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Introduction et Résumé en Français

Sécuriser les communications a toujours été un problème majeur dans l’Histoire. Que ce soit l’envoi
de messages politiques ou stratégiques par des gouvernements ou des entreprises, la communication
d’un particulier avec sa banque ou son assurance, ou bien simplement un étudiant souhaitant envoyer
un message à son voisin, nous avons toujours eu le besoin de protéger nos échanges contre les
observateurs indiscrets, voir même mal intentionnés. Si les premiers systèmes de chiffrement étaient
assez rudimentaires, comme le chiffrement de César, la complexité de tels systèmes a peu à peu
évolué durant l’Histoire, arrivant jusqu’à la machine Enigma lors de la Seconde Guerre Mondiale,
et explosant complètement avec l’essor des ordinateurs modernes.

Malgré la révolution amenée par la création des systèmes de chiffrement à clé publique, ou
asymétriques, avec RSA en 1977 [114], la cryptographie à clé secrète, ou symétrique, reste au cœur
de la sécurisation des communications modernes. L’essence même de la cryptographie symétrique,
ainsi que l’origine du nom, repose sur le fait que les deux partis cherchant à communiquer possèdent
une information connue d’eux seuls, la clé, qui est utilisée pour pouvoir chiffrer et déchiffrer les com-
munications. Informellement, la conception d’algorithmes de chiffrement symétriques consiste donc
à élaborer un processus prenant en entrée cette clé et un message clair, et de produire un message
chiffré que seul le ou les possesseurs légitimes de la clé secrète peuvent déchiffrer. Trois notions
principales de sécurité sont utilisées en cryptographie symétrique : la confidentialité, l’intégrité et
l’authenticité. La confidentialité cherche à assurer que seules les personnes en possession de la clé
secrète peuvent déchiffrer le message. Ce rôle est rempli à l’aide de primitives de chiffrement, qui
sont également l’objet d’étude principal de cette thèse. L’intégrité quant à elle consiste à être sûr
que le clair/chiffré n’ait pas été modifié durant la communication, ce rôle étant le plus souvent rem-
pli à l’aide de fonctions de hachage. Enfin, l’authenticité permet de garantir que le chiffré provient
bien d’une personne possédant la clé secrète, cette fois-ci en utilisant un Code d’Authentification de
message (MAC). Pour finir, il est également possible de créer une primitive qui regroupe ces trois
notions de sécurité, donnant lieu aux chiffrements authentifiés.

Bien que plus ancienne que la cryptographie à clé publique, la cryptographie symétrique est
toujours un sujet de recherche très actif. Une étape notable dans l’histoire de la cryptographie
symétrique est la normalisation du chiffrement DES en 1977 [56]. Au début des années 70, le Na-
tional Bureau of Standards (ancien nom du NIST, National Institute of Standards and Technology)
lance un appel pour concevoir un nouveau système de chiffrement pour créer une norme américaine.
Le processus de sélection ne fût pas rendu public, mais leur choix se porta sur un ancien algorithme
d’IBM créé par Horst Feistel, nommé Lucifer [64]. Cependant, la NSA (National Security Agency)
demanda à IBM d’apporter certaines modifications à l’algorithme, notamment en réduisant la taille
de la clé, ainsi qu’en modifiant l’un des composants appelé boîte-S. Ces modifications furent ap-
pliquées, donnant lieu au DES tel qu’on le connaît aujourd’hui. Cependant, la participation de
la NSA dans sa conception ne fût pas appréciée par l’ensemble de la communauté. Notamment,
quand Biham et Shamir découvrent la cryptanalyse différentielle [17], ils remarquent que DES est
étonnamment résistant à cette forme de cryptanalyse inconnue du public jusque là. Il fût ensuite
confirmé par Coppersmith, l’un des membres de l’équipe d’IBM, que cette technique était déjà
connue lors de la conception des boîtes-S de DES [44].

Ce manque de transparence donna lieu à un nouveau format pour la sélection de nouvelles
normes. En effet, le processus de sélection du successeur de DES prit le format d’une compétition
publique, la compétition AES (Advanced Encryption Standard). Initiée par le NIST le 2 Janvier
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6 INTRODUCTION ET RÉSUMÉ EN FRANÇAIS

1997, 15 candidats furent reçus et rendus publics, laissant ainsi la communauté scientifique réaliser
différentes analyses de sécurité pour chacun de ces algorithmes. Après avoir réduit la liste à 5
candidats "finalistes" le 9 Août 1999 (Rijndael, MARS, RC6, Serpent et Twofish), le NIST annonce
que Rijndael est le candidat retenu pour devenir l’AES que l’on connaît aujourd’hui. Le même
processus fût utilisé pour le choix d’une nouvelle norme pour les fonctions de hachages, donnant
lieu à l’ouverture de la compétition SHA-3 le 23 Janvier 2007, et dont le choix se porta sur Kec-
cak après 5 ans d’analyse par la communauté. Cette normalisation de Keccak créa également un
nouveau champ de recherche pour la cryptographie symétrique, puisque Keccak utilise une nouvelle
construction appelée construction éponge, qui permet de créer des primitives de chiffrement et de
hachage simplement à partir d’une permutation. D’autres appels à soumission de format similaires
eurent également lieu, comme la compétition eSTREAM financée par l’Union Européenne, qui per-
mit de donner un portfolio de chiffrements à flot recommandés, ou bien la compétition CAESAR,
achevée au début de l’année 2019, qui apporta un portfolio pour les chiffrements authentifiés. Enfin,
la dernière compétition initiée par le NIST en date concerne la normalisation d’une ou plusieurs
primitives de chiffrement léger, i.e. des systèmes de chiffrement conçus pour les systèmes ayant de
fortes contraintes techniques comme les cartes à puces. Cette compétition reçut 56 soumissions le
18 Avril 2019, avec une participation active de la communauté dans l’étude des différents candidats.

Étudier les différents critères pour élaborer un système de chiffrement symétrique sûr tout en
conservant de bonnes performances et la viabilité d’une implémentation sur des composants à per-
formances restreintes est donc toujours un problème crucial, d’où l’objectif de cette thèse, qui est
de donner de nouvelles observations lors de l’élaboration de nouvelles primitives symétriques. De
manière très générale, on peut donc donner la définition suivante, en considérant que tous les mes-
sages et clés sont représentés par une chaîne de bits de longueur arbitraire.

Definition 0.1. Un chiffrement est une famille de fonctions F : F∗2×F∗2 → F∗2, où F∗2 est l’ensemble
des chaines de bits de longueur arbitraire, telle que pour n’importe quel élément p ∈ F∗2 (le message)
et K ∈ F∗2 (la clé), et en notant c = F(K, p) (le chiffré), alors il existe une fonction F ′ : F∗2×F∗2 → F∗2
calculable efficacement telle que p = F ′(K, c).

De plus en pratique, la clé est souvent de taille fixe, et ce sera le cas tout au long de cette
thèse. Une exception existe cependant, et non des moindres, le masque jetable. Ce chiffrement est
extrêmement simple : étant donné un message p et une clé K (aussi appelée masque dans ce cas), le
chiffré est simplement c = K ⊕ p. Malgré sa simplicité, ce chiffrement est le seul chiffrement parfait
connu, ce qui a été prouvé par Shannon en 1949 [118], mais implique des contraintes particulièrement
difficiles à utiliser en pratique :

• La clé doit faire au moins la même taille que le clair

• La clé doit être complètement aléatoire

• La clé ne doit être utilisée qu’une seule fois, i.e. on ne doit pas chiffrer deux messages, même
identiques, avec la même clé.

Il est clair que ces contraintes sont presque impossibles à satisfaire en pratique dans un système à
grande échelle, même si le système a été utilisé à plusieurs reprises au cours de l’Histoire.

Les cryptographes ont donc cherché à concevoir des solutions plus simples, tout en essayant
de conserver un maximum de sécurité. En cryptographie symétrique, deux grandes familles de
chiffrements existent. Le premier type est la famille des chiffrements à flot. L’origine de ce type
de chiffrement est très simple : s’approcher au maximum du masque jetable, sans en avoir les
contraintes. L’idée est donc, plutôt que de générer une clé aussi grande que le message, de partir
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Figure 1.1: L’image originale (à gauche) et son chiffré avec ECB (à droite) [63]

d’une clé de taille fixe et de l’utiliser pour générer une suite chiffrante de la longueur du message
que l’on utilisera de la même manière que le masque jetable. La conception de ce type de chiffre-
ment revient donc à faire en sorte que cette suite chiffrante se comporte au maximum comme une
suite aléatoire, afin de se rapprocher d’un masque jetable. De nombreux chiffrements à flot exis-
tent, par exemple RC4 [124] qui, malgré ses faiblesses connues, est toujours utilisé dans certaines
applications comme le protocole WEP. La compétition eSTREAM mentionnée précédemment a
cependant permis d’obtenir une liste de chiffrements à flot bien plus résistants que RC4 comme par
exemple Trivium, et l’un des finalistes de la compétition CAESAR, ACORN [141], est également un
chiffrement à flot. Cette thèse se concentre cependant sur la deuxième famille de chiffrements, les
chiffrements par bloc, décrits dans la section suivante.

1 Chiffrements par Bloc
Nous commençons par la définition du principal sujet d’étude de cette thèse.

Definition 1.1. Un chiffrement par bloc est une famille de fonctions E : Fk2 × Fn2 → Fn2 telle que
chaque fonction EK = E(K, ·) : Fn2 → Fn2 soit une permutation. On appellera k la taille de la clé,
et n la taille de bloc.

D’après la Définition 0.1, un chiffrement doit pouvoir chiffrer des clairs de longueur arbitraire,
alors qu’un chiffrement par bloc ne peut chiffrer que des clairs de taille fixe n. Pour cela, nous
avons besoin de modes opératoires, qui découpent le clair en blocs de longueur n, puis appliquent
un algorithme permettent de chiffrer l’ensemble. Le mode le plus basique est le mode Electronic
Code Book (ECB), où chaque bloc est chiffré indépendamment. Ce mode est fortement déconseillé à
partir du moment où la longueur du clair est supérieure à n, car deux blocs identiques seront chiffrés
de la même manière, donnant donc le même chiffré et pouvant donc laisser fuir de l’information,
voir par exemple la Figure 1.1.

Un mode qui résout ce problème est par exemple le mode Cipher Block Chaining (CBC). Ce
mode a besoin d’une entrée supplémentaire appelée un vecteur d’initialisation, qui doit être unique
à chaque message chiffré. En notant IV ce vecteur d’initialisation, et pi (resp. ci) le i-ème bloc de
clair (resp. de chiffré), alors le mode CBC est défini par

c0 = IV

ci = EK(pi ⊕ ci−1), i > 0.

Cependant, le mode CBC n’est pas sans défaut, et de nombreux autres modes existent, comme par
exemple OFB, CFB où CTR. Cette thèse ne se concentrant pas sur les modes opératoires, nous ne
donnerons pas plus de détails ici.
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Cadencement de clé

clé maître

clair f . . . f chiffré

K0 K1 Kr−1 Kr

Figure 1.2: La construction d’un chiffrement par bloc itéré [78]

Construire directement un chiffrement par bloc est une tâche difficile, à la fois pour l’élaboration
mais également pour étudier la sécurité de la primitive qui en résulte. De fait, la plupart des
chiffrements par bloc modernes utilisent la construction itérée représentée dans la Figure 1.2. L’idée
est de concevoir deux composants principaux. Le premier est l’algorithme de cadencement de clé,
qui prend en entrée la clé, souvent appelée clé maître dans ce cas, et produit une suite de clés de
tour K0, . . . ,Kr, où r est appelé le nombre de tours. Ensuite, la fonction de tour f , qui est utilisée
avec le cadencement de clé pour construire la fonction de chiffrement

EK = ⊕Kr ◦ f ◦ ⊕Kr−1 ◦ f ◦ · · · ◦ f ◦ ⊕K1 ◦ f ◦ ⊕K0 ,

où K0, . . . ,Kr sont les clés de tour dérivées de la clé maître K, et ⊕K(x) = x ⊕ K. Constru-
ire directement un chiffrement par bloc résistant est beaucoup plus difficile que de concevoir une
fonction de tour acceptable, même si plus faible, qui sera répétée plusieurs fois. Ceci facilite égale-
ment l’étude d’un chiffrement par bloc construit de cette manière, puisqu’on peut commencer par
examiner la fonction de tour, ce qui est plus simple que d’étudier le chiffrement dans son ensemble.

Dans le Chapitre 3, nous donnons quelques observations sur l’élaboration du cadencement de
clé. De manière générale, c’est un composant donc la conception est encore relativement mal
comprise par la communauté, et beaucoup de constructions différentes existent. L’actuel standard
de chiffrement AES possède un cadencement de clé non linéaire relativement complexe, alors que
celui de PRESENT revient essentiellement à une permutation linéaire suivie par une opération non
linéaire sur seulement 4 bits et l’addition d’une constante. Certains chiffrements par bloc utilisent
un cadencement de clé linéaire, comme IDEA [93] ou Square [45], et certains vont même plus loin
en utilisant presque directement la clé maître, ajoutant seulement une constante différente entre
chaque tour, comme LED [73] et Midori [5]. La conception de la fonction de tour cependant est bien
mieux comprise. Il y a deux principales constructions utilisées pour élaborer des chiffrements par
bloc :

Les Réseaux de Feistel. Introduits lors de la création de l’ancien standard de chiffrement DES
[56], les réseaux de Feistel sont toujours utilisés aujourd’hui dans des chiffrement par bloc comme
Camellia [2] ou SIMON [8]. L’idée est de partager l’état interne de n bits en deux moitiés. Ainsi, au
tour i, l’état interne est représenté par (Li, Ri), où Li et Ri sont tous deux des blocs de n/2 bits.
La fonction de tour est ensuite définie par

(Li+1, Ri+1) = (Ri, Li ⊕ FKi(Ri)),

où FKi est une fonction qui dépend de la i-ème clé de tour. En plus de propriétés théoriques
intéressantes (e.g. [100]), cette construction est efficace à la fois en implémentation logicielle et
matérielle, en partie parce que son inverse consiste essentiellement en la même fonction, sauf que les
clés de tour sont utilisées dans l’ordre inverse. Certaines généralisations de cette construction furent
ensuite publiées par Zheng et al. [147] à CRYPTO’89, donnant notamment lieu à la construction
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dite Feistel de Type 2, où la fonction de tour consiste en l’application parallèle de plusieurs réseaux
de Feistel, suivie par une permutation. Cette construction fût par exemple utilisée pour concevoir
les chiffrements par bloc TWINE [132] et Simpira [71]. Dans le Chapitre 1, nous donnons plus de
détails sur cette construction de Feistel de Type 2, et plus précisément sur comment choisir cette
permutation.

Réseaux de Substitution et Permutation (SPN). Cette construction plus récente fût
proposée en premier lors de la création du chiffrement par bloc Square [45], qui donna lieu à AES.
De nombreux chiffrements ont été élaborés de cette manière, comme PRESENT [33], Midori [5] ou
SKINNY [10]. L’idée de cette construction est d’utiliser directement des composants qui apportent
de la diffusion et de la confusion. Ces termes ont été introduits par Shannon en 1949 [118]. L’objectif
de la confusion est de rendre la plus complexe possible la relation entre le clair, le chiffré et la clé.
Quant à la diffusion, son rôle est de faire en sorte que chaque bit du clair et de la clé doit influencer
le plus de bits possibles dans le chiffré. Dans cette construction, la fonction de tour est composée
de trois étapes :

• La couche de substitution, dont le but est de fournir de la confusion en étant une fonction
non-linéaire. Cette étape est souvent construite en concaténant plusieurs boîtes-S, qui sont de
petites (en terme de nombre de bits) fonctions non-linéaires inversibles, et en les appliquant
en parallèle sur tout ou sur une partie de l’état interne. Le choix de la boîte-S est donc crucial,
puisqu’il s’agit du seul composant non-linéaire de la fonction de tour. Dans le Chapitre 2,
nous donnons, parmi d’autres résultats, un nouveau critère pour le choix de ces boîtes-S. Il
est à noter que certains chiffrements par bloc ont une couche de substitution plus élaborée,
comme SPARX [58].

• La couche de permutation, dont le but est de donner de la diffusion à la fonction de
tour. Bien que son nom suggère qu’il pourrait seulement s’agir d’une permutation au niveau
des bits (comme dans PRESENT), cette construction est plus générale et cette couche consiste
simplement en une application linéaire. La conception de cette étape est tout aussi importante
que la couche de substitution. Certains chiffrements par bloc ont été conçus avec une couche
linéaire très robuste, comme AES, qui fournit une diffusion très rapide à travers la fonction
de tour. D’autres, comme SKINNY, utilisent une fonction linéaire avec une diffusion moindre,
mais conduisent à de meilleures performances. Ceci est souvent le résultat d’un compromis
entre performance et sécurité : une couche linéaire robuste va avoir une diffusion forte et donc
besoin de moins de tours, mais elle peut être coûteuse à implémenter. D’un autre coté, une
diffusion plus faible peut souvent amener à de meilleures performances pour la fonction de
tour, au prix d’avoir besoin de plus de tours pour atteindre un niveau de sécurité similaire.

• L’ajout de clé, consiste simplement à ajouter la clé de tour à l’état avec un XOR. Elle peut
être ajoutée sur l’état complet comme dans AES, ou bien seulement sur une partie de l’état
comme dans SKINNY.

Une autre classe de chiffrement par bloc existe en parallèle de ces deux constructions, les chiffre-
ments de type ARX comme SPECK [9]. Ces chiffrements par bloc utilisent essentiellement trois
opérations principales : l’Addition modulaire, la Rotation bit-à-bit et le XOR. Il existe également
la variante AndRX, utilisant un ET logique à la place de l’addition modulaire, e.g. SIMON [8]. Cette
construction est un peu à part puisqu’elle est souvent utilisée en même temps que l’une des deux
constructions précédentes, utilisant seulement les opérations ARX pour construire les différentes
sous-fonctions nécessaires. Par exemple, SPARX [58] est un SPN utilisant les opérations ARX, alors
que HIGHT [76], SPECK [8] ou XTEA [140] sont des réseaux de Feistel utilisant les opérations ARX
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(ainsi que SIMON qui est également un réseau de Feistel, mais utilisant les opérations AndRX).
Pour finir, les SPNs et les réseaux de Feistel ne sont pas les seules constructions existantes, on
peut notamment citer les constructions Lai-Massey [93], Even-Mansour [62] ou bien la construction
MISTY [104].

2 Modèles de sécurité

Étudier la sécurité des chiffrements par bloc demande de connaître les capacités de l’attaquant. On
modélise souvent l’interaction entre l’attaquant et le chiffrement par bloc avec le concept d’oracle.
Cet oracle permet d’étudier de manière théorique les possibilités de l’attaquant pour attaquer le
chiffrement, en pratique il pourrait par exemple s’agir d’une carte à puce contenant un algorithme
de chiffrement, ou bien un service web. Durant l’étude d’un chiffrement par bloc E, l’oracle va
commencer par choisir une clé K au hasard, qui reste secrète et ne change pas, puis va répondre
aux requêtes de l’attaquant en utilisant la fonction de chiffrement correspondante EK . L’attaquant
va ensuite essayer de retrouver la clé K simplement à partir des réponses de l’oracle, ou bien dans
certains cas amenant à des attaques plus faibles, déchiffrer un chiffré sans connaître a priori le clair
correspondant. Il est à noter que d’après le principe de Kerckhoffs, l’attaquant connaît exactement
quel chiffrement par bloc est utilisé par l’oracle, ainsi que comment chaque opération est réalisée
(e.g. la boîte-S, la couche linéaire etc.). La seule information tenue secrète est la clé.

Nous devons maintenant considérer quel type de requête l’attaquant est autorisé à envoyer, ceci
définissant le modèle de sécurité considéré. Le modèle le plus faible autorise seulement l’attaquant
à demander un (ou plusieurs) chiffrés à l’oracle. L’oracle va simplement générer un clair aléatoire,
inconnu de l’attaquant, et renvoie le chiffré correspondant. Ce modèle est appelé le modèle à chiffré
connu, puisque l’attaquant connaît seulement un ensemble de chiffrés sans les clairs correspondants.
Une attaque dans ce modèle est désastreuse, puisque les contraintes pour l’attaquant sont extrême-
ment faibles : simplement avoir accès à un ensemble de chiffrés (aléatoires). Ce modèle est donc très
faible, puisque le pouvoir de l’attaquant est très limité. Aucun chiffrement par bloc moderne sérieux
n’est vulnérable à ce type d’attaque de nos jours, mais certains plus anciens comme les chiffrements
de César ou de Vigenère peuvent facilement être cassés dans ce modèle. On peut cependant noter
que le chiffrement PC1 utilisé dans les tablettes Kindle d’Amazon est vulnérable à une attaque dans
ce modèle [27].

Un modèle légèrement plus fort est le modèle à clair connu. Dorénavant, en recevant une requête
de l’attaquant, l’oracle va générer un clair aléatoire et calcule le chiffré correspondant, mais cette
fois-ci envoie à la fois le clair et le chiffré à l’attaquant. Certaines attaques très connues dans ce
modèle sont les attaques contre la machine Enigma par le Bletchley Park pendant la Seconde Guerre
Mondiale, ou plus récemment sur le chiffrement par bloc FEAL [133, 105]. Certaines techniques de
cryptanalyse moderne se placent dans ce modèle, comme la cryptanalyse linéaire [105] ou bien la
cryptanalyse à corrélation nulle [34]. Cependant, ce n’est pas suffisant pour d’autres techniques de
cryptanalyse.

Pour analyser un chiffrement par bloc, nous avons souvent besoin d’être au moins dans le modèle
à clair choisi. Maintenant, l’attaquant peut choisir quel clair envoyer à l’oracle pour récupérer le
chiffré correspondant. Ceci donne bien plus de pouvoir à l’attaquant et amène à des techniques
de cryptanalyses comme la cryptanalyse différentielle ou intégrale. Plusieurs chiffrements par bloc
modernes proposés par la communauté sont vulnérables à des attaques sur le nombre complet de
tours dans ce modèle, comme par exemple MISTY1 [135], KLEIN-64 [94], ou Robin et Zorro [96].
Ce type d’attaque a également été appliqué sur des variantes réduites (i.e. avec moins de tours)
d’essentiellement tous les chiffrements par bloc modernes. Ce modèle est considéré comme le niveau
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Figure 2.3: Modèle à clé simple vs. Modèle à clés reliées pour une requête en clair choisi.

de sécurité de base pour un chiffrement par bloc, et utiliser n’importe quel chiffrement vulnérable
à une attaque dans ce modèle (ou l’un des précédent) serait une erreur de sécurité majeure.

Cependant, il existe également un modèle plus fort, le modèle à chiffré choisi. Ici, l’attaquant, en
plus de pouvoir demander le chiffré correspondant à un clair de son choix, peut également demander
l’inverse, c’est-à-dire envoyer un chiffré à l’oracle, qui envoie en retour le clair correspondant. Ce
modèle amène à des attaques comme par exemple les attaques boomerang , qui ont permi de casser
COCONUT98 avec une complexité pratique [138], ainsi que les attaques différentielles-linéaires [95]
et les attaques yoyo [13].

Pour finir, les deux derniers modèles peuvent également être considérés dans une variante dite
adaptative, où l’attaquant envoie un certain nombre de requêtes à l’oracle, récupère le résultat puis
peut faire de nouvelles requêtes basées sur le résultat. Ceci est légèrement différent des modèles
standards, où l’attaquant envoie un seul ensemble de requêtes à l’oracle, et n’est plus autorisé à
interagir avec celui-ci par la suite. Ces variantes amènent à des modèles encore plus forts que leurs
versions standard.

Nous avons donc décrit les principaux modèles permettant de représenter le pouvoir de l’attaquant.
Cependant, d’autres facteurs sont à prendre en compte en même temps que les modèles précédem-
ment décrits, donnés dans les sections suivantes.

2.1 Clé Simple ou Clés Reliées ?

Les modèles de sécurité précédemment décrits ont historiquement été donnés dans le modèle à
clé simple. C’est-à-dire, une fois que l’oracle a choisi une clé aléatoire, cette clé ne change pas
et l’attaquant n’a aucun contrôle sur cette dernière. Cependant, à EUROCRYPT’93 [12], Biham
décrivit un nouveau type d’attaque, donnant lieu au modèle à clés reliées. Dans ce modèle, l’oracle
choisit toujours une clé aléatoire K tenue secrète pour l’attaquant. Cependant, quand l’attaquant
envoie une requête à l’oracle, il peut également envoyer une fonction h appartenant à une certaine
classe de fonction H, et l’oracle va répondre en utilisant la clé h(K) au lieu de K. Par exemple,
l’attaquant envoie une requête de chiffrement (modèle à clair choisi) pour le messagem, ainsi qu’une
fonction h, et l’oracle répondra donc avec Eh(K)(m). Nous donnons une illustration de ce modèle
dans la Figure 2.3.

Il est important de noter que l’oracle ne révèle pas h(K) à l’attaquant. Ceci donne beaucoup
plus de pouvoir à l’attaquant, et amena à une attaque pratique sur la version complète de KASUMI
[60], ainsi que des attaques théoriques sur HIGHT [91] et même sur AES-192 et AES-256 [24]. Le
choix de la fonction h accorde plus ou moins de pouvoir à l’attaquant, le cas le plus commun étant
l’ajout d’une différence, i.e. h(x) = x ⊕ ∆, où ∆ est choisi par l’attaquant. À EUROCRYPT’03,
Bellare et Kohno [11] ont donné une meilleure idée des possibilités pour le choix de la fonction h.
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En particulier, ils fournissent des classes de fonctions telles que pour n’importe quel chiffrement
par bloc E, si h est autorisé à appartenir à l’une de ces classes, il existe toujours un distingueur
(voir Section 3) pour E. Dans le Chapitre 3, nous décrivons comment on pourrait concevoir le
cadencement de clé d’un chiffrement par bloc itéré pour améliorer sa résistance contre certaines
attaques en clé reliées.

2.2 Une Histoire de Boîtes

Comme décrit dans les sections précédentes, l’oracle est essentiellement vu comme une boîte noire.
C’est-à-dire que l’oracle va réaliser les différentes opérations demandées sans donner aucune in-
formation à l’attaquant à part le résultat de sa requête (en résumé, un ensemble de clairs et/ou
chiffrés). Cependant en pratique, les chiffrements par bloc ne sont pas implémentés dans un tel
scénario idéal. En effet, plusieurs informations peuvent fuir lors de l’exécution de la fonction de
chiffrement, comme des différences dans le temps d’exécution, ou bien depuis le matériel, comme
la consommation de courant, des radiations électro-magnétiques ou bien les accès au cache de don-
nées. Ceci amena à considérer un nouveau modèle, appelé le modèle en boîte grise, créant ainsi les
attaques par canaux auxiliaires. Essentiellement, l’idée est de trouver une corrélation entre certains
calculs dépendants de la clé pendant l’exécution de la fonction de chiffrement, et des phénomènes
physiques observables de l’extérieur. Des implémentations non protégées peuvent être extrêmement
sensibles à ce type d’attaque, amenant même parfois à la récupération de la clé utilisée [90]. En
plus de simplement observer certaines informations données par le matériel, il y a également la
possibilité de réaliser des attaques par injection de faute. En utilisant par exemple un laser sur le
circuit matériel, un attaquant peut injecter des fautes durant l’exécution de la fonction de chiffre-
ment, donnant par exemple lieu à des bits changeant d’état ou même à la non-exécution de certaines
instructions, observer comment la sortie est modifiée et essayer d’en déduire de l’information sur
la clé. Cette technique est également très puissante et peut également amener à des attaques pra-
tiques désastreuses, comme par exemple les attaques par injection de faute sur AES [70]. Plusieurs
contre-mesures ont été étudiées pour protéger ou minimiser l’impact de telles attaques, comme le
masquage, ou bien une élaboration spécifique du circuit de calcul.

Cependant, il est possible d’aller encore plus loin et de considérer le modèle en boîte blanche.
Cette fois-ci, on suppose que l’attaquant a un accès total à l’implémentation de l’oracle. Il est
autorisé à l’exécuter comme il le souhaite, même partiellement, en modifiant des valeurs dans le
code source, passer des instructions etc. Bien que ce modèle donne un pouvoir énorme à l’attaquant,
il n’est pas complètement irréaliste, comme par exemple dans la gestion des droits digitaux (DRM).
Le but de la cryptographie en boîte blanche est donc de fournir une implémentation logicielle sûre
face à ce type d’attaquant. La première proposition pour une telle implémentation a été faite par
Chow et al. à SAC’02 [42]. Bien qu’elle fût rapidement cassée [77, 20], elle amena à un nouveau
domaine de recherche. Dans le Chapitre 4, nous donnons plus d’informations sur ce modèle, ainsi
qu’une nouvelle attaque générique sur n’importe quelle implémentation en boîte blanche réalisée
dans le framework introduit par Chow et al.. Notre travail montre que le problème mathématique
sous-jacent est particulièrement faible, et ainsi, construire une implémentation en boîte blanche sûre
reste un problème ouvert.
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3 Résumé en Français

3.1 Recherche Efficace de Couche de Diffusion pour les Réseaux de Feistel
Généralisés

La construction de type Feistel est une manière classique de concevoir des chiffrements par bloc,
qui fût ensuite généralisée de plusieurs manières par Zheng et al. à CRYPTO’89 [147]. L’une
d’entre elles, appelée Feistel de Type 2, consiste essentiellement en l’application parallèle de plusieurs
réseaux de Feistel classiques, suivie d’une permutation. Dans le papier original de Zheng et al., la
permutation utilisée était simplement un décalage cyclique, mais il fût proposé plus tard d’utiliser
différentes permutations [112, 131], donnant donc lieu aux Réseaux de Feistel Généralisés.

Dans leur article à FSE’10 [131], Suzaki et Minnematsu se sont concentrés sur l’étude d’un critère
spécifique appelé le nombre de tour de diffusion complète pour choisir la permutation à utiliser. Ce
tour de diffusion complète revient essentiellement à trouver le nombre de tours nécessaires pour
que chaque bloc du chiffré dépende de chaque bloc du clair. Ils ont été capables de mener une
recherche exhaustive et d’évaluer pour ce critère toutes les permutations jusqu’à 16 blocs, et donc
de trouver les permutations optimales pour ces paramètres. Ce faisant, ils ont également remarqué
que pour ces nombres de blocs, toutes les permutations optimales étaient paire-impaires, c’est-à-dire
que l’image d’un nombre pair est impair et vice-versa. Ils ont donc donné une construction générale
pour trouver une bonne permutation paire-impaire quand le nombre de blocs est une puissance
de deux. En particulier, ils ont donné une permutation paire-impaire dont le nombre tours pour
atteindre une diffusion complète est de 10 tours pour 32 blocs. Cependant, la borne inférieure
pour un tel nombre de blocs est 9, posant donc la question de l’optimalité de cette permutation. À
FSE’19, Cauchois et al. [39] ont poursuivi cette étude et ont donné des permutations paires-impaires
optimales jusqu’à 26 blocs, sans réussir à résoudre le problème d’optimalité pour 32 blocs.

Dans le Chapitre 1, nous résolvons ce problème ouvert depuis 10 ans en montrant que cette
permutation n’est pas optimale, ainsi qu’en donnant des résultats jusqu’à 42 blocs. Plus précisément,
nous commençons par donner une nouvelle caractérisation pour qu’une permutation atteigne une
diffusion complète en un nombre de tours donné. Cette caractérisation nous permet d’élaborer
un algorithme très efficace pour rechercher des permutations paires-impaires optimales de 28 à 42
blocs, s’exécutant en à peu près une heure pour chaque cas en utilisant 72 threads. Dans leur
article, Suzaki et Minnematsu donnent une borne inférieure pour atteindre la diffusion complète
pour un nombre arbitraire de blocs. Pour chacun des nombres de blocs que nous avons considéré,
cette borne inférieure est de 9 tours. Ainsi, nous donnons toutes les permutations paires-impaires
optimales qui atteignent une diffusion complète en 9 tours pour 28, 30, 32 et 36 blocs, montrant
donc que la permutation trouvée dans [131] n’était pas optimale. Pour 34, 38, 40 et 42 blocs, notre
algorithme nous a permis de montrer qu’il n’existe pas de permutation avec un tour de diffusion
de 9, améliorant donc la borne inférieure à 10. Nous avons également trouvé une permutation
paire-impaire optimale pour 34 blocs, qui atteint donc la diffusion complète en 10 tours, ainsi que
de bons candidats atteignant 11 tours pour les cas restants.

3.2 Boîtes-S Linéairement Équivalentes et la Division Property

La division property a été un sujet de recherche actif dans la communauté de la cryptographie
symétrique depuis son introduction par Todo à EUROCRYPT’15 [136], soutenue par le fait qu’elle
a été utilisée pour donner la première attaque théorique sur la version complète de MISTY1 [135].
Bien que le premier algorithme donné par Todo pour rechercher des distingueurs basés sur la di-
vision property n’avait pas une complexité pratique pour les chiffrements par bloc usuels (essen-
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tiellement exponentiel en la taille de bloc), ce problème fût rapidement résolu par Xiang et al. à
ASIACRYPT’16 [143] où ils ont proposé d’utiliser des modèles de Programmation Linéaire pour
étudier la division property. Cette technique, ainsi que plusieurs autres par la suite utilisant d’autres
types de programmation déclarative comme les solveurs SMT ou SAT [129], ont permi à la commu-
nauté de mieux comprendre la division property, ainsi que de trouver de nouveaux distingueurs.

Cependant, nous affirmons que l’espace de recherche considéré dans les algorithmes de recherche
précédents est incomplet. En effet, nous observons tout d’abord que bien que les boîtes-S linéaire-
ment équivalentes se comportent essentiellement de la même manière lorsqu’on considère les attaques
différentielles et linéaires, ce n’est pas le cas pour la division property. Il se trouve qu’étudier la
propagation de la division property dépend fortement de la représentation d’un chiffrement par
bloc, et choisir la meilleure représentation pour étudier la division property est un problème diffi-
cile. Dans ce chapitre, nous résolvons partiellement ce problème en cherchant un distingueur sur un
chiffrement par bloc linéairement équivalent, i.e. en cherchant un distingueur sur Lout ◦E ◦ Lin au
lieu de E, où Lin et Lout sont des applications linéaires. Nous commençons par montrer comment
réduire significativement l’espace de recherche, puis donnons un algorithme efficace pour parcourir
cet espace réduit. Ainsi, nous avons donné un nouveau distingueur basé sur la division property sur
10 tours de RECTANGLE, alors que le meilleur distingueur connu jusque là était sur 9 tours.

Grâce à nos observations, nous donnons également une meilleure compréhension de la conception
de boîtes-S pour résister à la division property. Plus spécifiquement, nous prouvons que si une boîte-
S vérifie une certaine condition, alors elle est optimale quand on considère la résistance à la division
property classique (i.e. sans considérer notre technique). Bien qu’un critère similaire ait été donné
par Boura et al. dans [37], il se concentrait plus sur la conception d’une boîte-S relativement
résistante, alors que notre critère est prouvé optimal et que ces deux critères sont incompatibles
entre eux. Grâce à cela, nous sommes capables de trouver des boîtes-S alternatives pour PRESENT
et RECTANGLE telles que la résistance aux distingueurs basés sur la division property est améliorée
de deux tours.

3.3 Variantes du Cadencement de Clé d’AES pour de Meilleures Bornes sur
les Différentielles Tronquées

Malgré son rôle central, le cadencement de clé est peut-être l’un des composants le moins bien
compris dans les chiffrements par bloc. Si nous avons maintenant une bonne idée de comment
construire de bonnes boîtes-S ou de bonnes couches linéaires, la conception du cadencement de clé
reste difficile, et plusieurs idées très variées sont utilisées parmi les différents chiffrements par bloc.
D’un côté, nous avons par exemple le cadencement de clé d’AES qui est relativement élaboré et
compliqué, alors que pour la version 64-bit de LED [73] aucun cadencement de clé n’est utilisé et
la clé maître est directement utilisée à chaque tour (et la version 128-bit n’a essentiellement pas
de cadencement de clé non plus). De plus, la sécurité dans le modèle à clés reliées est devenue
plus étudiée que par le passé, et il semble donc naturel de relier la sécurité dans ce modèle d’un
chiffrement par bloc à son cadencement de clé, du moins en partie.

En contribution additionnelle de leur article de FSE’17, Khoo et al. [84] donnent une permu-
tation pour remplacer le cadencement de clé d’AES-128 qui amène à une meilleure sécurité face
aux attaques différentielles. Malgré le fait qu’ils aient donné des arguments sur le choix de cette
permutation, son optimalité n’est pas considérée. Nous avons donc choisi de nous intéresser de plus
près à ce problème, c’est-à-dire construire une permutation pour remplacer le cadencement de clé
d’AES-128 afin de maximiser le nombre minimal de boîtes-S actives dans le modèle à clés reliées.
Dans ce chapitre, nous commençons par donner des bornes génériques sur le nombre minimal de
boîtes-S actives atteignable après un certain nombre de tours. En particulier, peu importe la per-
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mutation utilisée, nous montrons que le nombre minimal de boîtes-S actives sur 5 tours est au plus
17. Nous nous concentrons donc sur le cas 6 tours, pour lequel nous donnons une permutation
atteignant 20 boîtes-S actives au minimum. Pour ce faire, nous utilisons une combinaison de méta-
heuristiques, ainsi qu’un nouveau modèle de Programmation par Contraintes permettant d’avoir
une évaluation plus précise du nombre minimal de boîtes-S actives pour une permutation donnée.
Nous donnons également des paires de permutations, remplaçant respectivement le cadencement de
clé et l’opération ShiftRows d’AES-128, qui permettent d’atteindre 21 boîtes-S actives sur 6 tours.
Pour finir, pour chaque permutation (resp. paire de permutations) trouvée, nous prouvons grâce à
un autre modèle de Programmation par Contraintes [67] qu’il n’existe aucun chemin différentiel sur
6 tours avec une probabilité plus grande que 2−128.

