
HAL Id: tel-02375683
https://theses.hal.science/tel-02375683

Submitted on 22 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deformation and Quantization of color Lie bialgebras
and alpha-type cohomologies for Hom-algebras

Benedikt Hurle

To cite this version:
Benedikt Hurle. Deformation and Quantization of color Lie bialgebras and alpha-type cohomologies
for Hom-algebras. General Mathematics [math.GM]. Université de Haute Alsace - Mulhouse, 2018.
English. �NNT : 2018MULH1819�. �tel-02375683�

https://theses.hal.science/tel-02375683
https://hal.archives-ouvertes.fr


Univeristé de Haute Alsace

École Doctorale de Mathématiques, Sciences de l’Information et de l’Ingéneur
(ED269)

IRIMAS, Département de Mathématiques

Thèse
pour obtenir le grade de

Docteur en Mathématiques

présentée par

Benedikt Hurle

Déformation et quantification

de bialgèbres de Lie colorées et

cohomologies de Hom-algèbres

de type α

Thèse dirigée par Abdenacer Makhlouf
soutenue le 04/10/2018 devant le jury composé de :

M Stefan Waldmann Universität Würzburg (Raporteur)
M Peter Schauenburg Université de Bourgogne (Raporteur)
M Camille Laurent Gengoux Université de Lorraine (Examinateur)
M Martin Bordemann Univeristé de Haute Alsace (Examinateur)
M Abdenacer Makhlouf Univeristé de Haute Alsace (Directeur)





Beauty is the first test: there is no permanent place in the world for ugly
mathematics. G. H. Hardy

iii





Remerciements

I would like to thank my advisor Abdenacer Makhlouf for accepting me as his stu-
dent, for our discussions and his support. I also want to thank Martin Bordemann,
who suggest going to Mulhouse to me, for our many discussions and his constant
support. I want to thank Stefan Waldman and Peter Schauenburg for agreeing to
review this work and also Camille Laurent Gengoux for taking the time and being
part of the “jury”.

Next, I want to thank the other PhD students, especially Diana Gilliocq-Hirtz,
Mourad Mehidi, Ahmed Zahari, Othman Yakhlef and Hamilton Araujo, with whom
I shared the office, for our conversations and their friendliness. I also want to thank
the other members of the department.

Last but not least I would like to thank my family and my friends for supporting
me at any time.

v





Contents

Contents vii

Introduction xi

Version Française 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Deformation et Quantification des algèbrés Lie colorée . . . . . . 2

2.1 Les modules gradués comme catégorie des foncteurs . . . . . . . . . 2
2.2 Algèbres colorées . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Cohomologie et Déformations . . . . . . . . . . . . . . . . . . . . 6
2.4 Quantification de bialgèbres de Lie colorées . . . . . . . . . . . . . 8

3 Hom-algèbres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Cohomologie de type α . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Algèbres L∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Déformations de Hom-algèbres . . . . . . . . . . . . . . . . . . . . 20

I Deformation and Quantization of color Lie bialge-

bras 23

1 Graded Modules as Functor Category 25
1.1 The category Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2 Monoidal functors on Γ . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.1 Group cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4 Graded modules as functor category . . . . . . . . . . . . . . . . . . 31

1.4.1 Functors between Modgr . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.2 Direct sum functor . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5 Connection to traditional definition . . . . . . . . . . . . . . . . . . 36

2 Color algebras 39

vii



2.1 General definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Color associative and Hopf algebras . . . . . . . . . . . . . . . . . . 40

2.2.1 Quasitriangular color quasi-Hopf algebras . . . . . . . . . . . . . . 43
2.2.2 The Hopf algebra T (V ) . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Color Lie algebras and color Lie bialgebras . . . . . . . . . . . . . . 46
2.3.1 Classification in dimension 3 . . . . . . . . . . . . . . . . . . . . . 50

2.4 Frobenius algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 Color Poisson algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6 Changing the commutation factor . . . . . . . . . . . . . . . . . . . 56
2.7 Representation and semidirect products . . . . . . . . . . . . . . . . 59
2.8 Manin triples and r-matrices . . . . . . . . . . . . . . . . . . . . . . . 63

2.8.1 Coboundary, Quasi-triangular and Triangular color Lie bialgebras . 63
2.8.2 Color Manin triples . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.8.3 Double of a color Lie bialgebra . . . . . . . . . . . . . . . . . . . . 67

3 Cohomology and Deformations 69
3.1 Big bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Construction of the big bracket . . . . . . . . . . . . . . . . . . . . 70
3.1.2 Properties of the Big Bracket . . . . . . . . . . . . . . . . . . . . . 72

3.2 Cohomology for color Lie bialgebras . . . . . . . . . . . . . . . . . . 77
3.2.1 Clba cohomology and reduced clba cohomology . . . . . . . . . . . 77
3.2.2 Comparison with Scheunert’s color Lie algebra cohomology . . . . . 79
3.2.3 Some cohomology computations . . . . . . . . . . . . . . . . . . . 80

3.3 Deformation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.1 Deformations of associative algebras and star products . . . . . . . 83
3.3.2 Deformations of color Lie bialgebras . . . . . . . . . . . . . . . . . 84

4 Quantization 87
4.1 Quantum universal enveloping algebras . . . . . . . . . . . . . . . . 88

4.1.1 Topologically free modules . . . . . . . . . . . . . . . . . . . . . . 88
4.1.2 Quantum universal enveloping algebras . . . . . . . . . . . . . . . 88

4.2 Drinfeld category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.1 Associators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.2 Drinfeld category . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Quantization of color Lie bialgebras . . . . . . . . . . . . . . . . . . 91
4.3.1 Quantization of g+ and g− . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Quantization of triangular color Lie bialgebras . . . . . . . . . . . 97
4.5 Second quantization of color Lie bialgebras . . . . . . . . . . . . . 98

4.5.1 Topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.2 Manin triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.3 Equicontinuous g-modules . . . . . . . . . . . . . . . . . . . . . . 100

viii



4.5.4 Tensor functor F . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5.5 Quantization of color Lie bialgebras . . . . . . . . . . . . . . . . . 102

4.6 Simple color Lie bialgebras of Cartan type . . . . . . . . . . . . . . . 103

II α-type cohomologies and deformations ofHom-algebras

and bialgebras 107

5 Definitions 109
5.1 Hom-modules and Hom-magmatic algebras . . . . . . . . . . . . . . . 110
5.2 Hom-associative algebras . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Free Hom-associative algebra . . . . . . . . . . . . . . . . . . . . . 115
5.2.2 Modules and Bimodules . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Hom-bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4 Hom-Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.5 Hom-Lie bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6 Hom-Manin triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.7 Hom-Poisson algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Cohomology 129
6.1 Algebra endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2 Hom-associative algebras . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3 α-type cohomology for Hom-associative algebras . . . . . . . . . . 138

6.3.1 Relation to other Hochschild cohomologies . . . . . . . . . . . . . 144
6.3.2 α-type cohomology under Yau twist . . . . . . . . . . . . . . . . . 146

6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4.1 Cohomology of free Hom-algebras . . . . . . . . . . . . . . . . . . 150

6.5 Hom-coassociative coalgebras . . . . . . . . . . . . . . . . . . . . . . 151
6.6 Hom-bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.7 α-type cohomology for Hom-bialgebras . . . . . . . . . . . . . . . . 153

6.7.1 Relation to other cohomologies . . . . . . . . . . . . . . . . . . . . 158
6.7.2 Yau twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.8 mult. Hom-Lie and Lie-bialgebra . . . . . . . . . . . . . . . . . . . . . 161
6.8.1 Big bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.8.2 Hom-Lie bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.9 α-type Chevalley-Eilenberg cohomology for Hom-Lie algebras . . 164
6.9.1 Cohomology for Hom-Lie algebras of Lie type . . . . . . . . . . . . 169
6.9.2 Whitehead Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.10 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.11 α-type Chevalley-Eilenberg cohomology for Hom-Lie bialgebras . 173
6.12 Homomorphisms of Hom-algebras . . . . . . . . . . . . . . . . . . . . 178

ix



7 L∞ structures 181
7.1 Hom-associative algebras . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2 Hom-Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3 Hom-Lie bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.4 Hom-associative bialgebras . . . . . . . . . . . . . . . . . . . . . . . . 187

8 Deformations 189
8.1 Hom-associative algebras . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.1.1 Deformations and Yau twist . . . . . . . . . . . . . . . . . . . . . . 195
8.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.2 Hom-algebra bimodules . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.3 Hom-Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.4 Hom-bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.5 Hom-Lie bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.6 Quantization of Hom-Lie bialgebras . . . . . . . . . . . . . . . . . . 203

A Basic Category Theory 207
A.1 Basiscs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
A.2 Monoidal categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

B Enriched Category Theory 217
B.1 V -categories, functors and natural transformations . . . . . . . . 218
B.2 Enriched functor categories . . . . . . . . . . . . . . . . . . . . . . . 221
B.3 Categories over a Base . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
B.4 Indexed limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
B.5 Enriched monoidal categories . . . . . . . . . . . . . . . . . . . . . . 224

C Operads and Properads 225
C.1 Operads and Props . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
C.2 Heigth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
C.3 Operadic Kan Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 228

D Differentials for graph complexes 231
D.1 Hom-associative algebras . . . . . . . . . . . . . . . . . . . . . . . . . 231
D.2 Hom-Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
D.3 Hom-associative bialgebras . . . . . . . . . . . . . . . . . . . . . . . . 235
D.4 Hom-Lie bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Bibliography 241

x



Introduction

This thesis consists of two parts, which are mostly independent, but both focus on
homological algebra and deformations of different algebraic structures. In the

first part we study deformations and quantization of color Lie bialgebras and in the
second part we deal with cohomology and deformations of Hom-type algebras and
bialgebras.

A color vector space is a graded vector space with a commutation factor, which
is an antisymmetric bicharacter. A color Lie bialgebra is a Lie bialgebra on a color
vector space. Examples of color spaces are superalgebras, which have been studied
since a long time and have many important applications in physics. Lie bialgebras
appeared first as classical limits when studying quantum integrable systems. The
theory of Lie bialgebras was developed largely by Drinfeld [Dri89, Dri90, Dd86].
The quantization of Lie bialgebras is well studied and there are several approaches.
The first one was provided by Etingof and Kazhdan [EK96]. One may also mention
the papers by Ševera [Šev16] and Merkulov-Willwacher [MW16]. Moreover quanti-
zation of quasi-Lie bialgebras has been considered by Enriquez in [EH10] and Šev-
era in [SŠ15]. In this thesis, we aim to study quantization of color Lie bialgebras
following the Etingof and Kazhdan approach. This is a generalization of the Lie su-
perbialgebra quantization studied by Geer [Gee06]. To better understand the situa-
tion in the colored setting, we first give a description of the category of color vector
spaces as an enriched functor category. For this we study the symmetric monoidal
structures on the discrete category on a group Γ and the induced monoidal struc-
ture on the category of functors from Γ to the category of vector spaces. There is a
much general setting in which on gets a symmetric monoidal structure on a functor
category. For this one only needs that the source category is promonoidal [Day70].
We also consider deformations of color Lie bialgebras, for this we generalize the big
bracket or grand crochet introduced by Lecomte and Roger [LR90] to the color set-
ting. With this bracket we define a cohomology for color Lie bialgebras. Indeed the
Maurer-Cartan elements are color Lie bialgebras. Similar to the original work by
Gerstenhaber [Ger64], we relate this cohomology to formal deformations.

This part is structured as follows: in the first chapter, we describe the category
of graded vector spaces and consider color vector spaces as enriched functors. In
Chapter 2, we provide various definitions of color algebraic structures, properties
and basic constructions like semidirect products for color Lie algebras. Then we

xi



discuss color Lie bialgebras in more detail. For example we generalize the notion of
Manin triples to the color setting. In Chapter 3, we extend the big bracket, intro-
duced by Roger and Lecomte, to the the color setting. This leads to a definition of a
cohomology for color Lie bialgebras. Moreover, we study deformations of color Lie
bialgebras in terms of cohomology. Finally Chapter 4 is dedicated to quantization
of color Lie bialgebras, we give a generalization of the proof of Etingof and Kazhdan
in the color setting.

In the second part of this thesis, we aim to study cohomologies and deformations
of Hom-algebras. Hom-Lie algebras have been introduced in the study of quantum
deformations of Witt and Virasoro algebras by σ -derivations. Such examples appear
in various contexts in physics. Formal definition of Hom-Lie and a systematic study
was given in [HLS06]. Since then many different types of Hom-algebras have been
introduced and studied [MS08]. In this thesis we will focus on Hom-associative and
Hom-Lie algebras, which are generalization of associative and Lie algebras respec-
tively. A Hom-algebra consists of a multiplication and a linear map, called struc-
ture map and usually denoted by α. In the case of Hom-associative algebras the
associative condition is twisted by α and in the Lie case the Jacobi identity. Many
different aspects of these algebras have been studied. Hochschild and Chevalley-
Eilenberg cohomologies have been extended to Hom-setting, see [MS08, AEM11],
with the disadvantage that they can only be used to study deformations following
Gerstenhaber [Ger64], where the structure map is fixed. In this thesis, we provide a
new type of cohomologies, which we call α-type cohomologies, for Hom-associative
algebras and Hom-Lie algebras. However with the α-type cohomologies, we give
a formal deformation theory for Hom-associative algebras and Hom-Lie algebras,
where both the multiplication and the map α are deformed. The α-type Hochschild
cohomology is extended to an α-type cohomology for Hom-bialgebras, generaliz-
ing the known Gerstenhaber-Schack cohomology for bialgebras [GS90] and Hom-
bialgebras [DM17]. This cohomology is related via the Yau twist to the cohomology
of an algebra endomorphism, which is a special case of the cohomology of an alge-
bra morphism e.g. considered in [FMY09, FZ15, NR67, GS83].

We start this part by Chapter 5 which includes the definitions of Hom-associative
and Hom-Lie algebras and corresponding bialgebras. We also recall several known
constructions for which we give some operadic interpretation. In Chapter 6 we re-
call some cohomology constructions and α-type Hochschild cohomology and Che-
valley-Eilenberg cohomology. Various properties and constructions are generalized
and discussed. In Section 6.3, we give the definition of the α-type Hochschild coho-
mology. Moreover, we show several properties of this new cohomology and calcu-
late it for associative algebras. It is also related to the known Hochschild cohomol-
ogy. The Yau twist gives a way of constructing Hom-algebras starting from usual
algebra of the same type and an algebra morphism. The procedure may give a new
Hom-algebra from a given Hom-algebra and an algebra morphism. In the associa-
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tive case, one needs an associative or Hom-associative algebra A and a morphism γ .
We denote the Yau twist of A with respect to γ by Aγ . There exists a cohomology
for a morphism between associative algebras, which we specialize to the case of an
endomorphism. This can be related to the α-type cohomology of Aγ . We also give
some concrete examples for the cohomology of low dimensional algebras. In Sec-
tion 6.7, we extend the α-type Hochschild cohomology to Hom-bialgebras and get a
generalization of the well known Gerstenhaber-Schack cohomologies for bialgebras.
In the case of Hom-Lie bialgebras, we define a generalization of the big bracket in
the Hom-setting, which is used to define a cohomology for Hom-Lie bialgebras,
where the structure maps for the product and coproduct are independent. In Sec-
tion 6.9, we give an α-type Chevalley-Eilenberg cohomology for Hom-Lie algebras
similar to the α-type Hochschild cohomology. We also give an α-type cohomology
for Hom-Lie bialgebras but only in the case, where the two structure maps are the
same. In Chapter 7, we construct an L∞ structure, which is used to define the low
degrees of the α-type Hochschild differential. Also the Maurer-Cartan elements of
this L∞ structure are Hom-associative algebras. Similar we obtained L∞ structure
for Hom-Lie algebras, Hom-bialgebras and Hom-Lie bialgebras in the following sec-
tions. In Chapter 8, we consider formal deformations of different types of Hom-
algebras and show how they are related to the α-type cohomologies defined before.
We begin with Hom-associative algebras. We prove that the deformation equations
lie in the third cohomology group. Also the equivalence of deformation gives rise
to equations in the second cohomology group. So for example the first order of
the deformation is a 2-cocycle which is invariant under equivalence. We further-
more study the deformation of commutative Hom-associative algebras. Similar to
the associative case deformations give rise to Hom-Poisson algebras. Similarly, we
study the deformation of Hom-Lie algebras, and Hom-bialgebras in the following
sections. Finally, in Section 8.6 we consider the quantization of Hom-Lie bialgebras.
We mostly deal with the case that the structure map is invertible.

The thesis is ended with 4 appendices, the first one recalls the basic category
theory, the second one is dedicated to enriched categories and the third one provides
some basics about operads and properads. The final one gives the differentials of
the free dg operads considered in Chapter 7.
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Version Française

1 Introduction

Cette thèse est constituée de deux parties relativement distinctes. Le but de la
première partie est d’étudier les déformations et quantification des bialgèbres de
Lie colorée et la deuxième partie est consacrée à la cohomologie des Hom-algèbres.

Dans le cas des bialgèbres de Lie, l’existence d’une quantification pour chaque
bialgèbre de Lie a été démontrée par Etingof et Kazhdan [EK96]. Cette preuve a
été généralisée par Geer au cas Z2-gradué [Gee06]. Dans ce travail, on s’intéresse
au cas encore plus général des bialgèbres de Lie colorées, c’est à dire la graduation
est donnée par un groupe quelconque et un bicaractère. A cet effet, on adapte la
preuve de Etingof et Kazhdan en conséquence. Pour ça nous regardons la catégorie
des modules colorés comme une catégorie de foncteurs enrichies par Vec entre la
groupe et la catégorie Vec. On définit les triples de Manin dans le cas coloré et on
introduit une généralisation au cas coloré du grand crochet introduit par Lecomte
et Roger [LR90]. Par ailleurs nous définissons une cohomologie pour les algèbres et
bialgèbres de Lie colorées.

Les premiers exemples des algèbres de type "Hom" sont apparus en physique dans
l’étude des déformations quantiques de certaines algèbres de champs de vecteurs,
comme par exemple les algèbres de Witt et de Virasoro. Une déformation quantique
consiste à remplacer la dérivation usuelle par une σ -dérivation. Il s’avère que les al-
gèbres obtenues ne satisfont pas l’identité de Jacobi, mais une version modifiée qui
implique un homomorphisme. Ces algèbres sont appelées algèbres Hom-Lie et étu-
diées par Hartwig, Larson et Silvestrov [HLS06]. Une propriété fondamentale des al-
gèbres de Lie est qu’elles sont liées à des algèbres associatives par la construction du
crochet commutateur. Les algèbres de type associative correspondantes aux algèbres
Hom-Lie, appelées algèbres Hom-associatives, ont été introduites par Makhlouf et
Silvestrov [MS08]. Une algèbre Hom-associative A est définie par une multiplica-
tion et une application linéaire α modifiant l’associativité α(x)(yz) = (xy)α(z). Ils
ont montré que le crochet commutateur défini par la multiplication d’une algèbre
Hom-associative conduit naturellement à définir une algèbre Hom-Lie. Durant la
dernière décade de nombreux résultats et structures classiques ont été généralisés
aux cas Hom. Un des objectifs de cette thèse est de généraliser le concept de coho-
mologie et de déformation formelle. Des généralisations de type classique où seul
la multiplication est déformée ont été proposées par Ammar, Ejebhi, Makhlouf et
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Version Française

Silvestrov [AEM11]. Dans ce travail, on profite de la richesse de la structure des
Hom-algèbres, pour proposer un nouveau type de cohomologie qui tient compte
fortement de l’application linéaire. Ces cohomologies qu’on appelle de type α sont
adaptées aux déformations formelles des Hom-algèbres où la multiplication et l’ap-
plication linéaire sont toutes les deux déformées. On commence la première partie
par rappeler les définitions et propriétés des algèbres Hom-associatives et Hom-
Lie, ainsi que les bialgèbres de type Hom. Ensuite, on définit la cohomologie de
Hochschild de type α, en donnant ses propriétés et en la calculant pour une algèbre
associative. Par ailleurs, on établit le lien avec la cohomologie de Hochschild usuelle
ainsi que son comportement par le Twist de Yau. Une étude similaire est faite dans le
cas des algèbres Hom-Lie et la cohomologie de Chevalley-Eilenberg, ainsi que pour
les Hom-bialgèbres et bialgèbres Hom-Lie. La théorie de déformations formelles
introduite par Gerstenhaber met en lien les déformations et la cohomologie. Dans
cette thèse on établit une théorie de déformations des algèbres Hom-associatives
basée sur la cohomologie de Hochschild de type α. Il s’agit de déformer simultané-
ment la multiplication et l’application linéaire. On montre par exemple que le pre-
mier terme est un 2-cocycle et que les obstructions sont des 3-cocycles. Une étude
similaire est faite pour les algèbres Hom-Lie. Par ailleurs, on explore la structure
L∞ correspondante, tel que les éléments de Maurer-Cartan sont des Hom-algèbres.

2 Deformation et Quantification des algèbrés Lie colorée

2.1 Les modules gradués comme catégorie des foncteurs

Dans cette sous-section nous regardons la catégorie monoïdale des modules colo-
rés comme une catégorie enrichie, pour la théorie des catégories enrichies voir par
exemple [Kel82] pour les détails et a construction complète.

Pour un groupe commutatif Γ , on définit une Vec-catégorie, tel que les objets sont
les éléments de Γ et les morphisms sont

Hom(i, j) = K si i = j,0 si i , j. (1)

On considère le produit tensoriel associatif

i ⊗ j = i + j for i, j ∈ Γ . (2)

Un associateur pour Γ est donné par un 3-cocycle dans la cohomologie de Γ . Il y
a un foncteur monoïdal entre deux associateurs s’ils sont cohomologue.

Si α est trivial, une symétrie pour Γ est donnée par un bicaractère symétrique ou
facteur de commutation, i.e. une application ε : Γ × Γ →K× telle que

ε(a,c)ε(b,c) = ε(a+ b,c), ε(a,b)ε(a,c) = ε(a,b+ c),ε(a,b) = ε−1(b,a). (3)
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2. Deformation et Quantification des algèbrés Lie colorée

On peut définir un module Γ -gradué par un foncteur Γ → Vec et la catégorie des
modules Γ -gradués Modgr est donnée par la catégorie des Vec-foncteur Γ →Vec.

La catégorie Modgr est une catégorie monoïdale symétrique avec produit tenso-
riel

F ⊗̂G =
∫ a,b

F(a)⊗G(b)⊗Hom(a+ b, ·). (4)

L’associateur et le symétrique est induit par α et ε.

2.2 Algèbres colorées

Dans ce section nous définissons les différents types d’algèbres colorées.
Pour une transposition τ ∈ Sn qui échange i contre i + 1, on définit une action

V ⊗n→ V ⊗n par τ · (v1 ⊗ · · · ⊗ vn) = ε(vi ,vi+1)v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ . . .vn. Ceci induit une
action de Sn.

Définition 2.1 Une multiplication n-aire est une application µ : V ⊗n→ V de degré
zéro. Elle est dite symétrique colorée si

µ(v1 ⊗ · · · ⊗ vn) = µ(σ · v1 ⊗ · · · ⊗ vn) (5)

quel que soit σ ∈ Sn et antisymétrique colorée si

µ(v1 ⊗ · · · ⊗ vn) = −µ(τ · v1 ⊗ · · · ⊗ vn) (6)

pour toutes transpositions τ ∈ Sn.

Une algèbre colorée associative est un espace vectoriel avec une multiplication
associative.

Un morphisme d’algèbres colorées binaires est automatiquement de degré zéro.
Une dérivation d’une algèbre colorée est une application linéaire homogène d :

A→ A telle que
d(ab) = d(a)b+ ε(d,a)ad(b) (7)

ou
d ◦µ = µ ◦ (id⊗d + d ⊗ id), (8)

où µ est la multiplication de A.
Dualement, on peut définir des coalgèbres et des codérivations.
Un élément x ∈ C s’appelle primitif si ∆(x) = x⊗ 1 + 1⊗ x.
Etant données une algèbre coloréeA et une coalgèbre coloréeC, l’espace Homgr(A,C)

est une algèbre colorée associative par

(ϕ ∗ψ)(x) = µ(ϕ ⊗ψ)∆(x) (9)

quelque soient ϕ,ψ ∈Hom(C,A) et x ∈ C.
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Définition 2.2 Une algèbre de Hopf colorée (H,µ,∆,1, ε,S) est une algèbre colorée
unitaire (H,µ,1), une coalgèbre counitaire (H,∆, ε) et un antipode S, tels que µ et 1
sont des morphismes de coalgèbres. Un antipode est un inverse de l’unité pour la
convolution.

Définition 2.3 Une algèbre quasi-Hopf colorée est une algèbre colorée associative
H avec une multiplication µ, une comultiplication ∆, une unité 1, une counité ε, un
antipode et un associateur inversible Φ ∈H⊗3 tel que

∀x,y ∈H : ∆(xy) =∆(x)∆(y) (compatibilité),

(ε⊗ id)∆ =id = (id⊗ε)∆ (counit),

Φ(∆⊗ id)∆ =(id⊗∆)∆Φ (quasi- coassociativité),

Φ1,2,34Φ12,3,4 =Φ2,3,4Φ1,23,4Φ1,2,3 ( condition Pentagon),

(id⊗ε⊗ id)Φ =1⊗ 1.

Une algèbre quasi-Hopf colorée s’appelle quasi-triangulaire s’il existe uneR-matrice
R ∈H⊗2, de degré 0, telle que

(id⊗∆)R = Φ−1
231R13Φ213R12Φ

−1
123 (10)

(∆⊗ id)R = Φ312R13Φ
−1
132R23Φ123R∆

opp = ∆R. (11)

La matrice R a degré 0.
Deux algèbres quasi-Hopf quasi-triangulaire colorée sont twist équivalentes s’il

existe un élément inversible J ∈H⊗2 de degré 0 tel que

(ε⊗ id)J =1 = (id⊗ε)J,

∆′ =J−1(∆(x))J,

Φ ′ =J−1
2,3J
−1
1,23(Φ)J12,3J1,2,

R′ =J−1
21RJ.

Si J satisfait la première identité, on peut alors définir une algèbre quasi-Hopf
quasi-triangulaire.

Théorème 2.4 La catégorie des modules sur une algèbre quasi-Hopf colorée est une ca-
tégorie monoïdale tressée. Si deux algèbres sont équivalentes par twist les deux catégories
sont tenseur équivalentes.

Bialgèbres et Algèbres de Lie colorées

Définition 2.5 Soient Γ un groupe et ε un bicaractère, une algèbre de Lie (Γ ,ε)-
colorée est un espace vectoriel Γ -gradué g avec une application bilinéaire [·, ·] : g ×
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g→ g, (x,y) 7→ [x,y] tel que

[a,b] = −ε(a,b)[b,a], (12)

j(a,b,c) := ε(c,a)[a, [b,c]] + ε(a,b)[b, [c,a]] + ε(b,c)[c, [a,b]] = 0. (13)

Soit A une algèbre associative Γ -graduée, alors

[a,b] = ab − ε(a,b)ba (14)

est un crochet de Lie colorée.

Proposition 2.6 Les dérivations colorées sont une sous-algèbre de Lie colorée d’algèbre
de Lie Homgr(A,A).

Une algèbre de Lie colorée g admet une algèbre enveloppante U (g) qui est ana-
logue au cas non gradué. Elle admet une structure d’algèbre de Hopf colorée.

Définition 2.7 Une algèbre de Poisson colorée (P , {·, ·}, ·) est une algèbre de Lie co-
lorée (P , {·, ·}) avec une multiplication associative commutative ·, tel que

{a,bc} = {a,b}c+ ε(a,b)b{a,c}. (15)

Le produit tensoriel de deux algèbres de Poisson colorée est encore une algèbre
de Poisson colorée.

Nous considérons l’algèbre libre commutative S(V ) pour un espace colorée V .

Soit V un espace coloré, on définit Pol(V ) := T (V ∗)
/
I , où I est l’idéal engendré

par x ⊗ y − ε(x,y)y ⊗ x. Soit {xi}i une base graduée de V ∗, alors on peut définir une
dérivation ∂i sur les générateurs par

∂ixj := δij . (16)

Si V est de dimension finie, un crochet de Poisson sur A = Pol(V ) est de la forme

{f ,g} = ε(f , j)r ij∂if ∂jg = r ij(∂i ⊗∂j )(f ⊗ g), (17)

où r ij ∈ A est de degré −deg(i)−deg(j), si le crochet est de degré zéro.

Proposition 2.8 Le crochet (17) satisfait l’identité de Leibniz et

i) il est antisymétrique coloré si r ij = −ε(i, j)−1rji (sic !),

ii) il satisfait l’identité de Jacobi si J(r) = 0.

Ici J(r) = [r12, r13] + [r12, r23] + [r13, r23]. Alors si les deux conditions sont satisfaites, on
obtient un crochet de Poisson coloré.
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Chaque bialgèbre de Lie colorée peut être transformée en une superbialgèbre de
Lie. En effet, on a :

Proposition 2.9 Il y a un foncteur monoïdale symétrique de la catégorie des espaces
(Γ ,ε)-gradués dans la catégorie des superespaces.

On peut considérer différents types de produits semi-directs de (bi)algèbres de
Lie colorées.

Triplets de Manin et r-matrices

Comme pour le cas non-gradué, on peut définir les bialgèbres de Lie cobord, tri-
angulaires et quasi-triangulaires.

Proposition 2.10 Soit g une algèbre de Lie, r ∈ Λ2(g) de degré 0 et δ(x) := adx r =
[x,r] = [∆x,r]. Alors on a une bialgèbre de Lie colorée si et seulement si

J(r) = [r12, r13] + [r12, r23] + [r13, r23] (18)

est g-invariant, i.e. [∆(3)x, J(r)] = 0 quel que soit x ∈ g.

Définition 2.11 Un triplet de Manin est un triplet (p,p+,p−), où p est une algèbre
de Lie colorée, p± sont des sous-algèbres de p et p = p+ ⊕ p− comme espace gradué,
avec une forme bilinéaire symétrique non-dégénérée (·, ·) : p×p→K telle que p± sont
isotropes.

Théorème 2.12 Soit g une bialgèbre de Lie colorée. Alors (p,p+,p−) avec p+ = g,p− = g∗

et p = p+⊕p− est une triplet de Manin coloré. Inversement chaque triplet de Manin coloré
de dimension finie donne une bialgèbre de Lie colorée.

Soit g une bialgèbre de Lie colorée alors le triplet de Manin associé est une bial-
gèbre de Lie triangulaire avec r = xi ⊗ αi , où {xi}i est une base de g et {αi}i la base
duale.

2.3 Cohomologie et Déformations

Grande Crochet

Nous notons parΛV l’algèbre extérieure pour un espace vectoriel V donné. Nous
posons

B := Homgr(ΛV ,ΛV ), Bk := Homgrk(ΛV ,ΛV ), Bi,j := Homgr(ΛiV ,ΛjV ). (19)
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On définit une application bilinéaire � : B⊗B→ B par

f � g = µ ◦ (f ⊗ id) ◦Q ◦ (id⊗g) ◦∆, (20)

où
Q = (µ⊗ id) ◦ (id⊗prV ⊗ id) ◦ (id⊗∆). (21)

Ainsi, on définit le grand crochet par :

Définition 2.13 (grand crochet) Soient f ,g ∈ B, on définit

{f ,g}BB = f � g − ε(f ,g)g � f . (22)

Proposition 2.14 Le grand crochet est un crochet de Poisson coloré pour la convolution.
Pour ϕ ∈ Bi,j ,ψ ∈ Bk,l , on a {ϕ,ψ}BB ∈ Bi+k−1,j+l−1.

Proposition 2.15 Soient β ∈ B2,1,δ ∈ B1,2, alors
— {β,β}BB = 0 si et seulement si β et un crochet de Lie coloré.
— {δ,δ}BB = 0 si et seulement si δ et un cocrochet de Lie coloré.
— {β + δ,β + δ}BB = 0 si et seulement si (g,β,δ) est une bialgèbre de Lie colorée.

Nous définissons maintenant une cohomologie pour une bialgèbre de Lie colorée
(clba). Le complexe est donné par

B k(g) =
⊕
i+j=k

Bi,j(g) =
⊕
i+j=k

Homgr(Λig,Λjg). (23)

est la différentielle par
∂(ϕ) := {δ+ β,ϕ}BB. (24)

Déformations

SoitA une algèbre associative commutative colorée. Une déformation deA est une
algèbre associative (non-commutative) sur A[[t]], tel que a ? b = ab +

∑∞
r=1 t

rCr(a,b).
Ici Cr sont des applications bilinéaires de degré 0. On appelle le produit déformé
un star produit.

Deux déformations ?,?′ sont dites équivalantes s’il existe une application linéaire
S = id+

∑∞
r=1Srt

r de degré 0, telle que

S(a ?′ b) = S(a) ? S(b). (25)

Proposition 2.16 Soit ? une déformation d’une algèbre commutative colorée, alors

{a,b} = C1(a,b)− ε(a,b)C1(b,a) (26)

est un crochet de Poisson coloré.
Le crochet de Poisson de deux déformations équivalantes est le même.
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Définition 2.17 Une déformation d’une clba (g,β,δ) est une K[[t]]-bialgèbre de Lie
(g[[t]],β? ,δ?), telle que β? = β +

∑∞
i=1βit

i et δ? = δ+
∑∞

i=1 δit
i . Ici t est de degré zéro.

Proposition 2.18 La construction ordre par ordre de la déformation donne des équa-
tions en lien avec la cohomologie de la clba. Alors les obstructions pour l’existence d’une
déformation sont dans H3

r (g). Si H3
r (g) = {0}, on peut étendre toute déformation d’ordre

n en une déformation d’ordre n+ 1.

Définition 2.19 Deux déformations ([ , ],δ) et ([ , ]′ ,δ′) sont équivalentes s’il existe
une série formelle S = id+

∑∞
i=1 t

kSk d’applications linéaire Sk : g→ g de Γ -degré 0,
telle que

S−1([S(a),S(b)]) =[a,b]′ ,

(S−1 ⊗ S−1)δ(S(a)) =δ′(a).

Proposition 2.20 Si deux déformations sont équivalentes jusqu’a l’ordre k, alors ∂(β′k+1+
δ′k+1 − βk+1 − δk+1) = 0 et il y a une équivalence d’ordre k + 1 si la différence est exacte.
Donc l’obstruction pour l’équivalence est dans H2

r (g) et si H2
r (g) = {0} toute déformation

est équivalente à la déformation triviale.

2.4 Quantification de bialgèbres de Lie colorées

Une algèbre enveloppante quantique colorée (cQUE) est une algèbre de Hopf co-
lorée A sur K[[t]], telle que A

/
tA est l’algèbre enveloppante U (g) pour une algèbre

de Lie colorée g.
Si H est une cQUE, alors δ : g→ g∧ g définie par

δ(x) =
∆(x)−∆opp(x)

t
mod t (27)

détermine une bialgèbre de Lie colorée sur g. Dans ce cas, on appelle H une quanti-
fication de g.

Suivant la preuve de Etingof-Kazhdan, il est possible de démontrer que chaque
bialgèbre de Lie colorée admet une quantification.

Pour cela, nous considérons les transformations naturelles End(F,F) enrichies
sur Modgr, qui sont isomorphes à U (g) comme algèbre. Ici F est le foncteur V 7→
Homg(U (g),V ) pour V un g-module.

3 Hom-algèbres

3.1 Définitions

Dans cette section, nous nous intéressons aux (bi)algèbres Hom-associative et
Hom-Lie.
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Définition 3.1 (Hom-module) Un Hom-module (V ,α) est un espace vectoriel V avec
une application linéaire α : V → V , appelé twist.

Soient (V ,α) et (W,β) deux Hom-modules. Un morphisme de Hom-modules est
une application linéaire ϕ : V → W telle que ϕ ◦ α = β ◦ϕ. On note l’ensemble de
ces morphismes par Hom((V ,α), (W,β)).

Un Hom-module est dit régulier si α est inversible.

Définition 3.2 Une algèbre Hom-associative (A,µ,α) est un Hom-module (A,α)
avec une application bilinéaire µ : A×A→ A : (x,y) 7→ µ(x,y) = xy, telle que

µ ◦ (µ⊗α) = µ ◦ (α ⊗µ). (28)

Nous supposons aussi
µ(α ⊗α) = αµ. (29)

Une unité est un élément 1 ∈ A tel que 1x = α(x) = x1.

Un morphisme de Hom-algèbres (A,µ,α), (B,µ,β) est une application linéaire ϕ :
A → B tel que ϕα = βϕ et µ(ϕ ⊗ ϕ) = ϕµ. Pour les algèbres unitaires, on a aussi
ϕ(1A) = 1B.

Proposition 3.3 (Yau twist) Soit (A,µ,α) une algèbre Hom-associative et γ : A→ A un
morphisme, alors Aγ = (A,γµ,γα) est une algèbre Hom-associative.

Définition 3.4 Une algèbre Hom-associative A, qui a la forme Ãγ pour une algèbre
associative Ã, est dite de type associative.

Par exemple une algèbre Hom-associative (A,µ,α) régulière est de type associa-
tive, car l’algèbre Aα−1 est associative.

On peut aussi définir les coalgèbres Hom-coassociatives.

Définition 3.5 Soient (A,µ,α) une algèbre Hom-associative et (M,β) un Hom-module.
Une application linéaire ρ : A×M→M, (a,m) 7→ a·m, définit unA-module (à gauche)
si

(ab) · β(m) = α(a)(b ·m) (30)

β(a ·m) = α(a) · β(m). (31)

De même on peut définir un A-module à droite.
Un A-bimodule est un Hom-module (M,β), avec deux applications linéaires ρ :

A ⊗M → M,a ⊗m 7→ a ·m et λ : M ⊗A→ A,m ⊗ a 7→ m · a, telles que ρ définit un
module à gauche, λ un module à droite et

α(a) · (m · b) = (a ·m) ·α(b). (32)
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Naturellement, A est un A-bimodule, l’action étant donnée par la multiplication.
Pour une coalgèbre Hom-coassociative, on peut définir de manière analogue des

comodules.

Définition 3.6 Une Hom-bialgèbre est un septuplet (A,µ,∆,1,ε,α,β) tel que (A,µ,1,α)
soit une algèbre Hom-associative unitaire, (A,∆,ε,β) est une coalgèbre Hom-coas-
sociative counitaire et elles sont compatibles. Cela veut dire

αβ =βα, ∆(xy) =∆(x)∆(y),

∆α =(α ⊗α)∆, βµ =µ(β ⊗ β),

∆(1) =1⊗1, ε(xy) =ε(x)ε(y)

εα =ε β(1) =1,ε(1) = 1.

Soit A une Hom-bialgèbre et M1, . . .Mn des A-modules, nous construisons une
action de A sur M1 ⊗ . . .Mn. Pour ça on définit ∆2

β = ∆ et

∆n+1
β = (∆⊗ β⊗(n−1))∆nβ . (33)

qui satisfait
∆n+m
β = (∆nββ

m−1 ⊗∆mβ βn−1)∆. (34)

L’action de A sur M1 ⊗ . . .Mn est définie par

(ρ1 ⊗ · · · ⊗ ρn)τ(2,n)(∆
n
β ⊗ idn). (35)

Ici τ(2,n) est la permutation (1, . . . ,2n) 7→ (1,n+ 1,2,n+ 2, . . . ,n,2n).
On a aussi

x · (v1 ⊗ · · · ⊗ vm+n) = βm−1(x(1)) · (v1 ⊗ · · · ⊗ vn)⊗ βn−1(x(2)) · (vn+1 ⊗ · · · ⊗ vn+m). (36)

Définition 3.7 Une algèbre Hom-Lie (g, [·, ·],α) est un Hom-module avec une appli-
cation bilinéaire antisymétrique [·, ·] : g ⊗ g→ g telle que l’identité de Hom-Jacobi
soit satisfaite, i.e.

[[x,y],α(z)] + [[y,z],α(x)] + [[z,x],α(y)] = 0 (37)

et [α(x),α(y)] = α([x,y]) quel que soient x,y,z ∈ g.

Proposition 3.8 Soit (g,ν,α) une algèbre Hom-Lie et γ : g → g un morphisme, alors
(g,γν,γα) est une algèbre Hom-Lie.

Définition 3.9 Soit g une algèbre Hom-Lie. Un g-module ou une représentation de
g est un Hom-module (V ,β), avec une action ρ : g⊗V → V ,g ⊗ v 7→ x · v, telle que

[x,y] · β(v) = α(x) · (y · v)−α(y) · (x · v)β(x · v) = α(x) · β(v). (38)
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Etant donné une algèbre Hom-Lie, on peut définir la représentation adjointe de g
sur lui même par x · y = [x,y].

Etant donné n g-modules (M1,α1), . . . , (Mn,αn), on peut définir une g-action sur
M1 ⊗ · · · ⊗Mn par

x · (y1 ⊗ · · · ⊗ yn) =
k∑
i=1

α1(y1)⊗ · · · ⊗ [x,yi]⊗ . . .αn(yn) (39)

quelque soit yi ∈Mi .
L’action coadjointe de g sur g∗ est définie par

(adxϕ)(y) = ϕ([x,y]). (40)

Pour une algèbre Hom-Lie, on peut construire une algèbre enveloppante U (g),
voir [Yau08]. C’est une algèbre Hom-associative, telle que pour toutes les algèbres
Hom-associatives

HomHLie(g,AL) �HomHAss(U (g),A). (41)

Définition 3.10 (Bialgèbre Hom-Lie) Une bialgèbre Hom-Lie est un quintuplet (g,ν,δ,
α,β), tel que (g,ν,α) est une algèbre Hom-Lie, (g,δ,β) est une coalgèbre Hom-Lie et
elles sont compatibles, c’est à dire

δ([x,y]) = α(x(1))⊗ [x(2),β(y)] + [x(1),β(y)]⊗α(x(1))

+[β(x), y(1)]⊗α(y(1)) +α(y(1))⊗ [β(x), y(2)].
(42)

Proposition 3.11 (Yau twist) Soit g une bialgèbre Hom-Lie et ϕ : g→ g un morphisme,
alors (g,ϕν,δ,ϕα,β), (g,ν,ϕδ,α,ϕβ) et (g,ϕν,ϕδ,ϕα,ϕβ) sont encore des bialgèbres
Hom-Lie.

Définition 3.12 Une algèbre Hom-Poisson est un quadruplet (A,µ, {·, ·},α) tel que
(A,µ,α) est une algèbre Hom-associative commutative, (A, {·, ·},α) est un algèbre
Hom-Lie et elles satisfont l’identité de Hom-Leibniz

{α(a),bc} = α(b){a,c}+ {a,b}α(c). (43)

3.2 Cohomologie de type α

Endomorphismes

Dans cette section nous définissons une cohomologie pour algèbre associative
munie d’un endomorphisme.
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SoitA une algèbre associative et γ : A→ A un morphisme. On définit un complexe
par

Cn(γ) = Cnµ(γ)⊕Cnγ (A) = Cn(A)⊕Cn−1(A,Ã) (44)

où C(A) est le complexe de Hochschild pour A et Ã est A comme espace vectoriel
mais avec l’action à gauche a · x = γ(a) quel que soit a ∈ A,x ∈ Ã et de manière
similaire pour l’action à droite. Nous posons C0(A, ·) = 0.

La différentielle est donnée par

∂(ϕ,ψ) = (∂Aϕ,∂γϕ −∂Aψ), (45)

où ∂A est la différentielle de Hochschild. On écrit H(A,γ) pour la cohomologie as-
sociée.

On peut faire une construction similaire pour une algèbre de Lie et un endomor-
phisme.

Pour une bialgèbre de Lie g et un morphisme γ : g→ g on peut définir un com-
plexe par

Cn(g,γ) = Cnµ(g)⊕Cnγ = Cn(g)⊕Cn−1(g). (46)

La différentielle est

∂ϕ = (∂CEϕ,∂γϕ,∂
c
CEϕ) ∈ Ci+1,j

µ ⊕Ci,jα ⊕C
i,j+1
µ (47)

∂ψ = (−∂CEψ,−∂cCEϕ) ∈ Ci+1,j
α ⊕Ci,j+1

α (48)

pour tousϕ ∈ Ci,jµ (γ) etψ ∈ Ci,jγ (γ). Ici ∂CE est la différentielle de Chevalley-Eilenberg.
L’action à gauche de g surψ est donnée par x·ψ = γ(x)ψ et de même pour la coaction.
On écrit H(g,γ) pour la cohomologie associée.

Pour une bialgèbre de Lie et deux morphismes γ1,γ2 : g→ g, on définit un com-
plexe par

Ci,j(g,γ1,γ2) = Ci,jµ (g,γ1,γ2)⊕Ci,jγ1(g,γ1,γ2)⊕Ci,jγ2(g,γ1,γ2)⊕Ci,jcom(g,γ1,γ2)

= Ci,j(g)⊕Ci−1,j(g)⊕Ci,j−1(g)⊕Ci−1,j−1(g).

La différentielle horizontale pour (ϕ,ψ,χ,ξ) ∈ Ci,j(g,γ1,γ2) est donnée par

∂(ϕ,ψ,χ,ξ) = (∂CEϕ,∂γ1ϕ −∂CEψ,∂γ2ϕ −∂CEχ,−∂γ2ψ −∂γ1χ+∂CEξ).

De façon duale, on peut définir la différentielle verticale.
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Cohomologie de Hochschild de type α

Soit (A,µ,α) une algèbre Hom-associative et (M,ρ,αM ) un A-module. On définit
un complexe par

H̃Cn(A,M) = H̃Cnµ(A,M)⊕ H̃Cnα(A,M) = Hom(A⊗n,M)⊕Hom(A⊗n−1,M) (49)

pour n ≥ 2, H̃C1(A,M) = Hom(A,M), H̃Cn(A,M) = 0 pour n ≤ 0 et des applications
linéaires

H̃Cnµ H̃Cn+1
µ

H̃Cnα H̃Cn+1
α∂αα

∂αµ

∂µα

∂µµ

⊕ ⊕

∂µµϕ(x1, . . . ,xn+1) = αn−1(x1) ·ϕ(x2, . . . ,xn+1)

+
n∑
i=1

(−1)iϕ(α(x1), . . . ,xixi+1, . . . ,α(xn+1))

+ (−1)n+1ϕ(x1, . . . ,xn−1) ·αn−1(xn+1)

, (50)

∂ααψ(x1, . . . ,xn) = αn−1(x1) ·ψ(x2, . . . ,xn)

+
n−1∑
i=1

(−1)iψ(α(x1), . . . ,xixi+1, . . . ,α(xn))

+ (−1)nψ(x1, . . . ,xn−1) ·αn−1(xn),

(51)

∂µαϕ(x1, . . . ,xn) = αM(ϕ(x1, . . . ,xn))−ϕ(α(x1), . . . ,α(xn)), (52)

∂ααψ(x1, . . . ,xn+1) = αn−2(x1x2) ·ψ(x3, . . . ,xn+1)−ψ(x1, . . . ,xn−1) ·αn−2(xnxn+1). (53)

Finalement, la différentielle est définie par

∂(ϕ +ψ) = (∂µµ +∂µα)ϕ − (∂αµ +∂αα)ψ (54)

= (∂µµϕ −∂αµψ,∂µαϕ −∂ααψ). (55)

Définition 3.13 On appelle la cohomologie H̃C(A,M), la cohomologie de Hoch-
schild de type α de A à valeurs dans M, et on la note H̃H(A,M).

L’ensemble HCn(A) = {(ϕ,0) ∈ H̃Cn(A)|αϕ = ϕ⊗n} est un sous-complexe de H̃Cn(A)
avec la différentielle ∂µµ. C’est le complexe considéré dans [AEM11].
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Théorème 3.14 Soit A une algèbre associative, alors H̃Hk(A) � HHk(A) ⊕ HHk−1(A)
pour k ≥ 1, où HH(A) est la cohomologie de Hochschild de A avec HH1(A) remplacé par
Der(A) et HH0(A) par {0}.

Soit A une algèbre Hom-associative et γ : A → A un morphisme. Nous consi-
dérons l’algèbre Aγ obtenue par le twist de Yau. On définit une application Φ :
C(A,γ)→ H̃C(Aγ ) pour (ϕ,ψ) ∈ Cn(A,γ) par

(ϕ,ψ) 7→ (γn−1ϕ +γn−2ψ ◦µ,γn−2ψ), (56)

où ψ ◦µ =
∑n−2

i=0 (−1)iψ ◦i µ avec ϕ ◦i µ := ϕ(id⊗i ⊗µ⊗ id⊗n−i−2).

Théorème 3.15 L’application Φ est un morphisme de complexes. Si γ est inversible,
Φ est un isomorphisme et notamment les cohomologies correspondantes sont également
isomorphes.

Cohomologie de Gerstenhaber-Schack de type α

Soit A une Hom-bialgèbre. Nous utilisons l’abréviationH i,j = Hom(A⊗i ,A⊗j ) pour
i, j ∈ N et H i,j = 0 pour i ou j ≤ 0. On définit un bicomplexe C•,•GS(A) par

Cn,mGS (A) = Cn,mGS µ∆(A)⊕Cn,mGS α∆(A)⊕Cn,mGS µβ(A)⊕Cn,mGS αβ(A)

=Hn,m ⊕Hn−1,m ⊕Hn,m−1 ⊕Hn−1,m−1.
(57)

Nous notons un élément de Cn,mGS (A) par (ϕ,ψ,χ,ξ). La différentielle horizontale
∂µ : Cn,mGS (A)→ Cn+1,m

GS (A) est définie par

∂µ(ϕ,ψ,χ,ξ) = (∂µµϕ −∂µαψ,∂µαϕ −∂ααψ,∂µµχ −∂αµξ,∂µαχ −∂ααξ), (58)

où l’action à gauche sur A⊗m dans CGS
n,m
α∆ (A) et CGS

n,m
µ∆ (A) est l’action usuelle et

l’action à gauche sur A⊗m−1 dans CGS
n,m
αβ (A) et CGS

n,m
µβ (A) est β(x) · y, où · est l’action

usuelle sur A⊗m−1, et de manière similaire pour l’action à droite.

Proposition 3.16 L’espace CGS(A) avec les différentielles définies avant est un bicom-
plexe différentiel. On appelle la cohomologie associéHGS(A) la cohomologie de Gerstenhaber-
Schack de type α.

On peut aussi définir une cohomologie pour les Hom-bialgèbres où α = β, utili-
sant un sous-complexe de CGS(A).
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Grand Crochet

Nous définissons un grand crochet pour le cas Hom, qui généralise les crochets
dans [LR90, CS16].

Soient V un espace vectoriel et α,β : V → V deux applications linéaires, qui com-
mutent. Soit ϕ ∈ Hom(ΛV ,ΛV ). On définit la α- et β-hauteur de ϕ par hgtαϕ ∈ N
et hgtβϕ ∈ N resp. On écrit aussi hgtϕ = (hgtαϕ,hgtβϕ). On pose hgtα = (1,0)
et hgtβ = (0,1) et pour une bialgèbre Hom-Lie (V ,ν,δ,α,β) aussi hgtν = (1,0) et
hgtδ = (0,1). La hauteur de ϕψ est hgtϕ + hgtψ.

Le produit et coproduit dans ΛV ont la hauteur zéro. On note aussi la projection
ΛV → V par pr.

Définition 3.17 Soient ϕ,ψ ∈ Hom(ΛV ,ΛV ) des applications avec des hauteurs
associées, alors on définit un produit par

ψ ◦ϕ = µ(ψ ⊗αψ)(µ⊗ id)(id⊗pr⊗ id)(id⊗∆)(αϕ ⊗ϕ)∆ (59)

et
{ϕ,ψ}BB = ϕ ◦ψ − (−1)deg(ϕ)deg(ψ)ψ ◦ϕ. (60)

Ici nous utilisons αϕ = αhgtαϕβhgtβϕ, qui a la même hauteur que ϕ. Le crochet {·, ·}BB
s’appelle grand crochet.

Nous considérons le complexe

Bi,j = Homα,β(Λig,Λjg) = {ϕ ∈Hom(Λig,Λjg)|α⊗jϕ = ϕα⊗i ,β⊗jϕ = ϕβ⊗i}

pour i, j ≥ 1 et {0} autrement.
La hauteur de ϕ ∈ Bi,j est hgt(ϕ) = (i − 1, j − 1).

Théorème 3.18 Le grand crochet définit une algèbre de Lie graduée sur B••.

Proposition 3.19 Soit g un espace vectoriel avec deux applications linéaires commu-
tantes α,β : g→ g, alors :

— Si ν ∈ B2,1 satisfait {ν,ν}BB = 0 alors (g,ν,α) est une algèbre Hom-Lie.
— Si δ ∈ B1,2 satisfait {δ,δ}BB = 0 alors (g,δ,β) est une coalgèbre Hom-Lie.
— Si un couple (ν,δ) satisfait {ν + δ,ν + δ}BB = 0 alors (g,ν,δ,α,β) est une bialgèbre

Hom-Lie.

On peut restreindre le grand crochet sur Homα(Λg,g) et obtenir le crochet de
Nijenhuis-Richardson pour la cas Hom [AAM15].

Bialgèbres Hom-Lie

Etant donnée une bialgèbre Hom-Lie, on définit le complexe Bi(g) =
⊕i

j=1B
j,i−j(g).
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Proposition 3.20 Soit g une bialgèbre Hom-Lie. L’application ∂ : B• → B•,∂ϕ = {ν +
δ,ϕ}BB est une différentielle.

Avec ça on peut définir une cohomologie pour les bialgèbres Hom-Lie, qu’on ap-
pelle cohomologie de Chevalley-Eilenberg CCE(g) de g.

Cohomologie de Chevalley-Eilenberg pour les algèbres Hom-Lie de type α

Nous définissons une cohomologie de type α pour les algèbres Hom-Lie. Soient
(g,ν,α) une algèbre Hom-Lie et (M,β) un g-module. On note parΛkg la k-ème puis-
sance extérieure de g. Alors le complexe pour la cohomologie de g à valeurs dans M
est donné par

C̃
n
CE(g,M) = C̃

n
CE µ(g,M)⊕ C̃

n
CE α(g,M) = Hom(Λng,M)⊕Hom(Λn−1g,M). (61)

Ici Hom(Λ0g,M) = {0} comme dans le cas précédant. La hauteur de ϕ ∈ C̃
n
CE µ(g,M)

et ψ ∈ C̃
n
CE α(g,M) est donnée par hgt(ϕ) = hgt(ψ) = (i − 1). On définit quatre appli-

cations linéaires

C̃
n
CEµ C̃

n+1
CE µ

C̃
n
CEα C̃

n+1
CE α∂αα

∂αµ

∂µα

∂µµ

⊕ ⊕

(∂µµϕ)(x1, . . . ,xn+1) =
n+1∑
i=1

(−1)i+1αn−1(xi) ·ϕ(x1, . . . ,xn+1) (62)

−
∑
i<j

(−1)i+j−1ϕ([xi ,xj ],α(x1), . . . , x̂i , x̂j , . . . ,α(xn))

(∂ααψ)(x1, . . . ,xn) =
n∑
i=1

(−1)i+1αn−1(xi) ·ψ(x1, . . . ,xn) (63)

−
∑
i<j

(−1)i+j−1ψ([xi ,xj ],α(x1), . . . , x̂i , x̂j , . . . ,α(xn))

(∂µαϕ)(x1, . . . ,xn) = β(ϕ(x1, . . . ,xn))−ϕ(α(x1), . . . ,α(xn)) (64)

(∂αµψ)(x1, . . . ,xn+1) =
∑
i≤j

(−1)i+j−1[αn−2(xi),α
n−2(xj )] ·ψ(x1, . . . , x̂i , x̂j ,xn+1). (65)
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Théorème 3.21 L’application ∂ : C̃
n
CE(g,M)→ C̃

n+1
CE (g,M) définie par ∂(ϕ,ψ) = (∂µµϕ−

∂αµψ,∂µαϕ −∂ααψ) est une différentielle, c.-à-d. ∂ ◦∂ = 0.

On appelle le complexe C̃
•
CE(g,M) avec différentielle ∂ le complexe de Chevalley-

Eilenberg de type α. La cohomologie correspondante H̃
•
CE(g,M) est la cohomologie

de Chevalley-Eilenberg de type α de g à valeurs dans M.

Proposition 3.22 Pour (ϕ,ψ) ∈ C̃CE(V ,V ) = Hom(ΛV ,V ) et χ1,χ2 ∈ Hom(ΛV ,ΛV )
avec des hauteurs arbitraires on a :

— ∂µµϕ = (−1)k−1{ν,ϕ}BB.
— ∂ααψ = (−1)k−1{ν,ψ}BB.
— ∂µα(χ1 ◦χ2) = (∂µαχ1 ◦χ2) + (χ1 ◦∂µαχ2)

Nous étudions l’algèbre Hom-Lie gγ obtenue par le twist de Yau de g par γ . On
définit une application linéaire Φ : C(g,γ)→ C̃CE(gγ ) pour ϕ ∈ Cnµ(γ) et ψ ∈ Cnγ (γ)
par

(ϕ,ψ) 7→ (γn−1ϕ +γn−2ψ ◦ ν,γn−2ψ), (66)

où

(ϕ1 ◦ϕ2)(x1, . . . ,xk+l−1) = ϕ1(ϕ2 ∧ id∧k−1)(x1, . . . ,xk+l−1)

=
∑

σ∈Sh(l,k−1)

sign(σ )ϕ1(ϕ2(xσ (1), . . . ,xσ (l)),xσ (l + 1), . . . ,xσ (k+l−1))

pour ϕ1 ∈Hom(Λkg,g) et ϕ2 ∈Hom(Λlg,g).

Théorème 3.23 Soit g une algèbre de Lie et γg → g un endomorphisme, alors Φ est
un morphisme des complexes et inversible si γ est inversible. En particulier, il induit un
morphisme en cohomologie.

Théorème 3.24 Soit (g,ν, id) une algèbre de Lie. Alors

H̃
n
CE(g) =Hn

CE(g)⊕Hn−1
CE (g) (67)

avec H1
CE(g) = Der(g) et H0

CE(g) = {0}.

Proposition 3.25 (Théorem de Whitehead) Soit (g,ν,α) une algèbre Hom-Lie simple de

dimension finie, alors H̃
1
CE(g) = Derα(g), H̃

2
CE(g) = αDer(g)

/
∂γ Der(g) et H̃

k
CE(g) = 0

for k ≥ 2.

Cohomologie de bialgèbres Hom-Lie de type α

Nous considérons ici seulement le cas α = β.
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Pour une bialgèbre Hom-Lie (g,ν,δ,α), on définit le complexe suivant

C̃
k
CE(g) = C̃

k
CE µ(g)⊕ C̃

k
CE α(g) =

k⊕
l=1

C̃CE
l,k−l+1
µ (g)⊕

k−1⊕
l=1

C̃CE
l,k−l
α (g) (68)

=
k⊕
l=1

Hom(Λlg,Λk−l+1g)⊕
k−1⊕
l=1

Hom(Λlg,Λk−lg). (69)

Pour ϕij ∈Hom(Λig,Λjg) ⊂ C̃
i+j−1
CE µ et ψij ∈Hom(Λig,Λjg) ⊂ C̃CE

i+j
α , on pose

∂ϕ = (∂µµϕ,∂µαϕ,∂
c
µµϕ) ∈ C̃CE

i+1,j
µ ⊕ C̃CE

i,j
α ⊕ C̃CE

i,j+1
µ , (70)

∂ψ = (∂αµψ,−∂ααψ,∂bψ,−∂cααψ,∂cαµψ)

∈ C̃CE
i+2,j
µ ⊕ C̃CE

i+1,j
α ⊕ C̃CE

i+1,j+1
µ ⊕ C̃CE

i,j+1
α ⊕ C̃CE

i,j+2
µ .

(71)

Ici ∂αα = {ν, ·}BB, ∂cαα = {δ, ·}BB, ∂µαϕ = αϕ − ϕα et ∂µαϕ = µ(αhgtϕ−1ν ∧ ϕ)∆. La

hauteur de ϕ ∈ C̃
n
CE(g) est donnée par hgt(ϕ) = n − 1. Ici on a hgtϕ ∈ N, parce que

α = β.

L’application ∂b est définie par

∂bψ = ∂b1 +∂b2

= µ3(id⊗ν ⊗ id)(pr⊗µ⊗ id)(∆⊗∆)(δαhgtψ−1 ⊗ψ)∆

+µ(αhgtψ−1ν ⊗ψ)(µ⊗µ)(pr⊗∆⊗ id)(id⊗δ⊗ id)∆3.

(72)

Cela veut dire que pour ψ ∈ C̃
k,l
CEα

∂b1ψ(x1, . . . ,xk+1) =
k+1∑
i=1

(−1)iδ(αk+lxi) ·ψ(x1, . . . ) (73)

=
k+1∑
i=1

(−1)iαk+l(x[1])∧ (αk+l(x[1]) ·ψ(x1, . . . )). (74)

On a le diagramme suivant :
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CCE
i+1,j
µ

CCE
i,j+1
µ

CCE
i+2,j
µ

CCE
i+1,j+1
µ

CCE
i,j+2
µ

CCE
i,j
α CCE

i+1,j
α

CCE
i,j+1
α

Théorème 3.26 L’application ∂ est une différentielle pour le complexe C̃CE(g).

Proposition 3.27 Soient g une bialgèbre de Lie et γ : g→ g un endomorphisme. Alors
Φ : C(γ)→ C̃CE(gγ ) définie par

Φ(ϕ) = (γ i−1ϕγ j−1) (75)

Φ(ψ) = (γ i−1(ψ ◦ ν)γ j−1,γ i−1ψγ j−1,γ i−1(δ ◦ψ)γ j−1) (76)

est un morphisme de complexes. Si γ est inversible alors Φ est inversible.

Homomorphisme de Hom-algèbres

On définit une cohomologie de type α pour un morphisme de Hom-algèbres, qui
généralise la cohomologie dans [AFM17]. Nous considérons seulement le cas Hom-
associative ici. Le cas Hom-Lie est similaire.

Soient (A,µ,α) et (B,µ,β) deux algèbres Hom-associatives et γ : A → B un mor-
phisme. On définit

H̃C(γ) = H̃C(A)⊕ H̃C(B)⊕ H̃C(A,B), (77)

où B est considéré comme un A-bimodule par γ . Cela veut dire que l’action est
donnée par a · b = γ(a)b et b · a = bγ(a) pour a ∈ A et b ∈ B.

Nous écrivons χA = (ϕA,ψA) pour un élément dans H̃C(A) ⊂ H̃C(γ) et de manière
analogue pour χB ∈ H̃C(B) et χγ ∈ H̃C(A,B).

Proposition 3.28 Soit (χA,χγ ,χB) ∈ H̃C•(γ), alors l’application ∂ : H̃C•(γ)→ H̃C•+1(γ)
définie par

∂(χA,χγ ,χB) = (∂HχA,γχA −χBγ −∂Hχγ ,∂HχB), (78)

où ∂H est la différentielle de Hochschild de type α, est une différentielle.
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Le complexe Homα(A,A) ⊕ Homα(A,B) ⊕ Homα(A,B) est un sous-complexe de
H̃C(γ) et c’est celui ci qui est considéré dans [AFM17].

On peut construire un complexe C̃(γ) et une cohomologie pour un endomor-
phisme γ : A→ A et obtenir un morphisme de complexes C̃(γ)→ H̃C(Aγ ).

3.3 Algèbres L∞

En utilisant un complexe de graphes, qui correspond à une opérade libre, on peut
construire une algèbre L∞ (seulement dans les petits degrés), telles que les algèbres
Hom-associatives sont les éléments de Maurer-Cartan.

3.4 Déformations de Hom-algèbres

Dans cette section, nous considérons les déformations formelles introduites par
M. Gerstenhaber [Ger64]. Soit V un espace vectoriel V , on note par V [[t]] l’espace
des séries formelles, i.e. l’ensemble des éléments de la forme v =

∑∞
i=0 vit

i avec vi ∈
V . Tout morphisme ϕ : V [[t]]→W [[t]], où V etW sont deux espaces vectoriels, peut
être écrit comme ϕ =

∑∞
i=0ϕit

i , où ϕi : V →W sont des applications linéaires.
Dans la suite, nous considérons seulement le cas des algèbres Hom-associatives.

