. With the Kickstarter campaign

for the Oculus Rift HMD initiated in 2012, the VR once again came into the focus of

the public. Devices such as the Oculus Rift, the HTC Vive as well as the Microsoft

Mixed Reality HMDs allow the entry into the world of VR for a fraction of the previ-

ously usual costs. These HMDs offer comparatively large field of view (FOV), 6-DOF

tracking for controller and head position as well as high resolutions and refresh rates.

Wireless solutions and mobile standalone VR devices facilitate flexible use.

Technical progress is also reflected in the successive further development of tracking

methods from purely mechanical to initially electromagnetic, later ultrasound-based

and then to optical tracking methods. Furthermore, haptic input devices were developed

that allowed a more realistic interaction with the virtual environment.

2.1.3 Human-computer interaction and multimodal interfaces

In the context of HCI, modalities are the individual communication channels that allow

input or output and thus interaction with the computer system. A correspondence can be

12

found in the human sensory modalities, which in turn correspond to the physiological

perceptual apparatuses. This perception is based on different senses. A classification

into the usual five senses—seeing, hearing, smelling, touching and tasting—represents

an inadequate categorization because it fails to recognize the diversity of possible sen-

sory perceptions such as warmth, cold, pain as well as more complex perceptions such

as orientation in space, the sense of balance and the perception of the position and ori-

entation of one’s own body in space [1]. Sensory modalities represent an important

foundation of perception, they allow humans to receive and process information and

thus enable interaction with the environment and also with computer systems.

Regarding HCI interfaces, the modalities of a system allow the interaction of man

and machine. Usually HCI takes place bidirectionally, i.e. inputs are made possible

at the computer system and at the same time the computer system can also generate

outputs. Based on their basic functionality, the possible input modalities can be assigned

to three superordinate categories:

• Visual modalities

• Auditive modalities

• Sensory modalities

Modalities with a visual function-principle use image acquisition and image processing.

Video camera systems can be used for image acquisition. Visual modalities can capture

the viewing direction, facial expressions, gestures, body movements and body position

and use them for interaction. The auditory modalities can be assigned all interaction

possibilities that use audio signals for communication. The most important possibility

here is certainly interaction via voice input. There are systems that can recognize users

based on characteristic voice patterns. But also the recognition of an emotional coloring

of speech or other human sounds can be understood as input modality. Sensory modali-

ties include all other interaction options that use one or more sensors. Strictly speaking,

this also applies to the visual and auditory modalities, but these have their own cate-

gory. Sensors can be very complex or simply constructed. Keyboards, mice, digitizers

(touch or pen-based), buttons, switches, dials, joysticks, chemical sensors (smell, taste),

motion tracking systems and many other sensor-based input devices are conceivable to

realize an HCI. If an HCI interface is realized with only one modality, it is called uni-

modal, if more than one modality is used, it is called multimodal. Multimodal HCI

interfaces allow a more natural interaction with computers. For example, commands

can be entered by voice and completed by supporting gestures. A well-known example

of a natural multimodal interaction is Bolt’s “Put That There” demonstration, which

uses spoken commands and intuitive pointing gestures to place predefined objects on

13

a map. The combination of both modalities allows to interact very intuitively and pre-

cisely with the system [4].

Looking at it the other way around, the output modalities of an HCI interface are

directed to the human sensory modalities. A screen and a sound output can be regarded

as a standard case. Braille displays, vibration and force-feedback controllers are already

much rarer. Output modalities for the sense of smell [137] or taste can be regarded as

even more exotic.

The amount of used modalities as well as the way they are combined to enable an

interaction is different for each system and depends significantly on the purpose of the

application. When designing and implementing multimodal HCI interfaces, it is partic-

ularly important to ensure that the individual communication channels are viewed col-

lectively. The goal is an improved and simplified interaction. It should be assumed that

different laws or guidelines may apply to a multimodal HCI interface than to unimodal

interfaces. Another special feature of multimodal interfaces is their distinct context de-

pendency. Particularly in the field of natural user interfaces, information on individual

modalities does not always have to be conclusive and can often only be interpreted cor-

rectly in context and in conjunction with other modalities (e.g. see Bolt’s “Put-it-there”

demonstration). For the future, HCI interfaces that understand the diversity of human

communication and adapt to all needs would be desirable. Furthermore, it would be

worthwhile to enable more realistic experiences, especially with regard to VEs. With

the “Ultimate Display”, Sutherland described a technology that probably also represents

an “ultimate” interface. Such a technology would be able to provide all imaginable and

necessary modalities. Today’s VE systems are still far away from this vision of the

future.

2.1.4 Input and output modalities for immersive virtual environments

Various modalities can be used for interaction with VE systems. The most important

output modality of VE systems and at the same time an important distinctive feature

is the type of display used. Computer-generated VEs can be viewed on a regular (two
dimensional (2D) display), a stereoscopic (3D display) and an immersive stereoscopic

(3D display with head tracking for a viewer-centered perspective) display. For the im-

mersive 3D presentation, the head position and orientation of the user is continuously

recorded by a tracking system and used to create the view of the VE. If the user changes

his viewing position or viewing direction, the displayed view of the VE is also changed

with minimal delay. The user has the impression to look around in the VE. The immer-

sion is considerably higher than with 2D and stereoscopic interfaces.

Tracking is an input modality of immersive VE systems. Such systems continuously

record the head position and viewing direction of an HMD or shutter glasses with the

14

lowest possible latency. There are several different tracking methods. The information

is used to calculate an appropriate perspective correct view of the virtual environment,

which is output via the display system. The tracking information can also be used for

gesture control. Natural gestures such as nodding the head, shaking the head or the

viewing direction can be used and are part of the usability concept. Depending on the

design and configuration, tracking systems can detect 3 (rotary movements only) or 6

(rotary and translational movements) spatial degrees of freedom. In general, the acqui-

sition of 6-DOF is more complex and thus reserved for more expensive VE systems.

Inexpensive systems limit the tracking to three degrees of freedom (3-DOF) and thus

to the possibility to change the own perspective only by rotation.

HMDs usually consist of one or two conventional liquid crystal displays (LCDs) or

organic light emitting diode (OLED) displays, which allow stereoscopic viewing by

means of a lens system. A face cushion enables comfortable wearing and prevents a

clear view of the surroundings. If the HMD is light enough, head straps are used to

attach it to the head. For heavier models, an additional support structure, such as an

articulated arm, is used to allow the HMD to follow the user’s head movements within

a certain radius of action.

Both wired and wireless VR HMDs are available. A distinction can be made be-

tween VR HMDs that function autonomously, as they have all the necessary system

components integrated, and non-autonomous devices that require an external computer.

The wireless non-autonomous devices transmit the image and tracking information via

radio data transmission.

CAVE systems [11, 63] are another possibility for immersive 3D systems. The walls

surrounding the user are used for stereoscopic imaging. Projection techniques or large

LCD displays are possible. The wall geometry depends on the technology used. A

cube-shaped structure is common, whereby one side remains free as an entrance. The

walls are projected from behind, the floor from above. The regular construction consists

of three walls and the floor. Systems that use all six sides of a cube are feasible but very

complex and expensive. Setups with oval shaped walls are also possible [181]. The

size of the CAVE can be freely scaled and only requires additional projection segments.

Users must wear 3D LCD shutter glasses to see a stereoscopic image. Furthermore, the

obligatory tracking system is used to capture the head position as well as the viewing

direction to generate the individual perspective of the VE. CAVE systems are very com-

plex in design and have to be calibrated for a clean display. Since the projection surfaces

of a CAVE are continuously visible, the corresponding views of the VE must also be

rendered continuously. In contrast to HMD-based systems, this requires considerably

more resources for graphics performance. It is necessary to use computer systems with

several graphics cards or several synchronized computer systems to have the necessary

15

graphics performance and the necessary number of video outputs available. In order

to achieve a seamless and clean 360° projection, the individual projected views must

also be corrected in perspective and adjusted with regard to their color and brightness

differences. Fast assembly and disassembly is therefore not practicable and the systems

are usually permanently installed. The necessary effort results in a relatively high price

of these systems. Depending on the configuration, the estimated price for a professional

CAVE system can be between 200,000 and almost 1 million USD [115]. However, cost-

effective variants are possible [115, 36]. They often require a lot of personal effort and

offer no professional support. Nevertheless, they represent an interesting alternative if

the budget is too tight. Another important distinguishing feature is the fact that CAVE

users have a clear view of their direct environment, whereas this is not possible with

VR HMDs. This can be desired or unwanted depending on the application type. A big

advantage is the possibility of several simultaneous users. Even if only one user can

be tracked at the same time and thus sees a perspective correct view, there are advan-

tages in communication and cooperation due to the direct cooperation. The LCD shutter

glasses used are very light, wireless, do not require any sealing face pads and allow a

larger FOV than VR HMDs. In addition to improved wearing comfort, no lens sys-

tems are required that could interfere with natural vision and require time-consuming

correction of distortions and color shifts. The use of notepads, tablets or other tools is

no problem in CAVEs. Cooperation with other participants is also much easier. The

free view of one’s own body also represents a decisive difference to HMD-based VR

systems. CAVE systems are “open” and allow natural cooperation and communication.

HMD based systems, on the other hand, shield the user, allow stronger immersion and

are less suitable for natural cooperative usage scenarios [95].

Controllers are a popular input device for VE systems. The simplest variant is a

controller that can be held in the hand. Tracked controllers can be recorded with either

3 or 6 spatial degrees of freedom. With HMD based systems it is possible to display

the form and appearance of the controller realistically in the VE or to superimpose it

with any fictitious representation. In CAVEs, on the other hand, the appearance of

the controllers cannot be varied. Buttons, touch-sensitive surfaces and joysticks allow

various input options and the implementation of a wide variety of operating concepts.

Button inputs can, for example, be implemented with a corresponding visualization in

the VE, e.g. a push of a button on the controller can result in the closing of a virtual

hand or a gripping tool in the VE. For special applications, controllers can also be

designed for specific tools to allow more realistic handling and haptics. However, the

engineering costs money and the controllers are in principle not universally suited for

all applications. Controllers based on weapons, for example, allow a more realistic

handling and interaction in corresponding simulations. The requirements for such a

16

controller can vary greatly, depending on whether game applications or military training

simulations are the goal.

Data gloves are a popular input device. They allow the spatial capture of the pose

of a hand and individual or all finger phalanges. This information can be used as input

modality to visualize the hands in the VE or to realize input gestures. More complex

data gloves also allow tactile feedback. Actuators in the glove can actually make the

gripping of virtual objects tangible. These systems are usually very expensive, com-

plexly constructed and yet their ability to generate realistic tactile sensations is severely

limited. Another possibility is to use optical tracking systems for hand gestures. These

camera-based systems are much cheaper and allow the capture of hand gestures through

a video acquisition of the hands. It is therefore only possible to determine the condition

of the hands when there is a clear view. Occlusions as they are inevitably the case with

many hand poses have a disruptive effect. Many gestures are estimated by the software

on the basis of a model. Nevertheless, tracking one’s own hands within the VE allows

many exciting interaction scenarios. Especially the low entry price and the easy to im-

plement gesture recognition make input devices like the Leap Motion Controller very

interesting [91]. Similar to hand tracking systems, there are systems that can track cer-

tain body parts or the whole body and its limbs. These systems can also be implemented

mechanically or optically, e.g. as a body suit with sensors for the position of the limbs

or as a camera sensor that detects the position and orientation of a body (Microsoft

Kinect). Regardless of how a tracking system works or which things it can detect, it

represents a certain connection between real and virtual environment. Tracking always

serves some form of interaction between the environment and the computer system.

Beside tracked controllers there is also the possibility to use non-tracked controllers.

When used with an HMD, gamepads are practical as they can often be operated blind.

Keyboards, mice, joysticks and similar input devices work best if they can be viewed

by the user. In CAVE based systems they can be easily viewed and operated. Addi-

tional displays such as a notebook or a tablet can therefore be used in the CAVE as an

additional input modality.

Simulators represent a very specialized form of a VE system. Simulators use, sim-

ilar to a CAVE, projection surfaces or screens for the representation. Flight or vehicle

simulators are a well-known example of this type of VE system. The users are usually in

a more or less realistic replica of the machine to be simulated. Especially if the simula-

tor is used for training or education, the controls correspond to the original. Simulators

are particularly popular for training purposes, as they allow a large number of dangerous

extreme situations to be practiced as a simulation without the real danger of an accident.

Furthermore, the acquisition and maintenance costs of a simulator are generally lower

than those of the vehicle to be simulated. Simulators can be mounted on a movable

17

platform, which allows the simulation of acceleration forces by a specific tilt. In gen-

eral, it is easier and cheaper to move small and thus lighter platforms. How strongly a

simulator platform can be tilted usually depends on its purpose. Flight simulators for

fast military flight maneuvers, for example, have to meet different requirements than

those for civilian flight training. The inclination of the platform changes the direction

in which earth gravity acts on the equilibrium organ in the inner ear. The work of the

Cyberneum Tübingen provides an exemplary overview of this form of HCI [64, 85].

The user interprets the movements of the gravitational vector of the earth as accelera-

tion acting on him as a result of the simulation. Only by tilting, no acceleration forces

greater than those of Earth gravity are possible. The addressing of this sensory modality

is especially important for simulators where the user has to learn to correctly estimate

and interpret the occurring forces. Flight simulators are very important for the training

of pilots. The pilots can familiarize themselves safely with the complex operation of the

flying machines and at the same time get a realistic impression of the flight behavior.

With larger systems, such as supertanker simulators, a realistic inclination would be

technically feasible, but the size of the ship’s bridge would make it much more complex

to construct, more expensive and not necessarily advantageous or important for learning

to steer a large ship.

Another important modality for VE systems is sound generation. In addition to

seeing, hearing is an important sensory modality and plays a decisive role in our per-

ception of the environment. Binaural hearing allows to spatially localize sound sources.

Accordingly, binaural sound generation is an advantage for VE systems when it comes

to locating audible noise. Since most immersive VE systems track the head position

and require it for image generation, this information can also be used to generate bin-

aural audio signals. The simplest way to transmit sound in this case is by means of a

headphone or earphone. Alternatively, a multi-channel loudspeaker system can be used

which can spatially reproduce sound sources. The surround sound audio systems known

from home cinema can be used in principle, but have the disadvantage that the optimal

listening position is not variable. In principle better but even more complex and expen-

sive are systems for spatial sound generation. In wave field synthesis, sound sources are

spatially generated as wave fronts. Listeners can move freely in space without leaving

the sweet spot familiar from conventional sound reproduction systems.

In VE, hearing is as important as in the real world. Auditive information reception

helps to better understand the world. Humans are accustomed to hearing a background

noise all the time and find it unpleasant to be exposed to complete silence. Audio

information allows to easily increase the information density within a VE. Noises can

provide information about conditions and processes that do not have to be visualized.

For example, the sounds of leaf noise, wind and rain can create more atmosphere than

18

the corresponding visualization alone.

Another important sensory modality is summarized under the collective term hap-

tics. Game controllers or comparable input devices often have a small vibration motor,

which is capable of a fairly limited haptic output. The intensity and duration of the

vibration can be easily varied. Force feedback systems can build up forces with the

help of actuators and thus allow force effects to be simulated. These systems are usu-

ally installed in controllers such as joysticks or steering wheels and allow, for example,

aerodynamic forces to be applied to the flight control system of a flight simulator or the

unevenness of the driving surface to be sensed on a steering wheel [171]. Force feed-

back systems can also be designed as multi-part articulated arms, at the end of which a

tool is available for interaction in the VE. The user only sees the tool in the VE, during

the interaction with the tool the articulated arm builds up the simulated forces and thus

helps to achieve a haptic perception of the VE and a more realistic simulation [169].

Force feedback gloves or full body suits are also possible, but very complex [109, 96].

In general, it is possible to develop a suitable controller for many natural motion se-

quences and activities that captures these movements and makes them available for

interaction with the simulation. A good example is the flight simulator of ETH Zurich.

The user lies in a movable platform and can flap wings with his arms. Using an HMD,

the user can see the simulated landscape from a bird’s eye view and determine the flight

altitude and direction using the viewing direction and the flaps of the wings. A fan cre-

ates the impression of wind [149]. Even if these systems are not able to represent the

variety of possible haptic perceptions, haptic output modalities in interaction with the

other modalities of VE systems unfold a symbiotic effect and enable more immersive

and possibly better HCI interfaces.

The process of walking is a complex human activity in which numerous senses are

simultaneously involved. Humans see the underground and the surroundings, feel the

solidness and condition of the underground, recognize the position and orientation of

the musculoskeletal system and feel the necessary forces. The physical locomotion

requires numerous sensory impressions in order to succeed. The ability to move for-

ward requires a lot of practice and skill and yet hardly requires conscious cognitive

performance. There are various aids to enable walking in VEs. These devices can be

understood as an input modality, as they allow to capture the process of walking as an

input for VE systems. Compared to the natural process of walking, all available devices

have certain limitations and limitations. Omnidirectional endless treadmills move the

ground in the opposite direction, allowing the user to go on virtually endlessly without

significantly changing their own position in space. They are very expensive, loud, huge

and dangerous. The users must wear a climbing harness so that they do not lose fingers

or other body parts when stumbling [50]. Smaller systems use special sliding surfaces

19

and sensors to allow legs to move similarly to running [151]. The actual feeling only

comes close to natural walking and requires practice. The users also wear a harness to

avoid falling. The use of harnesses hinders the user and prevents movements such as

squatting. The haptic experience of walking in uneven terrain, the topological and other

characteristics of the ground cannot be simulated by these devices. The accessible envi-

ronment within the VE should therefore also be largely similar. A discrepancy between

what can be seen and what is perceived while walking can otherwise be disturbing.

Various sex toys allow a computer controlled sexual stimulation which can be syn-

chronized with a suitable VR simulation [77].

Depending on the level of detail of the controllers used, they can be easily perceived

haptically and thus also be easily used with HMD-based systems. In principle, a VE

can be reproduced realistically and can thus be perceived haptically by the user. The

effort, however, is often significant, the usability for other applications very limited

and therefore often not justified. The big advantage of a VE is the great variety of

possibilities. It must therefore be decided for the respective application to what extent

it can be advantageous to adapt the real environment and the controllers to the contents

of a VE or whether another interface concept should be preferred.

Beside the different possibilities to interact with controllers, there is also the possi-

bility to enter voice commands via microphone and to use video cameras for example

to capture commands via gesture.

2.1.5 Tracking

Positional tracking is of fundamental importance for VE applications and describes the

process of continuously determining the 3D position and location of objects in space.

It is often referred to as the determined pose, which describes the position and orien-

tation in space. VE systems use different procedures and methods to determine the

precise pose of the HMD worn on the head or stereo glasses (with CAVE or Desktop

VR). By continuously determining the head position and viewing direction, a matching

computer-generated view of a VE can be calculated and displayed accordingly. The

possibility to freely change one’s direction of viewing within a VE is the most impor-

tant form of interaction a VE system can offer and mainly contributes to its immersive

character. An alternative name for positional tracking is 6-DOF tracking, since the pose

can be described by three degrees of spatial freedom for position and orientation. Sim-

pler VE tracking systems only determine the orientation of the head and are referred to

as rotational head tracking or 3-DOF tracking systems. 3-DOF systems allow users to

look around in a VE. Since changes in the head’s position are not detected, they can-

not be displayed in the VE. The parallax, which is important for spatial perception and

which occurs during lateral head movements, is missing in such systems. Therefore,

20

these systems work best in a seated position where users do not change position by nat-

ural locomotion. If the head position is changed as little as possible, the illusion works

quite well. If, on the other hand, the user changes the position, there is a discrepancy

between the perceived movement and what is seen. The contradiction of the different

sensory perceptions is often perceived as very disturbing, can lead to an interruption

of the experienced presence (see 2.1.6) as well as, if the condition lasts longer, to the

occurrence of simulator sickness [17]. 3-DOF tracking is easier and cheaper to realize

than a full-fledged 6-DOF tracking. For the determination of an orientation in space a

low-priced inertial measurement unit (IMU) is sufficient. Although 6-DOF tracking is

technically more complex to implement, it allows a higher degree of freedom in move-

ment and thus interaction. Various studies have shown that natural locomotion within a

VE can increase immersion and promote presence (see 2.1.6).

In order for the illusion of presence to succeed, the duration, from the determination

of the head pose to the corresponding image output on a display, must not exceed the

human perception threshold. Latencies have different causes and describe the time a

system needs to react to inputs and output something. The captured head pose serves

as input and the corresponding representation of the VE on a display serves as output.

Often one speaks also of the real time capability of a VE system, whereby the latencies

remain unnoticed by the user in the optimal case. Latencies of over 100 ms complicate

the HCI or make it completely impossible [92]. For the calculation of the view of a

VE and the output on a HMD, constantly very low latencies are necessary. If the head

movements and the rendered view of the VE do not correspond, the discrepancies of

the different sensory impressions may not only be noticed negatively, but may also

lead to the occurrence of the simulator sickness and severe discomfort [17]. When the

head rotates, the eyes are automatically rotated in the opposite direction to enable the

sharpest possible vision (vestibulo-ocular reflex). Too high latencies can interfere with

this mechanism and lead to perception disorders. Brooks and Ellis et al. recommended

to keep latencies below 50 ms still in the nineties. In the meantime latency periods of

20 ms are considered too long and it is recommended not to exceed 15 ms or better even

7 ms for the determination of the head pose and the output of the corresponding view

of the VE [26, 22, 56]. Since tracking is a continuous process, the maximum possible

latencies must also be maintained continuously. If a large majority of the system’s input

and output processes remained below the specified time, the remaining time overruns

would still lead to dropouts and thus significantly impair the quality of the tracking.

With projection-based VE systems (CAVE), the latency requirements are somewhat

lower than with HMD-based systems. An HMD is always moved together with the

head. The current view of the VE needs to be rendered and displayed at all times.

Too high latencies have a negative effect because a wrong view of the VE is visible.

21

With a CAVE, on the other hand, all projection surfaces are continuously rendered and

displayed. For fast rotary movements, the view of the VE is still visible and does not

have to be generated and output first [95]. Very fast position changes may be noticeable

to the user, but they are rather unusual and also not as easy to carry out as fast turning

movements of the head.

The tracking delays are caused by latencies in signal processing and information

transport. Continuous tracking is furthermore based on discrete single measurements

and therefore the minimum possible latency of the tracking system depends on the sam-

pling rate. The components used and the tracking procedure therefore play an important

role. If the repetition rates cannot be further increased with a technical procedure, dif-

ferent procedures can also be combined. If, for example, optical camera-based tracking

is used to determine the pose, the image acquisition frequency of the cameras used lim-

its the minimum possible latency. With an additional IMU, rotational movements and

accelerations can be measured with sampling rates of 1000 Hz and thus—in addition

to camera-based tracking—the pose can be calculated with a higher repetition rate and

lower latency [33]. Due to the very high repetition rates, IMUs are particularly suit-

able for the detection of very fast movements or position changes. But there are also

disadvantages. Since IMUs only allow relative measurements, the sensor values must

be integrated to calculate the change in position and rotation relative to an initial pose.

Smallest measurement inaccuracies and noise lead to an increasing deviation of calcu-

lated and real pose. This deviation is called drift and must be continuously corrected by

further external measurements. Looking at the example of HMD positional tracking,

optical tracking allows to determine the absolute pose in space with a relatively slow

repetition rate. An additional IMU based tracking in HMDs allows to significantly in-

crease the number of measurements per time and to reduce latencies. The drift of the

calculated pose is corrected by optical tracking. The combination of several indepen-

dent measurement methods is known as sensor fusion. The two systems complement

each other and are ideally able to compensate for the weaknesses of each other’s sys-

tem. It is also possible to combine different measuring methods to realize a tracking

which cannot be done with one method. The mobile AR application (app) Wikitude

e.g. uses the mobile device’s IMU and magnetic field sensors to determine the orienta-

tion of the device and global navigation satellite system (GNSS) tracking to determine

the position of the phone on the planet and subsequently superimpose a camera image

with geocoded information [156].

Latencies occur in VE systems not only during the tracking process. In addition to

the computing time for simulation and image generation, latencies also occur during

image output on a display. The refresh rate of the respective display system plays

a decisive role here. A display with 60 Hz represents a new image every 16.7 ms.

22

Changes that take place in the simulation of the virtual world and are output as graphics

thus require an average of approx. 8.35 ms until they are displayed as an image. A

higher refresh rate reduces the average latencies accordingly. Of course, the refresh

rate cannot be increased arbitrarily, but 90 Hz is considered an acceptable minimum

for VR HMDs. 120 Hz or 240 Hz would be desirable[56]. With CAVE systems, the

projection is carried out at 120 Hz. However, stereo operation reduces the refresh rate

to an effective 60 Hz per eye [95].

For a VE system to maintain the illusion of an immersive experience, the sum of

all latencies must be kept correspondingly small. Since it is technically not possible to

avoid latencies, it can be tried to estimate the future pose. This is known as prediction

and can significantly reduce the perceived latency, as natural movements can often be

extrapolated for the very near future [136].

In addition to tracking the head pose, it is also possible to capture the pose of hand

controllers, hands and fingers, limbs, but also the viewing direction and blinking as

well as any other objects and make these available for interaction with the VE system.

A variety of different methods are available for this purpose, which are also referred to

as tracking. When tracking controllers, other body parts or any objects, latencies can

also occur. However, the occurrence of simulator sickness is not to be expected. But

too high latencies can disturb the HCI or even make it completely impossible. If, for

example, a tracked hand controller is displayed in the VE with a considerable delay, this

can disrupt the motion sequence and make targeted actions impossible. In the case of

spatially freely movable objects, a distinction can also be made between 3-DOF and 6-

DOF tracking. The information collected by tracking systems refers to a fixed reference

system. If, for example, a camera system is used to determine the pose of a VR HMD,

the position and orientation information refers to the pose of the camera system used.

If required, it is of course possible to combine different tracking methods to cover a

wider area, improve accuracy, reduce latency or obtain other benefits. Tracking methods

can also be limited in functionality in order to reduce complexity and to not exceed a

possible budget.

In general, it is possible to formulate a few requirements for a tracking system,

which, however, vary depending on the respective application.

• Flawless and as precise as possible.

• Robust and insensitive towards external interferences.

• Instantaneous or no latencies due to the tracking process.

• 6DOF.

• Universally applicable.

23

• Easy to deploy and use.

• Affordable.

It is easy to imagine that it is not an easy task to develop a tracking system that com-

bines all these characteristics. Universal tracking is hardly conceivable. Likewise, high-

est precision cannot be combined with a low price. Therefore, tracking systems often

represent a compromise between what is feasible and what is reasonable.

The following sections describe common classifications for tracking systems. These

are based on the principle of functionality and technical implementation.

2.1.5.1 Outside-in and inside-out

It is possible to generally categorize tracking methods by the means of their fundamental

tracking concept into outside-in and inside-out systems. With outside-in systems the

tracked objects don’t have any own sensing and are tracked from outside. E.g. a marker

mounted on a HMD is tracked by one or more cameras mounted within a room. The

camera image or images are used to determine the position and orientation of the marker

in relation to the cameras. As the position of the cameras is known, it is possible to

estimate the position and orientation of the marker mounted on the HMD within the

room. Inside-out systems are working exactly the other way round. The markers are

mounted within the room and their position is known a priori. One or several cameras

are mounted on the HMD and are tracking the positon of the markers within the room

in regard to the cameras used. The captured images can be used to estimate the HMD’s

position and orientation in regard to the markers and thus to the room.

Beside this principal categorization there are various tracking techniques that use

different physical principles. These principles can be used for a further categorization.

2.1.5.2 Optical tracking

Optical tracking systems are working with some kind of an imaging system that al-

lows for the tracking of objects or the environment. Very simplified, the vast majority

of optical tracking procedures can be divided into marker-based and marker-free tech-

niques. Markers are predefined fiducials that are placed into the field-of-view of an

optical tracking system and are used to track objects, the environment or both. They

are only suitable for applications where it is possible to place them in advance. It is

essential for the tracking that the markers are placed within the visual field and range

of the used imaging system. As soon as the vision of the marker is impaired, e.g. due

to occlusion, insufficient illumination or other interferences, the tracking process will

degrade in precision and reliability and finally fail. More sophisticated tracking sys-

tems try to compensate these issues by using additional sensors, filtering and prediction

24

algorithms. The pattern of the fiducial markers needs to be known or learned a priori

and their aim is to allow an easier tracking. Mainly by reducing the complexity of im-

age recognition and the computational effort as well as increasing the accuracy of the

tracking. They can also simplify detection in difficult lighting conditions. There are

different types of markers. The so-called pattern and ID markers are often used for the

realization of AR apps on mobile devices [79]. The marks can be printed on paper, are

inexpensive and can easily be positioned in the room. The built-in camera of the mobile

device captures the markers and an algorithm can calculate the pose of each marker

against the camera used. The pose makes it easy to place spatially aligned virtual con-

tent over the camera image. In order for the markers to be reliably recognized, they

must comply with a specific design. This depends on the algorithm used. Typically it

is a simple graphic, consisting of an outer frame and an additional inner graphic part.

The frame serves to determine the pose against the camera system. The inner part of

the mark can be used for identification, but also for determining the orientation. The

latter is necessary because a square frame is point-symmetrical and thus four different

orientations are possible. There are also alternative variants of ID or pattern markers

where the recognition algorithm is adapted to the design accordingly. It is also possible

to create pattern markers in which images or arbitrary graphics can be used. In this

case, pattern recognition is performed first and saved as a reference. At runtime, an al-

gorithm uses this reference information to recognize the marks in the video image and

to determine the pose. The advantage of this tracking approach is that existing illustra-

tions can be used and there is no need for adding supplementary fiducial elements. To

ensure a good tracking quality, the image should be created or chosen following cer-

tain rules. Generally it is a bad idea to use illustrations with low contrasts, relatively

extensive empty or monochromatic areas and repetitive patterns. Strong contrasts, a

homogeneous distribution and non-repetitive pattern are better suited for detection of

natural features and tracking. Even though natural-feature based tracking might seem

like marker-less tracking to the user, it is not, because it is necessary to learn the marker

features in advance to recognize them later. If the algorithm does support it, pattern

markers can also be placed on geometric shapes, such as cube, cuboid and cylindrical

bodies.

Furthermore, there are infrared light based tracking systems that can use individ-

ually designed markers. The markers can be flat or spherical in shape and can reflect

light passively or actively emit infrared light themselves. For passive marks, the camera

systems used require an infrared light emitter that illuminates the scene. The passive

marks are equipped with a retro-reflective surface to reflect the light back in the direc-

tion of the light source as efficiently as possible. For active markers, light emitting
diode (LED) light sources with the desired wavelength are preferred. To save energy,

25

the light emittance is switched on and off synchronously. In order to spatially determine

the position of the markers, several cameras are distributed simultaneously around the

tracking area and the system is calibrated. A spherical marker is sufficient to deter-

mine the position (3-DOF) of the marker in the tracking area. In order to additionally

calculate the orientation and a complete pose, several individual markers must be put

together so that they form a unique spatial structure. The great advantage of infrared

light-based tracking systems is their independence from existing lighting conditions.

The infrared illumination has a wavelength range that is invisible to humans and there-

fore does not disturb. The markers appear much brighter in the camera image than the

rest of the environment and thus facilitate the recognition of the markers. Professional

infrared tracking systems are relatively expensive. Especially if large rooms are to be

covered, many cameras are needed. These tracking systems can be used universally and

flexibly, e.g. they are also used for motion capturing techniques. Whereas in the profes-

sional environment the maintenance and effort of a VE tracking system plays a rather

minor role, expensive and elaborate systems in the home area are rather the exceptions.

Likewise, a corresponding camera setup in a laboratory environment does not disturb as

much as in the living room at home. The additional effort for repeatedly mounting the

markers on the objects to be tracked can sometimes be very time-consuming and thus

also annoying.

Marker-less tracking refers to optical tracking methods that do not rely on fiducial

markers necessary to obtain a camera pose. Instead the algorithm can use characteristics

and features of the environment or objects for tracking. These approaches originate

from the field of computer vision and robotics. Without special markers, the algorithm

must be able to obtain the necessary information directly from the camera image or the

image of the environment.

One possible approach is a model-based tracking method. The captured camera im-

age is scanned for objects that fit a given model and an attempt is made to estimate the

position and orientation of the object. Simple objects with a simple geometric appear-

ance, such as a sphere, can easily be modelled. If the size of the sphere is known, the

position can be concluded. To additionally determine the orientation, further charac-

teristics are necessary. More complex objects require more complex model knowledge

and algorithms for the recognition. One example is model-based tracking methods for

human poses. There are already a number of different solutions [87]. Marker-less tech-

niques can be realized both as inside-out and outside-in systems. An example for the

outside-in approach is Microsoft’s Kinect software development kit (SDK). It uses an

external range imaging sensor (Microsoft Kinect Sensor) to estimate the body pose. An-

other example for outside-in model-based tracking is the Leap Motion Sensor, which

can be mounted e.g. on a VR HMD and can be used to track the hands of a user and

26

display them in the VE [91].

Examples for inside-out model-based tracking are mobile robots, which can orien-

tate and navigate themselves by means of a camera and a given map of the environment.

Marker-less methods are also suitable for positional tracking, as it is required for VE

systems. The necessary model of the environment can be generated in advance or at run-

time. Simultaneous localization and mapping (SLAM) methods enable the generation

of a map of the environment at runtime and the simultaneous estimation of the camera

pose against this model [40]. SLAM methods do not require any prior knowledge of

the environment and are limited primarily by the available computing power and mem-

ory. As inside-out methods, they are not bound to a previously known room setup and

are therefore also suitable for application scenarios in which tracking is to be carried

out in large spaces. SLAM tracking is comparatively inexpensive because it does not

require expensive and complicated camera setups. The disadvantages of SLAM are its

computational complexity, which limits its use on mobile devices and tends to require

powerful computers. In addition, environments with dynamic or moving objects cause

problems. The algorithms used must be able to correctly interpret sensor information in

order to generate a correct map of the environment. Dynamic environments with mov-

ing objects must be correctly detected and taken into account when creating the map.

Especially in larger environments the memory requirements rise, the computing time

required and the algorithms used are reaching their limits [43, 82].

2.1.5.3 Non-optical tracking

There are various non-optical tracking methods that can be used for VE systems.

Intertial tracking techniques use sensors like accelerometers and gyroscope sensors.

As an IMU, these sensors can be manufactured very inexpensively and are therefore

also used in a large number of various devices. With the help of these sensors it is

possible to measure acceleration and angular velocity. The measurements allow to de-

rive the orientation and movement in space and could therefore theoretically be used

for tracking. However, it is not possible to determine an absolute position in space.

In addition, for the calculation of the movement, the acceleration values must be in-

tegrated twice over time. Even the smallest measurement inaccuracies add up within

a very short time to large deviations of the calculated pose from the real pose. The

measured values of the gyro must also be added up over time to calculate the change

in orientation. Therefore these cheap IMUs are not suitable for positional tracking. As

already explained in the section on latency, IMUs nevertheless make a valuable contri-

bution to supplementing and improving other tracking methods. For the realization of

an inertial tracking or an inertial navigation system (INS), very accurate and expensive

acceleration and gyro sensors are required. These allow a position determination under

27

almost all environmental conditions over a much longer period of time. They are used

for aircrafts, ships, rockets, submarines and spaceships. For practical reasons, however,

these INS’s are not suitable for positional tracking of HMDs because they are too ex-

pensive, too large and too heavy. An INS requires high-grade calibrated sensors and a

sophisticated sensor-fusion algorithm to deliver acceptable accuracy. The sensors in-

stalled in consumer electronics like smartphones are cheap micro-electro-mechanical
systems (MEMS) and lack the required precision. They are neither suitable for inertial

navigation nor for independent positional tracking.

Magnetic tracking systems use magnetic fields. Other than the mentioned inaccurate

and cheap MEMS sensors there are also high-grade magnetic tracking systems. With

artificially created magnetic fields and exactly calibrated sensor hardware it is possible

to track the position and orientation of objects within defined regions. Magnetic track-

ing systems don’t require a visual contact to track a magnetic marker, which might be

a benefit for scenarios with a lot of occlusion, but on the other hand the measurements

are very sensible to metallic and magnetic materials that can easily interfere with the

tracking. In the field of VE systems, magnetic tracking systems have been replaced

almost everywhere by optical tracking methods.

TOF based tracking methods are using some kind of signal and runtime measure-

ment to estimate the distance or relative position of sender and receiver object. GNSS,

where the most popular is the Global Positioning System (GPS), are based on this

principle. Multiple satellites are sending a signal, with an encoded timestamp and the

satellite position, down to earth. A receiver calculates the runtime of the individual sig-

nals by comparing the timecodes. With the knowledge of the positions of at least four

satellite transmitters in the orbit and the runtime of their signals it is possible to trilat-

erate the position of the receiver [21]. TOF camera sensors are optical devices but are

also using a runtime-based principle. TOF cameras capture images with an additional

depth information for every pixel. An infrared light source illuminates the environment

in the FOV with a timecoded light pattern. The light is reflected and captured by the

imaging sensor. Depending on the runtime of the bounced back light, the distance of

the object to the camera sensor can be calculated. TOF based tracking methods can also

be based on sound signals, like the 6-DOF controller tracking of the HTC Vive Focus

Plus [132].

Mechanical tracking systems are another possibility to track objects. Mechanical

arms e.g. can be used as an apparatus to allow haptic interaction with virtual objects.

The pose of the arm links can be sensed and used for HCIs [147]. In the past, motion

capturing suits were built that could capture the movement and pose of a person’s limbs

according to this principle [66]. Nowadays such suits are realized with optically tracked

markers or IMUs [163, 138]. Some of the mechanical tracking apparatus also allow a

28

active haptic feedback based on the interaction with the VE [105, 81, 102].

2.1.6 Presence

The term presence usually describes the subjective feeling of the user in a VE. In other

words, the user experiences the VE as if he were actually in it. A distinction can be

made between spatial and social presence [44]. With a spatial presence the viewer per-

ceives himself as being transported into the mediated space. Social presence describes

the feeling of the presence of other individuals and the possibility to interact with them.

Slater regards the presence as an illusion that can be described by two orthogonal pa-

rameters. On the one hand there is the illusion of being spatially present and on the

other hand there is the illusion that what seems to happen actually happens [47]. As a

result, he considers the plausibility of the experience to be important for the presence.

Casati et al. evaluate the plausibility of events in a VE as more important for the sense

of presence than a photorealistic representation [35].

Wallach et al. [55] summarize in their survey on the topic of presence the possible

factors that have an influence on the presence in three categories: technological, per-

sonality and the possibility of interaction. Technological factors refer to the properties

of the systems, such as resolution, refresh rate, level of detail of the virtual worlds and

so on. One of the most important technical factors is the degree of reality of the presen-

tation of a VE. Studies have shown that missing details of the representation are more

likely to be accepted by the users than the presence of disturbing elements. The lack

of details can therefore be more conducive to the presence than the attempt to represent

everything in as much detail as possible. Every little mistake attracts attention. The

liveliness of a VE is understood by Schubert et al. as the degree of sensory richness.

The perceived range and depth of the sensory perceptions determines the perceived live-

liness of the VE [31]. If several senses are addressed simultaneously, this can increase

the liveliness and thus the presence. However, care must be taken to ensure that these

impressions are plausible and not contradictory for the user [42]. Otherwise, the op-

posite effect could be the result: a reduced presence. Wearing a VR HMD results in

a much higher presence than interacting with a VE using a 2D computer screen [38].

Particularly important here is the precise, timely and continuous recording of the user’s

viewing direction and changes in position. A correspondence of physical perception,

movement and the stereoscopic representation of the VE is immensely important for

the presence [31, 32, 14, 42].

Since the feeling of presence is very subjective, it is not surprising that character

aspects can also play an important role. Individual factors such as anxiety, creativity,

imagination, empathy, emotionality, information processing, disturbances of conscious-

ness, gender, sexual orientation, and prior knowledge as well as the predisposition to

29

certain behaviors are suspected to have an influence on the perceived presence [55].

Another important aspect concerning the presence is the degree of possible inter-

action. The more a virtual world is designed for interaction, the higher the presence is

perceived. Here, too, it must be noted that interaction requires an individual intention

and the possibility of accomplishment. Since the intention is to be evaluated individ-

ually, the perceived presence will be different with different users. The most obvious

use case for interaction is the possibility to define the point of view directly by turn-

ing the head and thus changing the point of view. The correspondence between one’s

own movement and what is observed supports immersion and presence. The possibil-

ity to explore a VE by natural walking instead of using a controller results in a higher

perceived presence [28]. The results of further studies show that the possibility of inter-

action with one’s own body leads to a higher perceived presence [25, 29]. Furthermore,

it was observed that the content of the VE and its personal relevance for the user can

have an influence on the perceived presence [38].

In general, a high degree of perceived presence is desirable in most cases, and so

attempts should be made to minimize disruptive factors. The technical realization of

a VE system should be designed in such a way that there are no interruptions in the

presentation. The tracking system should also be adapted to the requirements. The

content design should be plausible for the user and should not cause any problems of

understanding. Furthermore, intellectual and emotional understanding can be increased

by choosing appropriate content elements. Possibilities for interaction are desirable

because they require attention, simplify identification with the role played within the

VE and can increase the degree of perceived presence. Here it should be emphasized

that the users can move freely as much as possible and can immerse themselves better

in the virtual world. Even if not all aspects have been clearly understood with regard

to presence when using VE systems, there are enough indications that a special focus

on these aspects is necessary for the development and realization of immersive VE

systems.

2.2 Range imaging

Depth measurement describes the measurement of distance or range using a measur-

ing tool. In our case, the term depth refers to the distance between an object and the

measuring device, as opposed to the possibility of measuring the height and width of

objects. There is a wide range of different depth measurement methods based on dif-

ferent scanning principles. The term range imaging relates to various methods that can

be described as a process of performing a set of measurements that can be visualized as

a 2D image. Every pixel in a range image represents the distance of the corresponding

point within the scene and the measurement device. The range image therefore is a

30

more or less dense multitude of measurements across this scene and any object in it.

The resulting range images can easily be visualized by mapping the distance to a color

or brightness gradient. Therefore, range imaging devices are commonly called range

cameras.

Most range imaging techniques are based on some sort of optical imaging device,

but other physical principles can also be used.

2.2.1 Triangulation

The stereo triangulation technique is based on photogrammetry, where two images from

different point-of-views cover overlapping parts of a scene and can be used to determine

the depth of the scene and thus to construct a range image. The position and orientation

of the cameras relative to each other is predefined or determined within a calibration

phase. Next to these extrinsic camera properties, it is also necessary to know each

cameras intrinsic parameters. The intrinsic camera parameters describe the projective

properties of the cameras used. In order to achieve precise measurements it is necessary

to estimate a set of parameters describing the optical projection and also its inaccuracies

and distortions, which can be used to compensate their effects on the measurements.

To determine the depth, corresponding pixels in the image pairs must be identified.

