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Titre 
Modélisation des propriétés de transport des ions moléculaires de krypton et 

xénon pour l’optimisation des générateurs de plasma froids utilisant les gaz rares. 

Résumé 
L’utilisation de plasmas froids à base de gaz rares (Rg) dans des applications biomédicales ainsi 

que dans la propulsion spatiale est en nette évolution. Pour optimiser ces réacteurs plasmas, une 

compréhension fine des processus ayant lieu dans ces réacteurs est nécessaire. Ce travail de thèse a 

pour objectif de fournir les données manquantes dans la littérature (coefficients de transport et 

réaction) en passant par des données mésoscopiques (sections efficaces) obtenues à partir de données 

microscopiques (potentiels d’interaction) pour le xénon et krypton dans leur gaz parent. Seul des 

plasmas froids composés d’un seul type d’atome sont considérés. Comme le krypton et le xénon sont 

des gaz rares, et ont donc, à l’état de neutralité peu/pas d’interaction entre eux. Par conséquent, seules 

les collisions ion – atome seront considérées. Du fait des faibles énergies des ions dans le plasma 

froid, seul les 6 premiers états excités du couple Rg2
+ seront pris en compte. Ces 6 états seront classés 

en deux groupes, 2P1/2 et 2P3/2. Lors de ce travail, deux potentiels d’interaction différents disponibles 

dans la littérature sont utilisés et comparés pour les systèmes collisionnels Kr+/Kr et Xe+/Xe dans le 

calcul des sections efficaces. Pour les collisions impliquant des dimères ioniques (Kr2
+/Kr et Xe2

+/Xe), 

les potentiels d’interaction sont calculés à partir du modèle DIM (Diatomics In Molecules) qui est une 

combinaison des potentiels atomiques d’interaction neutre – neutre et ion – neutre. 

Les sections efficaces, requises pour obtenir les données mésoscopiques manquantes, sont 

calculées à partir de trois méthodes différentes. La première méthode est la méthode quantique qui 

permet, par une résolution de l’équation de Schrödinger, d’obtenir de manière exacte les sections 

efficaces à partir des potentiels d’interaction. Cette méthode exacte, étant grande consommatrice de 

temps de calcul, est utilisée en tant que référence pour valider les deux autres méthodes approchées.   

La seconde méthode, nommée semi-classique, est basée sur la même expression que la section efficace 

quantique mais utilise un déphasage approché (approximation JWKB), induit par le potentiel 

d’interaction, entre l’onde diffusée et l’onde incidente. Cette méthode a l’avantage d’être plus rapide 

que la méthode quantique tout en ayant des résultats très proches. La dernière méthode est la méthode 

hybride qui consiste à traiter les atomes par une méthode classique et les électrons par le formalisme 

quantique. Cette méthode est la seule des méthodes approchées qui permet de traiter les collisions 

entre dimère et atome en prenant en compte la vibration et la rotation du dimère. 

  Lors de collision dimère – atome, une fragmentation du dimère peut avoir lieu et donc la 

section efficace de dissociation du dimère, apparaissant à partir d’un seuil d’énergie, a été prise en 

compte dans les calculs Monte Carlo. Les coefficients de diffusion ainsi que la mobilité des ions dans 

leurs gaz parents sont calculés à partir des sections efficaces avec un code Monte-Carlo. Les mobilités 

ainsi calculées sont comparées aux mesures expérimentales disponibles dans la littérature. Dans le cas 

des dimère, la rotation et la vibration dans la molécule doivent être prises en compte. Tous les résultats 

montrés sont réalisés sur l’état fondamental du dimère.  

Les mobilités ainsi calculées par les méthodes disponibles donnent des résultats proches des 

valeurs expérimentales, nous permettant de conforter nos autres coefficients de transport et réaction. 

Mots clés 
Modélisation physico-chimique, donnée de base, ion atomique (Kr+ et Xe+) et diatomique 

(Kr2
+ et Xe2

+), interaction ion – neutre, potentiel d’interaction, section efficace de collision et 

dissociation, méthode quantique, méthode semi-classique (JWKB) méthode hybride, simulation Monte 

Carlo, coefficients de transport, taux de réaction 



Title 
 
Modeling the transport properties of molecular ions of krypton and xenon for the 

optimization of cold plasma generators using rare gases. 
 

Abstract 
 

The use of cold plasmas based on rare gases (Rg) in biomedical applications as well as in 

space propulsion is clearly evolving. To optimize these plasma reactors, a fine understanding of the 

processes taking place in these reactors is necessary. This thesis aims to provide the missing data in 

the literature (transport coefficients and reaction rates) through mesoscopic data (cross-sections) 

obtained from microscopic data (interaction potentials) for xenon and krypton in their parent gas. Only 

cold plasmas composed of a single type of atom are considered. As krypton and xenon are rare gases, 

and so have, in the neutral state little / no interaction between them. Therefore, only ion – atom 

collisions will be considered. Due to the low ion energies in the cold plasma, only the first 6 excited 

states of the Rg2
+ pair will be taken into account. These 6 states will be classified in two groups, 2P1/2 

and 2P3/2. In this work, two different interaction potentials available in the literature are used and 

compared for the Kr+/Kr and Xe+/Xe collision systems in the calculation of cross-sections. For 

collisions involving ionic dimers (Kr2
+/Kr and Xe2

+/Xe), the interaction potentials are calculated from 

the DIM model (Diatomics In Molecules) which is a combination of the atomic potentials of neutral – 

neutral and ionic – neutral interactions. 

The cross-sections required to obtain the missing mesoscopic data are calculated from three 

different methods. The first method is the quantum method which allows, by a resolution of the 

Schrödinger equation, to obtain exactly the cross-sections from the interaction potentials. This exact 

method, which consumes a lot of computation time, is used as a reference to validate the two other 

approximate methods. The second method, called semi-classical, is based on the same expression as 

the quantum cross section but uses an approximate phase shift (JWKB approximation), induced by the 

interaction potential, between the scattered wave and the incident wave. This method has the 

advantage of being faster than the quantum method while having very close results. The last method is 

the hybrid method, consisting of treating atoms by a classical method and electrons by quantum 

formalism. This method is the only one of the approximate methods which makes it possible to treat 

the collisions between dimer and atom taking into account the vibration and the rotation of the dimer. 

  In a dimer – atom collision, fragmentation of the dimer may occur and thus the dissociation 

cross-section of the dimer, appearing from an energy threshold, has been taken into account in the 

Monte Carlo calculations. The diffusion coefficients as well as the mobility of the ions in their parent 

gases are calculated from the cross-sections with a Monte Carlo code. The mobilities thus calculated 

are compared with the experimental measurements available in the literature. For dimer calculations, 

rotation and vibration in the molecule must be taken into account. All the results shown are made on 

the ground state of the dimer. 

The mobilities thus calculated by the available methods give results close to the experimental 

values, allowing us to reinforce our other coefficients of transport and reaction. 
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List of Used Abbreviations and Symbols

kB – Boltzmann constant

E – Energy

T – Temperature

r – Distance

E – Electric field

N – Gas density

E/N – Reduced electric field

K0N – Reduced mobility

eV – Electronvolt

eDT – Transverse diffusion coefficient

eDL – Longitudinal diffusion coefficient

σ(INT ) – Integral Cross-Section (ICS)

σ(MT ) – Momentum Transfer Cross-Section (MTCS)

km – Wave vector of state m. k = µυm/h̵

µ – Reduce mass

υ – Velocity of the atom

h̵ – Reduced Planck constant (Planck constant divided by 2π)

Ĥ – Hamiltonian

l – Angular momentum number

⟨Φ∣X ∣Φ⟩ – Bra-Ket notation, ∫ Φ∗XΦ

XRgZY – Rare-gas (krypton and xenon in this thesis) with X number

of proton + number of neutron, Z is the charge and Y is the

number of atom in the molecule
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General Introduction
This work subscribes in the continuity of research which started 7 years ago on

rare-gases helium (He), argon (Ar) and neon (Ne) atomic and molecular ions in

collision with their parent gases which involves 3 different laboratories (LAb-

oratoire Plasma et Conversion d’Energie) LAPLACE at Toulouse, (Institut de

Recherches Sur les Agrégats, Molécules et Collisions) IRSAMC at Toulouse and

IT4Innovations at Ostrava. The present thesis work is performed in two different

laboratories, IT4Innovations at Vysoká Škola Báňská - Technická Univerzita Os-

trava (Czech Republic) under the supervision of Mr Kalus René and the LAPLACE

at Université of Toulouse III (France) under the supervision of Mrs Benhenni Ma-

lika in the research group PRHE (Plasmas Réactifs Hors Equilibre). In this thesis,

we are focused on krypton (Kr) and xenon (Xe) rare-gases in collision with their

respective parent gas at ambient temperature and atmospheric pressure.

The first chapter presents the context of this thesis, i.e. to complete the miss-

ing basic data such as transport coefficients (mobility and diffusion) and constant

rate of monoatomic and dimer ions of krypton (Kr+ and Kr+2 ) and xenon (Xe+

and Xe+2 ). These data are needed as input in chemical hydrodynamic model of

low temperature plasmas generated at atmospheric pressure used for applica-

tions such as biomedical, spacecraft propulsion and dielectric barrier discharges

excimer lamps. Indeed, the ion transport coefficients are rather incompletely re-

ported in the literature where the only available basic data are the measured mo-

bility on a limited reduced electric field range and no measurements are available

both on monoatomic and dimer ions diffusion coefficient and dimer ion dissoci-

ation. Moreover, ion mobility data were measured by several authors and show

a clear disparity especially in the very low field range probably due to the pres-

ence of impurities in their signal. Furthermore, calculations reported by Barata

[1] (as reported in reference [2]) show disagreement with experimental data. This



2 CONTENTS

chapter reports on the different setups of cold plasma generators found in the

literature. The different potential applications of krypton and xenon cold plasma

generators such as biomedical, excimer lamp or spacecraft propulsion are pre-

sented in this chapter. It also describes the electro-kinetic model which allows to

determine the different active species densities and the electric field needed for

targeted potential applications.

The second chapter describes the ion - atom potentials used for collision cross-

section calculations. Two sets of interaction potentials for ion-atom collisions

(Kr+- Kr and Xe+- Xe) available in the literature are compared, and the methodol-

ogy DIM (Diatomics In Molecule) used to generate the interaction potential for the

ionic dimer - neutral atom collision (Kr+2 - Kr and Xe+2 - Xe) is described as well.

Moreover, this chapter details the basis of the three considered methods namely

quantum, semi-classical, and hybrid method that uses quantum formalism for

the electronic cortege while a classical treatment is applied to nuclei. The semi-

classical method uses an approximate phase shift induced by the interaction po-

tential between the scattered and the incident wave functions. This method has

the advantage of being faster than the quantum method while providing quasi

identical cross-sections. It is used in this thesis specially to verify the hypothesis

of assuming in the calculations, an artificial krypton or xenon isotope with aver-

age mass, instead of the real masses of the different natural isotopes in order to

save computational time. The hybrid method is the only one which allows to treat

the collisions between dimer ions and neutral atoms. An inverse method, based

on a spherical potential with adjustable parameters, is also described in this chap-

ter. This method is very useful when no interaction potential is available and, is

used to extend the mobility data to electric fields where they are missing, and

to provide diffusion coefficient not available in literature. Monte Carlo method

which uses probabilities associated to the different calculated elastic and inelastic

collision cross-sections to simulate the ion transport under the action of a uniform

electric field, is also described in this chapter. This method allows to calculate,

from these elastic and inelastic cross-sections, the transport coefficients (mobility
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and diffusion) and constant rate over a large reduced electric field range.

The third chapter is dedicated to the monoatomic (Kr+ and Xe+) ions in colli-

sion with their respective parent gases. This chapter reports the calculated mo-

mentum transfer collision cross-section by using two different potentials ionic

atom - neutral atom collisions available in the literature. Then, the calculated mo-

bilities with Monte Carlo code from these collision cross-sections are compared

to measured ion mobilities in order to select the best potential that will be used

for dimer - atom collisions. Moreover, the ion transverse and longitudinal dif-

fusion coefficients are also calculated and reported over a large reduced electric

field range (5 Td to 3000 Td).

Chapter 4 concerns the ion basic data in the dimer ion - neutral atom colli-

sions Kr+2 - Kr and Xe+2 - Xe. In this case, fragmentation of dimer ion takes place

with a characteristic threshold energy, so the dimer dissociation cross-section is

also calculated and reported along with the momentum transfer collision cross-

section by using hybrid method. The vibration and rotation of the dimer are also

taken into account to enhance the agreement between calculated and measured

dimer ion mobilities. The influence on the dimer mobility of the neutral - neutral

potential in the DIM model is also discussed in this chapter.

Finally, a general conclusion summarizing the different chapter conclusions is

given at the end of this thesis.
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Chapter 1

Overview of actual context

1.1 General informations on plasmas

The term "plasma" was used by Irving Langmuir in 1928 to designate ionized

gases [3]. Many technologies of everyday life now incorporate these plasmas,

which are therefore more widely known to the general public. This is the case for

example with plasma television screens, neon lamps, fluorescent tubes and one

can also mention commercially available plasma balls, this showing its a democ-

ratization [4]. Plasma processes have been widely used in industry for almost a

century. They are present in the field of polymers (engraving, surface function-

alization), microelectronics to mention a few and have more recently entered the

world of biology, medicine and space propulsion.

Plasma is commonly referred to as the "fourth state of matter" after solid, liq-

uid and gaseous states. Quite rare in the natural state of our planet, it represents

99% of the known universe matter, the stars, the solar wind, the ionosphere of

the earth are plasma examples [4]. In the natural state, lightning and the north-

ern lights (Aurora Borealis) such as shown in figure 1.1 are phenomena that are

often observed.

Beyond this very global definition, a plasma is defined from the point of view

of physics as a partially or totally ionized gas. An ionized gas is thus composed

of electrons and ions, but also of molecules and excited atoms (that is to say in a
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Figure 1.1: Aurora Borealis in Greenland [5]

higher energy level than that of the ground state). Neutral and ions often called

heavy particles in the plasma, can also be excited for short time (10−6 to 10−8s)

before emitting photon during their desexcitation. This emission of photon is

mostly responsible of the light emitted by a plasma and is, also, a signature of the

plasma. An ionized plasma may be called plasma if, and only if, the plasma is

electrically neutral, this means that the negative and positive charges inside the

plasma have to counterbalance each other. This propriety is verified at distance,

around an ionized particle, higher than the Debye radius. To ionize an atom or

a molecule, it must be given enough energy for an electron to leave its electronic

layer and becomes a free electron. This energy can be provided thermally, electri-

cally, magnetically, radiatively, chemically or mechanically. It is therefore possible

to generate plasmas in the laboratory through these various sources of energy. An

essential parameter for defining a plasma and for "classifying" it, is therefore its

degree of ionization α, which represents the ratio of the electron density (ne) to
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Figure 1.2: All possibilities of states modification

the total density of electrons and neutral species (N ):

α =
ne

ne +N
. (1.1)

When the degree of ionization is close to or equal to 1, the plasma is totally

ionized, and it is called "hot plasma". These plasmas are said to have the thermo-

dynamic equilibrium and the temperature of the charged species is of the order

of one million kelvin. They are present especially in the field of nuclear fusion

(tokamaks [4]) and the sun is another perfect example. Furthermore, the plasmas

generated by electric arcs due to gas breakdown leads to ionization and dissoci-

ation of most of the molecules species and can reach several thousands of kelvin

(20000 to 30000 K). They are also considered at thermal or quasi-thermal equilib-

rium. When the degree of ionization is low (between 10−4 and 10−7), the plasma is

weakly ionized, and it is called "non-equilibrium or non thermal plasma" because

it is out of thermodynamic and chemical equilibrium. Indeed, when an electric

field is applied between two electrodes to generate a plasma, the free electrons

which first receive this electrical energy via an electric force F⃗ = qE⃗ then, transfer

only a part to the heavy particles. If time or energy is not sufficient, electrons can-
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not balance their temperature with other particles, which explains the differences

in temperature between electrons (Te) and other particles (ions Ti and neutral T0)

in a weakly ionized plasma. Thus, in the weakly ionized plasmas presented in

this work, we have

Te > Ti > T0. (1.2)

In fact Te can reach several eV energy in order to be able to ionize, excite and dis-

sociate the carrier gas. However, the electron density is too low to heat the weakly

ionized plasma which has a mean temperature close to ambient one. This is why

the low temperature or cold plasmas are used for instance in biomedical applica-

tions, because of their average temperature close to the ambient temperature [3,

6].

1.1.1 Different low temperature plasma sources

There are multiple electrical discharge sources to generate low temperature plas-

mas with different parameters that can be modulated, such as temperature and

electron density, ions and neutrals, the density of excited atoms or molecules and

the intensity of photon sources (UV). Electrical discharges producing these plas-

mas can be grouped in different categories and often, different groups are associ-

ated in a single setup in order to take advantage of each group specificity.

1.1.2 Dielectric Barrier Discharge (DBD) at atmospheric pressure

The use of a dielectric covering one the electrode (or both electrodes for the case

of a double dielectric barrier) makes it possible to avoid the passage to the elec-

tric arc which could damage the plasma generator system and the samples to be

treated. But the presence of a DBD implies the formation of an electric field of

direction opposite to the applied electric field, because when the positive (or neg-

ative) streamer reaches the cathode (or the anode respectively), the charges are

deposited on the surface of the dielectric. If this induced electric field becomes

equal to the applied electric field, the plasma goes out. It is therefore preferable
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Figure 1.3: Example of a DBD reactor [7]

to supply the reactor with a alternative or pulsed regime (kHz frequency) so that

the electrodes can be discharged between each pulse. In addition, the short du-

ration of the pulses limits the increase of the electric field [4]. The combined use

of these dielectric barriers and an adequate power supply regime thus allows to

generate "filaments", which will not evolve in an electric arc [8–10].

1.1.3 Corona discharges

Figure 1.4: Example of a Corona reactor [7]

The corona effect is a partial discharge without arcing the background gas

enclosed between two asymmetric electrodes where a strong electric field pre-



10 CHAPTER 1. INTRODUCTION

vails. Several configurations exist such as the foreground, the wire-cylinder and

the wire-plane. If the electrode having the smallest curvature radius is supplied

with a DC (Direct Current) voltage positive relative to the other electrode, it is

a positive corona discharge. Conversely, we speak of negative corona discharge.

This distinction is important because the phenomena induced during the dis-

charge will differ significantly by their nature that the amount of chemical species

formed (the negative discharge produces for example much more ozone than the

positive one) [6]. To be able to increase the voltage (and produce more chemical

species without generating an arc and damage the electrodes), the electrodes can

be powered with alternating voltage and frequency of a few kHz or using a pulse

voltage generator. The pulse duration is then chosen so that the inter-electrode

voltage returns to zero before the occurrence of an electric arc.

1.1.4 Direct Current (DC) plasma

Figure 1.5: Example of a DC and pulsed corona discharge in a positive point-to-plane
geometry [7]

Semiconductor fabrication techniques, micro-discharge structures have been

used to generate DC plasmas [11, 12]. Hollow cathode discharges with cathode

dimensions less than one millimeter have also been widely used [13]. Micro-

discharges generate non-thermal high-pressure plasmas having cathode dimen-

sions in the micrometer range, which allows an increase in pressure while main-

taining a relatively low applied voltage. DC frequencies (50/60 Hz) have also

been used to produce cold plasmas. In this case, resistive barrier discharges are

used where a uniformly distributed resistive film is used to cover the electrodes
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[14]. Here, the discharge current is limited by the resistive layer, which acts as a

ballast, and does not allow the discharge to pass to an arc.

1.1.5 Radio Frequency (RF) plasma

Figure 1.6: Example of a RF generator [15]

Radio Frequency sources have also been used to generate cold plasmas with

devices similar to DBDs and with devices whose electrodes are bare metal [16].

With bare metal electrodes, the arc is a problem and both the temperature of the

electrodes must be controlled (usually by water cooling) and the gas flow ad-

justed to a certain level to minimize the risk of formation of the electrodes arcs.

RF driven devices require impedance matching between the power source and

the plasma to optimize the deposited power into the plasma and to minimize the

reflected power.

1.1.5.1 Plasma jets

Non-thermal atmospheric pressure plasma jets are playing an increasingly im-

portant role in various biomedical applications because of their practical ability

to provide spatially unbound plasmas [18]. They are generated under a wide

range of controlled frequencies and with various electrode geometries and dif-
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Figure 1.7: Example of a plasma jet reactor [17]

ferent gases. The used carried gas are generally composed by rare-gases (He or

Ar or Ne) mixed with other rare-gases (Kr or Xe) or molecular gases as for in-

stance N2, O2 or H2O. The plasma jet is very convenient for in vivo treatment

where it can be dangerous to put living tissues inside the inter electrode due to

the applied high voltage. Main configuration (as visible in figure 1.7) of plasma

used in PRHE group is composed of two electrodes fixed around a quartz tube

providing a DBD set up in order to avoid arc formation. In the quartz tube a flux

of gas is controlled, by playing on the nature of the gas, the flow of the gas, the

inter-electrode distance, the frequency of electric signal and the voltage creation

of different active plasma is possible.

1.2 Potential applications of non-thermal rare-gas plasma gen-

erators

1.2.1 Biomedical

In the biomedical field, thermal discharges are used for the ablation of tissues in

surgery, or for the cauterization of tissues. Non-thermal discharges are used for
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instance for sterilization, decontamination or treatment of pathological tissues.

The non-thermal plasmas at atmospheric pressure have shown a high potential

for biomedical applications [19]. The plasma generators and studies dedicated

to biomedical applications use mainly helium as carrier gas. But more recently,

neon and krypton are also studied in different laboratories. Indeed, recent mea-

surements reported by Li et al. [20] show that plasma jets have a very different

behavior when krypton is used as carrier gas as compared to helium, argon or

neon. To better understand such differences, it is necessary to better know more

particularly ion transport and reaction rate in all these carrier rare-gases. The ba-

sic data on He, Ne and Ar gases have already been reported in previous work

[21–25].

Figure 1.8: Plasma jet propagating inside a flexible tube of about 1m length before to be
launched in the ambient air. Such device can be used, for instance, for endoscopic plasma
treatment : Example of direct plasma application [26]

Non-thermal plasma at atmospheric pressure using rare-gas are a promising

device in plasma medicine. Several beneficial aspects of these cold plasma have

been proved these last 10 years such as inactivation of bacteria or malignant

cell in cancer therapy, chronic wound healing and blood coagulation. Plasma

in biomedicine can be classified in two groups, direct or indirect, depending on

their application. Because in cold plasma, the ions and the neutrals remain rel-

atively cold, the plasma does not cause any thermal damage which allow to use

these direct non-thermal plasmas for the treatment of materials that are sensitive

to heat as well as cells and tissues. These cold plasmas generate many active

species such as charged particles (ions and electrons), radicals, UV radiation that
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can interact with the living cells, the plasma generated electric field can also par-

ticipate to the bacteria inactivation. For indirect contact, active species produced

by cold plasma may also interact with medium in order to be used more easily.

Indeed recent research are performed on Plasma Activated Medium (PAM) to

treat cancer with injection of this PAM directly in contact with cancer cells, even

if this one is located inside the body [7, 27, 28]. Another example of the indirect

plasma is Plasma Activated Water (PAW) which is used to improve plant growth

[29]. However, the active mechanisms in such applications are not well known

and deep understanding of these mechanisms is necessary in order to quantify

the different active species and electric field that are involved in the observed

effect of these applications.

1.2.2 Excilamps

Figure 1.9: Example of excilamps [30]

Excilamps are dielectric barrier discharge lamps using excitations of excimer

which refers to the bound excited upper state of a molecule that breaks apart and

a photon is emitted. Excimer lamps are almost monochromatic light sources that

can operate over a wide range of wavelengths in the ultraviolet (UV) and vac-

uum ultraviolet (VUV) spectral ranges. Radiation wavelength is dependent on

the gas composing the lamp. For the two gases considered in this thesis (kryp-
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ton and xenon), emitted wavelengths are in the UV-C region (respectively 148

[31] and 172 nm [32] for the peak maximum) with a Lorentzian photon emis-

sion distribution. UV spectrum emission is important for bio-decontamination

of water or of surface [33–35]. These excilamps represent useful sources emitting

narrow band UV-radiation that initiate oxidation and mineralization of organic

substrates contained in water or air contaminants. Also, this kind of lamps are

used in the treatment of skin diseases such as psoriasis or vitiligo with the advan-

tage of treating exclusively the affected skin [36]. Krypton and xenon are usually

used in mixtures, for example KrCl [37] or XeBr [38] excilamps emitting UV-C, at

respectively 222 and 282 nm, wavelength being very efficient for bacteria inacti-

vation in infected water [39].

1.2.3 Plasma propulsion for Spacecraft

Figure 1.10: Example of spacecraft used in NASA’s Asteroid Redirect Mission [40]

Another application of these rare-gases is spacecraft propulsion [41] in satel-

lite repositioning. In fact xenon is used as the usual propellant gas due to the

small value of its first ionization potential, high mass, absence of toxicity and

favorable thermodynamic properties. Even if the power delivered by this kind

of propulsion is low compared to chemical propulsion, its main advantage con-

sists of a perfectly controlled power delivery, sun power electricity and gain of

mass. Effectively, only the carrier gas is needed and replaces fuel and oxidant.

Actually, the delivered power by this plasma reactor is only used in space, i.e.

satellite repositioning, but it is insufficient for shuttle takeoff [42–44]. Moreover,
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Propellant Mass (amu) Ei (eV) Melting/ Boiling
point (K)

Cost

He 4.0 24.6 1 / 4 Low
Ar 39.9 15.8 84 / 87 Low
Kr 83.9 14.0 116 / 120 High
Xe 131.3 12.1 161 / 164 Very High

Table 1.1: Partial table of reference [44] with Ei referring to the first ionization energy

krypton can be used as an alternative to xenon in spacecraft propulsion because

of its lower cost than xenon. Some research have been reported by Liu et al. [45],

where they concluded that an efficient use of krypton in Hall-thruster requires

modifications of the currently used thruster designed for xenon.

1.3 Thesis objectives

Ion transport coefficients, reaction rate constants and cross-sections have been

calculated in the past for lighter rare-gas such as helium, neon and argon [21–25]

but there are not enough data for ions in krypton and xenon. So the aim of this

thesis work is to complete with basic data on ionic atom - neutral atom and ionic

dimer - neutral atom collisions occurring in homogeneous krypton or xenon gas.

To produce accurate macro plasma modeling, lot of mesoscopic data are re-

quired. Diffusion coefficient, mobility, drift velocity, dissociation constant of ions

and electrons in the carrier gas are crucial. However, all this data for ions are very

sparse in the literature. They mostly cover narrow range of reduced electric field.

The aim of this thesis is therefore to obtain, using different interaction potentials,

cross-sections that allow calculations of transport coefficients and rate constants,

that will be compared to the existing experimental one, in order to complete the

missing data in the literature.
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Figure 1.11: Organigram of thesis domain

1.3.1 Plasma modeling

Experiments on plasma are generally expensive and complex to set up. Modeling

allows to test a lot of configurations, in shorter time, without performing any

experiment provided that the model and their input data are validated. Figure

1.12 displays an experimental plasma jet set up along with the ion density in this

plasma jet is calculated from plasma modeling.

Figure 1.12: Example of plasma modeling of a plasma jet

The model used in PRHE group is based on fluid model of order 1, using:
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• a system of equations of density conservations of charged species of the

plasma,

• the drift-diffusion approximation to take into account the momentum trans-

fer,

• Poisson’s equation in order to obtain the electric field of space charges,

• local field hypothesis assuming an energetic equilibrium of the species charged

with the electric field.

For example, if only two species are considered (electron "e" and positive ions

"p") with two main reactions (ionization "i" and recombination "r") the equations

of this fluid model are written as:

∂ne

∂t
+ ∇⃗.nev⃗e(E/N) = ki(E/N)Nne − kr(E/N)npne (1.3)

∂np

∂t
+ ∇⃗.npv⃗p(E/N) = ki(E/N)Nne − kr(E/N)npne (1.4)

nev⃗e(E/N) =K0,e(E/N)E⃗ −De(E/N)∇⃗ne (1.5)

npv⃗p(E/N) =K0,p(E/N)E⃗ −Dp(E/N)∇⃗np (1.6)

E⃗ = −∇⃗V (1.7)

∆V = −
ρ

ε0
=
qene + qpnp

ε0
(1.8)

where n, v⃗, K0, D and k are respectively the density, the average speed, the re-

duced mobility, the diffusion coefficient and the reaction constant (i for ionization

and r for recombination reactions). Equations 1.3 and 1.4 are respectively the den-

sity conservation equations of electrons and ions while equations 1.5 and 1.6 are
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the drift-diffusion approximations used to obtain the transport flux of equations

1.3 and 1.4. Equations 1.7 and 1.8 allow us to calculate the value of the electric

field E⃗ and last equation depicts the electric potential (V ) depending of the space

charge (ρ) and the vacuum permittivity (ε0). Approximation of equilibrium with

the field allows us to pretabulate all values (reduced mobility, diffusion coeffi-

cient, and reaction rate) as function of the reduced electric field (E/N ) (N being

the gas density).

All these equations can be discretized in 1, 2 and 3 dimensions and are strongly

coupled. Indeed, modifying one term in any equation will lead to modifications

in all the other equations. For example, a variation of ions or electron concentra-

tion lead to variation of potential, that will modify electric field E⃗ (trough respec-

tively equations 1.7 and 1.8). This variation will be redirected towards transport

equations (1.5 and 1.6) and density conservation equations (1.3 and 1.4) since

transport coefficients and rate constants (K0, D, kr, ki) are strongly dependent on

reduced electric field (E/N ).
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Chapter 2

Theory

In this chapter we will explain all the theory needed to understand further chap-

ters. First a definition of internuclear potential between two atoms will be intro-

duced. An extension to three atoms using Diatomics In Molecules (DIM) method-

ology will also be evoked. Then definition of cross-sections and three methods

used here to obtain them will be described. Finally a Monte Carlo method used

to obtained mesoscopic results, such as transport coefficients, will be explained.

2.1 Interaction potentials

2.1.1 Ion - Atom potential

Potential energy "V (r)" is a function depending on the distance (r) between two

atoms or molecules. By convention, at long distance, energy between particles is

set equal to 0. The potential energy is a combination of two parts, one repulsive

at short distances (Vshort) and another attractive at long distances (Vlong).

Generally, long distance potential, Vlong, is composed of multiple parts.

Vlong = Vpol + Vdis + Vele, (2.1)

where Vpol is a potential due to the interaction of the ionic charges with multipole

moments induced by the ion in the neutral atom. In addition, the electronic dis-
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persion produces mutually coupled correlated electric multipole moments. The

interaction between these multipoles gives Vdis. Vele is the electrostatic potential

due to interactions between the charge of an ion and the permanent multipole

moment of the neutral [46]. For rare-gas ions (Rg+n) this last interaction is equal to

0. Effectively, no permanent moments are present for Rg atoms.

Pauli exclusion principle gives the repulsive part of the potential at short dis-

tances where electronic clouds overlap between two atoms,

Vshort = Ae
−ar, (2.2)

where A and a are parameters depending on the nature of the two atoms and r is

the distance between the atoms. This equation depicts just one of several analytic

representation of the repulsive wall (Born-Mayer), there are also others.

Figure 2.1: Schematic representation of the potential composed of short and long distance
contributions.

Potential energy is the sum of this two components (V (r) = Vlong + Vshort) as

visible in figure 2.1. However, in some case, Vlong is damped at short distance

using an appropriate damping function. Atomic ion - neutral atom potentials are

obtained by the solution of Schrödinger equation. Thanks to Born Oppenheimer

approximation, nuclear and electronic motion can be separated. Potentials are



2.1. INTERACTION POTENTIALS 23

calculated for fixed atoms and therefore nuclear Schrödinger equations can be

neglected. Numerical method to resolve Schrödinger equations provide ab initio

potential energy values.

For rare-gas with p orbitals fully filled as the last ones (like krypton and xenon),

multiple interaction potentials can appear depending on the molecular orbitals.

Molecular orbitals depend on the way atom orbitals are combined. Combination

of two PZ orbitals leads to a molecular orbital called σ, while PX and Py atomic or-

bitals provide molecular orbitals called π. σ and π denote, namely, the projection

of electrons angular momentum on the bond axis. Each of this configuration can

be in a gerade or ungerade state. This terms denote the symmetry of the bond. Ef-

fectively, if a rotation of the orbitals about the line joining the two nuclei followed

by a rotation of the orbitals on the line perpendicular to the previous rotation

leads to a remained sign of the lobes the orbital is be called gerade otherwise the

orbital will be called ungerade. We have 6 different states corresponding to 4 dif-

ferent energies levels (π are degenerate states) as visible in figure 2.2. This hold

for spin-orbit free interaction potentials.

Figure 2.2: Molecular states for a dimer with p orbitals being the highest occupied orbitals
in atoms of which the dimer is composed

This 4 different energy levels can be represented with 4 different curves de-

pending on the distance as adiabatic interaction potentials (see section 3.1.1, fig-

ure 3.1a for example).

By having a hole on one of this 4 energy levels, representing a missing electron

for the ionic atom, the resulting energies will change. σg energy state will become
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highly repulsive curve Σ+g , πu become repulsive curve Πu, πg become mostly re-

pulsive curve Πg and σu energy state will become mostly attractive curve Σ+u.

Example of this behavior can be seen in figure 3.1a.

Atomic ion - neutral atom potentials used in this thesis are all documented

in literature. Sometimes, only ab initio values are given and sometimes there is

an analytical curve describing the potential. For discrete ab initio values, a cubic

spline curve was used to obtain potential values for all the distances required.

Orbital movement of electron produces intern magnetic field that can inter-

act with the magnetic moment associated to the spin of the electron. This weak

interaction is called Spin-Orbit Coupling (SOC). When SOC is considered, the

4 previously discussed curves are perturbed and the inclusion of the SOC pro-

vides 6 different doubly degenerate energy levels. Previous same energy level

are now better separated and can be observed separably. Example of such inter-

action potentials with the SOC included can be seen in section 3.1.1 (figure 3.2a)

or in section 3.2.1 (figure 3.15a).

To transform spin free curves to SOC curves, an already known and success-

fully tested scheme is used. This scheme is known as a Cohen-Schneider scheme

[47]. Using this scheme, the Ω = 1/2 potentials are obtained by diagonalizing a 2

by 2 matrix,
⎛
⎜
⎝

VΣ(R) − a√
2

− a√
2

VΠ(R) +
a
2

⎞
⎟
⎠

(2.3)

either for u and g symmetry, while the Ω = 3/2 spin-orbit potentials are simply

VΠ(R) − a/2, a being 2/3 of the E(2P3/2) - E(2P1/2) fine structure splitting in atomic

ion.

The lowest excited state of the Kr+ ion (4s4p6) lies more than 13 eV above the

ground-state (4s24p5) [48] and a similar asymptotic separation can be expected

between the lowest Kr+2 states (asymptotically correlating to 4s24p5) and higher

excited states. For ionized xenon, the difference between the first excited state

(5s5p6) and ground-state(5s25p5) is 11 eV [48]. Separation between Xe+2 and Xe+

is expected to have the same behavior as for krypton. As will be discussed later
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2P3/2
2P1/2

Ω = 1/2 I(1/2)u II(1/2)u
I(1/2)g II(1/2)g

Ω = 3/2 I(3/2)g
I(3/2)u

Table 2.1: Tabulate representation of state and subspace for Rg+2 interaction.

(see section 3.1.4), collision energies of Rg+ with the carrier gas atoms are typ-

ically several electronvolts. For example, for Kr+ it is always below 13 eV for

reduced electric field going to 2000 Td. For 3000 Td, at most 1% of collisions will

appear beyond this region. For xenon even at 3000 Td (highest reduced electric

field used for this thesis) none ion arrived (center-of-mass) energy above 11 eV

(see section 3.2.4). As a consequence, only the six lowest electronic states of the

Rg+/Rg collision complex (correlating respectively to 4s24p5 and 5s25p5 Kr+ and

Xe+ atomic ions) [49] are effectively involved if the SOC is considered, namely,

I(1/2)u,g, I(3/2)u,g, and II(1/2)u,g. Concerning ionic dimer - neutral atom colli-

sion, in this thesis, only one electronic state, I(1/2)u, will be considered for the

dimer interactions. Effectively, the difference between I(1/2)u and I(3/2)g being

approximatively 1.5 eV, only future calculations will be done in the future to pro-

vide cross-section and transport coefficient for this more excited states.

With p orbitals, azimuthal number (l) is equal to 1 and s (spin number) equal

to 1/2. The total orbital angular momentum (j) is delimited between ∣l − s∣ and

∣l + s∣. In the case of rare-gas atomic ions, respectively, 1/2 or 3/2. Using or-

bital angular momentum, the 6 curves can be distributed in two different section
2P3/2 for j = 3/2 containing I(1/2)u,g and I(3/2)u,g; and 2P1/2 for j = 1/2 contain-

ing II(1/2)u,g. Another way to distinguished among these 6 curves is to consider

diatomic angular momentum projection subspaces (Ω), in other words the sum

of the projection of total orbital momentum on the z axis and the projection of

the total spin angular momentum on the z axis. I(1/2)u,g and II(1/2)u,g are repre-

sented by subspace corresponding to Ω = 1/2 and I(3/2)u,g by subspace Ω = 3/2

(see Table 2.1).
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2.1.2 Dimer - Atom potential

When 3 atoms are involved, total interatomic potentials are calculated using Di-

atomics In Molecules (DIM) methodology [50]. It consists in writing the electronic

Hamiltonian as a sum of contribution of diatomic and atomic contributions:

Ĥ =
n−1

∑
a=1

n

∑
b=a+1

Ĥab − (n − 2)
n

∑
a=1

Ĥa, (2.4)

where n denotes the number of atoms, and then is expanded against an appro-

priately chosen basis set enabling to construct the resulting matrices exclusively

from diatomic and atomic energies. These energies are obtained from indepen-

dent sources (either experiments or calculations) and it is well known that if

highly accurate input energies are used, the DIM approach leads, despite its ap-

proximate nature, to a highly accurate estimate of the electronic Hamiltonian ma-

trix.

For singly ionized complexes of rare-gases [49, 51], such basis set consists of

a set of valence-bond Slater determinants representing states with the positive

charge localized on a specific atom in a specific spin-orbital,

Φklsz = ∣Rg⋯Rg
+
klsz⋯Rg∣, (2.5)

where Rg denotes the electronic configuration of a ground-state rare-gas atom

and Rg+ stands for the electronic configuration of kth atom, k = 1, . . . , n, from

which an electron has been removed from spin-orbital specified by angular mo-

mentum l = px,py,pz, and spin projection sz = ±1/2. Note that the basis set is

approximately orthogonal and diabatic.

The Hamiltonian matrix resulting from an expansion of Ĥ against the basis set

of equation 2.80 can be built up from four lowest potential energy curves of Rg+2 ,

corresponding to the electronic ground-state (2Σ+u) and three lowest excited states

(2Πg, 2Πu, and 2Σ+g ), and the ground-state potential (1Σ+g ) of the neutral dimer,

Rg2. The atomic contributions to the electronic Hamiltonian matrix can be nul-

lified by identifying the zero of the total potential energy to a dissociate state
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consisting of n − 1 neutral atoms and an atomic ion, all of them at infinite sepa-

rations. Following our study on Kr+/Kr collisions [52] (see also subchapter 3.1,

we have used two sets of ionic diatomic potentials in the present thesis, one ob-

tained from ab initio calculations [53] (hereafter denoted as "Model A") and the

other based on state-of-the-art spectroscopic experiments combined with ab initio

calculations [54] (Model B). If not stated otherwise, the neutral potential is taken

from semiempirical modeling [55], but recent ab initio calculations [56, 57] will

also be considered to analyze the effect of differences between different neutral

potentials in the DIM modeling of the three-particle Kr+2/Kr collision complex.