3.4 Sur l’Extraction d’Encodages Affines dans les Implémentations en Boîte
Blanche

Depuis le premier candidat pour une implémentation en boîte blanche par Chow et al. en 2002 [42],
le problème de créer une implémentation en boîte blanche sûre pour AES persiste. En gardant les
mêmes idées fondamentales de la proposition de Chow et al., plusieurs autres constructions virent
le jour en restant dans ce même framework. Dans celui-ci, la fonction de tour du chiffrement par
bloc est "encodée" en la composant avec des couches non-linéaires et affines appelés encodages.
Malheureusement, toutes ces tentatives furent rapidement cassées par une suite d’attaques de plus
en plus efficaces réussissant à supprimer ces encodages, permettant par la suite de révéler la fonction
de tour, et donc la clé secrète. Ces attaques sont cependant dédiées au schéma attaqué et ne sont
pas facilement applicables à d’autres propositions.

Dans ce chapitre, nous proposons donc un algorithme générique et efficace permettant de retrou-
ver les encodages affines, pour n’importe quel chiffrement par bloc de type Réseau de Permutation-
Substitution (SPN), comme AES, ainsi que pour n’importe quelle forme d’encodages affines. Plus
précisément, étant donné une fonction de tour encodée de la forme A ◦ S ◦ B, où A et B sont
des encodages linéaires (ou affines), notre algorithme est capable de trouver A et B (à équivalence
près, la solution n’étant pas toujours unique), où S est une couche de boîtes-S connues composées
de plusieurs boîtes-S distinctes. En considérant les paramètres pour AES, c’est-à-dire des blocs de
128 bits partagés en 16 boîtes-S de 8 bits parallèles, les encodages affines sont extraits avec une
complexité en temps estimée à 232 opérations basiques, indépendamment de la manière dont sont
construits les encodages. Nous illustrons cet algorithme sur une proposition récente de Baek, Cheon
et Hong qui n’était pas analysée jusqu’à présent. Alors que les auteurs évaluent la sécurité de leur
schéma à 110 bits, une application directe de notre algorithme générique est capable de casser ce
schéma avec une complexité en temps estimée à seulement 235 opérations basiques.

En étudiant cette proposition plus en détails, nous donnons une approche différente pour crypt-
analyser le schéma de Baek et al., qui ramène l’analyse à un nouveau problème de combinatoire,
et permettant au final de récupérer la clé secrète avec une complexité en temps de 231. Nous four-
nissons également une implémentation de cette attaque, qui permet de récupérer la clé secrète en
approximativement 12 secondes sur un ordinateur de bureau standard.
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"Wisdom is the offspring of Suffering and
Time"

— Izaro, Lord of the Labyrinth



Introduction

Securing communications has always been a major concern in humanity’s history. Let it be political
or strategic messages from governments or companies, communications between someone and his
bank or insurance company, or even just a student who wants to send a message to one of his friend
during class, we always wanted, and needed, to protect our communications from malicious ob-
servers. While the first encryption systems were quite basic, like the Caesar Cipher, the complexity
of such systems constantly evolved during history, up to the Enigma machine during World War II
and completely skyrocketing with the arrival of modern computers.

Despite the revolution created by the discovery of public key, or asymmetric, encryption with
RSA in 1977 [114], secret key, or symmetric, cryptography is still a major element in the security
of modern communications. The core idea of symmetric cryptography, and the origin of the name,
is that the two parties trying to communicate know a common information, the key, that only they
know and which is used to encrypt communications. Informally, designing symmetric encryption
algorithms comes down to creating a process taking as input the key and the plaintext which
then output a ciphertext that only the legitimate owners of the secret key can decrypt back to
the plaintext. There are three main security notions in symmetric cryptography : confidentiality,
integrity and authenticity. The goal of confidentiality is to ensure that only the legitimate parties
owning the secret key can decrypt the ciphertext. This is done using encryption, which is also
the main topic of this thesis. Next, integrity ensure that the plaintext/ciphertext has not been
tampered during the communication, most of the time this is done using hash fonctions. Finally,
authenticity allows to guarantee that the ciphertext comes from someone owning the secret key,
this time using Message Authentication Codes (MAC). It is also possible to create primitives which
bundle these three properties together, thus leading to authenticated encryption.

Although older than public key cryptography, symmetric cryptography is still an active topic of
research. A major step in its history is the standardization of the DES cipher in 1977 [56]. At the
beginning of the 70’s, the National Bureau of Standards (now called the NIST, National Institute
of Standards and Technology) requested a new encryption scheme to create an American standard.
The selection process was not made public, but their choice ended up being an algorithm previously
designed by Horst Feistel at IBM called Lucifer [64]. However, the National Security Agency (NSA)
asked IBM to modify some components in the algorithm called the S-boxes. These modifications
were made, leading to the DES algorithm we know today. However, the involvement of the NSA in
its design was not well received by the community. Especially, when Biham and Shamir discovered
differential cryptanalysis [17], they noticed that DES is oddly resistant to this kind of cryptanalysis,
which was previously unknown by the public. It was then confirmed by Coppersmith, one of the
member of the IBM team, that this technique was indeed already known during the design of the
S-boxes [44].

This lack of transparency led to a new way of selecting the next standards. Indeed, the selection
process for the successor of DES was made as a public competition, the AES (Advanced Encryption
Standard) competition. Initiated by the NIST on January 2, 1997, 15 candidates were submitted
and publicly visible, leaving open the security analysis by the whole cryptography community. After
reducing it to 5 finalist candidates on August 9, 1999 (Rijndael, MARS, RC6, Serpent and Twofish),
the NIST made the announcement that Rijndael has been chosen to be the AES standard as we
know it these days. The same process was then used to choose a new standard for hash functions,
with the SHA-3 competition starting on January 23, 2007, and leading to choose Keccak after 5
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years of cryptanalysis by the community. The standardization of Keccak also created a new field
of research for symmetric cryptography. Indeed, the new construction, called sponge construction,
used to design Keccak allows one to create both encryption schemes and hash functions from a
single permutation, and has been a trending topic of research recently. Other similar competitions
were also made, like the eSTREAM competition funded by the European Union, which led to a
portfolio of recommended stream ciphers, or the CAESAR competition which ended in early 2019,
bringing a portfolio of authenticated encryption schemes. Finally, the last competition to date is
about choosing one or several primitives for lightweight cryptography, i.e. targeted for constrained
devices like RFID. The NIST is funding this competition, with 56 submissions announced on April
18, 2019, and an already very active participation from the community to analyze the different
candidates.

Studying the different criteria to design a secure symmetric encryption scheme while still having
decent performances and a viable implementation on constraint hardware is thus still a major
concern these days, hence the main topic of this thesis, which is to give new insights for the design
of new symmetric primitives. We can thus give the following very generic definition, considering
that plaintexts and keys are represented as bitstrings of arbitrary length.

Definition 0.1. An encryption scheme is a family of functions F : F∗2 × F∗2 → F∗2, where F∗2 is the
set of arbitrary length bitstrings, such that for any p ∈ F∗2 (the plaintext) and K ∈ F∗2 (the key),
and by denoting c = F(K, p) (the ciphertext), then there exist an efficiently computable function
F ′ : F∗2 × F∗2 → F∗2 such that p = F ′(K, c).

In practice, the size of the key is often fixed, and this will be the case for the rest of this thesis.
One notable exception however is the one-time pad. This encryption scheme is extremely simple :
given a plaintext p and a key K, the ciphertext is defined as c = K ⊕ p. Despite its simplicity, this
scheme is actually the only perfect cipher known up to now, which was proven by Shannon in 1949
[118]. However, it implies some constraints which makes it quite unusable in practice :

• The key length must be larger or equal to the plaintext length.

• The key must be truly random.

• The key must be used only once, i.e. two plaintexts, even the same, shall not be encrypted
using the same key.

It is quite clear that such constraints are really hard to satisfy in practice for a large-scale system,
even though it has still been used over the history.

Cryptographers thus tried to design simpler solutions, while trying to keep a good amount of
security. In symmetric cryptography, two main families of encryption schemes exist. The first one
is the family of stream ciphers. The idea behind this kind of cipher is quite simple : being as close
as possible to the one-time pad, while not having its constraints. Thus, instead of generating a
key of the same length as the plaintext, stream ciphers take a fixed-size key and use it to derive a
keystream which is then used in the same way as the one-time pad by XOR-ing it to the plaintext.
Designing such kind of ciphers comes down to try to make this keystream as close as possible to
a random bitstring such that it is close to the one-time pad. Several stream ciphers exist, such
as one of the first publicly know, RC4 [124], which is still used these days despite its known flaws,
e.g. in the WEP protocol. However, the eSTREAM competition mentioned previously led to a list
of much better stream ciphers than RC4 such as Trivium, and one of the finalists of the CAESAR
competition, ACORN [141], is also a stream cipher. This thesis however will focus on the second
family of ciphers, called block ciphers, which are described in the next section.
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Figure 1.4: The original image (left) and its encryption using ECB (right) [63]

1 Block ciphers
We first start with a definition of the main object we study in this thesis.

Definition 1.1. A block cipher is a family of functions E : Fk2 × Fn2 → Fn2 such that each function
EK = E(K, ·) : Fn2 → Fn2 defines a permutation. Here, k is called the key length and n the block
length.

From Definition 0.1, a cipher needs to be able to encrypt plaintexts of arbitrary length, while
a block cipher can only manage plaintexts of a fixed length n. To do so, we need to use a mode
of operation, which splits the plaintext into blocks of size n and then uses an algorithm to encrypt
everything together. The most basic mode is Electronic Code Book (ECB), where each block is
encrypted independently. This mode is highly vulnerable as soon as the length of the plaintext is
higher than n, as two identical plaintext blocks will be encrypted to the same ciphertext block, thus
leaking information, see Figure 1.4.

Directly constructing a block cipher is a hard task, both to design and to study the resulting
primitive. Hence, most modern block ciphers use the iterated block cipher construction, pictured
in Figure 1.5. The idea is to design two main components. First, the key schedule, which takes as
input the key, often called master key in that case, and derives a sequence of round keys K0, . . . ,Kr,
where r is called the number of rounds. Then, the round function f , which is used with the key
schedule to build the whole encryption function as

EK = ⊕Kr ◦ f ◦ ⊕Kr−1 ◦ f ◦ · · · ◦ f ◦ ⊕K1 ◦ f ◦ ⊕K0 ,

whereK0, . . . ,Kr are the round keys derived from the master keyK and⊕K(x) = x⊕K. Essentially,
it comes down that designing a strong block cipher directly is much harder than designing a decent,
albeit weaker, round function which is then iterated many times. It is also easier to study the
behavior of a block cipher designed that way, as we can first focus on the study of the round
function, which is simpler than looking at the whole block cipher itself.

In Chapter 3, we give some insights about the design of the key-schedule. Overall, this is still
something that is not very well understood by the community, and there is a wide range of different
constructions. The current standard AES for example has a quite intricate non-linear key-schedule,
the PRESENT one is essentially a linear permutation, followed by a non-linear operation on only 4
bits and the addition of a constant. Some block ciphers only use a linear key-schedule, for example
IDEA [93] or Square [45], and some even go further and directly use the master key, only adding a
different constant at each round, such as LED [73] or Midori [5]. The design of the round function
however is much better understood. There are two main prevalent designs used to build block
ciphers :
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Key Schedule
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plaintext f . . . f ciphertext

K0 K1 Kr−1 Kr

Figure 1.5: Generic iterated cipher construction [78]

Feistel Networks. Introduced during the creation of the Data Encryption Standard (DES)
[56], Feistel Networks are still used these days with block ciphers such as Camellia [2] or SIMON
[8]. The idea is to split the n-bit state into two halves of n/2 bits. Thus at round i, the state
is represented as (Li, Ri) where both Li and Ri are n/2-bit blocks. Then, the round function is
defined as

(Li+1, Ri+1) = (Ri, Li ⊕ FKi(Ri)),

where FKi is a function depending on the i-th round key. Along with some nice theoretical prop-
erties (e.g. [100]), this construction is also efficient both in software and hardware, as its inverse is
essentially the same function, except that the round keys are used in reverse order. Some general-
izations of the Feistel Network were then described by Zheng et al. [147] at CRYPTO’89, leading
to the Type-2 Feistel construction for example, where the round function is now several parallel
Feistels, followed by a permutation. This was for example used to design the block ciphers TWINE
[132] and Simpira [71]. In Chapter 1, we go more in-depth about this Type-2 Feistel construction,
more precisely about how to choose the permutation.

Substitution Permutation Networks (SPN). This more recent design was first proposed
for the Square block cipher [45], which then lead to the current standard AES. A vast number of
block ciphers were designed this way, such as PRESENT [33], Midori [5] or SKINNY [10]. The idea
of this construction is to directly build components giving some diffusion and confusion. These
terms were introduced by Shannon in 1949 [118]. The goal of confusion is to make the relation
between the plaintext, the ciphertext and the key as complex as possible. Then, diffusion should
make each bit of the plaintext and each bit of the key to influence many bits of the ciphertext. In
this construction, the round function is composed of three steps :

• The substitution layer, which goal is to provide some confusion by being a non-linear
mapping. This step is often built by concatenating several S-boxes, which are small (in term
of number of bits) non-linear invertible applications, and applying them to all the state. The
choice of the S-box is thus crucial, as it is the only non-linear component in the whole round
function. In Chapter 2, we give, among other results, a new criterion for choosing those S-
boxes. Note that some block ciphers have a more elaborate substitution layer, such as SPARX
[58].

• The permutation layer, which aims at giving some diffusion to the round function. While
the name suggests that it could only be a bit-permutation (such as in PRESENT), the con-
struction is more generic and this layer is simply a linear layer. The design of this layer is
not less important than the substitution layer. Some block ciphers are designed with a strong
linear layer, such as AES, which provides a quick diffusion through the round function. Others,
like SKINNY, use a linear mapping with a lower diffusion, but with better performances. This
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is often a result of a trade-off between performance and security : a strong linear layer will
have high diffusion and thus needs less rounds, but the linear mapping might be costly to
implement. On the other hand, a weaker diffusion can often lead to better performances for
the round function, at the cost of needing more rounds to achieve the same security.

• The key addition consists simply in XORing the round key with the state. It can be done
over the whole internal state like in AES, or only partially like in SKINNY.

There is also another class of block ciphers considered aside these two constructions, which is
the ARX construction. These block ciphers essentially rely on three main operations : modular
Addition, bitwise Rotation and XOR. There is also a variant AndRX, using a bitwise And instead
of the modular addition, e.g. SIMON [8]. This construction is a bit on the side, as it is often
used in conjunction with one of the two previous designs, only using the ARX operations to build
the different sub-function needed. For example, SPARX [58] is a SPN using ARX operations, while
HIGHT [76], SPECK [8] or XTEA [140] are Feistel networks using ARX operations (and SIMON which
is also a feistel network, but using AndRX operations). Finally, SPNs and Feistels are not the only
existing designs, and among others, we can cite the Lai-Massey construction [93], Even-Mansour
[62] or the MISTY construction [104].

2 Security Models

Studying the security of block ciphers requires to know the attacker capabilities. We often model the
interactions between the attacker and the block cipher using the concept of oracle. When studying
a block cipher E, the oracle will first choose a key K at random, which stays secret and does not
change, and will answer to the attacker’s requests using the corresponding encryption function EK .
The attacker will then try to recover K only from the answers of the oracle, or for a weaker attack,
decrypt a ciphertext without knowing beforehand the corresponding plaintext. Note that according
to the Kerckhoffs’ principle, the attacker knows exactly which block cipher is used by the oracle,
including how every operation is done (e.g. the S-box, the linear layer etc.). The only information
kept secret from the attacker is the key.

We now need to consider which requests the attacker is allowed to sent, and this will define
the security model. The weaker model is when the attacker is only allowed to ask the oracle for a
ciphertext. The oracle will simply generate a random plaintext, unknown from the attacker, and
returns the corresponding ciphertext. This is called the known ciphertext model, as the attacker
only knows a set of ciphertexts without their corresponding plaintexts. An attack in this model
is devastating, as the constraints for the attacker are very small : simply having access to some
(random) ciphertexts. This model is considered very weak, as the attacker has a very minimal
power. No serious block cipher is susceptible to such attack these days, but more ancient ones like
the Caesar or the Vigenère ciphers can easily be broken is this model. There is however a recent
stream cipher which was broken in this model, namely the PC1 cipher used in Amazon’s Kindle
tablet.

A slightly stronger model is the known plaintext model. Here, upon request from the attacker,
the oracle will again generate a random plaintext and compute its corresponding ciphertext, but
this time send both the plaintext and the ciphertext to the attacker. Some very well known attacks
in this model are the attack on Enigma from Bletchley Park during World War II, or more recently
against the block cipher (and its subsequent variants) FEAL [133, 105]. Some modern cryptanalysis
techniques use this model, such as linear cryptanalysis [105] or zero-correlation cryptanalysis [34].
Still, this is not enough for other cryptanalysis techniques.
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Figure 2.6: Single-key model vs. Related-key model for a chosen-plaintext request.

To analyze modern block ciphers, we often need to be at least in the chosen plaintext model.
Here, the attacker can choose which plaintext to send to the oracle and get the corresponding
ciphertext. This is much more powerful, and leads to cryptanalysis techniques such as, for example,
differential or integral cryptanalysis. Several modern block ciphers have attacks on the full number
of rounds in this model, for example MISTY1 [135], KLEIN-64 [94], or Robin and Zorro [96]. These
attacks were also applied on reduced-round variants of essentially all modern block ciphers. This
is the baseline security considered nowadays, and using any cipher susceptible to an attack in this
model (or one of the previously described ones) would be a major security mistake.

However, there is also a stronger model, which is the chosen ciphertext model. Here, along with
requesting the corresponding ciphertext of a plaintext of its choice, the attacker can also ask for
the converse, i.e. send a ciphertext to the oracle, which send back the corresponding plaintext.
This model leads to attacks such as for example boomerang attacks (which are more specifically
in the adaptive chosen ciphertext model), which were able to break COCONUT98 with practical
complexity [138], as well as differential-linear [95] and yoyo attacks [13].

Finally for the last two models, we can consider an adaptative variant, where the attacker sends
some request to the oracle, gets the result and can do some others requests based on the result.
This is slightly different than the standard models, where the attacker sends a set of request to the
oracle once and for all, and is not allowed to interact with it later. Such variants are stronger than
their respective standard variants.

We thus described the main models concerning the attacker power. However, there are also
some other factors we can consider jointly with the previous models, which are described in the
next sections.

2.1 Are you single ?

The security models previously described were historically made in the single-key model. That is,
once the oracle chose a random key, this key would not change and the attacker has no power over
it. However, at EUROCRYPT’93 [12], Biham described a new kind of attack, leading to the related-
key model. In this model, the oracle still chooses a random key K kept secret from the attacker.
However, when the attacker sends a request to the oracle, he can also send along a function h from
a class of functions H, and the oracle will answer using the key h(K) instead of K. For example,
the attacker sends an encryption request (chosen-plaintext model) for the message m, along with
the function h, and the oracle will thus answer with Eh(K)(m). We give an illustration of this model
in Figure 2.6.

Note that the oracle does not reveal h(K) to the attacker. This gives much more power to the
attacker, and it leads to successful practical cryptanalysis of the full version of KASUMI [60], as well
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as theoretical cryptanalysis of HIGHT [91] and even AES-192 and AES-256 [24]. The choice of the
function h can lead to a variable power bestowed to the attacker, the most common case being to
add a difference, i.e. h(x) = x⊕∆, where ∆ is chosen by the attacker. At EUROCRYPT’03, Bellare
and Kohno [11] gave more insights about the possibilities available for the function h. Especially,
they give some classes of functions such that for any block cipher E, if h is allowed to belong to
such a class, there is always a distinguisher (see Section 3) against E. In Chapter 3, we will see
how we could design the key-schedule of an iterated block cipher to have a better resistance against
some types of related-key attacks.

2.2 A Box Story

As described in the previous sections, the oracle is essentially seen as a black-box. That is, the
oracle will do the required computation without giving any information to the attacker except the
result of his request (essentially, some plaintexts and/or ciphertexts). However in practice, block
ciphers are not implemented in such an ideal scenario. Indeed, several information can leak from
the execution of the encryption function itself, such a difference in timings, or from the hardware,
e.g. power consumption, electromagnetic radiations or cache accesses. It led to consider a new
model, called the gray-box model, and creating side-channel attacks. Essentially, the idea is to try
to find a correlation between some key-dependent computations made during the execution of the
encryption function, and some observable physical phenomena. Unprotected implementations can
possibly be extremely susceptible to such attacks, sometimes even leading to a key-recovery [90].
Beside only observing some external information leaked by the hardware, there is also the possibility
of fault-injection attacks. Using e.g. a laser on the hardware circuit, the attacker can inject faults
during the execution process, leading to bit flips or even instructions skipping for example, see
how the output is modified and try to deduce some key information. This is also very powerful
and can also lead to devastating practical attacks, see for example [70] for fault injection attacks on
AES. Several countermeasures have been studied to protect implementations from such side-channel
attacks, such as masking.

However, we can go even further and consider the white-box model. Here, the assumption
becomes that the attacker has full access to the implementation of the oracle. He is allowed to
execute it however he wants, let it be only partially, by modifying values in the source code,
skipping instructions etc. While this model gives a large amount of power to the attacker, it is not
unreasonable, for example when thinking about Digital Rights Management. The goal of white-
box cryptography is thus to provide a secure software implementation in a hostile environment.
The first proposal for an implementation in this model was made by Chow et al. at SAC’02 [42].
While being quickly broken [77, 20], it led to a new field of research. In Chapter 4, we give
more information about the white-box model, as well as some new generic attack on any white-
box implementation made in the framework introduced by Chow et al.. Our work shows that the
underlying mathematical problem turns out to be quite weak, and thus building a good white-box
implementation still remains an open problem.

3 Distinguishers for Block Ciphers
Most of the time when cryptanalyzing a block cipher, we first need to build a distinguisher for this
block cipher. Informally, a distinguisher is an algorithm which is able to decide (with a certain
probability to be right) if a set of plaintexts/ciphertexts comes from a random function or a block
cipher. To find such a distinguisher, we have to look for behavior from the block cipher which
happens with a significantly different probability than what it would be if it was a random function.
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For example with differential distinguishers (detailed in the next section), the relation f(x⊕0x13)⊕
f(x) = 0x37, x ∈ Fn2 should hold with probability 2−(n−1) for a random function. However, if we
are able to show that this relation holds with a much higher probability for a given block cipher,
then this can result in a distinguisher.

Once we have a distinguisher for a block cipher, we can mount a generic attack on the last
round. Assume that the distinguisher covers r − 1 rounds of the block cipher and that the last
round key is shorter than the master key (e.g. in Feistel Networks). The attacker asks for a set of
ciphertexts, then makes a guess on the last round key to partially decrypt these ciphertexts. He
thus has a set of ciphertexts coming from the encryption through r − 1 rounds of the block cipher,
and can thus applies the distinguisher. The main hypothesis made is that if the guess is wrong,
then the resulting set of ciphertexts will behave as if it was produced by a random function. As
such, if the distinguisher outputs that the set comes from a random function, then the key will be
assumed to be incorrect. Otherwise, it will be assumed to be correct, and then the attacker can
repeat the attack to incrementally decrypt the whole set of ciphertexts by recovering each round
key (which usually at some point ends up being equivalent to recovering the master key).

In the sections below, we give a short introduction to different types of distinguisher mentioned
in this thesis. Note that several other types of cryptanalysis exist, like linear, algebraic, boomerang
or Meet-in-the-Middle attacks.

3.1 Differential Distinguishers

Introduced in the early 90s by Biham and Shamir at CRYPTO’90 [17], differential cryptanalysis
quickly became one of the most prevalent way to attack block ciphers. It was used to mount the first
attack on the full DES [19], as well as to attack FEAL [18], PUFFIN [30] and Zorro [72], and many
reduced-round variants of block ciphers. Essentially the question is, given two plaintexts p0, p1 with
difference ∆p = p0 ⊕ p1 chosen by the attacker, is it possible to predict, with a good probability
and independently from the key, the resulting difference on the corresponding ciphertext ? This is
indeed a first order differential, as we are trying to predict the value of ∆c = Ek(p0)⊕Ek(p0⊕∆p).
Note that for a random n-bit permutation, the probability of such a differential is expected to be
about 2−n. Thus, if a block cipher has a differential with a probability significantly higher than
this, it would be possible to get a distinguisher for this block cipher.

Evaluating the probability of such a differential (∆p,∆c) is however a challenging task, especially
since we want to find a differential with a high enough probability. We thus usually consider
differential characteristics, which essentially give the propagation of the input differential through
the different round functions composing the block cipher. For a r-round block cipher, a differential
characteristic is a sequence ∆0, . . . ,∆r with ∆0 = ∆p and ∆r = ∆c such that the difference
∆i propagates to ∆i+1 through the i-th round function with a given probability pi. Assuming
independence between the different rounds1, the probability of the characteristic is given by

P(∆0, . . . ,∆r) =
r−1∏
i=0

pi.

Evaluating the exact probability of this differential would require to compute all differential char-
acteristics starting with ∆0 and ending with ∆r, which is often impractical. There are still some
works to handle a subset of all characteristics, see for example [75]. Most of the time however, we
focus on finding a characteristic with a reasonably high probability, without necessarily considering

1while this does not actually hold in practice, it still gives a decent approximation most of the time



3. DISTINGUISHERS FOR BLOCK CIPHERS 27

this clustering effect. Indeed, it is commonly assumed that the best characteristic gives a good
approximation of the actual probability of the corresponding differential.

To study differential characteristics, we observe that most of the time, the different steps com-
posing a round function are actually much easier to study than the round function itself as a
whole. Indeed, if we take the SPN construction for example, the propagation of differences through
the linear layer and the key-addition is predictable with probability 1, as those are linear (resp.
affine) operations. The only operation where the propagation becomes probabilistic is the S-box
layer. However, the S-box layer itself is composed of several S-boxes, which are much smaller func-
tions. For an S-box S, we can thus compute the exact probability of all differentials (∆in ,∆out),
leading to the differential distribution table (DDT). This DDT is a double entry table such that
DDT(∆in ,∆out) is the probability that S(x)⊕S(x⊕∆in) = ∆out holds over the whole input space
of the S-box (i.e. over all x ∈ Fm2 , where m is the size of the S-box).

Truncated Differentials

Searching for such differential characteristics however still remains a challenging task in some cases.
We thus often also consider truncated differential characteristics, where we do not study the exact
differential propagation, but only whether some part of the state has a non-zero difference or
not. For example for AES, each operation of the round function is defined over the bytes of the
state. Thus, we can only study whether a given byte is active (non-zero difference) or inactive
(zero difference). While these truncated differential characteristics can be used themselves to find
distinguishers, they can also be used to help finding exact differential characteristics [69]. Moreover,
truncated differential characteristics can be used to give an approximation of the security of a block
cipher against differential cryptanalysis.

As said in the previous section, the only component where the propagation is non-deterministic
is the S-box layer. For a given truncated characteristic, we can thus count the number of active
S-boxes, i.e. S-boxes with a non-zero difference at the input/output. While we do not know the
exact difference, from the DDT of the S-box we can get the maximal differential probability, i.e.
the probability pmax which is maximal over all the probabilities in the DDT (except from the
zero transition to itself, which is always 1). Hence, if a given truncated characteristic has nS
active S-boxes, we know that any differential characteristic matching this truncated characteristic
would have at best a probability of pnSmax . Thus, to get a decent approximation of the resistance
against differential cryptanalysis, we can first try to find the minimal number of active S-boxes nmin ,
allowing us to know that any differential characteristic would have a probability of at most pnmin

max .
If this probability is lower than 2−n, then we can make the safe assumption that the cipher seems
resistant to differential cryptanalysis. Note that this does not mean that the tools introduced by
differential cryptanalysis would be useless to attack this block cipher, for example we will see in the
next section that differentials with probability 0 can also be exploited. Boomerang attacks [138] are
also a type of attack using techniques from differential cryptanalysis where the minimal number of
active S-boxes is not enough to prove security.

Searching for (truncated) differentials

Several techniques to search for (truncated) differential trails and the minimal number of active
S-boxes were designed over the years. One of the first work to study this extensively is the Wide
Trail Strategy by Daemen and Rijmen [47]. This strategy to design the round function of an SPN
block cipher was notably used to create the current standard AES. Essentially, the idea is that if
the round function is properly built, one can easily prove a lower bound on the number of active



28 INTRODUCTION

S-boxes for a few rounds. For example in AES, this allowed them to prove that 4 rounds of AES
have at least 25 S-boxes over 4 rounds [46]. Since the maximal differential probability of the AES
S-box is 2−6, this leads to a differential characteristic of probability at most 2−150 over 4 rounds.
Considering that the number of rounds for AES goes from 10 for the 128-bit key variant up to 14
rounds for the 256-bit key variant, it is safe to assume that AES is resistant against basic differential
cryptanalysis.

Several works [82, 120, 32] also provided some similar results for different kind of Feistel con-
structions, but the first automatic search algorithm is given by Mouha et al. in 2011 [109]. By
giving a way to modelize the propagation of truncated differences through the block cipher opera-
tions into linear inequalities, this allows to use a Mixed Linear Integer Programming (MILP) solver
to automatically search the minimal number of active S-boxes. This technique is very general and
can be applied to most block ciphers, and requires a relatively low amount of programming effort
to get a result. However, the search for truncated differentials and the minimal number of active S-
boxes becomes more complicated when considering the related-key model. Nonetheless, some tools
were designed to tackle this problem, for example Fouque et al. at CRYPTO’13 [65] gave a generic
algorithm for SPN block ciphers, especially AES-like block ciphers. Even though its complexity can
be improved when considering that we are specifically studying AES, it still requires a high amount
of memory. At CP’16, Gérault et al. [69] described how to build a Constraint Programming (CP)
model to search for truncated characteristics in the related-key model, as well as showing that com-
puting valid truncated characteristics can then be used to find actual differential characteristics with
another CP model. Constraint programming was also used in [68] to improve several related-key
attacks on AES, and later in [130] to show improved results on PRESENT, SKINNY and HIGHT.

Impossible Differentials

While the previous paragraph focused on differentials with high probability, it actually turns out
that differentials with probability zero can also be used to build distinguishers. The idea was first
given by Knudsen [87] when he designed the DEAL block cipher and exhibited an attack exploiting a
differential with probability zero. The term Impossible Differential was then coined by Biham et al.
at EUROCRYPT’99 [14] when it was used to attack 31 rounds (over 32) of the block cipher Skipjack.
This leads to attacks on several block ciphers, like IDEA and Khufu [16] or Crypton [102]. As for
differentials, impossible differentials have led to different techniques to search for them. One of them
called the U-method was introduced by Jongsung et al. [85], later improved by Yiyuan et al. [101]2
and later by Shengbao and Mingsheng [142]. These techniques, while already powerful, were only
able to search for word-wise impossible differentials, i.e. could not always manage to find very fine-
grained contradiction propriety. This was then improved by Sasaki and Todo at EUROCRYPT’17
[115] using, again, MILP. This tool is able to detect contradiction properties that previous algorithms
could not, for example exhibiting contradictions at a bit-level on S-boxes differentials. In the end, it
allowed to improve previously known impossible differential distinguishers for several block ciphers,
such as Midori128, Lilliput and Minalpher.

3.2 Integral Distinguishers

In this section, we regroup three kinds of distinguishers that, while using different techniques, end
up achieving the same goal. Namely, we will quickly describe high-order differential, structural
integral and division property distinguishers.

2Note that the paper was originally published on eprint in 2009 at https://eprint.iacr.org/2009/627
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High-order Differentials

The generic goal of integral distinguishers is to be able to predict, with probability 1, the value of
the sum of some bits in the encryption of a set of plaintexts. More precisely, given a set of plaintexts
P = {p1, . . . , pn} and the corresponding set of ciphertexts C = {c1, . . . , cn} with ci = Ek(pi), and
by denoting cji the j-th bit of the ciphertext ci, the goal is to predict the value of⊕

ci∈C
cji

for a well chosen value (or several of them) of j. This idea was first given by Lai in 1994 [92] when he
described some properties of high-order differentials of boolean functions. Especially, from Section
2 in this paper, we have the following definition and proposition, adapted for vectorial boolean
functions.

Definition 3.1. For a function f : Fn2 → Fm2 , the derivative of f at the point a ∈ Fn2 is defined as

∆af(x) = f(x⊕ a)⊕ f(x).

The i-th order derivative of f at (a1, . . . , ai) with aj ∈ Fn2 for all j ∈ {1, . . . , i} is defined as

∆(i)
a1,...,ai

f(x) = ∆ai(∆(i−1)
a1,...,ai−1f(x))

Proposition 3.2. Let L[a1, . . . , ai] denote the set of all 2i possible linear combinations of a1, . . . , ai,
then

∆(i)
a1,...,ai

f(x) =
⊕

c∈L[a1,...,ai]
f(x⊕ c).

Thus, we can see that especially, if f corresponds to one of the components of an encryption
function and (p1, . . . , pi) is a set of linearly independent plaintexts, the i-th order derivative at
(p1, . . . , pi) corresponds exactly to the sum of all of the 2i corresponding ciphertexts. As for the
derivatives of real functions, Lai also showed that a first order derivative lowers the degree of the
function by at least 1. Thus, if f is of degree at most i, the i-th order derivative will be constant,
and finally the (i + 1)-th order derivative will always be the zero function. This then gives us our
first kind of distinguisher, known as high-order differential distinguisher. Indeed, if we are able to
show that the component Ejk of an encryption function Ek is of degree at most i, then by taking
i + 1 linear independent plaintexts and the set P of their 2i+1 linear combinations, we know that
for all j, we have ⊕

p∈P
Ejk(p) =

⊕
c∈C

cj = 0

with probability one, where C is the corresponding set of ciphertexts. Of course, this assumes
that we are able to generate i + 1 linearly independent plaintexts. In particular, if Ek is an n-bit
encryption invertible function, we know that the maximal degree of any of its component is n− 1.
Using this directly would need to generate the set of all of the 2n plaintexts, thus not leading to a
distinguisher, since the zero-sum property would also be true for a random n-bit invertible function.
However, if we are able to show that at least one specific component Ejk is of degree strictly lower
than n− 1, then we are able to get a distinguisher.

Knudsen presented one of the first way to exploit high-order differentials to mount a generic
attack on a 5-round Feistel [88]. Several high-order differential attacks were also published against
reduced-round variants of different block ciphers, for example CLEFIA [119], CAST [108], Camellia
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[126], MISTY1 [6] or KASUMI [125]. Finally, some work was done to get a better bound on the
degree of the components of a block cipher. Indeed, if the round function is of degree d, then using
r rounds, the degree d′ of the block cipher is trivially upper bounded by dr, i.e. d′ ≤ dr. However,
it was shown in [36] that this approximation is, in some cases, quite far from the reality. Especially,
for the block cipher Rijndael-256, while the trivial bound could lead to think that 3 rounds are
sufficient to reach full degree, Boura and Canteaut actually show that it needs at least 7 rounds to
achieve maximal degree.

Structural Integrals

High-order differentials focus on just evaluating the degree of (at least) one component of the
encryption function. Thus, assuming this component is of degree d < n−1, any set of d+1 linearly
independent plaintexts can be used to generate the set P of 2d+1 plaintexts leading to the zero-sum
property. This is very general and does not seem to exploit the structure of the block cipher as
much as it could. At FSE’97, Daemen et al. proposed the block cipher Square, as well as exhibiting
a new attack which is essentially the first Structural Integral attack 3. The idea is that when setting
a byte of the plaintext to take all possible values and the others to be constant, thus generating a
set of 28 plaintexts, one can show that after 3 rounds of encryption, every bit will have the zero-sum
property.

Rather than tracking the degree, the idea here is to track the structure of the set of plaintexts
when going through each operation of the round function. This leads to a distinguisher over 3
rounds, which can be extended to 4 rounds and then result in an attack on at most 6 rounds of
the block cipher. Since AES has a structure very close to Square, essentially the same attack can
be applied [46], and also over 6 rounds of Crypton [57] with small modifications. Knudsen and
Wagner also gave a more formal description of such distinguishers at FSE’02 [89] as well as new
distinguishers over MISTY1 and MISTY2. Searching for such distinguishers is often done with a
basic algorithm where one first finds a distinguisher with a single word taking all possible values (a
word often being of the size of an S-box), and then try to extend the distinguisher backward. For
example this was used by the designers to find a distinguisher over 10 rounds of SKINNY [10]. Note
that in some case, we can have some upper bound on the maximal number of rounds on which we
can build a structural integral distinguisher, as in [131] where Suzaki and Minematsu were able to
tie a notion called diffusion round to this maximal number of rounds4 for a specific type of block
cipher called Generalized Feistel Networks. There will be more details about this diffusion round in
Chapter 1.