Le cas Hom-Lie est similaire. On peut aussi considérer de la même manière le cas
des déformations de Hom-bialgèbres et trouver une relation entre les cohomologies
de type α et les déformations.

Définition 3.29 Soit (A,µ,α) une algèbre Hom-associative sur K. Une déformation
de A est une algèbre Hom-associative (A[[t]],? = µ? ,α?) sur K[[t]] telle que µ0 = µ et
α0 = α.

Définition 3.30 Deux déformations (?,α?) et (?′ ,α′?) d’une algèbre Hom-associative
A sont dites équivalentes s’il existe une application linéaire T : A[[t]]→ A[[t]], qui
a la forme T = id+

∑∞
i=0Tit

i , telle que T (a ?′ b) = T (a) ? T (b) et T (α′(a)) = α(T (a)),
quelque soient a,b ∈ A.

La condition de Hom-associativité µ?(µ?(a,b),α?(c)) − µ?(α?(a),µ?(b,c)) peut être
écrite sous la forme

∞∑
i,j,k=0

ti+j+k(µi(αj(a),µk(b,c))−µi(µk(a,b),αj(c))) = 0. (79)

Cette équation s’appelle équation de déformation.
L’équation d’ordre n s’écrit

(∂µµµn +∂αµαn)(a,b,c) =
∑

i,j,k=0,...,n−1
i+j+k=n

µi(αj(a),µk(b,c))−µi(µk(a,b),αj(c)) =: R1
n,

(80)
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où ∂µµµn(a,b,c) = α0(a)µn(b,c)−µn(ab,α0(c))+µn(α0(a),bc)−µn(a,b)α0(c) et ∂αµαn(a,b,c) =
αn(a)(bc)− (ab)αn(c).

Par ailleurs, la condition de multiplicativité peut s’écrire

∞∑
i,j=0

ti+jαi(µj(a,b))−
∞∑

i,j,k=0

ti+j+kµi(αj(a),αk(b)) = 0. (81)

L’équation d’ordre n est

(∂αααn −∂αµµn)(a,b) =
∑

i,j=0,...,n−1
i+j=n

αi(µj(a,b))−
∑

i,j,k=0,...,n−1
i+j+k=n

µi(αj(a),αk(b)) =: R2
n,

(82)

où ∂αααn(a,b) = α0(a)α(b)−αn(ab)−αn(a)α0(b) et ∂αµµn(a,b) = α0(µn(a,b))−µn(α0(a),α0(b)).
Le couple (R1

n,R
2
n) est appelé n-ième obstruction.

Etant donné qu’il y a une structure L∞, on a

Théorème 3.31 Soit (A,µ,α) une algèbre Hom-associative et (A[[t]],?,α?) une déforma-
tion de A. Alors

1. ∂(µ1,α1) = 0 est un 2-cocycle et sa classe de cohomologie est invariante par équi-
valence.

2. La n-ième équation relative à la Hom-associativité et multiplicativité sont équiva-
lentes à ∂(µn,αn) = (R1

n,R
2
n). De plus, (R1

n,R
2
n) est un 3-cocycle, i.e. ∂(R1

n,R
2
n) = 0.

Proposition 3.32 Si deux déformations (µ? ,α?) et (µ′? ,α
′
?) ont les mêmes termes jusqu’à

l’ordre n−1, alors ∂(µn −µ′n,αn −α′n) = 0 et il y a une équivalence jusqu’à l’ordre n s’il y
a une application linéaire Sn : A→ A tel que ∂(Sn,0) = (µn −µ′n,αn −α′n).

Nous avons le résultat suivant concernant les déformations des Hom-algèbres as-
sociatives commutatives.

Proposition 3.33 Soit A une algèbre Hom-associative commutative et A? une déforma-
tion de A. Alors {a,b} = 1

2t (a ? b − b ? a) mod t est un crochet de Hom-Poisson sur A.

Proposition 3.34 Deux déformations équivalantes d’une algèbre Hom-associative com-
mutative A ont le même crochet Hom-Poisson.
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1. Graded Modules as Functor Category
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In this chapter we give a description of the category of graded modules over a
commutative ring K for a given grading group as a functor category from this

grading group to the category of modules over this ring. For this we need to con-
sider enriched categories. For more on enriched categories, see [Kel82]. Some brief
overview is also given in Appendix B. In this chapter K can be an arbitrary commu-
tative ring with unit, but we are especially interested in the case where K is a field
of characteristic 0, e.g. the complex numbers. By K× we denote the multiplicative
group of K, i.e. the set of invertible elements. If K is a field we have K× = K \ {0}.
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1. Graded Modules as Functor Category

1.1 The category Γ

For an (abelian) group Γ we consider the K-Mod category ΓK with the set of objects
Γ and

Hom(i, j) =
{

K if i = j
{0} otherwise ,

(1)

where K is a commutative ring, and the composition on morphisms is given by
the multiplication in K. This is the discrete K-Mod-category on Γ as defined in
Appendix B. We will sometimes simply write Γ instead of ΓK.

We consider the tensor product

i ⊗ j = i + j for i, j ∈ Γ . (2)

This is clearly associative, since Γ is a group. The unit object is the unit element of
the group. We want to find (all) monoidal structures on Γ for this tensor product.

Note that a tensor product on a discrete category gives always an associative com-
position on the objects, so for this it would be enough if Γ were a monoid.

On morphisms we define
f ⊗ g = f g, (3)

where we identify the different Hom-sets, for the equation to make sense. Since we
consider Γ to be enriched over K-Mod all structures have to be linear. By this con-
dition and the fact that the identity must by mapped to the identity, ⊗ is uniquely
defined on morphisms.

Note that if we considered ordinary categories, the tensor product on morphisms
could be of a different form, but we do not know which exactly. We also do not have
an example showing that this is possible. It only has to satisfy certain conditions
coming from naturality of α.

The internal homs are given by

HOM(a,b) = b − a, (4)

since
Hom(a+ b,c) �Hom(a,c − b). (5)

To be precise one must choose an invertible morphism for all a,b ∈ Γ , but since all
choices are equivalent we simply choose the identity.

Note that this shows that a closed monoidal structure an a discrete small category
gives the structure of a group on the objects, since the existence of the internal homs
gives the existence of inverse elements.

Next we consider possible associators for this category, this is we are searching a
natural transformation

α(a,b,c) : (a⊗ b)⊗ c→ a⊗ (b⊗ c), (6)
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1.2. Monoidal functors on Γ

which satisfy the pentagon identity. In turns out that the condition for naturality is
empty. The pentagon identity gives

α(a,b,c+ d)α(a+ b,c,d) = α(b,c,d)α(a,b+ c,d)α(a,b,c), (7)

which is equivalent to
dα = 0 (8)

in group cohomology. We briefly recall its definition in Section 1.2.1.
We also need a left and right unitor, this is, maps

ρ(a) : a⊗ 0 = a→ a, (9)

λ(a) : 0⊗ a = a→ a. (10)

We define
ρ(0) = λ(0) =: ν. (11)

Given α the unitors λ and ρ are related by

ρ(a)α(a,0, c) = λ(c). (12)

Setting c = 0, a = 0 resp. one gets

ρ(a)α(a,0,0) = ν, (13)

λ(c) = να(0,0, c). (14)

So given α and ν the unitors λ and ρ are completely determined. So we get

Proposition 1.1.1 A monoidal structure on the discrete K-Mod category Γ for a group Γ
is given by a 3-cocycle α : Hom(Γ ×Γ ×Γ ,K×) in group cohomology and an element ν ∈ Γ .

1.2 Monoidal functors on Γ

We consider a strict monoidal functor (F,F0,F2) : Γ → H, for two categories com-
ing from two abelian groups Γ ,H as in the previous section.

We have that F2 consists of maps F2(a,b) ∈Hom(F(a)+F(b),F(a+b)). Since Hom(a,b)
is only non zero for a = b, one must have F(a) + F(b) = F(a+ b) for a strict monoidal
functor, which means that F is a group morphism.

Since F is a functor, it must satisfy

F(f g) = F(f )F(g) (15)

for all morphisms f ,g. But since the category is discrete, F is determined on mor-
phisms, by requiring that F(ida) = idF(a) for all a ∈ Γ and linearity, and this condition
is automatic.
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1. Graded Modules as Functor Category

Naturality for F2 gives

Fa(f )Fb(g)F2(a,b) = F2(a,b)Fa+b(f g), (16)

here a,b ∈ Γ , f : a→ a,g : b→ b and Fa denotes the map Hom(a,a)→ Hom(Fa,Fa).
But again this is always satisfied, since Fa for all a ∈ Γ is the trivial identification of
Hom(a,a) �K with Hom(Fa,Fa) �K.

We need F2 to be compatible with the tensor product, which means the following
diagram must commute:

F(a)⊗ (F(b)⊗F(c)) F(a)⊗F(b⊗ c)) F(a⊗ (b⊗ c))

(F(a)⊗F(b))⊗F(c) F(a⊗ b)⊗F(c) F((a⊗ b)⊗ c)

id⊗F2 F2

F(αΓ )−1α−1
H

F2 ⊗ id F2

This can be written as

F2(b,c)F2(a,b+ c)F(α(a,b,c)) = α(F(a),F(b),F(c))F2(a,b)F2(a+ b,c), (17)

(dF2)(a,b,c)F(α(a,b,c)) = α(F(a),F(b),F(c)). (18)

For the unit and F0 we have

ρ′(a) = F(ρ(a))F2(a,0)(id⊗F0), (19)

which given ρ,ρ′ and F2 determines F0.
If F is bijective it is possible to define a new associator and unitors on Γ by the

above formulas.
This can be summarized as:

Proposition 1.2.1 The associators on Γ for a fixed ν up to isomorphisms are given by
classes in the third group cohomology H3(Γ ,K×).

1.2.1 Group cohomology

We want to briefly recall the definition of group cohomology, see e.g. [Bro82], and
give it for some simple examples, which are useful here.

Let Γ be an (abelian) group and M a Γ -module, this is, an abelian group with a
linear Γ action. We set Cn(Γ ,M) = Hom(Γ n,M) and define d : Cn(Γ ,M)→ Cn+1(Γ ,M)
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1.3. Symmetry

by

(dϕ)(g1, . . . , gn+1) = g1ϕ(g2, . . . , gn) +
n∑
i=1

(−1)iϕ(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1ϕ(g1, . . . , gn).

One can check that d ◦d = 0 and define the cohomology H•(Γ ,M).
We need the cohomology H(Γ ,K×), where we will consider Γ to be a finitely gen-

erated abelian group and K the complex or real numbers for simplicity.
It is well known that in general for a trivial group action

Hn(Z,M) =
{
M if n = 0,1
0 else.

(20)

So in our case we get

Hn(Z,K×) =
{

K× if n = 0,1
0 else.

(21)

So in this case there are no non-trivial associators.
For the cyclic group Cn with n elements we have in general

Hp(Cn,M) =


M if p = 0
Tn if p = 1,3,5, . . .
M
/
nM if p = 2,4,6,8, . . .

(22)

Here Tn denotes the n-torsion module ofM, i.e. the elementsm ∈M such that n ·m =
0.

In our case C(Cn,K×), we get Tn is the set of n-th roots of unity in K. For K = C
this is isomorphic to Cn. For K = R this is C2 for n even and {1} for n odd.

Further we have K×
/

(K×)n = {1} for K = C, and for K = R we get C2 for n even

and {1} for n odd.
So we getHp(Cn,C) = Cn for p odd and {1} for p even. Further we getHp(Cn,R×) =
{1} for n odd and Hp(Cn,R×) = C2 for n even.

1.3 Symmetry

We want to study the possible symmetries on the category Γ for a given associator
α.

A braiding γ must satisfy

γ(a,b)α(b,a,c)γ(a,c) = α(a,b,c)γ(a,b+ c)α(b,c,a) (23)
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1. Graded Modules as Functor Category

and

γ(b,c)α−1(a,c,b)γ(a,c) = α−1(a,b,c)γ(a+ b,c)α−1(c,a,b). (24)

For the identity one needs

γ(a,0)λ(a) =ρ(a), γ(0, a)ρ(a) =λ(a).

To be a symmetry γ must also satisfy

γ(a,b)γ(b,a) = 1, (25)

which is equivalent to

γ(a,b) = γ−1(b,a). (26)

If α and ρ,λ are trivial Eq. (23) simplifies to

γ(a,b)γ(a,c) = γ(a,b+ c), γ(a,c)γ(b,c) = γ(a+ b,c). (27)

So γ is a group homomorphism in each argument. This is also called a bicharacter.
For a finitely generated abelian group it is possible to classify all bicharacters,

since it is enough to define it on pairs of generators. For details see [Sch79, Sect. 5]
A strict monoidal functor (F,F2,F0) between two such categories is a braided

monoidal functor if in addition

γ ′(F(a),F(b))F2(b,a) = F2(a,b)F(γ(a,b)). (28)

If F is the identity this gives

γ ′(a,b) = F2(a,b)F−1
2 (b,a)γ(a,b) (29)

So given a 2-cocycle in group cohomology it is possible the change the symmetry
of Γ by the above formula without changing the associator.

Proposition 1.3.1 For K = C, every symmetry with trivial associator is equivalent to
one with values in {−1,+1}.

Proof. Given a symmetry γ , one can define the subgroup Γ+ = {i ∈ Γ |γ(i, i) = +1}.
This is a subgroup since γ(i + j, i + j) = γ(i, i)γ(i, j)γ(j, i)γ(j, j) = γ(i, i)γ(j, j). Similar
one can define Γ− := {i ∈ Γ |γ(i, i) = −1}. Then Γ = Γ+ ∪ Γ−. Then σ is equivalent,
to σ ′ given by σ (i, j) = −1 for i, j ∈ Γ− and 1 else. This can be seen using [Sch79,
Pop97].
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1.4. Graded modules as functor category

1.4 Graded modules as functor category

We want Modgr to be a functor category. One can view a Γ -graded module as
a functor from the discrete category on Γ to the category K-Mod of K-modules.
But since we want to encode the monoidal data for Modgr in this functor category,
this does not work. Instead we need the category ΓK defined as above, which has
non trivial monoidal structures. Note that we need to consider enriched functors,
since otherwise ModΓK has two many objects and is not what we want. (The functor
also operates on the morphisms and there are different possibilities). This is why
we view the category Γ enriched over Mod. We denote this category from now on
simply by Γ . Here we consider Mod equipped with the normal tensor product and
symmetry, and the associator to be the identity, this is possible due to [Sch01].

So we now study the functor category ModΓ . Note that since this is now a functor
category between enriched categories, it is defined differently than ordinary func-
tor categories to get again the structure of an enriched category, see Appendix B.
However, in our case it consists simply of ordinary functors which are additionally
K-linear.

To be precise a functor G ∈ ModΓ consists of a module F(i) for all i ∈ Γ , and
on morphisms is determined by the fact that F applied to the identity is again the
identity and K-linearity.

The morphisms Hom(V ,W ) of two objects V ,W ∈ ModΓ are the Mod-natural
transformations between them. Here again Mod-natural simply means natural and
K-linear.

But since the category Γ is discrete the naturality condition is empty and a mor-
phisms ϕ ∈ Hom(V ,W ) simply consists of a family of K linear maps ϕ(i) : V (i)→
W (i).

So it should be clear that this category describes precisely the Γ -graded modules
with the degree 0 maps as morphisms.

Next we want to define a tensor product on ModΓ . Generally, in any V -functor
category VC , where C is a (small) symmetric monoidal V -category, one can define
a tensor product by

F ⊗̂G =
∫ a,b

F(a)⊗G(b)⊗Hom(a+ b, ·). (30)

This is a special form of the so called Day convolution [Day70].
Again in our case the formula simplifies due to the fact that Γ is discrete, and we

get

(V ⊗̂W )(c) =
∫ a,b

U (a)⊗V (b)⊗Hom(a,c − b)
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1. Graded Modules as Functor Category

�
⊕
a,b∈Γ

U (a)⊗V (b)⊗Hom(a+ b,c) �
⊕
a+b=c

U (a)⊗V (b)

�

∫ b

U (c − b)⊗V (b) �
⊕
b

U (c − b)⊗V (b).

Which gives back the usual formula for the tensor product of two graded mod-
ules. Note however that for the following the original formula is better, since it
allows us to see the effects of the associator of Γ on ⊗̂.

We show the associativity of the tensor product. Using Proposition B.4.4, we get

((U ⊗̂V ) ⊗̂W )(e) =
∫ c,d ∫ a,b

U (a)⊗V (b)⊗Hom(a+ b,c)⊗W (d)⊗Hom(c+ d,e)

=
∫ a,b,d

U (a)⊗V (b)⊗W (d)⊗
∫ c

Hom(a+ b,c)⊗Hom(c+ d,e)

=
∫ a,b,d

U (a)⊗V (b)⊗W (d)⊗Hom((a+ b) + d,e). (31)

And similarly

(U ⊗̂ (V ⊗̂W ))(e) =
∫ a,b,d

U (a)⊗V (b)⊗W (d)⊗Hom(a+ (b+ d), e). (32)

Since we consider Γ to be monoidal, we have the associator α, which gives an iso-
morphisms between this and (31) using Proposition B.4.3.

As unit we take the representable functor I := Hom(0, ·). This is simply the ring
K considered as graded module concentrated in degree 0. We get

U ⊗̂ I =
∫ a,b

U (a)⊗Hom(0,b)⊗Hom(a+ b, ·)

�

∫ a

U (a)⊗Hom(0 + a, ·)

�

∫ a

U (a)⊗Hom(a, ·) =U (·),

where in the third step we need λ for Γ , which may be non trivial. A similar calcu-
lation shows that I ⊗̂U �U , so I is in fact a unit for the tensor product ⊗̂.

One can show that the new associator satisfies the pentagon identity, since the
associators on Γ and Mod do so.
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1.4. Graded modules as functor category

For the symmetry we get

U ⊗̂V =
∫ a,b

U (a)⊗V (b)⊗Hom(a+ b, ·) (33)

�

∫ a,b

V (b)⊗U (a)⊗Hom(b+ a, ·) (34)

=
∫ a,b

V (a)⊗U (b)⊗Hom(a+ b, ·) = V ⊗̂U, (35)

where in the first step we used the symmetry γ on Γ .
For the internal homs we have

Hom(U ⊗̂V ,W ) = Hom(
∫ a,b

U (a)⊗V (b)⊗Hom(a+ b, ·),W (c))

�

∫
c

∫
a,b

Hom(U (a)⊗Hom(a+ b,c)⊗V (b),W (c))

�

∫
c

∫
a,b

Hom(U (a),Hom(Hom(a+ b,c),Hom(V (b),W (c))))

�

∫
a

Hom(U (a),
∫
b,c

Hom(Hom(a+ b,c),Hom(V (b),W (c))))

�Hom(U,Homgr(V ,W )).

If we define Homgr(V ,W )(a) =
∫
b,cHom(Hom(a + b,c),Hom(V (b),W (c))). One can

simplify this using

Homgr(V ,W )(a) =
∫
b,c

Hom(Hom(a+ b,c),Hom(V (b),W (c)))

�

∫
b,c

Hom(Hom(a+ b,c)⊗V (b),W (c))

�

∫
c
Hom(

∫ b

Hom(a+ b,c)⊗V (b),W (c))

�

∫
c
Hom(

∫ b

Hom(b,c − a)⊗V (b),W (c))

�

∫
c
Hom(V (c − a),W (c)).

Note that in this calculation we use that in Γ the tensor functor a + · has a right
adjoint and we also use the symmetry in Γ .

Again in our case this can be written as

Homgr(V ,W )(a) =
∏
c

Hom(V (c − a),W (c)), (36)
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1. Graded Modules as Functor Category

which shows that Homgr(V ,W )(a) are precisely the maps of degree a.
The representable functors K[a] := Hom(a, ·), generate ModΓ . One has K[a] ⊗

K[b] � K[a + b]. With this one can also define functors Modgr → Modgr by V 7→
V [i] := K[i]⊗V .

One can define the sum and product in Modgr componentwise. Also it is possible
to compute other limits and colimits, so in fact Modgr is a complete closed monoidal
category.

One can also define the dual of a graded module V by V ∗ = Homgr(V ,K) us-
ing (36) we have

V ∗(a) = Homgr(V ,K)(a) =
∏
c∈Γ

Hom(V (c − a),K(c)) = Hom(V (−a),K) = V (−a)∗.

If one considers the category of finite dimensional vector spaces over a field in-
stead of the category K−Mod for a commutative ring, the category Modgr becomes a
rigid monoidal category similar to the category of finite dimensional vector spaces.

1.4.1 Functors between Modgr

The idea is the extend a functor or tensor functor between the (monoidal) cate-
gories Γ ,H of two groups to a functor on the functor categories ModgrΓ ,ModgrH,
which describe the graded modules. So consider a functor F : Γ →H. Then one can
define the pullback for U : H→Mod along F by

(F∗U )(a) =U (F(a)). (37)

This clearly gives a functor ModgrH→ModgrΓ . But unless F is bijective this is not
what one wants. (Consider e.g. F : a 7→ 0)

So we also define a pushforward ModgrΓ →ModgrH for U ∈ModΓ by

(F∗U )(a) =
∫ b∈Γ

U (b)⊗Hom(F(b), a). (38)

This is equivalent to

(F∗U )(a) =
⊕
F(b)=a

U (a). (39)

We want to consider, whether F∗ is again a monoidal functor if F is a monoidal
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1.4. Graded modules as functor category

functor. For this we compute

F∗(U ⊗V )(e) =
∫ a,b∈Γ ∫ c∈Γ

U (a)⊗V (b)⊗Hom(a+ b,c)⊗Hom(F(c), e)

=
∫ a,b∈Γ

U (a)⊗V (b)⊗Hom(F(a+ b), e)

�

∫ a,b∈Γ
U (a)⊗V (b)⊗Hom(F(a) +F(b), e).

In the third line we used the morphisms F2 : F(a+ b)→ F(a) + F(b), of the monoidal
functor. On the other side we have

(F∗U )⊗ (F∗V )(e) =
∫ a,b∈H∫ c∈Γ

U (a)⊗Hom(F(c), a)

⊗
∫ d∈Γ

U (d)⊗Hom(F(d),b)⊗Hom(a+ b,e)

=
∫ c,d∈Γ

U (c)⊗U (d)⊗Hom(F(c) +F(d), e)

So we get a morphism from F∗(U ⊗V ) to (F∗U )⊗ (F∗V ).
For the identity F0 gives a functor Hom(F0, ·) : IΓ → IH.
In general the pushforward is not a (symmetric) monoidal functor. It is monoidal

if αH(F(a),F(b),F(c)) = αΓ (a,b,c) and symmetric if further γH(F(a),F(b)) = γΓ (a,b).
If F is bijective the pushforward agrees with the pullback and F∗ is fully faithful

and an equivalence of categories. The pushforward is always faithful but only full
if F is a group isomorphism.

1.4.2 Direct sum functor

One can define a functor ⊕ from the category Modgr to the category Mod by
taking the direct sum. So for V ∈Modgr we define ⊕V :=

⊕
i∈Γ V (i).

This is right adjoint to the diagonal functor, so for U ∈ModΓ ,V ∈Mod one has

Hom(
⊕

U,V ) �Hom(U,∆V ). (40)

The functor ⊕ is a monoidal functor if Modgr has the trivial associator, or an
equivalent one. It is a braided monoidal functor if the symmetry on Modgr is trivial,
or equivalent to the trivial one. It is always faithful but in general not full. It can
also be seen as the pushforward of the canonical morphism Γ → {e}.
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1. Graded Modules as Functor Category

1.5 Connection to traditional definition

We recall some facts about graded modules in the normal formulation and relate
them to the ones given before.

Definition 1.5.1 (Commutation factor) Let Γ be an abelian group. A map ε : Γ × Γ →
K× is called an anti-symmetric bicharacter or commutation factor, if

ε(f + g,h) = ε(f ,h)ε(g,h), (41)

ε(f ,g + h) = ε(f ,g)ε(f ,h), (42)

ε(f ,g)ε(g,f ) = 1. (43)

The product of two commutation factors is again a commutation factor.
So a commutation factor is precisely a symmetry for the monoidal category Γ with

trivial associator.

Remark 1.5.2 We only consider the case of a commutative group because a commu-
tation factor on a noncommutative group always factors through the abelianization
of that group.

If K is a field or more general a connected ring, we have ε(a,a) = ±1 for all a ∈ Γ ,
since the symmetry of ε gives ε(a,a)ε(a,a) = 1. We will assume this in the following.
So we can define

Γ± := {a ∈ Γ |ε(a,a) = ±1}, (44)

and we get that Γ is the disjoint union Γ = Γ+ t Γ−. In fact, a 7→ ε(a,a) is a group
homomorphism from Γ to {−1,1} � Z2. This is true since

ε(a+ b,a+ b) = ε(a,a)ε(a,b)ε(b,a)ε(b,b) = ε(a,a)ε(b,b), (45)

and because of the antisymmetry of ε.
In the sequel, ε will always denote a commutation factor.

Definition 1.5.3 (Color vector space) A Γ -graded vector space V =
⊕

i∈Γ V
i together

with a commutation factor ε will be called a color vector space.

We write deg(x) = a for the degree a of an element x ∈ V a, and write ε(x,y) instead
of ε(degx,degy) for x,y ∈ V . In this context, ε(xy,z) for x,y,z ∈ V means ε(degx +
degy,degz).

A graded subspace of a color vector space V is a vector subspace U , such that
U =

⊕
U i , with U i ⊂ V i .

The tensor product of two graded vector spaces V ,W is given by

(V ⊗W )i =
⊕
j+k=i

V j ⊗W k . (46)
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So the degree of v⊗w for v ∈ V ,w ∈W is degv+degw. This agrees with the definition
as Day-convolution if the associator on Γ is trivial.

Let a commutation factor be fixed, we consider the symmetric monoidal category
of Γ -graded vector spaces Modgr = K-ModgrΓ , with the standard tensor product,
and symmetry τ : V ⊗W →W ⊗V given for v ∈ V ,w ∈W by

τ(v ⊗w) = ε(v,w)(w⊗ v). (47)

Using this, it is possible to define the action of the symmetric group on V ⊗n for a
color vector space V , since every permutation can be written as a product of trans-
positions of neighboring elements. For σ ∈ Sn we denote this action by σ ·(v1⊗· · ·⊗vk).

It can be explicitly given by

σ · (v1 ⊗ · · · ⊗ vk) = ε(σ ;v1, . . . , vk)vσ−1(1) ⊗ · · · ⊗ vσ−1(k), (48)

where we use
ε(σ ;v1, . . . , vn) =

∏
i<j

σ (i)>σ (j)

ε(vi ,vj ). (49)

If the color vector space V is concentrated in degree 1, we have ε(σ ;v1, . . . , vn) =
sign(σ ).

We define the graded homomorphisms between two color vector spaces by

Homgr(V ,W ) =
⊕
i∈Γ

Homgri(V ,W ), (50)

where Homgri(V ,W ) = {ϕ : V → W linear|ϕ(V j ) ⊂ W j+i}. This agrees with the
internal homs obtained before.

So Homgr(V ,W ) is also a color vector space, and Homgr(V ,V ) a color algebra with
respect to composition of linear maps, see Definition 2.2.1. Note that in the category
Modgr the morphisms are only the linear maps of degree 0, which is Homgr0.

We also use the Koszul sign rule, so for f ∈ Homgr(V ,W ), g ∈ Homgr(V ′ ,W ′), a ∈
V ,b ∈ V ′, we have

(f ⊗ g)(a⊗ b) = ε(g,a)f (a)⊗ g(b), (51)

or more generally, if two graded objects change their order one gets a sign deter-
mined by epsilon and the degrees of the objects involved.

For a color vector space V , one can also define the linear dual V ∗ = Homgr(V ,K),
which is again a color vector space. If K is a field and {bi} a basis of V there exists
a dual basis {bi}, such that bi(bj ) = δij . Here δ is the Kronecker symbol. Note that

since K is assumed to be of degree zero, we have degbi = −degbi .

37





2. Color algebras

Contents

2.1 General definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Color associative and Hopf algebras . . . . . . . . . . . . . . . . . . . 40

2.2.1 Quasitriangular color quasi-Hopf algebras . . . . . . . . . . . . . . . 43
2.2.2 The Hopf algebra T (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Color Lie algebras and color Lie bialgebras . . . . . . . . . . . . . . . 46

2.3.1 Classification in dimension 3 . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 Frobenius algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Color Poisson algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Changing the commutation factor . . . . . . . . . . . . . . . . . . . . . 56

2.7 Representation and semidirect products . . . . . . . . . . . . . . . . . 59

2.8 Manin triples and r-matrices . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8.1 Coboundary, Quasi-triangular and Triangular color Lie bialgebras . 63
2.8.2 Color Manin triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.8.3 Double of a color Lie bialgebra . . . . . . . . . . . . . . . . . . . . . . 67

In this chapter we study color algebras, that is, algebras on color vector spaces. We
are mostly interested in color Lie bialgebras. We study the deformation of color

Lie bialgebras for this we define a generalization of the big bracket or grande crochet
invented by Lecomte and Roger [LR90]. With this we can define a cohomology for
color Lie bialgebras which can be used to study formal deformations as in the non-
graded case. In a second part we study the quantization of color Lie bialgebras. This
has been introduced in the non graded case by Drinfeld. Since then different meth-
ods to prove the existence of quantizations have been found [EK96, SŠ15, MW16].
We will follow here the first one due to Etingof and Kazhdan [EK96].
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2. Color algebras

2.1 General definitions

In this chapter we define different type of color algebras. This means algebras on
color vector spaces. However we will assume that the operations are of degree zero.

Definition 2.1.1 An n-ary multiplication is a map µ : V ⊗n→ V , which is considered
to be of degree zero. It is called color symmetric if

µ(v1 ⊗ · · · ⊗ vn) = µ(σ · v1 ⊗ · · · ⊗ vn) (1)

for all σ ∈ Sn and color skew-symmetric if

µ(v1 ⊗ · · · ⊗ vn) = −µ(τ · v1 ⊗ · · · ⊗ vn) (2)

for all transpositions τ ∈ Sn. Note that the action of τ (resp. σ ) contains the com-
mutation factor ε.

A morphism ϕ between two n-ary multiplications µ : V ⊗n→ V and µ′ : V ′⊗n→ V ′

is a linear map ϕ : V → V ′, often considered of degree zero, such that

ϕ ◦µ = µ′ ◦ϕ⊗n. (3)

Similarly, one can consider comultiplications ∆ : V → V ⊗n.
A comultiplication ∆ on a color vector space V always gives a corresponding mul-

tiplication ∆c on its dual, by ∆c(f1 ⊗ · · · ⊗ fn)(x) = (f1 ⊗ · · · ⊗ fn)µ(x) for fi ∈ V ∗,x ∈ V .
The other way round, a multiplication µ only gives a comultiplication µc on V ∗ if
V is finite dimensional, since then (V ⊗n)∗ is isomorphic to (V ∗)⊗n. In this case it is
given by (µc(f ))(x1, . . . ,xn) = f (µ(x1, . . . ,xn)) for f ∈ V ∗,xi ∈ V .

2.2 Color associative and Hopf algebras

We give the definition of color associative algebras and bialgebras. Note that in
the algebra case the commutation factor would not be needed, in the bialgebra case
however it is.

Definition 2.2.1 (Color (associative) algebra) A color (associative) algebra is a color
vector spaceA equipped with a structure of an associative algebra, such thatAi ·Aj ⊂
Ai+j . This means that there is a multiplication µ : A⊗A→ A,a⊗ b 7→ µ(a⊗ b) = ab of
degree zero, which satisfies

a(bc) = (ab)c. (4)

It is called color commutative if µ is color symmetric, which here means

ab = ε(a,b)ba, for all a,b ∈ A.
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2.2. Color associative and Hopf algebras

A color algebra morphism between two color algebras (A, ·) and (B, ·′) is a graded
morphism ϕ, such that ϕ(x) ·′ ϕ(y) = ϕ(x · y). We will normally assume that ϕ is
of degree 0. If A and B are unital algebras, the unit has to be of degree 0, and we
assume that a morphism respects the unit. This also implies that morphisms are of
degree 0.

By a color derivation on a color algebraA, we mean a homogeneous map d : A→ A
such that

d(ab) = d(a)b+ ε(d,a)ad(b). (5)

In terms of operations and tensor products, it may be written as

d ◦µ = µ ◦ (id⊗d + d ⊗ id), (6)

where µ denotes the multiplication onA. Note that here the ε is implicitly contained
in the Koszul rule.

Similarly, we define color coalgebras.

Definition 2.2.2 (Color (coassociative) coalgebra) A color (coassociative) coalgebra is
a color vector space C with a comultiplication ∆ : C → C ⊗C, which is of degree 0
and coassociative that is

(∆⊗ id)∆(x) = (id⊗∆)∆(x) (7)

for all x ∈ C. It is called cocommutative if τ∆(x) = ∆(x). It is called counital if it has
a counit ε, i.e. a linear map C→K such that (id⊗ε)∆ = id = (ε⊗ id)∆.

It is called coaugmented if there exists a morphism of coalgebras η : K→ C, so in
particular εη = idK . Then C is isomorphic to C̄ ⊕1K, where C̄ := kerε and 1 := η(1).
In this case we define the reduced coproduct ∆̄ : C̄ ⊗ C̄→ C̄ by

∆̄(x) = ∆(x)− 1⊗ x − x⊗ 1. (8)

When writing down formulas containing a coproduct, we will often make use of
the following Sweedler notations, ∆(x) = x(1) ⊗ x(2), or (∆⊗ id)∆(x) = x(1) ⊗ x(2) ⊗ x(3).
To be precise one should write ∆(x) =

∑
x(1) ⊗ x(2), since in general it is a sum, but

for simplicity we will omit to write this sum.
A morphism of color coalgebras C and D is a graded homomorphism ϕ : C→ D,

such that ∆D(ϕ(x)) = (ϕ ⊗ϕ)∆(x) for all x ∈ C.
A color coderivation is a graded homomorphism d : C→ C such that

∆ ◦ d = (id⊗d + d ⊗ id) ◦∆.

A coideal of a color coalgebra C is a graded subspace I , such that ∆(C) ⊂ I ⊗C +
C ⊗ I , and a subcoalgebra A is a graded subspace such that ∆(A) ⊂ A⊗A. Note that
different from the algebra case a subcoalgebra is a coideal, and not the other way
round.
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2. Color algebras

An element x ∈ C of a coaugmented coalgebra is called primitive, if ∆(x) = x⊗1 +
1⊗ x. We denote the set of all primitive elements by Prim(C).

Given a coaugmented color coalgebra C one can define an ascending filtration by
F0C = K1, and FiC = K1⊕ ker ∆̄n+1, where ∆̄(2) = ∆̄ and ∆̄(n+1) = (∆̄⊗ id⊗n−1)∆̄(n). It
is clear from the definition that F1C = K1⊕Prim(C). We call a coalgebra connected
(or conilpotent) if this filtration is exhaustive, i.e.

⋃
r∈NFrC = C.

Given a color algebra A and a color coalgebra C, one can define the convolution
product on the set of graded morphism Homgr(C,A) by

(ϕ ∗ψ)(x) = µ(ϕ ⊗ψ)∆(x). (9)

for ϕ,ψ ∈Hom(C,A) and x ∈ C.

Proposition 2.2.3 (Convolution product) Let A be a color algebra and C a color coalge-
bra, with the same grading group and commutation factor, then Homgr(C,A) with the
convolution product defined in Eq. (9) is a color algebra. If A is commutative and C is
cocommutative, then it is commutative. If A and C are unital (resp. counital) then 1ε is
a unit for the convolution product.

Proof. We have

(f ∗ g) ∗ h = µ(µ⊗ id)((f ⊗ g)⊗ h)(∆⊗ id)∆,

so the associativity of ∗ follows form the (co)associativity of the (co)algebra. For the
color commutativity, we consider

f ∗ g = µτ2(f ⊗ g)∆ = µτε(f ,g)(g ⊗ f )τ∆ = µ(g ⊗ f )∆ = ε(f ,g)g ∗ f . (10)

For the unit we have ϕ ∗ 1ε = µ(ϕ ⊗ 1ε)∆ = ϕ.

Definition 2.2.4 (Color Hopf algebra) A color Hopf algebra (H,µ,∆,η,ε,S) is a unital
color algebra (H,µ,η), a counital coassociative coalgebra (H,∆, ε) and an antipode S
such that the comultiplication ∆ and the counit ε are algebra morphisms. If there is
no antipode, we say that it is a bialgebra.

The homogeneous map ∆ of degree 0 is an algebra morphism means

∆(ab) = ∆(a)∆(b) and ∆η = η ⊗ η, (11)

where the product on H ⊗H is given by (a⊗ b)(c⊗ d) = ε(b,c)(ac⊗ bd).
The linear map ε is an algebra morphism means

ε(ab) =ε(a)ε(b) and ε η = idK .

The linear map S :H →H is an antipode means that it is a convolution inverse of
the identity, i.e. S ∗ id = µ(S ⊗ id)∆ = εη = µ(id⊗S)∆ = id∗S.
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2.2. Color associative and Hopf algebras

The compatibility condition between the algebra and coalgebra structures may
also be stated as the multiplication and the unit being coalgebra morphisms.

A Hopf algebra is a coaugmented coalgebra, where the coaugmentation is given
by η, dually it is an augmented algebra, where the augmentation is given by ε.

In the next section we will consider color Lie algebras, but we already note:

Proposition 2.2.5 The set of primitive elements of a Hopf algebra H is a color Lie sub-
algebra.

Proof. We only have to show that Prim(H) is closed under the graded commutator.
For this we compute

∆([x,y]) =∆(xy − ε(x,y)yx) =

xy ⊗ 1 + x⊗ y + ε(x,y)y ⊗ x+ 1⊗ xy
− ε(x,y)(yx⊗ 1 + y ⊗ x+ ε(y,x)x⊗ y + 1⊗ yx)

=[x,y]⊗ 1 + 1⊗ [x,y].

A Hopf ideal of a Hopf algebra H is an ideal I of the underlying algebra, which is
also a coideal for the coalgebra structure and respects the unit, counit and antipode.
Given an ideal I of the Hopf algebra H , one can define the quotient Hopf algebra
H
/
I .

2.2.1 Quasitriangular color quasi-Hopf algebras

Definition 2.2.6 (Color quasi-Hopf algebra) A color quasi-Hopf algebra is an associa-
tive color algebra H with a multiplication µ, a coproduct ∆, a unit 1, a counit ε and
an invertible associator Φ ∈H⊗3 all of degree 0, which satisfy

∀x,y ∈H : ∆(xy) =∆(x)∆(y) (compatibility),

(ε⊗ id)∆ =id = (id⊗ε)∆ (counit),

Φ(∆⊗ id)∆ =(id⊗∆)∆Φ (quasi- coassociativity),

Φ1,2,34Φ12,3,4 =Φ2,3,4Φ1,23,4Φ1,2,3 (Pentagon identity),

(id⊗ε⊗ id)Φ =1⊗ 1.

It also has an antipode S, which satisfies µ(id⊗S)∆ = id = µ(id⊗S)∆.

One could also allow for left and right unitors, but we will not do so.
Note that since these equations use the product inH⊗H , defined by (a⊗b)(c⊗d) =

ε(b,c)ac⊗ bd for a,b,c,d ∈H , they depend on the commutation factor ε.
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2. Color algebras

We assume also the operations to be of degree zero for two reasons, it is easier to
handle this way categorically, and actually all operations have to be of degree zero,
because they respect the unit.

A color quasi-Hopf algebra, where Φ = 1⊗1⊗1 is simply a color Hopf algebra. A
color quasi-Hopf algebraH is called quasitriangular, if there exists also an R-matrix
R ∈H⊗2, of degree 0, such that

(id⊗∆)R = Φ−1
231R13Φ213R12Φ

−1
123 (12)

(∆⊗ id)R = Φ312R13Φ
−1
132R23Φ123 (13)

R∆opp = ∆R. (14)

Here ∆opp(x) = τ∆(x), and Φ312 = τH,H⊗HΦ and similar for other permutations. It is
called triangular if R21R = id.

From Eq. (13) and the fact the R is invertible it follows that (ε⊗id)R = 1 = (id⊗ε)R,
so R is automatically of degree 0.

Two quasitriangular color quasi-Hopf algebras H and H ′ are called twist equiva-
lent if there exists an invertible element J ∈H⊗2 of degree 0 and an algebra isomor-
phism θ :H →H ′, such that

(ε⊗ id)J =1 = (id⊗ε)J,

∆′ =J−1((θ ⊗θ)∆θ−1(x))J,

Φ ′ =J−1
2,3J
−1
1,23θ(Φ)J12,3J1,2,

R′ =J−1
21RJ.

In the following we will be mostly interested in the case, where θ is the identity.
If J satisfies the first identity above one can define a new twist equivalent qua-

sitriangular quasi-Hopf algebra by using the identities as definitions for ∆′ ,µ′ and
R′.

Theorem 2.2.7 The category of modules over a quasitriangular color quasi-Hopf algebra
is a braided monoidal category, enriched over grVec.

If two color Hopf algebras are twist equivalent the category of modules are tensor equiv-
alent, i.e. it exists an invertible monoidal functor between them.

Proof. The proof is similar to the non-graded case. It is clear that the modules of a
color Hopf-algebra H form a category. Further for two H-modules V ,W the tensor
product V ⊗W is again a H-module with action x · (v⊗w) = (ρV ⊗ρW )τ34∆(x)⊗ (V ⊗
w) = ε(x(2),v)x(1) ·v⊗x(2) ·w. Here ρV denotes the action on V and similar forW . The
associator is given by the action ofΦ . The braiding is given by v⊗w 7→ τR·(v⊗w).

There is a category of ((quasi)-triangular) color quasi-Hopf algebras, where the
morphisms preserve the product, coproduct and the associator. Here the morphism
are automatically of degree zero.
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2.2. Color associative and Hopf algebras

2.2.2 The Hopf algebra T (V )

In the following we discuss an important example of a color Hopf algebra. We
endow the tensor algebra of a color vector space with a color Hopf algebra structure.

Let V be a color vector space and ε its commutation factor, then we define the
tensor algebra T (V ) of V by

T (V ) =
⊕
k∈N

V ⊗k , with V 0 := K and V ⊗k+1 := V ⊗k ⊗V .

In the following we write xy for x ⊗ y for simplicity and because ⊗ is used for
other tensor products. The tensor algebra T (V ) is also Γ -graded and additionally
Z-graded, so in total it is (Γ ×Z)-graded. We define ε′(a,b) = ε(a,b)(−1)|a||b|, where |·|
denotes the tensor degree. Of course ε′ is again a commutation factor.

Let V be a (graded) vector space then we define a comultiplication on T (V ) by

∆(x) = 1⊗ x+ x⊗ 1 for x ∈ V (15)

and the comultiplication is extended to the whole space T (V ) using the compatibil-
ity condition with the multiplication. This gives the unshuffle coproduct.

Note that the coproduct depends on the chosen symmetry, this means on ε.
For example for x,y,z ∈ V , we get

∆(xy) =∆(x)∆(y) = (1⊗ x+ x⊗ 1)(1⊗ y + y ⊗ 1)

=1⊗ xy + x⊗ y − ε(x,y)y ⊗ x+ 1⊗ xy. (16)

∆(xyz) =1⊗ xyz+ x⊗ yz − ε(x,y)y ⊗ xz+ ε(xy,z)z⊗ xy + xyz⊗ 1. (17)

The counit is defined by ε(x) = 0 for x ∈ V ⊗k for k ≥ 1 and ε(1) = 1 for 1 ∈K = V 0.
We define an antipode by S(x) = −x and extend it to T (V ) by using the antihomo-
morphism property with respect to the multiplication.

We want to give a closed formula for computing the coproduct. For this we need:

Definition 2.2.8 (Shuffle permutations) We define the set of (p,a)-shuffle permuta-
tions by

Shp,q = {σ ∈ Sp+q|σ (i) < σ (j) if i, j ≤ p∨ i, j > p}. (18)

With this one can write

∆(x1xn) =
∑
p,q

p+q=n

∑
σ−1∈Sh(p,q)

ε(σ−1;x1, . . . ,xn)xσ (1) . . .xσ (p) ⊗ xσ (p+1) . . .xσ (n). (19)

We construct the Grassmann algebra for a graded vector space V . For this we
consider T (V ) and define the ideal I generated by elements of the form ab−ε′(a,b)ba
for all a,b ∈ V .
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2. Color algebras

Lemma 2.2.9 The ideal I defined abouve is also a coideal with respect to ∆0.

Proof. We have

∆(xy − ε′(x,y)yx) =1⊗ xy + xy ⊗ 1− ε′(x,y)(1⊗ yx+ yx⊗ 1) ∈ T (V )⊗ I + I ⊗ T (V ).

Definition 2.2.10 (Grassmann algebra) We get a bialgebra structure on the quotient

Λ(V ) = T (V )
/
I . For the product on Λ(V ) we write ∧. We even get a color Hopf

algebra, which we call the Grassmann algebra of V .

The Grassmann algebra is color commutative with respect to ε′.

2.3 Color Lie algebras and color Lie bialgebras

In this section we give the basic definitions of color Lie algebras and color Lie
bialgebras.

Definition 2.3.1 (Color Lie algebra) For a group Γ and a commutation factor ε a (Γ ;ε)-
color Lie algebra is a Γ -graded vector space g with a graded bilinear map of degree
zero [·, ·] : g× g→ g, such that for any homogeneous elements a,b,c ∈ g

[a,b] = −ε(a,b)[b,a], (20)

j(a,b,c) := ε(c,a)[a, [b,c]] + ε(a,b)[b, [c,a]] + ε(b,c)[c, [a,b]] = 0. (21)

For simplicity, we write cla for color Lie algebra.

The second equation is called Jacobi identity and can also be written as

[a, [b,c]] = [[a,b], c] + ε(a,b)[b, [a,c]], (22)

which shows that the adjoint representation ada(b) := [a,b] for a ∈ g is a color Lie
algebra derivation.
Using σc(a⊗ b⊗ c) = ε(a,bc)b⊗ c⊗ a and β(a,b) = [a,b], it can also be written as

β(β ⊗ id)(id+σc + σ2
c ) = 0. (23)

A morphism ϕ of color Lie algebras (g, [·, ·]) and (h, [·, ·]′) is a morphism of color
vector spaces such that

[ϕ(x),ϕ(y)]′ = ϕ([x,y]). (24)

An ideal of a color Lie algebra g is a graded subspace i such that [i,g] ⊂ i. We say
that a color Lie algebra is simple if it has no proper color Lie ideal. Note that it can
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2.3. Color Lie algebras and color Lie bialgebras

have a non graded ideal. If i ⊂ g is a color Lie ideal then the quotient g
/
i is again a

color Lie algebra.
A color Lie subalgebra is a graded subspace h such that [h,h] ⊂ h.
Let A be a Γ -graded associative algebra and ε a commutation factor then the

bracket
[a,b] = ab − ε(a,b)ba (25)

defines a color Lie algebra structure. We denote the corresponding cla by AL. So we
get especially a Lie bracket on the graded homomorphisms of a color vector space,
for which we have:

Proposition 2.3.2 The color derivations Der(A) of a color algebra A form a color Lie
subalgebra of Homgr(A).

Proof. Let d,f be derivations and a,b ∈ A, then

[d,f ](ab) =d
(
f (ab)

)
− ε(d,f )f

(
d(ab)

)
=d
(
f (a)b+ ε(f ,a)af (b)

)
− ε(d,f )f

(
d(a)b+ ε(d,a)ad(b)

)
=d(f (a))b+ ε(d,f a)f (a)d(b) + ε(f ,a)d(a)f (b) + ε(df ,a)ad(f (b))

−ε(d,f )f (d(a))b − ε(f ,a)d(a)f (b)− ε(d,f a)f (a)d(b)− ε(d,f a)ε(f ,a)af (d(b))

=[d,f ](a)b+ ε(df ,a)a[d,f ](b).

This shows that [d,f ] is a derivation of degree deg(d) + deg(f ).

Proposition 2.3.3 Let g be a cla and A be a color commutative algebra then the tensor
product g⊗A is a cla, with Lie bracket

[x⊗ a,y ⊗ b] := ε(a,y)[x,y]⊗ ab. (26)

Proof. The color skew-symmetry is clear and the Jacobi identity is a simple calcula-
tion using

[[x⊗ a,y ⊗ b], z⊗ c] = ε(a,yz)ε(b,z)[[x,y], z]⊗ abc.

Remark 2.3.4 By this construction and also similar ones, one can consider g to be
Γ -graded and A to be H-graded, then the tensor product is (Γ ×H)-graded, and as
commutation factor one can use ε(g + h,g ′ + h′) = εΓ (g,g ′)εH(h,h′), so ε(g,h) = 1 for
g,g ′ ∈ Γ ,h,h′ ∈H. But one can also construct different commutation factors. Indeed,
g and A can be considered to be (Γ ×H)-graded, by defining g(g,0) = gg and g(g,h) = 0
else, and similarly for A.
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2. Color algebras

Definition 2.3.5 (Universal enveloping algebra) For a color Lie algebra g one defines
the universal enveloping algebra U (g) by the tensor algebra T (g) modulo the ideal
generated by elements of the form

xy − ε(x,y)yx − [x,y] for x,y ∈ g. (27)

Theorem 2.3.6 ([Sch79]) The Universal enveloping algebra U (g) is a (filtered) associa-
tive color algebra. With the graded commutator it is a color Lie algebra, with g as a Lie
subalgebra. It has the universal property, that is for any color algebra A and cla homo-
morphism f : g→ AL there exits a unique algebra homomorphism such that f = g |g.

In fact one has the structure of a color Hopf algebra onU (g). One can consider the
Hopf algebra structure defined in Section 2.2.2 and just has to verify that it passes
to the quotient U (g). For the product and unit this is clear by definition. For the
coproduct this follows from

∆([x,y]) = [∆(x),∆(y)]. (28)

The Lie algebra g is precisely formed by the primitive elements in U (g).
For the following definition we need the action of a cla g on g⊗ g. So for a ∈ g and

b1 ⊗ b2 ∈ g⊗ g, we define

a · (b1 ⊗ b2) = [a,b1]⊗ b2 + ε(a,b1)b1 ⊗ [a,b2]. (29)

This can be generalized to an action on any tensor power of g.

Definition 2.3.7 (Color Lie bialgebra) A color Lie bialgebra, clba for short, is a color
Lie algebra g with a cobracket δ : g→ g⊗ g of degree 0, such that the compatibility
condition

δ([a,b]) =a · δ(b)− ε(a,b)b · δ(a) (30)

holds and δ satisfies the co-Jacobi identity given by

(id+σc + σ2
c )(δ⊗ id)δ = 0. (31)

The second condition (31) is equivalent to the fact that δ∗ : g∗ ⊗ g∗ → g∗ defines a
color Lie algebra on g∗.

A subcoalgebra h of a Lie coalgebra g is a graded subspace such that δ(h) ⊂ h⊗ h
and a coideal is a graded subspace h such that δ(h) ⊂ g ⊗ h + h ⊗ g. Note that in
contrast to the algebra or Lie algebra cases the notion of a subcoalgebra is stronger
that the one of a coideal, so every subcoalgebra is also a coideal. Given a graded
subspace h of a color Lie coalgebra g, the quotient g

/
h is again a color Lie coalgebra
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2.3. Color Lie algebras and color Lie bialgebras

if h is a coideal. One defines a Lie coalgebra to be cosimple if it has no nontrivial
subcoalgebra.

Observe that the dual of an ideal is a subcoalgebra.
An ideal for a clba is an ideal for the Lie bracket, which is also a coideal for the

cobracket. We call a clba simple if it has no nontrivial ideal. So a clba is for example
simple if the underlying color Lie algebra is simple.

On the other hand, we call a clba cosimple if it has no nontrivial subalgebra.
Again this is the case, when the color Lie coalgebra is cosimple.

Observe that the dual of a simple color Lie (bi)algebra is cosimple and the other
way round.

Remark 2.3.8 Given a finite dimensional color Hopf algebra H (or a bialgebra is
enough), one can define the structure of a cla on H by the commutator and dually
the structure of a color Lie coalgebra, but this gives no clba. Instead, we get the
following relation

2δ([a,b]) = [δa,δb]− τ[δa,δb], (32)

between the Lie bracket and the Lie cobracket. Here H ⊗ H has to be equipped
with the Lie algebra structure coming from the associative product. So this relation
cannot be seen of another type of a Lie bialgebra, since H ⊗H in general is not a cla,
if H is only a color Lie algebra.

Now, we aim to give some calculations in coordinates. Here and also later on, we
will always use the Einstein summation convention. This means, one has to sum
over all indices, which appear twice, once as lower and once as upper index.

Let g be a clba and {xi}i an ordered basis of g, then we define the structure con-
stants b,c of the Lie bracket and Lie cobracket respectively by

[xi ,xj ] =bkijxk , δ(xi) =cjki xj ⊗ xk .

The skew-symmetry is equivalent to

bkij = −ε(i, j)bkji , c
jk
i = −ε(j,k)ckji ,

where ε(i, j) is short for ε(xi ,xj ). The Jacobi identity is given by

blijb
m
lk + ε(i, jk)bljkb

m
li + ε(ij,k)blkib

m
lj = 0, (33)

and similarly the co-Jacobi identity by

c
jk
i c

lm
j + ε(k, lm)cjli c

mk
j + ε(kl,m)cjmi cklj = 0. (34)

The compatibility condition is equivalent to

bkijc
lm
k = cklj b

m
ik + ε(i,m)cmkj blik − ε(i, j)ckli b

m
jk − ε(i, j)ε(j,m)cmkj bljk . (35)
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Example 2.3.9 We consider the three dimensional color sl2 Lie algebra g and vari-
ants of it, see also [PS07]. It is Z3

2-graded, but the only nonvanishing summands are
g(1,1,0) = e1,g(1,0,1) = e2,g(0,1,1) = e3. The commutation factor can be then given by a
3× 3 matrix (ε(ei , ej ))i,j  1 −1 −1

−1 1 −1
−1 −1 1

 . (36)

The Lie bracket with respect to the basis {e1, e2, e3} is given by

[e1, e2] =e3, [e3, e1] =e2, [e2, e3] =λe1.

The other brackets are given by skew-symmetry. We only consider the cases λ = 1
and λ = 0 since all other cases are isomorphic to one of these by ϕ(ei) =

√
λei for

i = 1,2 and ϕ(e3) = e3. For λ = 1, it is called the color sl2. We aim now to find
a cobracket on g such that we get a color Lie bialgebra. Because of the grading, it
must hold that

δ(e1) =γ1e2 ∧ e3, δ(e2) =γ2e3 ∧ e1, δ(e3) =γ3e1 ∧ e2.

For every choice of the γi the co-Jacobi identity is satisfied, but as a calculation
shows for λ = 1 this only gives a clba if γi = 0 for i = 1,2,3. In the case λ = 0, we get
a clba for γ2 = γ3 = 0 and γ1 arbitrary.

2.3.1 Classification in dimension 3

Notes on color algebras morphisms

The simplest definition of color algebra morphisms (similar for Lie, . . . ) needs to
assume that morphisms are of degree 0.

But for example, considering two Lie algebras g and h, spanned by e1, e2, e3 with
grading and ε given as in Example 2.3.9. The nontrivial brackets are

for g: [e1, e2] =e3, and for h: [e2, e3] =e1.

There is an obvious isomorphism between these two color lie algebras, given by
ei 7→ ei+1 for i = 1,2 and e3 7→ e1. It turns out that this isomorphisms is not of degree
0, so we define:

Definition 2.3.10 A linear map f between color algebras A,B is said to preserve ε,
if there exists a group homomorphism ϕ, such that f (Ai) ⊂ Aϕ(i) and

ε(ϕ(i),ϕ(j)) = ε(i, j).
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2.3. Color Lie algebras and color Lie bialgebras

Observe that such isomorphisms are in general not homogeneous, but they have
to be graded homomorphisms.

So, we consider the following definition:

Definition 2.3.11 Two clbas (g, [·, ·],δ) and (g′ , [·, ·]′ ,δ′) are said to be isomorphic if
there exits a linear map f : g→ g′, which preserves ε and satisfies, for all x,y ∈ g,

f ([x,y]) = [f (x), f (y)]′ and δ′(f (x)) = (f ⊗ f )δ(x). (37)

Classification

We consider the 3-dimensional classification of clas from [PS07] and construct
cobrackets in order to get clbas. There the ε is given as we did in Eq. (36), and we
set gi = deg(ei) ∈ Γ . It only considers commutation factors containing only ±1, which
are injective. This means no two columns or rows in ε are the same.

For simplicity, we also consider only the clba which are neither commutative nor
cocommutative, since these are easy to obtain from the classification of clas.

We begin with the case that g1 is the identity. So we have the following commu-
tation factors:

ε1 =

1 1 1
1 1 −1
1 −1 1

 ε2 =

1 1 1
1 1 −1
1 −1 −1

 ε3 =

1 1 1
1 −1 1
1 1 −1


We begin with ε1 and only give the nonzero brackets. Also all given clbas are non-
isomorphic for all given parameters. The ± indicates that if one only considers real
clbas there are two non-isomorphic ones, which are isomorphic in the complex case.

Nr. bracket cobracket

A1
1 [e1, e2] =ae2 [e1, e3] =e3 δ(e2) =be1 ∧ e2 δ(e3) =

b
a
e1 ∧ e3

A1
2 [e1, e2] =e2 δ(e2) = be1 ∧ e2

For ε2 we have
Nr. bracket cobracket

A2
1 [e1, e2] =ae2 [e1, e3] =e3 δ(e1) = ±e3 ∧ e3

A2
2 [e1, e2] =e2 δ(e1) =± e3 ∧ e3

A2
3 [e1, e2] =ae2 δ(e2) =e1 ∧ e2

A2
4 [e1, e3] =e3 δ(e1) =e3 ∧ e3

A2
5 [e3, e3] =± e1 δ(e2) =ae1 ∧ e2 δ(e3) =e1 ∧ e3
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2. Color algebras

For ε3 we have

A3
1 [e1, e2] =ae2 [e1, e3] =e3 δ(e1) = ±e2 ∧ e2 ± e3 ∧ e3

A3
2 [e1, e2] =e2 δ(e1) = ±e2 ∧ e2 ± e3 ∧ e3

A3
3 [e1, e2] =ae2 [e1, e3] =e3 δ(e1) = ±e2 ∧ e2

A3
3 [e2, e2] =± e1 [e3, e3] =± e1 δ(e2) =e1 ∧ e2 δ(e3) =ae1 ∧ e3

A3
4 [e3, e3] =± e1 δ(e2) =e1 ∧ e2 δ(e3) =ae1 ∧ e3

Next we consider that case where g1 + g2 = g3, here we have:

ε4 =

 1 −1 −1
−1 1 −1
−1 −1 1

 ε5 =

 1 −1 −1
−1 −1 1
−1 1 −1


This corresponds to ε18 (resp. ε21) in the classification established in [PS07].

For ε4

[e1, e2] =e3 [e2, e3] =e1 [e1, e3] =e2 only δ = 0

A4
1 [e1, e2] =e3 [e1, e3] =e2 δ(e1) =e2 ∧ e3

A4
2 [e1, e2] =e3 δ(e1) =e2 ∧ e3

A4
3 [e1, e2] =e3 δ(e2) =e1 ∧ e3 δ(e1) =e3 ∧ e2

For ε5

A5
1 [e1, e2] =e3 [e1, e3] =e2 δ(e1) =e2 ∧ e3

A5
2 [e2, e3] =e1 δ(e2) =e1 ∧ e3 δ(e3) =e1 ∧ e2

A5
3 [e2, e3] =e1 δ(e2) =e1 ∧ e3

A5
4 [e1, e2] =e3 δ(e1) =e2 ∧ e3

2.4 Frobenius algebras

In this section we define color Frobenius algebras and a tensor product construc-
tion dealing with a color Frobenius algebra and clba.

Definition 2.4.1 (Frobenius algebra) A color Frobenius algebra A is an associative
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2.4. Frobenius algebras

color algebra and coalgebra such that the product and coproduct satisfy the follow-
ing compatibility condition

a(1) ⊗ a(2)b = δ(ab) = ab(1) ⊗ b(2), (38)

where the product corresponds to the concatenation and δ denotes the coproduct.
We call a color Frobenius algebra commutative if the multiplication is commuta-

tive and the comultiplication is cocommutative.

An example of a Frobenius algebra is given by the group algebra K[G] for a finite
group G with coproduct

∆(a) =
∑
cd=a

c⊗ d, (39)

where a ∈ G and the sum runs over the elements of G, which form a basis of K[G].
In fact, the coproduct is just the dual of the product in K[G].

Proposition 2.4.2 Let g be a clba and A be a commutative Frobenius algebra. Then one
can define a clba on g⊗A by

[x⊗ a,y ⊗ b] := ε(a,y)[x,y]⊗ ab

δ(x⊗ a) := ε(x(2), a(1))(x(1) ⊗ a(1))⊗ (x(2) ⊗ a(2)).

Proof. Since a Frobenius algebra is a commutative algebra and cocommutative coal-
gebra, we have that g⊗A is a color Lie algebra and coalgebra. So we only need to
check the compatibility. First we compute

δ([x⊗ a]) =δ([x,y]⊗ ab)

=τ23(δ([x,y])⊗ δ(ab))

=τ23((x · δ(y)− y · δ(x))⊗ a(1) ⊗ a(2)b).

On the other side, we have

(x⊗ a)δ(y ⊗ b) =(x⊗ a) · (δ(y)⊗ δ(b))

=[x,y(1)]⊗ y(2) ⊗ ab(1) ⊗ b(2) + y(1) ⊗ [x,y(2)]⊗ b(1) ⊗ ab(2).

Using the Frobenius property and commutativity of A, we get

a(1) ⊗ a(2)b = δ(ab) = δ(ba) = ab(1) ⊗ b(2) = b(1) ⊗ b(2)a.
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2.5 Color Poisson algebras

In this section, we discuss color Poisson algebras.

Definition 2.5.1 (Color Poisson algebra) A color Poisson algebra (P , {·, ·}, ·) is a color
Lie algebra, with an additional color commutative associative algebra structure,
such that the graded Leibniz rule holds, i.e.

{a,bc} = {a,b}c+ ε(a,b)b{a,c}. (40)

Because of the symmetry of the bracket, one also has

{ab,c} = a{b,c}+ ε(b,c){a,c}b. (41)

Further the condition (40) can be written as

{·, ·}(id⊗µ) = µ({·, ·} ⊗ id+id⊗{·, ·})τ12, (42)

such that ε only appears in the permutation τ12.

Proposition 2.5.2 LetA,B be two color Poisson algebras. Then, one can define the tensor
product by

(a⊗ b)(a′ ⊗ b′) =ε(b,a′)aa′ ⊗ bb′ ,
{a⊗ b,a′ ⊗ b′} =ε(b,a′)({a,a′} ⊗ bb′ + aa′ ⊗ {b,b′}),

and this is again a color Poisson algebra.

Proof. One easily sees that the product is color commutative and the bracket is color
anticommutative. Also the product is again associative. So we check the Leibniz
identity:

{(a⊗ b)(a′ ⊗ b′), a′′ ⊗ b′′} = ε(b,a′a′′)ε(b′ , a′′)({aa′ , a′} ⊗ bb′b′′ + aa′a′′ ⊗ {bb′ ,b′′}
=ε(b,a′a′′)ε(b′ , a′′)(a{a′ , a′′} ⊗ bb′b′′ + ε(a′ , a′′){a,a′′}a′ ⊗ bb′b′′

+ aa′a′′ ⊗ b{b′ ,b′′}+ ε(b′ ,b′′)aa′a′′ ⊗ {b,b′′}b′

=(a⊗ b){(a⊗ b)(a′ ⊗ b′), a′′ ⊗ b′′}+ ε(a′b′ , a′′b′′){(a⊗ b), a′′ ⊗ b′′}(a′ ⊗ b′).

