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Résumé

Cette thèse est consacrée à l'étude des aspects linéaires et non-linéaires des équations de type Schrödinger i∂ t u + |∇| σ u = F, |∇| = √ -∆, σ ∈ (0, ∞).

Quand σ = 2, il s'agit de l'équation de Schrödinger bien connue dans de nombreux contextes physiques tels que la mécanique quantique, l'optique non-linéaire, la théorie des champs quantiques et la théorie de Hartree-Fock. Quand σ ∈ (0, 2)\{1}, c'est l'équation Schrödinger fractionnaire, qui a été découverte par Laskin (voir par exemple [START_REF] Laskin | Fractional quantum mechanics and Lévy path integrals[END_REF] et [START_REF] Laskin | Fractional Schrödinger equation[END_REF]) en lien avec l'extension de l'intégrale de Feynman, des chemins quantiques de type brownien à ceux de Lévy. Cette équation apparaît également dans des modèles de vagues (voir par exemple [START_REF] Ionescu | Nonlinear fractional Schrödinger equations in one dimension[END_REF] et [START_REF] Nguyen | Sharp Strichartz estimates for water waves systems[END_REF]). Quand σ = 1, c'est l'équation des demi-ondes qui apparaît dans des modèles de vagues (voir [START_REF] Ionescu | Nonlinear fractional Schrödinger equations in one dimension[END_REF]) et dans l'effondrement gravitationnel (voir [START_REF] Elgart | Mean field dynamics of boson stars[END_REF], [START_REF] Fröhlich | Blowup for nonlinear wave equations describing boson stars[END_REF]). Quand σ = 4, c'est l'équation Schrödinger du quatrième ordre ou biharmonique introduite par Karpman [START_REF] Karpman | Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations[END_REF] et par Karpman-Shagalov [START_REF] Karpman | Stability of soliton described by nonlinear Schrödingertype equations with higher-order dispersion[END_REF] pour prendre en compte le rôle de la dispersion du quatrième ordre dans la propagation d'un faisceau laser intense dans un milieu massif avec non-linéarité de Kerr.

Introduction

This thesis is devoted to the study of Schrödinger-type equations such as the fractional Schrödinger (including the well-known Schrödinger equation and the fourth-order Schrödinger equation) and the half-wave equations.

The first part of this thesis is devoted to Strichartz estimates for Schrödinger-type equations on manifolds including the flat Euclidean space, compact manifolds without boundary and asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in the study of nonlinear dispersive equation at low regularity. Let us first discuss Strichartz estimates for Schrödinger-type equations on the flat Euclidean space R d . Consider

i∂ t u + |∇| σ u = 0, u(0) = ψ, |∇| = √ -∆, σ ∈ (0, ∞).
In the case σ = 2, it is well-known that one can compute explicitly the solution to this equation, that is

e -it∆ ψ(x) = e ±i πd 4 |4πt| d 2
e -i |x-y| 2 4t ψ(y)dy, ± := sign of t.

This implies the dispersive estimate

e -it∆ ψ L ∞ |t| -d/2 , t ∈ R.
Using this dispersive estimate and the isometry e -it∆ ψ L 2 = ψ L 2 , the so-called T T -criterion (see [START_REF] Keel | Endpoint Strichartz estimates[END_REF]) shows Strichartz estimates e -it∆ ψ L p (R,L q ) ψ L 2 , for any sharp Schrödinger admissible pair (p, q), i.e.

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 2),

2 p + d q = d 2 .
(0.0.1)

When σ = 2, since we do not have the explicit formula of the solution e it|∇| σ ψ(x), the above method does not work. Fortunately, since the equation enjoys a scaling invariance in frequency space, we are able to use the scaling technique to derive Strichartz estimates. More precisely, we decompose the solution in dyadic pieces, namely

e it|∇| σ ψ ∼ N ∈2 Z e it|∇| σ P N ψ,
where P N is a Fourier multiplier by χ N (ξ) = χ(N -1 ξ) with χ ∈ C ∞ 0 (R d ) and supp(χ) ⊂ {ξ ∈ R d : 1/2 ≤ |ξ| ≤ 2}. By a change of variables, we find that

[e it|∇| σ P N ψ](t, x) = [e it|∇| σ P 1 ψ N ](N σ t, N x),
where ψ N (x) := ψ(N -1 x). This implies

e it|∇| σ P N ψ L p (R,L q ) = N -d
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By the T T -criterion, it suffices to prove the following energy and dispersive estimates e it|∇| σ P 1 L 2 →L 2 1,

e it|∇| σ P 1 L 1 →L ∞ (1 + |t|) -υ .
By the stationary phase theorem, we learn that

υ =    d 2 for d ≥ 1, σ = 1, d-1 2
for d ≥ 2, σ = 1.

(0.0.2)

This shows that e it|∇| σ P N ψ L p (R,L q ) N γp,q P N ψ L 2 , (0.0.3)

where γ p,q := d 2 - d q - σ p ,
and (p, q) satisfies for d ≥ 1 and σ = 1,

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 2), 2 p + d q ≤ d 2 , (0.0.4)
and for d ≥ 2 and σ = 1,

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 3), 2 p + d -1 q ≤ d -1 2 .
(0.0.5)

We combine the Littlewood-Paley theorem, the Minkowski inequality and (0.0.3) to obtain Strichartz estimates

e it|∇| σ ψ L p (R,L q ) N ∈2 Z N 2γp,q P N ψ 2 L 2 1/2 ∼ ψ Ḣγp,q ,
where (p, q) satisfies either (0.0.4) or (0.0.5) with q ∈ [2, ∞). We refer to Chapter 1 for more general Strichartz estimates and its variants.

In Chapter 2, we extend Strichartz estimates studied in Chapter 1 by considering the same equations with the Laplacian operator of variable coefficients. More precisely, we consider

i∂ t u + |∇ g | σ u = 0, u(0) = ψ, |∇ g | = -∆ g , σ ∈ (0, ∞)\{1},
on R d equipped with a smooth bounded metric g. Let g(x) = (g jk (x)) d j,k=1 and denote g -1 (x) = (g jk (x)) d j,k=1 . The Laplace-Beltrami operator associated to g reads

∆ g = d j,k=1 |g(x)| -1 ∂ j (g jk (x)|g(x)|∂ k ),
where |g(x)| := det g(x). We make the following assumptions:

• (Ellipticity) There exists C > 0 such that for all x, ξ ∈ R d , C -1 |ξ| 2 ≤ p(x, ξ) :=

• (Boundedness) For all α ∈ N d , there exists C α > 0 such that for all x ∈ R d , |∂ α g jk (x)| ≤ C α , j, k ∈ {1, ..., d}. (0.0.7)

To study Strichartz estimates, we decompose the solution into dyadic pieces as follows

e it|∇g| σ ψ ∼ e it|∇g| σ ϕ 0 (-∆ g )ψ + h -2 ∈2 N e it|∇g| σ ϕ(-h 2 ∆ g )ψ,
where ϕ 0 ∈ C ∞ 0 (R) and ϕ ∈ C ∞ 0 (R\{0}). Here f (-∆ g ) is the functional calculus is defined by spectral theorem. Since we are interested in local in time Strichartz estimates, we do not need to decompose the solution at low frequencies, i.e. terms of the form e it|∇g| σ ϕ(--2 ∆ g ), -2 ∈ 2 N . Indeed, the low frequency part can be bounded easily using the Sobolev embedding. In the context of variable coefficients, there is no scaling technique as on R d . We thus need to estimate separately each localized piece. The main goal is to establish dispersive estimates for semi-classical operators e ith -1 (h|∇g|) σ ϕ(-h 2 ∆ g ) on some small time interval independent of h, namely

e ith -1 (h|∇g|) σ ϕ(-h 2 ∆ g ) L 1 →L ∞ h -d (1 + |t|h -1 ) -d 2 , t ∈ [-t 0 , t 0 ], (0.0.8)
for some t 0 > 0. Here the implicit constant does not depend on the parameter h ∈ (0, 1]. With this dispersive estimate, the semi-classical version of T T -criterion implies Strichartz estimates for each semi-classical terms e ith -1 (h|∇g|) σ ϕ(-h 2 ∆ g )ψ. Rescaling in time and summing over all dyadic pieces, we derive Strichartz estimates for the solution. To study the dispersive estimate (0.0.8), we first use the semi-classical expansion of ϕ(-h 2 ∆ g ), namely

ϕ(-h 2 ∆ g ) = N -1 j=0 h j Op h (a j ) + h N R N (h),
where Op h (a j )ψ(x) = (2πh) -d e ih -1 (x-y)•ξ a j (x, ξ)ψ(y)dydξ, (0.0.9)

for some a j ∈ S(-∞) with supp(a j ) ⊂ p -1 (supp(ϕ)) and R N (h) satisfying for all m ≥ 0,

R N (h) H -m →H m h -2m .
By the Sobolev embedding, the remainder term is bounded by

e ith -1 (h|∇g|) σ h N R N (h) L 1 →L ∞ h N e ith -1 (h|∇g|) σ R N (h) H -m →H m h N -2m .
Taking N sufficiently large, we obtain dispersive estimate for the remainder term. Therefore, the study of (0.0.8) is reduced to the study of dispersive estimate for e ith -1 (h|∇g|) σ Op h (a) with a ∈ S(-∞) and supp(a) ⊂ p -1 (supp(ϕ)). To do so, we make use of the WKB method to construct an approximation to w(t) = e ith -1 (h|∇g|) σ Op h (a)ψ of the form

w(t) = J N (t)ψ + R N (t)ψ, t ∈ [-t 0 , t 0 ],
for some t 0 > 0, where J N (t) := and the remainder term satisfies a "nice" estimate, for instance, R N (t) = O L 2 →L 2 (h N -1 ) uniformly with respect to t ∈ [-t 0 , t 0 ]. We observe from the fundamental theorem of calculus that e -ith -1 (h|∇g|) σ J N (t)ψ = J N (0)ψ + t 0 d ds e -ish -1 (h|∇g|) σ J N (s) ψds = Op h (a)ψ + ih -1 t 0 e -ish -1 (h|∇g|) σ (hD s -(h|∇ g |) σ )J N (s)ψds,

where D s = i -1 ∂ s . This implies

w(t) = e ith -1 (h|∇g|) σ Op h (a)ψ = J N (t)ψ -ih -1 t 0 e i(t-s)h -1 (h|∇g|) σ (hD s -(h|∇ g |) σ )J N (s)ψds.
We want the last term to have a small contribution. To do this, we need to study the action of hD s -(h|∇ g |) σ on J N (s). The first action of hD s on J N (s) is easy to compute, and we have The second action of (h|∇ g |) σ on J N (s) is complicated. In the case σ = 2, we have an explicit form of -h 2 ∆ g , that is, -h 2 ∆ g = Op h (p) + hOp h (p 1 ), (0.0.10

hD s • J N (s) = N l=0 h l J h (S(
)
where p is as in (0.0.6) and p 1 (x, ξ) = d l=1 n l (x)ξ l . A direct computation shows Op h (p) • J h (S(s), q) = J h S(s), p(x, ∇ x S(s))q + ih∇ ξ p(x, ∇ x S(s)) • ∇ x q + ihOp(p)S(s)q +h 2 Op(p)q , hOp h (p 1 ) • J h (S(s), q) = J h S(s), ihOp(p 1 )S(s)q + h 2 Op(p 1 )q .

Here we use the notation Op(a) = Op 1 (a), i.e. h = 1 in (0.0.9). This shows -h 2 ∆ g • J h (S(s), q) = J h S(s), E(s)q + ihT (s)q -h 2 ∆ g q , where E(s)q = p(x, ∇ x S(s))q, T (s)q = -∇ ξ p(x, ∇ x S(s)) • ∇ x q -∆ g S(s)q.

Hence the action of -h 2 ∆ g on J N (s) can be computed explicitly as

-h 2 ∆ g • J N (s) = N +1 l=0 h l J h (S(s), c l (s)),
where c 0 (s) = E(s)a 0 (s), c 1 (s) = E(s)a 1 (s) + iT (s)a 0 (s),

c l (s) = E(s)a l (s) + iT (s)a l-1 (s) -∆ g a l-2 (s), l = 2, • • • , N -1, c N (s) = iT (s)a N -1 (s) -∆ g a N -2 (s), c N +1 (s) = -∆ g a N -1 (s).
We thus get

(hD s + h 2 ∆ g )J N (s) = N +1 k=0 h k J h (S(s), d k (s)),
with d 0 (s) = (∂ s S(s) -E(s))a 0 (s),

d 1 (s) = (∂ s S(s) -E(s))a 1 (s) + (D s -iT (s))a 0 (s), d k (s) = (∂ s S(s) -E(s))a k (s) + (D s -iT (s))a k-1 (s) + ∆ g a k-2 (s), k = 2, • • • , N -1, d N (s) = (D s -iT (s))a N -1 (s) + ∆ g a N -2 (s), d N +1 (s) = ∆ g a N -1 (s).
Therefore, in order to make (hD s + h 2 ∆ g )J N (s) to have a small contribution, we need to study the "Eikonal" or Hamilton-Jacobi equation

∂ s S(s) -p(x, ∇ x S(s)) = 0, S(0) = x • ξ,
and transport equations D s a 0 (s) -iT (s)a 0 (s) = 0,

D s a k (s) -iT (s)a k (s) = -∆ g a k-1 (s), k = 1, • • • , N -1,
with initial data a 0 (0) = a(x, ξ), a k (0) = 0, k = 1, • • • , N -1.

When σ = 2, we do not have an explicit formula for (h|∇ g |) σ , thus the above calculation does not hold. However, we can overcome this difficulty by means of pseudo-differential calculus as follows. Thanks to the support of ϕ, we replace e ith -1 (h|∇g|) σ Op h (a) by e ith -1 ω(-h 2 ∆g) Op h (a) with ω(λ) = φ(λ) √ λ σ , where φ ∈ C ∞ 0 (R\{0}) satisfying φ = 1 on the support of ϕ. The interest of this replacement is that we can write ω(-h 2 ∆ g ) in terms of semi-classical pseudo-differential operators, namely ω(-h 2 ∆ g ) =
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Op h (b) • J h (S, c) = N -1 j=1 h j J h (S, (b c) j ) + h N J h (S, r N (h)),
where (b c) j is a universal linear combination of This combined with (0.0.11) yield

∂ β ξ b(x, ∇ x S(x, ξ))∂ β-α x c(x, ξ)∂ α1 x S(x, ξ) • • • ∂ α k x S(x, ξ), with α ≤ β, α 1 + • • • + α k = α
ω(-h 2 ∆ g ) • J N (t) =
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[-t 0 , t 0 ] for some t 0 > 0, we show the L 2 -boundedness of the remainder term

R N (t) L 2 →L 2 h N -1 ,
for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1]. We also have dispersive estimates for the main term

J N (t) L 1 →L ∞ h -d (1 + |t|h -1 ) -d 2 ,
for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1]. We thus obtain dispersive estimates for semi-classical Schrödinger-type operators

e ith -1 (h|∇g|) σ ϕ(-h 2 ∆ g )ψ L ∞ h -d (1 + |t|h -1 ) -d 2 ψ L 1 ,
for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1]. These estimates together with energy estimates and the T T -criterion yield

e ith -1 (h|∇g|) σ ϕ(-h 2 ∆ g )ψ L p ([-t0,t0],L q ) h -( d 2 -d q -1 p ) ψ L 2 .
By scaling in time, we obtain

e it|∇g| σ ϕ(-h 2 ∆ g )ψ L p (h σ-1 [-t0,t0],L q ) h -γp,q ψ L 2 .
In the case σ ∈ (0, 1), we obviously bound estimates on a finite time interval I by estimates on intervals of size h σ-1 and obtain the following local in time Strichartz estimates

e it|∇g| σ ϕ(-h 2 ∆ g )ψ L p (I,L q ) h -γp,q ψ L 2 .
In the case σ ∈ (1, ∞), we cumulate O(h 1-σ ) estimates on intervals of size h σ-1 to get estimates on a finite interval I and obtain e it|∇g| σ ϕ(-h 2 ∆ g )ψ L p (I,L q ) h -γp,q-σ-1 p ψ L 2 .

Moreover, we can replace the norm ψ L 2 in the right hand side of above Strichartz estimates by ϕ(-h 2 ∆ g )ψ L 2 . By the Littlewood-Paley decomposition and the almost orthogonality, we obtain Strichartz estimates for Schrödinger-type equations σ ∈ (1, ∞), e it|∇g| σ ψ L p (I,L q ) ψ H γp,q + σ-1 p , and σ ∈ (0, 1), e it|∇g| σ ψ L p (I,L q ) ψ H γp,q .

We see that in the case σ ∈ (1, ∞), there is a loss of σ-1 p derivatives compared to those on R d . In Chapter 3, we use Strichartz estimates obtained in Chapter 2 to show Strichartz estimates for Schrödinger-type equations on compact manifolds without boundary. More precisely, we consider

i∂ t u + |∇ g | σ u = 0, u(0) = ψ, |∇ g | = -∆ g , σ ∈ (0, ∞)\{1},
on compact manifolds without boundary (M, g), where ∆ g is the Laplace-Beltrami operator on (M, g). In the case σ = 2, Burq-Gérard-Tzvetkov established in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF] Strichartz estimates with a loss of 1/p derivatives, i.e. e -it∆g ψ L p (I,L q (M ))

ψ H 1/p (M ) ,

where (p, q) is sharp Schrödinger admissible with q < ∞ (see (0.0.1)). In the case σ = 2, we use
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the Littlewood-Paley decomposition (see e.g. [BGT04, Corollary 2.3]), that is for q ∈ [2, ∞),

v L q (M ) v L 2 (M ) +
which coincides with -∆ g on a large relatively compact subset V 0 of V κ . For instance, we can take P = -χ∆ g -(1 -χ)∆, where χ ∈ C ∞ 0 (V κ ) takes values in [0, 1] satisfying χ = 1 on V 0 . Here ∆ is the free Laplacian operator on R d . The principal symbol of P is p(x, ξ) = d j,k=1 g jk (x)ξ j ξ k , g jk (x) = χ(x)g jk κ (x) + (1 -χ(x))δ jk , where d j,k=1 g jk κ (x)ξ j ξ k is the principal symbol of -∆ g in (U κ , V κ , κ). It is easy to see that (g jk (x)) d j,k=1 satisfies (0.0.6 and (0.0.7) and n l are bounded on R d together with all of theirs derivatives. We next write for some ϑ κ ∈ C ∞ 0 (U κ ) satisfying ϑ κ = 1 on supp( φκ ),

ω(-h 2 ∆ g )ϑ κ = N -1 l=0 h l θκ Op κ h (b κ,l )ϑ κ + h N R κ,N (h).
We thus can apply the WKB approximation given in Chapter 2 to find t 0 > 0, a function S κ ∈ C ∞ ([-t 0 , t 0 ] × R 2d ) and a sequence a κ,j (t) ∈ S(-∞) satisfying supp(a κ,j (t)) ⊂ p -1 (J) for some small neighborhood J of supp(ϕ) not containing the origin uniformly in t ∈ [-t 0 , t 0 ] such that

hD t - N -1 l=0 h l Op h (b κ,l ) J κ,N (t) = R κ,N (t), (0.0.13)
where

J κ,N (t) := N -1 j=0 h j J h (S κ (t), a κ,j (t)), J κ,N (0) = Op h (a κ ),
satisfies for all t ∈ [-t 0 , t 0 ] and all (x, ξ) ∈ p -1 (J),

|∂ α x ∂ β ξ (S κ (t, x, ξ) -x • ξ)| ≤ C αβ |t|, |α + β| ≥ 1, ∂ α x ∂ β ξ S κ (t, x, ξ) -x • ξ + t p(x, ξ) σ ≤ C αβ |t| 2 ,
and for all h ∈ (0, 1],

J κ,N (t) L 1 →L ∞ h -d (1 + |t|h -1 ) -d 2 , (0.0.14) R κ,N (t) = O L 2 →L 2 (h N -1
). (0.0.15)

Now let us set J κ N (t) := κ * J κ,N (t)κ * , R κ N (t) := κ * R κ,N (t)κ * . By the fundamental theorem of calculus, we have

w(t) = e ith -1 ω(-h 2 ∆g) φκ Op κ h (a κ )φ κ ψ = φκ J κ N (t)φ κ ψ -ih -1 t 0 e i(t-s)ω(-h 2 ∆g) (hD s -ω(-h 2 ∆ g )) φκ J κ N (s)φ κ ψds.
By (0.0.13), we write

(hD s -ω(-h 2 ∆ g )) φκ J κ N (s)φ κ = φκ hD s J κ N (s)φ κ -θκ Op κ h (b κ (h)) φκ J κ N (s)φ κ -h N R κ,N (h) φκ J κ N (s)φ κ ,
where b κ (h) =
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Thus,

(hD s -ω(-h 2 ∆ g )) φκ J κ N (s)φ κ = θκ κ * (hD s -Op h (b κ (h)))J N (s)κ * φ κ -R κ (s) -h N R κ,N (h) φκ J κ N (s)φ κ = θκ R κ N (s)φ κ -R κ (s) -h N R κ,N (h) φκ J κ N (s)φ κ ,
where R κ (s) = O L 2 (M )→L 2 (M ) (h ∞ ). Here we also use the L 2 -boundedness of pseudo-differential operators with symbol in S(-∞). We thus get

w(t) = φκ J κ N (t)φ κ ψ + R κ N (t)ψ,
where

R κ N (t)ψ = ih -1 t 0 e i(t-s)h -1 ω(-h 2 ∆g) θκ R κ N (s)φ κ -R κ (s) -h N R κ,N (h) φκ J κ N (s)φ κ ψds.
Thanks to the dispersive estimate (0.0.14) and the L 2 -boundedness (0.0.15), we obtain for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1],

e ith -1 ω(-h 2 ∆g) ϕ(-h 2 ∆ g )φ κ ψ L ∞ (M ) h -d (1 + |t|h -1 ) -d 2 ψ L 1 (M ) .
These dispersive esimates combined with the partition of unity show (0.0.12).

In Chapter 4, we study global in time Strichartz estimates for Schrödinger-type equations

1 i∂ t u -|∇ g | σ u = 0, u(0) = ψ, |∇ g | = -∆ g , σ ∈ (0, ∞)\{1},
on asymptotically Euclidean manifolds, i.e. R d equipped with a smooth long range pertubation metric g. More precisely the metric g satisfies the following assumptions:

• (Ellipticity) There exists C > 0 such that for all x, ξ ∈ R d ,

C -1 |ξ| 2 ≤ p(x, ξ) := d j,k=1
g jk (x)ξ j ξ k ≤ C|ξ| 2 . (0.0.16)

• (Long range pertubation) There exists ρ > 0 such that for all α ∈ N d , there exists C α > 0 such that for all x ∈ R d , |∂ α (g jk (x) -δ jk )| ≤ C α x -ρ-|α| . (0.0.17)

In some situation, we assume that the geodesic flow associated to g is non-trapping. It means that the Hamiltonian flow (X(t), Ξ(t)) := (X(t, x, ξ), Ξ(t, x, ξ)) associated to the principal symbol p of g -1 (x) = (g jk (x)) d j,k=1 , i.e. Ẋ(t) = ∇ ξ p(X(t), Ξ(t)), Ξ(t) = -∇ x p(X(t), Ξ(t)), and Ẋ(0) = x, Ξ(0) = ξ, satisfies for all (x, ξ) ∈ T R d with ξ = 0,

|X(t)| → ∞ as |t| → ∞.
Remark that by the conservation of energy and (0.0.16), all geodesics starting from (x, ξ) are defined globally in time. We also assume that there exists M > 0 large enough such that for all

Introduction χ ∈ C ∞ 0 (R d ), χ(-∆ g -λ ± i0) -1 χ L 2 →L 2 λ M , λ ≥ 1.
(0.0.18)

Note that this assumption holds in certain trapping situations (see e.g. [START_REF] Datchev | Local smoothing for scattering manifolds with hyperbolic trapped sets[END_REF], [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF] or [START_REF] Burq | Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics[END_REF]), for instance,

χ(-∆ g -λ ± i0) -1 χ L 2 →L 2 λ -1 2 log λ, λ ≥ 1,
as well as in non-trapping condition (see [START_REF] Robert | Asymptotique de la phase de diffusion à haute énergie pour les perturbations du second ordre du Laplacien[END_REF] or [START_REF] Vodev | Local energy decay of solutions to the wave equation for non-trapping metrics[END_REF])

χ(-∆ g -λ ± i0) -1 χ L 2 →L 2 λ -1 2 , λ ≥ 1.
In order to study global in time Strichartz estimates for Schrödinger-type equations on asymptotically Euclidean manifolds, we need to split the solution into low and high frequency pieces, namely

e -it|∇g| σ ψ = f 0 (-∆ g )e -it|∇g| σ ψ + (1 -f 0 )(-∆ g )e -it|∇g| σ ψ =: u low (t) + u high (t),
where f 0 ∈ C ∞ 0 (R) satisfies f 0 = 1 on [-1, 1]. Let us consider the high frequency term. For a given χ ∈ C ∞ 0 (R d ), we write u high = χu high +(1χ)u high . In our consideration, we have the following version of Littlewood-Paley decomposition:

for any q ∈ [2, ∞), N ≥ 1 and χ ∈ C ∞ 0 (R d ), (1 -χ)(1 -f 0 )(-∆ g )v L q h -2 ∈2 N (1 -χ)f (-h 2 ∆ g )v 2 L q + h N x -N f (-h 2 ∆ g )v 2 L 2 1/2
, where f (λ) = f 0 (λ) -f 0 (2λ). The same estimate holds true for χ in place of 1 -χ. By the Minkowski inequality,

(1 -χ)u high L p (R,L q ) h -2 ∈2 N (1 -χ)f (-h 2 ∆ g )e -it|∇g| σ ψ 2 L p (R,L q ) + h N x -N f (-h 2 ∆ g )e -it|∇g| σ ψ 2 L p (R,L 2 ) 1/2
.

The same estimate holds for χu high L p (R,L q ) with χ instead of 1 -χ. To estimate the weighted term x -N f (-h 2 ∆ g )e -it|∇g| σ ψ, we use the L 2 integrability which is available on (R d , g) under the assumption (0.0.18), namely

x -1 f (-h 2 ∆ g )e -ith -1 (h|∇g|) σ ψ L 2 (R,L 2 ) h 1-N 0 2 ψ L 2 ,
for some N 0 > 0. Interpolating between L 2 (R) and L ∞ (R), we have

x -1 f (-h 2 ∆ g )e -ith -1 (h|∇g|) σ ψ L p (R,L 2 ) h 1-N 0 p ψ L 2 , or x -1 f (-h 2 ∆ g )e -i|∇g| σ ψ L p (R,L 2 ) h σ-N 0 p ψ L 2 .
Thus,

h N 2 x -N f (-h 2 ∆ g )e -it|∇g| σ ψ L p (R,L 2 ) h
Introduction orthogonality, Strichartz estimates for the high frequency piece are reduced to showing

χe -it|∇g| σ f (-h 2 ∆ g )ψ L p (R,L q ) h -γp,q f (-h 2 ∆ g )ψ L 2 , (0.0.19) (1 -χ)e -it|∇g| σ f (-h 2 ∆ g )ψ L p (R,L q ) h -γp,q f (-h 2 ∆ g )ψ L 2 .
(0.0.20)

Here the almost orthogonality means formally that supp[f (2 -k •)] ∩ supp[f (2 -l •)] = ∅ for k, l ∈ N and |k -l| ≥ 2. This allows us to show, for instance,

   h -2 =2 -k k∈N h -2γp,q f (-h 2 ∆ g )ψ 2 L 2    1/2
ψ Ḣγp,q .

For the low frequency term, we use the following Littlewood-Paley decomposition: for any χ ∈ C ∞ 0 (R d ) satisfying χ(x) = 1 for |x| ≤ 1,

f 0 (-∆ g )v L q -2 ∈2 N (1 -χ)( x)f (--2 ∆ g )v 2 L q + 2( d 2 -d q ) x -1 f (--2 ∆ g )v 2 L 2 1/2
to bound

u low L p (R,L q ) -2 ∈2 N (1 -χ)( x)f (--2 ∆ g )e -it|∇g| σ ψ 2 L p (R,L q ) + 2( d 2 -d q ) x -1 f (--2 ∆ g )e -it|∇g| σ ψ 2 L p (R,L 2 ) 1/2
.

Using the L p -integrability, which follows from the low frequency resolvent estimates,

x -1 f (--2 ∆ g )e -it ( -1 |∇g|) σ ψ L p (R,L 2 ) -1 p ψ L 2 ,
we estimate

d 2 -d q x -1 f (--2 ∆ g )e -it|∇g| σ ψ L p (R,L 2 ) γp,q f (--2 ∆ g )ψ L 2 .
Therefore, by an almost orthogonality argument, it suffices to show (1 -χ)( x)f (--2 ∆ g )e -it|∇g| σ ψ L p (R,L q ) γp,q f (--2 ∆ g )ψ L 2 . (0.0.21)

To show (0.0.19), we assume that the geodesic flow associated to g is non-trapping. It is crucial in our argument. We make use of the local in time Strichartz estimates for the localized Schrödinger-type operator, namely

e -ith -1 (h|∇g|) σ ϕ(-h 2 ∆ g )v L p (R,L q ) h -κp,q v L 2 ,
with κ p,q = d 2 -d q -1 p as well as the inhomogenous Strichartz estimates t 0 e -i(t-s)h -1 (h|∇g|) σ ϕ 2 (-h 2 ∆ g )G(s)ds
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integrability.

The proofs of (0.0.20) and (0.0.21) are based on the Isozaki-Kitada parametrix and local energy decay estimates, namely for k ≥ 0,

x -1-k e -ith -1 (h|∇g|) σ f (-h 2 ∆ g ) x -1-k L 2 →L 2 h -N k th -1 -k , x -1-k e -it ( -1 |∇g|) σ f (--2 ∆ g ) x -1-k L 2 →L 2 t -k .
We refer the reader to Chapter 4 for more details.

The second part of this thesis concerns nonlinear aspects of the nonlinear Schrödinger-type equations such as local well-posedness, global well-posedness, global existence and blowup for low regularity initial data. In Chapter 5, we study the local well-posedness in Sobolev spaces for nonlinear Schrödinger-type equations. More precisely, we consider

i∂ t u + |∇| σ u = ±|u| ν-1 u, u(0) = ψ, σ ∈ (0, ∞), ν > 1.
(NLST)

This equation enjoys formally the conservation of mass and energy

M (u(t)) = |u(t, x)| 2 dx = M (ψ), E(u(t)) = 1 2 ||∇| σ/2 u(t, x)| 2 dx ∓ 1 ν + 1 |u(t, x)| ν+1 dx = E(ψ).
The equation (NLST) also has the scaling invariance

u λ (t, x) = λ -σ ν-1 u(λ σ t, λ -1 x), λ > 0.
By a direct computation, we have

u λ (0) Ḣγ = λ d 2 -σ ν-1 -γ ψ Ḣγ .
From this, we define the critical regularity exponent by

γ c := d 2 - σ ν -1 .
In Chapter 5, we are interested in the well-posedness result for (NLST) when γ ≥ γ c . Since we are working in Sobolev spaces of fractional order γ and γ c , we need the nonlinearity F (z) = ±|z| ν-1 z to have enough regularity. When ν is an odd integer, the nonlinearity is smooth. When ν > 1 is not an odd integer, we need the following assumption γ , γ c ≤ ν, (0.0.22

)
where γ is the smallest integer greater than or equal to γ, similarly for γ c .

In order to study the local well-posedness of (NLST) in Sobolev spaces, we need two important tools: Strichartz estimates and nonlinear estimates. Strichartz estimates for Schrödinger-type equations are shown in Chapter 1. Note that in the case σ ∈ (0, 2), admissible conditions (0.0.4) and (0.0.5) yield γ p,q > 0 for any (p, q) except (∞, 2). Thus, in this case, there is a loss of derivatives in the sense that if we use Strichartz estimates at H γ -level, then we need the initial data to belong to H γ+γp,q . This loss of derivatives leads to a weak local well-posedness result for σ ∈ (0, 2) compared to the one for σ ∈ [2, ∞). Therefore, we will consider three cases σ ∈ (0, 2)\{1}, σ = 1 and σ ∈ [2, ∞) respectively. We also need the Kato fractional derivative estimates, namely for γ ≥ 0 and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1 r = 1 p + ν-1 q : • if ν > 1 is an odd integer or γ ≤ ν otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0
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such that for all u ∈ S ,

|∇| γ (|u| ν-1 u) L r ≤ C u ν-1 L q |∇| γ u L p , ∇ γ (|u| ν-1 u) L r ≤ C u ν-1 L q ∇ γ u L p .
• if ν > 1 is an odd integer or γ ≤ ν -1 otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0 such that for all u ∈ S ,

|∇| γ (|u| ν-1 u -|v| ν-1 v) L r ≤ C ( u ν-1 L q + v ν-1 L q ) |∇| γ (u -v) L p +( u ν-2 L q + v ν-2 L q )( |∇| γ u L p + |∇| γ v L p ) u -v L q , ∇ γ (|u| ν-1 u -|v| ν-1 v) L r ≤ C ( u ν-1 L q + v ν-1 L q ) ∇ γ (u -v) L p +( u ν-2 L q + v ν-2 L q )( ∇ γ u L p + ∇ γ v L p ) u -v L q .
The proof of the local well-posedness is based on Strichartz estimates and the standard contraction mapping argument. By Duhamel's formula, it suffices to show the functional

Φ(u) := e it|∇| σ ∓ i t 0 e i(t-s)|∇| σ |u(s)| ν-1 u(s)ds
is a contraction on a suitable Banach space (X, d).

Let us consider σ ∈ (0, 2). In the subcritical case, i.e. γ > γ c , we choose X as

X := u ∈ L ∞ (I, H γ ) ∩ L p (I, H γ-γp,q q ) : u L ∞ (I,H γ ) + u L p (I,H γ-γp,q q ) ≤ M ,
and the distance d(u, v) := u -v L ∞ (I,L 2 ) + u -v L p (I,H -γp,q q ) , where I = [0, T ] with M, T > 0 to be determined momentarily. Here (p, q) is an admissible pair satisfying either (0.0.4) or (0.0.5) to be chosen shortly, and H γ q is the generalized Sobolev space (see Chapter 1 for the notation). Due to the loss of derivatives, we have to use Strichartz estimate for the special pair (∞, 2) to get

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ψ H γ + |u| ν-1 u L 1 (I,H γ ) , Φ(u) -Φ(v) L ∞ (I,L 2 ) + Φ(u) -Φ(v) L p (I,H -γp,q q ) |u| ν-1 u -|v| ν-1 v L 1 (I,L 2 ) .
The nonlinear term can be bounded by

|u| ν-1 u L 1 (I,H γ ) |I| 1-ν-1 p u ν-1 L p (I,L ∞ ) u L ∞ (I,H γ ) ,
similarly for |u| ν-1 u -|v| ν-1 v. In order to close the contraction ball, we need to choose (p, q) such that ν -1 < p and L p (I, H γ-γp,q q

) ⊂ L p (I, L ∞ ) or H γ-γp,q q ⊂ L ∞ . By the Sobolev embedding, we choose: for σ ∈ (0, 2)\{1}, (p, q) satisfies (0.0.4) and

p > max(ν -1, 4) if d = 1, max(ν -1, 2) if d ≥ 2,
and for σ = 1, (p, q) satisfies (0.0.5) and

p > max(ν -1, 4) if d = 2, max(ν -1, 2) if d ≥ 3.
In the critical case γ = γ c , the Sobolev embedding does not help. To overcome the loss of derivatives, we consider X := u ∈ L ∞ (I, H γc ) ∩ L p (I, B γc-γp,q q ) : u L ∞ (I, Ḣγc ) ≤ M, u L p (I, Ḃγc-γp,q q ) ≤ N ,

and d(u, v) := u -v L ∞ (I,L 2 ) + u -v L p (I, Ḃ-γp,q q ) ,
where I = [0, T ] with M, N, T > 0 to be determined. Here B γ q and Ḃγ q are generalized inhomogeneous and homogeneous Besov spaces respectively (see again Chapter 1 for the notation). As in the subcritical case, by using Strichartz estimate for the pair (∞, 2) and the Hölder inequality, it suffices to bound u ν-1 L ν-1 (I,L ∞ ) . To do so, we use the argument of Hong-Sire [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] (see also [START_REF] Colliander | Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R 3[END_REF]) to have: for σ ∈ (0, 2)\{1},

u ν-1 L ν-1 (R,L ∞ )          u 4 L 4 (R, Ḃγc-γ 4,∞ ∞ ) u ν-5 L ∞ (R, Ḃγc 2 ) when d = 1, u p L p (R, Ḃγc-γ p,p p ) u ν-1-p L ∞ (R, Ḃγc 2 ) where ν -1 > p > 2 when d = 2, u 2 L 2 (R, Ḃγc-γ 2,2 2 
)

u ν-3 L ∞ (R, Ḃγc 2 ) when d ≥ 3,
where p = 2p/(p -2) and 2 = 2d/(d -2), and for σ = 1,

u ν-1 L ν-1 (R,L ∞ )          u 4 L 4 (R, Ḃγc-γ 4,∞ ∞ ) u ν-5 L ∞ (R, Ḃγc 2 ) when d = 2, u p L p (R, Ḃγc-γ p,p p ) u ν-1-p L ∞ (R, Ḃγc
2 ) where 2 < p < ν -

1 when d = 3, u 2 L 2 (R, Ḃγc-γ 2, 2 2 
) In the case σ ∈ [2, ∞), thanks to Strichartz estimates without loss of derivatives, we show Φ is a contraction on (X, d) with

u ν-3 L ∞ (R, Ḃγc
X := u ∈ L p (I, H γ q ) : u L p (I, Ḣγ q ) ≤ M , d(u, v) := u -v L p (I,L q ) ,
where

p = 2σ(ν + 1) (ν -1)(d -2γ) , q = d(ν + 1) d + (ν -1)γ .
By Strichartz estimates, we bound Φ(u) L p (I, Ḣγ q )

ψ Ḣγ + |u| ν-1 u L p (I, Ḣγ q ) , Φ(u) -Φ(v) L p (I,L q ) |u| ν-1 u -|v| ν-1 v L p (I,L q ) .
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The Hölder inequality then implies

|u| ν-1 u L p (I, Ḣγ q ) |I| 1-(ν-1)(d-2γ) 2σ u ν L p (I, Ḣγ q ) , |u| ν-1 u -|v| ν-1 v L p (I,L q ) |I| 1-(ν-1)(d-2γ) 2σ u ν-1 L p (I, Ḣγ q ) + v ν-1 L p (I, Ḣγ q ) u -v L p (I,L q ) .
With these estimates at hand, we can easily show that Φ is a contraction on (X, d).

In Chapter 6, we consider the defocusing nonlinear fourth-order Schrödinger equation

i∂ t u + ∆ 2 u = -|u| 8 d u, u(0) = ψ. ( dNL4S 
)
By the local theory given in Chapter 5, (dNL4S) is locally well-posed in H γ for γ > 0 satisfying, in the case d = 1, 2, 4,

γ ≤ 1 + 8 d . (0.0.23)
This conditon ensures the nonlinearity to have enough regularity. The conservation of mass and energy together with the persistence of regularity yield the global well-posedness for (dNL4S) in H γ with γ ≥ 2 satisfying for d = 1, 2, 4, (0.0.23). The main goal of Chapter 6 is to prove the global well-posedness for (dNL4S) in low regularity spaces H γ (R d ) with d ≥ 4 and 0 < γ < 2. Since we are working with low regularity data, the conservation of energy does not hold. In order to overcome this difficulty, we make use of the I-method introduced by [START_REF] Colliander | Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation[END_REF] and the interaction Morawetz inequality (which is available for d ≥ 5). We thus consider separately two cases d = 4 and d ≥ 5.

In the case d = 4, we use the I-method in Bourgain spaces, which is an adaptation of the one given in [START_REF] Colliander | Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation[END_REF] to prove the low regularity global well-posedness of the defocusing cubic nonlinear Schrödinger equation on R 2 . The idea of the I-method is to replace the conserved energy E(u), which is not available when γ < 2, by an "almost conserved" quantity E(I N u) with N 1. Here I N is a smoothing operator which behaves like the identity for low frequencies |ξ| ≤ N and like a fractional integral operator of order 2 -γ for high frequencies |ξ| ≥ 2N . Since I N u is not a solution to the equation, we may expect an energy increment. The key idea is to show that on the time interval of local existence, the increment of the modified energy E(I N u) decays with respect to a large parameter N . This allows to control E(I N u) on time interval where the local solution exists, and we can iterate this estimate to obtain a global in time control of the solution by means of the bootstrap argument. In the case d = 4, the nonlinearity is algebraic. It allows to write explicitly the commutator between the I-operator and the nonlinearity by means of the Fourier transform, and then control it by multi-linear analysis. We will show in Chapter 6 that (dNL4S) is globally well-posed in H γ (R 4 ) for any 60 53 < γ < 2. In the case d ≥ 5, we use the I-method combined with the interaction Morawetz inequality. In this consideration, the nonlinearity is no longer algebraic. Thus we cannot apply the Fourier transform technique to estimate the increment of the modified energy. Fortunately, thanks to Strichartz estimates with a "gain" of derivatives, namely

∆u L p (R,L q ) ∆ψ L 2 + ∇(|u| 8 d u) L 2 (R,L 2d d+2 ) 
, we are able to apply the technique given in [START_REF] Visan | Global well-posedness and scattering for a class of nonlinear Schrödinger equations below the energy space[END_REF] to control the commutator. Due to the presence of the biharmonic operator ∆ 2 , we need the nonlinearity to have enough regularity. This leads to a restriction on dimensions d = 5, 6 and 7. The interaction Morawetz inequality for the nonlinear fourth-order Schrödinger equation was first introduced in [Pau1] for d ≥ 7, and was extended for d ≥ 5 in [START_REF] Miao | Scattering theory below energy for the cubic fourth-order Schrödinger equation[END_REF]. As a byproduct of Strichartz estimates and the I-method, we show global well-posedness for (dNL4S) in H γ (R d ) for any γ(d) < γ < 2, where γ(5) = 8 5 , γ(6) = 5 3 and γ(7) = 13 7 . However, this result is not new since one has a better result due to Pausader-Shao in [START_REF] Pausader | The mass-critical fourth-order Schrödinger equation in higher dimensions[END_REF]. In [START_REF] Pausader | The mass-critical fourth-order Schrödinger equation in higher dimensions[END_REF], the authors proved the global well-posedness for (dNL4S) with initial data in
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They also proved that the solution satisfies the uniform bound

u L 2+ 8 d (R,L 2+ 8 d ) ≤ C( ψ L 2 ).
With this uniform bound, the persistence of regularity shows the global well-posedness for (dNL4S) in H γ (R d ) for any 0 < γ < 2 satisfying (0.0.23).

In the last chapter, we consider the focusing nonlinear fourth-order Schrödinger equation

i∂ t u + ∆ 2 u = |u| 8 d u, u(0) = ψ. ( fNL4S 
)
The main goal of this chapter is to study dynamical properties such as L 2 -concentration, limiting profile with minimal mass, ... for low regularity blowup solutions. The study of blowup solutions is closely related to the notion of ground states of (fNL4S) which are solutions to the elliptic equation

∆ 2 Q + Q -|Q| 8 d Q = 0. (0.0.24)
This elliptic equation is obtained by considering solitary solutions (standing waves) of (fNL4S) of the form u(t, x) = e -it Q(x). The existence of solutions to (0.0.24) was proved in [START_REF] Zhu | Limiting profile of the blow-up solutions for the fourthorder nonlinear Schrödinger equation[END_REF], but the uniqueness still remains open. In the case ψ L 2 < Q L 2 , using the sharp Gagliardo-Nirenberg inequality

u 2+ 8 d L 2+ 8 d ≤ C(d) u 8 d L 2 ∆u 2 L 2 , C(d) = 1 + 4 d Q 8 d L 2
, together with the conservation of energy, it is easy to see that (fNL4S) is globally well-posed in H 2 . Moreover, Fibich-Ilan-Papanicolaou in [START_REF] Fibich | Self-focusing with fourth-order dispersion[END_REF] provided some numerical observations showing that the H 2 solution to (fNL4S) may blow up if the initial data satisfies

ψ L 2 ≥ Q L 2 .
Recently, Boulenger-Lenzmann in [START_REF] Boulenger | Blowup for biharmonic NLS[END_REF] showed the existence of radial blowup solutions to (fNL4S). More precisely, the authors proved that for any negative radial initial data ψ in H 2 , the corresponding solution u(t) either blows up in finite time or blows up infinite time and satisfies

u(t) Ḣ2 ≥ Ct 2 , ∀t ≥ t 0 ,
with some constant C = C(ψ) > 0 and t 0 = t 0 (ψ) > 0. Baruch-Fibich-Mandelbaum in [START_REF] Baruch | Singular solutions of the biharmonic nonlinear Schrödinger equation[END_REF] proved some dynamical properties of radially symmetric blowup solutions such as blowup rate, L 2 -concentration. Later, Zhu-Yang-Zhang in [START_REF] Zhu | Limiting profile of the blow-up solutions for the fourthorder nonlinear Schrödinger equation[END_REF] removed the radially symmetric assumption and established the profile decomposition, the existence of ground states for the elliptic equation (0.0.24) and the following concentration compactness lemma for (fNL4S): for any bounded sequence

(v n ) n≥1 of H 2 functions satisfying lim sup n→∞ ∆v n L 2 ≤ M and lim sup n→∞ v n L 2+ 8 d ≥ m, there exists a sequence (x n ) n≥1 of R d such that up to a subsequence v n (• + x n ) V weakly in H 2 as n → ∞, with V 8 d L 2 ≥ Q 8 d L 2 m 2+ 8 d (1+ 4 d )M 2 ,
where Q is the solution to the elliptic equation (0.0.24). Consequently, the authors in [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF] used the I-method and the compactness lemma to establish the limiting profile and the L 2 -concentration for (fNL4S) with initial data in H γ (R 4 ), 9+ √ 721 20 < γ < 2. In Chapter 7, we aim to lower the required regularity of [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF] in the fourth dimensional case and to extend the result of [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF] to higher dimensions d ≥ 5.

In the case d = 4, we make use of the I-method which is essentially established in Chapter 6. This allows us to show dynamical properties of blowup solutions in H γ (R 4 ) with 67+ 2. This is an improvement of the result of [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF].

In the case d ≥ 5, we also make use of the I-method used in Chapter 6. As mentioned above, due to the high-order term ∆ 2 u, we need the nonlinearity to have at least two orders of derivatives in order to successfully establish the energy increment. We thus restrict ourself in spatial space of dimensions d = 5, 6 and 7. With the help of the I-method, we are able to study dynamical properties of blowup solutions in H γ (R d ) with d = 5, 6, 7 and 56-3d+

√ 137d 2 +1712d+3136 2(2d+32) < γ < 2.

Notations:

Throughout this thesis, we will use the following notations. The various constant will be denoted by C. The constants with subscripts C 1 , C 2 , ... will be used when we need to compare them to one another. The notation A B means that there exists a universal constant C > 0 such that A ≤ CB. The notation A ∼ B means A B and B A. We also use the Japanese bracket a := 1 + |a| 2 ∼ 1 + |a| and a± := a ± with some universal constant 0 < 1. For Banach spaces X and Y , the notation • X→Y denotes the operator norm from X to Y . The one

T = O X→Y (A) means that T X→Y A.
Part I

Strichartz estimates for Schrödinger-type equations on manifolds

In this chapter, we derive Strichartz estimates for the inhomogeneous linear Schrödinger-type equations

i∂ t u(t, x) + |∇| σ u(t, x) = F (t, x), (t, x) ∈ R × R d , u(0, x) = ψ(x), x ∈ R d , (LST)
where σ ∈ (0, ∞) and |∇| σ is the Fourier multiplier by |ξ| σ . To do so, let us first recall the abstract T T -criterion due to Keel-Tao [START_REF] Keel | Endpoint Strichartz estimates[END_REF]. Theorem 1.0.1 (T T -criterion). Let (X, dx) be a measure space and H a Hilbert space. Suppose for each time t ∈ R, an operator T (t) : H → L 2 (X) which obeys:

1. For all t ∈ R and all f ∈ H,

T (t)f L 2 (X) f H . (1.0.1)
2. There exists δ > 0 so that one of the following decay estimates holds for all g ∈ L 1 (X),

T (t)T (s) g L ∞ (X) |t -s| -δ g L 1 (X) , ∀t = s, (1.0.2) T (t)T (s) g L ∞ (X) (1 + |t -s|) -δ g L 1 (X) , ∀t, s ∈ R. (1.0.3)
If T (t) obeys (1.0.1) and (1.0.2), then the estimates

T (t)f L p (R,L q (X)) f H , (1.0.4) T (s) F (s)ds H F L p (R,L q (X)) , (1.0.5) s<t T (t)T (s) F (s)ds L p (R,L q (X)) F L a (R,L b (X)) , (1.0.6)
hold for all sharp δ-admissible pairs (p, q) and (a, b), i.e.

(p, q) ∈ [2, ∞] 2 , (p, q, δ) = (2, ∞, 1), 1 p + δ q = δ 2 .
Furthermore, if T (t) obeys (1.0.1) and (1.0.3), then (1.0.4), (1.0.5) and (1.0.6) hold for all δ-admissible pairs (p, q) and (a, b), i.e.

(p, q) ∈ [2, ∞] 2 , (p, q, δ) = (2, ∞, 1), 1 p + δ q ≤ δ 2 .
Here (p, p ) is a conjugate pair, and similarly for (q, q ), (a, a ) and (b, b ).

To our knowledge, there are two ways to derive Strichartz estimates for (LST). One way is to use directly dispersive and energy estimates as for the linear Schrödinger equation, i. From this, we obtain the following dispersive estimate

e -it∆ ψ L ∞ |t| -d 2 ψ L 1 .
In the case σ = 2, it is not clear that one can compute the Schwartz kernel of e it|∇| σ , and thus dispersive estimates for e it|∇| σ are not obtained directly. Another way is to decompose the solution in dyadic pieces and use the scaling technique to reduce to estimates at frequency one. Since (LST) enjoys a scaling invariance in the frequency space, it allows us to use the scaling technique. Before entering some details, let us introduce some standard notations (see

[GV85, Appendix], [Tri83, Chapter 5] or [BL76, Chapter 6]). Let 1 χ 0 ∈ C ∞ 0 (R d ) be such that χ 0 (ξ) = 1 for |ξ| ≤ 1 and supp(χ 0 ) ⊂ {ξ ∈ R d , |ξ| ≤ 2}. We set χ(ξ) := χ 0 (ξ) -χ 0 (2ξ). It is easy to see that χ ∈ C ∞ 0 (R d ) and supp(χ) ⊂ {ξ ∈ R d , 1/2 ≤ |ξ| ≤ 2}.
We denote the Littlewood-Paley projections by P 0 := χ 0 (D),

P N := χ(N -1 D) with N = 2 k , k ∈ Z where χ 0 (D), χ(N -1 D) are
Fourier multipliers by χ 0 (ξ) and χ(N -1 ξ) respectively. Given γ ∈ R and 1 ≤ q ≤ ∞, the generalized inhomogeneous Sobolev H γ q and Besov B γ q spaces are defined respectively as closures of the Schwartz space S under the norms

u H γ q := ∇ γ u L q , ∇ := √ 1 -∆, u B γ q := P 0 u L q + N ∈2 N N 2γ P N u 2 L q 1/2
, where ∆ is the free Laplace operator on R d . Now, let S 0 be a subspace of S consisting of functions φ satisfying D α φ(0) = 0 for all α ∈ N d , where • is the Fourier transform on S . The generalized homogeneous Sobolev and Besov spaces are defined respectively as closures of S 0 under the norms

u Ḣγ q := |∇| γ u L q , u Ḃγ q := N ∈2 Z N 2γ P N u 2 L q 1/2 .
We again refer the reader to [GV85, Appendix], [START_REF] Triebel | Theory of function spaces[END_REF]Chapter 5] or [START_REF] Bergh | Interpolation spaces[END_REF]Chapter 6] for various properties of these function spaces. It is easy to see that the spaces B γ q and Ḃγ q do not depend on the choice of χ 0 . Note that H γ q , B γ q , Ḣγ q and Ḃγ q are Banach spaces with the norms u H γ q , u B γ q , u Ḣγ q and u Ḃγ q respectively. In the sequel, we shall use H γ := H γ 2 , Ḣγ := Ḣγ 2 . By the Littlewood-Paley theorem, we see that if 2 ≤ q < ∞, then Ḃγ q ⊂ Ḣγ q with the reverse inclusion for 1 < q ≤ 2. In particular, Ḃγ 2 = Ḣγ and Ḃ0 2 = Ḣ0 2 = L 2 . Moreover, if γ > 0, then H γ q = L q ∩ Ḣγ q and B γ q = L q ∩ Ḃγ q .

Strichartz estimates for Schrödinger-type equations

Throughout this thesis, we denote for (p,

q) ∈ [1, ∞] 2 , γ p,q = d 2 - d q - σ p .
(1.0.7)
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Let σ ∈ (0, ∞)\{1} and consider the inhomogeneous linear Schrödinger-type equations on 

R d , d ≥ 1, i∂ t u(t, x) + |∇| σ u(t, x) = F (t, x), (t, x) ∈ R × R d , u(0, x) = ψ(x), x ∈ R d , (LST)
u(t) = e it|∇| σ ψ -i t 0 e i(t-s)|∇| σ F (s)ds. (1.1.1)
The purpose of this section is to derive Strichartz estimates for the (LST). To do so, we introduce the following admissible condition. Definition 1.1.1. A pair (p, q) is said to be Schrödinger admissible if

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 2), 2 p + d q ≤ d 2 . (1.1.2) Theorem 1.1.2. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ∈ R.
If u is a solution to the (LST) for some data ψ, F , then for all (p, q) and (a, b) Schrödinger admissible pairs,

u L p (R, Ḃγ q ) ψ Ḣγ+γp,q + F L a (R, Ḃγ+γp,q-γ a ,b -σ b ) , (1.1.3)
where γ p,q and γ a ,b are as in (1.0.7). In particular,

u L p (R, Ḃγ-γp,q q ) ψ Ḣγ + F L 1 (R, Ḣγ ) , (1.1.4) and u L ∞ (R, Ḃγp,q 2 ) + u L p (R, Ḃ0 q ) ψ Ḣγp,q + F L a (R, Ḃ0 b ) , (1.1.5) provided that γ p,q = γ a ,b + σ. (1.1.6)
Here (a, a ) and (b, b ) are conjugate pairs.

Proof. We first note that the Minkowski inequality with p, q ≥ 2 gives

u L p (R, Ḃγ q ) N ∈2 Z N 2γ P N u 2 L p (R,L q ) 1/2
.

(1.1.7)
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Therefore, the theorem is proved if we establish

e it|∇| σ P 1 ψ L p (R,L q ) P 1 ψ L 2 , (1.1.8) t 0 e i(t-s)|∇| σ P 1 F (s)ds L p (R,L q ) P 1 F L a (R,L b ) , (1.1.9)
for all (p, q), (a, b) Schrödinger admissible pairs. Indeed, by change of variables, we see that

e it|∇| σ P N ψ L p (R,L q ) = N -(d/q+σ/p) e it|∇| σ P 1 ψ N L p (R,L q ) , P 1 ψ N L 2 = N d/2 P N ψ L 2 ,
where ψ N (x) = ψ(N -1 x). To see this, we write

e it|∇| σ P N ψ(t, x) = (2π) -d e ixξ e it|ξ| σ χ(N -1 ξ) ψ(ξ)dξ = (2π) -d e iN xξ e itN σ |ξ| σ χ(ξ) ψ N (ξ)dξ = e it|∇| σ P 1 ψ N (N σ t, N x),
where ψ N (x) := ψ(N -1 x). The estimate (1.1.8) implies that

e it|∇| σ P N ψ L p (R,L q ) N γp,q P N ψ L 2 , (1.1.10) for all N ∈ 2 Z . Similarly, t 0 e i(t-s)|∇| σ P N F (s)ds L p (R,L q ) = N -(d/q+σ/p+σ) t 0 e i(t-s)|∇| σ P 1 F N (s)ds L p (R,L q )
, where F N (t, x) = F (N -σ t, N -1 x). We also have from (1.1.9) and the fact

P 1 F N L a (R,L b ) = N (d/b +σ/a ) P N F L a (R,L b ) that t 0 e i(t-s)|∇| σ P N F (s)ds L p (R,L q ) N γp,q-γ a ,b -σ P N F L a (R,L b ) , (1.1.11)
for all N ∈ 2 Z . We see from (1.1.10) and (1.1.11) that

N γ P N u L p (R,L q ) N γ+γp,q P N ψ L 2 + N γ+γp,q-γ a ,b -σ P N F L a (R,L b ) .
By taking the 2 (2 Z ) norm both sides and using (1.1.7), we get (1.1.3). The estimate (1.1.4) follows from (1.1.3) by taking γ = γ -γ p,q and (a, b) = (∞, 2). The estimate (1.1.5) follows again from (1.1.3) by taking (p, q) = (∞, 2) with γ = γ p,q and γ = 0. Let us prove (1.1.8) and (1.1.9). By the T T * -criterion given in Theorem 1.0.1, we need to show

T (t) L 2 →L 2 1, (1.1.12) T (t) L 1 →L ∞ (1 + |t|) -d/2 , (1.1.13)
for all t ∈ R where T (t) := e it|∇| σ P 1 . The energy estimate (1.1.12) is obvious by using the Plancherel theorem. It remains to prove the dispersive estimate (1.1.13). To do this, we first write the kernel of T (t) as

K(t, x, y) = (2π) -d R d e i((x-y)•ξ-t|ξ| σ ) χ(ξ)dξ.
The estimate (1.1.13) is then in turn equivalent to

|K(t, x, y)| (1 + |t|) -d/2 , (1.1.14)
for all t ∈ R and all x, y ∈ R d . We only prove (1.1.14) for t ≥ 0, the case t < 0 is similar. Thanks to the compact support of χ, we have |K(t, x, y)| 1, ∀t ∈ R, x, y ∈ R d . In the case 0 ≤ t ≤ C for some constant C > 0 large enough, we have

|K(t, x, y)| 1 (1 + t) -d/2 , ∀x, y ∈ R d .
In the case t ≥ C, we rewrite

K(t, x, y) = (2π) -d R d e itΦ(t,x,y,ξ) χ(ξ)dξ, where Φ(t, x, y, ξ) = (x -y) • ξ/t -|ξ| σ . If |x -y|/t ≥ C 1 for some constant C 1 > 0 large enough, then using that σ = 1 and 1/2 ≤ |ξ| ≤ 2, we have |∇ ξ Φ(t, x, y, ξ)| ≥ |x -y|/t -σ|ξ| σ-1 ≥ C > 0.
The non stationary phase theorem implies that for all N ≥ 0,

|K(t, x, y)| t -N (1 + t) -d/2 , for all t ≥ C and all x, y ∈ R d satisfying |x -y|/t ≥ C 1 provided that N is taken larger than d/2.
A similar result holds with |x -y|/t ≤ C 2 for some constant C 2 > 0 small enough.

We can now assume that

C 2 ≤ |x -y|/t ≤ C 1 . (1.1.15)
We have

∇ 2 ξ Φ(t, x, y, ξ) = -σ|ξ| σ-2 I R d + (σ -2) ξ • ξ T |ξ| 2 .
This implies that

| det ∇ 2 ξ Φ| = σ d |σ -1||ξ| (σ-2)d ≥ C > 0. Thus, the map ξ → ∇ ξ Φ from a neighborhood of {ξ ∈ R d , 1/2 ≤ |ξ| ≤ 2} to
its range is a local diffeomorphism. The stationary phase theorem then implies that

|K(t, x, y)| t -d/2 (1 + t) -d/2 ,
for all t ≥ C and all x, y ∈ R d satisfying (1.1.15). This completes the proof.

We next give some applications of Strichartz estimates given in Theorem 1.1.2.

Corollary 1.1.3. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ∈ R.
If u is a solution to the (LST) for some data ψ, F , then for all (p, q) and (a, b) Schrödinger admissible with q < ∞ and b < ∞ satisfying (1.1.6),

u L p (R, Ḣγ-γp,q q ) ψ Ḣγ + F L 1 (R, Ḣγ ) , (1.1.16) u L ∞ (R, Ḣγp,q ) + u L p (R,L q ) ψ Ḣγp,q + F L a (R,L b ) . (1.1.17) Corollary 1.1.4. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ≥ 0 and I a bounded interval.
If u is a solution to the (LST) for some data ϕ, F , then for all (p, q) Schrödinger admissible satisfying q < ∞,

u L p (I,H γ-γp,q q ) ψ H γ + F L 1 (I,H γ ) . (1.1.18)
Proof. We first note that when γ p,q ≥ 0 (or at least σ ∈ (0, 2]\{1}), we can obtain (1.1.18) for any γ ∈ R and I = R. To see this, we write u L p (R,H γ-γp,q q ) = ∇ γ-γp,q u L p (R,L q ) and use (1.1.16)
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with γ = γ p,q to obtain

u L p (R,H γ-γp,q q ) ∇ γ-γp,q ψ Ḣγp,q + ∇ γ-γp,q F L 1 (R, Ḣγp,q ) .
This gives the claim since v Ḣγp,q ≤ v H γp,q using that γ p,q ≥ 0. It remains to treat the case γ p,q < 0. By the Minkowski inequality and the unitarity of e it|∇| σ in L 2 , the estimate (1.1.18) is proved if we can show for γ ≥ 0, I ⊂ R a bounded interval and all (p, q) Schrödinger admissible with q < ∞ that

e it|∇| σ ψ L p (I,H γ-γp,q q ) ψ H γ . (1.1.19) Indeed, if we have (1.1.19), then t 0 e i(t-s)|∇| σ F (s)ds L p (I,H γ-γp,q q ) ≤ I 1 [0,t] (s)e i(t-s)|∇| σ F (s) L p (I,H γ-γp,q q ) ds ≤ I e i(t-s)|∇| σ F (s) L p (I,H γ-γp,q q ) ds I F (s) H γ ds = F L 1 (I,H γ ) .
We now prove (1.1.19). To do so, we write

∇ γ-γp,q e it|∇| σ ψ = ω(D) ∇ γ-γp,q e it|∇| σ ψ + (1 -ω)(D) ∇ γ-γp,q e it|∇| σ ψ, for some ω ∈ C ∞ 0 (R d ) valued in [0, 1]
and equal to 1 near the origin. Here ω(D) is the Fourier multiplier by ω(ξ). For the first term, the Sobolev embedding implies

ω(D) ∇ γ-γp,q e it∇ σ ψ L q ω(D) ∇ γ-γp,q e it∇ σ ψ H δ ,
for some δ > d/2 -d/q. Thanks to the support of ω and the unitary property of e it∇ σ in L 2 , we get

ω(D) ∇ γ-γp,q e it|∇| σ ψ L p (I,L q ) ψ L 2 ψ H γ .
Here the boundedness of I is crucial to have the first estimate. For the second term, using (1.1.17), we obtain

(1 -ω)(D) ∇ γ-γp,q e it|∇| σ ψ L p (I,L q ) (1 -ω)(D) ∇ γ-γp,q ψ Ḣγp,q ψ H γ .
Combining the two terms, we have (1.1.19). This completes the proof.

Another application of Strichartz estimates for the (LST) is the following Strichartz estimates for the following inhomogeneous linear wave-type equations,

∂ 2 t v(t, x) + (-∆) σ v(t, x) = G(t, x), (t, x) ∈ R × R d , v(0, x) = ψ(x), ∂ t v(0, x) = φ(x), x ∈ R d . (LWT) Corollary 1.1.5. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ∈ R.
If v is a solution to the (LWT) for some data ψ, φ, G, then for all (p, q) and (a, b) Schrödinger admissible pairs,

[v] L p (R, Ḃγ q ) [v](0) Ḣγ+γp,q + G L a (R, Ḃγ+γp,q-γ a ,b -2σ b ) , (1.1.20)
where

[v] L p (R, Ḃγ q ) := v L p (R, Ḃγ q ) + ∂ t v L p (R, Ḃγ-σ q ) , [v](0) Ḣγ+γp,q := ψ Ḣγ+γp,q + φ Ḣγ+γp,q-σ .
In particular,

[v] L p (R, Ḃγ-γp,q q ) [v](0) Ḣγ + G L 1 (R, Ḣγ-σ ) , (1.1.21) and [v] L ∞ (R, Ḃγp,q 2 ) + [v] L p (R, Ḃ0 q ) [v](0) Ḣγp,q + G L a (R, Ḃ0 b ) , (1.1.22) provided that γ p,q = γ a ,b + 2σ. (1.1.23)
Proof. By Duhamel's formula, the solution to (LWT) is given by

v(t) = cos(t|∇| σ )ψ + sin(t|∇| σ ) |∇| σ φ + t 0 sin((t -s)|∇| σ ) |∇| σ G(s)ds.
The desired estimates follow easily from Theorem 1.1.2 and the fact that

cos(t|∇| σ ) = e it|∇| σ + e -it|∇| σ 2 , sin(t|∇| σ ) = e it|∇| σ -e -it|∇| σ 2i .
As in Corollary 1.1.3, we have the following usual Strichartz estimates for fractional wave equations.