Division Property

Generalizing both high-order differentials and structural integral, Todo introduced the Division
Property at EUROCRYPT’15 [136]. This is a much more fine grained property than an upper
bound on the degree of the components of the block cipher (as in high-order differentials), but also
takes some ideas in structural integrals. Essentially, the idea is that some component may be of a
lower degree when considering only a subset of the input variables (i.e. the plaintext variables) and
this can be used in the same way as in the previous sections. Let f be one of the component of the
encryption function, and let P be a set of plaintexts such that c bits are always constant, and the
n − c remaining bits take all values through the set. For example, the set {1000, 1010, 1100, 1110}

3Also often called "Square Attack".
4As well a for impossible differentials.
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has the first and last bits constant, while the other two take all 4 possibles values. Note that such
a set is essentially an affine subspace of dimension n − c. Now let consider f when restricting its
input to such a set. Since there are now c constant bits, the maximal degree of f can only be as
high as n − c, as there are now only n − c variables. Thus, for well chosen positions for constant
bits, we may be able to show that f , when restricted to this set, actually has a degree strictly lower
than n− c. This essentially comes down to showing that the (only) monomial of degree n− c does
not appear in some component of the block cipher.

Division property is thus essentially a technique to track which monomials may or may not
appear after the different operations of the round function. When introducing the division property,
Todo also gave very generic attacks for AES-like and Feistel block ciphers, as well as how to propagate
this property through some operations. However, the most powerful form of division property, called
Bit-Based Division Property, is introduced by Todo and Morii at FSE’16 [137]. While the original
division property was still very high-level and generic, bit-based division property works on a much
lower level (hence the name) and tracks much more precisely the different monomials appearing in
the encryption function. Along with a precise way to propagate bit-based division property through
basic operations of block ciphers, they also showed improved attacks over the 32-bit variant of the
SIMON block cipher. However, the proposed search algorithm essentially has a complexity of O (2n),
thus impractical for standard (64 or 128 bits) block cipher sizes. This was widely improved later
by using some technique based on either MILP [127, 143, 146] or SAT/SMT solver [61, 129], thus
greatly facilitating the search for such distinguishers. As it is the focus of one specific chapter, more
details about the division property can be found in Chapter 2.

4 About Affine Equivalent Permutations

Finally, we quickly describe here a notion which is used several times in this thesis, which are affine
equivalent permutations.

Definition 4.1. Two permutations f, g : Fn2 → Fn2 are said to be affine equivalent if and only if
there exists two affine mappings A,B such that g = B ◦ f ◦A.

This notion is very useful in cryptography as it often (but not always) reduces the cases we
have to consider for e.g. designing an S-box. For example, we can see that two affine equivalent
S-boxes have essentially the same behavior for differential and linear cryptanalysis. Indeed, given
two m-bit S-boxes S and S′ such that S′ = B ◦ S ◦A, if there is a differential (∆i,∆o) ∈ F2m

2 such
that S(x)⊕ S(x⊕∆i) = ∆o holds with probability p, then since A and B are linear and invertible,
there is a differential (∆′i,∆′o) = (A−1.∆i, B.∆o) of the same probability for S′. Hence the DDT
is essentially the same, and we expect that it should not drastically change the resistance against
differential attacks compared to using the original S-box, and the same kind of observations can be
made for linear attacks. However, we will see in Chapter 2 that affine equivalence does not always
preserve the properties of an S-box, this is for example the case with the division property.

To check if two permutations are affine equivalent, Biryukov et al. [22] gave an algorithm taking
as input two permutations S1, S2 over Fn2 , and outputting whether these permutations are affine
equivalent, and if so, also enumerating all pairs of linear mappings (A,B) such that S2 = B ◦S1 ◦A.
This algorithm has a complexity of O

(
n322n), but was later improved by Dinur [59] to get it down

to O
(
n32n

)
. Note that these algorithms are at the center of our work in Chapter 4.

It is also worth noting that there are several other types of equivalence relations for S-boxes.
One can of course consider sub-cases of the affine equivalence, such that linear equivalence, where
A and B are constrained to be only linear, or even permutation equivalence, where A and B are
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now linear permutations. This can help when a property is not invariant through affine equivalence,
such that the division property which is however invariant under permutation equivalence. On the
other hand, one can consider more evolved equivalence notion, like the CCZ-equivalence [38] which
also preserves some differential properties of S-boxes.

5 Overview of this thesis

We now give a short overview of each chapter of this thesis. In Chapter 1, we study the permutation
step of a Generalized Feistel Network. By exhibiting a new characterization of a specific criterion
related to the diffusion of such a construction, we are able to find new optimal permutations
according to this criterion, thus improving previously known results and solving a 10-year old
problem. In Chapter 2, we extend and improve the division property based cryptanalysis, leading
to a new attack on RECTANGLE. According to our observation, we give a new criterion to design
optimal S-boxes to resist such kind of cryptanalysis, improving the resistance of both PRESENT
and RECTANGLE by two rounds. In Chapter 3, we show that we can find a better key-schedule
for AES, both in terms of security and performances. We also give new theoretical bounds on the
resistance of AES in the related-key model when using a permutation as key-schedule, and we end
up finding almost optimal permutations. Finally in Chapter 4, we consider the stronger model
known as the white-box model. We first give a generic attack breaking any white-box scheme in
the framework introduced by Chow et al. in 2002 with low complexity for standard parameters and
with a good scaling. We also show a new dedicated attack on a specific scheme which leads to even
better results than our generic attack, validated by an implementation recovering the secret key in
about 12 seconds.

5.1 Efficient Search for Optimal Diffusion Layers of Generalized Feistel
Networks

The Feistel construction is a very well known and standard way to build modern block ciphers,
which was then generalized to several constructions by Zheng et al. at CRYPTO’89 [147]. One
of them, called Type-2 Feistel, is essentially a parallel application of several Feistels, followed by a
permutation. In the original paper from Zheng et al., this permutation consisted in a cyclic shift,
but it was later proposed to use a different permutation [112, 131], leading to the Generalized Feistel
Network construction.

In their paper at FSE’10 [131], Suzaki and Minematsu focused on a specific criterion called
diffusion round to choose the permutation used. This diffusion round essentially comes down to
the number of round needed such that each block of the ciphertext depends on each block of the
plaintext. They were then able to exhaust and evaluate all permutations according to this criterion
for up to 16 blocks, thus exhibiting optimal permutations. They also noticed that for these numbers
of blocks, all optimal permutations were even-odd, meaning that the image of an even-numbered
block is an odd-numbered block and vice-versa. Thus, they give a generic construction to find a
good even-odd permutation when the number of blocks is a power of two. Specifically, they exhibit
an even-odd permutation with a diffusion round of 10 for 32 blocks. However, the lower bound for
such a number of blocks is 9, hence raising the question of the optimality of this permutation. At
FSE’19, Cauchois et al. [39] went further and gave optimal even-odd permutations for up to 26
blocks, still leaving the question about the optimality of a permutation on 32 blocks open.

In Chapter 1, we solve this 10-year old problem by proving that this permutation is not optimal,
as well as giving results on up to 42 blocks. More precisely, we first give a new characterization
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for a permutation reaching full diffusion in a given number of rounds. This characterization allows
us to build a very efficient algorithm to search for optimal even-odd permutations for 28 up to 42
blocks, running in about one hour for each case when using 72 threads. For all of these numbers of
block, the lower bound to reach full diffusion is 9 rounds. As a result, we give all optimal even-odd
permutations reaching full diffusion after 9 rounds for 28, 30, 32 and 36, thus showing that the
permutation given by [131] was not an optimal one. For 34, 38, 40 and 42 blocks, our algorithm
allowed us to show that there is no permutation with a diffusion round of 9, thus improving the
lower bound to 10. We also found an optimal even-odd permutation for 34 blocks, thus reaching 10
rounds for full diffusion, as well as good candidates reaching 11 rounds for the remaining cases.

5.2 Linearly Equivalent S-boxes and the Division Property

Division property has been a trending topic in symmetric cryptography since its introduction by
Todo at EUROCRYPT’15 [136], and supported by the fact that it has been used to describe the
first theoretical attack on full MISTY1 [135]. While the first algorithm described by Todo to
search for division property distinguishers was impractical for classical block ciphers (exponential
in the block size), this problem was quickly circumvented by Xiang et al. at ASIACRYPT’16 [143]
when they proposed to use some Mixed Integer Linear Programming (MILP) models to study the
division property. This technique, as well as subsequent ones using different kind of declarative
programming like SMT-solvers or SAT-solvers [129], allowed the community to better understand
the division property, as well as finding new distinguishers.

However, we claim that the search space considered in the previous search algorithms is incom-
plete. Indeed, we first make the observation that while linearly equivalent S-boxes essentially behave
the same when considering differential and linear attacks, this is not the case for division property.
It comes down that studying the propagation of division property relies on the representation of a
block cipher, and choosing the best representation to study division property is a difficult problem.
In this chapter, we partially solve this problem by searching a distinguisher over a linearly equiva-
lent block cipher, i.e. searching a distinguisher over Lout ◦E ◦Lin instead of E, where Lin and Lout
are linear mappings. We first describe how to reduce the search space significantly, and then give
an efficient algorithm to go through this reduced search space. As a result, we are able to exhibit a
new division property based distinguisher over 10 rounds of RECTANGLE, while the best previously
known distinguisher was over 9 rounds.

According to our observations, we also give new insights about the design of S-boxes to resist
division property. Specifically, we prove that if an S-box satisfies a given condition, then it is
optimal w.r.t resistance against classical division property (i.e. without considering our technique).
While a criterion was already given by Boura et al. in [37], it was more about building an S-box
with a good enough resistance, while our is proven optimal, and these two criteria are incompatible
with each other. According to this, we are able to find alternative S-boxes for both PRESENT and
RECTANGLE such that the resistance against division property based distinguisher is improved by
two rounds.

5.3 Variants of the AES Key Schedule for Better Truncated Differential
Bounds

Albeit being central, the key-schedule may be one of the less understood component in block ciphers.
While we have a good idea of how to build good S-boxes or linear layers, designing the key-schedule
remains a challenge, and very different designs emerge. For example, on one side we have the AES
key-schedule, which is quite complicated, whereas in the 64-bit version of LED [73] no key-schedule



34 INTRODUCTION

is used and the master key is just used itself at each round (and the 128-bit version essentially has
no key-schedule either). Moreover, the related-key model now becomes more prevalent, and it seems
natural to tie, at least partially, the security of a block cipher in this model to its key-schedule.

As an auxiliary contribution to their work at FSE’17, Khoo et al. [84] give a permutation to
replace the AES-128 key-schedule which leads to better security against differential attacks. Even
though they give some arguments about how they chose this permutation, it is not clear whether
it was an optimal choice or not. As such, we took a more precise look into this problem, namely,
designing a permutation to replace the AES-128 key-schedule which maximize the minimal number
of active S-boxes in the related-key model. In this chapter, we begin with generic bounds for
the achievable minimal number of S-boxes for a given number of rounds. In particular, whatever
permutation is used as key-schedule, we show that the minimal number of active S-boxes over 5
rounds is at most 17. We thus focus our search for 6 rounds of AES-128 , for which we are able to
give a permutation reaching 20 active S-boxes over 6 rounds. To do so, we use a combination of
meta-heuristics, along with a new Constraint Programming model able to handle more precisely the
evaluation of the minimal number of active S-boxes. We also show some pairs of permutations which
allow to reach 21 S-boxes over 6 rounds when used to replace, respectively, the key-schedule and
the ShiftRows operation of AES-128 . Finally, for all permutations (resp. pairs of permutations)
found, we prove with another Constraint Programming model from [67] that no characteristic over
6 rounds or more has a probability larger than 2−128.

5.4 On Recovering Affine Encodings in White-Box Implementations

Ever since the first candidate white-box implementation by Chow et al. in 2002 [42], producing
a secure white-box implementation of AES has remained an enduring challenge. Following the
footsteps of the original proposal by Chow et al., other constructions were later built around the
same framework. In this framework, the round function of the cipher is ”encoded” by composing it
with non-linear and affine layers known as encodings. However, all such attempts were broken by a
series of increasingly efficient attacks that are able to peel off these encodings, eventually uncovering
the underlying round function, and with it the secret key. These attacks, however, were generally
ad-hoc and did not enjoy a wide applicability.

In this chapter, we thus propose a generic and efficient algorithm to recover affine encodings, for
any Substitution-Permutation-Network (SPN) cipher, such as AES, and any form of affine encoding.
More precisely, given an encoded round function of the form A◦S ◦B, where A and B are linear (or
affine) encodings, our algorithm is able to recover A and B (up to equivalence, as the solution may
not be unique), where S is a known S-box layer composed of distinct S-boxes. For AES parameters,
namely 128-bit blocks split into 16 parallel 8-bit S-boxes, affine encodings are recovered with a
time complexity estimated at 232 basic operations, independently of how the encodings are built.
We illustrate this on a recent proposal due to Baek, Cheon and Hong, which was not previously
analyzed. While Baek et al. evaluate the security of their scheme to 110 bits, a direct application
of our generic algorithm is able to break the scheme with an estimated time complexity of only 235

basic operations.
Going further, we show a different approach to cryptanalyzing the Baek et al. scheme, which

reduces the analysis to a standalone combinatorial problem, ultimately achieving key recovery in
time complexity 231. We also provide an implementation of the attack, which is able to recover the
secret key in about 12 seconds on a standard desktop computer.



5. OVERVIEW OF THIS THESIS 35



"Do. Or do not. There is no try."
— Master Yoda



Chapter 1

Efficient Search for Optimal Diffusion
Layers of Generalized Feistel Networks

The Feistel construction is one of the most studied ways of building block ciphers. Several general-
izations were then proposed in the literature, leading to the Generalized Feistel Network, where the
round function first applies a classical Feistel operation in parallel on an even number of blocks, and
then a permutation is applied to this set of blocks. In 2010 at FSE, Suzaki and Minematsu studied
the diffusion of such construction, raising the question of how many rounds are required so that
each block of the ciphertext depends on all blocks of the plaintext. They thus gave some optimal
permutations, with respect to this diffusion criteria, for a Generalized Feistel Network consisting of
2 to 16 blocks, as well as giving a good candidate for 32 blocks. Later at FSE’19, Cauchois et al.
went further and were able to propose optimal even-odd permutations for up to 26 blocks.

In this chapter, we complete the literature by building optimal even-odd permutations for 28,
30, 32, 36 blocks which to the best of our knowledge were unknown until now. The main idea
behind our constructions and impossibility proof is a new characterization of the total diffusion of
a permutation after a given number of rounds. In fact, we propose an efficient algorithm based
on this new characterization which constructs all optimal even-odd permutations for the 28, 30,
32, 36 blocks cases and proves a better lower bound for the 34, 38, 40 and 42 blocks cases. Note
that our algorithm essentially uses branch-and-bound techniques, and thus it is hard to evaluate
the exact complexity. However, the size of the search space goes from 243 for 28 blocks up to 275

for 42 blocks, but we were able to treat each of these cases in less than one hour each when using
72 threads. Moreover, this characterization has a very efficient implementation which allowed us
to re-find all optimal even-odd permutations for up to 26 blocks with a basic exhaustive search in
a few hours, showing that for these cases, there is no need for sophisticated techniques as in [39].
In particular, we improve the 32 blocks case by exhibiting optimal even-odd permutations with
diffusion round of 9. The existence of such a permutation was an open problem for almost 10 years
and the best known permutation in the literature had a diffusion round of 10. Furthermore, for
34, 38, 40 and 42 blocks, we prove with this method that there is no even-odd permutation with a
diffusion round of 9, which is the lower bound on the diffusion round for these sizes given in [131].
We were also able to find even-odd permutations with a diffusion round of 10 for 34 blocks (which
is thus optimal), as well as even-odd permutations with diffusion round 11 for 38,40 and 42 blocks.
Finally, we evaluate the security of our constructed permutations against impossible differentials
and differentials (by computing the minimum number of active S-boxes). In particular, for the
32 blocks case, and impossible differentials, all our permutations have a one-round shorter longest
impossible differential distinguisher compared to what was proposed by [39], which brings it down
to 17 rounds.

37
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1.1 Introduction
The Feistel network is one of the main generic designs for building modern block ciphers. It
was initially proposed in the data encryption standard DES [56], and is still used in more recent
ciphers such as Twofish [117], Camellia [2] or SIMON [8]. The idea behind this construction is
to split the plaintext into two halves x0, x1, and build the round function which sends (x0, x1) to
(x1, x0 ⊕ Fi(x1)), where Fi is a non-linear function for the i-th round. One of the main advantage
of this construction is that Fi does not need to be invertible, and thus it allows to transform
a pseudorandom function (PRF) into a pseudorandom permutation (PRP). Moreover, there are
theoretical arguments suggesting that it is a good method to construct block ciphers, as Luby
and Rackoff proved in 1988 [100] that if each Fi is a pseudorandom function and all three are
independent, then 3 rounds of the Feistel construction are enough to get a block cipher which is
indistinguishable from a random permutation under the Chosen Plaintext Attack (CPA) model, and
4 rounds with 4 independent functions are enough in the Chosen Ciphertext Attack (CCA) model.
This was later improved by Pieprzyk in 1990 [113] : if one takes f as a pseudorandom function, 4
rounds of Feistel with Fi = f for i = 1, 2, 3 and F4 = f2 are sufficient to obtain a block cipher that
is indistinguishable from a random permutation in the CPA model. In 1989 at CRYPTO, Zheng
et al. [147] proposed some generalizations of the Feistel construction. Especially, they defined the
Type-2 Feistel1 construction, which splits the message into 2k blocks and uses a round function of
the form

(x0, . . . , x2k−1) 7→ (x2k−1, x0 ⊕ Fi,0(x1), x1, x2 ⊕ Fi,1(x3), x3, . . . , x2k−2 ⊕ Fi,k−1(x2k−1)),

where each Fi,j is a pseudorandom function for the i-th round. This is essentially a parallel appli-
cation of k Feistels followed by a cyclic shift of the blocks. They also showed that when all Fi,j
are pseudorandom functions, then 2k+ 1 rounds of such a construction provide a block cipher that
is indistinguishable from a random permutation. Moreover, the Type-2 construction is inherently
easier to compute in parallel, and the corresponding decryption function is basically the same except
that the functions Fi,j are applied in reverse order, i.e. for r rounds, the first round of decryption
uses the functions Fr,j . Both of these properties make this construction very efficient in practice,
both on hardware and software, e.g. TWINE [132] and Simpira [71]. All of these arguments lead
to some block ciphers based on this Type-2 Feistel construction, such as HIGHT [76] and CLEFIA
[122].

At ASIACRYPT’96, Nyberg [112] studied a variant of the Type-2 Feistel construction using a
different permutation than the cyclic shift, called Generalized Feistel Network. Such a construction
was used to design block ciphers such as TWINE [132] and Piccolo [121]. However, Nyberg only
focused on one specific permutation. Suzaki and Minematsu thus studied at FSE’10 [131] a more
general case where the cyclic shift is replaced by any other permutation of the blocks. Their work
was focused on finding permutations with the lowest diffusion round. The diffusion round is close
to the concept of diffusion introduced by Shannon in 1949 [118]. Essentially, a block cipher has
full diffusion if every bit of the ciphertext depends on every bit of the plaintext. In the context
of Generalized Feistel Network (GFN), [131] defined the diffusion round as the minimal number of
rounds such that every block of the ciphertext depends on every block of the plaintext. Focusing
on blocks instead of bits allows them to get rid of the precise specification of the functions Fi,j as
well as the exact size of the blocks, thus giving structural results. Especially, they tied the diffusion
round of a given GFN to its resistance against Impossible Differential distinguishers [15], proving
that if a GFN has a diffusion round of DR, then it needs strictly more than 2DR + 1 rounds to

1Note that some papers use the term Type-2 Generalized Feistel to denote this construction



1.2. PRELIMINARIES 39

Xi
0

X̃i
0

Xi
1

X̃i
1

S

Xi+1
0 Xi+1

1

Xi
2

X̃i
2

Xi
3

X̃i
3

S

Xi+1
2 Xi+1

3

Xi
2k−4

X̃i
2k−4

Xi
2k−3

X̃i
2k−3

S

Xi+1
2k−4 Xi+1

2k−3

Xi
2k−2

X̃i
2k−2

Xi
2k−1

X̃i
2k−1

S

Xi+1
2k−2 Xi+1

2k−1

π

Figure 1.1: Generalized Feistel Network

avoid any Impossible Differential distinguisher. Along with a lower bound on the diffusion round
of a GFN of 2k blocks, they gave optimal permutations (w.r.t the diffusion round) for 2 ≤ 2k ≤ 16.
It is worthy to note that such an optimal permutation was then used to design block ciphers such
as TWINE [132]. At FSE’19, Cauchois et al. [39] went further and gave optimal permutations for
18 ≤ 2k ≤ 26, as well as good candidates for 2k = 32 (which was already found in [131]), as well
as for 2k = 64 and 128 using a sophisticated technique that they called Collision-free exhaustive
search. Note that these permutations are even-odd, i.e. the image of an even number is an odd
number. On a side note, relaxing the condition that the permutation is the same in each round
makes the problem easier and in [81], Kales et al. give such a construction for any number of blocks.

1.2 Preliminaries

1.2.1 Generalized Feistel Networks (GFN)

Zheng et al. [147] introduced Type-2 Feistels as a generalization of the original Feistel construction.
Given an even number 2k of blocks (X0, . . . , X2k−1), it first applies the Feistel construction on the
pairs of blocks which yields (X0 ⊕ S0(X1), X1, . . . , X2k−2 ⊕ Sk−1(X2k−1), X2k−1). The blocks are
then cyclically right shifted to obtain the result. Later, it was proposed to use another permutation
than the cyclic shift in [112], leading to Generalized Feistel Networks.

Definition 1.2.1. Let 2k be an even number, n, r be positive integers, and {Fi,j}i∈{1,...,r},j∈{0,...,k−1}
be a set of cryptographic keyed functions from Fn2 to Fn2 . Let π be a permutation over 2k elements.
A Generalized Feistel Network (GFN) is a block cipher built as Rr ◦ · · · ◦R1, where Ri is the round
function

Ri : (X0, . . . , X2k−1)→ π(X0 ⊕ Fi,0(X1), X1, . . . , X2k−2 ⊕ Fi,k−1(X2k−1), X2k−1)

Note that for this chapter, neither the exact definition of the keyed functions Fi,j nor their sizes
are relevant. We can thus consider all of them as an arbitrary S-box S, leading to the framework
depicted in Figure 1.12. As the only variable parameters are thus k and π, we denote by GFN k

π a
GFN with 2k blocks that uses the permutation π.

2In practice, one should carefully study the primitive if the same F-function is used, e.g. [71]
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1.2.2 Diffusion Round

We use the notations depicted in Figure 1.1. The input variables of the i-th round of a GFN are
denoted by (Xi

0, X
i
1, . . . , X

i
2k−1). We also denote by (X̃i

0, X̃
i
1, . . . , X̃

i
2k−1) the variables which are at

the input of the permutation π, i.e.

(Xi+1
0 , Xi+1

1 , . . . , Xi+1
2k−1) = π(X̃i

0, X̃
i
1, . . . , X̃

i
2k−1)

It is easy to see from Definition 1.2.1 that X1
π(0) depends on X

0
0 and X0

1 . More generally, any block
X̃r
j depends on a certain number of blocks from the round 0, i.e. computing X̃r

j requires some
blocks {X0

j0 , . . . , X
0
jl
}. Note that this does not depend on the size of the functions Fi,j in the GFN.

As in [131], we say in that case that any of these X0
ji
diffuses to X̃r

j , and we focus our study on the
number of rounds needed to reach full diffusion.

Definition 1.2.2. Let π be a permutation over 2k elements. We say that a block X0
j fully diffuses

after r rounds if for all i ∈ {0, . . . , 2k− 1}, X0
j diffuses to X̃r

i . We say that π reaches full diffusion
after r rounds if for all j ∈ {0, . . . , 2k − 1}, X0

j fully diffuses after r rounds. The smallest r that
verifies this property for the block X0

i is called the diffusion round of the block X0
i .

Note that we need to study both the diffusion over the encryption and the decryption process.
Indeed, there is no guarantee that an encryption function with good diffusion also keeps this property
for its inverse. Since we have (GFN k

π)−1 = GFN k
π−1 , we need to study both the diffusion of π and

π−1. Naturally, we would like both π and π−1 to fully diffuse as quickly as possible, which leads to
the following definition.

Definition 1.2.3. Let π be a permutation over 2k elements. Denote by DRi(π) the minimum
number of rounds r such that X0

i fully diffuses after r rounds in GFNk
π .

The diffusion round of a permutation π is:

DRmax(π) = max
0≤i≤2k−1

{
DRi(π),DRi(π−1)

}
(1.1)

This definition gives the same importance to the total diffusion of both π and π−1. Defini-
tion 1.2.3 defines a natural partial order on the permutations: a permutation π1 is better (at
diffusing) than a permutation π2 if DRmax(π1) ≤ DRmax(π2). Searching the best permutations
(for the diffusion) directly can be difficult. As a result the methodology we adopt in this work
is to search for permutations that diffuse totally in the forward direction and then check if their
respective inverse also diffuses totally.

1.2.3 Even-odd Permutations

A naive way to search for optimal permutation would be to simply go through all of them and check
the diffusion one permutation by one. However, there are (2k)! permutations, which quickly grows
beyond practical means. For example with 2k = 32, approximately 2117 permutations should be
checked. To reduce the number of permutations that will be tested, we will restrict ourselves to a
specific class of permutations and give an equivalence relation which further reduces the number of
permutations to be considered.

In [131], Suzaki and Minematsu did an exhaustive search for 1 ≤ k ≤ 8, and made the observation
that every optimal permutation (for such k) mapped even-number input blocks to odd-number
output blocks and vice versa. We call such permutations even-odd. In the rest of this chapter, we
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will use the following notation for even-odd permutations. An even-odd permutation π of size 2k
will be denoted by the pair of permutations (p, q) of size k verifying ∀i ∈ [0, k−1], π(2i) = 2 ·p(i)+1
and π(2i+ 1) = 2 · q(i). The search space is now reduced to (k!)2 permutations.

According to this, [131] gives the following lower-bound on the diffusion round of even-odd
permutations (p, q).

Proposition 1.2.4. Let Fi be the Fibonacci sequence, i.e. F0 = 0,F1 = 1 and Fi = Fi−1+Fi−2, i ≥
2. Let π = (p, q) be an even-odd permutation over 2k elements, and i be the smallest integer such
that Fi ≥ k. Then DRmax(π) ≥ i+ 1.

For a given permutation π, if the inequality is tight, we say that π is tight. A proof of this
proposition already exists in both [131] and [39]. According to our results, we will give another
proof of this proposition in Section 1.3. We will also show in Section 1.3 that this bound is tight
for the cases 2k = 28, 30, 32, 36 and strict for 2k = 34, 38, 40, 42.

1.2.4 Equivalence Classes of Even-odd Permutations

To further reduce the size of the search space, as in [39], we use some equivalence classes, given by
the following definition.

Definition 1.2.5. Let π and π′ be two even-odd permutations over 2k elements. We say that π
and π′ are equivalent if there exists a permutation ϕ over 2k elements such that

π′ = ϕ ◦ π ◦ ϕ−1.

From [39], we can then give a set of permutations Pk such that for any equivalence class, there
exists at least one π ∈ Pk which belongs to this class. This effectively gives us a set of class
representatives (in which a few of them are redundant), and this set can be built from the following
proposition, proven in [39]. Recall that any permutation can be decomposed into a composition
of cycles. We call cycle structure the unordered set of the length of these cycles, for example the
permutation

(0 1 2 3)(4 5)(6 7)(8)

has a cycle structure of {4, 2, 2, 1}.

Proposition 1.2.6. Let Pk be a set of even-odd permutations π = (p, q) over 2k elements con-
structed as follows. For each possible cycle structure c of a permutation over k elements, pick one
permutation p which has a cycle structure equal to c. Then, for every permutation q over k elements,
add (p, q) in the set Pk. By doing so, Pk contains at least one representative of each equivalence
class induced by Definition 1.2.5. Moreover, Pk contains exactly Nk.k! elements, where Nk is the
number of partitions of the integer k.

This allows us to only consider Nk.k! permutations instead of (k!)2. This is a significant im-
provement, as for example with k = 16, there are only 231× 16! ' 252 permutations to go through,
instead of (16!)2 ' 288. However when k grows, it is still too big a number to try an exhaustive
search. As such, we propose in Section 1.4 an efficient search algorithm to find all optimal even-odd
permutations for a given k, without needing to do an exhaustive search.
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1.3 Characterization of Full Diffusion

In this section, we will explain our strategy to search for a tight even-odd permutation, that is, a
permutation with a diffusion round reaching the Fibonacci bound given in Proposition 1.2.4. We
will first give an algebraic characterization for a permutation to have full diffusion, then give an
algorithm to exploit this characterization and quickly search all such permutations. Note that here
we only focus on the diffusion round of the permutation when considering encryption. That is,
for a given permutation π, we focus only on DR(π) = max

0≤i≤2k−1
{DRi(π)}. Then, once we found a

permutation reaching the Fibonacci bound, we can easily check if π−1 also reaches this bound, and
if that is the case, we found a tight permutation.

We describe here the main tools we used to design our search algorithm. Note that for two
permutations p, q, we denote the composition p◦q by pq for better reading. We first begin by giving
the following proposition.

Proposition 1.3.1. Let π = (p, q) be an even-odd permutation over 2k elements. Then π achieves
full diffusion after r rounds if and only if each block X0

j is diffused to at least one block of each pair
at the input of the (r−1)-th round, i.e. diffused to either Xr−1

2j′ or Xr−1
2j′+1 for each j′ ∈ {0, . . . , k−1}.

Proof. Suppose that a given block X0
i has been fully diffused, i.e. to every block X̃r

2j and X̃r
2j+1, j ∈

{0, . . . , k − 1}. Then X0
i must have diffused to at least Xr

2j+1 for every j, as it is the only way
to reach X̃r

2j+1. Thus, X0
i must have diffused to X̃r−1

2j′ with j′ = p−1(j), which means that it has
diffused to either Xr−1

2j′ or Xr−1
2j′+1.

On the other hand, suppose that a given block X0
i has diffused to an even block Xr−1

2j , then
X0
i will be diffused to only X̃r−1

2j . If X0
i has diffused to an odd block Xr−1

2j+1, it will be diffused to
both X̃r−1

2j and X̃r−1
2j+1. In both cases, it will be diffused to X̃r−1

2j , then to Xr
2j′+1 with j′ = p(j),

and finally to both X̃r
2j′ and X̃r

2j′+1. Thus, if for all j ∈ {0, . . . , k − 1}, X0
i is diffused to any block

of the j-th pair at the input of the (r − 1)-th round, it will be diffused to every block X̃r
2p(j) and

X̃r
2p(j)+1, and since p is a permutation, this means that we have full diffusion for X0

i .

Corollary 1.3.2. Let π = (p, q) be an even-odd permutation over 2k elements. Then π achieves
full diffusion after r rounds if and only if each even block X0

2j , j ∈ {0, . . . , k − 1} diffuses to every
even block X̃r−1

2j′ , j
′ ∈ {0, . . . , k − 1}.

Proof. For the proof of the previous theorem, we can easily see that a block X0
j diffuses to either

Xr−1
2j′ or Xr−1

2j′+1 if and only if X0
j diffuses to X̃r−1

2j′ . Moreover, we can easily see that if X0
2j is fully

diffused, so is X0
2j+1. Indeed, X0

2j being fully diffused is the same as X̃0
2j being fully diffused, and

X0
2j+1 is always diffused to X̃0

2j .

Thus we only need to focus on the diffusion of each block X0
2j to each block X̃r−1

2j . Now we can
take a look a what would happen in an ideal scenario. Assume that we are studying the diffusion of
a block X0

2j . Then X0
2j is diffused to X̃0

2j1
0
with j1

0 = j. It is then diffused to both X̃1
2j2

0
and X̃1

2j2
0+1,

with j2
0 = p(j1

0). Then again :

• X̃1
2j2

0
is diffused to both X̃2

2j3
0
and X̃2

2j3
0+1, with j

3
0 = p(j2

0).

• X̃1
2j2

0+1 is diffused to X̃2
2j3

1
with j3

1 = q(j2
0)
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Assuming an ideal scenario, we would have j3
0 6= j3

1 , i.e. X0
2j has diffused to two different blocks

after 4 rounds (minus the application of π on the fourth round). We can then keep going and get
a series of ji` which gives us the blocks on which X0

2j has diffused after i+ 1 rounds minus the last
application of π, always assuming that we never have ji` = ji`′ for ` 6= `′. The propagation for up to
7 rounds is given in Figure 1.2.

However, we cannot have ji` 6= ji`′ with ` 6= `′ forever. Indeed, since we only have k blocks, we
are bound at some point to have ji` = ji`′ and ` 6= `′. However, we can easily compute the actual
value of each ji`. Indeed, if we take for example j6

6 in Figure 1.2, then we know that

j6
6 = (qppqp)(j1

0) = (qppqp)(j).

Denote by Jij the set of equations obtained by expressing every ji` that way. For example, we
would have

J6
j = {(ppppp)(j),

(qpppp)(j),
(pqppp)(j),
(ppqpp)(j),
(qpqpp)(j),
(pppqp)(j),
(qppqp)(j),
(pqpqp)(j)}

According to this, we can give a generic way to compute Jij . We start with J1
j = {j} and

J2
j = {p(j)}. To build Jij from Ji−1

j , we begin by adding p(x) to Jij for every term x in Ji−1
j . Then,

for every term x in Ji−1
j such that x can be written as x = p(y) for some y ∈ Ji−2

j , we also add q(x)
to Jij .

We can justify this construction as follows. Suppose that a given j′ belongs to Ji−2
j because X0

2j
diffuses to X̃i−2

2j′ . Then X0
2j diffuses to both X̃i−1

2j′′ and X̃i−1
2j′′+1 with j′′ = p(j′). Thus for the next

round, X0
2j will diffuse to both Xi

2̃j+1
and Xi

2j̃′
, with j̃ = p(j′′) and j̃′ = q(j′′).

On the other hand, suppose that j′ belongs to Ji−2
j because X0

2j diffuses to X̃i−2
2j′+1. In that case,

X0
2j will only diffuse to X̃i−1

2j′′ with j′′ = q(j′). For the next round, X0
2j only diffuses to Xi

2̃j+1
with

j̃ = p(j′′).
Thus in both cases, we need to have j̃ = p(j′′), but we only require j̃′ = q(j′′) in the first case,

which corresponds exactly to the case where the previous term started with a composition by p.
Note that from this construction, we can deduce the following proposition.

Proposition 1.3.3. The size of Jij is exactly Fi where Fi is the i-th term of the Fibonacci sequence.

Proof. We can prove this by induction. Both J1
j and J2

j are of size 1, which corresponds to F1 and
F2. We first add an element p(x) to Jij for every x ∈ Ji−1

j , thus Fi−1 elements. Then, for every x in
Ji−1
j such that x = p(y) with y ∈ Ji−2

j , we add q(x) to Jij . However, according to our construction,
Ji−1
j contains such an element x = p(y) for every term y ∈ Ji−2

j . Thus, there are Fi−2 such terms.
In the end, Jij contains Fi−1 + Fi−2 = Fi elements, which concludes the induction.
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We can now use those sets Jij to fully characterize the fact that a block fully diffuses when using
a given permutation.

Theorem 1.3.4. Let Jr−1
j be the set of equations as defined above. Then for a given permutation

π = (p, q) over 2k blocks, X0
2j is fully diffused after r rounds if and only if Jr−1

j contains every
number in {0, . . . , k − 1} at least once.

Proof. As Jr−1
j = {jr−1

0 , . . . , jr−1
`r−1
} is defined, it basically represents that X0

2j diffuses to every X̃i
2ji

`
.

Thus, if Jij contains every number in {0, . . . , k− 1} at least once, it exactly means that X0
2j diffuses

to each block X̃i
2j′ , j

′ ∈ {0, . . . , k − 1}. According to Corollary 1.3.2, this means that X0
2j achieves

full diffusion after i+ 1 rounds.

We can then easily deduce the following corollary.

Corollary 1.3.5. Let π = (p, q) be a permutation over 2k elements. Then we have DR(π) = i+1 if
and only if i is the smallest integer such that for every j ∈ {0, . . . , k− 1}, Jij contains every number
in {0, . . . , k − 1} at least once.

