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RÉSUMÉ EN FRANÇAIS

Contexte

L’industrie de la vidéo s’est toujours efforcée de fournir de meilleures images à ses util-
isateurs et donc d’accroître leur qualité d’expérience. Les innovations sur les technologies de
caméra et d’affichage permettent à cette industrie d’augmenter progressivement le nombre
de pixels, de la télévision à la définition standard (720×576 ou 720×480 pixels) à la télévi-
sion haute définition (1920×1080 pixels) et jusqu’à la télévision Ultra Haute Définition (UHD)
(3840×2160 pixels).

Le nombre de pixels n’est pas le seul paramètre permettant d’améliorer l’expérience de la
télévision et du cinéma. Pour améliorer la qualité d’experience utilisateur, il est aussi possible
d’augmenter la fréquence des images d’une vidéo (High Frame Rate (HFR)). Une autre ap-
proche intéressante consiste à améliorer la qualité de chaque pixel en utilisant une plage de
couleurs étendue (Wide Color Gamut (WCG)) et une plage dynamique élevée (High dynamic
Range (HDR)). WCG étend la plage de couleurs de la représentation d’image existante et le
HDR, la plage de luminance (la quantité de lumière) qu’un pixel peut prendre. Une image HDR
peut contenir des zones très claires tout en conservant les détails dans les zones sombres. Les
technologies HDR et WCG permettent de restituer des images présentant presque les mêmes
caractéristiques que dans le monde réel, ce qui les rend plus réalistes.

La création de contenus HDR et WCG est rendue possibles en modifiant l’ensemble de la
chaîne de production, de la caméra à l’affichage. Tout d’abord, la caméra doit être capable de
capturer une large plage de dynamique. Une méthode populaire, introduite pour la première
fois par Mann en 1993 [1], consiste à combiner plusieurs images avec différentes expositions,
augmentant ainsi la plage dynamique des images et dépassant les limites des capteurs de
caméra. Un exemple de caméra vidéo HDR/WCG est la caméra Arri Alexa [2]. Les écrans
doivent également pouvoir afficher des images avec la même gamme de couleurs et de lumi-
nance. Plusieurs technologies ont été développées au fil des ans, telles que les écrans LCD
à LED avec atténuation locale du rétroéclairage [3] ou les écrans utilisant des technologies
OLED haut de gamme [4].

Une fois que les dispositifs pour capturer et afficher des vidéos HDR/WCG existent, nous
devons également adapter la chaine de transmission. HDR et WCG ont suscité un vif intérêt
au cours de la dernière décennie et les organisations de normalisation ont proposé plusieurs
nouvelles normes pour ajuster l’étalonnage [5], l’encodage [6] et la compression des images
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[7]. C’est toute la chaîne de transmission qui doit être adaptée et évaluée, en particulier les
méthodes de compression.

Motivation

La compression est l’un des algorithmes les plus critiques pour pouvoir transmettre effi-
cacement des images et des vidéos. En effet, son objectif est de réduire la taille des images
et des vidéos et donc la bande passante nécessaire à leur transmission. Dans son livre blanc,
Cisco [8] indique que le contenu vidéo représentait déjà 75% du trafic Internet mondial (77
ExaByte par mois) en 2018 et qu’il atteindrait 82% du trafic Internet d’ici 2022 ( 240 ExaByte
par mois). Cependant, la compression est le traitement vidéo qui crée la distorsion la plus
élevée et qui affecte le plus la qualité des images et des vidéos. La mesure automatique de la
qualité des images et des vidéos compressées est un domaine de recherche clé pour fournir
le meilleur compromis entre qualité vidéo et coûts de transmission.

Plusieurs solutions existent déjà pour évaluer la qualité perçue des images et vidéos HDR.
Cependant, aucune de celles-ci ne prend en compte les images/vidéos WCG. Cela est dû
au fait que le seul écran HDR professionnel abordable disponible à ce moment-là, le SIM2
HDR47ES4MB, n’a pas été en mesure d’augmenter la gamme de couleurs affichables par
rapport à un écran standard et a encore diminué cette plage [9] .

L’ajout du WCG dans les images et contenus vidéos nous amène à nous poser la ques-
tion : "Est-ce que le WCG crée des artefacts chromatiques plus forts et spécifiques qui
peuvent affecter la perception de la qualité?" Si c’est le cas et connaissant les limites des
métriques existantes, la question qui en découle est : "Comment évaluer avec précision la
qualité des images/vidéos HDR ET WCG?".

Répondre à ces questions peut être décomposé en deux sous-problèmes:

• L’évaluation de la qualité des images/vidéos HDR/WCG compressées peut être réalisée
à l’aide d’études d’utilisateurs (ou de tests subjectifs): un panel de téléspectateurs at-
tribue un score aux images en fonction de la qualité perçue. Si, dans la littérature, il
existe déjà des bases de données d’images HDR, aucune d’entre elles n’utilise le con-
tenu de WCG. Ainsi, les images déformées présentent moins d’artefacts chromatiques
que les images codées dans un espace colorimétrique plus large. Il convient également
de noter que MPEG, dans ses recommandations de compression, a identifié des arte-
facts chromatiques plus susceptibles d’apparaître lors de l’utilisation d’une représentation
WCG [7]. Par conséquent, il est nécessaire de créer des bases de données d’images
dans lesquelles les images présentent à la fois les caractéristiques HDR et WCG. En
outre, ces bases de données devraient contenir des scénarios de compression réalistes,

9
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car elles pourraient servir à évaluer les propositions MPEG. Ces bases de données peu-
vent également être utilisées pour évaluer la pertinence des métriques de qualité d’image
existantes pour les contenus HDR/WCG et pour évaluer la robustesse de ces métriques
aux artefacts chromatiques.

• Un test subjectif est la méthode la plus fiable pour évaluer la qualité des images. Cepen-
dant, effectuer des tests subjectifs prend beaucoup de temps et n’est pas toujours réal-
isable. L’évaluation automatique des images par des mesures objectives permettant
d’émuler des tests subjectifs est souvent nécessaire pour optimiser les traitements et
le sera de plus en plus avec le développement des techniques d’intelligence artificielle.
Dans la littérature, plusieurs mesures ont été proposées pour évaluer les images/vidéos
HDR telles que les mesures HDR-VDP-2, HDR-VQM ou PU. Cependant, ces métriques
n’évaluent pas la distorsion chromatique mais uniquement la distorsion de luminance.
Ceci est compréhensible car ils ont été évalués sur des images HDR uniquement. Cepen-
dant, avec les images/vidéos WCG/HDR, de nouveaux artefacts chromatiques peuvent
apparaître. La création d’une métrique sensible à ces artefacts comblera une lacune
existante pour l’évaluation du contenu HDR/WCG.

Contributions

Les contributions suivantes sont présentées dans cette thèse:

• Nous proposons une première base de données d’images annotées avec des scores
subjectifs, HDdtb, présentés dans le chapitre 3. Cette base de données est composée
de HDR avec un gamut standard encapsulé dans un espace de couleur WCG. Nous nous
concentrons sur les distorsions chromatiques pour créer cette base de données. Cette
base de données est disponible àl’adresse www-percept.irisa.fr/software/.

• Nous utilisons cette base de données proposée pour effectuer une analyse complète de
l’étalonnage de la métrique HDR-VDP-2. Cette mesure est l’une des mesures les plus
précises pour évaluer la qualité du HDR et est souvent considérée comme une mesure de
référence. Cette métrique modélise avec précision les premiers éléments du système vi-
suel humain et nécessite donc beaucoup de paramètres pour être calibrée. Par exemple,
cette métrique a besoin de l’émission spectrale de l’affichage, de la résolution angulaire
et de la luminance ambiante. Le fait de disposer de bases de données présentant des
caractéristiques différentes (par exemple différents affichages utilisant différentes tech-
nologies) augmente la pertinence de notre analyse. Cette contribution est expliquée en
détail dans la publication suivante:
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Maxime Rousselot, Éric Auffret, Xavier Ducloux, Olivier Le Meur, and
Rémi Cozot, "Impacts of Viewing Conditions on HDR-VDP2", in: 2018
26th European Signal Processing Conference (EUSIPCO), 2018, pp.
1442-1446, DOI:10.23919/EUSIPCO.2018.8553212

• Nous avons créé une nouvelle base de données composée d’images nativement WCG,
4Kdtb, également présentées dans le chapitre 3. Les images de cette base de données
fournissent des artefacts chromatiques encore plus importants que la base de données
précédente. Cette base de données est également disponible à l’adresse www-percept.

irisa.fr/software/.

• Nous proposons également une nouvelle méthode pour adapter les métriques SDR basées
sur la luminance uniquement et les métriques couleurs au contenu HDR/WCG en utilisant
un espace colorimétrique HDR/WCG perceptuelement uniforme. Nous utilisons cette
méthode et examinons les performances de 13 métriques SDR avec quatre espaces col-
orimétriques différents. Les résultats sont présentés dans le chapitre 5. L’article suivant
présente cette méthode, les bases de données utilisées et notre analyse sur les perfor-
mances des métriques.

Maxime Rousselot, Xavier Ducloux, Olivier Le Meur, and Rémi
Cozot, "Quality Assessment of HDR/WCG Images Using HDR
Uniform Color Spaces", in: Journal of Imaging 5.1 , 2019,
DOI:10.3390/jimaging5010018

Une partie de ces résultats a également été présentée à la conférence suivante:

Maxime Rousselot, Éric Auffret, Xavier Ducloux, Olivier Le Meur, and
Rémi Cozot, "Adapting HDR images using uniform color space for SDR
quality metrics", in: COmpression et REprésentation des Signaux Au-
diovisuels (CORESA), 2018

• De plus, nous proposons notre propre métrique de qualité de référence complète, disponible
sur www-percept.irisa.fr/software/. Cette métrique est adaptée au contenu HDR et
WCG et est sensible aux distorsions chromatiques. La métrique proposée est basée
sur deux métriques de qualité HDR existantes et des caractéristiques d’image couleur.
Une régression par SVM est utilisée pour combiner les caractéristiques susmentionnées.
Cette contribution est présentée en détail dans la publication suivante:
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Maxime Rousselot, Xavier Ducloux, Olivier Le Meur, and Rémi Cozot,
"Quality metric aggregation for HDR/WCG images", in: 26th IEEE In-
ternational Conference on Image Processing (ICIP) , 2019

Structure de la thèse

Le manuscrit de thèse est organisé en trois parties. La première partie présente en deux
chapitres l’état de l’art concernant l’imagerie HDR/WCG et les bases de l’évaluation de la
qualité d’image. La deuxième partie présente les bases de données d’images. Une troisième
partie présente nos contributions à l’évaluation objective de la qualité d’image.

Partie I: Background et état de l’art

• Chapitre 1 L’environement HDR et WCG: Ce chapitre présente les concepts fonda-
mentaux du HDR et du WCG et de la modification de la chaîne de transmission qu’ils
impliquent. En effet, les technologies HDR et WCG étendent l’espace colorimétrique et
la luminance des images/vidéos. La conséquence est que toute la chaîne de transmission
d’images créée pour les formats et les représentations actuelles doit être adaptée. Par
exemple, de nouveaux espaces colorimétriques perceptuellement uniforme doivent être
créés. En effet, le système visuel humain ne perçoit pas la luminance proportionnelle-
ment à sa valeur physique, mais a plutot une vision non-linéaire. Dans l’imagerie SDR
(Standard Dynamic Range), un moyen classique d’obtenir un espace colorimétrique per-
ceptuellement uniforme consiste à utiliser des fonctions appelées gamma. Cependant,
la luminance des images SDR n’est pas uniformément perceptible en dehors de la plage
pour laquelle la fonction gamma a été définie. Pour une plage de luminance plus élevée,
de nouvelles fonctions doivent être créées. L’espace colorimétrique perceptuellement
uniforme n’est pas le seul aspect nécessitant une adaptation. Le pré-traitement vidéo,
y compris le sous-échantillonnage de la chrominance et la compression image/vidéo,
doivent également être adapté aux nouveaux défis liés au contenu HDR/WCG.

• Chapitre 2 Evaluation de la qualité d’image: Le deuxième chapitre présente tous les
aspects de l’évaluation de la qualité d’image (IQA). IQA est nécessaire pour comparer
différents encodages et les technologies de compression. Ce chapitre présente les deux
principales catégories de méthodes d’IQA: subjective et objective. Les méthodes sub-
jectives constituent un moyen plus robuste d’obtenir des scores de qualité d’image. Il
consiste en des tests standardisés dans le cadre desquels un panel de téléspectateurs
note l’image en fonction de la qualité perçue. Cependant, les tests subjectifs sont longs et
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coûteux. Les métriques de qualité objective sont des algorithmes qui cherchent à émuler
des tests subjectifs et évaluent automatiquement la qualité d’image sans la présence
d’un humain. Cependant, dans l’état de l’art, les métriques éxistantes ont été adaptées
pour évaluer la qualité des images SDR et non des images avec une plage de luminance
plus élevée. Pour ce type de contenu, de nouvelles méthodes ont dû être inventées
pour adapter les métriques SDR au HDR (PU-métriques [10]) ou pour créer de nou-
velles métriques basées sur les caractéristiques HVS (HDR-VDP-2). Nous concluons ce
chapitre sur les méthodes utilisées pour évaluer la performance des métriques objectives
à l’aide de tests subjectifs. Il convient également de noter que, à notre connaissance,
aucune métrique HDR ne prend en compte les distorsions chromatiques.

Partie II: Création d’un environnement expérimental et d’analyse HDR/WCG

• Chapitre 3: Présentation des nouvelles bases de données: Dans ce chapitre, nous
présentons les deux tests subjectifs que nous effectuons avec du contenu HDR/WCG.
L’une contient des images avec un gamut standard, mais encapsulées dans un espace
de couleur WCG, l’autre est composée d’images nativement WCG. Pour créer ces bases
de données, nous nous concentrons sur les distorsions de chrominance. En effet, les
distorsions de luminance sont déjà bien étudiées avec des contenus exclusivement HDR.
Nous choisissons de créer des distorsions réalistes en utilisant la compression MPEG.
Cela nous permet d’évaluer l’impact de recommandations MPEG sur la compression de
la chrominance du contenu HDR/WCG.

• Chapitre 4: Analyse des métriques de qualité éxistantes: Dans ce chapitre, nous pas-
sons en revue les performances des métriques existantes à l’aide des bases de données
nouvellement créées et ou faisant partie de l’état de l’art. Cela nous a permis de procéder
à un examen complet de la calibration de l’une des mesures les plus précises: HDR-
VDP-2. De même, nous examinons les performances de plusieurs métriques "PU". En
particulier, nous évaluons également leur résilience aux distorsions chromatiques dues à
la compression à l’aide de nos bases de données.

Partie III: Nouvelles métriques couleurs pour l’évaluation de la qualité d’images
HDR/WCG

• Chapitre 5: Adaptation de métriques SDR: La solution proposée par Aydın et al. [10]
pour adapter toute métrique basée luminance aux images HDR consiste à transformer
la luminance de HDR en une luminance perceptuellement linéaire. Ainsi, il conserve les
caractéristiques des fonctions gamma SDR pour la plage de luminance corespondante

13



Résumé en Français

au SDR et garde une luminance perceptuellement linéaire sur la plage complémentaire.
Ce chapitre présente notre proposition d’étendre ce travail aux métriques de couleur en
utilisant un espace colorimétrique perceptuellement uniforme. Nous passons en revue
quatre espaces colorimétriques adaptés au contenu HDR/WCG: ICtCp [6], Jzazbz [11]
et HDR-Lab [12] avec un blanc de référence à 100 cd/m2 et à 1000 cd/m2. Nous étu-
dions l’influence du blanc de référence sur les performances de plusieurs métriques pour
chaque base de données disponible. De plus, nous analysons l’impact des distorsions
chromatiques à l’aide de nos bases de données sur les métriques de qualité basées lu-
minance et basées couleurs. Enfin, nous formulons nos recommandations pour évaluer
la qualité des images à l’aide de ces métriques.

• Chapitre 6: Extension couleur de HDR-VDP-2: HDR-VDP-2 peut être considéré comme
la mesure de référence en ce qui concerne l’évaluation de la qualité d’image HDR.
Cependant, il s’agit d’une métrique basée sur la luminance uniquement. Dans ce chapitre,
nous décrivons notre proposition pour étendre cette métrique aux distorsions chroma-
tiques. Nous profitons du fait que cette mesure modélise les premières étapes de la
vision et en particulier la quantité de lumière qui tombe sur les cones L, M et S. De
ces informations, nous déduisons deux canaux chromatiques pour compléter la métrique
HDR-VDP-2. Nous avons réussi à obtenir des performances similaires pour la métrique
HDR-VDP-2 sur nos bases de données. Cependant, nous ne sommes pas parvenus à
accroître son efficacité, notamment vis-à-vis des distorsions chromatiques.

• Chapitre 7: Fusion de métriques de qualité: Dans ce chapitre, nous détaillons notre
proposition de combiner plusieurs métriques de qualité et caracteristiques d’image, no-
tamment des fonctionnalités chromatiques. Nous utilisons un SVM pour apprendre le
meilleur moyen de combiner ces métriques. Nous entrainons cette nouvelle métrique en
utilisant les bases de données à notre disposition. Avec cette méthode, nous parvenons
à créer une métrique sensible aux distorsions de couleur.
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INTRODUCTION

Context

The video industry has always strived to provide better images and therefore increase their
quality of experience. The innovations on captures and display technologies allow the industry
to gradually increase the number of pixels, from Standard Definition Television (720×576 or
720×480 pixels) to High Definition Television (1920×1080 pixels) and then, to the Ultra High
Definition (UHD) television (3840×2160 pixels). But the number of pixels is not the only param-
eter to improve the television and cinema experience. Increasing the frequency of consecutive
images can be another way to improve the quality of experience (High Frame Rate (HFR)). An-
other interesting approach is to enhance the quality of each individual pixels using Wide Color
Gamut (WCG) and High Dynamic Range (HDR). WCG extends the color range of legacy image
representation and HDR extends the luminance range (the quantity of light) a pixel can take.
An HDR image can contain very bright areas while retaining details in dark areas. HDR and
WCG technologies allow to render images with almost the same characteristics as in the real
world, making them more realistic.

HDR and WCG images are made possible by modifying the whole chain of production, from
the camera to the display. First, the camera has to be able to capture a large range of dynamic.
A popular method, first introduced by Mann in 1993 [1], is to combine several images with
different expositions, increasing, therefore, the dynamic range of images and overcoming the
limits of camera sensors. One example of HDR/WCG video camera is the Arri Alexa camera [2].
Screens also need to be able to display images with a large range of color and luminance.
Several technologies were developed over the years like Led-LCD screens with local backlight
dimming [3] or screens using high-end OLED technologies [4].

Once we have devices to capture and display HDR/WCG videos, we need also to adapt
the transmission workflow. HDR and WCG generated a lot of interest in the last decade and
standardization organizations proposed several new standards to adjust the grading [5], the
encoding representation [6] and the compression of images [7]. This is the whole chain that
needs to be adapted and evaluated, especially the compression methods.
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Motivations

Compression is one of the most critical algorithms to be able to transfer efficiently images
and videos. Indeed, its goal is to reduce the size of images and videos and therefore the
bandwitdth of their transmission. In a white paper, Cisco [8] states that video content already
accounted for 75% of the global internet traffic (77 ExaByte per month) in 2018 and forecasts
that it will reach 82% of internet traffic by 2022 (240 ExaByte per month). However, compression
is the video processing that creates the highest distortion and that affects the most the quality
of images and videos. Assessing the quality of compressed images and videos is a key factor
to provide the best compromise between video quality and transmission costs.

Several solutions already exist to assess the perceived quality of HDR images and videos.
However, none of those takes into account WCG images/videos. This is due to the fact that
the only affordable professional HDR display available at that time, the SIM2 HDR47ES4MB, is
not able to increase the range of displayable colors compared to a standard screen and has a
smaller range [9].

Introducing WCG in images and video contents leads us to raise the following question:
"Does WCG create stronger and specific chromatic artifacts which can affect the per-
ception of quality?" If this is the case and knowing the limitations of existing metrics, the
legitimate resulting question is: "How accurately assessing the quality of HDR AND WCG
images/videos?".

Answering these questions can be decomposed into two smaller problems:

• Evaluating the quality of compressed HDR/WCG images/videos can be performed by
user studies (or subjective tests): a panel of viewers score images based on the per-
ceived quality. If in the literature, there are already HDR images databases, none of
them uses WCG contents. Thus, the distorted images present less chromatic artifacts
than images encoded in a wider color space. It should also be noted that MPEG, in its
compression recommendations, has identified chromatic artifacts that are more prone to
appear when using a WCG representation [7]. Therefore, there is a need to create image
databases in which images exhibit both HDR and WCG characteristics. In addition, those
databases should contain realistic compression scenarios as it could serve to evaluate
MPEG propositions. Those databases can also be used to evaluate the pertinence of ex-
isting image quality metrics for HDR/WCG contents and evaluate the robustness of those
metrics to chromatic artifacts.

• A subjective test is the most reliable method to assess the quality of images. However,
performing subjective tests is very time-consuming and not always practicable. The au-
tomatic evaluation of images quality thanks to objective metrics which emulate subjective
tests is often used in algorithm research and will be more and more unavoidable with the
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development of artificial intelligence techniques. In the literature, several metrics were
proposed to evaluate HDR images/videos like HDR-VDP-2, HDR-VQM or PU-metrics.
However, those metrics do not evaluate chromatic distortion but only luminance distortion.
However, with WCG/HDR images/videos, new chromatic artifacts can appear. Creating a
metric sensitive to those artifacts will correct a weakness which exists for the assessment
of HDR/WCG contents.

Contributions

The following contributions are presented in this thesis:

• We propose a first image database annotated with subjective scores, HDdtb, presented
in Chapter 3. It is composed of HDR but not WCG contents encapsulated in a WCG color
space. We focus on chromatic distortions to create the distorted images to evaluate. This
database is available at www-percept.irisa.fr/software/.

• We use this proposed and already available databases to perform a complete analysis
on the calibration of the metric HDR-VDP-2, a reference metric to perform image quality
assessment. This metric models precisely the early-stage of the human visual system
and therefore takes a lot of parameters to be calibrated. For example, this metric needs
the display spectral emission, the angular resolution and the surround luminance. Hav-
ing databases with different characteristics (for example different displays using different
technologies) increase the pertinence of our analysis. This contribution is explained in
details in the following paper:

Maxime Rousselot, Éric Auffret, Xavier Ducloux, Olivier Le Meur, and
Rémi Cozot, "Impacts of Viewing Conditions on HDR-VDP2", in: 2018
26th European Signal Processing Conference (EUSIPCO), 2018, pp.
1442-1446, DOI:10.23919/EUSIPCO.2018.8553212

• We create a new database composed of native WCG images, 4Kdtb, also presented
in chapter 3. The distorted images provide even more prominent chromatic artifacts
than the previous database. This database is also available at www-percept.irisa.fr/

software/.

• We propose a new method to adapt color and color-blind SDR metrics to HDR/WCG con-
tents using HDR/WCG perceptually uniform color space. We use this method and review
the performances of 13 SDR metrics with four different color spaces. The results are
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presented in chapter 5. The following article presents this method, the used databases
and our analysis on the performance of the metrics.

Maxime Rousselot, Xavier Ducloux, Olivier Le Meur, and Rémi
Cozot, "Quality Assessment of HDR/WCG Images Using HDR
Uniform Color Spaces", in: Journal of Imaging 5.1 , 2019,
DOI:10.3390/jimaging5010018

Part of those results were also presented in the following conference:

Maxime Rousselot, Éric Auffret, Xavier Ducloux, Olivier Le Meur, and
Rémi Cozot, "Adapting HDR images using uniform color space for SDR
quality metrics", in: COmpression et REprésentation des Signaux Au-
diovisuels (CORESA), 2018

• Additionally, we propose our own full-reference quality metric, available at www-percept.

irisa.fr/software/. This metric is adapted to HDR and WCG content and is sensitive to
chromatic distortions. The proposed metric is based on two existing HDR quality metrics
and color image features. A support vector machine regression is used to combine the
aforementioned features. This contribution is explained in detail in the following paper:

Maxime Rousselot, Xavier Ducloux, Olivier Le Meur, and Rémi Cozot,
"Quality metric aggregation for HDR/WCG images", in: 26th IEEE In-
ternational Conference on Image Processing (ICIP) , 2019

Structure of the thesis

The thesis manuscript is organized into three parts. The first part, composed of two chap-
ters, presents the state of the art of HDR/WCG imaging and the basics of image quality assess-
ments. The second part presents our proposed image databases annotated with subjective
scores. A third part presents our contributions to objective image quality assessment.

Part I: Background and state of the art

• Chapter 1 Ecosystem of HDR and WCG: This chapter gives a presentation of the funda-
mental concepts behind HDR and WCG and the modification of the chain of transmission
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they imply. Indeed, HDR and WCG technologies extend the color space and the lumi-
nance of images/videos. The consequence is that the whole chain of image transmission
which was created for legacy formats and representations, needs to be adapted. For ex-
ample, new perceptually uniform color spaces have to be designed. Indeed the human
visual system does not perceive luminance proportionally to its physical value but is in-
stead not linear. In Standard Dynamic Range (SDR) imaging, a classical way to obtain
a perceptually uniform color space is to use functions called gamma. However, the lumi-
nance of SDR images is not perceptually uniform outside the range for which the gamma
function was defined. For a higher luminance range, new functions have to be created.
The perceptually uniform color space is not the only aspects that require adaptation. The
video pre-processing including the chrominance downsampling and the compression of
image/video also need to be adapted to new challenges that arise with HDR/WCG con-
tents.

• Chapter 2 Image quality assessment: The second chapter presents all the aspects of
Image Quality Assessment (IQA). IQA is necessary to compare different encodings and
compression technologies. This chapter presents the two main categories of methods to
perform IQA: subjective and objective. Subjective methods are a more robust way to ob-
tain image quality scores. It consists of standardized tests where a panel of viewers score
image based on their perceived quality. However, subjective tests are time-consuming
and costly. Objective quality metrics are algorithms that aim to emulate subjective tests
and automatically assess image quality without the presence of a human. However, in
the state of the art, metrics were tuned to assess the quality of SDR images and not
images with a higher dynamic range. For this new kind of contents, new methods were
designed to either adapt SDR metrics to HDR (PU-metrics [10]) or to either create new
metrics based on the HVS characteristics (HDR-VDP-2). We conclude this chapter on
the methods used to assess the performance of objective metrics using subjective tests.
It should also be noted that, up to our knowledge, there is no HDR metric that considers
chromatic distortions.

Part II: Building HDR/WCG experimental environment and analysis

• Chapter 3: New databases presentation: In this chapter, we present the two subjec-
tive tests we perform on HDR/WCG contents. One contains images with a legacy gamut
but encapsulated in a larger gamut, the other one is composed of native WCG images.
To create those database we focus on chrominance distortions. Indeed, luminance dis-
tortions are already well studied with HDR-only contents. We choose our distortions to
be realistic using MPEG compression. It allows us to evaluate the impact of the MPEG
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recommendation for the compression of chrominance of HDR/WCG contents.

• Chapter 4: Analysis of existing metrics: In this chapter, we review the performances of
existing metrics using our newly created and already created databases. This allowed us
to perform a complete review of the calibration of one of the most precise metric: HDR-
VDP-2. Equally, we review the performance of several PU-metrics. In particular, we also
evaluate their resilience to chromatic distortions due to compression using our databases.

Part III: New color metrics for HDR/WCG image quality assessment

• Chapter 5: SDR metric Adaptation: The solution proposed by Aydın et al. [10] to adapt
any color-blind metrics to HDR images is to transform the luminance of HDR into a per-
ceptually linear luminance. Thus, it retains the characteristics of the SDR gamma func-
tions for the SDR luminance range and retains perceptual linearity otherwise. This chapter
presents our proposition to extend this work to color metrics using perceptually uniform
color space. We review four color spaces adapted to HDR/WCG content: ICtCp [6],
Jzazbz [11] and HDR-Lab [12] with a diffuse white at 100 cd/m2 and at 1000 cd/m2. We
study the influence of the diffuse white on the performance of several metrics on each
available database. In addition, we analyse the impact of chromatic distortions using our
proposed database on color-blind and color metrics. Finally, we give our recommenda-
tions to assess the quality of images using legacy metrics.

• Chapter 6: HDR-VDP-2 color extension: HDR-VDP-2 can be considered as the refer-
ence metric concerning HDR image quality assessment. However, this is a color-blind
metric. In this chapter, we describe our proposition to extend this metric to chromatic
distortions. We take advantages that this metric models the early-stage of vision and es-
pecially the quantity of light falling on L,M,S cones. From this information, we deduce two
chromatic channels to complete the HDR-VDP-2 metric. We succeed to obtain similar
performance for the HDR-VDP-2 metric on our available database. However, we do not
succeed to increase its efficiency especially towards chromatic distortions.

• Chapter 7: Quality metric aggregation: In this chapter, we detail our proposition to
combine several image quality metrics and features including chromatic features. We use
a support vector machine to learn the best way of combining those metrics. We train
this new metric using the available databases. With this method, we succeed to create a
metric sensitive to color distortions.
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Background and state of the art
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PART I: INTRODUCTION

Images and videos are efficient tools to represent the world and to communicate about a
captured instant. However, this representation is always limited by technology. The capture
and the displays of images impact the characteristics of the light emitted by screens as if it
was directly received by our eyes. On one hand, camera sensors are not able to capture all
the range of luminance and color perceived by the Human Visual System (HVS). On the other
hand, screens are not able currently to reproduce such a variety of color and luminance.

Legacy image format and processing were designed with the limitation of existing technol-
ogy. The luminance dynamic range, as well as the color gamut that can be represented, are
limited due to the technology. For instance, the perceptually uniform color spaces are only uni-
form for a small portion of the color space covered by the HVS and Image Quality Assessment
(IQA) metrics are tailored only for legacy image format.

In recent years, with the evolving technology, the capacity to capture and display images has
grown a lot. Recent monitors can now display images with a High Dynamic Range (HDR) and
with a Wide Color Gamut (WCG). The legacy format and processing adapted to the Standard
Dynamic Range (SDR) are not efficient anymore for those kinds of content. New formats and
new representations were created to handle those new pictures. Moreover, new IQA metrics
were proposed and were tested on new databases of images in comparison with scores given
by panels of viewers.

This part gives, in the first chapter, a presentation about the HDR and WCG image repre-
sentation and compression. The second chapter is an overview of subjective and objective IQA
metric methods for HDR/WCG content. The last section concludes this chapter.
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CHAPTER 1

ECOSYSTEM OF HDR AND WCG

1.1 Introduction

The design of legacy image representations and compression have always reflected the
limits of technologies (capture and display devices). High Dynamic Range and Wide Color
Gamut technologies make obsolete those formats by pushing the limits of what is captured and
what is displayed. Those technologies allow more freedom than ever to create images. New
adapted representations are required and the existing compression codec need to be modified.

The first section of this chapter, We define HDR and WCG main concepts. In the sec-
ond section, we describe the new image representations that were created to handle the new
color spaces. Finally, in the last section, we describe the methods employed to adapt existing
compression workflow to the new images color spaces.

1.2 Definitions

To fully understand the value of HDR and WCG systems, it is necessary to understand the
ability of the HVS system to perceive light. The main concepts of HDR and WCG formats are
presented in this section.

1.2.1 Luminance and Dynamic Range

The luminance is a photometric measure which describes the amount of light that is per-
ceived by the eye or falls into a camera sensor. It is expressed in cd/m2. For the reference, a
moonless night have a luminance about 10−3 cd/m2, the luminance of a sunny day is about 106

cd/m2 and the luminance of the sun can reach a luminance above 109 cd/m2

The dynamic range of an image corresponds to the range between its brightest and darkest
pixels. To be closer to the human perception, it is often expressed on a logarithmic scale
express in log units. The Dynamic Range (DR) of an image is then calculated as follows:

DR = log10(Ymax)− log10(Ymin) (1.1)

Where Ymin and Ymax are the minimum and the maximum luminance in cd/m2, respectively.
Note that the available dynamic range of a display is sometimes expressed in f-stop. In this
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case, the dynamic range is expressed as follows:

DRf−stop = log2(Ymax)− log2(Ymin) (1.2)

The HVS is adapted to perceive a wide range of luminance going from 10−6 cd/m2 and up to
108 cd/m2 [17]. However, the HVS cannot perceive both extremes of the scale at the same time.
Indeed, the HVS is adapting to an appropriate light sensitivity due to various photochemical,
mechanical and neuronal processes. The luminance subset the HVS is able to operate while
being in a state of full adaptation is called the steady-state or simultaneous dynamic range. The
HVS has a simultaneous dynamic range around 4 log units [18] [19].