For heavy rare-gases, relativistic electronic effects are important. While scalar

relativistic contributions are usually taken into account in ab initio calculations

by using relativistic effective core potentials [58], the leading vector effect, the

spin-orbit coupling, has to be included at the DIM level. An approximate method

based on a semiempirical atoms-in-molecule Model [47] was proposed for the ionic

complexes of rare-gases in reference [49]. Despite of the approximations em-

ployed, it provides a highly accurate description of the spin-orbit coupling in

ionic rare-gas complexes. For example, a thorough comparison of rovibronic

spectra calculated for Kr+2 with available experiments [53, 54] shows an excel-

lent agreement. The only external input to this method is the value of the fine-

structure energy splitting between 2P1/2 and 2P3/2 states of the atomic rare-gas

ion. In this work, an accurate experimental value, ∆ESOC = 5370.1 cm−1, reported

for Kr+ in reference [59] has been used.

Note also that the electronic space resulting from the DIM Model used in this

thesis is fully sufficient for the present calculation. As discussed in detail in the

previous subsection(see also section 2 of reference [52]), going above the elec-

tronic states asymptotically correlating to 4s24p5 atomic ion (i.e., above the states

considered in the present DIM model) will require excitation energies of about

13 eV and higher [48]. However, as follows from the present calculation (see sec-

tion 4.2.6), even up to rather high electric fields, the mean Kr+2/Kr collision energy

is well below this excitation limit (e.g., Ēcoll ≈ 4.5 eV for E/N = 1000Td). Only for
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the highest electric fields considered here (E/N = 2000Td and E/N = 3000Td),

the collision energy (Ēcoll ≈ 10.7 eV and Ēcoll ≈ 16.3 eV, respectively) may be suf-

ficiently high for the higher electronic states (asymptotically correlating to the

4s4p6 configuration of the Kr+ ion) to enter the play.

2.2 Cross-section

Figure 2.3: Particle scattering under the influence of target potential.

For illustration, let us place two particles in a plane (z, y) where one of these

particles is immobile (the target) from initial position [0,0] and the other moves

(the projectile) with position [z,y]. Direction of the projectile movement will be

parallel to the z axis. Due to the interaction between the projectile and target, the

projectile will be scattered by an angle χ, this scattering angle will depend on the

impact parameter b (the initial value of projectile y coordinate) and the energy

of the system. b can alternatively defined as the closest distance of projectile ap-

proach to the target if there was no interaction potential between both particles.

In the case of non-zero interaction between the two particles, the closest distance

between them achieved during a particular collision will be different, we denote

it as rc in figure 2.3.

From a classical point of view, differential cross-section (σd) can be seen as the

number of impacting particles scattered per unit of time into a solid angle (dΞ, for

axially symmetric scattering dΞ = 2π sinχdχ) and divided by the flux of particles.

There is more than one way for a projectile to be scattered in the solid angle dΞ.



2.2. CROSS-SECTION 29

To compare with experimental results, averaging on randomly distributed ini-

tial conditions is required. By using a flux of particle (j), ∆N(χ,χ+∆χ) being the

number of projectile scattered between χ and χ +∆χ per second,

σd(χ) =
1

j
lim
∆χ→0

∆N(χ,χ +∆χ)

2π sinχ∆χ
, (2.6)

a corollary equation can be set depending on impact parameters,

dσd(χ) =∑
i

bi

sinχ(dχdb )i
. (2.7)

This equation has one important singularity. When χ goes to 0, the differential

cross-section tends to infinity. Since calculations have to be done on all impact

parameters which contribute to the differential cross-section into angle χ, for low

scattering angle approaching zero, b diverges to infinity. Effectively, the farther is

the target, the less the interaction potential has effect and the less the projectile is

deflected.

Integral and momentum transfer cross-sections (respectively ICS "σ(INT)(E)"

and MTCS "σ(MT)(E)") are obtained by integration of differential cross-sections

over all scattering angles.

σ(INT)(E) = ∫
π

0
σd(E, χ)2πsinχdχ, (2.8)

σ(MT)(E) = ∫
π

0
(1 − cosχ)σd(E, χ)2πsinχdχ. (2.9)

MTCS is preferred to ICS, in this thesis, for multiple reasons. The principal

one is that in the hybrid method, only MTCS can be calculated since ICS is in-

finite due to the non-integrable singularity of σd for χ approaching zero. The

hybrid method, explained later in this chapter (see i.e. section 2.2.3), treats nuclei

classically and applies a quantum formalism on electrons and allows us to obtain

cross-sections for atom - atom or molecule - atom collisions. MTCS has also the

advantage of decreasing the dependence on high impact parameters values for



30 CHAPTER 2. THEORY

low scattering angle since the factor (1−cosχ) is close to 0 for this case. MTCSs are

used in Monte Carlo code to produce accurate results if we assume an isotropic

scattering for the deflection angle calculation after every calculation. Momentum

transfer approximation is often used to save computational efforts and previous

calculation (see reference [22]) demonstrates that it leads to acceptable accuracy

calculations.

For atomic ion - neutral atom collisions considered in this thesis, multiple

channels are open for the scattering of the particles (see also figure 2.4 for a graph-

ical summary): Elastic, process (1) in figure 2.4,

Rg+(2P3/2) +Rg → Rg+(2P3/2) +Rg,

Rg+(2P1/2) +Rg → Rg+(2P1/2) +Rg,
(2.10)

Elastic, charge transfer, process (2) in figure 2.4,

Rg+(2P3/2) +Rg → Rg +Rg+(2P3/2),

Rg+(2P1/2) +Rg → Rg +Rg+(2P1/2),
(2.11)

non-elastic, spin change collisions, either without the charge transfer, process (3)

in figure 2.4,
Rg+(2P3/2) +Rg → Rg+(2P1/2) +Rg,

Rg+(2P1/2) +Rg → Rg+(2P3/2) +Rg,
(2.12)

or with the charge transfer, process (4) in figure 2.4,

Rg+(2P3/2) +Rg → Rg +Rg+(2P1/2),

Rg+(2P1/2) +Rg → Rg +Rg+(2P3/2),
(2.13)

non elastic, angular momentum change collision, either without the charge trans-

fer, process (5) in figure 2.4,

Rg+(2P 3/2,Ω = 1/2) +Rg → Rg+(2P 3/2,Ω = 3/2) +Rg,

Rg+(2P 3/2,Ω = 3/2) +Rg → Rg+(2P 3/2,Ω = 1/2) +Rg,
(2.14)
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or with the charge transfer, process (6) in figure 2.4,

Rg+(2P 3/2,Ω = 1/2) +Rg → Rg +Rg+(2P 3/2,Ω = 3/2),

Rg+(2P 3/2,Ω = 3/2) +Rg → Rg +Rg+(2P 3/2,Ω = 1/2).
(2.15)

Figure 2.4: Schematic representation of possible transitions in a Rare-gas (Rg) ion during
a collision with its neutral parent

Three different methods were used to calculate the differential cross-sections.

Explanation of all methods is given in the three next sub-chapters.

Depending on the method used, some channels will not be allowed in the

code. Semi-classical method allows only elastic (equation 2.10) and resonant

charge transfer (equation 2.11) collisions. Quantum method will allow spin change

processes (equations 2.12 and 2.13) but neglects changes in the projection of the

total angular momentum along the internuclear axis (equations 2.14 and 2.15).

Hybrid method will consider all the processes given in figure 2.4 including angu-

lar momentum change collisions (equations 2.14 and 2.15).

For ionic dimer - neutral atom collisions, multiple collisions channels are pos-
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sibles, for example in non reactive scattering,

Rg+2(I(1/2)u) +Rg → Rg+2(I(1/2)u) +Rg,

Rg+2(I(1/2)u) +Rg → Rg+2(I(3/2)g) +Rg,

Rg+2(I(1/2)u) +Rg → Rg+2(I(3/2)u) +Rg,

Rg+2(I(1/2)u) +Rg → Rg+2(I(1/2)g) +Rg,

Rg+2(I(1/2)u) +Rg → Rg+2(II(1/2)u) +Rg,

Rg+2(I(1/2)u) +Rg → Rg+2(II(1/2)g) +Rg,

(2.16)

Rg+2(I(3/2)g) +Rg → Rg+2(I(1/2)u) +Rg,

Rg+2(I(3/2)g) +Rg → Rg+2(I(3/2)g) +Rg,

Rg+2(I(3/2)g) +Rg → Rg+2(I(3/2)u) +Rg,

Rg+2(I(3/2)g) +Rg → Rg+2(I(1/2)g) +Rg,

Rg+2(I(3/2)g) +Rg → Rg+2(II(1/2)u) +Rg,

Rg+2(I(3/2)g) +Rg → Rg+2(II(1/2)g) +Rg,

(2.17)

Rg+2(I(3/2)u) +Rg → Rg+2(I(1/2)u) +Rg,

Rg+2(I(3/2)u) +Rg → Rg+2(I(3/2)g) +Rg,

Rg+2(I(3/2)u) +Rg → Rg+2(I(3/2)u) +Rg,

Rg+2(I(3/2)u) +Rg → Rg+2(I(1/2)g) +Rg,

Rg+2(I(3/2)u) +Rg → Rg+2(II(1/2)u) +Rg,

Rg+2(I(3/2)u) +Rg → Rg+2(II(1/2)g) +Rg,

(2.18)

Rg+2(I(1/2)g) +Rg → Rg+2(I(1/2)u) +Rg,

Rg+2(I(1/2)g) +Rg → Rg+2(I(3/2)g) +Rg,

Rg+2(I(1/2)g) +Rg → Rg+2(I(3/2)u) +Rg,

Rg+2(I(1/2)g) +Rg → Rg+2(I(1/2)g) +Rg,

Rg+2(I(1/2)g) +Rg → Rg+2(II(1/2)u) +Rg,

Rg+2(I(1/2)g) +Rg → Rg+2(II(1/2)g) +Rg,

(2.19)
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Rg+2(II(1/2)u) +Rg → Rg+2(I(1/2)u) +Rg,

Rg+2(II(1/2)u) +Rg → Rg+2(I(3/2)g) +Rg,

Rg+2(II(1/2)u) +Rg → Rg+2(I(3/2)u) +Rg,

Rg+2(II(1/2)u) +Rg → Rg+2(I(1/2)g) +Rg,

Rg+2(II(1/2)u) +Rg → Rg+2(II(1/2)u) +Rg,

Rg+2(II(1/2)u) +Rg → Rg+2(II(1/2)g) +Rg,

(2.20)

Rg+2(II(1/2)g) +Rg → Rg+2(I(1/2)u) +Rg,

Rg+2(II(1/2)g) +Rg → Rg+2(I(3/2)g) +Rg,

Rg+2(II(1/2)g) +Rg → Rg+2(I(3/2)u) +Rg,

Rg+2(II(1/2)g) +Rg → Rg+2(I(1/2)g) +Rg,

Rg+2(II(1/2)g) +Rg → Rg+2(II(1/2)u) +Rg,

Rg+2(II(1/2)g) +Rg → Rg+2(II(1/2)g) +Rg.

(2.21)

Or for dissociation of the ionic dimer, here only a general example is shown,

different initial electronic states can be inserted,

Rg+2 +Rg → Rg+ +Rg +Rg,

Rg+2 +Rg → Rg+ +Rg2.
(2.22)

For this thesis only two different channels are considered, where the initial

dimer is on the electronically ground-state I(1/2)u and final Rg+ electronic state

is 2P3/2. The first one is the Non-Reactive Scattering (NRS),

Rg+2 +Rg → Rg+2 +Rg, (2.23)

the second one is the Collision Induced Dissociation (CID),

Rg+2 +Rg → Rg+ +Rg +Rg. (2.24)

It is important to note that charge transfer channel in not distinguished from the

non charge transfer channel in the CID process.
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2.2.1 Quantum method

This is the most accurate method used in this work. This method requires also

the longest calculation time. Another issue with this method is that it is easy to

use for atom - atom collisions, while the computational complexity increases for

dimer - atom collisions. This is why this method will only be used, as benchmark,

for atom - atom collisions in this work.

If non-interacting particles are considered, their relative motion can be repre-

sented with a plane wave in quantum mechanics thanks to wave-particle duality.

Due to the uncertainty principle valid in quantum physics, a well defined linear

momentum, like in this case, induces that the plane wave is totally delocalized in

space. The wave function for such an interactionless collision (ψ0(r⃗, k)) is usually

written as,

ψ0(r⃗,E) =

√
kµ

2πh2
eikr⃗, (2.25)

where k is the wavenumber, E is the energy of the system and µ is the reduced

mass of colliding atoms.

k =
µνr
h̵
, (2.26)

with νr is the velocity. The projectile will move along the z axis, considering the

target is localized in the origin [0,0]. With a spherically symmetrized interaction

potential, the azimuthal angle (ϕ) will play no role during collisions. After a

collision, the projectile will be scattered with a scattering amplitude (f(E, χ)). At

long distances from the collision point, the wave function can be written as

ψ(r⃗,E) =

√

(
kµ

2πh2
){eikz + f(E, χ)

eikr

r
} . (2.27)

By applying the momentum operator −ih̵∇⃗ on the incident wave we see that it

has a momentum magnitude along the z axis of kh̵ and consequently the incident

flux of atoms for the plane wave (eikz) is kh̵
µ ∗ ∣e

ikz ∣2 = kh̵
µ . Flux of atoms passing

through a small area of r2 sinχdχdϕ from the scattered wave fmn(ε,χ)
eikr⃗

r⃗ is kh̵
µ ∣

fmn(E, χ) ∣
2 sinχdχdϕ.
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Differential cross-section is defined as the flux of scattered atoms through a

given solid angle (dΞ = sinχdχdϕ) divided by the incident flux. The differential

cross-section can be rewritten as

σd(E, χ)dΞ =

kh̵
µ ∣ f(E, χ) ∣

2 sinχdχdϕ
kh̵
µ

. (2.28)

After simplifications and having taken into account that the final wavenumber

(kn) can be different from the initial wavenumber (km) the differential cross-section

can be transformed as,

σd(E, χ) =
kn
km
∣ fmn(E, χ) ∣

2 . (2.29)

For simplification in the rest of the chapter k will be written in place of
√
knkm.

To resolve the scattering wave function we need to use the time independent

Schrödinger equation. Let’s start with a general form of the Schrödinger equa-

tion,

ĤΨ(r⃗1, r⃗2, r⃗3, ..., r⃗Ne ; r⃗) = EΨ(r⃗1, r⃗2, r⃗3, ..., r⃗Ne ; r⃗), (2.30)

where Ψ(r⃗1, r⃗2, r⃗3, ..., r⃗Ne ; r⃗) is the total wave function, depending on the elec-

trons positions (r⃗x) and the nuclear position (r⃗), and E is the total energy of the

system (E = h̵2

2µk
2). Hamiltonian of the system (Ĥ) consists of two parts (nuclear

and electronic),

Ĥ = T̂nucl + Ĥelec. (2.31)

T̂nucl is the kinetic energy related to nuclei, Ĥelec is the sum of the kinetic energy

of the electrons and the Coulomb energy of electrons and nuclei.

By expanding the total wave function of the system, (Ψ(r⃗1, r⃗2, r⃗3, ..., r⃗Ne ; r⃗)),

and the electronic Hamiltonian in the adiabatic wave functions basis,

ĤelecΦn(r⃗1, r⃗2, r⃗3, ..., r⃗Ne ; r⃗) = ϵn(r⃗)Φn(r⃗1, r⃗2, r⃗3, ..., r⃗Ne ; r⃗), (2.32)
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Ψ(r⃗1, r⃗2, r⃗3, ..., r⃗Ne ; r⃗) =
Nb

∑
n=1

ψn(r⃗)Φn(r⃗1, r⃗2, r⃗3, ..., r⃗Ne ; r⃗), (2.33)

where ϵn are the eigenvalues of the electronic Hamiltonian and ψn(r⃗) is a func-

tion depending only on the nuclear positions. By knowing that wave functions

ϕn(r⃗1, r⃗2, r⃗3, ..., r⃗Ne ; r⃗) are orthonormal, inserting equations 2.31 - 2.33 into equa-

tion 2.30, multiplying by ψn′ and by integrating on the different r⃗i associated to

the electrons, we obtain, using bra-ket notation,

⟨Φn∣T̂nucl∣∑
n′
ψn′(r⃗)Φn′⟩ + ϵn(r⃗)ψn(r⃗) = Eψn(r⃗), (2.34)

where bra-kets denote, as usual, integration over electronic coordinates. This can

be reduced, after a development on Nb equations with Nb unknowns, by neglect-

ing the couplings. This approximation supposes that the system is fully described

with one potential energy curve (surface). ϵn will be thus replaced by a unique

potential V (r⃗).

−
h̵2

2µ
∇2ψ(r⃗) + V (r⃗)ψ(r⃗) = Eψ(r⃗), (2.35)

This equation only depends on nuclear positions and not on electronic positions

and by expressing the Laplacien operator (∇2) of equation 2.35 in spherical polar

coordinates,

−
h̵2

2µ
{
1

r2
∂

∂r
(r2

∂ψ(r⃗)

∂r
) +

1

r2
[

1

sinχ

∂

∂χ
(sinχ

∂ψ(r⃗)

∂χ
) +

1

sin2 χ

∂2ψ(r⃗)

∂ϕ
]}+V (r⃗)ψ(r⃗) = Eψ(r⃗).

(2.36)

By multiplying this equation by r2, the Hamiltonian operator becomes a sum of

angular and radial parts. The angular part is then represented by eigenfunctions

of the orbital angular momentum operator,

−h̵2 [
1

sinχ

∂

∂χ
(sinχ

∂

∂χ
) +

1

sin2 χ

∂2

∂ϕ
]Ylm(χ,ϕ) = l(l + 1)h̵

2Ylm(χ,ϕ), (2.37)

where Ylm(χ,ϕ) are the spherical harmonics. If extra factor (1/r) is introduced in



2.2. CROSS-SECTION 37

the radial wave function,

ψlm(r⃗) =
1

r
g(r)Ylm(χ,ϕ), (2.38)

we obtain by substituting equation 2.38 in equation 2.36,

h̵2

2µ
[−

d2

dr2
+
l(l + 1)

r2
] g(r) + V (r)g(r) = Eg(r), (2.39)

or alternatively

−
h̵2

2µ

d2

dr2
g(r) + [V (r) +

h̵2

2µ

l(l + 1)

r2
] g(r) = Eg(r). (2.40)

where the term in the bracket is called the effective potential(Veff). At long dis-

tances (r →∞), Veff tends to 0 and equation 2.39 has an asymptotic solution,

g(r) = A
il+1e−iδl

2
{eikr + (−1)l+1e−i(kr+2δl)} , (2.41)

where k =
√
2µE
h̵ and δl is the phase shift representing the difference in phase com-

pared to the solution obtained in the absence of potential.

Equation 2.39 has two linearly independent solutions called spherical Riccati-

Bessel functions (ĵl(kr) and n̂l(kr)) at large distance when V is negligible with

respect to the centrifugal force potential,

ĵl(kr) = krjl(kr)→ sin (kr − lπ
2
) ,

n̂l(kr) = krnl(kr)→ − cos (kr −
lπ
2
) .

(2.42)

If the impacting plane wave spreading in the positive direction of z axis is ex-

panded against regular spherical Bessel functions,

eikx =
∞

∑
l=0

(2l + 1)iljl(kr)Pl(cosχ), (2.43)

where Pl(cosχ) are the Legendre Polynomials, one obtains by using equation 2.42
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and equation 2.43 in equation 2.27,

ψ(r⃗,E) =

√
kµ

2πh2
{
∞

∑
l=0

(2l + 1) (
1

kr
)
(−1)l+1

2i
[e−ikr + (−1)−(l+1)eikr]Pl(cosχ) + f(χ)

eikr

r
} .

(2.44)

Expanding the scattering amplitude in terms of Legendre polynomials,

f(χ) =
∞

∑
l=0

flPl(cosχ), (2.45)

and inserting this expansion in equation 2.44 leads to,

ψ(r⃗,E) =

√
kµ

2πh2
1

2ikr
{
∞

∑
l=0

[(2l + 1)(−1)l+1e−ikr + ((2l + 1) + 2ikfl)e
ikr]Pl(cosχ)} .

(2.46)

Since the incoming and outgoing radial waves must have equal amplitudes be-

cause of the particle numbers conservation laws, comparing equation 2.41 and

equation 2.46

(−1)−(l+1)ei(2δl) =
(2l + 1) + 2ikfl
(2l + 1)(−1)l+1

, (2.47)

allows us to calculate fl and, by inserting it to equation 2.45, to write

f(χ) =
1

2ik
∑
l

(2l + 1)(ei2δl − 1)Pl(cosχ). (2.48)

Figure 2.5: Schematic representation of the possibility to have a charge transfer during a
collision.
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For identical particles, interchange can appear and has to be taken into ac-

count. In this case, the position vector changes its sign. As a consequence a

symmetrized wave function must be used for identical particles. However, since

symmetrized function is dependent on the fermionic or bosonic behavior of the

nuclei, Sn parameter (nuclear spin) will be used,

ψsym(r⃗,E) =
1
√
2
[ψ(r⃗,E) + (−1)2Sn+1ψ(−r⃗,E)], (2.49)

where the 1/
√
2 factor is included to preserve the normalization of the sym-

metrized wave function. With consideration that a collision with No Charge

Transfer (NCT) with a scattering angle χ is not distinguishable from a collision

with Charge Transfer (CT) with scattering angle of π − χ, we can consider only

elastic cases with π and π − χ scattering angles. One gets at long distances

ψ(r⃗,E) =
1
√
2

√
kµ

2πh2
{[eikx + (−1)2Sn+1e−ikx] + [f(χ) + f(π − χ)]

eikr

r
} . (2.50)

Like in equation 2.45, the CT scattering amplitude can be expressed as

f(π − χ) =∑
l

flPl(cos(π − χ)) =∑
l

(−1)2Sn+1(−1)lflPl(− cos(χ)), (2.51)

which further leads to

f(χ) + f(π − χ) =
1

2ik
∑

l=0,2,4,...

(2l + 1)(ei2δl − 1)Pl(cosχ), (2.52)

for bosonic case and

f(χ) − f(π − χ) =
1

2ik
∑

l=1,3,5,...

(2l + 1)(ei2δl − 1)Pl(cosχ), (2.53)

for fermionic case. For bosonic case, if both elastic and inelastic collisions are
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considered, T and S matrices will be used to simplify notation,

Sl = e2iδl ,

T l = 1 − Sl.
(2.54)

equation 2.52 will thus be transformed to

f(χ) + f(π − χ) = −
1

2ik
∑

l=0,2,4,...

(2l + 1)T lPl(cosχ), (2.55)

or, if we write the full formula, after taking into account different initial and final

wave vectors,

fmn(χ) + fmn(π − χ) = −
1

2ikmkn
1/2 ∑

l=0,2,4,...

(2l + 1)T l
mnPl(cosχ), (2.56)

If fermionic case was considered, equation 2.56 is

fmn(χ) − fmn(π − χ) = −
1

2ikmkn
1/2 ∑

l=1,3,5,...

(2l + 1)T l
mnPl(cosχ), (2.57)

A simplification in the code was done by considering angular momentum

transfer as improbable. Therefore we use the fact that transitions between Ω =

1/2 and Ω = 3/2 states are not allowed. Calculation are thus split in two indepen-

dent groups depending on the value of Ω. This allows us to block-diagonalize the

transition matrix to a 4 by 4 matrix for the Ω = 1/2 subspace and a 2 by 2 matrix

for the Ω = 3/2 subspace.

Transition matrix elements are then obtained by

Tl
y,mn(E) = U

t
SOy
[U t

ADy
T l
x(E)UADy]USOy , (2.58)

where y represents Ω =1/2 or Ω = 3/2. To increase readability, let’s denote Tl
x the

transition matrix in the adiabatic base with respect to electrostatic interactions.

UAD is the matrix to transform a matrix from an adiabatic to a diabatic base. USO

is the matrix to transform a matrix from an adiabatic to a diabatic base related to
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the spin-orbit.

UADΩ1/2
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
1/2 0 −

√
1/2 0

0
√
1/2 0 −

√
1/2

√
1/2 0

√
1/2 0

0
√
1/2 0

√
1/2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.59)

USOΩ1/2
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
2/3

√
1/3 0 0

√
1/3 −

√
2/3 0 0

0 0
√
2/3

√
1/3

0 0
√
1/3 −

√
2/3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.60)

UADΩ3/2
=
⎛

⎝

√
1/2 −

√
1/2

√
1/2

√
1/2

⎞

⎠
, (2.61)

and

USOΩ3/2
=
⎛

⎝

1 0

0 1

⎞

⎠
. (2.62)

To obtain the transition matrix, equation 2.40,

d2g(r)

dr2
= −

2µ

h̵2
[E − Veff(r)]g(r), (2.63)

where Veff is the effective potential, Veff = V (r)+ h̵2l(l+1)
2µr2 , is to be solved numerically.

For further simplification lets denote Wi =
−2µ
h̵2 [E − Veff(ri)] and gi = g(ri)where ri

equidistantly spaced points with a step of O going from r0 to rn. Equation 2.63

becomes thus,
d2g(ri)

dr2
=Wig(ri), (2.64)

Using a Taylor expansion of g around ri,

gi+1 = gi +Og
(1)
i +

O2

2
g
(2)
i +

O3

6
g
(3)
i +

O4

24
g
(4)
i + ..., (2.65)

where g(x)i is the x-th derivation of the wave function g at ri. We get, after adding
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the series for gi+1 and gi−1,

gi+1 + gi−1 = 2gi +O
2g
(2)
i +

O4

12
g
(4)
i +C(O

6). (2.66)

We can now extract the value of the second derivative (used in equation 2.64),

g
(2)
i =

g(i+1) + g(i−1) − 2gi

O2
−
O2

12
g
(4)
i +C(O

4). (2.67)

To evaluate the 4th derivative term, equation 2.64 is multiplied by a factor 1 +
O2

12
∂2

∂r2 . After simple algebra, this lead to

g
(2)
i −Wigi +

O2

12
g
(4)
i −

O2

12

d2

dr2
[Wigi] = 0, (2.68)

and, after replacing of (g(2)i +O
2g
(4)
i /12) by an expression following from equation

2.67, to

g(i+1) + g(i−1) − 2giO
2Wigi −

O4

12

d2

dr2
[Wigi] +C(O

6) = 0. (2.69)

Evaluation of d2

dr2 [Wigi] by using a finite difference formula provides us

d2

dr2
[Wigi] =

W(i+1)g(i+1) +W(i−1)g(i−1) − 2Wigi

O2
, (2.70)

which finally leads to

g(i+1) =
(2 − 5

6O
2Wi) gi − (1 −

1
12O

2W(i−1)) g(i−1)

1 + 1
12O

2W(i+1)
. (2.71)

To obtain the wave function g(r) and, in the same time, the phase shift, we need

to know the two boundary values g0 and gn. g0 approaches 0 since the wave

function vanishes as r goes to 0 due to the forbidden region. Only gn has to be

chosen. Arbitrarily chosen value of gn will change the norm of the wave function,

g(r), but not the phase shift, because the latter depends on Wi and thus on the

interaction potential.

To avoid calculation up to impracticably large values of l, calculations were
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stopped once a properly chosen parameter of convergence was reached. The pa-

rameter is the value of the norm of the T matrix. After a few tests, its optimal

value (for coherent results and good time consuming policy) was set at 1x10−4.

Calculations were thus stopped if the norm of the T matrix was below this value

for two consecutive angular momentum numbers. This led to for example, to

4880 angular momentum values for Ecoll = 1 eV (of center-of-mass collision ki-

netic energy) to almost 115000 angular momentum value for Ecoll = 100 eV. All of

the formalism used can be found in [60–62]

2.2.2 Semi-classical method

In the semi-classical method, it is important to mention that for equation 2.56 km
has to be equal to kn otherwise this give zero results because only elastic collisions

are treated and allowed by this method. Compared to the quantum method, this

means that the overall calculation can be split in three parts (I(1/2), I(3/2), and

II(1/2)). Each one, based on the quantum method with two channels considered

(u and g).

The semi-classical method is an approximate method where the phase shift

of scattered wave (see equation 2.41) is calculated using the Jeffreys-Wentzel-

Kramers-Brillouin (JWKB) approximation for each interaction energy potential

curve

δEl ≈ δ(E, b) = k∫
∞

rc

⎡
⎢
⎢
⎢
⎢
⎣

1 − (
b

r
)

2

−
V (r)

E

⎤
⎥
⎥
⎥
⎥
⎦

1/2

dr − k∫
∞

b

⎡
⎢
⎢
⎢
⎢
⎣

1 − (
b

r
)

2⎤⎥
⎥
⎥
⎥
⎦

dr, (2.72)

where l is the angular momentum quantum number, b = (l +1/2)/k, rc is the

distance of closest approach between both nuclei calculated for a given potential

curve, r is the distance between atomic ion and atomic neutral and V (r) is the

potential energy. The distance of the closest approach is obtained by taking the

largest positive value of r for which the bracket in the first integral on the r.h.s. of

equation 2.72 is equal to zero.
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Using this approximation allows us to save a lot of computational time be-

cause we don’t need to use, i.e., the costly Numerov algorithm (like in quantum

method) to obtain the phase shift. Scattering amplitude can then be calculated

through independent calculations, like in the quantum method, by using equa-

tion 2.48 with the transition matrix

Tl =
⎛

⎝

−2ieiδ
E,u
l sin δE,ul 0

0 −2ieiδ
E,g
l sin δE,gl

⎞

⎠
. (2.73)

As mentioned in reference [63], the scattering amplitude can thus be calculated

independently for g and u symmetry,

fx(E, χ) =
1

2ik
∑
l

(2l + 1)(e2iδ
E,x
l − 1)Pl(cosχ), (2.74)

where x = g or x = u. Once phase shifts and scattering amplitudes (u and g) are

obtained using equations 2.72 and 2.74, respectively, they are used depending on

the collision type (distinguishable atoms, elastic scattering, charge transfer calcu-

lation), to obtain differential cross-sections. The cross-sections are calculated for

pairs of gerade and ungerade potentials and symmetrized properly. As discussed

in detail in reference [63], the differential cross-sections can be expressed, for a

particular gerade-ungerade pair, as:

σd(E, χ) =
1

4
∣f g(E, χ) + fu(E, χ)∣

2
, (2.75)

for elastic scattering (without charge transfer) of two distinguishable nuclei,

σd(E, χ) =
1

4
∣f g(E, π − χ) − fu(E, π − χ)∣

2
, (2.76)

for (non-resonant) charge-transfer scattering of two distinguishable nuclei, and

σd(E, χ) =
X
4 ∣f

g(E, χ) + fu(E, χ) + f g(E, π − χ) − fu(E, π − χ)∣
2

+1−X
4 ∣f

g(E, χ) + fu(E, χ) − f g(E, π − χ) + fu(E, π − χ)∣
2
,

(2.77)
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for the scattering of two identical nuclei (including resonant charge transfer). Pa-

rameterX in the last equation depends on the spin (S) of the two identical nuclei,

X = (S + 1)/(2S + 1) for isotopes with integral spin and X = S/(2S + 1) for the

isotope with half-integral spin.

Transitions between different pairs u− g states are neglected because their fre-

quency is very small and they are thus often neglected in literature, especially for

heavy atoms. Moreover, they are calculated in the quantum method and their

negligibility will be verified in chapter 3. The same convergence tests, to stop the

calculation, were done as for quantum method.

2.2.3 Hybrid method

The hybrid method uses a different approach. Firstly, the Born-Oppenheimer

approximation (electronic cloud immediately follows nuclei moves) is consid-

ered. Atomic nuclei are, in addition, treated classically by integrating Newton’s

equations of motion. The hybrid method combines thus a classical treatment of

heavy atomic nuclei and a full quantum treatment of light electrons. For the lat-

ter, all the relevant electronic states as well as transitions between them should

be considered. The primary output of the hybrid method consists of bunches

of classical trajectories from which scattering data like differential, integral, and

momentum transfer cross-sections of relevant collision processes are calculated

using standard tools of the classical scattering theory. The main task of the hy-

brid method, when dealing with a scattering problem, is thus a calculation of suf-

ficiently large bunches of trajectories started from appropriately sampled initial

conditions (which should realistically represent conditions of typical experimen-

tal setups). As a consequence, two basic ingredients are needed: a sufficiently

accurate and computationally cheap dynamical method for propagating collision

trajectories and a realistic scheme for sampling the initial conditions of the colli-

sion system.

The methodology employed in this work has already been used and tested in

previous calculations for helium [21], neon [23] and argon [25, 64].
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In most of the present calculations (atom-ion two-particle collisions), Ehren-

fest’s, mean-field scheme [65, 66] is used to evolve the collision complex in time.

Hereafter, the method will be denoted by acronym MF (Mean-Field). Within the

MF scheme, classical equations of motions are solved for atomic nuclei,

q̇j =
pj
mj

, ṗj = ⟨Ψ∣ −
∂Ĥelec

∂qj
∣Ψ⟩, (2.78)

moving under the action of averaged forces exerted on them by electrons which

are, on the other hand, treated quantum mechanically with the time depending

Schrödinger equation,

ih̵
∂Ψ

∂t
= ĤelecΨ. (2.79)

Here, mα, qα and pα are nuclear masses, coordinates and momenta, respectively,

Ĥelec is the electronic Hamiltonian, Ψ represents the time dependent electronic

wave function, and brackets in equation 2.78 are used to indicate integration over

electronic coordinates. The lower index, j, is used to distinguish between nuclear

degrees of freedom and they range, for an N -particle system between j = 1 and

j = 3N , where N is the number of particles in the collision system (in this work,

j = 1, . . . ,6 for atom-ion collisions and j = 1, . . . ,9 atom-diatom collisions).

The electronic Hamiltonian has been represented by a 12 × 12 (for Rg+2 ) and

18 × 18 (for Rg+3 ) matrix using an (approximately) diabatic basis set of electronic

wave functions,

Φ1lsz = ∣Rg
+
KlszRg∣ and Φ2lsz = ∣RgRg

+
Klsz ∣, (2.80)

where, ΦKlsz (K = 1,2) corresponds to the Rg+2 complex with the positive charge

localized in the lsz spin-orbital (l = px,py,pz and sz = ±1/2) of atom K. Computa-

tionally cheap, but still sufficiently accurate representation of the Hamiltonian is

needed for a realistic and practicable dynamical calculation. For this, a methodol-

ogy based on the Diatomics In Molecules (DIM) approach [50] as described in refer-

ences [49, 51] has been used. The spin-orbit coupling , which cannot be neglected
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for heavy "krypton and xenon" has been included using the atoms-in-molecules

approach [47] following the scheme proposed in reference [49].

Time depending electronic wave function, can be expressed as a sum of (ap-

proximately orthogonal and diabatic) valence bond wave functions.

∣ψ(t)⟩ =∑
α

aα∣Φα(qi(t))⟩. (2.81)

For ionic systems of rare-gases, small greeks letters indices α = [K,pm, sz] with

K = 1, ...,N , m = x, y, z and sz = ±1/2. Electronic Hamiltonian can also be ex-

pressed in an expanded form,

H =∑
β,γ

H ′β,γ ∣Φβ⟩⟨Φγ ∣, (2.82)

where H ′β,γ = Sβ,κ⟨Φκ∣HelecΦλ⟩Sλ,γ and Sα,β = ⟨Φα∣Φβ⟩ are the overlaps matrix el-

ements. Since wave functions are (approximately) orthogonal and normalized,

Sα,β ≈ δα,β . Insertion of this expansions in equation 2.78 enables to determine

nuclear trajectories by solving

ṗj = −∑
α,β

a⋆αaβ
∂Hα,β

∂qj
(2.83)

Note that simplifications have been done in equation 2.83, by assuming that nona-

diabatic coupling coefficients (⟨Φα∣∂Φβ/∂qj)) and overlaps (Sα,β) are equal to 0.

However, as was shown previously [49, 51], the valence bond wave used here

obey these assumptions with a sufficient accuracy.

As confirmed in previous publications [49] and papers on ionic potentials [53,

54, 67], this intrinsically approximate solution leads to a highly accurate descrip-

tion of the electronic structure of Rg+2 (as well as larger complexes) including

heavy krypton and xenon. It is noteworthy that the approach adopted in hy-

brid calculations is very appropriate for dynamical studies since the electronic

Hamiltonian can easily be converted to a small Hermitian matrix if the valence-

bond basis set of equation 2.80 is introduced [49]. Most importantly, the basis
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of equation 2.80 is approximately diabatic, which further simplifies dynamical

calculations. It should be also emphasized that the resulting approach provides,

despite its approximate nature, a very accurate description of the interactions in

ionic rare-gas complexes if accurate diatomic potentials and an accurate value

of the spin-orbit coupling constant are used as independent inputs. As already

mentioned in section 2.1, high-level potentials of references [67, 68] respectively

for Kr+2 and Xe+2 , but also potential for Kr2[57] and Xe2[69] and accurate exper-

imental estimates of the spin-orbit coupling constant available in reference [59]

(for Kr or Xe) have been used in the present work.

Another issue which is worth to be mentioned here is the well known fact that

the mean-field approach may lead to mixing of adiabatic electronic states and, as

a consequence, to unphysical nuclear trajectories if it is combined with the clas-

sical treatment of nuclear degrees of freedom. For an ionic rare-gas complex, this

usually leads to the production of partially charged fragments after the complex

disintegrates. In the case of the Rg+ ion colliding with a Rg atom, the collision

may proceed as follows,

Rg+ +Rg → Rgq+ +Rg(1−q)+, (2.84)

where 0 < q < 1. This does not represent a serious problem, however, since the

electronic states of the Rg+/Rg complex are basically degenerate at large inter-

atomic separations and the dissociation dynamics is thus not considerably influ-

enced by the distribution of the positive charge between the two colliding atoms.

In addition, correct cross-sections can easily be obtained in this case if the par-

tial charge, q, is treated as quantum probability. That means that the process

given by equation 2.84 is treated as Rg+ + Rg → Rg+ + Rg with weight q and as

Rg+ +Rg → Rg +Rg+ with weight (1 − q).

It is well known that the mean-field approach may lead to non-physical tra-

jectories resulting from a non-physical mixing of adiabatic electronic states in the

electronic wave function (ψ). In the specific case of ionic complexes of rare-gases,

it means that fragments carrying fractional charges may be produced which,
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eventually, leads to non-physical artifacts if fragments larger than monomers

are produced. As shown before [70], this defect is removed if electronic quan-

tum decoherence is included in the mean-field method. A couple of empirical

schemes were introduced in reference [70], all consisting of a) periodically pro-

posed quenching of the electronic wave function to a properly selected adiabatic

state and b) subsequent adjusting of nuclear velocities so that the total energy of

the system (kinetic energy of nuclei plus total electronic energy) is conserved; see

reference [70] for details. In addition, the velocity adjustment must be performed,

as detailed in reference [21], in a coordinate system in which the simulated system

has zero angular and zero linear momentum so that the two parameters are also

preserved during the decoherence step. A specific scheme [21], denoted in pre-

vious works as MFQ-AMP/SR, has been adopted here. Within this scheme, the

Mean-Field method is enhanced via a Quenching algorithm based on the selec-

tion of the adiabatic state towards which the current electronic wave function is

quenched according to the occupation probabilities of adiabatic states in the cur-

rent electronic wave function (calculated as squares of its adiabatic AMPlitudes).

The subsequent nuclear velocity adjustment is then performed by a simple Scal-

ing (multiplication by a constant) of all velocities in the Rotating (body-fixed)

frame. According to previous calculations [21, 23, 25], the period of quenching

attempts has been set to ∆tQ = 10 fs.

