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Doctor of Philosophy

Forces induced by coherent effects

by Ariane SORET

In this work, we study coherent effects associated to wave propagation in scatter-
ing media, in particular electromagnetic waves. In weakly disordered media, light
intensity fluctuates spatially over large distances. This phenomenon is the result of
complex mesoscopic coherent effects, which occur at a microscopic scale. We show
that these mesoscopic coherent fluctuations of light induce radiation forces of a new
kind. The strength of these fluctuating forces is determined by a single and eas-
ily tunable parameter, the dimensionless conductance, which depends on both the
geometry and the scattering properties of the medium. Our findings should there-
fore have interesting applications such as new probes in soft condensed matter or
biophysics. On the methodological viewpoint, we use a hydrodynamic Langevin
approach to describe the coherent light fluctuations, where a properly tailored noise
accounts for mesoscopic coherent effects. We show how to systematically include
the coherent corrections in the noise term, in order to reproduce the intensity fluctu-
ations. This description allows to understand coherent light fluctuations as resulting
from a non equilibrium light flow, characterized by two parameters only, the diffu-
sion coefficient and the mobility, otherwise related by an Einstein relation. A clear
asset of this method is its dependence upon two parameters only, which provides
a compact, numerically accessible, yet accurate description of the rich underlying
coherent effects. Moreover, the mapping we present between coherent light and out
of equilibrium hydrodynamics is easily generalizable to a large class of quantum or
classical wave problems. For future perspectives, this connection between coherent
effects in mesoscopics and non equilibrium stochastic processes should be of inter-
est for both the mesoscopics and statistical mechanics communities. For the former,
the mapping to non equilibrium hydrodynamics provides a new insight to meso-
scopic physics as well as useful tools to study quantities so far difficult to access,
such as higher orders intensity correlation functions. For the latter, this work should
motivate further study of time independent processes inspired from mesoscopics.
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Chapter 1

Introduction

Casimir forces – or fluctuation induced forces – are forces induced by the confin-
ment of long ranged fluctuations of the medium. The existence of such forces was
first predicted in 1948, in quantum electrodynamics – an effect famously known as
the quantum electrodynamics (QED) Casimir effect [1], where two infinite, parallel
plates of a perfectly conducting material, immersed in the quantum electrodynamic
vacuum, attract each other due to the confinment of the long ranged fluctuations of
the vacuum. This discovery was followed by experimental verifications [2, 3], and
the effect – namely, that confining long ranged fluctuations of some medium with
external objects induces forces on these objects – has since been observed in a wide
variety of systems, discussed at an introductory level in [4]. For example, in 1978,
fluctuation induced forces were identified in soft matter physics, using critical bi-
nary fluids, in which the chemical potential displays long range fluctuations near
a rigid plate [5]. More recent work points at the emergence of fluctuation induced
forces in non equilibrium hydrodynamics, due to spatially long ranged fluctuations
of the density [6, 7, 8]. To cite a few more examples, these forces have also been found
in biophysics [9], condensed matter physics [10] and cold atoms [11], but this list is
not exhaustive, and we refer the interested reader to [12] for a more thorough dis-
cussion. Although the QED Casimir forces are found to be attractive, and to follow
a simple power law, fluctuation induced forces in general can be either attractive,
repulsive, and scale differently with respect to the geometry of the system.

In this work, we demonstrate the existence of fluctuation induced forces caused
by classical light propagating in a scattering medium – a result which lies at the
intersection between mesoscopic physics, Casimir physics, nanomechanics and non
equilibrium statistical mechanics.

Wave propagation in random media, either electronic or electromagnetic, gives
rise to many rich phenomena in mesoscopic physics and have been widely stud-
ied for decades, both theoretically and experimentally [13]. Systems where waves
scatter in completely random, disordered media, are fascinating in that significant
effects emerge from this apparent chaos. A striking example are fluctuations of light
intensity, of the order of its disorder averaged value, which are persistent over large
distances. The key word to understand these surprising effects is coherence. This the-
sis is centered around the study of coherent effects associated to waves propagation
in scattering media, in particular electromagnetic waves. In weakly disordered me-
dia, light intensity fluctuates spatially, leading to characteristic scattering patterns of
dark and bright spots – speckle patterns [14, 13, 15, 16, 17, 18, 19]. These intensity
fluctuations propagate over large distances, as a result of complex mesoscopic co-
herent effects, which occur at a microscopic scale. Since these coherent effects lead
to spatially long ranged light intensity fluctuations, the question of the emergence of
coherent light fluctuation induced forces naturally rises. Mechanical forces caused
by light have been widely studied [20, 21, 22] – especially since the introduction
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of lasers – and exploited to produce sensors in soft matter physics and biophysics
[23, 24]. Here, we show that coherent intensity fluctuations lead to measurable fluc-
tuation induced forces, f = f− 〈f〉, on top of the disorder averaged radiation forces
〈f〉. The amplitude of the fluctuating radiation forces is

〈 f 2〉 = 1
gL
P2

v2 (Q2 +Qν) , (1.1)

where P is the power of the light source and v the group velocity. The dimension-
less conductance gL is a parameter which encapsulates both the geometry and the
scattering properties of the random medium; it is the analog of conductance in elec-
tronic systems. The two dimensionless numbers Q2 and Qν depend on the shape
of the system and on boundary conditions but not on its volume nor on scattering
properties. This rather simple expression (1.1) constitutes a central result of this
work. It states that the fluctuating forces induced by coherent mesoscopic effects,
besides their dependence upon the power of the incoming light beam and the group
velocity, are driven by the dimensionless conductance gL, a parameter connected to
the strength of disorder and the occurence of coherent effects. gL is moreover eas-
ily tunable, which makes our predictions prone to experimental verification. Our
findings should therefore have interesting applications such as new probes in soft
condensed matter or biophysics.

On the methodological viewpoint, inspired by [25], we use a hydrodynamic
Langevin approach to describe the coherent light fluctuations, where a properly tai-
lored noise accounts for mesoscopic coherent effects. We show how to systematically
include the coherent corrections in the noise term in order to reproduce the intensity
fluctuations, to higher order than in the original paper by A. Yu. Zyuzin and B. Z.
Spivak. This description allows to understand light fluctuations as resulting from a
light flow, driven out of equilibrium by coherent effects. The light flow is charac-
terized by two parameters only, the diffusion coefficient and the mobility, otherwise
related by an Einstein relation. A clear asset of this method is its dependence upon
two parameters only, which provides a compact yet accurate description of the rich
underlying coherent effects. Moreover, this effective Langevin description draws a
correspondence between the mesoscopic problem of coherent light to a class of non
equilibrium stochastic systems, well described in the macroscopic fluctuation theory
[26, 27, 28]. This correspondence sheds a new light on our understanding of coher-
ent light. Furthermore, the method here presented is easily generalizable to a large
class of quantum or classical wave problems, and should motivate further research
on mesoscopic systems using the macroscopic fluctuation theory framework.

Thesis organization

This thesis is organized as follows. In chapter 2, we provide an overview of the prop-
erties of classical light propagating in an elastic scattering medium. We re-derive the
known result that, on average, the light intensity behaves diffusively, and that it is
related to the light current by a Fick’s law. We then provide a detailed derivation
of the correlation function for the fluctuations of light intensity around its average
value, using a diagrammatic approach. In chapter 3, inspired by [25], we derive an
effective Langevin equation for the light flow, and we develop a systematic method
to properly derive the noise. Chapter 4 contains the main results of this work. Using
the chapters 2 and 3, we show that, in random media illuminated by a light beam,
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spatially long ranged light intensity fluctuations – which stem from underlying co-
herent effects – induce fluctuating radiative forces of a new kind. These forces act
mechanically on macroscopic objects immersed in the medium. In chapter 5, we
study the problem of coherent light from a different angle, inspired by the macro-
scopic fluctuation theory and the stochastic formalism. We show how to translate
the time independent mesoscopics problem of coherent light into a far from equi-
librium hydrodynamics framework, which allows us to recover known results from
mesoscopics and to obtain other relevant quantities to characterize the system.
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Chapter 2

Classical light in scattering media

Light thinks it travels faster than anything but it is wrong. No matter how fast light travels,
it finds the darkness has always got there first, and is waiting for it.

Terry Pratchett

This thesis is centered on coherent effects in multiple scattering of light. To ap-
preciate the main results, presented in chapters 3-5, it is useful to understand the
physics of classical light in random media, in the multiple scattering regime. This
chapter focuses on the properties of monochromatic light propagating through a ran-
dom dielectric medium. The radiation inside the medium is solution of a Helmholtz
equation (2.1) with a random dielectric constant, which is extremely difficult to solve
analytically. The properties of the radiation are characterized by two length scales,
the wavelength λ = 2π/k, where k is the wavenumber, and the elastic mean free
path l between two scattering events. While exact anaytical solutions are cumber-
some to obtain, a lot can be said on disorder averaged quantities. In the weak dis-
order limit kl � 1, the light intensity behaves diffusively; its propagation through
the medium can be represented by brownian like trajectories, see Fig.2.1.a. For one
realization of disorder, the light intensity fluctuates spatially around the average
diffusive value. These fluctuations lead to characteristic patterns of bright and dark
spots – speckle patterns, see Fig.2.1.b – which have been widely studied and mea-
sured in weakly disordered electronic and photonic media [14, 13, 15, 16, 17, 18, 19].
It is important to note that a speckle pattern is not a diffraction pattern, where each
light beam would scatter only once on a scatterer and exit the system. Instead, a
speckle pattern is built out from multiply scattered trajectories of light, which inter-
fere constructively despite the randomness of the medium. Speckle patterns display
a complex structure, and carry the fingerprint of the various interference processes
which contribute, on a microscopic scale, to the light intensity fluctuations. Quan-
titatively, the intensity fluctuations can be described by means of their correlation
function. The latter is the sum of a spatially short ranged term and a long ranged
one; the short ranged term is the strongest in amplitude and gives the bright and
dark spots of the speckle patterns, while the long ranged term stems from underly-
ing coherent effects known as quantum crossings. These long range fluctuations are
weaker in amplitude and hence more difficult to observe, but, suprisingly, lead to
measurable forces, which are discussed in chapter 4. Here, we discuss the physical
mechanism giving rise to these fluctuations.
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FIGURE 2.1: (a) A monochromatic plane wave illumiates a random
medium, and undergoes multiple diffusion. On average, the light
intensity behaves diffusively. Its propagation is represented by brow-
nian like trajectories, characterized by the elastic mean free path l be-
tween two scattering events. For some realization of disorder, the
light intensity fluctuates spatially around the average value, giving
rise to speckle patterns. (b) Experimental observation of speckle pat-

terns [13].

2.1 Classical light in scattering media

Consider a random and d-dimensional dielectric medium of volume V = Ld, illu-
minated by a monochromatic scalar radiation of wave-number k incident along the
direction of unit vector k̂. We do not consider polarization effects, as they can be
decoupled from disorder; for more elaborations, see [13]. Inside the medium, the
amplitude E(r) of the radiation is solution of the scalar Helmholtz equation,

∆E(r) + k2
(

1 +
δε(r)
〈ε〉

)
E(r) = s0(r) (2.1)

where δε(r)/〈ε〉 denotes the fluctuation of the dielectric constant ε(r) = 〈ε〉 +
δε(r), 〈· · ·〉 is the average over disorder realizations and s0(r) is the source of the
radiation. Besides the wave-number k, the radiation in the medium is characterized
by the elastic mean free path l. The intensity is defined by

I(r) = ε(r)v|E(r)|2 (2.2)

where v is the group velocity. The scalar radiation E(r) is obtained by solving
Eq.(2.1), which as mentioned is very difficult to solve analytically. However, exact
expressions can be obtained on average over disorder. The behavior of the average
intensity and of its fluctuations is then described by the diffusion probability and
the structure factor.

2.1.1 Light intensity

Useful information on the monochromatic scalar radiation, of wavenumber k, is pro-
vided by the Green’s function G(r, r′) of the Helmholtz equation (2.1),[

∆ + k2
(

1 +
δε(r)
〈ε〉

)]
G(r, r′) = δ(r− r′) . (2.3)
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There are two solutions to Eq.(2.3), respectively the retarded and advanced Green’s
functions GR(r, r′), GA(r, r′). In vacuum, when δε(r) = 0, the solutions are

GR,A
0 (r, r′) = − e±ik|r−r′|

4π|r− r′| . (2.4)

In a random scattering medium, GR,A(r, r′) takes the form

GR,A(r, r′) = ∑
Ci

|A(r, r′, Ci)|e±ikLi , (2.5)

where the sum runs over all the possible sets of N scatterers, with N going from
1 to infinity. A(r, r′, Ci) is the complex amplitude associated to the sequence of col-
lisions Ci, and Li is the length of the corresponding scattering path. The radiation
E(r) is related to the Green’s function GR(r, r′) by the Green’s identity,

E(r) =
∫
V

dr′ s0(r′)GR(r, r′)

=
∫
V

dr′ s0(r′)∑
Ci

|A(r, r′, Ci)|eikLi ,
(2.6)

In the rest of this work, we renormalize the source term s0(r) so that the intensity
I(r) is related to E(r) by I(r) = |E(r)|2. The intensity is hence built out of a sum of
paired scattering trajectories (see Fig.2.2), and can be written in the form

I(r) = ∑
Ci

|Ã(r)Ci |
2 + ∑

Ci 6=Cj

Ã(r)CiÃ
∗(r)Cj , (2.7)

where the phase is contained in the complex amplitudes Ãi, Ãj, and where Ci,
Cj are the corresponding scattering trajectories. The first term in the right hand side
of Eq.(2.7) is phase independent; it is the classical or incoherent contribution to the
intensity. Since it is phase independent, this incoherent term survives disorder aver-
aging and constitutes the main contribution to the intensity. In 2.1.3, we will show
that, on average, this term satisfies a diffusion equation. The second term is quan-
tum in the sense that it is phase dependent. Most of the terms in the sum cancel
out upon disorder averaging. However, it is possible to minimize the dephasing by
allowing pairing of trajectories in this second term. This effect is discussed in more
details in 2.2. We just note that it gives a negligible correction to the average intensity
inside the bulk of the system, and we will neglect it here. However, there exists an
electronic analog to this effect, which leads to the phenomenon of weak localization
for electrons is disordered metals [13]. In the case of light, the notion of crossings is
relevant when it comes to calculating the intensity fluctuations correlation function,
which will be discussed in 2.2.

2.1.2 Diffusion probability and structure factor

From the Green’s functions in Eq.(2.3), we define the probability P(r, r′) for the radi-
ation to scatter from r to r′ by

P(r, r′) =
4π

v
〈GR(r, r′)GA(r′, r)〉 , (2.8)

where v is a properly defined group velocity. The disorder averaged Green’s
functions can be calculated using a Dyson development (see section 3.2 in [13]),
which gives
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FIGURE 2.2: Paired multiple scattering trajectories of the radiation.
(a) The paired trajectories with identical scattering sequences con-
tribute to the average intensity, (b) while the pairs of trajectories

which follow different scattering sequences average to zero.

〈GR,A(r, r′)〉 = − 1
4π

e±ik|r−r′|

|r− r′| e−|r−r′|/2l , (2.9)

where the elastic mean free path l is defined by 4π
l = 〈V(q)V(q′)〉, and where

V(q) =
∫

dr eiq·rV(r) is the Fourier transform of the disorder potential V(r) =
k2δε(r)/〈ε〉 in Eq.(2.1). To calculate the disorder averaged product in Eq.(2.8), we be-
gin by noting that averaging over disorder cancels out the terms in GR(r, r′)GA(r′, r)
which are taken over different sets of scatterers (r1, ..., rN). Hence, we keep only
the terms with identical scattering sequences CN – which implies identical LN and
cancels the phase. We note PD(r, r′) the diffusion probability obtained from Eq.(2.8)
with this approximation; PD(r, r′) satisfies the equation

PD(r, r′) =
4π

v

∫
V

dr1dr2|〈GR(r, r1)〉|2Γ(r1, r2)|〈GA(r′, r2)〉|2 (2.10)

and is represented in Fig.2.3.

FIGURE 2.3: Schematic representation of the diffusion probability
PD(r, r′). The structure factor Γ(r1, r2) is represented by the couple of
wavelets between r1 and r2, while the couples of straight lines stand
for the averaged Green’s functions |〈GR(r, r1)〉|2 and |〈GA(r′, r2)〉|2.

The term Γ(r1, r2) is the so called structure factor, and represents all the possible
scattering sequences between r1 and r2. The collisions are assumed to be indepen-
dent and Γ(r1, r2) is therefore an infinite sum of collision sequences, which translates
into an integral equation,

Γ(r1, r2) =
4π

l
δ(r1 − r2) +

4π

l

∫
V

dr Γ(r1, r)|〈GR(r, r2)〉|2 . (2.11)
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In the diffusive approximation, Γ(r1, r2) varies slowly in space, and we may use
a Taylor expansion of Γ(r1, r2) around r2. Keeping up to the quadratic term and
substituting in Eq.(2.11) leads to, after an integration by parts,

− D∆Γ(r1, r2) =
4πv

l2 δ(r1 − r2) , (2.12)

where D = vl
3 is the diffusion coefficient. In the diffusive limit, we approximate

Γ(r1, r2) ' Γ(r, r′) , with the notations of Fig.2.3; using this approximation and the
Eq.(2.9), the Eq.(2.10) becomes

PD(r, r′) =
l2

4πv
Γ(r, r′) . (2.13)

From Eq.(2.12) we deduce that PD(r, r′) satisfies

− D∆PD(r, r′) = δ(r− r′) . (2.14)

The diffusion probability PD(r, r′) is hence the Green’s function of a time inde-
pendent diffusion equation, and has the generic form

PD(r, r′) =
1

DL
p(r, r′) (2.15)

where p(r, r′) is a dimensionless function depending on the boundary conditions
and where L ≡ V1/3 is the characteristic length of the system.

2.1.3 Fick’s law and diffusion equation

In the scattering medium, the light intensity is related to the Green’s functions in
Eq.(2.5) and the radiation source distribution s0(r) of the Helmholtz equation (2.1)
by the Green’s identity,

I(r) =
∫∫

V×V

dr0dr′0s0(r0)s0(r′0)G
R(r0, r)GA(r, r′0) . (2.16)

Calculating the above integral is a cumbersome task because of the complexity
of the solutions GR(r, r′), GA(r, r′). An equivalent description of the radiation in the
scattering medium is given by the specific intensity I(ŝ, r), also called the irradiance.
On a phenomenological viewpoint, the specific intensity is the radiation intensity at
point r, propagating along the direction ŝ [29]. It is rigorously defined [13, 30] from
the Green’s functions of the Helmholtz equation (2.1), as the Fourier transform of

I(ŝ, k) =
4π

vV ∑
q,q′

GR(qŝ + k/2, q′ŝ′ + k/2)GA(q′ŝ′ − k/2, qŝ− k/2) (2.17)

where GR,A are the Fourier transforms of the Green’s functions in Eq.(2.3), and
where the average · · · is taken over all directions ŝ′. The specific intensity obeys the
radiative transfer equation (see appendix A.5.2 in [13]),

ŝ ·∇I(ŝ, r) = −1
l

I(ŝ, r) +
1
l

I(ŝ′, r)p(ŝ− ŝ′) +
1
l

γ(ŝ, r) , (2.18)
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where the average is taken over all the directions ŝ′. The term γ(ŝ, r) represents a
possible source of light intensity placed inside the medium. Note that γ(ŝ, r) is dif-
ferent from s0(r), which is the source distribution for the electromagnetic radiation.
The term p(ŝ− ŝ′) accounts for scattering in other directions than ŝ.

The disorder averaged intensity can be written as a sum of two contributions
[13, 29],

〈I(ŝ, r)〉 = I0(ŝ, r) + ID(ŝ, r) . (2.19)

The first term I0(ŝ, r) is the Drude-Boltzmann term and decreases exponentially
due to scattering; it satisfies the equation

ŝ ·∇I0(ŝ, r) = −1
l

I0(ŝ, r) . (2.20)

The term ID(ŝ, r) is the diffusive part, arising from multiple diffusion inside the
disordered medium. We will further on neglect I0(ŝ, r) in the expression of the av-
erage intensity: 〈I(ŝ, r)〉 ' ID(ŝ, r). However, I0(ŝ, r) does not completely disap-
pear from the description since, as we will see, it behaves as a light source term
for ID(ŝ, r). Averaging Eq.(2.18) over disorder and using Eq.(2.20), we obtain, for
ID(ŝ, r),

ŝ ·∇ID(ŝ, r) = − 1
l ID(ŝ, r) + 1

l ID(ŝ′, r)p(ŝ− ŝ′)

+ 1
l γ0(ŝ, r) + 1

l γ(ŝ, r) ,
(2.21)

with γ0(ŝ, r) = I0(ŝ′, r)p(ŝ− ŝ′).
We consider from now on that the scattering is isotropic, which implies that

p(ŝ− ŝ′) is independent of the angle between ŝ and ŝ′. Under the additional as-
sumption that the collisions with the scatterers are elastic (i.e. no absorption), we
have p(ŝ− ŝ′) = 1, which implies γ0(r) = I0(r), and Eq.(2.21) becomes

ŝ ·∇ID(ŝ, r) = −1
l

ID(ŝ, r) +
1
l

ID(r) +
1
l

I0(r) +
1
l

γ(ŝ, r) . (2.22)

Similarly to Eq.(2.19), we can write the average of the intensity current j(r) as a
sum of two terms,

〈j(r)〉 = j0(r) + jD(r) , (2.23)

where j0(r) = vI0(ŝ, r)ŝ is the current associated to the Drude-Boltzmann term,
jD(r) = vID(ŝ, r)ŝ the current associated to the diffusive contribution, and v the
group velocity. Further on, we will neglect j0(r) as it exponentially decreases to zero
and does not play a role in the derivation of the fluctuation induced forces, discussed
in chapter 4. We keep it here for a more complete description. From Eq.(2.20), we
obtain

∇ · j0(r) = −
v
l

I0(r) , (2.24)

and, from Eq.(2.22), that the diffusive current satisfies the equation

∇ · jD(r) =
v
l

I0(r) +
v
l

γ(r) , (2.25)

where γ(r) = γ(ŝ, r) is the light source distribution inside the medium. From
Eq.(2.24) and Eq.(2.25), we obtain a continuity equation for the total average current,
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∇ · 〈j(r)〉 = v
l

γ(r) . (2.26)

In this thesis, we focus on the cases where the light source is located outside of
the random medium, i.e. γ(r) = 0 and the light flux is conserved.

In the diffusion approximation, ID(ŝ, r) can be written

ID(ŝ, r) = ID(r) +
3
v

jD(r) · ŝ . (2.27)

Replacing Eq.(2.27) in Eq.(2.22), we obtain

ŝ ·∇ID(r) +
3
v

ŝ ·∇(jD(r) · ŝ) = −
3
vl

jD(r) · ŝ +
1
l

γ(ŝ, r) +
1
l

I0(r) . (2.28)

Projecting Eq.(2.28) on ŝ and taking the average over all directions ŝ gives the
Fick’s law,

jD(r) = −D∇ID(r) + v ŝγ(ŝ, r) . (2.29)

In the absence of light sources inside the medium, the Fick’s law take the simpler
form

jD(r) = −D∇ID(r) . (2.30)

Finally, combining Eq.(2.25) and Eq.(2.29), we obtain the diffusion equation sat-
isfied by ID(r),

− D∆ID(r) =
v
l

I0(r) +
v
l

γ(r)− vŝ ·∇γ(r, ŝ) . (2.31)

Note that I0(r) plays the role of a source for the diffusive intensity ID(r); there-
fore, when the medium is illuminated by an external light source only, i.e. γ = 0, the
right hand side of the diffusion equation Eq.(2.31) is non zero.

