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Résumé

Cette these est consacrée a I’étude des aspects linéaires et non-linéaires des équations de type
Schrodinger
iOu+|V[°u=F, |V|=v-4A, o¢¢€(0,x).

Quand o = 2, il s’agit de ’équation de Schrédinger bien connue dans de nombreux contextes
physiques tels que la mécanique quantique, 'optique non-linéaire, la théorie des champs quantiques
et la théorie de Hartree-Fock. Quand o € (0,2)\{1}, c’est I’équation Schrodinger fractionnaire,
qui a été découverte par Laskin (voir par exemple [Las00] et [Las02]) en lien avec extension de
I'intégrale de Feynman, des chemins quantiques de type brownien a ceux de Lévy. Cette équation
apparait également dans des modeles de vagues (voir par exemple [IP14] et [Ngul6]). Quand o = 1,
c’est I’équation des demi-ondes qui apparait dans des modeles de vagues (voir [IP14]) et dans
Peffondrement gravitationnel (voir [ES07], [FLO7]). Quand o = 4, c’est I’équation Schrédinger
du quatriéme ordre ou biharmonique introduite par Karpman [Kar96] et par Karpman-Shagalov
[KS00] pour prendre en compte le role de la dispersion du quatriéme ordre dans la propagation
d’un faisceau laser intense dans un milieu massif avec non-linéarité de Kerr.

Cette these est divisée en deux parties. La premiere partie étudie les estimations de Strichartz
pour des équations de type Schrodinger sur des variétés comprenant ’espace plat euclidien, les
variétés compactes sans bord et les variétés asymptotiquement euclidiennes. Ces estimations de
Strichartz sont utiles pour I’étude de ’équations dispersives non-linéaire a régularité basse. La
seconde partie concerne ’étude des aspects non-linéaires tels que les caractéres localement puis
globalement bien posés sous ’espace d’énergie, ainsi que ’explosion de solutions peu régulieres
pour des équations non-linéaires de type Schrodinger.

Dans le Chapitre 1, nous discutons des estimations de Strichartz pour les équations de type
Schrodinger avec o € (0, 00) sur I'espace euclidien RY.

Dans le Chapitre 2, nous prouvons des estimations de Strichartz pour les équations de type
Schrédinger avec o € (0,00)\{1} sur R¢ équipé d’'une métrique lisse bornée g.

Au Chapitre 3, nous utilisons les estimations de Strichartz prouvées au Chapitre 2 pour montrer
les estimations de Strichartz pour les équations de type Schrodinger avec o € (0,00)\{1} sur les
variétés compactes sans bord.

Au Chapitre 4, nous montrons des estimations de Strichartz globales pour les équations de type
Schrodinger avec o € (0,00)\{1} sur les variétés asymptotiquement euclidiennes sous la condition
de non-capture.

Dans le Chapitre 5, nous utilisons les estimations de Strichartz données au Chapitre 1 (en-
tre autres) pour étudier le caractére localement bien posé des équations non-linéaires de type
Schrédinger avec la non-linéarité de type puissance et o € (0,00) posées sur RY.

Dans le Chapitre 6, nous étudions le le caractére globalement bien posé de 1’équation de
Schrodinger non-linéaire du quatrieme ordre o = 4 défocalisante et L? critique, en considérant
séparément deux cas d = 4 et d > 5 qui correspondent respectivement a la non-linéarité algébrique
et non-algébrique.

Dans le Chapitre 7, nous étudions ’explosion des solutions peu réguliéres de ’équation de
Schrédinger non-linéaire du quatriéme ordre focalisante L? critique. Comme au Chapitre 6, nous
considérons aussi séparément deux cas d =4 et d > 5.

Mots-clés: Equations non-linéaires de type Schrodinger; Estimations de Strichartz; prob-
léeme localement bien posé; proleme globalement bien posé; explosion; méthode-I; Estimations
bilinéaires de Strichartz; Inégalités d’interaction de Morawetz; Variétés compactes sans bord ;
Variétés asymptotiquement euclidiennes.

MSC2010: 35A01, 35A17, 35B44, 35B45, 35E15, 35G20, 35G25, 35Q55.
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Abstract

This dissertation is devoted to the study of linear and nonlinear aspects of the Schrédinger-type
equations
iu+|V[°u=F, |V|=v-A, o¢¢€(0,x).

When o = 2, it is the well-known Schrodinger equation arising in many physical contexts such
as quantum mechanics, nonlinear optics, quantum field theory and Hartree-Fock theory. When

€ (0,2)\{1}, it is the fractional Schrodinger equation, which was discovered by Laskin (see e.g.
[Las00] and [Las02]) owing to the extension of the Feynman path integral, from the Brownian-like
to Lévy-like quantum mechanical paths. This equation also appears in the water waves model
(see e.g. [[P14] and [Ngul6]). When o = 1, it is the half-wave equation which arises in water
waves model (see [IP14]) and in gravitational collapse (see [ES07], [FLO7]). When o = 4, it
is the fourth-order or biharmonic Schréodinger equation introduced by Karpman [Kar96] and by
Karpman-Shagalov [KS00] taking into account the role of small fourth-order dispersion term in
the propagation of intense laser beam in a bulk medium with Kerr nonlinearity.

This thesis is divided into two parts. The first part studies Strichartz estimates for Schréodinger-
type equations on manifolds including the flat Euclidean space, compact manifolds without bound-
ary and asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in
the study of nonlinear dispersive equation at low regularity. The second part concerns the study
of nonlinear aspects such as local well-posedness, global well-posedness below the energy space
and blowup of rough solutions for nonlinear Schréodinger-type equations.

In Chapter 1, we discuss Strichartz estimates for Schrodinger-type equations with o € (0, c0)
on the Euclidean space R<.

In Chapter 2, we derive Strichartz estimates for Schrodinger-type equations with o € (0, 00)\{1}
on R% equipped with a smooth bounded metric g.

In Chapter 3, we make use of Strichartz estimates proved in Chapter 2 to show Strichartz
estimates for Schrodinger-type equations with o € (0,00)\{1} on compact manifolds without
boundary.

In Chapter 4, we prove global in time Strichartz estimates for Schrodinger-type equations with
o € (0,00)\{1} on asymptotically Euclidean manifolds under the non-trapping condition.

In Chapter 5, we use Strichartz estimates given in Chapter 1 (among other things) to study
the local well-posedness of the power-type nonlinear Schrodinger-type equations with o € (0, 00)
posed on R?.

In Chapter 6, we study the global well-posedness for the defocusing mass-critical nonlinear
fourth-order Schréodinger equation o = 4 below the energy space. We will consider separately
two cases d = 4 and d > 5 which respectively correspond to the algebraic and non-algebraic
nonlinearity.

In Chapter 7, we study the blowup of rough solutions to the focusing mass-critical nonlinear
fourth-order Schrédinger equation. As in Chapter 6, we also consider separately two cases d = 4
and d > 5.

Keywords: Nonlinear Schrédinger-type equations; Strichartz estimates; local well-posedness;
global well-posedness; blowup; I-method; bilinear Strichartz estimates; Interaction Morawetz in-
equalities; compact manifolds without boundary; asymptotically Euclidean manifolds.

MSC2010: 35A01, 35A17, 35B44, 35B45, 35E15, 35G20, 35G25, 35Q55.
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Introduction

This thesis is devoted to the study of Schrédinger-type equations such as the fractional Schrédin-
ger (including the well-known Schrodinger equation and the fourth-order Schrédinger equation)
and the half-wave equations.

The first part of this thesis is devoted to Strichartz estimates for Schrodinger-type equations on
manifolds including the flat Euclidean space, compact manifolds without boundary and asymp-
totically Euclidean manifolds. These Strichartz estimates are known to be useful in the study
of nonlinear dispersive equation at low regularity. Let us first discuss Strichartz estimates for
Schrodinger-type equations on the flat Euclidean space R?. Consider

0w+ [V[Fu=0, u0)=1, |V|=Vv-4A, oe€(0,00).

In the case o = 2, it is well-known that one can compute explicitly the solution to this equation,
that is

HA eiiﬂTd Jo—y|?
) = [ vy, = st
7t]2

This implies the dispersive estimate

le™* il S 172, teR.

Using this dispersive estimate and the isometry [|e="*2)||12 = ||¢)||12, the so-called TT*-criterion
(see [KT98]) shows Strichartz estimates

le™ 2| Lo,y S ]2,
for any sharp Schrodinger admissible pair (p, g), i.e.

(p,9) € [2,00%,  (p,q,d) # (2,00,2), %+ g = g. (0.0.1)

When o # 2, since we do not have the explicit formula of the solution e*IVI”4(x), the above
method does not work. Fortunately, since the equation enjoys a scaling invariance in frequency
space, we are able to use the scaling technique to derive Strichartz estimates. More precisely, we
decompose the solution in dyadic pieces, namely

eit\VPw ~ Z eit|V|0P]V,(/)7

Ne2z

where Py is a Fourier multiplier by xn(£) = x(N~1¢) with x € C§°(R?) and supp(x) C {£ € R? :
1/2 < [¢] < 2}. By a change of variables, we find that

(V17 Pyy](t, 2) = [V Prpn)(NOt, Nx),
where ¢y (x) := ¢»(N~1x). This implies
4 PR —
1€Y1 Paap|| Lo pay = N~ # ||V Prp || Lo r, 1)
d

[Prnlrz = N2 ||Pyipl 2.
The problem is then reduced to show

||eit‘v|aplw||LP(R,LQ) S|Pl e

1



Introduction

By the T'T*-criterion, it suffices to prove the following energy and dispersive estimates

1% Py||L2cyre S 1,

eV Py pe S (14 1)

By the stationary phase theorem, we learn that

% ford>1,0 #1,

v= (0.0.2)
% ford > 2,0 =1.
This shows that
Heit‘vlapN'(/)HLP(R,Lq) S NPPa|| Pyl 2, (0.0.3)
where
o d_d o
p,q 2 p’
and (p, q) satisfies for d > 1 and o # 1,
9 2 d d
(p7 q) S [2700] ) (p7 q, d) 7& (270072)a 5 + ; S ia (004)
and for d > 2 and 0 = 1,
2 d-1 d-1

We combine the Littlewood-Paley theorem, the Minkowski inequality and ([0.0.3)) to obtain Strichartz
estimates

o 1/2
eV ] Lo r, pay S ( Z NQ%"’||PN1/JH%2) ~ 1l omas
Ne2Z

where (p, q) satisfies either (0.0.4]) or (0.0.5) with ¢ € [2,00). We refer to Chapter 1 for more
general Strichartz estimates and its variants.

In Chapter 2, we extend Strichartz estimates studied in Chapter 1 by considering the same
equations with the Laplacian operator of variable coefficients. More precisely, we consider

O+ [Vy|"u=0, u(0)=1, |V, =+/—0y, oc(0,00)\{1},

on R? equipped with a smooth bounded metric g. Let g(z) = (g;1(2))¢,_, and denote g~*(z) =
(gjk(:z:))?’kzl. The Laplace-Beltrami operator associated to g reads

d
Ag= Y lg(@)|7195(¢™ (2)lg()0n),
k=1
where |g(z)| ;= \/det g(z). We make the following assumptions:
e (Ellipticity) There exists C' > 0 such that for all x,¢ € RY,

d

CHEP <pla,&) == g (2)&& < CIEP (0.0.6)

jk=1
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e (Boundedness) For all o € N?, there exists C, > 0 such that for all z € R?,
0%g7%(x)| < Co, 4,k €{1,....d}. (0.0.7)

To study Strichartz estimates, we decompose the solution into dyadic pieces as follows

1f|V |7 W~ ezt|V 17 900 w—F Z ezf|V l Ag)’(/)v

h—2e2N

where 9 € C§°(R) and ¢ € C5°(R\{0}). Here f(—A,) is the functional calculus is defined by
spectral theorem. Since we are interested in local in time Strichartz estimates, we do not need
to decompose the solution at low frequencies, i.e. terms of the form ei”vg'f’(p(—e_zAg), e2e 2N,
Indeed, the low frequency part can be bounded easily using the Sobolev embedding. In the context
of variable coefficients, there is no scaling technique as on R%. We thus need to estimate separately
each localized piece. The main goal is to establish dispersive estimates for semi-classical operators
e“h_l(hWH')acp(—hQAg) on some small time interval independent of h, namely

4
2

et VDT o(—h2Ag) |11 ne SHTIAH[HRTY T, t € [~to, ko), (0.0.8)
for some tg > 0. Here the implicit constant does not depend on the parameter h € (0,1]. With
this dispersive estimate, the semi-classical version of TT*-criterion implies Strichartz estimates
for each semi-classical terms e”h_l(th')ago(—thg)zb. Rescaling in time and summing over all
dyadic pieces, we derive Strichartz estimates for the solution. To study the dispersive estimate
, we first use the semi-classical expansion of p(—h?A,), namely

N—

,_.

hJOph aj +hNRN( )
=0

.

where
Opnas)ita) = 2y~ [ [ 70 0y (o, i)y (0.09)

for some a; € S(—o0) with supp(a;) C p~!(supp(p)) and Ry (h) satisfying for all m > 0,
IRN ()| fr-m s e S RT2

By the Sobolev embedding, the remainder term is bounded by
Heii&ifl(h|vg|)"hN]%N(h)HLI_>LOC S hN|‘6ith71(h|v9|)aRN(h)||H—mHHm 5 hN72m.

Taking N sufficiently large, we obtain dispersive estimate for the remainder term. Therefore,
the study of (0.0.8) is reduced to the study of dispersive estimate for e”’fl(h|vg|)00ph(a) with
a € S(—o0) and supp(a) C p~!(supp(¢)). To do so, we make use of the WKB method to construct
an approximation to w(t) = e (IVsD"Op, (a)y) of the form

w(t) = Jn () + Ry (t)y, t e [—to,to],

for some tg > 0, where

2
L

In(t) = ) W In(S(t),a;(t), Jn(0) = Opn(a),

<.
I
o

with
Tn(S(8),a; () (x) = (2mh) / / e SEL v (1, €Y () dyd,
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and the remainder term satisfies a “nice” estimate, for instance, Ry (t) = Or2_,z2(h™¥ ~1) uniformly
with respect to t € [—tg,ty]. We observe from the fundamental theorem of calculus that

t
P - d -1 -
e ithT (hIVsD) JN(tW:JN(OWJF/ ds (e_wh (s 1) JN(5)>wdS
0

t
= Opn(a)p +ih™ / e=ish T VD" (LD, — (h]V,[)7) I (s)thds,
0

where D, = i719,. This implies

t
w(t) = e AVDT Opy (a)h = T () — ih*/ el (t=)h™ (WY )7 (pp, — (h|V4)7) N (s)tds.
0

We want the last term to have a small contribution. To do this, we need to study the action of
hDs — (h|V4])? on Jn(s). The first action of hDs on Jn(s) is easy to compute, and we have

N
hDgo Jn(s) = Z htJn(S(s),bi(s)),
1=0

where

bo(s) = 0s5(s)ao(s),
bi(s) = 0:S(s)ai(s) + Dsaj—1(s), 1=1,..,N—1,
bN(S) = DSGN,1(S).

The second action of (h|Vg4|)? on Jn(s) is complicated. In the case ¢ = 2, we have an explicit
form of —h2Ag, that is,

—h*Ay = Opn(p) + hOpn(p1), (0.0.10)
where p is as in and py(2,€) = Y0 my(x)€. A direct computation shows
Opn(p) © Jn(S(s),q) = Jn (5(8),19(3?» VaS(s))q + ihVep(x, Vo S(s)) - Vaq + ihOp(p)S(s)q
+h20p(p)a).
hOpn(p1) © Jn(S(s). @) = Ju(S(5),hOp(p1)S(s)a + h2Op(p1)a)-
Here we use the notation Op(a) = Opy(a), i.e. h =1 in (0.0.9). This shows
~h2Ay 0 Ju(S(s),a) = Ju (S(5), E(s)q + ihT(s)a — h*Ayq),
where

E(s)q = p(x,V4S(s))q,
T(s)g=—Vep(x,VaS(s)) - Vaqg — AgS(s)g.

Hence the action of fthg on Jy(s) can be computed explicitly as

N+1
—h2Ag oJy(s) = Z hth(S(s),cl(s)),
1=0
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where
co(s) = E(s)ao(s),
c1(s) = E(s)ar(s) +iT(s)ao(s),
a(s) = E(s)ai(s) +iT(s)ai—1(s) — Agar—2(s), 1=2,--- , N —1,
en(s) =iT(s)an—1(s) — Agan—2(s),
en+1(8) = —Agan—-1(s)
We thus get
N+1
(hDs + h?Ayg) Z h* T (S(s), di(s)),
with
do(s) = (0:5(s) — E(s))ao(s),
dy(s) = (0:5(s) — E(s))ar(s) + (Ds — iT(s))ao(s)
dir(s) = (0:5(s) — E(s))ar(s) + (Ds —iT(s))ar—1(s) + Agag—2(s), k=2,--- ,N—1,
dn(s) = (Ds —iT(s))an-1(s) + Agan—2(s),
dn11(s) = Agan—1(s)

Therefore, in order to make (hD; + h*A,).JJn(s) to have a small contribution, we need to study
the “Eikonal” or Hamilton-Jacobi equation

0s5(s) — p(z,V2S(s)) =0, S(0)==z-¢,
and transport equations

Dsag(s) —iT(s)ap(s) =0,
Dgay(s) —iT(s)ax(s) = —Agar—1(s), k=1,--- N —1,

with initial data
ap(0) = a(z,€), ar(0)=0, k=1,---,N-—1.

When o # 2, we do not have an explicit formula for (h|V,4|)?, thus the above calculation does
not hold. However, we can overcome this difficulty by means of pseudo-differential calculus as
follows. Thanks to the support of ¢, we replace e®"  (:IVaD?Op, (a) by eith™ ' @(=h*2) Op, (a)
with w(A) = GA)VA’, where & € C5°(R\{0}) satisfying & = 1 on the support of ¢. The interest
of this replacement is that we can write w(—h%A,) in terms of semi-classical pseudo-differential
operators, namely

N—

,_.

h*Opn(qx) + b Ry (h), (0.0.11)
k=0

where ¢, € S(—o0) satisfies qo(z,£) = w o p(z,€) and supp(qx) C p~(supp(w)) and Ry(h) is
bounded in L2 uniformly in h € (0,1]. As above if we set w(t) = e/~ @(=F*2) Op, (a)1h, then we
have

t
w(t) = Iy )y —ih ™ / =W READ) (WD w(—h2A)) Ty (s)ibds.
0

We need to study the action of w(—h?A,) on Jy(s). To do so, we use the action of pseudo-
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differential operators on Fourier integral operators, namely
Opn(b) o Ju(S,¢) = Zh]Jh (b<c);) + AN Jn(S,ru(R)),

where (b<c); is a universal linear combination of
0¢b(x, Vo S(x,))0] c(w, )05 S (x,€) - - 93+ S (&),
with a < a1+ -+ ar =aand || >2foralll=1,--- ,k and |3]| = j. In particular,
(bac)o(z,§) = bz, Vo S(x,£))c(x, §),
i(b<c)(x,§) = Veb(z, VaS(x,8)) - Vac(z, §) + %tf(vfb(% VaS(2,€)) - V2S(@,6)e(w, §).

This combined with ((0.0.11)) yield

N-1 N—-1
w(=h?Ag) o Jn(t) = > h*Opnlar) o Y W Jn(S(t),a;(t)) + hN Ry (h)Jn (1)
k=0 j=0
N .
= > WIS, (gr aa;(0)) + RV TUIA(S (), raga(hat) + BN R (h)In (8).
k4j+1=0
This implies that
(hD; — w(—h? Z R Jn(S(t), cr(t)) — BN Ry (R) In (t) — RN T I, (S(t), 7n 41 (B 1)),
where
co(t) = (0:S(t) — qo(x, V2 S(t)))ao(t),
er(t) = (9:S(t) — qo(x, Vo S(t)))ar(t) + Diar—1(t) — (qo <ar—1(t))1 — (q1 <ar—1(t))o
= > (gk<aj®), r=1,---,N-1,
iy
en(t) = Dian—1(t) = (qo dan—1()1 = (@1 <an—1(B))o— D (ax 9a;()r-
k+<j~]t’l:2N
The system of equations ¢,.(t) =0 for r = 0,--- , N leads to the following “eikonal” or Hamilton-

Jacobi equation

9S(t) — qo(x, V,S(t)) =0, S(0)=uz-¢,

and transport equations

Dyag(t) — (g0 <ao(t))1 — (g1 <ao(t))o =0,
Dtar(t) - (qoqar(t))l _(qlqar(t))o = Z (quaj(t))la r= 13 7N_]-7

k4j4l=r+1
j<r—1

with initial data
ap(0) =a, a.(0)=0, r=1,--- N—-1

After solving the Hamilton-Jacobi equation and these transport equations on the time interval
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[—to, to] for some ty > 0, we show the L?-boundedness of the remainder term
IRn ()|l L2 2 S RV,
for all t € [—tp,to] and all h € (0, 1]. We also have dispersive estimates for the main term
_ Ciy_d
1IN ()| L2 pee S BT(A+ [t 7E,

for all t € [—tg,to] and all b € (0,1]. We thus obtain dispersive estimates for semi-classical
Schrédinger-type operators

e VDT o(—R2A ) e S BT+ (AT T2 ] 11,

for all t € [—tg,to] and all h € (0,1]. These estimates together with energy estimates and the
TT*-criterion yield

ith—1 o _(d_d_1
e VAl o(—B2 A ) Lo((—to,t0].1) S P (82573 [y o.
By scaling in time, we obtain

€1Vl o(=h2 A )l Lo (o1 [—to.10]. L0y S BT ||| 2.

In the case o € (0,1), we obviously bound estimates on a finite time interval I by estimates on
intervals of size h?~! and obtain the following local in time Strichartz estimates

1Yo o (=2 Ag) o pay S WP -

In the case o € (1,00), we cumulate O(h'~7) estimates on intervals of size h? ! to get estimates
on a finite interval I and obtain

A O T PP e [T P28

Moreover, we can replace the norm |[[¢||z2 in the right hand side of above Strichartz estimates
by [[¢p(—h?Ag)¢||L2. By the Littlewood-Paley decomposition and the almost orthogonality, we
obtain Strichartz estimates for Schrédinger-type equations

o€ (L,00), eV PllLocrpay S [0

led

-1
gt

and '
o€ 0,1), €V Pl oiray S N0l

We see that in the case o € (1,00), there is a loss of "le derivatives compared to those on R¢.

In Chapter 3, we use Strichartz estimates obtained in Chapter 2 to show Strichartz estimates for
Schrodinger-type equations on compact manifolds without boundary. More precisely, we consider

10w + |vg‘gu =0, U(O) =1, |vg| =V 7A97 oc (Oﬂ OO)\{l}7

on compact manifolds without boundary (M, g), where A, is the Laplace-Beltrami operator on
(M,g). In the case o0 = 2, Burq-Gérard-Tzvetkov established in [BGT04] Strichartz estimates
with a loss of 1/p derivatives, i.e.

”e_itAngLP(I,L‘Z(M)) S bl e arys

where (p, ¢) is sharp Schrédinger admissible with ¢ < oo (see (0.0.1)). In the case o # 2, we use
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the Littlewood-Paley decomposition (see e.g. [BGT04, Corollary 2.3]), that is for ¢ € [2, 00),
) ) 1/2
lellzaon S lelzan + (3 Ie(=h2A0)ol3u )
h—2e2N
and the Minkowski inequality to have for any finite time interval I,
) ) 1/2
lvllze(r,zaanyy S N0lloe,c2any) + ( > lle(=h AQ)UHLP(I,L‘I(M))) .
h—2e2N
Applying this estimate together with the L? isometry of the Schrodinger-type operator, we have
it|Vg|” it|Vg|” 2 2 1/2
eV Dl o r,paanyy S WNNL2ar) + ( > Vel p(=h Ag)T/JHLp(z,Lq(M))) .
h—2e2N

The problem is then reduced to showing local in time Strilchartz estimates for the localized
Schrédinger-type operator e?1Val” p(—h2A )9, hence for e?h™ (MIVaD” o(—h2A)1h, namely

-1 o
||ezth (RIVg4]) w(_hQAg)wHLP([—tO,to],Lq(M)) S Hw”LQ(M)a

for some tg > 0 independent of h € (0, 1]. To do so, it suffices to show dispersive estimates
=1 o _ _1y—4d
e VD" o (B2 AP Lo (ary S RTHL+ BT T2 (|9l L1 (ar) (0.0.12)

for all t € [—to,to] and all h € (0,1]. Thanks to the localization ¢, we can replace (h|V,|)7 by
w(=h%A,) where w(\) = G(A)VA” with ¢ € C§°(R\{0}) such that ¢ =1 on supp(y). The parti-

tion of unity allows us to consider only on a local coordinates (Us, Vi, K)x, i.€. D ith ™ w(=h?Ay)

©(—h?Ay)dy, where ¢, € C°(U,) and 1 = Y, ¢,.. By the functional calculus, we can express
cp(fthg)qb,i in terms of semi-classical pseudo-differential operators, namely

N-1

P(=h*Ag)pw = Y h1G0pf(ar j)éx + Y Ry n(B),

§=0
where ¢, € C§°(U,,) satisfies ¢r = 1 on supp(¢,), the operators
Opj(ax,j) = K" Opp(ax j) ke,
with a, ; € S(—o0) and supp(ax,;) C supp(y o px), and for any m > 0,
| R, 5 (R) || 1= Ay prm 2y S B2

Here p,, is the pricipal symbol of —Ag in (U, Vi, ) and k., &* are the pullback and pushforward op-
erators respectively. Thus, it suffices to show dispersive estimates for e“hilw(_hQAg)q;,ﬂOpg(a,{)qﬁn
with a, € S(—00) and supp(a,) C supp(y o px). If we set w(t) = e @89G Opr(a, )b,
then w solves the semi-classical evolution equation

(hDy — w(=h*Ag))w(t) =0, w(0) = ¢ Opfi(aw)dni).

The WKB method allows us to construct an approximation of the solution in a finite time interval
independent of h € (0,1]. To do so, we first find an operator, denoted by P, globally defined on
R? of the form

d d
P= Z ¢7F(2)0;0k + Zm(w)@l,
jik=1 =1
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which coincides with —A, on a large relatively compact subset Vy of V.. For instance, we can
take P = —xAy — (1 — x)A, where x € C§°(V,) takes values in [0, 1] satisfying x = 1 on V,. Here
A is the free Laplacian operator on R¢. The principal symbol of P is

d

p(CL’,f) = Z gjk(x)gjgka g]k('r) = X(I)gik(z) + (1 - X(I))aﬂw

Jrk=1

where Z‘j’k:l g2¥(2)€;&, is the principal symbol of —A, in (U, Vi, k). It is easy to see that

(gjk(x));{k:l satisfies and and n; are bounded on R? together with all of theirs

derivatives. We next write for some 9, € C3°(U,) satisfying ¢, = 1 on supp(¢s),

w(—h2A,)0, = B0, Op (be1)0, + B R, v (h).
=0

We thus can apply the WKB approximation given in Chapter 2 to find ¢y > 0, a function S, €
C>([~to,to] x R??) and a sequence a,_;(t) € S(—o0) satisfying supp(ay ;(t)) C p~1(J) for some
small neighborhood J of supp(p) not containing the origin uniformly in ¢ € [—tg, tg] such that

N—-1
<th - hloph(bm,l)> TN (t) = R n (1), (0.0.13)
=0
where
N—-1 )
JeN(t) = B Jh(Sk(t),ax (1),  Jun(0) = Opplay),
§=0

satisfies for all t € [—tg, to] and all (z,£) € p~1(J),
1050 (Su(t,2,6) =z - &) < Cagltl, la+5 21,
0207 (Su(t,2,6) — - €+ 1/p(@,6) )| < Cagltl,

and for all h € (0,1],

1w (B)l| 21 e S AT+ [HATY)72, (0.0.14)
Ron(t)=Op2p2(RN71). (0.0.15)

Now let us set
JN(t) == K" T N()Ee, RY(t) := K" Ry N (t)kex.

By the fundamental theorem of calculus, we have
w(t) = N8 G Opf () g

t
= G f () prth — ih ™! /0 =B (RD L (—h2 D)) G T (5)drtbds.

By , we write
(hDs*W(*thg))(gnJJ%(s)‘z’n = flznhDsJJ’:l(s)ﬁbn*&nOPZ(bn(h))ﬁg’nJﬁl(S)‘?n*thmN(h)ﬁgnjgf(s)ﬁbm

where b, (h) = lz\;l h'b, ;. Note that up to a smoothing Orz_,2(h°) operator, the operator
Jr(S(t),a(t))x can be replaced by xJn(S(t),a(t))x for any x € C§° satisfying x = 1 on supp(x).
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Thus,

(hDs — w(~h?Ag)) b5 (5)0 = Vit (hDs — Opp(bi(h))) I (5) kxS — Ro(s)

“BVR, () D T ()
= DR ()6 — Ris(s) = WV R (R) D TR (5)

where R.(s) = Or2(ay—r2(ar)(R™). Here we also use the L?-boundedness of pseudo-differential
operators with symbol in S(—o0). We thus get

W(t) = u i () ut) + R ()Y,

where

t
Ry (t)y = ih™! / =T (280 (5 R (8)bw — Rus(s) — WY Ry (B) G S5 (5) i) .
0

Thanks to the dispersive estimate (0.0.14) and the L?-boundedness (0.0.15), we obtain for all
t € [—to,t0] and all h € (0,1],

ith~Yw(—h? - -1\-4¢
e PR (12 A ) Gth | oo (ary S UL+ AT T2 9|1 an) -

These dispersive esimates combined with the partition of unity show (0.0.12)).
In Chapter 4, we study global in time Strichartz estimates for Schrodinger-type equations E|
i0u — |Vg|u=0, u(0)

by Vel =V =4y, o€ (0,00\{1},

on asymptotically Euclidean manifolds, i.e. R? equipped with a smooth long range pertubation
metric g. More precisely the metric g satisfies the following assumptions:

e (Ellipticity) There exists C' > 0 such that for all z,¢ € R?,

d

CTUEP < plz,€) == Y ¢M(@)&8, < ClEP. (0.0.16)
jk=1

e (Long range pertubation) There exists p > 0 such that for all & € N? there exists C,, > 0
such that for all z € R9,

10° (97" () = 0j)] < Ca ()71

(0.0.17)
In some situation, we assume that the geodesic flow associated to g is non-trapping. It means that

the Hamiltonian flow (X (), E(t)) := (X (¢, 2, &), E(t, 2, §)) associated to the principal symbol p of
971 (@) = (9% (2))] jo» e

satisfies for all (z,&) € T*R? with £ # 0,

| X (t)| = o as [t| = oo.

Remark that by the conservation of energy and (0.0.16)), all geodesics starting from (z,&) are
defined globally in time. We also assume that there exists M > 0 large enough such that for all

IThis is different from the previous chapters with the minus sign in front of |[V4|. It is technical due to the
construction of the Isozaki-Kitada parametrix.

10
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X € C5°(RY),
IX(—Ay = XA£i0) x|z SAM, A > 1. (0.0.18)

Note that this assumption holds in certain trapping situations (see e.g. [Dat09], [NZ09] or
[BGHIQ]), for instance,

IX(—Ag = A£0) " Ixlz2re SA Elogh, A>1,
as well as in non-trapping condition (see [Rob92] or [Vod04])
IX(~2g = A=i0) " Xl|z2re SATE, A1

In order to study global in time Strichartz estimates for Schrédinger-type equations on asymp-
totically Euclidean manifolds, we need to split the solution into low and high frequency pieces,
namely

eVl g = fo(=Dg)e™ Vol g+ (1= fo) (=Ag)e™ VoI =2 tion(t) + unign (1),

where fo € C§°(R) satisfies fo = 1 on [—1,1].

Let us consider the high frequency term. For a given x € C$°(R9), we write Uhigh = XUhigh+(1—
X)Unigh- In our consideration, we have the following version of Littlewood-Paley decomposition:
for any ¢ € [2,00), N > 1 and x € C5°(R?),

1000~ f)-Aglr S (32 10 =0 -R2A ol + ¥ ) F-h2agl)

h—2g2N

where f(A) = fo(A\) — fo(2)\). The same estimate holds true for x in place of 1 — x. By the
Minkowski inequality,

10— umsgnllzo o S (30 10— f(=R2A e Vo2, 0 1)

h—2¢e2N
_N a1 1/2
+ BN )N PR T Y] 1))

The same estimate holds for || xunign | rr(r,ze) With x instead of 1 — x. To estimate the weighted
term (z) " f(=h2A4)e~Vsl74h, we use the L2 integrability which is available on (R?,g) under

the assumption (0.0.18)), namely
_ _ith—1 o 1—N,
| {z) ! f(*h2Ag)e th™ (RlVy1) 1/’||L2(R,L2) She : (EFER

for some Ny > 0. Interpolating between L?(R) and L*°(R), we have

1—

_ _ith— ! o N
(@)~ F(=h2Ag)e™ MV D gl g 2y S BT ([0 g2,

or

—_ —i o o— N,
(@)™ F(=h2Ag)e IVl | Lomrzy S B 7 [|9]| 2
Thus,

a—Ng

W) ()N F(=h2A0)e Vel || o2y S AT |0 2.

Moreover, we can replace the norm |[1||z2 by || f(—h?Ay)¢| 2. Therefore, by taking N large
enough, we see that this weighted term is bounded by h=7«| f(—h%?A,)¢||2. By the almost

11
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orthogonality, Strichartz estimates for the high frequency piece are reduced to showing

eVl (=2 A0l s,y S B0 F(~R2Ag ] 22, (0.0.19)
11 = )Y F(B2 Al Lo ey S B[ F (B2 D)l 2. (0.0.20)

Here the almost orthogonality means formally that supp[f(27%-)] Nsupp[f(2~")] = 0 for k,l € N
and |k — | > 2. This allows us to show, for instance,

1/2

ST Tl f(—R2A )03 S 1Yl gpa -

h—2=2—k
kEN

For the low frequency term, we use the following Littlewood-Paley decomposition: for any
X € C&°(RY) satisfying x(z) = 1 for |z| < 1,

o-dgle < (32 10 eadf (-2 agul3 + 0D ey f-e2agza)

e—2¢2N
to bound
[wow || Lo, L) S ( DA =x) () f(—e2Ag)e™ Vol )13 g 1)
e—2¢2N

Using the LP-integrability, which follows from the low frequency resolvent estimates,

[ {ea) ™! F(=e 2Dy )e TV ] Lo, 1y S € F ] 1,
we estimate
d_d —1 _ —i - -
27 ew) " f(=e 2 0g)e IV Y Lo r,n2) S €| f(—e 2D 12
Therefore, by an almost orthogonality argument, it suffices to show
11 = ) (ea) (=20 ) %51 ] o 1y S | F(—e 2D )] 12 (0.0.21)

To show (0.0.19)), we assume that the geodesic flow associated to g is non-trapping. It is
crucial in our argument. We make use of the local in time Strichartz estimates for the localized
Schrédinger-type operator, namely

o -1 o —
e ith™ ' (h|Vg4]) <P(—h2Ag)U||LP(R,Lq) < B o] 2,

with kpq =5 — 2 — 5 as well as the inhomogenous Strichartz estimates

t
H / efi(tfs)hfl(h\Vg\)”<p2(_h2Ag)G(s)dS‘
0

< b~ Fra||@G .
Lr(R,L1) ™ H ||L1(I,L2)

These Strichartz estimates are proved in Chapter 2. Note that the long range assumption ((0.0.17))
implies that the metric g satisfies (0.0.7). With these localized Strichartz estimates and the sharp
L2-integrability

| ()=t fF(=h2Ag)e ™ PIVaD” £(—R2A )| p2m r2) S 922

we prove ((0.0.19). Note that the non-trapping condition is needed to have the above sharp L2-

12
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integrability.
The proofs of ((0.0.20]) and ((0.0.21)) are based on the Isozaki-Kitada parametrix and local energy
decay estimates, namely for k£ > 0,

| ()~ 7R e T RIVADT £ (CR2A ) (@) T e e S RN (8T,
| (ea) ™R T VDT (A ) (ear) TR | payre S (et)

We refer the reader to Chapter 4 for more details.

The second part of this thesis concerns nonlinear aspects of the nonlinear Schrédinger-type
equations such as local well-posedness, global well-posedness, global existence and blowup for low
regularity initial data. In Chapter 5, we study the local well-posedness in Sobolev spaces for
nonlinear Schréodinger-type equations. More precisely, we consider

i0u+|V|7u = £lul”tu, u(0) =1, o€ (0,00), v>1. (NLST)

This equation enjoys formally the conservation of mass and energy

MG(®) = [ fu(t.0)Pde = 21(0),

1 1
_ 1 o/2 2 vl g

BG0) = 5 [19172ut0)Pde ¥ 5 [ lute,n)l e = B).

The equation (NLST) also has the scaling invariance
ux(t,z) = N7 Tu(ATL AT ), A > 0.

By a direct computation, we have

d__o__
e [ e

From this, we define the critical regularity exponent by

[ux(O) | g = A

d o

%::571/—1'

In Chapter 5, we are interested in the well-posedness result for (NLST) when v > «.. Since we are
working in Sobolev spaces of fractional order v and 7., we need the nonlinearity F(z) = +|z|" "1z
to have enough regularity. When v is an odd integer, the nonlinearity is smooth. When v > 1 is
not an odd integer, we need the following assumption

1 el < v, (0.0.22)

where [v] is the smallest integer greater than or equal to 7, similarly for [.].

In order to study the local well-posedness of (NLST) in Sobolev spaces, we need two important
tools: Strichartz estimates and nonlinear estimates. Strichartz estimates for Schrédinger-type
equations are shown in Chapter 1. Note that in the case o € (0,2), admissible conditions
and yield 7y, 4 > 0 for any (p, q) except (00, 2). Thus, in this case, there is a loss of derivatives
in the sense that if we use Strichartz estimates at H7-level, then we need the initial data to belong
to HY*7a. This loss of derivatives leads to a weak local well-posedness result for o € (0,2)
compared to the one for o € [2,00). Therefore, we will consider three cases o € (0,2)\{1}, 0 =1
and o € [2,00) respectively. We also need the Kato fractional derivative estimates, namely for
’yzoand1<r,p<oo71<q§oosatisfying%:%+”q;1:

e if v > 1 is an odd integer or [y] < v otherwise, then there exists C' = C(d,v,vy,7,p,q) > 0

13
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such that for all u € .77,

VP (ul = )l < CllullzZ 11V ullze,
V) (Jul” = )z < CllullZZ (V) ullze-

e if v > 1is an odd integer or [v]| < v—1 otherwise, then there exists C = C(d,v,v,r,p,q) > 0
such that for all u € .,

IV (ul” = = ol o)z < O (lullzzt + lolZz DIV (@ = v)] 2
+(llullza® + ol z ) AV P ullze + 1Vl o) lu — va),
C( (lullze® + Tollzz DY) (u =)l e

+(lullz® + ol 7z ) (V) wllze + (V) vllze) Ju = vllm)-

V) (Jul” ™t = o]~ )

The proof of the local well-posedness is based on Strichartz estimates and the standard contraction
mapping argument. By Duhamel’s formula, it suffices to show the functional

t
B (u) = MV’ :Fi/ eIV ()| u(s)ds
0

is a contraction on a suitable Banach space (X, d).
Let us consider o € (0,2). In the subcritical case, i.e. 7 > 7., we choose X as

X o= {ue L9 OO DL HY ) = il oy + ol oy < M}

and the distance
d(u,v) = Jlu = vlzeoqr,r2y + llu =l gy

where I = [0, 7] Wlth M T > 0 to be determined momentarily. Here (p,q) is an admissible pair
satisfying elther or to be chosen shortly, and H) is the generalized Sobolev space
(see Chapter 1 for the notatlon Due to the loss of derivatives, we have to use Strichartz estimate
for the special pair (00, 2) to get

1Rz 2,y + @@ g grr=ray S Nl + Ml el ),
1@ (w) = @)oo z.2) + 12(w) = ) 1y g gr=rway S Ml u = o] ol p 2,

The nonlinear term can be bounded by

Nl sy S P55 Tl o el o i,
similarly for |u|*~u— |v|*~1v. In order to close the contraction ball, we need to choose (p, q) such
that v — 1 < p and LP(I, H; ™) C LP(I,L>) or H) '™* C L*. By the Sobolev embedding, we
choose: for o € (0,2)\{1}, (p, q) satisfies (0.0.4]) and

max(v —1,4) ifd=1,
p max(v —1,2) ifd>2,

and for o =1, (p, q) satisfies (0.0.5) and

{ max(v — 1,
p> 1

max(v — 1,

if d =2,

4
2) ifd>3.

~— —
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In the critical case v = 7., the Sobolev embedding does not help. To overcome the loss of
derivatives, we consider

X i={ue L= ) N L B w0)  (ull g1y < Mol g remay < N,

and

d(u’ U) = ||U - U”L‘X’(I,LQ) + HU - UHL;:(LB;“VP,Q)a
where I = [0,7] with M, N,T > 0 to be determined. Here B and Bg are generalized inhomo-
geneous and homogeneous Besov spaces respectively (see again Chapter 1 for the notation). As
in the subcritical case, by usmg Strichartz estimate for the pair (co,2) and the Holder inequality,
it suffices to bound ||uHLV 1(1,1)- To do so, we use the argument of Hong-Sire [HS15] (see also

[CKSTTH]) to have: for o € (0,2)\{1},

ol e Pl ey whem 4= 1
||u||LV LR, L) < ||“H1; (R ch—wp_,p*)” HLOO(]RPB;{C) where v —1 > p > 2 when d = 2,
B
|| Hiz(R B’Yc Y2, 2* ||u| Loc R B’Yc) When d 2 33

where p* = 2p/(p — 2) and 2* = 2d/(d — 2), and for 0 =1,

|| Hi‘l(]R B'VC Y4, oo ”u‘ LOC(]R B'yc) when d = 2’
p - p—
||u||LV @) S < ||UHL (RBwi—wp_,p*)H HLOO(R,B;’C) where 2 < p < v — 1 when d = 3,
[|u H;(R B HUHL;(R,B;c) when d > 4,

where p* = 2p/(p — 2) and 2* = 2(d — 1)/(d — 3). We thus choose for o € (0,2)\{1},

(4,00) ifd=1,
(pq) =4 (p,p*) ifd=2,
,2%) ifd > 3,
and for o0 =1,
(4,00) if d=2,
(pg) =19 (p,p*) ifd=3,
(2,2%) ifd > 4.

In the case o € [2,00), thanks to Strichartz estimates without loss of derivatives, we show ®
is a contraction on (X, d) with

X = {u € LI HY) = ullperay) < M}7 d(u,v) = |[u = 0| Lo(1, L4

where _ 20(w1) dw+)
(v —1)(d—-2y)’ q_d—l—(u—l)’y

By Strichartz estimates, we bound

1) Lo 1,7y S Wl + el ull o (1F7,)
) )

1@ (u) — @)l o 1,29y S Ml u— o]~ 1U||LP’(I,L‘1/)‘
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The Holder inequality then implies

_ _(v=1)(d—2v)
Ml el oy S IS5l

_ _ _(v=1)(d=2v) 1)(d 2v)
el e = ol ol o,y S 1111 (el gy + W2y o N = Wl r e,

With these estimates at hand, we can easily show that ® is a contraction on (X, d).

In Chapter 6, we consider the defocusing nonlinear fourth-order Schrédinger equation
iOu+ A%u = —|uliu, u(0)=1. (ANLA4S)

By the local theory given in Chapter 5, (ANL4S) is locally well-posed in H” for v > 0 satisfying,
in the case d # 1,2,4,

V] <1+ S (0.0.23)
This conditon ensures the nonlinearity to have enough regularity. The conservation of mass and
energy together with the persistence of regularity yield the global well-posedness for (ANL4S) in
H? with v > 2 satisfying for d # 1, 2, 4, . The main goal of Chapter 6 is to prove the global
well-posedness for (ANL4S) in low regularity spaces HY(R?) with d > 4 and 0 < v < 2. Since
we are working with low regularity data, the conservation of energy does not hold. In order to
overcome this difficulty, we make use of the I-method introduced by [CKSTT1] and the interaction
Morawetz inequality (which is available for d > 5). We thus consider separately two cases d = 4
and d > 5.

In the case d = 4, we use the [-method in Bourgain spaces, which is an adaptation of the
one given in [CKSTTI] to prove the low regularity global well-posedness of the defocusing cubic
nonlinear Schrédinger equation on R?. The idea of the I-method is to replace the conserved energy
E(u), which is not available when 7 < 2, by an “almost conserved” quantity E(Inyu) with N > 1.
Here Iy is a smoothing operator which behaves like the identity for low frequencies |¢| < N and
like a fractional integral operator of order 2 — + for high frequencies |£| > 2N. Since Iyu is not a
solution to the equation, we may expect an energy increment. The key idea is to show that on the
time interval of local existence, the increment of the modified energy E(Iyu) decays with respect
to a large parameter N. This allows to control E(Iyu) on time interval where the local solution
exists, and we can iterate this estimate to obtain a global in time control of the solution by means
of the bootstrap argument. In the case d = 4, the nonlinearity is algebraic. It allows to write
explicitly the commutator between the I-operator and the nonlinearity by means of the Fourier
transform, and then control it by multi- linear analysis. We will show in Chapter 6 that (dNL4S)
is globally well-posed in H”(R*) for any < v < 2.

In the case d > 5, we use the I- method combined with the interaction Morawetz inequality.
In this consideration, the nonlinearity is no longer algebraic. Thus we cannot apply the Fourier
transform technique to estimate the increment of the modified energy. Fortunately, thanks to
Strichartz estimates with a “gain” of derivatives, namely

8
[AullLe e, Loy S [1AY] L2 + [V (Julu)]] &)

2
L2(R,LT

we are able to apply the technique given in [VZ09] to control the commutator. Due to the presence
of the biharmonic operator A2, we need the nonlinearity to have enough regularity. This leads to
a restriction on dimensions d = 5,6 and 7. The interaction Morawetz inequality for the nonlinear
fourth-order Schrodinger equation was first introduced in [Paul] for d > 7, and was extended for
d > 5 in [MWZI5]. As a byproduct of Strichartz estimates and the I-method, we show global
well-posedness for (ANL4S) in HY(RY) for any y(d) < v < 2, where y(5) = £,7(6) = 2 and
~v(7) = 173 However, this result is not new since one has a better result due to Pausader- Shao in
[PS10]. In [PS10], the authors proved the global well-posedness for (ANL4S) with initial data in
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L*(R%),d > 5. They also proved that the solution satisfies the uniform bound
HU||L2+%(R7L2+g) < C([[¥llr2)-

With this uniform bound, the persistence of regularity shows the global well-posedness for (ANL4S)
in HY(R?) for any 0 < v < 2 satisfying (0.0.23)).
In the last chapter, we consider the focusing nonlinear fourth-order Schrodinger equation

B+ A%u = |u|Tu, u(0) = 1. (INL4S)

The main goal of this chapter is to study dynamical properties such as L?-concentration, limiting
profile with minimal mass, ... for low regularity blowup solutions. The study of blowup solutions
is closely related to the notion of ground states of (fNL4S) which are solutions to the elliptic
equation

A2Q+Q—|QliQ =0. (0.0.24)

This elliptic equation is obtained by considering solitary solutions (standing waves) of (fNL4S) of
the form u(t,z) = e~®*Q(x). The existence of solutions to was proved in [ZYZ10], but the
uniqueness still remains open. In the case ||¢||r2 < ||@]|L2, using the sharp Gagliardo-Nirenberg
inequality

248 8 1+4
lull 27y < C@lull 2l AullZe,  C(d) = %d ;
QI 72

together with the conservation of energy, it is easy to see that (fNL4S) is globally well-posed in
H?. Moreover, Fibich-Ilan-Papanicolaou in [FTP02] provided some numerical observations showing
that the H? solution to (fNL4S) may blow up if the initial data satisfies [|¢||2 > ||Q]| 2. Recently,
Boulenger-Lenzmann in [BL17] showed the existence of radial blowup solutions to (fNL4S). More
precisely, the authors proved that for any negative radial initial data ¢ in H?, the corresponding
solution u(t) either blows up in finite time or blows up infinite time and satisfies

u()| g2 > Ct, Vit > to,

with some constant C' = C(¢)) > 0 and ¢y = to(¢) > 0. Baruch-Fibich-Mandelbaum in [BEMI0)]
proved some dynamical properties of radially symmetric blowup solutions such as blowup rate,
L2-concentration. Later, Zhu-Yang-Zhang in [ZYZ10] removed the radially symmetric assumption
and established the profile decomposition, the existence of ground states for the elliptic equation
(0.0.24) and the following concentration compactness lemma for (fNL4S): for any bounded sequence
(vn)n>1 of H? functions satisfying

limsup [|[Avy|l2 < M and limsup HU””L"‘*% >m,
n— oo n—oo

there exists a sequence (zp)n>1 of R? such that up to a subsequence

V(- + ,) = V weakly in H? as n — oo,

8 8
. g IQlld,m** d
with [VII£. > Zrayam

the authors in [ZYZ11] used the I-method and the compactness lemma to establish the limiting
profile and the L2-concentration for (fNL4S) with initial data in H7(R?), % <vy<2 In
Chapter 7, we aim to lower the required regularity of [ZYZ11] in the fourth dimensional case and
to extend the result of [ZYZII] to higher dimensions d > 5.

In the case d = 4, we make use of the I-method which is essentially established in Chapter 6.

where @ is the solution to the elliptic equation ((0.0.24)). Consequently,

This allows us to show dynamical properties of blowup solutions in H7(R*) with 6”17 VS%MSQ <y <
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2. This is an improvement of the result of [ZYZ11].

In the case d > 5, we also make use of the I-method used in Chapter 6. As mentioned above,
due to the high-order term A2u, we need the nonlinearity to have at least two orders of derivatives
in order to successfully establish the energy increment. We thus restrict ourself in spatial space
of dimensions d = 5,6 and 7. With the help of the I-method, we are able to study dynamical

: e . _ 344137 I TT1945 3136
properties of blowup solutions in H”(R?) with d = 5,6, 7 and 26=3¢+ ;gji’g%;md"’m:)’ﬁ <y <2

Notations:

Throughout this thesis, we will use the following notations. The various constant will be
denoted by C. The constants with subscripts C7, Cs, ... will be used when we need to compare
them to one another. The notation A < B means that there exists a universal constant C' > 0
such that A < CB. The notation A ~ B means A < B and B < A. We also use the Japanese
bracket (a) := /14 |a|?> ~ 1+ |a|] and a+ := a £ € with some universal constant 0 < ¢ < 1. For
Banach spaces X and Y, the notation || - ||x—y denotes the operator norm from X to Y. The one
T = Ox_y(A) means that | T||x—y S A.
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Strichartz estimates for
Schrodinger-type equations on the
flat Euclidean space

Contents
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[1.2  Strichartz estimates for half-wave equation|. . . . . . ... ... ... .. 28

In this chapter, we derive Strichartz estimates for the inhomogeneous linear Schrédinger-type
equations

{ idpu(t,x) + |V|ou(t,x) = F(t,z), (t,z)€R xR, (LST)

U(O,l) = ’l/}(x)v l'GRd,

where o € (0,00) and |V|? is the Fourier multiplier by |£]7. To do so, let us first recall the abstract
TT*-criterion due to Keel-Tao [KT9§].

Theorem 1.0.1 (TT*-criterion). Let (X, dx) be a measure space and H a Hilbert space. Suppose
for each time t € R, an operator T(t) : H — L*(X) which obeys:

1. Forallte R and all f € H,
IT@) fllzzx) S N1f o (1.0.1)
2. There exists § > 0 so that one of the following decay estimates holds for all g € L'(X),

IT)T ()" gllexy S 1t = s lgllerx),  VE#s, (1.0.2)
ITT () gl x) S A+t =) llgloix), Vs eR. (1.0.3)

If T(t) obeys (1.0.1)) and (1.0.2)), then the estimates

T fllr e oy S Il (1.0.4)

H/ ds < HF”LP'(R,LQ’(X))v (1.0.5)

T(t)T(s)"F(s ds‘ o’ X)) 1.0.6
H/s<t (OT () F(s) Lp(R,Le(X)) ™ SN e @ v x)) ( )

hold for all sharp 6-admissible pairs (p,q) and (a,b), i.e
I
5

(p.q) € [2,00%,  (p,q,0) # (2,00,1), 5+5_

Furthermore, if T(t) obeys (1.0.1) and ( , then and ( - hold for all §-
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Chapter 1. Strichartz estimates on the flat Euclidean space

admissible pairs (p,q) and (a,b), i.e.

+-<

Q>
[NCNIS)

(p,q) € [2,00)%,  (p,q,8) # (2,00,1),

"=

Here (p,p’) is a conjugate pair, and similarly for (¢,q'), (a,a’) and (b, V).
To our knowledge, there are two ways to derive Strichartz estimates for (LST). One way is to
use directly dispersive and energy estimates as for the linear Schrodinger equation, i.e. o = 2,

More precisely, one can compute the Schwartz kernel of the Schrodinger group e "4
A eiiﬂTd Jz—y|? .
e "2Y(x) = - /e*l  (y)dy, = := sign of t.
|4mt|2

From this, we obtain the following dispersive estimate

—q _4d
le™" 2L S 62 ]l

In the case o # 2, it is not clear that one can compute the Schwartz kernel of e**/VI” and thus
dispersive estimates for e**!V” are not obtained directly. Another way is to decompose the solution
in dyadic pieces and use the scaling technique to reduce to estimates at frequency one. Since (LST)
enjoys a scaling invariance in the frequency space, it allows us to use the scaling technique.

Before entering some details, let us introduce some standard notations (see [GV85, Appendix],
[Tri83l Chapter 5] or [BL76l Chapter 6]). Let E| Xo € C§°(RY) be such that xo(¢) = 1 for
|€] < 1 and supp(xo) C {¢€ € R [¢] < 2} We set x(€) := x0(€) — x0(28). It is easy to see
that x € C§°(R?) and supp(y) C {¢€ € R% 1/2 < |¢] < 2}. We denote the Littlewood-Paley
projections by Py := xo(D), Py := x(N~!D) with N = 2k k € Z where xo(D),x(N~1D) are
Fourier multipliers by xo(¢) and x(N 7€) respectively. Given v € R and 1 < ¢ < oo, the
generalized inhomogeneous Sobolev H] and Besov B] spaces are defined respectively as closures
of the Schwartz space . under the norms

lullmry = 1{V) ullze, (V) :=V1-A,

1/2
sy = IPoullza + (32 N®IPvuld)
Ne2N

where A is the free Laplace operator on R?. Now, let % be a subspace of . consisting of functions
¢ satisfying D¢(0) = 0 for all @ € N%, where * is the Fourier transform on .. The generalized
homogeneous Sobolev and Besov spaces are defined respectively as closures of . under the norms

el g = 1917l
1/2
lullgy = (D2 N2 Pxul?,)
Ne2z

We again refer the reader to [GV85, Appendix]|, [Tri83, Chapter 5] or [BL76, Chapter 6] for
various properties of these function spaces. It is easy to see that the spaces B] and B do not
depend on the choice of xo. Note that HJ, BJ, H] and B are Banach spaces with the norms
lwll ey llull By ||uHH; and ||u||B-;/ respectively. In the sequel, we shall use HY := H), HY := H,.
By the Littlewood-Paley theorem, we see that if 2 < ¢ < oo, then B] C HJ with the reverse
inclusion for 1 < ¢ < 2. In particular, Bg = H" and BY = Hg = L2. Moreover, if v > 0, then
H) =L'NH] and B) = LN BY.

1Note that one can choose xo to be radially symmetric, and then so is x.
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1.1. Strichartz estimates for Schrodinger-type equations

Throughout this thesis, we denote for (p,q) € [1,c]?,

Ypg==———— . (1.0.7)

1.1 Strichartz estimates for Schrodinger-type equations on
the flat Euclidean space

Let 0 € (0,00)\{1} and consider the inhomogeneous linear Schrodinger-type equations on
R, d > 1,

. - B d

{ iowu(t,x) +|V|ou(t,z) = F(t,z), (t,z)€ RxR? (LST)

U(O,SC) = ¢(I)a IERda

where V|7 is the Fourier multiplier by |£|7 with A = Z;l:l 9% the free Laplace operator on R
The Duhamel formula (see e.g. [Tao06l Proposition 1.35]) shows that the (LST) is essentially
equivalent to the integral equation

t

u(t) = eVI7y — z/ =9IV p(s)ds. (1.1.1)
0

The purpose of this section is to derive Strichartz estimates for the (LST). To do so, we introduce

the following admissible condition.

Definition 1.1.1. A pair (p, q) is said to be Schrédinger admissible if

2 d d
(p7q) € [2,00]27 (pvqad) # (2>OO,2)7 ];4_6 < 5 (112)
Theorem 1.1.2. Let d > 1,0 € (0,00)\{1},7 € R. If u is a solution to the (LST) for some data
U, F, then for all (p,q) and (a,b) Schrodinger admissible pairs,

[l a5 S 160v4m 4 I gm0 (113
where vp ¢ and vq 1 are as in (1.0.7)). In particular,
ull Lo, 7m0y S 19l + 1 N pr v (1.1.4)
and
[l oo (g, 7pea) + Ul Loge, o) S NN irowa + I E | per @ 50,)» (1.1.5)
provided that
Ypg = Yo' b O (1.1.6)
Here (a,a’) and (b,V') are conjugate pairs.
Proof. We first note that the Minkowski inequality with p,q > 2 gives
) ) 1/2
llzomsy S (32 NIPNuldoen) - (1.1.7)

Ne2Z
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1.1. Strichartz estimates for Schrédinger-type equations

Therefore, the theorem is proved if we establish
1YV Pl o oy S P10 22, (1.1.8)

H/ ei(t_s)‘vlvPlF(s)ds‘

t
0

Lr(R,L9) S P por 0y (1.1.9)

for all (p,q), (a,b) Schrodinger admissible pairs. Indeed, by change of variables, we see that

1€Y1 Pyp| por,pay = N~ 9T0/2) ||V Propiy | 1o g 1oy,

1Prn e = N2 Py e,

where ¥y (2) = (N ~1z). To see this, we write
T Pt ) = (2m) 0 [ e (Ve
= (2m) [ NI (€ (€)dg = eIV Prp (N1, V),
where 1 (x) := (N ~'x). The estimate implies that

Heit‘vlade)”Lp(R,L‘l) 5 Npa ||PN1/)HL2’ (1110)

for all N € 2%. Similarly,

— N—(d/g+o/p+o)

t
H / ei(t_s)lvloPNF(s)ds‘
0 LP(R,L7)

¢
/ ei(t_s)lv‘aPlFN(s)ds‘
0

L (R,La)
where Fy(t,z) = F(N~°¢, N~1z). We also have from (1.1.9) and the fact
”PlFNHLﬂ’(R,Lb') = N(/¥tole )||PNF||La’(R,Lb’)

that

< N’YPYQ7fya/’blig||PNFHLQ/(R,LI)I)7 (1111)

t
H/ ez’(tfs)\VVPNF(S)dS‘ <
0 Lr(R,L9)

for all N € 2%. We see from (1.1.10) and (1.1.11)) that

NY|Pyull o ey S NV || Pyap| 2 4 NVEV0a =000 = | Py F|| par 10

By taking the ¢2(2%) norm both sides and using (1.1.7)), we get (1.1.3)). The estimate (1.1.4)) follows
from (1.1.3) by taking v = v — 7,4 and (a,b) = (00,2). The estimate (1.1.5) follows again from

(1.1.3)) by taking (p,q) = (00,2) with v = =y, , and v = 0. Let us prove (1.1.8) and (1.1.9). By the
TT*-criterion given in Theorem we need to show

IT(O)2>22 S 1, (1.1.12)
IT@)llz1ope S (1+[8) =42, (1.1.13)

Plancherel theorem. It remains to prove the dispersive estimate (1.1.13[). To do this, we first write
the kernel of T'(t) as

for all t € R where T(t) := e*IVI” P, The energy estimate [1.1.12) is obvious by using the
1

Kty = (2n)7 [ eemneten o
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The estimate (1.1.13]) is then in turn equivalent to
K (tz,y)] S (1+[t) =, (1.1.14)

for all t € R and all z,y € R%. We only prove ([1.1.14)) for ¢ > 0, the case t < 0 is similar. Thanks
to the compact support of x, we have |K(t,z,y)| < 1,V € R, x,y € R%. In the case 0 < t < C for
some constant C' > 0 large enough, we have

|K(t,z,9)] S1<S (141672, v,y e R

In the case t > C, we rewrite
Kita,y) = (2n) [ eovtemdy e,

where ®(t,x,y,£) = (x —y) - £/t — |€]°.
If |z — y|/t > Cy for some constant C; > 0 large enough, then using that o # 1 and 1/2 <
|€] < 2, we have
|V§(I>(t,$,y,€)‘ > ‘Jf - y|/t - U‘ﬂgil > C>0.