For the Jacobi identity, we compute

{a⊗ b, {a′ ⊗ b′ , a′′ ⊗ b′′}} =
ε(b,a′)ε(bb′ , a′′)({a, {a′ , a′′}} ⊗ bb′b′′ + aa′a′′ ⊗ {b, {b′ ,b′′}}).

Taking the cyclic sum with the appropriate commutation factors gives clearly 0,
since the bracket on A and B satisfies already the color Jacobi identity and the prod-
uct is color commutative. This shows the color Jacobi identity.
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We want to consider something like color manifolds, which should be a gener-
alization of supermanifolds, but we do not know precisely how to do this so we
start with polynomials. We consider a (finite dimensional) color vector space V
and the graded commutative polynomial algebra A = Pol(V ) over it. We define here

Pol(V ) := T (V ∗)
/
I , where I is the ideal generated by x ⊗ y − ε(x,y)y ⊗ x. We write

ε(i, j) as short for ε(xi ,xj ). So, in fact, it is just the free color commutative algebra
over V ∗. Let {xi}i be a graded basis of V ∗, then we can define derivations ∂i on Pol(V )
on generators by

∂ixj := δij for x ∈ V . (43)

This can be extended to a color derivation on the whole space Pol(V ). One can show
that these derivations span the set Der(A) as an A-module.

The derivation ∂i has degree deg(∂i) = −deg(xi).

Proposition 2.5.3 The derivations satisfy

[∂i ,∂j ] = 0, (44)

where we use the color commutator of linear maps.

Proof. Since it is a color derivation it is uniquely defined by its action on V ∗, where
it obviously vanishes.

A Poisson bracket on A can be written as

{f ,g} = ε(f , j)r ij∂if ∂jg = r ij(∂i ⊗∂j )(f ⊗ g), (45)

where r ij ∈ A is of degree −deg(i)−deg(j), when the bracket is of degree zero.

Proposition 2.5.4 A bracket as defined in Eq. (45) satisfies the Leibniz rule and

i) is color skew-symmetric if r ij = −ε(i, j)−1rji (sic!),

ii) satisfies the Jacobi identity if J(r) = 0.

Here J(r) = [r12, r13] + [r12, r23] + [r13, r23] denotes the left hand side of the classical Yang
Baxter equation. So if both conditions are satisfied, it is a color Poisson bracket.

Proof. We first prove the Leibniz identity in the first argument:

{f g,h} =r ij∂i(f g)∂jh

=ε(f g, j)r ij((∂if )g + ε−1(i, f )f ∂ig)∂jh

=ε(f g, j)ε(g, j−1h)r ij∂if ∂jhg + ε(f g, j)ε(j, f )f r ij∂ig∂jh

=f {g,h}+ {f ,h}g.
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For the skew-symmetry, we have

{f ,g} =ε(f , j)r ij∂if ∂jg

=ε(f , j)r ijε(i−1f , j−1g)∂jg∂if renaming i and j

=ε(f , i)rjiε(j−1f , i−1g)∂ig∂jf

=− ε(f , i)ε−1(i, j)r ijε(f ,g)ε−1(j,g)ε−1(f , i)ε(i, j)∂ig∂jf

=− ε(f ,g){g,f }.

For the last statement, we compute with β = µ ◦ r ij∂i ⊗∂j the Poisson bracket and µ
the multiplication

β(β ⊗ id) =r ijµ(∂i ⊗∂j )[µ(rst∂s ⊗∂t)⊗ id] (46)

=µ(µ⊗ id)[r ij(∂ir
st)∂s ⊗∂t ⊗∂j (47)

+ r ijrstε−1(i, st)∂i∂s ⊗∂t ⊗∂j (48)

+ r ijrstε−1(i, st)ε(i, s)∂s ⊗∂i∂t ⊗∂j ]. (49)

On the other side

[r12, r13] =[r ij∂i ⊗∂j ⊗ id, rst∂s ⊗ id⊗∂t] (50)

=r ij(∂ir
st)∂s ⊗ ε(−j, t)∂j ⊗∂t + r ijrst[∂i ,∂s]⊗ ε(−j, t)∂j ⊗∂tε(−i, st) (51)

+ rst(∂sr
ij )∂i ⊗∂j ⊗∂t

[r12, r23] =[r ij∂i ⊗∂j ⊗ id, id⊗r ij∂i ⊗∂j ] (52)

=r ij∂i ⊗ (∂jr
st)∂s ⊗∂t + r ij∂i ⊗ rstε(−j, st)[∂j ,∂s]⊗∂t (53)

[r13, r23] =[r ij∂i ⊗ id⊗∂j , id⊗r ij∂i ⊗∂j ] (54)

=r ij∂i ⊗ ε(−j, t)rst∂s ⊗ [∂j ,∂t]. (55)

We want now to show that β(β ⊗ id)(id+σc + σ2
c ) = J(r). Since both sides are skew-

symmetric it is enough to see that the first term in Eq. (49) equals the third term in
Eq. (51), and the second term in Eq. (49) equals the second term in Eq. (51). And
finally the third term in Eq. (49) equals part of the second term in Eq. (53).

2.6 Changing the commutation factor

In this section we show that, at least over the complex numbers, every color (Lie)
algebra can be transformed into a (Lie) superalgebra. This construction relies on
[Sch79]. We also relate this to Section 1.3.
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Lemma 2.6.1 Let σ : Γ × Γ → K× be a 2-cocycle in group cohomology, this means it
satisfies σ (b,c)σ (a,bc) = σ (ab,c)σ (a,b), then σ (a,b)σ (b,a)−1 is a commutation factor.

Proof. This is a straightforward calculation:

ε(ab,c) =σ (ab,c)σ−1(c,ab)

=σ (b,c)σ (a,bc)σ−1(a,b)σ−1(c,a)σ−1(ca,b)σ (a,b)

=σ (b,c)σ (a,cb)σ−1(c,a)σ−1(ac,b)

=σ (b,c)σ−1(c,b)σ (ac,b)σ (a,c)σ−1(c,a)σ−1(ac,b)

=σ (b,c)σ−1(c,b)σ (a,c)σ−1(c,a)

=ε(a,c)ε(b,c).

This corresponds to the fact given a 2-cocycle for a group Γ there is a symmetric
monoidal functor intertwining the different symmetries.

One can also consider the image of a color Lie bialgebra under this functor.

Proposition 2.6.2 Let σ be a 2-cocycle then if g is an ε-color Lie algebra so

[a,b]σ = σ (a,b)[a,b] (56)

is an εσ -color Lie algebra, with εσ (a,b) := ε(a,b)σ (a,b)σ (b,a)−1.
If it is a color Lie bialgebra then (g,δσ ) is an εσ -color Lie bialgebra, where

δσ (b) = σ (b1,b2)−1δ(b), (57)

with δ(b) = b1 ⊗ b2.

Proof. We have to check

δσ ([a,b]σ ) =a ·σ δσ (b)− ε(a,b)b ·σ δσ (a),

where ·σ denotes the action of the new Lie algebra. We get, setting c = [a,b] and
δ(c) = c1 ⊗ c2,

σ (a,b)σ−1(c1, c2)δ(c)

=σ−1(b1,b2)σ (a,b1)[a,b1]⊗ b2 + σ−1(b1,b2)σ (a,b2)εσ (a,b1)b1 ⊗ [a,b2]

− εσ (a,b)σ (b,a1)σ (a1, a2)[b,a1]⊗ a2

− εσ (a,b)σ (b,a2)σ (a1, a2)εσ (b,a1)a1 ⊗ [b,a2]

=σ (a,b)σ−1(ab1,b2)[a,b1]⊗ b2 + σ (a,b)σ−1(b1, ab2)ε(a,b1)b1 ⊗ [a,b2]

− ε(a,b)σ (a,b)σ−1(ba1, a2)[b,a1]⊗ a2

− ε(a,b)σ (a,b)σ−1(a1,ba2)ε(b,a1)a1 ⊗ [b,a2].
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Using in the last equality for each term respectively

σ (a,b) =σ (ab1,b2)σ (a,b1)σ−1(b1,b2),

σ (b1, ab2) =σ (a,b)σ (b1,b2)σ−1(a,b1)σ (b1, a)σ
−1(a,b2),

σ (b,a) =σ (ba1, a2)σ (b,a1)σ−1(a1, a2),

σ (b,a) =σ (a1,ba2)σ−1(a1,b)σ (b,a1)σ (a1, a2),

and comparing terms with the same degree, one gets that this is equivalent to the
compatibility condition of the old Lie bialgebra.

Theorem 2.6.3 [Sch79, Pop97] For every commutation factor ε, with values in the com-
plex numbers C, such that Γ = Γ+, there is a 2-cocycle σ such that ε(a,b) = σ (a,b)σ−1(b,a).

Given a commutator factor ε, we can define a commutator factor ε0 by

ε0(a,b) =
{
−1 if a,b ∈ Γ−
+1 otherwise

(58)

Then ε0ε is again a commutation factor with Γ = Γ+.
So we get that every clba can be transformed into a Lie superbialgebra.

In fact, one even has in terms of categories.

Proposition 2.6.4 There is a monoidal functor from the category of (Γ ,ε) color vector
spaces over C to the category of vector superspaces.

Proof. First we define a map ϕ : Γ → Z2 by ϕ(g) = 1 if g ∈ Γ− and 0 else. So for a
Γ -graded vector space V , one can define a Z2-graded vector space by V 0 =

⊕
g∈Γ+ V

g

and V 1 =
⊕

g∈Γ− V
g .

Using the 2-cocycle σ from Theorem 2.6.3, one can define

F(v ⊗w) = σ (v,w)v ⊗w. (59)

This corresponds to first changing the symmetry with a 2-cocycle, where the un-
derlying symmetric monoidal categories are isomorphic. Than one takes the push-
forward with respect to the map Γ → Z2 defined above, which is again a symmetric
monoidal functor. But with this functor one loses the finer structure of the grading
on V .

On the other hand, if one has for example a Lie superalgebra or bialgebra with a Γ -
grading it is possible with a Γ 2-cocycle to construct a color Lie algebra or bialgebra
with non-trivial commutation factor ε.

There is a classification for the different gradings one can put and different types
of Lie algebras, see e.g. Bahturin and Kochetov’s work [BK10].
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2.7 Representation and semidirect products

Definition 2.7.1 (Representation of cla) By a representation α of a cla g on a color
vector space V , we mean a cla morphism α from g into HomL(V ) of degree 0, that is
we have

[x,y] = α(x)α(y)− ε(x,y)α(y)α(x) for all x,y ∈ g. (60)

A representation clearly gives a map ρ : g⊗V → V given by x⊗ v 7→ α(x)(v). For
simplicity we often write x · v instead of ρ(x⊗ v).

Definition 2.7.2 (Direct sum of color Lie algebras) Given two color (Γ ;ε)-Lie algebras
g and h, one can define a cla structure on g⊕ h by

[a+ x,b+ y] = [a,b] + [x,y] (61)

for a,b ∈ g,x,y ∈ h and deg(x) = deg(a),deg(b) = deg(y). This is called the direct sum
of the clas g and h.

Proposition 2.7.3 (semidirect sum of cla) Let g and h be two clas with the same ε, and
let · : g⊗ h→ h be an action, i.e. for a,b ∈ g,x,y ∈ h we have

[a,b] · x =a · (b · x)− ε(a,b)b · (a · x), (62)

a · [x,y] =[a · x,y] + ε(a,x)[x,a · y]. (63)

Then one can define a cla structure on g⊕ h by

[a+ x,b+ y] = [a,b] + [x,y] + a · y − ε(x,b)b · x. (64)

Since we assume that elements are homogeneous, we have deg(x) = deg(a). We call this
cla the semidirect product of g and h and denote it by go h.

Proof. The skew-symmetry is clear, so we only need to check the Jacobi identity. We
have

[[a+ x,b+ y], c+ z] =[[a,b], c] + [[x,y], z] + [a,b] · z − ε(ab,c)c · ([x,y]

+ a · y − ε(x,b)b · x) + [a · y,z]− ε(x,b)[b · x,z].

If one calculates the cyclic sum the first two terms drop out due to the Jacobi identity
for g and h. For the rest we get

ε(ab,c)(−c · (a · y) + ε(x,b)c · (b · x) + [a,b] · z)
+ε(bc,a)(−a · (b · z) + ε(y,c)a · (c · y) + [b,c] · x)

+ε(ca,b)(−b · (c · x) + ε(z,a)b · (a · z) + [c,a] · y) =0,
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using Eq. (62) (e.g. the first two terms drop with the last one) and using Eq. (63) one
gets

+[a · y,z]− ε(x,b)[b · x,z]− ε(xy,c)c · [x,y]

+[b · z,x]− ε(y,c)[c · y,x]− ε(yz,a)a · [y,z]
+[c · x,y]− ε(z,a)[a · z,y]− ε(yx,b)b · [z,x] =0.

Proposition 2.7.4 (Semidirect product) Let g and h be two clba, and · : g⊗h→ h be a Lie
algebra action such that additionally

δ(a · y) = a · δ(y)− δ(a) · y. (65)

Then the Lie algebra structure from Proposition 2.7.3 gives rise to a clba on go h, with
cobracket δ(a+x) = δ(a) +δ(x). Here with δ(a) ·y we mean ε(a(2), y)(a(1) ·y)⊗a(2) +a(1)⊗
(a(2) · y).

Proof. The product go h is clearly a color Lie algebra and a color Lie coalgebra, so
we only need to check the compatibility condition. For the left hand side we get

δ([a+ x,b+ y]) = δ([a,b]) + δ([x,y]) + δ(a · y)− ε(x,b)δ(b · x). (66)

On the other side we get

(a+ x) · δ(b+ y) = a · δ(b) + x · δ(y) + a · δ(y)− ε(x,b)δ(b) · x. (67)

Notice that since we assume a+ x to be homogeneous, a and x must have the same
degree.

Comparing Eq. (66) with Eq. (67) minus ε(a,b) Eq. (67) with a + x and b + y ex-
changed, gives the compatibility condition. After dropping the terms, which cancel
since g and h are clbas, it remains

δ(a · y)− ε(x,b)δ(b · x)

=a · δ(y)− ε(x,b)δ(b) · x − ε(a,b)y · δ(a)− ε(a,b)ε(b,x)δ(x) · b,

which is true by definition of δ.

Observe that h is an ideal in go h and g is a subalgebra.

Now, we deal with the dual construction.
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Proposition 2.7.5 Let g and h be two clba, and ρ : h→ g⊗ h be a Lie algebra coaction,
i.e.

(id∧δh)ρ(x) + (ρ∧ id)δ(x) + (id∧ρ)δ(x), (68)

such that additionally

ρ([x,y]) = x · ρ(y)− y · ρ(x) and a · ρ(x), (69)

where x,y ∈ h, a ∈ g and · denotes the action on itself by the Lie bracket.
Then the Lie coalgebra structure

δ(a+ x) = δ(a) + ρ(x) + δ(x) (70)

gives rise to a clba on go h, with a bracket as in Definition 2.7.2.

Definition 2.7.6 (Lie bialgebra action) Let g be a color Lie bialgebra and V a color
vector space, on which g acts as a Lie algebra by · : g ⊗ V → V and coacts as a Lie
coalgebra by ρ : V → g⊗V . We call V a bialgebra module if

ρ̄(a ·w) =δ(a) ·w+ a · ρ̄(w),

ρ̄(w) · v =ε(v,w)ρ̄(v) ·w.

Here by ρ̄ we mean ρ− τρ, where τ is the flip. More explicitly this can be written as

ρ(a ·w) = a(1) ⊗ (a(2) ·w) + [a,w(1)]⊗w(0) +w(1) ⊗ ε(a,w(1))(a ·w(0)),

ε(w(0),v)(w(1) · v)⊗w(0) −w(0) ⊗ (w(1) · v) = ε(v(0),w)(v(1) ·w)⊗ v(0) − v(0) ⊗ (v(1) ·w),

where we used ρ(v) = v(1) ⊗ v(0).

Proposition 2.7.7 Let V be a g color Lie bialgebra module, then the semidirect sum goV
defined by g⊕V as vector space with operations

δ(a+ v) =δ(a) + ρ̄(v),

[a+ v,b+w] =[a,b] + a ·w − b · v,

is again a color Lie bialgebra.

Proof. Firstly goV is clearly a Lie algebra and coalgebra, since this can be consid-
ered as a special case of Proposition 2.7.3. So we only need to check the compatibil-
ity condition. On the left side, we get

δ([a+ v,b+w]) =δ([a,b]) + ρ̄(a ·w)− ε(a,b)ρ̄(b · v)

=δ(a) · b − δ(b) · a+ δ(a) ·w+ a · ρ̄(w)− ε(a,b)b · ρ̄(v)− δ(b) · v.
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For the right hand side, we compute

(a+ v) · δ(b+w) = (a+ v) · (δ(b) + ρ̄(w))

=[a+ v,b(1)]⊗ b(2) + ε(a,b(1))b(1) ⊗ [a+ v,b(2)] + [a+ v,w(1)]⊗w(0)

− ε(aw(1),w(0))w(0) ⊗ [a+ v,w(1)] + ε(a,w(1))w(1) ⊗ (a ·w(0))

− ε(w(1),w(0))(a ·w(0))⊗w(1)

=[a,b(1)]⊗ b(2) + ε(v,b(1))(b(1) · v ⊗ b(2) + b(1) ⊗ [a,b(2)]) + ε(v,b)b(1) ⊗ b(2) · v

+ [a,w(1)]⊗w(0) − ε(a,w(0))w(0) ⊗ [a,w(1)]− ε(w(1),v)w(1) · v ⊗w(0)

+ ε(v,w)w(0) ⊗w(1) · v + ε(a,w(1))w(1) ⊗ a ·w(0) − (a ·w(0))⊗w(1)

=a · δ(b) + ε(v,b)δ(b) · v + a · ρ̄(w)

− ε(v,w(1))w(1) · v ⊗w(0) + ε(v,w)ε(x(1),w(0))w(0) ⊗w(1) · v
=a · δ(b) + ε(v,b)δ(b) · v + a · ρ̄(w)− ε(v,w)ρ̄(w) · v.

Exchanging a+ v and b+w in this computation and adding up everything gives the
desired compatibility condition, if one uses the condition that V is a Lie bialgebra
module.

Proposition 2.7.4 and Proposition 2.7.7 give the same notion if one considers h to
have the trivial Lie bracket, i.e. [·, ·] = 0 in Proposition 2.7.4 and ρ = 0 in Proposi-
tion 2.7.7.

Example 2.7.8 Consider the 3-dimensional clba g, with notations and ε3 from Sec-
tion 2.3.1, given by

[e1, e2] = e2, δ(e2) = e1 ∧ e2 (71)

and all other operations determined by symmetry or zero, and h with

[f1, f2] = f2. (72)

An action of g on h as clba is given by e3 · f1 = af3 for a ∈K. This is easy to see since
all terms appearing in the definition are identically zero.

Let us also consider the color vector space V , with the same grading and ε like
g and a basis {v1,v2,v3} such that deg(vi) = deg(ei). Then a clba action of g on V is
given by

ρ(v1) =− e1 ⊗ v1 − c1e3 ⊗ v3, ρ(v3) =− e1 ⊗ v3 − c2e3 ⊗ v1,

e1 · v1 =v1, e1 · v3 =v3,

e3 · v1 =c2v3, e3 · v3 =c1v1,

for c1, c2 ∈ C. Proving this is a straightforward calculation, and was done using
Mathematica Software.
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2.8 Manin triples and r-matrices

Next, we study color Lie bialgebras (CLBAs) in more detail. We give the descrip-
tion by color Manin triples in an analogue way to the classical or super case, and we
also study the notion of r-matrix in the color case.

2.8.1 Coboundary, Quasi-triangular and Triangular color Lie bialgebras

Proposition 2.8.1 Let g be a color Lie algebra, r ∈Λ2(g) be of degree 0 and define δ(x) :=
adx r = [x,r] = [∆x,r]. Then this gives a color Lie bialgebra if and only if

J(r) = [r12, r13] + [r12, r23] + [r13, r23] (73)

is g invariant, i.e. [∆(3)x, J(r)] = 0 for all x ∈ g.

Remark 2.8.2 Notice that in the nongraded case

J(r) = [r12, r13] + [r12, r23] + [r13, r23] = 0 (74)

is called the (classical) Yang-Baxter equation, and a solution r provides a Lie bialge-
bra.

Proof. Following [And93]. We write r = ri ⊗ r i . Because r is of degree 0, we have
degr i = −degri . We claim

Alt(δ⊗ id)δ(x) = −adx J(r). (75)

This gives immediately the result since adx J(r) = 0 is equivalent to the Jacobi iden-
tity.

We compute

Alt(δ⊗ id)δ(x) =Alt(δ⊗ id)
(

[x,ri]⊗ r i + ε(x,ri)ri ⊗ [x,r i]
)

(76)

=Alt
(

[[x,ri], rj ]⊗ rj ⊗ r i︸                   ︷︷                   ︸
A

+ε(xri , rj )rj ⊗ [[x,ri], r
j ]⊗ r i︸                              ︷︷                              ︸

B

(77)

+ ε(x,ri)[ri , rj ]⊗ rj ⊗ [x,r i]︸                            ︷︷                            ︸
C

+ε(x,ri)ε(ri , rj )rj ⊗ [ri , r
j ]⊗ [x,r i]︸                                     ︷︷                                     ︸

D

)
. (78)

Here Alt denotes the total antisymmetrization, i.e. for x1, . . .xn ∈ g we have

Alt(x1 ⊗ · · · ⊗ xn) =
∑
σ∈Sn

sign(σ )
1
n!
xσ (1) ⊗ · · · ⊗ xσ (k).

Notice that we have degr i = −degri , because of deg(r) = 0, so ε(x,r i) = ε(x,ri)−1.
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We have τ12δ(x)⊗ y = −δ(x)⊗ y and with this Alt(δ(x)⊗ y)) = 2(δ(x)⊗ y − τ13δ(x)⊗
y − τ23δ(x) ⊗ y), where τij denotes the flip of the i-th and j-th factor in the tensor
product, with the appropriate ε. So we can arrange the terms of Alt(δ ⊗ id)δ(x) in
the following way:

A− τ23A =([[x,ri], rj ]− ε(r i , rj )[[x,rj ], ri])⊗ rj ⊗ r i

=([[x,ri], rj ]− ε(r i , rj )ε(xrj , ri)[ri , [x,rj ]])⊗ rj ⊗ r i

=[x, [ri , rj ]]⊗ rj ⊗ r i

=− (adx⊗ id⊗ id)[r12, r13].

−τ13A− τ23B =− ε(xrirj , r
jr i)ε(r i , rj )r i ⊗ rj ⊗ [[x,ri], rj ]− ε(xri , rj )rj ⊗ r i ⊗ [[x,ri], rj ]ε(xrir

j , r i)

=ri ⊗ rj ⊗ (−ε(x,rjr i)[[x,r i], rj ] + ε(x,ri)ε(rj , ri)ε(rj , rj )ε(x,rj )ε(rjr
i , rj )[[x,rj ], r i]

=− ε(x,rjr i)ε(rirj , r
jr i)ε(rj , r i)ε(xri , rj )ε(rj ,xri)

=− (id⊗ id⊗adx)[r13, r23].

B− τ13B =ε(xri , rj )rj ⊗ [[x,ri], r
j ]⊗ r i − ε(xri , rj )ε(rj ,xr

j )ε(xrir
j , r i)r i ⊗ [[x,ri], r

j ]⊗ rj
=ε(xrj , ri)ri ⊗ [[x,rj ], r

i]⊗ rj − ε(x,rj )ε(rjr
i ,x)ri ⊗ [[x,r i], rj ]⊗ rj

=− (id⊗adx⊗ id)[r12, r23].

C =ε(x,ri)[ri , rj ]⊗ rj ⊗ [x,r i]

=− ε(x,rirjr
i)ε(r i , rj )[ri , rj ]⊗ r i ⊗ [x,rj ]

=− (id⊗ id⊗adx)[r12, r13].

−τ23C =− (id⊗adx⊗ id)[r12, r13]

−τ13C =− (adx⊗ id⊗ id)[r13, r23].

D =− (id⊗ id⊗adx)[r12, r23].

−τ23D =− (id⊗adx⊗ id)[r13, r23].

−τ13D =− (adx⊗ id⊗ id)[r12, r23].

This proves the statement.

Proposition 2.8.3 If r + τ(r) is invariant for r ∈ g ⊗ g, and r satisfies the Yang-Baxter
equation (73), then δ(x) := adx r defines a color Lie bialgebra.

Proof. It is easy to see that δ is skew-symmetric. Consider r0 := 1
2 (r − τ(r)), then

adx r = adx r0 and by Proposition 2.8.1 it is enough to check that J(r0) is g invariant.

J(r0) =[r12 + r21, r23 + r32]− (id⊗τ)J(r)− (τ ⊗ id)J(r)

+ (τ ⊗ id)(id⊗τ)J(r) + (id⊗τ)(τ ⊗ id)J(r).

Note that here we set r21 = (τ ⊗ id)r, so there is an ε included. Now by assumptions,
we have that r12 + r21, r23 + r32 and J(r) are ad-invariant. So using adx(τ ⊗ id) =
(τ ⊗ id)adx and the fact that ad is a derivation, we get that J(r0) is invariant.
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Definition 2.8.4 If the cobracket of a clba is given by δ(x) = adx r, the clba is called
coboundary. If r satisfies the Yang-Baxter equation, that is J(r) = 0 with J defined
in (73), and is not necessarily skew-symmetric, the clba is called quasi-triangular
and if it is also skew-symmetric it is called triangular.

Example 2.8.5 We consider the color sl2 Lie algebra as above in Example 2.3.9.
It turns out that there are no quasi-triangular r-matrices in both cases. Because of

the grading, an r-matrix has to be of the form

r = ρ1e1 ⊗ e1 + ρ2e2 ⊗ e2 + ρ3e3 ⊗ e3, (79)

for some ρi ∈ C and an easy calculation shows that r satisfies the Yang-Baxter equa-
tion if and only if it is 0.

Example 2.8.6 (Simple Lie algebras) Take a simple Lie algebra graded by the root sys-
tem with triangular cobracket, see e.g. [BD84], which is of degree zero and modify
the ε, as described in Section 2.6, which is constant 1, with a 2-cocycle. This way,
one gets a simple color Lie bialgebra. Since the grading is a Zk-grading, where k is
the rank of the Lie algebra, there are always non-trivial cocycles, if k ≥ 1. For this ε,
one of course has Γ+ = Γ .

Similarly one can modify a simple Lie superalgebra, again graded by the root
system, with a triangular cobracket, which is of degree zero. There are especially
these coming from the standard r-matrices, see [Kar04].

We denote by ∆+ the set of positive roots with respect to a chosen Cartan sub-
algebra h, and for each root α we consider an eα ∈ g in the root space of α such
that (eα , e−α) = 1, where (·, ·) denotes the Killing form. We also consider an element
r0 ∈ h⊗ h, such that r0 + τr0 = Ω0, where Ω is the Casimir element of g and Ω0 its
projection to h. With this, the standard r-matrices are given by

r = r0 +
∑
α∈∆+

eα ⊗ e−α . (80)

Note that only the standard r-matrices are compatible with the root grading, for
the other r-matrices discussed in [Kar04], one has to consider a coarser grading.

The first non trivial example, this means of rank greater than one, is the Lie su-
peralgebra sl(2,1) of supertraceless matrices on C(2,1), with the normal supercom-
mutator of matrices.

2.8.2 Color Manin triples

Definition 2.8.7 (color Manin triple) A color Manin triple is a triple (p,p+,p−), where
p is a color Lie algebra, p± are color Lie subalgebras and p = p+ ⊕ p− as color vector
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spaces, with a non-degenerate invariant symmetric inner product (·, ·) : g × g→ K,
such that p± are isotropic. Invariant here means that

([a,b], c) + ε(a,b)(b, [a,c]) = 0, (81)

and symmetric means that

(a,b) = ε(a,b)(b,a). (82)

Note that the invariance can also be written as

([b,a], c) = (b, [a,c]). (83)

Theorem 2.8.8 Let g be a color Lie bialgebra and set p+ = g,p− = g∗ and p = p+ ⊕ p−.
Then (p,p+,p−) is a color Manin triple. Conversely any finite-dimensional color Manin
triple p gives rise to a Lie bialgebra structure on p+.

Proof. Let x,y ∈ g and α,β ∈ g∗ then the bilinear form is given by

(x+α,y + β) = 〈α,y〉+ 〈x,β〉 = 〈α,y〉+ ε(x,β)〈β,x〉, (84)

where 〈·, ·〉 is the natural pairing between g and g∗. Moreover we must have

([x,α],β) = (x, [α,β]) and ([x,α], y) = −ε(x,α)(α, [x,y]), (85)

which completely determines [x,α].We write [·, ·] = [·, ·]+ + [·, ·]−, with [·, ·]± ∈ p±.
So [x,α]− = ad∗xα and [x,α]+ = ad∗α x. Here ad∗ is the coadjoint action defined by
〈adx(α), y〉 = −ε(x,α)α([x,y]).

Now we need to verify the color Jacobi identity. It is enough to check the cases
when one or two arguments are in g the others follow from the Jacobi identity on g
resp. g∗. In fact it is enough to check it when two elements are in g, since the other
case follows by duality. We compute for u ∈ g:

〈j(x,y,α),u〉
=〈ε(α,x)[[x,y],α] + ε(y,α)[[α,x], y] + ε(x,y)[[y,α],x],u〉
=− ε(α,x)ε(xy,α)〈α, [[x,y],u]〉+ ε(y,α)〈α, [x, [y,u]]〉 − ε(x,y)ε(y,α)〈α, [y, [x,u]]〉
=ε(y,α)〈α,−[[x,y],u] + [x, [y,u]]− ε(x,y)[y, [x,u]]〉 = 0,
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and for β in g∗:

〈j(x,y,α),β〉 =〈ε(α,x)[[x,y],α] + ε(y,α)[[α,x], y] + ε(x,y)[[y,α],x],β〉
=ε(α,x)〈[x,y], [α,β]〉 − ε(y,α)ε(α,x)〈x, [α,ady β]〉

+ ε(y,α)ε(α,x)ε(αx,y)〈y, [adxα,β]〉
+ ε(x,y)〈y, [α,adx β]〉+ ε(x,y)ε(yα,x)〈x, [ady α,β]〉

=ε(α,x)〈δ([x,y]),α ⊗ β〉 − ε(y,α)ε(α,x)〈δ(x),α ⊗ ady β〉
+ ε(α,x)ε(x,y)〈δ(y),adxα ⊗ β〉+ ε(x,y)〈δ(y),α ⊗ adx β〉
+ ε(α,x)〈δ(x),ady α ⊗ β〉

=ε(α,x)〈δ([x,y])− δ(x)(id⊗ady) + ε(x,y)δ(y)(adx⊗ id)

+ (id⊗adx)δ(y) + ε(x,y)(ady ⊗ id)δ(x),α ⊗ β〉 = 0.

2.8.3 Double of a color Lie bialgebra

In this section, we construct the double of a given finite dimensional clba.
Let g be a clba and (p = g⊕ g∗,g,g∗) be the corresponding Manin triple. Let {xi}i be
a basis of g and {αi}i the dual basis on g∗, that is < αi ,xj >= δij , where δ denotes the

Kronecker delta. Note that deg(αi) = −deg(xi).
First we write the bracket and the cobracket, in terms of coordinates with respect

to this basis, as

[xi ,xj ] =ckijxk , [αi ,αj ] =γ ijk α
k ,

where c and γ are the corresponding structure constants. For simplicity we write
for example ε(i, j) for ε(xi ,xj ). Because of the skew-symmetry we have that cijk =

−ε(j,k)cikj , and the invariance of the inner product leads to

([αi ,xj ],xk) = (αi , [xj ,xk]) = (αi , cljkxl) = cijk ,

which gives [αi ,xj ]+ = cijkα
k . Similarly we have

([αi ,xj ],α
k) = −(xj , [α

i ,αk])ε(αi ,xj ) = −γ ikj ε(αi ,xj )ε(j, j),

which gives [αi ,xj ]− = −γ ikj xkε−1(i,k), using

ε−1(i, j)ε(j, j)ε(k,k) = ε−1(i, i + k)ε(i + k, i + k)ε(k,k) = ε−1(i,k).

So
[αi ,xj ] = cijkα

k −γ ikj xkε
−1(i,k).
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Proposition 2.8.9 Let g be a clba and (p = g⊕g∗,g,g∗) be the corresponding Manin triple
and assume that p is finite dimensional. Then there is a structure of color Lie bialgebra
on p given by the r-matrix r = xi⊗αi . We have δ(x) = x ·r = [x,xi]⊗αi+ε(i,x)xi⊗[x,αi].
This clba is called the double of g.

Proof. Using Proposition 2.8.1 it is enough to show that r + τ(r) is skew-symmetric
and r satisfies the Yang-Baxter equation. Using the formulas above one gets

J(r) =[xi ,xj ]⊗αi ⊗αjε(αi ,xj ) + xi ⊗ [αi ,xj ]⊗αj + xi ⊗ xj ⊗ [αi ,αj ]ε(αi ,xj )

=ckijxk ⊗α
i ⊗αjε(αi ,xj ) + cijkxi ⊗α

k ⊗αj

−γ ikj xi ⊗ xk ⊗α
jε−1(i,k) +γ ijk xi ⊗ xj ⊗α

kε(αi ,xj ) = 0.

and a similar calculation shows that

[x,r + τ(r)] = 0.

Observe that ε(αi ,xj ) = ε−1(i, j).
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In this section we study a cohomology for color Lie-bialgebras, induced by the
big bracket, and how it can be used to study formal deformations in the sense of

Gerstenhaber. To do this we first recall and extend to the color setting the definition
and properties of the so called big bracket or grand crochet [LR90]. We follow
[Hof06] in the construction of the big bracket.
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3. Cohomology and Deformations

3.1 Big bracket

In this section, we aim to define a structure of a color Poisson algebra of linear
operators on the Grassmann algebra of a color vector space. With this bracket it
is easy to define a differential graded complex and a cohomology for color Lie (bi-
)algebras and study their deformations.

3.1.1 Construction of the big bracket

For λ ∈K, we define a function Fλ :Λ(V )→Λ(V ) by

fλ(x) =
{
λ|x|x if λ , 0
1ε(x) if λ = 0

, (1)

where |x| is the tensor degree of x.

Lemma 3.1.1 The map Fλ is a Hopf algebra morphism.

Proof. For the product we have if λ , 0

Fλ(x · y) = λ|x|+|y|x · y = λ|x|x ·λ|y|y = Fλ(x) ·Fλ(y).

We do similar calculations for the coproduct and antipode.

We define

B := Homgr(ΛV ,ΛV ), Bk := Homgrk(ΛV ,ΛV ), Bi,j := Homgr(ΛiV ,ΛjV ), (2)

where here the degree is given only by the tensor degree. Of course every Bi and
Bj,k are also Γ -graded.

Next we define two functions ρλ,σλ : B→ B for λ ∈K (resp. λ ∈K×) by

ρλ(ϕ) := (ϕFλ) ∗ id, σλ(ϕ) := (ϕ ∗ S)F1/λ. (3)

Lemma 3.1.2 For λ ∈K×, the functions ρλ and σλ are inverse to each other.

Proof. We compute

(ρλσλ)(ϕ) = ρλ((ϕ ∗ S)F1/λ) = (ϕ ∗ S)F1/λFλ ∗ id = (ϕ ∗ S) ∗ id = ϕ

using F1/λFλ = id and similarly

(σλρλ)(ϕ) = ((ϕFλ ∗ id) ∗ S)F1/λ = ϕ.

This proves the statement.
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3.1. Big bracket

With the lemma above we can define a new associative product ?λ by

ρλ(ϕ)ρλ(ψ) = ρλ(ϕ ?λ ψ). (4)

Lemma 3.1.3 If λ , 0, we have

ϕ ?λ ψ = µ(ϕ ⊗ id)(µ⊗ id)(id⊗Fλ ⊗ id)(id⊗∆)(id⊗ψ)∆.

Proof. This is the same as in [Hof06, Lemme 3.2.4].

To study this product further we define two maps

H :Λ(V )⊗Λ(V )→Λ(V )⊗Λ(V ) : eλQ, (5)

where
Q = (µ⊗ id) ◦ (id⊗prV ⊗ id) ◦ (id⊗∆), (6)

and
G :Λ(V )⊗Λ(V )→Λ(V )⊗Λ(V ) : (µ⊗ id)(id⊗Fλ ⊗ id)(id⊗∆). (7)

Lemma 3.1.4 The map Q is a derivation and a coderivation. Moreover, it is color since
degQ = 0.

Proof. For simplicity we write pr for the projection prV of T (V ) on V . Then Q is a
derivation since for a,b ∈Λ(V ) we have:

Q(a⊗ b)(a′ ⊗ b′) =Q(aa′ ⊗ bb′)ε(b,a′)

=aa′ ∧pr(b(1)b′(1))⊗ b(2)b′(2)ε(b,a′)ε(b(2),b′(1))

Q(a⊗ b)∧ (a′ ⊗ b′) + (a⊗ b)∧Q(a′ ⊗ b′),

=a∧prb(1) ⊗ b(2))(a′ ⊗ b′) + (a⊗ b)(a′ prb′(1) ⊗ b′(2))

=aa′ prb(1) ⊗ b(2)b′ε(b,a′) + qq′b(1) ⊗ bb′(2)ε(b,a′b′(1)).

We have equality since prab = (pra)ε(b) + ε(a)pr(b). Also Q is a coderivation since:

∆Q(a⊗ b) = ∆(a∧prb(1) ⊗ b(2))

=τ23[a(1) prb(1) ⊗ a(2) ⊗ b(2) ⊗ b(3)ε(a(2),b(1)) + a(1) ⊗ a(2) prb(1) ⊗ b(2) ⊗ b(3)]

=a(1) prb(1) ⊗ b(2) ⊗ a(2) ⊗ b(3)ε(a(2),b(1))ε(a(2),b(2))

+ a(1) ⊗ b(2) ⊗ a(2) prb(1) ⊗ b(3)ε(a(2)b(1),b(2)),

and
(id⊗Q)∆(a⊗ b) = a(1) ⊗ b(1) ⊗ a(2) prb(2) ⊗ b(3)ε(a(2),b(1)).

This equals the first term in the previous equation, because of the symmetry of ∆,
which gives b(1) ⊗ b(2) ⊗ b(3) = ε(b(1),b(2))b(2) ⊗ b(1) ⊗ b(3).
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Lemma 3.1.5 The maps H and G are algebra homomorphisms and H = G.

Proof. The map H is an algebra morphism since Q is a derivation, and G since all
involved maps are algebra homomorphisms. So it is enough to check the equality
on generators, where we have

H(x⊗ 1) =x⊗ id, H(1⊗ x) = 1⊗ x+λx⊗ 1,

using Q(x⊗ 1) = 0 and Q(1⊗ x) = x⊗ 1, and the same for G.

Proposition 3.1.6 We have

ϕ ?λ ψ = µ(ϕ ⊗ id)eλQ(id⊗ψ)∆. (8)

Proof. This follows immediately from Lemma 3.1.3 and Lemma 3.1.5.

Next we define
f � g = µ ◦ (f ⊗ id) ◦Q ◦ (id⊗g) ◦∆, (9)

so that we can finally define the big bracket, see [KS92, LR90].

Definition 3.1.7 (Big bracket) For f ,g ∈ B, we define

{f ,g}BB = f � g − ε(f ,g)g � f . (10)

Proposition 3.1.8 The big bracket gives a color Poisson algebra, with respect to the con-
volution.

Proof. In Eq. (8) one can replace λ by a formal parameter. This gives a formal defor-
mation of the algebra B with the convolution product. Then the claim follows from
Definition and Proposition 3.3.1.

3.1.2 Properties of the Big Bracket

Now, we provide some elementary properties of the big bracket and compute it
explicitly for some important cases.

Proposition 3.1.9 For ϕ ∈ Bi,j ,ψ ∈ Bk,l , we have {ϕ,ψ}BB ∈ Bi+k−1,j+l−1.

Proof. In fact, we show � : Bi,j ⊗Bk,l → Bi+k−1,j+l−1 from which the statement imme-
diately follows. For t ∈ Z, we have

(ϕ �ψ)(ΛtV ) ⊂
∑
r+s=t

µ(ϕ ⊗ id)Q(ΛrV ⊗ψ(ΛsV )

⊂ µ(ϕ ⊗ id)Q(Λt−kV ⊗ΛlV )

⊂ µ(ϕ ⊗ id)(Λt−k+1V ⊗Λl−1V ).
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3.1. Big bracket

Here in the second step, we consider that ϕ is in Bi,j and using ψ ∈ Bk,l this vanishes
unless t − k + 1 = i or t = i + k − 1. So we can continue

(ϕ �ψ)(ΛtV ) ⊂ µ(ϕ(ΛiV )⊗Λl−1)

⊂ µ(ΛjV ⊗Λl−1)

⊂Λj+l−1.

This proves the statement.

Lemma 3.1.10 For ψ ∈ Bk,1,ϕ ∈ B, we have

ϕ �ψ = ϕ(ψ ∗ id). (11)

Proof. For x ∈ΛV , we get

(ϕ �ψ)x =µ(ϕ ⊗ id)Q(id⊗ψ)∆(x)

=µ(ϕ ⊗ id)Qε′(ψ,x(1))x(1) ⊗ψ(x(2))

=ϕ(x(1) ∧ψ(x(2)))

=ϕµ(id⊗ψ)∆x,

using (pr⊗ id)∆y = y ⊗ 1 for |y| = 1.

Proposition 3.1.11 For β ∈ B2,1 and ψ ∈ Bk,l , we have

{β,ψ}BB =ε′(β,ψ)
( k+1∑
i=1

ε′(x1 · · ·xi−1,xi)ε
′(ψ,xi)xi ·ψ(x1 ∧ · · · x̂i · · · ∧ xk+1)

+
∑

1≤i<j≤k
ε′(β,x1 · · ·xi−1)ε′(xi+1 · · ·xj−1,xj )ψ(x1 ∧ · · ·β(xi ,xj ) · · · ∧ xk+1)

)
,

(12)

which equals the differential in Section 3.2.2, if we consider g-action on Λkg for some
fixed k.

Proof. By the definition of the big bracket we have

{β,ψ}BB =β �ψ − ε′(β,ψ)ψ � β.
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So we first compute

β �ψ(x1 ∧ · · ·xk+1) = µ(β ⊗ id)Q(id⊗ψ)∆(x1 ∧ · · · ∧ xk+1)

=µ(β ⊗ id)Q
k+1∑
i=1

ε′(x1 · · ·xi−1,xi)ε
′(ψ,xi)xi ⊗ψ(x1 ∧ x̂i ∧ · · · ∧ xk+1)

=
k+1∑
i=1

ε′(x1 · · ·xi−1,xi)ε
′(ψ,xi)µ(β ⊗ id)(µ⊗ id)xi ⊗prV (ψ(1)

i )⊗ψ(2)
i

=
k+1∑
i=1

ε′(x1 · · ·xi−1,xi)ε
′(ψ,xi)β(xi ∧prV (ψ(1)

i ))∧ψ(2)
i

=
k+1∑
i=1

ε′(x1 · · ·xi−1,xi)ε
′(ψ,xi)xi ·ψ(x1 ∧ x̂i · · · ∧ xk+1),

using

ψ
(1)
i ⊗ψ

(2)
i := ∆ψ(x1 ∧ x̂i · · · ∧ xk+1). (13)

We recall that for y = y1 ∧ . . .∧ yk ,

x · y = [∆(|y|)x,y] =
k∑
i=1

ε(x,y1 · yi−1)y1 ∧ · · · [x,yi] · · · ∧ yk . (14)

Next, we use Lemma 3.1.10 to get the other term. So, we have

(β ∗ id)(x1 ∧ · · · ∧ xk+1)

=µ(β ⊗ id)∆(x1 ∧ · · · ∧ xk+1)

=µ(β ⊗ id)ε′(x1 · · ·xj−1,xj )ε
′(x1 · · ·xi−1,xi)ε

′(xj ,xi)xi ∧ xj ⊗ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk+1

=ε′(x1 · · ·xj−1,xj )ε
′(x1 · · ·xi−1,xi)ε

′(xj ,xi)β(xi ∧ xj )∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk+1,

(ψ � β)(x1 ∧ · · · ∧ xk+1)

=ε′(x1 · · ·xj−1,xj )ε
′(x1 · · ·xi−1,xi)ε

′(xj ,xi)ψ(β(xi ∧ xj )∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk+1)

=ε′(β,x1 · · ·xi−1)ε′(xi+1 · · ·xj−1,xj )ψ(x1 ∧ · · ·β(xi ,xj ) · · · x̂j · · · ∧ xk+1).

For the Lie bracket β, we have deg(β) = 0 and |β| = 1, also |ψ| = 0, because
we can compare the differentials only in this case, so the formula simplifies to
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3.1. Big bracket

{β,ψ}BB =

(−1)|ψ|
( k+1∑
i=1

(−1)(i−1)(−1)|ψ|ε(x1 · · ·xi−1,xi)ε(ψ,xi)xi ·ψ(x1 ∧ · · · x̂i · · · ∧ xk+1)

+
∑

1≤i<j≤k
(−1)i−1(−1)j−i−1ε(xi+1 · · ·xj−1,xj )ψ(x1 ∧ · · ·β(xi ,xj ) · · · ∧ xk+1)

)
.

The following proposition shows that the Maurer-Cartan elements for the big
bracket and the zero differential are precisely color Lie algebras, color Lie coalgebras
and color Lie bialgebras.

Proposition 3.1.12 Let β ∈ B2,1,δ ∈ B1,2 then
— {β,β}BB = 0 if and only if β defines a color Lie algebra structure,
— {δ,δ}BB = 0 if and only if δ defines a color Lie coalgebra structure,
— {β + δ,β + δ}BB = 0 if and only if β,δ define a color Lie bialgebra structure.

Proof. For x ∈ V and δ(x) = x[1] ∧ x[2], we have

(δ� δ)(x) =µ(δ⊗ id)Q(id⊗δ)∆(x)

=µ(δ⊗ id)Q(1⊗ δ(x))

=µ(δ⊗ id)Q(1⊗ x[1] ∧ x[2])

=µ(δ⊗ id)x[1] ⊗ x[2] − ε(x[1],x[2])x[2] ⊗ x[1]

=2δ(x[1])∧ x[2].

Using Lemma 3.1.10, we have

(β � β)(x∧ y ∧ z) =β(β ∗ id)(x∧ y ∧ z)
=βµ(id⊗β)(x⊗ y ∧ z+ ε′(x,y)y ⊗ x∧ z+ ε′(xy,z)z⊗ x∧ y)

=β(x∧ β(y ∧ z))− ε(x,y)β(y ∧ β(x∧ z)) + ε(xy,z)β(z∧ β(x∧ y)).

For the third statement, we calculate

{β + δ,β + δ}BB ={β,β}BB + {δ,δ}BB + 2{δ,β}BB.

Because the terms are of different degrees, they have to vanish separately. Using
Proposition 3.1.11, we get that {δ,β}BB gives the compatibility condition, and the
other two terms say that β defines a color Lie algebra and δ defines a color Lie
coalgebra.
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Similarly to color Lie algebras and bialgebras, one can also describe the different
semidirect products using the big bracket.

Proposition 3.1.13 Let (g,βg,δg) and (h,βh,δh) be two color Lie bialgebras. Then ρ :
g ∧ h → g is a Lie bialgebra action and so gives a semidirect product, if and only if
{βg + δg + βh + δh + 1

2ρ,ρ}BB = 0.

Proof. We consider the vector space V = g⊕h, then e.g. δg can be extended to a map
V → V ∧V and similarly for the other operations. So using β = βg + βh + ρ and δ =
δg+δh, we have that V is a Lie bialgebra if {β+δ,β+δ}BB = 0, which gives the claim,
since the other terms vanish because g and h are already color Lie bialgebra.

A similar result holds for a coaction or a combination of them.
The most general case would be to have maps

ρg : h∧ g→ g, ρh : g∧ h→ h,

σg : h→ h∧ g, σh : g→ h∧ g,
τg : h→ g∧ g, τh : g→ h∧ h,
χh : h∧ h→ g, χg : g∧ g→ h.

Then one can define the bracket and cobracket by β = βg+βh+ρg+ρh+χg +χh (resp.
δ = δg + δh + σg + σh + τh + τg). Note that in this generality neither g nor h is an ideal
any more and not even a subalgebra. But if one wants to find conditions for this
being again color Lie bialgebras, one can simply compute the big bracket and gets
the corresponding conditions.

Remark 3.1.14 In fact one could also consider color quasi-and-coquasi-Lie bialge-
bra, that is one has, in addition to the bracket and cobracket, an associator ϕ ∈Λ3g

and a coassociator ψ :Λ3g→K, such that {ϕ+δ+β+ψ,ϕ+δ+β+ψ}BB = 0. One may
consider color quasi-Lie bialgebra i.e. ψ = 0 in the previous definition, see [Dri89]
for the non-graded case. Also, one may consider coquasi-Lie bialgebras which are
defined by ϕ = 0.

At last, we provide relationships between r-matrices and the big bracket. Note
that since everything here is considered to be color skew-symmetric, one can only
treat the triangular case, i.e. skew-symmetric r-matrices.

For r ∈ B2,0, one can define δ := {r,β}BB.

Proposition 3.1.15 In this case δ,β is a color Lie bialgebra if

{{{r,β}BB, r}BB,β}BB = 0. (15)

Proof. We have

{β + δ,β + δ}BB = {β,β}BB + 2{{r,β}BB,β}BB + {{r,β}BB, {r,β}BB}BB.
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3.2. Cohomology for color Lie bialgebras

The first term is zero, because we assume β to be a color Lie algebra. The second
term is zero because of the color Jacobi identity. For the third term, we get

{{r,β}BB, {r,β}BB}BB ={{{r,β}BB, r}BB,β}BB + ε′(rβ, r){r, {{r,β}BB,β}BB}BB

={{{r,β}BB, r}BB,β}BB.

Therefore {{r,β}BB, r}BB = 0 corresponds to the classical Yang-Baxter equation.

3.2 Cohomology for color Lie bialgebras

In this section, we derive from the big bracket a cohomology complex and a re-
duced cohomology complex for clbas.

3.2.1 Clba cohomology and reduced clba cohomology

To define the cohomology of a Lie bialgebra g, we first need to define the cochains
complex. So we set

B k(g) =
⊕
i+j=k

Bi,j(g) =
⊕
i+j=k

Homgr(Λig,Λjg). (16)

This is in fact a bicomplex. Note however that the degree is given here by the sum of
the tensor degrees and not the difference, so the grading is not given by the degree
of the morphisms, as for Bi . The commutation factor is independent of this, since
the gradings agree modulo 2.

Definition 3.2.1 (clba cohomology) For a given clba (g,β,δ) we define a differential
∂ :B k→B k+1 onB•(g) by

∂(ϕ) := {δ+ β,ϕ}BB. (17)

The cohomology for this differential is called clba cohomology.

Hence ∂2 = 0 follows from the color Jacobi identity.
We will write ∂β or ∂δ for the two differentials given by {β,ϕ}BB (resp. {δ,ϕ}BB).

So ∂ = ∂β +∂δ and in total we have a bicomplex.

Proposition 3.2.2 The differential ∂ is a derivation of the big bracket, i.e.

∂{ϕ,ψ}BB = {∂ϕ,ψ}BB + (−1)|ϕ|{ϕ,∂ψ}BB. (18)
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Proof. This follows directly from the color Jacobi identity for the big bracket, and
the fact that β has Γ -degree 0.

We will also need a “reduced” cohomology complexB•r which starts by 1 in both
direction, so we make the following

Definition 3.2.3 (Reduced clba cohomology) The reduced clba cohomology has the
same bicomplex and differential as the clba cohomology but with Bi,0r = B0,i

r = {0}.
We denote it by H•r (g).

This is clearly a sub-bicomplex and we again get a complex B i
r . Notice that the

Lie bracket as well as the Lie cobracket lie in this reduced complex. We also note
that the big bracket can be reduced to this reduced complex.

Now, we provide more explicit formula for the bicomplex differentials, the one
for ∂µ, up to a sign, can be found in Proposition 3.1.11. For ∂δ we get:

Proposition 3.2.4 For ϕ ∈ Bk,l one has

∂δ(ϕ)(x1 ∧ . . .∧ xk) =
l∑
i=0

−(−1)iδ(ϕi)∧ϕ1 ∧ . . . ϕ̂i . . .∧ϕl

−
k∑
i=0

(−1)|ϕ|(−1)i+kε(xi ,xi+1 · · ·xk)ϕ(x1 ∧ . . . x̂i . . .∧ xk ∧ x
(1)
i )∧ x(2)

i ,

where we use ϕ(x1 ∧ . . .∧ xk) = ϕ1 ∧ . . .∧ϕk .

Proof. We have

δ�ϕ =
l∑
i=0

−(−1)iδ(ϕi)∧ϕ1 ∧ . . . ϕ̂i . . .∧ϕl

and

ϕ � δ(x1 ∧ . . .∧ xk)
=(−1)i−1(−1)k−1ε(xi ,xi+1 · · ·xk)
µ(ϕ ⊗ id)(µ⊗ id)(id⊗prg⊗ id)(id⊗∆)(x1 ∧ . . . x̂i . . .∧ xk ⊗ δ(xi))

=(−1)i+kε(xi ,xi+1 · · ·xk)ϕ(x1 ∧ . . . x̂i . . .∧ xk ∧ x
(1)
i )∧ x(2)

i .

The graded commutator of these two expressions gives the result.

It is more difficult to define the cohomology of a clba with values in a clba module.
So let g be a clba and V a clba module. The idea is to consider the direct sum
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W = g⊕V , which according to Proposition 2.7.4 is again a clba, so one can consider
its cohomology. The differential is given by

∂ϕ = {δ+ σ + ρ+ β,ϕ}BB, (19)

where ρ and σ denote the action (resp. coaction) of g on V . Note that since ΛiW �
Λjg∧Λi−jV , we have in fact a Z4-grading on B(W ). We denote it by

Bij,kl := Homgr(Λig∧ΛjV ,Λkg∧ΛlV ).

The idea is to find a subcomplex of morphisms of this which contain e.g. only one V
as output, as it can be done for e.g. Lie algebras. The problem here is that this does
not form a subcomplex, so we take the smallest subcomplex, which contains maps
of the form g∧ V and V → g. The resulting subcomplex consists of all Bij,kl , such
that |j − l| = 1.

3.2.2 Comparison with Scheunert’s color Lie algebra cohomology

We aim to compare the cohomology described above with the one in [SZ98] for
color Lie algebras.

Let g be a color Lie algebra and V a color g-module. We denote the graded vector
space of graded n-linear maps by Homgrn(g,V ) = Homgr(g, . . . ,g︸   ︷︷   ︸

n

;V ). One can define

an action of g on it by

(x ·ϕ)(y1, . . . , yn) = x · (ϕ(y1, . . . , yn))−
∑
i

ε(x,y1 · · ·yr−1)ϕ(y1, . . . , [x,yr ], . . . , yn),

for x,yi ∈ g and ϕ ∈ Homgrn(g,V ). One has Homgrn(g,V ) � Homgr(gn,V ) and the
action of Sn on the tensor product gives by pullback an Sn-action on Homgrn(g,V ),
which we denote by π ·ϕ for π ∈ Sn and ϕ ∈Homgrn(g,V ).

We define

C−n(g,V ) = 0, C0(g,V ) = V ,

Cn(g,V ) = {ϕ ∈Homgrn(g,V )|∀π ∈ Sn : πϕ = sign(π)ϕ}.

One can identify Cn(g,V ) with Homgr(Λng,V ).
Now one can define a differential on the complex Cn. The explicit formula for the

differential is given by

(dnϕ)(x0, . . . ,xn) =
∑
i

(−1)iε(ϕx0 · · ·xi−1,xi)xi ·ϕ(x0, . . . , x̂i , . . . ,xn)

+
∑
i<j

(−1)jε(xi · · ·xj−1,xj )ϕ(x0, . . . ,xi−1, [xi ,xj ], . . . x̂j , . . . ,xn).

As stated in Proposition 3.1.11, this corresponds with our definition of the clba
cohomology.
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3. Cohomology and Deformations

3.2.3 Some cohomology computations

In this section, we compute explicitly the first reduced cohomologies of some of
the clbas from the previous classification. We first give explicit formulas for the first
and second degree of the differential. In degree one for ϕ ∈ B1,1, we have

(∂ϕ)(a∧ b) =ε(ϕ,a)β(a∧ϕ(b))− ε(a,b)ε(ϕ,b)β(b∧ϕ(a))−ϕ(β(a∧ b))

(∂ϕ)(a) =δ(ϕ(a))−ϕ(a(1))∧ a(2) + ε(ϕ,a(1))a(1) ∧ϕ(a(2)).

So the exact one-cochains are precisely the derivations and coderivations.

In second degree, we get for ϕ ∈ B1,2,

(∂ϕ)(a∧ b) =ε(ϕ,a)β(a∧ϕ1(b))∧ϕ2(b) + ε(ϕ,b)ε(a,b)β(b∧ϕ1(a))∧ϕ2(a) +ϕ(β(a∧ b))

(∂ϕ)(a) =δ(ϕ1(a))∧ϕ2(a)− ε(ϕ1(a),ϕ2(a))δ(ϕ2(a))∧ϕ1(a)

+ϕ(δ1(a))∧ δ2(a)− ε(δ1(a),δ2(a))ϕ(δ2(a))∧ δ1(a).

Here we use ϕ(x) = ϕ1(x)∧ϕ2(x) and similar for δ, where a sum on the right side is
to be understood.

For ϕ ∈ B2,1 one gets

(∂ϕ)(a∧ b∧ c) =− β(a∧ϕ(b∧ c))ε(ϕ,a)∓ cyclic −ϕ(a∧ β(b∧ c))ε(β,a)∓ cyclic

(∂ϕ)(a∧ b) =δ(ϕ(a∧ b)) +ϕ(a∧ δ1(b))∧ δ2(b)− ε(δ1(b),δ2(b))ϕ(a∧ δ2(b))∧ δ1(b)

+ϕ(a∧ δ2(b))∧ δ1(b)− ε(δ1(a),δ2(a))ε(a,b)ϕ(b∧ δ1(a))∧ δ2(a).

Cohomology of A2
1

We consider here the following degrees:

deg(e1) = (0,0), deg(e2) = (1,0), deg(e3) = (0,1).

80



3.2. Cohomology for color Lie bialgebras

Degree Derivations Closed 2-cochains Exact 2-cochains Second cohomol-
ogy

0
ϕ(e2) = c2e2 ϕ(e1 ∧ e2) = c1e2

ϕ(e1 ∧ e3) = c2e3

ϕ(e1) = d1e3 ∧ e3

ϕ(e1 ∧ e2) = ac1e2

ϕ(e1 ∧ e3) = c1e3

ϕ(e1) = d1e3 ∧ e3

ϕ(e1 ∧ e2) = c1e2

(1,0)
ϕ(e1) = c1e2 if a , 2:

ϕ(e1 ∧ e2) = −ac1e1

ϕ(e2 ∧ e3) = c1e3

ϕ(e2) = c1e3 ∧ e3

if a = 2:

ϕ(e1 ∧ e2) = −2c1e1

ϕ(e2 ∧ e3) = c1e3

ϕ(e3 ∧ e3) = −c2e2

ϕ(e1) = c2e1 ∧ e2

ϕ(e2) = d1e3 ∧ e3

ϕ(e1 ∧ e2) = −ac1e1

ϕ(e2 ∧ e3) = c1e3

ϕ(e2) = c1e3 ∧ e3

if a , 2:

{0}
if a = 2:

ϕ(e3 ∧ e3) = −c2e2

ϕ(e1) = c2e1 ∧ e2

ϕ(e2) = d1e3 ∧ e3

(0,1)
ϕ(e1) = c1e3 ϕ(e1 ∧ e3) = −c1e1

ϕ(e2 ∧ e3) = ac1e2

ϕ(e3 ∧ e3) = 2c1e3

ϕ(e1) = −c1e3 ∧ e3

ϕ(e3) = c1e1 ∧ e3

ϕ(e1 ∧ e3) = −c1e1

ϕ(e2 ∧ e3) = ac1e2

ϕ(e3 ∧ e3) = 2c1e3

ϕ(e1) = −c1e3 ∧ e3

ϕ(e3) = c1e3 ∧ e3

{0}

(1,1)
ϕ(e2) = c2e3

only if a = 1

ϕ(e1 ∧ e2) = c1e3

ϕ(e1 ∧ e3) = c2e2

ϕ(e1) = d1e2 ∧ e3

ϕ(e1 ∧ e2) = (a− 1)c1e3

ϕ(e1 ∧ e3) = (a− 1)c2e2

ϕ(e1) = −c1e2 ∧ e3

ϕ(e1 ∧ e2) = c1e3

if a = 1 also:

ϕ(e1 ∧ e3) = c2e2

Cohomology of A4
2

We consider here the following degrees:

deg(e1) = (1,1), deg(e2) = (1,0), deg(e3) = (0,1).
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3. Cohomology and Deformations

Degree Derivations closed 2-cochains exact 2-cochains 2-
cohomology

(1,1)
ϕ(e2) = c1e3

ϕ(e3) = c1e2

ϕ(e1 ∧ e2) = c1e2

ϕ(e1 ∧ e3) = c2e3

ϕ(e1 ∧ e2) = c1e2

ϕ(e1 ∧ e3) = −c1e3

ϕ(e1 ∧ e2) = c1e2

(1,0)
ϕ(e1) = c1e2 ϕ(e1) = c1e1 ∧ e2

ϕ(e3) = c2e2 ∧ e3

ϕ(e1 ∧ e2) =
1
2

(c1 − c2)e1

ϕ(e2 ∧ e3) =
1
2

(c2 − c1)e3

ϕ(e1) = −c1e1 ∧ e2

ϕ(e3) = c1e2 ∧ e3

ϕ(e1 ∧ e2) = −c1e1

ϕ(e2 ∧ e3) = c1e2

ϕ(e1) = c1e1 ∧ e2

ϕ(e3) = c1e2 ∧ e3

(0,1)
ϕ(e1) = c1e3 ϕ(e1) = c1e1 ∧ e3

ϕ(e2) = c2e2 ∧ e2

ϕ(e1 ∧ e3) =
1
2

(c1 − c2)e1

ϕ(e2 ∧ e3) =
1
2

(c2 − c1)e2

ϕ(e1) = −c1e1 ∧ e3

ϕ(e2) = c1e2 ∧ e3

ϕ(e1 ∧ e3) = −c1e1

ϕ(e2 ∧ e3) = c1e3

ϕ(e1) = c1e1 ∧ e3

ϕ(e2) = c1e2 ∧ e3

(0,0)
0 ϕ(e1) = c3e2 ∧ e3

ϕ(e1 ∧ e2) = c1e3

ϕ(e1 ∧ e3) = c2e2

ϕ(e1) = c1e2 ∧ e3

ϕ(e1 ∧ e2) = c2e3

ϕ(e1 ∧ e3) = c3e2

0

3.3 Deformation theory

In this section, we study deformations of clbas using Gerstenhaber’s approach
based on formal power series [Ger64]. We also describe a quantum universal en-
veloping algebra of a color Lie algebra. The main ingredient for one-parameter
formal deformations is to extend the scalar field K to formal power series K[[t]],
where t is an indeterminate. Given a vector space V , we denote by V [[t]] = K[[t]] ⊗̂V
the space of formal power series. Here ⊗̂ denotes the completed tensor product.
The main results, due first to Gerstenhaber, connect these deformations to suitable
cohomology groups.
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3.3. Deformation theory

3.3.1 Deformations of associative algebras and star products

Let A be a color algebra, then the commutator defines a Lie structure on A ,
which also satisfies the Leibniz identity

[a,bc] = [a,b]c+ ε(a,b)b[a,c], (20)

[ab,c] = ε(b,c)[a,c]b+ a[b,c]. (21)

So it gives the structure of a non-commutative color Poisson algebra on A .
Let A be a color commutative associative algebra. By a deformation of A , we

mean a (noncommutative) associative algebra structure ? on A [[t]], such that a? b =
ab+

∑∞
r=1 t

rCr(a,b). Here the Cr are bilinear maps of degree 0. We call the deformed
product a star product.