As discussed in reference [70], these additional electronic quenches approxi-

mately model quantum decoherence in Mean-Field calculations and practically

remove partial charges from the hybrid method. Like in previous studies, the

electronic collapse probability has been calculated from squared moduli of adia-

batic amplitudes of the electronic wave function, Ψ, and necessary adjustments

of atomic velocities have been performed via a simple multiplicative scaling per-

formed in the collision-complex-fixed frame [21]. Following previously pub-

lished studies on helium and argon [64], the period of the quenching step has

been set to ∆tQ = 10 fs [21, 23, 25]. In this work, the method including electronic

quenches will be denoted as MFQ (Mean-Field with Quenchings). To test this
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assumption, additional calculations have been performed in which periodical at-

tempts to collapse current electronic wave function, Ψ, to one of the available

adiabatic states have been introduced.

2.2.3.1 Atom - Atom collisions, initial conditions

The initial condition consists for equations 2.78 and 2.79 of the initial positions

and velocities (momenta) of colliding nuclei and the initial state of the electronic

subsystem. Since the two particle collision can always be restricted to a plane,

one of the coordinates (y in this work) and one of the linear momentum compo-

nents (py) can be set to zero. The remaining two coordinates has been set in the

Rg+/Rg center-of-mass (CMS) system so that the initial distance of the two atoms

measured along the z-axis (collision axis) is equal to 30 Å and so that the impact-

parameter has a selected value, b. A series of calculations have been performed

with the impact-parameter sampled from b = 0 Å to b = bmax = 30 Å with a step

of ∆b = 0.1 Å. For krypton, test with bmax of 20 Å provide converged results and

this bmax values was kept to save computational time. Concerning xenon, a bmax

value of 25 Å was used since it provide also converged results. The initial linear

momenta of the two colliding nuclei have been calculated (in the Rg+/Rg CMS

system) from predefined collision energy, Ecoll, and oriented along the collision

axis (z-axis).

For ionic atom - neutral atom collisions, the collision complex can be treated,

at large distances, as a neutral Rg atom and an Rg+ ion. The initial electronic

state of the complex is thus defined by the initial electronic state of the ion since

electronic excitations in the neutral are neglected (see section 3.1.4 and 3.2.4, re-

spectively for Kr+/Kr and Xe+/Xe cases, for confirmation of this assumption). In

the experiment, the 2P3/2 and 2P1/2 ions are distinguished from each other and,

so, we performed separate calculations for both. Since the 2P3/2 and 2P1/2 states of

the Kr+ ion are degenerate, the initial state of the Kr+ ion has been, in most of our

calculations, represented by a linear combination of the degenerate components.

For example, for the 2P3/2 state (J = 3/2) four such components have to be taken
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into account corresponding to four different projections of the total electronic an-

gular momentum on the z-axis, M = ±3/2 and M = ±1/2. In this way, the 2P3/2

initial state has been set to

Ψ3/2⟩ =

3/2

∑
M=−3/2

cM ∣J = 3/2,M⟩, (2.85)

where cM are randomly chosen complex coefficients homogeneously distributed

on the surface of the unit complex hypersphere, ∑3/2

M=−3/2
∣cM ∣2 = 1. Similarly, the

initial electronic state of the 2P1/2 ion has been set to

Ψ1/2⟩ =

1/2

∑
M=−1/2

cM ∣J = 1/2,M⟩, (2.86)

with isotropically distributed complex random coefficients obeying ∣c−1/2∣2+∣c+1/2∣2 =

1.

To test the validity of the assumption that the coherent mixtures of degener-

ate components, particularly for the 2P3/2 state (equation 2.85), realistically mimic

the experimental conditions, additional calculations have been performed for the
2P3/2 ion discriminating between the 3/2 and 1/2 projections. The initial elec-

tronic state of the Kr+ ion has been set in this case either to

Ψ3/2,3/2⟩ = c−3/2∣J = 3/2,M = −3/2⟩ + c+3/2∣J = 3/2,M = +3/2⟩, (2.87)

or to

Ψ3/2,1/2⟩ = c−1/2∣J = 3/2,M = −1/2⟩ + c+1/2∣J = 3/2,M = +1/2⟩. (2.88)

2.2.3.2 Dimer - Atom collision, initial conditions

The initial conditions of equations 2.78 and 2.79 consist of the initial positions

and momenta (velocities) of atomic nuclei and the initial electronic state of the

Kr+2 ion. In the present work, the Kr+2 ion is assumed to be, prior to the colli-

sion, in its electronic ground-state, so only the way how the nuclear initial con-
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ditions have been generated is to be described. The nuclear initial conditions are

represented by kinematic initial conditions (initial positions and momenta of the

neutral atom and the center-of-mass (CM) of the dimer ion) and internal initial

conditions of the colliding dimer (its rotational-vibration state and its orientation

in space). All the nuclear degrees of freedom have first been set in a specific space

frame schematically depicted in figure 2.6 for krypton case, then a transition to

the CM frame of the Kr+2/Kr collision complex has been performed and, finally,

electronic amplitudes of the electronic ground-state of the dimer ion have been

calculated in the basis set of equation 2.80 by diagonalizing corresponding elec-

tronic Hamiltonian matrix and selecting the eigenvector belonging to the lowest

eigenvalue. By doing this, we basically follow the procedure used in previous

studies on neon [23] and argon [25].

v0

x0Kr2
+

Kr
b

Figure 2.6: Initial conditions for a Kr+2/Kr collision.

The kinematic initial conditions are schematically shown in figure 2.6. Here,

the CM of the dimer ion initially resides at rest in the origin of the selected space

frame. The impacting atom starts from initial position (x0, b,0) with the initial

velocity oriented along the x-axis (collision axis) and calculated from the preset

collision energy, Ecoll, given in the Kr+2/Kr center-of-mass system, v0 =
√
3Ecoll/m

(m being the atomic mass). The value of x0 has been set to x0 = 20Åand b has
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been taken, step by step, from an interval of [0, bmax], bmax = 30Å. The maxi-

mum value bmax has been verified to lead to both converged momentum transfer

cross-sections of non-reactive (i.e., non-dissociative) Kr+2/Kr scattering as well as

converged Kr+2 dissociation cross-section for all the collision energies considered

[71]. The impact-parameter b has been sampled with a step of ∆b = 0.1Å, with

each value contributing to the calculated differential cross-sections with a weight

proportional to b.

The internal initial conditions of the Kr+2 ion are given by its rotational-vibrational

state [72] and its orientation in space. The rotational-vibrational energies and

related wave functions have been calculated by numerically solving the nuclear

Schrödinger equation on the electronic ground-state potential energy curve, I(1/2)u,

−
h̵2

2µ

d2χjv(r)

dr2
+ [VI(1/2)u +

h̵2j(j + 1)

2µr2
]χjv(r) = Ejvχjv(r), (2.89)

where j and v are rotational and vibrational quantum numbers, respectively, and

µ =m/2 is the effective mass of the Kr+2 dimer. A DVR representation of the wave

function has been used with a Dirichlet boundary condition imposed, χjv(0) =

χjv(rmax) = 0 (rmax = 30 a.u.), and with discretization step equal to ∆r = 0.02 a.u.

For a particular rotational-vibrational state, the initial distances in the ion dimer

have then been sampled from the square of χjv and the kinetic energy have been

calculated from current potential energy and the total rotational-vibrational en-

ergy, Ejv [73]. Corresponding velocities have then be added to both Kr+2 nuclei

and oriented anti-parallelly along the dimer bond axis. After the vibrational state

of the Kr+2 dimer has been set in this way, anti-parallel velocities perpendicular

to the dimer bond axis have been added to the dimer nuclei so that the angular

momentum corresponding to a specific choice of the rotational quantum number,

j, is achieved. Finally, the dimer has been randomly oriented in space. In the

present work, we denote a particular rotational-vibrational excitation of the Kr+2

dimer by [J=j, ν=v]. For example, [J=0, ν=0] means that the dimer has been pre-

pared, prior to collision, in the rotational-vibrational ground-state with j = 0 and

v = 0.
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For each particular choice of the Kr+2 rotational-vibrational state (j, v), Kr+2/Kr

collision energy (Ecoll), and collision impact-parameter (b), totally 504 trajectories

have been integrated for randomly oriented dimers until disintegration, either to

Kr+2 +Kr or Kr+ +Kr +Kr. A simple distance criterion has been used to detect the

particular type of disintegration with the cut-off distance set to 20 Å. This means

that about 150 000 trajectories have been used for each collision energy and Kr+2

rotational-vibrational excitation to calculate effective collision cross-sections.

2.2.3.3 Numerically integration

For each particular choice of the impact-parameter (b) and collision energy (Ecoll),

totally 504 trajectories have been calculated with randomly chosen electronic states

of Kr+ as described above. The equations of motion have been integrated numer-

ically using a 4th order Runge-Kutta method with minimized discretization error

[74]. A semi-analytical algorithm described in reference [75] has been used for

the electronic equation of motion, equation 2.79, to avoid needlessly short inte-

gration steps otherwise enforced by rapid oscillations emerging in the electronic

subsystem. The integration step has been set to ∆t = 0.05 − 0.25 fs, particular

value depending on the collision energy (the higher the energy, the shorter the

time step). This setting complies with previous calculations on neon [23] and

argon [25] and takes into account the larger mass of the krypton or xenon atom.

2.2.4 Inverse method

No experimental measurements of cross-sections are available in the literature

for the collisions covered by this thesis. Moreover, experimental mobility mea-

surements reported in the literature do not consider sufficiently large range of

reduced electric field and experimental drift coefficients are absent in literature.

Therefore, an inverse method was used to obtain pseudo-experimental cross-

sections from experimental mobilities. This method was already used in the lit-

erature to extrapolate mobility data to electric fields where the mobility drops to

zero and is thus difficult to measure [21, 76, 77].
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This inverse method is based on using an artificial spherical potential that is

iteratively adjusted until calculated mobilities reproduce the experimental ones

with a sufficient accuracy. The artificial potential is a spherical potential (Vcore)

Vcore(r) =
nϵw

3n − 12

⎧⎪⎪
⎨
⎪⎪⎩

12

n
(
rm − a

r − a
)

n

− 3(
rm − a

r − a
)

4⎫⎪⎪
⎬
⎪⎪⎭

, (2.90)

where the parameters n, ϵw, a and rm are adjustable. The iterative adjustment of

Vcore parameters proceeds as follows, First cross-sections are obtained from this

artificial potential using a simplified semi-classical method (see section 2.2.2) typ-

ically equations 2.29, 2.48 and 2.72 are used. Afterward, then mobilities are cal-

culated from these cross-sections. Correlation between experimental and pseudo

experimental mobilities are analyzed. Parameters of the artificial potential are

changed to improve the agreement between calculated and experimental data

and a new set of cross-sections is calculated. Usually, parameters of the Vcore po-

tential resulting from this iterative procedure are unique. Even if multiple sets

of parameters are able to reproduce the mobility plateau at low field, only one

of this sets is able to efficiently reproduce the decreasing mobility in the strong

field region. From this pseudo experimental cross-sections, new "experimental"

mobilities or drift coefficients are obtained for a broader range of the electric field

than in the initial reference.

However, for ionic dimer - atom collision, the decreasing mobility region can

not be correctly reproduced because inverse method is not able to include colli-

sion induced dissociation.

2.3 Ions transport coefficients: Monte Carlo Method

Monte Carlo method is a method based on probabilities and statistics [78]. It is

used in multiple field like physics, chemistry, mathematics, technology or finance.

A recent common use of this method is the way AI (Artificial Intelligence) calcu-

lates the strategy used by a computer to play Go against a human [79]. From
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a general point of view, it simulates phenomena with different possibilities by

knowing probability of occurrence for each possibility. Random number genera-

tion will determine different events at a time. In this thesis, the method is used to

simulate the transport of ions in carrier gas under the action of a uniform electric

field E⃗ (conventionally oriented in the z-axis direction). The Monte Carlo method

simulates, ion by ion, the motion of a big amount of germinal ions, Nion, on a lin-

ear trajectory depending on the intensity and direction of the electric field E⃗. The

electric filed is constant all over the simulation, anode and cathode close space

(where the electric field is not constant) are not represented by this method. All

these ions will undergo a lot of collisions, elastic and inelastic, against carrier gas

particles with a probability depending on the cross-sections. Monte Carlo method

will follow each ion separately until its vanishing (dissociation for ionic dimer)

or until a spatio-temporal limit is reached (tmax or zmax). Position (xion(t), yion(t)

and zion(t)), and velocity of the ion (vxion(t), v
y
ion(t) and vzion(t)) are calculated for

each ions germ for each time moment during the Monte Carlo calculation. As

a result, reduced mobility (K0), longitudinal (DL) and transversal (DT ) diffusion

coefficients and for dimer dissociation rate constant (kdiss) are obtained with this

method.

Time occurring between two collisions (tflight)is obtained with

tflight =
−log(Rflight)

νtot(t)
, (2.91)

where Rflight is a random number between 0 and 1, and νtot(t) is the total collision

frequency, νtot(t) = νela + νinela + νno, comprising the frequency of elastic, inelastic

and none collisions.

νtot(t) = Nvr(t)Qtot. (2.92)

Total collision frequency is dependent on the density, the velocity and total cross-

section of the gas. The value of νtot(t) for the simulation is calculated on the

highest energy achieved. On this energy, none collision are set to 0, and νtot(t) =

νela+νinela. This value is kept for the all simulation and since νela+νinela are decreas-
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ing with the decreasing energy and therefore νno is increasing. None collision was

added to have a constant value for the total collision frequency. This total colli-

sion frequency is calculated using momentum transfer cross-sections obtained

previously. Now that the collision time is known (tcol), determination of trajec-

tory and velocity of the ion during its flying time can be obtained from classical

mechanics equations,

F⃗ = qE⃗ =mion
dv⃗ion
dt

, (2.93)

where E⃗ is the electric field on z axis, q is the charge of the ion, mion is the mass

of the ion and v⃗ion its velocity. Knowing this we can obtain position and veloc-

ity before the collision knowing only values before flying time (t0). In Cartesian

coordinates (x, y, z) we obtain,

vxion(tcol) = v
x
ion(t0),

vyion(tcol) = v
y
ion(t0),

vzion(tcol) = v
z
ion(t0) +

qE
mion

,

(2.94)

and
xion(tcol) = vxion(t0)tflight + xion(t0),

yion(tcol) = v
y
ion(t0)tflight + yion(t0),

zion(tcol) = vzion(t0)tflight + zion(t0) +
qE

2mion
t2flight,

(2.95)

where

tcol = tflight + t0, (2.96)

after a collision, t0 became t1, then t2, etc. Limit parameters tmax and zmax are set

so that final values of the Monte Carlo simulation are not influenced by the initial

conditions of the ion. Effectively, the Monte Carlo simulation is done on a certain

space so that the vicinity influence of the cathode/anode can be neglected. De-

pending on the collision energy, different collision processes are allowed namely

elastic, inelastic and dissociation. Each process has a probability to appear that is

equal to its frequency divided by νtot. The probabilities sum up to unity so that

a randomly number drawn between 0 and 1 allows to determine which collision
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process appears using a roulette scheme.

After a collision, a new velocity of the ion has to be calculated. Different sce-

nario exist depending on the type of collision. If there is no collision, the velocity

remains the same. For an elastic collision, thanks to the conservation of momen-

tum transfer, we can write,

mionv⃗ion +mneuv⃗neu =mionv⃗
′
ion +mneuv⃗

′
neu, (2.97)

where "ion" and "neu" refers respectively to the ion and the neutral considered

during the collision. Prime represents values after the collision. Neutral atom

velocity is selected randomly from a Maxwellian distribution corresponding to

the temperature of the neutral species in the plasma. Using the center-of-masses

system (CMS) and relative velocity (v⃗r = v⃗ion− v⃗neu) we can write velocity equation

as,
v⃗CM =

mionv⃗ion+mcv⃗neu
mion+mneu

,

v⃗ion = v⃗CM +
mneuv⃗r

mion+mneu
,

v⃗neu = v⃗CM −
mionv⃗r

mion+mneu
,

v⃗′ion = v⃗CM +
mneuv⃗′r

mion+mneu
,

v⃗′neu = v⃗CM −
mionv⃗

′

r

mion+mneu
.

(2.98)

Center-of-mass velocity will remain constant after a collision (easily observable

by using equation 2.97 in definition of velocity of the center-of-masses of equation

2.98), furthermore, by conservation of kinetic energy, the modulus of the relative

velocity has also to remain constant. The scattering angle after the collision is

calculated with,

cosχ = 1 − 2Rχ, (2.99)

where Rχ is a random number between 0 and 1. The azimuthal angle is deter-

mined as a random value between 0 and 2π. If a charge transfer takes place dur-

ing the simulated collision, relative velocity will be multiplied by a factor of -1.

This variation will not lead to further changes in the next calculations. From all

the data collected for all ions during the simulation, positions and velocities will
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be used to obtain transport coefficients. Reduced standard mobility K0N , longi-

tudinal drift coefficient DL, transverse drift coefficient DT , and various reaction

rate constants (kX = ⟨νX⟩/N are obtained thanks to,

K0N =
⟨vzion⟩

E/N

T0
Tgas

Pgas

P0

, (2.100)

with the following definition of ⟨ Q ⟩

⟨Q⟩ =
1

nion

nion

∑
i=1

1

ncol

ncol

∑
j=1

Qij, (2.101)

DL =
1

2

d[z(t) − ⟨z(t)⟩]
2

dt
, (2.102)

DT =
1

4

d[(x(t) − ⟨x(t)⟩)2 + (y(t) − ⟨y(t)⟩)2]

dt
, (2.103)

⟨νX⟩ =
νtot
nion

nion

∑
i=1

1

nX

nX

∑
j=1

NX
ij , (2.104)

with NX
ij being the number of occurrences of the considered phenomenon (Non

Reactive Scattering, dissociation,...) for ion i, N is the density of the gas, T0 =

273.16 K, Tgas is the temperature of the gas, Pgas is the pressure of the gas, P0 = 760

Torr, nion is the total number of ion germs, ncol is the total number of collisions for

ion i, and Qij is the value of parameter Q for ion i at collision j. This method and

code were already used in the past with coherent results (references [21–25])

A simplified scheme of all the interactions treated during the Monte Carlo

simulation can be seen in figure 2.7
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Figure 2.7: Simplified schematic representation of different steps of the Monte Carlo code
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Chapter 3

Ionic Atom - Neutral Atom Collisions

This chapter reports on calculations for ionic atom - neutral atom in rare-gas col-

lisions namely Kr+/Kr and Xe+/Xe systems. it will be split in two major sections,

each one concerns one type of atom (krypton or xenon). Each section presents a

quick description of the used potentials, existing data in literature, comparison

of cross-sections obtained via quantum, semi-classical and hybrid and inverse

methods. Then mobilities, calculated from these collision cross-sections, are com-

pared to experimental mobilities. Finally, conclusion is given in the last section

of this chapter

3.1 Krypton

This work has already been reported in reference [52] and in conference [80].

Neutral krypton in its fundamental state, at ambient temperature and atmospheric

pressure, is a noble gas with an electronic configuration of [Ar] 4s23d104p6. There

are 33 known isotopes of krypton with masses ranging from ≃ 69 to ≃ 101 g.mol−1.

In this thesis, only stable isotopes will be taken into account, where stable means

here that half-life time is higher than 1020 year, there are 6 of them:
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Nuclide

symbol

Z (number

of proton)

N (number of

neutron)

isotopic

mass

nuclear

spin

natural

abun-

dance

(%)

78Kr 36 42 77.9204 0 0.35
80Kr 36 44 79.9164 0 2.29
82Kr 36 46 81.9135 0 11.59
83Kr 36 47 82.9141 9/2 11.50
84Kr 36 48 83.9115 0 56.99
86Kr 36 50 85.9106 0 17.28

The average atomic mass assigned to krypton is 83.798 g.mol−1 [81].

3.1.1 Interaction potentials
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Figure 3.1: Figure (a) depicts the interaction potential curves without the inclusion of the
Spin-Orbit Coupling interaction for Kr+2 using Model A interaction potential [53], figure
(b) shows the difference of interaction potential curves when Model B is subtracted from
Model A for the four adiabatic states. Full line is Σ+u , dashed line is Σ+g , dotted line is Πu

and dash dotted line is Πg
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Two ab initio potentials for Kr+/Kr interaction were used in this thesis. For

both, the 4 spin free potentials (Σg,Σu,Πg,Πu) were computed using non-relativistic

configuration interaction (CI), ab initio approaches involving large basis sets and

relativistic core-polarization effective potentials. The Spin-Orbit Coupling is then

taken into account following the Cohen-Schneider scheme [47]. The Ω = 1/2

states result from the diagonalization of a simple 2 by 2 matrix:

⎛
⎜
⎝

VΣ(R) − a√
2

− a√
2

VΠ(R) +
a
2

⎞
⎟
⎠

(3.1)

either for u and g state symmetries. While for Ω = 3/2 ones, they correspond to

the Π potentials, either g or u, shifted by a constant, (VΠ(R) -a/2). Asymptoti-

cally, Σ and Π potentials are degenerate and the SO coupling splits them in the

two atomic fine structure states. The parameter a = 0.4439 eV corresponds to the

2/3 of the atomic splitting. The interaction potential we label A [53] was com-

puted with RHF-RCCSD-T (Restricted Hartree-Fock - spin Restricted Coupled

Cluster Single Double - Triplet) level with a large basis set [47] complemented by

Gaussians optimized both for equilibrium and separation geometries in order to

minimize basis set superposition errors. The potentials we labeled B [54] were

computed at the SDCI (Singles and Doubles Configuration Interaction) level [82]

extrapolated to full CI (Configuration Interaction) via the Davidson correction

[83] using a large ANO (Atomic Natural Orbital) basis set [84, 85]. In potential

A, a common set of orbitals, optimized for the neutral dimer, were used for all

the states while in potentials B, orbitals have been optimized for each state at

RASSCF (Restricted Active Space Self-Consistent Field) level. About the spectro-

scopic properties, the wells of potentials B are slightly deeper for the lowest state

and lightly less deep for the remaining states.

A detailed comparison of potentials Models A and B vibrational spacing were

performed for potentials of family I(1/2)u, I(3/2)u and I(3/2)g. The agreement

with experimental measures was quite good as visible in table 1 of reference [53]

or table 8 of reference [54]. Only, for the II(1/2)g state, for witch experimental
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Figure 3.2: Figure (a) depicts the interaction potential curves with the inclusion of the
Spin-Orbit Coupling interaction for the six lowest electronic states of Kr+2 using Model A
interaction potential [53], figure (b) shows the deviation of interaction potential curves
of Model B from those of Model A for the six lowest electronic states of Kr+2 . Full line
is I(1/2)u, dashed line is I(3/2)g, short dotted line is I(1/2)g, dash dotted line is I(3/2)u,
short dash dotted line is II(1/2)u, short dashed line is II(1/2)g

spectroscopy results [86, 87], show the well depth to be larger than 600 cm−1,

much larger than for both potentials A or potentials B. All this indicates that both

potentials A and B are rather accurate compared to the established spectroscopy,

but may present some deficiencies for the upper states.

Interaction potential calculated from Model A is displayed with and without

Spin-Orbit Coupling respectively in figure 3.1a and figure 3.2a. Relative devia-

tions between both interaction potentials is displayed in figure 3.1b without Spin-

Orbit Coupling or in figure 3.2b with the Spin-Orbit Coupling. For both figures,

Model B interaction potential values were subtracted from corresponding Model

A values.
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Figure 3.3: Experimental reduced mobility K0 in cm2V−1s−1 of Kr+ ions in gaseous Kr.
Undistinguished states : + [2]; empty ☆ [88]; 2P1/2 state : ▽; 2P3/2 state: △ [89]. Dashed
curves are mobilities obtained with an inverse method to extrapolate experimental results
to lower reduced electric field.

3.1.2 Experimental data reported in literature

Important data for macroscopic modeling of plasmas are mobilities and diffusion

coefficients of atomic ions in the carrier gas. Experimental mobilities are avail-

able in literature only on a restricted reduced field range and no experimental

diffusion coefficients are available in the literature. The present work is devoted

to calculations of mobility in a broader reduced electric field range and the cal-

culations will be compared to the measurements available over limited reduced

electric field range. Furthermore, theoretical diffusion coefficients will be com-

pared only to the diffusion coefficients obtained via the inverse method since

no diffusion measurements are available in literature. Moreover, our calculated

diffusion coefficients at low reduced electric field will be compared to the Nernst-
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Townsend-Einstein zero field value given by [90]:

eDL/K0 = eDT /K0 = kBT = 25.3meV. (3.2)

A summary of the most recent experimental data on the Kr+mobility in Kr

is provided in figure 3.3. The measured mobility values can be divided in two

groups. Firstly, measurements by Ellis et al. [88] and Neves et al. [2] do not dis-

tinguish between the two fine-structure states (2P3/2 and 2P1/2) of the Kr+ ion.

Comparing these two sets of values, we can see that the data by Neves et al. dif-

fer from the data by Ellis et al. at intermediate reduced electric fields and show

a qualitatively different behavior (a more rapid decrease) with increasing electric

field. Since the data reported by Ellis et al. represent a critical compilation of ex-

perimental results of two independent measurements [91, 92], we consider them

as more reliable than Neves et al. data. Secondly, more elaborate data sets have

been provided by Helm et al. [89] (see also [93]) for the 2P3/2 and 2P1/2 states of

the Kr+ ions when they are distinguished. Interestingly, the mobility values re-

ported by Helm lie almost on the Ellis values, the 2P3/2 corresponding mobilities

being just slightly below the 2P1/2 ones. This may further justify the more reli-

ability of the not distinguishing fine-structure-state data by Ellis et al. then the

data reported by Neves et al.. Note, however, that the discrimination of the two

states of the Kr+ ion may not have been unbiased in Helm’s measurements. More

specifically, the differentiation between the two fine-structure states were done, in

Helm’s work, by fitting curves of Kr+ drift times containing two peaks. However,

since the two peaks are not well separated from each other, a mutual contami-

nation cannot be excluded. 2P3/2 mobilities values are, according to Helm, more

accurately extracted from the unresolved double peak than than 2P1/2 ones.
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3.1.3 Cross-sections

3.1.3.1 Quantum and semi-classical method

Momentum transfer cross-sections calculated for Kr+/Kr collisions using quan-

tum and semi-classical methods, introduced in section 2.2, are plotted in figure

3.4. We notice from this figure that semi-classical approach, as expected, gives

close cross-sections to quantum method for both 2P1/2 and 2P3/2 states. More-

over, relative deviations between semi-classical and quantum cross-sections are

shown in figure 3.5a when Model B potential is used. Furthermore, 2P1/2 state

cross-sections calculated from model B potential [54] by using quantum or semi-

classical methods are in a very good agreement with the one obtained from in-

verse method based on mobility measurements [88, 89]. On the other hand, for

the 2P3/2 state, the momentum transfer cross-section calculated using model B

deviates significantly from the cross-sections obtained from the inverse method

especially in the low kinetic energy range with a maximum deviation of 25%.

Nevertheless, model B provides, for both 2P1/2 and 2P3/2 states, cross-sections in

better agreement, with those derived from measurements, than model A.

3.1.3.2 JWKB and isotope hypothesis verification

The use of JWKB approximation is a good hypothesis as shown in figure 3.5a

since although the relative deviations between both methods (semi-classical and

quantum) seem non negligible (up to 6%), they counterbalance each other. All the

calculations presented in this thesis have been performed for an artificial krypton

isotope of an averaged mass Mr = 83.798u. This approximation has been adopted

to save computational time since there are 21 different combinations of stable

isotopes of krypton which can, in principal, participate in the Kr+/Kr collisions.

However, for the cheapest computational method used in this work, the semi-

classical method, we have been able to perform calculations on all these possi-

ble combinations and to average (using natural abundances of krypton isotopes)

the calculated cross-sections. A comparison of these additional data with those
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(a) 2P3/2 state momentum transfer cross-sections
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Figure 3.4: Momentum transfer cross-sections in Å2 of collisions of Kr+ ions in gaseous Kr
obtained from quantum and semi-classical methods. Momentum transfer cross-sections
obtained with the inverse method using experimental data without distinction of fine
structure states of ions : black dotted curve [88], with distinction of states : red dashed
curve [89]. Semi-classical method: upper half fulfilled symbol, quantum method: lower
half fulfilled symbol using respectively interaction potentials A and B of references [53]:
◯ and [54]: ◇.

calculated for the artificial isotope leads to only minor differences as displayed

in figure 3.5b. For higher collision energies (Ecoll ≥ 1.5 eV), they are completely

negligible, in the energy range between Ecoll ≈ 0.01 eV and Ecoll ≈ 1.5 eV, the dif-

ferences are always below 2%, and only for energies Ecoll ≤ 0.006 eV they grow up

to 3 − 5%. As a consequence, the use of the artificial "average" isotope of krypton

is justified.

The major approximation of the semi-classical method is the non considera-

tion of transition between the two different states. In order to check the validity of

such approximation, calculations considering transitions between 2P3/2 and 2P1/2

states when Ω = 1/2 were performed in the framework of model B by using quan-

tum method.

The evolution of the transition cross-section as a function of kinetic energy is

shown in figure 3.6. One can clearly see in this figure that the transition con-
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Figure 3.5: Hypothesis verifications: JWKB approximation (a) and isotropic distribution
(b). 2 : 2P3/2 state;◯ : 2P1/2 state.
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Figure 3.6: Transition cross-section between Ω1/2 states

tributions to the cross-section increase with kinetic energy but they remain low

even at very high collision energy (0.1% of Ecoll = 100 eV), which shows that the
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non consideration of transition is semi-classical calculations is therefore a good

approximation.

3.1.3.3 Hybrid method
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Figure 3.7: Momentum transfer cross-sections in Å2 of Kr+ ions in gaseous Kr for both
2P1/2 and 2P3/2 states. Cross-sections obtained with the inverse method using experimen-
tal data without distinction of states : black dotted curve [88], with distinction of states :
red dashed curve [89]. Hybrid method: ◯ and ◇ using respectively interaction potentials
of refs [53] and [54].

Momentum transfer cross-sections obtained using hybrid method are shown

for 2P1/2 and 2P3/2 Kr+ states in figure 3.7. As in the quantum and semi-classical

methods, the momentum transfer cross-sections for 2P1/2 state obtained using in-

teraction model B, are very close to the ones inferred from mobility measure-

ments [88, 89]. The highest deviation from both states associated cross-sections is

observed at small and intermediate kinetic energy ranges. For the 2P3/2 state, the

momentum transfer cross-section calculated from the hybrid method is in better

agreement with inferred cross-section from measured mobility [88, 89] than both

quantum or semi-classical methods. Moreover, as for semi-classical or quantum

methods, the interaction model B gives better agreement with pseudo experimen-
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tal measurements than interaction model A. Since model B gives results in better

agreement with experiments, further figures of cross-section in this sub chapter

will only show data obtained by using internuclear model B.

3.1.3.4 Quantum decoherence effect in hybrid method
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(a) Influence of quenching on cross-section
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(b) Influence of subspaces separation in 2P3/2 state

Figure 3.8: Verification of hypothesis used in hybrid method: relative deviation between
quenching and non quenching cross-sections (a). Relative deviation between cross-
sections obtained when the two subspaces are considered separately or simultaneously
(b). Symbols : 2P3/2 state 2 and 2P1/2 state◯.

Furthermore, in order to study the effect of quantum decoherence on calcula-

tion, we included a periodical quenching of the electronic wave function. Relative

deviation (with respect to quenching) between quenching and non quenching

cross-sections are plotted in figure 3.8a which shows that the inclusion of quan-

tum decoherence in the calculation affects differently the 2P3/2 and 2P1/2 states.

For low kinetic energy (lower than 1 eV), differences between quenching and

non quenching cross-sections are almost negligible for both states. However, for

higher energy, the momentum transfer cross-sections rise faster with than with-

out quenching with a higher influence on the 2P3/2 state.
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Another difference between quantum and hybrid calculation is the different

treatment of the two projection subspaces, Ω = 3/2 and Ω= 1/2. In the quantum

calculations, the two subspaces are considered separately for Kr+ initially in the
2P3/2 state, and no transitions are allowed between these two subspaces. On the

other hand in the hybrid method, transitions between these two subspaces are al-

lowed. To understand the influence of transition, cross-section calculations were

done in the 2P3/2 state of the ion with either Ω = 3/2 or Ω = 1/2 projections on

the collision axis. Figure 3.8b shows the relative deviation between the momen-

tum transfer cross-sections, when the two angular projections are simultaneously

considered, and the momentum transfer cross-sections, when the two angular

projections are treated separately. One can notice on this figure that the relative

deviation between the two cross-sections never exceed 5%.

3.1.3.5 Quantum-hybrid comparison
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Figure 3.9: Momentum transfer cross-section calculated for single potential curve. Sym-
bols are used for hybrid method values and lines represent quantum values. (a) depicts
for 2P3/2 state, black curve and 2: I(1/2)u, blue curve and ◯: I(1/2)g, red curve and ▽:
I(3/2)g, magenta curve and △: I(3/2)u. (b) depicts for 2P1/2 state: black curve and 2,
II(1/2)u: red curve and◯: II(1/2)g.
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To explain the observed difference between quantum and hybrid results, new

calculations of momentum transfer cross-sections have been run by using single

potential curve calculations. Figures 3.9a and 3.9b display such cross-sections

calculations for both 2P3/2 and 2P1/2 initial states of Kr+ respectively. It is clear

from these figures that the hybrid MTCSs are correctly calculated (in agreement

with quantum MTCSs) when no transitions between the subspaces are allowed.

One concludes from these observations that the differences between quantum

and hybrid cross-sections are mainly due to allowed (or not) transitions in our

code.
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Figure 3.10: Relative (with respect to total cross-sections) transitions between 2P1/2 and
2P3/2 states obtained from quantum and hybrid methods.

Since the difference between quantum and hybrid method is not due to the

calculations of cross-sections on single potential curve calculations, relative tran-

sitions MTCSs for hybrid method have been extracted and added to previous

figure 3.6, as shown in figure 3.10. Representation of transition cross-sections

contributions can help us to understand were the differences between both treat-

ments could appeared. Unfortunately, both sets of data are not the same, for
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quantum values, only transitions between 2P3/2(Ω =1/2) and 2P1/2 states (and vice

versa) are shown, while for hybrid method all transitions between 2P3/2 and 2P1/2

states are presented. This mean that hybrid set of data represent quantum shown

transition with also transitions between 2P3/2 (Ω = 3/2) and 2P1/2 states (and vice

versa). This second type of transitions are supposed to be really low compared

to the same subspace transitions (equations (3) and (4) in figure 2.4). One can

see from this figure that transitions are negligible in both methods. However, hy-

brid method seems to overestimate 2P1/2 to 2P3/2 transitions and underestimate
2P3/2 to 2P1/2 transitions in comparison to quantum results. Even if the difference

between both methods seems significant (up to a range of 6), the absolute value

of transitions remains insignificant, this difference between both methods may

result from 2P3/2 inside transitions.

(a) Transitions in 2P3/2 from Ω = 3/2 to 1/2 (b) flat version of figure (a)

Figure 3.11: Hypothesis verification in hybrid method to evaluate the number of transi-
tions in 2P3/2 states as a function of impact parameters.

To investigate this kind of transitions, all cross-sections have been compiled

and normalized as function of energy and impact parameters and shown in a 3D

figure, but also on the flat version of this figure as visible in figure 3.11. Note

that only transitions between 2P3/2 (Ω = 3/2) and 2P3/2 (Ω = 1/2) are shown here,
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since inverse transitions are the same it is not necessary to show them in this fig-

ure. For these calculations, initial state of the Kr+ was set in 2P3/2 (Ω = 3/2 or

Ω = 1/2). Once hybrid cross-sections are obtained, all treated trajectories were

investigate in order to observe possible subspace transitions during the collision.

Since 504 independent trajectories have been performed for each parameter (en-

ergy and impact parameter), a normalization was done between 0 and 1. If the

value is 1, this means (for this figure) that all trajectories have changed from Ω

= 3/2 to Ω = 1/2. Interestingly, studied transitions appeared for the all studied

kinetic energies range, but are more present for low energy where more impact

parameter allowing transitions are present. One can notice (principally in the

flat figure) that increasing energy leads to decrease the minimum and maximum

impact parameter for the transition.

3.1.4 Mobility and diffusion coefficient

3.1.4.1 Collision energy range

Before performing all Monte Carlo calculations, a test was made to see if the

range of the collision energy used for momentum transfer cross-section calcula-

tions was large enough. In figure 3.12, Kr+ cumulative distributions of collision

energy as function of collision energy are shown for different reduced electric

field using MF hybrid calculation with internuclear potential model B. Cumula-

tive distribution refers to, for each reduced electric field, the number of collisions,

that are compiled with the Monte Carlo simulations, and, having energies up to

a particular energy for the collision between the ion and the neutral. This cumu-

lative distribution has been normalized with a maximum of 1 and a minimum

of 0. This figure shows that for all reduced electric fields used in this thesis, the

maximum colliding energy reached by the ion in the electric field is ≤ 10 eV. Con-

cerning low reduced electric field (≤ 100 Td), some missing data are apparent

for low collision energies since our energy ranges from 0.01 eV to 100 eV. This

energy range was chosen in order to produce cross-section calculations within

reasonable computational time. At 10 Td, 15% of considered collisions occur at
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Figure 3.12: Cumulative distribution of Kr+ collision energy for 2P3/2 (full line) and 2P1/2

(dotted line) states on different reduced electric field

collision energy below the chosen energy range. However, supplementary mo-

mentum transfer cross-section for lower collisions energies (0.001 - 0.01eV) were

calculated and used to investigate if this data range was crucial for the calcula-

tion of mesoscopic data at low reduced electric field. The obtained cross-sections

extended on this extra lower energy range shows that these missing values are

not critical for transport coefficients calculations. The difference found between

the two sets of mobilities are lower than the Monte Carlo statistical error (2%) and

therefore the collision energy range used for hybrid and semi-classical is accurate.

For quantum method, the ion energies used range from 0.001 eV to 100 eV. For

this case, calculations at low collision energies were the fastest since they require a

lower value of maximum angular momentum, lmax, before reaching convergence.

This figure shows that even at a high field (3000 Td), almost no ions have enough

energy to be excited from 4s24p5 to 4s4p6 level (≈ 13.5 eV) [48], therefore consid-
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ering only the incident Kr+ ion in the fundamental 4s24p5 level is a correct initial

condition.

3.1.4.2 Mobility

Results of mobility calculations are summarized in figure 3.13 for quantum, semi-

classical and hybrid methods. Since semi-classical and quantum values are al-

most equal, in the following, the only diffusion coefficients shown are the ones

obtained from cross-sections using quantum and hybrid methods to increase the

readability of figures. It is clear that if the mobility and MTCSs of quantum and

semi-classical method are almost the same, the diffusion coefficients will also be

really close.
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(a) Mobilities values for 2P3/2 states for Kr+
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Figure 3.13: Standard reduced mobility K0 in cm2V−1s−1 of Kr+ ions in 2P3/2 and 2P1/2

states in gaseous Kr. Experimental values: ☆ [88], △ and ▽ respectively for 2P3/2 and
2P1/2 states [89], dotted line corresponds to the inverse method on Ellis experimental
value, dashed line on Helm experimental values. Other calculation: X [2]. This work:
semi-classical method: upper half fulfilled symbol; quantum method: lower half fulfilled
symbol; hybrid method: empty symbol using interaction potentials of refs [53]◯ and [54]
◇.