Corollary 1.1.6. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ∈ R. If v is a solution to the (LWT) for some data ψ, φ, G, then for all (p, q) and (a, b) Schrödinger admissible satisfying q < ∞, b < ∞ and (1.1.23), v L p (R, Ḣγ-γp,q q ) [v](0) Ḣγ + G L 1 (R, Ḣγ-σ ) , (1.1.24) [v] L ∞ (R, Ḣγp,q ) + v L p (R,L q ) [v](0) Ḣγp,q + G L a (R,L b ) . (1.1.25)
The following result, which is similar to Corollary 1.1.4, gives the local Strichartz estimates for the fractional wave equation. Corollary 1.1.7. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ≥ 0 and I ⊂ R a bounded interval. If v is a solution to the inhomogeneous linear wave-type equation for some data ψ, φ, G, then for all (p, q) Schrödinger admissible satisfying q < ∞,

v L p (I,H γ-γp,q q ) [v](0) H γ + G L 1 (I,H γ-σ ) .
(1.1.26)

Proof. The proof is similar to the one of Corollary 1.1.4. Thanks to the Minkowski inequality, it suffices to prove for all γ ≥ 0, all I ⊂ R bounded interval and all (p, q) Schrödinger admissible pair with q < ∞,

cos(t|∇| σ )ψ L p (I,H γ-γp,q q ) ψ H γ , (1.1.27) sin(t|∇| σ ) |∇| σ φ L p (I,H γ-γp,q q ) φ H γ-σ . (1.1.28)
The estimate (1.1.27) follows from the ones of e ±it|∇| σ . We will give the proof of (1.1.28). To do this, we write

∇ γ-γp,q sin(t|∇| σ ) |∇| σ = ω(D) ∇ γ-γp,q sin(t|∇| σ ) |∇| σ + (1 -ω)(D) ∇ γ-γp,q sin(t|∇| σ ) |∇| σ ,
for some ω as in the proof of Corollary 1.1.4. For the first term, the Sobolev embedding and the
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fact sin(t|∇| σ ) |∇| σ L 2 →L 2 ≤ |t| imply ω(D) ∇ γ-γp,q sin(t|∇| σ ) |∇| σ φ L q |t| ω(D) ∇ γ+δ-γp,q φ L 2 ,
for some δ > d/2 -d/q. This gives

ω(D) ∇ γ-γp,q sin(t|∇| σ ) |∇| σ φ L p (I,L q ) φ H γ-σ .
Here we use that ω(D) ∇ δ+σ-γp,q L 2 →L 2

1. For the second term, we apply (1.1.19) with the fact sin(t|∇| σ ) = (e it|∇| σ -e -it|∇| σ )/2i and get

(1 -ω)(D) ∇ γ-γp,q sin(t|∇| σ ) |∇| σ φ L p (I,L q ) (1 -ω)(D)|∇| -σ φ H γ φ H γ-σ .
Here we also use that (

1 -ω)(D) ∇ σ |∇| -σ L 2 →L 2
1 by functional calculus. Combining two terms, we have (1.1.28). The proof is complete.
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Let us now consider the inhomogeneous linear half-wave equation, namely

i∂ t u(t, x) + |∇|u(t, x) = F (t, x), (t, x) ∈ R × R d , u(0, x) = ψ(x), x ∈ R d . (LHW)
As for the (LST), the solution of (LHW) is given in terms of the Duhamel formula as

u(t, x) = e it|∇| ψ -i t 0 e i(t-s)|∇| F (s)ds. (1.2.1)
In order to state Strichartz estimates for the (LHW), we introduce some notations. Definition 1.2.1. A pair (p, q) is said to be wave admissible if ]). Let d ≥ 2, γ ∈ R and u be a solution to the (LHW), for some data ψ, F . Then for all (p, q) and (a, b) wave admissible pairs,

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 3), 2 p + d -1 q ≤ d -1 2 . Theorem 1.2.2 ([BCD11], [KT98], [ KTV14 
u L p (R, Ḃγ q ) ψ Ḣγ+γp,q + F L a (R, Ḃγ+γp,q-γ a ,b -1 q ) , (1.2.2)
where γ p,q and γ a ,b are as in (1.0.7) with σ = 1. In particular,

u L p (R, Ḃγ-γp,q q ) ψ Ḣγ + F L 1 (R, Ḣγ ) , (1.2.3) and u L ∞ (R, Ḃγp,q 2 ) + u L p (R, Ḃ0 q ) ψ Ḣγp,q + F L a (R, Ḃ0 b ) , (1.2.4) provided that γ p,q = γ a ,b + 1. (1.2.5)
Here (a, a ) and (b, b ) are conjugate pairs.

The proof of this result is based on the following spherical Fourier transform (see e.g. [START_REF] Wolff | Lectures on Harmonic Analysis[END_REF]). Lemma 1.2.3 (Spherical Fourier Transform). Let σ be the hyper-surface measure of the sphere S d-1 . Then, the spherical Fourier transform

σ(ξ) = S d-1 e -iξ•θ dσ(θ) satisfies |σ(|ξ|)| |ξ| -d-1 2 , for ξ ∈ R d with |ξ| large.
Proof. Let us recall the fact that for any A an invertible linear maps from R d to itself, we have

f • A = 1 | det A| f • (A T ) -1 ,
where A T is the transpose matrix of A. In particular, if A is an orthogonal transformation, i.e.

AA t = I R d , then f • A = f • A.
From this and the facts that σ is invariant by orthogonal transformations and orthogonal transformations act transitively on S d-1 , we have σ is radial. Moreover, σ is smooth. It then suffices to prove for ξ = |ξ|e d , where e d = (0, ..., 0, 1). We first choose an atlas on S d-1 as follows:

(U ± j , B(0, 1), κ ± j ) d j=1 where U ± j = (x 1 , ..., x j , ..., x d ) ∈ S d-1 , ±x j > 0 , and B(0, 1) is the open unit ball in R d-1 and κ ± j : U ± j ⊂ S d-1 → B(0, 1) ∈ R d-1 (x 1 , ..., x j , ..., x d ) → (x 1 , ..., x j-1 , x j+1 , ..., x d ).
Let (φ ± j ) d j=1 be a partition of unity associated to (U ± j ) d j=1 . We can write

σ(ξ) = d j=1 U + j e -i|ξ|e d •θ φ + j (θ)dσ(θ) + U - j e -i|ξ|e d •θ φ - j (θ)dσ(θ) .
We separate this quantity into two terms. The first term is for the sum over j = 1 to d -1 and second term for j = d. For the first term, we treat for j = 1 only, the other ones are treated similarly. By writing

κ ± 1 -1 : B(0, 1) ∈ R d-1 → U ± 1 ⊂ S d-1 z = (z 1 , ..., z d-1 ) → ± 1 -|z| 2 , z , we have U + 1 e -i|ξ|e d •θ φ + 1 (θ)dσ(θ) + U - 1 e -i|ξ|e d •θ φ - 1 (θ)dσ(θ) equals to B(0,1) e -i|ξ|z d-1 φ + 1 ( 1 -|z| 2 , z) dz 1 -|z| 2 + B(0,1) e -i|ξ|z d-1 φ - 1 (-1 -|z| 2 , z) dz 1 -|z| 2 .
We see that in above integrals, the phases are non stationary, thus the first term can be bounded by |ξ| -N for all N ≥ 0. For the second term, we process as above and it equals to

B(0,1) e -i|ξ| √ 1-|z| 2 φ + d (z, 1 -|z| 2 ) dz 1 -|z| 2 + B(0,1) e i|ξ| √ 1-|z| 2 φ - d (z, -1 -|z| 2 ) dz 1 -|z| 2 .
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The phase function 1 -|z|2 has only one critical point at zero and we have

∂ 2 zj z k 1 -|z| 2 =    -1 √ 1-|z| 2 - z 2 j √ 1-|z| 2 3 when j = k, - zj z k √ 1-|z| 2 3
when j = k, for all j, k = 1, ..., d -1. This implies the Hessian of 1 -|z| 2 at zero is -I R d-1 , so is invertible. We can apply the stationary phase theorem and the second term can be bounded by |ξ| -d-1 2 . Combining the two terms, we have the result.

Proof of Theorem 1.2.2. As in the proof of Theorem 1.1.2, using

e it|∇| P N ψ L p (R,L q ) = N -(d/q+1/p) e it|∇| P 1 ψ N L p (R,L q ) , P 1 ψ N L 2 = N d/2 P N ψ L 2 , t 0 e i(t-s)|∇| P N F (s)ds L p (R,L q ) = N -(d/q+1/p+1) t 0 e i(t-s)|∇| P 1 F N (s)ds L p (R,L q ) , P 1 F N L a (R,L b ) = N (d/b +1/a ) P N F L a (R,L b ) , where ψ N (x) = ψ(N -1 x) and F N (t, x) = F (N -1 t, N -1 x), the theorem is proved if we have e it|∇| P 1 ψ L p (R,L q ) P 1 ψ L 2 , (1.2.6) t 0 e i(t-s)|∇| P 1 F (s)ds L p (R,L q ) P 1 F L a (R,L b ) , (1.2.7) 
for all (p, q), (a, b) wave admissible pairs. By the T T -criterion, it suffices to prove

T (t) L 2 →L 2 1, (1.2.8) T (t) L 1 →L ∞ (1 + |t|) -(d-1)/2 , (1.2.9)
for all t ∈ R where T (t) = e it|∇| P 1 . The energy estimate (1.2.8) again follows from the Plancherel theorem. We need to prove (1.2.9). To do so, we write the integral kernel of T (t) as 2

K(t, x, y) = (2π) -d R d e i((x-y)•ξ+t|ξ|) χ(|ξ|)dξ.
Since χ is compactly supported, we have for all t ∈ R,

|K(t, x, y)| ≤ C, for some constant C > 0. It implies the required estimate if |t| is small. Indeed, if |t| ≤ C for some fixed C > 0 large, then 1 + |t| ≤ (1 + C ) or (1 + |t|) -d-1 2 ≥ (1 + C ) -d-1 2 C. Thus, we can assume that |t| ≥ C . The phase function Φ(t, x, y, ξ) = (x -y) • ξ + t|ξ| satisfies ∇ ξ Φ(t, x, y, ξ) = (x -y) + t ξ |ξ| .
We remark that ∇ ξ Φ = 0 only if |x -y| = |t| and the critical points of Φ lie on a line, hence are not isolated. So, the stationary phase theorem can not be applied directly. To overcome this difficulty, we use the polar coordinates, i.e. ξ = rθ with r ∈ (0, +∞) and θ ∈ S d-1 . The kernel reads

K(t, x, y) = (2π) -d +∞ 0 S d-1
e ir((x-y)•θ+t) χ(r)r d-1 drdσ(θ).
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If |t| ≥ 2|x -y|, then the phase is non stationary. By integration by parts with respect to r together with the fact

∂ r e ir((x-y)•θ+t) = i((x -y) • θ + t)e ir((x-y)•θ+t) .
We have for all N ≥ 0,

+∞ 0 e ir((x-y)•θ+t) χ(r)r d-1 dr = 1 (i((x -y) • θ + t)) N +∞ 0 e ir((x-y)•θ+t) (-∂ r ) N (χ(r)r d-1 )dr |(x -y) • θ + t| -N ≤ 2 N |t| -N (1 + |t|) -N .
If |t| ≤ 2|x -y|, we can write the kernel

K(t, x, y) = (2π) -d +∞ 0 e irt σ(r(y -x))χ(r)r d-1 dr.
Using Lemma 1.2.3 we see that

|K(t, x, y)| ≤ (2π) -d +∞ 0 |r(y -x)| -d-1 2 χ(r)r d-1 dr,
Since χ is compactly supported, we have

|K(t, x, y)| |x -y| -d-1 2 |t| -d-1 2 (1 + |t|) -d-1 2 .
Combine two cases, we have

|K(t, x, y)| (1 + |t|) -d-1
2 and this proves (1.2.9). The proof is complete. Corollary 1.2.4. Let d ≥ 2 and γ ∈ R. If u is a solution to the (LHW) for some data ψ, F , then for all (p, q) wave admissible satisfying q < ∞,

u L p (R,H γ-γp,q q ) ψ H γ + F L 1 (R,H γ ) .
(1.2.10)

Proof. We first remark that (1.2.3) together with the Littlewood-Paley theorem yield for any (p, q) wave admissible satisfying q < ∞,

u L p (R, Ḣγ-γp,q q ) u 0 Ḣγ + F L 1 (R, Ḣγ ) . (1.2.11)
We next write u L p (R,H γ-γp,q q ) = ∇ γ-γp,q u L p (R,L q ) and apply (1.2.11) with γ = γ p,q to get

u L p (R,H γ-γp,q q ) ∇ γ-γp,q u 0 Ḣγp,q + ∇ γ-γp,q F L 1 (R, Ḣγp,q ) .
The estimate (1.2.10) then follows by using the fact that γ p,q > 0 for all (p, q) is wave admissible satisfying q < ∞.

Another consequence of Theorem 1.2.2 is the following Strichartz estimates for the following inhomogeneous linear wave equation,

∂ 2 t v(t, x) -∆v(t, x) = G(t, x), (t, x) ∈ R × R d , v(0, x) = ψ(x), ∂ t v(0, x) = φ(x), x ∈ R d . (LWE) Corollary 1.2.5. Let d ≥ 2, γ ∈ R.
If v is a solution to the (LWE) for some data ψ, φ, G, then for all (p, q) and (a, b) wave admissible pairs,

[v] L p (R, Ḃγ q ) [v](0) Ḣγ+γp,q + G L a (R, Ḃγ+γp,q-γ a ,b -2 b ) , (1.2.12)
where

[v] L p (R, Ḃγ q ) := v L p (R, Ḃγ q ) + ∂ t v L p (R, Ḃγ-1 q ) , [v](0) Ḣγ+γp,q := ψ Ḣγ+γp,q + φ Ḣγ+γp,q-1 .
In particular,

[v] L p (R, Ḃγ-γp,q q ) [v](0) Ḣγ + G L 1 (R, Ḣγ-1 ) , (1.2.13)
and

[v] L ∞ (R, Ḃγp,q 2 ) + [v] L p (R, Ḃ0 q ) [v](0) Ḣγp,q + G L a (R, Ḃ0 b ) , (1.2.14)
provided that

γ p,q = γ a ,b + 2. (1.2.15)
Proof. By Duhamel's formula, the solution to (LWE) is given by

v(t) = cos(t|∇|)ψ + sin(t|∇|) |∇| φ + t 0 sin((t -s)|∇|) |∇| G(s)ds.
The desired estimates follow easily from Theorem 1.2.2 and the fact that

cos(t|∇|) = e it|∇| + e -it|∇| 2 , sin(t|∇|) = e it|∇| -e -it|∇| 2i .
As in Corollary 1.2.4, we have the following usual Strichartz estimates for the inhomogeneous linear wave equation. Corollary 1.2.6. Let d ≥ 1, γ ∈ R. If v is a solution to the (LWE) for some data ψ, φ, G, then for all (p, q) and (a, b) wave admissible satisfying q < ∞, b < ∞ and (1.2.15),

v L p (R, Ḣγ-γp,q q ) [v](0) Ḣγ + G L 1 (R, Ḣγ-1 ) , (1.2.16) [v] L ∞ (R, Ḣγp,q ) + v L p (R,L q ) [v](0) Ḣγp,q + G L a (R,L b ) .
(1.2.17)

The following result, which is similar to Corollary 1.1.4, gives local Strichartz estimates for the inhomogeneous linear wave equation. Corollary 1.2.7. Let d ≥ 1, γ ≥ 0 and I ⊂ R a bounded interval. If v is a solution to the (LWE) for some data ψ, φ, G, then for all (p, q) wave admissible satisfying q < ∞,

v L p (I,H γ-γp,q q ) [v](0) H γ + G L 1 (I,H γ-1 ) .
(1.2.18)

Proof. The proof is similar to the one of Corollary 1.1.7. Thanks to the Minkowski inequality, it suffices to prove for all γ ≥ 0, all I ⊂ R bounded interval and all (p, q) wave admissible pair with q < ∞,

cos(t|∇|)ψ L p (I,H γ-γp,q q ) ψ H γ , (1.2.19) sin(t|∇|) |∇| φ L p (I,H γ-γp,q q ) φ H γ . (1.2.20)
The estimate (1.2.19) follows from the ones of e ±it|∇| . We will give the proof of (1.2.20). To do Chapter 1. Strichartz estimates on the flat Euclidean space this, we write

∇ γ-γp,q sin(t|∇|) |∇| = ω(D) ∇ γ-γp,q sin(t|∇|) |∇| + (1 -ω)(D) ∇ γ-γp,q sin(t|∇|) |∇| ,
for some ω as in the proof of Corollary 1.1.4. For the first term, the Sobolev embedding and the fact sin(t|∇|)

|∇| L 2 →L 2 ≤ |t| imply ω(D) ∇ γ-γp,q sin(t|∇|) |∇| φ L q |t| ω(D) ∇ γ+δ-γp,q φ L 2 ,
for some δ > d/2 -d/q. This gives

ω(D) ∇ γ-γp,q sin(t|∇|) |∇| φ L p (I,L q ) φ H γ-1 .
Here we use that ω(D) ∇ δ+1-γp,q L 2 →L 2

1. For the second term, we apply (1.1.19) with sin(t|∇|) = (e it|∇| -e -it|∇| )/2i to get

(1 -ω)(D) ∇ γ-γp,q sin(t|∇|) |∇| φ L p (I,L q ) (1 -ω)(D)|∇| -1 φ H γ φ H γ-1 .
Here we also use that ( This chapter deals with Strichartz estimates for the homogeneous linear Schrödinger-type equations on R d equipped with a smooth bounded metric g, namely

1 -ω)(D) ∇ |∇| -1 L 2 →L 2
i∂ t u + |∇ g | σ u = 0, u(0) = ψ, (2.0.1) 
where σ ∈ (0, ∞)\{1} and |∇ g | = -∆ g with ∆ g the Laplace-Beltrami operator associated to the metric g. Let g(x) = (g jk (x)) d j,k=1 be a metric on R d , and denote G(x) = (g jk (x)) d j,k=1 := g -1 (x). The Laplace-Beltrami operator associated to g reads

∆ g = d j,k=1 |g(x)| -1 ∂ j g jk (x)|g(x)|∂ k ,
where |g(x)| := det g(x). Denote P := -∆ g the self-adjoint realization of -∆ g . Recall that the principal symbol of P is

p(x, ξ) = ξ t G(x)ξ = d j,k=1 g jk (x)ξ j ξ k .
In this chapter, we assume that g satisfies the following assumptions.

1. There exists C > 0 such that for all x, ξ ∈ R d ,

C -1 |ξ| 2 ≤ d j,k=1 g jk (x)ξ j ξ k ≤ C|ξ| 2 .
(2.0.2)

2. For all α ∈ N d , there exists C α > 0 such that for all x ∈ R d ,

|∂ α g jk (x)| ≤ C α , j, k ∈ {1, ..., d}. (2.0.3)
We first note that the elliptic assumption (2.0.2) implies that |g(x)| is bounded from below and above by positive constants. This shows that the space L q (R d , dvol g ), 1 ≤ q ≤ ∞ where dvol g = |g(x)|dx and the usual Lebesgue space L q (R d ) coincide. Thus in this chapter, the notation L q (R d ) stands for either L q (R d , dvol g ) or the usual Lebesgue space L q (R d ). We will denote the space L q (R d ) by L q for short. Let us first recall local (in time) Strichartz estimates for Schrödinger-type operators on R d given in Corollary 1.1.4. For σ ∈ (0, ∞)\{1} and I ⊂ R a bounded interval, one has

e it|∇| σ ψ L p (I,L q ) ≤ C ψ H γp,q , (2.0.4)
where |∇| = √ -∆, (p, q) is Schrödinger admissible with q < ∞ and γ p,q is as in (1.0.7). It is well-known that under the assumptions (2.0.2) and (2.0.3), Strichartz estimates (2.0.4) may fail at least for the Schrödinger equation (see [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]Appendix]) and in this case (i.e. σ = 2) one has a loss of 1/p derivatives, that is the right hand side of (2.0.4) is replaced by ψ H γp,q +1/p . Note that in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], the authors consider the sharp Schrödinger admissible condition with q < ∞ (see (0.0.1)). In this Chapter, we extend the result of Burq-Gérard-Tzvetkov to a more general setting, i.e. σ ∈ (0, ∞)\{1} and obtain Strichartz estimates with a "loss" of (σ -1)/p derivatives when σ ∈ (1, ∞) and without "loss" of derivatives when σ ∈ (0, 1). Throughout this chapter, the "loss" compares to (2.0.4). Theorem 2.0.1. Consider R d , d ≥ 1 equipped with a smooth metric g satisfying (2.0.2), (2.0.3) and let I ⊂ R a bounded interval. If σ ∈ (1, ∞), then for all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all ψ ∈ H γp,q+(σ-1)/p ,

e it|∇g| σ ψ L p (I,L q ) ≤ C ψ H γp,q +(σ-1)/p , (2.0.5)
where u H γ := ∇ g γ u L 2 . If σ ∈ (0, 1), then (2.0.5) holds with γ p,q + (σ -1)/p is replaced by γ p,q .

The proof of (2.0.5) is based on the WKB approximation which is similar to [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]. Since we are working on manifolds, a good way is to decompose the semi-classical Schrödinger-type operator, namely e ith -1 (h|∇g|) σ , at localized frequency, i.e. e ith -1 (h|∇g|) σ ϕ(h 2 P ) for some ϕ ∈ C ∞ 0 (R\{0}). The main difficulty is that in general we do not have the exact form of the semi-classical fractional Laplace-Beltrami operator in order to use the usual construction in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]. To overcome this difficulty we write e ith -1 (h|∇g|) σ ϕ(h 2 P ) as e ith -1 ω(h 2 P ) ϕ(h 2 P ) where ω(λ) = φ(λ) √ λ σ for some φ ∈ C ∞ (R\{0}) satisfying φ = 1 near supp(ϕ). We then approximate ω(h 2 P ) in terms of pseudo-differential operators and use the action of pseudo-differential operators on Fourier integral operators in order to construct an approximation for e ith -1 ω(h 2 P ) ϕ(h 2 P ). This approximation gives dispersive estimates for e ith -1 (h|∇g|) σ ϕ(h 2 P ) on some small time interval independent of h. After scaling in time, we obtain Strichartz estimates without "loss" of derivatives over time intervals of size h σ-1 . When σ ∈ (1, ∞), we can cumulate estimates over intervals of size h σ-1 and get local in time Strichartz estimates with (σ -1)/p loss of derivatives. In the case σ ∈ (0, 1), we can bound the estimates over time intervals of size 1 by the ones of size h σ-1 and obtain the same Strichartz estimates as on R d . It is not a surprise that we recover the same Strichartz estimates as in the free case for σ ∈ (0, 1) since e it|∇g| σ has micro-locally the finite propagation speed property which is similar to σ = 1 for the half-wave equation. Intuitively, if we consider the free Hamiltonian H(x, ξ) = |ξ| σ , then the spatial component of geodesic flow reads

x(t) = x(0) + tσξ|ξ| σ-2 . After a time t, the distance d(x(t), x(0)) ∼ t|ξ| σ-1 t if σ -1 ≤ 0 and |ξ| ≥ 1. By decomposing the solution to i∂ t u + |∇| σ u = 0 as u = k≥0 u k where u k = ϕ(2 -k D)u is localized near |ξ| ∼ 2 k ≥ 1,
we see that after a time t, all components u k have traveled at a distance t from the data u k (0). Corollary 2.0.2. Consider R d , d ≥ 1 equipped with a smooth metric g satisfying (2.0.2), (2.0.3) and let I ⊂ R a bounded interval. Let u be a solution to the inhomogeneous linear Schrödinger-type equation on (R d , g),

i∂ t u(t, x) + |∇ g | σ u(t, x) = F (t, x), (t, x) ∈ I × R d , u(0, x) = ψ(x), x ∈ R d ,
for some data ψ, F . If σ ∈ (1, ∞), then for all (p, q) Schrödinger admissible with q < ∞, there
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exists C > 0 such that u L p (I,L q ) ≤ C ψ H γp,q +(σ-1)/p + F L 1 (I,H γp,q +(σ-1)/p ) .

If σ ∈ (0, 1), then the above inequality holds with γ p,q in place of γ p,q + (σ -1)/p. Remark 2.0. 

∂ 2 t v(t, x) + (-∆ g ) σ v(t, x) = G(t, x), (t, x) ∈ I × R d , v(0, x) = ψ(x), ∂ t v(0, x) = φ(x), x ∈ R d . (2.0.6)
We refer to [START_REF] Chen | Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency power law[END_REF] or [START_REF] Herrmann | Fractional calculus, An introduction for physicists[END_REF] for the introduction of wave-type equations which arise in physics.

Comparing with local Strichartz estimates for the inhomogeneous linear wave-type equations given in Section 1.1, we obtain estimates with a loss of derivatives (σ -1)/p when σ ∈ (1, ∞) and with no loss when σ ∈ (0, 1 , then for all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all (ψ, φ) ∈ H γp,q+(σ-1)/p × H γp,q+(σ-1)/p-σ ,

v L p (I,L q ) ≤ C [v](0) H γp,q +(σ-1)/p + G L 1 (I,H γp,q +(σ-1)/p-σ ) , (2.0.7) 
where

[v](0) H γp,q +(σ-1)/p := ψ H γp,q +(σ-1)/p + φ H γp,q +(σ-1)/p-σ .

If σ ∈ (0, 1), then (2.0.7) holds with γ p,q + (σ -1)/p is replaced by γ p,q .

Reduction of problem

In this subsection, we give a reduction of Theorem 2.0.1 due to the Littlewood-Paley decomposition. To do so, we first recall some useful facts on pseudo-differential calculus. For m ∈ R, we consider the symbol class S(m) the space of smooth functions a on R 2d satisfying

|∂ α x ∂ β ξ a(x, ξ)| ≤ C αβ ξ m-|β| ,
for all x, ξ ∈ R d . We also need S(-∞) := ∩ m∈R S(m). We define the semi-classical pseudodifferential operator with a symbol a ∈ S(m) by

Op h (a)u(x) := (2πh) -d R 2d e ih -1 (x-y)•ξ a(x, ξ)u(y)dydξ,
where u ∈ S is a Schwartz function. The following result gives the L q → L r -bound for pseudodifferential operators (see e.g. [BT07, Proposition 2.4]). Proposition 2.1.1. Let m > d and a be a continuous function on R 2d smooth with respect to the second variable satisfying for all β ∈ N d , there exists

C β > 0 such that for all x, ξ ∈ R d , |∂ β ξ a(x, ξ)| ≤ C β ξ -m .
Then for all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

Op h (a) L q →L r ≤ Ch -( d q -d r ) .
For a given f ∈ C ∞ 0 (R), we can approximate f (h 2 P ) in term of pseudo-differential operators, where P is the Laplace-Beltrami operator. We have the following result (see e.g [BT07, Proposition 2.5] or [BGT04, Proposition 2.1]). Proposition 2.1.2. Consider R d equipped with a smooth metric g satisfying (2.0.2) and (2.0.3). Then for a given f ∈ C ∞ 0 (R), there exist a sequence of symbols q j ∈ S(-∞) satisfying q 0 = f • p and supp(q j ) ⊂ supp(f • p) such that for all N ≥ 1,

f (h 2 P ) = N -1 j=0 h j Op h (q j ) + h N R N (h),
and for all m ≥ 0 and all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

R N (h) L q →L r ≤ Ch -( d q -d r ) . R N (h) H -m →H m ≤ Ch -2m .
A direct consequence of Proposition 2.1.1 and Proposition 2.1.2 is the following

L q → L r -bound for f (h 2 P ). Proposition 2.1.3. Let f ∈ C ∞ 0 (R).
Then for all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1], 

f (h 2 P ) L q →L r ≤ Ch -( d q -d r ) . Next,
∈ C ∞ 0 (R) and ϕ ∈ C ∞ 0 (R\{0}) such that ϕ 0 (P ) + h -1 :dya ϕ(h 2 P ) = Id,
where h -1 : dya means h -1 = 2 k , k ∈ N\{0}. Moreover, for all q ∈ [2, ∞), there exists C > 0 such that for all u ∈ S ,

u L q ≤ C h -1 :dya ϕ(h 2 P )u 2 L q 1/2 + C u L 2 .
We end this subsection with the following reduction. Proposition 2.1.5. Consider R d , d ≥ 1 equipped with a smooth metric g satisfying (2.0.2), (2.0.3). Let σ ∈ (0, ∞)\{1} and ϕ ∈ C ∞ 0 (R\{0}). If there exist t 0 > 0 small enough and C > 0 such that for all ψ ∈ L 1 and all h ∈ (0, 1],

e ith -1 (h|∇g|) σ ϕ(h 2 P )ψ L ∞ ≤ Ch -d (1 + |t|h -1 ) -d/2 ψ L 1 , (2.1.1)
for all t ∈ [-t 0 , t 0 ], then Theorem 2.0.1 holds true. The proof of Proposition 2.1.5 is based on the following semi-classical version of T T -criterion (see [START_REF] Keel | Endpoint Strichartz estimates[END_REF], [Zwo12, Theorem 10.7] or [Zha15, Proposition 4.1]). Theorem 2.1.6. Let (X, M, µ) be a σ-finite measured space, and T : R → B(L 2 (X, M, µ)) be a weakly measurable map satisfying, for some constants C, γ, δ > 0,

T (t) L 2 (X)→L 2 (X) ≤ C, t ∈ R, (2.1.2) T (t)T (s) L 1 (X)→L ∞ (X) ≤ Ch -δ (1 + |t -s|h -1 ) -τ , t, s ∈ R. (2.1.3)
Then for all pair (p, q) satisfying

p ∈ [2, ∞], q ∈ [1, ∞], (p, q, δ) = (2, ∞, 1), 1 p ≤ τ 1 2 - 1 q , 2.1. Reduction of problem one has T (t)u L p (R,L q (X)) ≤ Ch -κ u L 2 (X) ,
where κ = δ(1/2 -1/q) -1/p. Proof of Proposition 2.1.5. Using the energy estimates and dispersive estimates (2.1.1), we can apply Theorem 2.1.6 for T (t) = 1 [-t0,t0] (t)e ith -1 (h|∇g|) σ ϕ(h 2 P ), δ = d, τ = d/2 and get

e ith -1 (h|∇g|) σ ϕ(h 2 P )ψ L p ([-t0,t0],L q ) ≤ Ch -(d/2-d/q-1/p) ψ L 2 .
By scaling in time, we have

e it|∇g| σ ϕ(h 2 P )ψ L p (h σ-1 [-t0,t0],L q ) = h (σ-1)/p e ith -1 (h|∇g|) σ ϕ(h 2 P )ψ L p ([-t0,t0],L q ) ≤ Ch -γp,q ψ L 2 . (2.1.4)
Using the group property and the unitary property of Schrödinger operator e it|∇g| σ , we have similar estimates as in (2.1.4) for all intervals of size 2h σ-1 . Indeed, for any interval I h of size 2h σ-1 , we can write

I h = [c -h σ-1 t 0 , c + h σ-1 t 0 ] for some c ∈ R and e it|∇g| σ ϕ(h 2 P )ψ L p (I h ,L q ) = e it|∇g| σ ϕ(h 2 P )e ic|∇g| σ ψ L p (h σ-1 [-t0,t0],L q ) ≤ Ch -γp,q e ic|∇g| σ ψ L 2 = Ch -γp,q ψ L 2 .
In the case σ ∈ (1, ∞), we use a trick given in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], i.e. cumulating O(h 1-σ ) estimates on intervals of length 2h σ-1 to get estimates on any finite interval I. Precisely, by writing I as a union of N intervals I h of length 2h σ-1 with N h 1-σ , we have

e it|∇g| σ ϕ(h 2 P )ψ L p (I,L q ) ≤ I h I h e it|∇g| σ ϕ(h 2 P )ψ p L q dt 1/p ≤CN 1/p h -γp,q ψ L 2 ≤ Ch -γp,q-(σ-1)/p ψ L 2 .
(2.1.5)

In the case σ ∈ (0, 1), we can obviously bound estimates over time intervals of size 1 by the ones of size h σ-1 and obtain e it|∇g| σ ϕ(h 2 P )ψ L p (I,L q ) ≤ Ch -γp,q ψ L 2 .

(2.1.6)

Moreover, we can replace the norm ψ L 2 in the right hand side of (2.1.5) and (2.1.6) by ϕ(h 2 P )ψ L 2 . Indeed, by choosing φ ∈ C ∞ 0 (R\{0}) satisfying φ = 1 near supp(ϕ), we can write e ith -1 (h|∇g|) σ ϕ(h 2 P )ψ = e ith -1 (h|∇g|) σ φ(h 2 P )ϕ(h 2 P )ψ and apply (2.1.5) and (2.1.6) with φ in place of ϕ. Now, by using the Littlewood-Paley decomposition given in Proposition 2.1.4 and the Minkowski inequality, we have for all (p, q) Schrödinger admissible with q < ∞,

u L p (I,L q ) ≤ C h -1 :dya ϕ(h 2 P )u 2 L p (I,L q ) 1/2 + C u L p (I,L 2 ) . (2.1.7)
We now apply (2.1.7) for u = e it|∇g| σ ψ together with (2.1.5) and get for σ ∈ (1, ∞),

e it|∇g| σ ψ L p (I,L q ) ≤ C h -1 :dya h -2(γp,q+(σ-1)/p) ϕ(h 2 P )ψ 2 L 2 1/2 + C ψ L 2 .
Here the boundedness of I is crucial to have a bound on the second term in the right hand side of

The WKB approximation

(2.1.7). The almost orthogonality and the fact that γ p,q + (σ -1)/p ≥ 1/p imply for σ ∈ (1, ∞),

e it|∇g| σ ψ L p (I,L q ) ≤ C ψ H γp,q +(σ-1)/p .
Similar results hold for σ ∈ (0, 1) with γ p,q in place of γ p,q + (σ -1)/p by using (2.1.6) instead of (2.1.5). This completes the proof.

The WKB approximation

This subsection is devoted to the proof of dispersive estimates (2.1.1). To do so, we will use the so called WKB approximation (see [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF], [START_REF] Kapitanski | Some generalizations of the Strichartz-Brenner inequality[END_REF] or [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]), i.e. to approximate e ith -1 (h|∇g|) σ ϕ(h 2 P ) in terms of Fourier integral operators. The following result is the main goal of this subsection. To simplify the presentation, we denote U h (t) := e ith -1 (h|∇g|) σ . Theorem 2.2.1. Let σ ∈ (0, ∞)\{1}, ϕ ∈ C ∞ 0 (R\{0}), J a small neighborhood of supp(ϕ) not containing the origin, a ∈ S(-∞) with supp(a) ⊂ p -1 (supp(ϕ)). Then there exist t 0 > 0 small enough, S ∈ C ∞ ([-t 0 , t 0 ] × R 2d ) and a sequence of functions a j (t, •, •) ∈ S(-∞) satisfying supp(a j (t, •, •)) ⊂ p -1 (J) uniformly with respect to t ∈ [-t 0 , t 0 ] such that for all N ≥ 1,

U h (t)Op h (a)ψ = J N (t)ψ + R N (t)ψ,
where

J N (t)ψ(x) = N -1 j=0 h j J h (S(t), a j (t))ψ(x) = N -1 j=0 h j (2πh) -d R 2d
e ih -1 (S(t,x,ξ)-y•ξ) a j (t, x, ξ)ψ(y)dydξ , J N (0) = Op h (a) and the remainder R N (t) satisfies for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1],

R N (t) L 2 →L 2 ≤ Ch N -1 .
(2.2.1)

Moreover, there exists a constant C > 0 such that for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1], 

J N (t) L 1 →L ∞ ≤ Ch -d (1 + |t|h -1 ) -d/2 . ( 2 
ϕ(h 2 P ) = N -1 j=0 h j Op h (q j ) + h N RN (h),
for some qj ∈ S(-∞) satisfying supp(q j ) ⊂ p -1 (supp(ϕ)) and the remainder satisfies for all m ≥ 0,

RN (h) H -m →H m ≤ Ch -2m . Since U h (t) is bounded in H m , the Sobolev embedding with m > d/2 implies U h (t) RN (h) L 1 →L ∞ ≤ U h (t) RN (h) H -m →H m ≤ Ch -2m .
By choosing N large enough, the remainder term is bounded in L 1 → L ∞ independent of t, h. We next show that Theorem 2.2.1 gives dispersive estimates for U h (t)Op h (a), i.e.

U h (t)Op h (a) L 1 →L ∞ ≤ Ch -d (1 + |t|h -1 ) -d/2 , (2.2.3)
for all h ∈ (0, 1] and all t ∈ [-t 0 , t 0 ]. Indeed, by choosing φ ∈ C ∞ 0 (R\{0}) which satisfies φ = 1 near supp(ϕ), we can write

U h (t)Op h (a) = φ(h 2 P )U h (t)Op h (a) φ(h 2 P ) + (1 -φ)(h 2 P )U h (t)Op h (a) φ(h 2 P ) + U h (t)Op h (a)(1 -φ)(h 2 P ).
(2.2.4) Using Theorem 2.2.1, the first term is written as

φ(h 2 P )U h (t)Op h (a) φ(h 2 P ) = φ(h 2 P )J N (t) φ(h 2 P ) + φ(h 2 P )R N (t) φ(h 2 P ).
We learn from Proposition 2.1.2 and (2.2.2) that the first term in the right hand side is of size

O L 1 →L ∞ (h -d (1+|t|h -1 ) -d/2
) and the second one is of size

O L 1 →L ∞ (h N -1-d ).
For the second and the third term of (2.2.4), we compose to the left and the right hand side with (P + 1) m for m ≥ 0 and use the parametrix of (1 -φ)(h Fortunately, thanks to the support of the symbol a, we can replace U h (t) by e ith -1 ω(h 2 P ) for some smooth, compactly supported function ω. The interest of this replacement is that one can approximate ω(h 2 P ) in terms of pseudo-differential operators. We next use the action of pseudodifferential operators on Fourier integral operators and collect the powers of the semi-classical parameter h to yield the Hamilton-Jacobi equation for the phase and a system of transport equations for the amplitudes. After solving these equations, we control the remainder terms and prove dispersive estimates for the main terms. The proof of this theorem is done in several steps.

Step 1: Construction of the phase and amplitudes Due to the support of a, we can replace (h|∇ g |) σ by ω(h 2 P ) where ω(λ) = φ(λ) √ λ σ with φ ∈ C ∞ 0 (R\{0}) and φ = 1 on J. The interest of this replacement is that we can use Proposition 2.1.2 to write

ω(h 2 P ) = N -1 k=0 h k Op h (q k ) + h N R N (h), (2.2.5) 
where

q k ∈ S(-∞) satisfy q 0 (x, ξ) = ω • p(x, ξ), supp(q k ) ⊂ p -1 (supp(ω)) and R N (h) is bounded in L 2 uniformly in h ∈ (0, 1]. Next, using the fact d dt e -ith -1 ω(h 2 P ) J N (t) = ih -1 e -ith -1 ω(h 2 P ) (hD t -ω(h 2 P ))J N (t),
and J N (0) = Op h (a), the fundamental theorem of calculus gives

e ith -1 ω(h 2 P ) Op h (a)ψ = J N (t)ψ -ih -1 t 0 e i(t-s)h -1 ω(h 2 P ) hD s -ω(h 2 P ) J N (s)ψds.
We want the last term to have a small contribution. To do this, we need to consider the action of hD t -ω(h 2 P ) on J N (t). We first compute the action of hD t on J N (t) and have

hD t • J N (t) = N l=0 h l J h (S(t), b l (t)), where b 0 (t, x, ξ) = ∂ t S(t, x, ξ)a 0 (t, x, ξ), b l (t, x, ξ) = ∂ t S(t, x, ξ)a l (t, x, ξ) + D t a l-1 (t, x, ξ), l = 1, ..., N -1, b N (t, x, ξ) = D t a N -1 (t, x, ξ).
In order to study the action of ω(h 

|∂ α x ∂ β ξ (S(x, ξ) -x • ξ)| ≤ C αβ , ∀x, ξ ∈ R d . (2.2.6) Then Op h (b) • J h (S, c) = N -1 j=0 h j J h (S, (b c) j ) + h N J h (S, r N (h)),
where (b c) j is a universal linear combination of

∂ β ξ b(x, ∇ x S(x, ξ))∂ β-α x c(x, ξ)∂ α1 x S(x, ξ) • • • ∂ α k x S(x, ξ), with α ≤ β, α 1 +• • •+α k = α and |α l | ≥ 2 for all l = 1, ..., k and |β| = j. The maps (b, c) → (b c) j and (b, c) → r N (h) are continuous from S(-∞) × S(-∞) to S(-∞).
In particular, we have

(b c) 0 (x, ξ) = b(x, ∇ x S(x, ξ))c(x, ξ), i(b c) 1 (x, ξ) = ∇ ξ b(x, ∇ x S(x, ξ)) • ∇ x c(x, ξ) + 1 2 tr ∇ 2 ξ b(x, ∇ x S(x, ξ)) • ∇ 2 x S(x, ξ) c(x, ξ).
Using (2.2.5), we can apply1 Proposition 2.2.3 and obtain

ω(h 2 P ) • J N (t) = N -1 k=0 h k Op h (q k ) • N -1 j=0 h j J h (S(t), a j (t)) + h N R N (h)J N (t) = N k+j+l=0 h k+j+l J h (S(t), (q k a j (t)) l ) + h N +1 J h (S(t), r N +1 (h, t)) + h N R N (h)J N (t).
This implies that

(hD t -ω(h 2 P ))J N (t) = N r=0 h r J h (S(t), c r (t)) -h N R N (h)J N (t) -h N +1 J h (S(t), r N +1 (h, t)),
where

c 0 (t) = ∂ t S(t)a 0 (t) -q 0 (x, ∇ x S(t))a 0 (t), c r (t) = ∂ t S(t)a r (t) -q 0 (x, ∇ x S(t))a r (t) + D t a r-1 (t) -(q 0 a r-1 (t)) 1 -(q 1 a r-1 (t)) 0 - k+j+l=r j≤r-2 (q k a j (t)) l , r = 1, ..., N -1,
and

c N (t) = D t a N -1 (t) -(q 0 a N -1 (t)) 1 -(q 1 a N -1 (t)) 0 - k+j+l=N j≤N -2
(q k a j (t)) l .

The system of equations c r (t) = 0 for r = 0, ..., N leads to the following Hamilton-Jacobi equation

∂ t S(t) -q 0 (x, ∇ x S(t)) = 0, (2.2.7) 
with S(0) = x • ξ, and transport equations

D t a 0 (t) -(q 0 a 0 (t)) 1 -(q 1 a 0 (t)) 0 = 0, (2.2.8) D t a r (t) -(q 0 a r (t)) 1 -(q 1 a r (t)) 0 = k+j+l=r+1 j≤r-1
(q k a j (t)) l , (2.2.9)

for r = 1, ..., N -1 with initial data a 0 (0) = a, a r (0) = 0, r = 1, ..., N -1.

(2.2.10)

The standard Hamilton-Jacobi equation gives the following result (see e.g. [Rob87, Théorème IV.14] or Appendix A.1). Proposition 2.2.4. There exist t 0 > 0 small enough and a unique solution S ∈ C ∞ ([-t 0 , t 0 ]×R 2d ) to the Hamilton-Jacobi equation

∂ t S(t, x, ξ) -q 0 (x, ∇ x S(t, x, ξ)) = 0, S(0, x, ξ) = x • ξ. (2.2.11)
Moreover, for all α, β ∈ N d , there exists C αβ > 0 such that for all t ∈ [-t 0 , t 0 ] and all x, ξ ∈ R d ,

|∂ α x ∂ β ξ (S(t, x, ξ) -x • ξ) | ≤ C αβ |t|, |α + β| ≥ 1, ( 2 
.2.12)

|∂ α x ∂ β ξ (S(t, x, ξ) -x • ξ -tq 0 (x, ξ))| ≤ C αβ |t| 2 .
(2.2.13)

Note that the phase given in Proposition 2.2.4 satisfies requirements of Proposition 2.2.3. It remains to solve the transport equations (2.2.8), (2.2.9). To do so, we rewrite these equations as

∂ t a 0 (t, x, ξ) -V (t, x, ξ) • ∇ x a 0 (t, x, ξ) -f (t, x, ξ)a 0 (t, x, ξ) = 0, ∂ t a r (t, x, ξ) -V (t, x, ξ) • ∇ x a r (t, x, ξ) -f (t, x, ξ)a r (t, x, ξ) = g r (t, x, ξ), for r = 1, ..., N -1 where V (t, x, ξ) = (∂ ξ q 0 )(x, ∇ x S(t, x, ξ)), f (t, x, ξ) = 1 2 tr ∇ 2 ξ q 0 (x, ∇ x S(t, x, ξ)) • ∇ 2 x S(t, x, ξ) + iq 1 (x, ∇ x S(t, x, ξ)), g r (t, x, ξ) = i k+j+l=r+1 j≤r-1 (q k a j (t)) l .
We now construct a r (t, x, ξ), r = 0, ..., N -1 by using the method of characteristics as follows. Let Z(t, s, x, ξ) be the flow associated to V (t, x, ξ), i.e.

∂ t Z(t, s, x, ξ) = -V (t, Z(t, s, x, ξ), ξ), Z(s, s, x, ξ) = x.
By the fact that q 0 ∈ S(-∞) and (2.2.12) and using the same trick as in Lemma A.1.1, we have Step 2: L 2 -boundedness of remainder We will use the so called Kuranishi trick (see e.g. [START_REF] Robert | Autour de l'approximation semi-classique[END_REF], [START_REF] Mizutani | Strichartz estimates for Schrödinger equations with variable coefficients and potentials at most linear at spatial infinity[END_REF]). We first have

|∂ α x ∂ β ξ (Z(t, s, x, ξ) -x)| ≤ C αβ |t -s|, ( 2 
R N (t) = ih N -1 t 0 e i(t-s)h -1 ω(h 2 P ) R N (h)J N (s) + hJ h (S(s), r N +1 (h, s)) ds.
Using that e i(t-s)h -1 ω(h 2 P ) is unitary in L 2 and Proposition 2.1.2 that R N (h) is bounded in L 2 → L 2 uniformly in h ∈ (0, 1], the estimate (2.2.1) follows from the L 2 -boundedness of J h (S(t), a(t)) uniformly with respect to h ∈ (0, 1] and t ∈ [-t 0 , t 0 ] where (a(t)) t∈ [-t0,t0] is bounded in S(-∞). For t ∈ [-t 0 , t 0 ], we define a map on R 3d by Λ(t, x, y, ξ) := 1 0 ∇ x S(t, y + s(x -y), ξ)ds.

Using (2.2.12), there exists t 0 > 0 small enough so that for all t ∈ [-t 0 , t 0 ],

∇ x ∇ ξ S(t, x, ξ) -I R d 1, ∀x, ξ ∈ R d .
This implies that

∇ ξ Λ(t, x, y, ξ) -I R d | ≤ 1 0 ∇ ξ ∇ x S(t, y + s(x -y), ξ) -I R d ds 1, ∀t ∈ [-t 0 , t 0 ].
Thus for all t ∈ [-t 0 , t 0 ] and all x, y ∈ R d , the map ξ → Λ(t, x, y, ξ) is a diffeomorphism from R d onto itself. If we denote ξ → Λ -1 (t, x, y, ξ) the inverse map, then Λ -1 (t, x, y, ξ) satisfies (see [START_REF] Bouclet | Distributions spectrales pour des opérateurs perturbés[END_REF]) that: for all α, α , β ∈ N d , there exists C αα β > 0 such that 

|∂ α x ∂ α y ∂ β ξ (Λ -1 (t, x, y, ξ) -ξ)| ≤ C αα β |t|, ( 2 
K h (t, x, y) = (2πh) -d R d
e ih -1 (S(t,x,ξ)-y•ξ) a(t, x, ξ)dξ.

It suffices to show for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1],

|K h (t, x, y)| ≤ Ch -d (1 + |t|h -1 ) -d/2
, for all x, y ∈ R d . We only consider the case t ≥ 0, for t ≤ 0 it is similar. Since the amplitude is compactly supported in ξ and a(t, x, ξ) is bounded uniformly in t ∈ [-t 0 , t 0 ] and x, y ∈ R d , we have

|K h (t, x, y)| ≤ Ch -d . If 0 ≤ t ≤ h hence 1 + th -1 ≤ 2, then |K h (t, x, y)| ≤ Ch -d ≤ Ch -d (1 + th -1 ) -d/2 .
We now can assume that h ≤ t ≤ t 0 and write the phase function as (S(t, x, ξ) -y • ξ)/t with the parameter λ := th -1 ≥ 1. By the choice of φ (see Step 1 for φ), we see that on the support of the amplitude, i.e. on p -1 (J), q 0 (x, ξ) = p(x, ξ) σ . Thus we apply (2.2.11) to write

S(t, x, ξ) = x • ξ + t p(x, ξ) σ + t 2 1 0 (1 -θ)∂ 2 t S(θt, x, ξ)dθ. Next, using that p(x, ξ) = ξ t G(x)ξ = |η| 2 with η = G(x)ξ or ξ = g(x)η where g(x) = (g jk (x)) d j,k=1 and G(x) = (g(x)) -1 = (g jk (x)) d j,k=1
, the kernel can be written as

K h (t, x, y) = (2πh) -d R d e iλΦ(t,x,y,η) a(t, x, g(x)η)|g(x)|dη,
where

Φ(t, x, y, η) = g(x)(x -y) • η t + |η| σ + t 1 0 (1 -θ)∂ 2 t S(θt, x, g(x)η)dθ.
Recall that |g(x)| := det g(x). By (2.0.2), G(x) and g(x) are bounded from below and above uniformly in x ∈ R d . This implies that η still belongs to a compact set of R d away from zero. We denote this compact support by K. The gradient of the phase is

∇ η Φ(t, x, y, η) = g(x)(x -y) t + ση|η| σ-2 + t 1 0 (1 -θ)(∇ ξ ∂ 2 t S)(θt, x, g(x)η)dθ g(x).
Let us consider the case | g(x)(x -y)/t| ≥ C for some constant C large enough. Thanks to the Hamilton-Jacobi equation (2.2.11) (see also (A.1.9), (A.1.2) and Lemma A.1.2) and the fact σ ∈ (0, ∞)\{1}, we have for t 0 small enough,

|∇ η Φ| ≥ | g(x)(x -y)/t| -σ|η| σ-1 -O(t) ≥ C 1 .
Hence we can apply the non stationary theorem, i.e. by integrating by parts with respect to η together with the fact that for all

β ∈ N d satisfying |β| ≥ 2, |∂ β η Φ(t, x, y, η)| ≤ C β , we have for all N ≥ 1, |K h (t, x, y)| ≤ Ch -d λ -N ≤ Ch -d (1 + th -1 ) -d/2 ,
provided N is taken greater than d/2. Thus we can assume that | g(x)(x -y)/t| ≤ C. In this case, we write

∇ 2 η Φ(t, x, y, η) = σ|η| σ-2 I R d + (σ -2) η • η T |η| 2 + O(t).
Using that

det σ|η| σ-2 I R d + (σ -2) η • η T |η| 2 = σ d |σ -1 η| (σ-2)d ≥ C.
Therefore, for t 0 > 0 small enough, the map η → ∇ η Φ(t, x, y, η) from a neighborhood of K to its range is a local diffeomorphism. Moreover, for all β ∈ N d satisfying |β| ≥ 1, we have

|∂ β η Φ(t, x, y, η)| ≤ C β .
The stationary phase theorem then implies that for all t ∈ [h, t 0 ] and all

x, y ∈ R d satisfying | g(x)(x -y)/t| ≤ C, |K h (t, x, y)| ≤ Ch -d λ -d/2 ≤ Ch -d (1 + th -1 ) -d/2 .
This completes the proof. In this chapter, we establish Strichartz estimates for Schrödinger-type equations posed on a compact Riemannian manifold without boundary (M, g), namely

i∂ t u(t, x) + |∇ g | σ u(t, x) = F (t, x), (t, x) ∈ I × M, u(0, x) = ψ(x), x ∈ M, (3.0.1)
where σ ∈ (0, ∞)\{1} and |∇ g | = -∆ g with ∆ g the Laplace-Beltrami operator on (M, g). Before stating our main result, let us recall known results related to the problem. Burq-Gérard-Tzvetkov established in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF] Strichartz estimates with a loss of 1/p derivatives for the homogeneous linear Schrödinger equation (i.e. σ = 2), namely

e -it∆g ψ L p (I,L q (M )) ≤ C ψ H 1/p (M ) , (3.0.2)
where (p, q) is a sharp Schrödinger admissible pair and q < ∞ (see (0.0.1)). When M is the flat torus T d , Bourgain showed in [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations[END_REF], [START_REF] Bourgain | Exponential sums and nonlinear Schrödinger equations[END_REF] some estimates related to (3.0.2) by means of the Fourier series for the Schrödinger equation. A direct consequence of these estimates is

e -it∆g ψ L 4 (T×T d ) ≤ C ψ H γ (T d ) , γ > d 4 - 1 2 . (3.0.3)
When M = T and σ ∈ (1, 2), the authors in [START_REF] Demirbas | Tzirakis Existence and Uniqueness theory for the fractional Schrödinger equation on the torus[END_REF] established estimates related to (3.0.3), namely

e it|∇g| σ ψ L 4 (T×T) ≤ C ψ H γ (T) , γ > 2 -σ 8 . (3.0.4)
The main purpose of this chapter is to extend the result of Burq-Gérard-Tzvetkov to the homogeneous linear Schrödinger-type equation (3.0.1). Precisely, we have the following result. Theorem 3.0.1. Consider (M, g) a smooth compact boundaryless Riemannian manifold of dimension d ≥ 1 and let I ⊂ R a bounded interval. If σ ∈ (1, ∞), then for all (p, q) Schrödinger

Notations

admissible with q < ∞, there exists C > 0 such that for all ψ ∈ H γp,q+(σ-1)/p (M ),

e it|∇g| σ ψ L p (I,L q (M )) ≤ C ψ H γp,q +(σ-1)/p (M ) . (3.0.5)
Moreover, if u is a (weak) solution to (3.0.1), then

u L p (I,L q (M )) ≤ C ψ H γp,q +(σ-1)/p (M ) + F L 1 (I,H γp,q +(σ-1)/p (M )) . (3.0.6)
If σ ∈ (0, 1), then (3.0.5) and (3.0.6) hold with γ p,q in place of γ p,q + (σ -1)/p. The proof of Theorem 3.0.1 is based on Strichartz estimates on R d equipped with a smooth bounded metric g given in the previous chapter. Remark 3.0.2.

1. Note that the exponents γ p,q + (σ -1)/p = d/2 -d/q -1/p in the right hand side of (3.0.5) and γ p,q = d/2 -d/q -σ/p in the case of σ ∈ (0, 1) correspond to the gain of 1/p and σ/p derivatives respectively compared with the Sobolev embedding. 2. Using the same argument as in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], we see that the endpoint homogeneous Strichartz estimate (3.0.5) is sharp on S d , d ≥ 3. Indeed, let ψ be a zonal spherical harmonic associated to eigenvalue λ = k(d + k -1). One has (see e.g. [START_REF] Sogge | Oscillatory integrals and spherical harmonics[END_REF]) that for λ 1,

ψ L q (S d ) ∼ √ λ s(q) , s(q) = d -1 2 - d q if 2(d + 1) d -1 ≤ q ≤ ∞.
Moreover, the above estimates are sharp. Therefore,

e it|∇g| σ ψ L 2 (I,L 2 (S d )) = e it √ λ σ ψ L 2 (I,L 2 (S d )) ∼ √ λ s(2 )
, where 2 = 2d/(d -2) and s(2 ) = 1/2. This gives the optimality of (3.0.5) since γ 22 + (σ -1)/2 = 1/2 = s(2 ). 3. By the same technique used in the proof of Theorem 3.0.1, we can prove with minor modifications Strichartz estimates for the homogeneous linear half-wave equation on (M, g) which is similar to the one given in Corollary 1.2.4). As an application of Theorem 3.0.1, we obtain Strichartz estimates for inhomogeneous linear wave-type equations posed on (M, g). Let us consider the following inhomogeneous linear wavetype equations posed on (M, g),

∂ 2 t v(t, x) + (-∆ g ) σ v(t, x) = G(t, x), (t, x) ∈ I × M, v(0, x) = ψ(x), ∂ t v(0, x) = φ(x), x ∈ M. (3.0.7) Corollary 3.0.3. Consider (M, g) a smooth compact boundaryless Riemannian manifold of di- mension d ≥ 1. Let I ⊂ R be a bounded interval and v a (weak) solution to (3.0.7). If σ ∈ (1, ∞),
then for all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all

(ψ, φ) ∈ H γp,q+(σ-1)/p (M ) × H γp,q+(σ-1)/p-σ (M ), ||v|| L p (I,L q (M )) ≤ C ||[v](0)|| H γp,q +(σ-1)/p (M ) + ||G|| L 1 (I,H γp,q +(σ-1)/p-σ (M )) , (3.0.8)
where

||[v](0)|| H γp,q +(σ-1)/p (M ) := ||ψ|| H γp,q +(σ-1)/p (M ) + ||φ|| H γp,q +(σ-1)/p-σ (M ) .
If σ ∈ (0, 1), then (3.0.8) holds with γ p,q + (σ -1)/p is replaced by γ p,q .

Notations

Coordinate charts and partition of unity Let M be a smooth compact Riemannian manifold without boundary.

A coordinate chart (U κ , V κ , κ) on M comprises an homeomorphism κ between an open subset U κ of M and an open subset V κ of R d . Given φ ∈ C ∞ 0 (U κ )(resp. χ ∈ C ∞ 0 (V κ )), we define the pushforward of φ (resp. pullback of χ) by κ * φ := φ • κ -1 (resp. κ * χ := χ • κ). For a given finite cover of M , namely M = ∪ κ∈F U κ with #F < ∞, there exist φ κ ∈ C ∞ 0 (U κ ), κ ∈ F such that 1 = κ φ κ (m) for all m ∈ M .
Laplace-Beltrami operator For any coordinate chart (U κ , V κ , κ), there exists a symmetric positive definite matrix g κ (x) := (g κ jk (x)) d j,k=1 with smooth and real valued coefficients on V κ such that the Laplace-Beltrami operator P = -∆ g reads in (U κ , V κ , κ) as

P κ := -κ * ∆ g κ * = - d j,k=1 |g κ (x)| -1 ∂ j |g κ (x)|g jk κ (x)∂ k , where |g κ (x)| = det g κ (x) and (g jk κ (x)) d j,k=1 := (g κ (x)) -1 . The principal symbol of P κ is p κ (x, ξ) = d j,k=1 g jk κ (x)ξ j ξ k .

Functional calculus

In this subsection, we recall well-known facts on pseudo-differential calculus on manifolds (see e.g. [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]). For a given a ∈ S(m), we define the operator

Op κ h (a) := κ * Op h (a)κ * . (3.2.1) If nothing is specified about a ∈ S(m), then the operator Op κ h (a) maps C ∞ 0 (U κ ) to C ∞ (U κ ). In the case supp(a) ⊂ V κ × R d , we have that Op κ h (a) maps C ∞ 0 (U κ ) to C ∞ 0 (U κ ) hence to C ∞ (M ). We have the following result. Proposition 3.2.1. Let φ κ ∈ C ∞ 0 (U κ
) be an element of a partition of unity on M and φκ , φκ ∈ C ∞ 0 (U κ ) be such that φκ = 1 near supp(φ κ ) and φκ = 1 near supp( φκ ). Then for all N ≥ 1, all z ∈ [0, +∞)and all h ∈ (0, 1],

(h 2 P -z) -1 φ κ = N -1 j=0 h j φκ Op κ h (q κ,j (z))φ κ + h N R N (z, h), where q κ,j (z) ∈ S(-2-j) is a linear combination of a k (p κ -z) -1-k for some symbol a k ∈ S(2k -j) independent of z and R N (z, h) = -(h 2 P -z) -1 φκ Op κ h (r κ,N (z, h))φ κ ,
where r κ,N (z, h) ∈ S(-N ) with seminorms growing polynomially in 1/dist(z, R + ) uniformly in h ∈ (0, 1] as long as z belongs to a bounded set of C\[0, +∞).

Proof. Let us set χ κ := κ * φ κ , similarly for χκ and χκ . We get χ κ , χκ , χκ ∈ C ∞ 0 (V κ ) and χκ = 1 near supp(χ κ ) and χκ = 1 near supp( χκ ). We first find an operator, still denoted by P , globally defined on R d of the form

P = - d j,k=1 g jk (x)∂ j ∂ k + d l=1 b l (x)∂ l , (3.2.2)
which coincides with P κ on a large relatively compact subset V 0 of V κ . By "large", we mean that supp( χκ ) ⊂ V 0 . For instance, we can take

P = υP κ -(1 -υ)∆ where υ ∈ C ∞ 0 (V κ ) with values in [0, 1] satisfying υ = 1 on V 0 . The principal symbol of P is p(x, ξ) = d j,k=1 g jk (x)ξ j ξ k , where g jk (x) = υ(x)g jk κ (x) + (1 -υ(x))δ jk . (3.2.3)
It is easy to see that g(x) = (g jk (x)) satisfies (2.0.2) and (2.0.3) and b l is bounded in R d together with all of theirs derivatives. Using the standard elliptic parametrix for (h 2 P -z) -1 (see e.g [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]), we have

(h 2 P -z)Op h (q κ (z, h)) = I + h N Op h (r κ,N (z, h)), (3.2.4)
where q κ (z, h) = N -1 j=0 h j q κ,j (z) with q κ,j (z) ∈ S(-2-j) and rκ,N (z, h) ∈ S(-N ) with seminorms growing polynomially in z /dist(z, R + ) uniformly in h ∈ (0, 1]. On the other hand, we can write

(h 2 P κ -z) χκ Op h (q κ (z, h))χ κ = χκ (h 2 P κ -z)Op h (q κ (z, h))χ κ + [h 2 P κ , χκ ]Op h (q κ (z, h))χ κ . (3.2.5)
Here [h 2 P κ , χκ ] and χ κ have coefficients with disjoint supports. Thanks to (3.2.4) and the composition of pseudo-differential operators with disjoint supports, we have

(h 2 P κ -z) χκ Op h (q κ (z, h))χ κ = χ κ + h N χκ Op h (r κ,N (z, h))χ κ ,
with r κ,N (z, h) satisfying the required property. We then compose to the right and the left of above equality with κ * and κ * respectively and get

(h 2 P -z) φκ Op κ h (q κ (z, h))φ κ = φ κ + h N φκ Op κ h (r κ,N (z, h))φ κ .
This gives the result and the proof is complete.

Next, we give an application of the parametrix given in Proposition 3.2.1 and have the following result (see [BGT04, Proposition 2.1] or [BT07, Proposition 2.5]). Proposition 3.2.2. Let φ κ , φκ , φκ be as in Proposition 3.2.1 and f ∈ C ∞ 0 (R). Then for all N ≥ 1 and all h ∈ (0, 1],

f (h 2 P )φ κ = N -1 j=0 h j φκ Op κ h (a κ,j )φ κ + h N R κ,N (h), (3.2.6) 
where a κ,j ∈ S(-∞) with supp(a κ,j ) ⊂ supp(f • p κ ) for j = 0, ..., N -1. Moreover, for all m ≥ 0, there exists C > 0 such that for all h ∈ (0, 1],

R N (h) H -m (M )→H m (M ) ≤ Ch -2m . (3.2.7)
Proof. The proof is essentially given in [BGT04, Proposition 2.1]. For the reader's convenience, we recall some details. By using Proposition 3.2.1 and the Helffer-Sjöstrand formula (see [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]), namely

f (h 2 P ) = - 1 π C ∂ f (z)(h 2 P -z) -1 dL(z),
where f is an almost analytic extension of f , the Cauchy formula implies (3.2.6) with

R κ,N (h) = 1 π C ∂ f (z)(h 2 P -z) -1 φκ Op κ h (r κ,N (z, h))φ κ dL(z).
It remains to prove (3.2.7). This leads to study the action on L 2 (R d ) of the operator

C ∂ f (z)(P κ + 1) m/2 (h 2 P κ -z) -1 χκ Op h (r κ,N (z, h))χ κ (P κ + 1) m/2 dL(z).
Using a trick as in (3.2.5), we can find a globally defined operator P which coincides with P κ on the support of χκ . We see that (

h 2 P -z) -1 L 2 (R d )→L 2 (R d ) ≤ C|Im z| -1 and (P + 1) m/2 Op h (r κ,N (z, h))χ κ (P + 1) m/2 = h -2m Op h (r κ,N (z, h)),
where rκ,N (z, h) ∈ S(-N + 2m) with seminorms growing polynomially in 1/dist(z, R + ) uniformly in h ∈ (0, 1] which are harmless since f is compactly supported and

∂ f (z) = O(|Im z| ∞ ). By choosing N such that N -2m > d, the result then follows from the L(L 2 (R d )) bound of pseudo- differential operator given in Proposition 2.1.1.
A direct consequence of Proposition 2.1.2 using partition of unity and Proposition 2.

1.1 is the following result (see [BGT04, Corollary 2.2] or [BT07, Proposition 2.9]). Corollary 3.2.3. Let f ∈ C ∞ 0 (R). Then for all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1], f (h 2 P ) L q (M )→L r (M ) ≤ Ch -( d q -d r ) .
The next proposition gives the Littlewood-Paley decomposition on compact manifolds without boundary (see [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]Corollary 2.3]) which is similar to Proposition 2.1.4.

Proposition 3.2.4. There exist

ϕ 0 ∈ C ∞ 0 (R) and ϕ ∈ C ∞ 0 (R\{0}) such that for all q ∈ [2, ∞), there exists C > 0, u L q (M ) ≤ C h -1 :dya ϕ(h 2 P )u 2 L q (M ) 1/2 + C u L 2 (M ) , for all u ∈ C ∞ 0 (M ).

Reduction of problem

In this subsection, we first show how to get Corollary 3.0.3 from Theorem 3.0.1 and then give a reduction of Theorem 3.0.1.