Definition and Proposition 3.3.1 For a deformation of a color commutative algebra, we
define a color Poisson bracket by

{a,b} = C1(a,b)− ε(a,b)C1(b,a). (22)

Proof. The Leibniz identity for the Poisson bracket follows directly from the Leibniz
identity of the commutator of the product ? in first order with respect to t.

The Jacobi identity of the Poisson bracket follows from the Jacobi identity of the
commutator in second order. Precisely in order t2 we have

[[a,b], c] =ε(a ? b) ? c − ε(a,b)(b ? a) ? c − ε(ab,c)c ? (a ? b) + ε(ab,c)ε(a,b)c ? (b ? a)

=C1(C1(a,b), c) +C2(a,b)c+C2(ab,c)− ε(a,b)(C1(C1(b,a), c) +C2(b,a)c+C2(ba,c))

− ε(ab,c)(C1(c,C1(a,b)) +C2(c,ab) + cC2(a,b))

+ ε(ab,c)ε(a,b)()C1(c,C1(b,a)) +C2(c,ba) + cC2(b,a))

={{a,b}, c}.

Two deformations ?,?′ are called equivalent if there exists a linear transformation
S = id+

∑∞
r=1 t

rSr of degree 0, such that

S(a ?′ b) = S(a) ? S(b). (23)

Proposition 3.3.2 The color Poisson bracket of two equivalent deformations is the same.

Proof. Let ? and ?′ be the two star products, since they are equivalent we have that
a ?′ b = S−1(S(a)? S(b)) for some series S =

∑
Sit

i . Then a simple computation gives

a ?′ b = ab+ t[S1(a)b+ aS1(b) +C1(a,b)− S1(ab)] +O(t2). (24)

So the corresponding Poisson bracket is the same, since the terms involving S are
symmetric.
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3. Cohomology and Deformations

Similarly to the non-color case, given a set of color commuting derivations {Xi}
and a matrix π, one can define a star product by

f ? g = µ ◦ eπ
ijXi⊗Xj (f ⊗ g). (25)

Here µ denotes the multiplication in A . In order that ? is of order 0, πij can only
be different from 0 if deg(Xi) + deg(Xj ) = 0. The product is associative, because

f ? (g ? h) =µ ◦ etπijXi⊗Xj (f ⊗µ ◦ etπ
klXk⊗Xl (g ⊗ h))

=µ ◦ etπ
ijXi⊗Xj ◦ (id⊗µ) ◦ (id⊗etπ

klXk⊗Xl )(f ⊗ g ⊗ h)

=µ ◦ (µ⊗ id) ◦ (etπ
ijXi⊗Xj⊗id+Xi⊗id⊗Xj+id⊗Xi⊗Xj )(f ⊗ g ⊗ h).

Note that in the color case ea+b = eaeb only if dega = degb = 0, which here is the
case since the product should be of order 0.

3.3.2 Deformations of color Lie bialgebras

We consider formal deformations of a color Lie bialgebra (g,β,δ).

Definition 3.3.3 A (formal) deformation of a color Lie bialgebra (g,β,δ) is a color
K[[t]]-Lie bialgebra structure (β? ,δ?) on the formal power series g[[t]], such that β? =
β +
∑∞

i=1βit
i and δ? = δ+

∑∞
i=1 δit

i . Here t has degree zero.

One can construct deformations order by order, meaning that if one knows a
deformation δ? =

∑n
i=0 δo, β? =

∑n
i=0βi up to a certain order n, one can search for

βn+1 and δn+1 such that δ? =
∑n+1

i=0 δi , β? =
∑n+1

i=0 βi is a deformation up to order
n+1. Here a deformation up to order nmeans that the defining relation are satisfied
mod tn+1.

Proposition 3.3.4 The order by order construction gives equations in the clba cohomol-
ogy defined in Definition 3.2.1 and the obstructions for the existence of a clba deformation
are in H3

r (g). This means that given a deformation δ? =
∑n

i=0 δo, β? =
∑n

i=0βi up to or-
der n, δ? =

∑n+1
i=0 δi , β? =

∑n+1
i=0 βi is a deformation up to order n+ 1 if ∂(βn+1 + δn+1) =

Rn :=
∑n−1

i=1 [δi + βi ,δn+1−i + βn+1−i], and Rn is cocycle. Furthermore if H3
r (g) = {0} then

any deformation up to a certain order can be extended to a full deformation.

Proof. We have

{β? + δ? ,β? + δ?}BB :=
∞∑
i=1

ti
∑
j+k=i

{βj + δj ,βk + δk}BB =
∞∑
i=1

ti{β? + δ? ,β? + δ?}BBi .
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3.3. Deformation theory

So we get

∂(βk + δk) =
k−1∑
j=1

{βj + δj ,βk−j + δk−j}BB. (26)

The graded Jacobi identity gives

0 = {β? + δ? , {β? + δ? ,β? + δ?}BB}BB. (27)

So in order k we have

{β? + δ? , {β? + δ? ,β? + δ?}BB}BB =∑
j

{βj + δj , {β? + δ? ,β? + δ?}BBk−j}BB + {β0 + δ0, {β? + δ? ,β? + δ?}BBk}BB = 0.

Since β? ,δ? determine already a clba up to order k − 1, and so the bracket of β? + δ?
with itself vanishes up to order k − 1. So finding βk and δk is a problem in the
cohomology H3

r (g).

So especially ∂(β1 + δ1) = 0. So β1 + δ1 is a cocycle, which also means that β is a
cocycle in cla cohomology and δ a cocycle in color Lie coalgebra cohomology.

Definition 3.3.5 (Equivalence of deformations) Two deformations ([ , ],δ) and ([ , ]′ ,δ′)
are said to be equivalent if there exists a formal power series S = id+

∑∞
i=1 t

kSk of
linear maps Sk : g→ g of Γ -degree 0, such that

S−1([S(a),S(b)]) =[a,b]′ ,

(S−1 ⊗ S−1)δ(S(a)) =δ′(a).

Proposition 3.3.6 If two deformations are equivalent up to order k then ∂(β′k+1 +δ′k+1−
βk+1 − δk+1) = 0 and there exists an equivalence of order k + 1 if the difference is exact.
So the obstruction for equivalence is in H2

r (g) and if H2
r (g) = {0} all deformations are

equivalent to trivial deformations.

Proof. We have that ∂(β′k+1 + δ′k+1) only depends on terms up to order k. Since these
are the same in both clba structures, the difference vanishes.

Consider S = id+tkSk then

S−1([S(a),S(b)]) =[a,b] + tk ([Sk(a),b] + [a,Sk(b)]− Sk([a,b])) +O(tk+1)

=[a,b] + tk(∂βSk)(a,b) +O(tk+1).

Similarly for δ one gets

(S−1 ⊗ S−1)δ(S(a)) =δ(a) + tk((−Sk ⊗ id− id⊗Sk)δ(a) + δ(Sk(a))) +O(tk+1)

=δ(a) + tk(∂δSk)(a) +O(tk+1).
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3. Cohomology and Deformations

This shows that if the difference of δ+β and δ′+β′ is exact there exists an equivalence
S, as given above, such that δ+ β and δ′ + β′ are equivalent up to order k + 1.

If all deformations are equivalent the clba is called rigid, this is for example the
case when H2

r (g) = 0.
The maps of Γ -degree 0 form a subcomplex, since the differential has Γ -degree

0. Note that only the cohomology of this subcomplex, which is the Γ -degree 0 part
of the cohomology, is important for the deformation theory, since all operations are
considered to be of degree 0.

Remark 3.3.7 In the case of quasi-Lie bialgebras, coquasi-Lie bialgebras or quasi-
and-coquasi-Lie bialgebras, one has to consider different subcomplexes of the full
double complex Bij . The obstructions for deformations are, similarly to previous
propositions, in these complexes. Together with the big bracket and the zero differ-
ential, these complexes are again differential graded Lie algebras and the Maurer-
Cartan elements are precisely the corresponding algebra structures as defined in
Remark 3.1.14.

To be precise for color quais-Lie bialgebras, which is the most interesting case, one
has to consider the complex, where the terms of the form B0,i are set to zero. The
differential is again defined as the bracket with the Maurer-Cartan element (β,δ,ϕ)
and the statements connecting deformations and cohomology stay true.
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In this section we give a generalization of the proof of Etingof and Kazhdan for
the quantization of Lie bialgebras to the color case [EK96]. This has already be

done for the super-case in [Gee06]. For this we use to some extend the description
of graded modules as enriched category Modgr and the category of g-modules for a
color Lie bialgebra g as enriched over Modgr. This is useful here, since this way one
can consider the natural transformation to be graded.
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4. Quantization

4.1 Quantum universal enveloping algebras

4.1.1 Topologically free modules

In this section we consider K to be a field of characteristic 0. We give some re-
marks on K[[t]]-modules, where K[[t]] denotes the ring of formal power series over
K. A K[[t]]-module is called topologically free if it is isomorphic to one of the form
V ⊗̂K[[t]] for a K-module V . We will simple denote it by V [[t]]. Here ⊗̂ denotes the
completed tensor product with respect to the filtration by t or the t-adic topology.

A graded K[[t]]-module V is called free, if all Vi are free. In general this is not
equivalent to the statement that

⊕
i∈Γ Vi is free. But it is equivalent if only finitely

many Vi are nonzero.

4.1.2 Quantum universal enveloping algebras

A color quantum universal enveloping algebra (cQUE) is a topological color Hopf
algebra A over K[[t]], complete with respect to the t-adic topology, such that A

/
tA

is the universal enveloping algebraU (g) of a color Lie algebra g, with the color Hopf
algebra structure given after Definition 2.3.5. This means, it is a deformation of the
universal enveloping algebra by a formal parameter t.

In the sequel, we write ∆ =
∑∞

i=0 t
i∆i and x · y =

∑∞
i=0 t

ix ·i y. We also need the
opposite coproduct ∆opp = τ ◦∆.

Proposition 4.1.1 Let H be a cQUE then δ : g→ g∧ g given by

δ(x) =
∆(x)−∆opp(x)

t
mod t (1)

determines a color Lie bialgebra structure on g.

Proof. We have

∆([x,y]) = ∆(x)∆(y)− ε(x,y)∆(y)∆(x),

which in first order in t gives

∆1([x,y]0) +∆0([x,y]1) =∆1(x) ·0 ∆0(y) +∆0(x) ·0 ∆1(y) +∆0(x) ·1 ∆0(y)

− ε(x,y)(∆1(y) ·0 ∆0(x) +∆0(y) ·0 ∆1(x) +∆0(x) ·1 ∆0(y)).

Doing the same for ∆opp and subtracting it using ∆0 = ∆opp
0 gives

δ1([x,y]0) = δ1(x) ·0 ∆0(y) +∆0(x) ·0 δ1(y)− ε(x,y)(δ1(y) ·0 ∆0(x) +∆0(y) ·0 δ1(x)),

which is precisely the compatibility for δ and the Lie-bracket.
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4.2. Drinfeld category

The cobracket δ also defines a Poisson coalgebra, the proof of this is dual to the
proof of Definition and Proposition 3.3.1. This also shows that it satisfies the co-
Jacobi identity.

We also have to show that δ, as defined above, has values in g⊗ g ⊂ U (g)⊗U (g).
For this, we first note that g ⊂ U (g) consists precisely of the primitive elements, i.e.
the elements x which satisfy ∆(x) = x⊗1+1⊗x. This follows from the PBW-Theorem
for color Lie algebras [Sch79]. We compute

(id⊗∆0)δ(x) =− (id⊗∆1)∆0(x) + (∆0 ⊗ id)∆1(x) + (∆1 ⊗ id)∆0(x)

+ (id⊗∆opp
1 )∆0(x)− (∆0 ⊗ id)∆opp

1 (x)− (∆opp
1 ⊗ id)∆0(x)

=(∆0 ⊗ id)δ(x)− 1⊗∆1(x) +∆1(x)⊗ 1 + 1⊗∆opp
1 −∆opp

1 (x)⊗ 1

=(∆0 ⊗ id)δ(x)− 1⊗ δ(x) + δ(x)⊗ 1.

Using that δ satisfies the co-Leibniz rule gives

(id⊗∆0)δ(x) =(id⊗δ)(x⊗ 1 + 1⊗ x)− τ23(δ⊗ id)(x⊗ 1 + 1⊗ x) + δ(x)⊗ 1− 1⊗ δ(x)

=τ23(δ(x)⊗ 1) + δ(x)⊗ 1.

So the second tensor factor of δ(x) is again primitive, which means it lies in g and
by symmetry, we get δ(x) ∈ g⊗ g.

So the semi-classical limit of the coproduct gives a color Lie cobracket, which is
compatible with the bracket of the underlying color Lie algebra.

Definition 4.1.2 Let H be a cQUEA and g a color Lie bialgebra. Then H is a quan-
tization of g if H

/
tH �U (g) and in addition

δ =
1
t

(∆−∆opp) mod t. (2)

Further if (H,R) is quasitriangular and (g, r) a quasitriangular clba then (H,R) is
called a quasitriangular quantization if R ≡ 1⊗ 1 + tr mod t2.

4.2 Drinfeld category

4.2.1 Associators

We recall some facts about associators following [EK96]. Let Tn be the algebra
over K generated by symmetric elements tij for 1 ≤ i, j ≤ n, i , j, satisfying the
relations tij = tji , [tij , tlm] = 0 if i, j, l,m are distinct and [tij , tik + tjk] = 0. For disjoint
sets P1, . . . , Pn ⊂ {1, . . . ,m}, there exists a unique homomorphism Tn→ Tm defined on
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4. Quantization

generators by tij 7→
∑

p∈Pi ,q∈Pj tpq. We denote it by X 7→ XP1,...,Pn . For Φ ∈ T3 the
relation

Φ1,2,34Φ12,3,4 = Φ2,3,4Φ1,23,4Φ1,2,3 (3)

is called the pentagon relation, and for R = e
t
2 t12 ∈ T2[[t]] the relations

R12,3 = Φ3,1,2R1,3Φ
−1
1,2,2R2,3Φ1,2,3 (4)

R1,23 = Φ−1
2,3,1R12,3Φ2,1,3R12,3Φ

−1
1,2,3 (5)

are called the hexagon relations.

Definition 4.2.1 A (Drinfeld) associator is an elementΦ ∈ T3[[t]], which satisfies the
pentagon identity Eq. (3) and the hexagon identities Eqs. (4) and (5).

There is the following well known theorem due to Drinfeld [Dri90]:

Theorem 4.2.2 There exists an associator over Q.

This means that there is also an associator for every field which contains the ra-
tional numbers. In the following we will fix such an associator for K.

For a color Lie algebra g, with a symmetric invariant element Ω = Ω1 ⊗Ω2, we
can define a map from Tn to End(M1 ⊗ · · · ⊗Mn), by setting tij 7→ Ωij . Here Ωij is
1⊗ · · · ⊗Ω1 ⊗ · · · ⊗Ω2 ⊗ · · · ⊗ 1 with the components of Ω in the i-th and j-th factor
in the tensor product. If i > j, we have that Ωi,j = τΩji . So the Ωij satisfy the same
relations as the tij sinceΩ is invariant. As in the non-color case we get the following
theorem.

One can show that the Drinfeld associator can be written involving only t12 and
t23 [Dri90]. This allows us to consider the Drinfeld associator as an element of
F(x,y) the free group in two elements. To get the associator defined in the previous
paragraph one sets x =Ω12 and y =Ω23.

Theorem 4.2.3 Let g be a color Lie bialgebra and Ω ∈ g ⊗ g a symmetric invariant
element. We get a quasi-triangular color quasi-Hopf algebra (U (g)[[t]],∆, ε,Φ ,R), which
we denote by Ag,Ω.

4.2.2 Drinfeld category

Let g+ be a finite dimensional color Lie bialgebra, and g = D(g+) = g+ ⊕ g− be the
Drinfeld double of g+, with its Casimir Ω. Since Ω is invariant and symmetric, we
get a quasi-triangular color quasi-Hopf algebra Ag,Ω.

We define the categoryMg, whose objects are g-modules and whose morphisms
are given by

HomMg
(V ,W ) = Homg(V ,W )[[t]]. (6)
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4.3. Quantization of color Lie bialgebras

Note that we consider this category to be enriched over grVec so the homomor-
phisms here are graded in general.

We equipMg with the usual tensor product and symmetry given by βV ,W : V ⊗
W →W ⊗V ,v ⊗w 7→ τ exp(ht2 )v ⊗w and associator

ΦV ,W ,U : (V ⊗W )⊗U → V ⊗ (W ⊗U ),v ⊗w⊗u 7→ Φ · v ⊗w⊗u. (7)

This is called Drinfeld category. In fact it is just the category of modules over the
quasi-triangular color quasi-Hopf algebra Ag,Ω.

4.3 Quantization of color Lie bialgebras

Let A be the category of topological free graded K[[t]]-modules, considered as
grVec-category.

Let g+ be a finite dimensional color Lie bialgebra and g =D(g+) be its double. We
consider the Verma modules

M+ =U (g)⊗U (g+) c+ and M− =U (g)⊗U (g−) c−,

where c± is the trivial one dimensional U (g±)-module, concentrated in degree 0.
The module structure on M± comes from its definition as Verma module by acting
on U (g).

Remark 4.3.1 It should be clear that given a graded algebra A, a right A-module
M and a left A-module N , the tensor product M ⊗A N is well defined and again a
graded vector space. If M, was in fact a B-A-bimodule, it is a left B-module, and
similarly for N .

There is also a nice definition for the tensor product over A using a coend. A
graded algebra A can be considered as a category A enriched over grVec with only
one object, which we denote by ∗. A left (resp. right) A-module is precisely a functor
from A (resp. A opp) to grVec. Then the tensor product over A can be defined as

M ⊗AN :=
∫ a∈A

M(a)⊗N (a), (8)

where the integrals symbol denotes a coend.

Note that by the PBW theorem, we have an isomorphism U (g+)⊗U (g−) �U (g) of
vector spaces, which is given by the multiplication in U (g) and in general U (g⊕h) �
U (g)⊗U (h) as vector space.

This implies that
M± =U (g∓)1± (9)

with 1± in M±. So M± are free U (g∓)-modules.
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Lemma 4.3.2 There exists an isomorphism ϕ : U (g) → M+ ⊗M− of U (g)-modules of
degree 0 given on generators by 1 7→ 1+ ⊗ 1−.

Proof. It is well defined by the universal property of U (g), as the extension of x 7→
x1+⊗1− + 1+⊗x1−. It is an isomorphism since U (g) and M± can be regarded as free
connected coalgebras and ϕ clearly is an isomorphism on the primitive elements.

Next we define a grVec-functor F :Mg→A by

F(V ) = HomMg
(M+ ⊗M−,V ). (10)

Since this is just a Hom-functor, its definition on morphisms is clear.
The isomorphism from Lemma 4.3.2 gives an isomorphism

ΨV : F(V )→ V [[t]], f 7→ f (1+ ⊗ 1−). (11)

So the functor F is naturally isomorphic to the “forgetful” functor.
We want to show that F is a tensor functor, for this we need a natural transfor-

mation J : ⊗K[[t]] ◦ (F ⊗ F) → F ◦ ⊗Mg
, which also satisfies JU⊗V ,W ◦ (JU,V ⊗ idW ) =

JU,V⊗W ◦ (idU ⊗JV ,W ).
Define i± :M±→M± ⊗M± by 1± 7→ 1± ⊗1± and extended as g-module morphism.

Clearly i± is of degree 0.

Lemma 4.3.3 The maps i± are coassociative, i.e. Φ ◦ (i± ⊗ id) ◦ i± = (id⊗i±) ◦ i±.

Proof. Following [EK96, Lemma 2.3]. We only prove the identity for i+, since the
proof for i− is analog.

Let x ∈M+. Then since the comultiplication in U (g−) is coassociative we have

(i+ ⊗ id)i+x = (id⊗i+)i+x. (12)

It is enough to show
Φ · (i+ ⊗ id)i+x = (i+ ⊗ id)i+x, (13)

but since Φ is g invariant by definition, it is enough to show this for x = 1+. This
means Φ · 1+ ⊗ 1+ ⊗ 1+ = 1+ ⊗ 1+ ⊗ 1+. Which follows directly from the fact that Ω
annihilates 1+ ⊗ 1+ and the definition of Φ .

We define J by

JV ,W (v,w) = (v ⊗w) ◦Φ−1
1,2,34 ◦ (id⊗Φ2,3,4) ◦ β2,3 ◦ (id⊗Φ−1

2,3,4) ◦Φ1,2,34 ⊗ (i+ ⊗ i−) (14)

for v ∈ F(V ),w ∈ F(W ). Since all involved maps are of degree 0, J is also of degree 0.
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4.3. Quantization of color Lie bialgebras

The maps can be given by a diagram

M+ ⊗M−→ (M+ ⊗M+)⊗ (M− ⊗M−)→M+ ⊗ ((M+ ⊗M−)⊗M−)
→M+((⊗M− ⊗M+)⊗M−)→ (M+ ⊗M−)⊗ (M+ ⊗M−)→ V ⊗W.

(15)

Actually in the graded case there is a better definition:

JV ,W : Hom(M+ ⊗M−,V )⊗Hom(M+ ⊗M−,W )
⊗−→Hom(M+ ⊗M− ⊗M+ ⊗M−,V ⊗W )

Hom(β23,·)−−−−−−−−−→Hom(M+ ⊗M+ ⊗M− ⊗M−,V ⊗W )
Hom(i+⊗i−,·)−−−−−−−−−−−→Hom(M+ ⊗M−,V ⊗W ).

Theorem 4.3.4 The functor F together with the natural transformation J forms a tensor
functor.

Proof. One only needs the check the equation

F(ΦUVW ) ◦ JU⊗V ,W (JU,V ⊗ id) = JU,V⊗W ◦ (id⊗JV ,W ). (16)

The proof given for this in [ES02] is diagrammatically, so it also holds in the color
case.

Let End(F) be the color algebra of natural endomorphisms of F. In fact what we
mean here is

End(F) =
∫
V ∈Mg

Hom(F(V ),F(V )), (17)

as stated in more detail in Appendix B. This is the end in the category grVec en-
riched over itself, so it is a color vector space. We need to use this definition since
in the “classical” one the natural transformations must consist of morphisms of de-
gree 0. A natural transformation in this sense consist of a family ηV of graded maps
V → V , which satisfy the “normal” relation for a natural transformation but with
additional sings, this means

ηWF(f ) = ε(η,f )F(f )ηV . (18)

We say that η ∈ End(F) is of degree i if all ηV are of degree i. So End(F) =
⊕

g∈Γ Endg(F)
is a graded vector space, where Endg(F) consists of the natural transformations of
degree g.

Proposition 4.3.5 There is a canonical color algebra isomorphism

Θ :U (g)[[t]]→ End(F),x 7→ x·, (19)

where x· on the right denotes the action induced on every U (g)-module.
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Proof. End(F) and F(M+⊗M−) are isomorphic due to the Yoneda lemma for enriched
categories. Since M+ ⊗M− is isomorphic to U (g) as U (g)-module, End(F) is in fact
isomorphic to U (g).

There is a more explicit way of proving this following [Gee06]:
We can identify F(V ) with V [[t]]. The mapΘ is injective since the action ofU (g) on

itself is injective. We want to show that is surjective. Let η ∈ End(F), and we identify
ηV with a map V [[t]]→ V [[t]]. We define x := ηU (g)(1). We claim that ηV = x·. For
y ∈U (g) we define ry ∈ End(U (g)) by ry(z) = ε(y,z)zy for z ∈U (g). We have

ηU (g)(y) = ηU (g)(ry1) = ε(x,y)ryηU (g)(1) = ε(x,y)ryx = xy. (20)

So we get ηU (g) = x·. Similarly one shows that ηV = x· for any free g-modules V and
since any g-module is a quotient of a free one the claim follows.

We define J ∈U (g)⊗U (g)[[t]] by

J = (ϕ−1 ⊗ϕ−1)(Φ−1
1,2,34(1⊗Φ2,3,4)β2,3(id⊗Φ2,3,4)Φ1,2,34(1+ ⊗ 1+ ⊗ 1− ⊗ 1−)). (21)

This means JU (g),U (g)(ϕ−1⊗ϕ−1)(1+⊗1−). With this the natural transformation J can
be identified with the action of the element J .

Proposition 4.3.6 Using Ψ as defined in Eq. (11), we have

J · (v ⊗w) = ΨV⊗W (JV ,W (Ψ −1
V (v)⊗Ψ −1

W (w))) (22)

for v ∈ V [[t]],w ∈W [[t]].

Proof. For each v ∈ V [[t]] we define fv : M+ ⊗M− → V by fv(x) = ε(v,x)x · v. Then
fv(1+ ⊗ 1−) = v, since 1+ ⊗ 1− is the unit in M+ ⊗M−. So we have fv = Ψ −1(v) Let
θ1 ⊗θ2 := (ϕ ⊗ϕ)J ∈ (M+ ⊗M−)⊗2. Then the right hand side gives

(JV ,W (Ψ −1
V (v)⊗Ψ −1

W (w)))(1+ ⊗ 1−) = (fv ⊗ fw)(θ1 ⊗θ2) = ε(w,θ1)fv(θ1)⊗ fw(θ2) (23)

= ε(w,θ1)ε(v,θ1)ε(w,θ2)ϕ−1(θ1) · v ⊗ϕ−1(θ2) ·w (24)

and the left hand side gives

ϕ−1(θ1)⊗ϕ−1(θ2)(v ⊗w) = ε(θ2,v)ϕ−1(θ1) · v ⊗ϕ−1(θ2) ·w.

These two are equal since J and with this θ1 ⊗θ2 are of degree 0.

Lemma 4.3.7 We have
J ≡ 1 +

t
2
r mod t2. (25)
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4.3. Quantization of color Lie bialgebras

Proof. Recall that r =
∑
mi ⊗pi , where the pi form a basis of g+ and the mi form the

corresponding dual basis of g−. We have τ(r) · (1− ⊗ 1+) = 0, since pi acts trivially on
1+. So we have using Φ ≡ 1 mod t2

J ≡ (ϕ−1 ⊗ϕ−1)etΩ23/2(1+ ⊗ 1− ⊗ 1+ ⊗ 1−) mod t2

≡ 1 +
t
2

(ϕ−1 ⊗ϕ−1)(r23 + τ(r23))(1+ ⊗ 1− ⊗ 1+ ⊗ 1−) mod t2

≡ 1 +
t
2

(ϕ−1 ⊗ϕ−1)(1+ ⊗ pi1− ⊗mi1+ ⊗ 1−) mod t2

≡ 1 +
t
2
piϕ

−1(1+ ⊗ 1−)⊗miϕ−1(1+ ⊗ 1−) mod t2

≡ 1 +
t
2
r mod t2.

Definition 4.3.8 We can now define a color Hopf algebra H on U (g)[[t]] by

∆ = J−1∆0J, ε = ε0 and S =QS0Q
−1,

with Q = µ(S0 ⊗ id)J .

We want to give the corresponding color Hopf algebra structure on End(F) under
the isomorphisms Θ. For this we first need:

Lemma 4.3.9 We have

End(F)⊗End(F) = End(F ⊗F) (26)

as algebras. Here F ⊗ F :Mg ⊗Mg→ A denotes the functor defined by (F ⊗ F)(V ,W ) =
F(V )⊗F(W ).

Proof. This can be seen using the enriched Yoneda Lemma for Mg and Mg ⊗Mg

since we have End(F) = Hom(U (g),U (g)) �U (g) and End(F⊗F) = Hom(U (g),U (g))⊗
Hom(U (g),U (g)). This shows that End(F)⊗End(F) �U (g)⊗U (g) � End(F ⊗F).

There is a natural coproduct on End(F) given by

∆(a)V ,W = J−1
V ,W aV⊗W JV ,W (27)

and End(F) becomes a bialgebra with it. It fact it is a Hopf algebra. This follows
directly from the fact that (F,J) is a tensor functor, which gives that J is a twist. The
twisted coproduct is precisely the one given here and the twisted Φ is trivial. We
have that H � End(F) as Hopf algebra.
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Proposition 4.3.10 The Hopf algebra H is a quantization of the color Lie bialgebra g.
Moreover we define an R-matrix on H by

R = (Jopp)−1e
t
2Ω. (28)

Then (H,R) is a quasitriangular quantization of (g, r).

Proof. By definition H
/
tH is a isomorphic to U (g) as color Hopf algebra. From

Lemma 4.3.7 and the definition of the coproduct it follows that ∆1(x) = 1
2r∆0(x) +

1
2∆0(x)r = 1

2 [∆0(x), r], so we have δ(x) = ∆1(x)−∆opp
1 (x) = 1

2 [∆0(x), r−τ(r)] = [∆0(x), r],
since r + τ(r) =Ω, which is g invariant.

The element R is an R-matrix, because it is obtained by twist. From Lemma 4.3.7
we immediately get R ≡ 1⊗ 1 + t(1

2r −
1
2τ(r) + 1

2Ω) ≡ 1⊗ 1 + rt mod t2.

4.3.1 Quantization of g+ and g−

As shown before, we have End(F) � End(M+ ⊗M−), since both are isomorphic to
U (g) as color algebras. So we can define Ut(g+) = F(M−) and embed it into H via the
map i : F(M−)→ End(M+ ⊗M−) given by

i(x) = (id⊗x) ◦Φ ◦ (i+ ⊗ id) (29)

for x ∈ F(M−). Then i is injective, and satisfies

i(x) ◦ i(y) = i(z) (30)

for x,y ∈ F(M−) and z = x◦(id⊗y)◦Φ◦(i+⊗id) ∈ F(M−). SoUt(g+) is a color subalgebra
of H .

We next want to show that it is indeed a color Hopf subalgebra, for this we need:

Proposition 4.3.11 The R-matrix of H is polarized which means that R ∈ Ut(g+) ⊗
Ut(g−) ⊂H ⊗H .

Proof. Following [ES02, Lemma 19.4]. The defining equation of R is equivalent to

R ◦ β−1
23 ◦ (i+ ⊗ i−) = β23 ◦ (i+ ⊗ i−) (31)

in Hom(M+⊗M−,M+⊗M−⊗M+⊗M−), where we regard R as en element in Hom(M+⊗
M− ⊗M+ ⊗M−,M+ ⊗M− ⊗M+ ⊗M−).

Using the counit we have

β23(i+ ⊗ i−) = (id⊗ε id⊗ id⊗ε id⊗)β34(id⊗i+ ⊗ i− ⊗ id)(i+ ⊗ i−)
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and using Eq. (31) in the middle and then the coassociativity of i+ and i− we further
get

β23(i+ ⊗ i−) =(id⊗ε id⊗ id⊗ε id⊗)(id⊗R⊗ id)β34(id⊗i+ ⊗ i− ⊗ id)(i+ ⊗ i−)
=(id⊗ε id⊗ id⊗ε id⊗)(id⊗R⊗ id)β34(i+ ⊗ id⊗ id⊗i−)(i+ ⊗ i−).

So we have proved

R = (id⊗ε⊗ id⊗ id⊗ε⊗ id) ◦ (id⊗R⊗ id) ◦ (i+ ⊗ id⊗ id⊗i−).

We define maps p± :Ut(g∓)∗→Ut(g±) by

p+(f ) = (id⊗f )(R) resp. p−(g) = (g ⊗ id)(R). (32)

Let imp± be the image of p± and U± be the color algebra generated by it, then we
have:

Lemma 4.3.12 The algebra U± is closed under the coproduct and the antipode, so it is a
Hopf-algebra.

Proof. Using the hexagon identity, it is easy to set that for x = (id⊗f )(R) ∈ imp± the
element ∆(x) is in U± ⊗U±.

Lemma 4.3.13 We have Ut(g±)⊗K[[t]] K((t)) =U± ⊗K[[t]] K((t)).

Proof. The proof in [ES02, Lemma19.5] works also in the color case.

With this we can now prove the main theorem of this section, which shows that
the construction given can be used the quantize every finite dimensional Lie bialge-
bra.

Theorem 4.3.14 Ut(g±) is a color Hopf algebra and a quantization of g+.

Proof. From the previous lemmas it follows that, it is a color Hopf subalgebra of
Ut.

4.4 Quantization of triangular color Lie bialgebras

Let a be a not necessarily finite dimensional triangular color Lie bialgebra, then
we define g+ := {(1⊗ f )(r), f ∈ a∗}, g− := {(f ⊗ 1)(r), f ∈ a∗} and g = g+ ⊕ g−. One can
identify g− with g+ via the map χ(f ) = (f ⊗ id)(r). Then one can define a Lie bracket
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on g, such that for x,y ∈ g± it is the Lie bracket in g± and for x ∈ g+, y ∈ g− it is defined
by

[x,y] := (ad∗ x)(y)− ε(x,y)(ad∗ y)(x). (33)

One can define a map π : g → a, such that the restriction to g+ and g− is the
embedding. With this one has

π([x,y]) = [π(x),π(y)]. (34)

Proposition 4.4.1 The bracket on g defined above actually is a color Lie bracket, and the
natural pairing gives an invariant inner product, so in fact a color Manin triple.

Let Ma be the category of a-modules, with morphisms given by Hom(V ,W ) =
Homa(V ,W )[[t]], this again can be viewed as a category enriched over grVec. Using
the morphisms π one can define the pullback functor π∗ :Ma→Mg to the Drinfeld
category of g. One can also pullback the monoidal structure along this functor.
Ω := r + τr is g invariant, this is needed to pullback the monoidal structure.
Using the pullback functor π∗ and the Verma modules defined before one can

define a functor F :Ma→A by

F(V ) := HomMh
(M+ ⊗M−,π∗(V )). (35)

The functor F is again isomorphic to the forgetful functor, and so we have H :=
End(F) =U (a[[t]]). In the same way as before one can define a tensor structure on F,
and with this a deformed bialgebra on H .

Note that if a was in fact triangular then, we have Ω = 0 and the Hopf algebra is
also triangular.

So essentially following the construction in the previous section, one gets the
following

Theorem 4.4.2 Any quasitriangular color Lie bialgebra admits a quasitriangular quan-
tization Ut(g), and if g is triangular, the quantization is also triangular.

4.5 Second quantization of color Lie bialgebras

4.5.1 Topological spaces

We recall some basic facts about topological vector spaces in the non-graded set-
ting, which we will need in the following.

Let F be a space of functions into a topological space, then the weak topology is
the initial topology with respect to the evaluation maps. Let V andW be topological
vector spaces. We use on Hom(V ,W ) the weak topology, for which a basis is given
by

{f ∈Hom(V ,W )|f (vi) ∈Ui , i = 1, . . . ,n}U1,...,Un,v1,...,vn
, (36)
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where Ui are open sets in W and vi are elements in V . Let K be a field of character-
istic zero, with the discrete topology, and V a topological vector space over K. Then
its topology is called linear if the open subspaces form a basis of neighborhoods of
0.

Let V be a topological vector space with a linear topology, then V is called sep-
arated if the map V → proj limU open subspace(V

/
U ) is injective, this is e.g. the case

when V is discrete, i.e. 0 is an open set. All topological vector spaces we consider
will be linear and separated, so we will just call them topological vector spaces.

If V is finite dimensional than the weak topology on Hom(V ,K) is the discrete
topology. In general a neighborhood basis of zero is given by cofinite dimensional
subspaces.

A topological vector space is called complete if the canonical map
V → proj limU open subspace(V

/
U ) is surjective.

Let V andW be topological vectors spaces, we define the topological tensor prod-
uct by

V ⊗̂W = proj lim V
/
V ′ ⊗ W

/
W ′ , (37)

where V ′ ,W ′ run over open subspaces of V resp. W . With this we have:

Proposition 4.5.1 Complete vector spaces with continuous linear maps form a symmet-
ric monoidal category.

Topology and grading

A topological color vector space is a color vector space V =
⊕

i∈Γ , where each
space Vi is a topological vector space. A linear map between topological color vector
spaces is continuous if each homogeneous part is continuous.

For a graded vector space we say that it is complete, separated or has a given
property if every space Vi has this property. The tensor product can also be defined
by replacing the usual tensor product over vector spaces by the completed one. We
note that the tensor product involves the direct sum

⊕
j∈Γ Vi ⊗Wi−j , for which a

priori it is not clear whether it is complete. But it turns that here since the considers
topologies are linear, this is the case.

In fact using the construction, which defines graded vector spaces as functors, one
just replaces the category of vector spaces by the category of complete vector spaces
and gets a category of graded complete vector spaces, which is again monoidal due
to Proposition 4.5.1.

4.5.2 Manin triples

Let a be a color Lie bialgebra with discrete topology, i.e. each ai is equipped with
the discrete topology, and a∗ its dual with the weak topology. Since a is discrete a∗
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is the full graded dual. The cocommutator defines a continuous Lie bracket on a∗.
We have a natural topology on a⊕a∗ and the above defines a continuous Lie bracket
with respect to this topology.

Let g be a Lie algebra, with a nondegenerate inner product 〈·, ·〉 and g+ and g−
be two isotropic Lie subalgebras, i.e. 〈g+,g+〉 = 0, such that g = g+ ⊕ g−. Then the
inner product defines an embedding g− → g∗+. To get a topology on g we equip g+
with the discrete topology and g− with the weak topology. If the Lie bracket on g is
continuous in this topology we call (g,g+,g−) a Manin triple.

To every color Lie bialgebra a one can associate a color Manin triple by (a ⊕
a∗,a,a∗), and conversely every color Manin triple gives a Lie bialgebra on g+. Note
that here different from in the finite dimensional case the Manin triple is no longer
symmetric in g+ and g−.

4.5.3 Equicontinuous g-modules

Let M be a topological vector space and {Ax}x∈X a family in EndM indexed by an
arbitrary set X. Then {Ax}x∈X is equicontinuous if for all open neighborhoods U of
0 in M there exists a open neighborhood V such that AxV =U for all x ∈ X.

Definition 4.5.2 Let M be a complete topological color vector space then we call
M an equicontinuous g-module if there is a continuous color Lie algebra morphism
π : g→ End(M) such that {π(g)} is an equicontinuous family.

For two equicontinuous g-modulesM,N , we have thatM ⊗̂N is again an equicon-
tinuous g-module. Further (V ⊗W )⊗U can be identified with V ⊗(W ⊗U ) and V ⊗W
with W ⊗ V by the flip. So we can define the symmetric monoidal categoryMe

0 of
equicontinuous g-modules.

We define again the Verma modules M± by M± = Indgg± 1 =U (g) ⊗̂U (g±) 1.

Lemma 4.5.3 The module M− equipped with the discrete topology is an equicontinuous
g-module.

Proof. This is true in the non-graded case, see e.g. [EK96], so it also holds in the
color case since it can be checked in each degree.

We want to define a topology on M+, for this we first define a topology on U (g−).
We have Un(g−) � ⊕k≤nSkg−. We equip Skg− with the weak topology coming from
the embedding into (g⊗k+ )∗. This gives a topology onUn(g−). Finally we put onU (g−),
and with this onM+, the topology coming from the inductive limit limUn(g) =U (g).
Similar to [EK96] we get:

Lemma 4.5.4 For all g ∈ g the map πM+
(g) :M+→M+ is continuous.
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Next we need a topology on M∗+. For this we note that Un(g−)∗ �
⊕

k≤nS
kg+, so

we equip Un(g−)∗ with the discrete topology. Since U (g−)∗ is the projective limit of
Un(g−)∗, it carries the corresponding topology.

Lemma 4.5.5 M∗+ is an equicontinuous g-module.

However M+ is not equicontinuous in general.
Let r ∈ a⊗̂a∗ be the element corresponding to the identity under the isomorphism

a⊗̂a∗→ End(a). Further we have ropp ∈ a∗ ⊗̂a then one can define a Casimir element
Ω = r + ropp ∈ a ⊗̂ a∗ ⊕ a∗ ⊗̂ a ⊂ g⊗ g.

LetMt
g be the category of equicontinuous g-modules and morphisms

HomMt
g
(V ,W ) = Homg(V ,W )[[t]], (38)

where the Hom on the right denotes the continuous g-module morphisms.
We define a natural transformation γ by γV ,W = β−1

W,V ∈ Hom(V ⊗W,W ⊗V ) for
V ,W ∈Me.

Using the completed tensor product, we can define the structure of a braided
monoidal category onMt

g using Φ and γ similarly to Section 4.3.

4.5.4 Tensor functor F

Let V be a complete color space over K then the space V ⊗̂ K[[t]] is a again a
complete color space, and carries a natural structure of a topological color K[[t]]-
module. A K[[t]]-module is called complete if it is isomorphic to V [[t]] for a complete
color space V .

Let A c be the category of complete color K[[t]]-modules. On complete K[[t]]-

modules we define a tensor product V ⊗̃W = V ⊗̂W
/
< 1⊗ t − t ⊗ 1 > . And with this

a color K[[t]]-modules by (V ⊗̃W )i =
⊕

j∈Γ (Vj⊗̃Wi−j ).
We define a functor F from the categoryMt

g of equicontinuous g-modules to the
category of complete color vector spaces A c, by V 7→Hom(M−,M∗+ ⊗V ).

We can define a comultiplication on M∗+ by

i∗+ :M∗+ ⊗M∗+→M∗+ : i∗+(f ⊗ g)(x) := (f ⊗ g)(i+(x)) (39)

for f ,g ∈M∗+. This is continuous.

Proposition 4.5.6 There are isomorphisms ΨV : F(V )→ V for all V ∈ Mt
g natural in

V , given by
f 7→ (ev(1+)⊗ id)f (1−) (40)

Proof. This follows from Frobenius reciprocity.
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4. Quantization

This shows that F is natural isomorphic to the forgetful functor.
We now define a tensor structure on the functor F. Similar to (21) we define,

JV⊗W (v ⊗w) by

M−
i−−→M− ⊗M−

v⊗w−−−−→ (M∗+ ⊗V )⊗ (M∗+ ⊗W )
Φ−→M∗+ ⊗ ((V ⊗M∗+)⊗W )

γ23−−−→M∗+ ⊗ ((M∗+ ⊗V )⊗W )
Φ−→ (M∗+ ⊗M∗+)⊗ (V ⊗W )

i∗+⊗id⊗ id
−−−−−−−−→M∗+ ⊗ (V ⊗W ).

That is (without associators)

JVW (v ⊗w) = (i∗+ ⊗ id⊗ id) ◦ (id⊗γ ⊗ id) ◦ (v ⊗w) ◦ i−. (41)

Again one can write down a version without using explicitly the maps v and w,
which do not exist in the categorical sense for the graded case.

Lemma 4.5.7 We have
Φ ◦ (i− ⊗ id) ◦ i− = (id⊗i−) ◦ i− (42)

and
Φ ◦ (i∗+ ⊗ id) ◦ i∗+ = (id⊗i∗+) ◦ i∗+, (43)

i.e. i− and i∗+ are coassociative in Hom(M−, (M−)⊗3) and Hom(M∗+, (M
∗
+)⊗3) resp.

Proposition 4.5.8 The maps JVW are isomorphisms and define a tensor structure on F.

Proof. They are isomorphisms because they are isomorphisms modulo t.

4.5.5 Quantization of color Lie bialgebras

Let H = End(F) be the algebra of endomorphisms of the fiber functor F, where
End(F) is again to be understood in the enriched sense. LetH0 be the endomorphism
algebra of the forgetful functor from Me

0 to the category of complete color vector
spaces. The algebra H is naturally isomorphic to H0[[t]].

Let F2 : Me ×Me → A c be the bifunctor defined by F2(V ,W ) = F(V ⊗W ) and
H2 = End(F2) then H ⊗H ⊂H2 but not necessarily H2 =H ⊗H .
H has a “comultiplication” ∆ :H →H2, defined by

∆(a)VW (v ⊗w) = J−1
VW aV⊗W JVW (v ⊗w). (44)

For x ∈ F(M−) we define m+(x) ∈ End(F) by

m+(x)(v) = ε(x,v)i∗+ ⊗ id◦Φ−1 ◦ (id⊗v) ◦ x (45)

for v ∈ F(V ).
We define Ut(g+) ⊂H as the image of m+. The map m+ is an embedding since it is

so modulo t.
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4.6. Simple color Lie bialgebras of Cartan type

Proposition 4.5.9 Ut(g+) is a subalgebra of H .

Proof. Since i∗+ is coassociative we get

m+(x)m+(y)(v) = ε(x,yv)ε(y,v)(i∗+ ⊗ id)Φ−1(id⊗i∗+ ⊗ id)Φ−1
2,3,4(id⊗ id⊗v)(id⊗y)x

=ε(x,y)ε(x,v)ε(y,v)(i∗+ ⊗ id)(i∗+ ⊗ id⊗ id)Φ−1
1,2,3Φ

−1
1,23,4Φ

−1
2,3,4(id⊗ id⊗v)(id⊗y)x

=ε(x,y)ε(xy,v)(i∗+ ⊗ id)(i∗+ ⊗ id⊗ id)Φ−1
12,3,4Φ

−1
12,3,4(id⊗ id⊗v)(id⊗y)x

=ε(x,y)ε(xy,v)(i∗+ ⊗ id)Φ−1(id⊗v)(⊗i∗+ ⊗ id)Φ−1(id⊗y)x

=ε(xy,v)(i∗+ ⊗ id)Φ−1(id⊗v)z

=i(z)v,

where z = (⊗i∗+ ⊗ id)Φ−1(id⊗y)x.

Proposition 4.5.10 The algebra Ut(g+) is closed under the coproduct.

Proof. The proof in [ES02, Section 21.2] is pictorial so it can also be used in the color
case.

The element ∆(m+(x)) is uniquely defined by the equation

(i∗+ ⊗ id⊗ id) ◦ (id⊗i∗+ ⊗ id⊗ id) ◦γ34 ◦ (id⊗v ⊗w) ◦ (id⊗i−) =

(i∗+ ⊗ id⊗ id) ◦γ23 ◦∆(m+(x))(v ⊗w) ◦ i−
(46)

for v ∈ F(V ),w ∈ F(W ).
We want to get

(i∗+ ⊗ id⊗ id) ◦γ23 ◦ (i∗+ ⊗ id⊗i∗+ ⊗ id) ◦ (id⊗v ⊗ id⊗w) =

(i∗+ ⊗ id⊗ id) ◦ (i∗+ ⊗ id⊗ id⊗ id) ◦γ34 ◦ (id⊗v ⊗w) ◦ (i∗+ ⊗ id⊗ id) ◦γ23.

This finishes the proof of the main theorem of this chapter and we can state:

Theorem 4.5.11 Ut(g+) is a quantization of g+, so for every Lie bialgebra there exists a
QUE.

4.6 Simple color Lie bialgebras of Cartan type

In the case of super Lie algebras, there are the so called classical simple ones of
type A-G, see e.g. [Kac77].

Let A = (Aij )i,j∈I be a Cartan matrix, I = {1, . . . , s} and τ ⊂ I the set corresponding
to odd roots.
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4. Quantization

Let g be the Lie superalgebra generated by hi , ei and fi for i ∈ I . We can put a
Zs-grading on it as follows. We denote by zi the i-th generator. The elements hi are
all of degree zero and deg(fi) = −deg(ei) = zi . So we consider g to be graded by the
root system. The commutation factor is given by ε0(zi , zj ) = −1 if either i ∈ τ or j ∈ τ
and ε(zi , zj ) = 1 else.

The generators satisfy the relations

[hi ,hj ] = 0, [hi , ej ] = Aijej , [hi , fj ] = −Aijfj , [ei , ej ] = δijhi (47)

and the so called super classical Serre-type relations

[ei , ej ] =[fi , fj ] = 0

(adei)
1+|Aij |ej =(adfi)

1+|Aij |fj = 0 if i , j, i < τ

[em, [em−1, [em, em+1]]] =[fm, [fm−1, [fm, fm+1]]] = 0 for m− 1,m,m+ 1 ∈ I,Amm = 0

[[[em−1, em], em], em] =[[[fm−1, fm], fm], fm] = 0

if the Cartan matrix is of type B and τ =m,s =m.

The relations respect the Zs-grading so g can be considered as a Zs-graded algebra.

For a set of constants εij ∈ K×, i, j = 1, . . . , s. We define σ (a,b) =
∏s
i,j=1 εijaibj for

a,b ∈ Zs. Then σ : Zs ×Zs → K× is a bicharacter and ε′(a,b) = σ (a,b)σ1(b,a) a com-
mutation factor. We set ε = ε′ε0. And for x,y ∈ g, we define [x,y]′ = σ (x,y)[x,y].
With this bracket g becomes a ε-color Lie algebra. This is precisely the construction
given in Section 2.6.

There are different r-matrices on these Lie algebras, see e.g. [Kar04]. Not all of
them given there respect the Zs-grading, but the standard r-matrices given by r =∑
hi ⊗ hi +

∑
α∈∆+ eα ⊗ fα do. Here ∆+ denotes the set of positive roots.

For these super-Lie bialgebras there is a well known quantization given by the so
called Drinfeld-Jimbo-type superalgebras. To define them we first need:

[
m+n
n

]
t

=
n−1∏
i=0

tm+n−i − t−m−n+i

ti+1 − t−i−1 . (48)

Assume that the Cartan matrix A is symmetrizable that is there are non-zero ratio-
nals number d1, . . . ,ds such that diAij = djAji . Set q = et/2 and qi = edi .

Let U (g) be the C[[t]] superalgebra generated by hi , ei and fi , i = 1, . . . s and rela-
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4.6. Simple color Lie bialgebras of Cartan type

tions

[hi ,hj ] =0, [hi , ej ] = Aijej , [hi , fj ] = −Aijfj

[ei , ej ] =δij
qdihi − q−dihi
qi − q−1

i

e2
i =0 for i ∈ I,Aii = 0

[ei , ej ] =0, i, j ∈ I, i , j,Aij = 0
1+|Aij |∑
k=0

(−1)k
[

1 + |Aij |
k

]
t

e
1+|Aij |−k
i eje

k
i = 0,1 ≤ i, j ≤ s, i , j, i < τ

emem−1emem+1 + emem+1emem−1 + em−1emem+1em

+ em+1emem−1em(q+ q−1)emem−1em+1em = 0,m− 1,m,m+ 1 ∈ I,Amm = 0

em−1e
3
m−1 − (q+ q−1 − 1)emem−1e

2
m − (q+ q−1 − 1)e2

mem−1em + e3
mem−1 = 0

if the Cartan matrix is of type B and τ =m,s =m,

and the same relations where ei is replaced by fi . For more details on these super
QUE algebras see e.g. [Yam94].

Note that again all relations are compatible with the Zs-grading. Again we set
xy = σ (x,y)xy, and get so a ε-color algebra.

We can define a comultiplication on U (g) by specifying it on generators as

∆(ei) = ei ⊗ qdihi + 1⊗ ei
∆(fi) = fi ⊗ q−dihi + 1⊗ fi
∆(hi) = hi ⊗ 1 + 1⊗ hi
ε(hi) = ε(fi) = ε(ei) = 0

Here the ε does not appear, but in does if one computes the comultiplication of other
elements. Since it appears in the definition of the multiplication on U (g)⊗U (g).

We this we get a color Hopf algebra.
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5. Definitions

Contents
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In this section we recall the basic definitions of Hom-associative and Hom-Lie al-
gebras, as well as their modules. We will also construct the corresponding free

algebras. We also give some operadic consideration. Here we give some morphism
between operads and their corresponding left adjoint functors on the category of
algebras if possible. We also define Hom-bialgebra and Hom-Lie bialgebras. For the
later we also define Hom-Manin triple.

This is mostly well known, except the Hom-Manin triples and maybe some small
remarks concerning operads.

Let K be a field of characteristic zero, but note that most constructions should
also work in other characteristics, not 2, or if K is a nice (containing the rational
numbers) commutative ring. Especially all definitions of the different type of alge-
bras in this chapter can be used in this more general setting and we will make use
of this later.

By Vec we denote the category of vector spaces over K. We consider it to be
symmetric monoidal with the trivial associator and symmetry τ : V ⊗W →W ⊗V
the usual flip.
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5. Definitions

5.1 Hom-modules and Hom-magmatic algebras

Definition 5.1.1 (Hom-module) A Hom-module (V ,α) is a vector space V together
with a linear map α : V → V , called structure map. A morphism between Hom-
modules (V ,α) and (W,β) is a linear map ϕ : V → W such that ϕ ◦ α = β ◦ϕ. We
denote the set of these by Hom((V ,α), (W,β)).

Sometimes we will also write Homα(V ,W ) for the set of Hom-module morphisms.
A Hom-submodule U of a Hom-module (V ,α) is a subspace U of V , which is

preserved by α, i.e. α(U ) ⊂U .
There is an operad describing Hom-modules, it is the free operad generated by

one operation α in arity 1. We denote this operad by HMod.
The class of all Hom-modules obviously forms a category, which we denote by

HomMod. There also clearly is a direct sum and product of arbitrary sets of Hom-
modules. One can also define the tensor product of two Hom-modules in the obvi-
ous way, i.e. it is given by (V ⊗W,α ⊗ β).

There is a forgetful functor O : HomMod→ Vec which forgets the structure map
α. It has a right adjoint FHMod : Vec→ HomMod, and for a vector space V we call
FHMod(V ) the free Hom-module on V . It is given by FHMod(V ) =

⊕
N0
V , and α is

given by the right shift, i.e. α(x1,x2, . . .) = (0,x1,x2, . . . ). It is clear that any element
in FHMod(V ) is of the form

∑n
k=1α

ik (xk) for some ik ∈ N0 and xi ∈ V . Since this
is just the polynomial algebra in one variable, we will often write V [α] instead of
FHAss(V ).

Definition 5.1.2 (regular Hom-module) We call a Hom-module (V ,α) regular if α is
invertible.

There is again an operad describing regular Hom-modules, it is given by the
operad generated by two operations α,α−1 in arity one, which satisfy α ◦ α−1 =
id = α−1 ◦ α. We denote it by rHMod. The free regular Hom-module is given by
FrHMod(V ) =

⊕
ZV with structure map given by the right shift. We also write

V [α,α−1] for it. In this case the structure map is given by the multiplication with α.

Definition 5.1.3 (Hom-magmatic algebra) A Hom-magmatic (or non-associative) al-
gebra is a Hom-module A together with a linear map µ : A ⊗ A → A, called the
multiplication. It is called multiplicative if it satisfies α ◦µ = µ ◦ (α ⊗α).

We will in this thesis mostly work with multiplicative Hom-algebras and assume
that all Hom-algebras are multiplicative if not stated otherwise.

A morphism of two Hom-magmatic algebras A and B is a morphism of the un-
derlying Hom-modules, which respects the product. So there is a category of mul-
tiplicative Hom-magmatic algebras which we denote by HomMag.
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5.1. Hom-modules and Hom-magmatic algebras

Definition 5.1.4 (Ideal, Subalgebra) A subalgebra of a Hom-algebra (A,µ,α) is a Hom-
submodule U of A, such that µ(U,U ) ⊂U .

An ideal of a Hom-algebra (A,µ,α) is a Hom-submodule I of A, such that µ(I,A) ⊂
I and µ(A,I) ⊂ A.

Given a Hom-algebra A and an ideal I , one can define on the quotient A
/
I a

Hom-algebra. In the case of Hom-associative and Hom-Lie algebras the quotient is
again if this type.

There is a forgetful functor O : HomMag → HomMod, which has a left adjoint
FHMag : HomMod→HomMag and for a Hom-module V we call FHMag(V ) the free
Hom-magmatic algebra.

The free Hom-magmatic algebra for a Hom-module (V ,α) can be explicitly con-
structed by using planar binary trees. We denote the set of planar binary trees with
n inputs by n -pbTree. Given two such trees ϕ,ψ we define a new tree ϕ ∨ψ, which

we call the grafting of ϕ and ψ, by

ϕ ψ

We define

FHMag(V ) =
⊕
n∈N

⊕
n -pbTree

n⊗
i=1

V . (1)

Given a planar binary n-tree ϕ and x1, . . . ,xn ∈ V , we define an element in FHMag(V )
by (x1, . . . ,xn)ϕ. This is the tree ϕ were the outputs are decorated from left to right
by x1 to xn. The product of two such elements is given by (x1, . . . ,xn)ϕ(y1, . . . , yn)ψ =
(x1, . . . ,xn, y1, . . . , yn)ϕ∨ψ.

The structure map is given by α((x1, . . . ,xn)ϕ) = (α(x1), . . . ,α(xn))ϕ.
There is an operad, which describes multiplicative Hom-magmatic algebras, we

denote it by HMag. It can be defined by FOp(V )
/
< R > , where V is spanned by µ,α,

where µ is a binary operation and α takes one argument, and R = αµ−µ(α,α). It can
be described by planar binary trees, where each output carries an additional weight
(or height), similar to the free magmatic algebra described in [LGMT18].

In Appendix C.2 we defined operads where each output of each operations carries
a height. In the case of Hom-algebras we assign to α and µ the height 1. The defining
relations of HMag respect this height, so it can be extended to HMag.

There is a forgetful functor O : HomMag → Vec, it has an right adjoint FHMod ,
which assign to any vector space the free multiplicative Hom-magmatic algebra. It
can be constructed as the composition FHModFHMag .

We also define regular Hom-magmatic algebras as Hom-magmatic algebras with
invertible structure map. Again there is an operad describing these and the free
regular Hom-magmatic algebra can be constructed as FHMagFrHMod .
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5. Definitions

We define derivations and α-derivation for Hom-magmatic algebras. Derivations
for other types of (Hom-)algebras can be defined in the same way.

Definition 5.1.5 Let (A,µ,α) be a Hom-magmatic algebra, and ϕ : A→ A a linear
map, then

— we call ϕ a derivation if ϕ(ab) = ϕ(a)b+ aϕ(b),
— we call ϕ an α-derivation if ϕ(ab) = ϕ(a)α(b) +α(a)ϕ(b),
— we callϕ a conjugate α-derivation if α is invertible andϕ(xy) = α(x)α−1ϕα(y)+

α−1ϕα(x)α(y).

5.2 Hom-associative algebras

Definition 5.2.1 (Hom-(associative) algebra) A Hom-associative algebra (A,µ,α), is a
Hom-module (A,α), with a linear map A⊗A→ A, called multiplication, such that

µ ◦ (µ⊗α) = µ ◦ (α ⊗µ). (2)

It is called multiplicative if α is an algebra morphism or equivalently µ is a Hom-
morphism, i.e.

µ(α ⊗α) = αµ. (3)

A unit (sometimes called weak or Hom-unit) is an element 1 ∈ A such that µ(1⊗id) =
α = µ(id⊗1) and α(1) = 1. A Hom-associative algebra with a unit we call a unital
Hom-associative algebra.

Normally we write xy or x · y for µ(x ⊗ y), so the Hom-associativity becomes
α(x)(yz) = (xy)α(z) for all x,y,z ∈ A, and the condition for the unit becomes 1 · x =
α(x) = x ·1.

We call a Hom-associative algebra (A,µ,α) regular if α is invertible. We call it
simple if it has no proper ideal and α , 0.

A morphism of Hom-associative algebras (A,µ,α) and (B,µ,β) is a linear map ϕ :
A→ B, such that ϕα = βϕ and µ(α ⊗α) = βµ. For unital Hom-associative algebras
we also require ϕ(1A) = 1B.

Given a multiplicative Hom-associative algebra A one can always adjoin a Hom-
unit. For this one defines A+ = A⊕K, with multiplication (a,λ)(b,λ′) = (ab+λα(b) +
α(a)λ′ ,λλ′) for a,b ∈ A,λ,λ′ ∈K. Then it is clear that A is a Hom-associative algebra
with unit (0,1) and a 7→ (a,0) is an injective morphism of Hom-algebras.

Also every unital Hom-associative algebra A is multiplicative. For a,b ∈ A, we
have α(ab) = 1(ab) = α(1)(ab) = (1a)α(b) = α(a)α(b).

Remark 5.2.2 One cannot adjoin a true unit to a Hom-associative algebra, since the
new algebra would no longer by Hom-associative. Also if a Hom-associative algebra
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A has a true unit 1, which satisfies α(1) = 1, one has ab = α(1)(ab) = (1a)α(b) = aα(b)
for all a,b ∈ A and further for a = 1 one gets b = α(b). So α is the identity.

The tensor product of two Hom-algebras is again a Hom-algebra.
It is problematic to speak of inverses in the case of Hom-associative objects, since

for example we do not even have the usual definition of unit. Anyhow, we call x ∈ A
the inverse of y ∈ A if x · y = 1 = y · x. Note that if the multiplication comes from a
Yau twist, which is defined later, the inverses stay the same.

We call an element y ∈ A a weak inverse of x ∈ A if there exists an n ∈ N0, such
that αn(yx) = 1 = αn(xy). The set of weak invertible elements is closed under multi-
plication. The set of invertible elements however is not.

There is an operad describing Hom-associative algebras, which we denote by
HAss. Again we can assign to the generating operations α and µ the height 1. This
induces a height on HAss since all relations are homogeneous with height 2. There
is an obvious morphism of operads HAss→ Ass, which is given by µ 7→ µ,α 7→ id.
On algebras it is given by the fact that any associative algebra (A,µ) can be regarded
as a Hom-associative algebra (A,µ, id).

By abstract nonsense one can prove that the functor AssAlg→HomAlg has a left
adjoint. In fact we have

Proposition 5.2.3 Let (A,µ,α) be a multiplicative Hom-associative algebra then the
eigenspace of α to the eigenvalue 1 is an associative algebra, which we denote by A1.
Further if α is diagonalizable, given an associative algebra B, there is a natural isomor-
phism

Hom(A1,B) �Hom(A,B). (4)

Proof. Since α(xy) = α(x)α(y) for x,y ∈ A, it is clear that if x,y are eigenvectors
for α with eigenvalues λx,λy resp. so is xy with eigenvalue λxλy . So Eig(α,1) is a
subalgebra of A. Since α restricted to it is the identity it is associative.

Given ϕ ∈ Hom(A,B), it must satisfy ϕα(x) = ϕ(x), so ϕ(α(x) − x) = 0. Since α
can be assumed to be diagonal, we can assume that x is an eigenvector and we get
x ∈ Eig(α,1) or ϕ(x) = 0. So ϕ is determined on A1. On the other hand every algebra
morphism A1→ B can be extended by zero to a map A→ B. This is a Hom-algebra
morphism.

In the general case one can construct the left adjoint functor F as follows. Let
(A,µ,α) be a Hom-algebra and T (A) the free algebra on A. We consider in T (A)
the ideal I generated by xy − αµ(a,b) and α(x) − x for x,y ∈ A. Then we define

FA := T (A)
/
I . It is easy to see that in the case that α is diagonal this is isomorphic

to A1 by choosing a basis of eigenvectors. If K = C and A is finite dimensional one
can consider the Jordan normalform of α to calculate FA. If there is a nontrivial
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Jordan block to 1, FA is not given by A1 but by the highest generalized eigenvector
for each block to 1.

Proposition 5.2.4 (Yau twist) Let (A,µ,α) be a not necessarily Hom-associative algebra
and γ a morphism of the product, then (A,γ◦µ,γ◦α) is again a Hom-associative algebra,
which we denote by Aγ . If A is multiplicative and γ commutes with α then Aγ is again
multiplicative.

Given two Hom-associative algebras A and B, endomorphism γA : A → A and
γB : B→ B and a morphismϕ : A→ Bwhich satisfiesϕγA = γBϕ, there is an induced
morphism ϕ : AγA → BγB .

We define the operad of associative algebras with an endomorphism, which we
denote by EAss. An algebra over this operad is an associative algebra (A,µ) with an
endomorphism γ : A→ A of it. The free EAss-algebra for a vector space V is given
by the free algebra over FHMod(V ) = V [γ], i.e. the tensor algebra T (V [γ]).

Similar one can define the operad for other types of algebras with an endomor-
phism.