Since the ion mobility is calculated from momentum transfer cross-section,

the interaction model B gives, as expected, closer calculated Kr+ mobility to ex-
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perimental value as shown in figure 3.13. The 2P1/2 state Kr+ calculated mobil-

ity is close to experimental value [89] within error bars. Moreover, figure 3.13

shows a very good agreement between 2P1/2 state Kr+ calculated mobilities via

the quantum, semi-classical and hybrid methods (with a maximum deviation of

3% between semi-classical and quantum methods). On the other hand, the 2P3/2

state Kr+ mobility shows a larger deviation (maximum deviation of 7% for hybrid

method and 23% for semi-classical and quantum methods) from the measured

one [89], than the 2P1/2 mobility. Observed transition, as a consequence of quite

strong interaction at specific distance, I(1/2)x ⇔ I(3/2)x (not allowed in semi-

classical and quantum calculation), where x refers to gerade or ungerade states,

in the hybrid code could explain why the momentum transfer cross-section for
2P3/2 is lower than the one obtained from quantum method and therefore higher

mobility. However, for the 2P1/2 state there is no difference for momentum trans-

fer cross-section (and mobility) obtained from the 3 methods since this transition

occurs only for the 2P3/2 state. Results from an independent (semi-classical) cal-

culation [1] (as reported in reference [2]) are also shown in figure 3.13. These

reported data show qualitatively similar behavior to the calculated mobility in

this work, but large quantitative differences, particularly in the case of mobility

obtain using model B. Since no details on these alternative calculations are avail-

able, no explanation for these differences can be proposed.

3.1.4.3 Diffusion coefficient

Finally, the 2P1/2 and 2P3/2 states transverse and longitudinal diffusion coefficients

calculated by using model B interaction potential, are displayed in figure 3.14.

Values at low reduced electric field (5 Td) of these diffusion coefficients (eDL/K0

≈ 25.4 meV and eDT /K0 ≈ 26.9 meV) are close to expected values from Nernst-

Townsen-Einstein equation (25.3 meV). Moreover, as expected, very good agree-

ment between hybrid and quantum is obtained for both states 2P1/2 and 2P3/2 and

this is due to the fact that diffusion are less sensitive to the approximations used

than the mobility data. Shown diffusion coefficients exhibit the usual behavior,
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(a) 2P3/2 state diffusion coefficients
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(b) 2P1/2 state diffusion coefficients

Figure 3.14: Simulation results of characteristic energy of longitudinal, eDL/K0, and
transverse, eDT /K0, diffusion in meV for Kr+ ions in 2P1/2 and 2P3/2 states in gaseous
Kr using interaction potential B [54]. eDT /K0 2, eDL/K0 ◯. Quantum method: lower
half fulfilled symbol, hybrid method: empty symbol. Inverse method diffusion coeffi-
cient based on distinguished experimental values [89] are presented in curves: dashed
for eDT /K0 and dotted for eDL/K0.

namely plateau in the low field range followed by a fast increase for higher field

above nearly 100 Td. Moreover the longitudinal diffusion coefficients rise slightly

faster than the transverse diffusion coefficient (maximum 5-10%).

3.1.5 Discussions

In this section, selected issues concerning the mobility of Kr+ in Kr, the main

experimental data used in this work, will be discussed.

3.1.5.1 Differences between interaction models

As follows from previous sections, interaction model B leads to results in better

agreement with experimental data than model A. The momentum transfer cross-

section of the Kr+/Kr collision is larger for model A than for model B and, as a
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consequence, mobilities calculated from the cross-sections obtained for model B

are higher than those obtained for model A.

Since the deviations between the experimental values and the present calcu-

lations are only important at low collision energies (and/or weak electric fields),

they should result mainly from inaccuracies in the long-range parts of the poten-

tials. One can clearly see in figure 3.2b that model B potentials are always higher

than model A ones in the long-distance region or, alternatively, that model B po-

tentials converge to the Kr+... Kr asymptote more rapidly than Model A poten-

tials. The potentials B have thus a shorter effective range and thus should lead, at

low collision energies, to smaller effective cross-sections and higher Kr+ mobili-

ties. This holds for potentials of group I (I(1/2)u, I(3/2)g, I(1/2)g and I(3/2)u) as

well as for those of group II (II(1/2)u and II(1/2)g): the differences seen in the mo-

bility data calculated for the Kr+(2P3/2) ion are basically the same as for Kr+(2P1/2)

(see figure 3.13). The conclusion that the asymptotic tails of the diatomic poten-

tials are responsible for the observed deviations is further supported by the fact

that, for high collision energies, the two models lead to almost coinciding mobili-

ties which seems to indicate that differences in the repulsive walls of the two sets

of potentials are not much important. Moreover, thorough spectroscopic tests

performed for the potentials in the original papers [53, 54] show their equal be-

havior around the minimum well. However, as seen previously, e.g., for helium

[22], the mobility property is very sensitive to the global quality of the set of po-

tentials used and even small deviations in the potential curves may result in a

well observable shift in the calculated mobility.

3.1.5.2 Differences between quantum and hybrid calculations

Somewhat surprising is the high difference observed between calculations in

which nuclear degrees of freedom are treated quantum mechanically (the full

quantum calculation will be hereafter denoted as QUANT) and calculations based

on classical treatment of nuclei (the hybrid calculation, hereafter denoted as HYB).

For the heavy krypton atom, one would, on the contrary, expect that quantum
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nuclear effects are negligible and that QUANT and HYB calculations should lead

to quantitatively close results. Moreover, since the differences between QUANT

and HYB calculations are much more pronounced for the Kr+(2P3/2) ion than for

Kr+(2P1/2), other effects may come into play.

As a first step, we have investigated whether nuclear quantum effects are

really negligible for krypton. For this, single-potential calculations (each con-

strained to one of the six available electronic potentials) have been run using the

HYB and JWKB methods and compared to each other. Since no differences have

been found for either potential, one can conclude that the nuclear quantum ef-

fects are not important in the present calculation and that the source of the dif-

ference between the HYB and QUANT approaches should be searched for else-

where, namely in the way how electronic degrees of freedom are treated in both

approaches.

As discussed in section 2.1, QUANT calculations have been done separately

on two projection subspaces, Ω = 3/2 and Ω = 1/2, of the electronic angular mo-

mentum space. It means that for the Kr+ ion initially in the 2P3/2 state, no transi-

tions are allowed between these two subspaces or, alternatively, between I(3/2)

and I(1/2) states. On the other hand, in the HYB approach no such restriction

is present. By inspecting selected collision trajectories started in the 2P3/2 state

of the Kr+ ion with either Ω = 3/2 or Ω = 1/2 projection on the collision axis, we

have found that the Ω = 3/2 to Ω = 1/2 transitions (and vice versa) occur frequently

as a result of quite strong interactions of the I(3/2) and I(1/2) states at specific

distances. On the other hand, for the 2P1/2 initial state such transitions are not

important since, in general, transitions to the lower family of states (I) is highly

improbable. As a consequence, the difference between QUANT and HYB calcu-

lations is much smaller for the 2P1/2 initial state than in the 2P3/2 case.

One can thus conclude that the calculations performed on the Kr+ (2P1/2) ion

give a realistic estimate of the differences resulting from the use of classical ap-

proximation for treating atomic nuclei in the HYB approach while the deviations

obtained for the Kr+ (2P3/2) ion are also influenced by the different ways how
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electronic states are treated in the HYB and QUANT methods. However, since

considerably distinct pictures are seen for Model A and Model B, other effects

may also contribute.

3.1.5.3 Differences between theory and experiment

As above, differences between measured and calculated mobilities will be con-

sidered here and, since interaction Model B and the hybrid method give the best

agreement with the experiment, only theoretical mobility data obtained from the

hybrid approach and Model B will be discussed.

The present calculations agree very well with the fine-structure state resolved

experiment [89, 93] for the Kr+(2P1/2) ion. The calculated mobility data almost

coincide with the experimental data or, where the latter are not available, on their

inverse method extrapolation. The situation is somewhat worse, however, if the

Kr+ ion is initially considered in the 2P3/2 state, particularly in the weak-field

region. In this case, the theoretical estimate of the low-field (E/N = 5Td) mobility

of the Kr+ ion is by about 8 per cent below the inverse method value. Several

possible sources responsible for this deviation have been considered and tested

in this work.

Firstly, the fact that the natural mixture of stable isotopes of krypton present

in experiments is approximated, in this work, by an artificial isotope of a prop-

erly averaged mass has been justified by running parallel JWKB calculations on

both this "averaged" isotope and the natural mixture of stable krypton isotopes.

As discussed previously, deviations up to 2%, typically about 1%, have been ob-

tained at low electric field, which is not enough to account for the differences

between the experiment and theory in this region. Secondly, the same holds for

the inclusion of quantum decoherence in the hybrid calculation which does not

lead, in the weak-field region, to changes of the mobility data larger than 2% and,

in addition, away from the experiment. A third possibility may be that, in our

calculations, the 2P3/2 (J = 3/2) initial state of the Kr+ ion has been modeled by

randomly selected coherent (linear) combinations of four states corresponding to



3.1. KRYPTON 83

MJ = ±3/2 and MJ = ±1/2 projections. To see the effect of this choice, additional

hybrid calculations have been run for the Kr+(2P3/2) ion with the initial state set

either to MJ = ±3/2 or MJ = ±1/2 and the resulting data averaged afterwards. In

this way, an incoherent mixture of the initialMJ = ±3/2 andMJ = ±1/2 projections

has been considered, which may be closer to experimental conditions. However,

while the MJ = ±3/2 and MJ = ±1/2 calculations have led to results considerably

deviating from the original coherent calculations, points almost coinciding with

the original data (deviations of about 1%) have been obtained after the two addi-

tional calculations have been averaged. As a consequence, differences well below

the observed deviations between the theory and experiment have again been ob-

tained and the way how the projections of the electronic angular momentum are

mixed cannot be responsible for the latter.

Taking all this into account as well as the excellent agreement with experi-

mental data for the Kr+(2P1/2) ion, we conclude that the experimental mobility

reported for the Kr+(2P3/2) ion may have been contaminated. Since the Kr+(2P3/2)

mobilities are considerably closer to the 2P1/2 data in the experiments than in the

calculations, a contamination by signal originating from Kr+(2P1/2) ions may have

occurred in the experiment. Moreover reported Kr+ mobilities by Helm were not

direct measurements but they were obtained by fitting the detected double peak

(which includes unresolved 2P1/2 and 2P3/2 states) with gaussian distributions us-

ing the diffusion coefficient as well as the mobilities as independent variables.

This fitting procedure certainly introduces an error higher than the experimental

error in direct mobility measurements typically estimated at 5%. This assumption

may be further supported by the observation that almost perfect coincidence with

the Kr+(2P3/2) experimental mobility is achieved if the theoretical data calculated

for Kr+(2P3/2) and Kr+(2P1/2) are averaged with respective weights w3/2 ≈ 0.3 − 0.4

and w1/2 ≈ 0.6 − 0.7.
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3.2 Xenon

Present section has already been presented on conference [94] and in an article

[95]. Xenon is a noble gas with an electronic configuration [Kr] 5s24d105p6. There

are 41 known isotopes of xenon with masses ranging from ≃ 110 to ≃ 147 g.mol−1.

As for krypton, only stable isotopes will be taken into account and there are 9 of

them:
Nuclide

symbol

Z (number

of proton)

N (number of

neutron)

isotopic

mass

nuclear

spin

abundance(%)

124Xe 54 70 123.9059 0 0.10
126Xe 54 72 125.9043 0 0.09
128Xe 54 74 127.9035 0 1.91
129Xe 54 75 128.9048 1/2 26.40
130Xe 54 76 129.9035 0 4.07
131Xe 54 77 130.9051 3/2 21.23
132Xe 54 78 131.9042 0 26.91
134Xe 54 80 133.9054 0 10.44
136Xe 54 82 135.9072 0 8.85

The average atomic mass assigned to xenon is 131.293 g.mol−1 [81].

3.2.1 Interaction potentials

Two internuclear Xe+/Xe potentials were used for cross-section calculations. As

for krypton, the denomination of internuclear potential will be Model A and

Model B. Model A calculated by Paidarová et al. [67] provides ab initio values

fitted with a cubic spline curve in order to obtain potential values at all internu-

clear distances. The second model (Model B) provided by Rupper et al. [96] is

based on state of the art ab initio calculations with some adjustments made from

experimental spectroscopic results. Like for krypton, the Spin-Orbit Coupling

was taken into account by using the Cohen-Schneider semi empirical model [47].

For xenon, the a parameter (2/3 of the atomic splitting) is set to 0.8739 eV. Since

Spin-Orbit free potentials have the same behavior as for Kr+/Kr system, it is not
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Figure 3.15: Internuclear potentials with the inclusion of the Spin-Orbit Coupling and
differences between them for Xe+/Xe. Full line is I(1/2)u, dashed line is I(3/2)g, short
dotted line is I(1/2)g, dash dotted line is I(3/2)u, short dash dotted line is II(1/2)u, short
dashed line is II(1/2)g

necessary to display them once again. Internuclear potentials with the Spin-Orbit

Coupling for Model A are shown in figure 3.15a and the differences between

Model A and Model B internuclear potential are depicted in figure 3.15b. Differ-

ences between both models are more important than between the two models (A

and B) used in the Kr+/Kr calculations.

3.2.2 Experimental data reported in literature

Experimental values (displayed in figures 3.16) available in literature for Xe+/Xe

mobility reported by Helm et al. [89], Larsen et al. [97] and Viehland et al. [98]

are all close to each other. All these reported data distinguish between two fine-

structure states (2P3/2 and 2P1/2) of the Xe+ ion. However, Neves et al. exper-

imental mobilities [2] do not distinguish between the two fine structure states.

Furthermore, at low reduced electric field, the usual plateau has been replaced

by a rise in the mobility which is attributed to presence of impurities, due to the



86 CHAPTER 3. ATOM - ATOM COLLISIONS

20 100 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
ed

uc
ed

 m
ob

ilit
y 

(c
m

2 V
-1
s-1

)

Reduced electric field (Td)

2P3/2

2P1/2

60 100 400
0.35

0.45

0.55

Figure 3.16: Experimental standard reduced mobility (K0) of the Xe+ ion in gaseous
xenon. Measurements not distinguishing between the fine-structures states of the ion
(2P3/2 and 2P1/2): ● [91] + [2]; measurements distinguishing between the fine-structures
states of the ion: (☆[89] (see also reference [93]) and ◇ [97] (see also reference [98])).

non use of mass spectrometer to discriminate the detected ions. For these two

reasons, Neves data will not be considered in the following discussion.

3.2.3 Cross-sections

3.2.3.1 Quantum, hybrid and semi-classical method

Momentum transfer cross-sections of Xe+ in Xe gas calculated with the three dif-

ferent methods are displayed and compared to inverse method values in figure

3.17. It is clear that Model A gives larger cross-sections than Model B for all

methods used. Interaction Model B provides momentum transfer cross-section

closer to inverse method one far better than Model A in particular at low colli-

sion energies. Furthermore, hybrid method provides higher momentum transfer
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Figure 3.17: Momentum transfer cross-sections (MTCSs) for Xe+/Xe collisions calculated
for both 2P3/2 (panel a) and 2P1/2 (panel b) initial states of the colliding ion using dif-
ferent theoretical approaches – semi-classical method (dashed lines), quantum method
(full symbols) and hybrid method (empty symbols), and interaction models – Model A
[67] (2) and Model B [96] (◯). Inverse method (pseudo-experimental) cross-sections ob-
tained from fine-structure resolved experimental mobility data of references [89, 97] are
also shown for comparison (thick solid curves).

cross-section than quantum or semi-classical method using Model B, while the

inverse argument holds for Model A.

3.2.3.2 JWKB and isotope hypothesis verification

From figure 3.17, we notice that quantum and semi-classical cross-sections are

very close one to each other. More precisely, relative deviations between cross-

sections, obtained via these two methods, are displayed in figure 3.18a and are

smaller than for krypton case (maximum of ≈ 4% as compared to ≈ 6% for kryp-

ton). As in krypton case, these deviations counterbalance each other and become

negligible for kinetic energy above 1 eV. This is due, as verified by quantum cal-

culation, to a negligible probability of the spin change channel (process (3) and

(4) of figure 2.4).
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As for krypton, to save computational time, all hybrid and quantum cross-

sections calculations were performed using an artificial isotope of mass 131.293

g.mol−1 and nuclear spin equal to 0. To test this hypothesis, semi-classical method

was used on the 45 possible collisions using the nine different stable isotopes. In

figure 3.18b, is shown the relative deviation between cross-sections calculated by

using the artificial isotope (131.293 g.mol−1) on one hand, and the one obtained

from all the weighted cross-sections associated to all isotope with their occurrence

probability on the other hand. As for krypton, deviations up to 6% is observed for

kinetic energy lower than 1 eV, but they are again counterbalancing each other.

While for higher kinetic energies, the relative deviation is close to 0%. Interest-

ingly, xenon has more isotopes percentage with a fermionic behavior, but even

if the artificial isotope is treated as a boson, the relative deviation is not more

perturbed than in the krypton case.
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Figure 3.18: Hypothesis verification using semi-classical method and interaction poten-
tials of ref [96]: JWKB approximation(a) and isotropic distribution (b)
2 are relative deviation for 2P3/2 state;◯ are relative deviation for 2P1/2 state.
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Figure 3.19: Verification of hypothesis used in hybrid method: relative deviation be-
tween quenching and non quenching cross-sections (a). Relative deviation between
cross-sections obtained when the two subspaces are considered separately or simulta-
neously (b). Symbols, 2P3/2 state : 2 and 2P3/2 state : ◯.

3.2.3.3 Quantum decoherence

Momentum transfer cross-sections including quenching (quantum decoherence)

were calculated from internuclear potential Model B by using hybrid method and

compared with non quenching calculations using a relative deviation in figure

3.19a. At low energies (0.01 to 1 eV), two different kinds of behavior can be seen.

Firstly, at low kinetic energies, for 2P1/2 state, quenched cross-section values are

smaller than MF ones, while for 2P3/2 state, the quenched cross-sections are above

MF values. For higher energy (more than 1 eV), the quenched cross-sections are

higher than MF calculations for both states (2P3/2 or 2P1/2).

3.2.3.4 Quantum-hybrid comparison

In order to verify the validity of simultaneous calculation of the substates in 2P3/2

in hybrid method, calculations were performed by setting initial conditions to Ω

= 1/2 or Ω = 3/2 by using Model B. Figure 3.19b shows relative variation of MTCS
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with distinction in initial subspaces of Ω = 1/2 and Ω = 3/2 with simultaneous

one. Distinguishing the subspaces leads to higher cross-sections and thus lower

mobilities for the 2P3/2 state although the variation will also remain low (less than

4%).
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Figure 3.20: Relative (with respect to total cross-section) transitions between 2P1/2 and
2P3/2 states with quantum and hybrid methods.

The influence of spin change process on cross-sections calculations was stud-

ied, as for krypton, with quantum and hybrid methods based on interaction

Model B. As shown in fig 3.20, the maximum relative transition cross-section

with respect to subspace total collision cross-sections value at 100 eV collision

energy is 0.1%. Therefore, the non consideration of spin change processes is a

good approximation in the semi-classical method.

Secondly, the difference between quantum and hybrid method is not due to

the calculations of cross-sections on single potential curve trajectories. Represen-

tation of transition cross-section contributions may help us to understand where

the observed differences between both treatments. However, as already said in

the case of krypton, both sets of data are not the same, transitions are treated dif-
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ferently in both methods. Indeed, since the angular momentum projections Ω =

3/2 are treated separately in quantum method, transitions between I(1/2)x and

I(3/2)x are excluded, while in hybrid method such transitions are allowed. For

quantum values, only transitions between 2P3/2 (Ω =1/2) and 2P1/2 states (and

vice versa) are shown, while for hybrid method all transitions between 2P3/2 and
2P1/2 states are depicted. This means that hybrid set of data represent quantum

transitions in addition to transitions between 2P3/2 (Ω = 3/2) and 2P1/2 states (and

vice versa). It is known from literature that this second type of transitions are

negligible in comparison to quantum shown transitions, one can see in this figure

that both methods provide negligible transitions and the order of difference be-

tween both method values are more pronounced than in the case of krypton (9 for

xenon as compared to 6 for krypton). The hybrid method is overestimating tran-

sitions at kinetic energies lower than 30 eV and underestimates them at energies

higher than 30 eV. Even if the difference between both methods seems significant

(up to a range of 9), the absolute value of transitions remains insignificant, this

between both methods may be a consequence of 2P3/2 inside transitions.

(a) Transitions in 2P3/2 from Ω = 3/2 to 1/2 (b) flat version of figure a

Figure 3.21: Hypothesis verification in hybrid method to evaluate the number of transi-
tions in 2P3/2 state as a function of impact parameters and kinetic energy.

Furthermore, using hybrid method, normalized compilation of cross-sections
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as function of energy and impact parameters in a 3D figure, but also on the flat

version of this figure, are presented in figure 3.21. Only transitions between 2P3/2

(Ω = 3/2) and 2P3/2 (Ω = 1/2) are shown here, since inverse transition are the

same. The transition region is larger than for krypton, but at the same time, the

number of transitions is much smaller. Color legend is kept the same as for kryp-

ton case so that the reader can notice more easily differences between the two

systems Kr+/Kr (figure 3.11) and Xe+/Xe (figure 3.21). Interestingly, while for

krypton there is a minimum value for the impact parameter to allow a transition,

for xenon such minimum is not present.

3.2.4 Mobility and diffusion coefficient

3.2.4.1 Collision energy range

As for krypton, in order to check the validity of the collision energy range in our

calculations, cumulative distribution energy function is calculated and plotted in

figure 3.22. This figure shows that low collisions energies are missing in the simu-

lation at low reduced field (17% at 10 Townsend). The energy range was extended

to lower values and new MTCS calculations were performed. No difference was

observed in the mobility calculated from the new MTCS extended to the low en-

ergy range. Figure 3.22 shows also that high collisions energies (≥ 12 eV) are not

required for mobility calculations at reduced field of 3000 Td. Moreover this fig-

ure confirms our hypothesis of considering only the fundamental 5s25p5 level of

Xe+ since even at 3000 Td the ion does not have enough energy to be excited to

5s5p6 level (≈ 11.3 eV above the ground-state) [48].

3.2.4.2 Mobility

It is obvious from figure 3.23 that interaction Model B gives closer mobilities to

experimental measures than interaction Model A as it was already expected from

cross-sections results. For 2P3/2 states, all methods are almost on the experimental

data and are thus close to each other. For 2P1/2 state, quantum and semi-classical
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mobilities are almost on the experimental data, hybrid results are not so far from

the two other methods and adding quenching to Mean Filed approach improves

slightly the results (not shown here because the variation is too low to be ob-

served).

The remaining difference between calculated and measured mobility can be

attributed to the applied fitting procedure [97] to extract the experimental mo-

bilities from the two unresolved peaks curve corresponding to 2P1/2 and 2P3/2

xenon ion states. In reference [97], the detected ion current curve was fitted with

two Gaussians associated to 2P1/2 and 2P3/2 states. This procedure certainly in-

duces an error since the detected peak in mobility measurement is distorted from

a Gaussian shape by ion longitudinal diffusion and this effect should be taken

into account by fitting with an appropriate function which is the sum of a Gaus-

sian function and a Gaussian error function [99, 100]. It is noteworthy that even
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Figure 3.23: Standard reduced mobility K0 in cm2V−1s−1 of Xe+ ions in 2P3/2 and 2P1/2

states in gaseous Xe. Experimental values: ☆[89] and ◇ [97]. Other calculation: X [2].
This work: quantum method: fulfilled symbol; hybrid method: empty symbol using
interaction potentials of refs [67] 2 and [96]◯.

this latter procedure is not exempt from fitting error but certainly smaller than

the error induced by fitting with a simple Gaussian function.

3.2.4.3 Diffusion coefficient

Concerning diffusion coefficient, displayed in figure 3.24, only quantum and hy-

brid values are shown. Here again, semi-classical and quantum mesoscopic val-

ues are too close to be shown clearly on this figure, all methods provide values

close to each other. By comparing values at 5 Td with theoretical one at 0 Td (25.3

meV), quantum and hybrid methods (25.8 - 26.2 meV) provide coherent results.

Same behavior can be observed as for krypton (figure 3.14) i.e. transverse diffu-

sion coefficient is higher than longitudinal one at high fields. However, diffusion

coefficients grows faster for krypton than xenon. For xenon, previous calculations

done by Barata and Conde [63] allow us to compare our results. Until 300 Td our

calculations are closed to them, even if isotropic collisions are more respected in
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our case (eDT /K and eDL/K are closer). Unfortunately, higher range values are

not available for comparison.
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(a) 2P3/2 state diffusion coefficients
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Figure 3.24: Characteristic longitudinal (eDL/K, 2) and transverse (eDT /K0,◯) energies
of Xe+(2P3/2) (panel a) and Xe+(2P1/2) (panel b) ions in gaseous Xe calculated for inter-
action Model B [96] using the hybrid method (open symbols) and the quantum method
(full symbols). For comparison, inverse method data are added as dashed (eDL/K0) and
dotted (eDT /K0) curves, as well as data resulting from an independent calculation by
Barata and Conde performed for the Xe+(2P3/2) ion (see figure 4 of reference [63]), △ :
(eDL/K0) and ▽ : (eDT /K0)
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3.3 Conclusions

Collisions of rare-gas ions (Rg+ = Kr+ or Xe+) with neutral rare-gas atoms (Rg = Kr

or Xe) have been studied using three theoretical approaches, the full quantum ap-

proach [61, 101], the semi-classical (Jeffreys-Wentzel-Kramers-Brillouin approxi-

mation) method [62], and a hybrid approach [75] with electrons treated quantum

mechanically and atomic nuclei described within the classical approximation. In

addition, a semi empirical inverse-method approach [76, 77] has also been em-

ployed which is based on a simple isotropic potential adjusted to experimental

data [89, 93] of the Rg+ mobility in the carrier parent gas. For krypton, two state-

of-the-art interaction models [53, 54] based on extensive ab initio calculations have

been used in the three theoretical calculations. They are called Model A [53] and

Model B [54, 68] throughout the paper. Within these two models, all relevant elec-

tronic states, asymptotically correlating to 4s24p5 configuration of the ion, have

been considered as well as the Spin-Orbit Coupling which is important in the

heavy krypton ion. For xenon, two interaction models based on literature di-

atomic potentials have been employed to build up the electronic Hamiltonian of

the Xe+/Xe collision complex: Model A based on ab initio calculations [67] and

Model B derived from state-of-the-art photoelectrons spectra of the xenon dimer

[96]. The Spin-Orbit Coupling, which is important in the heavy xenon ion, has

been included via a semi empirical scheme [47] which was many times before

proved to lead to a highly accurate representation of the Spin-Orbit Coupling in

a general rare-gas dimer cation. Within these two models, all relevant electronic

states, asymptotically correlating to 5s25p5 configuration of the ion, have been

considered as well as the Spin-Orbit Coupling which is important in the heavy

xenon ion.

As a first step, effective collision cross-sections (differential, integral, and mo-

mentum transfer) have been calculated with two fine-structure states of the kryp-

ton and xenon ions, 2P3/2 and 2P1/2, distinguished. Then, the calculated cross-

sections have been used in Monte Carlo calculations [102] of transport prop-

erties of the rare-gas ion (mobility, longitudinal and transverse diffusion coef-
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ficients) in parent gas over a broad range of the reduced electric field (E/N =

5 − 3000Td). All the data obtained via the three theoretical approaches consid-

ered in this work have been compared to one another as well as to available ex-

perimental data (mobility) or pseudo experimental data derived from the semi

empirical inverse method where experiments are not available (cross-sections,

diffusion coefficients). It has been found that the cross-sections calculated from

interaction Model B agree much better with the pseudo-experimental inverse-

method data than cross-sections obtained from Model A. This particularly holds

at low collision energies for which the Model A cross-sections significantly devi-

ate from the inverse-method curve. Further, the full quantum treatment and the

JWKB method give basically the same values of calculated cross-sections. The

importance of transitions between states or subspaces during a collision was also

investigated and shows that some transitions not allowed in quantum method

play an important role on the mobility especially in 2P3/2 krypton state.

A good qualitative agreement with the experiment has been obtained for all

the three theoretical methods and both interaction models, which have all shown

a plateau in the mobility data at low electric fields (E/N ≤ 100Td) followed by a

drop at higher fields. A quantitative agreement has however been achieved only

for the semi empirical inverse-method data and for the theoretical data obtained

for higher electric fields (E/N ≥ 100 − 500Td). At low electric fields, quantitative

differences are seen for the three purely theoretical approaches which, in general,

underestimate the experiment. In general, interaction Model B leads to a better

agreement with the experimental data than Model A, the quantum and semi-

classical calculations provide basically the same data, and the hybrid method, if

combined with interaction Model B, leads to data that are closest to the experi-

ment. It is to note that calculated xenon mobility sets are qualitatively closer to

experimental data than krypton ones.

There exist several stable isotopes of the krypton and xenon atom. Instead of

considering all possible combinations of them in Rg+/ Rg collisions, an artificial,

"averaged" isotope has been considered to save the computational time. Calcula-
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tion tests considering all the possible isotope combinations have been performed

by using the computationally cheapest semi-classical method lead to only negli-

gible deviations from the calculations performed with the artificial isotope.

Finally, characteristic diffusion energies (eD/K0) have been calculated for in-

teraction Model B and for both longitudinal and transverse diffusion coefficient.

Only a slight dependence of the calculated values on the theoretical method used

is seen for this transport parameter and also the difference between transverse

and longitudinal diffusion is rather small. Alike, the correspondence between

theoretical and pseudo-experimental inverse-method data is very good, which

means that the characteristic diffusion energies are rather insensitive to the par-

ticular method used to calculate them.

To summarize, interaction Model B leads to quantitatively correct results, as

compared to the experiment, and is thus preferred to be used in krypton and

xenon ions scattering calculations. The hybrid method provides, despite the clas-

sical treatment of nuclei, realistic scattering data and can thus safely be used in

calculations on collisions of molecular ions of rare-gas (Rg+2 or Rg+3 ) for which the

quantum approach is very complicated. Calculations on collisions of molecular

dimer (Rg+2 ) will be subject of next chapter.
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Chapter 4

Ionic Dimer - Neutral Atom

Collisions

This chapter is a direct continuation of Chapter 3. The only difference is that

atom - atom collisions will be replaced with dimer - atom collisions here. Ad-

vantages of previous work will also be taken into account, i.e, using artificial

isotope hypothesis, verified hybrid method and the knowledge about ion neutral

interactions potentials. This chapter will cover an interesting area of collisions

in plasma. Even if they are not dominant, they may be quite abundant at am-

bient conditions, and in order to model macroscopic plasma with high accuracy,

all data calculated in this work are required. Like previous chapter, this chapter

will be split in two parts, one covering krypton atoms and the other one covering

xenon atoms. A final part will contain a conclusion of this chapter.

4.1 Selection of initial conditions

Compare to ionic atom, ionic dimer is more complicated to describe due to the

different energy storage mechanism. While ionic atom can only store energy in

different electronic levels (excited states), dimer can store energy via three dif-

ferent mechanisms, namely, vibrational, rotational, and electronic excitations. In

this thesis both rotational and vibrational excitations will be studied. For dimer,
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all the calculations were done in the lowest energy state (I(1/2)u). However, dif-

ferent rotational-vibrational energy storage mechanisms will be studied. For two-

atomic (in general, linear) molecules, only rotations around axes perpendicular to

the bond axis are allowed. This gives two independent rotational degrees of free-

dom. In addition, there is only one vibrational mode available in a two-atomic

molecule. The latter follows from a general formula providing the number of vi-

brational mode, fvib = 3N - 5 +AwhereN is the number of atoms in the molecule,

A = -1 for a nonlinear molecule and 0 for a linear molecule. A schematic picture

of vibrational states (ν) of a two-atomic molecule is given, both for harmonic ap-

proximation as well as with anharmonic corrections included, in figure 4.1.

Figure 4.1: Schematic representation harmonic (black line) and anharmonic (red line)
states with different vibration levels.

For an equilibrium distance, re, the minimum energy is reached between the

two atoms. By increasing the vibrational/rotational excitation, a finite interval of

distances is sampled and the maximum distance between the atoms extends as
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the vibrational excitation increases. For each rotational-vibrational state an en-

ergy level is well defined, and it can be obtained, under the assumption of sepa-

rability of vibrational and rotational degrees of freedom, by a sum of a vibrational

contribution,

G(ν) = ωe(ν +
1

2
) − ωeχe(ν +

1

2
)
2

, (4.1)

where G(ν) is related to the energy value for the vibrational mode, E = hG(ν),

ν being the vibrational quantum number, ωe the harmonic frequency and χe an

anharmonicity constant, and a rotational part

Fν(J) = BνJ(J + 1) −DJ
2(J + 1)

2
, (4.2)

where Fν(J) is the rotational energy, J is the rotational quantum number, D is the

centrifugal distortion constant and Bν is the rotational constant

Bν =
h

8π2cµr2
. (4.3)

By adding equations 4.1 and 4.2 we obtain:

EJν = G(ν)+Fν(J) = [ωe(ν +
1

2
)+BνJ(J +1)]− [ωeχe(ν +

1

2
)
2

+DJ2(J + 1)
2
]. (4.4)

The first term in square brackets on the r.h.s. of equation 4.4 can be used alone if

a harmonic oscillator and rigid rotor are considered (harmonic approximation), if

anharmonicity and centrifugal distortion are considered, the second bracket term

has to be included. In figure 4.2, an anharmonic potential is depicted, presenting,

schematically, different vibrational and rotational levels. The harmonic approxi-

mation and rigid molecule assumption may represent a good approximation for

low rotation-vibrational excitation, typically under ν = 2 or J = 40, after this the

anharmonicity terms become too important for the former two approximations

to provide correct internal energies of the dimer for cross-sections calculations.

The internal initial conditions of the Rg+2 ion are given by its rotational-vibrational

state and its orientation in space. The rotational-vibrational energies and re-
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Figure 4.2: Schematic representation of different vibrational levels (green line), rotational
levels (dashed blue line) and dissociation energy (dotted black line) for a ground-states
dimer without harmonic approximation.

lated wave functions have been calculated by numerically solving the nuclear

Schrödinger equation (see equation 2.30) on the electronic ground-state potential

energy curve, I(1/2)u,

−
h̵2

2µ

d2ΨJν(r)

dr2
+ [VI(1/2)u +

h̵2J(J + 1)

2µr2
]ΨJν(r) = EJνΨJν(r), (4.5)

where J and ν are rotational and vibrational quantum numbers, respectively,

and µ = m/2 is the effective mass of the Rg+2 dimer. A DVR representation of

the wave function has been used with a Dirichlet boundary condition imposed,

ΨJν(0) = ΨJν(rmax) = 0 (rmax = 30 a.u.), and with discretization step equal to

∆r = 0.02 a.u.. For a particular rotational-vibrational state, the initial distances in

the ion dimer have then been sampled from the square of ΨJν and the kinetic en-

ergy have been calculated from current potential energy and the total rotational-
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vibrational energy, EJν . Corresponding velocities have then been added to both

Rg+2 nuclei and oriented anti-parallelly along the dimer bond axis. After the vi-

brational state of the Rg+2 dimer has been set in this way, anti-parallel velocities

perpendicular to the dimer bond axis have been added to the dimer nuclei so

that the angular momentum corresponding to a specific choice of the rotational

quantum number, J , is achieved. Finally, the dimer has been randomly oriented

in space. In the present thesis, we denote a particular rotational-vibrational ex-

citation of the Rg+2 dimer by [J=J , ν=ν]. For example, [J=0, ν=0] means that the

dimer has been prepared, prior to collision, in the rotational-vibrational ground-

state with J = 0 and ν = 0.

For each particular choice of the Rg+2 rotational-vibrational state (J, ν), Rg+2/ Rg

collision energy (Ecoll), and collision impact-parameter (b), totally 504 trajectories

have been integrated for randomly oriented dimers until disintegration, either to

Rg+2 +Rg or Rg+ +Rg+Rg. A simple distance criterion has been used to detect the

particular type of disintegration with the cut-off distance set to 20 Å. This means

that about 150 000 trajectories have been used for each collision energy and Rg+2

rotational-vibrational excitation to calculate effective collision cross-sections.

4.2 Krypton

In this section, calculations for Kr+2 collisions in a krypton gas will be covered,

this work has been reported in conference [103] and article [104]. Firstly, an intro-

duction to experimental measurements will be shown, followed by a discussion

about neutral potentials used in the DIM methodology. Afterwards calculated

cross-sections will be presented. Following part will contain transport coefficient

and dissociation rate and some calculated values (mobility) will be compared to

experiments. Finally, conclusive remarks will close down this section.
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4.2.1 Experimental data reported in literature

A summary of experimental reduced mobility available in literature is shown in

figure 4.3. Biondi’s et al. [92] values will be excluded from further comparison,

effectively they are too much above other experimental values. By looking in

following critical compilations of mobility done by Ellis et al. [88, 105], Biondi’s et

al. values, presented in the first edition, are replaced by Helm’s et al. [106] one in

the third edition. Varney’s et al. [91] and Beaty’s et al. [107] experimental mobility

values cover a narrow range of reduced electric field but allow us to be confident

on Helm’s et al. measurements , at least in the electric field range covered by the

two earlier measurements. For the most recent experimental values by Neves

et al. [2], differences from previous sets of data are visible. Firstly, the absence

of plateau at low field indicates that some impurities could have influence the

measurements and, secondly, the evolution with the increasing reduced electric

field allows us presume, that for 100-200 Td peak region, the values by Neves et

al. would be considerably below previous experiments. Therefore, only Helm’s

et al. measurements will be kept for further comparison.

4.2.2 Neutral potentials

For cross-sections calculations, different interactions potentials were used as in-

put for DIM models. Two sets of ion-neutral potentials introduced in section 3.1.1

and four different models for neutral - neutral interactions were used. For the ion-

neutral potentials, the same labels will be used as in section 3.1.1 (namely Model

A [53] and Model B [54]). The Kr2 interaction potentials used will be indicated

by a number added to the name of the Kr+2 interaction model, "1" for a semiem-

pirical potential by Dham et al. [55], "2" for a ab initio potential by Waldrop et

al. [56], "3" for a refit of previous ab initio potential done by Jäger et al. [57] and

finally "4" for the ab initio potential calculated by Jäger et al. [57]. For example,

interaction Model A1 will refer to interaction potential of Kr+2/Kr system using

Model A for Kr+2 and Model 1 for Kr2. Differences between these four neutral

potentials can be observed in figure 4.4. The value of the well depth of all neu-
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Figure 4.3: Summary of experimental data on reduced Kr+2/Kr mobility measured at
close-to-ambient temperatures and normal pressure (P = 760Torr): ◯ Varney et al.[91]
(T = 300K), × Biondi & Chanin [92] as reported by Ellis et al. [88] (T = 300K), + Beaty et
al. [107] (T = 300K), ⋆ Helm & Elford [106] (T = 295K), 2 Neves et al. [2] (T = 300K).
Inverse method data obtained from the experimental points by Helm & Elford [106] are
also shown for comparison (straight gray line).

tral potentials are close to each other (-17.30 to -17.36 meV) and the long-distance

interactions are as well very similar. However, major differences are present in

the repulsive wall region (as visible in the inset of figure 4.4). Model 1 has the

less repulsive part while Model 3 and Model 4 are much more repulsive at short

distances. Model 2 is more repulsive than Model 1 but less repulsive than Models

3 and 4. Since Model 3 is a refit of the ab initio values of Model 2, one can already

see that the repulsive wall is a difficult part of the interaction potential to be accu-

rately provided from ab initio calculations. Model 1, being based on high-kinetic

Kr −Kr scattering experimental values, is considered as the most reliable at short

distances and will be kept as main neutral potential in this work.



106 CHAPTER 4. DIMER - ATOM COLLISIONS

3.5 4.0 4.5 5.0 5.5 6.0
-0.02

-0.01

0.00

0.01

0.02
In

te
ra

ct
io

n 
po

te
nt

ia
l(e

V)

Internuclear distance (Å)

2.0 2.1 2.2 2.3 2.4 2.5
2

4

6

8

Figure 4.4: Neutral interaction potentials for the Kr2 system: solid curve – semi-empirical
potential by Dham et al. [55], dashed curve – ab initio potential by Waldrop et al. [56],
dotted curve – ab initio potential by Jäger et al. [57], and dashed dotted curve – ab initio
potential by Waldrop et al. refitted by Jäger et al. [57]. In the inset, a detailed view of the
short-distance region is provided.