The human eye is composed of four kinds of photosensors. Three are
the cons which are better to perceive luminance during daylight condi-
tions and are responsible for the color perception. The fourth photo-
sensors are the rods, which are adapted to low light conditions. Due to
the differences between photoreceptors, the HVS light sensitivity can
be separated into three modes of perception. First, the scotopic vision
(or night vision) corresponds to vision in which the perception of light
is only performed by rods (between 10−6 to 10−3 cd/m2). There is no
color perception under such a mode of perception. Then, photopic vi-
sion (or daylight vision) corresponds to the vision in which only the cons
are receptive (between 10 and 108 cd/m2). Finally, the mesopic vision
occurs when both cons and rods are sensitive to luminance (between
10−3 to 10 cd/m2).

Photopic, mesopic and scotopic vision

1.2.2 High Dynamic Range

A SDR display is not able to display all luminances visible to the HVS or even to cover the
HVS simultaneous dynamic range. For example, the Dell 20 (E2016H) [20], a midrange screen,
has a peak luminance at 250 cd/m2, a black point luminance at 0.25 cd/m2 and an available
dynamic range of 3 log units.

An HDR screen better takes advantage of the capabilities of the HVS by extending the
dynamic range it can display. According to the Ultra HD Forum [21], a display can be consid-
ered HDR if it has a dynamic range equal to or greater than 13 f-stops (around 4 log units).
The increase of dynamic range leads to luminance values that are closer to real life scenes,
thus, making them more realistic. There are several screens that are already able to fulfill the
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Ultra HD Forum requirement. We can mention the Dolby Pulsar monitor (not commercially
available) which claims to have a peak luminance at 4000 cd/m2 and a black point luminance
at 0.005 cd/m2 [22], the Sony BVM-X300 with a peak luminance at 1000 cd/m2 and a black
point luminance at 0.0005 cd/m2 [23] or the Sim2 HDR47ES6MB with a peak luminance at
4000 cd/m2 and a black point luminance at 0.001 cd/m2 [24]. The dynamic range of human
vision and the previously mentioned displays are illustrated in Figure 1.1.

Figure 1.1: Dynamic Range of the Human Vision System and displays

The diffuse white of an image is an important characteristic to describe
an HDR signal. The diffuse white is defined as "the signal level of
100% Lambertian reflector placed at the center of interest within a
scene under controlled lighting". It corresponds to the light coming
from a white card without any specular reflections. It should not be
confused with the peak luminance as luminance coming from emissive
light sources or specular reflections can be higher than the diffuse white
luminance. Those luminances are called the highlights. The standard
ITU-R BT.2408 recommend a diffuse white at 203 cd/m2 [5] if the screen
peak luminance is 1000 cd/m2.

Diffuse White
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The ability to accurately render the highlights is one of the key features to differentiate HDR
and SDR. HDR is able to render more accurately the luminance of emissive light sources and
specular reflections, thus making the image more realistic. Specular reflections, in particular,
improve depth perception [25] [26].

Moreover, HDR displays are not only able to display brighter pixels but also darker pixels.
Being able to better render dark regions is an important feature of HDR display. A study found
that to meet the preferences of 90% of the viewers, a black point luminance of 0.005 cd/m2 is
needed [27].

The increase of luminance dynamic range improves the perceived quality of images. How-
ever, the luminance only describes the achromatic information of the images. Color of pixels
does not depend of the luminance. More dimension are necessary to describe the light.

1.2.3 Color and Gamut

The luminance gives only the achromatic information of light. The HVS also perceives color.
This color perception is performed by three kinds of photoreceptors called cones: L, M and S.
Each cone is more sensitive to light with a Long, Medium and Short wavelength respectively.
Similarly, most color model represent the color sensitivity of the Human Visual System with
three dimensions.

To take advantage of this fact, most capture/display devices use the trichromatic color photo-
receptor/transmitter: red, green and blue corresponding to the L, M and S cones. Those three
colors are called the color primaries of the device. Thus, such RGB color spaces are a common
way to define image pixels. However, as each device might use a different red, green and blue,
there is a need for common color spaces to be able to exchange images.

In 1931, the CIE (Comission Internationalle de l’éclairage) defined a color space that can
represent any visible color: the CIE XY Z color space. It is defined as follows:



X =
∫ 780

380
J(λ)× x̄(λ) dλ

Y =
∫ 780

380
J(λ)× ȳ(λ) dλ

Z =
∫ 780

380
J(λ)× z̄(λ) dλ

(1.3)

where J(λ) is the spectral power distribution of the light and x̄, ȳ and z̄ are standard color
matching functions defined by the CIE. Those matching functions are akin, although different
from, the cones responses. The color matching function ȳ was created so that the Y value
represents the photopic luminance.

Based on this representation, another color space can be created to separate the luminance
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and the chrominance: xyY . Y corresponds to the photopic luminance and x and y to the
chromatic information. x and y are calculated as follow:


x = X

X + Y + Z

y = X

X + Y + Z

(1.4)

x and y are widely used to define the chromatic information of light sources. It is also in
this space that the CIE xy Chromaticity diagram is represented (cf. Figure 1.2). This diagram
represents all the visible Chromaticity. One of the advantages of this representation is that
taken two points of color on the Chromaticity diagram, all colors which can be created by mixing
these two colors are found in a straight line between the two points. By extension, all colors
created mixing three colors can be found in the triangle form by those three color chromaticity
coordinates x and y.

Due to those characteristics, the xy coordinates are used to define many RGB color spaces.
The triangle formed by the three color primaries chromaticity coordinates represents the RGB
color space gamut, i.e. the ensemble of colors a device can handle. Only four points are needed
to describe such space: the coordinates for the three primaries, red green and blue and the
coordinates of the white point. The white point is the Chromaticity point obtained when each
primary is used with the same intensity. This point is often defined as the standard illuminant
D65 which coordinates are xD65 = 0.31271 and yD65 = 0.32902.

To represent the colors displayable by all screens, a standard RGB color space was created.

1.2.4 Wide Color Gamut

In 1990, for High Definition (HD) image and video, the ITU recommended the use of one
particular RGB color space in the standard BT.709 [28]. This color space was created in order
to cover the color displayable by a TV screen based on CRT (Cathode Ray Tube) technolo-
gies [29]. This gamut is widely used to encode images and videos. Moreover, it is recognized
by most compression codec. However, screen technology has evolved and new technology
emerged like Led-LCD or OLED. The gamut BT.709 cannot encompass all the color displayable
by the last generations of screens. In 2012, the ITU proposed a new standard, BT.2020 [30]
which describes a new color space for the development of a new generation of video, named Ul-
tra High Definition (UHD), which could provide a higher user experience, thanks to an increased
resolution, frame rate and color gamut. Note that there is, up to our knowledge, no screen that
is able to fully display the BT.2020 gamut. However, some of UHD screens, launched in the
market during the last years, are really close.
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The xy chromaticity coordinates for the BT.709 and the BT.2020 color spaces can be found
in Table 1.1. The gamuts of these color spaces are represented in the CIE xy in Figure 1.2.

Figure 1.2: gamut of the BT.709 and BT.2020 color space and HVS gamut represented with a
CIE xy chromaticity diagram

The XY Z color space is useful to circumscribe RGB color space. However, it is not repre-
sentative of human perception of light.

1.3 Image representations

A uniform (or perceptually uniform) color space is defined so that the difference between
two values always corresponds to the same amount of visually perceived change. Those color
spaces are essential to optimize the quantization of pixel values or to obtain efficient IQA ob-
jective metrics. Indeed, perceptually uniform color spaces better represent the HVS perception
of light.
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Table 1.1: Chromaticity coordinates for the color primaries and the white point of BT.709 and
the BT.2020 color space

Red Green Blue White
x y x y x y x y

BT.709 0.640 0.330 0.300 0.600 0.150 0.060 0.3127 0.3290
BT.2020 0.708 0.292 0.170 0.797 0.131 0.046 0.3127 0.3290

1.3.1 Perceptually linearized luminance

The luminance express in cd/m2 is said to be linear. However, the Human visual system
does not perceive the luminance proportionally to its value in cd/m2. The human perception
of luminance is not linear. This is why in most cases, the linear luminance is transformed
using transfer functions. In the following of this manuscript, we differentiate three transfer func-
tion [31]:

• OETF: Opto-Electronic Transfer Function. This function converts the linear scene light
into the image or video signal.

• EOTF: The Electro-Optical transfer Function. This function converts the image/video sig-
nal into the linear light of the display.

• OOTF: Opto-Optical Transfer Function. This is the function of a whole system that con-
verts the linear scene light into the display light. We can differenciate the reference OOTF
and the artistic OOTF. The reference OOTF is the concatenation of the OETF and the
EOTF. This function is not linear. Indeed, a non-linearity is applied to compensate for
differences in tonal perception between the environment of the camera and that of the
display. The artistic OOTF also includes artistic adjustment, a modification of the signal
to enhance the image or to apply a rendering intent.

Figure 1.3 represents the end-to-end workflow from the capture of light to the display of an
image and the relation between transfer functions. In the rest of this section, for the sake of
clarity, the artistic adjustments are neglected.

Figure 1.3: End-to-end workflow from the capture of light to the display of an image [31]

29



Partie I, Chapter 1 – Ecosystem of HDR and WCG

SDR transfer functions

The SDR transfer functions are called the gamma functions. The OETF is defined in the
standard BT.709 [28] and the EOTF in the standard BT.1886 [32].

The BT.709 OETF function is defined as follows:V =1.099L0.45 − 0.099 if 1 ≥ L ≥ 0.018

V =4.5L if 0.018 > L ≥ 0
(1.5)

where L is the normalized luminance of the scene (between 0 and 1) and V is the corresponding
image signal.

The BT.1886 EOTF function is defined as follows:

FD = (L
1
γ

W − L
1
γ

B)γ × (max[0,

V + L
1
γ

B

L
1
γ

W − L
1
γ

B

]γ) (1.6)

where FD is the luminance of the screen in cd/m2 and V the image signal calculated by
equation (1.5). γ is the exponent of power function, γ = 2.40. LW is the peak luminance of the
screen and LB is the luminance for its black point.

Due to the way it is defined, it is impossible to know the EOTF and, thus, the OOTF without
knowing the final display. Such kind of workflow is called scene-referred as the image signal
only depends on the scene luminance characteristics and not on the screen ability to display
luminance. In this kind of workflow, the OOTF is considered to be in the display. Figure 1.4
describes a generic end-to-end scene-referred workflow.

Figure 1.4: End-to-end scene-reffered workflow from the capture of light to the display of an
image [31]

The BT.709 EOTF and the BT.1886 OETF were created and adapted to screens based on

30



1.3. Image representations

CRT technology. The EOTF BT.1886 were especially created based on the measured char-
acteristics of CRT screens so that other displays based on different technologies could use
images encoded with BT.709 content. Those functions held two advantages. First, the BT.1886
EOTF did not need to be implemented in CRT displays as it is directly the response of such a
screen. As CRT technology is no longer the mainstream screen technology, this is no longer
an advantage. Second, the EOTF is a rough but sufficient estimation of the HVS perception of
luminance in the dynamic range of all HD SDR screens, being CRT, Led/LCD or OLED.

However, new UHD HDR screens are able to display a much wider range of luminance.
The BT.709/BT.1886 transfer functions are a rough approximation of the HVS luminance per-
ception in this case. Using those functions and assuming a peak brightness of the display at
1000cd/m2, even 12 bits quantization is not enough to avoid banding artifacts, especially in the
dark areas [33].

For HDR imaging, two transfer functions were created and normalized in the BT.2100 stan-
dard: the Hybrid-Log-Gamma (HLG) transfer functions and the Perceptual Quantization (PQ)
Transfer Function.

Hybrid-Log-Gamma

First, BBC and NHK proposed functions called Hybrid-Log-gamma (HLG) transfer functions
normalized in [34]. As the BT.709/BT.1886 system, it is a scene-referred workflow. HLG OETF
is defined as follows:


V =a× ln(12L− b) + c if 1 ≥ L ≥ 1

12
V =
√

3L if
1
12 > L ≥ 0

(1.7)

where L is the normalized luminance of the scene (between 0 and 1) and V is the corresponding
image signal. The constants are defined as follow: a = 0.17883277, b = 1 − 4a and c =
0.5− a× ln(4a).

As in SDR systems, the reference OOTF of the HLG workflow also presents a γ non-
linearity:

FD = OOTF (L) = LWL
γ (1.8)

But this time, the factor γ is dependent on the screen peak luminance LW :

γ = 1.2 + 0.42× log(LW /1000) (1.9)
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The HLG EOTF can be deduced from the OOTF and the OETF as follows:

FD = EOTF[max(0, (1− β)V + β)]

= OOTF
[
OETF−1[max(0, (1− β)V + β)]

] (1.10)

where,FD is the luminance of the screen in cd/m2 and V the image signal calculated by equa-
tion (1.7). β is dependent on LW , the peak luminance of the screen and LB, the luminance for
its black point: β =

√
3(LB/LW )1/γ .

The function OETF−1 is the exact inverse of the OETF:
L =(exp((V − c)/a) + b)/12 if 1 ≥ V ≥ 1

2
L =V 2/3 if

1
2 > V ≥ 0

(1.11)

where L is the normalized luminance of the scene and V is the corresponding image signal.
The constant a, b and c are the same as for the OETF (cf. Equation 1.7).

The HLG model claims to be backward compatible. This means that the images encoded
with the HLG OETF could be decoded on SDR television, using the BT.1886 EOTF (equation
(1.6)), without any other form of tone-mapping [35]. The main argument of such a system is
to reduce the distribution cost of HDR content for television broadcast as it would not require
to broadcast two different streams, one HDR for HDR display and one SDR for SDR display.
Though, in reality, SDR deployed channels use a BT.709 color space, while HDR channels are
associated to the extended BT.2020 color space. Since the backward compatibility of HLG is
true only if SDR and HDR channnels share the same color space, it may be in practice difficult
to use one single HDR channel to address all kinds of displays.

Perceptual quantization transfer function

The perceptual quantization (PQ) transfer functions were designed by Dolby and first nor-
malized in [36]. It optimizes the luminance quantization in order to use the most efficient bit
depth to represent the signal without the apparition of banding artifact for luminance going up
to 10 000 cd/m2. In [33], the authors show that 11 bits quantization was sufficient to avoid
the banding artifacts and that a 10 bits quantization was sufficient most of the time. Unlike the
precedent workflow to perceptually linearize the luminance, the PQ workflow is not a scene
referred workflow. Indeed, the PQ model states that the OOTF is applied on the video signal
inside the camera. It implies that the image/video signal is adapted to one reference display.
Thus, each value in the image/video signal directly corresponds to a value in cd/m2 . This
kind of workflow is called display-referred. Figure 1.5 describes a generic end-to-end display-
referred workflow.
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Figure 1.5: End-to-end display-reffered workflow from the capture of light to the display of an
image [31]

The EOTF is defined as follow:

FD = LW ×
(

max[(V 1/m2 − c1), 0]
c2 − c3 × V 1/m2

)1/m1

(1.12)

where, FD is the luminance of the screen in cd/m2 and V the image signal. The constant
values are: m1 = 2610/16384, m2 = 2523/4096× 128, c1 = 3424/4096, c2 = 2413/4096× 32 and
c3 = 2392/4096× 32.

The reference OOTF is in the same form as the SDR OOTF:

FD = OOTF (L) = G1886 [G709[L]] (1.13)

where

G709[L] =

 1.099(L× 59.5208)0.45 − 0.099 if 1 ≥ L ≥ 0.0003024

267.84L if 0.0003024 > L ≥ 0
(1.14)

and
G1886[L′] = 100L′2.4 (1.15)

The OETF can then be deduced from the reference OOTF and the EOTF:

V = OETF[V ]

= EOTF−1[OOTF [L]]

= EOTF−1[FD]

(1.16)
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The inverse EOTF is defined as follows:

EOTF−1[FD] =
(
c1 + c2Y

m1

1 + c3Y m1

)m2

. (1.17)

where, Y = FD/10000 and the constants c1, c2, c3, m1 and m2 are the same constants than for
the EOTF.

Figure 1.6 represents all the presented EOTF. For the HLG and the gamma EOTH, we
have considered two different display, one with a black point at 0.001cd/m2 and a peak bright-
ness at 4000cd/m2, the other one with a black point at 0.001cd/m2 and a peak brightness at
10000cd/m2

Figure 1.6: Different EOTF

1.3.2 Perceptually uniform color space

In the previous section, we describe how to perceptually linearize the luminance. However,
as described in section 1.2, the image signal also contains chromatic information. Most of the
time, to create a perceptually uniform color space, a color-opponent model is used. Those
models state that the HVS uses the differences between the cones responses rather than each
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cone’s response individually. Color opponent models are often used as an approximation of the
HVS color perception.

In the following sections, four color space are described:

• HDR-Lab [12], the HDR extension of the CIE 1976 L∗a∗b∗ [37].

• Two color spaces compatible with recent compression codecs and normalized in the ITU
standard BT.2100 [6], Y ′C ′bC

′
r and ICtCp.

• The more recent Jzazbz color space [11].

In the rest of the manuscript, the luminance component of the uniform color spaces is called
uniform luminance instead of, according to the case, lightness, brightness or luma to avoid
unnecessary complexity. For example, the uniform luminance of HDR-Lab should be called
lightness while the uniform luminance of Jzazbz should be called brightness. All those term
always refer to the HVS luminance perception.

Y ′C′
bC′

r

Y ′C ′BC
′
R normalized in the BT.2100 [6] standard is defined for HDR/WCG signal on the

same model than color space Y ′CBCR described in the BT.709 standard for SDR signal. This
color space is compatible with most of the recent compression codecs. The computation of
Y ′C ′bC

′
r is described below:

It can be used with the PQ and the HLG transfer functions.

• First, the linear RGB values (in the BT.2020 gamut) are transformed using either the PQ
EOTF−1 or the HLG OETF into the non linear space R’G’B’:

R′ = EOTF−1
PQ(R) R′ = OETFHLG(R)

G′ = EOTF−1
PQ(G) OR G′ = OETFHLG(G)

B′ = EOTF−1
PQ(B) B′ = OETFHLG(B)

(1.18)

• Then the Y ′ luminance component and the C ′b, C
′
r chrominance components are calcu-

lated as follows: 

Y ′ = 0.2.27×R′ + 0.6780×G′ + 0.0593×B′

C ′B = B′ − Y ′

1.8814

C ′R = R′ − Y ′

1.4746

(1.19)
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ICtCp

ICtCp has better chrominance and luminance decorrelation and has better hue linearity
than the Y ′C ′bC

′
r color space [38]. This color space is calculated in three steps:

• First, the linear RGB values (in the BT.2020 gamut) are converted into LMS values which
correspond to the quantity of light absorbed by the cones:

L = 0.41210938×R + 0.52392578×G +0.06396484×B

M = 0.16674805×R + 0.72045898×G +0.11279297×B

S = 0.02416992×R + 0.07543945×G +0.90039062×B

(1.20)

• Second, the PQ EOTF−1 is applied to each LMS component:
L′ = EOTF−1

PQ(L)

M ′ = EOTF−1
PQ(M)

S′ = EOTF−1
PQ(S)

(1.21)

• Finally, the luminance component I and the chrominance components Ct and Cp are
deduced as follows:

I = 0.5× L′ + 0.5×M ′

Ct = 1.61376953× L′ − 3.32348632×M ′ +1.70971679× S′

Cp = 4.37817382× L′ − 4.37817383×M ′ −0.13256835× S′
(1.22)

• The obtain color space is efficient to create good interchange format and to perform com-
pression. However, each channel has to be re-scaled to obtain a perceptually uniform
color space [39]: ̂ICtCp = [I, Ct, Cp]× [720, 360, 720] (1.23)

This color space can also be used with the HLG OETF instead of the PQ EOTF−1. However,
the perceptual linearity is only guaranteed for a display with a peak luminance at 1000 cd/m2 in-
stead of 10000 cd/m2. The ICtCp color space is particularly well adapted to video compression
and more importantly to the PQ EOTF as defined in BT.2100 [6].

HDR-Lab

One of the most popular SDR uniform color spaces is the CIE 1976 L∗a∗b∗ or CIELAB which
is suited for SDR content. An extension of this color space for HDR images was proposed
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in [12]. The proposition is to tailor CIELAB for HDR by changing the non-linear function applied
to the pixel XY Z values. This color space is calculated as follows:

LHDR =f(Y/Yn)

aHDR =5[f(X/Xn)− f(Y/Yn)]

bHDR =2[f(Y/Yn)− f(Z/Zn)]

(1.24)

where Xn, Yn and Zn are the XY Z coordinates of the diffuse white. The non-linear function f
is used to output perceptually linear values. f is defined for HDR as follows:

f(ω) = 247 ωε

ωε + 2ε + 0.02 (1.25)

ε = 0.58/(sf × lf) (1.26)

sf = 1.25− 0.25(Ys/0.184) (1.27)

lf = log(318)/ log(Yn) (1.28)

where the exponent ε of the function f(ω) is modified using a factor to take into account the
surround sf and a factor to take into account the luminance level lf . YS is the relative luminance
of the surround and Yn is the absolute luminance of the diffuse white or reference white.

The use of HDR-Lab color space is somewhat difficult since it requires to know the relative
luminance of the surround, YS , as well as the diffuse white luminance, Yn. Unfortunately, these
two parameters are most of the time unknown for HDR contents. Figure 1.7 illustrates the
impact of Ys and Yn on LHDR.

In addition to the HDR-Lab color space, Fairchild et al. [12] also proposed the HDR-IPT
color space, which aims to extent the IPT color space [40] to HDR content. This color space is
not studied in this manuscript due to its high similarity with HDR-Lab.

Jzazbz

Jzazbz [11] is a uniform color space allowing to increase the hue uniformity and to predict
accurately small and large color differences, while keeping a low computational cost. It is
computed from the XY Z values in five steps:
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(a) (b)

Figure 1.7: LHDR in function of the luminance for (a) different diffuse white luminances, and for
(b) different surround luminances.

• First, the XY Z values are adjusted to remove a deviation in the blue hue.[
X ′

Y ′

]
=
[
bX

gY

]
−
[

(b− 1)Z
(g − 1)X

]
(1.29)

where b = 1.15 and g = 0.66.

• Second, the X ′Y ′Z values are converted to LMS values
L = 0.41478972×X ′ + 0.579999× Y ′ +0.0146480× Z

M = −0.2015100×X ′ + 1.120649× Y ′ +0.0531008× Z

S = −0.0166008×X ′ + 0.264800× Y ′ +0.6684799× Z

(1.30)

• Third, as for ICtCp, the PQ EOTF−1 is applied on each LMS component
L′ = EOTF−1

PQ(L)

M ′ = EOTF−1
PQ(M)

S′ = EOTF−1
PQ(S)

(1.31)
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• Fourth,the luminance Iz and the chrominance az and bz are calculated
Iz = 0.5× L′ + 0.5×M ′

az = 3.5240000× L′ − 4.0667080×M ′ +0.5427080× S′

bz = 0.1990776× L′ + 1.0967990×M ′ −1.2958750× S′
(1.32)

• Finally, to handle the highlight, the luminance is adjusted:

Jz = (1 + d)× Iz
1 + (d× Iz)

− d0 (1.33)

where Jz is the adjusted luminance, d = −0.56 and d0 is a small constant: d0 ≈ 1.62955×
10−11.

To define interchange format and to compress video, main standardization organizations
recognize two color spaces: Y ′C ′BC

′
R and ICtCp with the PQ or HLG transfer functions. Those

organizations also proposed different methods to adapt the compression to those two color
spaces.

1.4 HDR/WCG content compression

Several options are available to compress HDR/WCG signal. In this thesis, the focus is
on video compression and more precisely the Moving Picture Experts Group (MPEG) propo-
sition to adapt existing codecs to HDR/WCG content (namely, the Advanced Video Coding
(AVC/h.264) codec and the High Efficiency Video Coding (HEVC/h.265) codec). However,
solutions dedicated to still images also exist. For example, the Joint Picture Expert Group
develops JPEG-XT [41] which is a backward-compatible HDR image compression standard.

1.4.1 Pre-encoding process

Before the compression is performed, the image has to be in the right format. This step is
called pre-processing. This conversion can be decomposed in three main steps:

• Color space conversion: The image has first to be converted into the right color space:
HEVC recognizes two different color space: Y ′C ′bC

′
r and ICtCp. The two transfer func-

tions models HLG or PQ can be chosen. However, in the case of HLG, the RGB linear
values should represent the scene light (no OOTF applied) while in the case of PQ, the
RGB linear values should represent the display light (the OOTF should have been ap-
plied).
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• Quantization: The image value has to be quantized, going from a floating point repre-
sentation to a fixed length representation. AVC and HEVC define multiple bit-depths from
8 to 12. A good compromise for HDR WCG images and the most chosen bit-depth for
video delivery is 10.

• Chroma sub-sampling: This step allows reducing the size of the image by reducing the
amount of chromatic information. It takes advantage that the HVS is less sensitive to high
frequency variation in color than in luminance. The original image in a chroma sampling
format called 4:4:4. Each pixel is composed of one value for the luminance and two values
for the chrominance. The chrominances are downsampled to a chroma sampling format
called 4:2:0. For a chrominance value, there are four luminance values. The difference
between the two chroma sampling formats is illustrated in Figure 1.8.

Figure 1.8: Chroma sampling format

Figure 1.9 represents the pre-encoding process using the Y ′C ′bC
′
r color space and Fig-

ure 1.10 represents the pre-encoding process using the ICtCp color space.

Figure 1.9: Pre-encoding process system using the Y ′C ′bC
′
r color space
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Figure 1.10: Pre-encoding process system using the ICtCp color space

If the chosen color space is Y ′C ′bC
′
r, the chrominance subsampling can create visible arti-

facts. This is due to the not-so-good decorrelation between luminance and chrominance infor-
mation, especially in the saturated area [42]. This phenomenon is particularly significant with
the PQ transfer function. This is not the case with the ICtCp color space because this color
space performs a better decorrelation between luminance and chrominance [43].

The ITU recommends a solution to prevent those artifacts [7] by adjusting the luminance
in function of the error on the C ′b and C ′r components (cf. Figure 1.11). This recomandation
proposed two methods to perform this processing: a recurssive solution which consists of suc-
cessive estimation of the luminance adjustment and a closed form solution which is more direct
to estimate the luminance. Only the closed form [44] of this solution is used in this manuscript
as it is the fastest proposed solution. The improvement bring by the luma adjustment method
is illustrated by Figure 1.12.

Figure 1.11: Example of a luma adjustment method (source [7])

Once the processing to adapt the picture format has been applied, the video can be com-
pressed. In the next section we present the main mechanism involve to compress images and
videos.

41



Partie I, Chapter 1 – Ecosystem of HDR and WCG

(a) (b) (c)

Figure 1.12: Tone-mapped examples showing improvements of the luma adjustment method (a)
original image (b) classic chrominance subsampling (c) chrominance subsampling with luma
adjusment method (source [45])

1.4.2 Compression: general principle

The main idea behind compression is to reduce the redundant information inside an image
to the minimum and to only retain the information perceptible by the HVS. Figure 1.13 repre-
sents a simplified structure of MPEG (HEVC and AVC) encoder. The main principle behind
video compression are:

• Block partitioning: The image is first segmented into several blocks. Those blocks do
not have necessarily the same size.

• Prediction: This is a key step to reduce the redundancy of an image. It uses the fact that
videos are not random signals and that pixels have often relation between each other.
There is two ways to predict a block:

– Spatial prediction: The block is predicted using the already processed neighbor
blocks. The encoder cannot use non-processed blocks. Moreover, the encoder
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should not use the source blocks but the blocks after the full encoding/decoding
process as it will be the only information available to the decoder.

– Temporal prediction: The block is predicted using blocks of already processed
images. Note that the encoder does not necessarily consider the images in temporal
order.

Both, the prediction mode and the error committed during the prediction, called the resid-
ual, are transmitted to the decoder. If the prediction is accurate, its value should be close
to zero.

• Transform: This is the second used method to reduce image redundancy. The goal of
a transformation is to compact the block signal into the smaller possible number of coef-
ficients. This is usually performed with the Discrete Cosinus Transform (DCT) although
Discrete Sinus Transform (DST) is also possible in HEVC for 4X4 blocks.

• Quantization: The transformed residual is quantized. The quantization parameter (QP)
is used in HEVC and AVC to control the quantization step size. This step reduces the
amount of bits at the output of the encoder, but it also reduces the quantity of available
information. Thus, the QP is often viewed as the parameter to adjust a trade-off between
the amount of compression and the quality of the decoded signal.

• Entropy encoding: This is a classical lossless encoding method which allows optimizing
the length of the bitstream. This method is particularly efficient with quantized residual
blocks as most of their coefficients are null.

Figure 1.13: simplified structure of an MPEG video encoder
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1.4.3 Adaptation of codec to HDR/WCG content

The recommendations of the ITU-T H.Suppl.15 [7] to adapt the HEVC and the AVC com-
pression mainly concern the Quantization Parameter (QP) presented in the previous section.
Those recommendations first concern the Y ′C ′bC

′
r color space with the PQ transfer function

but it can be extended to the ICtCp color space and to the HLG transfer function [46]. There
are two proposed algorithms to adapt the QP values to HDR/WCG content, one for luminance
blocks and one for chrominance blocks:

• Luma-dependant adaptative quantization: The encoders achieved a good balance be-
tween dark and bright areas for SDR content but using the same setting with HDR content
could ensure that too few bits are allocated to bright areas and too many to dark areas
due to the characteristics of the transfer functions. The solution recommended by the
ITU is to calculate the average luma value of each block and to add an offset dQP to the
QP. The figure 1.14 represents the dQP value in function of the average luminance of the
block in the case the chosen color space is Y ′C ′bC

′
r and the chosen transfer function is

PQ.

Figure 1.14: QP offset dQP in function of the average luma value in 64x64 block (source [7])

• Chroma QP offset algorithm: The chroma QP offset algorithm is used to overcome a
compression issue with the chrominance component Cr and Cb in HDR/WCG. In WCG,
most of the chrominance values tend to be near their mean value (i.e., 512, the value
of grey) while the Y ′ component tends to use most of its range. This is even more sig-
nificant for BT.709 content encapsulated in a BT.2020 gamut. This behavior creates a
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shift in the bitrate allocation from the chrominance to the luminance. This can potentially
create visible chrominance artifacts. The ITU proposes to add a QP offset specifically to
chrominance components of picture blocks. An example can be found in [7] for a Y ′C ′bC

′
r

color space with the PQ transfer functions:

QPoffsetCb =max(−12,min(0, Round(cCb × (k ×QP + l))))

QPoffsetCr =max(−12,min(0, Round(cCr × (k ×QP + l))))
(1.34)

where QP is the quantization parameter, k = −0.43, l = 9.26, cC′r = cC′
b

= 1 if the content
is natively BT.2020 cC′

b
= 1.14 and cC′r = 1.78 if this is a BT.709 content encapsulated in

a BT.2020 content.

1.5 Conclusion

In this chapter we explain the main concept behind HDR and WCG. Those technologies
greatly improve the viewers quality of experience. In addition we present the modifications
required in the chain of transmission to handle such content. Those modifications are not
negligible as the HVS have a widely different comportment in the color space areas that were
not cover by the legacy SDR format. New color space had to be created to represent HDR/WCG
gamut content and the compression had to be adapted.

The quality of HDR/WCG transmission have to be evaluated to select the best solution
to compress images/videos. In the next chapter we present the methods to perform quality
assessment on images.

45



CHAPTER 2

IMAGE QUALITY ASSESSMENT

2.1 Introduction

Image/video Quality Assessment (IQA) methods aim to evaluate the perceived quality of
images from the humans’s point of view.

IQA is an important tool to estimate the level of acceptable degradation occurring during
the various steps of the image distribution: the capture, the processing, the compression, the
transmission and the display of images. There are two kinds of IQA methods: Subjective and
objective.

Subjective quality assessment methods are the most reliable methods to assess the quality
of images. Subjective tests consist in asking to a panel of viewers to evaluate the quality of
distorted images/videos with/without the reference image. Objective image quality assessment
methods, on the other hand, aim to emulate subjective tests using computational models. They
are less reliable but are faster and less costly to achieve as it does not require to recruit any
viewer. Subjective tests are the ground truth on which are evaluated any objective methods.

In this chapter, we first introduce the different standardized methods to perform subjective
tests. Then in a second section, we review three existing HDR databases annotated with
subjective scores. Finally, we review the different methodology to perform objective image
quality assessment on HDR content.