This problem is called the correspondence problem and is the main problem for correct

depth data estimation with stereo camera triangulation. Uniform plain-colored surfaces

that allow no correspondence point detection are unlikely to be solvable and cannot

deliver any depth data with camera triangulation. Since the depth can only be calcu-

lated for correctly identified pixel pairs, it is desirable to try to match as many pixels

as possible to the corresponding pixels of the second image. In practice, however, this

can hardly be realized. The depth can be calculated by recalculating the projection di-

rections of the original scene points for the pixel pairs. The spatial position at which

the corresponding pixel rays would intersect indicates the scene point and allows the

calculation of the distance. In terms of calculation, this is a triangulation which is made

possible by the exact knowledge of the camera poses and the optical deviations of the

cameras. The outcome of the triangulation process can be improved with additional

cameras and higher-resolution images. With increasing distance of measuring points

from the camera the accuracy of the depth measurement decreases. Increasing the base-

line, which is the distance between the cameras used, increases the accuracy. A baseline

that is too high, however, prevents depth determination for close objects, especially if

they do not appear completely on both images due to parallax.

31

2.2.2 Structured-light projection

Structured-light range imaging techniques use a projected light pattern that is being

captured by a camera system and that allows to determine the 3D shape of an object or

scene. The structure of the light pattern is known, as well as the relative position of the

projector and the camera. The geometry of the illuminated surface deforms the pattern.

To make the deformation visible in the camera image, the camera position is slightly

offset from the projector. From the observation of the projected pattern it is possible to

derive the geometry and also the distance of the projector. There are different types of

light patterns. The pattern can be point, line or otherwise geometrically shaped. It is

important to be able to detect the deformation of the pattern on the projected object.

The projector must be precisely calibrated as well as the camera. For this purpose,

the camera can be calibrated first with a calibration target (e.g. chessboard pattern). The

projection system can then be calibrated by projecting a calibration pattern onto a flat

surface. It is also necessary to determine the relative position and orientation of camera

and projector system. A well-known projection pattern consists of horizontal and ver-

tical stripes, which are alternately projected onto the scene with different positions and

widths. Narrower stripes allow detecting more details, but take more time to scan the

complete scenery. The resolution can be further improved by a technique called phase

shifting, where the stripe pattern is shifted slightly and by taking successive images.

The scanning process in this simple form is not suitable for real-time applications with

a dynamically changing scenery. There are efforts to optimize the scanning process to

allow a real-time capable structured-light scanning [30, 145].

For example, it is possible to use projectors with higher refresh rates and to alternate

the patterns faster. This makes an exact synchronization of the projection with the cam-

era system necessary. Also possible are projection patterns, which illuminate the entire

scene at once and thus can illuminate larger areas of the scene at once. If the entire

scene is illuminated, it is important to identify the correspondences between the cap-

tured projected pattern and the original pattern. The projection of a single stripe solves

this problem more easily than the projection of a complex pattern that appears distorted

within the scene. The pattern must therefore be such that it can be easily captured under

various environmental conditions. A static pattern allows higher sampling rates, since

each video frame can be used to measure the complete scene. However, it also reduces

the resolution, since a part of the projection must be used for the correct recognition of

the pattern. A higher resolution can only be achieved with alternating patterns, which

in turn cost temporal resolution. Alternating pattern techniques are better suited for

high-resolution scans of static objects and scenes. Meanwhile, static pattern techniques

can correctly capture moving objects and dynamic scenes.

The projection of visible light can be disturbing for many environments where the

32

projection of the patterns should not be visible. An infrared light based pattern projec-

tion is a solution and has been realized with a couple of range imaging devices. The

Microsoft Kinect version 1 range imaging sensor is based on this principle. Instead of

an alternating stripe pattern this device projects a randomly looking point pattern that al-

lows a simultaneous measurement over the entire projection area. Camera and projector

are part of a single apparatus, so the relative position and orientation of camera and pro-

jector is fixed and determined by a calibration process. Although the projected pattern

may look random, it is static and has been captured and saved in the device firmware

during the calibration process at the production plant. It acts as a reference to detect

the pattern within the images captured by the IR-camera and allows the depth mea-

surement. In contrast to visible light projection range imaging devices, the Kinect v1

does not offer a very high resolution and also the depth measurement lacks precision

on edges and fine details. But it is usable for real-time capturing of moving objects and

thus allows for a wide range of applications.

Like with every range imaging technique, the structure light projection also has

some limitations and drawbacks. First of all a projection with visible light could in-

terfere with the actual application or at least disturb the user. As mentioned earlier the

common stripe pattern projection needs multiple shifted pattern projections in order to

scan the complete scene or object. The use of a single pattern covering the scene in

front of the camera allows the scanning of the complete projection area at once, but

also limits significantly the resolution of the depth data. The reason behind this is the

necessity to recognize the projected pattern within the captured camera image. If the

pattern consists of points, the system needs at least a small patch or a certain visible

amount of it in order to recognize which part it is. The size of this recognizable patch

determines the resolution of the depth data. Another problem might arise of additional

environmental illumination and unforeseeable light reflection or absorption properties

of the illuminated materials.

2.2.3 Sheet of light projection

The sheet of light triangulation is closely related to structured-light range imaging. The

difference is that the light source only projects one single thin line of light at once,

which can be regarded as structured light. To capture a three-dimensional scenery, the

light source or the scenery needs to be moved along the scanning direction. Comparable

to a flatbed scanner the range image arises line by line. A camera sensor captures the

line reflected by the scenery and by triangulation it is possible to determine the distance

to the light source [12, 20].

33

2.2.4 Lidar

The term Lidar refers to a method of distance measurement in which a target object

is illuminated by means of a bundled laser light pulse and the distance to this object

is determined by measuring the time of flight of the reflected light. The term Lidar

is made up of the two terms light and radar and thus refers to the similar function of

radar. But it can also be read as “light detection and ranging”. In order to measure

a scene, it must be measured point by point. For this purpose, Lidar sensors usually

deflect the laser beam by means of a rotating mirror, so that a range of up to 360° can

be detected. Along this rotation plane the resolution is variable and depends on the

sampling rate and the rotation speed. To capture more than just this plane, multiple

lasers can be used simultaneously, prisms can be used to split a laser, or the direction

of the laser can be deflected by a movable bearing. Lidar sensors are characterized by a

relatively high range and accuracy of measurement. They are used in a large number of

different fields of application. For example, topographic models of the landscape can

be created from an aircraft by scanning the surface strip by strip as the aircraft passes

over an area. Using stationary Lidar sensors, environments can be measured very pre-

cisely in 3D and recorded in the form of point cloud data. This is used, for example,

in archaeological excavations. Autonomous vehicles that use Lidar sensors to capture

the vehicle’s environment in real time are another important field of application. To

determine the distance between the moon and the earth, a Lidar sensor and retroflectors

on the moon are used. Since lasers of different wavelengths can be used, Lidar sen-

sors can also be used to specifically measure atmospheric properties. Depending on the

wavelength of the emitted light, absorption, reflection and diffusion of the light are de-

termined for different elements and gases, from which the properties of the atmosphere

can be determined [37].

The range imaging relevant distance measurement with Lidar generates 3D point

measurements at the positions of the environment that reflect the light. A large number

of 3D measurements is also referred to as point clouds and can be easily visualized.

Since Lidar systems scan the environment point by point and line by line, the point

clouds are distorted by self-motion or due to moving objects.

Lidar sensors such as the Velodyne HDL-64E with their 64 lasers cover 360° hori-

zontally and 26.8° vertically with a sampling rate of up to 15 Hz. The relatively narrow

vertical FOV is ideal for use in autonomous cars where the interesting range is cov-

ered [148]. These sensors are ideally suited for use on a car roof [83].

If a more detailed point cloud with a higher vertical resolution is required, it is nec-

essary to repeat the scanning process with differently vertically aligned lasers. Here,

the point density of the point cloud increases, but needs more time, and the proce-

dure is only partially suitable for non-static objects and scenes. In general, Lidar scans

34

are better suited for capturing static objects and scenes. There are many different de-

vices with different application focuses [168]. The price range of Lidar scanners is

between 100 USD and 100,000 USD [61, 76]. Usable devices for automotive use range

in price from 4,000 to 10,000 USD. Manufacturers expect a significant reduction in

manufacturing costs by eliminating moving mechanical elements and using inexpen-

sive semiconductor-based MEMS sensors [129].

2.2.5 Time-of-flight camera

TOF camera systems are based on active light impulses and the measurement of the

runtime of the reflected light. In their basic principle, they are similar to Lidar sensors,

but—unlike them—capture the entire scene with only one measurement at a time. For

this purpose, the scene is illuminated with precisely controlled light pulses. The re-

flected light is measured using a lens system and a special image sensor. The detection

range is determined by the sensor size and the focal length used. TOF cameras do not

require mechanical moving parts like the Lidar and are therefore simpler and less sen-

sitive to interference. Each individual pixel on the sensor has a circuit to determine the

distance based on the reflected light pulse. With objects closer to the sensor, the photons

from a light pulse are faster back at the sensor as the runtime is shorter. Objects further

away have a longer runtime. With indirect TOF methods, a modulated sinusoidal or

rectangular light signal is used and the phase shift of the outgoing and reflected signals

is determined. The longer the time of flight of the light signal, the larger the phase

shift. The frequency of the light modulation used is decisive for the distance at which

an unambiguous depth measurement is possible on the basis of the phase shift. If the

propagation time of the light exceeds the period of the repeating modulation, the detec-

tor cannot distinguish between near and far reflection. The light reflections taking place

too far away are inevitably interpreted as closer. This problem is called phase-wrapping

and there are different methods to correct the readings. It is possible to lower the mod-

ulation frequency to cover a larger depth range, but at the expense of accuracy. This

approach works only in known environmental conditions, otherwise it may happen that

a phase wrap occurs. Several measurements with different modulation frequencies can

be made in quick succession, so that the erroneous phase wraps can be detected and

automatically corrected. Alternatively, an attempt can be made to deduce implausible

depth measurements from a single range image and to perform a phase unwrapping to

correct the erroneous depth measurements.

With the direct TOF method, the propagation time of the signal is measured directly.

A very short light pulse with an exactly defined duration is generated. The pixels on the

image sensor can be switched on and off with a very fast electrical shutter. The light

pulses registered by the photosensitive elements are stored as an electrical charge in

35

two storage elements assigned to the element. Each of the storage elements has a gate

which controls whether the charge generated by the light is stored or not. At the begin-

ning both gates are closed. The first gate opens together with the emitted light pulse for

exactly the same time period. At the end of this time interval, the first gate is closed

and the second gate—also for the identical time period of the pulse—is opened. The

ratio of the charge quantities of the first and second storage element is linear to the dis-

tance and thus allows the depth measurement directly on the image sensor. The ratio of

both charges allows a differentiation of measuring brightness and distance. In addition

to the distance, the detected charges can also be interpreted as luminosity. Therefore

a TOF sensor also provides a monochrome infrared image of the scene. For indirect

TOF distance measurement, each photosensitive element on the sensor has four mem-

ory elements. Each memory element stores the charge carriers of the recording phase

shifted by 90° and thus enables the calculation of the phase shift and the distance [58,

154]. Very short light pulses are required for depth measurement. Since it is difficult to

generate very strong light pulses with the required edge steepness, many shorter pulses

are generated in succession to capture enough light for the measurement. Very fast

switching LEDs are required to generate these light pulses, which last in the nanosec-

ond range. The camera sensor has to be synchronized exactly with the light source. The

small amounts of light require very light-sensitive and comparatively complex sensors

with relatively large pixel structures. Due to the required area of the individual pixel

elements, very high lateral resolutions and small sensor sizes are not possible. How-

ever, the currently advancing development enables still increasing pixel numbers and

resolutions. TOF cameras work with near infrared light. The light source generates

light in a defined spectrum and the image sensor is equipped with a band-pass filter for

this specific spectrum. This reduces the influence of ambient light on the measurement.

Furthermore, a second measurement without activated illumination can be performed

after each measurement in order to subtract the amount of ambient light from the pre-

vious measurement result. The underlying principle of TOF cameras is very simple

and elegant. The distance measurement happens directly on the image sensor itself.

TOF cameras are very efficient, as they do not rely on additional software algorithms

to process the depth measurements. Due to the very high cycle rates, they also provide

very high frame rates. They are insensitive to environmental illumination. Although

TOF image sensors are more complicated, more complex and therefore more expen-

sive than conventional image sensors, it can be assumed that technological progress

will also bring savings in production costs. TOF sensors are suitable for many differ-

ent applications where no color information is required. The phase-wrapping problem

has a limiting effect. Also falsifications of the measurements can occur if several non-

synchronized TOF cameras are used in a scene or if the light impulses are reflected

36

several times and thus registered several times by the sensor.

2.2.6 Interferometry

Depth measurement using interferometry is based on the reflection of electromagnetic

radiation and uses its wave characteristics to determine phase shifts and distance mea-

surements. Interferometric synthetic-aperture radar is used for satellite-based and ter-

restrial remote sensing. Several temporally and spatially different measurements can

be correlated to obtain a depth measurement and to detect changes [153, 150]. Radio

interferometry is particularly suitable for large-area measurements. In order to achieve

the desired accuracy, it is necessary to correct atmospheric influences on the radio sig-

nals, such as temperature and air pressure, accordingly [68]. Optical interferometry

operates in the electromagnetic spectrum of light. While TOF cameras allow depth

measurements with an accuracy in the centimeter range, optical interferometry allows

measurements with accuracies in the micrometer or nanometer range. However, the

depth range is also limited to less than one millimeter and thus also the possible ap-

plications. There are approaches to increase the possible depth range and enable depth

measurement over several centimeters [94]. Nevertheless, these systems are more suit-

able for high resolution measurements of differences than for distance measurements.

The currently available optical interferometry based techniques are not well suited for

capturing the dimensions of ordinary moving objects in living spaces.

2.2.7 Coded aperture

Coded aperture is a technology for optical range imaging, where the range information

of a scene can be extracted from single camera images. With the help of special pre-

defined or coded apertures and matching algorithms it is possible to reconstruct depth

information in real-time. Regular cameras produce sharp images of objects that are lo-

cated in the focal plane. These objects appear in-focus, while objects out of the focus

plane appear blurred. The further they are located from the focal plane of the camera,

the blurrier the resulting image of the objects. It is therefore conceivable that the amount

of blur in an image is related to the distance of the corresponding object in the scene.

By knowing how coded aperture affects blur, it is possible to deduce to a certain extent

what the object would look like if it were in focus. In addition, it allows to use the

coded blur information to determine the distance and thus estimate a depth map of the

photographed scene. However, it is not trivial to detect blurriness unambiguously. The

ambiguity problem results from regular apertures, where blurred picture elements can

look very ambiguous and prevent correct depth estimation. The solution to this problem

is to create a blur pattern that allows a better estimation of the blur and thus the depth.

Special designed apertures create out-of-focus images that look different from conven-

37

tional camera images, but allow better depth estimation. The problem is to choose the

optimal encoding of the aperture so that the resulting blur can be best interpreted [59].

A specially designed aperture and a corresponding algorithm that is based on a defocus

model corresponding to the specific aperture, allows blur estimation, deblurring of an

image and the transformation of blur into depth data and therefore a range image.

The approaches for coded apertures are various. The “coding” of the aperture de-

cides on the resulting images and the possibility to recognize the blurring and artifacts

within a picture. A simple coded aperture consists of two offset pinholes. More com-

plex coded apertures usually consists of a rasterized binary mask pattern. The search

for the optimal aperture is the question for numerous research projects. More com-

plex devices use beam splitters to capture multiple images with multiple focal planes

at once [24]. The additionally captured information can be used to estimate the depth

information even better.

2.2.8 Light field or plenoptic camera

Light field or plenoptic cameras are an interesting technology that can be used for range

imaging. Light field devices capture additional dimensions or properties of the light, in

particular the direction of light rays captured. This can be done either by using an array

of multiple cameras or by using a microlens array in front of the image sensor of a sin-

gle camera to capture a scene from different positions and perspectives simultaneously.

The configuration with a microlens array results in a micro-camera array that is easier

to handle and easier to construct. Depending on the positioning of the microlens array,

different properties are achieved. A positioning close to the image sensor is referred to

as a standard plenoptic camera. The maximum lens aperture limits the maximum pos-

sible baseline for the micro-camera array with which a scene can be captured and thus

also the possibilities with which the depth can be determined by triangulation. There-

fore, standard plenoptic cameras are preferably used for the very close range [110]. The

principle procedure for calculating the depth information is similar to the stereo camera

procedure. As with these methods, it is necessary to correctly determine the point corre-

spondences of the individual images in order to calculate a depth map. The generation

of a range image by means of a multitude of small camera images is computation-

ally very complex and costs computing time. Modern plenoptic camera systems use

a strongly parallelized calculation with the help of graphics processing units (GPUs)
and reach 30 frames per second (fps) [155]. The relatively small stereo width results

in a good depth resolution at close range of a few centimeters and a less good depth

resolution at further away areas. Since the entrance aperture of lenses cannot easily be

enlarged, stereo camera setups provide better depth perception when capturing space as

used for VR applications. The advanced possibilities offered by light field acquisition

38

are irrelevant for depth determination.

2.2.9 Structure from motion

Structure from motion techniques work according to a principle similar to that of stereo

camera systems. As with these, the depth information is obtained by triangulating cor-

responding image elements from several images with a varying perspective on a scene

or object. In contrast to stereo camera methods, however, the images are not generated

by several spatially offset cameras, but by images from a camera in which the spatially

offset perspective is created by spatial movement of the camera. Corresponding image

elements from successive image sequences are analyzed and used for triangulation. It is

therefore necessary for the camera or the scene in front of the camera to move relative

to each other in order to achieve a change of perspective. As with the stereo camera

method, the greatest difficulty is to find unambiguous pixel correspondences. The more

image elements are used for the analysis, the more accurate and “denser” the potential

depth map of the scene. At the same time, however, the computing effort for the anal-

ysis of more image elements also increases. In addition, structure by motion methods

only work if there is a corresponding movement within the captured camera images. If

the movements become too fast or the exposure times for the individual images become

too long, no meaningful correlation can be made due to motion blur [48]. Structure

from motion methods are similar to SLAM based techniques, but differ in their focus

[67]. SLAM techniques create a model (map) of the environment to enable tracking.

This model does not have to be a complete 3D model of the environment. Structure

from motion techniques, on the other hand, serves to reconstruct the environment as

a 3D model and therefore focuses on a complete and error-free representation of the

environment.

2.3 Collision avoidance for virtual environments

The immersion in a VE by means of a VR HMD allows an immersive experience of

the virtual world, but the perception of the physical environment is largely restricted.

In particular, the VR HMD prevents an unobstructed view of the environment. All

elements of the surrounding area become potential obstacles for the user. Even though

a user experiences the virtual world, the user still remains in the real world. Natural

movements can lead to an unintentional collision with elements of the environment.

There are various methods to include the real environment in the VE in order to prevent

collisions of the user with it. These methods can be generic—i.e. they can be used with

any kind of VE application—or they can be application-specific and represent a tailor-

made solution. In general, all methods are based on the output modalities of the used

system and thus address the user’s sensory modalities. Thus the methods can be divided

39

into unimodal and multimodal methods. A further subdivision of the methods can be

observed in their relation to the context of the application and the virtual world. With

the concept of diegesis from narratology, the methods can be classified into diegetic and

non-diegetic methods. Diegetic methods represent a part of the virtual world or belong

to it in terms of content. Non-diegetic methods, on the other hand, use elements that are

not part of the represented virtual world.

In the following, various examples describing methods for collision avoidance are

presented.

Scavarelli and Teather compared in their work VRCollide! different methods of

collision avoidance that have been specially designed for multi-user VE systems [97].

Three different visual methods of signaling additional VE users have been developed.

The first method showed a humanoid 3D avatar in the VE. In the second method, a

bounding box was displayed at the position of the other VE user. The last method

used the camera built into the HTC Vive VR-HMD to display a live video view of the

environment in the user’s field of view (also called HTC Vive “Tron Mode”). In the

first two methods, no real obstacles were placed in the room, only simulated. In the

video-based method, a real robot-like object was placed in the room. The developed

methods were tested in a small user study. The task for the participants was to reach

a visually highlighted place in the virtual world through natural locomotion. The time

needed to complete the task was measured. The tested system served the purpose to

evaluate the different methods with regard to the time required for the task. The system

used is not able to determine the position and dimensions of any real obstacles, but uses

simulated positions of other VE users. The video function of the VR helmet is part of

the SteamVR runtime environment and is part of the functionality of the device. The

results of the study showed that the users favored the displayed avatars and the video

overlay over the bounding box method, although the number of collisions measured

was lowest with the bounding box method.

Cirio et al. describe a method called “Magic Barrier Tape” as a visual metaphor

for VE systems, which is a combination of collision avoidance strategy and locomotion

technique. The Magic Barrier Tape is intended for VE applications with a real walking

locomotion interface, where the actually available walking area is smaller than the area

to be explored in the virtual world. To ensure that users do not leave the available area,

a security band is displayed in the VE that visually limits the area available for free

movement. However, the tape can also be used for interactive locomotion in the VE.

A user can approach the tape and deform it with a hand controller or another tracked

body part. Here the deformation is transformed into a locomotion within the VE. In this

way, a controlled deformation of the band allows a movement within the VE beyond the

limits of the tracking area. Thus, the Magic Barrier Tape represents a combination of the

40

deterrents known from Peck et al. and a locomotion technique [60]. A large part of the

publication focuses on the description of the locomotion technique. The system does

not automatically detect the walkable area or possible obstacles in the room [45]. Later,

the method was adapted as Extended Magic Barrier Tape for use in CAVE systems [57].

In the same publication Cirio et al. described two further metaphors to prevent users

of CAVE systems from running into the projection screens. On the one hand, “do not

pass” information signs were shown and, in addition, arrow signs were used to indicate

the alternative direction so that users would not run into the projection screens and, in

the best case, realign themselves in the correct direction in order to avoid seeing the

open back of the CAVE. The third metaphor was called Virtual Companion. A small

virtual bird flies in the field of view of the VE user along the position of the physical

wall. As the user approaches a wall, the bird changes color from blue to red and flutters

close to the user’s virtual visual field. The aim is for the user to move backwards

away from the wall. The authors have used a virtual bird, but note that in principle

other representations are also suitable. The Virtual Companion also enabled a gesture-

based form of locomotion within the VE. A detection of obstacles in the room was not

realized, because in a CAVE the view to the physical environment is not impaired.

Redirected Walking is the term used to describe various techniques that enable users

of real walking VE locomotion interfaces to walk a greater distance in virtual space than

the actually available real space allows. Normally the available space is limited by the

size of the tracking area or by architectural conditions. People use their sense of bal-

ance, sight and hearing for orientation. Visual and acoustic impressions can be fully

controlled in VEs and thus enable manipulation of VE users. Redirected walking tech-

niques work according to the principle that the tracked movements are not mapped 1:1

into the VE. Instead, this mapping is manipulated to redirect someone. If this manip-

ulation occurs below the perception threshold, the user can be redirected within the

tracking area without noticing it. There are different possibilities of manipulation. The

walking direction, for example, can be controlled by rotating the view of the VE while

walking (curvature gain). If this manipulation takes place below a threshold value,

users do not perceive this as a rotation of the VE, but as a movement of their own body

and unconsciously correct the walking direction. Another possibility is the scaling of

movements in space. Besides lateral and vertical (e.g. jumping) movements, walking

contributes significantly to a forward movement in space. Therefore, the virtual walk-

ing speed is usually accelerated or slowed down (translational gain). Thus, the virtual

distance covered is different from the real distance. Furthermore, movements with a

rotational characteristic can be manipulated (rotational gain). Here, rotational move-

ments of the viewing direction within a VE are not mapped analogously to the tracked

rotational movements of the users, but a larger or smaller rotation is carried out in the

41

VE. A real rotation of 90° to the side can result in a rotation of 80° or 110° within

the VE, depending on the goal. The perception threshold for the use of gains is not

only very subjective, but can also depend on the accompanying circumstances. Users

who consciously pay attention to the manipulations notice these more easily than peo-

ple who do not pay attention to them or concentrate on other activities within the VE.

The determination of the threshold values for the use of gains is the goal of various

publications and this question remains relevant for the future, as it is unclear whether

changes to the VR hardware (other FOV or frame rates, for example), age and previous

experience influence the sensitivity to gains or not [122, 51].

Furthermore, new manipulation possibilities are being developed and the existing

ones further refined. With additional eye tracking in the VR helmet, saccades—i.e.

rapid changes in the direction of the eyes when looking—and blinking eyes can be de-

tected. Existing research in this field shows that visual perception is severely restricted

not only when the eyes are closed, but also when the eyes are realigning. Since peo-

ple are not aware of this, this temporary blindness can be exploited to mask the gains

better [130].

Similarly, people are blind to unexpected changes within the virtual scene. The

position of virtual architectural details or objects can be changed outside the field of

vision without the user being aware of it (impossible spaces and change blindness).

These subtle changes within the VE could be used specifically to make users choose a

different path within the VE and thus also a different path in the PE. A more detailed

overview of redirected walking techniques can be found in the publication by Nilsson

et al. [122]. Optical flow refers to the perceived movement of the light patterns sensed

by our visual apparatus when an observer moves. For example, the projected image of

the environment as a whole moves from one side to the other across our retina when

the head is rotated. However, the sensory apparatus also recognizes forward or back-

ward movements, which result in a pattern that moves radially inwards or outwards. If

what is seen does not correspond with the other sensory perceptions, a delusion of the

senses and the illusion of self-movement (vection) can occur. A well-known example

for vection often occurs when one sees another train starting to move while sitting in

another train and one experiences the feeling of moving oneself [53]. The perception of

the optical flow is decisive for the visual perception of self-movement. Through a tar-

geted manipulation of the optical flow, the perception of movements can be increased

or decreased and thus possibly also the movement of VE users in space itself can be

manipulated [62].

If redirected walking techniques are to be used in a targeted manner without the user

noticing, the system must be able to determine the current direction of movement of the

user as accurately as possible and estimate the future direction and position. There are

42

different strategies for such systems. For example, single or multiple users can always

be directed to fixed positions in the room. It is also possible to let users follow a given

virtual path, which may be motivated by a task within the VE. It is also possible to try to

estimate and extrapolate the direction of movement of the user. By means of fixed rules

it can be tried to manipulate the paths of several simultaneous users in such a way that

no collisions occur. Since human behavior cannot be perfectly modelled and estimated,

it is not always possible to extrapolate the paths chosen correctly. However, since the

safety of the participants outweighs the subtlety (the ability not to be noticed) of the

manipulations, additional methods must be used if the redirected walking techniques

fail and the user must be protected from a collision. These reset methods are available

as a last resort to realign or reposition users safely in space. Reset techniques are often

disruptive in relation to the experience of the VE and are perceived as an interruption.

Less disruptive techniques utilize elements of the virtual world to “reset” the pose of

the user [122].

Peck et al. developed a VE system with a real-walking interface. The goal was to

let the users of this system freely explore a virtual world of any size without leaving the

tracked area. First, the system had to estimate the walking direction of the users and

then change it unnoticed using redirected walking techniques. Since the walking direc-

tion cannot always be correctly estimated and the tracking area is limited, users may

leave the area and walk against obstacles (e.g. walls). Distractors have been introduced

for this case. These had the aim to attract the attention of the users and to cause them to

change their viewing direction. During this rotatory movement, an attempt was made

to use rotational gains to redirect users in the best possible way. As Distractor again

a small bird was faded in, which should fly around the person and provoke the head

turning. Deterrents were introduced to ensure that users would not leave the boundary

of the tracking area and proceed to the center. These appeared as a visual limitation

of the tracking area when approached. The users were instructed not to walk into this

boundary and to increase the distance. Visually the Deterrents were realized as simple

bars, which slowly faded in when approaching and became invisible again at a larger

distance [60]. A similar virtual safety walls technique is currently used by SteamVR,

Oculus and Microsoft Mixed Reality systems as a quasi standard technique to allow

users to remain in the safe area. With these systems, too, virtual boundaries are super-

imposed on the user’s view and the users are instructed accordingly in advance. Huang

et al. have developed a VE system that displays a 3D reconstruction of the physical

environment within the virtual world to make orientation easier for users and prevent

collisions. The 3D reconstruction of the immediate environment was enhanced with a

graphic of a grid structure and displayed inside the VE. Essentially, this method corre-

sponds to the deterrents of Peck et al. but in this way the structure of the room and also

43

individual objects within the room can be recognized and the shape is not limited to the

outer edges of a predefined walkable area. The reconstruction of the environment in the

described system is not done in real time, but with the help of the integrated stereo cam-

era of the HTC Vive Pro VR helmet and the associated software in advance. In a further

intermediate step, the model of the environment is assembled from several polygon

meshes and manually positioned in the VE. When approaching an obstacle, the poly-

gon mesh with the grid texture is then displayed. The described technique represents

a meaningful extension of virtual safety walls and enables better orientation within the

environment. Without a real-time 3D reconstruction of the surroundings, however, only

static obstacles can be signaled and any change within the environment requires a new

manual scan process, manual processing of the polygon meshes and their positioning

within the VE [112].

Simeone et al. demonstrate an alternative way of how the physical environment

can be included in the VE. The term “passive haptics” refers to the use of physical ob-

jects as so-called “proxies” for virtual objects within the VE. The users see similarly

shaped objects in the VE and can touch the real proxy objects. Provided that they are

tracked accordingly, these objects can also be moved spatially. Without tracking, posi-

tion, orientation, dimensions and shape must be measured before they can be correctly

visualized in the VE. The authors have measured a room and all objects in it and their

bounding boxes. For each proxy, the system selects a corresponding approximated vir-

tual representation and different VEs can be realized with a uniform set of proxies [78].

This concept can also be applied to the virtual signaling of obstacles. The virtual rep-

resentations render them visible and haptically perceptible for the user. The biggest

problem is the complex measurement of the shape and dimensions of arbitrary objects

in space, as well as the choice of a suitable virtual representation.

Another work by Simeone uses a Microsoft Kinect 2 depth sensor to detect further

persons within the tracked area and make them visible to a VE user. For this purpose, a

horizontally aligned floating triangular graphic is displayed in the user’s field of vision,

which is intended to represent a top view of the horizontal field of view of the Kinect.

This metaphor is based on a fictional device (“M314 Motion Tracker”) as shown in

Alien movies and computer games [7]. This device is able to detect life forms or their

movement and displays them as points within a pie-shaped part of a radar image, which

visualizes the detection area of the device. Unlike in the film, however, the orientation

of this virtual sensor cannot be freely pivoted in the presented system, since the Kinect

sensor is firmly positioned in the room. The Kinect sensor detects people within its

range of vision. The position information is visualized as flashing points within the

triangle. The VE user can thus estimate where another person is in the field of vision

of the Kinect or where someone is moving. In order to determine the relative position

44

of the recognized persons in relation to their own position, the user must know the pose

of the Kinect sensor. The metaphor was specially developed for immersive Desktop

VR applications, where users wear a VR HMD but sit in one place and can therefore

easily derive their pose in space without direct visual perception. The system does

not perform spatial mapping of the Kinect sensor information into the space of the VE,

therefore it is left to the users to interpret the displayed information and put it into a spa-

tial context [88]. This is relatively easy with a Desktop VR scenario. Unlike Desktop

VR applications, roomscale VR applications allow users to move freely in space. Espe-

cially rotary movements let people quickly forget in which direction elements of the real

world are. But if a user forgets the pose of the Kinect sensor in the room, the visualized

information can no longer be comprehended. A mental spatial mapping of the relative

positions of the recognized persons would probably lead to a significantly higher cog-

nitive load in a roomscale VR scenario. Therefore, the results of the publication cannot

easily be transferred to roomscale VR applications. In addition, the Microsoft Kinect 2

SDK used only recognizes the skeletal pose of a maximum of six people at the same

time. A recognition of any other kind of objects is not supported [72].

A well-known method in the field of computer vision and robotics is called SLAM.

It is a method to capture an unknown environment in the form of a 3D reconstruction,

to update this model continuously and at the same time to determine the pose against

the generated reconstruction [80]. SLAM can be used for tracking where no external

sensors or marks can be attached for tracking and where the environment is unknown

in advance. Both Sra et al. [89] and Nescher et al. [86] describe the use of a Google

Tango Tablet (with integrated red green blue depth (RGB-D) color and range imaging

sensor), as well as the SLAM functionality integrated in the Google Tango SDK, as a

way to capture the PE and demonstrate the benefits of this technique for VE systems.

The authors describe the ability to use redirected walking to automatically maneuver the

user through the already mapped environment and unknown parts of the environment

while the user experiences an immersive VE. At the same time, however, the need for

novel metaphors and methods of navigation in particularly cramped and crowded spaces

is emphasized. Regular reset methods in redirected walking techniques would disturb

users too much in normally crowded everyday spaces (such as an apartment or office).

Sra et al. show how the depth image information of the Google Tango Tablet can be used

for an automated generation of VE. In a first step, the PE is captured using the built-in

RGB-D sensor and the data is transferred to a more powerful personal computer (PC).
The 3D reconstruction in the form of a point cloud is generated using the Tango SDK

and represents the model of the PE. This model is used to determine the walkable area.

First the floor surface is determined. All determined points above the ground surface

and below a defined height are regarded as obstacles. The detected obstacles mark the

45

outer border of the walkable area in the room and can be represented as edges. The

edges serve a rule-based generation of the contents of the VE. In the demo system,

inaccessible parts of the VE and PE are visualized as lava, empty space, fences and

boundaries. Further predefined elements that match the virtual world are available and

are placed within the virtual world according to a set of rules. At runtime, the Tango

device is worn by the user as a VR HMD and allows tracking in the previously mapped

area via SLAM. The described procedure does not allow a changing environment or

requires a new scanning of the environment, because the detection of the walkable area

takes place during a preliminary step. Also, moving elements cannot be mapped as

moving objects within the generated VE. Hence, the authors emphasize the need for

additional methods of warning before collisions with obstacles that are not represented

by the automatically generated virtual world. Furthermore, the authors describe the

possibility to detect previously learned objects in the depth image data. Due to the

limited computing power of the device, however, tracking of the position and orientation

of these objects in real time is not possible. Therefore the objects were additionally

equipped with markers.

46

Chapter 3

Implementation - Software Prototype

For the study the feasibility of obstacle detection and signaling for VE systems should

be demonstrated by a prototypical implementation. The development of the software

prototype can be divided into two parts based on the functionality, which together pro-

vide the desired overall functionality. One part of the system is responsible for generat-

ing the VE. This includes the interaction with the user, the interactive visualization of

the three-dimensional VE and the metaphors as well as the output via suitable hardware

components. The other part of the software system provides the functionality for obsta-

cle detection. It provides access to the range image sensor used, the processing of the

sensor information and the results.

3.1 Classification of possible obstacle detection methods

An obstacle is defined as a physical condition of the PE that does not allow a user to pass

without further ado. In general, an object in the direct environment of a person, which

hinders a free and unhindered locomotion. In order to detect an obstacle, it is therefore

necessary to be able to detect the position and dimensions of objects within the PE. The

information obtained can then be used to signalize the obstacles in the VE. Obstacle

detection methods can be divided into the three classes: manual, semi-automatic and

automatic obstacle detection.

Manual obstacle detection

With manual obstacle detection, potential elements and objects of the PE are identified

in advance and marked as an obstacle via a manual process. Static conditions, such as

walls or large pieces of furniture, can be easily identified and the corresponding room

area excluded from use for the VE system. A more detailed or complete coverage of

the PE and its objects is possible, but is characterized by a very high effort and is only

worthwhile in static environments. The greatest advantage of manual obstacle detection

is the variable degree of detail and a high flexibility. The disadvantage, however, is that

the manual procedure can be very time consuming and that the information collected

no longer match even small changes to the PE, such as a moved chair. A completely

47

manual procedure is therefore only suitable for static obstacles. The VE systems cur-

rently available (e.g. HTC Vive, Oculus Rift, etc.) include a manual identification and

determination of the area for the use of the VE system in the setup process.

Semi-automatic obstacle detection

In the case of semi-automatic obstacle detection, the system can be used partially au-

tomatically, but additionally requires support through a more or less complex manual

process. A good example of semi-automatic obstacle detection can be illustrated as

follows. Any elements of the PE are tagged with marks, which can be detected by the

tracking system. That VE system would then be able to determine the position of the

marks automatically. However, it must be specified manually which marker represents

exactly which object. The marked objects can be modeled in varying degrees of detail

and represented in the VE. Using the automatic tracking, the marked objects can be

positioned within the tracking area and recognized as possible obstacles. The manual

registration process of marking real objects and creating a virtual representation must

be performed for each of the objects within the PE. Therefore, in terms of obstacle

detection, the disadvantage is that all potential obstacles must be identified in advance.

Automatic obstacle detection

With automatic obstacle detection, the system is able to detect objects in the PE in

order to signal these to a VE user. After initial setup of the system, no further assistance

is necessary for the system to detect obstacles. The obstacle detection works without

additional instructions by the user.

The system described in the following was designed to detect obstacles automati-

cally. Even if it may seem unrealistic to optimize a system so that it works correctly

with all conceivable scenarios. Manual or semi-automatic detection involves additional

effort. Such a procedure can be justified for certain scenarios. For example, a complete

manual or semi-automatic detection of the PE of a VR arcade hall or of museum in-

teriors could make sense if a VE system is to be operated in these facilities. In many

scenarios, however, the effort required is out of proportion to the effort required to clear

the space intended for the VE system. It is considered sufficient if the obstacle de-

tection is limited to the area intended for the use of the VE system. Normally this is

the area where the user is tracked. Outside this area, obstacle detection is not relevant

and therefore not intended. The author is not aware of any tracking system that of-

fers its users 6-DOF tracking and at the same time can be used to automatically detect

objects or obstacles. Some systems support the possibility of attaching and tracking

special markers to arbitrary objects in the PE. This procedure falls into the category of

semi-automatic procedures, in which the real objects must be identified in advance and

virtually represented in order to be used meaningfully within the VE.

48

3.2 Requirements

For an obstacle recognition different approaches and thus also different possibilities of

the implementation are suitable. First it is important to define the planned functionality.

The system requirements formulated at the beginning were as follows:

R1 VE system allows 6-DOF room scale tracking and offers a real walking navigation

interface.

R2 Use of an immersive VR HMD.

R3 Detection of size and position of obstacles in PE.

R4 Visual notification of obstacles using metaphors in the VE

Obstacle signaling is only necessary if the users move around physically and have no di-

rect view of their physical environment. The planned VE system is planned to support

6-DOF room scale tracking. Real-walking navigation interfaces can only be imple-

mented with a tracking system that can capture both the position and orientation of a

user, where the users can walk around freely in the tracking area (real walking for nav-

igation). A VR HMD is a simple way to realize immersive VR applications. It allows

only a view on the VE and obscures the free view on the PE of the user. The two require-

ment items R3 and R4 outline the desired functionality of the system. Essentially, VR

systems such as HTC Vive or Oculus Rift already have a basic functionality that allows

users to act within a designated area and avoid collisions. The systems display a visible

boundary of the defined space if a user threatens to leave the free area. The definition

of the safely usable area in the space takes place at the time the devices are set up as

part of a semi-automatic process. The system should provide additional security by au-

tomatically detecting potential obstacles within this actual area that is to be cleared and

signaling them to the user during the runtime of the VE application. The assumption

is that the space used has a flat and almost level floor. In particular, no steps or ledges

are assumed which would represent additional requirements for automatic obstacle de-

tection. These assumptions apply to a large part of the premises where VE applications

are used. The prototype of the planned system should make it possible to recognize the

position and size of obstacles on this floor surface. It is not planned to recognize the

type and nature of the obstacles and to conclude from this what kind of object it is. The

assumption is that these are everyday and typical household objects, e.g. furnishings

such as chairs, office containers, smaller tables, plants or boxes. This includes also

objects that could have been forgotten on the tracking surface. Objects positioned too

close to each other can be recognized as a single obstacle, but this makes no significant

difference to the required functionality. After all, the aim is to prevent people from

49

running into objects. Furthermore, the detection of walls or similar objects is excluded.

The prototypical implementation is limited to the detection of obstacles within the floor

area intended for the VE system. A complete automatic detection of the PE can be

regarded as useful, but would increase the complexity of such a system significantly.

To reduce complexity, our prototypic implementation will detect only static objects on

the floor. A detection of moving objects would first require a faster processing time.

It would also have to be possible to distinguish between the user and other objects. In

addition, the system would have to be able to detect the occurrence of occlusions and

reliably estimate the pose of obstacles in these cases. In order to omit the numerous

complex cases, it was decided to test the functional principle and the signaling methods

only with non-moving objects. The detection process only has to be carried out once

at the beginning and the detected positions and orientations of the obstacles remain for

the rest of the time. This does not exclude a later optimization of the process to allow

the use of dynamic objects in the future.

The obstacles recognized by the system should be visually signaled within the VE.

A metaphor represents the transfer of a concept to another area and often leads to a bet-

ter understanding or clarification [39]. Metaphors also represent a fundamental concept

in human-computer interaction. Existing VE systems use visual metaphors to prevent

users from leaving the defined safe area. A representation of a fence or stop sign allows

users to remain within a safe area. However, the user must understand or initially learn

the metaphors being used. Metaphors can in principle use all available sensory modal-

ities to warn users. In the developed VE system, priority was given to the particularly

dominant visual perception. The metaphors used are described in the chapter 3.11.3.

3.3 Unity

The game development environment Unity was used to develop the VE system. Unity

is primarily designed for the development of 3D video games. The development envi-

ronment runs on Microsoft Windows and Apple macOS systems. Applications created

with Unity run on Windows, macOS and Linux as well as Android and iOS. Further-

more, applications can be created for a number of different game consoles and for a

proprietary web browser plug-in, which allows the execution of 3D applications in the

browser [131]. The use of Unity for research purposes is free of charge. There are

a number of existing add-ons that make development easier. Access to VR hardware

like Oculus Rift, HTC Vive or Windows Mixed Reality is very easy using SteamVR.

SteamVR will be explained in more detail in chapter 3.4. Unity projects can be eas-

ily extended with the SteamVR plug-in to include all necessary components to access

the SteamVR runtime environment. The plug-in can be downloaded from the Unity

AssetStore [126]. Sample implementations support the documentation [100]. After im-

50

porting the plug-in, a SteamVR compatible application can be compiled and executed

directly. Alternatively, the Unity project can also be run directly within the develop-

ment environment in so-called play mode. The ready-made SteamVR components and

the VR support in Unity allow an instant experience of the Unity scene via VR-HMD.

To access Microsoft Kinect hardware, there are also ready-made Unity plug-ins.

They allow an easy import of the necessary wrapper script components for the Mi-

crosoft Kinect application programming interface (API) [74]. The Unity plug-in con-

sists of several C# scripts that serve as sample implementations and demonstrate access

to the Kinect runtime environment via a program library. The Microsoft Kinect SDK

2.0 supports Kinect 2 sensors starting with Microsoft Windows 8 and only runs on x64

compatible Windows installations [73]. It is also possible to install only the pure run-

time environment [71]. The Kinect 2 runtime environment requires a 64 bit operating

system, but supports 32 bit applications. The installation is very easy with the setup

package. Please note that the Kinect 2 sensor only works correctly with compatible

USB 3.0 host adapters [75].