4.2.3 Cross-sections

For the Non-Reactive Scattering (NRS) channel, momentum transfer (MT) cross-

sections are provided since the total cross-section diverges within the classical

approximation if elastic scattering is included. This divergence can easily be re-

moved by applying a MT approximation [101] in the cross-section calculations

which, at the same time, introduces only negligible errors [64]. Following previ-

ous work on helium, neon, and argon, two MT cross-sections are considered, a

usual one originally proposed for elastic scattering calculations,

σ
(MT1)
NRS = ∫

4π
[
dσ

dΩ
]
NRS

(1 − cosχ)dΩ, (4.6)
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and another previously proposed [25] for an approximate inclusion of non-elastic

scattering effects due to rotation-vibrational excitations and/or desexcitations in

the colliding dimer,

σ
(MT2)
NRS = ∫

4π
[
dσ

dΩ
]
NRS

(1 −
p′

p
cosχ)dΩ. (4.7)

In equations 4.6 and 4.7, [dσ/dΩ]NRS represents the NRS differential cross-section,

χ denotes the scattering angle, p′ is a mean of the center-of-mass linear momen-

tum magnitude of the Kr+2 dimer scattered into solid angle dΩ, and p is the mag-

nitude of the Kr+2 momentum prior to collision. For the Collision Induced Disso-

ciation (CID) channel, a usual total collision cross-section is used,

σ
(int)
CID = ∫

4π
[
dσ

dΩ
]
CID

dΩ, (4.8)

since no divergence occurs within the classical theory in the case of scattering

channels with a threshold.

4.2.3.1 Dependence of calculated cross-sections on ionic potentials

The performance of the DIM approach employed in the present calculations is

mainly affected by the quality of the input ionic diatomic potentials. As a first

step, we thus provide cross-sections calculated for the two sets of ionic poten-

tials introduced above (Model A [53] and Model B [54]) and compare them with

inverse method data (which are considered here as a substitute for missing ex-

perimental values). Results are summarized in figure 4.5. In this figure, collision

cross-sections calculated for the Kr+2 dimer initially in the rotational-vibrational

ground-state, [J=0, ν=0], are displayed. Both MT cross-sections of NRS and CID

cross-sections are included, the former calculated either via equation 4.6 or using

equation 4.7.

A first observation from figure 4.5 is that both methods of NRS cross-sections

calculations (equations 4.6 and 4.7) give values very close to each other. This

may mean that the Kr+2 momentum is (at least on the average) conserved during
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Figure 4.5: Comparison of theoretical predictions of Kr+2/Kr effective cross-sections cal-
culated for the rotational-vibrational ground-state of the dimer, [J=0, ν=0]: left-oriented
triangles (�) – Model A, right-oriented triangles (�) – Model B, half-filled symbols – mo-
mentum transfer cross-section for non-reactive scattering: upper half-filled symbols –
σ
(MT1)
NRS (equation 4.6), lower half-filled symbols – σ

(MT2)
NRS (equation 4.7); empty symbols

– dissociation cross-section (σ(int)CID , equation 4.8), straight gray line – inverse method data
based on the experiment of reference [106].

collisions with carrier gas atoms (p = p′), probably due to a negligible contribution

of inelastic processes. Nevertheless, σ(MT2)
NRS is preferred here and, if not specified

otherwise, it will be used in subsequent analyses in the rest of the thesis.

Another observation related to NRS scattering is that, at low collision ener-

gies, MT cross-sections calculated for interaction Model A1 are systematically

above the inverse method data, while the reverse holds for the data obtained

from Model B1 (for a more detailed view see the inset of figure 4.5). Related

mobilities will thus be sorted in a reverse order at low electric field and one can

expect that Model A1 will underestimate, in the case of [J=0, ν=0], the mobility

measurement. Moreover, as it follows from preceding calculations on neon [23]



4.2. KRYPTON 109

and argon [25], increased rotational-vibrational excitation of the dimer decreases

its mobility. Model A1 is thus expected to underestimate respective experiment

regardless the initial rotational-vibrational state of the ion dimer. For Model B, on

the other hand, considering rotational-vibrational excitations of the Kr+2 ion may

lead to an improved agreement with the experiment. As a consequence, we can

expect, in line with chapter 3.1 on Kr+/Kr (see also reference [52]), that Model B1

describes the interactions between Kr+2 and Kr more accurately than Model A1

(see also subsection 4.2.4 for additional discussions).

Concerning σ(int)CID , the differences between cross-sections calculated via Model

A1 and Model B1 are much less pronounced than for NRS, which is particularly

clear if one realizes that a log scale is used on the cross-section axis of figure

4.5. This compares well with a conclusion made with subchapter 3.1, namely

that differences in the asymptotic parts of the ionic potentials are behind the ob-

served differences in calculated mobilities (or related NRS cross-sections). Since

the CID channel is prevailingly restricted to small values of the impact-parameter

(the higher collision energy, the smaller impact-parameters contribute), mainly

medium and short distances contribute. At these distances, however, both sets

of ionic potentials are basically of the same quality and the calculated CID cross-

sections are thus close to each other. Unfortunately, to our best knowledge there

are no experimental cross-sections available in the literature to validate the over-

all accuracy of our theoretical estimates.

4.2.3.2 Dependence of calculated cross-sections on dimer rotational-vibrational

excitations

Lot of rotational-vibrational states were studied in this work, only a few of them

will be shown in figures. However, all of them are summarized in tables at the

end of this thesis. The rotational-vibrational excitations studied, with excitations

energies compared to ground-states (set at 0 meV) are summarized in table 4.1

The dependence of calculated cross-sections on the initial rotational-vibrational

state of Kr+2 is shown in figure 4.6. Only data obtained for Model B1 are consid-
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Rotational excita-
tion (J)

Vibrational exci-
tation (ν)

Internal energy
(meV)

0 0 0
0 1 24
0 2 46
0 5 112
0 12 267
10 0 1
50 0 18
100 0 70
200 0 272

Table 4.1: Summary of rotational-vibrational excitations done on electronically ground-
state dimer

ered, and two rotational and/or vibrational excitations, close in the excitation

energy, are included and compared with the ground-state cross-sections ([J=0,

ν=0]) of figure 4.5.

It is clear from figure 4.6 that the changes induced by the two kinds of exci-

tations, either rotational or vibrational, are both qualitatively and even quantita-

tively (almost) identical, provided the energy pumped into the dimer is the same.

While low excitations considered in figure 4.6 ([J=0, ν=1] and [J=50, ν=0], i.e.,

∆E ≈ +20meV) induce, only very small changes in calculated cross-sections as

compared to the ground-state, both for NRS as well as for CID, higher rotational-

vibrational excitations ([J=0, ν=12] and [J=200, ν=0], ∆E ≈ +270meV) lead to

considerably larger cross-section values. The observed enhancement of both NRS

and CID cross-sections due to the rotational-vibrational excitation is rather eas-

ily understood since the (average) bond distance (geometric cross-section) of the

Kr+2 ion growths up upon rotational-vibrational excitation due to anharmonic fea-

tures in the Kr+2 interaction potentials. Noteworthy, the higher is the excitation,

the more pronounced becomes the anharmonicity and, consequently, the larger

change in the calculated cross-sections is observed. For CID, in addition, low-

ering of the dissociation threshold occurring in excited dimers (i.e., effectively a

shift of the CID cross-section curve to lower collision energies) also contributes.



4.2. KRYPTON 111

0.01 0.1 1 10 100
1

10

100

C
ro

ss
-s

ec
tio

n 
(Å

2 )

Kinetic energy (eV)

(MT2)
NRS

(int)
CID

0.01 0.1
100

200

300

400

Figure 4.6: Dependence of Kr+2/Kr effective cross-sections on the dimer rotational-
vibrational excitation (excitation energies are given in parentheses) as obtained from cal-
culations performed for Model B1: ◯ [J=0, ν=0], △ [J=0, ν=1] (+24 meV), � [J=0, ν=12]
(+267 meV), ▽ [J=50, ν=0] (+18 meV), � [J=200, ν=0] (+272 meV). For comparison, in-
verse method momentum transfer cross-sections based on the experiment of reference
[106] (straight gray line) are also shown.

As discussed above, the increase of the NRS cross-section induced by dimer

excitation means that the mobility of excited Kr+2 ions will be decreased with re-

spect to the rotational-vibrational ground-state. Since, at low collision energies,

the cross-sections obtained for low and high rotational-vibrational excitations

more or less bracket the inverse method cross-sections (see the inset of figure

4.6), one can expect that this will also be the case for mobilities, particularly in

the low-field region. As a consequence, existence of an effective excitation can be

anticipated which will lead to a good agreement between theoretical and experi-

mental mobility data at low electric fields.
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4.2.3.3 Dependence of calculated cross-sections on neutral potentials

Another ingredient that may influence the accuracy of the DIM model if applied

to three-atomic, and larger ions, is the neutral - neutral potential. For a long

time, semi-empirical potentials [55] adjusted to a broad range of experimental

data have been used. Recently, however, a rapid progress in computational re-

sources as well as in quantum chemistry methods has allowed delicate ab initio

calculations employing high level correlation methods and extended basis sets

which allow to treat weak van der Waals forces between neutral rare-gas atoms

with an accuracy competitive to the level achieved by semi-empirical modeling.

Among the most recent ab initio studies on the neutral krypton dimer, calcula-

tions by Waldrop et al. [56] and Jäger et al. [57] represent a benchmark. In this

subsection, Kr+2/Kr cross-sections calculated using these two newest ab initio po-

tentials are compared with the data obtained for the semi-empirical potential by

Dham et al. [55], otherwise exclusively used in this thesis for krypton.

Results of such comparison are shown in figure 4.7. Cross-sections obtained

for the dimer initially prepared in the rotational-vibrational ground-state, [J=0,

ν=0], and for a high vibrational excitation, [J=0, ν=12], are provided as calcu-

lated within Model B with four different neutral potentials considered: the semi-

empirical potential [55], the two recent ab initio potentials [56, 57], and the po-

tential of reference [56] refitted [57] by using the analytical representation of ref-

erence [57]. It is clear from this comparison that the four neutral potentials give

basically the same CID cross-sections, but a more involved picture is seen for

the NRS process and related MT cross-sections. While in the case of the ground-

state dimer, [J=0, ν=0], no significant differences are seen, for the vibrationally

excited dimer, [J=0, ν=12], a well pronounced difference is observed between

values obtained from ab initio potentials on one hand and the values resulting

from the semi-empirical potential on the other hand. More specifically, the use

of the semi-empirical potential leads to increased values of the MT cross-section

at low collision energies (Ecoll < 1 eV), while a bit smaller values, as compared

to the data calculated from ab initio potentials, are obtained at higher energies
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Figure 4.7: Dependence of Kr+2/Kr effective cross-sections on neutral potential used in the
DIM model (Model B): 2 – [J=0, ν=0],◯ – [J=0, ν=12]; empty symbols – semi-empirical
potential by Dham et al. [55], upper half-filled symbols – ab initio potential by Waldrop
et al. [56], right half-filled symbols – ab initio potential by Jäger et al. [57], left half-filled
symbols – ab initio potential by Waldrop et al. refitted by Jäger et al. [57].

(Ecoll > 5 eV). Noteworthy, the MT cross-sections obtained for different ab initio

potentials are more or less coincident.

The origin of the observed differences can be elucidated if one compares the

four neutral potentials. In Figure 4.4, one can clearly see that the potentials are

almost identical at large and intermediate internuclear distances but differ visibly

at short range. In particular, the short-distance part of the semi-empirical poten-

tial is significantly less repulsive as compared to the ab initio potentials. Since

distances in small ionic complexes of rare-gases are considerably reduced due

to the attractive covalent and induction forces, it seems that the differences seen

for the potentials at their short-distance parts are responsible for the observed

differences in calculated cross-sections. At short distances, however, the semi-
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empirical potential may be considered more reliable since a) it was fitted on state-

of-the-art experimental data on high-energy Kr/Kr collisions (see reference [55]

for details) and b) ab initio, though highly correlated calculations are known to

overestimate the repulsion of closed shell rare-gas systems at short inter-atomic

distances [108].

4.2.4 Mobilities

In this subsection, mobilities calculated from cross-sections reported in the pre-

ceding subsection are presented, discussed, and compared with experimental

values. As argued in section 4.2.1, only the experimental measurement by Helm

and Elford [106] and its inverse method extension will be considered for the com-

parison.

It should be also noted that, for the lowest electric fields considered, MT cross-

sections are needed for Kr+2/Kr collision energies which are below the values in-

cluded in the dynamical calculation and reported in the preceding subsection

(Ecoll ≥ 0.01 eV). To avoid expensive hybrid calculations in such a low-energy

region leading to very long computational times, mainly due to a considerable

fraction of long-lived orbiting trajectories, cross-sections provided in the preced-

ing subsection have been extrapolated below Ecoll = 0.01 eV using a linear fit of

the log-log plot performed for Ecoll = 0.01 − 0.06 eV. No such extrapolation has

been done, however, for the inverse method data which could easily be extended

to any value of Ecoll. Illustrative figure is visible in figure 4.8, one can see that the

extrapolation follows the behavior of the inverse method values.

Normalized cumulative distributions as function of collision energy are shown

in figure 4.9 for different reduced electric fields for Kr+2 in rotational-vibrational

ground-state. This figure shows that dissociation of the dimer appears only from

a certain energy (threshold value, 1.15 eV) and is not present for all reduced elec-

tric fields. For high reduced electric fields (< 500 Td), collision energy is high and

the probability that the dimer is initially in I(3/2)g or on higher electronic states

is non negligible. Therefore, future calculations on I(3/2)g state initial dimer elec-
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Figure 4.8: Illustrative figure of linear extension of MT cross-sections for Kr+2/Kr at the
rotational-vibrational ground-state of the dimer, [J=0, ν=0]: lower half-filled(�) – Model
B1 σ

(MT1)
NRS (equation 4.6), empty �– Linear extension based on results of calculations,

straight gray line – inverse method data based on the experiment of reference [106].

tronic state will be done to observe the influence of higher electronic states on

mobility.

4.2.4.1 Dependence of calculated mobilities on ionic potentials

As for the cross-sections comparison, we start with an analysis of mobility data

calculated for the two model sets of ionic potentials (Model A [53] and Model B

[54]). Only the rotational-vibrational ground-state of the Kr+2 ion, [J=0, ν=0], is

considered and the results are summarized in figure 4.10.

This figure shows a similar behavior of the dimer mobility as observed for

previously studied systems, He+2 [21], Ne+2 [23], and Ar+2 [25], namely, a plateau in

the low-field region, followed first by a maximum (at E/N ≈ 250Td and E/N ≈

190Td for Model A1 and Model B1, respectively), and finally by a rapid drop of
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Figure 4.9: Cumulative distribution of [J=0, ν=0] Kr+2 collision energy for different re-
duced electric field.

mobility values in the high-field range. Like in previous studies, the maximum

in the theoretical mobility curves is considerably shifted to stronger fields with

respect to the experiment (E/N ≈ 130Td) with a much better estimate of the max-

imum position provided by Model B.

As expected from cross-section calculations, theoretical mobilities obtained

for Model B1 overestimate the experiment in the plateau region (E/N ≤ 100Td)

while the estimated calculated with Model A1 systematically lie here below the

experimental points. Though the differences between respective mobility calcu-

lations based on σ(MT1)
NRS and σ

(MT2)
NRS MT cross-sections are better pronounced than

for cross-sections themselves, they do not change this general picture. If σ(MT2)
NRS

data are considered, the deviations from the experimental points (and/or from

the inverse method curve which nicely reproduces them) are about -8% and 4%

for Model A1 and B1, respectively.
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Figure 4.10: Comparison of theoretical predictions of Kr+2/Kr mobility calculated for the
rotational-vibrational ground-state of the dimer, [J=0, ν=0]: left-oriented triangles (�) –
Model A, right-oriented triangles (�) – Model B, upper half-filled symbols – mobilities
calculated from σ

(MT1)
NRS (equation 4.6), lower half-filled symbols – mobilities calculated

from σ
(MT2)
NRS (equation 4.7), ⋆ experimental data by Helm & Elford [106], straight gray

line – inverse method data based on the experiment of reference [106].

Considering the results of our previous calculations on Ne+2 and Ar+2 , we ex-

pect that the Kr+2 mobility will decrease with increasing rotational-vibrational ex-

citations in the Kr+2 dimer. This means that mobilities obtained via Model B1 will

move, in contrast to Model A1 data, towards the experiment as the Kr+2 excitation

is increased. For this reason, we assume that, in agreement with the procedure

adopted for the Kr+/Kr system in section 3.3 (see also reference [52]), Model B1

may provide a better description of interactions in the Kr+2/Kr collision complex

and, as a consequence, only mobility data calculated via Model B1 will hereafter

be considered for further discussions.



118 CHAPTER 4. DIMER - ATOM COLLISIONS

4.2.4.2 Dependence of calculated mobilities on dimer rotational-vibrational exci-

tations

Mobilities obtained from cross-sections calculated for rotationally-vibrationally

excited Kr+2 dimers are shown in figure 4.11. Clearly, the observations result-

ing from this figure basically follow the conclusions made for underlying cross-

sections.
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Figure 4.11: Dependence of the Kr+2/Kr mobility on the dimer rotational-vibrational
excitation (excitation energies are given in parentheses) as obtained from calculations
performed for Model B1 and using σ

(MT2)
NRS (equation 4.7): ◯ [J=0, ν=0], △ [J=0,

ν=1] (+24 meV), � [J=0, ν=12] (+267 meV), ▽ [J=50, ν=0] (+18 meV), � [J=200, ν=0]
(+272 meV). For comparison, experimental data of reference [106] (⋆), and corresponding
inverse method data (straight gray line) are also shown.

Firstly, the mobility seems to depend on the total excitation energy only and is

rather insensitive to its distribution between dimer rotation and vibration degrees

of freedom. More specifically, almost identical mobility values are obtained for

excitations for which the extra energy stored in the vibrational and/or rotational
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degrees of freedom of the Kr+2 dimer are close to each other (here, either [J=0,

ν=1] and [J=50, ν=0], or [J=0, ν=12] and [J=200, ν=0]).

Secondly, small rotational-vibrational excitations ([J=0, ν=1] and [J=50, ν=0])

lead to data which are very close to the values obtained for the rotational-vibrational

ground-state ([J=0, ν=0]) and, in the plateau region (E/N ≤ 100Td), and related

calculations overestimate, like the ground-state calculations, the experimental

mobility. Higher excitations ([J=0, ν=12] and [J=200, ν=0]), on the other hand,

lead, in this region, to mobility values lying below the experiment. As a conse-

quence, the low-excitation and high-excitation mobility data bracket the experi-

ment.

This bracketing can be used to roughly estimate the (average) excitation in

the experimental dimer population. If the mobility data obtained for the low-

est electric field (E/N = 5Td) are specifically considered, we obtain, by a linear

interpolation, an average excitation energy of ∆E ≈ 142meV needed to repro-

duce the experimental point. If, in addition, equipartition of this energy is pre-

sumed between rotational and vibrational degrees of freedom, the following av-

erage excitations are predicted for experimental dimers: v̄ ≈ 3 and j̄ ≈ 100 − 120.

Since, under ambient conditions (T = 300K), these average values should read

v̄ ≈ 0.7 and j̄ ≈ 54, the experimental population of Kr+2 seems to be overheated

(TKr+2
≈ 650 − 700K). Many effects may contribute. First of all, the ionic dimers

may be formed in highly excited states, maybe even electronically excited states

either through an associative ionization reaction called Hornbeck-Molnar process

[109, 110],

Kr∗ +Kr→ Kr+2 + e
−, (4.9)

where asterisk denotes a (high) electronic excitation in the (neutral) krypton atom,

or by a three-body associative reaction,

Kr+ +Kr +Kr→ Kr+2 +Kr. (4.10)

And, secondly, some heating may also result from ions acceleration via the ap-
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plied external field. Moreover, the experimental dimer population needs not be

fully thermalized.

4.2.4.3 Dependence of calculated mobilities on neutral potentials
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Figure 4.12: Dependence of the Kr+2/Kr mobility calculated from σ
(MT2)
NRS (equation 4.7) on

neutral potential used in the DIM model (Model B): squares – [J=0, ν=0], circles – [J=0,
ν=12]; empty symbols – semi-empirical potential by Dham et al. [55], upper half-filled
symbols – ab initio potential by Waldrop et al. [56], right half-filled symbols – ab initio
potential by Jäger et al. [57], left half-filled symbols – ab initio potential by Waldrop et al.
refitted by Jäger et al. [57]. For comparison, experimental data of reference [106] (⋆) and
corresponding inverse method data (straight gray line) are also shown.

Mobilities of Kr+2 calculated from cross-sections obtained for different neu-

tral potentials employed in the DIM model are shown in figure 4.12. As ex-

pected from related cross-section data (see figure 4.7), a replacement of the semi-

empirical neutral potential [55] with one of the ab initio potentials [56, 57] in-

duces changes in calculated mobility only for high rotational-vibrational excita-

tions of the Kr+2 dimer (here, [J=0, ν=12]). Indeed, we see from figure 4.12 that the
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mobilities calculated using different neutral potentials lie on one another for the

rotational-vibrational ground-state while significant deviations are observed be-

tween the ab initio potentials on one hand and the semi-empirical potential on the

other hand for excited dimer (with different ab initio neutral potentials yielding

almost identical data). The situation fully complies with what has been observed

for cross-sections, just the differences are magnified. Interestingly, the ab initio

potentials lead, in the low-field region, to considerably higher Kr+2 mobility esti-

mates for the excited dimer ([J=0, ν=12]) than the semi-empirical potential and

they even overestimate the experimental data. As a consequence, much higher

excitations would have to be presumed to reproduce the experiment. This means

that an even higher overheating of the experimental population of Kr+2 dimers is

predicted for the ab initio potentials than for the semi-empirical one.

4.2.5 Diffusion coefficients

Longitudinal, eDL/K0, and transverse, eDT/K0, characteristic diffusion energies

have also been calculated since they represent an important ingredient of macro-

scopic plasmas modelings. They are summarized, as obtained for models B1 and

B4, in figure 4.13. For clarity, only data calculated for [J=0, ν=0], and for a Kr+2

excited state, [J=0, ν=12] are considered.

Quite surprisingly, we notice from this figure that, in contrast to the Kr+2 mobil-

ity, both characteristic diffusion energies are almost insensitive to the neutral po-

tential used. The other observations, however, remain basically the same as those

made for the mobility data. In particular, increased rotational-vibrational en-

ergy leads to a well seen decrease in the characteristic diffusion energies, and the

(pseudo experimental) inverse method curves, both longitudinal and transversal,

are better reproduced by excited hybrid data, [J=0, ν=12], then by the ground-

state ones, [J=0, ν=0].

We further notice that the longitudinal diffusion energy increases faster for

the ground-state, [J=0, ν=0], then for vibrationally excited dimer, [J=0, ν=12].

This enhanced growth is seen up to E/N ≈ 500Td (the mean CMS collision en-
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Figure 4.13: Longitudinal (2) and transverse (◯) characteristic diffusion energies of the
Kr+2 ion in krypton gas calculated for interaction Model B1, the semi-empirical potential
for neutral - neutral interactions [55], and σ

(MT2)
NRS : filled symbols – [J=0, ν=0], empty

symbols – [J=0, ν=12]. Dashed lines close to respective symbols represent data obtained
for Model B4. For comparison, inverse method data (solid lines) based on experimental
mobilities of reference [106] are also shown. In the inset, a magnified view of the low-filed
region is provided.

ergy of the Kr+2/Kr complex corresponding to this field strength is about Ecoll ≈

2 eV), then both longitudinal diffusion curves become more or less coincident at

higher fields. This can be related to the threshold energy of the Kr+2 dissociation

(D0 ≈ 1.17 eV for the ground-state, I(1/2)u potential) which dominates at higher

collision energies.

As expected, longitudinal and transverse characteristic diffusion energies co-

incide in the low-field region (E/N ≤ 30Td) when they form a typical plateau

(eDL/K0 ≈ eDT/K0 ≈ 27meV). This observation compares well with a value fol-

lowing from the Nernst-Townsend-Einstein equation, eD/K0 → kBT as E/N →

0Td (kBT = 25.3meV for T = 300K). The longitudinal characteristic diffusion en-
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ergy then becomes higher than the value obtained for transverse diffusion as the

field strength is increased (E/N ≥ 30Td), which is an expected effect of the extra

force acting on the dimer ion via the applied electric field.

4.2.6 Dissociation rate constants

Finally, theoretical estimates of the rate constant, kCID, of the collision induced

dissociation (CID) of the Kr+2 ion (equation 2.24) are presented and discussed.

Data calculated for the ground-state dimer, [J=0, ν=0], as well as for selected

excited states (either vibrationally [J=0, ν=12] or rotationally [J=200, ν=0]) are

displayed in figure 4.14. All the data have been calculated using the ionic poten-

tials of Model B and, like above, two representative neutral potentials have been

considered for comparison, the semi-empirical potential [55] and the most recent

ab initio potential [57]. Since, to our best knowledge, no experimental data exist

on the Kr+2/Kr dissociation, no comparison with experiment can be provided.

Like for the diffusion characteristic energies, the values of the dissociation rate

constant are only marginally influenced by the neutral potential used, both neu-

tral potentials considered here yield almost identical values over the whole range

of the reduced electric field. Moreover, even the rotational and vibrational exci-

tations affect the dissociation of Kr+2 only marginally and at rather high reduced

electric fields (E/N ≥ 1000Td). In this range of the electric field, the Kr+2 disin-

tegration is slightly enhanced for excited dimers, the enhancement being, in line

with previous observations, independent of whether the excitation energy has

been pumped into vibrational or rotational degrees of freedom.

We also notice in the inset of figure 4.14 that the threshold electric field of the

CID of the Kr+2 ion is around E/N ≈ 150Td (depending on the internal excitation

of the colliding dimer). At this field, the corresponding mean collision energy

is around Ecoll ≈ 0.3 eV which is significantly below the Kr+2 binding energy pro-

vided for its electronic ground-state by Model B1 (D0 ≈ 1.17 eV). However, the

distribution of Kr+2/Kr collision energies becomes rather broad as the strength of

the electric field grows. For example, while at E/N = 100Td almost all collisions
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Figure 4.14: Rate constant of the Kr+2 collision-induced dissociation calculated for inter-
action Model B1, the semi-empirical potential for neutral - neutral interactions [55], and
σ
(MT2)
NRS : ◯ [J=0, ν=0], � [J=0, ν=12], � [J=200, ν=0]. Dashed lines close to respective

symbols represent data obtained for Model B4. In the inset, a magnified view of the CID
threshold region is provided (note that a logarithmic scale is used on the vertical axis in
the inset).

run at energies which are lower that the theoretical dissociation threshold (D0),

almost 10% of them have enough energy to disintegrate even the rotationally-

vibrationally ground-state dimer at E/N = 200Td.
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4.3 Xenon

This sub-chapter will follow the layout of the previous one on Kr+2 . This means

that first experimental data available in literature will be presented, then the

neutral potentials for Xe2 will be discussed and finally calculated cross-sections,

mobilities and diffusion coefficients derived from this cross-sections will be pre-

sented and analyzed. This work has already been presented in a conference [111]

4.3.1 Experimental data reported in literature
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Figure 4.15: Summary of experimental data on reduced Xe+2/Xe mobility: fulfilled △
Varney et al. [91], fulfilled ▽ Neves et al. [2], fulfilled ☆ Helm [110], empty ☆ Larsen
et al. [97]. Predicted values at E/N= 0 Td done by Neves et al. [112] on experimental
values: Interval between empty � [91], empty � [92], empty △ [110]. Short dotted line
represents an artificial plateau set at K0 = 0.615 cm2V−1s−1.

Multiple experimental data sets of mobility are available in literature for Xe+2/Xe

system, all of them are depicted in figure 4.15. The oldest set, provided by Var-
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ney et al. [91] in 1952 represents reduced mobility for a short range of reduced

electric field [E/N = 130 - 210 Td] with a predicted value in the range K0 = 0.67-

0.77 cm2V−1s−1 at E/N = 0 Td [112]. Helm [110] and Larsen et al. [97] reported

measurements for a broader range of the reduced electric field than Varney [E/N

= 70 - 200 Td]. Interestingly, while the results of references [110] and [97] are

almost identical to each other, they deviate rather significantly from the older

measurement of Varney et al. A decreasing part is observed on both sets of val-

ues. Furthermore, value extrapolated to E/N = 0 Td was provided by Neves et

al. [112]. Since a typical behavior of reduced mobility consists of a plateau at low

fields followed by a peak at intermediate fields and a fast decreasing region at

high fields, one can extend the measurements reported by Helm et al. [110] to the

zero field mobility predicted by Neves [112]. Biondi’s et al. measurements [92]

are well above all the other reported values and are therefore excluded for fur-

ther comparison. Most recent measurements reported by Neves et al. [2] [E/N

= 12- 85 Td] present a strange behavior at low fields. Effectively, Neves data

shows an increase in the mobility instead of the expected plateau. This can be

due to a contamination by Xe+3 trimers which can’t be discriminated due to the

absence of mass spectrometer in their experimental setup. Presence of Xe+3 in

xenon plasma have already been evidenced in references [110] and [113]. The fol-

lowing monomer accretion processes have been proposed to be responsible for

their creation,
Xe+ +Xe +Xe→ Xe+2 +Xe

Xe+2 +Xe +Xe→ Xe+3 +Xe.
(4.11)

Moreover, ion drift velocity experiment [112] shows that it is difficult to distin-

guish between the mobility values of Xe+2 and Xe+3 ions without mass spectrom-

eter. If we only look on highest values of the electric field considered by Neves

[E/N = 36 - 85 Td] and Varney’s values, an average value can be extracted atK0 =

0.615 cm2V−1s−1. This value will be kept as the value of the plateau, making a hy-

pothesis that Neves values have been corrupted at low field and that the plateau

is not as high as their data may indicate. For further considerations, only Helm’s
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and Larsen’s values will be considered together with the estimated plateau. Like

for krypton, the inverse method is used to extrapolated measured values outside

the experimental range of the reduced electric field. Based on the discussion of

the quality of available experimental data, only Helm’s and Varney’s values have

been considered for the inverse method treatment.

4.3.2 Neutral potentials
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Figure 4.16: Neutral interactions models used for Xe2 system. Black full curve : Model 1
[114], red dashed curve : Model 2 [69].

Two different neutral potentials were tested for Xe2 interactions. The same

denomination will be used as for krypton, a letter will be used to denominate

the interaction potentials for Xe+2 ("A" for potentials taken from reference [67] and

"B" for potentials of reference [96]) and a digit will be used to denominate the Xe2

interaction potential. For xenon, only two highly accurate neutral potentials were

found in literature and used as input for DIM models. The first one, denoted as
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neutral Model 1, is provided by Aziz et al. [114]. This model is based on a broad

range of experimental data covering all relevant parts of interatomic distances.

The other neutral potential used in our calculations (Model 2) was reported by

Hellmann et al. [69]. This semi-empirical model is based on accurate ab initio

calculations. Both models are shown in figure 4.16. For both models, the well

depths are well defined and close to each other in values (respectively -24.33 meV

and -24.12 meV). Alike, long part interactions are similar for both models. The

repulsive walls, in contrast, are not the same for both models. Model 1 has a

less repulsive wall than Model 2. However, Model 1 may be considered more

reliable in this range of atomic distance since a) it was fitted on state-of-the-art

experimental data on high-energy Xe/Xe collisions (see reference [55] for details)

and b) ab initio, though highly correlated calculations are known to overestimate

the repulsion of closed shell rare-gas systems at short inter-atomic distances [108].

4.3.3 Cross-sections

4.3.3.1 Dependence of calculated cross-sections on ionic potentials

Differences in MT cross-sections calculated using the two ionic models (Model

A and Model B) and neutral Model 1 are clear from in figure 4.17, most visible

difference is seen between 0.2 eV and 2 eV where Model A1 provides larger MT

cross-sections than Model B1. Concerning the dissociation cross-sections, both in-

teraction models provide the same values. Due to small variations between both

sets of cross-sections, resulting mobilities behavior should be close to each other.

As in the krypton case, σ(MT1)
NRS is close to σ

(MT2)
NRS . This may mean that the Xe+2

momentum is (at least on the average) conserved during collisions with carrier

gas atoms (p = p′), probably due to a negligible contribution of inelastic processes.

Nevertheless, as for krypton, σ(MT2)
NRS is preferred here and, if not specified other-

wise, it will be used in subsequent analyses.



4.3. XENON 129

0.01 0.1 1 10 100
1

10

100

(int)
CIDC

ro
ss

-s
ec

tio
ns

 (
Å2 )

A

(MT1,2)
NRS

Figure 4.17: Comparison of theoretical predictions of Xe+2/Xe effective cross-sections cal-
culated for the rotation-vibrational ground-state of the dimer, [J=0, ν=0]: left-oriented
triangles (�) – Model A1, right-oriented triangles (�) – Model B1, half-filled symbols –
momentum transfer cross-section for non-reactive scattering: upper half-filled symbols –
σ
(MT1)
NRS (equation 4.6), lower half-filled symbols – σ

(MT2)
NRS (equation 4.7); empty symbols

– dissociation cross-section (σ(int)CID , equation 4.8), thick grey line – inverse method data
based on the experiment of references [97, 110].

4.3.3.2 Dependence of calculated cross-sections on dimer rotational-vibrational

excitation

Lot of rotational-vibrational states were studied in this work, only a few of them

will be shown in figures. However, all of them are summarized in tables at the

end of this thesis. The rotational-vibrational excitations studied, with excitations

energies compared to ground-states (set at 0 meV) are summarized in table 4.2

Figure 4.18 depicts the variation of cross-sections depending on the internal

rotation-vibrational excitation. Only selected excitations, 2 vibrational excitations

([J=0, ν=2] and [J=0, ν=12]) and 2 rotational ones ([J=60, ν=0] and [J=200, ν=0]),
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Rotational excita-
tion (J)

Vibrational exci-
tation (ν)

Internal energy
(meV)

0 0 0
0 1 15.1
0 2 30.1
0 4 59.8
0 8 117.8
0 12 173.8
60 0 12.6
70 0 17.1
90 0 28.2
100 0 34.8
100 1 49.7
200 0 137.5

Table 4.2: Summary of rotational-vibrational excitations done on electronically ground-
state dimer

are shown to preserve readability of the figure. Two different type of behavior

are visible depending on the way used to store the internal energy. If the vi-

brational level increases, the cross-section σ(MT2)
NRS remains mostly the same while

the σ(int)CID will increase significantly. For rotational excitations, σ(int)CID will increase

slightly while σ(MT2)
NRS decreases for low energy (< 0.15 eV) and remains mostly

constant after.

The enhancement of dissociation cross-section is due to two different mecha-

nisms. Firstly, internal excitation of a dimer will diminish the gap between Xe+2

and the dissociate state, as is visible especially for rotational excitation. Secondly,

this excitation will lead to an increased linear size of the dimer and, with longer

internuclear distance, the dissociation is facilitated. Interestingly, the behavior

observed for rotational excitation at low kinetic energy is not the same as for

krypton. Here rotation seems to decrease the resulting cross-sections. This will

lead to a significant difference from previous calculation on krypton. For xenon,

the internal energy storage mechanism, either rotational or vibrational, leads to

qualitatively different behavior patterns. In particular, rotational excitations of

the xenon dimer, in contrast to krypton and other rare-gases, decreases the MT
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Figure 4.18: Dependence of Xe+2/Xe effective cross-sections on the dimer rotation-
vibrational excitation (excitation energies are given in parentheses) as obtained from cal-
culations performed for Model B1: ◻ [J=0, ν=0],◯ [J=0, ν=2] (+30.1 meV),△ [J=0, ν=12]
(+173.8 meV), ▽ [J=60, ν=0] (+12.6 meV), ◇ [J=200, ν=0] (+137.5 meV). For comparison,
inverse method momentum transfer cross-sections based on the experiment of references
[97, 110] (thick gray line) are also shown.

cross-section and, as a consequence, will increase xenon dimer mobility.

4.3.3.3 Dependence of calculated cross-sections on neutral potentials

The exchange of the neutral potential in the DIM model leads to variations for

high excited states only, as already visible in the case of Kr+2/Kr system. As visible

in figure 4.19, where only rotational-vibrational ground-state and the highest vi-

brational and rotational states considered in this work are shown, σ(int)CID is slightly

changed upon employing the ab initio neutral potential for all three rotation-

vibrational states of Xe+2 considered. Concerning σ
(MT2)
NRS , a swap of neutral po-

tential from Model 1 [114] to Model 2 [69] will decrease MTCSs for excited states
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Figure 4.19: Dependence of Xe+2/Xe effective cross-sections on neutral potential used in
the DIM model (Model B): ◻ [J=0, ν=0], △ [J=200, ν=0] (+137.5 meV), ▽ [J=0, ν=12]
(+173.8 meV); empty symbols – Model 1 [114], filled symbols – Model 2 [69]. For com-
parison, inverse method momentum transfer cross-sections based on the experiment of
references [97, 110] (thick gray line) are also shown.

only. Interestingly, using this second neutral potential, MTCSs of [J=0, ν=12]

are almost on the same values as MTCS of [J=200, ν=0] even if their intern en-

ergies are not the same. However, a difference between both is more visible on

the σ(int)CID where vibration induce dissociation cross-sections at lower energies, but

rotation induce higher values once the σ(MT2)
NRS are near zero. One can say that

all model used in this DIM methodology are highly accurate and provide close

results.
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Figure 4.20: Cumulative distribution of [J=0, ν=0] Xe+2 collision energy for different re-
duced electric fields.

4.3.4 Mobilities

4.3.4.1 Dependence of calculated mobilities on ionic potentials

Normalized cumulative distributions as function of collision energy are shown

in figure 4.20 for different reduced electric fields for Xe+2 in rotational-vibrational

ground-state. This figure shows that dissociation of the dimer appears only from

a certain energy (threshold value, 1.03 eV) and is not present for all reduced elec-

tric fields. Compared to krypton, the threshold energy is lower and therefore the

dissociation channel will be more influent than krypton one in the same energy

range.

Comparison between Model A1 and Model B1 shows a proximity of the two

sets of results if one look to the mobilities. In figure 4.21, it is visible that the

plateau for Model B1 is slightly above the one obtained for Model A1 but both

plateau remain close to each other ( ≈ 4%). However, the maximum of the mo-
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Figure 4.21: Comparison of theoretical predictions of Xe+2/Xe mobility calculated for the
rotation-vibration ground-state of the dimer, [J=0, ν=0]: left-oriented triangles (�) –
Model A1, right-oriented triangles (�) – Model B1, upper half-filled symbols – mobilities
calculated from σ

(MT1)
NRS (equation 4.6), lower half-filled symbols – mobilities calculated

from σ
(MT2)
NRS (equation 4.7), fulfilled ☆ Helm’s et al. experimental data [110], empty ☆

Larsen et al. experimental data [97], thick grey line – inverse method data based on the
experiment of references [97, 110].

bility profile shows a bigger difference. Model B1 provides a higher peak and

thus closer mobility to Varney’s one. This has led us to use Model B in further

calculations reported later in this section. However, new experiments around the

peak or in the decreasing region may be needed to justify our choice.