Using the Green’s identity and the Green’s function of the diffusion equation,
PD(r, r′), introduced in Eq.(2.14), we obtain the expression of ID(r),

ID(r) =
∫
V

dr′γ′(r′)PD(r, r′) , (2.32)

where γ′(r) = v
l I0(r) + v

l γ(r)− v ŝ ·∇γ(r, ŝ) is the source term in the diffusion
equation (2.31). We assume from now on that the light source is isotropic, which
implies ŝ ·∇γ(r, ŝ) = 0 and

− D∆ID(r) =
v
l

I0(r) +
v
l

γ(r) . (2.33)

The average light intensity satisfies a diffusion equation, in which the source
term has two origins – the Drude-Boltzmann intensity I0, and possible extra light
sources inside the medium. The diffusive intensity ID can always be put in the form

ID(r) =
vP
DL

h(u) (2.34)
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where P is the power of the light source, h is a dimensionless function which
depends on the shape of the system and of the system and on the boundary condi-
tions, but not on the volume V, and where L ≡ V1/3 is the characteristic length of
the system. This will be useful for studying the scaling of light fluctuations and light
fluctuations induced forces in chapter 4.

The boundary conditions for ID, necessary to solve Eq.(2.33), are not trivial and
deserve to be discussed in detail.

2.1.4 Boundary conditions

The boundary conditions for the disorder averaged intensity ID(r) are derived from
the boundary conditions on ID(ŝ, r). Since diffusion processes happen inside the
disordered medium, any incoming diffusion intensity must vanish on the interface
between the medium and the outside,

ID(ŝ, r) = 0 for r ∈ interface and for ŝ directed inwards (2.35)

However, this condition cannot be satisfied exactly in the diffusive approxima-
tion, and has to be replaced instead by a condition on the diffusive light flux (see
A5.2 in [13]). We impose that the incoming flux jD must vanish at every point of the
interface:

jD,in(r) · n̂ = v〈ŝ · n̂ID(r, ŝ)〉ŝ,in = 0 for any r ∈ the interface (2.36)

with n̂ the normal vector of the interface and the average being done over vectors
ŝ directed inwards. More precisely, if we take into account internal reflexions on the
inside wall of the interface, the boundary condition becomes:

jD,in(r) · n̂ = R jD,out(r) · n̂ (2.37)

with R the reflexion coefficient.
This leads to the following boundary conditions for ID(r):

1
2
(1− R)ID(r) =

l
3
(1 + R)ŝ · ∇ID(r) + (1− R)γ(r) (2.38)

where γ(r) denotes the source terms.

Similarly, the boundary conditions for PD(r, r′) are:

1
2
(1− R)PD(r, r′) =

l
3
(1 + R)ŝ · ∇rPD(r, r′) (2.39)

In this work we will consider two limit cases:

• Dirichlet boundary conditions (R = 0): PD(r, r′) =
2l
3

ŝ · ∇rPD(r, r′) (2.40)

• Neumann boundary conditions (R = 1): ŝ · ∇rPD(r, r′) = 0 (2.41)

Remark: in this thesis, we mainly consider slab geometries, where PD varies linearly over
distances smaller than l. In this case, we can replace the mixed boundary condition (2.40) by
a Dirichlet condition at a distance 2l

3 from the border, outside of the medium. For example,
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the boundary condition at the interface located in the plane x = 0 (between the medium and
the outside) would be

PD(r, r′) = 0 for r =
(
− 2l

3 , y, z
)

(2.42)

2.2 Light intensity fluctuations

All phase dependent effects have been washed out in the disorder average diffu-
sive limit underlying Eqs.(2.29, 2.31). Indeed, we considered that the only processes
contributing to the intensity are the paired trajectories, or diffusons, represented on
Fig.2.2.a. However, it is possible for a diffuson to cross with itself or with another
diffuson, as illustrated on Fig.2.4. These crossings lead to a phase exchange between
the incoming amplitudes and to a new pairing of amplitude. On Fig.2.4.a, a dif-
fuson intersects itself, forming a loop in which the trajectories evolve in opposite
directions; such a pairing of time reversed amplitudes is called a cooperon. These
processes contribute to the total intensity in the bulk of the system, but the effect is
negligible, and we will not take it into account. Let us highlight that the electronic
conterpart of this process leads to significant fluctuations of the electronic conduc-
tance, and to the phenomenon of weak localization [31]. For light, the pairing of time
reversed trajectories becomes important when measuring the outcoming light, and
leads to the albedo phenomenon: when illuminating a scattering medium, a part of
the coherent light is scattered back due to multiple scattering effects (see chapter 8 in
[13]). In the direction opposite to the incidence direction, due to the cooperon contri-
butions, the backscattered coherent light is twice that of the classical value (obtained
by neglecting the coherent effects).

The crossings between two paired trajectories, Fig.2.4.b, called quantum cross-
ings, lead to the emergence of spatially long ranged fluctuations of light. For such
crossings to remain coherent, the dephasing induced by the unpairing and re-pairing
process must be small, which means that the crossing itself has to be localized in
space. More precisely, the crossing needs to occur at length scales smaller than the
elastic mean free path l. Quantum crossings are conveniently described by Hikami
boxes [13, 32, 33] – the square in Fig.2.5.c – an operator which permutes four incom-
ing amplitudes.

FIGURE 2.4: (a) Crossing of a diffuson with itself. Inside the loop,
the two scattering trajectories are in opposite directions, forming a
cooperon. (b) Two incoming diffusons cross and exchange phases so

as to form two new outcoming diffusons.
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The occurrence of a quantum crossing in a disordered medium of volume Ld is
controlled by a single dimensionless parameter, its conductance,

g ≡ kd−1l
3π

Ld−2 (2.43)

which depends on the geometry and on scattering properties of the medium.
To see this qualitatively, we may interpret the probability of a quantum crossing to
occur as proportional the ratio between the "volume" of a diffuson and the total vol-
ume. To estimate a diffuson’s volume, we note that the typical length of a diffusive
trajectory is L = vτD, where v is the group velocity and τD = L2/D is the diffu-
sion time or the Thouless time [34, 35] – the typical time required to diffuse from
a boundary to another. For a monochromatic radiation of wavelength λ, we may
assign a cross section λd−1 to a diffuson [13]. The probability of a quantum crossing
to occur is then proportional to

Lλd−1

Ld ∝
3π

kd−1l
L2−d =

1
g

.

From now on and without loosing in generality, we consider the three dimen-
sional case, d = 3.

In the weak disorder limit kl � 1, the conductance g is large, g � 1, and small
coherent corrections generated by quantum crossings show up as powers of 1/g.
This scheme allows to expand spatial (connected) correlation function of the fluctu-
ating light intensity δI(r) ≡ I(r)− ID(r), defined by

〈δI(r)δI(r′)〉 = 〈I(r)I(r′)〉 − ID(r)ID(r′), (2.44)

as

〈δI(r)δI(r′)〉
ID(r)ID(r′)

= C1(r, r′) + C2(r, r′) + C3(r, r′) . (2.45)

The first contribution C1 is short ranged and independent of g. The two other
contributions are long ranged, and respectively proportional to 1/g and 1/g2. All
three terms contribute to specific features of interference speckle patterns [14], and
have been measured in weakly disordered electronic and photonic media [13, 15, 16,
17, 18, 19]. In practice, all three contributions can be derived using a diagrammatic
approach, detailed hereafter. For this diagrammatic derivation, it is convenient to
consider instead the non normalized correlation function,

〈δI(r)δI(r′)〉 = 〈δI(r)δI(r′)〉(1) + 〈δI(r)δI(r′)〉(2) + 〈δI(r)δI(r′)〉(3) (2.46)

where the 〈δI(r)δI(r′)〉(j) = ID(r)ID(r′)Cj(r, r′).

2.2.1 Short ranged correlation C1

The short ranged term 〈δI(r)δI(r′)〉(1) corresponds to the diagram Fig.2.5.b, where
two wave packets propagate by multiple scattering and cross between r1, r2 and r,
r′. It is equal to
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〈δI(r)δI(r′)〉(1) =
( 4π

v

)2 ∫∫
V×V

dr0dr′0γ′(r0)γ′(r′0)

∫
V

dr1dr2dr3dr4|〈GR(r0, r1)〉|2|〈GR(r′0, r2)〉|2Γ(r1, r3)Γ(r2, r4)

×〈GR(r3, r)〉〈GA(r′, r3)〉〈GR(r4, r′)〉〈GA(r, r4)〉
(2.47)

with γ′(r) the source term for ID(r) introduced in Eq.(2.32) and 4π/v a normal-
ization factor. In the diffusive limit, the structure factor Γ varies slowly in space.
With the notations of the Fig.2.5, this implies that we can replace Γ(r1, r3) ≈ Γ(r0, r)
and Γ(r2, r4) ≈ Γ(r′0, r′) in Eq.(2.47). From Eq.(2.13), and using the Green’s identity,
we obtain ∫

V

dr0 γ′(r0)Γ(r0, r) =
4πv

l2 ID(r) (2.48)

The squared Green’s functions are decoupled; their integral is equal to∫
V

dr1 |〈GR(r0, r1)〉|2 =
l

4π

Using now∫
V

dr3 〈GR(r3, r)〉〈GA(r′, r3)〉 =
l

4π
sinc(k|r− r′|)e−|r−r′|/2l ,

we obtain finally

〈δI(r)δI(r′)〉(1) = ID(r)2sinc2(k|r− r′|)e−|r−r′|/l

' 2πl
k2 ID(r)2δ(r− r′)

(2.49)

This short ranged contribution is independent of g, and gives the main contribu-
tion to the speckle patterns Fig.2.1.b.

2.2.2 Long ranged term C2

The notion of quantum crossings (coherent effects) is essential to understand the
long ranged contribution to the intensity fluctuations. For the derivation of C1, we
only considered the processes where light intensity propagates diffusively along two
trajectories, which unpair at the end of the propagation only, as depicted in Fig.2.5.b.
Here, we include quantum crossings, quantitatively described by means of a Hikami
box Fig.2.5.c.

The long ranged term C2 includes processes involving one quantum crossing,
illustrated by the diagram on Fig.2.5.c. Reading from the diagram, we obtain
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〈δI(r)δI(r′)〉(2) =
( 4π

v

)2 ∫
V

dr0dr′0γ′(r0)γ′(r′0)
∫
V

4
∏
i=1

dRi
4

∏
j=1

drj

|GR(r0, r1)|2|GR(r′0, r3)|2H(Ri)Γ(r1, R1)Γ(r3, R3)

×Γ(R2, r2)Γ(R4, r4)|GR(r2, r′)|2|GR(r4, r)|2 ,

(2.50)

with γ′(r) the source term for ID(r) introduced in Eq.(2.32), and where H(Ri) is
the Hikami box [32]. Its analytical expression is

H(Ri) = 2h4

∫
V

dR
4

∏
i=1

δ(R−Ri)∇R2 ·∇R4 , (2.51)

with h4 = l5

48πk2 , as detailed in [13]. In the diffusive limit, Γ(r, r′) varies slowly
and we can replace Γ(r1, R1) ' Γ(r0, R1), Γ(r3, R3) ' Γ(r′0, R3), Γ(R2, r2) ' Γ(R2, r)
and Γ(R4, r4) ' Γ(R4, r′) in Eq.(5.53). The averaged Green’s function are then de-
coupled; their integral is equal to l

4π . Applying the Hikami box operator on the
functions Γ, we obtain,

〈δI(r)δI(r′)〉(2) = 2h4
( 4π

v

)2
(

l
4π

)4 ∫
V

dr0dr′0γ′(r0)γ′(r′0)

∫
V

dR
∫
V

4
∏
i=1

dRiδ(R−Ri)∇R2 ·∇R4 [Γ(r0, R1)Γ(r′0, R3)Γ(R2, r′)Γ(R4, r)]

= 2h4
( 4π

v

)2
(

l
4π

)4

×
∫
V

dr0dr′0γ′(r0)γ′(r′0)
∫
V

dR Γ(r0, R)Γ(r′0, R)∇RΓ(R, r′) ·∇RΓ(R, r) .

(2.52)

Using Eq.(2.13) and Eq.(2.32), we obtain finally

〈δI(r)δI(r′)〉(2) = c0

∫
V

dR I2
D(R)∇RPD(R, r) ·∇RPD(R, r′) , (2.53)

with c0 = 2πlv2

3k2 . The normalized correlation function is then

C2(r, r′) =
c0
∫

V dR I2
D(R)∇RPD(R, r) ·∇RPD(R, r′)

ID(r)ID(r′)
(2.54)

To see that Eq.(2.54) is proportional to 1/g, it is useful to move to dimensionless
variables and functions, 

u = r/L

P̃D(u, u′) = DLPD(r, r′)
(2.55)

Upon this change of variable, Eq.(2.54) takes the form
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FIGURE 2.5: (a) Two diffusion paths propagating without interacting.
(b) Representation of the short-ranged term in the correlation func-
tion of the intensity fluctuations. (c) Diagram corresponding to the
C2 term of the intensity correlations. The square represents a Hikami
box, describing one quantum crossing between two diffusion paths.

C2(r, r′) = c0
D2L

∫
Ṽ dU I2

D(U)∇U P̃D(U,u)·∇U P̃D(U,u′)
ID(r)ID(r′)

= 3π
k2lLN2

= 1
gN2

(2.56)

where Ṽ is the renormalized volume and

N2 =

∫
Ṽ dU I2

D(U)∇UP̃D(U, u) ·∇UP̃D(U, u′)
ID(r)ID(r′)

is a dimensionless number, independent of the volume, which depends solely on
the boundary conditions, the shape of the system and the nature of the light source.

2.2.3 Long ranged term C3

The term C3(r, r′), contains the processes with two diffuson crossings, i.e. two Hikami
boxes. It can be shown [13] that all the possible combinations boil down to the dia-
grams represented in Fig.2.6. Before diving into the diagrammatic calculations, we
can convince ourselves that all three diagrams will give a contribution proportional
to c2

0, where c0 is the prefactor in Eq.(2.53), c0 = 2πlc2

3k2 . Indeed, the diagrams in
Fig.2.6 are built from four squared Green’s functions, six propagators structure fac-

tors, and two Hikami boxes. Each of these terms give, respectively,
(

l
4π

)4
,
( 4πv

l2

)6
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FIGURE 2.6: Diagrammatic representation of the two types of pro-
cesses contributing to C3. The blue dots represent the vertices dressed

with a ∇ operator.

and (2h4)
2 =

(
l5

24πk2

)2
. Taking into account the normalization factor

( 4π
v

)2
, we ob-

tain the prefactor for the diagrams,(
4π

v

)2 ( l
4π

)4 (4πv
l2

)6 ( l5

24πk2

)2

=

(
2πlc2

3k2

)2

= c2
0

This prefactor is the fingerprint of the underlying occurrence of quantum cross-
ings.

The correlation function 〈δI(r)δI(r′)〉(3) is hence the sum of three terms, which
we write in the form

〈δI(r)δI(r′)〉(3) = c2
0 ∑

j=1,2,3
Dj(r, r′) (2.57)

where D1, D2, D3 correspond to the diagrams Fig.2.6.a, Fig.2.6.b, Fig.2.6.c respec-
tively.

Following the same method as in the previous section, we obtain for the first
diagram D1,

D1(r, r′) = c2
0

∫∫
V×V

dR dR′ |∇R ID(R)|2P2
D(R, R′)∇R′PD(r, R′) ·∇R′PD(R′, r′) .

(2.58)
The diagrams in Fig.2.6.b and Fig.2.6.c give the same terms, D2(r, r′) = D3(r, r′),

with
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D2(r, r′) = c2
0

∫∫
V×V

dR dR′∇R ID(R) ·∇R′ ID(R′)P2
D(R, R′)∇RPD(r, R) ·∇R′PD(R′, r′) .

(2.59)
Using the change of variable in Eqs.(2.55), the dependence of C3 in 1/g2 appears

clearly, and we may write

C3(r, r′) =
1
g2N3 (2.60)

where N3 is a dimensionless number, independent of the volume, which de-
pends solely on the boundary conditions, the shape of the system and the nature of
the light source.

Remark: the diffuson crossings can also be observed by means of the transmission co-
efficient T, defined as T = ∑

a,b
Ta,b, where Ta,b corresponds to the intensity transmitted in

the direction ŝb for an incident beam propagating along ŝa. The two diffuson crossings pro-
cesses, discussed for the term C3, lead to fluctuations of the transmission coefficient which
are expressed simply by (see chapter 12 in [13])

〈δT2〉 = 2
15

(2.61)

a number independent of the disorder. These fluctuations are therefore universal, and
are referred to in the literature as universal conductance fluctuations [16], similarly to their
electronic counterpart [36, 37, 38].
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Chapter 3

Langevin approach to mesoscopic
fluctuations

Patauger, quelquefois, c’est aussi faire bondir deux ou trois gouttes de lumière.

(While dabbling we sometimes splash up a few drops of light.)

Paul Valéry

In chapter 2, we discussed the properties of light propagating through a random
medium, and showed how coherent effects lead to spatially long ranged fluctuations
of light. In this chapter, we show that these light fluctuations can be described in a
different but equivalent way by noting that quantum crossings occur at lengths of
order l. This allows to separate large scale (� l) incoherent diffusive physics from
small scale, coherent and phase preserving quantum crossings. Such scale partition
is efficiently described by means of a Langevin equation.

The objective of this chapter is to derive an effective Langevin equation for co-
herent light, and explain how to systematically incorporate the coherent effects in
the noise term. This Langevin approach maps the problem of coherent multiple
light scattering onto an effective non equilibrium light flow, characterized by two
parameters only, the diffusion coefficient D and the strength of the noise σ – also
called the mobility – related by a Einstein relation. The mapping between coherent
light and non equilibrium hydrodynamics is intriguing by itself from a fundamental
viewpoint. On a practical level, the non equilibrium hydrodynamics framework pro-
vides a new insight for the understanding of the light flow’s properties, as discussed
in chapter 5. The main advantage of the Langevin approach lies in its dependance
on two parameters only, D and σ, which greatly simplifies the study of the light fluc-
tuations. The method can be generalized to other diffusive systems, e.g. electronic
transport in random metals, which is discussed briefly in the last section.

3.1 Effective Langevin equation for coherent light

The diffusion equation (2.33) and the Fick’s law Eq.(2.30), between the diffusive in-
tensity and current, jD(r) = −D∇ID(r), are disorder averaged and do not include
the coherent corrections discussed in chapter 2. Since the coherent corrections oc-
cur at lengths of order l, we may divide the light intensity and current fluctuations
into two groups, the microscopic fluctuations which occur over length scales l, and
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diffusive fluctuations propagating over larger distances. In order to quantitatively
describe this phenomenon, we generalize the Fick’s law, for properly coarse grained
functions I and j, averaged over a small volume lk−2 but not over disorder. The
coherent fluctuations are encapsulated in a zero average noise term ν(r),

j(r) = −D∇I(r) + ν(r) (3.1)

This effective Langevin equation extends the Fick’s law to the fluctuating, not
disorder averaged quantities I(r) ≡ ID(r) + δI(r) and j(r) ≡ jD(r) + δj(r). Remov-
ing the averaged quantities from Eq.(3.1) by means of Fick’s law Eq.(2.30), we deduce
a Langevin equation for the intensity fluctuation δI(r), completed with a continuity
equation, 

δj(r) = −D∇δI(r) + ν(r)

∇ · δj(r) = 0
(3.2)

We highlight the fact that the noise ν(r) corresponds to coherent effects, and not
to the position of scatterers. It is a purely mesoscopic noise, as opposed to the usual
scenarios in diffusive systems where the noise is thermal or solely dependent of the
scatterers.

The physics contained in Eqs.(3.1,3.2) can be summarized in two important points:
•we can divide light intensity and current fluctuations in two categories, the micro-
scopic fluctuations which occur at length scales l, and diffusive fluctuations propa-
gating over large scales;
• the light intensity and current fluctuations originate from microscopic interference
processes which occur at small length scales (< l) and which are described by the
noise term ν.

We now show that this picture allows to reproduce the 1/g expansion of Eq.(2.45),
by systematically including quantum crossings contributions in ν(r). The corre-
lation function of the noise is carrefully derived in order to reproduce the quan-
tum crossings effects. This procedure was originally presented in [25] for electronic
waves and to the lowest order for electromagnetic waves; we provide here a more
modern derivation as well as a computation of higher order terms in 1/g.

3.1.1 Derivation of the noise term

Before discussing the general method, we present the argument of [25], since it pro-
vides an intuitive picture; see also [30]. The idea, to calculate the noise term, is to
notice that the local current fluctuations are dominated by the short ranged fluctu-
ations of the intensity Eq.(2.49). Since the light current is related to the intensity by
j(r) = vI(ŝ, r)ŝ, we readily obtain, from Eq.(2.49)1,

〈να(r)νβ(r′)〉 = δαβ
2πlv2

3k2 ID(r)2δ(r− r′) = δαβc0 ID(r)2δ(r− r′) (3.3)

where the factor 1/3 comes from angular averaging and c0 = 2πlv2

3k2 . Using this
expression, we recover the long ranged term C2. Indeed, combining Eqs.(3.2), we
obtain

1We obtain the same result starting from the quantum mechanics definition of the current
j(r) = − v

k= (ψ(r)∇rψ∗(r)), and performing a perturbation development to first order of the prod-
uct 〈ψ(r)∇rψ∗(r)〉, similarly to the derivation of C1 Eq.(2.49).
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− D∆δI(r) = −∇ · ν(r) (3.4)

and, using the Green’s identity with the Green’s function Eq.(2.14),

δI(r) = −
∫
V

dr′ PD(r′, r)∇ · ν(r) =
∮

∂V

dr′∇PD(r′, r) · ν(r′) , (3.5)

where we used the boundary condition ν(r) = 0 on the edge ∂V. We deduce the
correlation function of the fluctuating intensity,

〈δI(r)δI(r′)〉 = c0

∫
V

dR I2
D(R)∇RPD(R, r) ·∇RPD(R, r′) (3.6)

which is exactly Eq.(2.53). Therefore, using the noise term in Eq.(3.3) allows to
describe the intensity fluctuations of order 1/g.

We now show how to include higher order terms, by using a systematic method
relying on the diagrammatic description.

The idea, for incorporating the coherent effects in the noise ν(r), is to write an
expression of the intensity correlation function Eq.(2.44) using, on the one hand, the
Langevin description, and on the other hand, a diagrammatic description. Note
that the Eq.(3.5) is an explicit expression of δI only if we assume that the noise ν
is independent of δI. In fact, we now make the assumption that ν depends solely
on the disorder averaged quantities ID and PD. More precisely, we assume that any
spatial fluctuation of the noise of order δI is negligible for length scales larger than
l, which amounts to say that the noise is weak. We check the consistency of this
assumption in 3.1.3. With this assumption, we obtain, from Eq.(3.5), the correlation
function,

〈δI(r)δI(r′)〉 =
∫∫

V×V

dr1dr2∇1,αPD(r, r1) ·∇2,βPD(r′, r2)〈να(r1)νβ(r2)〉 . (3.7)

The integral in the right hand side of Eq.(3.7) is long ranged, as are the meso-
scopic coherent light fluctuations.