3.3.1 The Unity concept of development

Unity’s development environment includes a graphical editor for modeling 3D worlds.

In addition to simple basic shapes such as spheres, cubes or planes, more complex 3D

objects can also be placed and scaled in a three-dimensional scene. Objects can be

constructed from simple basic bodies or have a more complex shape. A variety of sup-

ported file formats for 3D objects, graphic files, textures, audio data and video data

can be imported. These data form the basis for the creation of 3D worlds and are re-

ferred to as Assets. A scene also contains light sources for the lighting and a virtual

camera that defines the currently visible portion of the scene. Scenes and GameOb-

jects are an important basic concept of Unity. GameObjects are objects that can be

positioned within a scene. A GameObject is a kind of container for other GameOb-

jects or components. GameObjects allow a hierarchical nesting, e.g. a car may consist

of further objects such as chassis, wheels, doors, steering wheel and so on. Appear-

ance and functionality of a GameObject are determined by the components inserted.

Each GameObject always possesses a transform component that describes a position,

orientation and dimensions within the scene. The properties of the transform compo-

nent always refer to the next higher-level GameObject in the hierarchy, at the top of

which the scene serves as a container for all GameObjects. The hierarchical structure

allows groups of objects to be moved, rotated or scaled without having to manipulate

each individual GameObject accordingly. The car from the example above can thus be

positioned, enlarged and moved as a whole without having to manipulate each of the

individual objects separately. A GameObject can possess additional components that

51

represent additional functionalities. A simple 3D object supposed to be displayed in

the VE, can be realized by a GameObject with a mesh and a renderer component. The

mesh component stores a polygon mesh as a property of the object within a data struc-

ture. A renderer component then draws the surface of the mesh. Unity already contains

a number of ready-made component types. To display the contents of a scene on the

screen during runtime, at least one camera and one light source are required within the

scene. Accordingly, GameObjects must be created within the scene and light compo-

nents or a camera component must be attached to them. The position and orientation

of the camera GameObject determines the rendered perspective and the position of the

light source determines the illumination of the scene. Objects within the scene can be

extended with various components for which assets can also play a role. 3D objects can,

for example, use graphic data as a texture using the Texture component. Audio compo-

nents allow to create sounds. It is possible to import prefabricated packages consisting

of a set of related assets. More complex 3D objects often consist of several polygon

meshes, textures and other data. Using the graphical editor, the individual objects can

be scaled, positioned and grouped to new objects within the scene. Prefabricated com-

ponents allow a multitude of different functionalities [113].

Prefabs are another important concept in Unity. Prefabs are templates for ready

to use GameObjects - including all components, assets and scripts. A Prefab can be

imagined as a template for GameObjects. Just drag a Prefab into the scene to create an

instance. Multiple instances are possible. Changes to the Prefab affect all instantiated

GameObjects. Similar to the GameObjects, Prefabs can also be nested [125].

The above concepts allow to design static 3D worlds and create them as applica-

tions. Furthermore, the graphical editor also allows to animate objects. Therefore this

various possibilities and tools with different functionality are available [101].

For an interaction with a user or an interactive processing of inputs, however, one

is forced to use program code. Program code is written in Unity as source code and

is called a script. Scripts can be imported similar to Assets or written by the user. As

a script component, scripts can be attached to a GameObject, giving additional func-

tionality to the objects in the scene [104]. Part of the Unity SDK is a comprehensive

API available for application development. Despite the strong focus on 3D applications

and especially game development, other forms of applications can also be realized with

Unity. The Unity API integrates the concept of the graphical editor and thus the ob-

jects in the scene can be accessed through the source code, even if they were created

in the graphical editor. A Unity script always implements a class derived from Uni-

tyEngine.MonoBehaviour. To append the script as a script component to GameObjects,

the class name must correspond to the file name. Usually, the class implements one or

more methods that it derives from the UnityEngine.MonoBehaviour class. The most

52

important methods are the Start() method and the Update() method. Start() is executed

once when a script component is activated and is mainly used for initializing required

data structures and parameters. Update() is executed for each new frame as long as

the script is active and is especially useful for recurring operations. Beside the two

methods above, there are other methods (e.g. FixedUpdate(), LateUpdate(), OnGUI(),

OnDisable() and OnEnable()). Also these methods have to be implemented in the class,

otherwise the component cannot be activated in the editor. In the Unity concept it is

not intended to implement constructor methods. Instead, the Awake() method should

be used for very early initialization of objects. There is also a large number of callback

methods that are executed for certain events and that allow additional implementation

scenarios. Some of these events only occur when certain other components are part of

the GameObject to which the script is attached [120].

The flowchart A.1 given in appendix A illustrates the lifecycle of a MonoBehaviour

based class. However, some callback methods are only called for specific events, e.g.

key or mouse input.

GameObjects can also be created, manipulated and removed using code instruc-

tions. Code-based access to GameObjects also includes adding and removing com-

ponents and altering their properties and attributes. GameObjects can be created and

configured in the editor as well as via code instructions. A mixture of both approaches

is the rule. For example, the access to the data of a mesh component allows the manip-

ulation of the polygon mesh using program instructions. The mesh component can be

created in the editor and provided with a polygon mesh asset to be loaded. At runtime,

the mesh can then be manipulated and interactively modified using a script. Access to

GameObjects is always done by using references. A reference can be obtained in sev-

eral ways. It is also possible to save the reference to a newly created object as a variable.

It is possible to assign a GameObject directly as an attribute of a script component in the

graphical editor. Furthermore, it is possible to determine child or parent GameObjects

by code and to determine GameObjects by name or tag within a scene [103].

Unity applications are based on a .NET-based runtime environment. The open

source development environment Mono is used. Mono is .NET compatible, the inte-

grated compiler allows the creation of Common Intermediate Language (CIL) pro-

gram code and also includes a Common Language Infrastructure (CLI) runtime envi-

ronment that can execute it [135]. Only with version 2018.1 Beta does Unity close the

gap to the functionality of .NET version 4.0 [114]. For this implementation the at that

time stable version 2017.4.1f1 (64-bit) for Windows was used.

53

3.3.2 Using external program libraries

Unity scripts are preferably written in C#. Additionally it is possible to write the source

code in a JavaScript-like dialect or to use the programming language Boo. These are

converted internally to C# code. All C# code is translated into CIL code by the Mono

compiler of the Unity development environment. Only at runtime the CIL code is com-

piled by the runtime environment and the just-in-time (JIT) compiler into program

instructions compatible for the platform and then executed. Unity is not directly com-

patible with other programming languages. However, it is possible to develop in a

variety of other programming languages and to compile and use Managed Code CIL

program libraries [157, 116]. Unmanaged code programming languages, such as C

or C++, build program code for a specific platform and operating system architecture.

They do not generate CIL and do not use a JIT compiler. The generated program code is

executed natively on the computer system. The Unity SDK supports with the so-called

native plug-ins the integration of external unmanaged program libraries under certain

conditions [121]. As a native plug-in, program libraries in Unity can be loaded and

executed at runtime if they have been compiled for the executing platform and support

external C-based function calls. The programming languages C, C++ and Objective-C

are particularly suitable, but the list is not limited to them [180]. There are basically

two types of program libraries, static and shared. Shared libraries are similar to a nor-

mal native executable application where the main() method is missing. The program

code is loaded into memory at runtime by the .NET runtime environment. Symbol

names corresponding to the function calls refer to the program code and their memory

address. As a shared library, these instructions are available for execution by other ap-

plications. The .NET runtime environment can execute the methods, pass parameters

as usual and get a return value. With static libraries, on the other hand, the program

code of the program library is copied into the executable during the build process. In

principle, program libraries that are to be used as native plug-ins must be compiled

for the respective platform. If a Unity application is to run on different platforms or

operating systems, different native plug-ins must be compiled and provided for each

platform. All functions of a program library that can be called externally must be de-

clared and implemented with a C binding. This is the only way to ensure that the pa-

rameter passing and return values function correctly from within Unity. A call of C++

methods or the access to objects from a C++ program library is not directly possible,

because there is no uniform standard for the representation of the data in the memory

and also the name mangling carried out by C++ compilers is not carried out uniformly

by different C++ compiler implementations [108]. For this reason, the possibility of

executing function calls according to the C standard is limited to the lowest common

denominator. The necessary procedure is subject to numerous restrictions, since the C

54

standard does not know many language concepts of modern programming languages.

This approach is therefore associated with additional effort, especially when accessing

common data structures or exchanging data using return values and passing parameters

for function calls, difficulties can quickly arise. To call a function of a program library

from a C# application, the function signatures including the required parameters and

return values must be mapped to the C# code and redirected to the native program li-

brary to be loaded at runtime [98]. This concept is called language binding or function

wrapper [179]. Here, the underlying programming language and implementation de-

tails of the program library are hidden and only made available via an interface. The

biggest advantage of the binding or wrapping approach is the possibility to use exist-

ing program code without having to port it into another programming language. This

means that existing program libraries can be used even without having the source code.

The effort to write an interface is usually lower than to re-implement the whole func-

tionality. A disadvantage is the restriction to the C interface when calling unmanaged

program code. In particular, it is difficult to uniformly map complex data types and data

structures between the software modules. Direct access to data in the memory is only

possible if very strict rules are followed. It must be ensured that data structures have

a precisely specified layout in memory. Shared access to such memory areas is done

using pointers that refer to the memory address of the data. Data structures can thus

be divided between C# and C++ program code. When initializing such data structures,

the order of the elements in the memory must be taken into account explicitly. In such

cases, elements can only consist of simple data types such as integers, floating point

numbers, and pointers. More complex custom data types usually require complex cod-

ing, copying and subsequent decoding, which requires additional processing time. For

frequently required data structures such as strings, there are helper methods available

in the .NET SDK which simplify the development. More complex distinct data types

require own implementations. In addition, there is the problem of automatic memory

management for managed programming languages such as C#. With C or C++ applica-

tions, any memory allocation and release must usually be executed explicitly. With C#,

on the other hand, the runtime environment takes care of releasing data structures in

memory that are no longer needed. It is therefore necessary to meticulously control all

memory accesses to shared data structures and also to ensure that no access violations

occur or that the garbage collection (GC) rejects memory allocations. Considering

all these necessities, it is possible to use program libraries in Unity applications. An

advantage of C++ is the possible better performance of certain arithmetic operations.

Unfortunately it is not possible to make general statements about performance gains

of C# compared to C++, since many factors can have an influence. In particular, the

way in which instructions and calculations are executed and the optimization of the

55

code determine whether there are speed advantages. Here, a distinction can be made

between manual and automatic optimizations. In general, however, it can be said that

a successful manual optimization promises more performance gains than an automatic

optimization performed by the compiler or the runtime environment [141]. A manual

optimization of program code is associated with a lot of effort and therefore it must

always be estimated whether the advantages justify this effort. In C++, data sets can be

accessed iteratively very quickly with pointers. Image data is usually also available for

image processing. The individual pixel information or depth values of an RGB-D sen-

sor are stored as a continuous array of data in the memory. Often these data have to be

copied by reading each position in the memory and recreating it at a different memory

position. This type of memory operations can be performed faster in C++ than in C#.

3.4 SteamVR

Steam is a digital distribution platform for computer games. The company Valve Cor-

poration operates the platform and provides a client for various platforms to buy and

download games online. Valve markets the VR system HTC Vive, developed in coop-

eration with HTC, under the name SteamVR. SteamVR not only refers to HTC Vive,

but also to the associated software package [134]. The software package SteamVR

consists of drivers for using the hardware components. For developers there is also an

SDK, which allows them to develop their own VR software. In order to reach a larger

audience, Valve is interested in supporting third-party VR hardware. Therefore the

SteamVR SDK was developed based on the open standard OpenVR. OpenVR is also

a development of Valve Corp, but is available as open source via Github. Because it

is supported by a number of other VR hardware manufacturers, OpenVR is a hardware

independent API for accessing different VR hardware [123, 161] which can be used

with the SteamVR runtime environment [162]. The SteamVR runtime environment

supports HTC Vive in particular, but also devices from other manufacturers (Oculus

Rift, Windows Mixed Reality devices) can be used [172, 178]. For the development of

SteamVR compatible applications in Unity3D a ready-made package is offered, which

has just to be imported into an existing Unity3D project. During the import process, the

Assets, scripts and program libraries contained in the package are copied into a folder

structure in the Unity3D project directory below the “SteamVR” folder. Prefabricated

Prefabs simplify the development of VR applications in Unity, but can also be modified

at any time. For the realization, the then latest SteamVR Unity plug-in version 1.2.3

was used [127].

56

3.5 PCL function library

The Point Cloud Library (PCL) is a function library which is intended especially for

the processing of point clouds. It is available under the Berkeley Software Distribution
(BSD) license and can be freely used, modified and distributed as long as the reference

to the BSD license is not removed. The program library is written in C++ and can be

integrated into own software projects on different platforms (Windows, Linux, MacOS

and Android). The program library functions as a large and versatile algorithmic tool-

box for processing point cloud data and allows “filtering, feature estimation, surface

reconstruction, model fitting, segmentation, registration, etc.” [54].

The function library is implemented in the form of classes that summarize the nec-

essary methods and parameters. These classes are also called filter modules and rep-

resent a basic concept of data processing using PCL. For the processing of point cloud

data, the necessary filter modules are instantiated and configured as required using pa-

rameters. The raw data is passed as input to a filter module and the call of a method

(compute, filter, segment, etc.) starts the processing. The generated output informa-

tion is then stored in the corresponding data structures. Although the different modules

use different parameters and methods in detail, the basic principle (input → process-

ing → output) remains the same for all filter modules. PCL is a completely templated

C++ program library which is based on other program libraries. Most mathematical

operations were realized with the help of the Eigen program library. Boost is a cen-

tral component of the program library and allows in particular a more comfortable and

more secure pointer-based data access and thus helps to avoid copying data between

different filter modules during data processing. OpenMP and Intel Threading Build-

ing Blocks serve for a more efficient multithreading processing of the data. The Fast
Library for Approximate Nearest Neighbors (FLANN) is used to implement a fast k-

nearest neighbor search. The visualization module is based on the Visualization Toolkit
(VTK) program library. For access to OpenNI compatible RGB-D sensors, its API has

also been integrated, but it is also possible to read the point cloud data in other ways.

3.5.1 Installation

The PCL program library provides a very good foundation for processing the depth im-

age data of the range imaging sensors. The program library offers a large part of the

functionality required for the VE system. The program library is available as source

code and can be compiled independently for the desired platform. However, the config-

uration of the compilation environment requires a lot of time and effort. Therefore, the

PCL website offers prebuilt installation packages for different operating systems and

platforms. Installation packages can also be downloaded for the other program libraries

57

to which the PCL program library is dependent. The choice was made to use the in-

stallation package with version 1.8.1 of the program library PCL for Windows x64 and

Microsoft Visual Studio 2017. The corresponding symbol files, which make debugging

easier, are offered for the various installation packages [99].

The setup program installs all prebuilt program libraries into a folder structure at

a freely selectable point in the file system on the computer. The program library was

installed in the folder C:\PCL 1.8.1. So that the program libraries can be loaded by the pro-

grams, the system-wide environment variable PATH is extended by the path to the library

files (C:\PCL 1.8.1\bin). The OpenNI SDK is installed with the official program package

(OpenNI−Windows−x64−2.2.msi) at the default location in the file system. The software is

licensed under Apache 2.0 and may be used under the terms of the license agreement

even though PrimeSense was acquired and closed by Apple. The OpenNI SDK creates

several additional environment variables that point to the SDK installation location and

are necessary to access the program library files. In order for the PCL program library

to be used in a custom software project, the development environment needs to know

which parts of the libraries are to be used for compilation and linking. For Microsoft

Visual Studio (VS) projects, this configuration is done via the configuration dialog of

the project properties. Numerous header files and prebuilt files of the program library

must be entered correctly. This procedure is relatively confusing, so that an automated

generation of a VS project environment by means of the tool CMake is convenient and

is also recommended by the PCL documentation [175].

3.5.2 The PCL concept of development

In the following the most important concepts, which are necessary for the development

with the PCL program library, are explained shortly. The PCL program library is written

in C++. PCL classes and data structures use the template concept of C++ and are imple-

mented with generic data types. Templates allow to define generic classes for different

data types. The advantage of the templates becomes clear, if one looks at the possible

data types for the illustration of the point cloud data. The pcl::PointCloud class serves

as the basis for many operations with point cloud data. In addition to a few attributes,

it provides a data array for storing various point representations. The most important

attributes of a pcl::PointCloud are its height and width, which define the number of points

it contains. It is also differentiated whether a point cloud is organized or not. Orga-

nized point clouds are usually generated using an image sensor-based process and the

point data can be described in rows and columns using the image sensor matrix. Non-

organized point clouds consist of points that are not related in any way. Therefore, the

height of non-organized point clouds is described by one line. Organized point clouds,

on the other hand, have a height and width that represent the dimensions of the image

58

sensor matrix. For a simple query the Boolean attribute isOrganized can be used. The

is_dense Boolean attribute specifies whether a point cloud can contain invalid numerical

values or not. The optional attributes sensor_origin and sensor_orientation describe the spa-

tial position and orientation of the sensor used to acquire the point cloud data. However,

most PCL filter modules do not require or use this optional information. In addition, this

information is known or given for very few point clouds. The attribute points contains

the data array with the individual points of the point cloud [164]. The data array consists

of a one-dimensional std :: vector<templatePointType> data array, regardless of whether it is

an organized or non-organized point cloud. The datatype of the pcl :: pointcloud instance

and thus the datatype of the contained points is defined during instantiation.

1 pcl::PointCloud <templatePointType > cloud;

PCL allows to define custom types for points, but the predefined types are usually suffi-

cient. The type pcl :: PointXYZ, for example, can be used for a purely geometric mapping

of points. If color and transparency information of the points should also be mapped,

pcl :: PointXYZRGBA is suitable as type [177]. There are many other predefined types, but

they do not need further consideration here [167]. The Boost smart pointers are used

in the PCL development scheme to pass on data without costly and time-consuming

copying of data. Usually two different pointer types are used. ConstPtr that cannot be

changed after initialization and SharedPtr that are suitable for data structures that are

to be shared by different objects. The advantage of Boost smart pointers is that ob-

jects that are no longer referenced are automatically deleted if no pointer refers to them

anymore. The programmer is freed from the obligation to remove the created and no

longer needed objects on his own. Smart pointers reduce error sources and barely cost

performance [52]. A PointCloud instance is created as follows and referenced with a

smart pointer.

1 // foo PCL filter example //
2 pcl::PointCloud <templatePointType >:: ConstPtr myPointCloud_Ptr;// boost smart pointer
3 pcl::PointCloud <templatePointType > myPointCloud;
4 fooPCLFilter.setInputCloud(somePointData_INPUT); // set INPUT data
5 fooPCLFilter.filter(myPointCloud); // start filtering
6 // reference the pointcloud
7 myPointCloud_Ptr.reset(new pcl::PointCloud <templatePointType >(myPointCloud));

In the above example setInputCloud is used to pass a reference to a point cloud to a fic-

titious PCL filter module instance. The call of the filter method accesses this input

data and uses the data structure myPointCloud as output location for the output. The smart

pointer myPointCloud_Ptr is initialized with the method reset and references the newly cre-

ated point cloud. This reference can be used as input for a subsequent processing step

or can be passed as final result to a PCL visualization component to be displayed on the

screen. To copy a point cloud into a new data structure, the point elements can be copied

59

individually or the method pcl::PointCloud::makeShared() can be used. The pcl::visualization
library is used to visualize input data, intermediate and final results created by the PCL

program library. Often a visualization helps immensely with the evaluation of the al-

gorithmic approach. For the visualization on the screen the class PCLVisualizer is used.

The instantiation opens a window (also called viewer) on the screen. In addition to the

obvious option of displaying a point cloud, it is also possible to display additional infor-

mation in the form of text or simple graphical elements [165]. The following example

demonstrates the use of a viewer and the display of an info text and a point cloud.

1 // PCL Visualizer
2 boost:: shared_ptr <pcl:: visualization :: PCLVisualizer >
3 viewer(new pcl:: visualization :: PCLVisualizer("PCL Viewer"));
4 viewer−>setCameraPosition (0.0, 0.0, −2.5, 0.0, 0.0, 0.0);
5 viewer−>addText("viewerText", 10, 10, "textTAG");
6 while (!viewer−>wasStopped ()) {
7 // Update Viewer
8 viewer−>spinOnce ();
9 // Update Infotext

10 std:: string testText = "Points : " + myPointCloud_Ptr−>points.size();
11 viewer−>updateText(testText , 10, 10, "textTAG");
12 // Update Point Cloud
13 if (!viewer−>updatePointCloud(myPointCloud_Ptr , "cloud")) {
14 viewer−>addPointCloud(myPointCloud_Ptr , "cloud");
15 }
16 }

A viewer window is opened by instantiating the PCLVisualizer class. The camera position

is shifted slightly to make the displayed point cloud more visible. A text element with

the tag “textTag” is added. As long as the window is not closed, the point cloud view

is updated and the text element is updated with the current number of points. The first

time it is run, the point cloud is added with addPointCloud and a tag. The point cloud

with the same tag already exists in the viewer during further passes of the while loop

and only needs to be updated. However, this is only necessary if the point cloud has

been changed. If this is the case, a synchronization has to be added when accessing the

shared point cloud data structure.

3.6 CMake

The CMake package is a platform-independent development tool and consists of three

main parts [142]. CTest allows automated tests of source code parts. CPack automati-

cally generates installation packages. CMake is used for script-controlled generation of

makefiles or project configurations that can be loaded in various development environ-

ments such as Microsoft Visual Studio. CMake is a supplement to existing development

60

environments and allows heterogeneous development work on different platforms with

different development environments. The most important basic rule is that all changes

to the makefile or the project settings have to be made always via CMake. Also the

direct creation and addition of new source code or header files is not allowed. The

program components are assembled and configured via CMake scripts. CMake uses its

own script syntax to describe the development environment to be created. Within the

script the project name and the build target are defined. The source code files belonging

to a project are also listed.

1 cmake_minimum_required(VERSION 2.8)

2 set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}" ${CMAKE_MODULE_PATH})

3 project(sample)

4 add_executable(sample main.cpp)

5 set_property(DIRECTORY PROPERTY VS_STARTUP_PROJECT "sample")

6 find_package(PCL 1.8 REQUIRED)

7 if(PCL_FOUND)

8 # Additional Include Directories

9 include_directories(${PCL_INCLUDE_DIRS})

10 # Preprocessor Definitions

11 add_definitions(${PCL_DEFINITIONS})

12 # Additional Library Directories

13 link_directories(${PCL_LIBRARY_DIRS})

14 # Additional Dependencies

15 target_link_libraries(sample ${PCL_LIBRARIES})

16 endif()

The find_package script directive causes the CMake tool to search for a CMake package

description in the location of the PCL program library. This was installed together with

the PCL program library and is located in the folder C:\PCL 1.8.1\cmake. The PCLCon-

fig.cmake file contains specific descriptions and macros needed to determine the in-

stallation locations of all required files and add them to a project configuration. With

the CMake tool only the above script has to be loaded to create a fully configured Mi-

crosoft VS solution with the project sample (see figure 3.1). The generated solution

can be opened with Microsoft VS and the development of an application based on the

PCL function library can begin. Configuring the project using CMake is much easier

and less error-prone than manually configuring the project using the VS development

environment.

For example, the add_executable statement can be replaced by add_library to change

the VS project configuration to compile a program library instead of an executable

application.

61

Figure 3.1 CMake configuration for a PCL project.

3.7 Creating native DLLs and embedding them in Unity

The concept of native plug-ins refers to shared or static libraries in Unity with pro-

gram instructions compiled natively for a platform. Under Windows shared libraries

are called dynamic-link libraries (DLLs). Like regular Windows applications, program

libraries consist of program instructions, data, and other resources. In addition to shared

libraries, Unity can also be used for static libraries. DLLs do not have a main method,

as used in C/C++ applications for execution, and therefore cannot be executed directly.

The contained program code is called by function or method name from other applica-

tions. Libraries contain a directory of the available program instructions, which refers

with pointers to their entry area in memory. In the following, the different aspects will

be explained, which have to be considered when creating and embedding a DLL, so that

it can be used by a Unity application.

3.7.1 Create a dynamic-link library

Microsoft Visual Studio 2017 was used to compile the C++ Windows DLL. Visual

Studio organizes related projects into so-called solutions. The basic settings for a C++

based Visual Studio project can be created with the project wizard. The default settings

for a Win32 console application can be used as a template. In the project settings it

62

is possible to specify that the application shall be created as a dynamic-link library

(.dll) with the corresponding file extension. The basic settings are sufficient, but it is

important to select the appropriate target platform. The library to be created can be built

for 32-bit Windows systems or for 64-bit Windows systems. For this project it has been

decided to use a 64-bit Windows 10 system. The full VS project configuration can also

be generated using CMake. In this case the configuration of the project is done with

the help of a CMake script which makes it much easier to integrate additional function

libraries. The following simplified example illustrates how the source code for a simple

DLL can look like. The main method is optional for program libraries. If it exists, the

source code can also be compiled as an executable Windows application.

1 // main method not needed
2 int main()
3 {
4 return 0;
5 }
6

7 extern "C" __declspec(dllexport) void fooMethod () {
8 // do something
9 }

The __declspec(dllexport) statement instructs the compiler to export the selected method.

Exported methods can be imported and executed by other applications from a program

library. It is common practice to hide this statement behind a macro that inserts the

appropriate statement depending on whether a DLL is exported or imported. The macro

can be automatically generated by CMake by adding the following statements to the

CMake script after the add_library statement.

1 add_library(sample main.cpp)

2 GENERATE_EXPORT_HEADER(sampleDLL

3 BASE_NAME sampleDLL

4 EXPORT_MACRO_NAME sampleDLL_EXPORT

5 EXPORT_FILE_NAME sampleDLL_Export.h

6 STATIC_DEFINE sampleDLL_BUILT_AS_STATIC)

7 set_property(DIRECTORY PROPERTY VS_STARTUP_PROJECT "sample")

The above source code would be changed by using the macro as follows.

1 ...

2 extern "C" sampleDLL_EXPORT void fooMethod() {

3 // do something

4 }

The statement creates the macro sampleDLL_EXPORT within the header file sampleDLL_Export
.h and can be used alternatively for __declspec(dllexport) and __declspec(dllimport) in the

63

source code. Depending on whether the library is imported or exported at compile

time, the corresponding statement is used automatically. The statement extern "C" en-

forces the C++ linker to refrain from name mangling and instead creates a function

with a C-linkage. This statement can only be applied to functions and is ignored for

class methods. Exported methods can have parameters and return values. However,

there are limitations with complex data types, such as data structures and strings. In-

tegers, floats, characters, Boolean values and pointers can easily be used to exchange

information between the Unity program code and the library program code executed

natively on the machine [107]. Since exported functions do not allow direct access to

class elements and instances of classes, it is necessary to provide dedicated functions.

These functions are exported and allow to create the desired instance of a C++ class, to

access its functionality and to remove it as well. This makes it possible to map states

using object instances. Thus the access to the Kinect sensor and the processing of the

depth data can be combined in one class and make the desired results available to the

outside world. It has been decided to define a class NativeInterface, which encapsulates

the functionality needed. In a regular application the instantiation would be initiated by

a statement within the main method. Since no main method is provided for a library, a

suitable functionality must be placed among the exported methods and initiate instanti-

ation from within the Unity application. Using two exported methods, it is possible to

create and destroy an instance of the class NativeInterface. The methods are implemented

as follows.

1 extern "C" __declspec(dllexport) NativeInterface ∗ interface_create ();
2 extern "C" __declspec(dllexport) bool interface_destroy(NativeInterface ∗ objRef);
3

4 extern "C" __declspec(dllexport) NativeInterface∗ interface_create ()
5 {
6 dllInterface = new NativeInterface ();
7 return dllInterface−>getPtrToInstance ();
8 }
9

10 extern "C" __declspec(dllexport) bool interface_destroy(NativeInterface∗ objRef)
11 {
12 delete dllInterface; // or use objRef if there are multiple instances
13 dllInterface = nullptr;
14 return true;
15 }

interface_create creates an instance of the class and stores the reference to the instance.

A pointer to this reference is returned to the Unity application and also stored by it

for further calls. The method interface_destroy shows how the created instance can be

removed.

Method calls of class methods take place as follows.

64

1 extern "C" __declspec(dllexport) bool doSomething(NativeInterface ∗ objRef)
2 {
3 return objRef−>doSomethingGetResult ();
4 }

The doSomething method is called by the Unity application and the pointer to the previ-

ously created object instance is passed. Within the library, the method doSomethingGetResult
is called and the return value is passed to the Unity application.

3.7.2 Embed a dynamic-link library in Unity

In order to execute program instructions of a DLL in a Unity application, they must be

imported [140]. Importing represents specific program instructions that allow to load

one (or more) program libraries at program start and to execute the program code of a

program library. The DLL to be loaded is determined by its filename. In order for the

Unity application to find and load the DLL file, the path must be known. The following

explains the basic procedure for loading a DLL in a Unity script, importing methods

and how to use them.

1 #if UNITY_EDITOR
2 using UnityEditor;
3 [InitializeOnLoad]
4 #endif
5 public class sampleDLLNativeInterface : MonoBehaviour
6 {
7 [DllImport("sampleDLL.dll", EntryPoint = "interface_create")]
8 public static extern IntPtr interface_create ();
9

10 [DllImport("sampleDLL.dll", EntryPoint = "interface_destroy")]
11 public static extern bool interface_destroy(IntPtr objRef);
12

13 [DllImport("sampleDLL.dll", EntryPoint = " doSomething")]
14 public static extern bool doSomething(IntPtr objRef);
15

16 private IntPtr refToNativeInterface = IntPtr.Zero;
17

18 void Awake()
19 {
20 // tweak system environment variable PATH to allow DLL loading
21 String currentPath = Environment.GetEnvironmentVariable("PATH",
22 EnvironmentVariableTarget.Process);
23 #if UNITY_EDITOR_32
24 String dllPath = Application.dataPath
25 + Path.DirectorySeparatorChar + "VRKinectPCL"
26 + Path.DirectorySeparatorChar + "Plugin"
27 + Path.DirectorySeparatorChar + "win_x86";

65

28 #elif UNITY_EDITOR_64
29 String dllPath = Application.dataPath
30 + Path.DirectorySeparatorChar + "VRKinectPCL"
31 + Path.DirectorySeparatorChar + "Plugin"
32 + Path.DirectorySeparatorChar + "win_x86_64";
33 #else // Player
34 var dllPath = Application.dataPath
35 + Path.DirectorySeparatorChar + "Plugins";
36

37 #endif
38 if (currentPath != null && currentPath.Contains(dllPath) == false)
39 Environment.SetEnvironmentVariable("PATH", currentPath +
40 Path.PathSeparator + dllPath , EnvironmentVariableTarget.Process);
41 }
42 void Start ()
43 {
44 refToNativeInterface = interface_create ();
45 if (refToNativeInterface == IntPtr.Zero) throw new Exception("error");
46

47 if (doSomething (refToNativeInterface)) { Debug.Log("true"); }
48 else { Debug.Log("false"); }
49 }
50 void OnApplicationQuit ()
51 {
52 interface_destroy(refToNativeInterface);
53 refToNativeInterface = IntPtr.Zero;
54 }
55 }

At the beginning, the Unity Editor is told with the instruction [InitializeOnLoad] to initial-

ize the class sampleDLLNativeInterface even if the application is executed in the editor. The

initialization is not done with the help of a constructor as usual, but with the method

Awake [159]. The Awake method uses preprocessor directives to determine a path to the

DLL file and temporarily adds it to the PATH environment variable. This is necessary

because the path to the DLL file is not identical. If the application is executed in the

Unity Editor, it must be distinguished whether the 32-bit or 64-bit variant of the editor

is active. A built Unity application, on the other hand, will only contain one version

of the DLL, depending on the platform for which the application was created. The

DllImport statements name only a file name and the system searches for the DLL file

to load in all paths defined in the PATH environment variable. The DllImport statements

refer to the methods defined afterwards, whose signatures match those of the identi-

cal exported methods in the DLL. The variable refToNativeInterface of type IntPtr stores a

pointer and serves to reference the created instance of the C++ class NativeInterface. The

pointer must be passed for the execution of class methods. When closing the applica-

66

tion the NativeInterface instance is removed by calling interface_destroy and the referencing

pointers are deleted.

3.7.3 Dynamic-link libraries and multithreading

If the imported library methods are accessed from the update method of the MonoBe-

haviour script, it is necessary to pay attention to keeping the execution time as short

as possible. Extensive calculations within the native plug-in program code delay the

execution of the update method and thus block the execution of the Unity application.

As a result, the image rendering is interrupted and the display of the VE stops. Possible

consequences are cyber-sickness and discomfort. If it concerns unique calls, then it can

be considered whether to accept a blocking or not. To prevent long lasting blockages,

computationally intensive code elements should be executed independently of the Unity

render thread.

Two slightly different solution alternatives are proposed. It is possible to start an ad-

ditional thread in Unity which calls the execution of an imported and longer lasting cal-

culation by a DLL. Alternatively, in the C++ program code of the library, the execution

can be left to an additional thread. In both cases, the execution of a method is made pos-

sible by a thread in the background. The communication of the started thread with the

main thread of the application usually takes place via additionally implemented meth-

ods. These methods allow to check whether a thread has ended execution or whether

execution is still continuing. It is usually also possible to pause, continue or terminate

a thread. The possibilities are manifold and depend on the requirements and the chosen

implementation. Nevertheless, it is helpful and proven practice to fall back on existing

development patterns and APIs. In the following, it will be briefly explained how these

development patterns can be implemented. Unity applications can access a large pool

of .NET functionality, including a number of classes that allow thread programming.

It has been decided to treat the thread execution as a job. A job is started, executes its

task, delivers the results and terminates the execution. The implementation follows a

commonly available pattern [174]. The class ThreadedJob is the base class for the indi-

vidual job. This is realized by a derived class which implements the abstract methods

ThreadFunction and OnFinished. The first serves to call or execute a time-consuming calcu-

lation. The latter is used to execute instructions after the first method has ended. The

crucial factor is the interaction of the update method with the attribute m_IsRunning. The

start of the individualized job begins with the creation of an instance and the call of the

Start method. A new thread is created and instructed to execute the Run method. Two

internal attributes indicate whether the job has been processed or whether the thread is

still running. Both are protected by lock objects to prevent concurrency problems. As

soon as Run is finished, both signal attributes are set (IsDone = true and m_IsRunning = false)

67

and the thread has finished executing. The main application repeatedly calls the Update
method of the job instance and checks these attributes , for example, in the Update method

of a main application script. As soon as the signal attributes indicate that the calcula-

tion has been completed, the OnFinished method is called. Here it is possible to copy the

results or react in any other way. It is important that the job-internal Update method is

called from the Unity main thread. This is the only way to guarantee that there will be

no problems with the non-thread-safe Unity API.

The alternative implementation is similar in many respects, but is completely imple-

mented in C++. Exported methods are used to communicate with different parts of the

library. Methods for starting and stopping a thread form the basis for communication.

For the implementation, the C++ function library Boost is recommended. A multitude

of different functionalities simplifies thread programming. For example, a thread can

be instantiated and started in a start method as follows.

1 thread = boost:: thread(&MyClass :: threadFunction , this);

The method threadFunction is executed by the new thread executed in parallel. Boolean

attributes, which signal whether a thread is still working or not, can be used to com-

municate the execution status externally. Such attributes can also be used to control a

thread. A thread can check in an infinite loop whether an attribute has been set and vary

execution accordingly. In this way a thread can be terminated or paused.

This form of execution is particularly suitable for repeatedly occurring or perma-

nently required functionalities, such as the acquisition of depth image data from the

Kinect sensor and the copying of these into data structures provided for this purpose.

To prevent simultaneous access to shared data structures, the Boost function library

provides various locking options. An exclusive access to shared data structures and

variables can be realized e.g. with Boost::Mutex [173]. A lock object allows a controlled

execution of critical code sections. The principle is simple, even if several threads

request a lock. At the same time, only one thread at a time can receive the lock and ex-

ecute the synchronized code section. The other threads must pass or wait. This allows

shared data structures to be used in a controlled manner. In order for parallel program

execution to actually bring advantages, it is important to synchronize only the necessary

program sections and to make sure that the lock objects do not constantly block large

parts of the executable instructions. It should also be ensured that parallel threads do

not starve by waiting for each other.

The following example demonstrates a simple C++ thread implementation. Using

the two exported methods, the job can be started and stopped.

1 extern "C" __declspec(dllexport) bool startJob(NativeInterface ∗ objRef)
2 {
3 return objRef−>startJob ();
4 }

68

5

6 extern "C" __declspec(dllexport) bool stopJob(NativeInterface ∗ objRef)
7 {
8 return objRef−>startJob ();
9 }

10 class NativeInterface
11 {
12 private:
13 boost:: thread∗ jobThread;
14 mutable boost::mutex mutex;
15 bool jobThreadStop = true;
16 bool job_running = false; // indicates if job started
17

18 void NativeInterface :: jobThreadMethod ();
19 public:
20 bool NativeInterface :: startJob ();
21 bool NativeInterface :: stopJob ();
22

23 }
24

25

26 void NativeInterface :: jobThreadMethod ()
27 {
28 // any preparation
29 // begin of viewer/calib thread while−loop
30 while ((jobThreadStop == false) /∗ && (or any other condition) ∗/) {
31 boost :: this_thread :: sleep_for (100); // pause thread for 100ms
32

33 boost ::mutex:: scoped_try_lock lock(mutex); // try non−blocking lock
34 if (lock.owns_lock () && kinectCloud) { // do something , when locked
35 // the job ...
36 if (someCondition == true) // stop the thread on some condition
37 {
38 jobThreadStop = true; // it stops on next repetition
39 }
40 }
41 }
42 job_running = false; // end of jobThreadMethod −> thread finished.
43 }
44 bool NativeInterface :: startJob ()
45 {
46 // check if job is already running
47 if (job_running == true) return false;
48

49 // otherwise start the job
50 mutex.lock();

69

51

52 if (jobThread != nullptr) { // delete thread if it exists but not running
53 delete(jobThread);
54 jobThread = nullptr;
55 }
56

57 jobThreadStop = false;
58 jobThread = new boost:: thread(boost::bind(& NativeInterface :: jobThreadMethod ,
59 this));
60

61 job_running = true;
62

63 mutex.unlock ();
64 return true;
65 }
66

67 bool NativeInterface :: stopJob ()
68 {
69 mutex.lock();
70

71 jobThreadStop = true; // set true to stop thread loop
72 jobThread−>join(); // wait until thread stops running
73 job_running = false;
74

75 delete(calib_viewerThread); // delete thread instance
76 calib_viewerThread = nullptr; // clean up pointer
77

78 mutex.unlock ();
79 return true;
80 }

It is important that the attribute job_running is exclusively writable. If it is necessary to

read the status of the attribute, an additional method is recommended that reads and

outputs the status.

1 bool NativeInterface :: isJobRunning ()
2 {
3 mutex.lock();
4 bool status = job_running;
5 mutex.unlock ();
6 return status;
7 }

70

3.8 Access to a Kinect sensor and generation of a point cloud

3.8.1 Pinhole camera model

Each pixel of the depth image represents a distance measurement between the optical

center and a part of the PE. The camera system used provides a perspective projection

of the physical environment onto a two-dimensional image sensor. However, in con-

trast to conventional camera systems, not the luminance of the projected object point is

measured, but its distance to the optical center of the camera system. The depth image

information is given as a two-dimensional image matrix analogous to ordinary digital

image data, which corresponds in its dimensions to the number of pixels of the depth

image sensor.

The pinhole camera model is a mathematical description of the projective properties

of an ideal pinhole camera. It provides the relationship between 3D coordinates in space

and their representation as a 2D point on an image plane. Therefore this model allows

the determination of the corresponding projection point on the two-dimensional image

sensor plane for each position in the three-dimensional space in front of the camera.

Since the distance is unknown in a normal image, it is not possible to deduce the 3D

coordinate from the 2D coordinate in the image. Only the direction of the 3D point

can be concluded. However, since the distance is also known with the depth image

information, it is possible to calculate the position of the 3D point. The basic procedure

for converting a range image into a point cloud is described below.

Figure 3.2 illustrates the principle of the pinhole camera model. The optical cen-

ter C of the camera is defined as the origin of a three-dimensional cartesian coordinate

system. The focal length f describes the distance of the image plane from the origin

C. The optical axis follows the z-axis and intersects the image plane at the principal

point o.

The following correlation applies for the perspective projection:

x = Xf

Z

y = Y f

Z

Using homogeneous coordinates, the notation can be written as:

s

x

y

1

 =

f 0 0 0
0 f 0 0
0 0 1 0

X

Y

Z

1

71

90°

C

Z

X

Y

o

x

y

x

y

v
u

z

0,0

width, height

ou

ov

optical axis

P = (X,Y,Z)

P’ = (x,y)

optical center

principal point

sensor plane

f

dkinect

90°

φ

Figure 3.2 Pinhole camera model

Thus, a 3D coordinate P can be mapped with the so-called camera matrix K to a 2D

coordinate P ′ on the image plane.

P ′ = K · P

The sensor plane has not only a resolution but also a physical dimension. It is necessary

to calculate the pixel dimensions, in order to assign a spatial size to the pixel values.

Because the pixel elements on imaging sensors are not always square, it is possible to

take that into account and to describe the pixel size per axis.

pixelwidth = sensorwidth

sensorxres

pixelheight = sensorheight

sensoryres

The mapping of the projected point P ′ on the sensor to pixel coordinates u and v (row

and column) can be described as follows (the origin of the image matrix is defined at

the top left):
u = ou

x

pixelwidth

v = ov
y

pixelheight

72

ou and ov describe the shifted position of the principal point on the sensor. Furthermore,

the focal length is divided by the pixel size. Together these are the intrinsic parameters

of the camera matrix K. The pinhole camera model with the updated matrix K and a

scaling factor s with the value Z looks like this:

Z

u

v

1

 =

f

pixelwidth
0 ou 0

0 f
pixelheight

ov 0
0 0 1 0

X

Y

Z

1

Thus the following allows to calculate the u and v pixel coordinate of the projected

point P ′ on the image plane.

u = X · f

Z · pixelwidth

+ ou

v = Y · f

Z · pixelheight

+ ov

It also allows to calculate the position of P in camera space, where X and Y depend on

Z.