The harmonic approximation approach to sample initial configurations of the

xenon in Xe+2/Xe collision was, as in the case of krypton, used and compared to

non-approximate sampling method based on the vibrational wave function ob-

tained from a numerical solution of nuclear Schrödinger equation considering the

anharmonic dimer ground-state potential. Even through the difference between

both calculations should be close to zero at low vibrational excitations and differ-
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Figure 4.22: Comparison of harmonic approximation and non-approximate energy val-
ues for Xe+2/Xe mobility calculated for the rotation-vibrational ground-state of the dimer,
[J=0, ν=0]: right-oriented triangles (�) – Model B1 without approximation, upper half-
filled symbols – mobilities calculated from σ

(MT1)
NRS (equation 4.6), lower half-filled sym-

bols – mobilities calculated from σ
(MT2)
NRS (equation 4.7), Harmonic approximate on Model

B1, dotted curve – mobilities calculated from σ
(MT1)
NRS (equation 4.6), dashed curve – mo-

bilities calculated from σ
(MT2)
NRS (equation 4.7), fulfilled ☆ Helm’s et al. experimental data

[110], empty☆ Larsen et al. experimental data [97], thick grey line – inverse method data
based on the experiment of references [97, 110].

ences should only appear at higher excitations, it is always a good point to verify

approximate calculations. In figure 4.22, it is well seen that the values obtained

within the harmonic approximation and the anharmonic ones are close to each

other.
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Figure 4.23: Dependence of the Xe+2/Xe mobility on the dimer rotational excitation (ex-
citation energies are given in parentheses) as obtained from calculations performed for
Model B1 and using σ

(MT2)
NRS (equation 4.7): 2 [J=0, ν=0] ◯ [J=60, ν=0] (+12.6 meV),

△ [J=70, ν=0] (+17.1 meV), ▽ [J=90, ν=0] (+28.2 meV), ◇ [J=100, ν=0] (+34.8 meV), 9
[J=200, ν=0] (+137.5 meV). fulfilled ☆ Helm’s et al. experimental data [110], empty ☆
Larsen et al. experimental data [97], thick grey line – inverse method data based on the
experiment of references [97, 110].

4.3.4.2 Dependence of calculated mobilities on dimer rotational-vibrational exci-

tation

Raising up dimer rotational excitation will enhance mobilities as is visible in fig-

ure 4.23. For low excitations (< 18 meV) the peak of mobility decreases and the

plateau moves up. With higher rotational excitation, the mobility plateau contin-

ues to raise up and its further enhancement of the plateau leads to a disappear-

ance of the peak. Interestingly, contrary to the krypton case, with a particular

value of rotational excitation, +34.8 meV [J=100, ν=0] for example, resulting mo-

bilities are on the experimental values.
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Figure 4.24: Dependence of the Xe+2/Xe mobility on the dimer vibrational excitation (ex-
citation energies are given in parentheses) as obtained from calculations performed for
Model B1 and using σ

(MT2)
NRS (equation 4.7): 2 [J=0, ν=0] ◯ [J=0, ν=1] (+15.1 meV), △

[J=0, ν=2] (+30.1 meV), ▽ [J=0, ν=4] (+59.8 meV), ◇ [J=0, ν=8] (+117.8 meV), 9 [J=0,
ν=12] (+173.8 meV). For comparison, fulfilled ☆ representing Helm’s et al. experimental
data [110], empty☆ for Larsen et al. experimental data [97] and thick grey line depicting
inverse method data based on the two experiments of references [97, 110].

The influence of xenon dimer vibrational excitation on its mobility is illus-

trated in figure 4.24. As is visible in this figure, vibrational excitation in the ionic

xenon dimer does not seem to have a huge influence on the value of the plateau.

The position of the plateau is more or less stable as the vibrational excitation of

the xenon dimer increases. The peak, however, like for the rotational excitations,

decreases with enhancement of internal vibrational energy.

A detailed view of how the the Xe+2 mobility is influenced by selected vibra-

tional excitations is given in figure 4.25. First, vibrational excitations are analyzed

for non-rotating dimers (J = 0). Three of the four presented variations have the

same enhancement of excitation energy (≈ +15 meV) distributed in the dimer vi-
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Figure 4.25: Dependence of the Xe+2/Xe mobility on the dimer vibrational excitation be-
tween different rotational-vibrational levels (excitation energies are given in parentheses)
as obtained from calculations performed for Model B1 and using σ

(MT2)
NRS (equation 4.7):

2 [J=0, ν=0] z→ [J=0, ν=1] (+15.1 meV),◯ [J=100, ν=0] z→ [J=100, ν=1] (+15 meV), △
[J=0, ν=1] z→ [J=0, ν=2] (+15 meV), ▽ [J=0, ν=0] z→ [J=0, ν=2] (+30.1 meV). Values
presented here are obtained as mobility calculated for initial state minus values obtained
for final state.

brational mode and the last one ( [J=0, ν=0]z→ [J=0, ν=2]) has a gap twice more

energetic than the others. By looking at reduced electric fields below E/N = 100

Td, the enhancement of the vibrational energy leads to a sight decrease of the mo-

bility (particularly visible at E/N = 5 Td). However, if rotationally excited dimer

is considered (J = 100 in figure 4.25), the vibration enhancement does not play

major role in th low field region. Concerning higher reduced electric field, the

change of the mobility peak value depends on the dimer internal energy more

visibly. It is interesting to see that increasing of vibrational excitation (with a sim-

ilar energy gap) leads to similar peak variations more or less independent of the

initial state.
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4.3.4.3 Dependence of calculated mobilities on neutral potentials
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Figure 4.26: Dependence of the Xe+2/Xe mobility calculated from σ
(MT2)
NRS (equation 4.7)

on the neutral potential used in the DIM model (Model B): 2 – [J=0, ν=0], ◯ – [J=0,
ν=12], △ – [J=0, ν=200]; empty symbols – Neutral Model 1 [114], red right half-filled
symbols – Neutral Model 2 [69]; fulfilled ☆ Helm’s et al. experimental data [110], empty
☆ Larsen et al. experimental data [97], thick grey line – inverse method data based on the
experiments of references [97, 110].

Exchange of neutral potentials in the DIM model yields interesting results as

is visible in figure 4.26. For clarity, only ground-state ([J=0, ν=0]) and highly ex-

cited dimers ([J=200, ν=0] and [J=0, ν=12]) are considered in figure 4.26. Clearly,

the difference in the repulsive wall of the neutral interaction potentials has a ma-

jor role concerning mobility values. While the plateau region is more or less the

same independently of the neutral potential used, significant differences are seen

between the two neutral interaction models in the high-field region region where

high-energy collisions are expected during which repulsive, high energy parts

of the neutral interaction potentials are sampled. For rotational excitation or for
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small vibrational excitation, the peak and the decreasing part of the mobility pro-

file are similar for the two neutral models. However, for higher vibrational states,

the ab initio neutral model (Model 2 [69]) yields a well pronounced peak in the

mobility profile while no peak is seen in the semi-empirical Model 1 data.

4.3.5 Diffusion coefficients
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Figure 4.27: Longitudinal (◯) and transverse (2) characteristic diffusion energies of the
Xe+2 ion in xenon gas calculated for interaction Model B1, σ(MT2)

NRS : empty symbols – [J=0,
ν=0], upper half-filled symbols – [J=0, ν=12], lower half-filled symbols – [J=200, ν=0].
(lines for Model B2: dashed – [J=0, ν=0], dotted – [J=0, ν=12], dashed dotted – [J=200,
ν=0])

Calculated values of drift (transverse and longitudinal diffusion) coefficients

are presented in figure 4.27. At low field (5 Td) both coefficients are in good

correlation with the value predicted for E/N = 0 Td one from Nernst-Townsend-

Einstein equation (eDT ≈ 26.1 meV, eDL ≈ 26.7 meV as compared with the value

of 25.3 meV obtained for T = 300 K). This comparison allows us to be confident in
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our calculations. Choice of neutral interaction potential does not play a big role

for these parameters, as is visible in figure 4.27. Variation of both drift coefficients

due to internal excitation of the dimer is not important. However it is more visible

for the transverse coefficient than for the longitudinal coefficient. Like in the

krypton case or for neon [23], the values of the longitudinal diffusion coefficient

(eDL) is above transverse ones.

4.3.6 Dissociation rate constants
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Figure 4.28: Rate constant of the Xe+2 collision-induced dissociation calculated for interac-
tion Model B1 (semi-empirical neutral potential [114]) andσ(MT2)

NRS : 2 [J=0, ν=0],◯ [J=0,
ν=12], ◇ [J=200, ν=0]. Dashed, dotted and dashed dotted lines close to respective sym-
bols represent data obtained for Model B2 (ab initio neutral potential [69]). In the inset, a
magnified view of the dissociation threshold region is provided (note that a logarithmic
scale is used on the vertical axis).

Collision induced dissociation rate constants calculated for interaction Mod-

els B1 and B2 and for selected rotational-vibrational states of the colliding Xe+2
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dimer are summarized in figure 4.28. Since basically similar features are seen

in this figure as discussed before for krypton, only brief comments are attached

here. At medium field, the dissociation rate constant calculated using Model B1

is dependent on the dimer vibrational excitation while the rotational level does

not seem important, as is visible in figure 4.28. Only for the vibration excitation

level considered in figure 4.28, the choice of neutral potential influences calcu-

lated dissociation rates at low field. Interestingly, the values of dissociation rate

constant is not highly dependent on the choice of the neutral potential.

4.4 Conclusions

A computational study is presented here extending a previous chapter on col-

lisions of atomic rare-gas ions, Rg+, to collisions of ionic diatoms, Rg+2 . Colli-

sions of diatomic ions of krypton (Kr+2 ) and xenon (Xe+2 ) with atoms of respec-

tive carrier gas have been studied numerically using a semi-emprical interaction

method based on the Diatomics In Molecules approach and hybrid dynamical ap-

proach (classical description of nuclei and quantum treatment of electrons). Sub-

sequently, Monte Carlo simulations have been applied to convert calculated dy-

namical data to mesoscopic transport properties of krypton and xenon diatomic

ions such as their mobility, diffusion coefficients, and dissociation rate constants.

Within the Diatomics In Molecules approach [50] applied to rare-gas ions [49,

51], the effective electronic Hamiltonian is constructed from diatomic interaction

energies of both the diatomic ion, Rg+2 (Rg = Kr and Xe), and the diatomic neu-

tral, Rg2. Two model sets of ionic potentials have been tested, Model A ([53] for

krypton and [63] for xenon) and Model B ([54] for krypton and [96] for xenon).

In addition, several neutral diatomic potentials have been considered, including

benchmark semi-empirical potential ([55] for krypton and [114] for xenon) and

recent ab initio potentials ([56, 57] for krypton and [69] for xenon) among which

the semi-empirical potentials still seem to represent a best choice.
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Using the advantage of being able to process electrons using quantum for-

malism and nuclei classically, the hybrid method makes it possible to obtain

different cross-sections (Non Reactive Scattering and Collision-Induced Disso-

ciation) in a precise manner with different possible rotational-vibrational lev-

els. Effective cross-sections have been calculated for collisions of the ionic di-

atom with krypton and xenon atoms. Specifically, momentum transfer cross-

sections have been calculated for non-reactive collisions, Rg+2 + Rg → Rg+2 + Rg,

and total cross-sections for the collision-induced dissociation of the ionic dimer,

Rg+2 +Rg → Rg+ +Rg+Rg. Momentum transfer approximation was used to avoid

divergence of cross-sections for low impact parameters in calculations. Thou-

sands of trajectories have been integrated in this way for each particular collision

energy to get converged cross-sections. A broad range of collision energies has

been considered (Ecoll = 0.01 − 100 eV).

Calculated cross-sections have further been used in Monte Carlo simulations

[102] of transport properties of the Rg+2 ion in Rg gas at ambient conditions, mo-

bility, effective diffusion energies, and the reaction rate constant for the collision-

induced dissociation of the ionic Rg+2 dimer. Generally, a qualitative agreement

has been found between our and experimental mobility data for both models,

Model A1 and Model B1, only the latter, however, leads, both for krypton as well

as for xenon, to a quantitative agreement with the experimental measurement.

An interesting conclusion, concerning krypton case, is that rotationally - vi-

brationally excited dimers (with their effective temperature exceeding the room

temperature by about 300 K) have to be presumed in the calculations so that the

experimental data can be quantitatively reproduced, while for xenon, an assump-

tion that the experimental populations of ions have an effective temperature is a

good approximation.

Furthermore, we used an inverse method based on JWKB approximation [76,

77] to calculate a global momentum transfer collision cross-section without con-

sidering inelastic processes like dissociation. The associated transport coeffi-

cients, like mobility, are also in a good coherence with experimental data, par-
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ticularly at low E/N . This is expected since inverse method is principally used to

extrapolate mobilities and at low fields inelastic process are not present.

The present chapter extends preceding calculations on helium [21, 64], neon

[23], and argon [25, 64] dimers into the realm of heavy rare-gases for which

relativistic effects (the Spin-Orbit Coupling, in particular) are important. Addi-

tional calculations on krypton and xenon dimers (including electronically excited

species) are running to see further development.
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Chapter 5

Conclusions and Perspectives

As a general conclusion for this thesis, one can conclude that every interaction

model from the literature used in this work provides qualitatively coherent re-

sults with measurements, while Model B provide, for monomer (Rg+) and dimer

(Rg+2 ) ion collisions with neutral atoms (Rg = Kr or Xe), quantitatively better mo-

bility agreement with experiments. Furthermore, the accuracy of the Rg+/Rg in-

teraction potential in the Diatomics In Molecules (DIM) is very important for ionic

trimers (Rg+3 ) interaction system. On the other hand, neutral interaction poten-

tials (Rg/Rg) are less crucial (for considered atoms in this thesis) for low initial

rotational-vibrational excited dimer, even if the accuracy of the repulsive wall

(and thus the neutral potential) is important in the case of higher excited states.

Firstly in chapter 3, semi-classical and hybrid methods are compared to quan-

tum method in order to check the validity of these approximations in the case of

ionic atom - neutral atom collision (Rg+/Rg). Using the fact that JWKB approxi-

mation, of semi-classical method, is validated on artificial isotope, with average

mass and bosonic behavior, new runs of calculations using this method are per-

formed considering all possible collisions in order to validate the isotropic mass

distribution hypothesis. Classical treatment of nuclei, with or without quantum

decoherence in the hybrid method, provides also coherent results with quantum

method or experimental values. Both approximated methods (hybrid and semi-

classical) allow us a time saving while providing coherent results compared to
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quantum method.

Good quantitative agreement between calculated values and measurements

are obtained only for one state (2P1/2 for krypton and 2P3/2 for xenon) but the

calculations diverge little bit more from experiments for the other state (2P3/2 for

krypton and 2P1/2 for xenon). This can be attributed to imperfection in Model B

interaction potentials or to a detection of impurities in experiments. This small

difference between calculated and measured mobility can also be attributed to

the applied fitting procedure [97] to extract the experimental mobilities from the

two unresolved peaks curve corresponding to 2P1/2 and 2P3/2 rare-gas ion states.

Moreover, there is also an error in the Monte Carlo mobility calculations, es-

timated to 2% in previous calculations [22], which arises from the use of mo-

mentum transfer cross-section instead of differential cross-section in Monte Carlo

transport coefficients calculations. Finally, Monte Carlo simulations allow to cal-

culate transport coefficients (mobility and diffusion coefficients) of Rg+ in gaseous

Rg over a wide range of reduced electric fields (5 Td to 3000 Td). This allows us

to add or complete missing data in literature.

Secondly in chapter 4, hybrid method is the more appropriate method to study

dimer-atoms collisions and therefore was used to calculate all cross-sections needed

for Monte Carlo simulations. The ionic dimer (Rg+2 ), in this thesis work, is consid-

ered before collision only in electronic ground state (I(1/2)u), however different

rotational-vibrational states are considered in order to improve the correlation

between mobility calculations and measurements (0 to 200 meV). At intermedi-

ate reduced electric fields, Rg+2 mobility decreases with enhancement of internal

energy for both considered ionic dimer (Kr+2 and Xe+2 ). While at low reduced

electric field, for Kr+2 ion initial internal energy leads to a mobility decrease in-

dependently of the way the internal energy is stored (rotational or vibrational),

for the Xe+2 ion mobility increases only if initial energy is stored in the rotational

mode.

Different neutral potentials are tested in the DIM methodology and their in-

fluence is effective only at high rotational-vibrational excitations.
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Rg+2 transport coefficients (mobility and diffusion coefficients) and dissocia-

tion rate constants in their parent gas are calculated over a wide range of re-

duced electric fields [5 Td to 3000 Td] and the mobility is in general in a good

qualitative agreement with the measurements available on a limited range, the

observed quantitative deviation can be attributed to the contamination of the im-

purity measurements.

In future work, it would be interesting to persevere calculations with electron-

ically excited dimer and also trimers which may play an important role at high

pressure. As a second step, it is also interesting to study collisions between the

rare-gas ions and air after plasma jet dilution. All this data are devoted to be

used as input in macroscopic chemical hydrodynamic model of low temperature

plasmas generated at atmospheric pressure in the near future.
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Appendices

A Tables of transport coefficients for Kr+/Kr collisions
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i)

5 0.866 0.840 0.884 0.460 0.714 0.639 0.840 0.668 0.887
10 0.862 0.843 0.881 0.459 0.720 0.639 0.838 0.665 0.879
20 0.864 0.838 0.881 0.460 0.718 0.640 0.834 0.663 0.864
30 0.854 0.830 0.869 0.461 0.702 0.639 0.830 0.656 0.857
50 0.835 0.814 0.850 0.461 0.702 0.631 0.813 0.649 0.838
60 0.820 0.802 0.835 0.460 0.696 0.632 0.801 0.645 0.824
80 0.797 0.773 0.804 0.458 0.682 0.627 0.776 0.635 0.795
100 0.771 0.753 0.783 0.461 0.662 0.619 0.756 0.629 0.776
200 0.665 0.645 0.667 0.456 0.589 0.575 0.656 0.580 0.666
300 0.589 0.571 0.588 0.443 0.533 0.533 0.586 0.538 0.591
400 0.534 0.518 0.536 0.428 0.490 0.497 0.534 0.501 0.537
500 0.492 0.479 0.493 0.411 0.457 0.468 0.495 0.471 0.496
700 0.432 0.420 0.433 0.380 0.405 0.420 0.435 0.422 0.437
1000 0.374 0.364 0.375 0.343 0.355 0.370 0.377 0.372 0.378
2000 0.279 0.271 0.279 0.269 0.268 0.282 0.283 0.282 0.283
3000 0.234 0.227 0.234 0.228 0.226 0.249 0.248 0.238 0.237

Table 5.1: Mobility values in cm2V−1s−1 from inverse method and semi-classical calcu-
lations. (a) mobility from inverse method using experimental mobility provided by El-
lis [88], (b) mobility from inverse method using experimental mobility for fine-structure
2P3/2 provided by Helm [89], (c) mobility from inverse method using experimental mobil-
ity for fine-structure 2P1/2 provided by Helm [89], (d) mobility obtained using momen-
tum transfer cross-section calculated from semi-classical method based on interaction
Model A for 2P3/2 state, (e) mobility obtained using momentum transfer cross-section
calculated from semi-classical method based on interaction Model A for 2P1/2 state, (f)
mobility obtained using momentum transfer cross-section calculated from semi-classical
method based on interaction Model B for 2P3/2 state, (g) mobility obtained using momen-
tum transfer cross-section calculated from semi-classical method based on interaction
Model B for 2P1/2 state, (h) mobility obtained using momentum transfer cross-section
calculated from semi-classical method based on interaction Model B for 2P3/2 state using
the 45 possible collisions, (i) mobility obtained using momentum transfer cross-section
calculated from semi-classical method based on interaction Model B for 2P1/2 state using
the 45 possible collisions.
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 0.699 0.767 0.685 0.758 0.734 0.810 0.698 0.810
10 0.698 0.767 0.684 0.757 0.735 0.809 0.698 0.806
20 0.695 0.763 0.682 0.753 0.733 0.808 0.697 0.802
30 0.695 0.757 0.678 0.750 0.731 0.801 0.692 0.796
50 0.685 0.745 0.672 0.738 0.725 0.784 0.684 0.779
60 0.680 0.734 0.668 0.728 0.718 0.773 0.673 0.761
80 0.669 0.716 0.656 0.709 0.704 0.753 0.660 0.742
100 0.657 0.697 0.644 0.690 0.691 0.729 0.648 0.723
200 0.595 0.615 0.584 0.606 0.623 0.636 0.584 0.635
300 0.544 0.551 0.534 0.544 0.566 0.568 0.531 0.568
400 0.501 0.504 0.494 0.512 0.522 0.521 0.489 0.517
500 0.468 0.467 0.461 0.462 0.487 0.483 0.456 0.479
700 0.418 0.413 0.411 0.410 0.433 0.426 0.405 0.420
1000 0.367 0.359 0.362 0.358 0.381 0.373 0.352 0.363
2000 0.278 0.270 0.273 0.270 0.289 0.281 0.262 0.266
3000 0.234 0.227 0.230 0.227 0.244 0.237 0.217 0.220

Table 5.2: Mobility values in cm2V−1s−1 from hybrid calculations using internuclear po-
tential Model A. (a) mobility obtained using momentum transfer cross-section calculated
from with hybrid method for 2P3/2 state, (b) mobility obtained using momentum transfer
cross-section calculated from hybrid method for 2P1/2 state, (c) mobility obtained us-
ing momentum transfer cross-section calculated from hybrid method for 2P3/2 state on
isotope 86Kr, (d) mobility obtained using momentum transfer cross-section calculated
from hybrid method for 2P1/2 state on isotope 86Kr, (e) mobility obtained using mo-
mentum transfer cross-section calculated from hybrid method for 2P3/2 state on isotope
78Kr, (f) mobility obtained using momentum transfer cross-section calculated from hy-
brid method for 2P1/2 state on isotope 78Kr, (g) mobility obtained using momentum trans-
fer cross-section calculated from hybrid method with quantum decoherence for 2P3/2

state, (h) mobility obtained using momentum transfer cross-section calculated from hy-
brid method with quantum decoherence for 2P1/2 state.
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 0.765 0.866 0.864 0.748 0.878 0.771 0.452 0.690 0.645 0.845
10 0.764 0.866 0.863 0.747 0.876 0.770 0.451 0.700 0.644 0.844
20 0.761 0.856 0.855 0.745 0.867 0.768 0.448 0.697 0.645 0.836
30 0.758 0.853 0.850 0.738 0.858 0.764 0.452 0.691 0.643 0.831
50 0.745 0.831 0.832 0.728 0.841 0.751 0.448 0.690 0.638 0.813
60 0.739 0.820 0.819 0.721 0.828 0.744 0.452 0.681 0.632 0.802
80 0.725 0.798 0.796 0.706 0.804 0.727 0.453 0.668 0.629 0.778
100 0.710 0.773 0.773 0.691 0.779 0.709 0.452 0.655 0.623 0.756
200 0.636 0.669 0.667 0.615 0.669 0.631 0.451 0.587 0.577 0.658
300 0.577 0.594 0.593 0.554 0.591 0.570 0.441 0.532 0.536 0.587
400 0.530 0.540 0.539 0.506 0.533 0.522 0.428 0.489 0.499 0.534
500 0.493 0.499 0.497 0.468 0.489 0.486 0.412 0.456 0.472 0.495
700 0.438 0.439 0.437 0.413 0.426 0.431 0.380 0.406 0.420 0.436
1000 0.383 0.381 0.38 0.357 0.365 0.376 0.343 0.355 0.370 0.379
2000 0.288 0.284 0.283 0.263 0.267 0.283 0.269 0.268 0.282 0.283
3000 0.242 0.238 0.238 0.218 0.220 0.238 0.228 0.226 0.249 0.248

Table 5.3: Mobility values in cm2V−1s−1 from hybrid method using interaction Model B
only and quantum method calculations. (a) mobility obtained using momentum transfer
cross-section calculated from hybrid method for 2P3/2 state, (b) mobility obtained using
momentum transfer cross-section calculated from hybrid method for 2P1/2 state, (c) mo-
bility obtained using momentum transfer cross-section calculated from hybrid method
for 2P1/2 state with the extension of collision energies to 0.001 eV, (d)mobility obtained
using momentum transfer cross-section calculated from hybrid method with quantum
decoherence for 2P3/2 state, (e) mobility obtained using momentum transfer cross-section
calculated from hybrid method with quantum decoherence for 2P1/2 state, (f) mobil-
ity obtained using momentum transfer cross-section calculated from hybrid method for
2P1/2 state with distinct calculation for Ω= 1/2 and Ω = 3/2, (g) mobility obtained using
momentum transfer cross-section calculated from quantum method for 2P3/2 state us-
ing interaction Model A, (h) mobility obtained using momentum transfer cross-section
calculated from quantum method for 2P1/2 state using interaction Model A, (i) mobility
obtained using momentum transfer cross-section calculated from quantum method for
2P3/2 state using interaction Model B, (j) mobility obtained using momentum transfer
cross-section calculated from quantum method for 2P1/2 state using interaction Model B.
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 25.9 26.1 26.0 26.1 25.5 25.5 26.2 26.1
10 26.3 26.2 26.0 25.8 25.5 26.3 26.0 25.9
20 27.0 26.6 26.4 27.2 26.8 26.7 27.0 27.2
30 27.5 27.6 27.2 27.2 26.4 27.9 27.4 27.3
50 29.5 29.5 28.5 29.5 28.4 30.0 29.2 29.4
80 32.3 32.8 31.7 33.5 31.4 33.2 33.4 33.4
100 36.1 36.9 35.9 36.1 36.3 36.6 37.2 36.5
200 49.3 51.1 54.0 51.4 52.3 52.2 51.9 52.5
300 66.2 65.7 71.8 67.7 71.7 68.4 70.7 67.9
400 80.2 82.7 91.2 84.4 89.9 85.7 86.2 83.8
500 94.2 99.9 111 102 105 103 104 103
700 131 134 142 140 142 136 138 136
1000 177 184 205 190 205 190 190 190
2000 349 371 405 384 405 384 379 382

Table 5.4: Longitudinal coefficient (eDL/K0) in meV from different method using inter-
nuclear potential Model B. (a) longitudinal coefficient obtained using inverse method on
experimental 2P3/2 state values provided by Helm [89], (b) longitudinal coefficient ob-
tained using inverse method on experimental 2P1/2 state values provided by Helm [89],
(c) longitudinal coefficient obtained using momentum transfer cross-section calculated
from semi-classical method for 2P3/2 state, (d) longitudinal coefficient obtained using
momentum transfer cross-section calculated from semi-classical method for 2P1/2 state,
(e) longitudinal coefficient obtained using momentum transfer cross-section calculated
from quantum method for 2P3/2 state, (f) longitudinal coefficient obtained using momen-
tum transfer cross-section calculated from quantum method for 2P1/2 state, (g) longitudi-
nal coefficient obtained using momentum transfer cross-section calculated from hybrid
method for 2P3/2 state, (h) longitudinal coefficient obtained using momentum transfer
cross-section calculated from hybrid method for 2P1/2 state.
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 26.3 25.9 25.9 26.2 25.7 25.5 25.5 26.1
10 26.2 25.9 25.9 25.6 25.7 26.3 25.7 26.0
20 26.8 26.4 26.7 26.4 26.5 26.7 26.6 27.0
30 27.4 26.5 26.2 26.6 26.4 27.9 26.9 26.7
50 28.1 28.2 27.0 28.4 27.4 30.0 27.4 28.4
80 31.9 31.9 29.1 31.5 29.7 33.2 30.8 31.9
100 33.9 34.1 30.6 34.2 32.1 36.6 32.7 35.5
200 48.3 52.9 45.0 51.2 45.8 52.2 48.3 50.7
300 67.2 68.4 61.8 69.0 59.6 68.4 63.9 68.6
400 82.2 85.4 78.2 88.1 81.9 85.7 83.0 86.7
500 103 107 98.9 108 98.6 103 103 109
700 141 150 140 152 140 136 141 153
1000 200 213 213 219 213 190 205 213
2000 420 433 439 447 439 384 444 446

Table 5.5: Transversal coefficient (eDT /K0) in meV from different method using inter-
nuclear potential Model B. (a) transversal coefficient obtained using inverse method on
experimental 2P3/2 state values provided by Helm [89], (b) transversal coefficient ob-
tained using inverse method on experimental 2P1/2 state values provided by Helm [89],
(c) transversal coefficient obtained using momentum transfer cross-section calculated
from semi-classical method for 2P3/2 state, (d) transversal coefficient obtained using mo-
mentum transfer cross-section calculated from semi-classical method for 2P1/2 state, (e)
transversal coefficient obtained using momentum transfer cross-section calculated from
quantum method for 2P3/2 state, (f) transversal coefficient obtained using momentum
transfer cross-section calculated from quantum method for 2P1/2 state, (g) transversal co-
efficient obtained using momentum transfer cross-section calculated from hybrid method
for 2P3/2 state, (h) transversal coefficient obtained using momentum transfer cross-section
calculated from hybrid method for 2P1/2 state.
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B Tables of transport coefficients for Xe+/Xe collisions



156 APPENDICES

Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 0.518 0.557 0.195 0.275 0.558 0.555 0.551 0.549
10 0.518 0.557 0.196 0.275 0.553 0.552 0.554 0.553
20 0.516 0.556 0.193 0.274 0.546 0.549 0.545 0.545
30 0.515 0.553 0.197 0.275 0.546 0.545 0.540 0.540
50 0.505 0.543 0.195 0.277 0.532 0.534 0.528 0.530
60 0.499 0.538 0.195 0.277 0.521 0.520 0.519 0.519
80 0.489 0.525 0.196 0.277 0.506 0.506 0.503 0.505
100 0.477 0.511 0.195 0.278 0.493 0.496 0.492 0.494
200 0.424 0.452 0.199 0.277 0.430 0.431 0.428 0.428
300 0.382 0.405 0.202 0.272 0.384 0.387 0.384 0.384
400 0.350 0.370 0.204 0.266 0.350 0.353 0.349 0.352
500 0.324 0.343 0.206 0.259 0.325 0.328 0.324 0.327
700 0.287 0.303 0.204 0.243 0.287 0.290 0.287 0.289
1000 0.250 0.263 0.197 0.223 0.249 0.253 0.250 0.252
2000 0.187 0.197 0.169 0.178 0.187 0.190 0.187 0.190
3000 0.159 0.162 0.148 0.152 0.157 0.160 0.157 0.160

Table 5.6: Mobility values in cm2V−1s−1 from inverse method and semi-classical calcu-
lations based on internuclear potential Model A and B. (a) mobility obtained using in-
verse method momentum transfer cross-section calculated from 2P3/2 mobility state ex-
perimental value from [89, 97], (b) mobility obtained using inverse method momentum
transfer cross-section calculated from 2P1/2 mobility state experimental value from [89,
97], (c) mobility obtained using momentum transfer cross-section calculated from semi-
classical method for 2P3/2 state based on Model A interaction potential, (d) mobility ob-
tained using momentum transfer cross-section calculated from semi-classical method for
2P1/2 state based on Model A interaction potential, (e) mobility obtained using momen-
tum transfer cross-section calculated from semi-classical method for 2P3/2 state based
on Model B interaction potential, (f) mobility obtained using momentum transfer cross-
section calculated from semi-classical method for 2P1/2 state based on Model B interaction
potential, (g) mobility obtained using average momentum transfer cross-section calcu-
lated from semi-classical method for 2P3/2 state based on Model B interaction potential
from all 45 possible collisions, (h) mobility obtained using average momentum transfer
cross-section calculated from semi-classical method for 2P1/2 state based on Model B in-
teraction potential from all 45 possible collisions.
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 0.211 0.275 0.550 0.555 0.293 0.315 0.522 0.507 0.513 0.513
10 0.212 0.277 0.541 0.555 0.293 0.315 0.531 0.505 0.514 0.513
20 0.211 0.272 0.540 0.544 0.291 0.314 0.516 0.502 0.515 0.512
30 0.212 0.279 0.540 0.549 0.291 0.314 0.519 0.500 0.509 0.500
50 0.212 0.275 0.523 0.533 0.291 0.314 0.507 0.488 0.499 0.476
60 0.212 0.276 0.517 0.525 0.291 0.313 0.499 0.478 0.492 0.481
80 0.209 0.277 0.499 0.507 0.291 0.312 0.488 0.469 0.479 0.472
100 0.209 0.277 0.491 0.498 0.291 0.312 0.480 0.462 0.470 0.414
200 0.208 0.277 0.427 0.432 0.287 0.304 0.422 0.406 0.413 0.372
300 0.208 0.273 0.383 0.387 0.283 0.293 0.379 0.367 0.372 0.339
400 0.209 0.268 0.351 0.353 0.275 0.281 0.348 0.338 0.339 0.314
500 0.209 0.261 0.324 0.327 0.267 0.270 0.323 0.315 0.315 0.277
700 0.207 0.245 0.287 0.290 0.251 0.251 0.286 0.279 0.282 0.240
1000 0.199 0.224 0.250 0.252 0.229 0.227 0.249 0.243 0.240 0.177
2000 0.170 0.178 0.187 0.190 0.182 0.178 0.187 0.183 0.177 0.147
3000 0.149 0.154 0.158 0.162 0.156 0.152 0.156 0.154 0.147 0.147

Table 5.7: Mobility values in cm2V−1s−1 from quantum and hybrid method based on in-
teraction Model A and B. (a) mobility obtained using momentum transfer cross-section
calculated from quantum method for 2P3/2 state based on Model A interaction potential,
(b) mobility obtained using momentum transfer cross-section calculated from quantum
method for 2P1/2 state based on Model A interaction potential, (c) mobility obtained using
momentum transfer cross-section calculated from quantum method for 2P3/2 state based
on Model B interaction potential, (d) mobility obtained using momentum transfer cross-
section calculated from quantum method for 2P1/2 state based on Model B interaction po-
tential, (e) mobility obtained using momentum transfer cross-section calculated from hy-
brid method for 2P3/2 state based on Model A interaction potential, (f) mobility obtained
using momentum transfer cross-section calculated from hybrid method for 2P1/2 state
based on Model A interaction potential, (g) mobility obtained using momentum transfer
cross-section calculated from hybrid method for 2P3/2 state based on Model B interac-
tion potential, (h) mobility obtained using momentum transfer cross-section calculated
from hybrid method for 2P1/2 state based on Model B interaction potential, (i) mobility
obtained using momentum transfer cross-section calculated from hybrid method with
quantum decoherence for 2P3/2 state based on Model B interaction potential, (j) mobility
obtained using momentum transfer cross-section calculated from hybrid method with
quantum decoherence for 2P1/2 state based on Model B interaction potential.
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 26.2 25.5 25.4 25.8 26.1 25.9 25.4 25.6
10 25.8 25.8 25.6 25.9 26.3 26.0 25.6 25.7
20 26.4 26.7 27.1 27.4 26.2 26.3 26.7 25.9
30 27.0 27.1 26.5 26.1 26.5 26.6 26.6 26.6
50 27.8 27.9 27.4 27.6 27.8 27.9 27.5 26.9
60 29.1 29.4 28.4 28.6 28.4 28.5 28.2 27.7
80 31.3 31.5 30.7 30.2 30.1 29.9 28.7 29.7
100 33.1 33.8 32.9 32.0 32.2 31.7 29.3 30.6
200 42.3 45.3 42.7 42.6 42.5 42.0 41.1 40.2
300 52.3 56.4 53.8 54.0 56.2 55.6 58.1 52.0
400 65.0 70.2 65.9 64.9 68.2 69.2 67.1 64.4
500 77.2 83.6 76.5 79.5 82.5 82.9 79.7 77.6
700 103 107 104 103 111 112 108 109
1000 136 153 136 143 157 161 152 147
2000 267 293 271 286 317 323 308 303
3000 440 461 455 455 498 485 489 466

Table 5.8: Longitudinal coefficient (eDL/K0) in meV from different method based on in-
ternuclear potential Model B. (a) longitudinal coefficient obtained using inverse method
on experimental 2P3/2 state values provided by Helm [89] and Larsen [97], (b) longi-
tudinal coefficient obtained using inverse method on experimental 2P1/2 state values
provided by Helm [89] and Larsen [97], (c) longitudinal coefficient obtained using mo-
mentum transfer cross-section calculated from semi-classical method for 2P3/2 state, (d)
longitudinal coefficient obtained using momentum transfer cross-section calculated from
semi-classical method for 2P1/2 state, (e) longitudinal coefficient obtained using momen-
tum transfer cross-section calculated from quantum method for 2P3/2 state, (f) longitu-
dinal coefficient obtained using momentum transfer cross-section calculated from quan-
tum method for 2P1/2 state, (g) longitudinal coefficient obtained using momentum trans-
fer cross-section calculated from hybrid method for 2P3/2 state, (h) longitudinal coeffi-
cient obtained using momentum transfer cross-section calculated from hybrid method
for 2P1/2 state.
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 26.2 25.8 25.7 26.0 26.0 25.8 25.7 25.8
10 26.1 25.7 25.8 26.1 26.1 25.9 25.8 25.8
20 26.0 25.8 26.9 27.4 26.5 26.9 26.6 25.8
30 26.8 26.6 26.7 26.7 26.6 25.8 26.4 26.5
50 27.4 27.7 27.3 27.5 27.9 27.4 27.6 27.8
60 28.5 28.6 29.0 28.4 28.2 28.5 27.3 28.8
80 29.7 29.7 30.0 30.4 29.6 29.8 30.2 29.7
100 32.6 30.9 30.7 31.4 31.8 33.0 32.4 32.3
200 41.3 43.6 41.9 42.2 41.4 42.9 43.0 41.5
300 53.8 58.0 54.0 55.7 53.0 53.8 53.0 54.1
400 69.0 72.3 69.3 70.2 65.5 67.5 64.9 64.4
500 82.2 88.5 82.8 85.4 76.0 80.0 77.4 76.7
700 113 119 108 110 99.5 104 99.9 98.0
1000 157 173 155 161 138 144 141 134
2000 318 351 320 324 270 286 264 258
3000 475 531 490 508 395 406 397 378

Table 5.9: Transversal coefficient (eDT /K0) in meV from different method based on inter-
nuclear potential Model B. (a) transverse coefficient obtained using inverse method on
experimental 2P3/2 state values provided by Helm [89] and Larsen [97], (b) transverse co-
efficient obtained using inverse method on experimental 2P1/2 state values provided by
Helm [89] and Larsen [97], (c) transverse coefficient obtained using momentum transfer
cross-section calculated from semi-classical method for 2P3/2 state, (d) transverse coef-
ficient obtained using momentum transfer cross-section calculated from semi-classical
method for 2P1/2 state, (e) transverse coefficient obtained using momentum transfer
cross-section calculated from quantum method for 2P3/2 state, (f) transverse coefficient
obtained using momentum transfer cross-section calculated from quantum method for
2P1/2 state, (g) transverse coefficient obtained using momentum transfer cross-section
calculated from hybrid method for 2P3/2 state, (h) transverse coefficient obtained using
momentum transfer cross-section calculated from hybrid method for 2P1/2 state.
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C Tables of transport coefficients and dissociation rate con-

stant for Kr+2/Kr collisions
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 0.915 0.902 1.044 1.070 1.060 1.033 1.044 1.070 1.050 1.033
10 0.915 0.903 1.040 1.080 1.080 1.032 1.044 1.080 1.080 1.030
20 0.915 0.904 1.042 1.070 1.070 1.033 1.042 1.070 1.070 1.031
30 0.914 0.904 1.030 1.060 1.060 1.030 1.030 1.060 1.060 1.030
50 0.915 0.900 1.021 1.050 1.060 1.030 1.021 1.050 1.060 1.030
80 0.936 0.914 1.035 1.060 1.080 1.050 1.035 1.060 1.090 1.050
100 0.957 0.929 1.050 1.040 1.080 1.066 1.051 1.040 1.080 1.069
200 1.063 1.020 1.060 1.070 1.140 1.108 1.060 1.070 1.150 1.111
300 1.070 1.040 1.090 1.030 1.090 1.070 1.090 1.030 1.090 1.077
400 1.023 1.010 1.057 0.971 1.010 1.010 1.057 0.971 1.020 1.015
500 0.964 0.963 1.000 0.917 0.944 0.948 1.000 0.917 0.950 0.953
700 0.862 0.868 0.946 0.826 0.842 0.849 0.946 0.826 0.843 0.851
1000 0.767 0.774 0.850 0.748 0.748 0.756 0.850 0.748 0.750 0.756
2000 0.611 0.591 0.606 0.607 0.602 0.600 0.606 0.607 0.602 0.600
3000 0.519 0.517 0.515 0.517 0.515 0.511 0.515 0.517 0.514 0.511