Proof of Corollary 3.0.3 Since we are working on compact manifolds without boundary, it is well-known that there exists an orthonormal basis (e j ) j∈N of L

2 (M ) := L 2 (M, dvol g ) of C ∞ functions on M such that |∇ g | σ e j = λ σ j e j , with 0 ≤ λ 0 ≤ λ 1 ≤ λ 2 ≤ • • • , lim j→∞ λ j = +∞. For any f a piecewise continuous function, the functional f (|∇ g |) is defined as f (|∇ g |)u := j∈N f (λ j )u j e j ,
where

u j := e j , u L 2 (M ) = M e j (x)u(x)dvol g (x).
If we set j 0 := dim(ker

|∇ g | σ ), then λ 0 = λ 1 = • • • = λ j0-1 = 0 and λ j ≥ λ j0 > 0 for j ≥ j 0 .
Here the number j 0 stands for the number of connected components of M and the corresponding eigenfunctions (e j ) j0-1 j=0 are constant functions. We now define the projection on ker(|∇ g | σ ) by

Π 0 u := j<j0 u j e j .
By the Duhamel formula, the equation (3.0.7) can be written as

v(t) = cos(t|∇ g | σ )ψ + sin(t|∇ g | σ ) |∇ g | σ φ + t 0 sin((t -s)|∇ g | σ ) |∇ g | σ G(s)ds.
We remark that the only problem may happen on ker(|∇ g | σ ) of

sin(t|∇g| σ ) |∇g| σ
. But it is not the case because

Π 0 sin(t|∇ g | σ ) |∇ g | σ φ = j<j0 sin(tλ σ j ) λ σ j v 1,j e j = j<j0 t sin(tλ σ j ) tλ σ j v 1,j e j = t j<j0 v 1,j e j = tΠ 0 φ. Since ker(|∇ g | σ ) is generated by constant functions, local in time Strichartz estimates of Π 0 v, namely Π 0 v L p (I,L q (M ))
with I a bounded interval, can be controlled by any Sobolev norms of data. Therefore, we only need to study local in time Strichartz estimates of v away from ker(|∇ g | σ ). Using the fact that

cos(t|∇ g | σ ) = e it|∇g| σ + e -it|∇g| σ 2 , sin(t|∇ g | σ ) = e it|∇g| σ -e -it|∇g| σ 2i ,
Strichartz estimates (3.0.8) follow directly from the ones of e ±it|∇g| σ as in (3.0.6). This gives Corollary 3.0.3. We now prove Theorem 3.0.1. To do so, we have the following reduction.

Proposition 3.3.1. Consider (M, g) a smooth compact Riemannian manifold of dimension d ≥ 1. Let σ ∈ (0, ∞)\{1} and ϕ ∈ C ∞ 0 (R\{0}).
If there exists t 0 > 0 small enough and C > 0 such that for all ψ ∈ L 1 (M ) and all h ∈ (0, 1],

e ith -1 (h|∇g|) σ ϕ(h 2 P )ψ L ∞ (M ) ≤ Ch -d (1 + |t|h -1 ) -d/2 ψ L 1 (M ) , (3.3.1) 
for all t ∈ [-t 0 , t 0 ], then Theorem 3.0.1 holds true.

Proof. The proof of homogeneous Strichartz estimates follows similarly to the one given in Proposition 2.1.5. We only give the proof of (3.0.6), i.e. σ ∈ (1, ∞), the one for σ ∈ (0, 1) is completely similar. The homogeneous part follows from (3.0.5). It remains to prove

t 0 e i(t-s)|∇g| σ F (s)ds L p (I,L q (M )) ≤ C F L 1 (I,H γp,q +(σ-1)/p (M )) . (3.3.2)
The estimate (3.3.2) follows easily from (3.0.5) and the Minkowski inequality (see [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF], Corollary 2.10). Indeed, the left hand side reads

I 1 [0,t] (s)e i(t-s)|∇g| σ F (s)ds L p (I,L q (M )) ≤ I 1 [0,t] (s)e i(t-s)|∇g| σ F (s) L p (I,L q (M )) ds ≤ I e i(t-s)|∇g| σ F (s) L p (I,L q (M )) ds ≤ C I F (s) H γp,q +(σ-1)/p (M ) ds.
This gives (3.3.2) and the proof of Proposition 3.3.1 is complete.

Dispersive estimates

This subsection is devoted to prove the dispersive estimates (3.3.1). Again thanks to the localization ϕ, we can replace (h|∇ g |) σ by ω(h 2 P ) where ω(λ) = φ(λ) √ λ σ with φ ∈ C ∞ 0 (R\{0}) such that φ = 1 near supp(ϕ). The partition of unity allows us to consider only on a local coordinates, namely κ e ith -1 ω(h 2 P ) ϕ(h 2 P )φ κ . By using the same argument as in Remark 2.2.2 and Propo-sition 3.2.2, the study of e ith -1 ω(h 2 P ) ϕ(h 2 P )φ κ is reduced to the one of e ith -1 ω(h

2 P ) φκ Op κ h (a κ )φ κ with a κ ∈ S(-∞) and supp(a κ ) ⊂ supp(ϕ • p κ ). Let us set u(t) = e ith -1 ω(h 2 P ) φκ Op κ h (a κ )φ κ ψ.
We see that u solves the following semi-classical evolution equation

(hD t -ω(h 2 P ))u(t) = 0, u |t=0 = φκ Op κ h (a κ )φ κ ψ. (3.4.1)
The WKB method allows us to construct an approximation of the solution to (3.4.1) in finite time independent of h. To do so, we first choose ϑ κ , θκ , θκ ∈ C ∞ 0 (U κ ) such that ϑ κ = 1 near supp( φκ ) (see Proposition 3.2.1 for φκ ), θκ = 1 near supp(ϑ κ ) and θκ = 1 near supp( θκ ). Proposition 3.2.2 then implies (1). We apply the construction of the WKB approximation given in Subsection 2.2 and find t 0 > 0 small enough, a function

ω(h 2 P )ϑ κ = θκ Op κ h (b κ (h))ϑ κ + h N R κ,N (h), (3.4.2) where b κ (h) = N -1 l=1 h l b κ,l with b κ,l ∈ S(-∞) and R κ,N (h) = O L 2 (M )→L 2 (M )
S κ ∈ C ∞ ([-t 0 , t 0 ] × R 2d ) and a sequence a κ,j (t, •, •) ∈ S(-∞) satisfying supp(a κ,j (t, •, •)) ⊂ p -1 (J) (see (3.2.
3) for the definition of p) for some small neighborhood J of supp(ϕ) not containing the origin uniformly in t ∈ [-t 0 , t 0 ] such that

(hD t -Op h (b κ (h)))J κ,N (t) = R κ,N (t), (3.4.3) 
where

J κ,N (t) := N -1 j=0 h j J h (S κ (t), a κ,j (t)), J κ,N (0) = Op h (a κ ),
satisfies for all t ∈ [-t 0 , t 0 ] and all (x, ξ) ∈ p -1 (J),

|∂ α x ∂ β ξ (S κ (t, x, ξ) -x • ξ)| ≤ C αβ |t|, |α + β| ≥ 1, (3.4.4) ∂ α x ∂ β ξ (S κ (t, x, ξ) -x • ξ + t p(x, ξ) σ ) ≤ C αβ |t| 2 , (3.4.5)
and for all h ∈ (0, 1],

J κ,N (t) L 1 (R d )→L ∞ (R d ) ≤ Ch -d (1 + |t|h -1 ) -d/2 , (3.4.6) R κ,N (t) = O L 2 (R d )→L 2 (R d ) (h N -1 ). (3.4.7)
Next, we need the following micro-local finite propagation speed.

Lemma 3.4.1. Let σ ∈ (0, ∞)\{1}, χ, χ ∈ C ∞ 0 (R d ) such that χ = 1 near supp(χ), a(t) ∈ S(-∞) with supp(a(t, •, •)) ⊂ p -1 (J) uniformly in t ∈ [-t 0 , t 0 ] and S ∈ C ∞ ([-t 0 , t 0 ] × R 2d ) satisfy (3.4.5) for all t ∈ [-t 0 , t 0 ] and all (x, ξ) ∈ p -1 (J). Then for t 0 > 0 small enough, J h (S(t), a(t))χ = χJ h (S(t), a(t))χ + R(t), where R(t) = O L 2 (R d )→L 2 (R d ) (h ∞ ).

Proof. The kernel of J h (S(t), a(t))χ -χJ h (S(t), a(t))χ is given by

K h (t, x, y) = (2πh) -d R d e ih -1 (S(t,x,ξ)-y•ξ) (1 -χ)(x)a(t, x, ξ)χ(y)dξ.
Using (3.4.5), we can write for t 0 > 0 small enough, t ∈ [-t 0 , t 0 ] and (x, ξ) ∈ p -1 (J),

S(t, x, ξ) -y • ξ = (x -y) • ξ -t p(x, ξ) σ + O(t 2 ).
By change of variables η = G(x)ξ or ξ = g(x)η, we have

K h (t, x, y) = (2πh) -d R d e ih -1 Φ(t,x,y,η) (1 -χ)(x)a(t, x, g(x)η)χ(y) det g(x)dx, where Φ(t, x, y, ξ) = g(x)(x -y) • η -t|η| σ + O(t 2
). Thanks to the support of χ and χ, we see that |x -y| ≥ C. This gives for t 0 > 0 small enough that

|∇ η Φ(t, x, y, η)| = | g(x)(x -y) -tση|η| σ-2 + O(t 2 )| ≥ C(1 + |x -y|).
Here we also use the fact that g(x) is bounded from below and above (see (3.2.3)). Using the fact that for all β ∈ N d satisfying |β| ≥ 2,

|∂ β η Φ(t, x, y, η)| ≤ C β ,
the non stationary phase theorem implies for all N ≥ 1, all t ∈ [-t 0 , t 0 ] and all x, y ∈ R d ,

|K h (t, x, y)| ≤ Ch N -d (1 + |x -y|) -N . The Schur's Lemma gives R(t) = O L 2 (R d )→L 2 (R d ) (h ∞
). This ends the proof.

Proof of dispersive estimates (3.3.1) With the same spirit as in (3.2.1), let us set

J κ N (t) = κ * J κ,N (t)κ * , R κ N (t) = κ * R κ,N (t)κ * where J κ,N (t) and R κ,N (t) given in (3.4.3). The Duhamel formula gives u(t) = e ith -1 ω(h 2 P ) φκ Op κ h (a κ )φ κ ψ = φκ J κ N (t)φ κ ψ -ih -1 t 0 e i(t-s)h -1 ω(h 2 P ) (hD s -ω(h 2 P )) φκ J κ N (s)φ κ ψds.
We aslo have from (3.4.2) that

(hD s -ω(h 2 P )) φκ J κ N (s)φ κ = φκ hD s J κ N (s)φ κ -θκ Op κ h (b κ (h)) φκ J κ N (s)φ κ -h N R κ,N (h) φκ J κ N (s)φ κ .
The micro-local finite propagation speed given in Lemma 3.4.1 and (3.4.3) imply

(hD s -ω(h 2 P )) φκ J κ N (s)φ κ = θκ κ * (hD s -Op h (b κ (h)))J N (s)κ * φ κ -Rκ (s) -h N R κ,N (h) φκ J κ N (s)φ κ = θκ R κ N (s)φ κ -Rκ (s) -h N R κ,N (h) φκ J κ N (s)φ κ , where Rκ (s) = O L 2 (M )→L 2 (M ) (h ∞ ).
Here we also use the L 2 -boundedness of pseudo-differential operators with symbols in S(-∞). We then get

u(t) = φκ J κ N (t)φ κ ψ + R κ N (t)ψ,
where

R κ N (t)ψ = -ih -1 t 0 e i(t-s)h -1 ω(h 2 P ) ( θκ R κ N (s)φ κ -Rκ (s) -h N R κ,N (h) φκ J κ N (s)φ κ )ψds.
By the same process as in Remark 2.2.2 using (3.4.6) and the fact

R κ N (t) = O L 2 (M )→L 2 (M ) (h N -1 ) for all t ∈ [-t 0 , t 0 ], we obtain e ith -1 ω(h 2 P ) ϕ(h 2 P )φ κ ψ L ∞ (M ) ≤ Ch -d (1 + |t|h -1 ) -d/2 ψ L 1 (M ) ,
for all t ∈ [-t 0 , t 0 ]. The dispersive estimates (3.3.1) then follow from the above estimates and partition of unity. This completes the proof. In this chapter, we consider the time dependent Schrödinger-type equation on a Riemannian manifold (M, g), namely 

Chapter 4

Global-in-time

i∂ t u(t, x) -|∇ g | σ u(t, x) = 0, (t, x) ∈ R × M, u(0, x) = ψ(x), x ∈ M, ( 4 
u L p (R,L q (R d )) ψ Ḣγp,q (R d ) ,
where (p, q) satisfies the Schrödinger admissible condition with q < ∞ and γ p,q is as in (1.0.7).

When M = R d and g a smooth bounded metric satisfying (2.0.2) and (2.0.3) or (M, g) a smooth compact Riemannian manifold without boundary, we also have Strichartz estimates but only local in time (see Theorem 2.0.1 and Theorem 3.0.1),

u L p ([0,1],L q (M )) ψ H γ (M ) .
In the case σ ∈ (0, 1), we have the same (local in time) Strichartz estimates as in (R d , Id), i.e. γ = γ p,q . In the case σ ∈ (1, ∞), there is a "loss" of (σ -1)/p derivatives compared to the one on (R d , Id), i.e. γ = γ p,q + (σ -1)/p. When M is a non-compact Riemannian manifold, global in time Strichartz estimates for the Schrödinger equation (i.e. σ = 2) have been studied intensively over the last decade. In [START_REF] Bouclet | On global Strichartz estimates for non trapping metrics[END_REF], Bouclet-Tzvetkov established global in time Strichartz estimates on asymptotically Euclidean manifold, i.e. R d equipped with a long range perturbation metric g (see (4.0.3)) with a low frequency cutoff under non-trapping condition. The first breakthrough on this topic was done by Tataru in [START_REF] Tataru | Parametrices and dispersive estimates for Schrödinger operators with variable coefficients[END_REF] where he considered long range and globally small perturbations of the Euclidean metric with C 2 and time dependent coefficients. In this setting, no trapping could occur. Later, Marzuola-Metcalfe-Tataru in [START_REF] Marzuola | Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations[END_REF] improved the results by considering more general perturbations in a compact set, including some weak trapping. Afterwards, Hassell-Zhang in [START_REF] Hassell | Global in time Strichartz estimates on non-trapping asymptotically conic manifolds[END_REF] extended those results for general geometric framework of asymptotically conic manifolds and including very short range potentials with non-trapping condition. Subsequencely, Bouclet-Mizutani in [BM16] established global in time Strichartz estimates for a more general class of asymptotically conic manifolds including all usual smooth long range perturbations of the Euclidean metric with hyperbolic trapping condition. After that, Zhang-Zheng [START_REF] Zhang | Global-in-time Strichartz estimates for Schrödinger on scattering manifolds[END_REF] extended the result of Hassell-Zhang [START_REF] Hassell | Global in time Strichartz estimates on non-trapping asymptotically conic manifolds[END_REF] and proved global in time Strichartz estimates for Schrödinger operators with potentials on assymptotically conic manifoldswith non-trapping condition. They also extended Bouclet-Mizutani's result [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF] by considering Schrödinger operators with short range potentials on asymptotically conic manifolds with hyperbobic trapping condition. Recently, Zhang-Zheng [START_REF] Zhang | Global-in-time Strichartz estimates and cubic Schrödinger equation on metric cone[END_REF] established global in time Strichartz estimates for Schrödinger operators on metric cone.

In order to prove Strichartz estimates on curved backgrounds, one uses the Littlewood-Paley decomposition to localize the solution in frequency. One then uses microlocal techniques to derive dispersive estimates and obtain Strichartz estimates for each spectrally localized components. By summing over all frequency pieces, one gets Strichartz estimates for the solution. For local in time Strichartz estimates, this usual scheme works very well. However, for global in time Strichartz estimates, one has to face a difficulty arising at low frequency. Due to the uncertainty principle, one can only use microlocal techniques for data supported outside compact sets at low frequency. Therefore, one has to use another technique for data supported inside compact sets. Note also that on R d , one can use the scaling technique to reduce the analysis at low frequency to the study at frequency one, but this technique does not work on manifolds in general.

The goal of this chapter is to study global in time Strichartz estimates for the Schrödingertype equation on asymptotically Euclidean manifolds. In the case of Schrödinger equation, it can be seen as a completion of those in [START_REF] Bouclet | On global Strichartz estimates for non trapping metrics[END_REF] of spatial dimensions greater than or equal to 3. In order to achieve this goal, we will use the techniques of [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF] combined with the analysis of [START_REF] Bouclet | On global Strichartz estimates for non trapping metrics[END_REF]. Note that since we consider a larger range of admissible condition compared to the sharp Schrödinger admissible condition (see (0.0.1)) of [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF], we have to be more careful in order to apply the techniques of [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF].

Before giving the main results, let us introduce some notations. Let g(x) = (g jk (x)) d j,k=1 be a metric on R d , d ≥ 2, and denote G(x) = (g jk (x)) d j,k=1 := g -1 (x). We consider the Laplace-Beltrami operator associated to g, i.e.

∆ g = d j,k=1 |g(x)| -1 ∂ xj g jk (x)|g(x)|∂ x k ,
where |g(x)| := det g(x). Throughout the chapter, we assume that g satisfies the following assumptions.

1. There exists C > 0 such that for all x, ξ ∈ R d ,

C -1 |ξ| 2 ≤ d j,k=1 g jk (x)ξ j ξ k ≤ C|ξ| 2 . (4.0.2)
2. There exists ρ > 0 such that for all α ∈ N d , there exists C α > 0 such that for all x ∈ R d ,

∂ α g jk (x) -δ jk ≤ C α x -ρ-|α| . (4.0.3)
3. The geodesic flow associated to g is non-trapping. It means that the Hamiltonian flow (X(t), Ξ(t)) := (X(t, x, ξ), Ξ(t, x, ξ)) associated to p, i.e.

Ẋ(t) = ∇ ξ p(X(t), Ξ(t)), Ξ(t) = -∇ x p(X(t), Ξ(t)), and 
Ẋ(0) = x, Ξ(0) = ξ, satisfies: for all (x, ξ) ∈ T R d with ξ = 0, |X(t)| → +∞ as t → ±∞, (4.0.4)
where p is the principal symbol of -∆ g (see (4.0.5) below). Remark that by the conservation of energy and (4.0.2), all the geodesics starting from (x, ξ) are defined globally in time, i.e. (X(t), Ξ(t)) exists for all t ∈ R.

The elliptic assumption (4.0.2) implies that |g(x)| is bounded from below and above by positive constants. Thus for 1 ≤ q ≤ ∞, the spaces L q (R d , d g x) where d g x = |g(x)|dx and L q (R d ) coincide and have equivalent norms. In the sequel, we will use the same notation L q (R d ) or L q for short.

It is well-known that -∆ g is essentially self-adjoint on C ∞ 0 (R d ) under the assumptions (4.0.2) and (4.0.3). We denote the unique self-adjoint extension on L 2 of -∆ g by P . Note that the principal symbol of P is

p(x, ξ) = ξ t G(x)ξ = d j,k=1 g jk (x)ξ j ξ k . (4.0.5) Now let γ ∈ R and q ∈ [1, ∞].
The inhomogeneous Sobolev space W γ,q g associated to the metric g is defined as a closure of the Schwartz space S under the norm

u W γ,q g := ∇ g γ u L q , ∇ g = 1 -∆ g .
It is very useful to recall that for all γ ∈ R and q ∈ (1, ∞), there exists C > 1 such that

C -1 ∇ γ u L q ≤ u W γ,q g ≤ C ∇ γ u L q , (4.0.6)
with ∇ = √ 1 -∆ where ∆ is the free Laplace operator on R d . This fact follows from the L q -boundedness of zero order pseudo-differential operators (see e.g [Sog86, Theorem 3.1.6]). The estimates (4.0.6) allow us to use the Sobolev embedding as on R d . For the homogeneous Sobolev space associated to g, one should be careful since the Schwartz space is not a good candidate due to the singularity at 0 of λ → |λ| γ . Recall that (see [START_REF] Ginibre | The global Cauchy problem for the nonlinear Klein-Gordon equation[END_REF]Appendix], [START_REF] Triebel | Theory of function spaces[END_REF]chapter 5] and [BL76, Chapter 6]) on R d , the homogeneous Sobolev space Ẇ γ,q is the closure of L under the norm

u Ẇ γ,q := |∇| γ u L q , where L := u ∈ S | D α û(0) = 0, ∀α ∈ N d .
Here • is the spatial Fourier transform. Since there is no Fourier transform on manifolds, we need to use the spectral theory instead. We denote

L g := {ϕ(P )u | u ∈ S , ϕ ∈ C ∞ 0 ((0, ∞))} . (4.0.7)
We define the homogeneous Sobolev space Ẇ γ,q g associated to g as the closure of L g under the norm

u Ẇ γ,q g := |∇ g | γ u L q .
When q = 2, we use H γ , Ḣγ , H γ g and Ḣγ

g instead of W γ,2 , Ẇ γ,2 , W γ,2 g
and Ḣγ g respectively. Thanks to the equivalence (4.0.6), we will only use the usual notation

H γ in the sequel. It is important to note (see [Bouc11, Proposition 2.3] or [SW10, Lemma 2.4]) that for d ≥ 2, u 2 Ḣ1 g = (|∇ g |u, |∇ g |u) = (u, P u) ∇u 2 L 2 = u 2 Ḣ1 . (4.0.8)
By Stone's theorem, the solution to (4.0.1) is given by u

(t) = e -it|∇g| σ ψ. Let f 0 ∈ C ∞ 0 (R) be such that f 0 = 1 on [-1, 1]. We split u(t) = u low (t) + u high (t),
where

u low (t) := f 0 (P )e -it|∇g| σ ψ, u high (t) = (1 -f 0 )(P )e -it|∇g| σ ψ. (4.0.9)
We see that u low (t) and u high (t) correspond to the low and high frequencies respectively. By the Littlewood-Paley decomposition which is very similar to the one given in [BM16, Subsection and assume that the geodesic flow associated to g is non-trapping. Then for all χ ∈ C ∞ 0 (R d ) and all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all ψ ∈ L g ,

χu high L p (R,L q ) ≤ C ψ Ḣγp,q g . (4.0.10)
The proof of Theorem 4.0.1 is based on local in time Strichartz estimates and global L 2 integrability estimates of the Schrödinger-type operator. This strategy was first used in [ST02] for the Schrödinger equation. We will make use of dispersive estimates given in Chapter 2 to get Strichartz estimates with a high frequency spectral cutoff on a small time interval. Thanks to global L 2 integrability estimates, we can upgrade these local in time Strichartz estimates in to global in time Strichartz estimates. This strategy depends heavily on the non-trapping condition. We believe that one can improve this result to allow some weak trapping condition such as hyperbolic trapping in [START_REF] Burq | Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics[END_REF]. We hope to come back to this interesting question in a future work.

Our next result is the following global in time Strichartz estimates for the high frequency term outside a compact set. Theorem 4.0.2. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and assume that there exists M > 0 large enough such that for all χ ∈ C ∞ 0 (R d ),

χ(P -λ ± i0) -1 χ L 2 →L 2 χ λ M , λ ≥ 1. (4.0.11)
Then there exists R > 0 large enough such that for all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all ψ ∈ L g ,

1 {|x|>R} u high L p (R,L q ) ≤ C ψ Ḣγp,q g . (4.0.12)
The assumption (4.0.11) is known to hold in certain trapping situations (see e.g. [START_REF] Datchev | Local smoothing for scattering manifolds with hyperbolic trapped sets[END_REF],

[NZ09] or [START_REF] Burq | Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics[END_REF]) as well as in the non-trapping case (see [START_REF] Robert | Asymptotique de la phase de diffusion à haute énergie pour les perturbations du second ordre du Laplacien[END_REF] or [START_REF] Vodev | Local energy decay of solutions to the wave equation for non-trapping metrics[END_REF]). We remark that under the trapping condition of [START_REF] Datchev | Local smoothing for scattering manifolds with hyperbolic trapped sets[END_REF], [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF] or [START_REF] Burq | Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics[END_REF], we have

χ(P -λ ± i0) -1 χ L 2 →L 2 χ λ -1/2 log λ, λ ≥ 1,
and under non-trapping condition, we have (see e.g. [START_REF] Burq | Semi-classical estimates for the resolvent in non-trapping geometries[END_REF], [START_REF] Robert | Asymptotique de la phase de diffusion à haute énergie pour les perturbations du second ordre du Laplacien[END_REF]) that

χ(P -λ ± i0) -1 χ L 2 →L 2 χ λ -1/2 , λ ≥ 1.
The proof of Theorem 4.0.2 relies on the so called Isozaki-Kitada parametrix (see [START_REF] Bouclet | On global Strichartz estimates for non trapping metrics[END_REF]) and resolvent estimates given in [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF] Then for all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all ψ ∈ L g ,

u low L p (R,L q ) ≤ C ψ Ḣγp,q g . (4.0.13)
As mentioned earlier, since we consider a larger range of admissible condition than the one studied in [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF], we can not apply directly the low frequency Littlewood-Paley decomposition given in [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF]. We thus need a "refined" version of Littlewood-Paley decomposition. To do so, we will take advantage of heat kernel estimates (see Subsection 4.2.1). As a result, we split the low frequency term into two parts: one supported outside a compact set and another one localized in a weak sense, i.e. by means of a spatial decaying weight. The term with a spatial decaying weight is treated easily by using global L p integrability estimates of the Schrödinger-type operator at low frequency. Note that this type of global L p integrability estimate relies on the low frequency resolvent estimates of [START_REF] Bouclet | Sharp low frequency estimates on asymptotically conical manifolds[END_REF] which is available for spatial dimensions d ≥ 3. We expect that global in time Strichartz estimates for the Schrödinger-type equation at low frequency may hold in dimension d = 2 as well. However, we do not know how to prove it at the moment. For the term outside a compact set, we make use of microlocal techniques and a low frequency version of the Isozaki-Kitada parametrix. We refer the reader to Section 4.4 for more details.

Combining Theorem 4.0.1, Theorem 4.0.2 and Theorem 4.0.3, we have the following result. Theorem 4.0.4. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and assume that the geodesic flow associated to g is non-trapping. Let u be a weak solution to (4.0.1). Then for all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all ψ ∈ L g , 

u L p (R,L q ) ≤ C ψ Ḣγp,q g . ( 4 
i∂ t u(t, x) -|∇ g | σ u(t, x) = F (t, x), (t, x) ∈ R × R d , u(0, x) = ψ(x), x ∈ R d , (4.0.15)
with data ψ ∈ L g and F ∈ C(R, L g ). Then for all (p, q) and (a, b) Schrödinger admissible with q < ∞ and b < ∞, there exists C > 0 such that 

u L p (R,L q ) + u L ∞ (R, Ḣγp,q g ) ≤ C ψ Ḣγp,q g + F L a (R,L b ) , ( 4 
u L p (R,L q ) ≤ C ψ Ḣγp,q g + F L 1 (R, Ḣγp,q g ) .
(4.0.18) 2. When σ ∈ (0, 2)\{1}, we always have γ p,q > 0 for any Schrödinger admissible pair (p, q) except (p, q) = (∞, 2). Thus, condition (4.0.17) implies that (p, a) = (2, 2), and (4.0.16) includes the endpoint case. When σ ≥ 2, the estimates (4.0.16) do not include the endpoint estimate. 3. In the case σ ∈ (0, 2]\{1}, we can replace the homogeneous Sobolev norms in (4.0.16) and (4.0.18) by the inhomogeneous ones. Proposition 4.0.8. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and assume that the geodesic flow associated to g is non-trapping. Let σ ∈ (0, ∞)\{1} and v be a weak solution to the Cauchy problem

∂ 2 t v(t, x) + (-∆ g ) σ v(t, x) = F (t, x), (t, x) ∈ R × R d , v(0, x) = v 0 (x), ∂ t v(0, x) = v 1 (x), x ∈ R d , (4.0.19) with data v 0 , v 1 ∈ L g and F ∈ C(R, L g ).
Then for all (p, q) and (a, b) Schrödinger admissible with q < ∞ and b < ∞, there exists C > 0 such that 

v L p (R,L q ) + [v] L ∞ (R, Ḣγp,q g ) ≤ C [v](0) Ḣγp,q g + F L a (R,L b ) , (4.0.20) where [v](t) := (v(t), ∂ t v(t)) and [v] L ∞ (R, Ḣγp,q g ) := v L ∞ (R, Ḣγp,q g ) + ∂ t v L ∞ (R, Ḣγp,q-σ g ) provided that (p, a) = (2, 2) and γ p,q = γ a ,b + 2σ. ( 4 
v L p (R,L q ) ≤ C [v](0) Ḣγp,q g + F L 1 (R, Ḣγp,q-σ g ) . (4.0.22)

Functional calculus and propagation estimates

In this section, we recall some well-known results on pseudo-differential operators and prove some propagation estimates related to our problem.

Pseudo-differential operators.

Let µ, m ∈ R. We consider the symbol class S(µ, m) the space of smooth functions a on R 2d satisfying

∂ α x ∂ β ξ a(x, ξ) ≤ C αβ x µ-|α| ξ m-|β| .
In practice, we mainly use S(µ, -∞) := ∩ m∈R S(µ, m).

For a ∈ S(µ, m) and h ∈ (0, 1], we consider the semi-classical pseudo-differential operator Op h (a) which is defined by

Op h (a)u(x) = (2πh) -d R 2d e ih -1 (x-y)•ξ a(x, ξ)u(y)dydξ. (4.1.1)
By the long range assumption (4.0.3), we see that h 2 P = Op h (p)+hOp h (p 1 ) with p ∈ S(0, 2) given in (4.0.5) and p 1 ∈ S(-ρ -1, 1) ⊂ S(-1, 1). We recall that for a ∈ S(µ 1 , m 1 ) and b ∈ S(µ 2 , m 2 ), the composition Op h (a)Op h (b) is given by

Op h (a)Op h (b) = N -1 j=0 h j Op h ((a#b) j ) + h N Op h (r # N (h)), (4.1.2)
where (a#b

) j = |α|=j 1 α! ∂ α ξ aD α x b ∈ S(µ 1 + µ 2 -j, m 1 + m 2 -j) and (r # N (h)) h∈(0,1] is a bounded family in S(µ 1 +µ 2 -N, m 1 +m 2 -N ).
The adjoint with respect to the Lebesgue measure Op h (a) is given by

Op h (a) = N -1 j=0 h j Op h (a j ) + h N Op h (r N (h)), (4.1.3) 
where

a j = |α|=j 1 α! ∂ α ξ D α x a ∈ S(µ 1 -j, m 1 -j) and (r N (h)) h∈(0,1] is a bounded family in S(µ 1 -N, m 1 -N ).
We next recall the definition of rescaled pseudo-differential operator which is essentially given in [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF]. This type of operator is very useful for the analysis at low frequency. Let a ∈ S(µ, m) and ∈ (0, 1]. The rescaled pseudo-differential operator Op (a) is defined by 

Op (a)u(x) = (2π) -d R 2d e i(x-y)•ξ a( x, -1 ξ)u(y)dydξ. Setting D u(x) := d/2 u( x).
Op (a)Op (b) = N -1 j=0 Op ((a#b) j ) + Op (r # N ), Op (a) = N -1 j=0 
Op (a j ) + Op (r N ).

Functional calculus.

In this subsection, we will recall the approximations for φ(h 2 P ) and ζ( x)φ( -2 P ) in terms of semi-classical and rescaled pseudo-differential operators respectively, where We firstly recall the following L q → L r -bound of pseudo-differential operators (see e.g. [BT07, Proposition 2.4]). Proposition 4.1.1. Let m > d and a be a continuous function on R 2d smooth with respect to the second variable satisfying for all β ∈ N d , there exists

φ ∈ C ∞ 0 (R) and ζ ∈ C ∞ (R d ) is supported outside B(0,
C β > 0 such that for all x, ξ ∈ R d , |∂ β ξ a(x, ξ)| ≤ C β ξ -m .
Then for 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

Op h (a) L q →L r ≤ Ch -(d/q-d/r) .
The following proposition gives an approximation of φ(h 2 P ) in terms of semi-classical pseudodifferential operators (see e.g. [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF] or [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]). Proposition 4.1.2. Consider R d equipped with a smooth metric g satisfying (4.0.2) and (4.0.3). Then for a given φ ∈ C ∞ 0 (R), there exist a sequence of symbols q j ∈ S(-j, -∞) satisfying q 0 = φ•p and supp(q j ) ⊂ supp(φ • p) such that for all N ≥ 1,

φ(h 2 P ) = N -1 j=0 h j Op h (q j ) + h N R N (h),
and for m ≥ 0 and 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

R N (h) x N L q →L r ≤ Ch -(d/q-d/r) , R N (h) x N H -m →H m ≤ Ch -2m .
Combining Proposition 4.1.1 and Proposition 4.1.2, one has the following result (see e.g. [BT07, Proposition 2.9]). Proposition 4.1.3. Consider R d equipped with a smooth metric g satisfying (4.0.2) and (4.0.3). Let φ ∈ C ∞ 0 (R). Then for 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

φ(h 2 P ) L q →L r ≤ Ch -(d/q-d/r) .
It is also known (see [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF]) that the rescaled pseudo-differential operator is very useful to approximate the low frequency localization of P , i.e. operators of the form φ( -2 P ). By the uncertainty principle, one can only expect to get such approximation whenever |x| is large, typically |x|

-1 . Remark 4.1.4. Let µ ≤ 0, m ∈ R and a ∈ S(µ, m). If we set a (x, ξ) := µ a( -1 x, ξ), then for all α, β ∈ N d , there exists C αβ > 0 such that for all |x| ≥ 1, ξ ∈ R d , |∂ α x ∂ β ξ a (x, ξ)| ≤ C αβ ξ m-|β| , ∀ ∈ (0, 1]. We next rewrite -2 P as D (D -1 ( -2 P )D )D -1 . A direct computation gives D -1 ( -2 P )D = Op(p ) + Op(p ,1 ) =: P ,
where p (x, ξ) = p( -1 x, ξ) and p ,1 (x, ξ) = -1 p 1 ( -1 x, ξ). We thus obtain 

ζ( x)( -2 P -z) -k = N -1 j=0 ζ( x)Op (b ,j (z)) ζ( x) + R N (z, ),
where

(b ,j (z)) ∈(0,1] is a bounded family in S(-j, -2k-j) which is a linear combination of d ,l (p - z) -k-l with (d ,l ) ∈(0,1] a bounded family in S(-j, 2l -j) and R N (z, ) = ζ( x)Op (r N (z, )) ζ( x)( -2 P -z) -k
where r N (z, ) ∈ S(-N, -N ) has seminorms growing polynomially in 1/dist(z, R + ) uniformly in ∈ (0, 1] as long as z belongs to a bounded set of C\[0, +∞). A first application of Proposition 4.1.5 is the following result. Proposition 4.1.6. Using the notations given in Proposition 4.1.5, let k > d/2 and 2 ≤ q ≤ ∞. Then there exists C > 0 such that for all ∈ (0, 1],

ζ( x)( -2 P + 1) -k L 2 →L q ≤ C d/2-d/q . (4.1.6)
Proof. We apply Proposition 4.1.5 with N > d, we see that

ζ( x)( -2 P + 1) -k = N -1 j=0 ζ( x)Op (b ,j (-1)) ζ( x) + ζ( x)Op (r N (-1, )) ζ( x)( -2 P + 1) -k , = N -1 j=0 D ζ(x)Op(b ,j (-1)) ζ(x) + ζ(x)Op(r N (-1, )) ζ(x)(P + 1) -k D -1 ,
where (b ,j (-1)) ∈(0,1] , (r N (-1, )) ∈(0,1] are bounded in S(-j, -2k -j) and S(-N, -N ) respectively. The result then follows from Proposition 4.1.1 with h = 1 and that

D L q →L q = d/2-d/q , D -1 L 2 →L 2 = 1.
We also use that (P + 1) -k L 2 →L 2 ≤ 1 for the remainder term. Another application of Proposition 4.1.5 is the following approximation of ζ( x)φ( -2 P ) in terms of rescaled pseudo-differential operators. 

(q ,j ) ∈(0,1] ∈ S(-j, -∞) with q ,0 = φ • p and supp(q ,j ) ⊂ supp(φ • p ) such that for all N ≥ 1, ζ( x)φ( -2 P ) = N -1 j=0 ζ( x)Op (q ,j ) ζ( x) + R N ( ). (4.1.7)
Moreover, for any m ≥ 0, there exists C > 0 such that for all ∈ (0, 1],

( -2 P + 1) m R N ( ) x N L 2 →L 2 ≤ C. (4.1.8)
Proof. By using Proposition 4.1.5 with k = 1 and the Helffer-Sjöstrand formula (see [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF])

namely φ( -2 P ) = - 1 π C ∂ φ(z)( -2 P -z) -1 dL(z),
where φ is an almost analytic extension of φ, the Cauchy formula gives (4.1.7) with

R N ( ) = 1 π C ∂ φ(z)ζ( x)Op (r N (z, )) ζ( x)( -2 P -z) -1 dL(z). (4.1.9)
Here (r N (z, )) ∈(0,1] is bounded in S(-N, -N ) and has semi-norms growing polynomially in

|Im z| -1 which is harmless since ∂ φ(z) = O(|Im z| ∞ ).
The left hand side of (4.1.8) is bounded by

1 π C |∂ φ(z)| ( -2 P + 1) m ζ( x)Op (r N (z, )) ζ( x)( -2 P -z) -1 x N L 2 →L 2 dL(z). By choosing ζ 1 ∈ C ∞ (R d ) supported outside B(0, 1) such that ζ 1 = 1 near supp( ζ), we can write ( -2 P -z) -1 = ( -2 P -z) -1 (1 -ζ 1 )( x) + ( -2 P -z) -1 ζ 1 ( x).
We note that (1

-ζ 1 )( x) x N is of size O L 2 →L 2 (1)
due to the compact support in x, and

( -2 P + 1)( -2 P -z) -1 is of size O L 2 →L 2 (|Im z| -1
) by functional calculus. Moreover, using (4.1.5) and the same process as in the proof of Proposition 4.1.6, there exists τ (m) ∈ N such that

( -2 P + 1) m ζ( x)Op (r N (z, )) ζ( x)( -2 P + 1) -1 L 2 →L 2 ≤ C|Im z| -τ (m) .
This shows that

( -2 P + 1) m R N ( )(1 -ζ 1 )( x) x N L 2 →L 2 ≤ C. (4.1.10)
For the term ( -2 P + 1) m R N ( )ζ 1 ( x) x N , using Proposition 4.1.5 (by taking the adjoint), we see that

( -2 P -z) -1 ζ 1 ( x) = N -1 j=0 ζ1 ( x)Op ( b ,j (z))ζ 1 ( x) + RN (z, ), with ( b ,j (z)) ∈(0,1] a bounded family in S(-j, -2 -j) and RN (z, ) = ( -2 P -z) -1 ζ1 ( x)Op (r N (z, ))ζ 1 ( x),
where rN (z, ) ∈ S(-N , -N ) has seminorms growing polynomially in |Im z| -1 uniformly in ∈ (0, 1]. By the same argument as above, we obtain 

( -2 P + 1) m R N ( )ζ 1 ( x) x N L 2 →L 2 ≤ C. ( 4 
. Let φ ∈ C ∞ 0 (R). Then for 2 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all ∈ (0, 1], ζ( x)φ( -2 P ) L q →L r ≤ C d/q-d/r . (4.1.12)
Proof. By (4.1.7) and (4.1.8) (see also (4.1.9)), we can write for any N ≥ 1 and any m ≥ 0,

ζ( x)φ( -2 P ) = N -1 j=0 ζ( x)Op (q ,j ) ζ( x) + R N ( ), where R N ( ) = ζ( x)( -2 P + 1) -m B x -N with B = O L 2 →L 2 (1) uniformly in ∈ (0, 1].
The main terms can be estimated by using Proposition 4.1.1 (see also the proof of Proposition 4.1.6). It remains to treat the remainder term. We firstly note that x

-N = O L q →L 2 ( d/q-d/2 ) provided N > d(q-2)
2q . Using this bound together with B = O L 2 →L 2 (1) and (4.1.6), we see that

R N ( ) L q →L r ζ( x)( -2 P + 1) -m L 2 →L r B L 2 →L 2 x -N L q →L 2 d/2-d/r d/q-d/2 d/q-d/r .
This proves (4.1.12).

Another consequence of Proposition 4.1.7 is the following estimate. Corollary 4.1.9. Let φ ∈ C ∞ 0 (R). For m ≥ 0, there exists C > 0 such that for all ∈ (0, 1],

x -m φ( -2 P ) x m L 2 →L 2 ≤ C. (4.1.13) Proof. By choosing ζ ∈ C ∞ (R d
) supported outside B(0, 1) and equal to 1 near infinity, we can write x -m φ( -2 P ) x m as

x -m φ( -2 P )ζ( x) x m + x -m φ( -2 P )(1 -ζ)( x) x m .
The L 2 → L 2 -boundedness of the first term follows from the parametrix of φ( -2 P )ζ( x) which is obtained by taking the adjoint of (4.1.7). The second term follows from the fact that (1 -

ζ)( x) x m is bounded on L 2 since 1 -ζ vanishes outside a compact set.

Propagation estimates.

In this subsection, we recall some results on resolvent estimates and prove some propagation estimates both at high and low frequencies. Let us start with the following result. Proposition 4.1.10.

1. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose that the assumption (4.0.11) holds. Then for k ≥ 0, there exists nondecreasing N k ∈ N such that for λ belonging to a relatively compact interval of (0, +∞), there exists C > 0 such that for all h ∈ (0, 1],

x -1-k (h 2 P -λ ∓ i0) -1-k x -1-k L 2 →L 2 ≤ Ch -N k . (4.1.14)
2. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3). Then for k ≥ 0 and λ belonging to a relatively compact interval of (0, +∞), there exists C > 0 such that for all ∈ (0, 1], 1. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose that the assumption (4.0.11) holds. Then for k ≥ 0, there exists non-decreasing N k ∈ N such that for λ belonging to a relatively compact interval of (0, +∞), there exists C > 0 such that for all h ∈ (0, 1],

x -1-k ( -2 P -λ ∓ i0) -1-k x -1-k L 2 →L 2 ≤ C. ( 4 
x -1-k ((h|∇ g |) σ -µ ∓ i0) -1-k x -1-k L 2 →L 2 ≤ Ch -N k . (4.1.16)
2. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3). Then for k ≥ 0 and λ belonging to a relatively compact interval of (0, +∞), there exists C > 0 such that for all ∈ (0, 1],

x -1-k (( -1 |∇ g |) σ -µ ∓ i0) -1-k x -1-k L 2 →L 2 ≤ C. (4.1.17)
Proof. We only give the proof for (4.1.16), the one for (4.1.17) is similar using (4.1.13). We firstly note that the estimates (4.1.16) are equivalent to

x -1-k ((h|∇ g |) σ -µ ∓ i0) -1-k φ(h 2 P ) x -1-k L 2 →L 2 ≤ Ch -N k ,
where φ ∈ C ∞ 0 ((0, +∞)) satisfying φ = 1 near I. Note that here |∇ g | = √ P . Next, we write µ = λ σ/2 with λ lying in a relatively compact interval of (0, +∞). By functional calculus, we write

(h|∇ g |) σ -µ ∓ i0 = (h 2 P -λ ∓ i0)Q(h 2 P, µ),
where Q(•, µ) is smooth and non vanishing on the support of φ. This implies for all k ≥ 0,

((h|∇ g |) σ -µ ∓ i0) -1-k φ(h 2 P ) = (h 2 P -λ ∓ i0) -1-k Q(h 2 P, µ), where Q(h 2 P, µ) = φ(h 2 P )Q -1-k (h 2 P, µ
). This allows us to approximate Q(h 2 P, µ) by pseudodifferential operators by means of Proposition 4.1.2. Thus, we have that

x 1+k Q(h 2 P, µ) x -1-k is of size O L 2 →L 2 (1)
uniformly in µ ∈ I (0, +∞) and h ∈ (0, 1]. Therefore, (4.1.16) follows from (4.1.14). The proof is complete.

We now give an application of resolvent estimates given in Proposition 4.1.11 when k = 0 and obtain the following global L 2 integrability estimates for the Schrödinger-type operators both at high and low frequencies. Proposition 4.1.12. Let σ ∈ (0, ∞) and f ∈ C ∞ 0 ((0, +∞)). 1. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose that the assumption (4.0.11) holds. Then there exists C > 0 such that for all ψ ∈ L 2 and all h ∈ (0, 1],

x -1 f (h 2 P )e -ith -1 (h|∇g|) σ ψ L 2 (R,L 2 ) ≤ Ch (1-N0)/2 ψ L 2 . (4.1.18)
2. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3). Then there exists C > 0 such that for all ψ ∈ L 2 and all ∈ (0, 1],

x -1 f ( -2 P )e -it ( -1 |∇g|) σ ψ L 2 (R,L 2 ) ≤ C -1/2 ψ L 2 . (4.1.19) Remark 4.1.13.
1. By interpolating between L 2 (R) and L ∞ (R), we get the following L p integrability estimates

x -1 f (h 2 P )e -ith -1 (h|∇g|) σ ψ L p (R,L 2 ) ≤ Ch (1-N0)/p ψ L 2 . (4.1.20) x -1 f ( -2 P )e -it ( -1 |∇g|) σ ψ L p (R,L 2 ) ≤ C -1/p ψ L 2 . (4.1.21)
2. Thanks to the fact that P is non-negative, these estimates are still true for f ∈ C ∞ 0 (R\{0}). Moreover, we can replace ψ L 2 in the right hand side of (4.1.18) and (4.1.20) (resp. (4.1.19) and (4.1.21)) by f (h 2 P )ψ L 2 (resp. f ( -2 P )ψ L 2 ). Indeed, we choose f ∈ C ∞ 0 (R\{0}) such that f = 1 near supp(f ) and write f (h 2 P ) = f (h 2 P )f (h 2 P ). We apply (4.1.18) and (4.1.20) with f instead of f . Similarly for the low frequency case. Proof of Proposition 4.1.12. We again only consider the high frequency case, the low frequency one is completely similar. By the limiting absorption principle (see [ReS78, Theorem XIII.25]),

we see that x -1 f (h 2 P )e -it(h|∇g|) σ ψ 2 L 2 (R,L 2 ) is bounded by 2π sup µ∈R >0 x -1 f (h 2 P )((h|∇ g |) σ -µ -i ) -1 f (h 2 P ) x -1 L 2 →L 2 ψ 2 L 2 .
By functional calculus and the holomorphy of the resolvent, it suffices to bound x -1 f (h 2 P )

((h|∇ g |) σ -µ -i0) -1 f (h 2 P ) x -1 L 2 →L 2 , uniformly with respect to µ ∈ R. As a function of h|∇ g |, the operator f (h 2 P )((h|∇ g |) σ -µ -i0) -1 f (h 2 P ) reads f (λ 2 )(λ σ -µ -i0) -1 f (λ 2 ). Assume that supp(f ) ⊂ 1/c 2 , c 2 for some c > 1, so λ ∈ [1/c, c].
In the case µ ≥ 2c σ or µ ≤ 1/2c σ , we have that µ -

λ σ ≥ c σ or λ σ -µ ≥ 1/2c σ . The functional calculus gives f (h 2 P )((h|∇ g |) σ -µ -i0) -1 f (h 2 P ) L 2 →L 2 ≤ 2c σ f 2 L ∞ (R) .
Thus we can assume that µ ∈ [1/2c σ , 2c σ ]. Using (4.1.16) with k = 0, we have

x -1 ((h|∇ g |) σ -µ ∓ i0) -1 x -1 L 2 →L 2 ≤ Ch -N0 .
On the other hand, x -1 f (h 2 P ) x is bounded on L 2 by pseudo-differential calculus. This implies

x -1 f (h 2 P )e -it(h|∇g|) σ ψ L 2 (R,L 2 ) ≤ Ch -N0/2 ψ L 2 .
By scaling in time, this gives the result. Another application of the resolvent estimates given in Proposition 4.1.11 is the following local energy decay for the Schrödinger-type operators both at high and low frequencies.

Proposition 4.1.14. Let σ ∈ (0, ∞) and f ∈ C ∞ 0 (R\{0}). 1. Consider R d , d ≥ 2 equipped
with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose that the assumption (4.0.11) holds. Then for k ≥ 0, there exist C > 0 and non-decreasing N k ∈ N such that for all t ∈ R and all h ∈ (0, 1],

x -1-k e -ith -1 (h|∇g|) σ f (h 2 P ) x -1-k L 2 →L 2 ≤ Ch -N k th -1 -k . (4.1.22)
2. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3). Then for k ≥ 0, there exists C > 0 such that for all t ∈ R and all ∈ (0, 1],

x -1-k e -it ( -1 |∇g|) σ f ( -2 P ) x -1-k L 2 →L 2 ≤ C t -k . (4.1.23) Proof.
As above, we only give the proof for the high frequency case. Using the Stone formula, the operator e -it(h|∇g|) σ f (h 2 P ) reads

1 2iπ R e -itµ f (µ 2/σ )(((h|∇ g |) σ -µ -i0) -1 -((h|∇ g |) σ -µ + i0) -1 )dµ.
We use the same trick as in [START_REF] Bouclet | On global Strichartz estimates for non trapping metrics[END_REF]. By multiplying to above equality with (it) k and using integration by parts in the weighted spaces

x -1-k L 2 , we see that (it) k e -it(h|∇g|) σ f (h 2 P ) is a linear combination with l + n = k of terms of the form R e -itµ ∂ l µ (f (µ 2/σ ))(((h|∇ g |) σ -µ -i0) -1-n -((h|∇ g |) σ -µ + i0) -1-n )dµ.
The compact support of f implies that µ is bounded from above and below. The resolvent estimates (4.1.16) then imply

x -1-k e -it(h|∇g|) σ f (h 2 P ) x -1-k L 2 →L 2 ≤ Ch -N k t -k .
Here we use that N m is non-decreasing with respect to m. By scaling in time, we have (4.1.22). The proof is complete.

Reduction of the problem 4.2.1 The Littlewood-Paley theorems

In this subsection, we recall some Littlewood-Paley type estimates which are essentially given in [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF]. Let us introduce f (λ) = f 0 (λ) -f 0 (2λ), where f 0 given as in (4.0.9). We have

f ∈ C ∞ 0 (R\{0}) and ∞ k=1 f (2 -k λ) = (1 -f 0 )(λ), ∞ k=0 f (2 k λ) = 1 R\{0} (λ)f 0 (λ), λ ∈ R.
The Spectral Theorem implies that

(1 -f 0 )(P ) = ∞ k=1 f (2 -k P ), f 0 (P ) = ∞ k=0 f (2 k P ). (4.2.1)
Here we use the fact that 0 is not an eigenvalue of P in the second sum. Theorem 4.2.1.

1. Let N ≥ 1 and χ ∈ C ∞ 0 (R d ). Then for q ∈ [2, ∞), there exists C > 0 such that (1 -χ)(1 -f 0 )(P )v L q ≤ C h 2 =2 -k (1 -χ)f (h 2 P )v 2 L q + h N x -N f (h 2 P )v 2 L 2 1/2 , ( 4.2.2 
)

for all v ∈ S (R d ),
where k ∈ N\{0}. The same estimates hold for χ in place of

1 -χ. 2. Let χ ∈ C ∞ 0 (R d ) be such that χ(x) = 1 for |x| ≤ 1. Then for q ∈ (2, ∞), there exists C > 0 such that for all v ∈ L 2 , f 0 (P )v L q ≤ C -2 =2 k (1 -χ)( x)f ( -2 P )v 2 L q + d/2-d/q x -1 f ( -2 P )v 2 L 2 1/2 . ( 4 

.2.3)

Here we use in the sum that k ∈ N. Note that the Littlewood-Paley theorem at low frequency is slightly different from the one in [BM16, Theorem 4.1]. In [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF], Bouclet-Mizutani considered the sharp Schrödinger admissible condition (see (0.0.1)). This allows to interpolate between the trivial Strichartz estimate for (∞, 2) and the endpoint Strichartz estimate for the endpoint pair (2,2 ). The proof of the low frequency Littlewood-Paley theorem given in [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF] makes use of the homogeneous Sobolev embedding

v L 2 ≤ C |∇ g |v L 2 , 2 = 2d d -2 . (4.2.4)
Since we consider a larger range of admissible condition (1.1.2), we can not apply this interpolation technique. To overcome this difficulty, we will take the advantage of heat kernel estimates. Our estimate (4.2.3) is robust and can be applied for another types of dispersive equations such as the wave or Klein-Gordon equations. Let K(t, x, y) be the kernel of the heat operator e -tP , t > 0, i.e.

e -tP u(x) = R d K(t, x, y)u(y)dy.
We recall some properties (see e.g. [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF], [START_REF] Grigor'yan | Estimates of heat kernel on Riemannian manifolds[END_REF]) of the heat kernel on arbitrary Riemannian manifold. Lemma 4.2.2. Let (M, g) be an arbitrary Riemannian manifold. Then the heat kernel K satisfies the following properties:

(i) K is a strictly positive C ∞ function on (0, ∞) × M × M . (ii) K is symmetric in the space components. (iii) (Maximum principle) M K(t, x, y)d g (y) ≤ 1.
(iv) (Semi-group property)

M K(s, x, y)K(t, y, z)d g (y) = K(s + t, x, z).
In order to obtain the heat kernel estimate, we will make use of the Nash inequality (see e.g. [SC02, Theorem 3.2.1]), namely

u L 2 ≤ C u 2 d+2 L 1 ∇u d d+2 L 2 .
(4.2.5)

Note that the Nash inequality on R d is valid for any d ≥ 1. Thanks to (4.0.8), we have for d ≥ 2, 

u L 2 ≤ C u 2 d+2 L 1 |∇ g |u d d+2 L 2 . ( 4 
K(t, x, x) ≤ Ct -d/2 , ( 4.2.7) 
K(t, x, y) ≤ Ct -d/2 exp - |x -y| 2 Ct . ( 4 

.2.8)

In particular,

e -tP L 1 →L ∞ ≤ Ct -d/2 , t > 0. (4.2.9)
Proof. The proof is similar to the one given in [Gri99, Theorem 6.1] where the author shows how to get (4.2.7) from the homogeneous Sobolev embedding (4.2.4). For the reader's convenience, we give a sketch of the proof. Fix x ∈ R d and denote v(t, y) = K(t, y, x) and

J(t) := v(t) 2 L 2 .
Using the fact that ∂ t v(t, y) = -P v(t, y), we have

J (t) = 2 v(t), ∂ t v(t) = -2 v(t), P v(t) = -2 |∇ g |v(t) 2 L 2 .
This implies that J(t) is non-increasing. On the other hand, the maximum principle (see also [START_REF] Grigor'yan | Estimates of heat kernel on Riemannian manifolds[END_REF]) shows that

v(t) L 1 = R d K(t, x, y)dy ≤ 1.
This together with (4.2.6) yield

v(t) 2 L 2 ≤ C v(t) 4 d+2 L 1 |∇ g |v(t) 2d d+2 L 2 ≤ C |∇ g |v(t) 2d d+2 L 2 .
We thus get

J (t) ≤ -C v(t) 2(d+2) d L 2 = -CJ(t) d+2 d .

Reduction of the problem

This implies that

J(t) ≤ 2C d t + 1 [J(0)] 2 d -d 2
which together with the non-increasing property of J(t) yield

J(t) ≤ Ct -d/2 .
The estimate (4.2.7) then follows by the symmetric property of K(t, x, y), i.e. J(t) = K(2t, x, x). Using (4.2.7), the off-diagonal argument (see also [START_REF] Grigor'yan | Estimates of heat kernel on Riemannian manifolds[END_REF]) implies the following upper bound for the heat kernel

K(t, x, y) ≤ Ct -d/2 exp - d 2 (x, y) Ct , ∀x, y ∈ R d , t > 0,
where d(x, y) is the geodesic distance from x to y. Thanks to the elliptic condition (4.0.2) of the metric g, it is easy to see that d(x, y) ∼ |x -y|.

This shows (4.2.8) and the proof is complete.

We now give some applications of the upper bound (4.2.8). A first application is the following homogeneous Sobolev embedding. Lemma 4.2.4.

Let q ∈ (2, ∞) and α = d 2 -d q .
Then the operator |∇ g | -α maps L 2 to L q . In particular, there exists C > 0 such that

u L q ≤ C |∇ g | α u L 2 .
(4.2.10)

Proof. We firstly recall the following version of Hardy-Littlewood-Sobolev theorem. Theorem 4.2.5

([HL28, Sob63]). Let 1 < p < q < ∞, γ = d + d q -d p and K γ (x) := |x| -γ .
Then the convolution operator T γ := f * K γ maps L p to L q . In particular, there exists C > 0 such that

T γ u L q ≤ C u L p . Now let Γ(z) := ∞ 0 t z-1 e -t
dt, Re (z) > 0 be the Gamma function. The spectral theory with the fact |∇ g | = √ P gives

|∇ g | -α = P -α/2 = 1 Γ(α/2) ∞ 0 e -tP t α/2-1 dt. Let [|∇ g | -α ](x, y) be the kernel of |∇ g | -α . By (4.2.8), |[|∇ g | -α ](x, y)| ≤ C Γ(α/2) ∞ 0 t -d/2 e -|x-y| 2 Ct t α/2-1 dt. A change of variable shows |[|∇ g | -α ](x, y)| ≤ C Γ(α/2) |x -y| -(d-α) ∞ 0 t d/2-α/2-1 e -t dt = CΓ(d/2 -α/2) Γ(α/2) |x -y| -(d-α) .
The result follows by applying Theorem 4.2.5 with γ = d -α and p = 2.

Another application of the heat kernel upper bound (4.2.8) is the following L q -L r -bound of the heat operator. Lemma 4.2.6. Let 1 ≤ q ≤ r ≤ ∞. The heat operator e -tP , t > 0 maps L q to L r . In particular, there exists C > 0 such that for all t > 0,

e -tP L q →L r ≤ Ct -d 2 ( 1 q -1 r ) .
Proof. By the symmetric and maximal principle properties of the heat kernel, the Schur's Test yields 

e -tP L q →L q ≤ C, t > 0. ( 4 
∈ (0, 1], f ( -2 P ) L 2 →L q ≤ C d/2-d/q .
Proof. By writing f ( -2 P ) = e --2 P (e -2 P f ( -2 P )), and using Lemma 4.2.6 with t = -2 , we get

f ( -2 P ) L 2 →L q ≤ e --2 P L 2 →L q e -2 P f ( -2 P ) L 2 →L 2 ≤ C d/2-d/q .
Here, using the compactly supported property of f and spectral theorem, we have e

-2 P f ( -2 P ) is of size O L 2 →L 2 (1)
. This gives the result.

We now are able to prove Theorem 4.2.1. We only give the proof for the low frequency case. The high frequency one is essentially given in [BM16, Theorem 4.6]. Proof of Theorem 4.2.1. By the second term of (4.2.1), we have

f 0 (P )v L q = sup w L q =1 |(w, f 0 (P )v)| = sup w L q =1 lim M →∞ M k=0 (w, f ( -2 P )v) , ( 4.2.12) 
where

-2 = 2 k and (•, •) is the inner product on L 2 . By choosing f ∈ C ∞ 0 (R\{0}) satisfying f = 1 near supp(f ), we use Proposition 4.1.7 to write (1 -χ)( x) f ( -2 P ) = Q( ) + R( ), where Q( ) = (1 -χ)( x)Op ( f • p )ζ( x), R( ) = ζ( x)( -2 P + 1) -m B( ) x -1 , with ζ ∈ C ∞ (R d
) supported outside B(0, 1) and equal to 1 near supp(1-χ) and B(

) = O L 2 →L 2 (1)
uniformly in ∈ (0, 1]. We next write

f ( -2 P ) = Q( )(1 -χ)( x)f ( -2 P ) + A( ) α x -1 f ( -2 P ), with α = d/2 -d/q and A( ) = -α (1 -χ)( x) f ( -2 P )χ( x) + R( )(1 -χ)( x) + χ( x) f ( -2 P ) x .
We now bound

M k=0 (w, f ( -2 P )v) M k=0 w, Q( )(1 -χ)( x)f ( -2 P )v + M k=0 (w, A( ) α x -1 f ( -2 P )v) M k=0 Q ( )w, (1 -χ)( x)f ( -2 P )v + w L q M k=0 A( ) α x -1 f ( -2 P )v L q =: (I) + (II). ( 4 

.2.13)

We use the Cauchy-Schwarz inequality in k and the Hölder inequality in space to have

(I) S M w L q S M v L q ,
where

S M w := M k=0 |Q ( )w| 2 1/2 , S M v := M k=0 |(1 -χ)( x)f ( -2 P )v| 2 1/2 .
We now make use of the following estimate (see [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping[END_REF]Proposition 4.3]). Proposition 4.2.8. For r ∈ (1, 2], there exists C > 0 such that for all M ≥ 0 and all w ∈ S (R d ),

S M w L r ≤ C w L r .
We thus get

(I) S M v L q w L q M k=0 (1 -χ)( x)f ( -2 P )v 2 L q 1/2 w L q . (4.2.14)
For the second term in (4.2.13), we use the homogeneous Sobolev embedding (4.2.10) to have

M k=0 A( ) α x -1 f ( -2 P )v L q M k=0 |∇ g | α A( ) α x -1 f ( -2 P )v L 2 .
We next write

|∇ g | α A( ) = ( -2 P ) α/2 ( -2 P + 1) -α D( ), (4.2.15) 
with

D( ) = O L 2 →L 2 (1) uniformly in ∈ (0, 1].
It is easy to have (4.2.15) from the first two terms in A( ) by using Proposition 4.1.7. The less obvious contribution in (4.2.15) is the uniform L 2 boundedness of ( -2 P + 1) α χ( x) f ( -2 P ) x . By the functional calculus, it is enough to show for N large enough the uniform L 2 boundedness of ( -2 P + 1) N χ( x) f ( -2 P ) x . To see it, we write

( -2 P +1) N χ( x) f ( -2 P ) x = χ( x)( -2 P +1) N f ( -2 P ) x +[( -2 P +1) N , χ( x)] f ( -2 P ) x ,
where [•, •] is the commutator. The L 2 boundedness of χ( x)( -2 P + 1) N f ( -2 P ) x follows as in (4.1.13). On the other hand, note that the commutator [( -2 P + 1) N , χ( x)] can be written as a sum of rescaled pseudo-differential operators vanishing outside the support of ζ( x) for some ζ ∈ C ∞ (R d ) supported outside B(0, 1) and equal to 1 near infinity. This allows to use Proposition 4.1.7, and the L 2 boundedness of [( -2 P + 1) N , χ( x)] f ( -2 P ) x follows. We next need to recall the following well-known discrete Schur estimate. Lemma 4.2.9. Let θ > 0 and (T l ) l be a sequence of linear operators on a Hilbert space H. If T l T k H→H 2 -θ|k-l| , then there exits C > 0 such that for all sequence (v k ) k of H,

T k v k H ≤ C v k 2 H 1/2 . Now let T k = ( -2 k P ) α/2 ( -2 k P + 1) -α D( k ) with -2 k = 2 k . We see that T l T k = 2 α(l+k) 2 D ( l )(2 l P + 1) -α P α (2 k P + 1) -α D( k ). Note that l + k = -|k -l| + 2k for k ≥ l and l + k = -|k -l| + 2l for l ≥ k. Thus for k ≥ l, T l T k L 2 →L 2 = 2 -α|k-l| 2 D ( l )(2 l P + 1) -α (2 k P ) α (2 k P + 1) -α D( k ) L 2 →L 2 2 -α|k-l| 2 .
Similarly for l ≥ k. Therefore, we can apply Lemma 4.2.9 for 

T k = ( -2 k P ) α/2 ( -2 k P + 1) -α D( k ) with -2 k = 2 k , H = L 2 and θ = α/2 to get sup M M k=0 |∇ g | α A( ) α x -1 f ( -2 P )v L 2 k≥0 α x -1 f ( -2 P )v 2 L 2 1/2 . ( 4 

Reduction of the high frequency problem

Let us now consider the high frequency case. For a given χ ∈ C ∞ 0 (R d ), we write u high = χu high + (1 -χ)u high . Using (4.2.2) and Minkowski inequality with p, q ≥ 2, we have

(1 -χ)u high L p (R,L q ) ≤ C h 2 =2 -k (1 -χ)f (h 2 P )e -it|∇g| σ ψ 2 L p (R,L q ) + h N x -N f (h 2 P )e -it|∇g| σ ψ 2 L p (R,L 2 ) 1/2
. (4.2.17)

The same estimate holds for χu high L p (R,L q ) with χ in place of 1 -χ. We can apply the Item 2 of Remark 4.1.13 with scaling in time for the second term in the right hand side of the above quantity to get d ) and all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all ψ ∈ L g and all h ∈ (0, 1], If there exists R > 0 large enough such that for all (p, q) Schrödinger admissible with q < ∞ and all χ ∈ C ∞ 0 (R d ) satisfying χ = 1 for |x| < R, there exists C > 0 such that for all ψ ∈ L g and all h ∈ (0, 1], 

h N/2 x -N f (h 2 P )e -it|∇g| σ ψ L p (R,L 2 ) ≤ Ch N/2+(σ-N0)/p f (h 2 P )ψ L 2 . ( 4 
χe -it|∇g| σ f (h 2 P )ψ L p (R,L q ) ≤ Ch -γp,q f (h 2 P )ψ L 2 , (4.2.19) then χu high L p (R,L q ) ≤ C ψ Ḣγp,q g , ( 4 
(1 -χ)e -it|∇g| σ f (h 2 P )ψ L p (R,L q ) ≤ Ch -γp,q f (h 2 P )ψ L 2 , (4.2.21) then (1 -χ)u high L p (R,L q ) ≤ C ψ Ḣγp,q g , ( 4 
u high L p (R,L q ) ≤ C ψ Ḣγp,q g .
Proof. We only consider the case 1 -χ, for χ it is similar. By using (4.2.18) and (4.2.21), we see that (4.2.17) implies

(1 -χ)u high L p (R,L q ) ≤ C h 2 =2 -k h -2γp,q f (h 2 P )ψ 2 L 2 1/2 ≤ C ψ Ḣγp,q g .
Here we use the almost orthogonality and the support property of f to obtain the last inequality. This proves (4.2.22).