This gives us another proof for the Fibonacci bound given in Proposition 1.2.4. Indeed, for Jij
to contain every number in {0, . . . , k − 1} at least once, Jij must contain at least k terms. Thus,
and since the size of Jij does not depend on j, the minimal number of rounds needed to have full
diffusion for every block must be such that

∣∣∣Jij∣∣∣ = Fi ≥ k. According to the previous corollary, if i
is the smallest integer such that Fi ≥ k, this exactly means that DRmax(π) ≥ i+ 1

Note that from the construction of any Jij , each term starts with a composition by p. Since p
is a permutation, and we want full diffusion for every blocks, we can remove this first p from every
term to get a smaller representation. Essentially, this means that we are considering the diffusion
of the block p−1(j), but we will still write Jij . As such, J6

j for example is thus rewritten as

J6
j = {(p4)(j),

(qp3)(j),
(pqp2)(j),
(p2qp)(j),
(qpqp)(j),
(p3q)(j),

(qp2q)(j),
(pqpq)(j)}

To illustrate the previous characterization, we introduce what we call the diffusion table (of rank
i) of an even-odd permutation (p, q) of size 2k. The columns are indexed by the numbers from 0 to
k − 1 and the row are indexed by the products of p and q used to generate all sets Jij . Each cell of
the table is the value obtained by applying the permutation indexing the row to the value indexing
the column of the cell. For example, the cell indexed by pi and 0 contains pi(0). This provides a
clear visualization of our characterization, as the j-th column is exactly Jij .

Thus, we can easily illustrate Corollary 1.3.5 by verifying that every column of this table contains
every possible values. We thus add one more row at the end of diffusion table called diff which
contains the number of different values in a column. By construction, this is exactly the number
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x 0 1 2 3 4 5 6 7
p5 3 4 5 6 7 0 1 2
p4q 4 5 6 7 0 1 2 3
p3qp 4 5 6 7 0 1 2 3
p2qp2 4 5 6 7 0 1 2 3
pqp3 4 5 6 7 0 1 2 3
qp4 4 5 6 7 0 1 2 3
p2qpq 5 6 7 0 1 2 3 4
pqp2q 5 6 7 0 1 2 3 4
qp3q 5 6 7 0 1 2 3 4
pqpqp 5 6 7 0 1 2 3 4
qp2qp 5 6 7 0 1 2 3 4
qpqp2 5 6 7 0 1 2 3 4
qpqpq 6 7 0 1 2 3 4 5
diff 4 4 4 4 4 4 4 4

x 0 1 2 3 4 5 6 7
p5 4 3 5 1 6 7 0 2
p4q 3 2 1 4 0 6 7 5
p3qp 2 6 7 5 1 3 4 0
p2qp2 6 7 4 0 5 2 3 1
pqp3 1 4 3 2 0 6 7 5
qp4 2 5 7 6 3 1 4 0
p2qpq 7 1 0 6 3 5 2 4
pqp2q 4 5 2 1 7 0 6 3
qp3q 5 0 6 2 4 3 1 7
pqpqp 5 0 6 3 2 4 1 7
qp2qp 0 3 1 7 6 5 2 4
qpqp2 3 1 2 4 7 0 5 6
qpqpq 1 6 4 3 5 7 0 2
diff 8 8 8 8 8 8 8 8

Table 1.1: Diffusion tables for the cyclical shift (left table) and one optimal permutation proposed
by [39] (right table).

of elements of Jij where j is the index of the column. In tables constructed as described, the full
diffusion of a permutation corresponds to a diff row containing only the value k.

For example, we give in Table 1.1 the diffusion tables for the cyclical shift (i.e. p = (7, 0, 1, 2, 3, 4, 5, 6)
and q = (0, 1, 2, 3, 4, 5, 6, 7)) and one of the optimal permutation proposed by [39] (i.e. p =
(6, 3, 7, 1, 0, 2, 4, 5) and q = (3, 5, 1, 6, 4, 0, 2, 7)) for k = 8 and i = 7, thus the optimal permuta-
tion clearly have a diffusion round of 8.

Finally, we can reformulate the problem of finding optimal even-odd permutations with these
tables. Indeed, it corresponds to finding the minimal i and even-odd permutations of size 2k such
that their diffusion table have their diff row containing only k.

1.4 Searching for an Optimal Permutation over 9 Rounds

1.4.1 Efficient Search Algorithm

First, we can see that our characterization can be very efficiently implemented, as testing if π = (p, q)
has full diffusion mostly requires only a few table lookups. Indeed, its efficiency allowed us to recover
all optimal even-odd permutations for k ≤ 13 with a basic exhaustive search. Especially, for k = 13,
we were able to go through all N13.13! ' 239 permutations and check them in about 410 minutes on
a single core. While these optimal permutations were already known, it shows that the sophisticated
techniques introduced in [39] were not necessary for these cases.

However for k ≥ 14, it becomes too expensive to make this exhaustive search. We thus focus
on finding optimal even-odd permutations for 14 ≤ k ≤ 21, hence such permutations would have a
diffusion round of 9. Given a cycle structure for p, we can easily find a permutation p with such
structure and thus we need to search q such that π = (p, q) needs 9 rounds to reach full diffusion,
i.e., such that each J8

j contains all numbers from 0 to k − 1.
Note that we cannot exploit J8

j directly. Indeed, one might want to guess parts of q and check
if J8

j does not contains too many duplicates. However, to fully compute J8
j , we need to guess q in
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its entirety, which makes this strategy too expensive. We thus describe an efficient way to exploit
this characterization to find optimal even-odd permutations.

First for a given j, if we take a look at J6
j , we can see that we need to make only 7 guesses over

the images of q to fully compute J6
j . Indeed, we need to know

q(j), (qp)(j), (qp2)(j), (qp3)(j), (qpq)(j), (qp2q)(j) and (qpqp)(j).

Let X6
j and Y6

j be two subsets of J6
j , such that X6

j ∪ Y6
j = J6

j , with

X6
j = {p4(j), (pqp2)(j), (p2qp)(j), (p3q)(j), (pqpq)(j)}

and Y6
j = {(qp3)(j), (qpqp)(j), (qp2q)(j)}.

According to the construction of J8
j , we can actually write

J8
j = p2(X6

j ∪ Y6
j ) ∪ (pq)(X6

j ) ∪ (qp)(X6
j ∪ Y6

j ).

Assume that we made the 7 guesses mentioned above. In that case, we know the exact values in
both X6

j and Y6
j . Moreover, since p is known, we know exactly the values in p2(X6

j ∪ Y6
j ). Finally,

since we guessed 7 images of q, there might be some values in (pq)(X6
j ) and (qp)(X6

j ∪ Y6
j ) that are

known.
Hence, we create three sets Kj , X̃6

j and Ỹ6
j :

• Kj is the set of all known values of J8
j . Thus p2(X6

j ∪ Y6
j ) ⊂ Kj and there might be a few

elements from (pq)(X6
j ) and (qp)(X6

j ∪ Y6
j ) in Kj too.

• X̃6
j is the subset of X6

j such that for any x ∈ X̃6
j , the value of q(x) yet remains to be determined.

• In the same way, Ỹ6
j is the subset of p(X6

j ∪Y6
j ) such that for any x ∈ Ỹ6

j , the value of q(x) is
not determined.

For j to be fully diffused, we thus have the constraint

Cj :
∣∣∣Kj ∪ q(Ỹ6

j ) ∪ (pq)(X̃6
j )
∣∣∣ ≥ k.

We then check if this constraint is valid, i.e. if there exist some guesses for the remaining images of
q such that Cj holds, and this is described in the next section.

Now if we take a look at J6
j′ where j′ = p(j), we can see that we only need 3 more guesses to

compute it, instead of 7 as before. Indeed, we already guessed

(qp)(j) = q(j′)
(qp2)(j) = (qp)(j′)
(qp3)(j) = (qp2)(j′)

(qpqp)(j) = (qpq)(j′)

and thus it only remains to guess

(qp4)(j) = (qp3)(j′)
(qp2qp)(j) = (qp2q)(j′)
(qpqp2)(j) = (qpqp)(j′).
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By doing these guesses, we can build the sets Kj′ ,X6
j′ and Y6

j′ as before, and thus get another
constraint that needs to be checked

Cj′ :
∣∣∣Kj′ ∪ q(Ỹ6

j′) ∪ (pq)(X̃6
j′)
∣∣∣ ≥ k.

However by making those three new guesses, we might be able to compute new values in X̃6
j and

Ỹ6
j . We thus need to update the constraint Cj according to these guesses, and then check again if

Cj is valid.
This can be repeated until we have fully guessed q, in which case we have a solution, or show

that no matter which guesses we made there is no solution which satisfies all constraints. This is
the core of our algorithm, which is described from a high-level point of view in Algorithm 2.

Algorithm 1 Searching for optimal even-odd permutations over 9 rounds
1: function nextGuess(p, q, j,C) C is the list of known constraints
2: if q is fully determined then
3: Print p, q
4: else
5: while all guesses are not made do
6: Guess (qp3)(j), (qp2q)(j) and (qpqp)(j)
7: Update every constraints in C according to those guesses
8: Deduce the new constraint Cj
9: C′ ← C ∪ {Cj}

10: if ∃ invalid constraint in C′ then
11: Make a new guess
12: else
13: nextGuess(p, q, p(j),C′)
14: end if
15: end while
16: end if
17: end function

18: p← chosen permutation with a given structure cycle
19: j ← an element from the smallest cycle of p
20: while all guesses are not made do
21: Guess q(j), (qp)(j), (qp2)(j), (qp3)(j), (qpq)(j), (qp2q)(j) and (qpqp)(j)
22: Deduce the constraint Cj
23: if Cj is a valid constraint then
24: C← {Cj}
25: nextGuess(p, q, p(j),C)
26: end if
27: end while

Note however that the actual algorithm is a bit more sophisticated. Indeed, it might occur at
some point that p(j) was already processed, i.e. Cp(j) is already a constraint we have. When this
happens, we need to choose another starting block j, and re-apply the algorithm, while still keeping
all previously computed constraints. In practice, we found that the most efficient strategy is to
use an element from the shortest cycle of p as the first starting block. Then, if we need to choose
another starting block, we pick an element in the next shortest cycle of p and so on. Moreover,
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when making some guesses for the images of q, it might happen that we already made this guess.
This is not a problem, as this guess basically becomes free and does not add any more cost. Finally,
except for the first seven guesses, we update and check all constraints after each guess.

1.4.2 Checking the Constraints

We first give a naive way to check if a constraint is valid. We are given three sets K,X and Y,
resulting in the constraint

C : |K ∪ q(Y) ∪ (pq)(X)| ≥ k.

We know the full permutation p, and for any x ∈ X∪Y, q(x) is still unknown. Let A denote the set
of values a for which we still do not know the preimage of a through q, i.e. for any a ∈ A, we do not
know which x results in q(x) = a. Considering the guesses we already made on q, we always know
this set A, and thus have the following two relations (pq)(X) ⊂ p(A) and q(Y) ⊂ A. According to
this, we can write

|K ∪ q(Y) ∪ (pq)(X)| ≤ |K ∪ A ∪ p(A)| .

Hence if |K ∪ A ∪ p(A)| < k, we know that the constraint C cannot be valid. However, we can
actually go further and get more precise information by doing the following.

We can formulate our problem in the following generic way. We are given three sets K,A, and
B (= p(A)), and we search for two sets Ã ⊂ A and B̃ ⊂ B such that |K ∪ Ã ∪ B̃| is maximal, with
Ã = q(Y) and B̃ = (pq)(X). Note that, since p and q are permutations, we have |Ã| = |X| and
|B̃| = |Y|. Hence our idea is to determine whether there is at least one such pair (Ã, B̃) satisfying
|K∪Ã∪B̃| ≥ k. Indeed if no such pair exists then constraint C does not hold. Note that if X∩Y 6= ∅
then it is possible for such pair to exist while C does not hold. However we found this filter powerful
enough for our need.

We can partition K ∪ A ∪ B into the following eight disjoint sets:

S0 = K ∩ A ∩ B S1 = Kc ∩ A ∩ B
S2 = K ∩ Ac ∩ B S3 = K ∩ A ∩ Bc
S4 = Kc ∩ Ac ∩ B S5 = Kc ∩ A ∩ Bc
S6 = K ∩ Ac ∩ Bc S7 = Kc ∩ Ac ∩ Bc

Let kA (resp. kB) denote the cardinality of Ã (resp. B̃), and kiA, kiB be such that

kiA = |Ã ∩ Si| ≤ min(|Si|, kA), kiB = |B̃ ∩ Si| ≤ min(|Si|, kB).

Since all Si are disjoint, Ã ⊂ A and B̃ ⊂ B, notice that we have

k2
A = k4

A = k6
A = k7

A = 0 and kA = k0
A + k1

A + k3
A + k5

A

k3
B = k5

B = k6
B = k7

B = 0 and kB = k0
B + k1

B + k2
B + k4

B.

By selecting the two sets Ã ∩ S1 and B̃ ∩ S1 as disjoint as possible we have:

|K ∪ Ã ∪ B̃| = |K|+ kA + kB − k0
A − k0

B − k2
B − k3

A

−max(k1
A + k1

B − |S1|, 0)

Indeed, first we have at most |K| + kA + kB elements in K ∪ Ã ∪ B̃. However among all those
elements, some might be the same, which explains the remaining terms :
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• Elements of Ã and B̃ included in S0, S2 or S3 are duplicates since they all belong to K.

• We need to take k1
A (resp. k1

B) elements from A (resp. from B), where all those elements
belongs to S1. We thus have two cases. If k1

A+k1
B ≤ |S1|, we can freely choose all those elements

without having duplicates between Ã and B̃. Indeed for example, if we have k1
A = k1

B = 1 and
S1 = {0, 1, 2}, then we can put 0 in Ã and 1 in B̃, thus resulting in no duplicates between Ã
and B̃ . However if we have k1

A + k1
B > |S1|, then no matter what, we will have duplicates.

Thus in the best case, we have max(k1
A + k1

B − |S1|, 0) duplicates that we need to count out.

Hence, maximizing |K ∪ Ã ∪ B̃| is straightforward as there is one specific order in which to find
the values of kiA and kiB that always maximize the size of the union. We only give the way to
optimally build Ã since it is fully similar for B̃ :

• First, using elements from S5 to build Ã does not add any duplicate, thus we first pull elements
from S5 and k5

A = min(kA, |S5|).

• As mentioned above, using one element from S1 adds either zero or one duplicate, thus we
then pull elements from S1 and k1

A = min(kA − k5
A, |S1|).

• Finally, elements from either S0 and S3 necessarily add duplicates, so we freely choose any
k0
A ≤ |S0| and k3

A ≤ |S3| such that k0
A + k3

A = kA − k5
A − k1

A.

Finally, computing the maximal value for |K ∪ Ã ∪ B̃| only requires to compute |S1|, |S4| and
|S5| and we then check how it compares to k.

1.4.3 Results

We ran our algorithm for every k such that we need at least 9 rounds to have full diffusion, according
to Proposition 1.2.4. This corresponds to 14 ≤ k ≤ 21, and we were able to find all optimal even-
odd permutations for k ∈ {14, 15, 16, 18}. For k ∈ {17, 19, 20, 21}, our algorithm allowed us to prove
that there is no even-odd permutation leading to a full diffusion after 9 rounds. Since 9 rounds
correspond to the Fibonacci bound, we know that for these cases, we need at least 10 rounds to
have full diffusion, and we give later in this section an optimal solution for k = 17 reaching full
diffusion in 10 rounds, as well as good permutations for k = 19, 20, 21 with a diffusion round of 11.
We can thus give the following theorem to summarize our results.

Theorem 1.4.1. To build a Generalized Feistel Network GFN k
π with full diffusion where π is an

even-odd permutation, we have :

• For k = 14, 15, 16 and 18, the optimal number of rounds for full diffusion is 9.

• For k = 17, the optimal number of rounds for full diffusion is 10.

• For k = 19, 20 and 21, the optimal number of rounds for full diffusion is at least 10 and at
most 11.

We give in Table 1.2 an overview of our results. The first column gives the total time needed
for our algorithm to either exhaust all optimal even-odd permutations, or prove that no such
permutation exists. Note that this is the total CPU time, i.e. when using a single CPU, however
our algorithm is highly parallelizable and thus the real time can be drastically reduced.3 This

3Less than one hour for each k using 72 threads.
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k Time Structure of p Structure of q Number of solutions

14 180 min

(6, 6, 1, 1) (6, 6, 2) 144
(6, 6, 2) (6, 6, 1, 1) 144

(6, 3, 2, 2, 1) (6, 3, 2, 2, 1) 144
(12, 2) (12, 1, 1) 24

(12, 1, 1) (12, 2) 24
15 480 min (10, 2, 2, 1) (10, 2, 2, 1) 160

16 1023 min
(6, 6, 3, 1) (6, 6, 3, 1) 432
(6, 6, 2, 2) (6, 3, 3, 2, 1, 1) 288

(6, 3, 3, 2, 1, 1) (6, 6, 2, 2) 216
17 1700 min - - 0

18 2213 min (8, 8, 1, 1) (8, 8, 2) 256
(8, 8, 2) (8, 8, 1, 1) 256

19 1913 min - - 0
20 1116 min - - 0
21 400 min - - 0

Table 1.2: Results for optimal permutations with DRmax(π) = 9

(p, q)
p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
q = (2, 6, 12, 10, 1, 13, 4, 15, 7, 9, 14, 5, 8, 3, 11, 0)
p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
q = (5, 6, 13, 10, 4, 12, 9, 15, 2, 1, 14, 7, 11, 3, 8, 0)
p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12, 15, 14)
q = (2, 1, 12, 8, 7, 14, 5, 4, 13, 11, 10, 15, 9, 3, 6, 0)
p = (1, 2, 3, 4, 5, 0, 7, 8, 6, 10, 11, 9, 13, 12, 14, 15)
q = (7, 6, 14, 9, 11, 15, 1, 12, 2, 13, 5, 4, 10, 8, 3, 0)

Table 1.3: Optimal equivalence classes with k = 16

shows that our algorithm is extremely efficient, as it can quickly solve the case k = 16 for which
[39] were not able to give an optimal solution. The second (resp. third) column gives the possible
cycle structures of p (resp. q) in an optimal permutation, and the last column gives the number of
solutions which have this structure. We can notice that not only the number of solutions is quite
low, but also that the number of possible cycle structures is also quite limited. Moreover, we always
have a fixed point in either p or q.

The most important result in this table is that there are actually even-odd permutations which
have full diffusion after 9 rounds for k = 16, while both [131] and [39] could only find a permutation
with full diffusion after 10 rounds, leaving open the question of whether the theoretical bound of
9 rounds (from Proposition 1.2.4) could be reached. Our results shows that it is indeed possible,
and thus this proves that our permutations are optimal when considering even-odd permutations.
We will see in the next section that we can further regroup these permutations into more precise
equivalence classes, leading for the case k = 16 to four equivalence classes, given in Table 1.3.
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1.4.4 Security Analysis

Recall that our search space Pk defined in Proposition 1.2.6 contains at least one representative for
each class. Hence, among all the permutations we found, some of them might actually be in the
same equivalence class. We can thus go further and regroup all representatives that belong to the
same class using the following proposition.

Proposition 1.4.2. Let π = (p, q) be a permutation over 2k elements. Then for any permutation
r such that r ◦ p ◦ r−1 = p, (p, q) and (p, r ◦ q ◦ r−1) are equivalent.

Proof. Let π = (p, q) and π′ = (p, r ◦ q ◦ r−1) where r is a permutation such that r ◦ p ◦ r−1 = p.
Recall that we have π(2i) = 2p(i) + 1 and π(2i+ 1) = 2q(i), for all i ∈ {0, . . . , k− 1}. Now let ϕ be
the permutation over 2k elements defined as

ϕ(2i) = 2r(i), ϕ(2i+ 1) = 2r(i) + 1, ∀i ∈ {0, . . . , k − 1}.

Then we have π′ = ϕ ◦ π ◦ ϕ−1. Indeed, if we look at the image of an even number 2i, we have

ϕ ◦ π ◦ ϕ−1(2i) = ϕ ◦ π(2r−1(i))
= ϕ(2(p ◦ r−1)(i) + 1)
= 2(r ◦ p ◦ r−1)(i) + 1
= 2p(i) + 1 = π′(2i).

In the same way, the image of an odd number 2i+ 1 is

ϕ ◦ π ◦ ϕ−1(2i+ 1) = ϕ ◦ π(2r−1(i) + 1)
= ϕ(2(q ◦ r−1)(i))
= 2(r ◦ q ◦ r−1)(i)
= π′(2i+ 1)

We thus have π′ = ϕ ◦ π ◦ ϕ−1. Hence, π and π′ are conjugate and thus equivalent, according to
Definition 1.2.5.

This leads us to the equivalence classes given in Table 1.4 to 1.7 for k = 14, 15, 18. The column
(p, q) gives both permutations p and q. The column Imp. Diff. gives the number of rounds for the
longest Impossible Differential distinguisher. Note that this is only considering structural Impossible
Differentials, where we do not specify neither the size of the blocks nor the definition of the S-boxes,
such that contradictions are obtained on blocks rather than bits. The columns Ss,δN give the minimal
number of rounds to get at least N active S-boxes, where each S-box is of size s and the highest
differential probability is 2−δ. We chose to only consider three cases : S4,2

N , S8,6
N and S8,7

N . The first
case represents the best case for 4-bit S-boxes. Indeed, we know that there is no APN bijective
S-boxes of size 4 (which would lead to a highest differential probability of 2−3). As such, the best
case is when the highest differential probability is 2−2. It is still unknown whether 8-bit APN
bijective S-boxes exist, so we consider both cases. If such an APN 8-bit S-box exists, the column
S8,7
N is relevant, otherwise it would be S8,6

N (for example the AES S-box). The last thing is that N
depends on the size of the key (as well as δ). Indeed, if we have a key of size λ, then we want N to
verify 2−δN < 2−λ, i.e. N > λ

δ . As the evaluation of the minimal number of rounds to get at least
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N S-boxes can be quite expensive, we limited ourselves to λ = 2ks, where k follows the notation in
this chapter, i.e. we have 2k blocks of s bits and the key is of the same size as the state. Finally,
the last column N20 shows the minimal number of active S-boxes for 20 rounds, as both [131] and
[39] also gave this metric for the permutations they found. It is worth mentioning that while our
permutations are optimal (w.r.t the diffusion round), for the case k = 16, they have a minimal
number of active S-boxes over 20 rounds which is lower than for the permutations given in [39] in
the same case, where those permutations have a diffusion round of 10 and at least 70 actives S-boxes
over 20 rounds. However for all our permutations, the longest Impossible Differentials distinguisher
we can build is over 17 rounds, which is at least one round lower than for the permutations with
k = 16 given in [39].

Note that we were still able to find the following optimal even-odd permutation for k = 17,
which thus has a diffusion round of 10 :

p = (7, 1, 4, 13, 8, 16, 2, 3, 12, 5, 0, 9, 15, 14, 10, 11, 6)
q = (8, 0, 9, 10, 3, 2, 16, 6, 14, 11, 7, 4, 1, 12, 5, 15, 13)

For this permutation, the longest Impossible Differential distinguisher is over 19 rounds, and
S4,2

69 , S
8,6
46 , S

8,7
39 , N20 are respectively 20, 16, 15 and 20. For k = 19, 20, 21, we easily found per-

mutations reaching full diffusion after 11 rounds with a random search, leaving open the question
to find one permutation with a diffusion round of 10. We give an example for these cases below

k = 19 :
p = (18, 3, 5, 9, 13, 15, 10, 16, 11, 8, 6, 1, 0, 2, 14, 7, 17, 12, 4)
q = (9, 14, 2, 6, 3, 8, 16, 4, 0, 13, 18, 15, 5, 11, 7, 17, 12, 1, 10)

k = 20 :
p = (14, 5, 15, 1, 17, 3, 11, 8, 4, 0, 6, 13, 19, 10, 2, 9, 18, 12, 16, 7)
q = (1, 17, 5, 18, 12, 2, 0, 16, 13, 6, 3, 10, 14, 8, 11, 19, 9, 15, 7, 4)

k = 21 :
p = (19, 10, 7, 17, 2, 16, 20, 9, 6, 0, 3, 12, 18, 1, 4, 11, 15, 13, 14, 8, 5)
q = (20, 12, 0, 8, 7, 1, 4, 2, 10, 13, 5, 6, 11, 14, 19, 15, 9, 16, 3, 17, 18)

1.5 Conclusion

We solved a 10-year-old problem which was to find an optimal (w.r.t diffusion round) even-odd
permutation for a Generalized Feistel Network with 32 blocks. More specifically, we showed that
there exist permutations which have a diffusion round of 9, while the best permutation found before
had a diffusion round of 10. To do so, we give a precise characterization for the permutation to
have full diffusion after a given number of rounds. This characterization allowed us to get a very
efficient exhaustive search for k ≤ 13. Even if optimal permutations were already known for these
sizes, this shows that our characterization is powerful, thus we have no need to use the elaborated
techniques from [39] to treat all these cases. We then exploit this characterization to design a very
efficient algorithm that allows us to exhibit all optimal even-odd permutations for 32 blocks, as well
as for 28, 30 and 36 blocks, which also have an optimal diffusion round of 9 and were not given in
the previous literature. For 34, 38, 40 and 42 blocks, our algorithm also allows us to prove that
there is no even-odd permutation with a diffusion round of 9 (which is the lower bound), which
is again a new result. However for these cases, we were able to give better optimality bounds
when considering even-odd permutations, namely for 2k = 34 the optimal number of rounds for
full diffusion is exactly 10 rounds and for 2k = 38, 40, 42, at most 11 rounds. We also give some
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security evaluation for Impossible Differentials and Differentials (through the minimum number of
active S-boxes). Especially for Impossible Differentials, for the 32 blocks case, all our permutations
have their longest impossible differential distinguishers over 17 rounds, which is at least one round
lower than every permutation given in [39] for this case.

(p, q) Imp. Diff S4,2
57 S8,6

38 S8,7
33 N20

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 12, 13)
17 19 14 13 66

q = (10, 7, 13, 11, 9, 8, 4, 1, 12, 5, 3, 2, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 12, 13)
17 19 14 13 66

q = (8, 6, 13, 10, 7, 9, 1, 12, 5, 2, 4, 3, 11, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12)
17 19 14 13 66

q = (9, 1, 13, 5, 2, 10, 3, 7, 12, 11, 8, 4, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12)
17 19 14 13 66

q = (4, 1, 13, 5, 10, 9, 2, 11, 8, 12, 6, 3, 7, 0)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 13, 12)
17 22 14 13 52

q = (3, 5, 2, 13, 0, 10, 9, 11, 8, 12, 6, 4, 7, 1)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 13, 12)
17 22 14 13 52

q = (3, 1, 13, 11, 8, 10, 9, 7, 12, 5, 2, 4, 6, 0)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 12, 13)
17 22 14 13 52

q = (3, 11, 8, 13, 6, 10, 9, 5, 2, 12, 0, 4, 7, 1)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 12, 13)
17 22 14 13 52

q = (3, 7, 13, 5, 2, 10, 9, 1, 12, 11, 8, 4, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 6, 10, 9, 12, 11, 13)
17 23 19 18 46

q = (4, 9, 6, 11, 13, 12, 10, 2, 8, 1, 5, 3, 7, 0)

Table 1.4: Security evaluation for the best equivalence classes with k = 14

(p, q) Imp. Diff S4,2
61 S8,6

41 S8,7
35 N20

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 10, 13, 12, 14)
17 20 16 14 61

q = (12, 5, 10, 3, 11, 1, 13, 9, 14, 7, 4, 6, 2, 8, 0)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 10, 13, 12, 14)
17 42 28 24 30

q = (13, 9, 10, 7, 11, 5, 12, 3, 14, 1, 4, 6, 8, 2, 0)

Table 1.5: Security evaluation for the best equivalence classes with k = 15
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(p, q) Imp. Diff S4,2
65 S8,6

43 S8,7
37 N20

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
17 33 22 19 40

q = (2, 6, 12, 10, 1, 13, 4, 15, 7, 9, 14, 5, 8, 3, 11, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
17 33 22 19 40

q = (5, 6, 13, 10, 4, 12, 9, 15, 2, 1, 14, 7, 11, 3, 8, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12, 15, 14)
17 50 33 29 26

q = (2, 1, 12, 8, 7, 14, 5, 4, 13, 11, 10, 15, 9, 3, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 6, 10, 11, 9, 13, 12, 14, 15)
17 50 33 29 26

q = (7, 6, 14, 9, 11, 15, 1, 12, 2, 13, 5, 4, 10, 8, 3, 0)

Table 1.6: Security evaluation for the best equivalence classes with k = 16

(p, q) Imp. Diff S4,2
73 S8,6

49 S8,7
42 N20

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 16, 17)
17 31 22 19 44

q = (10, 9, 14, 12, 15, 11, 13, 17, 2, 1, 6, 4, 7, 3, 5, 16, 8, 0)

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 16, 17)
17 56 38 32 26

q = (14, 8, 12, 15, 13, 10, 9, 17, 7, 6, 16, 3, 5, 1, 4, 2, 11, 0)

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 17, 16)
17 31 22 19 44

q = (2, 1, 6, 12, 15, 3, 13, 16, 10, 9, 14, 4, 7, 11, 5, 17, 8, 0)

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 17, 16)
17 56 38 32 26

q = (11, 5, 9, 12, 2, 7, 6, 16, 3, 13, 1, 4, 10, 15, 14, 17, 8, 0)

Table 1.7: Security evaluation for the best equivalence classes with k = 18



"You must look beyond what you see."
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Chapter 2

Linearly Equivalent S-boxes and the Di-
vision Property

In this chapter, we show that previous automatic search tools dedicated to division property are
incomplete in the sense they do not exhaust all the search space. More precisely, propagating
an initial division property through a block cipher requires decomposing the block cipher into
small components for which we can compute division property propagation. However, contrary to
differential and linear cryptanalysis, the result highly depends on how the block cipher is represented.
Indeed, linearly equivalent Sboxes do not change the propagation of differentials, while it is not the
case for the division property. Hence, given an S-box based block cipher, it is not clear which
representation should be preferred since replacing any internal S-box with a linearly equivalent one
could possibly lead to a different result. The main issue is that the number of distinguishers is
significantly higher than one can be thinking and looking efficiently for the best distinguisher boils
down to efficiently finding the best decomposition.

We solved a sub-case of this problem. Mounting an attack against a block cipher E most often
requires to split E in three parts as E = E2 ◦E1 ◦E0 and to find a distinguisher on E1. Usually, E0,
E1 and E2 are round-reduced versions of E. However it is not the only way to split E and, for any
linear operations Lin and Lout, E can be split as E = (E2 ◦ L−1

out) ◦ (Lout ◦ E1 ◦ Lin) ◦ (L−1
in ◦ E0).

One of the main problem we solve in this chapter is to answer the question of how to find Lin
and Lout such that there exists a division property distinguisher through Lout ◦ E1 ◦ Lin, focussing
on block diagonal linear mappings Lin, Lout. In a nutshell, we first show how to highly reduce the
number of candidates for both Lin and Lout, and then present how to efficiently check the remaining
candidates without performing a complete search on each of them. As a result we improve the best
known division property distinguisher against RECTANGLE by one round and show that the previous
best known distinguisher against PRESENT cannot be improved with this technique.

The second result presented in this chapter concerns the design of S-boxes that would offer
maximal resistance against division property. In [37], Boura et al. provide new insights into the
division property, and in particular they show several interesting results concerning the resistance
of S-box-based block ciphers against division property. Here we prove that if an S-box satisfies a
specific criteria (which is close to the one in [37]), then this S-box is optimal in term of resistance
against classical division property (i.e. without our extension technique). To our knowledge, this
is the first time that such a result is given for division property, and could be considered as a new
criteria for designing S-boxes.

According to this criteria on S-boxes, we try to strengthen both RECTANGLE and PRESENT
against our technique. Note that when considering our technique, the criteria mentioned above does
not seem to guarantee optimality. However, in regards to our experiments, it still seems to be the
best choice, as we were able to find linearly equivalent S-boxes for both RECTANGLE and PRESENT
such that the resistance of both algorithm is improved by two rounds, even when considering our
extension technique.

57
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2.1 Introduction

Division property is a distinguishing property which was first presented by Todo at Eurocrypt’15 [136].
This cryptanalysis technique quickly became a hot topic in the community, especially since it led to
the first theoretical attack against full MISTY1 [135]. This property can be seen as a generalization
of integral and higher-order differential distinguishers. At Crypto’16, Boura et al. [37] provided a
simpler formulation of the division property, especially for the construction of the division trails
of S-boxes. Recently, division property was used to improve cube attacks and allowed to improve
the best known results against several stream ciphers including ACORN, Trivium, Grain-128a and
Kreyvium [139]. The idea of the division property is the same as in integral, higher-order differential
and cube-attacks, namely, proving that if one encrypts a set of plaintexts with a certain structure,
then the resulting set of ciphertexts will have some balanced bits, i.e. bits which sum to zero with
probability 1 when going through the whole set of ciphertexts. The main difference between these
different techniques comes from how one can prove this property. Division property is a more fine-
grained property: it mainly comes down to tracking which monomials may or may not appear in
the Algebraic Normal Form (ANF) of the whole block cipher, so that, for a set of ciphertexts X,
we can predict with probability 1 the result of

⊕
x∈X xk, where k represents the indicator vector

defining the value of the monomial xk =
∏
i x

ki
i . The distinguisher begins by generating a set of

plaintexts where c bits are fixed to an arbitrary constant, resulting in n − c variables which then
take all possible values (thus generating an affine space of dimension n − c). We want to know
whether a monomial of degree n − c, i.e. implying all variables, exists in each component of the
ANF of the block cipher. If no such monomials appear in the i-th component, this component is
of degree < n − c. Consequently, when we sum the i-th bit through the whole corresponding set
of ciphertexts, the sum will be zero, as we compute the sum of a function of degree < n − c over
a space of dimension n − c. Essentially, the division property defines a set K ⊂ Fn2 of monomials
which divides Fn2 into two parts. For one part K = {k| ∃k̄ ∈ K s.t. k̄ � k}, for � the usual
preceding order, we cannot predict the result of this sum. However, for any k ∈ Fn2 \ K, we know
that

⊕
x∈X xk = 0, i.e. we track which monomials we know to be summing to zero.

Automatic tools. Studying the propagation of an initial division property through a block cipher
is a challenging task requiring to be computer-aided. At Asiacrypt’16, Xiang et al. [143] showed how
to model the division property propagation of the three basic operations copy, AND and XOR,
as well as the propagation through an S-box, by a system of linear inequalities. Hence they built
MILP models for several block ciphers which they efficiently solved using a third-party MILP solver.
As a result they obtained the best known division property distinguishers on SIMON, SIMECK,
PRESENT and RECTANGLE. In [146], Zhang et al. gave a new way to model the propagation
of division property through linear diffusion layers by the smallest amount of inequalities which
are generated from linear combinations of row vectors of the diffusion matrix. Using this new
description, they found the best known distinguishers for both PRINCE and MIDORI. Finally, at
Asiacrypt’17, Sun et al. [129] presented two new automatic search tools: one dedicated to ARX
ciphers based on a SAT solver and one dedicated to word-based division property based on SMT
(Satisfiability Modulo Theories) solver. Those tools are much faster than previous MILP-based
works and were able to study primitives with large internal state such as CLEFIA, WHIRLPOOL
and RIJNDAEL.

Our contributions. In this chapter we show that previous automatic search tools dedicated
to division property are incomplete in the sense they do not exhaust all the search space. More
precisely, propagating an initial division property through a block cipher requires decomposing the
block cipher into small components such as AND, XOR, S-boxes, . . . for which we can compute
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division property propagation. However, division property behaves very differently than some others
cryptanalysis techniques like differential and linear cryptanalysis, for which the representation of
the block cipher does not matter. For instance, in Section 2.3.1 we give two S-boxes S1 and S2 such
that S2 = S1 ◦ L, where L is linear, such that propagating division property through L then S1
leads to a completely different result than propagating it directly through S2. This would not be
the case for e.g. differentials, where propagating either through L and S1 leads to the same result
as propagating through S2. As such, and considering that there are many ways to represent a block
cipher, it is not clear which representation should be used to get the best results, and there may
be much more possible distinguishers when considering all these representations. Thus, the main
problem is to efficiently find the best representation to analyze a specific block cipher.

In this chapter we solved a sub-case of this problem. Mounting an attack against a block cipher
E most often requires to split E in three parts as E = E2 ◦ E1 ◦ E0 and to find a distinguisher
on E1. Usually, E0, E1 and E2 are round-reduced versions of E. However it is not the only way to
split E and, for any linear operations Lin and Lout, E can be split as:

E = (E2 ◦ L−1
out) ◦ (Lout ◦ E1 ◦ Lin) ◦ (L−1

in ◦ E0).

This kind of carving was for instance used in [51] by Derbez et al. to provide several new meet-
in-the-middle attacks against AES. However, the division property is different from differential and
linear cryptanalysis. Hence, one of the main problem we solved in this chapter is to answer the
question of how to find Lin and Lout such that there exists a division property distinguisher through
Lout ◦E1 ◦Lin. We focused on linear mappings Lin, Lout which are block diagonal, of block size m,
where m is the size of the S-box. In a nutshell, we first show how to highly reduce the number of
candidates for both Lin and Lout, and then present how to efficiently check the remaining candidates
without performing a complete search on each of them. We severely reduce the complexity of the
search. Indeed, to search for a distinguisher over r rounds, a naive algorithm would need about
ms322m2 (where s in the number of S-boxes) calls to the MILP solver with a model representing r
rounds of the block-cipher. However in our case, we only need about s222m calls to the solver, on a
model representing r− 2 rounds which is thus much more efficient to solve. As a result we improve
the best known division property distinguisher against RECTANGLE by one round and show that
the previous best known distinguisher against PRESENT cannot be improved with this technique.
We emphasize that this is an advantage to our algorithm, as it allows us to prove that a given cipher
is resistant to our technique, as proving negative results is in general harder than findings attacks
since we have to check all such attacks.

