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Résumé

Cette thèse est consacrée à l’étude des aspects linéaires et non-linéaires des équations de type
Schrödinger

i∂tu+ |∇|σu = F, |∇| =
√
−∆, σ ∈ (0,∞).

Quand σ = 2, il s’agit de l’équation de Schrödinger bien connue dans de nombreux contextes
physiques tels que la mécanique quantique, l’optique non-linéaire, la théorie des champs quantiques
et la théorie de Hartree-Fock. Quand σ ∈ (0, 2)\{1}, c’est l’équation Schrödinger fractionnaire,
qui a été découverte par Laskin (voir par exemple [Las00] et [Las02]) en lien avec l’extension de
l’intégrale de Feynman, des chemins quantiques de type brownien à ceux de Lévy. Cette équation
apparaît également dans des modèles de vagues (voir par exemple [IP14] et [Ngu16]). Quand σ = 1,
c’est l’équation des demi-ondes qui apparaît dans des modèles de vagues (voir [IP14]) et dans
l’effondrement gravitationnel (voir [ES07], [FL07]). Quand σ = 4, c’est l’équation Schrödinger
du quatrième ordre ou biharmonique introduite par Karpman [Kar96] et par Karpman-Shagalov
[KS00] pour prendre en compte le rôle de la dispersion du quatrième ordre dans la propagation
d’un faisceau laser intense dans un milieu massif avec non-linéarité de Kerr.

Cette thèse est divisée en deux parties. La première partie étudie les estimations de Strichartz
pour des équations de type Schrödinger sur des variétés comprenant l’espace plat euclidien, les
variétés compactes sans bord et les variétés asymptotiquement euclidiennes. Ces estimations de
Strichartz sont utiles pour l’étude de l’équations dispersives non-linéaire à régularité basse. La
seconde partie concerne l’étude des aspects non-linéaires tels que les caractères localement puis
globalement bien posés sous l’espace d’énergie, ainsi que l’explosion de solutions peu régulières
pour des équations non-linéaires de type Schrödinger.

Dans le Chapitre 1, nous discutons des estimations de Strichartz pour les équations de type
Schrödinger avec σ ∈ (0,∞) sur l’espace euclidien Rd.

Dans le Chapitre 2, nous prouvons des estimations de Strichartz pour les équations de type
Schrödinger avec σ ∈ (0,∞)\{1} sur Rd équipé d’une métrique lisse bornée g.

Au Chapitre 3, nous utilisons les estimations de Strichartz prouvées au Chapitre 2 pour montrer
les estimations de Strichartz pour les équations de type Schrödinger avec σ ∈ (0,∞)\{1} sur les
variétés compactes sans bord.

Au Chapitre 4, nous montrons des estimations de Strichartz globales pour les équations de type
Schrödinger avec σ ∈ (0,∞)\{1} sur les variétés asymptotiquement euclidiennes sous la condition
de non-capture.

Dans le Chapitre 5, nous utilisons les estimations de Strichartz données au Chapitre 1 (en-
tre autres) pour étudier le caractère localement bien posé des équations non-linéaires de type
Schrödinger avec la non-linéarité de type puissance et σ ∈ (0,∞) posées sur Rd.

Dans le Chapitre 6, nous étudions le le caractère globalement bien posé de l’équation de
Schrödinger non-linéaire du quatrième ordre σ = 4 défocalisante et L2 critique, en considérant
séparément deux cas d = 4 et d ≥ 5 qui correspondent respectivement à la non-linéarité algébrique
et non-algébrique.

Dans le Chapitre 7, nous étudions l’explosion des solutions peu régulières de l’équation de
Schrödinger non-linéaire du quatrième ordre focalisante L2 critique. Comme au Chapitre 6, nous
considérons aussi séparément deux cas d = 4 et d ≥ 5.

Mots-clés: Equations non-linéaires de type Schrödinger; Estimations de Strichartz; prob-
lème localement bien posé; prolème globalement bien posé; explosion; méthode-I; Estimations
bilinéaires de Strichartz; Inégalités d’interaction de Morawetz; Variétés compactes sans bord ;
Variétés asymptotiquement euclidiennes.

MSC2010: 35A01, 35A17, 35B44, 35B45, 35E15, 35G20, 35G25, 35Q55.
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Abstract

This dissertation is devoted to the study of linear and nonlinear aspects of the Schrödinger-type
equations

i∂tu+ |∇|σu = F, |∇| =
√
−∆, σ ∈ (0,∞).

When σ = 2, it is the well-known Schrödinger equation arising in many physical contexts such
as quantum mechanics, nonlinear optics, quantum field theory and Hartree-Fock theory. When
σ ∈ (0, 2)\{1}, it is the fractional Schrödinger equation, which was discovered by Laskin (see e.g.
[Las00] and [Las02]) owing to the extension of the Feynman path integral, from the Brownian-like
to Lévy-like quantum mechanical paths. This equation also appears in the water waves model
(see e.g. [IP14] and [Ngu16]). When σ = 1, it is the half-wave equation which arises in water
waves model (see [IP14]) and in gravitational collapse (see [ES07], [FL07]). When σ = 4, it
is the fourth-order or biharmonic Schrödinger equation introduced by Karpman [Kar96] and by
Karpman-Shagalov [KS00] taking into account the role of small fourth-order dispersion term in
the propagation of intense laser beam in a bulk medium with Kerr nonlinearity.

This thesis is divided into two parts. The first part studies Strichartz estimates for Schrödinger-
type equations on manifolds including the flat Euclidean space, compact manifolds without bound-
ary and asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in
the study of nonlinear dispersive equation at low regularity. The second part concerns the study
of nonlinear aspects such as local well-posedness, global well-posedness below the energy space
and blowup of rough solutions for nonlinear Schrödinger-type equations.

In Chapter 1, we discuss Strichartz estimates for Schrödinger-type equations with σ ∈ (0,∞)
on the Euclidean space Rd.

In Chapter 2, we derive Strichartz estimates for Schrödinger-type equations with σ ∈ (0,∞)\{1}
on Rd equipped with a smooth bounded metric g.

In Chapter 3, we make use of Strichartz estimates proved in Chapter 2 to show Strichartz
estimates for Schrödinger-type equations with σ ∈ (0,∞)\{1} on compact manifolds without
boundary.

In Chapter 4, we prove global in time Strichartz estimates for Schrödinger-type equations with
σ ∈ (0,∞)\{1} on asymptotically Euclidean manifolds under the non-trapping condition.

In Chapter 5, we use Strichartz estimates given in Chapter 1 (among other things) to study
the local well-posedness of the power-type nonlinear Schrödinger-type equations with σ ∈ (0,∞)
posed on Rd.

In Chapter 6, we study the global well-posedness for the defocusing mass-critical nonlinear
fourth-order Schrödinger equation σ = 4 below the energy space. We will consider separately
two cases d = 4 and d ≥ 5 which respectively correspond to the algebraic and non-algebraic
nonlinearity.

In Chapter 7, we study the blowup of rough solutions to the focusing mass-critical nonlinear
fourth-order Schrödinger equation. As in Chapter 6, we also consider separately two cases d = 4
and d ≥ 5.

Keywords: Nonlinear Schrödinger-type equations; Strichartz estimates; local well-posedness;
global well-posedness; blowup; I-method; bilinear Strichartz estimates; Interaction Morawetz in-
equalities; compact manifolds without boundary; asymptotically Euclidean manifolds.

MSC2010: 35A01, 35A17, 35B44, 35B45, 35E15, 35G20, 35G25, 35Q55.
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Introduction

This thesis is devoted to the study of Schrödinger-type equations such as the fractional Schrödin-
ger (including the well-known Schrödinger equation and the fourth-order Schrödinger equation)
and the half-wave equations.

The first part of this thesis is devoted to Strichartz estimates for Schrödinger-type equations on
manifolds including the flat Euclidean space, compact manifolds without boundary and asymp-
totically Euclidean manifolds. These Strichartz estimates are known to be useful in the study
of nonlinear dispersive equation at low regularity. Let us first discuss Strichartz estimates for
Schrödinger-type equations on the flat Euclidean space Rd. Consider

i∂tu+ |∇|σu = 0, u(0) = ψ, |∇| =
√
−∆, σ ∈ (0,∞).

In the case σ = 2, it is well-known that one can compute explicitly the solution to this equation,
that is

e−it∆ψ(x) = e±i
πd
4

|4πt| d2

∫
e−i

|x−y|2
4t ψ(y)dy, ± := sign of t.

This implies the dispersive estimate

‖e−it∆ψ‖L∞ . |t|−d/2, t ∈ R.

Using this dispersive estimate and the isometry ‖e−it∆ψ‖L2 = ‖ψ‖L2 , the so-called TT ?-criterion
(see [KT98]) shows Strichartz estimates

‖e−it∆ψ‖Lp(R,Lq) . ‖ψ‖L2 ,

for any sharp Schrödinger admissible pair (p, q), i.e.

(p, q) ∈ [2,∞]2, (p, q, d) 6= (2,∞, 2), 2
p

+ d

q
= d

2 . (0.0.1)

When σ 6= 2, since we do not have the explicit formula of the solution eit|∇|
σ

ψ(x), the above
method does not work. Fortunately, since the equation enjoys a scaling invariance in frequency
space, we are able to use the scaling technique to derive Strichartz estimates. More precisely, we
decompose the solution in dyadic pieces, namely

eit|∇|
σ

ψ ∼
∑
N∈2Z

eit|∇|
σ

PNψ,

where PN is a Fourier multiplier by χN (ξ) = χ(N−1ξ) with χ ∈ C∞0 (Rd) and supp(χ) ⊂ {ξ ∈ Rd :
1/2 ≤ |ξ| ≤ 2}. By a change of variables, we find that

[eit|∇|
σ

PNψ](t, x) = [eit|∇|
σ

P1ψN ](Nσt,Nx),

where ψN (x) := ψ(N−1x). This implies

‖eit|∇|
σ

PNψ‖Lp(R,Lq) = N−
d
q−

σ
p ‖eit|∇|

σ

P1ψN‖Lp(R,Lq),

‖P1ψN‖L2 = N
d
2 ‖PNψ‖L2 .

The problem is then reduced to show

‖eit|∇|
σ

P1ψ‖Lp(R,Lq) . ‖P1ψ‖L2 .

1



Introduction

By the TT ?-criterion, it suffices to prove the following energy and dispersive estimates

‖eit|∇|
σ

P1‖L2→L2 . 1,
‖eit|∇|

σ

P1‖L1→L∞ . (1 + |t|)−υ.

By the stationary phase theorem, we learn that

υ =

 d
2 for d ≥ 1, σ 6= 1,
d−1

2 for d ≥ 2, σ = 1.
(0.0.2)

This shows that

‖eit|∇|
σ

PNψ‖Lp(R,Lq) . N
γp,q‖PNψ‖L2 , (0.0.3)

where
γp,q := d

2 −
d

q
− σ

p
,

and (p, q) satisfies for d ≥ 1 and σ 6= 1,

(p, q) ∈ [2,∞]2, (p, q, d) 6= (2,∞, 2), 2
p

+ d

q
≤ d

2 , (0.0.4)

and for d ≥ 2 and σ = 1,

(p, q) ∈ [2,∞]2, (p, q, d) 6= (2,∞, 3), 2
p

+ d− 1
q
≤ d− 1

2 . (0.0.5)

We combine the Littlewood-Paley theorem, the Minkowski inequality and (0.0.3) to obtain Strichartz
estimates

‖eit|∇|
σ

ψ‖Lp(R,Lq) .
( ∑
N∈2Z

N2γp,q‖PNψ‖2L2

)1/2
∼ ‖ψ‖Ḣγp,q ,

where (p, q) satisfies either (0.0.4) or (0.0.5) with q ∈ [2,∞). We refer to Chapter 1 for more
general Strichartz estimates and its variants.

In Chapter 2, we extend Strichartz estimates studied in Chapter 1 by considering the same
equations with the Laplacian operator of variable coefficients. More precisely, we consider

i∂tu+ |∇g|σu = 0, u(0) = ψ, |∇g| =
√
−∆g, σ ∈ (0,∞)\{1},

on Rd equipped with a smooth bounded metric g. Let g(x) = (gjk(x))dj,k=1 and denote g−1(x) =
(gjk(x))dj,k=1. The Laplace-Beltrami operator associated to g reads

∆g =
d∑

j,k=1
|g(x)|−1∂j(gjk(x)|g(x)|∂k),

where |g(x)| :=
√

det g(x). We make the following assumptions:
• (Ellipticity) There exists C > 0 such that for all x, ξ ∈ Rd,

C−1|ξ|2 ≤ p(x, ξ) :=
d∑

j,k=1
gjk(x)ξjξk ≤ C|ξ|2. (0.0.6)
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• (Boundedness) For all α ∈ Nd, there exists Cα > 0 such that for all x ∈ Rd,

|∂αgjk(x)| ≤ Cα, j, k ∈ {1, ..., d}. (0.0.7)

To study Strichartz estimates, we decompose the solution into dyadic pieces as follows

eit|∇g|
σ

ψ ∼ eit|∇g|
σ

ϕ0(−∆g)ψ +
∑

h−2∈2N

eit|∇g|
σ

ϕ(−h2∆g)ψ,

where ϕ0 ∈ C∞0 (R) and ϕ ∈ C∞0 (R\{0}). Here f(−∆g) is the functional calculus is defined by
spectral theorem. Since we are interested in local in time Strichartz estimates, we do not need
to decompose the solution at low frequencies, i.e. terms of the form eit|∇g|

σ

ϕ(−ε−2∆g), ε−2 ∈ 2N.
Indeed, the low frequency part can be bounded easily using the Sobolev embedding. In the context
of variable coefficients, there is no scaling technique as on Rd. We thus need to estimate separately
each localized piece. The main goal is to establish dispersive estimates for semi-classical operators
eith

−1(h|∇g|)σϕ(−h2∆g) on some small time interval independent of h, namely

‖eith
−1(h|∇g|)σϕ(−h2∆g)‖L1→L∞ . h

−d(1 + |t|h−1)− d2 , t ∈ [−t0, t0], (0.0.8)

for some t0 > 0. Here the implicit constant does not depend on the parameter h ∈ (0, 1]. With
this dispersive estimate, the semi-classical version of TT ?-criterion implies Strichartz estimates
for each semi-classical terms eith−1(h|∇g|)σϕ(−h2∆g)ψ. Rescaling in time and summing over all
dyadic pieces, we derive Strichartz estimates for the solution. To study the dispersive estimate
(0.0.8), we first use the semi-classical expansion of ϕ(−h2∆g), namely

ϕ(−h2∆g) =
N−1∑
j=0

hjOph(aj) + hNRN (h),

where

Oph(aj)ψ(x) = (2πh)−d
∫∫

eih
−1(x−y)·ξaj(x, ξ)ψ(y)dydξ, (0.0.9)

for some aj ∈ S(−∞) with supp(aj) ⊂ p−1(supp(ϕ)) and RN (h) satisfying for all m ≥ 0,

‖RN (h)‖H−m→Hm . h−2m.

By the Sobolev embedding, the remainder term is bounded by

‖eith
−1(h|∇g|)σhNRN (h)‖L1→L∞ . h

N‖eith
−1(h|∇g|)σRN (h)‖H−m→Hm . hN−2m.

Taking N sufficiently large, we obtain dispersive estimate for the remainder term. Therefore,
the study of (0.0.8) is reduced to the study of dispersive estimate for eith−1(h|∇g|)σOph(a) with
a ∈ S(−∞) and supp(a) ⊂ p−1(supp(ϕ)). To do so, we make use of the WKB method to construct
an approximation to w(t) = eith

−1(h|∇g|)σOph(a)ψ of the form

w(t) = JN (t)ψ +RN (t)ψ, t ∈ [−t0, t0],

for some t0 > 0, where

JN (t) :=
N−1∑
j=0

hjJh(S(t), aj(t)), JN (0) = Oph(a),

with
Jh(S(t), aj(t))ψ(x) = (2πh)−d

∫∫
eih
−1(S(t,x,ξ)−y·ξ)aj(t, x, ξ)ψ(y)dydξ,

3
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and the remainder term satisfies a “nice” estimate, for instance, RN (t) = OL2→L2(hN−1) uniformly
with respect to t ∈ [−t0, t0]. We observe from the fundamental theorem of calculus that

e−ith
−1(h|∇g|)σJN (t)ψ = JN (0)ψ +

∫ t

0

d

ds

(
e−ish

−1(h|∇g|)σJN (s)
)
ψds

= Oph(a)ψ + ih−1
∫ t

0
e−ish

−1(h|∇g|)σ (hDs − (h|∇g|)σ)JN (s)ψds,

where Ds = i−1∂s. This implies

w(t) = eith
−1(h|∇g|)σOph(a)ψ = JN (t)ψ − ih−1

∫ t

0
ei(t−s)h

−1(h|∇g|)σ (hDs − (h|∇g|)σ)JN (s)ψds.

We want the last term to have a small contribution. To do this, we need to study the action of
hDs − (h|∇g|)σ on JN (s). The first action of hDs on JN (s) is easy to compute, and we have

hDs ◦ JN (s) =
N∑
l=0

hlJh(S(s), bl(s)),

where

b0(s) = ∂sS(s)a0(s),
bl(s) = ∂sS(s)al(s) +Dsal−1(s), l = 1, ..., N − 1,
bN (s) = DsaN−1(s).

The second action of (h|∇g|)σ on JN (s) is complicated. In the case σ = 2, we have an explicit
form of −h2∆g, that is,

−h2∆g = Oph(p) + hOph(p1), (0.0.10)

where p is as in (0.0.6) and p1(x, ξ) =
∑d
l=1 nl(x)ξl. A direct computation shows

Oph(p) ◦ Jh(S(s), q) = Jh

(
S(s), p(x,∇xS(s))q + ih∇ξp(x,∇xS(s)) · ∇xq + ihOp(p)S(s)q

+h2Op(p)q
)
,

hOph(p1) ◦ Jh(S(s), q) = Jh

(
S(s), ihOp(p1)S(s)q + h2Op(p1)q

)
.

Here we use the notation Op(a) = Op1(a), i.e. h = 1 in (0.0.9). This shows

−h2∆g ◦ Jh(S(s), q) = Jh

(
S(s), E(s)q + ihT (s)q − h2∆gq

)
,

where

E(s)q = p(x,∇xS(s))q,
T (s)q = −∇ξp(x,∇xS(s)) · ∇xq −∆gS(s)q.

Hence the action of −h2∆g on JN (s) can be computed explicitly as

−h2∆g ◦ JN (s) =
N+1∑
l=0

hlJh(S(s), cl(s)),

4
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where

c0(s) = E(s)a0(s),
c1(s) = E(s)a1(s) + iT (s)a0(s),
cl(s) = E(s)al(s) + iT (s)al−1(s)−∆gal−2(s), l = 2, · · · , N − 1,
cN (s) = iT (s)aN−1(s)−∆gaN−2(s),

cN+1(s) = −∆gaN−1(s).

We thus get

(hDs + h2∆g)JN (s) =
N+1∑
k=0

hkJh(S(s), dk(s)),

with

d0(s) = (∂sS(s)− E(s))a0(s),
d1(s) = (∂sS(s)− E(s))a1(s) + (Ds − iT (s))a0(s),
dk(s) = (∂sS(s)− E(s))ak(s) + (Ds − iT (s))ak−1(s) + ∆gak−2(s), k = 2, · · · , N − 1,
dN (s) = (Ds − iT (s))aN−1(s) + ∆gaN−2(s),

dN+1(s) = ∆gaN−1(s).

Therefore, in order to make (hDs + h2∆g)JN (s) to have a small contribution, we need to study
the “Eikonal” or Hamilton-Jacobi equation

∂sS(s)− p(x,∇xS(s)) = 0, S(0) = x · ξ,

and transport equations

Dsa0(s)− iT (s)a0(s) = 0,
Dsak(s)− iT (s)ak(s) = −∆gak−1(s), k = 1, · · · , N − 1,

with initial data
a0(0) = a(x, ξ), ak(0) = 0, k = 1, · · · , N − 1.

When σ 6= 2, we do not have an explicit formula for (h|∇g|)σ, thus the above calculation does
not hold. However, we can overcome this difficulty by means of pseudo-differential calculus as
follows. Thanks to the support of ϕ, we replace eith−1(h|∇g|)σOph(a) by eith

−1ω(−h2∆g)Oph(a)
with ω(λ) = ϕ̃(λ)

√
λ
σ, where ϕ̃ ∈ C∞0 (R\{0}) satisfying ϕ̃ = 1 on the support of ϕ. The interest

of this replacement is that we can write ω(−h2∆g) in terms of semi-classical pseudo-differential
operators, namely

ω(−h2∆g) =
N−1∑
k=0

hkOph(qk) + hNRN (h), (0.0.11)

where qk ∈ S(−∞) satisfies q0(x, ξ) = ω ◦ p(x, ξ) and supp(qk) ⊂ p−1(supp(ω)) and RN (h) is
bounded in L2 uniformly in h ∈ (0, 1]. As above if we set w(t) = eith

−1ω(−h2∆g)Oph(a)ψ, then we
have

w(t) = JN (t)ψ − ih−1
∫ t

0
ei(t−s)h

−1ω(−h2∆g)(hDs − ω(−h2∆g))JN (s)ψds.

We need to study the action of ω(−h2∆g) on JN (s). To do so, we use the action of pseudo-

5
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differential operators on Fourier integral operators, namely

Oph(b) ◦ Jh(S, c) =
N−1∑
j=1

hjJh(S, (b / c)j) + hNJh(S, rN (h)),

where (b / c)j is a universal linear combination of

∂βξ b(x,∇xS(x, ξ))∂β−αx c(x, ξ)∂α1
x S(x, ξ) · · · ∂αkx S(x, ξ),

with α ≤ β, α1 + · · ·+ αk = α and |αl| ≥ 2 for all l = 1, · · · , k and |β| = j. In particular,

(b / c)0(x, ξ) = b(x,∇xS(x, ξ))c(x, ξ),

i(b / c)1(x, ξ) = ∇ξb(x,∇xS(x, ξ)) · ∇xc(x, ξ) + 1
2 tr(∇

2
ξb(x,∇xS(x, ξ)) · ∇2

xS(x, ξ))c(x, ξ).

This combined with (0.0.11) yield

ω(−h2∆g) ◦ JN (t) =
N−1∑
k=0

hkOph(qk) ◦
N−1∑
j=0

hjJh(S(t), aj(t)) + hNRN (h)JN (t)

=
N∑

k+j+l=0
hk+j+lJh(S(t), (qk / aj(t))l) + hN+1Jh(S(t), rN+1(h, t)) + hNRN (h)JN (t).

This implies that

(hDt − ω(−h2∆g))JN (t) =
N∑
r=0

hrJh(S(t), cr(t))− hNRN (h)JN (t)− hN+1Jh(S(t), rN+1(h, t)),

where

c0(t) = (∂tS(t)− q0(x,∇xS(t)))a0(t),
cr(t) = (∂tS(t)− q0(x,∇xS(t)))ar(t) +Dtar−1(t)− (q0 / ar−1(t))1 − (q1 / ar−1(t))0

−
∑

k+j+l=r
j≤r−2

(qk / aj(t))l, r = 1, · · · , N − 1,

cN (t) = DtaN−1(t)− (q0 / aN−1(t))1 − (q1 / aN−1(t))0 −
∑

k+j+l=N
j≤N−2

(qk / aj(t))l.

The system of equations cr(t) = 0 for r = 0, · · · , N leads to the following “eikonal” or Hamilton-
Jacobi equation

∂tS(t)− q0(x,∇xS(t)) = 0, S(0) = x · ξ,

and transport equations

Dta0(t)− (q0 / a0(t))1 − (q1 / a0(t))0 = 0,

Dtar(t)− (q0 / ar(t))1 − (q1 / ar(t))0 =
∑

k+j+l=r+1
j≤r−1

(qk / aj(t))l, r = 1, · · · , N − 1,

with initial data
a0(0) = a, ar(0) = 0, r = 1, · · · , N − 1.

After solving the Hamilton-Jacobi equation and these transport equations on the time interval

6
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[−t0, t0] for some t0 > 0, we show the L2-boundedness of the remainder term

‖RN (t)‖L2→L2 . hN−1,

for all t ∈ [−t0, t0] and all h ∈ (0, 1]. We also have dispersive estimates for the main term

‖JN (t)‖L1→L∞ . h
−d(1 + |t|h−1)− d2 ,

for all t ∈ [−t0, t0] and all h ∈ (0, 1]. We thus obtain dispersive estimates for semi-classical
Schrödinger-type operators

‖eith
−1(h|∇g|)σϕ(−h2∆g)ψ‖L∞ . h−d(1 + |t|h−1)− d2 ‖ψ‖L1 ,

for all t ∈ [−t0, t0] and all h ∈ (0, 1]. These estimates together with energy estimates and the
TT ?-criterion yield

‖eith
−1(h|∇g|)σϕ(−h2∆g)ψ‖Lp([−t0,t0],Lq) . h

−( d2− dq− 1
p )‖ψ‖L2 .

By scaling in time, we obtain

‖eit|∇g|
σ

ϕ(−h2∆g)ψ‖Lp(hσ−1[−t0,t0],Lq) . h
−γp,q‖ψ‖L2 .

In the case σ ∈ (0, 1), we obviously bound estimates on a finite time interval I by estimates on
intervals of size hσ−1 and obtain the following local in time Strichartz estimates

‖eit|∇g|
σ

ϕ(−h2∆g)ψ‖Lp(I,Lq) . h
−γp,q‖ψ‖L2 .

In the case σ ∈ (1,∞), we cumulate O(h1−σ) estimates on intervals of size hσ−1 to get estimates
on a finite interval I and obtain

‖eit|∇g|
σ

ϕ(−h2∆g)ψ‖Lp(I,Lq) . h
−γp,q−σ−1

p ‖ψ‖L2 .

Moreover, we can replace the norm ‖ψ‖L2 in the right hand side of above Strichartz estimates
by ‖ϕ(−h2∆g)ψ‖L2 . By the Littlewood-Paley decomposition and the almost orthogonality, we
obtain Strichartz estimates for Schrödinger-type equations

σ ∈ (1,∞), ‖eit|∇g|
σ

ψ‖Lp(I,Lq) . ‖ψ‖
H
γp,q+σ−1

p
,

and
σ ∈ (0, 1), ‖eit|∇g|

σ

ψ‖Lp(I,Lq) . ‖ψ‖Hγp,q .

We see that in the case σ ∈ (1,∞), there is a loss of σ−1
p derivatives compared to those on Rd.

In Chapter 3, we use Strichartz estimates obtained in Chapter 2 to show Strichartz estimates for
Schrödinger-type equations on compact manifolds without boundary. More precisely, we consider

i∂tu+ |∇g|σu = 0, u(0) = ψ, |∇g| =
√
−∆g, σ ∈ (0,∞)\{1},

on compact manifolds without boundary (M, g), where ∆g is the Laplace-Beltrami operator on
(M, g). In the case σ = 2, Burq-Gérard-Tzvetkov established in [BGT04] Strichartz estimates
with a loss of 1/p derivatives, i.e.

‖e−it∆gψ‖Lp(I,Lq(M)) . ‖ψ‖H1/p(M),

where (p, q) is sharp Schrödinger admissible with q < ∞ (see (0.0.1)). In the case σ 6= 2, we use

7



Introduction

the Littlewood-Paley decomposition (see e.g. [BGT04, Corollary 2.3]), that is for q ∈ [2,∞),

‖v‖Lq(M) . ‖v‖L2(M) +
( ∑
h−2∈2N

‖ϕ(−h2∆g)v‖2Lq(M)

)1/2

and the Minkowski inequality to have for any finite time interval I,

‖v‖Lp(I,Lq(M)) . ‖v‖Lp(I,L2(M)) +
( ∑
h−2∈2N

‖ϕ(−h2∆g)v‖2Lp(I,Lq(M))

)1/2
.

Applying this estimate together with the L2 isometry of the Schrödinger-type operator, we have

‖eit|∇g|
σ

ψ‖Lp(I,Lq(M)) . ‖ψ‖L2(M) +
( ∑
h−2∈2N

‖eit|∇g|
σ

ϕ(−h2∆g)ψ‖2Lp(I,Lq(M))

)1/2
.

The problem is then reduced to showing local in time Strichartz estimates for the localized
Schrödinger-type operator eit|∇g|σϕ(−h2∆g)ψ, hence for eith−1(h|∇g|)σϕ(−h2∆g)ψ, namely

‖eith
−1(h|∇g|)σϕ(−h2∆g)ψ‖Lp([−t0,t0],Lq(M)) . ‖ψ‖L2(M),

for some t0 > 0 independent of h ∈ (0, 1]. To do so, it suffices to show dispersive estimates

‖eith
−1(h|∇g|)σϕ(−h2∆g)ψ‖L∞(M) . h

−d(1 + |t|h−1)− d2 ‖ψ‖L1(M), (0.0.12)

for all t ∈ [−t0, t0] and all h ∈ (0, 1]. Thanks to the localization ϕ, we can replace (h|∇g|)σ by
ω(−h2∆g) where ω(λ) = ϕ̃(λ)

√
λ
σ with ϕ̃ ∈ C∞0 (R\{0}) such that ϕ̃ = 1 on supp(ϕ). The parti-

tion of unity allows us to consider only on a local coordinates (Uκ, Vκ, κ)κ, i.e.
∑
k e

ith−1ω(−h2∆g)

ϕ(−h2∆g)φκ, where φκ ∈ C∞0 (Uκ) and 1 =
∑
κ φκ. By the functional calculus, we can express

ϕ(−h2∆g)φκ in terms of semi-classical pseudo-differential operators, namely

ϕ(−h2∆g)φκ =
N−1∑
j=0

hj φ̃κOp
κ
h(aκ,j)φκ + hNRκ,N (h),

where φ̃κ ∈ C∞0 (Uκ) satisfies φ̃κ = 1 on supp(φκ), the operators

Opκh(aκ,j) = κ∗Oph(aκ,j)κ∗,

with aκ,j ∈ S(−∞) and supp(aκ,j) ⊂ supp(ϕ ◦ pκ), and for any m ≥ 0,

‖Rκ,N (h)‖H−m(M)→Hm(M) . h
−2m.

Here pκ is the pricipal symbol of−∆g in (Uκ, Vκ, κ) and κ∗, κ∗ are the pullback and pushforward op-
erators respectively. Thus, it suffices to show dispersive estimates for eith−1ω(−h2∆g)φ̃κOp

κ
h(aκ)φκ

with aκ ∈ S(−∞) and supp(aκ) ⊂ supp(ϕ ◦ pκ). If we set w(t) = eith
−1ω(−h2∆g)φ̃κOp

κ
h(aκ)φκψ,

then w solves the semi-classical evolution equation

(hDt − ω(−h2∆g))w(t) = 0, w(0) = φ̃κOp
κ
h(aκ)φκψ.

The WKB method allows us to construct an approximation of the solution in a finite time interval
independent of h ∈ (0, 1]. To do so, we first find an operator, denoted by P , globally defined on
Rd of the form

P =
d∑

j,k=1
gjk(x)∂j∂k +

d∑
l=1

nl(x)∂l,
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which coincides with −∆g on a large relatively compact subset V0 of Vκ. For instance, we can
take P = −χ∆g − (1−χ)∆, where χ ∈ C∞0 (Vκ) takes values in [0, 1] satisfying χ = 1 on V0. Here
∆ is the free Laplacian operator on Rd. The principal symbol of P is

p(x, ξ) =
d∑

j,k=1
gjk(x)ξjξk, gjk(x) = χ(x)gjkκ (x) + (1− χ(x))δjk,

where
∑d
j,k=1 g

jk
κ (x)ξjξk is the principal symbol of −∆g in (Uκ, Vκ, κ). It is easy to see that

(gjk(x))dj,k=1 satisfies (0.0.6 and (0.0.7) and nl are bounded on Rd together with all of theirs
derivatives. We next write for some ϑκ ∈ C∞0 (Uκ) satisfying ϑκ = 1 on supp(φ̃κ),

ω(−h2∆g)ϑκ =
N−1∑
l=0

hlϑ̃κOp
κ
h(bκ,l)ϑκ + hNRκ,N (h).

We thus can apply the WKB approximation given in Chapter 2 to find t0 > 0, a function Sκ ∈
C∞([−t0, t0] × R2d) and a sequence aκ,j(t) ∈ S(−∞) satisfying supp(aκ,j(t)) ⊂ p−1(J) for some
small neighborhood J of supp(ϕ) not containing the origin uniformly in t ∈ [−t0, t0] such that(

hDt −
N−1∑
l=0

hlOph(bκ,l)
)
Jκ,N (t) = Rκ,N (t), (0.0.13)

where

Jκ,N (t) :=
N−1∑
j=0

hjJh(Sκ(t), aκ,j(t)), Jκ,N (0) = Oph(aκ),

satisfies for all t ∈ [−t0, t0] and all (x, ξ) ∈ p−1(J),

|∂αx ∂
β
ξ (Sκ(t, x, ξ)− x · ξ)| ≤ Cαβ |t|, |α+ β| ≥ 1,∣∣∣∂αx ∂βξ (Sκ(t, x, ξ)− x · ξ + t

√
p(x, ξ)

σ
)∣∣∣ ≤ Cαβ |t|2,

and for all h ∈ (0, 1],

‖Jκ,N (t)‖L1→L∞ . h
−d(1 + |t|h−1)− d2 , (0.0.14)

Rκ,N (t) = OL2→L2(hN−1). (0.0.15)

Now let us set
JκN (t) := κ∗Jκ,N (t)κ∗, RκN (t) := κ∗Rκ,N (t)κ∗.

By the fundamental theorem of calculus, we have

w(t) = eith
−1ω(−h2∆g)φ̃κOp

κ
h(aκ)φκψ

= φ̃κJ
κ
N (t)φκψ − ih−1

∫ t

0
ei(t−s)ω(−h2∆g)(hDs − ω(−h2∆g))φ̃κJκN (s)φκψds.

By (0.0.13), we write

(hDs−ω(−h2∆g))φ̃κJκN (s)φκ = φ̃κhDsJ
κ
N (s)φκ−ϑ̃κOpκh(bκ(h))φ̃κJκN (s)φκ−hNRκ,N (h)φ̃κJκN (s)φκ,

where bκ(h) =
∑N−1
l=0 hlbκ,l. Note that up to a smoothing OL2→L2(h∞) operator, the operator

Jh(S(t), a(t))χ can be replaced by χ̃Jh(S(t), a(t))χ for any χ̃ ∈ C∞0 satisfying χ̃ = 1 on supp(χ).

9
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Thus,

(hDs − ω(−h2∆g))φ̃κJκN (s)φκ = ϑ̃κκ
∗(hDs −Oph(bκ(h)))JN (s)κ∗φκ −Rκ(s)

−hNRκ,N (h)φ̃κJκN (s)φκ
= ϑ̃κR

κ
N (s)φκ −Rκ(s)− hNRκ,N (h)φ̃κJκN (s)φκ,

where Rκ(s) = OL2(M)→L2(M)(h∞). Here we also use the L2-boundedness of pseudo-differential
operators with symbol in S(−∞). We thus get

w(t) = φ̃κJ
κ
N (t)φκψ +RκN (t)ψ,

where

RκN (t)ψ = ih−1
∫ t

0
ei(t−s)h

−1ω(−h2∆g) (ϑ̃κRκN (s)φκ −Rκ(s)− hNRκ,N (h)φ̃κJκN (s)φκ
)
ψds.

Thanks to the dispersive estimate (0.0.14) and the L2-boundedness (0.0.15), we obtain for all
t ∈ [−t0, t0] and all h ∈ (0, 1],

‖eith
−1ω(−h2∆g)ϕ(−h2∆g)φκψ‖L∞(M) . h

−d(1 + |t|h−1)− d2 ‖ψ‖L1(M).

These dispersive esimates combined with the partition of unity show (0.0.12).
In Chapter 4, we study global in time Strichartz estimates for Schrödinger-type equations 1

i∂tu− |∇g|σu = 0, u(0) = ψ, |∇g| =
√
−∆g, σ ∈ (0,∞)\{1},

on asymptotically Euclidean manifolds, i.e. Rd equipped with a smooth long range pertubation
metric g. More precisely the metric g satisfies the following assumptions:
• (Ellipticity) There exists C > 0 such that for all x, ξ ∈ Rd,

C−1|ξ|2 ≤ p(x, ξ) :=
d∑

j,k=1
gjk(x)ξjξk ≤ C|ξ|2. (0.0.16)

• (Long range pertubation) There exists ρ > 0 such that for all α ∈ Nd, there exists Cα > 0
such that for all x ∈ Rd,

|∂α(gjk(x)− δjk)| ≤ Cα 〈x〉−ρ−|α| . (0.0.17)

In some situation, we assume that the geodesic flow associated to g is non-trapping. It means that
the Hamiltonian flow (X(t),Ξ(t)) := (X(t, x, ξ),Ξ(t, x, ξ)) associated to the principal symbol p of
g−1(x) = (gjk(x))dj,k=1, i.e.{

Ẋ(t) = ∇ξp(X(t),Ξ(t)),
Ξ̇(t) = −∇xp(X(t),Ξ(t)), and

{
Ẋ(0) = x,
Ξ̇(0) = ξ,

satisfies for all (x, ξ) ∈ T ?Rd with ξ 6= 0,

|X(t)| → ∞ as |t| → ∞.

Remark that by the conservation of energy and (0.0.16), all geodesics starting from (x, ξ) are
defined globally in time. We also assume that there exists M > 0 large enough such that for all

1This is different from the previous chapters with the minus sign in front of |∇g |σ . It is technical due to the
construction of the Isozaki-Kitada parametrix.
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χ ∈ C∞0 (Rd),

‖χ(−∆g − λ± i0)−1χ‖L2→L2 . λM , λ ≥ 1. (0.0.18)

Note that this assumption holds in certain trapping situations (see e.g. [Dat09], [NZ09] or
[BGH10]), for instance,

‖χ(−∆g − λ± i0)−1χ‖L2→L2 . λ−
1
2 log λ, λ ≥ 1,

as well as in non-trapping condition (see [Rob92] or [Vod04])

‖χ(−∆g − λ± i0)−1χ‖L2→L2 . λ−
1
2 , λ ≥ 1.

In order to study global in time Strichartz estimates for Schrödinger-type equations on asymp-
totically Euclidean manifolds, we need to split the solution into low and high frequency pieces,
namely

e−it|∇g|
σ

ψ = f0(−∆g)e−it|∇g|
σ

ψ + (1− f0)(−∆g)e−it|∇g|
σ

ψ =: ulow(t) + uhigh(t),

where f0 ∈ C∞0 (R) satisfies f0 = 1 on [−1, 1].
Let us consider the high frequency term. For a given χ ∈ C∞0 (Rd), we write uhigh = χuhigh+(1−

χ)uhigh. In our consideration, we have the following version of Littlewood-Paley decomposition:
for any q ∈ [2,∞), N ≥ 1 and χ ∈ C∞0 (Rd),

‖(1− χ)(1− f0)(−∆g)v‖Lq .
( ∑
h−2∈2N

‖(1− χ)f(−h2∆g)v‖2Lq + hN‖ 〈x〉−N f(−h2∆g)v‖2L2

)1/2
,

where f(λ) = f0(λ) − f0(2λ). The same estimate holds true for χ in place of 1 − χ. By the
Minkowski inequality,

‖(1− χ)uhigh‖Lp(R,Lq) .
( ∑
h−2∈2N

‖(1− χ)f(−h2∆g)e−it|∇g|
σ

ψ‖2Lp(R,Lq)

+ hN‖ 〈x〉−N f(−h2∆g)e−it|∇g|
σ

ψ‖2Lp(R,L2)

)1/2
.

The same estimate holds for ‖χuhigh‖Lp(R,Lq) with χ instead of 1 − χ. To estimate the weighted
term 〈x〉−N f(−h2∆g)e−it|∇g|

σ

ψ, we use the L2 integrability which is available on (Rd, g) under
the assumption (0.0.18), namely

‖ 〈x〉−1
f(−h2∆g)e−ith

−1(h|∇g|)σψ‖L2(R,L2) . h
1−N0

2 ‖ψ‖L2 ,

for some N0 > 0. Interpolating between L2(R) and L∞(R), we have

‖ 〈x〉−1
f(−h2∆g)e−ith

−1(h|∇g|)σψ‖Lp(R,L2) . h
1−N0
p ‖ψ‖L2 ,

or
‖ 〈x〉−1

f(−h2∆g)e−i|∇g|
σ

ψ‖Lp(R,L2) . h
σ−N0
p ‖ψ‖L2 .

Thus,
h
N
2 ‖ 〈x〉−N f(−h2∆g)e−it|∇g|

σ

ψ‖Lp(R,L2) . h
N
2 +σ−N0

p ‖ψ‖L2 .

Moreover, we can replace the norm ‖ψ‖L2 by ‖f(−h2∆g)ψ‖L2 . Therefore, by taking N large
enough, we see that this weighted term is bounded by h−γp,q‖f(−h2∆g)ψ‖L2 . By the almost
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orthogonality, Strichartz estimates for the high frequency piece are reduced to showing

‖χe−it|∇g|
σ

f(−h2∆g)ψ‖Lp(R,Lq) . h
−γp,q‖f(−h2∆g)ψ‖L2 , (0.0.19)

‖(1− χ)e−it|∇g|
σ

f(−h2∆g)ψ‖Lp(R,Lq) . h
−γp,q‖f(−h2∆g)ψ‖L2 . (0.0.20)

Here the almost orthogonality means formally that supp[f(2−k·)] ∩ supp[f(2−l·)] = ∅ for k, l ∈ N
and |k − l| ≥ 2. This allows us to show, for instance, ∑

h−2=2−k
k∈N

h−2γp,q‖f(−h2∆g)ψ‖2L2


1/2

. ‖ψ‖Ḣγp,q .

For the low frequency term, we use the following Littlewood-Paley decomposition: for any
χ ∈ C∞0 (Rd) satisfying χ(x) = 1 for |x| ≤ 1,

‖f0(−∆g)v‖Lq .
( ∑
ε−2∈2N

‖(1− χ)(εx)f(−ε−2∆g)v‖2Lq + ε2(
d
2−

d
q )‖ 〈εx〉−1

f(−ε−2∆g)v‖2L2

)1/2

to bound

‖ulow‖Lp(R,Lq) .
( ∑
ε−2∈2N

‖(1− χ)(εx)f(−ε−2∆g)e−it|∇g|
σ

ψ‖2Lp(R,Lq)

+ ε2(
d
2−

d
q )‖ 〈εx〉−1

f(−ε−2∆g)e−it|∇g|
σ

ψ‖2Lp(R,L2)

)1/2
.

Using the Lp-integrability, which follows from the low frequency resolvent estimates,

‖ 〈εx〉−1
f(−ε−2∆g)e−itε(ε

−1|∇g|)σψ‖Lp(R,L2) . ε
− 1
p ‖ψ‖L2 ,

we estimate

ε
d
2−

d
q ‖ 〈εx〉−1

f(−ε−2∆g)e−it|∇g|
σ

ψ‖Lp(R,L2) . ε
γp,q‖f(−ε−2∆g)ψ‖L2 .

Therefore, by an almost orthogonality argument, it suffices to show

‖(1− χ)(εx)f(−ε−2∆g)e−it|∇g|
σ

ψ‖Lp(R,Lq) . ε
γp,q‖f(−ε−2∆g)ψ‖L2 . (0.0.21)

To show (0.0.19), we assume that the geodesic flow associated to g is non-trapping. It is
crucial in our argument. We make use of the local in time Strichartz estimates for the localized
Schrödinger-type operator, namely

‖e−ith
−1(h|∇g|)σϕ(−h2∆g)v‖Lp(R,Lq) . h

−κp,q‖v‖L2 ,

with κp,q = d
2 −

d
q −

1
p as well as the inhomogenous Strichartz estimates

∥∥∥∫ t

0
e−i(t−s)h

−1(h|∇g|)σϕ2(−h2∆g)G(s)ds
∥∥∥
Lp(R,Lq)

. h−κp,q‖G‖L1(I,L2).

These Strichartz estimates are proved in Chapter 2. Note that the long range assumption (0.0.17)
implies that the metric g satisfies (0.0.7). With these localized Strichartz estimates and the sharp
L2-integrability

‖ 〈x〉−1
f(−h2∆g)e−ith

−1(h|∇g|)σf(−h2∆g)ψ‖L2(R,L2) . ‖ψ‖L2 ,

we prove (0.0.19). Note that the non-trapping condition is needed to have the above sharp L2-

12
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integrability.
The proofs of (0.0.20) and (0.0.21) are based on the Isozaki-Kitada parametrix and local energy

decay estimates, namely for k ≥ 0,

‖ 〈x〉−1−k
e−ith

−1(h|∇g|)σf(−h2∆g) 〈x〉−1−k ‖L2→L2 . h−Nk
〈
th−1〉−k ,

‖ 〈εx〉−1−k
e−itε(ε

−1|∇g|)σf(−ε−2∆g) 〈εx〉−1−k ‖L2→L2 . 〈εt〉−k .

We refer the reader to Chapter 4 for more details.
The second part of this thesis concerns nonlinear aspects of the nonlinear Schrödinger-type

equations such as local well-posedness, global well-posedness, global existence and blowup for low
regularity initial data. In Chapter 5, we study the local well-posedness in Sobolev spaces for
nonlinear Schrödinger-type equations. More precisely, we consider

i∂tu+ |∇|σu = ±|u|ν−1u, u(0) = ψ, σ ∈ (0,∞), ν > 1. (NLST)

This equation enjoys formally the conservation of mass and energy

M(u(t)) =
∫
|u(t, x)|2dx = M(ψ),

E(u(t)) = 1
2

∫
||∇|σ/2u(t, x)|2dx∓ 1

ν + 1

∫
|u(t, x)|ν+1dx = E(ψ).

The equation (NLST) also has the scaling invariance

uλ(t, x) = λ−
σ
ν−1u(λσt, λ−1x), λ > 0.

By a direct computation, we have

‖uλ(0)‖Ḣγ = λ
d
2−

σ
ν−1−γ‖ψ‖Ḣγ .

From this, we define the critical regularity exponent by

γc := d

2 −
σ

ν − 1 .

In Chapter 5, we are interested in the well-posedness result for (NLST) when γ ≥ γc. Since we are
working in Sobolev spaces of fractional order γ and γc, we need the nonlinearity F (z) = ±|z|ν−1z
to have enough regularity. When ν is an odd integer, the nonlinearity is smooth. When ν > 1 is
not an odd integer, we need the following assumption

dγe, dγce ≤ ν, (0.0.22)

where dγe is the smallest integer greater than or equal to γ, similarly for dγce.
In order to study the local well-posedness of (NLST) in Sobolev spaces, we need two important

tools: Strichartz estimates and nonlinear estimates. Strichartz estimates for Schrödinger-type
equations are shown in Chapter 1. Note that in the case σ ∈ (0, 2), admissible conditions (0.0.4)
and (0.0.5) yield γp,q > 0 for any (p, q) except (∞, 2). Thus, in this case, there is a loss of derivatives
in the sense that if we use Strichartz estimates at Hγ-level, then we need the initial data to belong
to Hγ+γp,q . This loss of derivatives leads to a weak local well-posedness result for σ ∈ (0, 2)
compared to the one for σ ∈ [2,∞). Therefore, we will consider three cases σ ∈ (0, 2)\{1}, σ = 1
and σ ∈ [2,∞) respectively. We also need the Kato fractional derivative estimates, namely for
γ ≥ 0 and 1 < r, p <∞, 1 < q ≤ ∞ satisfying 1

r = 1
p + ν−1

q :

• if ν > 1 is an odd integer or dγe ≤ ν otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0

13
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such that for all u ∈ S ,

‖|∇|γ(|u|ν−1u)‖Lr ≤ C‖u‖ν−1
Lq ‖|∇|

γu‖Lp ,
‖ 〈∇〉γ (|u|ν−1u)‖Lr ≤ C‖u‖ν−1

Lq ‖ 〈∇〉
γ
u‖Lp .

• if ν > 1 is an odd integer or dγe ≤ ν−1 otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0
such that for all u ∈ S ,

‖|∇|γ(|u|ν−1u− |v|ν−1v)‖Lr ≤ C
(

(‖u‖ν−1
Lq + ‖v‖ν−1

Lq )‖|∇|γ(u− v)‖Lp

+(‖u‖ν−2
Lq + ‖v‖ν−2

Lq )(‖|∇|γu‖Lp + ‖|∇|γv‖Lp)‖u− v‖Lq
)
,

‖ 〈∇〉γ (|u|ν−1u− |v|ν−1v)‖Lr ≤ C
(

(‖u‖ν−1
Lq + ‖v‖ν−1

Lq )‖ 〈∇〉γ (u− v)‖Lp

+(‖u‖ν−2
Lq + ‖v‖ν−2

Lq )(‖ 〈∇〉γ u‖Lp + ‖ 〈∇〉γ v‖Lp)‖u− v‖Lq
)
.

The proof of the local well-posedness is based on Strichartz estimates and the standard contraction
mapping argument. By Duhamel’s formula, it suffices to show the functional

Φ(u) := eit|∇|
σ

∓ i
∫ t

0
ei(t−s)|∇|

σ

|u(s)|ν−1u(s)ds

is a contraction on a suitable Banach space (X, d).
Let us consider σ ∈ (0, 2). In the subcritical case, i.e. γ > γc, we choose X as

X :=
{
u ∈ L∞(I,Hγ) ∩ Lp(I,Hγ−γp,q

q ) : ‖u‖L∞(I,Hγ) + ‖u‖
Lp(I,Hγ−γp,qq ) ≤M

}
,

and the distance
d(u, v) := ‖u− v‖L∞(I,L2) + ‖u− v‖

Lp(I,H−γp,qq ),

where I = [0, T ] with M,T > 0 to be determined momentarily. Here (p, q) is an admissible pair
satisfying either (0.0.4) or (0.0.5) to be chosen shortly, and Hγ

q is the generalized Sobolev space
(see Chapter 1 for the notation). Due to the loss of derivatives, we have to use Strichartz estimate
for the special pair (∞, 2) to get

‖Φ(u)‖L∞(I,Hγ) + ‖Φ(u)‖
Lp(I,Hγ−γp,qq ) . ‖ψ‖Hγ + ‖|u|ν−1u‖L1(I,Hγ),

‖Φ(u)− Φ(v)‖L∞(I,L2) + ‖Φ(u)− Φ(v)‖
Lp(I,H−γp,qq ) . ‖|u|

ν−1u− |v|ν−1v‖L1(I,L2).

The nonlinear term can be bounded by

‖|u|ν−1u‖L1(I,Hγ) . |I|1−
ν−1
p ‖u‖ν−1

Lp(I,L∞)‖u‖L∞(I,Hγ),

similarly for |u|ν−1u−|v|ν−1v. In order to close the contraction ball, we need to choose (p, q) such
that ν − 1 < p and Lp(I,Hγ−γp,q

q ) ⊂ Lp(I, L∞) or Hγ−γp,q
q ⊂ L∞. By the Sobolev embedding, we

choose: for σ ∈ (0, 2)\{1}, (p, q) satisfies (0.0.4) and

p >

{
max(ν − 1, 4) if d = 1,
max(ν − 1, 2) if d ≥ 2,

and for σ = 1, (p, q) satisfies (0.0.5) and

p >

{
max(ν − 1, 4) if d = 2,
max(ν − 1, 2) if d ≥ 3.
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In the critical case γ = γc, the Sobolev embedding does not help. To overcome the loss of
derivatives, we consider

X :=
{
u ∈ L∞(I,Hγc) ∩ Lp(I,Bγc−γp,q

q ) : ‖u‖L∞(I,Ḣγc ) ≤M, ‖u‖
Lp(I,Ḃγc−γp,q

q ) ≤ N
}
,

and
d(u, v) := ‖u− v‖L∞(I,L2) + ‖u− v‖

Lp(I,Ḃ−γp,qq ),

where I = [0, T ] with M,N, T > 0 to be determined. Here Bγq and Ḃγq are generalized inhomo-
geneous and homogeneous Besov spaces respectively (see again Chapter 1 for the notation). As
in the subcritical case, by using Strichartz estimate for the pair (∞, 2) and the Hölder inequality,
it suffices to bound ‖u‖ν−1

Lν−1(I,L∞). To do so, we use the argument of Hong-Sire [HS15] (see also
[CKSTT5]) to have: for σ ∈ (0, 2)\{1},

‖u‖ν−1
Lν−1(R,L∞) .


‖u‖4

L4(R,Ḃγc−γ4,∞
∞ )

‖u‖ν−5
L∞(R,Ḃγc

2 ) when d = 1,
‖u‖p

Lp(R,Ḃ
γc−γp,p?
p?

)
‖u‖ν−1−p

L∞(R,Ḃγc
2 ) where ν − 1 > p > 2 when d = 2,

‖u‖2
L2(R,Ḃ

γc−γ2,2?
2? )

‖u‖ν−3
L∞(R,Ḃγc

2 ) when d ≥ 3,

where p? = 2p/(p− 2) and 2? = 2d/(d− 2), and for σ = 1,

‖u‖ν−1
Lν−1(R,L∞) .


‖u‖4

L4(R,Ḃγc−γ4,∞
∞ )

‖u‖ν−5
L∞(R,Ḃγc

2 ) when d = 2,
‖u‖p

Lp(R,Ḃ
γc−γp,p?
p?

)
‖u‖ν−1−p

L∞(R,Ḃγc
2 ) where 2 < p < ν − 1 when d = 3,

‖u‖2
L2(R,Ḃ

γc−γ2,2?
2? )

‖u‖ν−3
L∞(R,Ḃγc

2 ) when d ≥ 4,

where p? = 2p/(p− 2) and 2? = 2(d− 1)/(d− 3). We thus choose for σ ∈ (0, 2)\{1},

(p, q) =

 (4,∞) if d = 1,
(p, p?) if d = 2,
(2, 2?) if d ≥ 3,

and for σ = 1,

(p, q) =

 (4,∞) if d = 2,
(p, p?) if d = 3,
(2, 2?) if d ≥ 4.

In the case σ ∈ [2,∞), thanks to Strichartz estimates without loss of derivatives, we show Φ
is a contraction on (X, d) with

X :=
{
u ∈ Lp(I,Hγ

q ) : ‖u‖Lp(I,Ḣγq ) ≤M
}
, d(u, v) := ‖u− v‖Lp(I,Lq),

where
p = 2σ(ν + 1)

(ν − 1)(d− 2γ) , q = d(ν + 1)
d+ (ν − 1)γ .

By Strichartz estimates, we bound

‖Φ(u)‖Lp(I,Ḣγq ) . ‖ψ‖Ḣγ + ‖|u|ν−1u‖Lp′ (I,Ḣγ
q′

),

‖Φ(u)− Φ(v)‖Lp(I,Lq) . ‖|u|ν−1u− |v|ν−1v‖Lp′ (I,Lq′ ).
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The Hölder inequality then implies

‖|u|ν−1u‖Lp′ (I,Ḣγ
q′

) . |I|
1− (ν−1)(d−2γ)

2σ ‖u‖ν
Lp(I,Ḣγq ),

‖|u|ν−1u− |v|ν−1v‖Lp′ (I,Lq′ ) . |I|
1− (ν−1)(d−2γ)

2σ

(
‖u‖ν−1

Lp(I,Ḣγq ) + ‖v‖ν−1
Lp(I,Ḣγq )

)
‖u− v‖Lp(I,Lq).

With these estimates at hand, we can easily show that Φ is a contraction on (X, d).
In Chapter 6, we consider the defocusing nonlinear fourth-order Schrödinger equation

i∂tu+ ∆2u = −|u| 8du, u(0) = ψ. (dNL4S)

By the local theory given in Chapter 5, (dNL4S) is locally well-posed in Hγ for γ > 0 satisfying,
in the case d 6= 1, 2, 4,

dγe ≤ 1 + 8
d
. (0.0.23)

This conditon ensures the nonlinearity to have enough regularity. The conservation of mass and
energy together with the persistence of regularity yield the global well-posedness for (dNL4S) in
Hγ with γ ≥ 2 satisfying for d 6= 1, 2, 4, (0.0.23). The main goal of Chapter 6 is to prove the global
well-posedness for (dNL4S) in low regularity spaces Hγ(Rd) with d ≥ 4 and 0 < γ < 2. Since
we are working with low regularity data, the conservation of energy does not hold. In order to
overcome this difficulty, we make use of the I-method introduced by [CKSTT1] and the interaction
Morawetz inequality (which is available for d ≥ 5). We thus consider separately two cases d = 4
and d ≥ 5.

In the case d = 4, we use the I-method in Bourgain spaces, which is an adaptation of the
one given in [CKSTT1] to prove the low regularity global well-posedness of the defocusing cubic
nonlinear Schrödinger equation on R2. The idea of the I-method is to replace the conserved energy
E(u), which is not available when γ < 2, by an “almost conserved” quantity E(INu) with N � 1.
Here IN is a smoothing operator which behaves like the identity for low frequencies |ξ| ≤ N and
like a fractional integral operator of order 2− γ for high frequencies |ξ| ≥ 2N . Since INu is not a
solution to the equation, we may expect an energy increment. The key idea is to show that on the
time interval of local existence, the increment of the modified energy E(INu) decays with respect
to a large parameter N . This allows to control E(INu) on time interval where the local solution
exists, and we can iterate this estimate to obtain a global in time control of the solution by means
of the bootstrap argument. In the case d = 4, the nonlinearity is algebraic. It allows to write
explicitly the commutator between the I-operator and the nonlinearity by means of the Fourier
transform, and then control it by multi-linear analysis. We will show in Chapter 6 that (dNL4S)
is globally well-posed in Hγ(R4) for any 60

53 < γ < 2.
In the case d ≥ 5, we use the I-method combined with the interaction Morawetz inequality.

In this consideration, the nonlinearity is no longer algebraic. Thus we cannot apply the Fourier
transform technique to estimate the increment of the modified energy. Fortunately, thanks to
Strichartz estimates with a “gain” of derivatives, namely

‖∆u‖Lp(R,Lq) . ‖∆ψ‖L2 + ‖∇(|u| 8du)‖
L2(R,L

2d
d+2 )

,

we are able to apply the technique given in [VZ09] to control the commutator. Due to the presence
of the biharmonic operator ∆2, we need the nonlinearity to have enough regularity. This leads to
a restriction on dimensions d = 5, 6 and 7. The interaction Morawetz inequality for the nonlinear
fourth-order Schrödinger equation was first introduced in [Pau1] for d ≥ 7, and was extended for
d ≥ 5 in [MWZ15]. As a byproduct of Strichartz estimates and the I-method, we show global
well-posedness for (dNL4S) in Hγ(Rd) for any γ(d) < γ < 2, where γ(5) = 8

5 , γ(6) = 5
3 and

γ(7) = 13
7 . However, this result is not new since one has a better result due to Pausader-Shao in

[PS10]. In [PS10], the authors proved the global well-posedness for (dNL4S) with initial data in
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L2(Rd), d ≥ 5. They also proved that the solution satisfies the uniform bound

‖u‖
L

2+ 8
d (R,L2+ 8

d )
≤ C(‖ψ‖L2).

With this uniform bound, the persistence of regularity shows the global well-posedness for (dNL4S)
in Hγ(Rd) for any 0 < γ < 2 satisfying (0.0.23).

In the last chapter, we consider the focusing nonlinear fourth-order Schrödinger equation

i∂tu+ ∆2u = |u| 8du, u(0) = ψ. (fNL4S)

The main goal of this chapter is to study dynamical properties such as L2-concentration, limiting
profile with minimal mass, ... for low regularity blowup solutions. The study of blowup solutions
is closely related to the notion of ground states of (fNL4S) which are solutions to the elliptic
equation

∆2Q+Q− |Q| 8dQ = 0. (0.0.24)

This elliptic equation is obtained by considering solitary solutions (standing waves) of (fNL4S) of
the form u(t, x) = e−itQ(x). The existence of solutions to (0.0.24) was proved in [ZYZ10], but the
uniqueness still remains open. In the case ‖ψ‖L2 < ‖Q‖L2 , using the sharp Gagliardo-Nirenberg
inequality

‖u‖2+ 8
d

L
2+ 8

d
≤ C(d)‖u‖

8
d

L2‖∆u‖2L2 , C(d) =
1 + 4

d

‖Q‖
8
d

L2

,

together with the conservation of energy, it is easy to see that (fNL4S) is globally well-posed in
H2. Moreover, Fibich-Ilan-Papanicolaou in [FIP02] provided some numerical observations showing
that the H2 solution to (fNL4S) may blow up if the initial data satisfies ‖ψ‖L2 ≥ ‖Q‖L2 . Recently,
Boulenger-Lenzmann in [BL17] showed the existence of radial blowup solutions to (fNL4S). More
precisely, the authors proved that for any negative radial initial data ψ in H2, the corresponding
solution u(t) either blows up in finite time or blows up infinite time and satisfies

‖u(t)‖Ḣ2 ≥ Ct2, ∀t ≥ t0,

with some constant C = C(ψ) > 0 and t0 = t0(ψ) > 0. Baruch-Fibich-Mandelbaum in [BFM10]
proved some dynamical properties of radially symmetric blowup solutions such as blowup rate,
L2-concentration. Later, Zhu-Yang-Zhang in [ZYZ10] removed the radially symmetric assumption
and established the profile decomposition, the existence of ground states for the elliptic equation
(0.0.24) and the following concentration compactness lemma for (fNL4S): for any bounded sequence
(vn)n≥1 of H2 functions satisfying

lim sup
n→∞

‖∆vn‖L2 ≤M and lim sup
n→∞

‖vn‖
L

2+ 8
d
≥ m,

there exists a sequence (xn)n≥1 of Rd such that up to a subsequence

vn(·+ xn) ⇀ V weakly in H2 as n→∞,

with ‖V ‖
8
d

L2 ≥
‖Q‖

8
d
L2m

2+ 8
d

(1+ 4
d )M2 , where Q is the solution to the elliptic equation (0.0.24). Consequently,

the authors in [ZYZ11] used the I-method and the compactness lemma to establish the limiting
profile and the L2-concentration for (fNL4S) with initial data in Hγ(R4), 9+

√
721

20 < γ < 2. In
Chapter 7, we aim to lower the required regularity of [ZYZ11] in the fourth dimensional case and
to extend the result of [ZYZ11] to higher dimensions d ≥ 5.

In the case d = 4, we make use of the I-method which is essentially established in Chapter 6.
This allows us to show dynamical properties of blowup solutions in Hγ(R4) with 67+

√
40489

150 < γ <

17
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2. This is an improvement of the result of [ZYZ11].
In the case d ≥ 5, we also make use of the I-method used in Chapter 6. As mentioned above,

due to the high-order term ∆2u, we need the nonlinearity to have at least two orders of derivatives
in order to successfully establish the energy increment. We thus restrict ourself in spatial space
of dimensions d = 5, 6 and 7. With the help of the I-method, we are able to study dynamical
properties of blowup solutions in Hγ(Rd) with d = 5, 6, 7 and 56−3d+

√
137d2+1712d+3136
2(2d+32) < γ < 2.

Notations:
Throughout this thesis, we will use the following notations. The various constant will be

denoted by C. The constants with subscripts C1, C2, ... will be used when we need to compare
them to one another. The notation A . B means that there exists a universal constant C > 0
such that A ≤ CB. The notation A ∼ B means A . B and B . A. We also use the Japanese
bracket 〈a〉 :=

√
1 + |a|2 ∼ 1 + |a| and a± := a± ε with some universal constant 0 < ε � 1. For

Banach spaces X and Y , the notation ‖ · ‖X→Y denotes the operator norm from X to Y . The one
T = OX→Y (A) means that ‖T‖X→Y . A.

18
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In this chapter, we derive Strichartz estimates for the inhomogeneous linear Schrödinger-type
equations {

i∂tu(t, x) + |∇|σu(t, x) = F (t, x), (t, x) ∈ R× Rd,
u(0, x) = ψ(x), x ∈ Rd, (LST)

where σ ∈ (0,∞) and |∇|σ is the Fourier multiplier by |ξ|σ. To do so, let us first recall the abstract
TT ?-criterion due to Keel-Tao [KT98].
Theorem 1.0.1 (TT ?-criterion). Let (X, dx) be a measure space and H a Hilbert space. Suppose
for each time t ∈ R, an operator T (t) : H → L2(X) which obeys:

1. For all t ∈ R and all f ∈ H,

‖T (t)f‖L2(X) . ‖f‖H . (1.0.1)

2. There exists δ > 0 so that one of the following decay estimates holds for all g ∈ L1(X),

‖T (t)T (s)?g‖L∞(X) . |t− s|−δ‖g‖L1(X), ∀t 6= s, (1.0.2)
‖T (t)T (s)?g‖L∞(X) . (1 + |t− s|)−δ‖g‖L1(X), ∀t, s ∈ R. (1.0.3)

If T (t) obeys (1.0.1) and (1.0.2), then the estimates

‖T (t)f‖Lp(R,Lq(X)) . ‖f‖H , (1.0.4)∥∥∥∫ T (s)?F (s)ds
∥∥∥
H
. ‖F‖Lp′ (R,Lq′ (X)), (1.0.5)∥∥∥∫

s<t

T (t)T (s)?F (s)ds
∥∥∥
Lp(R,Lq(X))

. ‖F‖La′ (R,Lb′ (X)), (1.0.6)

hold for all sharp δ-admissible pairs (p, q) and (a, b), i.e.

(p, q) ∈ [2,∞]2, (p, q, δ) 6= (2,∞, 1), 1
p

+ δ

q
= δ

2 .

Furthermore, if T (t) obeys (1.0.1) and (1.0.3), then (1.0.4), (1.0.5) and (1.0.6) hold for all δ-
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Chapter 1. Strichartz estimates on the flat Euclidean space

admissible pairs (p, q) and (a, b), i.e.

(p, q) ∈ [2,∞]2, (p, q, δ) 6= (2,∞, 1), 1
p

+ δ

q
≤ δ

2 .

Here (p, p′) is a conjugate pair, and similarly for (q, q′), (a, a′) and (b, b′).
To our knowledge, there are two ways to derive Strichartz estimates for (LST). One way is to

use directly dispersive and energy estimates as for the linear Schrödinger equation, i.e. σ = 2,
More precisely, one can compute the Schwartz kernel of the Schrödinger group e−it∆

e−it∆ψ(x) = e±i
πd
4

|4πt| d2

∫
e−i

|x−y|2
4t ψ(y)dy, ± := sign of t.

From this, we obtain the following dispersive estimate

‖e−it∆ψ‖L∞ . |t|−
d
2 ‖ψ‖L1 .

In the case σ 6= 2, it is not clear that one can compute the Schwartz kernel of eit|∇|σ , and thus
dispersive estimates for eit|∇|σ are not obtained directly. Another way is to decompose the solution
in dyadic pieces and use the scaling technique to reduce to estimates at frequency one. Since (LST)
enjoys a scaling invariance in the frequency space, it allows us to use the scaling technique.

Before entering some details, let us introduce some standard notations (see [GV85, Appendix],
[Tri83, Chapter 5] or [BL76, Chapter 6]). Let 1 χ0 ∈ C∞0 (Rd) be such that χ0(ξ) = 1 for
|ξ| ≤ 1 and supp(χ0) ⊂ {ξ ∈ Rd, |ξ| ≤ 2}. We set χ(ξ) := χ0(ξ) − χ0(2ξ). It is easy to see
that χ ∈ C∞0 (Rd) and supp(χ) ⊂ {ξ ∈ Rd, 1/2 ≤ |ξ| ≤ 2}. We denote the Littlewood-Paley
projections by P0 := χ0(D), PN := χ(N−1D) with N = 2k, k ∈ Z where χ0(D), χ(N−1D) are
Fourier multipliers by χ0(ξ) and χ(N−1ξ) respectively. Given γ ∈ R and 1 ≤ q ≤ ∞, the
generalized inhomogeneous Sobolev Hγ

q and Besov Bγq spaces are defined respectively as closures
of the Schwartz space S under the norms

‖u‖Hγq := ‖ 〈∇〉γ u‖Lq , 〈∇〉 :=
√

1−∆,

‖u‖Bγq := ‖P0u‖Lq +
( ∑
N∈2N

N2γ‖PNu‖2Lq
)1/2

,

where ∆ is the free Laplace operator on Rd. Now, let S0 be a subspace of S consisting of functions
φ satisfying Dαφ̂(0) = 0 for all α ∈ Nd, where ·̂ is the Fourier transform on S . The generalized
homogeneous Sobolev and Besov spaces are defined respectively as closures of S0 under the norms

‖u‖Ḣγq := ‖|∇|γu‖Lq ,

‖u‖Ḃγq :=
( ∑
N∈2Z

N2γ‖PNu‖2Lq
)1/2

.

We again refer the reader to [GV85, Appendix], [Tri83, Chapter 5] or [BL76, Chapter 6] for
various properties of these function spaces. It is easy to see that the spaces Bγq and Ḃγq do not
depend on the choice of χ0. Note that Hγ

q , B
γ
q , Ḣ

γ
q and Ḃγq are Banach spaces with the norms

‖u‖Hγq , ‖u‖Bγq , ‖u‖Ḣγq and ‖u‖Ḃγq respectively. In the sequel, we shall use Hγ := Hγ
2 , Ḣγ := Ḣγ

2 .
By the Littlewood-Paley theorem, we see that if 2 ≤ q < ∞, then Ḃγq ⊂ Ḣγ

q with the reverse
inclusion for 1 < q ≤ 2. In particular, Ḃγ2 = Ḣγ and Ḃ0

2 = Ḣ0
2 = L2. Moreover, if γ > 0, then

Hγ
q = Lq ∩ Ḣγ

q and Bγq = Lq ∩ Ḃγq .

1Note that one can choose χ0 to be radially symmetric, and then so is χ.
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1.1. Strichartz estimates for Schrödinger-type equations

Throughout this thesis, we denote for (p, q) ∈ [1,∞]2,

γp,q = d

2 −
d

q
− σ

p
. (1.0.7)

1.1 Strichartz estimates for Schrödinger-type equations on
the flat Euclidean space

Let σ ∈ (0,∞)\{1} and consider the inhomogeneous linear Schrödinger-type equations on
Rd, d ≥ 1, {

i∂tu(t, x) + |∇|σu(t, x) = F (t, x), (t, x) ∈ R× Rd,
u(0, x) = ψ(x), x ∈ Rd, (LST)

where |∇|σ is the Fourier multiplier by |ξ|σ with ∆ =
∑d
j=1 ∂

2
j the free Laplace operator on Rd.

The Duhamel formula (see e.g. [Tao06, Proposition 1.35]) shows that the (LST) is essentially
equivalent to the integral equation

u(t) = eit|∇|
σ

ψ − i
∫ t

0
ei(t−s)|∇|

σ

F (s)ds. (1.1.1)

The purpose of this section is to derive Strichartz estimates for the (LST). To do so, we introduce
the following admissible condition.
Definition 1.1.1. A pair (p, q) is said to be Schrödinger admissible if

(p, q) ∈ [2,∞]2, (p, q, d) 6= (2,∞, 2), 2
p

+ d

q
≤ d

2 . (1.1.2)

Theorem 1.1.2. Let d ≥ 1, σ ∈ (0,∞)\{1}, γ ∈ R. If u is a solution to the (LST) for some data
ψ, F , then for all (p, q) and (a, b) Schrödinger admissible pairs,

‖u‖Lp(R,Ḃγq ) . ‖ψ‖Ḣγ+γp,q + ‖F‖
La′ (R,Ḃ

γ+γp,q−γa′,b′−σ

b′
)
, (1.1.3)

where γp,q and γa′,b′ are as in (1.0.7). In particular,

‖u‖
Lp(R,Ḃγ−γp,qq ) . ‖ψ‖Ḣγ + ‖F‖L1(R,Ḣγ), (1.1.4)

and

‖u‖L∞(R,Ḃγp,q2 ) + ‖u‖Lp(R,Ḃ0
q ) . ‖ψ‖Ḣγp,q + ‖F‖La′ (R,Ḃ0

b′
), (1.1.5)

provided that

γp,q = γa′,b′ + σ. (1.1.6)

Here (a, a′) and (b, b′) are conjugate pairs.
Proof. We first note that the Minkowski inequality with p, q ≥ 2 gives

‖u‖Lp(R,Ḃγq ) .
( ∑
N∈2Z

N2γ‖PNu‖2Lp(R,Lq)

)1/2
. (1.1.7)
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1.1. Strichartz estimates for Schrödinger-type equations

Therefore, the theorem is proved if we establish

‖eit|∇|
σ

P1ψ‖Lp(R,Lq) . ‖P1ψ‖L2 , (1.1.8)∥∥∥∫ t

0
ei(t−s)|∇|

σ

P1F (s)ds
∥∥∥
Lp(R,Lq)

. ‖P1F‖La′ (R,Lb′ ), (1.1.9)

for all (p, q), (a, b) Schrödinger admissible pairs. Indeed, by change of variables, we see that

‖eit|∇|
σ

PNψ‖Lp(R,Lq) = N−(d/q+σ/p)‖eit|∇|
σ

P1ψN‖Lp(R,Lq),

‖P1ψN‖L2 = Nd/2‖PNψ‖L2 ,

where ψN (x) = ψ(N−1x). To see this, we write

eit|∇|
σ

PNψ(t, x) = (2π)−d
∫
eixξeit|ξ|

σ

χ(N−1ξ)ψ̂(ξ)dξ

= (2π)−d
∫
eiNxξeitN

σ|ξ|σχ(ξ)ψ̂N (ξ)dξ = eit|∇|
σ

P1ψN (Nσt,Nx),

where ψN (x) := ψ(N−1x). The estimate (1.1.8) implies that

‖eit|∇|
σ

PNψ‖Lp(R,Lq) . N
γp,q‖PNψ‖L2 , (1.1.10)

for all N ∈ 2Z. Similarly,∥∥∥ ∫ t

0
ei(t−s)|∇|

σ

PNF (s)ds
∥∥∥
Lp(R,Lq)

= N−(d/q+σ/p+σ)
∥∥∥∫ t

0
ei(t−s)|∇|

σ

P1FN (s)ds
∥∥∥
Lp(R,Lq)

,

where FN (t, x) = F (N−σt,N−1x). We also have from (1.1.9) and the fact

‖P1FN‖La′ (R,Lb′ ) = N (d/b′+σ/a′)‖PNF‖La′ (R,Lb′ )

that ∥∥∥ ∫ t

0
ei(t−s)|∇|

σ

PNF (s)ds
∥∥∥
Lp(R,Lq)

. Nγp,q−γa′,b′−σ‖PNF‖La′ (R,Lb′ ), (1.1.11)

for all N ∈ 2Z. We see from (1.1.10) and (1.1.11) that

Nγ‖PNu‖Lp(R,Lq) . N
γ+γp,q‖PNψ‖L2 +Nγ+γp,q−γa′,b′−σ‖PNF‖La′ (R,Lb′ ).

By taking the `2(2Z) norm both sides and using (1.1.7), we get (1.1.3). The estimate (1.1.4) follows
from (1.1.3) by taking γ = γ − γp,q and (a, b) = (∞, 2). The estimate (1.1.5) follows again from
(1.1.3) by taking (p, q) = (∞, 2) with γ = γp,q and γ = 0. Let us prove (1.1.8) and (1.1.9). By the
TT ∗-criterion given in Theorem 1.0.1, we need to show

‖T (t)‖L2→L2 . 1, (1.1.12)
‖T (t)‖L1→L∞ . (1 + |t|)−d/2, (1.1.13)

for all t ∈ R where T (t) := eit|∇|
σ

P1. The energy estimate (1.1.12) is obvious by using the
Plancherel theorem. It remains to prove the dispersive estimate (1.1.13). To do this, we first write
the kernel of T (t) as

K(t, x, y) = (2π)−d
∫
Rd
ei((x−y)·ξ−t|ξ|σ)χ(ξ)dξ.
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Chapter 1. Strichartz estimates on the flat Euclidean space

The estimate (1.1.13) is then in turn equivalent to

|K(t, x, y)| . (1 + |t|)−d/2, (1.1.14)

for all t ∈ R and all x, y ∈ Rd. We only prove (1.1.14) for t ≥ 0, the case t < 0 is similar. Thanks
to the compact support of χ, we have |K(t, x, y)| . 1,∀t ∈ R, x, y ∈ Rd. In the case 0 ≤ t ≤ C for
some constant C > 0 large enough, we have

|K(t, x, y)| . 1 . (1 + t)−d/2, ∀x, y ∈ Rd.

In the case t ≥ C, we rewrite

K(t, x, y) = (2π)−d
∫
Rd
eitΦ(t,x,y,ξ)χ(ξ)dξ,

where Φ(t, x, y, ξ) = (x− y) · ξ/t− |ξ|σ.
If |x − y|/t ≥ C1 for some constant C1 > 0 large enough, then using that σ 6= 1 and 1/2 ≤

|ξ| ≤ 2, we have
|∇ξΦ(t, x, y, ξ)| ≥ |x− y|/t− σ|ξ|σ−1 ≥ C > 0.

The non stationary phase theorem implies that for all N ≥ 0,

|K(t, x, y)| . t−N . (1 + t)−d/2,

for all t ≥ C and all x, y ∈ Rd satisfying |x− y|/t ≥ C1 provided that N is taken larger than d/2.
A similar result holds with |x− y|/t ≤ C2 for some constant C2 > 0 small enough.

We can now assume that

C2 ≤ |x− y|/t ≤ C1. (1.1.15)

We have
∇2
ξΦ(t, x, y, ξ) = −σ|ξ|σ−2

(
IRd + (σ − 2)ξ · ξ

T

|ξ|2
)
.

This implies that
|det∇2

ξΦ| = σd|σ − 1||ξ|(σ−2)d ≥ C > 0.

Thus, the map ξ 7→ ∇ξΦ from a neighborhood of {ξ ∈ Rd, 1/2 ≤ |ξ| ≤ 2} to its range is a local
diffeomorphism. The stationary phase theorem then implies that

|K(t, x, y)| . t−d/2 . (1 + t)−d/2,

for all t ≥ C and all x, y ∈ Rd satisfying (1.1.15). This completes the proof.
We next give some applications of Strichartz estimates given in Theorem 1.1.2.