On the other hand, the long ranged correlation function can be derived using the
diagrammatic approach presented in chapter 2. It is the sum of two terms,

〈δI(r)δI(r′)〉(2) + 〈δI(r)δI(r′)〉(3) , (3.8)

where 〈δI(r)δI(r′)〉(2) and 〈δI(r)δI(r′)〉(3) are given in the Eqs.(2.53,2.57).
By identification with Eq.(3.7), we obtain the identity

∫∫
V×V

dr1dr2∇1,αPD(r, r1) ·∇2,βPD(r′, r2) 〈να(r1)νβ(r2)〉

= 〈δI(r)δI(r′)〉(2) + 〈δI(r)δI(r′)〉(3) .
(3.9)

From the identity Eq.(3.9), we predict that 〈να(r)νβ(r′)〉 should be the sum of
two terms, corresponding respectively to 〈δI(r)δI(r′)〉(2) and 〈δI(r)δI(r′)〉(3), and
therefore proportional to 1/g and 1/g2 respectively. In the rest of this section, we
prove that, indeed, 〈να(r)νβ(r′)〉 is equal to
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〈να(r)νβ(r′)〉 = c0K0(r, r′) + c2
0

3

∑
j=1

Kj(r, r′) (3.10)

where c0 is the prefactor of the long ranged correlation function Eq.(2.53), and
the functions Kj, derived hereafter, depend on the averaged intensity and current
ID, jD. To recover the dependence in g, notice that c0 is proportional to the inverse of
the conductance,

c0 =
2πlv2

3k2 =
D2

g
L . (3.11)

This allows us to identify the term c0K0 as the noise term leading to the corre-
lation function 〈δI(r)δI(r′)〉, represented by the diagram Fig.(2.5.c), and the terms

c2
0

3
∑

j=1
Kj(r, r′) as those associated to 〈δI(r)δI(r′)〉, in Eq.(2.57). The three functions

K1, K2, K3 correspond to the three diagrams of Fig.(2.6).

Let’s derive first K0. Remind that the expression for the long ranged term 〈δI(r)δI(r′)〉(2)
obtained from the diagrammatic calculation is equal to

〈δI(r)δI(r′)〉(2) = c0

∫
V

dR I2
D(R)∇RPD(R, r) ·∇RPD(R, r′) , (3.12)

with c0 = 2πlv2

3k2 .
Comparing Eq.(2.53) with Eq.(3.7) allows to identify the lowest order term in c0

(or 1/g for rescaled correlation functions) of the noise correlation function,

c0K0(r, r′) = c0 I2
D(r)δ(r− r′)δαβ , (3.13)

and we recover Eq.(3.3). Note that the term c0 = 2πlv2

3k2 in the amplitude of the
noise comes directly from the amplitude of the Hikami box and of the value of the
other quantities involved in the crossing of two diffusion paths – the structure factor
and the average Green’s functions GR,A. The factor c0 is the signature of the meso-
scopic interference processes which lead to long ranged intensity correlations.

The correlation function 〈δI(r)δI(r′)〉(3) was derived in chapter 2, where we show
that it is the sum of three terms,

〈δI(r)δI(r′)〉(3) = c2
0 ∑

j=1,2,3
Dj(r, r′) (3.14)

where D1, D2, D3 correspond to the diagrams Fig.(2.6.a), Fig.(2.6.b), Fig.(2.6.c)
respectively. We remind

D1(r, r′) = c2
0

∫∫
V×V

dR dR′ |∇R ID(R)|2P2
D(R, R′)∇R′PD(r, R′) ·∇R′PD(R′, r′) .

(3.15)
and D2(r, r′) = D3(r, r′), with

D2(r, r′) = c2
0

∫∫
V×V

dR dR′∇R ID(R) ·∇R′ ID(R′)P2
D(R, R′)∇RPD(r, R) ·∇R′PD(R′, r′) .

(3.16)
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Comparing with Eq.(3.7), we deduce the expressions of the functions K1, K2, K3,
which correspond respectively to D1, D2, D3,

K1(r, r′) = δα,βδ(r− r′)
∫

dr1P2
d (r1, r′)∇ID(r1) · ∇ID(r1)

K3(r, r′) = K3(r, r′) = P2
D(r, r′)∂α ID(r)∂β ID(r′)

(3.17)

To sum, the Langevin equation (3.1) efficiently describes the coherent light flow
and its fluctuations to the order 1/g2. The Eq.(3.1) is characterized by a constant
diffusion coefficient D and a noise term satisfying Eq.(3.10).

3.1.2 Einstein relation

If we keep only the first order term K0 for the noise correlation function, we may
rewrite the noise in the form

ν(r) =
√

σ(r)η(r) (3.18)

with

σ = c0 ID(r)2 (3.19)

and η(r) a Gaussian white noise,
〈η(r)〉 = 0

〈ηα(r)ηβ(r′)〉 = δαβδ(r− r′) .
(3.20)

In this approximation, the Langevin equation (3.1) becomes

j(r) = −D∇I(r) +
√

σ(r)η(r) . (3.21)

This effective Langevin equation provides a description of the light flow and its
fluctuations of order 1/g. The Eq.(3.21) is characterized by the diffusion coefficient
D and by the amplitude σ, also called the mobility of the system. However, note
that the amplitude of the noise depends on the average value ID(r), which is differ-
ent from usual stochastic processes. More precisely, the dependence upon a constant
D and a quadratic σ draws a relation with the Kipnis-Marchioro-Presutti (KMP) pro-
cess – a heat transfer model for boundary driven chains of oscillators [39, 27] – well
described by the macroscopic fluctuation theory [40]. A formal correspondence with
this process is obtained by identifying the radiation intensity I to the energy density,
and j to the heat flow. However, despite this correspondence, it is important to note
that the physical source of non equilibrium is very different in the two cases: in the
KMP model, energy density fluctuations result from thermal effects due to the cou-
pling to two reservoirs at distinct temperatures, while intensity fluctuations of the
light flow result solely from the coherent effects, induced by the illumination of the
random scattering medium. This correspondance is discussed in more details in the
chapter 5.

In fluctuating hydrodynamics, an Einstein relation connects the parameters D
and σ; it is given by σ = Dχ, where χ is the compressibility of the system, usually
derived from the free energy [41]. For time dependent processes, χ(ρ) is defined by
(see section II.2.1 in [41])
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χ(ρ(r)) =
∫
V

dr′S(r− r′, 0) = Ŝ(0, 0) (3.22)

where S(r− r′, t− t′) is the (equilibrium) correlation function of the density,

S(r− r′, t− t′) = 〈ρ(r, t)ρ(r′, t′)〉 − 〈ρ2〉 .

The Fourier transform Ŝ(k, t) =
∫

eik·rS(r, t) is known as the structure function
or intermediate scattering function.

For coherent light, the effective Langevin equation (3.21) is time independent,
but there is a subtlety here. Consider a random medium, illuminated by a light
beam. The radiation undergoes multiple scattering events, and, as we discussed
in chapter 2, it behaves diffusively. However, the Langevin description does not
describe the propagation of light between two scattering events, during which light
behaves ballistically; the Langevin description is valid only in the diffusion regime.
The characteristic time window between two scattering events is given by elastic
mean time τe = l/v. In the effective Langevin equation (3.21), the ballistic regime
has been integrated out; in other words, the Langevin description is equivalent to
a time dependent problem, characterized by D and σ, integrated over the elastic
mean time τe = l/v. This remark allows us to re-introduce a time dependence, in
order to derive the compressibility χ, in analogy with fluctuating hydrodynamics.
We therefore consider that the intensity and current are time dependent, I(r, t) and
j(r, t), where I(r, t) and j(r, t) are related by a time dependent Langevin equation

j(r, t) = −D∇I(r, t) + ν̃(r, t) , (3.23)

where the noise term encapsulates the fluctuations created by both the coherent
effects and the ballistic trajectories. It is related to the noise term in Eq.(3.21) by

〈να(r)νβ(r′)〉 =
τe∫

0

dt 〈ν̃α(r, t)ν̃β(r′, 0)〉 . (3.24)

To derive the compressibility χ, we first note that Eq.(3.24) leads to

〈ν̃α(r, t)ν̃β(r′, t′)〉 = σδαβδ(r− r′)δ(t− t′) . (3.25)

The time and space fluctuations are decoupled, hence

〈δI(r, t)δI(r′, t′)〉 = 〈δI(r)δI(r′)〉δ(t− t′) , (3.26)

and

〈δI(r)δI(r′)〉 =
τe∫
0

dt〈δI(r, t)δI(r′, t′)〉 . (3.27)

From Eqs.(3.22, 3.27), we obtain
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∫
V

dr′〈δI(r)δI(r′)〉 =
∫
V

dr′
τe∫
0

dt〈δI(r, t)δI(r′, t′)〉

=
τe∫
0

dtχ(r)

= τeχ(r) ,

(3.28)

and we deduce the compressibility,

χ(r) = 1
τe

∫
V

dr′〈δI(r)δI(r′)〉(1)

= 1
τe

2πl
k2 ID(r)2

= 2πv
k2 ID(r)2

= c0
D ID(r)2 .

(3.29)

Using the expression Eq.(3.29), we recover the Einstein relation,

σ(r)χ(r)−1 = D . (3.30)

We therefore see that coherent light is well described by an effective Langevin
equation, characterized by two parameters D and σ, themselves related by an Ein-
stein equation. This allows to understand the light intensity fluctuations described
in chapter 2 as resulting from a hydrodynamic light flow. We explore this connection
more thoroughly in chapter 5, where we show that coherent light can in fact be inter-
preted as an out of equilibrium light flow, well described in the macroscopic fluctua-
tion theory framework [40]. In particular, this allows us to derive a Gallavotti-Cohen
relation for coherent light – a fluctuation dissipation theorem for out of equilibrium
systems [40, 42].

3.1.3 Validity of the Langevin approach

The Langevin approach is valid for weak noise, i.e. lim
V→∞

σ = 0 over diffusive time

scales t ∝ L2. To check that this requirement is met, we use rescaled variables
x = r

L

τ = t
L2 .

(3.31)

In these rescaled units, 
I(x, τ) = I(r, t)

j(x, τ) = Lj(r, t) .
(3.32)

For the noise, we note that
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〈η(r)η(r′)〉 = δ(r− r′)

= δ(L(x− x′))

= 1
L3 δ(x− x′)

= 1
L3 〈η̃(x)η̃(x′)〉 ,

(3.33)

and η is therefore rescaled as η(x) =
√

L3η(r).
In these units, the Langevin equation (3.1) becomes

1
L j(x) = −D 1

L∇I(x) +
√

σ
L3 η(x)

⇔ j(x) = −D∇I(x) +
√

σ
L η(x)

(3.34)

and the noise term satisfies lim
L→∞

σ
L = 0. The Langevin approach is therefore valid.

3.2 Langevin approach for electronic transport

The picture presented in the previous section can be extended to other mesoscopic
diffusive systems, e.g. electronic transport in metals, which is thoroughly discussed
in [43, 25]. We discuss here the case of diffusive electrons in disordered metals. The
propagation of electrons in a mesoscopic sample, of length L and section S, can be
described by substituting in Eq.(3.1) the intensity by the electronic density ρ and the
light current by the electronic current J,

J(r) = −D∇ρ(r) + ξ(r) (3.35)

with D a constant diffusion coefficient, le the elastic mean free path, and where
the noise ξ accounts for the mesoscopic fluctuations.

As for diffusive light, the disorder average current 〈J(r)〉 is related to the elec-
tronic density 〈n(r)〉 by a Fick’s law:

〈J(r)〉 = −D∇〈n(r)〉 (3.36)

In the presence of an external applied electric field E, the current is related to the
field by Drude’s law,

〈J(r)〉 = σDE(r) , (3.37)

where σD is the Drude conductivity,

σD = e2Dρ0 =
e2

h

(
kF

2π

)2

le (3.38)

with ρ0 the density of states at the Fermi level. The conductance G of the sample
is given by

G = σD
S
L

(3.39)

Similarly to diffusive light, a good parameter to characterize the strength of the
disorder is the (electronic) dimensionless conductivity ge, defined by
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ge =
G

e2/h
≡ k2

FleS
L

(3.40)

The correlation function 〈ξα(r)ξβ(r′)〉 is derived using a diagrammatic approach
by [25]. They found a noise correlation function very similar to the the one for light
Eq.(3.10), as expected since the crossings represented in Figs.(2.5,2.6) also hold for
electronic waves,

〈ξα(r)ξβ(r′)〉 = X0(r, r′) +
3

∑
j=1

Xj(r, r′) . (3.41)

As in Eq.(3.10), the first term, equal to

X0(r, r′) = e2 h2v2
e l2

e
6π
〈ρ(r)〉2δαβδ(r− r′) , (3.42)

is of order 1/ge. The remaining terms X1(r, r′), X2(r, r′) and X3(r, r′) account for
fluctuations of order 1/g2

e ,

X1(r, r′) = δαβδ(r− r′)
(

4e2D
h̄

)2 ∫
dr1B(r, r1)E2(r1)

X2(r, r′) =
(

4e2D
h̄

)2
Eα(r)Eβ(r′)B(r, r′)

X3(r, r′) =
(

4e2D
h̄

)2
2Eα(r)Eβ(r′)

∫∫ dε1dε2
(2π)2 f ′(ε1) f ′(ε2)<(Gε1−ε2(r, r′))

(3.43)

where f (ε) is the Fermi distribution function,

B(r, r′) =
∫∫ dε1dε2

(2π)2 f ′(ε1) f ′(ε2)Gε1−ε2(r, r′)Gε2−ε1(r
′, r) ,

and Gε(r, r′) the Green’s function of the diffusion equation in energy space,

(iε− D∆)Gε(r, r′) = δ(r− r′) . (3.44)

In [25], the authors show that the Langevin approach allows to recover the well
known electronic conductance fluctuations. It is obtained from the equations (3.35)
and (3.41) by considering a four point setup. To conclude this chapter, we discuss
how the mesoscopic fluctuations desribed by the Langevin equation should affect
the electronic potential in a simple setup.

3.2.1 Potential fluctuations

Consider a charge distribution ρ(r′). The electric potential at a point r of the system
is given by:

Ve(r) =
1

4πε0

∫
V

dr′
ρ(r′)
|r− r′| (3.45)

The electric density fluctuations induce fluctuations of the the potential of am-
plitude
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〈δVe(r)δVe(r′)〉 = 1
(4πε0)2

∫∫
V×V

dr1dr2
〈δρ(r1)δρ(r2)〉
|r−r1|·|r′−r2|

= 1
(4πε0)2

∫∫
V×V

dr1dr2
|r−r1|·|r′−r2|

∫∫
V×V

dr3dr4∇PD(r1, r3) · ∇PD(r2, r4)〈ξα(r3)ξβ(r4)〉
(3.46)

We consider the simple case of an infinite medium L → ∞. In this case, the
Green’s function is:

PD(r, r′) =
1

4πD|r− r′| (3.47)

Re-injecting in Eq.(3.46), we obtain the correlation function for the potential.
Using Eqs.(3.42,3.43), a scaling argument similar to the one used for the light

fluctuation induced forces in the chapter 4 4.2, shows that the term X0 gives a con-
tribution of order 1/ge, while the terms Xj give contributions of the order 1/g2

e .
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To summarize this chapter, we showed that light fluctuations can be described
by an effective Langevin equation, where the noise term encapsulates the coherent
corrections. The method consisting in systematically including mesoscopic effects
in the noise term of an effective Langevin equation can be generalized to a vast
class of quantum or classical mesoscopic effects, e.g in electronic transport (briefly
illustrated here) and superconductivity [44, 45, 46].

In classical hydrodynamics, the emergence of long ranged density fluctuations is
usually the signature of non equilibrium phenomena [40]. The Langevin approach
described here therefore maps the problem of coherent light fluctuations to a class
of out of equilibrium hydrodynamic systems. For such systems, it has be proven
[4, 8, 6] that long ranged density fluctuations lead to characteristic forces, called
fluctuation induced forces or Casimir forces. We show in chapter 4 that similar forces
are induced by coherent light.
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Chapter 4

Fluctuation induced forces

May 4th

In chapter 2, we showed that classical light scattering in a weakly disordered
medium fluctuates spatially, and that the fluctuations have a long ranged compo-
nent of order 1/g due to mesoscopic coherent effects. These long ranged fluctua-
tions are weak in amplitude and difficult to observe. However, their long ranged
nature raises the question whether or not "confining" them would lead to measur-
able Casimir like forces. Casimir physics covers a wealth of phenomena where forces
between macroscopic objects are induced by long range fluctuations [4] of either
classical or quantum origin. The most celebrated example is the so called quantum
electrodynamic (QED) Casimir effect [1], but such fluctuation induced forces arise in
a wide range of systems [5, 6, 47, 7, 8, 48, 11, 10]. In this chapter, we prove that the
coherent and spatially long ranged fluctuations of light induce forces, of a radiative
nature. Optical forces generated by fluctuating fields have been widely studied in
the recent years [49, 50, 51, 52, 53]. The mechanical forces discussed in this thesis,
however, have not yet been identified. These fluctuation induced forces depend on
the dimensionless conductance g – an easily tunable parameter – which allows to de-
sign setups where these fluctuating forces dominate the other known forces in play
[2, 3, 54]. In chapter 3, we showed that light intensity fluctuations can be described
by an effective Langevin equation which maps the problem of coherent light fluctu-
ations to a class of out of equilibrium hydrodynamic systems. For such systems, it
has been evidenced [4, 8, 6] that long ranged density fluctuations give rise to fluctu-
ation induced forces or Casimir forces. We use this analogy to meet our end goal of
deriving light fluctuations induced forces. Before going any further, note the appar-
ent paradox of the effect we wish to demonstrate. Since light waves tend to localize
in the presence of disorder, it would seem logical to seek light fluctuation induced
forces in situations where there are no scatterers and where light can propagate over
large distances. In fact, removing disorder leads to stronger average radiative forces,
see 4.1. However, the forces we are interested in are created by the long range light
intensity fluctuations, stemming from mesoscopic coherent effects, which only ex-
ist in the presence of weak disorder. These forces are nonetheless weaker than the
average radiative force, which makes their measurement challenging. This prob-
lem can be avoided by playing with the geometry of the setup, in order to cancel
out the average component and measure solely the forces of interest. The setup on
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Fig.4.2, where a reflective or absorbing membrane is placed exactly in the middle of
the box, for example, meets this requirement. We provide a general expression and
scaling of the light fluctuation induced forces and show that they have the simple
form Eq.(4.18). For analytical and quantitative discussions, we focus mainly on the
experimentally relevant slab geometry of Fig.4.2, and compare different boundary
conditions in 4.2.

4.1 Radiation forces

The forces under study are of a radiative nature. We therefore begin by providing
the expression of radiative forces in terms the light flow j.

Consider the setup in Fig.4.1, where a monochromatic scalar radiation1 of ampli-
tude E(r), wave number k, incident along the direction of unit vector k̂, illuminates
an absorbing surface S perpendicular to the beam.

FIGURE 4.1: A monochromatic scalar radiation, of powerP and wave
number k, propagates in the direction of the unit vector k̂. (a) The ra-
diation propagates in vacuum until it hits an absorbing plate of sur-
face S, perpendicular to the direction of propagation. (b) The light
diffuses in an elastic, weakly disordered scattering medium, charac-

terized by the elastic mean free path l, before reaching the plate S.

In the absence of scatterers Fig.4.1.a, the energy current per unit volume inside
the medium is described by the Poynting vector Π(r), and the light intensity I, in
W.m−2, is defined as the norm of the Poynting vector,

I(r) = |Π(r)| = ε0c|E(r)|2 , (4.1)

where c is the velocity of light in vacuum and ε0 the vacuum permittivity.
In the presence of disorder Fig.4.1.b, and in the weak disorder limit kl � 1, an

equivalent description of the local radiation at a point r and propagating along a
direction ŝ is provided by the specific intensity I(r, ŝ), and the light current j(r) =

vI(r, ŝ) ŝ averaged over all directions ŝ [13, 29], where v is a conveniently defined
group velocity, as discussed in chapter 2. In this approach, the force exerted by

1we set aside the effect of polarization (scalar approximation) since the effects of polarization and
disorder can be decoupled, see section 2.1 and [13].
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light on an absorbing surface S of normal vector n̂, immersed inside the scattering
medium, is

f =
n̂
v2

∫
S

dr j(r) · n̂ . (4.2)

On average over disorder, the light current is related to the diffusive intensity by
a Fick’s law, jD(r) = −D∇ID(r). Substituting in Eq.(4.2) gives the average force on
the surface S,

〈f〉 = n̂
v2

∫
S

dr jD(r) · n̂ , (4.3)

a quantity which depends only on the scattering properties of the medium by
means of the transmission coefficient T and of the group velocity v. To see this, let
us derive the average force exactly in the simple case of a slab geometry Fig.4.1.b.
A monochromatic plane wave of intensity I emitted by an external light source and
normally incident on a slab, of thickness L, of an elastic scattering medium. The
average force exerted by the scattered light on the opposite wall, of surface S, located
at y = L, is equal to

〈f〉 = ŷ
v2

∫
S

dxdz 〈jy(x, y = L, z)〉 . (4.4)

We assume that L �
√

S. In this slab geometry, the solution of Eq.(2.31) with
absorbing boundary conditions is

ID(r) = 5I
L + l0 − y

L + 2l0
− 3Ie−y/l , (4.5)

with l0 = 2l
3 . From Fick’s law, it follows that the diffusive current is equal to

jD(r) = 5ID
1

L + 2l0
− 3I

D
l

e−y/l . (4.6)

The Drude intensity I0(r) is equal to

I0(r) = Ie−y/l , (4.7)

and the associated current, j0(r), to

j0(r) = 3I
D
l

e−y/l . (4.8)

From Eq.(4.6) and Eq.(4.8), we deduce that the total current is constant and equal
to

〈j(r)〉 = 5ID
1

L + 2l0
. (4.9)

Reinjecting Eq.(4.9) in Eq.(4.4), we obtain the force on the surface S:

〈f〉 = ŷ
v2 S⊥5ID 1

L+2l0

= P
v T(L)ŷ

(4.10)

where P = IS⊥ is the incoming light power, and T(L) = 5l
3(L+2l0)

the transmis-
sion coefficient.
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Interestingly, the expression of the total average force on the closed surface ∂V
surrounding a light source of power P has the general expression P/v regardless of
the presence of disorder, with a group velocity v which depends on the nature of the
medium. The light source γ inside the medium satisfies∫

V

dr γ(r) = lP , (4.11)

where P is the power of the light source. In the absence of scatterers, the energy
flux is described by the Poynting vector Π(r). There is no energy dissipation, hence
the flux of Π(r) through a closed surface S around the source is independent of the
size and shape of the surface. It is equal to the power of the source,

∮
S dr Π(r) · n̂(r) =

P , with n̂(r) the local unit vector normal to the surface at r. The amplitude of the
total normal radiative force in vacuum, fv, is

fv =
1
v

∮
S

dr Π(r) · n̂(r) = P
c

, (4.12)

where c is the velocity of light in vacuum.