2.2 Subjective methods

In this section, we present the methodologies used to retrieve viewers’ opinions. In most
tests, reference images are distorted using different levels or different modes of distortion. Each
kind of distortion corresponds to a hypothesis on the configuration of an image/video system.
Each hypothesis is called a hypothetical reference circuits (HRC).

Several methodologies were created over the years to obtain the opinions of a panel of
viewers. Most of those methods are normalised in the ITU standards BT.500 [47] and P.910 [48].
Those methodologies can be categorized into two types:

• Single Stimulus method: Each distorted images are rated individually independently
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from the reference images. One example is the Absolute Category Rating (ACR) [48].
In this test, each images is evaluated by the viewers on a five-label scale: "bad", "poor",
"fair", "good" and "excellent". Those labels are then translated to values between 1 and 5.
A variant of this test is the Absolute Category Rating with Hidden Reference (ACR-HR). In
this test, the reference images are also included in the test, without informing the subjects
of its presence.

• Double-stimulus or multiple stimulus: Each distorted image is rated based on its ref-
erence image. For example, in the Double Stimulus Impairment Scale (DSIS) methodol-
ogy [47] also called Degradation Category Rating (DCR) [48], the viewers observe both
the reference and the distorted images (at the same time or sequentially). The scale of
this kind of test go from "impairments are imperceptible" to "impairments are very annoy-
ing".

Once the scores are obtained, the mean score of each image is calculated. This score is
called the Mean Opinion Score (MOS) and corresponds to the quality of an image:

MOSj = 1
N

N∑
i=1

sij (2.1)

where MOSj is the MOS of the image j, N the number of viewers and sij the opinion of the
viewer i on the image j.

As all data obtained by experimental test, this note has a confidence interval. This confi-
dence interval is derived from the standard deviation of each sample [47]. The 95% confidence
interval is given by:

CI95 = [MOSj − δj ,MOSj + δj ] (2.2)

where:
δj = 1.96× stdj√

N
(2.3)

where stdj is the standard deviation of the image j scores.
Both single and double stimulus methodologies have their own advantages. Single Stimu-

lus methods are not biased by the reference and are easier to implement than Double-stimulus
methods. ACR-HR also helps to reduce the scene bias (viewers liking or disliking a reference
video). However, those kinds of tests are unable to evaluate some defaults that impact the
"look" of an image. For example, dulled colors [48] might remain undetected. Double-stimulus
methods are more adapted to also evaluate them. Moreover, those methods are particularly
well suited for high quality system evaluation in the context of multimedia. For example, the
DSIS and DCR methodologies allow us to obtain information on the viewer’s impairment detec-
tion threshold using the two scales "imperceptible" and "perceptible but not annoying".
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The obtained images annotated with quality scores are particularly useful to evaluate the
accuracy of objective metrics.

2.3 Available HDR image databases with subjective scores

Several HDR image databases annotated with quality scores were created in the last few
years to compare different compression methods or to evaluate the performance of image qual-
ity metrics. In this section, we review three available HDR image databases: Narwaria et
al. [49], Zerman et al. [50] and Korshunov et al. [24]. Those databases were created to evalu-
ate compression solutions as well as objective metrics and are composed of a variety of images
with different characteristics.

Therefore, the different authors aimed to create database representative of the diversity
of HDR content. First, we propose to characterize these images thanks to a set of indexes
described in the following section. Result and discution are presented in Section 2.3.2.

2.3.1 Image description indexes

To describe objectively the images of each database, four indicators are used:

• The image dynamic range (DR). It represents the luminance range of the signal. It is
not a measure of the brightness of an image. For example, a night scene have a large DR
due to emmissive light sources (like car lights) but appears to be very dark. The image
DR is similar to the dynamic range calculated for display (cf. section 1.2.1):

DR = log10(Y ∗max)− log10(Y ∗min) (2.4)

where Y ∗min and Y ∗max are the minimum and the maximum luminance (in the XY Z linear
domain), respectively. They are computed after excluding 1% of the brightest and darkest
pixels to be more robust to outliers. For SDR images, a dynamic range is typically below
3 log units.

• The key of the picture. It is a measure of its overall brightness (in the range [0,1]) of
a scene. This metric is complementary to the DR to characterize the luminance of an
image. If the key is low (below 0.3), it means that most of the pixels are near the lowest
limit of the image DR. In this case the image is perceived as dark. If the key is high (above
0.6) the pixels are nearer to the highest limit of the image DR. In this case the image is
perceived as bright. The key is calculated as follows:

key = log10(Y )− log10(Y ∗min)
log10(Y ∗max)− log10(Y ∗min) (2.5)
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log10(Y ) is computed as follows:

log10(Y ) = 1
N

I∑
i=1

J∑
j=1

log10(Y (i, j) + δ) (2.6)

where Y (i, j) is the luminance of pixel (i, j), N the total number of pixels and δ a small
offset to avoid a singularity when the luminance is null. Y ∗min and Y ∗max are calculated in
the same way as for dynamic range.

• The spatial information (SI) [48]. It describes the complexity of an image. The SI index
corresponds to the standard deviation of the image perceptually uniform luminance plane
Y ′ which has been filtered by a Sobel filter:

SI = std[Sobel(Y ′)] (2.7)

For high definitions images, a SI of 45 means that the image is very simple and a SI
above 100 means that the image is very complex. On SDR images, to obtain an ap-
proximately perceptually uniform luminance, this index is used after the OETF, usually a
gamma function. as stated in section For HDR content, to obtain SI values comparable
to the SI values applied to SDR content, we apply the PU function (cf. section 2.4.1) on
the linear luminance of the HDR images.

• The colorfulness. The colorfulness of the perception of the chromatic component of an
image. The more an image is perceived as colored, the more the image have a high
colourfullness. In [51], the authors proposed an index that measures the colourfullness
based on a psychophysical category scaling experiment. The authors proposed three
variants to measure the colorfullness. In this thesis, we use the variant called M̂

(1)
. This

index is considered to be the most natural by the authors. Moreover, this index is calcu-
lated on image converted in the CIELab space, a space that can be adapted to HDR (cf.
Section 1.3.2). This metrics is calculated as follows:

M̂
(1)

= σab + 0.37× µab (2.8)

where
σab =

√
σ2
a + σ2

b (2.9)

and
µab =

√
µ2
a + µ2

b (2.10)

where σa and σb are the standard deviations along the a and b axis, respectively. µa and
µb are the means of the a and b component, respectively. The combination of σab and µab
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was learned with the psycho-physical experiment.

The image files sometimes report luminance above or below the limits of the display. To
obtain realistic values, before calculating these indicators, the image luminance is limited to the
display available dynamic range used in the respective subjective tests.

2.3.2 HDR Databases presentation

In this subsection we review three HDR databases: Narwaria et al. [49], Zerman et al. [50]
and Korshunov et al. [24]. We select those databases because they all use HDR images with
various characteristics, they create realistic distortions and they are publicly available online.

To score the images, each database used a different subjective test protocol. Two used a
double stimulus method and one a single stimulus method. If the protocols are different, the
authors used the same HDR SIM2 display (HDR47ES4MB) which has a measured dynamic
range going from 0.03 to 4250 cd/m2. This display also have one main limitations: it cannot
handle the BT.2020 gamut.

All of the presented databases include compression artifacts using well known codec (JPEG,
JPEG-XT and JPEG 2000). Some of them use a backward compatible compression. This
method allows the images to be displayable with SDR equipment while preserving the dynamic
range for the display on HDR screens. A Tone Mapping Operator (TMO) is used to tone map
the HDR images into SDR range. These tone-mapped images are then compressed using
different codecs. After the decoding process, they are tone expanded to recover their HDR
characteristics.

Table 2.1, summarized the characteristics of the databases including, the number of ob-
servers, the number of images, the subjective test protocol, the kind of distortions, the used
display, the used gamut and the image sizes.

Table 2.1: Database characteristics.

Name #Obs #Img Protocol Distortion Display Gamut Size
Narwaria et al. [49] 27 140 ACR-HR JPEG SIM2 HDR47ES4MB BT.709 1920 × 1080

Korshunov et al. [24] 24 240
DSIS

JPEG-XT SIM2 HDR47ES4MB BT.709 944 × 1080
(side by side)

Zerman et al. [50] 15 100 DSIS
JPEG, JPEG-XT

SIM2 HDR47ES4MB BT.709 1920 × 1080
JPEG2000
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2.3.3 Narwaria et al.

Narwaria et al. [49]’s database (Available at http://ivc.univ-nantes.fr/en/databases/

JPEG_HDR_Images/) is composed of 10 source images, which have been distorted by a back-
ward compatible compression with the JPEG codec and the iCam TMO [52]. This database was
used along with others to tune the objective metric HDR-VDP-2 [53] in its version 2.2.1 [54].
The angular resolution used during the subjective test was 60 pix/degree and the surround
luminance was 130 cd/m2. The characteristics of each reference image are reported on Fig-
ure 2.1.

(a) (b)

(c) (d)

Figure 2.1: Characteristics of the Narwaria et al. [49] images: (a) The dynamic range, (b) key,
(b) spatial Information, (d) Colorfulness.
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2.3.4 Korshunov et al.

Korshunov et al. [24]’s database (Available at http://mmspg.epfl.ch/jpegxt-hdr) con-
sists in images distorted with a backward-compatible compression scheme using the JPEG-XT
standard and either the Mantiuk et al. [55] or the Reinhard et al. [56] TMO. The angular reso-
lution used during the subjective test was 60 pix/degree and the surround luminance was 20
cd/m2. The characteristics of each reference images are reported on Figure 2.2.

(a) (b)

(c) (d)

Figure 2.2: Characteristics of the Korshunov et al. [24] images: (a) The dynamic range, (b) key,
(c) spatial Information, (d) Colorfulness.

2.3.5 Zerman et al.

Zerman et al. [50]’s database (Available at http://webpages.l2s.centralesupelec.fr/

perso/giuseppe.valenzise/) is an extension of a smaller database created by Valenzise et
al. [57]. The distorted images are generated by both backward-compatible compression using
the TMO proposed by Mai et al. [58] and a non backward-compatible compression with the use
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of the PQ function for the EOTF. The compression was performed using the JPEG, the JPEG-
XT and the JPEG2000 codec. The angular resolution used during the subjective test was 40
pix/degree and the surround luminance was 20 cd/m2. The characteristics of each reference
images are reported on Figure 2.3.

(a) (b)

(c) (d)

Figure 2.3: Characteristics of the Zerman et al. [50] images: (a) The dynamic range, (b) key,
(c) spatial Information, (d) Colorfulness.

2.3.6 Advantages and Drawbacks

The databases are composed of various images with very different characteristics:

• They all have images with a dynamic range that falls below a SDR display range and
images with the maximum range available for the used HDR display.

• They all have images with various key. From very bright image like "moto" of the Narwaria
et al. database to "FireEater" from the Zerman et al. database. Zerman et al. is the only
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database to have an images have one image wit a key below 0.2. However, it might corre-
spond to a very unlikely extreme condition. Other databases do contain night scenes like
"LightHouse072" for the Narwaria et al. database and "LabTypeWriter" for the Korshunov
et al. database. Korshunov et al have no images with a key above 0.7 contrary to other
databases.

• All databases have a wild range of complexity

• Korshunov et al. and Zerman et al. have a wild range of colorfullness. However, Narwaria
et al. has no images with a colorfulness above 40.

In general, the three databases are intended to represent the diversity of HDR content.
While some features are missing in some databases, such as images with a high key in Kor-
shunov et al. or very colorful images in Narwaria et al., it is too early to conclude that these
databases are not representative. Indeed, the HDR images are always confidential and the us-
ages are still evolving. This type of image could correspond to a very small minority of content
and would not be essential for a database to be representative of HDR content with a BT.709
gamut.

There are three main limitations on those databases:

• First, the limited BT.709 gamut is used during the databases creation. The wider BT.2020
color gamut is more and more associated with HDR images and videos. In addition,
standard organizations, such as DVB, recommend the use of the BT.2020 gamut with
HDR content [59] to accelerate the development of both technologies.

• Second, because they used the smaller BT.709 gamut, the databases have low color
artifacts due to the compression. Therefore they are not representative to the chromatic
artifacts that can appears on a larger gamut (cf. Section 1.4.3).

• All of these databases were created with the same screen (SIM2 HDR47ES4MB). This
screen uses LED-LCD technology and has a specific maximum dynamic range and bright-
ness. A different display using a different technology (such as OLED) and a different
dynamic range may impact the image rendering.

2.4 Image quality assessment: objective methods

Objective metrics aims to mimic the results from subjective tests. Those metrics are a key
tool to evaluate the performances of image and video compression. Objective IQA metrics
became an important field of research and numerous solutions exist to assess accurately the
quality of images.

IQA objective metric can be separated into three categories:
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• Blind reference metrics: Blind reference metrics or no reference metrics do not need
to use the reference image to evaluate distorted images. They are particularly suited
to evaluate camera performances as for this kind of system, no reference is available.
Among the most use no-reference metric, we can mention DIIVINE [60], BLIINDS [61] or
BRISQUE [62]. More recently Kottayil et al. [63] proposed a no-reference metric special-
ized for HDR contents.

• Full-reference-metrics: Full-reference-metrics use the reference and the distorted im-
age. They are particularly suited for compression evaluation as the goal of such algo-
rithms is to maintain as much of possible the integrity of a reference image. A complete
review of such metrics for SDR images was perform in [64]. In this review, authors esti-
mate that FSIMc [65] and SFF [66] provided the best performances.

• Reduced-reference metrics: Reduced-reference metrics use only partial information of
the reference image. It can be useful when the effort to obtain the reference image is too
costly. Among the most use reduced-reference metric, we can mention WNISM [67] which
has been recognized as the standard method for reduced reference IQA, FEDM [68] or
again RRED [69].

In this thesis, the focus is put on video compression, so only the full-reference metrics are
studied.

IQA metrics used for Standard Dynamic Range (SDR) images using the legacy gamut
BT.709 [28] are not able to process the information brought by the new HDR/WCG representa-
tions. To overcome this limitation, there are two distinct strategies. First, the SDR metrics can
be adapted to HDR. This is the method proposed by aydin et al. [10]. The second strategy is to
create specific metrics dedicated to HDR content such as HDR-VDP-2 [53] and HDR-VQM [70].

In the first part of this section, we present the method to adapt SDR metrics and in a second
part, we describe metrics specifically designed for HDR content and especially HDR-VDP-2.

2.4.1 Adapting SDR image quality assessment

Objective image quality metric has been an active topic for many years. Many methods were
created from the simplest distortion metric such as color difference metric and PSNR, to more
complex metric based on phase congruence (FSIM) passing by metric based on the information
theory (VIF). Thirteen SDR metrics commonly used in academic research, standardization
or industry are summarized by Table 2.2. There are seven achromatic or color-blind metrics
(PSNR, SSIM, MS-SSIM, FSIM, VIF, PSNR-HVS-M and PSNR-HMA) and six metrics including
chrominance information (∆E, ∆ES , SSIMc, CSSIM, FSIMc, PSNR-HMAc). A more detailled
description of those metrics can be found in appendix A.
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Table 2.2: Selected SDR quality metrics.

Name Color Reference Main Principle

PSNR Ratio between the range of the signal
and the mean square error

∆E 4 Mean of the color difference metrics

∆ES 4 Zhang et al. [71] Mean of the color difference metrics
and the mean the blurring effect
of the HVS.
Also known as S-CIELab

SSIM Wang et al. [72] Metrics based on the comparison of
three characteristics of the images:
the luminance, the contrast
and the structure.

SSIMc 4 Wang et al. [73] Linear combination of the SSIM applied
on the three components Y′, Cr and Cb of
the images.

CSSIM 4 Hassan et al. [74] Combination of SSIM and ∆ES

MS-SSIM Wang et al. [75] Multi-scale SSIM

FSIM Zhang et al. [65] Comparison of the phase congruency and
the gradient magnitude

FSIMc 4 Zhang et al. [65] Color extension of FSIM.
Adds two comparisons corresponding
to the two chrominance components

VIF Sheikh et al. [76] Metric based on the information theory and
natural scene statistics

PSNR-HVS-M Ponomarenko et al. [77] PSNR on the DCT blocks of the images using
CSF and visual masking

PSNR-HMA Ponomarenko et al. [78] Improvement of the PSNR-HVS-M. Takes into
account the particularities of the mean shift
and the contrast change distortions

PSNR-HMAc 4 Ponomarenko et al. [78] Linear combination of the PSNR-HMA on the
three components Y′, Cr and Cb of the images.

Those metrics were tuned for SDR content encoded with the gamma transfer functions.
In [10], authors proposed to use a function called Perceptual Unit (PU) function instead of us-
ing a classical gamma transfer function. The PU function corresponds to the gamma EOTF
(defined in BT.1886 [32]) for luminance value between 0.1 and 80 cd/m2 while retaining per-
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ceptual linearity above. This method can be used for any metrics using the luminance-corrected
with the gamma function, such as PSNR, SSIM, MS-SSIM. In this manuscript, the metrics using
the Perceptually Uniform (PU) function have the prefix PU- (PU-PSNR, PU-SSIM).

Figure 2.4 represents the PU fnuction as well as the gamma function (calculated for a range
between 0.01 and 100 cd/m2).

Figure 2.4: PU function and gamma function

However, this method can only be used on luminance-only (or color-blind) metric as it only
adapts the color space in the luminance dimension. The authors did not use one of the per-
ceptually uniform color space presented in the first section because those color spaces did not
exist at the time.

2.4.2 Metrics designed for HDR content

There are two main metrics that were specifically designed with HDR in mind: HDR-VDP-
2 [53] for still images and HDR-VQM [70] for video. Both metrics aim to model the HVS mech-
anisms.

HDR-VDP-2 which has been recognized as the standard metric to perform HDR objective
IQA. As this metric was thoroughly studied during this thesis, we describe its main components
in the following.

HDR-VDP-2 is a metric that models precisely the response of the early stage of the HVS.
It takes into account the higher dynamic range of HDR images in the dark regions (mesopic
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and scotopic vision) as well as brighter regions (photopic vision). This metric can provide a
distortion map and a quality score. Figure 2.5 represents the block diagram of this metric.

The HDR-VDP-2 metric models step by step light path accross the HVS from the cornea to
the brain:

• HDR-VDP-2 first models the intra-ocular scattering of the light. It corresponds to the
scatter that occurs in the eye chamber and the retina. It reduces high frequencies and
reduces the contrast of the light. This effect is also known as the disability glare [79].
HDR-VDP-2 models this phenomenon with a Modulation Transfer Function (MTF):

F{LO[c]} = F{L[c]}.MTF (2.11)

where L[c] the map of the c component (usually Red, Green and Blue emission from a
screen), and LO[c] the modified luminance. F corresponds to the Fourier transform.

• After simulating the intra-ocular light scattering, the metric estimates the response of the
L, M and S cones and the rods R responses using the photoreceptor spectral sensitivity :

vL|M |S|R[c] =
∫
λ
σL|M |S|R(λ).f [c](λ) dλ (2.12)

RL|M |S|R =
∑
c

L[c].vL|M |S|R[c] (2.13)

with σ the spectral sensitivity of L, M and S cones and R the rods, f [c] the spectral
emission of the c component of the images and R the amount of light sensed by each
photoreceptor.

This response corresponds to the quantity of light that is perceived by each photore-
ceptor. However, the sensibility of this photo-receptor is highly non-linear (as stated in
subsection 1.3.1). This phenomenon is sometimes called luminance masking.

• To transform the response RL|M |R into a perceptually linear response PL|M |R, HDR-VDP-
2 uses a non-linear transducer function tL|M |R :

PL|M |R = tL|M |R(RL|M |R) (2.14)

In this part, the S cones are neglected because they have very little impact on the lumi-
nance perception. This function is calculated using the estimated intensity sensitivities of
each photo-receptor sL|M |R:

tL|M |R = speak

∫ r

rmin

sL|M |R(µ)
µ

dµ (2.15)
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with speak the adjustment for the peak sensitivity of the visual system and rmin the mini-
mum detectable intensity. The sensitivity of the rods comes from experimental data obtain
with color-blind persons. The sensitivity of the cones was deduced from the combined
sensitivity of all photo-receptors sA :

SL|M = 0.5(sA(2r)− sR(2r)) (2.16)

The global sensitivity sA is captured in a contrast sensitivity function :

sA(l) = max
ρ

(CSF (ρ, l)) (2.17)

with l the luminance and ρ the spatial frequency. The chosen CSF was established from
[80].

• The perceived luminance map of each image is then estimated:

P = PL + PM + PS (2.18)

• This response is, then, discomposed into subbands of frequency f and orientation o using
the steerable pyramid [81]. The images are decomposed into four orientations bands and
the maximum possible number of spatial frequency bands given the image resolution.
Each subband of the reference image and the distorted images are then subtracted to
each other :

D[f, o] = |BT [f, o]−BR[f, o]|p√
NnCSF [f, o]2p +Nmask[f, o]2

(2.19)

with BR[f, o] the subband of frequency f and orientation o of the reference image and
BT [f, o] the subband of frequency f and orientation o of the distorted image. The ex-
ponent p is the gain that controls the shape of the masking function (p = 3.5). NnCSF

is a noise corresponding to the neural CSF. The neural CSF is a CSF without the intra-
ocular scattering and without the luminance masking. Nmask corresponds to the contrast
masking. This is a signal-dependent noise component necessary because the visibility
of differences depends on its background. For example, if the differences have the same
orientation and spatial frequency, they are therefore easier to see. On the contrary, if the
differences are superimposed on a different background, they become harder to detect.

• Once each subband of distortion is calculated, it can be used to calculate at one hand a
distortion map and on the other hand, the estimated quality value of the distorted images.
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The quality measure is calculated as follows:

Q = 1
F.O

F∑
f=1

O∑
o=1

wf log

(
1
I

I∑
i=1

D2[f, o](i) + ε

)
(2.20)

with F the number of frequencies, O the number of decomposition, I the number of pixels
in the subband and ε a small constant to avoid singularities. The weights wf were trained
to fit in the best way possible, the Mean Opinion Score (MOS) obtained from subjective
tests. The weights wf were optimized for HDR content in [54].

In practice, the frequencies associated with each image subband dur-
ing the steerable pyramid decomposition are defined using the angular
resolution (pixel by degree). This value depends on the display size and
viewing distance. The same image may have different angular resolu-
tion for each viewing condition.
For HDR-VDP-2, weights wf are defined for images with an angular
resolution of 60 pixels / degree. The frequencies assigned to each sub-
band image are then as follows: 30, 15, 7.5, ... cpd (cycle per degree).
However, if the images have an angular resolution of 40 pix/deg, the
frequency associated with each sub-band is then: 20, 10, 5, ... cpd. In
this case, no weight is directly associated with the subband.
To assign a weight to this subband anyway, HDR-VDP-2 uses a linear
interpolation. For example, since the weight associated with a sub-
band of 15 cpd is 0.2832 and the weight associated with a sub-band
of 7.5 cpd is 0.2142, the weight associated with a sub-band of 10 cpd
calculated through linear interpolation is then 0.2372.

The case of unaligned frequencies

HDR-VDP-2 uses color information to correctly calculate photopic and scotopic luminance.
This means that it models the Purkinje shift: at low luminance, the luminance peak sensitivity
of the eye shifts toward the blue end of the color spectrum. However, as for PU-metrics, HDR-
VDP-2 does not consider chromatic distortions [82]. This is a color blind quality metric as it only
consider the luminance.
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Figure 2.5: HDR-VDP-2 principle

2.5 Assessing objective metric performances

The performances of the different objective quality metrics can be assessed using subjective
tests. Objective metrics attempt only to model the results from subjective tests. The results
coming from objective metrics can be compared to the score of image assessed with subjective
scores using different performance indexes that will be presented below.

However, the subjective score or Mean Opinion Score (MOS) given to an image is not
necessarily the absolute quality score of this image. The same score coming from different
databases can have a different meaning. To tackle this issue a mapping of the objective score
has to be applied.

In [83], authors recommend, before computing any performance indexes, to apply a non-
linear regression to the objective quality scores thanks to a logistic function:

Q̃i = a+ b

1 + e−
(Qi−c)

d

(2.21)

where Qi is the score of the quality metrics on the image i and Q̃i the mapped quality score.
Parameters a, b, c and d are determined by the non-linear regression. In the following of the
thesis, corrected objective score Q̃ are called Q to simplify the equations.

Once its objective score have been adapted, the pertinence of a metric can be estimated
given several indexes.

Four widely use performance indexes are given below:

• The Pearson correlation coefficient (PCC) measures the linearity between two vari-
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ables :
PCCS,Q = cov(S,Q)

σSσQ
(2.22)

where, S corresponds to the subjective scores (MOS),Q to the corrected predicted quality
score, cov(S,Q) is the covariance of S and Q and σS (resp. σQ) is the standard deviation
of S (resp. Q).

• The Spearman Rank Order Correlation coefficient (SROCC) measures of the monotony
between two variables. Raw scores S and Q are first converted to ranks rgS and rgQ. The
SROCC corresponds to the PCC of these two new variables :

SROCCS,Q = cov(rgS , rgQ)
σrgSσrgQ

(2.23)

• The Outlier Ratio (OR) [84] represents the quality metrics consistency. It represents the
number of outlier point to total points N :

OR = TotalofOutlier

N
(2.24)

An outlier is defined as a point for which the error exceeds the 95 percent confidence
interval of the mean MOS value (cf. Section 2.2).

• The Root Mean Square Error (RMSE) measures the accuracy of the quality metrics :

RMSE =

√√√√ 1
N

N∑
i=1

(S(i)−Q(i))2 (2.25)

where N is the number of quality score.

Those indexes allow to compare the significance of each objective metric.

2.6 Conclusion

In this chapter we have presented the main techniques to perform image quality assessment
whether using subjective tests, whether using objective quality metrics. In addition we also have
presented this techniques in the contexts of HDR images. We have presented three existing
HDR databases annotated with MOS. In addition, we also have presented the existing objective
metrics adapted to HDR.

However, neither the issue of WCG images and neither the issue of chromatic distortions
were tackled by the existing IQA methods. There is no existing subjective tests of WCG and
there is no objective metrics sensitive to chromatic distortions.
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In this part, we have introduced the main concepts behind HDR and WCG content and
why it increases our capacity to create more natural images. We have also described the
new image color spaces designed to handle this new image/video contents and the adaptation
which needs to be made consequently on video codecs. We have also tackled the issue of
image quality assessment.

Moreover, we have reviewed several HDR image databases annotated with quality scores.
Those databases have some limitations: first, they all use exactly the same HDR display model.
However, the HDR displays should be quite diverse in the future with various dynamic ranges
and peak brightness available. But more importantly, those databases, due to the screen lim-
itations, do not consider WCG images and, therefore, provide images with low distortions on
chromatic components.

The same problem occurs with the objective metrics as there is no HDR metric sensitive
to color distortions. They also have been only tested against standard gamut images. WCG
related artifacts are not being considered yet.

As chromatic errors can occur during the compression, especially when using a wider color
gamut, this thesis focus in tackling the following issues: creating image databases with realistic
chromatic errors and creating metrics that can be sensitive to HDR/WCG chromatic errors.
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PART II: INTRODUCTION

In the field of multimedia in general and image and video in particular, subjective tests are
necessary for quality assessment to reflect the human perception of quality. Indeed, the goal
of many signal processing is to transmit information, in our case images or videos, to another
human. Therefore, the quality of many image/video processing like compression depends on
the human appreciation. Thus, such processing cannot afford to avoid any kind of user studies.

Large and numerous subjective tests adapted to the legacy SDR image and video format
(LIVE [85], CSIQ [86], TID2008 [87]) were created. However, because the topic is recent,
subjective tests performed on HDR/WCG contents are rather small or not representative of the
variety of distortions that can occur with this kind of contents. The three limited HDR databases
presented in the previous chapter, only study HDR images with the NT.709 gamut. This was
due, until recently, to the lack of professional displays able to handle the BT.2020 gamut. They
all used the SIM2 HDR47ES4MB display, which was one of the only HDR professional display
available at the time. The recent display Sony BVM-X300 extends the gamut available to display
images. Thus in this part, we propose two new databases annotated with MOS called HDdtb
and 4Kdtb respectively. We focused those databases on the chrominance distortions that can
occur with this larger gamut.

New databases allow us to extend the previous analysis carried out on the state of the
art [88] [89] [90] [50] [91] [57]. In this part, we also evaluate the pertinence of the existing metrics
against the experimental data at our disposal: the three pre-existing databases Narwaria et al.,
Korshunov et al. and Zerman et al. (cf. section 2.3) and the two newly created databases,
HDdtb and 4Kdtb.

This part is organized as follows. In the first chapter, the two new databases are presented
and their results commented. Then in a second chapter, we benchmark existing objective met-
rics. We analyze specially HDR-VDP-2 as it is a metric that is often considered as a reference
metric for HDR content.
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CHAPTER 3

NEW DATABASES PRESENTATION

3.1 Introduction

In this chapter we present experimental data we have acquired across two subjective tests
to complement existing subjective studies by considering the following part:

• First, both databases deal with distortions on content encoded using the BT.2020 WCG.
Previous database used the smaller gamut BT.709 instead. The first one, HDdtb, is a
database composed of BT.709 contents encapsulated in a BT.2020 gamut and the second
one, 4Kdtb, is composed of native BT.2020 content.

• Second, both present realistic chromatic artifacts that are meant to challenge luminance-
only objective quality metrics.

• Third, these databases allow us to evaluate the gain in term of quality of the chroma Qp
algorithm proposed by MPEG and presented in Section 1.4.1.

The two new databases are available at www-percept.irisa.fr/software/.
This chapter is separated in three sections: the first presents the test methodology, the

second presents HDdtb and the third the 4Kdtb.

3.2 Experimental protocol

In order to deal with the limitations of existing datasets, we have designed new subjective
tests. In the following we present the key ingredients of those tests.

First, we use a different display than the state of the art databases: the SONY BVM-X300
(cf. Figure 3.1). Previous database used the Sim2 HDR47ES6MB. the display SONY BVM-
X300 is a professional HDR video monitor able to faithfully display the brightness of signals [92].
This display uses a different technology (OLED) than the display used by previous database
(Led-LCD). One of its most interesting feature is its ability to handle most of the BT.2020 gamut.
This make this display particularly suitable to analyze the impact of chromatic distortions. It
has a peak brightness at 1000 cd/m2 and a luminance of a black pixel that was too low to be
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measured by our equipment (<0.2 cd/m2). In the rest of the thesis, we assume a luminance
for the black pixel at 0.001 cd/m2. It has a diagonal of 30 inches (750.2 mm) and is compatible
with 4K images (4096 × 2160 pixels). This monitor also allows us to force the use of a chosen
EOTF without having to consider the image metadata.

Figure 3.1: SONY BVM-X300 display

To display the images on the screen, we used the b<>com *Ultra Player* which allows
distributing uncompressed YUV content with a 10 bits quantization and 4:2:0 chroma sub-
sampling. For the down-sampling we applied the luma adjustment methodology presented in
subsection 1.4.1. The connection to the screen was done using 3G-SDI cables.

For both subjective tests, we used the Double-Stimulus Impairment Scale (DSIS) variant I
methodology [47] with a side-by-side comparison. Side-by-side comparison aims to make the
viewers more sensitive to chromatic distortion. Pairs of images were presented to the viewers.
One side of the screen is always the reference. To avoid a bias due to the position of the
image on the screen, 50% of participants had the reference always on the right-hand side, 50%
always on the left-hand side. To avoid bias with the order of presentation, the pairs of images
were randomized for each participant with the condition that the same content was never shown
twice consecutively. Figure 3.2 represents a image pair the viewers had to score.

To limit visual fatigue, the test is limited in times, thus limiting the number of images we
can show to the viewers. Each image pair was shown 10 second. Between each image pair,
the viewer has 5 second to vote. During this time a neutral grey is display on the screen to
avoid that the quality perception of an image is not impacted too much by the previous one.
The test sessions last 35 minute (including instructions and training time) with a 5 min pause in
the middle of the test. The viewers were placed at 3.2 times the height of the displays or 1.15
meter. We measured the luminance of the room at 40 cd/m2.
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3.2. Experimental protocol

The viewers were asked to rate the quality of each distorted images on a scale from 0 to
100 on scale similar as the one presented in [57], thus to allows the viewer to note precisely
the quality score of an image. This scale was associated with five labels: "Very annoying",
Annoying", "Slightly annoying", "perceptible but not annoying", "imperceptible". This scale is
illustrated on Figure 3.3.

Figure 3.2: Example of a pair of images presented to the viewer (Reinhard et al. TMO [93]).