Corollary 1.1.3. Let d ≥ 1, σ ∈ (0,∞)\{1}, γ ∈ R. If u is a solution to the (LST) for some data
ψ, F , then for all (p, q) and (a, b) Schrödinger admissible with q <∞ and b <∞ satisfying (1.1.6),

‖u‖
Lp(R,Ḣγ−γp,qq ) . ‖ψ‖Ḣγ + ‖F‖L1(R,Ḣγ), (1.1.16)

‖u‖L∞(R,Ḣγp,q ) + ‖u‖Lp(R,Lq) . ‖ψ‖Ḣγp,q + ‖F‖La′ (R,Lb′ ). (1.1.17)
Corollary 1.1.4. Let d ≥ 1, σ ∈ (0,∞)\{1}, γ ≥ 0 and I a bounded interval. If u is a solution
to the (LST) for some data ϕ, F , then for all (p, q) Schrödinger admissible satisfying q <∞,

‖u‖
Lp(I,Hγ−γp,qq ) . ‖ψ‖Hγ + ‖F‖L1(I,Hγ). (1.1.18)

Proof. We first note that when γp,q ≥ 0 (or at least σ ∈ (0, 2]\{1}), we can obtain (1.1.18) for any
γ ∈ R and I = R. To see this, we write ‖u‖

Lp(R,Hγ−γp,qq ) = ‖ 〈∇〉γ−γp,q u‖Lp(R,Lq) and use (1.1.16)
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with γ = γp,q to obtain

‖u‖
Lp(R,Hγ−γp,qq ) . ‖ 〈∇〉

γ−γp,q ψ‖Ḣγp,q + ‖ 〈∇〉γ−γp,q F‖L1(R,Ḣγp,q ).

This gives the claim since ‖v‖Ḣγp,q ≤ ‖v‖Hγp,q using that γp,q ≥ 0. It remains to treat the case
γp,q < 0. By the Minkowski inequality and the unitarity of eit|∇|σ in L2, the estimate (1.1.18) is
proved if we can show for γ ≥ 0, I ⊂ R a bounded interval and all (p, q) Schrödinger admissible
with q <∞ that

‖eit|∇|
σ

ψ‖
Lp(I,Hγ−γp,qq ) . ‖ψ‖Hγ . (1.1.19)

Indeed, if we have (1.1.19), then∥∥∥∫ t

0
ei(t−s)|∇|

σ

F (s)ds
∥∥∥
Lp(I,Hγ−γp,qq )

≤
∫
I

‖1[0,t](s)ei(t−s)|∇|
σ

F (s)‖
Lp(I,Hγ−γp,qq )ds

≤
∫
I

‖ei(t−s)|∇|
σ

F (s)‖
Lp(I,Hγ−γp,qq )ds

.
∫
I

‖F (s)‖Hγds = ‖F‖L1(I,Hγ).

We now prove (1.1.19). To do so, we write

〈∇〉γ−γp,q eit|∇|
σ

ψ = ω(D) 〈∇〉γ−γp,q eit|∇|
σ

ψ + (1− ω)(D) 〈∇〉γ−γp,q eit|∇|
σ

ψ,

for some ω ∈ C∞0 (Rd) valued in [0, 1] and equal to 1 near the origin. Here ω(D) is the Fourier
multiplier by ω(ξ). For the first term, the Sobolev embedding implies

‖ω(D) 〈∇〉γ−γp,q eit∇
σ

ψ‖Lq . ‖ω(D) 〈∇〉γ−γp,q eit∇
σ

ψ‖Hδ ,

for some δ > d/2− d/q. Thanks to the support of ω and the unitary property of eit∇σ in L2, we
get

‖ω(D) 〈∇〉γ−γp,q eit|∇|
σ

ψ‖Lp(I,Lq) . ‖ψ‖L2 . ‖ψ‖Hγ .

Here the boundedness of I is crucial to have the first estimate. For the second term, using (1.1.17),
we obtain

‖(1− ω)(D) 〈∇〉γ−γp,q eit|∇|
σ

ψ‖Lp(I,Lq) . ‖(1− ω)(D) 〈∇〉γ−γp,q ψ‖Ḣγp,q . ‖ψ‖Hγ .

Combining the two terms, we have (1.1.19). This completes the proof.
Another application of Strichartz estimates for the (LST) is the following Strichartz estimates

for the following inhomogeneous linear wave-type equations,{
∂2
t v(t, x) + (−∆)σv(t, x) = G(t, x), (t, x) ∈ R× Rd,

v(0, x) = ψ(x), ∂tv(0, x) = φ(x), x ∈ Rd. (LWT)

Corollary 1.1.5. Let d ≥ 1, σ ∈ (0,∞)\{1}, γ ∈ R. If v is a solution to the (LWT) for some data
ψ, φ,G, then for all (p, q) and (a, b) Schrödinger admissible pairs,

‖[v]‖Lp(R,Ḃγq ) . ‖[v](0)‖Ḣγ+γp,q + ‖G‖
La′ (R,Ḃ

γ+γp,q−γa′,b′−2σ

b′
)
, (1.1.20)

where

‖[v]‖Lp(R,Ḃγq ) := ‖v‖Lp(R,Ḃγq ) + ‖∂tv‖Lp(R,Ḃγ−σq ),

‖[v](0)‖Ḣγ+γp,q := ‖ψ‖Ḣγ+γp,q + ‖φ‖Ḣγ+γp,q−σ .
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In particular,

‖[v]‖
Lp(R,Ḃγ−γp,qq ) . ‖[v](0)‖Ḣγ + ‖G‖L1(R,Ḣγ−σ), (1.1.21)

and

‖[v]‖L∞(R,Ḃγp,q2 ) + ‖[v]‖Lp(R,Ḃ0
q ) . ‖[v](0)‖Ḣγp,q + ‖G‖La′ (R,Ḃ0

b′
), (1.1.22)

provided that

γp,q = γa′,b′ + 2σ. (1.1.23)

Proof. By Duhamel’s formula, the solution to (LWT) is given by

v(t) = cos(t|∇|σ)ψ + sin(t|∇|σ)
|∇|σ

φ+
∫ t

0

sin((t− s)|∇|σ)
|∇|σ

G(s)ds.

The desired estimates follow easily from Theorem 1.1.2 and the fact that

cos(t|∇|σ) = eit|∇|
σ + e−it|∇|

σ

2 , sin(t|∇|σ) = eit|∇|
σ − e−it|∇|σ

2i .

As in Corollary 1.1.3, we have the following usual Strichartz estimates for fractional wave
equations.
Corollary 1.1.6. Let d ≥ 1, σ ∈ (0,∞)\{1}, γ ∈ R. If v is a solution to the (LWT) for some data
ψ, φ,G, then for all (p, q) and (a, b) Schrödinger admissible satisfying q <∞, b <∞ and (1.1.23),

‖v‖
Lp(R,Ḣγ−γp,qq ) . ‖[v](0)‖Ḣγ + ‖G‖L1(R,Ḣγ−σ), (1.1.24)

‖[v]‖L∞(R,Ḣγp,q ) + ‖v‖Lp(R,Lq) . ‖[v](0)‖Ḣγp,q + ‖G‖La′ (R,Lb′ ). (1.1.25)

The following result, which is similar to Corollary 1.1.4, gives the local Strichartz estimates
for the fractional wave equation.
Corollary 1.1.7. Let d ≥ 1, σ ∈ (0,∞)\{1}, γ ≥ 0 and I ⊂ R a bounded interval. If v is a
solution to the inhomogeneous linear wave-type equation for some data ψ, φ,G, then for all (p, q)
Schrödinger admissible satisfying q <∞,

‖v‖
Lp(I,Hγ−γp,qq ) . ‖[v](0)‖Hγ + ‖G‖L1(I,Hγ−σ). (1.1.26)

Proof. The proof is similar to the one of Corollary 1.1.4. Thanks to the Minkowski inequality, it
suffices to prove for all γ ≥ 0, all I ⊂ R bounded interval and all (p, q) Schrödinger admissible
pair with q <∞,

‖ cos(t|∇|σ)ψ‖
Lp(I,Hγ−γp,qq ) . ‖ψ‖Hγ , (1.1.27)∥∥∥ sin(t|∇|σ)

|∇|σ
φ
∥∥∥
Lp(I,Hγ−γp,qq )

. ‖φ‖Hγ−σ . (1.1.28)

The estimate (1.1.27) follows from the ones of e±it|∇|σ . We will give the proof of (1.1.28). To do
this, we write

〈∇〉γ−γp,q sin(t|∇|σ)
|∇|σ

= ω(D) 〈∇〉γ−γp,q sin(t|∇|σ)
|∇|σ

+ (1− ω)(D) 〈∇〉γ−γp,q sin(t|∇|σ)
|∇|σ

,

for some ω as in the proof of Corollary 1.1.4. For the first term, the Sobolev embedding and the
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fact
∣∣∣∣∣∣ sin(t|∇|σ)

|∇|σ

∣∣∣∣∣∣
L2→L2

≤ |t| imply

∥∥∥ω(D) 〈∇〉γ−γp,q sin(t|∇|σ)
|∇|σ

φ
∥∥∥
Lq
. |t|‖ω(D) 〈∇〉γ+δ−γp,q φ‖L2 ,

for some δ > d/2− d/q. This gives∥∥∥ω(D) 〈∇〉γ−γp,q sin(t|∇|σ)
|∇|σ

φ
∥∥∥
Lp(I,Lq)

. ‖φ‖Hγ−σ .

Here we use that ‖ω(D) 〈∇〉δ+σ−γp,q ‖L2→L2 . 1. For the second term, we apply (1.1.19) with the
fact sin(t|∇|σ) = (eit|∇|σ − e−it|∇|σ )/2i and get∥∥∥(1− ω)(D) 〈∇〉γ−γp,q sin(t|∇|σ)

|∇|σ
φ
∥∥∥
Lp(I,Lq)

. ‖(1− ω)(D)|∇|−σφ‖Hγ . ‖φ‖Hγ−σ .

Here we also use that ‖(1− ω)(D) 〈∇〉σ |∇|−σ‖L2→L2 . 1 by functional calculus. Combining two
terms, we have (1.1.28). The proof is complete.

1.2 Strichartz estimates for the half-wave equation on the
flat Euclidean space

Let us now consider the inhomogeneous linear half-wave equation, namely{
i∂tu(t, x) + |∇|u(t, x) = F (t, x), (t, x) ∈ R× Rd,

u(0, x) = ψ(x), x ∈ Rd. (LHW)

As for the (LST), the solution of (LHW) is given in terms of the Duhamel formula as

u(t, x) = eit|∇|ψ − i
∫ t

0
ei(t−s)|∇|F (s)ds. (1.2.1)

In order to state Strichartz estimates for the (LHW), we introduce some notations.
Definition 1.2.1. A pair (p, q) is said to be wave admissible if

(p, q) ∈ [2,∞]2, (p, q, d) 6= (2,∞, 3), 2
p

+ d− 1
q
≤ d− 1

2 .

Theorem 1.2.2 ([BCD11], [KT98], [KTV14]). Let d ≥ 2, γ ∈ R and u be a solution to the (LHW),
for some data ψ,F . Then for all (p, q) and (a, b) wave admissible pairs,

‖u‖Lp(R,Ḃγq ) . ‖ψ‖Ḣγ+γp,q + ‖F‖
La′ (R,Ḃ

γ+γp,q−γa′,b′−1

q′
)
, (1.2.2)

where γp,q and γa′,b′ are as in (1.0.7) with σ = 1. In particular,

‖u‖
Lp(R,Ḃγ−γp,qq ) . ‖ψ‖Ḣγ + ‖F‖L1(R,Ḣγ), (1.2.3)

and

‖u‖L∞(R,Ḃγp,q2 ) + ‖u‖Lp(R,Ḃ0
q ) . ‖ψ‖Ḣγp,q + ‖F‖La′ (R,Ḃ0

b′
), (1.2.4)

provided that

γp,q = γa′,b′ + 1. (1.2.5)

Here (a, a′) and (b, b′) are conjugate pairs.
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The proof of this result is based on the following spherical Fourier transform (see e.g. [Wol03]).
Lemma 1.2.3 (Spherical Fourier Transform). Let σ be the hyper-surface measure of the sphere
Sd−1. Then, the spherical Fourier transform

σ̂(ξ) =
∫
Sd−1

e−iξ·θdσ(θ)

satisfies
|σ̂(|ξ|)| . |ξ|−

d−1
2 ,

for ξ ∈ Rd with |ξ| large.
Proof. Let us recall the fact that for any A an invertible linear maps from Rd to itself, we have

f̂ ◦A = 1
|detA| f̂ ◦ (AT )−1,

where AT is the transpose matrix of A. In particular, if A is an orthogonal transformation, i.e.
AAt = IRd , then f̂ ◦A = f̂ ◦A. From this and the facts that σ is invariant by orthogonal transfor-
mations and orthogonal transformations act transitively on Sd−1, we have σ̂ is radial. Moreover,
σ̂ is smooth. It then suffices to prove for ξ = |ξ|ed, where ed = (0, ..., 0, 1). We first choose an
atlas on Sd−1 as follows: (U±j , B(0, 1), κ±j )dj=1 where U±j =

{
(x1, ..., xj , ..., xd) ∈ Sd−1,±xj > 0

}
,

and B(0, 1) is the open unit ball in Rd−1 and

κ±j : U±j ⊂ Sd−1 → B(0, 1) ∈ Rd−1

(x1, ..., xj , ..., xd) 7→ (x1, ..., xj−1, xj+1, ..., xd).

Let (φ±j )dj=1 be a partition of unity associated to (U±j )dj=1. We can write

σ̂(ξ) =
d∑
j=1

(∫
U+
j

e−i|ξ|ed·θφ+
j (θ)dσ(θ) +

∫
U−
j

e−i|ξ|ed·θφ−j (θ)dσ(θ)
)
.

We separate this quantity into two terms. The first term is for the sum over j = 1 to d − 1 and
second term for j = d. For the first term, we treat for j = 1 only, the other ones are treated
similarly. By writing

κ±1
−1 : B(0, 1) ∈ Rd−1 → U±1 ⊂ Sd−1

z = (z1, ..., zd−1) 7→
(
±
√

1− |z|2, z
)
,

we have
∫
U+

1
e−i|ξ|ed·θφ+

1 (θ)dσ(θ) +
∫
U−1

e−i|ξ|ed·θφ−1 (θ)dσ(θ) equals to∫
B(0,1)

e−i|ξ|zd−1φ+
1 (
√

1− |z|2, z) dz√
1− |z|2

+
∫
B(0,1)

e−i|ξ|zd−1φ−1 (−
√

1− |z|2, z) dz√
1− |z|2

.

We see that in above integrals, the phases are non stationary, thus the first term can be bounded
by |ξ|−N for all N ≥ 0. For the second term, we process as above and it equals to∫
B(0,1)

e−i|ξ|
√

1−|z|2φ+
d (z,

√
1− |z|2) dz√

1− |z|2
+
∫
B(0,1)

ei|ξ|
√

1−|z|2φ−d (z,−
√

1− |z|2) dz√
1− |z|2

.
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The phase function
√

1− |z|2 has only one critical point at zero and we have

∂2
zjzk

√
1− |z|2 =

 −
1√

1−|z|2
− z2

j√
1−|z|2

3 when j = k,

− zjzk√
1−|z|2

3 when j 6= k,

for all j, k = 1, ..., d− 1. This implies the Hessian of
√

1− |z|2 at zero is −IRd−1 , so is invertible.
We can apply the stationary phase theorem and the second term can be bounded by |ξ|− d−1

2 .
Combining the two terms, we have the result.
Proof of Theorem 1.2.2. As in the proof of Theorem 1.1.2, using

‖eit|∇|PNψ‖Lp(R,Lq) = N−(d/q+1/p)‖eit|∇|P1ψN‖Lp(R,Lq),

‖P1ψN‖L2 = Nd/2‖PNψ‖L2 ,∥∥∥∫ t

0
ei(t−s)|∇|PNF (s)ds

∥∥∥
Lp(R,Lq)

= N−(d/q+1/p+1)
∥∥∥∫ t

0
ei(t−s)|∇|P1FN (s)ds

∥∥∥
Lp(R,Lq)

,

‖P1FN‖La′ (R,Lb′ ) = N (d/b′+1/a′)‖PNF‖La′ (R,Lb′ ),

where ψN (x) = ψ(N−1x) and FN (t, x) = F (N−1t,N−1x), the theorem is proved if we have

‖eit|∇|P1ψ‖Lp(R,Lq) . ‖P1ψ‖L2 , (1.2.6)∥∥∥∫ t

0
ei(t−s)|∇|P1F (s)ds

∥∥∥
Lp(R,Lq)

. ‖P1F‖La′ (R,Lb′ ), (1.2.7)

for all (p, q), (a, b) wave admissible pairs. By the TT ?-criterion, it suffices to prove

‖T (t)‖L2→L2 . 1, (1.2.8)
‖T (t)‖L1→L∞ . (1 + |t|)−(d−1)/2, (1.2.9)

for all t ∈ R where T (t) = eit|∇|P1. The energy estimate (1.2.8) again follows from the Plancherel
theorem. We need to prove (1.2.9). To do so, we write the integral kernel of T (t) as 2

K(t, x, y) = (2π)−d
∫
Rd
ei((x−y)·ξ+t|ξ|)χ(|ξ|)dξ.

Since χ is compactly supported, we have for all t ∈ R,

|K(t, x, y)| ≤ C,

for some constant C > 0. It implies the required estimate if |t| is small. Indeed, if |t| ≤ C ′ for
some fixed C ′ > 0 large, then 1 + |t| ≤ (1 + C ′) or (1 + |t|)− d−1

2 ≥ (1 + C ′)− d−1
2 & C. Thus, we

can assume that |t| ≥ C ′. The phase function Φ(t, x, y, ξ) = (x− y) · ξ + t|ξ| satisfies

∇ξΦ(t, x, y, ξ) = (x− y) + t
ξ

|ξ|
.

We remark that ∇ξΦ = 0 only if |x − y| = |t| and the critical points of Φ lie on a line, hence
are not isolated. So, the stationary phase theorem can not be applied directly. To overcome this
difficulty, we use the polar coordinates, i.e. ξ = rθ with r ∈ (0,+∞) and θ ∈ Sd−1. The kernel
reads

K(t, x, y) = (2π)−d
∫ +∞

0

∫
Sd−1

eir((x−y)·θ+t)χ(r)rd−1drdσ(θ).

2Here χ is radially symmetric, i.e. there exists a function which is still denoted by χ so that χ(ξ) = χ(|ξ|).

30



Chapter 1. Strichartz estimates on the flat Euclidean space

If |t| ≥ 2|x − y|, then the phase is non stationary. By integration by parts with respect to r
together with the fact

∂r

(
eir((x−y)·θ+t)

)
= i((x− y) · θ + t)eir((x−y)·θ+t).

We have for all N ≥ 0,∣∣∣∣∫ +∞

0
eir((x−y)·θ+t)χ(r)rd−1dr

∣∣∣∣ =
∣∣∣∣ 1
(i((x− y) · θ + t))N

∫ +∞

0
eir((x−y)·θ+t)(−∂r)N (χ(r)rd−1)dr

∣∣∣∣
. |(x− y) · θ + t|−N ≤ 2N |t|−N . (1 + |t|)−N .

If |t| ≤ 2|x− y|, we can write the kernel

K(t, x, y) = (2π)−d
∫ +∞

0
eirtσ̂(r(y − x))χ(r)rd−1dr.

Using Lemma 1.2.3 we see that

|K(t, x, y)| ≤ (2π)−d
∫ +∞

0
|r(y − x)|−

d−1
2 χ(r)rd−1dr,

Since χ is compactly supported, we have

|K(t, x, y)| . |x− y|−
d−1

2 . |t|−
d−1

2 . (1 + |t|)−
d−1

2 .

Combine two cases, we have |K(t, x, y)| . (1 + |t|)− d−1
2 and this proves (1.2.9). The proof is

complete. �
Corollary 1.2.4. Let d ≥ 2 and γ ∈ R. If u is a solution to the (LHW) for some data ψ,F , then
for all (p, q) wave admissible satisfying q <∞,

‖u‖
Lp(R,Hγ−γp,qq ) . ‖ψ‖Hγ + ‖F‖L1(R,Hγ). (1.2.10)

Proof. We first remark that (1.2.3) together with the Littlewood-Paley theorem yield for any (p, q)
wave admissible satisfying q <∞,

‖u‖
Lp(R,Ḣγ−γp,qq ) . ‖u0‖Ḣγ + ‖F‖L1(R,Ḣγ). (1.2.11)

We next write ‖u‖
Lp(R,Hγ−γp,qq ) = ‖ 〈∇〉γ−γp,q u‖Lp(R,Lq) and apply (1.2.11) with γ = γp,q to get

‖u‖
Lp(R,Hγ−γp,qq ) . ‖ 〈∇〉

γ−γp,q u0‖Ḣγp,q + ‖ 〈∇〉γ−γp,q F‖L1(R,Ḣγp,q ).

The estimate (1.2.10) then follows by using the fact that γp,q > 0 for all (p, q) is wave admissible
satisfying q <∞.

Another consequence of Theorem 1.2.2 is the following Strichartz estimates for the following
inhomogeneous linear wave equation,{

∂2
t v(t, x)−∆v(t, x) = G(t, x), (t, x) ∈ R× Rd,

v(0, x) = ψ(x), ∂tv(0, x) = φ(x), x ∈ Rd. (LWE)

Corollary 1.2.5. Let d ≥ 2, γ ∈ R. If v is a solution to the (LWE) for some data ψ, φ,G, then
for all (p, q) and (a, b) wave admissible pairs,

‖[v]‖Lp(R,Ḃγq ) . ‖[v](0)‖Ḣγ+γp,q + ‖G‖
La′ (R,Ḃ

γ+γp,q−γa′,b′−2

b′
)
, (1.2.12)
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where

‖[v]‖Lp(R,Ḃγq ) := ‖v‖Lp(R,Ḃγq ) + ‖∂tv‖Lp(R,Ḃγ−1
q ),

‖[v](0)‖Ḣγ+γp,q := ‖ψ‖Ḣγ+γp,q + ‖φ‖Ḣγ+γp,q−1 .

In particular,

‖[v]‖
Lp(R,Ḃγ−γp,qq ) . ‖[v](0)‖Ḣγ + ‖G‖L1(R,Ḣγ−1), (1.2.13)

and

‖[v]‖L∞(R,Ḃγp,q2 ) + ‖[v]‖Lp(R,Ḃ0
q ) . ‖[v](0)‖Ḣγp,q + ‖G‖La′ (R,Ḃ0

b′
), (1.2.14)

provided that

γp,q = γa′,b′ + 2. (1.2.15)

Proof. By Duhamel’s formula, the solution to (LWE) is given by

v(t) = cos(t|∇|)ψ + sin(t|∇|)
|∇|

φ+
∫ t

0

sin((t− s)|∇|)
|∇|

G(s)ds.

The desired estimates follow easily from Theorem 1.2.2 and the fact that

cos(t|∇|) = eit|∇| + e−it|∇|

2 , sin(t|∇|) = eit|∇| − e−it|∇|

2i .

As in Corollary 1.2.4, we have the following usual Strichartz estimates for the inhomogeneous
linear wave equation.
Corollary 1.2.6. Let d ≥ 1, γ ∈ R. If v is a solution to the (LWE) for some data ψ, φ,G, then
for all (p, q) and (a, b) wave admissible satisfying q <∞, b <∞ and (1.2.15),

‖v‖
Lp(R,Ḣγ−γp,qq ) . ‖[v](0)‖Ḣγ + ‖G‖L1(R,Ḣγ−1), (1.2.16)

‖[v]‖L∞(R,Ḣγp,q ) + ‖v‖Lp(R,Lq) . ‖[v](0)‖Ḣγp,q + ‖G‖La′ (R,Lb′ ). (1.2.17)

The following result, which is similar to Corollary 1.1.4, gives local Strichartz estimates for the
inhomogeneous linear wave equation.
Corollary 1.2.7. Let d ≥ 1, γ ≥ 0 and I ⊂ R a bounded interval. If v is a solution to the (LWE)
for some data ψ, φ,G, then for all (p, q) wave admissible satisfying q <∞,

‖v‖
Lp(I,Hγ−γp,qq ) . ‖[v](0)‖Hγ + ‖G‖L1(I,Hγ−1). (1.2.18)

Proof. The proof is similar to the one of Corollary 1.1.7. Thanks to the Minkowski inequality, it
suffices to prove for all γ ≥ 0, all I ⊂ R bounded interval and all (p, q) wave admissible pair with
q <∞,

‖ cos(t|∇|)ψ‖
Lp(I,Hγ−γp,qq ) . ‖ψ‖Hγ , (1.2.19)∥∥∥ sin(t|∇|)

|∇|
φ
∥∥∥
Lp(I,Hγ−γp,qq )

. ‖φ‖Hγ . (1.2.20)

The estimate (1.2.19) follows from the ones of e±it|∇|. We will give the proof of (1.2.20). To do

32



Chapter 1. Strichartz estimates on the flat Euclidean space

this, we write

〈∇〉γ−γp,q sin(t|∇|)
|∇|

= ω(D) 〈∇〉γ−γp,q sin(t|∇|)
|∇|

+ (1− ω)(D) 〈∇〉γ−γp,q sin(t|∇|)
|∇|

,

for some ω as in the proof of Corollary 1.1.4. For the first term, the Sobolev embedding and the
fact

∣∣∣∣∣∣ sin(t|∇|)
|∇|

∣∣∣∣∣∣
L2→L2

≤ |t| imply

∥∥∥ω(D) 〈∇〉γ−γp,q sin(t|∇|)
|∇|

φ
∥∥∥
Lq
. |t|‖ω(D) 〈∇〉γ+δ−γp,q φ‖L2 ,

for some δ > d/2− d/q. This gives∥∥∥ω(D) 〈∇〉γ−γp,q sin(t|∇|)
|∇|

φ
∥∥∥
Lp(I,Lq)

. ‖φ‖Hγ−1 .

Here we use that ‖ω(D) 〈∇〉δ+1−γp,q ‖L2→L2 . 1. For the second term, we apply (1.1.19) with
sin(t|∇|) = (eit|∇| − e−it|∇|)/2i to get∥∥∥(1− ω)(D) 〈∇〉γ−γp,q sin(t|∇|)

|∇|
φ
∥∥∥
Lp(I,Lq)

. ‖(1− ω)(D)|∇|−1φ‖Hγ . ‖φ‖Hγ−1 .

Here we also use that ‖(1 − ω)(D) 〈∇〉 |∇|−1‖L2→L2 . 1 by functional calculus. Combining two
terms, we have (1.2.20). The proof is complete.
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Chapter 2

Strichartz estimates for the linear
Schrödinger-type equations on

bounded metric Euclidean spaces

Contents
2.1 Reduction of problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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This chapter deals with Strichartz estimates for the homogeneous linear Schrödinger-type equa-
tions on Rd equipped with a smooth bounded metric g, namely{

i∂tu+ |∇g|σu = 0,
u(0) = ψ,

(2.0.1)

where σ ∈ (0,∞)\{1} and |∇g| =
√
−∆g with ∆g the Laplace-Beltrami operator associated to

the metric g.
Let g(x) = (gjk(x))dj,k=1 be a metric on Rd, and denote G(x) = (gjk(x))dj,k=1 := g−1(x). The

Laplace-Beltrami operator associated to g reads

∆g =
d∑

j,k=1
|g(x)|−1∂j

(
gjk(x)|g(x)|∂k

)
,

where |g(x)| :=
√

det g(x). Denote P := −∆g the self-adjoint realization of −∆g. Recall that the
principal symbol of P is

p(x, ξ) = ξtG(x)ξ =
d∑

j,k=1
gjk(x)ξjξk.

In this chapter, we assume that g satisfies the following assumptions.
1. There exists C > 0 such that for all x, ξ ∈ Rd,

C−1|ξ|2 ≤
d∑

j,k=1
gjk(x)ξjξk ≤ C|ξ|2. (2.0.2)

2. For all α ∈ Nd, there exists Cα > 0 such that for all x ∈ Rd,

|∂αgjk(x)| ≤ Cα, j, k ∈ {1, ..., d}. (2.0.3)

We first note that the elliptic assumption (2.0.2) implies that |g(x)| is bounded from below and
above by positive constants. This shows that the space Lq(Rd, dvolg), 1 ≤ q ≤ ∞ where dvolg =
|g(x)|dx and the usual Lebesgue space Lq(Rd) coincide. Thus in this chapter, the notation Lq(Rd)
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stands for either Lq(Rd, dvolg) or the usual Lebesgue space Lq(Rd). We will denote the space
Lq(Rd) by Lq for short.

Let us first recall local (in time) Strichartz estimates for Schrödinger-type operators on Rd
given in Corollary 1.1.4. For σ ∈ (0,∞)\{1} and I ⊂ R a bounded interval, one has

‖eit|∇|
σ

ψ‖Lp(I,Lq) ≤ C‖ψ‖Hγp,q , (2.0.4)

where |∇| =
√
−∆, (p, q) is Schrödinger admissible with q <∞ and γp,q is as in (1.0.7).

It is well-known that under the assumptions (2.0.2) and (2.0.3), Strichartz estimates (2.0.4)
may fail at least for the Schrödinger equation (see [BGT04, Appendix]) and in this case (i.e. σ = 2)
one has a loss of 1/p derivatives, that is the right hand side of (2.0.4) is replaced by ‖ψ‖Hγp,q+1/p .
Note that in [BGT04], the authors consider the sharp Schrödinger admissible condition with q <∞
(see (0.0.1)). In this Chapter, we extend the result of Burq-Gérard-Tzvetkov to a more general
setting, i.e. σ ∈ (0,∞)\{1} and obtain Strichartz estimates with a “loss” of (σ − 1)/p derivatives
when σ ∈ (1,∞) and without “loss” of derivatives when σ ∈ (0, 1). Throughout this chapter, the
“loss” compares to (2.0.4).
Theorem 2.0.1. Consider Rd, d ≥ 1 equipped with a smooth metric g satisfying (2.0.2), (2.0.3)
and let I ⊂ R a bounded interval. If σ ∈ (1,∞), then for all (p, q) Schrödinger admissible with
q <∞, there exists C > 0 such that for all ψ ∈ Hγp,q+(σ−1)/p,

‖eit|∇g|
σ

ψ‖Lp(I,Lq) ≤ C‖ψ‖Hγp,q+(σ−1)/p , (2.0.5)

where ‖u‖Hγ := ‖ 〈∇g〉γ u‖L2 . If σ ∈ (0, 1), then (2.0.5) holds with γp,q + (σ − 1)/p is replaced by
γp,q.

The proof of (2.0.5) is based on the WKB approximation which is similar to [BGT04]. Since we
are working on manifolds, a good way is to decompose the semi-classical Schrödinger-type operator,
namely eith−1(h|∇g|)σ , at localized frequency, i.e. eith−1(h|∇g|)σϕ(h2P ) for some ϕ ∈ C∞0 (R\{0}).
The main difficulty is that in general we do not have the exact form of the semi-classical fractional
Laplace-Beltrami operator in order to use the usual construction in [BGT04]. To overcome this
difficulty we write eith−1(h|∇g|)σϕ(h2P ) as eith−1ω(h2P )ϕ(h2P ) where ω(λ) = ϕ̃(λ)

√
λ
σ for some

ϕ̃ ∈ C∞(R\{0}) satisfying ϕ̃ = 1 near supp(ϕ). We then approximate ω(h2P ) in terms of
pseudo-differential operators and use the action of pseudo-differential operators on Fourier integral
operators in order to construct an approximation for eith−1ω(h2P )ϕ(h2P ). This approximation gives
dispersive estimates for eith−1(h|∇g|)σϕ(h2P ) on some small time interval independent of h. After
scaling in time, we obtain Strichartz estimates without “loss” of derivatives over time intervals of
size hσ−1. When σ ∈ (1,∞), we can cumulate estimates over intervals of size hσ−1 and get local
in time Strichartz estimates with (σ−1)/p loss of derivatives. In the case σ ∈ (0, 1), we can bound
the estimates over time intervals of size 1 by the ones of size hσ−1 and obtain the same Strichartz
estimates as on Rd. It is not a surprise that we recover the same Strichartz estimates as in the
free case for σ ∈ (0, 1) since eit|∇g|σ has micro-locally the finite propagation speed property which
is similar to σ = 1 for the half-wave equation. Intuitively, if we consider the free Hamiltonian
H(x, ξ) = |ξ|σ, then the spatial component of geodesic flow reads x(t) = x(0) + tσξ|ξ|σ−2. After
a time t, the distance d(x(t), x(0)) ∼ t|ξ|σ−1 . t if σ − 1 ≤ 0 and |ξ| ≥ 1. By decomposing the
solution to i∂tu+ |∇|σu = 0 as u =

∑
k≥0 uk where uk = ϕ(2−kD)u is localized near |ξ| ∼ 2k ≥ 1,

we see that after a time t, all components uk have traveled at a distance t from the data uk(0).
Corollary 2.0.2. Consider Rd, d ≥ 1 equipped with a smooth metric g satisfying (2.0.2), (2.0.3)
and let I ⊂ R a bounded interval. Let u be a solution to the inhomogeneous linear Schrödinger-type
equation on (Rd, g),{

i∂tu(t, x) + |∇g|σu(t, x) = F (t, x), (t, x) ∈ I × Rd,
u(0, x) = ψ(x), x ∈ Rd,

for some data ψ, F . If σ ∈ (1,∞), then for all (p, q) Schrödinger admissible with q < ∞, there
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exists C > 0 such that

‖u‖Lp(I,Lq) ≤ C
(
‖ψ‖Hγp,q+(σ−1)/p + ‖F‖L1(I,Hγp,q+(σ−1)/p)

)
.

If σ ∈ (0, 1), then the above inequality holds with γp,q in place of γp,q + (σ − 1)/p.
Remark 2.0.3. By the same technique as in the proof of Theorem 2.0.1 up to some minor mod-
ifications, one can obtain easily local Strichartz estimates for the homogeneous linear half-wave
equation on (Rd, g) which is similar to those (local in time) on Rd (see Corollary 1.2.4).

As a consequence of Theorem 2.0.1, we have the following Strichartz estimates for inhomoge-
neous linear wave-type equations posed on (Rd, g). Let us consider the following inhomogeneous
linear wave-type equations posed on (Rd, g),{

∂2
t v(t, x) + (−∆g)σv(t, x) = G(t, x), (t, x) ∈ I × Rd,

v(0, x) = ψ(x), ∂tv(0, x) = φ(x), x ∈ Rd. (2.0.6)

We refer to [CH03] or [Her14] for the introduction of wave-type equations which arise in physics.
Comparing with local Strichartz estimates for the inhomogeneous linear wave-type equations given
in Section 1.1, we obtain estimates with a loss of derivatives (σ − 1)/p when σ ∈ (1,∞) and with
no loss when σ ∈ (0, 1). More precisely, we have the following result.
Corollary 2.0.4. Consider Rd, d ≥ 1 equipped with a smooth bounded metric g satisfying (2.0.2),
(2.0.3) and let I ⊂ R a bounded interval. Let v be a solution to the inhomogeneous linear wave-type
equation (2.0.6). If σ ∈ (1,∞), then for all (p, q) Schrödinger admissible with q <∞, there exists
C > 0 such that for all (ψ, φ) ∈ Hγp,q+(σ−1)/p ×Hγp,q+(σ−1)/p−σ,

‖v‖Lp(I,Lq) ≤ C
(
‖[v](0)‖Hγp,q+(σ−1)/p + ‖G‖L1(I,Hγp,q+(σ−1)/p−σ)

)
, (2.0.7)

where
‖[v](0)‖Hγp,q+(σ−1)/p := ‖ψ‖Hγp,q+(σ−1)/p + ‖φ‖Hγp,q+(σ−1)/p−σ .

If σ ∈ (0, 1), then (2.0.7) holds with γp,q + (σ − 1)/p is replaced by γp,q.

2.1 Reduction of problem
In this subsection, we give a reduction of Theorem 2.0.1 due to the Littlewood-Paley decom-

position. To do so, we first recall some useful facts on pseudo-differential calculus. For m ∈ R, we
consider the symbol class S(m) the space of smooth functions a on R2d satisfying

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ 〈ξ〉m−|β| ,

for all x, ξ ∈ Rd. We also need S(−∞) := ∩m∈RS(m). We define the semi-classical pseudo-
differential operator with a symbol a ∈ S(m) by

Oph(a)u(x) := (2πh)−d
∫∫

R2d
eih
−1(x−y)·ξa(x, ξ)u(y)dydξ,

where u ∈ S is a Schwartz function. The following result gives the Lq → Lr-bound for pseudo-
differential operators (see e.g. [BT07, Proposition 2.4]).
Proposition 2.1.1. Let m > d and a be a continuous function on R2d smooth with respect to the
second variable satisfying for all β ∈ Nd, there exists Cβ > 0 such that for all x, ξ ∈ Rd,

|∂βξ a(x, ξ)| ≤ Cβ 〈ξ〉−m .

Then for all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

‖Oph(a)‖Lq→Lr ≤ Ch−( dq− dr ).
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For a given f ∈ C∞0 (R), we can approximate f(h2P ) in term of pseudo-differential operators,
where P is the Laplace-Beltrami operator. We have the following result (see e.g [BT07, Proposition
2.5] or [BGT04, Proposition 2.1]).
Proposition 2.1.2. Consider Rd equipped with a smooth metric g satisfying (2.0.2) and (2.0.3).
Then for a given f ∈ C∞0 (R), there exist a sequence of symbols qj ∈ S(−∞) satisfying q0 = f ◦ p
and supp(qj) ⊂ supp(f ◦ p) such that for all N ≥ 1,

f(h2P ) =
N−1∑
j=0

hjOph(qj) + hNRN (h),

and for all m ≥ 0 and all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

‖RN (h)‖Lq→Lr ≤ Ch−( dq− dr ).
‖RN (h)‖H−m→Hm ≤ Ch−2m.

A direct consequence of Proposition 2.1.1 and Proposition 2.1.2 is the following Lq → Lr-bound
for f(h2P ).
Proposition 2.1.3. Let f ∈ C∞0 (R). Then for all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that
for all h ∈ (0, 1],

‖f(h2P )‖Lq→Lr ≤ Ch−( dq− dr ).

Next, we need the following version of the Littlewood-Paley decomposition (see e.g. [BGT04,
Corollary 2.3] or [BT07, Proposition 2.10]).
Proposition 2.1.4. There exist ϕ0 ∈ C∞0 (R) and ϕ ∈ C∞0 (R\{0}) such that

ϕ0(P ) +
∑

h−1:dya

ϕ(h2P ) = Id,

where h−1 : dya means h−1 = 2k, k ∈ N\{0}. Moreover, for all q ∈ [2,∞), there exists C > 0 such
that for all u ∈ S ,

‖u‖Lq ≤ C
( ∑
h−1:dya

‖ϕ(h2P )u‖2Lq
)1/2

+ C‖u‖L2 .

We end this subsection with the following reduction.
Proposition 2.1.5. Consider Rd, d ≥ 1 equipped with a smooth metric g satisfying (2.0.2), (2.0.3).
Let σ ∈ (0,∞)\{1} and ϕ ∈ C∞0 (R\{0}). If there exist t0 > 0 small enough and C > 0 such that
for all ψ ∈ L1 and all h ∈ (0, 1],

‖eith
−1(h|∇g|)σϕ(h2P )ψ‖L∞ ≤ Ch−d(1 + |t|h−1)−d/2‖ψ‖L1 , (2.1.1)

for all t ∈ [−t0, t0], then Theorem 2.0.1 holds true.
The proof of Proposition 2.1.5 is based on the following semi-classical version of TT ?-criterion

(see [KT98], [Zwo12, Theorem 10.7] or [Zha15, Proposition 4.1]).
Theorem 2.1.6. Let (X,M, µ) be a σ-finite measured space, and T : R → B(L2(X,M, µ)) be a
weakly measurable map satisfying, for some constants C, γ, δ > 0,

‖T (t)‖L2(X)→L2(X) ≤ C, t ∈ R, (2.1.2)
‖T (t)T (s)?‖L1(X)→L∞(X) ≤ Ch−δ(1 + |t− s|h−1)−τ , t, s ∈ R. (2.1.3)

Then for all pair (p, q) satisfying

p ∈ [2,∞], q ∈ [1,∞], (p, q, δ) 6= (2,∞, 1), 1
p
≤ τ

(1
2 −

1
q

)
,
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one has
‖T (t)u‖Lp(R,Lq(X)) ≤ Ch−κ‖u‖L2(X),

where κ = δ(1/2− 1/q)− 1/p.
Proof of Proposition 2.1.5. Using the energy estimates and dispersive estimates (2.1.1), we can
apply Theorem 2.1.6 for T (t) = 1[−t0,t0](t)eith

−1(h|∇g|)σϕ(h2P ), δ = d, τ = d/2 and get

‖eith
−1(h|∇g|)σϕ(h2P )ψ‖Lp([−t0,t0],Lq) ≤ Ch−(d/2−d/q−1/p)‖ψ‖L2 .

By scaling in time, we have

‖eit|∇g|
σ

ϕ(h2P )ψ‖Lp(hσ−1[−t0,t0],Lq) = h(σ−1)/p‖eith
−1(h|∇g|)σϕ(h2P )ψ‖Lp([−t0,t0],Lq)

≤ Ch−γp,q‖ψ‖L2 . (2.1.4)

Using the group property and the unitary property of Schrödinger operator eit|∇g|σ , we have
similar estimates as in (2.1.4) for all intervals of size 2hσ−1. Indeed, for any interval Ih of size
2hσ−1, we can write Ih = [c− hσ−1t0, c+ hσ−1t0] for some c ∈ R and

‖eit|∇g|
σ

ϕ(h2P )ψ‖Lp(Ih,Lq) = ‖eit|∇g|
σ

ϕ(h2P )eic|∇g|
σ

ψ‖Lp(hσ−1[−t0,t0],Lq)

≤ Ch−γp,q‖eic|∇g|
σ

ψ‖L2 = Ch−γp,q‖ψ‖L2 .

In the case σ ∈ (1,∞), we use a trick given in [BGT04], i.e. cumulating O(h1−σ) estimates on
intervals of length 2hσ−1 to get estimates on any finite interval I. Precisely, by writing I as a
union of N intervals Ih of length 2hσ−1 with N . h1−σ, we have

‖eit|∇g|
σ

ϕ(h2P )ψ‖Lp(I,Lq) ≤
(∑

Ih

∫
Ih

‖eit|∇g|
σ

ϕ(h2P )ψ‖pLqdt
)1/p

≤CN1/ph−γp,q‖ψ‖L2 ≤ Ch−γp,q−(σ−1)/p‖ψ‖L2 . (2.1.5)

In the case σ ∈ (0, 1), we can obviously bound estimates over time intervals of size 1 by the ones
of size hσ−1 and obtain

‖eit|∇g|
σ

ϕ(h2P )ψ‖Lp(I,Lq) ≤ Ch−γp,q‖ψ‖L2 . (2.1.6)

Moreover, we can replace the norm ‖ψ‖L2 in the right hand side of (2.1.5) and (2.1.6) by ‖ϕ(h2P )ψ‖L2 .
Indeed, by choosing ϕ̃ ∈ C∞0 (R\{0}) satisfying ϕ̃ = 1 near supp(ϕ), we can write

eith
−1(h|∇g|)σϕ(h2P )ψ = eith

−1(h|∇g|)σ ϕ̃(h2P )ϕ(h2P )ψ

and apply (2.1.5) and (2.1.6) with ϕ̃ in place of ϕ. Now, by using the Littlewood-Paley decompo-
sition given in Proposition 2.1.4 and the Minkowski inequality, we have for all (p, q) Schrödinger
admissible with q <∞,

‖u‖Lp(I,Lq) ≤ C
( ∑
h−1:dya

‖ϕ(h2P )u‖2Lp(I,Lq)

)1/2
+ C‖u‖Lp(I,L2). (2.1.7)

We now apply (2.1.7) for u = eit|∇g|
σ

ψ together with (2.1.5) and get for σ ∈ (1,∞),

‖eit|∇g|
σ

ψ‖Lp(I,Lq) ≤ C
( ∑
h−1:dya

h−2(γp,q+(σ−1)/p)‖ϕ(h2P )ψ‖2L2

)1/2
+ C‖ψ‖L2 .

Here the boundedness of I is crucial to have a bound on the second term in the right hand side of

38



2.2. The WKB approximation

(2.1.7). The almost orthogonality and the fact that γp,q + (σ − 1)/p ≥ 1/p imply for σ ∈ (1,∞),

‖eit|∇g|
σ

ψ‖Lp(I,Lq) ≤ C‖ψ‖Hγp,q+(σ−1)/p .

Similar results hold for σ ∈ (0, 1) with γp,q in place of γp,q + (σ − 1)/p by using (2.1.6) instead of
(2.1.5). This completes the proof. �

2.2 The WKB approximation
This subsection is devoted to the proof of dispersive estimates (2.1.1). To do so, we will use

the so called WKB approximation (see [BGT04], [BT07], [Kap90] or [Rob87]), i.e. to approximate
eith

−1(h|∇g|)σϕ(h2P ) in terms of Fourier integral operators. The following result is the main goal
of this subsection. To simplify the presentation, we denote Uh(t) := eith

−1(h|∇g|)σ .
Theorem 2.2.1. Let σ ∈ (0,∞)\{1}, ϕ ∈ C∞0 (R\{0}), J a small neighborhood of supp(ϕ) not
containing the origin, a ∈ S(−∞) with supp(a) ⊂ p−1(supp(ϕ)). Then there exist t0 > 0
small enough, S ∈ C∞([−t0, t0] × R2d) and a sequence of functions aj(t, ·, ·) ∈ S(−∞) satisfying
supp(aj(t, ·, ·)) ⊂ p−1(J) uniformly with respect to t ∈ [−t0, t0] such that for all N ≥ 1,

Uh(t)Oph(a)ψ = JN (t)ψ +RN (t)ψ,

where

JN (t)ψ(x) =
N−1∑
j=0

hjJh(S(t), aj(t))ψ(x)

=
N−1∑
j=0

hj
[
(2πh)−d

∫∫
R2d

eih
−1(S(t,x,ξ)−y·ξ)aj(t, x, ξ)ψ(y)dydξ

]
,

JN (0) = Oph(a) and the remainder RN (t) satisfies for all t ∈ [−t0, t0] and all h ∈ (0, 1],

‖RN (t)‖L2→L2 ≤ ChN−1. (2.2.1)

Moreover, there exists a constant C > 0 such that for all t ∈ [−t0, t0] and all h ∈ (0, 1],

‖JN (t)‖L1→L∞ ≤ Ch−d(1 + |t|h−1)−d/2. (2.2.2)
Remark 2.2.2. Before entering to the proof of Theorem 2.2.1, let us show that Theorem 2.2.1
implies (2.1.1). We first note that the study of dispersive estimates for Uh(t)ϕ(h2P ) is reduced to
the one of Uh(t)Oph(a) with a ∈ S(−∞) satisfying supp(a) ⊂ p−1(supp(ϕ)). Indeed, by using the
parametrix of ϕ(h2P ) given in Proposition 2.1.2, we have for all N ≥ 1,

ϕ(h2P ) =
N−1∑
j=0

hjOph(q̃j) + hN R̃N (h),

for some q̃j ∈ S(−∞) satisfying supp(q̃j) ⊂ p−1(supp(ϕ)) and the remainder satisfies for allm ≥ 0,

‖R̃N (h)‖H−m→Hm ≤ Ch−2m.

Since Uh(t) is bounded in Hm, the Sobolev embedding with m > d/2 implies

‖Uh(t)R̃N (h)‖L1→L∞ ≤ ‖Uh(t)R̃N (h)‖H−m→Hm ≤ Ch−2m.

By choosing N large enough, the remainder term is bounded in L1 → L∞ independent of t, h. We

39



2.2. The WKB approximation

next show that Theorem 2.2.1 gives dispersive estimates for Uh(t)Oph(a), i.e.

‖Uh(t)Oph(a)‖L1→L∞ ≤ Ch−d(1 + |t|h−1)−d/2, (2.2.3)

for all h ∈ (0, 1] and all t ∈ [−t0, t0]. Indeed, by choosing ˜̃ϕ ∈ C∞0 (R\{0}) which satisfies ˜̃ϕ = 1
near supp(ϕ), we can write

Uh(t)Oph(a) = ˜̃ϕ(h2P )Uh(t)Oph(a) ˜̃ϕ(h2P ) + (1− ˜̃ϕ)(h2P )Uh(t)Oph(a) ˜̃ϕ(h2P )
+ Uh(t)Oph(a)(1− ˜̃ϕ)(h2P ). (2.2.4)

Using Theorem 2.2.1, the first term is written as

˜̃ϕ(h2P )Uh(t)Oph(a) ˜̃ϕ(h2P ) = ˜̃ϕ(h2P )JN (t) ˜̃ϕ(h2P ) + ˜̃ϕ(h2P )RN (t) ˜̃ϕ(h2P ).

We learn from Proposition 2.1.2 and (2.2.2) that the first term in the right hand side is of size
OL1→L∞(h−d(1+ |t|h−1)−d/2) and the second one is of size OL1→L∞(hN−1−d). For the second and
the third term of (2.2.4), we compose to the left and the right hand side with (P + 1)m for m ≥ 0
and use the parametrix of (1− ˜̃ϕ)(h2P ). By composing pseudo-differential operators with disjoint
supports, we obtain terms of size OL2→L2(h∞). The Sobolev embedding with m > d/2 implies
that the second and the third terms are of size OL1→L∞(h∞). By choosing N large enough, we
have (2.2.3).
Proof of Theorem 2.2.1. Let us explain the strategy of the proof. As mentioned in the intro-
duction, the main difficulty is that we do not have the exact form of the semi-classical fractional
Laplace-Beltrami operator, namely (h|∇g|)σ, in order to use the usual construction of [BGT04].
Fortunately, thanks to the support of the symbol a, we can replace Uh(t) by eith

−1ω(h2P ) for
some smooth, compactly supported function ω. The interest of this replacement is that one can
approximate ω(h2P ) in terms of pseudo-differential operators. We next use the action of pseudo-
differential operators on Fourier integral operators and collect the powers of the semi-classical
parameter h to yield the Hamilton-Jacobi equation for the phase and a system of transport equa-
tions for the amplitudes. After solving these equations, we control the remainder terms and prove
dispersive estimates for the main terms. The proof of this theorem is done in several steps.

Step 1: Construction of the phase and amplitudes Due to the support of a, we can replace
(h|∇g|)σ by ω(h2P ) where ω(λ) = ϕ̃(λ)

√
λ
σ with ϕ̃ ∈ C∞0 (R\{0}) and ϕ̃ = 1 on J . The interest

of this replacement is that we can use Proposition 2.1.2 to write

ω(h2P ) =
N−1∑
k=0

hkOph(qk) + hNRN (h), (2.2.5)

where qk ∈ S(−∞) satisfy q0(x, ξ) = ω ◦ p(x, ξ), supp(qk) ⊂ p−1(supp(ω)) and RN (h) is bounded
in L2 uniformly in h ∈ (0, 1]. Next, using the fact

d

dt

(
e−ith

−1ω(h2P )JN (t)
)

= ih−1e−ith
−1ω(h2P )(hDt − ω(h2P ))JN (t),

and JN (0) = Oph(a), the fundamental theorem of calculus gives

eith
−1ω(h2P )Oph(a)ψ = JN (t)ψ − ih−1

∫ t

0
ei(t−s)h

−1ω(h2P ) (hDs − ω(h2P )
)
JN (s)ψds.

We want the last term to have a small contribution. To do this, we need to consider the action of
hDt − ω(h2P ) on JN (t). We first compute the action of hDt on JN (t) and have

hDt ◦ JN (t) =
N∑
l=0

hlJh(S(t), bl(t)),
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where

b0(t, x, ξ) = ∂tS(t, x, ξ)a0(t, x, ξ),
bl(t, x, ξ) = ∂tS(t, x, ξ)al(t, x, ξ) +Dtal−1(t, x, ξ), l = 1, ..., N − 1,
bN (t, x, ξ) = DtaN−1(t, x, ξ).

In order to study the action of ω(h2P ) on JN (t), we need the following action of a pseudo-
differential operator on a Fourier integral operator (see e.g. [Rob87, Théorème IV.19], [RS06,
Theorem 2.5] or [Bouc00, Appendix]).
Proposition 2.2.3. Let b ∈ S(−∞) and c ∈ S(−∞) and S ∈ C∞(R2d) satisfy for all α, β ∈
Nd, |α+ β| ≥ 1, there exists Cαβ > 0,

|∂αx ∂
β
ξ (S(x, ξ)− x · ξ)| ≤ Cαβ , ∀x, ξ ∈ Rd. (2.2.6)

Then

Oph(b) ◦ Jh(S, c) =
N−1∑
j=0

hjJh(S, (b / c)j) + hNJh(S, rN (h)),

where (b / c)j is a universal linear combination of

∂βξ b(x,∇xS(x, ξ))∂β−αx c(x, ξ)∂α1
x S(x, ξ) · · · ∂αkx S(x, ξ),

with α ≤ β, α1 + · · ·+αk = α and |αl| ≥ 2 for all l = 1, ..., k and |β| = j. The maps (b, c) 7→ (b/c)j
and (b, c) 7→ rN (h) are continuous from S(−∞)× S(−∞) to S(−∞). In particular, we have

(b / c)0(x, ξ) = b(x,∇xS(x, ξ))c(x, ξ),

i(b / c)1(x, ξ) = ∇ξb(x,∇xS(x, ξ)) · ∇xc(x, ξ) + 1
2 tr
(
∇2
ξb(x,∇xS(x, ξ)) · ∇2

xS(x, ξ)
)
c(x, ξ).

Using (2.2.5), we can apply 1 Proposition 2.2.3 and obtain

ω(h2P ) ◦ JN (t) =
N−1∑
k=0

hkOph(qk) ◦
N−1∑
j=0

hjJh(S(t), aj(t)) + hNRN (h)JN (t)

=
N∑

k+j+l=0
hk+j+lJh(S(t), (qk / aj(t))l) + hN+1Jh(S(t), rN+1(h, t)) + hNRN (h)JN (t).

This implies that

(hDt − ω(h2P ))JN (t) =
N∑
r=0

hrJh(S(t), cr(t))− hNRN (h)JN (t)− hN+1Jh(S(t), rN+1(h, t)),

where

c0(t) = ∂tS(t)a0(t)− q0(x,∇xS(t))a0(t),
cr(t) = ∂tS(t)ar(t)− q0(x,∇xS(t))ar(t) +Dtar−1(t)− (q0 / ar−1(t))1 − (q1 / ar−1(t))0

−
∑

k+j+l=r
j≤r−2

(qk / aj(t))l, r = 1, ..., N − 1,

1We will see later that the phase satisfies requirements of Proposition 2.2.3.
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and

cN (t) = DtaN−1(t)− (q0 / aN−1(t))1 − (q1 / aN−1(t))0 −
∑

k+j+l=N
j≤N−2

(qk / aj(t))l.

The system of equations cr(t) = 0 for r = 0, ..., N leads to the following Hamilton-Jacobi equation

∂tS(t)− q0(x,∇xS(t)) = 0, (2.2.7)

with S(0) = x · ξ, and transport equations

Dta0(t)− (q0 / a0(t))1 − (q1 / a0(t))0 = 0, (2.2.8)

Dtar(t)− (q0 / ar(t))1 − (q1 / ar(t))0 =
∑

k+j+l=r+1
j≤r−1

(qk / aj(t))l, (2.2.9)

for r = 1, ..., N − 1 with initial data

a0(0) = a, ar(0) = 0, r = 1, ..., N − 1. (2.2.10)

The standard Hamilton-Jacobi equation gives the following result (see e.g. [Rob87, Théorème
IV.14] or Appendix A.1).
Proposition 2.2.4. There exist t0 > 0 small enough and a unique solution S ∈ C∞([−t0, t0]×R2d)
to the Hamilton-Jacobi equation{

∂tS(t, x, ξ)− q0(x,∇xS(t, x, ξ)) = 0,
S(0, x, ξ) = x · ξ. (2.2.11)

Moreover, for all α, β ∈ Nd, there exists Cαβ > 0 such that for all t ∈ [−t0, t0] and all x, ξ ∈ Rd,

|∂αx ∂
β
ξ (S(t, x, ξ)− x · ξ) | ≤ Cαβ |t|, |α+ β| ≥ 1, (2.2.12)

|∂αx ∂
β
ξ (S(t, x, ξ)− x · ξ − tq0(x, ξ))| ≤ Cαβ |t|2. (2.2.13)

Note that the phase given in Proposition 2.2.4 satisfies requirements of Proposition 2.2.3. It
remains to solve the transport equations (2.2.8), (2.2.9). To do so, we rewrite these equations as

∂ta0(t, x, ξ)− V (t, x, ξ) · ∇xa0(t, x, ξ)− f(t, x, ξ)a0(t, x, ξ) = 0,
∂tar(t, x, ξ)− V (t, x, ξ) · ∇xar(t, x, ξ)− f(t, x, ξ)ar(t, x, ξ) = gr(t, x, ξ),

for r = 1, ..., N − 1 where

V (t, x, ξ) = (∂ξq0)(x,∇xS(t, x, ξ)),

f(t, x, ξ) = 1
2 tr
[
∇2
ξq0(x,∇xS(t, x, ξ)) · ∇2

xS(t, x, ξ)
]

+ iq1(x,∇xS(t, x, ξ)),

gr(t, x, ξ) = i
∑

k+j+l=r+1
j≤r−1

(qk / aj(t))l.

We now construct ar(t, x, ξ), r = 0, ..., N −1 by using the method of characteristics as follows. Let
Z(t, s, x, ξ) be the flow associated to V (t, x, ξ), i.e.

∂tZ(t, s, x, ξ) = −V (t, Z(t, s, x, ξ), ξ), Z(s, s, x, ξ) = x.
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By the fact that q0 ∈ S(−∞) and (2.2.12) and using the same trick as in Lemma A.1.1, we have

|∂αx ∂
β
ξ (Z(t, s, x, ξ)− x)| ≤ Cαβ |t− s|, (2.2.14)

for all |t|, |s| ≤ t0. Now, we can define iteratively

a0(t, x, ξ) = a(Z(0, t, x, ξ), ξ) exp
(∫ t

0
f(s, Z(s, t, x, ξ), ξ)ds

)
,

ar(t, x, ξ) =
∫ t

0
gr(s, Z(s, t, x, ξ), ξ) exp

(∫ t

τ

f(τ, Z(τ, t, x, ξ), ξ)dτ
)
ds,

for r = 1, ..., N − 1. These functions are respectively solutions to (2.2.8) and (2.2.9) with ini-
tial data (2.2.10) respectively. Since supp(a) ⊂ p−1(supp(ϕ)), we see that for t0 > 0 small
enough, (Z(t, s, p−1(supp(ϕ))), ξ) ∈ p−1(J) for all |t|, |s| ≤ t0. By extending ar(t, x, ξ) on R2d by
ar(t, x, ξ) = 0 for (x, ξ) /∈ p−1(J), the functions ar are still smooth in (x, ξ) ∈ R2d. Using the fact
that a, qk ∈ S(−∞), (2.2.13) and (2.2.14), we have for t0 > 0 small enough, ar(t, ·, ·) is a bounded
set of S(−∞) and supp(ar(t, ·, ·)) ∈ p−1(J) uniformly with respect to t ∈ [−t0, t0].

Step 2: L2-boundedness of remainder We will use the so called Kuranishi trick (see e.g.
[Rob87], [Miz13]). We first have

RN (t) = ihN−1
∫ t

0
ei(t−s)h

−1ω(h2P )
(
RN (h)JN (s) + hJh(S(s), rN+1(h, s))

)
ds.

Using that ei(t−s)h−1ω(h2P ) is unitary in L2 and Proposition 2.1.2 that RN (h) is bounded in L2 →
L2 uniformly in h ∈ (0, 1], the estimate (2.2.1) follows from the L2-boundedness of Jh(S(t), a(t))
uniformly with respect to h ∈ (0, 1] and t ∈ [−t0, t0] where (a(t))t∈[−t0,t0] is bounded in S(−∞).
For t ∈ [−t0, t0], we define a map on R3d by

Λ(t, x, y, ξ) :=
∫ 1

0
∇xS(t, y + s(x− y), ξ)ds.

Using (2.2.12), there exists t0 > 0 small enough so that for all t ∈ [−t0, t0],

‖∇x∇ξS(t, x, ξ)− IRd‖ � 1, ∀x, ξ ∈ Rd.

This implies that

‖∇ξΛ(t, x, y, ξ)− IRd | ≤
∫ 1

0
‖∇ξ∇xS(t, y + s(x− y), ξ)− IRd‖ds� 1, ∀t ∈ [−t0, t0].

Thus for all t ∈ [−t0, t0] and all x, y ∈ Rd, the map ξ 7→ Λ(t, x, y, ξ) is a diffeomorphism from
Rd onto itself. If we denote ξ 7→ Λ−1(t, x, y, ξ) the inverse map, then Λ−1(t, x, y, ξ) satisfies (see
[Bouc00]) that: for all α, α′, β ∈ Nd, there exists Cαα′β > 0 such that

|∂αx ∂α
′

y ∂
β
ξ (Λ−1(t, x, y, ξ)− ξ)| ≤ Cαα′β |t|, (2.2.15)

for all t ∈ [−t0, t0]. Now, by change of variable ξ 7→ Λ−1(t, x, y, ξ), the action Jh(S(t), a(t)) ◦
Jh(S(t), a(t))? becomes (see [Rob87]) a semi-classical pseudo-differential operator with the ampli-
tude

a(t, x,Λ−1(t, x, y, ξ))a(t, y,Λ−1(t, x, y, ξ)|det ∂ξΛ−1(t, x, y, ξ)|.

Using the fact that (a(t))t∈[−t0,t0] is bounded in S(−∞) and (2.2.15), this amplitude and its
derivatives are bounded. By the Calderón-Vaillancourt theorem, we have the result.
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Step 3: Dispersive estimates We prove the result for a general term, namely Jh(S(t), a(t))
with (a(t))t∈[−t0,t0] a bounded family in S(−∞) satisfying supp(a(t, ·, ·)) ∈ p−1(J) for some small
neighborhood J of supp(ϕ) not containing the origin uniformly with respect to t ∈ [−t0, t0]. The
kernel of Jh(S(t), a(t)) reads

Kh(t, x, y) = (2πh)−d
∫
Rd
eih
−1(S(t,x,ξ)−y·ξ)a(t, x, ξ)dξ.

It suffices to show for all t ∈ [−t0, t0] and all h ∈ (0, 1], |Kh(t, x, y)| ≤ Ch−d(1 + |t|h−1)−d/2, for
all x, y ∈ Rd. We only consider the case t ≥ 0, for t ≤ 0 it is similar. Since the amplitude is
compactly supported in ξ and a(t, x, ξ) is bounded uniformly in t ∈ [−t0, t0] and x, y ∈ Rd, we
have |Kh(t, x, y)| ≤ Ch−d. If 0 ≤ t ≤ h hence 1 + th−1 ≤ 2, then

|Kh(t, x, y)| ≤ Ch−d ≤ Ch−d(1 + th−1)−d/2.

We now can assume that h ≤ t ≤ t0 and write the phase function as (S(t, x, ξ)− y · ξ)/t with the
parameter λ := th−1 ≥ 1. By the choice of ϕ̃ (see Step 1 for ϕ̃), we see that on the support of the
amplitude, i.e. on p−1(J), q0(x, ξ) =

√
p(x, ξ)σ. Thus we apply (2.2.11) to write

S(t, x, ξ) = x · ξ + t
√
p(x, ξ)

σ
+ t2

∫ 1

0
(1− θ)∂2

t S(θt, x, ξ)dθ.

Next, using that p(x, ξ) = ξtG(x)ξ = |η|2 with η =
√
G(x)ξ or ξ =

√
g(x)η where g(x) =

(gjk(x))dj,k=1 and G(x) = (g(x))−1 = (gjk(x))dj,k=1, the kernel can be written as

Kh(t, x, y) = (2πh)−d
∫
Rd
eiλΦ(t,x,y,η)a(t, x,

√
g(x)η)|g(x)|dη,

where

Φ(t, x, y, η) =
√
g(x)(x− y) · η

t
+ |η|σ + t

∫ 1

0
(1− θ)∂2

t S(θt, x,
√
g(x)η)dθ.

Recall that |g(x)| :=
√

det g(x). By (2.0.2), ‖
√
G(x)‖ and ‖

√
g(x)‖ are bounded from below and

above uniformly in x ∈ Rd. This implies that η still belongs to a compact set of Rd away from
zero. We denote this compact support by K. The gradient of the phase is

∇ηΦ(t, x, y, η) =
√
g(x)(x− y)

t
+ ση|η|σ−2 + t

(∫ 1

0
(1− θ)(∇ξ∂2

t S)(θt, x,
√
g(x)η)dθ

)√
g(x).

Let us consider the case |
√
g(x)(x − y)/t| ≥ C for some constant C large enough. Thanks to

the Hamilton-Jacobi equation (2.2.11) (see also (A.1.9), (A.1.2) and Lemma A.1.2) and the fact
σ ∈ (0,∞)\{1}, we have for t0 small enough,

|∇ηΦ| ≥ |
√
g(x)(x− y)/t| − σ|η|σ−1 −O(t) ≥ C1.

Hence we can apply the non stationary theorem, i.e. by integrating by parts with respect to η
together with the fact that for all β ∈ Nd satisfying |β| ≥ 2, |∂βηΦ(t, x, y, η)| ≤ Cβ , we have for all
N ≥ 1,

|Kh(t, x, y)| ≤ Ch−dλ−N ≤ Ch−d(1 + th−1)−d/2,

provided N is taken greater than d/2.
Thus we can assume that |

√
g(x)(x− y)/t| ≤ C. In this case, we write

∇2
ηΦ(t, x, y, η) = σ|η|σ−2

(
IRd + (σ − 2)η · η

T

|η|2
)

+O(t).
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Using that ∣∣∣ detσ|η|σ−2
(
IRd + (σ − 2)η · η

T

|η|2
)∣∣∣ = σd|σ − 1‖η|(σ−2)d ≥ C.

Therefore, for t0 > 0 small enough, the map η 7→ ∇ηΦ(t, x, y, η) from a neighborhood of K
to its range is a local diffeomorphism. Moreover, for all β ∈ Nd satisfying |β| ≥ 1, we have
|∂βηΦ(t, x, y, η)| ≤ Cβ . The stationary phase theorem then implies that for all t ∈ [h, t0] and all
x, y ∈ Rd satisfying |

√
g(x)(x− y)/t| ≤ C,

|Kh(t, x, y)| ≤ Ch−dλ−d/2 ≤ Ch−d(1 + th−1)−d/2.

This completes the proof. �
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In this chapter, we establish Strichartz estimates for Schrödinger-type equations posed on a
compact Riemannian manifold without boundary (M, g), namely{

i∂tu(t, x) + |∇g|σu(t, x) = F (t, x), (t, x) ∈ I ×M,
u(0, x) = ψ(x), x ∈M,

(3.0.1)

where σ ∈ (0,∞)\{1} and |∇g| =
√
−∆g with ∆g the Laplace-Beltrami operator on (M, g).

Before stating our main result, let us recall known results related to the problem. Burq-
Gérard-Tzvetkov established in [BGT04] Strichartz estimates with a loss of 1/p derivatives for the
homogeneous linear Schrödinger equation (i.e. σ = 2), namely

‖e−it∆gψ‖Lp(I,Lq(M)) ≤ C‖ψ‖H1/p(M), (3.0.2)

where (p, q) is a sharp Schrödinger admissible pair and q < ∞ (see (0.0.1)). When M is the flat
torus Td, Bourgain showed in [Bou1], [Bou2] some estimates related to (3.0.2) by means of the
Fourier series for the Schrödinger equation. A direct consequence of these estimates is

‖e−it∆gψ‖L4(T×Td) ≤ C‖ψ‖Hγ(Td), γ >
d

4 −
1
2 . (3.0.3)

When M = T and σ ∈ (1, 2), the authors in [DET16] established estimates related to (3.0.3),
namely

‖eit|∇g|
σ

ψ‖L4(T×T) ≤ C‖ψ‖Hγ(T), γ >
2− σ

8 . (3.0.4)

The main purpose of this chapter is to extend the result of Burq-Gérard-Tzvetkov to the homo-
geneous linear Schrödinger-type equation (3.0.1). Precisely, we have the following result.
Theorem 3.0.1. Consider (M, g) a smooth compact boundaryless Riemannian manifold of di-
mension d ≥ 1 and let I ⊂ R a bounded interval. If σ ∈ (1,∞), then for all (p, q) Schrödinger
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admissible with q <∞, there exists C > 0 such that for all ψ ∈ Hγp,q+(σ−1)/p(M),

‖eit|∇g|
σ

ψ‖Lp(I,Lq(M)) ≤ C‖ψ‖Hγp,q+(σ−1)/p(M). (3.0.5)

Moreover, if u is a (weak) solution to (3.0.1), then

‖u‖Lp(I,Lq(M)) ≤ C
(
‖ψ‖Hγp,q+(σ−1)/p(M) + ‖F‖L1(I,Hγp,q+(σ−1)/p(M))

)
. (3.0.6)

If σ ∈ (0, 1), then (3.0.5) and (3.0.6) hold with γp,q in place of γp,q + (σ − 1)/p.
The proof of Theorem 3.0.1 is based on Strichartz estimates on Rd equipped with a smooth

bounded metric g given in the previous chapter.
Remark 3.0.2. 1. Note that the exponents γp,q + (σ − 1)/p = d/2 − d/q − 1/p in the right

hand side of (3.0.5) and γp,q = d/2 − d/q − σ/p in the case of σ ∈ (0, 1) correspond to the
gain of 1/p and σ/p derivatives respectively compared with the Sobolev embedding.

2. Using the same argument as in [BGT04], we see that the endpoint homogeneous Strichartz
estimate (3.0.5) is sharp on Sd, d ≥ 3. Indeed, let ψ be a zonal spherical harmonic associated
to eigenvalue λ = k(d+ k − 1). One has (see e.g. [Sog86]) that for λ� 1,

‖ψ‖Lq(Sd) ∼
√
λ
s(q)

, s(q) = d− 1
2 − d

q
if 2(d+ 1)

d− 1 ≤ q ≤ ∞.

Moreover, the above estimates are sharp. Therefore,

‖eit|∇g|
σ

ψ‖L2(I,L2? (Sd)) = ‖eit
√
λ
σ

ψ‖L2(I,L2? (Sd)) ∼
√
λ
s(2?)

,

where 2? = 2d/(d−2) and s(2?) = 1/2. This gives the optimality of (3.0.5) since γ22? +(σ−
1)/2 = 1/2 = s(2?).

3. By the same technique used in the proof of Theorem 3.0.1, we can prove with minor modifi-
cations Strichartz estimates for the homogeneous linear half-wave equation on (M, g) which
is similar to the one given in Corollary 1.2.4).

As an application of Theorem 3.0.1, we obtain Strichartz estimates for inhomogeneous linear
wave-type equations posed on (M, g). Let us consider the following inhomogeneous linear wave-
type equations posed on (M, g),{

∂2
t v(t, x) + (−∆g)σv(t, x) = G(t, x), (t, x) ∈ I ×M,

v(0, x) = ψ(x), ∂tv(0, x) = φ(x), x ∈M.
(3.0.7)

Corollary 3.0.3. Consider (M, g) a smooth compact boundaryless Riemannian manifold of di-
mension d ≥ 1. Let I ⊂ R be a bounded interval and v a (weak) solution to (3.0.7). If σ ∈ (1,∞),
then for all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for all
(ψ, φ) ∈ Hγp,q+(σ−1)/p(M)×Hγp,q+(σ−1)/p−σ(M),

||v||Lp(I,Lq(M)) ≤ C
(
||[v](0)||Hγp,q+(σ−1)/p(M) + ||G||L1(I,Hγp,q+(σ−1)/p−σ(M))

)
, (3.0.8)

where
||[v](0)||Hγp,q+(σ−1)/p(M) := ||ψ||Hγp,q+(σ−1)/p(M) + ||φ||Hγp,q+(σ−1)/p−σ(M).

If σ ∈ (0, 1), then (3.0.8) holds with γp,q + (σ − 1)/p is replaced by γp,q.

3.1 Notations
Coordinate charts and partition of unity LetM be a smooth compact Riemannian manifold
without boundary. A coordinate chart (Uκ, Vκ, κ) on M comprises an homeomorphism κ between
an open subset Uκ of M and an open subset Vκ of Rd. Given φ ∈ C∞0 (Uκ)(resp. χ ∈ C∞0 (Vκ)),
we define the pushforward of φ (resp. pullback of χ) by κ∗φ := φ ◦ κ−1 (resp. κ∗χ := χ ◦ κ). For
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a given finite cover of M , namely M = ∪κ∈FUκ with #F < ∞, there exist φκ ∈ C∞0 (Uκ), κ ∈ F
such that 1 =

∑
κ φκ(m) for all m ∈M .

Laplace-Beltrami operator For any coordinate chart (Uκ, Vκ, κ), there exists a symmetric
positive definite matrix gκ(x) := (gκjk(x))dj,k=1 with smooth and real valued coefficients on Vκ such
that the Laplace-Beltrami operator P = −∆g reads in (Uκ, Vκ, κ) as

Pκ := −κ∗∆gκ
∗ = −

d∑
j,k=1

|gκ(x)|−1∂j

(
|gκ(x)|gjkκ (x)∂k

)
,

where |gκ(x)| =
√

det gκ(x) and (gjkκ (x))dj,k=1 := (gκ(x))−1. The principal symbol of Pκ is

pκ(x, ξ) =
d∑

j,k=1
gjkκ (x)ξjξk.

3.2 Functional calculus
In this subsection, we recall well-known facts on pseudo-differential calculus on manifolds (see

e.g. [BGT04]). For a given a ∈ S(m), we define the operator

Opκh(a) := κ∗Oph(a)κ∗. (3.2.1)

If nothing is specified about a ∈ S(m), then the operator Opκh(a) maps C∞0 (Uκ) to C∞(Uκ). In
the case supp(a) ⊂ Vκ × Rd, we have that Opκh(a) maps C∞0 (Uκ) to C∞0 (Uκ) hence to C∞(M).
We have the following result.
Proposition 3.2.1. Let φκ ∈ C∞0 (Uκ) be an element of a partition of unity on M and φ̃κ, ˜̃φκ ∈
C∞0 (Uκ) be such that φ̃κ = 1 near supp(φκ) and ˜̃φκ = 1 near supp(φ̃κ). Then for all N ≥ 1, all
z ∈ [0,+∞)and all h ∈ (0, 1],

(h2P − z)−1φκ =
N−1∑
j=0

hj φ̃κOp
κ
h(qκ,j(z))φκ + hNRN (z, h),

where qκ,j(z) ∈ S(−2−j) is a linear combination of ak(pκ−z)−1−k for some symbol ak ∈ S(2k−j)
independent of z and

RN (z, h) = −(h2P − z)−1 ˜̃φκOpκh(rκ,N (z, h))φκ,

where rκ,N (z, h) ∈ S(−N) with seminorms growing polynomially in 1/dist(z,R+) uniformly in
h ∈ (0, 1] as long as z belongs to a bounded set of C\[0,+∞).
Proof. Let us set χκ := κ∗φκ, similarly for χ̃κ and ˜̃χκ. We get χκ, χ̃κ, ˜̃χκ ∈ C∞0 (Vκ) and χ̃κ = 1
near supp(χκ) and ˜̃χκ = 1 near supp(χ̃κ). We first find an operator, still denoted by P , globally
defined on Rd of the form

P = −
d∑

j,k=1
gjk(x)∂j∂k +

d∑
l=1

bl(x)∂l, (3.2.2)

which coincides with Pκ on a large relatively compact subset V0 of Vκ. By “large”, we mean that
supp( ˜̃χκ) ⊂ V0. For instance, we can take P = υPκ − (1− υ)∆ where υ ∈ C∞0 (Vκ) with values in
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[0, 1] satisfying υ = 1 on V0. The principal symbol of P is

p(x, ξ) =
d∑

j,k=1
gjk(x)ξjξk, where gjk(x) = υ(x)gjkκ (x) + (1− υ(x))δjk. (3.2.3)

It is easy to see that g(x) = (gjk(x)) satisfies (2.0.2) and (2.0.3) and bl is bounded in Rd together
with all of theirs derivatives. Using the standard elliptic parametrix for (h2P − z)−1 (see e.g
[Rob87]), we have

(h2P − z)Oph(qκ(z, h)) = I + hNOph(r̃κ,N (z, h)), (3.2.4)

where qκ(z, h) =
∑N−1
j=0 hjqκ,j(z) with qκ,j(z) ∈ S(−2−j) and r̃κ,N (z, h) ∈ S(−N) with seminorms

growing polynomially in 〈z〉 /dist(z,R+) uniformly in h ∈ (0, 1]. On the other hand, we can write

(h2Pκ − z)χ̃κOph(qκ(z, h))χκ
= χ̃κ(h2Pκ − z)Oph(qκ(z, h))χκ + [h2Pκ, χ̃κ]Oph(qκ(z, h))χκ. (3.2.5)

Here [h2Pκ, χ̃κ] and χκ have coefficients with disjoint supports. Thanks to (3.2.4) and the com-
position of pseudo-differential operators with disjoint supports, we have

(h2Pκ − z)χ̃κOph(qκ(z, h))χκ = χκ + hN ˜̃χκOph(rκ,N (z, h))χκ,

with rκ,N (z, h) satisfying the required property. We then compose to the right and the left of
above equality with κ∗ and κ∗ respectively and get

(h2P − z)φ̃κOpκh(qκ(z, h))φκ = φκ + hN ˜̃φκOpκh(rκ,N (z, h))φκ.

This gives the result and the proof is complete.
Next, we give an application of the parametrix given in Proposition 3.2.1 and have the following

result (see [BGT04, Proposition 2.1] or [BT07, Proposition 2.5]).
Proposition 3.2.2. Let φκ, φ̃κ, ˜̃φκ be as in Proposition 3.2.1 and f ∈ C∞0 (R). Then for all N ≥ 1
and all h ∈ (0, 1],

f(h2P )φκ =
N−1∑
j=0

hj φ̃κOp
κ
h(aκ,j)φκ + hNRκ,N (h), (3.2.6)

where aκ,j ∈ S(−∞) with supp(aκ,j) ⊂ supp(f ◦ pκ) for j = 0, ..., N − 1. Moreover, for all m ≥ 0,
there exists C > 0 such that for all h ∈ (0, 1],

‖RN (h)‖H−m(M)→Hm(M) ≤ Ch−2m. (3.2.7)

Proof. The proof is essentially given in [BGT04, Proposition 2.1]. For the reader’s convenience,
we recall some details. By using Proposition 3.2.1 and the Helffer-Sjöstrand formula (see [DS99]),
namely

f(h2P ) = − 1
π

∫
C
∂f̃(z)(h2P − z)−1dL(z),

where f̃ is an almost analytic extension of f , the Cauchy formula implies (3.2.6) with

Rκ,N (h) = 1
π

∫
C
∂f̃(z)(h2P − z)−1 ˜̃φκOpκh(rκ,N (z, h))φκdL(z).
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It remains to prove (3.2.7). This leads to study the action on L2(Rd) of the operator∫
C
∂f̃(z)(Pκ + 1)m/2(h2Pκ − z)−1 ˜̃χκOph(rκ,N (z, h))χκ(Pκ + 1)m/2dL(z).