The non stationary phase theorem implies that for all N > 0,
Kty St <1+

for all t > C and all z,y € RY satisfying |z — y|/t > C) provided that N is taken larger than d/2.
A similar result holds with |z — y|/t < Cs for some constant Cy > 0 small enough.
We can now assume that

Cy <z —y|/t <Ch. (1.1.15)

We have

2 o—2 g : gT
Vgi)(t,:c,y,{) = 7O—|§| (I]Rd + (0 - 2) |€|2 )
This implies that
| det V§<1>| =ollo —1)|¢)"24 > C > 0.
Thus, the map & — V¢® from a neighborhood of {£ € R%,1/2 < |¢| < 2} to its range is a local
diffeomorphism. The stationary phase theorem then implies that
K (t,2,y)] S92 S (140772

for all t > C and all z,y € R? satisfying (1.1.15). This completes the proof. O

We next give some applications of Strichartz estimates given in Theorem [1.1.2
Corollary 1.1.3. Let d > 1,0 € (0,00)\{1},v € R. If u is a solution to the (LST) for some data
U, F, then for all (p,q) and (a,b) Schridinger admissible with g < oo and b < oo satisfying ((1.1.6]),

HUHLP(R,H;*VM) Sl + ||F||L1(R,Hw)a (1.1.16)

[ell oo, 1m0y + el o @2y S Nl Ervwia + I1F Nl o ey (1.1.17)

Corollary 1.1.4. Let d > 1, 0 € (0,00)\{1}, v > 0 and I a bounded interval. If u is a solution
to the (LST) for some data ¢, F, then for all (p,q) Schrodinger admissible satisfying ¢ < oo,

HUHLP(I,HJ*”P,Q) Sller + ||F||L1(I,Hv)- (1.1.18)

Proof. We first note that when 7, , > 0 (or at least o € (0,2]\{1}), we can obtain (1.1.18)) for any
v € Rand I = R. To see this, we write ||ul| = (V)" "™ ul| Lok, Lq) and use (1.1.16

Lr(R,H, ™)
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1.1. Strichartz estimates for Schrédinger-type equations

with v = 7, 4 to obtain
ll o w0y STV Wl e + 1Y)77 Fllpa e, prvm.a)-
This gives the claim since ||v|| gvp.e < ||v]|m7e. using that v, ; > 0. It remains to treat the case
Vp,q < 0. By the Minkowski inequality and the unitarity of e!VI” in L2, the estimate (1.1.18) is
proved if we can show for v > 0, I C R a bounded interval and all (p,q) Schrédinger admissible
with ¢ < oo that
||eit|V\ w”Lp(]’H;’_"’PNI) g ||"/}HH"’ (1119)

Indeed, if we have ([1.1.19]), then
t . a
H / VI B (s)ds
0

i(t—5)| V|7
Lr(1,H) ™ P9) = /1 Ipo.(s)e F(S)”L"(I,HZW’"’)dS
S/IHei(t—s)lv\gF(s)||LP(I,H;_~,p,q)dS
S [1FO s = 1Pl
I

We now prove (|1.1.19). To do so, we write
(V)7 VI = w(D) (V)77 eV 4 (1= w)(D) (V)T Y,

for some w € C§°(R?) valued in [0,1] and equal to 1 near the origin. Here w(D) is the Fourier
multiplier by w(§). For the first term, the Sobolev embedding implies

lo(D) (V)77 eV | Lo S (D) (V)77 V| g,

for some § > d/2 — d/q. Thanks to the support of w and the unitary property of eV in L2, we

get o
lo(D) (V)0 eV o,y S Nllze S 10

Here the boundedness of I is crucial to have the first estimate. For the second term, using (1.1.17)),
we obtain

11 =) (D) (V)77 eV oy S N1 = ) (D) (V)T gy S 19010

Combining the two terms, we have (1.1.19)). This completes the proof. O
Another application of Strichartz estimates for the (LST) is the following Strichartz estimates
for the following inhomogeneous linear wave-type equations,
dfu(t,x) + (=A)7v(t,z) = G(tx), (t,z) eRxRY,
v(0,z) = (), o (0,z) = ¢(x), =€R™L

Corollary 1.1.5. Let d > 1,0 € (0,00)\{1},7 € R. Ifv is a solution to the (LWT) for some data
Y, o, G, then for all (p,q) and (a,b) Schriodinger admissible pairs,

(LWT)

”[U]HLP(]R,BJ) S 0l O) | gt + ||G‘|La,(R7BZ,+Wp,q*va/,b/*20)7 (1.1.20)
where
Nollo ) = 0l ooe, 3y + 1060l e, g,
10l grr+m.a = 11 frvp.0 + 191 frrm.0 =
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Chapter 1. Strichartz estimates on the flat Euclidean space

In particular,

P (5[0 PR 7 oy (1.1.21)
and
”[U]”LOC(R,B;”"’) + ||[U]||LP(R,33) S IO e + ||G||La’(R,Bg,)» (1.1.22)
provided that
Voq = Var b + 20 (1.1.23)

Proof. By Duhamel’s formula, the solution to (LWT) is given by
sin(t|V|9) sin((t — s)|V[7)
v(t) = cos(t| V7)) + —=———0¢ + / ——————>G(s)ds.
V|7 V|
The desired estimates follow easily from Theorem and the fact that

VI | =itV GitlVI7 _ =itV

cos(t|V|7) = 5 , sin(tV|7) = %

O

As in Corollary we have the following usual Strichartz estimates for fractional wave
equations.
Corollary 1.1.6. Let d > 1,0 € (0,00)\{1},7 € R. Ifv is a solution to the (LWT) for some data
U, ¢, G, then for all (p,q) and (a,b) Schrodinger admissible satisfying ¢ < 0o,b < 0o and ,

101l o,y =m0y S NION g Gl 1 g, ) (1.1.24)
oIl Lo &, om0y + 0l Lo @, Loy S NN om0 + Gl Lot g, 27y (1.1.25)

The following result, which is similar to Corollary [[.1.4] gives the local Strichartz estimates
for the fractional wave equation.
Corollary 1.1.7. Let d > 1, 0 € (0,00)\{1}, v > 0 and I C R a bounded interval. If v is a
solution to the inhomogeneous linear wave-type equation for some data v, ¢, G, then for all (p,q)
Schrédinger admissible satisfying q < oo,

HU”Lp([,H;*‘”’M) S IO e + HG||L1(I7H’7_U)~ (1.1.26)

Proof. The proof is similar to the one of Corollary Thanks to the Minkowski inequality, it
suffices to prove for all v > 0, all I C R bounded interval and all (p,q) Schrodinger admissible
pair with ¢ < oo,

H COS(t|v|U)wHLP(LH;—’YD,Q) ,S H/(/)”H’Y7 (1127)
sin(¢|V|7)
de)’ Le(I,H) P9 ’S H¢||H7_”‘ (1128)

The estimate (1.1.27) follows from the ones of e**IVI” . We will give the proof of (1.1.28). To do

this, we write

sin(t|V1]?)
V|7

sin(t|V|7)
V]e

sin(t|V|7)

<v>’7—’>’p‘q ,
V|

=w(D)(V)" 7" + (1= w)(D) (V)"

for some w as in the proof of Corollary [.1.4] For the first term, the Sobolev embedding and the
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1.2. Strichartz estimates half-wave equation

sin(¢|V|7)

fact T

< [t] imply

L2—L?

sin(t|V|7)

ooy (o= G

o S D) (775

for some 6 > d/2 — d/q. This gives

sin(¢|V|7)

ooy (o= G

9

< —o.
S

Here we use that [|w(D) (V)* ™7 || 2,12 < 1. For the second term, we apply (1.1.19) with the
fact sin(t|V|7) = (eIVI” — e~ V") /2i and get

H(l — w)(D) (V)Y re sin(t[V]7) ‘

V|7

< 1— D)V|~° L < .
LP(I,Lq)NH( w)( )| ‘ ¢HH NH‘ZS”HW

Here we also use that ||(1 — w)(D)(V)? |V|77|2—r2 < 1 by functional calculus. Combining two
terms, we have (|1.1.28)). The proof is complete. O

1.2 Strichartz estimates for the half-wave equation on the
flat Euclidean space

Let us now consider the inhomogeneous linear half-wave equation, namely

i0wu(t,) + |Viu(t,z) = F(t,x), (t,z) €R xR
{ u(0,2) = (), zeR% (LHW)
As for the (LST), the solution of (LHW) is given in terms of the Duhamel formula as
. t .
u(t,z) = e*Vly — 2/ eIV P(s)ds. (1.2.1)
0

In order to state Strichartz estimates for the (LHW), we introduce some notations.
Definition 1.2.1. A pair (p, q) is said to be wave admissible if
2 d-1 d-1
(paQ) S [2,00]2, (p,q,d)?é(2,00,3), 2;_'_7 S T
Theorem 1.2.2 (|[BCD11], [KT9g|, [KTV14]). Letd > 2,7 € R and u be a solution to the (LHW),
for some data ¢, F. Then for all (p,q) and (a,b) wave admissible pairs,

ol gy S 1 m + Iy oo, (122)

where yp 4 and Yo i are as in (1.0.7) with o = 1. In particular,

||u||Lp(R73;*7P’Q) Sl + HF”Ll(R,HW)v (1.2.3)
and
ol o o, ey + el om0y S 1l + 1 ot . (1.2.4)
provided that
Yp.q = Var b + 1. (1.2.5)

Here (a,a’) and (b,V") are conjugate pairs.
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Chapter 1. Strichartz estimates on the flat Euclidean space

The proof of this result is based on the following spherical Fourier transform (see e.g. [Wol03]).
Lemma 1.2.3 (Spherical Fourier Transform). Let o be the hyper-surface measure of the sphere
S9=1. Then, the spherical Fourier transform

o6 = [ o)

satisfies
o (el < lel=,
for € € RY with |€]| large.
Proof. Let us recall the fact that for any A an invertible linear maps from R? to itself, we have

— 1

e Ty\—1
fod= \detA|fo(A )

where AT is the transpose matrix of A. In particular, if A is an orthogonal transformation, i.e.
AA* = Iga, then m = foA. From this and the facts that o is invariant by orthogonal transfor-
mations and orthogonal transformations act transitively on S~ !, we have & is radial. Moreover,
& is smooth. It then suffices to prove for £ = |€|eq, where eq = (0,...,0,1). We first choose an

atlas on S%1 as follows: (U;{B(O, 1),&?—5)‘;:1 where Uji = {(a:l, ey Tjy ey g) € ST ;> 0},

and B(0, 1) is the open unit ball in R4~! and
kF:UFCs™t = B(0,1) R
((El,...,.’bj7...,$d) — (1’1,...,xj,17l'j+1,...,$d).

Let (gbji)?:l be a partition of unity associated to (U ji)?:l. We can write

5(¢) = Z (/W e~IEleat 5+ (0)dor(0) +/

J=1 j Uy

e*i|f|ed'0¢j— (0)d0’(9)> )

We separate this quantity into two terms. The first term is for the sum over j =1 to d — 1 and
second term for j = d. For the first term, we treat for j = 1 only, the other ones are treated
similarly. By writing

kETIB0,1) eREY o UE csi!

z=(21,.,2d-1) (i 1—|z|27z),

we have [+ e"U¢lea 061 (0)do(0) + [, e~ IEleaf 1 (0)do(6) equals to
) dz . dz
TGP ) [ e (TR )
e 22, 2 e 2|2, 2 .
/B(OJ) ' VI=lz? By ' V1=

We see that in above integrals, the phases are non stationary, thus the first term can be bounded
by |£|7" for all N > 0. For the second term, we process as above and it equals to

/ e~ gt (o T2 + / VI 57 (2, — T [eP)
B(0,1) B(0,1)

dz
RV Er VI FF
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1.2. Strichartz estimates half-wave equation

The phase function /1 — |z|? has only one critical point at zero and we have

when j =k,
when j # k,

2
1 2
_ L — =
83;‘% V 1- |Z|2 = _\/12175‘ \/1 ="
V1-1z]?

for all j,k =1,...,d — 1. This implies the Hessian of /1 — |z|? at zero is —Ipa—1, so is invertible.
We can apply the stationary phase theorem and the second term can be bounded by [€ |_%.
Combining the two terms, we have the result. O

Proof of Theorem[I1.2.2 As in the proof of Theorem [[.1.2] using

||eit|V‘PN1/JHLp(R7Lq) = Ni(d/qﬂ/p)||€it|v|P17/’N||L”(R’Lq)’

|Pryon | = N2 | Pyl 2,
t t
| [ e, = s-wnseen] [ €y
0 0

— N(@/Y+1/a))

L (R,L4) Lr(R,L)

[PLEN | Lo (m, 10 |PNF| por (g, Lv)»
where ¥y (2) = (N ~1z) and Fy(t,x) = F(N~'t, N~'x), the theorem is proved if we have
eV Pl o g oy S 1P 22, (1.2.6)

t
H/ ei(t_S)W'PlF(s)ds‘
0

oL SIPLF| por 1y (1.2.7)

for all (p,q), (a,b) wave admissible pairs. By the T"T*-criterion, it suffices to prove

17212 S 1, (1.2.8)
T (@) L1 s poe S (14 [¢]) 74D/, (1.2.9)

for all t € R where T'(t) = ¢®!VIP;. The energy estimate (1.2.8) again follows from the Plancherel
theorem. We need to prove (L.2.9). To do so, we write the integral kernel of T'(t) as[

Kit,z,y) = (2 [ ey elyas

Since x is compactly supported, we have for all ¢t € R,
|K(t,z,y)| < C,

for some constant C' > 0. It implies the required estimate if |¢| is small. Indeed, if |t| < C’ for
some fixed C’ > 0 large, then 1+ [t| < (1+C") or (1 + |t|)="F" > (1+C')~“F > C. Thus, we
can assume that |t| > C’. The phase function ®(t,x,y,§) = (z — y) - § + t|€| satisfies

Ve®(t,z,y,8) = (z —y) —|—t|§|.

We remark that V ® = 0 only if |z — y| = |¢| and the critical points of ® lie on a line, hence
are not isolated. So, the stationary phase theorem can not be applied directly. To overcome this

difficulty, we use the polar coordinates, i.e. ¢ = 70 with r € (0,+0c0) and 6 € S¥~1. The kernel
reads

+oo )
K(t,,y) = (2m) / / (@904 (1)L drdo (6).
0 Sd—l

2Here x is radially symmetric, i.e. there exists a function which is still denoted by x so that x(&) = x(|¢]).
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Chapter 1. Strichartz estimates on the flat Euclidean space

If |t| > 2|z — yl|, then the phase is non stationary. By integration by parts with respect to r
together with the fact

o, <eir((m—y)'9+t)) =i((x—y) 0+ t)eiT((x—y).6+t)'
We have for all N > 0,

+oo
(Z((J,‘ — y)l 0 + t))N /0 eir((zfy)ﬂ#*t)(78T)N(X(r)rd71)dr

(@ —y) -0+t~ <2V < (1 + ).

+oo
/ eir((xfy)-Bth)X(T)Tdfldr
0

A

If |t| < 2]z — y|, we can write the kernel
+oo
K(ta) = o) [ o(rly = o))
0

Using Lemma [1.2.3| we see that

+oeo d—1
[K(tz,y)] < <27T)_d/ r(y — )|~ 7= x(r)r®tdr,
0

Since y is compactly supported, we have

d— _d—1
2 .

_d-1 _d-1
Ktz y) S le -yl 2 ST S+t

Combine two cases, we have |K(¢,z,y)| < (1 + |t\)’% and this proves 1] The proof is
complete. O

Corollary 1.2.4. Let d > 2 and v € R. Ifu is a solution to the (LHW) for some data i, F, then
for all (p, q) wave admissible satisfying q < oo,

”u”Lp(]R,H;_"’qu) Sl + ||F||L1(R,Hv)- (1.2.10)

Proof. We first remark that (1.2.3)) together with the Littlewood-Paley theorem yield for any (p, q)
wave admissible satisfying ¢ < oo,

Hu”Lp(R?HJ*WPYQ) S lwoll g + ||F||L1(R,Hv)~ (1.2.11)

We next write Hu||Lp(R HY Py = [ (V)" U/HLP(R’LQ) and apply (1.2.11)) with v = v, 4 to get
g

lall o gy =w0) S (V)™ w0l gapa + ) Fll g grma)-

The estimate ([1.2.10) then follows by using the fact that v, , > 0 for all (p, ¢) is wave admissible
satisfying q < oo. U

Another consequence of Theorem is the following Strichartz estimates for the following
inhomogeneous linear wave equation,
OZv(t,x) — Av(t,z) = G(t,z), (t,z) € R xR
v(0,z) = P(x), 0w(0,z) = ¢(x), x€R™L

Corollary 1.2.5. Let d > 2,y € R. If v is a solution to the (LWE) for some data v, ¢, G, then
for all (p,q) and (a,b) wave admissible pairs,

(LWE)

1ol o ,57) S 01O om0 + G (1.2.12)

La/(R BW+7Pv47’Ya’,b’72)7
By
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1.2. Strichartz estimates half-wave equation

where
1ol o .7y = 10l Loz, 57y + 100l Lo 571y
1ROl grr+p0 = 19l o0 + N8l v =1
In particular,
10lll o, 7m0y S NOHOM v + Gl 1 R, 12-1) (1.2.13)
and
ol ey + 1l oo, 9y < NN s + G o o, (1.2.14)
provided that
Ypg = Yo' b + 2. (1.2.15)

Proof. By Duhamel’s formula, the solution to (LWE) is given by

o(t) = cos(t|V) + s1n|;||v| 6+ / sin t|;|8 ‘V‘)G(s)ds.

The desired estimates follow easily from Theorem and the fact that

citlV] 4 =itV itlV] _ o=it|V|

cos(t|V]) = 5 , sin(t|V]) = 5

O

As in Corollary [[.2.4] we have the following usual Strichartz estimates for the inhomogeneous
linear wave equation.
Corollary 1.2.6. Let d > 1,7 € R. If v is a solution to the (LWE) for some data v, ¢, G, then
for all (p,q) and (a,b) wave admissible satisfying ¢ < co,b < co and ,

10l o g, ey S NNy + NGl -1y, (1.2.16)

oM Lo (g, 2rw.0) + N0l o @,20) S NVHOM frvp0 + NGl Lot (g, 207y (1.2.17)

The following result, which is similar to Corollary [[.1.4] gives local Strichartz estimates for the
inhomogeneous linear wave equation.

Corollary 1.2.7. Letd > 1, v > 0 and I C R a bounded interval. If v is a solution to the (LWE)
for some data 1, ¢, G, then for all (p,q) wave admissible satisfying q < oo,

10l o7 pr=may S NRNO e + NGl Lo, 1) (1.2.18)

Proof. The proof is similar to the one of Corollary Thanks to the Minkowski inequality, it
suffices to prove for all v > 0, all I C R bounded interval and all (p, q) wave admissible pair with
q < oo,

Feos@IVDP L g g0y S 19l (1.2.19)
sin(t|V]) ‘

M : ' 1.2.20

‘ |V| (b LP(]7H;’_'YP,Q) ~ H¢)”Hv ( )

The estimate (1.2.19)) follows from the ones of eIVl We will give the proof of (1.2.20). To do
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Chapter 1. Strichartz estimates on the flat Euclidean space

this, we write

g SI(E[V]) — (D Y=g SI(EIV]) 1 —\(D g SI(E[V])

(e S — (0 (9 T 4 (1= () () e SOV,

for some w as in the proof of Corollary For the first term, the Sobolev embedding and the
in(t|V .
fact % . |t| imply
. sin(t|V|) 5—
ooy @yr=ome ==ITVG| < (D) (9757 b,
for some ¢ > d/2 — d/q. This gives
(V1)

o) vy e ED Gl < e,

4 Lr(I,La)
Here we use that ||w(D) <V>5+1M’“ 22 < 1. For the second term, we apply (1.1.19) with
sin(t|V|]) = (™Yl — e=#V1) /2i to get

S 1- D - "/< y-1.
it SN =DVl S li6ln

sin(t|V]) ‘

[0 =y vy =g

Here we also use that [[(1 —w)(D) (V) |V|7Yz2—z2 < 1 by functional calculus. Combining two
terms, we have (1.2.20). The proof is complete. O
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CHAPTER 2

Strichartz estimates for the linear
Schrodinger-type equations on
bounded metric Euclidean spaces

Contents
2.1 Reduction of problem|. . . . . . ... ... ... . 00 00000, 36
2.2 The WKB approximation| . .. ... ... ... ... ..., 39

This chapter deals with Strichartz estimates for the homogeneous linear Schrodinger-type equa-
tions on R? equipped with a smooth bounded metric g, namely

{i@tu+vg|"u = 0,
u(0) = ¢,

where 0 € (0,00)\{1} and |V4| = \/—A, with A, the Laplace-Beltrami operator associated to
the metric g.

Let g(x) = (gjk(m))ik:l be a metric on R%, and denote G(x) = (gjk(ac));{k:l := g '(z). The
Laplace-Beltrami operator associated to g reads

(2.0.1)

d

Z 2)|710; (97" (2)]g(x)[0k) ,

where [g(z)| := /det g(z). Denote P := —A, the self-adjoint realization of —A,. Recall that the
principal symbol of P is
d
p(z,€) = = 2 I @5
J,k=1

In this chapter, we assume that g satisfies the following assumptions.
1. There exists C' > 0 such that for all z, & € R,

CTEP < Z g7 (2)€;6 < ClEP. (2.0.2)
7,k=1
2. For all o € N%, there exists C,, > 0 such that for all z € R?,
09" (@) < Cay G,k €{1,....d}. (2.0.3)

We first note that the elliptic assumption (2.0.2) implies that |g(z)| is bounded from below and
above by positive constants. This shows that the space LI(R?, dvoly),1 < g < oo where dvol, =
|g(x)|dx and the usual Lebesgue space L(R?) coincide. Thus in this chapter, the notation LI(R?)
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Chapter 2. Strichartz estimates on bounded Euclidean spaces

stands for either L9(R%, dvoly) or the usual Lebesgue space L(R?). We will denote the space
L4(R4) by L4 for short.

Let us first recall local (in time) Strichartz estimates for Schrédinger-type operators on R¢
given in Corollary For o € (0,00)\{1} and I C R a bounded interval, one has

1Y) o Loy < Clll w0 (2.0.4)

where |V| = v=A, (p,q) is Schrodinger admissible with ¢ < oo and 7, , is as in .

It is well-known that under the assumptions and , Strichartz estimates (2.0.4))
may fail at least for the Schrodinger equation (see [BGT04, Appendix]) and in this case (i.e. o = 2)
one has a loss of 1/p derivatives, that is the right hand side of is replaced by |[¢|| gp.q+1/p-
Note that in [BGT04], the authors consider the sharp Schrédinger admissible condition with ¢ < oo
(see (0.0.1)). In this Chapter, we extend the result of Burq-Gérard-Tzvetkov to a more general
setting, i.e. o € (0,00)\{1} and obtain Strichartz estimates with a “loss” of (¢ — 1)/p derivatives
when o € (1,00) and without “loss” of derivatives when o € (0,1). Throughout this chapter, the

“loss” compares to ([2.0.4).

Theorem 2.0.1. Consider R%,d > 1 equipped with a smooth metric g satisfying (2.0.2)), (2.0.3)
and let I C R a bounded interval. If o € (1,00), then for all (p,q) Schrédinger admissible with

q < 0, there exists C > 0 such that for all ) € Hpat(@=1/p
||€it|vﬂ|owHLp(I>Lq) < C'H’Lb||H,,p’q+(071)/p7 (205)

where |[ul| g~ == || (Vg)" ullr2. If o € (0,1), then holds with ~, ¢ + (¢ — 1)/p is replaced by
Tp.q-

The proof of is based on the WKB approximation which is similar to [BGT04]. Since we
are working on manifolds, a good way is to decompose the semi-classical Schréodinger-type operator,
namely e’ (VD7 " at localized frequency, i.e. e (IVsD7o(h2P) for some ¢ € C5°(R\{0}).
The main difficulty is that in general we do not have the exact form of the semi-classical fractional
Laplace-Beltrami operator in order to use the usual construction in [BGT04]. To overcome this
difficulty we write eith (Va7 (R2P) as eith” '@ (h*P) (B2 P) where w(\) = G(A)VA~ for some
¢ € C>(R\{0}) satisfying @ = 1 near supp(p). We then approximate w(h?P) in terms of
pseudo-differential operators and use the action of pseudo-differential operators on Fourier integral
operators in order to construct an approximation for ith™lw(h?P )<p(h2P). This approximation gives
dispersive estimates for e“hil(h‘vg‘)ggo(hQP) on some small time interval independent of h. After
scaling in time, we obtain Strichartz estimates without “loss” of derivatives over time intervals of
size h°~'. When o € (1,00), we can cumulate estimates over intervals of size h° ! and get local
in time Strichartz estimates with (o —1)/p loss of derivatives. In the case o € (0, 1), we can bound
the estimates over time intervals of size 1 by the ones of size h?~! and obtain the same Strichartz
estimates as on R, Tt is not a surprise that we recover the same Strichartz estimates as in the
free case for o € (0,1) since eVl has micro-locally the finite propagation speed property which
is similar to ¢ = 1 for the half-wave equation. Intuitively, if we consider the free Hamiltonian
H(z,&) = |€|°, then the spatial component of geodesic flow reads z(t) = x(0) + to€|¢|7 2. After
a time ¢, the distance d(x(t),z(0)) ~ t|¢]°"! <tif o —1 <0 and |[¢| > 1. By decomposing the
solution to i0yu+|V|"u =0 as u =Y, -, ux where uy = p(27%D)u is localized near || ~ 2% > 1,
we see that after a time ¢, all components u, have traveled at a distance ¢ from the data uy(0).
Corollary 2.0.2. Consider R, d > 1 equipped with a smooth metric g satisfying ,
and let I C R a bounded interval. Let u be a solution to the inhomogeneous linear Schrodinger-type
equation on (R4, g),

i0u(t, z) + |Vg|7u(t, ) F(t,x), (t,z)€lxRY
w(0z) = P(z), ©eRS,

for some data ¥, F. If 0 € (1,00), then for all (p,q) Schridinger admissible with ¢ < oo, there
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exists C' > 0 such that
lullLer,Lay < C<||1/1Hmp,q+<o—1)/p + ||FHLl(z,m,qﬂo—l)/p)).

If o0 € (0,1), then the above inequality holds with 7y, 4 in place of vypq + (0 —1)/p.
Remark 2.0.3. By the same technique as in the proof of Theorem [2.0.1] up to some minor mod-
ifications, one can obtain easily local Strichartz estimates for the homogeneous linear half-wave
equation on (R?, g) which is similar to those (local in time) on R? (see Corollary .

As a consequence of Theorem [2.0.1] we have the following Strichartz estimates for inhomoge-
neous linear wave-type equations posed on (R?, g). Let us consider the following inhomogeneous
linear wave-type equations posed on (R%, g),

{3fv(t,w)+(ﬁg)"v(t,x) = G(t,x), (tz)elxR,

v(0,z) = P(x), 0(0,z) = p(x), =€ RY. (2.0.6)

We refer to [CHO3| or [HerI4] for the introduction of wave-type equations which arise in physics.
Comparing with local Strichartz estimates for the inhomogeneous linear wave-type equations given
in Section we obtain estimates with a loss of derivatives (¢ — 1)/p when o € (1,00) and with
no loss when o € (0,1). More precisely, we have the following result.

Corollary 2.0.4. Consider R%,d > 1 equipped with a smooth bounded metric g satisfying ,
and let I C R a bounded interval. Let v be a solution to the inhomogeneous linear wave-type
equation . If 0 € (1,00), then for all (p,q) Schriodinger admissible with ¢ < oo, there exists
C > 0 such that for all (v, ¢) € HYpat(e=D/P 5 [patlo=1)/p=c,

ollze(r 20y < € (1)) grio-7m + G| gt o701 (20.7

where
H[U](O)”HVP&*(”*U/P = ||w||H'Vp,q+(”*1)/P + ||¢||H'Ypyq+(<’*1)/pfa-

If 0 € (0,1), then (2.0.7) holds with v, 4 + (0 —1)/p is replaced by 7y 4.

2.1 Reduction of problem

In this subsection, we give a reduction of Theorem due to the Littlewood-Paley decom-
position. To do so, we first recall some useful facts on pseudo-differential calculus. For m € R, we
consider the symbol class S(m) the space of smooth functions a on R?¢ satisfying

10208 a(x,€)| < Cag (&)™,

for all z,6 € RY. We also need S(—o0) := NyerS(m). We define the semi-classical pseudo-
differential operator with a symbol a € S(m) by

Opp(a)u(z) == (2h) @ //de eihil(:”*y)'ga(x,§)u(y)dyd§,

where u € . is a Schwartz function. The following result gives the LY — L"-bound for pseudo-
differential operators (see e.g. [BT07, Proposition 2.4]).

Proposition 2.1.1. Let m > d and a be a continuous function on R2¢ smooth with respect to the
second variable satisfying for all B € N?, there exists Cg > 0 such that for all z,& € R,

0Fa(w, )| < Cp (€)™

Then for all 1 < g < r < oo, there exists C > 0 such that for all h € (0,1],

10ph(a) || posrr < Ch(E=5),
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For a given f € C§°(R), we can approximate f(h?P) in term of pseudo-differential operators,
where P is the Laplace-Beltrami operator. We have the following result (see e.g [BT07), Proposition
2.5] or [BGT04], Proposition 2.1]).

Proposition 2.1.2. Consider R? equipped with a smooth metric g satisfying and .
Then for a given f € C§°(R), there exist a sequence of symbols q; € S(—o0) satisfying go = fop
and supp(q;) C supp(f o p) such that for all N > 1,

=

f(h?P) = h? Opn(q;) + W™ Ry (h),
j

Il
=

and for allm >0 and all 1 < g < r < o0, there exists C > 0 such that for all h € (0,1],

RN (B || asrr < CR (i %),
| BN (h) || r=m sy < CRT2™,

A direct consequence of Proposition[2.1.1]and Proposition[2.1.2]is the following L9 — L"-bound
for f(h2P).
Proposition 2.1.3. Let f € C§°(R). Then for all 1 < q <r < o0, there exists C > 0 such that
for all h € (0,1],

| (h2P) | ospr < CR= (7).
Next, we need the following version of the Littlewood-Paley decomposition (see e.g. [BGT04]

Corollary 2.3] or [BT07, Proposition 2.10]).
Proposition 2.1.4. There exist o € C°(R) and ¢ € C5°(R\{0}) such that

eo(P)+ Y @(h*P)=1d,
h—1:dya

where h=! : dya means h=! = 2¥ k € N\{0}. Moreover, for all q € [2,00), there exists C > 0 such
that for all u € &,

1/2
lulle (Y le®®P)ulda)  + Clullze.

h—1l:dya

We end this subsection with the following reduction.

Proposition 2.1.5. Consider R%, d > 1 equipped with a smooth metric g satisfying (2.0.2)), (2.0.3).
Let 0 € (0,00)\{1} and ¢ € C5°(R\{0}). If there exist to > 0 small enough and C > 0 such that
for allvp € L' and all h € (0,1],

et FIV D7 o (h2 Py e < CR=HL + [t ™)~ 2 ) 11, (2.1.1)

for all t € [—to, to], then Theorem holds true.

The proof of Proposition [2.1.5] is based on the following semi-classical version of TT*-criterion
(see [KT98], [Zwol2, Theorem 10.7] or [Zhal5l Proposition 4.1]).
Theorem 2.1.6. Let (X, M, u) be a o-finite measured space, and T : R — B(L*(X, M, pn)) be a
weakly measurable map satisfying, for some constants C,v,6 > 0,

1T L2 (x)—r2x) < C, tER, (2.1.2)
ITOT(8) |1 (x)srox) < CR (L + [t —s[h™)™", t,seR (2.1.3)

Then for all pair (p,q) satisfying

peled, qellod (.ad)# 2D, o <r(3-0)
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one has
T () ull e r,La(x)) < Ch™"|lullp2(x),

where k = §(1/2—1/q) — 1/p.
Proof of Proposition [2.1.5 Using the energy estimates and dispersive estimates (2.1.1]), we can
apply Theoremm for T'(t) = ]l[_to,to](t)e“h_l(mvg')ﬂw(th), 0 =d,7=d/2 and get

. -1 o
Hezth (h|Vg4]) So(th)wHLP([—to,tg],LQ) < Chf(d/zfd/qfl/p)||1/f||[,2~
By scaling in time, we have

. o - —1 o
eV o o (W2 Yl o (o1 [ to, 10,10y = RO/ P e IV (B2 PY|| 1o (10,01, 10)
< Ch™ ||| e. (2.1.4)

Using the group property and the unitary property of Schrodinger operator eVsl” | we have

similar estimates as in (2.1.4)) for all intervals of size 2h°~!. Indeed, for any interval I, of size
2h° 71 we can write I, = [c — h? 1ty c + ho~ty] for some ¢ € R and

||eit‘vg\”<’0(h2p)r(/}||LP(Ih7Lq) _ ||eit|vg|0(p(th)eidVglo’(/}HLP(h"—l[—to,toLLq)
B S

In the case o € (1,00), we use a trick given in [BGT04], i.e. cumulating O(h'~7) estimates on
intervals of length 2h°~! to get estimates on any finite interval I. Precisely, by writing I as a
union of N intervals I; of length 2h7~! with N < h'=7, we have

) o . - 1/p
||ezt|vg‘ QD(h2P)/(/)||L”(I7Lq) S(Z/I ||ezt|vg| @(h2p)¢||qut)
I h
<CONYPR=Wwa|h|| 2 < CR™Vpa=(@=D/P ||| 1. (2.1.5)

In the case o € (0,1), we can obviously bound estimates over time intervals of size 1 by the ones
of size h~! and obtain

eYol” (W2 PY|| Lo (1 Loy < Ch™79 ||| 2. (2.1.6)

Moreover, we can replace the norm ||| 7= in the right hand side of (2.1.5) and (2.1.6)) by ||¢(h2P)v|| 2.
Indeed, by choosing ¢ € C§°(R\{0}) satisfying ¢ = 1 near supp(y), we can write

eithil(h|vg|)o(p(h2p)w — eith71(h|vg|)a¢<h2p)@(h2p)w

and apply (2.1.5) and (2.1.6)) with ¢ in place of ¢. Now, by using the Littlewood-Paley decompo-
sition given in Proposition and the Minkowski inequality, we have for all (p, ¢) Schrédinger

admissible with ¢ < oo,

1/2
lllocrzo < C( 32 NePuldorin) + Cllull o o) (2.1.7)

h—1l:dya

We now apply (2.1.7) for u = €IVsl"9) together with (2.1.5) and get for o € (1,00),

. - 1/2
€495 oy < C( 32 A0 DD (2P ) 4 e,
h—1l:dya

Here the boundedness of I is crucial to have a bound on the second term in the right hand side of
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(2.1.7). The almost orthogonality and the fact that v, , + (¢ — 1)/p > 1/p imply for o € (1, 00),

1€Y1 Pl Lo 1,10y < CllY N g o-/n-

Similar results hold for ¢ € (0,1) with v, 4 in place of vy, ; + (¢ — 1)/p by using (2.1.6) instead of
(2.1.5). This completes the proof. O

2.2 The WKB approximation

This subsection is devoted to the proof of dispersive estimates (2.1.1). To do so, we will use
the so called WKB approximation (see [BGT04], [BT07], [Kap90] or [Rob8&7]), i.e. to approximate

eith ™ (hVsD)” 5(h2P) in terms of Fourier integral operators. The following result is the main goal

of this subsection. To simplify the presentation, we denote Uy (t) := eith ™ (hVg7

Theorem 2.2.1. Let 0 € (0,00)\{1},¢ € C§°(R\{0}), J a small neighborhood of supp(y) not
containing the origin, a € S(—oo) with supp(a) C p~'(supp(p)). Then there exist to > 0
small enough, S € C*([—tg,to] x R??) and a sequence of functions a;(t,-,-) € S(—o0) satisfying
supp(a;(t,-,-)) C p~(J) uniformly with respect to t € [—tg,to] such that for all N > 1,

Un(t)Opn(a)y = Jn ()Y + Ry ()Y,

where

o {(m)—d et 0 00 4, vy |
R2

Jn(0) = Opp(a) and the remainder Ry (t) satisfies for all t € [—to,to] and all h € (0,1],
|RNn ()22 < ChN L, (2.2.1)
Moreover, there exists a constant C' > 0 such that for all t € [—to,to] and all h € (0,1],

|5 (D)Lt pee < Ch™41 + [t|h=1)~9/2, (2.2.2)

Remark 2.2.2. Before entering to the proof of Theorem let us show that Theorem
implies . We first note that the study of dispersive estimates for Uy, (¢)p(h?P) is reduced to
the one of Uy, (t)Opy(a) with a € S(—o0) satisfying supp(a) C p~*(supp(p)). Indeed, by using the
parametrix of p(h?P) given in Proposition we have for all N > 1,

N-1
p(h*P) = Z h?Opn(q;) + h™ Ry (h),
3=0
for some §; € S(—o0) satisfying supp(g;) C p~*(supp(y)) and the remainder satisfies for all m > 0,
| R (R)|| gr=m g < CR72™.
Since Uy (¢) is bounded in H™, the Sobolev embedding with m > d/2 implies
WUR () By (W) e < U0 Ry (W)l =y < CH=2.

By choosing N large enough, the remainder term is bounded in L! — L independent of ¢, h. We
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next show that Theorem [2.2.1| gives dispersive estimates for Uy (¢)Opp(a), i.e
UL (£)Opn(a)|| 11—y < Ch™(1 4 [t|h=1) =42, (2.2.3)

for all h € (0,1] and all t € [~tg,t]. Indeed, by choosing ¢ € C§°(R\{0}) which satisfies ¢ = 1
near supp(y), we can write

Un(t)Opn(a) = G(h* P)Up(t)Opn(a)p(h*P) + (1 — &) (h*> P)Uy(t)Opn(a)p(h* P)
+ Un(t)Opn(a)(1 — 3)(h*P). (2.2.4)

Using Theorem [2:2.1] the first term is written as

$(h* P)Un(t)Opn(a) 2(h*P) = G(h*P)Jn (£)p(h* P) + ¢(h* P) Ry (t)2(h* P).

We learn from Proposmon u 2.1.2) and ( - ) that the first term in the right hand side is of size
Opip(h™4(1+ |t|h )~/2) and the second one is of size Op1_, 1« (W ~179). For the second and
the third term of (2.2.4)), we compose to the left and the right hand side with (P4 1)™ for m >0
and use the parametrix of (1 — 3)(h%?P). By composing pseudo-differential operators with disjoint
supports, we obtain terms of size Opz2_,12(h*®). The Sobolev embedding with m > d/2 implies
that the second and the third terms are of size Op1_, 1~ (h*). By choosing N large enough, we
have .

Proof of Theorem [2.2.1] Let us explain the strategy of the proof. As mentioned in the intro-
duction, the main difficulty is that we do not have the exact form of the semi-classical fractional
Laplace-Beltrami operator, namely (h|V,])?, in order to use the usual construction of [BGT04].
Fortunately, thanks to the support of the symbol a, we can replace Uy(t) by eith 'w(h*P) for
some smooth, compactly supported function w. The interest of this replacement is that one can
approximate w(h?P) in terms of pseudo-differential operators. We next use the action of pseudo-
differential operators on Fourier integral operators and collect the powers of the semi-classical
parameter h to yield the Hamilton-Jacobi equation for the phase and a system of transport equa-
tions for the amplitudes. After solving these equations, we control the remainder terms and prove
dispersive estimates for the main terms. The proof of this theorem is done in several steps.

Step 1: Construction of the phase andgamplitudes Due to the support of a, we can replace
(h|V,4])? by w(h?P) where w(\) = ¢(A\)VA with ¢ € C§°(R\{0}) and ¢ = 1 on J. The interest
of this replacement is that we can use Proposition 2.1.2] to write

N—

,_.

h*Opp(qr) + BN Ry (h), (2.2.5)
k=0

where g, € S(—00) satisfy go(z,£) = w o p(x, ), supp(qx) C p~L(supp(w)) and Ry (h) is bounded
in L? uniformly in h € (0,1]. Next, using the fact

%(eiith_lw(th)JN(t)) _ ihflefith_lw(ifP)(th 7 w(hQP))JN(t),

and Jx(0) = Opp(a), the fundamental theorem of calculus gives

t
Oy = (0 =i [T (0D, o 12P)) sy
0

We want the last term to have a small contribution. To do this, we need to consider the action of
hD; — w(h?P) on Jx(t). We first compute the action of hD; on Jy(t) and have

hDy o Jn(t Zhth (1)),
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where

bO(tvxvg) = atS(t7l',f)ao(t,$,£),
bl(tv'rag) = atS(t7x7£)al(taz7£) + Dtal—l(tax7§)a = 15 ,N - 13
by(t,x,€) = Dian—1(t, ,€).

In order to study the action of w(h?P) on Jy(t), we need the following action of a pseudo-
differential operator on a Fourier integral operator (see e.g. [Rob87, Théoreme IV.19], [RS06L
Theorem 2.5] or [Bouc00, Appendix]).
Proposition 2.2.3. Let b € S(—00) and ¢ € S(—o0) and S € C>®(R??) satisfy for all a, B €
Ne |+ B| > 1, there ezists Cop > 0,

0200 (S(x,€) — 2 €)] < Cap, Vo6 €R™ (2.2.6)
Then
N—-1
Opn(b) 0 Jn(S,¢) = ZhJJh (b<c);) + hN Jn(S,7n(h)),
=0

where (b<c); is a universal linear combination of

0Lb(x, Vo S(x,£))08 “c(x, )05 S(w, &) -+ 99+ S (. €),

witha < a1+ +ap =a and |oq| > 2 foralll =1,....k and |B| = j. The maps (b,c) — (b<c);
and (b, c) = ry(h) are continuous from S(—o0) x S(—00) to S(—o0). In particular, we have

(b<c)o(z.€) = bz, V.5 (x, ) el €),
i(b)1(x,€) = Veb(a, VoS (2, ) - Vaele, &) + gir (V2b(a, VaS(2,6)) - V2S(x,0)) ez, ).

Using (2.2.5), we can apply [[] Proposition and obtain

N-1 N—-1
w(h®P)o Jy(t) =Y h*Opp(qr) o Y W Jn(S(t),a;(t)) + h™ Ry (h)Jx (t)
k=0 j=0
N
= Z PRI T(S(1), (qr <a; (1)) + RN TETL(S (), rv (R, 1) + AN Ry (R)Jn (1).
k4j4+1=0
This implies that
(hD; — w(h?®P)) Z R Jn(S(t), cr(t)) — BN Ry (R)In (t) — RN TLI,(S(t), mn 41 (hy 1)),
where
co(t) = 0:S(t)ao(t) — qo(w, VuS(t))ao(t),
cr(t) = 0pS(t)ar(t) — QO( 2S(t))ar(t) + Drar—1(t) — (g0 <ar—1(t))1 — (1 <ar—1(t))o
Z qr Qaj l7 =1,...N—1,

1We will see later that the phase satisfies requirements of Proposition m
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and

en(t) = Dian_1(t) = (go9an—1()1 — (@ <an—1(t)o — > (gr<a;(t).

k+j+l=N
JSN-—2

The system of equations ¢,.(t) = 0 for r = 0, ..., N leads to the following Hamilton-Jacobi equation
S (t) — qo(x, V5 S(t)) =0, (2.2.7)

with S(0) = z - £, and transport equations

Dtao(t) — (qo < ao(t))1 — (C]l < ao(t))o =0, (2.2.8)
Dyar(t) — (g0 <ar(t)1 — (g1 <ar(t))o = Z (gr <a;(t)), (2.2.9)

for r =1,..., N — 1 with initial data
ap(0)=a, a(0)=0, r=1,...N—1. (2.2.10)

The standard Hamilton-Jacobi equation gives the following result (see e.g. [Rob87, Théoréeme
IV.14] or Appendix |A.1).

Proposition 2.2.4. There existty > 0 small enough and a unique solution S € C*([—tq, to] x R?4)
to the Hamilton-Jacobi equation

{&S(t,x,é);(%c:(xx’gﬁ(t,wvﬁ)) - xo-’f. (2.2.11)

Moreover, for all o, B € N%, there exists Cop > 0 such that for all t € [—to,to] and all x,& € RY,
0207 (S(t,2,€) —x-€)| < Caplt], la+p]>1, (2.2.12)
02 0¢ (S(t,,€) — - & — tao (,€))] < Caglt]” (2:2.13)

Note that the phase given in Proposition [2:2.4] satisfies requirements of Proposition [2:2.3] It
remains to solve the transport equations (2.2.8]), (2.2.9). To do so, we rewrite these equations as

atao(t,x,f) - V(tvxag) : Vl'a'o(tvx?g) - f(t7x7£)a’0(taxa§) = 07
8ta’r(tax7€) - V(t7$7£) : vwa’r<t7xa€) - f(tx,ﬁ)ar(t,w,f) = gr(t7$7£);

forr=1,..,N — 1 where
V(t,2,€) = (Oca0) 2, Va5 (1,2, €))
Flt2,€) = 5t [VEao e, VaS(t,2,6)) - V2S(t,2, )] + ian (2, VoS (1,2,)),
gtz &) =i > (qe<a;(t)).

k4j+l=r+1
j<r—1

We now construct a..(¢,z,£),7 = 0,..., N — 1 by using the method of characteristics as follows. Let
Z(t,s,x,€) be the flow associated to V (¢, z,§), i.e.

8tZ(t7Sax7£) = _V(taZ<t78axa€)’§)7 Z(S,S,J),f) =T
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By the fact that go € S(—o0) and (2.2.12)) and using the same trick as in Lemma we have
020 (Z(t,s,2,€) — x)| < Caplt — s, (2.2.14)

for all |¢|, |s| < tp. Now, we can define iteratively
¢
aoft,,6) = (20,02, exp ([ 16 2(511.2.9,€005).
0

ar(t,x, &) :/0 9r (8, Z(s,t,x,8),£) exp (/ f(T,Z(T,t,x,f),OdT) ds,

for r = 1,..., N — 1. These functions are respectively solutions to (2.2.8) and (2.2.9) with ini-
tial data respectively. Since supp(a) C p~!(supp(y)), we see that for ¢, > 0 small
enough, (Z(t,s,p~(supp(p))), &) € p~1(J) for all |t|,|s| < tg. By extending a,(t,z,&) on R?¢ by
a,(t,x,&) =0 for (x,¢) ¢ p~1(J), the functions a, are still smooth in (x,¢) € R??. Using the fact
that a, g, € S(—00), (2.2.13) and (2.2.14]), we have for ty > 0 small enough, a,(¢,-,-) is a bounded
set of S(—o0) and supp(a,(t,-,-)) € p~1(J) uniformly with respect to t € [—to, to].

Step 2: L?-boundedness of remainder We will use the so called Kuranishi trick (see e.g.
[Rob87], [Miz13]). We first have

t
Ry(t) = ihN—l/ pilt—s)h ™ w(h? P) (RN(h)JN(S) n th(S(S),rNH(h,s)))ds.
0

Using that eilt=9)h ™ w(h*P) g unitary in L? and Propositionthat Ry (h) is bounded in L? —
L? uniformly in h € (0, 1], the estimate follows from the L2-boundedness of Jj(S(t),a(t))
uniformly with respect to h € (0,1] and ¢ € [~to, to] where (a(t))ie[—t,,t,] i bounded in S(—o0).
For t € [—tg, o], we define a map on R3? by

1
Mtiz,.8) = [ VaS(ty +s(o— 1),
0
Using (2.2.12]), there exists ¢y > 0 small enough so that for all ¢ € [—tg, o],
|VeVeS(t,z, &) — Ipal| < 1, Va,& € R

This implies that
1
IVeA(t, z,y,&) — Iga| < / VeV Sty + s(x —y), &) — Iga|lds < 1, Yt € [—to, to].
0

Thus for all t € [~tg,t0] and all z,y € R?, the map & + A(t,z,y,&) is a diffeomorphism from
R? onto itself. If we denote & — A™1(t, 2,5, &) the inverse map, then A~ (¢, z,y, ) satisfies (see
[Bouc00]) that: for all a, o/, B € N%, there exists Cyarg > 0 such that

0705 0 (A (8,2,9,€) — )| < Cawslt, (2.2.15)
for all t € [~tg,to]. Now, by change of variable £ — A~Y(t,z,y,&), the action J,(S(t),a(t)) o

Jn(S(t),a(t))* becomes (see [Rob87]) a semi-classical pseudo-differential operator with the ampli-
tude

alt,z, A= (t, z,y,8))a(t,y, A1 (t, z,y, &) | det Oe A7 (¢, 2, y, €)|.

Using the fact that (a(t))ic(—ty,¢,) is bounded in S(—o0) and (2.2.15)), this amplitude and its
derivatives are bounded. By the Calderén-Vaillancourt theorem, we have the result.
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Step 3: Dispersive estimates We prove the result for a general term, namely Jp,(S(t),a(t))
with (a(t))ie[—to,t,] & bounded family in S(—oc0) satisfying supp(a(t,-,-)) € p~*(J) for some small
neighborhood J of supp(¢) not containing the origin uniformly with respect to ¢t € [—to, to]. The
kernel of Jp,(S(t),a(t)) reads

Kp(t,z,y) = (2rh) ™ / ehT N SEEO=v O otz €)dE.
Rd

It suffices to show for all ¢ € [~tg,to] and all h € (0,1], |Kp(t,z,y)| < Ch=4(1 + [t|h=1)~%2, for
all z,y € R We only consider the case t > 0, for t < 0 it is similar. Since the amplitude is
compactly supported in & and a(t,r, &) is bounded uniformly in ¢ € [~tg,to] and z,y € RY, we
have |Kp,(t,z,y)| < Ch™%. If 0 <t < h hence 1 +th™! < 2, then

\Kn(t,z,y)| < Ch™% < Ch=4(1 + th=1)=9/2,

We now can assume that h <t < ¢, and write the phase function as (S(¢,z,€) —y - £)/t with the
parameter \ :=th™! > 1. By the choice of g& (see Step 1 for @), we see that on the support of the

amplitude, i.e. on p~1(J), qo(z, &) = . Thus we apply (2.2.11)) to write
p p ) 4 Yy
1
S(t,0,9) =€+ 0o &)+ [ (1= 00925 (0t,,€)ds
0

Next, using that p(z,£) = &G(2)¢ = |n|? with n = /G(2)¢ or ¢ = /g(x)n where g(z) =
(gjk(x))?,kzl and G(z) = (g(x))~! = (gjk(av))‘ikz17 the kernel can be written as

Kt 2, y) = (21h) / ANt 2 \Sg(@m)lg()|dn,

R
where )

®(t, 2, y,m) = 9(“)@; “V e+ t/o (1— 0)925(0t, 2, \/g(x)n)d6
Recall that |g(z)| := \/detg ). By M |\/G(z)| and ||/g(z)|| are bounded from below and

above uniformly in z € R? ThlS implies that 7 still belongs to a compact set of R% away from
zero. We denote this compact support by . The gradient of the phase is

T)\xr — 1
Vo (t,2,5.1) = M oulnl™ 2+ ([ (1= O)(TedES) 08,2, awma0) Vota).

Let us consider the case |\/ (x —y)/t| > C for some constant C large enough Thanks to

the Hamilton-Jacobi equation (see also (A.1.9), (A.1.2) and Lemma and the fact

o € (0,00)\{1}, we have for ¢, small enough,

IV, ®| > [V/g(z)(z —y)/t| — aln|”~t — O(t) > Ci.

Hence we can apply the non stationary theorem, i.e. by integrating by parts with respect to n
together with the fact that for all 8 € N? satisfying |3| > 2, |85<I>(t,x,y, n)| < Cg, we have for all
N > 1,

|Kn(t,z,y)| < Ch™A™N < Ch=4(1 4 th™1)~4/2,

provided N is taken greater than d/ 2
Thus we can assume that [\/g(z)(x —y)/t| < C. In this case, we write

T
Vit ,.m) = olnl” ™ (I + (o = D) +O().
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Chapter 2. Strichartz estimates on bounded Euclidean spaces

Using that

T
‘deto|n|"_2(le +(0—2) ”mg )‘ = oo —1|In|°=27 > C.

Therefore, for ¢y > 0 small enough, the map n — V,®(t,2,y,n) from a neighborhood of K
to its range is a local diffeomorphism. Moreover, for all 3 € N? satisfying |3| > 1, we have
|8§¢>(t,x,y, n)| < Cg. The stationary phase theorem then implies that for all ¢ € [h, o] and all

z,y € R? satisfying |\/g(z)(z — y)/t| < C,
[Kn(t,2,9) < Ch™IA™2 < Ch=(1+ th™!) =2,

This completes the proof. O
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CHAPTER 3

Strichartz estimates for
Schrodinger-type equations on
compact manifolds without
boundary
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In this chapter, we establish Strichartz estimates for Schrédinger-type equations posed on a
compact Riemannian manifold without boundary (M, g), namely

(3.0.1)

iOu(t,x) + |Vy|ou(t,x) = F(t,z), (t,x)elxM,
u(0,z) = Y(z), x€M,

where o € (0,00)\{1} and |V,| = /-4, with A, the Laplace-Beltrami operator on (M, g).

Before stating our main result, let us recall known results related to the problem. Burg-
Gérard-Tzvetkov established in [BGT04] Strichartz estimates with a loss of 1/p derivatives for the
homogeneous linear Schréodinger equation (i.e. o = 2), namely

le™ 29| Lo (1, Laary) < CNY I raim(anys (3.0.2)

where (p, ¢) is a sharp Schrédinger admissible pair and g < co (see (0.0.1)). When M is the flat
torus T?, Bourgain showed in [Boul], [Bou2] some estimates related to (3.0.2) by means of the
Fourier series for the Schréodinger equation. A direct consequence of these estimates is

d 1

||87itAg¢\|L4(Tde) < ClYllar ey, v > 1 2 (3.0.3)

When M = T and o € (1,2), the authors in [DETI16] established estimates related to (3.0.3)),

namely

2—-0
8

eVl pacrwry < Cllllavmy, v > (3.0.4)
The main purpose of this chapter is to extend the result of Burq-Gérard-Tzvetkov to the homo-
geneous linear Schrédinger-type equation (3.0.1). Precisely, we have the following result.

Theorem 3.0.1. Consider (M, g) a smooth compact boundaryless Riemannian manifold of di-
mension d > 1 and let I C R a bounded interval. If o € (1,00), then for all (p,q) Schrodinger
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admissible with q < oo, there exists C' > 0 such that for all 1 € H¥vat(@=D/P(D),
||eit|v§|a¢||Lp(I,Lq(M)) < Ol o+ =170 (ary - (3.0.5)

Moreover, if u is a (weak) solution to (3.0.1), then

lull Lo (r,e(ary) < C(Ilzbllep,qul)/p(M) + HF||L1(I,quﬂa—l)/p(M))). (3.0.6)

If o €(0,1), then (3.0.5) and (3.0.6) hold with ~, , in place of v, 4+ (o —1)/p.

The proof of Theorem w is based on Strichartz estimates on R¢ equipped with a smooth
bounded metric g given in the previous chapter.

Remark 3.0.2. 1. Note that the exponents v, ,+ (¢ —1)/p = d/2 — d/q — 1/p in the right
hand side of and v, 4 = d/2 —d/q — o/p in the case of o € (0,1) correspond to the
gain of 1/p and o /p derivatives respectively compared with the Sobolev embedding.

2. Using the same argument as in [BGT04], we see that the endpoint homogeneous Strichartz
estimate is sharp on S?, d > 3. Indeed, let ¢ be a zonal spherical harmonic associated
to eigenvalue A = k(d + k — 1). One has (see e.g. [Sog86]) that for A > 1,

s d—1 d 2(d+1
(54)

< ¢ < oo.
2 g Va1 ==

Moreover, the above estimates are sharp. Therefore,

i o i o s(2%)
€Yol || 2y v (gay) = lle VA Wl Lo e iy ~ VA,

where 2* = 2d/(d —2) and s(2*) = 1/2. This gives the optimality of since a2+ + (0 —
1)/2 =1/2 = s(2%).
3. By the same technique used in the proof of Theorem [3.0.1] we can prove with minor modifi-
cations Strichartz estimates for the homogeneous linear half-wave equation on (M, g) which
is similar to the one given in Corollary .
As an application of Theorem [3.0.1] we obtain Strichartz estimates for inhomogeneous linear
wave-type equations posed on (M, g). Let us consider the following inhomogeneous linear wave-
type equations posed on (M, g),

{afu(t,x)Jr( Ag)7v(t,z) = G(t,x), (o) elxM, (3.0.7)

0(0,2) = w(x),  Bw(0,z) = Blx), « € M.
Corollary 3.0.3. Consider (M, g) a smooth compact boundaryless Riemannian manifold of di-
mension d > 1. Let I C R be a bounded interval and v a (weak) solution to (3.0.7)). If o € (1,00),

then for all (p,q) Schridinger admissible with ¢ < oo, there exists C > 0 such that for all
(¢, ¢) € Hwat(@=D/2(A) x HYpat(@=1)/p=0(7f),

||U||LP(1,Lq(M)) < C('|[v](0)||H7qu+(”71)/l"(M) + HG‘|L1(I,HVP,#(U*I)/P*U(M)))7 (3.0.8)
where

||[U](O)HH’quHU*l)/P(M) = ‘WHHVP&H”*U/P(M) + ||¢||HWp.q+<°*1)/P*”(M)~

If o €(0,1), then (3.0.8) holds with 7y, 4+ (0 — 1)/p is replaced by ~p 4.
3.1 Notations

Coordinate charts and partition of unity Let M be a smooth compact Riemannian manifold
without boundary. A coordinate chart (U, Vi, k) on M comprises an homeomorphism x between
an open subset U, of M and an open subset V,, of R?. Given ¢ € C5°(U,)(resp. x € C§°(Vy.)),
we define the pushforward of ¢ (resp. pullback of x) by k.¢ := ¢ o k™! (resp. xk*x := x o x). For
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a given finite cover of M, namely M = U, U, with #F < oo, there exist ¢,, € C§°(U,),k € F
such that 1 =) _¢,.(m) for all m € M.