In an elastic scattering medium, the total average force exerted by the scattered
light on the boundary is by definition

〈 f 〉 = 1
v2

∮
∂V

〈j(r)〉 · n̂ =
1
v2

∫
V

∇ · 〈j(r)〉 , (4.13)

with 〈j(r)〉 = j0(r) + jD(r). Since ∇ · j0(r) = − v
l I0(r) and ∇ · jD(r) = v

l I0(r) +
γ(r), we have

〈 f 〉 = 1
v2

∫
V
− v

l I0(r) + v
l I0(r) + v

l γ(r)

= 1
vl

∫
V

γ(r)

= P
v ,

(4.14)

with v the group velocity, which completes the proof.

4.2 Fluctuating forces induced by coherent light flow

We are now in a position to calculate the radiation force f, which includes, on top of
its average 〈f〉, a fluctuating part

f = f− 〈f〉 , (4.15)

induced by intensity fluctuations. By definition, f averages to zero, but its mean
amplitude

√
〈 f 2〉 is significant. We begin by deriving the general expression of 〈 f 2〉

and its scaling, Eq.(4.18). We then check the validity of Eq.(4.18) in the simple ge-
ometry Fig.4.3. Finally, we consider the experimentally relevant geometry Fig.4.2,
where the average diffusive force on the yellow membrane S = L⊥ × L‖ cancels out,
which allows to isolate the fluctuating part. We derive 〈 f 2〉 analytically for different
boundary conditions.
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4.2.1 General expression

Consider an elastic, scattering medium, contained in a volume V and illuminated
by an external light beam, such as Fig.4.2. The radiative force on a surface S inside
or on the edges of the medium is obtained by substituting Eq.(3.1) into Eq.(4.2). We
obtain the fluctuating part by removing the average component using Eq.(2.30), and
we find

f = 1
v2

∫
S

dr r̂ · [∇δI(r) + ν(r)] r̂

= 1
v2

∫
S

dr [∂rδI(r) + ν̂r(r)] r̂
(4.16)

where r̂ is the local, unit vector normal to the surface S at point r. In the second
line, we used the short hand notation

∂r = n̂(r) ·∇

Ar̂(r) = r̂ ·A(r)

for any vector field A(r).

This fluctuation induced force averages to zero over disorder, and its amplitude
is given by

〈 f 2〉 = 1
v4

∫∫
S×S

drdr′[D2∂r∂r′〈δI(r)δI(r′)〉+ 〈ν̂r(r)ν̂r(r)〉]

=
3

∑
j=1

f 2
j +

3

∑
j=0

f 2
ν,j , (4.17)

where f 2
j is denotes the contribution of the three terms in the intensity correlation

function Eq.(2.46), and where f 2
ν,j results from the noise term Eq.(3.10).

4.2.2 Scaling of the fluctuation induced forces

The amplitude of the fluctuation induced force f in Eq.(4.17) is the sum of seven
different terms, but a simple scaling argument shows that it is dominated by f 2

2 and
f 2

ν,0, which are both proportional to the inverse of the conductance. It follows that
the fluctuating force has the general form

〈 f 2〉 = 1
gL
P2

v2 (Q2 +Qν) . (4.18)

This rather simple expression constitutes a central result of this work. It states
that the fluctuating forces induced by coherent mesoscopic effects, besides their de-
pendence upon the power P of the incoming light beam, are driven by the dimen-
sionless conductance gL of the system. This conductance takes the simple form given
in Eq.(2.43) for the geometry of the empty hypercube Ld. For more involved geome-
tries like in Fig.4.2, the conductance takes, in three dimensions d = 3, the general
form

gL ≡
k2l
3π
L (4.19)
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FIGURE 4.2: Schematic visualization of the setup for a plane wave
source. (a) A monochromatic light beam of wave number k and
power P experiences multiple elastic scattering in a random dielec-
tric medium (e.g. a liquid suspension of elastic scatterers) charac-
terized by the mean free path l. For weak disorder, kl � 1, the
average diffusive light intensity ID(r) is represented by brownian-
like trajectories. (b) For each disorder realization, speckle patterns of
bright and dark spots evidence spatial fluctuations of light intensity
whose correlations are due to interference processes illustrated in (c)
and (d). (c) Two phase-independent diffusive trajectories are built out
of paired multiple scattering amplitudes – solution of Eq.(2.1) – hav-
ing opposite phases and pictured by two coupled (full and dotted)
wave-shaped lines. These independent diffusive paths contribute to
short range correlations. (d) Coherent long ranged correlations result
from spatially localized exchanges – quantum crossings – and a new
pairing of phase-dependent amplitudes between two diffusive trajec-
tories. The occurrence of a quantum crossing is proportional to the
inverse dimensionless conductance 1/g (see chapter 2), a small pa-
rameter for weak disorder kl � 1 which depends upon the system
geometry. Coherent light fluctuations induce a fluctuating force f on
a (suspended) plate immersed inside the scattering medium. When
placed at equal distance L1 from the lower and upper box edges, the
average radiation force on both sides of the plate cancels out, leaving

only the finite fluctuating part f .

where the length L depends on the geometry of the scattering medium. The two
dimensionless numbersQ2 andQν in Eq.(4.18) depend on the shape of the system –
but not on its volume – and on boundary conditions.

We provide a proof of Eq.(4.18) for a cubic volume V = L3, in which case

gL =
k2l
3π

L ≡ D2

c0
L , (4.20)
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and with the surface S being on the edge of the system. The reasoning can be
adapted for any geometry, e.g. in the experimentally relevant setup of the Fig.4.2
where the surface S is the yellow membrane inside the system. In this case, one must
take into account the contributions of the light current from above and underneath
the membrane seperatly. There are a few subtleties related to this geometry, which
are dealt with in 4.4. More precisely, placing the membrane inside the bulk separates
the total volume in two parts – the volumes above and underneath the membrane –
which have a priori different conductances. The fuctuating force is hence the sum of
two terms of the form Eq.(4.18), with different conductances.

To obtain the scaling of the terms in Eq.(4.17), it is convenient to switch to the
rescaled variable u = r/L, and to use the rescaled functions Eq.(2.55) and Eq.(2.34),

P̃D(u, u′) = DLPD(r, r′)

γ̃(u) = L3

vP γ′(r)

ID(r) = vP
DL h(u)

(4.21)

The functions P̃D(u, u′) and γ̃(u) are dimensionless, independent of the size L of
the system, and satisfy: 

−∆uP̃D(u, u′) = δ(u− u′)∫̃
V

duγ̃(u) = 1
(4.22)

Finally, the delta function in three dimensions is rescaled as

δ(r− r′) =
1
L3 δ(u− u′) . (4.23)

Let’s now go through the scalings of the different terms in Eq.(4.17).

• First, the contribution f 2
1 is always negligible compared to fν,0,2; more precisely,

f 2
1 ∼

1
L2 f 2

ν,0 . (4.24)

Indeed, from Eq.(2.49) and Eq.(4.17), we have

f 2
1 = D2

v4
τc0
D

∫∫
S×S

dr dr′ (∂r I(r))2δ(r− r′)

= D2

v4
τc0
D

L4

L7
v2P2

D2

∫∫
S̃×S̃

du du′ (∂uh(u))2δ(u− u′)

= 1
L3
P2

v2
τc0
D

∫∫
S̃×S̃

du du′ (∂uh(u))2δ(u− u′) ,

(4.25)

where we used the rescaled variables and functions Eq.(2.55) in the last two lines.
The rescaled integral on the right hand side is independent of the volume, and there-
fore f 2

1 scales like 1/L3. On the other hand, from Eq.(3.13) and Eq.(4.17),
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f 2
ν,0 = c0

v4

∫∫
S×S

dr dr′ I(r)2δ(r− r′)

= c0
v4

L4

L5
v2P2

D2

∫∫
S̃×S̃

du du′ h(u)2δ(u− u′)

= 1
L
P2

v2
c0
D2

∫∫
S̃×S̃

du du′ h(u)2δ(u− u′) ,

(4.26)

which shows that f 2
ν,0 scales like 1/L. Comparing Eq.(4.25) and Eq.(4.26), we

obtain the announced result f 2
1 ∼ 1

L2 fν,0, and hence f 2
1 is negligible compared to fν,0.

We rewrite Eq.(4.26) in terms of 1/gL to recover the form Eq.(4.18); using Eq.(4.20),
we find

f 2
ν,0 =

1
gL
P2

v2 Qν , (4.27)

with

Qν = 2
∫∫

S̃×S̃

du du′ h(u)2δ(u− u′) .

• The term f 2
2 is also proportional to 1/gL. From Eq.(2.53) and Eq.(4.17),

f 2
2 = D2

v4

∫∫
S×S

drdr′ ∂r∂r′〈δI(r)δI(r′)〉(2)

= c0
D2

v4

∫∫
S×S

drdr′ ∂r∂r′
∫
V

dr1 ID(r1)2∇1PD(r1, r) ·∇1PD(r1, r′) .
(4.28)

Using the change of variable u = r/L and Eqs.(2.55,2.34), the surface integral in
Eq.(4.28) becomes∫∫

S×S

drdr′ ∂r∂r′∇1PD(r1, r) ·∇1PD(r1, r′) =
1

D2L2 s(u1) , (4.29)

where u1 = r1/L, and

s(u1) =
∫∫

S̃×S̃

dudu′ ∂u∂u′∇1P̃D(u1, u) ·∇1P̃D(u1, u′)

is a dimensionless function of r1/L. Using Eq.(2.34), we obtain

f 2
2 = c0

D2

v4
v2P2

D2L2
1

D2L2 L3
∫̃
V

du1h2(u1)s(u1)

= P2

v2
3π

k2lL 2
∫̃
V

du1h2(u1)s(u1)

= 1
gL
P2

v2 Q2 ,

(4.30)

where
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Q2 = 2
∫
Ṽ

du1h2(u1)s(u1)

is a dimensionless number, which depends on the shape of the system and of the
light source, but which is independent of the size L of the system.

• Using the same change of variable and rescaled functions, and following the
same method as for f 2

2 , f 2
ν,0, it is straightforward to obtain that the terms f 2

3 , f 2
ν,1,

f 2
ν,2 and f 2

ν,3 all scale like 1/g2
L, and are therefore negligible compared to f 2

2 and f 2
ν,0.

This completes the proof of Eq.(4.18).

We now turn to a quantitative study of the fluctuation induced forces, for differ-
ent geometries and boundary conditions. To alleviate the notations, we note further
on f 2

ν,0 ≡ f 2
ν .

4.3 Point source

We consider first the simple geometry Fig.4.3, where a point source of power P is
placed inside the medium, between the plates. This setup is not as experimentally
relevant as the slab geometry Fig.4.4, discussed later in 4.4; however it is interesting
from a methodological point of view since the solutions of the diffusion equation
(2.31) are simpler. We consider the setup Fig.4.3 with an absorbing membrane. In
this geometry,

gL =
k2lL1

3π
(4.31)

Let’s calculate first the diffusion probability PD(r, r′). It is the Green’s function of
the harmonic Dirichlet problem, with boundary conditions at z = −L1/2− l0 and
z = L1/2 + l0 with l0 = 2l

3 ,


−D∆rPD(r, r′) = δ(r− r′)

PD(r, r′) = 0 for r = (x, y,−L1/2− l0) or r = (x, y, L1/2 + l0)
(4.32)

PD(r, r′) can be obtained in two different ways. One can use a generalized image
method [55] (see appendix A), which gives:

PD(r, r′) =
1

4πD

(
1

|r− r′| + ∑
m∈Z∗

(−1)m

|r− r′m|

)
(4.33)

with r′m the image of r′ w.r.t. the plane z = sign(m) l
2 (2m + 1). Explicitly: r′ =

(x′, y′, z′m) with z′m = ml + (−1)|m|z′.

The preferred method to derive PD(r, r′) is to start from the Green’s function
P(r, r′, t) of the time dependent diffusion equation:

(∂t − D∆)P(r, r′, t) = δ(t)δ(r− r′)

More precisely:

PD(r, r′) =
[∫ +∞

−∞
dtP(r, r′)e−γt

]
γ=0

(4.34)
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FIGURE 4.3: Two infinite, absorbing or reflecting membranes, located
at z = ±L1/2, are immersed in a scattering medium, contained in an
infinite size box (L → ∞). Monochromatic light is emitted by a point

source located between the plates, at z = 0.

This method has the advantage of being more straightforward since we may
use textbook solutions of the diffusion equation, instead of re-deriving the solution
from scratch. The details of the derivation for this Green function are given in the
appendix A. We obtain

PD(r, r′) = 4
L1+2l0 ∑

n>0

∞∫
0

dt e−ρ2/4Dte−π2Dn2t/(L1+2l0)
2

4πDt sin
(

nπ(z+L1/2+l0)
L1+2l0

)
sin
(

nπ(z′+L1/2+l0)
L1+2l0

)
= 2

(L1+2l0)πD ∑
n>0

K0

(
nπ|ρ|

L1+2l0

)
sin
(

nπ(z+L1/2+l0)
L1+2l0

)
sin
(

nπ(z′+L1/2+l0)
L1+2l0

)
(4.35)

with ρ = (x− x′, y− y′). Using the asymptotic behavior of K0,

K0(x) ∼x→+∞

√
π

2x
e−x ,

we can obtain an approximate expression for PD,

PD(r, r′) ∼ 1
πD

√
2

(L1+2y0)|ρ|

×∑n>0
e−nπ|ρ|/(L1+2y0)√

n sin
(

nπ(y+L1/2+y0)
L1+2y0

)
sin
(

nπ(y′+L1/2+y0)
L1+2y0

)
(4.36)

We obtain ID(r) using Green’s identity,

ID(r) = cP0
4πD

√
1

(L1+2y0)|ρ|

∑n>0
e−nπ|ρ|/(L1+2y0)√

n sin
(

nπ(y+L1/2+y0)
L1+2y0

)
sin
(

nπ(y1+L1/2+y0)
L1+2y0

) (4.37)
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with ρ = (x− x1, y− y1) and r1 = (x1, y1, z1) the location of the light source.

The average force on the plates p± (see Fig.4.8) is then

f± = ±Pv
1
L1

(
y1 +

L1
2

)
ẑ (4.38)

and, for a light source placed in the middle between the membranes at z1 = 0,

f± = ± P2v ẑ (4.39)

In the case of absorbing membranes, the fluctuation induced force f± is due to
the intensity fluctuations. When the source is at z = 0, the mean square amplitude
of the fluctuating force is equal on each plate, f 2

+ = f 2
− ≡ f 2, with

f 2 = BD2

c4

∫∫
S×S

drdr′∂y∂y
∫

V dR|∇ID(R)|2PD(R, r)PD(R, r′)

= P2

v2
3π

k2lL1
α

= 1
gL
P2

v2 Q2

(4.40)

where here,Q2 ∼ 3.2 is simply a dimensionless number determined numerically.
Therefore, in this simple, idealized setup, all the dependence on the geometry is con-
tained in gL. No other physical effect, appart from the quantum crossings, intervene
in the emergence of the light fluctuation induced forces Eq.(4.18).

4.4 Slab geometry

In this section, we study the fluctuation induced force both analytically and quantita-
tively in the experimentally relevant slab geometry Fig.4.4. As mentioned in 4.2, the
total radiative force is the sum of the disordered average component and of a fluc-
tuating part Eq.(4.18). We can cancel out the average component by taking L1 = L2,
which makes this setup particularly interesting. Besides the geometry, we can also
play with the boundary conditions to monitor the fluctuating forces. In the geometry
of Fig.4.2, the highest values of the dimensionless Qs are obtained using reflecting
cavity edges in the direction of the light beam and absorbing lateral edges. Interest-
ingly, f2 or fν can be independently enhanced by an appropriate choice of boundary
conditions on the plate: on an absorbing plate where ID(r) = 0, only f2 contributes
with a maximum for an optimal value of L1. Alternatively, inserting a reflective plate
with ∂z ID(r) = 0 selects fν and leads to fluctuation induced forces with a power law
dependence in L1. This limiting case has an interesting consequence since a mea-
surement of finite fluctuation induced forces on a reflective plate demonstrates the
existence of the noise term in the Langevin description of mesoscopic coherent ef-
fects.

4.4.1 General setup

In the setup Fig.4.4, a scattering medium is contained in a box L‖× L⊥× (L1 + L2). It
is illuminated with a monochromatic plane wave propagating in the ŷ direction and
emitted by a light source located outside of the medium, which means that γ = 0 in
the diffusion equation Eq.(2.31). A thin plate or membrane of surface S = L⊥ × L‖
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(yellow in Fig.4.2) is placed inside the box, which splits the box into two zones, de-
noted j = 1, 2, respectively above and under the plate (see Fig.4.4). The optimal
choice of boundary conditions is found to be Neumann boundary conditions on
the slabs at y = 0, L‖ and Dirichlet boundary conditions on the slabs at x = 0, L⊥
(see appendix B for details). Those boundary conditions apply to the specific inten-
sity. As discussed in chapter 2, these conditions translate, for ID(r) and PD(r, r′),
to Neumann boundary conditions y = 0, L‖ and Dirichlet boundary conditions at
x = −l0, L⊥ + l0 with l0 = 2l

3 ,


Dirichlet: PD(r, r′) = 0 for all r = (x, y, z) s.t. x = −l0, L⊥ + l0

Neumann: ∂yPD(r, r′) = 0 for all r = (x, y, z) s.t. y = 0, L
(4.41)

We note S⊥ = L⊥(L1 + L2) the illuminated surface, and we introduce the inten-
sity of the light source, assumed to be uniform,

I =
P

L⊥(L1 + L2)
=
P
S⊥

. (4.42)

We consider the cases of a reflective membrane and of an absorbing one. In each
case, the boundary conditions on the edges of the box in the direction ẑ are chosen
identical to that of the membrane. We write the fluctuation induced forces in the gen-
eral form Eq.(4.18), and we give the exact expression of gL. In the geometry under
study here, where the volumes delimited by the plates are rectangular boxes, gL is
defined by adapting the Thouless argument or equivalently by using the reasoning
in the chapter 12 in [13], namely, in each zone j = 1, 2,

g(j)
L ≡

k2lVj

3π(max(L2
j , L2
⊥, L2

‖))
, (4.43)

where Vj = LjL‖L⊥.
We only discuss here these two cases as they are the most relevant experimen-

tally. The order of magnitude of the fluctuation induced forces for other choices of
boundary conditions are summarized in the appendix B.

4.4.2 Expression of the fluctuation induced forces

In the slab geometry Fig.4.2, the fluctuating force on the membrane is the sum of the
contributions from above and underneath the membrane,

f = f↑ + f↓ (4.44)

with 
f↑ = 1

v2

∫
S

dr [∂zδI(2)(r) + ν
(2)
z (r)] ẑ

f↓ = − 1
v2

∫
S

dr [∂zδI(1)(r) + ν
(1)
z (r)] ẑ

(4.45)

where I(j), ν(j) are the intensity and noise in the zones j = 1, 2, see Fig.4.4. Since
the intensity and fluctuating current on opposite sides of the membrane are inde-
pendent, the mean square value of f is
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FIGURE 4.4: A scattering medium contained in a box of size L‖ ×
L⊥ × (L1 + L2) is illuminated by a monochromatic plane wave. A
plate (yellow) separates the medium in two zones, labeled by j = 1, 2,
of thicknesses Lj. The two zones have a priori different conductances.
In the particular case L1 = L2, the average radiative force on the plate
vanishes to zero, which is not true a priori in the general case - except

for perfectly reflecting plates (see text).
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〈 f 2〉 = 〈 f 2
↑ 〉+ 〈 f 2

↓ 〉 (4.46)

4.4.3 Reflecting membrane

With a reflecting plate or membrane, ∂zPD(r, r′) = 0 for all r on the plates. From
Eq.(4.28), we deduce that f 2

2 = 0, i.e. that the intensity fluctuations will not con-
tribute to the fluctuation induced forces.
The Green’s function PD(r, r′) is

PD(r, r′) = ∑
n1>0,n2,n3≥0

ψn1n2n3 (r)ψn1n2n3 (r
′)

En1n2n3
, (4.47)

where, for j = 1, 2,

ψn1n2n3(r) = N sin
(

n1π(x + l0)
L⊥ + 2l0

)
cos

(
n2πy

L‖

)
cos

(
n3πz

Lj

)
(4.48)

are the eigenfunctions of the diffusion equation with the boundary conditions
considered, normalized with N =

√
23

L‖Lj L⊥
, and with eigenvalues

En1n2n3 = Dπ2

(
n2

1

L2
⊥
+

n2
2

L2
‖
+

n2
3

L2
j

)
. (4.49)

We deduce ID(r) using Eq.(2.31) and the Green’s identity Eq.(2.32). Since there
is no light source inside the medium, the right hand side of the diffusion equation
Eq.(2.31) is reduced to vI0(r)/l. We solve Eq.(2.20) to obtain I0(r),

I0(r) = Ie−y/l . (4.50)

We then obtain for ID(r),

ID(r) =
3DI

l2

∫
V

e−y′/l PD(r, r′)dr′ . (4.51)

A standard calculation shows that average intensity ID(r) is independent of z –
this results from the fact that the dependence in z of the Green’s function Eq.(4.47) is
a cosine – which means that the average force on the plate is equal to zero.
As we mentioned at the beginning of the paragraph, with reflecting plates f 2

2 = 0
and the main contribution comes from the noise term f 2

ν alone. Re-injecting Eq.(4.47)
and Eq.(4.51) in Eq.(4.26), we obtain, after a standard calculation, the fluctuation
induced force on the plate,

〈 f 2〉 = b I2

v2
3πL‖
k2lL⊥

(
1
L1

+ 1
L2

)
S2
‖β
′
(

L‖
L⊥

)
= bP

2

v2
3πL‖
k2lL⊥

(
1
L1

+ 1
L2

)
β
(

L‖
L⊥

,
S‖
S⊥

)
,

(4.52)

where b ∼ 0.13 is a prefactor, which contains a numerical fit factor and the nor-
malization factor of the eigenfunctions in Eq.(4.48). The term β

(
L‖
L⊥

,
S‖
S⊥

)
is a dimen-

sionless function of the aspect ratios
L‖
L⊥

,
S‖
S⊥

, equal to
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β

( L‖
L⊥

,
S‖
S⊥

)
=

S2
‖

S2
⊥

∑
n2≥0,n1odd

1

n2
1

(
n2

2 + n2
1

L2
‖

L2
⊥

)2 . (4.53)

The expression in Eq.(4.52) for the fluctuation induced forces holds for any value
of the parameters L‖, L⊥, Lj. A plot of this fluctuation induced forces is given on
Fig.4.7.b and Fig.4.5.c. To write Eq.(4.52) in the form of the Eq.(4.18), we need to
define g(j)

L explicitly and check that g(j)
L � 1. According to Eq.(4.43), if L‖ ' L⊥ and

L‖, L⊥ � Lj then g(j)
L =

k2lLj L⊥
3πL‖

which leads to

〈 f 2〉 = P
2

v2

(
1

g(1)L
+

1

g(2)L

)
Qν

( L‖
L⊥

,
S‖
S⊥

)
, (4.54)

with Qν

(
L‖
L⊥

,
S‖
S⊥

)
= bβ

(
L‖
L⊥

,
S‖
S⊥

)
.