Figure 3.3: Proposed subjective tests scale
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3.3 First database: HDdtb

The first database we propose is composed of HDR images with a BT.709 gamut. We
encapsulate those images inside the BT.2020 gamut to create more chromatic distortion during
the compression. This dataset is called HDdtb.

With this database, we select 8 images with a large variety of characteristics. The goal is to
be representative of the diversity of HDR contents. We select four different kinds of distortions.
All of them aim to create chromatic artifacts.

To create this database, we used a side-by-side methodology DSIS. However, we had only
one display Sony BVM-X300. To be able to display simultaneously both the reference image
and the distorted image on the same screen, we used half of HD images (1920 × 1080 pixels).
Moreover, we add a little black space between the two images. The new image dimensions
become 944× 1080 pixels. As the viewers were placed at 1.15 meter, it means that the images
have an angular resolution 60 pixels per degree (pix/deg).

Fifteen naive subjects participated in this test (11 males, 4 females) with an average age of
25.8. All declared normal or corrected-to-normal vision. One participant was removed from the
analysis using the methodology described in [47].

3.3.1 Images descriptions

To create this database, eight images were selected from 3 collections: two are from the
MPEG HDR sequences (FireEater and Market) [94], one is from the Stuttgart HDR Video
Database (Showgirl) [95] and the remaining five images are from the HDR photographic sur-
vey [96]. Note that these images also belong to Zerman et al.’s database [50]. The characteris-
tics of the images are not exactly the same as in Zerman et al. [50] because we used only half
of the images.

Tables 3.1 to 3.3 present the detailled characteristics of the images: a thumbnail of the
images using the Reinhard et al. TMO [93], the histogram of the pixels luminance and finally
pixel chromaticity coordinates are plotted in the CIE xy diagram. For the last, as the XY Z

color space (and the xy coordinates) makes sense mostly under scotopic conditions, we only
consider the pixels that have at least a luminance of 10cd/m2. The image description indexes
(presented in section 2.3.1) can be found on Figure 3.4.

In the following, we describe one by one each selected reference images:

• FireEater: This image represents a fire eater shot during the night (cf. Table 3.1). This
is the darkest image of the database (lowest key). This is also observable on the image
luminance histogram. Due to its subject, FireEater possesses a high dynamic range: the
background is very dark and the fire very bright. The image possesses also the highest
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colorfulness but most of its pixels xy coordinates are located in the red corner of the
BT.709 gamut. It is also the simplest (lowest SI) image of the database.

• LasVegasStore: This image represents a street in Las Vegas shot during the night with a
lot of neon lights (cf. Table 3.1). This image has a high dynamic range due to the contrast
between the dark night and the neon lights but less than FireEater and Showgirl. Those
two images were shots with a camera that was able to capture darker pixels. Its key is
higher than FireEater as the neon lights are brighter and more numerous than the Fire. It
is also a colorful image and its pixels cover almost entirely the BT.709 gamut. This image
is more complex than FireEater.

• Market3: This image represents a market on a sunny day (cf. Table 3.1). This is the
brightest image of the database with some regions as bright as the peak brightness of
the display. It is also quite colorful and its pixels cover the entire BT.709 gamut. This
image is also the most complex of the database.

• MasonLake(1): This image represents a lake on a sunny day (cf. Table 3.2). This image
has the lowest dynamic range of all images. It is a colorful image but its pixels are mostly
situated in the blue area of the BT.709 gamut. This is also a simple image, large parts
being almost uniform blue regions (the sky and the lake).

• RedwoodSunset: This image represents a beach that was shot during sunset (cf. Ta-
ble 3.2). It can be decomposed in two regions. The grey and dimmed area of the beach
and the brighter area of the sunset. This image possesses an average dynamic range
and an average key. This image is also not very colorful and possesses a low complexity.

• Showgirl: This image represents a woman reflecting herself on a dressing table mirror
(cf. Table 3.2). Having a portrait is an important asset of a database as faces are regions
of interest for the HVS [97]. This is the image with the highest dynamic range due to
the presence of black bands on the top and on the bottom of the image. Its dynamic
range falls drastically when using only the core of the image from 6 log units to 2.85 log
units. This image possesses a high key but as for the dynamic range, the key fall when
considering only the interesting part of the image and pass from 0.68 to 0.36 so the overall
brightness is not very important for this image. The complexity and the colorfulness do
not change significantly using the complete or the crop image. It possesses a complexity
similar to LasVegasStore. The image possesses an average colorfulness. Many of its
pixels are located in the skin tone region of the BT.709 gamut.

• Typewriter: This image represents a typewriter and a book with text (cf. Table 3.3).
Writings are generally difficult to compress. Indeed, compression artifact can make the
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text hardly readable. This image possesses an average dynamic range and is quite dark
(even with the presence of an emissive light source). This is the less colorfull images and
is mostly composed of black and white. The complexity is not very high but due to the
presence of text, the SI indicators might not be in this case the best complexity measure.

• UpheavalDome: This image represents a rocky region during the day (cf. Table 3.3).
This image possesses a low dynamic range and a key superior to the average of the
database. It possesses a low spatial complexity and a medium colorfulness. It possesses
a lot of rock texture.

(a) (b)

(c) (d)

Figure 3.4: Characteristics of the HDdtb images: (a) The dynamic range, (b) key, (c) spatial
Information, (d) Colorfulness.
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Table 3.1: Description of HDdtb images (FireEater, LasVegasStore and Market3).

Thumbnail Luminance Pixels
(Reinhard et al. histogram coordinates in

TMO [93]) the CIE xy diagram

FireEater

LasVegaStore

Market3
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Table 3.2: Description of HDdtb images (MasonLake(1), RedwoodSunset and Showgirl).

Thumbnail Luminance Pixels
(Reinhard et al. histogram coordinates in

TMO [93]) the CIE xy diagram

MasonLake(1)

RedwoodSunset

Showgirl
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Table 3.3: Description of HDdtb images (Typewriter, UpheavalDome).

Thumbnail Luminance Pixels
(Reinhard et al. histogram coordinates in

TMO [93]) the CIE xy diagram

Typewriter

UpheavalDome

3.3.2 Distortion descriptions

To create the distortions, we used HDRTools (v0.16) (Available at https://gitlab.com/

standards/HDRTools/) to apply format conversion, chrominance sub-sampling or gamut con-
version. For the compression and decompression of the images, we used the reference soft-
ware of HEVC, the HEVC Test Model (v16.17) (Available at https://hevc.hhi.fraunhofer.

de/). Four kinds of distortions have been chosen:

• HEVC compression using the recommendation ITU-T H Suppl.15 [7]. Four different Qp
were selected for each image for this distortion. The selected Qp are 15,27,31 and 39 for
all images except two. Compression artifacts are harder to detect for the image "Market3"
so we increase the selected Qp value: 23, 31, 39 and 43. For the image "TypeWriter",
the presence of text have the tendency to highlight compression artifact: the text become
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easily unreadable. For this image the selected Qp are: 15, 23, 27, 31.

• HEVC compression without the chroma Qp adaptation (cf. section1.4.3) leading to more
chrominance distortions. For each image, we use the three higher Qp selected for the
previous distortion. The presence of chromatic artifact is hardly detectable for the lower
Qp.

Figure 3.5 shows an example of the difference of compression between the two selected
mode of compression. It represents a tone-map version of the image Showgirl com-
pressed with a Qp 39 with and without the chroma Qp adaptation. It should be noted
that the tone-mapping, the quantization to 8 bits and the resizing of the image have the
tendency to lessen the effect of chromatic artifacts. This is why in this case we use a high
Qp to illustrate this distortion. We can observe chromatic distortion on the image that is
not using the chroma Qp adaptation.

(a) (b) (c)

Figure 3.5: Example of compression artifacts on the image Showgirl: (a) The original image,
(b) Compressed image, Qp 39, with Chroma Qp adaptation, (c) Compressed image, Qp 39,
without Chroma Qp adaptation.
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• Gaussian noise on the chroma components using the Y ′C ′bC
′
r color space with a PQ

transfert function: 3 levels of noise measured using a signal on noise ratio (SNR) were
selected: 0.5, 1 and 3. Figure 3.6 illustrates this distortion for the smallest SNR, the
tone-mapping having the tendency to lessen the noise visibility.

(a) (b)

Figure 3.6: The image Market3: (a) The original image, (b) with Gaussian noise on the chroma
(SNR=0.5)

• Gamut mismatch: two kinds of distortion were created: on one hand, the BT.709 images
were considered as if they had been already encapsulated in a BT.2020 gamut leading
to more saturated images. On the other hand, we took images already encapsulated in
a BT.2020 gamut and considered them as BT.709 images and re-encapsulated them in a
BT.2020 gamut (using HDRTools). This creates less saturated images. Thus the BT.2020
image is displayed as a BT.709 image. Figure 3.7 illustrates this default. We also plot the
chromaticity coordinates on the CIE xy diagram. We can observe the variation in term of
used gamut.
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(a) (b) (c)

Figure 3.7: The image MasonLake(1) under three conditions: (a) The original image, (b) gamut
mismatch: BT.2020 image displayed as a BT.709 image (c) gamut mismatch: BT.709 image
displayed as a BT.2020 images.

3.3.3 Subjective quality analysis

Figure 3.8 represents the repartition of the MOS scores for each kind of distortion. We can
observe that the MOS of compressed or Gaussian noise corrupted images are well distributed
across all the quality scale although there is less image with a score above 75.

The chromatic distortion created by the compression without using the chroma Qp adap-
tation is not impacting the quality as much as we expected on this database. We observe
that the MOS scores obtained for compressed images with and without chroma Qp adaptation
are strongly correlated (pcc=0.95). This suggests that observers are consistent in their quality
scoring whether or not the chroma Qp adaptation is used. As illustrated by Figure 3.9 that rep-
resents the MOS scores of each image in function of the Qp, there is no significant difference
between compression with and without chroma Qp adaptations except for one image "Red-
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WoodSunset". This observation raises some questions about HDR images and their quality
evaluation.

Concerning the images with the "gamut mismatch" artifact, they all have a MOS score above
50 (slightly annoying). Most of them have a score between slightly annoying and perceptible
but not annoying. For most images, the distortion is important and clearly observable, but it is
not necessarily associated with a loss of quality. Moreover, this distortion was reported quite
hard to score according to the test participants. This default has also the highest standard
error because it was depending too much on the viewer personal taste. This questions the
pertinence of our subjective test with this distortion. On one hand, it is interesting to assess
that some artifacts do not directly affect the quality perception of images. On the other hand,
such artifact visibly modify the image and can change the artistic impact of the images (color
way more saturated or more dulled ...).

Figure 3.8: Repartition of HDdtb MOS scores.
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Figure 3.9: MOS score obtained from 14 naive viewers in function of the Qp.

As HDR images are still quite confidential, we may ask the following question: are naive
observers able to evaluate small to medium distortions on this new format? To answer this
question, 9 video quality expert rated the images using the same methodology. This is illus-
trated by Figure 3.10 that represents the MOS reported by naive viewers and the MOS reported
by experts. The two MOS series have a huge correlation (pcc=0.9455). Figure 3.11 represents
the expert MOS scores of each images in function of the Qp. It shows that, on the image "Mar-
ket3", the chroma Qp adaptation brings a small quality gain that was not seen by naive viewers.
However, the difference in quality perceived by the experts was not high enough to exceed the
MOS confidence intervals thus making it not statically significant.

Their is no significant differences in the MOS obtain from naive viewers and the MOS obtain
from expert viewers. Two factors can explain this:

• the low number of people that have rated the images (which increase the confidence
interval)

• the chroma Qp adaptation gain in overall quality is too small for those images and com-
pression Qp.

This database does not meet all of our goals. Especially, it does not provide sufficient
chromatic distortion. This database might not be a huge challenge for objective metrics. As a
result we decide to create another database with more prominent chromatic artifacts.
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Figure 3.10: MOS obtained from naive viewer in function of MOS obtained from expert.

Figure 3.11: MOS score obtained from 9 experts in function of the Qp.
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3.4 Second database: 4Kdtb
To overcome the limitation of the previous database we have created a second database

more representative of the future HDR images and videos:

• The image are native BT.2020 content and not BT.709 content encapsulated in a BT.2020
gamut. Then, the images are more prone to chromatic artifacts.

• The images are cropped images with a 4K resolution (3840 × 2160 pixels). In the future,
the HDR/WCG images will probably be synonym to a high resolution. We name this
database 4Kdtb for this reason.

Tone-mapped versions of the selected images are available in appendix B.
As for HDdtb, we can only use half of the screen. We used only part of these 4K images so

the reference and the distorted image could fit on our display (1890 × 2160 pixels) with a band
of 60 black pixels. Since we used the same viewing distance as HDdtb, the angular resolution
of the images increases and becomes 120 pix/deg.

Thirteen experts or sensitized subjects participated in this test (11 males, 2 females) with
an average age of 40. All declared normal or corrected-to-normal vision.

3.4.1 Images description

For the second database, we used eight 4K images produced by Harmonic Inc and ex-
tracted from two different clips Bike and Regatta. The characteristics of the images are given
in Figure 3.12. This database possess less dark images than the previous database (no key
below 0.4). However those kind of images only appears in very extreme and unlikely conditions.
Moreover, the SI of this database can not be compared with the other database SI. Indeed, SI
indexes values is dependent of the image resolution resolution. As we did not modify the sobel
filter of the SI index, it is attended that is values will be lower. Both clips are natural outdoor
scene where scene like TypeWriter of the previous database with very low colourfulness are
quite unlikely.

In the following, we describe one by one each selected reference images:

• Bike_110s: This image represents a woman crossing a street at the end of sunset (cf.
Table 3.4). This is the darkest image of the database especially the street region. There is
a lot of specular light due to the water on the street. This is amongst the most colorful im-
ages of the database due to the sunset and the cars light. Pixels chromaticity coordinates
are mostly concentrated in the red and yellow region of the gamut.

• Bike_20s: This image represents a cyclist in a city and was shot during the day (cf.
Table 3.4). It possesses a high dynamic range and a high key. It is a very contrasted
image with a dark area under the stairs of houses and bright area in the sky. It is also the
more complex image of the database. The image is not very colorful, with a lot of pixel
chromaticity coordinates situated in the grey and blue zone of the gamut.
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(a) (b)

(c) (d)

Figure 3.12: Characteristics of the 4Kdtb images: (a) The dynamic range, (b) key, (c) spatial
Information, (d) Colorfulness.

• Bike_30s: This image is a portrait of a man in a square at the end of the day (cf. Ta-
ble 3.5). For this database, this image possesses an average dynamic range and an
average key. It is an image with low complexity (the sky and the square are almost uni-
form). The colorfulness is not very high. Most of the saturated color comes from under
an arch where the sun shine with yellow and red color. The rest of the pixels is composed
mostly of grey and blue area.

• Bike_81s: This image represents a cyclist in an city that was shot at the end of the day
(cf. Table 3.5). It possesses a high dynamic range and an average key. It has an average
complexity. Most of its colorfulness comes from the sunset with red and yellow region.

• Regatta_11s: This image represents buoys on the water that was shot early in the morn-
ing (cf. Table 3.5). It has the lowest dynamic range and is amongst the image with the
lowest complexity. This is the image that covers the smallest region of the gamut mostly
in the yellow region.

• Regatta_24s: This image represents a woman paddling on a river on a sunny day (cf.
Table 3.6). It has an average dynamic range and possesses the second highest key
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amongst the database. This image has an average colorfulness. One of the interesting
features of this image is the huge specular highlight on the paddle.

• Regatta_80s: This image represents also a woman paddling (cf. Table 3.6). This image
has almost the same dynamic range but have a much lower key than Regatta_24s

• Regatta_95s: This image represents women lifting a boat (cf. Table 3.6). This last image
has a rather low dynamic range compare to the other image of the database but it is the
image with the highest key of our database. This is also the less colorful image of the
database.

Table 3.4: characteristics of 4Kdtb images (Bike_110s and Bike_20s).

Thumbnail Luminance Pixels
(Reinhard et al. histogram coordinates in

TMO [93]) the CIE xy diagram

Bike_110s

Bike_20s
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Table 3.5: characteristics of 4Kdtb images (Bike_81s, Bike_30s and Regatta_11s).

Thumbnail Luminance Pixels
(Reinhard et al. histogram coordinates in

TMO [93]) the CIE xy diagram

Bike_30s

Bike_81s

Regatta_11s
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Table 3.6: characteristics of 4Kdtb images (Regatta_24s, Regatta_80s and Regatta_95s).

Thumbnail Luminance Pixels
(Reinhard et al. histogram coordinates in

TMO [93]) the CIE xy diagram

Regatta_24s

Regatta_80s

Regatta_95s
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3.4.2 Distortion descriptions

With this database, we aim to create more visible color artifacts than in the HDdtb database.
We compressed the images with four different Qp (20,27,31,36) with three different options for
the compression:

• HEVC compression using the recommendation ITU-T H Suppl.15 [7].

• HEVC compression without the chroma Qp adaptation.

• HEVC compression with 8 bits quantization for the chroma instead of 10 during the com-
pression. The chroma was re-sampled to 10 bits before displaying images on the screen.

Figure 3.13 illustrates the different defaults on the image Regatta_11s. On this figure, green
and red artifacts appear. Those artifacts are attenuated by the tone-mapping.

(a) (b) (c) (d)

Figure 3.13: The image Regatta_11s under three conditions: (a) The original image, (b) Com-
pressed image, Qp 36, with Chroma Qp adaptation, (c) Compressed image, Qp 36, without
Chroma Qp adaptation, (d) Compressed image, Qp 36, 8 bits quantization for the chrominance.

It should be noted that chromatic artifacts appear with a 8 bits quantization on the chroma
even when the image is compressed with a low Qp. For example, on image Bike_ 30s , quan-
tization artifacts are easily visible on the sky and on the road when it is compressed with a Qp
of 20 (cf. Figure 3.14).
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(a) (b)

Figure 3.14: The image Bike_30s under two conditions: (a) The original image, (b) Compressed
image, Qp 20, 8 bits quantization of the chrominance

3.4.3 Subjective quality analysis

Figure 3.15 represents the repartition of MOS scores. We can observe that there are less
images with a low MOS than images with other quality. The reason is that we wanted to focus
more on the quality range where chrominance artifacts due to the compression is the most im-
portant. The previous database HDdtb shows that the impact of the chroma Qp offset algorithm
was the most important for Qp around 27. If the Qp is lower, the chroma Qp adaptation is not
necessary as there are enough bits allocated in the chroma. If the Qp is higher, the images are
too damaged and the chroma Qp adaptation cannot improve the quality. Moreover, we feared
that a too big quality gap would result for the viewer to put into perspective the smaller quality
gain offers by the chroma Qp adaptation. As a result, fewer images were considered to have
very poor quality.
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Figure 3.15: Histogram of the repartition of 4Kdtb MOS score

Figure 3.16 represent the MOS score in function of the compression Qp. It shows that
the distortions caused by an 8 bits quantization of the chroma induce a significative loss in
quality for 6 on 8 images significant distortion compared to the compression with chroma Qp
adaptation even for the highest quality. Images compressed without the chroma Qp adaptation
have generally lower quality than images compressed with chroma Qp adaptation quality but
higher quality than images compressed with an 8 bits quantization of the chroma.

This database provides significant chromatic distortion as the only difference of treatment
between the mode of compression is the handling of chrominance. It can be a challenging
ground truth for quality metrics.
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Figure 3.16: MOS score obtained for the database 4Kdtb in function of the Qp

3.5 Conclusion

In this chapter, we proposed two new HDR image databases annotated with subjective
scores: HDdtb and 4Kdtb. Those databases are complementary to the existing databases as
they proposed MOS scores obtain with a different display and with distortions specific to WCG.
Another goal of those databases is to create realistic chrominance distortions, an aspect that
was neglected by the previous databases.

The first database is composed of BT.709 images encapsulated in a BT.2020 gamut. The
second is composed of native BT.2020 contents. If the impact of chromatic compression dis-
tortions is limited in the database HDdtb, it is easily perceptible in the database 4Kdtb.

There is still room to improve the databases. For example, we did not provide images
exceeding the BT.709 gamut in the green area of the HVS gamut. We have tried to create a
database that can represent the diversity of HDR/WCG content with the videos at our disposal.
However, the production and the deployment of HDR/WCG contents are only at the beginning.
It is difficult to know in advance what the characteristics of the real content will be. It is currently
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very challenging to select the most representative images possible.
The two databases help us to understand the impact of chromatic distortion on quality

perception. In the following chapter, those databases will also help us to evaluate the resilience
and the sensitivity to such distortion of the objective IQA metrics.
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CHAPTER 4

ANALYSIS OF EXISTING METRICS

4.1 Introduction

In this chapter, we study in details state-of-the-art HDR quality metrics. The calibration and
the performances of existing objective metrics are analysed using the two new databases and
the three already existing databases presented in section 2.2, namely, Narwaria et al. [49],
Korshunov et al. [24] and Zerman et al. [50].

In the first part, we study in details the parameters of the metric HDR-VDP-2, which can
be considered as the reference metric for HDR contents. In the second part, we compare the
performances of all the existing metrics.

Note that before applying any metric, the images have to be correctly
formatted. Indeed, sometimes the image files report luminance above
and below the ability of the displays. To simulate the effect of the dis-
play, we limit the luminance of images to the available dynamic range
of the display used in the respective subjective tests. The luminance
outside this range is cropped. In this thesis, we consider the display
SIM2 HDR47ES4MB to be able to display luminance between 0.03 to
4250 cd/m2 and the Sony BVM-X300 0.001 cd/m2 to 1000 cd/m2. Some
articles consider slightly different values. This can explain the small dif-
ferences between our results and the reported results of other studies
using the same database. However, those differences are not signifi-
cant.

Display model

4.2 HDR-VDP-2 calibration

Recent studies [91] [89] have pointed out that HDR-VDP-2 is one of the best objective
metrics for HDR still images. Unfortunately, HDR-VDP-2 is quite complex to use due to numer-
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ous and sometimes hard-to-know parameters such as display emission spectrum, surround
luminance and angular resolution. In this subsection, we evaluate the influence of those user-
defined parameters on the ability of the metric to predict quality scores.

4.2.1 Sensitivity to the screen spectral emission

In this subsection, we will discuss the sensitivity of HDR-VDP-2 to the spectral emission of
the display. Indeed, HDR-VDP-2 allows to precisely model the quantity of light falling in each
photo-receptors. That implies to define the spectral emission of each photo-transmitter of the
display (Reg Green and Blue).

For this purpose, we measured the spectral emission of 5 HDR displays. The Table 4.1
summarizes the characteristics of the considered displays.

Table 4.1: Considered diplays

Name Technology Market

SONY BVM-X300 OLED Professional
LG OLED 65 E6V OLED Consumer
Loewe Bild 7.55 OLED Consumer
SONY KD-75X9405C LED LCD Consumer
SIM2 HDR47ES4MB LED LCD Professional

Three patches of pure blue, green and Red were measured on displays using the probe
X-rite Eye-One Pro 2. We then measured a white patch to assess the spectral additivity of the
components. The considered spectrum are plotted on Figure 4.1. We can observe that the Red
and Green photo-transmitter of the Sony BVM-X300 have a narrower spectrum than the photo-
transmitter of other displays. This was expected as this display can almost cover the BT.2020
gamut. Indeed, this gamut primary colors are supposed to be equivalent to monochromatic
light sources or in other term to have a spectrum composed of one unique wavelength.
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(a) (b) (c)

Figure 4.1: Real display spectral emissions (a) Blue component (b) Green component (c) Red
component

To complete the study, we also consider three unrealistic spectral emission (cf. Figure 4.2):

• a white spectrum: the same intensity is given to each wavelength of the spectrum.

• a Dirac spectrum: The spectrum of each photo-transmitters is simulated by one Dirac.
Each Dirac corresponding to the primaries wavelengths defined by the CIE.

• a spectrum with only the blue component: We consider the blue photo-transmitter to
be a white spectrum. The spectrum of other photo-transmitters are void. This is the most
unrealistic spectrum, created to really stressed the HDR-VDP-2 model.

These unrealistic spectral emissions have been designed with the following constraint: the
luminance of a pixel using those spectrals emissions for which the value of the components R,
G and B are identical must correspond roughly to the luminance of the same pixel using a real
spectrum.

(a) (b) (c)

Figure 4.2: Unrealistic spectral emissions (a) Blue component (b) Green component (c) Red
component
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We then tested the performance of HDR-VDP-2 when modifying the display spectral emis-
sions. As we can see on Tables 4.2 and 4.3 , spectrums have a very low influence on the
performance metrics. The results are similar with other databases. The variations of all the
values are not significant. The performance metrics are slightly lower when using the white
spectrum for the HDdtb database due to an overestimation of the chroma artifact (especially
the chroma Gaussian noise) and only drop with a very unlikely spectrum, where only the blue
component is kept. It shows that for the kind of artifact present in the databases, only a rough
estimation of the display spectrum is required for evaluating the quality score. Figure 4.3 il-
lustrates the fact that changing the spectrum have only a low impact on HDR-VDP-2. This
result could be explained by the fact that the luminance of the different emission spectra is
approximately preserved for the gray pixels.

Table 4.2: Performance indexes of HDR-VDP-2 for Zerman et al.

Spectrum PCC SROCC OR RMSE

Real
spectrums

SONY BVM-X300 0.94 0.93 0.45 10.4
LG OLED 65 E6V 0.94 0.93 0.47 10.4
Sony KD-75X9405C 0.93 0.93 0.47 10.4
Loewe Bild 7.55 0.93 0.93 0.47 10.6
SIM2 HDR47ES4MB 0.93 0.92 0.46 10.6

Unrealistic
spectrums

white spectrum 0.93 0.91 0.55 11.8
dirac spectrum 0.91 0.92 0.50 11.0
blue-only spectrum 0.88 0.87 0.55 13.9

Table 4.3: Performance indexes of HDR-VDP-2 on HDdtb

Spectrum PCC SROCC OR RMSE

Real
spectrums

SONY BVM-X300 0.89 0.87 0.48 12.5
LG OLED 65 E6V 0.90 0.87 0.47 12.3
Sony KD-75X9405C 0.90 0.87 0.46 12.4
Loewe Bild 7.55 0.90 0.87 0.48 12.3
SIM2 HDR47ES4MB 0.90 0.87 0.48 12.2

Unrealistic
spectrums

white spectrum 0.84 0.87 0.59 14.9
dirac spectrum 0.90 0.87 0.46 12.4
blue-only spectrum 0.67 0.67 0.68 20.5

95



Partie II, Chapter 4 – Analysis of existing metrics

Figure 4.3: HDR-VDP2 score for two different spectrums (Sim2 HDR display and Sony BVM-
X300 display) applied on the database HDdtb.

4.2.2 Sensitivity to the surround luminance

In this subsection we discuss the impact of the surround luminance on HDR-VDP-2 results.
The surround luminance is used by HDR-VDP-2 to estimate the luminance surrounding the
image. We measure the difference in performance whih different values of suround luminance,
from 5 cd/m2 (dark room) to 200 cd/m2 (lighted room). The PCC and SROCC are reported on
Figure 4.4. OR and RMSE show a similar trend. The surround luminance has a low impact on
the HDR-VDP-2 performances for all databases. The performance slightly decreases for low
luminance for our database and Narwaria et al.

(a) (b)

Figure 4.4: Performance of HDR-VDP-2 in function of the surround luminance for (a) existing
database (b) the proposed database HDdtb
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This parameter has a very low impact on the metric ability to predict quality. Moreover, the
value of the HDR-VDP-2 score itself is not impacted as it is illustrated on Figure 4.5. The low
impact of surrounding luminance was expected. Indeed, this parameter is used only to estimate
the distortions visibility the near the extremities of the image and does not affect the estimation
of the distortions visibility of the major part of the image.

Figure 4.5: HDR-VDP2 score for two different surround luminance applied on the database
Narwaria et al.

4.2.3 Sensitivity to the angular resolution

In this subsection we discuss the impact of the image angular resolution on HDR-VDP-2
results. The angular resolution correspond to the number of pixel by degree of the viewing
angle. It depends of the size of the screen and the viewing distance. For example, for the Sony
BVM-X300, 60 pix/deg (pixels per degree) correspond to a viewing distance of 1.15 meter, 80
pix/deg correspond to 1.6 meter and 20 pix/deg to 0.3 meter. This parameter is primordial for
HDR-VDP-2. Indeed, this metric rely heavily on the decomposition of the image into differ-
ent subbands of frequency (and orientation). The angular resolution is essential to associate
a frequency to each subband. We try different values of this parameter and measured the
resulting performances. The PCC and the SROCC of HDR-VDP2 are on Figure 4.6. The per-
formance begins to significantly drop when the angular resolution is low because, during the
pooling phase of HDR-VDP2, the weight given to the lowest frequency sub-bands are almost
null. But, in term of correlation, only a rough estimation is needed without losing performances.
However, in this case, the analysis of the HDR-VDP2 score should be really carefully made.
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(a) (b)

Figure 4.6: Performance of HDR-VDP-2 in function of the angular resolution for (a) existing
database (b) the proposed database HDdtb

Indeed, if the values of the metric did not change significantly when changing the spectrum or
the surround luminance, this is not the same with the angular resolution. The scores are shifted
without losing in correlation. For example, the mean value on our database HDdtb is 60.3 when
the parameter is put to 30 pixels/degree (a viewing distance of 0.55 meter) and 48.9 when put
on its real value 60 pixels/degree (a viewing distance of 1.15 meter). The Figure 4.7 illustrates
this phenomenon. This is a counter-intuitive result as it would mean that the nearer the viewer
is of the screen, the higher HDR-VDP2 score is. The effect of the angular resolution is not
completely handled for the HDR-VDP2 quality score and the same HDR-VDP-2 quality score
obtain with different angular resolutions could mean something different in terms of absolute
quality.

(a) (b) (c)

Figure 4.7: HDR-VDP2 score for different angular resolutions applied on the database Kor-
shunov et al. (a) 20 pix/deg in function of 60 pix/deg (b) 30 pix/deg in function of 60 pix/deg (c)
80 pix/deg in function of 60 pix/deg
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4.2.4 Conclusion on HDR-VDP-2 parameters

We tested the sensibility of three parameters, used by HDR-VDP2 and concluded that only a
rough estimation of the surround luminance and the spectral emission of the display is needed.
HDR-VDP2 quality scores are not sensitive to those two environmental conditions. However,
the angular resolution can impact the value of HDR-VDP-2 as it relies on the frequency to
evaluate the visibility of a distortion. It should be noted that this is valid only for the quality
score and not for the distortion map.

Thus, the HDR-VDP-2 quality metric turns to be simpler to use than these parameters
suggest. However, the low impact of these parameters questions the pertinence to describe
HVS mechanism as precisely as the HDR-VDP-2 intends to do.

4.3 Benchmark of existing HDR objective quality metrics

In this section, we study the performances of existing HDR metrics with the proposed
databases and the already existing ones. First, we study the impact of the images resolution on
the metrics performances. Second, we compare the performances of the existing HDR metrics
to determine which one is the most relevant to estimate HDR quality. Finally, we highlight a
limitation of existing metrics: their lack of consideration for the chrominance distortion.

4.3.1 The particular case of 4Kdtb images

Because the database 4Kdtb has a higher resolution than others, the number of pixels
per viewing angle increases. The angular resolution increases and becomes 120 pix/degree.
Because some quality metrics are not adapted to this kind of resolution, we choose to study the
performances of existing metrics on this database with and without downsampling the images.
This downsampling allows the images to have resolution divided by 2 and an angular resolution
of 60 pix/degree. The downsampling was performed on the luminance of images after the PU
function was applied for PU-metrics and on the linear luminance for HDR-VQM and on the
linear RGB values for HDR-VDP-2. The SROCC performances for the tested metrics are given
on Table 4.4.

The considered metrics have better performances using the downsampled images (espe-
cially PSNR, SSIM, and MS-SSIM). Even if the gain is negligible for some metric (like PU-FSIM)
there is no benefit for using the original images as it will only increase the complexity to calcu-
late the metrics.

In the rest of the thesis, metrics are calculated on the downsampled images of the 4Kdtb.
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Table 4.4: SROCC for the 4Kdtb database with and without downsampling the images.