Laplace-Beltrami operator For any coordinate chart (U, Vy, k), there exists a symmetric

positive definite matrix g (z) := (gfk(a:));l w—1 With smooth and real valued coefficients on V;; such

that the Laplace-Beltrami operator P = —A, reads in (U, Vi, k) as

d
Poim =il = = 3 lga(@)| 7105 (l9w(@)lg ()00,

j,k=1

where |g,.(z)| = \/det g, (z) and (g,{k(x))ik:l := (gx(z))~!. The principal symbol of P, is

d
pe(®8) = Y giF(@)&56h-

jk=1

3.2 Functional calculus

In this subsection, we recall well-known facts on pseudo-differential calculus on manifolds (see
e.g. [BGT04]). For a given a € S(m), we define the operator

Opj(a) := K*Opp(a)kx. (3.2.1)

If nothing is specified about a € S(m), then the operator Op}(a) maps C§°(U,) to C>*°(U,). In
the case supp(a) C V,; x R, we have that Opf(a) maps C§°(U,) to C§°(U,) hence to C°°(M).
We have the following result.
Proposition 3.2.1. Let ¢,, € C§°(U,;) be an element of a partition of unity on M and =
C3°(U,) be such that ¢, = 1 near supp(¢,) and ¢ = 1 near supp(¢,). Then for all N > 1, all
z € [0,4+00)and all h € (0,1],

N-1

(h2P - 2)71¢m = Z hjénOpZ(QR,j(z))(bn + hNRN(Zv h)7

Jj=0

where q,; j(2) € S(—2—7) is a linear combination of ay(p,—z)"1~" for some symbol a), € S(2k—j)
independent of z and

RN(Zv h) = —(h2P - Z)ildsnOPZ(Tn,N(Z» h’))d)lm
where 1, n(z,h) € S(—N) with seminorms growing polynomially in 1/dist(z, R") uniformly in
h € (0,1] as long as z belongs to a bounded set of C\[0,+00).

Proof. Let us set X, := K«¢y, similarly for ¥, and Y.. We get X, Xns Xx € O (Vi) and ¥, = 1
near supp(x«) and X, = 1 near supp(x,). We first find an operator, still denoted by P, globally
defined on R? of the form

d d
P==>" g% @00k + > _ bi(x)a, (3.2.2)
=1

j,k=1

which coincides with P, on a large relatively compact subset Vj of V.. By “large”, we mean that
supp(xx) C Vo. For instance, we can take P = vP,, — (1 — v)A where v € C§°(V,;) with values in
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Chapter 3. Strichartz estimates on compact manifolds

[0, 1] satisfying v = 1 on Vj. The principal symbol of P is

d

p(z, &) = Z ¢F(2)€;&,  where ¢7F(x) = v(x)gi* (2) + (1 — v(z))dju. (3.2.3)
J,k=1

It is easy to see that g(z) = (¢7%(z)) satisfies (2.0.2)) and (2.0.3) and b; is bounded in R? together
with all of theirs derivatives. Using the standard elliptic parametrix for (h2P — 2)~! (see e.g
[Rob&7]), we have

(R2P — 2)Opn(gn(2,h)) = I + hN Opy (7 n (2, h)), (3.2.4)

where g (2, h) = Z;V;Ol hiqy ;(z) with g, ;(2) € S(—2—7) and 7 N (z, h) € S(—N) with seminorms

growing polynomially in () /dist(z,R™) uniformly in h € (0,1]. On the other hand, we can write
(h’ZPK - Z))ZHOph(QH(Zv h))XK
= XN(hQPfi - Z)Oph(qﬁ(z> h))XH + [hQme )ZH]Oph(qn(Z7 h))XN (325)

Here [h2P,, ] and Y, have coefficients with disjoint supports. Thanks to (3.2.4) and the com-
position of pseudo-differential operators with disjoint supports, we have

(thH - Z))ZnOph(qn(Zv h))Xfc =Xx t+ hN;(nOph("’m,N(Zv h))Xm

with r. (2, h) satisfying the required property. We then compose to the right and the left of
above equality with x* and k, respectively and get

(2P = 2) ¢ O (4s(2, 1)) br = b + BN GOp; (. n (2, b)) b

This gives the result and the proof is complete. O

Next, we give an application of the parametrix given in Proposition [3.2.1]and have the following
result (see [BGT04, Proposition 2.1] or [BT07, Proposition 2.5]).

Proposition 3.2.2. Let ¢,., ¢y, (ZK be as in Proposition and f € C§°(R). Then for all N > 1
and all h € (0,1],

N-1

F(RPP)p = > W §pOpfi(ax;)én + b R n(h), (3.2.6)

Jj=0

where a,,; € S(—00) with supp(ax,;) C supp(fopx) for j =0,...,N —1. Moreover, for all m > 0,
there exists C' > 0 such that for all h € (0,1],

| RN (W) ir=m a1y o (ary < ChT2™. (3.2.7)

Proof. The proof is essentially given in [BGT04) Proposition 2.1]. For the reader’s convenience,
we recall some details. By using Proposition and the Helffer-Sjostrand formula (see [DS99)]),
namely

702P) =~ [ OF)02p -7 dr (o),

where fis an almost analytic extension of f, the Cauchy formula implies 1' with

Ro(h) =+ [ BF02P = 276,007 (2 1) ndL(2)
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It remains to prove (3.2.7). This leads to study the action on L?(R%) of the operator
/gf(z)(Pn + 1)m/2(thﬁ - Z)ilinOph(Tn,N(Z, h))xx(Px + l)m/zdL(Z)'
C

Using a trick as in (3.2.5), we can find a globally defined operator P which coincides with P, on
the support of x,.. We see that ||(h*P — 2) ™| 12(ra)— r2ray < CIm 2|~ and

(P + 1)™20pn (1 (2, ) Xx (P + 1)™2 = h=2mOpp, (7.n (2, 1)),

where 7, v (z,h) € S(—N + 2m) with seminorms growing polynomially in 1/dist(z, R*) uniformly
in h € (0,1] which are harmless since f is compactly supported and df(z) = O(|[Im z|>). By
choosing N such that N — 2m > d, the result then follows from the £(L?(R%)) bound of pseudo-
differential operator given in Proposition [2.1.1 O

A direct consequence of Proposition [2:1.2] using partition of unity and Proposition [2.1.1]is the
following result (see [BGT04, Corollary 2.2] or [BTO7, Proposition 2.9]).
Corollary 3.2.3. Let f € C5°(R). Then for all 1 < g <r < oo, there exists C > 0 such that for
all h € (0,1],

3l

—(4_—
||f(h2p)||L‘1(M)—>L"'(]VI) <Ch (q )

The next proposition gives the Littlewood-Paley decomposition on compact manifolds without
boundary (see [BGT04, Corollary 2.3]) which is similar to Proposition [2.1.4]
Proposition 3.2.4. There exist oo € C§°(R) and ¢ € C§°(R\{0}) such that for all q € [2,00),
there exists C > 0,

9 9 1/2
lullzaan < (Y e Pyuldaas) " + Cllullzzon,
h—1l:dya

for all uw € C§°(M).

3.3 Reduction of problem

In this subsection, we first show how to get Corollary from Theorem and then give
a reduction of Theorem [3.0.1]

Proof of Corollary Since we are working on compact manifolds without boundary, it
is well-known that there exists an orthonormal basis (e;);en of L2(M) := L?*(M,dvol,) of C*
functions on M such that

[Vol7e; = Afe;,

with 0 < Ag <A <Ay < -+, limj,0Aj = 400. For any f a piecewise continuous function,
the functional f(|V,]|) is defined as

F(VgDu =" FA\)uje;,
JjEN
where

w1 (e = [ () dvoly @)

If we set jo := dim(ker |V4|7), then \g = Ay = -+ = Xjo—1 = 0 and A\; > A;, > 0 for j > jo.
Here the number jq stands for the number of connected components of M and the corresponding
eigenfunctions (ej)j“*1 are constant functions. We now define the projection on ker(|V4|?) by

Jj=0
Hou = E Uj€y.

Jj<Jjo
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By the Duhamel formula, the equation (3.0.7) can be written as

sin(t|V4]7) sin 5)|Vgl?)
v(t) = cos(t|V4|7) + (b / G(s)ds.
! Vgl |V |”
We remark that the only problem may happen on ker(|V,|7) of % But it is not the case

because

sin(t|Vg4 sin(t sin(tA?)
ST 5 D,y = 5 OD ey =5 ey = o

J<jo 3 J<jo J j<do

Since ker(|V4|?) is generated by constant functions, local in time Strichartz estimates of IIyv,
namely ||IIov||z»(1,za(ar)) with I a bounded interval, can be controlled by any Sobolev norms of
data. Therefore, we only need to study local in time Strichartz estimates of v away from ker(|V4|7).
Using the fact that

itIVol7 1 e=itl V| it V|7 _ it V|

cos(t]V,|7) = 5 L sin(t]V,|7) = —— :
Strichartz estimates (3.0.8) follow directly from the ones of e**Vsl” as in (3.0.6). This gives
Corollary O

We now prove Theorem To do so, we have the following reduction.
Proposition 3.3.1. Consider (M, g) a smooth compact Riemannian manifold of dimension d > 1.
Let 0 € (0,00)\{1} and ¢ € C§°(R\{0}). If there exists to > 0 small enough and C > 0 such that
for all+p € LY (M) and all h € (0,1],

. —1 o _ — —
" VD" o(h2 Y| oo (ary < CRTH L+ [t ™29 1 (a1 (3.3.1)

for all t € [—to, o], then Theorem holds true.

Proof. The proof of homogeneous Strichartz estimates follows similarly to the one given in Propo-
sition We only give the proof of (3.0.6]), i.e. o € (1,00), the one for o € (0, 1) is completely
similar. The homogeneous part follows from (3.0.5). It remains to prove

t
H / =1V P()ds
0

The estimate (3.3.2) follows easily from (3.0.5) and the Minkowski inequality (see [BGT04], Corol-
lary 2.10). Indeed, the left hand side reads

H /nm =17 1" B(s)ds

Lp(I,L9(M)) < C”FHLl(I,HVp,qu(a—l)/v(M))- (3~3-2)

1 W=)Val” o »(1,L9(M))d
1,La(M)) /” 0.1 (s)e ($)lLe(r,La(ary)ds

S/”ei (t—5)| V4|7 F(8)|| Lo (1.0 (ary)ds
I

Lr(

<C [ IF G smasic-inqands
I

This gives (3.3.2]) and the proof of Proposition is complete. O

3.4 Dispersive estimates

This subsection is devoted to prove the dispersive estimates . Again thanks to the local-
ization ¢, we can replace (h|V,]) by w(h?P) where w(\) = G(AMVA with ¢ € C5°(R\{0}) such
that ¢ = 1 near supp(y). The partition of unity allows us to consider only on a local coordinates,
namely > eithfl“’(th)go(hQPwﬁ. By using the same argument as in Remark and Propo-
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sition the study of ei"h” “(W*P)p(h2P)g, is reduced to the one of ¢ith “(*P) G Opt(a, )¢,
with a,, € S(—o0) and supp(a,;) C supp(¢ o px). Let us set

u(t) = e PG Opi(ay) dtb.

We see that u solves the following semi-classical evolution equation

{(th—w(h2P))u(t) - 0, (341

U|t=0 = QEHOPZ(G%)QSIJ/J-

The WKB method allows us to construct an approximation of the solution to (3.4.1)) in finite time
independent of h. To do so, we first choose ¥, 0, V,; € C:(‘)X’(U,i) such that 9, = 1 near supp (ﬁﬁ

(see Proposition for dz),g), U, = 1 near supp(9,.) and 9, = 1 near supp(d,). Proposition
then implies

w(h?P)d, = U.0p§ (b (h))0s + WY R, v (R), (3.4.2)

where b, (h) = l]izl h'b., with b, € S(—o00) and R, n(h) = Orzan—r2(m)(1). We apply
the construction of the WKB approximation given in Subsection and find tg > 0 small
enough, a function S, € C*([—tg,to] x R??) and a sequence a, ;(t,-,-) € S(—o0) satisfying
supp(ax ;(t,-,+)) C p~1(J) (see for the definition of p) for some small neighborhood J of
supp(y) not containing the origin uniformly in ¢ € [—tg, to] such that

(hDy = Opn(by(h)))Jw,n (t) = R n (1), (3.4.3)

where

i

Ten(t) =) W Jn(Sk(t), an (1), Je.n(0) = Opn(ax),

satisfies for all ¢t € [—tg, to] and all (z,£) € p~1(J),

I
=)

050 (S (t,,6) =2 - )] < Caglt], |a+p>1, (3.4.4)
0207 (Sults,€) =2 - €+ /p(@,€) )| < Casltl, (3.4.5)

and for all h € (0,1],
|, N ()| £ (R oo (ReY < Ch=(1 + [t|h=1)~¥/2, (3.4.6)

Ry N (t) = Ora(rayp2ray (R 7).

Next, we need the following micro-local finite propagation speed.

Lemma 3.4.1. Let o € (0,00)\{1}, x, X € C5(R?) such that ¥ = 1 near supp(x), a(t) € S(—o0
with supp(a(t,-,-)) C p~1(J) uniformly in t € [—to,to] and S € C=([—to, to] x R24) satisfy (3.4.5)
for all t € [—to,to] and all (z,&) € p~*(J). Then for ty > 0 small enough,

Tn(S(1), a(t))x = XJn(S(t), a(t))x + R(t),

where R(t) = OLQ(Rd)%L2(Rd)(hOO),
Proof. The kernel of Jp,(S(t),a(t))x — XJn(S(t),a(t))x is given by

Ky (t,z,y) = (2mh)~¢ / e SEEO=v (1 _ g)(2)alt, z, €)x(y)dE.
Rd
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Chapter 3. Strichartz estimates on compact manifolds

Using (3.4.5)), we can write for ¢y > 0 small enough, t € [—tg,to] and (z,&) € p~1(J),

S(t,z, &) —y &= ¢ —ty/p(x, &) + 0.
By change of variables n = \/G(2)€ or £ = /g(z)n, we have

Kiltsavy) = (2mh) ™ [ w1 =5 @alta, olamnn) v glods

where ®(t,z,y,&) = \/g(x)(x —y) - n — t|n|” + O(t?). Thanks to the support of x and ¥, we see
that |« — y| > C. This gives for ¢ty > 0 small enough that

V@ (t,z,y,m)| = [Vg(@)(x —y) — tonln|”= + O(t*)] = C(1 + |z — y]).

Here we also use the fact that ||y/g(z)]|| is bounded from below and above (see (3.2.3)). Using the
fact that for all 8 € N? satisfying | ﬁ \ > 2,

0@ (¢, x,y,m)| < Cs,
the non stationary phase theorem implies for all N > 1, all ¢ € [~t,to] and all 2,y € R?,
|Kh(t7$ay)| S ChN_d(l + |JJ - y‘)_N

The Schur’s Lemma gives R(t) = Or2(rd)—2(ray(h>). This ends the proof. O

Proof of dispersive estimates (3.3.1) With the same spirit as in (3.2.1)), let us set J§ () =
K*Je N (t) ks, Ry (1) = K*Rye n(t)ks where Jg n(t) and R, ny(t) given in (3.4.3). The Duhamel
formula gives

u(t) = "G, Opf (ax) b
t
= eI O — i1 [ I D, ()G T (3)6 s
0
We aslo have from ([3.4.2)) that

(D — w(h?P))u i (5)x
= anhDsJ]’:I(s)ﬁbn - ﬁnOpZ(bn(h))qanKT(s)ﬁbn - hN%n,N(h)¢nJJ’i7(s)¢m
The micro-local finite propagation speed given in Lemma and (3.4.3) imply

N (8)bs
= Dk (hDs — Opp (b (h))) N (8)kuhs — Ri(s) = BN Ry n (B) DT (5) b
Do R5 (8)br — Rie(8) — WY R N (R) D T (5) s

(hDs - w(hQ ))(5

where R, (s) = Or2(am)—r2(am)(h™). Here we also use the L2-boundedness of pseudo-differential
operators with symbols in S(—o0). We then get

u(t) = an‘]]’f/(t)qsnw + RKN(t)d)a

where

W = —ih™ / =) wP) ([, R (8) i — Ris(5) — WY R w0 (B) B IR (8) b )i,
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3.3. Dispersive estimates

By the same process as in Remark using |D and the fact R% (t) = OLz(M)HLz(M)(hN_l)
for all t € [—tp, to], we obtain

. —1 2 _ — —
e P (h2PYgth|| oo (ary < Ch™ 4L+ [#1R™) "2 |9 1. (ar)

for all ¢ € [—to,to]. The dispersive estimates (3.3.1) then follow from the above estimates and
partition of unity. This completes the proof. O
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CHAPTER 4

Global-in-time Strichartz
estimates for Schrodinger-type
equations on asymptotically
Euclidean manifolds
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In this chapter, we consider the time dependent Schrodinger-type equation on a Riemannian
manifold (M, g), namely

{ iatu(tax) - |Vg|"u(t,x) 0, (t7x) €eRx M, (4.0.1)

uw(0,2) = ¢(x), €M,

where o € (0,00)\{1},|V,| = /—A, with A, the Laplace-Beltrami operator associated to the
metric g. Note that in we consider the minus sign in front of |V,4|? which is different from
the previous chapters. This irrelevant change is just for convenience to fit the usual construction
of the Isozaki-Kitada parametrix.

When M = R? and g = Id, i.e. the flat Euclidean space, the solution to enjoys global
in time Strichartz estimates (see Corollary [L.1.4)),

lullLe®,La®ay) S 1Yl ge.a gays

where (p, ¢) satisfies the Schrodinger admissible condition with ¢ < oo and v, 4 is as in (1.0.7).
When M = R? and g a smooth bounded metric satisfying (2.0.2) and (2.0.3) or (M,g) a
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Chapter 4. Strichartz estimates on asymptotically Euclidean manifolds

smooth compact Riemannian manifold without boundary, we also have Strichartz estimates but

only local in time (see Theorem and Theorem [3.0.1)),

”uHLP([O,l],L‘I(M)) < Hw”HW(M)-

In the case o € (0,1), we have the same (local in time) Strichartz estimates as in (R? 1d), i.e.
v = Ypq- In the case o € (1,00), there is a “loss” of (¢ — 1)/p derivatives compared to the one on
(R4,Id), ie. v =pq+ (0 —1)/p.

When M is a non-compact Riemannian manifold, global in time Strichartz estimates for the
Schrodinger equation (i.e. o = 2) have been studied intensively over the last decade. In [BT0S],
Bouclet-Tzvetkov established global in time Strichartz estimates on asymptotically Euclidean man-
ifold, i.e. R? equipped with a long range perturbation metric g (see ) with a low frequency
cutoff under non-trapping condition. The first breakthrough on this topic was done by Tataru in
[Tat08] where he considered long range and globally small perturbations of the Euclidean metric
with C? and time dependent coefficients. In this setting, no trapping could occur. Later, Marzuola-
Metcalfe-Tataru in [MMTO08] improved the results by considering more general perturbations in a
compact set, including some weak trapping. Afterwards, Hassell-Zhang in [HZ16] extended those
results for general geometric framework of asymptotically conic manifolds and including very short
range potentials with non-trapping condition. Subsequencely, Bouclet-Mizutani in [BM16] estab-
lished global in time Strichartz estimates for a more general class of asymptotically conic manifolds
including all usual smooth long range perturbations of the Euclidean metric with hyperbolic trap-
ping condition. After that, Zhang-Zheng [ZZ17] extended the result of Hassell-Zhang [HZ16] and
proved global in time Strichartz estimates for Schrodinger operators with potentials on assymptot-
ically conic manifoldswith non-trapping condition. They also extended Bouclet-Mizutani’s result
[BM16] by considering Schrodinger operators with short range potentials on asymptotically conic
manifolds with hyperbobic trapping condition. Recently, Zhang-Zheng [ZZ18]| established global
in time Strichartz estimates for Schréodinger operators on metric cone.

In order to prove Strichartz estimates on curved backgrounds, one uses the Littlewood-Paley
decomposition to localize the solution in frequency. One then uses microlocal techniques to derive
dispersive estimates and obtain Strichartz estimates for each spectrally localized components. By
summing over all frequency pieces, one gets Strichartz estimates for the solution. For local in time
Strichartz estimates, this usual scheme works very well. However, for global in time Strichartz
estimates, one has to face a difficulty arising at low frequency. Due to the uncertainty principle,
one can only use microlocal techniques for data supported outside compact sets at low frequency.
Therefore, one has to use another technique for data supported inside compact sets. Note also
that on R¢, one can use the scaling technique to reduce the analysis at low frequency to the study
at frequency one, but this technique does not work on manifolds in general.

The goal of this chapter is to study global in time Strichartz estimates for the Schrédinger-
type equation on asymptotically Euclidean manifolds. In the case of Schrodinger equation, it can
be seen as a completion of those in [BTO8] of spatial dimensions greater than or equal to 3. In
order to achieve this goal, we will use the techniques of [BM16] combined with the analysis of
[BT08]. Note that since we consider a larger range of admissible condition compared to the sharp
Schrédinger admissible condition (see (0.0.1))) of [BM16], we have to be more careful in order to
apply the techniques of [BM16].

Before giving the main results, let us introduce some notations. Let g(z) = (ij(x))?’kzl be
a metric on R% d > 2, and denote G(z) = (gﬂ‘“(gc))?’k:1 := g~ !(z). We consider the Laplace-
Beltrami operator associated to g, i.e.

d
DNy =" lg@)| " 0s, (9% (@)]g(2)|0x,) ,
gk=1

where |g(z)| := y/detg(x). Throughout the chapter, we assume that ¢ satisfies the following
assumptions.
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Chapter 4. Strichartz estimates on asymptotically Euclidean manifolds

1. There exists C' > 0 such that for all z,£ € R?,

CTHeP? < Z g (@)&8, < CIEP (4.0.2)

7,k=1
2. There exists p > 0 such that for all & € N%, there exists C,, > 0 such that for all z € R,
0% (9% (x) — 0x) | < Ca ()77 (4.0.3)

3. The geodesic flow associated to ¢ is non-trapping. It means that the Hamiltonian flow
(X(t),2(t) = (X(t,2,£),E(¢,z,£)) associated to p, i.e.

{z’m) = Va(X().20), {{(0) =<,

satisfies: for all (z,¢) € T*RY with & # 0,
| X (t)] = +o0 as t — +o0, (4.0.4)

where p is the prlnc1pal symbol of —A, (see - 4.0.5)) below). Remark that by the conservation
of energy and (| , all the geodesms starting from (z, §) are defined globally in time, i.e.
(X(t),2(t)) exmts for all t € R.

The elliptic assumption implies that |g(x)| is bounded from below and above by positive
constants. Thus for 1 < ¢ < oo, the spaces LY(R?, d,x) where d,o = |g(x)|dx and LI(R%) coincide
and have equivalent norms. In the sequel, we will use the same notation LI(R%) or L9 for short.
It is well-known that —A, is essentially self-adjoint on C§°(R?) under the assumptions and
. We denote the unique self-adjoint extension on L? of —A, by P. Note that the principal
symbol of P is

d

p(w, &) = = Y @& (4.0.5)

G k=1

Now let v € R and ¢ € [1,00]. The inhomogeneous Sobolev space W )¢ associated to the
metric ¢ is defined as a closure of the Schwartz space . under the norm

lullwys == 1 (Vo)  ullLa, (Vg) =/1-Aq.

It is very useful to recall that for all v € R and ¢ € (1, 00), there exists C' > 1 such that
CTHAV e < Nullwya < CIV) ullza, (4.0.6)

with (V) = v/1 — A where A is the free Laplace operator on R?. This fact follows from the
L%-boundedness of zero order pseudo-differential operators (see e.g [Sog86, Theorem 3.1.6]). The
estimates allow us to use the Sobolev embedding as on R?. For the homogeneous Sobolev
space associated to g, one should be careful since the Schwartz space is not a good candidate due
to the singularity at 0 of A — |A|7. Recall that (see [GV85, Appendix], [Tri83 chapter 5] and
[BL76, Chapter 6]) on R, the homogeneous Sobolev space W4 is the closure of .# under the
norm
el = 11970l o,

where
& ={ue | D*u(0) =0, Vo € N} .

Here * is the spatial Fourier transform. Since there is no Fourier transform on manifolds, we need
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Chapter 4. Strichartz estimates on asymptotically Euclidean manifolds

to use the spectral theory instead. We denote
Ly ={pP)u|ue .S ¢eCi((0,00))}. (4.0.7)

We define the homogeneous Sobolev space W; 4 associated to g as the closure of . under the
norm
ullyigea = Vgl ull La-

When ¢ = 2, we use HY, H", Hj and Hg instead of W2 W2, Wg”“2 and Hg respectively. Thanks
to the equivalence (4.0.6), we will only use the usual notation H” in the sequel. It is important
to note (see [Bouclll Proposition 2.3] or [SW10, Lemma 2.4]) that for d > 2,

lllfy = (IVglu, [Vglu) = (u, Pu) = [ Vull 72 = [lulF,. (4.0.8)

By Stone’s theorem, the solution to (4.0.1)) is given by u(t) = e=®Vsl"¢). Let fo € C°(R) be
such that fo =1 on [—1,1]. We split

u(t) = ulow(t) + Unigh (t),
where
Utow () 1= fo(P)e Vol 0, upign(t) = (1 — fo)(P)e Vel y. (4.0.9)

We see that uiow(t) and unign(t) correspond to the low and high frequencies respectively. By
the Littlewood-Paley decomposition which is very similar to the one given in [BM16, Subsection
4.2] (see Subsection , we split the high frequency term into two parts: inside and outside a
compact set. Our first result concerns the global in time Strichartz estimates for the high frequency
term inside a compact set.

Theorem 4.0.1. Consider R%, d > 2 equipped with a smooth metric g satisfying ,
and assume that the geodesic flow associated to g is non-trapping. Then for all x € C§°(R*) and
all (p,q) Schrédinger admissible with g < oo, there exists C' > 0 such that for all ¢ € %,

IXunignll o g, Loy < Cllllgrea- (4.0.10)

The proof of Theorem is based on local in time Strichartz estimates and global L?
integrability estimates of the Schrodinger-type operator. This strategy was first used in [ST02]
for the Schrodinger equation. We will make use of dispersive estimates given in Chapter 2] to get
Strichartz estimates with a high frequency spectral cutoff on a small time interval. Thanks to global
L? integrability estimates, we can upgrade these local in time Strichartz estimates in to global
in time Strichartz estimates. This strategy depends heavily on the non-trapping condition. We
believe that one can improve this result to allow some weak trapping condition such as hyperbolic
trapping in [BGH10]. We hope to come back to this interesting question in a future work.

Our next result is the following global in time Strichartz estimates for the high frequency term
outside a compact set.

Theorem 4.0.2. Consider R, d > 2 equipped with a smooth metric g satisfying 7
and assume that there exists M > 0 large enough such that for all x € C§°(RY),

[X(P—=X+i0) " x|lp2ore Sy AM, A> 1 (4.0.11)

Then there exists R > 0 large enough such that for all (p,q) Schridinger admissible with q < oo,
there exists C > 0 such that for all i € £,

||]l{\w\>R}uhigh||LT’(]R’LG) S CHwHH;fp,q . (4012)

The assumption (4.0.11)) is known to hold in certain trapping situations (see e.g. [Dat09],
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INZ09] or [BGHIO0]) as well as in the non-trapping case (see [Rob92] or [Vod04]). We remark that
under the trapping condition of [Dat09], [NZ09] or [BGHI0], we have

IX(P =X £40) " x|lz2sre Sy A2 log A, A > 1,
and under non-trapping condition, we have (see e.g. [Bur02], [Rob92]) that
(P = A£40) ' xllzaze Sy AT AL

The proof of Theorem relies on the so called Isozaki-Kitada parametrix (see [BT08]) and
resolvent estimates given in [BM16] using (4.0.11). Recall that the Isozaki-Kitada parametrix was
first introduced on R? to study the scattering theory of Schrédinger operators with long range
potentials [IK85]. It was then modified and successfully used to show the Strichartz estimates for
Schrodinger equation outside a compact set in many papers (see e.g. [BT07], [BT0S8], [BoucIl,
[Miz13], [Miz12] or [BM16]).
The low frequency term in enjoys the following global in time Strichartz estimates.

Theorem 4.0.3. Consider R, d > 3 equipped with a smooth metric g satisfying , .
Then for all (p,q) Schridinger admissible with ¢ < oo, there exists C' > 0 such that for ally € 2,

lwowll Lo 20y < CllYll v (4.0.13)

As mentioned earlier, since we consider a larger range of admissible condition than the one
studied in [BMI6], we can not apply directly the low frequency Littlewood-Paley decomposition
given in [BM16]. We thus need a “refined” version of Littlewood-Paley decomposition. To do so,
we will take advantage of heat kernel estimates (see Subsection. As a result, we split the low
frequency term into two parts: one supported outside a compact set and another one localized in
a weak sense, i.e. by means of a spatial decaying weight. The term with a spatial decaying weight
is treated easily by using global LP integrability estimates of the Schrédinger-type operator at
low frequency. Note that this type of global LP integrability estimate relies on the low frequency
resolvent estimates of [BR15] which is available for spatial dimensions d > 3. We expect that
global in time Strichartz estimates for the Schrodinger-type equation at low frequency may hold
in dimension d = 2 as well. However, we do not know how to prove it at the moment. For the
term outside a compact set, we make use of microlocal techniques and a low frequency version of
the Isozaki-Kitada parametrix. We refer the reader to Section [£.4] for more details.

Combining Theorem [£.0.1} Theorem [4.0.2] and Theorem [£.0.3] we have the following result.
Theorem 4.0.4. Consider R?, d > 3 equipped with a smooth metric g satisfying ,
and assume that the geodesic flow associated to g is non-trapping. Let u be a weak solution to
(4.0.1). Then for all (p,q) Schridinger admissible with ¢ < oo, there exists C > 0 such that for
ally € L,

[ullLe@®,Lay < CllYll govea (4.0.14)

Remark 4.0.5. Global in time Strichartz estimates for the homogeneous linear half-wave equation
o = 1 on asymptotically Euclidean manifolds d > 3 under non-trapping condition were established
by Sogge-Wang [SW10] by applying the result of Metcalfe-Tataru [MT12]. The method presented
in this chapter can be applied with a suitable modification to show Strichartz estimates for the
half-wave equation on asymptotically Euclidean manifolds under non-trapping condition, and thus
provides an alternative proof for global in time Strichartz estimates in the case o = 1.

Using the homogeneous Strichartz estimate and the Christ-Kiselev Lemma, we get the
following inhomogeneous Strichartz estimates.
Proposition 4.0.6. Consider R?, d > 3 equipped with a smooth metric g satisfying 7
and assume that the geodesic flow associated to g is non-trapping. Let o € (0,00)\{1} and u be a
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4.1. Functional calculus and propagation estimates

weak solution to the Cauchy problem

i0pu(t, ) — [Vg|u(t, z) F(t,x), (t,z) € R xR4,
u(0,2) = (x), zeRY

(4.0.15)

with data ¢ € £, and F € C(R,.%,;). Then for all (p,q) and (a,b) Schrédinger admissible with
q < oo and b < oo, there exists C' > 0 such that

o,y + lull o gy < C (I8l ama + 1P ot 1) ) (4.0.16)

provided that (p,a) # (2,2) and

Ypg = Ya' bt + O (4.0.17)

Remark 4.0.7. 1. The homogeneous Strichartz estimates (4.0.14) and the Minkowski inequal-
ity imply

lllzo@,z0) < C (Il igen + 1Fl e,y ) (4.0.18)

2. When o € (0,2)\{1}, we always have -, , > 0 for any Schrodinger admissible pair (p,q)

except (p,q) = (00,2). Thus, condition (£.0.17) implies that (p,a) # (2,2), and (£0.16)

includes the endpoint case. When o > 2, the estimates do not 1nc1ude the endpoint
estimate.
3. In the case o € (0,2]\{1}, we can replace the homogeneous Sobolev norms in and
by the inhomogeneous ones.
Proposition 4.0.8. Consider R%,d > 3 equipped with a smooth metric g satisfying ,
and assume that the geodesic flow associated to g is non-trapping. Let o € (0,00)\{1} and v be a
weak solution to the Cauchy problem

{ OPv(t,x) + (—Ay)v(t,x) = F(t,x), (t,z) € RxRY,

v(0, ) = vo(), O(0,2) = v (z), z€RY, (4.0.19)

with data vo,v1 € £, and F € C(R,%,;). Then for all (p,q) and (a,b) Schrodinger admissible
with ¢ < 0o and b < co, there exists C' > 0 such that

lollne,coy + el e e oy < € (N gm0 + 1F N gor ) (4.0.20)
where [v](t) := (v(t), v(t)) and
H[U]HLm(R,H;’P’q) = ”UHLx(R,H;Pﬂ) + Hat”HLoo(R’H;p,rv)
provided that (p,a) # (2,2) and

Yp.q = Yo' b + 20 (4.0.21)
Remark 4.0.9. As in Remark we have

lollzsg,zo) < C (NI ggne + 1FlL s g grma—))- (4.0.22)
4.1 Functional calculus and propagation estimates

In this section, we recall some well-known results on pseudo-differential operators and prove
some propagation estimates related to our problem.
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Chapter 4. Strichartz estimates on asymptotically Euclidean manifolds

4.1.1 Pseudo-differential operators.

Let p,m € R. We consider the symbol class S(u, m) the space of smooth functions a on R?¢
satisfying

833?@(1-’5)) < Caup <x>”*\0¢| <£>m7‘5‘ .

In practice, we mainly use S(p, —00) 1= NperS (1, Mm).
For a € S(u, m) and h € (0, 1], we consider the semi-classical pseudo-differential operator
Op"(a) which is defined by

Op"(a)u(z) = (2wh) ¢ / /R 5 e @)L, Ouly)dyde. (4.1.1)

By the long range assumption (4.0.3)), we see that k2P = Op”(p)+hOp" (p1) with p € S(0,2) given
in (4.0.5) and p; € S(—p —1,1) C S(—1,1). We recall that for a € S(u1,m1) and b € S(ua2, ma),
the composition Op”(a)Op"(b) is given by

N-—
Op" W Op" ((a#b);) + KN Op" (+7% (R)), (4.1.2)
7=0

H

where (a#b); = >, —; %agang € S(u1 + p2 — j,m1 +me — j) and (sz(h))he(o,l] is a bounded
family in S(p1 +p2 — N, m1 +me— N). The adjoint with respect to the Lebesgue measure Op” (a)*
is given by

N—-1
R Op" (a%) + KN Oph (ri (), (4.1.3)
7=0

where af = 37, _; iOngﬁ € S(pr — j,m1 — j) and (ry(h))nreo,1] is a bounded family in
S(/Ll —N,m1 — N)

We next recall the definition of rescaled pseudo-differential operator which is essentially given
in [BM16]. This type of operator is very useful for the analysis at low frequency. Let a € S(u, m)
and € € (0,1]. The rescaled pseudo-differential operator Op.(a) is defined by

Opi(ayula) = (2m) [ e aten, e e)uty)dyd.
R2d
Setting Deu(z) := ¢/?u(ex). Tt is easy to see that D, is a unitary map on L? and
Opc(a) = D.Op(a)D ", (4.1.4)
where D 'u(x) = e ¥?u(e 'z) and Op(a) := Op'(a), ie. h = 1 in (4.1.1). Thanks to

(4.1.2)), (4.1.3) and (4.1.4), the composition Op.(a)Op.(b) and the adjoint with respect to the
Lebesgue measure Op,(a)* with a € S(u1,m1) and b € S(u2, m2) are given by

=

Ope(@)0p() = 3 Ope((a#tt);) + Ope(rL), Opela) = 3 Opelal) + Opo(rly).
7=0 i

Il
o

4.1.2 Functional calculus.

In this subsection, we will recall the approximations for ¢(h?P) and ((ex)p(¢ 2P) in terms
of semi-classical and rescaled pseudo-differential operators respectively, where ¢ € C5°(R) and
¢ € C*(R?) is supported outside B(0,1) and equal to 1 near infinity. Here B(0,1) is the open
unit ball in R,
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4.1. Functional calculus and propagation estimates

We firstly recall the following L? — L"-bound of pseudo-differential operators (see e.g. [BT07,
Proposition 2.4]).
Proposition 4.1.1. Let m > d and a be a continuous function on R2¢ smooth with respect to the
second variable satisfying for all B € N%, there exists Cg > 0 such that for all z,& € R,

0 a(w,€)] < Cp (&)™
Then for 1 < q <r < oo, there exists C > 0 such that for all h € (0,1],
|0p" ()| Laspr < CH™(H1=/T),

The following proposition gives an approximation of ¢(h%P) in terms of semi-classical pseudo-
differential operators (see e.g. [BT07] or [Rob87]).

Proposition 4.1.2. Consider R? equipped with a smooth metric g satisfying (4.0.2) and (4.0.3).
Then for a given ¢ € C§°(R), there exist a sequence of symbols q; € S(—j, —00) satisfying go = ¢pop
and supp(q;) C supp(¢ o p) such that for all N > 1,

N-1
¢(h*P) = W Op"(q;) + " Ry (h),
=0

and form >0 and 1 < g < r < oo, there exists C > 0 such that for all h € (0,1],
|Rn () (@)™ || Loy pr < Ch™(W/amd/m),
1R (B) (@) sy pre < CH™2™.

Combining Proposition and Proposition one has the following result (see e.g. [BT07,
Proposition 2.9]).

Proposition 4.1.3. Consider R? equipped with a smooth metric g satisfying (4.0.2) and (4.0.3).
Let ¢ € C§°(R). Then for 1 < g <r < oo, there exists C > 0 such that for all h € (0,1],

l¢(h*P)[|a—srr < Ch™ W34/,

It is also known (see [BMI16]) that the rescaled pseudo-differential operator is very useful
to approximate the low frequency localization of P, i.e. operators of the form ¢(e 2P). By
the uncertainty principle, one can only expect to get such approximation whenever |z| is large,
typically |z| > e L.

Remark 4.1.4. Let 4 < 0,m € R and a € S(u, m). If we set

ac(z,€) = e'a(e” 'z, ),

then for all o, 3 € N%, there exists Cpg > 0 such that for all |z] > 1,¢ € RY,

1020 ac(w, &) < Cag (€)™, Vee (0,1].

We next rewrite e 2P as D.(D; (e 2P)D.)D;*. A direct computation gives

D' (e7*P)De = Op(pe) + Op(pe1) =: P,

where p.(z,£) = p(e 1z, &) and pe1(x, &) = e 1p1(e1z,£). We thus obtain
€ 2P = Ope(pe) + Ope(pe,1)- (4.1.5)

Using the fact that p € S(0,2),p; € S(—1,1), Remark allows us to construct the parametrix
for the resolvent ((ex)(e 2P — z)~* with ¢ € C*(R?) supported outside B(0,1) and equal to 1
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near infinity. Indeed, by writing ((ex)(e 2P — 2)~* = D, [¢(z)(P. — z)7*] D!, we can apply
the standard elliptic parametrix for ¢(z)(P. — z)~* and we have (see e.g. [BT07] or [BMI6]) the
following result.

Proposition 4.1.5. Let (,(,( € C® (~Rd) be supported outside B(0,1) and equal to 1 near infinity

such that ¢ = 1 near supp(¢) and ¢ = 1 near supp(C). Then for all k, N > 1 integers and
z € C\[0, +00), we have for e € (0,1],

C(ex)(e 2P — 2) Z C(ex)Ope(be j(2))¢(ex) + Ry (2, €),
7=0

where (be j(2))ee(0,1] i a bounded family in S(—j, —2k—j) which is a linear combination of d. ;(pe
2)7F b with (dey)ee(o,1) @ bounded family in S(—j,2l — j) and

R (2,€) = ((ex)Op. (ra (2, €))C(ex)(e 2P — 2)~*

where ry(z,€) € S(—N, —N) has seminorms growing polynomially in 1/dist(z, RT) uniformly in
€ € (0,1] as long as z belongs to a bounded set of C\[0,+c0).

A first application of Proposition [f.1.5]is the following result.
Proposition 4.1.6. Using the notations given in Proposition let k> d/2 and 2 < q < 0.
Then there exists C > 0 such that for all € € (0,1],

¢ (ex) (e 2P + 1) F|| 2y pa < Ce¥/?4/a, (4.1.6)
Proof. We apply Proposition [I.1.5| with N > d, we see that

N-1 ~
Clea)(e 2P +1)" C(ex)Ope(bey (—1))(ex) + C(ex)Ope(rn (—1,6))C(ex)(e 2P + 1)
=0
N-1 B
= 3 D{¢@)0p(bes (~1)E() + C(@)0plrn (-1, ) (@)(Pe+ 1)} D,
7=0

where (be,j(—1))ee(0,1], ("N (=1,€))ee(0,1] are bounded in S(—j, =2k — j) and S(—N,—N) respec-
tively. The result then follows from Proposition [.1.1] with A = 1 and that

d/2—d/q7 ||De_1

| Dellpa—sre =€ lL2mr2 = 1.

We also use that ||(P. + 1)7%| 22 < 1 for the remainder term. O

Another application of Proposition is the following approximation of ((ex)@(e 2P) in
terms of rescaled pseudo-differential operators.

Proposition 4.1.7. Consider R? equipped with a smooth metric g satisfying (4.0.2)) and (4.0.3).
Let ¢ € C§°(R) and ¢,¢,C be as in Proposition . Then there exists a sequence of bounded

families of symbols (qe,j)ec(0,1) € S(—Jj, —00) with qeo = ¢ © pe and supp(qe,;) C supp(¢ o pe) such
that for all N > 1,

N-1
Clex)p(e 2P) = Z C(ex)Ope(qe.;)C(ex) + Ry (e). (4.1.7)
7=0

Moreover, for any m > 0, there exists C > 0 such that for all € € (0,1],

[(e72P + 1)™ Ry (€) (ex)™ || Lop2 < C. (4.1.8)
Proof. By using Proposition with & = 1 and the Helffer-Sjostrand formula (see [DS99])
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namely

o(2P) = — [ D)2 =)L),

where 5 is an almost analytic extension of ¢, the Cauchy formula gives 1) with
1 —~ ~
Ry(e) = ;/ 00 (2)¢(ex)Ope(ri (2, €))C(ex) (e P — 2) " dL(2). (4.1.9)
C

Here (rn(z,€))ee(o,1) is bounded in S(—N,—N) and has semi-norms growing polynomially in
Im z|~! which is harmless since d¢(z) = O(|Im z|>). The left hand side of (4.1.8) is bounded by

% /«: [D6()ll(e72P + 1) ¢(ex)Ope(r (2, €)C(ex) (€72 P = 2) ™ ey | s p2dL(2).

By choosing ¢; € C*°(R?) supported outside B(0,1) such that ¢; = 1 near supp((), we can write
(€2P—2)" = (2P —2)"'(1—G)(ex) + (e 2P — 2) "¢y (ex).
We note that (1 — ¢1)(ex) (ex)™ is of size Op2_,72(1) due to the compact support in ez, and

(€2P + 1)(e 2P — 2)7! is of size Op2_,r2(|]Im z|7!) by functional calculus. Moreover, using
(4.1.5) and the same process as in the proof of Proposition there exists 7(m) € N such that

(€72 + 1)™C(e)Ope(r (2, ) &{ew)(€ 2P + 1) Yo g2 < Cllim 2|77,
This shows that
(e 2P +1)™Rn(€)(1 — ¢1)(ex) (ex)™N || 12yr2 < C. (4.1.10)
For the term (¢72P + 1)™ Ry (€)¢1 (ex) (ex)” , using Proposition (by taking the adjoint), we

see that
N'—1

(P —2)"'qler) = Y Cilew)Ope(be;(2))Gilew) + R (2, €),
§=0

with (be,j(2))ee(0,1] @ bounded family in S(—j, =2 — j) and

Rui(z,6) = (€ 2P — 2)7 11 (ex)Ope (s (2, €))Ca (e2),

where 7x/(2,€¢) € S(—N’,—N’) has seminorms growing polynomially in [Im z|~! uniformly in
e € (0,1]. By the same argument as above, we obtain

(e 2P + 1) Ry (€)¢y (ex) (ex)™ || 22 < C. (4.1.11)
Combining (4.1.10) and (4.1.11)), we prove (4.1.8]). O

As a consequence of Proposition [£.1.7, we have the following result.
Corollary 4.1.8. Let ¢ € C5°(R). Then for 2 < ¢ <r < oo, there exists C > 0 such that for all
e € (0,1],

[¢(ex)p(e2P)||Layrr < Cet/a=/T, (4.1.12)
Proof. By (4.1.7) and (4.1.8) (see also (4.1.9)), we can write for any N > 1 and any m > 0,

N-1

C(ex)p(e®P) = ) ((ex)Ope(ge,j)C(ex) + Ry (e),

Jj=0
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where

Ry(e) = C(ex)(e 2P + 1) "™ B, (ex) ™
with B = Op2_,r2(1) uniformly in € € (0,1]. The main terms can be estimated by using Propo-
sition m (see also the proof of Proposition . It remains to treat the remainder term. We
firstly note that (ez) ™ = Opa_yz2(e¥/9=%/2) provided N > (1(%7;2). Using this bound together
with Be = Op2_,72(1) and 7 we see that

1RN (€)l|zorr S IC(ex) (€72 P + 1) |2y l| Bell 2 e | ()™ [lraosie
< 6d/2—d/7‘€d/q—d/2 < ed/q—d/r.

This proves (4.1.12]). O

Another consequence of Proposition is the following estimate.
Corollary 4.1.9. Let ¢ € C§°(R). For m > 0, there exists C > 0 such that for all € € (0,1],

| (ex)™™ ¢p(e 2 P) (ex)™ || 122 < C. (4.1.13)

Proof. By choosing ¢ € C*(R%) supported outside B(0,1) and equal to 1 near infinity, we can
write (ex)” " ¢(e"2P) (ex)™ as

(ex) " p(e*P)((ex) (ex)™ + (ex) ™™ ¢ *P)(1 — ) (ex) (ex)™ .

The L? — L?-boundedness of the first term follows from the parametrix of ¢(e~2P)((ex) which
is obtained by taking the adjoint of (4.1.7). The second term follows from the fact that (1 —
¢)(ex) (ex)™ is bounded on L? since 1 — ¢ vanishes outside a compact set. O

4.1.3 Propagation estimates.

In this subsection, we recall some results on resolvent estimates and prove some propagation
estimates both at high and low frequencies. Let us start with the following result.
Proposition 4.1.10. 1. Consider R%, d > 2 equipped with a smooth metric g satisfying (4.0.2)),

(4.0.3) and suppose that the assumption (4.0.11) holds. Then for k > 0, there exists non-
decreasing N, € N such that for X belonging to a relatively compact interval of (0,+00),

there exists C > 0 such that for all h € (0,1],
[ (z) """ (h2P = AFi0) " R (2) T || pas e < ChTNE, (4.1.14)

2. Consider R4, d > 3 equipped with a smooth metric g satisfying (4.0.2)), (4.0.3). Then for
k > 0 and X belonging to a relatively compact interval of (0,+00), there exists C > 0 such

that for all € € (0,1],
[ (ex) ™ F (e 2P — A Fi0) 7 F (ex) T R || 2 < C (4.1.15)

The high frequency resolvent estimates (4.1.14) are given in [BM16l, Proposition 7.5] and the

low frequency resolvent estimates (4.1.15]) are given in [BRI5L Theorem 1.2]. Note that under the
non-trapping condition, the estimates (4.1.14]) hold with Ny = k 4+ 1 (see e.g. |[Rob94, Theorem

2.8]). We next use the resolvent estimates given in Proposition 4.1.10| to have the following
resolvent estimates for the Schrodinger-type operator.
Proposition 4.1.11. Let o0 € (0,00).

1. Consider R*,d > 2 equipped with a smooth metric g satisfying , and suppose
that the assumption holds. Then for k > 0, there exists non-decreasing Ny € N such
that for A belonging to a relatively compact interval of (0,400), there exists C' > 0 such that
for all h € (0,1],

()™ (I, 1)7 = i 10) 7 (@) oy e < O, (4.1.16)
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2. Consider R4, d > 3 equipped with a smooth metric g satisfying (4.0.2)), (4.0.3). Then for
k >0 and X belonging to a relatively compact interval of (0,+00), there exists C' > 0 such

that for all € € (0,1],

I (ea) ™ (V)7 = nF 10) 7 few) T e < € (4.1.17)

Proof. We only give the proof for (4.1.16)), the one for (4.1.17)) is similar using (4.1.13]). We firstly
note that the estimates (4.1.16)) are equivalent to

@) T (WY )7 = pFi0) T F (R P) (@) T T (2 ne < CRT Y,

where ¢ € C§°((0,+00)) satisfying ¢ = 1 near I. Note that here |V,| = v/P. Next, we write
i = A?/? with X lying in a relatively compact interval of (0, +00). By functional calculus, we write

(hVy))7 = pFi0 = (WP — A F i0)Q(h* P, p),
where Q(+, ) is smooth and non vanishing on the support of ¢. This implies for all k > 0,
(hVg)7 = pi0)"' " o(h*P) = (h*P = A5 i0) "' = Q(h*P, ),

where Q(h*P, 1) = ¢(h>P)Q~'~#(h?P, ). This allows us to approximate Q(h?>P, 1) by pseudo-
differential operators by means of Proposition Thus, we have that (z)'T* Q(h2P, ) (z)* "
is of size Orp2_,72(1) uniformly in y € I € (0,+00) and h € (0, 1]. Therefore, follows from
(4.1.14]). The proof is complete. O

We now give an application of resolvent estimates given in Proposition when k£ = 0 and
obtain the following global L? integrability estimates for the Schrédinger-type operators both at
high and low frequencies.

Proposition 4.1.12. Let o € (0,00) and f € C§°((0,400)).
1. Consider R, d > 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose

that the assumption (4.0.11)) holds. Then there exists C' > 0 such that for all 1 € L? and all
h e (0,1],

| (@)™" F(B2P)e= " MVl )| Lo 2y < CRO=NO/2||g) | 2. (4.1.18)

2. Consider R?, d > 3 equipped with a smooth metric g satisfying (4.0.2)), (4.0.3). Then there
exists C > 0 such that for all ¢ € L? and all € € (0,1],

| (ex) ™" fe2P)e < IVaD | a2y < Ce V2| o (4.1.19)
Remark 4.1.13. 1. By interpolating between L?(R) and L*(R), we get the following LP in-
tegrability estimates

| (@)t F(R2P)e T Va7l g 2y < CRO=NO/P||g)| 2. (4.1.20)
[ {ex) ™" fe2P)e™ T IVaD | o(mp2y < Ce VP . (4.1.21)

2. Thanks to the fact that P is non-negative, these estimates are still true for f € C5°(R\{0}).
Moreover, we can replace ||[¢)]| 2 in the right hand side of (4.1.18)) and (4.1.20]) (resp. (4.1.19)
and (4.1.21)) by [|f(A*P)¢||z2 (resp. | f(e *P)y|L2). Indeed, we choose f € C3°(R\{0})
such that f = 1 near supp(f) and write f(h2P) = f(h®P)f(h?P). We apply (4.1.18) and
with f instead of f. Similarly for the low frequency case.

Proof of Proposition [f.1.12] We again only consider the high frequency case, the low frequency
one is completely similar. By the limiting absorption principle (see [ReS78, Theorem XIII.25]),
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we see that || (z) " f(th)e_it(hWQ|)01/)||%2(R’L2) is bounded by

2msup || ()" f(B*P)((h[Vy])7 — p —i€) " f(B*P) (2) " |12 12| |72

HER
€e>0

By functional calculus and the holomorphy of the resolvent, it suffices to bound || (z)~" f(h2P)
((R|Vy])7 — o — i0)~  f(h*P) (x)~" || 12— 12, uniformly with respect to u € R. As a function of
h|V |, the operator f(h?P)((h|V,])7 —pu—i0)~t f(h?P) reads f(A?)(A\7 —p—140)~! f(A\?). Assume
that supp(f) C [1/c?,¢?] for some ¢ > 1, s0 A € [1/c, .

In the case p > 2¢” or pp < 1/2¢%, we have that 1 — A% > ¢” or A — > 1/2¢°. The functional
calculus gives

1F(h?PY(RIV )T = i = i0) " f(B*P)l| 125 L2 < 2¢7 | f Lo (gy-
Thus we can assume that p € [1/2¢7,2¢%]. Using with k£ = 0, we have
(@) (A V)7 = i Fi0) " (&)™ |22 < OB,
On the other hand, (z) ™" f(h2P) (x) is bounded on L? by pseudo-differential calculus. This implies
@)™ FR2PYe MV e < O N2

By scaling in time, this gives the result. O
Another application of the resolvent estimates given in Proposition is the following local

energy decay for the Schrodinger-type operators both at high and low frequencies.

Proposition 4.1.14. Let o € (0,00) and f € C§*(R\{0}).

1. Consider R, d > 2 equipped with a smooth metric g satisfying (4.0.2), (4.0.3) and suppose
that the assumption (4.0.11) holds. Then for k > 0, there exist C > 0 and non-decreasing

Ny € N such that for allt € R and all h € (0,1],

k

| (@)~ R e VDT p(n2PY (@) T N | e pe < CRTNE (e TR (4.1.22)

2. Consider R4 d > 3 equipped with a smooth metric g satisfying (4.0.2)), (4.0.3). Then for
k >0, there exists C > 0 such that for allt € R and all € € (0,1],

| (ex) ™ F et VDT £(e72P) (ex) T R || oy e < C (et) R (4.1.23)

Proof. As above, we only give the proof for the high frequency case. Using the Stone formula, the
operator e~ *("VaD? f(h2P) reads

1

gim L GBIV = i)™ = (BT g+ i0)

We use the same trick as in [BT08]. By multiplying to above equality with (it)* and using
integration by parts in the weighted spaces (z)” '~ L2, we see that (it)ke~"VsD)” f(h2P) is a
linear combination with [ + n = k of terms of the form

/Re_”“aﬁ(f(uz/”))(((hlvgD” — = i0) 7" = (W] V)T = g+ i0) T ) dp.

The compact support of f implies that u is bounded from above and below. The resolvent estimates

(4.1.16]) then imply
I ()~ R e VDT £ (12 P) (2) T N e e < OB ()7
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Here we use that IV, is non-decreasing with respect to m. By scaling in time, we have (4.1.22)).
The proof is complete. O

4.2 Reduction of the problem
4.2.1 The Littlewood-Paley theorems

In this subsection, we recall some Littlewood-Paley type estimates which are essentially given

n [BMI6]. Let us introduce f(A) = fo(A) — fo(2)), where fy given as in (4.0.9). We have
f € C5°(R\{0}) and

> o fe (L= f)(N), D FE@N) =1 oy(Nfo(N), AeR.
k=1 k=0
The Spectral Theorem implies that
(1= fo)(P)=)_f27*P), fo(P)=>_ f(2* (4.2.1)
k=1 k=0

Here we use the fact that 0 is not an eigenvalue of P in the second sum.
Theorem 4.2.1. 1. Let N > 1 and x € C°(R?). Then for q € [2,00), there exists C > 0 such
that

10— 00— f)(Pplle < (3 10 =00@2PYIR, + 0¥ (@)Y 102Pyls) .
" (4.2.2)

for all v € #(R?), where k € N\{0}. The same estimates hold for x in place of 1 — x
2. Let x € C°(R?) be such that x(x) =1 for |z| < 1. Then for q € (2,00), there exists C > 0
such that for all v € L?,

£oPwle < (30 10— x)(ex) (2Pl + €2 (ca) 7 fe2Ppol%)

e—2=9k

(4.2.3)

Here we use in the sum that k € N.

Note that the Littlewood-Paley theorem at low frequency is slightly different from the one in
[BM16l, Theorem 4.1]. In [BM16], Bouclet-Mizutani considered the sharp Schrodinger admissible
condition (see (0.0.1))). This allows to interpolate between the trivial Strichartz estimate for (oo, 2)
and the endpoint Strichartz estimate for the endpoint pair (2,2*). The proof of the low frequency
Littlewood-Paley theorem given in [BM16] makes use of the homogeneous Sobolev embedding

lollzas < CONVlollze, 2= 24 (42,4
Since we consider a larger range of admissible condition , we can not apply this interpolation
technique. To overcome this difficulty, we will take the advantage of heat kernel estimates. Our
estimate (4.2.3)) is robust and can be applied for another types of dispersive equations such as the
wave or Klein-Gordon equations.
Let K(t,z,y) be the kernel of the heat operator e *7 ¢ > 0, i.e.

e Pu(z) = | K2 yu)dy.

We recall some properties (see e.g. [Cha84], [Gri99]) of the heat kernel on arbitrary Riemannian
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manifold.
Lemma 4.2.2. Let (M, g) be an arbitrary Riemannian manifold. Then the heat kernel K satisfies
the following properties:

(i) K is a strictly positive C*° function on (0,00) x M x M.
(i) K is symmetric in the space components.
(iii) (Mazimum principle)

/ K(t 2, 9)dy () < 1.
M

(iv) (Semi-group property)

/M K(S,.’E, y)K(tay,Z)dQ(y) = K(S + t,.’E, Z)

In order to obtain the heat kernel estimate, we will make use of the Nash inequality (see e.g.
[SC02, Theorem 3.2.1]), namely

_d_
lull> < Cllull g7 [Vul| z2*. (4.2.5)
Note that the Nash inequality on R¢ is valid for any d > 1. Thanks to (4.0.8)), we have for d > 2,
2 _d_
lull2 < Cllull i 11V glull z2* (4.2.6)

Using (4.2.6]), we have the following upper bound for the heat kernel.
Theorem 4.2.3. There exists C > 0 such that for all x,y € R? and all t > 0 such that

K(t,z,z) < Ct~4/2, (4.2.7)
K(t,z,y) < Ct~¥?exp ( - W;’%F) (4.2.8)

In particular,
e || L1 < Ct2 £ >0. (4.2.9)

Proof. The proof is similar to the one given in [Gri99, Theorem 6.1] where the author shows how

to get (4.2.7) from the homogeneous Sobolev embedding (4.2.4). For the reader’s convenience, we
give a sketch of the proof. Fix z € R? and denote v(t,y) = K(t,y, ) and

J(t) = [lv(t)]|Za-
Using the fact that d;v(t,y) = —Pu(t,y), we have
J'(t) = 2 (v(t), 00 (t)) = =2 (v(t), Pu(t)) = —2[[|[Vglu(t)]|7-.

This implies that J(¢) is non-increasing. On the other hand, the maximum principle (see also
[Gri99]) shows that

lo(8)]| 1 = / K(t,z,y)dy < 1.
R
This together with (4.2.6]) yield
4 _2d_ _2d_
lo()[172 < Cllo@IIEE NV lo@)I 127 < CllIVlu@)lIf>

We thus get
2(d+2) dr2
d e

J'(t) < =Cllo®) " = -CJ(1)
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This implies that
d
20 1 T2
Jt) <[ =t+ ——
= ( d [J(o)]3>

which together with the non-increasing property of J(t) yield
J(t) < Ct~92.

The estimate (4.2.7) then follows by the symmetric property of K(t, z,y), i.e. J(t) = K(2t, z,x).
Using (4.2.7), the off-diagonal argument (see also [Gri99]) implies the following upper bound for
the heat kernel

d?(z,y)
Ct

where d(z,y) is the geodesic distance from z to y. Thanks to the elliptic condition (4.0.2)) of the
metric g, it is easy to see that

K(t,x,y)SCt_d/Qexp(— ), Va,y e RY ¢ > 0,

This shows (4.2.8) and the proof is complete. O

We now give some applications of the upper bound . A first application is the following
homogeneous Sobolev embedding.
Lemma 4.2.4. Let q € (2,00) and o = g — g. Then the operator |V 4|~* maps L* to L. In
particular, there exists C > 0 such that

lullLa < ClIVg|*ull2. (4.2.10)

Proof. We firstly recall the following version of Hardy-Littlewood-Sobolev theorem.
Theorem 4.2.5 ([HL28| [Sob63]). Let 1 <p < g < oo, y=d+ % - % and K (z) == |z|~7. Then
the convolution operator T, := f * K, maps L to L. In particular, there exists C > 0 such that

1Tyullpe < CllullLe-

Now let T'(2) := [, t*"'e~'dt,Re (z) > 0 be the Gamma function. The spectral theory with the
fact |V,| = VP gives

1 o0
V.| = Pfoc/2 — / 7tPta/271dt.
Vil T/ Jo ©

Let [|[V4|7“](z,y) be the kernel of |V,|~*. By (4.2.8),

> le—y|2
/ /2= " p/2- gy,
0

_a c

A change of variable shows
- ¢ ey [T d2—ay2-1 — CT(d/2 — a/2) s
Vol Nz, y)| < x—y| “)/ pd/2=af2=l—tgy 22U A2 = (d-a)

The result follows by applying Theorem [4.2.5| with v = d — « and p = 2. O

Another application of the heat kernel upper bound (4.2.8) is the following L? — L"-bound of
the heat operator.