Reduction of the low frequency problem

Let us consider the low frequency case. We only treat the case q ∈ (2, ∞) since the Strichartz estimate for (p, q) = (∞, 2) is trivial. We apply the Littlewood-Paley estimates (4.2.3) and Minkowski inequality with p ≥ 2 to have

u low L p (R,L q ) ≤ C -2 =2 k (1 -χ)( x)f ( -2 P )e -it|∇g| σ ψ 2 L p (R,L q ) + d/2-d/q x -1 f ( -2 P )e -it|∇g| σ ψ 2 L p (R,L 2 ) 1/2 .
We use global L p integrability estimates (4.1.21) with rescaling in time to bound the second term in the right hand side as

d/2-d/q x -1 f ( -2 P )e -it|∇g| σ ψ L p (R,L 2 ) ≤ C γp,q f ( -2 P )ψ L 2 . (4.2.23)
Here we recall that γ p,q = d/2 -d/q -σ/p. This leads to the following reduction. If for all χ ∈ C ∞ 0 (R d ) satisfying χ(x) = 1 for |x| ≤ 1 and all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all ψ ∈ L g and all ∈ (0, 1],

(1 -χ)( x)f ( -2 P )e -it|∇g| σ ψ L p (R,L q ) ≤ C γp,q f ( -2 P )ψ L 2 , (4.2.24) then u low L p (R,L q ) ≤ C ψ Ḣγp,q g .
Proof. Indeed, if the estimates (4.2.24) hold true, then the Littlewood-Paley estimates (4.2.3) and (4.2.23) give

u low L p (R,L q ) ≤ C -2 =2 k 2γp,q f ( -2 P )ψ 2 L 2 1/2 . Note that γp,q f ( -2 P )ψ L 2 ≤ γp,q f ( -2 P )|∇ g | -γp,q L 2 →L 2 f ( -2 P )|∇ g | γp,q ψ L 2 ,
where f ∈ C ∞ 0 (R\{0}) satisfies f = 1 near supp(f ). By functional calculus, the first factor in the right hand side is bounded by

γp,q sup λ∈R f ( -2 λ 2 ) λ γp,q ≤ γp,q f L ∞ (R) ( /c) γp,q ≤ c γp,q f L ∞ (R) .
Here -2 λ 2 ∈ supp( f ) hence |λ| ∈ [ /c, c] for some constant c > 1. Thus we have

u low L p (R,L q ) ≤ C -2 =2 k f ( -2 P )|∇ g | γp,q ψ 2 L 2 1/2 ≤ C ψ Ḣγp,q g ,
the last inequality follows from the almost orthogonality. This completes the proof.

Strichartz estimates inside compact sets

In this section, we will give the proof of (4.2.19). Our main tools are the local in time Strichartz estimates given in Chapter 2 and the L 2 integrability estimate at high frequency given in Proposition 4.1.12.

The WKB approximations

Let us start with the following result which is given in Theorem 2.2.1. Theorem 4.3.1. Let σ ∈ (0, ∞)\{1} and q be a smooth function on R 2d compactly support in ξ away from zero and satisfying for all α, β ∈ N d , there exists C αβ > 0 such that for all x, ξ ∈ R d ,

|∂ α x ∂ β ξ q(x, ξ)| ≤ C αβ .
Then there exist t 0 > 0 small enough, a function S ∈ C ∞ ([-t 0 , t 0 ]×R 2d ) and a sequence of smooth functions a j (t, x, ξ) compactly supported in ξ away from zero uniformly in t ∈ [-t 0 , t 0 ] such that for all N ≥ 1,

e -ith -1 (h|∇g|) σ Op h (q)ψ = J N (t)ψ + R N (t)ψ,
where

J N (t)ψ(x) = (2πh) -d R 2d
e ih -1 (S(t,x,ξ)-y•ξ)

N -1 j=0 h j a j (t, x, ξ)ψ(y)dydξ, J N (0) = Op h (q)
and the remainder R N (t) satisfies for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1],

R N (t) L 2 →L 2 ≤ Ch N -1 .
Moreover, there exists a constant C > 0 such that for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1],

J N (t) L 1 →L ∞ ≤ Ch -d (1 + |t|h -1 ) -d/2 .
In Chapter 2, we consider the smooth bounded metric, i.e. for all α ∈ N d , there exists C α > 0 such that for all x ∈ R d ,

|∂ α g jk (x)| ≤ C α , j, k ∈ {1, ...d}.
It is obvious to see that the above condition is always satisfied under the assumption (4.0.3). This theorem and the parametrix given in Proposition 4.1.2 give the following dispersive estimates for the Schrödinger-type equations (see Remark 2.2.2). Proposition 4.3.2. Let σ ∈ (0, ∞)\{1} and ϕ ∈ C ∞ 0 (R\{0}). Then there exists t 0 > 0 small enough and C > 0 such that for all ψ ∈ L 1 (R d ) and all h ∈ (0, 1],

e -ith -1 (h|∇g|) σ ϕ(h 2 P )ψ L ∞ ≤ Ch -d (1 + |t|h -1 ) -d/2 ψ L 1 , (4.3.1)
for all t ∈ [-t 0 , t 0 ].
Next, we recall the following version of T T -criterion of Keel and Tao (see [START_REF] Zhang | Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds[END_REF], [START_REF] Keel | Endpoint Strichartz estimates[END_REF] or [START_REF] Zworski | Semiclassical Analysis[END_REF]). Proposition 4.3.3. Let I ⊆ R be an interval and (T (t)) t∈I a family of linear operators satisfying for some constant C > 0 and δ, τ, h > 0,

T (t) L 2 →L 2 ≤ C, (4.3.2) T (t)T (s) L 1 →L ∞ ≤ Ch -δ (1 + |t -s|h -1 ) -τ , (4.3.3)
for all t, s ∈ I. Then for all (p, q) satisfying

p ∈ [2, ∞], q ∈ [1, ∞], (p, q, τ ) = (2, ∞, 1), 1 p ≤ τ 1 2 - 1 q , we have T v L p (I,L q ) ≤ Ch -κ v L 2 ,
where . Then for all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that

κ = δ(1/2 -1/q) -
ϕ(h 2 P )e -ith -1 (h|∇g|) σ v L p (I,L q ) ≤ Ch -κp,q v L 2 , (4.3.4)
where κ p,q = d/2 -d/q -1/p. Moreover, Let us set U h (t) := h κp,q ϕ(h 2 P )e -ith -1 (h|∇g|) σ .

t 0 ϕ 2 (h 2 P )e -i(t-s)h -1 (h|∇g|) σ G(s)ds L p (I,L q ) ≤ Ch -κp,q G L 1 (I,L 2 ) . ( 4 
Using the homogeneous Strichartz estimates (4.3.4), we see that U h (t) is a bounded operator from L 2 to L p (I, L q ). Similarly, we have

U h (s) = ϕ(h 2 P )e -ish -1 (h|∇g|) σ is a bounded operator from L 2 to L ∞ (I, L 2 ).
Here we use the fact that (∞, 2) is Schrödinger-tye admissible with κ ∞,2 = 0. Thus the adjoint U h (s) , namely

U h (s) : G ∈ L 1 (I, L 2 ) → I ϕ(h 2 P )e ish -1 (h|∇g|) σ G(s)ds ∈ L 2
is also a bounded operator. This implies U h (t)U h (s) is a bounded operator from L 1 (I, L 2 ) to L p (I, L q ). In particular, we have

I h κp,q ϕ 2 (h 2 P )e -i(t-s)h -1 (h|∇g|) σ G(s)ds L p (I,L q ) ≤ C G L 1 (I,L 2 ) .
The Christ-Kiselev Lemma (see Lemma 4.5.1) implies that for all (p, q) Schrödinger admissible with q < ∞,

t 0 ϕ 2 (h 2 P )e -i(t-s)h -1 (h|∇g|) σ G(s)ds L p (I,L q ) ≤ Ch -κp,q G L 1 (I,L 2 ) .
This completes the proof.

From local Strichartz estimates to global Strichartz estimates

We now show how to upgrade the local in time Strichartz estimates given in Corollary 4.3.4 to the global in time ones (4.2.19). We emphasize that the non-trapping assumption is supposed here.

Let us set v(t) = x -1 f (h 2 P )e -ith -1 (h|∇g|) σ ψ. By choosing f 1 ∈ C ∞ 0 (R\{0}) with f 1 = 1 near supp(f ), we see that the study of v L p (R,L q ) is reduced to the one of f 1 (h 2 P )v L p (R,L q ) . Indeed, we can write

v(t) = f 1 (h 2 P )v(t) + (1 -f 1 )(h 2 P )v(t),
where the term (1 -f 1 )(h 2 P )v(t) can be written as

((1 -f 1 )(h 2 P ) x -1 f1 (h 2 P ) x ) x -1 f (h 2 P )e -ith -1 (h|∇g|) σ ψ,
with f1 ∈ C ∞ 0 (R\{0}) such that f 1 = 1 near supp( f1 ) and f1 = 1 near supp(f ). By pseudodifferential calculus, we have

(1 -f 1 )(h 2 P ) x -1 f1 (h 2 P ) x = O L 2 →L q (h ∞ ),
for all q ≥ 2. This implies that there exists C > 0 such that for all N ≥ 1,

v -f 1 (h 2 P )v L p (R,L q ) ≤ Ch N x -1 f (h 2 P )e -ith -1 (h|∇g|) σ ψ L p (R,L 2 ) ≤ Ch N f (h 2 P )ψ L 2 ≤ Ch -κp,q f (h 2 P )ψ L 2 (4.3.6)
provided that N is taken large enough. Here we use (4.1.20) with N 0 = 1 due to the non-trapping condition.

We next write

v(t) = x -1 f (h 2 P )e -ith -1 ω(h 2 P ) ψ,
where

ω(λ) = f (λ) √ λ σ with f ∈ C ∞ 0 (R\{0}) and f = 1 near supp(f ). Now, let t 0 > 0 be as in Corollary 4.3.4. We next choose θ ∈ C ∞ 0 (R, [0, 1]) satisfying θ = 1 near 0 and supp(θ) ⊂ (-1, 1) such that k∈Z θ(t -k) = 1, for all t ∈ R. We then write v(t) = k∈Z v k (t), where v k (t) = θ((t -t k )/t 0 )v(t) with t k = t 0 k. By the Duhamel formula, we have v k (t) = e -ith -1 ω(h 2 P ) v k (0) + ih -1 t 0 e -i(t-s)h -1 ω(h 2 P ) (hD s + ω(h 2 P ))v k (s)ds.
For k = 0, we compute the action of hD s + ω(h 2 P ) on v k (s) and get

(hD s + ω(h 2 P ))v k (s) = h(it 0 ) -1 θ ((s -t k )/t 0 )v(s) + θ((s -t k )/t 0 ) ω(h 2 P ), x -1 f (h 2 P )e -ish -1 ω(h 2 P ) ψ =: v 1 k (s) + v 2 k (s).
Due to the support property of θ, we have v k (0) = 0. Now, we have for k = 0,

f 1 (h 2 P )v k (t) = ih -1 t 0 e -i(t-s)h -1 ω(h 2 P ) f 1 (h 2 P )(v 1 k (s) + v 2 k (s))ds.
We remark that both t, s belong to I k = (t k -t 0 , t k + t 0 ). Up to a translation in time t → t -t k and the same for s, we can apply the inhomogeneous Strichartz estimates given in Corollary 4.3.4 with ϕ 2 = f 1 and obtain

f 1 (h 2 P )v k L p (R,L q ) = f 1 (h 2 P )v k L p (I k ,L q ) ≤ Ch -κp,q-1 v 1 k L 1 (I k ,L 2 ) + v 2 k L 1 (I k ,L 2 ) .
Here κ p,q is given in Corollary 4.3.4. We have

v 1 k L 1 (I k ,L 2 ) = h(it 0 ) -1 θ ((s -t k )/t 0 ) x -1 f (h 2 P )e -ish -1 (h|∇g|) σ ψ L 1 (I k ,L 2 ) ≤ h(it 0 ) -1 θ ((s -t k )/t 0 ) L 2 (I k ) x -1 f (h 2 P )e -ish -1 (h|∇g|) σ ψ L 2 (I k ,L 2 ) ≤ Ch x -1 f (h 2 P )e -ish -1 (h|∇g|) σ ψ L 2 (I k ,L 2 ) ,
where we use Cauchy Schwarz inequality to go from the first to the second line. Similarly

v 2 k L 1 (I k ,L 2 ) ≤ [ω(h 2 P ), x -1 ]f (h 2 P )e -ith -1 (h|∇g|) σ ψ L 2 (I k ,L 2 ) ≤ Ch x -1 f (h 2 P )e -ith -1 (h|∇g|) σ ψ L 2 (I k ,L 2 ) ,
where we use the fact that [ω(h 2 P ), x -1 ] f1 (h 2 P ) x is of size O L 2 →L 2 (h) by pseudo-differential calculus. This implies that for k = 0,

f 1 (h 2 P )v k L p (I k ,L q ) ≤ Ch -κp,q x -1 f (h 2 P )e -ith -1 (h|∇g|) σ ψ L 2 (I k ,L 2 ) .
For k = 0, we have

f 1 (h 2 P )v 0 L p (R,L q ) ≤ C f (h 2 P )e -ith -1 (h|∇g|) σ ψ L p (I,L q ) ≤ Ch -κp,q f (h 2 P )ψ L 2 .
Here the first inequality follows from the facts that θ(t/t 0 ) and f 1 (h 2 P ) x -1 are bounded fromL p (R) to L p (R) and L q → L q respectively. The second inequality follows from homogeneous Strichartz estimates (4.3.4). By almost orthogonality in time and the fact that p ≥ 2, we have

f 1 (h 2 P )v L p (R,L q ) ≤ C k∈Z f 1 (h 2 P )v k 2 L p (R,L q ) 1/2 ≤ Ch -κp,q k∈Z\0 x -1 f (h 2 P )e -ith -1 (h|∇g|) σ ψ 2 L 2 (I k ,L 2 ) + f (h 2 P )ψ 2 L 2 1/2 ≤ Ch -κp,q x -1 f (h 2 P )e -ith -1 (h|∇g|) σ ψ L 2 (R,L 2 ) + f (h 2 P )ψ L 2 ≤ Ch -κp,q f (h 2 P )ψ L 2 ,
the last inequality comes from Proposition 4.1.12 with N 0 = 1. By using (4.3.6), we obtain

x -1 f (h 2 P )e -ith -1 (h|∇g|) σ ψ L p (R,L q ) ≤ Ch -κp,q f (h 2 P )ψ L 2 .
This implies that for all χ ∈ C ∞ 0 (R d ),

χf (h 2 P )e -ith -1 (h|∇g|) σ ψ L p (R,L q ) ≤ Ch -κp,q f (h 2 P )ψ L 2 .
Therefore, by scaling in time, we get

χf (h 2 P )e -it|∇g| σ ψ L p (R,L q ) ≤ Ch -γp,q f (h 2 P )ψ L 2 .
The proof of (4.2.19) is now complete.

Strichartz estimates outside compact sets 4.4.1 The Isozaki-Kitada parametrix

Notations and the Hamilton-Jacobi equations. For any J (0, +∞) an open interval, any R > 0, any τ ∈ (-1, 1), we define the outgoing region Γ + (R, J, τ ) and the incoming region Γ -(R, J, τ ) by

Γ ± (R, J, τ ) := (x, ξ) ∈ R 2d , |x| > R, |ξ| 2 ∈ J, ± x • ξ |x ξ| > τ .
Let σ ∈ (0, ∞)1 . We will use the so called Isozaki-Kitada parametrix to give an approximation at high frequency of the form

e -ith -1 ω(h 2 P ) Op h (χ ± ) = J ± h (a ± (h))e -ith -1 (hΛ) σ J ± h (b ± (h)) + R ± N (h), (4.4.1) 
with Λ = √ -∆ where ∆ is the free Laplacian operator on R d and ω(

•) = f (•) √ • σ ∈ C ∞ 0 (R\{0}) for some f ∈ C ∞ 0 (R\{0}) satisfying f = 1 near supp(f ).
The functions χ ± are supported in Γ ± (R 4 , J 4 , τ 4 ) (see Proposition 4.4.6 for the choice of J 4 and τ 4 ) and

J ± h (a ± (h)) = N -1 j=1 h j J ± h (a ± j ),
where

J ± h (a ± )u(x) = (2πh) -d R 2d e ih -1 (S ± R (x,ξ)-y•ξ) a ± (x, ξ)u(y)dydξ, u ∈ S (R d ).
The amplitude functions a ± j are supported in Γ ± (R, J 1 , τ 1 ) (see Proposition 4.4.1) and the phase functions S ± R := S ± 1,R will be described later. The same notation for

J ± h (b ± (h)) is used with b ± k in place of a ± j . The Isozaki-Kitada parametrix at low frequency is of the form e -it ω( -2 P ) Op (χ ± )ζ( x) = J ± (a ± )e -it Λ σ J ± (b ± ) + R ± N (t, ), (4.4.2) 
where ω is as above and ζ ∈ C ∞ (R d ) supported outside B(0, 1) and equal to 1 near infinity. The functions χ ± are supported in Γ ± (R 4 , J 4 , τ 4 ) and

J ± (a ± ) = N j=1 J ± (a ± ,j ),
where

J ± (a) := D J ± (a), J ± (b) := J ± (b) D -1 , (4.4.3)
with D as in (4.1.4),

J ± (a)u(x) := (2π) -d R 2d e i(S ± ,R (x,ξ)-y•ξ) a(x, ξ)u(y)dydξ,
and

J ± (b) u(x) = (2π) -d R 2d e i(x•ξ-S ± ,R (y,ξ)) b(y, ξ)u(y)dydξ.
The amplitude functions a ± ,j are supported in Γ ± (R, J 1 , τ 1 ) and the phase functions S ± ,R will be described in the next proposition. The same notation for J ± (b ± ) will be used with b ± in place of a ± . Proposition 4.4.1. Fix J 1 (0, +∞) and τ 1 ∈ (-1, 1). Then there exist two families of smooth functions (S ± ,R ) R 1 satisfying the following Hamilton-Jacobi equation

p (x, ∇ x S ± ,R (x, ξ)) = |ξ| 2 , (4.4.4) for all (x, ξ) ∈ Γ ± (R, J 1 , τ 1 )
, where p is given in (4.1.5). Moreover, for all α, β ∈ N d , there exists
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C αβ > 0 such that ∂ α x ∂ β ξ S ± ,R (x, ξ) -x • ξ ≤ C αβ min R 1-ρ-|α| , x 1-ρ-|α| , (4.4.5)
for all x, ξ ∈ R d , all ∈ (0, 1] and R 1. Remark 4.4.2. From (4.4.5), we see that for R > 0 large enough, the phase functions satisfy for all x, ξ ∈ R d and all ∈ (0, 1],

∇ x • ∇ ξ S ± ,R (x, ξ) -Id R d ≤ 1 2 , ( 4.4.6) 
and for all |α| ≥ 1 and all |β| ≥ 1,

|∂ α x ∂ β ξ S ± ,R (x, ξ)| ≤ C αβ . (4.4.7)
The estimates (4.4.6) and (4.4.7) are useful in the construction of Isozaki-Kitada parametrix as well as the L 2 -boundedness of Fourier integral operators.

Proof of Proposition 4.4.1. We firstly note that the case = 1 is given in [BT07, Proposition 3.1]. Let J 1 J 0 (0, +∞) and -1 < τ 0 < τ 1 < 1. By using Remark 4.1.4, in the region Γ ± (R/2, J 0 , τ 0 ) which implies that |x| > 1, we see that the function p (x, ξ) satisfies for all α, β ∈ N d , there exists C αβ > 0 such that for all (x, ξ) ∈ Γ ± (R/2, J 0 , τ 0 ) and all ∈ (0, 1],

|∂ α x ∂ β ξ p (x, ξ)| ≤ C αβ ξ 2-|β| .
Thanks to this uniform bound, by using the argument given in [Rob94, Proposition 4.1], we can solve (for R > 0 large enough) the Hamilton-Jacobi equation (4.4.4) in Γ ± (R/2, J 0 , τ 0 ) uniformly with respect to ∈ (0, 1]. We denote such solutions by S± . Next, by choosing a special cutoff (see [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF], see also (4.4.9))

χ ± R ∈ S(0, -∞) such that χ ± R (x, ξ) = 1 for (x, ξ) ∈ Γ ± (R, J 1 , τ 1
) and supp(χ ± R ) ⊂ Γ ± (R/2, J 0 , τ 0 ), then the functions The construction in the low frequeny case (4.4.2) is similar up to some modifications (see after Theorem 4.4.8). We only treat the outgoing case (+), the incoming one is similar. We start with the following Duhamel formula

S ± ,R (x, ξ) = χ ± R (x, ξ) S± (x, ξ) + (1 -χ ± R )(x, ξ) x,
e -ith -1 ω(h 2 P ) J + h (a + (h)) = J + h (a + (h))e -ith -1 (hΛ) σ -ih -1 t 0 e -i(t-s)h -1 ω(h 2 P ) ω(h 2 P )J + h (a + (h)) -J + h (a + (h))(hΛ) σ e -ish -1 (hΛ) σ ds. (4.4.8)
We want the term ω(h 2 P )J + h (a + (h)) -J + h (a + (h))(hΛ) σ to have a small contribution. To do so, we firstly introduce a special cutoff. For any J 2 J 1 (0, +∞) and -1 < τ 1 < τ 2 < 1, we define

χ + 1→2 (x, ξ) = κ |x| R 2 ρ 1→2 (|ξ| 2 )θ 1→2 + x • ξ |x ξ| , ( 4.4.9) 
where κ ∈ C ∞ (R) is non-decreasing such that

κ(t) = 1 when t ≥ 1/2 0 when t ≤ 1/4 , and ρ 1→2 ∈ C ∞ (R) is non-decreasing such that ρ 1→2 = 1 near J 2 , supported in J 1 and θ 1→2 ∈ C ∞ 0 (R) such that θ 1→2 (t) = 1 when t > τ 2 -ε 0 when t < τ 1 + ε , with ε ∈ (0, τ 2 -τ 1 ). We see that χ + 1→2 ∈ S(0, -∞) and for R 1, supp(χ + 1→2 ) ⊂ Γ + (R, J 1 , τ 1 ), χ + 1→2 = 1 near Γ + (R 2 , J 2 , τ 2 ). Proposition 4.4.3. Let S + R := S + 1,
R be the solution of (4.4.4) given as in Proposition 4.4.1. Let J 2 be an arbitrary open interval such that J 2 J 1 (0, +∞) and τ 2 be an arbitrary real number such that -1 < τ 1 < τ 2 < 1. Then for R > 0 large enough, we can find a sequence of symbols

a + j ∈ S(-j, -∞) supported in Γ + (R, J 1 , τ 1 ) such that for all N ≥ 1, ω(h 2 P )J + h (a + (h)) -J + h (a + (h))(hΛ) σ = h N R N (h)J + h (a + (h)) + h N J + h (r + N (h)) + J + h (ǎ + (h)), (4.4.10) 
sup

Γ + (R,J1,τ1) |a + 0 (x, ξ)| 1, (4.4.11 
) 0, -∞) and is a finite sum depending on N of the form

where a + (h) = N -1 j=0 h j a + j and (r + N (h)) h∈(0,1] is bounded in S(-N, -∞), R N (h) is as in Proposition 4.1.2, (ǎ + (h)) h∈(0,1] is bounded in S(
ǎ+ (h) = |α|≥1 ǎ+ α (h)∂ α x χ + 1→2 , (4.4.12) 
with (ǎ + α (h)) h∈(0,1] bounded in S(0, -∞) and χ + 1→2 given in (4.4.9). Proof. We firstly use the parametrix of ω(h 2 P ) given in Proposition 4.1.2 and get ω(h 2 P ) = Op h (q(h)) + h N R N (h), (4.4.13) where q(h) = N -1 k=0 h k q k and q k ∈ S(-k, -∞), k = 0, ..., N -1. Note that q 0 (x, ξ) = ω(p(x, ξ)) = f (p(x, ξ)) p(x, ξ) σ and supp(q k ) ⊂ supp(ω • p). Up to remainder term, we consider the action of Op h (q(h)) on J + h (a + (h)). To do this, we need the following action of a pseudo-differential operator on a Fourier integral operator (see e. 

7). Then

Op h (a) • J h (S, b) = N -1 j=0 h j J h (S, (a b)j) + h N J h (S, r N (h)),
where (a b) j is a universal linear combination of

∂ β ξ a(x, ∇ x S(x, ξ))∂ β-α x b(x, ξ)∂ α1 x S(x, ξ) • • • ∂ α k x S(x, ξ), with α ≤ β, α 1 +• • •+α k = α and |α l | ≥ 2 for all l = 1, ..., k and |β| = j. The maps (a, b) → (a b) j and (a, b) → r N (h) are continuous from S(µ 1 , -∞) × S(µ 2 , -∞) to S(µ 1 + µ 2 -j, -∞) and S(µ 1 + µ 2 -N, -∞) respectively.
In particular, we have

(a b) 0 (x, ξ) = a(x, ∇ x S(x, ξ))b(x, ξ), i(a b) 1 (x, ξ) = ∇ ξ a(x, ∇ x S(x, ξ)) • ∇ x b(x, ξ) + 1 2 tr ∇ 2 ξ a(x, ∇ x S(x, ξ)) • ∇ 2 x S(x, ξ) b(x, ξ).
Using this result, we have

Op h (q(h))J + h (a + (h)) = N -1 k+j+l=0 h k+j+l J + h ((q k a + j ) l ) + h N J + h (r + N (h)).
On the other hand, we have

J + h (a + (h))(hΛ) σ = J + h (a + (h)|ξ| σ ).
Thus we get

ω(h 2 P )J + h (a + (h)) -J + h (a + (h))(hΛ) σ = N -1 r=0 h r J + h   k+j+l=r (q k a + j ) l -a + r |ξ| σ   +h N J + h (r + N (h)) + h N R N (h)J + h (a + (h)).
In order to make the left hand side of (4.4.10) small, we need to find a

+ j ∈ S(-j, -∞) supported in Γ + (R, J 1 , τ 1 ) such that k+j+l=r (q k a + j ) l -a + r |ξ| σ = 0, r = 0, ..., N -1.
In particular, q 0 (x,

∇ x S + R (x, ξ)) -|ξ| σ a + 0 (x, ξ) = 0.
By noting that if p(x, ξ) ∈ supp(f ) (see after (4.4.1)), then q 0 (x, ξ) = p(x, ξ) σ . Thus in the region where the Hamilton-Jacobi equation (4.4.4) with = 1 is satisfied, we need to show the following transport equations (q 0 a + 0 ) 1 + (q 1 a + 0 ) 0 = 0 (4.4.14)

(q 0 a + r ) 1 + (q 1 a + r ) 0 = - k+j+l=r+1 j≤r-1 (q k a + j ) l , r = 1, ..., N -1. (4.4.15)
Here (q 0 a + ) 1 + (q 1 a + ) 0 can be written as

i (q 0 a + ) 1 (x, ξ) + (q 1 a + ) 0 (x, ξ) = d j=1 V + j (x, ξ)∂ xj a + (x, ξ) + p + 0 (x, ξ)a + (x, ξ),
where

V + j (x, ξ) = (∂ ξj q 0 )(x, ∇ x S + R (x, ξ)), p + 0 (x, ξ) = iq 1 (x, ∇ x S + R (x, ξ)) + 1 2 tr ∇ 2 ξ q 0 (x, ∇ x S + R (x, ξ)) • ∇ 2 x S + R (x, ξ) .
We now consider the flow X + (t, x, ξ) associated to

V + = (V + j ) d j=1 as Ẋ+ (t) = V + (X + (t), ξ), X + (0) = x. (4.4.16)
We have the following result (see [Bouc04, Proposition 3.2] or [Bouc00, Appendix]). Proposition 4.4.5. Let σ ∈ (0, ∞), J 1 (0, +∞) and -1 < τ 1 < 1. There exists R > 0 large enough and e 1 > 0 small enough such that for all (x, ξ) ∈ Γ + (R, J 1 , τ 1 ), the solution X + (t, x, ξ) to (4.4.16) is defined for all t ≥ 0 and satisfies

|X + (t, x, ξ)| ≥ e 1 (t + |x|), (4.4.17) (X + (t, x, ξ), ξ) ∈ Γ + (R, J 1 , τ 1 ). (4.4.18)
Moreover, for all α, β ∈ N d , there exists C αβ > 0 such that for all t ≥ 0 and all h ∈ (0, 1],

|∂ α x ∂ β ξ (X + (t, x, ξ) -x -σtξ|ξ| σ-2 )| ≤ C αβ t x -ρ-|α| , (4.4.19) for all (x, ξ) ∈ Γ + (R, J 1 , τ 1 )
. Now, we can define for (x, ξ) ∈ Γ + (R, J 1 , τ 1 ) the functions

A + 0 (x, ξ) = exp +∞ 0 p + 0 (X + (t, x, ξ), ξ)dt , A + r (x, ξ) = +∞ 0 p + r (X + (t, x, ξ), ξ) exp t 0 p + 0 (X + (s, x, ξ), ξ)ds dt,
for r = 1, ..., N -1, where

p + r (x, ξ) = i k+j+l=r+1 j≤r-1 (q k A + j ) l (x, ξ).
Using (4.4.17) and the fact that p + r ∈ S(-1 -ρ -r, -∞) for r = 0, ..., N -1, we see that p + r (X + (t, x, ξ)) are integrable with respect to t. Hence A + r (x, ξ) are well-defined. Moreover, we have (see e.g. [Bouc04, Proposition 3.1]) that for all (x, ξ)

∈ Γ + (R, J 1 , τ 1 ), |∂ α x ∂ β ξ (A + 0 (x, ξ) -1)| ≤ C αβ x -|α| , (4.4.20) |∂ α x ∂ β ξ A + r (x, ξ)| ≤ C αβ x -r-|α| .
We also have that A + 0 , A + r for r = 1, .. 

ω(h 2 P )J + h (a + (h)) -J + h (a + (h))(hΛ) σ = N -1 r=0 h r J + h   k+j+l=r (q k χ + 1→2 A + j ) l -χ + 1→2 A + r |ξ| σ   +h N J + h (r + N (h)) + h N R N (h)J + h (a + (h)).
Using the expression of (a b) l given in Proposition 2.2.3, we see that

(q k χ + 1→2 A + j ) l = χ + 1→2 (q k A + j ) l + terms in which derivatives fall into χ + 1→2 .
This gives (4.4.10) with ǎ+ (h) as in (4.4.12). The proof is complete.

We now are able to construct the symbols b + k , for k = 0, ..., N -1. Proposition 4.4.6. Let J 3 , J 4 and τ 3 , τ 4 be such that J 4 J 3 J 2 and -1 < τ 2 < τ 3 < τ 4 < 1.

Then for R > 0 large enough and all χ + supported in Γ + (R 4 , J 4 , τ 4 ), there exists a sequence of

symbols b + k ∈ S(-k, -∞), for k = 0, ..., N -1, supported in Γ + (R 3 , J 3 , τ 3 ) such that J + h (a + (h))J + h (b + (h)) = Op h (χ + ) + h N Op h (r + N (h)), (4.4.21 
)

where a + (h) = N -1 j=0 h j a + j is given in Proposition 4.4.3 and b + (h) = N -1 k=0 h k b + k and (r + N (h)) h∈(0,1]
is bounded in S(-N, -∞).

Before giving the proof, we need the following result (see [START_REF] Bouclet | Distributions spectrales pour des opérateurs perturbés[END_REF]Appendix] or [Bouc04, Lemma 3.3]). Then for R > 0 large enough, we have the following properties.

i. For all x, y ∈ R d , the map

ξ → η + (R, x, y, ξ) is a diffeomorphism from R d onto itself. Let η → ξ + (R,
x, y, η) be its inverse. ii. There exists C > 1 such that for all x, y, η ∈ R d ,

C -1 η ≤ ξ + (R, x, y, η) ≤ C η .
iii. For all α, α , β ∈ N d , there exists

C αα β > 0 such that for all x, y, η ∈ R d and all k ≤ |α|, k ≤ |α |, |∂ α x ∂ α y ∂ β η ξ + (R, x, y, η) -η | ≤ C αα β x -k y -ρ-k x -y ρ+k+k .
Proof of Proposition 4.4.6. We firstly consider the general term J + h (a + )J + h (b + ) and write its kernel as

K + h (x, y) = (2πh) -d R d e ih -1 (S + R (x,ξ)-S + R (y,ξ)) a + (x, ξ)b + (y, ξ)dξ.
By Taylor's formula, we have

S + R (x, ξ) -S + R (y, ξ) = x -y, η + (R, x, y, ξ) ,
where η + given in (4.4.22). By change of variable ξ → ξ + (R, x, y, η), the kernel becomes

K + h (x, y) = (2πh) -d R d e ih -1 (x-y)•η a + (x, ξ + (R, x, y, η))b + (y, ξ + (R, x, y, η))| det ∂ η ξ + (R, x, y, η)|dη.
Now, using Lemma (4.4.7), the symbolic calculus gives

J + h (a + )J + h (b + ) = N -1 l=0 h l Op h ((a + b + ) l ) + h N Op h (r + N (h)),
where (a

+ b + ) l ∈ S(-l, -∞) is of the form (a + b + ) l (x, η) = |α|=l ∂ α y D α η c + (x, y, η) y=x α! , for l = 0, ..., N -1 with c + (x, y, η) = a + (x, ξ + (R, x, y, η))b + (y, ξ + (R, x, y, η))| det ∂ η ξ + (R, x, y, η)|,
and (r + N (h)) h∈(0,1] is bounded in S(-N, -∞). We have now

J + h (a + (h))J + h (b + (h)) = j,k h j+k J + h (a + j )J + h (b + k ) = N -1 j+k+l=0 h j+k+l Op h ((a + j b + k ) l ) + h N Op h (r + N (h)).
Compare with (4.4.21), the result follows if we solve the following equations:

(a + 0 b + 0 ) 0 = χ + , (a + 0 b + r ) 0 = - j+k+l=r k≤r-1 (a + j b + k ) l , r = 1, ..., N -1.
We can define b + 0 , ..., b + N -1 iteratively by

b + 0 (x, ξ) = χ + (x, η + (R, x, x, ξ)) a + 0 (x, ξ) det ∂ η ξ + (R, x, x, η + (R, x, x, ξ)) -1 , b + r (x, ξ) = - j+k+l=r k≤r-1 (a + j b + k ) l (x, η + (R, x, x, ξ)) a + 0 (x, ξ) det ∂ η ξ(R, x, x, η + (R, x, x, ξ)) -1
, for r = 1, ..., N -1. Note that by (4.4.11) and Lemma 4.4.7, the term in (

• • • ) -1 cannot vanish on the support of χ + (•, η + (R, •, •, •)).
Thus the above functions are well-defined. Moreover, by choosing R > 0 large enough with the fact

η + (R, x, x, ξ) = ∇ x S + R (x, ξ) = ξ + O(min{R -ρ , x -ρ }),
we see that the support of 

χ + (x, η + (R, x, x, ξ)) is contained in Γ + (R 3 , J 3 , τ 3 ).
∈ (0, ∞). Fix J 4 (0, +∞) open interval containing supp(f ) and -1 < τ 4 < 1. Choose arbitrary open intervals J 1 , J 2 , J 3 such that J 4 J 3 J 2 J 1 (0, +∞) and arbitrary τ 1 , τ 2 , τ 3 such that -1 < τ 1 < τ 2 < τ 3 < τ 4 < 1.
Then for R > 0 large enough, we can find sequences of symbols

a ± j ∈ S(-j, -∞), supp(a ± j ) ⊂ Γ ± (R, J 1 , τ 1 ),
such that for all χ ± ∈ S(0, -∞), supp(χ ± ) ⊂ Γ ± (R 4 , J 4 , τ 4 ), there exist sequences of symbols

b ± k ∈ S(-k, -∞), supp(b ± k ) ⊂ Γ ± (R 3 , J 3 , τ 3 ),
such that for all N ≥ 1, for all h ∈ (0, 1] and all ±t ≥ 0,

e -ith -1 ω(h 2 P ) Op h (χ ± ) = J ± h (a ± (h))e -ith -1 (hΛ) σ J ± h (b ± (h)) + R ± N (t, h),
where the phase functions S ± R := S ± 1,R are as in Proposition 4.4.1 and the remainder terms

R ± N (t, h) = R ± 1 (N, t, h) + R ± 2 (N, t, h) + R ± 3 (N, t, h) + R ± 4 (N, t, h),
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with

R ± 1 (N, t, h) = -h N -1 e -ith -1 ω(h 2 P ) Op h (r ± N (h)), R ± 2 (N, t, h) = -ih N -1 t 0 e -i(t-s)h -1 ω(h 2 P ) R N (h)J ± h (a ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) ds, R ± 3 (N, t, h) = -ih N -1 t 0 e -i(t-s)h -1 ω(h 2 P ) J ± h (r ± N (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) ds, R ± 4 (N, t, h) = -ih -1 t 0 e -i(t-s)h -1 ω(h 2 P ) J ± h (ǎ ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) ds.
Here (r ± N (h)) h∈(0,1] , (r ± N (h)) h∈(0,1] are bounded in S(-N, -∞), R N (h) is as in (4.4.13), (ǎ ± (h)) h∈(0,1] are bounded in S(0, -∞) and are finite sums depending on N of the form

ǎ± (h) = |α|≥1 ǎ± α (h)∂ α x χ ± 1→2 , (4.4.23)
where (ǎ ± α (h)) h∈(0,1] are bounded in S(0, -∞) and χ ± 1→2 are given in (4.4.9). We now give the main steps for the construction of the Isozaki-Kitada parametrix at low frequency. For simplicity, we omit the ± sign. Let us start with the following Duhamel formula

e -it ω( -2 P ) J (a ) = J (a )e -it Λ σ -i t 0 e -i(t-s) ω( -2 P ) ω( -2 P )J (a ) -J (a )Λ σ e -is Λ σ ds.
Thanks to the support of a , we can write

ω( -2 P )J (a ) = ω( -2 P )ζ 1 ( x)J (a ),
where

ζ 1 ∈ C ∞ (R d
) is supported outside B(0, 1) and satisfies ζ 1 (x) = 1 for |x| > R. Using the parametrix of ω( -2 P )ζ 1 ( x) given in Proposition 4.1.7 (by taking the adjoint), we have

ω( -2 P )ζ 1 ( x) = N -1 k=0 ζ1 ( x)Op (q ,k )ζ 1 ( x) + R N ( ),
where

q ,0 (x, ξ) = ω(p (x, ξ)) = f (p (x, ξ)) p (x, ξ) σ , supp(q ,k ) ⊂ supp(ω •p ) and (R N ( )) ∈(0,1]
satisfies (4.1.8). Here ζ1 ∈ C ∞ (R d ) is supported outside B(0, 1) and ζ1 = 1 near supp(ζ 1 ). We want to find a = N -1 j=0 a ,j so that the term ω( -2 P )J (a ) -J (a )Λ σ has a small contribution. By the choice of cutoff functions and the action of pseudo-differential operators on Fourier integral operators given in Proposition 2.2.3 with h = 1, we have

ω( -2 P )J (a ) -J (a )Λ σ = N -1 r=0   k+j+l=r J ((q ,k a ,j ) l ) -J (a ,r |ξ| σ )   +R N ( )J (a ) + J (r N ( )), (4.4.24)
where (r N ( )) ∈(0,1] is bounded in S(-N, -∞). This implies that we need to find (a ,j ) ∈(0,1] bounded in S(-j, -∞) supported in Γ(R, J 1 , τ 1 ) such that k+j+l=r (q ,k a ,j ) l -a ,r |ξ| σ = 0, r = 0, ..., N -1.

By noting that if p (x, ξ) ∈ supp(f ), then q ,0 (x, ξ) = p (x, ξ) σ . This leads to the following Hamilton-Jacobi and transport equations,

p (x, ∇ x S ,R (x, ξ)) = |ξ| 2 , (4.4.25) (q ,0 a ,0 ) 1 + (q ,1 a ,0 ) 0 = 0 (4.4.26) (q ,0 a ,r ) 1 + (q ,1 a ,r ) 0 = - k+j+l=r+1 j≤r-1 (q ,k a ,j ) l , r = 1, ..., N -1. (4.4.27)
We can solve (4.4.25) on Γ ± (R, J 1 , τ 1 ) using Proposition 4.4.1. We then solve (4.4.26), (4.4.27) on Γ ± (R, J 1 , τ 1 ) and extend solutions globally on R 2d . We obtain

ω( -2 P )J (a ) -J (a )Λ σ = R N ( )J (a ) + J (r N ( )) + J (ǎ( )),
where (ǎ( )) ∈(0,1] is bounded in S(0, -∞) and is a finite sum depending on N of the form

ǎ( ) = |α|≥1 ǎα ( )∂ α x χ 1→2 ,
with (ǎ α ( )) ∈(0,1] bounded in S(0, -∞) and χ 1→2 as in (4.4.9). Next, we can find bounded families of symbols b ,k ∈ S(-k, -∞) for k = 0, ..., N -1 supported in Γ(R 3 , J 3 , τ 3 ) such that Choose arbitrary open intervals J 1 , J 2 , J 3 such that J 4 J 3 J 2 J 1 (0, +∞) and arbitrary τ 1 , τ 2 , τ 3 such that -1 < τ 1 < τ 2 < τ 3 < τ 4 < 1. Then for R > 0 large enough, we can find bounded families of symbols (a ± ,j ) ∈(0,1] ∈ S(-j, -∞), supp(a ± ,j ) ⊂ Γ ± (R, J 1 , τ 1 ), such that for all

J (a )J (b ) = Op (χ )ζ( x) + Op (r N ( ))ζ( x), where b = N -1 k=0 b ,k and (r N ( )) ∈(0,1] is bounded in S(-N, -∞).
(χ ± ) ∈(0,1] ∈ S(0, -∞), supp(χ ± ) ⊂ Γ ± (R 4 , J 4 , τ 4 ),
there exists families of symbols

(b ± ,k ) ∈(0,1] ∈ S(-k, -∞), supp(b ± ,k ) ⊂ Γ ± (R 3 , J 3 , τ 3 ),
such that for all N ≥ 1, for all ∈ (0, 1] and all ±t ≥ 0,

e -it ω( -2 P ) Op (χ ± )ζ( x) = J ± (a ± )e -it Λ σ J ± (b ± ) + R ± N (t, ),
where the phase functions S ± ,R are given in Proposition 4.4.1 and the remainder terms

R ± N (t, ) = R ± 1 (N, t, ) + R ± 2 (N, t, ) + R ± 3 (N, t, ) + R ± 4 (N, t, ),

Strichartz estimates outside compact sets

with

R ± 1 (N, t, ) = -e -it ω( -2 P ) Op (r ± N ( ))ζ( x), R ± 2 (N, t, ) = -i t 0 e -i(t-s) ω( -2 P ) R N ( )J ± (a ± )e -is Λ σ J ± (b ± ) ds, R ± 3 (N, t, ) = -i t 0 e -i(t-s) ω( -2 P ) J ± (r ± N ( ))e -is Λ σ J ± (b ± ) ds, R ± 4 (N, t, ) = -i t 0 e -i(t-s) ω( -2 P ) J ± (ǎ ± ( ))e -is Λ σ J ± (b ± ) ds.
Here (r ± N ( )) ∈(0,1] , (r ± N ( )) ∈(0,1] are bounded in S(-N, -∞), (R N ( )) ∈(0,1] is given in Proposition 4.1.7, (ǎ ± ( )) ∈(0,1] are bounded in S(0, -∞) and are finite sums depending on N of the form ǎ± ( ) =

|α|≥1 ǎ± α ( )∂ α x χ ± 1→2 ,
where (ǎ ± α ( )) ∈(0,1] are bounded in S(0, -∞) and χ ± 1→2 are as in (4.4.9). We have the following dispersive estimates for the main terms of the Isozaki-Kitada parametrix both at high and low frequencies. Proposition 4.4.10. Let σ ∈ (0, ∞)\{1}, S ± ,R be as in Proposition 4.4.1 and (a ± ) ∈(0,1] , (b ± ) ∈(0,1] be bounded in S(0, -∞) compactly supported in ξ away from zero.

1. Then for R > 0 large enough, there exists C > 0 such that for all t ∈ R and all h ∈ (0, 1],

J ± h (a ± )e -ith -1 (hΛ) σ J ± h (b ± ) L 1 →L ∞ ≤ Ch -d (1 + |t|h -1 ) -d/2 , ( 4.4.28 
)

where a ± := a ± =1 , b ± := b ± =1 . 2.
Then for R > 0 large enough, there exists C > 0 such that for all t ∈ R and all ∈ (0, 1],

J ± (a ± )e -it Λ σ J ± (b ± ) L 1 →L ∞ ≤ C d (1 + |t|) -d/2 . ( 4 

.4.29)

Proof. 1. For simplicity, we drop the superscript ±. The kernel of J h (a)e -ith -1 (hΛ) σ J h (b) reads

K h (t, x, y) = (2πh) -d R d
e ih -1 (S R (x,ξ)-S R (y,ξ)-t|ξ| σ ) a(x, ξ)b(y, ξ)dξ.

The estimates (4.4.28) are in turn equivalent to

|K h (t, x, y)| ≤ Ch -d (1 + |t|h -1 ) -d/2 , ( 4.4.30) 
for all t ∈ R, h ∈ (0, 1] and x, y ∈ R d . We only consider t ≥ 0, the case t ≤ 0 is similar. Let us denote the compact support of the amplitude by K. Since a, b are bounded uniformly in x, y ∈ R d , we have

|K h (t, x, y)| ≤ Ch -d , for all t ∈ R and all x, y ∈ R d . If 0 ≤ t ≤ h or 1 + th -1 ≤ 2, then |K h (t, x, y)| ≤ Ch -d ≤ Ch -d (1 + th -1 ) -d/2 .
So, we can assume that t ≥ h or (1 + th -1 ) ≤ 2th -1 and denote the phase function

Φ(R, t, x, y, ξ) = (S R (x, ξ) -S R (y, ξ))/t -|ξ| σ ,
and parameter λ = th -1 ≥ 1. We can rewrite Φ(R, t, x, y, ξ) = (x -y)/t, η(R, x, y, ξ) -|ξ| σ , where η(R, x, y, ξ) =

1 0 ∇ x S R (y + λ(x -y), ξ)dλ.
Using the properties of the phase functions S R given in (4.4.5), we have that

η(R, x, y, ξ) = ξ + Q(R, x, y, ξ),
where Q(R, x, y, ξ) is a vector in R d satisfying for R > 0 large enough,

|∂ β ξ Q(R, x, y, ξ)| ≤ C β R -ρ , (4.4.31)
for all x, y ∈ R d and ξ ∈ K. We have

∇ ξ Φ(R, t, x, y, ξ) = x -y t • (Id R d + ∇ ξ Q(R, x, y, ξ)) -σξ|ξ| σ-2 .
If |(x -y)/t| ≥ C for some constant C > 0 large enough then for R > 0 large enough, there exists C 1 > 0,

|∇ ξ Φ(R, t, x, y, ξ)| ≥ 1 2 x -y t ≥ C 1 .
Thus the phase is non-stationary. By using integration by parts with respect to ξ together with the fact

|∂ β ξ Φ(R, t, x, y, ξ)| ≤ C β x -y t , |β| ≥ 2,
we have that for all N ≥ 1,

|K h (t, x, y)| ≤ Ch -d (th -1 ) -N ≤ Ch -d (1 + th -1 ) -d/2 ,
provided N is taken bigger than d/2. The same result still holds for |(x -y)/t| ≤ c for some c > 0 small enough. Therefore, we can assume that c ≤ |x -y/t| ≤ C. In this case, we write

∇ 2 ξ Φ(R, t, x, y, ξ) = x -y t • ∇ 2 ξ Q(R, x, y, ξ) -σ|η| σ-2 Id R d + (σ -2) η • η T |η| 2 .
Using the fact that σ ∈ (0, ∞)\{1} and

det σ|η| σ-2 Id R d + (σ -2) η • η T |η| 2 = σ d |σ -1 η| (σ-2)d ≥ C
and (4.4.31), we see that for R > 0 large enough, the map ξ → ∇ ξ Φ(R, t, x, y, ξ) is a local diffeomorphism from a neighborhood of K to its range. Moreover, for all

β ∈ N d satisfying |β| ≥ 1, we have |∂ β ξ Φ(R, t, x, y, ξ)| ≤ C β .
The stationary phase theorem then implies that for R > 0 large enough, all t ≥ h and all x, y ∈ R

d satisfying c ≤ |(x -y)/t| ≤ C, |K h (t, x, y)| ≤ Ch -d λ -d/2 ≤ Ch -d (1 + th -1 ) -d/2 .
This gives (4.4.30). 2. We are now in position to show (4.4.29). As above, we drop the superscript ± for simplicity. We see that up to a conjugation by D , the kernel of J (a )e -it Λ σ J (b ) reads

K (t, x, y) = (2π) -d R d e i(S ,R (x,ξ)-t |ξ| σ -S ,R (y,ξ)) a (x, ξ)b (y, ξ)dξ.
The dispersive estimates (4.4.29) follow from

|K (t, x, y)| ≤ C(1 + |t|) -d/2 , (4.4.32)
for all t ∈ R uniformly in x, y ∈ R d , ∈ (0, 1] and the fact that

D L ∞ →L ∞ = d/2 , D -1 L 1 →L 1 = d/2 .
The estimates (4.4.32) are proved by repeating the same line as above. The proof is complete.

Micro-local propagation estimates.

In this paragraph, we will prove some propagation estimates which are useful for our purpose. We start with the following estimates. Lemma 4.4.12.

Let σ ∈ (0, ∞) and χ ∈ C ∞ 0 (R d ) satisfying χ(x) = 1 for |x| ≤ 1. 1.
Using the notations given in Theorem 4.4.8, if R > 0 is large enough, then for all m ≥ 0, there exists C > 0 such that for all ±s ≥ 0 and all h ∈ (0, 1],

χ x/R 2 J ± h (ǎ ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) x m H -m →H m ≤ Ch m s -m . ( 4 

.4.35)

Moreover,

x m (1 -χ) x/R 2 J ± h (ǎ ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) x m H -m →H m ≤ Ch m s -m . (4.4.36)
In particular

x m J ± h (ǎ ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) x m H -m →H m ≤ Ch m s -m . (4.4.37)
2. Using the notations given in Theorem 4.4.9, if R > 0 is large enough, then for all m ≥ 0, there exists C > 0 such that for all ±s ≥ 0 and all ∈ (0, 1],

χ( x/R 2 )J ± (ǎ ± ( ))e -is Λ σ J ± (b ± ) x m L 2 →L 2 ≤ C s -m . (4.4.38) Moreover, x m (1 -χ)( x/R 2 )J ± (ǎ ± ( ))e -is Λ σ J ± (b ± ) x m L 2 →L 2 ≤ C s -m . ( 4 

.4.39)

In particular

x m J ± (ǎ ± ( ))e -is Λ σ J ± (b ± ) x m L 2 →L 2 ≤ C s -m . ( 4 

.4.40)

Proof. 1. We firstly consider the high frequency case. The proof in this case is essentially given in [START_REF] Bouclet | On global Strichartz estimates for non trapping metrics[END_REF]. For reader's convenience, we will give a sketch of the proof. The kernel of the operator in the left hand side of (4.4.35) reads

K ± h (s, x, y) = (2πh) -d χ(x/R 2 ) R d e ih -1 Φ ± (R,s,x,y,ξ) ǎ± (h, x, ξ)b ± (h, y, ξ)dξ y m ,
where the phase Φ ± (R, s, x, y, ξ) = S ± R (x, ξ) -s|ξ| σ -S ± R (y, ξ). Using (4.4.5), we have

|∇ ξ Φ ± (R, s, x, y, ξ)| = |x -σsξ|ξ| σ-2 -y + O(1)| ≥ |σsξ|ξ| σ-2 + y| -|x| + O(1),
where |x| ≤ CR 2 and (y, ξ) ∈ Γ ± (R 3 , J 3 , τ 3 ). We then apply (4.4.33) with ±y • ξ/|y ξ| > τ 3 and ±t = ±σs|ξ| σ-2 ≥ 0 to get

|σsξ|ξ| σ-2 + y| ≥ C(|s| + |y|), (4.4.41) 
for all ±s ≥ 0. We next use |y| > R 3 to control |x| R 2 and obtain

|∇ ξ Φ ± (R, s, x, y, ξ)| ≥ C(1 + |s| + |x| + |y|),
for all ±s ≥ 0. By integrations by part with respect to ξ with remark that higher derivatives of ∂ ξ Φ ± are controlled by |∇ ξ Φ ± |, we get for all N ≥ 0,

χ(x/R 2 ) R d e ih -1 Φ ± (R,s,x,y,ξ) ǎ± (h, x, ξ)b ± (h, y, ξ)dξ ≤ Ch N (1 + |s| + |x| + |y|) -N .
By choosing N large enough, we can dominate y m and get

|K ± h (s, x, y)| ≤ Ch N (1 + |s| + |x| + |y|) -N ,
for all N large enough, therefore for all N ≥ 0. We do the same for higher derivatives ∂ α x ∂ β y K h (s, x, y) and the result follows. The kernel of the operator in the left hand side of (4.4.36) reads

K ± h (s, x, y) = (2πh) -d x m (1 -χ)(x/R 2 )
R d e ih -1 Φ ± (R,s,x,y,ξ) ǎ± (h, x, ξ)b ± (h, y, ξ)dξ y m .

We use the form of ǎ± (h) given in (4.4.23). In the case derivatives fall on κ(x/R 2 ), we have that |x| ≤ CR 2 and we can proceed as above. Note that we have from (4.4.33) with ±y • ξ/|y ξ| > σ 3 and ±t = ±σs|ξ| σ-2 ≥ 0 that

± (y + σsξ|ξ| σ-2 )ξ |y + σsξ|ξ| σ-2 ξ| > σ 3 and |y + σsξ|ξ| σ-2 | ≥ c ± (|s| + |y|).
In the case derivatives fall on θ 1→2 , we have

τ 1 + ε ≤ ± x • ξ |x ξ| ≤ τ 2 -ε or ∓ x • ξ |x ξ| ≥ -τ 2 + ε > -τ 2 + ε/2.
By choosing ε > 0 small enough such that τ 3 -τ 2 + ε/2 > 0, (4.4.34) gives

|y + σsξ|ξ| σ-2 -x| ≥ c |y + σsξ|ξ| σ-2 | + |x| ≥ C(|s| + |x| + |y|). Thus |∇ ξ Φ ± | ≥ C(1 + |s| + |x| + |y|)
for ±s ≥ 0 and (4.4.36) follows as above.

2. The proof for the low frequency case is the same as above up to the conjugation by the unitary map D in L 2 (R d ). For instance, the kernel of the operator in the left hand side of (4.4.38) reads

K ± (s, x, y) = (2π) -d χ(x/R 2 ) R d e iΦ ± (R,s,x,y,ξ) ǎ± ( , x, ξ)b ± (y, ξ)dξ y m ,
where the phase Φ ± (R, s, x, y, ξ) = S ± ,R (x, ξ) -s|ξ| σ -S ± ,R (y, ξ). Lemma 4.4.13. Let σ ∈ (0, ∞).

1. Under the notations of Theorem 4.4.8, for all m ≥ 0 and all N large enough, there exists C > 0 such that for all ±s ≥ 0 and all h ∈ (0, 1],

x N/8 J ± h (r ± N (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) x N/4 H -m →H m ≤ Ch -d-2m s -N/4 . (4.4.42)
2. Under the notations of Theorem 4.4.9, for all N large enough, there exists C > 0 such that for all ±s ≥ 0 and all ∈ (0, 1],

x N/8 J ± (r ± N ( ))e -i sΛ σ J ± (b ± ) x N/4 L 2 →L 2 ≤ C s -N/4 . (4.4.43)
Proof. We only give the proof for the high frequency case, the low frequency one is similar. The kernel of the operator in the left hand side of (4.4.42) reads

K ± h (s, x, y) = (2πh) -d R d e ih -1 Φ ± (R,s,x,y,ξ) A ± (h, x, y, ξ)dξ,
where the amplitude 4 and is compactly supported in ξ. We have from Proposition 4.4.1 and (4.4.41) that ∇ ξ Φ ± (R, s, x, y, ξ) = x-σsξ|ξ| σ-2y + O(1) and |σsξ|ξ| σ-2 + y| ≥ C(|s| + |y|) for all ±s ≥ 0. By Peetre's inequality, we see that

A ± (h, x, y, ξ) = x N/8 r ± N (h, x, ξ)b ± (h, y, ξ) y N/
∇ ξ Φ ± -1 ≤ x y + σsξ|ξ| σ-2 -1 ≤ C x ( y + s ) -1 . We next write 1 = χ(∇ ξ Φ ± ) + (1 -χ)(∇ ξ Φ ± ),
where χ ∈ C ∞ 0 (R d ) with χ = 1 near 0. Then K ± h (s, x, y) is split into two terms. For the first term

I 1 = (2πh) -d R d
e ih -1 Φ ± (R,s,x,y,ξ) χ(∇ ξ Φ ± )A ± (h, x, y, ξ)dξ, by using the fact that

|χ(∇ ξ Φ ± )| ≤ C ∇ ξ Φ ± -3N/4 ≤ C x 3N/4 ( y + s ) -3N/4 ≤ C x 3N/4 y -N/2 s -N/4 , ( 4.4.44) 
and A ± (h, x, y, ξ) = O( x -7N/8 y N/4 ), it is bounded by Ch -d x -N/8 y -N/4 s -N/4 . For the second term

I 2 = (2πh) -d R d e ih -1 Φ ± (R,s,x,y,ξ) (1 -χ)(∇ ξ Φ ± )A ± (h, x, y, ξ)dξ,
thanks to the support of (1-χ), we can integrate by parts with respect to L := 

h∇ ξ Φ ± i|∇ ξ Φ ± | 2 •∇ ξ to
R ± k (N, t, h) = h N/2 t 0 e -i(t-s)h -1 ω(h 2 P ) x -N/8 B ± m (N, s, h) x -N/4 ds, with B ± m (N, s, h) H -m →H m ≤ C s -N/4 , (4.4.45)
for all ±s ≥ 0 and h ∈ (0, 1]. 2. Using the notations given in Theorem 4.4.9 and for all N large enough, we can write for k = 2, 3, 4,

R ± k (N, t, ) = t 0 e -i(t-s) ω( -2 P ) x -N/8 B ± N (s, ) x -N/4 ds, with B ± N (s, ) L 2 →L 2 ≤ C s -N/4 , (4.4.46)
for all ±s ≥ 0 and all ∈ (0, 1].

Proof. The cases k = 3, 4 follow immediately from Lemma 4.4.12 and Lemma 4.4.13. It remains to show the case k = 2. Let us consider the high frequency case. We can write R N (h)E ± (h) as

x -N/8 x N/8 R N (h) x 7N/8 x N/8 x -N E ± (h) x N/4 x -N/4
,

where E ± (h) := J ± h (a ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) .
The first bracket is bounded on L 2 using Proposition 4.1.2. The second one is bounded from H -m to H m using Lemma 4.4.13 with the fact that x

-N J ± h (a ± (h)) = J ± h ( r± N (h))
where r± N (h) are bounded in S(-N, -∞). The low frequency case is similar using Proposition 4.1.7.

Next, we have the following micro-local propagation estimates both at high and low frequencies. 1. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose that (4.0.11) is satisfied. Then for R > 0 large enough and χ ± ∈ S(0, -∞) supported in Γ ± (R 4 , J 4 , τ 4 ), we have the following estimates. i. For all m ∈ N and all integer l large enough, there exists C > 0 such that for all ±t ≤ 0 and all h ∈ (0, 1],

Op h (χ ± ) e -ith -1 (h|∇g|) σ f (h 2 P ) x -l L 2 →H m ≤ Ch -m t -3l/4 . (4.4.47)
ii. For all m ∈ N, all χ ∈ C ∞ 0 (R d ) and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all h ∈ (0, 1],

Op h (χ ± ) e -ith -1 (h|∇g|) σ f (h 2 P )χ(x/R 2 ) L 2 →H m ≤ Ch l t -l . (4.4.48)
iii. For all χ∓ ∈ S(0, -∞) supported in Γ ∓ (R, J 1 , τ1 ) with -τ 4 < τ1 < 1 and J 4 J 1 and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all h ∈ (0, 1], ) be supported outside B(0, 1) and equal to 1 near infinity. Then for R > 0 large enough and all (χ ± ) ∈(0,1] bounded families in S(0, -∞) supported in Γ ± (R 4 , J 4 , τ 4 ), we have the following estimates. i. For all integer l large enough, there exists C > 0 such that for all ±t ≤ 0 and all

Op h (χ ± ) e -ith -1 (h|∇g|) σ f (h 2 P )Op h ( χ∓ ) L ∞ →L ∞ ≤ Ch l t -l . ( 4 
∈ (0, 1], ζ( x)Op (χ ± ) e -it ( -1 |∇g|) σ f ( -2 P ) x -l L 2 →L 2 ≤ C t -3l/4 . (4.4.50)
ii. For all χ ∈ C ∞ 0 (R d ) and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all ∈ (0, 1],

ζ( x)Op (χ ± ) e -it ( -1 |∇g|) σ f ( -2 P )χ( x/R 2 ) L 2 →L 2 ≤ C t -l . (4.4.51)
iii. For all ζ ∈ C ∞ (R d ) supported outside B(0, 1) and equal to 1 near infinity and all ( χ∓ ) ∈(0,1] bounded families in S(0, -∞) supported in Γ ∓ (R, J 1 , τ1 ) with -τ 4 < τ1 < 1 and J 4 J 1 and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all ∈ (0, 1],

ζ( x)Op (χ ± ) e -it ( -1 |∇g|) σ f ( -2 P )Op ( χ∓ ) ζ( x) L 2 →L 2 ≤ C t -l . (4.4.52)
Proof. We only give the proof for the low frequency case, the proof at high frequency is similar and essentially given in [BT08, Proposition 4.5]. i. We only consider the case χ + and t ≤ 0, the case χ -and t ≥ 0 is similar. By taking the adjoint, (4.4.50) is equivalent to

x -l f ( -2 P )e -it ( -1 |∇g|) σ Op (χ + )ζ( x) L 2 →L 2 ≤ C t -3l/4 , t ≥ 0, (4.4.53)
uniformly in ∈ (0, 1]. Thanks to the spectral localization, we can apply the Isozaki-Kitada parametrix given in Theorem 4.4.9 and obtain

e -it ( -1 |∇g|) σ Op (χ + )ζ( x) = J + (a + )e -it Λ σ J + (b + ) + R + N (t, ).
The main term can be written as

x -l f ( -2 P ) x l x -n x n-l J + (a + )e -it Λ σ J + (b + ) x n x -n .
By using Corollary 4.1.9, we have the terms x -l f ( -2 P ) x l and x -n are bounded on L 2 . It suffices to show for l large enough,

x n-l J + (a + )e -it Λ σ J + (b + ) x n L 2 →L 2 ≤ C t -3l/4 , t ≥ 0,
uniformly in ∈ (0, 1]. This expected estimate follows by using the same process as in Lemma 4.4.13. We now study the remainders.