In the case A is an associative algebra the Yau construction is induced by a mor-
phism Y : HAss→ EAss between operads. On generators it is given by µ 7→ γµ and
α 7→ γ . This morphism is not injective, since e.g. µ(α ⊗ µ(µ⊗ µ)) and µ(µ(id⊗α)⊗
µ(µ⊗α)) are both mapped to µ5(α2 ⊗α3 ⊗α3 ⊗α3 ⊗α4). Here µ5 is the composition
of 5 elements.

By abstract nonsense there is again a left adjoint functor to the induced functor
on the category of algebras. In the general case this can be described by the free
EAss-algebra modulo some relations. In the regular case the situation is simpler
and we have:

Proposition 5.2.5 Let (A,µ,α) be a regular Hom-associative algebra and (B,µ),γ an
associative algebra with an endomorphism then

HomEAss(Aα−1 ,B) �Hom(A,Bγ ). (5)

Proof. Given ϕ ∈Hom(A,Bγ ), we have ϕα = γϕ and ϕ(ab) = γ(ϕ(a)ϕ(b)) for a,b ∈ A.
This implies ϕ(α−1(α(a)α(b))) = ϕ(ab) = γ(ϕ(a)ϕ(b)) = ϕ(α(a))ϕ(α(b)). This proves
ϕ ∈HomEAss(Aα−1 ,B) since α is surjective.

The operad of regular Hom-associative algebras is isomorphic to the operad of
associative algebras with an invertible endomorphism. The isomorphism is given
by Y .

We define the operad EHAss for a Hom-algebra with an endomorphism. It is
generated by µ in arity two and α and γ in arity one, with the obvious relations.
Then the Yau construction corresponds to an morphisms of operads Y : EHAss →
HAss given on generators by µ 7→ γµ and α 7→ γα.
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Definition 5.2.6 A Hom-algebra A, which is of the form Ãγ for an associative alge-
bra Ã and an endomorphism γ of it, is called of associative-type.

Proposition 5.2.7 Let (A,µ,α) be a Hom-associative algebra, such that α is invertible
then Aα−1 is an ordinary associative algebra. So A is of associative type.

Proof. Follows directly from Proposition 5.2.4.

We recall the definitions for the dual concept of Hom-coassociative coalgebras.

Definition 5.2.8 (Hom-(coassociative) coalgebra) A Hom-(coassociative) coalgebra (C,∆,β)
is a Hom-module (C,β) with a comultiplication ∆ : C→ C ⊗C, which satisfies

(∆⊗ β)∆ = (β ⊗∆)∆. (6)

It is called comultiplicative if ∆(β ⊗ β) = β∆. A counit is a map ε : C→K, such that
(id⊗ε)∆ = β = (ε⊗ id)∆ and εβ = ε.

A Hom-coalgebra with a counit we call a counital Hom-coalgebra.

We will in the following make use of the Sweedler notation. This means we write
∆(x) = x(1) ⊗ x(2), where on the right hand side there is an implicit sum.

A morphism ϕ : C → D between Hom-coalgebras is defined in the obvious way.
For counital Hom-coalgebras with also require εBϕ = εA.

Given a Hom-coalgebra (C,∆,β), its linear dual with the duals maps of the co-
product and structure map (C∗,∆∗,β∗) is a Hom-associative algebra. Here ∆∗(ϕ ⊗
ψ)(a) = ϕ(a(1))ψ(a(2)) and β∗(ϕ)(a) = ϕ(β(a)) for ϕ,ψ ∈ C∗ and a ∈ C.

Given a Hom-coalgebra (C,∆,β) and a Hom-algebra (A,µ,α), we define the con-
volution product on Hom(C,A) by

ϕ ∗ψ = µ(ϕ ⊗ψ)∆ for ϕ,ψ ∈Hom(C,A). (7)

Proposition 5.2.9 (Hom(C,A),∗,γ : ϕ 7→ α ◦ϕ ◦ β) is a Hom-algebra. Which is multi-
plicative if A and C are multiplicative and comultiplicative resp. Further it is commuta-
tive is A is commutative and C cocommutative.

Proof. This is a simply calculation.

5.2.1 Free Hom-associative algebra

Let (V ,α) be a Hom-module then there exists a free Hom-associative algebra on
V . There is a forgetful functor O : HomAlg → HomMod, which given a Hom-
associative algebra forgets the multiplication. It has a left adjoint FHAss : HomMod→
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HomAlg and we call FHAss(V ,α) the free Hom-algebra on V . So for all Hom-
algebras A there is a natural bijection

HomH (V ,OA) �HomHAlg(FHAss(V ),A). (8)

The free Hom-algebra can be constructed, out of the free Hom-magmatic algebra,
by taking the quotient with respect to an ideal. Let I be the ideal generated by
α(x)(yz)− (xy)α(z). Then we have α(I) = I and FHAss = FHMAg

/
I .

Given a vector space V , one can also construct the free Hom-associative algebra
by FHAssFHMod(V ). It is also possible to define the free regular Hom-associative
algebra by FHAssFrHMod(V ).

In general it is difficult to describe the free Hom-associative algebra or the operad
HAss but we have:

Proposition 5.2.10 Given any two n-ary operations in HAss with the same height greater
or equal than n− 1 they are equal.

Proof. This follows from [LGMT18, Prop. 4.21].

This implies that in any Hom-associative algebra the corresponding operations
are equal.

We define µ2
α = µ and further µn+1

α = µ(µnα ⊗ αn−1). The corresponding tree is of
level n− 1. Using Proposition 5.2.10 we get that µn+m

α = µ(αm−1µnα ⊗αn−1µmα ).
Let β : V → V be a linear map which commutes with α, then one can define a

comultiplication ∆ on FHAss(V ) by setting ∆(x) = 1⊗ β(x) + β(x)⊗ 1 for x ∈ V . This
extends to an algebra morphism. The map β can also be extended to a Hom-algebra
morphism. In Section 5.3 we will define Hom-bialgebras. With that we get:

Proposition 5.2.11 The free Hom-algebra, with the comultiplication given above, is a
(α,β)-Hom-bialgebra.

Proof. The compatibility follows from the construction so we only need the prove
the coassociativity. For x ∈ V we have

(∆⊗ β)∆(x) =(∆⊗ β)(β(x)⊗1+1⊗ β(x)

=β2(x)⊗1⊗1+1⊗ β2(x)⊗1+1⊗1⊗ β2(x)

and similarly on the other hand

(β ⊗∆)∆(x)) =β2(x)⊗1⊗1+1⊗ β2(x)⊗1+1⊗1⊗ β2(x).

So we have the coassociativity on generators and by freeness everywhere.
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5.2.2 Modules and Bimodules

Definition 5.2.12 (Hom-algebra module) Let (A,µ,α) be a Hom-associative algebra
and (M,β) a Hom-module, with a map ρ : A⊗M→M, (a,m) 7→ a ·m, then V is called
an (left) A-module if

(ab) · β(m) = α(a)(b ·m). (9)

We also require it to be multiplicative, i.e.

β(a ·m) = α(a) · β(m). (10)

Similarly one can define a right A-module.
If (M,ρ,β) is an A-module and γ is a Hom-algebra endomorphism of A then

(M,ρ(γ ⊗ id),β) is again an A-module. We will mostly use this in the case γ = αn for
n ∈ N.

The product (or equally the sum) of two A-modules M,N is again an A-module,
by a · (m,n) = (a ·m,a · n) for m ∈ M and n ∈ N . The same is true for products and
sums with more factors.

Definition 5.2.13 (Hom-algebra bimodule) LetA be a Hom-algebra, then aA-bimodule
is a Hom-module (M,β), with two maps ρ : A⊗M→M,a⊗m 7→ a·m and λ :M⊗A→
A,m⊗ a 7→m · a, such that ρ is a left and λ a right module structure and

α(a) · (m · b) = (a ·m) ·α(b). (11)

It is called multiplicative if ρ and λ are.

If A is commutative, we call an A-bimodule symmetric if a ·m =m · a for all a ∈ A
and m ∈M.

Obviously A is an A-bimodule, where the left and right action is given by the
multiplication.

If V is an A-bimodule then A⊕V is a Hom-algebra. The multiplication for a,b ∈ A
and v,w ∈ V is given by (a,v)(b,w) = (ab,a·w+b·v). On the other hand if (A,α)⊕(V ,β)
is a Hom-associative algebra, such that the multiplication on V is trivial, i.e. vw = 0
for all v,w ∈ V , V is an A-bimodule.

Given a Hom-coassociative coalgebra one can regard its comodules, dual to the
case of Hom-associative algebras and modules.

Definition 5.2.14 (Hom-coalgebra comodule) Let (C,∆,β) be a Hom-coalgebra and
(M,γ) a Hom-module, with a map ρ : M → A ⊗M, then M is called a (left) C-
comodule if

(β ⊗ ρ)ρ = (∆⊗ β)ρ. (12)
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We also assume that it is comultiplicative, i.e.

ργ = (β ⊗γ)ρ. (13)

Similarly one can define a right C-comodule.

Definition 5.2.15 (Hom-coalgebra bicomodule) Let (C,∆,β) be a Hom-coalgebra, then
a C-bicomodule is a Hom-module (M,γ), with two maps ρ : M → A ⊗M and λ :
M ⊗A→M ⊗A,a⊗m 7→m · a, such that ρ is a left and λ a right comodule structure
and

(β ⊗ ρ)λ = (λ⊗ β)ρ. (14)

5.3 Hom-bialgebras

In this section we will only consider multiplicative Hom-(co)algebras and only
give the definition for multiplicative Hom-bialgebras and simply call them Hom-
bialgebras.

Definition 5.3.1 (Hom-(associative) bialgebra) A Hom-(associative) bialgebra is tuple
(A,µ,∆, 1, ε,α,β) such that (A,µ,1,α) is a unital Hom-associative algebra, (A,∆, ε,β)
is a counital Hom-coalgebra and they are compatible in the sense that ∆ is a Hom-
algebra morphism and µ is a Hom-coalgebra morphism. Also the unit is assumed to
be a Hom-coalgebra morphisms and the counit a Hom-algebra morphisms. We also
require that α and β commute. Written as equations this means

αβ =βα, ∆(xy) =∆(x)∆(y),

∆α =(α ⊗α)∆, βµ =µ(β ⊗ β),

∆(1) =1⊗1, ε(xy) =ε(x)ε(y)

εα =ε β(1) =1, ε(1) = 1.

Definition 5.3.2 An antipode is a convolution inverse of the identity. A weak an-
tipode is a weak convolution inverse of the antipode.

Definition 5.3.3 A Hom-Hopf algebra is a Hom-bialgebra with an antipode.

One can also consider the case, where α = β we will call such a Hom-bialgebra
a α-Hom-bialgebra. Similar we call a Hom-bialgebra with two different structure
maps an (α,β)-Hom-bialgebra.

One can also consider non-unital bialgebra, where we do not assume the existence
of a unit or counit.

A morphism of a Hom-bialgebra is a unital morphism of the Hom-algebra and
Hom-coalgebra structure.
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Similar to the non-Hom-case there is a properad, which describes non-unital
Hom-bialgebras. So it can be described as the free properad generated by ∆,µ,α,β
modulo an ideal, which corresponds to the relations these maps have to satisfy.

We recall the following construction method for Hom-bialgebras:

Proposition 5.3.4 (Yau twist) Let (A,µ,∆,1, ε,α,β) be a Hom-algebra and γ a mor-
phism of it then (A,γµ,∆,1, ε,γα,β), (A,µ,∆γ,1, ε,α,γβ) and (A,γµ,∆γ,1, ε,γα,γβ)
are again Hom-bialgebras.

An element of a bialgebra A is called γ-primitive if ∆(x) = γ(x)⊗1+1⊗γ(x). Here
γ could be an arbitrary linear map on A, but only the case γ = id, α or β are of
interest. We denote the set of γ-primitive elements by γ-Prim(A), and write simply
Prim(A) for id-Prim(A).

Similar to [LGMT18, section 4.3] one gets the following result, which shows that
in general there are more primitive elements than in the non-Hom-case.

Proposition 5.3.5 Let A be a bialgebra and γ a morphisms of the product, i.e. γµ =
µ(γ ⊗γ), then γ-Prim(A) is a Hom-Lie algebra with respect to the commutator in A and
α.

Proof. Since A is a Hom-Lie algebra with respect the the commutator and α, it is
enough to show that for x,y ∈ γ-Prim(A) the commutator [x,y] is again in γ-Prim(A).
So we compute

∆([x,y]) =∆(xy)−∆(yx)

=(1⊗γ(x) +γ(x)⊗1)(1⊗γ(y) +γ(y)⊗1)

− (1⊗γ(y) +γ(y)⊗1)(1⊗γ(x) +γ(x)⊗1)

=1⊗γ(x)γ(y) +α(γ(x))⊗α(γ(y)) +α(γ(y))⊗α(γ(x)) +γ(x)γ(y)⊗1
−γ(y)γ(x)⊗1−α(γ(x))⊗α(γ(y))−α(γ(y))⊗α(γ(x))−1⊗γ(y)γ(x)

=[γ(x),γ(y)]⊗1+1⊗ [γ(x),γ(y)]

=γ([x,y])⊗1+1⊗γ([x,y]).

Proposition 5.3.6 Let A be a bialgebra and x,y ∈ γ-Prim(A), such that α(γ(x)) =
α(γ(y)) = 0, then xy ∈ γ-Prim. Particularly, if α and γ commute and α(x) = 0, then
the subalgebra generated by x lies in γ-Prim.

Proof. We have

∆(xy) =1⊗γ(x)γ(y) +α(γ(x))⊗α(γ(y)) +α(γ(y))⊗α(γ(x)) +γ(x)γ(y)⊗1
=1⊗γ(x)γ(y) +γ(x)γ(y)⊗1
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The second part follows easily by induction.

We note that given a Hom-bialgebraA and morphism γ : A→ A, we have PrimA ⊂
γ-Prim(Aγ ). Here Aγ denotes A with the the coproduct twisted by γ . In general the
inclusion is strict consider for example the case γ = 1ε.

Modules

Let A be a Hom-bialgebra then the tensor product of two A-modules M and N is
again an A-module, where the action is given by (ρM ⊗ ρN )τ23(∆⊗ id⊗ id) or

a · (m⊗n) = a(1) ·m⊗ a(2) ·n for a ∈ A,m,n ∈M. (15)

Note that given three or more A-modules the module structure on the tensor
product depends in general on the bracketing of the modules, i.e. (M1 ⊗M2)⊗M3
is not isomorphic to M1⊗ (M2⊗M3), since the comultiplication is not coassociative.
So we define the action on tensor products with more factors by including α and β
in the definition.

We define ∆2
β = ∆ and

∆n+1
β = (∆⊗ β⊗(n−1))∆nβ . (16)

This satisfies

∆n+m
β = (∆nββ

m−1 ⊗∆mβ βn−1)∆. (17)

Let (Mi ,ρi) be Amodules for i = 1, . . . ,n then the action onM1⊗· · ·⊗Mn is defined
by

(ρ1 ⊗ · · · ⊗ ρn)τ(2,n)(∆
n
β ⊗ idn). (18)

Here τ(2,n) denotes the permutation (1, . . . ,2n) 7→ (1,n+ 1,2,n+ 2, . . . ,n,2n).
We also have

x · (v1 ⊗ · · · ⊗ vm+n) = βm−1(x(1)) · (v1 ⊗ · · · ⊗ vn)⊗ βn−1(x(2)) · (vn+1 ⊗ · · · ⊗ vn+m). (19)

If all the Mi are bimodules the tensor product is again a bimodule. Similarly the
tensor product of comodules is again in a comodule.

The category of modules over a Hom-bialgebra is in general not a monoidal cat-
egory, since one needs to include the structure map in the definition of the tensor
products of several factors to make it independent of the bracketing. However one
can define Hom-tensor categories as a generalization of monoidal categories and it
turns out this category is a Hom-tensor category, see [PSS17].
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5.4 Hom-Lie algebras

Definition 5.4.1 A Hom-Lie algebra (g, [·, ·],α) is a Hom-module (g,α) with a skew-
symmetric linear map [·, ·] : g⊗ g→ g such that the Hom-Jacobi identity is satisfied,
i.e.

[[x,y],α(z)] + [[y,z],α(x)] + [[z,x],α(y)] = 0 for all x,y,z ∈ g. (20)

It is called multiplicative if [α(x),α(y)] = α([x,y]).

We will sometimes write (g,ν,α) instead of (g, [·, ·],α), with ν : g⊗ g→ g,ν(x⊗ y) =
[x,y] for x,y ∈ g.

There is an operad describing Hom-Lie algebras, which we denote by HLie. We
denote the generating operations by ν and α.

Proposition 5.4.2 ([MS08]) Let (A,µ,α) be a Hom-associative algebra then the commu-
tator [x,y] = xy − yx defines a Hom-Lie structure on A, which is multiplicative if A was
so. We denote it by AL.

This corresponds to a morphism HLie→ HAss of operads, which on generators is
given by ν 7→ µ− (12)µ.

Similar to the Hom-associative case one can construct a free Hom-Lie algebra
FHLie(V ) for a Hom-module (V ,α). It can be constructed as the Hom-Lie subalgebra
of the free Hom-associative algebra FHAss(V ) generated by V under the commutator.
It is clear that this is a Hom-Lie algebra. So one has to prove the universal property,
i.e. there is a natural isomorphism

Hom(FHLie(V ),g) �HomH (V ,g) (21)

for all Hom-Lie algebras g.
Similar to the case of associative algebras one can define a Yau twist.

Proposition 5.4.3 Let (g,ν,α) be a Hom-Lie algebra and γ : g→ g an endomorphism of
it, then (g,γν,γα) is a Hom-Lie algebra.

All the remarks concerning the operadic description of the Yau twist can be trans-
ferred from the Hom-associative to the Hom-Lie setting.

Definition 5.4.4 (Hom-Lie module, Representation of Hom-Lie algebra) Let g be a Hom-
Lie algebra. A Hom-Lie module over g or a representation of g is a Hom-module
(V ,β), with an action ρ : g⊗V → V ,g ⊗ v 7→ x · v, such that

[x,y] · β(v) = α(x) · (y · v)−α(y) · (x · v). (22)

It is multiplicative if
β(x · v) = α(x) · β(v). (23)

121



5. Definitions

Given a Hom-Lie algebra g we can define the adjoint representation of g on itself,
by x · y = [x,y].

Given n g-modules (M1,α1), . . . , (Mn,αn), we can define a g-module on the tensor
product M1 ⊗ · · · ⊗Mn by

x · (y1 ⊗ · · · ⊗ yn) =
k∑
i=1

α1(y1)⊗ · · · ⊗ [x,yi]⊗ . . .αn(yk) (24)

for yi ∈Mi .
Given a Hom-Lie algebra g we can define the coadjoint action of g on g∗ by

(adxϕ)(y) = ϕ([x,y]). (25)

We define the dual notion of a Hom-Lie algebra this is a Hom-Lie coalgebra. We
denote by σc the cyclic permutation map x⊗ y ⊗ z 7→ z⊗ x⊗ y.

Definition 5.4.5 A Hom-Lie coalgebra (g,δ,α) is a Hom-module (g,α) with a co-
bracket δ : g⊗ g→ g, which satisfies

δ(δ⊗ β)(id+σc + σ2
c ) = 0. (26)

Universal enveloping algebra

Let g be a Hom-Lie algebra then we define its universal enveloping algebra as
follows [Yau08]:

Let FHAss(g) be the free Hom-associative algebra on g and I be the ideal generated
by elements of the form xy − yx − [x,y] for x,y ∈ g. Then I is closed under α and

U (g) := FHAss(g)
/
I is again a Hom-associative algebra, which we call the universal

enveloping algebra of g.
There is an adjunction

HomHLie(g,AL) �HomHAss(U (g),A). (27)

Proposition 5.4.6 If the Hom-Lie algebra (g,ν,α) is regular, then the universal envelop-
ing algebra is of associative type, and we have U (g) =U (gα−1)α.

Proof. There is a morphism g→ U (gα−1)α, which can be extended by the universal
property to a morphism U (g)→ U (gα−1)α. On the other hand there is an morphism
gα−1 → U (g)α−1 this can be extended to a morphism ϕ : U (gα−1)→ U (g)α−1 . Since ϕ
is compatible with α this induces a morphism U (gα−1)α→U (g). It is easy to see that
this two morphism are inverse to each other.

Proposition 5.4.7 Given two Hom-Lie algebras g and h, we haveU (g⊕h) �U (g)⊗U (h).
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Proof. We can define a morphisms g⊕h→U (g)⊗U (h) by (g,h) 7→ g ⊗1+1⊗h. This
is clearly a morphism of Hom-Lie algebras, which by the universal property of the
universal enveloping algebra can be extended to U (g⊕ h).

The comultiplication on FHAss(g) induces a comultiplication on U (g), so U (g) is a
Hom-bialgebra.

The primitive elements form a Hom-Lie algebra, see Proposition 5.3.6, but in
general it is not equal to g, but only contains g as a Hom-Lie subalgebra.

However if α and β are invertible the set of β-primitive elements is precisely g.
Different from the ordinary case a g-module is in general not a U (g)-modules.

However, it is clear that a U (g)-bimodule is also a g-module.

5.5 Hom-Lie bialgebras

Definition 5.5.1 (Hom-Lie bialgebra) A Hom-Lie bialgebra is a tuple (g,ν,δ,α,β),
such that (g,ν,α) is a Hom-Lie algebra, (g,δ,β) is a Hom-Lie coalgebra and they
are compatible in the sense that

δ([x,y]) = α(x(1))⊗ [x(2),β(y)] + [x(1),β(y)]⊗α(x(1))

+[β(x), y(1)]⊗α(y(1)) +α(y(1))⊗ [β(x), y(2)].
(28)

The condition (28) is often written as

δ([x,y]) = adβ(x) δ(y)− adβ(y) δ(x), (29)

where the adjoint representation of g on g⊗k is defined by

adx(y1 ⊗ · · · ⊗ yk) =
k∑
i=1

α(y1)⊗ · · · ⊗ [x,yi]⊗ . . .α(yk). (30)

Often only the case α = β or α = β−1 is considered.
There is a properad which described Hom-Lie bialgebras, similar to the properad

describing Lie bialgebras. It is generated by ν,δ,α,β.
We note that there is a different properad which describes α-Hom-Lie algebras,

where we only have one structure map.

Proposition 5.5.2 (Yau twist) Let g be a Hom-Lie bialgebra and ϕ : g→ g be a Hom-Lie
bialgebra morphism then (g,ϕ ◦ν,δ,ϕ ◦α,β), (g,ν,ϕ ◦δ,α,ϕ ◦β) and (g,ϕ ◦ν,ϕ ◦δ,ϕ ◦
α,ϕ ◦ β) are again Hom-Lie bialgebras.

Proof. This is a simple calculation.
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5.6 Hom-Manin triples

In this section we give a new definition for a Hom-Manin triple generalizing the
known Manin-triples for Lie bialgebras. We wall only consider the case where the
two structure maps are the same.

We first recall the approach due to Sheng [SB14]: Let (g,ν,α) be a Hom-Lie algebra
then we call an inner product g× g→K invariant if

〈[x,y], z〉 = 〈x, [y,z]〉 (31)

and
〈α(x), y〉 = 〈x,α(y)〉. (32)

This approach needs admissible Hom-Lie algebras, i.e. the following condition must
be satisfied

[α2(x)− x,α(y)] = 0 for all x,y ∈ g. (33)

Then given a Hom-Lie bialgebra one can construct a Manin-triple and vice versa.
We want to consider a different approach here. We call an inner product g×g→K

Hom-invariant if it satisfies

〈[x,y],α(z)〉 = 〈α(x), [y,z]〉 (34)

and
〈α(x), y〉 = 〈x,α(y)〉. (35)

The advantage of our approach is that we do not need to consider admissible Lie
algebras, but can consider arbitrary ones. The disadvantage is that we do not obtain
an equivalence between Hom-Lie bialgebras and Hom-Manin triples, but have to
consider weak Manin triples and weak Hom-Lie bialgebras, which we will define
below.

Definition 5.6.1 A quadratic Hom-Lie algebra is a Hom-Lie algebra with a sym-
metric nondegenerate Hom-invariant product.

Definition 5.6.2 A Hom-Manin triple is a triple (g,g+,g−), such that g is a quadratic
Hom-Lie algebra, g± are isotropic Hom-Lie subalgebras and g = g+ ⊕ g− as Hom-
modules.

We will here only consider finite dimensional ones, so Manin triple here always
means finite dimensional Manin triple.

If the Hom-Jacobi identity is replaced by the weaker one∑
zykl.

α2([[x,y],α(z)]) = 0, (36)
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we call it a weak Manin-triple. Note that if α is invertible a weak Hom-Manin triple
is the same as a Hom-Manin triple.

A weak Hom-Lie bialgebra is defined as a Hom-Lie algebra but the compatibility
is defined as

α2(δ([x,y])) = α2 (adβ(x) δ(y)− adβ(y) δ(x)
)
. (37)

Again if α is invertible this is the same as a Hom-Lie bialgebra.
Given a weak Manin triple, the twisted algebra gα is a Manin triple, and given a

weak Hom-Lie bialgebra g, gα is a Hom-Lie bialgebra.
Given a Manin triple the inner product induces an isomorphism g− � g

∗
+.

Proposition 5.6.3 Let g be a Hom-Lie bialgebra then (g⊕ g∗,g,g∗), with inner product

〈(x,ϕ), (y,ψ)〉 = ϕ(y) +ψ(x) (38)

for x,y ∈ g,ϕ,ψ ∈ g∗ and bracket

[(x,ϕ), (y,ψ)] = ([x,y] + adα(ϕ) y − adα(ψ) x, [ϕ,ψ] + adα(x)ψ − adα(y)ϕ), (39)

is a weak Manin triple.
On the other hand given a Manin triple (g,g+,g−), g+ is a weak Hom-Lie algebra. The

coproduct is given by the dual of the bracket restricted to g− � g∗+.

Proof. The inner product is clearly nondegenerate and symmetric. Also clearly
〈α(x), y〉 = 〈x,α(y)〉 holds. For the invariance we have

〈α(x), [y,ψ]〉 = 〈α(x),adα(y)ψ〉 = 〈[α(y),α(x)],ψ〉 = 〈[x,y],α(ψ)〉.

We only need to check the weak-Jacobi identity in the case where one element is in
g∗. The other cases are clear or dual. For this we have

〈α2([x, [y,ϕ]]), y〉 =〈[x, [y,ϕ]],α2(z)〉
=− 〈α([y,ϕ]),α([x,z])〉
=〈α2(ϕ), [α(y), [x,z]]〉

and

〈α2([α(ϕ), [x,y]]), z〉 =〈[α(ϕ), [x,y]],α2(z)〉
=〈α2(ϕ), [[x,y],α(z)]〉.

This shows 〈[α(ϕ), [x,y]] + [α(y), [ϕ,x]] + [α(x), [y,ϕ]], z〉 = 0. On the other hand we
have

〈[[x,y],α(ϕ)],α2(ψ)〉 =〈α[x,y],α[ϕ,ψ]〉
= < δ(α2[x,y]),ϕ ⊗ψ
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and

〈[α(x), [y,ϕ]],α2(ψ)〉 =〈α(adα(y)ϕ),adα2(ψ)α(x)〉+ 〈α(adα(ϕ) y),adα2(x)α(ψ)〉
=〈[α2(ψ),adα2(y)α(ϕ)],α(x)〉+ 〈α(y), [α2(ϕ),adα2(x)αψ]〉
=〈(α ⊗ adα(y))δα

2(x),ϕ ⊗ψ〉+ 〈α ⊗ adα(x) δα
2(y),ϕ ⊗ψ〉.

This shows
〈[α(ϕ), [x,y]] + [α(y), [ϕ,x]] + [α(x), [y,ϕ]],ψ〉 = 0. (40)

Now let g be a Hom-Manin triple, we need to show that g+ is a Hom-Lie bialgebra.
It is clear that g+ is a Hom-Lie algebra. Further since g− is a Hom-Lie algebra g+ is
also a Hom-Lie coalgebra. It remains to show to compatibility. We first note that

〈α2(y), [[x,ϕ]+,α(ψ)]〉 =− 〈α([x,ϕ]+),α([y,ψ])〉
=− 〈α([x,ϕ]),α([y,ψ]−)〉
=− 〈α2(x), [α(ϕ), [y,ψ]−]〉.

Here [·, ·]− denotes the projection to g− and similar for g+. With this we get

〈α2(δ([x,y])− (adα(x)⊗α)δ(y)−α ⊗ (adα(x))δ(y)

+(adα(y)⊗α)δ(x) +α ⊗ (adα(y))δ(x)),ϕ ⊗ψ〉
=〈α[x,y],α([ϕ,ψ])〉+ 〈α2(y), [[x,ϕ]−,α(ψ)]〉+ 〈α2(y), [α(ϕ), [x,ψ]−]〉
− 〈α2(x), [[y,ϕ]−,α(ψ)]〉 − 〈α2(x), [α(ϕ), [y,ψ]−]〉

=〈α2(y),−[α(x), [ϕ,ψ]] + [[x,ϕ],α(ψ)] + [α(ϕ), [x,ψ]]〉 = 0.

Where the last equality follows from the Hom-Jacobi identity in g.

5.7 Hom-Poisson algebras

Definition 5.7.1 A Hom-Poisson algebra is a tuple (A,µ, {·, ·},α), such that (A,µ,α)
is a Hom-commutative algebra and (A, {·, ·},α) is a Hom-Lie algebra, which are com-
patible in the sense that they satisfy the Hom-Leibniz identity

{α(a),bc} = α(b){a,c}+ {a,b}α(c). (41)

It is called multiplicative if µ and the the Hom-Poisson bracket are multiplicative.

One can also consider the case, where µ is not commutative, in this case, we call
A a noncommutative (nc.) Hom-Poisson algebra. In this case also the other Leibniz
identity {ab,α(c)} = α(a){b,c}+ {a,c}α(b) has to be satisfied. A Hom-algebra, with the
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Lie bracket given by the commutator is a nc. Hom-Poisson algebra. (And this is the
only case we need).

One can give a slight generalization of this, where one considers the structure
maps for the commutative and Lie algebra to be different.

Definition 5.7.2 A Hom-Poisson algebra is a tuple (A,µ,α, {·, ·},β), such that (A,µ,α)
is a Hom-commutative algebra and (A, {·, ·},β) is a Hom-Lie algebra, which are com-
patible in the sense that they satisfy the Hom-Leibniz identity

{α(a),bc} = β(b){a,c}+ {a,b}β(c). (42)

A morphism of a Hom-Poisson algebra is a morphism of the commutative Hom-
and the Hom-Poisson algebra.

Proposition 5.7.3 (Yau twist) Let (A,µ,α, {·, ·},β) be a Hom-Poisson algebra and γ a mor-
phism of it. Then (A,γµ,γα, {·, ·},β) and (A,µ,α,γ{·, ·},γβ) are again Hom-Poisson alge-
bras. So the two products can be twisted separately.

Let (A,µ, {·, ·},α) be a Hom-Poisson algebra and γ a morphism of it. Then (A,γµ,γ{·, ·},γα)
is again a Hom-Poisson algebra.

Definition 5.7.4 (Hom-Poisson module) Let P be a Hom-Poisson algebra. Then a
Hom-Poisson module is a Hom-module (M,αM ) with a module structure P ⊗M →
M,a⊗m 7→ a ·m and an map P ⊗M→M written as a⊗m 7→ {a,m|}, such that

{α(a), {b,m|}|} ={{a,b},αM(m)|}+ {α(b), {a,m|}|} (43)

{ab,αM(m)|} =α(a) · {b,m|}+ {a,m|} ·α(b) (44)

{α(a),b ·m|} =α(b) · {a,m|}+ {a,b} ·αM(m) (45)

for a,b ∈ P and m ∈M. In the multiplicative case we also require

αM{a,m|} ={α(a),αM(m)|}. (46)

There is also the dual notion of a Hom-Poisson coalgebra.
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Now we came to one of the main parts of this thesis. In this chapter we first recall
the definitions for the different cohomologies for multiplicative Hom-algebras

and Hom-bialgebras and then extend them to α-type cohomologies. The advantage
of these α-type cohomologies is that the can be used to study deformations of Hom-
algebras, where the multiplication and the structure map are deformed. This is
one reason why we call them α-type cohomologies. In the α-type cohomology the
cochains are given by pairs of multilinear maps. This chapter has several sections.
We first give some remarks on the cohomology of endomorphism, since we will
need it later in the study of α-type cohomologies of Hom-algebras of associative
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or Lie-type. Then we recall the known Hochschild cohomology for Hom-associative
algebras and the Gerstenhaber bracket, which can be used to define it. In Section 6.3
we define the α-type Hochschild cohomology and study it in more detail. In the
following we do the same for Hom-bialgebras, Hom-Lie algebras and bialgebras. In
Section 6.12 we define a cohomology for a morphism of Hom-associative algebras.
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6.1. Algebra endomorphisms

6.1 Algebra endomorphisms

We want to give a general definition of a cohomology for an algebra and an endo-
morphism of it. This is well known for the different types of algebras and arbitrary
morphisms. For the case of associative algebras see [GS83, GS85] and for the case
of Lie algebras [NR67]. More recently an L∞-structure for associative algebras, Lie
and Lie-bialgebras was found in [FMY09, FZ15].

So let A be an algebra (one could consider algebras over a Koszul operad, but we
will only consider the case of associative and Lie algebras here). We denote by C•(A)
the cohomology complex of it. Then we define a new complex for the cohomology
of an algebra endomorphism γ : A→ A by

Cn(γ) = Cnµ(γ)⊕Cnγ (A) = Cn(A)⊕Cn−1(A,Ã) (1)

for n ≥ 2, C1(A,γ) := C(A) and Cn(A,γ) = 0 for n ≤ 0, where Ã is the algebra A
regarded as an A-module with the action twisted by γ , i.e. the action is given by
a · b = γ(a)b for a ∈ A,b ∈ Ã.

Note that again we have used {0} instead of Hom(K, ·) in the low degrees since this
simplifies making the connection to the α-type cohomology.

We denote the differential of C•(A) by ∂A and define ∂γϕ = γϕ −ϕγ⊗n for ϕ ∈
Cn(A). With this we further define

∂(ϕ,ψ) = (∂Aϕ,∂γϕ −∂Aψ). (2)

Proposition 6.1.1 The map ∂ defined above is a differential. The complex C•(γ) can be
seen as a bicomplex, with only two rows.

Proof. We only have to prove ∂A∂γ = ∂γ∂A. This can be done using the explicit
differential for Lie and associative algebras and is a short and straight forward cal-
culation. We only do it for the case of associative algebras. Here we have

(∂A∂γϕ)(x1, . . . ,xn+1) = γ(x1)γϕ(x1, . . . ,xn+1)

+
n∑
i=1

(−1)iγϕ(x1, . . . ,xixi+1, . . . ,xn+1)

+ (−1)n+1γϕ(x1, . . . ,xn)γ(xn+1)

−γ(x1)ϕ(γ(x1), . . . ,γ(xn+1))

−
n∑
i=1

(−1)iϕ(γ(x1), . . . ,γ(xixi+1), . . . ,γ(xn+1))

− (−1)n+1ϕ(γ(x1), . . . ,γ(xn))γ(xn+1)
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(∂γ∂Aϕ) = γ(x1ϕ(x1, . . . ,xn+1))

+
n∑
i=1

(−1)iγϕ(x1, . . . ,xixi+1, . . . ,xn+1)

+ (−1)n+1γ(ϕ(x1, . . . ,xn)xn+1)

−γ(x1)ϕ(γ(x1), . . . ,γ(xn+1))

−
n∑
i=1

(−1)iϕ(γ(x1), . . . ,γ(xixi+1), . . . ,γ(xn+1))

− (−1)n+1ϕ(γ(x1), . . . ,γ(xn))γ(xn+1).

It is obvious that the two sides agree since γ is an algebra morphism.

We assign a height to the elements in the cohomology. We set hgt(ϕ) = 0 for
ϕ ∈ Cµ(γ) and hgt(ψ) = 1 for ψ ∈ Cγ (γ). We also note that with hgt(γ) = 1 and
hgt(µ) = 0 the different parts of the differential are homogeneous, namely ∂γ has
height 1 and ∂A has height 0. This is compatible with the heights we assigned to the
different parts of the complex.

We denote the associated cohomology by H•(A,γ) or just H•(γ).
This cohomology can be computed using spectral sequences. But since the bi-

complex only has two rows not much of the theory is needed. For more on spectral
sequences see e.g. [Wei94, Section 5]. We denote by H(C(γ),∂A) the cohomology
with respect to ∂A. On this there is a differential induced by ∂γ . With this we have

Proposition 6.1.2 For the cohomology of the total complex we have

H(C•(γ),∂) =H(H(C(γ),∂A),∂γ ).

Proof. This follows directly considering the spectral sequence associated to the bi-
complex C(γ) with the vertical filtration, since then the differential on the second
sheet already vanishes, since the complex only has two rows.

If one knows the cohomology of the algebra A well, H(H(C(γ),∂A),∂γ ) can be
computed quite easily. Also note that there is a chain map (C•µ(γ),∂A)→ (C•+1

γ (γ),∂A)
given by ϕ 7→ γϕ, which is even an isomorphism if γ is invertible.

On the other hand the other iterated cohomology H(H(C(γ),∂γ ),∂A) is in general
not isomorphic to the cohomology H(γ), since there is still a non-trivial differential
on it. Only the cohomology with respect this differential gives the total cohomology.
However it turns out that this differential vanishes in nice situations. If this is the
case every cocycle is cohomologous to either one if the form (ϕ,0) or one of the form
(0,ψ).
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For the case of Hom-bialgebras, we also need the case of two commuting endo-
morphisms. So let A be an algebra and γ1,γ2 be two commuting algebra endomor-
phisms, then we define

Cn(γ1,γ2) = Cnµ ⊕Cnγ1 ⊕Cnγ2 ⊕Cncom = Cn(A)⊕Cn−1(A)⊕Cn−1(A)⊕Cn−2(A). (3)

The left action on A in Cnγi is given by a · b = γi(a)b for i = 1,2 and similar for the
right action. On A in Cncom it is given by a · b = γ1γ2(a)b.

The differential for (ϕ,ψ,χ,ξ) ∈ Cn(γ1,γ2) is given by

∂ϕ = (∂Aϕ,∂γ1ϕ,∂γ2ϕ,0) (4)

∂ψ = (0,−∂Aψ,0,∂γ2ψ) (5)

∂χ = (0,0,−∂Aχ,−∂γ1ψ) (6)

∂ξ = (0,0,0,∂Aξ). (7)

This can also been seen as a bicomplex with three rows, the first being Cnµ , the
second Cnγ1⊕Cnγ2 and the third Cncom. It can also be seen as a tricomplex, with degree
Cnµ = (n,0,0),Cnγ1 = (n − 1,0,1),Cnγ2 = (n − 1,0,1) and Cncom = (n − 2,1,1). Similar to
Proposition 6.1.1 it is easy to see that ∂ ◦ ∂ = 0 so C•(γ1,γ2) is in a fact a cochain
complex and one can define the corresponding cohomology.

Similar to the above one can construct a cohomology for a coalgebra and an en-
domorphism of it.

Next we give a similar description for the cohomology of a bialgebra morphism.
Here we will focus on the case of Lie-bialgebras, but it works similar for associative
bialgebras.

Given a Lie-bialgebra g and an endomorphism γ : g→ g, we an define a cohomol-
ogy for γ . For the case of arbitrary Lie-algebra morphisms this can been found in
[FZ15]. We modify the definition slightly to better agree with the definition of the
α-type cohomology. The complex is given by

Cn(g,γ) = Cnµ(g)⊕Cnγ = Cn(g)⊕Cn−1(g) (8)

for n ∈ N. Here Cn(g) denotes the Chevalley-Eilenberg complex of g, modified such
that it begins in degree 1. We note that C•(g) is a bicomplex, so the same is true for
Cnµ(g) and Cnγ . Note however that the degree of Ci,jγ is i + j + 1.

The differential is given by

∂ϕ = (∂CEϕ,∂γϕ,∂
c
CEϕ) ∈ Ci+1,j

µ ⊕Ci,jα ⊕C
i,j+1
µ (9)

∂ψ = (−∂CEψ,−∂cCEϕ) ∈ Ci+1,j
α ⊕Ci,j+1

α (10)
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for ϕ ∈ Ci,jµ (γ) and ψ ∈ Ci,jγ (γ). Here ∂CE is the ordinary Chevalley-Eilenberg differ-
ential and ∂cCE its dual. The action on ψ is given by x ·ψ = γ(x)ψ and similar for the
coaction.

It is also possible to define a slightly different complex, where the morphism is
only regarded as a morphism of the Lie algebra or the Lie-coalgebra.

At last we consider the situation of two commuting morphism, where one is re-
garded as a algebra and one as a coaction morphism. This is interesting since in the
case Hom-associative bialgebras the complex is the same as the one for the α-type
cohomology and they are related by the Yau twist.

The complex is a bicomplex and given by

Ci,j(g,γ1,γ2) = Ci,jµ (g,γ1,γ2)⊕Ci,jγ1(g,γ1,γ2)⊕Ci,jγ2(g,γ1,γ2)⊕Ci,jcom(g,γ1,γ2)

= Ci,j(g)⊕Ci−1,j(g)⊕Ci,j−1(g)⊕Ci−1,j−1(g).

The algebra differential, i.e. the horizontal differential, for (ϕ,ψ,χ,ξ) ∈ Ci,j(g,γ1,γ2)
is given by

∂(ϕ,ψ,χ,ξ) = (∂CEϕ,∂γ1ϕ −∂CEψ,∂γ2ϕ −∂CEχ,−∂γ2ψ −∂γ1χ+∂CEξ).

Dually one can define a coalgebra differential. In fact this is a tetra-complex, where
in two directions there are only two elements. The differential in the different di-
rections is given by the algebra differential, its dual, ∂γ1 and ∂γ2. Since all differ-
entials in the different directions anti-commute it is clear that ∂ defined above is a
differential. So we can define the corresponding cohomology which we denote by
H•(γ1,γ2).

6.2 Hom-associative algebras

We recall the definition of the cohomology of Hom-associative algebras as given
in [AEM11, MS08].

We define the complex of cochains for the Hochschild cohomology of a Hom-
associative algebra (A,µ,α) with values in an A-module (M,β) by the set of Hom-
module morphisms

HCn(A,M) = Hom((A⊗n,α⊗n), (M,β)) (11)

for n ≥ 1 and HCn(A,M) = 0 for n < 1. We call this the Hochschild complex of A
with values in M. Note that for α = id this agrees with the classical Hochschild co-
homology, starting in degree 1, so the name and notation are always unambiguous.
We let the complex begin in degree 1, because the differential in degree zero does
not exist since it would involve α−1.
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Note that since were are considering multiplicative Hom-algebras the multiplica-
tion is in this complex. In the non multiplicative case this would not be true.

Next we define the codifferential δ : HC•(A,M)→HC•+1(A,M) by

(δϕ)(a1, . . . , an+1) = αn−1(a1) ·ϕ(a2, . . . , an+1)

+
n∑
i=1

(−1)iϕ(α(a1), . . . , aiai+1, . . . ,α(an+1))

+ (−1)n+1ϕ(a1, . . . , an) ·αn−1(an+1).

(12)

In low degree the differential is given explicitly by

(δϕ)(a,b) = aϕ(b)−ϕ(ab) +ϕ(a)b,

(δϕ)(a,b,c) = α(a)ϕ(b,c)−ϕ(α(a),bc) +ϕ(ab,α(c))−ϕ(a,b)α(c).

So the first cohomology is given precisely by the derivations of A, which commute
with α.

The map δ squares to zero, so we can define a cohomology, which we call Hochschild
cohomology and denote by HH•(A,M).

We can associate a height to the different maps in the cohomology by setting
hgtϕ = n−1 forϕ ∈HCn(A). This is consistent with hgtµ = 1, since µ can be regarded
as an element of HC2(A). The structure map α cannot be seen as part of the complex.
Also the differential respects this height.

Gerstenhaber algebra

The cohomology in this case can be described by using a modified version of
the classical Gerstenhaber bracket [AEM11]. For this we need a shifted version
of the Hochschild complex. First we note that the Hochschild complex, without
differential, can be defined for a Hom-module instead of a Hom-associative algebra.
So given a Hom-module (A,α) we define degϕ = n− 1 for ϕ ∈ HCn(A), and call this
the deg-degree of phi. The other non-shifted degree we call tensor degree.

For ϕ ∈HCk+1(A) and ψ ∈HCl+1(A) we define

(ϕ ◦i ψ)(a0, . . . , ak+l) = ϕ(αl(a0), . . . ,αl(ai−1),ψ(ai , . . . , ai+l),α
l(ai+l+1),αl(ak+l)) (13)

and with this
ϕ ◦ψ =

∑
i

(−1)ilϕ ◦i ψ (14)

and finally the Gerstenhaber bracket by

[ϕ,ψ] = ϕ ◦ψ − (−1)klψ ◦ϕ. (15)
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Lemma 6.2.1 The product ◦ defined above is graded preLie, with respect to the deg-
degree, this means it satisfies

(ϕ ◦ψ) ◦χ −ϕ ◦ (ψ ◦χ) = (−1)deg(ψ)deg(χ)((ϕ ◦χ) ◦ψ −ϕ ◦ (ψ ◦χ)).

Proof. This is a straight forward calculation.

This proves the following

Proposition 6.2.2 The Gerstenhaber bracket [·, ·] defined above is a graded Lie-bracket.

Note that the Gerstenhaber product is defined such the height of ϕ ◦ψ is k + l as
necessary for a map in HCk+l+1(A).

For this Gerstenhaber bracket a Maurer-Cartan element µ, i.e. an element which
satisfies [µ,µ] = 0, gives a Hom-associative algebra (A,µ,α). Note that α is deter-
mined by the complex and not part of the Maurer-Cartan element.

With this the differential in the previous section, can be defined by δϕ = −[ϕ,µ].
Given a Hom-associative algebra, there is also a cup product∪ : HCj(A)⊗HCk(A)→

HCj+k(A) defined by

(ψ ∪ϕ)(x1, . . . ,xj+k) = αk−1(ψ(x1, . . . ,xj ))α
j−1(ϕ(xj+1, . . . ,xj+k)) = (µ ◦0 ψ) ◦j ϕ. (16)

Again the cup product is defined such that it respects the height of the different
maps.

Proposition 6.2.3 The cup product is associative and symmetric up to a coboundary, i.e.
for ϕ ∈HCk(A),ψ ∈HCl(A) we have

ψ ∪ϕ − (−1)klϕ ∪ψ = δϕ ∪ψ − (−1)k−1δ(ϕ ∪ψ) + (−1)l1−ϕ ∪ δψ. (17)

Proof. In this proof and the following ones we use the notation x1,n := x1 ⊗ · · · ⊗ xn.
We compute for ϕ ∈ Ck−1(A),ψ ∈ Cl−1(A),χ ∈ Cm−1(A)

((ϕ ∪ψ)∪χ)(x1,k+l+m) =
(
αl−1+m−1ϕ(x1,k)α

k−1+m−1ψ(xk+1,k+l)
)
αl+k−1χ(xk+l+1,k+l+m)

(18)
and on the other side

(ϕ ∪ (ψ ∪χ))(x1,k+l+m) = αl+m−1ϕ(x1,k)
(
αk−1+m−1ψ(xk+1,k+l)α

l−1+k−1χ(xk+l+1,k+l+m)
)

(19)
So the cup product is associative since the product on A is Hom-associative.

Equation (17) follows similar to the calculation [Ger63] since ◦ is also graded
preLie.
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Proposition 6.2.4 The Hochschild differential is a graded derivation of the cup product,
i.e. δ(ϕ∪ψ) = δϕ∪ψ+(−1)kϕ∪δψ. So it induces a commutative associative product in
cohomology.

Proof. We calculate

(δ(ϕ ∪ψ))(x1, . . . ,xk+l+1) = αk+l−1(x1)(αl−1ϕ(x2, . . . )α
k−1ψ(xk+2, . . . ))

+
k∑
i=1

(−1)iαl−1ϕ(α(x1), . . . ,xixi+1, . . . )α
k−1ψ(α(xk+2), . . . )

+
k+l∑
i=k+1

(−1)iαl−1ϕ(α(x1), . . . )αk−1ψ(α(xk+1), . . . ,xixi+1, . . . )

+ (−1)k+l+1(αl−1ϕ(x1, . . . )α
k−1ψ(xk+1, . . . ))α

k+l−1(xk+l+1)

and for the right hand side

(δϕ ∪ψ)(x1, . . . ,xk+l+1) = αl−1(αk−1(x1)ϕ(x2, . . . ))α
kψ(xk+2, . . . )

+
k∑
i=1

(−1)iαl−1ϕ(α(x1), . . . ,xixi+1, . . . )α
kψ(xk+2, . . . )

+ (−1)k+1αl−1(ϕ(x1, . . . )α
k−1(xk+1))αkψ(xk+2, . . . ),

(ϕ ∪ δψ)(x1, . . . ,xk+l+1) = αlϕ(x1, . . . )α
k−1(αl−1(xk+1)ψ(xk+2, . . . ))

=
k+l∑
i=k+1

(−1)i−kαlϕ(x1, . . . )α
k−1(ϕ(α(xk+1), . . . ,xixi+1, . . . ))

= (−1)l+1αlϕ(x1, . . . )α
k−1(ϕ(xk+1, . . . )α

l−1(xk+l+1)).

Using the fact that α commutes with everything and the Hom-associativity, this
gives the desired equality. The fact that ∪ induces a product in cohomology is stan-
dard. It is commutative because of Proposition 6.2.3.

Remark 6.2.5 Using the same method as in [Ger63] it is possible to prove that the
cup-product satisfies a graded Leibniz identity with respect to the Gerstenhaber
bracket in cohomology. So in cohomology one has in fact a Gerstenhaber algebra.
It is also easy to see that one can define a braces algebra on HC(A), for this it also
follows that in cohomology there is a Gerstenhaber algebra [DW17]. The braces are
defined as

{ϕ|ψ1, . . . ,ψn}(a1, . . . , aN ) = ±ϕ(αl−n(a1), . . . ,αl−n−l1+1ψ1(a, . . . ), a, . . . ,αl−n−l2+1ψ2(a, . . . ))
(20)
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with ψi ∈ HCli (A) for i = 1, . . . ,n and ϕ ∈ HCk(A) l =
∑n

i=1 li ,N = l − n + k. This is
homogeneous of height l−n+k−1 =N −1 as expect for an element in HCN (A). Since
every map is compatible with α this satisfies the same relation as in the ordinary
case.

It is also possible to define a cup product of the form ϕ ∪ψ = µ(ϕ ⊗ψ), which is
Hom-associative. However the differential is not a derivation for it, so it not clear
whether this induces a product in cohomology.

6.3 α-type cohomology for Hom-associative algebras

In this section we define a cohomology for Hom-associative algebras, which takes
also into account the structure map α. This section closely follows [HM18], where
this cohomology was introduced. We will see that it is a generalization of the coho-
mology which is usually considered, see Section 6.2. The complex is different from
the one used for the Hochschild cohomology, in the sense that the cochains are given
by pairs. In the case of associative algebras, i.e. α = id, it is completely determined
by the Hochschild cohomology, but in the general case it contains more information.
It extends the cohomology given in [MS10]. With this cohomology it is also possible
to consider deformations of Hom-associative algebras, where the multiplication and
the structure map are deformed. We will study this in Section 8.1.

We start by giving the complex for the cohomology of a Hom-associative algebra
A with values in itself. The cochains are given by

H̃Cn(A) = H̃Cnµ(A)⊕ H̃Cnα(A) = Hom(A⊗n,A)⊕Hom(A⊗n−1,A) for n ≥ 2, (21)

H̃C1(A) = H̃C1
µ(A)⊕ H̃C1

α(A) = Hom(A,A)⊕ {0} and H̃Cn(A) = {0} for n ≤ 0. In general
we will denote an n-cochain by the pair (ϕ,ψ), where ϕ ∈ H̃Cnµ(A) and ψ ∈ H̃Cnα(A).

We have α ∈ H̃C2
α(A) and µ ∈ H̃C2

µ(A), which motivates the names for the two sum-
mands.

Remark 6.3.1 Note that H̃C0(A) is the zero space and not as one might expect Hom(K,A) �
A. This is so, because otherwise the differential would involve α−1, what we do not
want, since we consider α to be non-invertible. The same is true for H̃C1

α. If α is
invertible one can add these components and the corresponding differentials. In
this case also Theorem 6.3.5 simplifies. But we will not consider this further.

We define four maps with domain and range given in the following diagram:
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H̃Cnµ H̃Cn+1
µ

H̃Cnα H̃Cn+1
α∂αα

∂αµ

∂µα

∂µµ

⊕ ⊕

First the classical Hochschild differential for Hom-algebras ∂µµ : H̃Cnµ→ H̃Cn+1
µ

∂µµϕ(x1, . . . ,xn+1) = αn−1(x1)ϕ(x2, . . . ,xn+1)

+
n∑
i=1

(−1)iϕ(α(x1), . . . ,xixi+1, . . . ,α(xn+1))

+ (−1)n+1ϕ(x1, . . . ,xn−1)αn−1(xn+1).

(22)

The map ∂αα : H̃Cn−1
α → H̃Cnα is the also the classical differential for Hom-associative

algebras, but the bimodules structure is modified by α, this means

∂ααψ(x1, . . . ,xn) = αn−1(x1)ψ(x2, . . . ,xn)

+
n−1∑
i=1

(−1)iψ(α(x1), . . . ,xixi+1, . . . ,α(xn))

+ (−1)nψ(x1, . . . ,xn−1)αn−1(xn),

(23)

the map ∂µα : H̃Cn−1
µ → H̃Cnα is the commutator of α and ϕ defined by

∂µαϕ(x1, . . . ,xn) = α(ϕ(x1, . . . ,xn))−ϕ(α(x1), . . . ,α(xn)) (24)

and finally ∂αµ : H̃Cn−1
α → H̃Cnµ by

∂αµψ(x1, . . . ,xn+1) = αn−2(x1x2)ψ(x3, . . . ,xn+1)−ψ(x1, . . . ,xn−1)αn−2(xnxn+1). (25)

With this we set

∂(ϕ +ψ) = (∂µµ +∂µα)ϕ − (∂αµ +∂αα)ψ

= (∂µµϕ −∂αµψ,∂µαϕ −∂ααψ). (26)

Note the we are considering a difference in this formula. We have chosen this con-
vention, because this way the single differentials look more natural.

In total we get the following:
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Theorem 6.3.2 The complex H̃C•(A) is a chain complex with differential ∂(ϕ,ψ) =
(∂µµ +∂µα)ϕ − (∂αµ +∂αα)ψ defined as above.

Proof. We only need to show ∂2 = 0. This is a lengthy but straight forward calcula-
tion. We will give it here to some extent.

∂µµ∂µµϕ(x1, . . . ,xn+2) = αn(x1)(∂µµϕ)(x2, . . . ,xn+2)

+
n+1∑
i=1

(−1)i(∂µµϕ)(α(x1), . . . ,xixi+1, . . . ,α(xn+2))

+ (−1)n(∂µµϕ)(x1, . . . ,xn+1)αn(xn+2)

= αn(x1)(αn−1(x2)ϕ(x3, . . . ,xn+2))

−
n+1∑
i=2

(−1)iαn(x1)ϕ(α(x2), . . . ,xixi+1, . . . ,α(xn+2)) (27)

− (−1)nαn(x1)(ϕ(x2, . . . ,xn+1)αn−1(xn+2)) (28)

+αn−1(x1x2)ϕ(α(x3), . . . ,α(xn+2))

+
n+1∑
i=2

(−1)iαn(x1)ϕ(α(x2), . . . ,xixi+1, . . . ,α(xn+2)) (29)

+
n+1∑
i=1

i−2∑
j=1

(−1)i+jϕ(α2(x1), . . . ,α(xjxj+1), . . . ,α(xixi+1), . . . ,α2(xn+2)) (30)

−
n+1∑
i=2

ϕ(α2(x1), . . . ,α(xi−1)(xixi+1), . . . ,α2(xn+2)) (31)

+
n∑
i=1

ϕ(α2(x1), . . . , (xi−1xi)α(xi+1), . . . ,α2(xn+2)) (32)

+
n+1∑
i=1

n+1∑
j=i+2

(−1)i+j−1ϕ(α2(x1), . . . ,α(xixi+1), . . . ,α(xjxj+1), . . . ,α2(xn+2)) (33)

+
n∑
i=1

(−1)i+n+1ϕ(α(x1), . . . ,xixi+1, . . . ,α(xn+1))αn(xn+2) (34)

+ϕ(α(x1), . . . ,α(xn))αn−1(xn+1xn+2)

+ (−1)n(αn(x1)ϕ(x2, . . . ,xn+1))αn(xn+2) (35)

+
n∑
i=1

(−1)i+nϕ(α(x1), . . . ,xixi+1, . . . ,α(xn+1))αn(xn+2) (36)
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− (ϕ(x1, . . . ,xn)αn−1(xn+1))αn(xn+2).

The terms (31) cancels with (32), (27) with (29), (34) with (36) and (28) with (35).
Exchanging the indices in (33) one sees that in cancels with (30). The remaining
four terms can be easily arranged to

∂αµ∂µαϕ(x1, . . . ,xn+2) = αn−1(x1x2)(∂µαϕ)(x3, . . . ,xn+2) (37)

− (∂µαϕ)(x1, . . . ,xn)αn−1(xn+1xn+2)

= αn−1(x1x2)α(ϕ(x3, . . . ,xn+2)) (38)

−αn−1(x1x2)ϕ(α(x3), . . . ,α(xn+2)) (39)

−α(ϕ(x1, . . . ,xn))αn−1(xn+1xn+2) (40)

+ϕ(α(x1), . . . ,α(xn))αn−1(xn+1xn+2). (41)

Next we check ∂µµ∂αµ = ∂αµ∂αα explicitly. On one side we get

∂µµ∂αµψ(x1, . . . ,xn+2) = αn(x1)(∂αµψ)(x2, . . . ,xn+2)

+
n+1∑
i=1

(−1)i(∂αµψ)(α(x1), . . . ,xixi+1, . . . ,α(xn+2))

+ (−1)n+2(∂αµψ)(x1, . . . ,xn+1)α(xn+2)

= αn(x1)(αn−2(x2x3)ψ(x4, . . . ,xn+2)) (42)

−αn(x1)(ψ(x2, . . . ,xn)αn−2(xn+1x
n+2)) (43)

− (αn−2(x1x2)αn−1(x3))ψ(α(x4), . . . ,α(xn+2)) (44)

+ (αn−1(x1)αn−2(x2x3))ψ(α(x4), . . . ,α(xn+2)) (45)

+
n+1∑
i=3

(−1)iαn−1(x1x2)ψ(α(x3), . . . ,xixi+1, . . . ,α(xn+2)) (46)

−
n−1∑
i=1

(−1)iψ(α(x1), . . . ,xixi+1, . . . ,α(xn))αn−1(xn+1xn+2) (47)

− (−1)nψ(α(x1), . . . ,α(xn))(αn−2(xnxn+1)αn−1(xn+2)) (48)

+ (−1)nψ(α(x1), . . . ,α(xn))(αn−1(xn)αn−2(xn+1xn+2)) (49)

+ (−1)n+2(αn−2(x1x2)ψ(x3, . . . ,xn+1))αn(xn+2) (50)

− (−1)n+2(ψ(x1, . . . ,xn−1)α(xnxn+1))αn(xn+2). (51)
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On the other side one has

∂αµ∂ααψ(x1, . . . ,xn+2) = αn−1(x1x2)(∂ααψ)(x3, . . . ,xn+2)

− (∂ααψ)(x1, . . . ,xn)αn−1(xn+1xn+2)

= αn−1(x1x2)(αn−1(x3)ψ(x4, . . . ,xn+2)) (52)

+
n+1∑
i=3

(−1)iαn−1(x1x2)ψ(α(x3, . . . ,xixi+1, . . . ,α(xn+2)) (53)

+ (−1)n+2αn−1(x1x2)(ψ(x3, . . . ,xn+1)αn−1(xn+2)) (54)

− (αn−1(x1)ψ(x2, . . . ,xn))α(xn+1xn+2)) (55)

−
n−1∑
i=1

ψ(α(x1), . . . ,xixi+1, . . . ,α(xn))αn−1(xn+1xn+2) (56)

− (−1)n(ψ(x1, . . . ,xn)αn−1(xn))αn−1(xn+1xn+2). (57)

Now (44) cancels with (45) and (48) with (49). Using the Hom-associativity it
is also easy to see that (46) equals (53), (47) equals (56), (51) equals (57), (50)
equals (54), (42) equals (52) and (43) equals (55).

Next we verify ∂µα∂µµϕ = ∂αα∂µαϕ. For this we compute

∂αα∂µαϕ(x1, . . . ,xn+1) = αn(x1)(∂µαϕ)(x2, . . . ,xn+1)

+
n∑
i=1

(−1)i(∂µαϕ)(α(x1), . . . ,xixi+1, . . . ,α(xn)) + (−1)n+1(∂µαϕ)(x1, . . . ,xn)αn(xn+1)

= αn(x1)α(ϕ(x2, . . . ,xn+1))−αn(x1)ϕ(α(x2), . . . ,α(xn+1))

+
n∑
i=1

(−1)iα(ϕ(α(x1), . . . ,xixi+1, . . . ,α(xn+1)))

−
n∑
i=1

(−1)iϕ(α2(x1), . . . ,α(xixi+1), . . . ,α2(xn+1))

+ (−1)i+1α(ϕ(x1, . . . ,xn))αn(xn+1)− (−1)i+1ϕ(α(x1), . . . ,α(xn))αn(xn+1)

and

∂µα∂µµϕ(x1, . . . ,xn+1) = α((∂µµϕ)(x1, . . . ,xn+1))− (∂µµϕ)(α(x1), . . . ,α(xn+1))

= α(αn−1(x1)ϕ(x2, . . . ,xn+1)) +
n∑
i=1

(−1)iα(ϕ(α(x1), . . . ,xixi+1, . . . ,α(xn+1)))

+ (−1)i+1α(ϕ(x1, . . . ,xn)αn−1(xn+1))−αn(x1)ϕ(α(x2), . . . ,α(xn+1))
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−
n∑
i=1

(−1)iϕ(α2(x1), . . . ,α(xi)α(xi+1), . . . ,α2(xn+1))

− (−1)i+1ϕ(α(x1), . . . ,α(xn))αn(xn+1).

Using the multiplicativity it is easily seen that the two sides agree. This completes
the proof.

Definition 6.3.3 We denote by H̃B•(A) = ∂H̃C•−1(A) the coboundaries and by H̃Z(A) =

{(ϕ,ψ) ∈ H̃C(A)|∂(ϕ,ψ) = 0} the cocycles. The cohomology of (H̃C(A),∂) = H̃C(A)
/

H̃B(A)
we call α-type Hochschild cohomology of A with value in itself and denote it by
H̃H•(A).