X = (u − ou)Z
f

· pixelwidth

Y = (v − ov)Z
f

· pixelheight

Z can be determined geometrically. First the angle φ between the z-axis and the pro-

jection line of P is determined. This is possible because both the focal length f and the

projection point P ′ on the image plane are known.

sin φ = |
−→
P ′|
f

⇒ φ = arcsin (
√

x2 + y2

f
)

The Kinect TOF sensor outputs the distance dkinect for each pixel. Using the cosine of

73

φ it is possible to calculate Z.

cos φ = |−→P |
|−→Z |

= dkinect

Z

⇒ Z = dkinect

cos φ

⇒ Z = dkinect

cos (arcsin (
√

x2+y2

f
))

⇒ Z = dkinect√
1 + (

√
x2+y2

f
)

With the above method, the corresponding 3D coordinate P = (X, Y, Z) for each

pixel of a range image can be calculated and a point cloud can be generated. This

simple model represents an ideal pinhole camera. More complex models try to depict

and correct aberrations caused by lenses. Usually slight radial and tangential distortions

can be corrected well by approximation. However, other correction measures also exist,

either with specially adapted models or in the form of lookup tables with extensively

determined correction values.

3.8.2 Display a point cloud in Unity

In a first step, a simple static point cloud was created and displayed. For this purpose a

data capturing with a depth sensor is not necessary. For the visualization of a 3D object

in Unity a mesh component is used. 3D objects are described using three-dimensional

coordinates, named vertices (plural of vertex). Usually simple triangular polygons are

used to describe the surface geometry of an object. In most cases a mesh component

contains a related set of information consisting of vertex information, optional color

information per vertex, a surface description in the form of a polygon mesh, normal

vectors and textures. In addition, a continuous index number (plural: indices) is used

to refer to the individual vertices, color values and normal vectors. Each vertex point

usually has a color information, a normal vector and an index. This information can

be stored by the mesh component. For the efficient description of a polygon, not every

corner point with its three-dimensional coordinates is stored in the memory, but only

the indices as references to the vertices. For a triangle, three indices refer to the three

vertices which describe the triangle polygon. Adjacent triangles share vertices with

their triangle neighbors. The order of the vertices of the polygons is usually defined.

With Unity the vertices are interpreted clockwise to triangles. Thus it is always possible

to define the visible side of the polygon and the render process only has to be done for

74

one side of the polygon. It is possible to omit the surface definition and transfer only the

vertices for a point representation to the GPU. The mesh component of Unity uses the

attribute MeshTopology to configure different display variants. The type MeshTopology.Points is

particularly suitable for rendering a point cloud [119]. In order to display a constantly

updated point cloud, the vertex data must be continuously updated and transferred to

the GPU. A limitation to the vertex data saves the transfer of the polygon description.

With the attribute Mesh.MarkDynamic the vertex buffer can be optimized for frequent updates

in Unity [117].

To display the depth information of a Kinect 2 sensor with a resolution of 512x424

pixels a buffer for exactly 217,088 vertices is needed. The fixed resolution allows to

initialize the data structures at the start with a fixed size and only update the mesh data

afterwards. Each vertex can be saved as a Vector3 object and inserted into an array. Only

from version 2017.3 on, 32-bit mesh buffers are supported in Unity, which can address

over 4 billion (232) vertices. Previous versions supported only 16-bit buffers, with a

maximum capacity of 65,536 entries. Only with the 32-bit mesh buffers the complete

point cloud of a Kinect 2 can be stored in a mesh. A mesh component can be assigned

a mesh of a previously imported 3D object (Asset). It is also possible to initialize the

data structure at runtime. Thus, data arrays for vertices, color values and indices are

required for the initialization. Additional data structures for the description of the sur-

face geometry (triangles or other polygons) and texture coordinates (UV coordinates)

are not required because they are not necessary for a point cloud. With Mesh.indexFormat
it is possible to specify that 32-bit indices are to be used for the mesh. For the Kinect 2

data 217,088 empty or randomly positioned vertices are created. The points can e.g.

all be generated on one plane or distributed randomly in the range of a radius threshold

value. Colors for the vertices can also be generated randomly. Furthermore an array

with the indices is created. Now the generated data arrays can be assigned to the mesh

component. Since the mesh does not contain polygon data and should represent points,

Mesh.SetIndices() is used to set the desired mesh topology to points [118].

For the visualization of a point, it is necessary to display it as a polygon. Instead

of having the central processing unit (CPU) calculate this polygon data for each point

and then transfer it to the GPU, a shader-based approach has been chosen. The advan-

tage is that the calculation of these polygons on the GPU is strongly parallelized on all

GPU cores and less data has to be transferred to the GPU. Shader programs represent

program code running on GPUs. In Unity, shader programs can be written or imported

as Assets and form a fundamental part of the rendering process. For most applications,

the standard shaders supplied with Unity are sufficient. Each 3D object to be rendered

in Unity uses one or more so-called materials, which must be assigned to the render

component of the object to be rendered. A material consists of a shader and optional

75

Figure 3.3 Generated point cloud with 200,000 randomly colored points placed within
a specific radius. On the right side is a closer view.

additional Assets, such as textures, UV-maps and bump maps. The material determines

how a 3D object is rendered and how it looks like. The shader program uses the as-

signed materials to calculate surface texture, light angle, reflection, surface relief and

shadow effects. For the representation of a point cloud, a shader from the Pcx project

available under MIT license was chosen (see figure 3.3) [124]. The shader creates a

small polygon for each vertex transferred to the GPU, based on the set radius. It uses

the vertex data transmitted to the graphics hardware and calculates a small polygon cir-

cle for each point. The color can either be set by attribute or can be taken from the

optionally transmitted color information and used for the display. For optimal visibil-

ity from different perspectives, each polygon is aligned flat towards the virtual camera.

When the application is started, the desired mesh is generated, transmitted to the GPU

once and then appears in the VE. By taking a closer look at the generated point cloud in

the VE, it will be noticed that points are rendered as circular polygons (see figure 3.3 on

the right). The representation of such a static 3D object with more than 200,000 vertex

points does not demand high processing power from modern 3D graphic card acceler-

ators. For the VE system the speed was therefore determined, at which the Kinect 2

depth image information can be displayed as a continuously updated point cloud in the

VE. The Kinect sensor data is updated up to 30 times per second. To update a point

cloud just as often in the VE, it is necessary to convert the depth image information

30 times per second into a point cloud, load it into the graphics buffer, transfer it to

the graphics memory and render it. The transfer of data into the graphics memory of

the graphics hardware is in principle a bottleneck, since it represents the slowest part

of the connection between random-access memory (RAM) and graphics memory. For

76

modern graphics cards, however, the transmission of the data necessary for 200k points

in a point cloud does not represent a major hurdle. Powerful graphics cards are usually

connected with 16 Peripheral Component Interconnect Express (PCIe) lanes. Each

lane can theoretically transfer just under 1 gigabyte per second (with PCIe version 3.0).

Even if a part of the raw data rate is occupied by the protocol overhead, more than

enough net bandwidth remains. Regular 3D applications try to store as much of the

used data as possible in the memory of the graphics hardware because it is connected to

the GPU much faster and has therefore shorter loading times. In principle, a constantly

updated point cloud cannot be buffered on the graphics hardware memory, but must be

transferred over and over again. However, the bandwidth of the connection to a modern

graphics card is more than sufficient. As a basic rule, however, it is advisable to avoid

unnecessary data transfer processes.

3.8.3 Microsoft reference implementation

The Microsoft Kinect 2 SDK includes a C# wrapper for Unity. It uses a prebuilt na-

tive program library which was implemented using the C++ Kinect SDK and provides

access to the Kinect runtime environment and the Kinect sensor [152]. It contains a

Unity sample project that demonstrates the functionality and shows how to use the C#

wrapper for the Kinect API. The sample project is easy to start and run and displays

the different data streams of the Kinect runtime environment and the connected Kinect

sensor within the scene. The sample project was extended by the possibility to view

the scene via VR HMD. The Kinect SDK can recognize human bodies and infer the

pose of their limbs. The tracker displays the position and orientation of the recognized

joints. These can be visualized as points. Additional connections between the joints

facilitate the recognition of the tracked body. This functionality is not required for this

application and has therefore been deactivated. In the original Unity3D project, the size

of the point cloud was reduced to a quarter, since the Unity3D versions at that time

could not provide sufficiently large mesh buffers (16-bit indices allow a maximum of

216 = 65, 536 vertices per mesh or points per point cloud). This limitation is no longer

necessary due to the possibility to use 32-bit indices for the mesh buffers and therefore

the complete depth image data of the Kinect sensor is displayed as a point cloud.

The project contains a scene and several C# scripts. The scripts ending with

“-Manager” are responsible for the access to the Kinect runtime environment and can

access different data sources of the sensor. For example, the ColorManager script uses the

data stream of the RGB camera, converts the captured data and writes it into a Unity

Texture2D data structure. This texture is accessed by the ColorView script and assigned to

the attached Renderer component as texture data. To ensure that current data is always

displayed by the Kinect sensor, the access, conversion and assignment of the current

77

C

x

y

v
u

z

0,0

width, height

optical center f

each pixel represents a distance
measurement (visualized within a 2D plane)

C

x

y

v
u

z

0,0

width, height

optical center f

The range image can then be used
to create a point cloud

Figure 3.4 Procedure for generating a range image based point cloud.

78

data takes place within the Update method of the respective scripts. This principle is

also used for the other data streams of the Kinect sensor. The MultiSourceManager takes

advantage of the Kinect API’s ability to access multiple data streams simultaneously.

This allows simultaneous access to RGB and infrared camera data as well as depth

image data. The Kinect runtime environment synchronizes the data automatically so

that there are no time shifts. The example project also demonstrates how a separate

access to the individual data streams can be implemented.

To display the point cloud, the data structures for the point cloud are initialized

within the Start method and the data acquisition of the Kinect sensor is started. For the

visualization of the point cloud, a Mesh component with correspondingly large buffers

is instantiated. There are three important data structures, which are responsible for the

intermediate buffering of the 3D point coordinates, the color information and the in-

dices. The data of the Kinect sensor are read within the Update method of the script.

For this purpose, the configured manager script is accessed and the captured data is

copied. In this case it is the color information of the RGB camera as well as the depth

image. Additional meta information—such as the resolution of the texture created and

other descriptive information—is also copied. The easiest way to transform the depth

image information from the image space into the camera space is to use the Microsoft

Kinect SDK. The fundamental principle was explained in chapter 3.8.1. However, the

C# Kinect 2 API provides methods for this that are advantageous. The CoordinateMapper
class has a number of methods which allow to transform the data of the Kinect sensor

into the different coordinate spaces of the individual camera systems. In addition, the

CoordinateMapper considers the geometric and optical deviations of the two camera sys-

tems. At the factory, every Kinect sensor is calibrated and the camera systems installed

are precisely measured. These correction parameters are stored within the sensor and al-

low to correct the distortions determined during calibration. If such a correction is to be

carried out manually, an independent determination of the calibration parameters would

be necessary. The Microsoft Kinect API allows to convert the sensor data from RGB

camera and infrared (IR) depth camera into the other image space. Since both built-in

cameras use different image sensors, the generated image data are available in different

resolutions and aspect ratios. In addition, there is a perspective deviation between the

two camera viewing angles, as the camera lenses are mounted laterally offset. If the

depth image is to be superimposed with the color information of the RGB camera, it

must first be transformed into the image space of the IR depth camera. In the same way

the SDK allows to transform the image data of the IR depth camera into the image space

of the RGB camera. Furthermore, it is also possible to transform the image data from

the image spaces of the RGB and IR cameras into the camera space of the Kinect sensor.

From the two-dimensional depth image, this transformation generates 3D coordinates

79

Figure 3.5 The rendering times of the Microsoft Kinect 2 SDK Unity sample imple-
mentation rendering a real-time point cloud (see figure 3.6) exceed 11 ms per frame.

in the camera space. These 3D coordinates can also be combined and visualized with

the color channel information of the RGB camera or the luminance information of the

IR camera. The 3D coordinates are correctly scaled and reflect the measured distance

between the spatial features and the sensor in millimeters. Altogether, the calculated 3D

coordinates form the points of the point cloud (see figure 3.4). For the representation

of the point cloud, the points and the corresponding color information are transferred

to the mesh component. The indices are not recalculated because the number of pixels

does not change. The Unity application renders the mesh with a special shader program

that is executed directly on the GPU. The update of the data takes place during the ex-

ecution of the Update method. The result is a continuously updated representation of the

depth image information as a point cloud in the VE.

What is striking about the Microsoft reference implementation is that the frame

rate of the application drops very sharply at runtime. The total execution time per

frame lies significantly over the desired maximum time of 11 ms (see figure 3.5), which

would allow a rendering at 90 fps [128]. The Unity Profiler helps to estimate where

too much time is lost during program execution. With each depth image update, new

objects are created for the vertices and color information. The existing objects have

to be cleaned up by the GC of the .NET runtime environment, which leads to high

performance compromises. Even with a mesh size reduced to a quarter, the goal of an

execution time of less than 11ms per frame was not achieved. The Microsoft reference

implementation for accessing the Kinect 2 sensor is therefore not suitable for use in a

VE system.

Due to the poor processing speed, an optimized C++ based implementation of the

depth image data acquisition and processing was intended. The goal was to replace the

80

Figure 3.6 A Unity application with a constantly updated visualization of a Kinect 2
point cloud with 512x424 vertices.

slow C# wrapper of the Kinect SDK with a more efficient implementation. The Kinect

SDK provides access to the Kinect runtime environment via a C++ API. It was decided

to perform a large part of the depth image data processing in a C++ software module

and only transfer the most necessary data or results to the Unity C# software module.

In order to display the point cloud within the Unity based VE implementation and to be

able to operate without a complex data transfer, the vertex and color data of the point

cloud should be written into the graphics buffers without large detours. The objective

was to avoid unnecessary computing and copy actions in order to reduce execution

times and optimize the render speed with regard to a higher frame rate. The Microsoft

example project and it’s method of mesh generation of the point cloud proved to be

inefficient and should be replaced by a faster mesh-generation directly in the C++ code.

In addition to the pure visualization of the depth image data, further processing was

also planned. For this the C++ function library PCL should be used as it offers clearly

a lot more possibilities regarding the data processing of point clouds.

3.8.4 Mesh manipulation with a C++ native program library

Unity is able to use different graphic APIs like OpenGL or Direct3D for the graphic

rendering. These allow hardware independent access to parts of the graphics hard-

ware. On Windows systems, Direct3D 11 is the only graphics interface that works with

81

SteamVR. Other graphic interfaces are currently not supported by SteamVR. The Unity

documentation describes how a direct rendering can be realized using a native program

library. The rendering is still done using the graphics API of the platform used by Unity

(DirectX, OpenGL, etc.). However, the native plug-in directly accesses the data struc-

tures of this graphics API and manipulates the contents of the buffers before they are

transferred to the GPU. A sample project under MIT license has been extended to write

the Kinect depth image data directly into the Direct3D vertex buffer [160]. The ini-

tialization of the data structures and control of the rendering via native program library

takes place within the Unity C# script UseRenderingPlugin.cs and resembles in parts

the Microsoft Kinect Unity Pro reference implementation. The Unity application does

not need access to the Kinect runtime and therefore no intermediate buffers and arrays

for data acquisition. However, data structures are still required for rendering and trans-

ferring point cloud data to the GPU. These data structures are generated and initialized

in the Unity program code. The size of the point cloud is defined by the number of

pixels acquired. To ensure that the mesh component is generated with sufficiently large

graphics buffers, correspondingly large data structures were created for indices as well

as vertex and color information. These are initialized at startup and can be filled with

any geometric content and color. It was decided to algorithmically generate a spherical

point cloud with a random distribution and coloration of the points within a radius of

1 meter. This initial point cloud shape helps with the positioning within the scene, but

has little significance otherwise. The resulting mesh component contains a point cloud

with the exact number of points required for later manipulation by the native program

library and can be freely positioned in the VE. For Unity to generate the necessary

buffers, the Mesh component must be initialized with the placeholder data. It is impor-

tant that the number of elements corresponds to the later number of points. In order for

the point cloud to be rendered, the space occupied by the object must be defined using

the Mesh.bounds attribute. This defines a bounding box around an arbitrary 3D object in

the scene. An object is only rendered if its bounding box is at least partially within

the visible area in front of the virtual camera. This area is usually calculated automat-

ically by the Unity development environment when a mesh is loaded. However, if the

mesh is generated at runtime, the bounding box must also be calculated and set at run-

time. Since only the position and size of the point cloud can be estimated, a very large

bounding box is chosen. The goal is that the point cloud is always rendered. Alterna-

tively, the bounding box can be adjusted to the point cloud by constantly calculating

the actual size. By calling the method SetMeshBuffersFromUnity(), the pointers to the graph-

ics buffers created and initialized within the Unity context are now transmitted to the

C++ software module. In contrary to the example implementation, for a rendering of

the point cloud only the vertices and color values have to be written into the graphics

82

buffer. Textures, surface descriptions, UV coordinates and normal vectors are not re-

quired for the representation of a point cloud and have therefore not been generated and

transmitted to the graphics hardware. The reference implementation demonstrates these

possibilities and so the remains of this functionality can still be found in the code, but

have no importance. The actual state of the mesh is also read and stored in the example

implementation. In the application, however, the mesh is constantly recreated using

the Kinect depth image data. The data structures must be protected from the GC or

automatic memory management of the .NET runtime environment before starting data

transfer. The following code section “pins” or protects an object in memory, enabling

secure inter-process data exchange using pointers.

1 GCHandle gcVertices = GCHandle.Alloc (vertices , GCHandleType.Pinned);

A call of the method mesh.GetNativeVertexBufferPtr(0) returns the memory address to the

generated Direct3D graphics buffer in memory. The call to gcVertices.AddrOfPinnedObject()
also returns the memory address of the data structures needed to generate the mesh.

This pattern is also used for the other data structures. The execution of the C++ method

SetMeshBuffersFromUnity() aims to copy the transmitted data structures and more importantly

to pass the reference to the Direct3D graphics buffer for later manipulation. With the

copying of the data and pointers the execution of the method SetMeshBuffersFromUnity()
ends, the GCHandle can be resolved and the data structures are again available for the

automatic .NET memory management.

The C++ software module has no knowledge about the used and provided data struc-

tures. For one-dimensional data arrays with simple data types, it is therefore necessary

to additionally transmit the length of the array as a parameter so that the C++ code

knows how far the memory area addressed by the pointer is filled with elements. In

principle it is necessary to know which data type is represented by how many bytes.

For simple data types like Integer or Float there are no differences between C# and C++

code. If data arrays contain complex data types, it is necessary to know their memory

structure and to pay meticulous attention to it during inter-process communication. The

Unity data array, which contains the vertex information, uses Unity.Vector3 objects to map

the vertices in memory. A Vector3 object represents a data structure with three successive

floating point coordinates with single precision (float). The x-, y-, and z-coordinates are

stored in memory one after the other. The situation is similar with the Color data struc-

ture. It contains four floating point values in single precision. Three of them represent

the RGB color channels and the last value represents the alpha (transparency) channel.

This would be similar for the not needed normal vectors and UV coordinates values.

The vertex data array with n vertices results in the following memory structure: [V1x]

[V1y] [V1z] [V2x] [V2y] [V2z] . . . [VNx] [VNy] [VNz]. In the C++ code the identi-

cally structured memory structure is replicated:

83

1 struct MeshVertex
2 {
3 float pos [3]; // type Vector3 in Unity
4 float col [4]; // type Color in Unity
5 // float normal [3];
6 // float uv[2];
7 };
8 static std::vector <MeshVertex > g_VertexSource;

Using type casting, the pointer transmitted from the Unity application can now be ad-

dressed as an array with MeshVertex elements. The two commented out data types from

the MeshVertex definition are not necessary and have therefore been disabled. The point

cloud of the Kinect sensor already transformed into the camera space is stored in a PCL

data structure and is addressed via the pointer pointcloudPtr. The same enumerator i is

used to address the memory address for each point. Copying the point cloud data into

the Direct3D graphics buffer can be done in this way without creating additional ob-

jects. A pointer to the graphics buffer and the number of vertex elements to be copied

is passed to the method writeIntoVertexBuffer. The number of vertex elements is known

because they were created in the Unity context and the size was passed together with

the pointer to the created graphics buffer. The bufferStride variable is calculated from the

buffer size (in bytes) and the number of vertex elements in it. The stride thus denotes

the number of bytes of a MeshVertex element (coordinates and color value) in the data

array. At the beginning, the pointer of the graphics buffer references the first byte of the

data structure in memory. For each point in the point cloud to be copied, the addressed

memory area is now treated as a MeshVertex data structure by type casting. Thus it is pos-

sible to access the graphic buffer by attribute names and to write the properties of the

points to the intended position in the memory. The coordinates of the points are written

to the graphics buffer as vertex coordinates and the color information as RGB and alpha

values. The pointer is then moved by the calculated length of an element (bufferStride)
so that it points to the beginning of the next element in the Direct3D graphics buffer.

1 void NativeInterface :: writeIntoVertexBuffer(char ∗ bufferHandle , int bufferVertexCount , int
bufferStride) {

2 ... // check for pointcloud data and get reference to PCL datastructure
3 for (int i = 0; i < bufferVertexCount; ++i) {
4 if (i < pointcloudSize) {
5 const MeshVertex& srcBuf = g_VertexSource[i]; //org. mesh
6 pcl:: PointXYZRGBA src = pointcloudPtr−>points[i];
7

8 MeshVertex& dst = ∗(MeshVertex ∗) bufferHandle;
9 // flip range image along the x−axis

10 // (because kinect uses right−handed coord.−system and Unity a left−handed .)
11 dst.pos [0] = (float)(−src.x);

84

12 dst.pos [1] = (float)(src.y);
13 dst.pos [2] = (float)(src.z);
14 dst.col [0] = (((float)src.r) / 255);
15 dst.col [1] = (((float)src.g) / 255);
16 dst.col [2] = (((float)src.b) / 255);
17 dst.col [3] = (float)(0.5f);
18

19 bufferHandle += bufferStride;
20 }
21 }

For the conversion of the points from the left-handed Kinect to the right-handed Unity

coordinate system, the position is mirrored along the x-axis. Before and after access-

ing the graphics buffer, the graphics API is signaled that access is taking place or is

complete.

1 // Begin
2 void∗ bufferDataPtr = s_CurrentAPI−>BeginModifyVertexBuffer(bufferHandle ,& bufferSize);
3 ... // copy entries to graphic buffer
4 // End
5 s_CurrentAPI−>EndModifyVertexBuffer(bufferHandle);

The rendering process continues to be controlled by the Unity graphics engine, even

with native program libraries. However, the native program library is given the oppor-

tunity to directly access and manipulate the underlying graphics buffers. The process

is mainly controlled by callback methods and synchronized with the Unity render pro-

cess. The synchronization of the Unity render process and the timing for copying the

data within the C++ native program library is realized via a .NET co-routine. It waits

until the last displayed frame has been calculated. The yield return new WaitForEndOfFrame()
statement wakes up the co-routine as soon as a frame has been rendered and triggers

an event. This event is realized by a wrapper method call to the C++ program library

and triggers the conversion as well as the copying of the Kinect depth image data into

the Direct3D vertex buffer provided by Unity. That way the processing of the point

cloud can be done completely within the C++ software module and also written into the

buffer. No managed code is necessary to read the data of the Kinect sensor and copy it

into the graphics buffer.

In contrast to the C# Microsoft Kinect reference implementation, a C++ based gen-

eration and update of the point cloud mesh achieves significantly shorter execution

times. The considerably reduced instantiations of objects and the resulting reduced

GC runs result in a very low overhead and a total computing time per frame that is usu-

ally less than 11 ms. This enables the system to display the point cloud in the VE with

the desired 90 fps. For the visualization of a continuously updated Kinect point cloud,

the substantially more efficient implementation using a C++ based program library is

85

Figure 3.7 The rendering times for a Kinect 2 point cloud using the native program
library concept of Unity are on average less than 11ms.

clearly preferable to the C# based .NET implementation. The lower overhead due to

the avoidance of unnecessary object instantiations, the direct access to the underlying

C++ data structures of the Kinect runtime environment as well as the direct access to the

Direct3D 11 vertex buffer result in significantly shorter execution times (see figure 3.7).

3.8.5 Converting the depth image into a PCL point cloud

The Kinect sensor is accessed via the Microsoft Kinect 2 SDK and the provided C++

API. The CMake script is extended to add the Microsoft Kinect 2 program library to the

Visual Studio project configuration. A CMake module is used to configure the required

library components [90]. The CMake script is modified as follows to add the Kinect

program library to the project configuration in addition to the PCL program library.

1 # Find Packages

2 find_package(PCL 1.8 REQUIRED)

3 find_package(KinectSDK2 REQUIRED)

4

5 if(PCL_FOUND AND KinectSDK2_FOUND)

6 # Additional Include Directories

7 include_directories(${PCL_INCLUDE_DIRS})

8 include_directories(${KinectSDK2_INCLUDE_DIRS})

9

10 # Preprocessor Definitions

11 add_definitions(${PCL_DEFINITIONS})

12

13 # Additional Library Directories

86

14 link_directories(${PCL_LIBRARY_DIRS})

15 link_directories(${KinectSDK2_LIBRARY_DIRS})

16

17 # Additional Dependencies

18 target_link_libraries(sampleDLL ${PCL_LIBRARIES})

19 target_link_libraries(sampleDLL ${KinectSDK2_LIBRARIES})

20 endif()

A re-run of CMake updates the Visual Studio Solution project configuration accordingly

and allows to use the Kinect 2 API.

The PCL program library contains an abstract class pcl::Grabber, which is intended

for the implementation of data acquisition by input devices such as cameras. It serves

as a basic framework for the implementation. For the access to the Kinect 2 sensor

the freely available implementation of KinectGrabber [84] is used. This implements

the class pcl::Grabber as Kinect2Grabber. Using the two methods start and stop the data

acquisition by the Kinect sensor can be controlled. The class uses the Microsoft Kinect

C++ API to access the Kinect sensor. Within the class constructor, the required objects

and the access to the Kinect sensor are initialized. When the start method is called,

the so-called readers are started, which inform the Kinect runtime environment that

data should now be read. The Kinect2Grabber class uses the depth image information as

well as the color and infrared image information of the sensor [69]. As soon as the

readers are ready, a thread is started which continuously reads the data of the individual

readers. Each reader has an AcquireLatestFrame method that sets a temporary pointer to

the new frame or data from the reader. Subsequently, linked methods are signaled

that the data is ready for further processing. For this signaling mechanism the Signals2
class of the Boost program library is used. Signals2 implements a signal/slot concept

in which different objects can execute linked methods using signals. In this case, a

signal is triggered when new data is available from the sensor and a linked method

can copy, process or otherwise react to the sensor data. The connection is established

using the Kinect2Grabber::registerCallback method. As parameter a pointer to a method is

expected, which in turn expects as parameter a reference to the type of the desired PCL

point type. The Kinect2Grabber class supports the point types for the callback methods:

pcl::PointXYZ, pcl::PointXYZI, pcl::PointXYZRGB and pcl::PointXYZRGBA. An extension by further

point types is possible. Depending on the linked method and in particular on the point

type used, a different conversion of the data is triggered in the Kinect2Grabber class. This

is necessary, because the Microsoft Kinect 2 API represents the sensor information

differently than it is intended for the PCL classes. The advantage of this procedure

is that the conversion only takes place when a callback method has been linked and

only for the required point type. Four methods implement the conversion using the

ICoordinateMapper class of the Kinect 2 API. This enables a conversion of the acquired

87

Kinect data between the different image spaces as well as into the camera space. In this

way, for example, the color image information of the RGB sensor can be transferred

to the image space of the infrared image information or the infrared image information

can be transferred to the camera space (which is the space of the point cloud) [65].

For the point type pcl::PointXYZ the conversion is performed by the method Kinect2Grabber
::convertDepthToPointXYZ. For this only the depth image information is converted into the

camera space to generate a point cloud. For the point type pcl::PointXYZI the conversion

is done by the method Kinect2Grabber::convertInfraredDepthToPointXYZI. For this purpose, in

addition to the depth image information, the infrared image information is mapped as

luminance value of the points. For the point types pcl::PointXYZRGB and pcl::PointXYZRGBA,
the color image information and the depth image information are converted into the

camera space to generate a colored point cloud. The alpha channel of the point type

pcl::PointXYZRGBA is not used, therefore the generated point cloud corresponds to the point

type pcl::PointXYZRGB. All four methods return a pointer reference to the generated pcl
::Pointcloud data structure. The attributes of Pointcloud match the key parameters of the

Kinect sensor and contain the points with the point type that has been selected. The

invoked callback method gets a reference to the generated Pointcloud and can then access

that data.

The following example demonstrates a PCL application that uses the Kinect2Grabber
class described above to access the Kinect sensor and displays the depth image data as

a point cloud in a PCL Viewer window.

1 #include <pcl/point_cloud.h>
2 #include <pcl/point_types.h>
3 #include <pcl/io/boost.h>
4 #include <pcl/io/grabber.h>
5 #include <pcl/visualization/pcl_visualizer.h>
6 #include "kinect2_grabber.h"
7

8

9 typedef pcl:: PointXYZRGBA PointType; // the chosen point type
10

11 void main() {
12 // PCL Visualizer
13 boost :: shared_ptr <pcl:: visualization :: PCLVisualizer > viewer(new pcl:: visualization :: PCLVisualizer

("PCL Viewer"));
14 viewer−>setCameraPosition (0.0, 0.0, −2.5, 0.0, 0.0, 0.0);
15

16 // Point cloud data structure
17 pcl:: PointCloud <PointType >::Ptr cloud(new pcl::PointCloud <PointType >);
18

19 // Lock for thread synchronization
20 boost :: mutex mutex;

88

21 // Callback function to be connected to the Kinect2Grabber
22 boost ::function <void(const pcl::PointCloud <PointType >:: ConstPtr&)>function = [&cloud , &mutex](

const pcl:: PointCloud <PointType >:: ConstPtr& ptr){
23 // get lock and copy point cloud from grabber
24 boost ::mutex:: scoped_lock lock(mutex);
25 cloud = ptr−>makeShared ();
26 /∗ point cloud processing possible here ∗/
27 };
28

29 // Kinect2Grabber instance
30 boost :: shared_ptr <pcl::Grabber > grabber = boost:: make_shared <pcl:: Kinect2Grabber >();
31 // Register callback function
32 boost :: signals2 :: connection connection = grabber−>registerCallback(function);
33 // Start Kinect2Grabber
34 grabber−>start();
35

36 while (!viewer−>wasStopped ()) {
37 viewer−>spinOnce ();
38 // get lock and draw point cloud in viewer
39 boost ::mutex:: scoped_try_lock lock(mutex);
40

41 if (lock.owns_lock () && cloud) {
42 if (!viewer−>updatePointCloud(cloud , "cloud")) {
43 viewer−>addPointCloud(cloud , "cloud");
44 }
45 }
46 }
47

48 // Clean up after viewer window closed
49 grabber−>stop();
50

51 // Disconnect callback function
52 if (connection.connected ()) {
53 connection.disconnect ();
54 }
55 }

The callback method function is defined directly in the source code using the Boost

program library. The lambda expression allows to use the two referenced objects mutex
and cloud also in the program body of the method. The Kinect2Grabber is then instantiated

and the callback method linked. In the example above, the task of the callback method

is to copy the point cloud into a new data structure. A mutex lock prevents simultaneous

access to the shared data structure of the point cloud.

89

3.9 Registration of Kinect sensor and VR tracking system coordinate sys-
tems

In addition to a high-performance visualization of the point cloud, it is also important

to remember that the generated point cloud primarily represents a data structure and

contains information that serves the geometric mapping of the physical environment.

So the question arises how this information should be interpreted meaningfully.

3.9.1 The correct pose of the point cloud in the VE

The depth image of the Kinect sensor represents part of the physical environment. By

transforming the depth image from the image space into the camera space, a three-

dimensional point cloud is created. As described above, this point cloud can be dis-

played in the VE. All points of the point cloud refer to a common coordinate origin.

The runtime environment of the Kinect sensor defines the optical center of the built-in

infrared camera as the coordinate origin, the z-axis corresponds to the “viewing direc-

tion” of the camera. A right-handed coordinate system is used so that the x-axis points

away from the RGB camera next to it and the y-axis points to the top of the device [70].

Each point of the point cloud represents a point in the camera space detected by the

Kinect sensor and is described by a three-dimensional Cartesian coordinate. The scal-

ing of the axes corresponds to the metric system and thus the coordinate values can

be interpreted relatively easily. For example, a point P = (1.0, 0.0, 1.5)T is located 1

meter to the left and 1.5 meters in front of the optical center of the IR camera. If P

is converted from a right-handed coordinate system - as used by the Kinect API - to a

left-handed coordinate system - as used by the Unity development environment - the

new point P2 will be at position (−1.0, 0.0, 1.5)T . It is sufficient to mirror the value

along the x-axis.

The depth information of the Kinect sensor can be used, for example, to detect the

position and size of obstacles. In order to be able to place this information in a spatial

relation to the VE, it is necessary to place the reference systems of Kinect sensor and

Lighthouse tracking in a mutual relation. The simple example explained above, the

“walkable” point cloud, illustrates the problem. The Lighthouse tracking system of the

VR hardware components uses the same physical environment as the Kinect sensor. The

VR tracking system runtime also uses a three-dimensional Cartesian coordinate space

to describe the positions and orientations of the tracked devices [111]. The coordinate

origin of the tracking system is defined as the center of the defined tracking area. As

with the Kinect sensor, the scaling of the coordinate system corresponds to the metric

system.

In order for the visualized point cloud to be accessible in the VE, it is therefore

90

necessary to position, rotate and display the information of the point cloud correctly

scaled into the virtual world. When this is done correctly, every visible point of the

point cloud in the VE corresponds to the real point in the PE. Within the VE, a user

would be able to see the spatial geometry captured by the Kinect sensor. He could move

in it like he could in real space. The position and orientation of a chair seen in the point

cloud would correspond to the same perspective in physical space. Of course, a point

cloud looks different than the PE. But if a user would touch a point of the point cloud

chair within the VE, the same point of the real chair would be touched simultaneously

in the PE.

3.9.2 Determination of the relationship between the coordinate spaces

Since both the Lighthouse tracking system and the Kinect sensor use identical metric

scaling for mapping the measurement results, no scaling of the data is required for a

transformation between the coordinate spaces. In order to place the Kinect sensor in-

formation in a spatial relation to the Lighthouse tracking space, an Euclidean transfor-

mation is required with which the point cloud and its points can be rotated and shifted.

It is necessary to determine the parameters for this transformation.

If an obstacle is detected in the depth data of the Kinect sensor, the information

about the physical position, orientation and dimensions can be transferred to the VE

with the same transformation. Similarly, all conclusions about the spatial geometry

drawn from the depth image information can be transferred to the VE. There are several

ways to estimate the parameters of the desired displacement and rotation.

The Lighthouse tracking system does not track arbitrary objects, but it is possible

to attach an additional Lighthouse marking to the housing of the Kinect sensor. This

would allow the position and orientation of the marking to be determined. Since it

is impossible to place the marking at the position of the origin of the depth camera

sensor’s coordinates, the displacement and rotation between the depth camera and the

marker must be determined. A very exact assembly would be conceivable, in which

the orientation of both coordinate spaces matches. Consequently, only the displacement

would have to be determined by very precise measurement. However, this measurement

can be very time-consuming and error-prone. In addition, the Vive Trackers only existed

as product announcements at the time of realization. Therefore, this option only plays

a role for future implementations. It would also be conceivable to mount a Lighthouse

hand controller directly to the Kinect sensor. Determining the pose of the Kinect sensor

using the Lighthouse tracking system would allow continuous tracking. For the planned

VE system, however, a tracking of a spatially portable Kinect sensor is not needed. It

is sufficient to place the Kinect sensor in the space and to determine its fixed position

and orientation in the Lighthouse coordinate space once. Therefore, it was decided to

91

Rigid transformation between
measurements from Kinect and
Lighthouse tracking space

Figure 3.8 Visualization of Lighthouse and Kinect coordinate spaces and the determi-
nation of the rigid transformation between both spaces.

do without the Vive tracker and to determine a static pose that is valid until the Kinect

sensor is moved in space.

3.9.3 The calibration process

A more elegant alternative is to calculate the pose or the required transformation param-

eters using a measurement procedure and a suitable algorithm. The method is inspired

by Oliver Kreylo’s approach to extrinsic camera calibration for mixed reality video

recording [93]. The required measurements are carried out using a defined procedure

and then used as input for the algorithm. As a result the required transformation parame-

ters are obtained. The process will be referred to as the calibration procedure and will be

explained in more detail below. The aim of the calibration procedure is to determine an

optimal transformation, which makes it possible to transfer a pose from the coordinate

space of the Kinect sensor to the coordinate space of the Lighthouse tracking system

by rotation and shift. Scaling is not necessary for the reasons mentioned above. In the

case of differently scaled measurement data, however, it would also be conceivable to

determine them in the course of the calibration procedure. As described earlier, the

pose of the Kinect sensor in relation to the Lighthouse tracking system is not known.

For the calibration procedure, however, the measured values of the Kinect sensor as

92

Figure 3.9 Vive controller with mounted disc target.

well as the measured values of the Lighthouse tracking system are available. Specific

corresponding measurements of both measuring systems allow to determine the desired

transformation. The measurements by the Lighthouse tracking system represent the

pose of the various tracked devices, such as a hand controller. The pose describes the

position and orientation of a device within the tracking area. The Kinect sensor mea-

surements, on the other hand, represent a set of point coordinates in camera space. The

individual points have no orientation information. However, the pinhole-depth camera

model used relates each individual point to the pose of the infrared camera itself, since

each point refers to the optical center of the camera system. It is therefore possible to

deduce the pose of the Kinect sensor from the measurement points.

In order to obtain corresponding coordinate pairs from both measuring systems, a

reflector is mounted to a Lighthouse hand controller. This should be well visible in the

depth image of the Kinect sensor and allow a good depth measurement. The decision

was made to use a flat round disc with white paper (see figure 3.9). Make sure that the

reflector does not obstruct the tracking by the Lighthouse tracking system. It is also

important that the Kinect sensor is aligned to the desired room section, that is also cov-

ered by the Lighthouse tracking system. This allows to simultaneously determine the

position of the hand controller through Lighthouse tracking as well as the position of

the mounted reflector in the depth image of the Kinect sensor. If the measurements of

the two subsystems are carried out simultaneously, the required corresponding position

measurements of both systems are obtained (see figure 3.8). When mounting the reflec-

tor on a Vive controller, there is the problem that the reflector cannot be mounted at the

coordinate origin of the Vive controller. This results in a spatial mismatch between the

93

Figure 3.10 On the left: Vive controller with visualized coordinate origin. Red is the
x-axis, green the y-axis and blue is the z-axis. On the right: Vive controller with coor-
dinate origin shifted to the bottom tip, where the target is mounted.

position of the reflector and the Lighthouse tracking position of the controller. This is

unavoidable due to the design, but can easily be compensated by clever positioning of

the reflector. In order to generate correct measuring point pairs, the discrepancy must be

corrected. With the Vive handheld controller, the determined position is approximately

at the position of the upper menu button. A left-handed coordinate system is used. The

x-axis points to the right, the y-axis to the top and the z-axis points to the front in the

direction of the donut-shaped light diode measuring ring, as shown in figure 3.10. Since

the orientation of the hand controller in the room is also known by the 6-DOF tracking,

it is possible to determine the position of the reflector in the room. It was decided to at-

tach the target reflector to the lower end of the handgrip. The position is shifted -1.5cm

along the y-axis and -16cm along the z-axis (see figure 3.10 right side).

It is important to capture the Vive controller pose and the position of the target

reflector in the Kinect depth image at the same moment. For this purpose it is recom-

mended to keep the handheld controller as quiet as possible in order to avoid influences

caused by time-shifted measurements. The reflector should be aligned in the direction

of the Kinect sensor. The keys of the controller can be used to trigger the recording of a

measurement point. While the position of the hand controller and the attached reflector

can be calculated directly from the determined pose of the Lighthouse system, the posi-

tion information from the depth image must be determined somewhat more elaborately.

The center of the reflector disc must be located within the depth image. In the system,

this process is performed manually by the user by using the mouse to mark the center

of the disc in the depth image. The pixel coordinates of the clicked image point are

94

transformed from the image space into the camera space and represent the position of

the Kinect measurement. It is conceivable to automate this process in a future develop-

ment so that the reflector is automatically recognized in the depth image and its center

is marked. This would allow a slightly more convenient calibration process.

The individual measurements represent position data in the coordinate space of the

respective systems and can also be seen as vectors in the respective vector space. The

transformation can be regarded as a displacement and rotation, which allows to align

the measuring points of both vector spaces in the best possible way. Under ideal condi-

tions, the measurements of both systems would be perfect and a transformation would

allow an error-free transfer of poses from one vector space to the other. In reality, the

initial measurements of the tracking system and the utilized depth camera are erroneous

for various reasons. Since the transformation is determined on the basis of these im-

perfect measurements, at best an approximation to the optimal transformation can be

determined.

3.9.4 Calculation of the transformation parameters

For the calculation it makes sense to consider displacement and rotation as two sep-

arate subproblems, although the same pairs of measuring points can be used for both

calculations. The measuring points can be described as vectors.

P =

x

y

z

The corresponding measuring points form two point sets Mkinect and Mlighthouse. A

rotation R and a shift t is searched for that applies:

Mkinect = R · Mlighthouse + t

The determination of the shift represents the simpler part of the calculation. A shift t is

searched that matches one vector to the other:

Pkinect = Plighthouse + t

t = −Pkinect + Plighthouse

A pair of measuring points is sufficient to determine the necessary displacement by

means of a vector addition. The vector t is the necessary displacement to correctly

position a coordinate from the vector space of the Kinect sensor in the vector space of

the Lighthouse tracking system. If there is more than one measurement point, it is not

95

enough to determine the displacement. It is also necessary to determine and adjust the

rotational differences between the measuring spaces.

In order to determine the rotation, further pairs of measuring points are needed

which further limit the remaining degrees of spatial freedom (the rotation around the

three spatial axes). Therefore, a common center Clighthouse is formed for all n measuring

points of the Kinect sensor and the center Ckinect for the n measuring points of the

Lighthouse tracker system.

Clighthouse = 1
n

n∑
i=1

P i
lighthouse

Ckinect = 1
n

n∑
i=1

P i
kinect

The determination of the displacement t is now carried out analogously to the case

described above with only one pair of measuring points.

t = −Clighthouse + Ckinect

This is based on the assumption that the measuring points of both vector spaces are in

an identical spatial constellation. Extreme outliers during the measurement falsify the

calculation of the centers.

A popular algorithm for the approximation of different point clouds is the Iterative

Closest Point algorithm. The algorithm iteratively tries to approximate two given point

clouds point by point and to minimize the deviation, which is regarded as an error.

The special feature of the ICP algorithm is that no predefined point correspondences

are necessary for the input. The algorithm does not only work with point clouds, but

rather with all conceivable modeling possibilities, insofar as point correspondences can

be derived from them [10].