For k = 1, we have

x -l f ( -2 P )R + 1 (N, t, ) L 2 →L 2 = x -l f ( -2 P )e -it ( -1 |∇g|) σ Op (r + N ( ))ζ( x) L 2 →L 2 ≤ C t 1-l .
Here we insert x -l x l in the middle and use (4.1.23) and rescaled pseudo-differential calculus. For k = 2, 3, 4, Item 2 of Proposition 4.4.14 yields

x -l f ( -2 P )R + k (N, t, ) = t 0 x -l f ( -2 P )e -i(t-s) ( -1 |∇g|) σ x -N/8 B N (s, ) x -N/4 ds.
Using again (4.1.23) and the fact that x l-N/8 and x -N/4 are of size O L 2 →L 2 (1) for N large enough and (4.4.46), we obtain

x -l f ( -2 P )R + k (N, t, ) L 2 →L 2 ≤ C t 0 (t -s) 1-l s -N/4 ds ≤ C t 1-l .
By choosing l large enough such that l -1 ≥ 3l/4, it shows (4.4.53).

ii. We do the same for (4.4.51), it is equivalent to show

χ( x/R 2 )f ( -2 P )e -it ( -1 |∇g|) σ Op (χ + )ζ( x) L 2 →L 2 ≤ C t -l , t ≥ 0, (4.4.54)
uniformly in ∈ (0, 1]. We again use the Isozaki-Kitada parametrix. Let us firstly study remainder terms. We write the first remainder term χ( x/R 2 )f ( -2 P )R + 1 (N, t, ) as

χ( x/R 2 ) x l x -l f ( -2 P )e -it ( -1 |∇g|) σ x -l x l Op (r + N ( ))ζ( x).
Using (4.1.23) and the fact that χ( x/R 2 ) x l and x l Op (r + N ( ))ζ( x) are bounded on L 2 due to the support property of χ and rescaled pseudo-differential calculus given as in Proposition 4.1.7, we get

χ( x/R 2 )f ( -2 P )R + 1 (N, t, ) L 2 →L 2 ≤ C t 1-l .
For k = 2, 3, 4, we have

χ( x/R 2 )f ( -2 P )R + k (N, t, ) L 2 →L 2 ≤ C t 0 (t -s) 1-l s -N/4 ds ≤ C t 1-l .
For the main term, we can write

χ( x/R 2 ) x l x -l f ( -2 P ) x l x -n x n-l J + (a + )e -it Λ σ J + (b + ) x n x -n . Thanks to the L 2 -boundedness of χ( x/R 2 ) x l , x -l f ( -2 P ) x l , x -n , it suffices to prove x n-l J + (a + )e -it Λ σ J + (b + ) x n L 2 →L 2 ≤ C t -l , t ≥ 0,
uniformly in ∈ (0, 1]. This expected estimate again follows from Lemma 4.4.12 by taking l large enough. This proves (4.4.54).

iii. For (4.4.52), we firstly use the Isozaki-Kitada parametrix for χ-, namely

e -it ω( -2 P ) Op ( χ-) ζ( x) = J -(ã -)e -it Λ σ J -( b-) + 4 k=1 R- k (N, t, ), (4.4.55) 
where supp(ã -) ⊂ Γ -(R 1/4 , J1/4 , τ1/4 ) and supp( b-) ⊂ Γ -(R 3/4 , J3/4 , τ3/4 ) with J3/4 J1/4 small neighborhood of J 1 and τ1/4 , τ3/4 can be chosen so that

-1 < -τ 4 < τ1/4 < τ3/4 < τ1 < 1.
Multiplying ζ( x)Op (χ + ) f ( -2 P ) to the left of (4.4.55), we see that the terms ζ( x)Op (χ + ) f ( -2 P ) Rk (N, t, ) for k = 1, 2, 3, 4 satisfy the required estimate using the estimate (4.4.50), Lemma 4.4.12 and (4.4.46). Therefore, it remains to show

ζ( x)Op (χ + ) f ( -2 P )J -(ã -)e -it Λ σ J -( b-) L 2 →L 2 ≤ C t -l , ±t ≤ 0,
uniformly in ∈ (0, 1]. Thanks to the support of ã-, we can write

J -(ã -) = ζ 1 ( x)J -(ã -) with ζ 1 ∈ C ∞ (R d ) supported outside B(0, 1) such that ζ 1 (x) = 1 for |x| > R 1/4 . The parametrix of f ( -2 P )ζ 1 ( x)
given in Proposition 4.1.7 and symbolic calculus give

ζ( x)Op (χ + ) f ( -2 P )ζ 1 ( x) = Op (c + ) + B + N ( ) x -N ,
where (c + ) ∈(0,1] ∈ S(0, -∞) with supp(c + ) ⊂ supp(χ + ) and B + N ( ) = O L2 →L 2 (1) uniformly in ∈ (0, 1]. We treat the remainder term by using Lemma 4.4.13. For the main terms, we need to recall the following version of Proposition 4.4.4 which is essentially 2 given in [BT08, Lemma 4.6]. Lemma 4.4.16. Given J (0, +∞), -1 < τ < 1 and the associated families of phase functions (S ± ,R ) R 1 as in Proposition 4.4.1. Let (a ) ∈(0,1] and (c ) ∈(0,1] be bounded families in S(0, -∞). Then for all N ≥ 1,

Op (c )J ± (a ) = N -1 j=0 J ± (e ,j ) + J ± (e N ( )),
where (e ,j ) ∈(0,1] and (e N ( )) ∈(0,1] are bounded families in S(0, -∞) and S(-N, -∞) respectively. In particular, for all ε > 0 small enough, by choosing R > 0 large enough, we have

supp(c ) ⊂ Γ ± (R, J, τ ) =⇒ supp(e ,j ) ⊂ Γ ± (R, J + (-ε, ε), τ -ε) since ∇ x S ± ,R (x, ξ) = ξ + O(R -ρ
). Using this lemma, we expand Op (c + )J -(ã -) and treat the remainder terms using again Lemma 4.4.13. It remains to prove the required estimate for the general term, namely

J -(e + )e -it Λ σ J -( b-) L 2 →L 2 ≤ C t -l , ±t ≤ 0,
uniformly in ∈ (0, 1], where (e + ) ∈(0,1] ∈ S(0, -∞) and supp(e

+ ) ∈ Γ + (R 4 , J 4 + (-ε, ε), τ 4 -ε).
Up to the conjugation by D , the kernel of the left hand side operator reads

K (t, x, y) = (2π) -d R d e iΦ (R,t,x,y,ξ) e + (x, ξ) b-(y, ξ)dξ, where Φ (R, t, x, y, ξ) = S - ,R (x, ξ)-t|ξ| σ -S - ,R (y, ξ). Since supp(e + ) ⊂ Γ + (R 4 , J 4 +(-ε, ε), τ 4 -ε) and supp( b-) ⊂ Γ -(R 3/4 , J3/4 , τ3/4 ), we have x • ξ |x ξ| > τ 4 -ε, - y • ξ |y ξ| > τ3/4 .
By choosing R > 0 large enough, we have that τ 4 -ε + τ3/4 > 0. Thus by Item 2 of Lemma 4.4.11, we have

|∇ ξ Φ | ≥ C(1 + |t| + |x| + |y|).
Using the non-stationary phase argument as in the proof of Lemma 4.4.12, we have

J + (e + )e -it Λ σ J -( b-) L 2 →L 2 ≤ C t -l , ±t ≤ 0,
uniformly in ∈ (0, 1]. The proof of Proposition 4.4.15 is now complete.

Strichartz estimates

High frequencies. In this paragraph, we give the proof of (4.2.21). By scaling in time, it is in turn equivalent to prove

(1 -χ)e -ith -1 (h|∇g|) σ f (h 2 P )ψ L p (R,L q ) ≤ Ch -κp,q f (h 2 P )ψ L 2 ,
where κ p,q = d/2 -d/q -1/p. By choosing f ∈ C ∞ 0 (R\0) such that f = 1 near supp(f ), we can write for all l ∈ N,

(1 -χ) f (h 2 P ) = N -1 k=0 h k Op h (a k ) + h N B N (h) x -l ,
where for q ≥ 2,

B N (h) L 2 →L q ≤ Ch -(d/2-d/q) . (4.4.56) Thus (1 -χ)e -ith -1 (h|∇g|) σ f (h 2 P )ψ becomes N -1 k=0 h k Op h (a k ) e -ith -1 (h|∇g|) σ f (h 2 P )ψ + h N B N (h) x -l e -ith -1 (h|∇g|) σ f (h 2 P )ψ.
Using (4.4.56) and (4.

1.20), B N (h) x -l e -ith -1 (h|∇g|) σ f (h 2 P )ψ L p (R,L q ) is bounded by Ch -(d/2-d/q) x -l e -ith -1 (h|∇g|) σ f (h 2 P )ψ L p (R,L 2 ) ≤ Ch -(d/2-d/q)+(1-N0)/p f (h 2 P )ψ L 2 .
Hence, by taking N large enough, the remainder is bounded by Ch -κp,q f (h 2 P )ψ L 2 . For the main terms, by choosing

χ 0 ∈ C ∞ 0 (R d ) such that χ 0 = 1 for |x| ≤ 2 and setting χ(x) = χ 0 (x/R 4 ), we see that (1-χ) is supported in {x ∈ R d , |x| ≥ 2R 4 > R 4 }.
For R > 0 large enough and supp( f ) close enough to supp(f ) and J 4 (0, +∞) any open interval containing supp(f ), we have

supp(a k ) ⊂ (x, ξ) ∈ R 2d , |x| > R 4 , |ξ| 2 ∈ J 4 , k = 0, ..., N -1.
(4.4.57)

We want to show

Op h (a k ) e -ith -1 (h|∇g|) σ f (h 2 P )ψ L p (R,L q ) ≤ Ch -κp,q f (h 2 P )ψ L 2 , k = 0, ..., N -1.
Let us consider a general term, namely Op h (a) e -ith -1 (h|∇g|) σ f (h 2 P )ψ with a ∈ S(0, -∞) satisfying (4.4.57). Next, by choosing a suitable partition of unity θ -+ θ + = 1 such that supp(θ -) ⊂ (-∞, -τ 4 ) and supp(θ + ) ⊂ (τ 4 , +∞) and setting

χ ± (x, ξ) = a(x, ξ)θ ± ± x • ξ |x ξ| ,
we have that χ ± ∈ S(0, -∞), supp(χ ± ) ⊂ Γ ± (R 4 , J 4 , τ 4 ) and

Op h (a) e -ith -1 (h|∇g|) σ f (h 2 P )ψ = (Op h (χ -) + Op h (χ + ) )e -ith -1 (h|∇g|) σ f (h 2 P )ψ.
We only prove the estimate for χ + , i.e.

Op h (χ + ) e -ith -1 (h|∇g|) σ f (h 2 P )ψ L p (R,L q ) ≤ Ch -κp,q f (h 2 P )ψ L 2 ,
the one for χ -is similar. Since Op h (χ + ) e -ith -1 (h|∇g|) σ f (h 2 P ) is bounded on L 2 uniformly in h ∈ (0, 1] and t ∈ R, by Proposition 4.3.3, it suffices to prove the dispersive estimates, i.e.

Op h (χ + ) e -ith -1 (h|∇g|) σ f 2 (h 2 P )Op h (χ + ) L 1 →L ∞ ≤ Ch -d (1 + |t|h -1 ) -d/2 ,
for all t ∈ R uniformly in h ∈ (0, 1]. By taking the adjoint, it reduces to prove

Op h (χ + ) e -ith -1 (h|∇g|) σ f 2 (h 2 P )Op h (χ + ) L 1 →L ∞ ≤ Ch -d (1 + |t|h -1 ) -d/2 , (4.4.58)
for all t ≤ 0 uniformly in h ∈ (0, 1]. We now prove (4.4.58). By using the Isozaki-Kitada parametrix with J 4 and τ 4 as above together with arbitrary open intervals J 1 , J 2 , J 3 such that J 4 J 3 J 2 J 1 (0, +∞) and arbitrary real numbers τ 1 , τ 2 , τ 3 satisfying -1 < τ 1 < τ 2 < τ 3 < τ 4 < 1, the

Strichartz estimates outside compact sets

operator in the left hand side of (4.4.58) is written as

Op h (χ + ) f 2 (h 2 P ) J + h (a + (h))e -ith -1 (hΛ) σ J + h (b + (h)) + 4 k=1 R + k (N, t, h) .
Using the fact that Op h (χ + ) f 2 (h 2 P ) is bounded on L ∞ and Proposition 4.4.10, we have

Op h (χ + ) f 2 (h 2 P )J + h (a + (h))e -ith -1 (hΛ) σ J + h (b + (h)) L 1 →L ∞ ≤ Ch -d (1 + |t|h -1 ) -d/2 ,
for all t ∈ R and h ∈ (0, 1]. It remains to study the remainder terms.

For k = 1, using the Sobolev embedding with m > d/2, (4.4.47) and the fact that

x l Op h (r + N (h)) is of size O H -m →L 2 (h -m ) by pseudo-differential calculus, we have Op h (χ + ) f 2 (h 2 P )R + 1 (N, t, h) L 1 →L ∞ ≤ Ch N -1-2m t -3l/4 ≤ Ch -d (1 + |t|h -1 ) -d/2 ,
for all t ≤ 0 and all h ∈ (0, 1]. The last estimate follows by taking l = 2d/3 and N large enough.

For k = 2, by using (4.4.47) and the Sobolev embedding with m > d/2, we have for t -s ≤ 0,

Op h (χ + ) e -i(t-s)h -1 (h|∇g|) σ f 2 (h 2 P ) x -l L 2 →L ∞ ≤ Ch -m t -s -3l/4 . (4.4.59)
We also have that x l R N (h) is bounded from L ∞ to L 2 due to Proposition 4.1.2 provided N > l. Thus for N and l large enough, Proposition 4.4.10 implies that

Op h (χ + ) f 2 (h 2 P )R + 2 (N, t, h) L 1 →L ∞ ≤ Ch N -1-m-d t 0 t -s -3l/4 (1 + |s|h -1 ) -d/2 ds ≤ Ch -d (1 + |t|h -1 ) -d/2 .
For k = 3, by inserting x -l x l-N x N and using the fact that x l-N = O L ∞ →L 2 (1) for N large enough, (4.4.59) and Proposition 4.4.10 with J + h (a + ) = x N J + h (r + N (h)), we see that this remainder term satisfies the required estimate as for the second one.

For k = 4, we rewrite Op h (χ

+ ) f 2 (h 2 P )R + 4 (N, t, h) as -ih -1 times t 0 Op h (χ + ) f 2 (h 2 P )e -i(t-s)h -1 (h|∇g|) σ (χ + (1 -χ))(x/R 2 )J + h (ǎ + (h))e -ish -1 (hΛ) σ J + h (b + (h)) ds, where χ ∈ C ∞ 0 (R d ) satisfying χ(x) = 1 for |x| ≤ 2.
The first term can be treated similarly as the second remainder using (4.4.48) instead of (4.4.47). For the second term, we need the following lemma (see [BT08, Proposition 5.2]). Lemma 4.4.17. Choose τ1 such that -τ

4 < τ1 < -τ 2 . If R > 0 is large enough, we may choose χ-∈ S(0, -∞) satisfying supp( χ-) ⊂ Γ -(R, J 1 , τ1 ) such that for all m large enough, f (h 2 P )(1 -χ)(x/R 2 )J + h (ǎ + (h)) = Op h ( χ-)J + h (ẽ m (h)) + h m Rm (h)
where

Rm (h) = J + h (r m (h)) + x -m/2 R m (h) x -m/2 J + h (ǎ + (h)), with (ẽ m (h)) h∈(0,1] and (r m (h)) h∈(0,1] bounded families in S(0, -∞) and S(-m, -∞) respectively and R m (h) = O L ∞ →L ∞ (1) uniformly in h ∈ (0, 1].
Using this lemma, the second term is written as -ih -1 times

t 0 Op h (χ + ) e -i(t-s)h -1 (h|∇g|) σ Op h ( χ-)J + h (ẽ m (h)) + h m Rm (h) e -ish -1 (hΛ) σ J + h (b + (h)) ds.
The remainder terms are treated similarly as the second remainder term using (4.4.47). The term involving Op h ( χ-)J + h (ẽ m (h)) is studied by the same analysis as the second term using (4.4.49) instead of (4.4.47). This completes the proof.

Low frequencies.

In this paragraph, we will prove (4.2.24). By scaling in time, it is equivalent to show

(1 -χ)( x)f ( -2 P )e -it ( -1 |∇g|) σ ψ L p (R,L q ) ≤ C κp,q f ( -2 P )ψ L 2 ,
where

κ p,q = d/2 -d/q -1/p. By choosing f ∈ C ∞ 0 (R\0) such that f = 1 near supp(f ), we can write (1 -χ)( x)f ( -2 P ) = (1 -χ)( x) f ( -2 P )f ( -2 P ). Next, we choose ζ ∈ C ∞ (R d ) supported in R d \B(0, 1) such that ζ = 1 near supp(1 -χ) and use Proposition 4.1.7 to have (1 -χ)( x) f ( -2 P ) = N -1 k=0 ζ( x)Op (a ,k ) + R N ( ), where R N ( ) = ζ( x)( -2 P + 1) -N B N ( ) x -N with (B N ( )) ∈(0,1] bounded on L 2 . Thus (1 - χ)( x)f ( -2 P )e -it ( -1 |∇g|) σ ψ reads N -1 k=0 ζ( x)Op (a ,k ) e -it ( -1 |∇g|) σ f ( -2 P )ψ + R N ( )e -it ( -1 |∇g|) σ f ( -2 P )ψ.
We firstly consider the remainder term. Proposition 4.4.18. Let N ≥ (d -1)/2 + 1. Then for all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all ∈ (0, 1],

R N ( )e -it ( -1 |∇g|) σ f ( -2 P )ψ L p (R,L q ) ≤ C κp,q ψ L 2 .
Proof. This result follows from the T T criterion given in Proposition 4.3.3 with -1 in place of h and T (t) = R N ( )e -it ( -1 |∇g|) σ f ( -2 P ). The L 2 → L 2 bounds of T (t) are obvious. Thus we need to prove the dispersive estimates. Using (4.1.6) with q = ∞ and (4.1.23) with N ≥ d/2 + 1, we have

T (t)T (s) L 1 →L ∞ ≤ C d x -N e -i(t-s) ( -1 |∇g|) σ f 2 ( -2 P ) x -N L 2 →L 2 ≤ C d (t -s) 1-N ≤ C d (1 + |t -s|) -d/2 .
This completes the proof.

For the main terms, by choosing

χ 0 ∈ C ∞ 0 (R d ) such that χ 0 = 1 for |x| ≤ 2 and setting χ(x) = χ 0 (x/R 4 ), we see that (1 -χ) is supported in {x ∈ R d , |x| > R 4 }.
For R > 0 large enough and supp( f ) close enough to supp(f ) and J 4 (0, +∞) any open interval containing supp(f ), we have

supp(a ,k ) ⊂ (x, ξ) ∈ R 2d , |x| > R 4 , |ξ| 2 ∈ J 4 , k = 0, ..., N -1. (4.4.60)
We want to show for k = 0, ..., N -1,

ζ( x)Op (a ,k ) e -it ( -1 |∇g|) σ f ( -2 P )ψ L p (R,L q ) ≤ C κp,q f ( -2 P )ψ L 2 .
Let us consider the general term, namely ζ( x)Op (a ) e -it ( -1 |∇g|) σ f ( -2 P )ψ with (a ) ∈(0,1] ∈ S(0, -∞) satisfying (4.4.60). Next, by choosing a suitable partition of unity θ -+ θ + = 1 such that supp(θ -) ⊂ (-∞, -τ 4 ) and supp(θ + ) ⊂ (τ 4 , +∞) and setting

χ ± (x, ξ) = a (x, ξ)θ ± ± x • ξ |x ξ| , we have that (χ ± ) ∈(0,1] ∈ S(0, -∞), supp(χ ± ) ⊂ Γ ± (R 4 , J 4 , τ 4 ) and ζ( x)Op (a ) e -it ( -1 |∇g|) σ f ( -2 P )ψ = ζ( x)(Op (χ -) + Op (χ + ) )e -it ( -1 |∇g|) σ f ( -2 P )ψ.
We only prove the estimate for χ + , i.e.

ζ( x)Op (χ + ) e -it ( -1 |∇g|) σ f ( -2 P )ψ L p (R,L q ) ≤ C κp,q f ( -2 P )ψ L 2 ,
the one for χ -is similar. By T T criterion and that T (t) := ζ( x)Op (χ + ) e -it ( -1 |∇g|) σ f ( -2 P ) is bounded on L 2 for all t ∈ R and all ∈ (0, 1], it suffices to prove dispersive estimates, i.e.

ζ( x)Op (χ + ) e -it ( -1 |∇g|) σ f 2 ( -2 P )Op (χ + )ζ( x) L 1 →L ∞ ≤ C d (1 + |t|) -d/2 ,
for all t ∈ R uniformly in ∈ (0, 1]. By taking the adjoint, it reduces to prove 

ζ( x)Op (χ + ) e -it ( -1 |∇g|) σ f 2 ( -2 P )Op (χ + )ζ( x) L 1 →L ∞ ≤ C d (1 + |t|) -d/
A + := ζ( x)Op (χ + ) f 2 ( -2 P ).
Using the Isozaki-Kitada parametrix given in Theorem 4.4.9, we see that

A + e -it ( -1 |∇g|) σ Op (χ + )ζ( x) = A + J + (a + )e -it Λ σ J + (b + ) + 4 k=1 R + k (N, t, ) .
We firstly note that A + is bounded on L ∞ . Indeed, we write

ζ( x)Op (χ + ) f 2 ( -2 P ) = ζ( x)Op (χ + ) ζ 1 ( x)f 2 ( -2 P ),
where 

ζ 1 ∈ C ∞ (R d )
A + = ζ( x)( -2 P + 1) -l ζ( x)Op ( χ+ ) + B+ l ( ) x -l f 2 ( -2 P ), where ζ ∈ C ∞ (R d
) is supported outside B(0, 1) and equal to 1 near supp(ζ) and ( χ+ )

∈(0,1] ∈ S(0, -∞) satisfying supp( χ+ ) ⊂ supp(χ + ) and B+ l ( ) = O L 2 →L 2 (1) uniformly in ∈ (0, 1]
. This follows by expanding ( -2 P + 1) l ζ( x)Op (χ + ) by rescaled pseudo-differential calculus.

For k = 1, using the Proposition 4.1.7, we can write

R + 1 (N, t, ) = e -it ( -1 |∇g|) σ x -N B + N ( )( -2 P + 1) -N ζ( x),
where

B + N ( ) = O L 2 →L 2 (1)
uniformly in ∈ (0, 1]. Then, using Proposition 4.1.6 with q = ∞ and (4.4.50), we have

ζ( x)( -2 P + 1) -l ζ( x)Op ( χ+ ) f 2 ( -2 P )R + 1 (N, t, ) L 1 →L ∞ ≤ C d t -3N/4 ≤ C d (1 + |t|) -d/2 ,
for all t ≤ 0 and all ∈ (0, 1] provided N is taken large enough. Moreover, using again Proposition 4.1.6 and (4.1.23), we also have

ζ( x)( -2 P + 1) -l Bl ( ) x -l f 2 ( -2 P )R + 1 (N, t, ) L 1 →L ∞ ≤ C d t 1-l ≤ C d (1 + |t|) -d/2 ,
for all t ≤ 0 and all ∈ (0, 1] provided l and N are taken large enough. This implies

A + R + 1 (N, t, ) L 1 →L ∞ ≤ C d (1 + |t|) -d/2 ,
for all t ≤ 0 and all ∈ (0, 1].

Next, thanks to the support of b + , we can write

J + (b + ) = J + ( b+ ) ( -2 P + 1) -N ζ 1 ( x), (4.4.62)
where ( b+

) ∈(0,1] ∈ S(0, -∞), supp( b+ ) ⊂ Γ + (R 3 , J 3 , σ 3 ) and ζ 1 ∈ C ∞ (R d ) is supported outside B(0, 1) such that ζ 1 (x) = 1 for |x| > R 3
. Indeed, we write for ζ1 ∈ C ∞ (R d ) supported outside B(0, 1) and ζ1 = 1 in supp(ζ 1 ),

J + (b + ) = J + (b + ) ζ1 ( x)( -2 P + 1) N ( -2 P + 1) -N ζ 1 ( x) .
We have (4.4.62) by taking the adjoint of (

-2 P + 1) N ζ1 ( x)J + (b + ) = J + ( b+ ).
For k = 2, using (4.1.6) and its adjoint, (4.4.50), (4.4.62),

x l R N ( ) x N -l = O L 2 →L 2
(1) and estimating as in Lemma 4.4.13, we have

ζ( x)( -2 P + 1) -l ζ( x)Op ( χ+ ) f 2 ( -2 P )R + 2 (N, t, ) L 1 →L ∞ ≤ C d t 0 (t -s) -3l/4 s -N/4 ds ≤ C d (1 + |t|) -d/2 ,
for t ≤ 0 provided that l and N are taken large enough. Moreover, using (4.1.23) instead of (4.4.50), we have

ζ( x)( -2 P + 1) -l Bl ( ) x -l f 2 ( -2 P )R + 2 (N, t, ) L 1 →L ∞ ≤ C d t 0 (t -s) 1-l s -N/4 ds ≤ C d (1 + |t|) -d/2 ,
for all t ≤ 0 and all ∈ (0, 1]. This implies

A + R + 2 (N, t, ) L 1 →L ∞ ≤ C d (1 + |t|) -d/2 , ∀t ≤ 0, ∈ (0, 1].
The third remainder term is treated similarly as the second one. It remains to study the last remainder term. To do so, we split

A + R + 4 (N, t, ) = -i t 0 A + e -i(t-s) ( -1 |∇g|) σ (χ + (1 -χ))( x/R 2 )J + (ǎ + ( ))e -is Λ σ J + (b + ) ds, where χ ∈ C ∞ 0 (R d ) satisfying χ(x) = 1 for |x| ≤ 2.
The first term can be treated similarly as the second remainder using (4.4.51) instead of (4.4.50) and Lemma 4.4.12. For the second term, we need the following lemma (see [START_REF] Bouclet | On global Strichartz estimates for non trapping metrics[END_REF]Proposition 5.2]). Lemma 4.4.19. Choose τ1 such that -τ 4 < τ1 < -τ 2 . If R > 0 is large enough, we may choose a bounded family of symbols χ-∈ S(0, -∞)

satisfying supp( χ-) ⊂ Γ -(R, J 1 , τ1 ) and ζ2 ∈ C ∞ (R d ) supported outside B(0, 1) satisfying ζ2 = 1 on supp(1 -χ) such that for all m large enough, f ( -2 P )(1 -χ)( x/R 2 )J + (ǎ + ( )) = Op ( χ-) ζ2 ( x)J + (ẽ m ( )) + Rm ( ), where Rm ( ) = J + (r m ( )) + x -m/2 R m ( ) x -m/2 J + (ǎ + ( )),
with (ẽ m ( )) ∈(0,1] and (r m ( )) ∈(0,1] bounded families in S(0, -∞) and S(-m, -∞) respectively and R m ( ) = O L 2 →L 2 (1) uniformly in ∈ (0, 1]. We set

A + = (A + ,1 + A + ,2
)f ( -2 P ), where

A + ,1 = ζ( x)( -2 P + 1) -l ζ( x)Op ( χ+ ) f ( -2 P ), A + ,2 = ζ( x)( -2 P + 1) -l Bl ( ) x -l f ( -2 P ).
Using Lemma 4.4.19, we firstly consider

-ih -1 t 0 A + ,1 e -i(t-s) ( -1 |∇g|) σ Op ( χ-) ζ2 ( x)J + (ẽ m ( )) + Rm ( ) e -is Λ σ J + (b + ) ds.
The remainder terms are treated similarly as the second remainder term using (4.4.50) and Lemma 4.4.13. The term involving Op ( χ-) ζ2 ( x)J + (ẽ m ( )) is studied by the same analysis as the second term using (4.4.52) instead of (4.4.47). For the term

-ih -1 t 0 A + ,2 e -i(t-s) ( -1 |∇g|) σ Op ( χ-) ζ2 ( x)J + (ẽ m ( )) + Rm ( ) e -is Λ σ J + (b + ) ds,
the required estimate follows by using (4.1.23) and Lemma 4.4.13. This completes the proof.

Inhomogeneous Strichartz estimates

In this section, we will give the proofs of Proposition 4.0.6 and Proposition 4.0.8. The main tool is the homogeneous Strichartz estimates (4.0.14) and the so called Christ-Kiselev Lemma. To do so, we recall the following result (see [START_REF] Christ | Maximal functions associated to filtrations[END_REF] or [START_REF] Sogge | Fourier integrals in classical analysis[END_REF]). Lemma 4.5.1. Let X and Y be Banach spaces and assume that K(t, s) is a continuous function taking its values in the bounded operators from Y to X. Suppose that -∞ ≤ c < d ≤ ∞, and set

Af (t) = d c K(t, s)f (s)ds. Assume that Af L q ([c,d],X) ≤ C f L p ([c,d],Y ) .
Define the operator à as

Ãf (t) = t c K(t, s)f (s)ds,
Then for 1 ≤ p < q ≤ ∞, there exists C > 0 such that

Ãf L q ([c,d],X) ≤ C f L p ([c,d],Y ) .
We are now able to prove the inhomogeneous Strichartz estimates (4.0.16) and (4.0.20).

Inhomogeneous Strichartz estimates for Schrödinger-type equation. We give the proof of Proposition 4.0.6 by following a standard argument (see e.g. [START_REF] Zhang | Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds[END_REF]). Let u be the solution to (4.0.1). By Duhamel formula, we have

u(t) = e -it|∇g| σ ψ -i t 0 e -i(t-s)|∇g| σ F (s)ds =: u hom (t) + u inh (t).
Using (4.0.14), we have

u hom L p (R,L q ) ≤ C ψ Ḣγp,q g .
It remains to prove the inhomogeneous part, namely

t 0 e -i(t-s)|∇g| σ F (s)ds L p (R,L q ) ≤ C F L a (R,L b ) ,
where (p, q), (a, b) are Schrödinger admissible pairs with q < ∞ and b < ∞ satisfying (p, a) = (2, 2) and the gap condition (4.0.17). By the Christ-Kiselev Lemma, it suffices to prove R e -i(t-s)|∇g| σ F (s)ds

L p (R,L q ) ≤ C F L a (R,L b ) , (4.5.1)
for all Schrödinger admissible pairs (p, q) and (a, b) with q < ∞ and b < ∞ satisfying (4.0.17) excluding the case p = a = 2. We now prove (4.5.1). Define

T γp,q : ψ ∈ L g → |∇ g | -γp,q e -it|∇g| σ ψ ∈ L p (R, L q ).
Thanks to (4.0.14), we see that T γp,q is a bounded operator. Similar result holds for T γ a,b . Next, we take the adjoint for T γ a,b and obtain a bounded operator

T γ a,b : F ∈ L a (R, L b ) → R |∇ g | -γ a,b e is|∇g| σ F (s)ds ∈ L g ,
where L g is the dual space of L g . Using (4.0.17

) or γ a,b = -γ a ,b -σ = -γ p,q , we have R e -i(t-s)|∇g| σ F (s)ds L p (R,L q ) = T γp,q T γ a,b F L p (R,L q ) ≤ C F L a (R,L b ) ,
and (4.5.1) follows.

Next, we prove

u L ∞ (R, Ḣγp,q g ) ≤ C ψ Ḣγp,q g + F L a (R,L b ) .
By using the homogeneous Strichartz estimate for a Schrödinger admissible pair (∞, 2) with γ ∞,2 = 0 and that u L ∞ (R, Ḣγp,q

g ) = |∇ g | γp,q u L ∞ (R,L 2 ) , we have u L ∞ (R, Ḣγp,q g ) ≤ C |∇ g | γp,q ψ L 2 + t 0 |∇ g | γp,q e -i(t-s)|∇g| σ F (s)ds L ∞ (R,L 2 )
.

Using the Christ-Kiselev Lemma, it suffices to prove

R |∇ g | γp,q e -i(t-s)|∇g| σ F (s)ds L ∞ (R,L 2 ) ≤ C F L a (R,L b ) .
Using the above notation, we have

R |∇ g | γp,q e -i(t-s)|∇g| σ F (s)ds L ∞ (R,L 2 ) = T 0 T γ a,b F L ∞ (R,L 2 ) ≤ C T γ a,b F L 2 ≤ C F L a (R,L b ) .
This completes the proof of Proposition 4.0.6.

Inhomogeneous Strichartz estimates for wave-type equation.

We give the proof of Proposition 4.0.8. Let v be the solution to (4.0.19). By Duhamel formula, we have

v(t) = cos t|∇ g | σ ψ + sin t|∇ g | σ |∇ g | σ u 1 + t 0 sin(t -s)|∇ g | σ |∇ g | σ F (s)ds =: v hom (t) + v inh (t),
where v hom is the sum of first two terms and v inh is the last one. We firstly prove

v L p (R,L q ) ≤ C v 0 Ḣγp,q g + v 1 Ḣγp,q-σ g + F L a (R,L b ) .
By observing that

cos t|∇ g | σ = e it|∇g| σ + e -it|∇g| σ 2 , sin t|∇ g | σ = e it|∇g| σ -e -it|∇g| σ 2i ,
and using (4.0.14), we have

v hom L p (R,L q ) ≤ C v 0 Ḣγp,q g + v 1 Ḣγp,q-σ g .
Let us prove the inhomogeneous part which is in turn equivalent to

t 0 e -i(t-s)|∇g| σ |∇ g | σ F (s)ds L p (R,L q ) ≤ C F L a (R,L b ) , ( 4.5.2) 
where (p, q), (a, b) are Schrödinger admissible with q < ∞ and b < ∞ satisfying the gap condition (4.0.21). We define the operator

T γp,q : ψ ∈ L g → |∇ g | -γp,q e -it|∇g| σ ψ ∈ L p (R, L q ).
Thanks to (4.0.14), we see that T γp,q is a bounded operator. Next, we take the adjoint for T γ a,b and obtain a bounded operator

T γ a,b : F ∈ L a (R, L b ) → R |∇ g | -γ a,b e is|∇g| σ F (s)ds ∈ L g . Using (4.0.21) or γ a,b = -γ a ,b -σ = -γ p,q + σ, we have R e -i(t-s)|∇g| σ |∇ g | σ F (s)ds L p (R,L q ) = T γp,q T γ a,b F L p (R,L q ) ≤ C F L a (R,L b ) .
As in the proof of the inhomogeneous Strichartz estimates for the Schrödinger-type equations, the Christ-Kiselev Lemma implies (4.5.2) for all Schrödinger admissible pairs (p, q) and (a, b) with q < ∞ and b < ∞ satisfying the gap condition (4.0.21) excluding the case p = a = 2. Next, we prove

v L ∞ (R, Ḣγp,q g ) ≤ C v 0 Ḣγp,q g + v 1 Ḣγp,q-σ g + F L a (R,L b ) .
By using the homogeneous Strichartz estimate for a Schrödinger admissible pair (∞, 2) with γ ∞,2 = 0 and that v L ∞ (R, Ḣγp,q

g ) = |∇ g | γp,q v L ∞ (R,L 2 ) , we have v L ∞ (R, Ḣγp,q g ) ≤ C |∇ g | γp,q v 0 L 2 + |∇ g | γp,q v 1 Ḣ-σ g + t 0 |∇ g | (γp,q-σ) sin (t -s)|∇ g | σ F (s)ds L ∞ (R,L 2 )
.
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Using the Christ-Kiselev Lemma, it suffices to prove

R |∇ g | (γp,q-σ) e -i(t-s)|∇g| σ F (s)ds L ∞ (R,L 2 ) ≤ C F L a (R,L b ) .
Using the above notation, we have

R |∇ g | (γp,q-σ) e -i(t-s)|∇g| σ F (s)ds L ∞ (R,L 2 ) = T 0 T γ a,b F L ∞ (R,L 2 ) ≤ C T γ a,b F L 2 ≤ C F L a (R,L b ) .
We repeat the same process for ∂ t v and obtain

∂ t v L ∞ (R, Ḣγp,q-σ g ) ≤ C v 0 Ḣγp,q g + v 1 Ḣγp,q-σ g + F L a (R,L b ) .
This completes the proof of Proposition 4.0.8. In this chapter, we study the local well-posedness in Sobolev spaces for the power-type nonlinear Schrödinger-type equations, namely

Part II Nonlinear Schrödinger-type equations

i∂ t u(t, x) + |∇| σ u(t, x) = -µ(|u| ν-1 u)(t, x), (t, x) ∈ R × R d , u(0, x) = ψ(x), x ∈ R d , (NLST)
with σ ∈ (0, ∞), ν > 1 and µ ∈ {±1}. When σ = 1, we use the notation (NLHW) instead of (NLST). The operator |∇| = √ -∆ is the Fourier multiplier by |ξ| where ∆ = d j=1 ∂ 2 j is the free Laplace operator on R d . The number µ = 1 (resp. µ = -1) corresponds to the defocusing case (resp. focusing case).

Before stating the main results, we recall some useful facts about (NLST). By a standard approximation argument, the following quantities are conserved under the flow of (NLST):

M (u(t)) = |u(t, x)| 2 dx = M (ψ), E(u(t)) = 1 2 ||∇| σ/2 u(t, x)| 2 + µ ν + 1 |u(t, x)| ν+1 dx = E(ψ).
Moreover, if we set for λ > 0,

u λ (t, x) = λ -σ ν-1 u(λ -σ t, λ -1 x),
then (NLST) is invariant under this scaling, that is for T ∈ (0, +∞],

u solves (NLST) on (-T, T ) ⇐⇒ u λ solves (NLST) on (-λ σ T, λ σ T ).

We also have

u λ (0) Ḣγ = λ d 2 -σ ν-1 -γ ψ Ḣγ .
From this, we define the critical regularity exponent for (NLST) by

γ c = d 2 - σ ν -1 .
(5.0.1)

Local well-posednesss nonlinear Schrödinger-type equations

from (5.0.7), the Hölder inequality and the fact that d,ν,γ,r,p,q) > 0 such that for all u, v ∈ S ,

∇ γ u L r ∼ u L r + |∇| γ u L r , for 1 < r < ∞, γ > 0.
(z) = |z| ν-1 z with ν > 1, γ ≥ 0 and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1 r = 1 p + ν-1 q . i. If ν is an odd integer or γ ≤ ν otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0 such that for all u ∈ S , F (u) Ḣγ r ≤ C u ν-1 L q u Ḣγ p . A similar
F (u) -F (v) Ḣγ r ≤ C ( u ν-1 L q + v ν-1 L q ) u -v Ḣγ p + ( u ν-2 L q + v ν-2 L q )( u Ḣγ p + v Ḣγ p ) u -v L q .
A similar estimate holds with Ḣγ r , Ḣγ p -norms are replaced by H γ r , H γ p -norms respectively. Proof. Item 1 is an immediate consequence of Corollary 5.0.3 and Corollary 5.0.4. For Item 2, we firstly write 

F (u) -F (v) = 1 0 ∂ z F (v + θ(u -v))(u -v) + ∂ z F (v + θ(u -v))(u -v)dθ,

Local well-posedness for Schrödinger-type equations in

Sobolev spaces when σ ∈ (0, 2)\{1}

Local well-posedness in the subcritical case

Let us start with the following local well-posedness in the subcritical case. Theorem 5.1.1. Given σ ∈ (0, 2)\{1} and ν > 1. Let γ ≥ 0 be such that

γ > 1/2 -σ/ max(ν -1, 4) when d = 1, γ > d/2 -σ/ max(ν -1, 2) when d ≥ 2, (5.1.1)
and also, if ν is not an odd integer, (5.0.2). Let

p > max(ν -1, 4) when d = 1 p > max(ν -1, 2) when d ≥ 2 (5.1.2) be such that γ > d 2 -σ p .
Then for all ψ ∈ H γ , there exist T * ∈ (0, ∞] and a unique solution to

(NLST) satisfying u ∈ C([0, T * ), H γ ) ∩ L p loc ([0, T * ), L ∞ ).
Moreover, the following properties hold:

i. If T * < ∞, then u(t) H γ → ∞ as t → T * .
ii. u depends continuously on ψ in the following sense. There exists T ∈ (0, T * ) such that if ψ n → ψ in H γ and if u n denotes the solution of (NLST) with initial data ψ n , then 0 < T < T * (ψ n ) for all n sufficiently large and

u n is bounded in L a ([0, T ], H γ-γ a,b b ) for any Schrödinger admissible pair (a, b) with b < ∞. Moreover, u n → u in L a ([0, T ], H -γ a,b b ) as n → ∞. In particular, u n → u in C([0, T ], H γ-) for all 0 < < γ. iii. Let β > γ be such that if ν is not an odd integer, β ≤ ν. If ψ ∈ H β , then u ∈ C([0, T * ), H β ).
The local well-posedness in Sobolev spaces for the nonlinear Schrödinger-type equation in the case σ ∈ (0, 2)\{1} was first established by Hong-Sire in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF]. Theorem 5.1.1 improves the one in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] at the point that Hong-Sire only give the local well-posedness for ν ≥ 2 when d = 1 and ν ≥ 3 when d ≥ 2. This result also covers the one in [START_REF] Cho | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF] when d = 1 and in [START_REF] Guo | Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation[END_REF] when d ≥ 2, where the authors considered the cubic Schrödinger-type equation with σ ∈ (1, 2). Proof of Theorem 5.1.1. We follow the standard process (see e.g. [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Chapter 4] or [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]) by using the fixed point argument in a suitable Banach space. Let p be as in (5.1.2). We then

choose q ∈ [2, ∞) such that 2 p + d q ≤ d 2 .
Step 1. Existence. Let us consider

X := u ∈ L ∞ (I, H γ ) ∩ L p (I, H γ-γp,q q ) | u L ∞ (I,H γ ) + u L p (I,H γ-γp,q q ) ≤ M , equipped with the distance d(u, v) := u -v L ∞ (I,L 2 ) + u -v L p (I,H -γp,q q ) ,
where I = [0, T ] and M, T > 0 to be chosen later. 

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ψ H γ + F (u) L 1 (I,H γ ) , Φ(u) -Φ(v) L ∞ (I,L 2 ) + Φ(u) -Φ(v) L p (I,H -γp,q q ) F (u) -F (v) L 1 (I,L 2 ) ,
where F (u) = |u| ν-1 u. By our assumptions on ν, Corollary 5.0.5 gives

F (u) L 1 (I,H γ ) u ν-1 L ν-1 (I,L ∞ ) u L ∞ (I,H γ ) T 1-ν-1 p u ν-1 L p (I,L ∞ ) u L ∞ (I,H γ ) , (5.1.4) F (u) -F (v) L 1 (I,L 2 ) u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) u -v L ∞ (I,L 2 ) T 1-ν-1 p u ν-1 L p (I,L ∞ ) + v ν-1 L p (I,L ∞ ) u -v L ∞ (I,L 2 ) . (5.1.5)
Using that γ -γ p,q > d/q, the Sobolev embedding implies L p (I, H γ-γp,q q

) ⊂ L p (I, L ∞ ). Thus, we get

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ψ H γ + T 1-ν-1 p u ν-1 L p (I,H γ-γp,q q ) u L ∞ (I,H γ ) , and d(Φ(u), Φ(v)) T 1-ν-1 p u ν-1 L p (I,H γ-γp,q q ) + v ν-1 L p (I,H γ-γp,q q ) u -v L ∞ (I,L 2 ) .
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This shows that for all u, v ∈ X, there exists C > 0 independent of ψ ∈ H γ such that

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ≤ C ψ H γ + CT 1-ν-1 p M ν , d(Φ(u), Φ(v)) ≤ CT 1-ν-1 p M ν-1 d(u, v).
Therefore, if we set M = 2C ψ H γ and choose T > 0 small enough so that CT 1-ν-1 p M ν-1 ≤ 1 2 , then X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a unique u ∈ X so that Φ(u) = u.

Step 2. Uniqueness. Consider u, v ∈ C(I, H γ ) ∩ L p (I, L ∞ ) two solutions of (NLST). Since the uniqueness is a local property (see [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Chapter 4]), it suffices to show u = v for T small. We have from (5.1.5) that

d(u, v) ≤ CT 1-ν-1 p u ν-1 L p (I,L ∞ ) + v ν-1 L p (I,L ∞ ) d(u, v).
We see that if T > 0 is small enough, then

d(u, v) ≤ 1 2 d(u, v) or u = v.
Step ) ). We also have from (5.1.5) and the choice of T that

ψ H γ + T 1-ν-1 p u ν-1 L p (I,L ∞ ) u L ∞ (I,H γ ) ,
d(u n , u) ≤ C ψ n -ψ L 2 + 1 2 d(u n , u) or d(u n , u) ≤ 2C ψ n -ψ L 2 .
This yields that

u n → u in L ∞ (I, L 2 ) ∩ L p (I, H -γp,q q 
). Strichartz estimate (1.1.18) again implies that

u n → u in L a (I, H -γ a,b b
) for any Schrödinger admissible pair (a, b) with b < ∞. The convergence in C(I, H γ-) follows from the boundedness in L ∞ (I, H γ ), the convergence in L ∞ (I, L 2 ) and that u H γ-≤ u

1-γ H γ u γ L 2 . Step 5. Item iii. If ψ ∈ H β for some β > γ satisfying β ≤ ν if ν > 1 is not an odd integer, then
Step 1 shows the existence of H β solution defined on some maximal interval [0, T ). Since H β solution is also a H γ solution, thus T ≤ T * . Suppose that T < T * . Then the unitary property of e it|∇| σ and Corollary 5.0.5 imply that

u(t) H β ≤ ψ H β + C t 0 u(s) ν-1 L ∞ u(s) H β ds,
for all 0 ≤ t < T . The Gronwall's inequality then gives

u(t) H β ≤ ψ H β exp C t 0 u(s) ν-1 L ∞ ds ,
for all 0 ≤ t < T . Using the fact that u ∈ L ν-1 loc ([0, T * ), L ∞ ), we see that lim sup u(t) H β < ∞ as t → T which is a contradiction to the blowup alternative in H β . Remark 5.1.2. If we assume that ν > 1 is an odd integer or

γ ≤ ν -1 (5.1.6)
otherwise, then the continuous dependence holds in C([0, T ], H γ ). Indeed, if the above condition holds true, then the continuous dependence holds in C(I, H γ ). To see this, we consider X as above equipped with the following metric

d(u, v) := u -v L ∞ (I,H γ ) + u -v L p (I,H γ-γp,q q ) .
By Item ii of Corollary 5.0.5, we have

F (u) -F (v) L 1 (I,H γ ) ( u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) ) u -v L ∞ (I,H γ ) + ( u ν-2 L ν-1 (I,L ∞ ) + v ν-2 L ν-1 (I,L ∞ ) )( u L ∞ (I,H γ ) + v L ∞ (I,H γ ) ) u -v L ν-1 (I,L ∞ ) .
Using the Sobolev embedding, we see that for all u, v ∈ X,

d(Φ(u), Φ(v)) T 1-ν-1 p M ν-1 d(u, v).
Therefore, the continuity in C(I, H γ ) follows as in Step 4.

Proposition 5.1.3. Let    σ ∈ (2/3, 1) when d = 1, σ ∈ (1, 2) when d = 2, σ ∈ (3/2, 2) when d = 3.
(5.1.7) and ν > 1 be such that σ/2 > γ c , and also, if ν is not an odd integer, σ/2 ≤ ν. Then for any ψ ∈ H σ/2 , the solution to (NLST) given in Theorem 5.1.1 can be extended to the whole R if one of the following is satisfied:

i. µ = 1. ii. µ = -1, ν < 1 + 2σ/d. iii. µ = -1, ν = 1 + 2σ/d and ψ L 2 is small. iv. µ = -1 and ψ H σ/2 is small.
Proof. The assumption (5.1.7) allows us to apply Theorem 5.1.1 with γ = σ/2 and obtain the local well-posedness in H σ/2 . We now prove the global extension using the blowup alternative. Item i follows from the conservation of mass and energy. For Item ii and Item iii, we firstly use Gagliardo-Nirenberg's inequality (see e.g. [Tao06, Proposition A.3]) with the fact that

1 ν + 1 = 1 2 - θσ 2d or θ = d(ν -1) σ(ν + 1)
and the conservation of mass to get

u(t) ν+1 L ν+1 |∇| σ/2 u(t) d(ν-1) σ L 2 u(t) ν+1- d(ν-1) σ L 2 = u(t) d(ν-1) σ Ḣσ/2 ψ ν+1- d(ν-1) σ L 2 .
Note that here the assumption ν ≤ 1 + 2σ/d ensures that θ ∈ (0, 1). The conservation of mass then gives

1 2 u(t) 2 Ḣσ/2 = E(u(t)) + 1 ν + 1 u(t) ν+1 L ν+1 E(ψ) + 1 ν + 1 u(t) d(ν-1) σ Ḣσ/2 ψ ν+1- d(ν-1) σ L 2 . If ν ∈ (1, 1 + 2σ/d) or d(ν-1)
σ ∈ (0, 2), then u(t) Ḣσ/2 ≤ C. This together with the conservation of mass implies the boundedness of u(t) H σ/2 and Item ii follows. Item iii is treated similarly with ψ L 2 is small. It remains to show Item iv. By Sobolev embedding with 1 2

≤ 1 ν+1 + σ 2d , we have 1 2 u(t) 2 Ḣσ/2 = E(u(t)) + 1 ν + 1 u(t) ν+1 L ν+1 ≤ E(ψ) + C ν + 1 u(t) ν+1 H σ/2 , (5.1.8)
for all t ∈ [0, T ). Similarly, we use the Sobolev embedding to bound

E(ψ) ≤ 1 2 ψ 2 H σ/2 + C ν + 1 ψ ν+1 H σ/2 . Since ν + 1 > 2, it follows that E(ψ) ≤ ψ 2 H σ/2 provided ψ H σ/2 is small enough. Denote τ := sup {t ∈ [0, T ) : u(s) H σ/2 ≤ 2 u 0 H σ/2 , ∀s ≤ t} .
We want to show τ = T . Indeed, if τ < T , then by the continuity of t → u(t) H σ/2 , we have

u(τ ) H σ/2 = 2 u 0 H σ/2
. Inserting it into (5.1.8), we get

2 u 0 2 H σ/2 ≤ E(u 0 ) + C ν + 1 (2 u 0 H σ/2 ) ν+1 ≤ u 0 2 H σ/2 + C ν + 1 (2 u 0 H σ/2 ) ν+1 .
This inequality is not possible for u 0 H σ/2 is small enough. The proof is complete.

Local well-posedness in the critical case

We now turn to the local well-posedness and scattering with small data for (NLST) in the critical case. (5.1.9)

be such that γ c ≥ 0, and also, if ν is not an odd integer, (5.0.2). Then for all ψ ∈ H γc , there exist T * ∈ (0, ∞] and a unique solution to (NLST) satisfying

u ∈ C([0, T * ), H γc ) ∩ L p loc ([0, T * ), B γc-γp,q q ),
where p = 4, q = ∞ when d = 1; 2 < p < ν -1, q = p = 2p/(p -2) when d = 2 and p = 2, q = 2 = 2d/(d -2) when d ≥ 3. Moreover, if ψ Ḣγc < ε for some ε > 0 small enough, then T * = ∞ and the solution is scattering in H γc , i.e. there exists ψ + ∈ H γc such that

lim t→+∞ u(t) -e it|∇| σ ψ + H γc = 0.
This theorem is a modification of Theorem 1.2 and Theorem 1.3 in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] where the authors proved the global well-posedness and scattering for small inhomogeneous data. Note that for σ ∈ (0, 2), Strichartz estimates for the unitary group e it|∇| σ have a loss of derivatives. In the sub-critical case γ > γ c , the derivative loss is compensated for by using Sobolev embeddings. In the critical case γ = γ c , the Sobolev embedding does not help. To remove the derivative loss, we use Strichartz norms localized in dyadic pieces, and then sum up in a2 -fashion. It needs a delicate estimate on L ν-1 t L ∞

x (see [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF]Lemma 3.5]). The range ν ∈ (1, 5] when d = 1 and ν ∈ (1,3] still remains open, and it requires another technique rather than Strichartz estimate.

In order to prove Theorem 5.1.4, we need the following estimates which control the nonlinearity. Lemma 5.1.5 [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF]). Let σ ∈ (0, 2)\{1}, ν be as in (5.1.9), γ c as in (5.0.1). Then we have

u ν-1 L ν-1 (R,L ∞ )          u 4 L 4 (R, Ḃγc-γ 4,∞ ∞ ) u ν-5 L ∞ (R, Ḃγc 2 ) when d = 1, u p L p (R, Ḃγc-γ p,p p ) u ν-1-p L ∞ (R, Ḃγc 2 ) where ν -1 > p > 2 when d = 2, u 2 L 2 (R, Ḃγc-γ 2,2 2 ) u ν-3 L ∞ (R, Ḃγc
where p = 2p/(p -2) and 2 = 2d/(d -2). This result is a slight modification of [HS15, Lemma 3.5] which generalizes Lemma 3.1 in [START_REF] Colliander | Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R 3[END_REF]. The main difference is the exponent power in R 2 . For the reader's convenience, we recall some details. Proof of Lemma 5.1.5. The proof is essentially given in [HS15, Lemma 3.5] which uses a trick of [START_REF] Colliander | Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R 3[END_REF]. For the reader's convenience, we only give the details for d = 2. The case d = 1 and d ≥ 3 are treated similarly. We refer to [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] for the proof when d ≥ 3 (see also Lemma 5.2.3). By interpolation, we can assume that ν -1 = m/n > 2, m, n ∈ N with (ν -1 -p)n ≥ 1. We proceed as in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] and set

c N (t) = N γc-γ p,p P N u(t) L p (R 2 ) , c N (t) = N γc P N u(t) L 2 (R 2 ) .
Remark that in this case (p, p ) is a Schrödinger admissible pair, γ c = 1 -σn/m and γ p,p = 1 -2/p -σ/p. By Bernstein's inequality, we have

P N u(t) L ∞ (R 2 ) N σn m -σ p c N (t),
(5.1.10)

P N u(t) L ∞ (R 2 ) N σn m c N (t).
This implies that for θ ∈ (0, 1) which will be chosen later,

P N u(t) L ∞ (R 2 ) N σn m -σθ p (c N (t)) θ (c N (t)) 1-θ . (5.1.11)
We next use

A(t) := N ∈2 Z P N u(t) L ∞ (R 2 ) m N1≥•••≥Nm m j=1 P Nj u(t) L ∞ (R 2 ) .
Here the first equality follows from the Sobolev embedding with the fact that (γ c -γ p,p )p = 2 + (σ/p -σ/(ν -1))p > 2. Estimating the n highest frequencies by (5.1.10) and the rest by (5.1.11), we get

A(t) N1≥•••≥Nm n j=1 N σn m -σ p j c Nj (t) m j=n+1 N σn m -σθ p j (c Nj (t)) θ (c Nj (t)) 1-θ .
For an arbitrary δ > 0, we set

cN (t) = N ∈2 Z min(N/N , N /N ) δ c N (t), c N (t) = N ∈2 Z min(N/N , N /N ) δ c N (t).
Using the fact that c N (t) ≤ cN (t) and cNj (t) (N 1 /N j ) δ cN1 (t) for j = 2, ..., m and similarly for primes, we see that

A(t) N1≥•••≥Nm n j=1 N σn m -σ p j (N 1 /N j ) δ cN1 (t) m j=n+1 N σn m -σθ p j (N 1 /N j ) δ (c N1 (t)) θ (c N1 (t)) 1-θ .
We can rewrite the above quantity in the right hand side as

N1≥•••≥Nm m j=n+1 N σn m -σθ p -δ j n j=2 N σn m -σ p -δ j N σn m -σ p +(m-1)δ 1 (c N1 (t)) n+(m-n)θ (c N1 (t)) (m-n)(1-θ) .
Next, we choose θ = (p -1)/(ν -2) ∈ (0, 1) and δ > 0 such that

σn m - σθ p -δ > 0, σn m - σ p + (m -1)δ < 0 or δ < σ(m -np) pm(m -1) . 
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Here condition ν > 3 allows us to choose p > 2 such that m -np > 0. Summing in N m , then in N m-1 ,..., then in N 2 , we have

A(t) N1∈2 Z (c N1 (t)) pn (c N1 (t)) (ν-1-p)n .
The Hölder inequality with the fact that (ν -1 -p)n ≥ 1 implies

A(t) (c(t)) pn 2 (2 Z ) (c (t)) (ν-1-p)n 2 (2 Z ) = c(t) pn 2pn (2 Z ) c (t) (ν-1-p)n 2(ν-1-p)n (2 Z ) ≤ c(t) pn 2 (2 Z ) c (t) (ν-1-p)n 2 (2 Z )
,

where c(t) q (2 Z ) := N ∈2 Z |c N (t)| q 1/q
and similarly for prime. The Minkowski inequality then implies

A(t) c(t) pn 2 (2 Z ) c (t) (ν-1-p)n 2 (2 Z )
.

This implies that A(t) < ∞ for amost every where t, hence that

N P N u(t) L ∞ (R d ) < ∞. Therefore N P N u(t) converges in L ∞ (R d ).
Since it converges to u in the ditribution sense, so the limit is u(t). Thus

u ν-1 L ν-1 (R,L ∞ (R 2 )) = R u(t) m/n L ∞ (R 2 ) dt R c(t) p 2 (2 Z ) c (t) ν-1-p 2 (2 Z ) dt c p L p R 2 (2 Z ) c ν-1-p L ∞ R 2 (2 Z ) = u p L p (R, Ḃγc-γ p,p p (R 2 )) u ν-1-p L ∞ (R, Ḃγc 2 (R 2 )) .
The proof is complete.

Proof of Theorem 5.1.4. As in the proof of Theorem 5.1.1, we proceed in several steps.

Step 1. Existence. We only treat for d ≥ 3, the ones for d = 1, d = 2 are completely similar. Let us consider

X := u ∈ L ∞ (I, H γc ) ∩ L 2 (I, B γc-γ 2,2 2 
) | u L ∞ (I, Ḣγc ) ≤ M, u L 2 (I, Ḃγc-γ 2, 2 2 ) 
≤ N , equipped with the distance

d(u, v) := u -v L ∞ (I,L 2 ) + u -v L 2 (I, Ḃ-γ 2, 2 2 ) 
,

where I = [0, T ] and T, M, N > 0 will be chosen later. One can check (see again [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF] or [Caz03, Chapter 4]) that (X, d) is a complete metric space. Using the Duhamel formula

Φ(u)(t) = e it|∇| σ ψ + iµ t 0 e i(t-s)|∇| σ |u(s)| ν-1 u(s)ds =: u hom (t) + u inh (t), (5.1.12) 
the Strichartz estimate (1.1.4) yields

u hom L 2 (I, Ḃγc-γ 2,2 2 ) ψ Ḣγc .
A similar estimate holds for u hom L ∞ (I, Ḣγc ) . We see that u hom L 2 (I,

Ḃγc-γ 2, 2 2 ) 
≤ ε for some ε > 0 small enough which will be chosen later, provided that either ψ Ḣγc is small or it is satisfied for some T > 0 small enough. Therefore, we can take T = ∞ in the first case and T be this small time in the second. On the other hand, using again (1.1.4), we have

u inh L 2 (I, Ḃγc-γ 2,2 2 
) F (u) L 1 (I, Ḣγc ) .
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The same estimate holds for u inh L ∞ (I, Ḣγc ) . Corollary 5.0.5 and Lemma 5.1.5 give

F (u) L 1 (I, Ḣγc ) u ν-1 L ν-1 (I,L ∞ ) u L ∞ (I, Ḣγc ) u 2 L 2 (I, Ḃγc-γ 2,2 2 ) u ν-2 L ∞ (I, Ḣγc ) . (5.1.13)
Similarly, we have

F (u) -F (v) L 1 (I,L 2 ) u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) u -v L ∞ (I,L 2 ) (5.1.14) u 2 L 2 (I, Ḃγc-γ 2,2 2 ) u ν-3 L ∞ (I, Ḣγc ) + v 2 L 2 (I, Ḃγc-γ 2,2 2 ) v ν-3 L ∞ (I, Ḣγc ) u -v L ∞ (I,L 2 ) .
This implies for all u, v ∈ X, there exists C > 0 independent of ψ ∈ H γc such that Φ(u)

L 2 (I, Ḃγc-γ 2,2 2 ) ≤ ε + CN 2 M ν-2 , Φ(u) L ∞ (I, Ḣγc ) ≤ C ψ Ḣγc + CN 2 M ν-2 , d(Φ(u), Φ(v)) ≤ CN 2 M ν-3 d(u, v).
Now by setting N = 2ε and M = 2C ψ Ḣγc and choosing ε > 0 small enough such that CN 2 M ν-3 ≤ min{1/2, ε/M }, we see that X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a unique solution u ∈ X to (NLST). Note that when ψ Ḣγc is small enough, we can take T = ∞.

Step 2. Uniqueness. The uniqueness in

C ∞ (I, H γc ) ∩ L 2 (I, B γc-γ 2,2 2 
) follows as in Step 2 of the proof of Theorem 5.1.1 using (5.1.14). Here u

L 2 (I, Ḃγc-γ 2, 2 2 
) can be small as T is small.

Step 3. Scattering. The global existence when ψ Ḣγc is small is given in Step 1. It remains to show the scattering property. Thanks to (5.1.13), we see that

e -it2|∇| σ u(t 2 ) -e -it1|∇| σ u(t 1 ) Ḣγc = iµ t2 t1 e -is|∇| σ (|u| ν-1 u)(s)ds Ḣγc ≤ F (u) L 1 ([t1,t2], Ḣγc ) u 2 L 2 ([t1,t2], Ḃγc-γ 2,2 2 ) u ν-2 L ∞ ([t1,t2], Ḣγc ) → 0 (5.1.15)
as t 1 , t 2 → +∞. We have from (5.1.14) that

e -it2|∇| σ u(t 2 ) -e -it1|∇| σ u(t 1 ) L 2 u 2 L 2 ([t1,t2], Ḃγc-γ 2,2 2 ) u ν-3 L ∞ ([t1,t2], Ḣγc ) u L ∞ ([t1,t2],L 2 ) , (5.1.16) 
which also tends to zero as t 1 , t 2 → +∞. This implies that the limit

ψ + := lim t→+∞ e -it|∇| σ u(t)
exists in H γc . Moreover, we have

u(t) -e it|∇| σ ψ + = -iµ +∞ t e i(t-s)|∇| σ F (u(s))ds.
The unitary property of e it|∇| σ in L 2 , (5.1.15) and (5.1.16) imply that u(t) -e it|∇| σ ψ + H γc → 0 when t → +∞. This completes the proof of Theorem 5.1.4.

Local well-posedness for nonlinear half-wave equation in Sobolev spaces

Local well-posedness in the subcritical case

We have the following local well-posedness in the subcritical case.

Local well-posedness nonlinear half-wave equation

Theorem 5.2.1. Let γ ≥ 0 and ν > 1 be such that

γ > 1 -1/ max(ν -1, 4) when d = 2, γ > d/2 -1/ max(ν -1, 2) when d ≥ 3, (5.2.1) 
and also, if ν is not an odd integer, (5.0.2). Let

p > max(ν -1, 4) when d = 2 p > max(ν -1, 2) when d ≥ 3 (5.2.2) be such that γ > d 2 -1 p .
Then for all ψ ∈ H γ , there exist T * ∈ (0, ∞] and a unique solution to

(NLHW) satisfying u ∈ C([0, T * ), H γ ) ∩ L p loc ([0, T * ), L ∞ ).
Moreover, the following properties hold:

(i) If T * < ∞, then u(t) H γ → ∞ as t → T * .
(ii) u depends continuously on ψ in the following sense. There exists T ∈ (0, T * ) such that if ψ n → ψ in H γ and if u n denotes the solution of (NLHW) with initial data ψ n , then 0 < T < T * (ψ n ) for all n sufficiently large and

u n is bounded in L a ([0, T ], H γ-γ a,b b ) for any wave admissible pair (a, b) with b < ∞. Moreover, u n → u in L a ([0, T ], H -γ a,b b ) as n → ∞. In particular, u n → u in C([0, T ], H γ-) for all 0 < < γ. (iii) Let β > γ be such that if ν is not an odd integer, β ≤ ν. If ψ ∈ H β , then u ∈ C([0, T * ), H β ).
As in Remark 5.1.2, the continuous dependence can be improved to hold in C([0, T ], H γ ) if we assume that ν > 1 is an odd integer or γ ≤ ν -1 otherwise. Proof of Theorem 5.2.1. The proof is similar to the one for Theorem 5.1.4 by using Strichartz estimates for the linear half-wave equation. For the reader's convenience, we give a sketch of the proof for the local existence. Let p be as in (5.2.2) and then choose q ∈ [2, ∞) such that

2 p + d -1 q ≤ d -1 2 .
Let us consider

X := u ∈ L ∞ (I, H γ ) ∩ L p (I, H γ-γp,q q ) | u L ∞ (I,H γ ) + u L p (I,H γ-γp,q q ) ≤ M , equipped with the distance d(u, v) := u -v L ∞ (I,L 2 ) + u -v L p (I,H -γp,q q ) ,
where I = [0, T ] and M, T > 0 to be chosen later. By the Duhamel formula, it suffices to prove that the functional

Φ(u)(t) = e it|∇| ψ + iµ t 0 e i(t-s)|∇| |u(s)| ν-1 u(s)ds is a contraction on (X, d). The Strichartz estimate (1.2.10) yields Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ψ H γ + F (u) L 1 (I,H γ ) , Φ(u) -Φ(v) L ∞ (I,L 2 ) + Φ(u) -Φ(v) L p (I,H -γp,q q ) F (u) -F (v) L 1 (I,L 2 ) ,
where F (u) = |u| ν-1 u and similarly for F (v). By our assumptions on ν, Corollary 5.0.5 gives

F (u) L 1 (I,H γ ) u ν-1 L ν-1 (I,L ∞ ) u L ∞ (I,H γ ) T 1-ν-1 p u ν-1 L p (I,L ∞ ) u L ∞ (I,H γ ) , (5.2.3) F (u) -F (v) L 1 (I,L 2 ) u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) u -v L ∞ (I,L 2 ) T 1-ν-1 p u ν-1 L p (I,L ∞ ) + v ν-1 L p (I,L ∞ ) u -v L ∞ (I,L 2 ) . ( 5.2.4) 
The Sobolev embedding with the fact that γ -γ p,q > d/q implies L p (I, H γ-γp,q q

) ⊂ L p (I, L ∞ ). Thus, we get

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ψ H γ + T 1-ν-1 p u ν-1 L p (I,H γ-γp,q q ) u L ∞ (I,H γ ) ,
and

d(Φ(u), Φ(v)) T 1-ν-1 p u ν-1 L p (I,H γ-γp,q q ) + v ν-1 L p (I,H γ-γp,q q ) u -v L ∞ (I,L 2 ) .
This shows that for all u, v ∈ X, there exists C > 0 independent of ψ ∈ H γ and T such that

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ≤ C ψ H γ + CT 1-ν-1 p M ν , d(Φ(u), Φ(v)) ≤ CT 1-ν-1 p M ν-1 d(u, v).
Therefore, if we set M = 2C ψ H γ and choose T > 0 small enough so that CT 1-ν-1 p M ν-1 ≤ 1 2 , then X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a unique u ∈ X so that Φ(u) = u.