This expression is valid provided that g(j)
L � 1, i.e. k2lLj L⊥

3πL‖
� 1. For a scattering

medium characterized e.g. by l = 1 µm and kl = 10, the requirement becomes
Lj � 10−7m. Further discussion on the orders of magnitude is provided in the next
section.
On the other hand, for Lj � L‖, L⊥, then g(j)

L =
k2lL‖L⊥

3πLj
and the fluctuation induced

forces can be written in the form

〈 f 2〉 = P
2

v2

(
1

g(1)L
Qν

(L‖
L1

,
L‖
L⊥

)
+

1

g(2)L
Qν

(L‖
L2

,
L‖
L⊥

))
, (4.55)

with Qν

(
L‖
Lj

,
L‖
L⊥

,
S‖
S⊥

)
= b

L2
‖

L2
j
β
(

L‖
L⊥

,
S‖
S⊥

)
. In that case, the requirement g(j)

L � 1

translates, for l = 1 µm and kl = 10, to Lj � 107L‖L⊥m.

4.4.4 Absorbing membrane

With an absorbing membrane, ID(r) = 0 for all r on the plates 2. From Eq.(4.26),
we obtain f 2

ν = 0, i.e. contrary to the previous case of a reflecting plate, here the
intensity fluctuations are the main contribution to the fluctuation induced forces.
The Green’s function is

PD(r, r′) = ∑
n1,n3>0,n2≥0

ψn1n2n3(r)ψn1n2n3(r
′)

En1n2n3

(4.56)

with

ψn1n2n3(r) = N sin
(

n1π(x + l0)
L⊥ + 2l0

)
cos

(
n2πy

L‖

)
sin
(

n3πz
Lj

)
(4.57)

N =
√

23

L‖Lj L⊥
, and with En1n2n3 = Dπ2

(
n2

1
L2
⊥
+

n2
2

L2
‖
+

n2
3

L2
j

)
.

The normal force on the plate is equal to

2The Dirichlet boundary condition expressed in Eq.(4.41) is valid at an interface between a scatter-
ing and non scattering medium; since the plate is immersed in the medium, the Dirichlet boundary
condition is simply formulated as ID(r) = 0
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〈f〉 = I
v

26

π4 L⊥

 ∑
n1,n3 odd

L1
1

n2
1

(
n2

3 +
n2

1L2
1

L2
⊥

) − L2
1

n2
1

(
n2

3 +
n2

1L2
2

L2
⊥

)
 ẑ (4.58)

and is well approximated by

〈f〉 ' I
v

26

π4 L⊥

 1
L1

1(
1
L2

1
+ 1

L2
⊥

) − 1
L2

1(
1
L2

2
+ 1

L2
⊥

)
 ẑ . (4.59)

From Eq.(4.59), it is straightforward to obtain that the average force cancels out
when L1 = L2. Re-injecting the expressions of ID(r), PD(r, r′) in Eq.(4.28), we obtain
the fluctuation induced force on the membrane,

〈 f 2〉 = a I2

v2
3π
k2l

[
L1L5

⊥
L3
‖

δ
(

L1
L‖

, L⊥
L‖

)
+

L2L5
⊥

L3
‖

δ
(

L2
L‖

, L⊥
L‖

)]
, (4.60)

with a ∼ 0.3 a prefactor containing a fit factor and the normalization of the eigen-
functions Eq.(4.57), and δ

(
Lj
L‖

, L⊥
L‖

)
a dimensionless geometrical correction. The exact

expression of δ
(

Lj
L‖

, L⊥
L‖

)
is quite heavy but can be obtained by a standard calculation

using Eq.(4.28). To alleviate the discussion, we do not give its full expression here.
After performing the integrals in Eq.(4.28), we can write δ

(
Lj
L‖

, L⊥
L‖

)
as a product of

two sums, which can be well approximated by keeping the first terms,

δ
(

Lj
L‖

, L⊥
L‖

)
∼ 1(

L2
j

L2
‖
+

L2
⊥

L2
‖

)2

 1(
1+

L2
‖

L2
j
+

L2
‖

L2
⊥

)2 +
1

L2
‖

L2
j
+

L2
‖

L2
⊥

 . (4.61)

Note that the light fluctuation induced forces in this case tends to zero in both
limits L1 → 0 and L1 → ∞; a plot of these two limits is given on Fig.4.5.a and
Fig.4.5.b. A maximum is reached when L1 ' L⊥, see Fig.4.7.a. Note also that the
fluctuation induced forces increase as L‖ decreases. In the configuration where Lj =

L⊥ � L‖, Eq.(4.43) becomes g(j)
L =

k2lL‖L⊥
3πLj

and the fluctuation induced forces can be
written in the form

〈 f 2〉 = P
2

v2

(
1

g(1)L
Q2

(
L1

L‖
,

L⊥
L‖

,
S⊥
S‖

)
+

1

g(2)L
Q2

(
L2

L‖
,

L⊥
L‖

,
S⊥
S‖

))
(4.62)

with Q2

(
Lj
L‖

, L⊥
L‖

, S⊥
S‖

)
= a L4

⊥
L2
‖

S2
‖

S2
⊥

δ
(

Lj
L‖

, L⊥
L‖

)
.

4.4.5 Orders of magnitude

Numerous efforts have been recently made to develop high sensitivity cantilevers
able to measure forces of weak amplitude [56]. We propose to observe the present
fluctuation induced forces using an atomic force microscope, in a setup similar to
the one used [54], where Casimir-Lifshitz forces of a few piconewtons have been
measured between a gold plate and a sphere coated with gold in a liquid, Fig.4.6.
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FIGURE 4.5: Asymptotic behavior and fitted functions of 〈 f 2〉 with
Neumann boundary conditions in the direction of the illuminating
light beam and Dirichlet boundary conditions in the direction x̂, for
an absorbing plate (a), (b) and a reflecting plate (c). We assume L2 �
L1 for simplicity; we therefore neglect the fluctuation induced forces
from the zone 2 in Fig.4.4. We fix L‖ = L⊥ = 40 µm, as in Table 4.1. (a)

For L1 � L‖, L⊥, we have g(1)L = k2lL1L⊥
3πL‖

, and 〈 f 2〉 scales like L3
1. The

fit parameter m1 numerically matches the value obtained by taking

L1 � L‖, L⊥ in Eq.(4.60).(b) For L1 � L‖, L⊥, g(1)L =
k2lL‖L⊥

3πL1
and the

fluctuating force scales like 1/L3
1, with a fit factor m2 also matching

the theoretical value expected in the limit L1 � L‖, L⊥. (c) In the case
of reflecting plates, the force scales like 1/L1 at all length scales, with

m3 matching the value expected from Eq.(4.52).
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FIGURE 4.6: Setup proposal for the observation of light fluctuations
induced forces, inspired by [54] (see text).

Replacing the liquid by a weakly scattering medium kl ∼ 10 and using square
plates of size 40 µm×40 µm – the typical size of the sphere used in [54] – and illumi-
nating the medium with a light beam of intensity I ∼ 109 W· m−2, we expect light
fluctuation induced forces of amplitude up to a few hundreds of piconewtons, i.e.
strong enough to be detected and stronger than the Casimir-Lifshitz forces. In this
setup, the light fluctuation induced forces are also significantly enhanced compared
to the other forces in play, namely the Van der Waals forces and the QED Casimir
forces [1, 57, 2, 3]. Indeed, the Van der Waals forces between solids are relevant for
length scales smaller or equal to a nm, which is a few orders of magnitude smaller
than separation L1 and L2 between the membrane and the edges. The QED Casimir
pressure between reflecting plates is given by

PQED =
1.3 · 10−7

d4
µ

N/cm2 (4.63)

where dµ is the distance between the plates in µm. In the setup Fig.4.4, the
Casimir forces cancel out for L1 = L2. For L2 � L1, the Casimir force and the
membrane of surface 40 µm×40 µm is

fQED = −1.3 · 10−7

L4
1µ

Scm ẑ (4.64)

where L1µ = L1 · 106 is L1 in µm, and Scm = S · 104 is S in cm2.
The comparison between the QED forces and the mesoscopic Casimir forces (in

the case of reflecting plates) is summarized in the Table 4.1.
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FIGURE 4.7: Amplitude of
√
〈 f 2〉 on the plate in Fig.4.4 as a function

of L1 and L⊥ with fixed L‖ = 40 µm and l = 1 µm. (a) Absorbing plate
with ID(r) = 0, so that 〈 f 2〉 = f 2

2 . It vanishes in both limits L1 → 0
and L1 → +∞, which results from the form of ID(r)ID(r′)C2(r, r′).
(b) Reflecting plate where ∂z ID(r) = 0, hence f2 = 0 and 〈 f 2〉 = f 2

ν .
From Eq.(4.55), we see that

√
f 2
ν scales like 1/

√
L1. The red lines

correspond to L⊥ = 40 µm as in Table 4.1.
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TABLE 4.1: Typical strength of light fluctuation induced forces in
the setup of Fig.4.4 obtained for visible light, k ∼ 107 m−1 and an
elastic mean free path l ' 1 µm i.e in a weakly disordered medium
(kl ∼ 10) and v = 2.108 m· s−1. We consider the optimal case of re-
flecting cavity edges along x̂ and absorbing edges along ŷ (see text)
and compare the cases of an absorbing and reflecting plate (Fig.4.7).

We derive gL = k2l
3π

L1L⊥L‖
max(L2

1,L2
⊥ ,L2
‖)

hence identifying the length L (see

SM section 5.2). The amplitude of 〈 f 2〉 is calculated for different
values of L1 ranging from 5 µm to 100 µm, with L⊥ = L‖ = 40 µm,
so that L1 > l and gL � 1 in all cases. We choose I = 109 W· m−2,
an intensity strong enough to obtain measurable forces without al-

tering the medium.

L1(µm)
√
〈 f 2〉(pN) Q2 +Qν gL fQED (pN)

Absorbing plate
Qν = 0

5
40
100

13
118
68

1.0 · 10−3

1.0 · 10−2

2.2 · 10−4

53
424
170

Reflecting plate
Q2 = 0

5
40
100

567
201
127

1.9
2.3 · 10−2

7.6 · 10−4

53
424
170

3 · 10−3

8 · 10−7

2 · 10−8

4.4.6 Interaction force

The intensity fluctuations being long ranged, it is tempting to see whether they in-
duce and interacting force between two membranes, as illustrated on Fig.4.8. In this
configuration, two membranes attached by a spring are suspended in a scattering
medium. The fluctuation of the tension on the spring gives the fluctuating interac-
tion force between the plates,

f12 = fp+ − fp− (4.65)

where fp± is the fluctuation induced force on the plates p±. The mean square
displacement is

〈 f 2
12〉 = 〈 f 2

p+〉+ 〈 f
2
p−〉 −

1
v4

∫
p+

dr
∫
p−

dr′ D2∂z∂z′〈δI(1)(r)δI(1)(r′)〉+ 〈ν(1)z (r)ν(1)z (r′)〉

(4.66)
where the integral on the right hand side is due to crossed correlation functions.

Since the noise is delta correlated, the term 〈ν(1)z (r)ν(1)z (r′)〉 does not contribute to the
integral. However, the intensity crossed correlation function 〈δI(1)(r)δI(1)(r′)〉 con-
tribute provided that we impose absorbing boundary conditions on the membranes,
Fig.4.8. This setup is therefore relevant for measuring the fluctuation induced forces
stemming from the intensity fluctuations alone. Quantitatively, the crossed correla-
tion term is comparable to the fluctuation induced forces studied in 4.4.3 and 4.4.4.
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FIGURE 4.8: Two membranes (yellow) attached by a spring are sus-
pended in a scattering medium, illuminated by a monochromatic
scalar radiation. The spring allows to measure the interaction force
between the plates, mediated by the crossed correlation function of
the intensity fluctuations, which englobes processes where a quan-
tum crossing leads to long ranged fluctuations between two points
on opposite membranes, as illustrated by the crossing in the figure.

To conclude this chapter, we showed that coherent light fluctuations induce mea-
surable forces, which are monitored by the easily tunable parameter gL. The propa-
gation of diffusive light through random media have broadly been studied in the lit-
erature, mostly through transmission properties and long range correlations, either
spatial or spectral. However, mechanical effects resulting from coherent mesoscopic
effects, presented here, have never been considered, and open a new approach to the
field. For example, in addition to transmission measurements [58], the present co-
herent mechanical forces could be used as a new type of mechanical sensors at sub-
micronic scale, relevant in soft condensed matter, biophysics [24], nanoelectrome-
chanical (NEMS) and quantum technologies [59, 60].
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Chapter 5

Macroscopic fluctuation theory for
coherent light

It’s not because things are difficult that we do not dare, it’s because we do not dare that they
are difficult.

Seneca
Idiots dare everything. In fact, that’s how you recognize them.

Michel Audiard

In the chapter 3, we showed that coherent light can be accurately described by
means of an effective Langevin equation 3.1. Keeping only the main contribution of
the noise term leads to an effective Langevin equation (3.21), which describes coher-
ent light fluctuations to first order in 1/g. The specific dependence of the effective
Langevin equation (3.21) in a constant diffusion coefficient D and a quadratic mo-
bility σ reminds the Kipnis-Marchioro-Presutti (KMP) model – a heat transfer model
for boundary driven one dimensional chains of mechanically uncoupled oscillators
strongly out of equilibrium [39, 27]. The latter process belongs to a class of non
equilibrium stochastic model, well described by the macroscopic fluctuation theory
[26, 27, 28]. In this chapter, we apply methods inspired by the macroscopic fluctua-
tion theory and the stochastic formalism to the study of coherent light – an approach
easily generalizable to other wave problems in mesoscopics. A first important point
to notice is that coherent light is described by a time independent Langevin equa-
tion, while the macroscopic fluctuation theory and fluctuating hydrodynamics have
been developed for and applied to time dependent processes, in which time is an es-
sential parameter to define the entropy or even the notion of "non equilibrium" – the
breaking of time reversal symmetry. Hence, the mesoscopic time independent prob-
lem of a coherent light flow displays a crucial difference with the systems considered
so far in the macroscopic fluctuation theory. We show that despite this difference,
the stochastic formalism allows to recover known results obtained from mesoscopics
such as the correlation function. Moreover, inspired by the macroscopic fluctuation
theory and stochastic formalism, we extend the notion of time reversal symmetry
and entropy production to mesoscopic systems, and obtain a Gallavotti-Cohen rela-
tion for a time independent process. The results presented here should be of interest
for both the mesoscopics and statistical mechanics communities. For the former, the
mapping to non equilibrium hydrodynamics provides a new insight to mesoscopic
physics as well as useful tools to study quantities so far difficult to access, such as
higher orders intensity correlation functions. For the latter, this work should moti-
vate further study of time independent processes inspired from mesoscopics, hence
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providing new models which might so far have been overlooked.
We begin by an introduction to the macroscopic fluctuation theory framework and
the stochastic formalism, then we apply these tools to the study of a coherent light
flow.
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5.1 The macroscopic fluctuation theory

Far from equilibrium phenomena are ubiquitous, and underlie most of the energy
flow processes which play crucial roles in various fields ranging from biology, soft
matter physics, geophysics and astrophysics. Such out of equilibrium systems are
out of the range of classical thermodynamics and near equilibrium fluctuation the-
ories [61, 62]. Given the importance of these phenomena, a new theory has been
developed in the past two decades to describe them – the macroscopic fluctuation
theory [26, 27, 28, 40], inspired by thermodynamics formalism and stochastic mod-
els.

5.1.1 General framework

Consider a system of volume V, in contact with boundary reservoirs at the bound-
ary ∂V, such as, for example, the setup on Fig.5.1. We denote by r, t respectively the
position and time variables. At the macroscopic scale, the system is characterized by
a density ρ(r, t) and a current j(r, t), whose behavior depends on two parameters,
a diffusion coefficient D(ρ) and a mobility σ(ρ), which a priori depend on the den-
sity ρ. Common situations in which D depends on ρ, for example, are those where
interaction between particles are included [63]. To alleviate the notations, we will
sometimes omit to write the dependence of D and σ on the density or on the vari-
ables. Unless explicitly stated otherwise, these coefficients will always be assumed
to depend on ρ – and consequently on r and t. For convenience, we use rescaled
variables x = r/L and τ = t/L2 (see section 3.1.3). The macroscopic dynamics is
determined by a Langevin equation together with a continuity equation,

jα(x, τ) = −Dαβ∂βρ(x, τ) + σαβEβ(r) +
√

σαβηβ(x, τ)

∂τρ(x, τ) +∇ · j(x, τ) = 0.
(5.1)

where E is an external field (supposed to be time independent for simplicity) and
η is a Gaussian white noise,

〈η(x, τ)〉 = 0

〈ηα(x, τ)ηβ(x′, τ′)〉 = δαβδ(x− x′)δ(τ − τ′)
(5.2)

The parameters D(ρ) and σ(ρ) are related by the Einstein relation,

σ(ρ)D(ρ)−1 = f ′′0 (ρ) . (5.3)

where f0 is the free energy of the system at equilibrium. The relation (5.3) is
remarkable, since it connects the two parameters describing the non equilibrium dy-
namics, D and σ, to an equilibrium quantity, f0. This relation implies the Gallavotti-
Cohen relation – a fluctuation dissipation relation for non equilibrium systems – as
discussed in the section 5.1.5. The boundary conditions are then given by

f ′0(ρ(x, τ)) = µ(x, τ) for all x ∈ ∂V (5.4)

where µ is the chemical potential.
In classical thermodynamics, the second derivative of the free energy defines the

compressibility χ of the system; we can therefore re-write the Einstein relation (5.3)
as
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FIGURE 5.1: Standard example of a boundary driven diffusive sys-
tem. The system is connected to two thermal baths at x = 0, L, at
which the density is determined by the boundary conditions, ρ(x, y =

0, z) = ρL, ρ(x, y = L, z) = ρR. The bulk dynamics obeys Eq.(5.1).

σ(ρ)D(ρ)−1 = χ(ρ) . (5.5)

The system is at equilibrium when j(x, τ) = 0, and in a steady state when ∇ ·
j(x, τ) = 0. We note ρ the steady state solution, supposed to be unique [40].

Finally, we introduce the time reversal operator, Θ. By definition, Θ acts on den-
sity and current in the following way,

Θ(ρ(r, t)) = ρ(r,−t)

Θ(j(r, t)) = −j(r,−t)
(5.6)

We develop the notion of time reversal and its consequences in the following
sections. In 5.2, we adapt this notion to the case of coherent light.

5.1.2 Fundamental formula and quasi potential

As in thermodynamics [64], a crucial step in the macroscopic fluctuation theory de-
scription is the definition of the appropriate thermodynamical potential to character-
ize the system. The macroscopic fluctuation theory framework introduces the notion
of quasi potential – the analog of the free energy for an out of equilibrium system
[65] – as an appropriate thermodynamical functional describing the system. The
quasi potential is obtained from a path integral formulation of the Langevin equa-
tion Eq.(5.1), which is derived using the Martin-Siggia-Rose procedure [66]. This
procedure consists in expressing the noise as a functional of ρ and j, and to translate
the noise probability distribution in a probability functional for the profile {ρ, j}.
There are alternative ways to derive Eq.(5.7), see e.g. [40, 67] but we choose here
the Langevin method since it makes a more direct connection with chapter 3. From
Eqs.(5.1,5.2), we deduce that the probability to observe a profile {ρ, j} over a time
window [T1, T2],

P[T1,T2][{ρ, j}] ∼ exp

−1
2

Ld
T2∫

T1

dτ
∫
Ṽ

dx (jα + Dαβ∇β ρ)σ−1
αγ (jγ + Dγδ∇δ ρ)

, (5.7)

where the space integral is performed over the rescaled volume Ṽ, the d−dimensional
hypercube, and where the continuity equation ∂τρ(x, τ) +∇ · j(x, τ) = 0 is implic-
itly assumed. The equation (5.7) is called the fundamental formula in the literature,
and constitutes the first building block of the macroscopic fluctuation theory.
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The time reversal operator Θ, when applied to P[T1,T2][{ρ, j}], defines the proba-
bility associated to the adjoint process {Θρ, Θj}. By definition,

P[T1,T2][{ρ, j}] = ΘP[−T2,−T1][{Θρ, Θj}] . (5.8)

We use this notion to obtain the Gallavotti-Cohen relation in 5.1.5.

The integral

Ld
T2∫

T1

dτ
∫
Ṽ

dx (jα + Dαβ∇β ρ)σ−1
αγ (jγ + Dγδ∇δ ρ)

corresponds to the energy, or cost, necessary to produce the extra current j +
D∇ρ. Minimizing Eq.(5.7) over all the currents which satisfy the continuity equation
defines the cost functional for the profile ρ,

I[T1,T2][ρ] = inf
j:∂τρ(x,τ)=−∇·j(x,τ)

T2∫
T1

dτ
∫
Ṽ

ddr (jα + Dαβ∇β ρ)σ−1
αγ (jγ + Dγδ∇δ ρ) (5.9)

In the context of stochastic processes, exp[−I[T1,T2][ρ]] gives the probability of
observing the trajectory ρ during the time window [T1, T2]. Here, the term "trajectory
ρ" means the profile ρ(r, t) taken over the time window [T1, T2]. We can now define
the quasi potential. For a system characterized by a density profile ρ at the time τ,
the quasi potential is given by

V [ρ] = inf
ρ̃ : ρ̃(t = −∞) = ρ,

ρ̃(t = 0) = ρ

I[−∞,τ][ρ̃] (5.10)

Namely, the quasi potential is related to the energy required to obtain the density
profile ρ at the time τ, starting from the stationary profile ρ at time −∞. It is the
analog of free energy for non equilibrium systems [65]. The quantity

P [ρ] = exp[−V [ρ]] (5.11)

gives the probability to observe a variation ρ around the steady state solution ρ.

The quasi potential is in general very difficult to calculate analytically or even
numerically. However, we can obtain useful information from perturbation devel-
opments of V around its minimum, which corresponds to the most likely solutions,
and can be obtained by the saddle point principle. For example, we can deduce
the density correlation functions using a perturbation development of the Legendre
transform of V . This is the object of the section 5.1.4. A convenient way to perform
the correlation functions derivation is to use the Hamilton-Jacobi equation, which is
discussed in the next section.

5.1.3 Hamiltonian formulation

It is useful to translate the fundamental formula (5.7) in the Hamiltonian language.
From the Hamiltonian of the system, we can derive the Hamilton-Jacobi equation
(see chapter 7 in [68]), which constitutes a self-contained equation of the quasi po-
tential [26], from which useful physical quantities can be derived, see 5.1.4.
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Notice that the exponent in the right hand side of Eq.(5.7) has the structure of an
action, associated to the Langrangian

L[{ρ, j}] = 1
2

∫
Ṽ

dx (jα + Dαβ∂βρ)σ−1
αγ (jγ + Dγδ∂δρ) (5.12)

For simplicity, we further on consider the case of a diagonal D and σ, but the
result Eq.(5.17) is valid in the general case [26]. The Lagrangian becomes

L[{ρ, j}] =
∫
Ṽ

dx
(j + D∇ρ)2

2σ
(5.13)

Since our end goal is the study of the density fluctuations (we could adapt the
reasoning for current fluctuations [40]), we use the fundamental formula (5.7) to
obtain the probability distribution of the density ρ. Namely, we integrate over all
the possible currents satisfying the continuity equation,

P [ρ] =
∫
Dj δ (∂τρ(x, τ) +∇ · j(x, τ)) exp

− ∫
Ṽ

dx
(j + D∇ρ)2

2σ

 (5.14)

To take into account the delta function, we introduce the Lagrange multiplier π,

P [ρ] =
∫
Dj exp

− ∫
Ṽ

dx
(

π (∂τρ(x, τ) +∇ · j(x, τ)) +
(j + D∇ρ)2

2σ

) .