Since measurement point pairs and the correspondence between Kinect sensor mea-

surements and the measurements of the Lighthouse tracking system are already known,

a superior approach is possible. The Kabsch algorithm allows to calculate a rotational

matrix that is optimal for the transformation. The algorithm requires two sets of points

that are related in pairs and calculates the rotation, but not the displacement, in order

to approximate one set of points to another as closely as possible [3]. First, both sets

of points must be moved to the coordinate origin using their center points. The aim is

to eliminate the displacement component of the transformation. Then it is necessary

to calculate the cross-covariance matrix H . This is formed according to the following

scheme.

H =
n∑

i=1
(P i

kinect − Ckinect)(P i
lighthouse − Clighthouse)T

96

Singular value decomposition (SVD) can be used to calculate the optimal rotation ma-

trix R for the desired transformation. The SVD factors the covariance matrix H into

the three matrices U , S and V from which the rotation matrix can be derived.

[USV] = SV D(H)

Whereby for H applies:

H = USV T

The rotation matrix R, which accomplishes the rotation from the Kinect into the Light-

house vector space, can now be calculated as follows:

R = V UT

At least 3 linear independent measuring point pairs are required. With only three mea-

suring points, it is unfortunately possible that SVD calculates a rotation matrix that

produces a reflection. The correct rotation matrix has a determinant of +1. However,

if this is -1, then it is a computationally correct solution, but the rotation matrix does

produce a reflection. This special case is corrected by forming R as follows:

R = V

1 0 0
0 1 0
0 0 −1

 UT

Or alternatively:

R = V

1 0 0
0 1 0
0 0 det(V UT)

 UT

If more than 3 measuring points are entered, the least square error minimization pro-

cedure calculates the optimum solution. It is recommended to enter more than 3 pairs

of measuring points. Tests have shown that 5 measuring points delivered satisfactory

results. With the now known rotation matrix R and the displacement by the vector t, an

optimal point set registration of the vector spaces of the Kinect sensor and the Light-

house tracking system can be achieved. The R and t can be used for the transformation

from the Kinect vector space to the Lighthouse vector space. However, a reverse trans-

formation is also possible by applying the inverse rotation RT and negating the direction

of displacement of t (−t). The calculated transformation applies only to this particular

relative positioning of Kinect sensor and Lighthouse tracking system. Any displace-

ment or adjustment of the individual devices requires a recalculation. In addition, the

tracking area, which is defined during the Lighthouse setup, must not be changed, since

97

the center of the defined area represents the coordinate origin of the Lighthouse vec-

tor space. It is therefore recommended to perform the calibration procedure after the

Lighthouse tracking has been set up and the Kinect sensor has been positioned in the

space.

3.9.5 Calibration process implementation

For the VE system implemented, the calibration procedure is as follows. The user starts

the procedure by pressing the c key (“calibrate”) in the Unity application. By calling

the wrapper method calib_isRunning(ref) it is checked whether the calibration process is

currently underway. The calibration process is then started or stopped, depending on

the status.

1 if (Input.GetKeyDown(KeyCode.C)) {
2 if (calib_isRunning(refInterface) == false) {
3 if (calib_startCalibration(refInterface) == true)
4 Debug.Log("calibration has been started");
5 else Debug.Log("calibration is already running");
6 }
7 else {
8 if (calib_stopCalibration(refInterface) == true)
9 Debug.Log("calibration has been stopped");

10 else Debug.Log("calibration was not running");
11 }
12 }

The PCL based function library opens a PCL Pointcloud Viewer window in which

the current Kinect sensor data is displayed as a point cloud. Now the user has the task

to record several pairs of measuring points. The handheld controller is equipped with

the reflector and held at any point in the room in front of the Kinect sensor. Pressing

the trigger key on the handheld controller triggers the creation of the first measuring

point. The coordinates of the reflector are derived from the pose of the hand controller

and transmitted to the PCL program library by a wrapper method call. This pauses

the real-time display of the Kinect depth data. In the PCL Pointcloud Viewer window,

the user must now mark the center of the reflector disk in the displayed point cloud

with a mouse click. The Kinect SDK uses a right-handed coordinate system, while

the Unity application uses a left-handed coordinate system. Therefore the Kinect co-

ordinates have to be converted. The coordinates of the clicked point are then stored

together with the transmitted Lighthouse position information of the reflector in two

data arrays, which contain the two correlated measurement point sets. The paused real-

time display of the Kinect depth data is continued again. The user must create a total of

five measurement point pairs. The calculation of the optimal transformation (rotation

and displacement) is then performed using the PCL function library. The PCL class pcl

98

await user action

PCL DLL loaded
Native Interface initialized

Kinect Sensor activated

NO

End
application

capture pose of vive
controller

&
capture position of target

on controller

Start
calibration

copy results to Unity
&

apply transformation to
pointcloud

YES

Calibration process running?

Enough point pairs?

Point captured

YES NO

cancel calibration

Stop calibration process

Get results

YES

Calibration process
was successful?

NO

finished

calculate
transformation

finished

Figure 3.11 Visualization of the calibration process.

::registration::TransformationEstimationSVD offers several methods to determine the optimal

rotation and displacement between two given correlated point sets by using SVD. The

calculated rotation matrix R is converted into a quaternion, since Unity represents ro-

tations using quaternions. The quaternion and the displacement vector are stored in the

data structures calib_calib_resultQuaternionAsArray and calib_resultTranslationVector. By press-

ing the g key (“get results”) within the Unity application, it is first checked whether a

calibration process was successfully executed and if so, the transformation parameters

(Quaternion and TranslationVector) are copied. The copied transformation parameters are

applied to the pose of the GameObject within the scene that renders the mesh compo-

nent of the point cloud. This is initially instantiated at the position of the Lighthouse

coordinate origin and then transformed to the calculated pose of the Kinect sensor. As

a result, the rendered point cloud appears in the intended orientation and positioning

within the VE and the user can walk within it. The transformation parameters are

99

persistently stored and automatically applied at the next application start so that the cal-

ibration process does not have to be repeated at each program run [166]. Figure 3.11

shows the sequence of the calibration process.

3.10 Obstacle detection using range imaging data

Optical range imaging methods are ideal for the automatic detection of arbitrary ob-

jects within the tracking area of a VE system. These camera systems can be used to

automatically determine the spatial position and size of objects within the visible range

of such sensors. The Microsoft Kinect 2 sensor was developed for indoor use and was

therefore selected for the realization. The sensor is based on an active infrared light

illumination of the scene to capture the depth information. Therefore the Kinect sensor

is independent from the illumination. However, too much sunlight or any other infrared

light source might interfere. For the prototypical implementation only a single Kinect 2

sensor is used. The Microsoft Kinect SDK, in its current version, supports only a single

Kinect 2 sensor per computer. To use multiple sensors to acquire depth information, it

is necessary to use multiple computers and exchange data over a network. Alternatively

it is possible to use the Open Source libfreenect2 driver to access the sensors. However,

the support for this program library is not very good and therefore the development

work is problematic. Furthermore there is the possibility to use another range imaging

sensor where several sensors can be used simultaneously at the same computer.

3.10.1 Range image sensor positioning

It quickly turned out that correct positioning of the Kinect 2 sensor is crucial for trouble-

free operation. On the one hand, the sensor must of course detect the area in which

the obstacle detection is to take place. Normally, one wishes to capture the complete

VR tracking area. Due to the limited field of view of a camera, the sensor needs to be

positioned slightly away from the tracking area to cover the entire area (see figure 3.12).

However, this can often only be achieved under optimal environmental conditions.

Often the necessary space is not available and the sensor can only detect part of the

intended area. An interesting option is to place the sensor in a position above the area

to be detected. The sensor detects the ground vertically downwards. Possible shad-

owing by objects is minimized. However, this can only be realized if the room height

allows it. In most cases, the sensor can be placed at the side of the surface to be de-

tected. In principle, every object in a given space shades a certain part of the space to

the camera. The larger it is and the closer it sits to the camera, the larger becomes the

area that can no longer be captured by the camera. Additional cameras can reduce this

problem, but it is impossible to completely prevent shading in all conceivable cases.

100

Lighthouse tracking area

Base-
station

Base-
station

Lighthouse tracking area

Base-
station

Base-
station

Lighthouse tracking area

Base-
station

Base-
station

Lighthouse tracking area

B
as

e
-

st
at

io
n

B
as

e
-

st
at

io
n

Figure 3.12 Various Kinect positionings relative to the tracking space.

Therefore, the VE system was prototypically implemented with one range imaging sen-

sor and the experiments were performed under controlled laboratory conditions in such

a way that the problem of shading did not arise. An unexpected problem was caused by

the infrared illuminations of the Kinect 2 sensor and the Lighthouse tracking system.

Both systems use an active illumination of the scene by infrared light. It turned out

that the infrared LEDs emit light in a similar wavelength range. As a result, the Light-

house tracking was affected by the Kinect 2 sensor. In particular, if the Kinect sensor

was aimed directly at the photodiodes installed in the Lighthouse devices, the tracking

of these devices could no longer be done properly. If a Lighthouse base station was

directly illuminated with the Kinect 2 light source, the synchronization of both base

stations got lost. The following two solution strategies have proven successful. The

Kinect sensor was positioned at a height of approx. 1 meter above the ground and tilted

downwards at an angle of approx. 45°. This way, mainly the ground is illuminated and

the Lighthouse devices receive significantly less IR light from the Kinect sensor. In

addition, the wireless synchronization of the Lighthouse base stations was deactivated

and the wired mode was used. The base stations have to be connected with the sup-

plied cable and the synchronization mode has to be configured accordingly [139]. If

one would like to add additional range imaging cameras to the VE system and extend

101

the setup, it would be necessary to register the coordinate systems (see 3.9.3) for all

cameras used. Subsequently, the depth image information of all cameras must be com-

bined to a common point cloud. The determined pose of the sensors used can also be

utilised for this process. However, the general procedure for the detection of obstacles

using a range imaging method and the representation as point cloud data as well as the

data processing based on it would remain identical.

3.10.2 Requirements on the object recognition

Furthermore the restriction was made for the VE system that only static objects should

be detected. The procedure for the detection of moving objects remains basically the

same, but an additional treatment of numerous possible cases is required. First, the

actual user would have to be recognized in the depth image information and excluded

from the recognition as an obstacle. Shadowing by moving objects or by the user would

make the detection of objects more difficult. Further sensors could minimize this prob-

lem. Detected objects that come very close to each other must not be combined into a

single detected object. For an obstacle detection of moving objects a processing model

would be necessary that can correctly detect and handle such and possibly even more

complex cases. The simplest case with static objects is suitable for testing the basic

principle of operation. In addition, a reduction in complexity offers the advantage that

the experimental series are less exposed to influencing variables.

3.10.3 Implementation details

In the following, the implementation of obstacle detection will be explained. The writ-

ten C++ source code is stored in several files, which are compiled as a native Windows

x64 program library and loaded into Unity. The file kinect2grabber.h contains the derived

PCL grabber class Kinect2Grabber. The file objectDetect.h contains the class ObjectDetect
. This class implements the actual obstacle detection using a point cloud. The class

encapsulates all configuration parameters and the data structures for the recognized ob-

stacle objects. The constructor and method initialize are used to create and initialize

important data structures and filter module instances of the PCL program library. The

actual data processing is started with the method detect. The method expects a pointer

reference to the PointCloud data structure to be processed and after processing is com-

plete, all detected objects are placed in a data array. The source code files main.h and

main.cpp contain all the functionality required for data sharing with Unity. This includes

all exported functions of the program library that are imported into Unity and provide

the functionality of the Unity application. Furthermore the class NativeInterface is imple-

mented in main.h. and main.cpp. The declarations and definitions of the methods, attributes

and data structures are distributed to these two files. The class NativeInterface represents

102

the central element of the program library. Here the instances of the classes Kinect2Grabber
and ObjectDetect are created. In addition, the callback method for the grabber is linked

here and the data is passed on to the ObjectDetect instance to recognize the obstacles. Not

part of the NativeInterface class, but also part of the main.cpp and main.h, are the methods

necessary for native rendering (see 3.8.4).

The basic scheme and implementation of obstacle detection is based on the NESTK

demo, which detects objects sitting on a table [170].

1. Capture Kinect depth image information and generate the point cloud.

2. Reduction of data volume. Filter the data by min. and max. distance and down-

sample using the PCL VoxelGrid filter.

3. Detection of floor by using RANSAC algorithm to recognize the largest planar

area.

4. Objects standing on the ground are separated by segmentation of related point

clusters located above the floor area.

5. Calculation of a bounding box per detected point cluster.

The above processing scheme was completely implemented in C++ and uses the

Microsoft Kinect 2 C++ API for accessing the Kinect sensor data and transforming the

depth image data into the camera space, and the PCL program library for representing

the camera space coordinates as a point cloud and further processing them. In the

following, the individual processing steps will be examined in more detail.

3.10.3.1 Range image acquisition

Step (1) involves accessing the Kinect sensor and has been implemented as already

described earlier (see 3.8.5). The class Kinect2Grabber implements the access to the Kinect

API and the conversion of the depth image information into a PCL PointCloud data

structure. A pointer is used to pass a reference to the point cloud to a callback method.

Within this method the point data is copied into the PointCloud data structure kinectCloud.
This process takes place continuously and ensures that the most up-to-date depth image

data is always available as a point cloud. The content of the kinectCloud is used for

rendering and is written into the Direct3D buffer (see 3.8.4). The same data is also used

for obstacle detection. The obstacle detection is only performed if the Unity application

explicitly triggers the detection process. The start is performed by calling the external

function detect_runDetection, which in turn executes the two methods ObjectDetect::initialize
and ObjectDetect::detect. In order to avoid blocking the execution of the Unity application,

the execution of detect_runDetection is started within a dedicated thread of the DetectionJob

103

class (see 3.7.3). The Initialize method sets the most important parameters of the PCL

filter module instances.

3.10.3.2 Reduction of data volume

The actual data processing of the point cloud begins in step (2). The first objective

is to reduce the amount of data. The PCL filter module pcl::PassThrough removes all

points that are not within a specified range. Filtering is based on the coordinates. For

example, it can be useful to remove all points from the point cloud for a certain distance

because they do not belong to the search area. For the application only points with a

z-coordinate value between 0.7 and 5.5 (meters) are considered. The PCL filter module

pcl::VoxelGrid is used to further reduce the amount of points. The VoxelGrid filter performs

a downsampling with adjustable voxel size. The voxel size describes a 3D cubic space

section. All points of the point cloud data structure are summarized and displayed as

a new point in the middle of the voxel space segment. If there is no point in the area,

no new point is created. The aim is to reduce the amount of data in advance and thus

accelerate further processing.

3.10.3.3 Detection of the alignment of the floor surface

In step (3), an attempt is made to converge the model of a surface to the given mea-

suring points in the point cloud and thus determine the position of the ground surface

in the point cloud data. The basic assumption is that the camera captures a part of the

floor and that it is the largest area to be seen in the depth image data. If, for example,

a wall is also visible in the image, it can happen that it is mistakenly recognized as the

ground. However, this can be prevented by correctly positioning the sensor and using

the PassThrough-filter correctly. The random sample consensus (RANSAC) algorithm

makes it possible to estimate the parameters of a model in order to approximate it to

the given measured values. It is an iterative procedure. The parameters for the model

are estimated using a very small random subset of the measurements. It then checks

how well the estimated model fits the rest of the measurements. A threshold value is

set for this, which determines how much the measured value estimated by the model

may deviate from the samples. The number of estimation attempts is determined be-

forehand (e.g. 1000). At the end, the estimated model with the best match to the set of

measurements is output as result [5]. Instead of using the coordinates of the measuring

points for the estimation of the model, planes can be recognized even better with the

help of normal vectors [49]. This requires determining the normal vectors for the points

before starting the RANSAC estimation. A simple possibility is to define a surface

on a point and its neighboring points. The normal vector is positioned orthogonally

on this surface. The PCL program library provides various sample consensus (SAC)

104

methods with the module sample_consensus [158]. Among others, the RANSAC method

is supported for the search with point coordinates (pcl::SACMODEL_PLANE) and with normal

vectors (pcl::SACMODEL_NORMAL_PLANE). Both models use the general plane equation with four

coefficients (a, b, c and d) to describe a plane model as follows.

ax + by + cz + d = 0

The pcl::SACMODEL_NORMAL_PLANE model compares the normal vector of the point with the

normal vector of the model plane in addition to the position of the measuring point. A

measured point only belongs to the plane described by the model if it is positioned close

enough to the plane searched for and its normal vector is parallel to the normal vector

of the plane searched for. Here, too, a threshold value specifies the maximum possible

deviation of the two normal vectors. With the four coefficients (a, b, c and d) of the

plane equation, the normal vector n̂ of the identified plane can be formed [176].

n̂ = (nx, ny, nz)

nx = a√
a2 + b2 + c2

ny = b√
a2 + b2 + c2

nz = c√
a2 + b2 + c2

(3.1)

The PCL filter module pcl::NormalEstimation was used to determine the normal vectors of

the point cloud [146]. The previously reduced point cloud from step (2) of the process-

ing scheme is used as the input point cloud. The determined normal vectors and the

reduced point set serve as input for the PCL filter module pcl::SACSegmentationFromNormals.
The filter module outputs the determined plane coefficients (a, b, c and d) as well as the

subset of the measuring points corresponding to the determined ground plane (inliers).

3.10.3.4 Object segmentation and clustering

In the next step (4), a convex hull for the floor area is determined. For this purpose the

inliers are first projected onto the plane (pcl::ProjectInliers) so that all points lie on one

level. The convex hull for the floor area is then calculated using this projected point set

(pcl::ConvexHull). Using the pcl::ExtractPolygonalPrismData filter module, it is now possible

to extract the subset of the points that make up the objects on the ground plane. The

Passthrough-filtered point cloud from step 2 is used as input. The filter module outputs

all point indices for which two conditions apply. The points must fall into the area of

105

the ground surface when projected—which is given by the convex hull—and the points

must be at a certain distance above the convex hull—which is given by a minimum

and maximum. In other words, the base area of the convex hull and the minimum and

maximum height are used to construct a prism. All points in the volume of the prism are

output by the filter module as a set of points. This set of points represents the objects on

the ground surface. Since only the point indices are output, the points must be extracted

into an independent PointCloud data structure using the indices in a subsequent step. The

filter module pcl::ExtractIndices is used for this purpose.

The points above the ground surface can represent several objects. The aim now is

to assign these points to the individual objects and to divide them into individual point

clusters. For this the filter module pcl::EuclideanClusterExtraction is used. For the search for

continuous point clusters, the input point cloud is converted into a three-dimensional kd-

tree representation. This accelerates the search for spatially adjacent points. For each of

the points in the input point cloud, the algorithm searches for neighboring points within

a specified search radius. All points with a point neighbor at a distance below the search

radius form a cluster. The search ends as soon as all points of the input point cloud have

been assigned to a cluster. A cluster is only stored if a minimum number of points per

cluster is reached [46].

The filter parameters for the search radius and the minimum number of points must

be well estimated to achieve successful point-cluster segmentation. For example, if an

object is only partially visible in the depth image, it could be discarded as a point cluster.

It is also possible to have very narrow obstacles, that represent only very few points in

the point cloud. Furthermore, the selected parameters for voxel filtering are also crucial.

If a point cloud is reduced, for example with a voxel edge length of 5x5x5 cm, the search

radius must be larger than the resulting distances between the points. The number of

points per cluster also decreases and the minimum number of points per cluster should

also be adjusted. Otherwise, no point clusters will be identified at all. Alternatively, the

complete point cloud of the Kinect can be used for the cluster segmentation. However,

the time required to calculate the clusters increases significantly in this case.

3.10.3.5 Estimation of object boundaries

As input for the last processing step, the list of calculated point clusters is used. In step

5, a simplified hull is calculated for all clusters and made available for use in the Unity

application. The hull should describe the outlines of each point cluster as a simple

bounding box. For this the PCL filter module pcl::MomentOfInertiaEstimation is used.

The points Pi =

xi

yi

zi

 with an i = 1 · · · n are part of the input point cloud.

106

When the filter process is started, the center point Cpointcluster of the given point cluster

is calculated first.

Cpointcluster = 1
n

n∑
i=1

Pi =

x̄

ȳ

z̄

The points are shifted relative to the center of the point cloud towards the origin.

P
′

i = Pi − Cpointcluster

For the displaced point cloud, the covariance matrix C can be set up as follows:

V =

x

′
1 − x̄ x

′
2 − x̄ · · · x

′
n − x̄

y
′
1 − ȳ y

′
2 − ȳ · · · y

′
n − ȳ

z
′
1 − z̄ z

′
2 − z̄ · · · z

′
n − z̄

C = 1
n

(V V T) = 1
n

n∑
i=1

(x′
i − x̄)2

n∑
i=1

(x′
i − x̄)(y′

i − ȳ)
n∑

i=1
(x′

i − x̄)(z′
i − z̄)

n∑
i=1

(x′
i − x̄)(y′

i − ȳ)
n∑

i=1
(y′

i − ȳ)2
n∑

i=1
(y′

i − ȳ)(z′
i − z̄)

n∑
i=1

(x′
i − x̄)(z′

i − z̄)
n∑

i=1
(y′

i − ȳ)(z′
i − z̄)

n∑
i=1

(z′
i − z̄)2

The determination of the Eigenvectors and Eigenvalues of the covariance matrix C al-

lows to draw conclusions about the orientation and expansion of the point cloud, which

in turn allow the construction of a BBOX. The longest Eigenvector corresponds to

the greatest extent (variance) of the point cloud, the second longest Eigenvector cor-

responds to the second greatest extent and the third Eigenvector corresponds to the

shortest extent of the point cloud. Using the Eigenvectors and the Eigenvalues of the

covariance matrix, a box-shaped hull can be constructed for the point cloud, also known

as an OBB (see 3.13). The constructed OBB includes all points, but rarely corresponds

to the optimal hull for the set of points. This is due to the fact that the covariance matrix

describes the entire set of points and therefore misrepresents the alignment in the case

of uneven point distributions. One possibility would be to use only the points of the

point cloud that represent the convex hull of the point cloud. Another possibility is to

optimize the construction of the hull using the rotating calipers algorithm [6]. The pro-

cedure for the rotating calipers algorithm is as follows. First select the Eigenvector with

the smallest Eigenvalue (see 3.14.a). Orthogonally to its axis, a plane is spanned (see

3.14.b) on which the points of the point cloud are projected. Now a bounding rectangle

is constructed on the surface around the convex hull of the projected points. One begins

107

Figure 3.13 A visualized Kinect point cloud. The pose of the range imaging sensor is
indicated in the top right corner. Two different BBOXs are drawn on top of the detected
chairs point cluster. The red BBOX visualizes an OBB around the detected obstacle.
The Eigenvectors are indicated by e1, e2, e3. The yellow box visualizes a corresponding
AABB for the chair, that has been already fitted to the detected ground plane.

θ2

θ3

θ1

θ4

θ1

θ1

θ
1

θ
1

a) b)

d) e)

c)

f)

optimal bounding
rectangle

Figure 3.14 Calculation of an optimal BBOX using the Eigenvalues of a point cloud
and the rotating calipers algorithm.

108

by placing an edge of the rectangle on any edge of the convex hull. The remaining three

edges of the rectangle are parallel or orthogonal and touch the outermost point of the

convex hull (see 3.14.c). Now for each of the four contact points the angle θ between the

edge of the hull and the anti-clockwise located edge of the convex hull is calculated (see

3.14.d). The smallest of the four calculated angles is selected and each edge of the hull

is rotated by the selected angle at the point of contact (see 3.14.e). The hull now lies on

another edge of the convex hull. Steps d and e are repeated until all edges of the convex

hull have been processed. The rectangle calculated in this way forms the outline for

the BBOX (see 3.14.f). The height or length of the BBOX is determined by the extent

of the previously projected point cloud [144]. Since only one depth sensor is used, the

detected objects appear incomplete in the point cloud. In addition, the Kinect sensor is

tilted towards the ground, in order to capture as much of the ground as possible. These

two factors result in the OBB being oriented inclined to the ground. AABB are much

better suited for the representation of bodies standing on the floor because they can be

oriented to the ground plane (see figure 3.13). An AABB is very similar to an OBB. It

is also a cube-shaped body, but its edges are aligned to the axes of the coordinate space

and not only to the extension and orientation of the object. In most cases, an AABB

does not represent the smallest possible envelope, since it cannot adapt arbitrarily to the

orientation of the objects. With regard to incompletely captured objects on a floor plane,

AABBs represent a much better approximation of the actual dimensions of objects. In

addition, vertical envelopes represent a useful simplification for obstacle markings in

space. The construction of an AABB is similar to the process described above. The

only difference is that a different projection surface is selected for the point cloud. The

PCL filter module pcl::MomentOfInertiaEstimation allows the calculation of OBB and AABB

for given point clusters. The AABBs are always aligned with the axes of the reference

frame. In order that the AABBs are not aligned with the coordinate space of the Kinect

sensor, but along the ground surface, the input point cloud must be tilted in the op-

posite direction prior to the calculation. Since the orientation of the ground surface is

known, the necessary rotation can be easily calculated. The method Eigen::Quaternionf()
.setFromTwoVectors calculates a quaternion that represents the rotation between two given

direction vectors. The normal vector nfloor of the previously determined ground plane

serves as the root vector. The vector can be formed from the coefficients a, b and c used

to describe a plane (see equation 3.1). As target vector a vector ntarget along the Kinect

109

space y-axis is constructed, so that the plane is spanned by the x- and z-axis.

nfloor =

nx

ny

nz

ntarget =

0
1
0

A quaternion qrotate is searched for, so that applies:

nfloor · qrotate = ntarget

The calculated quaternion allows to rotate the point cloud in such a way that the detected

ground surface is now parallel to the x- and z-axis of the reference frame. A calculation

of the AABB with correspondingly rotated point clusters generates BBOXes whose

surfaces are oriented parallel or orthogonal to the ground plane in the depth image.

Since the point clusters have been rotated, the AABB must now be rotated inversely to

match the pose of the Kinect sensor again. Otherwise they would not appear vertically

on the ground in the VE. AABBs are described with two diagonally opposite corner

coordinates. However, this only works because the edges are aligned with the axes of

the coordinate space and the remaining corner coordinates can be easily reconstructed.

To rotate an AABB, first all corner points have to be calculated and then all have to be

rotated. The resulting BBOX is subsequently no longer an AABB, but has the same

shape and size as before and must now be described by all eight corner points.

3.10.3.6 Passing object boundaries to Unity

The calculated corner coordinates represent the final result of the processing of the

Kinect sensor data. For each of the segmented point clusters a BBOX is calculated

and stored. The system uses these to map obstacles in the VE. It is therefore neces-

sary to transfer the calculated hulls to the Unity software component that generates the

VE. The C++ program library contains two methods to transfer the calculated points of

each recognized AABB to the Unity application. The basis for this data exchange is

the data array boxes of type BBox. By calling the method detect_getNumOfObjects the number

of detected objects and calculated AABBs is queried. The Unity application initializes

the required data array with the required number of BBox elements. The data structure

BBox contains floating point values for the eight corner coordinates of a BBOX and three

further fields for the dimensions of the BBOX. When the method detect_getAABBofObjects
(∗ objRef, ∗ boxes, numberOfBoxes) is called, the pointer ∗boxes to the newly initialized Unity

110

data structure and the number of BBOXs to be copied is passed to the program library.

To enable the C++ compiler to iterate the shared data array correctly, the data struc-

ture BBox was also defined in the C++ context and a type casting was performed when

accessing the pointer.

Copying the corner coordinates works according to the following scheme:

1 void NativeInterface :: detect_getAABBofObjects(BBox ∗ boxes , int numberOfBoxes) {
2 for (int i = 0; i < numberOfBoxes; i++) {
3 boxes[i].p1x = −kinectObjDetect−>get_detected_objects ()−>at(i).AABB_p1.x(); // flip all kinect

space coordinates on x−axis
4 boxes[i].p1y = kinectObjDetect−>get_detected_objects ()−>at(i).AABB_p1.y();
5 boxes[i].p1z = kinectObjDetect−>get_detected_objects ()−>at(i).AABB_p1.z();
6 ...
7 // also copy the points 2 − 8
8 ...
9 // calculate the AABB dimensions

10 boxes[i].dimX = boxes[i].p4x − boxes[i].p1x;
11 boxes[i].dimY = boxes[i].p5y − boxes[i].p1y;
12 boxes[i].dimZ = boxes[i].p2z − boxes[i].p1z;
13 }
14 }

When copying the coordinates, the values from the Kinect sensor coordinate system

must be converted to the Unity coordinate system again, therefore the coordinates are

mirrored along the x-axis. After a successful obstacle detection, the calculated BBOXs

of the obstacles in the defined space section are available to the VE system. The VE

system uses this information for the four metaphors, which should enable the users to

avoid these obstacles. The four metaphors are described in the following sections.

3.11 VE system

The VE system combines all necessary software components required for the genera-

tion of the VE and provides the desired functionality. In particular, this includes the

simulation and visualization of a virtual world and its associated elements. But it also

includes aspects of the HCI that are necessary for a user to interact with the VE. And

it includes the integration of the previously described obstacle recognition and the uti-

lization of the information about the identified obstacles for an interactive visualization

of the proposed metaphors. In addition, the VE system uses information from the VE

tracking system, generates a stereographic representation in real time that matches the

user’s position, and displays this with a VR HMD. The VE system thus represents the

central software component (see figure 3.15).

111

Physical environment

VE System
(Windows 10 x64)

User

Kinect Sensor
(depth sensor)

VR HMD

Kinect Runtime
- RGB & Depth Image Processing
- Image/Camera Space Conversion

Unity Application
- Virtual World
- Rendering
- Human-Computer-Interaction
- Metaphor-Based Obstacle Signalling

SteamVR Runtime
- Tracking

- VR HMD and Controller

Vive
Controller

Lighthouse
Basestations

OpenVR API

Custom PCL DLL
- Obstacle Detection
- BBOX Estimation
- PointCloud Rendering

Figure 3.15 VE system components and information streams

3.11.1 The virtual world

For the experiment a virtual world was created (see figure 3.16), which can be ex-

perienced in the VE. The virtual world provides a setting for the experiment and its

participants. In order to test the different metaphors, it was decided to let the partic-

ipants perform a simple task that required them to cross the space physically and not

just virtually. The path taken in the VE by a participant is also treaded in the real

environment. With the help of the four metaphors, the participants should be able to

independently avoid randomly placed obstacles. The task for the test subjects was to

grab a virtual object at one location in space, carry it to another location and place it

there. The virtual world was based on a nature scenery that could also be part of a

fictional VR game. 3D objects with low-resolution polygon meshes were chosen for

the representation. Instead of a photorealistic representation, the virtual world should

appear clearly computer-generated. A graphically reduced representation also has the

advantage of a more performant execution.

Additional locomotion techniques, such as teleporting or flying, were deliberately

avoided. Users should only be able to change their position in the VE by walking and

thus also avoid potential obstacles in the path. The area accessible to the users was

thus limited to the area covered by the Lighthouse tracking system and suitable for

walking. Within this area and its periphery all interaction possibilities necessary for

112

Figure 3.16 The created virtual world represents the setting for the experimental series.
The white box in the middle represents the walkable area.

the fulfillment of the task were placed. An apple tree and an oversized toy elephant

were placed on two opposite sides of the tracking area. An apple is located on an easily

accessible branch of the tree and can be picked. Picking is done by holding a Vive

Controller to the apple and pressing the trigger button. If the apple is placed at the tip

of the elephant’s trunk, it sticks to it. The walkable area between tree and elephant

represents the central interaction area. Around it are other trees, bushes, rocks and

other simple 3D objects, which have only a decorative character. The ground has been

textured with green grass and imitates a lawn. In the far distance it is possible to see a

chain of hills that runs all around and stands out against the sky. Most of the scenery is

barely illuminated and appears very dark in order to attract less attention. The central

area is illuminated a little brighter. Apple and elephant are highlighted with a spotlight

to draw attention to them and to be more perceptible. The scenery is static and contains

no animated objects. An audio recording of a forest scenario underlines the scene with

a fitting soundscape. Freely available assets from the Unity Asset Store were used to

design the scene. The 3D model of the elephant was created using a photogrammetric

method and a toy.

3.11.2 SteamVR interaction system

In order to be able to pick up the apple with a controller and place it elsewhere, it is nec-

essary to implement these interaction possibilities. For the implementation of the inter-

action with the apple, the SteamVR Interaction System was used. The Interaction Sys-

tem is part of the SteamVR Unity Plug-In and has been designed to work with the Vive

113

controllers. The Interaction System is a collection of ready-made scripts and prefabs.

With their help, interaction possibilities with SteamVR compatible input devices can

be realized quickly. The prefabricated components supplied with the plug-in demon-

strate how to realize custom interactions. The functionality of the Interaction System

is distributed over several scripts. The prefab Player is the central component. The

Apple attached to tree

START

Hover:
Controller over apple

OnHandHoverBegin

OnHandHoverEnd

Apple attached to
controller

Controller Button pressed?
AND

Detection process finished?

YESNO

PCL program library
start obstacle detection

Apple touched the
tip of the elephant trunk

(collider of target object)?

HandHoverUpdate

YES Apple attached to
elephant trunk

NO

END

HandHoverUpdate

Figure 3.17 Statechart for the Interactable: Apple.

SteamVR object has two subobject called “Hands” that represent SteamVR compatible

controllers. To “grab” objects in the scene with a controller, they are extended with the

script Interactable. This script requires a Collider component that defines the area in the

space where an object can be touched. If the controller is held to an Interactable object

and creates a collision, events are triggered. Depending on the event, a callback method

of the InteractionSystem is called. The most relevant are OnHandHoverBegin, OnHandHoverEnd
and OnHandHoverUpdate. These are called when a controller begins touching the Interactable,

ends, or continues to do so. Various interactions can be realized. Actions can be made

dependent on other conditions, such as a button press on the controller.

All methods were implemented in the script InteractableBringToTarget.cs. When start-

ing the application, an info text is displayed next to the apple, asking the user to pick

the apple. If the apple is touched and the trigger button on the controller is pressed at

the same time, the apple is attached to the controller. The apple can only be detached

by holding the apple against an invisible object respectively its collider component at

114

the tip of the elephant’s trunk. It is not possible to put down the apple in any other way.

The text next to the apple informs the user about the status of the activity. Since there

are no other Interactable objects in the scene, it is impossible that another object can

be picked up and held by the trunk. Figure 3.17 visualizes the possibilities of the Inter-

actable Apple. Otherwise the interaction concept would have to be extended by further

possibilities.

Figure 3.18 The four metaphors as perceived in the VE (clockwise): Placeholder
Metaphor, Arrow Metaphor, Rubber Band Metaphor and Color Indicator Metaphor.

3.11.3 The four metaphors

The following section describes the major implementation details and functionality of

the four metaphors (see figure 3.18) used in the study. The most important characteristic

of all four metaphors should be their perceptibility in the VE. Each of the following

115

metaphors serves to signalize potential obstacles in the user’s PE and should enable the

user to avoid the obstacles.

3.11.3.1 Placeholder Metaphor

The Placeholder Metaphor represents the first of the four metaphors. After performing

the obstacle detection, the positions and dimensions of the calculated hulls can be used

to position an arbitrary object at their position in space. The BBOX describes a cube

shaped area of space as an obstacle, it is therefore necessary to instantiate a similarly

shaped virtual object at this position in the scene.

Figure 3.19 Visualization of the Placeholder Metaphor interacting with the detected
obstacles. The point cloud is not visible in normal use.

Since arbitrary objects can be used, the metaphor is called a Placeholder Metaphor.

The metaphor can be realized with any GameObject. It is also possible to specify

whether the placeholder object should be adapted to the dimensions of the BBOX or

not. For the study a prefabricated asset from the Unity Asset Store is chosen. The

content of the object should fit into the scenery and be part of it. Since the scenery

of the virtual test environment is a natural landscape, a tree was chosen as placeholder

object. Due to the proportions that a tree usually has, the placeholder object was not

rescaled. The tree should appear in its original dimensions and proportions at the place

of an obstacle (see figure 3.19).

The underlying idea of the metaphor is that people don’t like to walk against trees

(or similar massive objects) and instead take a path around them. For different scenar-

ios, it is easy to define matching placeholder objects. For example, rocks, statues, walls,

bushes, fountains, buildings, etc. can be used as placeholder objects. For each detected

obstacle and its BBOX, a placeholder object is instantiated in the scene. The position of

116

the new object corresponds to the calculated center point of the BBOX. To avoid objects

floating above the ground, the positioning of the objects can be corrected. The place-

holder objects are inserted into the scene as child objects of the object PLACEHOLDER_ROOT.
Finally, the visibility of the new placeholder object is enabled by activating the renderer

of the created placeholder object. The following code section shows the step-by-step

procedure in a simplified version..

1 // instantiate new object for a BBox element
2 GameObject newMetapher = Instantiate(metapherObject , metapherRoot);
3 // apply orientation and scaling
4 newMetapher.transform.localRotation = newOrientation; // Quaternion
5 newMetapher.transform.localScale = new Vector3(BBoxes[i].dimX , BBoxes[i].dimY , BBoxes[i].dimZ);
6 // calculate new position in world (scene)
7 Vector3 newPos = new Vector3 ((BBoxes[i].p1x + BBoxes[i].p7x) / 2f, (BBoxes[i].p1y + BBoxes[i].p7y)

/ 2f, (BBoxes[i].p1z + BBoxes[i].p7z) / 2f);
8 newPos = transform.TransformPoint(newPos);
9 // position object on floor

10 if (metapherPlaceOnFloor) { newPos.y = 0f; }
11 newMetapher.transform.position = newPos;
12 // enable renderer
13 Renderer newMetapherRenderer = newMetapher.GetComponentInChildren <Renderer >(true);
14 newMetapherRenderer.enabled = metapherVisible;

3.11.3.2 Arrow Metaphor

The Arrow Metaphor is based on a compass needle in its appearance and functionality.

The direction in which the arrow points is the position of an invisible obstacle in the VE

(see figure 3.20). The same principle is used in many computer games to alert players to

a certain position in the game. The arrow is not always visible, but only appears when

the participant has reached a minimum distance of one arm length from the obstacle.

The arrow floats in the lower peripheral field of view of the HMD when a user normally

looks forward. The objective was to position the arrow not too dominant in front of

the user’s face. If several obstacles are nearby, the direction of the nearer obstacle is

indicated by the arrow direction.

A prefabricated 3D object from the Asset Store was selected as the arrow. The

interaction of the arrow was realized with a C# script. The script allows to adjust the

behavior of the arrow, for example the height above the ground, the speed with which

the arrow rotates and the required proximity to the obstacle can be adjusted. In order

to appear always in front of a user, the script and the arrow asset are child objects of

the SteamVR camera object responsible for rendering. The position of the arrow thus

depends on the pose of the tracked VR HMD in the scene. The rotation and the fade-in

of the arrow are carried out according to the following scheme. The distance between

117

Figure 3.20 Visualization of the Arrow Metaphor interacting with the detected obsta-
cles. The point cloud is not visible in normal use.

the center of the obstacle and the position of the VR HMD is calculated for all obstacles

in the scene (BBOX positions). If the list of found obstacles is empty, nothing else

happens. The obstacle with the shortest distance is defined as the target point of the

arrow. A direction vector from the Arrow-GameObject to the defined target position is

calculated and used for the correct rotation of the arrow. For this the direction from one

position to another position in space is calculated with an auxiliary method (Quaternion.
SetLookRotation()). Only the x- and z-components of the coordinates are used and the y-

component is set to zero. The aim is to ensure that the arrow always floats horizontally

in space and that any differences in the height of the arrow and obstacle coordinates

do not lead to a tilted arrow. If the distance to the target is shorter than the defined

minimum distance, the arrow is displayed. If the user moves away from the obstacle,

the arrow is made invisible again. The calculation of the distance and the rotation of

the arrow takes place with each run of the Update() method. The rotation of the arrow

and its visibility is determined again for each frame shown. In principle, any 3D object

can be used. The decision was made in favour of a simple arrow in black. Preliminary

tests have shown that a blue navigation arrow was too much associated with known

navigation apps and the interpretation as a compass arrow has to be avoided. The dark

black coloration and the positioning at the lower field of view of the HMD are intended

to provide a less obtrusive representation of the Arrow Metaphor. The following code

excerpt of the update method of the Arrow implementing script illustrates how it works.

1 // rotate the arrow towards the closest BBox in the scene
2 // enable/disable renderer to show/hide arrow
3 if (targetPosition != null) {
4 if (distanceThreshold > Vector3.Distance(

118

5 new Vector3(targetPosition.x, 0.0f, targetPosition.z),
6 new Vector3(HMD.position.x, 0.0f, HMD.position.z)))
7 {
8 targetDirection.SetLookRotation(new Vector3(targetPosition.x HMD.position.x, 0.0f,

targetPosition.z − HMD.position.z), Vector3.up);
9 this.transform.rotation = targetDirection;

10 arrowRenderer.enabled = true;
11 } else {
12 arrowRenderer.enabled = false;
13 }
14 }
15

16 // calculate distance to all BBoxes and select the closest one
17 if(nativeInterface != null) {
18 if(nativeInterface.BBoxesPositions.Length > 0) {
19 float closestDistance = 100.0f; // 100m
20 for (int i = 0; i < nativeInterface.BBoxesPositions.Length; i++) {
21 float distance = Vector3.Distance(
22 new Vector3(nativeInterface.BBoxesPositions[i].x,
23 0.0f,
24 nativeInterface.BBoxesPositions[i].z),
25 new Vector3(HMD.position.x, 0.0f, HMD.position.z));
26 if (distance < closestDistance) {
27 closestDistance = distance;
28 targetPosition = new Vector3(nativeInterface.BBoxesPositions[i].x,
29 nativeInterface.BBoxesPositions[i].y,
30 nativeInterface.BBoxesPositions[i].z);
31 }
32 }
33 }
34 }

3.11.3.3 Rubber Band Metaphor

The Rubber Band Metaphor is based on the idea of a safety band floating freely around

the body of the user. When it comes into contact with an obstacle, it deforms by pushing

itself towards the user (see figure 3.21). The Rubber Band Metaphor is inspired by the

work of Cirio et.al. [45], but the Rubber Band Metaphor serves solely as an obstacle

indicator alone and does not allow navigating within the VE. The Rubber Band floats

constantly visible to the user around the virtual center of his body, in the lower field

of vision and approximately one arm’s length away. The Rubber Band is attached to

the SteamVR object, which represents the virtual body center. The SteamVR runtime

environment cannot directly determine the body center by tracking and estimates the

center depending on the tracked head position. In the VE, the Rubber Band appears as a

119

Figure 3.21 Visualization of the Rubber Band Metaphor interacting with the detected
obstacles. The point cloud is not visible in normal use.

yellow-black colored safety ribbon and is slightly transparent in order not to completely

cover the view of the surrounding. If the user moves within the VE, the band follows

the center of the body. The user seems to wear the band around himself. The band

always appears orthogonal to the vertical body axis and does not tilt even when the

user tilts. If a user moves close to the position of a detected obstacle, the band deforms

accordingly towards the user. The deformation of the band signals the position and

direction of obstacles in space relative to the user. Several obstacles can be visualized

simultaneously, by deforming the tape in several places.