Quality Metric Without With
downsampling downsampling

PU-PSNR 0.5686 0.7261
PU-SSIM 0.4454 0.7066
PU-MS-SSIM 0.7629 0.8517
PU-FSIM 0.9027 0.9054
PU-VIF 0.8169 0.8658
PU-PSNR-HVS-M 0.7623 0.8401
PU-PSNR-HMA 0.7623 0.8403
HDR-VQM 0.7618 0.7735
HDR-VDP-2 0.8508 0.8678

4.3.2 Existing metric performances

Several studies have already evaluated the performances of HDR metrics using different
metrics and methodology. In [91], the authors assessed the performances of 35 quality metrics
using the database Korshunov et al. They conclude that HDR-VDP2 (version 2.2.1 [53]), HDR-
VQM and PU-MS-SSIM were the best-performing metrics. In [89], the authors came to the
conclusion that HDR-VDP2 (version 2.1.1) can be successfully used for predicting the quality
of video pair comparison contrary to HDR-VQM. In [88], authors found that HDR-VDP2, HDR-
VQM, PU-VIF, and PU-SSIM provided similar performances for video quality estimation using
MPEG Cfe (Call for Evidence) video clips. In [90], results indicate that PU-VIF and HDR-VDP2
have similar performances for video quality estimation, although PU-VIF has slightly better
reliability than HDR-VDP2 for lower quality scores. Zerman et al. [50] estimate that HDR-
VQM is the best full-reference HDR quality metric. They combine five different databases to
compare the metrics (including Narwaria et al., Korshunov et al. and Zerman et al.). HDR-
VDP-2 provides similar performances if one of the databases is excluded but have significantly
lower result on this particular database.

Depending on the studied database or on the content (image or video), the different studies
give slightly different, sometimes contradictory results, even if there is some constants. HDR-
VDP-2 and HDR-VQM are often the best metrics and PU-based metrics provide a still good
and simpler alternative.

Table 4.5 provides the SROCC for 7 PU-metrics plus HDR-VDP-2 and HDR-VQM. The best
metric is in red, the second in blue and the third in green. More performance indexes are
reported in appendices C.

In agreement with the state-of-the-art articles, the most performing metrics depend on the
database. If the results are not completely conclusive, some perform generally better: HDR-
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Table 4.5: SROCC of the existing quality metrics on the considered databases

Quality Metric 4Kdtb HDdtb Narwaria et al. Korshunov et al. Zerman et al.

PU-PSNR 0.7261 0.7802 0.5331 0.8597 0.8266
PU-SSIM 0.7066 0.8430 0.7240 0.9280 0.8315
PU-MS-SSIM 0.8517 0.8640 0.8656 0.9583 0.9165
PU-FSIM 0.9054 0.8149 0.8773 0.9553 0.8912
PU-VIF 0.8658 0.7464 0.7704 0.9322 0.8863
PU-PSNR-HVS-M 0.8401 0.7803 0.5624 0.9331 0.9035
PU-PSNR-HMA 0.8403 0.8218 0.7634 0.9369 0.9041
HDR-VQM 0.7735 0.8330 0.8995 0.9572 0.9170
HDR-VDP-2 0.8678 0.8685 0.8906 0.9516 0.9289

VDP-2 is always in the first or second best performing metric except for the database Korshunov
et al. but in this case, the difference between HDR-VDP-2 SROCC and the best metric SROCC
(PU-MS-SSIM) is inferior at 0.01 which is not significant.

Performances of other metrics differ more from one database to another. For example,
HDR-VQM performances are amongst the top three metrics for three databases but this metric
has more difficulty to handle the two new databases, especially 4Kdtb. PU-FSIM is the best
performing metric on 4Kdtb and is even outperforming HDR-VDP-2 but have more difficulty to
handle the database HDdtb. PU-MS-SSIM also have in general term good performances even
if it has difficulty to handle the Narwaria et al. database.

Our results are similar to the one obtained from the previous studies and it is difficult to con-
clude with this table which metric is the best, as the answer depends on the studied database.

4.3.3 Chrominance distortion sensitivity

In this subsection, we assess whether existing metrics are sensitive to chromatic distortions
or not. Indeed, all of them only consider luminance distortion. We use the 4Kdtb as this
database was conceived to create chrominance error. In the process, we also assess that
the difference of quality for this database between the three modes of compression is due to
chrominance artifacts. Figure 4.8 represents the MOS scores and the HDR-VDP-2 scores in
function of the Qp. We can observe that the viewers clearly saw a difference in quality between
the three modes of compression. However, HDR-VDP-2 scores are sensibly the same. Results
are similar for the other images of the 4Kdtb and for the other metrics.
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Figure 4.8: MOS scores and HDR-VDP-2 scores in function of Qp for the image Regatta_24s
of the database 4Kdtb

As expected 4Kdtb presents chrominance artifacts that directly impact the quality perception
of images. Moreover, as there are no metrics that consider such distortion, adding chrominance
consideration inside the metrics is an interesting direction to improve quality estimation. The
4Kdtb can also be used to assess qualitatively the metrics sensitivity to meaningful chromi-
nance distortions even in the presence of important luminance distortion. Figure 4.8 is illustrat-
ing well the difference of quality perception between the different modes of compression and
a metric able to be discriminating between those modes can help to chose the best method to
compress chrominance information.

4.4 Conclusion

In this chapter, we studied existing objective IQA metrics. We take advantage of the creation
of two new databases to complement the previous metrics reviews of the state of the art.

First, we thoroughly analyzed the best existing IQA metrics, and, especially, its behavior
against the parameters modeling the viewing conditions. Second, we review the performance
of nine existing metrics. We get results similar to previous metric reviews: The best metric is
different depending on the database and HDR-VDP-2 is, always, amongst the metrics with the
best performances. However, this metric is a very complex which limits its usability for real-time
application.

The tested metrics are all based on very different model. For example, FSIM is based on
the phase congruency, MS-SSIM measure the structural similarity on different scale and HDR-
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VDP-2 model precisely the HVS. It is quite surprising that even if those metrics are based on
very different hypothesis, they are all relevant to assess the quality of images. It shows that
very different image features can be used to predict an image quality.

During the analysis, we point out one limitation of existing metrics: they do not take into
consideration chromatic distortions. Moreover, we have shown that the 4Kdtb could be used to
assess wether a metric is sensitive or not those distortions. It is also a way of improvement.
Metrics could perform better if they considered chromatic distortions
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In this part, we proposed two new databases HDdtb and 4Kdtb which present new kind
of artifacts. If with the HDdtb, we failed to create compression artifacts that were significantly
important, we succeeded with the 4Kdtb. In a broader perspective, the relevance of subjective
tests can also be questioned. For example, on the proposed database HDdtb, viewers did not
perceive the gamut mismatch artifact as a loss of quality. However, this kind of artifact changes
completely the appearance of images. In some cases, asking the viewers to not assess only
the quality of the images but also their fidelity to the image appearance can be valuable to fully
evaluate image processing algorithms.

In addition, we analyzed thoroughly existing objective metrics using the newly created
databases. We carefully reviewed the impact of HDR-VDP-2 parameters on its performances
and found that only the angular resolution can affect the quality score. We also confirmed that
HDR-VDP-2 is one of the best existing metrics but that for several databases, PU-FSIM and
PU-MS-SSIM, two simpler metrics could provide similar or even better performances. Finally,
we also assessed the sensitivity of existing metrics to color distortion. As existing metrics is
only sensitive to luminance, the metrics are not able to differentiate the different mode of com-
pression of the 4Kdtb. However, those different modes affect the perception of the images.
New metrics, sensitive to chrominance distortions, are needed for such a case.
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New color metrics for HDR/WCG
image quality assessment

105



PART III: INTRODUCTION

Subjective tests and other user studies are the more reliable methods to evaluate the quality
of images. Thus, with subjective tests, it is possible to infer the best methods of compression
supposing that the selected subset of images is representative of all images. However, subjec-
tive tests are often very time-consuming, costly and not always possible in many applications
such as the quality monitoring for live video applications.

This is the reason why objective metrics were create: to automatically assess the quality of
images without the need of human viewers. The best performing metrics attempt to emulate
the human perception of quality. In the previous chapter, we reviewed several existing metrics
adapted to HDR content: PU-metrics and the bio-inspired metrics like HDR-VDP-2 for images
and HDR-VQM for videos. We created databases to study the ability of these metrics to emulate
human perception of quality. We highlight one limit of existing metrics. They are non-sensitive
to visible chromatic distortion as they only assess luminance artifacts. However, chrominance
errors can occur during the compression as it is assessed by MPEG (cf. Section 1.4), especially
in the case of WCG images. This was highlighted by our database 4Kdtb (cf. Section 3.4).

In this chapter, we propose three methods to tackle this issue. First, we propose to adapt
existing metrics, using perceptually linear color spaces and not only perceptually linear lumi-
nance as it is proposed for PU-metrics. Second, we propose to extend the HDR-VDP-2 metric
towards color artifacts perception. Indeed, HDR-VDP-2 is a luminance only metrics that mod-
els the human perception of luminance. We attempt to complete this model using chrominance
information. Third, we propose to aggregate several metrics and visual features, including fea-
tures sensitive to chrominance distortions. The idea is to take advantage of each metric or
feature strength while compensating individual weakness.
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CHAPTER 5

SDR METRIC ADAPTATION

5.1 Introduction

If most SDR metrics are not based on the HVS perception of differences, they often assume
that the representation of images is perceptually linear. However using a color space adapted
to SDR metrics like Y ′Cr′Cb′ [28] is not a solution to obtain perceptually uniform HDR/WCG
images (cf. Section 1.3.2). However, it should be possible to adapt SDR metrics if the image
are encoded using an appropriate color space.

Aydin et al. proposed in [10] a solution to extend color-blind SDR metrics using a function
more appropriate than the gamma function. This function is called PU and is adapted to HDR
contents (cf. Section 2.4.1).

This methodology has a limitation as it only concerns luminance. In this chapter, we propose
a method to adapt any SDR metric using the perceptually uniform color spaces presented in
section 1.3.2. A second limitation is that this function implies a pre-process of the images to
estimate the linear luminance of the screen. Most images will be encoded using color space
like ICtCp already recognized in compression codecs. Using directly such space could reduce
the complexity of the metrics.

The first section of this chapter presents our proposed method to adapt SDR metrics. The
second section presents the results. A third section, present a detailled analysis of those
results. A fourth section presents our recommendations to use the SDR metrics adaptation
method and the last section concludes this chapter.

5.2 Proposed method

For adapting SDR metrics to HDR/WCG images, the reference and distorted images are
first converted in a perceptually linear color space. A remapping function is then applied. Fi-
nally, the SDR metrics are used to determine the quality score. Figure 5.1 presents the diagram
of the proposed method. These key steps are described in the following subsections.
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Figure 5.1: Diagram of the proposed method to adapt SDR metrics to HDR/WCG contents.

5.2.1 Color Space Conversion

Most SDR metrics were designed with the assumption that the images are encoded in the
legacy Y ′Cr′Cb′ color space [28]; this color space is approximately perceptually uniform for
SDR content.

To use SDR metrics with HDR images, we propose to leverage perceptually uniform color
spaces adapted to HDR and WCG images such as ICtCp, Jzazbz, and HDR-Lab.

Note that we used the perceptually uniform version of ICtCp: ̂ICtCp presented in Sec-
tion1.3.2. For the sake of clarity, in this chapter, we call this color space ICtCp.

The use of HDR-Lab color space requires to know the diffuse white luminance. Unfortu-
nately this parameter is most of the time unknown for HDR contents. To cope with this issue, we
consider two different diffuse whites to compute the HDR-Lab color space, i.e. 100 cd/m2, the
peak brightness of SDR screen, and 1000 cd/m2, the peak brightness of the HDR display Sony
BVM-X300. These two color spaces are named HDR-Lab100 and HDR-Lab1000, respectively.

To illustrate the importance of using uniform color space, we also consider two non-uniform
color spaces, namely XY Z and Y ′Cr′Cb′ color spaces as defined in the BT.2020 recommen-
dation [30]. This last space is a WCG but SDR color space. It cannot be considered as approx-
imately uniform for HDR content as it uses the classical gamma function. The gamma EOTF
takes for parameter the display peak brightness (cf. equation 1.6). To fix this value, we choose
the maximum value taken by the studied HDR images: 4250 cd/m2.

5.2.2 Remapping Function

The six aforementioned color spaces, i.e. XY Z, Y ′Cr′Cb′, HDR-Lab100, HDR-Lab1000,
ICtCp and Jzazbz, have a different range of values. As most of SDR metrics have constant
values defined for pixel values between 0 and 255, it is required to adapt the color spaces. We
remap them in a way that their respective perceptually linear luminances fit a similar range as
the luminances encoded with the PU transfer function between 0 and 100 cd/m2. We choose
100 cd/m2 as a normalization point because it roughly corresponds to the peak brightness of
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an SDR screen. Moreover, the PU-encoding is used as a reference to remap the color spaces
because it is already adapted to SDR metrics. The goal of this process is to obtain HDR images
with the same luminance scale than SDR images in the range 0 to 100 cd/m2 while preserving
the perceptual uniformity of the color spaces. The remapping of the perceptual color spaces is
done as follows: 

Ĵz(i, j)
âz(i, j)
b̂z(i, j)

 = αPU
βJz
×


Jz(i, j)
az(i, j)
bz(i, j)

 (5.1)

where Jz(i, j), az(i, j) and bz(i, j) correspond to the value in the Jzazbz domain of the pixel
with the spatial coordinates i and j. Ĵz(i, j), âz(i, j) and b̂z(i, j) correspond to the same pixel
value after the remapping. αPU is the luminance value in the PU space when linear luminance
value is 100 cd/m2. βJz is the value of the Jz component of the Jzazbz color space when linear
luminance value is 100 cd/m2. A similar operation is applied to ICtCp and HDR-Lab, XY Z
and Y ′Cr′Cb′ color spaces. The resulting luminances for the aforementioned color-space as
well as the PU-encoding luminance are plot on Figure 5.2. For these figures, we chose a
surround luminance of 20 cd/m2 for the two HDR-Lab color spaces, the surround luminance of
two of the five studied databas.

(a) (b)

Figure 5.2: Different perceptually uniform luminances as a function of the linear luminance: (a)
for the range 0–1000 cd/m2, (b) for the range 0–150 cd/m2.
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5.2.3 Evaluation of tested SDR metrics

Once the images are remap, we can apply any SDR metrics that used images in the
Y ′Cr′Cb′ color space. In this chapter, we study the performances of 6 SDR color-blind metrics:
PSNR, SSIM [72], MS-SSIM [75], FSIM [65], PSNR-HVS-M [77] and PSNR-HMA [78] and 6
color metrics: Mean of the color difference metrics ∆E, the spatial extention of ∆E, ∆ES [71],
SSIMc [73], CSSIM [74], FSIMc [65], PSNR-HMAc [78].

A short description of those metric can be found in Section 2.4.1 and a more detailled
description in Appendix A.

Note that, to adapt the ∆ES metrics, the blurring model used in this metrics (cf. Ap-
pendix A.2) is first applied to the XY Z color space of the images and then the different color
difference metrics are calculated.

In the following sections, the naming convention used for all metrics is MetricsColorSpace. For
example, the PSNR metrics used with the ICtCp color space is called PSNRICtCp.

5.3 Results

In this section, we present the performances of the different metrics over five databases.
For the sake of completeness, we also study the performances of the following color-blind HDR
metrics: HDR-VDP2 [53] (HDR-VDP-2) [54] and HDR-VQM [70]. Figures 5.3–5.7 present the
SROCC performances for each database and each metric. Numerical values of the perfor-
mance indexes (SROCC, PCC, OR, RMSE) can be found in Appendix C.

5.3.1 4Kdtb Database

For the proposed 4Kdtb database(cf. Figure 5.3), for each color-blind metrics, the best color
spaces are always the ICtCp, HDR-Lab100 and the PU-encoding. Jzazbz and HDR-Lab1000

provide the lowest performances. The best performing color-blind metrics is FSIM used with
the PU-encoding, closely followed by FSIMICtCp and FSIMHDR-Lab100 . MS-SSIM used with the
PU encoding, ICtCp and, HDR-Lab100 are almost on par with the second best performing
metrics HDR-VDP2 (cf. Appendix C). The only color space that provides good performances
on all color metrics is the ICtCp color space.
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(a) (b)

Figure 5.3: SROCC performances for the 4Kdtb database for color-blind quality metrics (a) and
for color quality metrics (b).

5.3.2 Zerman et al. Database

For the Zerman et al. database, as previously, the color spaces, ICtCp, HDR-Lab100

and the PU-encoding provide the best performances for almost all color-blind metrics (cf. Fig-
ure 5.4). However, there is one exception with FSIM. Used with the following color spaces,
Jzazbz, HDR-Lab100 and HDR-Lab1000, it provides slightly better performances than ICtCp

and the PU-encoding. The best performing color-blind metrics are, with similar performances,
HDR-VDP2, HDR-VQM and MS-SSIMICtCp.

(a) (b)

Figure 5.4: SROCC performances for the Zerman et al. database for color-blind quality metrics
(a) and for color quality metrics (b).
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5.3.3 HDdtb Database

For our proposed HDdtb (cf. Figure 5.5), for color-blind metrics, the color space Jzazbz

provides slightly lower performances for all metrics, except with FSIM. For this metric, the per-
formances with Jzazbz are higher. The best performing color-blind metrics for this database are
FSIMJzazbz , FSIMHDR-Lab1000 and MS-SSIMHDR-Lab100 . For the color metrics, the metrics based
on color difference metrics (∆E, ∆ES and CSSIM) do not perform well. This is partially due to
the presence of the gamut mismatch artifact. As noticeable on Table 5.1, discarding this artifact
increases the performances of these metrics. For the participants of our subjective test, these
distortions are clearly visible but are not directly associated with a loss of quality.

(a) (b)

Figure 5.5: SROCC performances for the HDdtb database for color-blind quality metrics (a) and
for color quality metrics (b).

Table 5.1: SROCC for the HDdtb database with and without the gamut mismatch artifact.

Quality Metric All Images Without the compression
"Gamut Mismatch" Artifacts

Distortion Only

∆EHDR-Lab100 0.2578 0.3905 0.6190
∆ESHDR-Lab100 0.2784 0.5687 0.6946

CSSIMHDR-Lab100 0.4065 0.6453 0.7714
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5.3.4 Korshunov et al. Database

The Korshunov et al. database is the less selective database (cf. Figure 5.6). Most of
the metrics have high correlation coefficients and the choice of color space has close to no
impact on the performances especially on color-blind metrics. Even using non-perceptually
linear color space like the Y ′Cr′Cb′ color space impacts only moderately the performances
of MS-SSIM, FSIM, PSNR-HVS-M and PSNR-HMA. For this database, the best performing
color-blind metrics are FSIMJzazbz , FSIMHDR-Lab1000 and MS-SSIMJzazbz .

(a) (b)

Figure 5.6: SROCC performances for the Korshunov et al. database for color-blind quality
metrics (a) and for color quality metrics (b).

5.3.5 Narwaria et al. Database

For the Narwaria et al. database (cf. Figure 5.7), Jzazbz is the best color space for SSIM
and MS-SSIM while the PU-encoding and the HDR-Lab100 are the best color spaces for FSIM.
The best metrics for this database are MS-SSIMJzazbz , HDR-VDP2 and HDR-VQM. The good
performances of HDR-VDP2 were expected for this database because it was part of the training
set of this metric. For this database, the performances of the PSNR and the PSNR-HVS-
M are relatively low compared to the other databases. The fact that PSNR-HMA with the
adequate color space significantly increases the performances of PSNR-HVS-M suggests that
the backward compatible compression used by Narwaria et al. (Section 2.3) creates distortions
that impact the mean luminance and the contrast of the images. Indeed PSNR-HMA is an
improvement of PSNR-HVS-M that takes into account these two kinds of artifacts [78].
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(a) (b)

Figure 5.7: SROCC performances for the Narwaria et al. database for color-blind quality metrics
(a) and for color quality metrics (b).

5.3.6 Results Summary

For all studied databases, HDR-VDP2 has generally high performances although it is not
always on the top three metrics (cf. Appendix C). FSIM and MS-SSIM with appropriate percep-
tually uniform color space are often on par if not better than HDR-VDP2.

Among all metrics, FSIM is the less sensitive metrics to the choice of color space assuming
that this color space is perceptually uniform.

The color extension of FSIM, namely FSIMc, does not improve the performances of FSIM
even for our proposed database 4Kdtb which focuses on chromatic distortions. Worst, the met-
rics becomes much more sensitive to the color space choice. We observe the same behavior
for the color extension of PSNR-HMA, PSNR-HMAc. The color extension of this metric also
decreases its performance for all color spaces.

When using the two non-uniform color spaces XY Z and Y ′Cr′Cb′, the performances of
all metrics drop significantly compared to the other color spaces for all the databases and
especially for our proposed database 4Kdtb, the Zerman et al. database and the Narwaria et
al. database. It emphasizes the importance of perceptually uniform color space for predicting
the quality of HDR images.

5.4 Results Discussions

We separate our analysis in two parts. First, we study the impact of the color space on the
metrics performances. Moreover we emphasize the influence of the diffuse white luminance.
As a reminder, the luminance of the diffuse white corresponds to the luminance of a 100%
reflectance white card without any specular highlight. In HDR imaging, it is different from the
peak brightness. In the second part of our analysis, we discuss the sensitivity of chrominance
artifacts on color metrics using our proposed database 4Kdtb.
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5.4.1 Impact of the Diffuse White Luminance

Our results suggest that the best color space for assessing the quality of HDR images
depends on the test database. Indeed, some of the color spaces are adapted and tuned for
one visualization condition.

The HDR-Lab color space considers two important parameters, i.e. the diffuse white and
the surround luminance. Moreover, the final equation of the Jzazbz color space (Equation
(1.33)) was tuned using the experimental dataset called SL2 [12]. This dataset was obtained
for a diffuse white at 997 cd/m2. This explain why the Jzazbz luminance has a behaviour close
to the HDR-Lab1000 luminance (cf. Figure 5.2).

The PU function and the ICtCp color space were not obtained through the same kind of
training. They were created using Daly’s Contrast Sensitivity Function model [98] and Barten’s
Contrast Sensitivity Function model [99], respectively. However, Figure 5.2, that represents the
different color spaces luminance in function of the linear luminance, suggests that ICtCp and
the PU encoded luminance have a behaviour closer to the HDR-Lab100 luminance while the
Jzazbz luminance have a behaviour closer to the HDR-Lab1000 luminance.

Because the color spaces are adapted for different viewing conditions, it is not easy to
determine the best color space.

• With the proposed database 4Kdtb, the color spaces with a diffuse white around 100
cd/m2 (ICtCp, HDR-Lab100 and the PU-mapping) give better performances than Jzazbz
and HDR-Lab1000 spaces. We also observe that the performances of color metrics are
more sensitive to the color space choice.

• We draw a similar conclusion on Zerman et al. database, except for FSIM and FSIMc (cf.
Figure 5.4). These two metrics are less sensitive to the color space for this database.

• With the proposed database HDdtb (cf. Figure 5.6), the Jzazbz color space provides
the lowest performances for PSNR, SSIM, MS-SSIM and PSNR-HMA metrics but pro-
vides the highest performances with FSIM and FSIMc. However, results indicate that the
PSNR, SSIM and PSNR-HMA metrics based on HDR-Lab1000 and HDR-Lab100 color
spaces perform better than the same metrics using the Jzazbz color space. This suggests
that the low performances of these metrics are not due to the diffuse white characteristics
of the images, but to the design of Jzazbz color space which corrects a deviation in the
perception of the blue hue (cf. Equation (1.29)). To test this hypothesis, we measure the
SROCC of these metrics on the HDdtb database with the Jzazbz color space without the
blue deviation correction. We call this new space ˜Jzazbz. Results, shown in Table 5.2,
indicate that SROCC values of the three aforementioned metrics increase with the ˜Jzazbz
color space. In addition, metrics using this modified color space provide similar perfor-
mances to metrics based on theHDR-Lab1000 color space. This is consistent with the fact
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that HDR-Lab1000 and Jzazbz are adapted to almost the same diffuse white luminance.
This might be due to the presence of the “gammut mismatch” artifact in this database.
Indeed, the “gammut mismatch” artifact creates visible distortions that was not associ-
ated with a subjective quality loss during our test. We suspect that the blue hue deviation
correction makes the Jzazbz color space more sensitive to this distortion. However, this is
difficult to demonstrate due to the low number of images with this kind of artifact present
in this database.

Table 5.2: SROCC for the HDdtb database for three metrics based on Jzazbz, ˜Jzazbz and
HDR-Lab1000.

Color Spaces
Metrics

Jzazbz
˜Jzazbz HDR-Lab1000

PSNR 0.6933 0.7463 0.7587
SSIM 0.7831 0.7973 0.7904

PSNR-HMA 0.7664 0.7949 0.7984

• With the Narwaria et al. database, it is difficult to draw a conclusion (cf. Figure 5.7).
The MS-SSIM and the SSIM metrics perform better when using the Jzazbz color space.
However, the FSIM and PSNR-HMA metrics perform better when using the ICtCp color
space. This contrasted result might be due to the fact that the diffuse white luminance is
likely not homogeneous across the entire database.

To go further into the analysis, we propose to evaluate the impact of the diffuse white on
the performances of HDR-Lab metrics. The SROCC performances of three metrics (FSIM,
MS-SSIM and SSIM) are evaluated for a diffuse white in the range 80 to 1000. Results are
plotted in Figure 5.8. For the FSIM, the performances decrease slightly when the diffuse white
luminance increases for the 4Kdtb database and the Narwaria et al. database while increasing
with the diffuse white for the HDdtb. The impact of the diffuse white is more important on the
MS-SSIM metric. For example, with the Zerman et al. database, the SROCC score drops from
0.9143 to 0.7791. The impact for the SSIM metrics is in the same order of magnitude as for
MS-SSIM.

116



5.4. Results Discussions

(a) (b) (c)

Figure 5.8: SROCC of (a) FSIMHDR-Lab, (b) MS-SSIMHDR-Lab, (c) SSIMHDR-Lab in function of
the diffuse white luminance.

5.4.2 Sensibility to Chrominance Distortions

In this section, the ability of color metrics to take into account chrominance artifacts is
discussed. The discussion is focused on the database 4Kdtb which is the only database pro-
viding significant chrominance artifacts. Also we only consider metrics using the ICtCp color
space since the best performances are observed with this color space. Figure 5.9 presents the
Mean Opinion Score (MOS) and objective scores for the reference image “Regatta_24s”, for
the distorted images (compressed with HEVC). The objective scores are given after applying
the logistic regression presented in Section 5.3. Results for the other reference images can be
found on Appendix D.

There is a clear difference of quality perception between the images compressed with the
chroma Qp adaptation (cf. Section 3) (red Line) and the images compressed without the
chroma Qp adaptation and a 8 bits quantization on the chrominance (blue line). The MOS
of images compressed without the chroma Qp adaptation algorithm and a 10 bits quantization
(green line) are in-between the two previous encodings.

As expected, the color-blind metrics, i.e. HDR-VDP2 and FSIM, are not sensitive at all to
the chrominance distortions. However, more surprisingly, the color extension of FSIM, namely
FSIMc, is not sensitive to the generated chrominance artifacts. The metrics was tailored for
images in a BT.709 gamut with a SDR range. Its non-sensibility to the chrominance might be
due to the pre-defined constant used for the color comparisons [65].

The other color metrics, i.e., ∆ES , SSIMc and CSSIM, are more sensitive to the chromi-
nance artifacts. However, SSIMc and CSSIM have a tendency to underestimate the influence of
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chrominance artifacts for images compressed with a low Qp (so low distortion in the luminance
channel) and a 8 bits quantization on the chrominance (cf. Figures D.2, D.4–D.6 and D.8).

Figure 5.9: Subjective and objective scores for the image Regatta_24s and for 6 metrics based
on the ICtCp color space.

5.5 Applications

In this section, some recommendations are given to assess the HDR/WCG content quality
in the context of image/video compression. The recommendations are listed below:

• For assessing the impact of luminance distortions, we recommend to use the FSIM metric.
This is one of the best performing metrics. Moreover, it is the less sensitive to the choice
of color space and to the diffuse white of the images. Using the color extension of the
metrics (FSIMc) does not bring a significant added-value. In addition, it is important to
underline that the FSIMc metrics is sensitive to the choice of color space (cf. Figure 5.3).

• To choose the color space, we recommend to take into account the diffuse white used
during the color grading of the images. If the producer of the content follows the ITU
recommendation BT.2408 [5] that defines the diffuse white luminance at 203 cd/m2, we
recommend to use the ICtCp color space. Indeed, this color space is well adapted to a
low value of diffuse white. At the opposite, the Jzazbz color space is well appropriate for
a diffuse white luminance at 997 cd/m2. Another benefit to use the ICtCp color space is
related to its direct compatibility with popular compression codecs such as HEVC. How-
ever, in a recent HDR content analysis, in color-grading studio, there is some willingness
to use higher diffuse white than recommended by the BT.2408 and that the diffuse white
values is highly variable depending of the content [100].

• For application where the calculation time and the complexity are critical aspects, we rec-
ommend to be very careful with the choice of the color space. The simplest metrics, such
as PSNR and SSIM, are much more sensitive than FSIM to the diffuse white luminance.
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• If the chosen metrics is the PSNR, we recommend to first verify that the tested im-
age/video processing application, such as compression codecs, does not create lumi-
nance mean shift or contrast change. These artifacts can be induced by backward com-
patible compression (if the image is first tone-mapped, then compressed using a legacy
codec and finally tone expanded).

• For assessing the impact of both luminance and chrominance distortions, we recommend
to use both the FSIM metrics and the ∆ESICtCp metrics. None of the studied metrics
are able to assess both at the same time luminance and chrominance distortions in a
satisfactory manner.

Due to the characteristics of the tested databases, these recommendations have to be
used in the context of image/video compression. Different subjective tests would be required
to extend the analysis to other kinds of distortion.

5.6 Conclusion

In this section, we reviewed the relevance of using SDR metrics with perceptually uniform
color spaces to assess the quality of HDR/WCG contents. We studied twelve different metrics
along with six different color spaces. To evaluate the performances of these metrics, we used
three existing HDR image databases annotated with MOS and the two databases specifically
dedicated to WCG and chrominance artifacts presented in Chapter 3. We showed that the
use of perceptually uniform color spaces increases, in most cases, the performances of SDR
metrics for HDR/WCG contents.

In this study, we also highlights two weaknesses of state-of-art metrics. First, the relation-
ship between the diffuse white used for grading the image and the diffuse white used for the
color space is not always easy to define. In a number of cases, we do not know the value of
the diffuse white used for the grading of the image. Choosing an arbitrary diffuse white for the
color space may significantly alter the objective quality assessment. Further analysis of this
relationship is required. A better understanding could help to evaluate compression of images
using the HLG EOTF for which the diffuse white depends on the display. Second, to the best
of our knowledge, the quality assessment of HDR/WCG images with chrominance distortions
is still an open-issue, because of the lack of relevant objective metrics. In the following section,
we proposed new metrics to tackle this issue.
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CHAPTER 6

HDR-VDP-2 COLOR EXTENSION

6.1 Introduction

HDR-VDP-2 is one of the best performing metrics (cf. section 4.3 and 5.3). It aims to
emulate with precision the early stage of human vision. Its principle is described in details in
section 2.4. HDR-VDP-2 model precisely the human eye perception of images using the display
spectral emission and the cones and rods spectral sensitivity. This metric also model precisely
the contrast sensitivity function and the masking effect of the HVS. Its goal is to estimate the
visibility of each difference between a reference and a distorted image. A pooling function is
then used to transform a distortion map into a quality score.

This metric only takes into consideration the luminance distortion. However, it uses color
information to correctly calculate photopic (daylight vision) and scotopic (night vision) luminance
and thus models the Purkinje shift. To improve HDRVDP–2, we propose to extend its main
mechanisms to the chrominance channels.

In this chapter, we first present our proposed extention of the HDR-VDP-2 metric toward the
chrominance distortion, then in the second section, we describe the methodology to train this
metric. We present the results in the third section. The last section concludes this chapter.

6.2 HDR-VDP-2 color extension

In this section, we present our proposition to extend the HDR-VDP-2 metric toward chro-
matic distortions. The architecture of this proposed HDR-VDP-2 color extension is illustrated in
Figure 6.1.

We take advantage that the quantity of light perceived by each photo-receptors is precisely
modeled (RL|M |S|R) for the reference and the distorted images (cf. equation 2.13).

The three maps obtained for each image by this transformation, RL, RM and RS corre-
sponds to the images in the LMS color space after the modeling of the intra-ocular light scat-
tering.

The obtained LMS color space can then be converted in perceptually linear color spaces
like ICtCp or HDR-Lab. From this space, we can extract the two chrominance maps C1C2 cor-
responding to the chrominance of the chosen color space CtCp for ICtCp or ab for HDR-Lab.
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6.2. HDR-VDP-2 color extension

Figure 6.1: Architecture of our proposed HDR-VDP-2 color extension.