Similarly one can define the cohomology H̃H•(A,M) with values in anA-bimodule
(M,αM ). We denote the left and right action by ·. In this case we have:

H̃Cn(A,M) = H̃Cnµ(A,M)⊕ H̃Cnα(A,M) = Hom(A⊗n,M)⊕Hom(A⊗n−1,M) (58)

for n ≥ 2, H̃C1(A,M) = Hom(A,M), H̃Cn(A,M) = 0 for n ≤ 0 and differentials

∂µµϕ(x1, . . . ,xn+1) = αn−1(x1) ·ϕ(x2, . . . ,xn+1)

+
n∑
i=1

(−1)iϕ(α(x1), . . . ,xixi+1, . . . ,α(xn+1))

+ (−1)n+1ϕ(x1, . . . ,xn−1) ·αn−1(xn+1)

, (59)

∂ααψ(x1, . . . ,xn) = αn−1(x1) ·ψ(x2, . . . ,xn)

+
n−1∑
i=1

(−1)iψ(α(x1), . . . ,xixi+1, . . . ,α(xn))

+ (−1)nψ(x1, . . . ,xn−1) ·αn−1(xn),

(60)

∂µαϕ(x1, . . . ,xn) = αM(ϕ(x1, . . . ,xn))−ϕ(α(x1), . . . ,α(xn)), (61)

∂ααψ(x1, . . . ,xn+1) = αn−2(x1x2) ·ψ(x3, . . . ,xn+1)−ψ(x1, . . . ,xn−1) ·αn−2(xnxn+1). (62)

With this we set

∂(ϕ +ψ) = (∂µµ +∂µα)ϕ − (∂αµ +∂αα)ψ (63)

= (∂µµϕ −∂αµψ,∂µαϕ −∂ααψ). (64)

The proof for ∂2 = 0 is complete analog to the proof of Theorem 6.3.2.
We define the height of an element (ϕ,ψ) ∈ H̃Cn(A) as hgt(ϕ) = n− 1 and hgtψ =

n− 1. This is compatible with (µ,α) ∈ H̃C2(A) and also the differential.
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6.3.1 Relation to other Hochschild cohomologies

First we establish the connection to the cohomology given in Section 6.2. For this
we consider only elements were the summand in H̃Cα is zero, this means pairs of
the form (ϕ,0). The condition ∂(ϕ,0) = 0, corresponds to ∂µµϕ = 0 and ∂µαϕ = 0,
since the other two parts vanish. Since ∂µαϕ ∈ H̃C(A)α and we want this part to be
zero, we consider only the subcomplex where ∂µα vanishes, this is HCnα(A) = {ϕ ∈
H̃Cnµ(A)|αϕ = ϕα⊗n}. The remaining map ∂µµ is a differential on this. In fact we
have

Proposition 6.3.4 The cohomology of HC•α(A) with differential ∂µµ is the one given in
Section 6.2.

Proof. This follows directly since the complexes and the differentials agree by defi-
nition.

As stated above in the associative case the cohomology is completely determined
by the Hochschild cohomology. In fact we have the following

Theorem 6.3.5 Let A be an associative algebra, then H̃Hk(A) �HHk(A)⊕HHk−1(A) for
k ≥ 1 with HH1(A) set to Der(A) and HH0(A) to {0}.

Proof. Since α = id, we have ∂µα = 0, ∂k+1
αα = ∂kµµ and ∂µµ agrees with the Hochschild

differential. We prove the statement by induction over k. For k = 1 the statement is
clear. For (ϕ,ψ) ∈ H̃C(A) to be closed, we must have ∂ααψ = 0, so it is a cocycle in
the ordinary Hochschild cohomology HCk−1(A) and so cohomologous to an element
in HH(A). W.l.o.g. we can assume ψ is this element. Then ϕ̃ ∈ H̃Ckµ(A) defined by
ϕ̃(x1, . . . ,xn) = x1ψ(x2, . . . ,xn) + (−1)nψ(x1, . . . ,xn−1)xn satisfies ∂µµϕ̃ = ∂αµψ, so (ϕ̃,ψ)
is closed. Further ∂µµ(ϕ̃−ϕ) = 0, so it is cohomologous to an element in HHk(A).

The previous theorem is also true for HH•(A,M) for an A-bimodule M.

We consider the case where α is invertible, in this case the construction in the
previous proof can be generalized. For a linear map ψ : A⊗n−1 → A we define
ϕψ(x1, . . . ,xn) = αn−2(x1)α−1(ψ(x2, . . . ,xn)) + (−1)nα−1ψ(x1, . . . ,xn−1)αn−2(xn).

Proposition 6.3.6 Let ψ : A⊗n−1 → A be a linear map which satisfies ∂ααψ = ∂µαϕψ.
Then (ϕψ ,ψ) is an n-cocycle of A.
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Proof. We consider ξ(x1, . . . ,xn) = αn−2(x1)α−1(ψ(x2, . . . ,xn)) and calculate ∂µµξ.

(∂µµξ)(x1, . . . ,xn+1) = αn−1(x1)
(
αn−2(x2)α−1ψ(x3, . . . ,xn+1)

)
+αn−2(x1x2)α−1ψ(α(x3), . . . ,α(xn+1))

+
n∑
i=2

(−1)iαn−1(x1)α−1ψ(α(x2), . . . ,xixi+1, . . . ,α(xn+1))

+ (−1)n+1 (αn−2α−1ψ(x2, . . . ,xn)
)
αn−1(xn+1)

= (αn−2(x1)αn−2)ψ(x3, . . . ,xn+1)−αn−1(x1)
(
αn−2(x2)α−2ψ(α(x3), . . . ,α(xn+1))

)
+αn−1(x1)α−1(αn−1(x2)ψ(x3, . . . ,xn+1))−αn−1(x1)α−1(αn−1(x2)ψ(x3, . . . ,xn+1))

+
n∑
i=2

(−1)iαn−1(x1)α−1ψ(α(x2), . . . ,xixi+1, . . . ,α(xn+1))

+αn−1(x1)α−1 (ψ(x1, . . . ,xn)αn−1(xn)
)

= αn−2(x1x2)ψ(x3, . . . ,xn+1)

+αn−1(x1)α−1
(

(∂µαξ)(x2, . . . ,xn+1)− (∂ααψ)(x2, . . . ,xn+1)
)

Using this it is easy to see that

∂µµϕψ(x1, . . . ,xn+1) = ∂αµψ(x1, . . . ,xn+1) +αn−1(x1)α−1((∂µαϕψ)(x2, . . . ,xn+1)

− (∂ααψ)(x2, . . . ,xn+1)
)
.

Since we assumed ∂ααψ = ∂µαϕψ we get the result.

Note that the condition in the previous theorem can be written explicitly as

αn−1(x1)α−1ψ(α(x2), . . . ,α(xn)) +
n−1∑
i=1

(−1)iψ(α(x1), . . . ,xixi+1, . . . ,α(xn))

+(−1)nα−1ψ(α(x1), . . . ,α(xn−1))αn−1(xn) = 0

(65)

If ψ commutes with α this reduces to ∂ααψ = 0. For n = 2 the condition means that
ψ is a conjugate α-derivation.

Note that in the associative case, i.e. α = id, every cocycle is cohomologous to
a sum of two cocycles, where ones has the form (ϕ,0) and the other one the form
(ϕψ ,ϕ). It would be interesting to know whether this is always the case if α is
invertible, but see also Section 6.3.2.
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6.3.2 α-type cohomology under Yau twist

We study the relation between two Hom-associative algebra related by a Yau twist.
For this we use the cohomology for an algebra endomorphism defined in Section 6.1.

Let A be a Hom-associative algebra and γ a Hom-algebra morphism of A. We
consider the Hom-associative algebra Aγ obtained by Yau twist.

Proposition 6.3.7 If (ϕ,ψ) is an n-cocycle ofA, which commutes with γ , i.e. γϕ = ϕγ⊗n

and γψ = ψγ⊗n−1, then (ϕ̃, ψ̃) = (γn−1ϕ,γn−1ψ) is an n-cocycle of Aγ .

Proof. We need to show ∂̃(ϕ̃, ψ̃) = γn(∂(ϕ,ψ)), where ∂ denotes the differential in
A and ∂̃ the one in Aγ . This is an easy calculation, we show it for one part of the
differential the others work analogously.

(∂ααψ̃)(x1, . . . ,xn) = α̃n−1(x1)̃·ψ̃(x2, . . . ,xn) +
∑
i

(−1)iψ̃(α̃(x1) . . . ,xi ·̃xi+1, . . . , α̃(xn))

+ ψ̃(x1, . . . ,xn−1)̃·α̃n−1(xn)

= γ
(
γn−1(αn−1(x1))γn−1(ψ(x2, . . . ,xn))

)
+
∑

(−1)iγn−1(ψ(γ(α(x1)), . . . ,γ(xixi+1), . . . ,γ(α(xn))
))

+γ
(
γn−1(ψ(x1, . . . ,xn−1))γn−1(αn−1(xn))

)
= γn((∂ααψ)(x1, . . . , cn)).

Next we study the α-type cohomology of Hom-associative algebras of associative
type. This includes in particular the case where α is invertible.

Now letA be an associative algebra, γ an endomorphism of it andAγ the Yau twist
of A by γ . Then we can define a map Φ : C(A,γ)→ H̃C(Aγ ) for (ϕ,ψ) ∈ Cn(A,γ) by

(ϕ,ψ) 7→ (γn−1ϕ +γn−2ψ ◦µ,γn−2ψ), (66)

where ψ◦µ =
∑n−2

i=0 (−1)iψ◦i µwith ϕ◦i µ := ϕ(id⊗i ⊗µ⊗id⊗n−i−2) is the Gerstenhaber
product in HC•(A).

Theorem 6.3.8 The map Φ is a chain map, so it induces a map in cohomology. If γ
is invertible it is an isomorphism and especially the corresponding cohomologies are also
isomorphic.
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Proof. The fact that it is a chain map is a straightforward calculation.

Φ∂(ϕ,0) = Φ(∂µϕ,∂γϕ) (67)

= (γn∂µϕ +γn−1(∂γϕ) ◦µ, γn−1∂γϕ) (68)

∂Φ(ϕ,0) = ∂(γn−1,0) (69)

= (∂µµγ
n−1ϕ,∂µαγ

n−1ϕ) (70)

The second components agree obviously and for the first we get

(γn∂µϕ)(x1, . . . ,xn+1) +γn−1(∂γϕ) ◦µ(x1, . . . ,xn+1) = γn(x1 ·ϕ(x2, . . . ,xn)

−
n∑
i=1

(−1)i+1ϕ(x1, . . . ,xixi+1, . . . ,xn+1) + (−1)n+1ϕ(x1, . . . ,xn) · xn+1)

+
n∑
i=1

(−1)i+1γnϕ(x1, . . . ,xixi+1, . . . ,xn+1)

−
n∑
i=1

(−1)i+1γn−1ϕ(γ(x1), . . . ,γ(xixi+1), . . . ,γ(xn+1))

= ∂µµγ
n−1ϕ(x1, . . . ,xn+1).

Φ∂(0,ψ) = (γn−1(∂µψ) ◦µ,γn−1∂µψ)

∂Φ(0,ψ) = (∂µµ(γn−2ψ ◦µ)−∂αµ(γn−2ψ),∂µα(γn−2ψ ◦µ)−∂αα(γn−2ψ))

The second components agree using a similar calculation as above and for the first
one uses

∂µµ(γn−2ψ ◦µ)(x1, . . . ,xn+1) = (−1)iγn−1(x1 ·ψ(γ(x2), . . . ,γ(xixi+1, . . . ,xn+1)

(−1)i+nγn−1(ψ(γ(x1), . . . ,γ(xixi+1, . . . ,xn) · xn+1

(∂µψ) ◦µ(x1, . . . ,xn) = (x1x2)ψ(x3, . . . ,xn+1) + (−1)ix1 ·ψ(x2, . . . ,xixi+1, . . . ,xn+1)

−ψ(x1, . . . ,xn−1) · (xnxn+1) + (−1)i+nψ(x2, . . . ,xixi+1, . . . ,xn) · xn+1.

If γ is invertible, the inverse of Φ is given by

(ϕ,ψ) 7→ (γ−n+1ϕ −γ−n+1ψ ◦µ,γ−(n−2)ψ), (71)

which is easy to check.

Using this proposition and the remarks on how to compute H(γ) in Section 6.1 it
is possible to compute the α-type Hochschild cohomology of Aγ , if one knows the
Hochschild cohomology of A. Especially we have

147



6. Cohomology

Corollary 6.3.9 If (A,µ,α) is a Hom-associative algebra, such that α is invertible, then
its α-type cohomology H̃H(A) is isomorphic to H(Aα−1 ,α), where Aα−1 is the associative
algebra obtained by Yau twist of A with α−1.

This implies that if HC(γ) splits as a direct sum like the underlying complex, this
means every cocycle is cohomologous to one of the form (ϕ,0) or (0,ψ), also H̃C(Aγ )
splits in a similar way. This is interesting, when considering the deformation of
commutative Hom-associative algebras.

6.4 Examples

In the case where α is invertible, the cohomology can be computed using Theo-
rem 6.3.8. Let V be a vector space with an endomorphism α. Then we consider the
symmetric algebra S(V ) over V and α̃ the extension of α to S(V ). With this we can
define S(V ,α) as the Yau twist of S(V ) by α̃. If α is invertible this is isomorphic to
the free commutative Hom-associative algebra over (V ,α).

Using the Hochschild-Kostant-Rosenberg Theorem it is not difficult to see that
Hk(C(α̃),∂µ) =ΛkDer(S(V ))⊕ α̃Λk−1 Der(S(V )). Because the HKR-Theorem directly
gives Hk(Cµ(α̃),∂µ) = HHk(A,A) = ΛkDer(S(V )) and ϕ 7→ αϕ is a cochain isomor-
phism from HC(A,A)→HC(, Ã) = Hk(Cγ (α̃),∂µ). The differential ∂γ is well defined

on this complex. So we get H(γ) =ΛkDerα̃(S(V ))⊕ α̃Λk−1 Der(S(V ))
/

im∂γ , where

Derγ (A) = {ϕ ∈Der(A)|ϕγ = γϕ}. If V is finite dimensional and α and consequently
α̃ are diagonal the second summand simplifies to α̃Λk−1 Derα̃(S(V )).

Next we consider the case α = 0. In this case every bilinear map defines a Hom-
associative algebra. It turns out that all differentials except low degrees are zero. In
degree one we have ∂µµϕ(x,y) = xϕ(y)−ϕ(xy)+ϕ(x)y and in degree two ∂ααψ(x,y) =
ψ(xy) and ∂αµψ(x,y,z) = (xy)ψ(z)−ψ(x)(yz). So the cohomology in degree 1 consists
of the derivations as always and starting from degree 4 it is the whole complex.

The other extreme case is when the multiplication is zero. In this case all dif-
ferentials except of ∂µα are zero. So the cohomology can be easily computed to be

H̃Hn = Homα(A⊗n,A)⊕ Hom(A⊗n−1,A)
/

im∂µα , where

Homα(A⊗n,A) = {ϕ ∈Hom(A⊗n,A)|∂µαϕ = 0}

are the linear maps commuting with α. If α is diagonalizable, so is ∂µα and we have
Hom(A⊗n−1,A)

/
im∂µα �Homα(A⊗n−1,A).

Next we give two examples, where we compute the cohomology – or at least its
dimension – in low degrees explicitly using computer algebra systems. The first is
a Hom-associative algebra, which is not of associative type, the second one a trun-
cated polynomial algebra.
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Hom-associative algebra not of associative type We consider the Hom-associative
algebra, spanned by e1, e2 with structure map α(e1) = e1 + e2,α(e2) = 0 and multipli-
cation e1e1 = e1, eiej = e2 for all other i, j. Then using the computer algebra system

Maxima, we computed the lower cohomologies. It turns out that H̃H1 = H̃H2 =
0,dim(H̃H3) = 2 and dim(H̃H4) = 10. The third cohomology is spanned by (ϕ1,ψ1)
and (ϕ2,0) with

ψ1(e1, e2) = e2, ψ1(e2, e1) = e2, ψ1(e2, e2) = e2,

ϕ1(e1, e1, e1) = e2, ϕ1(e1, e1, e2) = 2e2 − e1, ϕ1(e2, e1, e1) = e1, ϕ1(e2, e1, e2) = e2

and ϕ2(e1, e1, e1) = −e2, ϕ2(e1, e2, e1) = −e2, ϕ2(e2, e1, e2) = e2, ϕ2(e2, e2, e2) = e2.

Truncated polynomial algebra We consider a vector space V spanned by x,y and
an endomorphism α of it. Then we can form the polynomial algebra S(V ) of it.

We consider A = S(V )
/
S3(V ) . This is spanned by {1,x,y,x2,xy,y2}. The map α

can be extended to this as an algebra morphism, which we denote by α̃, so we can
consider the Yau twist Aα. The cohomology of course depends on α. So we consider
the different possibilities. We start with the case α = id. In this case dim(H̃H1) =
10,dim(H̃H2) = 25 and dim(H̃H3) = 41.

In the case α = λ id,λ , 1, we have dim(H̃H1) = 4, and the derivations are deter-
mined by

ϕ(x) = λ1x+λ2y, ϕ(y) = λ3x+λ4y.

For the second cohomology we have dim(H̃H2) = 7. Four generators are of the form
(ϕψ ,ψ) with ψ = αϕ for ϕ ∈ H̃H1. The rest is given by

ϕ(x,y) = λ3y
2 −λ1xy, ϕ(y,x) = λ2x

2 +λ1xy.

For the third cohomology we get dim(H̃H3) = 3, so everything comes from H̃H2 as
described before.

In the case α(x) = λ(x),α(y) = x + λy, this is, α is not diagonalizable, we have
dim(H̃H1) = 2, and it is given by

ϕ(x) = λ1x, ϕ(y) = λ1y +λ2x.

For the second cohomology we have dim(H̃H2) = 3, with two generators coming
from derivations and

ϕ(x,y) = x2 = −ϕ(y,x).

For the third cohomology we get dim(H̃H3) = 1.
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The next case is a α(x) = λx,α(y) = µy, with λi , µk for all i,k ∈ N. In this case
dim(H̃H1) = 2, namely

ϕ(x) = λ1x, ϕ(y) = λ2y.

For the second cohomology we get dim(H̃H2) = 3, with two generators coming from
derivations and

ϕ(x,y) = λ1xy.

For the third cohomology we get dim(H̃H3) = 1.
As a last case we consider an example of a diagonal α, but such that the eigen-

values are algebraically dependent, so we consider α(x) = 2x,α(y) = 4y. In this case
dim(H̃H1) = 3, namely the derivations determined by

ϕ(x) = λ1x, ϕ(y) = λ2y +λ3x
2.

For the second cohomology we get dim(H̃H2) = 6, with three generators coming
from derivations, one is the same as in the previous case and

ϕ(x,y) = λ1xy,

ϕ(x,xy) = λ2y
2 = ϕ(xy,x),

ϕ(y,x2) = λ2y
2 = ϕ(x2, y),

ϕ(x,x2) = ϕ(x2,x) = λ3xy.

6.4.1 Cohomology of free Hom-algebras

In this section we compute the α-type cohomology of some special free Hom-
associative algebras. This is given a Hom-module (V ,α), we compute the cohomol-
ogy of its free Hom-associative algebra H̃C(FHAss(V ))).

We start with the case that α is invertible. In this case A = F(V ) is of associa-
tive type and using Corollary 6.3.9 it is possible to compute H̃C(A) by computing
H(Aα−1 ,α).

Lemma 6.4.1 The associative algebra Aα−1 is isomorphic to the free algebra T (V ).

Proof. On generators the isomorphism can be defined by the identity. Since T (V )
is a free algebra it can be extended to a homomorphism A→ Aα−1 . It is explicitly
given by (x1 . . .xn) 7→ (. . . (α−n+1(x1α

−n+1(x2))α−n+2(x3)) . . . )xn, where the product on
the right hand side is the product in A.

So it is enough to compute H(T (V ),α).
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Proposition 6.4.2 Given a vector space V and a linear map γ : V → V we have

H1(T (V ),γ) = Homα(V ,T (V )), H2(T (V ),γ) = Hom(V ,T (V ))
/
∂γ Hom(V ,T (V ))

and all other parts of the cohomology are zero.

Proof. It is well known that for an arbitrary T (V )-module M the Hochschild co-
homology vanish for degree greater or equal to 2. Since we begin the complex in
degree one, we have H1(Cµ(T (V ),γ),∂µ) = Hom(V ,T (V )) = Der(T (V )) and simi-
lar H1(Cγ (T (V ),γ),∂µ) = Hom(V ,T (V )) = γ −Der(T (V )). So the first sheet of the
spectral sequence associated to C(T (V ),γ) consists only of these two terms, and the
second sheets gives the claimed result.

We consider the case where (V ,α) is a free Hom-module, then we have

Lemma 6.4.3 Let V be a vector space and (V [γ],γ) the free Hom-module on it, then
∂γ : Hom(V [γ],T (V ))→Hom(V [γ],T (V )),ϕ 7→ γϕ −ϕγ is surjective.

Proof. Let ϕ ∈ Hom(V ,T (V )) we construct a ψ ∈ Hom(V ,T (V )) such that ∂γψ = ϕ,
by induction on the degree in γ . We set ψ(x) = 0 for all x ∈ V , and ψ(γn+1(x)) =
γψ(γn(x))−ϕ(γn(x)). Then a simply calculation shows that indeed ∂γψ = ϕ.

This proves H•(T (V [γ]),γ) = Der(T (V [γ])).
Similar one can show that alsoH•(T (V [γ,γ−1]),γ) = Der(T (V [γ,γ−1])). Using the

Yau twist this shows that given a vector space, the free Hom-algebra with invertible
structure map has as cohomology only the derivations.

6.5 Hom-coassociative coalgebras

In this section we mention very briefly, how the Hochschild cohomology can be
dualized to a cohomology for Hom-coassociative coalgebras.

So let (C,∆,β) be a Hom-coassociative coalgebra and (M,βM ) a cobimodule of it,
then we define its cohomology complex by

Cn(C,M) = HomH ((M,βM ), (C⊗n,β)). (72)

The differential on it for ϕ ∈ C(C,M) is given by

∂ϕ = (id⊗ϕ)λ+
n−1∑
i=1

(−1)i(idi−1⊗∆⊗ idn−i)ϕ + (−1)n+1(ϕ ⊗ id)ρ, (73)

where λ and ρ denote the left and right coaction resp.
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One can also define an α-type cohomology for coassociative coalgebras. For a
coalgebra C and a C-cobimodule M the complex is given by

Cn(A) = C(A)n∆ ⊕C
n
β (A) = Hom(M,C⊗n)⊕Hom(M,C⊗−1) (74)

for n ∈ N with Hom(M,C) replace with the zero space. The differential consists of
four maps dual to the ones in Section 6.3.

∂∆∆ϕ = (βn−1 ⊗ϕ)λ−
n−1∑
i=0

(−1)i(β⊗i ⊗∆⊗ β⊗n−i−1)ϕ − (−1)n(ϕ ⊗ βn−1)ρ (75)

∂∆βϕ = βψ −ψβ⊗n (76)

∂β∆ψ = (∆βn−2 ⊗ϕ)λ− (ϕ ⊗∆βn−2)ρ (77)

∂∆∆ψ = (βn−1 ⊗ψ)λ−
n−1∑
i=0

(−1)i(β⊗i ⊗∆⊗ β⊗n−i−1)ψ − (−1)n(ϕ ⊗ βn−1)ρ (78)

We also want to note that the theorems from Section 6.3 also hold for coalgebras
in a similar way.

6.6 Hom-bialgebras

Given a Hom-bialgebra we recall the cohomology for it given in [DM17], which
we will call the Gerstenhaber-Schack cohomology. We stick to the case where α = β
here since only this case is considered in [DM17].

In the following let A be a Hom-bialgebra then T •A is an A-bimodule, and dually
it is an A-cobimodule. We set C••GS(A) = HomH (T •A,T •A). Then it is a bicomplex
with differentials δ∆ and δµ.

As usual the total complex is given by

CkGS =
⊕
k=i+j

C
i,j
GS =

⊕
k=i+j

HomH (T iA,T jA)

with differential δ = δµ + δ∆. Here δµ denotes the Hochschild differential defined in
Section 6.2 and δ∆ denotes the differential defined in Section 6.5. The complex C•,k

can be seen as the Hochschild complex of the algebra (A,µ,α) with values in A⊗k and
similarly Ck,• can be seen as the cohomology complex for the coalgebra (A,∆,β).

The Hom-algebra A acts on itself from the left and right by multiplication, with
this we have on A⊗n the action defined in Section 5.3. It is given by x · (a1 ⊗ . . . an) =
∆nβ(x)(a1⊗ . . . an) = x(1)a1⊗x(2)a2⊗· · ·⊗x(n)an. With ∆nβ(x) = x(1)⊗· · ·⊗x(n). Dually we

have a left coaction ρ on A⊗n given by ρ(a1⊗· · ·⊗an) = µnα(a(1)
1 , . . . , a

(1)
n )⊗a(2)

1 ⊗· · ·⊗a
(2)
n .

Similarly the right action and coaction can be defined.
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6.7 α-type cohomology for Hom-bialgebras

In this section we extend the α-type Hochschild cohomology defined for Hom-
associative algebras to Hom-bialgebras.

Let A be a Hom-bialgebra. As a shorthand notation we set H i,j = Hom(A⊗i ,A⊗j )
for i, j ∈ N. For i or j ≤ 0 we set H i,j = 0. (This is necessary since the differentials
we are going to define, would involve α−1 or β−1 otherwise.) We define a bicomplex
C•,•GS(A) by

Cn,mGS (A) = Cn,mGS µ∆(A)⊕Cn,mGS α∆(A)⊕Cn,mGS µβ(A)⊕Cn,mGS αβ(A)

=Hn,m ⊕Hn−1,m ⊕Hn,m−1 ⊕Hn−1,m−1.
(79)

For every summand there is algebra and a coalgebra differential.

We denote an element in Cn,mGS by (ϕ,ψ,χ,ξ). The algebra differential ∂µ : Cn,mGS →
Cn+1,m
GS is given by

∂µ(ϕ,ψ,χ,ξ) = (∂µµϕ −∂µαψ,∂µαϕ −∂ααψ,∂µµχ −∂αµξ,∂µαχ −∂ααξ), (80)

where the differentials are the α-type Hochschild differentials defined before, where
the left action on A⊗m in CGS

n,m
α∆ and CGS

n,m
µ∆ is the usual one and the left-action on

A⊗m−1 in CGS
n,m
αβ and CGS

n,m
µβ is given by β(x) ·y, where · denotes the usual left-action

on A⊗m−1, and similarly for the right-action.

Dually the coaction onA⊗m−1 in CGS
n,m
αβ and CGS

n,m
α∆ is given by α(x(−1))·x(0), where

x 7→ x(−1) ⊗ x(0) denotes the usual left coaction on A⊗m−1.

Since there are a lot of different maps involved we give a diagram depicting all
maps, which start in Ci,jGS :
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CGS
i,j
αβ CGS

i,j
µβ

CGS
i,j
α∆

CGS
i,j
µ∆

CGS
i+1,j
αβ CGS

i+1,j
µβ

CGS
i+1,j
α∆

CGS
i+1,j
µ∆

CGS
i,j+1
αβ CGS

i,j+1
µβ

CGS
i,j+1
α∆

CGS
i,j+1
µ∆

∂αα

∂αµ

∂µα

∂µµ

∂αα

∂αµ

∂µα

∂µµ

Proposition 6.7.1 The differentials defined above make CGS to a bicomplex.

Proof. From the known differential of Hom-bialgebras [DM17] its follows that ∂µµ∂∆∆ =
∂∆∆∂µµ. And essentially doing the same calculation, one gets the same for all parts

CGS
n,m
ij → CGS

n+1,m+1
ij for i ∈ {µ,α} and j ∈ {∆,β}.

Next we consider the part CGS
n,m
µ∆ → CGS

n,m
αβ , for this we compute

∂∆β∂µαϕ(x1, . . . ,xn) =β⊗mα⊗mϕ(x1, . . . ,xn)− β⊗mϕ(α(x1), . . . ,α(xn))

−α⊗mϕ(β(x1), . . . ,β(xn)) +ϕ(β(α(x1)), . . . ,β(α(xn)))

=∂µα∂∆βϕ(x1, . . . ,xn)

Which holds, since α and β commute.
CGS

n,m
µ∆ → CGS

n,m
αβ

∂∆∆∂µαϕ(x1, . . . ,xn) = αµnα(x(1)
1 , . . . ,x

(1)
n )⊗ (∂µαϕ)(x(2)

1 , . . . ,x
(2)
n )

+
m∑
i=1

(−1)i∆i(∂µαϕ)(x1, . . . ,xn) + (−1)m+1(∂µαϕ)(x(1)
1 , . . . ,x

(1)
n )⊗αµnα(x(2)

1 , . . . ,x
(2)
n )

= αµnα(x(1)
1 , . . . ,x

(1)
n )⊗ (α⊗mϕ)(x(2)

1 , . . . ,x
(2)
n )−αµnα(x(1)

1 , . . . ,x
(1)
n )⊗ϕ(α(x(2)

1 ), . . . ,α(x(2)
n ))
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+
m∑
i=1

(−1)i∆i(α
⊗mϕ)(x1, . . . ,xn)−

m∑
i=1

(−1)i∆iϕ(α(x1), . . . ,α(xn))

+ (−1)m+1(α⊗mϕ)(x(1)
1 , . . . ,x

(1)
n )⊗αµnα(x(2)

1 , . . . ,x
(2)
n )

− (−1)m+1ϕ(α(x(1)
1 ), . . . ,α(x(1)

n ))⊗αµnα(x(2)
1 , . . . ,x

(2)
n )

∂µα∂∆∆ϕ(x1, . . . ,xn) = α⊗m+1(∂∆∆ϕ)(x1, . . . ,xn)− (∂∆∆ϕ)(x1, . . . ,xn)

= α⊗m+1(µnα(x(1)
1 , . . . ,x

(1)
n )⊗ϕ(x(2)

1 , . . . ,x
(2)
n )

+
m∑
i=1

(−1)iα⊗m+1∆iϕ(x1, . . . ,xn)

+ (−1)m+1αm+1(ϕ(x(1)
1 , . . . ,x

(1)
n )⊗µnα(x(2)

1 , . . . ,x
(2)
n ))

−µnα(α(x1)(1), . . . ,α(xn)(1))⊗ϕ(α(x1)(2), . . . ,α(xn)(2))

−
m∑
i=1

(−1)i∆iϕ(α(x1), . . . ,α(xn))

− (−1)m+1ϕ(α(x1)(1), . . . ,α(xn)(1))⊗µnα(α(x1)(2), . . . ,α(xn)(2))

Using that α is a morphism of ∆, it is easy to see that the two sides agree.
CGS

n,m
αβ → CGS

n,m
µ∆

(∂β∆∂µµξ)(x1, . . . ,xn+1) = ∆βm−2µnα(w(1)
1 , . . . ,x

(1)
n )⊗ (∂αµξ)(x(2)

1 , . . . ,x
(2)
1 )

− (∂αµξ)(x(1)
1 , . . . ,x

(1)
1 )⊗∆βm−2µnα(w(2)

1 , . . . ,x
(2)
n )

= ∆βm−2µnα(x(1)
1 , . . . ,x

(1)
n )⊗ βαn−2(x(2)

1 x
(2)
2 ) · ξ(x(2)

3 , . . . ,x
(2)
n+1)

− (−1)n∆βm−2µnα(w(1)
1 , . . . ,x

(1)
n )⊗ ξ(x(2)

1 , . . . ,x
(2)
n−1) · βαn−2(x(2)

n x
(2)
n+1)

− βαn−2(x(1)
1 x

(1)
2 ) · ξ(x(1)

3 , . . . ,x
(1)
n+1)⊗∆βm−2µnα(x(2)

1 , . . . ,x
(2)
n )

+ (−1)nξ(x(1)
1 , . . . ,x

(1)
n−1) · βαn−2(x(1)

n x
(1)
n+1)⊗∆βm−2µnα(x(2)

1 , . . . ,x
(2)
n )

On the other side we get

(∂αµ∂β∆ξ)(x1, . . . ,xn+1) = αn−2(x1x2) · (∂β∆ξ)(x3, . . . ,xn+1)

− (∂β∆ξ)(x1, . . . ,xn−1) ·αn−2(xnxn+1)

= αn−2(x1x2) ·
(
∆αβm−2µn−iα (x(1)

3 , . . . ,x
(1)
n+1)⊗ ξ(x(2)

3 , . . . ,x
(2)
n+1)

)
−αn−2(x1x2) ·

(
ξ(x(1)

3 , . . . ,x
(1)
n+1)⊗∆αβm−2µn−iα (x(2)

3 , . . . ,x
(2)
n+1)

)
−
(
∆αβm−2µn−iα (x(1)

1 , . . . ,x
(1)
n−1)⊗ ξ(x(2)

1 , . . . ,x
(2)
n−1)

)
·αn−2(xnxn+1)

+
(
ξ(x(1)

1 , . . . ,x
(1)
n−1)⊗∆αβm−2µn−iα (x(2)

1 , . . . ,x
(2)
n−1)

)
·αn−2(xnxn+1)
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Using (19) and (17) we get

αn−2(x1x2) ·
(
∆αβm−2µn−iα (x(1)

3 , . . . ,x
(1)
n+1)⊗ ξ(x(2)

3 , . . . ,x
(2)
n+1)

)
=
(
βm−2αn−2(x(1)

1 x
(1)
2 ) ·∆αβm−2µn−iα (x(1)

3 , . . . ,x
(1)
n+1)

)
⊗
(
βαn−2(x(2)

1 x
(2)
2 ) · ξ(x(2)

3 , . . . ,x
(2)
n+1)

)
=
(
∆aβm−2µn+1

α (x(1)
1 , . . . ,x

(1)
n+1)

)
⊗
(
βαn−2(x(2)

1 x
(2)
2 ) · ξ(x(2)

3 , . . . ,x
(2)
n+1)

)
Similarly the other three terms can be manipulated, which shows that the two sides
agree.
CGS

n,m
α∆ → CGS

n,m
µ∆

∂µµ∂β∆χ(x1, . . . ,xn+1) = αn−1(x1) · (∂β∆χ)(x2, . . . ,xn+1)

+
n∑
i=1

(−1)i∂β∆χ)(α(x1), . . . ,xixi+1, . . . ,α(xn)) + (−1)n+1(∂β∆χ)(x1, . . . ,xn) ·αn−1(xn+1)

= αn−1(x1) ·
(
∆βm−2µnα(x(1)

2 , . . . ,x
(1)
n+1)⊗χ(x(2)

2 , . . . ,x
(2)
n+1)

)
−αn−1(x1) ·

(
χ(x(1)

2 , . . . ,x
(1)
n+1)⊗∆βm−2µnα(x(2)

2 , . . . ,x
(2)
n+1)

)
+

n∑
i=1

βm−2µnα(α(x1)(1), . . . , (xixi+1)(1), . . . ,α(x(1)
n+1))⊗χ(α(x1)(2), . . . , (xixi+1)(2), . . . ,α(x(2)

n+1))

−
n∑
i=1

χ(α(x1)(1), . . . , (xixi+1)(1), . . . ,α(x(1)
n+1))⊗ βm−2µnα(α(x1)(2), . . . , (xixi+1)(2), . . . ,α(x(2)

n+1))

+ (−1)n+1
(
∆βm−2µnα(x(1)

1 , . . . ,x
(1)
n )⊗χ(x(2)

1 , . . . ,x
(2)
n )
)
·αn−1(xn+1)

− (−1)n+1
(
χ(x(1)

1 , . . . ,x
(1)
n )⊗∆βm−2µnα(x(2)

1 , . . . ,x
(2)
n )
)
·αn−1(xn+1)

We note that µnα(α(x1), . . . , (xixi+1), . . . ,α(xn+1)) = µn+1
α (x1, . . . ,xn+1).

(∂β∆∂µµχ)(x1, . . . ,xn+1) = ∆βm−2µn+1
α (x(1)

1 , . . . ,x
(1)
n+1)⊗ (∂β∆χ)(x(2)

1 , . . . ,x
(2)
n+1)

− (∂β∆χ)(x(1)
1 , . . . ,x

(1)
n+1)⊗∆βm−2µn+1

α (x(2)
1 , . . . ,x

(2)
n+1)

= ∆βm−2µn+1
α (x(1)

1 , . . . ,x
(1)
n+1)⊗ βαn−1(x(2)

1 ) ·χ(x(2)
2 , . . . ,x

(2)
n+1)

+
n∑
i=1

(−1)i∆βm−2µn+1
α (x(1)

1 , . . . ,x
(1)
n+1)⊗χ(α(x(2)

1 ), . . . ,x(2)
i x

(2)
i+1, . . . ,α(x(2)

n+1))

+ (−1)n+1∆βm−2µn+1
α (x(1)

1 , . . . ,x
(1)
n+1)⊗ βχ(x(2)

1 , . . . ,x
(2)
n ) ·αn−1(x(2)

n+1)

− βαn−1(x(1)
1 ) ·χ(x(1)

2 , . . . ,x
(1)
n+1)⊗∆βm−2µn+1

α (x(2)
1 , . . . ,x

(2)
n+1)

−
n∑
i=1

(−1)iχ(α(x(1)
1 ), . . . ,x(2)

i x
(1)
i+1, . . . ,α(x(1)

n+1))⊗∆βm−2µn+1
α (x(2)

1 , . . . ,x
(2)
n+1)
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− (−1)n+1βχ(x(1)
1 , . . . ,x

(1)
n ) ·αn−1(x(1)

n+1)⊗∆βm−2µn+1
α (x(2)

1 , . . . ,x
(2)
n+1)

Again using (19) and (17) we get

αn−1(x1) ·
(
∆βm−2µnα(x(1)

2 , . . . ,x
(1)
n+1)⊗χ(x(2)

2 , . . . ,x
(2)
n+1)

)
=

∆βm−2µn+1
α (x(1)

1 , . . . ,x
(1)
n+1)⊗ βαn−1(x(2)

1 ) ·χ(x(2)
2 , . . . ,x

(2)
n+1).

With this and similar equalities it is easy to see that the two sides agrees.

This describes the deformation of a general Hom-bialgebra. More on deformation
will be given in Section 8.4.

If one wants to consider only the case where α = β, i.e. both structure maps are
the same, and one wants the deformation to respect this or only consider algebras
where this is the case, one has two identify Ci+1,j

α∆ with C
i,j+1
µβ and set Ci,jαβ to {0}.

Note that this does not respect the bicomplex structure, so the resulting complex is
no longer a bicomplex. For example we have C2

GS = H2,1 ⊕H1,1 ⊕H1,2. Since this is
often considered we give some more details.

Proposition 6.7.2 Let (A,µ,α,∆,α) be a Hom-bialgebra. Then the subspace ofCGS given
in degree n by elements of the form (ϕi,j ,ψi,j ,χi,j ,ξi,j )i+j=n, with ϕi,j ∈ CGS

i,j
µ∆, ψi,j ∈

CGS
i,j
α∆, χi,j ∈ CGS

i,j
α∆ and ξi,j ∈ CGS

i,j
αβ for all i, j, which satisfy ψi,j = χi−1,j+1 and ξi,j =

0, is a subcomplex, i.e. it is preserved by the differential.

Proof. We need to verify that ∂(ϕi,j ,ψi,j ,χi,j ,ξi,j )i+j=n again satisfies the two con-
straints. For the first we have ∂µµχi,j+1 = ∂ααψi+1,j and ∂µαϕi,j = ∂∆βϕi,j . For the
second we have ∂µαχi−1,j = ∂∆βψi,j−1 since α = β.

So the complex can be given by

CGS
i =

i−1⊕
j=1

CGS
j,i−j
µ ⊕

i−2⊕
j=1

CGS
j,i−j−1
α (81)

=
i−1⊕
j=1

H j,i−j ⊕
i−2⊕
j=1

H j,i−j−1. (82)

Note that the degree of CGS
i,j
µ is i + j, while the degree of CGS

i,j
α is i + j + 1. The
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differential consists of maps

∂µµ :CGS
i,j
µ → CGS

i+1,j
µ :

(∂µµϕ)(x1, . . . ,xi+1) = αi−1(x1) ·ϕ(x2, . . . ,xi+1)

+
i∑
k=1

(−1)kϕ(α(x1), . . . ,xkxk+1, . . . ,α(xi+1)) + (−1)i+1ϕ(x1, . . . ,xi) ·αi−1(xi+1),

∂µα :CGS
i,j
µ → CGS

i,j
α :

(∂µαϕ)(x1, . . . ,xi) = α⊗jϕ(x1, . . . ,xi)−ϕ(α(x1), . . . ,α(xi)),

∂αα :CGS
i,j
α → CGS

i+1,j
α :

(∂ααψ)(x1, . . . ,xi+1) = αi(x1) ·ψ(x2, . . . ,xi+1)

+
i∑
k=1

(−1)kψ(α(x1), . . . ,xkxk+1, . . . ,α(xi+1)) + (−1)i+1ψ(x1, . . . ,xi) ·αi(xi+1),

∂αµ :CGS
i,j
α → CGS

i+2,j
µ :

(∂αµψ)(x1, . . . ,xi+2) = αi(x1x2) ·ψ(x3, . . . ,xi+2)−ψ(x1, . . . ,xi) ·αi(xi+1xi+2),

Dually we define the differentials ∂∆∆ : CGS
i,j
µ → CGS

i,j+1
µ , ∂ββ : CGS

i,j
α → CGS

i,j+1
α

and ∂β∆ : CGS
i,j
α → CGS

i,j+2
µ .

The different parts of the differential can be seen in the following diagram:

CGS
i,j
µ

CGS
i,j+1
µ

CGS
i+1,j
µ CGS

i+2,j
µ

CGS
i,j+2
µ

CGS
i,j
α

CGS
i,j+1
α

CGS
i+1,j
α

6.7.1 Relation to other cohomologies

We relate this to the cohomology given in Section 6.6.
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We first consider the situation, of α-Hom-bialgebras. We want to find a subcom-
plex of the form such that all elements in CGSα(A) are zero. For the differential
to respect this we must have ∂αϕ = 0 for ϕ ∈ CGSµ. This describes precisely the
complex of Section 6.6. It is also clear that the remaining differential is the one
described there.

In the more general situation of (α,β)-Hom-algebras one can search for different
types of subcomplexes. The most simple one is to search for a subcomplex in CGSµ∆.
In this case ∂µα and ∂∆β must vanishes, and we get the bicomplex

Homα,β(A⊗•,A⊗•) = {ϕ ∈Hom(A⊗•,A⊗•)|αϕ = ϕα,βϕ = ϕβ}.

It is clear that ∂µµ and ∂∆∆ restrict to this complex. In the case α = β one gets the
same as before.

6.7.2 Yau twist

There are different cases to consider: The product and the coproduct are twisted
at the same time with the same map. Or they are twisted with different maps. This
includes as a special case the situation where only the product or coproduct are
twisted.

We first consider the case that for an α-Hom-bialgebra the product and coproduct
are twisted with the same map.

In this case we define a map Φ from C(A,γ) to H̃C(A). For ϕ ∈ Ci,jµ (A,γ),ψ ∈
C
i,j
α (A,γ) it is given by

Φ(ϕ) = γ i−1ϕγ j−1 ∈ H̃Ci,jµ (A) (83)

Φ(ψ) = (γ i−1ψ ◦µγ j−1,γ i−1ψγ j−1,γ i−1∆ ◦ψγ j−1) (84)

∈ H̃Ci+1,j
µ ⊕ H̃Ci,jα ⊕ H̃Ci,j+1

µ

Proposition 6.7.3 The map Φ : C(A,γ)→ H̃C(A) defined above is a chain map.

Proof. Let ϕ ∈ Cµ(A,γ). We need to verify Φ(∂Eϕ) = ∂HΦ(ϕ), where ∂E is the dif-
ferential of C(A,γ) and ∂H the one of H̃C(Aγ ). This is simply calculation using

Theorem 6.3.8. Now we consider ψ ∈ Ci,jγ (A,γ). Then we have

∂Φ(ψ) =∂(−γ i−1(ψ ◦µ)γ j−1,γ i−1ψγ j−1,−γ i−1(∆ ◦ψ)γ j−1)

= (−∂µµ(γ i−1(ψ ◦µ)γ j−1) +∂αµ(γ i−1ψγ j−1),

−∂µα(γ i−1(ψ ◦µ)γ j−1)−∂αα(γ i−1ψγ j−1),

−∂µµ(γ i−1(∆ ◦ψ)γ j−1)−∂cµµ(γ i−1(ψ ◦µ)γ j−1),dual)
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and

Φ(∂ψ) = Φ(∂µψ,∂
c
µψ)

= (γ i(∂µ) ◦µγ j−1,γ i(∂µψ)γ j−1,γ iδ ◦ (∂µψ)γ j−1 +γ i−1(∂cµψ) ◦µγ j ,dual)

Here dual denotes terms which are dual to the ones already given so we omit them.
Now using calculations similar to Theorem 6.3.8 on can show that the first two
components agree. The third one are equal since

∆kγ
i(γ(x1)·ψ(γ j−1(x2), . . . ,γ j−1(xi+1))) = γ i−1(x1)·γγ i−1(∆kψ)(γ j−1(x2), . . . ,γ j−1(xi+1)),

where ∆k = id⊗k⊗∆⊗ id⊗j−k−1.

Now we come to the case where product and product are twisted by different
maps. We recall what we mean with Yau twist in this case. Let A be a bialgebra
and γ1,γ2 be two commuting morphisms of it then (A,γ1µ,∆γ2,γ1,γ2) is a Hom-
bialgebra, which we denote by Aγ1,γ2

.
Then we define a map C(A,γ1,γ2)→ H̃C(Aγ1,γ2

) for (ϕ,ψ,χ,ξ) ∈ Ci,j(A,γ1,γ2) by

Φ(ϕ,ψ,χ,ξ) = (γ i−1
1 ϕγ

j−1
2 +γ i−2

1 (ψ ◦µ)γ j−1
2 +γ i−1

1 (∆ ◦χ)γ j−2
2 +γ i−2

1 (∆ ◦ ξ ◦µ)γ j−2
2 ,

γ i−2
1 ψγ

j−1
2 +γ i−2

1 (∆ ◦ ξ)γ j−2
2 ,

γ i−1
1 χγ

j−2
2 +γ i−2

1 (ξ ◦µ)γ j−2
2 ,

γ i−2
1 ξγ

j−2
2 ).

(85)

Proposition 6.7.4 The map Φ defined above is a chain map. If γ1 and γ2 are invertible
it is an isomorphism.

Proof. Forϕ ∈ C∆µ(A,γ) doing calculations similar to Theorem 6.3.8, one getsΦ(∂ϕ) =
∂Φ(ϕ). Similar for the other components of the complex. Note that since the defi-
nition of the cohomology is self dual one does only need to check certain equations.

It is also clear that Φ is invertible if γ1 and γ2 are so.

With this one can compute the cohomology for regular Hom-bialgebras if one can
compute the cohomology for the corresponding commuting endomorphism. As a
special case one can calculate the α-type GS cohomology of an ordinary bialgebra
considered as Hom-bialgebra and one gets:

Proposition 6.7.5 Let A be a bialgebra then

H̃Ci,j(A) = Ci,jGS(A)⊕Ci−1,j
GS (A)⊕Ci,j−1

GS (A)⊕Ci−1,j−1
GS (A). (86)

Proof. It is clear that H(A, id, id) is given by the above. So the result follows from
the previous proposition.
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6.8 mult. Hom-Lie and Lie-bialgebra

In this section we recall the definition of the Chevalley-Eilenberg cohomology
for Hom-Lie algebras given in [AEM11]. We also define a generalization of the big
bracket to the Hom case, which allows us to define a cohomology for Hom-Lie bial-
gebras with values in itself [HM].

We recall the cohomology complex for a Hom-Lie algebra (g,ν,α) and a g-module
(M,ρ,β). For this we consider the Grassman algebra Λg over g, which is a Hopf-
algebra. See Section 2.2.2 for a definition. The structure map α can be extended to
Hopf-algebra morphism on Λg, which we also denote by α.

With this we define the Chevalley-Eilenberg complex byCnCE(g,M) = HomH (Λn(g,α), (M,β)).
This is the set of alternating multilinear maps, which are compatible with the struc-
ture maps. Further we define a map δ : CnCE(g)→ Cn+1

CE (g) by

(δϕ)(x1, . . . ,xn+1) =
n+1∑
i=1

(−1)i+1αn−1(xi) ·ϕ(x1, . . . , x̂i , . . . )

−
∑
i<j

(−1)j−i+1ϕ(α(x1), . . . , [xi ,xj ], . . . , x̂j , . . . ).
(87)

One can show that δ ◦ δ = 0 so one can define the associated cohomology. We
will call this the Chevalley-Eilenberg cohomology of g with values in M and denote
it by HCE(g,M). In the case α = id this definition agrees with the definition of the
Chevalley-Eilenberg cohomology for Lie algebras so no ambiguities aries. Again the
complex starts in degree 1 and not 0 as it is normally the case.

6.8.1 Big bracket

To define the cohomology for a Hom-Lie bialgebra with values in itself we first
define a Hom-version of the big bracket. The original version comes from [LR90].
For the Hom-case and β = α−1 this was already done in [CS16].

Let V be a vector space and α,β : V → V be two commuting structure maps. One
can think of (A,α,β) as a Hom-Lie bialgebra with zero bracket and cobracket. We
well call the triple (V ,α,β) a biHom-module.

Let ϕ ∈ Hom(ΛV ,ΛV ). We define the α- and β-height of ϕ, as integers hgtαϕ
and hgtβϕ resp. We also write hgtϕ = (hgtαϕ,hgtβϕ). The height of α is (1,0)
and the height of β is (0,1). This explains the name. Further if V is a Lie-bialgebra
we set hgtν = (1,0) and hgtδ = (0,1). And more general hgtϕ = (i − 1, j − 1) for
ϕ ∈ Hom(ΛV ,ΛV ) with the usual action and coaction, so for example in CCE(V )i,j .
If the action is twisted by αk this is a · x = [α(a),x] and the coaction by βl then

hgtϕ = (i+k−1, j + l −1). So e.g. hgtϕ = (i,0) for ϕ ∈ C̃
i
CE α(V ). On the other hand if
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we say ϕ has a certain height, we also assume the actions to by twisted accordingly.
This will not be needed in this section but in Sections 6.9 and 6.11

We set the height of the product and coproduct on ΛV to zero. By prV or simply
pr we denote the projection from ΛV → V . Note that prµ = µ(pr⊗ id+id⊗pr).

Now we can define the big bracket. For this we consider Hom(ΛV ,ΛV ) to be
graded, such that ϕ ∈Hom(ΛiV ,ΛjV ) has degree deg(ϕ) = i + j.

Definition 6.8.1 Let ϕ,ψ ∈ Hom(ΛV ,ΛV ) be maps with height then we define a
product by

ψ ◦ϕ = µ(ψ ⊗αψ)(µ⊗ id)(id⊗pr⊗ id)(id⊗∆)(αϕ ⊗ϕ)∆ (88)

and with that
{ϕ,ψ}BB = ϕ ◦ψ − (−1)deg(ϕ)deg(ψ)ψ ◦ϕ. (89)

Here we used the shorthand αϕ = αhgtαϕβhgtβϕ, which has the same height as ϕ. We
call {·, ·}BB big bracket.

For ϕ ∈Hom(ΛkV ,V ) and ψ ∈Hom(ΛlV ,V ) the product ◦ can be written as

(ϕ ◦ψ)(x1, . . . ,xk+l−1) =
1

k!(l − 1)!

∑
σ∈Sn+k

sign(σ )ϕ(ψ(xσ (1), . . . ,xσ (k)),

αhgtαϕ(xσ (k+1)), . . . ,α
hgtαϕ(xσ (k+l−1))). (90)

One can use the big bracket to define the Chevalley-Eilenberg differential:

Proposition 6.8.2 Let (g,ν,α) be a Hom-Lie algebra. Forϕ ∈ CCE(V ,V ) = HomH (ΛV ,V )
we have ∂ϕ = (−1)k−1{ν,ϕ}BB.

Proof. We have that

ν ◦ϕ = (−1)k−1[ αk(x(1)),ϕ(x(2))],ϕ ◦ ν = (−1)k−1ϕ(α(x(1))∧ ν(x(2))). (91)

Where we used the Sweedler notation ∆(x) = x(1)⊗x(2) for the coproduct inΛV . This
shows that ∂µµϕ = (−1)k−1{ν,ϕ}BB.

We consider the complex

Bi,j = Homα,β(Λig,Λjg) = {ϕ ∈Hom(Λig,Λjg)|α⊗jϕ = ϕα⊗i ,β⊗jϕ = ϕβ⊗i}

for i, j ≥ 1 and {0} otherwise.

Theorem 6.8.3 The bracket defined in Eq. (89) defines a graded Lie algebra structure on
B••.
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Proof. We compute ϕ ◦ (ψ ◦χ), for this we introduce

Q = (µ⊗ id)(id⊗pr⊗ id)(id⊗∆),

and get

ϕ ◦ (ψ ◦χ) = µ(ϕ ⊗αϕ)(id⊗µ)Q(id⊗ψ ⊗αψ)(id⊗Q)(αϕψ ⊗αχ ⊗χ)(id⊗∆)∆

= µ(ϕ ⊗αϕ)(id⊗µ)(Q⊗ id)(αψ ⊗ψ ⊗αψ)(id⊗Q)(∆⊗ id)(αχ ⊗χ)∆ (92)

+µ3(αϕ ⊗ϕ ⊗αϕ)(id⊗Q)(τ ⊗ id)(αψ ⊗ψ ⊗αψ)(αχ ⊗αχ ⊗χ)∆3.

Here we used the abbreviations µ3 = µ(id⊗µ) and ∆3 = (∆ ⊗ id)∆. Using that ϕ
commutes with α and β, the last term can be rearranged to

µ3(αϕ ⊗αψ ⊗ id)(ψ ⊗ϕ ⊗ id)(id⊗Q)(τ ⊗ id)(id⊗Q)(αχ ⊗αχ ⊗χ)∆3. (93)

This can be seen to be symmetric in ϕ and ψ. THe term (ϕ ◦ψ)◦χ can be computed
similarly. One gets the term (92) plus a term symmetric in ψ and χ. So in total we
get

∑
perm.ϕ,ψ,χ(ϕ ◦ (ψ ◦χ)− (ϕ ◦ψ) ◦χ) = 0. This is equivalent to the fact that {·, ·}BB

satisfies the Jacobi identity.

Proposition 6.8.4 Let g be a vector space with two commuting structure maps α,β : g→
g then

— If ν ∈ B2,1 satisfies {ν,ν}BB = 0 then (g,ν,α) is a Hom-Lie algebra.
— If δ ∈ B1,2 satisfies {δ,δ}BB = 0 then (g,δ,β) is a Hom-Lie coalgebra.
— If a pair (ν,δ) satisfies {ν+δ,ν+δ}BB = 0 then (g,ν,δ,α,β) is a Hom-Lie bialgebra.

These are the Maurer-Cartan elements of {·, ·}BB.

Proof. This follows easily using the computation done in the proof of Proposition 6.9.4.

Moreover the big bracket can be restricted to the complex Homα(Λg,g), which
is the complex of the Chevalley-Eilenberg cohomology for Hom-Lie algebras. On
this complex it agrees with the generalization of the Nijenhuis-Richardson bracket
given in [AAM15].

6.8.2 Hom-Lie bialgebras

Given a Hom-Lie bialgebra g, we define the total complex Bi(g) =
⊕i

j=1B
j,i−j(g).

Proposition 6.8.5 Let g be a Hom-Lie bialgebra. The map ∂ : B• → B• defined by
∂ϕ = {ν + δ,ϕ}BB is a differential, i.e. ∂ ◦∂ = 0.

Proof. This is standard and follows from the Jacobi-identity of the big bracket.
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With this one can define a cohomology for Hom-Lie bialgebras, which we will
denote by HCE(g) and call Chevalley-Eilenberg cohomology of g.

Remark 6.8.6 Note that in the Hom-context it is not straightforward to define an
analog to quasi-Lie bialgebras. Since extending the bracket to including maps in
Hom(K,Λg) would involve α−1. So it is possible if α is invertible. It is also possible
if one considers the case α = β since in this case α−1 cancels with β.

Remark 6.8.7 In the case that α = β = id the cohomology we defined here is pre-
cisely the normal cohomology for Lie bialgebras, since in this case the complex is
just Hom(Λ•g,Λ•g) and the big bracket we defined here is the ordinary one.

6.9 α-type Chevalley-Eilenberg cohomology for Hom-Lie
algebras

Similarly to Section 6.3, we define an α-type cohomology for Hom-Lie algebras.
Let (g,ν,α) be a Hom-Lie algebra and (M,β) a g-module. We denote by Λkg the k-th
exterior power of g. Then the complex for the cohomology of g with values in M is
given by

C̃
n
CE(g,M) = C̃

n
CE µ(g,M)⊕ C̃

n
CE α(g,M) = Hom(Λng,M)⊕Hom(Λn−1g,M). (94)

Here Hom(Λ0g,M) is set to {0}, instead of K as usual, since otherwise α−1 would
be needed in the definition of the differential. We write (ϕ,ψ) or ϕ + ψ with ϕ ∈
C̃CE µ(g,M) and ψ ∈ C̃CE α(g,M) for an element in C̃CE(g,M). We define four linear
maps, with domain and range given in the following diagram:

C̃
n
CEµ C̃

n+1
CE µ

C̃
n
CEα C̃

n+1
CE α∂αα

∂αµ

∂µα

∂µµ

⊕ ⊕

(∂µµϕ)(x1, . . . ,xn+1) =
n+1∑
i=1

(−1)i+1αn−1(xi) ·ϕ(x1, . . . ,xn+1) (95)

−
∑
i<j

(−1)i+j−1ϕ([xi ,xj ],α(x1), . . . , x̂i , x̂j , . . . ,α(xn))
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(∂ααψ)(x1, . . . ,xn) =
n∑
i=1

(−1)i+1αn−1(xi) ·ψ(x1, . . . ,xn) (96)

−
∑
i<j

(−1)i+j−1ψ([xi ,xj ],α(x1), . . . , x̂i , x̂j , . . . ,α(xn))

(∂µαϕ)(x1, . . . ,xn) = β(ϕ(x1, . . . ,xn))−ϕ(α(x1), . . . ,α(xn)) (97)

(∂αµψ)(x1, . . . ,xn+1) =
∑
i≤j

(−1)i+j−1[αn−2(xi),α
n−2(xj )] ·ψ(x1, . . . , x̂i , x̂j ,xn+1). (98)

The sign given by (−1)· is always determined by the permutation of the xi .

Theorem 6.9.1 The map ∂ : C̃
n
CE(g,M) → C̃

n+1
CE (g,M) defined by ∂(ϕ,ψ) = (∂µµϕ −

∂αµψ,∂µαϕ −∂ααψ) is a differential, i.e. ∂ ◦∂ = 0.

Proof. This is a straightforward calculation. One has to take care of the signs, but
as stated above most of the sign come from permutations of the xi . We will omit
these in the following, and simply write ±, since this simplifies the formulas and
the correct sign is easy to obtain. Further x1, . . . stands for the remaining xi , such
that each xi appears once in each expression.

∂µµ(∂µµϕ)(x1, . . . ,xn) =
n−1∑
i=1

n−1∑
j=1,i,j

αn(xi)± ·(αn−1(xj ) ·ϕ(x1, . . . )) (99)

−
∑
i

∑
j<k,j,k,i

±αn(xi) ·ϕ([xj ,xk],α(x1), . . . ) (100)

−
∑
i<j

∑
k,i,j

±αn(xk) ·ϕ([xi ,xj ],α(x1), . . . ) (101)

−
∑
i<j

±αn−1([xi ,xj ]) ·ϕ(α(x1), . . . ) (102)

+
∑
i<j

∑
k<l,k,l,i,j

±ϕ(α[xk ,xl],α([xi ,xj ]),α
2(x1), . . . ) (103)

+
∑
i<j

∑
k,i,j

±ϕ([[xi ,xj ],α(xk)],α
2(x1), . . . ) (104)

=
∑
i<j

∑
i<j

±αn−1([xi ,xj ]) ·ϕ(α(x1), . . . ) (105)

−
∑
i<j

αn−1([xi ,xj ]) · βϕ(x1, . . . ) (106)

The terms (100) and (101) cancel each other and (103) cancel itself due to antisym-
metry, and (104) due to the Hom-Jacobi identity. Equation (99) gives the term (106)
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by the Hom-Jacobi identity and (102) is equal to (105). It is easy to see that this is
the same as ∂αµ∂µαϕ.

One can compute ∂αα(∂ααψ) similar to ∂µµ(∂µµϕ) and gets∑
i<j

∑
i<j

αn([xi ,xj ]) ·ϕ(α(x1), . . . )−
∑
i<j

αn([xi ,xj ]) · βϕ(x1, . . . ).

This is the same as ∂µα∂αµψ. It remains the show ∂µα∂µµ = ∂αα∂µα and ∂αµ∂αα =
∂µµ∂µα. We compute

∂µα∂µµϕ(x1, . . . ,xn+1) =
n∑
i=1

(−1)i−1αn(xi) · βϕ(x1, . . . ,xn+1)

−
n∑
i=1

(−1)i−1αn(xi) ·ϕ(α(x1), . . . , x̂iα(xn))

−
∑
i<j

(−1)i+j−1ϕ(α([xi ,xj ]),α
2(x1), . . . )

+
∑
i<j

(−1)i+j−1βϕ([xi ,xj ],α(x1), . . . )

= ∂αα∂µαϕ(x1, . . . ,xn+1)

and

∂αµ∂ααψ(x1, . . . ,xn) =
∑
i<j

∑
k,i,j

±αn−1([xi ,xj ] ·αn−1([xi ,xj ], )) ·ψ(x1, . . . )

−
∑
i<j

∑
k<l,k,l,i,j

±αn−1([xi ,xj ]) ·ψ([xk ,xl],α(x1), . . . ).

The first term is zero, which can be seen using the module structure and the Hom-
Jacobi identity. It is also easy to see that ∂µµ∂αµψ gives the same.

So we can define

Definition 6.9.2 Let (g,ν,α) be a Hom-Lie algebra and (M,β) be a g-module then
we call C̃

•
CE(g,M) with differential ∂ the α-type Chevalley-Eilenberg complex and

the corresponding cohomology α-type Chevalley-Eilenberg cohomology of g with
values in M and denote it by H̃

•
CE(g,M).

One can of course specialize this, to define the α-type cohomology with values in
itself, where the action is given by the adjoint action. So let (g,ν,α) be a Hom-Lie
algebra then we define

C̃
n
CE(g) = Hom(Λng,g)⊕Hom(Λn−1g,g) (107)
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and maps

∂µµϕ(x1, . . . ,xn+1) =
n+1∑
i=1

(−1)i+1[αn−1(xi),ϕ(x1, . . . ,xn+1)]

−
∑
i<j

(−1)i+j−1ϕ([xi ,xj ],α(x1), . . . , x̂i , x̂j , . . . ,α(xn))
(108)

∂ααψ(x1, . . . ,xn) =
n∑
i=1

(−1)i+1[αn−1(xi),ψ(x1, . . . ,xn)]

−
∑
i<j

(−1)i+j−1ψ([xi ,xj ],α(x1), . . . , x̂i , x̂j , . . . ,α(xn))
(109)

∂µαϕ(x1, . . . ,xn) = α(ϕ(x1, . . . ,xn))−ϕ(α(x1), . . . ,α(xn)) (110)

∂αµψ(x1, . . . ,xn+1) =
∑
i≤j

(−1)i+j−1[[αn−2(xi),α
n−2(xj )],ψ(x1, . . . , x̂i , x̂j ,xn+1)]. (111)

The differential ∂ is defined as before.
This complex is called α-type Chevalley-Eilenberg complex of g with values in

itself and its cohomology is denoted by H̃CE(g).

Remark 6.9.3 Note that since ϕ is completely antisymmetric we can write

∂αµψ(x1, . . . ,xn+1) =
∑
σ∈Sn+1

sign(σ )
1

2 · (n− 1)!
αn−2([xσ (1),xσ (2)])ψ(xσ (3), . . . ,xσ (n+1))

∂µµϕ(x1, . . . ,xn+1) =
∑
σ∈Sn+1

sign(σ )
1
n!

(
αn−1(xσ (1)) ·ϕ(xσ (2), . . . ,xσ (n+1))

− 1
2
ϕ([xσ (1),xσ (2)],xσ (3), . . . ,xσ (n+1))

)
∂ααψ(x1, . . . ,xn) =

∑
σ∈Sn

sign(σ )
1

(n− 1)!

(
αn−1(xσ (1)) ·ψ(xσ (2), . . . ,xσ (n))

− 1
2
ψ([xσ (1),xσ (2)],xσ (3), . . . ,xσ (n))

)
.

Here Sn denotes the symmetric group and sign the signature of a permutation.

Parts of the differential and relations between them can also be written with help
of the big bracket defined earlier.