Local well-posedness in the critical case

We also have the following local well-posedness and scattering with small data for (NLHW) which is similar to (NLST) with σ ∈ (0, 2)\{1} in the critical case. and also, if ν is not an odd integer, (5.0.2). Then for all ψ ∈ H γc , there exist T * ∈ (0, ∞] and a unique solution to (NLHW) satisfying

u ∈ C([0, T * ), H γc ) ∩ L p loc ([0, T * ), B γc-γp,q q ), where p = 4, q = ∞ when d = 2; 2 < p < ν -1, q = p = 2p/(p -2) when d = 3; p = 2, q = 2 = 2(d -1)/(d -3) when d ≥ 4. Moreover, if ψ Ḣγc < ε for some ε > 0 small enough, then T * = ∞
and the solution is scattering in H γc , i.e. there exists ψ + ∈ H γc such that

lim t→+∞ u(t) -e it|∇| ψ + H γc = 0.
In order to prove Theorem 5.2.2, we need the following estimates which control the nonlinearity. Lemma 5.2.3. Let ν be as in Theorem 5.2.2 and γ c as in (5.0.1). Then

u ν-1 L ν-1 (R,L ∞ )          u 4 L 4 (R, Ḃγc-γ 4,∞ ∞ ) u ν-5 L ∞ (R, Ḃγc 2 ) when d = 2, u p L p (R, Ḃγc-γ p,p p ) u ν-1-p L ∞ (R, Ḃγc 2 ) where 2 < p < ν -1 when d = 3, u 2 L 2 (R, Ḃγc-γ 2,2 2 ) u ν-3 L ∞ (R, Ḃγc 2 ) when d ≥ 4,
where p = 2p/(p -2) and 2 = 2(d -1)/(d -3).

The above lemma follows the same spirit as [HS15, Lemma 3.5] using the argument of [CKSTT5, Lemma 3.1]. The proof is similar to Lemma 5.1.5, we thus omit the details.

Proof of Theorem 5.2.2. As before, we use the standard contraction mapping argument. The proof is done in several steps.

Step 1. Existence. We only treat for d ≥ 4, the ones for d = 2, d = 3 are completely similar. Let us consider

X := u ∈ L ∞ (I, H γc ) ∩ L 2 (I, B γc-γ 2,2 2 ) | u L ∞ (I, Ḣγc ) ≤ M, u L 2 (I, Ḃγc-γ 2, 2 2 ) 
≤ N , equipped with the distance

d(u, v) := u -v L ∞ (I,L 2 ) + u -v L 2 (I, Ḃ-γ 2,2 2 
)
,

where I = [0, T ] and T, M, N > 0 will be chosen later. One can check (see e.g. [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF] or [Caz03, Chapter 4]) that (X, d) is a complete metric space. We will show that the functional

Φ(u)(t) = e it|∇| ψ + iµ t 0 e i(t-s)|∇| |u(s)| ν-1 u(s)ds =: u hom (t) + u inh (t), is a contraction on (X, d). The Strichartz estimate (1.2.3) yields u hom L 2 (I, Ḃγc-γ 2, 2 2 ) ψ Ḣγc . (5.2.6) 
We see that

u hom L 2 (I, Ḃγc-γ 2, 2 2 ) 
≤ ε for some ε > 0 small enough which will be chosen later, provided that either ψ Ḣγc is small or it is satisfied for some T > 0 small enough by the dominated convergence theorem. Therefore, we can take T = ∞ in the first case and T be this small time in the second. A similar estimate to (5.2.6) holds for u hom L ∞ (I, Ḣγc ) . On the other hand, using again (1.2.3), we have

u inh L 2 (I, Ḃγc-γ 2,2 2 
)

F (u) L 1 (I, Ḣγc ) .
The same estimate holds for u inh L ∞ (I, Ḣγc ) . Corollary 5.0.5 and Lemma 5.2.3 give

F (u) L 1 (I, Ḣγc ) u ν-1 L ν-1 (I,L ∞ ) u L ∞ (I, Ḣγc ) u 2 L 2 (I, Ḃγc-γ 2,2 2 ) u ν-2 L ∞ (I, Ḣγc ) . ( 5.2.7) 
Similarly, we have

F (u) -F (v) L 1 (I,L 2 ) u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) u -v L ∞ (I,L 2 ) (5.2.8) u 2 L 2 (I, Ḃγc-γ 2,2 2 ) u ν-3 L ∞ (I, Ḣγc ) + v 2 L 2 (I, Ḃγc-γ 2,2 2 ) v ν-3 L ∞ (I, Ḣγc ) u -v L ∞ (I,L 2 ) .
This implies for all u, v ∈ X, there exists C > 0 independent of ψ ∈ H γc such that Φ(u)

L 2 (I, Ḃγc-γ 2,2 2 ) ≤ ε + CN 2 M ν-2 , Φ(u) L ∞ (I, Ḣγc ) ≤ C ψ Ḣγc + CN 2 M ν-2 , d(Φ(u), Φ(v)) ≤ CN 2 M ν-3 d(u, v).
Now by setting N = 2ε and M = 2C ψ Ḣγc and choosing ε > 0 small enough such that CN 2 M ν-3 ≤ min{1/2, ε/M }, we see that X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a unique solution u ∈ X to (NLHW). Note that when ψ Ḣγc is small enough, we can take T = ∞.

Step 2. Uniqueness. The uniqueness in

C ∞ (I, H γc ) ∩ L 2 (I, B γc-γ 2,2 2 
) follows as in Step 2 of the proof of Theorem 5.2.1 using (5.2.8). Here u

L 2 (I, Ḃγc-γ 2,2 2 
) can be small as T is small.

Step 3. Scattering. The global existence for ψ Ḣγc small is given in Step 1. It remains to show the scattering property. Thanks to (5.2.7), we see that

e -it2|∇| u(t 2 ) -e -it1|∇| u(t 1 ) Ḣγc = iµ t2 t1 e -is|∇| (|u| ν-1 u)(s)ds Ḣγc ≤ F (u) L 1 ([t1,t2], Ḣγc ) u 2 L 2 ([t1,t2], Ḃγc-γ 2,2 2 ) u ν-2 L ∞ ([t1,t2], Ḣγc ) → 0 (5.2.9)
as t 1 , t 2 → +∞. We have from (5.2.8) that

e -it2|∇| u(t 2 ) -e -it1|∇| u(t 1 ) L 2 u 2 L 2 ([t1,t2], Ḃγc-γ 2,2 2 ) u ν-3 L ∞ ([t1,t2], Ḣγc ) u L ∞ ([t1,t2],L 2 ) , (5.2.10) 
which also tends to zero as t 1 , t 2 → +∞. This implies that the limit

ψ + := lim t→+∞ e -it|∇| u(t)
exists in H γc . Moreover, we have

u(t) -e it|∇| ψ + = -iµ +∞ t e i(t-s)|∇| F (u(s))ds.
The unitary property of e it|∇| in L 2 , (5.2.9) and (5.2.10) imply that u(t) -e it|∇| ψ + H γc → 0 when t → +∞. This completes the proof of Theorem 5.2.2.

Local well-posedness for Schrödinger-type equations in

Sobolev spaces when σ ∈ [2, ∞)

In this case, due to better Strichartz estimates, we can obtain the local well-posedness for (NLST) in H γ with γ ≥ 0. Our first result concerns the local well-posedness of (NLST) in H γ with γ ∈ [0, d/2) in both subcritical and critical cases. Theorem 5.3.1. Given σ ∈ [2, ∞) and ν > 1. Let γ ∈ [0, d/2) be such that γ ≥ γ c , and also, if ν is not an odd integer, (5.0.2). Let

p = 2σ(ν + 1) (ν -1)(d -2γ) , q = d(ν + 1) d + (ν -1)γ . ( 5.3.1) 
Then for all ψ ∈ H γ , there exist T * ∈ (0, ∞] and a unique solution to (NLST) satisfying

u ∈ C([0, T * ), H γ ) ∩ L p loc ([0, T * ), H γ q ).
Moreover, the following properties hold:

i. u ∈ L a loc ([0, T * ), H γ b ) for any Schrödinger admissible pair (a, b) with b < ∞ and γ a,b = 0. ii. If γ > γ c and T * < ∞, then u(t) Ḣγ → ∞ as t → T * . iii. If γ = γ c and T * < ∞, then u L p ([0,T * ),H γc q ) = ∞.
iv. u depends continuously on ψ in the following sense. There exists T ∈ (0, T * ) such that if ψ n → ψ in H γ and if u n denotes the solution of (NLST) with initial data ψ n , then 0 < T < T * (ψ n ) for all n sufficiently large and

u n is bounded in L a ([0, T ], H γ b ) for any Schrödinger admissible pair (a, b) with γ a,b = 0 and b < ∞. Moreover, u n → u in L a ([0, T ], L b ) as n → ∞. In particular, u n → u in C([0, T ], H γ-) for all 0 < < γ. v. If γ = γ c
and ψ Ḣγc < ε for some ε > 0 small enough, then T * = ∞ and the solution is

Local well-posedness nonlinear Schrödinger-type equations

scattering in H γc , i.e. there exists ψ + ∈ H γc such that

lim t→+∞ u(t) -e it|∇| σ ψ + H γc = 0.
Proof. Let us firstly comment about the choice of (p, q) given in (5.3.1). It is easy to see that (p, q) is Schrödinger admissible and γ p,q = 0 = γ p ,q + 4. This allows us to use Strichartz estimate (1.1.17) for (p, q). Moreover, if we choose (m, n) so that

1 p = 1 m + ν -1 p , 1 q = 1 q + ν -1 n , ( 5.3.2) 
Thanks to this choice of n, we have the Sobolev embedding Ḣγ q → L n since q ≤ n = dq d -γq .

Step 1. Existence. Let us consider

X := u ∈ L p (I, H γ q ) | u L p (I, Ḣγ q ) ≤ M , equipped with the distance d(u, v) = u -v L p (I,L q ) ,
where I = [0, T ] and M, T > 0 to be chosen later. It is easy to verify (see e.g. [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF] or [Caz03, Chapter 4]) that (X, d) is a complete metric space. By the Duhamel formula, it suffices to prove that the functional (5.1.3) is a contraction on (X, d).

Let us firstly consider the case γ > γ c . In this case, we have 1 < m < p and

1 m - 1 p = 1 - (ν -1)(d -2γ) 2σ =: θ > 0. ( 5.3.3) 
Using Strichartz estimate (1.1.17), we obtain

Φ(u) L p (I, Ḣγ q ) ψ Ḣγ + F (u) L p (I, Ḣγ q ) , Φ(u) -Φ(v) L p (I,L q ) F (u) -F (v) L p (I,L q ) ,
where F (u) = |u| ν-1 u and similarly for F (v). It then follows from Corollary 5.0.3, (5.3.2), Sobolev embedding and (5.3.3) that

F (u) L p (I, Ḣγ q ) T θ u ν L p (I, Ḣγ q ) , (5.3.4) 
F (u) -F (v) L p (I,L q ) T θ u ν-1 L p (I, Ḣγ q ) + v ν-1 L p (I, Ḣγ q ) u -v L p (I,L q ) . ( 5.3.5) 
This shows that for all u, v ∈ X, there exists C > 0 independent of T and ψ ∈ H γ such that

Φ(u) L p (I, Ḣγ q ) ≤ C ψ Ḣγ + CT θ M ν , (5.3.6) d(Φ(u), Φ(v)) ≤ CT θ M ν-1 d(u, v).
If we set M = 2C ψ Ḣγ and choose T > 0 so that

CT θ M ν-1 ≤ 1 2 , then Φ is a strict contraction on (X, d). of T that d(u n , u) ≤ C ψ n -ψ L 2 + 1 2 d(u n , u) or d(u n , u) ≤ 2C ψ n -ψ L 2 .
This shows that u n → u in L p ([0, T ], L q ). Again (5.3.10) together with (5.3.5) and (5. The convergence in C(I, H γ-) follows from the boundedness in L ∞ (I, H γ ) and the convergence in L ∞ (I, L 2 ) and that u H γ-≤ u

1-γ H γ u γ L 2 .
Step 7. Item vi. As mentioned in Step 1, when ψ Ḣγc is small, we can take T * = ∞. It remains to prove the scattering property. To do so, we make use of the adjoint estimate to the homogeneous Strichartz estimate, namely

L 2 ψ → e it|∇| σ ψ ∈ L p (R, L q ) to obtain e -it2|∇| σ u(t 2 ) -e -it1|∇| σ u(t 1 ) Ḣγc = iµ t2 t1 e -is|∇| σ F (u)(s)ds Ḣγc = iµ t2 t1 |∇| γc e -is|∇| σ (1 [t1,t2] F (u))(s)ds L 2 F (u) L p ([t1,t2], Ḣγc q ) .
(

Similarly,

e -it2|∇| σ u(t 2 ) -e -it1|∇| σ u(t 1 ) L 2 F (u) L p ([t1,t2],L q ) .
(5.3.12)

Thanks to (5.3.7) and (5.3.8), we get

e -it2|∇| σ u(t 2 ) -e -it1|∇| σ u(t 1 ) H γc → 0,
as t 1 , t 2 → +∞. This implies that the limit

ψ + := lim t→+∞ e -it|∇| σ u(t)
exists in H γc . Moreover,

u(t) -e it|∇| σ ψ + = -iµ +∞ t e i(t-s)|∇| σ F (u(s))ds.
Using again (5.3.11) and (5.3.12) together with (5.3.7) and (5.3.8), we have

lim t→+∞ u(t) -e it|∇| σ ψ + H γc = 0.
This completes the proof of Theorem 5.3.1.

We also have the following local well-posedness in the critical Sobolev space H d/2 , where the embedding into L ∞ breaks down. Theorem 5.3.2. Given σ ∈ [2, ∞) and γ = d/2. Let ν > 1 be an odd integer or (5.0.2) otherwise. Let

p > max(ν -1, 4) when d = 1, p > max(ν -1, 2) when d ≥ 2.
(5.

3.13)

Then for all ψ ∈ H d/2 , there exists T * ∈ (0, ∞] and a unique solution to (NLST) satisfying

u ∈ C([0, T * ), H d/2 ) ∩ L p loc ([0, T * ), L ∞ ),
for some p > max(ν -1, 4) when d = 1 and some p > max(ν -1, 2) when d ≥ 2. Moreover, the following properties hold:

i. u ∈ L a loc ([0, T * ), H d/2 b ) for any Schrödinger admissible pair (a, b) with b < ∞ and γ a,b = 0. ii. If T * < ∞, then u(t) H d/2 → ∞ as t → T * .
iii. u depends continuously on ψ in the sense of Theorem 5.3.1

The continuous dependence can be improved (see Remark 5.3.3) if we assume that ν > 1 is an odd integer or d/2 ≤ ν -1. Concerning the well-posedness of the nonlinear Schrödinger equation in this critical space, we refer to [START_REF] Kato | On nonlinear Schrödinger equations. II. H s -solutions and unconditional wellposedness[END_REF] and [START_REF] Nakamitsu | Nonlinear Schrödinger equation in the Sobolev space of critical order[END_REF]. Note that in [START_REF] Nakamitsu | Nonlinear Schrödinger equation in the Sobolev space of critical order[END_REF], the global well-posedness with small data is proved with exponential-type nonlinearity but not the local wellposedness without size restriction on the initial data. Proof of Theorem 5.3.2. Let p be as in (5.3.13) and then choose q ∈ [2, ∞) such that

2 p + d q ≤ d 2 .
Step 1. Existence. We will show that Φ defined in (5.1.12) is a contraction on

X := u ∈ L ∞ (I, H d/2 ) ∩ L p (I, H d/2-γp,q q ) | u L ∞ (I,H d/2 ) + u L p (I,H d/2-γp,q q ) ≤ M ,
equipped with the distance

d(u, v) := u -v L ∞ (I,L 2 ) + u -v L p (I,H -γp,q ) ,
where I = [0, T ] and M, T > 0 to be determined. The local Strichartz estimate (1.1.16) gives

Φ(u) L ∞ (I,H d/2 ) + Φ(u) L p (I,H d/2-γp,q q ) ψ H d/2 + F (u) L 1 (I,H d/2 ) , Φ(u) -Φ(v) L ∞ (I,L 2 ) + Φ(u) -Φ(v) L p (I,H -γp,q q ) F (u) -F (v) L 1 (I,L 2 ) .
Thanks to the assumptions on ν, Corollary 5.0.3 implies

F (u) L 1 (I,H d/2 ) u ν-1 L ν-1 (I,L ∞ ) u L ∞ (I,H d/2 ) T θ u ν-1 L p (I,L ∞ ) u L ∞ (I,H d/2
) , (5.3.14)

F (u) -F (v) L 1 (I,L 2 ) u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) u -v L ∞ (I,L 2 ) T θ u ν-1 L p (I,L ∞ ) + v ν-1 L p (I,L ∞ ) u -v L ∞ (I,L 2 ) , (5.3.15) 
where θ = 1 -ν-1 p > 0. Using the fact that d/2 -γ p,q > d/q, the Sobolev embedding implies

H d/2-γp,q q → L ∞ . Thus, Φ(u) L ∞ (I,H d/2 ) + Φ(v) L p (I,H d/2-γp,q q ) ψ H d/2 + T θ u ν-1 L p (I,H d/2-γp,q q ) u L ∞ (I,H d/2 ) , d(Φ(u), Φ(v)) T θ u ν-1 L p (I,H d/2-γp,q q ) + v ν-1 L p (I,H d/2-γp,q q ) d(u, v).
Thus for all u, v ∈ X, there exists

C > 0 independent of ψ ∈ H d/2 such that Φ(u) L ∞ (I,H d/2 ) + Φ(v) L p (I,H d/2-γp,q q ) ≤ C ψ H d/2 + CT θ M ν , d(Φ(u), Φ(v)) ≤ CT θ M ν-1 d(u, v).
If we set M = 2C ψ H d/2 and choose T > 0 small enough so that CT θ M ν-1 ≤ 1 2 , then Φ is a contraction on X.

Step 2. Uniqueness. It is easy using (5.3.15) since u L p (I,L ∞ ) is small if T is small. 

u L a (I,H d/2 b ) ψ H d/2 + F (u) L 1 (I,H d/2 ) .
when d = 1 and p > max(ν -1, 2) when d ≥ 2. This implies in particular that

u ∈ L ν-1 loc ([0, T * ), L ∞ ).
(5.3.17)

Now let β > γ. If ψ ∈ H β , then we know that u is an H β solution defined on some maximal interval [0, T ) with T ≤ T * . Suppose that T < T * . Then the unitary property of e it|∇| σ and Corollary 5.0.3 imply that

u(t) H β ≤ ψ H β + t 0 F (u)(s) H β ds ≤ ψ H β + C t 0 u(s) ν-1 L ∞ u(s) H β ds,
for all 0 ≤ t < T . The Gronwall's inequality then yields

u(t) H β ≤ ψ H β exp C t 0 u(s) ν-1 L ∞ ds
for all 0 ≤ t < T . Using (5.3.17), we see that lim sup u(t) H β < ∞ as t → T . This is a contradiction with the blowup alternative in H β .

The case γ > d/2. Let β > γ. If ψ ∈ H β , then Theorem 5.3.4 shows that there is a unique maximal solution u ∈ C([0, T ), H β ) to (NLST). By the uniqueness, we have T ≤ T * . Suppose T < T * . Then sup

0≤t≤T u(t) H β < ∞,
and hence sup

0≤t≤T u(t) L ∞ < ∞.
This is a contradiction with the fact that lim sup u(t) L ∞ = ∞ as t → T . The proof of Theorem 5.3.7 is now complete. We end this section with the following remark. In [START_REF] Pausader | The mass-critical fourth-order Schrödinger equation in higher dimensions[END_REF], the authors proved the global existence for the L 2 -critical nonlinear fourth-order Schrödinger equation (NL4S), i.e. σ = 4 and ν -1 = 8/d, in higher dimensions d ≥ 5. More precisely, they proved that the equation is globally well-posed in L 2

• for any initial data in L 2 in the defocusing case;

• for initial data in L 2 satisfying ψ L 2 < Q L 2 in the focusing case, where Q is the solution to the elliptic equation

∆ 2 Q + Q = |Q| 8 d Q. (5.3.18)
Moreover, in both cases, the following uniform bound holds true

u L 2+ 8 d (R,L 2+ 8 d ) ≤ C( ψ L 2 ).
With this uniform bound, we have the following global existence for the L 2 -critical (NL4S) in dimensions d ≥ 5. Proposition 5.3.9.

Let d ≥ 5, ν = 1+8/d and β > 0 be such that if d = 1, 2, 4, then β ≤ 1+8/d. Let ψ ∈ H β be such that if µ = -1, ψ L 2 < Q L 2 , where Q is the solution to (5.3.18). Then the L 2 -critical (NL4S) is globally well-posed in H β . Proof. Let β > 0 and ψ ∈ H β be such that if µ = -1, ψ L 2 < Q L 2 ,
where Q is the solution to (5.3.18). We learn from the result of Pausader-Shao [PS10] that the L 2 -critical (NL4S) is globally well-posed in L 2 . Moreover, the solutions enjoy the uniform bound

u L 2+ 8 d (R,L 2+ 8 d ) ≤ C( ψ L 2 ).
Since ψ ∈ H β , we have from Theorem 5.3.1, Theorem 5.3.2 and Theorem 5.3.4 that there exists a maximal solution to the

L 2 -critical (NL4S) satisfying C([0, T ), H β ) ∩ L a loc ([0, T ), H β b )
for any Schrödinger admissible pair (a, b) with b < ∞ and γ a,b = 0. By the blowup alternative, it suffices to show that u L ∞ ((0,T ),H β ) < ∞. Let p = 2 + 8/d. It is easy to see that (p, p) is a Schrödinger admissible pair with γ p,p = 0. Since u L p ((0,T ),L p ) < ∞, we decompose (0, T ) into a finite number of subintervals I k so that u L p (I k ,L p ) < for some > 0 to be chosen later. By Strichartz estimates,

u L ∞ (I k ,H β ) + u L p (I k ,H β p ) ψ H β + F (u) L p (I k ,H β p ) ψ H β + u 8 d L p (I k ,L p ) u L p (I k ,H β p ) ψ H β + 8 d u L p (I k ,H β p ) .
By choosing > 0 small enough, we get

u L ∞ (I k ,H β ) ≤ C for some constant C independent of I k .
By summing over all subintervals I k , we obtain u L ∞ ((0,T ),H β ) < ∞. The proof is complete.

Chapter 6

Global well-posedness for the defocusing mass-critical nonlinear fourth-order Schrödinger equation below the energy space In this chapter, we consider the defocusing mass-critical nonlinear fourth-order Schrödinger equation, namely

i∂ t u(t, x) + ∆ 2 u(t, x) = -(|u| 8 d u)(t, x), t ≥ 0, x ∈ R d , u(0, x) = ψ(x) ∈ H γ (R d ), (dNL4S) 
where u(t, x) is a complex valued function in R + × R d . The fourth-order Schrödinger equation was introduced by Karpman [Kar96] and Karpman-Shagalov [START_REF] Karpman | Stability of soliton described by nonlinear Schrödingertype equations with higher-order dispersion[END_REF] to take into account the role of small fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. The study of nonlinear fourth-order Schrödinger equation has attracted a lot of interest in the past several years (see [START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF], [Pau2]

, [HHW06], [HHW07], [HJ05], [MXZ09], [MXZ11], [MWZ15] and references therein).

As in the previous chapter, we see that the (dNL4S) is locally well-posed in H γ (R d ) for γ > 0 satisfying, in the case d = 1, 2, 4,

γ ≤ 1 + 8 d . (6.0.1)
Here γ is the smallest integer greater than or equal to γ. This condition ensures the nonlinearity to have enough regularity. The time of existence depends only on the H γ -norm of initial data. Moreover, the local solution enjoys mass conservation, i.e.

M (u(t)) := u(t) 2 L 2 (R d ) = ψ 2 L 2 (R d ) ,
and H 2 -solution has conserved energy, i.e.

E(u(t))

:= R d 1 2 |∆u(t, x)| 2 + d 2d + 8 |u(t, x)| 2d+8 d dx = E(ψ).
The conservations of mass and energy together with the persistence of regularity (see Theorem 5.3.7) yield the global well-posedness for the (dNL4S) in H γ (R d ) with γ ≥ 2 satisfying for d = 1, 2, 4, (6.0.1). We also have the local well-posedness for the (dNL4S) with initial data ψ ∈ L 2 (R d ) but the time of existence depends on the profile of ψ instead of its L 2 -norm. The global existence holds for small L 2 -norm initial data. For large L 2 -norm initial data, the conservation of mass does not immediately give the global well-posedness in L 2 (R d ). For the global well-posedness with large L 2 -norm initial data, we refer the reader to [START_REF] Pausader | The mass-critical fourth-order Schrödinger equation in higher dimensions[END_REF] where the authors established the global well-posedness and scattering for the (dNL4S

) in L 2 (R d ), d ≥ 5.
The main goal of this chapter is to prove the global well-posedness for the (dNL4S) in low regularity spaces H γ (R d ), d ≥ 4 with 0 < γ < 2. Since we are working with low regularity data, the conservation of energy does not hold. In order to overcome this problem, we make use of the I-method introduced by [CKSTT1] and the interaction Morawetz inequality (which is available for d ≥ 5). We thus consider separately two cases d = 4 and d ≥ 5. In the case d = 4, we use I-method in Bourgain space, which is an adaptation of the one given in [START_REF] Colliander | Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation[END_REF] for proving the low regularity global well-posedness of the defocusing cubic nonlinear Schrödinger equation on R 2 . In this consideration the nonlinearity is algebraic. It allows to write explicitly the commutator between the I-operator and the nonlinearity by means of the Fourier transform, and then control it by multi-linear analysis. In the case d ≥ 5, the nonlinearity is no longer algebraic, so the above method does not work. We thus rely purely on Strichartz and interaction Morawetz inequalities.

After submitting a paper concerning the global well-posedness for the (dNL4S) below the energy space in dimensions 5 ≤ d ≤ 7, the author was informed that a better result (see Proposition 5.3.9) follows from the work of Pausader-Shao [START_REF] Pausader | The mass-critical fourth-order Schrödinger equation in higher dimensions[END_REF]. Indeed, in [START_REF] Pausader | The mass-critical fourth-order Schrödinger equation in higher dimensions[END_REF], the authors showed that the (dNL4S) is globally well-posed in L 2 . Moreover the global solution scatters in L 2 and satisfies the uniform bound u

L 2(d+4) d (R×R d ) < ∞.
It follows from the regularity given in Theorem 5.3.7 that the (dNL4S) is globally well-posed in H γ for any 0 < γ < 2. However, we decide to keep our proof in the case 5 ≤ d ≤ 7 because it will be used in the next chapter to study dynamics of blowup solutions for the focusing mass-critical NL4S.

We end this introduction by recalling some known results about the global existence below the energy space for the nonlinear fourth-order Schrödinger equation. To our knowledge, the first result to address this problem belongs to Guo in [START_REF] Guo | Global existence of solutions for a fourth-order nonlinear Schrödinger equation in n + 1 dimensions[END_REF], where the author considered a more general fourth-order Schrödinger equation, namely

i∂ t u + λ∆u + µ∆ 2 u + ν|u| 2m u = 0, and established the global existence in H γ (R d ) for 1 + md-9+ √ (4m-md+7) 2 +16 4m
< γ < 2 where m is an integer satisfying 4 < md < 4m + 2. The proof is based on the I-method which is a modification of the one invented by I-Team [START_REF] Colliander | Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation[END_REF] 

Global well-posedness for the 4D defocusing mass-critical NL4S below the energy space

Our main result in this section is the following global existence for the (dNL4S) in the fourth dimensional spatial space. The proof of this theorem is based on the I-method, which is similar to [START_REF] Colliander | Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation[END_REF] (see also [START_REF] Guo | Global existence of solutions for a fourth-order nonlinear Schrödinger equation in n + 1 dimensions[END_REF]). It is thus convenient to recall techniques and known results about the low regularity defocusing cubic Schrödinger equation on R 2 . The first attempt to solve this problem is due to Bourgain in [START_REF] Bourgain | Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity[END_REF] where he used a "Fourier truncation" approach to prove the global existence for γ > 3/5. It was then improved for γ > 4/7 by I-Team in [START_REF] Colliander | Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation[END_REF]. The proof is based on the almost conservation of a modified energy functional. The idea is to replace the conserved energy E(u), which is not available when γ < 1, by an "almost conserved" quantity E(I N u) with N 1 where I N is a smoothing operator which behaves like the identity for low frequencies |ξ| ≤ N and like a fractional integral operator of order 1 -γ for high frequencies |ξ| ≥ 2N . Since I N u is not a solution to the equation, we may expect an energy increment. The key idea is to show that on the time interval of local existence, the increment of the modified energy E(I N u) decays with respect to a large parameter N . This allows to control E(I N u) on time interval where the local solution exists, and we can iterate this estimate to obtain a global in time control of the solution by means of the bootstrap argument. Fang-Grillakis then upgraded this result to γ ≥ 1/2 in [START_REF] Fang | On the global existence of rough solutions of the cubic defocusing Schrödinger equation in R 2+1[END_REF]. Later, Colliander-Grillakis-Tzirakis improved for γ > 2/5 in [CGT07] using an almost interaction Morawetz inequality. Subsequent paper [START_REF] Colliander | Bootstrapped Morawetz estimates and resonant decomposition for low regularity global solutions of cubic NLS in R 2[END_REF] has decreased the necessary regularity to γ > 1/3. Afterwards, Dodson established in [START_REF] Dodson | Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation[END_REF] the global existence for the equation when γ > 1/4. The proof combines the almost conservation law and an improved interaction Morawetz estimate. Recently, Dodson in [START_REF] Dodson | Global well-posedness and scattering for the defocusing, L 2 -critical, nonlinear Schrödinger equation when d = 2[END_REF] proved the global well-posedness and scattering for the equation with initial data ψ ∈ L 2 (R 2 ) using the bilinear estimate and a frequency localized interaction Morawetz estimate. To prove Theorem 6.1.1, we shall consider a modified I-operator and show a suitable "almost conservation law" for the fourth-order Schrödinger equation.

Preliminaries

Littlewood-Paley decomposition. Let ϕ be a smooth, real-valued, radial function in R d such that ϕ(ξ) = 1 for |ξ| ≤ 1 and ϕ(ξ) = 0 for |ξ| ≥ 2. Let M = 2 k , k ∈ Z. We denote the Littlewood-Paley operators by

P ≤M f (ξ) := ϕ(M -1 ξ) f (ξ), P >M f (ξ) := (1 -ϕ(M -1 ξ)) f (ξ), P M f (ξ) := (ϕ(M -1 ξ) -ϕ(2M -1 ξ)) f (ξ),
where • is the spatial Fourier transform. We similarly define P <M := P ≤M -P M , P ≥M := P >M + P M , and for

M 1 ≤ M 2 , P M1<•≤M2 := P ≤M2 -P ≤M1 = M1<M ≤M2 P M .
We have the following so called Bernstein's inequalities (see e.g. [BCD11, Chapter 2] or [START_REF] Tao | Nonlinear dispersive equations: local and global analysis[END_REF]Appendix]).

theorem and (6.1.8) imply

∇ σ f L q ∆ If L q + ∆If L q .
This proves (6.1.9). Finally, by the definition of the I-operator and (6.1.8), we have

f H γ P ≤N f H γ + P >N f L 2 + |∇| γ P >N f L 2 P ≤N If H γ + N -2 ∆If L 2 + N γ-2 ∆If L 2 If H 2 .
This shows the first inequality in (6.1.10). For the second inequality in (6.1.10), we estimate

If H 2 P ≤N ∇ 2 If L 2 + P >N ∇ 2 If L 2 N 2-γ f H γ .
Here we use the definition of I-operator to get

P ≤N I ∇ 2-γ L 2 →L 2 , P >N I ∇ 2-γ L 2 →L 2 N 2-γ .
The estimate (6.1.11) is proved as for the second estimate in (6.1.10). The proof is complete.

Almost conservation law

As mentioned in the introduction, the equation ( dNL4S) is locally well-posed in H γ for any γ > 0. Moreover, the time of existence depends only on the H γ -norm of the initial data. Thus, the global well-posedness will follow from a global L ∞ (R, H γ ) bound of the solution by the usual iterative argument. For H γ solution with γ ≥ 2, one can obtain easily the L ∞ (R, H γ ) bound of solution using the persistence of regularity and the conserved quantities of mass and energy. But it is not the case for H γ solution with γ < 2 since the energy is no longer conserved. However, it follows from (6.1.10) that the H γ -norm of the solution u can be controlled by the H 2 Since Iu is not a solution to (dNL4S), we can expect an energy increment. We have the following "almost conservation law". Proposition 6.1.9. Let 2 > γ > γ := 60 53 and N 1.

If the initial data ψ ∈ C ∞ (R 4 ) satisfies E(Iψ) ≤ 1, then there exists δ = δ( ψ L 2 ) > 0 so that the solution u ∈ C([0, δ], H γ (R 4 )) of (dNL4S) satisfies E(Iu(t)) = E(Iψ) + O(N -γ0+
), (6.1.13) where γ 0 := 46 15 for all t ∈ [0, δ]. Remark 6.1.10. This proposition tells us that the modified energy E(Iu(t)) decays with respect to the parameter N . We will see in Section 6.1.3 that if we can replace the increment N -γ0+ in the right hand side of (6.1.13) with N -γ1+ for some γ 1 > γ 0 , then the global existence can be improved for all γ > 8 4+γ1 . In particular, if γ 1 = ∞, then E(Iu(t)) is conserved, and the global well-posedness holds for all γ > 0.

In order to prove Proposition 6.1.9, we recall the following interpolation result (see [START_REF] Colliander | Multi-linear for periodic KdV equations and applications[END_REF]Lemma 12.1]). Let η be a smooth, radial, decreasing function which equals 1 for |ξ| ≤ 1 and equals |ξ| -1 for |ξ| ≥ 2. For N ≥ 1 and α ∈ R, we define the spatial Fourier multiplier J α N by

J α N f (ξ) := (η(N -1 ξ)) α f (ξ). (6.1.14)
The operator J α N is a smoothing operator of order α, and it is the identity on the low frequencies |ξ| ≤ N . Lemma 6.1.11 (Interpolation [START_REF] Colliander | Multi-linear for periodic KdV equations and applications[END_REF]). Let α 0 > 0 and n ≥ 1. Suppose that Z, X 1 , ..., X n are
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translation invariant Banach spaces 1 and T is a translation invariant n-linear operator such that

J α 1 T (u 1 , ..., u n ) Z n i=1 J α 1 u i Xi ,
for all u 1 , ..., u n and all 0 ≤ α ≤ α 0 . Then one has

J α N T (u 1 , ..., u n ) Z n i=1 J α N u i Xi ,
for all u 1 , ..., u n , all 0 ≤ α ≤ α 0 , and N ≥ 1, with the implicit constant independent of N .

Using this interpolation lemma, we are able to prove the following modified version of the usual local well-posedness result. Proposition 6.1.12. Let γ ∈ (2/3, 2) and ψ ∈ H γ (R 4 ) be such that E(Iψ) ≤ 1. Then there is a constant δ = δ( ψ L 2 ) so that the solution u to (dNL4S) satisfies Proof. We recall the following estimates involving the X γ,b spaces which are proved in the Appendix

Iu X 2,1/2+ δ 1. ( 6 
A.2. Let γ ∈ R and ψ ∈ C ∞ 0 (R) be such that ψ(t) = 1 for t ∈ [-1, 1]. One has ψ(t)e it∆ 2 ψ X γ,b ψ H γ , ( 6.1 
.17) Note that the implicit constants are independent of δ. This implies for 0 < δ ≤ 1 and b, b as in (6.1.19) that

ψ δ (t) t 0 e i(t-s)∆ 2 F (s)ds X γ,b δ 1-b-b F X γ,-b , ( 6 
e it∆ 2 ψ X γ,b δ ψ H γ , (6.1.20) t 0 e i(t-s)∆ 2 F (s)ds X γ,b δ δ 1-b-b F X γ,-b δ . (6.1.21)
By the Duhamel principle, we have

Iu X 2,b δ = e it∆ 2 Iψ + t 0 e i(t-s)∆ 2 I(|u| 2 u)(s)ds X 2,b δ Iψ H 2 + δ 1-b-b I(|u| 2 u) X 2,-b δ .
By the definition of restriction norm (6.1.16),

Iu X 2,b δ Iψ H 2 + δ 1-b-b I(|w| 2 w) X 2,-b ,
where w agrees with u on [0, δ] × R 4 and

Iu X 2,b δ ∼ Iw X 2,b .
Let us assume for the moment that This proves (6.1.15). It remains to show (6.1.22). We will take the advantage of interpolation Lemma 6.1.11. Note that the I-operator defined in (6.1.5) is equal to J α N defined in (6.1.14) with α = 2 -γ. Thus, by Lemma 6.1.11, (6.1.22) is proved once there is α 0 > 0 so that

I(|w| 2 w) X 2,-b Iw 3 X 2,b . (6.1.22) This implies that Iu X 2,b δ Iψ H 2 + δ 1-b-b Iu 3 X 2,b δ .

Note that

Iψ H 2 ∼ Iψ Ḣ2 + Iψ L 2 ≤ 1 + ψ L 2 . ( 6 
J α 1 (|w| 2 w) X 2,-b J α 1 w 3 X 2,b ,
for all 0 ≤ α ≤ α 0 . Splitting w to low and high frequency parts |ξ| 1 and |ξ| 1 respectively and using definition of J α 1 , it suffices to show but it does not affect our estimate.

|w| 2 w X γ,-b w 3 X γ,b , (6.1 
Using Hölder's inequality, we can bound the left hand side of (6.1.25) as

LHS(6.1.25) ≤ ∇ γ w 1 L 4 (R,L 4 ) w 2 L 4 (R,L 4 ) w 3 L 6 (R,L 6 ) w 4 L 3 (R,L 3 ) .
Since (4,4) is an admissible pair, Corollary 6.1.5 gives

∇ γ w 1 L 4 (R,L 4 ) w 1 X γ,b , w 2 L 4 (R,L 4 ) w 2 X 0,b ≤ w 2 X γ,b .
Similarly, Sobolev embedding and Corollary 6.1.5 yield

w 3 L 6 (R,L 6 ) ∇ 2/3 w 3 L 6 (R,L 3 ) w 3 X 2/3,b ≤ w 3 X γ,b .
The last estimate comes from the fact that γ > 2/3. Finally, we interpolate between w 4 L 2 (R,L 2 ) = w 4 X 0,0 and w 4 L 4 (R,L 4 ) w 4 X 0,1/2+ to get

w 4 L 3 (R,L 3 ) w 4 X 0,b .
Combing these estimates, we have (6.1.25). The proof of Proposition 6.1.12 is now complete.

We are now able to prove the almost conservation law.

Proof of Proposition 6.1.9. By the assumption E(Iψ) ≤ 1, Proposition 6.1.12 shows that there exists δ = δ( ψ L 2 ) such that the solution u to (dNL4S) satisfies (6.1.15). We firstly note that the usual energy satisfies Here the second line follows by applying I to both sides of (dNL4S). Integrating in time and applying the Parseval formula, we obtain

d dt E(u(t)) = Re R 4 ∂ t u(t,
E(Iu(δ)) -E(Iψ) = Re δ 0 4 j=1 ξj =0 1 - m(ξ 2 + ξ 3 + ξ 4 ) m(ξ 2 )m(ξ 3 )m(ξ 4 ) I∂ t u(ξ 1 ) Iu(ξ 2 ) Iu(ξ 3 ) Iu(ξ 4 )dt.
Here Our purpose is to prove

Term 1 + Term 2 N -γ0+ .
Let us consider the first term (Term 1 ). To do so, we decompose u = M ≥1 P M u =: M ≥1 u M with the convention P 1 u := P ≤1 u and write Term 1 as a sum over all dyadic pieces. By the symmetry of µ in ξ 2 , ξ 3 , ξ 4 and the fact that the bilinear estimate (6.1.4) allows complex conjugations on either factors, we may assume that M 2 ≥ M 3 ≥ M 4 . Thus,

Term 1 M 1 ,M 2 ,M 3 ,M 4 ≥1 M 2 ≥M 3 ≥M 4 A(M 1 , M 2 , M 3 , M 4 ),
where

A(M 1 , M 2 , M 3 , M 4 ) := δ 0 4 j=1 ξj =0 µ(ξ 2 , ξ 3 , ξ 4 ) ∆ 2 Iu M1 (ξ 1 ) Iu M2 (ξ 2 ) Iu M3 (ξ 3 ) Iu M4 (ξ 4 )dt .
To simplify the notation, we will drop the dependence of M 1 , M 2 , M 3 , M 4 and write A instead of A(M 1 , M 2 , M 3 , M 4 ). In order to have Term 1 N -γ0+ , it suffices to prove

A N -γ0+ M 0- 2 . (6.1.26)
To show (6.1.26), we will break the frequency interactions into three cases due to the comparison of N with M j . It is worth to notice that M 1 M 2 due to the fact that j=1 ξ j = 0, we get M 1 ∼ M 2 . We also have from the mean value theorem that

|µ(ξ 2 , ξ 3 , ξ 4 )| = 1 - m(ξ 2 + ξ 3 + ξ 4 ) m(ξ 2 ) |∇m(ξ 2 ) • (ξ 3 + ξ 4 )| m(ξ 2 ) M 3 M 2 .
The pointwise bound, Hölder's inequality, Plancherel theorem and bilinear estimate (6.1.4) yield

A M 3 M 2 ∆ 2 Iu M1 Iu M3 L 2 (R,L 2 ) Iu M2 Iu M4 L 2 (R,L 2 ) M 3 M 2 M 3 M 1 3/2 M 4 M 2 3/2 M 4 1 4 j=1 Iu Mj X 0,1/2+ M 3 M 2 M 3 M 1 3/2 M 4 M 2 3/2 M 2 1 M 2 2 M 3 2 M 4 2 4 j=1 Iu Mj X 2,1/2+ = M 3 N 1/2 M 1 M 2 1/2 N M 2 4- N -7/2+ M 0- 2 4 j=1 Iu Mj X 2,1/2+ N -7/2+ M 0- 2 4 j=1
Iu Mj X 2,1/2+ . (6.1.27) Using (6.1.15) and the fact that γ 0 < 7/2, we have (6.1.26). Case 3. M 2 ≥ M 3 N . In this case, we simply bound

|µ(ξ 2 , ξ 3 , ξ 4 )| m(ξ 1 ) m(ξ 2 )m(ξ 3 )m(ξ 4 )
.

Here we use that m(ξ 1 ) m(ξ 2 ) and m(ξ 3 ) ≤ m(ξ 4 ) ≤ 1 due to the fact that M 1 M 2 and

M 3 ≥ M 4 . Subcase 3a. M 2 M 3 N . We see that M 1 ∼ M 2 since 4 j=1 ξ j = 0.
The pointwise bound, Hölder's inequality, Plancherel theorem and bilinear estimate (6.1.4) again give

A m(M 1 ) m(M 2 )m(M 3 )m(M 4 ) ∆ 2 Iu M1 Iu M4 L 2 (R,L 2 ) Iu M2 Iu M3 L 2 (R,L 2 ) m(M 1 ) m(M 2 )m(M 3 )m(M 4 ) M 4 M 1 3/2 M 3 M 2 3/2 M 2 1 M 2 2 M 2 3 M 4 2 4 j=1
Iu Mj X 2,1/2+ .

Thanks to (6.1.15), we only need to show

m(M 1 ) m(M 2 )m(M 3 )m(M 4 ) M 4 M 1 3/2 M 3 M 2 3/2 M 2 1 M 2 2 M 2 3 M 4 2 N -γ0+ M 0- 2 . (6.1.28)
Remark that the function m(λ)λ α is increasing, and m(λ) λ α is bounded below for any α+γ-2 > 0 due to

(m(λ)λ α ) = αλ α-1 if 1 ≤ λ ≤ N, N 2-γ (α + γ -2)λ α+γ-3 if λ ≥ 2N.
We shall shortly choose an appropriate value of α, says α, so that

m(M 4 ) M 4 α 1, m(M 3 )M α 3 m(N )N α = N α . (6.1.29)
Using that m(M 1 ) ∼ m(M 2 ), we have

LHS(6.1.28) M α-1/2 3 M 4 α-1/2 M 1/2 1 m(M 3 )M α 3 m(M 4 ) M 4 α M 7/2 2 1 N α M 4-2α 2 M 3 M 2 α-1/2 M 4 M 2 α-1/2 M 1 M 2 1/2 N -(4-α)+ M 0- 2 .
Therefore, if we choose α so that γ 0 = 4 -α or α = 4 -γ 0 = 14 15 , then we get (6.1.26). Note that α + γ -2 ≥ 0, hence (6.1.29) holds. Subcase 3b. M 2 ∼ M 3 N . In this case, we see that M 1 M 2 . Arguing as in Subcase 3a, we obtain

A m(M 1 ) m(M 2 )m(M 3 )m(M 4 ) ∆ 2 Iu M1 Iu M2 L 2 (R,L 2 ) Iu M3 Iu M4 L 2 (R,L 2 ) m(M 1 ) m(M 2 )m(M 3 )m(M 4 ) M 1 M 2 3/2 M 4 M 3 3/2 M 1 2 M 2 2 M 2 3 M 4 2 4 j=1
Iu Mj X 2,1/2+ .

As in Subcase 3a, our aim is to prove 

m(M 1 ) m(M 2 )m(M 3 )m(M 4 ) M 1 M 2 3/2 M 4 M 3 3/2 M 1 2 M 2 2 M 2 3 M 4 2 N -γ0+ M 0- 2 . ( 6 
m(M 2 )m(M 3 )m(M 4 ) M 4 1/2 M 7/2 3 m(M 1 )M α 2 M 4 α-1/2 m(M 2 )M α 2 m(M 3 )M α 3 m(M 4 ) M 4 α M 4-α-1/2 3 1 N 2α M 2 M 3 α M 4 M 3 α-1/2 1 M 4-3α 3 N -(4-α)+ M 0- 2 .
Choosing α as in Subcase 3a, we get (6.1.26). We now consider the second term (Term 2 ). We again decompose u in dyadic frequencies, u = M ≥1 u M . By the symmetry, we can assume that M 2 ≥ M 3 ≥ M 4 . We can assume further We use Lemma 6.1.13 to bound 

B m(M 1 ) m(M 2 )m(M 3 )m(M 4 ) 1 M 1 2 M 2 2 M 3 2 Iu 3 X 2,1/2+
m(M 1 ) m(M 2 )m(M 3 )m(M 4 ) 1 M 1 2 M 2 2 M 3 2 N -γ0+ M 0- 2 . (6.1.35)
We now break the frequency interactions into two cases:

M 2 ∼ M 3 and M 2 ∼ M 1 since 4 j=1 ξ j = 0. Case 1. M 2 ∼ M 3 , M 2 ≥ M 3 ≥ M 4 and M 2 N . We see that LHS(6.1.35) ∼ m(M 1 ) (m(M 2 )) 2 m(M 4 ) 1 M 1 2 M 2 4 m(M 1 ) N 2α m(M 4 ) M 1 2 M 2 4-2α 1 N 2α 1 m(M 4 ) M 2 4-2α 1 N 2α 1 M 4-3α 2 N -(4-α)+ M 0- 2 .
Here we use that

m(M 2 ) M 2 α ≥ m(N )N α = N α , m(M 1 ) M 1 2 and that m(y) x α 1 for all 1 ≤ y ≤ x. Case 2. M 2 ∼ M 1 , M 2 ≥ M 3 ≥ M 4 and M 2 N . We have LHS(6.1.35) 1 m(M 3 )m(M 4 ) 1 M 2 4 M 3 2 1 m(M 3 ) M 3 α 1 m(M 4 ) M 2 α 1 M 2 4-α M 3 2-α N -(4-α)+ M 0- 2 .
Here we use again m(M 3 ) M 3 α , m(M 4 ) M 2 α 1. By choosing α as in Subcase 3a, we prove (6.1.35). The proof of Proposition 6.1.9 is now complete. Remark 6.1.14. Let us now comment on the choices of α and γ 0 . As mentioned in Remark 6.1.10, if the increment of the modified energy is N -γ0 , then we can show (see Section 6.1.3, after (6.1.40)) that the global well-posedness holds for data in H γ (R 4 ) with γ > 8 4+γ0 =: γ. We learn from (6.1.27) that γ 0 ≤ 7/2, hence γ ≥ 16 15 . On the other hand, in Subcase 3a, we need α+γ -2 > 0 and α = 4 -γ 0 . Since γ > γ, we have α + γ -2 > α + γ -2 ≥ α + 16 15 -2. We thus choose α := 2 -16 15 = 14 15 , hence γ 0 = 4 -α = 46 15 .

6.1.3

The proof of Theorem 6.1.1

We now are able to show the global existence given in Theorem 6.1.1. We only consider positive time, the negative one is treated similarly. The conservation of mass and Lemma 6.1.8 give

u(t) 2 H γ Iu(t) 2 H 2 ∼ Iu(t) 2 Ḣ2 + Iu(t) 2 L 2 E(Iu(t)) + ψ 2 L 2 . (6.1.36)
By density argument, we may assume that ψ ∈ C ∞ 0 (R 4 ). Let u be a global solution to (dNL4S) with initial data ψ. As E(Iψ) is not necessarily small, we will use the scaling u λ (t, x) := λ -2 u(λ -4 t, λ -1 x), λ > 0 to make the energy of rescaled initial data small in order to apply the almost conservation law given in Proposition 6.1.9. We have

E(Iu λ (0)) = 1 2 Iu λ (0) 2 Ḣ2 + 1 4 Iu λ (0) 4 L 4 . (6.1.37)
We then estimate

Iu λ (0) 2 Ḣ2 N 2(2-γ) u λ (0) 2 Ḣγ = N 2(2-γ) λ -2γ ψ 2 Ḣγ ,
and

Iu λ (0) 4 L 4 u λ (0) 4 L 4 = λ -4 ψ 4 L 4
λ -4 ψ 4 H γ . Note that γ > γ ≥ 1 allows us to use Sobolev embedding in the last inequality. Thus, (6.1.37) gives for λ 1,

E(Iu λ (0)) (N 2(2-γ) λ -2γ + λ -4 )(1 + ψ H γ ) 4 ≤ C 0 N 2(2-γ) λ -2γ (1 + ψ H γ ) 4 .
We now choose

λ := N 2-γ γ 1 2C 0 -1 2γ (1 + ψ H γ ) 2 γ (6.1.38)
so that E(Iu λ (0)) ≤ 1/2. We then apply Proposition 6.1.9 for u λ (0). Note that we may reapply this proposition until E(Iu λ (t)) reaches 1, that is at least C 1 N γ0-times. Therefore,

E(Iu λ (C 1 N γ0-δ)) ∼ 1. (6.1.39) 
Now given any T 1, we choose N 1 so that

T ∼ N γ0- λ 4 C 1 δ.
Using (6.1.38), we see that

T ∼ N (γ 0 +4)γ-8 γ
-. (6.1.40)

Here γ > γ = 8 γ0+4 , hence the power of N is positive and the choice of N makes sense for arbitrary T 1. A direct computation shows

E(Iu(t)) = λ 4 E(Iu λ (λ 4 t)).
Thus, we have from (6.1.38), (6.1.39) and (6.1.40) that

E(Iu(T )) = λ 4 E(Iu λ (λ 4 T )) = λ 4 E(Iu λ (C 1 N γ0-δ)) ∼ λ 4 ≤ N 4(2-γ) γ ∼ T 4(2-γ) (γ 0 +4)γ-8 + .
This shows that there exists

C 2 = C 2 ( ψ H γ , δ) such that E(Iu(T )) ≤ C 2 T 4(2-γ) (γ 0 +4)γ-8 + ,
for T 1. This together with (6.1.36) show that

u(T ) H γ C 3 T 2(2-γ) (γ 0 +4)γ-8 + + C 4 = C 3 T 15(2-γ) 53γ-60 + + C 4 ,
where C 3 , C 4 depend only on ψ H γ . The proof of Theorem 6.1.1 is complete. This section is devoted to the following result. As mentioned in the introduction of Chapter 6, this result can follow directly from the work of Pausader-Shao [START_REF] Pausader | The mass-critical fourth-order Schrödinger equation in higher dimensions[END_REF]. However, the proof we present below has its own interest and will be used in Chapter 7. Theorem 6.2.1. Let d = 5, 6, 7. The initial value problem (dNL4S) is globally well-posed in H γ (R d ), for any γ(d) < γ < 2, where γ(5) = 8 5 , γ(6) = 5 3 and γ(7) = 13 7 . The proof of the above theorem is based on the combination of the I-method and the interaction Morawetz inequality which is similar to those given in [START_REF] Silva | Global well-posedness for the L 2 -critical nonlinear Schrödinger equation in higher dimensions[END_REF]. The key is to show that the modified energy E(Iu) is an "almost conserved" quantity in the sense that the time derivative of E(Iu) decays with respect to a large parameter N (see Section 6.1.1 for the definition of I and N ). To do so, we need delicate estimates on the commutator between the I-operator and the nonlinearity. Note that in our setting, the nonlinearity is not algebraic. Thus we can not apply the Fourier transform technique. Fortunately, thanks to a special Strichartz estimate (6.2.11), we are able to apply the technique given in [START_REF] Visan | Global well-posedness and scattering for a class of nonlinear Schrödinger equations below the energy space[END_REF] to control the commutator. The interaction Morawetz inequality for the nonlinear fourth-order Schrödinger equation was first introduced in [Pau2] for d ≥ 7, and was extended for d ≥ 5 in [START_REF] Miao | Scattering theory below energy for the cubic fourth-order Schrödinger equation[END_REF]. With this estimate, the interpolation argument and Sobolev embedding give for any compact interval J,

u M (J) := u L 8(d-3) d (J,L 2(d-3) d-4 ) |J| d-4 8(d-3) ψ 1 d-3 L 2 u d-4 d-3 L ∞ (J, Ḣ 1 2 ) 
. (6.2.1)

As a byproduct of Strichartz estimates and the I-method, we show the almost conservation law for the modified energy of (dNL4S), that is if u is a smooth solution to (dNL4S) on a time interval J = [0, T ], and satisfies Iψ H 2 ≤ 1 and if u satisfies in addition the a priori bound u M (J) ≤ µ for some small constant µ > 0, then

sup t∈[0,T ] |E(Iu(t)) -E(Iψ)| N -(2-γ+δ) .
for max 3 -8 d , 8 d < γ < 2 and 0 < δ < γ + 8 d -3. We now briefly outline the idea of the proof. Let u be a global in time solution to (dNL4S). Observe that for any λ > 0,

u λ (t, x) := λ -d 2 u(λ -4 t, λ -1 x) (6.2.2)
is also a solution to (dNL4S). By choosing

λ ∼ N 2-γ γ , ( 6.2.3) 
and using some harmonic analysis, we can make E(Iu λ (0)) ≤ 1 4 by taking λ sufficiently large depending on ψ H γ and N . Fix an arbitrary large time T . The main goal is to show

E(Iu λ (λ 4 T )) ≤ 1. (6.2.4)
With this bound, we can easily obtain the growth of u(T ) H γ , and the global well-posedness in H γ (R d ) follows immediately. In order to get (6.2.4), we claim that

u λ M ([0,t]) ≤ Kt d-4 8(d-3) , ∀t ∈ [0, λ 4 T ],
for some constant K. If it is not so, then there exists T 0 ∈ [0, λ 4 T ] such that

u λ M ([0,T0]) > KT d-4 8(d-3) 0 , ( 6.2.5 
)

u λ M ([0,T0]) ≤ 2KT d-4 8(d-3) 0 .
(6.2.6) Using (6.2.6), we can split [0, T 0 ] into L subintervals J k , k = 1, ..., L so that

u λ M (J k ) ≤ µ.
The number L must satisfy 

L ∼ T d-4 d 0 . ( 6 
E(Iu λ (t)) ≤ E(Iu λ (0)) + N -(2-γ+δ) L.
Since E(Iu λ (0)) ≤ 1 4 , in order to have E(Iu λ (t)) ≤ 1 for all t ∈ [0, T 0 ], we need

N -(2-γ+δ) L 1 4 . (6.2.8)
Combining (6.2.3), (6.2.7) and (6.2.8), we obtain the condition on γ. Next, using (6.2.1) together with some harmonic analysis, we estimate

u λ M ([0,T0]) T d-4 8(d-3) 0 ψ 1 d-3 L 2 sup [0,T0] ψ 3 4 Iu λ (t) 1 4 Ḣ2 + N -3 4 Iu λ (t) Ḣ2 d-4 d-3 .
Since Iu λ (t) Ḣ2 E(Iu λ (t)) ≤ 1 for all t ∈ [0, T 0 ], we get

u λ M ([0,T0]) ≤ CT d-4 8(d-3) 0 ,
for some constant C > 0. This leads to a contradiction to (6.2.5) for an appropriate choice of K. Thus we have the claim and also

E(Iu λ (t)) ≤ 1, ∀t ∈ [0, λ 4 T ].
For more details, we refer the reader to Section 6.2.3. We shall identify F (z) with the pair (∂ z F (z), ∂ z F (z)), and define its norm by

Preliminaries

|F (z)| := |∂ z F (z)| + |∂ z F (z)|.

Global well-posedness mass-critical NL4S

It is clear that

|F (z)| = O(|z| 8 d
). We also have the following chain rule

∂ k F (u) = F (u)∂ k u, for k ∈ {1, • • • , d}.
In particular, we have

∇F (u) = F (u)∇u.
We next recall the fractional chain rule to estimate the nonlinearity. Lemma 6.2.2. Suppose that G ∈ C 1 (C, C), and α ∈ (0, 1). Then for 1 < q ≤ q 2 < ∞ and

1 < q 1 ≤ ∞ satisfying 1 q = 1 q1 + 1 q2 , |∇| α G(u) L q G (u) L q 1 |∇| α u L q 2 .
We refer the reader to [CW91, Proposition 3.1] for the proof of the above estimate when 1 < q 1 < ∞, and to [KPV93, Theorem A.6] for the proof when q 1 = ∞.

When G is no longer C 1 , but Hölder continuous, we have the following fractional chain rule. Lemma 6.2.3. Suppose that G ∈ C 0,β (C, C), β ∈ (0, 1). Then for every 0 < α < β, 1 < q < ∞,

and α β < ρ < 1, |∇| α G(u) L q |u| β-α ρ L q 1 |∇| ρ u α ρ L α ρ q 2 , provided 1 q = 1 q1 + 1 q2 and 1 -α βρ q 1 > 1.
The reader can find the proof of this result in [Vis06, Proposition A.1].

Strichartz estimates.

Let I ⊂ R and p, q ∈ [1, ∞]. We define the mixed norm

u L p (I,L q ) := I R d |u(t, x)| q dx p q 1 p
with a usual modification when either p or q are infinity.

In this section, we denote for (p, q) ∈ [1, ∞] 2 ,

γ p,q = d 2 - d q - 4 p .
Definition 6.2.4. A pair (p, q) is called biharmonic admissible, for short (p, q) ∈ B, if (p, q) is Schrödinger admissible satisfying γ p,q = 0.

We recall Strichartz estimates for the linear fourth-order Schrödinger equation given in Theorem 1.1.2 (see also Corollary 1.1.3) with σ = 4. Proposition 6.2.5. Let γ ∈ R and u be a (weak) solution to the linear fourth-order Schrödinger equation namely

u(t) = e it∆ 2 ψ + t 0 e i(t-s)∆ 2 F (s)ds,
for some data ψ, F . Then for all (p, q) and (a, b) Schrödinger admissible with q < ∞ and b < ∞,

|∇| γ u L p (R,L q ) |∇| γ+γp,q ψ L 2 + |∇| γ+γp,q-γ a ,b -4 F L a (R,L b ) . (6.2.9)
Here (a, a ) and (b, b ) are conjugate pairs, and γ p,q , γ a ,b are defined as in (1.0.7). Note that the estimate (6.2.9) is exactly the one given in [START_REF] Miao | Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations[END_REF], [START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF] or [Pau2] where the author considered (p, q) and (a, b) are either sharp Schrödinger admissible (see (0.0.1)) or biharmonic admissible. The proof of Strichartz estimates proved by [START_REF] Miao | Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations[END_REF][START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF]Pau2] are based on delicate dispersive estimates of [START_REF] Ben-Artzi | Saut Dispersion estimates for fourth-order Schrödinger equations[END_REF] for the fundamental solution of the homogeneous For the third term, we write

I(P M f P M g) -(IP M f )P M g = 1 k∈N [I(P 2 k M f P M g) -(IP 2 k M f )P M g] = 1 k∈N N 2 k M I(P 2 k M f P M g) -(IP 2 k M f )P M g].
We note that

[I(P 2 k M f P M g) -(IP 2 k M f )P M g] (ξ) = ξ=ξ1+ξ2 (m N (ξ 1 + ξ 2 ) -m N (ξ 1 )) P 2 k M f (ξ 1 ) P M g(ξ 2 ). For |ξ 1 | ∼ 2 k M N and |ξ 2 | ∼ M , the mean value theorem implies |m N (ξ 1 + ξ 2 ) -m N (ξ 2 )| |∇m N (ξ 1 )||ξ 2 | 2 -k 2 k M N γ-2
.

The Coifman-Meyer multiplier theorem (see e.g. [CM75, CM91]) then yields

I(P 2 k M f P M g) -(IP 2 k M f )P M g L q 2 -k 2 k M N γ-2 P 2 k M f L q 1 P M g L q 2 2 -k M -(2-γ+δ) If L q 1 |∇| 2-γ+δ g L q 2 . By rewriting 2 -k M -(2-γ+δ) = 2 -k(γ-1-δ) (2 k M ) -(2-γ+δ) , we sum over all k 1 with γ -1 > δ and N 2 k M to get Term 3 L q N -(2-γ+δ) If L q 1 |∇| 2-γ+δ g L q 2 .
Finally, we consider the first term. It is proved by the same argument as for the third term. We estimate

Term 1 L q k∈N,2 k N I(P 2 k f P ≤1 g) -(IP 2 k f )P ≤1 g L q k∈N,2 k N 2 -k If L q 1 g L q 2 N -1 If L q 1 g L q 2 .
Note that the condition γ -1 > δ ensures that N -1 N - (2-γ+δ) . This completes the proof.

As a direct consequence of Lemma 6.2.7 with the fact that

∇F (u) = F (u)∇u,
we have the following corollary. Note that the I-operator commutes with ∇. Corollary 6.2.8. Let 1 < γ < 2, 0 < δ < γ -1 and 1 < q, q 1 , q 2 < ∞ be such that 

1 q = 1 q1 + 1 q2 . Then ∇IF (u) -(I∇u)F (u) L q N -(2-γ+δ) ∇Iu L q 1 ∇ 2-γ+δ F (u) L q 2 . ( 6 
|∇| -d-5 4 u L 4 (J,L 4 ) ψ 1 2 L 2 u 1 2 L ∞ (J, Ḣ 1 2 ) 
. (6.2.14)

By interpolating (6.2.14) and the trivial estimate

u L ∞ (J, Ḣ 1 2 ) 
≤ u

L ∞ (J, Ḣ 1 2 ) 
, we obtain

u L 2(d-3) (J,L 2(d-3) d-4 ) ψ L 2 u L ∞ (J, Ḣ 1 
2 )

1 d-3 u d-5 d-3 L ∞ (J, Ḣ 1 2 ) 
= ψ

1 d-3 L 2 u d-4 d-3 L ∞ (J, Ḣ 1 2 ) 
.

Using Sobolev embedding in time, we get

u M (J) := u L 8(d-3) d (J,L 2(d-3) d-4 ) |J| d-4 8(d-3) ψ 1 d-3 L 2 u d-4 d-3 L ∞ (J, Ḣ 1 2 ) 
. (6.2.15)

Here 8(d-3) d , 2(d-3) d-4
is a biharmonic admissible pair.

Almost conservation law

For any spacetime slab J × R d , we define

Z I (J) := sup (p,q)∈B ∆ Iu L p (J,L q ) .
Note that in our consideration 5 ≤ d ≤ 7, the biharmonic admissible condition (p, q) ∈ B ensures q < ∞. Let us start with the following commutator estimates. where u M (J) is given in (6.2.15). In particular, ∇IF (u)

L 2 (J,L 2d d+2 ) 
(Z I (J)) 1+ 8 d . (6.2.18)

Proof. We apply (6.2.13) with q = 2d d+2 , q 1 = 2d(d-3) d 2 -9d+22 and q 2 = d(d-3) 2(2d-7) to get

∇IF (u) -(I∇u)F (u) L 2d d+2 N -(2-γ+δ) ∇Iu L 2d(d-3) d 2 -9d+22 ∇ 2-γ+δ F (u) L d(d-3) 2(2d-7)
.

We then apply Hölder's inequality to have

∇IF (u)-(I∇u)F (u) L 2 (J,L 2d d+2 ) N -α ∇Iu L 2(d-3) d-4 (J,L 2d(d-3) d 2 -9d+22 ) ∇ α F (u) L 2(d-3) (J,L d(d-3) 2(2d-7) )
, where α = 2 -γ + δ ∈ (0, 1) by our assumptions. For the first factor in the right hand side, we use the Sobolev embedding to obtain

∇Iu L 2(d-3) d-4 (J,L 2d(d-3) d 2 -9d+22 ) ∆Iu L 2(d-3) d-4 (J,L 2d(d-3) d 2 -7d+16 ) Z I , (6.2.19)
where 2(d-3) d-4 , 2d(d-3)

d 2 -7d+16
is a biharmonic admissible pair. For the second factor, we estimate is biharmonic admissible. In order to treat the second term in (6.2.20), we apply Lemma 6.2.2 with q = d(d-3) 2(2d-7) , q 1 = 2d(d-3) -d 2 +11d-26 and q 2 = 2d(d-3) d 2 -3d-2 to get

∇ α F (u) L 2(d-3) (J,L d(d-3) 2(2d-7) ) F (u) L 2(d-3) (J,L d(d-3) 2(2d-7) ) + |∇| α F (u) L 2(d-3) (J,L d(d-3) 2(2d-7) ) . ( 6 
|∇| α F (u) L 2(d-3) (J,L d(d-3) 2(2d-7) ) F (u) L 4(d-3) (J,L 2d(d-3) -d 2 +11d-26 ) |∇| α u L 4(d-3) (J,L 2d(d-3) d 2 -3d-2 )
.