Lemma 4.2.6. Let 1 < g <1 < co. The heat operator e~ *F t > 0 maps L9 to L". In particular,
there exists C' > 0 such that for all t > 0,

le=tP | passrr < Ct5(G—7),

Proof. By the symmetric and maximal principle properties of the heat kernel, the Schur’s Test
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yields
le ™ |lpasre <C, t>0. (4.2.11)
Interpolating between (4.2.9) and (4.2.11)), we have the result. O

Corollary 4.2.7. Let f € C§*(R\{0}) and q € [2,00]. Then there exists C > 0 such that for all
€ (0,1],
1F (€72 P)llgaspa < /270,

Proof. By writing
2

Fe2P) =7 P P f(e72P)),
and using Lemma with t = €72, we get

_ _e2 —2 _ _
£ (e 2P)lzemra < lle™ Pllzzmpalle” 7 f(€72P)|rare < Ce/27/0,

Here, using the compactly supported property of f and spectral theorem, we have e P f(e2P)
is of size Op2_,r2(1). This gives the result. O

We now are able to prove Theorem We only give the proof for the low frequency case.
The high frequency one is essentially given in [BM16l Theorem 4.6].

Proof of Theorem 4.2.1] By the second term of (4.2.1)), we have

lfo(P)v||lps = sup |[(w, fo(P)v)] = sup lim , f(e2P))|, (4.2.12)
llwll 4 =1 [wll, g =1 M—00 =7

where €72 = 2% and (-, -) is the inner product on L2. By choosing f € C5°(R\{0}) satisfying f = 1
near supp(f), we use Proposition to write (1 — x)(ex)f(e72P) = Q(e) + R(e), where

Q(e) = (1 = x)(ex)Ope(f o pe)¢(ex),  R(€) = ((ex) (e *P + 1) " B(e) (ex) ",

with ¢ € C°°(R?) supported outside B(0, 1) and equal to 1 near supp(1—x) and B(e) = Op2_,2(1)
uniformly in € € (0,1]. We next write

F(e2P) = Q1 — xX)(ex) f (e 2P) + A()e® {ex) ™" f(e2P),
with & = d/2 — d/q and

*ﬁz

Ale) = e*a((1 — )(ex)

We now bound

(e72P)x(ex) + R(e)(1 = x)(ex) + X(ex)f(efzp)) (ex) .

‘wa 2P ‘5\§:wQ (1— x)(ex)f ’+‘ZwA ex)” f(e_zP)U)‘
=0
s\f Q*(eyw, (1 = x)(e@) {2 PY) | + ]| ZA 2" (2P|
— () + (T0). (4.2.13)

We use the Cauchy-Schwarz inequality in k& and the Holder inequality in space to have

(D S I1Smwllpor 1Sarv] 2a,
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where

S = (10 @wP) " sawi= (310 0 se2re)
k=0

k=0

We now make use of the following estimate (see [BM16, Proposition 4.3]).
Proposition 4.2.8. Forr € (1,2], there exists C > 0 such that for all M > 0 and allw € . (R?),

1Sarwllzr < Cllw]|z--

We thus get

M 1/2
M) < ISwrololwl e < (300 = x)@) s 2Pyeld) " hwll g (12.14)
k=0

For the second term in (4.2.13]), we use the homogeneous Sobolev embedding (4.2.10)) to have

2

M M
|- a@e @)™ 1 2P| S || D I9al AW ()" £ 2P)
k=0 k=0

We next write
IV [*A(e) = (e 2P)?(e 2P +1)"“D(e), (4.2.15)

with D(e) = Opz2_,r2(1) uniformly in € € (0, 1]. It is easy to have (4.2.15) from the first two terms
in A(e) by using Proposition The less obvious contribution in (4.2.15) is the uniform L2
boundedness of (e 2P + 1)®x(ex)f(e 2P) (ex). By the functional calculus, it is enough to show
for N large enough the uniform L? boundedness of (€ 2P + 1)N y(ex)f(e 2P) (ex). To see it, we
write

(e 2P+1) N (ex) f(e2P) {ex) = x(ew) (e 2P+1)Y (e 2P) (ex)+[(e 2P+1)N, x(ex)| (e 2P) (ex)

where [-, ] is the commutator. The L? boundedness of y(ex)(e 2P + 1)V f(e 2P) (ex) follows as
in . On the other hand, note that the commutator [(e 2P + 1)V, y(ex)] can be written
as a sum of rescaled pseudo-differential operators vanishing outside the support of ((ex) for some
€ O (R?) supported outside B(0, 1) and equal to 1 near infinity. This allows to use Proposition
and the L? boundedness of [(¢ 2P+ 1)V, x(ex)]f(e"2P) (ex) follows. We next need to recall
the following well-known discrete Schur estimate.
Lemma 4.2.9. Let 0 > 0 and (T}); be a sequence of linear operators on a Hilbert space H. If
1T Tellon S 20—l " then there exits C > 0 such that for all sequence (vy), of H,

/
I3 Zeonlie < 0 (X Ionliz)

Now let Ty, = (€, 2P)*/%(€,>P + 1)"*D(ey) with €, > = 2F. We see that

a(l+k)

TTy =22 D*()2'P +1)"*P*(2"P +1)"*D(ey).

Note that [ + k= —|k — | + 2k for k >l and I + k = —|k — | + 2] for [ > k. Thus for k > [,

alk—L1] alk—1]

IT¥ Tl sz = 2~ 5 [ D* () (2'P + 1)~ (2" P)* (2P + 1)~ D(ex) | o2 S 2%

Similarly for [ > k. Therefore, we can apply Lemma for Ty = (e, 2P)*/?(;, 2P +1)"*D(ey)
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with e, 2 = 2¥H = L? and 6 = a/2 to get

sup H i Vg™ Ale)e* (ex) ™ f(e—QP)v‘ LS (Z e (ex) ™" f(e—QP)vHQLQ)l/Q. (4.2.16)
k=0 k>0

Collecting (4.2.12), (4.2.13)), (4.2.14)) and (4.2.16)), we prove (4.2.3)). The proof of Theorem is

now complete. O

4.2.2 Reduction of the high frequency problem

Let us now consider the high frequency case. For a given y € C(‘)’O(Rd), we write upjgn =
XUnigh + (1 — X)unign. Using (4.2.2]) and Minkowski inequality with p,q > 2, we have

(1 = X)unigh || Lr &,L0) < C( o =) f (PP Vo 1 oy
h2=92-k

Ny oA =N 2012 oy —it| V|7 112 1/2
+ 0N (@)Y f(h2P)em Vs ¢||L,,(R’L2)) . (4.2.17)
The same estimate holds for ||Xunign||z»®,Le) With x in place of 1 — x. We can apply the Item

2 of Remark with scaling in time for the second term in the right hand side of the above
quantity to get

W2 (z) N f(B2P)e Vol | Lo 12y < CRN/ZHE=NO/P| £(R2P)y|| 12 (4.2.18)

By taking N large enough, this term is bounded by h=7»«||f(h?P)i|/z2. Thus we have the
following reduction.

Proposition 4.2.10. 1. Consider R%, d > 2 equipped with a smooth metric g satisfying ,
and suppose that the geodesic flow associated to g is mon-trapping. If for all x €
Cs°(R?) and all (p,q) Schrédinger admissible with q < oo, there exists C > 0 such that for
ally € £, and all h € (0,1],

e %1 F(h2PYb o oy < Ch= 2 (W2PYS 2, (4.2.19)
then
Itnighll o g,zoy < Cllbl e (4.2.20)

i.e. Theorem [.0.1] holds true.

2. Consider R d > 2 equipped with a smooth metric g satisfying (4.0.2)), (4.0.3) and suppose
that (4.0.11)) is satisfied. If there exists R > 0 large enough such that for all (p,q) Schrodinger

admissible with ¢ < co and all x € C$°(RY) satisfying x = 1 for |x| < R, there exists C > 0
such that for all ¢ € £, and all h € (0,1],

(1 = x)eVal” f(h* Pl Loz, 10y < ChT || f(R2P)| 2, (4.2.21)
then
11 = X)unignll Lo @,0) < CllYllg7ea, (4.2.22)

i.e. Theorem [4.0.2 holds true.
Moreover, combining (4.2.20)) and (4.2.22), we have

[unign || r @,L0) < CllP om0

Proof. We only consider the case 1 — y, for x it is similar. By using (4.2.18) and (4.2.21]), we see
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that (4.2.17) implies

_ 1/2
H(l—x)uhithLp(R,Lq)SC( dooh 2%»q||f(h2P)¢||iQ) < O[9I gma-

h2=2-F

Here we use the almost orthogonality and the support property of f to obtain the last inequality.
This proves (4.2.22)). O

4.2.3 Reduction of the low frequency problem

Let us consider the low frequency case. We only treat the case g € (2, 00) since the Strichartz
estimate for (p,q) = (00,2) is trivial. We apply the Littlewood-Paley estimates (4.2.3) and
Minkowski inequality with p > 2 to have

[wow || 2o, L) < C( > = x)(ex) f(e2P)e IV P13, g Loy

e—2=2k

B - . . 1/2
o+ [le2 1 (e) F (2 P)e Ve ) 1) )

We use global L? integrability estimates (4.1.21)) with rescaling in time to bound the second term
in the right hand side as

Hed/2_d/q <6$>71 f(€_2p)€_it|vglg'Q[}”LP(R,L?) < Ceva ||f(6_2P)w||L2' (4223)

Here we recall that v, = d/2 — d/q — o/p. This leads to the following reduction.

Proposition 4.2.11. Consider R, d > 3 equipped with a smooth metric g satisfying (4.0.2)), (4.0.3)).
If for all x € C°(RY) satisfying x(x) = 1 for |z| < 1 and all (p,q) Schrédinger admissible with
q < 00, there exists C' > 0 such that for all ¢ € £, and all € € (0,1],

11 = x)(ex) f(e 2 P)e™ Vo || Lo,y < O™ f(e2P)) 12, (4.2.24)

then
l[taowe [l Lo &, 0y < CllY [l ryea-

Proof. Indeed, if the estimates (4.2.24)) hold true, then the Littlewood-Paley estimates (4.2.3]) and
(14.2.23)) give

1/2
ltowliron < C(0 Y Ewallf(e 2Pl

e~2=2k

Note that
|| f(e 2P)ll L2 < || f(€ 2PV T L2y 2| (€72 P) [V g9 2,

where f € C5°(R\{0}) satisfies f = 1 near supp(f). By functional calculus, the first factor in the
right hand side is bounded by

F(e2X?)

=@ _ 4
A\Vp.a

< e (/o = [fll e @)-

6’7}’7‘1 Sup
AER

Here €22 € supp(f) hence |\| € [¢/c, ec] for some constant ¢ > 1. Thus we have

B 1/2
lotow ooy < C(0 32 1A 2PV me@l3) " < Clllgnn,

e—2=2k

the last inequality follows from the almost orthogonality. This completes the proof. O
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4.3. Strichartz estimates inside compact sets

4.3 Strichartz estimates inside compact sets

In this section, we will give the proof of (4.2.19 m Our main tools are the local in time Strichartz
estimates glven in Chapter [2| I 2| and the L? integrability estimate at high frequency given in Propo-
sition @

4.3.1 The WKB approximations

Let us start with the following result which is given in Theorem
Theorem 4.3.1. Let o € (0,00)\{1} and q be a smooth function on R2? compactly support in &
away from zero and satisfying for all a, B € N9, there exists Cop > 0 such that for all z,& € R?,

1020 q(w, )| < Cap.

Then there exist to > 0 small enough, a function S € C™([~tg,to] x R??) and a sequence of smooth
functions a;(t,z,§) compactly supported in & away from zero uniformly in t € [—to,to] such that
forall N > 1,

et MV Oph (g)h = T (£)1 + Ry (£)),

where

N-1
Iyt = ahy [ OO 5 w10,

b

Jn(0) = Op"(q) and the remainder Ry (t) satisfies for all t € [—to,to] and all h € (0,1],
RN ()l z2or2 < CRVE
Moreover, there exists a constant C' > 0 such that for all t € [—to,to] and all h € (0,1],
()1 < CH=1(1 4 [tlh=1) 2.

In Chapter 2| we consider the smooth bounded metric, i.e. for all o € N¢, there exists Cy, > 0
such that for all z € R?,

0°¢7* (2)| < Ca, 4,k € {1,...d}.

It is obvious to see that the above condition is always satisfied under the assumption . This
theorem and the parametrix given in Proposition [f.1.2] give the following dispersive estimates for
the Schrodinger-type equations (see Remark |: .
Proposition 4.3.2. Let 0 € (0,00)\{1} and ¢ € C§°(R\{0}). Then there exists to > 0 small
enough and C' > 0 such that for all ) € L*(R?) and all h € (0,1],

e~ RIVaD” o(R2PYg e < CR™H(L + [t ™Y) =2 (|4)] 11, (4.3.1)

for all t € [—to, to].
Next, we recall the following version of TT*-criterion of Keel and Tao (see [Zhal5|, [KT98] or
[Zwo12]).

Proposition 4.3.3. Let I C R be an interval and (T (t))ter a family of linear operators satisfying
for some constant C >0 and 6, 7,h > 0,

ITt) |22 < C, (4.3.2)
| T ()T (s)* || p1spe < Ch(1+ |t —s|h™Y)™, (4.3.3)
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4.3. Strichartz estimates inside compact sets

for allt,s € 1. Then for all (p,q) satisfying

p€2,00], qe€[l,o0], (g, 7)# (2,00,1), ;<T<;_1)7

we have
[Tl e 1,0y < Ch™% 0] L2,
where k = 6(1/2—1/q) — 1/p.
Proposition together with energy estimate and dispersive estimate (4.3.1]) give the fol-
lowing result.

Corollary 4.3.4. Let 0 € (0,00)\{1},p € C§°(R\{0}) and to be as in Theorem [4.3.1] Denote
I = [—to,to]. Then for all (p,q) Schrédinger admissible with q < oo, there exists C > 0 such that

g1 I
lp(h®Pye=* VD" 0| oy pay < CR™Fr e o] 2, (4.3.4)

where kp g =d/2—d/q—1/p. Moreover,

t
2(R2P)e—it=9h " (BIVa) G(s)d H < Ch—"va||G . 435
| [ eaepie s,y SCH NG (439)

Proof. The homogeneous estimates follow directly from Proposition and Proposition
with T(t) = o(h2P)e~ it (V4D Tt remains to prove the inhomogeneous estimates .
Let us set
Un(t) := hirap(h2P)eith (VD7

Using the homogeneous Strichartz estimates , we see that Uy (t) is a bounded operator from
L2 to LP(I, L%). Similarly, we have Uy (s) = @(h2P)e~sh" (MVs)” is a bounded operator from L?
to L°°(I, L?). Here we use the fact that (0o, 2) is Schrédinger-tye admissible with koo 2 = 0. Thus
the adjoint Up(s)*, namely

Un(s)*: G e LY(I,L?) — /w(hQP)eish’l(Wa')”G(s)ds cr?
I

is also a bounded operator. This implies Up,(¢)Ux(s)* is a bounded operator from L!(I,L?) to
L?(1,LY). In particular, we have

< OlGlLrr,z2)-

Kp.a p2 (B2 Pe—ilt=s)h ™ (BIV,])7 ‘
H/Ih p“(h“P)e G(s)ds Legrne =

The Christ-Kiselev Lemma (see Lemma [4.5.1)) implies that for all (p,q) Schrédinger admissible
with ¢ < oo,

< Ch™"fra ||G||L1(I,L2)-

t
212 Py, —i(t—s)h "L (h|V4])° ‘
h*P sl G(s)d
| [ 0Py OF -

This completes the proof. O
4.3.2 From local Strichartz estimates to global Strichartz estimates

We now show how to upgrade the local in time Strichartz estimates given in Corollary
to the global in time ones . We emphasize that the non-trapping assumption is supposed
here.

Let us set v(t) = (2)~' f(h2P)e~ " (MVsD7y. By choosing f; € Cg°(R\{0}) with f; = 1
near supp(f), we see that the study of ||v||ps(r,q) is reduced to the one of || f1(h?P)v| s, ra)-
Indeed, we can write

o(t) = (W2 PYo(t) + (1 — 1) (h2P)ot),
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where the term (1 — f;)(h?P)v(t) can be written as

(1= £1)(h2P) (2) " FL(h2P) (x)) ()L f(R2P)e ith™ (VoD gy

with fi € C§°(R\{0}) such that f; = 1 near supp(f;) and f; = 1 near supp(f). By pseudo-
differential calculus, we have

(1= fO)(R*P) (@) [i(B*P) (w) = Opz—y 1a(h™),
for all ¢ > 2. This implies that there exists C' > 0 such that for all N > 1,

[o = Fu(h*P)oll ooy < CAN|[ (@)™ F(R2 P VoD o 1)
< ChN|f(BPygl2 < Ch™" 0| f(R*P)y| 2 (4.3.6)

provided that N is taken large enough. Here we use (4.1.20) with Ny = 1 due to the non-trapping
condition.
We next write

o(t) = (@) " f(R2P)e T W)y,

where w(\) = f(A)VA” with f € C5°(R\{0}) and f = 1 near supp(f). Now, let t, > 0 be as in
Corollary We next choose 0 € C§°(R, [0, 1]) satisfying # = 1 near 0 and supp(f) C (—1,1)
such that >, ,0(t — k) = 1, for all t € R. We then write v(t) = >, ., vr(t), where vy (t) =
O((t — tg)/to)v(t) with tx = tok. By the Duhamel formula, we have

t
Uk(t) :e—ithflw(lﬂp)vk(o)_'_ih—l/ e—i(t—s)hflw(hZP)(hDs+w(h2p))vk(s)d8.
0

For k # 0, we compute the action of hD, + w(h?P) on vx(s) and get
(hD4 + w(h®P))vi(s) = h(ito) 10" ((s — t)/to)v(s)
+0((s = te) /to) [w(h2P), (&) 7| FR2P)e = 0y ol (s) 4 v ().

Due to the support property of 8, we have v (0) = 0. Now, we have for k # 0,
t
F1(R2P)vg(t) = ih ™ / et WP P) £ (B2 P (yl(s) + v2(s))ds.
0

We remark that both ¢, s belong to I, = (tx — o, tx + to). Up to a translation in time ¢ — ¢ — ty,
and the same for s, we can apply the inhomogeneous Strichartz estimates given in Corollary
with ¢? = f; and obtain

1f1(h* P)vg || Lo @,0) = 11 (R P)ok| Lo (1, L)
< Ch e (Jlogll L re,r2y + IWillor (e, z2) -
Here £, 4 is given in Corollary We have
. _ ish—1 -
[kl 10,22y = [1B(ito) 710 ((s — t) /to) (@) " F(B2P)e™ " MVl 0 g, 1oy

(
< |[h(ito) 10" ((s — ti) [to) || L2 (ry || (&) ~* F(R2P)e=h " RIVaD |l 12y
< Chl| ()" f(R2P)e " PV oy, 12y,

-
-
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where we use Cauchy Schwarz inequality to go from the first to the second line. Similarly

ol (1,22) < Nlw(RP), (x >71]f(h2p)€_ithil(h‘vgl)aiﬁHLz(Ik.,L2)
< Chll (@)t F(R2P)e ™ VD o 1),

where we use the fact that [w(h2P), (z) ] f1(h2P) (z) is of size Op2_,12(h) by pseudo-differential
calculus. This implies that for k # 0,

| f1(h*P)vg|| (1, 10y < Ch™ "2 || ()" f(h2P)e —ith™ (1194 1) Yl L2(1,,102)-

For k = 0, we have
o1 P
I f1(h*P)vo || por,pay < C| f (B2 P)e™ ™ VaD 4| 11 0y < Ch™Fpa|| f(R2P)] 2.

Here the first inequality follows from the facts that 6(t/to) and fi(h%P)(z)~' are bounded
fromLP(R) to LP(R) and LY — L9 respectively. The second inequality follows from homoge-
neous Strichartz estimates (4.3.4). By almost orthogonality in time and the fact that p > 2, we
have

1/2
1B PYl ooy < € (2 I (B2 P)onl o, o))

kEZ

K — _ith—1 - 1/2
<on a3 @) FORP) T G g F 2P

keZ\0
< Ch~"wa (H (w ) f(h*P)e _“hil(h‘vg‘)U¢||L2(R,L2) + ||f(h2P)1/’HL2)
< Ch™ | f(W*P)|| 12,

the last inequality comes from Proposition [4.1.12f with Ny = 1. By using (4.3.6)), we obtain
| @)™ F(R2P)e T PIVDT ) g oy < CR75e || £(B2 PY| 2.
This implies that for all xy € C$°(R9),

< Ch=" || f(R* Py 2.

R2ZP)e—ith " (hV,)7 ‘
fo( Je wLP(Rm

Therefore, by scaling in time, we get

< Tp.a p 2.
gy < OGP,

|xrmpye Ve y|

The proof of (4.2.19) is now complete. U

4.4 Strichartz estimates outside compact sets

4.4.1 The Isozaki-Kitada parametrix

Notations and the Hamilton-Jacobi equations. For any J € (0,400) an open interval,
any R > 0, any 7 € (—1,1), we define the outgoing region I'" (R, J,7) and the incoming region
I=(R, J,7) by

+ .
F (R7J7T) T {(zvf) R2d7|z|>R |£|2€Ji| H€| }
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Chapter 4. Strichartz estimates on asymptotically Euclidean manifolds

Let o € (0, oo)ﬂ We will use the so called Isozaki-Kitada parametrix to give an approximation
at high frequency of the form

e SRR Oph () = JE( (h)e BN EBE () + RE(R),  (44.1)

with A = v/—A where A is the free Laplacian operator on R? and w(-) = FOVT € Ce(R\{0})
for some f € Cg°(R\{0}) satisfying f = 1 near supp(f). The functions x* are supported in
I'*(R*, Jy,74) (see Proposition for the choice of .J; and 74) and

N-1
W JiE (a

=1

<.

where
Jir (a®)u(z) = (2rh)~ // (S2@O—v€) o= (2 Yu(y)dyde, e 7 (RY).
R2d

The amplitude functions aji are supported in l“jE(R7 J1,71) (see Proposition D and the phase
functions Sz := SfR will be described later. The same notation for Ji (b*(h)) is used with b in

place of a;E.
The Isozaki-Kitada parametrix at low frequency is of the form

e—itew(s’2P)OpE (Xél:)c(ex) _ t7€:|: (a;t>e—iteA“ li (bg:)* + Rﬁ (t, 6), (4.4.2)

where w is as above and ¢ € C*°(R?) supported outside B(0,1) and equal to 1 near infinity. The
functions x* are supported in I'*(R*, Jy, 74) and

N
=Y J*ady)

j=1

where
JE(a) == D.JE(a), TED)* = JEOD)*D, (4.4.3)
with D, as in ,
T @ue) i= (2 [ SO Data uly)dyds,
R2d

JEb) u(x) = (27) ¢ (€S R by Eu(y) dyde.
Hoyru) = o [[ e (v, )uly)dyde

The amplitude functions ajfj are supported in I'*(R, J;, ;) and the phase functions SfR will be

described in the next proposition. The same notation for 7+ (b) will be used with bF in place of
+

ar.

Proposition 4.4.1. Fiz J; € (0,+00) and 71 € (—1,1). Then there exist two families of smooth

functions (SfR)R>>1 satisfying the following Hamilton-Jacobi equation

pe(, VoS5 (2,€)) = €)%, (4.4.4)

for all (z,€&) € TE(R, Jy,71), where p. is given in (4.1.5). Moreover, for all o, B € N%, there exists

1The construction of the Isozaki-Kitada parametrix we present here works well for the half-wave equation, i.e.
o=1.
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Cap > 0 such that

o20) (SjR(x, £ —a- 5) ‘ < Chpmin {Rl‘P‘“", ()Pl } (4.4.5)

for all z,6 € RY, all e € (0,1] and R > 1.
Remark 4.4.2. From (4.4.5)), we see that for R > 0 large enough, the phase functions satisfy for
all z,& € R? and all € € (0, 1],

—_

|V - VeSEa(e,€) — Tdga| < 5 (4.4.6)

and for all |« > 1 and all || > 1,

10207 SEp(w,€)| < Cap. (4.4.7)

The estimates (4.4.6) and (4.4.7) are useful in the construction of Isozaki-Kitada parametrix as
well as the L?-boundedness of Fourier integral operators.

Proof of Proposition [£.4.1 We firstly note that the case ¢ = 1 is given in [BT07, Proposition
3.1]. Let J;1 € Jo € (0,+00) and —1 < 79 < 71 < 1. By using Remark [{.1.4] in the region
I'*(R/2, Jo, 7o) which implies that |z| > 1, we see that the function p.(z, &) satisfies for all o, 3 €
N9, there exists C,p > 0 such that for all (x,f) € I'*(R/2, Jo, 7o) and all € € (0, 1],

1020 pe(w, )| < Cup (€)1

Thanks to this uniform bound, by using the argument given in [Rob94 Proposition 4.1], we can
solve (for R > 0 large enough) the Hamilton-Jacobi equation (4 in T*(R/2, Jo, 70) uniformly
with respect to € € (0,1]. We denote such solutions by Si Next by choosing a special cutoff
(see [BTO?] see also ([.4.9)) x5 € S(0, —00) such that XR(:B ¢) =1 for (z,£) € T*(R, J;,m1) and
supp(x%) C TF(R/2, Jo, 1), then the functlons

S:R(fv?f) = XZIS(m7§)§ei(x7£) +(1- Xﬁ)(x,f) (z,€)
satisfy the properties of Proposition where (z,£) =z - €. O

Construction of the parametrix. Let us ﬁrstly consider the high frequency case .
The construction in the low frequeny case is similar up to some modifications (see after
Theorem . We only treat the outgomg case ( ), the incoming one is similar. We start with
the follovvlng Duhamel formula

efith’ w(h P)J,;"(a‘L(h)) — J}-ll-(aJr(h))efith* (hA)°
t
— i / e~ i(t=9)h " w(h*P) (W(hZ’P)J;(awh)) - J,J[(a*(h))(hA)")e*“h_l(h/\)uds. (4.4.8)
0

We want the term w(h?P).J;" (a*(h)) — J;F (a*(h))(hA)? to have a small contribution. To do so,
we firstly introduce a special cutoff. For any Jo € J; € (0, +00) and —1 < 73 < 72 < 1, we define

a8 = () poaligipioe (+555). (1.49)

where k € C*°(R) is non-decreasing such that

[ 1 whent>1/2
“(t)_{ 0 whent<1/4°
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and p1_o € C*°(R) is non-decreasing such that p;_,o = 1 near Jo, supported in J; and 61,5 €
C§°(R) such that

01 a(t) = 1 whent>m—¢
1=2 0 whent<t +¢’

with € € (0,72 — 71). We see that xi",, € S(0, —00) and for R > 1,

supp(x] o) CTH(R, J1,71), X{.y=1near I'M(R? Jo, 7).
Proposition 4.4.3. Let SE = SiR be the solution of 1) given as in Proposition . Let

Jo be an arbitrary open interval such that Jo € J; € (0,+00) and 1o be an arbitrary real number
such that —1 < 7 < 19 < 1. Then for R > 0 large enough, we can find a sequence of symbols
aj € S(—j,—o0) supported in T (R, Jy1,m1) such that for all N > 1,

w(h®P)Jif (a*(h)) = Jif (a* (R))(hA)T = WY Ry (R)J;f (a™ (h)) + WY JF (5 (R)) + Ji (@™ (R)),

(4.4.10)

sup |ag (2,6)] 2 1, (4.4.11)
I't(R,J1,71)

where at(h) = Z;V 01 h7a and (r3(h))he(o,1] is bounded in S(—N, —o00), Ry (h) is as in Proposition
4.1.2} (@™ (h))neo,1) s bounded in S(0,—00) and is a finite sum depending on N of the form

it ()= 37 ah ()X s, (4.4.12)

la|=1

with (af (h))nhe(o,1) bounded in S(0,—00) and x{_,, given in (4.4.9).
Proof. We firstly use the parametrix of w(h?P) given in Proposition and get

w(h?*P) = Op"(q(h)) + hN Ry (h), (4.4.13)

where ¢q(h) = N 1 hkq and g € S(—k, —o<),k =0, ..., N — 1. Note that qo(z,&) = w(p(x,§)) =
fp(z, &))\/p(x, §) and supp(gx) C supp(w o p). Up to remainder term, we consider the action of
Op"(q(h)) on J;" (a*(h)). To do this, we need the following action of a pseudo-differential operator
on a Fourier integral operator (see e.g. [Rob87, Theorem IV-19], [Bouc00, Appendix] or [RS11]).

Proposition 4.4.4. Let a € S(u1,—0) and b € S(p2,—00) and S satisfy (4.4.6) and (4.4.7).
Then

Op"(a) o Jn(S,b) = ZhJJh (a<b)j) + hN (S, ra(h)),

where (a <b); is a universal linear combination of
O a(w, V.S (w, €))0) *b(x,£)051 S(w,€) - - D+ S (x,€),
with o < B, 1+ -+ag, =« and |oq| > 2 foralll =1,....k and |3| = j. The maps (a,b) — (a<b);

and (a,b) — ry(h) are continuous from S(u1,—00) X S(ug,—00) to S(u1 + pe — j,—00) and
S(p1 + p2 — N, —00) respectively. In particular, we have

(a<b)o(z, &) = a(x, V. S(x,£))b(x, ),
i(a 4 b)l(x7£) = vfa('ra vxS(Jﬁ,f)) : vxb(l‘,f) + %tr (vga(‘r7 VxS(x,ﬁ)) ' V?L‘S(x’g)) b($,§)
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Using this result, we have

N-1
Op"(q() T (e (h) = > BT (g <af)o) + RN T (g (h).
k4j+1=0

On the other hand, we have

Ty (a® () (RA)7 = J7 (a (R)[E]°).

Thus we get

w(h?P)Jif (a* (h)) = J;f (a* Z h" g, (qr <a} )i —af[€]”
k+J+l r

+hN IE (% (h) + RN Ry (h)J;F (a™ ().

In order to make the left hand side of (4.4.10) small, we need to find a;r € S(—j, —o0) supported
in I'F(R, J1,71) such that

> (gw<af)—aflgl” =0, r=0,.,N-1
k+j+l=r

In particular,

(90 (@, Vo Sg(2,8)) — [€]7) ag (,€) = 0.
By noting that if p(z,€) € supp(f) (see after (4.4.1))), then qo(z,&) = +/p(x,& Thus in the

region where the Hamilton-Jacobi equation (4.4.4) with e = 1 is satisfied, we need to show the
following transport equations

(go<ad)1 + (g1 <ad)o=0 (4.4.14)
(@<an+(@aa o=~ > (ge<af), r=1,.,N-1 (4.4.15)
k+j;rl:7~+1
j<r—1

Here (qo <a™)1 + (q1 <a™)g can be written as

d
i@ a1 (@.6) + (@ 20" )oe,6)] = DV )2, 0) 490 00" ()

where
VjJr(x7f) = (851610)(33an5§($,§)),

We now consider the flow X (¢, z,€) associated to V' = (V;7){_, as

{?126)) - Z*(Xﬂt),&% (4.4.16)

We have the following result (see [Bouc04, Proposition 3.2] or [Bouc00, Appendix]).
Proposition 4.4.5. Let o0 € (0,00), J1 € (0,+00) and —1 < 71 < 1. There exists R > 0 large
enough and e; > 0 small enough such that for all (z,&) € TT(R,Ji,71), the solution X (¢, z,&)
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to (4.4.16|) is defined for all t > 0 and satisfies

|X*(t,2,8)] > er(t +|a]), (4.4.17)
(X+(t,l‘,f),€) € F+(R7 Jl;Tl)- (4418)

Moreover, for all a, B € N?, there exists Cop > 0 such that for all t > 0 and all h € (0, 1],
10207 (X F(t,2,€) — @ — ot€[€]7 )] < Cag (8) ()71, (4.4.19)

for all (z,&) e T (R, J1,71).
Now, we can define for (x,&) € TV(R, J1,71) the functions

+oo
Ao =ew ([ o (a0 0a).
t

A= [ pr . 0o ([ om0

0 0

forr=1,...,N — 1, where

pr(@.€) =i Y (g9A(,9).

k4j+l=r+1
j<r—1

Using (4.4.17) and the fact that pf € S(—1 — p —r,—o00) for r = 0,...,N — 1, we see that
pr (Xt (t,z,£)) are integrable with respect to t. Hence A} (z,€) are well-defined. Moreover, we
have (see e.g. [Bouc04, Proposition 3.1]) that for all (x,£) € I'T(R, J1,71),

10207 (Af (2,€) = 1)| < Cap (x) 71, (4.4.20)

020 A (2,€)] < Cap ()71
We also have that Ad, A forr = 1,..., N—1 solve (4.4.14) and (4.4.15) respectively in Tt (R, J1,71).
Now, by setting a7 = x| ,A+ (see (4.4.9)), we see that a; are globally defined on R?? and

af € S(—r,—o0). It is easy to see (4.4.11) from (4.4.20). We next insert a*(h) = Z;V:_ll hiaf
into the left hand side of (4.4.10f) and get

N-1
w(h?P) Ty (a* (h) = T (a* () (RA)T = D BT | Y (ar axiL0A) i = Xia AT €
r=0 k+j+l=r

+hN T (R) + AN Ry (h)J; (at (R)).
Using the expression of (a <b); given in Proposition [2.2.3] we see that

(qk <X L0AT )1 = XTa(qe 9 A7) + terms in which derivatives fall into X7,

This gives (4.4.10) with a*(h) as in (4.4.12)). The proof is complete. O

We now are able to construct the symbols b:, for k=0,....,N — 1.
Proposition 4.4.6. Let Js, J; and 73,74 be such that J4 € J3 € Jy and —1 < o, < 13 < 714 < 1.
Then for R > 0 large enough and all xT supported in T (R*, Jy,74), there exists a sequence of
symbols b € S(—k,—o0), for k=0,...,N — 1, supported in TT(R3, J5,73) such that
T (@ ()7 (0 ()" = Op" (x*) + N Op™ (75 (h)), (4.4.21)

where at(h) = Z;y:_ol hia} is given in Proposition and bt (h) = S0 ! hEbF and (7% (W) heo,1)
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is bounded in S(—N, —0c0).

Before giving the proof, we need the following result (see [Bouc00, Appendix] or [Bouc04]
Lemma 3.3]).
Lemma 4.4.7. Let Sj%' = SI”,R be as in Proposition m For xz,y,¢ € RY, we define

1
(R = [ VLS M@ - ). an (14.22)

Then for R > 0 large enough, we have the following properties.

i. For all z,y € R?, the map & — nT(R,x,y,€) is a diffcomorphism from R% onto itself. Let
n— ET(R,z,y,m) be its inverse.
ii. There exists C > 1 such that for all z,y,n € R,

C™ () < (€7 (R, y,m)) < C(n).
ii. For all a,o/,B3 € N%, there exists Caarg > 0 such that for all z,y,n € R and all k <
laf, k" < |o/],
ana’ 9B (¢+ —k —p—k’ p+E+E
1050y 0)) (67 (R, z,y,m) — ) | < Caarp ()" (y) (z—y) :

Proof of Proposition m We firstly consider the general term J,' (a®)J;7(b7)* and write its
kernel as

K (z,y) = (27h)~¢ /R ) eth T (SE@O=5E W) o+ (2, €)bF (3, £)dE.

By Taylor’s formula, we have

Sh(x,8) = S5, 6) = (x—y,n" (R, z,y,€)),

where 57 given in (4.4.22). By change of variable & — £T (R, x,y,n), the kernel becomes

K;f(z,y) = (2mh)~¢ /Rd e NG (2, €4 (R, @y, )b (g, EF (R, 2, 5, 1)) | det 8,6 (R, x, y, m)|dn.

Now, using Lemma (4.4.7)), the symbolic calculus gives

Ty (@) (0F)" =) hOp"((at > ™)) + KN Op" (7 (h),
l

2

I
=

where (a® >bT), € S(—1,—00) is of the form

oD et (z,y,1m)|

al

y=x
)

(at >b)(z,n) = Z

|| =l
for [ =0,...,N — 1 with

c(z,y,m) = a’ (2, £ (R, z,y,n)bt (y, & (R, z,y,m))| det 9, T (R, z, y, )|,

and (7 (h))ne(0,1) is bounded in S(—N, —oc0). We have now

JF(at (R) T (6T (R)* = ZthrkJ}f(aj)J,j(b;)*
.k
N-1

= > WO ((af <bf)) + KN OP" (i (h)).
j+k+1=0
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Compare with (4.4.21)), the result follows if we solve the following equations:

x",

- Z (af <bf), r=1,.,N—1.

j+ktl=r
k<r—1

(ag <bg o

(ag b )o

We can define bg‘ sy b}_l iteratively by

-1
by (2,€) = X" (@0 (Row,2,9)) (o (¢,€) |det 0,6 (R, w7t (R, 2, )] )

_ + 4pt + + + !
Z (aj abl )iz, m (R,x,x,f))(ao (J;,f)‘det(‘)nf(R,x,x,n (R,x,m,f))’) ,

Jtk4i=r
k<r—1

=
T+
—
&
I
N~—

Il

for r = 1,...,N — 1. Note that by (4.4.11) and Lemma the term in (---)~! cannot vanish
on the support of x*(-,nT(R,-,-,-)). Thus the above functions are well-defined. Moreover, by
choosing R > 0 large enough with the fact

n"(R,@,2,€) = Vo Sg(2,6) = £+ Omin{R™7, (z)""}),

we see that the support of x T (z,n* (R, z, x,£)) is contained in I't (R3, Js,73). This completes the
proof of Proposition [4.4.6] (]

By (4.4.8), Proposition and Proposition we are able to state the Isozaki-Kitada
parametrix for the Schréodinger-type equation at high frequency.

Theorem 4.4.8. Let o € (0,00). Fiz Jy € (0,400) open interval containing supp(f) and —1 <
74 < 1. Choose arbitrary open intervals Ji,Jo, J3 such that Jy € J3 € Jo € J; € (0,400) and
arbitrary T, To, T3 such that —1 < 1, < 79 < 13 < 14 < 1. Then for R > 0 large enough, we can
find sequences of symbols

a’;‘t ES(*],*OO), supp(a;:) Cri(RaJth)v

such that for all
X:t € S(Oa _00)7 Supp(Xi) C Fi(R4a J477-4)7

there exist sequences of symbols
b,jc[ € S(—k,—o0), supp(bki) C TH(R3, Js, 73),
such that for all N > 1, for all h € (0,1] and all £t > 0,
. —1 2 . —1 o *
e EIRIOph (x) = Ji (a* (h))e” " PR IEWE ()T + Ry (¢, h),
where the phase functions Sﬁ = SfR are as in Proposition and the remainder terms

RE(t,h) = RE(N,t,h) + RE (N, t,h) + RE(N, t,h) + RE(N,t,h),
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with
RE(N, t,h) = —hN7le TR Oph 3 (h),

t
R;E(N,t, h) — _Z-hN—l / e—i(1‘,—s)h’1u.;(h2P)f{N(h)t]hi(a/:I:(h>)€—1'sh’1(hA)"Jhi(bj:(h))*ds7
0
t
R?(N,t, h) _ 72‘th1 /0 efi(tfs)h_lw(th)J}:Ll:(Tﬁ(h))efish_l(hA)”J}:Lt(b:t(h))*ds,
t
RE(N,t,h) = —ih‘l/o et W (BEP) ok (g ()= ish T (M7 Tk (5 () dis.

Here (fﬁ(h))he(QH, (Tﬁ(h))he(o,l] are bounded in S(—N, —o0), Ry (h) is as in (4.4.13)), (di(h))he(OJ]
are bounded in S(0, —00) and are finite sums depending on N of the form

it (h) = Y ax(h)ogxise, (4.4.23)

la>1

where (4 (h))ne(o,1) are bounded in S(0, —o0) and Xi o are given in (4.4.9).
We now give the main steps for the construction of the Isozaki-Kitada parametrix at low
frequency. For simplicity, we omit the + sign. Let us start with the following Duhamel formula

t
efitew(e’ P)je(ae) — k76((16)6—#5/\0 - ie/ e—z‘(t—s)ew(e* P) (w(€72p)k7€(a€) _ js(as)Aa)efi“A" ds.
0
Thanks to the support of a., we can write

w(e?P)Je(ac) = w(e P)¢i(ex) Te(ac),

where (; € C°(R?) is supported outside B(0,1) and satisfies (;(z) = 1 for |z| > R. Using the
parametrix of w(e 2P)(;(ex) given in Proposition (by taking the adjoint), we have

N-1

w(e 2 P)Gi(ex) = Y Ci(ew)Ope(ger)Gi(ex) + R (e),
k=0

where g0(z,€) = w(pe(,€)) = f(pe(x,€)v/pe(2,8)”, supp(ge) C supp(wopc) and (R (€))ee(o,1)
satisfies (4.1.8). Here (; € C™(R?) is supported outside B(0,1) and ¢{; = 1 near supp((;). We

want to find a. = Z;-V;Ol ac j so that the term w(e 2P)J.(ac) — Jc(ac)A” has a small contribution.

By the choice of cutoff functions and the action of pseudo-differential operators on Fourier integral
operators given in Proposition with h = 1, we have

N—-1

we P P)Tclac) = TeladA” =Y | Y. Tel(@er 9ae;)) — Telaerlé]?)

r=0 k+j+l=r

+Ry(€)Te(ac) + Te(rn(e)), (4.4.24)

where (rn(€))ee(o,1) is bounded in S(—N, —oo). This implies that we need to find (ac,;)ece(0,1
bounded in S(—j, —o0) supported in I'(R, Ji, 1) such that

Z (Gee Qe )i — aer|]” =0, 7=0,..,N—1.
k+j+l=r

By noting that if p(x,€) € supp(f), then g.o(z,§) = Vpe(@,€)°. This leads to the following
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Hamilton-Jacobi and transport equations,

Pe(2, VoS r(x,€)) = €[, (4.4.25)

(QE,O < a€70)1 =+ (q571 N a€70)0 =0 (4426)

(Ge0 )1 + (g1 9acr)o=— Y (qex<aci), r=1,.,N—1. (4.4.27)
Ic+j2—li7l‘+l

We can solve ([4.4.25) on I'*(R, J;, 1) using Proposition We then solve (4.4.26)), (4.4.27) on

I'*(R, J;,m) and extend solutions globally on R24. We obtain
w(€ 2 P)Je(ac) = Te(ae) A7 = Ry (€)Te(ac) + Te(rn () + Te(ale)),

where (a(€))ce(o,1) is bounded in (0, —o00) and is a finite sum depending on N of the form

i(e) = Y da(6)x12,
la[>1
with (da(€))ee(o,1) Pounded in S(0, —co) and x12 as in (4.4.9).

Next, we can find bounded families of symbols b, , € S(—k, —o00) for k =0, ..., N —1 supported

in ['(R3, J3, 73) such that
T T (be)* = Ope(xe)C(ex) + Op(in(e)C(ex),
where b, = g;ol bek and (7 (€))ce(o,1) is bounded in S(—N, —oc). This is possible by writing for
R large enough J.(be) = ¢(ex)Je(be) and taking the adjoint. We have the following Isozaki-Kitata
parametrix for the Schréodinger-type equation at low frequency.
Theorem 4.4.9. Let o € (0,00), ¢ € C®(R?) be supported outside B(0,1) and equal to 1 near
infinity. Fiz Jy € (0,4+00) open interval containing supp(f) and —1 < 74 < 1. Choose arbitrary
open intervals Jy, Ja, J3 such that Jy € J3 € Jy € J1 € (0,4+00) and arbitrary Ty, 72,73 such that
1l <7 <1 <T13< 71 <1 Then for R > 0 large enough, we can find bounded families of
symbols
(ait,j)ee((),l] € S(—j,—00), supp(aifj) C (R, J1,m),

such that for all
(Xei)ee(o,l] € S(Oa —OO), Supp(XiE) - Fi(R4a J477—4)v

there exists families of symbols
(b:k)ee(o,l] S S(_k, —OO), Supp(b:k) - Fi(R?)v JS, 7—3)7
such that for all N > 1, for all € € (0,1] and all £t > 0,
—itew(e 2 —iteA7 *
e TR Op(xE) () = T (a)e N IO + Ry (te),
where the phase functions S:R are given in Proposition and the remainder terms

RE(t,€) = RE(N,t,€) + RE(N,t,e) + RE(N,t,€) + RE(N, t,e),
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with
R (N t€) = —e "l P Op (i ()¢ (ex),
t
R;E(N, t, 6) — —ie/ e—i(t—s)ew(€*2P)RN(€)\76:t (aét)e_iseAvli(bg:)*dS,
0
t
Rét(N,t, 6) _ 72‘6/ efi(tfs)ew(e_QP)jE:t(rjﬂ\:](6))671’56A"L7€:|:(b2|:)*d87
0
t
Rf(Natv 6) _ —ie/ e—i(t—s)ew(e’QP)jei(di(6))e—iseA"‘j€i<béﬁ)*d8.
0
Here (7% (e))

N
sition

form

€(0,1]> (Tﬁ(e))ee(oﬂ are bounded in S(—N,—00), (Rn(€))ec(o,1] is given in Propo-
a*(€))ee(o,1) are bounded in S(0,—oc0) and are finite sums depending on N of the

it (€)= Y da ()X
lee|>1
where (a£(€))ee(0,] are bounded in S(0, —occ) and Xi o are as in (4.4.9).
We have the following dispersive estimates for the main terms of the Isozaki-Kitada parametrix
both at high and low frequencies.

Proposition 4.4.10. Let o € (0,00)\{1}, S:R be as in Proposition and (aF)ce 0,1, (bF)ee(0,1)
be bounded in S(0, —00) compactly supported in & away from zero.

1. Then for R > 0 large enough, there exists C > 0 such that for allt € R and all h € (0, 1],

T (@ )e it O (1 e < CHU(L+ [t~ (4.4.28)
where a* = aX | b = bE .

2. Then for R > 0 large enough, there exists C > 0 such that for allt € R and all € € (0,1],

1T (aF)e N TEOGE) l1ore < Cel(1+elt]) 2. (4.4.29)
Proof. 1. For simplicity, we drop the superscript . The kernel of .J;, (a)e’“hil(h‘\)d Jn(b)* reads

Kn(t,z,y) = (2nh) % /Rd et (Sr@O=Srw.O=EM g (3 £)b(y, €)dE.

The estimates (4.4.28]) are in turn equivalent to
|Kn(t, z,y)| < Ch™4(1 + |t|h~1) =42, (4.4.30)

for all t € R,h € (0,1] and z,y € R%. We only consider ¢ > 0, the case t < 0 is similar. Let us
denote the compact support of the amplitude by K. Since a, b are bounded uniformly in z,y € R,
we have

|Kn(t,2,y)| < Ch™,
forallte Randall z,y € RL. If0 <t < hor1l+th™' <2 then

|Kh(t,$,y)| < Chid < C’hid(]_ + th*l)*d/2'
So, we can assume that t > h or (14 th™!) < 2th~! and denote the phase function

(P(R7t>$7ya§) = (SR(.’I/'7§) - SR(yvg))/t - ‘5'07

and parameter A = th=1 > 1. We can rewrite

@(R,t,x,y,f) = <(Qf - y)/t’n(va7y’§)> - |£‘Ua
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where

1
n(R,z,y,§) = /0 VoSr(y + Az —y), &)dA.
Using the properties of the phase functions Sg given in , we have that
n(R,z,y,§) =&+ QR z,y, ),
where Q(R, z,y, &) is a vector in R? satisfying for R > 0 large enough,
10/ Q(R,z,y.€)| < CsR™, (4.4.31)

for all z,y € R% and & € K. We have

vf(b(R,t,ZE,y,é-) = g ) (Id]Rd + VEQ(RJUaZ%f)) - O.glg‘a—?-

If |(x —y)/t| > C for some constant C' > 0 large enough then for R > 0 large enough, there
exists C7 > 0,

1 —
V(R t,2,,6)] = 5|

Thus the phase is non-stationary. By using integration by parts with respect to £ together with
the fact

]zcl.

r—y
FR(R,t,2.9.6) < Cs| = 2|, 18l 22,

we have that for all N > 1,
|Kp(t,z,y)] < Ch=%(th™Y)™N < Ch~%(1 4 th=1)~%/2,

provided N is taken bigger than d/2. The same result still holds for |(x —y)/t| < ¢ for some ¢ > 0
small enough.
Therefore, we can assume that ¢ < |z — y/t| < C. In this case, we write

x

VER(R,t,2,y,€) = T - VEQ(R.2,y,€) — ofn|”~ (dgs + (o — Q)WI# )

Using the fact that o € (0,00)\{1} and

T
[detalnl” (g + (o - 2)77|nr2 )| = otlo =21 = ¢

and (4.4.31)), we see that for R > 0 large enough, the map & — V¢®(R,t,z,y,§) is a local
diffeomorphism from a neighborhood of K to its range. Moreover, for all # € N? satisfying || > 1,
we have |6?<I>(R, t,z,y,&)| < Cs. The stationary phase theorem then implies that for R > 0 large
enough, all ¢t > h and all z,y € R? satisfying ¢ < |(x — y)/t| < C,

|Kh(t,l’,y)| < Chid)\id/z < Chid(l + th*l)*d/Z.
This gives (4.4.30)).

2. We are now in position to show (4.4.29)). As above, we drop the superscript + for simplicity.
We see that up to a conjugation by D,, the kernel of J,(ac)e™ "\ 7. (b)* reads

K.(t,z,y) = (27T)_d/ ei(Se,R(ré)—telsl”—SF,R(y,E))ae(%g)be(y’g)d@
Rd

89



4.4. Strichartz estimates outside compact sets

The dispersive estimates (4.4.29) follow from
Kt @,y)] < C(1+€lt]) =%, (4.4.32)

for all + € R uniformly in z,y € R, € € (0,1] and the fact that

/2

|Dellzo—spe =¥, |D7 g1 = €¥/2.

The estimates (4.4.32)) are proved by repeating the same line as above. The proof is complete. [

Micro-local propagation estimates. In this paragraph, we will prove some propagation es-
timates which are useful for our purpose. To do this, we need the following result (see [BTO0S,
Lemma 4.1]).

Lemma 4.4.11. Let 74,7 € (—1,1).

1. For all z,y,& € RI\{0} satisfying +x - £/|z||&| > T+ and £t > 0, we have

z+#)-¢
o+ 2€]l¢]

where c4 = /1 + Ti/\/?.
2. If T_+71, > 0, then there exists c = c¢(7_,74) > 0 such that for all x,y,¢ € RIN\{0} satisfying
+z - &§/|zl|€] > 7 and —y - &/[yll€| > 7—, we have

> 71y and |z +t€] > cx(|z| + |E€]), (4.4.33)

[z —y| = c(lz| + ly]). (4.4.34)

We start with the following estimates.
Lemma 4.4.12. Let o € (0,00) and x € C$*(RY) satisfying x(x) = 1 for |z| < 1.

1. Using the notations given in Theorem if R > 0 is large enough, then for all m > 0,
there exists C > 0 such that for all £s > 0 and all h € (0,1],

Ix (x/R?) JiF (@ (h))e~ " N7 (6= (h))* (2)™ || p-m gy < CH™ (s)™™ . (4.4.35)
Moreover,

(@)™ (1= x) (2/R2) JE@E (R)e ™" D" (b= (h)* (@)™ (|- g < CH™ ()7
(4.4.36)

In particular
| ()™ JiE (@ (h)e= =" PO LEWE ()" (2)™ (=g < CR™ ()™ (4.4.37)

2. Using the notations given in Theorem [L.4.9] if R > 0 is large enough, then for all m > 0,
there exists C' > 0 such that for all £5s > 0 and all € € (0,1],

Ix(ex/R?)TE(a* (€)™ ™M TEbE) (ea)™ [[p2mpe < Cles) ™. (4.4.38)
Moreover,
I (ex)™ (1 = x)(ex/ R*) TE(@*(e))e "N TE(bE) ()™ | 2spe < Cles)™™ . (4.4.39)
In particular

I (ex)™ T2 (@* (€)e ™ T2 ()" (ex)™ |2z < O (es) ™. (4.4.40)

Proof. 1. We firstly consider the high frequency case. The proof in this case is essentially given
in [BT0§|. For reader’s convenience, we will give a sketch of the proof. The kernel of the operator
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in the left hand side of (4.4.35) reads

— ih~ta* s,T ~ T*(h . ) m
K (s,2,) = (2mh) (/R [ 7O (1, €T €0 1)
R

where the phase ®*(R, s, x,y,&) = SE(z,€) — s/€|7 — S5 (y,€). Using (4.4.5), we have
IVe®™ (R, s,2,y,8)| = |z — 0s£|¢|" > —y + O(1)]| > |ost[é]” > + y| — |z] + O(1),

where |z| < CR? and (y,&) € TT(R3, Js,73). We then apply (4.4.33) with £y -&/|y[|¢| > 73 and
+t = F0s[£]772 > 0 to get

|os€IE|7 4yl = CIs| + [yl), (4.4.41)
for all &5 > 0. We next use |y| > R to control || < R? and obtain
V@™ (R, 5,2,y,€)| = C(L+ |s| + [2] + [y)),

for all £s > 0. By integrations by part with respect to ¢ with remark that higher derivatives of
9 ®* are controlled by |V®*|, we get for all N > 0,

/) [ R g €| < O (1 o]+ el + )
By choosing N large enough, we can dominate (y)"" and get
(K (s,,9)] < CRN (L4 ]+ || + [y)) ™,

for all N large enough, therefore for all N > 0. We do the same for higher derivatives 8?85 Ky (s,z,y)
and the result follows. The kernel of the operator in the left hand side of (4.4.36f reads

KE(s,z,y) = 2rh)~? (z)™ (1 — x)(z/R?) /R eh T PRy g (b g €)bE (I, y, £)dE (y)™ .

We use the form of a*(h) given in (4.4.23). In the case derivatives fall on x(x/R?), we have that
|z| < CR? and we can proceed as above. Note that we have from (4.4.33)) with 4y - £/|y||€] > o3
and +t = +0s[¢[°72 > 0 that

(y + os€l€l”%)¢
|y + os€|€]72I¢]

In the case derivatives fall on 6,_,5, we have

> o3 and |y + os€|€|772 > cx(|s| + |y]).

T1+€§:|:L.§§TQ—EOI‘ :FL.é-Z—T2+€>—TQ+E/2.
|z[I€] |z[|€]

By choosing € > 0 small enough such that 73 — 75 +¢/2 > 0, (4.4.34) gives
ly +osgl€l”™? — af > c(|ly + osgl€|7 2] + |2]) = C(Is| + 2] + [y]).

Thus |[Ve®*| > C(1 + |s| + |x| + |y|) for £s > 0 and (4.4.36) follows as above.
2. The proof for the low frequency case is the same as above up to the conjugation by the unitary
map D, in L? (Rd). For instance, the kernel of the operator in the left hand side of (4.4.38)) reads

KX (s,2,y) = (2m) " x(z/R?) / i (R v &gt (¢ g bE(y, £)de (y)™
R4

91



4.4. Strichartz estimates outside compact sets

where the phase ®*(R, s, z,v, &) = SfR(x,f) —esl€]7 — SfR(y,f). O
Lemma 4.4.13. Let o0 € (0,00).

1. Under the notations of Theorem .48, for all m > 0 and all N large enough, there exists
C > 0 such that for all £s > 0 and all h € (0,1],

) ™™ T3 (s () e o N TE O () @)Y | gm g < R <s>‘N(/4 "
4.4.42

2. Under the notations of Theorem [1.4.9] for all N large enough, there exists C > 0 such that
for all £5s > 0 and all € € (0,1],

| (ear)™® TE (1 (e))e N TEBF) (ear)™* || payre < O (es)™ N (4.4.43)

Proof. We only give the proof for the high frequency case, the low frequency one is similar. The
kernel of the operator in the left hand side of (4.4.42)) reads

K,f(s,x,y) = (27rh)_d/ eihiltbi(R’s’x’y’g)Ai(h,x,y,f)dﬁ,
]Rd

where the amplitude A*(h,z,y,&) = <x>N/8 rE(h, z, &b (h, y, &) (y)N/4 and is compactly sup-
ported in €. We have from Proposition[d.4.1]and (4.4.41)) that Ve ®*(R, s,2,y,£) = v —0s|¢]7 72—
y+ O(1) and |os€[€]772 +y| > C(Js| + |y|) for all £s > 0. By Peetre’s inequality, we see that

—1 ooy —1 _
(Ved™) " < () (y +osglé”%) 7 < Cla) ({y) + ()7
We next write
1= xX(Ve®®) + (1= x)(Ve®™),
where x € C5°(R?) with x = 1 near 0. Then K,f(s7 x,y) is split into two terms. For the first term

I = (2mh) ¢ / IO (V) A (b 2., ),
R

by using the fact that

X(Ved®)| < C(Ved®) M < 0 (@)™ () + (5)) 73N/

< O ()N ()TN (5T (4.4.44)

and A% (h,z,y,£) = O(<x>_7N/8 <y>N/4), it is bounded by Ch~4 (z) /8 <y>_N/4 <s>_N/4. For the

second term

I = (2rh) ¢ / TR E) (1 \)(Ve @) A% (b, 2, y, €)de,
]Rd

+
thanks to the support of (1—x), we can integrate by parts with respect to £ := i\hvvs%w oV¢ to get

many negative powers of |V¢®*| as we wish and estimate as in (4.4.44). Combine two terms and
Schur’s lemma, we have (4.4.42)) for m = 0. For m > 1, we can do the same with 6;‘85K,f(s, z,y)
with |a| < m, |8| < m. This completes the proof. O
Combining Lemma and Lemma we have the following result.
Proposition 4.4.14. 1. Using the notations given in Theorem forall0 < m < d+1
and all N large enough, we can write for k = 2,3,4,

t
RE(N,t,h) = hN/2/ (=it w(hP) () N/S B oy ()N g
0
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with
IBE(N, s, 1) || gr-mprm < C (s) N/, (4.4.45)

for all £s > 0 and h € (0,1].
2. Using the notations given in Theorem [L.4.9] and for all N large enough, we can write for
k=234,

t
RZ‘:(NH‘” 6) = g/(; e—i(t—s)ew(€*2P) <€$>7N/8 81:5(8, 6) <€.’L’>7N/4 ds,
with

1B% (s, €) | L2sze < C (es)™ /4, (4.4.46)

for all £s > 0 and all € € (0,1].

Proof. The cases k = 3,4 follow immediately from Lemma and Lemma, It remains
to show the case k = 2. Let us consider the high frequency case. We can write Ry (h)E*(h) as

(o) ™ ()™ By () (@)™ ) ()% ) ™ B () ) V) ()TN

where E*(h) := Jf(ai(h))e_is’fl(h’\)a JiE(b®(h))*. The first bracket is bounded on L? using
Proposition The second one is bounded from H~™ to H™ using Lemma [4.4.13| with the fact
that (z)~ " Ji(a®(h)) = J;t (7% (h)) where 7 (h) are bounded in S(—N, —co). The low frequency
case is similar using Proposition [.1.7] O

Next, we have the following micro-local propagation estimates both at high and low frequencies.

Proposition 4.4.15. Let 0 € (0,00), f € CP(R\{0}), Js € (0,+00) be an open interval and
—1<my<l.