The functionality of the metaphor was almost completely realized as program code.

Only the texture for the rendering was created as an image file. The width of the band

as well as the diameter of the ring can be controlled by parameters. The number of seg-

ments of the ring can also be defined. The polygon mesh is generated at the beginning

of the program execution and is deformed at runtime if necessary. The strength of the

deformation can be adjusted via an offset parameter. The generated polygon mesh con-

sists of triangles and forms a ring-shaped structure (see figure 3.22). The ring is divided

into circle segments. Two polygon triangles are required for each segment of the ring.

Thus, the total number of vertices generated is based on the preset number of circle seg-

ments. GameObject has an empty mesh component that is used to generate the mesh.

First, the angular segment of each circle segment is calculated. Then the vertices are

calculated circle-shaped with the preset radius and the desired width of the ring around

the base position of the object. An additional vertices buffer serves to store the struc-

ture without deformations and represents the shape to which the deformed mesh returns

when it is not dented by any obstacle. In addition, the same number of indices is gener-

ated and stored in a data array. Since a texture is placed on the mesh, the uv coordinates

120

0

1

(2s)-2

(2s)-1

2
4

3
5

T0

T1

T2

T3
T(2s)-1

T(2s)-2

 �rst segmentlast segment

Note: The order of the vertices is correct, counterclockwise.

The normal vectors point inwards and the inside is visible.

mesh surface

vertex point

last segment

T(2s)-2 T(2s)-1

�rst segment

T0 T1 T2 T3

Triangles data array for s segments given by vertex indices:

0 1 2 1 3 2 2 3 4 3 5 4 01(2s)-10(2s)-1(2s)-2

Figure 3.22 Triangulation sequence of the 3D ribbon mesh for s ring segments.

per vertex must be calculated and also saved. In order for the object to appear correctly

illuminated, a temporary normal vector is generated for each vertex. The individual tri-

angles for the polygon mesh are now generated by writing the indices into the triangles

buffer in the correct order. The indices refer to the vertices that should form the mesh.

Three indices each create a polygon triangle. Since the surface of the polygon mesh is

only rendered from one side, the order of the vertices must be specified correctly. The

corner points of the triangles are always inserted counterclockwise into the data array

when viewed from the inside of the band. To finish the ring structure it is necessary to

connect the last two triangles with the corner points of the first two triangles. The pre-

viously generated normal vectors are not orthogonal to the generated ring surface and

must be normalized to achieve uniform illumination of the texture. If the vertices of the

triangles for the polygon mesh were created in the correct order, the normal vectors can

now be automatically recalculated with the call of mesh.RecalculateNormals. The generated

normal vectors point to the center of the object after the recalculation. Finally, all gen-

erated data is transferred to the mesh component, which initializes the polygon mesh of

the metaphor. Since the polygon mesh triangles do not produce curvatures, the number

121

of segments must be high enough to look round. For the application the Rubber Band

mesh was created with 40 segments (see figure 3.23).

Figure 3.23 3D ribbon mesh with 4, 10 and 40 ring segments.

The deformation of the band by the obstacles is based on the physics simulation and

collision detection that is part of the Unity SDK [143]. To deform the ribbon mesh, a

collision check is performed each time the Update method is executed. For this purpose,

Raycast are created on a path from the center of the ring structure in the direction of each

vertices. If a Raycast meets an object with a Collider component in the scene, a RaycastHit is

generated and the position and distance of the collision can be queried. If the distance is

shorter than the radius of the ring structure, it is deformed by shifting the corresponding

vertex position towards the center. If no collision is detected, the vertex is moved back

to its original position. The deformed ring thus returns to its original shape when the

obstacle is out of reach. This process takes place in the Update method of the GameObject

of the Rubber Band instance. For collision detection to work, invisible objects must be

created in the scene whose position and dimensions correspond to the dimensions of

the obstacles BBOX. The ColliderBox component is suitable for resembling a BBOX. In

principle, however, other collider components with different shapes can also be used.

Complex shapes, however, generate more computational effort. Please note that very

low obstacles may be missed by the almost horizontal Raycasts. To avoid creating too

many Raycasts unnecessarily, the BoxCollider component was scaled in height. Since the

colliders are invisible, this is no problem. Very narrow objects could slip between the

Raycasts of the circle segments. So it makes sense not to choose the circle segments

too wide and rather to do more Raycasts. Collision detection can be limited to specific

GameObjects in the scene. With the help of layer masks, Raycasts can be limited to

objects placed on a separate layer. Objects on other layers do not cause a RaycastHit.
All invisible BBOX colliders are placed on the layer DetectedObjects and the Raycast filter

is set accordingly. The following code section illustrates the Raycast technique and the

deformation of the polygon mesh.

1 void Update () {
2 Matrix4x4 toWorldTransform = transform.localToWorldMatrix;
3 Matrix4x4 toWorldTransformInv = toWorldTransform.inverse;
4

122

5 for (int i=0; i < verticesDeformed.Count; i+=1) {
6 Color rayColor = Color.white;
7 float force = 0; // force is null if there is no collision!
8

9 // raycast to detect collisions
10 Ray aRay = new Ray(transform.TransformPoint(Vector3.zero), verticesOrg[i]);
11 RaycastHit hit;
12

13 if (Physics.Raycast(aRay , out hit , ribbonRadius , LayerMask.GetMask("DetectedObjects"))) {
14 Vector3 tmpVertice = toWorldTransformInv.MultiplyPoint3x4(hit.point) ∗ 0.9f;
15 tmpVertice.y = verticesOrg[i].y;
16

17 // the closer the collision , the stronger the force
18 force = ((ribbonRadius − hit.distance) / ribbonRadius) + forceOffset;
19 // deform the ribbon towards the point of collision
20 verticesDeformed[i] = Vector3.Lerp(tmpVertice , verticesDeformed[i], force);
21 } else {
22 // reverse deformation by pulling all vertices back to original position
23 verticesDeformed[i] = Vector3.Lerp(verticesDeformed[i], verticesOrg[i], 0.3f);
24 }
25 Debug.DrawRay(transform.TransformPoint(Vector3.zero), verticesOrg[i], rayColor);
26 }
27 mesh.SetVertices(verticesDeformed);
28 mesh.RecalculateNormals ();
29 }

3.11.3.4 Color Indicator Metaphor

The Color Indicator Metaphor is based on the idea of visualizing the distance and di-

rection to an obstacle by means of a spatially placed color fade-in. Similar to the Arrow

Metaphor, the Color Indicator Metaphor only appears when the distance falls below a

minimum spacing. In the direction of an obstacle, the area that is less than the minimum

distance is first colored green. As the distance decreases further, the area is colored yel-

low, orange and finally red (see figure 3.24). Red as an intense signal color represents

the danger of a direct collision. The metaphor always appears in the lower field of

view of the user and is approximately one arm’s length away from the virtual center of

the body. If the minimum distance is not undercut, the Color Indicator remains invis-

ible to the user. Several obstacles can be visualized simultaneously, by fading in the

ring-shaped color information in several places.

The Color Indicator Metaphor is very similar in implementation to the Rubber Band

Metaphor. As with the Rubber Band Metaphor, a ring-shaped polygon mesh is first

generated around the virtual center of the user’s body. The process is identical to the

Rubber Band Metaphor. However, there are differences in appearance and interaction.

123

Figure 3.24 Visualization of the Color Indicator Metaphor interacting with the detected
obstacles. The point cloud is not visible in normal use.

The number of circle segments as well as the colors for the minimum and maximum

distance can be defined by parameters. The polygon mesh is not textured, so there is no

need to specify a texture. As with the Rubber Band Metaphor, raycasting is performed

on potential obstacles. These are also represented as invisible cube-shaped collider ob-

jects on a dedicated layer. Unlike the Rubber Band, the polygon mesh is not deformed.

Instead, the color and transparency information is manipulated.

1 void Update () {
2

3 Matrix4x4 toWorldTransform = transform.localToWorldMatrix;
4 Matrix4x4 toWorldTransformInv = toWorldTransform.inverse;
5

6 for (int i=0; i < verticesDeformed.Count; i+=1) {
7 Color rayColor = Color.white;
8 float force = 0; // force is null if there is no collision!
9

10 // raycast to detect collisions
11 Ray aRay = new Ray(transform.TransformPoint(Vector3.zero), verticesOrg[i]);
12 RaycastHit hit;
13

14 if (Physics.Raycast(aRay , out hit , ribbonRadius , LayerMask.GetMask("DetectedObjects"))) {
15 Vector3 tmpVertice = toWorldTransformInv.MultiplyPoint3x4(hit.point) ∗ 0.9f;
16 tmpVertice.y = verticesOrg[i].y;
17

18 // the closer the collision , the stronger the force
19 force = ((ribbonRadius − hit.distance) / ribbonRadius) + forceOffset;
20 // set new color
21 colorsOrg[i] = Color.Lerp(colorOK , colorClose , force);

124

22 } else {
23 // reverse change of color
24 colorsOrg[i] = Color.Lerp(colorsOrg[i], colorOK , 0.3f);
25 }
26 Debug.DrawRay(transform.TransformPoint(Vector3.zero),
27 verticesOrg[i], rayColor);
28 }
29 mesh.SetColors(colorsOrg);
30 mesh.RecalculateNormals ();
31 }

The Color Indicator Metaphor differs only slightly from the Rubber Band Metaphor in

the source code (lines 21 and 24). The position of the vertex elements is not altered,

but the color information of the vertex elements is being interpolated. Depending on

the distance of the detected collision, the color information is interpolated between two

given colors and with the transparency information. If the collision is no longer present,

the color and visibility is reset to the original value.

125

Chapter 4

Study

4.1 Setup

The primary objective of the study was to evaluate the four different signaling metaphors

in terms of spatial understanding and their influence on presence.

An empty room at the University of Offenburg was used for the experimental setup.

The room had a rectangular floor measuring 780x574 cm. The floor was covered with

a carpet and offered good conditions for depth detection using a Kinect 2 sensor. If

required, the existing windows could be darkened in order to shield against incident

and, if necessary, disturbing daylight. The Lighthouse Tracking base stations belonging

to the HTC Vive System were installed at one end of the room and covered a tracking

area of approx. 5x5 meters. The diagonal of the tracking area measured approx. 7

meters and was therefore slightly larger than the specified maximum distance of 5.5

meters between the two base stations. The two base stations were connected with the

corresponding synchronization cable to make the synchronization of the base stations

less prone to possible interference from the Kinect infrared emitters. The computer

responsible for generating the VE was placed sideways within the tracking area. The

reason for this was the maximum cable length of the VR HMD. The cable consists

of two parts. The HMD is connected to a breakout box with a 5 meter cable and the

breakout box is connected to the PC with two approx. 1 meter long cables. The PC was

positioned so that the connections were aligned in the direction of the tracking area. The

aim was to make as large an area as possible accessible for the users, despite the limited

cable length. A Kinect 2 sensor was positioned close to the computer on a tripod. The

horizontal FOV of the Kinect 2 depth sensor is 70°. Due to the positioning of the

Kinect 2, only a part of the tracking area was deliberately covered. A desk was placed

near the computer to control the VE system. In addition, a notebook was provided for

the interviews and questionnaires to be answered by the study participants. Two paper

baskets were used as obstacles. The experimental setup is schematically sketched in

figure 4.1. The Kinect 2 was specifically positioned at a central position in order to be

able to track the area to be crossed in the middle of the tracking area of the VR system.

A complete coverage of the interaction area was not possible due to the space available.

126

Lighthouse basestation

Lighthouse basestation

Apple attached
to tree branch
(not visible in
top view)

57
4

cm

780 cm

3
6

 c
m

26 cm

280 cm

2
3

 c
m

2
8

0
 c

m

100 cm

KINECT

70°

User's
starting
position

400 cm80 cm

D
ES

K P
C

Obstacles
area

1
6

0
 c

m

Elephants trunk

Figure 4.1 Schematic view of the experiment room with elements of the VE.

4.2 Experiment procedure

Within the scope of the experiment, the participants had the task of picking an apple

from a tree branch, crossing the room with it and holding the apple to the trunk of an

elephant positioned at the other end of the room and placing it there. In order to carry

out the task, a large part of the tracking area had to be crossed by natural locomotion.

In the area covered by the Kinect 2 sensor, two obstacles were placed randomly and in-

visibly for the participants. In addition to the superficial task of carrying an object from

one location to another, the participants in the study were asked to evade the obstacles

and to avoid collisions with them. The participants only had the signalization by the

four metaphors at their disposal. All study participants underwent the same procedure,

which was carried out according to a predefined scheme. At the beginning the overall

process was explained to everybody and possible dangers were pointed out. Following

the agreement of the participants, a few demographical details, their experience with

computers, video games and virtual reality applications were determined. In order to

determine possible effects of simulator sickness, the participants were asked to fill in a

127

Fr
on

t
V

ie
w

To
p

 V
ie

w

a) precise result = 3 b) good result = 2 c) low result = 1 d) bad result = 0

Figure 4.2 Illustration of our evaluation scheme for the spatial understanding of the
different metaphors.

simulator sickness questionnaire (SSQ) before and after each experiment. Due to the

very short stays in the VE, no occurrence of the simulator disease was expected and

therefore a very short and fast to answer SSQ from Robert S. Kennedy et al. [17] was

chosen. Subsequently, the Vive controllers were explained to the participants and the

VR HMD was adapted to the interpupillary distance and the head shape of the partic-

ipant. All participants were given an explanation of the task and they were told how

to use the controller to pick the apple and how to put it in the elephants trunk. All

participants were given a few minutes to try the application and to learn how to per-

form the task before the experiment begun. In this test run there were no obstacles

to avoid and no metaphors to see. The participants were given the opportunity to ask

questions in order to avoid ambiguities regarding the procedure. The experiment was

designed as an within-group design test, in which the participants were to perform the

same task with changing metaphors one after the other. After each metaphor, the sub-

jective evaluation was to be determined by means of a questionnaire. For each run, the

metaphor to be tested was explained to the participants. Each participant was led into

the starting area and the VR headset was put on. Invisible to the participant, two ob-

stacles were positioned arbitrarily in the detection area of the Kinect 2 sensor and the

experiment was started. While the task was being completed by the participant, atten-

tion was paid to whether or not there was a collision with one of the obstacles in the

way. Directly after the task and before the HMD was taken off, the participants were

asked to indicate the suspected position of the two obstacles with one of the controllers.

Figure 4.2 illustrates the evaluation scheme used to determine the spatial understanding

of the metaphors. The result was evaluated by the 2 experimenters with a rating system

of 0 - 3. Bad results were rated with a 0. Low results (a wrong direction to the object

128

was suspected but the position was still relatively close to the obstacle) were rated 1.

With a 2, the result was rated “good” if the direction was correct but the position was

suspected to be too close or too far away. Finally, the 3 corresponds to a high precision:

the participant has determined the direction exactly and also indicated the position very

precisely. Each participant had to complete four runs, each with a different metaphor.

The task was the same for each run. To avoid any ordering effect, a latin-square distri-

bution was used for the presentation order of the metaphors. The position of the placed

obstacles was determined randomly. After each metaphor the participants were asked to

give their subjective assessment. The following aspects were queried using Likert-scale

questionnaires:

• Difficulty to perform the main task

• Difficulty to understand the metaphor

• Spatial understanding of the metaphor

• Confidence in the metaphor

• The feeling of presence and to what extent the metaphor has a negative influence

on this feeling

The evaluation of the potential negative effect of the metaphor on presence was done

using 3 questions assessing the actual level of presence. The questions and methodology

were taken from Slater et al. [19]. The scale division was adjusted from 1–7 to a division

of 1–5 in order to standardize the scales across the various questionnaires. Slater et

al. rated the presence score as positive only for answers with a value of 6 or 7 and

negative otherwise. The 3 answers per participant were added together and resulted in

the achieved presence score. With our adjusted scale division only answers with a value

of 5 were evaluated positively. Lower scores resulted in a negative devaluation of the

presence score. Overall, the score—as with Slater et al.—can range from 0 (very high

negative effect on presence) to 3 (no effect on presence). At the end, the participants

were given the opportunity to freely add any comments they desired. The questionnaires

used can be viewed in detail in the appendix C.

4.3 Study participants

20 participants (13 male, 7 female) aging from 21 to 57 (mean : 34.16, sd : 8.38) took

part in the study. In order to avoid any influence of high levels of simulator sickness, the

possibility of removing the corresponding data was considered. However, no participant

showed a high or very high level of discomfort, and none complained verbally about

simulator sickness. Simulator sickness symptoms remained slight for all participants

129

before (mean value : 12.67; sd : 10.58) and after the experiment (mean value : 12.25,

sd : 12.5). Hence, all the experimental data collected from the 20 subjects was kept.

4.4 Results

The responses to the sociological questionnaires were analyzed in order to establish the

profile of the participants regarding their video games and virtual reality usage. These

characteristics can indeed have an influence on their performance during the experiment

in particular by means of spatial learning and orientation skills [41]. There were two

VR distinguished user profiles: inexperienced and experienced users. To qualify as an

experienced VR user, the subject must have used a low-cost or high-end virtual reality

headset at least 5 times a year during the last years. 4 users qualified as experienced VR

users. The participants were also distinguished between gamer and non-gamer. To be

considered a gamer, a participant must have played video games for an average of more

than 5 hours per week during the last 6 months. 5 participants qualified as gamers. Since

no participant qualified simultaneously as gamer and experienced VR user, 3 different

profiles were defined for our analysis: Gamer, VR user and standard user.

As a first result it is to be noted that all participants with all metaphors could ful-

fill the task with the apple and the elephant. Four collisions with the obstacles were

recorded during the experiments. One participant has pushed away an obstacle dur-

ing the first run, because he walked too fast to be able to react to the metaphor (Color

Indicator). The same participant has hit the obstacle on another run with the Arrow

Metaphor. Two other participants hit an obstacle while they were looking at the other

obstacle or metaphor shown. The limited field of view of the VR HMD and the lack of

experience with VR HMDs could have had a negative impact on this. One participant

repeated the Arrow Metaphor once, because the basic idea of the metaphor was mis-

understood. The participant has assumed that the arrow indicates the direction of the

movement to be taken and not the position of the obstacle in space. As a consequence,

there was a collision here that did not occur during the repetition.

4.4.1 Influence of metaphors on spatial understanding

A good spatial understanding allows the participants to precisely determine the position

and location of an obstacle using a metaphor. It was expected that users with previous

VR experience would have a better spatial understanding than participants in the other

two groups (gamers and standard users). Mixed linear models were used to perform

the statistical analysis for spatial understanding. The influence of metaphor and profile

were analyzed on the performance of the subjects. The results show no interaction

between these 2 factors (χ2(6) = 1.48 , p = 0.96) and no influence of the profile on the

observed performance (χ2(2) = 0.88 , p = 0.64).

130

A Friedman rank sum test was performed to evaluate the influence of the metaphor

on spatial understanding. The results indicate a significant influence of the metaphor

(χ2(3) = 39.88, p < 0.001). Pairwise comparisons show that Placeholders leads to a

better spatial understanding of the position and direction of the obstacles given by the

metaphor (median = 3) when compared to Color Indicator (median = 2, p < 0.001), Rub-

ber Band (median = 2, p < 0.001) and Arrow (median = 2, p < 0.001) (see Figure 4.3).

Figure 4.3 Distribution of the users spatial understanding with each technique (0 = bad,
1 = low, 2 = medium, 3 = high).

4.4.2 Effects on presence

The impact of the metaphor on the feeling of presence was also evaluated. This was

done through 3 questions assessing the actual level of presence taken from Slater et

al. [19]. The resulting score represents the possible impairment on the presence of each

metaphor. The scale spans from 0 (very high negative effect on presence) to 3 (no effect

on presence). A Friedman rank sum test was performed to evaluate the influence of the

metaphor on the subjective ranking. The result indicate a significant influence of the

metaphor on presence (χ2(3) = 13.237, p = 0.0041). The pairwise comparison show that

the Placeholder Metaphor (median = 2) leads to a higher presence when compared to the

Color Indicator Metaphor (median = 2, p = 0.011), the Arrow Metaphor (median = 1,

p = 0.022) and the Rubber Band Metaphor (median = 2, p = 0.021) (see Figure 4.4).

4.4.3 Subjective preferences

After the last run, the participants were asked to sort the metaphors from best to worst.

There is a significant influence of the metaphor (χ2(3) = 29.28, p < 0.001) on this rank-

ing. Pairwise comparison show that the participants rated Placeholders (median = 3)

131

Figure 4.4 Measured effect on presence. The numbers indicate the negative impact of
a metaphor on presence (0 = Very high, 1 = High, 2 = Low, 3 = None).

significantly higher than Color Indicators (median = 1, p = 0.043), Rubber Bands (me-

dian = 2, p = 0.009) and Arrows (median = 0, p = 0.0013) (see Figure 4.5). The Arrow

Figure 4.5 Distribution of the subjective preference ranking (0 = lowest-rated,
3 = highest-rated).

Metaphor was also significantly lower rated than a Color Indicator (p = 0.043) and a

Rubber Band (p = 0.008) indicating that it was the least preferred technique. No dif-

ference was found between a Rubber Band Metaphor and a Color Indicator Metaphor

(p = 1).

The participants were also asked to give a subjective evaluation concerning the fol-

lowing dimensions of the metaphors:

• Difficulty to perform the main task: The aim was to assess to what extent the

metaphor was perceived as detrimental to the realization of the main task, i.e. bring-

ing the item to the target. The answers were analyzed using a Friedman rank-sum

132

test. The metaphor has a significant influence (χ2(3) = 19.914, p < 0.001) with a

Placeholder (median = 1) leading to a lower difficulty than an Arrow (median = 2),

a Color Indicator (median = 1) and a Rubber Band (median = 1). All the pairwise

comparisons are significant (p < 0.05). These results suggest that the Placeholder

technique is felt as less intrusive and detrimental to the main task by the subjects.

• Difficulty to understand the information given by the metaphor: It should be

determined whether the metaphor is intuitive and easy to understand. Again, the

metaphor has a significant influence (χ2(3) = 18.952, p < 0.001). A Placeholder

was felt as less difficult to comprehend (median = 1) when compared to an Arrow

(median = 2, p = 0.002). The differences between a Color Indicator (median = 1) and

a Rubber Band (median = 1) were not significant (p = 0.54). This result indicates

that a Placeholder was perceived as the most intuitive metaphor.

4.5 Discussion

These results indicate that, in all extent, the Placeholder Metaphor is the most efficient

and leading to higher spatial comprehension of the information. Subjective evaluation

also indicates a strong preference of the subjects for this metaphor. Not only was it

ranked as the preferred technique. It was also perceived as the most intuitive. It is not

surprising that it is the technique with the lowest impact on presence. After the analysis

of the study results all participants were informed about the preliminary outcomes by

email and asked to give their opinion and feedback. Of particular interest was their

opinion on the metaphors and their performance in the experiments and whether they

had problems using the metaphors alone to create a mental map of the environment and

the obstacles in space. The Placeholder Metaphor has been described by many as very

easy to understand, as they are used to avoiding such obstacles from the real world. For

many, the placeholder trees fit into the scenery “naturally”, “realistically” and without

being disturbing. Surprisingly, no one complained that they were standing in their way.

Some participants regarded the Rubber Band as a “feel-good zone” or safety zone and

saw it as an advantage. Although the Color Indicator Metaphor is based on the same

basic principles and differs only in the visual representation of the information, some

participants reported that the Rubber Band Metaphor was more intuitive than the Color

Indicator Metaphor (however the comparison was not significant). In particular the

spatial relation of the deformation made it easier for many to deduce the position and

dimensions of the obstacles. A striking number of participants were irritated by the

Arrow Metaphor. First, some people remarked that the displayed arrow reminded them

of route and navigation systems. Many found it difficult to rethink and look at the arrow

as an indication of the position of an invisible target in space.

133

These results indicate that the participants strongly favor the dimension of presence

over the capacity of the metaphor to ensure safety. Indeed Placeholder was strongly

integrated in the VE, leading to lower impact on presence while the other metaphors

promoted the strategy of foresight and cautious advancement on the chosen path. The

participants had to devote part of their attention to the metaphors, which was probably

felt as disturbing for the accomplishment of the task. In general, most of the participants

found the not always visible metaphors less pleasant, and the “sudden” appearance of

the metaphors was often criticized.

However, if the objective of the metaphor is to alert the user of a possible danger

in its immediate surroundings, it is mandatory that the alert metaphor used capture

the user’s attention. The effectiveness of the alert metaphor should therefore not be

assessed on the basis of the ability to maintain presence and to cope with the task,

but on the contrary on the basis of the ability to draw the attention of the user and to

inform them of a possible danger in the real world. To that extent, the present study

is incomplete, since it focuses on subjective preferences of the users, and demonstrates

that they strongly prefer the feeling of presence in their evaluations.

4.6 Summary

In summary it can be said that the chosen placeholder tree objects made it easiest for

the participants to recognize the obstacles and avoid them. The use of a diegetic Place-

holder Metaphor object has measurably increased the feeling of presence and was also

described as predominantly positive by the participants. The results also show that the

other metaphors can also be used to signal obstacles, but at the expense of spatial under-

standing, presence and acceptance when the metaphors demand too much of the user’s

ability to think abstractly.

134

Chapter 5

Concluding remarks

5.1 Summary

This thesis addresses the problem of non-immediately visible obstacles for users of

immersive VE systems in combination with Roomscale positional tracking as offered by

HTC Vive or Oculus Rift. Because the VR HMD prevents visibility of the surroundings,

the user cannot detect and avoid obstacles as usual. Therefore, these systems assume

that the designated area of operation is free of obstacles and only display a virtual safety

wall, which should allow the user to remain within a previously marked area. Although

this procedure works, many users are annoyed and complain a loss of the experienced

presence (the feeling of being in a virtual world). The initial problem results from the

insufficient capability of these systems to automatically detect obstacles within the area

of use and to notify users of them. If, for example, a backpack is left within the “safe”

area, a chair is moved too far or the pet simply makes itself comfortable somewhere on

the floor, then in these or similar cases that object becomes a potential obstacle for the

user.

The aim of this work is to answer the question how collisions with everyday things

can be prevented. Put simply, the VE system must be able to identify potential obstacles

and make them recognizable to the user. The present work shows what is necessary and

how this can be realized.

In the introductory chapter the most important aspects of VE systems were exam-

ined. In addition to a brief overview of the history of virtual reality, various tracking

methods as well as their advantages and disadvantages were explained. VR was also

discussed as HCI technology and various possible input and output modalities of VE

systems were presented. Another important aspect is the perceived presence in VE ap-

plications and in particular which internal and external factors can influence it. Existing

approaches and implementations of collision avoidance techniques were also presented

and evaluated. The chapter concludes with an overview of the diverse field of depth

perception techniques. This is important as it is the basis for the planned detection of

spatial obstacles.

The work can be roughly divided into two main parts. While the first part de-

135

scribes the realization of the software prototype in detail, the second part is dedicated

to practical testing and the results obtained. The chapter on implementation describes

the necessary functionalities of the system and mainly reflects these by the structure of

the chapter. Initially, the desired functionality is defined and formulated in the form of

system requirements. The aim is to differentiate and clarify the desired functionality.

The development tools used are then presented and explained. A central component is

the Unity Game Engine, therefore its basic development concept and in particular the

possibility of the integration of external program libraries are explained. The PCL is

the basis for the no less important function library for processing the range image data.

An additional description of the development environment as a whole, its configuration

as well as further details—concerning the creation of function libraries—are provided

in the description of the system setup.

The documentation of the functional implementation starts with the description of

the range image acquisition process and the subsequent conversion into a 3D point

cloud. Particularly noteworthy is the optimization of the processing and rendering of

the range image information as a point cloud by means of direct access to system graph-

ics buffers. The described procedure allows to keep the processing latencies low enough

to enable real-time point cloud visualization of the range image information in the VE.

Although real-time point cloud visualization was not an original part of the planned

functionality, it was considered necessary because it allows the user to easily and effi-

ciently verify the correct transformation of the range image information into the VE.

The subchapter for the registration of the coordinate systems of a VR tracking sys-

tem and range image camera describes the necessary procedure and the implementation

of the functionality for the spatially correct placement and orientation of the displayed

point cloud within the VE. This registration represents a necessary and important cor-

nerstone for the realization of the spatial obstacle recognition, because it not only allows

the point cloud itself, but also the information obtained from the range image data to

be correctly transferred to the VE and used there for signalling. To put it simply, the

identified obstacles must be signalled at the correct position within the VE so that they

correlate with the real position of the obstacles and thus make obstacle detection mean-

ingful in the first place. The subchapter explains in detail the underlying problems,

optional solutions and the finally developed process, which is necessary for the initial

determination of the correct transformation.

The following subchapter describes a possible procedure for detecting obstacles

using range image information with the aid of PCL. Step by step, the processing of

the underlying range image information is illuminated and it is explained in detail how

the dimensions and positions of arbitrary objects can be determined. For this purpose,

an existing procedure was adapted to the conditions and optimized. The optimization

136

accelerated the calculation and should allow for processing in real time with regard to

a planned recognition of moving objects.

In the concluding subchapter, the virtual world, the interaction possibilities and in

particular the implementation of the four metaphors are explained. The functioning

of the four visual signalling methods is of particular interest, as they—as a central

link in the human-computer interaction of our system—contribute significantly to the

functioning or failure of the obstacle signalling.

The documentation of the study carried out with our VE system represents the sec-

ond major focus of this work. After a description of the setup used, the test arrangement

and the participating test subjects, the findings are highlighted. The metaphors were ex-

amined in particular with regard to their ability to effectively enable participants to

independently avoid obstacles. But also the question of the effect on the perceived

presence, as well as the subjective evaluation, were answered by this study.

5.2 Conclusion

This thesis describes the development of a solution for the detection and signalling of

objects that become potential obstacles when using immersive VE systems. The soft-

ware prototype demonstrates the functionality of the developed method in a practical

application scenario. Of the four methods tested, the Placeholder Metaphor stands out

for its ease of understanding and high acceptance. For applications that cannot be ex-

tended with a placeholder metaphor for signalling, the Rubber Band Metaphor offers a

good alternative. It is easy to adapt, independent of the contents of the application, and

has achieved acceptance levels close to the Placeholder Metaphor. In addition, the sys-

tem allows the four signaling methods tested to be easily extended by further methods.

5.3 Future work

The developed VE system offers some starting points for future work, which should be

highlighted conclusively. An interesting extension of the system would be the addition

of additional range imaging sensors to capture the scene from multiple perspectives.

This would allow a more accurate estimation of the dimensions of objects. In addition,

the possibility of occlusion would be minimized, as it can easily occur when something

covers the free view of the camera. The process for registering the various coordinate

systems could, with a few minor modifications, continue to be used in a similar way to

the present one and could also be used for registering the individual point clouds. The

flat disk marker could be replaced by a spherical marker and thus be captured by all

cameras simultaneously. The calculation of the pose using corresponding point mea-

surements could be maintained. Using several TOF cameras would raise the problem

137

of synchronizing the individual measurements over time, otherwise they could interfere

with each other due to the active IR illumination. A less economical solution would

be to have each camera use a different part of the light spectrum. A better alternative

could be the new Kinect sensors recently announced by Microsoft and not yet available,

as they are supposed to support an easy synchronization of several devices [133]. The

current implementation of object obstacle detection based on the generated point cloud

has already been optimized for fast execution. At the moment a recognition process on

our computer system requires approx. 60 - 170 ms computing time. The achievable

times vary, as they depend to a large extent on the amount of points to be processed.

It should be noted that with a camera frame rate of 30 frames per second, a maximum

of 33.3 ms is available for the entire processing of each frame. For an acceleration of

the processing pipeline it would be conceivable to further reduce the amount of data

by downsampling or to capture a smaller resolution depth image from the beginning,

to make data structures more efficient, to avoid copying operations or to try to paral-

lelize the process even more. The shorter the processing time per frame, the better the

latencies in the representation of the obstacles in the VE.

The shortening of the computing time of each detection cycle would also make it

possible to continuously detect and track the positions of moving objects in the scene.

In the ideal case, the detection would be as fast as the frame rate of the TOF cameras.

However, a shortened processing time would only be part of the solution. It would also

be important to differentiate correctly between individual objects, even if they occupy a

very narrow position in the space. The problem can easily be extended by the question

of how to reliably distinguish between the user of the VE system and other objects. To

reliably identify different objects in space in all possible scenarios and to be able to

display them in the VE, a considerable additional effort is probably necessary.

In addition to the technical aspects, alternative signalling methods can also be in-

vestigated. There are hardly any limits to the imagination in this area and the existing

system can provide a good basis for this type of investigation. It is conceivable to use

multimodal metaphors, e.g. by using audio or haptic sensations. For the interaction

with the user, animated interactive virtual avatars could be created, which could warn

of possible dangers by means of an easily understandable simulated behavior. Based

on the findings of the study, it would be interesting to test a mixture of Placeholder and

Rubber Band Metaphor.

As a more far-reaching vision, a deeper integration of the approach presented here

or a comparable approach into the hardware and software components of commercially

available VE systems would be desirable. The depth image acquisition could be inte-

grated as an additional component to the existing tracking system. The already existing

safety wall metaphors could be complemented by metaphors that include the additional

138

depth information on the environment. For example, each SteamVR based application

could be equipped with a matching set of placeholder objects for improved signalling.

Static and dynamic objects in the environment could be represented by different place-

holder objects. Where no placeholder metaphors could be used, a universal metaphor

like the Rubber Band Metaphor could be utilized.

139

Bibliography

[1] Hermann Rein and Max Schneider. Einführung in die Physiologie des Men-

schen. Vol. 15. Springer, 1964, 648 ff.

[2] Ivan E. Sutherland. “The Ultimate Display”. In: Proceedings of the IFIP Congress.

1965, pp. 506–508.

[3] W. Kabsch. “A discussion of the solution for the best rotation to relate two sets

of vectors”. In: Acta Crystallographica Section A 34.5 (Sept. 1978), pp. 827–

828. DOI: 10.1107/S0567739478001680. URL: https://doi.org/

10.1107/S0567739478001680.

[4] Richard A. Bolt. “"Put-that-there": Voice and Gesture at the Graphics Inter-

face”. In: SIGGRAPH Comput. Graph. 14.3 (July 1980), pp. 262–270. ISSN:

0097-8930. DOI: 10.1145/965105.807503. URL: http://doi.acm.

org/10.1145/965105.807503.

[5] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated Cartog-

raphy”. In: Commun. ACM 24.6 (June 1981), pp. 381–395. ISSN: 0001-0782.

DOI: 10.1145/358669.358692. URL: http://doi.acm.org/10.

1145/358669.358692.

[6] Godfried Toussaint. Solving geometric problems with the rotating calipers. 1983.

[7] Aliens. Twentieth Century Fox, 1986.

[8] William Bricken. “Virtual reality: directions of growth”. In: NOTES FROM

THE SIGGRAPH ’90 PANEL (1990).

[9] Howard Rheingold. Virtual Reality. Summit Books, 1991. ISBN: 978-0671693633.

[10] P. J. Besl and N. D. McKay. “A method for registration of 3-D shapes”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (Feb.

1992), pp. 239–256. ISSN: 0162-8828. DOI: 10.1109/34.121791.

[11] Carolina Cruz-Neira et al. “The CAVE: Audio Visual Experience Automatic

Virtual Environment”. In: Commun. ACM 35.6 (June 1992), pp. 64–72. ISSN:

0001-0782. DOI: 10.1145/129888.129892. URL: http://doi.acm.

org/10.1145/129888.129892.

140

https://doi.org/10.1107/S0567739478001680
https://doi.org/10.1107/S0567739478001680
https://doi.org/10.1107/S0567739478001680
https://doi.org/10.1145/965105.807503
http://doi.acm.org/10.1145/965105.807503
http://doi.acm.org/10.1145/965105.807503
https://doi.org/10.1145/358669.358692
http://doi.acm.org/10.1145/358669.358692
http://doi.acm.org/10.1145/358669.358692
https://doi.org/10.1109/34.121791
https://doi.org/10.1145/129888.129892
http://doi.acm.org/10.1145/129888.129892
http://doi.acm.org/10.1145/129888.129892

[12] Mattias Johannesson, Anders Åström, and Per-Erik Danielsson. “An Image

Sensor for Sheet-of-Light Range Imaging”. In: MVA. 1992.

[13] “Research Directions in Virtual Environments: Report of an NSF Invitational

Workshop, March 23-24, 1992, University of North Carolina at Chapel Hill”.

In: SIGGRAPH Comput. Graph. 26.3 (Aug. 1992). Chairman-Bishop, Gary and

Chairman-Fuchs, Henry, pp. 153–177. ISSN: 0097-8930. DOI: 10.1145/14

2413.142416. URL: http://doi.acm.org/10.1145/142413.

142416.

[14] Jonathan Steuer. “Defining Virtual Reality: Dimensions Determining Telepres-

ence”. In: Journal of Communication 42.4 (1992), pp. 73–93. DOI: 10.1111/

j.1460-2466.1992.tb00812.x. eprint: https://onlinelibrary

.wiley.com/doi/pdf/10.1111/j.1460-2466.1992.tb00812.

x. URL: https://onlinelibrary.wiley.com/doi/abs/10.

1111/j.1460-2466.1992.tb00812.x.

[15] Carolina Cruz-Neira. “Virtual Reality Overview”. In: SIGGRAPH ’93 23 (1993),

pp. 1–18.

[16] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. “Surround-

screen Projection-based Virtual Reality: The Design and Implementation of the

CAVE”. In: Proceedings of the 20th Annual Conference on Computer Graph-

ics and Interactive Techniques. SIGGRAPH ’93. Anaheim, CA: ACM, 1993,

pp. 135–142. ISBN: 0-89791-601-8. DOI: 10.1145/166117.166134. URL:

http://doi.acm.org/10.1145/166117.166134.

[17] Robert S. Kennedy et al. “Simulator Sickness Questionnaire: An Enhanced

Method for Quantifying Simulator Sickness”. In: The International Journal of

Aviation Psychology 3.3 (1993), pp. 203–220. DOI: 10.1207/s15327108

ijap0303_3.

[18] S. R. Ellis. “What are virtual environments?” In: IEEE Computer Graphics and

Applications 14.01 (Jan. 1994), pp. 17–22. ISSN: 0272-1716. DOI: 10.1109/

38.250914.

[19] Mel Slater, Martin Usoh, and Anthony Steed. “Depth of Presence in Virtual En-

vironments”. In: Presence: Teleoper. Virtual Environ. 3.2 (Jan. 1994), pp. 130–

144. ISSN: 1054-7460. DOI: 10.1162/pres.1994.3.2.130.

[20] Anders Åström and Erik Åstrand. “Very High Speed Multi Resolution Sheet-

of-light Range Imaging”. In: Proceedings of IAPR Workshop on Machine Vision

Applications, MVA 1996, November 12-14, 1996, Tokyo, Japan. 1996, pp. 397–

400. URL: http://b2.cvl.iis.u-tokyo.ac.jp/mva/proceedin

gs/CommemorativeDVD/1996/papers/1996397.pdf.

141

https://doi.org/10.1145/142413.142416
https://doi.org/10.1145/142413.142416
http://doi.acm.org/10.1145/142413.142416
http://doi.acm.org/10.1145/142413.142416
https://doi.org/10.1111/j.1460-2466.1992.tb00812.x
https://doi.org/10.1111/j.1460-2466.1992.tb00812.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1460-2466.1992.tb00812.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1460-2466.1992.tb00812.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1460-2466.1992.tb00812.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1460-2466.1992.tb00812.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1460-2466.1992.tb00812.x
https://doi.org/10.1145/166117.166134
http://doi.acm.org/10.1145/166117.166134
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1109/38.250914
https://doi.org/10.1109/38.250914
https://doi.org/10.1162/pres.1994.3.2.130
http://b2.cvl.iis.u-tokyo.ac.jp/mva/proceedings/CommemorativeDVD/1996/papers/1996397.pdf
http://b2.cvl.iis.u-tokyo.ac.jp/mva/proceedings/CommemorativeDVD/1996/papers/1996397.pdf

[21] Carl Carter. Principles of GPS. A Brief Primer on the Operation of the Global

Positioning System. Feb. 1997. URL: https://www.inventeksys.com/

wp-content/uploads/2011/11/GPS_Facts_Principles_of_

GPS.pdf (visited on 05/12/2017).

[22] S. R. Ellis et al. “Factors influencing operator interaction with virtual objects

viewed via head-mounted see-through displays: viewing conditions and render-

ing latency”. In: Proceedings of IEEE 1997 Annual International Symposium

on Virtual Reality. Mar. 1997, pp. 138–145. DOI: 10.1109/VRAIS.1997.

583063.

[23] John Golding. “Motion sickness susceptibility questionnaire revised and its re-

lationship to other forms of sickness”. In: Brain research bulletin 47 (Nov.

1998), pp. 507–16. DOI: 10.1016/S0361-9230(98)00091-4.

[24] S. Hiura and T. Matsuyama. “Depth measurement by the multi-focus camera”.

In: Proceedings. 1998 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (Cat. No.98CB36231). June 1998, pp. 953–959. DOI:

10.1109/CVPR.1998.698719.

[25] Mel Slater, John McCarthy, and Francesco Maringelli. “The Influence of Body

Movement on Subjective Presence in Virtual Environments”. In: Human Fac-

tors 40.3 (1998), pp. 469–477. DOI: 10.1518/001872098779591368.

[26] Frederick P. Brooks. “What’s Real About Virtual Reality?” In: IEEE Comput.

Graph. Appl. 19.6 (Nov. 1999), pp. 16–27. ISSN: 0272-1716. DOI: 10.1109/

38.799723. URL: https://doi.org/10.1109/38.799723.

[27] Daniel J Simons and Christopher F Chabris. “Gorillas in Our Midst: Sustained

Inattentional Blindness for Dynamic Events”. In: Perception 28.9 (1999), pp. 1059–

1074. DOI: 10.1068/p281059. URL: http://theinvisiblegorill

a.com/gorilla_experiment.html.

[28] Martin Usoh et al. “Walking » Walking-in-place » Flying, in Virtual Environ-

ments”. In: Proceedings of the 26th Annual Conference on Computer Graph-

ics and Interactive Techniques. SIGGRAPH ’99. New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co., 1999, pp. 359–364. ISBN: 0-201-48560-

5. DOI: 10.1145/311535.311589. URL: http://dx.doi.org/10.

1145/311535.311589.

[29] Mel Slater and Anthony Steed. “A Virtual Presence Counter”. In: Presence:

Teleoper. Virtual Environ. 9.5 (Oct. 2000), pp. 413–434. ISSN: 1054-7460. DOI:

10.1162/105474600566925. URL: http://dx.doi.org/10.

1162/105474600566925.