Using an integration by parts for the term π∇ · j(x, τ) with boundary conditions
π = 0 at the boundaries, we obtain

P [ρ] =
∫
Dj exp

− ∫
Ṽ

dx π∂τρ(x, τ)− j(x, τ) ·∇π +
(j + D∇ρ)2

2σ

 . (5.15)

We now regroup the currents j to form a Gaussian square, and integrate it out to
obtain finally

P [ρ] =
∫
Dj exp

− ∫
Ṽ

dx π∂τρ(x, τ)−H[ρ, π]

 , (5.16)

whereH[ρ, π] is the Hamiltonian,

H[ρ, π] =
∫
Ṽ

dx (∇π · σ(ρ)∇p− π∇ · J) (5.17)

and where J = −D(ρ)∇ρ.

The Hamilton-Jacobi equation is a general result of analytical mechanics, see
chapter 7 in [68], which is simply expressed by

H
[

ρ,
δV
δρ

]
= 0 . (5.18)
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In the present case, using Eq.(5.17), the Hamilton-Jacobi equation is∫
Ṽ

dx
(
∇δV

δρ
· σ(ρ)∇p− δV

δρ
∇ · J

)
= 0 (5.19)

We can now obtain the density correlation function, from a perturbation devel-
opment of the Hamilton-Jacobi equation.

5.1.4 Density correlations

The macroscopic fluctuation theory provides a general method for calculating the
correlation function of the density at all orders. The idea is to define a generating
function for the correlation functions [40, 28, 69]. By definition, the correlation func-
tions are given by

Cn(r1, ..., rn) = 〈ρ(r1)...ρ(rn)〉P (5.20)

where the average 〈...〉P is taken over the stationary ensemble, described by the
probability distribution Eq.(5.11). We introduce a generating functional G[h], for the
correlation functions, defined by

exp[LdG[h]] = 〈exp[Ld
∫
V

dr h(r)ρ(r)]〉P

=
∫
D(ρ)e

−LdV(ρ)+Ld ∫
V

dr h(r)ρ(r)

∼ exp

[
sup

ρ

(
−LdV(ρ) + Ld

∫
V

dr h(r)ρ(r)

)] (5.21)

which gives for G,

G[h] = sup
ρ

V [ρ] + ∫
V

dr h(r)ρ(r)

 . (5.22)

The functional G is called the pressure functional; it is the Legendre transform of
V , and a generating functional for the Cn functions,

Cn(r1, ..., rn) =
δnG[h]

δh(r1)...δh(rn)

∣∣∣∣
h=0

(5.23)

In what follows, we focus on the two point correlation function; to alleviate the
notations, and to avoid any confusion with the C2 term in the light correlation func-
tion Eq.(2.54), we note it C(r, r′),

C(r, r′) =
δ2G[h]

δh(r)δh(r′)

∣∣∣∣
h=0

. (5.24)

The Hamilton-Jacobi Eq.(5.19) can then be re-written as∫
V

dr∇h(r) · σ
(

δG
δh

)
∇h(r) +∇h(r) · J

(
δG
δh

)
= 0 . (5.25)



62 Chapter 5. Macroscopic fluctuation theory for coherent light

From now on we assume, for simplicity, that there are no external fields, E = 0.
Expanding Eq.(5.25) around the minimum at h = 0, we obtain an integral equation
for C,

∫
V

dr∇h(r) ·

σ(ρ)∇h(r)−∇
∫
V

D(ρ)C(r, r′)h(r′)

 = 0 . (5.26)

We expect the correlation function to have a short range component, describing
fluctuations around the equilibrium state. We therefore write C in the form

C(r, r′) = Ceq(r)δ(r− r′) + B(r, r′) . (5.27)

Replacing in Eq.(5.26), we find

Ceq(r) =
σ(ρ)

D(ρ)
(5.28)

and

D(ρ)(∆r + ∆r′)B(r, r′) = α(r)δ(r− r′) (5.29)

with α(r) = ∇ · (σ′(ρ)D−1J(ρ)).

The Eqs.(5.27,5.28,5.29) are valid for any D and σ. For example, D constant and
σ = aρ + bρ2 correspond to well known models,

b = 0, a = 1 random walk

b = 1, a = 0 Kipnis–Marchioro-Presutti (KMP)

b = −1, a = 1 symmetric simple exclusion process (SSEP)

b = 1, a = 1 symmetric simple inclusion process (SSIP)

In the case where D is constant and σ ∝ ρ2 (KMP model), we find

B(r, r′) = −σ′′(ρ)

2D
|∇ρ|2G(r, r′) (5.30)

with G(r, r′) the Green’s function of the Dirichlet Laplacian,

∆rG(r, r′) = δ(r− r′) (5.31)

Note the similarity with 〈δI(r)δI(r′)〉(2) in Eq.(5.53); these two functions are iden-
tical up to an integral over

∫
V

PD(r, r′).

5.1.5 Gallavotti-Cohen relation

The macroscopic fluctuation theory provides a universal fluctuation relation for bound-
ary driven far from equilibrium systems, known as the Gallavotti-Cohen relation
[42]. This relation states that the ratio between the probability to observe a certain
density trajectory, and the probability to observe its time reversed, is related to the
energy transferred from the reservoirs.

Consider a trajectory j(t) such that its time average is equal to a given vector
field J,
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+∞∫
−∞

dt j(t) = J . (5.32)

Let Φ(J) be the associated time averaged cost function, for T → +∞,

Φ(J) = lim
T→+∞

1
2T

inf
(ρ,j)∈AT

I[−T,T](ρ, j) (5.33)

where AT =

{
(ρ, j) : 1

T

T∫
0

dt j(t) = J; ∂tρ = −∇ · j, ρ(0) = ρ0

}
.

Remark: it can be shown that the singularities of the functional Φ correspond to dynam-
ical phase transitions [27, 40]. These aspects are beyond the scope of this work, but we refer
to [70, 71] for elaborations on the relation between the Φ, dynamical phase transitions, and
the breaking of time translation invariance.

It is straightforward to show that, that if (ρ̃, j̃) is optimal to observe Φ(J), then
the time reversed trajectories (Θρ̃, Θj̃) are optimal for Φ(−J) [40]. A standard calcu-
lation then leads to

Φ(J)−Φ(−J) = −
∫
V

dr
D∇ρ · J

σ
. (5.34)

Using the Einstein relation (5.3), we have that

∇ f ′0(ρ) = f ′′0 (ρ)∇ρ =
D
σ
∇ρ ,

which we substitute in Eq.(5.34) and, performing an integration by parts, we
obtain the Gallavotti-Cohen relation,

Φ(J)−Φ(−J) =
∫

∂V

ds µ J · n̂ (5.35)

where µ = f ′0(ρ) is the chemical potential at the boundaries. The Gallavotti-
Cohen relation states that the ratio between the probabilities to observe the average
current J and its time reversed counterpart −J only depends on the boundary con-
ditions, and not on the specific fluctuations inside the bulk. The difference on the
left hand side on Eq.(5.35) is also called the entropy production rate; the Eq.(5.35)
is then interpreted as a fluctuation theorem, relating the entropy production to the
dissipation on the right hand side [26, 40, 72]. We discuss this last point in more
detail in 5.2.4.

Remark: in the presence of an external field E, the Gallavotti-Cohen relation becomes

Φ(J)−Φ(−J) = −
∫
V

dr J(r) · E(r) +
∫

∂V

ds µ J · n̂ . (5.36)

5.2 Macroscopic fluctuation theory approach for coherent light

In this section, we apply the methods from the macroscopic fluctuation theory to the
mesoscopic problem of coherent light. Consider a volume V = Ld of elastic scatter-
ers, illuminated by a light beam (not necessarily monochromatic), Fig.5.2. There are
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two important points to address in order to properly adapt the macroscopic fluctu-
ation theory to a time independent mesoscopic system. First, we need to specify the
boundary conditions. There is no chemical potential for coherent light, as opposed
to the stochastic processes dealt with in 5.1. Second, we have to define an equivalent
notion for time reversal. This will allow us to obtain the mesoscopic counterpart
of quantities such as the adjoint process and the entropy production. To do so, we
define a time reversed process as a "disorder reversed process" – we assume that,
given a process {I, j} associated to one realization of disorder, there exists another
realization of disorder which gives the adjoint process I,−j.

5.2.1 Fundamental formula and boundary conditions

On the macroscopic scale Ld, the radiation is defined by an intensity I(r) and a cur-
rent j(r), satisfying

∇ · j(r) = 0

jα(r) = −D∇α I(r) + σαβEβ(r) +
√

σαβ

L ηβ(r).
(5.37)

where η is a Gaussian white noise,

〈ηα(r)ηβ(r′)〉 = δαβδ(r− r′) . (5.38)

Recall that, as discussed in chapter 3, the noise term
√

σαβ

L ηβ(r) represents here
the perturbations induced by the coherent effects. It does not represent the distri-
bution of the scatterers, but the occurrence of quantum crossings. To highlight the
difference with thermal noise, we will refer to the noise in Eq.(5.37) as mesoscopic
noise, resulting from mesoscopic disorder – the occurrence of the quantum crossings.
We include in Eq.(5.37) the possibility of having an external field E(r). For light, an
experimental way to apply such an external field would be, for example, to choose
a material with a non homogeneous refractive index. Note also that the mobility σ
is here written is tensor form. In the case where the illuminating light beam is not
monochromatic, the mobility could in fact have a more complicated form as in the
Langevin equation (3.1), derived for a monochromatic radiation.

For simplicity, we further on focus on the case where E(r) = 0 and σ is a scalar,
but the generalization of our results to more complicated situations can be obtained
by following the same methods.

Boundary conditions

As discussed in chapter 2, the mesoscopics boundary conditions for the diffusive
intensity I(r) are not trivial, and are derived from the boundary conditions on the
current j(r). Since diffusion processes happen inside the disordered medium, the
boundary conditions are that any incoming diffusive light current j must vanish at
every point of the interface:

jin(r) · n̂ = 0 for any r ∈ the interface (5.39)

with n̂ the normal vector of the interface and the average being done over vectors
ŝ directed inwards. More precisely, if we take into account internal reflexions on the
inside wall of the interface, the boundary condition becomes:
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jD,in(r) · n̂ = R jD,out(r) · n̂ (5.40)

with R the reflexion coefficient.
This leads to the following boundary conditions for I(r):

1
2
(1− R)ID(r) =

l
3
(1 + R)ŝ · ∇ID(r) + (1− R)γ(r) . (5.41)

In the slab geometry Fig.5.2, we can replace the mixed boundary condition (5.41)
by a Dirichlet condition at a distance 2l

3 from the border, outside of the medium. For
absorbing edges (R = 0), the boundary conditions thus become

I(r) = 0 for r =
(
− 2l

3 , y, z
)

or r =
(

L + 2l
3 , y, z

)
jin(r) · n̂ = 0 for r ∈ ∂V

(5.42)

Fundamental formula

Using the Martin-Siggia-Rose procedure, we obtain the fundamental formula – the
probability to observe a profile {I, j}

P [{I, j}] ∼ exp

−1
2

Ld
∫
Ṽ

dx (jα + Dαβ∇β I)σ−1
αγ (jγ + Dγδ∇δ I)

 . (5.43)

5.2.2 Adjoint process

We now introduce the notion of adjoint process for coherent light. Remind that
the adjoint process is usually defined as the time reverse of a given process. In the
present context of coherent light, time reversal means reversed realizations of dis-
order. We note θ the "reverse disorder realization" operator. By analogy with time
reversal, we write explicitly the dependence of I and j on the disorder ξ, and we
note ξ∗ the reversed disorder realization,

θ(I(r, ξ∗)) = I(r, ξ)

θj(r, ξ∗) = −j(r, ξ)
(5.44)

By definition, the disorder reversed probability P∗ associated to the adjoint pro-
cess {θ I, θj} satisfies

P [{I, j}]
P∗[{θ I, θj}] = 1 . (5.45)

If we are interested only in the probability of observing a profile I, it is given by

P [I] =
∫
Dj δ(∇ · j) exp

[
− Ld

2

∫̃
V

dx (j(x)+D∇I(x))2

σ

]
(5.46)

where the integral in the exponent is taken over the renormalized volume Ṽ =
[0, 1]d, a d dimensional hypercube. Using the same technique as in 5.1.3, we intro-
duce the Lagrange multiplier p and we re-write P [I] as
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P [I] =
∫
DjDp exp

[
−Ld

∫
dr p∇ · j + (j(r) + D∇I(r))2

2σ

]
(5.47)

Integrating p∇ · j by parts, and then forming a Gaussian square in j and inte-
grating over j, we obtain

P [I] =
∫
Dp exp

[
−Ld

∫
Ṽ

dr
(

D∇I ·∇p− σ(∇p)2/2
)]

. (5.48)

This equation defines the action or cost functional,

S [I, p] = Ld
∫

Ṽ
dr
(

D∇I ·∇p− σ(∇p)2/2
)

. (5.49)

We can obtain the disorder reversed behavior of p, using the fact that Eq.(5.48) is
dominated by the saddle point solution. Derivating according to p leads to

∇ · (D∇I − σ∇p) = 0 . (5.50)

We recognize a continuity equation, which allows us to identify the expression
in the parenthesis with j. The current j then writes, in terms of p,

j(p) = −D∇I + σ∇p (5.51)

Hence, θp must be such that θj(r, ξ∗) = −j(r, ξ), which leads to

∇(θp) =
2D∇I

σ
−∇p . (5.52)

Note that the Legendre multiplier p has a physical signification. It is the con-
jugate of the mesoscopic noise, and represents the realizations of the mesoscopic
disorder.

5.2.3 Correlation function

Let’s now derive the correlation function of the fluctuating intensity. Following the
macroscopic fluctuation theory, we use the stochastic formalism to derive a gen-
erating function for the correlators. We provide first a general derivation, for any
coefficients D and σ, and then we focus on the case of a constant D and quadratic σ
to recover the expected results for coherent light in first order in 1/g (see chapter 3).
Remind that, for coherent light, the long ranged intensity correlation function is, to
the first order in 1/g,

〈δI(r)δI(r′)〉 =
∫
V

dR
σ′′(ID)

2
|∇ID(R)|2PD(r, R)PD(R, r′) . (5.53)

General expression

From Eq.(5.48), the probability to observe the intensity profile I is

P [I] ∼
∫
Dp exp

(
−LdS [I]

)
(5.54)

where S [I] is given by Eq.(5.49).
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We introduce the so called pressure functional [40], a generating functional for
the correlation functions,

G[h] = log〈eLd ∫ dx h(x)I(x)〉P [I], (5.55)

where 〈...〉P [I] denotes the average with respect to P [I]. The saddle point princi-
ple implies that

G[h] ' max
I,p

∫
dx h(x)I(x)− S [I, p] , (5.56)

from which we deduce

〈I(x1)...I(xn)〉 =
δG(x)

δh(x1)...h(xn)

∣∣∣∣
h=0

(5.57)

The pressure functional G is therefore a generating function for the correlation
functions of the intensity.

Finding either S or G explicitly is extremelly difficult in general (although ana-
lytical results have been obtained for some processes such as the simple symmetric
exclusion process [73]). However, a full analytical expression of these functionals is
not necessary to derive the correlation functions, since, as expressed in Eq.(5.57), the
correlation functions depend only on the variations of G around h = 0. To obtain
these fluctuations, we perform a perturbation development of I and p,

I(x) = ID + εI1 + ε2 I2 + ...

p = εp1 + ...
(5.58)

and we consider h to be of order ε, since it is small and assumed analytic. Then,
G can be expressed perturbatively

G[h] '
∫

dx ID h(x) +
1
2

∫
dxdy C(x, y)h(x)h(y) + ... (5.59)

We can solve Eqs.(5.58) by orders of ε using the saddle point solutions of Eq.(5.56),

∇ · (D∇I − σ∇p) = 0

D∆p + 1
2 σ′(∇p)2 = −h .

(5.60)

To zeroth order, Eqs.(5.60) give p = 0, and ID satisfies∇ · (D∇I) = 0. This is the
optimal density profile. To first order in ε, we find

∇ · (D′0∇ID I1 + D0∇I1 − σ0∇p1) = 0 (5.61)
D0∆p1 = −h,

where we have defined X0 ≡ X(ID). Using Green’s functions, we obtain

I1(x) =
∫

dy∇yω(x, y) · (σ0(y)∇y p1(y)) (5.62)

p1(x) = −
∫

dy κ(x, y)
h(y)

D0(y)
,

where the functions g, ω are the Green’s functions solutions to
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FIGURE 5.2: A scattering medium, contained in a slab of length L and
surface S⊥, is illuminated by a light beam. The fluctuating current
exerts a force f = 〈f〉 + f on a thin plate or membrane (yellow) of

surface S is suspended inside the medium.

∇2
xκ(x, y) = δ(x− y)

∇x · (D′0(x)∇x ID(x)ω(x, y) + D0(x)∇xω(x, y)) = δ(x− y).
(5.63)

Using Eq.(5.56), Eqs.(5.63) and comparing with Eq.(5.59), we obtain the two points
correlation function,

C(x, y) =
∫

dz
2σ0(z)
D0(y)

∇zω(x, z)∇zκ(z, y)− σ0(z)
D0(x)D0(y)

∇zκ(z, y)∇zκ(z, x). (5.64)

Note that higher moments of the light intensity fluctuations, Cn, can readily be
obtained by repeating the same method, using terms of higher order in ε in Eq.(5.58).
This stochastic approach provides a simple and systematic method, easy to imple-
ment numerically, to obtain the correlation functions Cn, otherwise cumbersome to
derive in mesoscopics.

The case of a constant D and quadratic σ

In the specific case of coherent light, D is constant and σ(ID) = c0 I2
D is a quadratic

function of ID, which leads to

C(x, y) =
1

D2

∫
dz σ0(z)∇zκ(z, x) ·∇zκ(z, y) . (5.65)

This expression corresponds exactly to the correlation function obtained from the
Langevin equation and the diagrammatic calculation, Eq.(5.53).

5.2.4 Entropy production rate and Gallavotti-Cohen relation

We have established, in 5.2.2, that we could adapt the notion of adjoint process
for the time independent problem of coherent light, by substituting the notion of
time reversal by that of "disorder reversal". It is therefore natural to try to obtain a
Gallavotti-Cohen relation, as well as the notion of entropy production rate.
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Consider a slab geometry, where the scattering medium is contained in a slab
of width L , section S⊥ and total volume V = S⊥L. The medium is illuminated by
an external light beam, Fig.5.2. Consider a profile {I, j}, and its disorder reversed
counterpart {I,−j}. From Eq.(5.43), we obtain the ratio of the probabilities to ob-
serve {I, j} versus {I,−j},

log
P [{I, j}]
P [{I,−j}] = −

∫
V

dr ∑
α

jα
D
σ

∂α I. (5.66)

Let us note

Σ[I, j] = log
P [{I, j}]
P [{I,−j}] .

The quantity Σ[I, j] represents the dissipation, or the energy loss, associated to
the transfer between {I, j} and {I,−j}. This interpretation can be intuited if we
consider the average of Σ. By definition, it is given by

〈Σ〉P =
∫
D IDjP [I, j]Σ[I, j] ,

which is dominated by the stationary solutions ID, jD. Using Fick’s law 2.30, we
obtain

〈Σ〉P '
∫
V

dr
|jD(r)|2
σ(ID)

(5.67)

If we consider the case of a single particle, driven by an external field E, then
dynamics are described by j(r) = σ(r)E(r) and the dissipation is defined by j · E =
|j|2/σ, as in Eq.(5.67).

The average dissipation Eq.(5.67) corresponds to the entropy production rate
for mesoscopics [72], formulated in the macroscopic fluctuation theory language.
Within the Boltzmann-Einstein theory of equilibrium thermodynamics [74], the prob-
ability to observe a fluctuation from equilibrium in a macroscopic system of volume
V is proportional to exp [V∆S/kB], where S is the entropy and kB the Boltzmann
constant. The macroscopic fluctuation theory extends this notion to far from equi-
librium systems [26]. In fact, the entropy production rate Eq.(5.67) provides a quan-
titative measure of "how far from equilibrium" the system is. For a system in equi-
librium, there is no dissipation which implies that all processes are reversible. Here,
the entropy production rate Eq.(5.67) depends on |jD|2, which implies that 〈Σ〉P = 0
iff jD = 0. In other words, the diffusive currents drive the system out of equilibrium.

Interestingly, it is straightforward to show that the entropy production rate Eq.(5.67)
it is proportional to the dimensionless conductance (see details in the appendix C),

〈Σ〉P = gL ω (5.68)

where ω is a geometric factor, and where we remind that gL = k2lL
3π , with L a

characteristic size of the system. Since gL is easilly tunable, its relationship with the
entropy should prove useful in experiments.

The expression Eq.(5.66) also holds for energy transfer. More precisely, consider
the setup Fig.5.2, where the light current applies a radiative force on the membrane
of surface S and normal vector ŷ, suspended inside the medium. Using Eq.(4.2), we
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find that the work δQ necessary to move the membrane vertically over the distance
δy is,

δQ =
1
v2

∫
δV

dr j(r) · ŷ

where δV = Sδy is the volume covered during this process. We restrict ourselves
to this small volume, and replace V with δV in Eq.(5.43). Then, the probability P[Q]
to observe the energy transfer Q is

P[Q] =
∫
D IDj δ

Q− 1
v2

∫
δV

dr j(r)ŷ

P [I, j] . (5.69)

The probability Eq.(5.69) is dominated by a saddle point solution, which implies
that one trajectory {I, j} dominates. Exploiting the saddle point solution, we can also
show [75] that the optimal profile corresponding the the reversed energy transfer,
P[−Q], is {I,−j}. Therefore,

log
P[δQ]

P[−δQ]
= log

P [I, j]
P [I,−j]

= −
∫

δV

dr ∑
α

jα
D
σ

∂α I. (5.70)

The reasoning also holds for a macroscopic energy transfer to the system, Q =∫
V

dr j(r) · n̂, where n̂ is some unit vector. In the macroscopic fluctuation theory, Q is

understood as the energy transfered by the reservoirs; here, it is interpreted as the
work of the radiative forces. We obtain the relation

log
P[Q]

P[−Q]
= −

∫
δV

dr ∑
α

jα
D
σ

∂α I. (5.71)

The equation (5.71) equivalent to Eq.(5.34). Obtaining a Gallavotti-Cohen rela-
tion similar to Eq.(5.35) requires to have the mobility σ being a function of I, and not
ID, as we so far assumed. Indeed, recall that, in 5.1.5, we used the Einstein relation
D/σ(ρ) = f ′′0 (ρ) to pass from Eq.(5.34) to the final result Eq.(5.35). For coherent
light, we checked that the Einstein relation holds on average, D/σ(ID) = 1/χ(ID),
but determining whether it is valid in general is still an open question. Note however
that the results derived in this chapter using the assumption that σ ∝ I2

D, namely the
derivation of the light intensity correlation function Eq.(5.65) and the entropy pro-
duction Eq.(5.67), remain valid even if we had assumed that σ ∝ I2. Indeed, Eq.(5.67)
is an average quantity. To obtain Eq.(5.65), we used a development to first order in
the fluctuations; taking σ ∝ I2 instead would have added corrections of order two,
which would have been neglected and hence changing σ ∝ I2

D to σ ∝ I2 yields the
same result Eq.(5.65).
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To summarize this chapter, we found that the time independent, mesoscopic
problem of coherent light can be efficiently described in the macroscopic fluctua-
tion theory. A few adjustments are required, such as translating time reversal in a
mesoscopic language by introducing the notion of disorder reversal. We find that
the stochastic approach allows to recover known results from mesoscopics – the in-
tensity correlation function. However, the question of whether the mobility σ is, in
general, a function of the fluctuating intensity I or of its average value ID, is still to be
answered. Solving this question would give interesting insight in the study of meso-
scopics. Indeed, the stochastic formalism provides a systematic method for derivat-
ing intensity correlation functions at any order, which is otherwise very difficult in
a diagrammatic approach. Moreover, the correspondance between mesoscopics and
far from equilibrium hydrodynamics sheds a new light on mesoscopics, introducing
the notion of entropy production, and its relation with the easily tunable conduc-
tance g, which could be useful for optimizing energy loss in experiments. It would
also be interesting to apply these methods to other systems in mesoscopics, such as
the cases mentioned in 5.2 of an applied field in an optics, or to other situations in
nanoelectronics and superconductivity [44]. From a statistical mechanics viewpoint,
our findings should motivate the study of a new class of diffusive time independent
systems, accessible experimentally.
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Chapter 6

Conclusion

In conclusion, the work presented here shows that fluctuations of light, due to co-
herent effects, induce mechanical forces, which could be measured and used experi-
mentally. Indeed, mechanical forces due to coherent light has never been envisaged,
and offer a new perspective in the field. As mentioned in the introduction, these
forces could provide a new type of tool to probe matter at submicronic scale, which
could be useful in soft condensed matter, biophysics [24], nanoelectromechanical
(NEMS) and quantum technologies [59, 60]. Moreover, since these forces depend
on the strength of disorder by means of the conductance g, they can be used as a
new effective probe to study the Anderson localization transition [77, 78] for light
[79, 80], using a non transport quantity – as opposed to electronic transport, which
is the preferred candidate for the study of the Anderson localization.