1. Consider R*,d > 2 equipped with a smooth metric g satisfying , and suppose
that is satisfied. Then for R > 0 large enough and x* € S(0,—o0) supported in
I+ (R, Jy,74), we have the following estimates.

i. For allm € N and all integer | large enough, there exists C > 0 such that for all +t <0
and all h € (0,1],

|0p" (*) eIV F(W2P) (@) ! | < ORI (4.4.47)

ii. For allm € N, all x € C(RY) and all I > 1, there exists C > 0 such that for all
+t <0 and all h € (0,1],

|Op" (xF) e~ MVaD” £(h2 P)x(2/ R?)|| 2y g < CRL (1) (4.4.48)

iti. For all XT € S(0,—00) supported in TF (R, J1,7T1) with —74 < 71 < 1 and Jy € J1 and
alll > 1, there exists C > 0 such that for all £t <0 and all h € (0,1],

0" () e IV £(h2 P)YOP" (7)o 1= < CRE (1) (4.4.49)

2. Consider R*,d > 3 equipped with a smooth metric g satisfying , . Let ¢ €
C>=(R?) be supported outside B(0,1) and equal to 1 near infinity. Then for R > 0 large
enough and all (x)ce(o1) bounded families in S(0,—o00) supported in T+(R, Jy,74), we
have the following estimates.

i. For all integer | large enough, there exists C' > 0 such that for all £t < 0 and all
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e € (0,1],
1¢(ex)Ope (x ) e VoD £(e72P) (ex) ™" || a2 < C (et) /4 (4.4.50)
1. For all x € Cgo(Rd) and all 1 > 1, there exists C > 0 such that for all £t < 0 and all
e € (0,1],
I¢(ex)Ope (xE) e~ eIVl {2 P)x(ex/R?) | 122 < C (et) ™" (4.4.51)

iii. For all { € C™(RY) supported outside B(0,1) and equal to 1 near infinity and all
(Xd )ee(o,1] bounded families in S(0, —oo) supported in I'T (R, Jy, 71) with —14 < 71 <1
and Jy € J1 and alll > 1, there exists C > 0 such that for all £t < 0 and all € € (0,1],

¢ (e2)Ope (xE) e~ e IVaD” £(e 2 PYOp. (3F)E ()| 22 < C et) ™ . (4.4.52)

Proof. We only give the proof for the low frequency case, the proof at high frequency is similar
and essentially given in [BT08| Proposition 4.5].
i. We only consider the case x! and t < 0, the case x_ and ¢ > 0 is similar. By taking the

adjoint, (4.4.50) is equivalent to
| (ex) ™ f(e_QP)e_ite((lWf’l)aOpe(X:)((ex)||L2_)L2 <C (et)_?’l/4, t>0, (4.4.53)

uniformly in € € (0,1]. Thanks to the spectral localization, we can apply the Isozaki-Kitada
parametrix given in Theorem and obtain

e IV Op, ()¢ (ex) = T (a)e N T (b)) + R (¢ €).
The main term can be written as
() ™! F(e72P) (ex)! ()" (ex)" ' T (aF)e N T (bF)* (ew)™ (em) "

By using Corollary we have the terms (ez) ' f(e=2P) (ex)’ and (ex) " are bounded on L2.
It suffices to show for [ large enough,

I (ea)"™" T (@)™ N TF(b5)* (ex)" 22 < Clet) ™, 20,

uniformly in € € (0,1]. This expected estimate follows by using the same process as in Lemma
[£:413] We now study the remainders.
For k =1, we have
[ (ex) ™ F(e 2 PYRE (N1, )| 2srz = || {ex) ™" f(e2P)e™ " IVsD" Op, (7 (€) )¢ (e2) |2 12
< C(et) .

Here we insert (ex) " (ez)" in the middle and use (4.1.23) and rescaled pseudo-differential calculus.
For k = 2,3,4, Item 2 of Proposition [£.4.14] yields

(ex) "' F(e 2P)YRE (N, t€) = € / t (ex) ™" f(e72P)e =)< VoD (eq) TN/ B (s, €) (ex) NV ds.
0

Using again (4.1.23) and the fact that <ex>l_N/8 and (ex>_N/4 are of size Opz2_,2(1) for N large
(LD

enough and (4.4.46[), we obtain
t

| (ex) ™" f(e2PYRE(N, t,€)| 122 < Ce/o (e(t — $)) " {es) ™M ds < C (et)
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By choosing [ large enough such that I — 1 > 31/4, it shows (4.4.53)).
ii. We do the same for (4.4.51)), it is equivalent to show

Ix(ew/R2) £ P)e= e 19aD" Op, (x )¢ (€| 212 < Clet) ™", 20, (4.4.54)

uniformly in € € (0,1]. We again use the Isozaki-Kitada parametrix. Let us firstly study remainder
terms. We write the first remainder term x(ex/R?)f(e 2P)R{ (N, t,¢) as

x(ew/R?) (ex)! (ex) ™! f(e72P)e™ "IV () ™! (ea)! Ope (i (€) )¢ (ew).

Using (4.1.23) and the fact that x(ex/R2) (ex)’ and (ex)' Op.(77;(€))¢(ex) are bounded on L2 due
to the support property of x and rescaled pseudo-differential calculus given as in Proposition [£.1.7]
we get

Ix(ex/R?) f(e 2P)RY (N, t,€)||L2—p2 < C (et)' .

For k = 2, 3,4, we have
t
Ix(ex/R?) f(e 2P)R; (N, t,€)|| 1212 < Ce / (e(t — s)) " es) ™M ds < O (et) L.
0

For the main term, we can write
x(en/R?) (ex) (ex) ™" F(e72P) {ex) (ew) ™" (ex)" ™" T (@l )™M THWE)" (ex)" (ew) "
Thanks to the L2-boundedness of y(ex/R?) (ex)', (ex) ™" f(e72P) (ex)', (ex)™™, it suffices to prove
I (e}~ T (@)e N TEWE) ()" lpeopz < Clet)™, £20,

uniformly in € € (0,1]. This expected estimate again follows from Lemma [4.4.12| by taking [ large

enough. This proves (4.4.54)).
iii. For (4.4.52)), we firstly use the Isozaki-Kitada parametrix for ., namely

4
e 1T Op (0 )8 ew) = T (@ )e N T () 4+ D0 Ry (Note), (4.4.55)
k=1
where supp(a;) € I~ (R4, j1/4,7~'1/4) and supp(E;) Cc I~ (R34, j3/4,f3/4) with j3/4 IS j1/4 small
neighborhood of J; and 7y /4, 73/4 can be chosen so that

1< —m< 7:1/4 < 7~'3/4 <7<l

Multiplying ¢(ex)Ope(x$)*f(€2P) to the left of (4.4.55), we see that the terms {(ex)Ope(xF)*
1-

f(e_zP)R,;(N,t7e) for £ = 1,2,3,4 satisfy the required estimate using the estimate (4.4.50)),
Lemma [4.4.12{ and (4.4.46]). Therefore, it remains to show

I¢(ex)Ope (xE)* f (e 2PV T (a7 e N T (5.) lpemsne < Clet) ™ £t <0,
uniformly in € € (0, 1]. Thanks to the support of a_, we can write J. (a_ ) = (1(ex)J. (a; ) with

(1 € C=(R?) supported outside B(0, 1) such that ¢;(z) = 1 for |#| > R'4. The parametrix of
f(e72P)¢ (ex) given in Proposition and symbolic calculus give

C(ex)Ope(xE)* (€72 P)C1(ex) = Ope(cl) + By (e) {ex) ™,

where (¢])ee(0,1] € S(0,—00) with supp(cf) C supp(x{) and B (e) = Op2_,72(1) uniformly in
€ (0,1]. We treat the remainder term by using Lemma [4.4.13] For the main terms, we need to
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recall the following version of Proposition which is essentially /| given in [BTOS, Lemma 4.6].
Lemma 4.4.16. Given J € (0,+00), —1 < 7 < 1 and the associated families of phase functions
(S:R)R>>1 as in Proposition . Let (ac)ee(o,1] and (ce)ee(o,1] be bounded families in S(0, —o0).

Then for all N > 1,
N—-1

Ope(c) T (ac) = Y T (eey) + T (en(e)),

j=0
where (ecj)ee(o,1] and (en(€))eco,1] are bounded families in S(0,—o00) and S(—N,—o00) respec-
tively. In particular, for all € > 0 small enough, by choosing R > 0 large enough, we have

supp(ce) C Fi(R, J,7) = supp(ec, ;) C Fi(R, J+ (—e,8), 7 —¢)

since VIS:R(.%',S) =&+ O(R™").

Using this lemma, we expand Op.(c})J (a.) and treat the remainder terms using again

Lemma It remains to prove the required estimate for the general term, namely
— —4 C4 — T —1
1T (e5)e™ N T (b ) pemre < Clet) ™, £ <0,

uniformly in € € (0,1], where (e})ce(0,1] € S(0, —00) and supp(ef) € TT(R*, Jy + (—¢,¢),74 — €).

€

Up to the conjugation by D., the kernel of the left hand side operator reads

K(toag) = ()70 [ e mene (@, 0 (. €)ds.

where ®.(R,t,x,y,§) = S_ p(x, &) —€t|€|” =S p(y,£). Sincesupp(el) C TH(RY, Jy+(—¢,¢),7a—¢)
and supp(b;) C T~ (R34, J3,4,73/4), we have

x-& y-&
7>T4*5, *7>T34.
€] yllel ~

By choosing R > 0 large enough, we have that 74 — e+ 73,4 > 0. Thus by Item 2 of Lemmal@,
we have

[Ve®e| = C(1+ eft| + || + [y)).
Using the non-stationary phase argument as in the proof of Lemma we have

1T (e5)e N T (00 ) Nlzmre < Clet) ™", £t <0,

uniformly in € € (0, 1]. The proof of Proposition |4.4.15|is now complete. O
4.4.2 Strichartz estimates

High frequencies. In this paragraph, we give the proof of (4.2.21)). By scaling in time, it is in
turn equivalent to prove

(1 = x)e " PIVSD £(B2 Py o, oy < Ch™"0e | f(R2 P12,

where kp 4 = d/2 —d/q — 1/p. By choosing fe C§°(R\0) such that f = 1 near supp(f), we can
write for all [ € N,

N—
(1 —x)f(h*P) =" h*Op"(ar)* + Y By (k) (x) ",
k=0

—

2See 1| 1) and use Lemma 4.6 of [BT08] with h = 1.
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where for ¢ > 2,
| Bx (h)|| 250 < Ch™(4/2=d/a), (4.4.56)

Thus (1 — x)e~ " " (2IVaD” £(R2P)y) becomes

N-1
> hFOp" (a) e IV £(W2PYp + WY By (k) (2) ! e IV £(R2 Y.
k=0

Using (4.4.56) and (4.1.20)), | Bx(h) (z) " e~ (IVaD” £(h2P)a)|| 1o (g, 1oy is bounded by
—l _ith1 o _ _ _
Ch= @224/ | (z) = e~ (MYl f(W2 PYap|| o (r 12y < Ch™ (/2 DFA=NI/P|| £(12 Py .

Hence, by taking N large enough, the remainder is bounded by Ch="ra|| f(h?P)i||2. For the
main terms, by choosing yo € C§°(R?) such that yo = 1 for |z| < 2 and setting x(z) = xo(z/R*),

we see that (1—y) is supported in {x € RY, |z| > 2R* > R*}. For R > 0 large enough and supp(f)
close enough to supp(f) and Jy € (0,+00) any open interval containing supp(f), we have

supp(ar) C {(z,€) e R* |z| > R, |¢* € Ju}, k=0,..,N —1. (4.4.57)
We want to show
1Op" (ag) e~ WIVD” £(n2 Py Lo, pay < Ch™" || f(R2P)l| 2, k= 0,...; N — 1.
Let us consider a general term, namely Oph(a)*e‘”hil(h|v9|)of(h2P)z/) with a € S(0, —o0) satis-

fying (4.4.57)). Next, by choosing a suitable partition of unity = + 6+ = 1 such that supp(0~) C
(—o0, —74) and supp(#™) C (74, +00) and setting

(0 = ale 08 (4778 ).

we have that xy* € S(0, —o0), supp(x*) € T*(R?, Jy,74) and
Op (a)* e VD f(R2 Py = (Op" (x7)* + Op" (x )" )e = PIVaD” (12 Py,
We only prove the estimate for T, i.e.
lOp" (x ) e PIVaD” F (2P| o g oy < Ch™"v || f(R2P)| 2,

the one for Y~ is similar. Since Oph(y)*e~ " (IVsD” f(h2P) is bounded on L? uniformly in
h € (0,1] and ¢t € R, by Proposition it suffices to prove the dispersive estimates, i.e.

HOph(X+)*e—ith’1(h|Vg|)"f2(h2P>Oph<X+>||L1_>LOQ < Ch_d(l + mh—l)—d/z7
for all ¢t € R uniformly in & € (0, 1]. By taking the adjoint, it reduces to prove
|Op (xT)*e= (WYD" £2(B2 PYOP! (x ) || 11y poe < CRA(1 + |t =42, (4.4.58)

for all ¢ < 0 uniformly in h € (0, 1]. We now prove (4.4.58)). By using the Isozaki-Kitada parametrix
with J4 and 74 as above together with arbitrary open intervals Ji, Js, J3 such that J, € J3 € Jo €
J1 € (0,400) and arbitrary real numbers 7y, 7o, 73 satisfying —1 < 71 < 70 < 13 < 74 < 1, the
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operator in the left hand side of (4.4.58|) is written as
4
Op" (x*)* f2(h*P) (J;T(a+(h))€“hl(hA)aJ;f(W(h))* +> RE(N,t, h)> :
k=1
Using the fact that Op"(x)* f2(h?P) is bounded on L> and Proposition [4.4.10, we have
10p" (x*)* F2(h2P)J;f (a* (R)e™ " M7 i (b ()| s e < CRTI(1 4 [H]R7Y) /2,

for all t € R and h € (0,1]. It remains to study the remainder terms.

For k = 1, using the Sobolev embedding with m > d/2, (4.4.47) and the fact that (z)" Op" (7% (h))
is of size Op-m_,z2(h™™) by pseudo-differential calculus, we have

1Op" () F2(W2P)RT (N, £, h)|[ 1oy < CRNTIZ2m () =% < CRmd(1 4 ]p =) =9/2,

for all t <0 and all h € (0,1]. The last estimate follows by taking I = 2d/3 and N large enough.
For k = 2, by using (4.4.47) and the Sobolev embedding with m > d/2, we have for t — s <0,

|0p" (xFyre =RV 2 (02 P) () T gy < CHTT (1= )T (4.4.59)

We also have that (z)" Ry (h) is bounded from L* to L? due to Proposition provided N > [.
Thus for N and [ large enough, Proposition implies that

1Op" () F2 (W P)RS (N, £, h)[ s 1
t
< ohN—l—m—d/ (£ — )34 (14 |s|h=1)9/2ds < Ch=9(1 4 [t|p~1)~/2,
0
: : 1, \I-N , \N . I-N
For k = 3, by inserting (z)  (x) z)" and using the fact that (x) = Ope_,p2(1) for
N large enough, (4.4.59) and Proposition [4.4.10| with J;" (a®) = ()N J;iF (r (h)), we see that this

remainder term satisfies the required estimate as for the second one.
For k = 4, we rewrite Op"(x*)*f2(h2P)R} (N,t,h) as —ih~! times

/t Oph(x-i-)*fQ(h2p)e—i(t—s)h’1(h\Vg\)” (X +(1— X))(x/RZ)J;r(d—&-(h))e—ish’l(hA)"J}Jlr(b—&-(h))*ds’
0

where x € C§°(R?) satisfying x(z) = 1 for |x| < 2. The first term can be treated similarly as the
second remainder using (4.4.48) instead of (4.4.47). For the second term, we need the following
lemma (see [BT08, Proposition 5.2]).

Lemma 4.4.17. Choose Ty such that —t4 < 71 < —7o. If R > 0 is large enough, we may choose
X~ € 5(0,—00) satisfying supp(x~) C I'" (R, J1,71) such that for all m large enough,

F(R*P)(1 = x)(2/R?)Jif (@* (b)) = Op™(X7) T (8m () + W™ Ro ()

where
R (h) = Jif (P (h)) + (2) ™2 Ry () (@) ™2 T (@* (h)),

with (€m(h))ne,1) and (Fm(h))ne(,1) bounded families in S(0, —oo) and S(—m,—o00) respectively
and Ry, (h) = Ope_, (1) uniformly in h € (0,1].
Using this lemma, the second term is written as —ih~! times

t
/Op”(xﬂ*e_z“_s)h VD" (Op" (X7) I, (@m () + W™ Ry () =" CN” L8 (0 (h)* ds.
0

The remainder terms are treated similarly as the second remainder term using (4.4.47). The term
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involving Op"(¥~)J;" (ém(h)) is studied by the same analysis as the second term using (4.4.49)
instead of (4.4.47). This completes the proof. O

Low frequencies. In this paragraph, we will prove (4.2.24)). By scaling in time, it is equivalent
to show

(1 = x)(ex) f(e 2 P)e™ Vol | (g 10y < Ceoa ] f(e 2P| 12,

where k4 = d/2 —d/q—1/p. By choosing f € C§°(R\0) such that f:: 1 near supp(f), we can
write (1 — x)(ex)f(e 2P) = (1 — x)(ex) f(e 2P)f(e 2P). Next, we choose ¢ € C°°(R%) supported
in R%\ B(0,1) such that ¢ = 1 near supp(1 — x) and use Proposition m to have

N-1

(1= )(@)f(e?P) = Y ((ex)Ope(aci)” + Ru(e),

k=0

where Ry (e

X)(ex) f(e™?

~—

= ((ex)(e 2P 4+ 1)V By (e) (ex) ™" with (BN (€))ee(o,1) bounded on L?. Thus (1 —
Je=ite(e VoD 74 reads

I

Z

-1

C(ex)Ope(acs) e 1Y) f(e2P)y + Ry (e)e ™l Vsl f(e=2P)y,

x>
=)

We firstly consider the remainder term.
Proposition 4.4.18. Let N > (d —1)/2 + 1. Then for all (p,q) Schriodinger admissible with
q < 00, there exists C > 0 such that for all € € (0,1],

. —1 o
| R (€)e™ VoD £(e 2 PYo|| poqm, pay < Ce™a [t 2.

Proof. This result follows frlom the TT™* criterion given in Proposition with €' in place of
h and T(t) = Ry(e)e~ (¢ IVaD? f(¢=2P). The L? — L? bounds of T(t) are obvious. Thus we
need to prove the dispersive estimates. Using (4.1.6) with ¢ = co and (4.1.23)) with N > d/2 + 1,
we have

IT(6)T(8) |11 pe < Cel|l (ear) ™™ e =T IVaD” £2(=2PY (ear) ™ |12, 12
< Cel (et — ) N < Cel(1 + et — s) "2

This completes the proof. O

For the main terms, by choosing xo € C§°(R?) such that yo = 1 for |z| < 2 and setting
x(z) = xo(x/R*), we see that (1 — x) is supported in {z € R?, |z[ > R*}. For R > 0 large enough

and supp(f) close enough to supp(f) and J4 € (0,+00) any open interval containing supp(f), we
have

supp(ac) C {(z,€) € R* |z| > R*|¢)P € Ju}, k=0,..,N—1. (4.4.60)
We want to show for k =0,..., N — 1,
I¢(ex)Ope(ac k) e 1Yol F(e2P) || Lo, Loy < Ce™]|f(e 2P| 2.
Let us consider the general term, namely C(ex)OpE(aE)*e*i“(e_l‘vg‘)gf(e*2P)1/J with (ae)ee(o,1] €

S5(0, —o0) satisfying (4.4.60). Next, by choosing a suitable partition of unity 6~ + 6%t = 1 such
that supp(#~) C (—o00, —74) and supp(6') C (74, +o0) and setting

(09 = a0 (5.
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we have that (th)ee(o’l] € 5(0, —o0), supp(xF) C TH (R4, Jy, 74) and

C(ex)Ope(ac) e " IVaD” f(e2P)yp = ((ex)(Ope(x)* + Ope(xd)*)e e« 1Vl f(e=2 P)yp.
We only prove the estimate for x7, i.e.
I¢(ex)Ope(xH ) e Vol £(e 2 PY|| oy < Cev|| f (€ 2P)Y| 12,

the one for x_ is similar. By TT* criterion and that T(t) := ¢ (ex)Ope(x)*e~ <« " IVsD)7 f(e=2P)
is bounded on L? for all t € R and all € € (0, 1], it suffices to prove dispersive estimates, i.e.

I6(ex)Ope(x ) el Vol f2(e72P)Ope(x )¢ (€)1 s < Cel(1+€]t]) ™2,
for all ¢t € R uniformly in € € (0,1]. By taking the adjoint, it reduces to prove
I¢(ex)Ope () e~ IVaD” f2(e2PYOpc (x )¢ (ex) [ 1 e < Cel(1+¢€lt]) ™2, (4.4.61)
for all ¢ < 0 uniformly in € € (0,1]. Let us prove (4.4.61)). For simplicity, we set
AL = ((ex)Ope (D) (72 P).
Using the Isozaki-Kitada parametrix given in Theorem [£.4.9] we see that
. -1 . 4
A;i-e—zte(e IVgl) Ope(xF)¢(ex) = AF (j:-(a:-)e—zteA T + ZR:(N’t’GO .
k=1
We firstly note that A} is bounded on L. Indeed, we write
((ex)Ope(xE)* F2(e72P) = ((ex)Ope (xF)* G (ew) f2 (e 72 P),
where (; € C*°(R?) is supported outside B(0, 1) satisfying (;(x) = 1 for |z| > R*. This is possible
since Op.(x) = (1(ex)Opc(x7). The factors ((ex)Op.(xF)* and (1 (ex) f?(e 2 P) are bounded in
L(L>) by the rescaled pseudo-differential operator and Corollary respectively. Thanks to
the £(L>°)-bound of AF and (4.4.29)), we have dispersive estimates for the main terms. It remains

to prove dispersive estimates for remainder terms. By rescaled pseudo-differential calculus, we can
write for [ > d/2,

AF = )P+ 1) (Ce)Ope(RF) + By (e) (ex) ™) 12 2P),

where { € C*°(R?) is supported outside B(0,1) and equal to 1 near supp(¢) and (YF)cc(o.1) €
S(0, —o00) satisfying supp(¥F) C supp(x¥) and B (€) = Oz, 12(1) uniformly in € € (0,1]. This
follows by expanding (e 2P + 1)!¢(ex)Opc(xT)* by rescaled pseudo-differential calculus.

For k = 1, using the Proposition [4.1.7] we can write

RE(N,t,€) = e "IVl () "N BL(e) (€72 P + 1) N((ew),

where By (¢€) = Oz2_,12(1) uniformly in € € (0,1]. Then, using Proposition with ¢ = oo and
(4.4.50), we have

IC(ex) (e 2P + 1)~ ¢(ex)Ope (W) * f2 (e 2PYRT (N, t,€) |11 e < O (et) N/
< Cel(1+ eft)) =42,

for allt < 0 and all € € (0, 1] provided N is taken large enough. Moreover, using again Proposition
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[4.1.6{and (4.1.23]), we also have

IC(ex)(e 2P + 1) By(e) (ex) ™" f2(e 2P)YRY (N, t, )| g1y pe < Ce (et) ™
< Ce(1+eft]) 72,
for all t <0 and all € € (0,1] provided [ and N are taken large enough. This implies
IATRY (N, )| 11 n < Cet(1+€ft]) =2,

for all t <0 and all € € (0,1].
Next, thanks to the support of b, we can write

T = T B (e 2P+ 1) NGy (en), (4.4.62)

where (b7 )cc(0.1) € S(0,—00), supp(bF) C T+ (R?, J5,03) and (; € C*(R?) is supported outside
B(0,1) such that ¢i(x) = 1 for || > R*. Indeed, we write for (1 € C*(R?) supported outside
B(0,1) and ¢; =1 in supp(C1),

T =T Glea) (e PP+ DN ((e72P +1) Vi (ex)) .

We have (4.4.62) by taking the adjoint of (e 2P + 1)N¢; (ex) JF (bF) = T+ (bF).

For k = 2, using (4.1.6) and its adjoint, (4.4.50), (4.4.62), (ex)' Rn(€) {ex) " = Opz,12(1)

and estimating as in Lemma [4.4.13] we have

I(ex) (2P + 1)~ ((ex)Ope(X)* f2 (e 2P)RY (N, t,€) |11 1
t
< Cede/ (e(t — 8))73”4 <es>7N/4 ds < Cet(1 + elt|) =92,
0
for ¢ < 0 provided that [ and N are taken large enough. Moreover, using (4.1.23) instead of
(4.4.50), we have
() (2P + 1)~ By(e) ()~ f2 (e *P)YRE (N, t, €)1 1o

t
< cede/ (et — ) " es) N ds < Ce¥(1 + eft]) "2,
0

for all t <0 and all € € (0,1]. This implies
|AFRS (N, t,€)|| g1 e < Cel(1+€lt])"2, vt <0,ec(0,1].

The third remainder term is treated similarly as the second one. It remains to study the last
remainder term. To do so, we split

t
AFTRI (Nt €) = —i / Are =9 VD (v 4 (1 — ) (ex/R2) T (@ (€))e N T+ (bF)*ds,
0

where y € C§°(R?) satisfying x(z) = 1 for |z| < 2. The first term can be treated similarly as the

second remainder using (4.4.51)) instead of (4.4.50) and Lemma [4.4.12| For the second term, we

need the following lemma (see [BT08, Proposition 5.2]).

Lemma 4.4.19. Choose 71 such that —14 < Ty < —712. If R > 0 is large enough, we may choose a
bounded family of symbols X € S(0,—o0) satisfying supp(x.) C I (R, J1,71) and (& € C®(R?)
supported outside B(0, 1) satisfying G=1on supp(1 — x) such that for all m large enough,

F(€2P)(1 = x)(ex/R*) T (@ (€)) = Ope(X: )Ca(ex) TF (Em(€)) + Rine),
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where

Rin(€) = TF (Fn(€)) + (ex) ™™ Run(e) (ex) ™™ T (a7 (e)),

with (€,(€))ec0,1] and (Fm(€))ec(o,1) bounded families in S(0,—oc0) and S(—m, —o0) respectively
and Ry, (€) = Op2_,12(1) uniformly in € € (0,1].
We set
Al =(Af + Aj,2)f(6_2p)a

where

ALy = (@) (€72P + 1) 7 (ex) Ope(XF)* F(72P),
Aly = {(ex)(e 2P+ 1) Bi(e) (ex) ™ f(e2P).

Using Lemma we firstly consider
t
—ih ! Ailefi(tfs)e(e’ VgD (Ope(iz)éz (ex)jf (ém(E)) + Rm(e)) e iseA’ jeJr (bj)*ds.
0
The remainder terms are treated similarly as the second remainder term using (4.4.50)) and Lemma
4.4.13] The term involving Op, (%7 )Ca(ex) T (Em(€)) is studied by the same analysis as the second

term using (4.4.52) instead of (4.4.47). For the term

t
il [ A I I (Op () e) T (€))7 T 07,
0

the required estimate follows by using (4.1.23) and Lemma [4.4.13] This completes the proof. [

4.5 Inhomogeneous Strichartz estimates

In this section, we will give the proofs of Proposition [£:0.6] and Proposition [£:0.8] The main
tool is the homogeneous Strichartz estimates and the so called Christ-Kiselev Lemma. To
do so, we recall the following result (see [CKO1] or [Sog93]).

Lemma 4.5.1. Let X and Y be Banach spaces and assume that K(t,s) is a continuous function
taking its values in the bounded operators from Y to X. Suppose that —oo < ¢ < d < 00, and set

d
Af(6) = [ K(t.5)(s)ds,

Assume that
IAf Lo (earx) < Cllf e e,y

Define the operator A as
t
Af(t) :/ K(t,s)f(s)ds,

Then for 1 < p < q < 0o, there exists C > 0 such that

IAf N za(iean,x) < CNF Lo (e,a,y)-

We are now able to prove the inhomogeneous Strichartz estimates (4.0.16]) and (4.0.20]).

Inhomogeneous Strichartz estimates for Schrodinger-type equation. We give the proof
of Proposition by following a standard argument (see e.g. [Zhal5]). Let u be the solution to
(4.0.1). By Duhamel formula, we have

t
u(t) = e Vel — z/ e E=IIV9l” F(5)ds = upom (t) + tinn(t).
0
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Using (4.0.14)), we have

[unom | v (&, Loy < CllY[| gyea-

It remains to prove the inhomogeneous part, namely

t
—i(t—s)|Vg|7 / /
H/O e F(s)dsHLp(Rqu) < C[F| Lo’ g, L0y

where (p, q), (a, b) are Schrodinger admissible pairs with ¢ < co and b < oo satisfying (p, a) # (2, 2)
and the gap condition (4.0.17). By the Christ-Kiselev Lemma, it suffices to prove

—i(t—s)|Vg|? , ,
| B < 4o

for all Schrodinger admissible pairs (p,q) and (a,b) with ¢ < co and b < oo satisfying (4.0.17)
excluding the case p = o’ = 2. We now prove (4.5.1)). Define

T, . h € Ly V| mae™ Vol € [P(R, LY).

Thanks to (4.0.14)), we see that T, is a bounded operator. Similar result holds for T,
we take the adjoint for T, , and obtain a bounded operator

Next,

a,b*

T; ,  Fel* (R L") /R|Vg|*7“v”ei5‘vg‘ﬂF(s)ds €,
where .7 is the dual space of .Z;. Using (4.0.17) or v = —Ya',pr — 0 = —Yp,q, We have
H / e—z‘(t—s>|vg|”p(8)d5‘
R
and (4.5.1)) follows.

Next, we prove

_ *
LP(R,L9) - ||T’Yp,qT’Ya,bF||LP(R»Lq) < C”FHL”’(]R,LI”)?

el e, gy < C (1 szmn + 1F g g o) )-
By using the homogeneous Strichartz estimate for a Schrédinger admissible pair (0o, 2) with Yoo 2 =

0 and that Hu”LOQ(R’H;’p,q) = H|vg|7p’qu||L°°(R,L2)7 we have

t
. Tp.a Tpa p—i(t=8)|Vg|?
Il ey < CIIVaP7 v lss + | [ 19 mne Feas], )

Using the Christ-Kiselev Lemma, it suffices to prove

V. [Trae=it=9)IVsl" B g)d H < C||F|| por -
| [19,eee )], oy < CNF a0

)

Using the above notation, we have

V[T e it=9)IVl7 B(s)d H = 15T Fl;e
Zies s, = I Floem
< CHTv*a,bFHLZ < CHF”La’(R,Lb’)-

This completes the proof of Proposition O
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Inhomogeneous Strichartz estimates for wave-type equation. We give the proof of Propo-
sition Let v be the solution to (4.0.19). By Duhamel formula, we have

v(t) = cost|Vy|7y + %ul +/ % F(s)ds =: Uhom(t) + Vinn(t),
Vgl 0 Vgl

where vpom 1S the sum of first two terms and v,y is the last one. We firstly prove

[0l Le®,Lay < C{llvoll gra + [[01ll govia—o + I1F | o g 207y ) -
g g

By observing that

eitlvyla + e_itlvgla eitlvgla — e_itlvylg

cost|Vy|7 = 5 , sint|Vgy|7 = 5 ,

and using (4.0.14]), we have
lonomllzo .oy < C(lvoll gon + o1l goma-s )
Let us prove the inhomogeneous part which is in turn equivalent to
et (t=5)[V4l”
—————F(s)ds ’
| [ “ere

where (p, q), (a,b) are Schrodinger admissible with ¢ < oo and b < oo satisfying the gap condition
(4.0.21)). We define the operator

L7 (R, Lq) ClIEN Lo g, (4.5.2)

cp € Ly V| T mae Vel Ty e LP(R, L9).

"/pq

Thanks to (4.0.14), we see that T, is a bounded operator. Next, we take the adjoint for T’ ,
and obtain a bounded operator

T;,,  FeL" (R L")~ /ﬂglvgl—wtlvbeis‘vg“’zv(s)ds .

Using (4.0.21)) or va,p = —Va',y — 0 = —7p,q + 0, We have

H/ 7z(t $)|Vgl? F( )d ‘
s)as
[Vgl®

As in the proof of the inhomogeneous Strichartz estimates for the Schrodinger-type equations, the
Christ-Kiselev Lemma implies for all Schrédinger admissible pairs (p,q) and (a,b) with
q < oo and b < oo satisfying the gap condition excluding the case p = a’ = 2.

Next, we prove

i = Ty, T3, Flle@e) < CIF| por g pory-

10l oo g, frmony < C{llvoll grva + 101l gowia= + 1 Fll Lo g, 207 ) -
(R HP) ] g (R.LY)

By using the homogeneous Strichartz estimate for a Schrédinger admissible pair (0o, 2) with Yoo 2 =
0 and that [[v]| oo (g 7770y = [[[Vg["" 0] (r,22), We have

[0l Lo, 1770y < CUNIV gl 00llL2 + IV |01 10
( g ) g

t
+ H/O V| (2= sin (¢ — s)|Vg|"F(s)dsHLoo(R7L2)>.

104



Chapter 4. Strichartz estimates on asymptotically Euclidean manifolds

Using the Christ-Kiselev Lemma, it suffices to prove
(Yp,q=0) p=i(t=5)|Vgy|” , /
H /R IV, O R < Ol g,
Using the above notation, we have

H/R|vg|(’Yp.q*a)e*i(t78)\vg‘UF(s)dsu = IToTZ,  Fll oo (k.2

Lo (R,L2
<C|T3,  Fllre < ClF| o g, 1oy

We repeat the same process for 0;v and obtain
||6t/UHLoo(]R’HZTMf17‘T) < O(HUOHH;M + ||U1||H3p,q*‘f + ||FHLa’(R,Lb’))-

This completes the proof of Proposition [4.0.8
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CHAPTER 5

Local well-posedness for nonlinear
Schrodinger-type equations in
Sobolev spaces
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In this chapter, we study the local well-posedness in Sobolev spaces for the power-type nonlinear
Schrédinger-type equations, namely

{ iu(t,z) + |V|ou(t,z) = —p(lul*"tu)(t,z), (t,z) € RxRY, (NLST)

’LL(O,!E) = "/}(x)v .’EGRd,

with 0 € (0,00),v > 1 and p € {£1}. When o = 1, we use the notation (NLHW) instead of
(NLST). The operator |V| = v/—A is the Fourier multiplier by |¢| where A = Z?Zl 7 is the free
Laplace operator on R?. The number 1 = 1 (resp. p = —1) corresponds to the defocusing case
(resp. focusing case).

Before stating the main results, we recall some useful facts about (NLST). By a standard
approximation argument, the following quantities are conserved under the flow of (NLST):

M(®) = [ fult,z)Pdz = M), Eult) = [ FIVFPult o) + Lt o) e = E)

Moreover, if we set for A > 0,
ux(t,z) = N7 Tu(AT0t A ),
then (NLST) is invariant under this scaling, that is for T € (0, +o0],
u solves (NLST) on (—=7,T) <= uy solves (NLST) on (—A°T,\°T).

We also have

d__o _
[ux(O)ll v = A2 77T [0l s
From this, we define the critical regularity exponent for (NLST) by

d o
= o , 5.0.1
Y= 5T o (5.0.1)
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Chapter 5. Local well-posedness nonlinear Schrodinger-type equations

In this chapter, we are interested in the well-posedness results for (NLST) when v > 4.. Since we
are working in Sobolev spaces of fractional order 7, 7., we need the nonlinearity F(z) = —pu|z|" "1z
to have enough regularity. When v is an odd integer, F' € C*°(C,C) (in the real sense). When v
is not an odd integer, we need the following assumption

[ [l < v, (5.0.2)

where [v] is the smallest integer greater than or equal to v, similarly for [.].

In order to study the local well-posedness of (NLST) in Sobolev spaces, we need two important
tools: linear estimates (or Strichartz estimates) and nonlinear estimates. Strichartz estimates for
the linear Schrédinger-type equation are derived in Chapter Note that in the case o € (0,2)\{1},
we always have v, ; > 0 (see (1.0.7))) for all admissible pairs except (p,q) = (00,2). This shows
that Strichartz estimates for the linear Schrédinger-type equation given in Corollary have a
loss of derivatives. That is if we use Strichartz estimates at H7-level, then we need the initial data
at HYTvalevel except (p,q) = (00,2). This loss of derivatives leads to restrictions (and hence
weak results) compared to the those in the case o € [2,00). Therefore, we will consider three
cases 0 € (0,2)\{1}, 0 =1 and ¢ € [2,00) separately. We also recall some nonlinear estimates as
follows.

Nonlinear estimates. Let us start with the following Kato-Ponce inequality (or fractional
Leibniz rule).

Proposition 5.0.1. Let v > 0,1 < r < 0o and 1 < p1,p2,q1,q2 < 00 satisfying % = p% + q% =
p% + q%. Then there exists C = C(d,~,r,p1,q1,P2,q92) > 0 such that for all u,v € .7,

VI (wo)|zr < C(IIIV\”UHLm [ollzar + [[ul] e IHV\”UHLQ), (5.0.3)

(V)T (w) || < C(Il (V) ullpeafvllpar + [Jull ez || <V>Vv||mz>- (5.0.4)

We refer to [GO14] (and references therein) for the proof of above inequalities and more general
results. We also have the following fractional chain rule.
Proposition 5.0.2. Let F € C*(C,C) and G € C(C,R") such that F(0) =0 and

|[F'(0z + (1 = 0)0)| < w(0)(G(2) + G(C)), 2¢eC, 0<0<1,

where p € LY((0,1)). Then for v € (0,1) and 1 < r,p < oo, 1 < q < oo satisfying % = % + %,
there exists C = C(d, u,v,7,p,q) > 0 such that for allu € Z,
VI E )l < CIF (@)]|a[IV]"ull e, (5.0.5)
(V) F(u)||r < CIIF ()| Lall (V) ull Lo (5

We refer to [CWII] (see also [Sta95]) for the proof of and [Tay00], Proposition 5.1] for
. A direct consequence of the fractional Leibniz rule and the fractional chain rule is the
following fractional derivative estimates.

Corollary 5.0.3. Let F € C*(C,C),k € N\{0}. Assume that there is v > k such that

|ID'F(2)| < Clz|"™%, 2eC, i=1,2,...,k

Then for v € [0,k] and 1 < r,p < 00, 1 < q¢ < o0 satisfying % = %—i— %1, there exists C =

C(d,v,v,7,p,q) > 0 such that for all u € .7,

VP E@)llz < Cllullza 11V ull e, (5.0.7)
(V)" Fw)llzr < Cllullzs (V) ull Lo

The reader can find the proof of (5.0.7)) in [Kat95, Lemma A.3]. The one of (5.0.8) follows
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5.1. Local well-posednesss nonlinear Schrédinger-type equations

from (5.0.7)), the Holder inequality and the fact that
V) ullzr ~ Jlullor + 1Vl e

for 1 < r < 00,y > 0. Another consequence of the fractional Leibniz rule given in Proposition
[.0.1]is the following result.

Corollary 5.0.4. Let F(z) be a homogeneous polynomial in z,Z of degree v > 1. Then
and hold true for any v > 0 and r,p,q as in Corollary .

Corollary 5.0.5. Let F(2) = |z|" 'z withv > 1,y >0 and 1 < r,p < 00, 1 < q < oo satisfying

1_1 v—1
r p+q'

i. If v is an odd integer or [v] < v otherwise, then there exists C = C(d,v,v,7,p,q) > 0 such
that for all u € &7,
IE @)l gz < Cllull sl gy -

A similar estimate holds with Hﬂ, Hg—narms are replaced by HY, H)-norms respectively.
ii. If v is an odd integer or [v] < v — 1 otherwise, then there exists C = C(d,v,v,7,p,q) > 0
such that for all u,v € &,

1F(w) = F(v)|

i < C((rallya + ol = vl
(a2 + ol Ul g + 10l e = e )

A similar estimate holds with Hﬁ, Hg—norms are replaced by HY, H)-norms respectively.

Proof. Ttem 1 is an immediate consequence of Corollary and Corollary For Item 2, we
firstly write

1
F(u) — F(v) = / 0. F(v+0(u—v))(u—v)+0F(v+0(u—wv))(u—1)dd,
0
and use the fractional Leibniz rule given in Proposition Then the results follow by applying
the fractional derivative estimates given in Corollary [5.0.3] and Corollary [5.0.4] O

5.1 Local well-posedness for Schrodinger-type equations in
Sobolev spaces when o € (0,2)\{1}

5.1.1 Local well-posedness in the subcritical case

Let us start with the following local well-posedness in the subcritical case.
Theorem 5.1.1. Given o € (0,2)\{1} and v > 1. Lety > 0 be such that

v>1/2—0/max(v—1,4) whend=1, (5.1.1)
v>d/2—0/max(v—1,2) whend > 2, o
and also, if v is not an odd integer, (5.0.2). Let
p>max(v—1,4) whend=1 (5.1.2)
p>max(v—1,2) whend > 2 o

be such that v > % —
(NLST) satisfying

%. Then for all ¢ € H7, there exist T* € (0,00] and a unique solution to

we C([0,T%),H") N LP

loc

([0,T), L*).
Moreover, the following properties hold:

i If T* < oo, then ||u(t)|| gy — o0 as t — T*.

110



Chapter 5. Local well-posedness nonlinear Schrodinger-type equations

ii. u depends continuously on v in the following sense. There exists T € (0,T*) such that
if ¥ — W in HY and if u, denotes the solution of (NLST) with initial data t,, then
0 <T < T*(1y) for all n sufficiently large and u,, is bounded in L*([0,T), H, ") for any
Schrédinger admissible pair (a,b) with b < co. Moreover, u, — u in L*([0,T], H, ")
n — oo. In particular, u, — u in C([0,T], H'~¢) for all0 < e < 7.

iii. Let B8 > ~ be such that if v is not an odd integer, [B] < v. If+¢ € HP, then u €
C([O,T*),Hﬁ).

The local well-posedness in Sobolev spaces for the nonlinear Schrédinger-type equation in the
case o € (0,2)\{1} was first established by Hong-Sire in [HS15]. Theorem improves the one
in [HS15)] at the point that Hong-Sire only give the local well-posedness for v > 2 when d = 1 and
v > 3 when d > 2. This result also covers the one in [CHKL15] when d = 1 and in [GHI13] when
d > 2, where the authors considered the cubic Schrédinger-type equation with o € (1, 2).

Proof of Theorem[5.1.1] We follow the standard process (see e.g. [Caz03, Chapter 4] or [BGT04])
by using the fixed point argument in a suitable Banach space. Let p be as in (5.1.2). We then
choose ¢ € [2,00) such that

as

+-<

SHESY
N

hSER N

Step 1. Existence. Let us consider
X = {u € L>*(I,H") N LP(I, H] ") | |Jullpee (1,17 + ||u||Lp(I7H;wp,q) < M},
equipped with the distance

d(u,v) = |lu —v|| g (r,22) + llu — v||LP(I,H;7p,q),

where T = [0,7] and M,T > 0 to be chosen later. The persistence of regularity (see e.g. [Caz03|
Theorem 1.2.5]) shows that (X, d) is a complete metric space. By the Duhamel formula, it suffices
to prove that the functional

t
(u)(t) = VI + m/ eIV 1y ()] Lu(s)ds (5.1.3)
0

is a contraction on (X, d). The local Strichartz estimate ((1.1.18)) gives

1) Loe (1, 157) + N 1 prr=wmay S NN + IE @z r, ),
12(w) = (V)| (r,22) + [18(w) = () 1y f groway S (W) = F(0)lLr(2,22),
(, )

where F(u) = |u|*~"!u. By our assumptions on v, Corollary gives

IE @)zt r,m) S Wullyets g pooy el @y ST 7 lullfol pooylull oo ), (5.1.4)

1F @) = F@llren S (e g + 10050 g ey )0 = ol )

s T (HUHL”(I L=y T ||v||22(1,m) lu = vllLeo1,22)- (5.1.5)

Using that v — 7,4 > d/q, the Sobolev embedding implies LP(I, H, '**) C LP(I, L>). Thus, we
get

v—1

Lr(1, H’Y Tp, q)Hu”LN(LH'Y)’

1@C) | oo (1) + NS L grrmay S W11 + T Jul

and

d(®(w), D(v ))<T1_7(|I I +ll? llu = wllLoe(1,22)-

LP(I H] Py LP(I H]™ qu)>
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5.1. Local well-posednesss nonlinear Schrédinger-type equations

This shows that for all u,v € X, there exists C' > 0 independent of ¢ € H” such that

12 Low 1,y + IR o 1 70y < CllPl 7 + CcT' =5 MY,

d(®(w), ®(v)) < CT % MY~ 'd(u,v).

Therefore, if we set M = 2C/||¢|| gz~ and choose T' > 0 small enough so that CT 5% MY < z
then X is stable by ® and ® is a contraction on X. By the fixed point theorem, there exists a
unique u € X so that ®(u) = u.

Step 2. Uniqueness. Consider u,v € C(I, HY) N LP(I, L) two solutions of (NLST). Since the
uniqueness is a local property (see [Caz03l Chapter 4]), it suffices to show v = v for T small. We

have from ([5.1.5)) that
du,0) < CT' 55 (Jullyoly oy + 0l ey ), ).
We see that if T > 0 is small enough, then

d(u,v) <

d(u,v) or u =v.

N | =

Step 3. Item i. Since the time of existence constructed in Step 1 only depends on ||| g~. The
blowup alternative follows by standard argument (see again [Caz03, Chapter 4]).

Step 4. Item ii. Let ¢, — ¢ in HY and C,T = T(¢)) be as in Step 1. Set M = 4C||¢||p~. It
follows that 2C||¢,||gv < M for sufficiently large n. Thus the solution w,, constructed in Step 1
belongs to X with T' = T'(¢) for n large enough. We have from Strichartz estimate and

(B-14) that

1—
[l g ey S Wl + T Nl oyl

provided that (a,b) is Schrodinger admissible and b < oo. This shows the boundedness of u,, in
L(I, H)~""). We also have from (5.1.5) and the choice of T that

1
d(tp,u) < Clltoy, — Y|z + §d(umu) or d(up,u) < 2C||th, — V|| L2.

This yields that u,, — w in L°(I, L?) N LP(I, H; '*). Strichartz estimate (1.1.18) again implies
that u, — u in LI, H, '*") for any Schrédinger admissible pair (a,b) with b < co. The conver-
gence in C(I, HY~¢) follows from the boundedness in L>°(I, H”), the convergence in L*°(I, L?)

and that |[ul] - < lully” ]l -

Step 5. Item iii. If ¢p € H? for some B > v satisfying [3] < v if v > 1 is not an odd integer,
then Step 1 shows the existence of H? solution defined on some maximal interval [0, 7). Since H”
solution is also a H” solution thus 7' < T*. Suppose that T' < T*. Then the unitary property of

e™VI” and Corollary [5.0.5| imply that

t
lu@ e < 1[Plms +C/O ()17 llu(s) | rrods,

for all 0 <t < T. The Gronwall’s inequality then gives

t
s < il exo (C [ futs) 7 2as).

for all 0 < ¢ < T. Using the fact that u € L{,_* ([0, T*), L), we see that limsup ||[u(t)| zs < oo as
t — T which is a contradiction to the blowup alternative in H?. O
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Chapter 5. Local well-posedness nonlinear Schrodinger-type equations

Remark 5.1.2. If we assume that v > 1 is an odd integer or

[ <v-1 (5.1.6)
otherwise, then the continuous dependence holds in C(]0,T], H”). Indeed, if the above condition
holds true, then the continuous dependence holds in C(I, HY). To see this, we consider X as
above equipped with the following metric

d(u,v) = [[u — vl goo 1,17y + [Ju — v||Lp(I’HZﬂ,,,q).

By Item ii of Corollary we have

1F () = F@)llzra,my S (ll 722 r pooy + 101702 ey 1 = 0l oo 2,10y

F (lull 7220 g ey F 1017220 0 ooy Nl oo (1, my + 0] oo () Ml = 0l po-1r, £y -
Using the Sobolev embedding, we see that for all u,v € X,
A(®(u), B(v)) < T F M Ld(u,v).

Therefore, the continuity in C(I, H) follows as in Step 4.
Proposition 5.1.3. Let

o €(2/3,1) whend=1,
€(1,2) when d = 2, (5.1.7)
o€ (3/2,2) whend=3.

and v > 1 be such that 0/2 > 7., and also, if v is not an odd integer, [oc/2] < v. Then for any
W € H°/?, the solution to (NLST) given in Theorem can be extended to the whole R if one
of the following is satisfied:
iop=1.
i p=-1lv<l+20/d
iil. p=-1,v=1+420/d and ||¢| 12 is small.
iv. p=—1 and ||¢||gos2 is small.

Proof. The assumption (5.1.7) allows us to apply Theorem with v = ¢/2 and obtain the
local well-posedness in H°/2. We now prove the global extension using the blowup alternative.

Item i follows from the conservation of mass and energy. For Item ii and Item iii, we firstly use
Gagliardo-Nirenberg’s inequality (see e.g. [Tao06, Proposition A.3]) with the fact that

_1 v—1)
v+1 2 2 o(v+1)

and the conservation of mass to get

=)

v o V+17 V+1,
w7 S NIV 2 )IILz HU( Mz IIU(f)HHU/Q 19172

Note that here the assumption v < 14 20/d ensures that § € (0,1). The conservation of mass
then gives

v V+1— 1)
Llu@®IzE S B@) + -

%IIU(t)II%m = E(u(t) + IIH(t)IIHU/z 11l .2

v+1
If ve (1,1+20/d) or @ € (0,2), then ||u(t)| f7o,2 < C. This together with the conservation
of mass implies the boundedness of ||u(t)| o/ and Item ii follows. Item iii is treated similarly

with [|¢||z2 is small. It remains to show Item iv. By Sobolev embedding with 1 < l/+1 + 2, W
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5.1. Local well-posednesss nonlinear Schrédinger-type equations

have

1 1 vl C v
a3 = B(t) + — < @l < BE)+ = u@lh, (608

for all ¢ € [0,7*). Similarly, we use the Sobolev embedding to bound

1 2 c v+1
E() < SI1¥ll502 + mH¢||Ht/2'
Since v 41 > 2, it follows that E(y) < [[¢[1%;,,. provided ||¢|| g /2 is small enough. Denote
Ti=sup{t € [0,T%) : |[u(s)||gor2 < 2|uolgos2, Vs < t}.

We want to show 7 = T™. Indeed, if 7 < T* then by the continuity of ¢t — ||u(t)|| go/2, we have
[w(T)|| gos2 = 2||uo]| gro/2. Inserting it into (5.1.8), we get

(2lluoll ror2)" .

C 3 c
2||U0||§1a/2 < E(up) + m(QHUOHH”/?) < HUOH%ION + vl

This inequality is not possible for ||ug|| go/2 is small enough. The proof is complete. O

5.1.2 Local well-posedness in the critical case

We now turn to the local well-posedness and scattering with small data for (NLST) in the
critical case.

Theorem 5.1.4. Let o € (0,2)\{1} and

{ v>5 whend=1,

v > 3 when d > 2 (5.1.9)

be such that v. > 0, and also, if v is not an odd integer, (5.0.2)). Then for ally € H, there exist
€ (0,00] and a unique solution to (NLST) satisfying
we C([0,T"),H)n LY

loc

([O, T*), Bg“_%’q)7

where p = 4, = oo whend = 1; 2 < p < v—1,q = p* = 2p/(p — 2) when d = 2 and
p=2,q=2"=2d/(d—2) when d > 3. Moreover, if |||z~ < & for some e > 0 small enough,
then T* = oo and the solution is scattering in H7¢, i.e. there exists v+ € H" such that

: _ itV o+ —
tl}I-‘PooHu(t) e | gre = 0.

This theorem is a modification of Theorem 1.2 and Theorem 1.3 in [HS15] where the authors
proved the global well-posedness and scattering for small inhomogeneous data. Note that for

€ (0,2), Strichartz estimates for the unitary group e*IVl” have a loss of derivatives. In the
sub-critical case v > 7., the derivative loss is compensated for by using Sobolev embeddings. In
the critical case 7 = 7., the Sobolev embedding does not help. To remove the derivative loss,
we use Strichartz norms localized in dyadic pieces, and then sum up in a ¢2-fashion. It needs a
delicate estimate on LY 'L (see [HSI5, Lemma 3.5]). The range v € (1,5] when d = 1 and
v € (1, 3] still remains open, and it requires another technique rather than Strichartz estimate.

In order to prove Theorem[5.1.4] we need the following estimates which control the nonlinearity.
Lemma 5.1.5 ([HS13)]). Let o € (0,2)\{1}, v be as in (5.1.9), 1c as in (5.0.1). Then we have

ol vyl e ahen = 1
||u||LV L (R, L) < [u ||L bl )H ||Lo<> RPB%) where v —1 > p > 2 when d = 2,
”u”ZLz(R BIeTT22Y ||U| LOO(]R By°) when d > 3,
) 2*
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where p* = 2p/(p — 2) and 2* = 2d/(d — 2).

This result is a slight modification of [HS15, Lemma 3.5] which generalizes Lemma 3.1 in

[CKSTT5]. The main difference is the exponent power in R For the reader’s convenience, we
recall some details.
Proof of Lemma . The proof is essentially given in [HSI5l Lemma 3.5] which uses a trick of
[CKSTT5]. For the reader’s convenience, we only give the details for d = 2. The case d = 1 and
d > 3 are treated similarly. We refer to [HSI5] for the proof when d > 3 (see also Lemma [5.2.3)).
By interpolation, we can assume that v — 1 = m/n > 2,;m,n € Nwith (v —1—p)n > 1. We
proceed as in [HS15] and set

en(t) = NP7 v | Pyu(t) || os g2y, e (t) = N[ Pyu()]| 2 g2).-

Remark that in this case (p,p*) is a Schrodinger admissible pair, 7. = 1 — on/m and vpp =
1—2/p* — o/p. By Bernstein’s inequality, we have

[ Pru(t)|| Lo g2y S N~ Fen(t), (5.1.10)
[Py ut) poe g2y S N ey ().

This implies that for 6 € (0,1) which will be chosen later,

| Pxa(®)ll o ry S N5 (en (£) (e (). (5.1.11)
We next use
- ( Z HPNU(t)”L“(R?)) < Z H [P, ()] oo (r2).-
Ne2Z N1Z>-->Np, j=1

Here the first equality follows from the Sobolev embedding with the fact that (Ve — Yp,pr )P* =
2+ (o/p—0o/(v—1))p* > 2. Estimating the n highest frequencies by (5.1.10) and the rest by

(5.1.11)), we get

For an arbitrary § > 0, we set

én(t) =Y min(N/N',N'/NYey:(t), &)= > min(N/N',N'/N)>cl. (#).
N’e22 A=

Using the fact that cy(t) < én(t) and én, (t) S (N1/N;)%¢n, (t) for j = 2,...,m and similarly for
primes, we see that
AHs Y (HN” T (/) e () I ~ N (NN e, (0) B, ().
Ni>-->Np =1 j=n+
We can rewrite the above quantity in the right hand side as
67:7(;0 —6 . %7;7 ml*ajL(m 1)5 n+(m—n ~ m—n —

S (I~ )(H ), (s (1) =2 Gl (1) 000,

N1>--->N,, j=n+1 j=2

Next, we choose § = (p —1)/(v — 2) € (0,1) and ¢ > 0 such that

50, T o5 <0 or < ZIR)
m D m p pm(m —1)
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Here condition v > 3 allows us to choose p > 2 such that m — np > 0. Summing in V,,, then in
Nyp—1,..., then in N5, we have

A S D (Ena ()" (@, ()1,

N,€22

The Holder inequality with the fact that (v — 1 — p)n > 1 implies

A®) S NEO" 22y | 1) 7P a2
~ n ~, v—1 n n ~, v—1—p)n
= 1) [F3n 2y 1€ O 5200 ) < NEO N 12 ()15 2

1/q
where [|E()][ga(22) = <Z Neoz |6N(t)\q) and similarly for prime. The Minkowski inequality
then implies
v—1—p)n
At) S e 1 (Bl gy ™™

This implies that A(t) < oo for amost every where ¢, hence that >\ [|Pnu(t)||poemay < o0.

Therefore 3 5 Pyu(t) converges in L>°(R?). Since it converges to u in the ditribution sense, so
the limit is w(¢). Thus

1
HUHLV T(R,L>°(R2)) — / ||u(t)HZLOQZR2 dt < / ” ”42(22)”6( )HZQ(QZ Pdt
/ P v—1—p
5 ”CHLsz(QZ)”C HLOOKZ(QZ - ||U|| (RBZi_’Yp’p* (]R2 ” HLQC(R7B;C(R2))'

The proof is complete. O
Proof of Theorem[5.1.4] As in the proof of Theorem [5.1.1] we proceed in several steps.

Step 1. Existence. We only treat for d > 3, the ones for d = 1,d = 2 are completely similar. Let
us consider

X = {u € L°(I, H) N L*(I, Bys ") | |[ull poo (1. 57e) < M, |lul] < N},

L2(1, B’vc Y2, 2*)
equipped with the distance

d(u,v) := ||u — v||pe(r,02) + [lu — ”L2(1 Bty

where I = [0,T] and T, M, N > 0 will be chosen later. One can check (see again [CW90] or [Caz03,
Chapter 4]) that (X, d) is a complete metric space. Using the Duhamel formula

t
®(u)(t) :eitlv\”¢+m/ IV ()] u(s)ds =: unom (t) + winn (), (5.1.12)
0

the Strichartz estimate (|1.1.4]) yields
Huhom”Lz(LB;:*b,z*) S ”d’HH%

A similar estimate holds for ||uh0m||Loo(1,H%). We see that ||unom] Te2,2% < ¢ for some

L2(1,B,,
e > 0 small enough which will be chosen later, provided that either Hz/)|| v 1s small or it is
satisfied for some 7" > 0 small enough. Therefore, we can take T' = oo in the first case and 1" be
this small time in the second. On the other hand, using again (|1.1.4)), we have

”uinhHL2(1 B“rc V2, 2*) ~ ||F( )HLl(I,HWC)'

116



5.2. Local well-posedness in the case ¢ =1

The same estimate holds for |[uinn | 1o (7, e Corollary and Lemma give

2o (5.1.13)

HF(U)HLl(I Hye) ~ HUHLV (I, Loo)H“”LDO(I Hye) ~ H ||L2(I B% V2, 2* ||u| Loo(I,H"e)

Similarly, we have

1F() = FO)lereny S (1520 g gy + 10150 g gy ) = vl 2 (5.1.14)
2 2 v—3
S (Il om0 ey W2 mman IO ey ) = Wl oy

This implies for all u,v € X, there exists C' > 0 independent of ¢ € H" such that
2 v— 2
||¢)(u)||L2(I B% 72, 2% <e+CN*M
12(w)| oo (1, 717e) < CllYN e + CN?M"~2,
d(®(u), ®(v)) < CN*M"3d(u,v).

Now by setting N = 2¢ and M = 2C||¢| g~ and choosing ¢ > 0 small enough such that
CN2M¥~3 < min{1/2,e/M}, we see that X is stable by ® and ® is a contraction on X. By
the fixed point theorem, there exists a unique solution u € X to (NLST). Note that when ||¢|| 7+
is small enough, we can take T' = ooc.

Step 2. Uniqueness. The uniqueness in C> (I, HY) N L*(I, Bys~ "**") follows as in Step 2 of the
proof of Theorem IT using 1) Here ||u||L2 1B can be small as T' is small.