142

https://www.inventeksys.com/wp-content/uploads/2011/11/GPS_Facts_Principles_of_GPS.pdf
https://www.inventeksys.com/wp-content/uploads/2011/11/GPS_Facts_Principles_of_GPS.pdf
https://www.inventeksys.com/wp-content/uploads/2011/11/GPS_Facts_Principles_of_GPS.pdf
https://doi.org/10.1109/VRAIS.1997.583063
https://doi.org/10.1109/VRAIS.1997.583063
https://doi.org/10.1016/S0361-9230(98)00091-4
https://doi.org/10.1109/CVPR.1998.698719
https://doi.org/10.1518/001872098779591368
https://doi.org/10.1109/38.799723
https://doi.org/10.1109/38.799723
https://doi.org/10.1109/38.799723
https://doi.org/10.1068/p281059
http://theinvisiblegorilla.com/gorilla_experiment.html
http://theinvisiblegorilla.com/gorilla_experiment.html
https://doi.org/10.1145/311535.311589
http://dx.doi.org/10.1145/311535.311589
http://dx.doi.org/10.1145/311535.311589
https://doi.org/10.1162/105474600566925
http://dx.doi.org/10.1162/105474600566925
http://dx.doi.org/10.1162/105474600566925

[30] O. Hall-Holt and S. Rusinkiewicz. “Stripe boundary codes for real-time structured-

light range scanning of moving objects”. In: Proceedings Eighth IEEE Interna-

tional Conference on Computer Vision. ICCV 2001. Vol. 2. July 2001, 359–366

vol.2. DOI: 10.1109/ICCV.2001.937648.

[31] T. Schubert, F. Friedmann, and H. Regenbrecht. “The Experience of Presence:

Factor Analytic Insights”. In: Presence 10.3 (June 2001), pp. 266–281. ISSN:

1054-7460. DOI: 10.1162/105474601300343603.

[32] Martijn J. Schuemie et al. “Research on Presence in Virtual Reality: A Survey”.

In: CyberPsychology & Behavior 4.2 (2001). PMID: 11710246, pp. 183–201.

DOI: 10.1089/109493101300117884. eprint: https://doi.org/

10.1089/109493101300117884. URL: https://doi.org/10.

1089/109493101300117884.

[33] S. You and U. Neumann. “Fusion of vision and gyro tracking for robust aug-

mented reality registration”. In: Proceedings IEEE Virtual Reality 2001. Mar.

2001, pp. 71–78. DOI: 10.1109/VR.2001.913772.

[34] Seungmoon Choi and H. Z. Tan. “Effect of update rate on perceived instability

of virtual haptic texture”. In: 2004 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 4. Sept.

2004, 3577–3582 vol.4. DOI: 10.1109/IROS.2004.1389970.

[35] Roberto Casati and Elena Pasquinelli. “Is The Subjective Feel of Presence’

an Uninteresting Goal?” In: Journal of Visual Language and Computing 16.5

(2005), pp. 428–441. DOI: 10.1016/j.jvlc.2004.12.003. URL:

https://jeannicod.ccsd.cnrs.fr/ijn_01627167.

[36] Samuel A. Miller, Noah J. Misch, and Aaron J. Dalton. “Low-Cost, Portable,

Multi-Wall Virtual Reality”. In: Eurographics Symposium on Virtual Environ-

ments. Ed. by Erik Kjems and Roland Blach. The Eurographics Association,

2005. ISBN: 978-3-905674-06-4. DOI: 10.2312/EGVE/IPT_EGVE2005/

009-014.

[37] Ulla Wandinger. “Introduction to Lidar”. In: Lidar: Range-Resolved Optical

Remote Sensing of the Atmosphere. Ed. by Claus Weitkamp. New York, NY:

Springer New York, 2005, pp. 1–18. ISBN: 978-0-387-25101-1. DOI: 10.100

7/0-387-25101-4_1. URL: https://doi.org/10.1007/0-387-

25101-4_1.

[38] Brenda K. Wiederhold and Mark D. Wiederhold. In: Washington, DC, US:

American Psychological Association, 2005. Chap. The Effect of Presence on

Virtual Reality Treatment. Pp. 77–86. ISBN: 1-59147-031-5 (Hardcover). DOI:

10.1037/10858-006.

143

https://doi.org/10.1109/ICCV.2001.937648
https://doi.org/10.1162/105474601300343603
https://doi.org/10.1089/109493101300117884
https://doi.org/10.1089/109493101300117884
https://doi.org/10.1089/109493101300117884
https://doi.org/10.1089/109493101300117884
https://doi.org/10.1089/109493101300117884
https://doi.org/10.1109/VR.2001.913772
https://doi.org/10.1109/IROS.2004.1389970
https://doi.org/10.1016/j.jvlc.2004.12.003
https://jeannicod.ccsd.cnrs.fr/ijn_01627167
https://doi.org/10.2312/EGVE/IPT_EGVE2005/009-014
https://doi.org/10.2312/EGVE/IPT_EGVE2005/009-014
https://doi.org/10.1007/0-387-25101-4_1
https://doi.org/10.1007/0-387-25101-4_1
https://doi.org/10.1007/0-387-25101-4_1
https://doi.org/10.1007/0-387-25101-4_1
https://doi.org/10.1037/10858-006

[39] Henrik Arndt. Integrierte Informationsarchitektur: die erfolgreiche Konzeption

professioneller Websites. Springer, 2006.

[40] H. Durrant-Whyte and T. Bailey. “Simultaneous localization and mapping: part

I”. In: IEEE Robotics Automation Magazine 13.2 (June 2006), pp. 99–110.

ISSN: 1070-9932. DOI: 10.1109/MRA.2006.1638022.

[41] Betsy Williams et al. “Updating Orientation in Large Virtual Environments

Using Scaled Translational Gain”. In: Proceedings of the 3rd Symposium on

Applied Perception in Graphics and Visualization. APGV ’06. Boston, Mas-

sachusetts, USA: ACM, 2006, pp. 21–28. ISBN: 1-59593-429-4. DOI: 10 .

1145/1140491.1140495.

[42] Werner Wirth et al. “A Process Model of the Formation of Spatial Presence

Experiences”. In: Media Psychology 9.3 (2007), pp. 493–525. DOI: 10.1080/

15213260701283079.

[43] Josep Aulinas et al. “The SLAM Problem: A Survey”. In: Proceedings of the

2008 Conference on Artificial Intelligence Research and Development: Pro-

ceedings of the 11th International Conference of the Catalan Association for

Artificial Intelligence. Amsterdam, The Netherlands, The Netherlands: IOS Press,

2008, pp. 363–371. ISBN: 978-1-58603-925-7. URL: http://dl.acm.

org/citation.cfm?id=1566899.1566949.

[44] Ana Sacau, Jari Laarni, and Tilo Hartmann. “Influence of individual factors

on presence”. In: Computers in Human Behavior 24.5 (2008). Including the

Special Issue: Internet Empowerment, pp. 2255–2273. ISSN: 0747-5632. DOI:

10.1016/j.chb.2007.11.001. URL: http://www.sciencedirec

t.com/science/article/pii/S074756320700163X.

[45] Gabriel Cirio et al. “The Magic Barrier Tape: A Novel Metaphor for Infinite

Navigation in Virtual Worlds with a Restricted Walking Workspace”. In: Pro-

ceedings of the 16th ACM Symposium on Virtual Reality Software and Technol-

ogy. VRST ’09. Kyoto, Japan: ACM, 2009, pp. 155–162. ISBN: 978-1-60558-

869-8. DOI: 10.1145/1643928.1643965. URL: http://doi.acm.

org/10.1145/1643928.1643965.

[46] Radu Bogdan Rusu. “Semantic 3D Object Maps for Everyday Manipulation in

Human Living Environments”. PhD thesis. Technische Universität München,

2009.

[47] Mel Slater. “Place illusion and plausibility can lead to realistic behaviour in

immersive virtual environments”. In: Philosophical Transactions of the Royal

Society B: Biological Sciences 364.1535 (2009), pp. 3549–3557. DOI: 10.109

8/rstb.2009.0138. eprint: https://royalsocietypublishing.

144

https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1145/1140491.1140495
https://doi.org/10.1145/1140491.1140495
https://doi.org/10.1080/15213260701283079
https://doi.org/10.1080/15213260701283079
http://dl.acm.org/citation.cfm?id=1566899.1566949
http://dl.acm.org/citation.cfm?id=1566899.1566949
https://doi.org/10.1016/j.chb.2007.11.001
http://www.sciencedirect.com/science/article/pii/S074756320700163X
http://www.sciencedirect.com/science/article/pii/S074756320700163X
https://doi.org/10.1145/1643928.1643965
http://doi.acm.org/10.1145/1643928.1643965
http://doi.acm.org/10.1145/1643928.1643965
https://doi.org/10.1098/rstb.2009.0138
https://doi.org/10.1098/rstb.2009.0138
https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2009.0138
https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2009.0138

org/doi/pdf/10.1098/rstb.2009.0138. URL: https://royals

ocietypublishing.org/doi/abs/10.1098/rstb.2009.0138.

[48] Klaus Häming and Gabriele Peters. “The structure-from-motion reconstruction

pipeline a survey with focus on short image sequences”. eng. In: Kybernetika

46.5 (2010), pp. 926–937. URL: http://eudml.org/doc/197165.

[49] Radu Bogdan Rusu et al. “Fast 3D recognition and pose using the Viewpoint

Feature Histogram”. In: 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems. Oct. 2010, pp. 2155–2162. DOI: 10.1109/IROS.2010

.5651280.

[50] Jan L. Souman et al. “Making Virtual Walking Real: Perceptual Evaluation of

a New Treadmill Control Algorithm”. In: ACM Trans. Appl. Percept. 7.2 (Feb.

2010), 11:1–11:14. ISSN: 1544-3558. DOI: 10.1145/1670671.1670675.

URL: http://doi.acm.org/10.1145/1670671.1670675.

[51] F. Steinicke et al. “Estimation of Detection Thresholds for Redirected Walking

Techniques”. In: IEEE Transactions on Visualization and Computer Graphics

16.1 (Jan. 2010), pp. 17–27. ISSN: 1077-2626. DOI: 10.1109/TVCG.2009.

62.

[52] Memory and Performance Overhead of Smart Pointers. Modernes C++. Dec. 7,

2011. URL: https://www.modernescpp.com/index.php/memor

y-and-performance-overhead-of-smart-pointer (visited on

02/02/2019).

[53] Bernhard E. Riecke. “Compelling Self-Motion Through Virtual Environments

Without Actual Self-Motion Using Self-Motion Illusions (’Vection’) to Im-

prove VR User Experience”. In: Virtual Reality. Ed. by Jae-Jin Kim. Rijeka:

IntechOpen, 2011. Chap. 8. DOI: 10.5772/13150. URL: https://doi.

org/10.5772/13150.

[54] R. B. Rusu and S. Cousins. “3D is here: Point Cloud Library (PCL)”. In: 2011

IEEE International Conference on Robotics and Automation. May 2011, pp. 1–

4. DOI: 10.1109/ICRA.2011.5980567.

[55] Helene S. Wallach et al. “How Can Presence in Psychotherapy Employing VR

Be Increased? Chapter for Inclusion in: Systems in Health Care Using Agents

and Virtual Reality”. In: Advanced Computational Intelligence Paradigms in

Healthcare 6. Virtual Reality in Psychotherapy, Rehabilitation, and Assessment.

Ed. by Sheryl Brahnam and Lakhmi C. Jain. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 129–147. ISBN: 978-3-642-17824-5. DOI: 10.1007/

978-3-642-17824-5_7. URL: https://doi.org/10.1007/978-

3-642-17824-5_7.

145

https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2009.0138
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2009.0138
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2009.0138
http://eudml.org/doc/197165
https://doi.org/10.1109/IROS.2010.5651280
https://doi.org/10.1109/IROS.2010.5651280
https://doi.org/10.1145/1670671.1670675
http://doi.acm.org/10.1145/1670671.1670675
https://doi.org/10.1109/TVCG.2009.62
https://doi.org/10.1109/TVCG.2009.62
https://www.modernescpp.com/index.php/memory-and-performance-overhead-of-smart-pointer
https://www.modernescpp.com/index.php/memory-and-performance-overhead-of-smart-pointer
https://doi.org/10.5772/13150
https://doi.org/10.5772/13150
https://doi.org/10.5772/13150
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1007/978-3-642-17824-5_7
https://doi.org/10.1007/978-3-642-17824-5_7
https://doi.org/10.1007/978-3-642-17824-5_7
https://doi.org/10.1007/978-3-642-17824-5_7

[56] Michael Abrash. Latency - the sine qua non of AR and VR. Ramblings in Valve

Time. Dec. 29, 2012. URL: http://blogs.valvesoftware.com/

abrash/latency-the-sine-qua-non-of-ar-and-vr/ (visited

on 01/23/2019).

[57] Gabriel Cirio et al. “Walking in a Cube: Novel Metaphors for Safely Navigating

Large Virtual Environments in Restricted Real Workspaces”. In: IEEE Trans-

actions on Visualization and Computer Graphics 18.4 (Apr. 2012), pp. 546–

554. ISSN: 1077-2626. DOI: 10.1109/TVCG.2012.60. URL: http:

//dx.doi.org/10.1109/TVCG.2012.60.

[58] Miles Hansard et al. Time of Flight Cameras: Principles, Methods, and Appli-

cations. SpringerBriefs in Computer Science. Springer, Oct. 2012, p. 95. DOI:

10.1007/978-1-4471-4658-2. URL: https://hal.inria.fr/

hal-00725654.

[59] Manuel Martinello. “Coded Aperture Imaging”. PhD thesis. May 2012. DOI:

10.13140/RG.2.1.3886.8004.

[60] T. C. Peck, H. Fuchs, and M. C. Whitton. “The Design and Evaluation of a

Large-Scale Real-Walking Locomotion Interface”. In: IEEE Transactions on

Visualization and Computer Graphics 18.7 (July 2012), pp. 1053–1067. ISSN:

1077-2626. DOI: 10.1109/TVCG.2011.289.

[61] David Silver. Velodyne Lidar Price Reduction. Jan. 2, 2012. URL: https:

//medium.com/self-driving-cars/velodyne-lidar-price-

reduction-d358f245f086 (visited on 04/22/2019).

[62] G. Bruder et al. “Going with the flow: Modifying self-motion perception with

computer-mediated optic flow”. In: 2013 IEEE International Symposium on

Mixed and Augmented Reality (ISMAR). Oct. 2013, pp. 67–74. DOI: 10.11

09/ISMAR.2013.6671765.

[63] Alessandro Febretti et al. “CAVE2: a hybrid reality environment for immersive

simulation and information analysis”. In: vol. 8649. 2013. DOI: 10.1117/

12.2005484. URL: https://doi.org/10.1117/12.2005484.

[64] Frank M. Nieuwenhuizen and Heinrich H. Bulthoff. “The MPI CyberMotion

Simulator: A Novel Research Platform to Investigate Human Control Behav-

ior”. In: Journal of Computing Science and Engineering 7.2 (June 2013), pp. 122–

131. DOI: 10.5626/jcse.2013.7.2.122. URL: https://doi.org/

10.5626%2Fjcse.2013.7.2.122.

[65] CoordinateMapper Class (C++). Microsoft Docs. Oct. 21, 2014. URL: https:

//docs.microsoft.com/en-us/previous-versions/windows

/kinect/dn758445(v=ieb.10) (visited on 02/02/2019).

146

http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
https://doi.org/10.1109/TVCG.2012.60
http://dx.doi.org/10.1109/TVCG.2012.60
http://dx.doi.org/10.1109/TVCG.2012.60
https://doi.org/10.1007/978-1-4471-4658-2
https://hal.inria.fr/hal-00725654
https://hal.inria.fr/hal-00725654
https://doi.org/10.13140/RG.2.1.3886.8004
https://doi.org/10.1109/TVCG.2011.289
https://medium.com/self-driving-cars/velodyne-lidar-price-reduction-d358f245f086
https://medium.com/self-driving-cars/velodyne-lidar-price-reduction-d358f245f086
https://medium.com/self-driving-cars/velodyne-lidar-price-reduction-d358f245f086
https://doi.org/10.1109/ISMAR.2013.6671765
https://doi.org/10.1109/ISMAR.2013.6671765
https://doi.org/10.1117/12.2005484
https://doi.org/10.1117/12.2005484
https://doi.org/10.1117/12.2005484
https://doi.org/10.5626/jcse.2013.7.2.122
https://doi.org/10.5626%2Fjcse.2013.7.2.122
https://doi.org/10.5626%2Fjcse.2013.7.2.122
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn758445(v=ieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn758445(v=ieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn758445(v=ieb.10)

[66] Colin Cronin. Classical MoCap Part 2: Systems and Applications of Motion

Capture. Oct. 2014. URL: http://stringvisions.ovationpress.

com/2014/10/classical-mocap-part-2/ (visited on 06/23/2015).

[67] J. Engel, T. Schöps, and D. Cremers. “LSD-SLAM: Large-Scale Direct Monoc-

ular SLAM”. In: European Conference on Computer Vision (ECCV). Sept. 2014.

[68] Mylène Jacquemart and Lorenz Meier. “Deformationsmessungen an Talsper-

ren und in deren alpiner Umgebung mittels Radarinterferometrie”. In: Wasser

Energie Luft 106.2 (2014), pp. 105–111. URL: https://www.geopra

event.ch/wp- content/uploads/2014/06/WEL_2_2014_

Deformationsmessungen_an_Talsperren.pdf.

[69] Kinect API Overview. Microsoft Docs. Oct. 21, 2014. URL: https://docs.

microsoft.com/en-us/previous-versions/windows/kinect

/dn782033(v%3dieb.10) (visited on 02/02/2019).

[70] Kinect Camera space. Microsoft Docs. Oct. 21, 2014. URL: https://docs.

microsoft.com/en-us/previous-versions/windows/kinect

/dn785530(v=ieb.10) (visited on 12/12/2018).

[71] Kinect for Windows Runtime 2.0. Download Center. Oct. 21, 2014. URL: htt

ps://www.microsoft.com/en-us/download/details.aspx?

id=44559 (visited on 11/06/2018).

[72] Kinect for Windows SDK 2.0. Features. Oct. 21, 2014. URL: https://docs.

microsoft.com/en-us/previous-versions/windows/kinect

/dn782025(v%3dieb.10) (visited on 03/26/2019).

[73] Kinect for Windows SDK 2.0. Download Center. Oct. 21, 2014. URL: https:

//www.microsoft.com/en-us/download/details.aspx?id=

44561 (visited on 11/05/2018).

[74] Microsoft Kinect 2 Unity Plug-in download. 2014. URL: https://go.micr

osoft.com/fwlink/p/?LinkId=513177 (visited on 11/05/2018).

[75] What’s New in the October 2014 Kinect for Windows version 2.0 SDK. Known

Issues. Oct. 21, 2014. URL: http://go.microsoft.com/fwlink/

?LinkID=403901 (visited on 11/05/2018).

[76] Sean Higgins. A LiDAR Unit for Under $100. July 8, 2015. URL: https://

www.spar3d.com/blogs/the-other-dimension/vol13no27-

lidar-unit-your-kids-can-afford/ (visited on 04/22/2019).

147

http://stringvisions.ovationpress.com/2014/10/classical-mocap-part-2/
http://stringvisions.ovationpress.com/2014/10/classical-mocap-part-2/
https://www.geopraevent.ch/wp-content/uploads/2014/06/WEL_2_2014_Deformationsmessungen_an_Talsperren.pdf
https://www.geopraevent.ch/wp-content/uploads/2014/06/WEL_2_2014_Deformationsmessungen_an_Talsperren.pdf
https://www.geopraevent.ch/wp-content/uploads/2014/06/WEL_2_2014_Deformationsmessungen_an_Talsperren.pdf
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn782033(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn782033(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn782033(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn785530(v=ieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn785530(v=ieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn785530(v=ieb.10)
https://www.microsoft.com/en-us/download/details.aspx?id=44559
https://www.microsoft.com/en-us/download/details.aspx?id=44559
https://www.microsoft.com/en-us/download/details.aspx?id=44559
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn782025(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn782025(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn782025(v%3dieb.10)
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://go.microsoft.com/fwlink/p/?LinkId=513177
https://go.microsoft.com/fwlink/p/?LinkId=513177
http://go.microsoft.com/fwlink/?LinkID=403901
http://go.microsoft.com/fwlink/?LinkID=403901
https://www.spar3d.com/blogs/the-other-dimension/vol13no27-lidar-unit-your-kids-can-afford/
https://www.spar3d.com/blogs/the-other-dimension/vol13no27-lidar-unit-your-kids-can-afford/
https://www.spar3d.com/blogs/the-other-dimension/vol13no27-lidar-unit-your-kids-can-afford/

[77] Cheish Merryweather. 10 Virtual Reality Sex Toys You Won’t Believe Actually

Exist. Virtuix Omni: Walk and Run in VR. June 10, 2015. URL: https://ww

w.therichest.com/rich-list/most-shocking/10-virtual-

reality-toys-you-wont-believe-exist/ (visited on 04/02/2019).

[78] Adalberto L. Simeone, Eduardo Velloso, and Hans Gellersen. “Substitutional

Reality: Using the Physical Environment to Design Virtual Reality Experi-

ences”. In: Proceedings of the 33rd Annual ACM Conference on Human Fac-

tors in Computing Systems. CHI ’15. Seoul, Republic of Korea: ACM, 2015,

pp. 3307–3316. ISBN: 978-1-4503-3145-6. DOI: 10.1145/2702123.2702

389. URL: http://doi.acm.org/10.1145/2702123.2702389.

[79] Peter Wozniak et al. “Perform light and optic experiments in Augmented Re-

ality”. In: vol. 9793. 2015. DOI: 10.1117/12.2223069. URL: https:

//doi.org/10.1117/12.2223069.

[80] C. Cadena et al. “Past, Present, and Future of Simultaneous Localization and

Mapping: Toward the Robust-Perception Age”. In: IEEE Transactions on Robotics

32.6 (Dec. 2016), pp. 1309–1332. ISSN: 1552-3098. DOI: 10.1109/TRO.

2016.2624754.

[81] I. Choi et al. “Wolverine: A wearable haptic interface for grasping in virtual

reality”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). Oct. 2016, pp. 986–993. DOI: 10.1109/IROS.2016.

7759169.

[82] Jörg Conradt. “SLAM Algorithms In Dynamic Environments”. In: 2016.

[83] Ayush Dewan et al. “Motion-based detection and tracking in 3D LiDAR scans”.

In: 2016 IEEE International Conference on Robotics and Automation (ICRA)

(2016), pp. 4508–4513.

[84] Grabber of Point Cloud Library based on Kinect for Windows SDK. Github.

Sept. 10, 2016. URL: https://github.com/UnaNancyOwen/Kinect

Grabber (visited on 02/02/2019).

[85] P. Miermeister et al. “The CableRobot simulator large scale motion platform

based on cable robot technology”. In: 2016 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). Oct. 2016, pp. 3024–3029. DOI: 10.

1109/IROS.2016.7759468.

[86] T. Nescher, M. Zank, and A. Kunz. “Simultaneous mapping and redirected

walking for ad hoc free walking in virtual environments”. In: 2016 IEEE Virtual

Reality (VR). Mar. 2016, pp. 239–240. DOI: 10.1109/VR.2016.7504742.

148

https://www.therichest.com/rich-list/most-shocking/10-virtual-reality-toys-you-wont-believe-exist/
https://www.therichest.com/rich-list/most-shocking/10-virtual-reality-toys-you-wont-believe-exist/
https://www.therichest.com/rich-list/most-shocking/10-virtual-reality-toys-you-wont-believe-exist/
https://doi.org/10.1145/2702123.2702389
https://doi.org/10.1145/2702123.2702389
http://doi.acm.org/10.1145/2702123.2702389
https://doi.org/10.1117/12.2223069
https://doi.org/10.1117/12.2223069
https://doi.org/10.1117/12.2223069
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/IROS.2016.7759169
https://doi.org/10.1109/IROS.2016.7759169
https://github.com/UnaNancyOwen/KinectGrabber
https://github.com/UnaNancyOwen/KinectGrabber
https://doi.org/10.1109/IROS.2016.7759468
https://doi.org/10.1109/IROS.2016.7759468
https://doi.org/10.1109/VR.2016.7504742

[87] Duc Thanh Nguyen, Wanqing Li, and Philip O. Ogunbona. “Human detection

from images and videos: A survey”. In: Pattern Recognition 51 (2016), pp. 148–

175. ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.patcog.

2015.08.027. URL: http://www.sciencedirect.com/science/

article/pii/S0031320315003179.

[88] Adalberto L. Simeone. “The VR motion tracker: visualising movement of non-

participants in desktop virtual reality experiences”. In: 2016 IEEE 2nd Work-

shop on Everyday Virtual Reality (WEVR). Mar. 2016, pp. 1–4. DOI: 10 .

1109/WEVR.2016.7859535.

[89] Misha Sra et al. “Procedurally Generated Virtual Reality from 3D Reconstructed

Physical Space”. In: Proceedings of the 22Nd ACM Conference on Virtual Re-

ality Software and Technology. VRST ’16. Munich, Germany: ACM, 2016,

pp. 191–200. ISBN: 978-1-4503-4491-3. DOI: 10.1145/2993369.2993

372. URL: http://doi.acm.org/10.1145/2993369.2993372.

[90] Tsukasa Sugiura. CMake Modules for Kinect SDK. unanancyowen Blog. Feb. 26,

2016. URL: http://unanancyowen.com/en/cmake- modules-

for-kinect-sdk/ (visited on 02/02/2019).

[91] Peter Wozniak et al. “Possible applications of the LEAP motion controller for

more interactive simulated experiments in augmented or virtual reality”. In:

vol. 9946. 2016. DOI: 10.1117/12.2237673. URL: https://doi.

org/10.1117/12.2237673.

[92] Christiane Attig et al. “System Latency Guidelines Then and Now – Is Zero

Latency Really Considered Necessary?” In: Engineering Psychology and Cog-

nitive Ergonomics: Cognition and Design. Ed. by Don Harris. Cham: Springer

International Publishing, 2017, pp. 3–14. ISBN: 978-3-319-58475-1.

[93] Oliver Kreyolos. 3D Camera Calibration for Mixed-Reality Recording. July 31,

2017. URL: http://doc-ok.org/?p=1623 (visited on 02/12/2018).

[94] Fengqiang Li et al. “High-depth-resolution range imaging with multiple-wavelength

superheterodyne interferometry using 1550-nm lasers”. In: Appl. Opt. 56.31

(Nov. 2017), H51–H56. DOI: 10.1364/AO.56.000H51. URL: http:

//ao.osa.org/abstract.cfm?URI=ao-56-31-H51.

[95] Daniel R. Mestre. “CAVE versus Head-Mounted Displays: Ongoing thoughts”.

In: Electronic Imaging 2017.3 (Jan. 2017), pp. 31–35. ISSN: 2470-1173. DOI:

doi:10.2352/ISSN.2470-1173.2017.3.ERVR-094. URL: https:

//www.ingentaconnect.com/content/ist/ei/2017/0000201

7/00000003/art00006.

149

https://doi.org/https://doi.org/10.1016/j.patcog.2015.08.027
https://doi.org/https://doi.org/10.1016/j.patcog.2015.08.027
http://www.sciencedirect.com/science/article/pii/S0031320315003179
http://www.sciencedirect.com/science/article/pii/S0031320315003179
https://doi.org/10.1109/WEVR.2016.7859535
https://doi.org/10.1109/WEVR.2016.7859535
https://doi.org/10.1145/2993369.2993372
https://doi.org/10.1145/2993369.2993372
http://doi.acm.org/10.1145/2993369.2993372
http://unanancyowen.com/en/cmake-modules-for-kinect-sdk/
http://unanancyowen.com/en/cmake-modules-for-kinect-sdk/
https://doi.org/10.1117/12.2237673
https://doi.org/10.1117/12.2237673
https://doi.org/10.1117/12.2237673
http://doc-ok.org/?p=1623
https://doi.org/10.1364/AO.56.000H51
http://ao.osa.org/abstract.cfm?URI=ao-56-31-H51
http://ao.osa.org/abstract.cfm?URI=ao-56-31-H51
https://doi.org/doi:10.2352/ISSN.2470-1173.2017.3.ERVR-094
https://www.ingentaconnect.com/content/ist/ei/2017/00002017/00000003/art00006
https://www.ingentaconnect.com/content/ist/ei/2017/00002017/00000003/art00006
https://www.ingentaconnect.com/content/ist/ei/2017/00002017/00000003/art00006

[96] Pierre Pita. List of Full Body Virtual Reality Haptic Suits. Feb. 28, 2017. URL:

https://virtualrealitytimes.com/2017/02/28/list-o

f- full- body- virtual- reality- haptic- suits/ (visited on

04/02/2019).

[97] Anthony Scavarelli and Robert J. Teather. “VR Collide! Comparing Collision-

Avoidance Methods Between Co-located Virtual Reality Users”. In: Proceed-

ings of the 2017 CHI Conference Extended Abstracts on Human Factors in

Computing Systems. CHI EA ’17. Denver, Colorado, USA: ACM, 2017, pp. 2915–

2921. ISBN: 978-1-4503-4656-6. DOI: 10.1145/3027063.3053180. URL:

http://doi.acm.org/10.1145/3027063.3053180.

[98] Signature (functions). MDN Docs. June 23, 2017. URL: https://develope

r.mozilla.org/en-US/docs/Glossary/Signature/Function

(visited on 10/31/2018).

[99] Tsukasa Sugiura. Point Cloud Library 1.8.1 has been released. unanancyowen

Blog. Aug. 8, 2017. URL: http://unanancyowen.com/en/pcl181/

(visited on 02/02/2019).

[100] Valve Developer Community. SteamVR. May 19, 2017. URL: https://dev

eloper.valvesoftware.com/wiki/SteamVR#Documentation

(visited on 11/05/2018).

[101] Animation System Overview. Unity Documentation. 2018. URL: https://

docs.unity3d.com/Manual/AnimationOverview.html (visited

on 11/05/2018).

[102] Inrak Choi et al. “CLAW: A Multifunctional Handheld Haptic Controller for

Grasping, Touching, and Triggering in Virtual Reality”. In: Proceedings of the

2018 CHI Conference on Human Factors in Computing Systems. CHI ’18. Mon-

treal QC, Canada: ACM, 2018, 654:1–654:13. ISBN: 978-1-4503-5620-6. DOI:

10.1145/3173574.3174228. URL: http://doi.acm.org/10.

1145/3173574.3174228.

[103] Controlling GameObjects using components. Unity Documentation. 2018. URL:

https://docs.unity3d.com/Manual/ControllingGameObjec

tsComponents.html (visited on 11/05/2018).

[104] Creating components with scripting. Unity Documentation. 2018. URL: http

s://docs.unity3d.com/Manual/CreatingComponents.html

(visited on 11/05/2018).

[105] DEXMO Development Kit 1. User Manual [V2.8]. Nov. 2018. URL: https://

oss-main.dextarobotics.com/specifications_en-us.pdf

(visited on 04/21/2019).

150

https://virtualrealitytimes.com/2017/02/28/list-of-full-body-virtual-reality-haptic-suits/
https://virtualrealitytimes.com/2017/02/28/list-of-full-body-virtual-reality-haptic-suits/
https://doi.org/10.1145/3027063.3053180
http://doi.acm.org/10.1145/3027063.3053180
https://developer.mozilla.org/en-US/docs/Glossary/Signature/Function
https://developer.mozilla.org/en-US/docs/Glossary/Signature/Function
http://unanancyowen.com/en/pcl181/
https://developer.valvesoftware.com/wiki/SteamVR#Documentation
https://developer.valvesoftware.com/wiki/SteamVR#Documentation
https://docs.unity3d.com/Manual/AnimationOverview.html
https://docs.unity3d.com/Manual/AnimationOverview.html
https://doi.org/10.1145/3173574.3174228
http://doi.acm.org/10.1145/3173574.3174228
http://doi.acm.org/10.1145/3173574.3174228
https://docs.unity3d.com/Manual/ControllingGameObjectsComponents.html
https://docs.unity3d.com/Manual/ControllingGameObjectsComponents.html
https://docs.unity3d.com/Manual/CreatingComponents.html
https://docs.unity3d.com/Manual/CreatingComponents.html
https://oss-main.dextarobotics.com/specifications_en-us.pdf
https://oss-main.dextarobotics.com/specifications_en-us.pdf

[106] Execution Order of Event Functions. Unity Documentation. 2018. URL: http

s://docs.unity3d.com/Manual/ExecutionOrder.html (visited

on 11/05/2018).

[107] extern (C++) - extern "C" and extern "C++" function declarations. Microsoft

Visual Studio documentation C++. Dec. 4, 2018. URL: https://docs.

microsoft.com/en-us/cpp/cpp/extern-cpp?view=vs-2017#

extern-c-and-extern-c-function-declarations (visited on

01/23/2019).

[108] Agner Fog. Calling conventions for different C++ compilers and operating sys-

tems. Apr. 25, 2018. URL: https://www.agner.org/optimize/

calling_conventions.pdf (visited on 10/31/2018).

[109] Shunsuke Fujioka et al. “Object Manipulation by Hand with Force Feedback”.

In: Haptic Interaction. Ed. by Shoichi Hasegawa et al. Singapore: Springer Sin-

gapore, 2018, pp. 261–266. ISBN: 978-981-10-4157-0.

[110] Christopher Hahne et al. “Baseline and Triangulation Geometry in a Standard

Plenoptic Camera”. In: International Journal of Computer Vision 126.1 (Jan.

2018), pp. 21–35. ISSN: 1573-1405. DOI: 10.1007/s11263-017-1036-

4. URL: https://doi.org/10.1007/s11263-017-1036-4.

[111] Hand Skeleton. Units and Coordinate System. July 6, 2018. URL: https://

github.com/ValveSoftware/openvr/wiki/Hand-Skeleton

(visited on 01/10/2019).

[112] Shaoyan Huang et al. “Improving Virtual Reality Safety Precautions with Depth

Sensing”. In: Proceedings of the 30th Australian Conference on Computer-

Human Interaction. OzCHI ’18. Melbourne, Australia: ACM, 2018, pp. 528–

531. ISBN: 978-1-4503-6188-0. DOI: 10.1145/3292147.3292241. URL:

http://doi.acm.org/10.1145/3292147.3292241.

[113] Introduction to components. Unity Documentation. 2018. URL: https://do

cs.unity3d.com/Manual/Components.html (visited on 11/05/2018).

[114] Peterson Josh. Updated scripting runtime in Unity 2018.1: What does the future

hold? Unity Blog. Mar. 28, 2018. URL: https://blogs.unity3d.com/

2018/03/28/updated-scripting-runtime-in-unity-2018-

1-what-does-the-future-hold/ (visited on 10/31/2018).

[115] A. G. Karkar, M. E. H. Chowdhury, and N. Nawaz. “Surround-Screen Mobile

based Projection: Design and Implementation of Mobile Cave Virtual Reality”.

In: IEEE Access (2018), pp. 1–1. ISSN: 2169-3536. DOI: 10.1109/ACCESS.

2017.2772300.

151

https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.microsoft.com/en-us/cpp/cpp/extern-cpp?view=vs-2017#extern-c-and-extern-c-function-declarations
https://docs.microsoft.com/en-us/cpp/cpp/extern-cpp?view=vs-2017#extern-c-and-extern-c-function-declarations
https://docs.microsoft.com/en-us/cpp/cpp/extern-cpp?view=vs-2017#extern-c-and-extern-c-function-declarations
https://www.agner.org/optimize/calling_conventions.pdf
https://www.agner.org/optimize/calling_conventions.pdf
https://doi.org/10.1007/s11263-017-1036-4
https://doi.org/10.1007/s11263-017-1036-4
https://doi.org/10.1007/s11263-017-1036-4
https://github.com/ValveSoftware/openvr/wiki/Hand-Skeleton
https://github.com/ValveSoftware/openvr/wiki/Hand-Skeleton
https://doi.org/10.1145/3292147.3292241
http://doi.acm.org/10.1145/3292147.3292241
https://docs.unity3d.com/Manual/Components.html
https://docs.unity3d.com/Manual/Components.html
https://blogs.unity3d.com/2018/03/28/updated-scripting-runtime-in-unity-2018-1-what-does-the-future-hold/
https://blogs.unity3d.com/2018/03/28/updated-scripting-runtime-in-unity-2018-1-what-does-the-future-hold/
https://blogs.unity3d.com/2018/03/28/updated-scripting-runtime-in-unity-2018-1-what-does-the-future-hold/
https://doi.org/10.1109/ACCESS.2017.2772300
https://doi.org/10.1109/ACCESS.2017.2772300

[116] Managed Plug-ins. Unity Documentation. 2018. URL: https://docs.uni

ty3d.com/Manual/UsingDLL.html (visited on 11/05/2018).

[117] Mesh.MarkDynamic. Unity Documentation. 2018. URL: https://docs.un

ity3d.com/ScriptReference/Mesh.MarkDynamic.html (visited

on 11/08/2018).

[118] Mesh.SetIndices. Unity Documentation. 2018. URL: https://docs.unit

y3d.com/ScriptReference/Mesh.SetIndices.html (visited on

11/08/2018).

[119] MeshTopology. Unity Documentation. 2018. URL: https://docs.uni

ty3d . com / ScriptReference / MeshTopology . html (visited on

11/07/2018).

[120] MonoBehaviour. Unity Documentation. 2018. URL: https://docs.uni

ty3d.com/ScriptReference/MonoBehaviour.html (visited on

02/20/2019).

[121] Native Plug-ins. Unity Documentation. 2018. URL: https://docs.unity

3d.com/Manual/NativePlugins.html (visited on 10/31/2018).

[122] N. C. Nilsson et al. “15 Years of Research on Redirected Walking in Immersive

Virtual Environments”. In: IEEE Computer Graphics and Applications 38.2

(Mar. 2018), pp. 44–56. ISSN: 0272-1716. DOI: 10.1109/MCG.2018.

111125628.

[123] OpenVR API Documentation. ValveSoftware/openvr. Oct. 18, 2018. URL: htt

ps://github.com/ValveSoftware/openvr/wiki/API-Docume

ntation (visited on 11/05/2018).

[124] Pcx - Point Cloud Importer/Renderer for Unity. GitHub. Sept. 20, 2018. URL:

https://github.com/keijiro/Pcx (visited on 11/16/2018).

[125] Prefabs. Unity Documentation. 2018. URL: https://docs.unity3d.

com/Manual/Prefabs.html (visited on 02/17/2019).

[126] SteamVR Plug-in. 2018. URL: https://assetstore.unity.com/

packages/tools/integration/steamvr-plugin-32647 (visited

on 11/05/2018).

[127] SteamVR Unity Plugin 1.2.3. GitHub. Sept. 20, 2018. URL: https://gith

ub.com/ValveSoftware/steamvr_unity_plugin/releases/

tag/1.2.3 (visited on 02/02/2019).

[128] SteamVR/Frame Timing. Valve Developer Community. Sept. 20, 2018. URL: h

ttps://developer.valvesoftware.com/wiki/SteamVR/Fram

e_Timing (visited on 11/09/2018).

152

https://docs.unity3d.com/Manual/UsingDLL.html
https://docs.unity3d.com/Manual/UsingDLL.html
https://docs.unity3d.com/ScriptReference/Mesh.MarkDynamic.html
https://docs.unity3d.com/ScriptReference/Mesh.MarkDynamic.html
https://docs.unity3d.com/ScriptReference/Mesh.SetIndices.html
https://docs.unity3d.com/ScriptReference/Mesh.SetIndices.html
https://docs.unity3d.com/ScriptReference/MeshTopology.html
https://docs.unity3d.com/ScriptReference/MeshTopology.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/Manual/NativePlugins.html
https://docs.unity3d.com/Manual/NativePlugins.html
https://doi.org/10.1109/MCG.2018.111125628
https://doi.org/10.1109/MCG.2018.111125628
https://github.com/ValveSoftware/openvr/wiki/API-Documentation
https://github.com/ValveSoftware/openvr/wiki/API-Documentation
https://github.com/ValveSoftware/openvr/wiki/API-Documentation
https://github.com/keijiro/Pcx
https://docs.unity3d.com/Manual/Prefabs.html
https://docs.unity3d.com/Manual/Prefabs.html
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://github.com/ValveSoftware/steamvr_unity_plugin/releases/tag/1.2.3
https://github.com/ValveSoftware/steamvr_unity_plugin/releases/tag/1.2.3
https://github.com/ValveSoftware/steamvr_unity_plugin/releases/tag/1.2.3
https://developer.valvesoftware.com/wiki/SteamVR/Frame_Timing
https://developer.valvesoftware.com/wiki/SteamVR/Frame_Timing
https://developer.valvesoftware.com/wiki/SteamVR/Frame_Timing

[129] Iris Stroh. Schlüsseltechnik fürs automatisierte Fahren. Neue Lidar-Sensoren.

June 21, 2018. URL: https://www.elektroniknet.de/markt-

technik/automotive/schluesseltechnik-fuers-automatis

ierte-fahren-154797.html (visited on 04/22/2019).

[130] Qi Sun et al. “Towards Virtual Reality Infinite Walking: Dynamic Saccadic

Redirection”. In: ACM Trans. Graph. 37.4 (July 2018), 67:1–67:13. ISSN: 0730-

0301. DOI: 10.1145/3197517.3201294. URL: http://doi.acm.

org/10.1145/3197517.3201294.

[131] Systemanforderungen für Unity 2018.2. 2018. URL: https://unity3d.

com/de/unity/system-requirements (visited on 11/05/2018).

[132] Scott Hayden. HTC Unveils Vive Focus Plus with 6DOF Controllers, Built for

Enterprise. Feb. 21, 2019. URL: https://www.roadtovr.com/en

terprise- vive- focus- plus- 6dof- controllers/ (visited on

04/21/2019).

[133] Microsoft Azure Kinect DK. Feb. 20, 2019. URL: https://aka.ms/kinec

tdocs (visited on 05/04/2019).

[134] Vive Developers. 2019. URL: https://developer.vive.com/resour

ces/pc-vr/ (visited on 02/02/2019).

[135] About Mono. URL: https://www.mono-project.com/docs/about

-mono/ (visited on 10/31/2018).

[136] Michael Abrash. What VR could, should, and almost certainly will be within two

years. Ramblings in Valve Time. URL: http://media.steampowered.

com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf

(visited on 01/23/2019).

[137] Aerome - Scent Technology. URL: http://www.aerome.de/ (visited on

04/09/2019).

[138] ART - Motion Capture. URL: https://ar-tracking.com/products/

markers-targets/motion-capture/ (visited on 04/22/2019).

[139] Benötige ich ein Synchronisierungskabel? Vive Support. URL: https://www

.vive.com/de/support/vive/category_howto/do-i-need-

to-use-the-sync-cables.html (visited on 02/02/2019).

[140] Building Plug-ins for Desktop Platforms. Unity Documentation. URL: http

s://docs.unity3d.com/Manual/PluginsForDesktop.html

(visited on 01/22/2019).