The second result presented in this chapter concerns the design of S-boxes that would offer
maximal resistance against division property. In [37], Boura et al. provide new insights into the
division property, presenting a new approach to it. In particular they show several interesting results
concerning the resistance of S-box-based block ciphers against division property. Here we prove that
if an S-box satisfies a specific criteria (which is close to the one in [37]), then this S-box is optimal
in term of resistance against classical division property (i.e. without our extension technique). We
define optimality in the sense that if one uses such a perfect S-box and can find a distinguisher on
at most r? rounds, then using any other S-box will lead to a distinguisher on r rounds with r? ≤ r.
To our knowledge, this is the first time that such a result is given for division property, and could be
considered as a new criteria for designing S-boxes. Our criteria is the following : if each component
of the ANF of an n-bit S-box contains all monomials of degree n − 1, then this S-box is optimal.
Note that our criteria is equivalent to a very specific structure for the division property propagation
table, and this table is a major component in the existing search algorithms [146, 143]. Compared to
the criteria in [37], we have two major differences. The first is that any S-box satisfying our criteria
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does not satisfies the one in [37]. Indeed, their criteria is that any non-trivial linear combination of
the components of the ANF must be of degree n−1. In our case, since all monomials of degree n−1
appear in each component, the sum of any two components will be of degree n − 2. Nonetheless,
the second difference is that our criteria leads to an optimality proof, whereas their criteria is more
of an indication that an S-box satisfying it should be good enough.

According to this criteria on S-boxes, we try to strengthen both RECTANGLE and PRESENT
against our technique. Note that when considering our technique, the criteria mentioned above
does not seem to guarantee optimality. However, in regards to our experiments, it still seems to be
the best choice. Indeed, to preserve some differential and linear property of the original S-boxes,
we chose to only consider S-boxes which are linearly equivalent to the original ones. Unfortunately,
for both RECTANGLE and PRESENT, it was not possible to generate a perfect S-box from linearly
equivalent S-boxes, however, we found many almost perfect S-boxes. Trying all of them allowed us
to find a linearly equivalent S-box for RECTANGLE such that the best distinguisher is over 7 rounds
for classical division property, and 8 rounds when using our technique, while the best distinguisher
we found with our technique is over 10 rounds of RECTANGLE when using the original S-box.
Doing the same for PRESENT, we found an S-box such that the classical division property could
only lead to a distinguisher on up to 6 rounds, and up to 7 rounds with our technique, while the
best know division property based distinguisher for PRESENT is over 9 rounds. Furthermore, on
non-table-based implementations, the extra cost of the new S-boxes is only 2 extra XORs per S-box
for PRESENT and 5 extra XORs per S-box for RECTANGLE. These experiments show that our new
search process finds distinguishers against one extra round than classical search, highlighting again
its interest, and also confirms that our strategy to choose these new S-boxes seems promising, as it
improves the resistance of both algorithms by 2 rounds. We made our implementation available at
https://github.com/ExtendDivProp/ExtendDivProp.

2.2 Background

2.2.1 Notations

We will use the following notations in the chapter. We denote x = (x0, . . . , xn−1) ∈ Fn2 an n-bit
vector over F2, where x0 is the least significant bit. We will often write x0x1 . . . xn−1 instead of
(x0, . . . , xn−1). We denote w(x) the hamming weight of x ∈ Fn2 . We denote ei the i-th unit vector,
and Em denotes the set of all unit vectors of sizem, i.e. vectors of hamming weight 1. For x,u ∈ Fn2 ,
we denote by xu the bit product

xu =
n−1∏
i=0

xui
i .

For x,y ∈ Fn2 , we define x � y if xi ≥ yi for all i, where xi and yi are considered as integers. We
denote Pm the set of all permutations over m elements. We denote GLm(F2) the set of all invertible
matrices of size m×m over F2.

2.2.2 Division Property and Division Trails

The division property was introduced by Todo [136] as a generalization of integral cryptanalysis,
and later at FSE’16 [137], Todo and Morii defined a more refined version of it, called bit-based
division property. Here, we only consider the bit-based division property, and will often refer to it
directly as division property. As it is not relevant for this chapter, we refer the reader to the original
articles for further details about the differences.

https://github.com/ExtendDivProp/ExtendDivProp
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Definition 2.2.1 (Bit-based Division Property [137]). A set X ⊂ Fn2 has the division property Dn
K,

where K ⊂ Fn2 is a set, if for all u ∈ Fn2 , we have

⊕
x∈X

xu =
{
unknown if there is k ∈ K s.t. u � k

0 otherwise

Note that if there are some vectors k,k′ ∈ K such that k � k′, then k can be removed from K
because it is redundant.

A common way to study division property for a block cipher is to study the division trails of this
cipher, which show the propagation of the division property through the basic operations composing
the block cipher.

Definition 2.2.2 (Division Trails [143]). Let f denote the round function of an iterated block cipher.
Assume the input set to the block cipher has initial division property Dn

{k}, and denote the division
property after propagating through i rounds of the block cipher (i.e. i applications of f) by Dn

Ki.
Thus, we have the following chain of division property propagations :

{k} ∆= K0 f−→ K1 f−→ K2 f−→ . . .
f−→ Kr.

Moreover, for any vector ki in Ki(i ≥ 1), there must exist a vector ki−1 in Ki−1 such that ki−1

can propagate to ki by the division property propagation rules. Furthermore, for (k0,k1, . . . ,kr) ∈
K0 ×K1 × · · · ×Kr, if ki−1 can propagate to ki for all i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an
r-round division trail.

In the rest of the chapter, we will denote k
f→ k′ if the vector k ∈ Fn2 can propagate to a vector

k′ ∈ Fn2 through the function f . In the same way, k
f→ K denotes that for all k′ ∈ K, we have

k
f→ k′.
Given the set Kr resulting of the propagation of an initial division property Dn

{k}, we can find
whether Dn

{k} allows to build an integral distinguisher using the following proposition.

Proposition 2.2.3 ([143]). Assume X is a set with division property Dn
K, then X does not have

integral property if and only if K contains all the n unit vectors. As a result, if ei 6∈ K, then the
i-th bit is balanced.

Proof. Suppose that the vector ei belongs to K. Then according to the definition of the division
property, this implies that the result of the sum⊕

x∈X
xei =

⊕
x∈X

xi

is unknown since ei � ei and ei ∈ K, i.e. the i-th bit is not balanced. On the other hand, if we
suppose that the i-th bit is balanced, we cannot have ei ∈ K as it would mean that the i-th bit is
in an unknown state, which contradicts the definition of the division property.

For example, we can make a parallel with the well known Square attack on AES [46]. In this
attack, the set of plaintexts has one byte taking all possible values while the others are constant.
In term of division property, this would translate to the set of plaintexts having a division property
D128

k , where
k = 11111111︸ ︷︷ ︸

8 bits

0 . . . 0.
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Then, it is shown in [46] that after 3 rounds of AES, such a set of plaintexts has all its bits balanced.
According to Proposition 2.2.3, this means that the resulting set has a division property D128

K , where
K does not contain any unit vector.

Hence, to study whether we can build an integral distinguisher over a block cipher from a
given initial division property K0, we need to propagate K0 through the different operations of the
block cipher. Fortunately, propagation rules were defined in [137] for most basic operations in a
block cipher, namely Copy, AND and XOR. However, for SPN block ciphers, there are two main
components that, while they can be described using only these operations, should have their own
way to propagate the division property vectors. These components are linear layers and S-boxes.
For linear layers, while [128] proposed to use only the Copy and XOR operations to propagate
division property vectors, it has been shown in [146] that this is actually not the right way to
propagate through linear layers, as it looses some information and is not able to recover all possible
integral distinguishers. We thus refer the reader to [146] for the correct way to propagate division
property vectors through a given linear layer.

For S-boxes, again using only the basic operations might result in a loss of information. Hence,
[143] proposed an algorithm of complexity O

(
22m) to compute all possible pairs k

S→ k′ for a given
m-bit S-box S.

2.2.3 Searching for division property based integral distinguishers

While Todo and Morii proposed a way to search for integral distinguishers based on the division
property [137], its complexity is quite hard to estimate, and the authors gave an upper bound of
2n, where n is the block size of the block cipher. In practice, they said that their algorithm is
not suitable for block ciphers with block size over 32 bits, and thus especially for standard block
size of 64 and 128 bits. However, a lot of work has been done towards efficiently searching such
distinguishers, based on either MILP [127, 143, 146] or SAT/SMT solver [61, 129]. We refer the
reader to these papers for further details about the modeling, and will only give a brief description
of the idea behind it for MILP. Note that using SAT/SMT solvers is very similar to using MILP,
and mostly differs in efficiency when considering different primitives. For example searching division
property based integral distinguishers on ARX ciphers seems to be easier with SAT solvers. First
we briefly recall what is MILP.

Definition 2.2.4. An MILP problem is formulated as follows. Given a matrix A ∈ Rm×n, b ∈ Rm
and c ∈ Rn, find a vector x ∈ Zk × Rn−k with Ax ≤ b which minimize (or maximize) the value of

f(x) = c1x1 + c2x2 + · · ·+ cnxn.

Here, f is called the objective function of the MILP problem.

Modelizing division property propagation with MILP.

The idea of using MILP to search for integral distinguishers is first to modelize the set of all possible
division trails by an MILP problem. That is, building a set of linear inequalities such that [143] :

1. each division trail must satisfy all linear inequalities in the linear equality system, i.e. each
division trail corresponds to a feasible solution of the linear inequality system ;

2. each feasible solution of the linear inequality system corresponds to a division trail, i.e. the
set of all feasible solutions of the linear inequality system does not contain any impossible
division trail.
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We can thus build an MILP model satisfying the previous conditions using [143] for basic
operations and S-boxes, [146] for linear layers and [127] for ARX block ciphers. Note that this step
is not totally free.

For S-boxes, we first compute the set of all possible propagations through a given m-bit S-
box, which has complexity O

(
22m). Then, we need to compute a set of linear inequalities which

represents these possible propagations, according to the two previous rules. To do so, [143] proposed
to first use the function inequality_generator() from the Sagemath [134] software to get such
a set of inequalities, and then use a greedy algorithm to reduce their number. While this works
for small S-boxes (e.g. 4-bit S-boxes), this approach fails when considering bigger S-boxes (e.g.
8-bit S-boxes) as the complexity of generating the initial set of inequalities is too high. However,
Abdelkhalek et al. showed a new method in [1] to tackle this problem, and thus proposed a way to
modelize 8-bit S-boxes in MILP. Note that while this allows us to modelize 8-bit S-boxes, it often
leads to a lot of inequalities, thus the resulting model can be quite huge and this can result in a
high solving time.

For linear layers, Zhang et al. [146] showed that the previous method [128] proposed to modelize
linear layers does not actually fulfill the above rules, as it introduces some impossible propagations,
resulting in some integral distinguishers being omitted. Hence, they proposed a new way to modelize
such layers, and proved that their way was optimal, i.e. removing any one inequality will result
in some fraudulent propagations. To modelize a given linear layer L, the number of inequalities
generated is given by n(2s − 1), where s is the size of the smallest square matrix M such that
M is the representation of L over the field F2n and M is binary. For example, the matrix used in
SKINNY64 [10] is a binary matrix of size 4 over F24 , thus needs 4(24−1) = 60 inequalities. However,
if we take the matrix used in AES, which is described as a non-binary matrix of size 4 over F28 ,
the amount of inequalities is much higher. Indeed, since the multiplication over F28 corresponds to
a linear operation over F8

2, the matrix used in AES can be represented as a matrix of size 32 over
F2, which is obviously binary. This is the smallest way to represent this operation with a binary
matrix, and thus, it would need 232 − 1 inequalities to modelize only one propagation through this
linear layer, which would result in a very huge model which cannot be solved in practical time.
Hence, not all linear layers can be modelized in an exact way, and complex linear layers may lead to
a model which is much harder to solve. Note however that if the linear layer is only a permutation,
such as in PRESENT [33] or RECTANGLE [145], then the above formula does not apply, as we can
just reorder the different variables, and thus we can always modelize such kind of linear layers.

Searching for a distinguisher.

As a result, we have a set of variables {kji , i ∈ {0, . . . , n − 1}, j ∈ {0, . . . , r}} such that, for a
given solution of the MILP problem, the corresponding values of these variables give a division trail
(k0,k1, . . . ,kr) with ki = (ki0, . . . ,kin−1). In particular, this allows us to see whether each unit
vector belongs to Kr. Indeed, once we have the MILP model for r rounds of a given block cipher,
we can set the objective function to kr0 + · · ·+ krn−1. Then we set the initial division property using
equality constraints, i.e. if the initial division property is a ∈ Fn2 , we add the constraints

∀i ∈ {0, . . . , n− 1},k0
i = ai,

and then ask the solver (e.g. Gurobi [74]) to solve this problem by minimizing the value of the
objective function. If the solver finds a solution of value 1, there is a vector kr of weight 1 (i.e.
a unit vector) that belongs to Kr. We can then add a linear constraint to remove this vector kr

from the set of solutions, and solve the problem again. Once there are no more solutions of value
1, we found all unit vectors belonging to Kr, hence we can easily see whether or not there are some
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balanced bits using Proposition 2.2.3. Note that we do not need to stop after finding all solutions
of value 1. Indeed, we can keep going until the problem does not have any remaining solutions, and
we will thus have computed the whole Kr set. This will be useful later in the chapter, and will be
accompanied with a bit more details.

2.3 Extended Division Property Using Linear Mappings

2.3.1 First observations

Several integral distinguishers were found using the previously described method. However, we
claim that this method does not actually search through the whole space of all possible integral
distinguishers based on the division property. Indeed, we show that for a given block cipher E, we
can instead consider Lout ◦ E ◦ Lin, where both Lout and Lin are linear mappings, and this results
in integral distinguishers previously unknown. We now explain the main idea behind using Lout
and Lin. For Lout, while all bits could be unbalanced after E, it might occur however that a linear
combination of some bits is balanced. This was already mentioned by Todo and Morii in [137] when
they introduced the division property using three subsets.

For Lin, the idea is very close. The initial division property k0 basically sets some constant bits.
That is, if the set X has division property Dn

k0 , through all the set, each bit i such that k0
i = 0 has

a constant value, and if k0
i = 1, the bit i takes all possible values through the set. For example, the

following set has division property D4
0011

X = {0100, 0101, 0110, 0111}.

Hence, the idea behind Lin is to get a set such that a linear combination of some bits is constant,
while those bits are not necessarily constant.

Finally, we can see that considering Lout ◦ E ◦ Lin instead of E is still meaningful. Classically,
when an attacker uses a distinguisher to mount an attack, he basically splits the cipher E into
E = E2 ◦ E1 ◦ E0, where he has a distinguisher over E1. In that case, E1 can be seen as a reduced
version of E, containing only a certain number of rounds of E. However, we could also rewrite E as

E = (E2 ◦ L−1
out) ◦ (Lout ◦ E1 ◦ Lin) ◦ (L−1

in ◦ E0).

In that case, the attacker would search a distinguisher over Lout ◦E1 ◦Lin, and could still use it to
mount an attack. Indeed, the attacker starts with a set X respecting a given initial division property
(according to the distinguisher over Lout ◦ E1 ◦ Lin) and compute X′ = E−1

0 ◦ Lin(X) by guessing
part of the key. He then asks for the encryption of X′ through E to get a set of ciphertexts Y,
compute Y′ = Lout ◦E−1

2 (Y) using some other key guesses and check whether Y′ has some balanced
bits (according to the distinguisher over Lout ◦ E1 ◦ Lin). If that is the case, the key guesses are
supposed to be correct. Note that this idea was already successfully used in the past, for example
in [51].

So considering E′ = Lout ◦ E ◦ Lin instead of E could lead to some new integral distinguishers.
In the following, E is an SPN block cipher, i.e. the round function of E is f = L ◦ S, where L is
linear and S is the parallel application of an S-box S over the state. Note that we omit L in the last
round. Now our goal is to search if E′ has an integral distinguisher based on the division property
using MILP. Classically, we study the following propagation chain

K0
Lin−→ K̂0 S→ K̃0 L→ K1 S→ . . .

S→ K̂r Lout−→ Kr.
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Basically, we model independently the propagation through the linear layers and the S-box layers,
especially for Lin and the first S-box layer, and for Lout and the last S-box layer. However, this
might actually not be the best way to modelize this, and we see this through an example.

Merging linear mappings and S-boxes

Let S1 and S2 be two S-boxes over F4
2 such that

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1(x) 12 13 11 9 6 0 5 10 3 2 8 4 15 7 14 1
S2(x) 12 11 14 15 1 7 13 9 10 0 2 4 3 8 5 6

where S2 is obtained as S2 = S1 ◦ L with

L =


0 0 1 1
1 1 1 1
0 1 1 1
0 1 1 0

 .
We can use the algorithm from [143] to compute all possible propagations through S1, S2 and

L. Using this, if we look at the propagation of x = 0111 through L and S1 independently, we have
the following trail

0111 L−→ {1101, 1011} S1−→ {0100, 0010, 0001} = K.

However, if we now consider L and S1 together, i.e. by looking at the propagation of 0111 through
S2 = S1 ◦ L, then we have the trail

0111 S2−→ {1100, 1001, 0110, 0011} = K′.

As we can see, the resulting division property set is completely different, yet comes from the same
initial division property, and goes through the same function. Moreover, this is not just a local
change, and not only K′ is a set which was not reachable through only S1, but the whole propagation
tables of S1 and S2 are different, as we can see in Figure 2.1.

This clearly shows that considering both the S-box and the linear mapping together gives way more
information about the propagation of the division property. Note that we give this example by
putting a linear mapping at the input of the S-box, but similar observations can be made when
considering S and L ◦ S for some S-box S and linear mapping L. Moreover, not only this gives
more information about the propagation, but this could, and will, actually help us to find new
distinguishers when considering Lout ◦ E ◦ Lin instead of E.

We can see that, except when we have either the full zero or the full one vector, if we consider a
division property chain K0 → · · · → Kr of a block cipher, the weight of the vectors in each Ki can
only decrease (or remain constant, but in practice, this is rarely the case, see Figure 2.1). Recall
that if the set Kr contains all unit vectors (i.e. of weight 1), no integral distinguisher can be built
from it. Thus, intuitively, if we want to find an integral distinguisher, we would like to have vectors
of relatively high weight in each set Ki as long as possible.

Now consider a block cipher E such that the first layer of S-boxes contains only S1 as defined
previously. Then from the propagation table in Figure 2.1, we can see that the output of each S-box
will always be of weight 1 (except for 0000 and 1111). So after the first round, if the weight at
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Propagations of S1
0000 0000
1000 1000, 0100, 0010, 0001
0100 1000, 0100, 0010, 0001
0010 1000, 0100, 0010, 0001
0001 1000, 0100, 0010, 0001
1100 1000, 0100, 0010, 0001
1010 1000, 0100, 0010, 0001
1001 0100, 0010, 0001
0110 0100, 0010, 0001
0101 0100, 0010, 0001
0011 0100, 0010, 0001
1110 0100, 0001
1101 0100, 0010, 0001
1011 0100, 0010, 0001
0111 0100, 0010, 0001
1111 1111

Propagations of S2
0000 0000
1000 1000, 0100, 0010, 0001
0100 0100, 0010, 0001
0010 1000, 0100, 0010, 0001
0001 1000, 0100, 0010, 0001
1100 0100, 0010, 0001
1010 1000, 0010, 0101
1001 1000, 0100, 0010, 0001
0110 0100, 0010, 0001
0101 0100, 0001, 1010
0011 0010, 1100, 1001, 0101
1110 0010, 1100, 0101
1101 0100, 0001, 1010
1011 1100, 1010, 1001, 0110, 0011
0111 1100, 1001, 0110, 0011
1111 1111

Figure 2.1: Propagation tables of S1 and S2. Vectors of weight 2 are in bold.

the input of any S-box is different from 0 and 4, we will already only have vectors of weight 1 at
the output of the S-box. However, if we now consider E ◦M, where M = (M, . . . ,M) apply the
linear mapping M on all S-box’s input before the first round, then this is the same as considering
the first layer of S-boxes to be built as (S2, . . . , S2). This time, if one carefully chooses the input
division property of the S-box, he can now only have vectors of weight 2, which could result in a
better propagation through the remaining layers of the cipher.

Clearly, considering Lout ◦E ◦Lin instead of E, and considering the propagation of the division
property vectors through M ◦ S (or S ◦M) as a whole instead of independently through M and S,
could result in better distinguishers, and thus in the next section, we focus on the search of such
distinguishers.

2.3.2 Searching for Extended Division Property

In this chapter, we will only consider SPN block ciphers, i.e. the round function is f = L◦S, where
L is linear and S is built as the concatenation of s S-boxes of size m applied in parallel on the state,
hence the block cipher has block size n = s.m. Moreover, we will consider that all S-boxes are the
same. This is to get an easier analysis, but we can extend this with different S-boxes.

Reducing the search space of Lin and Lout.

Given a block cipher E which does not have any integral distinguisher based on the division property,
we want to find two linear mappings Lin and Lout such that Lout◦E◦Lin has an integral distinguisher
based on the division property which is supported by the previous observations. Moreover, we
also would like to exploit the fact that we have a more precise propagation when considering the
propagation of division property vectors through S◦M as a single function, instead of independently
throughM then S. Note that, theoretically, we could consider the whole round function of the block
cipher as a single function (or even the whole block cipher), and thus get more precise information
about the propagation of division property vectors. However, computing the propagation table of
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division vectors needs O(22n) operations, where n is the size of the function. Hence for classical
block ciphers with 64 or 128 bits block size, this is clearly impractical.

This also means that we cannot choose any Lin and Lout, as we want to somehow merge Lin with
the first S-box layer and, respectively, merge Lout with the last S-box layer. Hence, we will focus
our search on linear maps Lin and Lout which are block diagonal, of block size m. Consequently
we want to put an invertible linear map Liin (resp. Liout) before (resp. after) each S-box of the first
(resp. last) round. By doing so, we will denote by Siin = S ◦ Liin and Siout = Liout ◦ S the modified
S-boxes.

First, we give the following proposition to show that we do not need to consider every possible
choice for each block Liin and Liout.

Proposition 2.3.1. Let S be an invertible m-bit S-box and P an m-bit permutation. Let S1 = S◦P
and S2 = P ◦ S, and k

S→ k′ be any valid division property propagation through S with k,k′ ∈ Fm2 .
Then both propagations P−1(k) S1−→ k′ and k

S2−→ P (k′) are always valid.

Proof. This directly comes from the fact that S1 is obtained by just permuting the input variables
of S, and respectively S2 is obtained by permuting the output bits of S.

Hence, if we search an integral distinguisher for any given block Liin, we do not need to do
the search for all Liin ◦ P where P goes through all possible permutations, as we could obtain the
same result from the search using Liin by just permuting the initial division property with P . For
example, if we have the set Kr from a given initial division property k through Lout ◦E ◦ Lin, and
we consider L′out ◦ E ◦ L′in where L′in = Lin ◦ (P 0

in, . . . , P
s−1
in ) and L′out = (P 0

out, . . . , P
s−1
out ) ◦ Lout,

where each P iin and P iout is a permutation over m bits, we directly have that the initial division
property (P 0

in, . . . , P
s−1
in )−1(k) propagates to the set (P 0

out, . . . , P
s−1
out )(Kr). In particular, if we have

an integral distinguisher for Lout ◦E ◦Lin, so do we for L′out ◦E ◦L′in (and vice-versa if Lout ◦E ◦Lin
does not have any integral distinguisher).

This allows us to restrict the search space for each block Liin to a set Lin containing a represen-
tative of each equivalence class

Ein(L) = {L′ ∈ GLm(F2) | ∃P ∈ Pm s.t. L′ = L ◦ P},

and in the same way, to restrict the search space of each Liout to a set Lout containing a representative
of each equivalence class

Eout(L) = {L′ ∈ GLm(F2) | ∃P ∈ Pm s.t. L′ = P ◦ L}.

The size of these spaces Lin and Lout can be obtained by

m−1∏
i=0

2m − 2i

m! ,

as it is the total number of invertible matrices of size m divided by the number of permutations
over m elements. Note that this is much lower than the total number of matrices of size m ×m
over F2 which is 2m2 , and for example if m = 4, then there are only 840 matrices to consider.
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Reducing the amount of work for Lin

Let us focus on finding a distinguisher over E ◦ Lin. We will see later that we can use the idea of
this section together with the next section to search for a distinguisher over Lout ◦ E ◦ Lin. Note
that our goal is to exhibit a distinguisher on E ◦Lin, not necessarily the best one. As such, we focus
on finding a distinguisher requiring 2n−1 data, i.e. the initial division property will be K0 = k0

with w(k0) = n− 1. By doing so, we focus our search on only one modified S-box Siin and set the
others to S. Indeed, if w(k0) = n − 1, there is only one specific S-box Siin which has an input of
weight m− 1, while all the others S-boxes Sjin with j 6= i have 1 . . . 1 has input. Note that if a set
X has division property k = 1 . . . 1, all bits takes all possibles values through the set, i.e. X = Fm2 .
Hence, since we are considering bijective S-boxes, we have Sjin(X) = Fm2 for all j 6= i, and thus the
resulting division property set is K = {1 . . . 1}.

From the previous remark, we only need to look at each matrix from Lin. However, we can
reduce even further the amount of propagation we need to compute. Since the input of the S-box
Siin is k0

i with w(k0
i ) = m− 1, we know that this can only result in at most 2m − 2 possible vectors

(by excluding the full-zero and full-one vectors) after the application of Siin. Thus, to search for a
distinguisher over E′ = E ◦Lin with E containing r rounds with round function f = L ◦ S, we first
decompose E′ as

E′ = f ◦ f ◦ · · · ◦ f ◦ L ◦ Sin, with Sin = (S, . . . , Siin, . . . , S).

This leads to the following chain of division property propagation

k0 Sin−→ K̃0 L−→ K1 f−→ . . .
f−→ Kr

where

k0 =
m︷ ︸︸ ︷

1 . . . 1 |
m︷ ︸︸ ︷

1 . . . 1 | . . . |k0
i | . . . |

m︷ ︸︸ ︷
1 . . . 1 .

We first define the set KSin as

KSin := {K | ∃Lin ∈ Lin,k ∈ Fm2 s.t. k
Si

in−→ K and w(k) = m− 1}.

Computing KSin allows to build all possible K̃0 since there exists a set K ∈ KSin such that every
vector k̃0 of K̃0 is of the form

k̃0 =
m︷ ︸︸ ︷

1 . . . 1 |
m︷ ︸︸ ︷

1 . . . 1 | . . . |k̃0
i | . . . |

m︷ ︸︸ ︷
1 . . . 1, with k̃0

i ∈ K.

Hence, instead of trying all possible Liin ∈ Lin, we skip the first propagation through Sin and directly
consider that the propagation starts at K̃0.

We now need to test each set in KSin. Recall that K̃0 can only be built from 2m − 2 vectors k̃0.
We propagate each of those vectors through the remaining layers of the cipher, i.e. the following
chain of propagation

k̃0 L−→ K1 f1−→ . . .
fr−1−→ Kr.

Thus, for each k̃0, we deduce a set Sk̃0 of balanced bits using MILP. We then consider each set
K̃0 ∈ KSin, and compute

SK̃0 =
⋂

k̃0∈K̃0

Sk̃0 .

If there is one non-empty SK̃0 , K̃0 will lead to a set of balanced bits, given by SK̃0 .



2.3. EXTENDED DIVISION PROPERTY USING LINEAR MAPPINGS 69

Finally, using a precomputed table T Sin defined as

T Sin[K] := {(Lin,k) ∈ Lin × Fm2 | k
Si

in−→ K and w(k) = m− 1},

we deduce a linear map Liin ∈ Lin and a vector k0 such that we get an integral distinguisher over
E ◦ Lin starting from the initial division property k0.

In summary, we first propagate each of the 2m− 2 vectors through f ◦ · · · ◦ f ◦L. Then, for each
set K̃0 ∈ KS , we check if each vector of K̃0 lead to the same balanced bits through f ◦ · · · ◦ f ◦ L.
If so, then using T Sin we can easily deduce a linear map Lin and an initial division property which
results in an integral distinguisher.

Reducing the amount of work for Lout.

Again, we first only consider Lout ◦ E, and will see in the next part how to combine this with the
previous section to get a distinguisher over Lout ◦ E ◦ Lin. For Lout, if we search naively, we need
to try each possible matrix from Lout. However, this is actually not necessary. Indeed, recall that
there is an integral distinguisher if and only if the last division property set Kr does not contain
all unit vectors, and thus we only need to check if each unit vector belongs to Kr. Now consider a
division property vector k which is sent to such a unit vector ei through the last (modified) S-box
layer. That is, we have k

Sout−→ ei where Sout = (S0
out, . . . , S

s−1
out ). In that case, all S-boxes except

one have an output division property vector equal to 0 . . . 0. Again, since we are using bijective
S-boxes, this means that the output set is constant, and thus the input set is also constant, leading
to a corresponding input vector 0 . . . 0. Hence, k will be of the form

m︷ ︸︸ ︷
0 . . . 0 |

m︷ ︸︸ ︷
0 . . . 0 | . . . |k̃| . . . |

m︷ ︸︸ ︷
0 . . . 0

where k̃ is a non-zero vector of Fm2 .
Consequently, we first compute, for each Lout ∈ Lout, all possible sets K such that K Sout−→ K′,

with Sout = Lout ◦ S and K′ does not contain all unit vectors over m bits. According to those
notations, denote by KSout the set

KSout = {K | ∃Lout ∈ Lout and K′ s.t. K Sout−→ K′ and Em 6⊂ K′}.

We can write the division property propagation chain

k0 f−→ K1 f−→ . . .Kr−1 Sout−→ Kr.

However, we do not know which Lout to use, and thus cannot propagate through Sout. But instead,
we compute a subset K̃ of Kr−1 such that for every vector k of K̃, the non-zeros elements of k all
belong to a single S-box block, i.e. k is of the form

m︷ ︸︸ ︷
0 . . . 0 |

m︷ ︸︸ ︷
0 . . . 0 | . . . |k̃| . . . |

m︷ ︸︸ ︷
0 . . . 0

with k̃ a non-zero vector of Fm2 . Thus, if there is a propagation k
Sout−→ e where e is a unit vector,

then we must have k ∈ K̃. Now from K̃, build the following sets for each i ∈ {0, . . . , s− 1}

Kr−1
i = {k̃ s.t. 0 . . . 0|k̃|0 . . . 0 ∈ K̃ where k̃ is on the i-th S-box}.
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S0
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out S1
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out
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k̃0
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k̃0
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0
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k̃0
0

Compute each Kj

k̃0
i

using MILP
over r − 2 rounds

Figure 2.2: Overall framework of our search algorithm, where we search for L0
in

These sets Kr−1
i allow us to see if we can get a distinguisher. Indeed, if for at least one i ∈

{0, . . . , s − 1} we have Kr−1
i ∈ KSout, then we can get a distinguisher over Lout ◦ E. Then, using a

precomputed table T Sout defined as

T Sout[K] = {Lout ∈ Lout | ∃K′ s.t. K
Sout−→ K′ and Em 6⊂ K′},

we know that there exists a linear map Liout ∈ T Sout[Kr−1
i ] and a unit vector e ∈ Fm2 such that

Kr−1
i

Si
out−→ K′ where e 6∈ K′. Hence, the unit vector 0 . . . 0|e|0 . . . 0 ∈ Fn2 will not belong to Kr, which

means that we have at least one balanced bit. In summary, to search for each block Liout, we just
need to compute all sets Kr−1

i and check if at least one of them belongs to KSout. If so, we can
deduce from T Sout which block Liout to use such that this results in an integral distinguisher.

Putting everything together.

We can now combine the two previous sections to search for a distinguisher over Lout ◦E ◦Lin. The
overall idea is given in Figure 2.2. We first write Lout ◦ E ◦ Lin as

Sout ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
r−2 rounds

◦L ◦ Sin,

and get the following propagation chain

k0 Sin−→ K̃0 L−→ K1 f−→ . . .
f−→ Kr−1 Sout−→ Kr,

where w(k0) = n − 1. According to the two previous sections, we first start by computing
KSin, T Sin,KSout and T Sout. Then, for each S-box block i of the first layer, and for each of the 2m−2 initial
division property vectors k̃0

i , we use an MILP solver to compute all the sets Kr−1
j , j ∈ {0, . . . , s−1}

through f ◦ · · · ◦ f ◦ L, where there are r − 2 applications of f . We denote by Kj

k̃0
i

these sets to tie

them with k̃0
i .
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Next for each set K̃0 ∈ KSin, we compute the following union for each j ∈ {0, . . . , s− 1} :

Kj

K̃0 =
⋃

k̃0
i∈K̃0

Kj

k̃0
i

.

Now if at least one Kj

K̃0 belongs to KSout, then we can get a distinguisher. Indeed, Kj

K̃0 is the set
of division property vectors that can lead to a unit vectors after the application of Sjout. Thus by
definition of KSout, if K

j

K̃0 ∈ K
S
out we know that at least one unit vector will not appear after the

application of Sjout, i.e. Kr does not contains all unit vectors. We then put any map from T Sout[K
j

K̃0 ]
after the j-th S-box in the last layer, and any map from T Sin[K̃0] before the i-th S-box in the first
layer, which thus gives us our new distinguisher. Note that we can easily see that

T Sout[K
j

K̃0 ] =
⋂

k̃0
i∈K̃0

T Sout[K
j

k̃0
i

].

Indeed, a linear mapping lead to at least one balanced bit from K̃0 if and only if it lead to at least
one balanced bit from each k̃0

i ∈ K̃0. This will be used later on to even further reduce the work
needed with an early-abort strategy. The whole procedure is summarized in Algorithm 2.

Complexity. Overall, the number of calls to the MILP solver can be upper bounded as follow.
First, we need to compute all Kj

k̃0
i

for each of the s(2m − 2) possible k̃0. Then, each set Kj

k̃0
i

can
contain at most 2m vectors, and getting one vector of any of these sets cost one call to the MILP
solver. Since there are s of those sets, we need s2m calls to the MILP solver. Note however that in
practice, this is much lower, as we do not need to recover the redundant vectors. This means that
for example, the sets {0001, 0011} and {0001} are considered to be equivalent, as 0011 is redundant
in the first set and thus can be removed. If we go through all sets with m = 4, the maximum size
of any set Kj

k̃0
i

is 6, and there are only 167 possible sets (compared to, in theory, a maximum size
of 16, and 216 possible sets). In total, we need at most s2(2m − 2)2m calls to the MILP solver for a
model over r − 2 rounds, and the factor 2m is actually much lower in practice.

This can be compared to the complexity of a naive algorithm. In such an algorithm, one would
need to try every possible invertible matrix for each S-box at the first round, so about s2m2 cases
(a bit less as there are less than 2m2 invertible matrices). For each of those case, we need to try
again every possible matrix for each S-box at the last round, so this add another factor s2m2 . This
generate s222m2 models, and then for each of those, we need to check if there is a distinguisher. At
most, it costs n = sm calls to the MILP solver, as one call can retrieve one vector of weight 1, and
there are n of them. So in total, a naive algorithm would need about ms322m2 calls to the MILP
solver, and each model is over r rounds which is much more expensive to solve.

Moreover for our technique, if we go through each of the 2m − 2 vectors k̃0
i in a clever way, we

can often reduce further the number of calls to the MILP solver. Indeed, if we first go through all
vectors of weight m− 1 and compute all corresponding Kj

k̃0
i

, we are left with two cases :

• All sets T Sout[K
j

k̃0
i

] for all vectors k̃0
i of weight m − 1 are empty, and thus we do not need to

go further. Indeed, this means that no linear mapping lead to at least one balanced bit from
any initial vector of weight m − 1. Moreover, for any vector k such that w(k) < m − 1, we
know that there is a vector k̃0

i of weight m − 1 such that k̃0
i � k. Hence, since there is no

balanced bit from all vectors k̃0
i of weight m− 1, then we cannot have any balanced bit from

any vector of weight strictly lower than m− 1 (see [129] Proposition 2).
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• Otherwise, we first check if there is any set K̃0 ∈ Kin built only from vectors of weight m− 1.
If so, we apply Algorithm 2 from line 11 to line 22 to check if we can find a distinguisher. If
no distinguisher exists, or if none of the set of Kin are built only from vectors of weight m−1,
then we go through all vectors of weight m− 2 and do the same procedure and so on.

We can even go further by looking at all the possible transitions k
Si

in−→ K with w(k) = m−1 when we
go through all linear mappings in Lin. Suppose that the two following transitions are possible (and

possibly with different linear mappings), k
Si

in−→ K and k′ S
′i
in−→ K′, with w(k) = w(k′) = m− 1.