Step 3. Scattering. The global existence when ||z/JH e is small is given in Step 1. It remains to
show the scattering property. Thanks to (5.1.13f), we see that

to
le="=1Y1 u(t) — =1V 0 (t1) oo = HW/ 6_15‘v|0(|u|'/_1u)(8)d8H .
He

t1

< ||F(u)||L1([t1,t2],H7C) A<4 ”uHi [t1,t2], B"fc Y2,2% Hu”Loo([tl to],H7e) —0 (5'1'15)
as ty,to — +00. We have from (5.1.14)) that

—ita| V|7 —it1|V|7 2 v—3
e u(t2) = e~ (i)l S Il e 0 I )
(5.1.16)

which also tends to zero as t;,ts — +o0o. This implies that the limit

+ . 1 —it| V|7
P tilglooe u(t)

exists in H7. Moreover, we have
. o +oo . o
u(t) — VIt = —iu/ eIV B u(s))ds.
t

The unitary property of eIV|” in L2, (5.1.15) and (5.1.16)) imply that |[u(t) — eIV |7 || gre — 0
when ¢ — +o00. This completes the proof of Theorem [5.1.4] O

5.2 Local well-posedness for nonlinear half-wave equation
in Sobolev spaces

5.2.1 Local well-posedness in the subcritical case

We have the following local well-posedness in the subcritical case.
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5.2. Local well-posedness nonlinear half-wave equation

Theorem 5.2.1. Let v > 0 and v > 1 be such that

v>1-1/max(v—1,4) when d = 2, (5.2.1)
v>d/2—1/max(v—1,2) whend >3, -
and also, if v is not an odd integer, ((5.0.2). Let
p > max(v—1,4) when d=2 (5.2.2)
p>max(v—1,2) whend >3 o

be such that v > % —
(NLHW) satisfying

%. Then for all v € H7, there exist T* € (0,00] and a unique solution to

we C([0,T%), H") N LV

loc

([0,T7), L*).
Moreover, the following properties hold:

(i) If T* < o0, then ||u(t)||gy — 00 as t — T*.
(ii) u depends continuously on ¢ in the following sense. There exists T € (0,T*) such that
if v — ¥ in HY and if u, denotes the solution of (NLHW) with initial data 1, then
0 <T < T*(1y) for all n sufficiently large and u,, is bounded in L*([0,T), H, ") for any
wave admissible pair (a,b) with b < co. Moreover, u, — u in L2([0,T], H, '*") as n — occ.
In particular, w, — uw in C([0,T),H"~¢) for all 0 < € < 7.
(iii) Let B > ~ be such that if v is not an odd integer, [B] < v. If ¢ € HP, then u €
C([0,T%), HP).
As in Remark [5.1.2] the continuous dependence can be improved to hold in C([0, T, H?) if we
assume that v > 1 is an odd integer or [y] < v — 1 otherwise.
Proof of Theorem [5.2.1] The proof is similar to the one for Theorem [5.1.4] by using Strichartz
estimates for the linear half-wave equation. For the reader’s convenience, we give a sketch of the
proof for the local existence. Let p be as in and then choose ¢ € [2,00) such that

2 d-1 d-1
<

q ~— 2

Let us consider
X = {u & LI HY) N EP (L HY 7 0) | ull o0y + Nl o=y < M},
equipped with the distance
(,0) = u = e 1,22y = 0l gy

where I = [0,7] and M, T > 0 to be chosen later. By the Duhamel formula, it suffices to prove
that the functional

¢
B(u)(t) = Vg + ip / =71 |y (5)]"~Tu(s)ds
0
is a contraction on (X, d). The Strichartz estimate ([1.2.10]) yields
@)oo, my + 1R g ggr=omay S 0 + IE @22 (1,0
12(w) = @(v) | (r,22) + [1®(w) = ) 1y (f gromay S I (W) = F0)lLr(a,22),
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Chapter 5. Local well-posedness nonlinear Schrodinger-type equations

where F(u) = |u|"~u and similarly for F(v). By our assumptions on v, Corollary gives

1 (u )”Ll(I H™) S HUHL” (I, Loo)H“”L“’ (I,HY) ~ S Tl_i”“”m(z Lo°) ||U||L°°(I,HW)7 (5.2.3)
1) = F@) e S (el ey + 1007 g ey ) e = vl .2

S Tlii (HUHLP(I L) + ||“||ZZ(1,L00)) [u — U||L°°(I,L2)- (5.2.4)

The Sobolev embedding with the fact that v — v,, > d/q implies LP(I, H] ™) C LP(I, L*).
Thus, we get

e § v—
12 ()l e r.t) 1R ey S Wl + T ! el o (1,12,

I,H;iﬂ{p"q)

and

< =4t —
A@ (), 2@) ST (Jull L I ) )= vl o)

This shows that for all u,v € X, there exists C' > 0 independent of ¢ € H” and T such that

PES O
()| oo (r,m) + H(I)(U)HLP(I,H;‘”M) < C|[t||g + CT'= 5 MY,

A(D(u), ®(v)) < CT % M"d(u,v).

Therefore, if we set M = 2C||¢)|| gz~ and choose T > 0 small enough so that CT'~ Ml < 3
then X is stable by ® and ® is a contraction on X. By the fixed point theorem, there exists a
unique v € X so that ®(u) = u. O

5.2.2 Local well-posedness in the critical case

We also have the following local well-posedness and scattering with small data for (NLHW)
which is similar to (NLST) with o € (0,2)\{1} in the critical case.
Theorem 5.2.2. Let

(5.2.5)

v>5 whend=2,
v>3 whend?> 3,

and also, if v is not an odd integer, (5.0.2). Then for all ¢ € H"<, there exist T* € (0,00] and a
unique solution to (NLHW) satisfying

we C([0,T%), H) N LP

loc

([O,T*),Bg“_%*q),

where p=4,g =00 whend=2;2<p<v-—1,q=p*=2p/(p—2) whend=3; p=2,q=2% =
2(d—1)/(d—3) when d > 4. Moreover, if ||¢)|| 7. < € for some e > 0 small enough, then T* = oo
and the solution is scattering in H7<, i.e. there exists v+ € H7 such that

it|V],, + _
Jim_[fu(t) = %19 e = 0

In order to prove Theorem [5.2.2] we need the following estimates which control the nonlinearity.

Lemma 5.2.3. Let v be as in Theorem and v. as in (5.0.1). Then

ell], g e 10l ey when d =2,
L4(R,BLS ) ( )

||u||L, LR, L) < [u HIZ »(R, B’Yc T )H ||Loo RPB%) where 2 <p <v —1 when d =3,
||U||12(R B’Yc*’Yg,z* ||u| Loo(]R B’Yc) when d 2 47
yDox

where p* = 2p/(p — 2) and 2* = 2(d —1)/(d — 3).
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5.2. Local well-posedness nonlinear half-wave equation

The above lemma follows the same spirit as [HHIS15, Lemma 3.5] using the argument of [CKSTT5|
Lemma 3.1]. The proof is similar to Lemma [5.1.5) we thus omit the details.

Proof of Theorem[5.2.2] As before, we use the standard contraction mapping argument. The proof
is done in several steps.

Step 1. Existence. We only treat for d > 4, the ones for d = 2,d = 3 are completely similar. Let
us consider

X = {u € L>(I,H™)NL*(I, By ™) | [ull oo (1,117ve) < M, ||“||L2(I Bl < N}7

equipped with the distance

d(u,v) := ||u = v||peo(r,r2) + |lu — ||L2(I B2ty
where I = [0,T] and T, M, N > 0 will be chosen later. One can check (see e.g. [CW90] or [Caz03|
Chapter 4]) that (X, d) is a complete metric space. We will show that the functional

t
D(u)(t) = e"IVly + w/ e IV (s) " "Lu(s)ds =t unom (t) + uinn(t),
0
is a contraction on (X, d). The Strichartz estimate ([1.2.3]) yields

[[hom|l v S [P g (5.2.6)

L2(I,B,;

We see that ||unom|| < ¢ for some ¢ > 0 small enough which will be chosen later,

Ye T2 2%

L2(1,B,, )
provided that either ||¢)|| 7+, is small or it is satisfied for some T' > 0 small enough by the dominated
convergence theorem. Therefore, we can take T" = oo in the first case and T' be this small time
in the second. A similar estimate to (5.2.6) holds for |[unoml| = (s g )- On the other hand, using

again (|1.2.3), we have

||uinhHL2(1 B% V2, 2y S ||F( )HLl(I,H%)‘

The same estimate holds for |[winn|[ e (s 7). Corollary [5.0.5{and Lemma give

”F(u)HLl(I,ch ||u||L, 11, Loo)”u”LOO(I,H% S u H;(l B% Y2,2% ”u”Loc(I ey’ (5.2.7)
Similarly, we have
1)~ B0 rcrze) S (5 iy + 100572 ey e = vllaoe 1.2 (5.28)

v—3

F PP 1 e ] o g | R PERs

2
S (el goeraam 75 sy + NI
This implies for all u,v € X, there exists C' > 0 independent of ¥» € H” such that

1Ry e <e+CN*MV 2,
| “)”Loo([,ch) < O] e + CN2MY 2,

d(®(u), ®(v)) < CN?*M"3d(u,v).

Now by setting N = 2¢ and M = 2C|¢| g~ and choosing ¢ > 0 small enough such that
CN2M¥=3 < min{1/2,e/M}, we see that X is stable by ® and ® is a contraction on X. By
the fixed point theorem, there exists a unique solution v € X to (NLHW). Note that when
[11]| fr~e is small enough, we can take T' = oco.

Step 2. Uniqueness. The uniqueness in C> (I, HY) N L*(I, Bys~ "**") follows as in Step 2 of the
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5.3. Local well-posedness in the case o € [2,00)

proof of Theorem using l) Here ||uHL2(I e~ 2% CAN be small as T is small.
s Box

Step 3. Scattering. The global existence for ||1]| z~, small is given in Step 1. It remains to show
the scattering property. Thanks to (5.2.7), we see that

e 1% u(t2) e (e e = i [ fu ) o),
t Ye
. 2 v—2
S IEzr e o oy S Wl g, g grerman Wy g 500y 20 (5:2:9)
as t1,ts — +0o0. We have from ([5.2.8) that
—its|V| _ —it1]V] 2 v—3
e~ ¥luta) = e T ult)le Sl S 0y I .0

(5.2.10)
which also tends to zero as t1,t5 — +00. This implies that the limit

ST —it|V|
YT tilinooe u(t)

exists in H7. Moreover, we have
u(t) — eVipt = —i,u/ e E=IIVIE (u(s))ds.
t

The unitary property of ¢!Vl in L2, (5.2.9) and (5.2.10) imply that [ju(t) — eVl T | gre — 0
when t — +o00. This completes the proof of Theorem [5.2.2 O

5.3 Local well-posedness for Schrodinger-type equations in
Sobolev spaces when o € [2, 00)

In this case, due to better Strichartz estimates, we can obtain the local well-posedness for
(NLST) in HY with v > 0. Our first result concerns the local well-posedness of (NLST) in H”
with v € [0,d/2) in both subcritical and critical cases.

Theorem 5.3.1. Given o € [2,00) and v > 1. Let v € [0,d/2) be such that v > ., and also, if v

is not an odd integer, (5.0.2)). Let

20(v+1) dv+1)

L M Fu o (>3

Then for all ¢ € HY, there exist T* € (0,00] and a unique solution to (NLST) satisfying

we C([0,T%), H') N LY

loc

([0,7%), HY)).

Moreover, the following properties hold:

i we L{ ([0,T*),H,)) for any Schridinger admissible pair (a,b) with b < co and Y4 = 0.

ii. If v > 7y and T* < oo, then ||u(t)| g+ — o0 ast — T*.

il. If v =7 and T* < oo, then [lul[ Lo (jo,7+), ey = o©-

iv. u depends continuously on ¥ in the following sense. There exists T € (0,T*) such that if
Yy — ¥ in HY and if u,, denotes the solution of (NLST) with initial data vy, then 0 < T <
T*(vy) for all n sufficiently large and uy, is bounded in L*([0,T], H)) for any Schrédinger
admissible pair (a,b) with v, = 0 and b < oo. Moreover, u,, — u in L%([0,T], L) as
n — oo. In particular, u, — u in C([0,T],H'"¢) for all0 < € < 7.

v. If v = v and || jgve < € for some € > 0 small enough, then T* = oo and the solution is
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5.3. Local well-posedness nonlinear Schrédinger-type equations

scattering in HY<, i.e. there exists v+ € HY such that
: ERTIA L _
tllgrnoo lu(t) —e Y7 | Eve = 0.

Proof. Let us firstly comment about the choice of (p,q) given in (5.3.1)). It is easy to see that
(p, ) is Schrodinger admissible and 7, 4 = 0 = 7, o+ +4. This allows us to use Strichartz estimate

(1.1.17) for (p,q). Moreover, if we choose (m,n) so that

1 1 v—1 1 1 v-1
+ : =-+ : (5.3.2)
q n

p

/ m P

Thanks to this choice of n, we have the Sobolev embedding H. q < L™ since

dq
d—~q

g<n=

Step 1. Existence. Let us consider
X o= {ue L(1H) | Nl ogr gy < M},

equipped with the distance
d(u,v) = [Ju — U”LP(LL‘J)a

where I = [0,T] and M,T > 0 to be chosen later. It is easy to verify (see e.g. [CW90Q] or [Caz03|
Chapter 4]) that (X,d) is a complete metric space. By the Duhamel formula, it suffices to prove
that the functional is a contraction on (X, d).

Let us firstly consider the case v > 7.. In this case, we have 1 < m < p and

1.1, w=Dld=29)_,_ (5.3.3)
m P 20

Using Strichartz estimate (1.1.17)), we obtain
12 Lo r gy S Wl +IE @ Lo (111,
1@ (w) = ()l Ler,Le) S I1F(w) = F(0)ll o (1,107

where F(u) = |u|~1u and similarly for F(v). It then follows from Corollary (5.3.2)), Sobolev
embedding and ([5.3.3) that

IE @ L 11, S Tl o r, a7 (5.3.4)
IF () = F@)ll o .oy S T (”“HZ?<11,H;> n H“”ZZ;LHm) = vl o (1.1 (5.3.5)
This shows that for all u,v € X, there exists C' > 0 independent of T" and ¢ € H?Y such that

12 Loz g7y < CllWll g + CT M, (5.3.6)

d(®(u), ®(v)) < CTM"d(u,v).

If we set M = 2C||¢|| g, and choose T' > 0 so that
0 v—1 1
CT/ MYt < 2,

then ® is a strict contraction on (X, d).
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Chapter 5. Local well-posedness nonlinear Schrodinger-type equations

We now turn to the case v = 7.. Using ([5.1.12)), we have from Strichartz estimate ((1.1.17]) that

”uhom”LP(I,H;C) S 19l e

This shows that ||unom] Lo(rHye) <€ for some € > 0 small enough provided that T is small or
1] g7+ is small. We also have from (1.1.17) that

luisnll oz, ir3e) S NE @ Lo 1,175
Corollary , and Sobolev embedding (note that in this case m = p) then yield that
||F(U)HLP’(I,H;,C) < HUHETJ(LH{;CV (5.3.7)
1E) ~ FOl o r.oory S (1l ey + 10150 ey Yt = oo,y (5358)
This implies that for all u,v € X, there exists C' > 0 independent of 7" and ¥ € H such that

||¢(U)HLP(I7H;C) <e+CM"Y,
A(®(u), ®(v)) < CMYtd(u,v).

If we choose € and M small so that

1 M
IJ—1<7 o
CM 5’ e+ 5

<M,

then @ is a contraction on (X, d).

Therefore, in both subcritical and critical cases, ® has a unique fixed point in X. Moreover,
since 1 € HY and v € LP(I,H]), the Strichartz estimate shows that u € C(I,H") (see e.g.
[CW90] or [Caz03, Chapter 4]). This shows the existence of solution v € C(I, HY) N LP(I, H)) to
(NLST). Note that in the case v = 7, if ||¢)|| 7. is small enough, then we can take T' = co.
Step 2. Uniqueness. It follows easily from m[) and ([5.3.8]) using the fact that ||u||L,,(I’qu) can
be small if T" is small.

Step 3. Item i. Let u € C(I, H")N LP(I, H]) be a solution to (NLFS) where I = [0, 7] and (a, b)
a Schrodinger admissible pair with b < oo and 7, = 0. Then Strichartz estimate implies

luller,eey S WMLz + IE @) Lo (1, Loy (5.3.9)
lull o a gy S WMz + NE @ Lo (1,117, (5.3.10)

It then follows from ([5.3.4) and (5.3.7) that uw € L%(I, H}').

Step 4. Item ii. The blowup alternative in subcritical case is easy since the time of existence
depends only on ||| g

Step 5. Item iii. It also follows from a standard argument (see e.g. [CW90]). Indeed, if T* < co
and |[ul|pr(jo, 7y, mye) < 00, then Strichartz estimate (1.1.17) implies that v € C([0,T7], H).
Thus, one can extend the solution to (NLST) beyond T7. It leads to a contradiction with the
maximality of T™.

Step 6. Item iv. We use the argument given in [CW90]. From Step 1, in the subcritical case, we
can choose T and M so that the fixed point argument can be carried out on X for any initial data
with A7 norm less than 2|1|| ;7. In the critical case, there exist T, M and an H neighborhood U
of 9 such that the fixed point argument can be carried out on X for all initial data in U. Now let
¥y, — % in H7. In both subcritical and critical cases, we see that T < T™* (1), ||u||Lp([07T],H;) <M,

and that for sufficiently large n, T < T™*(¢,,) and Hun||Lp([0’T]ﬁH;y) < M. Thus, 1) and ([5.3.10))

together with (5.3.4) and (5.3.7) yield that w,, is bounded in L*([0,T], H)) for any Schrodinger
admissible pair (a,b) with b < co and v, = 0. We also have from (5.3.5), (5.3.8) and the choice
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5.3. Local well-posedness nonlinear Schrédinger-type equations

of T that 1
d(up,u) < Oty — ¥|L2 + gd(umu) or d(un,u) < 2C||v, — Y| L.

This shows that u,, — w in LP(]0,T], L?). Again together with (5.3.5) and (5.3.8)) implies
that u, — u in L2([0,T], L®) for any Schrédinger admissible pair (a,b) with b < oo and v, = 0.
The convergence in C(I, H'~¢) follows from the boundedness in L* (I, H”) and the convergence
in 1°°(1, L?) and that |u - < [[ulll ]l -

Step 7. Item vi. As mentioned in Step 1, when ||¢| g+, is small, we can take T* = oco. It
remains to prove the scattering property. To do so, we make use of the adjoint estimate to the
homogeneous Strichartz estimate, namely L? 3 ¢ — e'IVI”4) € LP(R, L?) to obtain

. o . o t2 . o
e 2191 u(ta) — e~ 171 w(t) || e = HZ’“/ o—islV] F(u)(s)dsH 4
ty He

ta o
- H”‘/t (9Pee %17 (W, o Fw)(s)ds||
1
S ||F(u)HLp/([tl,tZ],H;,c). (5.3.11)
Similarly,

le™ 1Y u(ta) — e Y uty) | 2 S NE @ 1o 1y 1], 107 (5.3.12)

Thanks to (5.3.7) and (5.3.8), we get

e~ 21V u(ty) — e V1 0u(t1) || e — 0,

as t1,ty — 400. This implies that the limit

exists in H". Moreover,

+oo
u(t) — VIt = —iu/ eIV B u(s))ds.
¢

Using again ((5.3.11)) and (5.3.12) together with (5.3.7)) and (5.3.8)), we have

. itV _
Jmlu(t) — e YT e = 0.
This completes the proof of Theorem [5.3.1 O

We also have the following local well-posedness in the critical Sobolev space H%? where the
embedding into L*>° breaks down.
Theorem 5.3.2. Given o € [2,00) and y = d/2. Let v > 1 be an odd integer or (5.0.2) otherwise.
Let

{ p>max(v —1,4) when d=1, (5.3.13)

p>max(v—1,2) whend > 2.
Then for all ¢ € H¥?, there exists T* € (0,00] and a unique solution to (NLST) satisfying

ue C(0,T%), HY?) n L2, ([0,T*),L*),

loc

for some p > max(v — 1,4) when d = 1 and some p > max(v — 1,2) when d > 2. Moreover, the
following properties hold:
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Chapter 5. Local well-posedness nonlinear Schrodinger-type equations

i we L ([0,T7%), H d/2) for any Schrédinger admissible pair (a,b) with b < oo and 4, = 0.
i If T* < oo, then ||u(t)|| gasz = 00 ast — T*.
iii. u depends continuously on ¥ in the sense of Theorem [5.3.1

The continuous dependence can be improved (see Remark if we assume that v > 1 is
an odd integer or [d/2] < v — 1. Concerning the well-posedness of the nonlinear Schrodinger
equation in this critical space, we refer to [Kat95] and [NO98]. Note that in [NO9S], the global
well-posedness with small data is proved with exponential-type nonlinearity but not the local well-
posedness without size restriction on the initial data.
Proof of Theorem . Let p be as in and then choose ¢ € [2,00) such that

2 4o
p 2

Step 1. Existence. We will show that ® defined in (5.1.12)) is a contraction on
X = {u € LOO(I,Hd/Q) N LP(I,H(?/27'7P,K1) | ||u||Loo(17Hd/2) + HUHLP(I Hd/2 way S < M}
equipped with the distance
d(u,v) = |lu = vllLec(r,2) + lu =Vl o1 w0y
where I = [0,7] and M, T > 0 to be determined. The local Strichartz estimate (1.1.16]) gives

12| zoo (1 rarzy + Ny rarz—smay S NPlars +I1E @)l mar2),
12(w) = @)l oo (r,22) + [ ®(w) = B o g prway S (W) = F(0)[21(2,22)-

Thanks to the assumptions on v, Corollary implies
IF ) 1z, mra2y S Nullfots g ooy Nl oo vy S TOHullyo iy poo [l ooz, m1a2), - (5.3.14)
( ) (I,L=)
1F(uw) = F@)llzrreey S (lall7ots g ey + 100700 g poey ) lu = ollzoe 1,22
( ) ( )
ST (Nulloty gy + W0y ooy )l = vl e 2, (5.3.15)

where § = 1 — ”le > 0. Using the fact that d/2 — v, 4 > d/q, the Sobolev embedding implies
HI?7 v o5 poo, Thus,

1) o 1,072y + 1P@M ) gytrz=amay S Wl rare + T u ully, /2= [l L= a2y,

d(®(w), & (v >><T9(|| ully 2 sy F I oy ) 0)

Thus for all u,v € X, there exists C' > 0 independent of ©» € H%? such that
19 ) o rz072) + 18 sr3-rm0) < Clllars + OTO MY,
d(@(u),@(v)) < CT MY~ Yd(u,v).

If we set M = 2C/||¢||ga/> and choose T > 0 small enough so that CT?M¥~! < L then ® is a
contraction on X.

Step 2. Uniqueness. It is easy using since ||ul|Lr (7, 1) is small if T' is small.

Step 3. Item i. It follows easily from Step 1 and Strichartz estimate that for any
Schrodinger admissible pair (a,b) with b < co and 7, = 0,

||U|\La(LH;i/2) S Wl grare + [1F )l pror,prarzy-
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5.3. Local well-posedness nonlinear Schrédinger-type equations

Step 4. Item ii. The blowup alternative is obvious since the time of existence depends only on

91l grare-
Step 5. Item iii. The continuous dependence is similar to Step 7 of the proof of Theorem
using (5.3.15)). O

Remark 5.3.3. If we assume that v > 1 is an odd integer or [d/2] < v — 1 otherwise, then the
continuous dependence holds in C(I, H d/ 2). Indeed, we consider X as above equipped with the
following metric

d(u,v) = ||u — ’lJHLoc(LHd/z) + ||u — U”LT’(I,H,?/ZM""“)'

Thanks to the assumptions on v, we are able to apply the fractional derivative estimates given in
Corollary [5.0.3] to have

1F () = @)l r,marzy S (1ull7et g ooy + 101752 1 pooy)llw = vl Lo (1, 1ar2)

+ (lall 72 g poey N7 g o)) (el oo 1, mrar2) + [0l oo (1 ey lu = vl o1, 0.
The Sobolev embedding then implies that for all u,v € X,
d(®(u), ®(v)) < T M Ld(u,v).

The continuous dependence in C(I, H%/?) follows as Step 7 of the proof of Theorem

It is well-known that (see [Caz03, Chapter 4], [Kat95] or [Tao06, Chapter 3]) that for v > d/2,
the nonlinear Schrodinger equation is locally well-posed provided the nonlinearity has enough
regularity. It is not a problem to extend this result for the nonlinear fourth-order Schrédinger
equation. For the sake of completeness, we state (without proof) the local well-posedness for
(NLST) in this range.
Theorem 5.3.4. Given o € [2,00). Let v > d/2 be such that if v > 1 is not an odd integer,
(5.0.2)). Then for all ¢ € HY, there exist T* € (0,00] and a unique solution u € C([0,T*), H") to
(NLST). Moreover, the following properties hold:

i uwe L{ ([0,T*),H)) for any Schridinger admissible pair (a,b) with b < co and 4, = 0.

i If T* < oo, then ||u(t)|| g+ — oo and limsup ||u(t)||pe — 00 ast — T*.

iii. u depends continuously on ¥ in the following sense. There exists T € (0,T*) such that if
Uy, — Y in HY and if u, is the solution of (NLST) with the initial data ., then u, — u in
c(o,T),HY).

Combining Theorem with the conservation of mass, we have the following global well-
posedness in L? for (NLST) in the case o € [2,0).

Corollary 5.3.5. Let o € [2,00) and v € (1,1+20/d). Then for all p € L?, there exists a unique
global solution to (NLST) satisfying u € C(R,L?) N LY (R, L?), where (p,q) given in .

In the energy space H?/?, we have the following global well-posedness result. The proof follows
by the same lines as in Proposition [5.1.3]

Proposition 5.3.6. Let 0 € [2,00) and v € (1,1+20/(d —0)) ford > o andv > 1 ford < o.
Then for any ¢ € H?/?, the solution to (NLST) given in Theorem Theorem and
Theorem [5.3.4] can be extended to the whole R if one of the following is satisfied:

iop=1.

i p=-1Lv<l+20/d

iil. p=-1,v=1+420/d and ||¢| 12 is small.

iv. p=—1 and ||¢||gos2 is small.

Our next result concerns with the regularity of solutions of (NLST) in the subcritical case.
Theorem 5.3.7. Given o € [2,00). Let 8 > v > 0 be such that v > 7., and also, if v > 1 is not
an odd integer, (5.0.2). Let v € HY and u be the corresponding H™ solution of (NLST) given in
Theorem [5.3.1) Theorem [5.3.2] Theorem . If € HP, then u € C([0,T*), H?).

The following result is a direct consequence of Theorem [5.3.7] and the global well-posedness in
Corollary and Proposition [5.3.6
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Corollary 5.3.8. ¢ € [2,0).

i. Lety >0 and v € (1,1420/d) be such that if v is not an odd integer, (5.0.2)). Then (NLST)
is globally well-posed in H.

ii. Let v > 0/2, v € [1+20/d,1+20/(d—0)) ford > o andv € [1+20/d,0) ford < o
be such that if v is not an odd integer, . Then (NLST) is globally well-posed in H?
provided one of conditions (i), (iii), (iv) n Proposition is satisfied.

Proof of Theorem m We follow the argument given in Chapter 5 of [Caz03]. To do so, we will
consider three cases v € [0,d/2), v = d/2 and v > d/2.

The case y € [0,d/2). Let 8 > ~. If » € HP  then Theorem or Theorem or
Theorem shows that there exists a maximal solution to (NLST) satisfying u € C([0,T), H”)N

Ly ([O,T),H) for any Schrédinger admissible pair (a,b) with b < oo and v, = 0. Since H”-

loc
solution is in particular an H7-solution, the uniqueness implies that 7" < T™*. We will show that
T is actually equal to T*. Suppose that T" < T, then the blowup alternative implies

lu(@)|lgs — 00 ast — T. (5.3.16)

Moreover, since T' < T*, we have

lullor o,y ) + sup [Ju(®)|mr < oo,
0<t<T

where (p, ¢) given in (5.3.1). Using Strichartz estimate, we have for any interval I C (0,7,
lull oo 1,22y + llullor,zay S Nllee + [1F (@)l o (r,00)s

HUHLOO(I’Hﬁ) + Hu||Lp(LH§) S llgs + ||F(u)||Lp/(1,H5/).

Now, let (m,n) be as in (5.3.2]). Corollary (5.3.2) and Sobolev embedding then give

1E @) 1,20ty S Wl oy oo lll ooy S Wullfoly g lullm,zoy S Jullze.zo),

_ —1
AOIIFIN-EIRS ez, oy el pon iz S N0l oy g Nl oz gy S el 1 g2
Here we use the fact that [[uf|z»((0,7),m7) is bounded. This shows that
allzoe 105y + Tl oy gy S Wl + Il 0
for every interval I C (0,T"). Now let 0 < € < T and consider I = (0,7) with e < 7 < T. We have

0
ell o 1,712y < Well om0, —e), 1) F N0l o (e, 112y < Ce Ml o r g

where 6 given in 1) Here we also use the fact that v € L

1e([0,T), HY) since 7,4 = 0. Thus,
lull oo 1,8y + 1l o g gy < €+ Ce+ €Cllall 1o g 5,
where the various constants are independent of 7 < T'. By choosing € small enough, we have
ull oty + ll s sy < C-
where C' is independent of 7 < T. Let 7 — T, we get a contradiction with .

The case v = d/2. Since 1) € H%? Theorem shows that there exists a unique, maximal
solution to (NLST) satisfying u € C([0,T*), H¥?) N LP ([0, T*), L>) for some p > max(v — 1,4)

loc
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5.3. Local well-posedness nonlinear Schrédinger-type equations

when d = 1 and p > max(v — 1,2) when d > 2. This implies in particular that

u e LU 1[0, T%), L™). (5.3.17)

loc

Now let 3 > ~. If ¢» € H?, then we know that u is an H? solution defined on some maximal
interval [0,7) with 7 < T*. Suppose that 7' < T*. Then the unitary property of e*/Vl” and

Corollary imply that

t t
()l e < 1l ms +/0 1 (uw) ()| ods <[]l o +C/O lu(s) 7= () s ds,

for all 0 <t < T. The Gronwall’s inequality then yields

t
o) < ol ex (€ [ o))

for all 0 < ¢t < T. Using (5.3.17), we see that limsup ||u(t)||zzs < oo as t — T. This is a
contradiction with the blowup alternative in H?.

The case v > d/2. Let 8 > . If » € H?, then Theorem shows that there is a unique
maximal solution v € C([0,T), H?) to (NLST). By the uniqueness, we have T < T*. Suppose
T < T*. Then
sup ||u(t)|| s < oo,
0<t<T
and hence
sup_[lu(t)|z~ < .
0<t<T
This is a contradiction with the fact that lim sup ||u(¢)||L~ = oo as ¢ — T. The proof of Theorem
is now complete. O
We end this section with the following remark. In [PS10], the authors proved the global
existence for the L2-critical nonlinear fourth-order Schrédinger equation (NL4S), i.e. o = 4 and
v—1=8/d, in higher dimensions d > 5. More precisely, they proved that the equation is globally
well-posed in L?

e for any initial data in L? in the defocusing case;
e for initial data in L? satisfying ||[¢||2 < [|Q| L2 in the focusing case, where @ is the solution
to the elliptic equation

A2Q +Q =1Q|1Q. (5.3.18)

Moreover, in both cases, the following uniform bound holds true
el 2 g yovs) < CUDL2).

With this uniform bound, we have the following global existence for the L2-critical (NL4S) in
dimensions d > 5.

Proposition 5.3.9. Letd > 5,v = 148/d and 8 > 0 be such that if d # 1,2, 4, then [8] < 1+8/d.
Let ¢ € HP be such that if p = —1, ||[¢|lz2 < |Q|lz2, where Q is the solution to (5.3.18). Then
the L?-critical (NL4S) is globally well-posed in HP.

Proof. Let 8> 0 and ¢ € H” be such that if u = —1, ||¥)||2 < ||Q]|L2, where @Q is the solution to
(5.3.18)). We learn from the result of Pausader-Shao [PS10] that the L2-critical (NL4S) is globally
well-posed in L2. Moreover, the solutions enjoy the uniform bound

HU||L2+%(R7L2+§) < O([[Y]lz2)-
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Since 1) € HP, we have from Theorem Theorem and Theorem that there exists
a maximal solution to the L?-critical (NL4S) satisfying C([0,T), H?) N L ([0,T), Hy) for any
Schrodinger admissible pair (a,b) with b < oo and 7y, = 0. By the blowup alternative, it suffices
to show that ||ul|pe((o,7),m5) < 00. Let p =2+ 8/d. It is easy to see that (p,p) is a Schrodinger
admissible pair with v, , = 0. Since ||u||zr(0,r),Lr) < 00, we decompose (0,T) into a finite
number of subintervals Iy, so that ||ul| (1, rr) < € for some € > 0 to be chosen later. By Strichartz

estimates,
||u||L°°(Ik,H/3) + ”uHLp([,ng) S HwnHﬂ + HF(U)HLP'([,C,HB/)
p

8
SYllas + Hu”fp(]k,Lp)”uHLp([k,H{j)

8
S las +edllullpog, me)-

By choosing € > 0 small enough, we get ||u|| (s, ,msy < C for some constant C independent of Ij.
By summing over all subintervals I, we obtain ||u|| ;- ((0,7),m6) < 0. The proof is complete. [
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CHAPTER 6

Global well-posedness for the
defocusing mass-critical nonlinear
fourth-order Schrodinger equation

below the energy space
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In this chapter, we consider the defocusing mass-critical nonlinear fourth-order Schrédinger
equation, namely

{ idpu(t,x) + A%u(t,z) = —(Julfu)(t,z), t>0,z€R (ANTAS)

u(0,2) = (x) € H'(RY),

where u(t, ) is a complex valued function in Rt x R

The fourth-order Schrédinger equation was introduced by Karpman [Kar96] and Karpman-
Shagalov [KS00] to take into account the role of small fourth-order dispersion terms in the prop-
agation of intense laser beams in a bulk medium with Kerr nonlinearity. The study of nonlinear
fourth-order Schrodinger equation has attracted a lot of interest in the past several years (see
[Paul], [Pau2], [HHWO6], [HHWO0T], [HJ05], [MXZ09], [MXZ11], [MWZI5] and references therein).

As in the previous chapter, we see that the (ANL4S) is locally well-posed in HY(R%) for v > 0
satisfying, in the case d # 1, 2,4,

[1<1+ S. (6.0.1)

Here [v] is the smallest integer greater than or equal to . This condition ensures the nonlinearity
to have enough regularity. The time of existence depends only on the H7-norm of initial data.
Moreover, the local solution enjoys mass conservation, i.e.

M (u(t)) = [[u(®)|72e) = 1172 (gays
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and H?2-solution has conserved energy, i.e.

Bult) = [ 5lAutta)? + 5 ghtt.a) *F do = B(w).

The conservations of mass and energy together with the persistence of regularity (see Theorem
5.3.7) yield the global well-posedness for the (ANL4S) in H”(R?) with v > 2 satisfying for d #

2,4, . We also have the local well-posedness for the (ANL4S) with initial data ¢ € L?(R?)
but the time of existence depends on the profile of v instead of its L?-norm. The global existence
holds for small L?-norm initial data. For large L?-norm initial data, the conservation of mass
does not immediately give the global well-posedness in L?(R%). For the global well-posedness with
large L?-norm initial data, we refer the reader to [PS10] where the authors established the global
well-posedness and scattering for the (ANL4S) in L2(R%),d > 5.

The main goal of this chapter is to prove the global well-posedness for the (dNL4S) in low
regularity spaces HY(R%),d > 4 with 0 < v < 2. Since we are working with low regularity data,
the conservation of energy does not hold. In order to overcome this problem, we make use of the
I-method introduced by [CKSTTI] and the interaction Morawetz inequality (which is available
for d > 5). We thus consider separately two cases d = 4 and d > 5. In the case d = 4, we use
I-method in Bourgain space, which is an adaptation of the one given in [CKSTTI] for proving the
low regularity global well-posedness of the defocusing cubic nonlinear Schrodinger equation on R2.
In this consideration the nonlinearity is algebraic. It allows to write explicitly the commutator
between the I-operator and the nonlinearity by means of the Fourier transform, and then control
it by multi-linear analysis. In the case d > 5, the nonlinearity is no longer algebraic, so the above
method does not work. We thus rely purely on Strichartz and interaction Morawetz inequalities.

After submitting a paper concerning the global well-posedness for the (ANL4S) below the energy
space in dimensions 5 < d < 7, the author was informed that a better result (see Proposition
follows from the work of Pausader-Shao [PS10]. Indeed, in [PS10], the authors showed that the
(ANL4S) is globally well-posed in L2. Moreover the global solution scatters in L? and satisfies the
uniform bound

lull | 2ava
(RxR4)
It follows from the regularity given in Theorem [5.3.7] “ that the (dANL4S) is globally well-posed in
H? for any 0 < v < 2. However, we decide to keep our proof in the case 5 < d < 7 because it will
be used in the next chapter to study dynamics of blowup solutions for the focusing mass-critical
NL4S.

We end this introduction by recalling some known results about the global existence below
the energy space for the nonlinear fourth-order Schrédinger equation. To our knowledge, the first
result to address this problem belongs to Guo in [Guol(], where the author considered a more
general fourth-order Schrédinger equation, namely

i0pu + ANAu + pA2u + v|u[*™u = 0,

md—9++/(4m—md+T7)2+16

and established the global existence in HY(R%) for 1 + v < v < 2 where
m is an integer satisfying 4 < md < 4m + 2. The proof is based on the I-method which is a
modification of the one invented by I-Team [CKSTTI] in the context of nonlinear Schrédinger
equation. Later, Miao-Wu-Zhang studied the defocusing cubic fourth-order Schrédinger equation,
namely
i0pu + A%u + |ul?u = 0,

and proved the global well-posedness and scattering in H?(R?) with v(d) < v < 2 where v(5) =
18 4(6) = 2% and ¥(7) = 33. The proof relies on the combination of I-method and a new
interaction Morawetz inequality.
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6.1 Global well-posedness for the 4D defocusing mass-critical
NL4S below the energy space

Our main result in this section is the following global existence for the (ANL4S) in the fourth
dimensional spatial space.
Theorem 6.1.1. Let d = 4. The initial value problem (ANL4S) is globally well-posed in HY(R*)
forany 2>~ >75:= %. Moreover, the solution satisfies

15(2—~)
[u(T) | v ey < C(1+ T) 5300 F,

for |T| — oo, where the constant C' depends only on ||[Y|| g~ ws)-

The proof of this theorem is based on the I-method, which is similar to [CKSTTI] (see also
[Guold]). It is thus convenient to recall techniques and known results about the low regularity
defocusing cubic Schrédinger equation on R2. The first attempt to solve this problem is due to
Bourgain in [Bou3| where he used a “Fourier truncation” approach to prove the global existence
for 4 > 3/5. It was then improved for v > 4/7 by I-Team in [CKSTTI]. The proof is based on the
almost conservation of a modified energy functional. The idea is to replace the conserved energy
E(u), which is not available when v < 1, by an “almost conserved” quantity E(Iyu) with N > 1
where I is a smoothing operator which behaves like the identity for low frequencies |{| < N and
like a fractional integral operator of order 1 — « for high frequencies |{| > 2N. Since Iyu is not
a solution to the equation, we may expect an energy increment. The key idea is to show that
on the time interval of local existence, the increment of the modified energy E(Iyu) decays with
respect to a large parameter N. This allows to control E(Iyu) on time interval where the local
solution exists, and we can iterate this estimate to obtain a global in time control of the solution by
means of the bootstrap argument. Fang-Grillakis then upgraded this result to v > 1/2 in [EGOT].
Later, Colliander-Grillakis-Tzirakis improved for v > 2/5 in [CGT07] using an almost interaction
Morawetz inequality. Subsequent paper |[CR11] has decreased the necessary regularity to v > 1/3.
Afterwards, Dodson established in [DodI] the global existence for the equation when ~v > 1/4.
The proof combines the almost conservation law and an improved interaction Morawetz estimate.
Recently, Dodson in [Dod2] proved the global well-posedness and scattering for the equation with
initial data ¢ € L?(IR?) using the bilinear estimate and a frequency localized interaction Morawetz
estimate. To prove Theorem we shall consider a modified I-operator and show a suitable
“almost conservation law” for the fourth-order Schrédinger equation.

6.1.1 Preliminaries
Littlewood-Paley decomposition. Let ¢ be a smooth, real-valued, radial function in R such
that (&) = 1 for [(] < 1 and (&) = 0 for [¢] > 2. Let M = 2¥ k € Z. We denote the
Littlewood-Paley operators by
Pap f(§) = (M~ f)f(f)
Popf(€) = (1— ( L) f(©),
Py f(€) = (0(M 1) — p(2M1€) (),

where © is the spatial Fourier transform. We similarly define
Poy = P<pyr — Py, Poyr o= Poy + Py,

and for Ml S Mg,

Prr<.<nty, = Py — P<ngy, = E Py
My <M<Ms

We have the following so called Bernstein’s inequalities (see e.g. [BCD11, Chapter 2] or [Tao06l
Appendix]).
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Lemma 6.1.2. Let v >0 and 1 <p < g < o0.

[Porefllee S M7V Ponrfll e,
IP<a |V flle S M| P<ns fllze,
1Pr | VI flle ~ M| Pas f| o,

| P<ns fllze S MYP=Y9)| Pepy fl| o,

[1Pas fllza S M2~ Py f]| o

Norms and Strichartz estimates. Let v,b € R. The Bourgain space X:’:b‘g‘4 is the closure of
space-time Schwartz space .%; ; under the norm

b
lll e = 1467 (7 = 1€1%) aill e,
=gt ¢

where 7 is the space-time Fourier transform,i.e.
a(r, &) = // e~ T (¢, x)dtda.

We shall use X7 instead of X:’:b|£|4 when there is no confusion. We recall a following special

property of X7* space (see e.g. [Tao06, Lemma 2.9]).
Lemma 6.1.3. Let v,7v1,7v2 € R and Y be a Banach space of functions on R x R*. If

. . 2
e ™ Flly < I f s
forall f € HY and all T € R, then

lully S flullxo 172+

for all uw € % 5. Moreover, if

. . 2 . - 2
e Ai]le’™e™ follly < IMfallzn | foll moe

forall fy € H" fo € H" and all 7, € R, then
luruelly S lluallxnares lugll xnares,

for all uy,up € S 4.
We refer the reader to Lemma [A:2.7] for the proof of this result.
Throughout this section, a pair (p,q) is called admissible in R* if

(P € R2oP, (0.0 #(2o0) 40— 3 (6.1

We recall the following Strichartz estimate given in Corollary [I.1.3| with o = 4. It is obvious that
for (p,q) a admissible pair (6.1.1), v, = 0.

Proposition 6.1.4. Let u be a solution to
i0pu(t, x) + A%u(t,x) = F(t,x), u(0,z)=¢(z), (t,r) € RxRL
Then for all (p,q) and (a,b) admissible pairs,
lulle Loy S 1¥llne + 1Pl por g, 1y (6.1.2)

Here (a,a’) and (b,V') are conjugate exponents.
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A direct consequence of Lemma [6.1.3] and Proposition is the following linear estimate in
X7t space.
Corollary 6.1.5. Let (p,q) be an admissible pair. Then

[ull e e, Loy S lullxo/2+, (6.1.3)

forallu € 7 5.
We also have the following bilinear estimate in R*.
Proposition 6.1.6. Let My, My € 2% be such that My < M. Then

A2 A2
[ Par, ][ Pary 8)l| 22y S (M /Ma)* 2|9 2| l| 2

We refer the reader to Theorem for the proof of this bilinear estimate.

The following result is another application of Lemma [6.1.3 and Proposition [6.1.6}

Corollary 6.1.7. Let uy,uy € X%'/2% be supported on spatial frequencies |€| ~ My, My respec-
tively. Then for My < M,

||u1u2||L2(R,L2) N (Ml/M2)3/2Hu1on,l/2+|\u2\|xo,1/2+. (6.1.4)
A similar estimate holds for wius or uius.

I-operator. For 0 <~y < 2and N > 1, we define the Fourier multiplier Iy by

InJ(&) = mn () f(€), (6.1.5)

where m is a smooth, radially symmetric, non-increasing function such that

o 1 if [§] < N,
m©={ (resgyee il 3o, (6:1)
For simplicity, we shall drop the IV from the notation and write I and m instead of Iy and my.
The operator I is the identity on low frequencies |£] < N and behaves like a fractional integral
operator of order 2 — v on high frequencies |{| > 2N. We collect some basic properties of the
I-operator in the following lemma.

Lemma 6.1.8. Let 0 <o <~y <2 and 1 < q<oo. Then

I flle S N fllLe, (6.1.7)

VI Pon fllea S N2 ALf|| 1o, (6.1.8)
1{V)? fllza S N {A) If| e, (6.1.9)
£l S W fllez S N2\ f e (6.1.10)
11 fll g2 S N2\ f Lo (6.1.11)

Proof. The estimate (6.1.7) is a direct consequence of the Hérmander-Mikhlin multiplier theorem
(see e.g. [Graldl Theorem 6.2.7]). To prove (6.1.8]), we write

IIV17Pon fllza = V|7 Psn (AT ALf|za.

The desired estimate (6.1.8) follows again from the Hérmander-Mikhlin multiplier theorem. In
order to get (6.1.9), we estimate

(V)7 fllze < 1P<n (V)7 flle + IPsn fllLe + [P>n[VI7 fl e

Thanks to the fact that the I-operator is the identity at low frequency || < N, the multiplier
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theorem and (6.1.8]) imply
(V)7 flla S HCAY Ifl|La + | ALf|La-
This proves (6.1.9). Finally, by the definition of the I-operator and (6.1.8), we have

[l S NP<n flla + P> n fllze + VI Pon £l 2
SIP<nIfllm + N2ALf| L2 + N 2ALf L2 S 1 f ] e

This shows the first inequality in . For the second inequality in , we estimate
I f Nz S IP<n (VY If g2 + |1 Pon (V)2 Ifllz2 S N1 f o
Here we use the definition of I-operator to get
|PnT(V)* T llgensze, IPonT (V)7 pamsie S N7,

The estimate ((6.1.11]) is proved as for the second estimate in (6.1.10). The proof is complete. [

6.1.2 Almost conservation law

As mentioned in the introduction, the equation (dNL4S) is locally well-posed in H” for any
~v > 0. Moreover, the time of existence depends only on the H”-norm of the initial data. Thus,
the global well-posedness will follow from a global L>°(R, H”) bound of the solution by the usual
iterative argument. For H?7 solution with v > 2, one can obtain easily the L>(R, H") bound of
solution using the persistence of regularity and the conserved quantities of mass and energy. But
it is not the case for H” solution with v < 2 since the energy is no longer conserved. However, it
follows from that the H7-norm of the solution u can be controlled by the H2-norm of Iu.
It leads to consider the following modified energy functional

B(Tu(t) = g I Tu(t)y + 31 w4 (6.112)

Since Iu is not a solution to (ANL4S), we can expect an energy increment. We have the following

“almost conservation law”.
Proposition 6.1.9. Let 2 > v > 7 := % and N > 1. If the initial data 1 € C°°(R*) satisfies
E(IvY) < 1, then there exists 6 = 6(||1b|[z2) > 0 so that the solution u € C([0,d], H?(R*)) of

(ANL4S) satisfies
E(Iu(t)) = E(IY) + O(N ™), (6.1.13)

where v := 12 for all t € [0,0].
Remark 6.1.10. This proposition tells us that the modified energy E(Iu(t)) decays with respect
to the parameter N. We will see in Section that if we can replace the increment N~7°7F in
the right hand side of with N™"F for some ; > 7o, then the global existence can be
improved for all v > =—. In particular, if 7, = oo, then F (Tu(t)) is conserved, and the global
well-posedness holds for all v > 0.

In order to prove Proposition we recall the following interpolation result (see [CKSTT4,
Lemma 12.1]). Let n be a smooth, radial, decreasing function which equals 1 for |¢] < 1 and equals
|€|7t for [€] > 2. For N > 1 and « € R, we define the spatial Fourier multiplier J¢ by

TRF(E) = (n(NT1€)* f (). (6.1.14)

The operator J§; is a smoothing operator of order «, and it is the identity on the low frequencies
€] < N.
Lemma 6.1.11 (Interpolation [CKSTT4]). Let ag > 0 and n > 1. Suppose that Z, X1, ..., X,, are
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translation invariant Banach spaces E| and T is a translation invariant n-linear operator such that

n
”JféT(ulv 7un)||Z S H Hjlaul‘ Xi»
=1

for alluy,...,u, and all 0 < a < ag. Then one has
ITRT (s oy )z S T IR will .

i=1

for all uy,...;up, all0 < a < ag, and N > 1, with the implicit constant independent of N.

Using this interpolation lemma, we are able to prove the following modified version of the usual
local well-posedness result.
Proposition 6.1.12. Let v € (2/3,2) and v € HY(R*) be such that E(Ix)) < 1. Then there is a
constant § = §(||Y]|L2) so that the solution u to (ANLAS) satisfies

||I’LL||X§,1/2+ <1. (6115)

~

Here Xg’b is the space of restrictions of elements of X7 endowed with the norm
||UHX3,I> = inf{||wHXw,b | W)[0,5]xR4 = u} (6.1.16)

Proof. We recall the following estimates involving the X7* spaces which are proved in the Ap-
pendix [A.2] Let v € R and ¢ € C§°(R) be such that ¢(t) =1 for ¢ € [~1,1]. One has

A2
[ I xv0 S 19lla, (6.1.17)
t
HW)/ IV F()ds]| S8 F (6.1.18)
0 Y
where 15(t) := (6~ *t) provided 0 < § < 1 and
0<b <1/2<b, b+b <1 (6.1.19)

Note that the implicit constants are independent of §. This implies for 0 < § < 1 and b,b’ as in

(6.1.19) that

A2
e re < Nl v, (6.1.20)
t
i(t—s)A? 1—b—b’
H/O il F(s)dsHXg,b <SP (6.1.21)
By the Duhamel principle, we have
. 2 t . 2 ’
Iullyzo = || re+ [ eI 1(juPu)(s)ds| ,, S 110l + 80 1(0u) | o
8 0 5 s

By the definition of restriction norm (6.1.16|),

2o S 1192 + 8" L (lwPw)ll 2. -,

1A Banach space X of space functions on € is said to be translation invariant if

fu(- = v)llx = llullx, Yue X, vyeQ.
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where w agrees with u on [0,d] x R* and
Mullgzo ~ Tl xa0.

Let us assume for the moment that
||I(‘w|2w)‘|xz,fb’ S_, ||I’w||§<2,b~ (6.1.22)

This implies that )
1Tull 20 < 119 g2 + 677" IIIUIlig,»

Note that
Y[z ~ 1Yl g2 + [Tl ze < 1+ |92 (6.1.23)

As |[Tul| 2. is continuous in the § variable, the bootstrap argument (see e.g. [Tac06l Section 1.3])
8
yields
<
12l 20 5 1.

This proves (6.1.15)). It remains to show (6.1.22)). We will take the advantage of interpolation
Lemma|6.1.11} Note that the I- operator deﬁned in is equal to Jg defined in (6.1.14) with
a = 2 —~. Thus, by Lemma m is proved once there is oy > 0 so that

177 (Jwl*w)ll 2 -0 < [T w200,

for all 0 < a < «g. Splitting w to low and high frequency parts €] < 1 and |£] > 1 respectively
and using definition of J7*, it suffices to show

lwlPwl v < lwllfee, (6.1.24)

for all v € [¥,2]. By duality and the Leibniz rule, (6.1.24) follows from

] () womawmwdtde] < o xollwsllos sl o oo (6.1.25)
RxR4

Note that the last term is written more precisely as ||w4]] but it does not affect our estimate.
4

’
XO,b

T=—1¢|

Using Holder’s inequality, we can bound the left hand side of as
LHS(6.1.25) < || (V)" w1l La(r, o |wallLa e, 29 | ws]| o (=, o) [ wall L3, £3) -
Since (4,4) is an admissible pair, Corollary gives
[ <V>7 w1||L4(R,L4) S llwill xe, ||w2||L4(R,L4) S llwallxor < Jlwallx~.s-
Similarly, Sobolev embedding and Corollary yield

lwsl Lo, zey S I (V) wall o r,rsy S llwsllxzrse < [lwsllxve-

The last estimate comes from the fact that v > 2/3. Finally, we interpolate between [|w4||z2(g,z2) =
||w4HX0,0 and ||w4||L4(R,L4) ,S ||w4||Xo,1/2+ to get

||w4||L3(1R,L3) N ||w4||X0=b"

Combing these estimates, we have (6.1.25)). The proof of Proposition [6.1.12]is now complete. O

We are now able to prove the almost conservation law.
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Proof of Proposition By the assumption E(Iy) < 1, Proposition [6.1.12 shows that
(6.1.15)

there exists § = 0(]|¢||L2) such that the solution u to (ANL4S) satisfies (6.1.15). We firstly note
that the usual energy satisfies

d

th( u(t)) = Re /]R4 owu(t, z)(|u(t, z) Pu(t, ) + Au(t, z))dx

= Re / owu(t, z)(|u(t, z) Pu(t, ) + Au(t, z) + idsu(t, z))dx = 0.
R4
Similarly, we have
%E(Iu( t)) = Re / I0wu(t, ) (| Tu(t, x)|* Tu(t, x) + A% Tu(t, x) + i0; Tu(t, x))dx
R4

= Re / Iowu(t, ) (| Tu(t, ©)|* Tu(t, x) — I(|u(t, z)|*u(t, z)))dz.
R4

Here the second line follows by applying I to both sides of (dANL4S). Integrating in time and
applying the Parseval formula, we obtain

B _ ’ L om+ &) T T e T
Bune) ~ By =ke [ (1 e e Tt TG Ta(coe

Here fz £,=0 denotes the integration with respect to the hyperplane’s measure 6g(&; + ... +
IALISE d€4 Usmg that il0yu = —A%Tu — I(|u|?u), we have

|E(Tu(t)) — E(IY)] < Termy + Terma,

where

Term; = ‘/ / v 52,53,54)AQIU(&)IU(&)IU(&)IU (€a) dt’
and

rerms = [ / (€25, €0 T(uPu)(€0) Tu(€o) () Tu(€a)
with

m(& + &+ &)

/14(52753354) =i m(gg)m(fg)m(&)

Our purpose is to prove
Term; + Termy < N0,

Let us consider the first term (Termy). To do so, we decompose u =/~ Py =: 325 unm
with the convention Pju := P<ju and write Term; as a sum over all dyadic pieces. By the sym-
metry of p in &9, &3, &4 and the fact that the bilinear estimate ( allows complex conjugations
on either factors, we may assume that My > M3 > M. Thus7

Term; < Z A(My, My, M3, My),

My, Mg, Mg, My >1
Ma>M3z>My

where

—

s P —— — —
A(My, My, M3, My) = ‘/ /24 . w2, &3, Ea) A2 Tuny, (&) Tuns, (§2)Tung, (§3)Tung, (§a)dt].
0 ' g=0
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To simplify the notation, we will drop the dependence of M7, My, M3, M, and write A instead of
A(My, My, M3, My). In order to have Term; < N~7% it suffices to prove

A Nt (6.1.26)

To show (|6.1.26]), we will break the frequency interactions into three cases due to the comparison
of N with Mj. It is worth to notice that M; < My due to the fact that Z?Zl & =0.
Case 1. N > M. In this case, we have |&2|, |€3], [€4] < N and | + &3 + &4 < N, hence

m(&2 + &3 + &) = m(§2) = m(&3) = m(&a) = 1 and p(€a, &3,84) = 0.

Thus ((6.1.26]) holds trivially.
Case 2. My 2 N > M3 > M,. Since Z?Zl & =0, we get My ~ M. We also have from the
mean value theorem that

m(&+8&+8&)| o [Vm(&e) - (s + &) - Ms
m(&2) ~ m(&2) ~ My

(€2, €3,84) = |1 -

The pointwise bound, Hoélder’s inequality, Plancherel theorem and bilinear estimate (6.1.4]) yield

A 5 %"AQIUMlluMg||L2(R,L2)HIUI\JQIUM4HL2(]R,L2)

4
M3 ( M3\3/2 M4)3/2 .
S0\ - M || Tua
~ MQ(Ml) (M2 1j:1H UMJHXO,1/2+

< Mo (M2 Muye Mg
™ My \ M, M, M2 (Ms)? (My)? ;

M. 1/2 M 1/2 N \4- B 4
— (J) ( 1) ( ) N7 MY T g, [l s+
j=1

4
a2+
=1

N M, M,
4
SNTPEMYT T v, 22 (6.1.27)
j=1

Using (6.1.15)) and the fact that vy < 7/2, we have (6.1.26]).

Case 3. My > M3 2 N. In this case, we simply bound

m(&1)
(E2)m(&3)m(&a)

Here we use that m(&;) 2 m(&;) and m(&3) < m(&) < 1 due to the fact that M; < Ms and
Mz > My.

Subcase 3a. My > M3 2> N. We see that M; ~ Ms since 24,:1 & = 0. The pointwise bound,
Holder’s inequality, Plancherel theorem and bilinear estimate again give

‘N(£27§37£4)| g m

m(M) — T
A< A2Tupy, I Tung, Tunr,
< m(Mz)m(Ms)m(M4)H uns, Tung, || 22 @ o) [ Tuns, Tung[| 2 (v, 2)
m(M) (M)3/2<%)3/2Wﬁ|1w.|| .
m(Ma)m(Msz)m(My) \ My M, M3M? (My)* =1 T
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Thanks to (6.1.15]), we only need to show

m(Ml) M4 3/2 M3 3/2 M12 _ _
— — — 1 < Nt 0, 6.1.28
m(Mz)m(Msz)m(My) (Ml) (Mg) M3ZM?2 <M4>2 ~ 2 ( )

Remark that the function m(A\)A® is increasing, and m(\) (A\) is bounded below for any a+vy—2 >

0 due to
a1 if 1 <A<N,

ay/
(m()\))\ ) _{ N27fy(a+,y_2))\a+773 if A > 2N.

We shall shortly choose an appropriate value of «, says @, so that

m(My) (M)* > 1, m(Ms)MS > m(N)N® = N°. (6.1.29)
Using that m(M;) ~ m(Ms), we have

MEL/2 <]\/[4>af1/2 M11/2

LHS(6.1.28) < N =
m(Ms) M§m(My) (My)™ M/

e ()G

< N-UE=@+ 90—,

Therefore, if we choose @ so that v =4 —a@ora=4—y = %, then we get (6.1.26)). Note that
a+75—2 >0, hence (6.1.29)) holds.

Subcase 3b. M; ~ M3 2 N. In this case, we see that M; < M,. Arguing as in Subcase 3a, we

~

obtain

m(M,) T —
A< A2Tup, T Tupg, I
S m(MQ)m(M3)m(M4)H ung, Tun, || 2w, 2 [[Tunsg Tun, || 2 (v, L2)
m(M) (%)3/Q<%)3/2 _an)” f[ [T, | x2/24
m(Ma)m(Msz)m(Ms) \ M M/ MZMZ2 (M,)* i X
As in Subcase 3a, our aim is to prove
m(M;) My\3/2  My\3/2  (M;)? _ o
— — — L < Nt 0. 6.1.30
m(Mg)m(Mg)m(M4) (MQ) (Mg) MQQM?? <M4>2 ~ ? ( )
We use ((6.1.29) to get
M
LHSEI30) < (M)

m(Mo)m(Ms)m(My) (Ma)''* 2
- m(My) Mg (M)~
™ (M) Mg (M) Mg (M) (Ma)™ M~ 7?
(e
~ N\ M, M M=
SN0
Choosing @ as in Subcase 3a, we get (6.1.26]).