Proposition 6.9.4 For (ϕ,ψ) ∈ C̃CE(V ,V ) = Hom(ΛV ,V ) and χ1,χ2 ∈Hom(ΛV ,ΛV )
with arbitrary heights we have:

— ∂µµϕ = (−1)k−1{ν,ϕ}BB.
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— ∂ααψ = (−1)k−1{ν,ψ}BB.
— ∂µα(χ1 ◦χ2) = (∂µαχ1 ◦χ2) + (χ1 ◦∂µαχ2)

Proof. We have that

ν ◦ϕ = (−1)k−1[ αk(x(1)),ϕ(x(2))],ϕ ◦ ν = (−1)k−1ϕ(α(x(1))∧ ν(x(2))). (112)

Where we used the Sweedler notation ∆(x) = x(1)⊗x(2) for the coproduct inΛV . This
shows that ∂µµϕ = (−1)k−1{ν,ϕ}BB.

The second statement follows from

∂µαχ1 ◦χ2 +χ1∂µα ◦χ2 = α′χ1 ◦χ2 −χ1α
′ ◦χ2 +χ1 ◦α′χ2 −χ1χ2α

′

= α′χ1 ◦χ2 −χ1χ2α
′ = ∂µα(χ1 ◦χ2)

Using χ1◦α′χ2 = µ(χ1⊗α
χ
1 )Q(αχ2α′⊗α′χ2) = µ(χ1α

′⊗αχ1α′)Q(αχ2⊗χ2) = χ1α
′ ◦χ2.

Also remember that α′χ1 and ∂µαχ1 have the height hgtχ1 + hgtα.

Let A be a Hom-associative algebra and M an A-module. We consider the α-
type Hochschild cohomology defined in Section 6.3. Then we can define a map
Φ : H̃C(A,M)→ C̃CE(AL,ML) by

Φ(ϕ)(x1, . . . ,xn) =
∑
σ∈Sn

sign(σ )ϕ(xσ (1), . . . ,xσ (n)). (113)

Here Sn denotes the symmetric group and sign the signature of a permutation.

Theorem 6.9.5 The mapΦ is a surjective chain map. So it induces a map in cohomology.

Proof. It is clear that it is surjective. We have to check Φ∂H = ∂Φ , where ∂H denotes
the α-type Hochschild differential. Clearly Φ∂µα = ∂µαΦ . Further, we have

Φ∂Hµµϕ(x1, . . . ,xn+1) =
∑
σ∈Sn

sign(σ )
(
αn−1(xσ (1))ϕ(xσ (2), . . . ,xσ (n+1)) (114)

+ (−1)nϕ(xσ (1), . . . ,xσ (n))α
n−1(xσ (n+1)) (115)

+
∑
i

(−1)iϕ(α(xσ (1)), . . . ,xσ (i)xσ (i+1), . . . ,α(xσ (n+1)))
)

(116)

=
n∑
i=1

∑
σ∈S̃n

sign(σ )
(
αn−1(xi) ·L ϕ(xσ (1), . . . , x̂i . . . ,xσ (n)) (117)

+
∑
i

1
2
ϕ(α(xσ (1)), . . . , [xσ (i),xσ (i+1)], . . . ,α(xσ (n+1)))

)
, (118)
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where S̃n is the symmetric group on {1, . . . , î, . . . ,n + 1}. Using Remark 6.9.3 it is to
see that this equals ∂µµΦ . The proof for the other parts of the differential works
similarly.

We also want to relate the α-type cohomology defined here to the Hom-Lie co-
homology given in Section 3.2.2. For this we construct a subcomplex spanned by
cocycles of the form (ϕ,0). To get that ∂(ϕ,0) is again of this form we need ∂µαϕ = 0.
So we define the complex CnCE(A) = {ϕ ∈ Hom(Λng, g)|αϕ = ϕα⊗n}. The map ∂µµ
defines a differential on this complex. This is precisely the complex given in Sec-
tion 3.2.2.

6.9.1 Cohomology for Hom-Lie algebras of Lie type

In this section we use the cohomology for a Lie algebra endomorphism defined in
Section 6.1 to study the α-type Chevalley-Eilenberg cohomology of a Lie algebra of
Lie type.

We regard the Hom-Lie algebra gγ obtained by Yau twist of g by γ . We define a
linear map Φ : C(g,γ)→ C̃CE(gγ ) for ϕ ∈ Cnµ(γ) and ψ ∈ Cnγ (γ) by

(ϕ,ψ) 7→ (γn−1ϕ +γn−2ψ ◦ ν,γn−2ψ), (119)

where

(ϕ1 ◦ϕ2)(x1, . . . ,xk+l−1) = ϕ1(ϕ2 ∧ id∧k−1)(x1, . . . ,xk+l−1)

=
∑

σ∈Sh(l,k−1)

sign(σ )ϕ1(ϕ2(xσ (1), . . . ,xσ (l)),xσ (l + 1), . . . ,xσ (k+l−1))

for ϕ1 ∈Hom(Λkg,g) and ϕ2 ∈Hom(Λlg,g). Then we get the following

Theorem 6.9.6 Let g be a Lie algebra and γ an endomorphism of it, then Φ defined as
above is chain map, which is an isomorphism if γ is invertible. So in particular it induces
a homomorphism in cohomology.

Proof. One has to show ∂LΦ(ϕ,ψ) = Φ∂L(ϕ,ψ) for (ϕ,ψ) ∈ C(g,γ), where ∂E denotes
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the differential in C(g,γ) and ∂L the one in C̃CE(gγ ). We have

Φ(∂Eϕ)(x1, . . .xn+1) =Φ(
∑
i

±xi ·ϕ(x1, . . . )−
∑
i<j

±ϕ([xi ,xj ],x1, . . . ),

γϕ(x1, . . . )−ϕ(γ(x1), . . . ))

=
(∑

i

γn(xi ·ϕ(x1, . . . ))−
∑
i<j

±γn(ϕ([xi ,xj ],x1, . . . ))

+
∑
i<j

γnϕ([xi ,xj ],x1, . . . )−γn−1ϕ(γ([xi ,xj ]),γ(x1), . . . ),

γnϕ(x1, . . . )−γn−1ϕ(γ(x1), . . . )
)

=
(∑

i

γn(xi ·ϕ(x1, . . . ))−
∑
i<j

γn−1ϕ(γ([xi ,xj ],γ(x1), . . . ),

γnϕ(x1, . . . )−γn−1ϕ(γ(x1), . . . )
)

=∂L(γn−1ϕ(x1, . . . ),0) = ∂LΦ(ϕ)(x1, . . . ).

Similarly one can check that ∂LΦ(0,ψ) = Φ∂E(0,ψ).

Using this it is easy to compute the α-type cohomology of Hom-Lie algebras
which are in fact ordinary Lie algebras. We have the following

Theorem 6.9.7 Let (g,ν, id) be a Lie-algebra considered as a Hom-Lie algebra. Then

H̃
n
CE(g) =Hn

CE(g)⊕Hn−1
CE (g). (120)

Here one has to replace H1
CE(g) with Der(g) and H0

CE(g) with {0}.

Proof. This follows directly from Theorem 6.9.6, since ∂γ = 0 and the other two
parts of the differential are precisely the ordinary Chevalley-Eilenberg differential
on CnCE and Cn−1

CE . One has to replace H1
CE with Der and H0

CE(g) with {0} since our

complex starts with C̃
1
CE.

6.9.2 Whitehead Theorem

In this section we need the field K to be of characteristic 0. If g is a simple Lie
algebra, the well known Whitehead Lemma states that HCE(g) is trivial. So the α-
type Chevalley-Eilenberg cohomology consists of the derivations. But this is easy to
compute since all derivations are inner. Also all non-trivial endomorphism are in-
vertible. So we can compute the cohomology of Yau-twist of simple Lie algebras by
Theorem 6.9.6. On the other hand all (finite dimensional) simple Hom-Lie algebras
are of Lie type.
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Proposition 6.9.8 Let g be a (finite dimensional) semi-simple Lie algebra and γ an au-

tomorphism of it. Then H1(γ) = Derγ (g), H2(γ) = γDer(g)
/
∂γ Der(g) and Hk(γ) = 0

for k ≥ 2. Here Derγ (g) = {ϕ ∈Der(g)| γϕ = ϕγ}.

Proof. By the usual Whitehead Lemma we get that HCE(g,M) = 0 for a simple g-
module M. So in particular HCE(g,g) = 0 and HCE(g, g̃) = 0, where g̃ denotes g with
the action given by x · y = [γ(x), y] for x ∈ g and y ∈ g̃. So if we consider the spec-
tral sequence associated to the vertical filtration of the bicomplex C(γ), this is the
cohomology with respect to ∂CE , we get

H1(C•µ(g)) = Der(g) = InnDer(g),H1(C•γ (g)) = Der(g̃) = InnDer(g̃). (121)

We do not get zero here, since we started the complex for H(γ) by Hom(g,g) and
dropped Hom(K,g). So the second page of the spectral sequence gives the claimed
result. We have γ-Der(g) = γ(Der(g)), so every γ-derivation is of the form γϕ for a
derivation ϕ.

If γ is diagonalizable, we further have H2(γ) = γDer(g)
/
∂γ Der(g) = γDerγ (g).

Corollary 6.9.9 (Whitehead theorem) Let (g,ν,α) be a finite dimensional simple Hom-

Lie algebra, then H̃
1
CE(g) = Derα(g), H̃

2
CE(g) = αDer(g)

/
∂γ Der(g) and H̃

k
CE(g) = 0 for

k ≥ 2.

Proof. For a simple Hom-Lie algebra we have that α is invertible and in [CH16] it is
proven that gα−1 is a semi-simple Lie algebra. So it is enough to compute H(gα−1 ,α).
This can be done by the previous proposition and gives the result.

6.10 Examples

Next we compute the α-type Chevalley-Eilenberg cohomology explicitly for some
low dimensional Hom-Lie algebras by using computer software.

Hom-Lie algebra not of Lie-type First we consider a Hom-Lie algebra, which is
not of Lie-type. Let g be a vector space with basis given by (x,y,z). Then we define
α by α(x) = x,α(y) = y,α(z) = 0 and a bracket by

[x,y] = x, [y,z] = z and [x,z] = z. (122)

It is easy to verify that this is in fact a Hom-Lie algebra and it is not of Lie-type since
z ∈ imν but z < im(α). The following table gives the dimensions of the cohomology
and of the coboundaries and cocycles:
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i dimC̃
i
CE dimim∂i dimker∂i dimH̃

i
CE

1 9 8 1 1
2 18 8 10 2
3 12 2 10 2
4 3 0 3 1

The cohomology space can be spanned by the following maps, whereϕ ∈ C̃
n
CE µ(g) =

Hom(Λn,g) and ψ ∈ C̃
n
CE α(g) = Hom(Λn−1,g):

H̃
1
CE :ϕ(z) = λz

H̃
2
CE :ϕ ≡ 0,ψ(z) = λ1z,g(x) = (λ1 +λ2)x,ψ(y) = λ2y

H̃
3
CE :ϕ ≡ 0,ψ(x,z) = λ1(z)x,ψ(y,z) = λ2z

H̃
4
CE :ϕ ≡ 0,ψ(x,y,z) = λz

Yau twist We consider a vector space g spanned by x,y,z and a Lie bracket on it
defined by

[x,y] = x, [x,z] = x, [y,z] = y − z (123)

i dimC̃
i
CE dimim∂i dimker∂i dimH̃

i
CE

1 9 3 6 6
2 18 6 12 9
3 12 3 9 3
4 3 0 3 0

It is enough to give its ordinary Chevalley-Eilenberg cohomology to know the α-
type Chevalley-Eilenberg cohomology.

H1
CE :ϕ(x) = λ1x −λ2y +λ2z

ϕ(y) = λ3x −λ4y +λ4z

ϕ(z) = λ5x −λ6y +λ6z

H2
CE :ϕ(x,y) = λ1z,ϕ(x,z) = −λ1y

ϕ(y,z) = λ2x+λ3z −λ3y

It is easy to see that γ(x) = 0,γ(y) = y,γ(z) = z defines a morphism of g. So the
Yau twist gγ is a Hom-Lie algebra, with structure map γ and the only non-vanishing
bracket is [y,z] = y − z.
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i dimC̃
i
CE dimim∂i dimker∂i dimH̃

i
CE

1 9 6 3 3
2 18 7 11 5
3 12 2 10 3
4 3 0 3 1

The derivations and α derivation can be obtained from the derivation of g, which
are compatible with γ . They are both given by:

ϕ(x) = λ1x,ϕ(y) = λ2y −λ2z,ϕ(z) = λ3y −λ3z (124)

The remaining cohomology is spanned by

H̃
1
CE : ϕ(x,y) = λ1x,ϕ(x,z) = λ2x, (125)

H̃
2
CE : ϕ(x,y,z) = λ1x,ψ(x,y) = λ2x,ψ(x,z) = λ3x, (126)

H̃
3
CE : ψ(x,y,z) = λ1x (127)

This cannot be obtained using Theorem 6.9.6, since x < imγ .

6.11 α-type Chevalley-Eilenberg cohomology for Hom-Lie
bialgebras

In this section we define an α-type cohomology for Hom-Lie bialgebras. For sim-
plicity we only consider the case where α = β. In this case the cohomology complex
is not a bicomplex as in Section 6.8.

Instead we have for a Hom-Lie bialgebra (g,ν,δ,α)

C̃
k
CE(g) = C̃

k
CE µ(g)⊕ C̃

k
CE α(g) =

k⊕
l=1

C̃CE
l,k−l+1
µ (g)⊕

k−1⊕
l=1

C̃CE
l,k−l
α (g) (128)

=
k⊕
l=1

Hom(Λlg,Λk−l+1g)⊕
k−1⊕
l=1

Hom(Λlg,Λk−lg) (129)

Similarly to the previous section it is convenient to define the height of an element
in the cohomology. Since we here do not distinguish between α and β, the height is
a natural number and not a pair. With this we define a big bracket as before. The

height of an element in C̃
ij
CE α is i + j − 1 and of one in C̃

ij
CE µ is i + j − 2.
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For ϕij ∈Hom(Λig,Λjg) ⊂ C̃
i+j−1
CE µ and ψij ∈Hom(Λig,Λjg) ⊂ C̃CE

i+j
α we set

∂ϕ = (∂µµϕ,∂µαϕ,∂
c
µµϕ) ∈ C̃CE

i+1,j
µ ⊕ C̃CE

i,j
α ⊕ C̃CE

i,j+1
µ , (130)

∂ψ = (∂αµψ,−∂ααψ,∂bψ,−∂cααψ,∂cαµψ)

∈ C̃CE
i+2,j
µ ⊕ C̃CE

i+1,j
α ⊕ C̃CE

i+1,j+1
µ ⊕ C̃CE

i,j+1
α ⊕ C̃CE

i,j+2
µ .

(131)

Here ∂αα = {ν, ·}BB, ∂cαα = {δ, ·}BB, ∂µαϕ = αϕ − ϕα and ∂µαϕ = µ(αhgtϕ−1ν ∧ ϕ)∆.
So there are the same as in the definition of the α-type cohomology for Lie-algebras
and their duals. The map ∂b is defined by

∂bψ = ∂b1 +∂b2

= µ3(id⊗ν ⊗ id)(pr⊗µ⊗ id)(∆⊗∆)(δαhgtψ−1 ⊗ψ)∆

+µ(αhgtψ−1ν ⊗ψ)(µ⊗µ)(pr⊗∆⊗ id)(id⊗δ⊗ id)∆3.

(132)

This means for ψ ∈ C̃
k,l
CEα

∂b1ψ(x1, . . . ,xk+1) =
k+1∑
i=1

(−1)iδ(αk+lxi) ·ψ(x1, . . . ) (133)

=
k+1∑
i=1

(−1)iαk+l(x[1])∧ (αk+l(x[1]) ·ψ(x1, . . . ) (134)

The maps can be arranged in the following diagram

CCE
i+1,j
µ

CCE
i,j+1
µ

CCE
i+2,j
µ

CCE
i+1,j+1
µ

CCE
i,j+2
µ

CCE
i,j
α CCE

i+1,j
α

CCE
i,j+1
α

Theorem 6.11.1 The map ∂ defined above is a differential for the complex C̃CE(g).
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Proof. This is a very lengthy calculation, which we do not want to give in full detail
here. There are several different equations one has to check, namely

∂µµ∂µµ = ∂αµ∂µα (135)

∂µα∂µµ = ∂αα∂µα (136)

∂µµ∂
c
µµ = ∂cµµ∂µµ −∂b∂µα (137)

∂µµ∂αµ = ∂αµ∂αα (138)

∂µα∂αµ = ∂αα∂αα (139)

∂cµµ∂αµ = ∂αµ∂
c
αα −∂b∂αα +∂µµ∂b (140)

∂cαα∂µµ = ∂αα∂
c
αα −∂µα∂b (141)

and their duals. All of them besides Eqs. (137) and (140) and Eq. (141) follow from
the identity proven for the α-type Chevalley-Eilenberg cohomology. Equation (137)
and Eq. (141) are similar so we only give the prove for Eq. (137). For ϕ ∈ C̃

p,q
CEµ(g)

and n = p+ q − 1 we get

(∂µµ∂
c
µµϕ)(x1, . . . ,xp+1) = αn+1(x1) · (x[1]

j ∧ϕ(x[2]
i ,α(x1), . . . )) (142)

−αn+1(xi) · (δ∧α∧q−1)ϕ(x1, . . . ) (143)

−αn([xi ,xj ]
[1])∧ϕ([xi ,xj ]

[2],α2(x1), . . . ) (144)

−αn+1(x1)[1] ∧ϕ(α(x[2]
i ), [xj ,xk],α

2(x1), . . . ) (145)

− (δ∧α∧q−1)ϕ([xi ,xj ],α(x1), . . . ) (146)

(∂cµµ∂µµϕ)(x1, . . . ,xp+1) = αn+1(x[1]
i )∧ (αn(xj ) ·ϕ(x[2]

i ,α(x1), . . . )) (147)

+αn+1(x[1]
i )∧ (αn(x[2]

i ) ·ϕ(α(x1), . . . )) (148)

−αn+1(x[1]
i )∧ϕ([x[2]

i ,xj ],α
2(x1), . . . ) (149)

−αn(x[1]
i ) ·ϕ(α(x[2]

i ),α([xj ,xk]),α
2(x1), . . . ) (150)

− (δ∧α∧q−1)(αn(xj ) ·ϕ(x2, . . . )) (151)

+ (δ∧α∧q−1)(ϕ([xi ,xj ],α(x1), . . . )) (152)

The terms Eqs. (145), (146), (150) and (152) cancel each other. Further (148), (143)
and (151) give ∂b1∂µαϕ and (142), (147), (144), and (149) give ∂b2∂µαϕ.
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Now we prove Eq. (140). For ψ ∈ C̃CE(g)p,q and n = i + j we get

(∂b∂ααψ)(x1, . . . ,xp+2) =αn(x[1]
i )∧αn(x[2]

i ) · (αn−1(xj ) ·ψ(x1,dots)) (153)

−αn(x[1]
i )∧αn(x[2]

i ) ·ψ([xj ,xk],α(x1), . . . ) (154)

+αn−1([x[1]
i ,αxj ])∧α

n(xk) ·ψ(x[1]
i ,α(x1), . . . ) (155)

+αn−1([x[1]
i ,αxj ])∧α

n(x[1]
i ) ·ψ(α(x1), . . . ) (156)

−αn−1([x[1]
i ,αxj ])∧ψ(α([xk ,xl]),α

2(x1), . . . ) (157)

−αn−1([x[1]
i ,αxj ])∧ψ([x[2]

i ,α(xk)],α
2(x1), . . . ) (158)

(∂µµ∂bψ)(x1, . . . ,xp+2) =αn(xi) · (αn−1(x[1]
j )∧αn−2(x[2]

i ) ·ψ(x1, . . . )) (159)

+αn(xi) · (αn−2([x[1]
j ,α(xk)])∧ψ(x[2]

j ),α(x1), . . . ) (160)

−αn−1([xi ,xj ]
[1])∧αn−2([xi ,xj ]

[2]) ·ψ(α(x1), . . . ) (161)

−αn(x[1]
k )∧αn−1(x[2]

k ) ·ψ([xi ,xj ],α(x1), . . . ) (162)

−αn−2([α(x[1]
k ),α([xi ,xj ])])∧ψ(α(x[2]

k ),α2(x1), . . . ) (163)

−αn−2([[xi ,xj ]
[1],α(xk)])∧ψ([xi ,xj ]

[2],α2(x1), . . . ) (164)

−αn−1([x[1]
k ,α(xl)])∧ψ(α(x[2]

k ),α([xi ,xj ]),α
2(x1), . . . ) (165)

(∂αµ∂
c
ααψ)(x1, . . . ,xp+2) =αn−1([xi ,xj ]) · (αn−1(x[1]

k )∧ψ(x[2]
k ,α(x1), . . . )) (166)

−αn−1([xi ,xj ]) · (δ∧α∧q−1)ψ(x1, . . . ) (167)

(∂cµµ∂αµψ)(x1, . . . ,xp+2) =αn(x[1]
i )∧αn−1([xj ,xk]) ·ψ(x[2]

i ,α(x1), . . . ) (168)

+αn(x[1]
i )∧αn−2([x[2]

i ,α(xj )]) ·ψ(α(x1), . . . ) (169)

− (δ∧α∧q−1)(αn−2([xj ,xk]) ·ψ(x1, . . . )) (170)

The terms Eqs. (154), (157), (162) and (165) cancel directly. Doing a bit of cal-
culation using the Hom-Jacobi identity and the compatibility it is possible to see
that Eqs. (153), (159), (167) and (170) also sum up to zero. The same is true for
Eqs. (158), (163) and (164). Using the Hom-Jacobi identity one also gets that Eqs. (155),
(160), (167) and (168) sum up to zero. Finally the remaining term cancel because of
the compatibility condition.
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As in the case of bialgebras the Chevalley-Eilenberg cohomology defined in Sec-
tion 6.8 can be seen as a subcomplex of the α-type cohomology.

Again we consider the case that the Hom-Lie bialgebra can be obtained as a Yau-
twist of an Lie bialgebra. In this case we consider the cohomology of an Lie bialgebra
morphism.

Proposition 6.11.2 Let g be a Lie bialgebra and γ an endomorphism of it. Then Φ :
C(γ)→ C̃CE(gγ ) defined by

Φ(ϕ) = (γ i−1ϕγ j−1) (171)

Φ(ψ) = (γ i−1(ψ ◦ ν)γ j−1,γ i−1ψγ j−1,γ i−1(δ ◦ψ)γ j−1) (172)

is a morphism of complexes. If γ is invertible, so is Φ .

Proof. We compute for ϕ ∈ Ci,jµ (γ)

Φ(∂ϕ) = Φ(∂µϕ,∂γϕ,∂
c
µϕ)

= (γ i∂µϕγ
j−1,−γ i−1(∂γϕ) ◦ νγ j−1,γ i−1∂γϕγ

j−1,dual)

Φ(∂ϕ) = ∂(γ i−1ϕγ j−1)

= (∂µµ(γ i−1ϕγ j−1),0,∂γ (γ i−1ϕγ j−1),dual).

Now in Theorem 6.9.6 we proved that the first component agrees and it is clear that
the second agrees, too.

Next we compute for ψ ∈ Ci,jγ (γ)

Φ(∂ψ) = Φ(∂µψ,0,∂
c
µψ)

= (γ i(∂ψ) ◦ νγ j−1,γ i∂µψγ
j−1,−γ i−1δ ◦ (∂µψ)γ j−1 −γ i−1(∂cµψ) ◦ νγ j ,dual)

∂Φ(ψ) = (−γ i−1(ψ ◦ ν)γ j−1,γ i−1ψγ j−1,−γ i−1δ ◦ψγ j−1)

= (∂µµγ
i−1(ψ ◦ ν)γ j−1 −∂αµ(γ i−1ψγ j−1),

−∂µα(γ i−1(ψ ◦ ν)γ j−1)−∂αα(γ i−1ψγ j−1),

∂bγ
i−1ψγ j−1 −∂cµµγ i−1(ψ ◦ ν)γ j−1 −∂µµ(γ i−1δ ◦ψγ j−1),dual)

The first and second components agree similar to Theorem 6.9.6. For the third we
first calculate

∂b1γ
i−1ψγ j−1 = γ iδ ◦ (ν ◦ψ)γ j−1 −γ iν ◦ (δ ◦ψ)γ j−1

using the compatibility condition in g. Then writing the differential with the ◦
product gives the result.
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With this one can compute the α-type Chevalley-Eilenberg cohomology of an Lie
bialgebra considered as a Hom-Lie bialgebra and gets:

Proposition 6.11.3 Let (g,ν,δ, id) be a Hom-Lie bialgebra then C̃
•
CE(g) = C•CE(g)⊕C•−1

CE (g).

Proof. This follows from the previous proposition.

We do not have a cohomology for two different structure maps. However we
do note that if they are invertible one gets by Yau twist a Lie bialgebra with two
commuting morphism for which we have given a cohomology in Section 6.1.

6.12 Homomorphisms of Hom-algebras

It is possible the generalize the cohomology for an algebra morphism to the case
of Hom-algebras and define an α-type cohomology for an algebra morphism. We
will only deal with the case of Hom-associative algebras here. The case of Hom-Lie
algebras is similar.

So let (A,µ,α) and (B,µ,β) be two Hom-associative algebras. Then the complex
for a morphism γ : A→ B between the two Hom-algebras is given by

H̃C(γ) = H̃C(A)⊕ H̃C(B)⊕ H̃C(A,B), (173)

where B is considered as an A-bimodule by γ . This means the left and right action
is given by a · b = γ(a)b and b · a = bγ(a) resp. for a ∈ A and b ∈ B.

We will write χA = (ϕA,ψA) for an element in H̃C(A) ⊂ H̃C(γ) and similar for
χB ∈ H̃C(B) and χγ ∈ H̃C(A,B).

Proposition 6.12.1 Let (χA,χγ ,χB) ∈ H̃C•(γ), then the map ∂ : H̃C•(γ) → H̃C•+1(γ)
defined by

∂(χA,χγ ,χB) = (∂HχA,γχA −χBγ −∂Hχγ ,∂HχB), (174)

where ∂H is the α-type Hochschild differential defined in Section 6.3, is a codifferential.

Proof. We simply have to compute ∂ ◦∂ and get

∂ ◦∂(χA,χγ ,χB) = (∂HχA,γχA −χBγ −∂Hχγ ,∂HχB)

= (∂2
HχA,γ∂HχA −∂H (γχA) +∂H (χBγ)− (∂HχB)γ) +∂2

Hχγ ,∂
2
HχB).

We know that ∂2
H = 0 and we have γ∂HχA = ∂H (γχA) since the action on H̃C(A,B) is

induced by γ .

Note that in the previous theorem χA,χγ and χB are again pairs, so in fact a
cocycle in this cohomology consists of a sextuple of linear maps.
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One can search for a subcomplex such that the χA = (ϕA,0),χγ = (ϕγ ,0) and χB =
(ϕB,0). This means that ∂µαϕ = 0 must hold so ϕA ∈ Homα(A,A),ϕγ ∈ Homα(A,B)
andϕB ∈Homα(B,B). Then it is easy to see that Homα(A,A)⊕Homα(A,B)⊕Homα(A,B)
is a subcomplex of H̃C(γ). And we get that this subcomplex with the restricted dif-
ferential gives the one considered in [AFM17].

Similarly to Section 6.1 this can be modified to give a cohomology for an endo-
morphism. So if A = B we can consider the subcomplex of C(γ) of elements of the
form (χA,χγ ,χA). Clearly the differential restrict to this. This subcomplex is isomor-

phic to the complex C•(γ) = H̃C•(A)⊕ H̃C•−1(A,Ã), where the action on Ã is twisted
by γ . The differential can be given for (χA,χγ ) ∈ Cn(γ) as

∂(χA,χγ ) = (∂HχA,∂γχA −∂Hχγ ), (175)

where ∂γχ = γχ −χγ⊗n as before.

We next study how this cohomology of an endomorphism can be used to study
the cohomology of a Hom-associative algebra obtained by Yau twist.

Let A be a Hom-algebra and γ an endomorphism then there is a morphism from
C(γ) → H̃C(Aγ ), where Aγ is the Yau twist of A by γ . The morphism for (ϕ,ψ) ∈
H̃C(A) and (χ,ξ) ∈ H̃C(A,Ã) is given by

(ϕ,ψ,χ,ξ) 7→ (γn−1ϕ +γn−2χ ◦µ,γn−2χα⊗n−1 +γn−1ψ +γn−2ξ ◦µ). (176)

Hereϕ◦µ :=
∑n

i=1(−1)i+1ϕ(α⊗i−1⊗µ⊗α⊗n−i−1) for an arbitrary mapϕ ∈Hom(A⊗n,A).

Proposition 6.12.2 The map Φ : C(γ)→ H̃C(Aγ ) is a chain map.

Proof. We have to prove Φ∂E = ∂HΦ , where ∂E is the codifferential of C(γ). We
denote the parts of the differential with respect to Aγ by ∂γ . First we note that

(γn∂µµϕ −γn−1(∂γϕ) ◦µ) = ∂γµµ(γn−1ϕ)). (177)

For ϕ ∈ H̃Cnµ(A) ⊂ Cn(γ) we have

Φ∂(ϕ,0,0,0) = (γn∂µµϕ +γn−1(∂γϕ) ◦µ,γn−1(∂γϕ)α +γn(∂µαϕ))

= (∂γµµ(γn−1ϕ),γnϕα +γn−1ϕγα +γnαϕ +γnϕα)

= (∂γµµ(γn−1ϕ),∂µα(γn−1ϕ)) = ∂HΦ(ϕ,0,0,0)
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and for ξ ∈ H̃Cn−1
α (A,Ã) ⊂ Cn(γ) we have

Φ∂(ξ) = Φ(0,0,∂µαξ,∂ααξ)

= (γn−1(∂µαξ) ◦µ,γn−1(∂ααξ) ◦µ+γn−1(∂µαξ)α)

∂Φ(ξ) = ∂(0,γn−2ξ ◦µ)

= (∂µα(γn−2ξ ◦µ),∂µµ(γn−2ξ ◦µ))

For the first summand we get

γn−1(∂µαξ) ◦µ(x1, . . . ,xn+1) = γn−1(αn−2((x1x2)α(x3)−α(x1)(x2x3))ξ(α(x4), . . . ))

+
n−1∑
i=1

(−1)iγn−1(αn−3γ(x1x2)ξ(α(x3), . . . ,xixi+1, . . . ))

=
n−1∑
i=1

(−1i−2)(γα)n−2(γ(x1x2) ·γ γn−2ξ(α(x1), . . . ,xixi+1, . . . ))

= ∂µα(γn−2ξ ◦µ)(x1, . . . ,xn+1)

The second summand is similar to Eq. (177). Similarly the equality can be checked
on the other two summands.

So every cocycle in H̃C(γ) is mapped by Φ to a cocycle in H̃C(Aγ ) this can be seen
as a generalization of Proposition 6.3.7.

Remark 6.12.3 Everything done in this section can be done in a similar way for
morphism of Hom-Lie algebras.
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Contents

7.1 Hom-associative algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.2 Hom-Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.3 Hom-Lie bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.4 Hom-associative bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 187

In this chapter we give L∞ structures which can be used to describe Hom-Lie and
Hom-associative algebras resp. We only give their low order terms, which are

computed using computer software. We also give some conjectures and how a full
L∞ structure could look like. It is clear that these should generalize the well known
Gerstenhaber bracket and Nijenhuis bracket.
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7.1 Hom-associative algebras

It would be nice to have an L∞-structure on the complex H̃C(A), for a vector space
A, such that the Maurer-Cartan elements are precisely the Hom-associative algebras
on A, and the differential is given as usual in this context. It is clear that on el-
ements of the form (ϕ,0) this should reduce to the Gerstenhaber structure given
in [AEM11]. It is also clear that since the equations for the Hom-associativity and
multiplicativity are not binary that it cannot be an ordinary Lie algebra but must be
a true L∞-structure. Unfortunately we do not know such an structure, but one can
try to construct it degree by degree. Using a computer we were able to do this for
the low degrees, up to degree 5. Since the terms become quite long we only give the
terms needed to do deformation theory here and the others in the appendix. But we
first state the following conjecture:

Conjecture 7.1.1 Given a vector space V , there is an L∞-algebra structure on the com-
plex H̃C(A), such that the Maurer-Cartan elements are precisely multiplicative Hom-
associative algebras on A and the differential defined in Section 6.2 is induced from it.

We give the brackets with values in degree up to 2, where the degree here is
shifted such that degH̃Cn = n − 2, so the multiplication and structure map are of
degree zero. With ϕi ∈ H̃Ciµ,ψi ∈ H̃Ciα ,αi ∈ H̃C2

α and µi ∈ H̃C2
µ we have:

deg1 :

[µ1,µ2,α]µ = µ1(µ2 ⊗α)−µ1(α ⊗µ2) +µ2(µ1 ⊗α)−µ2(α ⊗µ1)

[µ,α]α = αµ

[µ,α1,α2]α = −µ(α1 ⊗α2 +α2 ⊗α1) deg2 :

[ϕ3,µ,α1,α2]µ = ϕ3(µ⊗α1 ⊗α2)−ϕ3(α1 ⊗µ⊗α2) +ϕ3(α1 ⊗α2 ⊗µ)

+ϕ3(µ⊗α2 ⊗α1)−ϕ3(α2 ⊗µ⊗α1) +ϕ3(α2 ⊗α1 ⊗µ)

−µ(α1α2 ⊗ϕ3)−µ(ϕ3 ⊗α1α2)−µ(α2α1 ⊗ϕ3)−µ(ϕ3 ⊗α2α1)

[ψ2,µ1,µ2,α1,α2] =
∑
σ,τ∈S2

µσ1(ψ2 ⊗µσ2(ατ1 ⊗ατ2))−µσ1(µσ2(ατ1 ⊗ατ2)⊗ψ2)

[ϕ2,α]α = αϕ3

[ϕ2,α1,α2,α3]α = −
∑
σ∈S3

ϕ3(ασ (1) ⊗ασ (2) ⊗ασ (3))

[ψ2,µ,α]α = ψ2(α ⊗µ)−ψ2(µ⊗α)

[ψ2,µ,α1,α2]α = µ(α1α2 ⊗ψ2) +µ(α2α1 ⊗ψ2)−µ(ψ2 ⊗α1α2)−µ(ψ2 ⊗α2α1)

It is well known that an L∞-algebra on a graded vector space V can be given by
a coderivation l̄ on the graded symmetric algebra S(V [1]), which squares to zero.

182



7.1. Hom-associative algebras

The derivation l̄ is completely determined by its corestriction to V , which we will
denote by l : S(V [1])→ V [1]. In our case we have V = H̃C(A), and l is given by the
brackets defined above.

To proof that this is in fact an L∞-structure, it is easiest to consider a graph com-
plex. This is based on the approach for example in [Mar10] for defining L∞ struc-
ture governing deformations if one knows a model for the corresponding operad.
For details see there. Another way to see this is using the fact that a codifferential
on the cofree conilpotent cooperad gives an L∞ structures as we want it here, see
[LV12, Section 10.5]. To use this one has to use the weight graded dual of the free
operad we give here, i.e. graded by the numbers of generated. We only give the
general ideas here since, we only need it as a tool to motivate the brackets defined
above and to show that they form in fact an L∞ structure, which one could also do
by hand.

The graph complex consists of planar rooted trees formed by vertices , ,

, . This means it correspond the the free operad generated by these

operations. We consider the graphs to be graded, such that deg( k ) = k − 2 and

deg( k ) = k − 1. This means in particular that and , which correspond to α
and µ, are of degree 0. We also associate a height to every graph. It is given by

hgt k = k − 1 and hgt k = k.

The differential is given by ∂ = ∂ = 0,

∂ = − , ∂ = − ,

∂ = − + − − + − ,

∂ = − − + + − .

It is an easy calculation to show that ∂ squares to zero. Also note that differential
respects the height in the sense that for a graph Γ with have hgt(∂Γ ) = hgtΓ .

In fact using computer software we found an extensions of the differential above.
Where the operad is spanned by vertices with up to 6 inputs in can be found in
Appendix D.1.

There is a pairing between a graph and an element ϕ1 · · · · ·ϕk ·ψ1 · · · · ·ψl of the
graded symmetric algebra S(H̃C) with values in H̃C(A). It is given on the generators

by 〈 k ,ϕ〉 = ϕ if ϕ ∈ H̃Ckµ, 〈 k ,ψ〉 if ψ ∈ H̃Ck−1
α . For general graphs it is given as
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7. L∞ structures

the sum over all permutations of possible assignments. Note that since the objects
are graded this includes signs. This results in a tree with each element decorated by
an element of H̃C this can be made to an element in H̃C again by composition as the
tree describes.

The L∞-structure is given by [ψ1, . . . ,ϕ1, . . . ]µ = 〈∂ k ,ϕ1 ·ϕk · · · · ψ1 · · · · · ψl〉 and

[ψ1, . . . ,ϕ1, . . . ]α = 〈∂ k ,ϕ1 ·ϕk · · · ·ψ1 · · · · ·ψl〉, for the restriction of the bracket to
H̃C(A)kµ and H̃C(A)k+1

α respectively.

The bracket can be extended to a coderivation l̄ of S(H̃C), and it is an L∞-structure
iff l2 = 0. The fact that l̄2 = 0 follows directly from ∂2 = 0.

Proposition 7.1.2 A Maurer-Cartan element on this L∞-algebra is a Hom-associative
algebra, and for a Hom-associative algebra structure (µ,α) the differential in degree two
and three on H̃C are given by ∂(ϕ,ψ) = l(e(µ,α)(ϕ,ψ))

Proof. The bracket defined by graphs are the same as the brackets given above. It
is clear by looking at the defining equations that a Maurer-Cartan element for them
is a Hom-associative algebra and the differential in degree two and three are given
by these brackets as ∂(ϕ,ψ) = ([µ, . . . ,α, . . . ,ϕ]µ + [µ, . . . ,α, . . . ,ψ]µ, [µ, . . . ,α, . . . ,ϕ]α +
[µ, . . . ,α, . . . ,ψ]α), µ, . . . ,α, . . . stands for zero or more insertions of α and µ. This can
be written as ∂(ϕ,ψ) = l(e(µ,α) · (ϕ,ψ)).

7.2 Hom-Lie algebras

As in the Hom-associative case, we suspect that there is an L∞-structure on the
complex C̃CE(g), where g is a vector space considered as Hom-Lie algebra with the
zero Hom-Lie structure, such that Maurer-Cartan elements are Hom-Lie algebra
structures on g and the cohomology, one can construct from this, is the one we
defined in Section 6.9. In fact we suspect that the L∞-structure describing Hom-Lie
algebras can be derived from the one describing Hom-associative algebras by total
antisymmetrization.

However using a graph complex, which corresponds to a free operad, we were
able the calculate the low degrees.

We consider the free symmetric operad, spanned by totally antisymmetric oper-

ations , , , , , . We consider them to be graded with deg( k ) = k − 1

and deg( k ) = k − 2. The height is given by hgt k = k − 1 and hgt k = k as in the
associative case.
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7.2. Hom-Lie algebras

On this free operad we define a differential on generators by ∂ = ∂ = 0,

∂ = , ∂ = − ,

∂ = − + ,

∂ = − − − .

Here one has to take the total antisymmetrization of each term, but only take terms,
which are not equal using the antisymmetry of the operations.

Note that the differential preserves the height.
Using the same technique as in the previous section, which is based on [Mar06,

FMY09], this gives an L∞-structure on C̃CE by replacing the nodes with maps in the
complex.

We give the corresponding brackets for ϕi ∈ C̃CE
i
µ,ψi ∈ C̃CE

i
α ,αi ∈ C̃CE

2
α and νi ∈

C̃CE
2
ν

deg1 :

[ν1,ν2,α]ν = ν1(ν2 ∧α) + ν2(ν1 ∧α)

[ν,α]α = αν

[ν,α1,α2]α = −ν(α1 ∧α2)

deg2 :

[ϕ3,ν,α1,α2]ν = ϕ3(ν ∧α1 ∧α2)− ν(ϕ3 ∧α1α2)− ν(ϕ3 ∧α2α1)

[ψ3,ν1,ν2,α1,α2]ν =
∑
σ∈S2

νσ (1)(ψ3 ∧ νσ (2)(α1 ∧α2))

[ϕ3,α]α = αϕ3

[ϕ3,α1,α2,α3]α = −ϕ3(α1 ∧α2 ∧α3)

[ψ3,ν,α]α = ψ3(α ∧ ν)

[ψ3,ν,α1,α2]α = −ν(ψ3 ∧α1α2)− ν(ψ3 ∧α2α1)

Theorem 7.2.1 The Maurer-Cartan elements of this L∞-structure are Hom-Lie algebras,

and the differential on C̃
2
CE and C̃

3
CE comes from it.

Proof. It is clear, by regarding the brackets in degree 0, that a Maurer-Cartan ele-
ment is a Hom-Lie algebra. The differentials of (ϕ,ψ) ∈ C̃CE(g) can be computed by
∂ϕ = [α, . . . ,ν, . . . ,ϕ] and similar for ψ. Here α, . . . stands for the insertion of zero or
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7. L∞ structures

more α and the same for ν. Inspection of the brackets shows that this agrees with
the definition given before.

We want to end with the following conjecture:

Conjecture 7.2.2 The free operad above can be extended to a minimal model (or reso-

lution) for HLie. It is generated by totally antisymmetric graphs of the form k , k for
k ∈ N. The Linf ty structure it induces on C̃CE can be used the define the cohomology

given in Section 6.9. Furthermore the map 7→ id and k 7→ 0 for k ≤ 2 defines a mor-
phism from this minimal model to the standard minimal model of Lie given by the Koszul
resolution.

If this conjecture is true it also implies that there is a morphism from this minimal
model. to a minimal of ELie extending the map Y : HLie→ ELie.

7.3 Hom-Lie bialgebras

We give this complex for the general case, i.e. α and β can be different, even
though for the α-type cohomology we only considered the case α = β.

Here we need a free properad to describe the L∞ structures.
These free properad can be considered as a bicomplex and is spanned by the fol-

lowing graphs, which are totally antisymmetric:

(3, ·) :

(3, ·) :

(2, ·) :

(2, ·) :

(1, ·) :

(1, ·) :

(0, ·) :
(·,0) (·,1) (·,1) (·,2) (·,2) (·,3) (·,3)

Here corresponds to α, to β, to δ and to ν. One can also associate a height
to this vertices, in this case it is a pair of integers, similar to Section 6.8. It is given
by the bidegree.
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7.4. Hom-associative bialgebras

Note that the degree has to be shifted from the total degree of the bicomplex,
since we work in the setting were the Maurer-Cartans elements are considered of
degree zero.

The differential on the complex can be found in Appendix D.4.
Note that the first line is precisely the complex considered for Hom-Lie algebras.
With this one can construct an L∞ structures on C̃CE(g) = Hom(Λ•g,Λ•g) for a

vector space g considered as trivial Hom-Lie bialgebra, similar to the previous sec-
tions.

Proposition 7.3.1 Let g be a vector space then a Maurer-Cartan element for the L∞
algebra defined above is a Hom-Lie bialgebra.

Proof. This is clear by construction.

One can also define the first degrees of a cohomology for Hom-Lie bialgebra with
this. But for the moment we do not know how to generalize it to the full complex.
However, we conjecture that the free properad given here can be extended to a
minimal model for HBiLie.

7.4 Hom-associative bialgebras

Here the free properad is spanned by the same graphs as in the previous section
but they have no symmetry. They also have the same height and degree as there.
The differential is given in Appendix D.3.

Again one can define a pairing between this free properad and the complex de-
fined in Section 6.7, which induces the structure of an L∞ algebra on CGS , at least
in low degrees. We do not want to go into more detail here.

Proposition 7.4.1 Let A be a vector space then a Maurer-Cartan element for the L∞
structures defined above is precisely a Hom-bialgebra. Further the α-type GS cohomology
in degrees 2 and 3 is induced from it.

We want to state a conjecture that this free properad we have given can be ex-
tended to a minimal model for HBiAlg. Furthermore the cohomology one can derive
from it is given by the one described in Section 6.7.
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We give some basics for the formal deformation of different type of (Hom-)algebras.
The study of formal deformations of especially associative algebras goes back

to Gerstenhaber [Ger64].
So as before let K be a field of characteristic zero. Then we denote by K[[t]] the ring

of formal power series over K. This is an element is given as a series x =
∑∞

i=0 xit
i .

More on formal power series and formal deformations can e.g. be found in [Wal07,
Kapitel 6], but we want to state some basic facts. We define the t-adic topology on
K[[t]] such that tnK[[t]] for n ∈ N is a system of neighborhoods of zero. We denote by
ord(x) := min{i|xi , 0}. With this we define a metric on K[[t]] by d(x,y) = 2−ord(x−y),
where we set 2−∞ = 0, so that d(x,x) = 0.

Given a vector space V we denote by V [[t]] the set of series of the form v =∑∞
i=0 vit

i . For finite dimensional V we have V [[t]] = V ⊗K[[t]] and for infinite di-
mensional V we have V [[t]] = V ⊗̂K [[t]], where ⊗̂ denotes the completion of the
tensor product in the t-adic topology. It is clear that V [[t]] is a K[[t]] module. We
have (A⊗A)[[t]] = A[[t]] ⊗̂K[[t]]A[[t]].

We want to consider the morphisms between two vector spaces of formal power
series. So let V ,W be two vector spaces, then we have Hom(V ,W )[[t]] =
HomK[[t]](V [[t]],W [[t]]). So every K[[t]]-linear map ϕ : V → W can be written as
ϕ :
∑∞

i=0ϕit
i , where each ϕi is a linear map V →W , which is extended to a K[[t]]-

linear map V [[t]] → W [[t]]. We will use this in the following quite often and not
always state this explicitly.
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8. Deformations

8.1 Hom-associative algebras

In this section we consider deformations of Hom-associative algebras and how
they can be described using the cohomology defined in the Section 6.2. Up to now
mostly the case where only the multiplication is changed is discussed. But here we
consider the more general case where the multiplication as well as the structure
map is deformed. We will show that the order by order construction of such defor-
mations gives rise to equations in the α-type cohomology described in Section 6.3.
We also give a generalization of the well known fact that a deformation of a com-
mutative Hom-algebra gives rise to a Hom-Poisson algebra.

First we recall the basic definitions of formal deformations using formal power
series as described by Gerstenhaber [Ger64].

Definition 8.1.1 Let (A,µ,α) be a Hom-associative algebra over K, then a deforma-
tion of A is a Hom-associative algebra (A[[t]],?,α?) over K[[t]], such that ab = a ? b
mod t for all a,b ∈ A and α? = α mod t.

In the following we will always write a ? b = µ?(a,b) =
∑∞

i=0µi(a,b) and α? =∑∞
i=0αi . So for a deformation we have α0 = α and µ0(a,b) = ab.

Definition 8.1.2 Two deformation (?,α?) and (?′ ,α′?) of a Hom-associative algebra
A are called equivalent if there exists a linear isomorphism T of A[[t]] of the form
T = id+

∑∞
i=0Tit

i , such that T (a ?′ b) = T (a) ? T (b) and T (α′(a)) = α(T (a)).

Given a deformation of A and a linear map T as above one can also define an
equivalent deformation by a ?′ b = T −1(T (a) ? T (b)) and α′(a) = T −1(α(T (a))). It is
clear that equivalence is an equivalence relation on the set of deformations of a
Hom-algebra A.

Let (A[[t]],?,α?) be a deformation of the Hom-associative algebra (A,µ,α), where
a ? b = µ?(a,b) =

∑∞
i=0 t

iµi(a,b) and α? =
∑∞

i=0 t
iαi .

The Hom-associativity condition µ?(µ?(a,b),α?(c))−µ?(α?(a),µ?(b,c)) can be writ-
ten as

∞∑
i,j,k=0

ti+j+k(µi(αj(a),µk(b,c))−µi(µk(a,b),αj(c))) = 0 (1)

and is equivalent to an infinite system of equations, called deformation equation
with respect to Hom-associativity, such that the n-th equation is of the form∑

i,j,k≥0
i+j+k=n

µi(αj(a),µk(b,c))−µi(µk(a,b),αj(c)) = 0.

Notice that the 0-th equation expresses the Hom-associativity of A.
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8.1. Hom-associative algebras

Now, rearranging the terms and using coboundary operators from Section 6.3,
one may write the previous equation as

(∂µµµn +∂αµαn)(a,b,c) =
∑

i,j,k=0,...,n−1
i+j+k=n

µi(αj(a),µk(b,c))−µi(µk(a,b),αj(c)),
(2)

where ∂µµµn(a,b,c) = α0(a)µn(b,c) − µn(ab,α0(c)) + µn(α0(a),bc) − µn(a,b)α0(c) and
∂αµαn(a,b,c) = αn(a)(bc)− (ab)αn(c).

Similarly the multiplicativity condition α?(µ?(a,b)) = µ?(α?(a),α?(b)) can be writ-
ten as

∞∑
i,j=0

ti+jαi(µj(a,b))−
∞∑

i,j,k=0

ti+j+kµi(αj(a),αk(b)) = 0. (3)

This again is equivalent to an infinite system of equations, called deformation equa-
tion with respect to multiplicativity, with the n-th equation given by∑

i,j=0,...,n
i+j=n

αi(µj(a,b))−
∑

i,j,k=0,...,n
i+j+k=n

µi(αj(a),αk(b)) = 0, (4)

which can be rearranged to

(∂αααn −∂αµµn)(a,b) =
∑

i,j=0,...,n−1
i+j=n

αi(µj(a,b))−
∑

i,j,k=0,...,n−1
i+j+k=n

µi(αj(a),αk(b)),
(5)

where ∂αααn(a,b) = α0(a)α(b) − αn(ab) − αn(a)α0(b) and ∂αµµn(a,b) = α0(µn(a,b)) −
µn(α0(a),α0(b)).

We denote by R1
n the right hand side of equation (2) and R2

n the right hand side of
equation (5). The pair (R1

n,R
2
n) is called the n-th obstruction.

Since the deformation is governed by an L∞-algebra, we have the usual statement
relating deformations and cohomology.

Theorem 8.1.3 Let (A,µ,α) be a Hom-associative algebra and (A[[t]],?,α?) be a defor-
mation of A. Then we have

1. The first order term of the deformation is a 2-cocycle, i.e. we have ∂(µ1,α1) = 0,
and its cohomology class is invariant under equivalence.

2. The n-th deformation equations with respect to Hom-associativity and multiplica-
tivity respectively, are equivalent to ∂(µn,αn) = (R1

n,R
2
n). Moreover, (R1

n,R
2
n) is a

3-cocycle, i.e. ∂(R1
n,R

2
n) = 0.
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Proof. The equation ∂(µn,αn) = (R1
n,R

2
n) is equivalent to Eqs. (2) and (5). For n = 1

Eq. (2) gives (∂µµµn + ∂αµαn)(a,b,c) = 0 and Eq. (5) gives (∂αααn − ∂αµµn)(a,b) = 0,
since obviously the right hand side vanishes. This means we have ∂(µ1,α1) = 0.

For an equivalent deformation (?′ ,α′?), we get from S(a ? b) = S(a) ? S(b) in first
order that µ′1(a,b)+S1(ab) = S1(a)b+aS1(b)+µ1(a,b). Further from S(α′?(a)) = α?(S)(a),
we get S1(α0(a))+α′1(a) = α1(a)+α0S1(a). Rearranging gives (µ′1−µ1,α

′
1−α1) = ∂(S,0).

So the cohomology class of (µ1,α1) and (µ′1,α
′
1) are the same as claimed.

Using the L∞-structure l defined in Chapter 7, we have ∂(µn,αn)−Rn = l(e(µ? ,α? ))
at order n in t, since both are equivalent to the fact that (µ? ,α?) is a Hom-associative
algebra. Also l(e(µ? ,α? )) vanishes up to order n− 1 in t. In the following we write ν?
for (µ? ,α?) for shortness. Since l is an L∞-structure, it satisfies l(eν? l(eν? )) = 0 and
since ν? is a Maurer-Cartan element up to order n− 1 it satisfies l(eν? ) = 0 mod tn.
So the n-th order of (eν? l(eν? )) is given by l(eν0(∂νn −Rn)) = ∂∂νn − ∂Rn = ∂Rn and
has to vanish as claimed.

Corollary 8.1.4 If H̃H3(A) = {0} every deformation up to order n can be extended to a
full deformation. So especially for every 2-cocycle there exists a deformation, with it as
first order term.

Proof. We use the notation of the previous theorem. If µ(n) =
∑n

i=0µit
i ,α(n)

∑n
i=0αit

i

is a deformation up to order n, the deformation equation ∂(µn+1,αn+1) = Rn+1 can
be solved, since H̃H3(A) = {0} and (µ(n) + µn+1t

n+1,α(n) + αn+1t
n+1) is a deformation

up to order n+1. Continuing this for each order, gives a full deformation. If (µ1,α1)
is a 2-cocycle (µ0 +µ1t,α0 +α1t) is a deformation up to order 1, so be the previous it
can be extended to a deformation of A.

Proposition 8.1.5 If two deformations (µ? ,α?) and (µ′? ,α
′
?) have the same terms up to

order n − 1, then we have ∂(µn − µ′n,αn − α′n) = 0 and there exists an equivalence up to
order n if there exists a linear map Sn : A→ A such that ∂(Sn,0) = (µn −µ′n,αn −α′n).

Proof. Let S = id+Sntn, we have

S(a?′b) =
n∑
i=0

µ′i(a,b)ti + Sn(ab)tn mod tn+1 and

S(a) ? S(b) =
n∑
i=0

µ′i(a,b)ti + (Sn(a)b+ aSn(b))tn. mod tn+1.

So S is an equivalence up to order n if

Sn(ab) +µ′n(ab) = Sn(a)b+ aSn(b) +µn(ab),
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which can be written as ∂µµSn = µ′n −µn. Similarly from αS − Sα′ in order n we get

αn +α0Sn − Sn −α′n = ∂µαSn +αn −α′n = 0.

So S = 1 + Sntn is an equivalence up to order n.
Using the L∞-structure, we calculate with ν? = (µ? ,α?)

l((e−ν? − 1)(eν?−ν
′
? − 1)) = l(e−ν?eν?−ν

′
? )− l(e−ν? ) + l(eν?−ν̃? ) + l(1)

= l(eν? )− l(eν?−ν
′
? ) = −l(eν?−ν

′
? ).

Since ν and ν′ equal up to order n− 1 the last term vanishes up to order 2(n− 1), so
especially in order n. The first term in order n equals l(eν0(νn−ν′n)) = ∂(νn−µ′n).

Corollary 8.1.6 Every deformation is equivalent to one of the form µ? = µ0 +
∑∞

i=k µit
i

and α? =
∑∞

i=k αit
i , such that (µk ,αk) is a 2-cocycle which is not a coboundary.

If H̃H2(A) = {0} every deformation is equivalent to the undeformed algebra.

Proof. If µ? = µ0 +
∑∞

i=k µit
i and α? =

∑∞
i=k αit

i is a deformation of A, then (µk ,αk)
is a 2-cocycle. If it is a 2-coboundary, by the previous proposition, there exists an
equivalent deformation of the form (µ? = µ0 +

∑∞
i=k+1µit

i ,α? =
∑∞

i=k+1αit
i), where

the first non-trivial term is in order k + 1. Repeating this if necessary, we arrive at a
deformation such that the first nontrivial term is not a 2-coboundary. If H̃H2(A) =
{0} every 2-cocycle is coboundary and the second statement is clear.

We will now consider the deformation of commutative algebras.
We define the star commutator [·, ·]? : A[[t]]⊗A[[t]]→ A[[t]] by

[a,b]? = a ? b − b ? a. (6)

It is easy to see that it satisfies the Hom-Jacobi identity and the Hom-Leibniz iden-
tity, so it defines a nc. Hom-Poisson algebra. The following propositions shows that
if A is commutative its first order gives rise to a Hom-Poisson algebra on A.

Proposition 8.1.7 Let A be a commutative Hom-associative algebra and A? be a defor-
mation of it. Then {a,b} = 1

2t (a ? b − b ? a) mod t defines a Hom-Poisson algebra on
A

Proof. The bracket is obviously skewsymmetric. We have [a,b]? = ab−ba+t(µ1(a,b)−
µ1(b,a)) +O(t2) = 2t{a,b}+O(t2). In second order we have

[[a,b]? ,α?(c)]? = 4{{a,b},α(c)}.
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8. Deformations

Taking the cycling sum over this gives the Hom-Jacobi identity. For the Hom-
Leibniz identity we consider the Hom-Leibniz identity for the star commutator in
first order this is

[ab,α?(c)] = 2{ab,α(c)} (7)

α?(a)[b,c] + [a,c]α?(b) = 2α(a){b,c}+ 2{a,c}α(b), (8)

which gives what we want. Next we want to show that the Poisson bracket is multi-
plicative with respect to α0. This follows from

α?([a,b]) = tα0(2{a,b}) + t2α1(2{a,b}) +α2(µ2(a,b)−µ2(b,a)) +O(t3)

[α?(a),α?(b)] = t2{α0(a),α0(b)}+ t2(2{α1(a),α0(b)}+ 2{α0(a),α1(b)}
+µ2(α0(a),α0(b))−µ2(α0(b),α0(a)) +O(t3)

(9)

if one compares the first order terms.

Dually for the deformation of a cocommutative Hom-coassociative algebra, δ(x) =
1
2t (∆(x)−∆opp(x)) mod t defines a Hom-Poisson coalgebra.

As in the associative case the Poisson bracket is invariant under equivalence and
also here we have

Proposition 8.1.8 Given two equivalent deformation of a Hom-algebra A the Poisson
bracket {a,b} is the same.

Proof. If ? and ?′ are equivalent there exists an T = id+
∑∞

i=1Tit
i : A[[t]] → A[[t]],

such that a ?′ b = T −1(T (a) ? T (b)). Using T −1 = id−T1t +O(t2), this gives

ab+µ′1(a,b)t = ab+ t
(
µ1(a,b) + T1(a)b+ aT1(b)− T1(ab)

)
. (10)

From which follows {a,b}′ = 1
2 (µ′1(a,b)−µ′1(b,a)) = 1

2 (µ(a,b)−µ(b,a)) = {a,b}, as claimed.

However different then in the associative case the Poisson bracket is not coho-
mologous to (µ1,α1). Instead we have that ({·, ·},0) is a cocycle. One can construct
another cocycle, which is given by (1

2 (µ1(a,b) +µ1(b,a)),α1). This however is not in-
variant under equivalence. We suspect however that if α is invertible, one can con-
struct a conjugate α0-derivation out of it, which is invariant, as in the case where
α0 = id, see Proposition 8.1.9.

Next we consider the case, when A is indeed associative, but is deformed into a
Hom-associative algebra.
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8.1. Hom-associative algebras

Proposition 8.1.9 Let (A,µ, id) be a commutative Hom-associative algebra and (A,?,α)
a deformation of it, then α1 is a derivation of the associated Poisson algebra and invariant
under equivalence.

Proof. Using the proof of Proposition 8.1.7, especially the second order in Eq. (9), we
get that it is a derivation of the Poisson bracket, since the terms involving µ2 cancel.
Since for two equivalent transformations α1 differs by the commutator [S1,α0], the
second statement is clear.

So in this case we are closer to the associative case, since we get from the first
order terms a canonical invariant algebraic structure, which at least in simple cases
should be enough to determine all deformation up to equivalence.

In the associative case especially the deformation of the symmetric algebra S(V )
for a vector space V is well studied and understood. In this case there is the well
known theorem that any Poisson bracket admits a deformation, which was first
proofed by Kontsevich in [Kon03]. We can extend this to Hom-context in the fol-
lowing way:

Theorem 8.1.10 Let S(V ) be the symmetric algebra over a vector space V , considered as
a Hom-associative algebra, and {·, ·} a Poisson bracket on S(V ) and α1 a derivation of it,
then there exists a deformation of it.

Proof. Using the theorem of Kontsevich there exit a deformation of the Poisson
bracket, which we denote by ?̃. Since α1 is a derivation and Poisson derivation
there exists an derivation D = α1 +

∑
iDit

i of ? as shown e.g. in [Sha17]. With this
etD is an automorphism of the form ϕ = id+tα1 +O (t2). Now the Yau twist ? = ?̃ϕ
has the desired properties.

If α is invertible we have that S(V ,α) is isomorphic to S(V )α. Also the first order
term gives a cohomology class in C(S(V ),α). So it is given by a pair ({·, ·},ψ), where
{·, ·} is a Poisson-bracket which is compatible with α and ψ is an α-derivation.

8.1.1 Deformations and Yau twist

We look at the relation between deformations and the Yau twist. One question
is for example, if a deformation is of associative type, was the undeformed algebra
also of associative type and vice versa.

In the best case given an associative algebra A and a morphism γ : A → A, one
gets a commutative diagram of the form
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8. Deformations

(A,µ),γ

(A,µ?),γ? (A,γ?µ? ,γ?)

(A,γ,µ)
γ

γ?

µ1,γ1

Here the horizontal arrows indicate Yau twists and the vertical ones a deformation.
So let (A,µ) be an associative algebra and γ a morphism of it. Then if one can

deform this one of course gets a deformed Hom-associative algebra. We note that
the first order term of Aγ? is given by Φ(µ1,γ1) = γ0µ+γ0µ1,γ1.

If (A,αµ,α) is a Hom-associative algebra of associative type it is easy to see that a
deformation is in general not of associative type. To see this consider α = 0. Then
any multiplication, which is zero in zeroth order, and α? = α = 0 is a deformation of
it. If however A is regular then also A?[[t]] is regular and hence of associative type.
So in this case one always gets a commuting square as above.

Further if (A,µ,α) is a Hom-associative algebra and (A,µ? ,α?) a deformation of it,
which is of associative type, then also A is of associative type.

Now we briefly consider the case of twisting a Hom-algebra. So let (A,µ,α) be a
Hom-associative algebra and γ a morphism of it. Than again it is clear if this can be
deformed one again gets a commutative diagram similar to the one above. Not fur-
ther that the first order term of Aγ is given by Φ(µ1,α1,γ1,0) = (γ1µ0 +γ0µ1,γ0α1 +
γ1α0,γ1,0).

We also want to study how the Poisson bracket and α1 change under Yau twists.

Proposition 8.1.11 Let A be a commutative Hom-algebra, (A[[t]],?) a deformation of it
and ϕ =

∑∞
i=0 t

iϕi a morphism of ?, then the algebra (A,?ϕ ,ϕα) obtained by Yau-twist
is a deformation of (A,ϕ0µ,ϕ0α0) with Poisson bracket ϕ0{·, ·}.

Proof. Using a?ϕ b = ϕ(a?b) = ϕ0(ab)+t(ϕ0µ1(a,b)+ϕ1(ab))+O(t2) and ϕα = ϕ0α0 +
t(ϕ1α0 +ϕ0α1) +O(t) this is easy to see. We also note that (αϕ)1 = ϕ1α0 +ϕ0α1.

In the case ϕ0 = id in the above proposition we get a deformation of the same
algebra, which also has the same Poisson bracket, but in general with different α1
so the deformations are not equivalent in general.

8.1.2 Examples

We consider some examples. We begin with an arbitrary commutative associative
algebra A. Let Y ,Xi for i = 1, . . . ,n be commuting derivations. They are for example
easy to find in the case A = S(V ) for a vector space V . Then we define a new product
on A[[t]] by µ? = µeta

ijXi⊗Xj , where aij is a constant matrix. This is sometimes called
Gerstenhaber’s formula and it is well known that this is a deformation of A with
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8.2. Hom-algebra bimodules

Poisson bracket 1
2 ta

ij(Xi⊗Xj−Xj⊗Xi). Further it is easy to see that eY is a morphism
of it. So one can perform a Yau twist and gets that (A,γ?µ? ,γ?) is a deformation of
(A,µ, id).

One can similarly consider the case, where A is a commutative Hom-associative
algebra and Xi for i = 1 . . .n are commuting derivations, which also commute with
α. Then one can again define

µ? = µeta
ijXi⊗Xj . (11)

We first compute

(Xi ⊗Xj )(µ⊗α) = (µ⊗α)(Xi ⊗ id⊗Xj + id⊗Xi ⊗Xj ).