Using a trick as in (3.2.5), we can find a globally defined operator P which coincides with Pκ on
the support of ˜̃χκ. We see that ‖(h2P − z)−1‖L2(Rd)→L2(Rd) ≤ C|Im z|−1 and

(P + 1)m/2Oph(rκ,N (z, h))χκ(P + 1)m/2 = h−2mOph(r̃κ,N (z, h)),

where r̃κ,N (z, h) ∈ S(−N + 2m) with seminorms growing polynomially in 1/dist(z,R+) uniformly
in h ∈ (0, 1] which are harmless since f̃ is compactly supported and ∂f̃(z) = O(|Im z|∞). By
choosing N such that N − 2m > d, the result then follows from the L(L2(Rd)) bound of pseudo-
differential operator given in Proposition 2.1.1.

A direct consequence of Proposition 2.1.2 using partition of unity and Proposition 2.1.1 is the
following result (see [BGT04, Corollary 2.2] or [BT07, Proposition 2.9]).
Corollary 3.2.3. Let f ∈ C∞0 (R). Then for all 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for
all h ∈ (0, 1],

‖f(h2P )‖Lq(M)→Lr(M) ≤ Ch−( dq− dr ).

The next proposition gives the Littlewood-Paley decomposition on compact manifolds without
boundary (see [BGT04, Corollary 2.3]) which is similar to Proposition 2.1.4.
Proposition 3.2.4. There exist ϕ0 ∈ C∞0 (R) and ϕ ∈ C∞0 (R\{0}) such that for all q ∈ [2,∞),
there exists C > 0,

‖u‖Lq(M) ≤ C
( ∑
h−1:dya

‖ϕ(h2P )u‖2Lq(M)

)1/2
+ C‖u‖L2(M),

for all u ∈ C∞0 (M).

3.3 Reduction of problem
In this subsection, we first show how to get Corollary 3.0.3 from Theorem 3.0.1 and then give

a reduction of Theorem 3.0.1.

Proof of Corollary 3.0.3 Since we are working on compact manifolds without boundary, it
is well-known that there exists an orthonormal basis (ej)j∈N of L2(M) := L2(M,dvolg) of C∞
functions on M such that

|∇g|σej = λσj ej ,

with 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · , limj→∞ λj = +∞. For any f a piecewise continuous function,
the functional f(|∇g|) is defined as

f(|∇g|)u :=
∑
j∈N

f(λj)ujej ,

where
uj := 〈ej , u〉L2(M) =

∫
M

ej(x)u(x)dvolg(x).

If we set j0 := dim(ker |∇g|σ), then λ0 = λ1 = · · · = λj0−1 = 0 and λj ≥ λj0 > 0 for j ≥ j0.
Here the number j0 stands for the number of connected components of M and the corresponding
eigenfunctions (ej)j0−1

j=0 are constant functions. We now define the projection on ker(|∇g|σ) by

Π0u :=
∑
j<j0

ujej .
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By the Duhamel formula, the equation (3.0.7) can be written as

v(t) = cos(t|∇g|σ)ψ + sin(t|∇g|σ)
|∇g|σ

φ+
∫ t

0

sin((t− s)|∇g|σ)
|∇g|σ

G(s)ds.

We remark that the only problem may happen on ker(|∇g|σ) of sin(t|∇g|σ)
|∇g|σ . But it is not the case

because

Π0
sin(t|∇g|σ)
|∇g|σ

φ =
∑
j<j0

sin(tλσj )
λσj

v1,jej =
∑
j<j0

t
sin(tλσj )
tλσj

v1,jej = t
∑
j<j0

v1,jej = tΠ0φ.

Since ker(|∇g|σ) is generated by constant functions, local in time Strichartz estimates of Π0v,
namely ‖Π0v‖Lp(I,Lq(M)) with I a bounded interval, can be controlled by any Sobolev norms of
data. Therefore, we only need to study local in time Strichartz estimates of v away from ker(|∇g|σ).
Using the fact that

cos(t|∇g|σ) = eit|∇g|
σ + e−it|∇g|

σ

2 , sin(t|∇g|σ) = eit|∇g|
σ − e−it|∇g|σ

2i ,

Strichartz estimates (3.0.8) follow directly from the ones of e±it|∇g|σ as in (3.0.6). This gives
Corollary 3.0.3. �

We now prove Theorem 3.0.1. To do so, we have the following reduction.
Proposition 3.3.1. Consider (M, g) a smooth compact Riemannian manifold of dimension d ≥ 1.
Let σ ∈ (0,∞)\{1} and ϕ ∈ C∞0 (R\{0}). If there exists t0 > 0 small enough and C > 0 such that
for all ψ ∈ L1(M) and all h ∈ (0, 1],

‖eith
−1(h|∇g|)σϕ(h2P )ψ‖L∞(M) ≤ Ch−d(1 + |t|h−1)−d/2‖ψ‖L1(M), (3.3.1)

for all t ∈ [−t0, t0], then Theorem 3.0.1 holds true.
Proof. The proof of homogeneous Strichartz estimates follows similarly to the one given in Propo-
sition 2.1.5. We only give the proof of (3.0.6), i.e. σ ∈ (1,∞), the one for σ ∈ (0, 1) is completely
similar. The homogeneous part follows from (3.0.5). It remains to prove∥∥∥ ∫ t

0
ei(t−s)|∇g|

σ

F (s)ds
∥∥∥
Lp(I,Lq(M))

≤ C‖F‖L1(I,Hγp,q+(σ−1)/p(M)). (3.3.2)

The estimate (3.3.2) follows easily from (3.0.5) and the Minkowski inequality (see [BGT04], Corol-
lary 2.10). Indeed, the left hand side reads∥∥∥ ∫

I

1[0,t](s)ei(t−s)|∇g|
σ

F (s)ds
∥∥∥
Lp(I,Lq(M))

≤
∫
I

‖1[0,t](s)ei(t−s)|∇g|
σ

F (s)‖Lp(I,Lq(M))ds

≤
∫
I

‖ei(t−s)|∇g|
σ

F (s)‖Lp(I,Lq(M))ds

≤ C
∫
I

‖F (s)‖Hγp,q+(σ−1)/p(M)ds.

This gives (3.3.2) and the proof of Proposition 3.3.1 is complete.

3.4 Dispersive estimates
This subsection is devoted to prove the dispersive estimates (3.3.1). Again thanks to the local-

ization ϕ, we can replace (h|∇g|)σ by ω(h2P ) where ω(λ) = ϕ̃(λ)
√
λ
σ with ϕ̃ ∈ C∞0 (R\{0}) such

that ϕ̃ = 1 near supp(ϕ). The partition of unity allows us to consider only on a local coordinates,
namely

∑
κ e

ith−1ω(h2P )ϕ(h2P )φκ. By using the same argument as in Remark 2.2.2 and Propo-
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sition 3.2.2, the study of eith−1ω(h2P )ϕ(h2P )φκ is reduced to the one of eith−1ω(h2P )φ̃κOp
κ
h(aκ)φκ

with aκ ∈ S(−∞) and supp(aκ) ⊂ supp(ϕ ◦ pκ). Let us set

u(t) = eith
−1ω(h2P )φ̃κOp

κ
h(aκ)φκψ.

We see that u solves the following semi-classical evolution equation{
(hDt − ω(h2P ))u(t) = 0,

u|t=0 = φ̃κOp
κ
h(aκ)φκψ.

(3.4.1)

The WKB method allows us to construct an approximation of the solution to (3.4.1) in finite time
independent of h. To do so, we first choose ϑκ, ϑ̃κ, ˜̃ϑκ ∈ C∞0 (Uκ) such that ϑκ = 1 near supp( ˜̃φκ)
(see Proposition 3.2.1 for ˜̃φκ), ϑ̃κ = 1 near supp(ϑκ) and ˜̃ϑκ = 1 near supp(ϑ̃κ). Proposition 3.2.2
then implies

ω(h2P )ϑκ = ϑ̃κOp
κ
h(bκ(h))ϑκ + hNRκ,N (h), (3.4.2)

where bκ(h) =
∑N−1
l=1 hlbκ,l with bκ,l ∈ S(−∞) and Rκ,N (h) = OL2(M)→L2(M)(1). We apply

the construction of the WKB approximation given in Subsection 2.2 and find t0 > 0 small
enough, a function Sκ ∈ C∞([−t0, t0] × R2d) and a sequence aκ,j(t, ·, ·) ∈ S(−∞) satisfying
supp(aκ,j(t, ·, ·)) ⊂ p−1(J) (see (3.2.3) for the definition of p) for some small neighborhood J of
supp(ϕ) not containing the origin uniformly in t ∈ [−t0, t0] such that

(hDt −Oph(bκ(h)))Jκ,N (t) = Rκ,N (t), (3.4.3)

where

Jκ,N (t) :=
N−1∑
j=0

hjJh(Sκ(t), aκ,j(t)), Jκ,N (0) = Oph(aκ),

satisfies for all t ∈ [−t0, t0] and all (x, ξ) ∈ p−1(J),

|∂αx ∂
β
ξ (Sκ(t, x, ξ)− x · ξ)| ≤ Cαβ |t|, |α+ β| ≥ 1, (3.4.4)∣∣∣∂αx ∂βξ (Sκ(t, x, ξ)− x · ξ + t

√
p(x, ξ)

σ
)
∣∣∣ ≤ Cαβ |t|2, (3.4.5)

and for all h ∈ (0, 1],

‖Jκ,N (t)‖L1(Rd)→L∞(Rd) ≤ Ch−d(1 + |t|h−1)−d/2, (3.4.6)
Rκ,N (t) = OL2(Rd)→L2(Rd)(hN−1). (3.4.7)

Next, we need the following micro-local finite propagation speed.
Lemma 3.4.1. Let σ ∈ (0,∞)\{1}, χ, χ̃ ∈ C∞0 (Rd) such that χ̃ = 1 near supp(χ), a(t) ∈ S(−∞)
with supp(a(t, ·, ·)) ⊂ p−1(J) uniformly in t ∈ [−t0, t0] and S ∈ C∞([−t0, t0]×R2d) satisfy (3.4.5)
for all t ∈ [−t0, t0] and all (x, ξ) ∈ p−1(J). Then for t0 > 0 small enough,

Jh(S(t), a(t))χ = χ̃Jh(S(t), a(t))χ+ R̃(t),

where R̃(t) = OL2(Rd)→L2(Rd)(h∞).
Proof. The kernel of Jh(S(t), a(t))χ− χ̃Jh(S(t), a(t))χ is given by

Kh(t, x, y) = (2πh)−d
∫
Rd
eih
−1(S(t,x,ξ)−y·ξ)(1− χ̃)(x)a(t, x, ξ)χ(y)dξ.
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Using (3.4.5), we can write for t0 > 0 small enough, t ∈ [−t0, t0] and (x, ξ) ∈ p−1(J),

S(t, x, ξ)− y · ξ = (x− y) · ξ − t
√
p(x, ξ)

σ
+O(t2).

By change of variables η =
√
G(x)ξ or ξ =

√
g(x)η, we have

Kh(t, x, y) = (2πh)−d
∫
Rd
eih
−1Φ(t,x,y,η)(1− χ̃)(x)a(t, x,

√
g(x)η)χ(y)

√
det g(x)dx,

where Φ(t, x, y, ξ) =
√
g(x)(x − y) · η − t|η|σ + O(t2). Thanks to the support of χ and χ̃, we see

that |x− y| ≥ C. This gives for t0 > 0 small enough that

|∇ηΦ(t, x, y, η)| = |
√
g(x)(x− y)− tση|η|σ−2 +O(t2)| ≥ C(1 + |x− y|).

Here we also use the fact that ‖
√
g(x)‖ is bounded from below and above (see (3.2.3)). Using the

fact that for all β ∈ Nd satisfying |β| ≥ 2,

|∂βηΦ(t, x, y, η)| ≤ Cβ ,

the non stationary phase theorem implies for all N ≥ 1, all t ∈ [−t0, t0] and all x, y ∈ Rd,

|Kh(t, x, y)| ≤ ChN−d(1 + |x− y|)−N .

The Schur’s Lemma gives R̃(t) = OL2(Rd)→L2(Rd)(h∞). This ends the proof.

Proof of dispersive estimates (3.3.1) With the same spirit as in (3.2.1), let us set JκN (t) =
κ∗Jκ,N (t)κ∗, RκN (t) = κ∗Rκ,N (t)κ∗ where Jκ,N (t) and Rκ,N (t) given in (3.4.3). The Duhamel
formula gives

u(t) = eith
−1ω(h2P )φ̃κOp

κ
h(aκ)φκψ

= φ̃κJ
κ
N (t)φκψ − ih−1

∫ t

0
ei(t−s)h

−1ω(h2P )(hDs − ω(h2P ))φ̃κJκN (s)φκψds.

We aslo have from (3.4.2) that

(hDs − ω(h2P ))φ̃κJκN (s)φκ
= φ̃κhDsJ

κ
N (s)φκ − ϑ̃κOpκh(bκ(h))φ̃κJκN (s)φκ − hNRκ,N (h)φ̃κJκN (s)φκ.

The micro-local finite propagation speed given in Lemma 3.4.1 and (3.4.3) imply

(hDs − ω(h2P ))φ̃κJκN (s)φκ
= ϑ̃κκ

∗(hDs −Oph(bκ(h)))JN (s)κ∗φκ − R̃κ(s)− hNRκ,N (h)φ̃κJκN (s)φκ
= ϑ̃κR

κ
N (s)φκ − R̃κ(s)− hNRκ,N (h)φ̃κJκN (s)φκ,

where R̃κ(s) = OL2(M)→L2(M)(h∞). Here we also use the L2-boundedness of pseudo-differential
operators with symbols in S(−∞). We then get

u(t) = φ̃κJ
κ
N (t)φκψ +RκN (t)ψ,

where

RκN (t)ψ = −ih−1
∫ t

0
ei(t−s)h

−1ω(h2P )(ϑ̃κRκN (s)φκ − R̃κ(s)− hNRκ,N (h)φ̃κJκN (s)φκ)ψds.
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By the same process as in Remark 2.2.2 using (3.4.6) and the fact RκN (t) = OL2(M)→L2(M)(hN−1)
for all t ∈ [−t0, t0], we obtain

‖eith
−1ω(h2P )ϕ(h2P )φκψ‖L∞(M) ≤ Ch−d(1 + |t|h−1)−d/2‖ψ‖L1(M),

for all t ∈ [−t0, t0]. The dispersive estimates (3.3.1) then follow from the above estimates and
partition of unity. This completes the proof. �
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In this chapter, we consider the time dependent Schrödinger-type equation on a Riemannian
manifold (M, g), namely{

i∂tu(t, x)− |∇g|σu(t, x) = 0, (t, x) ∈ R×M,
u(0, x) = ψ(x), x ∈M,

(4.0.1)

where σ ∈ (0,∞)\{1}, |∇g| =
√
−∆g with ∆g the Laplace-Beltrami operator associated to the

metric g. Note that in (4.0.1) we consider the minus sign in front of |∇g|σ which is different from
the previous chapters. This irrelevant change is just for convenience to fit the usual construction
of the Isozaki-Kitada parametrix.

When M = Rd and g = Id, i.e. the flat Euclidean space, the solution to (4.0.1) enjoys global
in time Strichartz estimates (see Corollary 1.1.4),

‖u‖Lp(R,Lq(Rd)) . ‖ψ‖Ḣγp,q (Rd),

where (p, q) satisfies the Schrödinger admissible condition with q <∞ and γp,q is as in (1.0.7).
When M = Rd and g a smooth bounded metric satisfying (2.0.2) and (2.0.3) or (M, g) a
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smooth compact Riemannian manifold without boundary, we also have Strichartz estimates but
only local in time (see Theorem 2.0.1 and Theorem 3.0.1),

‖u‖Lp([0,1],Lq(M)) . ‖ψ‖Hγ(M).

In the case σ ∈ (0, 1), we have the same (local in time) Strichartz estimates as in (Rd, Id), i.e.
γ = γp,q. In the case σ ∈ (1,∞), there is a “loss” of (σ − 1)/p derivatives compared to the one on
(Rd, Id), i.e. γ = γp,q + (σ − 1)/p.

When M is a non-compact Riemannian manifold, global in time Strichartz estimates for the
Schrödinger equation (i.e. σ = 2) have been studied intensively over the last decade. In [BT08],
Bouclet-Tzvetkov established global in time Strichartz estimates on asymptotically Euclidean man-
ifold, i.e. Rd equipped with a long range perturbation metric g (see (4.0.3)) with a low frequency
cutoff under non-trapping condition. The first breakthrough on this topic was done by Tataru in
[Tat08] where he considered long range and globally small perturbations of the Euclidean metric
with C2 and time dependent coefficients. In this setting, no trapping could occur. Later, Marzuola-
Metcalfe-Tataru in [MMT08] improved the results by considering more general perturbations in a
compact set, including some weak trapping. Afterwards, Hassell-Zhang in [HZ16] extended those
results for general geometric framework of asymptotically conic manifolds and including very short
range potentials with non-trapping condition. Subsequencely, Bouclet-Mizutani in [BM16] estab-
lished global in time Strichartz estimates for a more general class of asymptotically conic manifolds
including all usual smooth long range perturbations of the Euclidean metric with hyperbolic trap-
ping condition. After that, Zhang-Zheng [ZZ17] extended the result of Hassell-Zhang [HZ16] and
proved global in time Strichartz estimates for Schrödinger operators with potentials on assymptot-
ically conic manifoldswith non-trapping condition. They also extended Bouclet-Mizutani’s result
[BM16] by considering Schrödinger operators with short range potentials on asymptotically conic
manifolds with hyperbobic trapping condition. Recently, Zhang-Zheng [ZZ18] established global
in time Strichartz estimates for Schrödinger operators on metric cone.

In order to prove Strichartz estimates on curved backgrounds, one uses the Littlewood-Paley
decomposition to localize the solution in frequency. One then uses microlocal techniques to derive
dispersive estimates and obtain Strichartz estimates for each spectrally localized components. By
summing over all frequency pieces, one gets Strichartz estimates for the solution. For local in time
Strichartz estimates, this usual scheme works very well. However, for global in time Strichartz
estimates, one has to face a difficulty arising at low frequency. Due to the uncertainty principle,
one can only use microlocal techniques for data supported outside compact sets at low frequency.
Therefore, one has to use another technique for data supported inside compact sets. Note also
that on Rd, one can use the scaling technique to reduce the analysis at low frequency to the study
at frequency one, but this technique does not work on manifolds in general.

The goal of this chapter is to study global in time Strichartz estimates for the Schrödinger-
type equation on asymptotically Euclidean manifolds. In the case of Schrödinger equation, it can
be seen as a completion of those in [BT08] of spatial dimensions greater than or equal to 3. In
order to achieve this goal, we will use the techniques of [BM16] combined with the analysis of
[BT08]. Note that since we consider a larger range of admissible condition compared to the sharp
Schrödinger admissible condition (see (0.0.1)) of [BM16], we have to be more careful in order to
apply the techniques of [BM16].

Before giving the main results, let us introduce some notations. Let g(x) = (gjk(x))dj,k=1 be
a metric on Rd, d ≥ 2, and denote G(x) = (gjk(x))dj,k=1 := g−1(x). We consider the Laplace-
Beltrami operator associated to g, i.e.

∆g =
d∑

j,k=1
|g(x)|−1∂xj

(
gjk(x)|g(x)|∂xk

)
,

where |g(x)| :=
√

det g(x). Throughout the chapter, we assume that g satisfies the following
assumptions.

56



Chapter 4. Strichartz estimates on asymptotically Euclidean manifolds

1. There exists C > 0 such that for all x, ξ ∈ Rd,

C−1|ξ|2 ≤
d∑

j,k=1
gjk(x)ξjξk ≤ C|ξ|2. (4.0.2)

2. There exists ρ > 0 such that for all α ∈ Nd, there exists Cα > 0 such that for all x ∈ Rd,∣∣∂α (gjk(x)− δjk
)∣∣ ≤ Cα 〈x〉−ρ−|α| . (4.0.3)

3. The geodesic flow associated to g is non-trapping. It means that the Hamiltonian flow
(X(t),Ξ(t)) := (X(t, x, ξ),Ξ(t, x, ξ)) associated to p, i.e.{

Ẋ(t) = ∇ξp(X(t),Ξ(t)),
Ξ̇(t) = −∇xp(X(t),Ξ(t)), and

{
Ẋ(0) = x,
Ξ̇(0) = ξ,

satisfies: for all (x, ξ) ∈ T ?Rd with ξ 6= 0,

|X(t)| → +∞ as t→ ±∞, (4.0.4)

where p is the principal symbol of −∆g (see (4.0.5) below). Remark that by the conservation
of energy and (4.0.2), all the geodesics starting from (x, ξ) are defined globally in time, i.e.
(X(t),Ξ(t)) exists for all t ∈ R.

The elliptic assumption (4.0.2) implies that |g(x)| is bounded from below and above by positive
constants. Thus for 1 ≤ q ≤ ∞, the spaces Lq(Rd, dgx) where dgx = |g(x)|dx and Lq(Rd) coincide
and have equivalent norms. In the sequel, we will use the same notation Lq(Rd) or Lq for short.
It is well-known that −∆g is essentially self-adjoint on C∞0 (Rd) under the assumptions (4.0.2) and
(4.0.3). We denote the unique self-adjoint extension on L2 of −∆g by P . Note that the principal
symbol of P is

p(x, ξ) = ξtG(x)ξ =
d∑

j,k=1
gjk(x)ξjξk. (4.0.5)

Now let γ ∈ R and q ∈ [1,∞]. The inhomogeneous Sobolev space W γ,q
g associated to the

metric g is defined as a closure of the Schwartz space S under the norm

‖u‖Wγ,q
g

:= ‖ 〈∇g〉γ u‖Lq , 〈∇g〉 =
√

1−∆g.

It is very useful to recall that for all γ ∈ R and q ∈ (1,∞), there exists C > 1 such that

C−1‖ 〈∇〉γ u‖Lq ≤ ‖u‖Wγ,q
g
≤ C‖ 〈∇〉γ u‖Lq , (4.0.6)

with 〈∇〉 =
√

1−∆ where ∆ is the free Laplace operator on Rd. This fact follows from the
Lq-boundedness of zero order pseudo-differential operators (see e.g [Sog86, Theorem 3.1.6]). The
estimates (4.0.6) allow us to use the Sobolev embedding as on Rd. For the homogeneous Sobolev
space associated to g, one should be careful since the Schwartz space is not a good candidate due
to the singularity at 0 of λ 7→ |λ|γ . Recall that (see [GV85, Appendix], [Tri83, chapter 5] and
[BL76, Chapter 6]) on Rd, the homogeneous Sobolev space Ẇ γ,q is the closure of L under the
norm

‖u‖Ẇγ,q := ‖|∇|γu‖Lq ,

where
L :=

{
u ∈ S | Dαû(0) = 0, ∀α ∈ Nd

}
.

Here ·̂ is the spatial Fourier transform. Since there is no Fourier transform on manifolds, we need
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to use the spectral theory instead. We denote

Lg := {ϕ(P )u | u ∈ S , ϕ ∈ C∞0 ((0,∞))} . (4.0.7)

We define the homogeneous Sobolev space Ẇ γ,q
g associated to g as the closure of Lg under the

norm
‖u‖Ẇγ,q

g
:= ‖|∇g|γu‖Lq .

When q = 2, we use Hγ , Ḣγ , Hγ
g and Ḣγ

g instead ofW γ,2, Ẇ γ,2,W γ,2
g and Ḣγ

g respectively. Thanks
to the equivalence (4.0.6), we will only use the usual notation Hγ in the sequel. It is important
to note (see [Bouc11, Proposition 2.3] or [SW10, Lemma 2.4]) that for d ≥ 2,

‖u‖2
Ḣ1
g

= (|∇g|u, |∇g|u) = (u, Pu) ' ‖∇u‖2L2 = ‖u‖2
Ḣ1 . (4.0.8)

By Stone’s theorem, the solution to (4.0.1) is given by u(t) = e−it|∇g|
σ

ψ. Let f0 ∈ C∞0 (R) be
such that f0 = 1 on [−1, 1]. We split

u(t) = ulow(t) + uhigh(t),

where

ulow(t) := f0(P )e−it|∇g|
σ

ψ, uhigh(t) = (1− f0)(P )e−it|∇g|
σ

ψ. (4.0.9)

We see that ulow(t) and uhigh(t) correspond to the low and high frequencies respectively. By
the Littlewood-Paley decomposition which is very similar to the one given in [BM16, Subsection
4.2] (see Subsection 4.2.1), we split the high frequency term into two parts: inside and outside a
compact set. Our first result concerns the global in time Strichartz estimates for the high frequency
term inside a compact set.
Theorem 4.0.1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3)
and assume that the geodesic flow associated to g is non-trapping. Then for all χ ∈ C∞0 (Rd) and
all (p, q) Schrödinger admissible with q <∞, there exists C > 0 such that for all ψ ∈ Lg,

‖χuhigh‖Lp(R,Lq) ≤ C‖ψ‖Ḣγp,qg
. (4.0.10)

The proof of Theorem 4.0.1 is based on local in time Strichartz estimates and global L2

integrability estimates of the Schrödinger-type operator. This strategy was first used in [ST02]
for the Schrödinger equation. We will make use of dispersive estimates given in Chapter 2 to get
Strichartz estimates with a high frequency spectral cutoff on a small time interval. Thanks to global
L2 integrability estimates, we can upgrade these local in time Strichartz estimates in to global
in time Strichartz estimates. This strategy depends heavily on the non-trapping condition. We
believe that one can improve this result to allow some weak trapping condition such as hyperbolic
trapping in [BGH10]. We hope to come back to this interesting question in a future work.

Our next result is the following global in time Strichartz estimates for the high frequency term
outside a compact set.
Theorem 4.0.2. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3)
and assume that there exists M > 0 large enough such that for all χ ∈ C∞0 (Rd),

‖χ(P − λ± i0)−1χ‖L2→L2 .χ λ
M , λ ≥ 1. (4.0.11)

Then there exists R > 0 large enough such that for all (p, q) Schrödinger admissible with q < ∞,
there exists C > 0 such that for all ψ ∈ Lg,

‖1{|x|>R}uhigh‖Lp(R,Lq) ≤ C‖ψ‖Ḣγp,qg
. (4.0.12)

The assumption (4.0.11) is known to hold in certain trapping situations (see e.g. [Dat09],
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[NZ09] or [BGH10]) as well as in the non-trapping case (see [Rob92] or [Vod04]). We remark that
under the trapping condition of [Dat09], [NZ09] or [BGH10], we have

‖χ(P − λ± i0)−1χ‖L2→L2 .χ λ
−1/2 log λ, λ ≥ 1,

and under non-trapping condition, we have (see e.g. [Bur02], [Rob92]) that

‖χ(P − λ± i0)−1χ‖L2→L2 .χ λ
−1/2, λ ≥ 1.

The proof of Theorem 4.0.2 relies on the so called Isozaki-Kitada parametrix (see [BT08]) and
resolvent estimates given in [BM16] using (4.0.11). Recall that the Isozaki-Kitada parametrix was
first introduced on Rd to study the scattering theory of Schrödinger operators with long range
potentials [IK85]. It was then modified and successfully used to show the Strichartz estimates for
Schrödinger equation outside a compact set in many papers (see e.g. [BT07], [BT08], [Bouc11],
[Miz13], [Miz12] or [BM16]).

The low frequency term in (4.0.9) enjoys the following global in time Strichartz estimates.
Theorem 4.0.3. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3).
Then for all (p, q) Schrödinger admissible with q <∞, there exists C > 0 such that for all ψ ∈ Lg,

‖ulow‖Lp(R,Lq) ≤ C‖ψ‖Ḣγp,qg
. (4.0.13)

As mentioned earlier, since we consider a larger range of admissible condition than the one
studied in [BM16], we can not apply directly the low frequency Littlewood-Paley decomposition
given in [BM16]. We thus need a “refined” version of Littlewood-Paley decomposition. To do so,
we will take advantage of heat kernel estimates (see Subsection 4.2.1). As a result, we split the low
frequency term into two parts: one supported outside a compact set and another one localized in
a weak sense, i.e. by means of a spatial decaying weight. The term with a spatial decaying weight
is treated easily by using global Lp integrability estimates of the Schrödinger-type operator at
low frequency. Note that this type of global Lp integrability estimate relies on the low frequency
resolvent estimates of [BR15] which is available for spatial dimensions d ≥ 3. We expect that
global in time Strichartz estimates for the Schrödinger-type equation at low frequency may hold
in dimension d = 2 as well. However, we do not know how to prove it at the moment. For the
term outside a compact set, we make use of microlocal techniques and a low frequency version of
the Isozaki-Kitada parametrix. We refer the reader to Section 4.4 for more details.

Combining Theorem 4.0.1, Theorem 4.0.2 and Theorem 4.0.3, we have the following result.
Theorem 4.0.4. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3)
and assume that the geodesic flow associated to g is non-trapping. Let u be a weak solution to
(4.0.1). Then for all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for
all ψ ∈ Lg,

‖u‖Lp(R,Lq) ≤ C‖ψ‖Ḣγp,qg
. (4.0.14)

Remark 4.0.5. Global in time Strichartz estimates for the homogeneous linear half-wave equation
σ = 1 on asymptotically Euclidean manifolds d ≥ 3 under non-trapping condition were established
by Sogge-Wang [SW10] by applying the result of Metcalfe-Tataru [MT12]. The method presented
in this chapter can be applied with a suitable modification to show Strichartz estimates for the
half-wave equation on asymptotically Euclidean manifolds under non-trapping condition, and thus
provides an alternative proof for global in time Strichartz estimates in the case σ = 1.

Using the homogeneous Strichartz estimate (4.0.14) and the Christ-Kiselev Lemma, we get the
following inhomogeneous Strichartz estimates.
Proposition 4.0.6. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3)
and assume that the geodesic flow associated to g is non-trapping. Let σ ∈ (0,∞)\{1} and u be a
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weak solution to the Cauchy problem{
i∂tu(t, x)− |∇g|σu(t, x) = F (t, x), (t, x) ∈ R× Rd,

u(0, x) = ψ(x), x ∈ Rd, (4.0.15)

with data ψ ∈ Lg and F ∈ C(R,Lg). Then for all (p, q) and (a, b) Schrödinger admissible with
q <∞ and b <∞, there exists C > 0 such that

‖u‖Lp(R,Lq) + ‖u‖L∞(R,Ḣγp,qg ) ≤ C
(
‖ψ‖Ḣγp,qg

+ ‖F‖La′ (R,Lb′ )
)
, (4.0.16)

provided that (p, a) 6= (2, 2) and

γp,q = γa′,b′ + σ. (4.0.17)
Remark 4.0.7. 1. The homogeneous Strichartz estimates (4.0.14) and the Minkowski inequal-

ity imply

‖u‖Lp(R,Lq) ≤ C
(
‖ψ‖Ḣγp,qg

+ ‖F‖L1(R,Ḣγp,qg )

)
. (4.0.18)

2. When σ ∈ (0, 2)\{1}, we always have γp,q > 0 for any Schrödinger admissible pair (p, q)
except (p, q) = (∞, 2). Thus, condition (4.0.17) implies that (p, a) 6= (2, 2), and (4.0.16)
includes the endpoint case. When σ ≥ 2, the estimates (4.0.16) do not include the endpoint
estimate.

3. In the case σ ∈ (0, 2]\{1}, we can replace the homogeneous Sobolev norms in (4.0.16) and
(4.0.18) by the inhomogeneous ones.

Proposition 4.0.8. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3)
and assume that the geodesic flow associated to g is non-trapping. Let σ ∈ (0,∞)\{1} and v be a
weak solution to the Cauchy problem{

∂2
t v(t, x) + (−∆g)σv(t, x) = F (t, x), (t, x) ∈ R× Rd,

v(0, x) = v0(x), ∂tv(0, x) = v1(x), x ∈ Rd, (4.0.19)

with data v0, v1 ∈ Lg and F ∈ C(R,Lg). Then for all (p, q) and (a, b) Schrödinger admissible
with q <∞ and b <∞, there exists C > 0 such that

‖v‖Lp(R,Lq) + ‖[v]‖L∞(R,Ḣγp,qg ) ≤ C
(
‖[v](0)‖Ḣγp,qg

+ ‖F‖La′ (R,Lb′ )
)
, (4.0.20)

where [v](t) := (v(t), ∂tv(t)) and

‖[v]‖L∞(R,Ḣγp,qg ) := ‖v‖L∞(R,Ḣγp,qg ) + ‖∂tv‖L∞(R,Ḣγp,q−σg )

provided that (p, a) 6= (2, 2) and

γp,q = γa′,b′ + 2σ. (4.0.21)
Remark 4.0.9. As in Remark 4.0.7, we have

‖v‖Lp(R,Lq) ≤ C
(
‖[v](0)‖Ḣγp,qg

+ ‖F‖
L1(R,Ḣγp,q−σg )

)
. (4.0.22)

4.1 Functional calculus and propagation estimates
In this section, we recall some well-known results on pseudo-differential operators and prove

some propagation estimates related to our problem.
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4.1.1 Pseudo-differential operators.
Let µ,m ∈ R. We consider the symbol class S(µ,m) the space of smooth functions a on R2d

satisfying ∣∣∣∂αx ∂βξ a(x, ξ)
∣∣∣ ≤ Cαβ 〈x〉µ−|α| 〈ξ〉m−|β| .

In practice, we mainly use S(µ,−∞) := ∩m∈RS(µ,m).
For a ∈ S(µ,m) and h ∈ (0, 1], we consider the semi-classical pseudo-differential operator

Oph(a) which is defined by

Oph(a)u(x) = (2πh)−d
∫∫

R2d
eih
−1(x−y)·ξa(x, ξ)u(y)dydξ. (4.1.1)

By the long range assumption (4.0.3), we see that h2P = Oph(p)+hOph(p1) with p ∈ S(0, 2) given
in (4.0.5) and p1 ∈ S(−ρ− 1, 1) ⊂ S(−1, 1). We recall that for a ∈ S(µ1,m1) and b ∈ S(µ2,m2),
the composition Oph(a)Oph(b) is given by

Oph(a)Oph(b) =
N−1∑
j=0

hjOph((a#b)j) + hNOph(r#
N (h)), (4.1.2)

where (a#b)j =
∑
|α|=j

1
α!∂

α
ξ aD

α
x b ∈ S(µ1 + µ2 − j,m1 +m2 − j) and (r#

N (h))h∈(0,1] is a bounded
family in S(µ1 +µ2−N,m1 +m2−N). The adjoint with respect to the Lebesgue measure Oph(a)?
is given by

Oph(a)? =
N−1∑
j=0

hjOph(a?j ) + hNOph(r?N (h)), (4.1.3)

where a?j =
∑
|α|=j

1
α!∂

α
ξ D

α
xa ∈ S(µ1 − j,m1 − j) and (r?N (h))h∈(0,1] is a bounded family in

S(µ1 −N,m1 −N).
We next recall the definition of rescaled pseudo-differential operator which is essentially given

in [BM16]. This type of operator is very useful for the analysis at low frequency. Let a ∈ S(µ,m)
and ε ∈ (0, 1]. The rescaled pseudo-differential operator Opε(a) is defined by

Opε(a)u(x) = (2π)−d
∫∫

R2d
ei(x−y)·ξa(εx, ε−1ξ)u(y)dydξ.

Setting Dεu(x) := εd/2u(εx). It is easy to see that Dε is a unitary map on L2 and

Opε(a) = DεOp(a)D−1
ε , (4.1.4)

where D−1
ε u(x) = ε−d/2u(ε−1x) and Op(a) := Op1(a), i.e. h = 1 in (4.1.1). Thanks to

(4.1.2), (4.1.3) and (4.1.4), the composition Opε(a)Opε(b) and the adjoint with respect to the
Lebesgue measure Opε(a)? with a ∈ S(µ1,m1) and b ∈ S(µ2,m2) are given by

Opε(a)Opε(b) =
N−1∑
j=0

Opε((a#b)j) +Opε(r#
N ), Opε(a)? =

N−1∑
j=0

Opε(a?j ) +Opε(r?N ).

4.1.2 Functional calculus.
In this subsection, we will recall the approximations for φ(h2P ) and ζ(εx)φ(ε−2P ) in terms

of semi-classical and rescaled pseudo-differential operators respectively, where φ ∈ C∞0 (R) and
ζ ∈ C∞(Rd) is supported outside B(0, 1) and equal to 1 near infinity. Here B(0, 1) is the open
unit ball in Rd.
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We firstly recall the following Lq → Lr-bound of pseudo-differential operators (see e.g. [BT07,
Proposition 2.4]).
Proposition 4.1.1. Let m > d and a be a continuous function on R2d smooth with respect to the
second variable satisfying for all β ∈ Nd, there exists Cβ > 0 such that for all x, ξ ∈ Rd,

|∂βξ a(x, ξ)| ≤ Cβ 〈ξ〉−m .

Then for 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

‖Oph(a)‖Lq→Lr ≤ Ch−(d/q−d/r).

The following proposition gives an approximation of φ(h2P ) in terms of semi-classical pseudo-
differential operators (see e.g. [BT07] or [Rob87]).
Proposition 4.1.2. Consider Rd equipped with a smooth metric g satisfying (4.0.2) and (4.0.3).
Then for a given φ ∈ C∞0 (R), there exist a sequence of symbols qj ∈ S(−j,−∞) satisfying q0 = φ◦p
and supp(qj) ⊂ supp(φ ◦ p) such that for all N ≥ 1,

φ(h2P ) =
N−1∑
j=0

hjOph(qj) + hNRN (h),

and for m ≥ 0 and 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

‖RN (h) 〈x〉N ‖Lq→Lr ≤ Ch−(d/q−d/r),

‖RN (h) 〈x〉N ‖H−m→Hm ≤ Ch−2m.

Combining Proposition 4.1.1 and Proposition 4.1.2, one has the following result (see e.g. [BT07,
Proposition 2.9]).
Proposition 4.1.3. Consider Rd equipped with a smooth metric g satisfying (4.0.2) and (4.0.3).
Let φ ∈ C∞0 (R). Then for 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

‖φ(h2P )‖Lq→Lr ≤ Ch−(d/q−d/r).

It is also known (see [BM16]) that the rescaled pseudo-differential operator is very useful
to approximate the low frequency localization of P , i.e. operators of the form φ(ε−2P ). By
the uncertainty principle, one can only expect to get such approximation whenever |x| is large,
typically |x| & ε−1.
Remark 4.1.4. Let µ ≤ 0,m ∈ R and a ∈ S(µ,m). If we set

aε(x, ξ) := εµa(ε−1x, ξ),

then for all α, β ∈ Nd, there exists Cαβ > 0 such that for all |x| ≥ 1, ξ ∈ Rd,

|∂αx ∂
β
ξ aε(x, ξ)| ≤ Cαβ 〈ξ〉

m−|β|
, ∀ε ∈ (0, 1].

We next rewrite ε−2P as Dε(D−1
ε (ε−2P )Dε)D−1

ε . A direct computation gives

D−1
ε (ε−2P )Dε = Op(pε) +Op(pε,1) =: Pε,

where pε(x, ξ) = p(ε−1x, ξ) and pε,1(x, ξ) = ε−1p1(ε−1x, ξ). We thus obtain

ε−2P = Opε(pε) +Opε(pε,1). (4.1.5)

Using the fact that p ∈ S(0, 2), p1 ∈ S(−1, 1), Remark 4.1.4 allows us to construct the parametrix
for the resolvent ζ(εx)(ε−2P − z)−k with ζ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1
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near infinity. Indeed, by writing ζ(εx)(ε−2P − z)−k = Dε

[
ζ(x)(Pε − z)−k

]
D−1
ε , we can apply

the standard elliptic parametrix for ζ(x)(Pε − z)−k and we have (see e.g. [BT07] or [BM16]) the
following result.
Proposition 4.1.5. Let ζ, ζ̃, ˜̃ζ ∈ C∞(Rd) be supported outside B(0, 1) and equal to 1 near infinity
such that ζ̃ = 1 near supp(ζ) and ˜̃ζ = 1 near supp(ζ̃). Then for all k,N ≥ 1 integers and
z ∈ C\[0,+∞), we have for ε ∈ (0, 1],

ζ(εx)(ε−2P − z)−k =
N−1∑
j=0

ζ(εx)Opε(bε,j(z))ζ̃(εx) +RN (z, ε),

where (bε,j(z))ε∈(0,1] is a bounded family in S(−j,−2k−j) which is a linear combination of dε,l(pε−
z)−k−l with (dε,l)ε∈(0,1] a bounded family in S(−j, 2l − j) and

RN (z, ε) = ζ(εx)Opε(rN (z, ε))˜̃ζ(εx)(ε−2P − z)−k

where rN (z, ε) ∈ S(−N,−N) has seminorms growing polynomially in 1/dist(z,R+) uniformly in
ε ∈ (0, 1] as long as z belongs to a bounded set of C\[0,+∞).

A first application of Proposition 4.1.5 is the following result.
Proposition 4.1.6. Using the notations given in Proposition 4.1.5, let k > d/2 and 2 ≤ q ≤ ∞.
Then there exists C > 0 such that for all ε ∈ (0, 1],

‖ζ(εx)(ε−2P + 1)−k‖L2→Lq ≤ Cεd/2−d/q. (4.1.6)

Proof. We apply Proposition 4.1.5 with N > d, we see that

ζ(εx)(ε−2P + 1)−k =
N−1∑
j=0

ζ(εx)Opε(bε,j(−1))ζ̃(εx) + ζ(εx)Opε(rN (−1, ε))˜̃ζ(εx)(ε−2P + 1)−k,

=
N−1∑
j=0

Dε

{
ζ(x)Op(bε,j(−1))ζ̃(x) + ζ(x)Op(rN (−1, ε))˜̃ζ(x)(Pε + 1)−k

}
D−1
ε ,

where (bε,j(−1))ε∈(0,1], (rN (−1, ε))ε∈(0,1] are bounded in S(−j,−2k − j) and S(−N,−N) respec-
tively. The result then follows from Proposition 4.1.1 with h = 1 and that

‖Dε‖Lq→Lq = εd/2−d/q, ‖D−1
ε ‖L2→L2 = 1.

We also use that ‖(Pε + 1)−k‖L2→L2 ≤ 1 for the remainder term.
Another application of Proposition 4.1.5 is the following approximation of ζ(εx)φ(ε−2P ) in

terms of rescaled pseudo-differential operators.
Proposition 4.1.7. Consider Rd equipped with a smooth metric g satisfying (4.0.2) and (4.0.3).
Let φ ∈ C∞0 (R) and ζ, ζ̃, ˜̃ζ be as in Proposition 4.1.5. Then there exists a sequence of bounded
families of symbols (qε,j)ε∈(0,1] ∈ S(−j,−∞) with qε,0 = φ ◦ pε and supp(qε,j) ⊂ supp(φ ◦ pε) such
that for all N ≥ 1,

ζ(εx)φ(ε−2P ) =
N−1∑
j=0

ζ(εx)Opε(qε,j)ζ̃(εx) +RN (ε). (4.1.7)

Moreover, for any m ≥ 0, there exists C > 0 such that for all ε ∈ (0, 1],

‖(ε−2P + 1)mRN (ε) 〈εx〉N ‖L2→L2 ≤ C. (4.1.8)

Proof. By using Proposition 4.1.5 with k = 1 and the Helffer-Sjöstrand formula (see [DS99])
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namely
φ(ε−2P ) = − 1

π

∫
C
∂φ̃(z)(ε−2P − z)−1dL(z),

where φ̃ is an almost analytic extension of φ, the Cauchy formula gives (4.1.7) with

RN (ε) = 1
π

∫
C
∂φ̃(z)ζ(εx)Opε(rN (z, ε))˜̃ζ(εx)(ε−2P − z)−1dL(z). (4.1.9)

Here (rN (z, ε))ε∈(0,1] is bounded in S(−N,−N) and has semi-norms growing polynomially in
|Im z|−1 which is harmless since ∂φ̃(z) = O(|Im z|∞). The left hand side of (4.1.8) is bounded by

1
π

∫
C
|∂φ̃(z)|‖(ε−2P + 1)mζ(εx)Opε(rN (z, ε))˜̃ζ(εx)(ε−2P − z)−1 〈εx〉N ‖L2→L2dL(z).

By choosing ζ1 ∈ C∞(Rd) supported outside B(0, 1) such that ζ1 = 1 near supp(˜̃ζ), we can write

(ε−2P − z)−1 = (ε−2P − z)−1(1− ζ1)(εx) + (ε−2P − z)−1ζ1(εx).

We note that (1 − ζ1)(εx) 〈εx〉N is of size OL2→L2(1) due to the compact support in εx, and
(ε−2P + 1)(ε−2P − z)−1 is of size OL2→L2(|Im z|−1) by functional calculus. Moreover, using
(4.1.5) and the same process as in the proof of Proposition 4.1.6, there exists τ(m) ∈ N such that

‖(ε−2P + 1)mζ(εx)Opε(rN (z, ε))˜̃ζ(εx)(ε−2P + 1)−1‖L2→L2 ≤ C|Im z|−τ(m).

This shows that

‖(ε−2P + 1)mRN (ε)(1− ζ1)(εx) 〈εx〉N ‖L2→L2 ≤ C. (4.1.10)

For the term (ε−2P + 1)mRN (ε)ζ1(εx) 〈εx〉N , using Proposition 4.1.5 (by taking the adjoint), we
see that

(ε−2P − z)−1ζ1(εx) =
N ′−1∑
j=0

ζ̃1(εx)Opε(b̃ε,j(z))ζ1(εx) + R̃N ′(z, ε),

with (b̃ε,j(z))ε∈(0,1] a bounded family in S(−j,−2− j) and

R̃N ′(z, ε) = (ε−2P − z)−1 ˜̃ζ1(εx)Opε(r̃N ′(z, ε))ζ1(εx),

where r̃N ′(z, ε) ∈ S(−N ′,−N ′) has seminorms growing polynomially in |Im z|−1 uniformly in
ε ∈ (0, 1]. By the same argument as above, we obtain

‖(ε−2P + 1)mRN (ε)ζ1(εx) 〈εx〉N ‖L2→L2 ≤ C. (4.1.11)

Combining (4.1.10) and (4.1.11), we prove (4.1.8).
As a consequence of Proposition 4.1.7, we have the following result.

Corollary 4.1.8. Let φ ∈ C∞0 (R). Then for 2 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all
ε ∈ (0, 1],

‖ζ(εx)φ(ε−2P )‖Lq→Lr ≤ Cεd/q−d/r. (4.1.12)

Proof. By (4.1.7) and (4.1.8) (see also (4.1.9)), we can write for any N ≥ 1 and any m ≥ 0,

ζ(εx)φ(ε−2P ) =
N−1∑
j=0

ζ(εx)Opε(qε,j)ζ̃(εx) +RN (ε),
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where
RN (ε) = ζ̃(εx)(ε−2P + 1)−mBε 〈εx〉−N

with Bε = OL2→L2(1) uniformly in ε ∈ (0, 1]. The main terms can be estimated by using Propo-
sition 4.1.1 (see also the proof of Proposition 4.1.6). It remains to treat the remainder term. We
firstly note that 〈εx〉−N = OLq→L2(εd/q−d/2) provided N > d(q−2)

2q . Using this bound together
with Bε = OL2→L2(1) and (4.1.6), we see that

‖RN (ε)‖Lq→Lr . ‖ζ̃(εx)(ε−2P + 1)−m‖L2→Lr‖Bε‖L2→L2‖ 〈εx〉−N ‖Lq→L2

. εd/2−d/rεd/q−d/2 . εd/q−d/r.

This proves (4.1.12).
Another consequence of Proposition 4.1.7 is the following estimate.

Corollary 4.1.9. Let φ ∈ C∞0 (R). For m ≥ 0, there exists C > 0 such that for all ε ∈ (0, 1],

‖ 〈εx〉−m φ(ε−2P ) 〈εx〉m ‖L2→L2 ≤ C. (4.1.13)

Proof. By choosing ζ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1 near infinity, we can
write 〈εx〉−m φ(ε−2P ) 〈εx〉m as

〈εx〉−m φ(ε−2P )ζ(εx) 〈εx〉m + 〈εx〉−m φ(ε−2P )(1− ζ)(εx) 〈εx〉m .

The L2 → L2-boundedness of the first term follows from the parametrix of φ(ε−2P )ζ(εx) which
is obtained by taking the adjoint of (4.1.7). The second term follows from the fact that (1 −
ζ)(εx) 〈εx〉m is bounded on L2 since 1− ζ vanishes outside a compact set.

4.1.3 Propagation estimates.
In this subsection, we recall some results on resolvent estimates and prove some propagation

estimates both at high and low frequencies. Let us start with the following result.
Proposition 4.1.10. 1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (4.0.2),

(4.0.3) and suppose that the assumption (4.0.11) holds. Then for k ≥ 0, there exists non-
decreasing Nk ∈ N such that for λ belonging to a relatively compact interval of (0,+∞),
there exists C > 0 such that for all h ∈ (0, 1],

‖ 〈x〉−1−k (h2P − λ∓ i0)−1−k 〈x〉−1−k ‖L2→L2 ≤ Ch−Nk . (4.1.14)

2. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3). Then for
k ≥ 0 and λ belonging to a relatively compact interval of (0,+∞), there exists C > 0 such
that for all ε ∈ (0, 1],

‖ 〈εx〉−1−k (ε−2P − λ∓ i0)−1−k 〈εx〉−1−k ‖L2→L2 ≤ C. (4.1.15)

The high frequency resolvent estimates (4.1.14) are given in [BM16, Proposition 7.5] and the
low frequency resolvent estimates (4.1.15) are given in [BR15, Theorem 1.2]. Note that under the
non-trapping condition, the estimates (4.1.14) hold with Nk = k + 1 (see e.g. [Rob94, Theorem
2.8]). We next use the resolvent estimates given in Proposition 4.1.10 to have the following
resolvent estimates for the Schrödinger-type operator.
Proposition 4.1.11. Let σ ∈ (0,∞).

1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose
that the assumption (4.0.11) holds. Then for k ≥ 0, there exists non-decreasing Nk ∈ N such
that for λ belonging to a relatively compact interval of (0,+∞), there exists C > 0 such that
for all h ∈ (0, 1],

‖ 〈x〉−1−k ((h|∇g|)σ − µ∓ i0)−1−k 〈x〉−1−k ‖L2→L2 ≤ Ch−Nk . (4.1.16)
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2. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3). Then for
k ≥ 0 and λ belonging to a relatively compact interval of (0,+∞), there exists C > 0 such
that for all ε ∈ (0, 1],

‖ 〈εx〉−1−k ((ε−1|∇g|)σ − µ∓ i0)−1−k 〈εx〉−1−k ‖L2→L2 ≤ C. (4.1.17)
Proof. We only give the proof for (4.1.16), the one for (4.1.17) is similar using (4.1.13). We firstly
note that the estimates (4.1.16) are equivalent to

‖ 〈x〉−1−k ((h|∇g|)σ − µ∓ i0)−1−kφ(h2P ) 〈x〉−1−k ‖L2→L2 ≤ Ch−Nk ,

where φ ∈ C∞0 ((0,+∞)) satisfying φ = 1 near I. Note that here |∇g| =
√
P . Next, we write

µ = λσ/2 with λ lying in a relatively compact interval of (0,+∞). By functional calculus, we write

(h|∇g|)σ − µ∓ i0 = (h2P − λ∓ i0)Q(h2P, µ),

where Q(·, µ) is smooth and non vanishing on the support of φ. This implies for all k ≥ 0,

((h|∇g|)σ − µ∓ i0)−1−kφ(h2P ) = (h2P − λ∓ i0)−1−kQ̃(h2P, µ),

where Q̃(h2P, µ) = φ(h2P )Q−1−k(h2P, µ). This allows us to approximate Q̃(h2P, µ) by pseudo-
differential operators by means of Proposition 4.1.2. Thus, we have that 〈x〉1+k

Q̃(h2P, µ) 〈x〉−1−k

is of size OL2→L2(1) uniformly in µ ∈ I b (0,+∞) and h ∈ (0, 1]. Therefore, (4.1.16) follows from
(4.1.14). The proof is complete.

We now give an application of resolvent estimates given in Proposition 4.1.11 when k = 0 and
obtain the following global L2 integrability estimates for the Schrödinger-type operators both at
high and low frequencies.
Proposition 4.1.12. Let σ ∈ (0,∞) and f ∈ C∞0 ((0,+∞)).

1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose
that the assumption (4.0.11) holds. Then there exists C > 0 such that for all ψ ∈ L2 and all
h ∈ (0, 1],

‖ 〈x〉−1
f(h2P )e−ith

−1(h|∇g|)σψ‖L2(R,L2) ≤ Ch(1−N0)/2‖ψ‖L2 . (4.1.18)

2. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3). Then there
exists C > 0 such that for all ψ ∈ L2 and all ε ∈ (0, 1],

‖ 〈εx〉−1
f(ε−2P )e−itε(ε

−1|∇g|)σψ‖L2(R,L2) ≤ Cε−1/2‖ψ‖L2 . (4.1.19)
Remark 4.1.13. 1. By interpolating between L2(R) and L∞(R), we get the following Lp in-

tegrability estimates

‖ 〈x〉−1
f(h2P )e−ith

−1(h|∇g|)σψ‖Lp(R,L2) ≤ Ch(1−N0)/p‖ψ‖L2 . (4.1.20)

‖ 〈εx〉−1
f(ε−2P )e−itε(ε

−1|∇g|)σψ‖Lp(R,L2) ≤ Cε−1/p‖ψ‖L2 . (4.1.21)

2. Thanks to the fact that P is non-negative, these estimates are still true for f ∈ C∞0 (R\{0}).
Moreover, we can replace ‖ψ‖L2 in the right hand side of (4.1.18) and (4.1.20) (resp. (4.1.19)
and (4.1.21)) by ‖f(h2P )ψ‖L2 (resp. ‖f(ε−2P )ψ‖L2). Indeed, we choose f̃ ∈ C∞0 (R\{0})
such that f̃ = 1 near supp(f) and write f(h2P ) = f̃(h2P )f(h2P ). We apply (4.1.18) and
(4.1.20) with f̃ instead of f . Similarly for the low frequency case.

Proof of Proposition 4.1.12. We again only consider the high frequency case, the low frequency
one is completely similar. By the limiting absorption principle (see [ReS78, Theorem XIII.25]),
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we see that ‖ 〈x〉−1
f(h2P )e−it(h|∇g|)σψ‖2L2(R,L2) is bounded by

2π sup
µ∈R
ε>0

‖ 〈x〉−1
f(h2P )((h|∇g|)σ − µ− iε)−1f(h2P ) 〈x〉−1 ‖L2→L2‖ψ‖2L2 .

By functional calculus and the holomorphy of the resolvent, it suffices to bound ‖ 〈x〉−1
f(h2P )

((h|∇g|)σ − µ − i0)−1f(h2P ) 〈x〉−1 ‖L2→L2 , uniformly with respect to µ ∈ R. As a function of
h|∇g|, the operator f(h2P )((h|∇g|)σ−µ− i0)−1f(h2P ) reads f(λ2)(λσ−µ− i0)−1f(λ2). Assume
that supp(f) ⊂

[
1/c2, c2

]
for some c > 1, so λ ∈ [1/c, c].

In the case µ ≥ 2cσ or µ ≤ 1/2cσ, we have that µ−λσ ≥ cσ or λσ−µ ≥ 1/2cσ. The functional
calculus gives

‖f(h2P )((h|∇g|)σ − µ− i0)−1f(h2P )‖L2→L2 ≤ 2cσ‖f‖2L∞(R).

Thus we can assume that µ ∈ [1/2cσ, 2cσ]. Using (4.1.16) with k = 0, we have

‖ 〈x〉−1 ((h|∇g|)σ − µ∓ i0)−1 〈x〉−1 ‖L2→L2 ≤ Ch−N0 .

On the other hand, 〈x〉−1
f(h2P ) 〈x〉 is bounded on L2 by pseudo-differential calculus. This implies

‖ 〈x〉−1
f(h2P )e−it(h|∇g|)

σ

ψ‖L2(R,L2) ≤ Ch−N0/2‖ψ‖L2 .

By scaling in time, this gives the result. �
Another application of the resolvent estimates given in Proposition 4.1.11 is the following local

energy decay for the Schrödinger-type operators both at high and low frequencies.
Proposition 4.1.14. Let σ ∈ (0,∞) and f ∈ C∞0 (R\{0}).

1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose
that the assumption (4.0.11) holds. Then for k ≥ 0, there exist C > 0 and non-decreasing
Nk ∈ N such that for all t ∈ R and all h ∈ (0, 1],

‖ 〈x〉−1−k
e−ith

−1(h|∇g|)σf(h2P ) 〈x〉−1−k ‖L2→L2 ≤ Ch−Nk
〈
th−1〉−k . (4.1.22)

2. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3). Then for
k ≥ 0, there exists C > 0 such that for all t ∈ R and all ε ∈ (0, 1],

‖ 〈εx〉−1−k
e−itε(ε

−1|∇g|)σf(ε−2P ) 〈εx〉−1−k ‖L2→L2 ≤ C 〈εt〉−k . (4.1.23)
Proof. As above, we only give the proof for the high frequency case. Using the Stone formula, the
operator e−it(h|∇g|)σf(h2P ) reads

1
2iπ

∫
R
e−itµf(µ2/σ)(((h|∇g|)σ − µ− i0)−1 − ((h|∇g|)σ − µ+ i0)−1)dµ.

We use the same trick as in [BT08]. By multiplying to above equality with (it)k and using
integration by parts in the weighted spaces 〈x〉−1−k

L2, we see that (it)ke−it(h|∇g|)σf(h2P ) is a
linear combination with l + n = k of terms of the form∫

R
e−itµ∂lµ(f(µ2/σ))(((h|∇g|)σ − µ− i0)−1−n − ((h|∇g|)σ − µ+ i0)−1−n)dµ.

The compact support of f implies that µ is bounded from above and below. The resolvent estimates
(4.1.16) then imply

‖ 〈x〉−1−k
e−it(h|∇g|)

σ

f(h2P ) 〈x〉−1−k ‖L2→L2 ≤ Ch−Nk 〈t〉−k .
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Here we use that Nm is non-decreasing with respect to m. By scaling in time, we have (4.1.22).
The proof is complete.

4.2 Reduction of the problem
4.2.1 The Littlewood-Paley theorems

In this subsection, we recall some Littlewood-Paley type estimates which are essentially given
in [BM16]. Let us introduce f(λ) = f0(λ) − f0(2λ), where f0 given as in (4.0.9). We have
f ∈ C∞0 (R\{0}) and

∞∑
k=1

f(2−kλ) = (1− f0)(λ),
∞∑
k=0

f(2kλ) = 1R\{0}(λ)f0(λ), λ ∈ R.

The Spectral Theorem implies that

(1− f0)(P ) =
∞∑
k=1

f(2−kP ), f0(P ) =
∞∑
k=0

f(2kP ). (4.2.1)

Here we use the fact that 0 is not an eigenvalue of P in the second sum.
Theorem 4.2.1. 1. Let N ≥ 1 and χ ∈ C∞0 (Rd). Then for q ∈ [2,∞), there exists C > 0 such

that

‖(1− χ)(1− f0)(P )v‖Lq ≤ C
( ∑
h2=2−k

‖(1− χ)f(h2P )v‖2Lq + hN‖ 〈x〉−N f(h2P )v‖2L2

)1/2
,

(4.2.2)

for all v ∈ S (Rd), where k ∈ N\{0}. The same estimates hold for χ in place of 1− χ.
2. Let χ ∈ C∞0 (Rd) be such that χ(x) = 1 for |x| ≤ 1. Then for q ∈ (2,∞), there exists C > 0

such that for all v ∈ L2,

‖f0(P )v‖Lq ≤ C
( ∑
ε−2=2k

‖(1− χ)(εx)f(ε−2P )v‖2Lq + ‖εd/2−d/q 〈εx〉−1
f(ε−2P )v‖2L2

)1/2
.

(4.2.3)

Here we use in the sum that k ∈ N.
Note that the Littlewood-Paley theorem at low frequency is slightly different from the one in

[BM16, Theorem 4.1]. In [BM16], Bouclet-Mizutani considered the sharp Schrödinger admissible
condition (see (0.0.1)). This allows to interpolate between the trivial Strichartz estimate for (∞, 2)
and the endpoint Strichartz estimate for the endpoint pair (2, 2?). The proof of the low frequency
Littlewood-Paley theorem given in [BM16] makes use of the homogeneous Sobolev embedding

‖v‖L2? ≤ C‖|∇g|v‖L2 , 2? = 2d
d− 2 . (4.2.4)

Since we consider a larger range of admissible condition (1.1.2), we can not apply this interpolation
technique. To overcome this difficulty, we will take the advantage of heat kernel estimates. Our
estimate (4.2.3) is robust and can be applied for another types of dispersive equations such as the
wave or Klein-Gordon equations.

Let K(t, x, y) be the kernel of the heat operator e−tP , t > 0, i.e.

e−tPu(x) =
∫
Rd
K(t, x, y)u(y)dy.

We recall some properties (see e.g. [Cha84], [Gri99]) of the heat kernel on arbitrary Riemannian
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manifold.
Lemma 4.2.2. Let (M, g) be an arbitrary Riemannian manifold. Then the heat kernel K satisfies
the following properties:
(i) K is a strictly positive C∞ function on (0,∞)×M ×M .
(ii) K is symmetric in the space components.
(iii) (Maximum principle) ∫

M

K(t, x, y)dg(y) ≤ 1.

(iv) (Semi-group property) ∫
M

K(s, x, y)K(t, y, z)dg(y) = K(s+ t, x, z).

In order to obtain the heat kernel estimate, we will make use of the Nash inequality (see e.g.
[SC02, Theorem 3.2.1]), namely

‖u‖L2 ≤ C‖u‖
2
d+2
L1 ‖∇u‖

d
d+2
L2 . (4.2.5)

Note that the Nash inequality on Rd is valid for any d ≥ 1. Thanks to (4.0.8), we have for d ≥ 2,

‖u‖L2 ≤ C‖u‖
2
d+2
L1 ‖|∇g|u‖

d
d+2
L2 . (4.2.6)

Using (4.2.6), we have the following upper bound for the heat kernel.
Theorem 4.2.3. There exists C > 0 such that for all x, y ∈ Rd and all t > 0 such that

K(t, x, x) ≤ Ct−d/2, (4.2.7)

K(t, x, y) ≤ Ct−d/2 exp
(
− |x− y|

2

Ct

)
. (4.2.8)

In particular,

‖e−tP ‖L1→L∞ ≤ Ct−d/2, t > 0. (4.2.9)

Proof. The proof is similar to the one given in [Gri99, Theorem 6.1] where the author shows how
to get (4.2.7) from the homogeneous Sobolev embedding (4.2.4). For the reader’s convenience, we
give a sketch of the proof. Fix x ∈ Rd and denote v(t, y) = K(t, y, x) and

J(t) := ‖v(t)‖2L2 .

Using the fact that ∂tv(t, y) = −Pv(t, y), we have

J ′(t) = 2 〈v(t), ∂tv(t)〉 = −2 〈v(t), Pv(t)〉 = −2‖|∇g|v(t)‖2L2 .

This implies that J(t) is non-increasing. On the other hand, the maximum principle (see also
[Gri99]) shows that

‖v(t)‖L1 =
∫
Rd
K(t, x, y)dy ≤ 1.

This together with (4.2.6) yield

‖v(t)‖2L2 ≤ C‖v(t)‖
4
d+2
L1 ‖|∇g|v(t)‖

2d
d+2
L2 ≤ C‖|∇g|v(t)‖

2d
d+2
L2 .

We thus get
J ′(t) ≤ −C‖v(t)‖

2(d+2)
d

L2 = −CJ(t)
d+2
d .
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This implies that

J(t) ≤
(

2C
d
t+ 1

[J(0)] 2
d

)− d2
which together with the non-increasing property of J(t) yield

J(t) ≤ Ct−d/2.

The estimate (4.2.7) then follows by the symmetric property of K(t, x, y), i.e. J(t) = K(2t, x, x).
Using (4.2.7), the off-diagonal argument (see also [Gri99]) implies the following upper bound for
the heat kernel

K(t, x, y) ≤ Ct−d/2 exp
(
− d2(x, y)

Ct

)
, ∀x, y ∈ Rd, t > 0,

where d(x, y) is the geodesic distance from x to y. Thanks to the elliptic condition (4.0.2) of the
metric g, it is easy to see that

d(x, y) ∼ |x− y|.

This shows (4.2.8) and the proof is complete.
We now give some applications of the upper bound (4.2.8). A first application is the following

homogeneous Sobolev embedding.
Lemma 4.2.4. Let q ∈ (2,∞) and α = d

2 −
d
q . Then the operator |∇g|−α maps L2 to Lq. In

particular, there exists C > 0 such that

‖u‖Lq ≤ C‖|∇g|αu‖L2 . (4.2.10)

Proof. We firstly recall the following version of Hardy-Littlewood-Sobolev theorem.
Theorem 4.2.5 ([HL28, Sob63]). Let 1 < p < q <∞, γ = d+ d

q −
d
p and Kγ(x) := |x|−γ . Then

the convolution operator Tγ := f ∗Kγ maps Lp to Lq. In particular, there exists C > 0 such that

‖Tγu‖Lq ≤ C‖u‖Lp .

Now let Γ(z) :=
∫∞

0 tz−1e−tdt,Re (z) > 0 be the Gamma function. The spectral theory with the
fact |∇g| =

√
P gives

|∇g|−α = P−α/2 = 1
Γ(α/2)

∫ ∞
0

e−tP tα/2−1dt.

Let [|∇g|−α](x, y) be the kernel of |∇g|−α. By (4.2.8),

|[|∇g|−α](x, y)| ≤ C

Γ(α/2)

∫ ∞
0

t−d/2e−
|x−y|2
Ct tα/2−1dt.

A change of variable shows

|[|∇g|−α](x, y)| ≤ C

Γ(α/2) |x− y|
−(d−α)

∫ ∞
0

td/2−α/2−1e−tdt = CΓ(d/2− α/2)
Γ(α/2) |x− y|−(d−α).

The result follows by applying Theorem 4.2.5 with γ = d− α and p = 2.
Another application of the heat kernel upper bound (4.2.8) is the following Lq − Lr-bound of

the heat operator.
Lemma 4.2.6. Let 1 ≤ q ≤ r ≤ ∞. The heat operator e−tP , t > 0 maps Lq to Lr. In particular,
there exists C > 0 such that for all t > 0,

‖e−tP ‖Lq→Lr ≤ Ct−
d
2 ( 1

q−
1
r ).

Proof. By the symmetric and maximal principle properties of the heat kernel, the Schur’s Test
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yields

‖e−tP ‖Lq→Lq ≤ C, t > 0. (4.2.11)

Interpolating between (4.2.9) and (4.2.11), we have the result.
Corollary 4.2.7. Let f ∈ C∞0 (R\{0}) and q ∈ [2,∞]. Then there exists C > 0 such that for all
ε ∈ (0, 1],

‖f(ε−2P )‖L2→Lq ≤ Cεd/2−d/q.
Proof. By writing

f(ε−2P ) = e−ε
−2P (eε

−2P f(ε−2P )),

and using Lemma 4.2.6 with t = ε−2, we get

‖f(ε−2P )‖L2→Lq ≤ ‖e−ε
−2P ‖L2→Lq‖eε

−2P f(ε−2P )‖L2→L2 ≤ Cεd/2−d/q.

Here, using the compactly supported property of f and spectral theorem, we have eε−2P f(ε−2P )
is of size OL2→L2(1). This gives the result.

We now are able to prove Theorem 4.2.1. We only give the proof for the low frequency case.
The high frequency one is essentially given in [BM16, Theorem 4.6].
Proof of Theorem 4.2.1. By the second term of (4.2.1), we have

‖f0(P )v‖Lq = sup
‖w‖

Lq
′=1
|(w, f0(P )v)| = sup

‖w‖
Lq
′=1

∣∣∣ lim
M→∞

M∑
k=0

(w, f(ε−2P )v)
∣∣∣, (4.2.12)

where ε−2 = 2k and (·, ·) is the inner product on L2. By choosing f̃ ∈ C∞0 (R\{0}) satisfying f̃ = 1
near supp(f), we use Proposition 4.1.7 to write (1− χ)(εx)f̃(ε−2P ) = Q(ε) +R(ε), where

Q(ε) = (1− χ)(εx)Opε(f̃ ◦ pε)ζ(εx), R(ε) = ζ(εx)(ε−2P + 1)−mB(ε) 〈εx〉−1
,

with ζ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1 near supp(1−χ) and B(ε) = OL2→L2(1)
uniformly in ε ∈ (0, 1]. We next write

f(ε−2P ) = Q(ε)(1− χ)(εx)f(ε−2P ) +A(ε)εα 〈εx〉−1
f(ε−2P ),

with α = d/2− d/q and

A(ε) = ε−α
(

(1− χ)(εx)f̃(ε−2P )χ(εx) +R(ε)(1− χ)(εx) + χ(εx)f̃(ε−2P )
)
〈εx〉 .

We now bound∣∣∣ M∑
k=0

(w, f(ε−2P )v)
∣∣∣ . ∣∣∣ M∑

k=0

(
w,Q(ε)(1− χ)(εx)f(ε−2P )v

) ∣∣∣+
∣∣∣ M∑
k=0

(w,A(ε)εα 〈εx〉−1
f(ε−2P )v)

∣∣∣
.
∣∣∣ M∑
k=0

(
Q?(ε)w, (1− χ)(εx)f(ε−2P )v

) ∣∣∣+ ‖w‖Lq′
∥∥∥ M∑
k=0

A(ε)εα 〈εx〉−1
f(ε−2P )v

∥∥∥
Lq

=: (I) + (II). (4.2.13)

We use the Cauchy-Schwarz inequality in k and the Hölder inequality in space to have

(I) . ‖S̃Mw‖Lq′‖SMv‖Lq ,
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where

S̃Mw :=
( M∑
k=0
|Q?(ε)w|2

)1/2
, SMv :=

( M∑
k=0
|(1− χ)(εx)f(ε−2P )v|2

)1/2
.

We now make use of the following estimate (see [BM16, Proposition 4.3]).
Proposition 4.2.8. For r ∈ (1, 2], there exists C > 0 such that for all M ≥ 0 and all w ∈ S (Rd),

‖S̃Mw‖Lr ≤ C‖w‖Lr .

We thus get

(I) . ‖SMv‖Lq‖w‖Lq′ .
( M∑
k=0
‖(1− χ)(εx)f(ε−2P )v‖2Lq

)1/2
‖w‖Lq′ . (4.2.14)

For the second term in (4.2.13), we use the homogeneous Sobolev embedding (4.2.10) to have

∥∥∥ M∑
k=0

A(ε)εα 〈εx〉−1
f(ε−2P )v

∥∥∥
Lq
.
∥∥∥ M∑
k=0
|∇g|αA(ε)εα 〈εx〉−1

f(ε−2P )v
∥∥∥
L2
.

We next write

|∇g|αA(ε) = (ε−2P )α/2(ε−2P + 1)−αD(ε), (4.2.15)

with D(ε) = OL2→L2(1) uniformly in ε ∈ (0, 1]. It is easy to have (4.2.15) from the first two terms
in A(ε) by using Proposition 4.1.7. The less obvious contribution in (4.2.15) is the uniform L2

boundedness of (ε−2P + 1)αχ(εx)f̃(ε−2P ) 〈εx〉. By the functional calculus, it is enough to show
for N large enough the uniform L2 boundedness of (ε−2P + 1)Nχ(εx)f̃(ε−2P ) 〈εx〉. To see it, we
write

(ε−2P+1)Nχ(εx)f̃(ε−2P ) 〈εx〉 = χ(εx)(ε−2P+1)N f̃(ε−2P ) 〈εx〉+[(ε−2P+1)N , χ(εx)]f̃(ε−2P ) 〈εx〉 ,

where [·, ·] is the commutator. The L2 boundedness of χ(εx)(ε−2P + 1)N f̃(ε−2P ) 〈εx〉 follows as
in (4.1.13). On the other hand, note that the commutator [(ε−2P + 1)N , χ(εx)] can be written
as a sum of rescaled pseudo-differential operators vanishing outside the support of ζ(εx) for some
ζ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1 near infinity. This allows to use Proposition
4.1.7, and the L2 boundedness of [(ε−2P +1)N , χ(εx)]f̃(ε−2P ) 〈εx〉 follows. We next need to recall
the following well-known discrete Schur estimate.
Lemma 4.2.9. Let θ > 0 and (Tl)l be a sequence of linear operators on a Hilbert space H. If
‖T ?l Tk‖H→H . 2−θ|k−l|, then there exits C > 0 such that for all sequence (vk)k of H,

‖
∑

Tkvk‖H ≤ C
(∑

‖vk‖2H
)1/2

.

Now let Tk = (ε−2
k P )α/2(ε−2

k P + 1)−αD(εk) with ε−2
k = 2k. We see that

T ?l Tk = 2
α(l+k)

2 D?(εl)(2lP + 1)−αPα(2kP + 1)−αD(εk).

Note that l + k = −|k − l|+ 2k for k ≥ l and l + k = −|k − l|+ 2l for l ≥ k. Thus for k ≥ l,

‖T ?l Tk‖L2→L2 = 2−
α|k−l|

2 ‖D?(εl)(2lP + 1)−α(2kP )α(2kP + 1)−αD(εk)‖L2→L2 . 2−
α|k−l|

2 .

Similarly for l ≥ k. Therefore, we can apply Lemma 4.2.9 for Tk = (ε−2
k P )α/2(ε−2

k P + 1)−αD(εk)
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with ε−2
k = 2k,H = L2 and θ = α/2 to get

sup
M

∥∥∥ M∑
k=0
|∇g|αA(ε)εα 〈εx〉−1

f(ε−2P )v
∥∥∥
L2
.
(∑
k≥0
‖εα 〈εx〉−1

f(ε−2P )v‖2L2

)1/2
. (4.2.16)

Collecting (4.2.12), (4.2.13), (4.2.14) and (4.2.16), we prove (4.2.3). The proof of Theorem 4.2.1 is
now complete. �

4.2.2 Reduction of the high frequency problem
Let us now consider the high frequency case. For a given χ ∈ C∞0 (Rd), we write uhigh =

χuhigh + (1− χ)uhigh. Using (4.2.2) and Minkowski inequality with p, q ≥ 2, we have

‖(1− χ)uhigh‖Lp(R,Lq) ≤ C
( ∑
h2=2−k

‖(1− χ)f(h2P )e−it|∇g|
σ

ψ‖2Lp(R,Lq)

+ hN‖ 〈x〉−N f(h2P )e−it|∇g|
σ

ψ‖2Lp(R,L2)

)1/2
. (4.2.17)

The same estimate holds for ‖χuhigh‖Lp(R,Lq) with χ in place of 1 − χ. We can apply the Item
2 of Remark 4.1.13 with scaling in time for the second term in the right hand side of the above
quantity to get

hN/2‖ 〈x〉−N f(h2P )e−it|∇g|
σ

ψ‖Lp(R,L2) ≤ ChN/2+(σ−N0)/p‖f(h2P )ψ‖L2 . (4.2.18)

By taking N large enough, this term is bounded by h−γp,q‖f(h2P )ψ‖L2 . Thus we have the
following reduction.
Proposition 4.2.10. 1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (4.0.2),

(4.0.3) and suppose that the geodesic flow associated to g is non-trapping. If for all χ ∈
C∞0 (Rd) and all (p, q) Schrödinger admissible with q < ∞, there exists C > 0 such that for
all ψ ∈ Lg and all h ∈ (0, 1],

‖χe−it|∇g|
σ

f(h2P )ψ‖Lp(R,Lq) ≤ Ch−γp,q‖f(h2P )ψ‖L2 , (4.2.19)

then

‖χuhigh‖Lp(R,Lq) ≤ C‖ψ‖Ḣγp,qg
, (4.2.20)

i.e. Theorem 4.0.1 holds true.
2. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose

that (4.0.11) is satisfied. If there exists R > 0 large enough such that for all (p, q) Schrödinger
admissible with q <∞ and all χ ∈ C∞0 (Rd) satisfying χ = 1 for |x| < R, there exists C > 0
such that for all ψ ∈ Lg and all h ∈ (0, 1],

‖(1− χ)e−it|∇g|
σ

f(h2P )ψ‖Lp(R,Lq) ≤ Ch−γp,q‖f(h2P )ψ‖L2 , (4.2.21)

then

‖(1− χ)uhigh‖Lp(R,Lq) ≤ C‖ψ‖Ḣγp,qg
, (4.2.22)

i.e. Theorem 4.0.2 holds true.
Moreover, combining (4.2.20) and (4.2.22), we have

‖uhigh‖Lp(R,Lq) ≤ C‖ψ‖Ḣγp,qg
.

Proof. We only consider the case 1− χ, for χ it is similar. By using (4.2.18) and (4.2.21), we see
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that (4.2.17) implies

‖(1− χ)uhigh‖Lp(R,Lq) ≤ C
( ∑
h2=2−k

h−2γp,q‖f(h2P )ψ‖2L2

)1/2
≤ C‖ψ‖Ḣγp,qg

.

Here we use the almost orthogonality and the support property of f to obtain the last inequality.
This proves (4.2.22).

4.2.3 Reduction of the low frequency problem
Let us consider the low frequency case. We only treat the case q ∈ (2,∞) since the Strichartz

estimate for (p, q) = (∞, 2) is trivial. We apply the Littlewood-Paley estimates (4.2.3) and
Minkowski inequality with p ≥ 2 to have

‖ulow‖Lp(R,Lq) ≤ C
( ∑
ε−2=2k

‖(1− χ)(εx)f(ε−2P )e−it|∇g|
σ

ψ‖2Lp(R,Lq)

+ ‖εd/2−d/q 〈εx〉−1
f(ε−2P )e−it|∇g|

σ

ψ‖2Lp(R,L2)

)1/2
.