As

F (u) = O(|u| 8 d -1
), we have 

F (u) L 4(d-3) (J,L 2d(d-3) -d 2 +11d-26 ) u 8 d -1 L 4(8-d)(d-3) d (J,L 2(8-d)(d-3) -d 2 +11d-26 ) Z 8 d -1 I . ( 6 
(8-d)(d-3) d , 2(8-d)(d-3) -d 2 +11d-26 is biharmonic admissible. Since 4(d -3), 2d(d-3) d 2 -3d-2
is also a biharmonic admissible, we have from (6.1.9) that We now prove (6.2.17). We have from (6.2.16) and the triangle inequality that ∇IF (u)

|∇| α u L 4(d-3) (J,L 2d(d-3) d 2 -3d-2 ) Z I . ( 6 
L 2 (J,L 2d d+2 ) 
(∇Iu)F (u)

L 2 (J,L 2d 
d+2 ) + N -(2-γ+δ) Z 1+ 8 d I . ( 6 

.2.24)

The Hölder inequality gives (∇Iu)F (u) 4) )

L 2 (J,L 2d d+2 ) ∇Iu L 2(d-3) d-5 (J,L 2d(d-3) d 2 -9d+26 ) F (u) L d-3 (JL d(d-3) 4(d-
.

We use the Sobolev embedding to estimate 

∇Iu L 2(d-3) d-5 (J,L 2d(d-3) d 2 -9d+26 ) ∆Iu L 2(d-3) d-5 (J,L 2d(d-3) d 2 -7d+20 ) Z I . (6.2.25) Here 2(d-3) d-5 , 2d(d-3) d 2 -7d+20 is biharmonic admissible. Since F (u) = O(|u| 8 d ), we have F (u) L d-3 (J,L d(d-3) 4(d-4) ) u 8 d L 8(d-3) d (J,L 2(d-3) d-4 ) = u 8 d M . ( 6 
M (J) ≤ µ,
for some small constant µ > 0. Then, for N sufficiently large,

sup t∈[0,T ] |E(Iu(t)) -E(Iψ)| N -(2-γ+δ) . ( 6 

.2.27)

Here the implicit constant depends only on the size fo E(Iψ).

Proof. Our first step is to control the size of Z I . Applying I, ∆I to (dNL4S), and then using Strichartz estimates (6.2.10), (6.2.11), we have

Z I Iψ H 2 + IF (u) L 2 (J,L 2d d+4 ) 
+ ∇IF (u)

L 2 (J,L 2d d+2 ) 
. (6.2.28) Using (6.2.17), we have

∇IF (u) L 2 (J,L 2d 
d+2 ) u 8 d M Z I + N -(2-γ+δ) Z 1+ 8 d I µ 8 d Z I + N -(2-γ+δ) Z 1+ 8 d I . ( 6 

.2.29)

We next drop the I-operator (see (6.1.7)) and use Hölder's inequality to estimate

IF (u) L 2 (J,L 2d 
d+4 ) |u| 8 d L d-3 (J,L d(d-3) 4(d-4) ) u L 2(d-3) d-5 (J,L 2d(d-3) d 2 -7d+20 ) u 8 d L 8(d-3) d (J,L 2(d-3) d-4 ) u L 2(d-3) d-5 (J,L 2d(d-3) d 2 -7d+20 ) u 8 d M Z I µ 8 d Z I . ( 6 

.2.30)

The last inequality follows from (6.1.9) and the fact 2(d-3) d-5 , 2d(d-3) d 2 -7d+20 is biharmonic admissible. Collecting from (6.2.28) to (6.2.30), we obtain

Z I Iψ H 2 + µ 8 d Z I + N -(2-γ+δ) Z 1+ 8 d I .
By taking µ sufficiently small and N sufficiently large, the continuity argument gives

Z I Iψ H 2 ≤ 1. (6.2.31)
Next, we have from a direct computation that

∂ t E(Iu(t)) = Re I∂ t u(∆ 2 Iu + F (Iu))dx.
By the Fundamental Theorem of Calculus,

E(Iu(t)) -E(Iψ) = t 0 ∂ s E(Iu(s))ds = Re t 0 I∂ s u(∆ 2 Iu + F (Iu))dxds.

Global well-posedness mass-critical NL4S

Using I∂ t u = i∆ 2 Iu + iIF (u), we see that

E(Iu(t)) -E(Iψ) = Re t 0 I∂ s u(F (Iu) -IF (u))dxds = Im t 0 ∆ 2 Iu + IF (u)(F (Iu) -IF (u))dxds = Im t 0 ∆Iu∆(F (Iu) -IF (u))dxds +Im t 0 IF (u)(F (Iu) -IF (u))dxds.
We next write

∆(F (Iu) -IF (u)) = (∆Iu)F (Iu) + |∇Iu| 2 F (Iu) -I(∆uF (u)) -I(|∇u| 2 F (u)) = (∆Iu)(F (Iu) -F (u)) + |∇Iu| 2 (F (Iu) -F (u)) +∇Iu • (∇Iu -∇u)F (u) + (∆Iu)F (u) -I(∆uF (u)) +(I∇u) • ∇uF (u) -I(∇u • ∇uF (u)).
Therefore, 

E(Iu(t)) -E(Iψ) = Im t 0 ∆Iu∆Iu(F (Iu) -F (u))
|(6.2.32)| ∆Iu 2 L 4 (J,L 2d d-2 ) F (Iu) -F (u) L 2 (J,L d 2 ) Z 2 I |Iu -u|(|Iu| + |u|) 8 d -1 L 2 (J,L d 2 ) Z 2 I P >N u L 16 d (J,L 4 ) u 8 d -1 L 16 d (J,L 4 ) . ( 6 
F (Iu) -F (u) L 16 (J,L 4d 15-2d ) ∆Iu L 4 (J,L 2d d-2 ) ∇Iu 2 L 32 11 (J,L 8d 4d-11 ) F (Iu) -F (u) L 16 (J,L 4d 15-2d ) Z 3 I |Iu -u| 8 d -1 L 16 (J,L 4d 15-2d ) Z 3 I P >N u 8 d -1 L 16(8-d) d (J,L 4(8-d) 15-2d ) N -2( 8 d -1) Z 2+ 8 d I . ( 6 

.2.42)

Here we drop the I-operator and apply (6.1.9) with the fact γ > 1 to get the third line. We also use the fact that for 5 ≤ d ≤ 7, 

|F (z) -F (ζ)| |z -ζ| 8 d -1 , ∀z, ζ ∈ C.
F (u) L 16 (J,L 4d 15-2d ) Z 2 I ∇P >N u L 32 11 (J,L 8d 4d-11 ) F (u) L 16 t (J,L 4d 15-2d ) 
.

We next use (6. 

L 2 (J,L 2d d-4 ) (∆Iu)F (u) -I(∆uF (u)) L 2 (J,L 2d d+4 ) 
.

We then apply Lemma 6.2.7 with q = 2d d+4 , q 1 = 2d(d-3) d 2 -7d+16 and q

2 = d(d-3) 2(2d-7) to get (∆Iu)F (u) -I(∆uF (u)) L 2d d+4 N -α ∆Iu L 2d(d-3) d 2 -7d+16 ∇ α F (u) L d(d-3) 2(2d-7)
, where α = 2 -γ + δ. The Hölder inequality then implies (∆Iu)F (u) -I(∆uF (u))

L 2 (J,L 2d d+4 ) N -α ∆Iu L 2(d-3) d-4 (J,L 2d(d-3) d 2 -7d+16 ) × ∇ α F (u) L 2(d-3) (J,L d(d-3) 2(2d-7) )
.

We have from (6.2.20), (6.2.21), (6.2.22) and (6.2.23) that

∇ α F (u) L 2(d-3) (J,L d(d-3) 2(2d-7) ) Z 8 d I .
Thus 

|(6.2.35)| N -(2-γ+δ) Z 2+ 8 d I . ( 6 
L 4 (J,L 2d d-2 ) (I∇u) • ∇uF (u) -I(∇u • ∇uF (u)) L 4 3 (J,L 2d d+2 ) 
. (6.2.46) Applying Lemma 6.2.7 with q = 2d d+2 , q 1 = 8d 4d-11 and q 2 = 8d 19 and using Hölder inequality, we have

(I∇u) • ∇uF (u) -I(∇u • ∇uF (u)) L 4 3 (J,L 2d d+2 ) N -α I∇u L 32 11 (J,L 8d 4d-11 ) × ∇ α (∇uF (u)) L 8 5 (J,L 8d 19 ) 
. (6.2.47)

The fractional chain rule implies . To do so, we use

∇ α (∇uF (u)) L 8 5 (J,L 8d 
∇ α F (u) L 16 (J,L 4d 15-2d ) F (u) L 16 (J,L 4d 15-2d ) + |∇| α F (u) L 16 (J,L 4d 15-2d ) . ( 6 

.2.50)

The first term in the right hand side is treated in (6.2.43). For the second term in the right hand side, we make use of the fractional chain rule given in Lemma 6.2.3 with

β = 8 d -1, α = 2 -γ + δ, q = 4d 15-2d and q 1 , q 2 satisfying 8 d -1 - α ρ q 1 = α ρ q 2 = 4(8 -d) 15 -2d , 
and α 8 d -1 < ρ < 1.
Note that the choice of ρ is possible since α < 8 d -1 by our assumptions. With these choices, we have

1 - α βρ q 1 = 4d 15 -2d > 1, for 5 ≤ d ≤ 7. Then, |∇| α F (u) L 4d 15-2d |u| 8 d -1-α ρ L q 1 |∇| ρ u α ρ L α ρ q 2 u 8 d -1-α ρ L ( 8 d -1-α ρ ) q 1 |∇| ρ u α ρ L α ρ q 2 .
By Hölder's inequality,

|∇| α F (u) L 16 (J,L 4d 15-2d ) u 8 d -1-α ρ L ( 8 d -1-α ρ ) p 1 (J,L ( 8 d -1-α ρ ) q 1 ) |∇| ρ u α ρ L α ρ p 2 (J,L α ρ q 2 ) = u 8 d -1-α ρ L 16(8-d) d (J,L 4(8-d) 15-2d ) |∇| ρ u α ρ L 16(8-d) d (J,L 4(8-d) 15-2d ) , provided 8 d -1 - α ρ p 1 = α ρ p 2 = 16(8 -d) d . Since 16(8-d) d , 4(8-d) 15-2d
is biharmonic admissible, we have from (6.1.9) with the fact 0 < ρ < 1 < γ that 

|∇| α F (u) L 16 (J,L 4d 15-2d ) Z 8 d -1 I . ( 6 
L 2 (J,L 2d d-2 ) ∇(F (Iu) -IF (u)) L 2 t (J,L 2d 
d+2 ) ∇IF (u) L 2 (J,L 2d 
d+2 ) ∇(F (Iu) -IF (u)) L 2 (J,L 2d 
L 2 (J,L (u) 
d+2 ) Z 1+ 8 d I . 2d 
By the triangle inequality, we estimate

∇(F (Iu) -IF (u)) L 2 (J,L 2d 
d+2 ) (∇Iu)(F (Iu) -F (u)) L 2 (J,L 2d 
d+2 ) + (∇Iu)F (u) -∇IF (u) L 2 (J,L 2d d+2 ) 
.

We firstly use Hölder's inequality and estimate as in (6.2.38) to get 

(∇Iu)(F (Iu) -F (u)) L 2 (J,L 2d 
d+2 ) ∇Iu L ∞ (J,L 2d d-2 ) F (Iu) -F (u) L 2 (J,L d 2 ) ∆Iu L ∞ (J,L 2 ) P >N u L 16 d (J,L 4 ) u 8 d -1 L 16 d (J,L 4 ) N -2 Z 1+ 8 d I . ( 6 

Global well-posedness

Let us now show the global existence given in Theorem 6.2.1. By density argument, we assume that ψ ∈ C ∞ 0 (R d ). Let u be a global solution to (dNL4S) with initial data ψ. In order to apply the almost conservation law, we need the modified energy of initial data to be small. Since E(Iψ) is not necessarily small, we will use the scaling (6.2.2) to make E(Iu λ (0)) small. We have . Using the Gagliardo-Nirenberg inequality, we have

E(Iu λ (0)) = 1 2 Iu λ (0) 2 Ḣ2 + d 2d + 8 Iu λ (0) 2d+8 d L 2d+8 d . ( 6 
Iu λ (0) Ḣ2 N 2-γ u λ (0) Ḣγ = N 2-γ λ -γ ψ Ḣγ . ( 6 
Iu λ (0) 2d+8 d L 2d+8 d Iu λ (0) 8 d L 2 Iu λ (0) 2 Ḣ2 .
By (6.1.7), the scaling invariance, the conservation of mass and (6.2.58), it follows that

Iu λ (0) L 2d+8 d ( Iu λ (0) Ḣ2 ) d d+4 N 2-γ λ -γ ψ Ḣγ d d+4 .
(6.2.60) Therefore, it follows from (6.2.57), (6.2.58), (6.2.59) and (6.2.60) by taking λ sufficiently large depending on ψ H γ and N (which will be chosen later and depends only on ψ H γ ) that

E(Iu λ (0)) ≤ 1 4 .
Now let T be arbitrarily large. We define

X := {0 ≤ t ≤ λ 4 T | u λ M ([0,t]) ≤ Kt d-4 8(d-3) },
with K a constant to be chosen later. Here M (J) is given in (6.2.15). We claim that X = [0, λ 4 T ].

Assume by contradiction that it is not so. Since u λ M ([0,t]) is a continuous function of time, there exists 

T 0 ∈ [0, λ 4 T ] such that u λ M ([0,T0]) > KT d-4 8(d-3) 0 , (6.2.61) u λ M ([0,T0]) ≤ 2KT d-4 8(d-3) 0 . ( 6 
u λ M ([0,T0]) T d-4 8(d-3) 0 ψ 1 d-3 L 2 u λ d-4 d-3 L ∞ t ([0,T0], Ḣ 1 2 ) 
.

We use (6.1.8) and the definition of the I-operator to estimate

u λ (t) Ḣ 1 2 ≤ P ≤N u λ (t) Ḣ 1 2 + P >N u λ (t) Ḣ 1 2 P ≤N u λ (t) 3 4 L 2 P ≤N u λ (t) 1 4 Ḣ2 + N -3 2 Iu λ (t) Ḣ2 ψ 3 4 L 2 Iu λ (t) 1 4 Ḣ2 + N -3 2 Iu λ (t) Ḣ2 .
Thus, 

u λ M ([0,T0]) T d-4 8(d-3) 0 ψ 1 d-3 L 2 sup [0,T0] ψ 3 4 L 2 Iu λ (t) 1 4 Ḣ2 + N -3 2 Iu λ (t) Ḣ2 d-4 d-3 . ( 6 

0

, for some constant C > 0. This contradicts with (6.2.61) for an appropriate choice of K. We get X = [0, λ 4 T ] with T arbitrarily large and

E(Iu λ (λ 4 T )) ≤ 1.
(6.2.69)

Note that under the condition of γ, we see from (6.2.66) that the choice of N makes sense for arbitrarily large T . Now, by the conservation of mass and (6.2.69), we bound

u(T ) H γ u(T ) L 2 + u(T ) Ḣγ ψ L 2 + λ γ u λ (λ 4 T ) Ḣγ ψ L 2 + λ γ Iu λ (λ 4 T ) H 2 λ γ N 2-γ T α(γ,d) ,
where α(γ, d) is a positive number that depends on γ and d. This a priori bound gives the global existence in H γ . The proof is now complete.

T * = ∞ or T * < ∞, lim t→T * u(t) H γ = ∞.
The study of blowup solutions for the focusing nonlinear fourth-order Schrödinger equation has attracted a lot of interest in a past decade (see e.g. [START_REF] Fibich | Self-focusing with fourth-order dispersion[END_REF], [START_REF] Baruch | Singular solutions of the biharmonic nonlinear Schrödinger equation[END_REF], [START_REF] Zhu | Limiting profile of the blow-up solutions for the fourthorder nonlinear Schrödinger equation[END_REF], [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF], [START_REF] Boulenger | Blowup for biharmonic NLS[END_REF] and references therein). It is closely related to ground states Q of (fNL4S) which are solutions to the elliptic equation

∆ 2 Q + Q -|Q| 8 d Q = 0. (7.0.3)
The equation (7.0.3) is obtained by considering solitary solutions (standing waves) of (fNL4S) of the form u(t, x) = Q(x)e -it . The existence of solutions to (7.0.3) is proved in [START_REF] Zhu | Limiting profile of the blow-up solutions for the fourthorder nonlinear Schrödinger equation[END_REF], but the uniqueness of the solution is still an open problem. In the case ψ L 2 < Q L 2 , using the sharp Gagliardo-Nirenberg inequality (see [START_REF] Fibich | Self-focusing with fourth-order dispersion[END_REF] or [START_REF] Zhu | Limiting profile of the blow-up solutions for the fourthorder nonlinear Schrödinger equation[END_REF]), namely Then there exists a sequence (x n ) n≥1 of R d such that up to a subsequence

u 2+ 8 d L 2+ 8 d ≤ C(d) u 8 d L 2 ∆u 2 L 2 , C(d) := 1 + 4 d Q 8 d L 2 , ( 7 
v n (• + x n ) V weakly in H 2 as n → ∞, with V 8 d L 2 ≥ Q 8 d L 2 m 2+ 8 d (1+ 4 d )M 2
, where Q is the solution to the ground state equation (7.0.3). Consequently, the authors in [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF] established the limiting profile and the L 2 -concentration for (fNL4S) with initial data ψ ∈ H γ (R 4 ), 9+ √ 721 20 < γ < 2. Recently, Boulenger-Lenzmann in [START_REF] Boulenger | Blowup for biharmonic NLS[END_REF] proved a general result on finite-time blowup for the focusing generalized nonlinear fourthorder Schrödinger equation (i.e. (7.0.1) with µ = 1) with radial data in H 2 .

Our main purpose in this chapter is to lower the required regularity of [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF] for (fNL4S) in the fourth dimensional case and to extend the results of [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF] to higher dimensions d ≥ 5.

Blowup for the focusing mass-critical nonlinear fourthorder Schrödinger equation below the energy space when d = 4

In this section, we lower the required regularity in [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF]. To do so, we make use of the analysis performed in Subsection 6.1. More precisely, our main results in this section are as follows. Theorem 7.1.1. Let ψ ∈ H γ (R 4 ) with 67+ √ 40489 150 < γ < 2. If the corresponding solution to the (fNL4S) blows up in finite time 0 < T * < ∞, then there exists a function U ∈ H 2 (R 4 ) such that 

U L 2 (R 4 ) ≥ Q L 2 (R 4 ) and there exist sequences (t n , λ n , x n ) n≥1 ∈ R + × R + * × R 4 satisfying t n T * as n → ∞ and λ n (T * -t n ) γ 8 , ∀n ≥ 1 such that λ 2 n u(t n , λ n • +x n ) U weakly in H ã(γ)-(R 4 )
|u(t, x)| 2 dx ≥ R 4 |Q(x)| 2 dx,
where Q is the solution to the ground state equation (7.0.3). When the mass of the initial data equals to the mass of the solution of the ground state equation (7.0.3), we have the following improvement of Theorem 7.1.1. Note that in the below result, we assume that there exists a unique solution to the ground state equation (7.0. 

< γ < 2 be such that ψ L 2 (R 4 ) = Q L 2 (R 4 ) . If the corresponding solution u to the (fNL4S) blows up in finite time 0 < T * < ∞, then there exist sequences (t n , e iθn , λ n , x n ) n≥1 ∈ R + × S 1 × R + * × R 4 satisfying t n T * as n → ∞ and λ n (T * -t n ) γ 8 , ∀n ≥ 1 such that λ 2 n e iθn u(t n , λ n • +x n ) → Q strongly in H ã(γ)-(R 4 )
as n → ∞, where ã(γ) is as in (7.1.1) and Q is the unique solution to the ground state equation (7.0.3).

Modified local well-posedness

We firstly recall the local theory for (fNL4S) in Sobolev spaces (see Theorem 5. 

u(t) H γ (T * -t) -γ 4 , ( 7 
M > 0 C u(t) H γ + C(T -t) γ 2 M 3 ≤ M, then T < T * . Thus, C u(t) H γ + C(T * -t) γ 2 M 3 > M, for all M > 0. Choosing M = 2C u(t) H γ , we see that (T * -t) γ 2 u(t) 2 H γ > C.
This proves (7.1.2) and the proof is complete.

We have the following modified local well-posedness which is essentially given in Proposition 6.1.12 Proposition 7.1.6 (Modified local well-posedness). Let γ ∈ (2/3, 2) and ψ ∈ H γ (R 4 ). Let

δ = c Iψ -4 γ H 2 ,
for a small constant c = c(γ) > 0. Then the (fNL4S) is locally well-posed on [0, δ] and the unique solution satisfies for N large enough,

Iu X 2,1/2+ δ Iψ H 2 . (7.1.3)
Here X γ,b δ is defined as in (6.1.16).

Proof. Since ψ H γ

Iψ H 2 , we see that for c > 0 small enough,

δ = c Iψ -4 γ H 2 c ψ -4 γ H γ ≤ T lwp .
Here T lwp is as in Proposition 7.1.4. This shows that (fNL4S) is locally well-posed on [0, δ]. It remains to prove (7.1.3). This bound follows by the same lines as in the proof of Proposition 6.1.12. The proof is complete.

Modified energy increment

In this subsection, we study the modified energy increment. More precisely, we will show that the modified energy, namely E(Iu) grows much slower than the modified kinetic of u, namely ∆Iu < γ < 2. Let ψ ∈ H γ (R 4 ) be such that the corresponding solution u to the (fNL4S) blows up at time 0 < T * < ∞. Let 0 < T < T * . Then for Proof. Let δ := cΣ(T ) -4 γ for some constant c = c(γ) > 0 small enough. For N (T ) sufficiently large, Proposition 7.1.6 shows that By the Gagliardo-Nirenberg inequality and (6.1.11), 

N (T ) ∼ Λ(T ) a(γ) 2(2-γ) , ( 7 
I N (T ) u X 2,1/2+ ([t,t+δ]) I N (T ) u(t) H 2 Σ(T ), ( 7 
|E(I N (T ) ψ)| ∆I N (T ) ψ 2 L 2 + I N (T ) ψ 4 L 4 ∆I N (T ) ψ 2 L 2 + I N (T ) ψ 2 L 2 ∆I N (T ) ψ 2 L 2 N (T ) 2(2-γ) ψ 2 H γ + ψ 4 H γ N (T ) 2(2-γ) . ( 7 
|E(I N (T ) u(t))| N (T ) 2(2-γ) + N (T ) (2-γ)(4+ 4 γ )-46 15 + Λ(T ) 4+ 4 γ + N (T ) (2-γ)(6+
N (T ) 2(2-γ) ∼ N (T ) (2-γ)(6+ 4 γ )-46 15 + Λ(T ) 6+ 4 γ or N (T ) ∼ Λ(T ) 6+ 4 γ [ 46 15 -(2-γ) ( 4+ 4 γ )] -, then sup t∈[0,T ] |E(I N (T ) u(t))| N (T ) 2(2-γ) Λ(T ) a(γ) ,
where a(γ) is given in (7.1.8). In order to make 0 < a(γ) < 2, we need

   46 15 -(2 -γ) 4 + 4 γ > 0, (2 -γ) 6 + 4 γ < 46 15 -(2 -γ) 4 + 4 γ .
Solving the above inequalities, we obtain 67+ √ 40489 150 < γ < 2. The proof is complete.

Limiting profile

Proof of Theorem 7.1.1 As the solution blows up at time 0 < T * < ∞, the blowup alternative allows us to choose a sequence of times (

t n ) n≥1 such that t n → T * as n → ∞ and u(t n ) H γ = Λ(t n ) → ∞ as n → ∞ (see (7.1.5) for the notation). Denote v n (x) := λ 2 n I N (tn) u(t n , λ n x),
where N (t n ) is given as in (7.1.6) with T = t n and the parameter λ n is given by

λ 2 n := ∆Q L 2 ∆I N (tn) u(t n ) L 2 . ( 7.1.14) 
By (6.1.10) and the blowup criterion given in Corollary 7.1.5, we see that

λ 2 n ∆Q L 2 u(t n ) H γ (T * -t n ) γ 4 or λ n (T * -t n ) γ 8 .
On the other hand, (v n ) n≥1 is bounded in H 2 (R 4 ). Indeed, 

v n L 2 = I N (tn) u(t n ) L 2 ≤ u(t n ) L 2 = ψ L 2 , ∆v n L 2 = λ 2 n ∆I N (tn) u(t n ) L 2 = ∆Q L 2 . ( 7 
E(v n ) = λ 4 n E(I N (tn) u(t n )) λ 4 n Λ(t n ) a(γ) Λ(t n ) a(γ)-2 .
As 0 < a(γ) < 2 for 67+ √ 40489 150 < γ < 2, we see that E(v n ) → 0 as n → ∞. Therefore, the expression of the modified energy and (7.1.15) give , there exist a sequence (

v n 4 L 4 → 2 ∆Q 2 L 2 , ( 7 
x n ) n≥1 ⊂ R 4 and a function U ∈ H 2 (R 4 ) such that U L 2 ≥ Q L 2 and up to a subsequence, v n (• + x n ) U weakly in H 2 (R 4 ), as n → ∞. That is λ 2 n I N (tn) u(t n , λ n • +x n ) U weakly in H 2 (R 4 ), (7.1.17)
as n → ∞. To conclude Theorem 7.1.1, we need to remove I N (tn) from (7.1.17). To do so, we consider for any 0 ≤ σ < γ, < γ < 2. Thus, 

λ 2 n (u -I N (tn) u)(t n , λ n • +x n ) Ḣσ = λ σ n P ≥N (tn) u(t n ) Ḣσ λ σ n N (t n ) σ-γ P ≥N (tn) u(t n ) Ḣγ Λ(t n ) -σ 2 Λ(t n ) (σ-γ)a(γ) 2(2-γ) P ≥N (tn) u(t n ) H γ Λ(t n ) 1-σ 2 + (σ-γ)a(γ) 2(2-γ) . ( 7 
λ 2 n (u -I N (tn) u)(t n , λ n • +x n ) H ã(γ)-→ 0, ( 7 
λ 2 n u(t n , λ n • +x n ) U weakly in H ã(γ)-(R 4 ),
as n → ∞. The proof is complete. 

Proof of Theorem

|u(t, x)| 2 dx ≥ Q 2 L 2 .
The proof is complete.

Proof of Theorem 7.1.3 We firstly recall the following variational characterization of the solution to the ground state equation (7.0.3). Note that the uniqueness up to translations in space, phase and dilations of solution to this ground state equation is assumed here. Lemma 7.1.9 (Variation characterization of the ground state [START_REF] Zhu | Limiting profile of the blow-up solutions for the fourthorder nonlinear Schrödinger equation[END_REF]).

If v ∈ H 2 (R d ) is such that v L 2 = Q L 2 and E(u) = 0, then v is of the form v(x) = e iθ λ d 2 Q(λx + x 0 ),
for some θ ∈ R, λ > 0 and x 0 ∈ R d , where Q is the unique solution to the ground state equation (7.0.3). Using the notation in the proof of Theorem 7.1.1 and the assumption ψ

L 2 = Q L 2 , we have v n L 2 ≤ ψ L 2 = Q L 2 ≤ U L 2 . Sine v n (• + x n ) U weakly in L 2 (R 4 
), the semi-continuity of weak convergence implies

U L 2 ≤ lim inf n→∞ v n L 2 ≤ Q L 2 .
Thus,

U L 2 = Q L 2 = lim n→∞ v n L 2 . (7.1.21)
Hence up to a subsequence

v n (• + x n ) → U strongly in L 2 (R d ), (7.1.22) 
as n → ∞. On the other hand, using (7.1.15), the Gagliardo-Nirenberg inequality (7.0.4) implies

v n (• + x n ) → U strongly in L 4 (R 4 
). Indeed, by (7.1.15),

v n (• + x n ) -U 4 L 4 ψ(• + x n ) -U 2 L 2 ∆(v n (• + x n ) -U 2 L 2 ( ∆Q L 2 + ∆U L 2 ) 2 ψ(• + x n ) -U 2 L 2 → 0,
as n → ∞. Moreover, using (7.1.16) and (7.1.21), the sharp Gagliardo-Nirenberg inequality (7.0.4) also gives 

∆Q 2 L 2 = 1 2 U 4 L 4 ≤ U L 2 Q L 2 2 ∆U 2 L 2 = ∆U 2 L 2 , or ∆Q L 2 ≤ ∆U L 2 .
(• + x n ) U weakly in H 2 (R 4 ), we conclude that v n (• + x n ) → U strongly in H 2 (R 4 ). In particular, E(U ) = lim n→∞ E(v n ) = 0,
as n → ∞. This shows that there exists U ∈ H 2 (R 4 ) satisfying

U L 2 = Q L 2 , ∆U L 2 = ∆Q L 2 , E(U ) = 0.
Applying the variational characterization given in Lemma 7.1.9, we have (taking λ = 1),

U (x) = e iθ Q(x + x 0 ), for some (θ, x 0 ) ∈ R × R 4 . Hence λ 2 n I N (tn) u(t n , λ n • +x n ) → e iθ Q(• + x 0 ) strongly in H 2 (R 4 ),
as n → ∞. Using (7.1.19), we prove

λ 2 n u(t n , λ n • +x n ) → e iθ Q(• + x 0 ) strongly in H ã(γ)-(R 4 ),
as n → ∞. The proof is complete.

7.2 Blowup for the focusing mass-critical nonlinear fourthorder Schrödinger equation below the energy space when 5 ≤ d ≤ 7

In this section, we extend the results of [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF] to higher dimensions d ≥ 5. Since we are working with low regularity data, the energy argument does not work. In order to overcome this problem, we make use of the I-method. Due to the high-order term ∆ 2 u, we require the nonlinearity to have at least two orders of derivatives in order to successfully establish the almost conservation law. We thus restrict to space of dimensions d = 5, 6, 7. Our main results are as follows. The proof of the above theorem is based on the combination of the I-method and the concentration compactness property given in Theorem 7.0.1 which is similar to those given in [START_REF] Visan | On the blowup for the L 2 -critical focusing nonlinear Schrödinger equation in higher dimensions below the energy class[END_REF] and [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF]. The key is to show that on intervals of local well-posedness, the modified energy E(Iu) is an "almost conserved" quantity and grows much slower than the modified kinetic energy ∆Iu 2 L 2 (R d ) . To do so, we need delicate estimates on the commutator between the I-operator and the nonlinearity. Note that when d = 4, the nonlinearity is algebraic, one can use the Fourier transform technique to write the commutator explicitly and then control it by multi-linear analysis. In our setting, the nonlinearity is not algebraic. Thus we can not apply the Fourier transform technique. Fortunately, thanks to a special Strichartz estimate (6.2.11), we are able to apply the technique given in [START_REF] Visan | On the blowup for the L 2 -critical focusing nonlinear Schrödinger equation in higher dimensions below the energy class[END_REF] to control the commutator. The concentration compactness property given in Theorem 7.0.1 is very useful to study the dynamical properties of blowup solutions for the nonlinear fourth-order Schrödinger equation. With the help of this property, Zhu-Yang-Zhang proved in [START_REF] Zhu | Limiting profile of the blow-up solutions for the fourthorder nonlinear Schrödinger equation[END_REF] the L 2 -concentration of blowup solutions and the limiting profile of minimalmass blowup solutions with non-radial data in H 2 (R d ). In [START_REF] Zhu | Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation[END_REF], they extended these results for non-radial data below the energy space in the fourth dimensional space.

As a consequence of Theorem 7.2. 

|u(t, x)| 2 dx ≥ R d |Q(x)| 2 dx,
where Q is the solution to the ground state equation (7.0.3). When the mass of the initial data equals the mass of the solution of the ground state equation (7.0.3), we have the following improvement of Theorem 7.2.1. Note that in the result below, we assume that there exists a unique solution to the ground state equation 

Modified local well-posedness

We firstly recall the local well-posedness in Sobolev spaces for (fNL4S) given in Theorem 5. The implicit constants depend only on the dimension d and the regularity γ.

We also have the following blowup rate which is essentially proven in Corollary 7.1.5. Corollary 7.2.5 (Blowup rate). Let d ≥ 5, 0 < γ < 2 and ψ ∈ H γ (R d ). Assume that the unique solution u to (fNL4S) blows up at time 0 < T * < ∞. Then, u(t) H γ (T * -t) -γ 4 , (7.2.1) for all 0 < t < T * . We next define for any spacetime slab J × R d , Z I (J) := sup (p,q)∈B ∆ Iu L p (J,L q ) .

Note that in our consideration d ≥ 5, for any admissible pair (p, q) ∈ B, we always have q < ∞.

Let us start with the following commutator estimates. Lemma 7.2.6. Let 5 ≤ d ≤ 7, 1 < γ < 2, 0 < δ < γ -1 and J a compact interval. Then Here we use (6.1.9) and the fact 2(d+8) d-4γ , 2d(d+8)

IF (u) L 2 (J,L 2d 
d 2 +4d+16γ
is biharmonic admissible to get the last estimate.

It remains to prove (7.2.4). We have from (6.2.17) and the triangle inequality that ∇IF (u)

L 2 (J,L 2d d+2 ) 
(∇Iu)F (u)

L 2 (J,L 2d d+2 ) 
+ N -(2-γ+δ) (Z I (J)) Iu L p (J,L q ) + sup (p,q)∈B ∆Iu L p (J,L q )

Iψ L 2 + IF (u) L 2 (J,L 2d d+4 ) 
+ ∆Iψ L 2 + ∇IF (u)

L 2 (J,L 2d d+2 
)

Iψ H 2 + IF (u) L 2 (J,L 2d d+4 ) 
+ ∇IF (u)

L 2 (J,L 2d d+2 ) 
.

We next use (6.2.16) and (6. By taking c = c(d, γ) small enough (or |J| is small) and N large enough, the continuity argument shows (7.2.10). The proof is complete. This estimate together with (7.2.12) proves (7.2.11). The proof is complete.

Modified energy increment

We next introduce some notations. We define Λ(t) := sup Here the implicit constants depend only on γ, T * and ψ H γ , and 0 < a(γ) < 2 is given by a(γ) := In order to make 0 < a(γ) < 2, we need    .

On the other hand, (v n ) n≥1 is bounded in H 2 (R d ). Indeed, 

v n L 2 = I N (tn) u(t n ) L 2 ≤ u(t n ) L 2 = ψ L 2 , ∆v n L 2 = λ 2 n ∆I N (tn) u(t n ) L 2 = ∆Q L 2 . ( 7 
|u(t, x)| 2 dx ≥ Q 2 L 2 .
The proof is complete.

Proof of Theorem 7.2.3 Note that the uniqueness up to translations in space, phase and dilations of solution to this ground state equation is assumed here. Using the notation in the proof of Theorem 7.2.1 and the assumption ψ L 2 = Q L 2 , we have

v n L 2 ≤ ψ L 2 = Q L 2 ≤ U L 2 .
Sine v n (• + x n ) U weakly in L 2 (R d ), the semi-continuity of weak convergence implies

U L 2 ≤ lim inf n→∞ v n L 2 ≤ Q L 2 .
Thus, 

U L 2 = Q L 2 = lim n→∞ v n L 2 . ( 7 
v n (• + x n ) -U 2+ 8 d L 2+ 8 d ψ(• + x n ) -U 8 d L 2 ∆(v n (• + x n ) -U 2 L 2 ( ∆Q L 2 + ∆U L 2 ) 2 ψ(• + x n ) -U 8 d L 2 → 0,
as n → ∞. Moreover, using (7.2.24) and (7.2.29), the sharp Gagliardo-Nirenberg inequality (7.0.4) also gives

∆Q 2 L 2 = 1 1 + 4 d U 2+ 8 d L 2+ 8 d ≤ U L 2 Q L 2 8 d ∆U 2 L 2 = ∆U 2 L 2 ,
or ∆Q L 2 ≤ ∆U L 2 . By the semi-continuity of weak convergence and (7. R×R d e -i(tτ +x•ξ) u(t, x)dxdt.

When b = 0, X γ,0 = L 2 t H γ x , when h ≡ 0, X γ,b = H b t H γ x and when γ = b = 0, X 0,0 = L 2 t L 2

x . We now recall some basic properties of X γ,b -space. Proposition A.2.2. Let γ, b ∈ R. The Bourgain space X γ,b satisfies the following properties: .

i. X s,b is a Banach space. ii. If γ 1 ≤ γ 2 and b 1 ≤ b 2 , then X γ2,b2 ⊂ X γ1,b1 . iii. u X γ,b h(ξ) = u X γ,b -h(-ξ) . iv. (X γ,b h(ξ) ) = X -γ,-b -h(-ξ) . v. Let γ 1 ≤ γ ≤ γ 2 , b 1 ≤ b ≤ b 2 be such that γ = θγ 1 + (1 -θ)γ 2 , b = θb 1 + (1 -θ)b 2 for some θ ∈ [0, 1]. If u ∈ X γ1,b1 ∩ X γ2,b2 , then u ∈ X γ,b . In particular, u X γ,b ≤ u θ X γ 1 ,b 1 u 1-θ X γ 2 ,b 2 .
Since S t,x is dense in X γ,b , the bilinear functional B can be extended to X -γ,-b -h(-ξ) × X γ,b h(ξ) . Now let L ∈ (X γ,b h(ξ) ) , i.e. a linear functional on X γ,b h(ξ) . Consider

L γ,b : L 2 τ L 2 ξ → C f → L, F -1 ( τ -h(ξ) -b ξ -γ f ) .
We then have sup

f L 2 τ L 2 ξ =1 | L γ,b , f | = sup f L 2 τ L 2 ξ =1 L, F -1 ( τ -h(ξ) -b ξ -γ f ) = sup ϕ X γ,b h(ξ) =1 | L, ϕ | = L (X γ,b h(ξ) ) .
Here This shows (iv). (v) It follows from that

ϕ = F -1 ( τ -h(ξ) -b ξ -γ f ) and ϕ X γ,b h(ξ) = f L 2 τ L 2 ξ =
u X γ,b = τ -h(ξ) b ξ γ ũ L 2 τ L 2 ξ ≤ τ -h(ξ) θb1 ξ θγ1 |ũ| θ L 2/θ τ L 2/θ ξ τ -h(ξ) (1-θ)b2 ξ (1-θ)γ2 |ũ| (1-θ) L 2/(1-θ) τ L 2/(1-θ) ξ ≤ τ -h(ξ) b1 ξ γ1 ũ θ L 2 τ L 2 ξ τ -h(ξ) b2 ξ γ2 ũ 1-θ L 2 τ L 2 ξ = u θ X γ 1 ,b 1 u 1-θ X γ 2 ,b 2 .
(vi) We note that F(e -ith(D) u)(τ, ξ) = e -i(tτ +x•ξ) e -ith(D) u(t, x)dtdx = e -itτ e -ith(ξ) û(t, ξ)dt = ũ(τ + h(ξ), ξ).

This implies that

e -ith(D) u H b t H γ x = τ b ξ γ F(e -ith(D) u)(τ, ξ) L 2 τ L 2 ξ = τ b ξ γ ũ(τ + h(ξ), ξ) L 2 τ L 2 ξ = τ -h(ξ) b ξ γ ũ(τ, ξ) L 2 τ L 2 ξ = u X γ,b .
The proof is complete. By definition, we have

ψ(t)e ith(D) u 0 X γ,b = τ -h(ξ) b ξ γ F(ψ(t)e ith(D) u 0 ) L 2 τ L 2 ξ = τ -h(ξ) b ξ γ ψ(τ -h(ξ))û 0 (ξ) L 2 τ L 2 ξ ξ γ û0 (ξ) L 2 ξ = u 0 H γ x .
Here we use the fact that ψ is rapidly decreasing, hence Taking Y -norm and using Minkowski's inequality and the hypothesis on Y , we obtain The result then follows.

τ -h(ξ) 2b |ψ(τ -h(ξ))| 2 dτ < ∞.
u Y R f (τ ) H γ x dτ ≤ τ -b L 2 τ R τ 2b f (τ ) 2 H γ x dτ 1/2 R τ 2b f (τ ) 2
Corollary A.2.5. Let b > 1/2, γ ∈ R. Then for any u ∈ X γ,b , we have

u C 0 t H γ x b u X γ,b .
Proof. Applying Lemma A.2.4 for Y = C 0 t H γ x , we immediately have the desired estimate. Corollary A.2.6. Let b > 1/2 and (p, q) be a Schrödinger admissible pair and let h(ξ) = |ξ| σ with σ ∈ (0, 2]\{1}. Then u L p t L q x u X γp,q ,b ,

where γ p,q = d 2 - d q - σ p .
Proof. We firstly recall Strichartz estimates for e ith (D) with h(ξ) = |ξ| σ , σ ∈ (0, 2]\{1} (see Corollary 1.1.4), e ith(D) f L p t L q x f H γp,q

x . Note that when σ ∈ (2, ∞), the above estimate holds locally in time. We then apply Lemma A.2.4 with Y = L p t L q x . Note that the space L p t L q x is invariant under multiplication by phases such as e itτ . Lemma A.2.7. Let b 1 , b 2 > 1/2, γ 1 , γ 2 ∈ R and Y be a Banach space of functions on R × R d with the following property that [e itτ e ith(D) f 1 ][e itζ e ith (D) 

f 2 ] Y f 1 H γ 1 x f 2 H γ 2 x , for all f 1 ∈ H γ1 x , f 2 ∈ H γ2
x and all τ, ζ ∈ R. Then we have

u 1 u 2 Y b1,b2 u 1 X γ 1 ,b 1 u 2 X γ 2 ,b 2 ,
for all u 1 , u 2 ∈ S t,x .

Proof. The proof is similar to the one of Lemma A.2.4. Set f 1 (τ ) := F t (e -ith(D) u 1 (t)), f 2 (ζ) := F t (e -ith(D) u 2 (t)).

We see that u 1 (t) = 1 2π e ith(D) e itτ f 1 (τ )dτ, u 2 (t) = 1 2π e ith(D) e itζ f 2 (ζ)dζ.

Thus

u 1 u 2 Y f 1 (τ ) H γ 1 x dτ f 2 (ζ) H γ 2 x dζ τ b1 L 2 τ τ 2b1 f 1 (τ ) 2 H γ 1 x dτ 1/2 ζ b2 L 2 ζ ζ 2b2 f 2 (ζ) 2 H γ 2 x dζ 1/2 e -ith(D) u 1 H b 1 t H γ 1 x e -ith(D) u 2 H b 2 t H γ 2 x = u 1 X γ 1 ,b 1 u 2 X γ 2 ,b 2 .
This completes the proof.

A direct application of localized bilinear estimate given Theorem A. Moreover, if 0 < δ ≤ 1, then ψ δ (t)u X γ,b δ -|b| u X γ,b , where ψ δ (t) = ψ(t/δ). In the case b > 1/2, we have the following improvement

ψ δ (t)u X γ,b δ 1/2-b u X γ,b .
Proof. Let us firstly understand how the X γ,b -space behave with respect to temporal frequency modulation u(t, x) → e itτ0 u(t, x). Note that F(e itτ0 u)(τ, ξ) = ũ(τ -τ 0 , ξ).

By definition, a simple change of variable and Peetre's inequality, we have

e itτ0 u X γ,b = τ + τ 0 -h(ξ) b ξ γ ũ L 2 τ L 2 ξ b τ 0 |b| τ -h(ξ) b ξ γ ũ L 2 τ L 2 ξ = τ 0 |b| u X γ,b .
By writting ψ(t) = ψ(τ 0 )e itτ0 dτ 0 , and use Minkowski's inequality, we have

ψ(t)u X γ,b b | ψ(τ 0 )| τ 0 |b| dτ 0 u X γ,b .
Since ψ is rapidly decreasing, the first claim follows. Similarly, we have

ψ δ (t)u X γ,b b | ψδ (τ 0 )| τ 0 |b| dτ 0 u X γ,b .
Using that ψδ (τ ) = δ ψ(δτ ), a change of variable and that δ -1 τ 0 ≤ δ -1 τ 0 , we obtain

ψ δ (t)u X γ,b b δ -|b| u X γ,b .
This proves the second claim. In the case b > 1/2, we have Let us consider the first term. The Cauchy-Schwarz inequality gives

ψ δ (t
I H b t ≤ k≥1 1 k! t k ψ δ H b t δ 1-k g H -b t |δτ |≤1 τ 2b dτ 1/2 .
Using that t k ψ δ (t) = δ k ϕ k (t/δ) where ϕ k (t) = t k ψ(t), we have

t k ψ δ H b t = δ k ϕ k (t/δ) H b t = δ k R τ 2b δ 2 | φk (δτ )| 2 dτ 1/2 δ k δ 1/2-b ϕ k H b t .
We also have

|δτ |≤1 τ 2b dτ = |τ |≤1
δ -1 τ 2b δ -1 dτ δ -1-2b .

We then have

I H b t k≥1 1 k! δ k δ 1/2-b δ 1-k g H -b t δ -1/2-b δ 1-(b+b ) g H -b t .
For the second term, we use a same argument to have consider u λ (t, x) = u(λ -2 t, λ -1 x). It is easy to see that if u solves (A.3.1), then u λ also satisfies (A.3.1) with initial data u λ (0). By change of variable, we have

II
u λ v λ 2 L 2 (R,L 2 ) = R×R d |u λ (t, x)v λ (t, x)| 2 dtdx = λ 2+d uv 2 L 2 (R,L 2 ) .
We also have u λ (0)(ξ) = λ d ψ(λξ) and then

u λ (0) 2 Ḣγ 1 = R d ξ |ξ| 2γ1 | u λ (0)(ξ)| 2 dξ = λ d-2γ1 ψ 2 Ḣγ 1 .
A similar equality holds for v λ (0) Ḣγ 2 . Therefore,

u λ v λ 2 L 2 (R,L 2 ) = λ 2+d uv 2 L 2 (R,L 2 ) λ 2+d ψ 2 Ḣγ 1 φ 2 Ḣγ 2 = λ 2+d λ -d+2γ1 λ -d+2γ2 u λ (0) 2 Ḣγ 1 v λ (0) 2 Ḣγ 2 = λ 2-d+2(γ1+γ2) u λ (0) 2 Ḣγ 1 v λ (0) 2 Ḣγ 2 .
This shows that γ 1 + γ 2 = d/2 -1 as required. We will prove (A.3.12) with γ 1 = (d -1)/2 -δ and γ 2 = -1/2 + δ. The estimate (A.3.12) may be recast using duality and renormalization as

R d ×R d F (|ξ| 2 + |η| 2 , ξ + η)|ξ| -γ1 ψ(ξ)|η| -γ2 φ(η)dξdη F L 2 τ L 2 ξ ψ L 2 ξ φ L 2 ξ .
Since γ 1 ≥ γ 2 , we may restrict attention to the interactions with |ξ| ≤ |η|. The remaining case can be reduced to the case under consideration by multiplying by (|ξ|/|η|) γ1-γ2 ≥ 1. Moreover, we may further restrict attention to the case |ξ| |η| since, in the other case, we can move the frequencies between the two factors and reduce to the case where γ 1 = γ 2 , which can be treated by L 4 (R, L 4 ) Strichartz estimates when d ≥ 2. Next, we decompose |η| dyadically and |ξ| in dyadic multiplies of the size of |η| by rewriting the quantity to be controlled as (K, N dyadic): We apply Cauchy-Schwarz inequality and change back to the original variables to get LHS(A.3.13)

≤ K K -γ2 P K F L 2 τ L 2 ξ N ≤1 (N K) -γ1 × R d-1 R×R d | P N K ψ(ξ)| 2 | P K φ(η)| 2 J -2 dτ dζ 1/2 dξ ≤ K K -γ2 P K F L 2 τ L 2 ξ N ≤1 (N K) -γ1+(d-1)/2 × R d-1 ×R×R d | P N K ψ(ξ)| 2 | P K φ(η)| 2 J -2 dτ dζdξ 1/2

  s), b l (s)), where b 0 (s) = ∂ s S(s)a 0 (s), b l (s) = ∂ s S(s)a l (s) + D s a l-1 (s), l = 1, ..., N -1, b N (s) = D s a N -1 (s).

  and |α l | ≥ 2 for all l = 1, • • • , k and |β| = j. In particular,(b c) 0 (x, ξ) = b(x, ∇ x S(x, ξ))c(x, ξ), i(b c) 1 (x, ξ) = ∇ ξ b(x, ∇ x S(x, ξ)) • ∇ x c(x, ξ) + 1 2 tr(∇ 2 ξ b(x, ∇ x S(x, ξ)) • ∇ 2x S(x, ξ))c(x, ξ).

2 ) when d ≥ 4 ,( 4 ,( 4 ,

 444 where p = 2p/(p -2) and 2 = 2(d -1)/(d -3). We thus choose for σ ∈ (0∞) if d = 1, (p, p ) if d = 2, (2, 2 ) if d ≥ 3,and for σ = 1,(p, q) =   ∞) if d = 2, (p, p ) if d = 3, (2, 2 ) if d ≥ 4.

±i πd 4 |4πt| d 2 e

 42 e. σ = 2, More precisely, one can compute the Schwartz kernel of the Schrödinger group e -it∆ e -it∆ ψ(x) = e -i |x-y| 2 4t ψ(y)dy, ± := sign of t.
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.0. 1 )

 1 where σ ∈ (0, ∞)\{1}, |∇ g | = -∆ g with ∆ g the Laplace-Beltrami operator associated to the metric g. Note that in (4.0.1) we consider the minus sign in front of |∇ g | σ which is different from the previous chapters. This irrelevant change is just for convenience to fit the usual construction of the Isozaki-Kitada parametrix.When M = R d and g = Id, i.e. the flat Euclidean space, the solution to (4.0.1) enjoys global in time Strichartz estimates (see Corollary 1.1.4),

4 . 2 ]

 42 (see Subsection 4.2.1), we split the high frequency term into two parts: inside and outside a compact set. Our first result concerns the global in time Strichartz estimates for the high frequency term inside a compact set. Theorem 4.0.1. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3)

.0. 14 ) 4 .0. 5 .

 1445 Remark Global in time Strichartz estimates for the homogeneous linear half-wave equation σ = 1 on asymptotically Euclidean manifolds d ≥ 3 under non-trapping condition were established by Sogge-Wang[START_REF] Sogge | Concerning the wave equation on asymptotically Euclidean manifolds[END_REF] by applying the result of Metcalfe-Tataru[START_REF] Metcalfe | Global parametrices and dispersive estimates for variable coefficient wave equations[END_REF]. The method presented in this chapter can be applied with a suitable modification to show Strichartz estimates for the half-wave equation on asymptotically Euclidean manifolds under non-trapping condition, and thus provides an alternative proof for global in time Strichartz estimates in the case σ = 1.Using the homogeneous Strichartz estimate (4.0.14) and the Christ-Kiselev Lemma, we get the following inhomogeneous Strichartz estimates. Proposition 4.0.6. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and assume that the geodesic flow associated to g is non-trapping. Let σ ∈ (0, ∞)\{1} and u be a4.1. Functional calculus and propagation estimates weak solution to the Cauchy problem

  .0.16) provided that (p, a) = (2, 2) and γ p,q = γ a ,b + σ. (4.0.17) Remark 4.0.7. 1. The homogeneous Strichartz estimates (4.0.14) and the Minkowski inequality imply

  .0.21) Remark 4.0.9. As in Remark 4.0.7, we have

  It is easy to see that D is a unitary map on L 2 and Op (a) = D Op(a)D -1 , (4.1.4) where D -1 u(x) = -d/2 u( -1 x) and Op(a) := Op 1 (a), i.e. h = 1 in (4.1.1). Thanks to (4.1.2), (4.1.3) and (4.1.4), the composition Op (a)Op (b) and the adjoint with respect to the Lebesgue measure Op (a) with a ∈ S(µ 1 , m 1 ) and b ∈ S(µ 2 , m 2 ) are given by

  1) and equal to 1 near infinity. Here B(0, 1) is the open unit ball in R d .

- 2 P 4 . 1 . 5 .

 2415 = Op (p ) + Op (p ,1 ). (4.1.5) Using the fact that p ∈ S(0, 2), p 1 ∈ S(-1, 1), Remark 4.1.4 allows us to construct the parametrix for the resolvent ζ( x)( -2 P -z) -k with ζ ∈ C ∞ (R d ) supported outside B(0, 1) and equal to 1 near infinity. Indeed, by writing ζ( x)( -2 P -z) -k = D ζ(x)(P -z) -k D -1 , we can apply the standard elliptic parametrix for ζ(x)(P -z) -k and we have (see e.g. [BT07] or [BM16]) the following result. Proposition Let ζ, ζ, ζ ∈ C ∞ (R d ) be supported outside B(0, 1) and equal to 1 near infinity such that ζ = 1 near supp(ζ) and ζ = 1 near supp( ζ). Then for all k, N ≥ 1 integers and z ∈ C\[0, +∞), we have for ∈ (0, 1],

Proposition 4 . 1 . 7 .

 417 Consider R d equipped with a smooth metric g satisfying (4.0.2) and (4.0.3). Let φ ∈ C ∞ 0 (R) and ζ, ζ, ζ be as in Proposition 4.1.5. Then there exists a sequence of bounded families of symbols

.1. 15 )

 15 The high frequency resolvent estimates(4.1.14) are given in [BM16, Proposition 7.5] and the low frequency resolvent estimates (4.1.15) are given in [BR15, Theorem 1.2]. Note that under the non-trapping condition, the estimates (4.1.14) hold with N k = k + 1 (see e.g. [Rob94, Theorem 2.8]). We next use the resolvent estimates given in Proposition 4.1.10 to have the following resolvent estimates for the Schrödinger-type operator. Proposition 4.1.11. Let σ ∈ (0, ∞).

Proposition 4 . 2 . 11 .

 4211 Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3).

.3. 5 )

 5 Proof. The homogeneous estimates (4.3.4) follow directly from Proposition 4.3.2 and Proposition 4.3.3 with T (t) = ϕ(h 2 P )e -ith -1 (h|∇g|) σ . It remains to prove the inhomogeneous estimates (4.3.5).

  ξ satisfy the properties of Proposition 4.4.1, where x, ξ = x • ξ. Construction of the parametrix. Let us firstly consider the high frequency case (4.4.1).

  g. [Rob87, Theorem IV-19], [Bouc00, Appendix] or [RS11]). Proposition 4.4.4. Let a ∈ S(µ 1 , -∞) and b ∈ S(µ 2 , -∞) and S satisfy (4.4.6) and (4.4.

Lemma 4 . 4 . 7 . 1 0∇

 4471 Let S + R := S + 1,R be as in Proposition 4.4.1. For x, y, ξ ∈ R d , we define η + (R, x, y, ξ) := x S + R (y + λ(x -y), ξ)dλ. (4.4.22)

4 . 4 . 9 .

 449 This is possible by writing for R large enough J (b ) = ζ( x)J (b ) and taking the adjoint. We have the following Isozaki-Kitata parametrix for the Schrödinger-type equation at low frequency. Theorem Let σ ∈ (0, ∞), ζ ∈ C ∞ (R d ) be supported outside B(0, 1) and equal to 1 near infinity. Fix J 4 (0, +∞) open interval containing supp(f ) and -1 < τ 4 < 1.

1 .

 1 get many negative powers of |∇ ξ Φ ± | as we wish and estimate as in (4.4.44). Combine two terms and Schur's lemma, we have (4.4.42) for m = 0. For m ≥ 1, we can do the same with ∂ α x ∂ β y K ± h (s, x, y) with |α| ≤ m, |β| ≤ m. This completes the proof. Combining Lemma 4.4.12 and Lemma 4.4.13, we have the following result. Proposition 4.4.14. Using the notations given in Theorem 4.4.8, for all 0 ≤ m ≤ d + 1 and all N large enough, we can write for k = 2, 3, 4,

Proposition 4 . 4 . 15 .

 4415 Let σ ∈ (0, ∞), f ∈ C ∞ 0 (R\{0}), J 4(0, +∞) be an open interval and -1 < τ 4 < 1.

  is supported outside B(0, 1) satisfying ζ 1 (x) = 1 for |x| > R 4 . This is possible since Op (χ + ) = ζ 1 ( x)Op (χ + ). The factors ζ( x)Op (χ + ) and ζ 1 ( x)f 2 ( -2 P ) are bounded in L(L ∞ ) by the rescaled pseudo-differential operator and Corollary 4.1.8 respectively. Thanks to the L(L ∞ )-bound of A + and (4.4.29), we have dispersive estimates for the main terms. It remains to prove dispersive estimates for remainder terms. By rescaled pseudo-differential calculus, we can write for l > d/2,
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 51 Local well-posedness in the case σ ∈ (0, 2)\{1} . . . . . . . . . . . . . . . . 110 5.1.1 Local well-posedness in the subcritical case . . . . . . . . . . . . . . . . . . 110 5.1.2 Local well-posedness in the critical case . . . . . . . . . . . . . . . . . . . . 114 5.2 Local well-posedness in the case σ = 1 . . . . . . . . . . . . . . . . . . . . 117 5.2.1 Local well-posedness in the subcritical case . . . . . . . . . . . . . . . . . . 117 5.2.2 Local well-posedness in the critical case . . . . . . . . . . . . . . . . . . . . 119 5.3 Local well-posedness in the case σ ∈ [2, ∞) . . . . . . . . . . . . . . . . . . 121

  Another consequence of the fractional Leibniz rule given in Proposition 5.0.1 is the following result. Corollary 5.0.4. Let F (z) be a homogeneous polynomial in z, z of degree ν ≥ 1. Then (5.0.7) and (5.0.8) hold true for any γ ≥ 0 and r, p, q as in Corollary 5.0.3. Corollary 5.0.5. Let F

  and use the fractional Leibniz rule given in Proposition 5.0.1. Then the results follow by applying the fractional derivative estimates given in Corollary 5.0.3 and Corollary 5.0.4.

  provided that (a, b) is Schrödinger admissible and b < ∞. This shows the boundedness of u n in L a (I, H γ-γ a,b b

Theorem 5 . 1 . 4 .

 514 Let σ ∈ (0, 2)\{1} and ν > 5 when d = 1, ν > 3 when d ≥ 2

Theorem 5 . 2 . 2 .

 522 Let ν > 5 when d = 2, ν > 3 when d ≥ 3, (5.2.5)

  3.8) implies that u n → u in L a ([0, T ], L b ) for any Schrödinger admissible pair (a, b) with b < ∞ and γ a,b = 0.

Step 3 .

 3 Item i. It follows easily from Step 1 and Strichartz estimate (1.1.16) that for any Schrödinger admissible pair (a, b) with b < ∞ and γ a,b = 0,
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  in the context of nonlinear Schrödinger equation. Later, Miao-Wu-Zhang studied the defocusing cubic fourth-order Schrödinger equation, namely i∂ t u + ∆ 2 u + |u| 2 u = 0, and proved the global well-posedness and scattering in H γ (R d ) with γ(d) < γ < 2 where γ(5) = 16 11 , γ(6) = 16 9 and γ(7) = 45 23 . The proof relies on the combination of I-method and a new interaction Morawetz inequality.

Theorem 6 . 1 . 1 .

 611 Let d = 4. The initial value problem (dNL4S) is globally well-posed in H γ (R 4 ) for any 2 > γ > γ := 60 53 . Moreover, the solution satisfies u(T ) H γ (R 4 ) ≤ C(1 + T ) 15(2-γ) 53γ-60 + , for |T | → ∞, where the constant C depends only on ψ H γ (R 4 ) .

.1. 15 )

 15 Here X γ,b δ is the space of restrictions of elements of X γ,b endowed with the normu X γ,b δ := inf{ w X γ,b | w |[0,δ]×R 4 = u}.(6.1.16)

  .1.18) where ψ δ (t) := ψ(δ -1 t) provided 0 < δ ≤ 1 and0 < b < 1/2 < b, b + b < 1. (6.1.19)

4 ( ∇ γ w 1 )w 2 w 3 w 4 dtdx w 1

 411 .24) for all γ ∈ [γ, 2]. By duality and the Leibniz rule, (6.1.24) follows from R×R X γ,b w 2 X γ,b w 3 X γ,b w 4 X 0,b . (6.1.25) Note that the last term is written more precisely as w 4 X 0,b τ =-|ξ| 4

4 j=1ξj

 4 =0 denotes the integration with respect to the hyperplane's measure δ 0 (ξ 1 + ...+ ξ 4 )dξ 1 ...dξ 4 . Using that iI∂ t u = -∆ 2 Iu -I(|u| 2 u), we have |E(Iu(t)) -E(Iψ)| ≤ Term 1 + Term 2 , 2 , ξ 3 , ξ 4 ) ∆ 2 Iu(ξ 1 ) Iu(ξ 2 ) Iu(ξ 3 ) Iu(ξ 4 )dt , 2 , ξ 3 , ξ 4 ) I(|u| 2 u)(ξ 1 ) Iu(ξ 2 ) Iu(ξ 3 ) Iu(ξ 4 )dt , with µ(ξ 2 , ξ 3 , ξ 4 ) := 1 -m(ξ 2 + ξ 3 + ξ 4 )m(ξ 2 )m(ξ 3 )m(ξ 4 ) .

4 j=1 ξ j = 0 .

 40 Case 1. N M 2 . In this case, we have |ξ 2 |, |ξ 3 |, |ξ 4 | N and |ξ 2 + ξ 3 + ξ 4 | N , hence m(ξ 2 + ξ 3 + ξ 4 ) = m(ξ 2 ) = m(ξ 3 ) = m(ξ 4 ) = 1 and µ(ξ 2 , ξ 3 , ξ 4 ) = 0. Thus (6.1.26) holds trivially. Case 2. M 2 N M 3 ≥ M 4 . Since

4

 4 

6. 2

 2 Global well-posedness for the defocusing mass-critical NL4S below the energy space in dimensions 5 ≤ d ≤ 7.

Nonlinearity.

  Let F (z) := |z| 8 d z, d = 5, 6, 7 be the function that defines the nonlinearity in (dNL4S). The derivative F (z) is defined as a real-linear operator acting on w ∈ C by F (z) • w := w∂ z F (z) + w∂ z F (z

Lemma 6 . 2 . 10 .L 2 (M

 62102 Let 5 ≤ d ≤ 7, 1 < γ < 2 and 0 < δ < γ -1. Then ∇IF (u) -(I∇u)F (u) (J) Z I (J) + N -(2-γ+δ) (Z I (J)) 1+ 8d , (6.2.17)

4 γ H γ . Corollary 7 . 1 . 5 (

 4715 3.1 with σ = 4). Proposition 7.1.4 (Local well-posedness). Let 0 < γ < 2 and ψ ∈ H γ (R 4 ). Then the equation (fNL4S) is locally well-posed on [0, T lwp ] withT lwp ∼ ψ -Blowup criterion). Let 0 < γ < 2 and ψ ∈ H γ (R 4). Assume that the unique solution u to (fNL4S) blows up at time 0 < T * < ∞. Then,

.1. 6 ) 7 )

 67 we have|E(I N (T ) u(T ))| Λ(T ) a(γ) . (7.1.Here the implicit constants depend only on γ, T * and ψ H γ , and 0 < a(γ) < 2 is given by a(γ) := 2(2 -γ)

.1. 9 )

 9 uniformly in t provided that [t, t + δ] ⊂ [0, T ]. We split [0, T ] into O(T /δ) subintervals and apply Proposition 7.1.7 on each of these intervals together with (7.1.9) to have for 60 53 < γ < 2, sup t∈[0,T ] |E(I N (T ) u(t))| |E(I N (T ) ψ)| + T δ N (T ) -46 15 + Σ 4 (T ) + Σ 6 (T ) |E(I N (T ) ψ)| + N (T ) -46 15 + Σ 4+ 4 γ (T ) + Σ 6+ 4 γ (T ) . (7.1.10) Using (6.1.10), we see that Σ(T ) N (T ) 2-γ Λ(T ). (7.1.11)

  .1.16) as n → ∞. Applying Theorem 7.0.1 to the sequence (v n ) n≥1 with M = ∆Q L 2 and m =

Theorem 7 . 2 . 1 . 8 ,

 7218 Let d = 5, 6, 7 and ψ ∈ H γ (R d ) with 56-3d+√ 137d 2 +1712d+3136 2(2d+32) < γ < 2.If the corresponding solution to the (fNL4S) blows up in finite time 0 < T * < ∞, then there exists a functionU ∈ H 2 (R d ) such that U L 2 (R d ) ≥ Q L 2 (R d ) and there exist sequences (t n , λ n , x n ) n≥1 ∈ R + × R + * × R d satisfying t n T * as n → ∞ and λ n (T * -t n ) γ ∀n ≥ 1such that λ

d 2 n

 2 u(t n , λ n • +x n ) U weakly in H a(d,γ)-(R d ) as n → ∞, where a(d, γ) := 4dγ 2 + (2d + 48)γ + 16d 16d + (56 -3d)γ -16γ 2 ,and Q is the solution of the ground state equation (7.0.3).