We choose to study the color spaces ICtCp, HDR-Lab100 and HDR-Lab1000. The resulting
metrics are called HDR-VDP-2CtCp, HDR-VDP-2ab100 and HDR-VDP-2ab1000 .

For the sake of simplicity, we discompose those chromatic channels using the same pyra-
midal decomposition than for luminance, the steerable pyramid, to obtain the same number of
sub-bands of frequency and orientation than for the luminance: four orientations bands and the
maximum possible number of spatial frequency bands given the image resolution.

In HDR-VDP-2, the luminance subbands are subtracted to each other to obtain distortion
maps as follows:

D[f, o](i) = |BT [f, o](i)−BR[f, o](i)|p√
NnCSF [f, o]2p +Nmask[f, o](i)2 (6.1)

with BR[f, o] the subband of frequency f and orientation o of the reference image and
BT [f, o] the subband of frequency f and orientation o of the distorted image. The exponent
p is the gain that controls the shape of the function. NnCSF is a noise corresponding to the
luminance neural CSF (cf. Section 2.4). Nmask corresponds to the contrast masking.

As for the luminance, we calculate the chrominance distortion maps:

DC1|C2 [f, o](i) = |BTC1|C2
[f, o](i)−BRC1|C2

[f, o](i)|p (6.2)

with BRC1|C2
[f, o] the subband C1 or C2 of frequency f and orientation o of the reference image

and BTC1|C2
[f, o] the subband C1 or C2 of frequency f and orientation o of the distorted image.

The exponent p is equal to 3.5 for the luminance distortion map (DL[f, o]) but have to be re-
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Partie III, Chapter 6 – HDR-VDP-2 color extension

estimated for chrominance channels. We trained the metric for different values of p for the
chrominance channels: 3.5, the same value than for the luminance channel, 2 and 7.

Our proposed model neglects the contrast masking applied to the chrominance distortion
maps. The contrast masking models a HVS mechanism that makes the visibility of distortions
dependent on the image background. For example, those distortions can be harder to per-
ceive if they are superimposed on a complex background. We neglect both the chrominance
intra-channel contrast masking and inter-channel contrast masking (the contrast masking oc-
curring between the two channels of chrominance and the luminance). Up to our knowledge,
their is no color contrast masking model adapted to the WCG chrominance CtCp or HDR-ab.
We hope that even if our model is not completely accurate, we can still improve HDR-VDP-2
performances.

Because, there is no chromatic CSF adapted to WCG content, we do not apply any correc-
tive factor corresponding to the neural chromatic CSF noise, an equivalent for the luminance
subband to NnCSF . However, this factor will be learned through the training of the weights wfC1

and wfC2
(cf. Equation 6.3).

Then the pooling function (cf. equation 2.19) to obtain the quality score has to be modified:

Q = 1
F.O

F∑
f=1

O∑
o=1

wfL log

 1
I(f)

I(f)∑
i=1

D2
L[f, o](i) + ε

+ ...

... wfC1
log

 1
I(f)

I(f)∑
i=1

D2
C1 [f, o](i) + ε

+ ...

... wfC2
log

 1
I(f)

I(f)∑
i=1

D2
C2 [f, o](i) + ε


(6.3)

with F the number of frequencies, O the number of decomposition, I(f) the number of pixel
in the subband associated to the frequency f and ε a small constant to avoid singularities. The
weights wfL correspond to the weights of the luminance sub-bands with the frequency f. wfC1

and wfC2
correspond to the weights of the chrominance sub-bands. In HDR-VDP-2, there is

9 weights wfL . So in our proposed model, there is 9 weights wf by channels. Those weights
need to be trained.

The value Q does not correspond directly to a quality score. Indeed, this value is the
accumulation of all the distortions of an image. The higher this value is, the lower is the quality
of the image. In HDR-VDP-2(v2.2.1), the final metric is obtained as follows:

Q̂ = 100−Q (6.4)

where Q̂ is the final quality metric and Q the result of the pooling function. In the rest of the
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chapter we used directly Q during the training.

6.3 Training methodology

6.3.1 Defining the optimisation problem

The weights wf of the pooling function (cf. equation 6.3) have to be learned through training.
In this case, we aim to optimize the SROCC between MOS scores of a subjective test and
the objective metric scores. The SROCC have the advantage to not be affected by the non-
linearity between subjective and objective scores. It is not desirable to learn this non-linearity,
which is different for each image database and can be learned using a logistic regression(cf.
Section 2.5).

As the pooling function gives a higher score Q if the distortion is important and the MOS
score gives a higher score if the quality is better, the SROCC between MOS and Q should be
as close as possible to -1.

Moreover, we consider that negative wf is implausible as it would mean that a distortion
increases the quality of an image. Thus a constraint is added to our optimization problem: all
weights should be positive.

We chose to train the weights of all subbands of luminance (wfL) and chrominance (wfC1

and wfC2
). The chromatic distortion is often (but not always) correlated with luminance distor-

tion. Using the original luminance weights might undermine the importance given to chromatic
weights.

The optimization problem can be described as follows:

minimize
wf

1 + SROCC(S,Q(wf ))

subject to wfi ≥ 0, i = 1, . . . , 27
(6.5)

where, S the MOS score vector, Q(wf ) is the quality metric computed with the 27 weights
wf , 9 by channels.

6.3.2 Training databases selection

To obtain a database with enough images, HDR-VDP-2 (in its version 2.2.1) weights were
trained using four different subjective test: Two HDR database (Narwaria et al. [70] and another
database [101]) and as HDR-VDP-2 has the vocation to be a universal metric, for HDR and
SDR content, two SDR databases CSIQ [86] and TID2008 [87]. Those two lasts were chosen
due to the high number of images and the variety of their distortions.
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Partie III, Chapter 6 – HDR-VDP-2 color extension

We also chose to use multiple databases because there was no HDR database with enough
images to train the metric. To illustrate this, we can train HDR-VDP-2CtCp on a unique database
(using the particle swarm optimizer) and observe the result on other databases. We performed
this training four times using four different databases: three HDR databases, Zerman et al.,
Korshunov et al. and Narwaria et al. (cf. Section 2.3) and one SDR database: TID2013.
TID2013 [64] is an extension of the TID2008 database with notably more color artifacts (Image
color quantization with dither, Chromatic aberration ...). For this database, we did not use the
distortion called "Change of color saturation" as this default created outlier for HDR-VDP-2 (cf.
Figure 6.2). The same behavior was observed for HDR-VDP-2CtCp after the training of the
weights. This reminds the problem with the gamut mismatch artifacts of the HDdtb as both
artifact create similar distortion(cf. Section 3.3). Those distortions are clearly visible but do not
impact that much the image quality.

(a) (b)

Figure 6.2: HDR-VDP-2 score in fonction of MOS for (a) The complete TID2013 database, (b)
the TID2013 database without the distortion: "change in color saturation". One color represents
all distorted images corresponding to one particular content.

Table 6.1 presents the performance of each trained HDR-VDP-2CtCp in term of SROCC.
HDR-VDP-2 outperforms any version of HDR-VDP-2CtCp obtained from the different training.
The different HDR-VDP-2 color extension trained on one database does not generalize well to
other databases. To overcome the problem of databases with a small number of images, we
chose to use three HDR database: the Narwaria et al and the Zerman et al., and two SDR
databases selected for there high number of images: CSIQ and TID2013.
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Table 6.1: Performance in term of SROCC of the proposed metric trained with different
databases and HDR-VDP-2

trained on
tested on Narwaria et al. Korshunov et al. Zerman et al.

Narwaria et al. [70] 0.9843 0.8576 0.7765
Korshunov et al. [24] 0.7080 0.9871 0.8708
Zerman et al. [50] 0.2290 0.5199 0.9580
TID2013 [64] 0.5719 0.8607 0.7788
HDR-VDP-2 0.9012 0.9511 0.9285

6.3.3 Combining Databases

One problem to solve is the combination of multiple databases. Indeed, each subjective
tests are different: They use a different protocol, use different images, different artifacts or
different viewing conditions... Nor the subjective scores and nor the objective scores are homo-
geneous from one database to another. There is a solution for the subjective scores. A method
like INLSA [102] allows to determine a common scale for all subjective score. However there is
still the problem with the heterogeneity of objective score. Indeed, each database has its own
angular resolution (cf. Table 6.2). As stated in Section 4.2.3 the impact of the angular resolution
is not completely handled by the HDR-VDP-2 metric and a same HDR-VDP-2 score obtain with
different angular resolutions can have different significations. The same problem arises during
the training of our proposed metrics. To overcome this problem, the SROCC of each database
has to be considered separately. This leads to a redefinition of the optimization problem :

minimize
wf

1 +
∑
j

αjSROCC(Sj , Qj(wf ))

subject to wfi ≥ 0, i = 1, . . . , 27
(6.6)

Coefficients αj are defined in function of the number of images of the database obtain with
the following constraint: SDR databases should not count for more than 50% of the score.
AS TID2013 and CSIQ consist of much more images than HDR databases, using strictly the
number of images as a factor to define the αi would reduce too much the impact of HDR
images. A lower proportion of the loss function associated with SDR databaseq and we risk an
over-fitting on the HDR databases which have less images than the SDR database. Table 6.2
summarizes the databases, their number of images, their angular resolution and the selected
αi for the training.
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Table 6.2: characteristics of the training databases

database #Image angular resolution αi
SDR

databases
CSIQ 866 40 0.12
TID2013 3000 30 0.38

HDR
databases

Narwaria et al. 140 60 0.29
Zerman et al. 100 40 0.21

The use of databases with different angular resolutions raises another
problem. The frequencies associated with each subband are not nec-
essarily the same for each database. For example, for Narwaria et al.,
The frequencies associated with each subband are: 30, 15, 7.5, ... cpd
(cycle per degree) and for the Zerman et al. database, the frequen-
cies associated with each subband are: 20, 10, 5, ... cpd. However,
the trained weights wf must be associated with a precise frequency
band. To determine the weight associated with a frequency band that
is not directly defined, HDR-VDP-2 uses linear interpolation (see sec-
tion 2.4.2). Thus, during the training, when calculating the quality score
with a set of candidate weights wf of an image whose subbands are
not aligned with the defined frequencies, a linear interpolation is used
to define the weights associated with each subband.

The angular resolution problem

6.3.4 Validation protocol

As the optimization problem is not convex, HDR-VDP-2 (v2.2.1) [54] used the Nelder-Mead
method [103], which does not require to compute gradient descent. However, this method
does not support a too high dimensionality [104]. Our proposed model triples the number of
weights (passing from 9 weights for HDR-VDP-2 to 27 for our proposed extention). As a result,
we choose the particle swarm optimization (PSO) [105] as this algorithm tolerates better such
dimensionality without computing any gradient.

We separate each training database (cf. Section 6.3.3) in a training set (80% of images)
and a test set (20% of images) with the condition that the same image (even with different
distortions) can not be found in the test set and in the training set. To obtain a more robust
estimation of the proposed model performance and to eliminate selection bias, we repeat this
split 1000 times and perform the training of the weight 1000 times. Each time the results are
evaluated on the test set.
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We used the Korshunov et al. a database that presents by construction almost no chromatic
distortions to verify that our proposed metric still correctly handle luminance artifact and our
proposed database 4Kdtb, a database that presents such chromatic artifacts to validate our
results.

6.4 Results

6.4.1 Metric performances

Table 6.3 shows the median SROCC obtain on the test sets through 1000 training. The
color space choice does not have a significant impact on the metric performances, neither is
the factor p (even if the trained metrics that use a factor of 7 are slightly less correlated to the
MOS than other metrics).

Our proposed model does not increase the performances on the CSIQ database and is
slightly better on the TID2013 database. This is harder to conclude on the other two databases
as the test sets are composed of very few images: 30 for the Zerman et al. database and 42 for
the Narwaria et al. database. However, we can observe that the SROCC are slightly better than
HDR-VDP-2 for the Narwaria et al. database and slightly worst for the Zerman et al. database.
This may be due to the higher weight αi given to the SROCC of the Narwaria et al. database
during the training.

Table 6.3: Median SROCC across 1000 Train-Test Combinations database by database.

Metric p CSIQ TID2013 Narwaria et al. Zerman et al.

HDR-VDP-2 0.9416 0.8572 0.9213 0.9432

HDR-VDP-2CtCp 2 0.9438 0.8596 0.9255 0.9212
HDR-VDP-2CtCp 3.5 0.9411 0.8669 0.9377 0.9304
HDR-VDP-2CtCp 7 0.9301 0.8548 0.9125 0.9265
HDR-VDP-2ab100 2 0.9423 0.8611 0.9301 0.9225
HDR-VDP-2ab100 3.5 0.9446 0.8651 0.9318 0.9405
HDR-VDP-2ab100 7 0.9342 0.8548 0.9140 0.9195
HDR-VDP-2ab1000 2 0.9400 0.8594 0.9245 0.9212
HDR-VDP-2ab1000 3.5 0.9456 0.8691 0.9290 0.9255
HDR-VDP-2ab1000 7 0.9212 0.8421 0.9100 0.9195

To validate our result, we select the median weights of 1000 training and a p factor of
3.5. Table 6.4 presents the result for the training databases and the Table 6.5 on the tested
databases. On the training databases, our proposed color extension has similar performance
for the CSIQ and the Zerman et al. databases and is slightly better for the TID2013 database
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and the Narwaria et al. database. On the tested databases, our proposed color extension does
not improve the performance of HDR-VDP-2: the difference in term of SROCC is inferior at 1%.

Table 6.4: SROCC of metrics with the median weights for the training databases.

Metric CSIQ TID2013 Narwaria et al. Zerman et al.

HDR-VDP-2 0.9404 0.8528 0.8906 0.9289
HDR-VDP-2CtCp 0.9449 0.8653 0.9245 0.9287
HDR-VDP-2ab100 0.9443 0.8632 0.9243 0.9297
HDR-VDP-2ab1000 0.9445 0.8659 0.9258 0.9198

Table 6.5: SROCC of metrics with the median weights on the validation databases.

Metric Korshunov et al. 4Kdtb

HDR-VDP-2 0.9511 0.8678
HDR-VDP-2CtCp 0.9434 0.8718
HDR-VDP-2ab100 0.9480 0.8672
HDR-VDP-2ab1000 0.9487 0.8717

Worse than that, the impact of the color subbands is negligible compared to the luminance
subbands. This is illustrated by Figure 6.3 that represents the score given by HDR-VDP-2CtCp
but without the inclusion of chrominance subbands in function of HDR-VDP-2CtCp on the 4Kdtb.

As expected, with our training, we succeed to obtain similar performances than HDR-VDP-
2. However, we failed to improve its performance or to extend its sensitivity to the chrominance
distortions.
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Figure 6.3: HDR-VDP-2CtCp scores without the chrominance subbands in function of
HDR-VDP-2CtCp with the chrominance subbands (using median weights) (Database: 4Kdtb).

6.4.2 Analysis of trained weights

To understand the results presented in the previous subsection, it is important to analyze
the weights obtained with our training. In this subsection, we focus on the trained metric
HDR-VDP-2CtCp, but similar results can be found with other color spaces.

During our training, in addition to the chrominance subbands, we also trained the weights
of the luminance subbands. We can compare the weights of HDR-VDP-2 and the weights of
HDR-VDP-2CtCp. Figure 6.4 represents the original weights of HDR-VDP-2 and the median
weights obtained for the luminance channel of HDR-VDP-2CtCp. We can observe that even if
the two metrics have similar performances, we obtained significantly different weights. First,
we can see that the four highest frequency sub-bands 30, 15, 7.5 and 3.75 cpd contribute
almost equally to the HDR-VDP-2 score, whereas for HDR-VDP-2CtCp, only two subbands
(7, 5 and 3.75 cpd) are predominant for assessing quality. For HDR-VDP-2CtCp, The highest
frequencies are null. Another difference is the weight associated with the frequency 0.4688
cpd. This weight is almost null for HDR-VDP-2 while it has a small but significant influence on
HDR-VDP-2CtCp. If the weights are different but the performance of the metrics are similar, it
shows that the problem of estimating quality metrics is complex and that it is possible to find
many local minima on the basis of different training databases.
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(a) (b)

Figure 6.4: Luminance weights wf of (a) HDR-VDP-2 and (b) HDR-VDP-2CtCp (median
weights)

Figure 6.5 represents the distribution of the value taken by each chrominance and lumi-
nance weight wf of the metric HDR-VDP-2CtCp across the 1000 formations. First, we can
observe that most weights are null or almost null, even for luminance weights. The variation
is not very important for weights close to zero. This confirms that, during training, the highest
luminance frequencies (30 and 15 cpd) always converge toward zero, unlike the HDR-VDP-2
weights. The variation are higher for the frequency 7.5 and 3.75 cpd which can mean that the
error in the two subbands are highly correlated. The fact that the chrominance weights always
converge towards zero, except in a minority of cases for the 0.4688 cpd frequency, confirms
that the characteristics obtained from the chrominance subbands are not efficient to evaluate
the quality of the color images.

Figure 6.5: the distribution of the value taken by each wf weight for HDR-VDP-2CtCp
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6.4.3 Discussion

Several factors in the design of the color extension of HDR-VDP-2 and on the training pro-
tocol can explain the non sensitivity of chromatic distortion of the trained metric. We list after-
wards five hypothesis that could explain those results:

• The chromatic masking model: As stated in the section 6.2, when designing the HDR-
VDP-2 color extension, we chose to neglect intra-channel and inter-channel chrominance
masking. This HVS mechanism has an impact on the visibility of the differences. Small
differences are more difficult to detect on a complex background. This is an important
feature of the original HDR-VDP-2 metric. The SROCC of HDR-VDP-2 goes from 0.92
to 0.81 on the Zerman et al. Database if this mechanism is not used on the luminance
channel. Implementing a color masking model could improve the relevance of chromatic
subbands for evaluating image quality.

• The choice of the logarithm in the pooling function: In the pooling function, the sum of
all distortions are modified using a logarithm (cf. Equation 6.3). This choice was made for
the luminance subbands in HDR-VDP-2 because it gives better result than linear values.
However, it might not be the best polling strategies for chrominance subbands.

• The weight interpolation: All the databases used in the training phase did not have the
same angular resolution. As a result, some databases necessitate to use linear inter-
polation to assign weights to subbands whose frequency bands are not aligned with the
candidate weights associated frequencies. This might impact the quality of the training.
Obtaining more images with the same angular resolution could facilitate this training and
allow us to use the INSLA methodology to combine the databases.

• The number of weights: Due to the lack of data, training 27 weights using algorithm
like the particle swarm optimizer can create overfitting and complicate the training. Fixing
the luminance weights to their original value would reduce this number. In addition, for
chrominance channels, there is no need to consider the highest frequencies as they are
invisible to the HVS. This would also speed up the training.

• The database: There are no existing HDR/WCG databases as diverse in term of dis-
tortion and with as many images as SDR databases such as TID2013. Creating such
databases is expensive and time consuming. However, this database could prevent the
current inclusion of less relevant SDR databases to address a lack of data. Training would
be more dedicated and consequently improved.
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6.5 Conclusion

In this section, we proposed a metric to extend the HDR-VDP-2 metric toward chrominance
distortions. However, if we succeed to obtain similar performance than HDR-VDP-2 with our
model, we failed to improve significantly its performances. Worse, we also failed to improve its
sensitivity to chrominance distortion.

Several factors can explain the difficulties we have faced like the lack of chromatic masking
model, the number of weights we choose to train or the chosen databases. The resolution of
all these problems is complex and/or time consuming, without certainty that we can improve
HDR-VDP-2 this way. This is why we choose to explore a different approach to create a quality
metric.

In the following chapter, we present a new quality metric that consist in the aggregation of
several metrics and features, including HDR-VDP-2. This approach allows us to avoid some
of the difficulties involved in training the HDR-VDP-2 color extension mentioned in the previous
section.
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CHAPTER 7

QUALITY METRIC AGGREGATION

7.1 Introduction

To obtain a HDR metric suitable to assess color distortion, we propose to combine two
full-reference quality metrics and two color image features using a Support Vector Regres-
sor (SVR). Combining several features and quality metrics for improving the overall prediction
performance was already proposed for SDR images and video. We can mention CQM [106],
CF-MMF and CD-MMF [107], FVQA [108], EVQA [109] and the metric developed by Netflix,
VMAF [110].. Recently, Choudhury et al. [111] proposed HDR-CQM, a combination of full-
reference metrics adapted to HDR contents. The main idea is to combine, using support vector
machine regression, the scores of a subset of metrics selected from a list of quality metrics.
Although performing well, the proposed metric does not tackle the issue of WCG chromatic
distortions.

The first section of this chapter presents our proposed metric. The second section presents
the training methodology. The results are presented in a third section. The last section con-
cludes this chapter.

7.2 Proposed method

The proposed metric relies on the mixture parameters of several quality metrics and image
features; the combination is learned by using supervised machine learning. The main idea is
to take advantage of each metric / feature strengths while compensating individual weakness.
A Support Vector Regression machine with a Gaussian radial basis function kernel is used to
map the features to a quality score. Figure 7.1 presents the overall architecture of the proposed
method.
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Figure 7.1: Architecture of the proposed full-reference HDR quality metric.

7.2.1 Considered HDR quality metrics

Two HDR metrics were selected for their good performances on several databases (cf.
section 5): HDR-VDP-2 and FSIMJzazbz .

• HDR-VDP-2(version 2.2.1): HDR-VDP-2 requires numerous parameters such as the an-
gular resolution, the surround luminance and the spectral emission of the screen. To en-
sure that HDR-VDP-2 score is coherent, we use the same angular resolution (60 pix/deg,
the angular resolution of three of the databases), for each studied database. Using dif-
ferent angular resolution could result in incoherence between HDR-VDP-2 scores (cf.
Section 4.2).

• FSIMJzazbz : The FSIM metric adapted to the Jzazbz color space using the methodology
presented in section 5.

The two metrics considered above are only considering luminance distortions. To consider
the chromatic dimension, we add two chromatic-based features.

7.2.2 Chromatic-based visual features

As we aim to extend the quality metric to color images, we add two features able to measure
chromatic distortion. These features are inspired by the MS-SSIM features [75], the multi-
scale version of the SSIM index [72]. SSIM conducts a comparison on three levels: luminance,
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contrast and structure. Each factor is estimated pixel-wise through a sliding window in order
to achieve a distortion map. Thus, SSIM is not comparing global but local luminance, contrast
and structure. To obtain a global quality score, a mean is applied on this map. In MS-SSIM,
contrast and structure are compared on different scales of the images. Our color features are
created using the contrast (c) and structure (s) comparison function on the color components
of the images. Because the HVS is less sensitive to high frequency variation in color than in
luminance, we use the scale 5 of the images, i.e. the images after 5 downsampling with a
ratio of 2. The goal is to capture relevant chromatic distortions. First, a distortion map, CS5 is
calculated:

CS5(m,n) = c(xmn, ymn)× s(xmn, ymn) (7.1)

where xmn and ymn represent pixel values with the coordinates m and n of the reference image
X and the distorted image Y . Then, the feature, MCS5 az , is calculated as following:

MCS5(X,Y ) = 1
MN

M∑
m=1

N∑
n=1

CS5(m,n) (7.2)

where M and N represent the image sizes. For both original and degraded images, we calcu-
late this feature on the Jzazbz color component of the images: MCS5 az for the az component,
and MCS5 bz for the bz component.

Figures 7.2 and 7.3 represent, respectively, the distortions maps CS5 az and CS5 bz of the
4Kdtb image Bike_ 81s obtained when the image is compressed with a Qp of 20 with two
different ways of handling color information: a 10 bits quantization of the chroma with a chroma
Qp offset and a 8 bits quantization of the chroma. We can observe that MCS5 az and MCS5 bz
detect more distortions when there is an 8 bits quantization of the chroma, especially in the
regions with high luminance (in this image, the sky and the street lights). Almost no distortion
is detected when there is a 10 bits quantization with a chroma Qp offset.

In addition, we also add a last feature to characterize the image complexity. Indeed this
characteristic affects our perception of the image distortion.
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(a) (b) (c)

Figure 7.2: The 4Kdtb image Bike_ 81s (a) and the distortion map CS5 az obtained for the
image compressed with a Qp of 20 with (b) a quantization of 10 bits for the chrominances (c)
a quantization of 8 bits for the chrominances. A white pixel means that there is no differences
and a black pixel that there is a huge distortion.

(a) (b) (c)

Figure 7.3: The 4Kdtb image Bike_ 81s (a) and the distortion map CS5 bz obtained for the
image compressed with a Qp of 20 with (b) a quantization of 10 bits for the chrominances (c)
a quantization of 8 bits for the chrominances. A white pixel means that there is no differences
and a black pixel that there is a huge distortion.
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7.3. Training methodology

7.2.3 Image spatial information

The last feature allows us to characterize the complexity of the image. Image complexity
affects the image quality perception as it is related to the HVS spatial masking effects. It is
measured on the Jz component of the reference images. We selected Spatial Index SI as rec-
ommended by the International Telecommunication Union (ITU) [48]. As stated in Section 2.2,
the spatial information SIJz corresponds to the standard deviation of the image luminance plane
which has been filtered by a Sobel filter: SI = std[Sobel(X)], where X is the reference image.

7.2.4 Mapping the features to the quality scores

To summarize, we compute from the original and distorted images a vector of 5 parameters:
2 parameters deal with the luminance component, 2 concerns chroma dimensions and one is
used to characterize the image complexity. The relationship between these features and the
quality scores is learned thanks to the SVR machine (cf. Figure 7.1).

7.3 Training methodology

7.3.1 Combining several databases

To train the proposed model, a large collection of annotated HDR images is required. Unfor-
tunately, there is, to the best of our knowledge, only a small number of HDR image databases
annotated with subjective quality scores. In addition those databases are composed of a rather
small amount of images. (cf. Section 2.2)

To obtain a suitable database for our experiment, we considered the five databases pre-
sented in section 2.2 and 3.: Narwaria et al. [49], Korshunov et al. [24], Zerman et al. [50],
4Kdtb and HDdtb. The first four databases were used for the training phase and HDdtb was
considered as an independent test database used to validate our proposed metric.

As in section 6, one problem to solve is the combination of multiple databases. For this
purpose, we align the MOS of the different subjective tests into a common quality scale thanks
to the Iterated Nested Least Square Algorithm (INLSA) proposed in [102]. INLSA allows to de-
termine a common scale. As we use the same angular resolution parameter for all databases,
using this algorithm does not pose the same problem as in section 6. INLSA is based on the
assumption that objective quality metrics are linearly correlated with the subjective scores. Four
objective metrics were selected: HDR-VDP-2, VIFJzazbz , MS-SSIMJzazbz and FSIMJzazbz . The
Figure 7.4 illustrates the impact of the INLSA algorithm. It represents the HDR-VDP2 score in
function of the MOS before the INLSA algorithm (MOS are re-scale between 0 and 1) and after
the INLSA algorithm.
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(a) (b)

Figure 7.4: HDR-VDP2 score in function of MOS (a) before the INLSA algorithm (b) after the
INLSA algorithm

7.3.2 Support Vector Regression

To train the SVR, we first conduct a grid-search using all of the training databases to tune
the hyper-parameters to obtain optimal results. Once the best hyper-parameters are found, we
split our training database into two sets of images, one for training the SVR (80% of images)
and one for testing (20% of images). This split is done randomly with the constraint that the
same content can not be present in the training set and testing set. We then train the SVR us-
ing the function fitrsvm of Matlab. To obtain a more robust estimation of the proposed model
performance and to eliminate selection bias, we repeat this split 1000 times.
We evaluate the performance of our proposed metric using the median scores of four indexes:
the Spearman Rank Order Correlation Coefficient (SROCC), the Kendall Rank Correlation Co-
efficient (KRCC), the Pearson Correlation Coefficient (PCC) and the Root Mean Square Error
(RMSE).
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7.4. Results

Table 7.1: Median performances across 1000 Train-Test Combinations on the test set.

Metric SROCC KRCC PCC RMSE

MS-SSIMJzazbz 0.8096 0.6246 0.7963 16.6
MS-SSIMICtCp 0.9197 0.7507 0.9237 10.74
FSIMJzazbz 0.8955 0.7267 0.8953 12.2
FSIMICtCp 0.8807 0.7104 0.8757 13.52
HDR-VDP-2 0.9186 0.7496 0.9179 10.9

metric (1) 0.9234 0.7597 0.9244 10.46
metric (2) 0.9165 0.7563 0.9235 10.51
metric (3) 0.9113 0.7413 0.9101 11.36
metric (4) 0.9294 0.7692 0.9271 10.28
Proposed metric 0.9421 0.7899 0.9376 9.5

7.4 Results

7.4.1 Proposed metric performance

In this section, we present the performance of the proposed metric on the 1000 test sets.
The median performances across 1000 Train-Test Combinations can be found in Table 7.1.
We compare the score of the proposed metric to five other metrics: HDR-VDP-2 and four
SDR metrics adapted to HDR using two uniform color space Jzazbz and ICtCp [6] using the
methodology presented in section 5.2 MS-SSIMJzazbz , MS-SSIMICtCp, FSIMJzazbz , FSIMICtCp.
To ensure that each feature is meaningful, we also report four other trained metrics using
only a subsection of all features. Metric (1) is trained with only HDR-VDP-2 and FSIMJzazbz ,
metric (2) with all features except HDR-VDP2, metric (3) with all features except FSIMJzazbz

and metric (4) with all features except SIJz . Table 7.1 shows that the proposed model provides
superior performances than any other metric. To ensure that the good performances of the
proposed model are homogeneous across all databases, we also report the median SROCC of
the 1000 trained metrics, database by database in Table 7.2. Because the number of images
in the test set coming from one database was rather small, we use the complete databases to
calculate the performance indexes and not only the images used in the test set. We observe
that achieving high accuracy on one database does not preclude the model performances on
another database. Our proposed model reaches higher performances when compared to other
metrics and especially to HDR-VDP-2 and FSIMJzazbz , the two metrics that are also forming the
basis of our model.
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Table 7.2: Median SROCC across 1000 Train-Test Combinations database by database.

Metric 4Kdtb khorshunov et al. Narwaria et al. Zerman et al.

MS-SSIMJzazbz 0.8306 0.9648 0.9088 0.8109
MS-SSIMICtCp 0.8447 0.9529 0.8714 0.9260
FSIMJzazbz 0.8849 0.9663 0.8466 0.9031
FSIMICtCp 0.9049 0.9477 0.8645 0.8863
HDR-VDP-2 0.8678 0.9516 0.8909 0.9289
Proposed metric 0.9095 0.9704 0.9240 0.9474

7.4.2 Validation on an independent database

In this section, we provide further evidence that the proposed metric can be generalized to
other databases. More specifically, we evaluate its performance on the HDdtb database. In
Table 7.3, we report results obtained on the complete HDdtb database and the results on the
HDdtb images with compression artifacts only. It is worth mentioning that such artifacts are of
same nature that those we trained our model for. The proposed metric outperforms five state-
of-the-art metrics for all performance indexes when considering the complete database. As it
was expected, the gain is higher when considering only the images with compression artifacts.

Table 7.3: Performances of several metrics for (a) the complete database HDdtb (b) Only the
HDdtb images with compression artifacts.

(a) SROCC KRCC PCC RMSE
MS-SSIMJzazbz 0.8557 0.6646 0.8603 14.11
MS-SSIMICtCp 0.8464 0.6462 0.8763 13.33
FSIMJzazbz 0.9069 0.7278 0.9187 10.94
FSIMICtCp 0.8099 0.6080 0.8234 15.70
HDR-VDP-2 0.8685 0.6721 0.8715 12.55
Proposed metric 0.9110 0.7357 0.9250 9.05

(b) SROCC KRCC PCC RMSE

MS-SSIMJzazbz 0.8752 0.7165 0.8860 13.13
MS-SSIMICtCp 0.8651 0.6749 0.8923 12.83
FSIMJzazbz 0.9173 0.7619 0.9297 10.47
FSIMICtCp 0.8271 0.6437 0.8289 15.90
HDR-VDP-2 0.8739 0.6866 0.9018 12.28
Proposed metric 0.9422 0.7931 0.9510 8.53
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7.4. Results

7.4.3 Sensitivity to color distortions

One of the metric goals is to assess not only the luminance distortions but also chromatic
distortions. To illustrate this behavior, we use the images of the 4Kdtb database. Figures 7.5
and 7.6 represent MOS score, the color-blind metrics HDR-VDP-2 and our proposed metric.
The difference between the compression strategies is chrominances management. As illus-
trated, for example, on Figure 7.5 (c) (left), observers are sensitive to the different modes of
compression. As expected, HDR-VDP-2 is not sensitive to chromatic distortions while the pro-
posed metric is. We can still observe thar color artifacts are slightly underestimated for images
with a low Qp and 8 bits quantization for the chrominance (cf. Figures 7.5 (a) and 7.6 (a), (b)
and (d)).