We use global Lp integrability estimates (4.1.21) with rescaling in time to bound the second term
in the right hand side as

‖εd/2−d/q 〈εx〉−1
f(ε−2P )e−it|∇g|

σ

ψ‖Lp(R,L2) ≤ Cεγp,q‖f(ε−2P )ψ‖L2 . (4.2.23)

Here we recall that γp,q = d/2− d/q − σ/p. This leads to the following reduction.
Proposition 4.2.11. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3).
If for all χ ∈ C∞0 (Rd) satisfying χ(x) = 1 for |x| ≤ 1 and all (p, q) Schrödinger admissible with
q <∞, there exists C > 0 such that for all ψ ∈ Lg and all ε ∈ (0, 1],

‖(1− χ)(εx)f(ε−2P )e−it|∇g|
σ

ψ‖Lp(R,Lq) ≤ Cεγp,q‖f(ε−2P )ψ‖L2 , (4.2.24)

then
‖ulow‖Lp(R,Lq) ≤ C‖ψ‖Ḣγp,qg

.

Proof. Indeed, if the estimates (4.2.24) hold true, then the Littlewood-Paley estimates (4.2.3) and
(4.2.23) give

‖ulow‖Lp(R,Lq) ≤ C
( ∑
ε−2=2k

ε2γp,q‖f(ε−2P )ψ‖2L2

)1/2
.

Note that

εγp,q‖f(ε−2P )ψ‖L2 ≤ εγp,q‖f̃(ε−2P )|∇g|−γp,q‖L2→L2‖f(ε−2P )|∇g|γp,qψ‖L2 ,

where f̃ ∈ C∞0 (R\{0}) satisfies f̃ = 1 near supp(f). By functional calculus, the first factor in the
right hand side is bounded by

εγp,q sup
λ∈R

∣∣∣∣ f̃(ε−2λ2)
λγp,q

∣∣∣∣ ≤ εγp,q ‖f̃‖L∞(R)

(ε/c)γp,q ≤ c
γp,q‖f̃‖L∞(R).

Here ε−2λ2 ∈ supp(f̃) hence |λ| ∈ [ε/c, εc] for some constant c > 1. Thus we have

‖ulow‖Lp(R,Lq) ≤ C
( ∑
ε−2=2k

‖f(ε−2P )|∇g|γp,qψ‖2L2

)1/2
≤ C‖ψ‖Ḣγp,qg

,

the last inequality follows from the almost orthogonality. This completes the proof.
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4.3 Strichartz estimates inside compact sets
In this section, we will give the proof of (4.2.19). Our main tools are the local in time Strichartz

estimates given in Chapter 2 and the L2 integrability estimate at high frequency given in Propo-
sition 4.1.12.

4.3.1 The WKB approximations
Let us start with the following result which is given in Theorem 2.2.1.

Theorem 4.3.1. Let σ ∈ (0,∞)\{1} and q be a smooth function on R2d compactly support in ξ
away from zero and satisfying for all α, β ∈ Nd, there exists Cαβ > 0 such that for all x, ξ ∈ Rd,

|∂αx ∂
β
ξ q(x, ξ)| ≤ Cαβ .

Then there exist t0 > 0 small enough, a function S ∈ C∞([−t0, t0]×R2d) and a sequence of smooth
functions aj(t, x, ξ) compactly supported in ξ away from zero uniformly in t ∈ [−t0, t0] such that
for all N ≥ 1,

e−ith
−1(h|∇g|)σOph(q)ψ = JN (t)ψ +RN (t)ψ,

where

JN (t)ψ(x) = (2πh)−d
∫∫

R2d
eih
−1(S(t,x,ξ)−y·ξ)

N−1∑
j=0

hjaj(t, x, ξ)ψ(y)dydξ,

JN (0) = Oph(q) and the remainder RN (t) satisfies for all t ∈ [−t0, t0] and all h ∈ (0, 1],

‖RN (t)‖L2→L2 ≤ ChN−1.

Moreover, there exists a constant C > 0 such that for all t ∈ [−t0, t0] and all h ∈ (0, 1],

‖JN (t)‖L1→L∞ ≤ Ch−d(1 + |t|h−1)−d/2.

In Chapter 2, we consider the smooth bounded metric, i.e. for all α ∈ Nd, there exists Cα > 0
such that for all x ∈ Rd,

|∂αgjk(x)| ≤ Cα, j, k ∈ {1, ...d}.

It is obvious to see that the above condition is always satisfied under the assumption (4.0.3). This
theorem and the parametrix given in Proposition 4.1.2 give the following dispersive estimates for
the Schrödinger-type equations (see Remark 2.2.2).
Proposition 4.3.2. Let σ ∈ (0,∞)\{1} and ϕ ∈ C∞0 (R\{0}). Then there exists t0 > 0 small
enough and C > 0 such that for all ψ ∈ L1(Rd) and all h ∈ (0, 1],

‖e−ith
−1(h|∇g|)σϕ(h2P )ψ‖L∞ ≤ Ch−d(1 + |t|h−1)−d/2‖ψ‖L1 , (4.3.1)

for all t ∈ [−t0, t0].
Next, we recall the following version of TT ?-criterion of Keel and Tao (see [Zha15], [KT98] or

[Zwo12]).
Proposition 4.3.3. Let I ⊆ R be an interval and (T (t))t∈I a family of linear operators satisfying
for some constant C > 0 and δ, τ, h > 0,

‖T (t)‖L2→L2 ≤ C, (4.3.2)
‖T (t)T (s)?‖L1→L∞ ≤ Ch−δ(1 + |t− s|h−1)−τ , (4.3.3)
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for all t, s ∈ I. Then for all (p, q) satisfying

p ∈ [2,∞], q ∈ [1,∞], (p, q, τ) 6= (2,∞, 1), 1
p
≤ τ

(
1
2 −

1
q

)
,

we have
‖Tv‖Lp(I,Lq) ≤ Ch−κ‖v‖L2 ,

where κ = δ(1/2− 1/q)− 1/p.
Proposition 4.3.3 together with energy estimate and dispersive estimate (4.3.1) give the fol-

lowing result.
Corollary 4.3.4. Let σ ∈ (0,∞)\{1}, ϕ ∈ C∞0 (R\{0}) and t0 be as in Theorem 4.3.1. Denote
I = [−t0, t0]. Then for all (p, q) Schrödinger admissible with q <∞, there exists C > 0 such that

‖ϕ(h2P )e−ith
−1(h|∇g|)σv‖Lp(I,Lq) ≤ Ch−κp,q‖v‖L2 , (4.3.4)

where κp,q = d/2− d/q − 1/p. Moreover,∥∥∥∫ t

0
ϕ2(h2P )e−i(t−s)h

−1(h|∇g|)σG(s)ds
∥∥∥
Lp(I,Lq)

≤ Ch−κp,q‖G‖L1(I,L2). (4.3.5)

Proof. The homogeneous estimates (4.3.4) follow directly from Proposition 4.3.2 and Proposition
4.3.3 with T (t) = ϕ(h2P )e−ith−1(h|∇g|)σ . It remains to prove the inhomogeneous estimates (4.3.5).
Let us set

Uh(t) := hκp,qϕ(h2P )e−ith
−1(h|∇g|)σ .

Using the homogeneous Strichartz estimates (4.3.4), we see that Uh(t) is a bounded operator from
L2 to Lp(I, Lq). Similarly, we have Uh(s) = ϕ(h2P )e−ish−1(h|∇g|)σ is a bounded operator from L2

to L∞(I, L2). Here we use the fact that (∞, 2) is Schrödinger-tye admissible with κ∞,2 = 0. Thus
the adjoint Uh(s)?, namely

Uh(s)? : G ∈ L1(I, L2) 7→
∫
I

ϕ(h2P )eish
−1(h|∇g|)σG(s)ds ∈ L2

is also a bounded operator. This implies Uh(t)Uh(s)? is a bounded operator from L1(I, L2) to
Lp(I, Lq). In particular, we have∥∥∥∫

I

hκp,qϕ2(h2P )e−i(t−s)h
−1(h|∇g|)σG(s)ds

∥∥∥
Lp(I,Lq)

≤ C‖G‖L1(I,L2).

The Christ-Kiselev Lemma (see Lemma 4.5.1) implies that for all (p, q) Schrödinger admissible
with q <∞, ∥∥∥ ∫ t

0
ϕ2(h2P )e−i(t−s)h

−1(h|∇g|)σG(s)ds
∥∥∥
Lp(I,Lq)

≤ Ch−κp,q‖G‖L1(I,L2).

This completes the proof.

4.3.2 From local Strichartz estimates to global Strichartz estimates
We now show how to upgrade the local in time Strichartz estimates given in Corollary 4.3.4

to the global in time ones (4.2.19). We emphasize that the non-trapping assumption is supposed
here.

Let us set v(t) = 〈x〉−1
f(h2P )e−ith−1(h|∇g|)σψ. By choosing f1 ∈ C∞0 (R\{0}) with f1 = 1

near supp(f), we see that the study of ‖v‖Lp(R,Lq) is reduced to the one of ‖f1(h2P )v‖Lp(R,Lq).
Indeed, we can write

v(t) = f1(h2P )v(t) + (1− f1)(h2P )v(t),
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where the term (1− f1)(h2P )v(t) can be written as

((1− f1)(h2P ) 〈x〉−1
f̃1(h2P ) 〈x〉) 〈x〉−1

f(h2P )e−ith
−1(h|∇g|)σψ,

with f̃1 ∈ C∞0 (R\{0}) such that f1 = 1 near supp(f̃1) and f̃1 = 1 near supp(f). By pseudo-
differential calculus, we have

(1− f1)(h2P ) 〈x〉−1
f̃1(h2P ) 〈x〉 = OL2→Lq (h∞),

for all q ≥ 2. This implies that there exists C > 0 such that for all N ≥ 1,

‖v − f1(h2P )v‖Lp(R,Lq) ≤ ChN‖ 〈x〉
−1
f(h2P )e−ith

−1(h|∇g|)σψ‖Lp(R,L2)

≤ ChN‖f(h2P )ψ‖L2 ≤ Ch−κp,q‖f(h2P )ψ‖L2 (4.3.6)

provided that N is taken large enough. Here we use (4.1.20) with N0 = 1 due to the non-trapping
condition.

We next write
v(t) = 〈x〉−1

f(h2P )e−ith
−1ω(h2P )ψ,

where ω(λ) = f̃(λ)
√
λ
σ with f̃ ∈ C∞0 (R\{0}) and f̃ = 1 near supp(f). Now, let t0 > 0 be as in

Corollary 4.3.4. We next choose θ ∈ C∞0 (R, [0, 1]) satisfying θ = 1 near 0 and supp(θ) ⊂ (−1, 1)
such that

∑
k∈Z θ(t − k) = 1, for all t ∈ R. We then write v(t) =

∑
k∈Z vk(t), where vk(t) =

θ((t− tk)/t0)v(t) with tk = t0k. By the Duhamel formula, we have

vk(t) = e−ith
−1ω(h2P )vk(0) + ih−1

∫ t

0
e−i(t−s)h

−1ω(h2P )(hDs + ω(h2P ))vk(s)ds.

For k 6= 0, we compute the action of hDs + ω(h2P ) on vk(s) and get

(hDs + ω(h2P ))vk(s) = h(it0)−1θ′((s− tk)/t0)v(s)

+ θ((s− tk)/t0)
[
ω(h2P ), 〈x〉−1

]
f(h2P )e−ish

−1ω(h2P )ψ =: v1
k(s) + v2

k(s).

Due to the support property of θ, we have vk(0) = 0. Now, we have for k 6= 0,

f1(h2P )vk(t) = ih−1
∫ t

0
e−i(t−s)h

−1ω(h2P )f1(h2P )(v1
k(s) + v2

k(s))ds.

We remark that both t, s belong to Ik = (tk − t0, tk + t0). Up to a translation in time t 7→ t− tk
and the same for s, we can apply the inhomogeneous Strichartz estimates given in Corollary 4.3.4
with ϕ2 = f1 and obtain

‖f1(h2P )vk‖Lp(R,Lq) = ‖f1(h2P )vk‖Lp(Ik,Lq)

≤ Ch−κp,q−1 (‖v1
k‖L1(Ik,L2) + ‖v2

k‖L1(Ik,L2)
)
.

Here κp,q is given in Corollary 4.3.4. We have

‖v1
k‖L1(Ik,L2) = ‖h(it0)−1θ′((s− tk)/t0) 〈x〉−1

f(h2P )e−ish
−1(h|∇g|)σψ‖L1(Ik,L2)

≤ ‖h(it0)−1θ′((s− tk)/t0)‖L2(Ik)‖ 〈x〉
−1
f(h2P )e−ish

−1(h|∇g|)σψ‖L2(Ik,L2)

≤ Ch‖ 〈x〉−1
f(h2P )e−ish

−1(h|∇g|)σψ‖L2(Ik,L2),
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where we use Cauchy Schwarz inequality to go from the first to the second line. Similarly

‖v2
k‖L1(Ik,L2) ≤ ‖[ω(h2P ), 〈x〉−1]f(h2P )e−ith

−1(h|∇g|)σψ‖L2(Ik,L2)

≤ Ch‖ 〈x〉−1
f(h2P )e−ith

−1(h|∇g|)σψ‖L2(Ik,L2),

where we use the fact that [ω(h2P ), 〈x〉−1]f̃1(h2P ) 〈x〉 is of size OL2→L2(h) by pseudo-differential
calculus. This implies that for k 6= 0,

‖f1(h2P )vk‖Lp(Ik,Lq) ≤ Ch
−κp,q‖ 〈x〉−1

f(h2P )e−ith
−1(h|∇g|)σψ‖L2(Ik,L2).

For k = 0, we have

‖f1(h2P )v0‖Lp(R,Lq) ≤ C‖f(h2P )e−ith
−1(h|∇g|)σψ‖Lp(I,Lq) ≤ Ch−κp,q‖f(h2P )ψ‖L2 .

Here the first inequality follows from the facts that θ(t/t0) and f1(h2P ) 〈x〉−1 are bounded
fromLp(R) to Lp(R) and Lq → Lq respectively. The second inequality follows from homoge-
neous Strichartz estimates (4.3.4). By almost orthogonality in time and the fact that p ≥ 2, we
have

‖f1(h2P )v‖Lp(R,Lq) ≤ C
(∑
k∈Z
‖f1(h2P )vk‖2Lp(R,Lq)

)1/2

≤ Ch−κp,q
( ∑
k∈Z\0

‖ 〈x〉−1
f(h2P )e−ith

−1(h|∇g|)σψ‖2L2(Ik,L2) + ‖f(h2P )ψ‖2L2

)1/2

≤ Ch−κp,q
(
‖ 〈x〉−1

f(h2P )e−ith
−1(h|∇g|)σψ‖L2(R,L2) + ‖f(h2P )ψ‖L2

)
≤ Ch−κp,q‖f(h2P )ψ‖L2 ,

the last inequality comes from Proposition 4.1.12 with N0 = 1. By using (4.3.6), we obtain

‖ 〈x〉−1
f(h2P )e−ith

−1(h|∇g|)σψ‖Lp(R,Lq) ≤ Ch−κp,q‖f(h2P )ψ‖L2 .

This implies that for all χ ∈ C∞0 (Rd),∥∥∥χf(h2P )e−ith
−1(h|∇g|)σψ

∥∥∥
Lp(R,Lq)

≤ Ch−κp,q‖f(h2P )ψ‖L2 .

Therefore, by scaling in time, we get∥∥∥χf(h2P )e−it|∇g|
σ

ψ
∥∥∥
Lp(R,Lq)

≤ Ch−γp,q‖f(h2P )ψ‖L2 .

The proof of (4.2.19) is now complete. �

4.4 Strichartz estimates outside compact sets
4.4.1 The Isozaki-Kitada parametrix
Notations and the Hamilton-Jacobi equations. For any J b (0,+∞) an open interval,
any R > 0, any τ ∈ (−1, 1), we define the outgoing region Γ+(R, J, τ) and the incoming region
Γ−(R, J, τ) by

Γ±(R, J, τ) :=
{

(x, ξ) ∈ R2d, |x| > R, |ξ|2 ∈ J,± x · ξ
|x‖ξ|

> τ
}
.
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Let σ ∈ (0,∞)1. We will use the so called Isozaki-Kitada parametrix to give an approximation
at high frequency of the form

e−ith
−1ω(h2P )Oph(χ±) = J±h (a±(h))e−ith

−1(hΛ)σJ±h (b±(h))? +R±N (h), (4.4.1)

with Λ =
√
−∆ where ∆ is the free Laplacian operator on Rd and ω(·) = f̃(·)

√
·σ ∈ C∞0 (R\{0})

for some f̃ ∈ C∞0 (R\{0}) satisfying f̃ = 1 near supp(f). The functions χ± are supported in
Γ±(R4, J4, τ4) (see Proposition 4.4.6 for the choice of J4 and τ4) and

J±h (a±(h)) =
N−1∑
j=1

hjJ±h (a±j ),

where

J±h (a±)u(x) = (2πh)−d
∫∫

R2d
eih
−1(S±R (x,ξ)−y·ξ)a±(x, ξ)u(y)dydξ, u ∈ S (Rd).

The amplitude functions a±j are supported in Γ±(R, J1, τ1) (see Proposition 4.4.1) and the phase
functions S±R := S±1,R will be described later. The same notation for J±h (b±(h)) is used with b±k in
place of a±j .

The Isozaki-Kitada parametrix at low frequency is of the form

e−itεω(ε−2P )Opε(χ±ε )ζ(εx) = J±ε (a±ε )e−itεΛ
σ

J±ε (b±ε )? +R±N (t, ε), (4.4.2)

where ω is as above and ζ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1 near infinity. The
functions χ±ε are supported in Γ±(R4, J4, τ4) and

J±ε (a±ε ) =
N∑
j=1
J±ε (a±ε,j),

where

J±ε (a) := DεJ
±
ε (a), J±ε (b)? := J±ε (b)?D−1

ε , (4.4.3)

with Dε as in (4.1.4),

J±ε (a)u(x) := (2π)−d
∫∫

R2d
ei(S

±
ε,R

(x,ξ)−y·ξ)a(x, ξ)u(y)dydξ,

and
J±ε (b)?u(x) = (2π)−d

∫∫
R2d

ei(x·ξ−S
±
ε,R

(y,ξ))b(y, ξ)u(y)dydξ.

The amplitude functions a±ε,j are supported in Γ±(R, J1, τ1) and the phase functions S±ε,R will be
described in the next proposition. The same notation for J±ε (b±ε ) will be used with b±ε in place of
a±ε .
Proposition 4.4.1. Fix J1 b (0,+∞) and τ1 ∈ (−1, 1). Then there exist two families of smooth
functions (S±ε,R)R�1 satisfying the following Hamilton-Jacobi equation

pε(x,∇xS±ε,R(x, ξ)) = |ξ|2, (4.4.4)

for all (x, ξ) ∈ Γ±(R, J1, τ1), where pε is given in (4.1.5). Moreover, for all α, β ∈ Nd, there exists

1The construction of the Isozaki-Kitada parametrix we present here works well for the half-wave equation, i.e.
σ = 1.

79



4.4. Strichartz estimates outside compact sets

Cαβ > 0 such that∣∣∣∂αx ∂βξ (S±ε,R(x, ξ)− x · ξ
)∣∣∣ ≤ Cαβ min

{
R1−ρ−|α|, 〈x〉1−ρ−|α|

}
, (4.4.5)

for all x, ξ ∈ Rd, all ε ∈ (0, 1] and R� 1.
Remark 4.4.2. From (4.4.5), we see that for R > 0 large enough, the phase functions satisfy for
all x, ξ ∈ Rd and all ε ∈ (0, 1], ∥∥∥∇x · ∇ξS±ε,R(x, ξ)− IdRd

∥∥∥ ≤ 1
2 , (4.4.6)

and for all |α| ≥ 1 and all |β| ≥ 1,

|∂αx ∂
β
ξ S
±
ε,R(x, ξ)| ≤ Cαβ . (4.4.7)

The estimates (4.4.6) and (4.4.7) are useful in the construction of Isozaki-Kitada parametrix as
well as the L2-boundedness of Fourier integral operators.
Proof of Proposition 4.4.1. We firstly note that the case ε = 1 is given in [BT07, Proposition
3.1]. Let J1 b J0 b (0,+∞) and −1 < τ0 < τ1 < 1. By using Remark 4.1.4, in the region
Γ±(R/2, J0, τ0) which implies that |x| > 1, we see that the function pε(x, ξ) satisfies for all α, β ∈
Nd, there exists Cαβ > 0 such that for all (x, ξ) ∈ Γ±(R/2, J0, τ0) and all ε ∈ (0, 1],

|∂αx ∂
β
ξ pε(x, ξ)| ≤ Cαβ 〈ξ〉

2−|β|
.

Thanks to this uniform bound, by using the argument given in [Rob94, Proposition 4.1], we can
solve (for R > 0 large enough) the Hamilton-Jacobi equation (4.4.4) in Γ±(R/2, J0, τ0) uniformly
with respect to ε ∈ (0, 1]. We denote such solutions by S̃±ε . Next, by choosing a special cutoff
(see [BT07], see also (4.4.9)) χ±R ∈ S(0,−∞) such that χ±R(x, ξ) = 1 for (x, ξ) ∈ Γ±(R, J1, τ1) and
supp(χ±R) ⊂ Γ±(R/2, J0, τ0), then the functions

S±ε,R(x, ξ) = χ±R(x, ξ)S̃±ε (x, ξ) + (1− χ±R)(x, ξ) 〈x, ξ〉

satisfy the properties of Proposition 4.4.1, where 〈x, ξ〉 = x · ξ. �

Construction of the parametrix. Let us firstly consider the high frequency case (4.4.1).
The construction in the low frequeny case (4.4.2) is similar up to some modifications (see after
Theorem 4.4.8). We only treat the outgoing case (+), the incoming one is similar. We start with
the following Duhamel formula

e−ith
−1ω(h2P )J+

h (a+(h)) = J+
h (a+(h))e−ith

−1(hΛ)σ

− ih−1
∫ t

0
e−i(t−s)h

−1ω(h2P )
(
ω(h2P )J+

h (a+(h))− J+
h (a+(h))(hΛ)σ

)
e−ish

−1(hΛ)σds. (4.4.8)

We want the term ω(h2P )J+
h (a+(h)) − J+

h (a+(h))(hΛ)σ to have a small contribution. To do so,
we firstly introduce a special cutoff. For any J2 b J1 b (0,+∞) and −1 < τ1 < τ2 < 1, we define

χ+
1→2(x, ξ) = κ

(
|x|
R2

)
ρ1→2(|ξ|2)θ1→2

(
+ x · ξ
|x‖ξ|

)
, (4.4.9)

where κ ∈ C∞(R) is non-decreasing such that

κ(t) =
{

1 when t ≥ 1/2
0 when t ≤ 1/4 ,
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and ρ1→2 ∈ C∞(R) is non-decreasing such that ρ1→2 = 1 near J2, supported in J1 and θ1→2 ∈
C∞0 (R) such that

θ1→2(t) =
{

1 when t > τ2 − ε
0 when t < τ1 + ε

,

with ε ∈ (0, τ2 − τ1). We see that χ+
1→2 ∈ S(0,−∞) and for R� 1,

supp(χ+
1→2) ⊂ Γ+(R, J1, τ1), χ+

1→2 = 1 near Γ+(R2, J2, τ2).

Proposition 4.4.3. Let S+
R := S+

1,R be the solution of (4.4.4) given as in Proposition 4.4.1. Let
J2 be an arbitrary open interval such that J2 b J1 b (0,+∞) and τ2 be an arbitrary real number
such that −1 < τ1 < τ2 < 1. Then for R > 0 large enough, we can find a sequence of symbols
a+
j ∈ S(−j,−∞) supported in Γ+(R, J1, τ1) such that for all N ≥ 1,

ω(h2P )J+
h (a+(h))− J+

h (a+(h))(hΛ)σ = hNRN (h)J+
h (a+(h)) + hNJ+

h (r+
N (h)) + J+

h (ǎ+(h)),

(4.4.10)
sup

Γ+(R,J1,τ1)
|a+

0 (x, ξ)| & 1, (4.4.11)

where a+(h) =
∑N−1
j=0 hja+

j and (r+
N (h))h∈(0,1] is bounded in S(−N,−∞), RN (h) is as in Proposition

4.1.2, (ǎ+(h))h∈(0,1] is bounded in S(0,−∞) and is a finite sum depending on N of the form

ǎ+(h) =
∑
|α|≥1

ǎ+
α (h)∂αxχ+

1→2, (4.4.12)

with (ǎ+
α (h))h∈(0,1] bounded in S(0,−∞) and χ+

1→2 given in (4.4.9).
Proof. We firstly use the parametrix of ω(h2P ) given in Proposition 4.1.2 and get

ω(h2P ) = Oph(q(h)) + hNRN (h), (4.4.13)

where q(h) =
∑N−1
k=0 hkqk and qk ∈ S(−k,−∞), k = 0, ..., N − 1. Note that q0(x, ξ) = ω(p(x, ξ)) =

f̃(p(x, ξ))
√
p(x, ξ)σ and supp(qk) ⊂ supp(ω ◦ p). Up to remainder term, we consider the action of

Oph(q(h)) on J+
h (a+(h)). To do this, we need the following action of a pseudo-differential operator

on a Fourier integral operator (see e.g. [Rob87, Theorem IV-19], [Bouc00, Appendix] or [RS11]).
Proposition 4.4.4. Let a ∈ S(µ1,−∞) and b ∈ S(µ2,−∞) and S satisfy (4.4.6) and (4.4.7).
Then

Oph(a) ◦ Jh(S, b) =
N−1∑
j=0

hjJh(S, (a / b)j) + hNJh(S, rN (h)),

where (a / b)j is a universal linear combination of

∂βξ a(x,∇xS(x, ξ))∂β−αx b(x, ξ)∂α1
x S(x, ξ) · · · ∂αkx S(x, ξ),

with α ≤ β, α1 +· · ·+αk = α and |αl| ≥ 2 for all l = 1, ..., k and |β| = j. The maps (a, b) 7→ (a/b)j
and (a, b) 7→ rN (h) are continuous from S(µ1,−∞) × S(µ2,−∞) to S(µ1 + µ2 − j,−∞) and
S(µ1 + µ2 −N,−∞) respectively. In particular, we have

(a / b)0(x, ξ) = a(x,∇xS(x, ξ))b(x, ξ),

i(a / b)1(x, ξ) = ∇ξa(x,∇xS(x, ξ)) · ∇xb(x, ξ) + 1
2 tr
(
∇2
ξa(x,∇xS(x, ξ)) · ∇2

xS(x, ξ)
)
b(x, ξ).
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Using this result, we have

Oph(q(h))J+
h (a+(h)) =

N−1∑
k+j+l=0

hk+j+lJ+
h ((qk / a+

j )l) + hNJ+
h (r+

N (h)).

On the other hand, we have

J+
h (a+(h))(hΛ)σ = J+

h (a+(h)|ξ|σ).

Thus we get

ω(h2P )J+
h (a+(h))− J+

h (a+(h))(hΛ)σ =
N−1∑
r=0

hrJ+
h

 ∑
k+j+l=r

(qk / a+
j )l − a+

r |ξ|σ


+hNJ+
h (r+

N (h)) + hNRN (h)J+
h (a+(h)).

In order to make the left hand side of (4.4.10) small, we need to find a+
j ∈ S(−j,−∞) supported

in Γ+(R, J1, τ1) such that∑
k+j+l=r

(qk / a+
j )l − a+

r |ξ|σ = 0, r = 0, ..., N − 1.

In particular, (
q0(x,∇xS+

R (x, ξ))− |ξ|σ
)
a+

0 (x, ξ) = 0.

By noting that if p(x, ξ) ∈ supp(f) (see after (4.4.1)), then q0(x, ξ) =
√
p(x, ξ)σ. Thus in the

region where the Hamilton-Jacobi equation (4.4.4) with ε = 1 is satisfied, we need to show the
following transport equations

(q0 / a
+
0 )1 + (q1 / a

+
0 )0 = 0 (4.4.14)

(q0 / a
+
r )1 + (q1 / a

+
r )0 = −

∑
k+j+l=r+1
j≤r−1

(qk / a+
j )l, r = 1, ..., N − 1. (4.4.15)

Here (q0 / a
+)1 + (q1 / a

+)0 can be written as

i
[
(q0 / a

+)1(x, ξ) + (q1 / a
+)0(x, ξ)

]
=

d∑
j=1

V +
j (x, ξ)∂xja+(x, ξ) + p+

0 (x, ξ)a+(x, ξ),

where

V +
j (x, ξ) = (∂ξjq0)(x,∇xS+

R (x, ξ)),

p+
0 (x, ξ) = iq1(x,∇xS+

R (x, ξ)) + 1
2 tr
[
∇2
ξq0(x,∇xS+

R (x, ξ)) · ∇2
xS

+
R (x, ξ)

]
.

We now consider the flow X+(t, x, ξ) associated to V + = (V +
j )dj=1 as{

Ẋ+(t) = V +(X+(t), ξ),
X+(0) = x.

(4.4.16)

We have the following result (see [Bouc04, Proposition 3.2] or [Bouc00, Appendix]).
Proposition 4.4.5. Let σ ∈ (0,∞), J1 b (0,+∞) and −1 < τ1 < 1. There exists R > 0 large
enough and e1 > 0 small enough such that for all (x, ξ) ∈ Γ+(R, J1, τ1), the solution X+(t, x, ξ)
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to (4.4.16) is defined for all t ≥ 0 and satisfies

|X+(t, x, ξ)| ≥ e1(t+ |x|), (4.4.17)
(X+(t, x, ξ), ξ) ∈ Γ+(R, J1, τ1). (4.4.18)

Moreover, for all α, β ∈ Nd, there exists Cαβ > 0 such that for all t ≥ 0 and all h ∈ (0, 1],

|∂αx ∂
β
ξ (X+(t, x, ξ)− x− σtξ|ξ|σ−2)| ≤ Cαβ 〈t〉 〈x〉−ρ−|α| , (4.4.19)

for all (x, ξ) ∈ Γ+(R, J1, τ1).
Now, we can define for (x, ξ) ∈ Γ+(R, J1, τ1) the functions

A+
0 (x, ξ) = exp

(∫ +∞

0
p+

0 (X+(t, x, ξ), ξ)dt
)
,

A+
r (x, ξ) =

∫ +∞

0
p+
r (X+(t, x, ξ), ξ) exp

(∫ t

0
p+

0 (X+(s, x, ξ), ξ)ds
)
dt,

for r = 1, ..., N − 1, where

p+
r (x, ξ) = i

∑
k+j+l=r+1
j≤r−1

(qk / A+
j )l(x, ξ).

Using (4.4.17) and the fact that p+
r ∈ S(−1 − ρ − r,−∞) for r = 0, ..., N − 1, we see that

p+
r (X+(t, x, ξ)) are integrable with respect to t. Hence A+

r (x, ξ) are well-defined. Moreover, we
have (see e.g. [Bouc04, Proposition 3.1]) that for all (x, ξ) ∈ Γ+(R, J1, τ1),

|∂αx ∂
β
ξ (A+

0 (x, ξ)− 1)| ≤ Cαβ 〈x〉−|α| , (4.4.20)

|∂αx ∂
β
ξ A

+
r (x, ξ)| ≤ Cαβ 〈x〉−r−|α| .

We also have thatA+
0 , A

+
r for r = 1, ..., N−1 solve (4.4.14) and (4.4.15) respectively in Γ+(R, J1, τ1).

Now, by setting a+
r = χ+

1→2A
+
r (see (4.4.9)), we see that a+

r are globally defined on R2d and
a+
r ∈ S(−r,−∞). It is easy to see (4.4.11) from (4.4.20). We next insert a+(h) =

∑N−1
j=1 hja+

j

into the left hand side of (4.4.10) and get

ω(h2P )J+
h (a+(h))− J+

h (a+(h))(hΛ)σ =
N−1∑
r=0

hrJ+
h

 ∑
k+j+l=r

(qk / χ+
1→2A

+
j )l − χ+

1→2A
+
r |ξ|σ


+hNJ+

h (r+
N (h)) + hNRN (h)J+

h (a+(h)).

Using the expression of (a / b)l given in Proposition 2.2.3, we see that

(qk / χ+
1→2A

+
j )l = χ+

1→2(qk / A+
j )l + terms in which derivatives fall into χ+

1→2.

This gives (4.4.10) with ǎ+(h) as in (4.4.12). The proof is complete.
We now are able to construct the symbols b+k , for k = 0, ..., N − 1.

Proposition 4.4.6. Let J3, J4 and τ3, τ4 be such that J4 b J3 b J2 and −1 < τ2 < τ3 < τ4 < 1.
Then for R > 0 large enough and all χ+ supported in Γ+(R4, J4, τ4), there exists a sequence of
symbols b+k ∈ S(−k,−∞), for k = 0, ..., N − 1, supported in Γ+(R3, J3, τ3) such that

J+
h (a+(h))J+

h (b+(h))? = Oph(χ+) + hNOph(r̃+
N (h)), (4.4.21)

where a+(h) =
∑N−1
j=0 hja+

j is given in Proposition 4.4.3 and b+(h) =
∑N−1
k=0 hkb+k and (r̃+

N (h))h∈(0,1]
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is bounded in S(−N,−∞).
Before giving the proof, we need the following result (see [Bouc00, Appendix] or [Bouc04,

Lemma 3.3]).
Lemma 4.4.7. Let S+

R := S+
1,R be as in Proposition 4.4.1. For x, y, ξ ∈ Rd, we define

η+(R, x, y, ξ) :=
∫ 1

0
∇xS+

R (y + λ(x− y), ξ)dλ. (4.4.22)

Then for R > 0 large enough, we have the following properties.
i. For all x, y ∈ Rd, the map ξ 7→ η+(R, x, y, ξ) is a diffeomorphism from Rd onto itself. Let
η 7→ ξ+(R, x, y, η) be its inverse.

ii. There exists C > 1 such that for all x, y, η ∈ Rd,

C−1 〈η〉 ≤
〈
ξ+(R, x, y, η)

〉
≤ C 〈η〉 .

iii. For all α, α′, β ∈ Nd, there exists Cαα′β > 0 such that for all x, y, η ∈ Rd and all k ≤
|α|, k′ ≤ |α′|,

|∂αx ∂α
′

y ∂
β
η

(
ξ+(R, x, y, η)− η

)
| ≤ Cαα′β 〈x〉−k 〈y〉−ρ−k

′
〈x− y〉ρ+k+k′

.

Proof of Proposition 4.4.6. We firstly consider the general term J+
h (a+)J+

h (b+)? and write its
kernel as

K+
h (x, y) = (2πh)−d

∫
Rd
eih
−1(S+

R
(x,ξ)−S+

R
(y,ξ))a+(x, ξ)b+(y, ξ)dξ.

By Taylor’s formula, we have

S+
R (x, ξ)− S+

R (y, ξ) =
〈
x− y, η+(R, x, y, ξ)

〉
,

where η+ given in (4.4.22). By change of variable ξ 7→ ξ+(R, x, y, η), the kernel becomes

K+
h (x, y) = (2πh)−d

∫
Rd
eih
−1(x−y)·ηa+(x, ξ+(R, x, y, η))b+(y, ξ+(R, x, y, η))|det ∂ηξ+(R, x, y, η)|dη.

Now, using Lemma (4.4.7), the symbolic calculus gives

J+
h (a+)J+

h (b+)? =
N−1∑
l=0

hlOph((a+ . b+)l) + hNOph(r̃+
N (h)),

where (a+ . b+)l ∈ S(−l,−∞) is of the form

(a+ . b+)l(x, η) =
∑
|α|=l

∂αyD
α
η c

+(x, y, η)
∣∣
y=x

α! ,

for l = 0, ..., N − 1 with

c+(x, y, η) = a+(x, ξ+(R, x, y, η))b+(y, ξ+(R, x, y, η))|det ∂ηξ+(R, x, y, η)|,

and (r̃+
N (h))h∈(0,1] is bounded in S(−N,−∞). We have now

J+
h (a+(h))J+

h (b+(h))? =
∑
j,k

hj+kJ+
h (a+

j )J+
h (b+k )?

=
N−1∑

j+k+l=0
hj+k+lOph((a+

j / b
+
k )l) + hNOph(r̃+

N (h)).
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Compare with (4.4.21), the result follows if we solve the following equations:

(a+
0 / b+0 )0 = χ+,

(a+
0 / b+r )0 = −

∑
j+k+l=r
k≤r−1

(a+
j / b

+
k )l, r = 1, ..., N − 1.

We can define b+0 , ..., b
+
N−1 iteratively by

b+0 (x, ξ) = χ+(x, η+(R, x, x, ξ))
(
a+

0 (x, ξ)
∣∣det ∂ηξ+(R, x, x, η+(R, x, x, ξ))

∣∣ )−1
,

b+r (x, ξ) = −
∑

j+k+l=r
k≤r−1

(a+
j / b

+
k )l(x, η+(R, x, x, ξ))

(
a+

0 (x, ξ)
∣∣det ∂ηξ(R, x, x, η+(R, x, x, ξ))

∣∣ )−1
,

for r = 1, ..., N − 1. Note that by (4.4.11) and Lemma 4.4.7, the term in (· · · )−1 cannot vanish
on the support of χ+(·, η+(R, ·, ·, ·)). Thus the above functions are well-defined. Moreover, by
choosing R > 0 large enough with the fact

η+(R, x, x, ξ) = ∇xS+
R (x, ξ) = ξ +O(min{R−ρ, 〈x〉−ρ}),

we see that the support of χ+(x, η+(R, x, x, ξ)) is contained in Γ+(R3, J3, τ3). This completes the
proof of Proposition 4.4.6. �

By (4.4.8), Proposition 4.4.3 and Proposition 4.4.6, we are able to state the Isozaki-Kitada
parametrix for the Schrödinger-type equation at high frequency.
Theorem 4.4.8. Let σ ∈ (0,∞). Fix J4 b (0,+∞) open interval containing supp(f) and −1 <
τ4 < 1. Choose arbitrary open intervals J1, J2, J3 such that J4 b J3 b J2 b J1 b (0,+∞) and
arbitrary τ1, τ2, τ3 such that −1 < τ1 < τ2 < τ3 < τ4 < 1. Then for R > 0 large enough, we can
find sequences of symbols

a±j ∈ S(−j,−∞), supp(a±j ) ⊂ Γ±(R, J1, τ1),

such that for all
χ± ∈ S(0,−∞), supp(χ±) ⊂ Γ±(R4, J4, τ4),

there exist sequences of symbols

b±k ∈ S(−k,−∞), supp(b±k ) ⊂ Γ±(R3, J3, τ3),

such that for all N ≥ 1, for all h ∈ (0, 1] and all ±t ≥ 0,

e−ith
−1ω(h2P )Oph(χ±) = J±h (a±(h))e−ith

−1(hΛ)σJ±h (b±(h))? +R±N (t, h),

where the phase functions S±R := S±1,R are as in Proposition 4.4.1 and the remainder terms

R±N (t, h) = R±1 (N, t, h) +R±2 (N, t, h) +R±3 (N, t, h) +R±4 (N, t, h),
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with

R±1 (N, t, h) = −hN−1e−ith
−1ω(h2P )Oph(r̃±N (h)),

R±2 (N, t, h) = −ihN−1
∫ t

0
e−i(t−s)h

−1ω(h2P )RN (h)J±h (a±(h))e−ish
−1(hΛ)σJ±h (b±(h))?ds,

R±3 (N, t, h) = −ihN−1
∫ t

0
e−i(t−s)h

−1ω(h2P )J±h (r±N (h))e−ish
−1(hΛ)σJ±h (b±(h))?ds,

R±4 (N, t, h) = −ih−1
∫ t

0
e−i(t−s)h

−1ω(h2P )J±h (ǎ±(h))e−ish
−1(hΛ)σJ±h (b±(h))?ds.

Here (r̃±N (h))h∈(0,1], (r±N (h))h∈(0,1] are bounded in S(−N,−∞), RN (h) is as in (4.4.13), (ǎ±(h))h∈(0,1]
are bounded in S(0,−∞) and are finite sums depending on N of the form

ǎ±(h) =
∑
|α|≥1

ǎ±α (h)∂αxχ±1→2, (4.4.23)

where (ǎ±α (h))h∈(0,1] are bounded in S(0,−∞) and χ±1→2 are given in (4.4.9).
We now give the main steps for the construction of the Isozaki-Kitada parametrix at low

frequency. For simplicity, we omit the ± sign. Let us start with the following Duhamel formula

e−itεω(ε−2P )Jε(aε) = Jε(aε)e−itεΛ
σ

− iε
∫ t

0
e−i(t−s)εω(ε−2P )

(
ω(ε−2P )Jε(aε)−Jε(aε)Λσ

)
e−isεΛ

σ

ds.

Thanks to the support of aε, we can write

ω(ε−2P )Jε(aε) = ω(ε−2P )ζ1(εx)Jε(aε),

where ζ1 ∈ C∞(Rd) is supported outside B(0, 1) and satisfies ζ1(x) = 1 for |x| > R. Using the
parametrix of ω(ε−2P )ζ1(εx) given in Proposition 4.1.7 (by taking the adjoint), we have

ω(ε−2P )ζ1(εx) =
N−1∑
k=0

ζ̃1(εx)Opε(qε,k)ζ1(εx) +RN (ε),

where qε,0(x, ξ) = ω(pε(x, ξ)) = f̃(pε(x, ξ))
√
pε(x, ξ)

σ, supp(qε,k) ⊂ supp(ω◦pε) and (RN (ε))ε∈(0,1]
satisfies (4.1.8). Here ζ̃1 ∈ C∞(Rd) is supported outside B(0, 1) and ζ̃1 = 1 near supp(ζ1). We
want to find aε =

∑N−1
j=0 aε,j so that the term ω(ε−2P )Jε(aε)−Jε(aε)Λσ has a small contribution.

By the choice of cutoff functions and the action of pseudo-differential operators on Fourier integral
operators given in Proposition 2.2.3 with h = 1, we have

ω(ε−2P )Jε(aε)− Jε(aε)Λσ =
N−1∑
r=0

 ∑
k+j+l=r

Jε((qε,k / aε,j)l)− Jε(aε,r|ξ|σ)


+RN (ε)Jε(aε) + Jε(rN (ε)), (4.4.24)

where (rN (ε))ε∈(0,1] is bounded in S(−N,−∞). This implies that we need to find (aε,j)ε∈(0,1]
bounded in S(−j,−∞) supported in Γ(R, J1, τ1) such that∑

k+j+l=r
(qε,k / aε,j)l − aε,r|ξ|σ = 0, r = 0, ..., N − 1.

By noting that if pε(x, ξ) ∈ supp(f), then qε,0(x, ξ) =
√
pε(x, ξ)

σ. This leads to the following

86



Chapter 4. Strichartz estimates on asymptotically Euclidean manifolds

Hamilton-Jacobi and transport equations,

pε(x,∇xSε,R(x, ξ)) = |ξ|2, (4.4.25)
(qε,0 / aε,0)1 + (qε,1 / aε,0)0 = 0 (4.4.26)

(qε,0 / aε,r)1 + (qε,1 / aε,r)0 = −
∑

k+j+l=r+1
j≤r−1

(qε,k / aε,j)l, r = 1, ..., N − 1. (4.4.27)

We can solve (4.4.25) on Γ±(R, J1, τ1) using Proposition 4.4.1. We then solve (4.4.26), (4.4.27) on
Γ±(R, J1, τ1) and extend solutions globally on R2d. We obtain

ω(ε−2P )Jε(aε)− Jε(aε)Λσ = RN (ε)Jε(aε) + Jε(rN (ε)) + Jε(ǎ(ε)),

where (ǎ(ε))ε∈(0,1] is bounded in S(0,−∞) and is a finite sum depending on N of the form

ǎ(ε) =
∑
|α|≥1

ǎα(ε)∂αxχ1→2,

with (ǎα(ε))ε∈(0,1] bounded in S(0,−∞) and χ1→2 as in (4.4.9).
Next, we can find bounded families of symbols bε,k ∈ S(−k,−∞) for k = 0, ..., N−1 supported

in Γ(R3, J3, τ3) such that

Jε(aε)Jε(bε)? = Opε(χε)ζ(εx) +Opε(r̃N (ε))ζ(εx),

where bε =
∑N−1
k=0 bε,k and (r̃N (ε))ε∈(0,1] is bounded in S(−N,−∞). This is possible by writing for

R large enough Jε(bε) = ζ(εx)Jε(bε) and taking the adjoint. We have the following Isozaki-Kitata
parametrix for the Schrödinger-type equation at low frequency.
Theorem 4.4.9. Let σ ∈ (0,∞), ζ ∈ C∞(Rd) be supported outside B(0, 1) and equal to 1 near
infinity. Fix J4 b (0,+∞) open interval containing supp(f) and −1 < τ4 < 1. Choose arbitrary
open intervals J1, J2, J3 such that J4 b J3 b J2 b J1 b (0,+∞) and arbitrary τ1, τ2, τ3 such that
−1 < τ1 < τ2 < τ3 < τ4 < 1. Then for R > 0 large enough, we can find bounded families of
symbols

(a±ε,j)ε∈(0,1] ∈ S(−j,−∞), supp(a±ε,j) ⊂ Γ±(R, J1, τ1),

such that for all
(χ±ε )ε∈(0,1] ∈ S(0,−∞), supp(χ±ε ) ⊂ Γ±(R4, J4, τ4),

there exists families of symbols

(b±ε,k)ε∈(0,1] ∈ S(−k,−∞), supp(b±ε,k) ⊂ Γ±(R3, J3, τ3),

such that for all N ≥ 1, for all ε ∈ (0, 1] and all ±t ≥ 0,

e−itεω(ε−2P )Opε(χ±ε )ζ(εx) = J±ε (a±ε )e−itεΛ
σ

J±ε (b±ε )? +R±N (t, ε),

where the phase functions S±ε,R are given in Proposition 4.4.1 and the remainder terms

R±N (t, ε) = R±1 (N, t, ε) +R±2 (N, t, ε) +R±3 (N, t, ε) +R±4 (N, t, ε),
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with

R±1 (N, t, ε) = −e−itεω(ε−2P )Opε(r̃±N (ε))ζ(εx),

R±2 (N, t, ε) = −iε
∫ t

0
e−i(t−s)εω(ε−2P )RN (ε)J±ε (a±ε )e−isεΛ

σ

J±ε (b±ε )?ds,

R±3 (N, t, ε) = −iε
∫ t

0
e−i(t−s)εω(ε−2P )J±ε (r±N (ε))e−isεΛ

σ

J±ε (b±ε )?ds,

R±4 (N, t, ε) = −iε
∫ t

0
e−i(t−s)εω(ε−2P )J±ε (ǎ±(ε))e−isεΛ

σ

J±ε (b±ε )?ds.

Here (r̃±N (ε))ε∈(0,1], (r±N (ε))ε∈(0,1] are bounded in S(−N,−∞), (RN (ε))ε∈(0,1] is given in Propo-
sition 4.1.7, (ǎ±(ε))ε∈(0,1] are bounded in S(0,−∞) and are finite sums depending on N of the
form

ǎ±(ε) =
∑
|α|≥1

ǎ±α (ε)∂αxχ±1→2,

where (ǎ±α (ε))ε∈(0,1] are bounded in S(0,−∞) and χ±1→2 are as in (4.4.9).
We have the following dispersive estimates for the main terms of the Isozaki-Kitada parametrix

both at high and low frequencies.
Proposition 4.4.10. Let σ ∈ (0,∞)\{1}, S±ε,R be as in Proposition 4.4.1 and (a±ε )ε∈(0,1], (b±ε )ε∈(0,1]
be bounded in S(0,−∞) compactly supported in ξ away from zero.

1. Then for R > 0 large enough, there exists C > 0 such that for all t ∈ R and all h ∈ (0, 1],

‖J±h (a±)e−ith
−1(hΛ)σJ±h (b±)?‖L1→L∞ ≤ Ch−d(1 + |t|h−1)−d/2, (4.4.28)

where a± := a±ε=1, b
± := b±ε=1.

2. Then for R > 0 large enough, there exists C > 0 such that for all t ∈ R and all ε ∈ (0, 1],

‖J±ε (a±ε )e−itεΛ
σ

J±ε (b±ε )?‖L1→L∞ ≤ Cεd(1 + ε|t|)−d/2. (4.4.29)

Proof. 1. For simplicity, we drop the superscript ±. The kernel of Jh(a)e−ith−1(hΛ)σJh(b)? reads

Kh(t, x, y) = (2πh)−d
∫
Rd
eih
−1(SR(x,ξ)−SR(y,ξ)−t|ξ|σ)a(x, ξ)b(y, ξ)dξ.

The estimates (4.4.28) are in turn equivalent to

|Kh(t, x, y)| ≤ Ch−d(1 + |t|h−1)−d/2, (4.4.30)

for all t ∈ R, h ∈ (0, 1] and x, y ∈ Rd. We only consider t ≥ 0, the case t ≤ 0 is similar. Let us
denote the compact support of the amplitude by K. Since a, b are bounded uniformly in x, y ∈ Rd,
we have

|Kh(t, x, y)| ≤ Ch−d,

for all t ∈ R and all x, y ∈ Rd. If 0 ≤ t ≤ h or 1 + th−1 ≤ 2, then

|Kh(t, x, y)| ≤ Ch−d ≤ Ch−d(1 + th−1)−d/2.

So, we can assume that t ≥ h or (1 + th−1) ≤ 2th−1 and denote the phase function

Φ(R, t, x, y, ξ) = (SR(x, ξ)− SR(y, ξ))/t− |ξ|σ,

and parameter λ = th−1 ≥ 1. We can rewrite

Φ(R, t, x, y, ξ) = 〈(x− y)/t, η(R, x, y, ξ)〉 − |ξ|σ,
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where
η(R, x, y, ξ) =

∫ 1

0
∇xSR(y + λ(x− y), ξ)dλ.

Using the properties of the phase functions SR given in (4.4.5), we have that

η(R, x, y, ξ) = ξ +Q(R, x, y, ξ),

where Q(R, x, y, ξ) is a vector in Rd satisfying for R > 0 large enough,

|∂βξQ(R, x, y, ξ)| ≤ CβR−ρ, (4.4.31)

for all x, y ∈ Rd and ξ ∈ K. We have

∇ξΦ(R, t, x, y, ξ) = x− y
t
· (IdRd +∇ξQ(R, x, y, ξ))− σξ|ξ|σ−2.

If |(x − y)/t| ≥ C for some constant C > 0 large enough then for R > 0 large enough, there
exists C1 > 0,

|∇ξΦ(R, t, x, y, ξ)| ≥ 1
2

∣∣∣x− y
t

∣∣∣ ≥ C1.

Thus the phase is non-stationary. By using integration by parts with respect to ξ together with
the fact

|∂βξ Φ(R, t, x, y, ξ)| ≤ Cβ
∣∣∣x− y

t

∣∣∣, |β| ≥ 2,

we have that for all N ≥ 1,

|Kh(t, x, y)| ≤ Ch−d(th−1)−N ≤ Ch−d(1 + th−1)−d/2,

provided N is taken bigger than d/2. The same result still holds for |(x− y)/t| ≤ c for some c > 0
small enough.

Therefore, we can assume that c ≤ |x− y/t| ≤ C. In this case, we write

∇2
ξΦ(R, t, x, y, ξ) = x− y

t
· ∇2

ξQ(R, x, y, ξ)− σ|η|σ−2
(
IdRd + (σ − 2)η · η

T

|η|2
)
.

Using the fact that σ ∈ (0,∞)\{1} and∣∣∣detσ|η|σ−2
(
IdRd + (σ − 2)η · η

T

|η|2
)∣∣∣ = σd|σ − 1‖η|(σ−2)d ≥ C

and (4.4.31), we see that for R > 0 large enough, the map ξ 7→ ∇ξΦ(R, t, x, y, ξ) is a local
diffeomorphism from a neighborhood of K to its range. Moreover, for all β ∈ Nd satisfying |β| ≥ 1,
we have |∂βξ Φ(R, t, x, y, ξ)| ≤ Cβ . The stationary phase theorem then implies that for R > 0 large
enough, all t ≥ h and all x, y ∈ Rd satisfying c ≤ |(x− y)/t| ≤ C,

|Kh(t, x, y)| ≤ Ch−dλ−d/2 ≤ Ch−d(1 + th−1)−d/2.

This gives (4.4.30).
2. We are now in position to show (4.4.29). As above, we drop the superscript ± for simplicity.
We see that up to a conjugation by Dε, the kernel of Jε(aε)e−itεΛ

σJε(bε)? reads

Kε(t, x, y) = (2π)−d
∫
Rd
ei(Sε,R(x,ξ)−tε|ξ|σ−Sε,R(y,ξ))aε(x, ξ)bε(y, ξ)dξ.
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The dispersive estimates (4.4.29) follow from

|Kε(t, x, y)| ≤ C(1 + ε|t|)−d/2, (4.4.32)

for all t ∈ R uniformly in x, y ∈ Rd, ε ∈ (0, 1] and the fact that

‖Dε‖L∞→L∞ = εd/2, ‖D−1
ε ‖L1→L1 = εd/2.

The estimates (4.4.32) are proved by repeating the same line as above. The proof is complete.

Micro-local propagation estimates. In this paragraph, we will prove some propagation es-
timates which are useful for our purpose. To do this, we need the following result (see [BT08,
Lemma 4.1]).
Lemma 4.4.11. Let τ+, τ− ∈ (−1, 1).

1. For all x, y, ξ ∈ Rd\{0} satisfying ±x · ξ/|x‖ξ| > τ± and ±t ≥ 0, we have

± (x+ tξ) · ξ
|x+ tξ||ξ|

> τ± and |x+ tξ| ≥ c±(|x|+ |tξ|), (4.4.33)

where c± =
√

1 + τ±/
√

2.
2. If τ−+τ+ > 0, then there exists c = c(τ−, τ+) > 0 such that for all x, y, ξ ∈ Rd\{0} satisfying

+x · ξ/|x‖ξ| > τ+ and −y · ξ/|y‖ξ| > τ−, we have

|x− y| ≥ c(|x|+ |y|). (4.4.34)

We start with the following estimates.
Lemma 4.4.12. Let σ ∈ (0,∞) and χ ∈ C∞0 (Rd) satisfying χ(x) = 1 for |x| ≤ 1.

1. Using the notations given in Theorem 4.4.8, if R > 0 is large enough, then for all m ≥ 0,
there exists C > 0 such that for all ±s ≥ 0 and all h ∈ (0, 1],

‖χ
(
x/R2) J±h (ǎ±(h))e−ish

−1(hΛ)σJ±h (b±(h))? 〈x〉m ‖H−m→Hm ≤ Chm 〈s〉
−m

. (4.4.35)

Moreover,

‖ 〈x〉m (1− χ)
(
x/R2) J±h (ǎ±(h))e−ish

−1(hΛ)σJ±h (b±(h))? 〈x〉m ‖H−m→Hm ≤ Chm 〈s〉
−m

.
(4.4.36)

In particular

‖ 〈x〉m J±h (ǎ±(h))e−ish
−1(hΛ)σJ±h (b±(h))? 〈x〉m ‖H−m→Hm ≤ Chm 〈s〉

−m
. (4.4.37)

2. Using the notations given in Theorem 4.4.9, if R > 0 is large enough, then for all m ≥ 0,
there exists C > 0 such that for all ±s ≥ 0 and all ε ∈ (0, 1],

‖χ(εx/R2)J±ε (ǎ±(ε))e−isεΛ
σ

J±ε (b±ε )? 〈εx〉m ‖L2→L2 ≤ C 〈εs〉−m . (4.4.38)

Moreover,

‖ 〈εx〉m (1− χ)(εx/R2)J±ε (ǎ±(ε))e−isεΛ
σ

J±ε (b±ε )? 〈εx〉m ‖L2→L2 ≤ C 〈εs〉−m . (4.4.39)

In particular

‖ 〈εx〉m J±ε (ǎ±(ε))e−isεΛ
σ

J±ε (b±ε )? 〈εx〉m ‖L2→L2 ≤ C 〈εs〉−m . (4.4.40)
Proof. 1. We firstly consider the high frequency case. The proof in this case is essentially given
in [BT08]. For reader’s convenience, we will give a sketch of the proof. The kernel of the operator
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in the left hand side of (4.4.35) reads

K±h (s, x, y) = (2πh)−dχ(x/R2)
∫
Rd
eih
−1Φ±(R,s,x,y,ξ)ǎ±(h, x, ξ)b±(h, y, ξ)dξ 〈y〉m ,

where the phase Φ±(R, s, x, y, ξ) = S±R (x, ξ)− s|ξ|σ − S±R (y, ξ). Using (4.4.5), we have

|∇ξΦ±(R, s, x, y, ξ)| = |x− σsξ|ξ|σ−2 − y +O(1)| ≥ |σsξ|ξ|σ−2 + y| − |x|+O(1),

where |x| ≤ CR2 and (y, ξ) ∈ Γ±(R3, J3, τ3). We then apply (4.4.33) with ±y · ξ/|y‖ξ| > τ3 and
±t = ±σs|ξ|σ−2 ≥ 0 to get

|σsξ|ξ|σ−2 + y| ≥ C(|s|+ |y|), (4.4.41)

for all ±s ≥ 0. We next use |y| > R3 to control |x| . R2 and obtain

|∇ξΦ±(R, s, x, y, ξ)| ≥ C(1 + |s|+ |x|+ |y|),

for all ±s ≥ 0. By integrations by part with respect to ξ with remark that higher derivatives of
∂ξΦ± are controlled by |∇ξΦ±|, we get for all N ≥ 0,∣∣∣∣χ(x/R2)

∫
Rd
eih
−1Φ±(R,s,x,y,ξ)ǎ±(h, x, ξ)b±(h, y, ξ)dξ

∣∣∣∣ ≤ ChN (1 + |s|+ |x|+ |y|)−N .

By choosing N large enough, we can dominate 〈y〉m and get

|K±h (s, x, y)| ≤ ChN (1 + |s|+ |x|+ |y|)−N ,

for allN large enough, therefore for allN ≥ 0. We do the same for higher derivatives ∂αx ∂βyKh(s, x, y)
and the result follows. The kernel of the operator in the left hand side of (4.4.36) reads

K±h (s, x, y) = (2πh)−d 〈x〉m (1− χ)(x/R2)
∫
Rd
eih
−1Φ±(R,s,x,y,ξ)ǎ±(h, x, ξ)b±(h, y, ξ)dξ 〈y〉m .

We use the form of ǎ±(h) given in (4.4.23). In the case derivatives fall on κ(x/R2), we have that
|x| ≤ CR2 and we can proceed as above. Note that we have from (4.4.33) with ±y · ξ/|y‖ξ| > σ3
and ±t = ±σs|ξ|σ−2 ≥ 0 that

± (y + σsξ|ξ|σ−2)ξ
|y + σsξ|ξ|σ−2‖ξ|

> σ3 and |y + σsξ|ξ|σ−2| ≥ c±(|s|+ |y|).

In the case derivatives fall on θ1→2, we have

τ1 + ε ≤ ± x · ξ
|x‖ξ|

≤ τ2 − ε or ∓ x · ξ
|x‖ξ|

≥ −τ2 + ε > −τ2 + ε/2.

By choosing ε > 0 small enough such that τ3 − τ2 + ε/2 > 0, (4.4.34) gives

|y + σsξ|ξ|σ−2 − x| ≥ c
(
|y + σsξ|ξ|σ−2|+ |x|

)
≥ C(|s|+ |x|+ |y|).

Thus |∇ξΦ±| ≥ C(1 + |s|+ |x|+ |y|) for ±s ≥ 0 and (4.4.36) follows as above.
2. The proof for the low frequency case is the same as above up to the conjugation by the unitary
map Dε in L2(Rd). For instance, the kernel of the operator in the left hand side of (4.4.38) reads

K±ε (s, x, y) = (2π)−dχ(x/R2)
∫
Rd
eiΦ
±
ε (R,s,x,y,ξ)ǎ±(ε, x, ξ)b±ε (y, ξ)dξ 〈y〉m ,
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where the phase Φ±ε (R, s, x, y, ξ) = S±ε,R(x, ξ)− εs|ξ|σ − S±ε,R(y, ξ).
Lemma 4.4.13. Let σ ∈ (0,∞).

1. Under the notations of Theorem 4.4.8, for all m ≥ 0 and all N large enough, there exists
C > 0 such that for all ±s ≥ 0 and all h ∈ (0, 1],

‖ 〈x〉N/8 J±h (r±N (h))e−ish
−1(hΛ)σJ±h (b±(h))? 〈x〉N/4 ‖H−m→Hm ≤ Ch−d−2m 〈s〉−N/4 .

(4.4.42)

2. Under the notations of Theorem 4.4.9, for all N large enough, there exists C > 0 such that
for all ±s ≥ 0 and all ε ∈ (0, 1],

‖ 〈εx〉N/8 J±ε (r±N (ε))e−iεsΛ
σ

J±ε (b±ε )? 〈εx〉N/4 ‖L2→L2 ≤ C 〈εs〉−N/4 . (4.4.43)
Proof. We only give the proof for the high frequency case, the low frequency one is similar. The
kernel of the operator in the left hand side of (4.4.42) reads

K±h (s, x, y) = (2πh)−d
∫
Rd
eih
−1Φ±(R,s,x,y,ξ)A±(h, x, y, ξ)dξ,

where the amplitude A±(h, x, y, ξ) = 〈x〉N/8 r±N (h, x, ξ)b±(h, y, ξ) 〈y〉N/4 and is compactly sup-
ported in ξ. We have from Proposition 4.4.1 and (4.4.41) that∇ξΦ±(R, s, x, y, ξ) = x−σsξ|ξ|σ−2−
y +O(1) and |σsξ|ξ|σ−2 + y| ≥ C(|s|+ |y|) for all ±s ≥ 0. By Peetre’s inequality, we see that〈

∇ξΦ±
〉−1 ≤ 〈x〉

〈
y + σsξ|ξ|σ−2〉−1 ≤ C 〈x〉 (〈y〉+ 〈s〉)−1.

We next write
1 = χ(∇ξΦ±) + (1− χ)(∇ξΦ±),

where χ ∈ C∞0 (Rd) with χ = 1 near 0. Then K±h (s, x, y) is split into two terms. For the first term

I1 = (2πh)−d
∫
Rd
eih
−1Φ±(R,s,x,y,ξ)χ(∇ξΦ±)A±(h, x, y, ξ)dξ,

by using the fact that

|χ(∇ξΦ±)| ≤ C
〈
∇ξΦ±

〉−3N/4 ≤ C 〈x〉3N/4 (〈y〉+ 〈s〉)−3N/4

≤ C 〈x〉3N/4 〈y〉−N/2 〈s〉−N/4 , (4.4.44)

and A±(h, x, y, ξ) = O(〈x〉−7N/8 〈y〉N/4), it is bounded by Ch−d 〈x〉−N/8 〈y〉−N/4 〈s〉−N/4. For the
second term

I2 = (2πh)−d
∫
Rd
eih
−1Φ±(R,s,x,y,ξ)(1− χ)(∇ξΦ±)A±(h, x, y, ξ)dξ,

thanks to the support of (1−χ), we can integrate by parts with respect to L := h∇ξΦ±
i|∇ξΦ±|2 ◦∇ξ to get

many negative powers of |∇ξΦ±| as we wish and estimate as in (4.4.44). Combine two terms and
Schur’s lemma, we have (4.4.42) for m = 0. For m ≥ 1, we can do the same with ∂αx ∂βyK±h (s, x, y)
with |α| ≤ m, |β| ≤ m. This completes the proof.

Combining Lemma 4.4.12 and Lemma 4.4.13, we have the following result.
Proposition 4.4.14. 1. Using the notations given in Theorem 4.4.8, for all 0 ≤ m ≤ d + 1

and all N large enough, we can write for k = 2, 3, 4,

R±k (N, t, h) = hN/2
∫ t

0
e−i(t−s)h

−1ω(h2P ) 〈x〉−N/8B±m(N, s, h) 〈x〉−N/4 ds,
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with

‖B±m(N, s, h)‖H−m→Hm ≤ C 〈s〉
−N/4

, (4.4.45)

for all ±s ≥ 0 and h ∈ (0, 1].
2. Using the notations given in Theorem 4.4.9 and for all N large enough, we can write for

k = 2, 3, 4,

R±k (N, t, ε) = ε

∫ t

0
e−i(t−s)εω(ε−2P ) 〈εx〉−N/8 B±N (s, ε) 〈εx〉−N/4 ds,

with

‖B±N (s, ε)‖L2→L2 ≤ C 〈εs〉−N/4 , (4.4.46)

for all ±s ≥ 0 and all ε ∈ (0, 1].
Proof. The cases k = 3, 4 follow immediately from Lemma 4.4.12 and Lemma 4.4.13. It remains
to show the case k = 2. Let us consider the high frequency case. We can write RN (h)E±(h) as

〈x〉−N/8
(
〈x〉N/8RN (h) 〈x〉7N/8

)(
〈x〉N/8 〈x〉−N E±(h) 〈x〉N/4

)
〈x〉−N/4 ,

where E±(h) := J±h (a±(h))e−ish−1(hΛ)σJ±h (b±(h))?. The first bracket is bounded on L2 using
Proposition 4.1.2. The second one is bounded from H−m to Hm using Lemma 4.4.13 with the fact
that 〈x〉−N J±h (a±(h)) = J±h (˜̃r±N (h)) where ˜̃r±N (h) are bounded in S(−N,−∞). The low frequency
case is similar using Proposition 4.1.7.

Next, we have the following micro-local propagation estimates both at high and low frequencies.
Proposition 4.4.15. Let σ ∈ (0,∞), f ∈ C∞0 (R\{0}), J4 b (0,+∞) be an open interval and
−1 < τ4 < 1.

1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose
that (4.0.11) is satisfied. Then for R > 0 large enough and χ± ∈ S(0,−∞) supported in
Γ±(R4, J4, τ4), we have the following estimates.

i. For all m ∈ N and all integer l large enough, there exists C > 0 such that for all ±t ≤ 0
and all h ∈ (0, 1],

‖Oph(χ±)?e−ith
−1(h|∇g|)σf(h2P ) 〈x〉−l ‖L2→Hm ≤ Ch−m 〈t〉−3l/4

. (4.4.47)

ii. For all m ∈ N, all χ ∈ C∞0 (Rd) and all l ≥ 1, there exists C > 0 such that for all
±t ≤ 0 and all h ∈ (0, 1],

‖Oph(χ±)?e−ith
−1(h|∇g|)σf(h2P )χ(x/R2)‖L2→Hm ≤ Chl 〈t〉−l . (4.4.48)

iii. For all χ̃∓ ∈ S(0,−∞) supported in Γ∓(R, J1, τ̃1) with −τ4 < τ̃1 < 1 and J4 b J1 and
all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all h ∈ (0, 1],

‖Oph(χ±)?e−ith
−1(h|∇g|)σf(h2P )Oph(χ̃∓)‖L∞→L∞ ≤ Chl 〈t〉−l . (4.4.49)

2. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (4.0.2), (4.0.3). Let ζ ∈
C∞(Rd) be supported outside B(0, 1) and equal to 1 near infinity. Then for R > 0 large
enough and all (χ±ε )ε∈(0,1] bounded families in S(0,−∞) supported in Γ±(R4, J4, τ4), we
have the following estimates.

i. For all integer l large enough, there exists C > 0 such that for all ±t ≤ 0 and all
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ε ∈ (0, 1],

‖ζ(εx)Opε(χ±ε )?e−itε(ε
−1|∇g|)σf(ε−2P ) 〈εx〉−l ‖L2→L2 ≤ C 〈εt〉−3l/4

. (4.4.50)

ii. For all χ ∈ C∞0 (Rd) and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all
ε ∈ (0, 1],

‖ζ(εx)Opε(χ±ε )?e−itε(ε
−1|∇g|)σf(ε−2P )χ(εx/R2)‖L2→L2 ≤ C 〈εt〉−l . (4.4.51)

iii. For all ζ̃ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1 near infinity and all
(χ̃∓ε )ε∈(0,1] bounded families in S(0,−∞) supported in Γ∓(R, J1, τ̃1) with −τ4 < τ̃1 < 1
and J4 b J1 and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all ε ∈ (0, 1],

‖ζ(εx)Opε(χ±ε )?e−itε(ε
−1|∇g|)σf(ε−2P )Opε(χ̃∓ε )ζ̃(εx)‖L2→L2 ≤ C 〈εt〉−l . (4.4.52)

Proof. We only give the proof for the low frequency case, the proof at high frequency is similar
and essentially given in [BT08, Proposition 4.5].

i. We only consider the case χ+
ε and t ≤ 0, the case χ−ε and t ≥ 0 is similar. By taking the

adjoint, (4.4.50) is equivalent to

‖ 〈εx〉−l f(ε−2P )e−itε(ε
−1|∇g|)σOpε(χ+

ε )ζ(εx)‖L2→L2 ≤ C 〈εt〉−3l/4
, t ≥ 0, (4.4.53)

uniformly in ε ∈ (0, 1]. Thanks to the spectral localization, we can apply the Isozaki-Kitada
parametrix given in Theorem 4.4.9 and obtain

e−itε(ε
−1|∇g|)σOpε(χ+

ε )ζ(εx) = J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? +R+

N (t, ε).

The main term can be written as

〈εx〉−l f(ε−2P ) 〈εx〉l 〈εx〉−n 〈εx〉n−l J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? 〈εx〉n 〈εx〉−n .

By using Corollary 4.1.9, we have the terms 〈εx〉−l f(ε−2P ) 〈εx〉l and 〈εx〉−n are bounded on L2.
It suffices to show for l large enough,

‖ 〈εx〉n−l J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? 〈εx〉n ‖L2→L2 ≤ C 〈εt〉−3l/4

, t ≥ 0,

uniformly in ε ∈ (0, 1]. This expected estimate follows by using the same process as in Lemma
4.4.13. We now study the remainders.

For k = 1, we have

‖ 〈εx〉−l f(ε−2P )R+
1 (N, t, ε)‖L2→L2 = ‖ 〈εx〉−l f(ε−2P )e−itε(ε

−1|∇g|)σOpε(r̃+
N (ε))ζ(εx)‖L2→L2

≤ C 〈εt〉1−l .

Here we insert 〈εx〉−l 〈εx〉l in the middle and use (4.1.23) and rescaled pseudo-differential calculus.
For k = 2, 3, 4, Item 2 of Proposition 4.4.14 yields

〈εx〉−l f(ε−2P )R+
k (N, t, ε) = ε

∫ t

0
〈εx〉−l f(ε−2P )e−i(t−s)ε(ε

−1|∇g|)σ 〈εx〉−N/8 BN (s, ε) 〈εx〉−N/4 ds.

Using again (4.1.23) and the fact that 〈εx〉l−N/8 and 〈εx〉−N/4 are of size OL2→L2(1) for N large
enough and (4.4.46), we obtain

‖ 〈εx〉−l f(ε−2P )R+
k (N, t, ε)‖L2→L2 ≤ Cε

∫ t

0
〈ε(t− s)〉1−l 〈εs〉−N/4 ds ≤ C 〈εt〉1−l .
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By choosing l large enough such that l − 1 ≥ 3l/4, it shows (4.4.53).
ii. We do the same for (4.4.51), it is equivalent to show

‖χ(εx/R2)f(ε−2P )e−itε(ε
−1|∇g|)σOpε(χ+

ε )ζ(εx)‖L2→L2 ≤ C 〈εt〉−l , t ≥ 0, (4.4.54)

uniformly in ε ∈ (0, 1]. We again use the Isozaki-Kitada parametrix. Let us firstly study remainder
terms. We write the first remainder term χ(εx/R2)f(ε−2P )R+

1 (N, t, ε) as

χ(εx/R2) 〈εx〉l 〈εx〉−l f(ε−2P )e−itε(ε
−1|∇g|)σ 〈εx〉−l 〈εx〉lOpε(r̃+

N (ε))ζ(εx).

Using (4.1.23) and the fact that χ(εx/R2) 〈εx〉l and 〈εx〉lOpε(r̃+
N (ε))ζ(εx) are bounded on L2 due

to the support property of χ and rescaled pseudo-differential calculus given as in Proposition 4.1.7,
we get

‖χ(εx/R2)f(ε−2P )R+
1 (N, t, ε)‖L2→L2 ≤ C 〈εt〉1−l .

For k = 2, 3, 4, we have

‖χ(εx/R2)f(ε−2P )R+
k (N, t, ε)‖L2→L2 ≤ Cε

∫ t

0
〈ε(t− s)〉1−l 〈εs〉−N/4 ds ≤ C 〈εt〉1−l .

For the main term, we can write

χ(εx/R2) 〈εx〉l 〈εx〉−l f(ε−2P ) 〈εx〉l 〈εx〉−n 〈εx〉n−l J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? 〈εx〉n 〈εx〉−n .

Thanks to the L2-boundedness of χ(εx/R2) 〈εx〉l, 〈εx〉−l f(ε−2P ) 〈εx〉l, 〈εx〉−n, it suffices to prove

‖ 〈εx〉n−l J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? 〈εx〉n ‖L2→L2 ≤ C 〈εt〉−l , t ≥ 0,

uniformly in ε ∈ (0, 1]. This expected estimate again follows from Lemma 4.4.12 by taking l large
enough. This proves (4.4.54).

iii. For (4.4.52), we firstly use the Isozaki-Kitada parametrix for χ̃−ε , namely

e−itεω(ε−2P )Opε(χ̃−ε )ζ̃(εx) = J−ε (ã−ε )e−itεΛ
σ

J−ε (b̃−ε )? +
4∑
k=1
R̃−k (N, t, ε), (4.4.55)

where supp(ã−ε ) ⊂ Γ−(R1/4, J̃1/4, τ̃1/4) and supp(b̃−ε ) ⊂ Γ−(R3/4, J̃3/4, τ̃3/4) with J̃3/4 b J̃1/4 small
neighborhood of J1 and τ̃1/4, τ̃3/4 can be chosen so that

−1 < −τ4 < τ̃1/4 < τ̃3/4 < τ̃1 < 1.

Multiplying ζ(εx)Opε(χ+
ε )?f(ε−2P ) to the left of (4.4.55), we see that the terms ζ(εx)Opε(χ+

ε )?
f(ε−2P )R̃−k (N, t, ε) for k = 1, 2, 3, 4 satisfy the required estimate using the estimate (4.4.50),
Lemma 4.4.12 and (4.4.46). Therefore, it remains to show

‖ζ(εx)Opε(χ+
ε )?f(ε−2P )J−ε (ã−ε )e−itεΛ

σ

J−ε (b̃−ε )?‖L2→L2 ≤ C 〈εt〉−l , ±t ≤ 0,

uniformly in ε ∈ (0, 1]. Thanks to the support of ã−ε , we can write J−ε (ã−ε ) = ζ1(εx)J−ε (ã−ε ) with
ζ1 ∈ C∞(Rd) supported outside B(0, 1) such that ζ1(x) = 1 for |x| > R1/4. The parametrix of
f(ε−2P )ζ1(εx) given in Proposition 4.1.7 and symbolic calculus give

ζ(εx)Opε(χ+
ε )?f(ε−2P )ζ1(εx) = Opε(c+ε ) +B+

N (ε) 〈εx〉−N ,

where (c+ε )ε∈(0,1] ∈ S(0,−∞) with supp(c+ε ) ⊂ supp(χ+
ε ) and B+

N (ε) = OL2→L2(1) uniformly in
ε ∈ (0, 1]. We treat the remainder term by using Lemma 4.4.13. For the main terms, we need to
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recall the following version of Proposition 4.4.4 which is essentially 2 given in [BT08, Lemma 4.6].
Lemma 4.4.16. Given J b (0,+∞), −1 < τ < 1 and the associated families of phase functions
(S±ε,R)R�1 as in Proposition 4.4.1. Let (aε)ε∈(0,1] and (cε)ε∈(0,1] be bounded families in S(0,−∞).
Then for all N ≥ 1,

Opε(cε)J±ε (aε) =
N−1∑
j=0
J±ε (eε,j) + J±ε (eN (ε)),

where (eε,j)ε∈(0,1] and (eN (ε))ε∈(0,1] are bounded families in S(0,−∞) and S(−N,−∞) respec-
tively. In particular, for all ε > 0 small enough, by choosing R > 0 large enough, we have

supp(cε) ⊂ Γ±(R, J, τ) =⇒ supp(eε,j) ⊂ Γ±(R, J + (−ε, ε), τ − ε)

since ∇xS±ε,R(x, ξ) = ξ +O(R−ρ).
Using this lemma, we expand Opε(c+ε )J−ε (ã−ε ) and treat the remainder terms using again

Lemma 4.4.13. It remains to prove the required estimate for the general term, namely

‖J−ε (e+
ε )e−itεΛ

σ

J−ε (b̃−ε )?‖L2→L2 ≤ C 〈εt〉−l , ±t ≤ 0,

uniformly in ε ∈ (0, 1], where (e+
ε )ε∈(0,1] ∈ S(0,−∞) and supp(e+

ε ) ∈ Γ+(R4, J4 + (−ε, ε), τ4 − ε).
Up to the conjugation by Dε, the kernel of the left hand side operator reads

Kε(t, x, y) = (2π)−d
∫
Rd
eiΦε(R,t,x,y,ξ)e+

ε (x, ξ)b̃−ε (y, ξ)dξ,

where Φε(R, t, x, y, ξ) = S−ε,R(x, ξ)−εt|ξ|σ−S−ε,R(y, ξ). Since supp(e+
ε ) ⊂ Γ+(R4, J4+(−ε, ε), τ4−ε)

and supp(b̃−ε ) ⊂ Γ−(R3/4, J̃3/4, τ̃3/4), we have

x · ξ
|x‖ξ|

> τ4 − ε, − y · ξ
|y‖ξ|

> τ̃3/4.

By choosing R > 0 large enough, we have that τ4−ε+ τ̃3/4 > 0. Thus by Item 2 of Lemma 4.4.11,
we have

|∇ξΦε| ≥ C(1 + ε|t|+ |x|+ |y|).

Using the non-stationary phase argument as in the proof of Lemma 4.4.12, we have

‖J +
ε (e+

ε )e−itεΛ
σ

J−ε (b̃−ε )?‖L2→L2 ≤ C 〈εt〉−l , ±t ≤ 0,

uniformly in ε ∈ (0, 1]. The proof of Proposition 4.4.15 is now complete.