We now consider the second term (Terms). We again decompose u in dyadic frequencies,
U= ;51 Um. By the symmetry, we can assume that My > Mz > M,. We can assume further
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that Ms 2 N since u(&2,&3,&4) vanishes otherwise. Thus,

Termy < Z B(M-, Ms, M3, My),

My, Mg, M3, My >1
My >Mg>My

where

— —

B, My, M M) = | [ / (€0, €0) Pan, 110 P) (60) Tonr, (€2) Toar, () Tar, (€0)]

As for the Term;, we will use the notation B instead of B(M;y, My, M3, M,). Using the trivial
bound

m(M)
<
|M(§27€37§4)‘ ~ m(Mg)m(Mg)m(M4)7
Holder’s inequality and Plancherel theorem, we bound
m(M)
m(My)m(Ms)m(My) 1Par I (uPw)l| 2,2y [ Tuns, || page, o) 1 Hwns | Lo po [ Tun, | o, L)-
Lemma 6.1.13. We have
1
||PM1](|U|2U)||L2(R,L2) S WHIUH%&J/H’ (6.1.31)
1
1 .
||IUMJ||L4(]R,L4) 5 W||[UMJ||X2,1/2+, ] = 2,3, (6132)
J
[Hunsyll oo v, poe) S [Hung, llxz/2+- (6.1.33)

Proof. The estimate (6.1.31]) is in turn equivalent to
1(V)? Par, I(julu)l| 2z, 22y S ITull3ez /01

Since (V)2 I obeys a Leibniz rule, it suffices to prove
3
1Par, (V) Tun Yusus)|| 22 (.12 H [ Tu]| 21 /24 - (6.1.34)

The Littlewood-Paley theorem and Hoélder’s inequality imply

LHS(6.1.34) < || (V) Tu || paw, 22y lluz |l s v, 28y lus |l s (r, £8) -

We have from Strichartz estimate (6.1.2) that
(V) Tun| paqes) S V) Tuallxousos = [ Tua | x21/2s
Combining Sobolev embedding and Strichartz estimate (6.1.2)) yield

luallLs sy S N V) wallps @, Lersy S (V) uzll xo.1/2+ < Huzl x21/24,

where the last estimate follows from (6.1.10]). Similarly for ||uz||z s, zs). This shows (6.1.34). The
*

estimate ((6.1.32]) follows easily from Strichartz estimate. For (6.1.33)), we use Sobolev embedding
and Strichartz estimate to get

[T, | £y S VY Tung, | e 22y S 1(V) Tuag, | xo.1/24 = |Tuag, || x2.1/2+ -

The proof is complete. O
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We use Lemma [6.1.13 to bound

4
oI ul3a sz TT IHuwns; o,

Jj=2

~ m(Ma)m(Mz)m(My) (My)? (Ms)? (Ms)

with My > M3 > My and My 2 N. Using (6.1.15]), the estimate (6.1.26)) follows once we have

m(Ma)m(Mz)m(My) (My)? (My)? (Ms)?

SNTOTMY. (6.1.35)

We now break the frequency interactions into two cases: My ~ M3 and Ms ~ M since Z?Zl & =
0.
Case 1. My ~ M3, My > M3 > My and My 2 N. We see that

m(Ml) 1 < m(M1)

My))Pm(My) (My)? (Ma)* ™~ N2m(My) (My)? (M) ~®

LHS ~ (m(

1 1 1 1 _
S = =S = = SN-UTET M
N2% 0 (My) (Mp)* 2>~ N2% ppy—3@

Here we use that m(Ms) (Mz)® > m(N)N® = N® m(M;) < (M;)? and that m(y) (z)* > 1 for
alll1 <y <z
Case 2. M2 ~ Ml, M2 > M3 > M4 and M2 Z N. We have

1 1
LHS(6.1.35) <
m(Mz)m(My) (My)* (Ms)?
1 1 1

< — — — —
™ m(Ms) (M3)™ m(Ma) (M)™ (Ma)*™* (M5)*~°

< N-UE=@+ 90—,

Here we use again m(Mz) (M3)® ,m(My) (M3)® 2> 1. By choosing @ as in Subcase 3a, we prove
(6.1.35)). The proof of Proposition is now complete. O
Remark 6.1.14. Let us now comment on the choices of @ and 7. As mentioned in Remark
if the increment of the modified energy is N7, then we can show (see Section after

) that the global well-posedness holds for data in HY(R*) with v > ﬁ =:7. We learn

from ([6.1.27)) that o < 7/2, hence 7 > %. On the other hand, in Subcase 3a, we need a+~v—2 > 0
and @ = 4 — 9. Since v > 7%, we have a+vy—-2>a+7—-2 > 64—% — 2. We thus choose
16 _ 14 46

a:=2— 1z =1z, hence o =4 —a = 3.

6.1.3 The proof of Theorem m

We now are able to show the global existence given in Theorem We only consider positive
time, the negative one is treated similarly. The conservation of mass and Lemma give

lu@) I < Hu®Z ~ [Tu®)lF: + 17wl < E(Tu®)) + 1]z (6.1.36)

By density argument, we may assume that ¢ € C$°(R*). Let u be a global solution to (dANL4S)
with initial data ¥. As E(I%) is not necessarily small, we will use the scaling

u(t,z) == A" 2u(A\"H, ), A>0
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to make the energy of rescaled initial data small in order to apply the almost conservation law
given in Proposition We have

B(Tux(0) = 5 17ur (0) 3 + 71 Tus(O)]1 (6.1.37)

We then estimate

1Hux(0)[1%> S N7 [ur(0)]3, = N*EIA2 |y,

and
[Tux(0)]| 70 S ux(0)l|7e = A 9ll7a S A0l 30

Note that v > % > 1 allows us to use Sobolev embedding in the last inequality. Thus, (6.1.37)
gives for A > 1,

E(Iur(0) S (N*E7DAT2 AT (1 + ¢l )" < CoN*ETIN2V (1 (|9 )"

We now choose

2-ny 1\~ 2
Ai=N5 (T(Jo) 1+ [¥)m) (6.1.38)

so that F(Tuy(0)) < 1/2. We then apply Proposition for u(0). Note that we may reapply
this proposition until F(Iuy(t)) reaches 1, that is at least C1 N7~ times. Therefore,

E(Tuy(CLN7§)) ~ 1. (6.1.39)

Now given any 1" > 1, we choose N > 1 so that

T~ %Clé.
Using , we see that
T~ N5 (6.1.40)
Herev >~ = ﬁ, hence the power of N is positive and the choice of N makes sense for arbitrary

T > 1. A direct computation shows

E(Iu(t)) = ME(Tuy(\'t)).

Thus, we have from (6.1.38)), (6.1.39) and (6.1.40) that

E(Iu(T)) = NME(Tux(\T)) = M E(Tuy(C1 N ~4))

) 4(2—>)
~ T(wo+4)w—s+_

~ A< N5
This shows that there exists Cy = Ca(||9|| v, J) such that
4(2—~)

E(Iu(T)) < CyTTormm—s T+,

for T'> 1. This together with (6.1.36]) show that

15(2

22—y 5(2—~)
||U(T)||H'y 5 CST(’YO+4)::—8+ + 04 _ C?)Tm-‘r + 047

where C3,Cy depend only on ||¢| zz+. The proof of Theorem is complete.
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6.2 Global well-posedness for the defocusing mass-critical
NL4S below the energy space in dimensions 5 < d < 7.

This section is devoted to the following result. As mentioned in the introduction of Chapter
[6] this result can follow directly from the work of Pausader-Shao [PS10]. However, the proof we
present below has its own interest and will be used in Chapter 7.

Theorem 6.2.1. Let d = 5,6,7. The initial value problem (dNLA4S) is globally well-posed in
HY(R?), for any v(d) < < 2, where y(5) = 2,7(6) = 3 and v(7) = 2.

The proof of the above theorem is based on the combination of the I-method and the interaction
Morawetz inequality which is similar to those given in [DPST07]. The key is to show that the
modified energy E(Iu) is an “almost conserved” quantity in the sense that the time derivative of
E(Iu) decays with respect to a large parameter N (see Section for the definition of I and
N). To do so, we need delicate estimates on the commutator between the I-operator and the
nonlinearity. Note that in our setting, the nonlinearity is not algebraic. Thus we can not apply
the Fourier transform technique. Fortunately, thanks to a special Strichartz estimate ,
we are able to apply the technique given in [VZ09|] to control the commutator. The interaction
Morawetz inequality for the nonlinear fourth-order Schrédinger equation was first introduced in
[Pau2] for d > 7, and was extended for d > 5 in [MWZI5]. With this estimate, the interpolation
argument and Sobolev embedding give for any compact interval J,

d—4
d—3

d—4 .
= g < @3 4z’
leelascs Hu”LLdJm Ly IIF= s HUHL“’(J,H%). (62.1)

As a byproduct of Strichartz estimates and the I-method, we show the almost conservation law
for the modified energy of (ANL4S), that is if u is a smooth solution to (ANL4S) on a time interval
J = [0,T7], and satisfies || I9| g2 < 1 and if u satisfies in addition the a priori bound ||ul[pr¢sy < p
for some small constant p > 0, then

sup |E(Tu(t)) — E(Ip)] S N~G7+),
t€[0,T)

for max {3— 5,8} <y <2and0<s<vy+5 -3
We now briefly outline the idea of the proof. Let u be a global in time solution to (dNL4S).
Observe that for any A > 0,
ux(t,z) = )\_%u(/\_4t, A lr) (6.2.2)
is also a solution to (ANL4S). By choosing
A~ N (6.2.3)

and using some harmonic analysis, we can make E(Iux(0)) < § by taking A sufficiently large
depending on ||¢|| g+ and N. Fix an arbitrary large time 7. The main goal is to show

BE(Tuy(\'T)) < 1. (6.2.4)

With this bound, we can easily obtain the growth of ||u(T)| g+, and the global well-posedness in
H7(R?) follows immediately. In order to get (6.2.4)), we claim that

urllaro. < KtSE=9, it € [0, AT,
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for some constant K. If it is not so, then there exists Ty € [0, AT such that

d—4
luxllargo,moyy > KTy, (6.2.5)
T
”u)\”M([O,TO]) § QKTos(d_s) . (626)
Using (6.2.6]), we can split [0, Tp] into L subintervals Ji, k = 1, ..., L so that
Nuxllarryy < pe
The number L must satisfy
d—4
L~Ty" . (6.2.7)
Thus we can apply the almost conservation law to get

sup E(Tux(t)) < E(Tuy(0)) + N~C=F9 [,
[OaTO]

Since E(Iu(0)) < 1, in order to have E(Iux(t)) <1 for all ¢ € [0, Ty], we need

1
N=CH)[ « e (6.2.8)

Combining (6.2.3)), (6.2.7) and (6.2.8)), we obtain the condition on ~. Next, using (6.2.1]) together
with some harmonic analysis, we estimate

d—4

d—4 1 3 1 3 d—3
luallasory S T8 7 1615 sup (Il E 1Tun (@)1 s + N~ F s (02

[0,T0]

Since [[Tux(t)|l g2 S E(Tua(t)) <1 for all t € [0, Tp], we get

~

d—4
lullae(o,rop < CTy 7,

for some constant C' > 0. This leads to a contradiction to (6.2.5)) for an appropriate choice of K.
Thus we have the claim and also

E(Tuy(t)) <1, Vte [0, \T).
For more details, we refer the reader to Section [6.2.3

6.2.1 Preliminaries

Nonlinearity. Let F(z) := |z[7z,d = 5,6,7 be the function that defines the nonlinearity in
(ANL4S). The derivative F’(z) is defined as a real-linear operator acting on w € C by

F'(2) - w:=wd,F(z) + Wo:F(z),

where od + 8 A
0.F(z) = “lalE, 0:F () = el

z

Z
We shall identify F'(z) with the pair (8,F(z),dzF(z)), and define its norm by

[F'(2)| := 0-F (2)| + [0=F ().
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6.2. Global well-posedness mass-critical NL4S

It is clear that |F'(z)| = O(|z|7). We also have the following chain rule
O F (u) = F'(u)Ou,

for k € {1,--- ,d}. In particular, we have
VF(u) = F'(u)Vu.

We next recall the fractional chain rule to estimate the nonlinearity.
Lemma 6.2.2. Suppose that G € C*(C,C), and o € (0,1). Then for 1 < q < gz < 0o and
1 < q1 < oo satisfying % = q% + qiz,

VG (u)|a SNE (W)l Lo [V ull Lo -

We refer the reader to [CW9Il Proposition 3.1] for the proof of the above estimate when
1< ¢ < o0, and to [KPV93, Theorem A.6] for the proof when ¢; = co.

When G is no longer C*', but Holder continuous, we have the following fractional chain rule.
Lemma 6.2.3. Suppose that G € C*P(C,C), € (0,1). Then for every 0 < a < 8,1 < q < o0,
and % <p<l,

IIV1°G (@)l ze < Mllul™# llza IV 17u] 7

o
2
p 4

71l 1 4 1 _ o
provided =ats and (1 ﬂp) q > 1.
The reader can find the proof of this result in [Vis06, Proposition A.1].
Strichartz estimates. Let / C R and p,q € [1,00]. We define the mixed norm

lull o (r,0ay == (/1 (/Rd ‘U(t,x)|qu)§>%

with a usual modification when either p or ¢ are infinity.

In this section, we denote for (p,q) € [1,c0]?,

Definition 6.2.4. A pair (p, q) is called biharmonic admissible, for short (p,¢) € B, if (p, q) is
Schrodinger admissible satisfying

Yp.q = 0

We recall Strichartz estimates for the linear fourth-order Schrédinger equation given in Theo-

rem (see also Corollary [1.1.3) with o = 4.
Proposition 6.2.5. Let v € R and u be a (weak) solution to the linear fourth-order Schrédinger
equation namely

t
u(t) = ey + / =98 p(5)ds,
0
or some data ¢, F'. en for all (p,q) and (a, chrodinger admissible with ¢ < co and b < oo,
data o, F. Th Il d (a,b) Schriding d bl h db
IV ull o zay S NVITal g2 + [V 700 2 s . (6.2.9)

Here (a,a’) and (b, V') are conjugate pairs, and ~yp q, Ve pr are defined as in .

Note that the estimate is exactly the one given in [MZ07], [Paul] or [Pau2] where
the author considered (p,q) and (a,b) are either sharp Schrédinger admissible (see (0.0.1)) or
biharmonic admissible. The proof of Strichartz estimates proved by [MZ07, [Paull, [Pau2] are based
on delicate dispersive estimates of [BKS00] for the fundamental solution of the homogeneous
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Chapter 6. Global well-posedness defocusing mass-critical NL4S

fourth-order Schrédinger equation.

The following result is a direct consequence of .
Corollary 6.2.6. Let u be a (weak) solution to the linear fourth-order Schrédinger equation for
some data ¢, F. Then for all (p,q) and (a,b) biharmonic admissible satisfying ¢ < oo and b < oo,

lullr@.Lay S 19llz2 + 1Fl Lot g, o) (6.2.10)

and

[Aullr @ Loy S [|1AY] L2 + [V (6.2.11)

2d_ .
L2(R,La+2)

Commutator estimates Let I be as in Subsection When the nonlinearity F(u) is alge-
braic, one can use the Fourier transform to write the commutator like F'(Iu) — I F(u) as a product
of Fourier transforms of u and Iu, and then measure the frequency interactions. However, when
d > 5, the nonlinearity is no longer algebraic, we thus need the following rougher estimate which
is a modified version of the Schrodinger context (see [VZ09]).

Lemma 6.2.7. Let 1 <7< 2,0<d<y—1and 1 < q,q1,q2 < o0 be such that % = q% +
Then

1
q2
11(f9) = (IF)gllLe S N=CHNLf| par | (V)77 gl ez (6.2.12)

The proof is a slight modification of the one given in Lemma 2.5 of [VZ09]. We thus only give
a sketch of the proof.
Sketch of the proof. By the Littlewood-Paley decomposition, we write

I(fg) = (If)g = I(fP<1g) — (If)P<1g+ > [I(P<arf Parg) — (IP<arf)Pargl

+ Y [I(PsumfPug) — (IPsarf)Pag]
M>1

= I(PsnfP<19) — (IPsnf)P<ig+ > [I(P<ar fPag) — (IP<as f)Porg)
M2>N

+ Y [I(PsafPug) — (IPsaf)Pug)
M>1

= Term; + Terms + Terms.
Here we use the definition of the I-operator to get
I(P<«nfP<19) = (IP<nf)P<19, I(P<prfPug) = (IP<pf)Pug,

for all M < N.
For the second term, using Lemma and Lemma we estimate

I I(P<prfParg) — (IP<p f)Prgllna S |1P<arflloa | Prgllpa:, M 2 N

MN2—v
S (%) Ml Pagles

S MON"CEINLf|| 1 [V g] e
Summing over all N < M € 2%, we get

I Termollze S N~ YL || o |||V g] Lo
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6.2. Global well-posedness mass-critical NL4S

For the third term, we write

I(PsafPyg) — (IPsaf)Pug =Y [I(PonrfPrrg) — (IPoips f)Parg]

1<keN
Z I(Por s fPrg) — (I Porpr f) P gl

1< kEN
N<2kMm

We note that
[1(Pyrps f Parg) — (I Py f)Prrgl (€) = /5 e (ma (&1 + &) — mu(€1)) Porpr F(61) Parg(&2).
=£1+€2

For |¢1] ~ 2¥M > N and |&| ~ M, the mean value theorem implies

kM _92
Imn (€1 +&2) —my (&) S [Vmn (&)[62] S 2_I€<2T)7 '

The Coifman-Meyer multiplier theorem (see e.g. [CM75, [(CM91]) then yields

g (2P M2
1 (Poersf Pasg) = (IPyerr ) Prsgllin S 275 (55) 1 Peear o | Pargllie

S2 ML L IV g e

By rewriting 2% M~ (2=7+9) = 9=k(y=1-0)(2k )Y~ (2=7+9) we sum over all k> 1 with vy —1 > §
and N < 2FM to get

I Terms|lza S N™EFILf| L [[V]*7 0 g]| o

Finally, we consider the first term. It is proved by the same argument as for the third term. We
estimate

| Termy e S Y |I(ParfP<1g) = (IPys f)P<igllLe
kEN, 28> N

S Y 2l llglze

keEN,2k>N
SN llpa gl pee

Note that the condition v — 1 > § ensures that N~ < N~(2=7+9) This completes the proof. [
As a direct consequence of Lemma [6.2.7] with the fact that

VF(u) = F'(u)Vu,

we have the following corollary. Note that the I-operator commutes with V.

Corollary 6.2.8. Let 1 <v<2,0<d<y—1and 1< q,q1,q2 < o0 be such that % =

1
+ o
Then

1
q1
IVIF(u) — (IVU)F'(u)||pe < N~V Tu| Lo || (V)27 F/ (0)| o (6.2.13)

Interaction Morawetz inequality. We end this section by recalling the interaction Morawetz
inequality for the nonlinear fourth-order Schréodinger equation. This estimate was first established
by Pausader in [Pau2] for d > 7. Later, Miao-Wu-Zhang in [MWZ15] extended this interaction
Morawetz estimate to d > 5.

Proposition 6.2.9 (Interaction Morawetz inequality [Pau2], [MWZ15]). Letd > 5, J be a compact
time interval and u a solution to (ANL4S) on the spacetime slab J xR®. Then we have the following
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a priori estimate:

< 2
[t PAPPRRY [} AT LA (6.2.14)

By interpolating (|6.2.14]) and the trivial estimate

ol ety < Ml ity

we obtain
B < . d 3 d—3 d 3
||u||L2(d73>(J7Lz<;ff>)N(||w||Lz||u\|Lx(J,H%)) T = I
Using Sobolev embedding in time, we get
— B < S5 -3 = 2.1
llullarc HUIILS%MM IESIS || IIUJIIL2 [[u HLOO(JH by (6.2.15)

Here (S(d%;?’), %) is a biharmonic admissible pair.

6.2.2 Almost conservation law

For any spacetime slab J x R?, we define

Zi(J) = sup [[(A) Iullpr(s,La)-
(p,9)EB

Note that in our consideration 5 < d < 7, the biharmonic admissible condition (p, q) € B ensures
q < co. Let us start with the following commutator estimates.
Lemma 6.2.10. Let 5 <d<7,1<y<2and0<J <~y —1. Then

|VIF(u)— (Ivu)F'(u)nLQ(“M) < NG9z, (), (6.2.16)
IVIF@ .., S Wolln 000+ NE 9z, (62,07

where |[ul|pr¢yy is given in . In particular,
IVIE@I , 20 S (Z1(J))*4. (6.2.18)

Proof. We apply (6.2.13) with ¢ = %,ql %{132 and g = ;((;Tf% to get

IVIF(u) — (IVu)F'(u)|| 20 < N-C70\VIu|| saas [[(V)F (0)] aas) -
Ld+2 [, aZ—9d+22 L202d=7)

We then apply Holder’s inequality to have

TF(u)—(1 F’ < N™Y|VI _ *F! _
IVIF@-IVOF @, ) SNIVI sy e [P @Iy

where a = 2 — v+ 6 € (0,1) by our assumptions. For the first factor in the right hand side, we
use the Sobolev embedding to obtain

< 75, (6.2.19)

~

[V Tl 2(d—3) 2d(d=3) <||AIU|| 2(d—3) 2d(d—3)
L d—1 ('_LL —9d+22) Td—1 (J7L42—7d+16)
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2(d— 2d(d— . . . . . .
where ( (i 43) , %) is a biharmonic admissible pair. For the second factor, we estimate

(V)" F' (u)]] aas S |F' ()] aa—s + [|[VI*F'(u)]| a3
L2(d=3)(J,[2(2d=7) ) L2(d=3)(J, [2(2d=7)) L2(d=3)(J, [ 2(2d=T))
(6.2.20)

Since F'(u) = O(|u|), we use to have

1 ()] sos S0l ey aan SZ
L2(d=3)(J,[2(2d=T7) ) L~ d  (J,L2d-7)

~alo

, (6.2.21)

where (@, % is biharmonic admissible. In order to treat the second term in (6.2.20)),

we apply Lemma |6.2.2| with ¢ = 2‘1((2‘2 37)) ,q1 = % and ¢o = ;Zd_(‘égz to get
IIVI*F ()] s S [F(u)] 2z |||V ull 2d(a—3)
Lz(d*3)(J,L 2(2d—T) ) L4(d*3)(J,L —d2+11d—26) L4(d’3)(J,L d2—3d—2)
As F"(u) = O(Ju| ), we have
1 81
||F//(U/)| La(d=3) % ~ || || d4(g d)(d—3) 2(8—d)(d—3) 5 ZId (6222)
(J,L —d>+11d—26 ) L™ 4 — (JL-d*+11d-26)

(8— d)(d 3) 2(8—d)(d—3)
) —d24+11d—26

Note that the above estimate is valid for d at most 7. Here ( ) is biharmonic

admissible. Since (4(d -3), ;Qd_(g;z) is also a biharmonic admissible, we have from ([6.1.9)) that

V] %l 2aa—s S Zr. (6.2.23)
LA(d=3)(J L d2—-3d—2 )

Note that o < 1 < . Collecting (6.2.19)), (6.2.21)), (6.2.22)) and (6.2.23]), we prove (6.2.16).
We now prove ((6.2.17)). We have from (6.2.16] D and the trlangle inequality that

< / —(2—7+9) 115
IVIF@),, g SITIOF @, e +N Z+, (6.2.24)
The Holder inequality gives
I(VIwF' @), ||VIU|| 20y zaen [[F(u)l| s
(J; Td-5 (J,Ld d2— —9d+26 ) LA-3(JL 1(d—4) )
We use the Sobolev embedding to estimate
IV Tul| 2(d—3) Zd(d 5 S|ATull s -z S 2. (6.2.25)
L~ d—5 (J,L d+26 ) L~ d—5 (J’Ld277d+20)
Here (2(;:53) , %11132)0) is biharmonic admissible. Since F'(u) = O(\u|%), we have
8 8
[F" ()] aa=a Sl s awms =l (6.2.26)

Ld—3(J,L3(d-1)) L= (J,L a7 )

)

Combining (6.2.24]), (6.2.25)) and (6.2.26)), we obtain (6.2.17)). The estimate ([6.2.18)) follows directly
)

from (6.2.17) and (6.1.9). Note that (8(%3), 2(;1%43 is biharmonic admissible. The proof is

complete. O

We are now able to prove the almost conservation law for the modified energy functional E(Iu),
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where
L e
E(u(t) = 51 u(t) s + 57— 1) L

Proposition 6.2.11. Let 5 < d < 7, maX{S — %,%} <y<2and0 <<+ % — 3. Assume
that u is a smooth solution to (ANL4S) on a time interval J = [0,T], and satisfies || Iv] g2 < 1.
Assume in addition that u satisfies the a priori bound

lullarcry < s

for some small constant i > 0. Then, for N sufficiently large,

sup |E(Tu(t)) — E(Iy)] < N~G-7+9), (6.2.27)
te[0,T]
Here the implicit constant depends only on the size fo E(I).
Proof. Our first step is to control the size of Z;. Applying I, Al to (dNL4S), and then using

Strichartz estimates ((6.2.10)), (6.2.11f), we have

<
20 S 116l +WF@ e +IVIFG], e (6:2.29)
Using (6.2.17), we have
s s s
|VIF(u)| o Sl 2+ NG T <z NTC 2T (6.2.20)
L2(J,L3+2)
We next drop the I-operator (see (6.1.7)) and use Holder’s inequality to estimate
IF < Nl - . _
HECON oty STty ) g i)
8
S ||u||d8(d—3) 2(d—3) lull 2a-s) 2d(d—3)
L~ d (JL d-% ) L™d=5 (J,Ld%-7d+20)
8
S ull§y Zr < wiZy. (6.2.30)

The last inequality follows from (6.1.9) and the fact (2Si:53) , %dfgo) is biharmonic admissible.
Collecting from (6.2.28) to (6.2.30]), we obtain

8
Zr S| I\ ge + pi Z + N~Crt0) 7+,
By taking p sufficiently small and N sufficiently large, the continuity argument gives
Zr S MYl < 1 (6.2.31)

Next, we have from a direct computation that
O E(Iu(t)) = Re / T0u(A?Tu + F(Iu))dx.
By the Fundamental Theorem of Calculus,

E(Iu(t)) — E(Iy) = /O dsE(Iu(s))ds = Re /0 / T105u(A%*Tu + F(Iu))dxds.
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Using I0;u = iA%*Iu + il F(u), we see that
E(Iu(t)) — E(I) = Re /0 t / Toua(F(Iu) — IF(u))deds
~ Im /0 t / ATu 1 TR (@) (F(Iu) — TF(u))dads
~Im /0 t / ATuA(F(Iu) — IF(u))dads

+Im /0 /IF(u)(F(Iu) — IF(u))dxds.

We next write

A(F(Tu) — IF(u)) = (AITu)F'(Iu) + |VIu*F" (Iu) — I(AuF'(u)) — I(|Vul>F" (u))

= (ALu)(F'(Iu) — F'(uw)) + |[VIu*(F" (Iu) — F"(u))
+VIu- (VIiu—Vu)F"(u) + (ATu) F'(u) — I(AuF'(u))
+(IVu) - VuF" (u) — I(Vu - VuF" (u)).

Therefore,
E(Iu(t)) — E(IY) = Im /0 /MAIu(F’(Iu) — F'(u))dxds

t
+Im / /AIu|VIu|2(F"(Iu)—F"(u))da:ds
0

+Im /0 /AIUVIu -(VIu — Vu)F" (u)dzds
+Im /0 /AIU[(AIU)F’(U) — I(AuF' (u))]dzds
+Im / /TM[(IVU) -VuF" (u) — I(Vu - VuF" (u))]|dzds

+Im / / TF(u — IF(u))dzds.

Let us consider ([6.2.32). By Holder’s inequality, we estimate
< 2 / I 2

8 _
< Z3 1w = ul(ul + )3, g
8_1
S 2Pl o Il g

By (6.1.8), we bound

15 null | 16 SN2 ALul|, 1 S N727;,

T (J,L4) ~ (J,L4) ™~

where (%,4) is biharmonic admissible. Similarly, we have from (6.1.9)) that

[Ju]] S 7Zr

16
LT (J,L4)
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Combining (6.2.38)) — (6.2.40), we get

I(6.2.32)] < N222°1. (6.2.41)

We next bound

@23 S IALull , ) 2 IVTWP] g ) ) ot IF7(T0) = F7 (W]

< 2 " "
<A ||L4(J,L%)HVM||L%(W o I () = F GO

LIG(J,Lﬁ)

< Z31u —ul 371

ad
L16(J, [ T5-2d)

< 23| Ponull 7,

16(8 d) 4(8—d)
—da  (JLT15-2d)

< N2t )Zfﬁ. (6.2.42)

Here we drop the I-operator and apply (6.1.9) with the fact v > 1 to get the third line. We also
use the fact that for 5 <d <7,

|F"(2) = F"(QOI S == ¢3!, ¥z,¢eC.

The last estimate uses (6.2.39). Note that (%, I d8—d11) and (16(?@, 41(58_72‘2) are biharmonic

admissible. Similarly, we estimate

< _ 1
(e (RS P TP -7 PPV | R O O v

S S N | T
We next use to have
IV Ps yull LB oy S < N7Y ALl LB (i) S <Nz
As F"(u) = O(Ju|a~1), we use (6.1.9) to get
1F"(w)] SIul ol o SZ7 (6.2.43)

L“‘(JL“ 2‘i) L= a  (JLT52d)

We thus obtain

8
(6.2.34)| < N1z (6.2.44)

By Holder’s inequality,

[(16.2.35)| < [|ATull 2d ||(AIu)F’( ) — I(AuF'(w))]|

L2(J,L L‘%J,Lﬁ)'
We then apply Lemma with ¢ = d2—f4, q = %d-fl)s and g = % to get
[(ATu)F'(u) — I(AuF' (w))]| e IINUH s [[(V)* F (@) aas
Ld+4 d+1 [2(2d-7)
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6.2. Global well-posedness mass-critical NL4S

where @ = 2 — v+ 6. The Holder inequality then implies

IATWF () = IAuF @), ga S NIATU] g auis

2(JLTFT) L7d=1 (J,L42-7a+16)
X H <V>a F’(u)|| d(d—3) -

L2(d=3)(J, [ 2(2d=7))

We have from (6.2.20)), (6.2.21]), (6.2.22) and (6.2.23) that

8
(V)" F' (u)]] au—s S Zf.
L2(d=3) (], [,2(2d=7)

Thus

8
1(6.2.35)| < N-C-v+d) Z2Ha, (6.2.45)

Similarly, we bound

1 1!

[16.2.36)| < [|ATull 4(‘]Ldztiz)H(IVu) VuF"(u) — I(Vu - VuF (u))||L%(J7Ld%). (6.2.46)
Applying Lemma with ¢ = dQT‘_iQ, Q= 4;;711 and g» = 2 and using Holder inequality, we
have

/! 1!
|(IVu) - VuF" (u) — I(Vu - VuF (u))||L%(J’L%) “||IVu|| # (p et

<) (VuF" @)l 5 ) 3 (6:247)
The fractional chain rule implies

W)™ (VuF" (@), 5, 58, S T al| g 1F7 (u)l

L5 (J,L19) ™ Lit (JL4d 11) L16( JL15 Qd)
"
IVl g3t | (D F @ sty (6:248)

By our assumptions on v and J, we see that a + 1 < . By (6.1.9) (and dropping the I-operator

if necessary) and (6.2.43)),

a+1
1190l ot 90l i 1Ol g e S 20,
, 5_q (6.2.49)
d
£ (U)HLlGU’LI;_idM) SZp
Here (%, %) is biharmonic admissible. It remains to bound || (V) F//(u)lle(JLu“_dzd)' To
do so, we use ’
(e 1/ U o !
19 F/ i S Vst VIR, e (6:250)

The first term in the right hand side is treated in (6.2.43)). For the second term in the right hand

side, we make use of the fractional chain rule given in Lemma Jwithf=5—-1,a=2—v+9,

q = 1555 and g1, o satisfying

(§—1—g)q—“ :%7

aln
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these choices, we have

(- o= iy
Bp) T 1524
for 5 < d < 7. Then,

[ Y PP 1L PO O N [
By Holder’s inequality,
vozF// < %_1_% vp P
v (u)||L16(J7L155d2d)N\\uIIL(%,I,%)pI(M(%,I,a) IV ”Lm(um)
§-1-2
= [|ul 16(8—a) 4(8—d) |||v|pqu16(8—d) 48—d)
L~ a (JLT5-2d) L~ a  (JLT5-2d)

provided

8 « _a  16(8—d)
(g—l—;>p1—5p2—7-

Since (@, 41(58:2‘72) is biharmonic admissible, we have from ((6.1.9]) with the fact 0 < p <1 <~
that

« 51
IVISF @ g ) ety S 27 (6.2.51)

Collecting from (6.2.46) to (6.2.51)), we get

8
1(6.2.36)| < N~CG+0) zFHa (6.2.52)

Finally, we consider ([6.2.37)). We bound

BZ3DI S IV IFWI,, e [VET0) = IF@), e

L2(J,L3+2)
< _
SIVIF@,, 2 IVET0) = IF@) (6.2.53)
By (6.2.18)),
1+&
IVIF@I,, 2 S 270
By the triangle inequality, we estimate
/
IV () = IF@)I 2y, S I(VI0)(E () = Pl e
+ ||(VIu) "(u) — VIF(u)||L2(J7Ld242)
We firstly use Holder’s inequality and estimate as in (6.2.38]) to get
/ !/ ! /
PP PN, S IVt V000 = P Ol
1
S IATullim oy IPovul i el
< N2z (6.2.54)
By (6.2.16)),
/ . < (2—y+8) 145
(VIu)F'(u) VIF(U)||L2(JLd+2) N~ Z, . (6.2.55)
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Combining (6.2.53)) — (6.2.55)), we get

(6.2.37)| < Z T H(N2Z1TE 4 N g1y, (6.2.56)

The desired estimate ((6.2.27) follows from (6.2.41), (6.2.42)), (6.2.44)), (6.2.45)), (6.2.56]) and (6.2. 31)
The proof is complete

6.2.3 Global well-posedness

Let us now show the global existence given in Theorem By density argument, we assume
that 1 € C5°(R?). Let u be a global solution to (ANL4S) with initial data ¢. In order to apply
the almost conservation law, we need the modified energy of initial data to be small. Since E(Iv)
is not necessarily small, we will use the scaling to make E(Iux(0)) small. We have

B (0)) = 3 11r(0) s + 57— 1O Lo (6.2.57)
We use (6.1.11)) to estimate
Oz S N2 un(O)l 2 = N2IA [l (6.2.59)
In order to make |[Tux(0)||z < &, we choose
A~ N (6.2.59)

We next bound || UA(O)”L 2045 . Using the Gagliardo-Nirenberg inequality, we have

2d+8 s )
[Hux(O)|| fars < [[Tux(0)]|Z2([Tux(0) (|-
L a H

By (6.1.7)), the scaling invariance, the conservation of mass and (6.2.58)), it follows that

d d

1ux(O)]] 2ass S (1Tur(0) ] g2) ™7 S (N*A ]| g ) T (6.2.60)

Therefore, it follows from (6.2.57)), (6.2.58]), (6.2.59) and (6.2.60) by taking A sufficiently large
depending on ||| g+ and N (which will be chosen later and depends only on ||1)| zz~) that

E(Iux(0)) <

4>\>—‘

Now let T" be arbitrarily large. We define
X ={0<t< T | ||U)\||M([0,t]) < Ktsfdig) 1
with K a constant to be chosen later. Here M(J) is given in (6.2.15). We claim that X = [0, \*T].

Assume by contradiction that it is not so. Since |[ux||ar(jo,) is @ continuous function of time, there
exists Ty € [0, \*T] such that

d—4
luxllarqo,m)y > KTy, (6.2.61)
At
lullne(o,rop) < 2KT3 7. (6.2.62)
Using (6.2.62)), we are able to split [0, Tp] into subintervals Ji, k = 1,..., L in such a way that

Nuxllarryy < ws
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Chapter 6. Global well-posedness defocusing mass-critical NL4S

where p is as in Proposition [6.2.11}] The number L of possible subinterval must satisfy

d—4
2KT8(d—3) 8(d—3) a4
Lo (5550—) 7~ (6.2.63)
I

Next, thanks to Proposition we see that for 1 <y <2and any 0 <0 <~y —1,

sup E(Tuy(t)) < E(Tux(0)) + N~@Gv 4,
[0,To)]

formax {3 — 2,3} <y <2and 0 <8 <~y+3—3. Since E(Tux(0)) < 1, we need
1
N~ « 1 (6.2.64)

in order to guarantee

E(Iux(t)) <1, (6.2.65)

for all t € [0,Ty]. As Ty < AT, we have from (6.2.63]) and (6.2.64) and the choice of A given in
(6.2.59) that

N0 N et i, (6.2.66)
or
42— )(d—4
(1);) <2-7+34, (6.2.67)

for max {3 — %, %} <y<2and0<d<y+ % —3. Since 2—v+0 < %— 1, the condition ([6.2.67))
is possible if we have
42 —v)(d—4) < 8

-—1.
vd d
This implies v > sfgg:g). Thus
8 8 8(d—4)
3——,= .
7>max{ 4'd 3-8 }
Next, by (6.2.15]),
d—4 1 d—4
3

<T8(d—3) da—3 .
e llrcoray S T8 WOIET ol 25 )

We use (6.1.8]) and the definition of the I-operator to estimate
lua(®)l 3 < IP<xua @l

3 1 _3
S IP<vua@l 2 [Penvux(®)ll o + N72 [ Tua @) 72

3 1 _3
S @l g lTux(@®)l g + N2 [[Tux(®)]] g2

T NG

Thus,

d d—4

= PR 2 1 _3 =3
luxllveqomoy S To 7 I19ll=" sup (||¢Hi2||IUA(t)||}§2 +N 2|\IUA(75)HH2) - (6.2.68)

0,7
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6.2. Global well-posedness mass-critical NL4S

Since [[Tux(®) |72 S VE[ux(t)), we obtain from (6.2.65) and (6.2.68)),

d—4
luxllarom)y < CTy ™,

for some constant C' > 0. This contradicts with (6.2.61)) for an appropriate choice of K. We get
X = [0, \*T] with T arbitrarily large and

E(Iuy(\'T)) < 1. (6.2.69)

Note that under the condition of v, we see from (6.2.66)) that the choice of N makes sense for
arbitrarily large T'. Now, by the conservation of mass and (6.2.69)), we bound

lu(D) [ S (D)2 + (D) g S 10 ]z2 + X fus(XT) | g,
S llez + AT [Tua(A'T) || =
<A< NZTTY L Ta(%d)7

where a(v,d) is a positive number that depends on v and d. This a priori bound gives the global
existence in H7. The proof is now complete.
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CHAPTER 7

Blowup for the focusing
mass-critical nonlinear
fourth-order Schrodinger equation
below the energy space
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In this chapter, we consider the focusing mass-critical nonlinear fourth-order Schrédinger equa-
tion, namely

(Juliu)(t,z), t>0,2€R%
P(x) € HY(RY),

(fNLAS)

{ i0yu(t, x) + A%u(t, x)
u(0, )

where u(t,z) is a complex valued function in R* x R%. The (fNL4S) is a special case of the
generalized nonlinear fourth-order Schrédinger equation

i0pu + A%u + eAu+ plultu =0, u(0) =, (7.0.1)

where ¢ € {0, £1}, u € {£1} and v > 1. The equation ([7.0.1)) was introduced by Karpman [Kar96]
and Karpman-Shagalov [KS00] to take into account the role of small fourth-order dispersion terms
in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity.

The (fNL4S) enjoys a natural scaling invariance, that is if u solves (fNL4S), then for any A > 0,

ux(t, z) = )fgu(/\%t,/\*lx) (7.0.2)

solves the same equation with initial data uy(0,2) = )\_%w()\_lx). This scaling also preserves
the L%-norm, i.e. ||ux(0)||zz = ||¢||z2. As in the previous Chapter, (fNL4S) is locally well-posed
in HY(R?) for v > 0 satisfying, in the case d # 1,2,4, . Moreover, for ug € H?, the
unique solution enjoys mass and energy conservation laws. In the sub-critical regime, i.e. v > 0,
the time of existence depends only on the H7-norm of the initial data. Let T™ be the maximal
time of existence. The local well-posedness gives the following blowup alternative criterion: either
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7.1. Blowup focusing 4D mass-critical NL4S

T* = 00 or
T" < oo, lim |lu(t)||gr = .
t—T*

The study of blowup solutions for the focusing nonlinear fourth-order Schrédinger equation has
attracted a lot of interest in a past decade (see e.g. [FIP02], [BEM10|, [ZYZ10], [ZYZ11], [BL17]
and references therein). It is closely related to ground states @ of (fNL4S) which are solutions to
the elliptic equation

A2Q+Q—1Q|iQ =0. (7.0.3)

The equation is obtained by considering solitary solutions (standing waves) of (fNL4S) of
the form u(t,r) = Q(x)e~*. The existence of solutions to is proved in [ZYZ10], but the
uniqueness of the solution is still an open problem. In the case ||¢|| 12 < |[|@]|L2, using the sharp
Gagliardo-Nirenberg inequality (see [FIP02] or [ZYZ10]), namely

1+
QI £

together with the energy conservation, Fibich-Ilan-Papanicolaou in [FTP02] (see also [BEM10])
proved that (fNL4S) is globally well-posed in H2. Moreover, the authors in [FIP02] also provided
some numerical observations showing that the H2-solution to (fNL4S) may blowup if the initial
data satisfies |||z > ||@Q||zz. Baruch-Fibich-Mandelbaum in [BFMI0] proved some dynamical
properties of radially symmetric blowup solutions such as blowup rate, L2-concentration. Later,
Zhu-Yang-Zhang in [ZYZ10] removed the radially symmetric assumption and established the profile
decomposition, the existence of the ground state of elliptic equation and the following
concentration compactness property for (fNL4S).

Theorem 7.0.1 (Concentration compactness [ZYZI10]). Let (v,)n>1 be a bounded family of H?
functions such that

Ul

248 8
lull”, s < C(d)l|ullfzllAullZz,  Cd) :

8
L**ta

, (7.0.4)

loo

limsup [[Avy |2 < M < oo and limsup HU"”L“% > m.
n—roo n— oo

Then there exists a sequence (T )n>1 Of R? such that up to a subsequence

Vp(- 4+ 2,) = V weakly in H? as n — oo,

8 8
. g QI d,m**d
with V||, > (J%W,

Consequently, the authors in [ZYZI1] established the limiting profile and the L?-concentration
for (fNL4S) with initial data ¢ € HY(R%), %27‘/0771 < 7 < 2. Recently, Boulenger-Lenzmann in
[BL17) proved a general result on finite-time blowup for the focusing generalized nonlinear fourth-
order Schrodinger equation (i.e. with p = 1) with radial data in H2.

Our main purpose in this chapter is to lower the required regularity of [ZYZ11] for (fNL4S) in
the fourth dimensional case and to extend the results of [ZYZ11] to higher dimensions d > 5.

where @ is the solution to the ground state equation (|7.0.3).

7.1 Blowup for the focusing mass-critical nonlinear fourth-

order Schrodinger equation below the energy space when
d=4

In this section, we lower the required regularity in [ZYZI11]. To do so, we make use of the
analysis performed in Subsection [6.1 More precisely, our main results in this section are as
follows.

Theorem 7.1.1. Let 1 € HY(R*) with 67"'17 vgg)émg < v < 2. If the corresponding solution to the
(fNL4S) blows up in finite time 0 < T* < oo, then there exists a function U € H*(R*) such that
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Chapter 7. Blowup focusing mass-critical NL4S

Ul 2ray > ||Q| L2 ey and there exist sequences (tn, An, Tn)n>1 € RT x RY x R?* satisfying

2
8

t, /T  asn—o00 and A, S(T*—t,)5, VYn>1

such that i
A2 u(tp, A - +2n) = U weakly in HX ™ (R*) as n — oo,

where

i 3072 + T4y + 120
a(y) =

= 7.1.1
97y + 120 — 3072’ (7.1.1)

and @ is the solution of the ground state equation .

This result improves the regularity requirement of [ZYZ11] where the authors proved the above
result for % < 7y < 2. This improvement is due to a better bilinear estimate , hence a
better energy increment (see Proposition [7.1.8).

As a consequence of Theorem [7.1.1} we have the following mass concentration property.
Theorem 7.1.2. Let ¢p € HY(R*) with CHYA0489 — o < 2. Assume that the corresponding

150
solution u to the (NL4S) blows up in finite time 0 < T* < oo. If a(t) > 0 is an arbitrary function

such that N
T* — t)%
lim 7( Ok =0,

T aft)

then there exists a function x(t) € R* such that

limsup/ |u(t,x)|2dx2/ Q(x)[*da,
t T JSe—a(t)|<alt) R*

where Q is the solution to the ground state equation .

When the mass of the initial data equals to the mass of the solution of the ground state equation
(7.0.3]), we have the following improvement of Theorem Note that in the below result, we
assume that there exists a unique solution to the ground state equation ([7.0.3|) which is a delicate
open problem.

Theorem 7.1.3. Let ¢ € HY(R*) with 20489 <y < 2 be such that ||¢]|p2ray = [|Ql 12ra)- If
the correspondmg solution u to the (INL4S) blows up in finite time 0 < T* < oo, then there exist
sequences (tn, e Ay, xp)n>1 € RT x St x Rf x R* satisfying

i
8

tn /T  asn—00 and N, S(TF—t,)5, Vn>1
such that . i
A2 eyt Ap - +2n) = Q strongly in H* V= (R*) as n — oo,
where a(y) is as in (7.1.1) and Q is the unique solution to the ground state equation ((7.0.3)).

7.1.1 Modified local well-posedness

We firstly recall the local theory for (fNL4S) in Sobolev spaces (see Theorem with o = 4).
Proposition 7.1.4 (Local well-posedness). Let 0 < v < 2 and ¢ € HY(R*). Then the equation
(NL4S) s locally well-posed on [0, Tiywp] with

_a
Tiwp ~ 191l 7 -

Corollary 7.1.5 (Blowup criterion). Let 0 < v < 2 and ¢ € HY(R*). Assume that the unique

solution u to (fNL4S) blows up at time 0 < T* < oco. Then,

()l 2 (T* = 1)77, (7.1.2)
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7.1. Blowup focusing 4D mass-critical NL4S

forall0 <t <T*.

Proof. We follow the argument of [CW90]. Let 0 < ¢ < T*. If we consider (fNL4S) with initial
data wu(t), then it follows from with 0 = 4,v = 3 and the fixed point argument that if for
some M > 0

Cllu®)|| g~ + C(T — )2 M® < M,

then T' < T*. Thus,
Cllu®)|| g + C(T* — )2 M> > M,

for all M > 0. Choosing M = 2C||u(t)| g~, we see that
(T = )% [u(®)|3, > C.

This proves ((7.1.2)) and the proof is complete. O

We have the following modified local well-posedness which is essentially given in Proposition
0. 1. 12

Proposition 7.1.6 (Modified local well-posedness). Let v € (2/3,2) and 1 € HY(R*). Let

_4
6 =l g2,

for a small constant ¢ = c(y) > 0. Then the (fNL4S) is locally well-posed on [0,6] and the unique
solution satisfies for N large enough,

||IU||X§-,1/2+ S Y] e (7.1.3)

Here Xg’b is defined as in (6.1.16)).

Proof. Since ||¢|| g S [ {9|| 2, we see that for ¢ > 0 small enough,

_4 _ 4
0 =Yl s S ell¥llagy < Tiwp-

Here Tiyp is as in Proposition This shows that (fNL4S) is locally well-posed on [0,4]. It
remains to prove (7.1.3). This bound follows by the same lines as in the proof of Proposition
6.1.12] The proof is complete. O

7.1.2 Modified energy increment

In this subsection, we study the modified energy increment. More precisely, we will show that
the modified energy, namely F(Iu) grows much slower than the modified kinetic of u, namely
|AIu||3.. It is crucial to prove the limiting profile for blowup solutions.

Proposition 7.1.7 (Local increment of modified energy). Let 83 <~ <2 and ¢ € HY(R*). Let

_a
6 =clIYll g3,
for a small constant ¢ = ¢(y) > 0. Then for N sufficiently large,

Jup [B(u(t) = B0 S NE (1l + 1 10) (7.1.4)

Here the implicit contant depends only on v and ||¥| -~

Proof. By Proposition (NL4S) is local well-posed on [0, d] and the unique solution satisfies
(7.1.3). By the proof of Proposition [6.2.11] we see that for N sufficiently large,

_ 46
sup, |B(Tult) = B SN B (Tl or + 1Tl ).
te|o0, 5 5
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Chapter 7. Blowup focusing mass-critical NL4S

This estimate together with ((7.1.3) show (7.1.4). The proof is complete. O
We next introduce
A(t) := sup |Ju(s)||lgr, 2(t) := sup [ Inu(s)| mz- (7.1.5)
0<s<t 0<s<t

Proposition 7.1.8 (Increment of the modified energy). Let S™YM89 <y < 2. Let o) € HY(R?)
be such that the corresponding solution u to the (fNL4S) blows up at time 0 < T* < oo. Let
0<T<T*. Then for

N(T) ~ A(T) 77, (7.1.6)
we have
(I cryu(T)| S AT, (7.1.7)

Here the implicit constants depend only on v, T* and ||¢| g~, and 0 < a(vy) < 2 is given by
4
22-7) (6+4)
B-e-n(1+3)]-

Proof. Let § := cZ(T)f% for some constant ¢ = ¢(y) > 0 small enough. For N(T) sufficiently
large, Proposition shows that

a(y) = { (7.1.8)

N yullx21r24 (are)) S Hneryu®) a2 S E(T), (7.1.9)

uniformly in ¢ provided that [¢,t + ] C [0,T]. We split [0,7] into O(T'/d) subintervals and apply
Proposition on each of these intervals together with 1) to have for % <y <2,

T

sup [E(ryu()] £ 1B U] + 5 NIO)™H (S(T) + 59(T)
te|0,
S Byl + N(T) 8+ (S743(1) + 373(T)). (7.1.10)
Using , we see that
Y(T) < N(T)* "A(T). (7.1.11)

By the Gagliardo-Nirenberg inequality and (6.1.11]),

|E(Inery¥)| S | AInery¥l|72 + Ny ¥l s
SNAINy N2 + vy ¥ 32| Alv ¥l 7
SN2 (1913 + [l 3) S N(T)2E. (7.1.12)

Substituting (7.1.11)) and (7.1.12)) into ([7.1.10), we get

sup [E(Ineryu(t)] S N(T)?C~0 4 N(T)E00+3) =8+ 5 (7)t+5
t€[0,T]

46 4

+ N(@)E N+ =8N ()55 (7.1.13)
Optimizing (|7.1.13)), we observe that if

4

N(T)2(277) ~ N(T)(Q—'y)(6+%)—%g+A(T)6+;
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7.1. Blowup focusing 4D mass-critical NL4S

or

then
sup |E(Inryu(t))] < N(T)*C77 < A(T)*0),
te[0,T]

where a(7) is given in (7.1.8)). In order to make 0 < a(y) < 2, we need

B-2-y(4+2) >0,
-7 (6+%) <#€-@-y(1+%).

9 < ~ < 2. The proof is complete. O

Solving the above inequalities, we obtain %

7.1.3 Limiting profile

Proof of Theorem As the solution blows up at time 0 < T* < 0o, the blowup alternative
allows us to choose a sequence of times (¢,),>1 such that t,, — T as n — oo and ||u(t,)||gv =
A(t,) = 0o as n — oo (see (|7.1.5) for the notation). Denote

'Un(x) = /\iIN(t,L)u(tna Anx)v
where N(t,) is given as in ([7.1.6) with 7' = ¢,, and the parameter A, is given by

\2 |AQ]| > .
" AL, yulta) |l L

By (6.1.10) and the blowup criterion given in Corollary we see that

AQl»
" a7

On the other hand, (v,),>1 is bounded in H?(R*). Indeed,

(7.1.14)

R
]

or An < (T* — )

lonllze = [N,y ultn)llLz < llu(tn)llzz = 19l L2,
1AVl L2 = N AIN e,y ultn)ll e = [|AQ]|e. (7.1.15)

By Proposition with T = t,,, we have
E(vn) = X E(Ing,)ul(tn)) S A

As 0 < a(y) < 2 for 67+17 V5%0489 < v < 2, we see that E(v,) — 0 as n — oo. Therefore, the

expression of the modified energy and ([7.1.15)) give

[vallzs = 21AQ|I7e, (7.1.16)

as n — o0o. Applying Theorem to the sequence (v,),>1 with M = ||AQ||z2 and m =
1

(2]|AQI2.) 7, there exist a sequence (z,,)n>1 C R* and a function U € H?(R*) such that ||U|[z2 >
|Q]|Lz and up to a subsequence,

Vn (- 4 z,) — U weakly in H*(R?),
as n — oo. That is

N2 TNy u(tn, An - +2,) = U weakly in H?(R?), (7.1.17)
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as n — oo. To conclude Theorem we need to remove Iy, ) from (7.1.17). To do so, we
consider for any 0 < o < v,

I (U = I,y W) (b An - )| o = Al Ponie,y ultn) | o
S /\ZN(tn)077||P2N(tn)u(tn)HHW

(o

o —v)a(y)
S A(n) 2 A(tn) 2 [ Pon,y ultn) | 5o

(e—v)a(y)

SA(t) TE IR (7.1.18)

Using the explicit expression of a(y) given in (7.1.8), we find that for

o < afy) = 3072 + 74y + 120
7T 97y 1120 — 3092

the exponent of A(t,) in (7.1.18)) is negative. Note that an easy computation shows that the
condition a(vy) < - requires
7+ /7249

60
which is satisfied since 67"'17 %%)489 < 7 < 2. Thus,

<7y <2,

A2 (u = Inge,yu) (tny An - 420 gacn— — 0, (7.1.19)

as n — co. Combining (7.1.17) and (7.1.19)), we prove

A2 u(tp, A - +2,) = U weakly in H¥ )~ (R?),
as n — oo. The proof is complete. O

Proof of Theorem By Theorem there exists a blowup profile U € H?(R*) with
lUllz> > ||Q||z> and there exist sequences (tn, Ap, Tn)n>1 C Ry X R x R* such that ¢, — T*,

M <1, (7.1.20)
*— n 8

for all n > 1 and A2u(t,, A, - +2,) — U weakly in H*)~(R*) (hence in L?(R*)) as n — oo. Thus
for any R > 0, we have

liminf)\fl/ |u(tn,)\n1’+mn)\2dz2/ U (x)]*dz.
|z|<R

n—00 lz|<R

By change of variables, we get

lim inf sup / [u(ty, z)|?dr > / U ()|*da.
[z—y|<RA,

OO yeR4 lz|<R

. o
Using the assumption (Taz%))s

We thus obtain for any R > 0,

— 0 as n — oo, we have from (|7.1.20f) that % — 0 asn — co.

lim inf sup/ [u(ty, z)|*dx Z/ U (x)|*da.
\x7y|§a(tn)

N0 yeR4 |z|<R

Let R — oo, we obtain

lim inf sup / [u(tn, )|*dx > ||U||3-.
lz—y|<a(tn)

n—0o0 y€R4
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This implies

lim sup sup / lu(t, z)|?dx > ||Q||3.
t T+ yeR* J|z—y|<a(t)

Sine for any fixed time ¢, the map y +— f|:rfy\<oz(t) |u(t, x)|?dx is continuous and goes to zero as
ly| — oo, there exists z(t) € R* such that

sup/ |u(t,x)\2dac:/ lu(t, z)|*da.
vers Jjz—y|<a(t) o=z ()| <a(t)

This shows

limsup/ lu(t, z)|*dz > Q3.
t T* |z—z(t)|<a(t)

The proof is complete. O

Proof of Theorem [7.1.3] We firstly recall the following variational characterization of the so-
lution to the ground state equation . Note that the uniqueness up to translations in space,
phase and dilations of solution to this ground state equation is assumed here.

Lemma 7.1.9 (Variation characterization of the ground state [ZYZI0]). If v € H?(R?) is such
that ||v||p2 = ||Q|lr2 and E(u) =0, then v is of the form

v(z) = ew)\%Q()\m + ),

for some 6 € R\ > 0 and xog € RY, where Q is the unique solution to the ground state equation
(7.0.3).
Using the notation in the proof of Theorem and the assumption ||¢| g2 = ||@Q]| L2, we have

[vnlle < [¥ll2 = Q2 < U] L2
Sine v, (- + ) — U weakly in L?(R*), the semi-continuity of weak convergence implies

U2 < liminf [jon[|p2 < [|Q]|z2-
n— oo

Thus,
ULz = 1Q|lL2 = lim |jug] 2. (7.1.21)
n—oQ
Hence up to a subsequence
V(- + ) — U strongly in L*(R?), (7.1.22)

as n — oo. On the other hand, using (7.1.15), the Gagliardo-Nirenberg inequality (|7.0.4]) implies
Un (- + ) — U strongly in L*(R*). Indeed, by (7.1.15)),

lvn (- +2n) = Ullzs S I9( +2n) = UlZ2llA(vn(- + 20) = UllZ
S (IAQl L2 + 1AV L2)? [ (- + 20) = UllZ> — 0,

as n — 0o. Moreover, using ((7.1.16)) and (7.1.21]), the sharp Gagliardo-Nirenberg inequality ((7.0.4)

also gives

1 U2z \?
1aQIE: = 51U15 < (1or) NAVIE: = AU,
or |[AQ|| L2 < ||AU||L2. By the semi-continuity of weak convergence and ([7.1.15]),

JAU||> < liminf [|Av, ] 2 = [ AQ] 12.
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7.2. Blowup focusing mass-critical NL4S higher dimensions

Therefore,

|AU]I12 = |AQlz> = lim [ Avy|za, (7.1.23)

Combining (7.1.21)), (7.1.23) and using the fact v, (- + z,,) — U weakly in H?(R*), we conclude
that v, (- + x,,) — U strongly in H?(R*). In particular,

EU) = lim E(v,) =0,

n—oo

as n — oo. This shows that there exists U € H?(R*) satisfying
[Ullz2 = 1Qllz2, AUz = [[AQ| L2, E(U) =0.
Applying the variational characterization given in Lemma we have (taking A\ = 1),
U(z) = e Q(z + x0),
for some (0, z0) € R x R%. Hence
A2 I (1) U(tn, An - +a0) = €Q(- + x0) strongly in H?*(RY),
as n — oo. Using (7.1.19)), we prove
N2 u(ty, Ap - +20) — er(- + x) strongly in H&(V)*(R‘l),
as n — oo. The proof is complete. O

7.2 Blowup for the focusing mass-critical nonlinear fourth-
order Schrodinger equation below the energy space when
5<d<T

In this section, we extend the results of [ZYZ11] to higher dimensions d > 5. Since we are
working with low regularity data, the energy argument does not work. In order to overcome
this problem, we make use of the I-method. Due to the high-order term AZ2u, we require the
nonlinearity to have at least two orders of derivatives in order to successfully establish the almost
conservation law. We thus restrict to space of dimensions d = 5,6,7. Our main results are as
follows.

Theorem 7.2.1. Let d = 5,6,7 and ¢ € H(R?) with 0=3HeI (2080 < o < 2. [f the

corresponding solution to the (INL4S) blows up in finite time 0 < T* < oo, then there exists a
function U € H*(R?) such that |U||p2gay > |Q|l 12(ra) and there exist sequences (tn, An, Tn)n>1 €

Rt x R} x R? satisfying

th, T " asn—oo0 and A <(T*—t”)%7 Vn>1

n ~o

such that .
AUty Ap - +2) = U weakly in H**)~(RY) as n — oo,
where
4dv? + (2d + 48)y + 16d
a(d,y) = 5
16d + (56 — 3d)y — 16y

and Q is the solution of the ground state equation ([7.0.3)).

The proof of the above theorem is based on the combination of the I-method and the con-
centration compactness property given in Theorem which is similar to those given in [VZ07|
and [ZYZ11]. The key is to show that on intervals of local well-posedness, the modified energy
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7.2. Blowup focusing mass-critical NL4S

E(Iu) is an “almost conserved” quantity and grows much slower than the modified kinetic energy
HAIuHQLQ(Rd). To do so, we need delicate estimates on the commutator between the I-operator
and the nonlinearity. Note that when d = 4, the nonlinearity is algebraic, one can use the Fourier
transform technique to write the commutator explicitly and then control it by multi-linear analy-
sis. In our setting, the nonlinearity is not algebraic. Thus we can not apply the Fourier transform
technique. Fortunately, thanks to a special Strichartz estimate (6.2.11]), we are able to apply the
technique given in [VZ0T] to control the commutator. The concentration compactness property
given in Theorem [7.0.1] is very useful to study the dynamical properties of blowup solutions for
the nonlinear fourth-order Schrédinger equation. With the help of this property, Zhu-Yang-Zhang
proved in [ZYZ10] the L2-concentration of blowup solutions and the limiting profile of minimal-
mass blowup solutions with non-radial data in H2(R?). In [ZYZ11], they extended these results
for non-radial data below the energy space in the fourth dimensional space.
As a consequence of Theorem [7.2.1} we have the following mass concentration property.