Moreover, we have shown that these coherent effects are efficiently described
with an effective Langevin equation, and we have established a mapping between
mesoscopics and far from equilibrium systems. A clear asset of this type of approach
is that it allows to characterize complex mesoscopic phenomena by means of two pa-
rameters only, the diffusion coefficient D and the mobility σ. This approach should
therefore be a candidate for efficient numerical simulations and machine learning
algorithms. Furthermore, this mapping is easily generalizable to a large class of
quantum or classical mesoscopic effects

For future perspectives, the connection between coherent effects in mesoscopics
and non equilibrium stochastic processes, well described in the macroscopic fluctu-
ation theory, should be of interest for both the mesoscopics and statistical mechanics
communities. For the former, the mapping to non equilibrium hydrodynamics pro-
vides a new insight to mesoscopic physics as well as useful tools to study quantities
otherwise difficult to access, such as higher orders intensity correlation functions.
For the latter, this work should motivate further study of time independent pro-
cesses inspired from mesoscopics.
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Appendix A

Derivation of the Green’s function
Eq.(4.33) – Image method

We provide here some details on the derivation of Eq.(4.33). Consider the geometry
on Fig.(A.1). We seek the Green’s function s.t. :

−D∆r′PD(r, r′) = δ(r− r′) for all r, r′ between the plates P1, P2

and
PD(r, r′) = 0 for all r′ ∈ P1 ∪ P2

The planes P1, P2 are located at y = − l
2 and y = l

2 respectively. Let us check that the
following function is a solution :

PD(r, r′) =
1

4πD

(
1

|r− r′| + ∑
m∈Z∗

(−1)m

|r− r′m|

)

with r′m the image of r′ w.r.t. the plane y = sign(m) l
2 (2m + 1) (see fig.).

FIGURE A.1: Schematic representation of the image method. In order
to derive the Green’s function whose boundary conditions are fixed
at the planes P1 and P2, we make the system periodic by artificially
adding boundary conditions on the fictitious blue planes, obtained

by translating P1 and P2.

Explicitly: r′ = (x′, y′m, z′) with y′m = ml + (−1)|m|y′.
It is straightforward that: −D∆r′PD(r, r′) = δ(r− r′) for all r, r′ between the plates.
Let’s check the boundary conditions.
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For r′ ∈ P2 (green on the figure), then r′ = r′1 and r′2m = r′2m+1 for m 6= 0. Thus:

PD(r, r′) =
1

4πD

 1
|r− r′| −

1
|r− r′1|︸ ︷︷ ︸

=0

+ ∑
m≥1

1
|r− r′2m|

− 1
|r− r′2m+1|︸ ︷︷ ︸

=0

+ ∑
m≤−1

− 1
|r− r′2m−1|

+
1

|r− r′2m+2|︸ ︷︷ ︸
=0

 (A.1)

The same reasoning applies for r′ ∈ P1.
Finally, let us check the convergence of the series ∑m∈Z

(−1)m

|r−r′m|
. It is an alternat-

ing series, of terms whose absolute value decrease to zero: 1
|r−r′m

→|m|→0 0. Abel’s
theorem thus ensures the convergence of the series.
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Appendix B

Details on light fluctuation induced
forces

In this section, we provide analytical expressions and orders of magnitude of the
light fluctuation induced forces for different boundary conditions, for the cases dis-
cussed in the main text of a point source and a plane wave. We also discuss the case
where the illuminating light beam is Gaussian.

B.1 Orders of magnitude

We consider fluctuations of the interaction force between the membranes,
√

f 2
12, dis-

cussed in 4.4.6; see Fig.(4.8). Experimentally, these fluctuations could be measured
by means of the tension of a spring connecting the two membranes. We remind that

f 2
12 = f 2

p+
+ f 2

p− −
1
c4

∫
p1

dr
∫

p2

dr′D2∂y∂y′〈δI1(r)δI1(r′)〉+ 〈νy,1(r)νy,1(r′)〉︸ ︷︷ ︸
f 2
c

where we note: f 2
c = − 1

c4

∫
p1

dr
∫

p2
dr′D2∂y∂y′〈δI1(r)δI1(r′)〉+ 〈νy,1(r)νy,1(r′)〉 the

cross term.
We also impose L1 = 22, in order to cancel out the average forces, 〈fp±〉 = 0. The

results are summarized in the Table B.1, followed by comments for each case.

Let’s introduce a few parameters: those related to the light source (I0 for a plane
wave and P0 for a point source, k, the coherence length Lφ), and related to the
medium: l. We then look for the optimal choice of lengths L, L⊥, L1, which maxi-

mize
√

f 2
12. Note that the expressions given here for the force fluctuations may differ

from those in the summary table: this is because we present the optimized expres-
sions, and in some cases this imposes relations between the lengths, e.g. L = L⊥.
We will see that the optimal values for the length can be related to the parameters l,
Lφ, which makes it easier to predict the order if magnitude of the Casimir forces for
other values of l, Lφ.

We consider for now:

l = 10−6m, k =
2π

λ
∼ 6

6 · 10−7 m−1 ∼ 107m−1 ,
k2l
3π
∼ 107m−1 , I0 = 106W.m−2 , P0 = 1W
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Point source, gL = k2l
3π LL1L⊥

(
1
L2 +

1
L2

1
+ 1

L2
⊥

)
B.C. (D or N) Expr. f 2

12 O.M. of
√

f 2
12

(i)
D. dir. x
D. dir. z
N. on membranes

2β′′
P2

0
v2

3π
k2l

L2

4L3
1

, β′′ ≈ 0.11

Main contribution: K0

[2 · 10−8N, 2 · 10−7N]

(ii)
D. dir. x
D. dir. z
D. on membranes

3α′′
P2

0
v2

3π
k2l

1
33L

α′′ = 0.05 217

9π10 ≈ 0.008
Main contribution: C2

10−11N

Plane wave, gL = k2lV
3πmax(L2,L2

1,L2
⊥)

B.C. (D or N) Expr. f 2
12 O.M. of

√
f 2
12

(iii)
N. dir. x
D. dir. z
N. on membranes

4β
I2
0

v2
3π
k2l

L5
⊥

L1L , β ≈ 0.13
Main contribution: K0

[4 · 10−9N, 10−6N]

(iv)
N. dir. x
D. dir. z
D. on membranes

5 α
4

I2
0

v2
3π
k2l LL2

1

 1(
2

L2
1
+ 1

L2

)2 +
L2

1
2L2


α = 3·213·1,15

π10 ≈ 0.302
Main contribution: C2

[2 · 10−10N, 2 · 10−8N]

(v)
D. dir. x
D. dir. z
N. on membranes

4β′
I2
0

v2
l

k2
L2
⊥

L1
, β′ ≈ 1.78

(K0)

[4 · 10−13N, 4 · 10−12N]

(vi)
D. dir. x
D. dir. z
D. on membranes

5α′
I2
0

v2
l

k2
L⊥

L3
1L3

1(
1

L2 +
1

L2
1
+ 1

L2
⊥

)3 , α′ ≈ 5

Main contribution: C2

10−14N

TABLE B.1: Analytical expressions of f 2
12, after simplifications, for

different choices of boundary conditions (BC), either Dirichlet (D)
or Neumann (N). Two types of light sources are considered, a point
source placed between the membranes, and an external plane wave
parallel to the membranes. For the orders of magnitude, we choose
the most relevant values for L, L⊥, L1, as detailed in the text under

"detailed comments".

General comments:
- The dimensionless numbers α, α′, α′′, β, β′, β′′ contain both the numerical fit fac-
tors which stem from several approximations (keeping only the lowest terms in the
sums and integrating over cos and sin functions), and normalization factors of the
eigenfucntions of the diffusion equations.
- The lengths L, L⊥, L1 cannot be smaller than a few l nor larger than Lφ. Whenever
we need to minimize one of those parameters, we will write it in the form al, with
a ∈ [5, 10]; when we need to maximize it, we write it in the form bLφ, b < 1.
- With reflective membranes, the K0 gives the main contribution. However since K0
is short ranged, it does not contribute to f 2

c .
- With absorbing membranes, the C2 gives the main contribution. Since C2 is long
ranged, it contributes to f 2

c .

Detailed comments:
(i) In the case of a point source, we assume that the source is placed between the
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membranes only (no light above the higher membrane or underneath the lower
membrane). With L1 = L2 = L3, the fluctuations on each membrane are equal:
f 2

p+
= f 2

p− . This explains the factor 2 in the expression of f 2
12. In the full expression

for f 2
12,

f 2
12 =

25

32π4
P2

0
c2

3π

k2le

1
L3

1LL⊥
f
(

L1

L
,

L⊥
L

)
,

with 25

32π4 ∼ 0.037 and

f
(

L1

L
,

L⊥
L

)
= ∑

n1,n3>0,n2,n′2≥0
(−1)n2+n′2

sin2
(

n1π(x1+x0)
L′

)
cos

(
n2πy1

L1

)
cos

(
n′2πy1

L1

)
sin2

(
n3π(z1+z0)

L′⊥

)
(n2

1/L2 + n2
2/L2

1 + n2
3/L2

⊥)(n
2
1/L2 + n′22 /L2

1 + n2
3/L2

⊥)

L and L⊥ play symmetric roles. We thus choose L = L⊥. With this choice,
f 2
12 →L1→0 ∞

f 2
12 →L1→∞ 0

,


f 2
12 →L→0 0

f 2
12 →L→∞ ∞

the force fluctuations are higher for L1 small and L high. We write L1 = al,

L = bLφ: f 2
12 = β′′

2
P2

0
v2

3π
k2l

b2L2
φ

a3l3 . With a ∼ 5 and b ranging from 10−2 to 10−3, we obtain
the numerical values summarized in the table.

(ii) With absorbing membranes, the C2 gives the main contribution and it con-
tributes to f 2

c . With L1 = L2 = L3, the fluctuations on each membrane are equal:
f 2

p+
= f 2

p− . This explains the factor 5 in the expression of f 2
12. In the general expres-

sion for f 2
12,

f 2
12 = a

P2
0

c2
1

k2le

217

3 · π9︸ ︷︷ ︸
≈1.5

1
LL⊥L5

1

1(
1
L2 +

1
L2

1
+ 1

L2
⊥

)3 , (B.1)

with a ∼ 0.05 a numerical fit factor, we have
f 2
12 →L1→0 0

f 2
12 →L1→∞ 0

,


f 2
12 →L→0 0

f 2
12 →L→∞ 0

,


f 2
12 →L⊥→0 0

f 2
12 →L⊥→∞ 0

There is an optimal, intermediate value for the parameters which maximize the
force fluctuations. However it is very difficult to derive it analytically. We assume
L ≈ L⊥ ≈ L1. Replacing L1 = L⊥ = L in (B.1), we obtain the expression in the table
above. The force fluctuations are then higher for L small; we write L = al, and take
a = 5 in Table B.1.

(iii) Here, K0 gives the main contribution. With L1 = L2 = L3, the fluctuations
on each membrane are equal: f 2

p+
= f 2

p− . This explains the factor 4 in the expression
of f 2

12. In the general expression for f 2
12,

f 2
12 =

I0

c

√
27

π6
3π

k2le

√
L5
⊥
L

(
1
L1

+
1
L2

)
,
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we have: 
f 2
12 →L1→0 ∞

f 2
12 →L1→∞ 0

,


f 2
12 →L→0 ∞

f 2
12 →L→∞ 0

,


f 2
12 →L⊥→0 0

f 2
12 →L⊥→∞ ∞

The force fluctuations are then higher for L1 and L small, and for L⊥ large. We
write L = L1 = al, L⊥ = bLφ. The values in the table correspond to a = 5,
10−3 ≤ b ≤ 10−2. We do not choose higher values for b, since it seems difficult
experimentally to produce a strong light beam (I0 ∼ 106W · m−2) of a width larger
than a few centimeters.

(iv) Here, C2 gives the main contribution. With L1 = L2 = L3, the fluctuations
on each membrane are equal: f 2

p+
= f 2

p− . This gives the factor 5 in the expression of
f 2
12. In the general expression for f 2

12,

f 2
12 =

I2
0

c2
3 · 213 · 1.15

π10
3π

k2le
∑

j=1,2
f̃ap

(
Lj

L
,

L⊥
L

)
with

f̃ap

(
Lj

L
,

L⊥
L

)
=

LjL5
⊥/L3(

L2
j

L2 +
L2
⊥

L2

)2

 1(
1 + L2

L2
j
+ L2

L2
⊥

)2 +
1

L2

L2
j
+ L2

L2
⊥


we have: 

f 2
12 →L1→0 0

f 2
12 →L1→∞ 0

,


f 2
12 →L→0 ∞

f 2
12 →L→∞ 0

,


f 2
12 →L⊥→0 0

f 2
12 →L⊥→∞ ∞

The force fluctuations are then higher for L small and for L⊥ large, as in the case
(iii); this was expected since the boundary conditions in the x and z directions are
the same. There exists an optimal value for L1 which maximizes the force fluctua-
tions. Analytically, this value is a root of a polynomial of degree 8, for which we
cannot derive a general analytical expression... Numerically, we found that the op-
timal value for L1 is such that L1 ≈ L⊥. We therefore choose L1 = L⊥ and obtain
the expression in Table B.1. We write L = al, L1 = bLφ. The values in the table
correspond to a = 5, 10−3 ≤ b ≤ 10−2. We do not choose higher values for b for the
same reason as explained in (iii).
We conjecture a physical interpretation of the existence of an optimal value for L1.
It can be interpreted as the competition between the probability 1

g ∝ 1
L1

to have a
diffuson crossing, and the value of ID, PD in the bulk. Indeed, the y dependance of
ID, PD is mainly due to the n2 = 1 mode of the solution of the diffusion equation:
sin(y/L1)

1/L2
1
≈ L2

1. Increasing the value of L1 results in increasing the value of |∇ID(r)|2

and PD(r, r′) in the bulk. The factor 1
g is related to the Hikami box in the term C2,

and is also present in f 2
2 .

Mathematically, it can be simply verified. In f 2
2 , the derivatives ∂y in f 2

2 give a term
1
L2

1
. This term is related to the average radiative force, so we do not take it into
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account (it can be renormalized). Schematically, the integrals in f 2
2 scale in the fol-

lowing way:∫∫
p×p

dr′dr′∂y∂y′
∫
V

dR|∇ID(R)|2PD(r, R)PD(r′, R) ≡

S2
‖

1
L2

1︸ ︷︷ ︸
→ f

LL1L⊥︸ ︷︷ ︸∫
V

 1/L4(
1
L2 +

1
L2

1
+ 1

L2
⊥

)2 +
1/L2L2

1(
1
L2

1
+ 1

L2
⊥

)2 +
1/L2L2

⊥(
1
L2

1
+ 1

L2
⊥

)2


︸ ︷︷ ︸

|∇ID |2

1
L2L2

1L2
⊥

1(
1
L2

1
+ 1

L2
⊥

)2

︸ ︷︷ ︸
PD PD

The term

LL1L⊥

 1/L4(
1
L2 +

1
L2

1
+ 1

L2
⊥

)2 +
1/L2L2

1(
1
L2

1
+ 1

L2
⊥

)2 +
1/L2L2

⊥(
1
L2

1
+ 1

L2
⊥

)2

 1
L2L2

1L2
⊥

1(
1
L2

1
+ 1

L2
⊥

)2

can be written in the form:

L
L1L⊥

 1/L4(
1
L2 +

1
L2

1
+ 1

L2
⊥

)2 +
1/L2L2

1(
1
L2

1
+ 1

L2
⊥

)2 +
1/L2L2

⊥(
1
L2

1
+ 1

L2
⊥

)2

 1
L2

1(
1
L2

1
+ 1

L2
⊥

)2

where the term L
L1L⊥

is proportionnal to 1
g and the term in parenthesis tends to zero

when L1 → 0, and tends to a finite value when L1 → ∞.

(v) K0 gives the main contribution; with L1 = L2 = L3, the fluctuations on each
membrane are equal: f 2

p+
= f 2

p− , which the factor 4 in the expression of f 2
12. In the

general expression for f 2
12,

f 2
12 ∼

I2
0

c2
le

k2
29

3π3
L⊥

L3L1

1(
1
L2 +

1
L2
⊥

)2 (B.2)

we have 
f 2
12 →L1→0 ∞

f 2
12 →L1→∞ 0

,


f 2
12 →L→0 0

f 2
12 →L→∞ 0

,


f 2
12 →L⊥→0 0

f 2
12 →L⊥→∞ ∞

The force fluctuations are then higher for L1 small and L⊥ large. There is an op-
timal value of L which maximizes the force fluctuations. And standard calculations
gives this optimal value: L = L⊥√

3
. Replacing in Eq.(B.2), we obtain the expression

in the table above. Then, we write L1 = al, L⊥ = bLφ. The values in the table cor-
respond to a = 5, 10−3 ≤ b ≤ 10−2. We do not choose higher values for b, since it
seems difficult experimentally to produce a strong light beam (I0 ∼ 106W ·m−2) of a
width larger than a few centimeters.

(vi) C2 gives the main contribution; with L1 = L2 = L3, the fluctuations on each
membrane are equal: f 2

p+
= f 2

p− , which explains the factor 5 in the expression of f 2
12.

The general expression for f 2
12 is
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f 2
12 = a

I2
0

c2
le

k2
3 · 221

π9 ∑
j=1,2

L⊥
L3

j L3

1(
1
L2 +

1
L2

j
+ 1

L2
⊥

)3 , (B.3)

with a ∼ 0.05 and 3·221

π9 ∼ 100. Therefore,
f 2
12 →L1→0 0

f 2
12 →L1→∞ 0

,


f 2
12 →L→0 0

f 2
12 →L→∞ 0

,


f 2
12 →L⊥→0 0

f 2
12 →L⊥→∞ ∞

The force fluctuations are then higher for L⊥ large, as in (v). There is an optimal
value of L1, L which maximizes the force fluctuations. Analytically, it is difficult to
derive an expression for these optimal values, but since there are strong similarities
with the case (v), we make the assumption L ≈ L1 ≈ L⊥, which is consistent with
the numerics. Replacing in Eq.(B.3), we obtain the expression in the table above.
Then, we write L = bLφ. The values in the table correspond 10−3 ≤ b ≤ 10−2.

B.2 Gaussian beam

In this section, we consider the case where the random medium is illuminated with
a collimated beam (gaussian), of width w. The scattering medium is contained in a
rectangular box L⊥ × L⊥ × L; two membranes are placed inside the medium, sep-
arated by a distance L1, see Fig.(4.8). We note L2 the distance between the upper
membrane and the upper edge of the box. We impose Dirichlet boundary condi-
tions on the edges of the box parallel to the incident beam, and Neumann boundary
conditions on the edges perpendicular to the beam. We will study both the cases of
absorbing (Dirichlet) and reflecting (Neumann) boundary conditions on the mem-
branes.

In this geometry, the dimensionless conductance between the membranes is g =
k2lS⊥
3πL , with S⊥ = L1L⊥ the illuminated surface between the membranes.

B.2.1 Reflecting membranes

• Derivation of PD(r, r′) and ID(r)

We first derive the expressions of PD and ID. We will proceed in a similar way as
in the previous sections, using the Laplace transform method. We note x0 = y0 = 2l

3 ,
L′ = L + 2x0 and L′1 = L1 + 2y0.

PD(r, r′) is solution of the problem:

−D∆rPD(r, r′) = δ(r− r′)

∂xPD(r, r′) = 0 for r||r′ ∈ {(0, y, z), y, z ∈ R} ∪ {(L, y, z), y, z ∈ R}

∂yPD(r, r′) = 0 for r||r′ ∈ {(x, 0, z), x, z ∈ R} ∪ {(x, L1, z), x, z ∈ R}

PD(r, r′) = 0 for r||r′

∪{(x, y, L⊥ + z0), x, y ∈ R} ∪ {(x, y,−z0), x, y ∈ R}

(B.4)
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Using the Laplace transform method, we find:

PD(r, r′) = 23

LL⊥L1Dπ2 ∑
n1,n2≥0,n3>0

1
n2

1/L2+n2
2/L2

1+n2
3/L2

⊥

× cos
( n1πx

L′
)

cos
(

n1πx′
L′

)
cos

(
n2πy

L1

)
cos

(
n2πy′

L1

)
× sin

(
n3π(z+z0)

L′⊥

)
sin
(

n3π(z′+z0)
L′⊥

)
(B.5)

We deduce ID(r) using the Green’s formula:

ID(r) = 3DI0
l2

∫
V e−(y

′2+z′2)/w2
e−x′/l PD(r, r′)dr′

∼ 3·23 I0
LL1L⊥π2l L1L⊥ ∑

n1,n2≥0,n3>0
yn2 zn3

cos( n1πx
L ) cos

(
n2πy

L1

)
sin
(

n3π(z+z0)
L′⊥

)
n2

1
L2 +

n2
2

L2
1
+

n2
3

L2
⊥

= 3·23 I0
Lπ2l ∑

n1,n2≥0,n3>0
yn2 zn3

cos( n1πx
L ) cos

(
n2πy

L1

)
sin
(

n3π(z+z0)
L′⊥

)
n2

1
L2 +

n2
2

L2
1
+

n2
3

L2
⊥

(B.6)

with 
yn2 =

∫ 1
0 dỹe−L2

1 ỹ2/w2
cos(n2πỹ)

zn3 =
∫ 1

0 dz̃e−L2
⊥ z̃2/w2

sin(n3πz̃)

Note that, when w→ ∞, we recover the coefficients of the plane wave case:

yn2 →


1 , n2 = 0

0 , n2 6= 0
, zn3 →


2

πn3
, n3 odd

0 , n3 even

• Average force

Since ∂y ID = 0 on the membranes, 〈f〉 = 0.