4.4.2 Strichartz estimates
High frequencies. In this paragraph, we give the proof of (4.2.21). By scaling in time, it is in
turn equivalent to prove

‖(1− χ)e−ith
−1(h|∇g|)σf(h2P )ψ‖Lp(R,Lq) ≤ Ch−κp,q‖f(h2P )ψ‖L2 ,

where κp,q = d/2 − d/q − 1/p. By choosing f̃ ∈ C∞0 (R\0) such that f̃ = 1 near supp(f), we can
write for all l ∈ N,

(1− χ)f̃(h2P ) =
N−1∑
k=0

hkOph(ak)? + hNBN (h) 〈x〉−l ,

2See (4.1.4), (4.4.3) and use Lemma 4.6 of [BT08] with h = 1.
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where for q ≥ 2,

‖BN (h)‖L2→Lq ≤ Ch−(d/2−d/q). (4.4.56)

Thus (1− χ)e−ith−1(h|∇g|)σf(h2P )ψ becomes

N−1∑
k=0

hkOph(ak)?e−ith
−1(h|∇g|)σf(h2P )ψ + hNBN (h) 〈x〉−l e−ith

−1(h|∇g|)σf(h2P )ψ.

Using (4.4.56) and (4.1.20), ‖BN (h) 〈x〉−l e−ith−1(h|∇g|)σf(h2P )ψ‖Lp(R,Lq) is bounded by

Ch−(d/2−d/q)‖ 〈x〉−l e−ith
−1(h|∇g|)σf(h2P )ψ‖Lp(R,L2) ≤ Ch−(d/2−d/q)+(1−N0)/p‖f(h2P )ψ‖L2 .

Hence, by taking N large enough, the remainder is bounded by Ch−κp,q‖f(h2P )ψ‖L2 . For the
main terms, by choosing χ0 ∈ C∞0 (Rd) such that χ0 = 1 for |x| ≤ 2 and setting χ(x) = χ0(x/R4),
we see that (1−χ) is supported in {x ∈ Rd, |x| ≥ 2R4 > R4}. For R > 0 large enough and supp(f̃)
close enough to supp(f) and J4 b (0,+∞) any open interval containing supp(f), we have

supp(ak) ⊂
{

(x, ξ) ∈ R2d, |x| > R4, |ξ|2 ∈ J4
}
, k = 0, ..., N − 1. (4.4.57)

We want to show

‖Oph(ak)?e−ith
−1(h|∇g|)σf(h2P )ψ‖Lp(R,Lq) ≤ Ch−κp,q‖f(h2P )ψ‖L2 , k = 0, ..., N − 1.

Let us consider a general term, namely Oph(a)?e−ith−1(h|∇g|)σf(h2P )ψ with a ∈ S(0,−∞) satis-
fying (4.4.57). Next, by choosing a suitable partition of unity θ− + θ+ = 1 such that supp(θ−) ⊂
(−∞,−τ4) and supp(θ+) ⊂ (τ4,+∞) and setting

χ±(x, ξ) = a(x, ξ)θ±
(
± x · ξ
|x‖ξ|

)
,

we have that χ± ∈ S(0,−∞), supp(χ±) ⊂ Γ±(R4, J4, τ4) and

Oph(a)?e−ith
−1(h|∇g|)σf(h2P )ψ = (Oph(χ−)? +Oph(χ+)?)e−ith

−1(h|∇g|)σf(h2P )ψ.

We only prove the estimate for χ+, i.e.

‖Oph(χ+)?e−ith
−1(h|∇g|)σf(h2P )ψ‖Lp(R,Lq) ≤ Ch−κp,q‖f(h2P )ψ‖L2 ,

the one for χ− is similar. Since Oph(χ+)?e−ith−1(h|∇g|)σf(h2P ) is bounded on L2 uniformly in
h ∈ (0, 1] and t ∈ R, by Proposition 4.3.3, it suffices to prove the dispersive estimates, i.e.

‖Oph(χ+)?e−ith
−1(h|∇g|)σf2(h2P )Oph(χ+)‖L1→L∞ ≤ Ch−d(1 + |t|h−1)−d/2,

for all t ∈ R uniformly in h ∈ (0, 1]. By taking the adjoint, it reduces to prove

‖Oph(χ+)?e−ith
−1(h|∇g|)σf2(h2P )Oph(χ+)‖L1→L∞ ≤ Ch−d(1 + |t|h−1)−d/2, (4.4.58)

for all t ≤ 0 uniformly in h ∈ (0, 1]. We now prove (4.4.58). By using the Isozaki-Kitada parametrix
with J4 and τ4 as above together with arbitrary open intervals J1, J2, J3 such that J4 b J3 b J2 b
J1 b (0,+∞) and arbitrary real numbers τ1, τ2, τ3 satisfying −1 < τ1 < τ2 < τ3 < τ4 < 1, the
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operator in the left hand side of (4.4.58) is written as

Oph(χ+)?f2(h2P )
(
J+
h (a+(h))e−ith

−1(hΛ)σJ+
h (b+(h))? +

4∑
k=1

R+
k (N, t, h)

)
.

Using the fact that Oph(χ+)?f2(h2P ) is bounded on L∞ and Proposition 4.4.10, we have

‖Oph(χ+)?f2(h2P )J+
h (a+(h))e−ith

−1(hΛ)σJ+
h (b+(h))?‖L1→L∞ ≤ Ch−d(1 + |t|h−1)−d/2,

for all t ∈ R and h ∈ (0, 1]. It remains to study the remainder terms.
For k = 1, using the Sobolev embedding withm > d/2, (4.4.47) and the fact that 〈x〉lOph(r̃+

N (h))
is of size OH−m→L2(h−m) by pseudo-differential calculus, we have

‖Oph(χ+)?f2(h2P )R+
1 (N, t, h)‖L1→L∞ ≤ ChN−1−2m 〈t〉−3l/4 ≤ Ch−d(1 + |t|h−1)−d/2,

for all t ≤ 0 and all h ∈ (0, 1]. The last estimate follows by taking l = 2d/3 and N large enough.
For k = 2, by using (4.4.47) and the Sobolev embedding with m > d/2, we have for t− s ≤ 0,

‖Oph(χ+)?e−i(t−s)h
−1(h|∇g|)σf2(h2P ) 〈x〉−l ‖L2→L∞ ≤ Ch−m 〈t− s〉−3l/4

. (4.4.59)

We also have that 〈x〉lRN (h) is bounded from L∞ to L2 due to Proposition 4.1.2 provided N > l.
Thus for N and l large enough, Proposition 4.4.10 implies that

‖Oph(χ+)?f2(h2P )R+
2 (N, t, h)‖L1→L∞

≤ ChN−1−m−d
∫ t

0
〈t− s〉−3l/4 (1 + |s|h−1)−d/2ds ≤ Ch−d(1 + |t|h−1)−d/2.

For k = 3, by inserting 〈x〉−l 〈x〉l−N 〈x〉N and using the fact that 〈x〉l−N = OL∞→L2(1) for
N large enough, (4.4.59) and Proposition 4.4.10 with J+

h (a+) = 〈x〉N J+
h (r+

N (h)), we see that this
remainder term satisfies the required estimate as for the second one.

For k = 4, we rewrite Oph(χ+)?f2(h2P )R+
4 (N, t, h) as −ih−1 times∫ t

0
Oph(χ+)?f2(h2P )e−i(t−s)h

−1(h|∇g|)σ (χ+ (1− χ))(x/R2)J+
h (ǎ+(h))e−ish

−1(hΛ)σJ+
h (b+(h))?ds,

where χ ∈ C∞0 (Rd) satisfying χ(x) = 1 for |x| ≤ 2. The first term can be treated similarly as the
second remainder using (4.4.48) instead of (4.4.47). For the second term, we need the following
lemma (see [BT08, Proposition 5.2]).
Lemma 4.4.17. Choose τ̃1 such that −τ4 < τ̃1 < −τ2. If R > 0 is large enough, we may choose
χ̃− ∈ S(0,−∞) satisfying supp(χ̃−) ⊂ Γ−(R, J1, τ̃1) such that for all m large enough,

f(h2P )(1− χ)(x/R2)J+
h (ǎ+(h)) = Oph(χ̃−)J+

h (ẽm(h)) + hmR̃m(h)

where
R̃m(h) = J+

h (r̃m(h)) + 〈x〉−m/2Rm(h) 〈x〉−m/2 J+
h (ǎ+(h)),

with (ẽm(h))h∈(0,1] and (r̃m(h))h∈(0,1] bounded families in S(0,−∞) and S(−m,−∞) respectively
and Rm(h) = OL∞→L∞(1) uniformly in h ∈ (0, 1].

Using this lemma, the second term is written as −ih−1 times∫ t

0
Oph(χ+)?e−i(t−s)h

−1(h|∇g|)σ
(
Oph(χ̃−)J+

h (ẽm(h)) + hmR̃m(h)
)
e−ish

−1(hΛ)σJ+
h (b+(h))?ds.

The remainder terms are treated similarly as the second remainder term using (4.4.47). The term
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involving Oph(χ̃−)J+
h (ẽm(h)) is studied by the same analysis as the second term using (4.4.49)

instead of (4.4.47). This completes the proof. �

Low frequencies. In this paragraph, we will prove (4.2.24). By scaling in time, it is equivalent
to show

‖(1− χ)(εx)f(ε−2P )e−itε(ε
−1|∇g|)σψ‖Lp(R,Lq) ≤ Cεκp,q‖f(ε−2P )ψ‖L2 ,

where κp,q = d/2 − d/q − 1/p. By choosing ˜̃f ∈ C∞0 (R\0) such that ˜̃f = 1 near supp(f), we can
write (1−χ)(εx)f(ε−2P ) = (1− χ)(εx) ˜̃f(ε−2P )f(ε−2P ). Next, we choose ζ ∈ C∞(Rd) supported
in Rd\B(0, 1) such that ζ = 1 near supp(1− χ) and use Proposition 4.1.7 to have

(1− χ)(εx) ˜̃f(ε−2P ) =
N−1∑
k=0

ζ(εx)Opε(aε,k)? +RN (ε),

where RN (ε) = ζ(εx)(ε−2P + 1)−NBN (ε) 〈εx〉−N with (BN (ε))ε∈(0,1] bounded on L2. Thus (1 −
χ)(εx)f(ε−2P )e−itε(ε−1|∇g|)σψ reads

N−1∑
k=0

ζ(εx)Opε(aε,k)?e−itε(ε
−1|∇g|)σf(ε−2P )ψ +RN (ε)e−itε(ε

−1|∇g|)σf(ε−2P )ψ.

We firstly consider the remainder term.
Proposition 4.4.18. Let N ≥ (d − 1)/2 + 1. Then for all (p, q) Schrödinger admissible with
q <∞, there exists C > 0 such that for all ε ∈ (0, 1],

‖RN (ε)e−itε(ε
−1|∇g|)σf(ε−2P )ψ‖Lp(R,Lq) ≤ Cεκp,q‖ψ‖L2 .

Proof. This result follows from the TT ? criterion given in Proposition 4.3.3 with ε−1 in place of
h and T (t) = RN (ε)e−itε(ε−1|∇g|)σf(ε−2P ). The L2 → L2 bounds of T (t) are obvious. Thus we
need to prove the dispersive estimates. Using (4.1.6) with q =∞ and (4.1.23) with N ≥ d/2 + 1,
we have

‖T (t)T (s)?‖L1→L∞ ≤ Cεd‖ 〈εx〉−N e−i(t−s)ε(ε
−1|∇g|)σf2(ε−2P ) 〈εx〉−N ‖L2→L2

≤ Cεd 〈ε(t− s)〉1−N ≤ Cεd(1 + ε|t− s|)−d/2.

This completes the proof.
For the main terms, by choosing χ0 ∈ C∞0 (Rd) such that χ0 = 1 for |x| ≤ 2 and setting

χ(x) = χ0(x/R4), we see that (1−χ) is supported in {x ∈ Rd, |x| > R4}. For R > 0 large enough
and supp(f̃) close enough to supp(f) and J4 b (0,+∞) any open interval containing supp(f), we
have

supp(aε,k) ⊂
{

(x, ξ) ∈ R2d, |x| > R4, |ξ|2 ∈ J4
}
, k = 0, ..., N − 1. (4.4.60)

We want to show for k = 0, ..., N − 1,

‖ζ(εx)Opε(aε,k)?e−itε(ε
−1|∇g|)σf(ε−2P )ψ‖Lp(R,Lq) ≤ Cεκp,q‖f(ε−2P )ψ‖L2 .

Let us consider the general term, namely ζ(εx)Opε(aε)?e−itε(ε
−1|∇g|)σf(ε−2P )ψ with (aε)ε∈(0,1] ∈

S(0,−∞) satisfying (4.4.60). Next, by choosing a suitable partition of unity θ− + θ+ = 1 such
that supp(θ−) ⊂ (−∞,−τ4) and supp(θ+) ⊂ (τ4,+∞) and setting

χ±ε (x, ξ) = aε(x, ξ)θ±
(
± x · ξ
|x‖ξ|

)
,
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we have that (χ±ε )ε∈(0,1] ∈ S(0,−∞), supp(χ±ε ) ⊂ Γ±(R4, J4, τ4) and

ζ(εx)Opε(aε)?e−itε(ε
−1|∇g|)σf(ε−2P )ψ = ζ(εx)(Opε(χ−ε )? +Opε(χ+

ε )?)e−itε(ε
−1|∇g|)σf(ε−2P )ψ.

We only prove the estimate for χ+
ε , i.e.

‖ζ(εx)Opε(χ+
ε )?e−itε(ε

−1|∇g|)σf(ε−2P )ψ‖Lp(R,Lq) ≤ Cεκp,q‖f(ε−2P )ψ‖L2 ,

the one for χ−ε is similar. By TT ? criterion and that T (t) := ζ(εx)Opε(χ+
ε )?e−itε(ε−1|∇g|)σf(ε−2P )

is bounded on L2 for all t ∈ R and all ε ∈ (0, 1], it suffices to prove dispersive estimates, i.e.

‖ζ(εx)Opε(χ+
ε )?e−itε(ε

−1|∇g|)σf2(ε−2P )Opε(χ+
ε )ζ(εx)‖L1→L∞ ≤ Cεd(1 + ε|t|)−d/2,

for all t ∈ R uniformly in ε ∈ (0, 1]. By taking the adjoint, it reduces to prove

‖ζ(εx)Opε(χ+
ε )?e−itε(ε

−1|∇g|)σf2(ε−2P )Opε(χ+
ε )ζ(εx)‖L1→L∞ ≤ Cεd(1 + ε|t|)−d/2, (4.4.61)

for all t ≤ 0 uniformly in ε ∈ (0, 1]. Let us prove (4.4.61). For simplicity, we set

A+
ε := ζ(εx)Opε(χ+

ε )?f2(ε−2P ).

Using the Isozaki-Kitada parametrix given in Theorem 4.4.9, we see that

A+
ε e
−itε(ε−1|∇g|)σOpε(χ+

ε )ζ(εx) = A+
ε

(
J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? +

4∑
k=1
R+
k (N, t, ε)

)
.

We firstly note that A+
ε is bounded on L∞. Indeed, we write

ζ(εx)Opε(χ+
ε )?f2(ε−2P ) = ζ(εx)Opε(χ+

ε )?ζ1(εx)f2(ε−2P ),

where ζ1 ∈ C∞(Rd) is supported outside B(0, 1) satisfying ζ1(x) = 1 for |x| > R4. This is possible
since Opε(χ+

ε ) = ζ1(εx)Opε(χ+
ε ). The factors ζ(εx)Opε(χ+

ε )? and ζ1(εx)f2(ε−2P ) are bounded in
L(L∞) by the rescaled pseudo-differential operator and Corollary 4.1.8 respectively. Thanks to
the L(L∞)-bound of A+

ε and (4.4.29), we have dispersive estimates for the main terms. It remains
to prove dispersive estimates for remainder terms. By rescaled pseudo-differential calculus, we can
write for l > d/2,

A+
ε = ζ̃(εx)(ε−2P + 1)−l

(
ζ(εx)Opε(χ̃+

ε )? + B̃+
l (ε) 〈εx〉−l

)
f2(ε−2P ),

where ζ̃ ∈ C∞(Rd) is supported outside B(0, 1) and equal to 1 near supp(ζ) and (χ̃+
ε )ε∈(0,1] ∈

S(0,−∞) satisfying supp(χ̃+
ε ) ⊂ supp(χ+

ε ) and B̃+
l (ε) = OL2→L2(1) uniformly in ε ∈ (0, 1]. This

follows by expanding (ε−2P + 1)lζ(εx)Opε(χ+
ε )? by rescaled pseudo-differential calculus.

For k = 1, using the Proposition 4.1.7, we can write

R+
1 (N, t, ε) = e−itε(ε

−1|∇g|)σ 〈εx〉−N B+
N (ε)(ε−2P + 1)−Nζ(εx),

where B+
N (ε) = OL2→L2(1) uniformly in ε ∈ (0, 1]. Then, using Proposition 4.1.6 with q =∞ and

(4.4.50), we have

‖ζ̃(εx)(ε−2P + 1)−lζ(εx)Opε(χ̃+
ε )?f2(ε−2P )R+

1 (N, t, ε)‖L1→L∞ ≤ Cεd 〈εt〉−3N/4

≤ Cεd(1 + ε|t|)−d/2,

for all t ≤ 0 and all ε ∈ (0, 1] provided N is taken large enough. Moreover, using again Proposition
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4.1.6 and (4.1.23), we also have

‖ζ̃(εx)(ε−2P + 1)−lB̃l(ε) 〈εx〉−l f2(ε−2P )R+
1 (N, t, ε)‖L1→L∞ ≤ Cεd 〈εt〉1−l

≤ Cεd(1 + ε|t|)−d/2,

for all t ≤ 0 and all ε ∈ (0, 1] provided l and N are taken large enough. This implies

‖A+
ε R+

1 (N, t, ε)‖L1→L∞ ≤ Cεd(1 + ε|t|)−d/2,

for all t ≤ 0 and all ε ∈ (0, 1].
Next, thanks to the support of b+ε , we can write

J +
ε (b+ε )? = J +

ε (b̃+ε )?(ε−2P + 1)−Nζ1(εx), (4.4.62)

where (b̃+ε )ε∈(0,1] ∈ S(0,−∞), supp(b̃+ε ) ⊂ Γ+(R3, J3, σ3) and ζ1 ∈ C∞(Rd) is supported outside
B(0, 1) such that ζ1(x) = 1 for |x| > R3. Indeed, we write for ζ̃1 ∈ C∞(Rd) supported outside
B(0, 1) and ζ̃1 = 1 in supp(ζ1),

J +
ε (b+ε )? = J +

ε (b+ε )?ζ̃1(εx)(ε−2P + 1)N
(
(ε−2P + 1)−Nζ1(εx)

)
.

We have (4.4.62) by taking the adjoint of (ε−2P + 1)N ζ̃1(εx)J +
ε (b+ε ) = J +

ε (b̃+ε ).
For k = 2, using (4.1.6) and its adjoint, (4.4.50), (4.4.62), 〈εx〉lRN (ε) 〈εx〉N−l = OL2→L2(1)

and estimating as in Lemma 4.4.13, we have

‖ζ̃(εx)(ε−2P + 1)−lζ(εx)Opε(χ̃+
ε )?f2(ε−2P )R+

2 (N, t, ε)‖L1→L∞

≤ Cεdε
∫ t

0
〈ε(t− s)〉−3l/4 〈εs〉−N/4 ds ≤ Cεd(1 + ε|t|)−d/2,

for t ≤ 0 provided that l and N are taken large enough. Moreover, using (4.1.23) instead of
(4.4.50), we have

‖ζ̃(εx)(ε−2P + 1)−lB̃l(ε) 〈εx〉−lf2(ε−2P )R+
2 (N, t, ε)‖L1→L∞

≤ Cεdε
∫ t

0
〈ε(t− s)〉1−l 〈εs〉−N/4 ds ≤ Cεd(1 + ε|t|)−d/2,

for all t ≤ 0 and all ε ∈ (0, 1]. This implies

‖A+
ε R+

2 (N, t, ε)‖L1→L∞ ≤ Cεd(1 + ε|t|)−d/2, ∀t ≤ 0, ε ∈ (0, 1].

The third remainder term is treated similarly as the second one. It remains to study the last
remainder term. To do so, we split

A+
ε R+

4 (N, t, ε) = −i
∫ t

0
A+
ε e
−i(t−s)ε(ε−1|∇g|)σ (χ+ (1− χ))(εx/R2)J +

ε (ǎ+(ε))e−isεΛ
σ

J +
ε (b+ε )?ds,

where χ ∈ C∞0 (Rd) satisfying χ(x) = 1 for |x| ≤ 2. The first term can be treated similarly as the
second remainder using (4.4.51) instead of (4.4.50) and Lemma 4.4.12. For the second term, we
need the following lemma (see [BT08, Proposition 5.2]).
Lemma 4.4.19. Choose τ̃1 such that −τ4 < τ̃1 < −τ2. If R > 0 is large enough, we may choose a
bounded family of symbols χ̃−ε ∈ S(0,−∞) satisfying supp(χ̃−ε ) ⊂ Γ−(R, J1, τ̃1) and ζ̃2 ∈ C∞(Rd)
supported outside B(0, 1) satisfying ζ̃2 = 1 on supp(1− χ) such that for all m large enough,

f(ε−2P )(1− χ)(εx/R2)J +
ε (ǎ+(ε)) = Opε(χ̃−ε )ζ̃2(εx)J +

ε (ẽm(ε)) + R̃m(ε),
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where
R̃m(ε) = J +

ε (r̃m(ε)) + 〈εx〉−m/2Rm(ε) 〈εx〉−m/2 J +
ε (ǎ+(ε)),

with (ẽm(ε))ε∈(0,1] and (r̃m(ε))ε∈(0,1] bounded families in S(0,−∞) and S(−m,−∞) respectively
and Rm(ε) = OL2→L2(1) uniformly in ε ∈ (0, 1].

We set
A+
ε = (A+

ε,1 +A+
ε,2)f(ε−2P ),

where

A+
ε,1 = ζ̃(εx)(ε−2P + 1)−lζ(εx)Opε(χ̃+

ε )?f(ε−2P ),

A+
ε,2 = ζ̃(εx)(ε−2P + 1)−lB̃l(ε) 〈εx〉−l f(ε−2P ).

Using Lemma 4.4.19, we firstly consider

−ih−1
∫ t

0
A+
ε,1e
−i(t−s)ε(ε−1|∇g|)σ

(
Opε(χ̃−ε )ζ̃2(εx)J +

ε (ẽm(ε)) + R̃m(ε)
)
e−isεΛ

σ

J +
ε (b+ε )?ds.

The remainder terms are treated similarly as the second remainder term using (4.4.50) and Lemma
4.4.13. The term involving Opε(χ̃−ε )ζ̃2(εx)J +

ε (ẽm(ε)) is studied by the same analysis as the second
term using (4.4.52) instead of (4.4.47). For the term

−ih−1
∫ t

0
A+
ε,2e
−i(t−s)ε(ε−1|∇g|)σ

(
Opε(χ̃−ε )ζ̃2(εx)J +

ε (ẽm(ε)) + R̃m(ε)
)
e−isεΛ

σ

J +
ε (b+ε )?ds,

the required estimate follows by using (4.1.23) and Lemma 4.4.13. This completes the proof. �

4.5 Inhomogeneous Strichartz estimates
In this section, we will give the proofs of Proposition 4.0.6 and Proposition 4.0.8. The main

tool is the homogeneous Strichartz estimates (4.0.14) and the so called Christ-Kiselev Lemma. To
do so, we recall the following result (see [CK01] or [Sog93]).
Lemma 4.5.1. Let X and Y be Banach spaces and assume that K(t, s) is a continuous function
taking its values in the bounded operators from Y to X. Suppose that −∞ ≤ c < d ≤ ∞, and set

Af(t) =
∫ d

c

K(t, s)f(s)ds.

Assume that
‖Af‖Lq([c,d],X) ≤ C‖f‖Lp([c,d],Y ).

Define the operator Ã as

Ãf(t) =
∫ t

c

K(t, s)f(s)ds,

Then for 1 ≤ p < q ≤ ∞, there exists C̃ > 0 such that

‖Ãf‖Lq([c,d],X) ≤ C̃‖f‖Lp([c,d],Y ).

We are now able to prove the inhomogeneous Strichartz estimates (4.0.16) and (4.0.20).

Inhomogeneous Strichartz estimates for Schrödinger-type equation. We give the proof
of Proposition 4.0.6 by following a standard argument (see e.g. [Zha15]). Let u be the solution to
(4.0.1). By Duhamel formula, we have

u(t) = e−it|∇g|
σ

ψ − i
∫ t

0
e−i(t−s)|∇g|

σ

F (s)ds =: uhom(t) + uinh(t).
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Using (4.0.14), we have
‖uhom‖Lp(R,Lq) ≤ C‖ψ‖Ḣγp,qg

.

It remains to prove the inhomogeneous part, namely∥∥∥∫ t

0
e−i(t−s)|∇g|

σ

F (s)ds
∥∥∥
Lp(R,Lq)

≤ C‖F‖La′ (R,Lb′ ),

where (p, q), (a, b) are Schrödinger admissible pairs with q <∞ and b <∞ satisfying (p, a) 6= (2, 2)
and the gap condition (4.0.17). By the Christ-Kiselev Lemma, it suffices to prove∥∥∥∫

R
e−i(t−s)|∇g|

σ

F (s)ds
∥∥∥
Lp(R,Lq)

≤ C‖F‖La′ (R,Lb′ ), (4.5.1)

for all Schrödinger admissible pairs (p, q) and (a, b) with q < ∞ and b < ∞ satisfying (4.0.17)
excluding the case p = a′ = 2. We now prove (4.5.1). Define

Tγp,q : ψ ∈ Lg 7→ |∇g|−γp,qe−it|∇g|
σ

ψ ∈ Lp(R, Lq).

Thanks to (4.0.14), we see that Tγp,q is a bounded operator. Similar result holds for Tγa,b . Next,
we take the adjoint for Tγa,b and obtain a bounded operator

T ?γa,b : F ∈ La
′
(R, Lb

′
) 7→

∫
R
|∇g|−γa,beis|∇g|

σ

F (s)ds ∈ L ′g,

where L ′g is the dual space of Lg. Using (4.0.17) or γa,b = −γa′,b′ − σ = −γp,q, we have∥∥∥∫
R
e−i(t−s)|∇g|

σ

F (s)ds
∥∥∥
Lp(R,Lq)

= ‖Tγp,qT ?γa,bF‖Lp(R,Lq) ≤ C‖F‖La′ (R,Lb′ ),

and (4.5.1) follows.
Next, we prove

‖u‖L∞(R,Ḣγp,qg ) ≤ C
(
‖ψ‖Ḣγp,qg

+ ‖F‖La′ (R,Lb′ )
)
.

By using the homogeneous Strichartz estimate for a Schrödinger admissible pair (∞, 2) with γ∞,2 =
0 and that ‖u‖L∞(R,Ḣγp,qg ) = ‖|∇g|γp,qu‖L∞(R,L2), we have

‖u‖L∞(R,Ḣγp,qg ) ≤ C
(
‖|∇g|γp,qψ‖L2 +

∥∥∥ ∫ t

0
|∇g|γp,qe−i(t−s)|∇g|

σ

F (s)ds
∥∥∥
L∞(R,L2)

)
.

Using the Christ-Kiselev Lemma, it suffices to prove∥∥∥ ∫
R
|∇g|γp,qe−i(t−s)|∇g|

σ

F (s)ds
∥∥∥
L∞(R,L2)

≤ C‖F‖La′ (R,Lb′ ).

Using the above notation, we have∥∥∥∫
R
|∇g|γp,qe−i(t−s)|∇g|

σ

F (s)ds
∥∥∥
L∞(R,L2)

= ‖T0T
?
γa,b

F‖L∞(R,L2)

≤ C‖T ?γa,bF‖L2 ≤ C‖F‖La′ (R,Lb′ ).

This completes the proof of Proposition 4.0.6. �
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Inhomogeneous Strichartz estimates for wave-type equation. We give the proof of Propo-
sition 4.0.8. Let v be the solution to (4.0.19). By Duhamel formula, we have

v(t) = cos t|∇g|σψ + sin t|∇g|σ

|∇g|σ
u1 +

∫ t

0

sin(t− s)|∇g|σ

|∇g|σ
F (s)ds =: vhom(t) + vinh(t),

where vhom is the sum of first two terms and vinh is the last one. We firstly prove

‖v‖Lp(R,Lq) ≤ C
(
‖v0‖Ḣγp,qg

+ ‖v1‖Ḣγp,q−σg
+ ‖F‖La′ (R,Lb′ )

)
.

By observing that

cos t|∇g|σ = eit|∇g|
σ + e−it|∇g|

σ

2 , sin t|∇g|σ = eit|∇g|
σ − e−it|∇g|σ

2i ,

and using (4.0.14), we have

‖vhom‖Lp(R,Lq) ≤ C
(
‖v0‖Ḣγp,qg

+ ‖v1‖Ḣγp,q−σg

)
.

Let us prove the inhomogeneous part which is in turn equivalent to∥∥∥∫ t

0

e−i(t−s)|∇g|
σ

|∇g|σ
F (s)ds

∥∥∥
Lp(R,Lq)

≤ C‖F‖La′ (R,Lb′ ), (4.5.2)

where (p, q), (a, b) are Schrödinger admissible with q <∞ and b <∞ satisfying the gap condition
(4.0.21). We define the operator

Tγp,q : ψ ∈ Lg 7→ |∇g|−γp,qe−it|∇g|
σ

ψ ∈ Lp(R, Lq).

Thanks to (4.0.14), we see that Tγp,q is a bounded operator. Next, we take the adjoint for Tγa,b
and obtain a bounded operator

T ?γa,b : F ∈ La
′
(R, Lb

′
) 7→

∫
R
|∇g|−γa,beis|∇g|

σ

F (s)ds ∈ L ′g.

Using (4.0.21) or γa,b = −γa′,b′ − σ = −γp,q + σ, we have∥∥∥∫
R

e−i(t−s)|∇g|
σ

|∇g|σ
F (s)ds

∥∥∥
Lp(R,Lq)

= ‖Tγp,qT ?γa,bF‖Lp(R,Lq) ≤ C‖F‖La′ (R,Lb′ ).

As in the proof of the inhomogeneous Strichartz estimates for the Schrödinger-type equations, the
Christ-Kiselev Lemma implies (4.5.2) for all Schrödinger admissible pairs (p, q) and (a, b) with
q <∞ and b <∞ satisfying the gap condition (4.0.21) excluding the case p = a′ = 2.

Next, we prove

‖v‖L∞(R,Ḣγp,qg ) ≤ C
(
‖v0‖Ḣγp,qg

+ ‖v1‖Ḣγp,q−σg
+ ‖F‖La′ (R,Lb′ )

)
.

By using the homogeneous Strichartz estimate for a Schrödinger admissible pair (∞, 2) with γ∞,2 =
0 and that ‖v‖L∞(R,Ḣγp,qg ) = ‖|∇g|γp,qv‖L∞(R,L2), we have

‖v‖L∞(R,Ḣγp,qg ) ≤ C
(
‖|∇g|γp,qv0‖L2 + ‖|∇g|γp,qv1‖Ḣ−σg

+
∥∥∥ ∫ t

0
|∇g|(γp,q−σ) sin (t− s)|∇g|σF (s)ds

∥∥∥
L∞(R,L2)

)
.
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Using the Christ-Kiselev Lemma, it suffices to prove∥∥∥∫
R
|∇g|(γp,q−σ)e−i(t−s)|∇g|

σ

F (s)ds
∥∥∥
L∞(R,L2)

≤ C‖F‖La′ (R,Lb′ ).

Using the above notation, we have∥∥∥∫
R
|∇g|(γp,q−σ)e−i(t−s)|∇g|

σ

F (s)ds
∥∥∥
L∞(R,L2)

= ‖T0T
?
γa,b

F‖L∞(R,L2)

≤ C‖T ?γa,bF‖L2 ≤ C‖F‖La′ (R,Lb′ ).

We repeat the same process for ∂tv and obtain

‖∂tv‖L∞(R,Ḣγp,q−σg ) ≤ C
(
‖v0‖Ḣγp,qg

+ ‖v1‖Ḣγp,q−σg
+ ‖F‖La′ (R,Lb′ )

)
.

This completes the proof of Proposition 4.0.8. �
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Chapter 5

Local well-posedness for nonlinear
Schrödinger-type equations in

Sobolev spaces
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In this chapter, we study the local well-posedness in Sobolev spaces for the power-type nonlinear
Schrödinger-type equations, namely{

i∂tu(t, x) + |∇|σu(t, x) = −µ(|u|ν−1u)(t, x), (t, x) ∈ R× Rd,
u(0, x) = ψ(x), x ∈ Rd, (NLST)

with σ ∈ (0,∞), ν > 1 and µ ∈ {±1}. When σ = 1, we use the notation (NLHW) instead of
(NLST). The operator |∇| =

√
−∆ is the Fourier multiplier by |ξ| where ∆ =

∑d
j=1 ∂

2
j is the free

Laplace operator on Rd. The number µ = 1 (resp. µ = −1) corresponds to the defocusing case
(resp. focusing case).

Before stating the main results, we recall some useful facts about (NLST). By a standard
approximation argument, the following quantities are conserved under the flow of (NLST):

M(u(t)) =
∫
|u(t, x)|2dx = M(ψ), E(u(t)) =

∫ 1
2 ||∇|

σ/2u(t, x)|2 + µ

ν + 1 |u(t, x)|ν+1dx = E(ψ).

Moreover, if we set for λ > 0,

uλ(t, x) = λ−
σ
ν−1u(λ−σt, λ−1x),

then (NLST) is invariant under this scaling, that is for T ∈ (0,+∞],

u solves (NLST) on (−T, T )⇐⇒ uλ solves (NLST) on (−λσT, λσT ).

We also have
‖uλ(0)‖Ḣγ = λ

d
2−

σ
ν−1−γ‖ψ‖Ḣγ .

From this, we define the critical regularity exponent for (NLST) by

γc = d

2 −
σ

ν − 1 . (5.0.1)
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Chapter 5. Local well-posedness nonlinear Schrödinger-type equations

In this chapter, we are interested in the well-posedness results for (NLST) when γ ≥ γc. Since we
are working in Sobolev spaces of fractional order γ, γc, we need the nonlinearity F (z) = −µ|z|ν−1z
to have enough regularity. When ν is an odd integer, F ∈ C∞(C,C) (in the real sense). When ν
is not an odd integer, we need the following assumption

dγe, dγce ≤ ν, (5.0.2)

where dγe is the smallest integer greater than or equal to γ, similarly for dγce.
In order to study the local well-posedness of (NLST) in Sobolev spaces, we need two important

tools: linear estimates (or Strichartz estimates) and nonlinear estimates. Strichartz estimates for
the linear Schrödinger-type equation are derived in Chapter 1. Note that in the case σ ∈ (0, 2)\{1},
we always have γp,q > 0 (see (1.0.7)) for all admissible pairs except (p, q) = (∞, 2). This shows
that Strichartz estimates for the linear Schrödinger-type equation given in Corollary 1.1.3 have a
loss of derivatives. That is if we use Strichartz estimates at Hγ-level, then we need the initial data
at Hγ+γp,q -level except (p, q) = (∞, 2). This loss of derivatives leads to restrictions (and hence
weak results) compared to the those in the case σ ∈ [2,∞). Therefore, we will consider three
cases σ ∈ (0, 2)\{1}, σ = 1 and σ ∈ [2,∞) separately. We also recall some nonlinear estimates as
follows.

Nonlinear estimates. Let us start with the following Kato-Ponce inequality (or fractional
Leibniz rule).
Proposition 5.0.1. Let γ ≥ 0, 1 < r < ∞ and 1 < p1, p2, q1, q2 ≤ ∞ satisfying 1

r = 1
p1

+ 1
q1

=
1
p2

+ 1
q2
. Then there exists C = C(d, γ, r, p1, q1, p2, q2) > 0 such that for all u, v ∈ S ,

‖|∇|γ(uv)‖Lr ≤ C
(
‖|∇|γu‖Lp1 ‖v‖Lq1 + ‖u‖Lp2 ‖|∇|γv‖Lq2

)
, (5.0.3)

‖ 〈∇〉γ (uv)‖Lr ≤ C
(
‖ 〈∇〉γ u‖Lp1‖v‖Lq1 + ‖u‖Lp2 ‖ 〈∇〉γ v‖Lq2

)
. (5.0.4)

We refer to [GO14] (and references therein) for the proof of above inequalities and more general
results. We also have the following fractional chain rule.
Proposition 5.0.2. Let F ∈ C1(C,C) and G ∈ C(C,R+) such that F (0) = 0 and

|F ′(θz + (1− θ)ζ)| ≤ µ(θ)(G(z) +G(ζ)), z, ζ ∈ C, 0 ≤ θ ≤ 1,

where µ ∈ L1((0, 1)). Then for γ ∈ (0, 1) and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1
r = 1

p + 1
q ,

there exists C = C(d, µ, γ, r, p, q) > 0 such that for all u ∈ S ,

‖|∇|γF (u)‖Lr ≤ C‖F ′(u)‖Lq‖|∇|γu‖Lp , (5.0.5)
‖ 〈∇〉γ F (u)‖Lr ≤ C‖F ′(u)‖Lq‖ 〈∇〉γ u‖Lp . (5.0.6)

We refer to [CW91] (see also [Sta95]) for the proof of (5.0.5) and [Tay00, Proposition 5.1] for
(5.0.6). A direct consequence of the fractional Leibniz rule and the fractional chain rule is the
following fractional derivative estimates.
Corollary 5.0.3. Let F ∈ Ck(C,C), k ∈ N\{0}. Assume that there is ν ≥ k such that

|DiF (z)| ≤ C|z|ν−i, z ∈ C, i = 1, 2, ...., k.

Then for γ ∈ [0, k] and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1
r = 1

p + ν−1
q , there exists C =

C(d, ν, γ, r, p, q) > 0 such that for all u ∈ S ,

‖|∇|γF (u)‖Lr ≤ C‖u‖ν−1
Lq ‖|∇|

γu‖Lp , (5.0.7)
‖ 〈∇〉γ F (u)‖Lr ≤ C‖u‖ν−1

Lq ‖ 〈∇〉
γ
u‖Lp . (5.0.8)

The reader can find the proof of (5.0.7) in [Kat95, Lemma A.3]. The one of (5.0.8) follows
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from (5.0.7), the Hölder inequality and the fact that

‖ 〈∇〉γ u‖Lr ∼ ‖u‖Lr + ‖|∇|γu‖Lr ,

for 1 < r < ∞, γ > 0. Another consequence of the fractional Leibniz rule given in Proposition
5.0.1 is the following result.
Corollary 5.0.4. Let F (z) be a homogeneous polynomial in z, z of degree ν ≥ 1. Then (5.0.7)
and (5.0.8) hold true for any γ ≥ 0 and r, p, q as in Corollary 5.0.3.
Corollary 5.0.5. Let F (z) = |z|ν−1z with ν > 1, γ ≥ 0 and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying
1
r = 1

p + ν−1
q .

i. If ν is an odd integer or dγe ≤ ν otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0 such
that for all u ∈ S ,

‖F (u)‖Ḣγr ≤ C‖u‖
ν−1
Lq ‖u‖Ḣγp .

A similar estimate holds with Ḣγ
r , Ḣ

γ
p -norms are replaced by Hγ

r , H
γ
p -norms respectively.

ii. If ν is an odd integer or dγe ≤ ν − 1 otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0
such that for all u, v ∈ S ,

‖F (u)− F (v)‖Ḣγr ≤ C
(

(‖u‖ν−1
Lq + ‖v‖ν−1

Lq )‖u− v‖Ḣγp

+ (‖u‖ν−2
Lq + ‖v‖ν−2

Lq )(‖u‖Ḣγp + ‖v‖Ḣγp )‖u− v‖Lq
)
.

A similar estimate holds with Ḣγ
r , Ḣ

γ
p -norms are replaced by Hγ

r , H
γ
p -norms respectively.

Proof. Item 1 is an immediate consequence of Corollary 5.0.3 and Corollary 5.0.4. For Item 2, we
firstly write

F (u)− F (v) =
∫ 1

0
∂zF (v + θ(u− v))(u− v) + ∂zF (v + θ(u− v))(u− v)dθ,

and use the fractional Leibniz rule given in Proposition 5.0.1. Then the results follow by applying
the fractional derivative estimates given in Corollary 5.0.3 and Corollary 5.0.4.

5.1 Local well-posedness for Schrödinger-type equations in
Sobolev spaces when σ ∈ (0, 2)\{1}

5.1.1 Local well-posedness in the subcritical case
Let us start with the following local well-posedness in the subcritical case.

Theorem 5.1.1. Given σ ∈ (0, 2)\{1} and ν > 1. Let γ ≥ 0 be such that{
γ > 1/2− σ/max(ν − 1, 4) when d = 1,
γ > d/2− σ/max(ν − 1, 2) when d ≥ 2, (5.1.1)

and also, if ν is not an odd integer, (5.0.2). Let{
p > max(ν − 1, 4) when d = 1
p > max(ν − 1, 2) when d ≥ 2 (5.1.2)

be such that γ > d
2 −

σ
p . Then for all ψ ∈ Hγ , there exist T ∗ ∈ (0,∞] and a unique solution to

(NLST) satisfying
u ∈ C([0, T ∗), Hγ) ∩ Lploc([0, T ∗), L∞).

Moreover, the following properties hold:
i. If T ∗ <∞, then ‖u(t)‖Hγ →∞ as t→ T ∗.
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ii. u depends continuously on ψ in the following sense. There exists T ∈ (0, T ∗) such that
if ψn → ψ in Hγ and if un denotes the solution of (NLST) with initial data ψn, then
0 < T < T ∗(ψn) for all n sufficiently large and un is bounded in La([0, T ], Hγ−γa,b

b ) for any
Schrödinger admissible pair (a, b) with b < ∞. Moreover, un → u in La([0, T ], H−γa,bb ) as
n→∞. In particular, un → u in C([0, T ], Hγ−ε) for all 0 < ε < γ.

iii. Let β > γ be such that if ν is not an odd integer, dβe ≤ ν. If ψ ∈ Hβ, then u ∈
C([0, T ∗), Hβ).

The local well-posedness in Sobolev spaces for the nonlinear Schrödinger-type equation in the
case σ ∈ (0, 2)\{1} was first established by Hong-Sire in [HS15]. Theorem 5.1.1 improves the one
in [HS15] at the point that Hong-Sire only give the local well-posedness for ν ≥ 2 when d = 1 and
ν ≥ 3 when d ≥ 2. This result also covers the one in [CHKL15] when d = 1 and in [GH13] when
d ≥ 2, where the authors considered the cubic Schrödinger-type equation with σ ∈ (1, 2).
Proof of Theorem 5.1.1. We follow the standard process (see e.g. [Caz03, Chapter 4] or [BGT04])
by using the fixed point argument in a suitable Banach space. Let p be as in (5.1.2). We then
choose q ∈ [2,∞) such that

2
p

+ d

q
≤ d

2 .

Step 1. Existence. Let us consider

X :=
{
u ∈ L∞(I,Hγ) ∩ Lp(I,Hγ−γp,q

q ) | ‖u‖L∞(I,Hγ) + ‖u‖
Lp(I,Hγ−γp,qq ) ≤M

}
,

equipped with the distance

d(u, v) := ‖u− v‖L∞(I,L2) + ‖u− v‖
Lp(I,H−γp,qq ),

where I = [0, T ] and M,T > 0 to be chosen later. The persistence of regularity (see e.g. [Caz03,
Theorem 1.2.5]) shows that (X, d) is a complete metric space. By the Duhamel formula, it suffices
to prove that the functional

Φ(u)(t) = eit|∇|
σ

ψ + iµ

∫ t

0
ei(t−s)|∇|

σ

|u(s)|ν−1u(s)ds (5.1.3)

is a contraction on (X, d). The local Strichartz estimate (1.1.18) gives

‖Φ(u)‖L∞(I,Hγ) + ‖Φ(u)‖
Lp(I,Hγ−γp,qq ) . ‖ψ‖Hγ + ‖F (u)‖L1(I,Hγ),

‖Φ(u)− Φ(v)‖L∞(I,L2) + ‖Φ(u)− Φ(v)‖
Lp(I,H−γp,qq ) . ‖F (u)− F (v)‖L1(I,L2),

where F (u) = |u|ν−1u. By our assumptions on ν, Corollary 5.0.5 gives

‖F (u)‖L1(I,Hγ) . ‖u‖ν−1
Lν−1(I,L∞)‖u‖L∞(I,Hγ) . T

1− ν−1
p ‖u‖ν−1

Lp(I,L∞)‖u‖L∞(I,Hγ), (5.1.4)

‖F (u)− F (v)‖L1(I,L2) .
(
‖u‖ν−1

Lν−1(I,L∞) + ‖v‖ν−1
Lν−1(I,L∞)

)
‖u− v‖L∞(I,L2)

. T 1− ν−1
p

(
‖u‖ν−1

Lp(I,L∞) + ‖v‖ν−1
Lp(I,L∞)

)
‖u− v‖L∞(I,L2). (5.1.5)

Using that γ − γp,q > d/q, the Sobolev embedding implies Lp(I,Hγ−γp,q
q ) ⊂ Lp(I, L∞). Thus, we

get

‖Φ(u)‖L∞(I,Hγ) + ‖Φ(u)‖
Lp(I,Hγ−γp,qq ) . ‖ψ‖Hγ + T 1− ν−1

p ‖u‖ν−1
Lp(I,Hγ−γp,qq )

‖u‖L∞(I,Hγ),

and
d(Φ(u),Φ(v)) . T 1− ν−1

p

(
‖u‖ν−1

Lp(I,Hγ−γp,qq )
+ ‖v‖ν−1

Lp(I,Hγ−γp,qq )

)
‖u− v‖L∞(I,L2).
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This shows that for all u, v ∈ X, there exists C > 0 independent of ψ ∈ Hγ such that

‖Φ(u)‖L∞(I,Hγ) + ‖Φ(u)‖
Lp(I,Hγ−γp,qq ) ≤ C‖ψ‖Hγ + CT 1− ν−1

p Mν ,

d(Φ(u),Φ(v)) ≤ CT 1− ν−1
p Mν−1d(u, v).

Therefore, if we set M = 2C‖ψ‖Hγ and choose T > 0 small enough so that CT 1− ν−1
p Mν−1 ≤ 1

2 ,
then X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a
unique u ∈ X so that Φ(u) = u.
Step 2. Uniqueness. Consider u, v ∈ C(I,Hγ) ∩ Lp(I, L∞) two solutions of (NLST). Since the
uniqueness is a local property (see [Caz03, Chapter 4]), it suffices to show u = v for T small. We
have from (5.1.5) that

d(u, v) ≤ CT 1− ν−1
p

(
‖u‖ν−1

Lp(I,L∞) + ‖v‖ν−1
Lp(I,L∞)

)
d(u, v).

We see that if T > 0 is small enough, then

d(u, v) ≤ 1
2d(u, v) or u = v.

Step 3. Item i. Since the time of existence constructed in Step 1 only depends on ‖ψ‖Hγ . The
blowup alternative follows by standard argument (see again [Caz03, Chapter 4]).
Step 4. Item ii. Let ψn → ψ in Hγ and C, T = T (ψ) be as in Step 1. Set M = 4C‖ψ‖Hγ . It
follows that 2C‖ψn‖Hγ ≤ M for sufficiently large n. Thus the solution un constructed in Step 1
belongs to X with T = T (ψ) for n large enough. We have from Strichartz estimate (1.1.18) and
(5.1.4) that

‖u‖
La(I,H

γ−γa,b
b

)
. ‖ψ‖Hγ + T 1− ν−1

p ‖u‖ν−1
Lp(I,L∞)‖u‖L∞(I,Hγ),

provided that (a, b) is Schrödinger admissible and b < ∞. This shows the boundedness of un in
La(I,Hγ−γa,b

b ). We also have from (5.1.5) and the choice of T that

d(un, u) ≤ C‖ψn − ψ‖L2 + 1
2d(un, u) or d(un, u) ≤ 2C‖ψn − ψ‖L2 .

This yields that un → u in L∞(I, L2) ∩ Lp(I,H−γp,qq ). Strichartz estimate (1.1.18) again implies
that un → u in La(I,H−γa,bb ) for any Schrödinger admissible pair (a, b) with b <∞. The conver-
gence in C(I,Hγ−ε) follows from the boundedness in L∞(I,Hγ), the convergence in L∞(I, L2)
and that ‖u‖Hγ−ε ≤ ‖u‖

1− ε
γ

Hγ ‖u‖
ε
γ

L2 .
Step 5. Item iii. If ψ ∈ Hβ for some β > γ satisfying dβe ≤ ν if ν > 1 is not an odd integer,
then Step 1 shows the existence of Hβ solution defined on some maximal interval [0, T ). Since Hβ

solution is also a Hγ solution, thus T ≤ T ∗. Suppose that T < T ∗. Then the unitary property of
eit|∇|

σ and Corollary 5.0.5 imply that

‖u(t)‖Hβ ≤ ‖ψ‖Hβ + C

∫ t

0
‖u(s)‖ν−1

L∞ ‖u(s)‖Hβds,

for all 0 ≤ t < T . The Gronwall’s inequality then gives

‖u(t)‖Hβ ≤ ‖ψ‖Hβ exp
(
C

∫ t

0
‖u(s)‖ν−1

L∞ ds
)
,

for all 0 ≤ t < T . Using the fact that u ∈ Lν−1
loc ([0, T ∗), L∞), we see that lim sup ‖u(t)‖Hβ <∞ as

t→ T which is a contradiction to the blowup alternative in Hβ . �
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Remark 5.1.2. If we assume that ν > 1 is an odd integer or

dγe ≤ ν − 1 (5.1.6)

otherwise, then the continuous dependence holds in C([0, T ], Hγ). Indeed, if the above condition
holds true, then the continuous dependence holds in C(I,Hγ). To see this, we consider X as
above equipped with the following metric

d(u, v) := ‖u− v‖L∞(I,Hγ) + ‖u− v‖
Lp(I,Hγ−γp,qq ).

By Item ii of Corollary 5.0.5, we have

‖F (u)− F (v)‖L1(I,Hγ) . (‖u‖ν−1
Lν−1(I,L∞) + ‖v‖ν−1

Lν−1(I,L∞))‖u− v‖L∞(I,Hγ)

+ (‖u‖ν−2
Lν−1(I,L∞) + ‖v‖ν−2

Lν−1(I,L∞))(‖u‖L∞(I,Hγ) + ‖v‖L∞(I,Hγ))‖u− v‖Lν−1(I,L∞).

Using the Sobolev embedding, we see that for all u, v ∈ X,

d(Φ(u),Φ(v)) . T 1− ν−1
p Mν−1d(u, v).

Therefore, the continuity in C(I,Hγ) follows as in Step 4.
Proposition 5.1.3. Let  σ ∈ (2/3, 1) when d = 1,

σ ∈ (1, 2) when d = 2,
σ ∈ (3/2, 2) when d = 3.

(5.1.7)

and ν > 1 be such that σ/2 > γc, and also, if ν is not an odd integer, dσ/2e ≤ ν. Then for any
ψ ∈ Hσ/2, the solution to (NLST) given in Theorem 5.1.1 can be extended to the whole R if one
of the following is satisfied:

i. µ = 1.
ii. µ = −1, ν < 1 + 2σ/d.
iii. µ = −1, ν = 1 + 2σ/d and ‖ψ‖L2 is small.
iv. µ = −1 and ‖ψ‖Hσ/2 is small.

Proof. The assumption (5.1.7) allows us to apply Theorem 5.1.1 with γ = σ/2 and obtain the
local well-posedness in Hσ/2. We now prove the global extension using the blowup alternative.
Item i follows from the conservation of mass and energy. For Item ii and Item iii, we firstly use
Gagliardo-Nirenberg’s inequality (see e.g. [Tao06, Proposition A.3]) with the fact that

1
ν + 1 = 1

2 −
θσ

2d or θ = d(ν − 1)
σ(ν + 1)

and the conservation of mass to get

‖u(t)‖ν+1
Lν+1 . ‖|∇|σ/2u(t)‖

d(ν−1)
σ

L2 ‖u(t)‖ν+1− d(ν−1)
σ

L2 = ‖u(t)‖
d(ν−1)
σ

Ḣσ/2 ‖ψ‖
ν+1− d(ν−1)

σ

L2 .

Note that here the assumption ν ≤ 1 + 2σ/d ensures that θ ∈ (0, 1). The conservation of mass
then gives

1
2‖u(t)‖2

Ḣσ/2 = E(u(t)) + 1
ν + 1‖u(t)‖ν+1

Lν+1 . E(ψ) + 1
ν + 1‖u(t)‖

d(ν−1)
σ

Ḣσ/2 ‖ψ‖
ν+1− d(ν−1)

σ

L2 .

If ν ∈ (1, 1 + 2σ/d) or d(ν−1)
σ ∈ (0, 2), then ‖u(t)‖Ḣσ/2 ≤ C. This together with the conservation

of mass implies the boundedness of ‖u(t)‖Hσ/2 and Item ii follows. Item iii is treated similarly
with ‖ψ‖L2 is small. It remains to show Item iv. By Sobolev embedding with 1

2 ≤
1

ν+1 + σ
2d , we
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have

1
2‖u(t)‖2

Ḣσ/2 = E(u(t)) + 1
ν + 1‖u(t)‖ν+1

Lν+1 ≤ E(ψ) + C

ν + 1‖u(t)‖ν+1
Hσ/2 , (5.1.8)

for all t ∈ [0, T ?). Similarly, we use the Sobolev embedding to bound

E(ψ) ≤ 1
2‖ψ‖

2
Hσ/2 + C

ν + 1‖ψ‖
ν+1
Hσ/2 .

Since ν + 1 > 2, it follows that E(ψ) ≤ ‖ψ‖2
Hσ/2 provided ‖ψ‖Hσ/2 is small enough. Denote

τ := sup {t ∈ [0, T ?) : ‖u(s)‖Hσ/2 ≤ 2‖u0‖Hσ/2 , ∀s ≤ t} .

We want to show τ = T ?. Indeed, if τ < T ?, then by the continuity of t 7→ ‖u(t)‖Hσ/2 , we have
‖u(τ)‖Hσ/2 = 2‖u0‖Hσ/2 . Inserting it into (5.1.8), we get

2‖u0‖2Hσ/2 ≤ E(u0) + C

ν + 1(2‖u0‖Hσ/2)ν+1 ≤ ‖u0‖2Hσ/2 + C

ν + 1(2‖u0‖Hσ/2)ν+1.

This inequality is not possible for ‖u0‖Hσ/2 is small enough. The proof is complete.

5.1.2 Local well-posedness in the critical case
We now turn to the local well-posedness and scattering with small data for (NLST) in the

critical case.
Theorem 5.1.4. Let σ ∈ (0, 2)\{1} and{

ν > 5 when d = 1,
ν > 3 when d ≥ 2 (5.1.9)

be such that γc ≥ 0, and also, if ν is not an odd integer, (5.0.2). Then for all ψ ∈ Hγc , there exist
T ∗ ∈ (0,∞] and a unique solution to (NLST) satisfying

u ∈ C([0, T ∗), Hγc) ∩ Lploc([0, T ∗), Bγc−γp,q
q ),

where p = 4, q = ∞ when d = 1; 2 < p < ν − 1, q = p? = 2p/(p − 2) when d = 2 and
p = 2, q = 2? = 2d/(d − 2) when d ≥ 3. Moreover, if ‖ψ‖Ḣγc < ε for some ε > 0 small enough,
then T ∗ =∞ and the solution is scattering in Hγc , i.e. there exists ψ+ ∈ Hγc such that

lim
t→+∞

‖u(t)− eit|∇|
σ

ψ+‖Hγc = 0.

This theorem is a modification of Theorem 1.2 and Theorem 1.3 in [HS15] where the authors
proved the global well-posedness and scattering for small inhomogeneous data. Note that for
σ ∈ (0, 2), Strichartz estimates for the unitary group eit|∇|

σ have a loss of derivatives. In the
sub-critical case γ > γc, the derivative loss is compensated for by using Sobolev embeddings. In
the critical case γ = γc, the Sobolev embedding does not help. To remove the derivative loss,
we use Strichartz norms localized in dyadic pieces, and then sum up in a `2-fashion. It needs a
delicate estimate on Lν−1

t L∞x (see [HS15, Lemma 3.5]). The range ν ∈ (1, 5] when d = 1 and
ν ∈ (1, 3] still remains open, and it requires another technique rather than Strichartz estimate.

In order to prove Theorem 5.1.4, we need the following estimates which control the nonlinearity.
Lemma 5.1.5 ([HS15]). Let σ ∈ (0, 2)\{1}, ν be as in (5.1.9), γc as in (5.0.1). Then we have

‖u‖ν−1
Lν−1(R,L∞) .


‖u‖4

L4(R,Ḃγc−γ4,∞
∞ )

‖u‖ν−5
L∞(R,Ḃγc

2 ) when d = 1,
‖u‖p

Lp(R,Ḃ
γc−γp,p?
p?

)
‖u‖ν−1−p

L∞(R,Ḃγc
2 ) where ν − 1 > p > 2 when d = 2,

‖u‖2
L2(R,Ḃ

γc−γ2,2?
2? )

‖u‖ν−3
L∞(R,Ḃγc

2 ) when d ≥ 3,
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where p? = 2p/(p− 2) and 2? = 2d/(d− 2).
This result is a slight modification of [HS15, Lemma 3.5] which generalizes Lemma 3.1 in

[CKSTT5]. The main difference is the exponent power in R2. For the reader’s convenience, we
recall some details.
Proof of Lemma 5.1.5. The proof is essentially given in [HS15, Lemma 3.5] which uses a trick of
[CKSTT5]. For the reader’s convenience, we only give the details for d = 2. The case d = 1 and
d ≥ 3 are treated similarly. We refer to [HS15] for the proof when d ≥ 3 (see also Lemma 5.2.3).
By interpolation, we can assume that ν − 1 = m/n > 2,m, n ∈ N with (ν − 1 − p)n ≥ 1. We
proceed as in [HS15] and set

cN (t) = Nγc−γp,p?‖PNu(t)‖Lp? (R2), c′N (t) = Nγc‖PNu(t)‖L2(R2).

Remark that in this case (p, p?) is a Schrödinger admissible pair, γc = 1 − σn/m and γp,p? =
1− 2/p? − σ/p. By Bernstein’s inequality, we have

‖PNu(t)‖L∞(R2) . N
σn
m −

σ
p cN (t), (5.1.10)

‖PNu(t)‖L∞(R2) . N
σn
m c′N (t).

This implies that for θ ∈ (0, 1) which will be chosen later,

‖PNu(t)‖L∞(R2) . N
σn
m −

σθ
p (cN (t))θ(c′N (t))1−θ. (5.1.11)

We next use

A(t) :=
( ∑
N∈2Z

‖PNu(t)‖L∞(R2)

)m
.

∑
N1≥···≥Nm

m∏
j=1
‖PNju(t)‖L∞(R2).

Here the first equality follows from the Sobolev embedding with the fact that (γc − γp,p?)p? =
2 + (σ/p − σ/(ν − 1))p? > 2. Estimating the n highest frequencies by (5.1.10) and the rest by
(5.1.11), we get

A(t) .
∑

N1≥···≥Nm

( n∏
j=1

N
σn
m −

σ
p

j cNj (t)
)( m∏

j=n+1
N

σn
m −

σθ
p

j (cNj (t))θ(c′Nj (t))
1−θ
)
.

For an arbitrary δ > 0, we set

c̃N (t) =
∑
N ′∈2Z

min(N/N ′, N ′/N)δcN ′(t), c̃′N (t) =
∑
N ′∈2Z

min(N/N ′, N ′/N)δc′N ′(t).

Using the fact that cN (t) ≤ c̃N (t) and c̃Nj (t) . (N1/Nj)δ c̃N1(t) for j = 2, ...,m and similarly for
primes, we see that

A(t) .
∑

N1≥···≥Nm

( n∏
j=1

N
σn
m −

σ
p

j (N1/Nj)δ c̃N1(t)
)( m∏

j=n+1
N

σn
m −

σθ
p

j (N1/Nj)δ(c̃N1(t))θ(c̃′N1
(t))1−θ

)
.

We can rewrite the above quantity in the right hand side as

∑
N1≥···≥Nm

( m∏
j=n+1

N
σn
m −

σθ
p −δ

j

)( n∏
j=2

N
σn
m −

σ
p−δ

j

)
N

σn
m −

σ
p+(m−1)δ

1 (c̃N1(t))n+(m−n)θ(c̃′N1
(t))(m−n)(1−θ).

Next, we choose θ = (p− 1)/(ν − 2) ∈ (0, 1) and δ > 0 such that

σn

m
− σθ

p
− δ > 0, σn

m
− σ

p
+ (m− 1)δ < 0 or δ <

σ(m− np)
pm(m− 1) .
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Here condition ν > 3 allows us to choose p > 2 such that m − np > 0. Summing in Nm, then in
Nm−1,..., then in N2, we have

A(t) .
∑
N1∈2Z

(c̃N1(t))pn(c̃′N1
(t))(ν−1−p)n.

The Hölder inequality with the fact that (ν − 1− p)n ≥ 1 implies

A(t) . ‖(c̃(t))pn‖`2(2Z)‖(c̃′(t))(ν−1−p)n‖`2(2Z)

= ‖c̃(t)‖pn
`2pn(2Z)‖c̃

′(t)‖(ν−1−p)n
`2(ν−1−p)n(2Z) ≤ ‖c̃(t)‖

pn
`2(2Z)‖c̃

′(t)‖(ν−1−p)n
`2(2Z) ,

where ‖c̃(t)‖`q(2Z) :=
(∑

N∈2Z |c̃N (t)|q
)1/q

and similarly for prime. The Minkowski inequality
then implies

A(t) . ‖c(t)‖pn
`2(2Z)‖c

′(t)‖(ν−1−p)n
`2(2Z) .

This implies that A(t) < ∞ for amost every where t, hence that
∑
N ‖PNu(t)‖L∞(Rd) < ∞.

Therefore
∑
N PNu(t) converges in L∞(Rd). Since it converges to u in the ditribution sense, so

the limit is u(t). Thus

‖u‖ν−1
Lν−1(R,L∞(R2)) =

∫
R
‖u(t)‖m/nL∞(R2)dt .

∫
R
‖c(t)‖p

`2(2Z)‖c
′(t)‖ν−1−p

`2(2Z) dt

. ‖c‖p
LpR`

2(2Z)‖c
′‖ν−1−p
L∞R `2(2Z) = ‖u‖p

Lp(R,Ḃ
γc−γp,p?
p?

(R2))
‖u‖ν−1−p

L∞(R,Ḃγc
2 (R2)).

The proof is complete. �
Proof of Theorem 5.1.4. As in the proof of Theorem 5.1.1, we proceed in several steps.
Step 1. Existence. We only treat for d ≥ 3, the ones for d = 1, d = 2 are completely similar. Let
us consider

X :=
{
u ∈ L∞(I,Hγc) ∩ L2(I,Bγc−γ2,2?

2? ) | ‖u‖L∞(I,Ḣγc ) ≤M, ‖u‖
L2(I,Ḃ

γc−γ2,2?
2? )

≤ N
}
,

equipped with the distance

d(u, v) := ‖u− v‖L∞(I,L2) + ‖u− v‖
L2(I,Ḃ

−γ2,2?
2? )

,

where I = [0, T ] and T,M,N > 0 will be chosen later. One can check (see again [CW90] or [Caz03,
Chapter 4]) that (X, d) is a complete metric space. Using the Duhamel formula

Φ(u)(t) = eit|∇|
σ

ψ + iµ

∫ t

0
ei(t−s)|∇|

σ

|u(s)|ν−1u(s)ds =: uhom(t) + uinh(t), (5.1.12)

the Strichartz estimate (1.1.4) yields

‖uhom‖
L2(I,Ḃ

γc−γ2,2?
2? )

. ‖ψ‖Ḣγc .

A similar estimate holds for ‖uhom‖L∞(I,Ḣγc ). We see that ‖uhom‖
L2(I,Ḃ

γc−γ2,2?
2? )

≤ ε for some
ε > 0 small enough which will be chosen later, provided that either ‖ψ‖Ḣγc is small or it is
satisfied for some T > 0 small enough. Therefore, we can take T = ∞ in the first case and T be
this small time in the second. On the other hand, using again (1.1.4), we have

‖uinh‖
L2(I,Ḃ

γc−γ2,2?
2? )

. ‖F (u)‖L1(I,Ḣγc ).
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The same estimate holds for ‖uinh‖L∞(I,Ḣγc ). Corollary 5.0.5 and Lemma 5.1.5 give

‖F (u)‖L1(I,Ḣγc ) . ‖u‖
ν−1
Lν−1(I,L∞)‖u‖L∞(I,Ḣγc ) . ‖u‖

2
L2(I,Ḃ

γc−γ2,2?
2? )

‖u‖ν−2
L∞(I,Ḣγc ). (5.1.13)

Similarly, we have

‖F (u)− F (v)‖L1(I,L2) .
(
‖u‖ν−1

Lν−1(I,L∞) + ‖v‖ν−1
Lν−1(I,L∞)

)
‖u− v‖L∞(I,L2) (5.1.14)

.
(
‖u‖2

L2(I,Ḃ
γc−γ2,2?
2? )

‖u‖ν−3
L∞(I,Ḣγc ) + ‖v‖2

L2(I,Ḃ
γc−γ2,2?
2? )

‖v‖ν−3
L∞(I,Ḣγc )

)
‖u− v‖L∞(I,L2).

This implies for all u, v ∈ X, there exists C > 0 independent of ψ ∈ Hγc such that

‖Φ(u)‖
L2(I,Ḃ

γc−γ2,2?
2? )

≤ ε+ CN2Mν−2,

‖Φ(u)‖L∞(I,Ḣγc ) ≤ C‖ψ‖Ḣγc + CN2Mν−2,

d(Φ(u),Φ(v)) ≤ CN2Mν−3d(u, v).

Now by setting N = 2ε and M = 2C‖ψ‖Ḣγc and choosing ε > 0 small enough such that
CN2Mν−3 ≤ min{1/2, ε/M}, we see that X is stable by Φ and Φ is a contraction on X. By
the fixed point theorem, there exists a unique solution u ∈ X to (NLST). Note that when ‖ψ‖Ḣγc

is small enough, we can take T =∞.
Step 2. Uniqueness. The uniqueness in C∞(I,Hγc)∩L2(I,Bγc−γ2,2?

2? ) follows as in Step 2 of the
proof of Theorem 5.1.1 using (5.1.14). Here ‖u‖

L2(I,Ḃ
γc−γ2,2?
2? )

can be small as T is small.
Step 3. Scattering. The global existence when ‖ψ‖Ḣγc is small is given in Step 1. It remains to
show the scattering property. Thanks to (5.1.13), we see that

‖e−it2|∇|
σ

u(t2)− e−it1|∇|
σ

u(t1)‖Ḣγc =
∥∥∥iµ∫ t2

t1

e−is|∇|
σ

(|u|ν−1u)(s)ds
∥∥∥
Ḣγc

≤ ‖F (u)‖L1([t1,t2],Ḣγc ) . ‖u‖
2
L2([t1,t2],Ḃ

γc−γ2,2?
2? )

‖u‖ν−2
L∞([t1,t2],Ḣγc ) → 0 (5.1.15)

as t1, t2 → +∞. We have from (5.1.14) that

‖e−it2|∇|
σ

u(t2)− e−it1|∇|
σ

u(t1)‖L2 . ‖u‖2
L2([t1,t2],Ḃ

γc−γ2,2?
2? )

‖u‖ν−3
L∞([t1,t2],Ḣγc )‖u‖L∞([t1,t2],L2),

(5.1.16)

which also tends to zero as t1, t2 → +∞. This implies that the limit

ψ+ := lim
t→+∞

e−it|∇|
σ

u(t)

exists in Hγc . Moreover, we have

u(t)− eit|∇|
σ

ψ+ = −iµ
∫ +∞

t

ei(t−s)|∇|
σ

F (u(s))ds.

The unitary property of eit|∇|σ in L2, (5.1.15) and (5.1.16) imply that ‖u(t)− eit|∇|σψ+‖Hγc → 0
when t→ +∞. This completes the proof of Theorem 5.1.4. �

5.2 Local well-posedness for nonlinear half-wave equation
in Sobolev spaces

5.2.1 Local well-posedness in the subcritical case
We have the following local well-posedness in the subcritical case.
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Theorem 5.2.1. Let γ ≥ 0 and ν > 1 be such that{
γ > 1− 1/max(ν − 1, 4) when d = 2,
γ > d/2− 1/max(ν − 1, 2) when d ≥ 3, (5.2.1)

and also, if ν is not an odd integer, (5.0.2). Let{
p > max(ν − 1, 4) when d = 2
p > max(ν − 1, 2) when d ≥ 3 (5.2.2)

be such that γ > d
2 −

1
p . Then for all ψ ∈ Hγ , there exist T ∗ ∈ (0,∞] and a unique solution to

(NLHW) satisfying
u ∈ C([0, T ∗), Hγ) ∩ Lploc([0, T ∗), L∞).

Moreover, the following properties hold:
(i) If T ∗ <∞, then ‖u(t)‖Hγ →∞ as t→ T ∗.
(ii) u depends continuously on ψ in the following sense. There exists T ∈ (0, T ∗) such that

if ψn → ψ in Hγ and if un denotes the solution of (NLHW) with initial data ψn, then
0 < T < T ∗(ψn) for all n sufficiently large and un is bounded in La([0, T ], Hγ−γa,b

b ) for any
wave admissible pair (a, b) with b <∞. Moreover, un → u in La([0, T ], H−γa,bb ) as n→∞.
In particular, un → u in C([0, T ], Hγ−ε) for all 0 < ε < γ.

(iii) Let β > γ be such that if ν is not an odd integer, dβe ≤ ν. If ψ ∈ Hβ, then u ∈
C([0, T ∗), Hβ).

As in Remark 5.1.2, the continuous dependence can be improved to hold in C([0, T ], Hγ) if we
assume that ν > 1 is an odd integer or dγe ≤ ν − 1 otherwise.
Proof of Theorem 5.2.1. The proof is similar to the one for Theorem 5.1.4 by using Strichartz
estimates for the linear half-wave equation. For the reader’s convenience, we give a sketch of the
proof for the local existence. Let p be as in (5.2.2) and then choose q ∈ [2,∞) such that

2
p

+ d− 1
q
≤ d− 1

2 .

Let us consider

X :=
{
u ∈ L∞(I,Hγ) ∩ Lp(I,Hγ−γp,q

q ) | ‖u‖L∞(I,Hγ) + ‖u‖
Lp(I,Hγ−γp,qq ) ≤M

}
,

equipped with the distance

d(u, v) := ‖u− v‖L∞(I,L2) + ‖u− v‖
Lp(I,H−γp,qq ),

where I = [0, T ] and M,T > 0 to be chosen later. By the Duhamel formula, it suffices to prove
that the functional

Φ(u)(t) = eit|∇|ψ + iµ

∫ t

0
ei(t−s)|∇||u(s)|ν−1u(s)ds

is a contraction on (X, d). The Strichartz estimate (1.2.10) yields

‖Φ(u)‖L∞(I,Hγ) + ‖Φ(u)‖
Lp(I,Hγ−γp,qq ) . ‖ψ‖Hγ + ‖F (u)‖L1(I,Hγ),

‖Φ(u)− Φ(v)‖L∞(I,L2) + ‖Φ(u)− Φ(v)‖
Lp(I,H−γp,qq ) . ‖F (u)− F (v)‖L1(I,L2),
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where F (u) = |u|ν−1u and similarly for F (v). By our assumptions on ν, Corollary 5.0.5 gives

‖F (u)‖L1(I,Hγ) . ‖u‖ν−1
Lν−1(I,L∞)‖u‖L∞(I,Hγ) . T

1− ν−1
p ‖u‖ν−1

Lp(I,L∞)‖u‖L∞(I,Hγ), (5.2.3)

‖F (u)− F (v)‖L1(I,L2) .
(
‖u‖ν−1

Lν−1(I,L∞) + ‖v‖ν−1
Lν−1(I,L∞)

)
‖u− v‖L∞(I,L2)

. T 1− ν−1
p

(
‖u‖ν−1

Lp(I,L∞) + ‖v‖ν−1
Lp(I,L∞)

)
‖u− v‖L∞(I,L2). (5.2.4)

The Sobolev embedding with the fact that γ − γp,q > d/q implies Lp(I,Hγ−γp,q
q ) ⊂ Lp(I, L∞).

Thus, we get

‖Φ(u)‖L∞(I,Hγ) + ‖Φ(u)‖
Lp(I,Hγ−γp,qq ) . ‖ψ‖Hγ + T 1− ν−1

p ‖u‖ν−1
Lp(I,Hγ−γp,qq )

‖u‖L∞(I,Hγ),

and
d(Φ(u),Φ(v)) . T 1− ν−1

p

(
‖u‖ν−1

Lp(I,Hγ−γp,qq )
+ ‖v‖ν−1

Lp(I,Hγ−γp,qq )

)
‖u− v‖L∞(I,L2).

This shows that for all u, v ∈ X, there exists C > 0 independent of ψ ∈ Hγ and T such that

‖Φ(u)‖L∞(I,Hγ) + ‖Φ(u)‖
Lp(I,Hγ−γp,qq ) ≤ C‖ψ‖Hγ + CT 1− ν−1

p Mν ,

d(Φ(u),Φ(v)) ≤ CT 1− ν−1
p Mν−1d(u, v).

Therefore, if we set M = 2C‖ψ‖Hγ and choose T > 0 small enough so that CT 1− ν−1
p Mν−1 ≤ 1

2 ,
then X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a
unique u ∈ X so that Φ(u) = u. �

5.2.2 Local well-posedness in the critical case
We also have the following local well-posedness and scattering with small data for (NLHW)

which is similar to (NLST) with σ ∈ (0, 2)\{1} in the critical case.
Theorem 5.2.2. Let {

ν > 5 when d = 2,
ν > 3 when d ≥ 3, (5.2.5)

and also, if ν is not an odd integer, (5.0.2). Then for all ψ ∈ Hγc , there exist T ∗ ∈ (0,∞] and a
unique solution to (NLHW) satisfying

u ∈ C([0, T ∗), Hγc) ∩ Lploc([0, T ∗), Bγc−γp,q
q ),

where p = 4, q =∞ when d = 2; 2 < p < ν − 1, q = p? = 2p/(p− 2) when d = 3; p = 2, q = 2? =
2(d− 1)/(d− 3) when d ≥ 4. Moreover, if ‖ψ‖Ḣγc < ε for some ε > 0 small enough, then T ∗ =∞
and the solution is scattering in Hγc , i.e. there exists ψ+ ∈ Hγc such that

lim
t→+∞

‖u(t)− eit|∇|ψ+‖Hγc = 0.

In order to prove Theorem 5.2.2, we need the following estimates which control the nonlinearity.
Lemma 5.2.3. Let ν be as in Theorem 5.2.2 and γc as in (5.0.1). Then

‖u‖ν−1
Lν−1(R,L∞) .


‖u‖4

L4(R,Ḃγc−γ4,∞
∞ )

‖u‖ν−5
L∞(R,Ḃγc

2 ) when d = 2,
‖u‖p

Lp(R,Ḃ
γc−γp,p?
p?

)
‖u‖ν−1−p

L∞(R,Ḃγc
2 ) where 2 < p < ν − 1 when d = 3,

‖u‖2
L2(R,Ḃ

γc−γ2,2?
2? )

‖u‖ν−3
L∞(R,Ḃγc

2 ) when d ≥ 4,

where p? = 2p/(p− 2) and 2? = 2(d− 1)/(d− 3).
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5.2. Local well-posedness nonlinear half-wave equation

The above lemma follows the same spirit as [HS15, Lemma 3.5] using the argument of [CKSTT5,
Lemma 3.1]. The proof is similar to Lemma 5.1.5, we thus omit the details.
Proof of Theorem 5.2.2. As before, we use the standard contraction mapping argument. The proof
is done in several steps.
Step 1. Existence. We only treat for d ≥ 4, the ones for d = 2, d = 3 are completely similar. Let
us consider

X :=
{
u ∈ L∞(I,Hγc) ∩ L2(I,Bγc−γ2,2?

2? ) | ‖u‖L∞(I,Ḣγc ) ≤M, ‖u‖
L2(I,Ḃ

γc−γ2,2?
2? )

≤ N
}
,

equipped with the distance

d(u, v) := ‖u− v‖L∞(I,L2) + ‖u− v‖
L2(I,Ḃ

−γ2,2?
2? )

,

where I = [0, T ] and T,M,N > 0 will be chosen later. One can check (see e.g. [CW90] or [Caz03,
Chapter 4]) that (X, d) is a complete metric space. We will show that the functional

Φ(u)(t) = eit|∇|ψ + iµ

∫ t

0
ei(t−s)|∇||u(s)|ν−1u(s)ds =: uhom(t) + uinh(t),

is a contraction on (X, d). The Strichartz estimate (1.2.3) yields

‖uhom‖
L2(I,Ḃ

γc−γ2,2?
2? )

. ‖ψ‖Ḣγc . (5.2.6)

We see that ‖uhom‖
L2(I,Ḃ

γc−γ2,2?
2? )

≤ ε for some ε > 0 small enough which will be chosen later,
provided that either ‖ψ‖Ḣγc is small or it is satisfied for some T > 0 small enough by the dominated
convergence theorem. Therefore, we can take T = ∞ in the first case and T be this small time
in the second. A similar estimate to (5.2.6) holds for ‖uhom‖L∞(I,Ḣγc ). On the other hand, using
again (1.2.3), we have

‖uinh‖
L2(I,Ḃ

γc−γ2,2?
2? )

. ‖F (u)‖L1(I,Ḣγc ).