If for all vectors k̃′ ∈ K′, there exists a vector k̃ ∈ K such that k̃′ � k̃, it is not useful to consider
S ′iin. Indeed, in that case, if S ′iin would lead to a distinguisher, then so would Siin. Such a transition

k′ S′iin−→ K′ is thus redundant and does not need be examined. We can thus build all possible
transitions k

Si
in−→ K which are not redundant. If there is a vector k̃ which never belongs to K

among all such non-redundant transitions, we never have to examine the propagation of this vector.
This essentially reduces even further the space of all the vectors k̃0

i we need to consider. In practice,
this allows to significantly reduce the time required to find a distinguisher, or even prove that no
such distinguisher exists, and this will be detailed in the next section.

Algorithm 2 Searching Lin and Lout
1: Compute KSin, T Sin,KSout and T Sout
2: for i = 0 . . . s− 1 do
3: for each of the 2m − 2 vectors k̃0

i do
4: Generate a MILP model for f ◦ · · · ◦ f ◦ L r − 2 application of f
5: Set the initial division property to 1 . . . k̃0

i . . . 1 k̃0
i on the i-th block

6: Compute each set Kj

k̃0
i

, j ∈ {0, . . . , s− 1} using the MILP model
7: end for

8: for K̃0 ∈ KSin do
9: L0

out, . . . , L
s−1
out ← Im Im : identity matrix of size m

10: found_distinguisher ← false boolean to check if we found a distinguisher
11: for j = 0 . . . s− 1 do
12: Compute Kj

K̃0

13: if Kj

K̃0 ∈ K
S
out then

14: Ljout ← any element from T Sout[K
j

K̃0 ]
15: found_distinguisher ← true
16: end if
17: end for
18: if found_distinguisher then
19: Liin ← any element in T Sin[K̃0]
20: return Diag(Im, . . . , Liin, . . . , Im), Diag(L0

out, . . . , L
s−1
out )

21: end if
22: end for
23: end for
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2.4 Application

2.4.1 Division Property against 10-round RECTANGLE

RECTANGLE [145] is a lightweight block cipher designed for fast implementation using bit-slice
techniques. It is a 64-bit block cipher, using 4-bit S-boxes and a permutation as the linear layer.
There are 80-bit and 128-bit key sizes, and the total number of round is 25 in both cases. The
best known division property based integral distinguisher is from [143] over 9 rounds, using 260

data and resulting in 16 balanced bits. By applying the previous algorithm, we were able to find a
distinguisher over 10 rounds, using 263 data and resulting in 1 balanced bit. The distinguisher is
built on Lout ◦ E ◦ Lin, where the block 0 of Lin is

L0
in =


1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1


and Lout is the identity. This results in the following distinguisher, where c denotes a constant bit,
a denotes a bit taking all possible values through the set, b denotes a balanced bit and ? denotes
a bit in an unknown state.

Input :


aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaac
aaaaaaaaaaaaaaaa

→ Output :


??????????b?????
????????????????
????????????????
????????????????


Overall, the time needed to compute all Kj

k̃0
i

for a given k̃0
i is about 400 seconds in average. The

reason this distinguisher exists is that when considering S′ = S ◦ L0
in where S is the S-box of

RECTANGLE, the transition 1101 S′−→ {0101, 1110} is now possible, while the set {0101, 1110} was
not reachable from the original S-box S. Note that this distinguisher does not depend on the key
size, and thus is applicable to both the 80-bit and the 128-bit key variants.

2.4.2 Strengthening RECTANGLE

According to our observations in Section 2.3.1, it is natural to think that the resistance of an S-
box-based cipher against division property is highly related to the number of weight 1 vectors in
the division property propagation table of the S-box. As such we study how the choice of the S-box
affects the resistance of RECTANGLE against division property. We first give some generic insights
about the design of an S-box to resist classical division property (i.e. without using our extension
technique). Before going further, let us recall how the division property propagation table is built.

Proposition 2.4.1 ([143]). Let S be an n-bit S-box with y = (y0, . . . , yn−1) the ANF of S , where
each yi is a polynomial in the input variables x = (x0, . . . , xn−1) of S. For some k ∈ Fn2 , let
Uk = {k̄ ∈ Fn2 |k � k̄} and Fk = {xk̄|k̄ ∈ Uk}. Then we have the transition k

S−→ k′ if and only if
yk′ contains a monomial in Fk.

Intuitively, an S-box such that all vectors in the propagation table are of weight 1 should provide
a good resistance against division property. This leads us to define a perfect S-box, where the choice
of the word perfect will be justified in Theorem 2.4.6.
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Definition 2.4.2. Let S be an n-bit S-box. We say that S is perfect (w.r.t division property) if its
division property propagation table is of the following form :

• 0 . . . 0 S−→ K = {0 . . . 0},

• 1 . . . 1 S−→ K = {1 . . . 1},

• For any other k ∈ Fn2 , k
S−→ En.

Note that, from Proposition 2.4.1 this also means that if S is a perfect S-box, for any k ∈
Fn2 \ {0 . . . 0, 1 . . . 1}, the transition k

S−→ k′ is always valid for any k′ ∈ Fn2 \ {0 . . . 0}. However,
most vectors will be redundant, i.e. vectors k′,k′′ ∈ Fn2 such that k

S−→ k′, k
S−→ k′′ and k′ � k′′.

Since we do not need to consider redundant vectors in the division property propagation table, we
still write k

S−→ En.
One can wonder wether such S-box exists, and consequently, we give a clear characterization for

perfect S-boxes.

Proposition 2.4.3. Let S be an n-bit S-box with y = (y0, . . . , yn−1) the ANF of S, where each yi
is a polynomial in the input variables x = (x0, . . . , xn−1) of S. S is perfect if and only if each yi
contains all monomials of degree n− 1. An example of such an S-box over 4 bits is the following :

S = [1, 4, 3, 5, 13, 7, 12, 10, 8, 0, 11, 15, 6, 14, 9, 2]

Proof. Let S be an n-bit S-box satisfying the characterization above. Since S is invertible, we know
that we already have

0 . . . 0 S−→ K = {0 . . . 0} and 1 . . . 1 S−→ K = {1 . . . 1}.

We first study the case k
S−→ K where w(k) = n − 1. In that case, we have Uk = {k, 1 . . . 1} and

thus Fk = {xk, x0 . . . xn−1}. Then if k′ ∈ K, from Proposition 2.4.1 this means that either xk or
x0 . . . xn−1 appears in the expression of yk′ . Especially, for S to be perfect, this needs to hold for
every k′ ∈ En, thus for every i ∈ {0, . . . , n− 1}, xk or x0 . . . xn−1 must appear in the expression of
yi.

However, since S must be invertible, it is well known that each component of its ANF must
have a degree at most n − 1, hence x0 . . . xn−1 cannot appear in any yi. To summarize, to have
k

S−→ K = En for every k such that w(k) = n − 1, then for every such k, xk must appear in the
expression of each and every yi, i ∈ {0, . . . , n − 1}, which exactly means that each yi contains all
monomials of degree n− 1.

Now for every remaining case, i.e. 1 ≤ w(k) ≤ n − 2, Uk always contains at least one k̄ such
that w(k̄) = n− 1, and thus Fk contains at least one monomial of degree n− 1. If we want to have
k

S−→ En, this means that every yi must contain at least one monomial from Fk. However, each
yi contains all monomials of degree n − 1, and Fk contains at least one such monomial, and thus
k

S−→ En holds, which leads to the fact that S is then a perfect S-box.

This characterization is very similar to the property that an S-box should verify to have a good
resistance against division property given in [37]. However, their representation is a bit different,
and we show that choosing a perfect S-box for an SPN block cipher is actually the optimal choice
when considering classical division property. First, we need the two following lemmas.
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Lemma 2.4.4. Let S be an n-bit S-box, and k,k′ ∈ Fn2 such that k � k′. Let k̃ ∈ Fn2 such that
k′ S−→ k̃. Then we have k

S−→ k̃.

Proof. From k � k′, we know that Uk′ ⊆ Uk, and as such, Fk′ ⊆ Fk. Since k′ S−→ k̃, we know that
yk̃ contains a monomial in Fk′ . However, since Fk′ ⊆ Fk, we also have that yk̃ contains a monomial
in Fk, which exactly means k

S−→ k̃.

Lemma 2.4.5. Let S? be an S-box layer such that S? = (S?, . . . , S?) where S? is a perfect S-box.
Let S be another S-box layer such that S = (S, . . . , S) where S is any non-perfect S-box. Let k, k̃′

such that k
S−→ k̃′. Then we can always find k̃ ∈ Fn2 such that k

S?

−→ k̃ and k̃ � k̃′.

Proof. Denote by ki the i-th block of k which goes through the i-th S-box, i.e. ki
S−→ k̃′

i. Note
that k � k′ is equivalent to ki � k′

i for all i. We can build each block k̃i of k̃ such that k
S?

−→ k̃
and k̃ � k̃′ as follow :

• If k̃′
i = 0 . . . 0, then k̃i = 0 . . . 0,

• If k̃′
i = 1 . . . 1, then k̃i = 1 . . . 1,

• Otherwise, since S? is perfect, we can choose k̃i = e, where e is a unit vector such that
e � k̃′

i.

By building k̃i as described, it is clear that for all i we have ki
S?

−→ k̃i and k̃i � k̃′
i. As such,

k
S?

−→ k̃ and k̃ � k̃′.

We are now ready to prove the following theorem, which shows that using a perfect S-box is the
optimal choice for classical division property (i.e. without using our extension technique).

Theorem 2.4.6. For a given n-bit block-cipher where only the S-box remained to be determined
(i.e. the linear layer L is fixed), using an S-box layer S? built with a perfect S-box S? is optimal
in terms of resistance against classical division property. We define optimal in the sense that if we
denote by r? (resp. r) the smallest number of round such that Kr? = En (resp. Kr = En) when
using a perfect S-box S? (resp. any other S-box S), then we always have r? ≤ r. This basically
means that using a perfect S-box always gives the best resistance against classical division property.

Proof. Let the following be a division trail when using a non-perfect S-box :

k0 S−→ k̂0 L−→ k1 S−→ . . .
L−→ kr

where kr ∈ En. We can build the following division trail when using a perfect S-box :

k0 S?

−→ k̃0 L−→ k1 S?

−→ . . .
L−→ kr.

For this division trail to be valid, we use the two previous lemma :

• Using Lemma 2.4.5, since ki
S−→ k̂i we can build k̃i such that ki

S?

−→ k̃i and k̃i � k̂i.

• Since k̃i � k̂i and k̂i
L−→ ki+1, using Lemma 2.4.4 we know that k̃i

L−→ ki+1 is a valid
transition.
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Hence, for any unit vector e, there is a valid division trail over r rounds which ends with e when
using a perfect S-box, i.e. we have Kr = En. By definition, r? is the smallest number of rounds
which should verify this condition, thus r? ≤ r. Moreover, by definition, the best distinguisher we
can build when using a perfect S-box (resp. any other S-box) is over r? − 1 rounds (resp. r − 1
rounds). Hence why using a perfect S-box gives the best resistance against division property.

Thus when considering classical division property, choosing the best S-box in regards to security
is pretty clear. Note however that such an S-box has a very peculiar behavior with our technique.
Indeed, since every monomial of degree n−1 appears in every component of the ANF, this property
cannot still hold when we consider either L ◦S or S ◦L where L is a linear mapping (different from
a permutation). As such, if a perfect S-box is used, when considering our technique, the first and
last round will be somewhat weaker, as the S-box will not be perfect for these rounds. However,
every other round will still use this perfect S-box, thus in a way, the behavior "in the middle" of the
cipher would still be good.

We decided to search for a better S-box to use for RECTANGLE, in the hope that it would lead to
a better resistance against our technique. Since the rational behind S-box design highly depends on
potential applications of the resulting block cipher, we restrict the search space to S-boxes linearly
equivalent to the original RECTANGLE S-box. Indeed, linearly equivalent S-boxes have similar
structures regarding differential and linear properties, see Section 4 of the Introduction.

For 4-bit S-boxes, as there are about 214.3 invertible matrices of size 4, the main issue we are
facing is the high complexity of trying all the 228.6 candidates for (A,B). Indeed, many hours are
required to search for a division property distinguisher, making the whole search infeasible. Hence,
we propose to use several heuristics to select which pairs (A,B) to try.

Selecting good S-boxes. Our first idea was to compute the division property propagations tables
of all candidates (A,B). This required to perform 228.6 × 22×4 = 236.6 non trivial operations and
took approximately 80h on a Xeon E5-2695 (72 cores). Among all those linearly equivalent S-boxes,
none of them were perfect. However we found 56 almost perfect S-boxes, i.e. with 13 (instead of
14) transitions k → {1000, 0100, 0010, 0001}. Note that many pairs lead to the same table but the
division property only depends on the table. Hence it is enough to try only one representative per
table. Since some implementations of block ciphers do not use a table to store the S-box, we believe
it makes sense to select the representative which would add less extra XORs. Hence, for each of
the 56 tables we selected the couple (A,B) with the lower XOR count and ran our new automated
search tool. As a result, we found that by using

A =


1 1 0 0
1 0 1 0
1 0 0 1
0 1 0 0

 and B =


1 0 1 0
0 1 1 0
0 0 1 0
0 0 0 1


which results in only 5 XOR, and replacing all S-boxes of RECTANGLE by S′ = B ◦ S ◦A where S
is the original S-box of RECTANGLE, then even when using our technique, there is no distinguisher
over 9 rounds of this variant of RECTANGLE. We were however able to find a distinguisher over 8
rounds of this variant, using our technique where Lin is built with L0

in as defined below, others Liin
for i 6= 0 are the identity, and each block Liout of Lout are the same

L0
in =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0

 , Liout =


1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .
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This results in a distinguisher of data complexity 263 resulting in 14 balanced bits. Note that the
classic search algorithm for division property distinguishers lead to no distinguisher even over 8
rounds, which shows again that our extension technique can find new distinguishers. Moreover,
even when using a perfect S-box (such as the one given in Proposition 2.4.3), the best distinguisher
using the classic search algorithm is also over 7 rounds, which shows that our choice of S-box, even
though it is not a perfect one, is optimal with respect to the classic division property.

We believe that this could lead to a new criteria when designing S-boxes, as for the case of
RECTANGLE, it improves the resistance against division property based distinguishers by 2 rounds.
We would thus first build the S-box according to classical criteria (differential and linear resistance,
. . . ), then look at the linear equivalent S-boxes and take the one with the best division property
propagation table. According to our experiment, while we do not have the same optimality proof
as for classical division property, using an S-box with a division property propagation table as close
as possible to the one of a perfect S-box seems to be the best choice.

About golden S-boxes. In 2007, Leander and Poschmann [97] analyzed all 4-bit S-boxes up to
linear equivalence and exhibited a set of 16 equivalence classes leading to optimal S-boxes (called
golden S-boxes) with respect to both differential and linear cryptanalysis. We went through all
members of each of these equivalence classes to see if any of them is a perfect S-box. Indeed, recall
that division property is not invariant through linear equivalence. As a result, it turns out that
there is no S-boxes among all of these that is a perfect S-box, thus we cannot have an S-box which
is optimal for both linear, differential and division property based cryptanalysis. However, four
of these classes have some almost perfect S-boxes among them, i.e. with 55 transitions k → k′

with w(k′) = 1 (instead of the maximum of 4 × 14 = 56), namely classes G0, G1, G2 and G8. We
give one example for each of these classes in Table 2.1, as well as an example with the maximum
number of such transitions for each other class. We also give the number of S-boxes reaching that
maximum number of transitions across each class. Note that according to Proposition 2.3.1, this
number of transition is invariant by permutation equivalence, i.e. for a given S-box S with n1 such
transitions, then for any permutations P, P ′, S′ = P ◦ S ◦ P ′ also has n1 such transitions. We can
thus reduce the number of member of each class to examine by picking one member S and examining
all S-boxes built as L2 ◦ S ◦ L1 with L1 ∈ Lin and L2 ∈ Lout, where Lin and Lout are the spaces
defined in Section 2.3.2. The number of S-boxes given here is thus computed when considering that
equivalence relation, but this shows that there are actually a decent amount of choice of S-boxes
if one wants to consider other criterion than differential, linear and division property cryptanalysis
for choosing an S-box. It is worth noting however that two S-boxes that are permutation equivalent
do not necessarily lead to the same result for a given block cipher.

2.4.3 Division Property against PRESENT

PRESENT [33] is a 64-bit lightweight block cipher, using either 80 bits or 128 bits keys, with a round
function very similar to RECTANGLE and using 4-bit S-boxes. The best known division property
based integral distinguisher is from [143] over 9 rounds, requiring 260 data and resulting in 1 balanced
bit. We applied our previous algorithm to this block cipher, and were actually able to show that
our technique cannot lead to a distinguisher over 10 rounds of PRESENT. Indeed, as mentioned at
the end of the previous section, if we go through all vectors k̃0

i of weight 2, then all of the resulting
sets T Sout[K

j

k̃0
i

] are empty, meaning that if there is at least one vector of weight 2 or lower in K̃0,
then this cannot result in some balanced bits after 10 rounds. Moreover, if we go through all linear
mappings L ∈ Lin and compute all possibles propagations k

S′−→ K where w(k) = 3 and S′ = S ◦L
with S the S-box of PRESENT, then K will always contains at least one vector of weight 2, or at
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Class S-box Number of transitions Number of S-boxes
G0 [0, 1, 11, 13, 2, 9, 15, 12, 7, 4, 5, 14, 8, 6, 3, 10] 55 1536
G1 [0, 9, 3, 11, 13, 15, 10, 4, 1, 12, 6, 5, 14, 7, 2, 8] 55 1536
G2 [0, 12, 3, 11, 13, 10, 15, 1, 4, 7, 6, 14, 5, 2, 9, 8] 55 1536
G3 [0, 3, 7, 12, 13, 9, 11, 10, 2, 15, 14, 4, 5, 8, 6, 1] 53 3360
G4 [0, 3, 7, 5, 11, 15, 2, 12, 13, 6, 14, 9, 10, 1, 8, 4] 53 3360
G5 [0, 1, 14, 13, 7, 8, 3, 9, 11, 12, 4, 10, 5, 2, 15, 6] 53 3360
G6 [0, 1, 7, 4, 14, 8, 3, 9, 11, 5, 13, 10, 12, 2, 15, 6] 53 3360
G7 [0, 3, 1, 10, 14, 12, 11, 15, 7, 9, 8, 5, 6, 4, 2, 13] 53 3360
G8 [0, 10, 1, 2, 15, 13, 12, 8, 4, 14, 9, 5, 6, 11, 7, 3] 55 1536
G9 [0, 13, 2, 12, 14, 1, 10, 8, 7, 6, 4, 9, 15, 11, 5, 3] 54 1344
G10 [0, 8, 3, 1, 15, 14, 13, 9, 4, 12, 10, 6, 5, 11, 7, 2] 54 1344
G11 [0, 1, 6, 4, 11, 12, 2, 13, 14, 3, 9, 8, 10, 15, 5, 7] 53 3360
G12 [0, 1, 2, 12, 7, 4, 14, 5, 10, 15, 9, 8, 11, 3, 13, 6] 53 3360
G13 [0, 7, 11, 14, 13, 1, 5, 6, 4, 2, 9, 3, 10, 8, 15, 12] 53 3360
G14 [0, 9, 3, 15, 5, 10, 8, 13, 4, 7, 14, 6, 11, 1, 2, 12] 54 1344
G15 [0, 1, 6, 8, 11, 12, 14, 13, 2, 15, 9, 5, 3, 7, 4, 10] 54 1344

Table 2.1: Examples of S-boxes with the maximum number of transitions k→ k′ with w(k′) = 1

least one vector of weight 1. Hence, no matter which linear map we take from Lin, after the first
S-box layer, there will always be a vector of weight either 1 or 2, which lead to a set K10 containing
all unit vectors, and thus no distinguisher over 10 rounds can be built using our technique.

2.4.4 Strengthening PRESENT

As for RECTANGLE, we search for another S-box to use which is linear equivalent to the S-box of
PRESENT such that it would improve the resistance against division property based distinguishers.
By using S′ = B ◦ S ◦A with

A =


1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and B =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


instead of S for all S-boxes of PRESENT, we do not have any division property based distinguisher
over 8 rounds of this variant of PRESENT even when using our extension technique. However, we
found a distinguisher over 7 rounds with data complexity 263 and with all 64 bits being balanced
using our technique, with Lout being the identity and Lin being built with

L0
in =


1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


and Liin as the identity for i 6= 0. The classical search algorithm was only able to find a distinguisher
on up to 6 rounds, and again, this choice is optimal for classic division property, as a perfect S-box
also gives a classic division property based distinguisher over 6 rounds. This again highlights that
our extension technique allows to find better distinguishers than the classical search. Note that, for
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non table-based implementation, the new S-box we propose only requires two extra XORs compared
to the original S-box of PRESENT.

2.5 Conclusion
We studied further the division property and the distinguishers that are built from it. We show
that while the previous search methods were able to efficiently find some integral distinguishers
based on the division property, the search space explored by these methods does not actually
cover all possibilities. As such, we show that for r rounds of a block cipher E, considering E′ =
Lout ◦ E ◦ Lin instead of E, where Lout and Lin are block diagonal linear maps, can lead to some
integral distinguisher over E′, while E does not have any. We provide an algorithm to find such
distinguisher, and successfully apply it to the block cipher RECTANGLE, on which we found an
integral distinguisher over 10 rounds, requiring 263 data and leading to 1 balanced bit. This is one
more round than the previously known distinguishers. The design of our algorithm also allows us to
prove that our technique cannot extend the best distinguisher on PRESENT over one more round.
Finally, we give a criteria on S-boxes which allows to prove that if an S-box verifies this criteria,
it will provide the best resistance against division property. To our knowledge, this is the first
time that such an optimality result is given and formally proven for division property. According
to our observations, we were able to exhibit some variants of RECTANGLE and PRESENT which
have a better resistance against integral distinguisher based on the division property. Namely the
maximum number of round on which we could find an integral distinguisher over our variant of
RECTANGLE and PRESENT is 2 rounds lower than when using the original S-box. This might give
a new design criteria for S-boxes and further research about this will be needed.

We believe that overall, this technique could open up a lot of questions and possibilities. Indeed,
we basically decomposed a block cipher E as

E = (E2 ◦ L−1
out) ◦ (Lout ◦ E1 ◦ Lin) ◦ (L−1

in ◦ E0),

and merged Lin and Lout with the first S-box layer. But could we use the same technique at a lower
level, i.e. decomposing the round function as f = L ◦ L−1 ◦ L ◦ S, merging L with S for example
? In a more general view, the question is : what is the best representation of a block cipher to
propagate the division property ? Also, our algorithm focuses on finding any distinguisher over an
SPN block cipher. Thus, how could we find an optimal distinguisher (in term of data) using this
technique, as applying our algorithm when more than one S-box has an input division property
which differs from 1 . . . 1 seems quite hard in term of complexity. The same issue comes up when
considering 8-bit S-boxes, as we need more calls to the solver, and the resulting MILP models are
way more complicated, and thus takes a longer time to be solved. Finally, could this also apply to
other constructions such as Feistel block ciphers or permutation based block ciphers ? Indeed, our
algorithm is efficient because we can basically only study the propagation from after the first S-box
layer to before the last S-box layer.



"Failure is only the opportunity to begin again.
Only this time, more wisely."

— Uncle Iroh



Chapter 3

Variants of the AES Key Schedule for
Better Truncated Differential Bounds

Differential attacks are one of the main ways to attack block ciphers. Hence, we need to evaluate the
security of a given block cipher against these attacks. One way to do so is to determine the minimal
number of active S-boxes, and use this number along with the maximal differential probability of
the S-box to determine the maximal probability of any differential characteristic. Thus, if one wants
to build a new block cipher, one should try to maximize the minimal number of active S-boxes. On
the other hand, the related-key security model is now quite important, hence, we also need to study
the security of block ciphers in this model. At FSE’17, Khoo et al. [84] give a byte-permutation
to use instead of the original AES key-schedule which improves the security in this model when
considering differential attacks.

In this chapter, we go further and study how we can design a good permutation to use as the
key schedule in AES-128. More precisely, we first start by giving some bounds on the reachable
minimal number of active S-boxes for up to 7 rounds of AES if we use a simple permutation as its
key schedule. Especially, we show that there is no permutation that can reach a minimal number
of active S-boxes of 18 or more over 5 rounds. These bounds allow us to know the results that a
"perfect" permutation could reach. Then, we provide a method to search for such a permutation. To
do so, we reused the meta-heuristic approach given by Nikolić in [111], combined with a Constraint
Programming model inspired from the work of Gerault et al. in [67]. Especially, we give a way to
model the underlying equations of a truncated differential characteristic, leading to a more precise
model than the original one from [67]. Namely, the truncated differential characteristics found are
always valid until we consider the DDT of the S-box.

We also went further and modified both the key schedule and one step of the AES round function
(namely, ShiftRows) to see whether we can achieve better bounds. As a result, we exhibit a
permutation Pk which, when used as the AES key schedule, lead to a minimal number of active S-
boxes of 20 over 6 rounds, while no characteristic has a probability larger than 2−128. When changing
both the key schedule and the ShiftRows step, we give several pairs of permutations (P ik, P is) that
have a minimal number of active S-boxes of 21 over 6 rounds, while again, no characteristic has a
probability larger than 2−128. While we applied this method to AES, it is quite generic and could
also be used on any block cipher, as long as one have an efficient enough way to compute the
minimal number of active S-boxes. Our implementation is available at https://github.com/
TweakAESKS/TweakAESKS.
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Figure 3.1: Generic iterated cipher construction [78]

3.1 Introduction

First introduced in 1990 by Biham and Shamir [17], differential cryptanalysis is one of the main
tool to analyze and attack symmetric primitives. The main idea is to introduce some differences in
the plaintext, and see how these differences propagate through the different steps of the algorithm,
independently from the key. For example, given an encryption function E(p, k) encrypting the
plaintext p ∈ Fnb

2 using a key k ∈ Fnk
2 , if one is able to prove that there exists a pair of differences

∆in,∆out ∈ Fnb
2 such that E(p⊕∆in, k) = E(p, k)⊕∆out for all keys, then it gives a strong distin-

guisher for the encryption function E . Moreover, due to the non-linearity of E , such a differential
relation could only hold with a certain probability. Consequently, a lot of work has been put into
designing algorithms that search for the best possible differential characteristics of a given cipher.
For instance, Matsui’s algorithms [103] were the first designed. Most of modern ciphers are now
built as iterated ciphers, i.e., a round function f is built and repeated several times, XOR-ing a
round key between each application of f , see Figure 3.1. Thus, to search for such a pair (∆in,∆out),
one often studies the propagation of the input difference through each round of the cipher, thus
leading to a differential characteristic consisting of all differences in each state si.

One can also choose to consider only truncated differences, that is, only look at whether or not the
difference in one byte is zero. While this can also directly lead to various attacks, e.g., impossible
differential attacks [15, 87], it can also be used to get some results in differential cryptanalysis.
Indeed, in most cipher designs, the non-linear component consists of an S-box, a small non-linear
function applied several times over all iterations. This S-box is the reason that some differential
characteristic only holds with a certain probability. Given an S-box S acting on a small number of
s bits, and for each pair (∆in,∆out) ∈ F2s

2 , one can easily compute how many x ∈ Fs2 verifies the
relation S(x⊕∆in) = S(x)⊕∆out. This allow to compute the Difference Distribution Table (DDT)
of the S-box, which gives the probability that the above relation holds for each (∆in,∆out). Thus,
given a differential characteristic, one can easily compute the probability that it holds, simply by
multiplying all differential probabilities of each S-box together.1 Hence, given a truncated differential
characteristic, while we cannot determine the exact probability that this characteristic holds, we can
deduce its minimal probability. Indeed, if the S-box has a maximal differential probability of p, and
there are n S-boxes with a non-zero difference (called active S-boxes), then the truncated differential
characteristic holds with a probability at most pn. Thus, given the maximal differential probability
of the S-box used and the bit-length nk of the key, one can easily deduce the minimal number of
active S-boxes nmin that leads to pnmin < 2−nk . So, if for a given number of round, we can prove
that there is at least nmin active S-boxes, we know that there would be no differential characteristic

1Using the fair assumption that each round is independent, which while obviously not true, is admitted as a
reasonable assumption.
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with a probability better than 2−nk , which would mean that finding a pair of plaintexts satisfying
this characteristic would a priori costs more than an exhaustive search for the key.

Such differentials and truncated differentials can also be considered in the related-key model.
First introduced in 2009 to attack AES-192 and AES-256 [24, 26], this model allows the attacker
to inject differences in the plaintext, but also in the key. Another worth-mentionning model is the
more recent related-tweak model for tweakable block ciphers, where the attacker fully controls an
additional input for the block cipher called a tweak [99, 148]. While this model is closer to chosen-
plaintext attacks, the tweak is often (but not necessarily) used alongside the key and thus involved
in the key schedule, such as in the TWEAKEY framework [80]. Since the attacker can now inject
some differences in both the plaintext and the key, this causes a large increase in the complexity
to search differential and truncated differential characteristics. Nonetheless, several tools have been
designed to tackle this problem [28, 65, 67]. Hence, a few proposals were made to give another,
more secure, key schedule for some primitives, such as [110, 43] for AES and [111] for SKINNY and
AES-based constructions from FSE 2016 [79]. However, their main concern was mostly to design a
more secure key schedule, without considering the possible loss in efficiency. To that regard, Khoo
et al. [84] proposed a new key schedule for AES which consists in only a permutation at the byte
level, based on their proof on the number of active S-boxes in the related-key model for AES. Using
a permutation thus leads to a very efficient key schedule, both in software and hardware, and can
also make the analysis easier.

3.2 Background

Differential cryptanalysis was first introduced by Biham and Shamir in 1990 [17] and mainly consists
in studying the propagation of differences between two plaintexts through the cipher. Here, we only
consider truncated differences, that is, we are only interested in whether a byte does have a non-zero
difference (active byte) or not (inactive byte). Our work is centered around AES, for which we make
a few remainders. AES is the NIST block cipher standard, derived from Rinjdael [46]. It uses an
internal state of 128 bits, and several key sizes are available, namely 128, 192 and 256. Here, when
mentioning AES, we refer to the 128-bit version.

It is an SPN block cipher, iterating a round function R = MC◦SR◦SB◦ARK 10 times, where each
component of the round function is quickly described in the following. The state can be viewed as a
4×4 byte array, and thus we will often talk about columns of the state. The round function consists
in four operations: AddRoundKey (ARK), SubBytes (SB), ShiftRows (SR) and MixColumns
(MC). ARK XORs the round key into the internal state. This round key is derived from the master
key using a key schedule KS, for which we do not give details, our ultimate goal being to change it.
We refer the interested reader to [46] for the original descriptions. SB applies a non-linear operation
(called S-box) on each byte of the state, then SR performs a cyclic shift of each row, where Row j
is shifted by j − 1 bytes to the left, j ∈ {1, 2, 3, 4}. Finally, MC is a linear operation that multiplies
each column of the internal state by an MDS matrix with coefficients in F28 .

We first recall several well known properties of the MC operation, which will be used in the rest
of the chapter. Here, w(x) corresponds to the number of active bytes in x, which is either a state
or a column of the state.

Proposition 3.2.1 (MixColumns MDS property). Let z and y be two state columns such that
MC(z) = y. Then, either w(z) + w(y) = 0 or w(z) + w(y) ≥ 5. Moreover, for any five bytes in y
and z, there exists one linear equation between those five bytes.

Proof. This comes directly from the fact that the matrix used in the MC operation is MDS.
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Proposition 3.2.2 (MixColumns linear property). Let z, z′, y, y′ be four state columns such that
MC(z) = y and MC(z′) = y′. Then, the MixColumns MDS property also holds for (z ⊕ z′) and
(y ⊕ y′), that is: either w(z ⊕ z′) + w(y ⊕ y′) = 0 or w(z ⊕ z′) + w(y ⊕ y′) >= 5

Proof. This comes directly from the previous proposition and the fact that MC is linear.

Lemma 3.2.3. Let k, x, y, z be four state columns such that MC(z) = y, z contains at least one
active byte and x = y ⊕ k. Denote by iy,z the number of inactive bytes in y and z (i.e., iy,z =
8−w(y)−w(z)) and cy,k,x the number of bytes from y that are cancelled by k in x. If iy,z+cy,k,x ≥ 5,
then there is at least one linear equation on some bytes of k. Moreover, this can only happens if
cy,k,x ≥ 2.

Proof. If iy,z + cy,k,x ≥ 5, then from the MixColumns MDS property, it follows that there is an
equation between any five bytes chosen from the inactive ones in y and z, and the bytes from z
which are cancelled by k. If we denote such a cancelled byte by zi, that is, zi⊕ki = 0, then we have
ki = zi, hence the equation involves some bytes of k and some inactive bytes from y and z, which
are zeros.

Since z contains at least one active byte, we have w(z) + w(y) ≥ 5, hence iy,z ≤ 3. Therefore,
if cy,k,x = 1 (i.e., only one byte is cancelled), we have iy,z + cy,k,x ≤ 4, and thus no equation is
implied.

When considering truncated differentials, we are often interested in the number of active S-boxes,
that is, the number of active bytes going through an S-box (i.e., active bytes at the beginning of the
round). We will often refer to the (minimal) number of active S-boxes in a characteristic as the length
of the characteristic, and to a minimal characteristic to refer to a characteristic which reaches the
minimal number of active S-boxes. Given a truncated differential characteristic of length n, one can
deduce the maximal probability that this characteristic can have once being instantiated. Indeed,
if the S-box has a maximal non-zero differential probability of p, then the maximal probability
of this characteristic is pn. If one studies a block cipher with a key of length nk bits, then the
goal is to prove that no characteristics can be instantiated with a probability larger than 2−nk .
Hence, for AES, since the maximal differential probability of the S-box is 2−6, we know that if for
a given number of rounds the minimal number of active S-boxes is greater or equal than 22, then
no differential characteristic with a differential probability larger than 2−128 exists.

Searching whether a characteristic reaching a given length or maximal probability exists has been
a major focus in academic research. One way to find the best probability is to proceed in two steps.
First, one try to find a truncated differential characteristic with a minimal number of active S-boxes,
and then try to instantiate this characteristic. When searching for such a truncated differential
characteristic, one can choose to consider additional information about the cipher along with "basic"
propagation rules coming from the round function, to avoid trying to instantiate characteristics that
would not be instantiable anyway. Hence for AES, we give the following definitions.

Definition 3.2.4. A characteristic is said to be valid in the "truncated differential setting" if and
only if the MixColumns linear property is always verified and there is at least one non-trivial
solution to the system of equations (if any) induced by Lemma 3.2.3.

A characteristic that remains valid even when one does not consider the MixColumns linear
property nor the equations is said to be valid in the pure truncated differential setting.

The point of these definitions is twofold. On the one hand, since the pure truncated differential
setting contains significantly less constraints, the minimal characteristic could be a lot easier to find.
However, it may result in an invalid characteristic when one tries to instantiate it, which could have
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Figure 3.2: A partial round that implies one equation

been detected in the truncated differential setting. Conversely, finding the minimal characteristic
in the truncated differential setting could be harder, but the only thing that could invalidate this
characteristic is the S-box DDT.

We chose to use the same approach as Gerault et al. [67], who proposed to use two Constraint
Programming models. The first one was used to find the minimal characteristics for AES, considering
only the MixColumns linear property. The second one takes a list of truncated characteristic and
tries to find the best instantiation (if any) of each characteristic with respect to its probability. As
we aim at changing the key schedule, we changed these models, detailed in the following.

Model 1. This model takes as input a permutation Pk to use as the key schedule and a number
of rounds, and output the minimal number of active S-boxes with these parameters in the truncated
differential setting. Compared to the first model of [67], we directly model the equations coming
from the MixColumns operation (see Lemma 3.2.3), resulting in a more reliable result, albeit being
slower. We refer the reader to Section 3.2.1 for the method used to model these equations.

Model 2. This model also takes as input a permutation Pk for the key schedule and a number of
rounds, along with a list of truncated differential characteristics. It then goes through each of these
truncated characteristics, and tries to find an instantiation with a probability larger than 2−128. If
such an instantiation is found, it gives its probability and the differential characteristic, otherwise
it just stops without trying to find an instantiation with a probability smaller than 2−128.

3.2.1 Modelizing the MC equations in Constraint Programming

We will give here an example of how we generate constraints to modelize the equations coming from
the MC operation. From the MDS property of MC, we know that there is an equation between
any set of five bytes taken from the same column of z and y. Specifically, we have the following
equation, where coefficient are in F256:

5.z[0] + 7.z[1] + z[3] = 2.y[0] + y[2].

Now we take the situation given in Fig. 3.2. First, all bytes 0,1 and 3 of z are inactive, hence we
can replace z[0], z[1] and z[3] in the previous equation by zeros. Moreover, we can see that both
y[0] and y[2] are cancelled by some bytes in k, i.e. y[i] ⊕ k[i] = 0, i ∈ {0, 2}. Hence, our equation
becomes 2.k[0] + k[2] = 0.