•Force fluctuations

Since ∂y ID and ∂yPD are equal to zero on the membranes, f 2
1 = f 2

2 = 0.
Let’s calculate the K0 contribution.

f 2
ν,0 = 2πlv2

3k2
1

c4L1

∫
p ID(r)2dr

= 2πlv2

3k2
1

c4L1

32 I2
0 26

l2L2π4

∫
dxdy

 ∑
n1,n2≥0,n3>0

yn2 zn3

cos( n1πx
L ) cos

(
n2πy

L1

)
sin
(

n3π(z+z0)
L′⊥

)
n2

1
L2 +

n2
2

L2
1
+

n2
3

L2
⊥

2

=
I2
0

v2
1

k2l
25·3
π3

L⊥
L1L ∑

n1,n2,n′2≥0,n3>0
yn2 yn′2

z2
n3

(−1)n2+n′2(
n2

1
L2 +

n2
2

L2
1
+

n2
3

L2
⊥

)(
n2

1
L2 +

n′22
L2

1
+

n2
3

L2
⊥

)

(B.7)

This expression is well approximated by keeping only the lowest term; we find:
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f 2
ν,0 ∼

I2
0

v2
3πL

k2lL1L⊥
25

π4

S2
‖L

4
⊥

L4 y2
0z2

1

= TK0,pw
π2

4 y2
0z2

1

(B.8)

with TK0,pw =
I2
0

v2
3πL

k2lL1L⊥
27

π6

S2
‖L

4
⊥

L4 the K0 contribution for a plane wave, and

y0 =
∫ 1

0
e−L2

1ỹ/w2
dỹ =

√
π

2
w
L1

Er f
(

L1

w

)
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w
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∫ L⊥/w

0
e−u2

sin
(

π
wu
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)
du

and Er f (z) = 2√
π

∫ z
0 dte−t2

is the error function.

Since, when w → ∞, we have y0 → 1 and z1 → 2
π , we recover the plane wave

limit.
Replacing y0, z1 by their values, we can rewrite f 2

ν,0 in the form:

f 2
ν,0 = TK0,pw

π2
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(B.9)

• Conclusion

The K0 term alone contributes to the fluctuations, and the final expression can be
approximated by:

√
f 2 =

I0

c
1
√

g1

S‖L2
⊥

L2
w2

L1L⊥

√
25

π4

∫ L1/w

0
due−u2

∣∣∣∣∫ L⊥/w

0
due−u2

sin
(

π
wu
L⊥

)∣∣∣∣ (B.10)

B.2.2 Absorbing membranes

• Derivation of PD(r, r′) and ID(r)

We first derive the expressions of PD and ID. We will proceed in a similar way as
in the previous sections, using the Laplace transform method. We note y0 = z0 = 2l

3 ,
L′⊥ = L⊥ + 2x0 and L′1 = L1 + 2y0.

PD(r, r′) is solution of the problem:

−D∆rPD(r, r′) = δ(r− r′)

∂xPD(r, r′) = 0 for r||r′ ∈ {(0, y, z), y, z ∈ R} ∪ {(L, y, z), y, z ∈ R}

PD(r, r′) = 0 for r||r′ ∈ {(x,−y0, z), x, z ∈ R} ∪ {(x, L1 + y0, z), x, z ∈ R}

∪{(x, y, L⊥ + z0), x, y ∈ R} ∪ {(x, y,−z0), x, y ∈ R}

(B.11)



B.2. Gaussian beam 85

Using the Laplace transform method, we find:

PD(r, r′) = 23

LL⊥L1Dπ2 ∑
n1≥0,n2,n3>0

1
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)
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)
(B.12)

We deduce ID(r) using the Green’s formula:

ID(r) = 3DI0
l2

∫
V e−(y

′2+z′2)/w2
e−x′/l PD(r, r′)dr′

∼ 3·23 I0
LL1L⊥π2l L1L⊥ ∑
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(B.13)

with 
yn2 =

∫ 1
0 dỹe−L2

1 ỹ2/w2
sin(n2πỹ)

zn3 =
∫ 1

0 dz̃e−L2
⊥ z̃2/w2

sin(n3πz̃)

Note that, when w→ ∞, we recover the coefficients of the plane wave case:

yn2 →


2

πn2
, n2 odd

0 , n2 even
, zn3 →


2

πn3
, n3 odd

0 , n3 even

• Force fluctuations

As in the plane wave case, the term that contributes the most is the C2 term. We
can make the same simplifications as in the plane wave case: replace the volume
integral by the maximum of the integrand times a numerical factor∼ 0.05, and keep
the lowest terms in the sums times a numerical factor ∼ 1.15.

f 2
2 = 2πlv2

3k2
D2

c4

∫
p×p drdr′∂y∂y′

∫
V dR|∇ID(R)|2PD(R, r)PD(R, r′)

= a I2
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215
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1
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⊥

)2 +
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L2
1
+ L2

L2
⊥


= y2

1z2
1

π4

24 TC2,↑,pw

(B.14)

with a ∼ 0.0521 a numerical fit factor, and
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TC2,↑,pw = a
I2
0

v2
1

k2l
219
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⊥L1/L3(

L2
1

L2 +
L2
⊥

L2
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1 + L2
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1
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)2 +
1

L2

L2
1
+ L2
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⊥


the C2 contribution to f 2 in the case of a plane wave, with the same boundary

conditions. Since y1, z1 → 2
π when w→ ∞, we recover the plane wave limit.

• Conclusion

The force fluctuations are mostly due to the C2 term, and can be approximated
by the following expression:

f 2 = y1z1
I0

c

√√√√√√a
215

π5
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⊥L1/L3(
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1
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1
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 (B.15)

with a ∼ 0.0521 and 
y1 =

∫ 1
0 dỹe−L2

1 ỹ2/w2
sin(πỹ)

z1 =
∫ 1

0 dz̃e−L2
⊥ z̃2/w2

sin(πz̃)



87

Appendix C

Derivation of Eq.(5.68)

In this section, we provide a proof of Eq.(5.68),

〈Σ〉P = gLω . (C.1)

Let’s rewrite σ in terms of gL. First note that

σ =
2πlv2

3k2 I2
D =

2L
gL

D2 I2
D . (C.2)

Using Fick’s law, 〈j〉 = −D∇ID, we find

〈Σ〉P = D2
∫
V

dr |∇ID |2
σ

= gL
2L
∫
V

dr |∇ID |2
I2
D

.
(C.3)

We switch to dimensionless variables u = r/L, and we obtain

〈Σ〉P = gL
2

∫̃
V

du |∇ID(u)|2
ID(u)2 , (C.4)

where Ṽ is the rescaled volume. Hence,

〈Σ〉P = gL ω , (C.5)

where ω = 1
2

∫̃
V

du |∇ID(u)|2
ID(u)2 is a dimensionless number, which depends on the

boundary conditions and on the shape of the system, but not on the volume nor on
the disorder.
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Appendix D

Résumé en français

La propagation des ondes dans des milieux aléatoires, électroniques ou électromag-
nétiques, donne lieu à à de nombreux phénomènes riches en physique mésoscopique
et ont été largement étudiés au cours des dernières décennies, à la fois théorique-
ment et expérimentalement [13]. Ces systèmes où les ondes se dispersent dans des
milieux complètement aléatoires et désordonnés, sont fascinants en ce que des effets
significatifs émergent de ce chaos apparent. Un exemple frappant sont les fluctu-
ations de l’intensité lumineuse – d’amplitude comparable à l’intensité moyennée
sur le désordre – qui sont se propagent sur de grandes distances. Le mot clé pour
comprendre ces effets surprenants est la cohérence. Dans cette thèse, nous étudions
les effets cohérents associés à la propagation des ondes dans les milieux, en par-
ticulier les ondes électromagnétiques. Dans les milieux faiblement désordonnés,
l’intensité lumineuse fluctue spatialement, donnant des figures de diffractions car-
actéristiques, composées de taches sombres et lumineuses - les figures de speckle
[14, 13, 15, 16, 17, 18, 19]. Ces fluctuations lumineuses se propagent sur de grandes
distances, en raison d’effets cohérents mésoscopiques sous jacents, qui se produisent
à une échelle microscopique. Nous montrons que ces fluctuations de lumière co-
hérente induisent des forces mécaniques, de nature radiative. Les forces mécaniques
induites par la lumière ont été largement étudiées [20, 21, 22] - en particulier depuis
l’introduction de lasers - et exploitées pour produire des capteurs en physique de la
matière molle et biophysique [23, 24]. Ici, nous montrons l’existence de forces mé-
caniques d’un nouveau genre, induites uniquement par des effets cohérents méso-
scopiques. Nous trouvons que l’amplitude de ces forces fluctuantes est déterminée
par un paramètre unique et facilement réglable, la conductance adimensionnée g,
qui dépend à la fois de la géométrie et des propriétés de diffusion du milieu. Nos ré-
sultats devraient donc avoir des applications intéressantes, telles que l’introduction
de nouvelles sondes dans la matière condensée molle ou la biophysique. Du point de
vue méthodologique, inspiré de [25], nous utilisons une approche hydrodynamique
à la Langevin pour décrire les fluctuations lumineuses, où le bruit rend compte
des effets cohérents mésoscopiques. Nous montrons comment systématiquement
inclure les corrections cohérentes dans le terme de bruit afin de reproduire les fluc-
tuations d’intensité lumineuse, de façon plus générale que dans le document origi-
nal de A. Yu. Zyuzin et B. Z. Spivak. Cette description permet de comprendre les
fluctuations de la lumière comme résultant d’un flux lumineux, placé hors équili-
bre par des effets cohérents. Le flux de lumière est caractérisé par deux paramètres
seulement, le coefficient de diffusion et la mobilité, par ailleurs reliés par une re-
lation d’Einstein. L’un des atouts évidents de cette méthode est sa dépendance à
deux paramètres seulement, qui fournissent une description compacte mais pré-
cise des riches effets cohérents sous-jacents. De plus, cette approche de Langevin
établit une correspondance entre le problème mésoscopique de la lumière cohérente
et une classe de systèmes stochastiques hors équilibre, bien décrits dans le cadre
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de la théorie des fluctuations macroscopiques [26, 27, 28]. Cette correspondance
jette un nouvel éclairage sur notre compréhension de lumière cohérente, et devrait
motiver la poursuite des recherches sur les systèmes mésoscopiques en utilisant le
cadre théorique des fluctuation macroscopiques. En effet, la correspondance que
nous présentons entre la lumière cohérente et l’hydrodynamique hors d’équilibre
est facilement généralisable à une grande classe de problèmes d’onde quantiques ou
classiques.

Le premier chapitre porte sur les propriétés de la lumière monochromatique se
propageant à travers un milieu diélectrique aléatoire. Le rayonnement à l’intérieur
du milieu est la solution d’une équation de Helmoltz,

∆E(r) + k2 (1 + µ(r)) E(r) = s0(r) (D.1)

avec une constante diélectrique aléatoire, ce qui est extrêmement difficile à ré-
soudre analytiquement. Les propriétés du rayonnement sont caractérisées par deux
échelles de longueur, la longueur d’onde λ = 2π/k, où k est le nombre d’onde et
le libre parcours moyen élastique l entre deux événements de diffusion. Bien que
les solutions analytiques exactes soient difficiles à obtenir, on peut en dire beaucoup
sur les quantités moyennes de désordre. Dans la limite de faible désordre kl � 1,
l’intensité lumineuse se comporte de manière diffuse; sa propagation à travers le
milieu peut être représentée par des trajectoires de type brownien. Pour une réali-
sation de désordre, l’intensité de la lumière fluctue spatialement autour de la valeur
moyenne ID, laquelle statisfait une équation de diffusion,

− D∆ID(r) = s(r) (D.2)

où D est le coefficient de diffusion, et s une distribution de sources lumineuses.
L’intensité est reliée au flux lumineux moyen jD par une loi de Fick,

jD(r) = −D∇ID(r) (D.3)

Les fluctuations autour de ID conduisent aux figures de speckle. Il est important
de noter qu’un motif de speckle n’est pas un motif de diffraction, dans lequel chaque
faisceau de lumière ne se diffuserait qu’une seule fois sur un diffuseur et sortirait du
système. Les figures de speckle sont construites à partir de plusieurs trajectoires
lumineuses en diffusion multiple, qui interfèrent de manière constructive malgré le
caractère aléatoire du milieu. Quantitativement, les fluctuations d’intensité peuvent
être décrites à l’aide de leur fonction de corrélation. Ce dernier est la somme d’un
terme à courte portée et d’un terme à longue portée. Le terme à courte portée est
le plus fort en amplitude et donne les taches lumineuses des speckles, tandis que le
terme à longue portée découle d’effets cohérents sous-jacents connus sous le nom
de croisements quantiques. Ces fluctuations à longue portée ont une amplitude plus
faible – proportionnelle à 1/g, qui est un petit nombre dans le régime de faible dé-
sordre – et sont donc plus difficiles à observer, mais elles conduisent de manière
primordiale à des forces mesurables, qui sont décrites au chapitre 3.

Dans le second chapitre, nous montrons que les fluctuations lumineuses peu-
vent être décrites de manière différente mais équivalente en notant que les croise-
ments quantiques se produisent à des longueurs d’ordre (lk−2)1/3, plus petites que
l’élastique chemin libre moyen l. Cela permet de séparer la physique diffusive inco-
hérente à grande échelle (� l) des croisements quantiques à petite échelle, cohérents
et préservant la phase. Cette partition d’échelle est décrite efficacement au moyen
d’une équation de Langevin, obtenue en généralisant la loi de Fick (D.3),
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j(r) = −D∇I(r) + ν(r) (D.4)

où les effets cohérents sont incorporés dans le terme de bruit par une méthode
systématique inspirée de [25]. Le procédé peut être généralisé à d’autres systèmes
diffusifs, par exemple le transport électronique dans les métaux aléatoires.

Dans le troisième chapitre, nous montrons que les fluctuations lumineuses à
longue portée induisent des forces de nature radiative. En effet, le caractère longue
portée de ces fluctuations soulève la question de savoir si les "confiner" induirait des
forces analogues à celles de Casimir. La physique de Casimir recouvre une multi-
tude de phénomènes où les forces entre les objets macroscopiques sont induites par
des fluctuations à longue portée [4] d’origine classique ou quantique. L’exemple
le plus célèbre est ce que l’on appelle l’effet Casimir électrodynamique quantique
(QED) [1], mais de telles forces induites par des fluctuations apparaissent dans un
large éventail de systèmes [5, 6, 47, 7, 8, 48, 11, 10]. Dans ce chapitre, nous montrons
que les fluctuations lumineuses à longue portée induisent des forces mesurables, qui
dépendent de la conductance sans dimension g - un paramètre facilement ajustable -
qui permet de concevoir des expériences dans lesquelles ces forces fluctuantes domi-
nent les autres forces connues en jeu [2, 3, 54]. Ces forces, notées f , sont nulles en
moyenne sur le désordre, mais sont significatives pour u ne réalisation donnée du
désordre; l’amplitude des variations de f autour de la moyenne s’exprime simple-
ment par

〈 f 2〉 = 1
gL
P2

v2 (Q2 +Qν) . (D.5)

oùQ2,Qν sont des facteurs géométriques, où P est la puissance lumineuse de la
source, et v la vitesse de groupe.

Enfin, dans le dernier chapitre, nous explorons le lien entre le problème méso-
scopique (indépendant du temps) de la lumière cohérente et la théorie des fluctu-
ations macroscopiques. Quelques ajustements sont nécessaires, tels que traduire
la notion de temps dans un langage mésoscopique, en la substituant par celle des
réalisations du désordre. Nous trouvons que l’approche stochastique permet de
récupérer des résultats connus en mésoscopie, telle la fonction de corrélation d’intensité.
Cependant, cette correspondance entre la mésoscopie et la physique des systèmes
stochastiques hors équilibre va au-delà d’une description redondante de phénomènes
connus. En effet, le formalisme stochastique fournit une méthode systématique pour
calculer des fonctions de corrélation d’intensité à n’importe quel ordre, ce qui est
par ailleurs très difficile dans une approche diagrammatique. De plus, ce lien ap-
porte un nouvel éclairage sur la mésoscopie, en introduisant la notion de produc-
tion d’entropie, ce qui pourrait être utile pour optimiser la perte d’énergie dans
les expériences. Il serait également intéressant d’appliquer ces méthodes à d’autres
systèmes de mésoscopie, dans des systèmes nanoélectronique ou supraconducteurs
[44, 45]. Du point de vue de la mécanique statistique, nos résultats devraient motiver
l’étude d’une nouvelle classe de systèmes indépendants du temps de diffusion, ac-
cessibles expérimentalement.

En conclusion, les principaux résultats de ce travail sont, premièrement, de dé-
montrer le potentiel que représente la lumière cohérente pour une utilisation expéri-
mentale, et deuxièmement, de montrer l’intérêt de la mise en correspondance de la
mésoscopie et d’un formalisme stochastique.
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En effet, les forces mécaniques dus à la lumière cohérente n’ont jamais été en-
visagées et offrent une nouvelle perspective dans le domaine. Comme indiqué dans
l’introduction, ces forces pourraient fournir de nouveaux types de capteurs à l’échelle
submicronique, utiles dans la matière condensée molle, la biophysique [24], les nanoélec-
tromécaniques (NEMS) et les technologies quantiques [59, 60]. De plus, comme ces
forces dépendent de la force du désordre grâce à la conductance g, elles peuvent
être utilisées comme nouvelle sonde efficace pour étudier la transition de localisa-
tion d’Anderson [77].

Sur le plan méthodologique, la connection présentée ici entre la lumière cohérente
et l’hydrodynamique hors d’équilibre est facilement généralisable à une large classe
d’effets mésoscopiques quantiques ou classiques. Un avantage évident de ce type
d’approche réside dans sa dépendance à deux paramètres seulement, ce qui devrait
en faire un candidat à des algorithmes d’apprentissage efficaces.

Pour les perspectives futures, le lien entre les effets cohérents en mésoscopique et
les processus stochastiques hors équilibre, bien décrit dans la théorie des fluctuations
macroscopique, devrait présenter un intérêt tant pour la communauté de physique
mésoscopique que pour celle de mécanique statistique. Pour les premiers, la mise
en correspondance avec l’hydrodynamique hors équilibre fournit des outils utiles
pour étudier des quantités jusqu’ici difficiles d’accès. Pour ces derniers, ce travail
devrait motiver davantage l’étude des processus indépendants du temps inspirés
de la mésoscopie.
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Titre: Forces induites par e�ets cohérents

Mots clés: Mésoscopie, cohérence, méthodes stochastiques, approche à la Langevin

Résumé: Dans cette thèse, nous étudions les ef-
fets cohérents associés à la propagation d'ondes dans
les milieux di�usants, en particulier les ondes élec-
tromagnétiques. En milieux faiblement désordon-
nés, l'intensité lumineuse �uctue spatialement sur
de grandes distances. Ce phénomène est le résultat
d'e�ets cohérents mésoscopiques complexes, qui se
produisent à une échelle microscopique. Nous mon-
trons que ces �uctuations mésoscopiques cohérentes
de la lumière induisent des forces de rayonnement
d'un nouveau genre. L'amplitude de ces forces �uc-
tuantes est déterminée par un paramètre unique et
facilement réglable, la conductance adimensionnée,
qui dépend à la fois de la géométrie et des pro-
priétés de di�usion du milieu. Notre découverte de-
vrait donc avoir des applications intéressantes, telles
que de nouveaux capteurs pour la matière molle ou
la biophysique. Du point de vue méthodologique,
nous utilisons une approche à la Langevin pour
décrire les �uctuations lumineuses cohérentes, où
un bruit précisément calculé rend compte des e�ets
cohérents mésoscopiques. Nous montrons comment
inclure systématiquement les corrections cohérentes
dans le terme de bruit, a�n de reproduire les �uc-
tuations d'intensité. Cette description permet de

comprendre les �uctuations cohérentes comme résul-
tant d'un �ux lumineux hors équilibre, caractérisé
par deux paramètres seulement, le coe�cient de dif-
fusion et la mobilité, qui sont par ailleurs liés par
une relation d'Einstein. Un avantage évident de
cette méthode est sa dépendance à deux paramètres
seulement, ce qui fournit une description à la fois
compacte et précise des riches e�ets cohérents sous-
jacents. De plus, la correspondance que nous présen-
tons entre la lumière cohérente et l'hydrodynamique
hors d'équilibre est facilement généralisable à une
large classe de problèmes d'ondes quantiques ou clas-
siques. Pour les perspectives futures, cette connec-
tion entre les e�ets cohérents mésoscopiques et les
processus stochastiques hors équilibre devraient in-
téresser les communautés de la mésoscopie et de la
mécanique statistique. Pour les premiers, le lien avec
l'hydrodynamique hors équilibre fournit un nouvel
éclairage sur la physique mésoscopique, ainsi que des
outils utiles pour étudier les quantités jusqu'ici di�-
ciles d'accès, telles que les fonctions de corrélation
d'intensité d'ordres supérieurs. Pour les seconds,
ces travaux devraient motiver une étude plus appro-
fondie des processus indépendants du temps inspirés
de la mésoscopie.

Title: Forces induced by coherent e�ects

Keywords: Mesoscopics, coherence, stochastic methods, Langevin approach.

Abstract: In this work, we study coherent e�ects
associated to wave propagation in scattering media,
in particular electromagnetic waves. In weakly dis-
ordered media, light intensity �uctuates spatially
over large distances. This phenomenon is the re-
sult of complex mesoscopic coherent e�ects, which
occur at a microscopic scale. We show that these
mesoscopic coherent �uctuations of light induce ra-
diation forces of a new kind. The strength of these
�uctuating forces is determined by a single and eas-
ily tunable parameter, the dimensionless conduc-
tance, which depends on both the geometry and
the scattering properties of the medium. Our �nd-
ings should therefore have interesting applications
such as new sensors in soft condensed matter or bio-
physics. On the methodological viewpoint, we use
a hydrodynamic Langevin approach to describe the
coherent light �uctuations, where a properly tailored
noise accounts for mesoscopic coherent e�ects. We
show how to systematically include the coherent cor-
rections in the noise term, in order to reproduce
the intensity �uctuations. This description allows

to understand coherent light �uctuations as result-
ing from a non equilibrium light �ow, characterized
by two parameters only, the di�usion coe�cient and
the mobility, otherwise related by an Einstein rela-
tion. A clear asset of this method is its dependence
upon two parameters only, which provides a com-
pact yet accurate description of the rich underlying
coherent e�ects. Moreover, the mapping we present
between coherent light and out of equilibrium hydro-
dynamics is easily generalizable to a large class of
quantum or classical wave problems. For future per-
spectives, this connection between coherent e�ects
in mesoscopics and non equilibrium stochastic pro-
cesses should be of interest in both the mesoscopics
and statistical mechanics communities. For the for-
mer, the mapping to non equilibrium hydrodynam-
ics provides a new insight to mesoscopic physics as
well as useful tools to study quantities so far di�cult
to access, such as higher orders intensity correlation
functions. For the latter, this work should motivate
further study of time independent processes inspired
from mesoscopics.
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