(a) (b)

(c) (d)

Figure 7.5: Subjective and objective scores in function of HEVC Qp for the images (a)
Bike_110s (b) Bike_20s (c) Bike_30s (d) Bike_30s.
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(a) (b)

(c) (d)

Figure 7.6: Subjective and objective scores in function of HEVC Qp for the images
(a)Regatta_11s (b) Regatta_24s (c) Regatta_80s (d) Regatta_95s.

7.5 Conclusion

In this chapter, we proposed a new full-reference quality metric adapted to HDR/WCG con-
tent. This metric is a combination of two full-reference quality metrics as well as color image
features and the image spatial information. Those features are fused into one metric with an
SVR method. Experimental results show that the proposed metric can accurately assess the
quality of images distorted by compression. Moreover, contrary to most HDR metrics, the met-
ric is sensitive to chromatic distortions as well as luminance distortions. However, due to the
characteristics of the database used to train and test the metric, it is not possible to assess its
performance for distortion beyond image compression. Databases with more various kinds of
distortions are needed to improve the proposed metric.
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PART III: CONCLUSION

In this part, we proposed three methods to improve the automatic quality evaluation of
HDR/WCG images. Especially with chrominance artifacts.

First, we proposed to adapt SDR metric to HDR/WCG contents using perceptually uniform
color space. This method is a good alternative to PU-metrics as it can be implemented with
the ICtCp color space that is implemented in MPEG codec. Thus, in this case, adapting
SDR metrics does not necessarily imply any color space transform. However, if the method
is efficient for color-blind metric, none of the color metrics are able to evaluate the quality in a
satisfactory way.

Second, we tried to extend the HDR-VDP-2 model towards the chrominance but we did
not succeed to improve HDR-VDP-2 performances. This may be due to the irrelevance of the
created color features. The complexity of such metric was only growing and we chose another
approach to create an HDR/WCG color metric.

Finally, we proposed to aggregate several metrics and visual features to create a new metric
that outperforms all other on the tested databases.

This last approach is complementary with the first approach, SDR metrics adaptation. In-
deed, if the aggregation of metrics offers better performances than other metrics, it is quite
complex. So it is mostly practicable to compare algorithms, for example, to drive the selection
of image compression technologies. However, some applications need to obtain very fast qual-
ity estimation with very low latency. For example, a video server can evaluate the video quality
of video streams to allocate and control the streaming resources. In this case, MS-SSIMICtCp

and FSIMICtCp might be a better option especially coupled with ∆ESICtCp to check the chromi-
nance preservation.
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CONCLUSION

Summary

In this thesis, we addressed the question of the quality assessment in the context of High
Dynamic Range (HDR) and Wide Color Gamut images/videos. If the quality of HDR contents
within a BT.709 gamut, was a well-studied area, it was not the case for contents that combine
HDR and WCG. Indeed, screens able to display such images were only available recently at a
reasonable cost. Thus, no metrics were designed to handle such contents, especially, all met-
rics adapted to HDR did not consider chromatic distortions. However, HDR and WCG become
more and more intricate technologies. Indeed, standards development organizations strongly
recommend to use both technologies at the same time to help their deployment. Therefore,
their is a need to obtain adapted quality metrics.

Experimental Data

To tackle this problematic, we created two databases of images using HDR/WCG anno-
tated with MOS. Those databases are essential to study the performances of objective quality
metrics. We created two databases, one, HDdtb, is composed of images with a BT.709 gamut
encapsulated in a BT.2020 gamut. The second, 4Kdtb, is composed of images with a native
BT.2020 gamut. We selected the images to obtain a large variety of characteristics, differ-
ent DR, keys, colorfulness and complexity. Thus, we obtain databases that correspond to the
diversity of contents allowed by the HDR/WCG formats. Moreover, we choose to create real-
istic artifacts that can occur during transmission of images. We focus on chromatic artifacts
and how chrominance information is handled during the compression of images. Using those
databases, we show that those chromatic artifacts can affect the perceived quality of images.
This was especially true for the database 4Kdtb.

In chapter 4, we used three HDR databases with a standard color gamut and the two afore-
mentioned databases to analyze in detail the state-of-the art metrics. In particular, we studied
in details the calibration of HDR-VDP-2. this metric is recognized as the standard metric to
perform HDR objective IQA. We conclude that at least two parameters of the metric param-
eter, the display spectral emission and the surrounding luminance, have a very small impact
on the metric. With the best calibration for HDR-VDP-2, we did a benchmark using the most
reknown HDR metrics. We conclude that HDR-VDP-2 is always in the first or second best
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metric. Performances of other metrics differ more from one database to another. However, for
several databases, metrics with a much lower complexity than HDR-VDP-2 have similar or even
outperform HDR-VDP-2 performances. As the results, it is quite complex to conclude that one
metric systematically outperforms all other metrics. In addition, we have shown that the 4Kdtb
can be used to illustrate the sensitivity (or the lack of sensitivity) to chromatic artifacts of quality
metrics.

Color HDR/WCG image quality assessment

The new databases allows us to study three solutions to create objective quality metrics
sensitive to chromatic distortions. In addition, we wanted our metrics to retain good perfor-
mances on HDR contents using standard color gamut.

The first solution, presented in chapter 5, is to adapt SDR metrics. Indeed, most SDR met-
rics were designed with the assumption that they are encoded using perceptually uniform color
space. However, those color spaces, like Y ′CrCb, are not adapted to HDR contents. Aydin et
al [10] proposed to adapt the luminance using a function called PU to solve the problem. How-
ever, this approach only considers luminance distortion only and not chromatic artifacts. In this
chapter, we proposed a method to adapt SDR metrics using perceptually uniform color space
adapted to HDR/WCG. We have tested this method on 12 metrics including 6 metrics that in-
clude chromatic information. We have tested 4 different color spaces adapted to HDR/WCG:
ICtCp, Jzazbz and two versions of HDR-Lab which differ on the diffuse white (100 cd/m2 1000
cd/m2). Among all the metrics, we did not found one that was able to assess chromatic distor-
tions while retaining the performance of the best color-blind metrics. However, we found that
using these color spaces was a good complement to the PU function proposed by Aydin et
al [10]. For example, using the ICtCp color space, instead of the PU function, does not involve
to perform a change of color space, thus making metrics less complex. In addition, we have
also shown that the grading of images might have an impact on quality perception. Especially,
the image diffuse white has an impact on which color space is more suitable to perform quality
assessment.

In chapter 6, we proposed another method: extending an existing metric HDR-VDP-2. This
metric is often considered the reference metric concerning HDR contents. To extend this metric,
we took advantage of its design. As it models precisely the perception of L, M and S cons, we
can infer, from this information, two maps of chrominance distortions. However, if our training
gave the same performances than the original metric, we failed to improve its performances.
Worse, the trained metric was not impacted by the chromatic distortion. As we did not succeed
to improve HDR-VDP-2 using HVS models, we investigated another method: metric fusion.

In chapter 7, we present a new metric which is the combination of two metrics, HDR-VDP-2
and FSIMJzazbz , two color features, MCS5 az and MCS5 bz and finally, one estimation of the
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image complexity SIJz . We succeed to obtain a metric that has superior performances than the
other studied metrics and is sensitive to chromatic distortions. This last metric is quite complex
and therefore is not usable in all circumstances. The first method that adapts SDR metric can
be used in those cases. Both methods are complementary.

Future work and perspectives

Improving the metrics

Although we provide efficient metrics to assess the quality of images, there are several
aspects that can be improved.

First, we only consider still images to create our metric. Thus, we do not take into account
the specific aspect of videos. Indeed, the HVS has many temporal effects which impact the per-
ception of moving images [112]. For example, the contrast sensitivity (in luminance) of spatially
low-frequency noise is significantly higher if the noise is temporally varying [113]. The temporal
effect does not affect only luminance but also chromatic noise. In [114], the author shows that
the sensitivity for temporal chromatic noise patterns is higher for low frequencies in comparison
with static noise. Therefore, if some chromatic artifacts are benign for still images, they could
become more problematic for videos.

A second strategy to improve metric is to create a bigger database. Indeed, there is no
database with HDR/WCG images with as numerous images as SDR databases. For exam-
ple, CSIQ [86] count 866 images and TID2013 [115] 3000. There are more images in those
two databases than in the combination of all the HDR/WCG databases at our disposal. Cre-
ating a bigger, better representative database could improve the quality of the training and the
universality of the resulting metrics.

The metrics performances are not the only characteristics that can be improved. Reducing
the complexity of quality metrics can facilitate their use, especially the metric presented in 7.
Indeed, HDR-VDP-2, one of the components of the metric is very complex and, therefore, is
not usable in all circumstances. Moreover, the experience in chapter 6 shows that with an
appropriate training, we could obtain similar performances than HDR-VDP-2 using only two
subbands. Simplifying HDR-VDP-2 seems doable. It is not the only way of simplifying our
proposed metric. In [111], authors create another combination metric HDR-CQM with similar
performances than HDR-VDP-2. It is possible to replace HDR-VDP-2 by other metrics using
the same methodology and adding our color features.
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HDR/WCG and aesthetic

HDR/WCG color space, due to their sizes, allows a lot of freedom to grade the images. The
color grading of images is the process of improving the appearance of an image for specific de-
vices. It is also often viewed as a way to generate artistic color effects to establish an aesthetic
"look". However, some processes can affect this look. One example is the distortion gamut
mismatch of our proposed database HDdtb. In this example, the color of the images looked
more dulled or more saturated.

However, the participant of the subjective tests did not associate this distortion with a loss
of quality even if the artifacts were clearly visible. It was the aesthetic of the images that
has changed but viewers were focused on the compression artefacts to give a score. Most
advanced metrics are not very sensitive to such gamut mismatch and really mimics the results
of subjective tests.

Gamut mismatch is not the only sources of distortions that modifies the look of images.
Backward-compatible compression can also create contrast change and hue shift distortions.
For example, the Narwaria et al. database contains such distortions (cf. subsection 5.3.5) even
if in this case, it is not clear if those distortions significantly impact the look of images. Aside
from the distortions created during the transmission of images, there is also the impact of the
displays that might change the aesthetic looks. Indeed, HDR displays can be very different
from one another with different peak brightness. This can lead to compatibility problem that if
not handled correctly might result in loss of the creative intent [116].

Those distortions are not desirable. However, they can be minimized during subjective
tests. Indeed, the images/videos are presented without context and the creative intent behind
the images are not known by the viewers. In such a case, it could be interesting to ask viewers
to give two scores: one for the perceived quality and one for the fidelity to the source, to have a
more complete estimation of the quality of an end-to-end transmission chain.
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APPENDIX A

SDR METRICS DESCRIPTION

In this appendix, we present in details several SDR metrics selected in section 2.4.

A.1 PSNR

The peak Signal-to-Noise Ratio (PSNR) is a simple metric that evaluates the distortion
between a reference and a distorted image.

PSNR = 10 log10( DR2

MSE(X,Y )) (A.1)

where DR is traditionally the range of the possible luminance values (255 for an 8 bits repre-
sentation). The MSE(X,Y ) corresponds to the mean square error between the reference and
the distorted images:

MSE = 1
IJ

∑
i

∑
j

[X(i, j)− Y (i, j)]2 (A.2)

where I and J are the image resolution and i and j are the pixels spatial coordinates of the X
and Y images.

A.2 S-CIELab

The S-CIELab [71] metric is the spatial extension of the CIE-Lab color space. Indeed,
the color difference metric ∆Eab is not correlated with the perception of differences in natural
images but in large uniform patches. The goal of this extension is to take into account the
blurring effect of the HVS. To achieve that, the images in the XY Z color space are transformed
into an opponent color space as follows:

O1

O2

O3

 =


0.279 0.72 −0.107
−0.449 0.29 −0.077
0.086 −0.59 0.501



X

Y

Z

 (A.3)
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Each component O is then filtered, using filters that approximate the Contrast Sensitivity Func-
tion (CSF) of the HVS. This is accomplished using filters with two-dimensional separable con-
volution kernels f of the form:

f(x, y) = k
∑
i

wiEi(x, y) (A.4)

where
Ei = ki exp[−(x2 + y2)/σ2

i ] (A.5)

The parameters for wi and σi are different for each component O1, O2, O3, the scale factor
ki is chosen so that each Ei sums to 1. The scale factor k is chosen so that for each color
plane, the kernel f sums to 1. Then, the filtered images are converted back to the XY Z color
space from which the uniform color space Lab can be calculated. Once this transformation is
done on the reference image and on the distorted image, a color difference map using the color
difference metric, ∆E, can be calculated. The new distortion map is called ∆ES . To obtain a
unique value estimating the overall perceptual difference between two images, the average of
this map is computed:

∆ES = 1
IJ

I∑
i

J∑
j

∆ES(i, j) (A.6)

The S-CIELab metric was originally designed to measure color reproduction errors of printed
digital images. It is also often used as an image quality metric because of its simple implemen-
tation.

A.3 SSIM

A.3.1 Color-blind SSIM:

The structural similarity index (SSIM) [72] is based on the assumption that the HVS is highly
adapted to extract the structure of natural scene. SSIM is composed of the comparison of three
characteristics calculated from the luminance component of two images X and Y , one being
the reference image and the other one the distorted image.

• First, the luminance of each signal is compared using the l(X,Y ) function:

l(X,Y ) = 2µXµY + C1
µ2
X + µ2

Y + C1
(A.7)
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• Then, the c(X,Y ) function which represents the contrast comparison is calculated :

c(X,Y ) = 2σXσY + C2
σ2
X + σ2

Y + C2
(A.8)

• Finally, the structure of the images is compared using the function s(X,Y ):

s(X,Y ) = σXY + C3
σXσY + C3

(A.9)

where µX and µY are the means of the images X and Y, σX and σY are their standard deviations
and σXY is the covariance between them. C1, C2 and C3 are used to prevent the division by
zero. These three components are combined as follows:

SSIM(X,Y ) = [l(X,Y )α × c(X,Y )β × s(X,Y )γ ] (A.10)

Usually the weights α, β and γ are set to 1. The SSIM is often calculated locally and not globally
(like in previous equation) allowing to have more detailed information about the distortion. The
SSIM is then calculated for each pixel through a sliding window. In [72], Wang et al. used
a sliding window in which values are weighted using an 11 × 11 circular-symmetric Gaussian
weighting function W = {wn|n = 1, 2, ..., N}. The statistics are then calculated for each pixel x
of X and y of Y :

µx =
N∑
n=1

wnxn (A.11)

σx = (
N∑
n=1

wn(xn − µx)2)
1
2 (A.12)

σxy =
N∑
n=1

wn(xn − µx)(yn − µy) (A.13)

A SSIM index is calculated for each pixel and its associated window using the equation
(A.10). To obtain an overall quality measure of the image, the mean of the SSIM indexes is
calculated:

MSSIM(X,Y ) = 1
IJ

I∑
i=1

J∑
j=1

SSIM(xij , yij) (A.14)

where I and J represent the image resolution.

We keep the name SSIM instead of MSSIM to avoid confusion with the multiscale SSIM
(MS-SSIM) (see section A.4).
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A.3.2 SSIM for color images (SSIMc):

The SSIM was only defined for luminance information. In [73], Wang et al. extended the
SSIM to video as well as to chrominance information. They used SSIM for each component of
the video sequence encoded in the Y’CrCb [28] color space. The SSIM scores for the three
components are then aggregated using a weighted arithmetic mean:

SSIMc(i, j) = 0.8 SSIMY ′(i, j) + 0.1 SSIMCr(i, j) + 0.1 SSIMCb(i, j) (A.15)

where i and j are the pixel coordinates of the SSIM map. As for the color-blind SSIM metric,
an overall quality score is obtained by averaging all SSIMc scores.

A.3.3 CSSIM

Another solution to include chrominance information in SSIM was proposed in [74]. Authors
proposed to add a new comparison that use a S-CIELab ∆ESab distortion map (see section
A.2) and is called the color comparison. As for precedent comparison, the color comparison is
calculated for each pixel x of the reference image X and each pixel y of the distorted image Y :

cr(x, y) = 1− 1
k
×∆ESab(x, y) (A.16)

k is a constant equal to 45. The SSIM index (cf. Equation (A.10)) is then adapted as follows:

CSSIM = 1
IJ

I∑
i

J∑
j

l(xij , yij)× c(xij , yij)× s(xij , yij)× cr(xij , yij) (A.17)

A.4 Multiscale-SSIM (MS-SSIM)

Wang et al. [75] improved the SSIM index by using a multiscale approach (MS-SSIM). They
proposed to apply the comparison functions used in SSIM at different scales of the images. The
goal is to incorporate image details at different resolutions. The different scales are obtained
after a low-pass filtering and a downsampling of the images. The index of the original scale
is 1 and the index of the highest scale is M . The luminance comparison (equation (A.14)) is
only done at the highest scale. The multiscale SSIM evaluation is obtained using the following
combination:

MS-SSIM = [LM (X,Y )]αM .
M∏
m=1

[Cm(X,Y )]βm [Sm(X,Y )]γm (A.18)

Where X and Y are the reference and the distorted images, L, C and S are the mean of the
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pixelwise luminance, contrast and structure comparison functions l, c and s defined in section
A.3 for the different image scales m. α, β and γ are the parameters of the metric.

In [75], the authors proposed a 5 scales MS-SSIM where the parameters are : β1 = γ1 =
0.0448, β2 = γ2 = 0.2856, β3 = γ3 = 0.3001, β4 = γ4 = 0.2363 and α5 = β5 = γ5 = 0.1333.

A.5 FSIM

A.5.1 Color-blind FSIM

The feature similarity (FSIM) index [65] allows to overcome a limit of SSIM and MS-SSIM:
in these algorithms, a simple average is used to pool the SSIM local distortion map (equation
(A.14)), each pixel having then the same importance. The authors of FSIM made the assump-
tion that different locations can have very different contributions to the quality perception of an
image.

FSIM extracts from the image two different features: the phase congruency and the gradient
magnitude.

The phase congruency model postulates that details of an image become visible where the
Fourier components are maximal in phase. The phase congruency can be considered as a
measure of the significance of local structure. To compute this feature, the authors used the
method developed by Kovesi [117]. The comparison of the phase congruency planes of the
reference image (PCX(i, j)) and of the distorted image (PCY (i, j)), i and j being the pixels
spatial coordinates, is done as follows:

SPC(i, j) = 2PCX(i, j)× PCY (i, j) + T1
PC2

X(i, j) + PC2
Y (i, j) + T1

(A.19)

The feature called gradient magnitude is calculated to take into account contrast information
(the phase congruency is contrast invariant). The comparison of the gradient magnitude planes
of the reference image (GX(i, j)) and the distorted image (GY (i, j)) is done as follows:

SG(i, j) = 2GX(i, j)×GY (i, j) + T2
G2
X(i, j) +G2

Y (i, j) + T2
(A.20)

Finally, the FSIM is calculated as follows:

SL(i, j) = [SPC(i, j)]× [SG(i, j)] (A.21)

PCm(i, j) = max(PCX(i, j), PCY (i, j)) (A.22)
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FSIM =
∑
i

∑
j SL(i, j)PCm(i, j)∑
i

∑
j PCm(i, j) (A.23)

The parameters values of FSIM are T1=0.85 and T2=160

A.5.2 FSIM for color images (FSIMc):

To add chrominance consideration in FSIM, the authors of the metric proposed the FSIMc
index [65]. Images are first converted from the RGB (BT.709) color space to the YIQ color
space [118] :


Y

I

Q

 =


0.299 0.587 0.114
0.596 −0.274 0.322
0.211 −0.523 0.312



R

G

B

 (A.24)

and then a comparison between the chrominance components (IX and IY and respectively
QX and QY ) performed for every pixel (i,j):

SI(i, j) = 2IX(i, j)× IY (i, j) + T3
I2
X(i, j) + I2

Y (i, j) + T3
(A.25)

SQ(i, j) = 2QX(i, j)×QY (i, j) + T4
Q2
X(i, j) +Q2

Y (i, j) + T4
(A.26)

The authors incorporate these comparisons straightforwardly into the FSIM index:

FSIMc =
∑
i

∑
j SL(i, j)PCm(i, j)× [SI(i, j)× SQ(i, j)]λ∑

i

∑
j PCm(i, j) (A.27)

The values of FSIMc parameters are T3=200, T4=200 and λ=0.03.

A.6 PSNR-HVS and PSNR-HVS-M

PSNR-HVS [119] is a modified version of the PSNR. It takes into account the contrast
sensitivity function (CSF) which measures the human sensibility to spatial frequencies.

The PSNR-HVS is calculated as follows:

PSNR-HVS = 10 log10

(
2552

MSEH

)
(A.28)
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The MSEH is calculated as follows:

MSEH = K
I−7∑
i=1

J−7∑
j=1

8∑
m=1

8∑
n=1

((X[m,n]ij − Y [m,n]ij)Tc[m,n])2, (A.29)

I and J are the images size. Xij and Yij are the 8 × 8 DCT coefficients of the reference
and distorted images for which the coordinates of the left upper corner are i and j. Tc is the
matrix of correcting factors that takes into account the HVS spatial sensitivity. m and n are the
coordinates of the DCT block coefficients. Finally, K is equal to 1/[(I − 7)(J − 7)64].

In [77], Ponomarenko et al. improved the performances of PSNR-HVS by adding a model
of the contrast masking: the fact that any DCT coefficient Xij of a block can mask any other
block coefficients except the DC coefficient (the mean luminance). This metric is called PSNR-
HVS-M.

To estimate the masking effect, a weighted energy Ew is calculated for each DCT block X:

Ew(X) =
8∑

m=1

8∑
n=1

X[m,n]2C[m,n], (A.30)

where C[m,n] is a matrix of correcting factors that models the contrast masking. The value
of the masking effect can be too high if an image block belongs to an edge. To overcome this
effect, a correction is then applied on Ew.

Em(D) = Ew(D)δ(D)/16 (A.31)

The correcting factor δ(D) is calculated using the local variance V of the four 4 × 4 sub-block
D1, D2 , D3 and D4 of the 8× 8 image DCT block D.

δ(D) = (V (D1) + V (D2) + V (D3) + V (D4))/4V (D) (A.32)

The masking model is then applied on the distorted (Y [m,n]) and reference (X[m,n]) im-
ages DCT blocks to obtain visible distortion blocks ∆XY as follows:

∆XY [m,n] =


X[m,n]− Y [m,n] if m = 0, n = 0
0 if | X[m,n]− Y [m,n] |≤ Enorm/C[m,n]
X[m,n]− Y [m,n]− Enorm/C[m,n] if X[m,n]− Y [m,n] > Enorm/C[m,n]
X[m,n]− Y [m,n]− Enorm/C[m,n] otherwise

(A.33)
where

Enorm =
√

max(Em(X), Em(Y ))/64 (A.34)
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The new MSE is then calculated as in equation (A.29):

MSEHV SM = K
I−7∑
i=1

J−7∑
j=1

8∑
m=1

8∑
n=1

((∆XYij [m,n])Tc[m,n])2 (A.35)

The PSNR-HVS-M is then calculated as in equation (A.28):

PSNR-HVS-M = 10 log10

(
2552

MSEHV SM

)
(A.36)

A.7 PSNR-HMA

A.7.1 Color-blind PSNR-HMA

PSNR-HMA [78] is an improvement of PSNR-HVS-M. PSNR-HVS-M has poor performances
when used on images that contain contrast change and mean shift. PSNR-HMA was created
to take into account the particularities of the HVS concerning these two distortions.

For a given reference image X and a given distorted image Y and their means X and Y , a
new image C is calculated :

C = Y +Delt (A.37)

Delt = X − Y (A.38)

The correcting factor Popr is computed to assess possible contrast change :

Popr =
∑

(X −X)(C − C)∑
(C − C)

(A.39)

The new image D is calculated:

D = (C − C).Popr + C (A.40)

This is the image that minimizes the Mean square error with A. Two MSEHV SM are calculated
(Equation (A.35)) :

M1 = MSEHV SM (X,C) (A.41)

M2 = MSEHV SM (X,D) (A.42)
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If M1 > M2, the contrast change needs to be dealt with as follows:

M1 = M2 +
{

(M1 −M2)C1 if Popr < 1
(M1 −M2)C2 if Popr ≥ 1

(A.43)

Then the final MSEHMA is calculated as follows:

MSEHMA = M1 +Delt2.C3 (A.44)

The values of the metric constants are: C1=0.002, C2=0.25 and C3= 0.04

A.7.2 PSNR-HMA for color images (PSNR-HMAc):

To include the chrominance components into the metric, Ponomarenko et al. [78] proposed
to aggregate the MSEHMA for each channel using the Y ′CrCb color space [28] as follows:

MSEHMA = (MSEHMA(Y ) +C4 ×MSEHMA(Cr) +C4 ×MSEHMA(Cb))/(1 + 2×C4) (A.45)

The values of the metric new constant is C4=0.5.

158



APPENDIX B

DATABASE IMAGES

The following images represent tone map version of all the used reference images. The tone
mapping operator (TMO) used to produce this images was the Reinhard et al. TMO [93]. We
used its Matlab implementation of the HDRToolbox [120]. The reason why the same content
present in several databases (like FireEater) can have a different rendering is because the
Reinhard TMO was applied indifferently on BT.709 content and BT.2020 content.

B.1 Narwaria et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure B.1: Tone-mapped version (Reinhard et al. TMO [93]) of Narwaria et al. reference
images. From left to right and from top to bottom: (a) Apartment_float_o15C (b) bausch_ lot (c)
carpark_ ivc (d) CD1_serie2 (e) forest_path (f) lake (g) LightHouse072 (h) moto (i) office_ivc
(j) outro022168.

159



B.2 Zerman et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure B.2: Tone-mapped version (Reinhard et al. TMO [93]) of Zerman et al. reference im-
ages. From left to right and from top to bottom: (a) AirBellowsGap (b) Balloon (c) FireEater (d)
LasVegasStore (e) Market3 (f) MasonLake(1) (g) RedwoodSunset (h) Showgirl (i) Typewriter
(j) UpheavalDome.
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B.3 Korshunov et al.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t)

Figure B.3: Tone-mapped version (Reinhard et al. TMO [93]) of Korshunov et al. reference im-
ages. From left to right and from top to bottom: (a) 507 (b) BloomingGorse2 (c) CanadianFalls
(d) DevilsBathtub (e) dragon_ 3 (f) HancockKitchenInside (g) LabTypewriter (h) LasVegasStore
(i) McKeesPub (j) MtRushmore2 (k) set18 (l) set22 (m) set23 (n) set24 (o) set31 (p) set33 (q)
set70 (r) showgirl (s) sintel_ 2 (t) WillyDesk.
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B.4 HDdtb

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure B.4: Tone-mapped version (Reinhard et al. TMO [93]) of the HDdtb reference images.
From left to right and from top to bottom: (a) FireEater (b) LasVegasStore (c) Market3 (d)
MasonLake(1) (e) RedwoodSunset (f) Showgirl (g) Typewriter (h) UpheavalDome.
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B.5 4Kdtb

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure B.5: Tone-mapped version (Reinhard et al. TMO [93]) of the 4Kdtb reference images.
From left to right and from top to bottom: (a) Bike_ 20s (b) Bike_ 30s (c) Bike_ 81s (d) Bike_
110s (e) Regatta_ 11s (f) Regatta_ 24s (g) Regatta_ 80s (h) Regatta_ 95s.
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APPENDIX C

PERFORMANCE INDEXES

In this appendix, we present the numerical value for the performance indexes of each quality
metrics with each database. The metrics with the best performances in terms of SROCC and
PCC is in red, the second is in blue and the third in green.
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C.1 PCC

Table C.1: PCC of the different color-blind quality metrics on the considered databases

Quality Metric 4Kdtb HDdtb Narwaria et al. Korshunov et al. Zerman et al.

PU-PSNR 0.6964 0.8002 0.5831 0.8597 0.8188
PSNRHDR-Lab100 0.6724 0.7950 0.5562 0.8602 0.8042
PSNRHDR-Lab1000 0.4711 0.7320 0.5344 0.8004 0.7023
PSNRICtCp 0.7231 0.7948 0.6036 0.8697 0.8546
PSNRJzazbz 0.5431 0.6899 0.5533 0.7999 0.7002
PSNRXY Z 0.1890 0.6416 0.4627 0.7017 0.5612
PSNRY ′Cr′Cb′ 0.2674 0.6755 0.4996 0.7635 0.6428

PU-SSIM 0.6962 0.8520 0.7567 0.9265 0.8262
SSIMHDR-Lab100 0.6966 0.8448 0.7805 0.9243 0.8010
SSIMHDR-Lab1000 0.6025 0.7677 0.7247 0.9021 0.6596
SSIMICtCp 0.6838 0.8366 0.7572 0.9296 0.8522
SSIMJzazbz 0.6580 0.7851 0.7990 0.9174 0.6923
SSIMXY Z 0.2755 0.6174 0.6167 0.7786 0.4863
SSIMY ′Cr′Cb′ 0.3435 0.6729 0.6718 0.8423 0.5343

PU-MS-SSIM 0.8479 0.8881 0.8756 0.9631 0.9324
MS-SSIMHDR-Lab100 0.8451 0.8899 0.8448 0.9606 0.9253
MS-SSIMHDR-Lab1000 0.7792 0.8395 0.8680 0.9068 0.7633
MS-SSIMICtCp 0.8382 0.8763 0.8846 0.9575 0.9410
MS-SSIMJzazbz 0.8337 0.8603 0.9157 0.9694 0.8013
MS-SSIMXY Z 0.4377 0.6422 0.6316 0.8619 0.6258
MS-SSIMY ′Cr′Cb′ 0.5409 0.7062 0.7091 0.9126 0.6443

PU-FSIM 0.9000 0.8443 0.8773 0.9568 0.8988
FSIMHDR-Lab100 0.8950 0.8476 0.8726 0.9540 0.9120
FSIMHDR-Lab1000 0.8416 0.8923 0.8195 0.9733 0.9133
FSIMICtCp 0.8992 0.8234 0.8654 0.9471 0.8883
FSIMJzazbz 0.8829 0.9187 0.8466 0.9724 0.9059
FSIMXY Z 0.5817 0.7372 0.6546 0.9015 0.7402
FSIMY ′Cr′Cb′ 0.7054 0.8066 0.7445 0.9215 0.8148

PU-PSNR-HVS-M 0.8169 0.7963 0.6090 0.9210 0.9120
PSNR-HVS-MHDR-Lab100 0.8200 0.8023 0.5942 0.9218 0.9110
PSNR-HVS-MHDR-Lab1000 0.6674 0.7088 0.5874 0.9252 0.8588
PSNR-HVS-MICtCp 0.8187 0.7762 0.6269 0.9297 0.9226
PSNR-HVS-MJzazbz 0.7316 0.6624 0.5807 0.9120 0.8310
PSNR-HVS-MXY Z 0.3016 0.6320 0.4517 0.8102 0.6716
PSNR-HVS-MY ′Cr′Cb′ 0.4214 0.6540 0.5009 0.8972 0.7915

PU-PSNR-HMA 0.8244 0.7873 0.7625 0.9364 0.8893
PSNR-HMAHDR-Lab100 0.8129 0.7693 0.7647 0.9360 0.8850
PSNR-HMAHDR-Lab1000 0.6676 0.7545 0.7221 0.9368 0.8516
PSNR-HMAICtCp 0.8410 0.8140 0.7904 0.9310 0.9230
PSNR-HMAJzazbz 0.7298 0.7592 0.7427 0.9261 0.8322
PSNR-HMAXY Z 0.3022 0.6750 0.5069 0.8574 0.6794
PSNR-HMAY ′Cr′Cb′ 0.4216 0.7203 0.6406 0.8942 0.7933

HDR-VDP2 0.8605 0.8715 0.9130 0.9518 0.9385
HDR-VQM 0.7714 0.8676 0.9061 0.9612 0.9304
PU-VIF 0.8722 0.7645 0.7571 0.9215 0.8919
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Table C.2: PCC of the different color quality metrics on the considered databases.

Quality Metric 4Kdtb HDdtb Narwaria et al. Korshunov et al. Zerman et al.