Table 5.10: Mobility values in cm2V−1s−1 from hybrid calculations using different interac-
tions models and σ

(MT1)
NRS and σ

(MT2)
NRS for a initial dimer [J=0, ν=0]. (a) Model A1 σ

(MT1)
NRS ,

(b) Model A1 σ
(MT2)
NRS , (c) Model B1 σ

(MT1)
NRS , (d) Model B1 σ

(MT2)
NRS , (e) Model B2 σ

(MT1)
NRS ,

(f) Model B2 σ
(MT2)
NRS , (g) Model B3 σ

(MT1)
NRS , (h) Model B3 σ

(MT2)
NRS , (i) Model B4 σ

(MT1)
NRS , (j)

Model B4 σ
(MT2)
NRS .
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 1.070 1.033 1.070 1.080 1.020 0.984 0.951 0.958
10 1.080 1.036 1.070 1.070 0.998 0.991 0.960 0.957
20 1.070 1.032 1.070 1.060 0.999 0.983 0.955 0.952
30 1.060 1.030 1.060 1.060 0.982 0.972 0.945 0.946
50 1.050 1.021 1.050 1.050 0.977 0.964 0.938 0.933
80 1.060 1.026 1.050 1.050 0.968 0.951 0.928 0.921
100 1.040 1.030 1.040 1.040 0.951 0.938 0.915 0.913
200 1.070 1.043 1.070 1.070 0.958 0.950 0.893 0.878
300 1.030 1.020 1.030 1.030 0.926 0.931 0.859 0.835
400 0.971 0.976 0.974 0.975 0.880 0.896 0.819 0.791
500 0.917 0.927 0.914 0.915 0.832 0.851 0.782 0.752
700 0.826 0.841 0.824 0.839 0.760 0.780 0.721 0.695
1000 0.748 0.756 0.744 0.755 0.699 0.713 0.668 0.648
2000 0.607 0.604 0.607 0.607 0.590 0.589 0.567 0.564
3000 0.517 0.513 0.519 0.516 0.510 0.507 0.494 0.494

Table 5.11: Mobility values in cm2V−1s−1 from hybrid calculations using Model B1 and
σ
(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ

(MT1)
NRS

[J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS

[J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0, ν=12].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 1.080 1.070 1.080 1.035 1.090 1.070 0.963 0.948
10 1.070 1.060 1.080 1.031 1.090 1.070 0.963 0.947
20 1.070 1.060 1.070 1.033 1.090 1.060 0.960 0.944
30 1.060 1.050 1.060 1.030 1.080 1.060 0.950 0.938
50 1.060 1.040 1.060 1.025 1.080 1.050 0.942 0.937
80 1.060 1.030 1.060 1.023 1.080 1.050 0.930 0.931
100 1.040 1.020 1.040 1.028 1.060 1.040 0.913 0.923
200 1.090 1.060 1.080 1.050 1.060 1.050 0.875 0.895
300 1.060 1.040 1.040 1.029 1.000 1.000 0.830 0.855
400 0.997 0.996 0.984 0.983 0.934 0.945 0.787 0.813
500 0.940 0.945 0.924 0.933 0.875 0.892 0.745 0.774
700 0.843 0.856 0.832 0.846 0.789 0.808 0.686 0.714
1000 0.760 0.768 0.753 0.760 0.719 0.733 0.641 0.661
2000 0.612 0.612 0.611 0.607 0.598 0.597 0.565 0.564
3000 0.521 0.520 0.521 0.516 0.514 0.513 0.496 0.491

Table 5.12: Mobility values in cm2V−1s−1 from hybrid calculations using Model B1 and
σ
(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ

(MT1)
NRS

[J=10, ν=0], (b) σ(MT2)
NRS [J=10, ν=0], (c) σ(MT1)

NRS [J=50, ν=0], (d) σ(MT2)
NRS [J=50, ν=0], (e)

σ
(MT1)
NRS [J=100, ν=0], (f) σ(MT2)

NRS [J=100, ν=0], (g) σ(MT1)
NRS [J=200, ν=0], (h) σ(MT1)

NRS [J=200,
ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 1.090 1.080 1.080 1.070 1.060 1.060 1.020 1.019 1.040 1.040
10 1.090 1.060 1.090 1.070 1.070 1.050 1.040 1.017 1.030 1.040
20 1.080 1.060 1.080 1.070 1.060 1.040 1.030 1.016 1.030 1.040
30 1.070 1.050 1.080 1.060 1.050 1.040 1.030 1.010 1.020 1.030
50 1.070 1.050 1.070 1.050 1.050 1.030 1.010 1.004 1.010 1.010
80 1.090 1.060 1.100 1.070 1.050 1.040 0.999 1.002 1.000 1.010
100 1.080 1.050 1.090 1.060 1.040 1.020 0.989 0.998 0.986 0.991
200 1.110 1.090 1.120 1.100 1.030 1.030 0.939 0.955 0.939 0.954
300 1.060 1.050 1.060 1.060 0.973 0.974 0.872 0.894 0.872 0.894
400 0.992 0.991 0.989 0.996 0.906 0.921 0.813 0.839 0.813 0.840
500 0.924 0.935 0.922 0.933 0.850 0.869 0.765 0.792 0.765 0.793
700 0.826 0.841 0.827 0.838 0.767 0.786 0.698 0.724 0.691 0.719
1000 0.742 0.753 0.741 0.751 0.697 0.711 0.648 0.665 0.641 0.660
2000 0.602 0.600 0.601 0.601 0.584 0.584 0.563 0.561 0.561 0.562
3000 0.514 0.512 0.514 0.512 0.506 0.503 0.494 0.489 0.493 0.490

Table 5.13: Mobility values in cm2V−1s−1 from hybrid calculations using Model B2 and
σ
(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ

(MT1)
NRS

[J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS

[J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0, ν=12], (i) σ(MT1)

NRS

[J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 1.100 1.080 1.100 1.090 1.070 1.060 1.040 1.060 1.050 1.050
10 1.090 1.060 1.100 1.070 1.070 1.050 1.040 1.050 1.040 1.050
20 1.090 1.070 1.090 1.060 1.070 1.050 1.030 1.030 1.030 1.040
30 1.080 1.060 1.090 1.060 1.070 1.050 1.030 1.020 1.020 1.030
50 1.080 1.060 1.090 1.060 1.060 1.050 1.010 1.020 1.010 1.020
80 1.090 1.070 1.100 1.070 1.060 1.040 1.000 1.010 1.000 1.010
100 1.070 1.050 1.090 1.060 1.050 1.030 0.985 0.995 0.985 0.995
200 1.120 1.090 1.130 1.110 1.030 1.030 0.940 0.954 0.937 0.956
300 1.060 1.050 1.070 1.060 0.970 0.979 0.873 0.895 0.870 0.895
400 0.990 0.995 0.993 0.997 0.903 0.922 0.814 0.840 0.808 0.834
500 0.927 0.935 0.927 0.937 0.850 0.869 0.765 0.793 0.760 0.787
700 0.829 0.842 0.828 0.842 0.769 0.787 0.699 0.726 0.691 0.719
1000 0.743 0.752 0.742 0.753 0.698 0.713 0.649 0.665 0.641 0.660
2000 0.600 0.601 0.601 0.602 0.584 0.584 0.564 0.564 0.561 0.563
3000 0.513 0.512 0.514 0.512 0.506 0.504 0.493 0.491 0.492 0.490

Table 5.14: Mobility values in cm2V−1s−1 from hybrid calculations using Model B3 and
σ
(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ

(MT1)
NRS

[J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS

[J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0, ν=12], (i) σ(MT1)

NRS

[J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 1.100 1.080 1.090 1.080 1.070 1.060 1.040 1.014 1.040 1.050
10 1.090 1.070 1.090 1.070 1.070 1.050 1.040 1.014 1.040 1.040
20 1.080 1.060 1.080 1.080 1.060 1.050 1.030 1.015 1.030 1.030
30 1.070 1.050 1.080 1.070 1.050 1.040 1.020 1.010 1.020 1.020
50 1.070 1.050 1.080 1.070 1.050 1.040 1.010 1.008 1.010 1.020
80 1.090 1.060 1.100 1.070 1.050 1.040 1.010 1.005 1.000 1.010
100 1.080 1.050 1.090 1.060 1.040 1.030 0.987 1.000 0.987 0.996
200 1.110 1.090 1.130 1.100 1.030 1.030 0.940 0.956 0.938 0.955
300 1.060 1.050 1.060 1.060 0.970 0.978 0.876 0.895 0.871 0.894
400 0.986 0.990 0.992 0.997 0.905 0.925 0.815 0.839 0.810 0.837
500 0.922 0.932 0.926 0.937 0.849 0.868 0.766 0.792 0.761 0.790
700 0.826 0.840 0.827 0.842 0.767 0.785 0.699 0.725 0.693 0.718
1000 0.741 0.750 0.742 0.751 0.698 0.711 0.649 0.665 0.642 0.661
2000 0.600 0.600 0.601 0.601 0.584 0.583 0.562 0.561 0.561 0.561
3000 0.514 0.512 0.515 0.512 0.505 0.503 0.493 0.449 0.492 0.489

Table 5.15: Mobility values in cm2V−1s−1 from hybrid calculations using Model B4 and
σ
(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ

(MT1)
NRS

[J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS

[J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0, ν=12], (i) σ(MT1)

NRS

[J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 27.4 26.8 27.4 26.9 26.7 26.9 27.7 26.1
10 27.0 27.3 27.0 26.9 27.3 27.2 27.1 26.8
20 27.2 27.5 27.1 26.6 26.6 27.7 27.3 27.0
30 28.9 29.0 28.4 28.8 28.6 28.8 29.2 29.1
50 29.7 29.1 29.7 29.8 29.2 29.4 29.5 29.9
80 34.9 34.1 35.7 34.9 35.2 35.3 36.3 35.2
100 38.1 38.1 38.7 36.6 37.2 39.7 39.3 37.6
200 76.7 76.1 78.7 74.5 79.1 76.6 77.8 74.3
300 122 120 122 119 126 119 129 120
400 181 182 193 186 184 180 190 191
500 265 276 275 274 276 272 271 269
700 387 387 390 397 382 403 385 403
1000 642 647 633 655 621 643 646 652
2000 1630 1660 1600 159 1550 1570 150 1620
3000 2630 2660 2590 2610 2650 2560 2520 2620

Table 5.16: Transverse coefficient (eDT /K0) in meV from hybrid calculations using differ-
ent interactions models and σ

(MT1)
NRS and σ

(MT2)
NRS for a initial dimer [J=0, ν=0]. (a) Model

B1 σ
(MT1)
NRS , (b) Model B1 σ

(MT2)
NRS , (c) Model B2 σ

(MT1)
NRS , (d) Model B2 σ

(MT2)
NRS , (e) Model B3

σ
(MT1)
NRS , (f) Model B3 σ

(MT2)
NRS , (g) Model B4 σ

(MT1)
NRS , (h) Model B4 σ

(MT2)
NRS .
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 27.1 26.9 27.3 27.0 26.4 26.6 26.9 26.4
10 26.8 26.6 27.3 26.7 26.9 26.7 26.6 26.3
20 28.0 27.3 27.3 27.2 27.2 27.2 26.9 27.0
30 29.1 28.5 29.3 27.8 27.7 28.2 28.4 28.0
50 29.4 30.0 29.5 29.1 28.7 29.3 29.1 29.2
80 34.5 34.7 35.2 35.3 34.0 33.7 32.9 32.0
100 38.1 36.9 38.8 39.6 36.0 34.3 35.5 35.2
200 74.6 71.0 73.8 73.5 66.4 65.1 63.2 62.6
300 115 116 119 110 104 104 97.0 94.5
400 180 174 173 175 159 159 144 139
500 262 262 263 256 217 229 203 190
700 375 380 381 379 325 347 303 281
1000 637 641 625 652 555 581 520 484
2000 1580 1570 1620 1610 1510 1520 1390 1400
3000 2670 2640 2670 2640 2570 2440 2440 2450

Table 5.17: Transverse coefficient (eDT /K0) in meV from hybrid calculations using Model
B1 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a)

σ
(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0, ν=2], (e)
σ
(MT1)
NRS [J=0, ν=5], (f) σ(MT2)

NRS [J=0, ν=5], (g) σ(MT1)
NRS [J=0, ν=12], (h) σ(MT1)

NRS [J=0, ν=12].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 26.9 26.5 26.9 26.5 27.0 26.8 26.8 26.1
10 27.3 27.3 26.8 27.1 26.9 26.6 26.6 26.3
20 27.3 27.7 27.4 27.5 27.4 27.8 27.8 26.8
30 28.6 28.8 28.6 28.1 29.4 28.1 28.2 28.5
50 29.2 29.6 29.6 29.4 29.9 29.5 28.9 29.1
80 33.9 34.4 34.3 34.4 34.5 34.4 32.8 33.4
100 37.0 37.5 36.4 38.9 38.4 37.5 36.9 36.7
200 77.0 74.0 74.9 73.1 71.6 71.6 62.4 62.2
300 117 114 119 115 115 114 93.1 96.7
400 177 175 179 172 168 165 135 136
500 266 275 263 262 246 248 187 200
700 391 388 373 395 353 355 275 266
1000 649 668 609 677 609 587 481 481
2000 1670 1640 1640 1620 1570 1600 1390 1410
3000 2690 2660 2660 2630 2610 2590 2420 2440

Table 5.18: Transverse coefficient (eDT /K0) in meV from hybrid calculations using Model
B1 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a)

σ
(MT1)
NRS [J=10, ν=0], (b) σ

(MT2)
NRS [J=10, ν=0], (c) σ

(MT1)
NRS [J=50, ν=0], (d) σ

(MT2)
NRS [J=50,

ν=0], (e) σ(MT1)
NRS [J=100, ν=0], (f) σ(MT2)

NRS [J=100, ν=0], (g) σ(MT1)
NRS [J=200, ν=0], (h) σ(MT1)

NRS
[J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 26.9 27.2 27.7 27.3 27.2 26.8 26.9 26.4 26.9 27.1
10 27.3 27.1 27.2 27.1 26.8 26.8 26.6 26.8 26.9 26.8
20 27.6 27.3 27.6 27.7 27.6 27.2 27.4 27.3 27.2 26.9
30 28.8 29.0 28.9 28.6 29.1 28.2 28.5 28.3 28.7 28.2
50 30.0 29.8 30.3 29.4 29.8 29.7 28.9 29.6 29.6 29.8
80 35.0 34.8 35.1 34.5 34.6 34.9 33.3 33.4 33.7 33.4
100 37.3 37.6 37.8 37.9 38.4 39.1 36.6 37.7 36.2 37.7
200 76.5 74.0 76.5 77.2 72.2 70.5 65.7 67.4 65.8 69.2
300 121 117 124 121 112 112 100 103 102 103
400 184 173 185 181 160 163 142 145 143 146
500 264 261 262 261 232 232 196 209 191 206
700 368 385 376 389 341 350 288 301 282 299
1000 631 648 631 564 551 570 482 500 472 501
2000 1550 1530 1530 1570 1510 1440 1350 1370 1390 1390
3000 2600 2610 2570 2560 2520 2480 2400 2390 2290 2270

Table 5.19: Transverse coefficient (eDT /K0) in meV from hybrid calculations using Model
B2 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a)

σ
(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0, ν=2], (e)
σ
(MT1)
NRS [J=0, ν=5], (f) σ(MT2)

NRS [J=0, ν=5], (g) σ(MT1)
NRS [J=0, ν=12], (h) σ(MT1)

NRS [J=0, ν=12],
(i) σ(MT1)

NRS [J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 26.6 26.5 26.6 26.4 27.1 26.8 26.6 27.1 27.1 27.0
10 27.0 27.1 27.2 27.2 27.2 26.9 26.9 26.6 27.2 27.0
20 27.6 26.8 27.2 27.6 27.4 26.6 27.1 26.8 27.4 27.5
30 28.6 28.6 28.9 28.6 29.2 27.9 28.5 29.5 28.4 28.2
50 30.1 29.5 30.4 29.5 29.7 28.6 29.1 29.2 29.5 29.3
80 34.3 34.4 35.5 35.2 34.5 35.0 33.3 32.6 33.9 33.8
100 38.5 37.8 39.6 38.3 38.2 37.5 37.8 36.2 36.6 36.1
200 78.6 77.0 78.1 76.6 72.1 69.6 66.4 67.4 66.5 64.6
300 120 117 121 117 110 109 97.2 105 98.5 104
400 182 181 180 186 164 164 138 147 142 144
500 269 265 259 264 228 244 195 204 194 206
700 371 384 382 402 340 337 287 315 291 291
1000 630 640 627 622 558 575 481 498 470 498
2000 1570 1540 1550 1590 1470 1520 1390 1330 1310 1380
3000 2540 2550 2620 2520 2490 2410 2410 2360 2330 2380

Table 5.20: Transverse coefficient (eDT /K0) in meV from hybrid calculations using Model
B3 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a)

σ
(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0, ν=2], (e)
σ
(MT1)
NRS [J=0, ν=5], (f) σ(MT2)

NRS [J=0, ν=5], (g) σ(MT1)
NRS [J=0, ν=12], (h) σ(MT1)

NRS [J=0, ν=12],
(i) σ(MT1)

NRS [J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 26.7 26.5 27.1 26.9 26.8 26.3 26.5 27.4 26.5 27.1
10 27.0 26.9 27.5 26.8 26.9 26.8 27.0 26.8 26.8 27.4
20 27.1 27.4 27.0 27.0 27.0 27.0 27.0 27.3 27.1 27.9
30 29.2 28.3 28.9 28.5 28.4 28.1 28.3 28.1 28.7 28.2
50 29.3 29.2 30.2 28.3 30.1 29.8 29.5 28.8 29.8 29.5
80 34.9 34.7 35.8 35.2 34.4 34.4 33.9 33.4 34.2 33.4
100 38.6 38.1 37.9 38.2 38.1 39.1 35.4 36.9 38.8 37.2
200 77.7 75.1 77.2 76.6 73.2 70.6 66.4 65.4 66.1 64.4
300 118 118 123 120 111 106 101 100 101 102
400 181 182 183 179 162 162 141 150 141 146
500 256 256 261 273 231 235 200 207 190 203
700 385 388 378 386 353 349 284 300 280 293
1000 615 636 628 637 543 596 493 499 478 513
2000 1590 1550 1620 1580 1500 1480 1380 1390 1380 1360
3000 2650 2610 2650 2590 2510 2430 2360 2330 2490 2390

Table 5.21: Transverse coefficient (eDT /K0) in meV from hybrid calculations using Model
B4 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a)

σ
(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0, ν=2], (e)
σ
(MT1)
NRS [J=0, ν=5], (f) σ(MT2)

NRS [J=0, ν=5], (g) σ(MT1)
NRS [J=0, ν=12], (h) σ(MT1)

NRS [J=0, ν=12],
(i) σ(MT1)

NRS [J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 28.0 28.3 28.3 27.7 26.9 28.1 28.9 27.6
10 28.3 28.5 27.9 27.7 28.2 28.1 28.1 27.8
20 29.0 28.7 28.3 28.7 29.8 29.3 29.1 28.1
30 33.3 31.9 31.3 31.9 32.8 31.7 32.6 30.9
50 36.8 35.4 37.7 35.9 35.7 35.7 35.6 35.6
80 55.6 53.7 60.1 55.7 57.9 58.3 61.5 56.1
100 72.2 67.2 70.2 65.5 70.5 66.9 74.2 68.1
200 175 187 186 181 182 186 189 188
300 228 251 241 256 242 246 234 254
400 284 321 289 313 280 310 287 308
500 345 374 339 373 340 354 350 355
700 546 582 532 557 527 546 548 549
1000 1050 988 949 961 986 960 975 930
2000 2080 2010 1980 1980 2060 1960 2100 2010
3000 2680 2540 2570 2570 2650 2660 2720 2550

Table 5.22: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using dif-
ferent interactions models and σ

(MT1)
NRS and σ

(MT2)
NRS for a initial dimer [J=0, ν=0]. (a) Model

B1 σ
(MT1)
NRS , (b) Model B1 σ

(MT2)
NRS , (c) Model B2 σ

(MT1)
NRS , (d) Model B2 σ

(MT2)
NRS , (e) Model B3

σ
(MT1)
NRS , (f) Model B3 σ

(MT2)
NRS , (g) Model B4 σ

(MT1)
NRS , (h) Model B4 σ

(MT2)
NRS .
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 28.1 27.8 28.1 28.3 27.3 27.6 27.3 27.5
10 28.3 27.8 28.2 27.9 28.2 27.3 27.0 27.1
20 28.7 28.2 28.5 29.2 28.6 27.3 27.8 27.8
30 32.2 32.3 31.7 32.3 31.9 30.4 31.0 30.3
50 35.7 33.9 35.6 34.8 34.1 32.7 33.3 33.2
80 54.5 50.1 53.7 53.5 45.4 46.4 42.8 43.0
100 65.2 62.1 63.0 67.3 57.4 55.4 53.0 52.3
200 170 170 173 173 146 147 122 111
300 228 249 238 240 214 223 194 165
400 289 326 282 295 273 292 253 240
500 372 375 358 348 338 362 327 296
700 568 611 560 583 580 578 531 508
1000 1040 995 1040 1020 1030 1030 1020 1060
2000 2080 2030 2150 2090 2160 2090 2160 2320
3000 2570 2610 2650 2640 2750 2700 2840 2750

Table 5.23: Longitudinal coefficient (eDL/K0)in meV from hybrid calculations using
Model B1 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer val-

ues. (a) σ(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0,
ν=2], (e) σ(MT1)

NRS [J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0,

ν=12].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 28.0 27.4 27.6 26.8 28.0 28.0 27.4 26.9
10 28.1 27.8 28.1 28.0 27.9 27.8 27.8 26.9
20 28.6 28.7 29.1 29.6 28.8 28.9 27.1 27.6
30 31.7 33.2 32.4 32.1 33.3 31.5 29.7 30.5
50 34.8 34.1 35.0 35.3 35.9 36.1 33.3 34.1
80 55.0 51.8 52.3 49.5 54.5 52.4 42.8 43.8
100 66.3 64.2 63.8 62.2 64.9 64.9 52.6 52.7
200 174 184 173 183 154 157 113 120
300 248 257 242 251 213 223 173 191
400 312 339 298 320 262 290 225 244
500 353 384 358 386 330 366 296 314
700 598 610 576 622 573 575 518 533
1000 1020 1020 1040 1010 1060 980 1030 987
2000 2050 1980 2130 2020 2280 2110 2400 2190
3000 2670 2650 2750 2580 2740 2570 2840 2700

Table 5.24: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using
Model B1 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer val-

ues. (a) σ(MT1)
NRS [J=10, ν=0], (b) σ(MT2)

NRS [J=10, ν=0], (c) σ(MT1)
NRS [J=50, ν=0], (d) σ(MT2)

NRS

[J=50, ν=0], (e) σ(MT1)
NRS [J=100, ν=0], (f) σ(MT2)

NRS [J=100, ν=0], (g) σ(MT1)
NRS [J=200, ν=0], (h)

σ
(MT1)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 27.6 27.8 28.5 27.9 27.7 27.3 27.9 27.3 27.8 27.8
10 28.0 27.8 28.4 27.7 27.9 27.8 27.4 27.7 27.8 27.3
20 29.2 29.4 29.4 28.8 29.0 28.8 28.0 28.4 29.5 28.0
30 31.5 32.2 32.1 32.0 32.0 32.2 31.9 31.2 31.9 31.5
50 36.2 35.5 36.8 36.2 35.3 36.7 34.3 34.5 34.2 35.0
80 56.8 55.9 58.6 56.6 50.3 52.5 47.9 48.5 46.8 46.3
100 66.6 66.5 70.8 68.8 63.6 65.4 55.6 56.6 54.7 56.4
200 175 183 171 176 142 144 119 125 117 120
300 232 240 219 233 195 209 164 175 159 178
400 297 299 280 300 242 263 210 230 223 232
500 335 360 322 358 320 343 285 304 305 303
700 540 584 557 541 519 549 520 501 503 495
1000 1050 966 980 971 1040 969 980 991 973 965
2000 2100 1900 2080 2030 2220 209 2280 2190 2330 219
3000 2580 2670 2580 2610 2820 2690 2870 2810 2790 2710

Table 5.25: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using
Model B2 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer val-

ues. (a) σ(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0,
ν=2], (e) σ(MT1)

NRS [J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0,

ν=12], (i) σ(MT1)
NRS [J=200, ν=0], (j) σ(MT2)

NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 27.7 26.8 27.5 27.5 27.6 27.6 27.1 27.9 27.5 28.5
10 28.1 28.1 27.5 28.0 28.1 28.0 28.0 27.3 27.4 27.6
20 28.3 29.2 29.5 28.8 29.4 28.7 28.6 28.3 28.7 28.6
30 31.9 31.7 32.8 31.2 31.8 32.6 31.4 31.2 31.9 31.3
50 36.8 36.0 36.4 36.7 35.2 34.6 33.7 34.3 33.5 34.2
80 58.0 56.4 59.8 56.4 53.8 51.1 46.9 47.8 48.2 48.8
100 67.2 66.9 76.5 69.4 65.0 64.0 53.5 56.5 54.7 59.2
200 172 178 181 180 143 146 115 122 114 122
300 227 243 223 233 193 210 159 165 157 172
400 285 296 279 304 247 280 214 236 222 225
500 331 364 340 343 326 357 287 322 274 309
700 568 589 524 569 523 548 517 532 479 497
1000 990 948 971 971 978 950 1010 963 1030 978
2000 2060 1950 2100 2000 2180 2060 2320 2180 2320 2220
3000 2640 2480 2680 2580 2710 2710 2770 2810 2810 2690

Table 5.26: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using
Model B3 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer val-

ues. (a) σ(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0,
ν=2], (e) σ(MT1)

NRS [J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0,

ν=12], (i) σ(MT1)
NRS [J=200, ν=0], (j) σ(MT2)

NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 27.6 27.4 28.0 27.4 27.4 27.4 27.6 27.8 27.6 27.3
10 28.1 27.9 28.2 28.0 28.0 27.7 28.1 27.8 27.5 27.5
20 28.9 29.2 29.4 28.5 28.5 28.5 28.7 28.5 28.7 29.2
30 32.9 32.5 32.8 32.2 32.2 31.7 31.8 32.2 31.0 31.3
50 35.6 35.3 36.2 35.7 35.9 34.0 34.3 33.9 33.8 34.6
80 57.3 52.8 59.6 57.1 52.0 50.9 46.6 48.6 46.8 47.0
100 71.4 66.2 72.0 68.5 60.3 65.4 55.6 60.6 57.2 58.0
200 173 178 169 177 143 148 117 123 114 122
300 222 239 221 239 198 204 164 178 159 171
400 282 304 272 302 259 272 219 241 224 234
500 334 357 337 363 331 348 291 304 278 308
700 545 579 541 559 535 544 507 526 471 503
1000 980 958 998 966 1000 991 1010 952 988 946
2000 2040 2000 2080 2000 2190 214 2180 2190 2330 2230
3000 2690 2680 2670 2580 2740 2630 2840 2780 2870 2760

Table 5.27: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using
Model B4 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer val-

ues. (a) σ(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0,
ν=2], (e) σ(MT1)

NRS [J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0,

ν=12], (i) σ(MT1)
NRS [J=200, ν=0], (j) σ(MT2)

NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

150 / / / / / / / / / /
160 / / / 2.49E-

21
/ / / / / 1.24E-

21
170 / / / 1.24E-

21
/ / / / / 2.49E-

21
180 / / / 4.96E-

21
/ / / / / 4.96E-

21
190 / / / 4.96E-

21
/ / / / / 8.06E-

21
200 1.05E-

20
1.43E-
20

1.74E-
20

9.92E-
21

3.09E-
20

8.68E-
21

1.49E-
20

2.05E-
20

1.80E-
20

1.98E-
20

300 3.87E-
19

4.59E-
19

4.22E-
19

4.49E-
19

4.56E-
19

5.14E-
19

4.19E-
19

4.89E-
19

4.47E-
19

5.25E-
19

400 2.91E-
18

3.05E-
18

2.91E-
18

3.14E-
18

3.06E-
18

3.33E-
18

3.09E-
18

3.37E-
18

3.08E-
18

3.40E-
18

500 9.41E-
18

1.04E-
17

9.41E-
18

1.06E-
17

9.67E-
18

1.07E-
17

9.72E-
18

1.08E-
17

9.76E-
18

1.05E-
17

700 1.73E-
17

1.75E-
17

3.85E-
17

4.13E-
17

3.83E-
17

4.12E-
17

3.82E-
17

4.11E-
17

3.83E-
17

4.08E-
17

1000 7.04E-
17

7.09E-
17

1.21E-
16

1.26E-
16

1.18E-
16

1.23E-
16

1.17E-
16

1.23E-
16

1.18E-
16

1.22E-
16

2000 4.19E-
16

4.18E-
16

4.90E-
16

4.88E-
16

4.83E-
16

4.82E-
16

4.83E-
16

4.82E-
16

4.82E-
16

4.82E-
16

3000 7.72E-
16

7.59E-
16

7.89E-
16

7.83E-
16

7.87E-
16

7.79E-
16

7.85E-
16

7.80E-
16

7.85E-
16

7.79E-
16

Table 5.28: Dissociation rate constant in m3s−1 from hybrid calculations using different
interactions models and σ

(MT1)
NRS and σ

(MT2)
NRS for a initial dimer [J=0, ν=0]. (a) Model A1

σ
(MT1)
NRS , (b) Model A1 σ

(MT2)
NRS , (c) Model B1 σ

(MT1)
NRS , (d) Model B1 σ

(MT2)
NRS , (e) Model B2

σ
(MT1)
NRS , (f) Model B2 σ

(MT2)
NRS , (g) Model B3 σ

(MT1)
NRS , (h) Model B3 σ

(MT2)
NRS , (i) Model B4

σ
(MT1)
NRS , (j) Model B4 σ

(MT2)
NRS .
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

150 / 1.23E-
21

/ / / / / /

160 / 1.25E-
21

/ / / / / 1.24E-
21

170 / 1.22E-
21

/ / / / / /

180 / 4.95E-
21

/ / / / / 3.71E-
21

190 / 9.96E-
21

/ / / / / 4.94E-
21

200 1.24E-
20

1.61E-
20

1.49E-
20

1.99E-
20

3.71E-
21

2.45E-
21

1.24E-
20

8.64E-
21

300 3.77E-
19

4.44E-
19

4.19E-
19

4.05E-
19

2.48E-
19

3.86E-
19

3.73E-
19

2.32E-
19

400 2.88E-
18

3.21E-
18

3.04E-
18

3.05E-
18

2.23E-
18

2.79E-
18

2.85E-
18

2.06E-
18

500 9.37E-
18

1.05E-
17

9.82E-
18

9.98E-
18

7.80E-
18

9.68E-
18

9.87E-
18

7.53E-
18

700 3.85E-
17

4.22E-
17

4.05E-
17

4.38E-
17

3.54E-
17

3.97E-
17

4.18E-
17

3.59E-
17

1000 1.22E-
16

1.26E-
16

1.25E-
16

1.30E-
16

1.18E-
16

1.25E-
16

1.34E-
16

1.22E-
16

2000 4.92E-
16

4.89E-
16

4.96E-
16

4.95E-
16

4.97E-
16

4.95E-
16

5.21E-
16

5.2E-
16

3000 7.90E-
16

7.85E-
16

7.94E-
16

7.90E-
16

8.01E-
16

7.96E-
16

8.26E-
16

8.33E-
16

Table 5.29: Dissociation rate constant in m3s−1 from hybrid calculations using Model B1
and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ(MT1)

NRS

[J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS

[J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0, ν=12].



182 APPENDICES

Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

150 / / / 1.22E-
21

/ / / /

160 / / / / / / / /
170 / / / 1.87E-

21
/ / / 2.49E-

21
180 / / / 6.22E-

21
/ / / 5.59E-

21
190 / / / 3.74E-

21
/ / / 9.26E-

21
200 1.86E-

20
8.64E-
21

9.89E-
21

1.42E-
20

6.18E-
21

9.88E-
21

1.11E-
20

1.18E-
20

300 3.70E-
19

4.29E-
19

4.20E-
19

4.68E-
19

3.35E-
19

4.16E-
19

2.64E-
19

4.17E-
19

400 2.69E-
18

3.27E-
18

3.03E-
18

3.43E-
18

2.55E-
18

3.13E-
18

2.10E-
18

2.85E-
18

500 9.62E-
18

1.06E-
17

9.80E-
18

1.09E-
17

8.69E-
18

1.03E-
17

7.44E-
18

9.84E-
18

700 3.90E-
17

4.20E-
17

3.92E-
17

4.33E-
17

3.69E-
17

4.09E-
17

3.52E-
17

4.20E-
17

1000 1.22E-
16

1.26E-
16

1.23E-
16

1.27E-
16

1.20E-
16

1.26E-
16

1.22E-
16

1.33E-
16

2000 4.87E-
16

4.84E-
16

4.87E-
16

4.84E-
16

4.95E-
16

4.93E-
16

5.24E-
16

5.26E-
16

3000 7.85E-
16

7.80E-
16

7.81E-
16

7.75E-
16

7.99E-
16

7.92E-
16

8.39E-
16

8.32E-
16

Table 5.30: Dissociation rate constant in m3s−1 from hybrid calculations using Model B1
and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ(MT1)

NRS

[J=10, ν=0], (b) σ(MT2)
NRS [J=10, ν=0], (c) σ(MT1)

NRS [J=50, ν=0], (d) σ(MT2)
NRS [J=50, ν=0], (e)

σ
(MT1)
NRS [J=100, ν=0], (f) σ(MT2)

NRS [J=100, ν=0], (g) σ(MT1)
NRS [J=200, ν=0], (h) σ(MT1)

NRS [J=200,
ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

200 1.93E-
20

1.86E-
20

2.30E-
20

2.60E-
20

6.19E-
21

1.05E-
20

1.18E-
20

1.37E-
20

6.19E-
21

1.99E-
20

300 4.68E-
19

5.55E-
19

4.21E-
19

5.36E-
19

3.39E-
19

3.66E-
19

2.76E-
19

3.96E-
19

2.65E-
19

4.02E-
19

400 3.20E-
18

3.51E-
18

3.26E-
18

3.82E-
18

2.36E-
18

2.94E-
18

2.16E-
18

3.10E-
18

2.25E-
18

2.99E-
18

500 1.01E-
17

1.13E-
17

1.03E-
17

1.17E-
17

8.34E-
18

1.01E-
17

7.98E-
18

1.04E-
17

7.93E-
18

1.01E-
17

700 3.92E-
17

4.30E-
17

4.09E-
17

4.42E-
17

3.52E-
17

4.04E-
17

3.65E-
17

4.23E-
17

3.51E-
17

4.21E-
17

1000 1.21E-
16

1.27E-
16

1.25E-
16

1.29E-
16

1.17E-
16

1.23E-
16

1.23E-
16

1.33E-
16

1.22E-
16

1.33E-
16

2000 4.87E-
16

4.84E-
16

4.92E-
16

4.92E-
16

4.94E-
16

4.92E-
16

5.17E-
16

5.19E-
16

5.22E-
16

5.24E-
16

3000 7.84E-
16

7.79E-
16

7.93E-
16

7.87E-
16

8.00E-
16

7.93E-
16

8.32E-
16

8.23E-
16

8.39E-
16

8.33E-
16

Table 5.31: Dissociation rate constant in m3s−1 from hybrid calculations using Model B2
and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ(MT1)

NRS

[J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS

[J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0, ν=12], (i) σ(MT1)

NRS

[J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

200 1.36E-
20

1.24E-
20

1.43E-
20

1.98E-
20

5.57E-
21

9.92E-
21

4.92E-
21

1.74E-
20

8.07E-
21

1.49E-
20

300 4.71E-
19

5.12E-
19

5.08E-
19

5.68E-
19

3.12E-
19

4.07E-
19

3.01E-
19

4.19E-
19

2.47E-
19

4.51E-
19

400 3.08E-
18

3.38E-
18

3.29E-
18

3.69E-
18

2.33E-
18

3.14E-
18

2.22E-
18

3.00E-
18

2.09E-
18

3.01E-
18

500 1.00E-
17

1.11E-
17

1.05E-
17

1.19E-
17

8.08E-
18

1.00E-
17

7.78E-
18

1.01E-
17

7.70E-
18

1.01E-
17

700 3.92E-
17

4.27E-
17

4.15E-
17

4.49E-
17

3.60E-
17

4.01E-
17

3.67E-
17

4.30E-
17

3.52E-
17

4.24E-
17

1000 1.20E-
16

1.25E-
16

1.25E-
16

1.30E-
16

1.16E-
16

1.24E-
16

1.23E-
16

1.32E-
16

1.21E-
16

1.32E-
16

2000 4.85E-
16

4.85E-
16

4.91E-
16

4.93E-
16

4.89E-
16

4.91E-
16

5.19E-
16

5.19E-
16

5.20E-
16

5.23E-
16

3000 7.85E-
16

7.82E-
16

7.92E-
16

7.86E-
16

7.99E-
16

7.92E-
16

8.30E-
16

8.24E-
16

8.34E-
16

8.32E-
16

Table 5.32: Dissociation rate constant in m3s−1 from hybrid calculations using Model B3
and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ(MT1)

NRS

[J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS

[J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0, ν=12], (i) σ(MT1)

NRS

[J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

150 / / / / / / / / / 2.46E-
21

160 / 1.24E-
21

/ 2.47E-
21

/ / / / / 1.25E-
21

170 / 2.49E-
21

/ 1.23E-
21

/ / / / / 1.24E-
21

180 / 4.96E-
21

/ 8.03E-
21

/ / / / / /

190 / 8.06E-
21

/ 6.22E-
21

/ / / / / 1.12E-
20

200 1.80E-
20

1.98E-
20

1.55E-
20

1.55E-
20

2.11E-
20

2.04E-
20

8.01E-
21

1.73E-
20

1.61E-
20

1.79E-
20

300 4.47E-
19

5.25E-
19

4.85E-
19

5.13E-
19

5.16E-
19

5.30E-
19

2.77E-
19

3.93E-
19

3.35E-
19

4.82E-
19

400 3.08E-
18

3.40E-
18

3.02E-
18

3.39E-
18

3.32E-
18

3.69E-
18

2.34E-
18

2.96E-
18

2.34E-
18

3.09E-
18

500 9.76E-
18

1.05E-
17

9.82E-
18

1.08E-
17

1.05E-
17

1.19E-
17

8.09E-
18

1.00E-
17

8.10E-
18

1.02E-
17

700 3.83E-
17

4.08E-
17

3.84E-
17

4.21E-
17

4.12E-
17

4.49E-
17

3.57E-
17

4.00E-
17

3.62E-
17

4.23E-
17

1000 1.18E-
16

1.22E-
16

1.19E-
16

1.24E-
16

1.24E-
16

1.30E-
16

1.16E-
16

1.24E-
16

1.24E-
16

1.33E-
16

2000 4.82E-
16

4.82E-
16

4.84E-
16

4.82E-
16

4.93E-
16

4.92E-
16

4.92E-
16

4.91E-
16

5.18E-
16

5.19E-
16

3000 7.85E-
16

7.79E-
16

7.88E-
16

7.80E-
16

7.95E-
16

7.88E-
16

7.98E-
16

7.93E-
16

8.31E-
16

8.25E-
16

Table 5.33: Dissociation rate constant in m3s−1 from hybrid calculations using Model B4
and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ(MT1)

NRS

[J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS

[J=0, ν=5], (f) σ(MT2)
NRS [J=0, ν=5], (g) σ(MT1)

NRS [J=0, ν=12], (h) σ(MT1)
NRS [J=0, ν=12], (i) σ(MT1)

NRS

[J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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D Tables of transport coefficients and dissociation rate con-

stant for Xe+2/Xe collisions
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f)