7 . 2 . 3 . 8 , ∀n ≥ 1 such that λ d 2 n

 72382 (7.0.3) which is a delicate open problem. Theorem Let d = 5, 6, 7 and ψ ∈ H γ (R d ) with 56-3d+√ 137d 2 +1712d+3136 2(2d+32) < γ < 2 be such that ψ L 2 (R d ) = Q L 2 (R d ) .If the corresponding solution u to the (fNL4S) blows up in finite time 0 < T * < ∞, then there exist sequences (t n , e iθn , λ n , x n) n≥1 ∈ R + × S 1 × R + * × R d satisfying t n T * as n → ∞ and λ n (T * -t n ) γ e iθn u(t n , λ n • +x n ) → Q strongly in H a(d,γ)-(R d ) as n → ∞, where a(d, γ) := 4dγ 2 + (2d + 48)γ + 16d 16d + (56 -3d)γ -16γ 2 ,and Q is the unique solution to the ground state equation (7.0.3).

3 .1 with σ = 4 . 7 . 2 . 4 ( 4 γ

 347244 Proposition Local well-posedness). Let d ≥ 5, 0 < γ < 2 and ψ ∈ H γ (R d ). Then the equation (fNL4S) is locally well-posed on [0, T lwp ] withT lwp ∼ ψ -H γ . Moreover, sup (a,b)∈B u L a ([0,T lwp ],W γ,b ) ψ H γ .

8 d

 8 d-4γ , 2d(d+8) d 2 +4d+16γ is biharmonic admissible. Since F (u) = O(|u| I (J))

  2.18) to haveZ I (J) Iψ H 2 + |J| 2γ d + N -(2-γ+δ) (Z I (J)) 1+ 8 d .

Proposition 7 . 2 . 9 (√ 2 .

 7292 0≤s≤t u(s) H γ , Σ(t) := sup 0≤s≤t I N u(s) H 2 . (7.2.13) Increment of the modified energy). Let 5 ≤ d ≤ 7 and 56-3d+ Let ψ ∈ H γ (R d ) be such that the corresponding solution u to (fNL4S) blows up at time 0 < T * < ∞. Let 0 < T < T * . Then for N (T ) ∼ Λ(T ) a(γ) 2(2-γ) , (7.2.14) we have |E(I N (T ) u(T ))| Λ(T ) a(γ) .

2 2 + 16 d + 4 γ ( 2 -γ) 8 d - 1 -( 2 - 8 d + 4 γ 4 γ,L 2 2 L 2 N

 42812844222 Let τ := cΣ(T ) -4 γ for some constant c = c(d, γ) > 0 small enough. For N (T ) sufficiently large, Proposition 7.2.7 shows the local existence and the unique solution satisfiesZ I N (T ) ([t, t + τ ]) I N (T ) u(t) H 2 Σ(T ), uniformly in t provided that [t, t + τ ] ⊂ [0, T ]. We next split [0, T ] into O(T /τ )subintervals and apply Lemma 7.2.8 on each of these intervals to have sup t∈[0,T ] |E(I N (T ) u(t))| |E(I N (T ) ψ)| + T τ N (T ) -(2-γ+δ) Σ(T ) 2+ 8 d + Σ(T ) 2+ 16 d (7.2.16) |E(I N (T ) ψ)| + N (T ) -(2-γ+δ) Σ(T ) 2+ + Σ(T ) 2+ 16 d + (7.2.17) for max 3 -8 d , 8 d < γ < 2 and 0 < δ < γ + 8 d -3. Next, by (6.1.10), we have Σ(T ) N (T ) 2-γ Λ(T ). (7.2.18) Moreover, the Gagliardo-Nirenberg inequality (7.0.4) together with (6.1.11) imply |E(I N (T ) ψ)| ∆I N (T ) ψ 2 L 2 + I N (T ) ψ ∆I N (T ) ψ 2 L 2 + I N (T ) ψ 8 d ∆I N (T ) ψ (T )

8 d + 4 γ 8 d + 4 γ+ 4 γ 4 γ 4 γ( 2 - 4 γ.Since 2 -γ + δ < 8 d - 1 8 d - 1 -( 2 -

 848444424281812 sup t∈[0,T ] |E(I N (T ) u(t))| N (T ) 2(2-γ) + N (T ) -(2-γ+δ)+(2-γ)(2+ ) Λ(T ) 2+ N (T ) -(2-γ+δ)+(2-γ)(2+ 16 d + ) Λ(T ) 2+ 16 d + . (7.2.20)Optimizing (7.2.20), we observe that if we takeN (T ) 2(2-γ) ∼ N (T ) -(2-γ+δ)+(2-γ)(2+ 16 d + N (T ) u(t))| N (T ) 2(2-γ) ∼ Λ(T ) γ + δ) -(2 -γ) 16 d +

A. 2 2 τ L 2 ξ

 222 2.23), ∆U L 2 ≤ lim inf n→∞ ∆v n L 2 = ∆Q L 2 . Bourgain X γ,b spacesIn this appendix, we recall some basic properties of Bourgain spaces X γ,b which are used in Subsection 6.1. Definition A.2.1 (X γ,b -space). Let h : R d → R be a continuous function, and let γ, b ∈ R. The space X γ,b h(ξ) (R × R d ), abbreviated X γ,b is defined to be the closure of the Schwartz spaceS t,x (R × R d ) under the norm u X γ,b h(ξ) (R×R d ) := τ -h(ξ) b ξ γ ũ(τ, ξ) L (R×R d ) ,where ũ (or F(u)) is the space time Fourier transform ũ(τ, ξ) := (2π)-(d+1) 

  vi. (X γ,b vs H b t H γ x ) e -ith(D) u H b t H γ x = u X γ,b . Proof. (i) The completeness of X γ,b follows from the completeness of L 2 τ L 2 ξ . (ii) It is obvious by the definition. (iii) A direct computation shows ũ(τ, ξ) = ũ(-τ, -ξ).By definition and a simple change of variables, we have (iii). (iv) This follows from the fact that the bilinear functionalB : S t,x × S t,x (φ, ϕ) → φ, ϕ L 2 t L 2 x := R×R d φ(t, x)ϕ(t, x)dtdx ∈ C can be extended to a continuous bilinear functional on X -γ,-b -h(-ξ) × X γ,b h(ξ) . We also have that if L is a continuous linear functional on X γ,b h(ξ) , then there exists a unique u ∈ X -γ,-b -h(-ξ) such that ∀ϕ ∈ X γ,b h(ξ) , L, ϕ = B(u, ϕ). Moreover, L (X γ,b h(ξ) ) = u X -γ,-b -h(-ξ).Indeed, by Parseval's identity and Cauchy-Schwarz inequality, we haveR×R d φ(t, x)ϕ(t, x)dtdx ∼ R×R d φ(-τ, -ξ) φ(τ, ξ)dτ dξ ∼ R×R d τ -h(ξ) -b ξ -γ φ(-τ, -ξ) τ -h(ξ) b ξ γ φ(τ, ξ)dτ dξ φ X -γ,-b -h(-ξ) ϕ X γ,b h(ξ)

1 .

 1 The Riesz representation theorem then implies that there existsg ∈ L 2 τ L 2 ξ such that ∀h ∈ L 2 τ L 2 ξ , L γ,b , h = B(g, h). Now define u := F( τ -h(ξ) b ξ γ g).It is easy to see that u ∈ X -γ,-b -h(-ξ) . This shows that for all ϕ ∈ S t,x ,B(u, ϕ) = F -1 u(τ, ξ) φ(τ, ξ)dτ dξ = g(τ, ξ) τ -h(ξ) b ξ γ φ(τ, ξ)dτ dξ = L γ,b , τ -h(ξ) b ξ γ φ = L, ϕ .

Lemma A. 2 . 3 .

 23 Let γ, b ∈ R and u 0 ∈ H γ x . Then for any ψ ∈ C ∞ 0 (R), ψ(t)e ith(D) u 0 X γ,b u 0 H γ x . Proof. A direct computation shows that F(ψ(t)e ith(D) u 0 )(τ, ξ) = ψ(τ -h(ξ))û 0 (ξ).

Lemma A. 2 . 4 .

 24 Let b > 1/2, γ ∈ R and Y be a Banach space of functions on R × R d with the following property that e itτ e ith(D) f Y f H γ x , for all f ∈ H γx and all τ ∈ R. Then we haveu Y b u X γ,b ,for all u ∈ S t,x .Proof. Set f (τ ) := F t (e -ith(D) u)(τ ). We haveu(t) = e ith(D) e -ith(D) u(t) = e ith(D) F -1 t F t (e -ith(D) u(t)) = 1 2π e ith(D) R e itτ F t (e -ith(D) u)(τ )dτ = 1 2π Re itτ e ith(D) f (τ )dτ.

2 τ 2 =

 22 is bounded since b > 1/2. Using the Parseval's identity, the right hand side of the above quantity can be written asR e -ith(D) u H b t H γ x = u X γ,b .

3 . 1 2 t L 2 x

 3122 and Theorem A.3.3 is the following result. Corollary A.2.8. Let σ ≥ 2 and d > σ/2 and h(ξ) = |ξ| σ . Let u 1 ∈ X 0,b1 , u 2 ∈ X 0,b2 with b 1 , b 2 > 1/2 be supported on spatial frequencies |ξ| ∼ M, N respectively. Then for M ≥ N , one has u 1 u 2 L b1,b2 M (d-1)/2 N -(σ-1)/2 u 1 X 0,b 1 u 2 X 0,b 2 . Lemma A.2.9. Let γ, b ∈ R and ψ a Schwartz function in time. Then ψ(t)u X γ,b u X γ,b .

2 ξ δ 1 / 2 -. 2 . 10 . 2 δ 1 / 2 -Lemma A. 2 . 11 . 0 e

 2122102122110 ψ δ (t)u X γ,b ≤ ψ δ H b t ξ γ e -ith(ξ) û H b t L b e -ith(D) u H γ x H b t = δ 1/2-b u X γ,b .This completes the proof.Lemma ALet γ, b ∈ R and ψ a Schwartz function in time. Then for all u 0 ∈ H γ x , ψ(t)e ith(D) u 0 X γ,b u 0 H γ x .Moreover, if b > 1/2 and 0 < δ ≤ 1, thenψ δ (t)e ith(D) u 0 X γ,b δ 1/2-b u 0 H γ x . Proof. We have from Item (vi) of Proposition A.2.2 that u X γ,b = e -ith(D) u H b t H γ x . This implies ψ(t)e ith(D) u 0 X γ,b = e -ith(D) ψ(t)e ith(D) u 0 H b t H γ x = ψ(t)u 0 H b t H γ x = ψ H b t u 0 H γ x u 0 H γ x .The second claim follows by using the fact thatψ δ H b t = τ b ψδ (τ ) L 2 τ = τ 2b | ψδ (τ )| 2 dτ 1/b ψ H b t . Let γ ∈ R, 0 < δ ≤ 1, 0 < b < 1/2 < b and b + b < 1.Let ψ be a Schwartz function in time. Thenψ δ (t) t-s)h(D) F (s)ds X γ,b δ 1-(b+b ) F X γ,-b .Proof. We firstly writeψ δ (t) t 0 g(s)ds = ψ δ (t) t 0 R e iτ s ĝ(τ )dτ ds = ψ δ (t) R t iτ s ds ĝ(τ )dτ = ψ δ (t) R e itτ -1 iτ ĝ(τ )dτ = ψ δ (t) k≥1 t k k! |δτ |≤1 (iτ ) k-1 ĝ(τ )dτ -ψ δ (t) |δτ |≥1(iτ ) -1 ĝ(τ )dτ+ ψ δ (t) |δτ |≥1(iτ ) -1 e itτ ĝ(τ )dτ =: I + II + III.

  K N R d ×R d P K F (|ξ| 2 + |η| 2 , ξ + η)|ξ| -γ1 P N K ψ(ξ)|η| -γ2 P K φ(η)dξdη. (A.3.13) Note that |η| ∼ K, |ξ| ∼ N K, hence |ξ + η| ∼ K. This explains why F may be so localized. By remaning components, we may assume that |ξ 1 | ∼ |ξ| and |η 1 | ∼ |η| where ξ = (ξ 1 , ξ), η = (η 1 , η) with ξ, η ∈ R d-1 . We now change variables by writting τ = ξ+η, ζ = |ξ| 2 +|η| 2 and dτ dζ = Jdξ 1 dη.A calculation shows thatJ = 2|ξ 1 ± η 1 | ∼ |η 1 | ∼ K. The left hand side of (A.3.13) becomes K K -γ2 N ≤1 (N K) -γ1 R d-1 ×R×R d P K F (τ, ζ) P N K ψ(ξ) P K φ(η)J -1 dτ dζdξ .

  

  where |∇| σ is the Fourier multiplier by |ξ| σ with ∆ =

	d j=1 ∂ 2 j the free Laplace operator on R d .
	The Duhamel formula (see e.g. [Tao06, Proposition 1.35]) shows that the (LST) is essentially
	equivalent to the integral equation
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	Chapter 2
	1 by functional calculus. Combining two
	terms, we have (1.2.20). The proof is complete.

  ). More precisely, we have the following result.

	Corollary 2.0.4. Consider R d , d ≥ 1 equipped with a smooth bounded metric g satisfying (2.0.2),
	(2.0.3) and let I ⊂ R a bounded interval. Let v be a solution to the inhomogeneous linear wave-type
	equation (2.0.6). If σ ∈ (1, ∞)

Proposition 2.1.4. There exist ϕ 0

  we need the following version of the Littlewood-Paley decomposition (see e.g. [BGT04, Corollary 2.3] or [BT07, Proposition 2.10]).

.2.2) Remark 2.2.2. Before entering to the proof of Theorem

  

	2.2.1, let us show that Theorem 2.2.1
	implies (2.1.1). We first note that the study of dispersive estimates for U h (t)ϕ(h 2 P ) is reduced to
	the one of U h (t)Op h (a) with a ∈ S(-∞) satisfying supp(a) ⊂ p -1 (supp(ϕ)). Indeed, by using the
	parametrix of ϕ(h 2 P ) given in Proposition 2.1.2, we have for all N ≥ 1,

  2 P ). By composing pseudo-differential operators with disjoint supports, we obtain terms of size O L 2 →L 2 (h ∞ ). The Sobolev embedding with m > d/2 implies that the second and the third terms are of size O L 1 →L ∞ (h ∞ ). By choosing N large enough, we have (2.2.3). Proof of Theorem 2.2.1. Let us explain the strategy of the proof. As mentioned in the introduction, the main difficulty is that we do not have the exact form of the semi-classical fractional Laplace-Beltrami operator, namely (h|∇ g |) σ , in order to use the usual construction of[START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF].
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  using (4.0.11). Recall that the Isozaki-Kitada parametrix was first introduced on R d to study the scattering theory of Schrödinger operators with long range potentials [IK85]. It was then modified and successfully used to show the Strichartz estimates for Schrödinger equation outside a compact set in many papers (see e.g. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3).

	[BT07], [BT08], [Bouc11],
	[Miz13], [Miz12] or [BM16]).
	The low frequency term in (4.0.9) enjoys the following global in time Strichartz estimates.
	Theorem 4.0.3.

  Let σ ∈ (0, ∞)\{1}, ϕ ∈ C ∞ 0 (R\{0}) and t 0 be as in Theorem 4.3.1. Denote I = [-t 0 , t 0 ]

	1/p.
	Proposition 4.3.3 together with energy estimate and dispersive estimate (4.3.1) give the fol-
	lowing result.
	Corollary 4.3.4.

  This completes the proof of Proposition 4.4.6. By (4.4.8), Proposition 4.4.3 and Proposition 4.4.6, we are able to state the Isozaki-Kitada parametrix for the Schrödinger-type equation at high frequency.

Theorem 4.4.8. Let σ

  If τ -+τ + > 0, then there exists c = c(τ -, τ + ) > 0 such that for all x, y, ξ ∈ R

					To do this, we need the following result (see [BT08,
	Lemma 4.1]).			
	Lemma 4.4.11. Let τ + , τ -∈ (-1, 1).
	1. For all x, y, ξ ∈ R d \{0} satisfying ±x • ξ/|x ξ| > τ ± and ±t ≥ 0, we have
			±	(x + tξ) • ξ |x + tξ||ξ|	> τ ± and |x + tξ| ≥ c ± (|x| + |tξ|),	(4.4.33)
	where c ± =	√	1 + τ ± / √	2.
	2.			

d \{0} satisfying +x • ξ/|x ξ| > τ + and -y • ξ/|y ξ| > τ -, we have |x -y| ≥ c(|x| + |y|). (4.4.34)

  estimate holds with Ḣγ r , Ḣγ p -norms are replaced by H γ r , H γ p -norms respectively. ii. If ν is an odd integer or γ ≤ ν -1 otherwise, then there exists C = C(

  -norm of Iu.

	It leads to consider the following modified energy functional	
	E(Iu(t)) :=	1 2	Iu(t) 2 Ḣ2 +	1 4	Iu(t) 4 L 4 .	(6.1.12)

  ≥ M 3 ≥ M 4 and M 2 N . Using (6.1.15), the estimate (6.1.26) follows once we have

	4
	Iu Mj X 2,1/2+ ,
	j=2
	with M 2

  .2.13) Let d ≥ 5, J be a compact time interval and u a solution to (dNL4S) on the spacetime slab J ×R d . Then we have the following a priori estimate:

	Interaction Morawetz inequality. We end this section by recalling the interaction Morawetz
	inequality for the nonlinear fourth-order Schrödinger equation. This estimate was first established
	by Pausader in [Pau2] for d ≥ 7. Later, Miao-Wu-Zhang in [MWZ15] extended this interaction
	Morawetz estimate to d ≥ 5.
	Proposition 6.2.9 (Interaction Morawetz inequality [Pau2], [MWZ15]).

  Assume that u is a smooth solution to (dNL4S) on a time interval J = [0, T ], and satisfies Iψ H 2 ≤ 1. Assume in addition that u satisfies the a priori bound u

	where	E(Iu(t)) =	1 2	Iu(t) 2 Ḣ2 +	d 2d + 8	Iu(t)	2d+8 L d d 2d+8	.
	Proposition 6.2.11. Let 5 ≤ d ≤ 7, max 3 -8 d , 8 d	< γ < 2 and 0 < δ < γ + 8 d -3.
									.2.26)
	Combining (6.2.24), (6.2.25) and (6.2.26), we obtain (6.2.17). The estimate (6.2.18) follows directly
	from (6.2.17) and (6.1.9). Note that 8(d-3) d	, 2(d-3) d-4	is biharmonic admissible. The proof is
	complete.							
	We are now able to prove the almost conservation law for the modified energy functional E(Iu),

  where µ is as in Proposition 6.2.11. The number L of possible subinterval must satisfy

	d-4
	.2.62) (6.2.63) (6.2.64) (6.2.65) for all t ∈ [0, T 0 ]. As T 0 ≤ λ 4 T , we have from (6.2.63) and (6.2.64) and the choice of λ given in 2KT 8(d-3) 0 µ 8(d-3) d-4 d ∼ T d 0 . Next, thanks to Proposition 6.2.11, we see that for 1 < γ < 2 and any 0 < δ < γ -1, sup [0,T0] E(Iu λ (t)) E(Iu λ (0)) + N -(2-γ+δ) L, for max 3 -8 d , 8 d < γ < 2 and 0 < δ < γ + 8 d -3. Since E(Iu λ (0)) ≤ 1 4 , we need N -(2-γ+δ) L 1 4 in order to guarantee E(Iu λ (t)) ≤ 1, (6.2.59) that N -(2-γ+δ) N 4(2-γ)(d-4) γd T d-4 d 1 4 , (6.2.66) or 4(2 -γ)(d -4) γd < 2 -γ + δ, (6.2.67) for max 3 -8 d , 8 d < γ < 2 and 0 < δ < γ + 8 d -3. Since 2 -γ + δ < 8 d -1, the condition (6.2.67) is possible if we have 4(2 -γ)(d -4) γd < 8 d -1. This implies γ > 8(d-4) 3d-8 . Thus γ > max 3 -8 d , 8 d , 8(d -4) 3d -8 . Using (6.2.62), we are able to split [0, T 0 ] into subintervals J L ∼ Next, by (6.2.15),

k , k = 1, ..., L in such a way that

u λ M (J k ) ≤ µ,

  .0.4) together with the energy conservation, Fibich-Ilan-Papanicolaou in[START_REF] Fibich | Self-focusing with fourth-order dispersion[END_REF] (see also[START_REF] Baruch | Singular solutions of the biharmonic nonlinear Schrödinger equation[END_REF]) proved that (fNL4S) is globally well-posed in H 2 . Moreover, the authors in[START_REF] Fibich | Self-focusing with fourth-order dispersion[END_REF] also provided some numerical observations showing that the H 2 -solution to (fNL4S) may blowup if the initial data satisfies ψ L 2 ≥ Q L 2 . Baruch-Fibich-Mandelbaum in[START_REF] Baruch | Singular solutions of the biharmonic nonlinear Schrödinger equation[END_REF] proved some dynamical properties of radially symmetric blowup solutions such as blowup rate, L 2 -concentration. Later, Zhu-Yang-Zhang in[START_REF] Zhu | Limiting profile of the blow-up solutions for the fourthorder nonlinear Schrödinger equation[END_REF] removed the radially symmetric assumption and established the profile decomposition, the existence of the ground state of elliptic equation (7.0.3) and the following concentration compactness property for (fNL4S).

Theorem 7.0.1 (Concentration compactness [ZYZ10]). Let (v n ) n≥1 be a bounded family of H 2 functions such that lim sup n→∞ ∆v n L 2 ≤ M < ∞ and lim sup n→∞ v n L 2+ 8 d ≥ m.

  Let ψ ∈ H γ (R 4 ) with 67+ Assume that the corresponding solution u to the (fNL4S) blows up in finite time 0 < T * < ∞. If α(t) > 0 is an arbitrary function such that

		as n → ∞,	
	where		
	ã(γ) :=	30γ 2 + 74γ + 120 97γ + 120 -30γ 2 ,	(7.1.1)
	and Q is the solution of the ground state equation (7.0.3).	
	This result improves the regularity requirement of [ZYZ11] where the authors proved the above result for 9+ √ 721 20 < γ < 2. This improvement is due to a better bilinear estimate (6.1.4), hence a
	better energy increment (see Proposition 7.1.8).	
	As a consequence of Theorem 7.1.1, we have the following mass concentration property. Theorem 7.1.2. √ 40489 150 < γ < 2. lim 8 t T γ α(t) = 0,

* (T * -t) then there exists a function x(t) ∈ R 4 such that lim sup t T * |x-x(t)|≤α(t)

  We follow the argument of[START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]. Let 0 < t < T * . If we consider (fNL4S) with initial data u(t), then it follows from (5.3.6) with σ = 4, ν = 3 and the fixed point argument that if for some

.1.2)

for all 0 < t < T * .

Proof.

Proposition 7.1.7 (

  2 L 2 . It is crucial to prove the limiting profile for blowup solutions. Local increment of modified energy). Let 60 53 < γ < 2 and ψ ∈ H γ (R 4 ). Let

	This estimate together with (7.1.3) show (7.1.4). The proof is complete.
	We next introduce						
		Λ(t) := sup	u(s) H γ , Σ(t) := sup	I N u(s) H 2 .	(7.1.5)
			0≤s≤t			0≤s≤t
	Proposition 7.1.8 (Increment of the modified energy). Let 67+	√ 150 40489
				δ = c Iψ	-4 γ H 2 ,		
	for a small constant c = c(γ) > 0. Then for N sufficiently large,
	sup	|E(Iu(t)) -E(Iψ)| N -46 15 +	Iψ 4 H 2 + Iψ 6 H 2 .	(7.1.4)
	t∈[0,δ]					
	Here the implicit contant depends only on γ and ψ H γ .		
	Proof. By Proposition 7.1.6, (fNL4S) is local well-posed on [0, δ] and the unique solution satisfies
	(7.1.3). By the proof of Proposition 6.2.11, we see that for N sufficiently large,
	sup t∈[0,δ]	|E(Iu(t)) -E(Iψ)| N -46 15 +	Iu 4 X	2,1/2+ δ	+ Iu 6 X	δ 2,1/2+	.

  1, we have the following mass concentration property. Theorem 7.2.2. Let d = 5, 6, 7 and ψ ∈ H γ (R d ) with 56-3d+ Assume that the corresponding solution u to the (fNL4S) blows up in finite time 0 < T * < ∞. If α(t) > 0 is an arbitrary function such that

	√ < γ < 2. lim 137d 2 +1712d+3136 2(2d+32) 8 t T γ α(t) = 0,

* (T * -t) then there exists a function x(t) ∈ R d such that lim sup t T * |x-x(t)|≤α(t)

  Proof. We firstly note that the estimates (7.2.3) and (7.2.5) are given in Lemma 6.2.10. Let us consider (7.2.2). By (6.1.7) and Hölder's inequality,

			d+4 )	|J|	2γ d (Z I (J)) 1+ 8 d ,	(7.2.2)
	∇IF (u) -(I∇u)F (u)	L 2 (J,L	2d d+2 )	N -(2-γ+δ) (Z I (J)) 1+ 8 d ,	(7.2.3)
	∇IF (u)	L 2 (J,L	2d d+2 )	|J|	2γ d (Z I (J)) 1+ 8 d + N -(2-γ+δ) (Z I (J)) 1+ 8 d ,	(7.2.4)
	∇IF (u)	L 2 (J,L	2d d+4 )	(Z I (J)) 1+ 8 d .	(7.2.5)
	IF (u)					

L 2 (J,L

  , for a small constant c = c(d, γ) > 0. Then (fNL4S) is locally well-posed on [0, T lwp ]. Moreover, for N sufficiently large,Z I ([0, T lwp ]) Iψ H 2 . (7.2.10) Proof. By (6.1.10), ψ H γ Iψ H 2 . Thus, provided c is small enough. Here T lwp is as in Proposition 7.2.4. This shows that (fNL4S) is locally well-posed on [0, T lwp ]. It remains to prove (7.2.10). Denote J = [0, T lwp ]. By Strichartz estimates (6.2.10) and (6.2.9),

		8 d .	(7.2.9)
		-4 γ
		H 2 T lwp = c Iψ -4 γ H 2 c ψ -4
	Z I (J)	sup
		(p,q)∈B

Collecting (6.2.19) -(6.2.23), we obtain (7.2.4). The proof is complete. Proposition 7.2.7 (Modified local well-posedness). Let 5

≤ d ≤ 7, 1 < γ < 2, 0 < δ < γ -1 and ψ ∈ H γ (R d ). Let T lwp := c Iψ γ H γ ≤ T lwp ,

  Lemma 7.2.8 (Local increment of the modified energy). Let 5 ≤ d ≤ 7, max{3 -8 d , 8 d } < γ < 2, 0 < δ < γ + 8 d -3 and ψ ∈ H γ (R d ). Let T lwp := c IψHere the implicit constant depends only on γ and ψ H γ .Proof. By Proposition 7.2.7, the equation (fNL4S) is locally well-posed on J = [0, T lwp ] and the unique solution u satisfiesZ I (J) Iψ H 2 . (7.2.12)As in the proof of Proposition 6.2.11, we see that sup

		-4 γ H 2 ,				
	for some small constant c = c(d, γ) > 0. Then, for N sufficiently large,			
	sup	|E(Iu(t)) -E(Iψ)| N -(2-γ+δ) Iψ	2+ 8 d H 2 + Iψ	2+ 16 d H 2	.	(7.2.11)
	t∈[0, T lwp ]					
		2+ 8 d I	(J) + Z	2+ 16 d	

t∈[0, T lwp ] |E(Iu(t)) -E(Iψ)| N -(2-γ+δ) Z I (J) .

  2(2-γ) ψ 2 H γ + ψ

	2+ 8 d H γ	
	N 2(2-γ) .	(7.2.19)
	Substituting (7.2.18) and (7.2.19) to (7.2.17), we get	

3 Limiting profile Proof of Theorem

  7.2.1 As the solution blows up at time 0 < T * < ∞, the blowup alternative allows us to choose a sequence of times (t n ) n≥1 such thatt n → T * as n → ∞ and u(t n ) H γ = Λ(t n ) → ∞ as n → ∞ (see(7.2.13) for the notation). Denotev n (x) := λ d 2 n I N (tn) u(t n , λ n x),where N (t n ) is given as in (7.2.14) with T = t n and the parameter λ n is given by ∆IN (tn) u(t n ) L 2 . (7.2.22) By (6.1.10) and the blowup criterion given in Corollary 7.2.5, we see that

	Chapter 7. Blowup focusing mass-critical NL4S
	Solving (7.2.21), we obtain			
		γ >	56 -3d +	√ 2(2d + 32) 137d 2 + 1712d + 3136	.
	This completes the proof.			
	7.2.λ 2 n :=		∆Q L 2
	λ 2 n	∆Q L 2 u(t	
	8 d -1 -(2 -γ) 16 d + 4 γ 2 + 16 d + 4	> 0,	(7.2.21)

γ (2 -γ) < 8 d -1 -(2 -γ) 16 d + 4 γ . n ) H γ (T * -t n ) γ 4 or λ n (T * -t n ) γ 8

  Therefore, the expression of the modified energy and (7.2.23) give Applying Theorem 7.0.1 to the sequence (v n ) n≥1 with M = ∆Q L 2 and m = 2d+8 , there exist a sequence (x n ) n≥1 ⊂ R d and a function U ∈ H 2 (R d ) such that U L 2 ≥ Q L 2 and up to a subsequence, v n (• + x n ) U weakly in H 2 (R d ), N (tn) u(t n , λ n • +x n ) U weakly in H 2 (R d ), (7.2.25)as n → ∞. To conclude Theorem 7.2.1, we need to remove I N (tn) from (7.2.25). To do so, we consider for any 0≤ σ < γ, N (tn) u)(t n , λ n • +x n ) Ḣσ = λ σ n P ≥N (tn) u(t n ) Ḣσ λ σ n N (t n ) σ-γ P ≥N (tn) u(t n ) Ḣγ Λ(t n ) -σ 2 Λ(t n ) Proof ofTheorem 7.2.2 By Theorem 7.2.1, there exists a blowup profile U ∈ H 2 (R d ) with U L 2 ≥ Q L 2 and there exist sequences (t n , λ n , x n ) n≥1 ⊂ R + × R * + × R d such that t n → T Using the assumption (T * -tn) |u(t n , x)| 2 dx ≥ U 2 L 2 . Sine for any fixed time t, the map y → |x-y|≤α(t) |u(t, x)| 2 dx is continuous and goes to zero as |y| → ∞, there exists x(t) ∈ R d such that sup y∈R d |x-y|≤α(t) |u(t, x)| 2 dx =

	Let R → ∞, we obtain				
	λ	d 2	lim inf n→∞	sup y∈R d |x-y|≤α(tn)
	This implies						
				lim sup t T *	(σ-γ)a(γ) 2(2-γ) 2(2-γ) . (σ-γ)a(γ) |u(t, x)| 2 dx ≥ Q 2 Λ(t n ) 1-σ 2 + y∈R d |x-y|≤α(t) sup L 2 . P ≥N (tn) u(t n ) H γ	(7.2.26)
	Using the explicit expression of a(γ) given in (7.2.15), we find that for
					σ < a(d, γ) :=	4dγ 2 + (2d + 48)γ + 16d |x-x(t)|≤α(t) 16d + (56 -3d)γ -16γ 2 , |u(t, x)| 2 dx.
	the exponent of Λ(t n ) in (7.2.26) is negative. Note that an easy computation shows that the This shows
	condition a(d, γ) < γ requires lim sup
					24 -3d + t T * |x-x(t)|≤α(t) 32 9d 2 + 368d + 576 √	< γ < 2,
	which is satisfied by our assumption on γ. Thus,
						d	
					λ	2	
	√ As 0 < a(γ) < 2 for 56-3d+	137d 2 +1712d+3136 2(2d+32)	γ	1,	(7.2.28)
								8
	d 2 Thus for any R > 0, we have for all n ≥ 1 and λ			v n	2+ 8 d L 2+ 8 d	→ 1 +	4 d	∆Q 2 L 2 ,	(7.2.24)
	as n → ∞. 1 + 4 d ∆Q 2 L 2 |u(t By change of variables, we get d lim inf n→∞ λ d n |x|≤R
	as n → ∞. That is	lim inf n→∞	y∈R d |x-y|≤Rλn sup	|u(t n , x)| 2 dx ≥
				d			
			λ	2			γ
			α(tn)	8	→ 0 as n → ∞, we have from (7.2.28) that λn α(tn) → 0 as n → ∞.
	We thus obtain for any R > 0,
			lim inf n→∞	y∈R d |x-y|≤α(tn) sup	|u(t n , x)| 2 dx ≥	|x|≤R	|U (x)| 2 dx.

.2.23) By Proposition 7.2.9 with T = t n , we have

E(v n ) = λ 4 n E(I N (tn) u(t n )) λ 4 n Λ(t n ) a(γ) Λ(t n ) a(γ)-2 . < γ < 2, we see that E(v n ) → 0 as n → ∞. n I n (u -I n (u -I N (tn) u)(t n , λ n • +x n ) H a(d,γ)-→ 0,

(7.2.27)

as n → ∞. Combining (7.2.25) and (7.2.27), we prove

λ d 2 n u(t n , λ n • +x n ) U weakly in H a(d,γ)-(R d ),

as n → ∞. The proof is complete. * ,

λ n (T * -t n ) n u(t n , λ n • +x n ) U weakly in H a(d,γ)-(R d ) (hence in L 2 (R d )) as n → ∞. n , λ n x + x n )| 2 dx ≥ |x|≤R |U (x)| 2 dx. |x|≤R |U (x)| 2 dx.

  On the other hand, using (7.2.23), the Gagliardo-Nirenberg inequality (7.0.4) impliesv n (• + x n ) → U strongly in L 2+ 8 d (R d ).Indeed, by (7.2.23),

.2.29) Hence up to a subsequence

v n (• + x n ) → U strongly in L 2 (R d ),

(7.2.30)

as n → ∞.

  Squaring the above estimate, multiplying both sides with ξ 2γ and integrating over R d , we get |F t F x G(τ, ξ)| 2 dτ dξ.

	then (A.2.2) becomes						
	F x H(t, ξ) H b t	t δ 1-(b+b ) F x G(t, ξ) H -b	.
	R d -2b This shows that ξ 2γ R τ 2b |F t F x H(τ, ξ)| 2 dτ dξ δ 2(1-(b+b )) R d ξ 2γ R τ
		H H b t H γ x	δ 1-(b+b ) G H -b t	x H γ	,
	and (A.2.1) follows.						
	H b t	ψ δ H b t g H -b t	|δτ |≥1	|τ | -2 τ	2b dτ	1/2	.

This is different from the previous chapters with the minus sign in front of |∇g| σ . It is technical due to the construction of the Isozaki-Kitada parametrix.

Note that one can choose χ 0 to be radially symmetric, and then so is χ.

Here χ is radially symmetric, i.e. there exists a function which is still denoted by χ so that χ(ξ) = χ(|ξ|).

We will see later that the phase satisfies requirements of Proposition

2.2.3.

The construction of the Isozaki-Kitada parametrix we present here works well for the half-wave equation, i.e. σ = 1.

See (4.1.4), (4.4.3) and use Lemma 4.6 of [BT08] with h = 1.

) when d ≥

3, 

A Banach space X of space functions on Ω is said to be translation invariant ifu(• -y) X = u X , ∀u ∈ X, ∀y ∈ Ω.
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c 0 (t) = (∂ t S(t) -q 0 (x, ∇ x S(t)))a 0 (t), c r (t) = (∂ t S(t) -q 0 (x, ∇ x S(t)

In this chapter, we are interested in the well-posedness results for (NLST) when γ ≥ γ c . Since we are working in Sobolev spaces of fractional order γ, γ c , we need the nonlinearity F (z) = -µ|z| ν-1 z to have enough regularity. When ν is an odd integer, F ∈ C ∞ (C, C) (in the real sense). When ν is not an odd integer, we need the following assumption γ , γ c ≤ ν, (5.0.2)

where γ is the smallest integer greater than or equal to γ, similarly for γ c .

In order to study the local well-posedness of (NLST) in Sobolev spaces, we need two important tools: linear estimates (or Strichartz estimates) and nonlinear estimates. Strichartz estimates for the linear Schrödinger-type equation are derived in Chapter 1. Note that in the case σ ∈ (0, 2)\{1}, we always have γ p,q > 0 (see (1.0.7)) for all admissible pairs except (p, q) = (∞, 2). This shows that Strichartz estimates for the linear Schrödinger-type equation given in Corollary 1.1.3 have a loss of derivatives. That is if we use Strichartz estimates at H γ -level, then we need the initial data at H γ+γp,q -level except (p, q) = (∞, 2). This loss of derivatives leads to restrictions (and hence weak results) compared to the those in the case σ ∈ [2, ∞). Therefore, we will consider three cases σ ∈ (0, 2)\{1}, σ = 1 and σ ∈ [2, ∞) separately. We also recall some nonlinear estimates as follows.

Nonlinear estimates. Let us start with the following Kato-Ponce inequality (or fractional Leibniz rule). Proposition 5.0.1. Let γ ≥ 0, 1 < r < ∞ and 1 < p 1 , p 2 , q 1 , q 2 ≤ ∞ satisfying 1 r = 1 p1 + 1 q1 = 1 p2 + 1 q2 . Then there exists C = C(d, γ, r, p 1 , q 1 , p 2 , q 2 ) > 0 such that for all u, v ∈ S ,

(5.0.4)

We refer to [START_REF] Grafakos | The Kato-Ponce inequality[END_REF] (and references therein) for the proof of above inequalities and more general results. We also have the following fractional chain rule. Proposition 5.0.2. Let F ∈ C 1 (C, C) and G ∈ C(C, R + ) such that F (0) = 0 and

where µ ∈ L 1 ((0, 1)). Then for γ ∈ (0, 1) and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1 r = 1 p + 1 q , there exists C = C(d, µ, γ, r, p, q) > 0 such that for all u ∈ S ,

(5.0.5)

(5.0.6)

We refer to [START_REF] Christ | Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation[END_REF] (see also [START_REF] Staffilani | The initial value problem for some dispersive differential equations[END_REF]) for the proof of (5.0.5) and [Tay00, Proposition 5.1] for (5.0.6). A direct consequence of the fractional Leibniz rule and the fractional chain rule is the following fractional derivative estimates. Corollary 5.0.3. Let F ∈ C k (C, C), k ∈ N\{0}. Assume that there is ν ≥ k such that

Then for γ ∈ [0, k] and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1 r = 1 p + ν-1 q , there exists C = C(d, ν, γ, r, p, q) > 0 such that for all u ∈ S ,

(5.0.7)

(5.0.8)

The reader can find the proof of (5.0.7) in [START_REF] Kato | On nonlinear Schrödinger equations. II. H s -solutions and unconditional wellposedness[END_REF]Lemma A.3]. The one of (5.0.8) follows

We now turn to the case γ = γ c . Using (5.1.12), we have from Strichartz estimate (1.1.17) that u hom L p (I, Ḣγc q )

ψ Ḣγc .

This shows that u hom L p (I, Ḣγc q ) ≤ ε for some ε > 0 small enough provided that T is small or ψ Ḣγc is small. We also have from (1.1.17) that u inh L p (I, Ḣγc q ) F (u) L p (I, Ḣγc q ) . Corollary (5.0.3), (5.3.2) and Sobolev embedding (note that in this case m = p) then yield that

u ν L p (I, Ḣγc q ) , (5.3.7)

u -v L p (I,L q ) . (5.3.8) This implies that for all u, v ∈ X, there exists C > 0 independent of T and ψ ∈ H γc such that Φ(u) L p (I, Ḣγc

If we choose ε and M small so that

Therefore, in both subcritical and critical cases, Φ has a unique fixed point in X. Moreover, since ψ ∈ H γ and u ∈ L p (I, H γ q ), the Strichartz estimate shows that u ∈ C(I, H γ ) (see e.g. [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF] or [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Chapter 4]). This shows the existence of solution u ∈ C(I, H γ ) ∩ L p (I, H γ q ) to (NLST). Note that in the case γ = γ c , if ψ Ḣγc is small enough, then we can take T = ∞.

Step 2. Uniqueness. It follows easily from (5.3.5) and (5.3.8) using the fact that u L p (I, Ḣγ q ) can be small if T is small.

Step 3. Item i. Let u ∈ C(I, H γ ) ∩ L p (I, H γ q ) be a solution to (NLFS) where I = [0, T ] and (a, b) a Schrödinger admissible pair with b < ∞ and γ a,b = 0. Then Strichartz estimate (1.1.17) implies

(5.3.10)

It then follows from (5.3.4) and (5.3.7) that u ∈ L a (I, H γ b ). Step 4. Item ii. The blowup alternative in subcritical case is easy since the time of existence depends only on ψ Ḣγ .

Step 5. Item iii. It also follows from a standard argument (see e.g. [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]). Indeed, if

). Thus, one can extend the solution to (NLST) beyond T * . It leads to a contradiction with the maximality of T * .

Step 6. Item iv. We use the argument given in [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]. From Step 1, in the subcritical case, we can choose T and M so that the fixed point argument can be carried out on X for any initial data with Ḣγ norm less than 2 ψ Ḣγ . In the critical case, there exist T, M and an Ḣγc neighborhood U of ψ such that the fixed point argument can be carried out on X for all initial data in U . Now let ψ n → ψ in H γ . In both subcritical and critical cases, we see that T < T * (ψ), u L p ([0,T ], Ḣγ q ) ≤ M , and that for sufficiently large n, T < T * (ψ n ) and u n L p ([0,T ], Ḣγ q ) ≤ M . Thus, (5.3.9) and (5.3.10) together with (5.3.4) and (5.3.7) yield that u n is bounded in L a ([0, T ], H γ b ) for any Schrödinger admissible pair (a, b) with b < ∞ and γ a,b = 0. We also have from (5.3.5), (5.3.8) and the choice

Local well-posedness nonlinear Schrödinger-type equations

Step 4. Item ii. The blowup alternative is obvious since the time of existence depends only on ψ H d/2 .

Step 5. Item iii. The continuous dependence is similar to Step 7 of the proof of Theorem 5.3.1 using (5.3.15). Remark 5.3.3. If we assume that ν > 1 is an odd integer or d/2 ≤ ν -1 otherwise, then the continuous dependence holds in C(I, H d/2 ). Indeed, we consider X as above equipped with the following metric

) . Thanks to the assumptions on ν, we are able to apply the fractional derivative estimates given in Corollary 5.0.3 to have

The Sobolev embedding then implies that for all u, v ∈ X,

The continuous dependence in C(I, H d/2 ) follows as Step 7 of the proof of Theorem 5.3.1.

It is well-known that (see [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Chapter 4], [START_REF] Kato | On nonlinear Schrödinger equations. II. H s -solutions and unconditional wellposedness[END_REF] or [Tao06, Chapter 3]) that for γ > d/2, the nonlinear Schrödinger equation is locally well-posed provided the nonlinearity has enough regularity. It is not a problem to extend this result for the nonlinear fourth-order Schrödinger equation. For the sake of completeness, we state (without proof) the local well-posedness for (NLST) in this range. Theorem 5.3.4. Given σ ∈ [2, ∞). Let γ > d/2 be such that if ν > 1 is not an odd integer, (5.0.2). Then for all ψ ∈ H γ , there exist T * ∈ (0, ∞] and a unique solution u ∈ C([0, T * ), H γ ) to (NLST). Moreover, the following properties hold:

iii. u depends continuously on ψ in the following sense. There exists T ∈ (0, T * ) such that if ψ n → ψ in H γ and if u n is the solution of (NLST) with the initial data ψ n , then u n → u in C([0, T ], H γ ). Combining Theorem 5.3.1 with the conservation of mass, we have the following global wellposedness in L 2 for (NLST) in the case σ ∈ [2, ∞). Corollary 5.3.5. Let σ ∈ [2, ∞) and ν ∈ (1, 1 + 2σ/d). Then for all ϕ ∈ L 2 , there exists a unique global solution to (NLST) satisfying u ∈ C(R, L 2 ) ∩ L p loc (R, L q ), where (p, q) given in (5.3.1). In the energy space H σ/2 , we have the following global well-posedness result. The proof follows by the same lines as in Proposition 5.1.3.

Then for any ψ ∈ H σ/2 , the solution to (NLST) given in Theorem 5.3.1, Theorem 5.3.2 and Theorem 5.3.4 can be extended to the whole R if one of the following is satisfied:

Our next result concerns with the regularity of solutions of (NLST) in the subcritical case. Theorem 5.3.7. Given σ ∈ [2, ∞). Let β > γ ≥ 0 be such that γ ≥ γ c , and also, if ν > 1 is not an odd integer, (5.0.2). Let ψ ∈ H γ and u be the corresponding H γ solution of (NLST) given in Theorem 5.3.1, Theorem 5.3.2, Theorem 5.3.4.

The following result is a direct consequence of Theorem 5. 

for any Schrödinger admissible pair (a, b) with b < ∞ and γ a,b = 0. Since H βsolution is in particular an H γ -solution, the uniqueness implies that T ≤ T * . We will show that T is actually equal to T * . Suppose that T < T * , then the blowup alternative implies

(5.3.16)

Moreover, since T < T * , we have

where (p, q) given in (5.3.1). Using Strichartz estimate, we have for any interval I ⊂ (0, T ),

Now, let (m, n) be as in (5.3.2). Corollary 5.0.3, (5.3.2) and Sobolev embedding then give

Here we use the fact that u L p ((0,T ),H γ q ) is bounded. This shows that

for every interval I ⊂ (0, T ). Now let 0 < < T and consider I = (0, τ ) with < τ < T . We have

where θ given in (5.3.3). Here we also use the fact that u ∈ L p loc ([0, T ), H β q ) since γ p,q = 0. Thus,

where the various constants are independent of τ < T . By choosing small enough, we have

where C is independent of τ < T . Let τ → T , we get a contradiction with (5.3.16).

The case γ = d/2. Since ψ ∈ H d/2 , Theorem 5.3.2 shows that there exists a unique, maximal solution to (NLST) satisfying

Norms and Strichartz estimates.

where • is the space-time Fourier transform,i.e.

We shall use X γ,b instead of X γ,b τ =|ξ| 4 when there is no confusion. We recall a following special property of X γ,b space (see e.g. [Tao06, Lemma 2.9]). Lemma 6.1.

We refer the reader to Lemma A.2.7 for the proof of this result. Throughout this section, a pair (p,

We recall the following Strichartz estimate given in Corollary 1.1.3 with σ = 4. It is obvious that for (p, q) a admissible pair (6.1.1), γ p,q = 0. Proposition 6.1.4. Let u be a solution to

Then for all (p, q) and (a, b) admissible pairs,

Here (a, a ) and (b, b ) are conjugate exponents.

A direct consequence of Lemma 6.1.3 and Proposition 6.1.4 is the following linear estimate in X γ,b space. Corollary 6.1.5. Let (p, q) be an admissible pair. Then

for all u ∈ S t,x .

We also have the following bilinear estimate in R 4 . Proposition 6.1.6.

We refer the reader to Theorem A.3.1 for the proof of this bilinear estimate.

The following result is another application of Lemma 6.1.3 and Proposition 6.1.6.

.1.4)

A similar estimate holds for u 1 u 2 or u 1 u 2 .

I-operator. For 0 ≤ γ < 2 and N 1, we define the Fourier multiplier I N by

where m is a smooth, radially symmetric, non-increasing function such that

For simplicity, we shall drop the N from the notation and write I and m instead of I N and m N . The operator I is the identity on low frequencies |ξ| ≤ N and behaves like a fractional integral operator of order 2 -γ on high frequencies |ξ| ≥ 2N . We collect some basic properties of the I-operator in the following lemma. Lemma 6.1.8. Let 0 ≤ σ ≤ γ < 2 and 1 < q < ∞. Then

)

Proof. The estimate (6.1.7) is a direct consequence of the Hörmander-Mikhlin multiplier theorem (see e.g. [Gra14, Theorem 6.2.7]). To prove (6.1.8), we write

The desired estimate (6.1.8) follows again from the Hörmander-Mikhlin multiplier theorem. In order to get (6.1.9), we estimate

Thanks to the fact that the I-operator is the identity at low frequency |ξ| ≤ N , the multiplier that M 2 N since µ(ξ 2 , ξ 3 , ξ 4 ) vanishes otherwise. Thus,

where

As for the Term 1 , we will use the notation

Hölder's inequality and Plancherel theorem, we bound

Lemma 6.1.13. We have

)

Proof. The estimate (6.1.31) is in turn equivalent to

Since ∇ 2 I obeys a Leibniz rule, it suffices to prove

The Littlewood-Paley theorem and Hölder's inequality imply LHS(6.1.34)

We have from Strichartz estimate (6.1.2) that

Combining Sobolev embedding and Strichartz estimate (6.1.2) yield

where the last estimate follows from (6.1.10). Similarly for u 3 L 8 (R,L 8 ) . This shows (6.1.34). The estimate (6.1.32) follows easily from Strichartz estimate. For (6.1.33), we use Sobolev embedding and Strichartz estimate to get

The proof is complete.

fourth-order Schrödinger equation.

The following result is a direct consequence of (6.2.9). Corollary 6.2.6. Let u be a (weak) solution to the linear fourth-order Schrödinger equation for some data ψ, F . Then for all (p, q) and (a, b) biharmonic admissible satisfying q < ∞ and b < ∞,

and

. (6.2.11)

Commutator estimates Let I be as in Subsection 6.1.1. When the nonlinearity F (u) is algebraic, one can use the Fourier transform to write the commutator like F (Iu) -IF (u) as a product of Fourier transforms of u and Iu, and then measure the frequency interactions. However, when d ≥ 5, the nonlinearity is no longer algebraic, we thus need the following rougher estimate which is a modified version of the Schrödinger context (see [START_REF] Visan | Global well-posedness and scattering for a class of nonlinear Schrödinger equations below the energy space[END_REF]). Lemma 6.2.7. Let 1 < γ < 2, 0 < δ < γ -1 and 1 < q, q 1 , q 2 < ∞ be such that

The proof is a slight modification of the one given in Lemma 2.5 of [START_REF] Visan | Global well-posedness and scattering for a class of nonlinear Schrödinger equations below the energy space[END_REF]. We thus only give a sketch of the proof. Sketch of the proof. By the Littlewood-Paley decomposition, we write

Here we use the definition of the I-operator to get

for all M N . For the second term, using Lemma 6.1.2 and Lemma 6.1.8, we estimate

Summing over all N M ∈ 2 Z , we get

Chapter 7

Blowup for the focusing mass-critical nonlinear fourth-order Schrödinger equation below the energy space In this chapter, we consider the focusing mass-critical nonlinear fourth-order Schrödinger equation, namely

where u(t, x) is a complex valued function in R + × R d . The (fNL4S) is a special case of the generalized nonlinear fourth-order Schrödinger equation

where ε ∈ {0, ±1}, µ ∈ {±1} and ν > 1. The equation (7.0.1) was introduced by Karpman [Kar96] and Karpman-Shagalov [START_REF] Karpman | Stability of soliton described by nonlinear Schrödingertype equations with higher-order dispersion[END_REF] to take into account the role of small fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. The (fNL4S) enjoys a natural scaling invariance, that is if u solves (fNL4S), then for any λ > 0,

solves the same equation with initial data u λ (0, x) = λ -d 2 ψ(λ -1 x). This scaling also preserves the L 2 -norm, i.e. u λ (0) L 2 = ψ L 2 . As in the previous Chapter, (fNL4S) is locally well-posed in H γ (R d ) for γ ≥ 0 satisfying, in the case d = 1, 2, 4, (6.0.1). Moreover, for u 0 ∈ H 2 , the unique solution enjoys mass and energy conservation laws. In the sub-critical regime, i.e. γ > 0, the time of existence depends only on the H γ -norm of the initial data. Let T * be the maximal time of existence. The local well-posedness gives the following blowup alternative criterion: either Therefore,

(7.2.31) Combining (7.2.29), (7.2.31) and using the fact

as n → ∞. This shows that there exists U ∈ H 2 (R d ) satisfying

Applying the variational characterization given in Lemma 7.1.9, we have (taking λ = 1),

as n → ∞. Using (7.2.27), we prove

as n → ∞. The proof is complete. 

Appendix A

Appendices

A.1 Hamilton-Jacobi equation

In this appendix, we will recall how to construct the standard Hamilton-Jacobi equation (see e.g. [Rob87, Théorème IV.14]). Let us consider the following Hamilton-Jacobi equation

where H ∈ C ∞ (R 2d ) satisfies that for all α, β ∈ N d with |α + β| ≥ 2, there exists C αβ > 0 such that for all x, ξ ∈ R d ,

The Hamiltonian flow associated to H is denoted by Φ H (t, x, ξ) := (X(t, x, ξ), Ξ(t, x, ξ)) where

Let us start with the following bound on derivatives of the Hamiltonian flow. Lemma A.1.1. Let t 0 ≥ 0 and α, β ∈ N d be such that |α + β| ≥ 1. Then there exists C αβt0 > 0 such that for all t ∈ [-t 0 , t 0 ] and all (x, ξ) ∈ R 2d ,

The proof is essentially given in [Rob87, Lemme IV.9]. We assume first |α + β| = 1 and denote

By direct computation, we have

where

.

This implies that

where N := sup (t,x,ξ)∈[-t0,t0]×R 2d A(t) . Here • is the R 2d×2d -matrix norm. Using Gronwall inequality, we have

For |α + β| ≥ 2, we take the derivative of (A. we have

By choosing t 0 small enough, we see that the matrix (∂ x X)(t, Y (t, x, ξ), ξ) is invertible and its inverse is bounded uniformly in t ∈ [-t 0 , t 0 ] and x, ξ ∈ R d . This implies that

For higher derivatives, we differentiate (A.1.4) and use an induction on |α + β|. This completes the proof. Now, we are able to solve the Hamilton-Jacobi equation (A.1.1) and have the following result. Proposition A.1.3. Let t 0 be as in Lemma A.1.2. Then there exists a unique function S ∈ C ∞ ([-t 0 , t 0 ] × R 2d ) such that S solves the Hamilton-Jacobi equation (A.1.1). The solution S is given by

and S satisfies

where S(t) := S(t, x, ξ) and Y (t) := Y (t, x, ξ). Moreover, for all α, β ∈ N d , there exists C αβ > 0 such that for all t ∈ [-t 0 , t 0 ] and all x, ξ ∈ R d , 

This implies that

Using (A.1.2) and Lemma A.1.2, we have (A.1.7). Next, we compute

The Taylor formula gives

Using again (A.1.2) and Lemma A.1.2, we have (A.1.8).

We then use that

Here b < 1/2 hence 2(1 -b ) > 1 implies the last integral is convergent. This shows that

We next treat the third term as follows. Set

We see that

Note that the Fourier transform of e itτ is δ 0 (ζ -τ ). This implies that

Similarly,

Thus, the Young's inequality gives

Here we use the fact that

This proves the first claim. For the second estimate, we remark from Item (vi) of Proposition A.2.2 that it is equivalent to

We now apply the first estimate for g(s) = F x G(s, ξ) with ξ fixed to have

If we denote

A.3 Bilinear Strichartz estimates A.3.1 Bilinear Strichartz estimates for Schrödinger equation

Let us firstly consider the homogeneous Schrödinger equation, namely

The solution of above equation is given by u(t, x) = e it∆ ψ(x). We recall the following properties:

The L 2 -estimate (A.3.2) and dispersive estimate (A. 3.3) give the following Strichartz estimates (see [START_REF] Keel | Endpoint Strichartz estimates[END_REF]):

provided that (p, q) satisfies the sharp Schrödinger admissible condition (see 0.0.1)). Moreover, if we consider the inhomogeneous linear equation, i.e.

then we have (see again [START_REF] Keel | Endpoint Strichartz estimates[END_REF])

provided that (p, q) and (a, b) are sharp Schrödinger admissible. Strichartz estimates (A.3.5) are also called linear estimates. We now are interested in bilinear estimates for the Schrödinger equation. In order to do so, we introduce some notation. Let ϕ 0 ∈ C ∞ 0 (R d ) be such that ϕ 0 (ξ) = 1 for |ξ| ≤ 1 and ϕ 0 (ξ) = 0 for |ξ| ≥ 2 and set ϕ(ξ) = ϕ 0 (ξ) -ϕ 0 (2ξ). It is easy to see that ϕ ∈ C ∞ 0 (R d ) and supp(ϕ) ⊂ {ξ ∈ R d , 1/2 ≤ |ξ| ≤ 2}. For N ∈ 2 Z , i.e. N = 2 k with k ∈ Z, we define the Littlewood-Paley projection as

Note that supp( P

for all Schwartz function f . We also have the following properties with γ ≥ 0 and 1 ≤ q ≤ r ≤ ∞:

Let us begin with the following localized bilinear estimate (see [START_REF] Koch | Dispersive equations and nonlinear waves[END_REF], Theorem 2.9).

Proof. We firstly note that for M ∼ N , (A.3.8) follows from Strichartz estimate for the pair (p, q) = (4, 2d/(d -1)). Indeed, the Hölder inequality implies

Here (4, 2d/(d -1)) is a sharp Schrödinger admissible pair. We next use Bernstein's inequality and Strichartz estimate to have

Therefore, we have

Here we use that

Let us consider the case M N . Using the fact

By Parseval's identity, we have

where

Here the notation • or F stands for the space Fourier transform. Thus,

where G is the space-time Fourier transform. Hence (A.3.8) is in turn equivalent to 

This gives (A.3.10) and the result follows. In order to see that (A.3.8) is false when d = 1 and M ∼ N , we proceed as follows. The space-time Fourier transforms of u M := e it∂ 2 x P M f and

where δ 0 is the Dirac function. We then have

which gives

where ξ 1 and ξ 2 are the solution to

We also have

and then

We see that if

1, the integral fails to be convergent. Theorem A.3.2 (Bilinear estimate [START_REF] Colliander | Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R 3[END_REF], [START_REF] Visan | The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions[END_REF]). Let d ≥ 2 and u, v be solutions to (A.3.4) with initial data ψ, φ respectively. For any δ > 0, we have

for any sharp Schrödinger admissible pairs (p, q) and (a, b) satisfying p, a > 2.

Proof. Fix δ > 0 and allow our implicit constants to depend on δ. We firstly consider the homogeneous case, i.e. u(t) = e it∆ ψ and v(t) = e it∆ φ. Let us consider the general estimate

By the scaling invariance, the above estimate requires γ 1 + γ 2 = d/2 -1. Indeed, for λ > 0 we

We now choose γ 2 = -1/2 + δ and γ 1 = (d -1)/2 -δ with δ > 0 to obtain LHS(A.3.13)

This gives the homogeneous bilinear estimate (A.3.12). We turn now our attention to the inhomogeneous estimate (A. 3.11). Let us introduce u Sγ,p,q := ψ Ḣγ + |∇| γ (i∂ t + ∆)u L p (R,L q ) , (A. 3.14) and S γ,p,q := {u ∈ C(I, S ) | u Sγ,p,q < ∞}.

(A.3.15)

The estimate (A. 3.11) is in turn equivalent to

We firstly note that the homogeneous bilinear estimate reads

Now, let (p, q) and (a, b) be Schrödinger admissible pairs with p, a > 2. Using Duhamel's formula for u, we have

.

Let us consider the first term. Thanks to Duhamel's formula for v, we get

The homogeneous bilinear estimate (A.3.17) implies

Moreover, the adjoint to the linear Strichartz estimate also gives R e -is∆ |∇| -1/2+δ (i∂ s + ∆)v(s)ds

A.3. Bilinear Strichartz estimates

The Christ-Kiselev Lemma 4.5.1 then implies t 0 e -is∆ (i∂ s + ∆)v(s)ds

and therefore e it∆ ψv L 2 (R,L 2 ) ≤ u S (d-1)/2-δ,p,q v S -1/2+δ,a,b .

It remains to show

By Christ-Kiselev Lemma 4.5.1, it suffices to prove

Using again Duhamel's formula for v and repeating the above argument for the first term, we obtain

The adjoint to the linear Strichartz estimate again gives R e -is∆ (i∂ s + ∆)u(s)ds

This completes the proof.

A.3.2 Bilinear Strichartz estimate for higher-order Schrödinger equations

Let σ > 2 and consider the homogeneous higher-order Schrödinger equation, namely

As in Chapter 1, the equation (A.3.19) satisfies the following Strichartz estimates

and (p, q) satisfies the Schrödinger admissible condition (see (1.1.2)). Moreover, if we consider the inhomogeneous linear equation

provided that (p, q) and (a, b) are Schrödinger admissible with q, b < ∞ and satisfy the gap condition γ p,q = γ a ,b + σ.

Note that if (p, q) is a Schrödinger admissible pair satisfying γ p,q = 0 then γ p,q = γ p ,q + σ.

We now turn our attention to the bilinear estimate for the higher-order Schrödinger equation. 

(A.3.21)

In the case d ≤ σ/2, the estimate (A.3.21) holds provided M N .

Proof. Let us firstly consider the case M ∼ N . The Hölder inequality gives

Note that when d > σ/2, (p, q) = (4, 2d/(d -σ/2)) is a Schrödinger admissible pair satisfying γ p,q = 0. Moreover, using that σ > 2, it is easy to check that (p, q) = (4, 4d/σ) is also a Schrödinger admissible with γ p,q = d/2 -σ/2. Therefore, Strichartz estimate shows that

Since we are considering the case M ∼ N , we have

This gives (A.3.21) when M ∼ N . Let us now consider the case M N . By duality, it suffices to prove 

This gives the desired estimate.

We also have the following non-localized bilinear estimate for the higher-order Schrödinger equation. Theorem A.3.4. Let σ > 2, d > σ/2 and u, v be solutions to (A.3.20) with initial data ψ, φ respectively. Then for any δ > 0,

for any Schrödinger admissible pairs (p, q) and (a, b) satisfying γ p,q = γ a,b = 0, q, b < ∞ and p, a > 2.

Proof. The proof is similar to the one of Theorem A.3.2. We only give a sketch of a proof. We firstly consider the homogeneous case, namely

Due to the scaling invariance, we see that the above estimate requires γ 1 + γ 2 = d/2 -σ/2. To see this, we consider u λ (t, x) = u(λ -σ t, λ -1 x). The homogenous equation (A. 3.19) is invariant under this scaling. We have

Using the fact that u λ (0) 2 Ḣγ 1 = λ d-2γ1 ψ 2 Ḣγ 1 and similarly for v λ (0), we get

We now prove (A. Let (p, q) and (a, b) be Schrödinger admissible satisfying γ p,q = γ a,b = 0, q, b < ∞ and p, a > 2.

Note that when γ p,q = 0, Strichartz estimate shows that the map L 2 ψ → e -it|∇| σ ψ ∈ L p (R, L q ) is bounded together with its adjoint

Therefore, we can repeat the same argument as in Theorem A.3.2 to get a desired estimate. The proof is complete.

Abstract -This dissertation is devoted to the study of linear and nonlinear aspects of the Schrödinger-type equations i∂tu + |∇| σ u = F, |∇| = -∆, σ ∈ (0, ∞).

When σ = 2, it is the well-known Schrödinger equation arising in many physical contexts such as quantum mechanics, nonlinear optics, quantum field theory and Hartree-Fock theory. When σ ∈ (0, 2)\{1}, it is the fractional Schrödinger equation, which was discovered by Laskin (see e.g. [START_REF] Laskin | Fractional quantum mechanics and Lévy path integrals[END_REF] and [START_REF] Laskin | Fractional Schrödinger equation[END_REF]) owing to the extension of the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. This equation also appears in the water waves model (see e.g. [START_REF] Ionescu | Nonlinear fractional Schrödinger equations in one dimension[END_REF] and [START_REF] Nguyen | Sharp Strichartz estimates for water waves systems[END_REF]). When σ = 1, it is the half-wave equation which arises in water waves model (see [START_REF] Ionescu | Nonlinear fractional Schrödinger equations in one dimension[END_REF]) and in gravitational collapse (see [START_REF] Elgart | Mean field dynamics of boson stars[END_REF], [START_REF] Fröhlich | Blowup for nonlinear wave equations describing boson stars[END_REF]). When σ = 4, it is the fourth-order or biharmonic Schrödinger equation introduced by Karpman [Kar96] and by Karpman-Shagalov [START_REF] Karpman | Stability of soliton described by nonlinear Schrödingertype equations with higher-order dispersion[END_REF] taking into account the role of small fourth-order dispersion term in the propagation of intense laser beam in a bulk medium with Kerr nonlinearity.

This thesis is divided into two parts. The first part studies Strichartz estimates for Schrödinger-type equations on manifolds including the flat Euclidean space, compact manifolds without boundary and asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in the study of nonlinear dispersive equation at low regularity. The second part concerns the study of nonlinear aspects such as local well-posedness, global well-posedness below the energy space and blowup of rough solutions for nonlinear Schrödinger-type equations.

In Chapter 1, we discuss Strichartz estimates for Schrödinger-type equations with σ ∈ (0, ∞) on the Euclidean space R d .

In Chapter 2, we derive Strichartz estimates for Schrödinger-type equations with σ ∈ (0, ∞)\{1} on R d equipped with a smooth bounded metric g.

In Chapter 3, we make use of Strichartz estimates proved in Chapter 2 to show Strichartz estimates for Schrödinger-type equations with σ ∈ (0, ∞)\{1} on compact manifolds without boundary.

In Chapter 4, we prove global in time Strichartz estimates for Schrödinger-type equations with σ ∈ (0, ∞)\{1} on asymptotically Euclidean manifolds under the non-trapping condition.

In Chapter 5, we use Strichartz estimates given in Chapter 1 (among other things) to study the local well-posedness of the power-type nonlinear Schrödinger-type equations with σ ∈ (0, ∞) posed on R d .

In Chapter 6, we study the global well-posedness for the defocusing mass-critical nonlinear fourthorder Schrödinger equation σ = 4 below the energy space. We will consider separately two cases d = 4 and d ≥ 5 which respectively correspond to the algebraic and non-algebraic nonlinearity.

In Chapter 7, we study the blowup of rough solutions to the focusing mass-critical nonlinear fourthorder Schrödinger equation. As in Chapter 6, we also consider separately two cases d = 4 and d ≥ 5. 

Keywords