∆EHDR-Lab100 0.4582 0.2502 0.6407 0.7629 0.6012
∆EHDR-Lab1000 0.2280 0.2559 0.6106 0.7024 0.5133
∆EICtCp 0.6783 0.2548 0.6277 0.8065 0.7508
∆EJzazbz 0.4058 0.2952 0.6436 0.5536 0.5392
∆EXY Z 0.2184 0.3438 0.3375 0.5993 0.3564
∆EY ′Cr′Cb′ 0.2336 0.3083 0.3220 0.6873 0.4287

∆ESHDR-Lab100 0.7513 0.1135 0.6686 0.7334 0.7464
∆ESHDR-Lab1000 0.4662 0.1027 0.5763 0.7470 0.6723
∆ESICtCp 0.7885 0.1355 0.5541 0.7639 0.7655
∆ESJzazbz 0.6103 0.1331 0.5520 0.7556 0.6980
∆ESXY Z 0.2748 0.2698 0.2761 0.7152 0.4372
∆ESY ′Cr′Cb′ 0.3093 0.2047 0.2527 0.7250 0.6325

SSIMcHDR-Lab100 0.5246 0.7050 0.7485 0.8845 0.7126
SSIMcHDR-Lab1000 0.3120 0.6618 0.7886 0.8664 0.5507
SSIMcICtCp 0.7376 0.7764 0.7505 0.9176 0.8275
SSIMcJzazbz 0.5108 0.6842 0.8153 0.8914 0.6253
SSIMcXY Z 0.2596 0.6020 0.6292 0.7713 0.4811
SSIMcY ′Cr′Cb′ 0.2851 0.6187 0.7471 0.8354 0.5185

CSSIMHDR-Lab100 0.7991 0.5193 0.7784 0.8929 0.7762
CSSIMHDR-Lab1000 0.5440 0.4249 0.6696 0.8828 0.6644
CSSIMICtCp 0.7699 0.5137 0.7354 0.9152 0.8372
CSSIMJzazbz 0.6812 0.4872 0.6180 0.9197 0.7025
CSSIMXY Z 0.2174 0.3671 0.4213 0.7590 0.4856
CSSIMY ′Cr′Cb′ 0.3065 0.4367 0.5317 0.8788 0.5649

FSIMcHDR-Lab100 0.8473 0.8598 0.8680 0.9360 0.9131
FSIMcHDR-Lab1000 0.6891 0.8654 0.8343 0.9633 0.9055
FSIMcICtCp 0.9080 0.8086 0.8687 0.9453 0.8894
FSIMcJzazbz 0.8355 0.9162 0.8566 0.9717 0.9092
FSIMcXY Z 0.5848 0.7337 0.6609 0.9029 0.7415
FSIMcY ′Cr′Cb′ 0.6783 0.7923 0.7656 0.9541 0.8162

PSNR-HMAcHDR-Lab100 0.5602 0.4489 0.6744 0.7533 0.7229
PSNR-HMAcHDR-Lab1000 0.3573 0.3986 0.6701 0.7275 0.6457
PSNR-HMAcICtCp 0.7540 0.6467 0.7899 0.8608 0.8195
PSNR-HMAcJzazbz 0.4963 0.4749 0.7319 0.8196 0.7213
PSNR-HMAcXY Z 0.2057 0.5711 0.5884 0.8328 0.6327
PSNR-HMAcY ′Cr′Cb′ 0.3580 0.6153 0.7185 0.8942 0.7432
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C.2 SROCC

Table C.3: SROCC of the different color-blind quality metrics on the considered databases.

Quality Metric 4Kdtb HDdtb Narwaria et al. Korshunov et al. Zerman et al.

PU-PSNR 0.7261 0.7802 0.5331 0.8597 0.8266
PSNRHDR-Lab100 0.6596 0.7751 0.4975 0.8602 0.8147
PSNRHDR-Lab1000 0.4673 0.7587 0.4197 0.8078 0.7086
PSNRICtCp 0.7419 0.7745 0.5736 0.8742 0.8508
PSNRJzazbz 0.5531 0.6933 0.4634 0.8102 0.7001
PSNRXY Z 0.2131 0.6311 0.4601 0.7216 0.5682
PSNRY ′Cr′Cb′ 0.2519 0.6687 0.4157 0.7756 0.6493

PU-SSIM 0.7066 0.8430 0.7240 0.9280 0.8316
SSIMZ100 0.6977 0.8355 0.7494 0.9253 0.8090
SSIMHDR−Lab1000 0.6054 0.7904 0.7247 0.9085 0.6851
SSIMICtCp 0.6752 0.8245 0.7231 0.9307 0.8618
SSIMJzazbz 0.6492 0.7813 0.7721 0.9181 0.7073
SSIMXY Z 0.1965 0.6488 0.5938 0.7746 0.5065
SSIMY ′Cr′Cb′ 0.3027 0.6926 0.6376 0.8421 0.5563

PU-MS-SSIM 0.8517 0.8640 0.8656 0.9583 0.9165
MS-SSIMHDR-Lab100 0.8448 0.8708 0.8200 0.9567 0.9143
MS-SSIMHDR-Lab1000 0.7684 0.8505 0.8528 0.9600 0.7791
MS-SSIMICtCp 0.8447 0.8464 0.8714 0.9529 0.9260
MS-SSIMJzazbz 0.8306 0.8557 0.9088 0.9648 0.8109
MS-SSIMXY Z 0.4334 0.6864 0.6092 0.8646 0.6104
MS-SSIMY ′Cr′Cb′ 0.5202 0.7296 0.6846 0.9124 0.6499

PU-FSIM 0.9054 0.8149 0.8773 0.9553 0.8912
FSIMHDR-Lab100 0.8994 0.8239 0.8726 0.9553 0.9091
FSIMHDR-Lab1000 0.8420 0.8799 0.8195 0.9692 0.9087
FSIMICtCp 0.9049 0.8099 0.8654 0.9477 0.8863
FSIMJzazbz 0.8849 0.9069 0.8466 0.9663 0.9031
FSIMXY Z 0.5732 0.7546 0.6316 0.8986 0.7393
FSIMY ′Cr′Cb′ 0.7052 0.8153 0.7264 0.9415 0.8190

PU-PSNR-HVS-M 0.8401 0.7803 0.5624 0.9331 0.9035
PSNR-HVS-MHDR-Lab100 0.8110 0.7856 0.5455 0.9333 0.9028
PSNR-HVS-MHDR-Lab1000 0.6607 0.7508 0.4557 0.9311 0.8486
PSNR-HVS-MICtCp 0.8452 0.7554 0.5846 0.9308 0.9066
PSNR-HVS-MJzazbz 0.7315 0.6501 0.4963 0.9230 0.8286
PSNR-HVS-MXY Z 0.2891 0.6314 0.4392 0.8449 0.6793
PSNR-HVS-MY ′Cr′Cb′ 0.3922 0.6670 0.4157 0.9102 0.7954

PU-PSNR-HMA 0.8403 0.8218 0.7634 0.9369 0.9041
PSNR-HMAHDR-Lab100 0.8114 0.8167 0.7458 0.9365 0.9034
PSNR-HMAHDR-Lab1000 0.6607 0.7984 0.6907 0.9384 0.8493
PSNR-HMAICtCp 0.8455 0.8011 0.7696 0.9343 0.9076
PSNR-HMAJzazbz 0.7287 0.7664 0.7094 0.9339 0.8294
PSNR-HMAXY Z 0.2895 0.6773 0.4979 0.8692 0.6831
PSNR-HMAY ′Cr′Cb′ 0.3926 0.7160 0.6246 0.9236 0.7954

HDR-VDP2 0.8678 0.8685 0.8906 0.9516 0.9289
HDR-VQM 0.7735 0.8330 0.8995 0.9572 0.9170
PU-VIF 0.8658 0.7464 0.7704 0.9322 0.8863
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Table C.4: SROCC of the different color quality metrics on the considered databases.

Quality Metric 4Kdtb HDdtb Narwaria et al. Korshunov et al. Zerman et al.

∆EHDR-Lab100 0.4807 0.2578 0.6490 0.7523 0.6394
∆EHDR-Lab1000 0.2123 0.2418 0.6179 0.6945 0.5259
∆EICtCp 0.6846 0.3401 0.6218 0.8448 0.7599
∆EJzazbz 0.3008 0.2994 0.6339 0.6694 0.5602
∆EXY Z 0.0739 0.3949 0.3896 0.6850 0.4436
∆EY ′Cr′Cb′ 0.1549 0.3992 0.4377 0.7297 0.4999

∆ESHDR-Lab100 0.7827 0.2784 0.7181 0.8508 0.7559
∆ESHDR-Lab1000 0.4898 0.2585 0.6207 0.8524 0.6851
∆ESICtCp 0.7911 0.2606 0.6195 0.8635 0.7892
∆ESJzazbz 0.6396 0.2804 0.5855 0.8771 0.7283
∆ESXY Z 0.1706 0.3651 0.3911 0.8130 0.5665
∆ESY ′Cr′Cb′ 0.2392 0.3485 0.3927 0.8674 0.6365

SSIMcHDR-Lab100 0.5184 0.7085 0.7212 0.8873 0.7535
SSIMcHDR-Lab1000 0.2991 0.6641 0.7643 0.8943 0.6047
SSIMcICtCp 0.7437 0.7748 0.7273 0.9174 0.8545
SSIMcJzazbz 0.5059 0.7134 0.7926 0.8943 0.6740
SSIMcXY Z 0.1785 0.6325 0.6064 0.7670 0.5065
SSIMcY ′Cr′Cb′ 0.2259 0.6393 0.7044 0.8392 0.5443

CSSIMHDR-Lab100 0.7972 0.4065 0.7605 0.8981 0.7834
CSSIMHDR-Lab1000 0.5369 0.3257 0.6322 0.8857 0.6813
CSSIMICtCp 0.7712 0.4696 0.7212 0.9173 0.8464
CSSIMJzazbz 0.6730 0.4242 0.6181 0.9197 0.7037
CSSIMXY Z 0.1717 0.3592 0.3054 0.7713 0.4995
CSSIMY ′Cr′Cb′ 0.2657 0.4307 0.3830 0.8805 0.5805

FSIMcHDR-Lab100 0.8510 0.8531 0.8548 0.9332 0.9068
FSIMcHDR-Lab1000 0.6835 0.8560 0.8196 0.9575 0.9025
FSIMcICtCp 0.9127 0.7892 0.8585 0.9449 0.8852
FSIMcJzazbz 0.8371 0.9065 0.8485 0.9657 0.9046
FSIMcXY Z 0.5784 0.7483 0.6376 0.8999 0.7413
FSIMcY ′Cr′Cb′ 0.6799 0.7966 0.7512 0.9500 0.8196

PSNR-HMAcHDR-Lab100 0.5533 0.4042 0.6592 0.7664 0.7337
PSNR-HMAcHDR-Lab1000 0.3534 0.3394 0.7138 0.7446 0.6589
PSNR-HMAcICtCp 0.7618 0.6373 0.7585 0.8638 0.8418
PSNR-HMAcJzazbz 0.4893 0.4293 0.7065 0.8287 0.7301
PSNR-HMAcXY Z 0.2282 0.5431 0.5565 0.8455 0.6315
PSNR-HMAcY ′Cr′Cb′ 0.3443 0.5669 0.6851 0.9025 0.7486
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C.3 OR

Table C.5: OR of the different color-blind quality metrics on the considered databases.

Quality Metric 4Kdtb HDdtb Narwaria et al. Korshunov et al. Zerman et al.

PU-PSNR 0.6354 0.5729 0.7714 0.5833 0.6400
PSNRHDR-Lab100 0.6458 0.5833 0.8857 0.6042 0.6800
PSNRHDR-Lab1000 0.6563 0.5625 0.7714 0.6667 0.7000
PSNRICtCp 0.5938 0.5833 0.7786 0.5958 0.6100
PSNRJzazbz 0.6563 0.6042 0.8143 0.6500 0.7400
PSNRXY Z 0.6875 0.6354 0.8429 0.8125 0.7700
PSNRY ′Cr′Cb′ 0.6979 0.6042 0.7714 0.7583 0.7300

PU-SSIM 0.6354 0.4792 0.7786 0.4792 0.6500
SSIMHDR-Lab100 0.5938 0.4792 0.7857 0.4792 0.6500
SSIMHDR-Lab1000 0.6458 0.4896 0.7571 0.5875 0.7100
SSIMICtCp 0.5833 0.5417 0.7929 0.4875 0.6700
SSIMJzazbz 0.6771 0.5000 0.7500 0.5542 0.6900
SSIMXY Z 0.7083 0.6562 0.8071 0.7333 0.8700
SSIMY ′Cr′Cb′ 0.6979 0.5625 0.8286 0.7000 0.8000

PU-MS-SSIM 0.4063 0.5104 0.6786 0.3667 0.5000
MS-SSIMHDR-Lab100 0.4375 0.4792 0.7357 0.3915 0.5400
MS-SSIMHDR-Lab1000 0.5000 0.4792 0.7143 0.3708 0.7000
MS-SSIMICtCp 0.4479 0.5521 0.6500 0.3958 0.4600
MS-SSIMJzazbz 0.4271 0.5729 0.6857 0.3500 0.6900
MS-SSIMXY Z 0.6875 0.6250 0.8143 0.6333 0.8100
MS-SSIMY ′Cr′Cb′ 0.6667 0.5625 0.7929 0.5667 0.7900

PU-FSIM 0.3545 0.5000 0.6143 0.4167 0.5000
FSIMHDR-Lab100 0.3750 0.5208 0.6714 0.4500 0.4400
FSIMHDR-Lab1000 0.4479 0.5313 0.6357 0.3333 0.5300
FSIMICtCp 0.3229 0.5000 0.6714 0.4667 0.5200
FSIMJzazbz 0.4167 0.5104 0.6500 0.3250 0.5900
FSIMXY Z 0.6562 0.5938 0.7714 0.5625 0.7800
FSIMY ′Cr′Cb′ 0.5833 0.5625 0.6786 0.4667 0.6900

PU-PSNR-HVS-M 0.4896 0.6563 0.7500 0.5875 0.6600
PSNR-HVS-MHDR-Lab100 0.4583 0.6250 0.7643 0.5875 0.6400
PSNR-HVS-MHDR-Lab1000 0.5938 0.6458 0.8071 0.5333 0.6600
PSNR-HVS-MI 0.4583 0.7083 0.7857 0.5125 0.5900
PSNR-HVS-MJzazbz 0.5521 0.6875 0.7571 0.5750 0.6700
PSNR-HVS-MXY Z 0.6979 0.6354 0.8500 0.7042 0.7600
PSNR-HVS-MY ′Cr′Cb′ 0.6667 0.6771 0.8214 0.5875 0.7200

PU-PSNR-HMA 0.4167 0.7188 0.8071 0.5125 0.6200
PSNR-HMAHDR-Lab100 0.4792 0.7083 0.7786 0.5292 0.6100
PSNR-HMAHDR-Lab1000 0.5833 0.6667 0.7571 0.4625 0.6500
PSNR-HMAICtCp 0.4271 0.6667 0.7643 0.5375 0.5700
PSNR-HMAJzazbz 0.6032 0.5938 0.7643 0.5292 0.6800
PSNR-HMAXY Z 0.6979 0.6146 0.8429 0.6833 0.7500
PSNR-HMAY ′Cr′Cb′ 0.6667 0.5833 0.7857 0.6333 0.7100

HDR-VDP2 0.3545 0.4576 0.6250 0.3708 0.4400
HDR-VQM 0.5313 0.5616 0.9061 0.392 0.5300
PU-VIF 0.4063 0.5938 0.7571 0.5833 0.5500
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Table C.6: OR of the different color quality metrics on the considered databases.

Quality Metric 4Kdtb HDdtb Narwaria et al. Korshunov et al. Zerman et al.

∆EHDR-Lab100 0.7083 0.7604 0.7714 0.7167 0.8100
∆EHDR-Lab1000 0.7083 0.7604 0.7929 0.7500 0.8000
∆EICtCp 0.6354 0.7708 0.8357 0.7833 0.6900
∆EJzazbz 0.6458 0.7604 0.8429 0.8542 0.8000
∆EXY Z 0.6562 0.7500 0.8643 0.8333 0.8500
∆EY ′Cr′Cb′ 0.6875 0.8714 0.8429 0.7756 0.8700

∆ESHDR-Lab100 0.5417 0.7813 0.8214 0.8083 0.7100
∆ESHDR-Lab1000 0.6667 0.7708 0.8143 0.8000 0.7600
∆ESICtCp 0.4792 0.7813 0.8214 0.8583 0.6800
∆ESJzazbz 0.6563 0.7813 0.8429 0.7792 0.7400
∆ESXY Z 0.6875 0.7500 0.8714 0.8000 0.8600
∆ESY ′Cr′Cb′ 0.6771 0.7396 0.8500 0.7792 0.7500

SSIMcHDR-Lab100 0.6979 0.5625 0.7929 0.6208 0.6900
SSIMcHDR-Lab1000 0.7083 0.6458 0.7429 0.8458 0.8000
SSIMcICtCp 0.5729 0.5729 0.8429 0.5292 0.6400
SSIMcJzazbz 0.6979 0.5625 0.6929 0.6167 0.7300
SSIMcXY Z 0.7188 0.6667 0.8000 0.7292 0.8700
SSIMcY ′Cr′Cb′ 0.7188 0.6667 0.7643 0.6542 0.8000

CSSIMHDR-Lab100 0.5417 0.6979 0.8071 0.6458 0.6700
CSSIMHDR-Lab1000 0.6771 0.7604 0.7500 0.6667 0.7700
CSSIMICtCp 0.5000 0.8021 0.8143 0.6458 0.6900
CSSIMJzazbz 0.6667 0.7396 0.8286 0.6125 0.7600
CSSIMXY Z 0.6979 0.7708 0.7929 0.7167 0.6900
CSSIMY ′Cr′Cb′ 0.7083 0.7708 0.8000 0.6167 0.7600

FSIMcHDR-Lab100 0.4375 0.5625 0.5928 0.5083 0.5600
FSIMcHDR-Lab1000 0.6563 0.5000 0.6357 0.3625 0.6200
FSIMcICtCp 0.2917 0.5938 0.5857 0.4833 0.5500
FSIMcJzazbz 0.4375 0.4271 0.6714 0.3208 0.5500
FSIMcXY Z 0.6458 0.5729 0.7786 0.5667 0.7700
FSIMcY ′Cr′Cb′ 0.6562 0.5729 0.6786 0.3625 0.6900

PSNR-HMAcHDR-Lab100 0.6354 0.7500 0.7571 0.7500 0.7300
PSNR-HMAcHDR-Lab1000 0.6458 0.7813 0.7643 0.7417 0.7400
PSNR-HMAcICtCp 0.5104 0.7188 0.7500 0.6375 0.7600
PSNR-HMAcJzazbz 0.6458 0.7396 0.7357 0.6542 0.7300
PSNR-HMAcXY Z 0.6667 0.6771 0.7571 0.6875 0.7500
PSNR-HMAcY ′Cr′Cb′ 0.6771 0.6979 0.7000 0.5958 0.7500
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C.4 RMSE

Table C.7: RMSE of the different color-blind quality metrics on the considered databases.

Quality Metric 4Kdtb HDdtb Narwaria et al. Korshunov et al. Zerman et al.

PU-PSNR 15.87 17.09 20.43 16.00 17.08
PSNRHDR-Lab100 16.44 17.45 24.95 15.97 17.66
PSNRHDR-Lab1000 19.52 19.79 21.27 18.77 21.14
PSNRICtCp 15.32 16.81 20.05 15.46 15.49
PSNRJzazbz 18.66 20.02 20.92 18.79 21.21
PSNRXY Z 21.80 21.24 22.36 22.31 24.58
PSNRY ′Cr′Cb′ 21.38 20.42 21.79 20.23 22.75

PU-SSIM 15.92 14.48 16.44 11.75 16.69
SSIMHDR-Lab100 15.91 14.81 15.73 11.86 17.78
SSIMHDR-Lab1000 17.70 17.08 16.12 13.52 22.41
SSIMICtCp 15.91 15.16 16.43 11.54 15.28
SSIMJzazbz 16.70 17.14 15.13 12.46 21.20
SSIMXY Z 21.32 21.79 19.80 19.65 25.95
SSIMY ′Cr′Cb′ 20.89 20.49 18.63 16.88 25.11

PU-MS-SSIM 11.76 12.73 12.15 8.43 10.73
MS-SSIMHDR-Lab100 11.86 12.62 13.46 8.71 11.26
MS-SSIMHDR-Lab1000 13.62 15.03 12.49 8.12 19.18
MS-SSIMICtCp 12.10 13.33 11.73 9.04 10.53
MS-SSIMJzazbz 12.25 14.11 10.11 7.69 17.88
MS-SSIMXY Z 19.95 21.23 19.65 15.88 23.17
MS-SSIMY ′Cr′Cb′ 18.66 19.61 17.74 12.81 22.71

PU-FSIM 9.67 14.84 12.07 9.11 13.02
FSIMHDR-Lab100 9.89 14.70 12.29 9.39 12.18
FSIMHDR-Lab1000 11.98 12.50 14.41 7.19 12.09
FSIMICtCp 9.70 15.70 12.60 10.05 13.64
FSIMJzazbz 10.42 10.94 13.39 7.31 12.58
FSIMXY Z 18.04 18.71 19.01 13.55 19.97
FSIMY ′Cr′Cb′ 15.72 16.37 16.79 11.60 17.22

PU-PSNR-HVS-M 12.80 16.75 19.95 15.39 12.19
PSNR-HVS-MHDR-Lab100 12.70 16.53 20.23 12.14 14.20
PSNR-HVS-MHDR-Lab1000 16.52 19.54 20.36 11.88 15.21
PSNR-HVS-MICtCp 12.74 17.45 19.60 11.54 11.45
PSNR-HVS-MJzazbz 15.12 20.75 20.48 12.85 16.52
PSNR-HVS-MXY Z 21.15 21.46 22.44 18.36 22.01
PSNR-HVS-MY ′Cr′Cb′ 20.12 20.95 21.77 13.83 18.15

PU-PSNR-HMA 12.55 17.07 16.28 10.99 13.60
PSNR-HMAHDR-Lab100 12.92 17.70 16.21 11.10 14.10
PSNR-HMAHDR-Lab1000 16.51 18.20 17.40 10.96 15.62
PSNR-HMAICtCp 12.00 16.09 15.41 11.60 11.43
PSNR-HMAJzazbz 15.16 18.11 16.84 11.82 16.47
PSNR-HMAXY Z 21.14 20.43 21.68 16.12 21.79
PSNR-HMAY ′Cr′Cb′ 20.11 19.21 19.31 14.04 18.08

HDR-VDP2 11.3 12.55 11.27 9.60 9.50
HDR-VQM 14.11 14.72 10.64 8.57 10.88
PU-VIF 10.85 17.85 15.74 12.17 13.43
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Table C.8: RMSE of the different color quality metrics on the considered databases

Quality Metric 4Kdtb HDdtb Narwaria et al. Korshunov et al. Zerman et al.

∆EHDR-Lab100 19.72 26.81 19.31 20.25 23.73
∆EHDR-Lab1000 21.60 26.77 19.92 22.29 25.49
∆EICtCp 16.30 27.11 19.58 19.99 19.62
∆EJzazbz 20.28 26.46 19.25 26.08 25.01
∆EXY Z 21.64 26.01 23.68 27.51 28.31
∆EY ′Cr′Cb′ 21.57 26.36 23.82 22.77 26.83

∆ESHDR-Lab100 14.64 27.51 18.70 21.30 19.77
∆ESHDR-Lab1000 19.67 27.68 20.56 20.82 21.99
∆ESICtCp 13.64 27.61 20.94 28.91 18.10
∆ESJzazbz 17.58 27.44 21.45 20.53 20.35
∆ESXY Z 21.33 26.67 24.18 21.90 26.71
∆ESY ′Cr′Cb′ 21.09 27.11 24.34 21.59 23.00

SSIMcHDR-Lab100 18.88 19.62 16.68 14.61 19.95
SSIMcHDR-Lab1000 21.07 20.74 15.46 15.92 24.30
SSIMcICtCp 14.98 17.44 16.62 13.50 15.77
SSIMcJzazbz 19.07 20.18 14.56 14.20 22.63
SSIMcXY Z 21.42 22.11 19.55 19.93 26.04
SSIMcY ′Cr′Cb′ 21.26 21.76 16.72 17.22 25.40

CSSIMHDR-Lab100 13.34 23.59 15.79 14.10 18.72
CSSIMHDR-Lab1000 18.61 25.05 18.68 14.71 22.20
CSSIMICtCp 14.15 23.74 17.04 12.62 16.24
CSSIMJzazbz 16.24 24.16 20.41 16.47 21.14
CSSIMXY Z 21.65 25.76 22.81 20.39 26.21
CSSIMY ′Cr′Cb′ 21.11 24.91 21.30 14.94 24.51

FSIMcHDR-Lab100 11.78 14.14 12.80 11.02 12.11
FSIMcHDR-Lab1000 16.07 13.88 13.87 8.41 12.0
FSIMcICtCp 9.29 16.29 12.46 10.22 13.57
FSIMcJzazbz 12.19 11.09 12.98 7.40 12.36
FSIMcXY Z 17.99 18.82 18.88 13.47 19.93
FSIMcY ′Cr′Cb′ 16.30 16.90 16.18 9.38 17.17

PSNR-HMAcHDR-Lab100 18.37 24.75 18.57 20.60 20.52
PSNR-HMAcHDR-Lab1000 20.72 25.40 18.70 21.49 22.68
PSNR-HMAcICtCp 14.57 21.12 19.02 15.94 17.03
PSNR-HMAcJzazbz 19.26 24.37 17.14 17.94 20.57
PSNR-HMAcXY Z 21.71 22.75 20.34 17.34 23.00
PSNR-HMAcY ′Cr′Cb′ 20.71 21.83 17.49 14.02 19.87
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APPENDIX D

METRICS SENSITIVITY ON THE

CHROMINANCE ARTIFACTS WITH

THE 4KDTB

This appendix is an extension of the Section 5.4.2 where the impacts of the chrominance
artifacts on quality metrics performances is studied. For each reference image of the database
4Kdtb, the subjective and objective scores for each distorted image are shown in function of the
HEVC Qp. The objective scores are displayed after applying the logistic regression presented
in Section 2.5.

The images compressed with the chroma Qp offset adaptation (cf. Section 1.4.3) are rep-
resented with a red line.

The images compressed without the chroma Qp offset and 10 bits quantization on the
chrominance with a green line. The images compressed without the chroma Qp offset algorithm
and a 10 bits quantization are represented with a blue line.

Figure D.1: Subjective and objective scores for the image Bike_20s.
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Figure D.2: Subjective and objective scores for the image Bike_30s.

Figure D.3: Subjective and objective scores for the image Bike_81s.

Figure D.4: Subjective and objective scores for the image Bike_110s.

Figure D.5: Subjective and objective scores for the image Regatta_11s

174



Figure D.6: Subjective and objective scores for the image Regatta_24s.

Figure D.7: Subjective and objective scores for the image Regatta_80s.

Figure D.8: Subjective and objective scores for the image Regatta_95s.
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LIST OF ABBREVIATIONS

ACR Absolute Category Rating

ACR-HR Absolute Category Rating with Hidden Reference

AVC Advanced Video Coding

CD-MMF Context Dependent Multi-Method Fusion

CF-MMF Context Free Multi-Method Fusion

CIE Comission International de l’éclairage

cpd cycle per degree

CQM Combined Quality Metric

CSF Contrast Sensitivity Function

CSSIM Color and Structure SIMilarity

DCR Degradation Category Rating

DR Dynamic Range

DSIS Double Stimulus Impairment Scale

EOTF Electro-Optical transfer Function

EVQA Ensemble-learning-based Video Quality Assessment

FSIM Feature SIMilarity

FSIMc Feature SIMilarity Color

FVQA Fusion Video Quality Assessment

HD High Definition

HDR High Dynamic Range

HDR-VDP High Dynamic Range Visual Difference Predictor
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HDR-VQM High Dynamic Range Video Quality Metric

HEVC High Efficiency Video Coding

HFR High Frame Rate

HLG Hybrid-Log-Gamma

HRC Hypothetical Reference Circuits

HVS Human Visual System

INLSA Iterated Nested Least Square Algorithm

IQA Image Quality Assessment

ITU International Telecommunication Union

JPEG Joint Photographic Experts Group

KRCC Kendall Rank Correlation Coefficient

MOS Mean Opinion Score

MPEG Moving Picture Experts Group

MS-SSIM MultiScale Structure SIMilarity

MSE Mean Square Error

MTF Modulation Transfer Function

OETF Opto-Electronic Transfer Function

OOTF Opto-Optical Transfer Function

OR Outlier Ratio

PCC Pearson Correlation Coefficient

PQ Perceptual Quantization

PSNR Peak Signal on Noise Ratio

PSNR-HMA PSNR-HVS-M Accounting for contrast change and hue shift

PSNR-HMAc PSNR-HMA Color

PSNR-HVS Peak Signal on Noise Ratio based on Human Visual System
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PSNR-HVS-M PSNR-HVS modelling contrast Masking

PSO particle swarm optimization

QP Quantization Parameter

RMSE Root Mean Square Error

SDI Serial Digital Interface

SDR Standard Dynamic Range

SROCC Spearman Rank Order Correlation

SSIM Structure SIMilarity

SSIMc Structure SIMilarity Color

SVR Support Vector Regressor

UHD Ultra High Definition

VIF Visual Information Fidelity

VMAF Video Multimethod Assessment Fusion

WCG Wide Color Gamut
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[88] Philippe Hanhart, Martin Řeřábek, and Touradj Ebrahimi, “Subjective and objective eval-
uation of HDR video coding technologies”, in: International Conference on Quality of
Multimedia Experience (QoMEX), 2016, pp. 1–6, DOI: L10.1109/QoMEX.2016.7498943.
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Titre: Estimation de la qualité d’image High Dynamic Range et Wide
Color Gamut
Mot clés : Wide Color Gamut, High Dynamic Range, Évaluation de la qualité d’images,
Compression, Traitement de l’image

Resumé : Ces dernières années, les technolo-
gies d’écran se sont considérablement améliorées. Par
exemple, le contraste des écrans à plage dynamique
élevée (HDR) dépasse de loin la capacité d’un écran
conventionnel. De plus, un écran à gamut de couleur
étendu (WCG) peut couvrir un espace colorimétrique
plus grand que jamais. L’évaluation de la qualité de
ces nouveaux contenus est devenue un domaine de
recherche actif, les métriques de qualité SDR classiques
n’étant pas adaptées. Cependant, les études les plus
récentes négligent souvent une caractéristique impor-
tante: les chrominances. En effet, les bases de données
existantes contiennent des images HDR avec un gamut
de couleur standard, négligeant ainsi l’augmentation de
l’espace colorimétrique due au WCG et les artefacts

chromatiques. La plupart des mesures de qualité HDR
objectives non plus ne prennent pas en compte ces
artefacts. Pour surmonter cette problématique, dans
cette thèse, nous proposons deux nouvelles bases de
données HDR/WCG annotés avec des scores subjectifs
présentant des artefacts chromatique réaliste. En util-
isant ces bases de données, nous explorons trois solu-
tions pour créer des métriques HDR/WCG: l’adaptation
des métrics de qualité SDR, l’extension colorimétrique
d’une métrique HDR connue appelée HDR-VDP-2 et,
enfin, la fusion de diverses métriques de qualité et
de features colorimétriques. Cette dernière métrique
présente de très bonnes performances pour prédire la
qualité tout en étant sensible aux distorsions chroma-
tiques.

Title: Image quality assessment of High Dynamic Range and Wide
Color Gamut images
Keywords : Wide Color Gamut, High Dynamic Range, Image Quality Assessment, Compres-
sion, Image processing

Abstract : To improve their ability to display aston-
ishing images, screen technologies have been greatly
evolving. For example, the contrast of high dynamic
range rendering systems far exceed the capacity of a
conventional display. Moreover, a Wide Color gamut dis-
play can cover a bigger color space than ever. Assessing
the quality of these new content has become an active
field of research as classical SDR quality metrics are not
adapted. However, state-of-the-art studies often neglect
one important image characteristics: chrominances. In-
deed, previous databases contain HDR images with a
standard gamut thus neglecting the increase of color
space due to WCG. Due to their gamut, these databases
are less prone to contain chromatic artifacts than WCG
content. Moreover, most existing HDR objective quality

metrics only consider luminance and are not consider-
ing chromatic artifacts. To overcome this problematic, in
this thesis, we have created two HDR / WCG databases
with annotated subjective scores. We focus on the cre-
ation of a realistic chromatic artifacts that can arise dur-
ing compression. In addition, using these databases,
we explore three solutions to create HDR / WCG met-
rics. First, we propose a method to adapt SDR metrics
to HDR / WCG content. Then, we proposed an extension
of a well-known HDR metric called HDR-VDP-2. Finally,
we create a new metric based by aggregating two quality
metrics and color features. This last metric presents very
good performance to predict quality while being sensitive
to chromatic distortion.
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