Theorem 7.2.2. Let d = 5,6,7 and ¢ € HY(R?) with 36=3dtv é?;jig%;ud%l% <7y < 2. Assume

that the corresponding solution u to the (fNL4S) blows up in finite time 0 < T* < oco. If a(t) > 0
is an arbitrary function such that

(T* — )%

li =0
AT a(t) ’

then there exists a function x(t) € R? such that

t /T R

limsup/ |u(t,x)|2dx2/ ‘Q(x”zd%
lz—a(t)|<a(t)

where @ is the solution to the ground state equation .

When the mass of the initial data equals the mass of the solution of the ground state equation
, we have the following improvement of Theorem Note that in the result below, we
assume that there exists a unique solution to the ground state equation which is a delicate
open problem.

Theorem 7.2.3. Let d = 5,6,7 and ¢ € HY(R?) with M-8 TRAEII0 < 5 < 2 be such

that ||| 2 (ray = |Q|l L2(rey- If the corresponding solution u to the (fNL4S) blows up in finite time
0 < T* < oo, then there exist sequences (ty, eien,)\n,xn)nzl € Rt x S x R x R? satisfying

th /T asn— oo and Anﬁ(T*—tn)%, Vn>1

such that .
A2 ety Ap - +x) = Q strongly in HY)~(R?) as n — oo,
where
4dv? + (2d + 48)y + 16d
a(d,y) := 5
16d + (56 — 3d)y — 167

and Q is the unique solution to the ground state equation (7.0.3]).

7.2.1 Modified local well-posedness

We firstly recall the local well-posedness in Sobolev spaces for (fNL4S) given in Theorem [5.3.1]
with o = 4.
Proposition 7.2.4 (Local well-posedness). Let d > 5,0 < v < 2 and ¢ € HY(R?). Then the
equation (INLAS) is locally well-posed on [0, Tiwp] with

_4
Tywp ~ ||¢||er-
Moreover,

sup ||ull e (o, 1y p) w0y S %010
(a,b)eB
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Chapter 7. Blowup focusing mass-critical NL4S

The implicit constants depend only on the dimension d and the regularity ~y.

We also have the following blowup rate which is essentially proven in Corollary
Corollary 7.2.5 (Blowup rate). Let d > 5,0 < v < 2 and ¢ € HY(R?). Assume that the unique
solution u to (fNL4S) blows up at time 0 < T* < co. Then,

() 2 (T )77, (7.2.1)

forall0 <t <T*.
We next define for any spacetime slab J x R¢,

Zi(J) == sup [ (A)IullLo(sLa)-
(p,)€B

Note that in our consideration d > 5, for any admissible pair (p,q) € B, we always have ¢ < oo.
Let us start with the following commutator estimates.
Lemma 7.2.6. Let 5<d<7,1<v<2,0<d<~v—1andJ a compact interval. Then

1B,z ST (2, (7.2.2)

IVIF() = (IVa)F' )], e S NTEH0(Z0(0)1F, (7.2.3)
IVIF@,, iy, S V7 (2R 4 NZE 0z ()8, (1.2.4)

IVIF(u)| < (Zi())H (7.2.5)

2d_
L2(J,Ld+1)

Proof. We firstly note that the estimates (7.2.3) and (7.2.5) are given in Lemma [6.2.10} Let us
consider (7.2.2)). By (6.1.7) and Holder’s inequality,

<
MEI 200 STF@I, 2
Slull s@es  _za@es [F)l] _as  awrs
L a1y (J,L4Z+4d+167 ) L2@+7) (J,L3d+16=87)

Since F’(u) = O(|u|7), the Sobolev embedding implies

8
d
w2t Sl swrs  _zaere ullfa@rs s
L2(J,L ) L= (J,[ d>+4d+167) LdC+Y) (J,La+5=27)

[E (u)]

2~ 8
< |J| 4 ||u ul| ¢
~ | | H ”Liﬁﬁf) (J,LP%)” ||L2(§i+;§) (J’Ldzﬁts?)w)

2
S |J|%HU” pary)  _zaars) [[V] Ul 2wis) _2d(d+8)
L7d=4y (J,[ 42 +4d+167) Ld=47 (J,[ d%+4d+167)

2y 1+%
STV | 2las) 2d(d+8)
[ d—4y (.]7Ld2+4d+16'y)

S |I1F (Zi ().

Here we use (6.1.9) and the fact (2;3_?/)’ dffg;fi)m) is biharmonic admissible to get the last

estimate.
It remains to prove (7.2.4). We have from (6.2.17) and the triangle inequality that
< / —(2—y+9) 1+ 8
IVIFG,, 2y, SN, e +N (Zi()1 (7.2.6)
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7.2. Blowup focusing mass-critical NL4S

By Holder’s inequality,

H(VIU)F’(’LL)H 2d_ < HVIUH 2(d+8) 2d(d+8) ||F’(u)|| d+8 d(d+8) . (7.2.7)

L2(J,Ld+2) [ a1y (JL7d2+2d+16("/ D) L2C+7) (J,L3d+16-87)

We use the Sobolev embedding to estimate

IV Tu| 2(d+8) 2d(d+8) < [|ATul| 2(d+8) 2ars) S Z7(J). (7.2.8)

d—4y (JLd2+2d+16('y D)) [ d—4y (JLd2+4d+16'y)

Here (%gd_ﬁ) , dfffjﬁ% 7) is biharmonic admissible. Since F’(u) = O(|u|), the Sobolev embedding

again gives

8
F' , < d
I ot i, SV s | e
<1717 (]|
S I ] 2(d+8) 2(d+8)

L7d=4y (J,LT+4-27)

2y
S 117 9]

2(d+8) 2d(d+8)

L7d=1y (], d2+4d+167)
SIEERCACHES (7.29)
Collecting (6.2.19) — (6.2.23)), we obtain ([7.2.4)). The proof is complete. O

Proposition 7.2.7 (Modified local well-posedness). Let 5 <d < 7,1 <7y<2,0<d <vy—1 and
¥ € HY(R?). Let

~ _a
Tiwp = | I¥ll 2 s

for a small constant ¢ = ¢(d,y) > 0. Then (NL4S) is locally well-posed on [O,T]WP], Moreover,
for N sufficiently large,

Z1([0, Tiwp)) S 119 22 (7.2.10)
Proof. By (6.1.10), ||¥|la~ < |[I¢]| g2- Thus,

~ _a _a
Tiwp = Yl g2 < cll¥llg < Tiwp,

provided c is small enough. Here Ti,, is as in Proposition This shows that (fNL4S) is locally
well posed on [0 lep] It remains to prove ((7.2.10). Denote J = [0, Tiwp]. By Strichartz estimates

and (523,

Z1(J) S sup  |[Tulpeespay + sup  [|ATullpe, )

(p,9)EB (p,q)EB
Sl + IF e + AT +[VIF@)], s
< 116 2 + ||fF<u>HL2(JLr+d4) FIVIF@), 2

We next use (6.2.16) and (6.2.18) to have

8

Zi(7) S 1l + (|71 + N=EF ) (Z,())

By taking ¢ = ¢(d, ) small enough (or |J| is small) and N large enough, the continuity argument
shows ([7.2.10)). The proof is complete. O
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Chapter 7. Blowup focusing mass-critical NL4S

7.2.2 Modified energy increment

Lemma 7.2.8 (Local increment of the modified energy). Let 5 < d < 7, max{3 — %, %} <7<
2,0<8<vy+%—-3andy € H'(RY). Let

~ _4
Tiwp = || 19 3

for some small constant ¢ = ¢(d,~) > 0. Then, for N sufficiently large,

—(2— 248 2418
sup B(Tu(t) — BI)| S N (Il + 1ol %), (2
tG[O,lep]

Here the implicit constant depends only on v and ||¢] g~ .

Proof. By Proposition the equation (fNL4S) is locally well-posed on J = [O,ﬁwp] and the
unique solution u satisfies

Z1(J) S ¥l p2- (7.2.12)

As in the proof of Proposition [6.2.11] we see that

8 16
sup  [E(Lu(t)) - B(Iv)| S N-C79 (2770 () + 2774 ().
t€[0,Thuy)
This estimate together with ((7.2.12)) proves ([7.2.11]). The proof is complete. O
We next introduce some notations. We define
A(t) := sup |[u(s)|lar, 2(t):= sup |[|[Inu(s)| m2. (7.2.13)

0<s<t 0<s<

e . 344 /I3 E T T712d5 3136
Proposition 7.2.9 (Increment of the modified energy). Let5 < d < 7 and 56—3d+ ;zz;gig%)?lzdwlsﬁ <

v < 2. Let i € HY(R?) be such that the corresponding solution u to (fNL4S) blows up at time
0<T*<o0. Let 0 <T < T*. Then for

a(y)

N(T) ~ A(T)===7, (7.2.14)

we have
\E(Inryu(T))| S AT)*O).

Here the implicit constants depend only on ~v,T* and ||¢¥||g~, and 0 < a(y) < 2 is given by
2(2+1§+%) (2—7)
o1m) (3 1))

Proof. Let 17 := CE(T)_% for some constant ¢ = ¢(d,y) > 0 small enough. For N(T') sufficiently
large, Proposition shows the local existence and the unique solution satisfies

a(y) = [ (7.2.15)

Zryr ([0 +7]) S IHnyu®) a2 S E(T),

uniformly in ¢ provided that [t,t + 7] C [0,T]. We next split [0, 7] into O(T'/7) subintervals and
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7.2. Blowup focusing mass-critical NL4S

apply Lemma on each of these intervals to have

T 1
sup | E(Ineryu(®)] S |B(Ineryp)| + = N(T)~ %0 (S(T)2 3 4 5(7)* )
t€[0,T) T

By ryd)| + N(2)~ O (ST 4 5(1)#57),
for max {3 — 5,8} <y <2and 0 <6 <y+ 5 —3. Next, by (6.1.10), we have
S(T) S N(T)*TA(T).
Moreover, the Gagliardo-Nirenberg inequality together with imply
By )] S 1A Ineywl2e + Inery 1y

S A Ineyb I3 + eyl | AIneryw I3

S N@PE ([l + 1015

< N2@=),

Substituting (7.2.18) and (7.2.19)) to (7.2.17)), we get

sup |B(Iryu(®)] £ NPT 4 N(T)~ G @mnBries)ryies
t€[0,T]

+ N(T)‘(2‘7“)*(2‘7)(2*%*%)A(T)2+%+%.

Optimizing ([7.2.20]), we observe that if we take
N(T)2(2—'y) ~ N(T)7(277+6)+(277)(2+%+%)A(T)2+%+%

)

or

24134+ 2
N(T) ~ A(T) vt —-m (B d)
then
2(2+%+%)(2*’y)
Sub |E(IN(T)U(t))| S N(T)2(2_’Y) ~ A(T) (2*’Y+5)7(277)(%+%) .
te(0,T]
Denote

2(2+17?+%)(2—7)
a(r) = .
@-7+8)-(2-7) (+4)

Since2—7+5<%—1, we see that

In order to make 0 < a(7y) < 2, we need

8 _1-(2-+) 176+$)
(2+%+4)e-7
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Chapter 7. Blowup focusing mass-critical NL4S

Solving ([7.2.21)), we obtain

56 — 3d + v/137d2 + 1712d + 3136
2(2d + 32) :

This completes the proof. O

7.2.3 Limiting profile

Proof of Theorem As the solution blows up at time 0 < T™ < oo, the blowup alternative
allows us to choose a sequence of times (¢,),>1 such that t,, — T as n — oo and ||u(t,)||gr =
A(tn) — 0o as n — oo (see (7.2.13) for the notation). Denote

vp(x) = )\1% Int,yultn, AnT),

where N(t,) is given as in (7.2.14)) with T' = ¢,, and the parameter )\, is given by

AQ|| >
M= ” : 7.2.22
18T, etz (7.2.22)

By (6.1.10)) and the blowup criterion given in Corollary we see that

AQl»
" e 7

IR
]

or \p, S (T" —ty)

On the other hand, (v,),>1 is bounded in H2(R?). Indeed,

lenllze = Mngu(t)lze < u(ta)llze = ]z,
1Avn e = A AL, yulta)llze = 1AQIIze. (7.2.23)

By Proposition [7.2.9| with T = t,,, we have
E(v,) = )‘iE(IN(tn)u(tn)) N /\iA(tn)a(V) S A(tn)a(W)_Q-

344137 F 1712413136
As 0 < a(y) < 2 for 56=3d% ;i’;ji‘g;)?wd*'?’l% < v < 2, we see that E(v,) — 0 as n — oo.

Therefore, the expression of the modified energy and (|7.2.23)) give

248 4
loal2ly = (14 3) 180, (7.2.24)

as n — o0o. Applying Theorem to the sequence (v,),>1 with M = ||AQ||z2 and m =

_d
((1+ %) IAQI22) >*75, there exist a sequence (z,),>1 C R? and a function U € H?(R?) such
that |U||r2 > ||@Q||z2 and up to a subsequence,

V(- 4 ) = U weakly in H*(R),
as n — oo. That is

A2 Doy tiltns A - ) — U weakly in H2(R?), (7.2.25)
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7.2. Blowup focusing mass-critical NL4S

as n — oo. To conclude Theorem we need to remove Iy, from (7.2.25). To do so, we
consider for any 0 < o < v,

d
AR (= Iy e,y ) (tny An - +20) [l o = ATIPo N () wltn) |l o
S AN ()7 PN (e ultn)l| o

o (o—v)a(y)
SA(tn) FA(t,) @

1P (e ultn) |

(e—v)a(y)

SA(t,) TETTEE (7.2.26)

Using the explicit expression of a(v) given in (7.2.15)), we find that for

_ 4dy? 4 (2d 4 48)y + 16d
~ 16d + (56 — 3d)y — 1672’

o <a(d,v):

the exponent of A(t,) in (7.2.26)) is negative. Note that an easy computation shows that the
condition a(d, ) < v requires

24 — 3d + v/9d? + 368d + 576 _

<2,
32 7
which is satisfied by our assumption on . Thus,
d
||)\7% (u — IN(tn)u)(tm An “l_ajn)”Hu,(d,'y)— — 0, (7.2.27)

as n — oo. Combining (|7.2.25)) and (7.2.27)), we prove

d ] .
A u(tn, Ap - +2,) = U weakly in g WF(]R ),
as n — oo. The proof is complete. -

Proof of Theorem By Theorem there exists a blowup profile U € H?(RY) with
ULz > [|Q| 12 and there exist sequences (tn, An, Zn)n>1 C Ry x R% x R? such that ¢, — T,

M <1, (7.2.28)
* n ]

for all n > 1 and )\éu(tm)\n - +x,) — U weakly in H* 47~ (R?) (hence in L?(R%)) as n — oc.
Thus for any R > 0, we have

liminf)\ﬁ/ |u(tn,)\nx+$n)\2d$2/ U (z) " da.
lz|<R

By change of variables, we get

lim inf sup / [u(tn, z)Pde > / U () d.
|z—y|<RA,

"0 yeRrd lz|<R

. 2
Using the assumption % — 0 as n — oo, we have from (|7.2.28)) that

We thus obtain for any R > 0,

An

o) — 0 asn — oo.

lim inf sup / u(tn, 2)2dz > / U (2)|2de.
|lz—y|<a(tn)

o0 yeRrd lz|<R
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Chapter 7. Blowup focusing mass-critical NL4S

Let R — oo, we obtain

lim inf sup / [u(tn, )Pdx > ||U|)3-.
|$_y|§a(tn)

n—oo yERd

This implies

lim sup sup / lu(t, z)|*dz > ||Q|3-.
t T yeR? Jlz—y|<a(t)

Sine for any fixed time ¢, the map y — f|x—y\<a(t) |u(t, z)|?dx is continuous and goes to zero as

ly| — oo, there exists z(t) € R? such that

sup/ \u(t,x)|2dx:/ lu(t, z)|?dz.
yER? J|z—y|<a(t) le—z(t)|<a(t)

This shows

limsup/ lu(t, z)|*dz > ||Q||3.
T Jjo—a(l<al)

The proof is complete. O

Proof of Theorem Note that the uniqueness up to translations in space, phase and
dilations of solution to this ground state equation is assumed here. Using the notation in the
proof of Theorem and the assumption [|¢||L2 = ||Q||12, we have

[onllze < [[¥llz2 = [Qllz> < [U]lz>-

Sine v, (- + z,,) — U weakly in L?(R%), the semi-continuity of weak convergence implies

ULz < liminf ||v,]r2 < ||Q]lLz2-
n— o0

Thus,
Ul = 1Qllz2 = Tim_ o] 2. (7.2.20)
Hence up to a subsequence
V(- + ) — U strongly in L*(R%), (7.2.30)

as n — oo. On the other hand, using (7.2.23)), the Gagliardo-Nirenberg inequality (7.0.4)) implies
Un(- + 2) — U strongly in L2+ (R). Indeed, by (7.2.23),

2+5 s 2
[vn (- +zn) = U]| S G +20) = Ul L [|A(0n (- + @) = Ul 72

8
?ta ™~

8
S (1AQl 2 + |AU 222l (- + za) = Ul {2 — 0,

as n — oo. Moreover, using ((7.2.24)) and (7.2.29)), the sharp Gagliardo-Nirenberg inequality ((7.0.4)

also gives

1 248 U]l L2
AQIE: = —— 1011, < (
1aQz: = =7 10125 < (jgy.

or |[AQ|| L2 < ||AU| 2. By the semi-continuity of weak convergence and ([7.2.23]),

) 1AUIE: = AU,

JAU > < liminf [ Avalz2 = [AQ]|z2.
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Therefore,

|AU]I12 = |AQlz> = lim [ Avy|za, (7.2.31)

Combining (7.2.29)), (7.2.31) and using the fact v, (- + x,) — U weakly in H?(R%), we conclude
that v, (- + x,,) — U strongly in H?(R?). In particular,

E(U) = lim E(v,) =0,

n—oo

as n — co. This shows that there exists U € H?(R?) satisfying
[Ullze = [1Qllz2,  [[AU]IL2 = |AQ]|2,  E(U) = 0.
Applying the variational characterization given in Lemma we have (taking A\ = 1),
U(z) = e?Q(z + x0),

for some (6, z0) € R x RY. Hence

)\T%LIN(t")u(tn, A - +x,) = €PQ(- + o) strongly in H?(R?),
as n — oo. Using (7.2.27), we prove

/\T%Lu(tn, Ao - +2n) = €?Q(- 4 x0) strongly in HY@M~ (R?),

as n — 0o. The proof is complete. O
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A.1 Hamilton-Jacobi equation

In this appendix, we will recall how to construct the standard Hamilton-Jacobi equation (see
e.g. [Rob87, Théoreme 1V.14]). Let us consider the following Hamilton-Jacobi equation

{atS(t,x,g)+H(m,VzS(t,fc,£)) = 0 (A.1.1)

S(O,m,f) = 117"5,

where H € C>(R??) satisfies that for all a, 3 € N? with |a + 3| > 2, there exists Cpp > 0 such
that for all z, ¢ € R,

0207 H(w,6)| < Cap. (A.1.2)
The Hamiltonian flow associated to H is denoted by @y (t,x,&) := (X(¢,x,€),E(t, z,£)) where

(R0 = veramEo, o, (X0 = -
Z(t) —VLH(X(1),=2(t)), =(0) = &

Let us start with the following bound on derivatives of the Hamiltonian flow.
Lemma A.1.1. Let ty > 0 and o, 3 € N? be such that |oa+ B| > 1. Then there exists Cppr, > 0
such that for all t € [—to,to] and all (z,&) € R?4,

|a§a§ﬁ(¢H(t7x’§) - (Z‘,§>| < Caﬁto|t|'

Proof. The proof is essentially given in [Rob87, Lemme IV.9]. We assume first |a + 5] = 1 and

denote
V. X(t) VeX(t)

Z(t) :( VLE(t)  VeE(t) )

By direct computation, we have

ZZ(H) = AB)Z(0), (A.1.3)

where

[ VLVH(X().E()  VEH(X().5(1)
Alr) = ( CVEH(X().2() VeV H(X(0).2(1) ) :
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This implies that

t t
12(t) = Igoa| S/O IIA(S)HIIZ(S)IIdSSJ\f\7f|+/0 NI Z(s) = Igeal|ds,

where N 1= SUp(; ; ¢)e[—to,t0]xr2¢ ||A(t)[|. Here || - [| is the R24*2d_matrix norm. Using Gronwall
inequality, we have
| Z(t) — Igea|| < N|t|eNt < NeNtojt].

For |a + 8] > 2, we take the derivative of and apply again the Gronwall inequality. O
Lemma A.1.2. There exists to > 0 small enough such that for allt € [—tg,to] and all ¢ € RY, the
map = +— X (t,x,€) is a diffeomorphism from RY onto itself. Moreover, if we denote x + Y (t,x, &)
the inverse map, then for all t € [—to,to] and all o, B € N? satisfying |a + B| > 1, there exists
Cop > 0 such that for all x,& € R,

0207 (Y (t,2,6) — x)| < Caglt].
Proof. By Lemma , there exists tg > 0 small enough such that

1
172X () ~ Fall < 5.

for all t € [—tg,tp]. By Hadamard global inversion theorem, the map = — X (¢, ,¢) is a diffeo-
morphism from R onto itself. Let z + Y (¢,,£) be its inverse. By taking derivative 8;185 with
|a + 8| = 1 of the following equality

v =X(t,Y(t2E),%), (A.1.4)
we have
(VzX)(t7 Y(t7 z, 5)75)6?65(}/@7 z, 5) - I‘) = 78587[73()((@ Y, 77) - y)|(y,n)=(Y(t,x,5),§)~

By choosing to small enough, we see that the matrix (9, X)(¢,Y (¢,z,£),§) is invertible and its
inverse is bounded uniformly in t € [~t, o] and x, & € RY. This implies that

0507 (Y (t, 2, €) — x)| < C195 0, (X (t,y,m) — y)| < Caglt].

For higher derivatives, we differentiate (A.1.4) and use an induction on |a + 8|. This completes
the proof. O

Now, we are able to solve the Hamilton-Jacobi equation (A.1.1)) and have the following result.
Proposition A.1.3. Let ty be as in Lemma[A.1.2] Then there exists a unique function S €
C>=([~to,to] x R??) such that S solves the Hamilton-Jacobi equation (A.1.1). The solution S is
given by

St,z,&) =Y(t, &) ~£—|—/0 (- VeH —H)o®y(s,Y(t,x,8),8)ds, (A.1.5)
and S satisfies
VeS(t) =Y (t), VuS(t)=E(tY(t),E), Pu(t,VeS(t),€) = (x,V55(t)), (A.1.6)

where S(t) := S(t,z,€) and Y (t) := Y (t,7,£). Moreover, for all o, 3 € N%, there exists Cop > 0
such that for all t € [—tg,to] and all x,& € RY,

0507 (S(t,,6) —x- &) | < Caplt], |a+ 8 >1, (A.1.7)
0202 (S(t,2,€) — 2+ £ +tH(2,8)) | < Caglt]®. (A.1.8)
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Proof. Tt is well-known (see [Rob87, Théoréme IV.14]) that the function S defined in (A.1.5) is
the unique solution to (A.1.1)) and satisfies (A.1.6). It remains to prove (A.1.7) and (A.1L.8). By

(A.1.6) and the conservation of energy, we have

H(l‘,VQCS(t)) = Ho(I)H(t’VES(t)7€) = H(VfS(If),f) = H(Y(t)’g)
This implies that
(ta:f)—xg—t/&g (0t,x,€&)d :—t/H (0t,x,8),£)do

Using (A.1.2) and Lemma [A.1.2] we have (A.1.7). Next, we compute

07S(t) = —0 [H(Y (1), €)] = —(VoH)(Y(t),£) - Y (t)
—(VaH)(Y(1),8) - Ve [0:5(1)] = = (Ve H)(Y(t)é)'vs [—H(Y(#),6)]
= (Vo H)*(Y(1),6) - VeY () + (Vo H - Ve H)(Y (2),6). (A.1.9)

The Taylor formula gives

S(t,xz, &) =x-&—tH(x,§)

+ tQ/o (1-9) [(VIH)Q(Y(Gt)@) VY (0t) + (Vo H - VeH) (Y (0t),€)] db.

Using again (4.1.2) and Lemma we have (|A.1.8)). O
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A.2 Bourgain X" spaces

In this appendix, we recall some basic properties of Bourgain spaces X7* which are used in
Subsection .11
Definition A.2.1 (X7’-space). Let h : R — R be a continuous function, and let 7,b € R.
The space X h(g)(R x R?), abbreviated X7* is defined to be the closure of the Schwartz space

0 (R % R?) under the norm
b -
HUHXZ(’Z)(RXR"') = |l {7 = h()) <€>7 a(r, g)HLELg(Rde)a

where @ (or §(u)) is the space time Fourier transform

a(r, &) = (2m) (D) // e T (¢, ) dadt.
RxR4

When b = 0, X7 = L2HY, when h = 0, X1 = HZ’H“Y and when v = b =0, X% = L2L2. We

now recall some basic properties of X7 *-space.
Proposition A.2.2. Let v,b € R. The Bourgain space XV'* satisfies the following properties:

i. X*% is a Banach space.
ii. If 1 <72 and by < by, then X202 C X7br,

i, @ _ .
Iy, =l
v (X)) = X008

v. Let v1 < v < 9,b1 <b < by be such that v = 0y + (1 — 0)y2,b = 0by + (1 — 0)bs for some
0 c[0,1]. Ifuec XwbhrnX72b then u € XV, In particular,

ull o < NullS o llull 250, -

vi. (X7t vs HYHY)
—ith(D)

e ullmpry = lullxve-

Proof. (i) The completeness of X7+* follows from the completeness of L2LZ. (i) Tt is obvious by
the definition. (iii) A direct computation shows

i(ﬂ 5) = a(_T’ _5)

By definition and a simple change of variables, we have (iii). (iv) This follows from the fact that
the bilinear functional

B:Sw X LD (0,0) = (&, 90>L3L§ = // o(t, x)p(t, z)dtdx € C
: RxRd

can be extended to a continuous bilinear functional on X :Z( £) X x X, 7 b . We also have that if L is

a continuous linear functional on Xzég), then there exists a unique u E X~ Z( £) such that

Vo e X0, (Lg) = Blu,p).

Moreover,

12l e = el e
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Indeed, by Parseval’s identity and Cauchy-Schwarz inequality, we have

[ oot ~ | [] o - i
- ’ / /Md (1 —h(€)) (&) ¢(—T, =€) (T — h(€))* (£)” @(r, €)drde
S8l Iellxae -

Since .%; , is dense in X7, the bilinear functional B can be extended to X:;Z(’:g) X XZ(Z) Now
b

let L € (XZ{Z))*’ i.e. a linear functional on XZ(&)' Consider
Lyy: L2L} — C
Fom (L= e ).
We then have

s (Lo f) 1= sup [(LF (= h©) €7 )

Hf”Lq%ngl HfHL?rngl

= swp (L@} = Ll oo
el v _, ne
h(&)

Here ¢ = 3 L((r — h(€))"(6)"7 f) and el xve = ||fHL2L§ = 1. The Riesz representation
(&) T
theorem then implies that there exists g € LELE such that
Vhe L2LE,  (Lypih) = Blg,h).

Now define u := F((1 — h(£))’ (£)7 g). It is easy to see that u € X:zé:g). This shows that for all
<)O e %,x:

Bluy) = [ [ 5 u(reptr. rds = [[ 9(r€) (r = 1) (©) ol arde
= (Lo (7 = B (€7 @) = (L ).
This shows (iv). (v) It follows from that
Jull oo = 1147 = BEN" ()" a2
< I = REN™™ € fal o 2o | (r = h() 7 (2 [ 2ra-o) 2r-0
<1l (r = ()" (&)™ e ol r — BEN™ (€)™ 71

= ||u||§(71:b1 HUH;:YZIQ :

(vi) We note that

S(e_”‘h(D)u)(T, &) = // e‘“”*‘mf)e_“h(mu(t,x)dtdx = /e_“Te_ith’(g)ﬁ(t,f)dt = a(r + h(€),§).
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This implies that

He—ith(p)u”HfH; = || ()’ (€)7 F(e~ PPy (7, Ollrar

s = [ (7)) alr + h(€), ©)llarz

3 13

= [[{r = ()’ () (7, Oz = llullx-

The proof is complete. O
Lemma A.2.3. Let v,b € R and ug € HY. Then for any ¢ € C°(R),

()™ P xS [luoll ez -
Proof. A direct computation shows that
F )" Pug)(r,€) = (7 — h(€))do(€)-

By definition, we have

4™ Pug|| 0 = 1 {r = h(E)" (€)" FW (1) P uo) | 12 12
= {7 = h())" ()" D(7 — h(€))ito (&)l 2 2

S € a0 ()2 = lluollry-

)
)

Here we use the fact that 1& is rapidly decreasing, hence

/ (r— BE)Y [b(r — h(€))2dr < oo,

O
Lemma A.2.4. Let b > 1/2,v € R and Y be a Banach space of functions on R x RY with the

following property that L
e ™ ) flly S N Fllg

for all f € HY and all T € R. Then we have

lully b llullxae,

forallu e 7 ;.
Proof. Set f(1) := Fi(e "P)y)(1). We have

u(t) _ ezith(D)efzth(D)u(t) _ ezth(D)]:t—lft(efzth(D)u(t)) _ 276zth(D) / ezt-r]:t (efzth(D)u) (T)dT
T R

1

_ % i eitTeith(D)f(T)dT.

Taking Y-norm and using Minkowski’s inequality and the hypothesis on Y, we obtain
b b 1/2 b 1/2
lally 5 [ M dr <1 e ([ @* 15@Igar) 5 ([ 0P 150 Ear)

Here || ()" |22 is bounded since b > 1/2. Using the Parseval’s identity, the right hand side of
the above quantity can be written as

1/2 ,
(L1 Zerlizar) ™ = e iy = lulxoo.

The result then follows. O
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Corollary A.2.5. Let b > 1/2,v € R. Then for any u € X"*, we have

lullcory Se llullxoe-

Proof. Applying Lemma for Y = CYH), we immediately have the desired estimate. O
Corollary A.2.6. Let b > 1/2 and (p, q) be a Schriodinger admissible pair and let h(§) = |£|7 with
o€ (0,2]\{1}. Then

lullzzrs S llullxw.ae,
where

Ypg =5 — - — .

Proof. We firstly recall Strichartz estimates for e’**(P) with h(¢) = [£]7, 0 € (0,2]\{1} (see Corol-

lary ’ .
Hezth(D)f”Lng Sl grzwea

Note that when o € (2, 00), the above estimate holds locally in time. We then apply Lemma
with Y = LPL%. Note that the space LYLY is invariant under multiplication by phases such as
eitT. O
Lemma A.2.7. Let by, by > 1/2,71,72 € R and Y be a Banach space of functions on R x R% with
the following property that

l[e™7e™™ ™) fi] e’ ™ P fo]lly < fll e I foll e

forall f1 € HI', fo € H)? and all 7, € R. Then we have

x
lurually Sbybs [[wallxon e [[uzllxve.ee

for all uy,up € S .
Proof. The proof is similar to the one of Lemma [A.2.4] Set

fi(r) = Filem ™M Pu (1), fo(Q) = Fule M Pug(t)).

We see that

w(0) = 5@ [ i, ) = e [ g0

Thus
sl £ ([ WAl dr) ([ 1720002 dc)
S0 e ([ 0 1) 10 s ([ 0™ 150 mac)

S ||€7ith(D)“1||Hfl jintl ||eiith(D)U2||Hi’2H;2 = [Jua | xv1.01 [luz] x2.02 -

This completes the proof. O

A direct application of localized bilinear estimate given Theorem [A-3.1] and Theorem [A-3.3] is
the following result.
Corollary A.2.8. Let 0 > 2 and d > o /2 and h(€) = |¢|7. Let uy € X% uy € XOb2 with
b1,ba > 1/2 be supported on spatial frequencies || ~ M, N respectively. Then for M > N, one
has
luruallpzre Spypn METDENTETD2 g || o, [fug | xo.0s
Lemma A.2.9. Let v,b € R and ¢ a Schwartz function in time. Then

[P@)ullxe S lullxe-
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Moreover, if 0 < § <1, then
s ()ull x2S 5 Jlull 0,

where Ps(t) = (t/5). In the case b > 1/2, we have the following improvement

s (8)ull xS 6120 ull v

Proof. Let us firstly understand how the X7’-space behave with respect to temporal frequency
modulation u(t,z) — e*™u(t, z). Note that

%(eitTou) (Ta g) = ﬂ(T — 70, 5)
By definition, a simple change of variable and Peetre’s inequality, we have

el 0 = | {7+ 70 = AEN’ (€) @llz2zz Ko (ro)™ [ (r = B’ (€)@l a2 = (o)™ flull v

By writting ¢(t) = [ ¥ (70)e ™ dry, and use Minkowski’s inequality, we have

fteyalls o ([ 1500 ()" dro) o
Since 1/3 is rapidly decreasing, the first claim follows. Similarly, we have

Jwsteyallre o ( [ Bt} ()" dro) o
Using that 1s(7) = 6¢(67), a change of variable and that (6~ 179) < d~! (), we obtain

s ()ull xv0 Sp 8 ull 0
This proves the second claim. In the case b > 1/2, we have
s (€)ullxnn = lle ™ P s (e)ull gy e = 11 €7 lle™ ™ Ows(t)all e | 2.
We now use the Leibniz rule and Sobolev embedding with b > 1/2 to get
le™ " Ops()ill gy < Nlsllge et e + [Ysllzge lle™" @all gy < 05l et gy
This shows that
s ()ull e < 05l Il (€)7 lle™ @l iz < 627 lle™ " Plul gy gy = 6127 oo

This completes the proof. O
Lemma A.2.10. Let v,b € R and ¢ a Schwartz function in time. Then for all ugp € HY,

[4(£)e™ P[0 S o]l 3 -
Moreover, if b>1/2 and 0 < § < 1, then
b5 (£)e™™ Pug| .0 S 62 g |47 -

Proof. We have from Item (vi) of Proposition that ||ul| x~» = ||e’”h(D)u||thH;. This implies

() Pug|| v = ||€7ith(D)1/’(t)€ith(D)U0||H5H; = [[W()uollgpay = 1Vl e lwoll gy < Nuollay-
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The second claim follows by using the fact that

sl =11 0)" G5tz = ([ 1 st ar) " S 82

O
Lemma A.2.11. Let y e RO<§ < 1,0 <V <1/2<band b+ < 1. Let 1) be a Schwartz

function in time. Then
t
Jeste) [ aas], < 0l
t

and

t
H%(t)/ ei(t—s)h(D)F(s)dsHX b <SSO Y|
0 Y

Proof. We firstly write

st) [ aoyas = wate) [ ([ eratmrar)as
=450 / (f emds)gmch = uitt) [ gy
OX 5 [0 o= [ G ear

k>1 [671<1 |67|>1

+ s (t) / (ir) e g(r)dr =: I+ IT + IT1.
|67|>1

Let us consider the first term. The Cauchy-Schwarz inequality gives

1 . 21)/ 1/2
g < 3 e alls Ml ([0 ar) ™

k>1 [oT]<1

Using that t*95(t) = 6%y (t/5) where ¢ (t) = tF4)(t), we have

1/2
1605 iy = 6* lon(t/0) 1y = 8" / (r)? 21w (67) 2dr) S 05612 oy gy

/ <T>2b, dr = / <5717>2b/ s ldr < s
[67|<1 Ir]<1

We also have

We then have

1 o4 o B ,
1y § 37 7858V F gl b2 S 5100 g,

k>1

For the second term, we use a same argument to have

, 1/2
_ 2b
12y S Wl ([ 1ol 0 ar) ™
t [67|>1
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We then use that ||¢5||H§> < 51/2_b“¢”Hf < 61/2-b and

/ 17|72 (1) dT:/ 67 17|2 <5*17>2"/ 5’1d7§61’2b// 7|2 (r) 2 dr
[o7]>1 [T]>1

I7|>1
< 51—2b’/ |T|—2(1—b’)dT < gl-2v
I7|>1
Here b’ < 1/2 hence 2(1 — b") > 1 implies the last integral is convergent. This shows that
110y S 8=+l

We next treat the third term as follows. Set
J(t) = / (i) g(r)e" dr.
[67]>1

We see that

J(0) = /M ¢ i

Note that the Fourier transform of €7 is §o(¢ — 7). This implies that

1y = ([ @ 170Pac) " = ([ eloar) ™

- btb’ — (b4
< gl sup 771" S 6O g]|
¢ jer>1 ¢

Similarly, -
17023 < 6 gl o

Thus, the Young’s inequality gives

b2 % 0 % 0 b 3
I g = [ (7) (s % D)2z < WrlPdsllze ]2z + szl (7)° T 22
< Tl_(bJ’b,)HQHH—b’-
t

Here we use the fact that (7)° < |7 — (| + (¢)° to write

A

()" (s % T) = (I7["4ds) % T + s % ((7)" ).

This proves the first claim. For the second estimate, we remark from Item (vi) of Proposition

that it is equivalent to
t
Hng(t)/o G(s)dsHHng ] [ (A.2.1)
We now apply the first estimate for g(s) = F,G(s, &) with £ fixed to have

t
Jeste) [ Fes.as],, <8017 G0y (A2:2)

If we denote

H(t,z):= 1/15(75)/0 G(s,z)ds,
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then (A.2.2) becomes

IFH (8,6) [y < 61~ CTNFG 6]y

Squaring the above estimate, multiplying both sides with (5)27 and integrating over R?, we get

L@ ([ @ 1maamopa)a s 200 [ g2 ([ @ imsGr P

This shows that )
[H | oy S 6~ CFGL,

—b’ v
v Haz

and (A.2.1)) follows. O
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A.3 Bilinear Strichartz estimates
A.3.1 Bilinear Strichartz estimates for Schrodinger equation
Let us firstly consider the homogeneous Schrodinger equation, namely
10+ Au =0, up—g = 1. (A.3.1)
The solution of above equation is given by u(t, z) = e®*(x). We recall the following properties:
el L2 = 19l 2, (A.3.2)
le* ¢l Loe S 1721 ll s, t#0. (A.3.3)

The L%-estimate (A.3.2) and dispersive estimate (A4.3.3) give the following Strichartz estimates
(see [KT98]): _
€2 o,y S ¢ L2,

provided that (p, ¢) satisfies the sharp Schrédinger admissible condition (see [0.0.1)). Moreover, if
we consider the inhomogeneous linear equation, i.e.

i0u+ Au=F, uy—g =1, (A.3.4)
then we have (see again [KT98])
lullze®,cay S N¥lle2 + I1F]| por @, 1) (A.3.5)

provided that (p,q) and (a,b) are sharp Schrodinger admissible. Strichartz estimates
are also called linear estimates. We now are interested in bilinear estimates for the Schrodinger
equation. In order to do so, we introduce some notation. Let o € C5°(R?) be such that ¢g(£) = 1
for [£] < 1 and ¢p(€) = 0 for |£] > 2 and set (&) = @o(§) — wo(2£). It is easy to see that
¢ € C&°(R?) and supp(p) C {¢ € R, 1/2 < |¢] < 2}. For N € 2%, ie. N = 2% with k € Z, we
define the Littlewood-Paley projection as

Prnf(€) = on(€)f(€), on() = p(N7LE).

Note that supp(]iv\f) C {¢ € R4, N/2 < |¢] < 2N}. We have the following indentity

f:ZPva

Ne2z

for all Schwartz function f. We also have the following properties with v > 0and 1 < ¢ <r < oc:

VY Py fllze ~ N[ Py £l Lo, (A.3.6)
1Py fllr S NYP= 47| Py f] L. (A.3.7)

Let us begin with the following localized bilinear estimate (see [KTV14], Theorem 2.9).
Theorem A.3.1 (Localized bilinear estimate). Let d > 2 and M, N € 22, M < N. Then

e Pag £1[e Preglll o goz2) S ME=D/2N=12] f]|a gl . (A3.8)

When d =1, (A.3.8) holds provided M < N.
Proof. We firstly note that for M ~ N, (A.3.8) follows from Strichartz estimate for the pair
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(p,q) = (4,2d/(d — 1)). Indeed, the Hélder inequality implies

[ Par f1[e"2 Pr gl 2,22y < 1€ Pargll o 2ol Pagll o, p2era-n)

S ||€itAPMgHL4(R,L2d)||PN9HL2-

Here (4,2d/(d — 1)) is a sharp Schrodinger admissible pair. We next use Bernstein’s inequality
and Strichartz estimate to have

1672 Pas | £z 20y S MUUTDZT12) 8 Py f pacr poasa—ny S MUEOTD2712) Py e
Therefore, we have
16" Par f1[e" Prglll 2 e p2) S MDY Py | 2| Pgllze ~ MEODENTV2) £l 2] g]] 2.
Here we use that
ME@=D/2=1/2 _ pp(d=D/2N=12(N N2~ ppA=D/2N=1/2,

Let us consider the case M < N. Using the fact

LHS(A.3.8) = sup (G, [ Py f][e"* Png])

Gl L2 @, L2)=1

)

L2(R,L?)

where

(G H) 2 g 1) = / /R G H(,2)dide = /R (F(t), H(t)), . dt.

By Parseval’s identity, we have

LHS(A.3.8) =  sup /R <é(t),f([eitAPMf][e“APNg])>L2 dt, (A.3.9)

HG”LQ(R,L2):1 £

where

]_-<[€itAPMf] [eitAPNg]) _ / e—it\&n\zﬁ/f\f@ _ ”)eiitlnhﬁz\/\g(n)dn.
Rd

Here the notation ~ or F stands for the space Fourier transform. Thus,

RISED) - [ (e, [ OB~ ) Prgtoda)

2
L&

- / <G(\ c=nf? o [l ), Parf (- — n)fzv\g(n)>L2 di
Rd ¢

N //R LGl 12, €)ParF (€ — n)Pyg(n)dédn

= [ @R+ WPt © Prg(aasan,
R? xR
where G is the space-time Fourier transform. Hence (A.3.8) is in turn equivalent to
‘//Rd iy F(lg* + |77|27§+77)PMf(§)PNg(77)d£d77’ SMEDPNTF g e fll 2 191 22
X
(A.3.10)

By renaming components, we may assume that |&| ~ |{| ~ M and |n;| ~ |n| ~ N, where
€= (&,8),m = (m,n) with £&,n € R¥~1. We make the change of variables 7 = |¢|2 +|n|%,{ = £ +7

and drd¢ = Jd&ydn. A calculation shows that J = [2(& £ n1)| ~ |m1| ~ N. The Cauchy-Schwarz
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inequality and the fact that [£] < M then imply

Ws@EII0) - | [[[ | PeOPH© Pratn) T drdac]
SVl [ ([] i@ e ) g
<IFlepr 2 ([[[ PP drdcag)

(d—1)/2 o7 I 2 7—-1 1/2

< 1P|z MED2( IPar (O Pg(n)2T " dgdn)
R4 xR

<N Fllp2 2 M V2N V2 Py fll 2 | Pgll e

This gives (A.3.10) and the result follows. In order to see that (A.3.8]) is false when d = 1 and
M ~ N, we proceed as follows. The space-time Fourier transforms of uy; := eitaiPM f and
vy = €% Pyg read

ane(1,€) = Purf(€)0o(r +€2),  On(r,€) = Prg(€)do(r + €2),

where §g is the Dirac function. We then have

N (r,€) = /E oo DT PNg(@00(r + € + s
which gives )
N (1,€) = g e (PauF (€ Prg(€) + Par(€2) Py (€0)

where & and & are the solution to

—G-G=1, G+&=¢

We also have
drd§ = 2[& — &2|d&1dEs,

and then

Jusron Beqs oo = Nmow .z = [ m@f(m%(@) + Par (&2) Pg(61)Pdéda.

We see that if |£1] ~ M and |[€3] ~ N and [£; — &2| < 1, the integral fails to be convergent. O
Theorem A.3.2 (Bilinear estimate [CKSTTH|, [VisQ7]). Let d > 2 and u,v be solutions to (A.3.4)
with initial data 1, ¢ respectively. For any § > 0, we have

[uv]| 2@, z2) < C(6) (||1/)||H<d—1>/2—6 + [[IV]4D270 g, + A)U||Lp’(R,Lq’))
X (19l g-17200 + 119172400, + Aol por g gy ) (A311)

for any sharp Schrodinger admissible pairs (p,q) and (a,b) satisfying p,a > 2.

Proof. Fix § > 0 and allow our implicit constants to depend on §. We firstly consider the homo-
geneous case, i.e. u(t) = ey and v(t) = e . Let us consider the general estimate

lwvllz2@,z2) S 191 101l e - (A.3.12)

By the scaling invariance, the above estimate requires 71 + 72 = d/2 — 1. Indeed, for A > 0 we
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A.3. Bilinear Strichartz estimates

consider uy(t,z) = u(A72t,\71z). It is easy to see that if u solves (A.3.1)), then uy also satisfies
(A.3.1)) with initial data ux(0). By change of variable, we have

HUAUAH%Z(R,L% = //RXRd |U)\(t,l')1))\(t, .’E)|2dtd$ = )‘2+dHUUI|%2(R,L2)'
We also have m(f) = M4H(A€) and then
[ux(0) 1%, = /Rd €127 [ur(0)(€)Pdg = AT > |91, -
3

A similar equality holds for ||vx(0)|| .. Therefore,

luxvallZa e r2y = A uvllfag, 12y € X013, 0150,

:>\2+d)\ d+2'\/1A d+272||u)\( )”H,“”U)\( )”H’m

_ )\27d+2(71+72)”u>\( )”H“HUA( )”Hw

This shows that v; +v2 = d/2 — 1 as required. We will prove (A.3.12) with 4 = (d —1)/2 -
and 75 = —1/2 + §. The estimate (A.3.12)) may be recast using duality and renormalization as

L PR + P+l Ol ddn| S 1Pz 19121611

Since y; > 72, we may restrict attention to the interactions with || < |n|. The remaining case
can be reduced to the case under consideration by multiplying by (|¢|/|n])"* =72 > 1. Moreover,
we may further restrict attention to the case |£| < |n| since, in the other case, we can move the
frequencies between the two factors and reduce to the case where 77 = 2, which can be treated by
L*(R, L*) Strichartz estimates when d > 2. Next, we decompose |n| dyadically and |£| in dyadic
multiplies of the size of |n| by rewriting the quantity to be controlled as (K, N dyadic):

ZZ// PicF(IE + Inf?, € + m)[€] 7" P (€)ln| 2 Prc(m) dd. (A.3.13)

Note that |n| ~ K, || ~ NK, hence |£ + n| ~ K. This explains why F' may be so localized. By
remaning components, we may assume that |£1] ~ [£| and |1 ~ |n| where & = (£1,£),m = (m1,7)
with £, € R9~1. We now change variables by writting 7 = £+1, ¢ = |£|?+|n|? and drd( = Jd& dn.
A calculation shows that J = 2|& £ ;| ~ |m1| ~ K. The left hand side of becomes

|Zrm W™ JIL o PeFG O Pt Pt~ drdcag]

We apply Cauchy-Schwarz inequality and change back to the original variables to get

LHS(A313) < ZK‘WHPKFHLELE > (NE)™
K

N<1

<[ e i) g

<D K| PrFllpae Yy (NK)- @02
K N<1
1/2

<( / / / | Prich(©) | Prcd(n)[2~2drdcde) /
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LHS(A:3.13) < ZK—72||PKF||L3L§ > (NE) D/
K

N<1

) ( //Rded |m(€)l2lfz§5(n)lzrldfdn) "

<Y KPR F ) par Y (NE) D2 P 2| Predl e
K N<1

We now choose y2 = —1/2+ ¢ and 73 = (d — 1)/2 — 6 with § > 0 to obtain

LHS(A.3.13) < Z 1PrFllp2 2| Predll 2 Z N6||PNK1/JHL§ S ||F||L3L§||1/AJHL§H¢A5||L§~
K N<1

This gives the homogeneous bilinear estimate (A.3.12). We turn now our attention to the inho-
mogeneous estimate (A.3.11)). Let us introduce

lulls, o = 10l gy + IV (@0 + A)ull o, oy (A.3.14)
and
Sypq i ={ue C,L) | |lulls,,, < oo} (A.3.15)

The estimate (A.3.11)) is in turn equivalent to
luvl| L2, 22) < CO)ullS sy jomspa 1015 1245000 (A.3.16)
We firstly note that the homogeneous bilinear estimate reads
€2 e 2m 12y < CONl reamsyra-alldllzr-s/ees. (A.3.17)

Now, let (p, q) and (a,b) be Schrodinger admissible pairs with p,a > 2. Using Duhamel’s formula
for u, we have

t
IWWmmLaSHJm¢ﬂmm¢a+H(A<ﬂ“$ﬂwr+AW@MﬂvLﬂkp)

Let us consider the first term. Thanks to Duhamel’s formula for v, we get

||€itA¢U||L2(R,L2) < ||eitAQZ)eitA¢||L2(R,L2) +

eimw(/t =989, + A)v(s)ds)‘
0

L2(R,L2)
(A.3.18)

The homogeneous bilinear estimate (A.3.17)) implies
RHS(A.3.18) < C(O)[1vl gra-n/2-s 0]l gr-1/245

t
OOl scns | [ €520, + Ayots)as|
0

E—1/2+6

t
< CONllstasyn-s (I8l -2725s + / e A0, + Ap(s)ds| ).

Moreover, the adjoint to the linear Strichartz estimate also gives

H/RefisA|v|fl/2+6(ias+A)v(3)d8HL2 < H|V|71/2+5(i83+A)U||La’(R,L”')'
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The Christ-Kiselev Lemma, then implies

—1/24+6(,;
F-1/2+5 5 |||V| (’Las + A)UHLQI(]R’LIJ’))

H/ —isA (10s + A)v dsH

and therefore '
HeltAwUHLQ(R,LQ) < ||u||S(d—1)/276,p,q||U|‘S—1/2+§,a,b'

It remains to show

I(f =93 i, + AJu(s)ds )]

By Christ-Kiselev Lemma [4.5.1] it suffices to prove

’K/‘WSMZG+A)()>U

Using again Duhamel’s formula for v and repeating the above argument for the first term, we
obtain

am(Aeﬂﬂu@+Am@mgv H/ €A (i0,+A)u(s)ds

The adjoint to the linear Strichartz estimate again gives

< 0(6) Hu”S(d—l)/‘Z—J,p,q ||UH571/2+5,a,b'

L2(R,L?)

L2(R,L?) < C(é)Hu||S(d—1)/276,p,q||UHS—1/2+5,a,b'

H’U”571/2+5,a.b'

L2(R, L2) E(d—1)/2—5

—isA — —8/;
H/ Za * A d HH(d—l)/%a § |||v|(d D/ (lat +A)u”L”’(R7L‘1’) S ”uHSwfl)/&p,q'

This completes the proof. O

A.3.2 Bilinear Strichartz estimate for higher-order Schrédinger equa-
tions

Let o > 2 and consider the homogeneous higher-order Schrédinger equation, namely
i0u —|V|7u =0, up—o=1. (A.3.19)
As in Chapter |1} the equation (A.3.19)) satisfies the following Strichartz estimates

e ¥l o, Loy S 191 g

where

and (p, q) satisfies the Schrodinger admissible condition (see (1.1.2))). Moreover, if we consider the
inhomogeneous linear equation

0 — |V|7u=F, up—g =1, (A.3.20)
then we have
lullee@® Loy S 10l gwa + 1l or =, 20y

provided that (p,q) and (a,b) are Schrodinger admissible with ¢,b < oo and satisfy the gap
condition

Yp.g = Yo' b O
Note that if (p, q) is a Schrédinger admissible pair satisfying v, , = 0 then v, 4 = vy ¢ + 0.

We now turn our attention to the bilinear estimate for the higher-order Schrédinger equation.
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Let us begin with the following localized bilinear estimate.
Theorem A.3.3 (Localized bilinear estimate). Let o > 2, d > ¢/2 and M,N € 2% such that
M < N. Then

e 1YV Pag flle™ Y Py gl pee,pey S MODENTED2) £ 2 g 2. (A.3.21)
In the case d < 0 /2, the estimate (A.3.21)) holds provided M < N.
Proof. Let us firstly consider the case M ~ N. The Holder inequality gives
le™ ¥ Pay flle™™ ¥ Prg]l| 2. 12y < ||€_it|v|0PMf||L§L4d/v||€_it|v‘oPNQHL;*LM/(FG/@~

Note that when d > 0/2, (p,q) = (4,2d/(d — 0/2)) is a Schrodinger admissible pair satisfying
Yp,g = 0. Moreover, using that ¢ > 2, it is easy to check that (p,q) = (4,4d/o) is also a
Schrodinger admissible with ~y, , = d/2 — 0 /2. Therefore, Strichartz estimate shows that

e Par flle™ Y Paglll a2y < 1Pafll gase—esel| Pugline ~ M2/ Pag f 2] Prgll 2.
Since we are considering the case M ~ N, we have
M/2=0/2 — ppd=1)/2 y—(0=1)/2 \p(0=1)/2 py—(o—1)/2
— M(d—l)/QN—(a'—l)/Q(N/M)(U—l)/2 ~ M(d_l)/QN_(J_l)/Q.

This gives (A.3.21)) when M ~ N. Let us now consider the case M < N. By duality, it suffices
to prove

X

By renaming the components, we can assume that || ~ || ~ M and |n| ~ |m| ~ N, where
€= (¢1,8),n= (m,n) with {,n € R¥"1. We make a change of variables 7 = [¢|7 + ||, ( = £+

and drd( = Jd&dn. A calculation shows that J = |o(|€]772& £ n]7m| ~ 9|t ~ N°~1. The
Cauchy-Schwarz inequality with the fact || < M then shows

LHS:‘///

RxRd—1xRd

< ||G||L3L§ /Rd_l (//JRde |]§J‘Zf(§)|2|P/N\g(77)\2J_2d7dg)1/2d§

G(r, Q) Par F(€) Prg(n)J ~ drdg(|

(d—1)/2 o 7 215 2 7-2 1/2
< Gl m ([ ParF(€)P | Prg ()|~ drdgac
RxRA—1xRe
(d—1)/2 D I (N2 D 2 7—1 1/2
< NGl g2 2172 (ParF () 2 P g m) 2T dedc)
RxR4—1xRe
< ||G||L3L§M(d_l)/zN_(o_l)/Q||PMf||L§||PN9||Lg-

This gives the desired estimate. O

We also have the following non-localized bilinear estimate for the higher-order Schrodinger
equation.
Theorem A.3.4. Let 0 > 2,d > 0/2 and u,v be solutions to (A.3.20) with initial data ¥,
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respectively. Then for any § > 0,

luv||L2(r,r2) < 0(5)(||¢||H<d—1>/2—6 I R (7 |V|U)“||LP’(1R,LQ’))

X <H¢||H7<o—1>/2+6 + V|7V g, — |V|U)U||La’(R,Lb’)>’ (A.3.23)

for any Schrodinger admissible pairs (p,q) and (a,b) satisfying Ypq = Yap = 0,¢,b < 00 and
p,a > 2.

Proof. The proof is similar to the one of Theorem We only give a sketch of a proof. We
firstly consider the homogeneous case, namely

luvll 2,2y S 191 9]l e - (A.3.24)

Due to the scaling invariance, we see that the above estimate requires v, +72 = d/2 — /2. To see
this, we consider uy (¢, ) = u(A\~t, A\~ *x). The homogenous equation (A4.3.19) is invariant under
this scaling. We have
2 d 2
||u>\v>\”L2(R,L2) =\7F ||UU||L2(R,L2)~

Using the fact that [lux(0)[%,, = A" [|[¢]%,,, and similarly for vx(0), we get

luxoallZee, L2y S A7 202 ux (0) 1%, oA (0)[1%, -

We now prove (A.3.24) with v; = (d—1)/2—6 and v2 = —(c—1)/2+4§. The proof of this estimate
follows by the same lines of those given in Theorem [A.3.2] We now turn to the inhomogeneous
case. Using the notations introduced in (A.3.14)) and (A.3.15), the estimate (A.3.23)) is equivalent
to

ol o,y < COllsiasyjasmallolS_ o sy arams: (A.3.25)

We will make use of the homogeneous bilinear estimate

le= V17 4pe IV §|| 1o g r2y < C(O) W]l greazny/o—s |l pr—co—1)/245- (A.3.26)

Let (p,q) and (a,b) be Schrodinger admissible satisfying v, ¢ = Vo = 0,¢,b < 00 and p,a > 2.
Note that when v, , = 0, Strichartz estimate shows that the map L? 2 ¢ — e~*IVI7y) ¢ LP(R, L9)
is bounded together with its adjoint

LY (R,LY) 5 F — / eIV F(s)ds € L2.
R

Therefore, we can repeat the same argument as in Theorem to get a desired estimate. The
proof is complete. O
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Abstract — This dissertation is devoted to the study of linear and nonlinear aspects of the
Schrédinger-type equations

W+ |V|ou=F, |V|=+v-4, o€(0, ).

When o = 2, it is the well-known Schrédinger equation arising in many physical contexts such as quantum
mechanics, nonlinear optics, quantum field theory and Hartree-Fock theory. When o € (0,2)\{1}, it is
the fractional Schrédinger equation, which was discovered by Laskin (see e.g. [Las00] and [Las02]) owing
to the extension of the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical
paths. This equation also appears in the water waves model (see e.g. [[P14] and [Ngul6]). When o =1,
it is the half-wave equation which arises in water waves model (see [IP14]) and in gravitational collapse
(see [ESOT], [FLOT]). When o = 4, it is the fourth-order or biharmonic Schrodinger equation introduced
by Karpman [Kar96] and by Karpman-Shagalov [KS00] taking into account the role of small fourth-order
dispersion term in the propagation of intense laser beam in a bulk medium with Kerr nonlinearity.

This thesis is divided into two parts. The first part studies Strichartz estimates for Schrédinger-type
equations on manifolds including the flat Euclidean space, compact manifolds without boundary and
asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in the study of
nonlinear dispersive equation at low regularity. The second part concerns the study of nonlinear aspects
such as local well-posedness, global well-posedness below the energy space and blowup of rough solutions
for nonlinear Schrédinger-type equations.

In Chapter 1, we discuss Strichartz estimates for Schrédinger-type equations with o € (0, 00) on the
Euclidean space R.

In Chapter 2, we derive Strichartz estimates for Schrédinger-type equations with o € (0,00)\{1} on
R? equipped with a smooth bounded metric g.

In Chapter 3, we make use of Strichartz estimates proved in Chapter 2 to show Strichartz estimates
for Schrodinger-type equations with o € (0,00)\{1} on compact manifolds without boundary.

In Chapter 4, we prove global in time Strichartz estimates for Schrodinger-type equations with o €
(0,00)\{1} on asymptotically Euclidean manifolds under the non-trapping condition.

In Chapter 5, we use Strichartz estimates given in Chapter 1 (among other things) to study the local
well-posedness of the power-type nonlinear Schrodinger-type equations with o € (0, 0c0) posed on R4,

In Chapter 6, we study the global well-posedness for the defocusing mass-critical nonlinear fourth-
order Schréodinger equation o = 4 below the energy space. We will consider separately two cases d = 4
and d > 5 which respectively correspond to the algebraic and non-algebraic nonlinearity.

In Chapter 7, we study the blowup of rough solutions to the focusing mass-critical nonlinear fourth-
order Schrodinger equation. As in Chapter 6, we also consider separately two cases d = 4 and d > 5.

Keywords: Nonlinear Schréodinger-type equations; Strichartz estimates; local well-posedness; global
well-posedness; blowup; I-method; bilinear Strichartz estimates; Interaction Morawetz inequatlities; com-
pact manifolds without boundary; asymptotically Euclidean manifolds.
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