153

https://www.elektroniknet.de/markt-technik/automotive/schluesseltechnik-fuers-automatisierte-fahren-154797.html
https://www.elektroniknet.de/markt-technik/automotive/schluesseltechnik-fuers-automatisierte-fahren-154797.html
https://www.elektroniknet.de/markt-technik/automotive/schluesseltechnik-fuers-automatisierte-fahren-154797.html
https://doi.org/10.1145/3197517.3201294
http://doi.acm.org/10.1145/3197517.3201294
http://doi.acm.org/10.1145/3197517.3201294
https://unity3d.com/de/unity/system-requirements
https://unity3d.com/de/unity/system-requirements
https://www.roadtovr.com/enterprise-vive-focus-plus-6dof-controllers/
https://www.roadtovr.com/enterprise-vive-focus-plus-6dof-controllers/
https://aka.ms/kinectdocs
https://aka.ms/kinectdocs
https://developer.vive.com/resources/pc-vr/
https://developer.vive.com/resources/pc-vr/
https://www.mono-project.com/docs/about-mono/
https://www.mono-project.com/docs/about-mono/
http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf
http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf
http://www.aerome.de/
https://ar-tracking.com/products/markers-targets/motion-capture/
https://ar-tracking.com/products/markers-targets/motion-capture/
https://www.vive.com/de/support/vive/category_howto/do-i-need-to-use-the-sync-cables.html
https://www.vive.com/de/support/vive/category_howto/do-i-need-to-use-the-sync-cables.html
https://www.vive.com/de/support/vive/category_howto/do-i-need-to-use-the-sync-cables.html
https://docs.unity3d.com/Manual/PluginsForDesktop.html
https://docs.unity3d.com/Manual/PluginsForDesktop.html

[141] C# .NET Core versus C++ g++ fastest programs. URL: https://benchma

rksgame-team.pages.debian.net/benchmarksgame/faster/

csharpcore-gpp.html (visited on 11/02/2018).

[142] CMake - Reference Documentation. URL: https://cmake.org/docume

ntation (visited on 02/02/2019).

[143] Collider. Unity Documentation. URL: https://docs.unity3d.com/

ScriptReference/Collider.html (visited on 02/03/2019).

[144] Collision Detection (Advanced Methods in Computer Graphics). Oriented Bound-

ing Box (OBB). URL: http://what- when- how.com/advanced-

methods- in- computer- graphics/collision- detection-

advanced-methods-in-computer-graphics-part-2/ (visited

on 02/02/2019).

[145] Cultlab3D - Real-Time Structured-Light Scanner. URL: https://www.c

ultlab3d.de/index.php/real-time-structured-light-

scanner/?lang=de (visited on 04/22/2019).

[146] Estimating Surface Normals in a PointCloud. PCL Documentation. URL: ht

tp://www.pointclouds.org/documentation/tutorials/

normal_estimation.php (visited on 02/02/2019).

[147] Haptic Interfaces. URL: https://wp.nyu.edu/aimlab/resources_

main/haptic_interfaces/ (visited on 04/21/2019).

[148] HDL-64E S2 datasheet. URL: https://velodynelidar.com/lidar/

products/brochure/HDL-64E%20S2%20datasheet_2010_lowr

es.pdf (visited on 04/22/2019).

[149] ICAROS. URL: https://www.icaros.com/ (visited on 02/02/2019).

[150] Regina Kauther and Roland Schulze. Satellitengestützte Radarinterferometrie

ein neues Werkzeug für dieGeotechnik. URL: https://izw.baw.de/

publikationen/kolloquien/0/05_Kauther_Schulze_Satel

litengest%c3%bctzte-Radarinterferometrie.pdf (visited on

04/22/2019).

[151] Kickstarter. Virtuix Omni: Walk and Run in VR. URL: https://www.kick

starter.com/projects/1944625487/omni-move-naturally-

in-your-favorite-game?lang=de (visited on 04/02/2019).

[152] Kinect for Windows - Tools and extensions. URL: https://developer.

microsoft.com/en-us/windows/kinect (visited on 01/23/2019).

[153] Lexikon der Fernerkundung. URL: http://www.fe-lexikon.info/

lexikon-r.htm#radarinterferometrie (visited on 04/22/2019).

154

https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/csharpcore-gpp.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/csharpcore-gpp.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/csharpcore-gpp.html
https://cmake.org/documentation
https://cmake.org/documentation
https://docs.unity3d.com/ScriptReference/Collider.html
https://docs.unity3d.com/ScriptReference/Collider.html
http://what-when-how.com/advanced-methods-in-computer-graphics/collision-detection-advanced-methods-in-computer-graphics-part-2/
http://what-when-how.com/advanced-methods-in-computer-graphics/collision-detection-advanced-methods-in-computer-graphics-part-2/
http://what-when-how.com/advanced-methods-in-computer-graphics/collision-detection-advanced-methods-in-computer-graphics-part-2/
https://www.cultlab3d.de/index.php/real-time-structured-light-scanner/?lang=de
https://www.cultlab3d.de/index.php/real-time-structured-light-scanner/?lang=de
https://www.cultlab3d.de/index.php/real-time-structured-light-scanner/?lang=de
http://www.pointclouds.org/documentation/tutorials/normal_estimation.php
http://www.pointclouds.org/documentation/tutorials/normal_estimation.php
http://www.pointclouds.org/documentation/tutorials/normal_estimation.php
https://wp.nyu.edu/aimlab/resources_main/haptic_interfaces/
https://wp.nyu.edu/aimlab/resources_main/haptic_interfaces/
https://velodynelidar.com/lidar/products/brochure/HDL-64E%20S2%20datasheet_2010_lowres.pdf
https://velodynelidar.com/lidar/products/brochure/HDL-64E%20S2%20datasheet_2010_lowres.pdf
https://velodynelidar.com/lidar/products/brochure/HDL-64E%20S2%20datasheet_2010_lowres.pdf
https://www.icaros.com/
https://izw.baw.de/publikationen/kolloquien/0/05_Kauther_Schulze_Satellitengest%c3%bctzte-Radarinterferometrie.pdf
https://izw.baw.de/publikationen/kolloquien/0/05_Kauther_Schulze_Satellitengest%c3%bctzte-Radarinterferometrie.pdf
https://izw.baw.de/publikationen/kolloquien/0/05_Kauther_Schulze_Satellitengest%c3%bctzte-Radarinterferometrie.pdf
https://www.kickstarter.com/projects/1944625487/omni-move-naturally-in-your-favorite-game?lang=de
https://www.kickstarter.com/projects/1944625487/omni-move-naturally-in-your-favorite-game?lang=de
https://www.kickstarter.com/projects/1944625487/omni-move-naturally-in-your-favorite-game?lang=de
https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
http://www.fe-lexikon.info/lexikon-r.htm#radarinterferometrie
http://www.fe-lexikon.info/lexikon-r.htm#radarinterferometrie

[154] Larry Li. Time-of-Flight Camera - An Introduction. Robotics Technology. URL:

https://eu.mouser.com/applications/time-of-flight-

robotics/ (visited on 04/22/2019).

[155] Light Field Camera Technology. URL: https://raytrix.de/technol

ogy/ (visited on 04/22/2019).

[156] Location-based Augmented Reality. AR SDK for augmented Geo locations. URL:

https://www.wikitude.com/geo-augmented-reality/ (visited

on 07/02/2016).

[157] Managed Code. The Importance of Using 100% Managed Code. URL: https:

//www.progress.com/tutorials/net/managed-code (visited on

11/05/2018).

[158] Module sample_consensus. PCL Reference. URL: http://docs.pointcl

ouds.org/1.7.0/group__sample__consensus.html (visited on

02/02/2019).

[159] MonoBehaviour.Awake(). Unity Documentation. URL: https://docs.u

nity3d.com/ScriptReference/MonoBehaviour.Awake.html

(visited on 01/23/2019).

[160] NativeRenderingPlugin. graphicsdemo. URL: https://bitbucket.org/

Unity-Technologies/graphicsdemos (visited on 11/02/2018).

[161] OpenVR. Unity Documentation. URL: https://docs.unity3d.com/

Manual/VRDevices-OpenVR.html (visited on 11/05/2018).

[162] OpenVR SDK. URL: https://github.com/ValveSoftware/openvr

(visited on 02/02/2019).

[163] Overview of all Xsens Products. URL: https://www.xsens.com/produ

cts/ (visited on 06/23/2015).

[164] PCL Getting Started / Basic Structures. PCL Documentation. URL: http:

//www.pointclouds.org/documentation/tutorials/basic_

structures.php#basicstructures (visited on 02/02/2019).

[165] PCL Walkthrough: Visualization. PCL Documentation. URL: http://www.

pointclouds.org/documentation/tutorials/walkthrough.

php#visualization (visited on 02/02/2019).

[166] PlayerPrefs. Unity Documentation. URL: https://docs.unity3d.com/

ScriptReference/PlayerPrefs.html (visited on 02/02/2019).

[167] Point Cloud Library (PCL) : point_types.hpp. PCL Reference. URL: http://

docs.pointclouds.org/trunk/point__types_8hpp_source.

html (visited on 02/02/2019).

155

https://eu.mouser.com/applications/time-of-flight-robotics/
https://eu.mouser.com/applications/time-of-flight-robotics/
https://raytrix.de/technology/
https://raytrix.de/technology/
https://www.wikitude.com/geo-augmented-reality/
https://www.progress.com/tutorials/net/managed-code
https://www.progress.com/tutorials/net/managed-code
http://docs.pointclouds.org/1.7.0/group__sample__consensus.html
http://docs.pointclouds.org/1.7.0/group__sample__consensus.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
https://bitbucket.org/Unity-Technologies/graphicsdemos
https://bitbucket.org/Unity-Technologies/graphicsdemos
https://docs.unity3d.com/Manual/VRDevices-OpenVR.html
https://docs.unity3d.com/Manual/VRDevices-OpenVR.html
https://github.com/ValveSoftware/openvr
https://www.xsens.com/products/
https://www.xsens.com/products/
http://www.pointclouds.org/documentation/tutorials/basic_structures.php#basicstructures
http://www.pointclouds.org/documentation/tutorials/basic_structures.php#basicstructures
http://www.pointclouds.org/documentation/tutorials/basic_structures.php#basicstructures
http://www.pointclouds.org/documentation/tutorials/walkthrough.php#visualization
http://www.pointclouds.org/documentation/tutorials/walkthrough.php#visualization
http://www.pointclouds.org/documentation/tutorials/walkthrough.php#visualization
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.pointclouds.org/trunk/point__types_8hpp_source.html
http://docs.pointclouds.org/trunk/point__types_8hpp_source.html
http://docs.pointclouds.org/trunk/point__types_8hpp_source.html

[168] Portable 3D Scanners. URL: https://www.artec3d.com/portable-

3d-scanners (visited on 04/22/2019).

[169] Product hightlight Haption Virtuose 6D. URL: https://www.immersion

.fr/en/product-hightlight-haption-virtuose-6d/ (visited

on 04/02/2019).

[170] RGBDemo. NESTK. URL: http://rgbdemo.org/index.php/Docume

ntation/Nestk (visited on 02/02/2019).

[171] SensoDrive. Force-Feedback Produkte. URL: https://www.sensodrive

.de/produkte-leistungen/force-feedback-produkte.php

(visited on 04/10/2019).

[172] SteamVR. Steam Support. URL: http://steamvr.steampowered.com

(visited on 11/05/2018).

[173] Synchronizing Threads. The Boost C++ Libraries. URL: https://theboo

stcpplibraries.com/boost.thread-synchronization (visited

on 01/23/2019).

[174] Unity3D and C# - Coroutines vs threading. Unity Community. URL: https:

//answers.unity.com/questions/357033/unity3d-and-c-

coroutines-vs-threading.html (visited on 10/10/2018).

[175] Using PCL in your own project. PCL Documentation. URL: http://www.

pointclouds.org/documentation/tutorials/using_pcl_

pcl_config.php#using-pcl-pcl-config (visited on 02/02/2019).

[176] Eric W. Weisstein. Hessian Normal Form. URL: http://mathworld.wol

fram.com/HessianNormalForm.html (visited on 02/02/2019).

[177] What PointT types are available in PCL? PCL Documentation. URL: http://

www.pointclouds.org/documentation/tutorials/adding_

custom_ptype.php#what-pointt-types-are-available-in-

pcl (visited on 02/02/2019).

[178] Windows Mixed Reality for SteamVR. Steam Store. URL: https://store.

steampowered.com/app/719950/Windows_Mixed_Reality_

for_SteamVR/ (visited on 11/05/2018).

[179] Wrapper. URL: https://www.techopedia.com/definition/4389

/wrapper-software-engineering (visited on 10/31/2018).

[180] Writing Shared Libraries With D On Linux. URL: https://docs.unity3

d.com/Manual/NativePlugins.html (visited on 11/01/2018).

[181] ZKM. PanoramaLab. URL: https://zkm.de/en/project/panorama

lab (visited on 02/02/2019).

156

https://www.artec3d.com/portable-3d-scanners
https://www.artec3d.com/portable-3d-scanners
https://www.immersion.fr/en/product-hightlight-haption-virtuose-6d/
https://www.immersion.fr/en/product-hightlight-haption-virtuose-6d/
http://rgbdemo.org/index.php/Documentation/Nestk
http://rgbdemo.org/index.php/Documentation/Nestk
https://www.sensodrive.de/produkte-leistungen/force-feedback-produkte.php
https://www.sensodrive.de/produkte-leistungen/force-feedback-produkte.php
http://steamvr.steampowered.com
https://theboostcpplibraries.com/boost.thread-synchronization
https://theboostcpplibraries.com/boost.thread-synchronization
https://answers.unity.com/questions/357033/unity3d-and-c-coroutines-vs-threading.html
https://answers.unity.com/questions/357033/unity3d-and-c-coroutines-vs-threading.html
https://answers.unity.com/questions/357033/unity3d-and-c-coroutines-vs-threading.html
http://www.pointclouds.org/documentation/tutorials/using_pcl_pcl_config.php#using-pcl-pcl-config
http://www.pointclouds.org/documentation/tutorials/using_pcl_pcl_config.php#using-pcl-pcl-config
http://www.pointclouds.org/documentation/tutorials/using_pcl_pcl_config.php#using-pcl-pcl-config
http://mathworld.wolfram.com/HessianNormalForm.html
http://mathworld.wolfram.com/HessianNormalForm.html
http://www.pointclouds.org/documentation/tutorials/adding_custom_ptype.php#what-pointt-types-are-available-in-pcl
http://www.pointclouds.org/documentation/tutorials/adding_custom_ptype.php#what-pointt-types-are-available-in-pcl
http://www.pointclouds.org/documentation/tutorials/adding_custom_ptype.php#what-pointt-types-are-available-in-pcl
http://www.pointclouds.org/documentation/tutorials/adding_custom_ptype.php#what-pointt-types-are-available-in-pcl
https://store.steampowered.com/app/719950/Windows_Mixed_Reality_for_SteamVR/
https://store.steampowered.com/app/719950/Windows_Mixed_Reality_for_SteamVR/
https://store.steampowered.com/app/719950/Windows_Mixed_Reality_for_SteamVR/
https://www.techopedia.com/definition/4389/wrapper-software-engineering
https://www.techopedia.com/definition/4389/wrapper-software-engineering
https://docs.unity3d.com/Manual/NativePlugins.html
https://docs.unity3d.com/Manual/NativePlugins.html
https://zkm.de/en/project/panoramalab
https://zkm.de/en/project/panoramalab

Appendices

157

Appendix A

Unity GameObject lifecycle flowchart

Figure A.1 Execution order of event methods of MonoBehaviour based script compo-
nents in Unity. Figure taken from official documentation [106]

158

Redacted due to copyright

Appendix B

Unity Asset Store assets used for the VE scene

Some of the following assets from the Unity Asset Store were used to create parts of

the virtual world and of the application.

1. LowPoly Environment Pack: https://assetstore.unity.com/packages/

3d/environments/landscapes/lowpoly-environment-pack-99479

2. Low-Poly Resource Rocks: https://assetstore.unity.com/packages/

3d/props/exterior/low-poly-resource-rocks-76150

159

https://assetstore.unity.com/packages/3d/environments/landscapes/lowpoly-environment-pack-99479
https://assetstore.unity.com/packages/3d/environments/landscapes/lowpoly-environment-pack-99479
https://assetstore.unity.com/packages/3d/props/exterior/low-poly-resource-rocks-76150
https://assetstore.unity.com/packages/3d/props/exterior/low-poly-resource-rocks-76150

Appendix C

Questionnaires

The questionnaires used in the study are listed below.

• Legal consent

• Participants’ sociological profile questionnaire

• Motion sickness susceptibility questionnaire [23]

• Simulator sickness questionnaire [17]

• Metaphor / Subjective Evaluation (questions regarding presence are taken and

adapted from Slater et al. [19])

• VR study follow-up survey

160

 1 page

initials participant_______

INFORMATION FORM AND CONSENT

 Detection of simulator sickness by real-time analysis of biomarkers

WOZNIAK Peter - Phd candidate, Hochschule Offenburg

JAVAHIRALY Nicolas - Teacher Researcher, University of Strasbourg

CURTICAPEAN Dan - Teacher Researcher, Hochschule Offenburg

CAPOBIANCO Mr. Antonio - Teacher Researcher, University of Strasbourg

Using "you "herein refers to the research participant. "You" includes the person authorized to give consent
for the subject's participation in this research study.

The IT department of the University of Strasbourg, Hochschule Offenburg and the iCube

laboratory involved in research projects in the field of computer science in order to understand

the disadvantages of new technologies and find solutions to their side effects.

The project:

The objective of this work is to evaluate several visual metaphors to indicate to VR user the

presence of obstacles present in their physical environment and give them information to avoid

them.

The data recorded in this project are sociological informations, subjective evaluations and

physiological data : electrodermal activity (EDA), heart rate (ECG) and body temperature. This

data is collected non-intrusively using a strap connected type Empatica E4

(https://www.empatica.com/research/e4).

Today we are asking for your participation in this project, the steps will be detailed in the next

section.

161

 2 page

Initials participant _____

We invite you to read this Information form to decide whether to participate in this research

project. It is important to understand this form. Do not hesitate to ask questions.

Take any time necessary to make your decision.

Before agreeing to participate, the investigator must tell you:

1. Experimental procedure presentation

1) Preliminary questionnaires:

Firstly, you have to complete several preliminary questionnaires. They aim to identify some

elements characterizing you (gamer profile, experience of virtual reality, predisposition to

simulator sickness, etc.).

2) Installation of Participant:

You will be equipped with a virtual reality headset(headphones Daydream * developed by

Google) and bracelet Empatica E4.

3) Collection of data:

- You will try 4 different visual metaphors

Between each of these experiences you will have to fill out a questionnaire assessing your

discomfort level.

4) Questionnaires "Post-Experience": you will have to complete a final questionnaire and

share your experience with the experimenter.

The total time of this experience will be about 90 minutes.

2. What are the advantages and benefits ?

You will not gain any direct benefit by participating in this research.

3. What are the disadvantages and risks?

During immersion in the environments you might feel the known symptoms of cybersickness: eye

fatigue, increased salivation, dizziness, nausea. Depending on your predisposition, these symptoms

might progress to discomfort or vomiting. The intensity of these side effects vary from one

participant to another. In that case, do not hesitate to withdraw from the experiment.

There is a small risk that you might also tumble on physical obstacle during the experiment. The

experiment will assist you at any time to prevent you from hurting yourself or falling. The objects

present in the environment are chosen so that you cannot hurt yourself. However, in case you do

not feel comfortable, do not hesitate to withdraw from the experiment.

162

 3 page

Initials participant _____

4. In what cases can we withdraw from the experience?

You can ask to terminate the experiment at any time.

5. How is confidentiality ensured?

All information obtained for this research project will remain confidential, unless authorized by you or

an exception to the law. To do this, this information will be anonymised.

The files will still remain after the end of the research, the responsibility of the research team that

conducted the project at the University of Strasbourg.

Moreover, the results of this research may be published or disclosed in a scientific congress but no

identifiable information will be unveiled.

6. Participation of freedom

 Your participation in this research project is voluntary.

 You may withdraw from this research at any time.

7. In case of questions or problems, with whom can we communicate?

For more information about this research, please contact the researcher in charge of this research

Peter WOZNIAK: peter.wozniak@hs-offenburg.de

Antonio CAPOBIANCO: a.capobianco@unistra.fr

Dan CURTICAPEAN: dan.curticapean@hs-offenburg.de

Nicolas JAVAHIRALY: n.javahiraly@unistra.fr

Responsibility

By signing this declaration of consent, you do not waive your statutory rights.

Furthermore, you do not release investigators from their legal and professional responsibility.

8. Consent and assent

The experiment executors explained the nature and conduct of the research project. I have read the

declaration of consent and received a copy. I had the opportunity to ask questions which were

answered satisfactorily. Upon reflection, I agree to participate in this research project. I allow the

research team to use the data obtained from my participation in this project.

_______________________________ ________________________________ ____________

Name of participant giving consent Signature Date

163

 4 page

Initials participant _____

I explained to the participant all relevant aspects of research and I answered the questions that came

up. I told the participation that the research project is free and voluntary and may be terminated at

anytime.

_______________________________ ____________________________ _____________

Name of the person who obtained Signature Date

 consent

Your participation is anonymous.The data collected are strictly confidential and will be processed solely

by our research team. The questionnaire was developed in compliance with the ethics rules provided for

by the National Commission on Informatics and Liberties (CNIL), and is the subject of a normal

declaration under Article 23 of Law No. 78-17 of 6 January 1978 amended in 2004. the CNIL, through

Article 39, Article 41 and Article 42 of the law of 6 January 1978, a right of direct access to data. To

exercise this right, please write to the author of the survey fanny.pesle [at]ims-bordeaux.fr.

164

Participants' sociological profile
Questionnaire to establish a user profile of the participant. This information will be treated anonymously.

* Erforderlich

ID *1.

Personal informations

Gender / Geschlecht *

Wählen Sie alle zutreffenden Antworten aus.

Male

Female

2.

Age / Alter *3.

Profession / Beruf *4.

Diploma / Hochschulabschluß *

None // Diplom // Bachelor // Master // PhD

5.

Experience with computers / Erfahrung mit Computern *

1: Novice // 3 : Regular user // 5 : Expert
Markieren Sie nur ein Oval.

1 2 3 4 5

Novice Expert

6.

Video games practice / Erfahrung mit Computerspielen

The following questions aim at help us understand your gamer profile

During the last 6 months, how long did you played video games each week : *

Wählen Sie alle zutreffenden Antworten aus.

Not at
all

Less than
1 hour

1 to 2
hours

3 to 5
hours

5 to 10
hours

More than 10
hours

Action games (Doom,
Street Fighter, Assassin's
Creed, etc.)
Role playing (Elder's
scroll, Neverwinter nights)
Strategy game
(Civilization, Starcraft, etc.)
Other (please detail below)

7.

1 von 2

165

Bereitgestellt von

Optional: What other types of video games have you played?8.

If you play video games, what kind of game do you play? *

Markieren Sie nur ein Oval pro Zeile.

Never Rarely Sometimes Often

2D games
Isometric 3D games
3D with subjective view
3D with over the shoulder view
3D stereoscopic view (LCD or
Cyan/Red glasses)

9.

Experience with VR

Do you watch 3D movies at home or in theaters? *

1. Never // 2. Sometimes (less than once a year) // 3. Regularly (1 to 2 times a year) // 4. Often (3 to 5
times a year) // 5. Really often (More than 5 times a year)
Markieren Sie nur ein Oval.

1 2 3 4 5

Never Really often

10.

How frequently have you used low-cost VR (cardboard, daydream, gearVr) ? *

1. Never // 2. Sometimes (less than once a year) // 3. Regularly (1 to 2 times a year) // 4. Often (3 to 5
times a year) // 5. Really often (More than 5 times a year)
Markieren Sie nur ein Oval.

1 2 3 4 5

Never Really often

11.

How frequently have you used high-end VR headsets (Oculus rift, HTC Vice, Playstation VR) ? *

1. Never // 2. Sometimes (less than once a year) // 3. Regularly (1 to 2 times a year) // 4. Often (3 to 5
times a year) // 5. Really often (More than 5 times a year)
Markieren Sie nur ein Oval.

1 2 3 4 5

Never Really often

12.

To what purpose have you used VR? *

Wählen Sie alle zutreffenden Antworten aus.

Never Rarely Sometimes Regularly Really often

For 360° movies
For social networks
For video-games
To explore existing or imaginary
places

13.

2 von 2

166

Motion sickness susceptibility questionnaire
This questionnaire is designed to determine how susceptible you are to motion sickness and
what types of movements are most effective in causing it. Illness here means feeling unwell,
nauseous or even vomiting.
After some general questions, the questionnaire is divided into two sections:
Section A is about your childhood travel and motion sickness experiences before the age of 12.
Section B is about your travel and motion sickness experiences over the past 10 years.
The correct way to answer each question is explained in the body of the questionnaire. It is
important that you answer each question.
Thanks for your help!

* Erforderlich

ID *1.

Do you think you're sensitive to simulator sickness *

Markieren Sie nur ein Oval.

1 2 3 4

Not at all sensitive Very sensitive

2.

Section A : Experience before age 12

You should answer the following questions based solely on memories of your experiences before
the age of 12

During childhood (before age 12), how often did you use the following transportation or
attractions? *

Wählen Sie alle zutreffenden Antworten aus.

Never 1 to 4 trips 5 to 10 trips 11 or more trips

Cars

Buses or Coaches
Trains
Aircrafts
Boat (small crafts)
Ships (e.g. ferries)
Swings
Roundabouts: playground
Big Dippers, Funfair Rides

3.

1 of 3

167

During childhood (before age 12), how often were you sick or nauseous during these
experiences? *

Wählen Sie alle zutreffenden Antworten aus.

Never Rarely Sometimes Frequently Always

Cars
Buses or Coaches

Trains
Aircrafts

Boat (small crafts)
Ships (e.g. ferries)

Swings
Roundabouts: playground

Big Dippers, Funfair Rides

4.

During childhood (before age 12), how many times did you vomit during these
experiments? *

Wählen Sie alle zutreffenden Antworten aus.

Never Rarely Sometimes Frequently Always

Cars
Buses or Coaches
Trains

Aircrafts
Boat (small crafts)
Ships (e.g. ferries)
Swings
Roundabouts: playground
Big Dippers, Funfair Rides

5.

Section B : Your Experience over the last 10 years
(approximately)

Over the last 10 years, how often did you use the following transportation or
attractions? *

Wählen Sie alle zutreffenden Antworten aus.

Never 1 to 4 trips 5 to 10 trips 11 or more trips

Cars
Buses or Coaches

Trains
Aircrafts
Boat (small crafts)
Ships (e.g. ferries)
Swings
Roundabouts: playground
Big Dippers, Funfair Rides

6.

2 of 3

168

Bereitgestellt von

Over the last 10 years, how often were you sick or nauseous during these experiences?
*

Wählen Sie alle zutreffenden Antworten aus.

Never Rarely Sometimes Frequently Always

Cars
Buses or Coaches

Trains
Aircrafts

Boat (small crafts)
Ships (e.g. ferries)

Swings
Roundabouts: playground

Big Dippers, Funfair Rides

7.

Over the last 10 years, how many times did you vomit during these experiments? *

Wählen Sie alle zutreffenden Antworten aus.

Never Rarely Sometimes Frequently Always

Cars

Buses or Coaches
Trains
Aircrafts
Boat (small crafts)
Ships (e.g. ferries)
Swings

Roundabouts: playground
Big Dippers, Funfair Rides

8.

3 of 3

169

SSQ Questionnaire 1
Simulator Sickness Questionnaire

* Erforderlich

Participant Identification

ID *1.

SSQ Test

1. General discomfort / Allgemeines Unwohlsein *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

2.

2. Fatigue / Müdigkeit *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

3.

3. Headache / Kopfschmerz *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

4.

4. Eye strain / Augenbelastung *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

5.

1 of 3

170

5. Difficulty focusing / Schwierigkeiten bei der Fokussierung *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

6.

6. Increased salivation / Erhöhter Speichelfluss *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

7.

7. Sweating / Schwitzen *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

8.

8. Nausea / Übelkeit *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

9.

9. Difficulty concentrating / Konzentrationsschwierigkeiten *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

10.

10. Fullness of head / Druckgefühl im Kopf *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

11.

2 of 3

171

Bereitgestellt von

11. Blurred vision / Verschwommenes Sehen *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

12.

12. Dizzy (eyes open) / Schwindelig / Gefühl es dreht sich (Augen offen) *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

13.

13. Dizzy (eyes closed) / Schwindelig / Gefühl es dreht sich (Augen geschlossen) *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

14.

14. Vertigo / Schwindel / Umgebung bewegt sich *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

15.

15. Stomach awareness / Unwohlsein in Magengegend *
Used to indicate stomach discomfort, which may be borderline nausea. 0. None // 1. Slight // 2.
Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

16.

16. Burping / Rülpsen *
0. None // 1. Slight // 2. Moderate // 3. Severe

Markieren Sie nur ein Oval.

0 1 2 3

None Severe

17.

3 of 3

172

05 - Subjective Evaluation
The participant has to perform a task in VR. The task is repeated four times, each time with a
different metaphor.
After every metaphor or task the participant answers some questions.
In the end the participant gives an evaluation.

* Erforderlich

Participant Identification

ID *1.

METAPHOR 1 - Placeholder (tree)

Subjective evaluation of the metaphor's relevance

Difficulty of the task / Schwierigkeit der Aufgabe *

Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

2.

Difficulty to understand metaphor / Schwierigkeit die Metapher zu verstehen *

Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

3.

Precision of the metaphor / Genauigkeit der Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

bad good

4.

Spatial understanding of the metaphor / Räumliche Verständlichkeit *

How easy or hard is it to understand the spatial distance to the obstacle indicated by the
metaphor
Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

5.

1 of 10

173

Level of distraction / Grad der Ablenkung *

How distracting is the metaphor considering the main task you had to realize?
Markieren Sie nur ein Oval.

1 2 3 4 5

not distracting at all very distracting

6.

Subjective appreciation of the metaphor

Confidence in the metaphor / Vertrauen in die Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

no confidence complete confidence

7.

Esthetic of the metaphor / Ästhetik der Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

Ugly Beatiful

8.

Presence

The presence is the subjective sensation of being there, actually living the experience proposed in
the virtual world.

Sense a "being there" / Das Gefühl "dort zu sein" *

In the virtual world, how intensely did you have the feeling of being there
Markieren Sie nur ein Oval.

1 2 3 4 5

no at all... very much...

9.

Sense of "reality" / Das Gefühl von "Realität" *

During the experiment did you had the impression that the virtual world became more real or
present than the real world.
Markieren Sie nur ein Oval.

1 2 3 4 5

At no time... Almost all the time...

10.

2 of 10

174

Vividness / Lebendigkeit *

The VR environment seems to me to be more like
Markieren Sie nur ein Oval.

1 2 3 4 5

Something that I saw
...

Somewhere that I visited
...

11.

Effect of the metaphor on the feeling of presence / Einfluss der Metapher auf das
Gefühl der Präsenz *

How badly do you think the metaphor affects the feeling of presence ?
Markieren Sie nur ein Oval.

1 2 3 4 5

No at all Very high negative effect on presence

12.

Comments:13.

METAPHOR 2 - ARROW

Subjective evaluation of the metaphor's relevance

Difficulty of the task / Schwierigkeit der Aufgabe *

Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

14.

Difficulty to understand metaphor / Schwierigkeit die Metapher zu verstehen *

Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

15.

Precision of the metaphor / Genauigkeit der Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

bad good

16.

3 of 10

175

Spatial understanding of the metaphor / Räumliche Verständlichkeit *

How easy or hard is it to understand the spatial distance to the obstacle indicated by the
metaphor
Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

17.

Level of distraction / Grad der Ablenkung *

How distracting is the metaphor considering the main task you had to realize?
Markieren Sie nur ein Oval.

1 2 3 4 5

not distracting at all very distracting

18.

Subjective appreciation of the metaphor

Confidence in the metaphor / Vertrauen in die Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

no confidence complete confidence

19.

Esthetic of the metaphor / Ästhetik der Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

Ugly Beatiful

20.

Presence

The presence is the subjective sensation of being there, actually living the experience proposed in
the virtual world.

Sense a "being there" / Das Gefühl "dort zu sein" *

In the virtual world, how intensely did you have the feeling of being there
Markieren Sie nur ein Oval.

1 2 3 4 5

no at all... very much...

21.

4 of 10

176

Sense of "reality" / Das Gefühl von "Realität" *

During the experiment did you had the impression that the virtual world became more real or
present than the real world.
Markieren Sie nur ein Oval.

1 2 3 4 5

At no time... Almost all the time...

22.

Vividness / Lebendigkeit *

The VR environment seems to me to be more like
Markieren Sie nur ein Oval.

1 2 3 4 5

Something that I saw
...

Somewhere that I visited
...

23.

Effect of the metaphor on the feeling of presence / Einfluss der Metapher auf das
Gefühl der Präsenz *

How badly do you think the metaphor affects the feeling of presence ?
Markieren Sie nur ein Oval.

1 2 3 4 5

No at all Very high negative effect on presence

24.

Comments:25.

METAPHOR 3 - Rubberband

Subjective evaluation of the metaphor's relevance

Difficulty of the task / Schwierigkeit der Aufgabe *

Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

26.

Difficulty to understand metaphor / Schwierigkeit die Metapher zu verstehen *

Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

27.

5 of 10

177

Precision of the metaphor / Genauigkeit der Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

bad good

28.

Spatial understanding of the metaphor / Räumliche Verständlichkeit *

How easy or hard is it to understand the spatial distance to the obstacle indicated by the
metaphor
Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

29.

Level of distraction / Grad der Ablenkung *

How distracting is the metaphor considering the main task you had to realize?
Markieren Sie nur ein Oval.

1 2 3 4 5

not distracting at all very distracting

30.

Subjective appreciation of the metaphor

Confidence in the metaphor / Vertrauen in die Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

no confidence complete confidence

31.

Esthetic of the metaphor / Ästhetik der Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

Ugly Beatiful

32.

Presence

The presence is the subjective sensation of being there, actually living the experience proposed in
the virtual world.

6 of 10

178

Sense a "being there" / Das Gefühl "dort zu sein" *

In the virtual world, how intensely did you have the feeling of being there
Markieren Sie nur ein Oval.

1 2 3 4 5

no at all... very much...

33.

Sense of "reality" / Das Gefühl von "Realität" *

During the experiment did you had the impression that the virtual world became more real or
present than the real world.
Markieren Sie nur ein Oval.

1 2 3 4 5

At no time... Almost all the time...

34.

Vividness / Lebendigkeit *

The VR environment seems to me to be more like
Markieren Sie nur ein Oval.

1 2 3 4 5

Something that I saw
...

Somewhere that I visited
...

35.

Effect of the metaphor on the feeling of presence / Einfluss der Metapher auf das
Gefühl der Präsenz *

How badly do you think the metaphor affects the feeling of presence ?
Markieren Sie nur ein Oval.

1 2 3 4 5

No at all Very high negative effect on presence

36.

Comments:37.

METAPHOR 4 - Color Indicator

Subjective evaluation of the metaphor's relevance

Difficulty of the task / Schwierigkeit der Aufgabe *

Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

38.

7 of 10

179

Difficulty to understand metaphor / Schwierigkeit die Metapher zu verstehen *

Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

39.

Precision of the metaphor / Genauigkeit der Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

bad good

40.

Spatial understanding of the metaphor / Räumliche Verständlichkeit *

How easy or hard is it to understand the spatial distance to the obstacle indicated by the
metaphor.
Markieren Sie nur ein Oval.

1 2 3 4 5

easy hard

41.

Level of distraction / Grad der Ablenkung *

How distracting is the metaphor considering the main task you had to realize?
Markieren Sie nur ein Oval.

1 2 3 4 5

not distracting at all very distracting

42.

Subjective appreciation of the metaphor

Confidence in the metaphor / Vertrauen in die Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

no confidence complete confidence

43.

Esthetic of the metaphor / Ästhetik der Metapher *

Markieren Sie nur ein Oval.

1 2 3 4 5

Ugly Beatiful

44.

Presence

The presence is the subjective sensation of being there, actually living the experience proposed in
the virtual world.

8 of 10

180

Sense a "being there" / Das Gefühl "dort zu sein" *

In the virtual world, how intensely did you have the feeling of being there
Markieren Sie nur ein Oval.

1 2 3 4 5

no at all... very much...

45.

Sense of "reality" / Das Gefühl von "Realität" *

During the experiment did you had the impression that the virtual world became more real or
present than the real world.
Markieren Sie nur ein Oval.

1 2 3 4 5

At no time... Almost all the time...

46.

Vividness / Lebendigkeit *

The VR environment seems to me to be more like
Markieren Sie nur ein Oval.

1 2 3 4 5

Something that I saw
...

Somewhere that I visited
...

47.

Effect of the metaphor on the feeling of presence / Einfluss der Metapher auf das
Gefühl der Präsenz *

How badly do you think the metaphor affects the feeling of presence ?
Markieren Sie nur ein Oval.

1 2 3 4 5

No at all Very high negative effect on presence

48.

Comments:49.

On the next page you can rank the four metaphors.

Metaphor comparison

For each technique, give your subjective evaluation. Two metaphors MUST NOT have
the same place. *

Wählen Sie alle zutreffenden Antworten aus.

1 2 3 4

Arrow
Rubber Band
Color indication
Placeholder (tree)

50.

9 of 10

181

Bereitgestellt von

10 of 10

182

VR Studie Nachbefragung / VR Study Follow-up survey

[Englisch email below]

Sehr geehrte Teilnehmerinnen, sehr geehrte Teilnehmer,

vielen Dank für die Beteiligung an unserer VR Studie. Die ersten vorläufigen Ergebnisse sind
da. Laut diesen lässt sich sagen, dass die Platzhalter-Metapher (Baum) signifikant besser
abgeschnitten hat als die anderen drei Metaphern (Pfeil, Gummiband und Farbindikator).

Sowohl in Bezug auf die Genauigkeit der Bestimmung der Position des Hindernisses als auch
in Bezug auf die negative Auswirkung auf das Gefühl der Präsenz deutet unsere Analyse
darauf hin, dass die Platzhalter Metapher besser geeignet ist.

Die Pfeil Metapher hingegen hat hierbei am schlechtesten Abgeschnitten.

Um eine noch genauere Interpretation der vorläufigen Ergebnisse vornehmen zu können,
möchten wir Sie hiermit bitten sich ein paar Minuten für eine kurze Nachbefragung zu
nehmen. Ihre individuellen Wahrnehmungen und Erfahrungen mit den Metaphern sind für
uns sehr Interessant.

Vielen Dank!
Peter Wozniak

Frage 1:
Die Platzhalter-Metapher (Baum) hat am besten Abgeschnitten im Hinblick auf die
Genauigkeit der Bestimmung der Position eines Hindernisses und auch in Bezug auf die
negativen Auswirkungen auf das Gefühl der Präsenz. Weshalb glauben Sie ist das so?

 Frage 2:
Hatten Sie Schwierigkeiten die, von den verschiedenen VR Metaphern (Platzhalter[Baum],
Pfeil, Gummiband und/oder Farbindikator) vermittelten räumlichen Informationen über das
Hindernis, in eine mentale Landkarte der realen Umgebung zu überführen? Falls Ja, welche
Schwierigkeiten waren das? Und bei welchen Metaphern?

Frage 3:
Beschreiben Sie bitte warum Sie denken, dass die Pfeil -Metapher schlechter als die anderen
Metaphern abgeschnitten hat? Spiegelt dies auch Ihre eigene Erfahrung wieder?

Frage 4:
Hat Ihnen die Farb- oder Gummiband-Metapher besser gefallen? Warum?

183

Frage 5:
Haben Sie noch weitere Anmerkungen in Bezug auf die Metaphern und/oder das Experiment
insgesamt?
[Englisch email]

Dear participants,

Thank you for your participation in our VR study. The first preliminary results have arrived.
According to these it can be said that the placeholder metaphor (tree) performed significantly
better than the other three metaphors (arrow, rubber band, color indicator).

Both in terms of the accuracy of determining the position of the obstacle and in terms of the
negative effect on the feeling of presence, our analysis suggests that the placeholder metaphor
is more appropriate.

The arrow metaphor, on the other hand, was the worst performer.

In order to be able to make an even more accurate interpretation of the preliminary results, we
would like to ask you to take a few minutes for a brief follow-up survey. Your individual
perceptions and experiences with the metaphors are very interesting for us.

Thank you very much!
Peter Wozniak

Question 1:
The placeholder metaphor (tree) has performed best in terms of accuracy of determining the
position of an obstacle and also in terms of negative impact on the feeling of presence. Why
do you think that is?

Question 2:
Did you find it difficult to transfer the spatial information about the obstacle provided by the
various VR metaphors (placeholders[tree], arrow, rubber band and/or color indicator) into a
mental map of the real environment? If yes, what were these difficulties? And for which
metaphors?

Question 3:
Please describe why you think the arrow metaphor did perform worse than the other
metaphors? Does this also reflect your own experience?

Question 4:
Did you like the color or rubber band metaphor better? Why?

184

Question 5:
Do you have any further comments regarding the metaphors and/or the experiment as a
whole?

185

	ACKNOWLEDGEMENTS
	ABSTRACT
	RÉSUMÉ
	Bref résumé de la thèse
	LIST OF FIGURES
	LIST OF TERMS AND ABBREVIATIONS
	Introduction
	Problem definition
	Approach
	Thesis outline and contributions
	Publications

	Background and related work
	VE systems
	What are virtual environments?
	History of virtual reality
	Human-computer interaction and multimodal interfaces
	Input and output modalities for immersive virtual environments
	Tracking
	Presence

	Range imaging
	Triangulation
	Structured-light projection
	Sheet of light projection
	Lidar
	Time-of-flight camera
	Interferometry
	Coded aperture
	Light field or plenoptic camera
	Structure from motion

	Collision avoidance for virtual environments

	Implementation - Software Prototype
	Classification of possible obstacle detection methods
	Requirements
	Unity
	The Unity concept of development
	Using external program libraries

	SteamVR
	PCL function library
	Installation
	The PCL concept of development

	CMake
	Creating native DLLs and embedding them in Unity
	Create a dynamic-link library
	Embed a dynamic-link library in Unity
	Dynamic-link libraries and multithreading

	Access to a Kinect sensor and generation of a point cloud
	Pinhole camera model
	Display a point cloud in Unity
	Microsoft reference implementation
	Mesh manipulation with a C++ native program library
	Converting the depth image into a PCL point cloud

	Registration of Kinect sensor and VR tracking system coordinate systems
	The correct pose of the point cloud in the VE
	Determination of the relationship between the coordinate spaces
	The calibration process
	Calculation of the transformation parameters
	Calibration process implementation

	Obstacle detection using range imaging data
	Range image sensor positioning
	Requirements on the object recognition
	Implementation details

	VE system
	The virtual world
	SteamVR interaction system
	The four metaphors

	Study
	Setup
	Experiment procedure
	Study participants
	Results
	Influence of metaphors on spatial understanding
	Effects on presence
	Subjective preferences

	Discussion
	Summary

	Concluding remarks
	Summary
	Conclusion
	Future work
	 REFERENCES

	Appendix Unity GameObject lifecycle flowchart
	Appendix Unity Asset Store assets used for the VE scene
	Appendix Questionnaires