The same estimate holds for ‖uinh‖L∞(I,Ḣγc ). Corollary 5.0.5 and Lemma 5.2.3 give

‖F (u)‖L1(I,Ḣγc ) . ‖u‖
ν−1
Lν−1(I,L∞)‖u‖L∞(I,Ḣγc ) . ‖u‖

2
L2(I,Ḃ

γc−γ2,2?
2? )

‖u‖ν−2
L∞(I,Ḣγc ). (5.2.7)

Similarly, we have

‖F (u)− F (v)‖L1(I,L2) .
(
‖u‖ν−1

Lν−1(I,L∞) + ‖v‖ν−1
Lν−1(I,L∞)

)
‖u− v‖L∞(I,L2) (5.2.8)

.
(
‖u‖2

L2(I,Ḃ
γc−γ2,2?
2? )

‖u‖ν−3
L∞(I,Ḣγc ) + ‖v‖2

L2(I,Ḃ
γc−γ2,2?
2? )

‖v‖ν−3
L∞(I,Ḣγc )

)
‖u− v‖L∞(I,L2).

This implies for all u, v ∈ X, there exists C > 0 independent of ψ ∈ Hγc such that

‖Φ(u)‖
L2(I,Ḃ

γc−γ2,2?
2? )

≤ ε+ CN2Mν−2,

‖Φ(u)‖L∞(I,Ḣγc ) ≤ C‖ψ‖Ḣγc + CN2Mν−2,

d(Φ(u),Φ(v)) ≤ CN2Mν−3d(u, v).

Now by setting N = 2ε and M = 2C‖ψ‖Ḣγc and choosing ε > 0 small enough such that
CN2Mν−3 ≤ min{1/2, ε/M}, we see that X is stable by Φ and Φ is a contraction on X. By
the fixed point theorem, there exists a unique solution u ∈ X to (NLHW). Note that when
‖ψ‖Ḣγc is small enough, we can take T =∞.
Step 2. Uniqueness. The uniqueness in C∞(I,Hγc)∩L2(I,Bγc−γ2,2?

2? ) follows as in Step 2 of the
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proof of Theorem 5.2.1 using (5.2.8). Here ‖u‖
L2(I,Ḃ

γc−γ2,2?
2? )

can be small as T is small.
Step 3. Scattering. The global existence for ‖ψ‖Ḣγc small is given in Step 1. It remains to show
the scattering property. Thanks to (5.2.7), we see that

‖e−it2|∇|u(t2)− e−it1|∇|u(t1)‖Ḣγc =
∥∥∥iµ∫ t2

t1

e−is|∇|(|u|ν−1u)(s)ds
∥∥∥
Ḣγc

≤ ‖F (u)‖L1([t1,t2],Ḣγc ) . ‖u‖
2
L2([t1,t2],Ḃ

γc−γ2,2?
2? )

‖u‖ν−2
L∞([t1,t2],Ḣγc ) → 0 (5.2.9)

as t1, t2 → +∞. We have from (5.2.8) that

‖e−it2|∇|u(t2)− e−it1|∇|u(t1)‖L2 . ‖u‖2
L2([t1,t2],Ḃ

γc−γ2,2?
2? )

‖u‖ν−3
L∞([t1,t2],Ḣγc )‖u‖L∞([t1,t2],L2),

(5.2.10)

which also tends to zero as t1, t2 → +∞. This implies that the limit

ψ+ := lim
t→+∞

e−it|∇|u(t)

exists in Hγc . Moreover, we have

u(t)− eit|∇|ψ+ = −iµ
∫ +∞

t

ei(t−s)|∇|F (u(s))ds.

The unitary property of eit|∇| in L2, (5.2.9) and (5.2.10) imply that ‖u(t) − eit|∇|ψ+‖Hγc → 0
when t→ +∞. This completes the proof of Theorem 5.2.2. �

5.3 Local well-posedness for Schrödinger-type equations in
Sobolev spaces when σ ∈ [2,∞)

In this case, due to better Strichartz estimates, we can obtain the local well-posedness for
(NLST) in Hγ with γ ≥ 0. Our first result concerns the local well-posedness of (NLST) in Hγ

with γ ∈ [0, d/2) in both subcritical and critical cases.
Theorem 5.3.1. Given σ ∈ [2,∞) and ν > 1. Let γ ∈ [0, d/2) be such that γ ≥ γc, and also, if ν
is not an odd integer, (5.0.2). Let

p = 2σ(ν + 1)
(ν − 1)(d− 2γ) , q = d(ν + 1)

d+ (ν − 1)γ . (5.3.1)

Then for all ψ ∈ Hγ , there exist T ∗ ∈ (0,∞] and a unique solution to (NLST) satisfying

u ∈ C([0, T ∗), Hγ) ∩ Lploc([0, T ∗), Hγ
q ).

Moreover, the following properties hold:
i. u ∈ Laloc([0, T ∗), Hγ

b ) for any Schrödinger admissible pair (a, b) with b <∞ and γa,b = 0.
ii. If γ > γc and T ∗ <∞, then ‖u(t)‖Ḣγ →∞ as t→ T ∗.
iii. If γ = γc and T ∗ <∞, then ‖u‖Lp([0,T∗),Hγc

q ) =∞.
iv. u depends continuously on ψ in the following sense. There exists T ∈ (0, T ∗) such that if

ψn → ψ in Hγ and if un denotes the solution of (NLST) with initial data ψn, then 0 < T <
T ∗(ψn) for all n sufficiently large and un is bounded in La([0, T ], Hγ

b ) for any Schrödinger
admissible pair (a, b) with γa,b = 0 and b < ∞. Moreover, un → u in La([0, T ], Lb) as
n→∞. In particular, un → u in C([0, T ], Hγ−ε) for all 0 < ε < γ.

v. If γ = γc and ‖ψ‖Ḣγc < ε for some ε > 0 small enough, then T ∗ = ∞ and the solution is

121



5.3. Local well-posedness nonlinear Schrödinger-type equations

scattering in Hγc , i.e. there exists ψ+ ∈ Hγc such that

lim
t→+∞

‖u(t)− eit|∇|
σ

ψ+‖Hγc = 0.

Proof. Let us firstly comment about the choice of (p, q) given in (5.3.1). It is easy to see that
(p, q) is Schrödinger admissible and γp,q = 0 = γp′,q′ + 4. This allows us to use Strichartz estimate
(1.1.17) for (p, q). Moreover, if we choose (m,n) so that

1
p′

= 1
m

+ ν − 1
p

,
1
q′

= 1
q

+ ν − 1
n

, (5.3.2)

Thanks to this choice of n, we have the Sobolev embedding Ḣγ
q ↪→ Ln since

q ≤ n = dq

d− γq
.

Step 1. Existence. Let us consider

X :=
{
u ∈ Lp(I,Hγ

q ) | ‖u‖Lp(I,Ḣγq ) ≤M
}
,

equipped with the distance
d(u, v) = ‖u− v‖Lp(I,Lq),

where I = [0, T ] and M,T > 0 to be chosen later. It is easy to verify (see e.g. [CW90] or [Caz03,
Chapter 4]) that (X, d) is a complete metric space. By the Duhamel formula, it suffices to prove
that the functional (5.1.3) is a contraction on (X, d).

Let us firstly consider the case γ > γc. In this case, we have 1 < m < p and

1
m
− 1
p

= 1− (ν − 1)(d− 2γ)
2σ =: θ > 0. (5.3.3)

Using Strichartz estimate (1.1.17), we obtain

‖Φ(u)‖Lp(I,Ḣγq ) . ‖ψ‖Ḣγ + ‖F (u)‖Lp′ (I,Ḣγ
q′

),

‖Φ(u)− Φ(v)‖Lp(I,Lq) . ‖F (u)− F (v)‖Lp′ (I,Lq′ ),

where F (u) = |u|ν−1u and similarly for F (v). It then follows from Corollary 5.0.3, (5.3.2), Sobolev
embedding and (5.3.3) that

‖F (u)‖Lp′ (I,Ḣγ
q′

) . T
θ‖u‖ν

Lp(I,Ḣγq ), (5.3.4)

‖F (u)− F (v)‖Lp′ (I,Lq′ ) . T
θ
(
‖u‖ν−1

Lp(I,Ḣγq ) + ‖v‖ν−1
Lp(I,Ḣγq )

)
‖u− v‖Lp(I,Lq). (5.3.5)

This shows that for all u, v ∈ X, there exists C > 0 independent of T and ψ ∈ Hγ such that

‖Φ(u)‖Lp(I,Ḣγq ) ≤ C‖ψ‖Ḣγ + CT θMν , (5.3.6)

d(Φ(u),Φ(v)) ≤ CT θMν−1d(u, v).

If we set M = 2C‖ψ‖Ḣγ and choose T > 0 so that

CT θMν−1 ≤ 1
2 ,

then Φ is a strict contraction on (X, d).
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We now turn to the case γ = γc. Using (5.1.12), we have from Strichartz estimate (1.1.17) that

‖uhom‖Lp(I,Ḣγc
q ) . ‖ψ‖Ḣγc .

This shows that ‖uhom‖Lp(I,Ḣγc
q ) ≤ ε for some ε > 0 small enough provided that T is small or

‖ψ‖Ḣγc is small. We also have from (1.1.17) that

‖uinh‖Lp(I,Ḣγc
q ) . ‖F (u)‖Lp′ (I,Ḣγc

q′
).

Corollary (5.0.3), (5.3.2) and Sobolev embedding (note that in this case m = p) then yield that

‖F (u)‖Lp′ (I,Ḣγc
q′

) . ‖u‖
ν
Lp(I,Ḣγc

q ), (5.3.7)

‖F (u)− F (v)‖Lp′ (I,Lq′ ) .
(
‖u‖ν−1

Lp(I,Ḣγc
q ) + ‖v‖ν−1

Lp(I,Ḣγc
q )

)
‖u− v‖Lp(I,Lq). (5.3.8)

This implies that for all u, v ∈ X, there exists C > 0 independent of T and ψ ∈ Hγc such that

‖Φ(u)‖Lp(I,Ḣγc
q ) ≤ ε+ CMν ,

d(Φ(u),Φ(v)) ≤ CMν−1d(u, v).

If we choose ε and M small so that

CMν−1 ≤ 1
2 , ε+ M

2 ≤M,

then Φ is a contraction on (X, d).
Therefore, in both subcritical and critical cases, Φ has a unique fixed point in X. Moreover,

since ψ ∈ Hγ and u ∈ Lp(I,Hγ
q ), the Strichartz estimate shows that u ∈ C(I,Hγ) (see e.g.

[CW90] or [Caz03, Chapter 4]). This shows the existence of solution u ∈ C(I,Hγ)∩Lp(I,Hγ
q ) to

(NLST). Note that in the case γ = γc, if ‖ψ‖Ḣγc is small enough, then we can take T =∞.
Step 2. Uniqueness. It follows easily from (5.3.5) and (5.3.8) using the fact that ‖u‖Lp(I,Ḣγq ) can
be small if T is small.
Step 3. Item i. Let u ∈ C(I,Hγ)∩Lp(I,Hγ

q ) be a solution to (NLFS) where I = [0, T ] and (a, b)
a Schrödinger admissible pair with b <∞ and γa,b = 0. Then Strichartz estimate (1.1.17) implies

‖u‖La(I,Lb) . ‖ψ‖L2 + ‖F (u)‖Lp′ (I,Lq′ ), (5.3.9)
‖u‖La(I,Ḣγ

b
) . ‖ψ‖Ḣγ + ‖F (u)‖Lp′ (I,Ḣγ

q′
). (5.3.10)

It then follows from (5.3.4) and (5.3.7) that u ∈ La(I,Hγ
b ).

Step 4. Item ii. The blowup alternative in subcritical case is easy since the time of existence
depends only on ‖ψ‖Ḣγ .
Step 5. Item iii. It also follows from a standard argument (see e.g. [CW90]). Indeed, if T ∗ <∞
and ‖u‖Lp([0,T∗),Hγc

q ) < ∞, then Strichartz estimate (1.1.17) implies that u ∈ C([0, T ∗], Hγc).
Thus, one can extend the solution to (NLST) beyond T ∗. It leads to a contradiction with the
maximality of T ∗.
Step 6. Item iv. We use the argument given in [CW90]. From Step 1, in the subcritical case, we
can choose T and M so that the fixed point argument can be carried out on X for any initial data
with Ḣγ norm less than 2‖ψ‖Ḣγ . In the critical case, there exist T,M and an Ḣγc neighborhood U
of ψ such that the fixed point argument can be carried out on X for all initial data in U . Now let
ψn → ψ in Hγ . In both subcritical and critical cases, we see that T < T ∗(ψ), ‖u‖Lp([0,T ],Ḣγq ) ≤M ,
and that for sufficiently large n, T < T ∗(ψn) and ‖un‖Lp([0,T ],Ḣγq ) ≤M . Thus, (5.3.9) and (5.3.10)
together with (5.3.4) and (5.3.7) yield that un is bounded in La([0, T ], Hγ

b ) for any Schrödinger
admissible pair (a, b) with b <∞ and γa,b = 0. We also have from (5.3.5), (5.3.8) and the choice

123



5.3. Local well-posedness nonlinear Schrödinger-type equations

of T that
d(un, u) ≤ C‖ψn − ψ‖L2 + 1

2d(un, u) or d(un, u) ≤ 2C‖ψn − ψ‖L2 .

This shows that un → u in Lp([0, T ], Lq). Again (5.3.10) together with (5.3.5) and (5.3.8) implies
that un → u in La([0, T ], Lb) for any Schrödinger admissible pair (a, b) with b <∞ and γa,b = 0.
The convergence in C(I,Hγ−ε) follows from the boundedness in L∞(I,Hγ) and the convergence
in L∞(I, L2) and that ‖u‖Hγ−ε ≤ ‖u‖

1− ε
γ

Hγ ‖u‖
ε
γ

L2 .
Step 7. Item vi. As mentioned in Step 1, when ‖ψ‖Ḣγc is small, we can take T ∗ = ∞. It
remains to prove the scattering property. To do so, we make use of the adjoint estimate to the
homogeneous Strichartz estimate, namely L2 3 ψ 7→ eit|∇|

σ

ψ ∈ Lp(R, Lq) to obtain

‖e−it2|∇|
σ

u(t2)− e−it1|∇|
σ

u(t1)‖Ḣγc =
∥∥∥iµ∫ t2

t1

e−is|∇|
σ

F (u)(s)ds
∥∥∥
Ḣγc

=
∥∥∥iµ∫ t2

t1

|∇|γce−is|∇|
σ

(1[t1,t2]F (u))(s)ds
∥∥∥
L2

. ‖F (u)‖Lp′ ([t1,t2],Ḣγc
q′

). (5.3.11)

Similarly,

‖e−it2|∇|
σ

u(t2)− e−it1|∇|
σ

u(t1)‖L2 . ‖F (u)‖Lp′ ([t1,t2],Lq′ ). (5.3.12)

Thanks to (5.3.7) and (5.3.8), we get

‖e−it2|∇|
σ

u(t2)− e−it1|∇|
σ

u(t1)‖Hγc → 0,

as t1, t2 → +∞. This implies that the limit

ψ+ := lim
t→+∞

e−it|∇|
σ

u(t)

exists in Hγc . Moreover,

u(t)− eit|∇|
σ

ψ+ = −iµ
∫ +∞

t

ei(t−s)|∇|
σ

F (u(s))ds.

Using again (5.3.11) and (5.3.12) together with (5.3.7) and (5.3.8), we have

lim
t→+∞

‖u(t)− eit|∇|
σ

ψ+‖Hγc = 0.

This completes the proof of Theorem 5.3.1.
We also have the following local well-posedness in the critical Sobolev space Hd/2, where the

embedding into L∞ breaks down.
Theorem 5.3.2. Given σ ∈ [2,∞) and γ = d/2. Let ν > 1 be an odd integer or (5.0.2) otherwise.
Let {

p > max(ν − 1, 4) when d = 1,
p > max(ν − 1, 2) when d ≥ 2. (5.3.13)

Then for all ψ ∈ Hd/2, there exists T ∗ ∈ (0,∞] and a unique solution to (NLST) satisfying

u ∈ C([0, T ∗), Hd/2) ∩ Lploc([0, T ∗), L∞),

for some p > max(ν − 1, 4) when d = 1 and some p > max(ν − 1, 2) when d ≥ 2. Moreover, the
following properties hold:
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i. u ∈ Laloc([0, T ∗), Hd/2
b ) for any Schrödinger admissible pair (a, b) with b <∞ and γa,b = 0.

ii. If T ∗ <∞, then ‖u(t)‖Hd/2 →∞ as t→ T ∗.
iii. u depends continuously on ψ in the sense of Theorem 5.3.1
The continuous dependence can be improved (see Remark 5.3.3) if we assume that ν > 1 is

an odd integer or dd/2e ≤ ν − 1. Concerning the well-posedness of the nonlinear Schrödinger
equation in this critical space, we refer to [Kat95] and [NO98]. Note that in [NO98], the global
well-posedness with small data is proved with exponential-type nonlinearity but not the local well-
posedness without size restriction on the initial data.
Proof of Theorem 5.3.2. Let p be as in (5.3.13) and then choose q ∈ [2,∞) such that

2
p

+ d

q
≤ d

2 .

Step 1. Existence. We will show that Φ defined in (5.1.12) is a contraction on

X :=
{
u ∈ L∞(I,Hd/2) ∩ Lp(I,Hd/2−γp,q

q ) | ‖u‖L∞(I,Hd/2) + ‖u‖
Lp(I,Hd/2−γp,q

q ) ≤M
}
,

equipped with the distance

d(u, v) := ‖u− v‖L∞(I,L2) + ‖u− v‖Lp(I,H−γp,q ),

where I = [0, T ] and M,T > 0 to be determined. The local Strichartz estimate (1.1.16) gives

‖Φ(u)‖L∞(I,Hd/2) + ‖Φ(u)‖
Lp(I,Hd/2−γp,q

q ) . ‖ψ‖Hd/2 + ‖F (u)‖L1(I,Hd/2),

‖Φ(u)− Φ(v)‖L∞(I,L2) + ‖Φ(u)− Φ(v)‖
Lp(I,H−γp,qq ) . ‖F (u)− F (v)‖L1(I,L2).

Thanks to the assumptions on ν, Corollary 5.0.3 implies

‖F (u)‖L1(I,Hd/2) . ‖u‖ν−1
Lν−1(I,L∞)‖u‖L∞(I,Hd/2) . T

θ‖u‖ν−1
Lp(I,L∞)‖u‖L∞(I,Hd/2), (5.3.14)

‖F (u)− F (v)‖L1(I,L2) .
(
‖u‖ν−1

Lν−1(I,L∞) + ‖v‖ν−1
Lν−1(I,L∞)

)
‖u− v‖L∞(I,L2)

. T θ
(
‖u‖ν−1

Lp(I,L∞) + ‖v‖ν−1
Lp(I,L∞)

)
‖u− v‖L∞(I,L2), (5.3.15)

where θ = 1 − ν−1
p > 0. Using the fact that d/2 − γp,q > d/q, the Sobolev embedding implies

H
d/2−γp,q
q ↪→ L∞. Thus,

‖Φ(u)‖L∞(I,Hd/2) + ‖Φ(v)‖
Lp(I,Hd/2−γp,q

q ) . ‖ψ‖Hd/2 + T θ‖u‖ν−1
Lp(I,Hd/2−γp,q

q )
‖u‖L∞(I,Hd/2),

d(Φ(u),Φ(v)) . T θ
(
‖u‖ν−1

Lp(I,Hd/2−γp,q
q )

+ ‖v‖ν−1
Lp(I,Hd/2−γp,q

q )

)
d(u, v).

Thus for all u, v ∈ X, there exists C > 0 independent of ψ ∈ Hd/2 such that

‖Φ(u)‖L∞(I,Hd/2) + ‖Φ(v)‖
Lp(I,Hd/2−γp,q

q ) ≤ C‖ψ‖Hd/2 + CT θMν ,

d(Φ(u),Φ(v)) ≤ CT θMν−1d(u, v).

If we set M = 2C‖ψ‖Hd/2 and choose T > 0 small enough so that CT θMν−1 ≤ 1
2 , then Φ is a

contraction on X.
Step 2. Uniqueness. It is easy using (5.3.15) since ‖u‖Lp(I,L∞) is small if T is small.
Step 3. Item i. It follows easily from Step 1 and Strichartz estimate (1.1.16) that for any
Schrödinger admissible pair (a, b) with b <∞ and γa,b = 0,

‖u‖
La(I,Hd/2

b
) . ‖ψ‖Hd/2 + ‖F (u)‖L1(I,Hd/2).
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Step 4. Item ii. The blowup alternative is obvious since the time of existence depends only on
‖ψ‖Hd/2 .
Step 5. Item iii. The continuous dependence is similar to Step 7 of the proof of Theorem 5.3.1
using (5.3.15). �
Remark 5.3.3. If we assume that ν > 1 is an odd integer or dd/2e ≤ ν − 1 otherwise, then the
continuous dependence holds in C(I,Hd/2). Indeed, we consider X as above equipped with the
following metric

d(u, v) := ‖u− v‖L∞(I,Hd/2) + ‖u− v‖
Lp(I,Hd/2−γp,q

q ).

Thanks to the assumptions on ν, we are able to apply the fractional derivative estimates given in
Corollary 5.0.3 to have

‖F (u)− F (v)‖L1(I,Hd/2) . (‖u‖ν−1
Lν−1(I,L∞) + ‖v‖ν−1

Lν−1(I,L∞))‖u− v‖L∞(I,Hd/2)

+ (‖u‖ν−2
Lν−1(I,L∞) + ‖v‖ν−2

Lν−1(I,L∞))(‖u‖L∞(I,Hd/2) + ‖v‖L∞(I,Hd/2))‖u− v‖Lν−1(I,L∞).

The Sobolev embedding then implies that for all u, v ∈ X,

d(Φ(u),Φ(v)) . T θMν−1d(u, v).

The continuous dependence in C(I,Hd/2) follows as Step 7 of the proof of Theorem 5.3.1.
It is well-known that (see [Caz03, Chapter 4], [Kat95] or [Tao06, Chapter 3]) that for γ > d/2,

the nonlinear Schrödinger equation is locally well-posed provided the nonlinearity has enough
regularity. It is not a problem to extend this result for the nonlinear fourth-order Schrödinger
equation. For the sake of completeness, we state (without proof) the local well-posedness for
(NLST) in this range.
Theorem 5.3.4. Given σ ∈ [2,∞). Let γ > d/2 be such that if ν > 1 is not an odd integer,
(5.0.2). Then for all ψ ∈ Hγ , there exist T ∗ ∈ (0,∞] and a unique solution u ∈ C([0, T ∗), Hγ) to
(NLST). Moreover, the following properties hold:

i. u ∈ Laloc([0, T ∗), Hγ
b ) for any Schrödinger admissible pair (a, b) with b <∞ and γa,b = 0.

ii. If T ∗ <∞, then ‖u(t)‖Hγ →∞ and lim sup ‖u(t)‖L∞ →∞ as t→ T ∗.
iii. u depends continuously on ψ in the following sense. There exists T ∈ (0, T ∗) such that if

ψn → ψ in Hγ and if un is the solution of (NLST) with the initial data ψn, then un → u in
C([0, T ], Hγ).

Combining Theorem 5.3.1 with the conservation of mass, we have the following global well-
posedness in L2 for (NLST) in the case σ ∈ [2,∞).
Corollary 5.3.5. Let σ ∈ [2,∞) and ν ∈ (1, 1 + 2σ/d). Then for all ϕ ∈ L2, there exists a unique
global solution to (NLST) satisfying u ∈ C(R, L2) ∩ Lploc(R, Lq), where (p, q) given in (5.3.1).

In the energy space Hσ/2, we have the following global well-posedness result. The proof follows
by the same lines as in Proposition 5.1.3.
Proposition 5.3.6. Let σ ∈ [2,∞) and ν ∈ (1, 1 + 2σ/(d − σ)) for d > σ and ν > 1 for d ≤ σ.
Then for any ψ ∈ Hσ/2, the solution to (NLST) given in Theorem 5.3.1, Theorem 5.3.2 and
Theorem 5.3.4 can be extended to the whole R if one of the following is satisfied:

i. µ = 1.
ii. µ = −1, ν < 1 + 2σ/d.
iii. µ = −1, ν = 1 + 2σ/d and ‖ψ‖L2 is small.
iv. µ = −1 and ‖ψ‖Hσ/2 is small.
Our next result concerns with the regularity of solutions of (NLST) in the subcritical case.

Theorem 5.3.7. Given σ ∈ [2,∞). Let β > γ ≥ 0 be such that γ ≥ γc, and also, if ν > 1 is not
an odd integer, (5.0.2). Let ψ ∈ Hγ and u be the corresponding Hγ solution of (NLST) given in
Theorem 5.3.1, Theorem 5.3.2, Theorem 5.3.4. If ψ ∈ Hβ, then u ∈ C([0, T ∗), Hβ).

The following result is a direct consequence of Theorem 5.3.7 and the global well-posedness in
Corollary 5.3.5 and Proposition 5.3.6.

126



Chapter 5. Local well-posedness nonlinear Schrödinger-type equations

Corollary 5.3.8. σ ∈ [2,∞).
i. Let γ ≥ 0 and ν ∈ (1, 1+2σ/d) be such that if ν is not an odd integer, (5.0.2). Then (NLST)

is globally well-posed in Hγ .
ii. Let γ ≥ σ/2, ν ∈ [1 + 2σ/d, 1 + 2σ/(d − σ)) for d ≥ σ and ν ∈ [1 + 2σ/d,∞) for d ≤ σ

be such that if ν is not an odd integer, (5.0.2). Then (NLST) is globally well-posed in Hγ

provided one of conditions (i), (iii), (iv) in Proposition 5.3.6 is satisfied.
Proof of Theorem 5.3.7. We follow the argument given in Chapter 5 of [Caz03]. To do so, we will
consider three cases γ ∈ [0, d/2), γ = d/2 and γ > d/2.

The case γ ∈ [0, d/2). Let β > γ. If ψ ∈ Hβ , then Theorem 5.3.1 or Theorem 5.3.2 or
Theorem 5.3.4 shows that there exists a maximal solution to (NLST) satisfying u ∈ C([0, T ), Hβ)∩
Laloc([0, T ), Hβ

b ) for any Schrödinger admissible pair (a, b) with b < ∞ and γa,b = 0. Since Hβ-
solution is in particular an Hγ-solution, the uniqueness implies that T ≤ T ∗. We will show that
T is actually equal to T ∗. Suppose that T < T ∗, then the blowup alternative implies

‖u(t)‖Hβ →∞ as t→ T. (5.3.16)

Moreover, since T < T ∗, we have

‖u‖Lp((0,T ),Hγq ) + sup
0≤t≤T

‖u(t)‖Hγ <∞,

where (p, q) given in (5.3.1). Using Strichartz estimate, we have for any interval I ⊂ (0, T ),

‖u‖L∞(I,L2) + ‖u‖Lp(I,Lq) . ‖ψ‖L2 + ‖F (u)‖Lp′ (I,Lq′ ),
‖u‖L∞(I,Ḣβ) + ‖u‖Lp(I,Ḣβq ) . ‖ψ‖Ḣβ + ‖F (u)‖Lp′ (I,Ḣβ

q′
).

Now, let (m,n) be as in (5.3.2). Corollary 5.0.3, (5.3.2) and Sobolev embedding then give

‖F (u)‖Lp′ (I,Lq′ ) . ‖u‖
ν−1
Lp(I,Ln)‖u‖Lm(I,Lq) . ‖u‖ν−1

Lp(I,Ḣγq )‖u‖Lm(I,Lq) . ‖u‖Lm(I,Lq),

‖F (u)‖Lp′ (I,Ḣβ
q′

) . ‖u‖
ν−1
Lp(I,Ln)‖u‖Lm(I,Ḣβq ) . ‖u‖

ν−1
Lp(I,Ḣγq )‖u‖Lm(I,Ḣβq ) . ‖u‖Lm(I,Ḣβq ).

Here we use the fact that ‖u‖Lp((0,T ),Hγq ) is bounded. This shows that

‖u‖L∞(I,Hβ) + ‖u‖Lp(I,Hβq ) . ‖ψ‖Hβ + ‖u‖Lm(I,Hβq ),

for every interval I ⊂ (0, T ). Now let 0 < ε < T and consider I = (0, τ) with ε < τ < T . We have

‖u‖Lm(I,Hβq ) ≤ ‖u‖Lm((0,τ−ε),Hβq ) + ‖u‖Lm((τ−ε,τ),Hβq ) ≤ Cε + εθ‖u‖Lp(I,Hβq ),

where θ given in (5.3.3). Here we also use the fact that u ∈ Lploc([0, T ), Hβ
q ) since γp,q = 0. Thus,

‖u‖L∞(I,Hβ) + ‖u‖Lp(I,Hβq ) ≤ C + Cε + εθC‖u‖Lp(I,Hβq ),

where the various constants are independent of τ < T . By choosing ε small enough, we have

‖u‖L∞(I,Hβ) + ‖u‖Lp(I,Hβq ) ≤ C,

where C is independent of τ < T . Let τ → T , we get a contradiction with (5.3.16).

The case γ = d/2. Since ψ ∈ Hd/2, Theorem 5.3.2 shows that there exists a unique, maximal
solution to (NLST) satisfying u ∈ C([0, T ∗), Hd/2) ∩ Lploc([0, T ∗), L∞) for some p > max(ν − 1, 4)
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when d = 1 and p > max(ν − 1, 2) when d ≥ 2. This implies in particular that

u ∈ Lν−1
loc ([0, T ∗), L∞). (5.3.17)

Now let β > γ. If ψ ∈ Hβ , then we know that u is an Hβ solution defined on some maximal
interval [0, T ) with T ≤ T ∗. Suppose that T < T ∗. Then the unitary property of eit|∇|σ and
Corollary 5.0.3 imply that

‖u(t)‖Hβ ≤ ‖ψ‖Hβ +
∫ t

0
‖F (u)(s)‖Hβds ≤ ‖ψ‖Hβ + C

∫ t

0
‖u(s)‖ν−1

L∞ ‖u(s)‖Hβds,

for all 0 ≤ t < T . The Gronwall’s inequality then yields

‖u(t)‖Hβ ≤ ‖ψ‖Hβ exp
(
C

∫ t

0
‖u(s)‖ν−1

L∞ ds
)

for all 0 ≤ t < T . Using (5.3.17), we see that lim sup ‖u(t)‖Hβ < ∞ as t → T . This is a
contradiction with the blowup alternative in Hβ .

The case γ > d/2. Let β > γ. If ψ ∈ Hβ , then Theorem 5.3.4 shows that there is a unique
maximal solution u ∈ C([0, T ), Hβ) to (NLST). By the uniqueness, we have T ≤ T ∗. Suppose
T < T ∗. Then

sup
0≤t≤T

‖u(t)‖Hβ <∞,

and hence
sup

0≤t≤T
‖u(t)‖L∞ <∞.

This is a contradiction with the fact that lim sup ‖u(t)‖L∞ =∞ as t→ T . The proof of Theorem
5.3.7 is now complete. �

We end this section with the following remark. In [PS10], the authors proved the global
existence for the L2-critical nonlinear fourth-order Schrödinger equation (NL4S), i.e. σ = 4 and
ν− 1 = 8/d, in higher dimensions d ≥ 5. More precisely, they proved that the equation is globally
well-posed in L2

• for any initial data in L2 in the defocusing case;
• for initial data in L2 satisfying ‖ψ‖L2 < ‖Q‖L2 in the focusing case, where Q is the solution
to the elliptic equation

∆2Q+Q = |Q| 8dQ. (5.3.18)

Moreover, in both cases, the following uniform bound holds true

‖u‖
L

2+ 8
d (R,L2+ 8

d )
≤ C(‖ψ‖L2).

With this uniform bound, we have the following global existence for the L2-critical (NL4S) in
dimensions d ≥ 5.
Proposition 5.3.9. Let d ≥ 5, ν = 1+8/d and β > 0 be such that if d 6= 1, 2, 4, then dβe ≤ 1+8/d.
Let ψ ∈ Hβ be such that if µ = −1, ‖ψ‖L2 < ‖Q‖L2 , where Q is the solution to (5.3.18). Then
the L2-critical (NL4S) is globally well-posed in Hβ.
Proof. Let β > 0 and ψ ∈ Hβ be such that if µ = −1, ‖ψ‖L2 < ‖Q‖L2 , where Q is the solution to
(5.3.18). We learn from the result of Pausader-Shao [PS10] that the L2-critical (NL4S) is globally
well-posed in L2. Moreover, the solutions enjoy the uniform bound

‖u‖
L

2+ 8
d (R,L2+ 8

d )
≤ C(‖ψ‖L2).
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Since ψ ∈ Hβ , we have from Theorem 5.3.1, Theorem 5.3.2 and Theorem 5.3.4 that there exists
a maximal solution to the L2-critical (NL4S) satisfying C([0, T ), Hβ) ∩ Laloc([0, T ), Hβ

b ) for any
Schrödinger admissible pair (a, b) with b <∞ and γa,b = 0. By the blowup alternative, it suffices
to show that ‖u‖L∞((0,T ),Hβ) <∞. Let p = 2 + 8/d. It is easy to see that (p, p) is a Schrödinger
admissible pair with γp,p = 0. Since ‖u‖Lp((0,T ),Lp) < ∞, we decompose (0, T ) into a finite
number of subintervals Ik so that ‖u‖Lp(Ik,Lp) < ε for some ε > 0 to be chosen later. By Strichartz
estimates,

‖u‖L∞(Ik,Hβ) + ‖u‖Lp(Ik,Hβp ) . ‖ψ‖Hβ + ‖F (u)‖Lp′ (Ik,Hβp′ )

. ‖ψ‖Hβ + ‖u‖
8
d

Lp(Ik,Lp)‖u‖Lp(Ik,Hβp )

. ‖ψ‖Hβ + ε
8
d ‖u‖Lp(Ik,Hβp ).

By choosing ε > 0 small enough, we get ‖u‖L∞(Ik,Hβ) ≤ C for some constant C independent of Ik.
By summing over all subintervals Ik, we obtain ‖u‖L∞((0,T ),Hβ) <∞. The proof is complete.
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defocusing mass-critical nonlinear
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In this chapter, we consider the defocusing mass-critical nonlinear fourth-order Schrödinger
equation, namely{

i∂tu(t, x) + ∆2u(t, x) = −(|u| 8du)(t, x), t ≥ 0, x ∈ Rd,
u(0, x) = ψ(x) ∈ Hγ(Rd), (dNL4S)

where u(t, x) is a complex valued function in R+ × Rd.
The fourth-order Schrödinger equation was introduced by Karpman [Kar96] and Karpman-

Shagalov [KS00] to take into account the role of small fourth-order dispersion terms in the prop-
agation of intense laser beams in a bulk medium with Kerr nonlinearity. The study of nonlinear
fourth-order Schrödinger equation has attracted a lot of interest in the past several years (see
[Pau1], [Pau2], [HHW06], [HHW07], [HJ05], [MXZ09], [MXZ11], [MWZ15] and references therein).

As in the previous chapter, we see that the (dNL4S) is locally well-posed in Hγ(Rd) for γ > 0
satisfying, in the case d 6= 1, 2, 4,

dγe ≤ 1 + 8
d
. (6.0.1)

Here dγe is the smallest integer greater than or equal to γ. This condition ensures the nonlinearity
to have enough regularity. The time of existence depends only on the Hγ-norm of initial data.
Moreover, the local solution enjoys mass conservation, i.e.

M(u(t)) := ‖u(t)‖2L2(Rd) = ‖ψ‖2L2(Rd),
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and H2-solution has conserved energy, i.e.

E(u(t)) :=
∫
Rd

1
2 |∆u(t, x)|2 + d

2d+ 8 |u(t, x)|
2d+8
d dx = E(ψ).

The conservations of mass and energy together with the persistence of regularity (see Theorem
5.3.7) yield the global well-posedness for the (dNL4S) in Hγ(Rd) with γ ≥ 2 satisfying for d 6=
1, 2, 4, (6.0.1). We also have the local well-posedness for the (dNL4S) with initial data ψ ∈ L2(Rd)
but the time of existence depends on the profile of ψ instead of its L2-norm. The global existence
holds for small L2-norm initial data. For large L2-norm initial data, the conservation of mass
does not immediately give the global well-posedness in L2(Rd). For the global well-posedness with
large L2-norm initial data, we refer the reader to [PS10] where the authors established the global
well-posedness and scattering for the (dNL4S) in L2(Rd), d ≥ 5.

The main goal of this chapter is to prove the global well-posedness for the (dNL4S) in low
regularity spaces Hγ(Rd), d ≥ 4 with 0 < γ < 2. Since we are working with low regularity data,
the conservation of energy does not hold. In order to overcome this problem, we make use of the
I-method introduced by [CKSTT1] and the interaction Morawetz inequality (which is available
for d ≥ 5). We thus consider separately two cases d = 4 and d ≥ 5. In the case d = 4, we use
I-method in Bourgain space, which is an adaptation of the one given in [CKSTT1] for proving the
low regularity global well-posedness of the defocusing cubic nonlinear Schrödinger equation on R2.
In this consideration the nonlinearity is algebraic. It allows to write explicitly the commutator
between the I-operator and the nonlinearity by means of the Fourier transform, and then control
it by multi-linear analysis. In the case d ≥ 5, the nonlinearity is no longer algebraic, so the above
method does not work. We thus rely purely on Strichartz and interaction Morawetz inequalities.

After submitting a paper concerning the global well-posedness for the (dNL4S) below the energy
space in dimensions 5 ≤ d ≤ 7, the author was informed that a better result (see Proposition 5.3.9)
follows from the work of Pausader-Shao [PS10]. Indeed, in [PS10], the authors showed that the
(dNL4S) is globally well-posed in L2. Moreover the global solution scatters in L2 and satisfies the
uniform bound

‖u‖
L

2(d+4)
d (R×Rd)

<∞.

It follows from the regularity given in Theorem 5.3.7 that the (dNL4S) is globally well-posed in
Hγ for any 0 < γ < 2. However, we decide to keep our proof in the case 5 ≤ d ≤ 7 because it will
be used in the next chapter to study dynamics of blowup solutions for the focusing mass-critical
NL4S.

We end this introduction by recalling some known results about the global existence below
the energy space for the nonlinear fourth-order Schrödinger equation. To our knowledge, the first
result to address this problem belongs to Guo in [Guo10], where the author considered a more
general fourth-order Schrödinger equation, namely

i∂tu+ λ∆u+ µ∆2u+ ν|u|2mu = 0,

and established the global existence in Hγ(Rd) for 1 + md−9+
√

(4m−md+7)2+16
4m < γ < 2 where

m is an integer satisfying 4 < md < 4m + 2. The proof is based on the I-method which is a
modification of the one invented by I-Team [CKSTT1] in the context of nonlinear Schrödinger
equation. Later, Miao-Wu-Zhang studied the defocusing cubic fourth-order Schrödinger equation,
namely

i∂tu+ ∆2u+ |u|2u = 0,

and proved the global well-posedness and scattering in Hγ(Rd) with γ(d) < γ < 2 where γ(5) =
16
11 , γ(6) = 16

9 and γ(7) = 45
23 . The proof relies on the combination of I-method and a new

interaction Morawetz inequality.
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6.1 Global well-posedness for the 4D defocusing mass-critical
NL4S below the energy space

Our main result in this section is the following global existence for the (dNL4S) in the fourth
dimensional spatial space.
Theorem 6.1.1. Let d = 4. The initial value problem (dNL4S) is globally well-posed in Hγ(R4)
for any 2 > γ > γ := 60

53 . Moreover, the solution satisfies

‖u(T )‖Hγ(R4) ≤ C(1 + T )
15(2−γ)
53γ−60 +,

for |T | → ∞, where the constant C depends only on ‖ψ‖Hγ(R4).
The proof of this theorem is based on the I-method, which is similar to [CKSTT1] (see also

[Guo10]). It is thus convenient to recall techniques and known results about the low regularity
defocusing cubic Schrödinger equation on R2. The first attempt to solve this problem is due to
Bourgain in [Bou3] where he used a “Fourier truncation” approach to prove the global existence
for γ > 3/5. It was then improved for γ > 4/7 by I-Team in [CKSTT1]. The proof is based on the
almost conservation of a modified energy functional. The idea is to replace the conserved energy
E(u), which is not available when γ < 1, by an “almost conserved” quantity E(INu) with N � 1
where IN is a smoothing operator which behaves like the identity for low frequencies |ξ| ≤ N and
like a fractional integral operator of order 1 − γ for high frequencies |ξ| ≥ 2N . Since INu is not
a solution to the equation, we may expect an energy increment. The key idea is to show that
on the time interval of local existence, the increment of the modified energy E(INu) decays with
respect to a large parameter N . This allows to control E(INu) on time interval where the local
solution exists, and we can iterate this estimate to obtain a global in time control of the solution by
means of the bootstrap argument. Fang-Grillakis then upgraded this result to γ ≥ 1/2 in [FG07].
Later, Colliander-Grillakis-Tzirakis improved for γ > 2/5 in [CGT07] using an almost interaction
Morawetz inequality. Subsequent paper [CR11] has decreased the necessary regularity to γ > 1/3.
Afterwards, Dodson established in [Dod1] the global existence for the equation when γ > 1/4.
The proof combines the almost conservation law and an improved interaction Morawetz estimate.
Recently, Dodson in [Dod2] proved the global well-posedness and scattering for the equation with
initial data ψ ∈ L2(R2) using the bilinear estimate and a frequency localized interaction Morawetz
estimate. To prove Theorem 6.1.1, we shall consider a modified I-operator and show a suitable
“almost conservation law” for the fourth-order Schrödinger equation.

6.1.1 Preliminaries
Littlewood-Paley decomposition. Let ϕ be a smooth, real-valued, radial function in Rd such
that ϕ(ξ) = 1 for |ξ| ≤ 1 and ϕ(ξ) = 0 for |ξ| ≥ 2. Let M = 2k, k ∈ Z. We denote the
Littlewood-Paley operators by

P̂≤Mf(ξ) := ϕ(M−1ξ)f̂(ξ),

P̂>Mf(ξ) := (1− ϕ(M−1ξ))f̂(ξ),

P̂Mf(ξ) := (ϕ(M−1ξ)− ϕ(2M−1ξ))f̂(ξ),

where ·̂ is the spatial Fourier transform. We similarly define

P<M := P≤M − PM , P≥M := P>M + PM ,

and for M1 ≤M2,
PM1<·≤M2 := P≤M2 − P≤M1 =

∑
M1<M≤M2

PM .

We have the following so called Bernstein’s inequalities (see e.g. [BCD11, Chapter 2] or [Tao06,
Appendix]).
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Lemma 6.1.2. Let γ ≥ 0 and 1 ≤ p ≤ q ≤ ∞.

‖P≥Mf‖Lp .M−γ‖|∇|γP≥Mf‖Lp ,
‖P≤M |∇|γf‖Lp .Mγ‖P≤Mf‖Lp ,
‖PM |∇|±γf‖Lp ∼M±γ‖PMf‖Lp ,
‖P≤Mf‖Lq .Md/p−d/q‖P≤Mf‖Lp ,
‖PMf‖Lq .Md/p−d/q‖PMf‖Lp .

Norms and Strichartz estimates. Let γ, b ∈ R. The Bourgain space Xγ,b
τ=|ξ|4 is the closure of

space-time Schwartz space St,x under the norm

‖u‖Xγ,b
τ=|ξ|4

:= ‖ 〈ξ〉γ
〈
τ − |ξ|4

〉b
ũ‖L2

τL
2
ξ
,

where ·̃ is the space-time Fourier transform,i.e.

ũ(τ, ξ) :=
∫∫

e−i(tτ+x·ξ)u(t, x)dtdx.

We shall use Xγ,b instead of Xγ,b
τ=|ξ|4 when there is no confusion. We recall a following special

property of Xγ,b space (see e.g. [Tao06, Lemma 2.9]).
Lemma 6.1.3. Let γ, γ1, γ2 ∈ R and Y be a Banach space of functions on R× R4. If

‖eitτeit∆
2
f‖Y . ‖f‖Hγ ,

for all f ∈ Hγ and all τ ∈ R, then

‖u‖Y . ‖u‖Xγ,1/2+ ,

for all u ∈ St,x. Moreover, if

‖[eitτeit∆
2
f1][eitζeit∆

2
f2]‖Y . ‖f1‖Hγ1 ‖f2‖Hγ2 ,

for all f1 ∈ Hγ1 , f2 ∈ Hγ2 and all τ, ζ ∈ R, then

‖u1u2‖Y . ‖u1‖Xγ1,1/2+‖u2‖Xγ2,1/2+ ,

for all u1, u2 ∈ St,x.
We refer the reader to Lemma A.2.7 for the proof of this result.
Throughout this section, a pair (p, q) is called admissible in R4 if

(p, q) ∈ [2,∞]2, (q, p) 6= (2,∞), 1
p

+ 1
q

= 1
2 . (6.1.1)

We recall the following Strichartz estimate given in Corollary 1.1.3 with σ = 4. It is obvious that
for (p, q) a admissible pair (6.1.1), γp,q = 0.
Proposition 6.1.4. Let u be a solution to

i∂tu(t, x) + ∆2u(t, x) = F (t, x), u(0, x) = ψ(x), (t, x) ∈ R× R4.

Then for all (p, q) and (a, b) admissible pairs,

‖u‖Lp(R,Lq) . ‖ψ‖L2 + ‖F‖La′ (R,Lb′ ). (6.1.2)

Here (a, a′) and (b, b′) are conjugate exponents.
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A direct consequence of Lemma 6.1.3 and Proposition 6.1.4 is the following linear estimate in
Xγ,b space.
Corollary 6.1.5. Let (p, q) be an admissible pair. Then

‖u‖Lp(R,Lq) . ‖u‖X0,1/2+ , (6.1.3)

for all u ∈ St,x.
We also have the following bilinear estimate in R4.

Proposition 6.1.6. Let M1,M2 ∈ 2Z be such that M1 ≤M2. Then

‖[eit∆
2
PM1ψ][eit∆

2
PM2φ]‖L2(R,L2) . (M1/M2)3/2‖ψ‖L2‖φ‖L2 .

We refer the reader to Theorem A.3.1 for the proof of this bilinear estimate.
The following result is another application of Lemma 6.1.3 and Proposition 6.1.6.

Corollary 6.1.7. Let u1, u2 ∈ X0,1/2+ be supported on spatial frequencies |ξ| ∼ M1,M2 respec-
tively. Then for M1 ≤M2,

‖u1u2‖L2(R,L2) . (M1/M2)3/2‖u1‖X0,1/2+‖u2‖X0,1/2+ . (6.1.4)

A similar estimate holds for u1u2 or u1u2.

I-operator. For 0 ≤ γ < 2 and N � 1, we define the Fourier multiplier IN by

ÎNf(ξ) := mN (ξ)f̂(ξ), (6.1.5)

where m is a smooth, radially symmetric, non-increasing function such that

mN (ξ) :=
{

1 if |ξ| ≤ N,
(N−1|ξ|)γ−2 if |ξ| ≥ 2N. (6.1.6)

For simplicity, we shall drop the N from the notation and write I and m instead of IN and mN .
The operator I is the identity on low frequencies |ξ| ≤ N and behaves like a fractional integral
operator of order 2 − γ on high frequencies |ξ| ≥ 2N . We collect some basic properties of the
I-operator in the following lemma.
Lemma 6.1.8. Let 0 ≤ σ ≤ γ < 2 and 1 < q <∞. Then

‖If‖Lq . ‖f‖Lq , (6.1.7)
‖|∇|σP>Nf‖Lq . Nσ−2‖∆If‖Lq , (6.1.8)
‖ 〈∇〉σ f‖Lq . ‖ 〈∆〉 If‖Lq , (6.1.9)

‖f‖Hγ . ‖If‖H2 . N2−γ‖f‖Hγ , (6.1.10)
‖If‖Ḣ2 . N2−γ‖f‖Ḣγ . (6.1.11)

Proof. The estimate (6.1.7) is a direct consequence of the Hörmander-Mikhlin multiplier theorem
(see e.g. [Gra14, Theorem 6.2.7]). To prove (6.1.8), we write

‖|∇|σP>Nf‖Lq = ‖|∇|σP>N (∆I)−1∆If‖Lq .

The desired estimate (6.1.8) follows again from the Hörmander-Mikhlin multiplier theorem. In
order to get (6.1.9), we estimate

‖ 〈∇〉σ f‖Lq ≤ ‖P≤N 〈∇〉σ f‖Lq + ‖P>Nf‖Lq + ‖P>N |∇|σf‖Lq .

Thanks to the fact that the I-operator is the identity at low frequency |ξ| ≤ N , the multiplier
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theorem and (6.1.8) imply

‖ 〈∇〉σ f‖Lq . ‖ 〈∆〉 If‖Lq + ‖∆If‖Lq .

This proves (6.1.9). Finally, by the definition of the I-operator and (6.1.8), we have

‖f‖Hγ . ‖P≤Nf‖Hγ + ‖P>Nf‖L2 + ‖|∇|γP>Nf‖L2

. ‖P≤NIf‖Hγ +N−2‖∆If‖L2 +Nγ−2‖∆If‖L2 . ‖If‖H2 .

This shows the first inequality in (6.1.10). For the second inequality in (6.1.10), we estimate

‖If‖H2 . ‖P≤N 〈∇〉2 If‖L2 + ‖P>N 〈∇〉2 If‖L2 . N2−γ‖f‖Hγ .

Here we use the definition of I-operator to get

‖P≤NI 〈∇〉2−γ ‖L2→L2 , ‖P>NI 〈∇〉2−γ ‖L2→L2 . N2−γ .

The estimate (6.1.11) is proved as for the second estimate in (6.1.10). The proof is complete.

6.1.2 Almost conservation law
As mentioned in the introduction, the equation (dNL4S) is locally well-posed in Hγ for any

γ > 0. Moreover, the time of existence depends only on the Hγ-norm of the initial data. Thus,
the global well-posedness will follow from a global L∞(R, Hγ) bound of the solution by the usual
iterative argument. For Hγ solution with γ ≥ 2, one can obtain easily the L∞(R, Hγ) bound of
solution using the persistence of regularity and the conserved quantities of mass and energy. But
it is not the case for Hγ solution with γ < 2 since the energy is no longer conserved. However, it
follows from (6.1.10) that the Hγ-norm of the solution u can be controlled by the H2-norm of Iu.
It leads to consider the following modified energy functional

E(Iu(t)) := 1
2‖Iu(t)‖2

Ḣ2 + 1
4‖Iu(t)‖4L4 . (6.1.12)

Since Iu is not a solution to (dNL4S), we can expect an energy increment. We have the following
“almost conservation law”.
Proposition 6.1.9. Let 2 > γ > γ := 60

53 and N � 1. If the initial data ψ ∈ C∞(R4) satisfies
E(Iψ) ≤ 1, then there exists δ = δ(‖ψ‖L2) > 0 so that the solution u ∈ C([0, δ], Hγ(R4)) of
(dNL4S) satisfies

E(Iu(t)) = E(Iψ) +O(N−γ0+), (6.1.13)

where γ0 := 46
15 for all t ∈ [0, δ].

Remark 6.1.10. This proposition tells us that the modified energy E(Iu(t)) decays with respect
to the parameter N . We will see in Section 6.1.3 that if we can replace the increment N−γ0+ in
the right hand side of (6.1.13) with N−γ1+ for some γ1 > γ0, then the global existence can be
improved for all γ > 8

4+γ1
. In particular, if γ1 = ∞, then E(Iu(t)) is conserved, and the global

well-posedness holds for all γ > 0.
In order to prove Proposition 6.1.9, we recall the following interpolation result (see [CKSTT4,

Lemma 12.1]). Let η be a smooth, radial, decreasing function which equals 1 for |ξ| ≤ 1 and equals
|ξ|−1 for |ξ| ≥ 2. For N ≥ 1 and α ∈ R, we define the spatial Fourier multiplier JαN by

ĴαNf(ξ) := (η(N−1ξ))αf̂(ξ). (6.1.14)

The operator JαN is a smoothing operator of order α, and it is the identity on the low frequencies
|ξ| ≤ N .
Lemma 6.1.11 (Interpolation [CKSTT4]). Let α0 > 0 and n ≥ 1. Suppose that Z,X1, ..., Xn are
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translation invariant Banach spaces 1 and T is a translation invariant n-linear operator such that

‖Jα1 T (u1, ..., un)‖Z .
n∏
i=1
‖Jα1 ui‖Xi ,

for all u1, ..., un and all 0 ≤ α ≤ α0. Then one has

‖JαNT (u1, ..., un)‖Z .
n∏
i=1
‖JαNui‖Xi ,

for all u1, ..., un, all 0 ≤ α ≤ α0, and N ≥ 1, with the implicit constant independent of N .
Using this interpolation lemma, we are able to prove the following modified version of the usual

local well-posedness result.
Proposition 6.1.12. Let γ ∈ (2/3, 2) and ψ ∈ Hγ(R4) be such that E(Iψ) ≤ 1. Then there is a
constant δ = δ(‖ψ‖L2) so that the solution u to (dNL4S) satisfies

‖Iu‖
X

2,1/2+
δ

. 1. (6.1.15)

Here Xγ,b
δ is the space of restrictions of elements of Xγ,b endowed with the norm

‖u‖Xγ,b
δ

:= inf{‖w‖Xγ,b | w|[0,δ]×R4 = u}. (6.1.16)

Proof. We recall the following estimates involving the Xγ,b spaces which are proved in the Ap-
pendix A.2. Let γ ∈ R and ψ ∈ C∞0 (R) be such that ψ(t) = 1 for t ∈ [−1, 1]. One has

‖ψ(t)eit∆
2
ψ‖Xγ,b . ‖ψ‖Hγ , (6.1.17)∥∥∥ψδ(t)∫ t

0
ei(t−s)∆

2
F (s)ds

∥∥∥
Xγ,b

. δ1−b−b′‖F‖Xγ,−b′ , (6.1.18)

where ψδ(t) := ψ(δ−1t) provided 0 < δ ≤ 1 and

0 < b′ < 1/2 < b, b+ b′ < 1. (6.1.19)

Note that the implicit constants are independent of δ. This implies for 0 < δ ≤ 1 and b, b′ as in
(6.1.19) that

‖eit∆
2
ψ‖Xγ,b

δ
. ‖ψ‖Hγ , (6.1.20)∥∥∥∫ t

0
ei(t−s)∆

2
F (s)ds

∥∥∥
Xγ,b
δ

. δ1−b−b′‖F‖
Xγ,−b

′
δ

. (6.1.21)

By the Duhamel principle, we have

‖Iu‖X2,b
δ

=
∥∥∥eit∆2

Iψ +
∫ t

0
ei(t−s)∆

2
I(|u|2u)(s)ds

∥∥∥
X2,b
δ

. ‖Iψ‖H2 + δ1−b−b′‖I(|u|2u)‖
X2,−b′
δ

.

By the definition of restriction norm (6.1.16),

‖Iu‖X2,b
δ
. ‖Iψ‖H2 + δ1−b−b′‖I(|w|2w)‖X2,−b′ ,

1A Banach space X of space functions on Ω is said to be translation invariant if

‖u(· − y)‖X = ‖u‖X , ∀u ∈ X, ∀y ∈ Ω.
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where w agrees with u on [0, δ]× R4 and

‖Iu‖X2,b
δ
∼ ‖Iw‖X2,b .

Let us assume for the moment that

‖I(|w|2w)‖X2,−b′ . ‖Iw‖3X2,b . (6.1.22)

This implies that
‖Iu‖X2,b

δ
. ‖Iψ‖H2 + δ1−b−b′‖Iu‖3

X2,b
δ

.

Note that

‖Iψ‖H2 ∼ ‖Iψ‖Ḣ2 + ‖Iψ‖L2 ≤ 1 + ‖ψ‖L2 . (6.1.23)

As ‖Iu‖X2,b
δ

is continuous in the δ variable, the bootstrap argument (see e.g. [Tao06, Section 1.3])
yields

‖Iu‖X2,b
δ
. 1.

This proves (6.1.15). It remains to show (6.1.22). We will take the advantage of interpolation
Lemma 6.1.11. Note that the I-operator defined in (6.1.5) is equal to JαN defined in (6.1.14) with
α = 2− γ. Thus, by Lemma 6.1.11, (6.1.22) is proved once there is α0 > 0 so that

‖Jα1 (|w|2w)‖X2,−b′ . ‖Jα1 w‖3X2,b ,

for all 0 ≤ α ≤ α0. Splitting w to low and high frequency parts |ξ| . 1 and |ξ| � 1 respectively
and using definition of Jα1 , it suffices to show

‖|w|2w‖Xγ,−b′ . ‖w‖
3
Xγ,b , (6.1.24)

for all γ ∈ [γ, 2]. By duality and the Leibniz rule, (6.1.24) follows from∣∣∣ ∫∫
R×R4

(〈∇〉γ w1)w2w3w4dtdx
∣∣∣ . ‖w1‖Xγ,b‖w2‖Xγ,b‖w3‖Xγ,b‖w4‖X0,b′ . (6.1.25)

Note that the last term is written more precisely as ‖w4‖X0,b′

τ=−|ξ|4
but it does not affect our estimate.

Using Hölder’s inequality, we can bound the left hand side of (6.1.25) as

LHS(6.1.25) ≤ ‖ 〈∇〉γ w1‖L4(R,L4)‖w2‖L4(R,L4)‖w3‖L6(R,L6)‖w4‖L3(R,L3).

Since (4, 4) is an admissible pair, Corollary 6.1.5 gives

‖ 〈∇〉γ w1‖L4(R,L4) . ‖w1‖Xγ,b , ‖w2‖L4(R,L4) . ‖w2‖X0,b ≤ ‖w2‖Xγ,b .

Similarly, Sobolev embedding and Corollary 6.1.5 yield

‖w3‖L6(R,L6) . ‖ 〈∇〉
2/3

w3‖L6(R,L3) . ‖w3‖X2/3,b ≤ ‖w3‖Xγ,b .

The last estimate comes from the fact that γ > 2/3. Finally, we interpolate between ‖w4‖L2(R,L2) =
‖w4‖X0,0 and ‖w4‖L4(R,L4) . ‖w4‖X0,1/2+ to get

‖w4‖L3(R,L3) . ‖w4‖X0,b′ .

Combing these estimates, we have (6.1.25). The proof of Proposition 6.1.12 is now complete.
We are now able to prove the almost conservation law.
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Proof of Proposition 6.1.9. By the assumption E(Iψ) ≤ 1, Proposition 6.1.12 shows that
there exists δ = δ(‖ψ‖L2) such that the solution u to (dNL4S) satisfies (6.1.15). We firstly note
that the usual energy satisfies

d

dt
E(u(t)) = Re

∫
R4
∂tu(t, x)(|u(t, x)|2u(t, x) + ∆2u(t, x))dx

= Re
∫
R4
∂tu(t, x)(|u(t, x)|2u(t, x) + ∆2u(t, x) + i∂tu(t, x))dx = 0.

Similarly, we have

d

dt
E(Iu(t)) = Re

∫
R4
I∂tu(t, x)(|Iu(t, x)|2Iu(t, x) + ∆2Iu(t, x) + i∂tIu(t, x))dx

= Re
∫
R4
I∂tu(t, x)(|Iu(t, x)|2Iu(t, x)− I(|u(t, x)|2u(t, x)))dx.

Here the second line follows by applying I to both sides of (dNL4S). Integrating in time and
applying the Parseval formula, we obtain

E(Iu(δ))− E(Iψ) = Re
∫ δ

0

∫∑4
j=1

ξj=0

(
1− m(ξ2 + ξ3 + ξ4)

m(ξ2)m(ξ3)m(ξ4)

)
Î∂tu(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4)dt.

Here
∫∑4

j=1
ξj=0 denotes the integration with respect to the hyperplane’s measure δ0(ξ1 + ... +

ξ4)dξ1...dξ4. Using that iI∂tu = −∆2Iu− I(|u|2u), we have

|E(Iu(t))− E(Iψ)| ≤ Term1 + Term2,

where
Term1 =

∣∣∣ ∫ δ

0

∫∑4
j=1

ξj=0
µ(ξ2, ξ3, ξ4)∆̂2Iu(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4)dt

∣∣∣,
and

Term2 =
∣∣∣ ∫ δ

0

∫∑4
j=1

ξj=0
µ(ξ2, ξ3, ξ4) ̂I(|u|2u)(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4)dt

∣∣∣,
with

µ(ξ2, ξ3, ξ4) := 1− m(ξ2 + ξ3 + ξ4)
m(ξ2)m(ξ3)m(ξ4) .

Our purpose is to prove

Term1 + Term2 . N
−γ0+.

Let us consider the first term (Term1). To do so, we decompose u =
∑
M≥1 PMu =:

∑
M≥1 uM

with the convention P1u := P≤1u and write Term1 as a sum over all dyadic pieces. By the sym-
metry of µ in ξ2, ξ3, ξ4 and the fact that the bilinear estimate (6.1.4) allows complex conjugations
on either factors, we may assume that M2 ≥M3 ≥M4. Thus,

Term1 .
∑

M1,M2,M3,M4≥1
M2≥M3≥M4

A(M1,M2,M3,M4),

where

A(M1,M2,M3,M4) :=
∣∣∣ ∫ δ

0

∫∑4
j=1

ξj=0
µ(ξ2, ξ3, ξ4)∆̂2IuM1(ξ1)ÎuM2(ξ2)ÎuM3(ξ3)ÎuM4(ξ4)dt

∣∣∣.
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To simplify the notation, we will drop the dependence of M1,M2,M3,M4 and write A instead of
A(M1,M2,M3,M4). In order to have Term1 . N−γ0+, it suffices to prove

A . N−γ0+M0−
2 . (6.1.26)

To show (6.1.26), we will break the frequency interactions into three cases due to the comparison
of N with Mj . It is worth to notice that M1 .M2 due to the fact that

∑4
j=1 ξj = 0.

Case 1. N �M2. In this case, we have |ξ2|, |ξ3|, |ξ4| � N and |ξ2 + ξ3 + ξ4| � N , hence

m(ξ2 + ξ3 + ξ4) = m(ξ2) = m(ξ3) = m(ξ4) = 1 and µ(ξ2, ξ3, ξ4) = 0.

Thus (6.1.26) holds trivially.
Case 2. M2 & N � M3 ≥ M4. Since

∑4
j=1 ξj = 0, we get M1 ∼ M2. We also have from the

mean value theorem that

|µ(ξ2, ξ3, ξ4)| =
∣∣∣1− m(ξ2 + ξ3 + ξ4)

m(ξ2)

∣∣∣ . |∇m(ξ2) · (ξ3 + ξ4)|
m(ξ2) .

M3

M2
.

The pointwise bound, Hölder’s inequality, Plancherel theorem and bilinear estimate (6.1.4) yield

A .
M3

M2
‖∆2IuM1IuM3‖L2(R,L2)‖IuM2IuM4‖L2(R,L2)

.
M3

M2

(M3

M1

)3/2(M4

M2

)3/2
M4

1

4∏
j=1
‖IuMj

‖X0,1/2+

.
M3

M2

(M3

M1

)3/2(M4

M2

)3/2 M2
1

M2
2 〈M3〉2 〈M4〉2

4∏
j=1
‖IuMj

‖X2,1/2+

=
(M3

N

)1/2(M1

M2

)1/2( N
M2

)4−
N−7/2+M0−

2

4∏
j=1
‖IuMj‖X2,1/2+

. N−7/2+M0−
2

4∏
j=1
‖IuMj

‖X2,1/2+ . (6.1.27)

Using (6.1.15) and the fact that γ0 < 7/2, we have (6.1.26).
Case 3. M2 ≥M3 & N . In this case, we simply bound

|µ(ξ2, ξ3, ξ4)| . m(ξ1)
m(ξ2)m(ξ3)m(ξ4) .

Here we use that m(ξ1) & m(ξ2) and m(ξ3) ≤ m(ξ4) ≤ 1 due to the fact that M1 . M2 and
M3 ≥M4.
Subcase 3a. M2 � M3 & N . We see that M1 ∼ M2 since

∑4
j=1 ξj = 0. The pointwise bound,

Hölder’s inequality, Plancherel theorem and bilinear estimate (6.1.4) again give

A .
m(M1)

m(M2)m(M3)m(M4)‖∆
2IuM1IuM4‖L2(R,L2)‖IuM2IuM3‖L2(R,L2)

.
m(M1)

m(M2)m(M3)m(M4)

(M4

M1

)3/2(M3

M2

)3/2 M2
1

M2
2M

2
3 〈M4〉2

4∏
j=1
‖IuMj‖X2,1/2+ .
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Thanks to (6.1.15), we only need to show

m(M1)
m(M2)m(M3)m(M4)

(M4

M1

)3/2(M3

M2

)3/2 M2
1

M2
2M

2
3 〈M4〉2

. N−γ0+M0−
2 . (6.1.28)

Remark that the functionm(λ)λα is increasing, andm(λ) 〈λ〉α is bounded below for any α+γ−2 >
0 due to

(m(λ)λα)′ =
{

αλα−1 if 1 ≤ λ ≤ N,
N2−γ(α+ γ − 2)λα+γ−3 if λ ≥ 2N.

We shall shortly choose an appropriate value of α, says α, so that

m(M4) 〈M4〉α & 1, m(M3)Mα
3 & m(N)Nα = Nα. (6.1.29)

Using that m(M1) ∼ m(M2), we have

LHS(6.1.28) . M
α−1/2
3 〈M4〉α−1/2

M
1/2
1

m(M3)Mα
3 m(M4) 〈M4〉αM7/2

2

.
1

NαM4−2α
2

(M3

M2

)α−1/2( 〈M4〉
M2

)α−1/2(M1

M2

)1/2

. N−(4−α)+M0−
2 .

Therefore, if we choose α so that γ0 = 4− α or α = 4− γ0 = 14
15 , then we get (6.1.26). Note that

α+ γ − 2 ≥ 0, hence (6.1.29) holds.
Subcase 3b. M2 ∼ M3 & N . In this case, we see that M1 . M2. Arguing as in Subcase 3a, we
obtain

A .
m(M1)

m(M2)m(M3)m(M4)‖∆
2IuM1IuM2‖L2(R,L2)‖IuM3IuM4‖L2(R,L2)

.
m(M1)

m(M2)m(M3)m(M4)

(M1

M2

)3/2(M4

M3

)3/2 〈M1〉2

M2
2M

2
3 〈M4〉2

4∏
j=1
‖IuMj‖X2,1/2+ .

As in Subcase 3a, our aim is to prove

m(M1)
m(M2)m(M3)m(M4)

(M1

M2

)3/2(M4

M3

)3/2 〈M1〉2

M2
2M

2
3 〈M4〉2

. N−γ0+M0−
2 . (6.1.30)

We use (6.1.29) to get

LHS(6.1.30) . m(M1)
m(M2)m(M3)m(M4) 〈M4〉1/2M7/2

3

.
m(M1)Mα

2 〈M4〉α−1/2

m(M2)Mα
2 m(M3)Mα

3 m(M4) 〈M4〉αM4−α−1/2
3

.
1

N2α

(M2

M3

)α( 〈M4〉
M3

)α−1/2 1
M4−3α

3

. N−(4−α)+M0−
2 .

Choosing α as in Subcase 3a, we get (6.1.26).
We now consider the second term (Term2). We again decompose u in dyadic frequencies,

u =
∑
M≥1 uM . By the symmetry, we can assume that M2 ≥ M3 ≥ M4. We can assume further
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that M2 & N since µ(ξ2, ξ3, ξ4) vanishes otherwise. Thus,

Term2 .
∑

M1,M2,M3,M4≥1
M2≥M3≥M4

B(M1,M2,M3,M4),

where

B(M1,M2,M3,M4) :=
∣∣∣ ∫ δ

0

∫∑4
j=1

ξj=0
µ(ξ2, ξ3, ξ4) ̂PM1I(|u|2u)(ξ1)ÎuM2(ξ2)ÎuM3(ξ3)ÎuM4(ξ4)dt

∣∣∣.
As for the Term1, we will use the notation B instead of B(M1,M2,M3,M4). Using the trivial
bound

|µ(ξ2, ξ3, ξ4)| . m(M1)
m(M2)m(M3)m(M4) ,

Hölder’s inequality and Plancherel theorem, we bound

B .
m(M1)

m(M2)m(M3)m(M4)‖PM1I(|u|2u)‖L2(R,L2)‖IuM2‖L4(R,L4)‖IuM3‖L4(R,L4)‖IuM4‖L∞(R,L∞).

Lemma 6.1.13. We have

‖PM1I(|u|2u)‖L2(R,L2) .
1

〈M1〉2
‖Iu‖3X2,1/2+ , (6.1.31)

‖IuMj‖L4(R,L4) .
1

〈Mj〉2
‖IuMj‖X2,1/2+ , j = 2, 3, (6.1.32)

‖IuM4‖L∞(R,L∞) . ‖IuM4‖X2,1/2+ . (6.1.33)

Proof. The estimate (6.1.31) is in turn equivalent to

‖ 〈∇〉2 PM1I(|u|2u)‖L2(R,L2) . ‖Iu‖3X2,1/2+ .

Since 〈∇〉2 I obeys a Leibniz rule, it suffices to prove

‖PM1((〈∇〉2 Iu1)u2u3)‖L2(R,L2) .
3∏
j=1
‖Iuj‖X2,1/2+ . (6.1.34)

The Littlewood-Paley theorem and Hölder’s inequality imply

LHS(6.1.34) . ‖ 〈∇〉2 Iu1‖L4(R,L4)‖u2‖L8(R,L8)‖u3‖L8(R,L8).

We have from Strichartz estimate (6.1.2) that

‖ 〈∇〉2 Iu1‖L4(R,L4) . ‖ 〈∇〉
2
Iu1‖X0,1/2+ = ‖Iu1‖X2,1/2+ .

Combining Sobolev embedding and Strichartz estimate (6.1.2) yield

‖u2‖L8(R,L8) . ‖ 〈∇〉u2‖L8(R,L8/3) . ‖ 〈∇〉u2‖X0,1/2+ . ‖Iu2‖X2,1/2+ ,

where the last estimate follows from (6.1.10). Similarly for ‖u3‖L8(R,L8). This shows (6.1.34). The
estimate (6.1.32) follows easily from Strichartz estimate. For (6.1.33), we use Sobolev embedding
and Strichartz estimate to get

‖IuM4‖L∞(R,L∞) . ‖ 〈∇〉
2
IuM4‖L∞(R,L2) . ‖ 〈∇〉

2
IuM4‖X0,1/2+ = ‖IuM4‖X2,1/2+ .

The proof is complete.
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We use Lemma 6.1.13 to bound

B .
m(M1)

m(M2)m(M3)m(M4)
1

〈M1〉2 〈M2〉2 〈M3〉2
‖Iu‖3X2,1/2+

4∏
j=2
‖IuMj‖X2,1/2+ ,

with M2 ≥M3 ≥M4 and M2 & N . Using (6.1.15), the estimate (6.1.26) follows once we have

m(M1)
m(M2)m(M3)m(M4)

1
〈M1〉2 〈M2〉2 〈M3〉2

. N−γ0+M0−
2 . (6.1.35)

We now break the frequency interactions into two cases: M2 ∼M3 and M2 ∼M1 since
∑4
j=1 ξj =

0.
Case 1. M2 ∼M3,M2 ≥M3 ≥M4 and M2 & N . We see that

LHS(6.1.35) ∼ m(M1)
(m(M2))2m(M4)

1
〈M1〉2 〈M2〉4

.
m(M1)

N2αm(M4) 〈M1〉2 〈M2〉4−2α

.
1

N2α
1

m(M4) 〈M2〉4−2α .
1

N2α
1

M4−3α
2

. N−(4−α)+M0−
2 .

Here we use that m(M2) 〈M2〉α ≥ m(N)Nα = Nα,m(M1) . 〈M1〉2 and that m(y) 〈x〉α & 1 for
all 1 ≤ y ≤ x.
Case 2. M2 ∼M1, M2 ≥M3 ≥M4 and M2 & N . We have

LHS(6.1.35) . 1
m(M3)m(M4)

1
〈M2〉4 〈M3〉2

.
1

m(M3) 〈M3〉α
1

m(M4) 〈M2〉α
1

〈M2〉4−α 〈M3〉2−α

. N−(4−α)+M0−
2 .

Here we use again m(M3) 〈M3〉α ,m(M4) 〈M2〉α & 1. By choosing α as in Subcase 3a, we prove
(6.1.35). The proof of Proposition 6.1.9 is now complete. �
Remark 6.1.14. Let us now comment on the choices of α and γ0. As mentioned in Remark
6.1.10, if the increment of the modified energy is N−γ0 , then we can show (see Section 6.1.3, after
(6.1.40)) that the global well-posedness holds for data in Hγ(R4) with γ > 8

4+γ0
=: γ. We learn

from (6.1.27) that γ0 ≤ 7/2, hence γ ≥ 16
15 . On the other hand, in Subcase 3a, we need α+γ−2 > 0

and α = 4 − γ0. Since γ > γ, we have α + γ − 2 > α + γ − 2 ≥ α + 16
15 − 2. We thus choose

α := 2− 16
15 = 14

15 , hence γ0 = 4− α = 46
15 .

6.1.3 The proof of Theorem 6.1.1
We now are able to show the global existence given in Theorem 6.1.1. We only consider positive

time, the negative one is treated similarly. The conservation of mass and Lemma 6.1.8 give

‖u(t)‖2Hγ . ‖Iu(t)‖2H2 ∼ ‖Iu(t)‖2
Ḣ2 + ‖Iu(t)‖2L2 . E(Iu(t)) + ‖ψ‖2L2 . (6.1.36)

By density argument, we may assume that ψ ∈ C∞0 (R4). Let u be a global solution to (dNL4S)
with initial data ψ. As E(Iψ) is not necessarily small, we will use the scaling

uλ(t, x) := λ−2u(λ−4t, λ−1x), λ > 0
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to make the energy of rescaled initial data small in order to apply the almost conservation law
given in Proposition 6.1.9. We have

E(Iuλ(0)) = 1
2‖Iuλ(0)‖2

Ḣ2 + 1
4‖Iuλ(0)‖4L4 . (6.1.37)

We then estimate

‖Iuλ(0)‖2
Ḣ2 . N

2(2−γ)‖uλ(0)‖2
Ḣγ

= N2(2−γ)λ−2γ‖ψ‖2
Ḣγ
,

and
‖Iuλ(0)‖4L4 . ‖uλ(0)‖4L4 = λ−4‖ψ‖4L4 . λ−4‖ψ‖4Hγ .

Note that γ > γ ≥ 1 allows us to use Sobolev embedding in the last inequality. Thus, (6.1.37)
gives for λ� 1,

E(Iuλ(0)) . (N2(2−γ)λ−2γ + λ−4)(1 + ‖ψ‖Hγ )4 ≤ C0N
2(2−γ)λ−2γ(1 + ‖ψ‖Hγ )4.

We now choose

λ := N
2−γ
γ

( 1
2C0

)− 1
2γ (1 + ‖ψ‖Hγ )

2
γ (6.1.38)

so that E(Iuλ(0)) ≤ 1/2. We then apply Proposition 6.1.9 for uλ(0). Note that we may reapply
this proposition until E(Iuλ(t)) reaches 1, that is at least C1N

γ0− times. Therefore,

E(Iuλ(C1N
γ0−δ)) ∼ 1. (6.1.39)

Now given any T � 1, we choose N � 1 so that

T ∼ Nγ0−

λ4 C1δ.

Using (6.1.38), we see that

T ∼ N
(γ0+4)γ−8

γ −. (6.1.40)

Here γ > γ = 8
γ0+4 , hence the power of N is positive and the choice of N makes sense for arbitrary

T � 1. A direct computation shows

E(Iu(t)) = λ4E(Iuλ(λ4t)).

Thus, we have from (6.1.38), (6.1.39) and (6.1.40) that

E(Iu(T )) = λ4E(Iuλ(λ4T )) = λ4E(Iuλ(C1N
γ0−δ))

∼ λ4 ≤ N
4(2−γ)
γ ∼ T

4(2−γ)
(γ0+4)γ−8 +

.

This shows that there exists C2 = C2(‖ψ‖Hγ , δ) such that

E(Iu(T )) ≤ C2T
4(2−γ)

(γ0+4)γ−8 +
,

for T � 1. This together with (6.1.36) show that

‖u(T )‖Hγ . C3T
2(2−γ)

(γ0+4)γ−8 + + C4 = C3T
15(2−γ)
53γ−60 + + C4,

where C3, C4 depend only on ‖ψ‖Hγ . The proof of Theorem 6.1.1 is complete.

143



6.2. Global well-posedness mass-critical NL4S

6.2 Global well-posedness for the defocusing mass-critical
NL4S below the energy space in dimensions 5 ≤ d ≤ 7.

This section is devoted to the following result. As mentioned in the introduction of Chapter
6, this result can follow directly from the work of Pausader-Shao [PS10]. However, the proof we
present below has its own interest and will be used in Chapter 7.
Theorem 6.2.1. Let d = 5, 6, 7. The initial value problem (dNL4S) is globally well-posed in
Hγ(Rd), for any γ(d) < γ < 2, where γ(5) = 8

5 , γ(6) = 5
3 and γ(7) = 13

7 .
The proof of the above theorem is based on the combination of the I-method and the interaction

Morawetz inequality which is similar to those given in [DPST07]. The key is to show that the
modified energy E(Iu) is an “almost conserved” quantity in the sense that the time derivative of
E(Iu) decays with respect to a large parameter N (see Section 6.1.1 for the definition of I and
N). To do so, we need delicate estimates on the commutator between the I-operator and the
nonlinearity. Note that in our setting, the nonlinearity is not algebraic. Thus we can not apply
the Fourier transform technique. Fortunately, thanks to a special Strichartz estimate (6.2.11),
we are able to apply the technique given in [VZ09] to control the commutator. The interaction
Morawetz inequality for the nonlinear fourth-order Schrödinger equation was first introduced in
[Pau2] for d ≥ 7, and was extended for d ≥ 5 in [MWZ15]. With this estimate, the interpolation
argument and Sobolev embedding give for any compact interval J ,

‖u‖M(J) := ‖u‖
L

8(d−3)
d (J,L

2(d−3)
d−4 )

. |J |
d−4

8(d−3) ‖ψ‖
1
d−3
L2 ‖u‖

d−4
d−3

L∞(J,Ḣ
1
2 )
. (6.2.1)

As a byproduct of Strichartz estimates and the I-method, we show the almost conservation law
for the modified energy of (dNL4S), that is if u is a smooth solution to (dNL4S) on a time interval
J = [0, T ], and satisfies ‖Iψ‖H2 ≤ 1 and if u satisfies in addition the a priori bound ‖u‖M(J) ≤ µ
for some small constant µ > 0, then

sup
t∈[0,T ]

|E(Iu(t))− E(Iψ)| . N−(2−γ+δ).

for max
{

3− 8
d ,

8
d

}
< γ < 2 and 0 < δ < γ + 8

d − 3.
We now briefly outline the idea of the proof. Let u be a global in time solution to (dNL4S).