So, if this situation occurs, we know that we have a specific equation involving bytes of k.
However, this equation has coefficient in F256, which are not handled by Constraint Programming
solvers. Hence, we modelize this equation at a bit-level, using the fact that the scalar multiplication
in F256 corresponds to a linear operation in F8

2. By denoting kij , j ∈ [0, 7], i ∈ 0, 2 the j-th bit of
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k[i], we have 

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
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We now have everything to modelize this case using an if-constraint. In our model, we have
a binary variable for each byte of the state which is set to 0 if the corresponding byte is inactive,
and 1 otherwise. Since all the equations only involves some key-bits, we also have binary variables
for each bit of each subkey. Restricting this in the situation given in Fig. 3.2, we would have
binary variables z[i], y[i], x[i], k[i], i ∈ [0, 15] modelizing whether or not bytes are active, and binary
variables kij , i ∈ [0, 15], j ∈ [0, 7] for each bit of the key. Obviously, we need to modelize the fact
that if a key byte is inactive, then its bits are all zeros, which is easily modelized with

k[i] = 0 ⇐⇒ kij = 0 ∀j ∈ [0, 7].

Hence, the above equation only holds when z[0] = z[1] = z[2] = 0, y[0] = y[2] = 1 and x[0] =
x[2] = 0. Note that we do not need to check that k[0] = 1 since the fact that y[0] = 1 and x[0] = 0
necessarily implies that k[0] = 1 (and the same argument goes for k[2]). So, to modelize this case,
we use an if-constraint. Such a constraint is of the form E ⇒ C, and means that if the expression E
is true, then the constraint C must hold. Thus, we modelize the above situation with the constraint

z[0] = 0 ∧ z[1] = 0 ∧ z[2] = 0 ∧ y[0] = 1
∧ y[1] = 1 ∧ x[0] = 0 ∧ x[2] = 0 ⇒

k0
7 + k2

0
k0

0 + k0
7 + k2

1
k0

1 + k2
2

k0
2 + k0

7 + k2
3

k0
3 + k0

7 + k2
4

k0
4 + k2

5
k0

5 + k2
6

k0
6 + k2

7

= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2∧
= 0 mod 2

Hence in our model, we need to do this for all rounds and for each column of the state. The
number of constraints coming from this is easy to compute. For a fixed round and column, denote
i the number of inactive bytes taken in z, hence

(4
i

)
possibilities, with 1 ≤ i ≤ 3. Denote j the

number of inactive bytes taken in y hence
(4
j

)
possibilities. Hence, we have 5 − i − j active bytes

(that are cancelled) in y, taken in the remaining 4− j bytes, thus
( 4−j
5−i−j

)
possibilites. Moreover, we

know from Lemma 3.2.3 that we must have 5− i− j ≥ 2. Thus, we have in total 656r constraints
for r rounds, as the number of constraints for a fixed round and a fixed column is

3∑
i=1

3−i∑
j=0

(
4
i

)(
4
j

)(
4− j

5− i− j

)
= 164.
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Figure 3.3: Characteristic always valid for 2,3 and 4 rounds. x(y) means that there are x active Sboxes
somewhere in the state, with y columns containing at least one active bytes. Multiple x(y) in a state means
that one of them must be true

3.3 Generic Bounds
Before trying to find a permutation that reaches a certain number of active S-boxes, we need to
study which number of S-boxes we can reach. From the fact that using a permutation as the key
schedule implies that the number of active bytes in the key is constant, we can deduce several
bounds on the number of active S-boxes. To demonstrate these bounds, we show that there is
always a differential characteristic of a certain length, independently from the permutation used in
the key schedule.

Proposition 3.3.1. Using a permutation as the key schedule, there is always a differential charac-
teristic of length 1 (resp. 5). for 2 (resp. 3) rounds. For 4 rounds, there is always a characteristic
of length either 8, 9 or 10. Moreover, these differential characteristics always remain valid in the
truncated differential setting.

Proof. Such a characteristic is depicted in Figure 3.3. For 2 rounds, there is only one active byte in
the second state, which is cancelled by the active byte in the key. For 3 rounds, the previous charac-
teristic is extended by adding one more round before it, and comes directly from the MixColumns
MDS property.

For 4 rounds, we add one more round after the 3-round differential characteristic. Since y2 has
four active bytes on the same column, and since the key has one active byte anywhere in the key
state, x3 can have either 3, 4 or 5 active bytes, which results in a differential characteristic of length
either 8, 9 or 10.

No equation is implied since there is always at most one active key byte that is cancelled with the
ARK operation for each round (Lemma 3.2.3). Finally, there are only two MixColumn transitions
with active bytes, one of the form MC(z) = y where z and y are one column of the state with
w(z) = 4 and w(y) = 1 and another of the form MC(z′) = y′, where w(z′) = 1 and w(y′) = 4.
Hence, w(z ⊕ z′) ≥ 3 and w(y ⊕ y′) ≥ 3, and thus the MixColumns linear property is always
valid.

Corollary 3.3.2. Using a permutation as the key schedule, the optimal bounds on the number of
active S-boxes that can be proven for 2, 3 and 4 rounds is respectively 1, 5 and 10 in the truncated
differential setting.

The proof of this corollary comes directly from the previous proposition. If we try to extend
the previous characteristic with one more round, we obtain that there is always a characteristic of
length either 19, 20, 21, 24 or 25 in the truncated differential setting. However, if we only consider
the pure truncated differential setting, then we have the following proposition.
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5 rounds

6 rounds

Figure 3.4: Characteristic always valid for 5, 6 and 7 rounds.

Proposition 3.3.3. For 5, 6 and 7 rounds, there is always a characteristic of length respectively
14, 18 and 21 in the pure truncated differential setting.

Proof. Such a characteristic is depicted in Figure 3.4. Note that considering how this kind of
characteristic is built, there are a lot of underlying equations in the truncated differential setting,
which is very likely to make this characteristic invalid. However, in the pure differential setting,
these characteristics always remains valid as they come directly from the propagation rules of the
AES round function.

Corollary 3.3.4. Using a permutation as the key schedule, the optimal bounds on the number of
active S-boxes that can be proven for 5, 6 and 7 rounds is respectively 14, 18 and 21 in the pure
truncated differential setting.

Now the first question that we may ask is whether or not there exists a permutation which
reaches all those bounds. Fortunately, such a permutation was already found by Khoo et al. in [84],
which is

PKLPS = (5, 2, 3, 8, 9, 6, 7, 12, 13, 10, 11, 0, 1, 14, 15, 4)

However, if we study this permutation in the truncated differential setting for 7 rounds using
Model 1, then we have that the minimum number of active S-boxes becomes 22, proving that no
differential characteristic with a probability larger than 2−128 can be found, hence the following
theorem.

Theorem 3.3.5. We can find a permutation for the key schedule which guarantees that no differen-
tial characteristic with a probability larger than 2−128 exists for 7 or more rounds of AES. Moreover,
this does not depend on the S-box DDT.

Obviously, now the main question is: How far can we go? Can we find a permutation that reach
22 S-boxes for 6 rounds or lower, or at least a permutation such that no differential characteristic
with probability larger than 2−128 exists? This would allow us to show that even with an extremely
simple and efficient key schedule, we can still have a rather good security against differential attacks
in the related-key model. We study this in the next section.

3.4 Searching for a Permutation

3.4.1 Bound on 5 Rounds

In this section, we show that there is no permutation that can reach a minimal number of active
S-boxes of 18 over 5 rounds. While this does not imply that we cannot find a permutation such
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that there is no differential characteristic with a probability better than 2−128, this still gives us a
good idea of what we can reach for 5 rounds.

To achieve this, we proceed in two steps. First, we search for a set of cycles such that using
a given cycle of this set, one cannot build a truncated differential characteristic of length strictly
lower than 18, which induces equations (according to Lemma 3.2.3) on at most 1 round. Since all
permutations can be decomposed into a composition of cycles, this would not only speed up the
search (since we do not need to check every permutation one at a time), but also gives a way to
build all permutations that could reach 18 S-boxes on 5 rounds. To build such a set of cycles, we
used a quite straightforward algorithm.

First, we suppose that the cycle starts with 0. Then, we guess the image of 0, and for each
of those guesses, we have two cases: either the cycle is not complete, and thus we need to make
another guess on the next element of the cycle, or the cycle is closed. Whenever we make a
new guess or decide that the cycle is closed, we can build several truncated key characteristics
k0 → k1 → ... → k4 according to the current (partial) cycle examined: each active byte in this
truncated key characteristic must be a byte that belongs to the current (partial) cycle. Then,
for each of those truncated key characteristics, we search the minimal number of active S-boxes
that we can reach using this characteristic. To speed up the search, we only consider truncated
characteristics that induce equations on at most 1 rounds, such that these characteristics are always
valid in the truncated differential model. If, for a given (partial) cycle, one can find a corresponding
truncated characteristic with strictly less than 18 S-boxes, then we know that this (partial) cycle
cannot be part of the permutation we are looking for. If we were in the case where the cycle was
not complete, then we know that we do not need any more guesses, and if the cycle was closed,
we can dismiss it. Thus in the end, we will have a set of closed cycles which start with 0, and
for which all truncated characteristics that induces equations on at most 1 rounds have at least 18
active S-boxes. We then need to apply the same algorithm, but this time with cycles beginning by
1 and not containing 0 (to avoid repetitions) and so on.

In the end, we have a set of permutations for which we know that, if a permutation reaches a
minimal number of active S-boxes of 18 (or higher), then it must be built from this set of cycles.
Thus, we just need to built all possible permutations from these cycles, and plug them into Model 1
to see if the actual minimal number of S-boxes is indeed 18 or higher. The number of cycles which
can be used to build a permutation reaching 18 S-boxes is given in Table 3.1, and by testing all
possible combinations, we found out that there is no such permutation, hence the following theorem.

Theorem 3.4.1. There is no permutation that, when used as key schedule, can reach a minimal
number of active S-boxes of 18 or higher over 5 rounds. Using the same method, we were also able
to find at least one permutation which have a minimal number of active S-boxes of 16 over 5 rounds,
namely:

(15, 0, 2, 3, 4, 11, 5, 7, 6, 12, 8, 10, 9, 1, 13, 14).

However, the possibility of reaching 17 S-boxes over 5 rounds is still unknown, and the complexity
of the algorithm for 6 rounds is too high. Hence, we focused our search for a permutation reaching
22 active S-boxes over 6 rounds, using another approach we detail in the next section.

3.4.2 Finding a Permutation over 6 Rounds

First of all, let us take a quick look at how we could naively search for such a permutation. This
is rather straightforward: for each possible permutation, we check whether the minimal number of
S-boxes is at least 22. Since we are looking for a permutation over 16 bytes, we have 16! > 244
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Length of the cycle Number of cycles
1 16
2 120
3 796
4 6576
5 25656
6 78448
7 112608
8 74904
9 15576
10 1344
11 48

Table 3.1: Number of cycles which must be use to build a permutation reaching 18 A-boxes over 5
rounds

possible permutations. While 244 basic operations could be achievable in a reasonable amount of
time, the computation of the minimal number of S-boxes is actually quite costly. For example, if
one would use the algorithm from [65] which has an approximate complexity of 234 operations, this
would raise the total cost to 278 operations, which is clearly impractical. While we do not have a
complexity estimation for our constraint programming tool, the average time to solve Model 1 is
about 40 minutes for 6 rounds, which would lead to way too much time to try each permutation,
so exhausting all permutations is clearly not a viable way to proceed.

On the other hand, one could try to pick a random permutation, evaluate its minimal number
of S-boxes, and try again if this number is lower than 22. While the cost of computing the minimal
number of S-boxes remains, this approach could be successful if the density of the set of permutation
reaching 22 S-boxes overall permutations is high enough. Indeed, if we do this for 7 rounds, we
are able to find a permutation reaching the same number of S-boxes for 7 rounds and lower as the
permutation from [84] in about 200 tries. However, this approach was not able to find a permutation
reaching 22 S-boxes over 6 rounds.

Hence, we need something more efficient for 6 rounds. Inspired by the work of Nikolić [111],
we choose to use a meta-heuristic called simulated annealing. Meta-heuristics are a class of search
algorithms which aim to find an (almost) optimal solution to an optimization problem, often inspired
by some real-life phenomenon. To be more precise, unlike Constraint Programming or Integer Linear
Programming which aims at recovering an optimal solution, meta-heuristics only look for a good
enough solution: it may not be optimal, but it should be rather close to an optimal solution. In
our case, we could define our optimization problem as: Which permutation maximize the minimal
number of active S-boxes over 6 rounds? However, we are not really interested in maximizing
the minimal number of S-boxes, we only need to find a permutation which reaches 22 S-boxes.
Moreover, our problem is of the form "Maximize the minimum value of a given function", which
is not something easily handled by classical techniques like Constraint or Linear Programming.
Finally, meta-heuristics are designed to be both relatively easy to implement and rather efficient,
hence they seem quite appropriate to tackle this problem.

We give a generic algorithm for simulated annealing in Algorithm 3, also given in [111]. The
main idea of this algorithm is to try to maximize a function f(x) (called objective function) by
progressively improving a solution, starting from a random one, while allowing degradation. To
be more precise, starting from a random x0, the algorithm builds another solution xi from xi−1
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using the function ε. Then, if f(xi) > f(xi−1), then xi is accepted and the algorithm continues.
However, if f(xi) ≤ f(xi−1), which would mean that xi is worse than the previous solution xi−1, xi
is only accepted with some probability depending on a value T , and if it is rejected, another xi is
generated from xi−1. Then, the value T is updated with a function α(T ). For more details about
this algorithm and the choice of its parameters, we refer the reader to [111, 40, 86].

Algorithm 3 Simulated Annealing [111]
Input: initial temperature T0, cooling schedule α(T ), neighbor function ε(x)

1: x← random, T ← T0
2: while termination criteria not met do
3: x′ ← ε(x)
4: if f(x′) > f(x) then
5: x← x′

6: else
7: r ← U [0, 1] Generate a uniformly random real number in [0,1]
8: if r < e

f(x′)−f(x)
T then

9: x← x′

10: end if
11: end if
12: T ← α(T )
13: end while

Output: x

Now, we need to see how we implement this algorithm in practice. As in [111], we did not
observe major differences between different parameters for the initial temperature T0 and the cooling
schedule α(T ). Hence, we only give one set of parameters, from which all our following results come
from. For the initial temperature, we used T0 = 2. For the cooling schedule, we used the same
one as in [111], i.e., α(T ) = T

1+βT with β = 0.001 Finally, the neighbor function ε generates a
new permutation from the one that has been tested. This new permutation should be "close" to
the previous one, hence we use a random transposition to generate a new permutation, namely,
ε(x) = τ ◦ x where τ is a random transposition.

The only thing missing to implement the algorithm is a way to evaluate f(x). Recall that in
our case, f(x) is the minimal number of active S-boxes for a given permutation x. A naive way to
compute f(x) would be to solve Model 1 with the permutation x. However, as mentioned before,
solving this model is quite costly, which would results in a very slow meta-heuristic. Instead, we
make the following observation. Let n be the number of active S-boxes we want to prove, that
is, we want to find a permutation for which the minimal number of active S-boxes is at least n.
Then, given a certain permutation, we are only interested in one fact: does this permutation have
a characteristic with a length strictly less than n? If so, then even if this characteristic is not
a minimal one, we still know that this permutation will not reach our goal of a minimum of n
active S-boxes. This allows to slightly modify the original algorithm for a much quicker execution,
which lead to more permutations being evaluated and thus better chances to find a good one. The
complete algorithm is given as Algorithm 4, with a more detailed explanation below.

So instead of directly computing the minimal number of active S-boxes for a given permutation,
we do the following. We first use the algorithm quicksearch, which is a classical dynamic
programming algorithm which, given a permutation x and a target number of S-boxes n, search for
a relatively short characteristic of length ≤ n. As mentioned before, the idea is to use the fact that
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Algorithm 4 Tweaked Simulated Annealing
Input: Target length n

1: x← random permutation, T ← 2, l← 0
2: while l < n do
3: τ ← random transposition, x′ ← τ ◦ x
4: l′ ← quicksearch(x′, n)
5: if l′ ≥ n then
6: x← x′, l← fullsearch(x)
7: else if l′ > l then
8: x← x′, l← l′

9: else
10: r ← U [0, 1] Generate a uniformly random real number in [0,1]
11: if r < e

l′−l
T then

12: x← x′, l← l′

13: end if
14: end if
15: T ← T

1+0.001T
16: end while

Output: x

we are mostly interested in whether or not a characteristic of length strictly less than n exists. This
algorithm performs this relatively quickly, without having to find the minimal number of S-boxes.
Once we get such a characteristic of length l′, three cases can happen.

• If l′ ≥ n, then the permutation might be a good one. However, since the quicksearch
algorithm does not return the length of the shortest characteristic, we need to call the
fullsearch algorithm, which basically solves Model 1 using the provided permutation, and
returns the real minimal number of S-boxes. If the output of fullsearch is greater or equal
than n, then we found a permutation and the algorithm terminates. If not, we still choose to
update x to x′, because the fact that quicksearch returned a value greater or equal than
n means that the permutation looked quite good at first glance. We also update l to the real
minimal number of active S-boxes of x, since otherwise the algorithm would terminate while
it did not find a permutation reaching n S-boxes.

• Otherwise if l′ > l, that is, the permutation x′ seems to have a minimal number of S-boxes
greater than the previous one, then we update x to x′ too. This corresponds to the case
f(x′) > f(x) in the original Simulated Annealing algorithm.

• Finally, if l′ ≤ l, this is the same as the original algorithm. We accept the solution x′ and
update x to it only with a certain probability depending on the current temperature T and
the respective number of S-boxes found for x and x′.

We first launched this algorithm using n = 20, and were able to find the permutation Pk (given
below) reaching this minimal number of S-boxes in about 216 tries:

Pk = (8, 1, 7, 15, 10, 4, 2, 3, 6, 9, 11, 0, 5, 12, 14, 13).

Reaching 21 S-boxes is still an open question and for reference, we were able to test about 224

permutations in several days. However, we were able to show that using Pk as the key schedule,
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Number of rounds 2 3 4 5 6 7

Original key schedule 1 3 9 11 13† 15
PKLPS 1 5 10 14 18† 22
Pk 1 5 10 15 20† 23

Table 3.2: Minimal number of S-boxes that our permutation Pk reaches on a given number of rounds
compared to the one from [84]. †No instantiation with a better probability than 2−128.

while only reaching a minimum amount of 20 S-boxes in the truncated setting, still guarantee that
no characteristic with a probability better than 2−128 can be found when one use the DDT of
the AES S-box. To do that, we used Model 2, which allows to check if there is a characteristic
with a better probability than 2−128 and to exhibit one if that is the case. To make this model
work, we need to give it a list of truncated differential characteristics, and it will check if such a
characteristic can be instantiated with a probability better than 2−128. Hence, to prove that Pk has
no such characteristic, we need a list of all valid truncated characteristics of 20 and 21 S-boxes (since
22 S-boxes already guarantees that no characteristic will be instantiable with a probability better
than 2−128). This can be computed rather quickly using Model 1 and asking the solver to find all
characteristics of length 20 and 21. There are 253 characteristics of length 20 and 3284 of length
21. After about nine hours on a standard desktop to loop through all these characteristics, it turns
out that none of them can be instantiated2 with a probability better than 2−128. In conclusion, we
were able to find a permutation Pk such that using this permutation as the key schedule of AES-128
guarantees that no differential characteristic with a probability better than 2−128 exists over 6 or
more rounds. For reference, we also ran Model 1 on this permutation to get the minimal number
of active S-boxes for a lower amount of rounds, summarized in Table 3.2.

Now, even if we were able to find a permutation leading to no differential characteristic of
probability better than 2−128 for 6 rounds or more, it still only reaches 20 S-boxes in the truncated
setting. Hence, we would like to see if by modifying further the AES round function, we could reach
more active S-boxes. This is treated in the next section.

3.5 Tweaking Both ShiftRows and the Key Schedule
Using the approach given in the previous section allowed to find a permutation for the key schedule,
which induces a minimal number of S-boxes of 20 for 6 rounds. Here, we would like to see if by
changing the ShiftRows operation in the AES-128, we could reach a better number of active S-
boxes, namely 21 or 22. Obviously, we cannot try all possible permutations for ShiftRows, as
again, there are 244 permutations over 16 elements. Hence, we show here how we restricted ourselves
to only a few thousand candidates for ShiftRows, which are the most likely to lead to a good
minimal number of active S-boxes, and give a few examples of pairs (Ps, Pk) that reach 21 S-boxes
for 6 rounds, where Ps is used instead of the ShiftRows operation, and Pk instead of the original
key schedule KS of AES.

First, we can see that we can drastically reduce the number of candidates for Ps using the
following two propositions. We denote Pi the set of all permutations Pi acting insides the columns
of the state, i.e., there exists four permutations P 0

i , P
1
i , P

2
i , P

3
i over four elements such that P ji acts

on the j-th column and Pi = P 0
i ◦ P 1

i ◦ P 2
i ◦ P 3

i , and Pc the set of all permutations which permutes
the columns of the state.

2For reference, the best probability we could reach among all the characteristics of length 20 was 2−134
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Proposition 3.5.1. Let Ps and P ′s be two permutations over 16 elements such that P ′s = P ′i ◦Ps◦Pi,
where Pi, P ′i ∈ Pi, and let P ′k = P−1

i ◦ Pk ◦ Pi. Then using (P ′s, P ′k) instead of (SR, KS) will lead
to the same minimal number of active S-boxes that using (Ps, Pk) instead of (SR, KS). Hence, we
can build equivalence classes Ei(Ps) = {P ′s | ∃ Pi, P ′i s.t. P ′s = Pi ◦ Ps ◦ P ′i}, and there are 10147 such
equivalence classes.

Proof. We need to show that, for each characteristic we can build using (Ps, Pk), one can find a
characteristic with the same number of active S-boxes using (P ′s, P ′k), where P ′s = P ′i ◦ Ps ◦ Pi and
P ′k = P−1

i ◦ Pk ◦ Pi.
Given a characteristic (X0, . . . , Xr) such that the length of the characteristic is given by

r∑
i=0

Xi,
and denote Yi the state after the MC operation such that Xi+1 = Yi ⊕ Ki. We have Yi+1 =
MC ◦ Ps ◦ SB(Yi ⊕ Ki) and Ki+1 = Pk(Ki), where Pk is a bytewise permutation. For all i, let
K ′i = P−1

i (Ki) and Y ′i = P−1
i (Yi), hence we have

K ′i+1 = P−1
i (Ki+1) = P−1

i ◦ Pk(Ki)
= P−1

i ◦ Pk ◦ Pi ◦ P−1
i (Ki)

= P ′k ◦ P
′−1
i (Ki)

= P ′k(K ′i).

So P ′k is a valid key schedule. Furthermore, note that when considering the propagation of active
bytes through MC, one only need to consider the number of active bytes before MC in one given
columns to know the number of active byte after MC in that same column. Hence, since Pi ∈ Pi
only permutes bytes inside each column, the number of active bytes does not change in each column
and thus for any Pi ∈ Pi, MC and MC′ = MC ◦ Pi behave similarly when searching for truncated
differential characteristics, i.e., replacing MC by MC′ has no effect. In the same way, one can replace
MC by Pi ◦MC with Pi ∈ Pi. Moreover, SB acts on each byte separately, hence Pi ◦ SB = SB ◦ Pi.
Thus, we have:

Y ′i+1 = P−1
i (Yi) = P−1

i ◦MC ◦ Ps ◦ SB(Yi ⊕Ki)
= P−1

i ◦MC ◦ Ps ◦ SB(Pi ◦ P−1
i (Yi)⊕ Pi ◦ P−1

i (Ki))
= MC ◦ Ps ◦ SB(Pi(Y ′i )⊕ Pi(K ′i)) replacing P−1

i ◦MC by MC has no effect

= MC ◦ P ′i ◦ Ps ◦ Pi ◦ SB(Y ′i ⊕K ′i) replacing MC by MC ◦ P ′i has no effect

= MC ◦ P ′s ◦ SB(Y ′i ⊕K ′i).

So (P ′s, P ′k) correctly defines a round function and we have X ′i+1 = Y ′i ⊕ K ′i = P−1
i (Yi ⊕ Ki) =

P−1
i (Xi+1) for all i. Hence, eachX ′i is a permutation ofXi, and thus the corresponding characteristic

(X ′0, . . . , X ′r) has the same number of active S-boxes as (X0, . . . , Xr).

Proposition 3.5.2. Let Ps and P ′s be two permutations over 16 elements such that P ′s = P−1
c ◦Ps◦Pc

where Pc ∈ Pc, and let P ′k = P−1
c ◦ Pk ◦ Pc. Then, using (P ′s, P ′k) instead of (SR, KS) will lead to

the same minimal number of active S-boxes that using (Ps, Pk) instead of (SR,KS). Hence we can
combine this with the previous proposition, and for each class representative Ps of some class Ei(Ps)
defined previously, we can build equivalence classes E(Ps) = {P ′s | ∃Pc ∈ Pc s.t. P ′s = P−1

c ◦Ps ◦Pc},
and there are 9186 such equivalence classes.

Proof. As in the proof of Proposition 3.5.1, we need to show that, for each characteristic we can
build using (Ps, Pk), one can find a characteristic with the same number of active S-boxes using
(P ′s, P ′k), with P ′s = P−1

c ◦ Ps ◦ Pc and P ′k = P−1
c ◦ Pk ◦ Pc, Pc ∈ Pc.
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Given a characteristic (X0, . . . , Xr), and using the same notation as in the the proof of Propo-
sition 3.5.1, for all i let K ′i = P−1

c (Ki) and Y ′i = P−1
c (Yi). Showing that P ′k is a valid key-schedule

is done in the same way as for Proposition 3.5.1. Furthermore, note that since MC acts on each
column separately, we have MC◦P−1

c = P−1
c ◦MC. In the same way, SB acts on each byte separately,

hence Pc ◦ SB = SB ◦ Pc. Thus we have

Y ′i+1 = P−1
c (Xi+1) = P−1

c ◦MC ◦ Ps ◦ SB(Yi ⊕Ki)
= P−1

c ◦MC ◦ Ps ◦ SB(Pc(Y ′i )⊕ Pc(K ′i))
= P−1

c ◦MC ◦ Ps ◦ SB ◦ Pc(Y ′i ⊕K ′i)
= MC ◦ P−1

c ◦ Ps ◦ Pc ◦ SB(Y ′i ⊕K ′i)
= MC ◦ P ′s ◦ SB(Y ′i ⊕K ′i)

So again, (P ′s, P ′k) correctly defines a round function and X ′i+1 = P−1
c (Xi+1) for all i. Thus each X ′i

is a permutation of Xi, hence the corresponding characteristic (X ′0, . . . , X ′r) has the same number
of active S-boxes as the characteristic (X0, . . . , Xr).

Hence, we only need to consider 9186 possible candidates Ps to replace SR, instead of 244.
Moreover, we would like to avoid weakening AES in the single-key model. In that model, the original
ShiftRows allows to reach full diffusion after 3 rounds. So we only considered the permutations
that also reached full diffusion in at most 3 rounds, and there are 4381 of them. Finally, recall
that in the pure truncated differential setting, using the original ShiftRows implies that there is
always a characteristic of length 18 which is built using a fully active key. While this characteristic
has high chances of being invalidated once we consider the equations it implies on the key, we still
would like to avoid it. To do that, we used the following proposition.

Proposition 3.5.3. If one uses a permutation Ps instead of ShiftRows such that Ps send the
bytes from any one column to at most three columns, then the characteristic from Proposition 3.3.3
cannot happen.

Proof. The characteristic from Proposition 3.3.3 can be built because a state containing a single
fully active column lead to a fully active state after MC◦SR. However, if one uses a permutation Ps
which send the bytes from any one column to at most three columns, then the state after MC ◦ Ps
will contain at most 3 fully active column. Thus, when XOR-ing the key afterwards, the resulting
state would have at least 4 active bytes, instead of 3 in the characteristic from Proposition 3.3.3,
thus this characteristic cannot happen.

Hence, we only want to try some permutations Ps instead of ShiftRows which verify the
previous propositions and achieve a full diffusion in at most 3 rounds in the single-key model,
which lead to 3288 possible candidates for Ps. Now everything is quite straightforward. We reuse
Algorithm 4 to search for a permutation leading to 21 S-boxes, except that we use a different
permutation than ShiftRows in the quicksearch algorithm and modified Model 1 to use that
permutation instead of ShiftRows for the fullsearch algorithm. We also added the additional
condition that it should stop after 24 hours if no permutation reaching the objective was found.
Surprisingly, the quicksearch algorithm ran faster with those permutations than with the original
SR, which allowed us to test about 225 permutations Pk on average in 24 hours for a specific candidate
Ps. After a few more than 100 possible Ps tried, we were able to find several pairs (Ps, Pk) that
reach 21 S-boxes which are given in Table 3.3.

For a given P is , we also took a look at the permutations P ′k that are rather "close" to the ones
we found, that is, permutations P ′k which are one or two transpositions away from each P ik. It turns
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(Ps, Pk) # iterations
P 1
s = (0, 1, 2, 4, 3, 8, 9, 12, 5, 13, 14, 15, 6, 7, 10, 11)
P 1
k = (10, 4, 12, 11, 6, 2, 5, 1, 8, 0, 9, 7, 13, 14, 15, 3)

3151253 ∼ 221.6

P 2
s = (0, 1, 2, 4, 3, 8, 9, 12, 5, 6, 13, 14, 7, 10, 11, 15)
P 2
k = (15, 14, 11, 10, 6, 12, 4, 0, 3, 8, 1, 9, 2, 5, 13, 7)

42414349 ∼ 225.3

P 3
s = (0, 1, 4, 8, 9, 10, 12, 13, 5, 6, 14, 15, 2, 3, 7, 11)
P 3
k = (14, 12, 8, 6, 7, 4, 0, 1, 3, 11, 10, 2, 9, 5, 13, 15)

8588115 ∼ 223

P 4
s = (0, 1, 2, 8, 4, 9, 12, 13, 5, 6, 7, 14, 3, 10, 11, 15)
P 4
k = (12, 14, 11, 4, 8, 0, 3, 7, 10, 15, 2, 9, 6, 13, 5, 1)

15016901 ∼ 223.8

P 5
s = (0, 1, 2, 8, 4, 9, 12, 13, 3, 5, 14, 15, 6, 7, 10, 11)
P 5
k = (5, 9, 15, 13, 3, 4, 6, 2, 11, 7, 10, 0, 8, 14, 1, 12)

51700477 ∼ 225.6

Table 3.3: Pairs (Ps, Pk) which reach 21 S-boxes, along with the number of Pk tried before founding
it

out that, except for (P 4
s , P

4
k ), none of these permutations also reach 21 S-boxes. Oddly, there are

3 permutations that are 1 transposition away from P 4
k which also reach 21 S-boxes when using P 4

s

instead of SR , and again, none of them has a differential characteristic with a probability better
than 2−128 over 6 rounds. Those three permutations are

P 4′
k = (14, 12, 11, 4, 8, 0, 3, 7, 10, 15, 2, 9, 6, 13, 5, 1),

P 4′′
k = (12, 14, 11, 4, 10, 0, 3, 7, 8, 15, 2, 9, 6, 13, 5, 1),

P 4′′′
k = (12, 14, 11, 4, 8, 0, 3, 7, 2, 15, 10, 9, 6, 13, 5, 1).

After testing about 1100 candidates for Ps, finding a pair (Ps, Pk) that reaches 22 S-boxes is still
an open problem. We also used Model 2, tweaked to use a different permutation instead of SR, to
check if there is a differential characteristic with a probability better than 2−128 over 6 rounds with
these pairs (Ps, Pk), and again, none of these permutations allows such a characteristic.

3.6 Conclusion
In this chapter, we studied how AES would behave in the related-key model if we change its key
schedule to a much simpler and efficient one, namely a permutation. We first gave a few generic
bounds about the best number of active S-boxes reachable for a given number of round, and espe-
cially, we showed that no permutation can reach a minimal number of 18 or more active S-boxes
over 5 rounds. However we were able to exhibit a permutation reaching 16 S-boxes over 5 rounds,
hence closing the gap a bit further. We showed that we can find a permutation which allows to have
at least 20 active S-boxes over 6 rounds, while guaranteeing that no characteristic with a probability
larger than 2−128 exists. This allows us to reach the same amount round than with the original
AES-128 key schedule (see [65]), but with a more efficient key schedule which is also easier to analyze
and has a higher minimal number of active S-boxes. We also took a look at how modifying the SR
operation could improve the minimal number of S-boxes over 6 rounds. It turns that we can find
several pairs (Ps, Pk) to use instead of SR and the key schedule (respectively) which allows to have
at least 21 S-boxes over 6 rounds, and again, no characteristic with a probability better than 2−128.
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We also provided a Constraint Programming model which can handle directly the equations coming
from MixColumns, thus allowing to find the exact minimal number of active S-boxes considering
everything but the S-box DDT in a reasonable amount of time and memory. Our implementation
is available at https://github.com/TweakAESKS/TweakAESKS.

A few open questions remain. First, could we reach a minimal number of 22 active S-boxes
changing only the key schedule (and possibly SR) for 6 rounds? In the same idea, could we close
the gap for 5 rounds? We know that we cannot get 18 or more active S-boxes, but 16 S-boxes is
reachable, thus the possibility of reaching 17 S-boxes is still unknown. Finally, we chose to change
the SR operation, but how about changing eitherMC or the S-box? While changing everything would
lead to a cipher that does not have much in common with AES, it could answer the following generic
question: Can we build an AES-like SPN (with a round function structured as MC ◦ Ps ◦ SB where
Ps is a permutation and MC uses an MDS matrix) using a permutation as the key schedule, which
could reach either 22 S-boxes over 6 rounds, or guarantee that no characteristic with probability
better than 2−128 exists over 5 rounds?

https://github.com/TweakAESKS/TweakAESKS


"What’s in the box ??"
— David Mills



Chapter 4

On Recovering Affine Encodings inWhite-
Box Implementations

This chapter focuses on two main parts. First, we propose a generic algorithm to recover affine
encodings for any white-box implementation of a cipher following the CEJO framework, independent
of the way the encodings are built. More generally, our algorithm solves the affine equivalence
problem (given two maps F and S with the promise that they are affine equivalent, compute
affine maps A, B, such that F = B ◦ S ◦ A) whenever one of the two maps is composed of the
parallel application of distinct S-boxes. The general affine equivalence algorithm by Dinur [59] solves
precisely this problem, without assuming any special structure on S (this is also the case of the classic
algorithm by Biryukov et al. [22]). However its complexity is O

(
n32n

)
, which makes it unsuitable

for recovering encodings on a typical block size of 128 bits. In contrast, we focus on the case where S
is made up of k parallelm-bit S-boxes. In this setting, we propose an algorithm that solves the affine
equivalence problem with a (typically much lower) time complexity ofO

(
2mn3 + n4

m + 2mm2n
)
. For

the AES parameters n = 128, m = 8, k = 16, this yields a time complexity of 232 basic operations1

(to be compared with 2149 basic operations if the generic algorithm by Dinur was applied naively).
By design, our attack applies to a large class of white-box schemes following the CEJO frame-

work, including [41, 42, 144, 83]. Beyond the previously cited schemes, which were already broken
by ad-hoc attacks, we illustrate our attack on a new white-box design by Baek, Cheon and Hong [3].
One distinctive feature of this design that makes it particularly attractive to illustrate our attack
(beside not being previously cryptanalyzed) is that it increases the state size by obfuscating two
parallel rounds of AES, precisely to prevent generic attacks from being able to recover the affine
encodings of the scheme. Indeed Baek et al. estimate the security level of their proposal to 110
bits based on their own specialized version of an affine equivalence algorithm. However our generic
attack on this scheme requires only about 235 basic operations.

As a second contribution, we analyze the scheme by Baek et al. more closely, and introduce
another technique able to break this scheme. This new technique extracts and solves a standalone
problem from the scheme by Baek et al. as follow. Let F , h1, h2 be three non-linear mappings
from m bits to m bits, and let A1, A2 be two linear mappings on m bits. Given oracle access to
G(x, y) = F (A1(x) ⊕ A2(y)) ⊕ h1(x) ⊕ h2(y), recover A1 and A2 (up to equivalence). Ultimately,
it is able to recover the secret key of the scheme in time complexity 231. This is verified with an
implementation, available at http://wbcheon.gforge.inria.fr/. This dedicated attack on
Baek et al.’s scheme is also more powerful as it allows us to fully recover the key, while the generic
attack only creates a decryption function without recovering the key.

1In practice the constants hidden in the O () notation for our algorithm are quite small, and we disregard them
when giving complexity estimates.
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4.1 Introduction

Historically, cryptanalysis is performed within the black-box model: the cryptographic algorithm
under attack is executed in a trusted environment, and the view of the attacker is limited to the
input-output behavior of the algorithm. Depending on the type of attack under consideration, the
attacker may be able to observe the inputs and outputs of encryption or decryption queries, and
perhaps choose the corresponding inputs, but nothing more. Such attack models are particularly
relevant in scenarios where the attacker does not have direct access to an implementation of the
scheme, whether because it is executed remotely, or within a protected hardware environment such
as a secure enclave.

Since the advent of side-channel attacks however, new attack models have come into the light,
wherein the attacker has access to some auxiliary information leaked by the implementation. These
models are sometimes called gray-box models, in contrast with the black-box model outlined in the
previous paragraph. Attacks in the gray-box model may exploit physical leakage such as compu-
tation time, power consumption, or electromagnetic leakage, among many others. Such attacks
can result in practical breaks against schemes that would otherwise appear secure in the standard
black-box model.