5 0.587 0.562 0.590 0.589 0.586 0.585
10 0.585 0.562 0.591 0.587 0.587 0.582
20 0.581 0.562 0.589 0.584 0.586 0.579
30 0.58 0.555 0.584 0.579 0.582 0.576
50 0.570 0.554 0.584 0.574 0.581 0.570
80 0.565 0.548 0.579 0.568 0.578 0.565
100 0.556 0.538 0.573 0.561 0.572 0.560
200 0.562 0.539 0.596 0.573 0.598 0.575
300 0.570 0.546 0.622 0.594 0.628 0.598
400 0.568 0.548 0.629 0.607 0.632 0.611
500 0.554 0.543 0.618 0.601 0.623 0.606
700 0.517 0.512 0.564 0.561 0.569 0.564
1000 0.480 0.477 0.508 0.511 0.510 0.511
2000 0.420 0.409 0.417 0.416 0.414 0.414
3000 0.369 0.358 0.362 0.360 0.359 0.357

Table 5.34: Mobility values in cm2V−1s−1 from hybrid calculations using different interac-
tions models and σ

(MT1)
NRS and σ

(MT2)
NRS for a initial dimer [J=0, ν=0]. (a) Model A1 σ

(MT1)
NRS ,

(b) Model A1 σ
(MT2)
NRS , (c) Model B1 σ

(MT1)
NRS , (d) Model B1 σ

(MT2)
NRS , (e) Model B2 σ

(MT1)
NRS , (f)

Model B2 σ
(MT2)
NRS .
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 0.589 0.576 0.595 0.569 0.591 0.583 0.587 0.594
10 0.591 0.580 0.588 0.576 0.592 0.583 0.587 0.586
20 0.590 0.582 0.586 0.573 0.593 0.583 0.586 0.578
30 0.585 0.576 0.580 0.570 0.589 0.580 0.580 0.575
50 0.583 0.572 0.577 0.565 0.585 0.577 0.576 0.569
80 0.578 0.570 0.573 0.563 0.581 0.570 0.569 0.566
100 0.571 0.560 0.568 0.559 0.574 0.566 0.561 0.558
200 0.592 0.575 0.584 0.569 0.584 0.570 0.557 0.554
300 0.613 0.593 0.601 0.583 0.591 0.581 0.553 0.550
400 0.617 0.603 0.603 0.592 0.589 0.582 0.543 0.547
500 0.606 0.595 0.593 0.587 0.576 0.574 0.531 0.538
700 0.557 0.557 0.548 0.550 0.534 0.540 0.495 0.505
1000 0.507 0.511 0.501 0.505 0.492 0.499 0.464 0.463
2000 0.419 0.419 0.418 0.418 0.417 0.417 0.409 0.409
3000 0.364 0.363 0.364 0.362 0.364 0.363 0.362 0.359

Table 5.35: Mobility values in cm2V−1s−1 from hybrid calculations using Model B1 and
σ
(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ

(MT1)
NRS

[J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS

[J=0, ν=4], (f) σ(MT2)
NRS [J=0, ν=4], (g) σ(MT1)

NRS [J=0, ν=8], (h) σ(MT2)
NRS [J=0, ν=8].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 0.582 0.569 0.595 0.612 0.614 0.615 0.611 0.627
10 0.575 0.573 0.588 0.613 0.610 0.615 0.612 0.628
20 0.568 0.572 0.586 0.615 0.608 0.616 0.608 0.626
30 0.565 0.569 0.580 0.608 0.600 0.610 0.603 0.617
50 0.564 0.566 0.577 0.604 0.595 0.608 0.600 0.614
80 0.556 0.558 0.573 0.603 0.592 0.605 0.594 0.612
100 0.549 0.549 0.568 0.593 0.583 0.596 0.587 0.604
200 0.531 0.532 0.584 0.583 0.568 0.588 0.573 0.610
300 0.519 0.528 0.601 0.567 0.551 0.579 0.562 0.606
400 0.512 0.521 0.603 0.559 0.542 0.568 0.552 0.592
500 0.500 0.512 0.593 0.547 0.535 0.558 0.545 0.573
700 0.473 0.488 0.548 0.515 0.510 0.527 0.519 0.527
1000 0.452 0.464 0.501 0.481 0.482 0.489 0.490 0.484
2000 0.408 0.409 0.418 0.416 0.414 0.418 0.417 0.412
3000 0.363 0.36 0.364 0.366 0.364 0.367 0.363 0.363

Table 5.36: Mobility values in cm2V−1s−1 from hybrid calculations using Model B1 and
σ
(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ

(MT1)
NRS

[J=0, ν=12], (b) σ(MT2)
NRS [J=0, ν=12], (c) σ(MT1)

NRS [J=60, ν=0], (d) σ(MT2)
NRS [J=60, ν=0], (e)

σ
(MT1)
NRS [J=70, ν=0], (f) σ(MT2)

NRS [J=70, ν=0], (g) σ(MT1)
NRS [J=90, ν=0], (h) σ(MT2)

NRS [J=90, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f)

5 0.632 0.636 0.636 0.670 0.631 0.636
10 0.637 0.627 0.636 0.672 0.635 0.636
20 0.634 0.633 0.628 0.664 0.632 0.632
30 0.631 0.628 0.628 0.661 0.630 0.628
50 0.626 0.623 0.628 0.655 0.627 0.624
80 0.623 0.621 0.626 0.650 0.625 0.622
100 0.614 0.609 0.623 0.637 0.616 0.612
200 0.627 0.610 0.605 0.618 0.617 0.603
300 0.617 0.599 0.585 0.585 0.603 0.592
400 0.600 0.586 0.563 0.562 0.583 0.573
500 0.576 0.567 0.538 0.535 0.559 0.553
700 0.530 0.525 0.484 0.485 0.515 0.513
1000 0.487 0.485 0.435 0.440 0.475 0.477
2000 0.417 0.414 0.382 0.383 0.413 0.411
3000 0.366 0.363 0.347 0.345 0.365 0.362

Table 5.37: Mobility values in cm2V−1s−1 from hybrid calculations using Model B1 and
σ
(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ

(MT1)
NRS

[J=100, ν=0], (b) σ(MT2)
NRS [J=100, ν=0], (c) σ(MT1)

NRS [J=200, ν=0], (d) σ(MT2)
NRS [J=200, ν=0],

(e) σ(MT1)
NRS [J=100, ν=1], (f) σ(MT2)

NRS [J=100, ν=1].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 0.589 0.576 0.586 0.578 0.570 0.574 0.622 0.606 0.581 0.584
10 0.578 0.575 0.583 0.573 0.571 0.577 0.620 0.603 0.585 0.575
20 0.584 0.576 0.579 0.574 0.570 0.571 0.611 0.606 0.585 0.577
30 0.580 0.572 0.576 0.571 0.565 0.567 0.608 0.598 0.580 0.573
50 0.575 0.568 0.573 0.566 0.561 0.563 0.605 0.595 0.583 0.573
80 0.574 0.566 0.573 0.562 0.556 0.554 0.601 0.590 0.578 0.568
100 0.568 0.557 0.566 0.555 0.547 0.548 0.592 0.584 0.572 0.561
200 0.597 0.577 0.588 0.572 0.531 0.535 0.581 0.566 0.585 0.571
300 0.621 0.602 0.610 0.592 0.525 0.530 0.567 0.550 0.593 0.583
400 0.628 0.611 0.613 0.602 0.515 0.524 0.556 0.542 0.591 0.586
500 0.613 0.603 0.597 0.593 0.502 0.515 0.543 0.532 0.578 0.578
700 0.564 0.561 0.551 0.554 0.473 0.489 0.512 0.508 0.535 0.540
1000 0.507 0.509 0.500 0.506 0.451 0.462 0.478 0.478 0.491 0.497
2000 0.416 0.415 0.415 0.415 0.406 0.405 0.411 0.410 0.414 0.414
3000 0.361 0.361 0.362 0.360 0.360 0.358 0.362 0.361 0.362 0.360

Table 5.38: Mobility values in cm2V−1s−1 from hybrid calculations using Model B2 and
σ
(MT1)
NRS and σ

(MT2)
NRS for different initial vibrational dimer values. (a) σ(MT1)

NRS [J=0, ν=1], (b)
σ
(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS [J=0, ν=4], (f)
σ
(MT2)
NRS [J=0, ν=4], (g) σ(MT1)

NRS [J=0, ν=8], (h) σ(MT1)
NRS [J=0, ν=8], (i) σ(MT1)

NRS [J=0, ν=12], (j)
σ
(MT2)
NRS [J=0, ν=12].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 0.577 0.578 0.613 0.612 0.612 0.623 0.632 0.630 0.628 0.657
10 0.581 0.584 0.613 0.609 0.615 0.624 0.627 0.624 0.630 0.653
20 0.578 0.580 0.612 0.611 0.619 0.614 0.626 0.627 0.629 0.657
30 0.576 0.575 0.608 0.606 0.615 0.612 0.621 0.623 0.624 0.643
50 0.574 0.570 0.606 0.599 0.610 0.609 0.618 0.617 0.624 0.648
80 0.567 0.563 0.603 0.593 0.608 0.601 0.617 0.613 0.619 0.645
100 0.560 0.557 0.597 0.588 0.600 0.592 0.609 0.606 0.611 0.633
200 0.559 0.554 0.588 0.572 0.608 0.592 0.623 0.609 0.602 0.613
300 0.556 0.554 0.577 0.562 0.604 0.588 0.621 0.603 0.587 0.588
400 0.548 0.551 0.569 0.554 0.594 0.577 0.605 0.590 0.573 0.569
500 0.533 0.542 0.558 0.545 0.572 0.560 0.581 0.571 0.559 0.552
700 0.497 0.508 0.525 0.517 0.527 0.522 0.531 0.526 0.516 0.515
1000 0.464 0.474 0.487 0.486 0.483 0.483 0.486 0.484 0.468 0.468
2000 0.406 0.406 0.415 0.414 0.410 0.407 0.413 0.410 393 0.391
3000 0.359 0.358 0.363 0.361 0.360 0.358 0.364 0.360 0.348 0.346

Table 5.39: Mobility values in cm2V−1s−1 from hybrid calculations using Model B2 and
σ
(MT1)
NRS and σ

(MT2)
NRS for different initial rotational dimer values. (a) σ(MT1)

NRS [J=60, ν=0],
(b) σ(MT2)

NRS [J=60, ν=0], (c) σ(MT1)
NRS [J=70, ν=0], (d) σ(MT2)

NRS [J=70, ν=0], (e) σ(MT1)
NRS [J=90,

ν=0], (f) σ(MT2)
NRS [J=90, ν=0], (g) σ(MT1)

NRS [J=100, ν=0], (h) σ(MT1)
NRS [J=100, ν=0], (i) σ(MT1)

NRS

[J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f)

5 26.8 27.0 26.9 26.1 26.5 25.8
10 27.0 27.0 27.2 26.9 26.4 26.6
20 26.6 26.8 27.6 27.1 26.7 26.4
30 28.1 28.3 28.1 27.6 27.3 27.0
50 30.6 29.5 28.0 27.7 28.3 27.2
80 36.2 35.7 29.2 29.9 30.2 30.0
100 42.4 41.5 31.0 32.3 31.4 31.1
200 106 96.4 51.0 50.7 51.8 49.0
300 184 177 79.4 75.2 77.3 77.8
400 249 244 120 113 119 114
500 315 324 189 190 195 185
700 448 478 280 272 283 277
1000 896 846 472 485 467 472
2000 2110 190 1240 1180 1170 1180
3000 2550 2460 1990 2050 1980 1930

Table 5.40: Transverse coefficient (eDT /K0) in meV from hybrid calculations using differ-
ent interactions models and σ

(MT1)
NRS and σ

(MT2)
NRS for a initial dimer [J=0, ν=0]. (a) Model

A1 σ
(MT1)
NRS , (b) Model A1 σ

(MT2)
NRS , (c) Model B1 σ

(MT1)
NRS , (d) Model B1 σ

(MT2)
NRS , (e) Model B2

σ
(MT1)
NRS , (f) Model B2 σ

(MT2)
NRS .
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 26.5 26.6 26.4 27.0 26.5 25.7 26.3 25.7
10 26.5 26.2 26.4 27.2 26.9 26.4 26.4 25.8
20 27.0 27.0 27.1 27.0 26.9 27.2 26.5 26.0
30 27.6 27.6 27.4 27.1 27.5 28.0 27.4 27.1
50 27.4 27.6 26.9 28.0 27.8 28.1 27.9 27.9
80 29.9 29.7 30.8 29.4 30.2 29.8 29.1 30.2
100 32.4 30.8 32.1 31.7 32.0 31.1 31.6 31.1
200 52.0 50.9 50.4 49.2 50.1 48.4 48.7 46.1
300 74.8 75.6 76.6 70.3 76.7 75.1 72.4 69.6
400 119 113 117 112 119 112 103 105
500 178 180 178 175 169 171 151 155
700 267 269 261 266 255 251 225 232
1000 463 469 459 460 449 468 408 426
2000 1200 1230 1210 1190 1190 1190 1150 1130
3000 2030 2010 2040 2020 1990 1980 1930 2000

Table 5.41: Transverse coefficient (eDT /K0) in meV from hybrid calculations using Model
B1 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a)

σ
(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0, ν=2], (e)
σ
(MT1)
NRS [J=0, ν=4], (f) σ(MT2)

NRS [J=0, ν=4], (g) σ(MT1)
NRS [J=0, ν=8], (h) σ(MT2)

NRS [J=0, ν=8].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 26.3 26.7 26.7 26.2 26.5 26.5 26.6 26.7
10 26.8 26.3 26.5 26.3 26.8 26.4 26.5 26.9
20 27.5 26.5 26.5 25.9 26.5 27.1 27.0 26.9
30 27.3 26.9 27.8 28.0 27.6 28.3 27.8 27.7
50 27.6 27.7 28.7 28.2 28.2 28.3 28.2 28.1
80 30.5 29.0 28.9 30.4 29.9 30.3 30.4 30.4
100 31.4 30.8 32.7 32.1 32.2 32.3 32.4 33.0
200 46.7 46.8 51.1 50.0 50.9 48.9 52.6 50.3
300 66.4 70.2 76.3 71.3 73.2 72.6 78.7 75.9
400 96.2 102 107 104 108 107 115 111
500 139 142 159 155 171 157 165 169
700 218 225 246 253 244 251 248 244
1000 375 384 446 435 435 428 448 419
2000 1140 1160 1190 1220 1220 1180 1170 1150
3000 2020 1910 2070 2010 2100 2030 2040 1980

Table 5.42: Transverse coefficient (eDT /K0) in meV from hybrid calculations using Model
B1 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a)

σ
(MT1)
NRS [J=0, ν=12], (b) σ

(MT2)
NRS [J=0, ν=12], (c) σ

(MT1)
NRS [J=60, ν=0], (d) σ

(MT2)
NRS [J=60,

ν=0], (e) σ(MT1)
NRS [J=70, ν=0], (f) σ(MT2)

NRS [J=70, ν=0], (g) σ(MT1)
NRS [J=90, ν=0], (h) σ(MT2)

NRS
[J=90, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f)

5 26.6 26.8 26.8 26.8 26.7 26.7
10 26.7 27.1 26.9 26.5 26.5 26.4
20 26.7 27.0 27.5 26.8 26.7 27.3
30 27.9 27.8 28.0 27.5 27.5 28.4
50 27.6 27.9 28.5 28.9 27.9 28.2
80 30.5 30.3 29.5 31.0 31.3 30.9
100 33.3 32.7 31.4 33.1 34.7 32.4
200 52.0 53.4 51.0 52.4 54.3 49.8
300 78.7 77.8 75.9 76.5 79.9 73.9
400 118 113 109 111 114 111
500 173 169 155 154 173 162
700 243 248 218 231 238 245
1000 444 433 357 358 439 415
2000 1200 1160 1020 1010 1150 1150
3000 2060 2050 1840 1780 2050 2030

Table 5.43: Transverse coefficient (eDT /K0) in meV from hybrid calculations using Model
B1 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a)

σ
(MT1)
NRS [J=100, ν=0], (b) σ(MT2)

NRS [J=100, ν=0], (c) σ(MT1)
NRS [J=200, ν=0], (d) σ(MT2)

NRS [J=200,
ν=0], (e) σ(MT1)

NRS [J=100, ν=1], (f) σ(MT2)
NRS [J=100, ν=1].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 26.3 25.9 26.1 26.5 26.6 26.4 26.3 26.7 26.7 26.7
10 26.8 26.2 26.6 26.5 26.5 26.2 26.3 26.9 26.9 26.5
20 26.2 26.4 27.1 26.2 26.6 26.2 27.2 26.6 26.6 27.1
30 27.7 27.8 28.6 27.2 27.0 27.1 27.5 27.8 27.8 27.3
50 28.0 28.0 27.7 27.4 27.2 27.7 27.8 27.5 27.5 27.5
80 30.5 29.4 29.3 30.0 29.3 28.6 30.1 30.2 30.2 30.0
100 31.6 32.8 32.2 33.5 30.2 31.7 32.4 32.0 32.0 30.4
200 51.5 50.6 48.8 48.6 46.3 46.5 50.8 48.0 48.0 51.8
300 77.9 73.1 75.4 74.9 67.8 68.2 75.0 71.5 71.5 74.5
400 123 121 117 114 99.0 97.2 108 104 104 113
500 186 187 181 179 139 144 154 154 154 171
700 273 273 266 268 208 220 249 237 237 264
1000 465 473 469 466 372 416 423 421 421 442
2000 1200 1180 1170 1190 1110 1170 1190 1170 1170 1170
3000 1950 1960 1960 2000 1950 1980 2010 2010 2010 2000

Table 5.44: Transverse coefficient (eDT /K0) in meV from hybrid calculations using Model
B2 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a)

σ
(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0, ν=2], (e)
σ
(MT1)
NRS [J=0, ν=4], (f) σ(MT2)

NRS [J=0, ν=4], (g) σ(MT1)
NRS [J=0, ν=8], (h) σ(MT1)

NRS [J=0, ν=8], (i)
σ
(MT1)
NRS [J=0, ν=12], (j) σ(MT2)

NRS [J=0, ν=12].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 26.6 26.2 27.0 26.6 27.2 26.6 26.7 26.5 27.1 27
10 26.3 26.2 26.8 26.6 26.1 26.4 26.6 26.7 26.8 26.7
20 26.9 26.5 27.0 26.4 26.4 26.9 27.1 26.7 27.1 26.4
30 27.2 27.3 28.4 27.6 28.1 27.8 27.9 27.8 28.0 28.1
50 28.0 28.1 28.0 28.3 28.3 28.0 27.9 27.7 28.2 28.5
80 29.9 29.7 30.7 30.0 31.0 30.4 30.8 31.3 30.6 30.5
100 32.9 32.5 32.8 33.9 32.2 33.6 31.8 32.3 33.4 33.4
200 48.6 48.0 49.6 47.9 50.1 51.1 55.2 51.1 51.3 52.7
300 71.6 70.5 74.0 73.4 78.9 71.5 78.3 77.7 76.2 74.1
400 108 103 109 103 116 112 116 111 107 113
500 156 156 164 159 166 169 176 169 165 161
700 234 238 249 248 248 261 250 246 242 247
1000 403 409 437 436 440 430 450 435 398 420
2000 1100 1120 1200 1200 1170 1150 1200 1160 1070 1070
3000 1940 1880 2000 2060 2040 1950 2030 2020 1860 1780

Table 5.45: Transverse coefficient (eDT /K0) in meV from hybrid calculations using Model
B2 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a)

σ
(MT1)
NRS [J=60, ν=0], (b) σ

(MT2)
NRS [J=60, ν=0], (c) σ

(MT1)
NRS [J=70, ν=0], (d) σ

(MT2)
NRS [J=70,

ν=0], (e) σ(MT1)
NRS [J=90, ν=0], (f) σ(MT2)

NRS [J=90, ν=0], (g) σ(MT1)
NRS [J=100, ν=0], (h) σ(MT1)

NRS

[J=100, ν=0], (i) σ(MT1)
NRS [J=200, ν=0], (j) σ(MT2)

NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f)

5 26.3 26.3 27.0 26.7 26.8 26.1
10 26.0 26.2 27.3 26.6 26.5 26.9
20 26.4 26.1 29.2 27.5 28.1 27.3
30 27.1 26.6 28.5 28.9 29.7 29.5
50 28.3 28.1 30.7 29.6 30.1 30.6
80 29.7 29.4 37.0 37.1 37.8 37.1
100 33.1 32.5 42.8 42.6 43.6 43.2
200 49.1 47.7 127 115 135 123
300 75.2 69.2 226 214 233 215
400 110 104 285 303 294 307
500 166 159 337 373 347 375
700 247 245 439 473 435 472
1000 419 429 718 765 706 771
2000 1220 1170 1800 1740 1740 1730
3000 2090 1970 2430 2410 2440 2270

Table 5.46: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using dif-
ferent interactions models and σ

(MT1)
NRS and σ

(MT2)
NRS for a initial dimer [J=0, ν=0]. (a) Model

A1 σ
(MT1)
NRS , (b) Model A1 σ

(MT2)
NRS , (c) Model B1 σ

(MT1)
NRS , (d) Model B1 σ

(MT2)
NRS , (e) Model B2

σ
(MT1)
NRS , (f) Model B2 σ

(MT2)
NRS .
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 27.3 27.1 26.1 27.0 27.5 26.9 26.8 26.1
10 27.0 26.8 26.6 27.2 27.4 27.5 27.0 26.4
20 27.0 27.6 27.4 26.6 26.7 26.7 27.1 26.7
30 29.1 29.3 28.8 29.9 29.8 28.8 28.5 28.8
50 30.6 30.6 30.5 29.8 29.8 30.8 30.3 30.0
80 36.5 35.1 37.4 37.4 37.0 35.7 35.4 35.6
100 44.7 41.8 44.5 40.2 44.3 41.8 41.9 41.0
200 116 119 116 115 115 104 95.8 99.4
300 203 209 200 196 188 184 157 164
400 277 289 275 280 257 258 213 228
500 337 364 332 358 315 340 297 314
700 437 486 456 487 447 489 424 454
1000 746 801 797 809 812 852 856 833
2000 1880 1790 1930 1850 1970 1870 2070 1950
3000 2510 2470 2420 2480 2490 2450 2500 2500

Table 5.47: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using
Model B1 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer val-

ues. (a) σ(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0,
ν=2], (e) σ(MT1)

NRS [J=0, ν=4], (f) σ(MT2)
NRS [J=0, ν=4], (g) σ(MT1)

NRS [J=0, ν=8], (h) σ(MT2)
NRS [J=0,

ν=8].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

5 26.5 27.2 27.5 26.3 27.4 26.9 27.2 27.4
10 26.9 27.0 27.0 26.6 27.2 27.2 27.2 27.5
20 27.2 27.2 27.5 27.7 27.8 27.3 28.6 27.1
30 28.9 29.2 29.5 30.2 29.9 29.4 28.9 29.8
50 30.4 29.5 30.5 30.6 31.6 31.2 30.9 30.5
80 36.0 35.4 39.3 36.7 38.7 36.5 38.7 37.3
100 40.5 41.2 43.8 42.3 45.1 42.2 43.7 46.0
200 84.5 85.8 93.4 86.8 95.3 92.5 110 98.7
300 141 153 148 147 157 163 175 173
400 197 222 238 233 240 240 227 221
500 288 300 313 319 327 348 300 316
700 445 469 479 485 467 507 425 468
1000 938 904 865 885 857 879 810 812
2000 2160 2030 2040 1950 1970 1900 2000 1890
3000 2570 2550 1650 2530 2510 2510 2570 2540

Table 5.48: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using
Model B1 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer val-

ues. (a) σ(MT1)
NRS [J=0, ν=12], (b) σ(MT2)

NRS [J=0, ν=12], (c) σ(MT1)
NRS [J=60, ν=0], (d) σ(MT2)

NRS

[J=60, ν=0], (e) σ(MT1)
NRS [J=70, ν=0], (f) σ(MT2)

NRS [J=70, ν=0], (g) σ(MT1)
NRS [J=90, ν=0], (h)

σ
(MT2)
NRS [J=90, ν=0].



D. TABLES OF TRANSPORT COEFFICIENTS AND DISSOCIATION RATE
CONSTANT FOR XE+2/XE COLLISIONS 203

Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f)

5 27.7 27.2 27.9 27.1 27.6 27.6
10 27.5 27.6 27.4 27.6 27.9 27.2
20 28.3 28.4 29.0 28.3 28.1 28.4
30 29.5 30.1 30.6 31.0 30.1 30.0
50 31.2 31.8 30.9 32.9 31.1 31.1
80 39.8 39.5 39.3 40.3 38.7 38.7
100 44.9 46.3 46.4 48.3 45.9 45.8
200 112 105 92.5 91.7 106 105
300 174 174 153 141 157 154
400 224 218 209 192 204 214
500 297 312 228 246 277 283
700 427 457 303 341 427 455
1000 843 822 665 643 858 833
2000 2030 1970 2160 2000 2030 1980
3000 2550 2610 2830 2740 2700 2580

Table 5.49: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using
Model B2 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer val-

ues. (a) σ(MT1)
NRS [J=100, ν=0], (b) σ(MT2)

NRS [J=100, ν=0], (c) σ(MT1)
NRS [J=200, ν=0], (d) σ(MT2)

NRS

[J=200, ν=0], (e) σ(MT1)
NRS [J=100, ν=1], (f) σ(MT2)

NRS [J=100, ν=1].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 27.0 26.5 26.9 26.3 27.3 26.5 27.1 27.4 27.3 26.8
10 26.9 27.4 27.6 26.9 26.7 26.8 27.1 26.8 27.2 27.2
20 27.0 27.4 26.5 27.0 27.4 27.2 27.4 28.2 27.7 27.3
30 29.0 30.0 28.9 29.6 28.9 28.7 29.5 29.7 28.6 29.0
50 30.5 30.3 31.0 30.1 30.1 29.4 31.5 31.6 30.0 30.0
80 35.8 37.0 38.4 36.5 36.0 34.6 36.4 38.1 37.0 37.4
100 42.4 43.7 43.3 44.3 40.1 37.0 45.1 46.6 43.0 41.4
200 128 120 126 118 84.5 85.4 89.7 85.4 109 112
300 228 206 199 209 139 155 157 152 183 192
400 276 292 267 285 206 218 240 231 248 274
500 335 368 326 347 272 280 317 333 316 353
700 430 462 446 485 436 465 466 481 447 468
1000 754 763 763 791 918 885 859 872 803 786
2000 1830 1710 1840 1730 2130 1990 2030 1910 1920 1850
3000 2470 2450 2500 2460 2620 2540 2610 2660 2590 2450

Table 5.50: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using
Model B2 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer val-

ues. (a) σ(MT1)
NRS [J=0, ν=1], (b) σ(MT2)

NRS [J=0, ν=1], (c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0,
ν=2], (e) σ(MT1)

NRS [J=0, ν=4], (f) σ(MT2)
NRS [J=0, ν=4], (g) σ(MT1)

NRS [J=0, ν=8], (h) σ(MT1)
NRS [J=0,

ν=8], (i) σ(MT1)
NRS [J=0, ν=12], (j) σ(MT2)

NRS [J=0, ν=12].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

5 27.3 26.7 27.1 27.1 27.7 27.3 27.1 26.6 27.6 27.7
10 27.4 26.9 27.4 27.8 27.5 27.3 27.4 27.7 27.6 28.2
20 28.2 26.7 28.4 28.0 27.4 27.3 28.0 28.1 28.1 27.4
30 29.1 29.2 30.0 30.8 30.0 29.7 29.3 30.4 29.7 30.5
50 29.9 30.0 31.0 30.9 31.3 30.7 31.0 30.7 31.3 31.3
80 37.1 36.7 38.1 36.5 39.5 37.0 39.5 38.3 37.3 39.8
100 42.5 41.0 45.5 44.5 48.0 43.2 44.8 44.6 45.3 43.1
200 94.8 101 104 91.6 110 105 119 113 98.4 93.6
300 160 163 172 160 175 160 178 168 157 145
400 222 239 247 227 233 235 234 231 235 231
500 296 309 324 340 303 310 295 295 310 300
700 418 454 465 494 432 460 419 422 399 412
1000 852 823 837 842 787 788 805 820 651 662
2000 2040 1850 1920 1870 1920 1870 1990 1940 1830 1830
3000 2550 2540 2550 2530 2550 2480 2590 2600 2530 2530

Table 5.51: Longitudinal coefficient (eDL/K0) in meV from hybrid calculations using
Model B2 and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer val-

ues. (a) σ(MT1)
NRS [J=60, ν=0], (b) σ(MT2)

NRS [J=60, ν=0], (c) σ(MT1)
NRS [J=70, ν=0], (d) σ(MT2)

NRS

[J=70, ν=0], (e) σ(MT1)
NRS [J=90, ν=0], (f) σ(MT2)

NRS [J=90, ν=0], (g) σ(MT1)
NRS [J=100, ν=0], (h)

σ
(MT1)
NRS [J=100, ν=0], (i) σ(MT1)

NRS [J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f)

200 / 1.24E-
21

2.47E-
21

/ 5.01E-
21

/

300 3.26E-
20

1.63E-
20

6.74E-
20

4.97E-
20

7.53E-
20

6.27E-
20

400 3.90E-
19

3.39E-
19

7.49E-
19

6.74E-
19

8.00E-
19

7.68E-
19

500 2.11E-
18

2.06E-
18

3.40E-
18

3.52E-
18

3.55E-
18

3.47E-
18

700 1.31E-
17

1.27E-
17

1.67E-
17

1.73E-
17

1.72E-
17

1.75E-
17

1000 6.17E-
17

5.93E-
17

6.47E-
17

6.73E-
17

6.48E-
17

6.66E-
17

2000 3.66E-
16

3.41E-
16

3.50E-
16

3.49E-
16

3.46E-
16

3.45E-
16

3000 6.45E-
16

6.09E-
16

6.26E-
16

6.19E-
16

6.22E-
16

6.17E-
16

Table 5.52: Dissociation rate constant in m3s−1 from hybrid calculations using different
interactions models and σ

(MT1)
NRS and σ

(MT2)
NRS for a initial dimer [J=0, ν=0]. (a) Model A1

σ
(MT1)
NRS , (b) Model A1 σ

(MT2)
NRS , (c) Model B1 σ

(MT1)
NRS , (d) Model B1 σ

(MT2)
NRS , (e) Model B2

σ
(MT1)
NRS , (f) Model B2 σ

(MT2)
NRS .
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

200 / 1.23E-
21

/ / 2.48E-
21

/ / 4.35E-
21

300 7.37E-
20

4.80E-
20

6.27E-
20

6.98E-
20

5.64E-
20

6.27E-
20

3.42E-
20

4.50E-
20

400 7.94E-
19

8.16E-
19

7.02E-
19

7.94E-
19

6.67E-
19

7.03E-
19

4.77E-
19

6.18E-
19

500 3.62E-
18

3.70E-
18

3.59E-
18

3.88E-
18

3.2E-
18

3.49E-
18

2.73E-
18

3.29E-
18

700 1.72E-
17

1.83E-
17

1.79E-
17

1.94E-
17

1.71E-
17

1.90E-
17

1.56E-
17

1.75E-
17

1000 6.81E-
17

7.09E-
17

6.98E-
17

7.23E-
17

6.89E-
17

7.27E-
17

6.79E-
17

7.19E-
17

2000 3.59E-
16

3.58E-
16

3.65E-
16

3.61E-
16

3.67E-
16

3.67E-
16

3.76E-
16

3.73E-
16

3000 6.36E-
16

6.31E-
16

6.39E-
16

6.33E-
16

6.45E-
16

6.38E-
16

6.55E-
16

6.47E-
16

Table 5.53: Dissociation rate constant in m3s−1 from hybrid calculations using Model B1
and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial (a) σ(MT1)

NRS [J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1],

(c) σ(MT1)
NRS [J=0, ν=2], (d) σ(MT2)

NRS [J=0, ν=2], (e) σ(MT1)
NRS [J=0, ν=4], (f) σ(MT2)

NRS [J=0, ν=4],
(g) σ(MT1)

NRS [J=0, ν=8], (h) σ(MT2)
NRS [J=0, ν=8].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h)

200 / / 1.25E-
21

1.25E-
21

/ 6.19E-
22

1.25E-
21

/

300 2.10E-
20

4.95E-
20

2.16E-
20

3.10E-
20

4.11E-
20

2.41E-
20

3.25E-
20

4.02E-
20

400 5.50E-
19

6.26E-
19

4.13E-
19

4.03E-
19

4.30E-
19

4.16E-
19

5.10E-
19

5.18E-
19

500 2.68E-
18

3.27E-
18

2.03E-
18

2.14E-
18

2.41E-
18

2.43E-
18

2.48E-
18

2.60E-
18

700 1.63E-
17

1.90E-
17

1.25E-
17

1.26E-
17

1.39E-
17

1.39E-
17

1.40E-
7

1.43E-
17

1000 7.07E-
17

7.63E-
17

5.52E-
17

5.63E-
17

5.92E-
17

5.97E-
17

5.93E-
17

5.94E-
17

2000 3.85E-
16

3.84E-
16

3.34E-
16

3.30E-
16

3.39E-
16

3.36E-
16

3.41E-
16

3.36E-
16

3000 6.63E-
16

6.56E-
16

6.07E-
16

6.00E-
16

6.13E-
16

6.03E-
16

6.14E-
16

6.05E-
16

Table 5.54: Dissociation rate constant in m3s−1 from hybrid calculations using Model B1
and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ(MT1)

NRS

[J=0, ν=12], (b) σ(MT2)
NRS [J=0, ν=12], (c) σ(MT1)

NRS [J=60, ν=0], (d) σ(MT2)
NRS [J=60, ν=0], (e)

σ
(MT1)
NRS [J=70, ν=0], (f) σ(MT2)

NRS [J=70, ν=0], (g) σ(MT1)
NRS [J=90, ν=0], (h) σ(MT2)

NRS [J=90, ν=0].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f)

200 / 2.50E-
21

1.24E-
20

1.25E-
20

/ /

300 4.03E-
20

3.41E-
20

2.98E-
19

2.72E-
19

3.50E-
20

4.19E-
20

400 5.18E-
19

4.88E-
19

1.86E-
18

1.86E-
18

4.27E-
19

4.43E-
19

500 2.67E-
18

2.56E-
18

5.52E-
18

5.67E-
18

2.27E-
18

2.25E-
18

700 1.45E-
17

1.44E-
17

1.82E-
17

1.92E-
17

1.35E-
17

1.35E-
17

1000 6.05E-
17

6.00E-
17

5.85E-
17

6.17E-
17

5.89E-
17

5.98E-
17

2000 3.42E-
16

3.37E-
16

3.31E-
16

3.31E-
16

3.45E-
16

3.39E-
16

3000 6.12E-
16

6.03E-
16

6.16E-
16

6.11E-
16

6.18E-
16

6.09E-
16

Table 5.55: Dissociation rate constant in m3s−1 from hybrid calculations using Model B2
and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ(MT1)

NRS

[J=100, ν=0], (b) σ(MT2)
NRS [J=100, ν=0], (c) σ(MT1)

NRS [J=200, ν=0], (d) σ(MT2)
NRS [J=200, ν=0],

(e) σ(MT1)
NRS [J=100, ν=1], (f) σ(MT2)

NRS [J=100, ν=1].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

200 1.25E-
21

/ 1.23E-
21

1.23E-
21

/ / 1.24E-
21

/ 1.24E-
21

1.24E-
21

300 8.98E-
20

8.23E-
20

7.68E-
20

7.35E-
20

4.64E-
20

6.81E-
20

3.09E-
20

2.62E-
20

8.29E-
20

5.90E-
20

400 8.56E-
19

8.54E-
19

8.87E-
19

8.74E-
19

5.37E-
19

7.08E-
19

4.27E-
19

3.90E-
19

7.56E-
19

8.00E-
19

500 3.90E-
18

4.08E-
18

3.82E-
18

4.25E-
18

2.59E-
18

3.29E-
18

2.06E-
18

2.01E-
18

3.38E-
18

3.75E-
18

700 1.83E-
17

1.90E-
17

1.87E-
17

2.01E-
17

1.63E-
17

1.90E-
17

1.21E-
17

1.24E-
17

1.72E-
17

1.90E-
17

1000 6.84E-
17

6.96E-
17

6.95E-
17

7.33E-
17

7.05E-
17

7.60E-
17

5.37E-
17

5.41E-
17

6.84E-
17

7.22E-
17

2000 3.54E-
16

3.52E-
16

3.60E-
16

3.59E-
16

3.84E-
16

3.82E-
16

3.26E-
16

3.23E-
16

3.64E-
16

3.63E-
16

3000 6.32E-
16

6.28E-
16

6.38E-
16

6.33E-
16

6.62E-
16

6.54E-
16

6.01E-
16

5.95E-
16

6.40E-
16

6.33E-
16

Table 5.56: Dissociation rate constant in m3s−1 from hybrid calculations using Model B2
and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ(MT1)

NRS

[J=0, ν=1], (b) σ(MT2)
NRS [J=0, ν=1], (c) σ(MT1)

NRS [J=0, ν=2], (d) σ(MT2)
NRS [J=0, ν=2], (e) σ(MT1)

NRS

[J=0, ν=4], (f) σ(MT2)
NRS [J=0, ν=4], (g) σ(MT1)

NRS [J=0, ν=8], (h) σ(MT1)
NRS [J=0, ν=8], (i) σ(MT1)

NRS

[J=0, ν=12], (j) σ(MT2)
NRS [J=0, ν=12].
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Reduced
electric
field (Td)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

200 / 2.49E-
21

1.24E-
21

1.25E-
21

1.26E-
21

/ 2.48E-
21

2.48E-
21

2.48E-
21

/

300 3.87E-
20

6.20E-
20

3.57E-
20

3.40E-
20

3.56E-
20

3.42E-
20

3.33E-
20

2.33E-
20

5.89E-
20

5.27E-
20

400 5.72E-
19

6.74E-
19

4.91E-
19

4.29E-
19

5.38E-
19

5.67E-
19

5.81E-
19

5.33E-
19

5.66E-
19

5.64E-
19

500 2.62E-
18

3.27E-
18

2.45E-
18

2.36E-
18

2.55E-
18

2.44E-
18

2.70E-
18

2.51E-
18

2.64E-
18

2.58E-
18

700 1.58E-
17

1.78E-
17

1.37E-
17

1.34E-
17

1.42E-
17

1.43E-
17

1.43E-
17

1.40E-
17

1.37E-
17

1.43E-
17

1000 6.65E-
17

7.25E-
17

5.73E-
17

5.77E-
17

5.87E-
17

5.93E-
17

5.94E-
17

5.89E-
17

5.65E-
17

5.71E-
17

2000 3.70E-
16

3.68E-
16

3.33E-
16

3.29E-
16

3.36E-
16

3.31E-
16

3.36E-
16

3.31E-
16
3.35E-
16

3.31E-
16

3000 6.52E-
16

6.44E-
16

6.04E-
16

5.97E-
16

6.11E-
16

6.03E-
16

6.08E-
16

5.96E-
16

6.15E-
16

6.09E-
16

Table 5.57: Dissociation rate constant in m3s−1 from hybrid calculations using Model B2
and σ

(MT1)
NRS and σ

(MT2)
NRS for different initial rotational-vibrational dimer values. (a) σ(MT1)

NRS

[J=60, ν=0], (b) σ(MT2)
NRS [J=60, ν=0], (c) σ(MT1)

NRS [J=70, ν=0], (d) σ(MT2)
NRS [J=70, ν=0], (e)

σ
(MT1)
NRS [J=90, ν=0], (f) σ(MT2)

NRS [J=90, ν=0], (g) σ(MT1)
NRS [J=100, ν=0], (h) σ(MT1)

NRS [J=100,
ν=0], (i) σ(MT1)

NRS [J=200, ν=0], (j) σ(MT2)
NRS [J=200, ν=0].
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