Observe that for any λ > 0,

uλ(t, x) := λ−
d
2 u(λ−4t, λ−1x) (6.2.2)

is also a solution to (dNL4S). By choosing

λ ∼ N
2−γ
γ , (6.2.3)

and using some harmonic analysis, we can make E(Iuλ(0)) ≤ 1
4 by taking λ sufficiently large

depending on ‖ψ‖Hγ and N . Fix an arbitrary large time T . The main goal is to show

E(Iuλ(λ4T )) ≤ 1. (6.2.4)

With this bound, we can easily obtain the growth of ‖u(T )‖Hγ , and the global well-posedness in
Hγ(Rd) follows immediately. In order to get (6.2.4), we claim that

‖uλ‖M([0,t]) ≤ Kt
d−4

8(d−3) , ∀t ∈ [0, λ4T ],
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for some constant K. If it is not so, then there exists T0 ∈ [0, λ4T ] such that

‖uλ‖M([0,T0]) > KT
d−4

8(d−3)
0 , (6.2.5)

‖uλ‖M([0,T0]) ≤ 2KT
d−4

8(d−3)
0 . (6.2.6)

Using (6.2.6), we can split [0, T0] into L subintervals Jk, k = 1, ..., L so that

‖uλ‖M(Jk) ≤ µ.

The number L must satisfy

L ∼ T
d−4
d

0 . (6.2.7)

Thus we can apply the almost conservation law to get

sup
[0,T0]

E(Iuλ(t)) ≤ E(Iuλ(0)) +N−(2−γ+δ)L.

Since E(Iuλ(0)) ≤ 1
4 , in order to have E(Iuλ(t)) ≤ 1 for all t ∈ [0, T0], we need

N−(2−γ+δ)L� 1
4 . (6.2.8)

Combining (6.2.3), (6.2.7) and (6.2.8), we obtain the condition on γ. Next, using (6.2.1) together
with some harmonic analysis, we estimate

‖uλ‖M([0,T0]) . T
d−4

8(d−3)
0 ‖ψ‖

1
d−3
L2 sup

[0,T0]

(
‖ψ‖ 3

4 ‖Iuλ(t)‖
1
4
Ḣ2 +N−

3
4 ‖Iuλ(t)‖Ḣ2

) d−4
d−3

.

Since ‖Iuλ(t)‖Ḣ2 . E(Iuλ(t)) ≤ 1 for all t ∈ [0, T0], we get

‖uλ‖M([0,T0]) ≤ CT
d−4

8(d−3)
0 ,

for some constant C > 0. This leads to a contradiction to (6.2.5) for an appropriate choice of K.
Thus we have the claim and also

E(Iuλ(t)) ≤ 1, ∀t ∈ [0, λ4T ].

For more details, we refer the reader to Section 6.2.3.

6.2.1 Preliminaries
Nonlinearity. Let F (z) := |z| 8d z, d = 5, 6, 7 be the function that defines the nonlinearity in
(dNL4S). The derivative F ′(z) is defined as a real-linear operator acting on w ∈ C by

F ′(z) · w := w∂zF (z) + w∂zF (z),

where
∂zF (z) = 2d+ 8

2d |z| 8d , ∂zF (z) = 4
d
|z| 8d z

z
.

We shall identify F ′(z) with the pair (∂zF (z), ∂zF (z)), and define its norm by

|F ′(z)| := |∂zF (z)|+ |∂zF (z)|.
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It is clear that |F ′(z)| = O(|z| 8d ). We also have the following chain rule

∂kF (u) = F ′(u)∂ku,

for k ∈ {1, · · · , d}. In particular, we have

∇F (u) = F ′(u)∇u.

We next recall the fractional chain rule to estimate the nonlinearity.
Lemma 6.2.2. Suppose that G ∈ C1(C,C), and α ∈ (0, 1). Then for 1 < q ≤ q2 < ∞ and
1 < q1 ≤ ∞ satisfying 1

q = 1
q1

+ 1
q2
,

‖|∇|αG(u)‖Lq . ‖G′(u)‖Lq1 ‖|∇|αu‖Lq2 .

We refer the reader to [CW91, Proposition 3.1] for the proof of the above estimate when
1 < q1 <∞, and to [KPV93, Theorem A.6] for the proof when q1 =∞.

When G is no longer C1, but Hölder continuous, we have the following fractional chain rule.
Lemma 6.2.3. Suppose that G ∈ C0,β(C,C), β ∈ (0, 1). Then for every 0 < α < β, 1 < q < ∞,
and α

β < ρ < 1,

‖|∇|αG(u)‖Lq . ‖|u|β−
α
ρ ‖Lq1 ‖|∇|ρu‖

α
ρ

L
α
ρ
q2
,

provided 1
q = 1

q1
+ 1

q2
and

(
1− α

βρ

)
q1 > 1.

The reader can find the proof of this result in [Vis06, Proposition A.1].

Strichartz estimates. Let I ⊂ R and p, q ∈ [1,∞]. We define the mixed norm

‖u‖Lp(I,Lq) :=
(∫

I

(∫
Rd
|u(t, x)|qdx

) p
q
) 1
p

with a usual modification when either p or q are infinity.
In this section, we denote for (p, q) ∈ [1,∞]2,

γp,q = d

2 −
d

q
− 4
p
.

Definition 6.2.4. A pair (p, q) is called biharmonic admissible, for short (p, q) ∈ B, if (p, q) is
Schrödinger admissible satisfying

γp,q = 0.

We recall Strichartz estimates for the linear fourth-order Schrödinger equation given in Theo-
rem 1.1.2 (see also Corollary 1.1.3) with σ = 4.
Proposition 6.2.5. Let γ ∈ R and u be a (weak) solution to the linear fourth-order Schrödinger
equation namely

u(t) = eit∆
2
ψ +

∫ t

0
ei(t−s)∆

2
F (s)ds,

for some data ψ,F . Then for all (p, q) and (a, b) Schrödinger admissible with q <∞ and b <∞,

‖|∇|γu‖Lp(R,Lq) . ‖|∇|γ+γp,qψ‖L2 + ‖|∇|γ+γp,q−γa′,b′−4F‖La′ (R,Lb′ ). (6.2.9)

Here (a, a′) and (b, b′) are conjugate pairs, and γp,q, γa′,b′ are defined as in (1.0.7).
Note that the estimate (6.2.9) is exactly the one given in [MZ07], [Pau1] or [Pau2] where

the author considered (p, q) and (a, b) are either sharp Schrödinger admissible (see (0.0.1)) or
biharmonic admissible. The proof of Strichartz estimates proved by [MZ07, Pau1, Pau2] are based
on delicate dispersive estimates of [BKS00] for the fundamental solution of the homogeneous
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fourth-order Schrödinger equation.
The following result is a direct consequence of (6.2.9).

Corollary 6.2.6. Let u be a (weak) solution to the linear fourth-order Schrödinger equation for
some data ψ,F . Then for all (p, q) and (a, b) biharmonic admissible satisfying q <∞ and b <∞,

‖u‖Lp(R,Lq) . ‖ψ‖L2 + ‖F‖La′ (R,Lb′ ), (6.2.10)

and

‖∆u‖Lp(R,Lq) . ‖∆ψ‖L2 + ‖∇F‖
L2(R,L

2d
d+2 )

. (6.2.11)

Commutator estimates Let I be as in Subsection 6.1.1. When the nonlinearity F (u) is alge-
braic, one can use the Fourier transform to write the commutator like F (Iu)− IF (u) as a product
of Fourier transforms of u and Iu, and then measure the frequency interactions. However, when
d ≥ 5, the nonlinearity is no longer algebraic, we thus need the following rougher estimate which
is a modified version of the Schrödinger context (see [VZ09]).
Lemma 6.2.7. Let 1 < γ < 2, 0 < δ < γ − 1 and 1 < q, q1, q2 < ∞ be such that 1

q = 1
q1

+ 1
q2
.

Then

‖I(fg)− (If)g‖Lq . N−(2−γ+δ)‖If‖Lq1 ‖ 〈∇〉2−γ+δ
g‖Lq2 . (6.2.12)

The proof is a slight modification of the one given in Lemma 2.5 of [VZ09]. We thus only give
a sketch of the proof.
Sketch of the proof. By the Littlewood-Paley decomposition, we write

I(fg)− (If)g = I(fP≤1g)− (If)P≤1g +
∑
M>1

[I(P.MfPMg)− (IP.Mf)PMg]

+
∑
M>1

[I(P�MfPMg)− (IP�Mf)PMg]

= I(P&NfP≤1g)− (IP&Nf)P≤1g +
∑
M&N

[I(P.MfPMg)− (IP.Mf)PMg]

+
∑
M>1

[I(P�MfPMg)− (IP�Mf)PMg]

= Term1 + Term2 + Term3.

Here we use the definition of the I-operator to get

I(P�NfP≤1g) = (IP�Nf)P≤1g, I(P.MfPMg) = (IP.Mf)PMg,

for all M � N .
For the second term, using Lemma 6.1.2 and Lemma 6.1.8, we estimate

‖I(P.MfPMg)− (IP.Mf)PMg‖Lq . ‖P.Mf‖Lq1 ‖PMg‖Lq2 , M & N

.
(M
N

)2−γ
‖If‖Lq1‖PMg‖Lq2

.M−δN−(2−γ)‖If‖Lq1‖|∇|2−γ+δg‖Lq2 .

Summing over all N .M ∈ 2Z, we get

‖Term2‖Lq . N−(2−γ+δ)‖If‖Lq1 ‖|∇|2−γ+δg‖Lq2 .
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For the third term, we write

I(P�MfPMg)− (IP�Mf)PMg =
∑

1�k∈N
[I(P2kMfPMg)− (IP2kMf)PMg]

=
∑

1�k∈N
N.2kM

I(P2kMfPMg)− (IP2kMf)PMg].

We note that

[I(P2kMfPMg)− (IP2kMf)PMg]̂ (ξ) =
∫
ξ=ξ1+ξ2

(mN (ξ1 + ξ2)−mN (ξ1))P̂2kMf(ξ1)P̂Mg(ξ2).

For |ξ1| ∼ 2kM & N and |ξ2| ∼M , the mean value theorem implies

|mN (ξ1 + ξ2)−mN (ξ2)| . |∇mN (ξ1)||ξ2| . 2−k
(2kM
N

)γ−2
.

The Coifman-Meyer multiplier theorem (see e.g. [CM75, CM91]) then yields

‖I(P2kMfPMg)− (IP2kMf)PMg‖Lq . 2−k
(2kM
N

)γ−2
‖P2kMf‖Lq1‖PMg‖Lq2

. 2−kM−(2−γ+δ)‖If‖Lq1 ‖|∇|2−γ+δg‖Lq2 .

By rewriting 2−kM−(2−γ+δ) = 2−k(γ−1−δ)(2kM)−(2−γ+δ), we sum over all k � 1 with γ − 1 > δ
and N . 2kM to get

‖Term3‖Lq . N−(2−γ+δ)‖If‖Lq1 ‖|∇|2−γ+δg‖Lq2 .

Finally, we consider the first term. It is proved by the same argument as for the third term. We
estimate

‖Term1‖Lq .
∑

k∈N,2k&N

‖I(P2kfP≤1g)− (IP2kf)P≤1g‖Lq

.
∑

k∈N,2k&N

2−k‖If‖Lq1 ‖g‖Lq2

. N−1‖If‖Lq1 ‖g‖Lq2 .

Note that the condition γ − 1 > δ ensures that N−1 . N−(2−γ+δ). This completes the proof. �
As a direct consequence of Lemma 6.2.7 with the fact that

∇F (u) = F ′(u)∇u,

we have the following corollary. Note that the I-operator commutes with ∇.
Corollary 6.2.8. Let 1 < γ < 2, 0 < δ < γ − 1 and 1 < q, q1, q2 < ∞ be such that 1

q = 1
q1

+ 1
q2
.

Then

‖∇IF (u)− (I∇u)F ′(u)‖Lq . N−(2−γ+δ)‖∇Iu‖Lq1 ‖ 〈∇〉2−γ+δ
F ′(u)‖Lq2 . (6.2.13)

Interaction Morawetz inequality. We end this section by recalling the interaction Morawetz
inequality for the nonlinear fourth-order Schrödinger equation. This estimate was first established
by Pausader in [Pau2] for d ≥ 7. Later, Miao-Wu-Zhang in [MWZ15] extended this interaction
Morawetz estimate to d ≥ 5.
Proposition 6.2.9 (Interaction Morawetz inequality [Pau2], [MWZ15]). Let d ≥ 5, J be a compact
time interval and u a solution to (dNL4S) on the spacetime slab J×Rd. Then we have the following
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a priori estimate:

‖|∇|−
d−5

4 u‖L4(J,L4) . ‖ψ‖
1
2
L2‖u‖

1
2

L∞(J,Ḣ
1
2 )
. (6.2.14)

By interpolating (6.2.14) and the trivial estimate

‖u‖
L∞(J,Ḣ

1
2 )
≤ ‖u‖

L∞(J,Ḣ
1
2 )
,

we obtain

‖u‖
L2(d−3)(J,L

2(d−3)
d−4 )

.
(
‖ψ‖L2‖u‖

L∞(J,Ḣ
1
2 )

) 1
d−3 ‖u‖

d−5
d−3

L∞(J,Ḣ
1
2 )

= ‖ψ‖
1
d−3
L2 ‖u‖

d−4
d−3

L∞(J,Ḣ
1
2 )
.

Using Sobolev embedding in time, we get

‖u‖M(J) := ‖u‖
L

8(d−3)
d (J,L

2(d−3)
d−4 )

. |J |
d−4

8(d−3) ‖ψ‖
1
d−3
L2 ‖u‖

d−4
d−3

L∞(J,Ḣ
1
2 )
. (6.2.15)

Here
(

8(d−3)
d , 2(d−3)

d−4

)
is a biharmonic admissible pair.

6.2.2 Almost conservation law
For any spacetime slab J × Rd, we define

ZI(J) := sup
(p,q)∈B

‖ 〈∆〉 Iu‖Lp(J,Lq).

Note that in our consideration 5 ≤ d ≤ 7, the biharmonic admissible condition (p, q) ∈ B ensures
q <∞. Let us start with the following commutator estimates.
Lemma 6.2.10. Let 5 ≤ d ≤ 7, 1 < γ < 2 and 0 < δ < γ − 1. Then

‖∇IF (u)− (I∇u)F ′(u)‖
L2(J,L

2d
d+2 )

. N−(2−γ+δ)(ZI(J))1+ 8
d , (6.2.16)

‖∇IF (u)‖
L2(J,L

2d
d+2 )

. ‖u‖
8
d

M(J)ZI(J) +N−(2−γ+δ)(ZI(J))1+ 8
d , (6.2.17)

where ‖u‖M(J) is given in (6.2.15). In particular,

‖∇IF (u)‖
L2(J,L

2d
d+2 )

. (ZI(J))1+ 8
d . (6.2.18)

Proof. We apply (6.2.13) with q = 2d
d+2 , q1 = 2d(d−3)

d2−9d+22 and q2 = d(d−3)
2(2d−7) to get

‖∇IF (u)− (I∇u)F ′(u)‖
L

2d
d+2
. N−(2−γ+δ)‖∇Iu‖

L
2d(d−3)
d2−9d+22

‖ 〈∇〉2−γ+δ
F ′(u)‖

L
d(d−3)

2(2d−7)
.

We then apply Hölder’s inequality to have

‖∇IF (u)−(I∇u)F ′(u)‖
L2(J,L

2d
d+2 )

. N−α‖∇Iu‖
L

2(d−3)
d−4 (J,L

2d(d−3)
d2−9d+22 )

‖ 〈∇〉α F ′(u)‖
L2(d−3)(J,L

d(d−3)
2(2d−7) )

,

where α = 2 − γ + δ ∈ (0, 1) by our assumptions. For the first factor in the right hand side, we
use the Sobolev embedding to obtain

‖∇Iu‖
L

2(d−3)
d−4 (J,L

2d(d−3)
d2−9d+22 )

. ‖∆Iu‖
L

2(d−3)
d−4 (J,L

2d(d−3)
d2−7d+16 )

. ZI , (6.2.19)
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where
(

2(d−3)
d−4 , 2d(d−3)

d2−7d+16

)
is a biharmonic admissible pair. For the second factor, we estimate

‖ 〈∇〉α F ′(u)‖
L2(d−3)(J,L

d(d−3)
2(2d−7) )

. ‖F ′(u)‖
L2(d−3)(J,L

d(d−3)
2(2d−7) )

+ ‖|∇|αF ′(u)‖
L2(d−3)(J,L

d(d−3)
2(2d−7) )

.

(6.2.20)

Since F ′(u) = O(|u| 8d ), we use (6.1.9) to have

‖F ′(u)‖
L2(d−3)(J,L

d(d−3)
2(2d−7) )

. ‖u‖
8
d

L
16(d−3)

d (J,L
4(d−3)
2d−7 )

. Z
8
d

I , (6.2.21)

where
(

16(d−3)
d , 4(d−3)

2d−7

)
is biharmonic admissible. In order to treat the second term in (6.2.20),

we apply Lemma 6.2.2 with q = d(d−3)
2(2d−7) , q1 = 2d(d−3)

−d2+11d−26 and q2 = 2d(d−3)
d2−3d−2 to get

‖|∇|αF ′(u)‖
L2(d−3)(J,L

d(d−3)
2(2d−7) )

. ‖F ′′(u)‖
L4(d−3)(J,L

2d(d−3)
−d2+11d−26 )

‖|∇|αu‖
L4(d−3)(J,L

2d(d−3)
d2−3d−2 )

.

As F ′′(u) = O(|u| 8d−1), we have

‖F ′′(u)‖
L4(d−3)(J,L

2d(d−3)
−d2+11d−26 )

. ‖u‖
8
d−1

L
4(8−d)(d−3)

d (J,L
2(8−d)(d−3)
−d2+11d−26 )

. Z
8
d−1
I . (6.2.22)

Note that the above estimate is valid for d at most 7. Here
(

4(8−d)(d−3)
d , 2(8−d)(d−3)

−d2+11d−26

)
is biharmonic

admissible. Since
(

4(d− 3), 2d(d−3)
d2−3d−2

)
is also a biharmonic admissible, we have from (6.1.9) that

‖|∇|αu‖
L4(d−3)(J,L

2d(d−3)
d2−3d−2 )

. ZI . (6.2.23)

Note that α < 1 < γ. Collecting (6.2.19), (6.2.21), (6.2.22) and (6.2.23), we prove (6.2.16).
We now prove (6.2.17). We have from (6.2.16) and the triangle inequality that

‖∇IF (u)‖
L2(J,L

2d
d+2 )

. ‖(∇Iu)F ′(u)‖
L2(J,L

2d
d+2 )

+N−(2−γ+δ)Z
1+ 8

d

I . (6.2.24)

The Hölder inequality gives

‖(∇Iu)F ′(u)‖
L2(J,L

2d
d+2 )

. ‖∇Iu‖
L

2(d−3)
d−5 (J,L

2d(d−3)
d2−9d+26 )

‖F ′(u)‖
Ld−3(JL

d(d−3)
4(d−4) )

.

We use the Sobolev embedding to estimate

‖∇Iu‖
L

2(d−3)
d−5 (J,L

2d(d−3)
d2−9d+26 )

. ‖∆Iu‖
L

2(d−3)
d−5 (J,L

2d(d−3)
d2−7d+20 )

. ZI . (6.2.25)

Here
(

2(d−3)
d−5 , 2d(d−3)

d2−7d+20

)
is biharmonic admissible. Since F ′(u) = O(|u| 8d ), we have

‖F ′(u)‖
Ld−3(J,L

d(d−3)
4(d−4) )

. ‖u‖
8
d

L
8(d−3)
d (J,L

2(d−3)
d−4 )

= ‖u‖
8
d

M . (6.2.26)

Combining (6.2.24), (6.2.25) and (6.2.26), we obtain (6.2.17). The estimate (6.2.18) follows directly
from (6.2.17) and (6.1.9). Note that

(
8(d−3)
d , 2(d−3)

d−4

)
is biharmonic admissible. The proof is

complete.
We are now able to prove the almost conservation law for the modified energy functional E(Iu),
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where
E(Iu(t)) = 1

2‖Iu(t)‖2
Ḣ2 + d

2d+ 8‖Iu(t)‖
2d+8
d

L
2d+8
d

.

Proposition 6.2.11. Let 5 ≤ d ≤ 7,max
{

3− 8
d ,

8
d

}
< γ < 2 and 0 < δ < γ + 8

d − 3. Assume
that u is a smooth solution to (dNL4S) on a time interval J = [0, T ], and satisfies ‖Iψ‖H2 ≤ 1.
Assume in addition that u satisfies the a priori bound

‖u‖M(J) ≤ µ,

for some small constant µ > 0. Then, for N sufficiently large,

sup
t∈[0,T ]

|E(Iu(t))− E(Iψ)| . N−(2−γ+δ). (6.2.27)

Here the implicit constant depends only on the size fo E(Iψ).
Proof. Our first step is to control the size of ZI . Applying I, ∆I to (dNL4S), and then using
Strichartz estimates (6.2.10), (6.2.11), we have

ZI . ‖Iψ‖H2 + ‖IF (u)‖
L2(J,L

2d
d+4 )

+ ‖∇IF (u)‖
L2(J,L

2d
d+2 )

. (6.2.28)

Using (6.2.17), we have

‖∇IF (u)‖
L2(J,L

2d
d+2 )

. ‖u‖
8
d

MZI +N−(2−γ+δ)Z
1+ 8

d

I . µ
8
dZI +N−(2−γ+δ)Z

1+ 8
d

I . (6.2.29)

We next drop the I-operator (see (6.1.7)) and use Hölder’s inequality to estimate

‖IF (u)‖
L2(J,L

2d
d+4 )

. ‖|u| 8d ‖
Ld−3(J,L

d(d−3)
4(d−4) )

‖u‖
L

2(d−3)
d−5 (J,L

2d(d−3)
d2−7d+20 )

. ‖u‖
8
d

L
8(d−3)
d (J,L

2(d−3)
d−4 )

‖u‖
L

2(d−3)
d−5 (J,L

2d(d−3)
d2−7d+20 )

. ‖u‖
8
d

MZI . µ
8
dZI . (6.2.30)

The last inequality follows from (6.1.9) and the fact
(

2(d−3)
d−5 , 2d(d−3)

d2−7d+20

)
is biharmonic admissible.

Collecting from (6.2.28) to (6.2.30), we obtain

ZI . ‖Iψ‖H2 + µ
8
dZI +N−(2−γ+δ)Z

1+ 8
d

I .

By taking µ sufficiently small and N sufficiently large, the continuity argument gives

ZI . ‖Iψ‖H2 ≤ 1. (6.2.31)

Next, we have from a direct computation that

∂tE(Iu(t)) = Re
∫
I∂tu(∆2Iu+ F (Iu))dx.

By the Fundamental Theorem of Calculus,

E(Iu(t))− E(Iψ) =
∫ t

0
∂sE(Iu(s))ds = Re

∫ t

0

∫
I∂su(∆2Iu+ F (Iu))dxds.
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Using I∂tu = i∆2Iu+ iIF (u), we see that

E(Iu(t))− E(Iψ) = Re
∫ t

0

∫
I∂su(F (Iu)− IF (u))dxds

= Im
∫ t

0

∫
∆2Iu+ IF (u)(F (Iu)− IF (u))dxds

= Im
∫ t

0

∫
∆Iu∆(F (Iu)− IF (u))dxds

+Im
∫ t

0

∫
IF (u)(F (Iu)− IF (u))dxds.

We next write

∆(F (Iu)− IF (u)) = (∆Iu)F ′(Iu) + |∇Iu|2F ′′(Iu)− I(∆uF ′(u))− I(|∇u|2F ′′(u))
= (∆Iu)(F ′(Iu)− F ′(u)) + |∇Iu|2(F ′′(Iu)− F ′′(u))

+∇Iu · (∇Iu−∇u)F ′′(u) + (∆Iu)F ′(u)− I(∆uF ′(u))
+(I∇u) · ∇uF ′′(u)− I(∇u · ∇uF ′′(u)).

Therefore,

E(Iu(t))− E(Iψ) = Im
∫ t

0

∫
∆Iu∆Iu(F ′(Iu)− F ′(u))dxds (6.2.32)

+Im
∫ t

0

∫
∆Iu|∇Iu|2(F ′′(Iu)− F ′′(u))dxds (6.2.33)

+Im
∫ t

0

∫
∆Iu∇Iu · (∇Iu−∇u)F ′′(u)dxds (6.2.34)

+Im
∫ t

0

∫
∆Iu[(∆Iu)F ′(u)− I(∆uF ′(u))]dxds (6.2.35)

+Im
∫ t

0

∫
∆Iu[(I∇u) · ∇uF ′′(u)− I(∇u · ∇uF ′′(u))]dxds (6.2.36)

+Im
∫ t

0

∫
IF (u)(F (Iu)− IF (u))dxds. (6.2.37)

Let us consider (6.2.32). By Hölder’s inequality, we estimate

|(6.2.32)| . ‖∆Iu‖2
L4(J,L

2d
d−2 )
‖F ′(Iu)− F ′(u)‖

L2(J,L
d
2 )

. Z2
I ‖|Iu− u|(|Iu|+ |u|)

8
d−1‖

L2(J,L
d
2 )

. Z2
I ‖P>Nu‖L 16

d (J,L4)
‖u‖

8
d−1

L
16
d (J,L4)

. (6.2.38)

By (6.1.8), we bound

‖P>Nu‖
L

16
d (J,L4)

. N−2‖∆Iu‖
L

16
d (J,L4)

. N−2ZI , (6.2.39)

where
(

16
d , 4

)
is biharmonic admissible. Similarly, we have from (6.1.9) that

‖u‖
L

16
d (J,L4)

. ZI . (6.2.40)
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Combining (6.2.38)− (6.2.40), we get

|(6.2.32)| . N−2Z
2+ 8

d

I . (6.2.41)

We next bound

|(6.2.33)| . ‖∆Iu‖
L4(J,L

2d
d−2 )
‖|∇Iu|2‖

L
16
11 (J,L

4d
4d−11 )

‖F ′′(Iu)− F ′′(u)‖
L16(J,L

4d
15−2d )

. ‖∆Iu‖
L4(J,L

2d
d−2 )
‖∇Iu‖2

L
32
11 (J,L

8d
4d−11 )

‖F ′′(Iu)− F ′′(u)‖
L16(J,L

4d
15−2d )

. Z3
I ‖|Iu− u|

8
d−1‖

L16(J,L
4d

15−2d )

. Z3
I ‖P>Nu‖

8
d−1

L
16(8−d)

d (J,L
4(8−d)
15−2d )

. N−2( 8
d−1)Z2+ 8

d

I . (6.2.42)

Here we drop the I-operator and apply (6.1.9) with the fact γ > 1 to get the third line. We also
use the fact that for 5 ≤ d ≤ 7,

|F ′′(z)− F ′′(ζ)| . |z − ζ| 8d−1, ∀z, ζ ∈ C.

The last estimate uses (6.2.39). Note that
(

32
11 ,

8d
4d−11

)
and

(
16(8−d)

d , 4(8−d)
15−2d

)
are biharmonic

admissible. Similarly, we estimate

|(6.2.34)| . ‖∆Iu‖
L4(J,L

2d
d−2 )
‖∇Iu‖

L
32
11 (J,L

8d
4d−11 )

‖∇Iu−∇u‖
L

32
11 (J,L

8d
4d−11 )

‖F ′′(u)‖
L16(J,L

4d
15−2d )

. Z2
I ‖∇P>Nu‖

L
32
11 (J,L

8d
4d−11 )

‖F ′′(u)‖
L16
t (J,L

4d
15−2d )

.

We next use (6.1.8) to have

‖∇P>Nu‖
L

32
11 (J,L

8d
4d−11 )

. N−1‖∆Iu‖
L

32
11 (J,L

8d
4d−11 )

. N−1ZI .

As F ′′(u) = O(|u| 8d−1), we use (6.1.9) to get

‖F ′′(u)‖
L16(J,L

4d
15−2d )

. ‖u‖
8
d−1

L
16(8−d)

d (J,L
4(8−d)
15−2d )

. Z
8
d−1
I . (6.2.43)

We thus obtain

|(6.2.34)| . N−1Z
2+ 8

d

I . (6.2.44)

By Hölder’s inequality,

|(6.2.35)| . ‖∆Iu‖
L2(J,L

2d
d−4 )
‖(∆Iu)F ′(u)− I(∆uF ′(u))‖

L2(J,L
2d
d+4 )

.

We then apply Lemma 6.2.7 with q = 2d
d+4 , q1 = 2d(d−3)

d2−7d+16 and q2 = d(d−3)
2(2d−7) to get

‖(∆Iu)F ′(u)− I(∆uF ′(u))‖
L

2d
d+4
. N−α‖∆Iu‖

L
2d(d−3)
d2−7d+16

‖ 〈∇〉α F ′(u)‖
L
d(d−3)

2(2d−7)
,
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where α = 2− γ + δ. The Hölder inequality then implies

‖(∆Iu)F ′(u)− I(∆uF ′(u))‖
L2(J,L

2d
d+4 )

. N−α‖∆Iu‖
L

2(d−3)
d−4 (J,L

2d(d−3)
d2−7d+16 )

× ‖ 〈∇〉α F ′(u)‖
L2(d−3)(J,L

d(d−3)
2(2d−7) )

.

We have from (6.2.20), (6.2.21), (6.2.22) and (6.2.23) that

‖ 〈∇〉α F ′(u)‖
L2(d−3)(J,L

d(d−3)
2(2d−7) )

. Z
8
d

I .

Thus

|(6.2.35)| . N−(2−γ+δ)Z
2+ 8

d

I . (6.2.45)

Similarly, we bound

|(6.2.36)| . ‖∆Iu‖
L4(J,L

2d
d−2 )
‖(I∇u) · ∇uF ′′(u)− I(∇u · ∇uF ′′(u))‖

L
4
3 (J,L

2d
d+2 )

. (6.2.46)

Applying Lemma 6.2.7 with q = 2d
d+2 , q1 = 8d

4d−11 and q2 = 8d
19 and using Hölder inequality, we

have

‖(I∇u) · ∇uF ′′(u)− I(∇u · ∇uF ′′(u))‖
L

4
3 (J,L

2d
d+2 )

. N−α‖I∇u‖
L

32
11 (J,L

8d
4d−11 )

× ‖ 〈∇〉α (∇uF ′′(u))‖
L

8
5 (J,L

8d
19 )
. (6.2.47)

The fractional chain rule implies

‖ 〈∇〉α (∇uF ′′(u))‖
L

8
5 (J,L

8d
19 )
. ‖ 〈∇〉α+1

u‖
L

32
11 (J,L

8d
4d−11 )

‖F ′′(u)‖
L16(J,L

4d
15−2d )

+ ‖∇u‖
L

32
11 (J,L

8d
4d−11 )

‖ 〈∇〉α F ′′(u)‖
L16(J,L

4d
15−2d )

. (6.2.48)

By our assumptions on γ and δ, we see that α + 1 < γ. By (6.1.9) (and dropping the I-operator
if necessary) and (6.2.43),

‖I∇u‖
L

32
11 (J,L

8d
4d−11 )

, ‖∇u‖
L

32
11 (J,L

8d
4d−11 )

, ‖ 〈∇〉α+1
u‖

L
32
11 (J,L

8d
4d−11 )

. ZI ,

‖F ′′(u)‖
L16(J,L

4d
15−2d )

. Z
8
d−1
I .

(6.2.49)

Here
(

32
11 ,

8d
4d−11

)
is biharmonic admissible. It remains to bound ‖ 〈∇〉α F ′′(u)‖

L16(J,L
4d

15−2d )
. To

do so, we use

‖ 〈∇〉α F ′′(u)‖
L16(J,L

4d
15−2d )

. ‖F ′′(u)‖
L16(J,L

4d
15−2d )

+ ‖|∇|αF ′′(u)‖
L16(J,L

4d
15−2d )

. (6.2.50)

The first term in the right hand side is treated in (6.2.43). For the second term in the right hand
side, we make use of the fractional chain rule given in Lemma 6.2.3 with β = 8

d − 1, α = 2− γ+ δ,
q = 4d

15−2d and q1, q2 satisfying (8
d
− 1− α

ρ

)
q1 = α

ρ
q2 = 4(8− d)

15− 2d ,

and α
8
d−1 < ρ < 1. Note that the choice of ρ is possible since α < 8

d − 1 by our assumptions. With
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these choices, we have (
1− α

βρ

)
q1 = 4d

15− 2d > 1,

for 5 ≤ d ≤ 7. Then,

‖|∇|αF ′′(u)‖
L

4d
15−2d

. ‖|u|
8
d−1−αρ ‖Lq1‖|∇|ρu‖

α
ρ

L
α
ρ
q2
. ‖u‖

8
d−1−αρ

L( 8
d
−1−α

ρ )q1
‖|∇|ρu‖

α
ρ

L
α
ρ
q2
.

By Hölder’s inequality,

‖|∇|αF ′′(u)‖
L16(J,L

4d
15−2d )

. ‖u‖
8
d−1−αρ

L( 8
d
−1−α

ρ )p1 (J,L( 8
d
−1−α

ρ )q1 )
‖|∇|ρu‖

α
ρ

L
α
ρ
p2 (J,L

α
ρ
q2 )

= ‖u‖
8
d−1−αρ

L
16(8−d)

d (J,L
4(8−d)
15−2d )

‖|∇|ρu‖
α
ρ

L
16(8−d)

d (J,L
4(8−d)
15−2d )

,

provided (8
d
− 1− α

ρ

)
p1 = α

ρ
p2 = 16(8− d)

d
.

Since
(

16(8−d)
d , 4(8−d)

15−2d

)
is biharmonic admissible, we have from (6.1.9) with the fact 0 < ρ < 1 < γ

that

‖|∇|αF ′′(u)‖
L16(J,L

4d
15−2d )

. Z
8
d−1
I . (6.2.51)

Collecting from (6.2.46) to (6.2.51), we get

|(6.2.36)| . N−(2−γ+δ)Z
2+ 8

d

I . (6.2.52)

Finally, we consider (6.2.37). We bound

|(6.2.37)| . ‖|∇|−1IF (u)‖
L2(J,L

2d
d−2 )
‖∇(F (Iu)− IF (u))‖

L2
t (J,L

2d
d+2 )

. ‖∇IF (u)‖
L2(J,L

2d
d+2 )
‖∇(F (Iu)− IF (u))‖

L2(J,L
2d
d+2 )

. (6.2.53)

By (6.2.18),
‖∇IF (u)‖

L2(J,L
2d
d+2 )

. Z
1+ 8

d

I .

By the triangle inequality, we estimate

‖∇(F (Iu)− IF (u))‖
L2(J,L

2d
d+2 )

. ‖(∇Iu)(F ′(Iu)− F ′(u))‖
L2(J,L

2d
d+2 )

+ ‖(∇Iu)F ′(u)−∇IF (u)‖
L2(J,L

2d
d+2 )

.

We firstly use Hölder’s inequality and estimate as in (6.2.38) to get

‖(∇Iu)(F ′(Iu)− F ′(u))‖
L2(J,L

2d
d+2 )

. ‖∇Iu‖
L∞(J,L

2d
d−2 )
‖F ′(Iu)− F ′(u)‖

L2(J,L
d
2 )

. ‖∆Iu‖L∞(J,L2)‖P>Nu‖L 16
d (J,L4)

‖u‖
8
d−1

L
16
d (J,L4)

. N−2Z
1+ 8

d

I . (6.2.54)

By (6.2.16),

‖(∇Iu)F ′(u)−∇IF (u)‖
L2(J,L

2d
d+2 )

. N−(2−γ+δ)Z
1+ 8

d

I . (6.2.55)
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Combining (6.2.53)− (6.2.55), we get

|(6.2.37)| . Z1+ 8
d

I (N−2Z
1+ 8

d

I +N−(2−γ+δ)Z
1+ 8

d

I ). (6.2.56)

The desired estimate (6.2.27) follows from (6.2.41), (6.2.42), (6.2.44), (6.2.45), (6.2.56) and (6.2.31).
The proof is complete.

6.2.3 Global well-posedness
Let us now show the global existence given in Theorem 6.2.1. By density argument, we assume

that ψ ∈ C∞0 (Rd). Let u be a global solution to (dNL4S) with initial data ψ. In order to apply
the almost conservation law, we need the modified energy of initial data to be small. Since E(Iψ)
is not necessarily small, we will use the scaling (6.2.2) to make E(Iuλ(0)) small. We have

E(Iuλ(0)) = 1
2‖Iuλ(0)‖2

Ḣ2 + d

2d+ 8‖Iuλ(0)‖
2d+8
d

L
2d+8
d

. (6.2.57)

We use (6.1.11) to estimate

‖Iuλ(0)‖Ḣ2 . N2−γ‖uλ(0)‖Ḣγ = N2−γλ−γ‖ψ‖Ḣγ . (6.2.58)

In order to make ‖Iuλ(0)‖Ḣ2 ≤ 1
8 , we choose

λ ≈ N
2−γ
γ . (6.2.59)

We next bound ‖Iuλ(0)‖
L

2d+8
d

. Using the Gagliardo-Nirenberg inequality, we have

‖Iuλ(0)‖
2d+8
d

L
2d+8
d

. ‖Iuλ(0)‖
8
d

L2‖Iuλ(0)‖2
Ḣ2 .

By (6.1.7), the scaling invariance, the conservation of mass and (6.2.58), it follows that

‖Iuλ(0)‖
L

2d+8
d
. (‖Iuλ(0)‖Ḣ2)

d
d+4 .

(
N2−γλ−γ‖ψ‖Ḣγ

) d
d+4 . (6.2.60)

Therefore, it follows from (6.2.57), (6.2.58), (6.2.59) and (6.2.60) by taking λ sufficiently large
depending on ‖ψ‖Hγ and N (which will be chosen later and depends only on ‖ψ‖Hγ ) that

E(Iuλ(0)) ≤ 1
4 .

Now let T be arbitrarily large. We define

X := {0 ≤ t ≤ λ4T | ‖uλ‖M([0,t]) ≤ Kt
d−4

8(d−3) },

with K a constant to be chosen later. HereM(J) is given in (6.2.15). We claim that X = [0, λ4T ].
Assume by contradiction that it is not so. Since ‖uλ‖M([0,t]) is a continuous function of time, there
exists T0 ∈ [0, λ4T ] such that

‖uλ‖M([0,T0]) > KT
d−4

8(d−3)
0 , (6.2.61)

‖uλ‖M([0,T0]) ≤ 2KT
d−4

8(d−3)
0 . (6.2.62)

Using (6.2.62), we are able to split [0, T0] into subintervals Jk, k = 1, ..., L in such a way that

‖uλ‖M(Jk) ≤ µ,
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where µ is as in Proposition 6.2.11. The number L of possible subinterval must satisfy

L ∼
(2KT

d−4
8(d−3)

0
µ

) 8(d−3)
d ∼ T

d−4
d

0 . (6.2.63)

Next, thanks to Proposition 6.2.11, we see that for 1 < γ < 2 and any 0 < δ < γ − 1,

sup
[0,T0]

E(Iuλ(t)) . E(Iuλ(0)) +N−(2−γ+δ)L,

for max
{

3− 8
d ,

8
d

}
< γ < 2 and 0 < δ < γ + 8

d − 3. Since E(Iuλ(0)) ≤ 1
4 , we need

N−(2−γ+δ)L� 1
4 (6.2.64)

in order to guarantee

E(Iuλ(t)) ≤ 1, (6.2.65)

for all t ∈ [0, T0]. As T0 ≤ λ4T , we have from (6.2.63) and (6.2.64) and the choice of λ given in
(6.2.59) that

N−(2−γ+δ)N
4(2−γ)(d−4)

γd T
d−4
d � 1

4 , (6.2.66)

or

4(2− γ)(d− 4)
γd

< 2− γ + δ, (6.2.67)

for max
{

3− 8
d ,

8
d

}
< γ < 2 and 0 < δ < γ+ 8

d − 3. Since 2− γ+ δ < 8
d − 1, the condition (6.2.67)

is possible if we have
4(2− γ)(d− 4)

γd
<

8
d
− 1.

This implies γ > 8(d−4)
3d−8 . Thus

γ > max
{

3− 8
d
,

8
d
,

8(d− 4)
3d− 8

}
.

Next, by (6.2.15),

‖uλ‖M([0,T0]) . T
d−4

8(d−3)
0 ‖ψ‖

1
d−3
L2 ‖uλ‖

d−4
d−3

L∞t ([0,T0],Ḣ
1
2 )
.

We use (6.1.8) and the definition of the I-operator to estimate

‖uλ(t)‖
Ḣ

1
2
≤ ‖P≤Nuλ(t)‖

Ḣ
1
2

+ ‖P>Nuλ(t)‖
Ḣ

1
2

. ‖P≤Nuλ(t)‖
3
4
L2‖P≤Nuλ(t)‖

1
4
Ḣ2 +N−

3
2 ‖Iuλ(t)‖Ḣ2

. ‖ψ‖
3
4
L2‖Iuλ(t)‖

1
4
Ḣ2 +N−

3
2 ‖Iuλ(t)‖Ḣ2 .

Thus,

‖uλ‖M([0,T0]) . T
d−4

8(d−3)
0 ‖ψ‖

1
d−3
L2 sup

[0,T0]

(
‖ψ‖

3
4
L2‖Iuλ(t)‖

1
4
Ḣ2 +N−

3
2 ‖Iuλ(t)‖Ḣ2

) d−4
d−3

. (6.2.68)
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Since ‖Iuλ(t)‖Ḣ2 .
√
E(Iuλ(t)), we obtain from (6.2.65) and (6.2.68),

‖uλ‖M([0,T0]) ≤ CT
d−4

8(d−3)
0 ,

for some constant C > 0. This contradicts with (6.2.61) for an appropriate choice of K. We get
X = [0, λ4T ] with T arbitrarily large and

E(Iuλ(λ4T )) ≤ 1. (6.2.69)

Note that under the condition of γ, we see from (6.2.66) that the choice of N makes sense for
arbitrarily large T . Now, by the conservation of mass and (6.2.69), we bound

‖u(T )‖Hγ . ‖u(T )‖L2 + ‖u(T )‖Ḣγ . ‖ψ‖L2 + λγ‖uλ(λ4T )‖Ḣγ
. ‖ψ‖L2 + λγ‖Iuλ(λ4T )‖H2

. λγ . N2−γ . Tα(γ,d),

where α(γ, d) is a positive number that depends on γ and d. This a priori bound gives the global
existence in Hγ . The proof is now complete.
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In this chapter, we consider the focusing mass-critical nonlinear fourth-order Schrödinger equa-
tion, namely {

i∂tu(t, x) + ∆2u(t, x) = (|u| 8du)(t, x), t ≥ 0, x ∈ Rd,
u(0, x) = ψ(x) ∈ Hγ(Rd), (fNL4S)

where u(t, x) is a complex valued function in R+ × Rd. The (fNL4S) is a special case of the
generalized nonlinear fourth-order Schrödinger equation

i∂tu+ ∆2u+ ε∆u+ µ|u|ν−1u = 0, u(0) = ψ, (7.0.1)

where ε ∈ {0,±1}, µ ∈ {±1} and ν > 1. The equation (7.0.1) was introduced by Karpman [Kar96]
and Karpman-Shagalov [KS00] to take into account the role of small fourth-order dispersion terms
in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity.

The (fNL4S) enjoys a natural scaling invariance, that is if u solves (fNL4S), then for any λ > 0,

uλ(t, x) := λ−
d
2 u(λ−4t, λ−1x) (7.0.2)

solves the same equation with initial data uλ(0, x) = λ−
d
2ψ(λ−1x). This scaling also preserves

the L2-norm, i.e. ‖uλ(0)‖L2 = ‖ψ‖L2 . As in the previous Chapter, (fNL4S) is locally well-posed
in Hγ(Rd) for γ ≥ 0 satisfying, in the case d 6= 1, 2, 4, (6.0.1). Moreover, for u0 ∈ H2, the
unique solution enjoys mass and energy conservation laws. In the sub-critical regime, i.e. γ > 0,
the time of existence depends only on the Hγ-norm of the initial data. Let T ∗ be the maximal
time of existence. The local well-posedness gives the following blowup alternative criterion: either

159



7.1. Blowup focusing 4D mass-critical NL4S

T ∗ =∞ or
T ∗ <∞, lim

t→T∗
‖u(t)‖Hγ =∞.

The study of blowup solutions for the focusing nonlinear fourth-order Schrödinger equation has
attracted a lot of interest in a past decade (see e.g. [FIP02], [BFM10], [ZYZ10], [ZYZ11], [BL17]
and references therein). It is closely related to ground states Q of (fNL4S) which are solutions to
the elliptic equation

∆2Q+Q− |Q| 8dQ = 0. (7.0.3)

The equation (7.0.3) is obtained by considering solitary solutions (standing waves) of (fNL4S) of
the form u(t, x) = Q(x)e−it. The existence of solutions to (7.0.3) is proved in [ZYZ10], but the
uniqueness of the solution is still an open problem. In the case ‖ψ‖L2 < ‖Q‖L2 , using the sharp
Gagliardo-Nirenberg inequality (see [FIP02] or [ZYZ10]), namely

‖u‖2+ 8
d

L
2+ 8

d
≤ C(d)‖u‖

8
d

L2‖∆u‖2L2 , C(d) :=
1 + 4

d

‖Q‖
8
d

L2

, (7.0.4)

together with the energy conservation, Fibich-Ilan-Papanicolaou in [FIP02] (see also [BFM10])
proved that (fNL4S) is globally well-posed in H2. Moreover, the authors in [FIP02] also provided
some numerical observations showing that the H2-solution to (fNL4S) may blowup if the initial
data satisfies ‖ψ‖L2 ≥ ‖Q‖L2 . Baruch-Fibich-Mandelbaum in [BFM10] proved some dynamical
properties of radially symmetric blowup solutions such as blowup rate, L2-concentration. Later,
Zhu-Yang-Zhang in [ZYZ10] removed the radially symmetric assumption and established the profile
decomposition, the existence of the ground state of elliptic equation (7.0.3) and the following
concentration compactness property for (fNL4S).
Theorem 7.0.1 (Concentration compactness [ZYZ10]). Let (vn)n≥1 be a bounded family of H2

functions such that

lim sup
n→∞

‖∆vn‖L2 ≤M <∞ and lim sup
n→∞

‖vn‖
L

2+ 8
d
≥ m.

Then there exists a sequence (xn)n≥1 of Rd such that up to a subsequence

vn(·+ xn) ⇀ V weakly in H2 as n→∞,

with ‖V ‖
8
d

L2 ≥
‖Q‖

8
d
L2m

2+ 8
d

(1+ 4
d )M2 , where Q is the solution to the ground state equation (7.0.3).

Consequently, the authors in [ZYZ11] established the limiting profile and the L2-concentration
for (fNL4S) with initial data ψ ∈ Hγ(R4), 9+

√
721

20 < γ < 2. Recently, Boulenger-Lenzmann in
[BL17] proved a general result on finite-time blowup for the focusing generalized nonlinear fourth-
order Schrödinger equation (i.e. (7.0.1) with µ = 1) with radial data in H2.

Our main purpose in this chapter is to lower the required regularity of [ZYZ11] for (fNL4S) in
the fourth dimensional case and to extend the results of [ZYZ11] to higher dimensions d ≥ 5.

7.1 Blowup for the focusing mass-critical nonlinear fourth-
order Schrödinger equation below the energy space when
d = 4

In this section, we lower the required regularity in [ZYZ11]. To do so, we make use of the
analysis performed in Subsection 6.1. More precisely, our main results in this section are as
follows.
Theorem 7.1.1. Let ψ ∈ Hγ(R4) with 67+

√
40489

150 < γ < 2. If the corresponding solution to the
(fNL4S) blows up in finite time 0 < T ∗ < ∞, then there exists a function U ∈ H2(R4) such that
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‖U‖L2(R4) ≥ ‖Q‖L2(R4) and there exist sequences (tn, λn, xn)n≥1 ∈ R+ × R+
∗ × R4 satisfying

tn ↗ T ∗ as n→∞ and λn . (T ∗ − tn)
γ
8 , ∀n ≥ 1

such that
λ2
nu(tn, λn ·+xn) ⇀ U weakly in H ã(γ)−(R4) as n→∞,

where

ã(γ) := 30γ2 + 74γ + 120
97γ + 120− 30γ2 , (7.1.1)

and Q is the solution of the ground state equation (7.0.3).
This result improves the regularity requirement of [ZYZ11] where the authors proved the above

result for 9+
√

721
20 < γ < 2. This improvement is due to a better bilinear estimate (6.1.4), hence a

better energy increment (see Proposition 7.1.8).
As a consequence of Theorem 7.1.1, we have the following mass concentration property.

Theorem 7.1.2. Let ψ ∈ Hγ(R4) with 67+
√

40489
150 < γ < 2. Assume that the corresponding

solution u to the (fNL4S) blows up in finite time 0 < T ∗ <∞. If α(t) > 0 is an arbitrary function
such that

lim
t↗T∗

(T ∗ − t)
γ
8

α(t) = 0,

then there exists a function x(t) ∈ R4 such that

lim sup
t↗T∗

∫
|x−x(t)|≤α(t)

|u(t, x)|2dx ≥
∫
R4
|Q(x)|2dx,

where Q is the solution to the ground state equation (7.0.3).
When the mass of the initial data equals to the mass of the solution of the ground state equation

(7.0.3), we have the following improvement of Theorem 7.1.1. Note that in the below result, we
assume that there exists a unique solution to the ground state equation (7.0.3) which is a delicate
open problem.
Theorem 7.1.3. Let ψ ∈ Hγ(R4) with 67+

√
40489

150 < γ < 2 be such that ‖ψ‖L2(R4) = ‖Q‖L2(R4). If
the corresponding solution u to the (fNL4S) blows up in finite time 0 < T ∗ <∞, then there exist
sequences (tn, eiθn , λn, xn)n≥1 ∈ R+ × S1 × R+

∗ × R4 satisfying

tn ↗ T ∗ as n→∞ and λn . (T ∗ − tn)
γ
8 , ∀n ≥ 1

such that
λ2
ne
iθnu(tn, λn ·+xn)→ Q strongly in H ã(γ)−(R4) as n→∞,

where ã(γ) is as in (7.1.1) and Q is the unique solution to the ground state equation (7.0.3).

7.1.1 Modified local well-posedness
We firstly recall the local theory for (fNL4S) in Sobolev spaces (see Theorem 5.3.1 with σ = 4).

Proposition 7.1.4 (Local well-posedness). Let 0 < γ < 2 and ψ ∈ Hγ(R4). Then the equation
(fNL4S) is locally well-posed on [0, Tlwp] with

Tlwp ∼ ‖ψ‖
− 4
γ

Hγ .

Corollary 7.1.5 (Blowup criterion). Let 0 < γ < 2 and ψ ∈ Hγ(R4). Assume that the unique
solution u to (fNL4S) blows up at time 0 < T ∗ <∞. Then,

‖u(t)‖Hγ & (T ∗ − t)−
γ
4 , (7.1.2)
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for all 0 < t < T ∗.
Proof. We follow the argument of [CW90]. Let 0 < t < T ∗. If we consider (fNL4S) with initial
data u(t), then it follows from (5.3.6) with σ = 4, ν = 3 and the fixed point argument that if for
some M > 0

C‖u(t)‖Hγ + C(T − t)
γ
2 M3 ≤M,

then T < T ∗. Thus,
C‖u(t)‖Hγ + C(T ∗ − t)

γ
2 M3 > M,

for all M > 0. Choosing M = 2C‖u(t)‖Hγ , we see that

(T ∗ − t)
γ
2 ‖u(t)‖2Hγ > C.

This proves (7.1.2) and the proof is complete.
We have the following modified local well-posedness which is essentially given in Proposition

6.1.12
Proposition 7.1.6 (Modified local well-posedness). Let γ ∈ (2/3, 2) and ψ ∈ Hγ(R4). Let

δ = c‖Iψ‖−
4
γ

H2 ,

for a small constant c = c(γ) > 0. Then the (fNL4S) is locally well-posed on [0, δ] and the unique
solution satisfies for N large enough,

‖Iu‖
X

2,1/2+
δ

. ‖Iψ‖H2 . (7.1.3)

Here Xγ,b
δ is defined as in (6.1.16).

Proof. Since ‖ψ‖Hγ . ‖Iψ‖H2 , we see that for c > 0 small enough,

δ = c‖Iψ‖−
4
γ

H2 . c‖ψ‖
− 4
γ

Hγ ≤ Tlwp.

Here Tlwp is as in Proposition 7.1.4. This shows that (fNL4S) is locally well-posed on [0, δ]. It
remains to prove (7.1.3). This bound follows by the same lines as in the proof of Proposition
6.1.12. The proof is complete.

7.1.2 Modified energy increment
In this subsection, we study the modified energy increment. More precisely, we will show that

the modified energy, namely E(Iu) grows much slower than the modified kinetic of u, namely
‖∆Iu‖2L2 . It is crucial to prove the limiting profile for blowup solutions.
Proposition 7.1.7 (Local increment of modified energy). Let 60

53 < γ < 2 and ψ ∈ Hγ(R4). Let

δ = c‖Iψ‖−
4
γ

H2 ,

for a small constant c = c(γ) > 0. Then for N sufficiently large,

sup
t∈[0,δ]

|E(Iu(t))− E(Iψ)| . N− 46
15 + (‖Iψ‖4H2 + ‖Iψ‖6H2

)
. (7.1.4)

Here the implicit contant depends only on γ and ‖ψ‖Hγ .
Proof. By Proposition 7.1.6, (fNL4S) is local well-posed on [0, δ] and the unique solution satisfies
(7.1.3). By the proof of Proposition 6.2.11, we see that for N sufficiently large,

sup
t∈[0,δ]

|E(Iu(t))− E(Iψ)| . N− 46
15 +
(
‖Iu‖4

X
2,1/2+
δ

+ ‖Iu‖6
X

2,1/2+
δ

)
.
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This estimate together with (7.1.3) show (7.1.4). The proof is complete.
We next introduce

Λ(t) := sup
0≤s≤t

‖u(s)‖Hγ , Σ(t) := sup
0≤s≤t

‖INu(s)‖H2 . (7.1.5)

Proposition 7.1.8 (Increment of the modified energy). Let 67+
√

40489
150 < γ < 2. Let ψ ∈ Hγ(R4)

be such that the corresponding solution u to the (fNL4S) blows up at time 0 < T ∗ < ∞. Let
0 < T < T ∗. Then for

N(T ) ∼ Λ(T )
a(γ)

2(2−γ) , (7.1.6)

we have

|E(IN(T )u(T ))| . Λ(T )a(γ). (7.1.7)

Here the implicit constants depend only on γ, T ∗ and ‖ψ‖Hγ , and 0 < a(γ) < 2 is given by

a(γ) :=
2(2− γ)

(
6 + 4

γ

)
[

46
15 − (2− γ)

(
4 + 4

γ

)]
−
. (7.1.8)

Proof. Let δ := cΣ(T )−
4
γ for some constant c = c(γ) > 0 small enough. For N(T ) sufficiently

large, Proposition 7.1.6 shows that

‖IN(T )u‖X2,1/2+([t,t+δ]) . ‖IN(T )u(t)‖H2 . Σ(T ), (7.1.9)

uniformly in t provided that [t, t+ δ] ⊂ [0, T ]. We split [0, T ] into O(T/δ) subintervals and apply
Proposition 7.1.7 on each of these intervals together with (7.1.9) to have for 60

53 < γ < 2,

sup
t∈[0,T ]

|E(IN(T )u(t))| . |E(IN(T )ψ)|+ T

δ
N(T )− 46

15 + (Σ4(T ) + Σ6(T )
)

. |E(IN(T )ψ)|+N(T )− 46
15 +

(
Σ4+ 4

γ (T ) + Σ6+ 4
γ (T )

)
. (7.1.10)

Using (6.1.10), we see that

Σ(T ) . N(T )2−γΛ(T ). (7.1.11)

By the Gagliardo-Nirenberg inequality and (6.1.11),

|E(IN(T )ψ)| . ‖∆IN(T )ψ‖2L2 + ‖IN(T )ψ‖4L4

. ‖∆IN(T )ψ‖2L2 + ‖IN(T )ψ‖2L2‖∆IN(T )ψ‖2L2

. N(T )2(2−γ) (‖ψ‖2Hγ + ‖ψ‖4Hγ
)
. N(T )2(2−γ). (7.1.12)

Substituting (7.1.11) and (7.1.12) into (7.1.10), we get

sup
t∈[0,T ]

|E(IN(T )u(t))| . N(T )2(2−γ) +N(T )(2−γ)(4+ 4
γ )− 46

15 +Λ(T )4+ 4
γ

+N(T )(2−γ)(6+ 4
γ )− 46

15 +Λ(T )6+ 4
γ . (7.1.13)

Optimizing (7.1.13), we observe that if

N(T )2(2−γ) ∼ N(T )(2−γ)(6+ 4
γ )− 46

15 +Λ(T )6+ 4
γ
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or

N(T ) ∼ Λ(T )
6+ 4

γ

[ 46
15−(2−γ)(4+ 4

γ )]− ,

then
sup
t∈[0,T ]

|E(IN(T )u(t))| . N(T )2(2−γ) . Λ(T )a(γ),

where a(γ) is given in (7.1.8). In order to make 0 < a(γ) < 2, we need
46
15 − (2− γ)

(
4 + 4

γ

)
> 0,

(2− γ)
(

6 + 4
γ

)
< 46

15 − (2− γ)
(

4 + 4
γ

)
.

Solving the above inequalities, we obtain 67+
√

40489
150 < γ < 2. The proof is complete.

7.1.3 Limiting profile
Proof of Theorem 7.1.1 As the solution blows up at time 0 < T ∗ <∞, the blowup alternative
allows us to choose a sequence of times (tn)n≥1 such that tn → T ∗ as n → ∞ and ‖u(tn)‖Hγ =
Λ(tn)→∞ as n→∞ (see (7.1.5) for the notation). Denote

vn(x) := λ2
nIN(tn)u(tn, λnx),

where N(tn) is given as in (7.1.6) with T = tn and the parameter λn is given by

λ2
n := ‖∆Q‖L2

‖∆IN(tn)u(tn)‖L2
. (7.1.14)

By (6.1.10) and the blowup criterion given in Corollary 7.1.5, we see that

λ2
n .

‖∆Q‖L2

‖u(tn)‖Hγ
. (T ∗ − tn)

γ
4 or λn . (T ∗ − tn)

γ
8 .

On the other hand, (vn)n≥1 is bounded in H2(R4). Indeed,

‖vn‖L2 = ‖IN(tn)u(tn)‖L2 ≤ ‖u(tn)‖L2 = ‖ψ‖L2 ,

‖∆vn‖L2 = λ2
n‖∆IN(tn)u(tn)‖L2 = ‖∆Q‖L2 . (7.1.15)

By Proposition 7.1.8 with T = tn, we have

E(vn) = λ4
nE(IN(tn)u(tn)) . λ4

nΛ(tn)a(γ) . Λ(tn)a(γ)−2.

As 0 < a(γ) < 2 for 67+
√

40489
150 < γ < 2, we see that E(vn) → 0 as n → ∞. Therefore, the

expression of the modified energy and (7.1.15) give

‖vn‖4L4 → 2‖∆Q‖2L2 , (7.1.16)

as n → ∞. Applying Theorem 7.0.1 to the sequence (vn)n≥1 with M = ‖∆Q‖L2 and m =(
2‖∆Q‖2L2

) 1
4 , there exist a sequence (xn)n≥1 ⊂ R4 and a function U ∈ H2(R4) such that ‖U‖L2 ≥

‖Q‖L2 and up to a subsequence,

vn(·+ xn) ⇀ U weakly in H2(R4),

as n→∞. That is

λ2
nIN(tn)u(tn, λn ·+xn) ⇀ U weakly in H2(R4), (7.1.17)
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as n → ∞. To conclude Theorem 7.1.1, we need to remove IN(tn) from (7.1.17). To do so, we
consider for any 0 ≤ σ < γ,

‖λ2
n(u− IN(tn)u)(tn, λn ·+xn)‖Ḣσ = λσn‖P≥N(tn)u(tn)‖Ḣσ

. λσnN(tn)σ−γ‖P≥N(tn)u(tn)‖Ḣγ

. Λ(tn)−σ2 Λ(tn)
(σ−γ)a(γ)

2(2−γ) ‖P≥N(tn)u(tn)‖Hγ

. Λ(tn)1−σ2 + (σ−γ)a(γ)
2(2−γ) . (7.1.18)

Using the explicit expression of a(γ) given in (7.1.8), we find that for

σ < ã(γ) := 30γ2 + 74γ + 120
97γ + 120− 30γ2 ,

the exponent of Λ(tn) in (7.1.18) is negative. Note that an easy computation shows that the
condition ã(γ) < γ requires

7 +
√

7249
60 < γ < 2,

which is satisfied since 67+
√

40489
150 < γ < 2. Thus,

‖λ2
n(u− IN(tn)u)(tn, λn ·+xn)‖Hã(γ)− → 0, (7.1.19)

as n→∞. Combining (7.1.17) and (7.1.19), we prove

λ2
nu(tn, λn ·+xn) ⇀ U weakly in H ã(γ)−(R4),

as n→∞. The proof is complete. �

Proof of Theorem 7.1.2 By Theorem 7.1.1, there exists a blowup profile U ∈ H2(R4) with
‖U‖L2 ≥ ‖Q‖L2 and there exist sequences (tn, λn, xn)n≥1 ⊂ R+ × R∗+ × R4 such that tn → T ∗,

λn

(T ∗ − tn) γ8
. 1, (7.1.20)

for all n ≥ 1 and λ2
nu(tn, λn ·+xn) ⇀ U weakly in H ã(γ)−(R4) (hence in L2(R4)) as n→∞. Thus

for any R > 0, we have

lim inf
n→∞

λ4
n

∫
|x|≤R

|u(tn, λnx+ xn)|2dx ≥
∫
|x|≤R

|U(x)|2dx.

By change of variables, we get

lim inf
n→∞

sup
y∈R4

∫
|x−y|≤Rλn

|u(tn, x)|2dx ≥
∫
|x|≤R

|U(x)|2dx.

Using the assumption (T∗−tn)
γ
8

α(tn) → 0 as n→∞, we have from (7.1.20) that λn
α(tn) → 0 as n→∞.

We thus obtain for any R > 0,

lim inf
n→∞

sup
y∈R4

∫
|x−y|≤α(tn)

|u(tn, x)|2dx ≥
∫
|x|≤R

|U(x)|2dx.

Let R→∞, we obtain

lim inf
n→∞

sup
y∈R4

∫
|x−y|≤α(tn)

|u(tn, x)|2dx ≥ ‖U‖2L2 .
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This implies
lim sup
t↗T∗

sup
y∈R4

∫
|x−y|≤α(t)

|u(t, x)|2dx ≥ ‖Q‖2L2 .

Sine for any fixed time t, the map y 7→
∫
|x−y|≤α(t) |u(t, x)|2dx is continuous and goes to zero as

|y| → ∞, there exists x(t) ∈ R4 such that

sup
y∈R4

∫
|x−y|≤α(t)

|u(t, x)|2dx =
∫
|x−x(t)|≤α(t)

|u(t, x)|2dx.

This shows
lim sup
t↗T∗

∫
|x−x(t)|≤α(t)

|u(t, x)|2dx ≥ ‖Q‖2L2 .

The proof is complete. �

Proof of Theorem 7.1.3 We firstly recall the following variational characterization of the so-
lution to the ground state equation (7.0.3). Note that the uniqueness up to translations in space,
phase and dilations of solution to this ground state equation is assumed here.
Lemma 7.1.9 (Variation characterization of the ground state [ZYZ10]). If v ∈ H2(Rd) is such
that ‖v‖L2 = ‖Q‖L2 and E(u) = 0, then v is of the form

v(x) = eiθλ
d
2Q(λx+ x0),

for some θ ∈ R, λ > 0 and x0 ∈ Rd, where Q is the unique solution to the ground state equation
(7.0.3).

Using the notation in the proof of Theorem 7.1.1 and the assumption ‖ψ‖L2 = ‖Q‖L2 , we have

‖vn‖L2 ≤ ‖ψ‖L2 = ‖Q‖L2 ≤ ‖U‖L2 .

Sine vn(·+ xn) ⇀ U weakly in L2(R4), the semi-continuity of weak convergence implies

‖U‖L2 ≤ lim inf
n→∞

‖vn‖L2 ≤ ‖Q‖L2 .

Thus,

‖U‖L2 = ‖Q‖L2 = lim
n→∞

‖vn‖L2 . (7.1.21)

Hence up to a subsequence

vn(·+ xn)→ U strongly in L2(Rd), (7.1.22)

as n→∞. On the other hand, using (7.1.15), the Gagliardo-Nirenberg inequality (7.0.4) implies
vn(·+ xn)→ U strongly in L4(R4). Indeed, by (7.1.15),

‖vn(·+ xn)− U‖4L4 . ‖ψ(·+ xn)− U‖2L2‖∆(vn(·+ xn)− U‖2L2

. (‖∆Q‖L2 + ‖∆U‖L2)2‖ψ(·+ xn)− U‖2L2 → 0,

as n→∞. Moreover, using (7.1.16) and (7.1.21), the sharp Gagliardo-Nirenberg inequality (7.0.4)
also gives

‖∆Q‖2L2 = 1
2‖U‖

4
L4 ≤

(‖U‖L2

‖Q‖L2

)2
‖∆U‖2L2 = ‖∆U‖2L2 ,

or ‖∆Q‖L2 ≤ ‖∆U‖L2 . By the semi-continuity of weak convergence and (7.1.15),

‖∆U‖L2 ≤ lim inf
n→∞

‖∆vn‖L2 = ‖∆Q‖L2 .
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7.2. Blowup focusing mass-critical NL4S higher dimensions

Therefore,

‖∆U‖L2 = ‖∆Q‖L2 = lim
n→∞

‖∆vn‖L2 . (7.1.23)

Combining (7.1.21), (7.1.23) and using the fact vn(· + xn) ⇀ U weakly in H2(R4), we conclude
that vn(·+ xn)→ U strongly in H2(R4). In particular,

E(U) = lim
n→∞

E(vn) = 0,

as n→∞. This shows that there exists U ∈ H2(R4) satisfying

‖U‖L2 = ‖Q‖L2 , ‖∆U‖L2 = ‖∆Q‖L2 , E(U) = 0.

Applying the variational characterization given in Lemma 7.1.9, we have (taking λ = 1),

U(x) = eiθQ(x+ x0),

for some (θ, x0) ∈ R× R4. Hence

λ2
nIN(tn)u(tn, λn ·+xn)→ eiθQ(·+ x0) strongly in H2(R4),

as n→∞. Using (7.1.19), we prove

λ2
nu(tn, λn ·+xn)→ eiθQ(·+ x0) strongly in H ã(γ)−(R4),

as n→∞. The proof is complete. �

7.2 Blowup for the focusing mass-critical nonlinear fourth-
order Schrödinger equation below the energy space when
5 ≤ d ≤ 7

In this section, we extend the results of [ZYZ11] to higher dimensions d ≥ 5. Since we are
working with low regularity data, the energy argument does not work. In order to overcome
this problem, we make use of the I-method. Due to the high-order term ∆2u, we require the
nonlinearity to have at least two orders of derivatives in order to successfully establish the almost
conservation law. We thus restrict to space of dimensions d = 5, 6, 7. Our main results are as
follows.
Theorem 7.2.1. Let d = 5, 6, 7 and ψ ∈ Hγ(Rd) with 56−3d+

√
137d2+1712d+3136
2(2d+32) < γ < 2. If the

corresponding solution to the (fNL4S) blows up in finite time 0 < T ∗ < ∞, then there exists a
function U ∈ H2(Rd) such that ‖U‖L2(Rd) ≥ ‖Q‖L2(Rd) and there exist sequences (tn, λn, xn)n≥1 ∈
R+ × R+

∗ × Rd satisfying

tn ↗ T ∗ as n→∞ and λn . (T ∗ − tn)
γ
8 , ∀n ≥ 1

such that
λ
d
2
nu(tn, λn ·+xn) ⇀ U weakly in Ha(d,γ)−(Rd) as n→∞,

where
a(d, γ) := 4dγ2 + (2d+ 48)γ + 16d

16d+ (56− 3d)γ − 16γ2 ,

and Q is the solution of the ground state equation (7.0.3).
The proof of the above theorem is based on the combination of the I-method and the con-

centration compactness property given in Theorem 7.0.1 which is similar to those given in [VZ07]
and [ZYZ11]. The key is to show that on intervals of local well-posedness, the modified energy
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E(Iu) is an “almost conserved” quantity and grows much slower than the modified kinetic energy
‖∆Iu‖2L2(Rd). To do so, we need delicate estimates on the commutator between the I-operator
and the nonlinearity. Note that when d = 4, the nonlinearity is algebraic, one can use the Fourier
transform technique to write the commutator explicitly and then control it by multi-linear analy-
sis. In our setting, the nonlinearity is not algebraic. Thus we can not apply the Fourier transform
technique. Fortunately, thanks to a special Strichartz estimate (6.2.11), we are able to apply the
technique given in [VZ07] to control the commutator. The concentration compactness property
given in Theorem 7.0.1 is very useful to study the dynamical properties of blowup solutions for
the nonlinear fourth-order Schrödinger equation. With the help of this property, Zhu-Yang-Zhang
proved in [ZYZ10] the L2-concentration of blowup solutions and the limiting profile of minimal-
mass blowup solutions with non-radial data in H2(Rd). In [ZYZ11], they extended these results
for non-radial data below the energy space in the fourth dimensional space.

As a consequence of Theorem 7.2.1, we have the following mass concentration property.
Theorem 7.2.2. Let d = 5, 6, 7 and ψ ∈ Hγ(Rd) with 56−3d+

√
137d2+1712d+3136
2(2d+32) < γ < 2. Assume

that the corresponding solution u to the (fNL4S) blows up in finite time 0 < T ∗ <∞. If α(t) > 0
is an arbitrary function such that

lim
t↗T∗

(T ∗ − t)
γ
8

α(t) = 0,

then there exists a function x(t) ∈ Rd such that

lim sup
t↗T∗

∫
|x−x(t)|≤α(t)

|u(t, x)|2dx ≥
∫
Rd
|Q(x)|2dx,

where Q is the solution to the ground state equation (7.0.3).
When the mass of the initial data equals the mass of the solution of the ground state equation

(7.0.3), we have the following improvement of Theorem 7.2.1. Note that in the result below, we
assume that there exists a unique solution to the ground state equation (7.0.3) which is a delicate
open problem.
Theorem 7.2.3. Let d = 5, 6, 7 and ψ ∈ Hγ(Rd) with 56−3d+

√
137d2+1712d+3136
2(2d+32) < γ < 2 be such

that ‖ψ‖L2(Rd) = ‖Q‖L2(Rd). If the corresponding solution u to the (fNL4S) blows up in finite time
0 < T ∗ <∞, then there exist sequences (tn, eiθn , λn, xn)n≥1 ∈ R+ × S1 × R+

∗ × Rd satisfying

tn ↗ T ∗ as n→∞ and λn . (T ∗ − tn)
γ
8 , ∀n ≥ 1

such that
λ
d
2
n e

iθnu(tn, λn ·+xn)→ Q strongly in Ha(d,γ)−(Rd) as n→∞,

where
a(d, γ) := 4dγ2 + (2d+ 48)γ + 16d

16d+ (56− 3d)γ − 16γ2 ,

and Q is the unique solution to the ground state equation (7.0.3).

7.2.1 Modified local well-posedness
We firstly recall the local well-posedness in Sobolev spaces for (fNL4S) given in Theorem 5.3.1

with σ = 4.
Proposition 7.2.4 (Local well-posedness). Let d ≥ 5, 0 < γ < 2 and ψ ∈ Hγ(Rd). Then the
equation (fNL4S) is locally well-posed on [0, Tlwp] with

Tlwp ∼ ‖ψ‖
− 4
γ

Hγ .

Moreover,
sup

(a,b)∈B
‖u‖La([0,Tlwp],Wγ,b) . ‖ψ‖Hγ .
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The implicit constants depend only on the dimension d and the regularity γ.
We also have the following blowup rate which is essentially proven in Corollary 7.1.5.

Corollary 7.2.5 (Blowup rate). Let d ≥ 5, 0 < γ < 2 and ψ ∈ Hγ(Rd). Assume that the unique
solution u to (fNL4S) blows up at time 0 < T ∗ <∞. Then,

‖u(t)‖Hγ & (T ∗ − t)−
γ
4 , (7.2.1)

for all 0 < t < T ∗.
We next define for any spacetime slab J × Rd,

ZI(J) := sup
(p,q)∈B

‖ 〈∆〉 Iu‖Lp(J,Lq).

Note that in our consideration d ≥ 5, for any admissible pair (p, q) ∈ B, we always have q < ∞.
Let us start with the following commutator estimates.
Lemma 7.2.6. Let 5 ≤ d ≤ 7, 1 < γ < 2, 0 < δ < γ − 1 and J a compact interval. Then

‖IF (u)‖
L2(J,L

2d
d+4 )

. |J |
2γ
d (ZI(J))1+ 8

d , (7.2.2)

‖∇IF (u)− (I∇u)F ′(u)‖
L2(J,L

2d
d+2 )

. N−(2−γ+δ)(ZI(J))1+ 8
d , (7.2.3)

‖∇IF (u)‖
L2(J,L

2d
d+2 )

. |J |
2γ
d (ZI(J))1+ 8

d +N−(2−γ+δ)(ZI(J))1+ 8
d , (7.2.4)

‖∇IF (u)‖
L2(J,L

2d
d+4 )

. (ZI(J))1+ 8
d . (7.2.5)

Proof. We firstly note that the estimates (7.2.3) and (7.2.5) are given in Lemma 6.2.10. Let us
consider (7.2.2). By (6.1.7) and Hölder’s inequality,

‖IF (u)‖
L2(J,L

2d
d+4 )

. ‖F (u)‖
L2(J,L

2d
d+4 )

. ‖u‖
L

2(d+8)
d−4γ (J,L

2d(d+8)
d2+4d+16γ )

‖F ′(u)‖
L

d+8
2(2+γ) (J,L

d(d+8)
4d+16−8γ )

.

Since F ′(u) = O(|u| 8d ), the Sobolev embedding implies

‖IF (u)‖
L2(J,L

2d
d+4 )

. ‖u‖
L

2(d+8)
d−4γ (J,L

2d(d+8)
d2+4d+16γ )

‖u‖
8
d

L
4(d+8)
d(2+γ) (J,L

2(d+8)
d+4−2γ )

. |J |
2γ
d ‖u‖

L
2(d+8)
d−4γ (J,L

2d(d+8)
d2+4d+16γ )

‖u‖
8
d

L
2(d+8)
d−4γ (J,L

2(d+8)
d+4−2γ )

. |J |
2γ
d ‖u‖

L
2(d+8)
d−4γ (J,L

2d(d+8)
d2+4d+16γ )

‖|∇|γu‖
L

2(d+8)
d−4γ (J,L

2d(d+8)
d2+4d+16γ )

. |J |
2γ
d ‖ 〈∇〉γ u‖1+ 8

d

L
2(d+8)
d−4γ (J,L

2d(d+8)
d2+4d+16γ )

. |J |
2γ
d (ZI(J))1+ 8

d .

Here we use (6.1.9) and the fact
(

2(d+8)
d−4γ ,

2d(d+8)
d2+4d+16γ

)
is biharmonic admissible to get the last

estimate.
It remains to prove (7.2.4). We have from (6.2.17) and the triangle inequality that

‖∇IF (u)‖
L2(J,L

2d
d+2 )

. ‖(∇Iu)F ′(u)‖
L2(J,L

2d
d+2 )

+N−(2−γ+δ)(ZI(J))1+ 8
d . (7.2.6)
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By Hölder’s inequality,

‖(∇Iu)F ′(u)‖
L2(J,L

2d
d+2 )

. ‖∇Iu‖
L

2(d+8)
d−4γ (J,L

2d(d+8)
d2+2d+16(γ−1) )

‖F ′(u)‖
L

d+8
2(2+γ) (J,L

d(d+8)
4d+16−8γ )

. (7.2.7)

We use the Sobolev embedding to estimate

‖∇Iu‖
L

2(d+8)
d−4γ (J,L

2d(d+8)
d2+2d+16(γ−1) )

. ‖∆Iu‖
L

2(d+8)
d−4γ (J,L

2d(d+8)
d2+4d+16γ )

. ZI(J). (7.2.8)

Here
(

2(d+8)
d−4γ ,

2d(d+8)
d2+4d+16γ

)
is biharmonic admissible. Since F ′(u) = O(|u| 8d ), the Sobolev embedding

again gives

‖F ′(u)‖
L

d+8
2(2+γ) (J,L

d(d+8)
4d+16−8γ )

. ‖u‖
8
d

L
4(d+8)
d(2+γ) (J,L

2(d+8)
d+4−2γ )

. |J |
2γ
d ‖u‖

8
d

L
2(d+8)
d−4γ (J,L

2(d+8)
d+4−2γ )

. |J |
2γ
d ‖|∇|γu‖

8
d

L
2(d+8)
d−4γ (J,L

2d(d+8)
d2+4d+16γ )

. |J |
2γ
d (ZI(J)) 8

d . (7.2.9)

Collecting (6.2.19)− (6.2.23), we obtain (7.2.4). The proof is complete.
Proposition 7.2.7 (Modified local well-posedness). Let 5 ≤ d ≤ 7, 1 < γ < 2, 0 < δ < γ − 1 and
ψ ∈ Hγ(Rd). Let

T̃lwp := c‖Iψ‖−
4
γ

H2 ,

for a small constant c = c(d, γ) > 0. Then (fNL4S) is locally well-posed on [0, T̃lwp]. Moreover,
for N sufficiently large,

ZI([0, T̃lwp]) . ‖Iψ‖H2 . (7.2.10)

Proof. By (6.1.10), ‖ψ‖Hγ . ‖Iψ‖H2 . Thus,

T̃lwp = c‖Iψ‖−
4
γ

H2 . c‖ψ‖
− 4
γ

Hγ ≤ Tlwp,

provided c is small enough. Here Tlwp is as in Proposition 7.2.4. This shows that (fNL4S) is locally
well-posed on [0, T̃lwp]. It remains to prove (7.2.10). Denote J = [0, T̃lwp]. By Strichartz estimates
(6.2.10) and (6.2.9),

ZI(J) . sup
(p,q)∈B

‖Iu‖Lp(J,Lq) + sup
(p,q)∈B

‖∆Iu‖Lp(J,Lq)

. ‖Iψ‖L2 + ‖IF (u)‖
L2(J,L

2d
d+4 )

+ ‖∆Iψ‖L2 + ‖∇IF (u)‖
L2(J,L

2d
d+2 )

. ‖Iψ‖H2 + ‖IF (u)‖
L2(J,L

2d
d+4 )

+ ‖∇IF (u)‖
L2(J,L

2d
d+2 )

.