With this one gets

µ?(µ? ⊗α) = µeta
ijXi⊗Xj (µeta

ijXi⊗Xj ⊗α)

= µ(µ⊗α)eta
ijXi⊗Xjeta

ij (Xi⊗id⊗Xj+id⊗Xi⊗Xj )

= µ(µ⊗α)eta
ij (Xi⊗Xj+Xi⊗id⊗Xj+id⊗Xi⊗Xj )

and doing a similar calculation

µ?(α ⊗µ?) = µ(α ⊗µ)eta
ij (Xi⊗Xj+Xi⊗id⊗Xj+id⊗Xi⊗Xj ).

So the product µ? is Hom-associative since µ is so. Since the derivationsXi commute
with α it is clear that α is also a morphism of µ? .

It this case the Hom-Poisson bracket is given by {a,b} = πijXi(a)Xj(b) for a,b ∈ A,
and it is easy to see that this is in fact a Hom-Poisson bracket.

8.2 Hom-algebra bimodules

In this section we give some remarks on the deformation of Hom-algebra modules
and bimodules.

Definition 8.2.1 (Module deformation) LetA be a Hom-associative algebra and (M,ρ,β)
be an A right module. Further let (A[[t]],?,α?) be a deformation of A. Then an
A? module (M[[t]],λ? ,β?) is called a Hom-algebra module deformation of M if λ is
given by a •m = a ·m+

∑∞
i=1λi(a,m)ti and β? = β +

∑
i+1β

iti , i.e. in zero order they
agree with M.

Similarly one can define a right module deformation.

Definition 8.2.2 Let A be a Hom-algebra and M be a Hom-bimodule. Then a de-
formation of M is a left and right module deformation, such that they form a A-
bimodule.
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8. Deformations

Similar to the associative case considered in [Hur18] the deformations of a sym-
metric Hom-bimodule gives rise to a Hom-Poisson module.

Theorem 8.2.3 Let M be a symmetric A-Hom-bimodule and (M[[t]],•) a deformation
of it. Then the bracket {a,m|} := 1

t (a •m −m • a) mod t together with the undeformed
bimodule defines a Hom-Poisson module.

Proof. We define [a,m|] := a •m−m • a, then [a,m|] = {a,m|}+O(t2). It is easy to check
that [α(a), [b,m|]|] = [[a,b]? ,β?(m)|] + [α?(a), [b,m|]|]. Evaluating this is second order
gives {α(a), {b,m|}|} = {{a,b},αM(m)|} + {α(b), {a,m|}|}, since [·, ·|] is zero in zeroth order.
We also have [α(a),b ·m|] = [a,m|] • β?(m) + α?(a) • [b,m|], which in first order gives
{α(a),b·m|} = α(b)·{a,m|}+{a,b}·αM(m). Similarly {α(a),b·m|} = α(b)·{a,m|}+{a,b}·αM(m)
can be checked.

We remark that other then in the case of module deformation of an associative al-
gebra, this deformation cannot be described by the cohomology HH(A,Hom(M,M)),
since Hom(M,M) is in general not a Hom-module, since one cannot define a struc-
ture map. Also the deformation of bimodules cannot be reduced to the module
case since for Hom-algebras A,B in general a A-B-bimodules is not a module over
A⊗Bopp.

However it is possible to consider to consider the algebra A ⊕M. And restrict
the complex to maps of the form Hom(A⊗n ⊗M,M). It is easy to see that the α-
type differential restricts to this complex and one gets an associated cohomology. In
the ordinary case this gives the same as HC(A,Hom(M,M)). For bimodules one can
proceed similarly in this case one restricts to the complex Hom(A⊗i ⊗M⊗A⊗n−i ,M).

8.3 Hom-Lie algebras

In this section we briefly discuss how the α-type Chevalley-Eilenberg cohomology
can be used to study deformations of Hom-Lie algebras, where the bracket and the
structure map α are deformed.

Definition 8.3.1 Let (g,ν,α) be a Hom-Lie algebra. A deformation of it is a Hom-
Lie algebra (g[[t]],νt ,αt) over K[[t]], such that αt = α +

∑∞
i=1αit

i and [x,y]t = [x,y] +∑∞
i=1 t

i[x,y]i . Here we denote νt(x⊗ y) = [x,y]t.

Definition 8.3.2 Two deformations νt ,αt and ν′t ,α
′
t are called equivalent if there

exists a formal power series S = id+
∑∞

i=1Sit
i such that S([x,y]′t) = [S(x),S(y)]t and

Sα′t = αtS.

It is clear that this equivalence is an equivalence relation on the set of deforma-
tions of a Hom-Lie algebra.
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8.3. Hom-Lie algebras

Let g be a Lie algebra regard as Hom-Lie algebra, then for a deformation νt ,αt of
it, α1 is a derivation. This follows from the multiplicativity and αt([x,y]t) = [x,y]0 +
t(α1[x,y] + [x,y]1) and [αt(x),αt(y)] = [x,y]0 + t([α1x,y] + [x,α1y]).

The condition that (g,νt ,αt) is a deformation of (g,ν,α) is equivalent to the fol-
lowing two conditions:

First it has to satisfy the Hom-Jacobi identity, which gives∑
i,j,k≥0

∑
cycl.

νi(αj(x),νk(y,z))t
i+j+k = 0. (12)

Here and in the following equations
∑

cycl. denotes the cyclic sum over the elements
x,y,z ∈ g. At order n in t this gives∑

i,j,k≥0
i+j+k=n

∑
cycl.

νi(αj(x),νk(y,z)) = 0, (13)

This is called the n-th deformation equation with respect to the Hom-Jacobi identity.
It can be rearranged to

(∂µµνn +∂αµαn)(x,y,z) =
∑

0≤i,j,k≤n−1
i+j+k=n

∑
cycl.

νi(αj(x),νk(y,z)) = 0, (14)

where ∂µµνn(x,y,z) = −
∑

cycl.νn([x,y],α(z))+
∑

cycl.[α(x),νn(y,z)] and ∂αµαn(x,y,z) =∑
cycl.[αn(x), [y,z]] are the parts of the differential defined in Section 6.9. We denote

the right hand side by R1
n.

Second it has to satisfy the multiplicativity, this is∑
i,j≥0

αi(νj(x,y))ti+j −
∑
i,j,k≥0

νi(αj(x),αk(y))ti+j+k = 0. (15)

At order n this gives

n∑
i=0

αi(νn−i(x,y))−
∑

0≤i,j,k≤n
i+j+k=n

νi(αj(x),αk(y)) = 0. (16)

We call this the n-th deformation equation with respect to the multiplicativity.
Again this can be rewritten as

(∂αααn +∂µανn)(x,y) = −
n−1∑
i=0

αi(νn−i(x,y)) +
∑

0≤i,j,k≤n−1
i+j+k=n

νi(αj(x),αk(y)), (17)
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where ∂µανn = ανn−νn(α⊗α) and ∂αααn(x,y) = [α(x),αn(y)]−[α(y),αn(x)]−αn([x,y]).
We denote the right hand side by R2

n.
Since the deformation is governed by an L∞-algebra, we have the usual statement

relating deformations and cohomology. We will omit the proof here since these
follows from the deformation equations given above and are almost identical to the
Hom-associative case given in the previous section.

Theorem 8.3.3 Let (g,ν,α) be a Hom-Lie algebra and (g[[t]],νt ,αt) a deformation of it.
Then we have

1. The first order term is a 2-cocycle, i.e. we have ∂(ν1,α1) = 0, whose cohomology
class is invariant under equivalence.

2. The n-th deformation equations with respect to the Hom-Jacobi identity and multi-
plicativity respectively, are equivalent to ∂(νn,αn) = (R1

n,R
2
n). Furthermore, (R1

n,R
2
n)

is a 3-cocycle, i.e. ∂(R1
n,R

2
n) = 0.

This means that the construction of a deformation order by order gives equations

in H̃
3
CE(g), we also get:

Corollary 8.3.4 If H̃CE(g) = 0 any finite deformation up to order n can be extended to a
full deformation. So especially every 2-cocycle can be extended to a deformation.

Proposition 8.3.5 If two deformations (νt ,αt) and (ν′t ,α′t) agree up to order n− 1, i.e.
αi = α′i ,νi = ν′i for i = 1, . . . ,n − 1, then we have ∂(µn − ν′n,αn − α′n) = 0 and there
exists an equivalence up to order n if there exists an Sn : g → g such that ∂(Sn,0) =
(µn − ν′n,αn −α′n).

So the construction of an equivalence is a problem in H̃
2
CE(g), and we get

Corollary 8.3.6 If H̃
2
CE(g) = 0 then all deformations are trivial, i.e. are equivalent to the

undeformed algebra.

8.4 Hom-bialgebras

We briefly also discuss the deformation of Hom-bialgebras. We will only consider
the case of (α,β)-Hom-bialgebras here.

Definition 8.4.1 A deformation of a Hom-bialgebra (g,µ,∆,α,β) over K is a Hom
bialgebra (g[[t]],µt ,∆t ,αt ,βt) over K[[t]] such that µ0 = µ,δ0 = ∆ and α0 = α. Two
deformations (g[[t]],µt ,∆t ,αt ,βt) and (g[[t]],µ′t ,∆

′
t ,α
′
t ,β
′
t) are called equivalent if there

exists a formal series S : g[[t]]→ g[[t]] of the form S = id+
∑∞

i=1Si , such that S(µ′t(a,b)) =
µt(S(a),S(b)), (S ⊗ S)∆′t(a) = ∆t(S(a)), S(α′t) = αt(S) and S(β′t) = βt(S).
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8.4. Hom-bialgebras

The deformation equations with respect the to algebra structure are the same
as in Section 8.1. Dually the deformation of the coalgebra structure can be de-
scribed. It remains to consider the compatibility conditions the compatibility of
the structure maps with the coproduct and product are essentially the same as the
multiplicativity of the (co)algebra structure, so it remains the condition relating the
multiplication and comultiplication.

∞∑
i,j=0

ti+j∆i(µj(a,b)) =
∑
i,j,k,l

ti+j+k+lµi(a
(1)
k ,b

(1)
l )⊗µj(a

(2)
k ,b

(2)
l )

Here we used ∆i(a) = a(1)
i ⊗a(2)i . The n-th order term of this equation can be written

as

∂µµ∆n(a,b) +∂∆∆∆n(a,b) =
n−1∑
i=1

∆i(µn−i(a,b))−
∑

i,j,k,l=0,...,n−1
i+j+k+l=n

µi(a
(1)
k ,b

(1)
l )⊗µj(a

(2)
k ,b

(2)
l ).

(18)

We recall that ∂µµ∆n(a,b) = ∆0(a)∆n(b)−∆n(ab)+∆n(a)∆0(b) and ∂∆∆µn(a,b) = a(1)b(1)⊗
µn(a(2),b(2))−∆(µn(a,b)) +µn(a(1),b(1))⊗ a(2)b(2).

Using this and the L∞ structure defined in Chapter 7, one gets the theorems link-
ing the GS cohomology and deformations.

We want to consider the special case of deforming the symmetric algebra over
a vector space since in the ordinary case the first order term gives rise to a Lie
bialgebra structure.

In the Hom-case however ths does not work since the algebra even as Hom-
modules are in general not isomorphic. For this consider the case (V ,α = 0), where
V is a vector space with dimension greater then 1. Then one can define the free com-
mutative Hom-algebra S(V ,0), which is given by the free Hom-associative algebra
on V , which in this case ist the free magmatic algebra, modulo the ideal generated
by xy − yx for x,y ∈ FHAss(V ,0). On can also consider V to be a Hom-Lie alge-
bra with zero bracket. Then however U (V ) is not commutative, since for example
(xy)z − z(xy) , 0. Now one could consider the case wether the universal enveloping
algebra of a Hom-Lie algebra (g,ν,α) can be consider as a deformation of U (V ,0,α).
Here of course one has to place the formal parameter t in front of ν to get a formal
deformation.

In the case that α and β are invertible things are easier. Here one has a commu-
tative diagram relating Yau-twist and deformation. We consider the general case.
Let A,µ,∆ be a bialgebra with two commuting endomorphisms γ and γ ′. Then the
diagram
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8. Deformations

(A,µ,∆),γ,γ ′

(A,µt ,∆t),γ1t (A,γtµt ,γt ,∆γ ′t ,γ
′
t )

(A,γµ,γ,∆γ ′ ,γ ′)
γ,γ ′

γt ,γ
′
t

µ1,γ1,∆1,γ
′
1

Here (µ1,γ1,∆1,γ
′
1) is on cocycle in the complex C(γ) for an bialgebra morphism

defined in Section 6.1. The 1-order term of the deformation of the Yau-twist is given
by Φ(µ1,∆1,γ1,γ

′
1) = (γ1µ0 + γ0µ1,γ0α1 + γ1α0,γ1∆0 + γ0∆1,β0γ

′
1 + β1γ

′
0). If for a

Hom-bialgebra both structure maps are invertible all deformations can be obtained
this way.

8.5 Hom-Lie bialgebras

Here we consider the situation where α = β since we defined the cohomology only
for this case. We do not have an L∞ structure, which can be used the describe this
cohomology. So the situation is not as good as in the previous sections. However we
defined the differential is such a way that the deformation equation can be written
with the differential.

Definition 8.5.1 A deformation of a Hom-Lie bialgebra (g,ν,δ,α) over K is a Hom-
Lie bialgebra (g[[t]],νt ,δt ,αt) over K[[t]] such that ν0 = ν,δ0 = δ and α0 = α. Two
deformations (g[[t]],νt ,δt ,αt) and (g[[t]],ν′t ,δ

′
t ,α
′
t)are called equivalent if there exists

a formal series S : g[[t]] → g[[t]] of the form S = id+
∑∞

i=1Si , such that S([a,b]′t) =
[S(a),S(b)]t, (S ⊗ S)δ′t(a) = δt(S(a)) and S(α′t) = αt(S).

The deformation equation with respect to the Hom-Lie algebra structure is the
same as in Section 8.3, also the compatibility of the structure maps with the multi-
plication is similar to there. The corresponding equations for the cobracket are dual
to these. So we will consider here only the compatibility condition. Different from
the Hom-bialgebra case it involves the structure maps. We have

∞∑
i,j=0

ti+jδi([a,b]j ) =
∞∑

i,j,k,l=0

ti+j+k+l
(

[αi(a),b
[1]
j ]k ⊗αl(b

[2]
j ) +αl(b

[1]
j )⊗ [αi(a),b

[2]
j ]k

− [αi(b), a[1]
j ]k ⊗αl(a

[2]
j ) +αl(b

[1]
j )⊗ [αi(b), a[2]

j ]k
)
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8.6. Quantization of Hom-Lie bialgebras

∂cµµνn(a,b) +∂µµδ(a,b) +∂bα(a,b) =
n−1∑
i=1

δi([a,b]n−i)

−
∑

0≤i,j,k,l<n
i+j+k+l=n

[αi(a),b
[1]
j ]k ⊗αl(b

[2]
j ) +αl(b

[1]
j )⊗ [αi(a),b

[2]
j ]k

− [αi(b), a[1]
j ]k ⊗αl(a

[2]
j ) +αl(b

[1]
j )⊗ [αi(b), a[2]

j ]k

Here ∂cµµνn(a,b) = a[1] ∧ νn(a[2],α(b)) + b[1] ∧ νn(b[2],α(a)) − δ0νn(a,b), ∂µµδn(a,b) =
a · δn(b) − b · δn(a) and delb(α) = a · δ0(α1(b)) − b · δ0(α1(a)) + α0(a[1]) ∧ α1([a[2],b]) −
α0(b[1])∧α1([b[2], a]).

Proposition 8.5.2 The first order term is a 2-cocycle it is invariant under equivalence.

Proof. This follows directly from the previous equations and the fact that a Lie-
bialgebra deformation is clearly a Lie-algebra and coalgebra deformation.

8.6 Quantization of Hom-Lie bialgebras

In Chapter 4 we studied the quantization of color Lie bialgebras, we here study
the quantization of Hom-Lie bialgebras. We will focus on the regular case since in
this case many results from the non-Hom-case can be transferred. The general case
is more difficult since here for example the structure of the universal enveloping
algebra is more complicated and less well understood.

Notation: For an algebra over K[[t]] we denote ∆ =
∑

i∆i and a · b =
∑

i a ·i b and
simple ab for a ·0 b.

Let H be a Hom-Hopf algebra over K[[t]] such that H mod t is isomorphic to
the universal enveloping algebra of a Hom-Lie algebra. In this case we call H a
HomQUEA.

Lemma 8.6.1 Let H be the (α,β)-universal enveloping algebra of a Hom-Lie algebra,
then [∆(x), y ⊗ z] = adβ(x)(y ⊗ z) for x ∈ g and y,z ∈H .

Proof. This is a simple computation:

[∆(x), y ⊗ z] =[1⊗ β(x) + β(x) + 1, y ⊗ z]
=α(y)⊗ [β(x), z] + [β(x), y]⊗α(z)

=α(y)⊗ adβ(x) z+ adβ(x)(y)⊗α(z)
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8. Deformations

Proposition 8.6.2 Let H be a HomQUEA, then if δ(x) = ∆1(x)−∆opp
1 (x) mod t defines

a map from g→ g⊗g, δ defines a Hom-Lie cobracket on g, such that g becomes a Hom-Lie
bialgebra. If α and β are invertible then the condition is automatic.

Proof. The map δ is clearly skew-symmetric. We want to consider if δ maps into
Prim(H) for this we compute for x ∈ g

(β ⊗∆0)δ(x) = (δ⊗ β)∆0(x) + τ12(β ⊗ δ)∆0(x) = δ(β(x))⊗1+ τ12δ(β(x)).

Here we used that δ is a Hom-Poisson cobracket and x is β-primitive. From this and
the symmetry of δ it follows that if β is invertible then δ maps into β-Prim. If α is
also invertible β-Prim = g and we get what we wanted.

The map δ defines a Hom-Poisson coalgebra. This follows from Proposition 8.1.7.
To show that it gives a Hom-Lie bialgebra we compute

∆([x,y])−∆opp([x,y]) = ∆0([x,y]1) +∆(xy − yx)−∆0([x,y]1)−∆opp
1 (xy − yx) = δ([x,y])

∆(x) ·∆(y)−∆opp(x) ·∆opp(y) =

=∆0(x)∆1(y) +∆1(x)∆0(y)−∆0(x)∆opp
1 (y) +∆opp

1 (x)∆0(y)

=∆0(x)δ(y) + δ(x)∆0(y)

Comparing the two sides and using Lemma 8.6.1 we get the result.

Theorem 8.6.3 Let g be a Hom-Lie bialgebra with invertible structure map then there
exists a quantization of g.

Proof. This follows from the Etingof-Kazhdan quantization and its functoriality. By
Proposition 5.2.7 g Yau-twisted by α−1 is on ordinary Lie bialgebra, which we denote
by g0. Also the corresponding universal enveloping algebras are α̃ related, where α̃
is the extension of α to U (g). There exists a quantization of g0, which we denote by
Uq(g0). Then α̃ is still a morphism of Uq(g0) and the Yau twist is a quantization of
g.

The case when α is not invertible is more difficult since in this case, the uni-
versal enveloping algebra even as vector space is not isomorphic to some universal
enveloping algebra of a Lie-algebra even if the considered Hom-Lie algebra is of
Lie-type.

204



205
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We first recall some basic definitions from ordinary category theory. We will limit
ourself to only giving definitions and some theorems but no proofs, for more

details see a good book on category theory, e.g. [ML98].
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A. Basic Category Theory

A.1 Basiscs

Definition A.1.1 A categoryC consists of a class of objects obC and for two objects
A,B ∈ obC a set of morphisms denoted by HomC (A,B). Given two morphisms f ∈
Hom(A,B), g ∈ Hom(B,C), their exists a morphisms gf ∈ Hom(A,C), such that the
composition is associative. For all A ∈ C there exists an identity morphism idA ∈
Hom(A,A), which is a neutral elements with respect to the composition.

We will normally only write A ∈ C instead of A ∈ obC , and Hom instead of
HomC if the used category is clear. The composition gives a map Hom(B,C) ×
Hom(A,B)→ Hom(A,C). Note that obC is in general not a set but a proper class.
However we assume that Hom(A,B) is a set for all A,B ∈ C . There are some set
theoretic problems surrounding this, since it is not clear what axioms a class should
satisfies. So some authors use different approaches for examples using so called
Grothendieck universes. We here try to avoid all these problems.

We want to give some examples of categories, also to fix the notation.

Example A.1.2 Given a set S, we can define the discrete category FCat(S) on S. It is
given by obFCat(S) = S and Hom(x,x) := ∗ and Hom(x,y) = ∅ if x , y. Here ∗ denotes
a singleton.

There is the category Set of sets, where the objects are sets and the morphisms
are maps between sets. This is somehow the most basic category.

Given a field K there is the category K-Vec of K vector spaces, where the objects
are K-vector spaces and the morphisms are linear maps. Similarly given a ring R
one can define the category R-Mod of R-modules.

Given some type of algebras or group one can also define the category of these
with morphisms the maps which respect the structure.

We call a category small if the objects form a set. So we can form the category
of small categories, where the objects are small categories and the morphisms are
functors between them.

There is no category of all categories since the “set” of objects would be two big.
Given two categories C and D we can form their product C ×D , with objects

all pairs (C,D) with C ∈ C and D ∈ D and morphisms Hom((C,D), (C′ ,D ′)) =
Hom(C,C′)×Hom(D,D ′).

Given a category C one can define its opposite category C opp, with the same
objects but reversed morphisms, i.e. HomC opp(A,B) := HomC (B,A) for all A,B ∈C .

Definition A.1.3 (Mono, Epi, . . . ) A morphism f : A→ B is called a monomorphism
or monic if for all C ∈ C and g,g ′ ∈ Hom(C,A) from f g = f g ′ follows g = g ′. It is
called an epimorphism or epic if gf = g ′f implies g = g ′ for all g,g ′ ∈ Hom(B,C).
It is called an isomorphism if there exists an inverse g : B → A, such that f g =
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idB and gf = idA. If f ,g satisfy f g = id then f is a epimorphism and called a
split epimorphism or a retraction of g and g is a monomorphism and called a split
monomorphism or a section of f .

Definition A.1.4 (Functor) A functor F between two categories C andD consists of
a map F : obC → obD , and a map F : Hom(A,B)→ Hom(FA,FB) for all A,B ∈ C ,
such that F(gf ) = F(g)F(f ) for all f ∈Hom(A,B), g ∈Hom(B,C).

We denote the set of all functors between two categories C and D by DC or
Hom(C ,D ).

Functors can be composed. So given functors F :C →D and G :D → E , one can
define a functor GF : C → E by A 7→ G(F(A)) for A ∈ C on objects, and in a similar
way on morphisms. Note that the composition of functors is associative.

Definition A.1.5 A functor F :C →D is called faithful, if for all C,D ∈C the map
F : Hom(C,D)→ Hom(FC,FD) is injective, it is called full if this map is surjective.
It is called fully faithful if it is full and faithful. It is called conservative if for all
f : C→D the morphism f is an isomorphism whenever F(f ) is an isomorphism.

Note that if f is an isomorphism then F(f ) is always an isomorphism.
The most important example of a functor is maybe the Hom functor. It is a func-

tor C opp × C → Set given on objects by (A,B) 7→ Hom(A,B) and on morphisms
by Hom(f , f ′) : g 7→ f ′gf for f ∈ Hom(A′ ,A), f ′ ∈ Hom(B,B′) and g ∈ Hom(A,B).
Also for all A ∈ C there is a functor Hom(A, ·) : C → Set : B 7→ Hom(A,B) and one
Hom(·,B) :C opp→ Set : B 7→Hom(B,A).

There is the identity functor idC on C , which simply is the identity on objects
and on morphisms.

Given two categoriesC andD and an objectA ∈D we define the constant functor
C → D with value D. Each object in C is mapped the D and all morphisms are
mapped to the identity idD .

On the product of two categories one can define the flip functor τC ×D :C ×D →
D ×C , which simply interchanges the components in the pairs of objects and mor-
phisms.

A functor F : C → Set is called representable if there exits an element X ∈ C ,
such that Hom(X,C) � FC for all C ∈ C natural in C, this means there exists a
natural isomorphism Hom(X, ·)→ F.

Definition A.1.6 (Natural transformation) A natural transformation η : C
G−→
F
D be-

tween two functors F,G :C →D consists of a family {ηA}A∈C of maps ηA : Hom(FA,GA),
such that the following diagram commutes for all A,B ∈C and f ∈Hom(A,B):
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FA FB

GA GB

Ff

ηBηA

Gf

A natural transformation η is called a natural isomorphism if all ηA are isomor-
phism.

Given two functors F,G we denote the set of natural transformation between
them by Nat(F,G). For a functor F : C → D we denote the natural transforma-
tion F→ F, which has as components the identity by idF .

Given two constant functors F,G : C → D with values A,B ∈ D resp., we have
Nat(F,G) = Hom(A,B).

They are two different ways to compose natural transformations. Given natural

transformation η : C
G−→
F
D and ζ :D

G′−−→
F′
E one can define the horizontal composi-

tion ηζ :C
GG′−−−→
FF′
E by ζηA : G′(ηA)ζFA.

Given natural transformations η as before and ζ : C
H−−→
G
D their vertical compo-

sition η · ζ :C
H−−→
F
D is defined by (ηζ)A := ζAηA.

Given a functor F : C →D and a natural transformation ϕ : G→H :D → E , we
can define ϕF by (ϕF)A = ϕFAF.

These two composition satisfy some compatibility conditions. These conditions
are used two define bicategories, but we will not consider this here.

Definition A.1.7 (Adjoint functors) Two functors F : C → D ,G : D → C are called
adjoint if for all A ∈C ,B ∈D there exists an isomorphism

Hom(FA,B)→Hom(A,GB) (1)

natural in A and B.

This is equivalent to the existence of two natural transformation η : idC → GF
and ε : FG→ idD , which satisfy Gε · ηG = idG and ηF ·Fε = idF

An adjunction, such that FG � idD and GF � idC , is called an equivalence.

Definition A.1.8 (Cone,Limit) Let J be a small and often finite category and F ∈ C J

a functor. A cone ϕ to F is a natural transformation from a constant functor ϕ0 to
F. It is called universal if for all other cones ψ there exists a ψ′ ∈ Nat(ψ0,ϕ0), such
that ψ = ϕψ′. A cone consists of an objects c := ϕ0(i) ∈ C for i ∈ J and a collection
of morphism ϕi ∈Hom(c,F(i)) for all i ∈ J . Given a universal cone the element ϕ(i)
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is called the limit of F. A limit is unique up to unique isomorphisms, this means
given two limits there exists an unique isomorphism between them.

We define the diagonal functor ∆ : C → C J , which assigns to every objects i ∈ J
the constant functor. A limit can also be defined as a right adjoint to the diagonal
functor.

Consider the category (2) with two elements and only identity morphisms then a
limit (2)→C is called a product. Similarly one can define products involving more
objects.

The limit where J is the empty category is called a terminal object. From every
object their is a exactly one morphism to the terminal object.

Example A.1.9 The product of two sets is there cartesian product, similar for more
sets. The terminal objects is the singleton. The product in Vec is the direct product
of vector spaces and the terminal object is the zero space.

An equalizers can be defined as a limit where J = ·⇒ ·.
A pullback is a limit where J = · → · ← ·. This is usually denoted by a pullout

square

A×C B A

B C .

Dually to limit one can define colimit.

Example A.1.10 The coproduct in Set is the disjoint union and the coproduct in
Vec is the direct sum. Note that in Vec the product and coproduct agree for finitely
many objects. In the category Grp of groups the coproduct is given by the free
product.

Definition A.1.11 (complete category) A category is called complete if all small lim-
its exist, and it is called cocomplete if all small colimits exits.

For example the categories Set and Vec are complete and cocomplete.
We call a functor F : C → D continuous if it preserves all limits, which exist in
C . This means given the limit limG of a functor G : J → C in C , we have that
limFG = F limG. Dually we call a functor cocontinuous if it preserves all colimits.

Proposition A.1.12 Any right adjoint functor is continuous and any left adjoint is co-
continuous.
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Proposition A.1.13 (Yoneda lemma) Given a functor F : C → Set, and X ∈ C , there
exists an isomorphism

F(X) �Nat(Hom(X, ·),T ). (2)

Proof. Given a natural transformation η we can define an element in FX by ηX(idX).
On the other hand given a element x ∈ FX we can define a natural transformation
by ηC(f ) = Ff (x) for f ∈Hom(X,C) for all C ∈C .

We give the definition of end and coends, since these are needed in enriched
category theory. For this we first have to define dinatural transformations.

A dinatural transformations α between two functors F,G :C opp×C →D , written
as α : F→̇G, consists of a family {αA}A∈C of morphism αA : F(A,A)→ G(A,A), such
that for all A,B ∈C and f : A→ B the following diagram commutes

F(B,A) F(A,A) G(A,A)

F(B,B) G(B,B) G(A,B)

Hom(f , id) αA

Hom(id, f )Hom(id, f )
αB Hom(f , id)

Definition A.1.14 An end of a functor S : Copp × C → X is a universal dinatural
transformation from a constant e to S, that is an end is a pair (e,ω), where e is an
object andω : e→̇S a dinatural transformation (or wedge), such that for every wedge
β : x→ S there is an unique morphisms h : x→ h such that βa =ωah for all a ∈ C.

x S(b,b) S(b,c)

e S(c,c)

βb S(1, f )

ωc

S(f ,1)

βc

ωb
h

We write

e =
∫
c
S(c,c) (3)

for the end of S.
If the functor F is trivial in the first argument, an end of F is the same as an

ordinary limit.
Dually one can define cowedges and coends.
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A.2. Monoidal categories

Proposition A.1.15 If X is small-complete and C is small, every functor S : Copp×C→
X has an end in X.

Actually we need the coend of a functor S : Copp ×C → X, which is defined dual
to the end. This means a coend is a pair (d,ζ : S→̈d), where d is an object in X and
ζ is a dinatural transformation. For the object d we write

d =
∫ c

S(c,c) (4)

The properties of coends are dual to those of ends, so a coend always exists if C is
small and X small cocomplete.

Proposition A.1.16 Given a natural transformation γ between functors S,S ′ : C opp ×
C → X, with ends (e,ω) and (e′ ,ω′) resp., there is a unique morphism g =

∫
cγc,c in X

such that the following diagram commutes for every c ∈ C

∫
c S(c,c) S ′(c,c)

∫
c S(c,c) S ′(c,c)

ωe

ω′e

g γc,c′

A.2 Monoidal categories

Definition A.2.1 (Monoidal category) A monoidal category C = (C ,⊗, I ,α,λ,ρ) is a
category equipped with a bifunctor, its multiplication or tensor product, ⊗ : C ×
C → C . This multiplication is associative up to a natural isomorphism α : ⊗(⊗ ×
id) → ⊗(id×⊗), called associator, and has a unit object I ∈ C , which is a left and
right unit up to natural isomorphisms λ : I ⊗ id → id resp. ρ : id⊗I → id, called
unitors. To be precise this means that the following diagrams commute:
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((A⊗B)⊗C)⊗D

(A⊗ (B⊗C))⊗D (A⊗B)⊗ (C ⊗D)

A⊗ ((B⊗C)⊗D) (A⊗ (B⊗ (C ⊗D))

α

α

α

α

α

A⊗ (I ⊗C) (A⊗ I)⊗C

A⊗ I

α

id⊗λ
ρ⊗ id

and λI = ρI : I ⊗ I → I .

A braiding for a monoidal category is a natural transformation

γAB : A⊗B→ B⊗A, (5)

such that the following diagrams commute

A⊗ I I ⊗A

A

γ

ρ

λ

(A⊗B)⊗C A⊗ (B⊗C)

(B⊗A)⊗C (B⊗C)⊗A

B⊗ (A⊗C) B⊗ (C ⊗A)

α

τ

α

τ ⊗ id

α

id⊗τ

A⊗ (B⊗C) (A⊗B)⊗C

A⊗ (C ⊗B) C ⊗ (A⊗B)

(A⊗C)⊗B (C ⊗A)⊗B

α−1

τ

α−1

id⊗τ

α−1

τ ⊗ id
.

The later two are called hexagon identities.
A braiding is called a symmetry if additionally

γBAγAB = idA⊗B . (6)
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In this case one hexagon identity implies the other.
A monoidal category C is called closed if the functor · ⊗A has a right adjoint for

each A ∈ C , which we denote by HOM(A, ·) : C → C and call the internal homs,
this means for all A,B,C ∈C there is a natural isomorphism

Hom(A⊗B,C) �Hom(A,HOM(B,C)), (7)

and also the unit and counit of the adjunction, i.e. natural isomorphisms

η : A→ [B,A⊗B]

evA : [A,B]⊗A→ B.

Example A.2.2 The category Set is closed monoidal with the monoidal product
given by the cartesian product and HOM(A,B) = Hom(A,B). The category Vec is
closed monoidal with the monoidal product given by the tensor product and the
internals homs are the regular ones but regarded as a vector space.

Note that this examples are quite particular since the set Hom(A,B) can be con-
sidered as an object in C and as such is the internal homs, if this not the case it
is not clear what the relation between the internal homs and the ordinary homs is.
However we can define a functor V : C → Set by V = Hom(I,−). Then we get a
natural isomorphism

Hom(A,B) = V[A,B]. (8)

This is given by VHOM(A,B) = Hom(I,HOM(A,B))→Hom(I ⊗A,B)→Hom(A,B).
For every closed monoidal category one has

X �HOM(I,X) (9)

for all X ∈ V , since Hom(A,A) � Hom(A⊗ I,A) � Hom(A,HOM(I,A)) and idA under
this isomorphism gives the desired isomorphism.

Definition A.2.3 A functor F between two monoidal categoriesC andD is called a
monoidal functor if in addition there is given a morphism F0 ∈Hom(ID ,F(IC )) and
a natural transformation F2 : ⊗D (F × F) → F⊗C such that the following diagrams
commute

(FA⊗FB)⊗FC

FA⊗ (FB⊗FC)

F(A⊗B)⊗FC

F(A)⊗F(B⊗C)

F((A⊗B)⊗C)

F(A⊗ (B⊗C))

α

id⊗F2 F2

F2 ⊗ id F(α)

F(α)

215



A. Basic Category Theory

FA⊗ ID

FA⊗F(IC ) F(A⊗ IC )

F(A)

id⊗F0

F2

F(ρ)

ρ

and a similar one for λ.
If C andD are also braided F is called a braided monoidal functor if in addition

F2γ = F(γ)F2.

A monoidal functor is called strong monoidal if F0 is an isomorphism and F2
a natural isomorphism. What we call monoidal functor is also called lax monoidal
functor. There is also the concept of a colax monoidal functor, where F0 ∈Hom(F(IC ), ID )
and F2 : F⊗C →⊗D (F ×F) and the corresponding arrows in the diagrams above re-
versed.

The composition of two braided monoidal functors F,G is again braided monoidal,
with (GF)0 = G(F0)G0 and (GF)2 = G(F2)G2(F ×F).
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Contents
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We study enriched categories in this chapter. This means categories, where the
morphisms are no longer a set, but given by an object in a given closed monoidal

category V . This is why we call enriched categories also V -categories. We will follow
[Kel82] here.
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B.1 V -categories, functors and natural transformations

From now on let V be a fixed closed symmetric monoidal category. For some
constructions one does not need that V is symmetric but we will assume this anyway.
We will also assume that V is complete and cocomplete since this simplifies things
and this is the case for all examples we are interested in. In this section we define
the “category” of V -categories.

Definition B.1.1 (V -category) A V -category C consists of
— a set (or more generally a class) of objects obC ,
— for all objects A,B a V -object C (A,B) = HomC (A,B) of morphisms,
— for all objectsA,B,C a composition morphisms in V : cABC :C (B,C)⊗C (A,B)→
C (A,C),

— for every object an identity ιA : I →C (A,A).
This must satisfy the associativity

C (C,D)⊗ (C (B,C)⊗C (A,B))

C (C,D)⊗C (A,C) C (A,D) C (C,B)⊗C (A,B)

(C (C,D)⊗C (B,C))⊗C (A,B)

id⊗cABC

cACD
cABD

cBCD ⊗ id

and the identity

C (A,B) C (A,B)⊗ I

C (A,B)⊗C (A,AC)

id⊗ιAcAAB

For example a Set enriched category is precisely an ordinary category, since we
always assume that all Hom objects are sets.

There exists a tensor product of two V -categories. For two V -categories C andD
it has as objects pairs (C,D) with C ∈ C and D ∈ D and the morphisms are given
by Hom((C,D), (C′ ,D ′)) = Hom(C,C) ⊗ Hom(D,D ′). Also we define the opposite
category by C opp.

Definition B.1.2 Let A ,B be two V -categories then a functor F : A →B is given
by
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— a map from obA to obB
— for all objects A,B ∈A a V -morphisms FA,B :A (A,B)→B (F(A),F(B))

This must satisfy the functoriality

A (B,C)⊗A (A,B) B (F(B),F(C))⊗B (F(A),F(B))

A (A,C) A (F(A),F(B))

FBC ⊗FAB

cABC cF(A)F(B)

FAC

and respect the identity

I A (A,A)

B (FA,FB)

ι

ι
F

F is fully faithful if all FAB are isomorphisms.

Definition B.1.3 (natural transformation) Let A ,B be two V -categories and F,G :
A →B be two functors between them, then a V -natural transformation α consists
of a morphisms αA : I →B (F(A),G(A)) for each object A ∈ A0, which must satisfy
the naturality condition

A (A,B)) B (F(A),F(B)) B (F(B),G(B))⊗B (F(A),F(B))

B (G(A),G(B)) B (G(A),G(B))⊗B (F(A),G(A)) B (F(A),G(B))

FAB αB ⊗ id◦λ

GAB
id⊗αA ◦ ρ c

c

The vertical composite of two natural transformation α : T → S,β : S → R can be
defined by

(β ·α)A : I � I ⊗ I
βA⊗αA−−−−−−→B (SA,RA)⊗B (TA,SA)

M−−→B (TA,RA) (1)
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The horizontal composition αβ of two V -natural transformations α : F → F′ and
β : G→ G′ is defined by

I
λβA−−−→ I ⊗Hom(GA,G′A)

αG′A⊗F−−−−−−→Hom(FG′A,F′G′A)⊗Hom(FGA,FG′A)
c−→Hom(FGA,F′G′A)

The concept of natural transformations can be extended to (extraordinary) natu-
ral transformations. Let C and D be V -categories, B ∈ D and T : C opp ⊗C → D .
We call an family {αA}A∈C of maps αA : K → T (A,A) an (extraordinary) V -natural
transformation if for all A,B ∈C the following diagram commutes

Hom(A.B) Hom(T (A,A),T (A,B)

Hom(T (B,B),T (A,B) Hom(K,T (A,B))

T (A, ·)

Hom(αA, id)T (·,B)
Hom(αB, id)

Similarly one can define V natural transformations T → K .
Using these and combining it with natural transformations, one can define natu-

ral transformations between functors F :C ⊗D opp⊗D → F andG :C ⊗E opp⊗E →
F for V -categories C ,D ,E ,F .

Proposition B.1.4 The category V itself is a V -category.

Proof. For obV , we take the objects of V . We set V (A,B) = HOM(A,B). The compo-

sition is given by the adjunction HOM(B,C)⊗HOM(A,B)⊗A
id⊗evA−−−−−−→ HOM(B,C)⊗

B
evB−−−→ C. The identity is given by the identity on A under the isomorphism

Hom(A,A) �Hom(I ⊗A,A) �Hom(I,HOM(A,A))

Since for a closed monoidal category there is the functor V : V → Set, we can for
any V -category C define the underlying ordinary category C0. The objects are the
same and for the morphism we set HomC0

(A,B) = VC (A,B).
We will be in particular be interested in the case V = Vec. In this case a Vec-

category is close to an ordinary category.
A V -functor F : C →D between two V -categories C and D is called left adjoint

the the functor G :D →C if there exists a V -natural transformation

Hom(FD,C) �Hom(D,GC). (2)
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B.2. Enriched functor categories

By the Yoneda lemma this is equivalent to two natural transformations η : id→
FG, called unit, and ε : GF → id, called counit, which satisfy (Gε) · (ηG) = idG and
(εF) · (Fη) = idF .

The functor V carries such a V -adjunction to an ordinary adjunction between F0
and G0.

When the functor V : V → Set is conservative and the functor G0 has a left adjoint
then G has also a left adjoint.

In V we have that the HOM functor and the tensor product are adjoint as V -
functors. This means there exists a V -natural isomorphism

HOM(A⊗B,C) �HOM(A,HOM(B,C)). (3)

Given an ordinary category C we can define its associated V -category, which
we denote by CV . As objects we take those of C , and for the morphisms we set
HomCV (A,B) =

∐
f ∈HomC (A,B) I , where I is the unit object in V . By the universal

property of the coproduct the composition in C induces a composition in CV .
Given a set S one can define the discrete V -category as the V -category associated

to the discrete category on S, this is Hom(x,y) = ∗ for w , y ∈ S, where ∗ is the
terminal object in V and Hom(x,x) = I for x ∈ S, where I is the unit object in V .

B.2 Enriched functor categories

We want to extend the notion of ends and coends to the enriched setting. For now
we only consider the case of functors with values in V . Let C be a V -category and
F :C opp ⊗C →V a V -functor.

Definition B.2.1 An end X in V of F is a universal V -natural transformation λ :
X → T (A,A), such that for every V -natural αA : Y → F(A,A) there exists a unique
morphism f : Y → X such that αA = λAf . We denote X by

∫
C∈C F(C,C).

The end of F is clearly unique up to a unique isomorphism if it exists. Since we
assume V to be complete it always exists if C is small.

The functor category between two V -categories A ,B is defined by

[A ,B ](F,G) = Hom(F,G) =
∫
a

Hom(F(a),G(a)) (4)

for two functors F,G :A →B .
This does not need to exist in general for all F,G but it does if V is small and

(co)complete.

Proposition B.2.2 The functor category between two V -categories is again a V -category.
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Proposition B.2.3 (Yoneda lemma) LetC be a V -category and F :C →V be a V -functor
then there is an isomorphism

FK � [C ,V ](Hom(K, ·),F), (5)

which is V -natural in K and F.

B.3 Categories over a Base

Given a symmetric monoidal category V , we define a category over V . This can
for example be found in [Fre09]. This is a category C equipped with an external
tensor product, this is a functor ⊗ : V ×C →C , which satisfies

I ⊗C � C for all C ∈C (6)

and the associativity
(X ⊗Y )⊗C � X ⊗ (Y ⊗C). (7)

This isomorphisms must also satisfy some pentagon identity.
If C is a monoidal category we also require that the internal and external tensor

product are compatible and satisfy

X ⊗ (C ⊗D) � (X ⊗C)⊗D � C ⊗ (X ⊗D) (8)

for all X ∈ V ,C,D ∈C . Again this isomorphisms must satisfy some coherence.
Any cocomplete category can be regarded as a category over Set be defining the

internal tensor product by
S ⊗C :=

∐
s∈S
C. (9)

If for allC ∈C the functor ·⊗C : V →C admits a right adjoint HomV (C, ·) :C →V
this means we have

Hom(X ⊗C,D) �HomV (X,HOM(C,D)), (10)

then C is a V enriched category with morphism object HomV (C,D).
On the other hand if we have a V -categoryC and the V -functor HOM(C, ·) admits

a left adjoint · ⊗C for all C ∈C , then ⊗makes VC into a category over V .

B.4 Indexed limits

To define the notion of limits in enriched categories is a bit more complicated, we
will not need this in too much details, but we want to give the basic definitions.

Let J be a V -category, often small, than we call a functor J →V an indexing type.
We will call a functor J → C a diagram of type F. For all C ∈ C we have a functor
Hom(C,G·) : J →V and we assume that [J,V ](F,Hom(C,G·)) exists.
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Definition B.4.1 If there exists an object {F,G} such that

Hom(C, {F,G}) � [J,V ](F,Hom(C,G·)). (11)

Then we call {F,G} the limit of G indexed by F.

In the case V = Set there is a simple relation between indexed limits and ordinary
limits. Let ∗ be a one element set and ∆∗ the constant functor J → Set with values
∗. Then limG = {∆∗,G}. In this construction one can of course replace Set by an
arbitrary V and ∗ by the unit in V . On the other hand any indexed functor in the
case V = Set is equal to an ordinary functor. This is however not true for arbitrary
V .

We give a Fubini like theorem relating repeated limits to double limits.

Theorem B.4.2 Let F : J → V be a indexing type and G : J → [C ,D ] a functor. We
define a functor P : J ⊗C → D by (i,C) 7→ G(i)(C) for i ∈ J,C ∈ C . Assume that the
limit {F,G} exits pointwise and let H : C → V be an indexing type then there exists a
canonical isomorphism

{H, {F,G}} � {H ⊗F,P } (12)

and each side exists if the other does.

We consider the case where the domain of the limit J is the unit V -category IV .
Then G : IV → V is given by an object X ∈ V and F : IV → C by an object C ∈ C . In
this case we call the limit {F,G} the cotensor product of X and B and denote it by
X t C. It is defined by a V -natural isomorphism

Hom(D,X t C) �HOM(X,Hom(B,C)) (13)

If the cotensor product exists for all X ∈ V and C ∈C , we say that C is cotensored.
We have that V itself is cotensored, wth X t Y = HOM(X,Y ).
Dually we can define the (external) tensor product X ⊗C for X ∈ V and C ∈C by

Hom(X ⊗C,D) �HOM(X,Hom(C,B)). (14)

If all tensor products exist we call C tensored. For example V is tensored with the
tensor product given by the monoidal product.

Using indexed limits it is also possible to define ends and coends in V -categories.
We take Hom : C opp ⊗C → V as indexing type. Then a diagram of this type is a
functor G : C opp ⊗C → C . We denote {HomC ,G} by

∫
C∈C G(C,C) if it exists and

call it the end of G.
By definition the end is given by a natural isomorphism

Hom(D,
∫
A
G(C,C)) �

∫
C

Hom(D,G(C,C)), (15)
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where the end on the right is an end in V and has be defined before.
Using Theorem B.4.2 we get∫

C

∫
D
G(C,C,D,D) �

∫
(C,D)

G(C,C,D,D), (16)

what looks like the classical Fubini theorem for integrals.
We note the following three proposition, which can be found in [Kel82], since we

will need them in the main part.

Proposition B.4.3 A natural transformation α : F→ G gives a natural transformation∫ a

α :
∫ a

F(a)→
∫ a

G(a). (17)

Proposition B.4.4 Given a functor F :C →D and an object a ∈C we have

F(a) =
∫ b∈C

F(b)⊗HomC (b,a) (18)

Since the end is a limit and the Hom-functor is (co)continuous we also get:

Proposition B.4.5 Given a functor S :C ⊗C opp→D and an object b ∈D we have

Hom(
∫ a

S(a,a),b) =
∫
a

Hom(S(a,a),b)

Hom(b,
∫
a
S(a,a)) =

∫
a

Hom(b,S(a,a))

B.5 Enriched monoidal categories

In this section we define enriched monoidal categories.
A V -monoidal category C consists of an V -category C , a V -functor � : C ⊗C →
C , a unit object IC ∈ C and V -natural transformations α,λ,ρ. They have to satisfy
the same diagrams as in the ordinary case. One has to take additional care if the
category V is not strict monoidal, since then also the associator of V appears in the
diagrams.

An closed monoidal category V is also a V -monoidal category.
Let K be a field and V = K−Vec. Further letR be a algebra over K then the category

of R-modules is a V -category. If R is a bialgebra R-Mod is a monoidal category and
even a V -monoidal category.
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We recall some basic definitions about operads and properads and how they con
be described by trees and graphs resp. For a more complete introduction see

e.g. [LV12, Val07, MSS02, Mar08] We also give the definition of an operad with
heights. Finally we give some remarks on operadic Kan-extension, which appear to
be quite useful, but -to our knowledge- are not widely considered.
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C.1 Operads and Props

We will follow [Val07] for this short introduction.

Definition C.1.1 (S-bimodule) An S-bimodule P is a collection P (m,n) of Sm − Sn-
bimodules. It is called reductive if P (m,n) = 0 if m = 0 or n = 0.

When we consider dg modules we assume the differential to be of degree -1.
Given an augmentation ε : P → I . We denote by P̄ := ker(ε) the augmentation

ideal and we have P = P̄ ⊕ I . Here I is defined by I(1,1) = K and the zero space else.
We denote by Hom(P ,Q) the set of linear maps and by HomS(P ,Q) the set of

invariant linear maps.
We denote the category of S-bimodules by S −BiMod.
The composition is modeled on directed graphs. A direct graph is graphs with

a global flow. This means every node has inputs and outputs and the outputs can
only be connected to inputs. It is also not allowed to have loops. Also we assume
the inputs and outputs of each vertex to be numbered as well as the global in- and
outputs.

A two level graph is a graph such that it can be decompesed in two levels, such
that in each level the graphs are not connected and the levels respect to flow. We
write G2 for the set of two level graphs and for a given graph Γ we write N i

Γ for the
set of vertices in level i.

Given two S-bimodules P ,Q we define their composition product as follows

P �Q =
⊕
Γ ∈G2

⊗
v∈N1

P (|In(v)|, |Out(v)|)⊗
⊗
v∈N2

Q(|In(v)|, |Out(v)|)/ . (1)

Here is the equivalence relation given by renumbering the in- and outputs of
each vertex and applying the corresponding permutation to the element of the S-
bimodule associated to it.

It can be shown that this product is associative.
We can restrict the direct sum in Eq. (1). We denoted this product by �c. Is is

again associative.
We define a unit S-bimodule I by I(1,1) = K and I(m,n) = 0 otherwise.

Proposition C.1.2 (S −BiMod,�c, I) is a monoidal category.

One can also define a concatenation product ⊗ in this case one simply puts two
graphs next to each other.

Definition C.1.3 A monoid in the category (S −BiMod,�c, I) is called a properad.

This means a properad an S-bimodule P , with a multiplication µ : P ◦P → P and
a unit η : I →P , such that the following diagrams commute
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I ◦P P ◦P P ◦ I

P

η ◦P
P ◦ η

µ=
=

(P ◦P ) ◦P P ◦ (P ◦P ) P ◦P

P ◦P P

id◦γ γ

γ ◦ id
γ

γ

One can consider S −Mod as a subcategory of S −BiMod, where P (m,n) = {0} for
m ≥ 2. It this case the composition product can be modeled on rooted trees.

An monoid in S −Mod,�, I is called an operad. So in particular every operad is a
properad.

Some well know examples are the operad of associative algebras Ass or Lie-algebra
Lie. We will also often use the operad EAss describing an algebra and an endomor-
phims. It can be defined as the free operad generated by µ ∈ EAss(2) and γ ∈ EAss(1)
corresponding to the multiplication and endomorphims resp. modulo the ideal gen-
erated by µ(γ,γ)−γ(µ) and µ(id,µ)−µ(µ, id).

For operads one can define the partial composition. For ν1 ∈ P (m) and ν2 ∈ P (m)
we define ν1◦i ν2 ∈ P (m+n−1) by the composition corresponding to connecting the
output of ν2 with the i-th input of ν1.

One can define morphism of properads and operads in the obviuos way.
To every vector space one can associates its endomorphims properad End(V ) it is

given by End(V )(m,n) = Hom(V ⊗m,V ⊗n) with the Sn action given by permutation
of the tensor factors and the composition product by the composition and tensor
product of linear maps. Similarly one can define the endomorphims operad, which
we also call End(V ).

An algebra over an properad P is given by an properad morphism P → End(V )
and similar for operads. We denote tjhe category of P algebras by P −Alg.

Given a morphism of properads P →Q there exits a functor Q−Alg→P −Alg.
The free properad over an S-module P can be constructed by using directed

graphs and associate to every node en element of P with the corresponding inputs
and outputs. As space it is given by

F(P ) =
⊕
Γ ∈G

⊗
v∈Γ
P (|Out(v)|, |In(v)|). (2)

The composition is given by the composition of the corresponding graphs.
Similarly the free operad can be constructed by using rooted trees.
We note that for a operad P one can define the free algebra on a vector space V

by P (V ) =
⊕

n∈NP (n)⊗Sn V
⊗n.

227



C. Operads and Properads

C.2 Heigth

We define properads and operads with height. For this we first consider direct
graphs. Let Γ be a direct graph, such that additionally the every vertices one asso-
ciates a height, i.e. a natural number or more general an element in a commutative
monoid. Then given a path from an input i to an output o and can calculate the
height of this path by adding up the height of the vertices it passes. If there only
is one path from i to o or there are several path and the all give the same result we
will denote this by hgt(i,Γ , o). If the height for all paths connecting in and outputs
is the same we call this number hgtΓ and call Γ homogeneous.

This is particulary useful in the setting of rooted trees since there all inputs are
connected to the root by a unique path.

Definition C.2.1 An operad with heights is an operad P such that any output of
any element ν ∈ P has a height hgt(i,ν) and the composition respects this height, so
hgt(i + j − 1,ν ◦i ν′) = hgt(i,ν) + hgt(j+,ν′).

For example given the free operad on a S-module P , where each element of P has
a height, is an operad with heights. The height is simply given by the height of the
associate graph. If an operad can be obtained as the quotient of F(P ) by an ideal
generated by homogeneous elements it is also an operad with heights.

An example is the operad describing on associative algebra and a morphism of it.
Here one can associate to µ the height zero and to γ the height 1.

Similar to the above, given a set of morphism one can also associate heights to
them and then any composition of them also has an associated height this will be
used in the case of Hom-algebras. For example given an operad P with height and
an algebra A over P , then one can associate a height to the corresponding operations
in A.

C.3 Operadic Kan Extensions

In this section, we briefly discuss operadic Kan-extension. We mention the fol-
lowing theorem [Hor17, Prop. 1.15]:

Theorem C.3.1 Let P and Q be two operads and Φ : P →Q a morphism between them,
then there exists a left adjoint functor P −Alg→Q−Alg to the functor Φ∗ : Q−Alg→
P −Alg, i.e. there is a natural isomorphism

HomP (P ,Φ∗Q) �HomQ(Φ∗(P ),Q) (3)

for P ∈ P −Alg,Q ∈ Q−Alg.
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C.3. Operadic Kan Extensions

This left adjoint for an P -algebra P can be calculated as the freeQ algebra, modulo
the ideal generated by ν −Φ(ν) for an n-ary operation ν ∈ P . Where ν is considered
as a map P ⊗ P → P → FQ(P ) and Φ(ν) as a map P ⊗ P → FQ(P ).

As an example the universal enveloping algebra of a Lie algebra cna be con-
structed this way by considering the operad morphism Lie→ Ass.
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D. Differentials for graph complexes

Here we show the differentials for the operads and properads for the different
types of Hom-algebras and bialgebras we considered. These are computer gener-
ated. We note that for Hom-Lie algebras we give all terms obtained by total anti-
symmetrization and the small numbers below the leafs give the permutation. In the
case of Hom-Lie bialgebras, one has to take to the total antisymmetrization of the
given terms but only keep the terms which are different.

Since the vertices are graded the order of them is important, since reordering
changes the sign. In the case of operads the root is the first vertex. Then the vertices
connected to the root of numbered from left to right. This is the first row. Then the
vertices in the second row, i.e. the ones connected to the first row, are numbered
from left to right and so on. In the case of properads the ordering is given in a
similar way. The graph is split into levels beginning with the inputs and each node
is put as low as possible. Then in each levels the nodes are numbered from left to
right.

D.1 Hom-associative algebras

= - + - + - + +

+ - + - + + - +

- + + - + + - +

-

= - + - + - + +

+ - + - - +
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- - - + - + +

+ + - - + - - -

- - - - + + -

+ + + + - +

- - - - - + + -

+ + + - + -

+ - + + + - -

- + - - + - +

+ + + - + - -

- + - + + - - +

+ - + + + +

+ + + + + - +

+ - + - + + -
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- - + - + - - +

- + - + + +

- + - - + + - +

- + + - + +

- + - + - + - +

- + -

= - + + - + - + + +

- + - + + + -

= + + + + - + -

+ - + + + - - +

- - - - + + + - +

+ - - - - - - +

- + + + + - - -

+ + + - - + - +

- - + - + - + - +

- + - -
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D.2 Hom-Lie algebras

∂ = 1 2 3 +2 3 1 + 3 1 2

∂ = - 1 2 3 4 - 1 2 3 4 + 1 3 2 4 - 1 4 2 3 +1 2 3 4 -1 3 2 4 + 1 4 2 3 -1 2 3 4 + 1 2 4 3

-1 3 4 2 + 1 2 3 4 - 1 2 3 4 + 1 2 4 3 + 1 2 3 4 -1 3 2 4 + 1 4 2 3 ∂ = + 1 2 3 4 5

+ 1 2 3 4 5 -1 3 2 4 5 + 1 4 2 3 5 -1 5 2 3 4 - 1 2 3 4 5 + 1 3 2 4 5 - 1 4 2 3 5 + 1 5 2 3 4 -

1 2 3 4 5 + 1 2 4 3 5 - 1 2 5 3 4 - 1 3 4 2 5 + 1 3 5 2 4 - 1 4 5 2 3 + 1 2 3 4 5 -1 2 4 3 5 +

1 2 5 3 4 -1 3 2 4 5 + 1 3 4 2 5 -1 3 5 2 4 + 1 4 2 3 5 -1 4 3 2 5 + 1 4 5 2 3 -1 5 2 3 4 +

1 5 3 2 4 -1 5 4 2 3 + 1 2 3 4 5 - 1 3 2 4 5 + 1 4 2 3 5 - 1 5 2 3 4 - 1 2 3 4 5 + 1 2 3 5 4 +

1 3 2 4 5 - 1 3 2 5 4 - 1 4 2 3 5 + 1 4 2 5 3 + 1 5 2 3 4 - 1 5 2 4 3 - 1 2 3 4 5 + 1 3 2 4 5 -

1 4 2 3 5 + 1 5 2 3 4 - 1 2 3 4 5 + 1 2 4 3 5 - 1 2 5 3 4 - 1 3 4 2 5 + 1 3 5 2 4 - 1 4 5 2 3 -

1 2 3 4 5 + 1 2 4 3 5 - 1 2 5 3 4 - 1 3 4 2 5 + 1 3 5 2 4 - 1 4 5 2 3 + 1 2 3 4 5 -1 2 4 3 5 +

1 2 5 3 4 + 1 3 4 2 5 -1 3 5 2 4 + 1 4 5 2 3 -1 2 3 4 5 + 1 2 3 5 4 -1 2 4 5 3 + 1 3 4 5 2 -

1 2 3 4 5 - 1 2 3 4 5 + 1 2 4 3 5 - 1 2 5 3 4 + 1 2 3 4 5 - 1 2 4 3 5 + 1 2 5 3 4 - 1 2 3 4 5 +

1 2 3 5 4 - 1 2 4 5 3 + 1 2 3 4 5 - 1 3 2 4 5 + 1 4 2 3 5 - 1 5 2 3 4 - 1 2 3 4 5 + 1 2 3 5 4 +

1 3 2 4 5 - 1 3 2 5 4 - 1 4 2 3 5 + 1 4 2 5 3 + 1 5 2 3 4 - 1 5 2 4 3 -1 2 3 4 5 + 1 3 2 4 5 -

1 4 2 3 5 + 1 5 2 3 4 + 1 2 3 4 5 -1 2 3 5 4 -1 3 2 4 5 + 1 3 2 5 4 + 1 4 2 3 5 -1 4 2 5 3 -
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1 5 2 3 4 + 1 5 2 4 3 -1 2 3 4 5 + 1 2 4 3 5 -1 2 5 3 4 -1 3 4 2 5 + 1 3 5 2 4 -1 4 5 2 3 +

1 2 3 4 5 - 1 2 3 4 5 + 1 2 3 5 4 + 1 2 3 4 5 - 1 2 4 3 5 + 1 2 5 3 4 -1 2 3 4 5 + 1 3 2 4 5 -

1 4 2 3 5 + 1 5 2 3 4

∂ = 1 2 - 1 2

∂ = -1 2 3 - 1 2 3 + 1 2 3 -1 3 2 - 1 2 3 + 1 2 3 -1 3 2 + 1 2 3

∂ = + 1 2 3 4 - 1 2 3 4 -1 2 3 4 + 1 3 2 4 -1 4 2 3 + 1 2 3 4 - 1 3 2 4 + 1 4 2 3 + 1 2 3 4

- 1 3 2 4 + 1 4 2 3 -1 2 3 4 + 1 2 4 3 -1 3 4 2 + 1 2 3 4 + 1 2 3 4 - 1 3 2 4 + 1 4 2 3 -1 2 3 4 +

1 3 2 4 -1 4 2 3 + 1 2 3 4 -1 2 4 3 + 1 3 4 2 + 1 2 3 4 - 1 2 3 4 + 1 2 4 3 + 1 2 3 4 -1 3 2 4 +

1 4 2 3 + 1 2 3 4 - 1 2 3 4 + 1 2 4 3 + 1 2 3 4 -1 3 2 4 + 1 4 2 3 - 1 2 3 4

D.3 Hom-associative bialgebras

= - +

= -

= - +

= - - + + - -

= -

= - + - + - + - +

= - - + + -
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= - + - + + - +

= - +

= -

= - - + + - -

= -

= - + - - + + + +

= - + - - + + + +

= - + + + - - - + -

= -

= - - + + -

= - + - + - + - +

= - + + + - - - + -

= - + - + + - +

D.4 Hom-Lie bialgebras

= + -

= - +

= + -
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= -2 + 2 + 2 -2 -2 + +

= -

= - + - - -

= - + + +

= -6 -2 + 3 - -6 - + 3 -2 -6 + 6 -3

-2 -6 -6 + 6 + 6 + 3 -3 + 6 -6 + 6

= - + -

= -4 + 4 + 4 -2 + 2 -2 -2 + 4

-2 -2 - - + 4 -2 + 4 + 4 + 2

-2 -2 - -4 -4 + 4 -4 + 4

= - +

= - + - - + + +

= - + - - + + +

= - - - - -2 + -2 - -2 + 2 + 2 + 2 + 2
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- + 2 -2 -2 -2 + 2 -2 - -2 -2 + 2 -2

+ -2 -2 -2 -2 + 2 + 2 -2 + 2 -2 + + 2

+ -2 -2 + + 2 + 2

= - - + - + + + + +

= -2 + 2 + 2 -2 + 2 + 2 + 2 + 2 + 2

-2 + 2 -2 -2 -2 + 2 + 2 -2 -2 -2

+ 2 -2 -2 -2 + 2 -2 + 2 -2 + 2 + 2

+ 2 + 2 - + 2 + -2 + 2 + 2 + -

2 -2 -2 + 2 -2 + 2 + 2 + 2 -2 -2

+ 2 -2 -2 + 2 + 2 + 2 + 2 -2 -2

-2 + 2 + + 2

= -2 + 2 + 2 -2 + 2 + 2 + 2 -2 + 2 +
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2 -2 + 2 + 2 -2 + 2 + -2 + -2

-2 + 2 - + 2 -2 -2 + 2 + 2 + 2

+ 2 -2 -2 + + -2 + + 2 -2 -2

-2 -2 -2 + 2 + 2 -2 + 2 -2 -2 +

2 + 2

= -2 + 2 -2 + 2 + 2 + 2 -2 -2 -

2 -2 -2 + 2 -2 -2 -2 + 2 -2

-2 + 2 -2 -2 + 2 -2 -2 + 2

-2 -2 -2 -2 -2 -2 + 2 - -

+ 2 -2 -2 - + 2 -2 + 2

+ 2 -2 -2 + 2 -2 + 2 + 2 -2 -

2 + 2 + 2 -2 + 2 + 2 + 2 -2
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+ 2 + 2 + 2 + 2 + 2 + 2 -2 +

-2 + -2 + 2 - - -2 -2

- -2 + 2 + 2 + 2 + 2 + 2 + 2

-2 + 2 + 2 + 2 -2 + 2 + 2 -

2 + 2 + 2
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