We next use (6.2.16) and (6.2.18) to have

ZI(J) . ‖Iψ‖H2 +
(
|J |

2γ
d +N−(2−γ+δ)

)
(ZI(J))1+ 8

d .

By taking c = c(d, γ) small enough (or |J | is small) and N large enough, the continuity argument
shows (7.2.10). The proof is complete.
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7.2.2 Modified energy increment
Lemma 7.2.8 (Local increment of the modified energy). Let 5 ≤ d ≤ 7,max{3 − 8

d ,
8
d} < γ <

2, 0 < δ < γ + 8
d − 3 and ψ ∈ Hγ(Rd). Let

T̃lwp := c‖Iψ‖−
4
γ

H2 ,

for some small constant c = c(d, γ) > 0. Then, for N sufficiently large,

sup
t∈[0,T̃lwp]

|E(Iu(t))− E(Iψ)| . N−(2−γ+δ)
(
‖Iψ‖2+ 8

d

H2 + ‖Iψ‖2+ 16
d

H2

)
. (7.2.11)

Here the implicit constant depends only on γ and ‖ψ‖Hγ .

Proof. By Proposition 7.2.7, the equation (fNL4S) is locally well-posed on J = [0, T̃lwp] and the
unique solution u satisfies

ZI(J) . ‖Iψ‖H2 . (7.2.12)

As in the proof of Proposition 6.2.11, we see that

sup
t∈[0,T̃lwp]

|E(Iu(t))− E(Iψ)| . N−(2−γ+δ)
(
Z

2+ 8
d

I (J) + Z
2+ 16

d

I (J)
)
.

This estimate together with (7.2.12) proves (7.2.11). The proof is complete.
We next introduce some notations. We define

Λ(t) := sup
0≤s≤t

‖u(s)‖Hγ , Σ(t) := sup
0≤s≤t

‖INu(s)‖H2 . (7.2.13)

Proposition 7.2.9 (Increment of the modified energy). Let 5 ≤ d ≤ 7 and 56−3d+
√

137d2+1712d+3136
2(2d+32) <

γ < 2. Let ψ ∈ Hγ(Rd) be such that the corresponding solution u to (fNL4S) blows up at time
0 < T ∗ <∞. Let 0 < T < T ∗. Then for

N(T ) ∼ Λ(T )
a(γ)

2(2−γ) , (7.2.14)

we have
|E(IN(T )u(T ))| . Λ(T )a(γ).

Here the implicit constants depend only on γ, T ∗ and ‖ψ‖Hγ , and 0 < a(γ) < 2 is given by

a(γ) :=
2
(

2 + 16
d + 4

γ

)
(2− γ)[

8
d − 1− (2− γ)

(
16
d + 4

γ

)]
−
. (7.2.15)

Proof. Let τ := cΣ(T )−
4
γ for some constant c = c(d, γ) > 0 small enough. For N(T ) sufficiently

large, Proposition 7.2.7 shows the local existence and the unique solution satisfies

ZIN(T )([t, t+ τ ]) . ‖IN(T )u(t)‖H2 . Σ(T ),

uniformly in t provided that [t, t + τ ] ⊂ [0, T ]. We next split [0, T ] into O(T/τ) subintervals and
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apply Lemma 7.2.8 on each of these intervals to have

sup
t∈[0,T ]

|E(IN(T )u(t))| . |E(IN(T )ψ)|+ T

τ
N(T )−(2−γ+δ)

(
Σ(T )2+ 8

d + Σ(T )2+ 16
d

)
(7.2.16)

. |E(IN(T )ψ)|+N(T )−(2−γ+δ)
(

Σ(T )2+ 8
d+ 4

γ + Σ(T )2+ 16
d + 4

γ

)
, (7.2.17)

for max
{

3− 8
d ,

8
d

}
< γ < 2 and 0 < δ < γ + 8

d − 3. Next, by (6.1.10), we have

Σ(T ) . N(T )2−γΛ(T ). (7.2.18)

Moreover, the Gagliardo-Nirenberg inequality (7.0.4) together with (6.1.11) imply

|E(IN(T )ψ)| . ‖∆IN(T )ψ‖2L2 + ‖IN(T )ψ‖
2+ 8

d

L
2+ 8

d

. ‖∆IN(T )ψ‖2L2 + ‖IN(T )ψ‖
8
d

L2‖∆IN(T )ψ‖2L2

. N(T )2(2−γ)
(
‖ψ‖2Hγ + ‖ψ‖2+ 8

d

Hγ

)
. N2(2−γ). (7.2.19)

Substituting (7.2.18) and (7.2.19) to (7.2.17), we get

sup
t∈[0,T ]

|E(IN(T )u(t))| . N(T )2(2−γ) +N(T )−(2−γ+δ)+(2−γ)(2+ 8
d+ 4

γ )Λ(T )2+ 8
d+ 4

γ

+N(T )−(2−γ+δ)+(2−γ)(2+ 16
d + 4

γ )Λ(T )2+ 16
d + 4

γ . (7.2.20)

Optimizing (7.2.20), we observe that if we take

N(T )2(2−γ) ∼ N(T )−(2−γ+δ)+(2−γ)(2+ 16
d + 4

γ )Λ(T )2+ 16
d + 4

γ ,

or

N(T ) ∼ Λ(T )
2+ 16

d
+ 4
γ

(2−γ+δ)−(2−γ)( 16
d

+ 4
γ ) ,

then

sup
t∈[0,T ]

|E(IN(T )u(t))| . N(T )2(2−γ) ∼ Λ(T )
2(2+ 16

d
+ 4
γ )(2−γ)

(2−γ+δ)−(2−γ)( 16
d

+ 4
γ ) .

Denote

a(γ) :=
2
(

2 + 16
d + 4

γ

)
(2− γ)

(2− γ + δ)− (2− γ)
(

16
d + 4

γ

) .
Since 2− γ + δ < 8

d − 1, we see that

a(γ) =
2
(

2 + 16
d + 4

γ

)
(2− γ)[

8
d − 1− (2− γ)

(
16
d + 4

γ

)]
−
.

In order to make 0 < a(γ) < 2, we need
8
d − 1− (2− γ)

(
16
d + 4

γ

)
> 0,(

2 + 16
d + 4

γ

)
(2− γ) < 8

d − 1− (2− γ)
(

16
d + 4

γ

)
.

(7.2.21)
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Solving (7.2.21), we obtain

γ >
56− 3d+

√
137d2 + 1712d+ 3136
2(2d+ 32) .

This completes the proof.

7.2.3 Limiting profile
Proof of Theorem 7.2.1 As the solution blows up at time 0 < T ∗ <∞, the blowup alternative
allows us to choose a sequence of times (tn)n≥1 such that tn → T ∗ as n → ∞ and ‖u(tn)‖Hγ =
Λ(tn)→∞ as n→∞ (see (7.2.13) for the notation). Denote

vn(x) := λ
d
2
n IN(tn)u(tn, λnx),

where N(tn) is given as in (7.2.14) with T = tn and the parameter λn is given by

λ2
n := ‖∆Q‖L2

‖∆IN(tn)u(tn)‖L2
. (7.2.22)

By (6.1.10) and the blowup criterion given in Corollary 7.2.5, we see that

λ2
n .

‖∆Q‖L2

‖u(tn)‖Hγ
. (T ∗ − tn)

γ
4 or λn . (T ∗ − tn)

γ
8 .

On the other hand, (vn)n≥1 is bounded in H2(Rd). Indeed,

‖vn‖L2 = ‖IN(tn)u(tn)‖L2 ≤ ‖u(tn)‖L2 = ‖ψ‖L2 ,

‖∆vn‖L2 = λ2
n‖∆IN(tn)u(tn)‖L2 = ‖∆Q‖L2 . (7.2.23)

By Proposition 7.2.9 with T = tn, we have

E(vn) = λ4
nE(IN(tn)u(tn)) . λ4

nΛ(tn)a(γ) . Λ(tn)a(γ)−2.

As 0 < a(γ) < 2 for 56−3d+
√

137d2+1712d+3136
2(2d+32) < γ < 2, we see that E(vn) → 0 as n → ∞.

Therefore, the expression of the modified energy and (7.2.23) give

‖vn‖
2+ 8

d

L
2+ 8

d
→
(

1 + 4
d

)
‖∆Q‖2L2 , (7.2.24)

as n → ∞. Applying Theorem 7.0.1 to the sequence (vn)n≥1 with M = ‖∆Q‖L2 and m =((
1 + 4

d

)
‖∆Q‖2L2

) d
2d+8 , there exist a sequence (xn)n≥1 ⊂ Rd and a function U ∈ H2(Rd) such

that ‖U‖L2 ≥ ‖Q‖L2 and up to a subsequence,

vn(·+ xn) ⇀ U weakly in H2(Rd),

as n→∞. That is

λ
d
2
n IN(tn)u(tn, λn ·+xn) ⇀ U weakly in H2(Rd), (7.2.25)
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as n → ∞. To conclude Theorem 7.2.1, we need to remove IN(tn) from (7.2.25). To do so, we
consider for any 0 ≤ σ < γ,

‖λ
d
2
n (u− IN(tn)u)(tn, λn ·+xn)‖Ḣσ = λσn‖P≥N(tn)u(tn)‖Ḣσ

. λσnN(tn)σ−γ‖P≥N(tn)u(tn)‖Ḣγ

. Λ(tn)−σ2 Λ(tn)
(σ−γ)a(γ)

2(2−γ) ‖P≥N(tn)u(tn)‖Hγ

. Λ(tn)1−σ2 + (σ−γ)a(γ)
2(2−γ) . (7.2.26)

Using the explicit expression of a(γ) given in (7.2.15), we find that for

σ < a(d, γ) := 4dγ2 + (2d+ 48)γ + 16d
16d+ (56− 3d)γ − 16γ2 ,

the exponent of Λ(tn) in (7.2.26) is negative. Note that an easy computation shows that the
condition a(d, γ) < γ requires

24− 3d+
√

9d2 + 368d+ 576
32 < γ < 2,

which is satisfied by our assumption on γ. Thus,

‖λ
d
2
n (u− IN(tn)u)(tn, λn ·+xn)‖Ha(d,γ)− → 0, (7.2.27)

as n→∞. Combining (7.2.25) and (7.2.27), we prove

λ
d
2
nu(tn, λn ·+xn) ⇀ U weakly in Ha(d,γ)−(Rd),

as n→∞. The proof is complete. �

Proof of Theorem 7.2.2 By Theorem 7.2.1, there exists a blowup profile U ∈ H2(Rd) with
‖U‖L2 ≥ ‖Q‖L2 and there exist sequences (tn, λn, xn)n≥1 ⊂ R+ × R∗+ × Rd such that tn → T ∗,

λn

(T ∗ − tn) γ8
. 1, (7.2.28)

for all n ≥ 1 and λ
d
2
nu(tn, λn · +xn) ⇀ U weakly in Ha(d,γ)−(Rd) (hence in L2(Rd)) as n → ∞.

Thus for any R > 0, we have

lim inf
n→∞

λdn

∫
|x|≤R

|u(tn, λnx+ xn)|2dx ≥
∫
|x|≤R

|U(x)|2dx.

By change of variables, we get

lim inf
n→∞

sup
y∈Rd

∫
|x−y|≤Rλn

|u(tn, x)|2dx ≥
∫
|x|≤R

|U(x)|2dx.

Using the assumption (T∗−tn)
γ
8

α(tn) → 0 as n→∞, we have from (7.2.28) that λn
α(tn) → 0 as n→∞.

We thus obtain for any R > 0,

lim inf
n→∞

sup
y∈Rd

∫
|x−y|≤α(tn)

|u(tn, x)|2dx ≥
∫
|x|≤R

|U(x)|2dx.
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Let R→∞, we obtain

lim inf
n→∞

sup
y∈Rd

∫
|x−y|≤α(tn)

|u(tn, x)|2dx ≥ ‖U‖2L2 .

This implies
lim sup
t↗T∗

sup
y∈Rd

∫
|x−y|≤α(t)

|u(t, x)|2dx ≥ ‖Q‖2L2 .

Sine for any fixed time t, the map y 7→
∫
|x−y|≤α(t) |u(t, x)|2dx is continuous and goes to zero as

|y| → ∞, there exists x(t) ∈ Rd such that

sup
y∈Rd

∫
|x−y|≤α(t)

|u(t, x)|2dx =
∫
|x−x(t)|≤α(t)

|u(t, x)|2dx.

This shows
lim sup
t↗T∗

∫
|x−x(t)|≤α(t)

|u(t, x)|2dx ≥ ‖Q‖2L2 .

The proof is complete. �

Proof of Theorem 7.2.3 Note that the uniqueness up to translations in space, phase and
dilations of solution to this ground state equation is assumed here. Using the notation in the
proof of Theorem 7.2.1 and the assumption ‖ψ‖L2 = ‖Q‖L2 , we have

‖vn‖L2 ≤ ‖ψ‖L2 = ‖Q‖L2 ≤ ‖U‖L2 .

Sine vn(·+ xn) ⇀ U weakly in L2(Rd), the semi-continuity of weak convergence implies

‖U‖L2 ≤ lim inf
n→∞

‖vn‖L2 ≤ ‖Q‖L2 .

Thus,

‖U‖L2 = ‖Q‖L2 = lim
n→∞

‖vn‖L2 . (7.2.29)

Hence up to a subsequence

vn(·+ xn)→ U strongly in L2(Rd), (7.2.30)

as n→∞. On the other hand, using (7.2.23), the Gagliardo-Nirenberg inequality (7.0.4) implies
vn(·+ xn)→ U strongly in L2+ 8

d (Rd). Indeed, by (7.2.23),

‖vn(·+ xn)− U‖2+ 8
d

L
2+ 8

d
. ‖ψ(·+ xn)− U‖

8
d

L2‖∆(vn(·+ xn)− U‖2L2

. (‖∆Q‖L2 + ‖∆U‖L2)2‖ψ(·+ xn)− U‖
8
d

L2 → 0,

as n→∞. Moreover, using (7.2.24) and (7.2.29), the sharp Gagliardo-Nirenberg inequality (7.0.4)
also gives

‖∆Q‖2L2 = 1
1 + 4

d

‖U‖2+ 8
d

L
2+ 8

d
≤
(‖U‖L2

‖Q‖L2

) 8
d ‖∆U‖2L2 = ‖∆U‖2L2 ,

or ‖∆Q‖L2 ≤ ‖∆U‖L2 . By the semi-continuity of weak convergence and (7.2.23),

‖∆U‖L2 ≤ lim inf
n→∞

‖∆vn‖L2 = ‖∆Q‖L2 .
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Therefore,

‖∆U‖L2 = ‖∆Q‖L2 = lim
n→∞

‖∆vn‖L2 . (7.2.31)

Combining (7.2.29), (7.2.31) and using the fact vn(· + xn) ⇀ U weakly in H2(Rd), we conclude
that vn(·+ xn)→ U strongly in H2(Rd). In particular,

E(U) = lim
n→∞

E(vn) = 0,

as n→∞. This shows that there exists U ∈ H2(Rd) satisfying

‖U‖L2 = ‖Q‖L2 , ‖∆U‖L2 = ‖∆Q‖L2 , E(U) = 0.

Applying the variational characterization given in Lemma 7.1.9, we have (taking λ = 1),

U(x) = eiθQ(x+ x0),

for some (θ, x0) ∈ R× Rd. Hence

λ
d
2
n IN(tn)u(tn, λn ·+xn)→ eiθQ(·+ x0) strongly in H2(Rd),

as n→∞. Using (7.2.27), we prove

λ
d
2
nu(tn, λn ·+xn)→ eiθQ(·+ x0) strongly in Ha(d,γ)−(Rd),

as n→∞. The proof is complete. �
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Contents
A.1 Hamilton-Jacobi equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.2 Bourgain Xγ,b spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.3 Bilinear Strichartz estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.3.1 Bilinear Strichartz estimates for Schrödinger equation . . . . . . . . . . . . 188
A.3.2 Bilinear Strichartz estimate for higher-order Schrödinger equations . . . . . 193

A.1 Hamilton-Jacobi equation
In this appendix, we will recall how to construct the standard Hamilton-Jacobi equation (see

e.g. [Rob87, Théorème IV.14]). Let us consider the following Hamilton-Jacobi equation{
∂tS(t, x, ξ) +H(x,∇xS(t, x, ξ)) = 0,

S(0, x, ξ) = x · ξ, (A.1.1)

where H ∈ C∞(R2d) satisfies that for all α, β ∈ Nd with |α + β| ≥ 2, there exists Cαβ > 0 such
that for all x, ξ ∈ Rd,

|∂αx ∂
β
ξH(x, ξ)| ≤ Cαβ . (A.1.2)

The Hamiltonian flow associated to H is denoted by ΦH(t, x, ξ) := (X(t, x, ξ),Ξ(t, x, ξ)) where{
Ẋ(t) = ∇ξH(X(t),Ξ(t)),
Ξ̇(t) = −∇xH(X(t),Ξ(t)), and

{
X(0) = x,
Ξ(0) = ξ.

Let us start with the following bound on derivatives of the Hamiltonian flow.
Lemma A.1.1. Let t0 ≥ 0 and α, β ∈ Nd be such that |α + β| ≥ 1. Then there exists Cαβt0 > 0
such that for all t ∈ [−t0, t0] and all (x, ξ) ∈ R2d,

|∂αx ∂
β
ξ (ΦH(t, x, ξ)− (x, ξ)| ≤ Cαβt0 |t|.

Proof. The proof is essentially given in [Rob87, Lemme IV.9]. We assume first |α + β| = 1 and
denote

Z(t) =
(
∇xX(t) ∇ξX(t)
∇xΞ(t) ∇ξΞ(t)

)
.

By direct computation, we have

d

dt
Z(t) = A(t)Z(t), (A.1.3)

where
A(t) =

(
∇x∇ξH(X(t),Ξ(t)) ∇2

ξH(X(t),Ξ(t))
−∇2

xH(X(t),Ξ(t)) −∇ξ∇xH(X(t),Ξ(t))

)
.
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This implies that

‖Z(t)− IR2d‖ ≤
∫ t

0
‖A(s)‖‖Z(s)‖ds ≤ N |t|+

∫ t

0
N‖Z(s)− IR2d‖ds,

where N := sup(t,x,ξ)∈[−t0,t0]×R2d ‖A(t)‖. Here ‖ · ‖ is the R2d×2d-matrix norm. Using Gronwall
inequality, we have

‖Z(t)− IR2d‖ ≤ N |t|eNt ≤ NeNt0 |t|.

For |α+ β| ≥ 2, we take the derivative of (A.1.3) and apply again the Gronwall inequality.
Lemma A.1.2. There exists t0 > 0 small enough such that for all t ∈ [−t0, t0] and all ξ ∈ Rd, the
map x 7→ X(t, x, ξ) is a diffeomorphism from Rd onto itself. Moreover, if we denote x 7→ Y (t, x, ξ)
the inverse map, then for all t ∈ [−t0, t0] and all α, β ∈ Nd satisfying |α + β| ≥ 1, there exists
Cαβ > 0 such that for all x, ξ ∈ Rd,

|∂αx ∂
β
ξ (Y (t, x, ξ)− x)| ≤ Cαβ |t|.

Proof. By Lemma A.1.1 , there exists t0 > 0 small enough such that

‖∇xX(t)− IRd‖ ≤
1
2 ,

for all t ∈ [−t0, t0]. By Hadamard global inversion theorem, the map x 7→ X(t, x, ξ) is a diffeo-
morphism from Rd onto itself. Let x 7→ Y (t, x, ξ) be its inverse. By taking derivative ∂αx ∂

β
ξ with

|α+ β| = 1 of the following equality

x = X(t, Y (t, x, ξ), ξ), (A.1.4)

we have

(∇xX)(t, Y (t, x, ξ), ξ)∂αx ∂
β
ξ (Y (t, x, ξ)− x) = −∂αy ∂βη (X(t, y, η)− y)|(y,η)=(Y (t,x,ξ),ξ).

By choosing t0 small enough, we see that the matrix (∂xX)(t, Y (t, x, ξ), ξ) is invertible and its
inverse is bounded uniformly in t ∈ [−t0, t0] and x, ξ ∈ Rd. This implies that

|∂αx ∂
β
ξ (Y (t, x, ξ)− x)| ≤ C|∂αy ∂βη (X(t, y, η)− y)| ≤ Cαβ |t|.

For higher derivatives, we differentiate (A.1.4) and use an induction on |α + β|. This completes
the proof.

Now, we are able to solve the Hamilton-Jacobi equation (A.1.1) and have the following result.
Proposition A.1.3. Let t0 be as in Lemma A.1.2. Then there exists a unique function S ∈
C∞([−t0, t0] × R2d) such that S solves the Hamilton-Jacobi equation (A.1.1). The solution S is
given by

S(t, x, ξ) = Y (t, x, ξ) · ξ +
∫ t

0
(ξ · ∇ξH −H) ◦ ΦH(s, Y (t, x, ξ), ξ)ds, (A.1.5)

and S satisfies

∇ξS(t) = Y (t), ∇xS(t) = Ξ(t, Y (t), ξ), ΦH(t,∇ξS(t), ξ) = (x,∇xS(t)), (A.1.6)

where S(t) := S(t, x, ξ) and Y (t) := Y (t, x, ξ). Moreover, for all α, β ∈ Nd, there exists Cαβ > 0
such that for all t ∈ [−t0, t0] and all x, ξ ∈ Rd,

|∂αx ∂
β
ξ (S(t, x, ξ)− x · ξ) | ≤ Cαβ |t|, |α+ β| ≥ 1, (A.1.7)

|∂αx ∂
β
ξ (S(t, x, ξ)− x · ξ + tH(x, ξ)) | ≤ Cαβ |t|2. (A.1.8)
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Proof. It is well-known (see [Rob87, Théorème IV.14]) that the function S defined in (A.1.5) is
the unique solution to (A.1.1) and satisfies (A.1.6). It remains to prove (A.1.7) and (A.1.8). By
(A.1.6) and the conservation of energy, we have

H(x,∇xS(t)) = H ◦ ΦH(t,∇ξS(t), ξ) = H(∇ξS(t), ξ) = H(Y (t), ξ).

This implies that

S(t, x, ξ)− x · ξ = t

∫ 1

0
∂tS(θt, x, ξ)dθ = −t

∫ 1

0
H(Y (θt, x, ξ), ξ)dθ.

Using (A.1.2) and Lemma A.1.2, we have (A.1.7). Next, we compute

∂2
t S(t) = −∂t [H(Y (t), ξ)] = −(∇xH)(Y (t), ξ) · ∂tY (t)

= −(∇xH)(Y (t), ξ) · ∇ξ [∂tS(t)] = −(∇xH)(Y (t), ξ) · ∇ξ [−H(Y (t), ξ)]
= (∇xH)2(Y (t), ξ) · ∇ξY (t) + (∇xH · ∇ξH)(Y (t), ξ). (A.1.9)

The Taylor formula gives

S(t, x, ξ) = x · ξ − tH(x, ξ)

+ t2
∫ 1

0
(1− θ)

[
(∇xH)2(Y (θt), ξ) · ∇ξY (θt) + (∇xH · ∇ξH)(Y (θt), ξ)

]
dθ.

Using again (A.1.2) and Lemma A.1.2, we have (A.1.8).
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A.2 Bourgain Xγ,b spaces
In this appendix, we recall some basic properties of Bourgain spaces Xγ,b which are used in

Subsection 6.1.
Definition A.2.1 (Xγ,b-space). Let h : Rd → R be a continuous function, and let γ, b ∈ R.
The space Xγ,b

h(ξ)(R × Rd), abbreviated Xγ,b is defined to be the closure of the Schwartz space
St,x(R× Rd) under the norm

‖u‖Xγ,b
h(ξ)(R×Rd) := ‖ 〈τ − h(ξ)〉b 〈ξ〉γ ũ(τ, ξ)‖L2

τL
2
ξ
(R×Rd),

where ũ (or F(u)) is the space time Fourier transform

ũ(τ, ξ) := (2π)−(d+1)
∫∫

R×Rd
e−i(tτ+x·ξ)u(t, x)dxdt.

When b = 0, Xγ,0 = L2
tH

γ
x , when h ≡ 0, Xγ,b = Hb

tH
γ
x and when γ = b = 0, X0,0 = L2

tL
2
x. We

now recall some basic properties of Xγ,b-space.
Proposition A.2.2. Let γ, b ∈ R. The Bourgain space Xγ,b satisfies the following properties:

i. Xs,b is a Banach space.
ii. If γ1 ≤ γ2 and b1 ≤ b2, then Xγ2,b2 ⊂ Xγ1,b1 .
iii. ‖u‖Xγ,b

h(ξ)
= ‖u‖Xγ,b−h(−ξ)

.

iv. (Xγ,b
h(ξ))

? = X−γ,−b−h(−ξ).
v. Let γ1 ≤ γ ≤ γ2, b1 ≤ b ≤ b2 be such that γ = θγ1 + (1− θ)γ2, b = θb1 + (1− θ)b2 for some

θ ∈ [0, 1]. If u ∈ Xγ1,b1 ∩Xγ2,b2 , then u ∈ Xγ,b. In particular,

‖u‖Xγ,b ≤ ‖u‖θXγ1,b1‖u‖1−θXγ2,b2 .

vi. (Xγ,b vs Hb
tH

γ
x )

‖e−ith(D)u‖HbtHγx = ‖u‖Xγ,b .

Proof. (i) The completeness of Xγ,b follows from the completeness of L2
τL

2
ξ . (ii) It is obvious by

the definition. (iii) A direct computation shows

ũ(τ, ξ) = ũ(−τ,−ξ).

By definition and a simple change of variables, we have (iii). (iv) This follows from the fact that
the bilinear functional

B : St,x ×St,x 3 (φ, ϕ) 7→ 〈φ, ϕ〉L2
tL

2
x

:=
∫∫

R×Rd
φ(t, x)ϕ(t, x)dtdx ∈ C

can be extended to a continuous bilinear functional on X−γ,−b−h(−ξ)×X
γ,b
h(ξ). We also have that if L is

a continuous linear functional on Xγ,b
h(ξ), then there exists a unique u ∈ X−γ,−b−h(−ξ) such that

∀ϕ ∈ Xγ,b
h(ξ), 〈L,ϕ〉 = B(u, ϕ).

Moreover,
‖L‖(Xγ,b

h(ξ))? = ‖u‖X−γ,−b−h(−ξ)
.
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Indeed, by Parseval’s identity and Cauchy-Schwarz inequality, we have∣∣∣ ∫∫
R×Rd

φ(t, x)ϕ(t, x)dtdx
∣∣∣ ∼ ∣∣∣ ∫∫

R×Rd
φ̃(−τ,−ξ)ϕ̃(τ, ξ)dτdξ

∣∣∣
∼
∣∣∣ ∫∫

R×Rd
〈τ − h(ξ)〉−b 〈ξ〉−γ φ̃(−τ,−ξ) 〈τ − h(ξ)〉b 〈ξ〉γ ϕ̃(τ, ξ)dτdξ

∣∣∣
. ‖φ‖X−γ,−b−h(−ξ)

‖ϕ‖Xγ,b
h(ξ)

.

Since St,x is dense in Xγ,b, the bilinear functional B can be extended to X−γ,−b−h(−ξ) ×X
γ,b
h(ξ). Now

let L ∈ (Xγ,b
h(ξ))

?, i.e. a linear functional on Xγ,b
h(ξ). Consider

Lγ,b : L2
τL

2
ξ → C
f 7→

〈
L,F−1(〈τ − h(ξ)〉−b 〈ξ〉−γ f)

〉
.

We then have

sup
‖f‖L2

τL
2
ξ
=1
| 〈Lγ,b, f〉 | = sup

‖f‖L2
τL

2
ξ
=1

∣∣∣〈L,F−1(〈τ − h(ξ)〉−b 〈ξ〉−γ f)
〉∣∣∣

= sup
‖ϕ‖

X
γ,b

h(ξ)
=1

| 〈L,ϕ〉 | = ‖L‖(Xγ,b
h(ξ))? .

Here ϕ = F−1(〈τ − h(ξ)〉−b 〈ξ〉−γ f) and ‖ϕ‖Xγ,b
h(ξ)

= ‖f‖L2
τL

2
ξ

= 1. The Riesz representation
theorem then implies that there exists g ∈ L2

τL
2
ξ such that

∀h ∈ L2
τL

2
ξ , 〈Lγ,b, h〉 = B(g, h).

Now define u := F(〈τ − h(ξ)〉b 〈ξ〉γ g). It is easy to see that u ∈ X−γ,−b−h(−ξ). This shows that for all
ϕ ∈ St,x,

B(u, ϕ) =
∫∫

F−1u(τ, ξ)ϕ̃(τ, ξ)dτdξ =
∫∫

g(τ, ξ) 〈τ − h(ξ)〉b 〈ξ〉γ ϕ̃(τ, ξ)dτdξ

=
〈
Lγ,b, 〈τ − h(ξ)〉b 〈ξ〉γ ϕ̃

〉
= 〈L,ϕ〉 .

This shows (iv). (v) It follows from that

‖u‖Xγ,b = ‖ 〈τ − h(ξ)〉b 〈ξ〉γ ũ‖L2
τL

2
ξ

≤ ‖ 〈τ − h(ξ)〉θb1 〈ξ〉θγ1 |ũ|θ‖
L

2/θ
τ L

2/θ
ξ

‖ 〈τ − h(ξ)〉(1−θ)b2 〈ξ〉(1−θ)γ2 |ũ|(1−θ)‖
L

2/(1−θ)
τ L

2/(1−θ)
ξ

≤ ‖ 〈τ − h(ξ)〉b1 〈ξ〉γ1 ũ‖θL2
τL

2
ξ
‖ 〈τ − h(ξ)〉b2 〈ξ〉γ2 ũ‖1−θ

L2
τL

2
ξ

= ‖u‖θXγ1,b1‖u‖1−θXγ2,b2 .

(vi) We note that

F(e−ith(D)u)(τ, ξ) =
∫∫

e−i(tτ+x·ξ)e−ith(D)u(t, x)dtdx =
∫
e−itτe−ith(ξ)û(t, ξ)dt = ũ(τ + h(ξ), ξ).
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This implies that

‖e−ith(D)u‖HbtHγx = ‖ 〈τ〉b 〈ξ〉γ F(e−ith(D)u)(τ, ξ)‖L2
τL

2
ξ

= ‖ 〈τ〉b 〈ξ〉γ ũ(τ + h(ξ), ξ)‖L2
τL

2
ξ

= ‖ 〈τ − h(ξ)〉b 〈ξ〉γ ũ(τ, ξ)‖L2
τL

2
ξ

= ‖u‖Xγ,b .

The proof is complete.
Lemma A.2.3. Let γ, b ∈ R and u0 ∈ Hγ

x . Then for any ψ ∈ C∞0 (R),

‖ψ(t)eith(D)u0‖Xγ,b . ‖u0‖Hγx .

Proof. A direct computation shows that

F(ψ(t)eith(D)u0)(τ, ξ) = ψ̂(τ − h(ξ))û0(ξ).

By definition, we have

‖ψ(t)eith(D)u0‖Xγ,b = ‖ 〈τ − h(ξ)〉b 〈ξ〉γ F(ψ(t)eith(D)u0)‖L2
τL

2
ξ

= ‖ 〈τ − h(ξ)〉b 〈ξ〉γ ψ̂(τ − h(ξ))û0(ξ)‖L2
τL

2
ξ

. ‖ 〈ξ〉γ û0(ξ)‖L2
ξ

= ‖u0‖Hγx .

Here we use the fact that ψ̂ is rapidly decreasing, hence∫
〈τ − h(ξ)〉2b |ψ(τ − h(ξ))|2dτ <∞.

Lemma A.2.4. Let b > 1/2, γ ∈ R and Y be a Banach space of functions on R × Rd with the
following property that

‖eitτeith(D)f‖Y . ‖f‖Hγx ,

for all f ∈ Hγ
x and all τ ∈ R. Then we have

‖u‖Y .b ‖u‖Xγ,b ,

for all u ∈ St,x.
Proof. Set f(τ) := Ft(e−ith(D)u)(τ). We have

u(t) = eith(D)e−ith(D)u(t) = eith(D)F−1
t Ft(e−ith(D)u(t)) = 1

2π e
ith(D)

∫
R
eitτFt(e−ith(D)u)(τ)dτ

= 1
2π

∫
R
eitτeith(D)f(τ)dτ.

Taking Y -norm and using Minkowski’s inequality and the hypothesis on Y , we obtain

‖u‖Y .
∫
R
‖f(τ)‖Hγx dτ ≤ ‖ 〈τ〉

−b ‖L2
τ

(∫
R
〈τ〉2b ‖f(τ)‖2Hγx dτ

)1/2
.
(∫

R
〈τ〉2b ‖f(τ)‖2Hγx dτ

)1/2
.

Here ‖ 〈τ〉−b ‖L2
τ
is bounded since b > 1/2. Using the Parseval’s identity, the right hand side of

the above quantity can be written as(∫
R
〈τ〉2b ‖ 〈ξ〉γ Fxf(τ)‖2L2

ξ
dτ
)1/2

= ‖e−ith(D)u‖HbtHγx = ‖u‖Xγ,b .

The result then follows.
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Corollary A.2.5. Let b > 1/2, γ ∈ R. Then for any u ∈ Xγ,b, we have

‖u‖C0
tH

γ
x
.b ‖u‖Xγ,b .

Proof. Applying Lemma A.2.4 for Y = C0
tH

γ
x , we immediately have the desired estimate.

Corollary A.2.6. Let b > 1/2 and (p, q) be a Schrödinger admissible pair and let h(ξ) = |ξ|σ with
σ ∈ (0, 2]\{1}. Then

‖u‖LptLqx . ‖u‖Xγp,q,b ,

where
γp,q = d

2 −
d

q
− σ

p
.

Proof. We firstly recall Strichartz estimates for eith(D) with h(ξ) = |ξ|σ, σ ∈ (0, 2]\{1} (see Corol-
lary 1.1.4),

‖eith(D)f‖LptLqx . ‖f‖Hγp,qx
.

Note that when σ ∈ (2,∞), the above estimate holds locally in time. We then apply Lemma A.2.4
with Y = LptL

q
x. Note that the space LptLqx is invariant under multiplication by phases such as

eitτ .
Lemma A.2.7. Let b1, b2 > 1/2, γ1, γ2 ∈ R and Y be a Banach space of functions on R×Rd with
the following property that

‖[eitτeith(D)f1][eitζeith(D)f2]‖Y . ‖f1‖Hγ1
x
‖f2‖Hγ2

x
,

for all f1 ∈ Hγ1
x , f2 ∈ Hγ2

x and all τ, ζ ∈ R. Then we have

‖u1u2‖Y .b1,b2 ‖u1‖Xγ1,b1‖u2‖Xγ2,b2 ,

for all u1, u2 ∈ St,x.
Proof. The proof is similar to the one of Lemma A.2.4. Set

f1(τ) := Ft(e−ith(D)u1(t)), f2(ζ) := Ft(e−ith(D)u2(t)).

We see that

u1(t) = 1
2π e

ith(D)
∫
eitτf1(τ)dτ, u2(t) = 1

2π e
ith(D)

∫
eitζf2(ζ)dζ.

Thus

‖u1u2‖Y .
(∫
‖f1(τ)‖Hγ1

x
dτ
)(∫

‖f2(ζ)‖Hγ2
x
dζ
)

. ‖ 〈τ〉b1 ‖L2
τ

(∫
〈τ〉2b1 ‖f1(τ)‖2Hγ1

x
dτ
)1/2
‖ 〈ζ〉b2 ‖L2

ζ

(∫
〈ζ〉2b2 ‖f2(ζ)‖2Hγ2

x
dζ
)1/2

. ‖e−ith(D)u1‖Hb1
t H

γ1
x
‖e−ith(D)u2‖Hb2

t H
γ2
x

= ‖u1‖Xγ1,b1‖u2‖Xγ2,b2 .

This completes the proof.
A direct application of localized bilinear estimate given Theorem A.3.1 and Theorem A.3.3 is

the following result.
Corollary A.2.8. Let σ ≥ 2 and d > σ/2 and h(ξ) = |ξ|σ. Let u1 ∈ X0,b1 , u2 ∈ X0,b2 with
b1, b2 > 1/2 be supported on spatial frequencies |ξ| ∼ M,N respectively. Then for M ≥ N , one
has

‖u1u2‖L2
tL

2
x
.b1,b2 M

(d−1)/2N−(σ−1)/2‖u1‖X0,b1 ‖u2‖X0,b2 .
Lemma A.2.9. Let γ, b ∈ R and ψ a Schwartz function in time. Then

‖ψ(t)u‖Xγ,b . ‖u‖Xγ,b .
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Moreover, if 0 < δ ≤ 1, then
‖ψδ(t)u‖Xγ,b . δ−|b|‖u‖Xγ,b ,

where ψδ(t) = ψ(t/δ). In the case b > 1/2, we have the following improvement

‖ψδ(t)u‖Xγ,b . δ1/2−b‖u‖Xγ,b .

Proof. Let us firstly understand how the Xγ,b-space behave with respect to temporal frequency
modulation u(t, x) 7→ eitτ0u(t, x). Note that

F(eitτ0u)(τ, ξ) = ũ(τ − τ0, ξ).

By definition, a simple change of variable and Peetre’s inequality, we have

‖eitτ0u‖Xγ,b = ‖ 〈τ + τ0 − h(ξ)〉b 〈ξ〉γ ũ‖L2
τL

2
ξ
.b 〈τ0〉|b| ‖ 〈τ − h(ξ)〉b 〈ξ〉γ ũ‖L2

τL
2
ξ

= 〈τ0〉|b| ‖u‖Xγ,b .

By writting ψ(t) =
∫
ψ̂(τ0)eitτ0dτ0, and use Minkowski’s inequality, we have

‖ψ(t)u‖Xγ,b .b
(∫
|ψ̂(τ0)| 〈τ0〉|b| dτ0

)
‖u‖Xγ,b .

Since ψ̂ is rapidly decreasing, the first claim follows. Similarly, we have

‖ψδ(t)u‖Xγ,b .b
(∫
|ψ̂δ(τ0)| 〈τ0〉|b| dτ0

)
‖u‖Xγ,b .

Using that ψ̂δ(τ) = δψ̂(δτ), a change of variable and that
〈
δ−1τ0

〉
≤ δ−1 〈τ0〉, we obtain

‖ψδ(t)u‖Xγ,b .b δ−|b|‖u‖Xγ,b .

This proves the second claim. In the case b > 1/2, we have

‖ψδ(t)u‖Xγ,b = ‖e−ith(D)ψδ(t)u‖HγxHbt = ‖ 〈ξ〉γ ‖e−ith(ξ)ψδ(t)û‖Hbt ‖L2
ξ
.

We now use the Leibniz rule and Sobolev embedding with b > 1/2 to get

‖e−ith(ξ)ψδ(t)û‖Hbt ≤ ‖ψδ‖Hbt ‖e
−ith(ξ)û‖L∞t + ‖ψδ‖L∞t ‖e

−ith(ξ)û‖Hbt ≤ ‖ψδ‖Hbt ‖e
−ith(ξ)û‖Hbt .

This shows that

‖ψδ(t)u‖Xγ,b ≤ ‖ψδ‖Hbt ‖ 〈ξ〉
γ ‖e−ith(ξ)û‖Hbt ‖L2

ξ
. δ1/2−b‖e−ith(D)u‖HγxHbt = δ1/2−b‖u‖Xγ,b .

This completes the proof.
Lemma A.2.10. Let γ, b ∈ R and ψ a Schwartz function in time. Then for all u0 ∈ Hγ

x ,

‖ψ(t)eith(D)u0‖Xγ,b . ‖u0‖Hγx .

Moreover, if b > 1/2 and 0 < δ ≤ 1, then

‖ψδ(t)eith(D)u0‖Xγ,b . δ1/2−b‖u0‖Hγx .

Proof. We have from Item (vi) of Proposition A.2.2 that ‖u‖Xγ,b = ‖e−ith(D)u‖HbtHγx . This implies

‖ψ(t)eith(D)u0‖Xγ,b = ‖e−ith(D)ψ(t)eith(D)u0‖HbtHγx = ‖ψ(t)u0‖HbtHγx = ‖ψ‖Hbt ‖u0‖Hγx . ‖u0‖Hγx .
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The second claim follows by using the fact that

‖ψδ‖Hbt = ‖ 〈τ〉b ψ̂δ(τ)‖L2
τ

=
(∫
〈τ〉2b |ψ̂δ(τ)|2dτ

)1/2
. δ1/2−b‖ψ‖Hbt .

Lemma A.2.11. Let γ ∈ R, 0 < δ ≤ 1, 0 < b′ < 1/2 < b and b + b′ < 1. Let ψ be a Schwartz
function in time. Then ∥∥∥ψδ(t)∫ t

0
g(s)ds

∥∥∥
Hbt

. δ1−(b+b′)‖g‖
H−b

′
t

,

and ∥∥∥ψδ(t)∫ t

0
ei(t−s)h(D)F (s)ds

∥∥∥
Xγ,b

. δ1−(b+b′)‖F‖Xγ,−b′ .

Proof. We firstly write

ψδ(t)
∫ t

0
g(s)ds = ψδ(t)

∫ t

0

(∫
R
eiτsĝ(τ)dτ

)
ds

= ψδ(t)
∫
R

(∫ t

0
eiτsds

)
ĝ(τ)dτ = ψδ(t)

∫
R

eitτ − 1
iτ

ĝ(τ)dτ

= ψδ(t)
∑
k≥1

tk

k!

∫
|δτ |≤1

(iτ)k−1ĝ(τ)dτ − ψδ(t)
∫
|δτ |≥1

(iτ)−1ĝ(τ)dτ

+ ψδ(t)
∫
|δτ |≥1

(iτ)−1eitτ ĝ(τ)dτ =: I + II + III.

Let us consider the first term. The Cauchy-Schwarz inequality gives

‖I‖Hbt ≤
∑
k≥1

1
k!‖t

kψδ‖Hbt δ
1−k‖g‖

H−b
′

t

(∫
|δτ |≤1

〈τ〉2b
′
dτ
)1/2

.

Using that tkψδ(t) = δkϕk(t/δ) where ϕk(t) = tkψ(t), we have

‖tkψδ‖Hbt = δk‖ϕk(t/δ)‖Hbt = δk
(∫

R
〈τ〉2b δ2|ϕ̂k(δτ)|2dτ

)1/2
. δkδ1/2−b‖ϕk‖Hbt .

We also have ∫
|δτ |≤1

〈τ〉2b
′
dτ =

∫
|τ |≤1

〈
δ−1τ

〉2b′
δ−1dτ . δ−1−2b′ .

We then have

‖I‖Hbt .
∑
k≥1

1
k!δ

kδ1/2−bδ1−k‖g‖
H−b

′
t

δ−1/2−b′ . δ1−(b+b′)‖g‖
H−b

′
t

.

For the second term, we use a same argument to have

‖II‖Hbt . ‖ψδ‖Hbt ‖g‖H−b′t

(∫
|δτ |≥1

|τ |−2 〈τ〉2b
′
dτ
)1/2

.
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We then use that ‖ψδ‖Hbt . δ
1/2−b‖ψ‖Hbt . δ

1/2−b and∫
|δτ |≥1

|τ |−2 〈τ〉2b
′
dτ =

∫
|τ |≥1

|δ−1τ |−2 〈δ−1τ
〉2b′

δ−1dτ ≤ δ1−2b′
∫
|τ |≥1

|τ |−2 〈τ〉2b
′
dτ

. δ1−2b′
∫
|τ |≥1

|τ |−2(1−b′)dτ . δ1−2b′ .

Here b′ < 1/2 hence 2(1− b′) > 1 implies the last integral is convergent. This shows that

‖II‖Hbt . δ
1−(b+b′)‖g‖

H−b
′

t

.

We next treat the third term as follows. Set

J(t) :=
∫
|δτ |≥1

(iτ)−1ĝ(τ)eitτdτ.

We see that
Ĵ(ζ) =

∫
|δτ |≥1

(iτ)−1ĝ(τ)δ0(ζ − τ)dτ.

Note that the Fourier transform of eitτ is δ0(ζ − τ). This implies that

‖J‖Hbt =
(∫
〈ζ〉2b |Ĵ(ζ)|2dζ

)1/2
=
(∫
|δτ |≥1

〈τ〉2b |τ |−2|ĝ(τ)|2dτ
)1/2

≤ ‖g‖
H−b

′
t

sup
|δτ |≥1

|τ |−1 〈τ〉b+b
′
. δ1−(b+b′)‖g‖

H−b
′

t

.

Similarly,
‖J‖L2

t
. δ1−b′‖g‖

H−b
′

t

.

Thus, the Young’s inequality gives

‖III‖Hbt = ‖ 〈τ〉b (ψ̂δ ? Ĵ)‖L2
τ
. ‖|τ |bψ̂δ‖L1

τ
‖Ĵ‖L2

τ
+ ‖ψ̂δ‖L1

τ
‖ 〈τ〉b Ĵ‖L2

τ

. T 1−(b+b′)‖g‖
H−b

′
t

.

Here we use the fact that 〈τ〉b . |τ − ζ|b + 〈ζ〉b to write

〈τ〉b (ψ̂δ ? Ĵ) = (|τ |bψ̂δ) ? Ĵ + ψ̂δ ? (〈τ〉b Ĵ).

This proves the first claim. For the second estimate, we remark from Item (vi) of Proposition
A.2.2 that it is equivalent to ∥∥∥ψδ(t)∫ t

0
G(s)ds

∥∥∥
HbtH

γ
x

. ‖G‖
H−b

′
t Hγx

. (A.2.1)

We now apply the first estimate for g(s) = FxG(s, ξ) with ξ fixed to have∥∥∥ψδ(t)∫ t

0
FxG(s, ξ)ds

∥∥∥
Hbt

. δ1−(b+b′)‖FxG(t, ξ)‖
H−b

′
t

. (A.2.2)

If we denote
H(t, x) := ψδ(t)

∫ t

0
G(s, x)ds,
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then (A.2.2) becomes
‖FxH(t, ξ)‖Hbt . δ

1−(b+b′)‖FxG(t, ξ)‖
H−b

′
t

.

Squaring the above estimate, multiplying both sides with 〈ξ〉2γ and integrating over Rd, we get∫
Rd
〈ξ〉2γ

(∫
R
〈τ〉2b |FtFxH(τ, ξ)|2dτ

)
dξ . δ2(1−(b+b′))

∫
Rd
〈ξ〉2γ

(∫
R
〈τ〉−2b′ |FtFxG(τ, ξ)|2dτ

)
dξ.

This shows that
‖H‖HbtHγx . δ

1−(b+b′)‖G‖
H−b

′
t Hγx

,

and (A.2.1) follows.
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A.3 Bilinear Strichartz estimates
A.3.1 Bilinear Strichartz estimates for Schrödinger equation

Let us firstly consider the homogeneous Schrödinger equation, namely

i∂tu+ ∆u = 0, u|t=0 = ψ. (A.3.1)

The solution of above equation is given by u(t, x) = eit∆ψ(x). We recall the following properties:

‖eit∆ψ‖L2 = ‖ψ‖L2 , (A.3.2)
‖eit∆ψ‖L∞ . |t|−d/2‖ψ‖L1 , t 6= 0. (A.3.3)

The L2-estimate (A.3.2) and dispersive estimate (A.3.3) give the following Strichartz estimates
(see [KT98]):

‖eit∆ψ‖Lp(R,Lq) . ‖ψ‖L2 ,

provided that (p, q) satisfies the sharp Schrödinger admissible condition (see 0.0.1)). Moreover, if
we consider the inhomogeneous linear equation, i.e.

i∂tu+ ∆u = F, u|t=0 = ψ, (A.3.4)

then we have (see again [KT98])

‖u‖Lp(R,Lq) . ‖ψ‖L2 + ‖F‖La′ (R,Lb′ ), (A.3.5)

provided that (p, q) and (a, b) are sharp Schrödinger admissible. Strichartz estimates (A.3.5)
are also called linear estimates. We now are interested in bilinear estimates for the Schrödinger
equation. In order to do so, we introduce some notation. Let ϕ0 ∈ C∞0 (Rd) be such that ϕ0(ξ) = 1
for |ξ| ≤ 1 and ϕ0(ξ) = 0 for |ξ| ≥ 2 and set ϕ(ξ) = ϕ0(ξ) − ϕ0(2ξ). It is easy to see that
ϕ ∈ C∞0 (Rd) and supp(ϕ) ⊂ {ξ ∈ Rd, 1/2 ≤ |ξ| ≤ 2}. For N ∈ 2Z, i.e. N = 2k with k ∈ Z, we
define the Littlewood-Paley projection as

P̂Nf(ξ) := ϕN (ξ)f̂(ξ), ϕN (ξ) = ϕ(N−1ξ).

Note that supp(P̂Nf) ⊂ {ξ ∈ Rd, N/2 ≤ |ξ| ≤ 2N}. We have the following indentity

f =
∑
N∈2Z

PNf,

for all Schwartz function f . We also have the following properties with γ ≥ 0 and 1 ≤ q ≤ r ≤ ∞:

‖|∇|±γPNf‖Lq ∼ N±γ‖PNf‖Lq , (A.3.6)
‖PNf‖Lr . Nd/p−d/r‖PNf‖Lq . (A.3.7)

Let us begin with the following localized bilinear estimate (see [KTV14], Theorem 2.9).
Theorem A.3.1 (Localized bilinear estimate). Let d ≥ 2 and M,N ∈ 2Z,M ≤ N . Then

‖[eit∆PMf ][eit∆PNg]‖L2(R,L2) .M
(d−1)/2N−1/2‖f‖L2‖g‖L2 . (A.3.8)

When d = 1, (A.3.8) holds provided M � N .
Proof. We firstly note that for M ∼ N , (A.3.8) follows from Strichartz estimate for the pair
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(p, q) = (4, 2d/(d− 1)). Indeed, the Hölder inequality implies

‖[eit∆PMf ][eit∆PNg]‖L2(R,L2) ≤ ‖eit∆PMg‖L4(R,L2d)‖eit∆PNg‖L4(R,L2d/(d−1))

. ‖eit∆PMg‖L4(R,L2d)‖PNg‖L2 .

Here (4, 2d/(d − 1)) is a sharp Schrödinger admissible pair. We next use Bernstein’s inequality
and Strichartz estimate to have

‖eit∆PMf‖L4(R,L2d) .M
(d−1)/2−1/2‖eit∆PMf‖L4(R,L2d/(d−1)) .M

(d−1)/2−1/2‖PMf‖L2 .

Therefore, we have

‖[eit∆PMf ][eit∆PNg]‖L2(R,L2) .M
(d−1)/2−1/2‖PMf‖L2‖PNg‖L2 ∼M (d−1)/2N−1/2‖f‖L2‖g‖L2 .

Here we use that

M (d−1)/2−1/2 = M (d−1)/2N−1/2(N/M)1/2 ∼M (d−1)/2N−1/2.

Let us consider the case M � N . Using the fact

LHS(A.3.8) = sup
‖G‖L2(R,L2)=1

∣∣∣ 〈G, [eit∆PMf ][eit∆PNg]
〉
L2(R,L2)

∣∣∣,
where

〈G,H〉L2
t (R,L2) =

∫∫
R×Rd

G(t, x)H(t, x)dtdx =
∫
R
〈F (t), H(t)〉L2 dt.

By Parseval’s identity, we have

LHS(A.3.8) = sup
‖G‖L2(R,L2)=1

∫
R

〈
Ĝ(t),F

(
[eit∆PMf ][eit∆PNg]

)〉
L2
ξ

dt, (A.3.9)

where
F
(

[eit∆PMf ][eit∆PNg]
)

=
∫
Rd
e−it|ξ−η|

2
P̂Mf(ξ − η)e−it|η|

2
P̂Ng(η)dη.

Here the notation ·̂ or F stands for the space Fourier transform. Thus,

RHS(A.3.9) =
∫
R

〈
Ĝ(t, ·),

∫
Rd
e−it(|·−η|

2+|η|2)P̂Mf(· − η)P̂Ng(η)dη
〉
L2
ξ

dt

=
∫
Rd

〈
G̃(| · −η|2 + |η|2, ·), P̂Mf(· − η)P̂Ng(η)

〉
L2
ξ

dη

=
∫∫

Rd×Rd
G̃(|ξ − η|2 + |η|2, ξ)P̂Mf(ξ − η)P̂Ng(η)dξdη

=
∫∫

Rd×Rd
G̃(|ξ|2 + |η|2, ξ + η)P̂Mf(ξ)P̂Ng(η)dξdη,

where G̃ is the space-time Fourier transform. Hence (A.3.8) is in turn equivalent to∣∣∣ ∫∫
Rd×Rd

F (|ξ|2 + |η|2, ξ + η)P̂Mf(ξ)P̂Ng(η)dξdη
∣∣∣ .M (d−1)/2N−1/2‖F‖L2

τL
2
ξ
‖f̂‖L2

ξ
‖ĝ‖L2

ξ
.

(A.3.10)

By renaming components, we may assume that |ξ1| ∼ |ξ| ∼ M and |η1| ∼ |η| ∼ N , where
ξ = (ξ1, ξ), η = (η1, η) with ξ, η ∈ Rd−1. We make the change of variables τ = |ξ|2 + |η|2, ζ = ξ+ η
and dτdζ = Jdξ1dη. A calculation shows that J = |2(ξ1 ± η1)| ∼ |η1| ∼ N . The Cauchy-Schwarz
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inequality and the fact that |ξ| .M then imply

LHS(A.3.10) =
∣∣∣ ∫∫∫

R×Rd−1×Rd
F (τ, ζ)P̂Mf(ξ)P̂Ng(η)J−1dτdξdζ

∣∣∣
≤ ‖F‖L2

τL
2
ξ

∫
Rd−1

(∫∫
R×Rd

|P̂Mf(ξ)|2|P̂Ng(η)|2J−2dτdζ
)1/2

dξ

≤ ‖F‖L2
τL

2
ξ
M (d−1)/2

(∫∫∫
R×Rd−1×Rd

|P̂Mf(ξ)|2|P̂Ng(η)|2J−2dτdζdξ
)1/2

≤ ‖F‖L2
τL

2
ξ
M (d−1)/2

(∫∫
Rd×Rd

|P̂Mf(ξ)|2|P̂Ng(η)|2J−1dξdη
)1/2

≤ ‖F‖L2
τL

2
ξ
M (d−1)/2N−1/2‖P̂Mf‖L2

ξ
‖P̂Ng‖L2

ξ
.

This gives (A.3.10) and the result follows. In order to see that (A.3.8) is false when d = 1 and
M ∼ N , we proceed as follows. The space-time Fourier transforms of uM := eit∂

2
xPMf and

vN := eit∂
2
xPNg read

ũM (τ, ξ) = P̂Mf(ξ)δ0(τ + ξ2), ṽN (τ, ξ) = P̂Ng(ξ)δ0(τ + ξ2),

where δ0 is the Dirac function. We then have

ũMvN (τ, ξ) =
∫
ξ1+ξ2=ξ

P̂Mf(ξ1)P̂Ng(ξ2)δ0(τ + ξ2
1 + ξ2

2)dξ1,

which gives
ũMvN (τ, ξ) = 1

2|ξ1 − ξ2|
(P̂Mf(ξ1)P̂Ng(ξ2) + P̂Mf(ξ2)P̂Ng(ξ1)),

where ξ1 and ξ2 are the solution to

−ξ2
1 − ξ2

2 = τ, ξ1 + ξ2 = ξ.

We also have
dτdξ = 2|ξ1 − ξ2|dξ1dξ2,

and then

‖uMvN‖2L2(R,L2) = ‖ũMvN‖2L2
τL

2
ξ

=
∫∫ 1

2|ξ1 − ξ2|
|P̂Mf(ξ1)P̂Ng(ξ2) + P̂Mf(ξ2)P̂Ng(ξ1)|2dξ1dξ2.

We see that if |ξ1| ∼M and |ξ2| ∼ N and |ξ1 − ξ2| � 1, the integral fails to be convergent.
Theorem A.3.2 (Bilinear estimate [CKSTT5], [Vis07]). Let d ≥ 2 and u, v be solutions to (A.3.4)
with initial data ψ, φ respectively. For any δ > 0, we have

‖uv‖L2(R,L2) ≤ C(δ)
(
‖ψ‖Ḣ(d−1)/2−δ + ‖|∇|(d−1)/2−δ(i∂t + ∆)u‖Lp′ (R,Lq′ )

)
×
(
‖φ‖Ḣ−1/2+δ + ‖|∇|−1/2+δ(i∂t + ∆)v‖La′ (R,Lb′ )

)
, (A.3.11)

for any sharp Schrödinger admissible pairs (p, q) and (a, b) satisfying p, a > 2.
Proof. Fix δ > 0 and allow our implicit constants to depend on δ. We firstly consider the homo-
geneous case, i.e. u(t) = eit∆ψ and v(t) = eit∆φ. Let us consider the general estimate

‖uv‖L2(R,L2) . ‖ψ‖Ḣγ1 ‖φ‖Ḣγ2 . (A.3.12)

By the scaling invariance, the above estimate requires γ1 + γ2 = d/2 − 1. Indeed, for λ > 0 we
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consider uλ(t, x) = u(λ−2t, λ−1x). It is easy to see that if u solves (A.3.1), then uλ also satisfies
(A.3.1) with initial data uλ(0). By change of variable, we have

‖uλvλ‖2L2(R,L2) =
∫∫

R×Rd
|uλ(t, x)vλ(t, x)|2dtdx = λ2+d‖uv‖2L2(R,L2).

We also have ûλ(0)(ξ) = λdψ̂(λξ) and then

‖uλ(0)‖2
Ḣγ1 =

∫
Rd
ξ

|ξ|2γ1 |ûλ(0)(ξ)|2dξ = λd−2γ1‖ψ‖2
Ḣγ1 .

A similar equality holds for ‖vλ(0)‖Ḣγ2 . Therefore,

‖uλvλ‖2L2(R,L2) = λ2+d‖uv‖2L2(R,L2) . λ
2+d‖ψ‖2

Ḣγ1 ‖φ‖
2
Ḣγ2

= λ2+dλ−d+2γ1λ−d+2γ2‖uλ(0)‖2
Ḣγ1 ‖vλ(0)‖2

Ḣγ2

= λ2−d+2(γ1+γ2)‖uλ(0)‖2
Ḣγ1 ‖vλ(0)‖2

Ḣγ2 .

This shows that γ1 + γ2 = d/2 − 1 as required. We will prove (A.3.12) with γ1 = (d − 1)/2 − δ
and γ2 = −1/2 + δ. The estimate (A.3.12) may be recast using duality and renormalization as∣∣∣ ∫∫

Rd×Rd
F (|ξ|2 + |η|2, ξ + η)|ξ|−γ1 ψ̂(ξ)|η|−γ2 φ̂(η)dξdη

∣∣∣ . ‖F‖L2
τL

2
ξ
‖ψ̂‖L2

ξ
‖φ̂‖L2

ξ
.

Since γ1 ≥ γ2, we may restrict attention to the interactions with |ξ| ≤ |η|. The remaining case
can be reduced to the case under consideration by multiplying by (|ξ|/|η|)γ1−γ2 ≥ 1. Moreover,
we may further restrict attention to the case |ξ| � |η| since, in the other case, we can move the
frequencies between the two factors and reduce to the case where γ1 = γ2, which can be treated by
L4(R, L4) Strichartz estimates when d ≥ 2. Next, we decompose |η| dyadically and |ξ| in dyadic
multiplies of the size of |η| by rewriting the quantity to be controlled as (K,N dyadic):∑

K

∑
N

∫∫
Rd×Rd

PKF (|ξ|2 + |η|2, ξ + η)|ξ|−γ1 P̂NKψ(ξ)|η|−γ2 P̂Kφ(η)dξdη. (A.3.13)

Note that |η| ∼ K, |ξ| ∼ NK, hence |ξ + η| ∼ K. This explains why F may be so localized. By
remaning components, we may assume that |ξ1| ∼ |ξ| and |η1| ∼ |η| where ξ = (ξ1, ξ), η = (η1, η)
with ξ, η ∈ Rd−1. We now change variables by writting τ = ξ+η, ζ = |ξ|2+|η|2 and dτdζ = Jdξ1dη.
A calculation shows that J = 2|ξ1 ± η1| ∼ |η1| ∼ K. The left hand side of (A.3.13) becomes∣∣∣∑

K

K−γ2
∑
N≤1

(NK)−γ1

∫∫∫
Rd−1×R×Rd

PKF (τ, ζ)P̂NKψ(ξ)P̂Kφ(η)J−1dτdζdξ
∣∣∣.

We apply Cauchy-Schwarz inequality and change back to the original variables to get

LHS(A.3.13) ≤
∑
K

K−γ2‖PKF‖L2
τL

2
ξ

∑
N≤1

(NK)−γ1

×
∫
Rd−1

(∫∫
R×Rd

|P̂NKψ(ξ)|2|P̂Kφ(η)|2J−2dτdζ
)1/2

dξ

≤
∑
K

K−γ2‖PKF‖L2
τL

2
ξ

∑
N≤1

(NK)−γ1+(d−1)/2

×
(∫∫∫

Rd−1×R×Rd
|P̂NKψ(ξ)|2|P̂Kφ(η)|2J−2dτdζdξ

)1/2
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LHS(A.3.13) ≤
∑
K

K−γ2‖PKF‖L2
τL

2
ξ

∑
N≤1

(NK)−γ1+(d−1)/2

×
(∫∫

Rd×Rd
|P̂NKψ(ξ)|2|P̂Kφ(η)|2J−1dξdη

)1/2

≤
∑
K

K−γ2−1/2‖PKF‖L2
τL

2
ξ

∑
N≤1

(NK)−γ1+(d−1)/2‖P̂NKψ‖L2
ξ
‖P̂Kφ‖L2

ξ
.

We now choose γ2 = −1/2 + δ and γ1 = (d− 1)/2− δ with δ > 0 to obtain

LHS(A.3.13) .
∑
K

‖PKF‖L2
τL

2
ξ
‖P̂Kφ‖L2

ξ

∑
N≤1

Nδ‖P̂NKψ‖L2
ξ
. ‖F‖L2

τL
2
ξ
‖ψ̂‖L2

ξ
‖φ̂‖L2

ξ
.

This gives the homogeneous bilinear estimate (A.3.12). We turn now our attention to the inho-
mogeneous estimate (A.3.11). Let us introduce

‖u‖Sγ,p,q := ‖ψ‖Ḣγ + ‖|∇|γ(i∂t + ∆)u‖Lp′ (R,Lq′ ), (A.3.14)

and

Sγ,p,q := {u ∈ C(I,S ) | ‖u‖Sγ,p,q <∞}. (A.3.15)

The estimate (A.3.11) is in turn equivalent to

‖uv‖L2(R,L2) ≤ C(δ)‖u‖S(d−1)/2−δ,p,q‖v‖S−1/2+δ,a,b . (A.3.16)

We firstly note that the homogeneous bilinear estimate reads

‖eit∆ψeit∆φ‖L2(R,L2) ≤ C(δ)‖ψ‖Ḣ(d−1)/2−δ‖φ‖Ḣ−1/2+δ . (A.3.17)

Now, let (p, q) and (a, b) be Schrödinger admissible pairs with p, a > 2. Using Duhamel’s formula
for u, we have

‖uv‖L2(R,L2) ≤ ‖eit∆ψv‖L2(R,L2) +
∥∥∥(∫ t

0
ei(t−s)∆(i∂s + ∆)u(s)ds

)
v
∥∥∥
L2(R,L2)

.

Let us consider the first term. Thanks to Duhamel’s formula for v, we get

‖eit∆ψv‖L2(R,L2) ≤ ‖eit∆ψeit∆φ‖L2(R,L2) +
∥∥∥eit∆ψ(∫ t

0
ei(t−s)∆(i∂s + ∆)v(s)ds

)∥∥∥
L2(R,L2)

.

(A.3.18)

The homogeneous bilinear estimate (A.3.17) implies

RHS(A.3.18) ≤ C(δ)‖ψ‖Ḣ(d−1)/2−δ‖φ‖Ḣ−1/2+δ

+C(δ)‖ψ‖Ḣ(d−1)/2−δ

∥∥∥∫ t

0
e−is∆(i∂s + ∆)v(s)ds

∥∥∥
Ḣ−1/2+δ

≤ C(δ)‖u‖S(d−1)/2−δ,p,q

(
‖φ‖Ḣ−1/2+δ +

∥∥∥∫ t

0
e−is∆(i∂s + ∆)v(s)ds

∥∥∥
Ḣ−1/2+δ

)
.

Moreover, the adjoint to the linear Strichartz estimate also gives∥∥∥∫
R
e−is∆|∇|−1/2+δ(i∂s + ∆)v(s)ds

∥∥∥
L2
. ‖|∇|−1/2+δ(i∂s + ∆)v‖La′ (R,Lb′ ).
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The Christ-Kiselev Lemma 4.5.1 then implies∥∥∥∫ t

0
e−is∆(i∂s + ∆)v(s)ds

∥∥∥
Ḣ−1/2+δ

. ‖|∇|−1/2+δ(i∂s + ∆)v‖La′ (R,Lb′ ),

and therefore
‖eit∆ψv‖L2(R,L2) ≤ ‖u‖S(d−1)/2−δ,p,q‖v‖S−1/2+δ,a,b .

It remains to show∥∥∥(∫ t

0
ei(t−s)∆(i∂s + ∆)u(s)ds

)
v
∥∥∥
L2(R,L2)

≤ C(δ)‖u‖S(d−1)/2−δ,p,q‖v‖S−1/2+δ,a,b .

By Christ-Kiselev Lemma 4.5.1, it suffices to prove∥∥∥(∫
R
ei(t−s)∆(i∂s + ∆)u(s)ds

)
v
∥∥∥
L2(R,L2)

≤ C(δ)‖u‖S(d−1)/2−δ,p,q‖v‖S−1/2+δ,a,b .

Using again Duhamel’s formula for v and repeating the above argument for the first term, we
obtain∥∥∥eit∆(∫

R
e−is∆(i∂s+∆)u(s)ds

)
v
∥∥∥
L2(R,L2)

≤ C(δ)
∥∥∥ ∫

R
e−is∆(i∂s+∆)u(s)ds

∥∥∥
Ḣ(d−1)/2−δ

‖v‖S−1/2+δ,a,b .

The adjoint to the linear Strichartz estimate again gives∥∥∥∫
R
e−is∆(i∂s + ∆)u(s)ds

∥∥∥
Ḣ(d−1)/2−δ

. ‖|∇|(d−1)/2−δ(i∂t + ∆)u‖Lp′ (R,Lq′ ) . ‖u‖S(d−1)/2,p,q .

This completes the proof.

A.3.2 Bilinear Strichartz estimate for higher-order Schrödinger equa-
tions

Let σ > 2 and consider the homogeneous higher-order Schrödinger equation, namely

i∂tu− |∇|σu = 0, u|t=0 = ψ. (A.3.19)

As in Chapter 1, the equation (A.3.19) satisfies the following Strichartz estimates

‖e−it|∇|
σ

ψ‖Lp(R,Lq) . ‖ψ‖Ḣγp,q ,

where
γp,q = d

2 −
d

q
− σ

p
,

and (p, q) satisfies the Schrödinger admissible condition (see (1.1.2)). Moreover, if we consider the
inhomogeneous linear equation

i∂tu− |∇|σu = F, u|t=0 = ψ, (A.3.20)

then we have
‖u‖Lp(R,Lq) . ‖ψ‖Ḣγp,q + ‖F‖La′ (R,Lb′ ),

provided that (p, q) and (a, b) are Schrödinger admissible with q, b < ∞ and satisfy the gap
condition

γp,q = γa′,b′ + σ.

Note that if (p, q) is a Schrödinger admissible pair satisfying γp,q = 0 then γp,q = γp′,q′ + σ.
We now turn our attention to the bilinear estimate for the higher-order Schrödinger equation.
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Let us begin with the following localized bilinear estimate.
Theorem A.3.3 (Localized bilinear estimate). Let σ > 2, d > σ/2 and M,N ∈ 2Z such that
M ≤ N . Then

‖[e−it|∇|
σ

PMf ][e−it|∇|
σ

PNg]‖L2(R,L2) .M
(d−1)/2N−(σ−1)/2‖f‖L2‖g‖L2 . (A.3.21)

In the case d ≤ σ/2, the estimate (A.3.21) holds provided M � N .
Proof. Let us firstly consider the case M ∼ N . The Hölder inequality gives

‖[e−it|∇|
σ

PMf ][e−it|∇|
σ

PNg]‖L2(R,L2) ≤ ‖e−it|∇|
σ

PMf‖L4
tL

4d/σ‖e−it|∇|
σ

PNg‖L4
tL

2d/(d−σ/2) .

Note that when d > σ/2, (p, q) = (4, 2d/(d − σ/2)) is a Schrödinger admissible pair satisfying
γp,q = 0. Moreover, using that σ > 2, it is easy to check that (p, q) = (4, 4d/σ) is also a
Schrödinger admissible with γp,q = d/2− σ/2. Therefore, Strichartz estimate shows that

‖[e−it|∇|
σ

PMf ][e−it|∇|
σ

PNg]‖L2(R,L2) ≤ ‖PMf‖Ḣd/2−σ/2‖PNg‖L2 ∼Md/2−σ/2‖PMf‖L2‖PNg‖L2 .

Since we are considering the case M ∼ N , we have

Md/2−σ/2 = M (d−1)/2N−(σ−1)/2N (σ−1)/2M−(σ−1)/2

= M (d−1)/2N−(σ−1)/2(N/M)(σ−1)/2 ∼M (d−1)/2N−(σ−1)/2.

This gives (A.3.21) when M ∼ N . Let us now consider the case M � N . By duality, it suffices
to prove∣∣∣ ∫∫

Rd×Rd
G(|ξ|σ + |η|σ, ξ + η)P̂Mf(ξ)P̂Ng(η)dξdη

∣∣∣ .M (d−1)/2N−(σ−1)/2‖G‖L2
τL

2
ξ
‖f̂‖L2

ξ
‖ĝ‖L2

ξ
.

(A.3.22)

By renaming the components, we can assume that |ξ| ∼ |ξ1| ∼ M and |η| ∼ |η1| ∼ N , where
ξ = (ξ1, ξ), η = (η1, η) with ξ, η ∈ Rd−1. We make a change of variables τ = |ξ|σ + |η|σ, ζ = ξ + η

and dτdζ = Jdξ1dη. A calculation shows that J = |σ(|ξ|σ−2ξ1 ± |η|ση1| ∼ |η|σ−1 ∼ Nσ−1. The
Cauchy-Schwarz inequality with the fact |ξ| .M then shows

LHS(A.3.22) =
∣∣∣ ∫∫∫

R×Rd−1×Rd
G(τ, ζ)P̂Mf(ξ)P̂Ng(η)J−1dτdξdζ

∣∣∣
≤ ‖G‖L2

τL
2
ξ

∫
Rd−1

(∫∫
R×Rd

|P̂Mf(ξ)|2|P̂Ng(η)|2J−2dτdζ
)1/2

dξ

≤ ‖G‖L2
τL

2
ξ
M (d−1)/2

(∫∫∫
R×Rd−1×Rd

|P̂Mf(ξ)|2|P̂Ng(η)|2J−2dτdξdζ
)1/2

≤ ‖G‖L2
τL

2
ξ
M (d−1)/2

(∫∫∫
R×Rd−1×Rd

|P̂Mf(ξ)|2|P̂Ng(η)|2J−1dξdζ
)1/2

≤ ‖G‖L2
τL

2
ξ
M (d−1)/2N−(σ−1)/2‖P̂Mf‖L2

ξ
‖P̂Ng‖L2

ξ
.

This gives the desired estimate.
We also have the following non-localized bilinear estimate for the higher-order Schrödinger

equation.
Theorem A.3.4. Let σ > 2, d > σ/2 and u, v be solutions to (A.3.20) with initial data ψ, φ
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respectively. Then for any δ > 0,

‖uv‖L2(R,L2) ≤ C(δ)
(
‖ψ‖Ḣ(d−1)/2−δ + ‖|∇|(d−1)/2−δ(i∂t − |∇|σ)u‖Lp′ (R,Lq′ )

)
×
(
‖φ‖Ḣ−(σ−1)/2+δ + ‖|∇|−(σ−1)/2+δ(i∂t − |∇|σ)v‖La′ (R,Lb′ )

)
, (A.3.23)

for any Schrödinger admissible pairs (p, q) and (a, b) satisfying γp,q = γa,b = 0, q, b < ∞ and
p, a > 2.
Proof. The proof is similar to the one of Theorem A.3.2. We only give a sketch of a proof. We
firstly consider the homogeneous case, namely

‖uv‖L2(R,L2) . ‖ψ‖Ḣγ1 ‖φ‖Ḣγ2 . (A.3.24)

Due to the scaling invariance, we see that the above estimate requires γ1 +γ2 = d/2−σ/2. To see
this, we consider uλ(t, x) = u(λ−σt, λ−1x). The homogenous equation (A.3.19) is invariant under
this scaling. We have

‖uλvλ‖2L2(R,L2) = λσ+d‖uv‖2L2(R,L2).

Using the fact that ‖uλ(0)‖2
Ḣγ1

= λd−2γ1‖ψ‖2
Ḣγ1

and similarly for vλ(0), we get

‖uλvλ‖2L2(R,L2) . λ
σ−d+2(γ1+γ2)‖uλ(0)‖2

Ḣγ1 ‖vλ(0)‖2
Ḣγ2 .

We now prove (A.3.24) with γ1 = (d−1)/2−δ and γ2 = −(σ−1)/2+δ. The proof of this estimate
follows by the same lines of those given in Theorem A.3.2. We now turn to the inhomogeneous
case. Using the notations introduced in (A.3.14) and (A.3.15), the estimate (A.3.23) is equivalent
to

‖uv‖L2(R,L2) ≤ C(δ)‖u‖S(d−1)/2−δ,p,q‖v‖S−(σ−1)/2+δ,a,b . (A.3.25)

We will make use of the homogeneous bilinear estimate

‖e−it|∇|
σ

ψe−it||∇|
σ

φ‖L2(R,L2) ≤ C(δ)‖ψ‖Ḣ(d−1)/2−δ‖φ‖Ḣ−(σ−1)/2+δ . (A.3.26)

Let (p, q) and (a, b) be Schrödinger admissible satisfying γp,q = γa,b = 0, q, b < ∞ and p, a > 2.
Note that when γp,q = 0, Strichartz estimate shows that the map L2 3 ψ 7→ e−it|∇|

σ

ψ ∈ Lp(R, Lq)
is bounded together with its adjoint

Lp
′
(R, Lq

′
) 3 F 7→

∫
R
eis|∇|

σ

F (s)ds ∈ L2.

Therefore, we can repeat the same argument as in Theorem A.3.2 to get a desired estimate. The
proof is complete.
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Abstract — This dissertation is devoted to the study of linear and nonlinear aspects of the
Schrödinger-type equations

i∂tu+ |∇|σu = F, |∇| =
√
−∆, σ ∈ (0,∞).

When σ = 2, it is the well-known Schrödinger equation arising in many physical contexts such as quantum
mechanics, nonlinear optics, quantum field theory and Hartree-Fock theory. When σ ∈ (0, 2)\{1}, it is
the fractional Schrödinger equation, which was discovered by Laskin (see e.g. [Las00] and [Las02]) owing
to the extension of the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical
paths. This equation also appears in the water waves model (see e.g. [IP14] and [Ngu16]). When σ = 1,
it is the half-wave equation which arises in water waves model (see [IP14]) and in gravitational collapse
(see [ES07], [FL07]). When σ = 4, it is the fourth-order or biharmonic Schrödinger equation introduced
by Karpman [Kar96] and by Karpman-Shagalov [KS00] taking into account the role of small fourth-order
dispersion term in the propagation of intense laser beam in a bulk medium with Kerr nonlinearity.

This thesis is divided into two parts. The first part studies Strichartz estimates for Schrödinger-type
equations on manifolds including the flat Euclidean space, compact manifolds without boundary and
asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in the study of
nonlinear dispersive equation at low regularity. The second part concerns the study of nonlinear aspects
such as local well-posedness, global well-posedness below the energy space and blowup of rough solutions
for nonlinear Schrödinger-type equations.

In Chapter 1, we discuss Strichartz estimates for Schrödinger-type equations with σ ∈ (0,∞) on the
Euclidean space Rd.

In Chapter 2, we derive Strichartz estimates for Schrödinger-type equations with σ ∈ (0,∞)\{1} on
Rd equipped with a smooth bounded metric g.

In Chapter 3, we make use of Strichartz estimates proved in Chapter 2 to show Strichartz estimates
for Schrödinger-type equations with σ ∈ (0,∞)\{1} on compact manifolds without boundary.

In Chapter 4, we prove global in time Strichartz estimates for Schrödinger-type equations with σ ∈
(0,∞)\{1} on asymptotically Euclidean manifolds under the non-trapping condition.

In Chapter 5, we use Strichartz estimates given in Chapter 1 (among other things) to study the local
well-posedness of the power-type nonlinear Schrödinger-type equations with σ ∈ (0,∞) posed on Rd.

In Chapter 6, we study the global well-posedness for the defocusing mass-critical nonlinear fourth-
order Schrödinger equation σ = 4 below the energy space. We will consider separately two cases d = 4
and d ≥ 5 which respectively correspond to the algebraic and non-algebraic nonlinearity.

In Chapter 7, we study the blowup of rough solutions to the focusing mass-critical nonlinear fourth-
order Schrödinger equation. As in Chapter 6, we also consider separately two cases d = 4 and d ≥ 5.

Keywords: Nonlinear Schrödinger-type equations; Strichartz estimates; local well-posedness; global
well-posedness; blowup; I-method; bilinear Strichartz estimates; Interaction Morawetz inequatlities; com-
pact manifolds without boundary; asymptotically Euclidean manifolds.
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