White-box cryptography. Going one step further, in 2002, Chow et al. introduced the white-
box model [41, 42]. In this model, the attacker has full access to an implementation of the target
cryptographic algorithm, including the ability to control its execution environment. Therefore he
can observe memory content, set breakpoints in the execution flow, change arbitrary values in the
code or the memory, etc. In this setting, the security assumptions of the black-box model clearly
no longer hold. However, it may still be desirable that the adversary should be unable to extract
the secret key of the cryptographic algorithm under attack.

This model is relevant in the context of software distribution, whenever a piece of software
containing sensitive cryptographic information (such as an encryption algorithm) is to be widely
distributed, and hence can be downloaded and analyzed by adverse parties. The most prominent
application occurs in Digital Rights Management, where attackers may wish to recover a decryp-
tion key used to protect copyrighted content (digital music, TV broadcasts, video games, etc).
A successful attacker is then able to distribute the secret key to unauthorized users, providing
them with illegitimate access to the protected content. In effect, the goal is to protect sensitive
functions within the deployed software, such as cryptographic algorithms, in much the same way
that a trusted environment would protect security-critical functions in a hardware context. Ideally,
white-box cryptography would thus achieve the software equivalent of trusted enclaves, specialized
to particular cryptographic algorithms.

In order to achieve this goal, white-box cryptography techniques attempt to obfuscate the imple-
mentation of the target cryptographic algorithm. Ideally, an attacker in possession of the obfuscated
cipher should be unable to interact with it in any meaningful way, beside simply executing it on
chosen inputs. While Barak et al. have shown that general program obfuscation is impossible [7],
the context of white-box cryptography presents two key differences. The first is that white-box
cryptography merely attempts to obfuscate particular function families (such as block ciphers),
which Barak et al.’s result has no bearing on. Another key difference is that white-box models do
not generally require guarantees as strong as those offered by black-box obfuscation: in the case of
a white-box implementation of AES for instance, it may be enough that the adversary is unable to
recover the secret key (for a detailed discussion of white-box models, see e.g. [50, 66]).
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The CEJO framework. In their original 2002 articles, Chow et al. proposed such a white-
box scheme for DES and AES [41, 42]. While their proposals were quickly broken [77, 20], their
work opened the path to white-box encryption. Follow-up works often reused the same general
framework, which we will call the “CEJO framework”.

In the CEJO framework, each round function is obfuscated by being composed with carefully
crafted input and output encodings. That is, the round function E(r) at round r is replaced in
the white-box implementation by f (r+1)−1 ◦ E(r) ◦ f (r), where f (r), f (r+1)−1 are bijections called
respectively the input and output encoding. By design, the output encoding of each round is canceled
out by the input encoding of the next round.

· · · ◦ f (r+1)−1 ◦ E(r) ◦ f (r)︸ ︷︷ ︸
F r

◦ f (r)−1 ◦ E(r−1) ◦ f (r−1)︸ ︷︷ ︸
F r−1

◦ . . .

Figure 4.1: The CEJO framework.
For each round, the white-box implementation gives access to the encoded version of the round

function F r = f (r+1)−1 ◦ E(r) ◦ f (r), but not directly to the underlying round function E(r).
Chow et al. proposed to define the encodings f (r) as the composition of a non-linear mapping

and an affine mapping. The idea is to follow a classic concept in symmetric cryptography : the
non-linear mapping will add some confusion on the intermediate values of the state, while the affine
mapping will add some diffusion (see Sec. 3.3 and 3.4 in [42]). In addition, in a typical SPN block
cipher, round keys are XORed into the inner state of the cipher. In that case, whenever the constant
of the affine encoding is uniformly random, a single obfuscated round completely hides the value
of the round key, which implies that a successful key-recovery attack must target multiple rounds
simultaneously. Thus the CEJO framework is a natural approach to attempt to obfuscate a block
cipher, especially in the case of SPN ciphers such as AES.

In addition to the above, some external input/output encodings Mout/Min can be added before
and after the cipher. In that case, the implementation provides a map from encoded plaintexts
to encoded ciphertexts. These encodings are merged into the tables used for the initial and final
encoded round function. The implementation is then equivalent to an encoded version of the cipher,
which can be expressed as Mout ◦ E(R) ◦ · · · ◦ E(1) ◦Min.

External encodings can be used to increase security, as the attacker is denied direct access to
raw plaintexts/ciphertexts. On the other hand, external encodings assume that the implementa-
tion surrounding the white-box cipher takes these encodings into account. As such, a white-box
implementation with external encodings is not properly speaking an implementation of the cipher it
contains. For this reason, in this work, we shall explicitly signal the presence of external encodings,
and use the term white-box implementation with external encodings when appropriate.

It is crucial that, given the encoded round function F r, the adversary should be unable to com-
pute and peel off the encodings f (r+1)−1 and f (r). Indeed, for typical ciphers such as AES, granting
direct access to a single round E would allow the adversary to easily recover the corresponding
round key, and from there the secret key of the cipher. However attacks on white-box implementa-
tions typically achieve precisely this, by taking advantage of the specific structure of the encodings
A and B. In white-box implementations following the CEJO framework, encodings are composed
of a very simple non-linear layer, together with a more complex affine layer. Attacks generally peel
off the non-linear component, then proceed to recover the affine layer. This is typically achieved in
an ad-hoc way, by exploiting specific properties of the scheme under attack.
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Related Work.

Literature on white-box cryptography, especially designs and attacks following the framework of
Chow et al., is quite extensive. The first white-box candidate constructions by Chow et al. [41, 42]
were quickly broken in practical time [77, 20].

In 2009, Xiao and Lai proposed to rely on larger affine encodings covering two S-boxes at once
[144]. However, their proposal was broken in about 232 operations by De Mulder et al. [48]. To
thwart this attack, Karroumi proposed to use a dual representation of the AES round function
in order to change the structure of each AES round [83]. But this was also broken in about 222

operations by Lepoint et al. [98].
The previous attack also applies to the original scheme by Chow et al.; and another work

by De Mulder et al. also provides improvement on the original BGE attack [49]. Note that all
aforementioned attacks exploit the specific structure of the encodings used in the scheme under
attack. As a result, they are more efficient than our generic algorithm, which works regardless
of the structure of the encodings. Our algorithm also applies to these schemes and succeeds in
practical time; but the point is that it is much more general: it does not require any structure in
the affine encodings, and applies to all previous schemes at once, and more generally to all schemes
in the CEJO framework. This includes Karroumi’s scheme as it has been shown to be equivalent
to the CEJO framework [49, 98].

A useful tool in the context of white-box cryptanalysis is the linear and affine equivalence
algorithm by Biryukov et al. [22]. Their algorithm solves the following problem: given two bijections
S1, S2 on n bits, find affine (or linear, depending on the variant of the problem) mappings A, B such
that S2 = B ◦ S1 ◦ A, if they exist. Biryukov et al.’s algorithm is both able to ascertain whether
such mappings exist, and enumerate all solutions. The time complexity of their solution is O

(
n32n

)
when A,B are linear, and O

(
n322n) when they are affine. In both cases, these complexities are

practical when considering standard S-box sizes, such as n = 8.
This algorithm has been further improved in the affine case by Dinur [59], bringing the com-

plexity down to O
(
n32n

)
. Note however that this improved algorithm was designed for random

permutations. Indeed, the AES S-box being self-affine equivalent, which is fairly rare in the random
case, will lead to a failure of the algorithm. This was mentioned by the author, who also proposed
a workaround. However our own implementation of the algorithm shows that it still fails on the
AES S-box even when using the workaround. Hence, in that case of the AES S-box, we use the
algorithm from [22] which has a higher complexity, but works on the AES S-box.

The main algorithm we propose in this chapter is essentially the same as the algorithm appearing
in Section 2.3 of the structural cryptanalaysis of SASAS by Biryukov and Shamir [29]. However it
is worth noting that this algorithm, from 2001, predates the first white-box constructions, due to
Chow et al. in 2002; and a fortiori later constructions in the CEJO framework. Yet, to the best
of our knowledge, it has not yet been clearly pointed out in the literature that this older algorithm
actually solves the critical step in attacks on white-box schemes in the CEJO framework, as we
show in this chapter. And indeed this algorithm is not referred to in any of the attacks mentioned
above. Thus, we regard as a worthwhile contribution for practitioners in the field to point out that
all known constructions in the CEJO framework can be uniformly broken (as far as recovering affine
layers, which is the critical step in most cases) by combining this algorithm with a generic affine
equivalence algorithm.

Our attack is also related to the attack by Minaud et al. [107] on the ASASA construction
[21], as well as the followup work by Biryukov and Khovratovich [25]. However, the ASASA attack
would only recover the output spaces of S-boxes, not their input spaces, which we also need. In the
setting where the ASASA (and SASAS) attack was developed, this was inconsequential, because
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the attacker had access to both the ASASA function and its inverse, so the problem was symmetric
between input and output. However for us this is not the case: a key feature of our setting is
that we only have access to an ASA mapping, but not its inverse. This difference is significant,
as recovering the input spaces of the S-boxes from their output spaces seems as hard as breaking
the scheme in the first place. And indeed, in the designs by Chow et al. to realize white-box AES
and DES [41, 42], we are not aware of any way to invert the encoded round function without also
breaking the scheme. In addition to qualitative differences in the setting considered, the algorithm
by Minaud et al. is also more expensive for typical parameters (e.g. n = 128 or 256), as it costs
about 2mn2 + n6 operations, where the last term is due to having to solve a quadratic system in n
variables. Running the ASASA algorithm on the scheme by Baek et al., recovering only the output
spaces of S-boxes, would require 248 operations instead of 235 with our attack. Thus the SASAS
algorithm [29], which we use, is the better approach in our setting.

At SAC 2008, Michiels, Gorissen and Hollmann also proposed a generic algorithm to break white-
box implementations following the framework by Chow et al. [106]. Their work considers non-linear
encodings, but requires two extra hypotheses: (1) the input space of each individual S-box through
the input encoding should be known; and (2) the diffusion matrix of the scheme should satisfy a
property called disjoint spanning block sets. In particular, that work does not solve the general
problem of recovering arbitrary affine encodings surrounding a known S-box layer. Moreover, no
overall complexity bound is provided2, as some steps of the algorithm are not accompanied by a time
complexity bound. There is also no implementation, which further prevents assessing performance.

The idea of considering a specialized variant of Biryukov et al.’s generic affine equivalence
algorithm in the context we have described thus far (i.e. where the inner non-linear layer is composed
of distinct S-boxes) was also proposed by Baek, Cheon and Hong in [3], who proposed the specialized
affine equivalence algorithm (SAEA) for solving this problem. However, SAEA is very inefficient for
larger n in our setting, with a time complexity of O

(
min(nm+422m/m, n log(n)2n/2)

)
. Baek et al.

used SAEA to assess the security of their own white-box implementation with external encodings
of AES, predicting a security level of 2110 operations. Our own generic algorithm, however, merely
requires an estimated 235 basic operations, breaking the scheme with practical complexity.

Incidentally, both the previously cited works by Michiels et al. and by Baek et al., while
introducing interesting new techniques, also illustrate the lack of awareness around the fact that
the SASAS technique by Biryukov and Shamir [29], combined with a generic affine equivalence
algorithm, solves the ASA problem generically. In this respect our work may be regarded as filling
a gap in the literature.

Finally, an interesting and recent line of work has exhibited side-channel attacks on white-box
implementations [35, 4]. These approaches are quite powerful in that they require only “gray-box”
access to the implementation, but are not generic attacks in the sense of our work. For example
they are not applicable to the scheme by Baek et al. (not only because the scheme obfuscates
two parallel executions of AES simultaneously, but also because it uses external encodings on both
ends of the cipher). By nature this approach also relies on experimentation, rather than providing
analytical bounds as we do.

Recent work in this direction has shed more light on the success of the gray-box approach outlined
above, and studied more closely the effect of affine and non-linear encodings on the resistance of a
white-box implementation against side-channel attacks [116, 31]. These works show that 4-bit non-
linear encodings, which were recommended in the original scheme by Chow et al. for size reasons, are

2In Section 7, there is a claim that in the particular case of AES and Serpent, the time complexity of their
algorithm would be dominated by the generic affine equivalence algorithm for each S-box. However that claim is not
backed by any analytical bound, nor is it backed by an implementation.
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insecure in that context. Both works focus their analysis mainly on non-linear encodings, and on the
(practically highly relevant) case of a white-box implementation of AES following [42]. By contrast
our work considers only affine encodings and requires full white-box access, but does so within a
more general CEJO framework with an arbitrary SPN cipher and arbitrary (affine) encodings.

Structure of the Chapter.

In Section 4.2, we describe our generic algorithm to recover affine encodings in SPN ciphers in detail,
together with its complexity analysis. In Section 4.3, we describe the white-box scheme by Baek et
al.. In Section 4.4, we first point out that our algorithm from Section 4.2 breaks this scheme in a
generic manner, then develop a second dedicated attack underpinned by a different technique, and
discuss its implementation.

4.2 A Generic Algorithm to Recover Affine Encodings in SPN
Ciphers

In this section, we present our algorithm for solving the affine equivalence problem in the case
where the inner non-linear layer is composed of parallel S-boxes. As discussed in the introduction,
solving this problem amounts to recovering affine encodings from a white-box implementation of
any SPN cipher based on Chow et al.’s approach, regardless of the way the encodings are built.
More precisely, our algorithm solves the following problem.

Problem 1. Let F be an n-bit to n-bit permutation such that F = B ◦ S ◦ A, where:

1. A and B are n-bit affine layers;

2. S = (S1, . . . , Sk) consists of the parallel application of k permutations Si on m bits each (called
S-boxes). Note that n = km.

Knowing S, and given oracle access to F (but not F−1), find affine A′, B′ such that F = B′ ◦S ◦A′.

Before we move on to the algorithm itself, a few remarks are in order.
Remark 1. First, our statement of the problem allows the algorithm to query F , but not F−1.

This is tailored to match the real situation of recovering an affine white-box encoding. Indeed, white
box schemes following the CEJO framework allow access to F , but not to F−1, as the output of F
is computed as a sum of some hard-coded table outputs, and inverting F would require knowing
how to split a given output of F into the appropriate sum. To the best of our knowledge, the most
straightforward way to achieve this is actually to break the scheme.

Of course, in other contexts, a variant of Problem 1 where the algorithm is granted access to
both F and F−1 may also be worth considering. If n is small, it should be noted that F−1 can be
computed exhaustively in 2n operations, so if we are willing to pay 2n calls to F , both variants of
the problem become equivalent. In fact, our own algorithm will first isolate the input and output
space of each S-box, then exhaust that space in 2m operations for each S-box, which will allow us
to access the inverse mapping of each S-box. Thus, essentially, our own algorithm will allow us to
revert back to the case where the direct and inverse mappings are both available. In particular, it
is not obvious how our algorithm could be improved even if F−1 were accessible. In this regard,
we note that Baek et al. explicitly provide an algorithm to solve Problem 1 when F and F−1 are
both available, in O

(
n423m/m

)
operations [3]. However this is slower than our algorithm for all

reasonable parameter ranges, even though our algorithm does not require access to F−1 (as noted
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in the introduction, Baek et al. also propose an algorithm when only F is accessible, but it is much
slower).

Remark 2. As stated, Problem 1 asks to recover some affine encodings A′, B′ such that
F = B′ ◦ S ◦ A′, but not necessarily A and B. This is because A and B may not be uniquely
defined. In fact, if all S-boxes are identical (as is common in SPN ciphers), and as soon as there
is more than one S-box, A and B cannot be uniquely defined: indeed, any solution (A,B) can be
replaced by (P ◦A,B◦P−1), where P is any permutation swapping S-box inputs. Problem 1 merely
asks to recover a solution. However, because our algorithm eventually reduces the problem to the
affine equivalence problem for each S-box, which is solved using the algorithm by Dinur, and that
algorithm is able to enumerate all solutions if desired, it is straightforward to adapt our algorithm
so that it outputs every solution.

Remark 3. The special case of Problem 1 where encodings are linear instead of affine may
also be worth considering. As mentioned in the previous remark however, our algorithm eventually
reduces Problem 1 to the affine equivalence problem for each S-box separately. As such, our algo-
rithm can be trivially adapted to the linear variant of the problem by using a linear equivalence
algorithm on each S-box, instead of an affine one.

Remark 4. In the special case where k = 1, i.e. S is composed of a single S-box, Problem 1
is precisely the affine equivalence problem tackled by Biryukov et al. [22] and Dinur [59], with
the caveat that F−1 is not accessible. However, as mentioned in the introduction, the O

(
n32n

)
time complexity of the faster algorithm by Dinur precludes its use on full 128-bit blocks. From
this perspective, the point of our algorithm is to achieve better time complexity, and in particular,
practical complexity for n upwards of 128 bits, by using the fact that S is split into relatively small
m-bit S-boxes.

4.2.1 Overview of the Algorithm

In a nutshell, the idea of the algorithm is to first isolate the input and output subspaces of each
S-box, then apply the generic affine equivalence algorithm by Dinur to each S-box separately.

Thus, the first step of the algorithm is to find the input subspace of each S-box. More precisely,
we want to build a subspace of dimension m of the input space, such that this subspace spans all
2m possible values at the input of a single fixed S-box, and yields a constant value at the input of
all other S-boxes. To achieve this, we use a differential cryptanalysis approach. Namely, we pick
uniformly at random an input difference ∆. With probability 2−m, ∆ yields a zero difference at the
input of a particular S-box. We can easily ascertain whether this is the case by checking that the
set of output differences generated by input difference ∆ spans a subspace of dimension n−m. If
that is the case, then ∆ yields a zero difference at the input of one S-box, and non-zero differences
at the output of all other k − 1 S-boxes3.

By repeating this process a few times, we can eventually find n−m linearly independent input
differences that yield a zero difference at the input of the same S-box. By going through this process
for each S-box, we recover k spaces of dimension n−m, each yielding a zero difference at the input
of a distinct S-box. Now if we pick any k − 1 of these spaces and compute their intersection, we
obtain a space of dimension m that yields a zero difference at the input of k− 1 S-boxes, and spans
all values at the input of the remaining S-box. This is precisely the space we wanted to build.

3It should be noted that our algorithm makes a (very mild) assumption about the non-linearity of S-boxes:
namely, we assume that, for most differences at the input of one S-box, the corresponding set of reachable output
differences spans the whole output space of that S-box. In particular, this requires that the S-box does not have a
linear approximation of probability one (in the sense of linear cryptanalysis). By construction, cryptographic S-boxes
are expected to fulfill this requirement.
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Indeed, if we query the overall permutation F on all 2m values forming such a subspace, we
obtain a mapping that is affine equivalent to the corresponding S-box. It remains to apply the
affine equivalence algorithm by Dinur to recover affine mappings witnessing the affine equivalence
for that S-box. We repeat this process for all S-boxes. Finally we merge together the affine mappings
thus recovered for each S-box to obtain the overall solution.

4.2.2 Description of the Algorithm

We will first detail our algorithm in the case that all S-boxes are the same, and then explain how
to adapt it to the case of different S-boxes. The main idea to solve this problem is to find all
input difference spaces Ii which activate only one of the S-boxes. That is, for a difference ∆ ∈ Ii
and any message x ∈ Fn2 , the difference after the application of A, i.e. ∆′ = A(x) ⊕ A(x ⊕ ∆),
is zero except on m consecutive bits corresponding to the input of the i-th S-box. Indeed for
such an input difference space Ii ⊂ Fn2 , since the S-boxes are bijective, the output difference space
Oi = F (x) ⊕ F (x ⊕ Ii) ⊂ Fn2 is of dimension m, for any x ∈ Fn2 . Note that this output space Oi
does not depend on the choice of x. Therefore we can compute affine mappings Pi (from Fm2 to Ii)
and Qi (from Oi to Fm2 ) such that S′ = Qj ◦F ◦ Pj is a bijection over Fm2 which is affine equivalent
to the S-box S. We can then use the affine equivalence algorithm by Dinur to recover two affine
mappings Ai,Bi such that S′ = Bi ◦ S ◦ Ai. By doing this for each S-box, we will be able to build
two affine layers A′ and B′ such that F = B′ ◦ (S, . . . , S) ◦ A′.
Computing the Ii’s. To compute the input spaces that we are looking for, we will begin by
computing all input spaces Vi which activate at most k− 1 S-boxes. More precisely, for i from 1 to
k the space Vi is such that, for any ∆ ∈ Vi and x ∈ Fn2 , we have that A(x)⊕A(x⊕∆) is zero on m
bits corresponding to the input of the i-th S-box. There is k such spaces and once we have them,
we can recover all the input spaces Ij by computing the intersection of k − 1 spaces Vi.
Computing the Vi’s. We first remark that if we have a difference ∆ ∈ Vi, then the output vector
space of differences Oi will be of dimension n−m instead of n since one S-box will be inactive. This
is the test we will use to construct the Vi’s. The idea is to pick a difference ∆ at random as well as
n−m+ l messages and then check whether the dimension of the output is lower or equal to n−m.
For a large enough value l, a difference ∆ will satisfy the condition if and only if it belongs to one
of the Vi’s. Repeating this procedure enough time would allow us to fully recover the spaces Vi.
However this would lead to a lot of rank computations. Instead we observe that, once we found an
element of Vi, we can build the full output difference space Oi. Hence we compute a parity-check
matrix of Oi, i.e. a matrix Hi such that for any x ∈ Fn2 , Hi · x = 0 if and only if x ∈ Oi. This
parity-check matrix can be used to quickly verify whether a vector belongs to Oi, and, as a result,
whether a difference ∆ belongs to Vi.
Recovering affine layers. The two previous steps allow us to build the spaces Ii and Oi that we
were looking for. As described above, we thus get some affine mappings Ai,Bi,Pi,Qi for i = 1 . . . k.
Note that we do not know which S-box is activated by the space Ii, and thus one could think that
we need to try all possible arrangement of those affine mappings. However this is not necessary,
since we could always write F as F = B◦P−1 ◦ (S, . . . , S)◦P ◦A where P is a permutation over the
consecutive blocks of m bits. Therefore, we build a block diagonal affine mapping DA (resp. DB)
where the blocks are the mappings A1, . . . ,Ak (resp. B1, . . . ,Bk), as well as the two affine mappings
P and Q built as

P = (P1| . . . |Pk), Q =


Q1
...
Qk
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That way, we have that DA = A ◦ P and DB = Q ◦ B and thus by taking A′ = DA ◦ P−1 and
B′ = Q−1 ◦ DB, we have our equivalent function F = B′ ◦ (S, . . . , S) ◦ A′.
The whole algorithm is summarized as pseudo code in Algorithm 5

Algorithm 5 Computing Ã and B̃.
1: for i = 1 . . . k do
2: ∆← random element in Fn2
3: X ← {n−m+ l random elements in Fn2}
4: Oi ← F (X)⊕ F (X ⊕∆)
5: if (rank(Oi) > n−m) OR (Oi = Oj for any j < i) then
6: Go back to line 2
7: else[With probability 2−m]
8: Vi = {∆} Vi will contain a basis of n−m elements
9: while #Vi < n−m do

10: ∆← random element in Fn2 s.t. ∆ 6∈ span(Vi) ∼ 2m values for ∆
11: x← random element in Fn2 l values for x
12: if [ thenUsing a parity-check matrix of Oi]F (x)⊕ F (x⊕∆) ∈ Span(Oi)
13: Vi = Vi ∪ {∆}
14: end if
15: end while
16: end if
17: end for

18: for [ doj = 1 . . . k]each intersection Ij of k − 1 spaces Vi
19: Compute a m-bit to n-bit projection Pj from Fm2 to Ij
20: Compute a n-bit to m-bit projection Qj from Oj to Fm2
21: S′ ← Qj ◦ F ◦ Pj
22: S′ is a bijection over Fm2 which is affine equivalent to S
23: Use the affine equivalence algorithm from Dinur to recover two affine mappings Aj ,Bj of

size m such that S′ = Bj ◦ S ◦ Aj
24: end for

25: DA ← diag(A1, . . . ,Ak) Block diagonal affine mapping with block size m
26: DB ← diag(B1, . . . ,Bk) Block diagonal affine mapping with block size m
27: P ← (P1| . . . |Pk) B′ = Q ◦ B

28: Q ←

 Q1
...
Qk

 A′ = A ◦ P

29: A′ ← DA ◦ P−1 and B′ ← Q−1 ◦ DB That way, we have F = B′ ◦ (S, . . . , S) ◦ A′

Complexity of the algorithm. The first step is to compute all vector spaces Vi. We can split
this step into two parts. First, the computation of the output space Oi. Note that our test only
checks whether ∆ ∈ ∪kj=1Vj , and this happens with probability k2−m. Hence we need to try 2m
values for ∆ on average to determine all the k output spaces. Taking n−m+ l elements in X leads
to a probability of a false positive, i.e. rank(Oi) = n −m while ∆ activates all S-boxes, of 2−ml
for one value of ∆. The effective value of l will depend on the overall probability of failure that we
wish to achieve for the whole algorithm and will be detailed below. Then computing the rank of Oi
can be done in (n−m+ l)2n = O(n3) operations. All in all, the computation of the output spaces
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O1, O2, . . . , Ok has complexity
O
(
2mn3

)
.

The second part is to compute a basis of the input space Vi which is of dimension n −m. To
get each of those n−m vectors (minus ∆0 which we already know), we first remark that as above,
the probability that a difference ∆ is valid is 2−m, hence 2m tries for ∆. Each value of ∆ will be
tested using l values of x, leading to a probability of false positive of 2−ml for one specific ∆. The
parity-check matrix of Oi can be computed at the same time as the rank computation, and thus
adds no cost here. This matrix is of size m× n, therefore checking if one output difference belongs
to Oi costs about O(mn) operations. Therefore, using that n = km, the complexity of computing
the basis of size n−m for each of the k spaces Vi is

O(k(n−m)2mlmn) = O(2mklmn2) = O(2mln3).

Computing all intersections of (k − 1) vector spaces Vi can be done in O(kn3) operations as
shown latter in this section. Then, we need to make k calls to the affine equivalence algorithm,
which leads to a complexity of O(km32m). All in all, the total complexity of our algorithm is

O
(

2mn3 + 2mln3 + n4

m
+ 2mm2n

)
.

As mentioned previously, the algorithm from [59] was designed for random permutations. This
algorithm has a certain probability to fail, which is higher when the size of the S-box is low, or when
the affine equivalence problem has multiple solutions, which is the case for the AES S-box since it
is self-affine equivalent. This was mentioned by the author, along with a trick which could make
the algorithm work on the AES S-box. However, we did implement this trick, along with further
tweaking, and the algorithm would still fail for this specific choice of S-box. Hence, if the algorithm
from Dinur fails, one would need to use the algorithm from Biryukov et al. [22], which raises the
complexity to

O
(

2mn3 + 2mln3 + n4

m
+ 22mm2n

)
.

Computing all Intersections of k − 1 Subspaces among k Subspaces

In the previous algorithm, we have k vector spaces Vi ⊂ Fn2 of dimension n −m, and we need to
compute each intersection of (k − 1) spaces Vi. Let Bi be the n × (n − m) matrix such that its
columns are the vector of a basis of Vi. In order to save computations, we begin by echelonizing
each matrix (Bi | In) where In denote the identity matrix of size n. This leads to matrices with the
following structure:  In−m Ci

0 Di

 ,
where Ci is a matrix of size (n−m)× n and Di is of size m× n. We note that a vector x belongs
to Vi if and only if it belongs to Ker Di. Therefore, with D the matrix built as

D =

D1...
Dk

 ,
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D1
...
Dk



De
1

D′2...
D′k





De
1

De
2

D′′3...
D′′k




. . .. . .

De
1

D′3
D′4...
D′k





D2

D3...
Dk




Compute K1

(k − 1)2m2n

Ech. D1

km2n

Compute K2

(k − 2)2m2n

Ech. D′2
(k − 1)m2n

Figure 4.2: Efficient computation of the kernels

if x ∈ Ker D, then for all i, x ∈ Ker Di, which leads to x ∈ Vi and thus x ∈ V1 ∩ · · · ∩ Vk.
In our case, we do not need the intersection of all V1, . . . , Vk, but all the intersection of k − 1

spaces Vi. To do so, instead of building D from all the matrices Di, one can build D from only
k − 1 matrices Di, leading to the intersection

⋂
i6=j

Vi for each j = 1 . . . k.

The complexity of this whole computation is as follows. We first need to echelonize each (Bi|In)
on their first n − m columns. Note that this computation can be done at the same time as the
line 10 in the previous algorithm: since we need to draw ∆ linearly independent from the previous
computed vectors of Vi, we can echelonize the basis of Vi as we build it. Since Bi is of size n×(n−m),
the cost of doing this for each i is thus kn2(2n−m) = O(kn3). Then we need to compute the kernel
of the matrices D built from k−1 matrices Di. Note that, those matrices being of size (k−1)m×n,
computing the k kernels needs about ((k − 1)m)2n = O(n3) operations. However, by doing this in
a clever way, one can avoid repeating the same computations and thus improve the constant hidden
in the O() notation.

First, denote by Ki the kernel computed from the matrices Dj with j 6= i, and

D =

D1...
Dk

 .
Remark that computing Ki with i 6= 1 (i.e. all kernels containing D1) is the same as removing
one block Dj , j 6= 1 from D and echelonizing the resulting matrix. Thus by doing this naively,
one would echelonize several times from the m rows of D1. So we want to avoid those redundant
computation. Therefore, we first echelonize D on the m rows of D1, leading to the matrix D′ with
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the following structure
De

1

D′2...
D′k



D′ =

This matrix D′ can be used to compute all kernels containing D1 by removing one of the block
D′j . Again, doing this naively would result in a lot of redundant echelonization on the rows of D′2,
therefore we repeat the previous procedure by echelonizing D′ on the rows of D′2 once for all, leading
to a matrix D′′ which we will use to compute all the kernels containing D1 and D2. A summary of
this procedure is depicted in the Figure 4.2, along with the complexity of each step in the tree. To
be more precise about this complexity, let give a look at the operations we need to do on the i-th
level of the tree. We need to compute the kernel Ki from a (k− 1)m× n matrix which has already
be echelonized on im rows, thus leading to a complexity of (k−1− i)2m2n operations. We also need
to echelonize on m rows of a matrix of total size km × n, which is also already echelonized on im
rows, which needs (k − i)m2n operations. Therefore, the total complexity of this way to compute
the kernels is

k−2∑
i=0

(k − i− 1)2m2n+ (k − i)m2n = m2n
(
k3 + 2k − 1

)
3

To compare, the naive way to do, i.e. computing each kernel independently, would lead to a
complexity of

k(k − 1)2m2n = m2n(k3 − 2k2 + k)

leading to a speed up of about 3 for this step.

Distinct S-boxes.

In the analysis so far, we have assumed that all k S-boxes are identical. We now discuss how the
previous algorithm can be adapted to handle the case of different S-boxes. The only step where the
concrete definition of the S-boxes is used is when we want to use the affine equivalence algorithm
by Dinur. Recall that given two permutations S and S′ = Bi ◦S ◦Ai where Ai and Bi are unknown,
this algorithm finds A′i,B′i such that S′ = B′i ◦ S ◦ A′i. Note that when we compute the input
spaces Ij , we do not know which S-box remains active. Thus for each Ij , we need to call the
affine equivalence algorithm for each possible S-box Si which may seems costly. However, the affine
equivalence algorithm scales very well in the case we want to search for an equivalence from a set
of S-boxes. That is, given S′ = Bi ◦ Si ◦ Ai where i is also unknown, find which S-box is affine
equivalent to S′.

To compute the affine equivalence between two S-boxes S and S′, we use the algorithm from
[22]. However, our problem is actually to find affine equivalences between two sets of k S-boxes:
namely the k S-boxes S1, . . . , Sk known in advance, and the k S-boxes S′1, . . . , S′k which we recover
from F using our algorithm. Each one of the Si’s is affine equivalent to one of the S′j ’s, but we
do not know a priori which one. We could simply try all

(k
2
)
possible matches, however there is a

better algorithm. Indeed, as observed in [22, Section 3.1], in this setting their algorithm can be
made to only grow linearly in k, rather than quadratically. A brief summary of how this is achieved
is provided in Algorithm 6; we refer to [22] for more details about how a canonical representative
is computed. For simplicity, Algorithm 6 only outputs the set of affine equivalent pairs, but it can
be easily modified to also output the corresponding affine mappings. In the end, we have an overall
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complexity O(km322m) to match all pairs of S-boxes. Note that the same idea can be applied
to the improved affine equivalence algorithm from Dinur [59], which thus lead to a complexity of
O(km32m).

Algorithm 6 Given S1, . . . , Sk, and S′1, . . . , S′k find all affine equivalent pairs (Si, S′j).
1: T ← empty map
2: for i = 1 . . . k do
3: for all a ∈ Fm2 do
4: R← canonical representative of the linear equivalence class of Si ⊕ a
5: Append i to T [R] (viewed as a set)
6: end for
7: end for
8: for j = 1 . . . k do
9: for all b ∈ Fm2 do

10: R← canonical representative of the linear equivalence class of S′j ⊕ b
11: for i in T [R] do
12: Output (i, j)
13: end for
14: end for
15: end for

All in all, this adds a factor k in the overall complexity, which becomes

O
(

2mn3 + 2mln3 + n4

m
+ k22mm2n

)
= O

(
2mln3 + n4

m
+ 22mmn2

)

when using the algorithm from Biryukov et al., and O
(
2mln3 + n4

m + 2mmn2
)

when using the
improved affine equivalence algorithm from Dinur.

Probability of failure

We now study the probability of failure of our main algorithm, Algorithm 5. In this algorithm, the
number of messages we use is parametrized by the value l, and the probability of failure decreases
with l. Failures in our algorithm stem e.g. from generating n−m+ l output differences activating
all S-boxes, and these output differences spanning a subspace of dimension n−m despite all S-boxes
being active. Intuitively, it seems clear that the probability of such an event decreases exponentially
with l. However the exact probability of a failure depends on the S-boxes under consideration, and
more specifically, it depends on their differential distribution table. As a result, an exact analysis
of the failure probability is quite complex.

In what follows, to keep the analysis in check, when a random input difference activates all
S-boxes, we approximate output differences by uniformly random vectors. We submit that for
cryptographic S-boxes, this is a reasonable approximation of reality as far as the dimension of the
output space is concerned, which is what matters for our algorithm. Moreover, we have successfully
run experiments (using the AES S-box, as well as random ones) to validate that failure probability
behaves as expected.

During the computation of the Oi’s. When we search the output space Oi, we draw n−m+ l
random elements to test whether the output space is of dimension lower or equal to n −m. Here,
a false positive would be a difference ∆ such that rank(Oi) = n−m while ∆ activates all S-boxes.
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A(r)

AES(r) AES(r)

(
A(r+1)

)−1

⇒

A(r)

K(r) K(r)

S . . . S S . . . S

(
A(r+1))−1

MC ◦ SR MC ◦ SR

M (r)

table

Figure 4.3: The Baek et al. proposal

Therefore the probability of a false positive at this step is upper-bounded by 2−ml for one value of
∆. Since we do this step for about 2m values of ∆, the probability that a false positive occurs in
this step over all the algorithm is upper bounded by 2m2−ml = 2m(1−l).

During the computation of the Vi’s. For each value of ∆, we want to test whether F (x) ⊕
F (x ⊕∆) ∈ span(Oi) for l values of x. In that case, a false positive is a value of ∆ such that this
test is verified while ∆ activates all S-boxes. Again, since dim(Oi) = n −m, the probability of a
false positive of a specific value of ∆ is 2−ml. We try about 2m values of ∆ on average, and need to
do this to find all the n−m basis vectors for each of the k spaces Vi. So the probability of a false
positive at this step is upper bounded by k(n−m)2m(1−l).

Overall failure probability. The probability of failure of our algorithm is upper-bounded by the
sum of the two previous probabilities, which is to say:

(k(n−m) + 1)2m(1−l).

As noted in Section 4.2.2, for the Baek et al. proposal, the parameters are n = 256,m = 8 and
k = 32. Thus, using only l = 5 messages, the failure probability is 2−16. In practice, failures are
not a concern: in our experiments we set l = 5, and never encountered a failure.

4.3 Description of the White-Box Scheme by Baek et al.

Baek et al. provide a toolbox to break any white-box scheme in the CEJO framework [3]. Their
results suggest that the main weakness in the previous proposals for white-box AES is the size
of the internal state. Thus, they proposed to concatenate two AES instances, and encode them
together in order to increase the size of the internal state (Fig. 4.3). We note that their proposal is
a white-box scheme with external encodings.

Baek et al. also showed that the cost of removing the non-linear encodings is lower than
recovering the affine encodings, so they focused only on designing affine encodings. Let us recall
the round function of AES, denoted as AES(r), built from the four sub-steps AddRoundKey(ARK),
SubBytes(SB), ShiftRows(SR) and MixColumns(MC):

AES(r) =
{
MC ◦ SR ◦ SB ◦ ARK, if r = 1, . . . , 9,
ARK ◦ SR ◦ SB ◦ ARK, if r = 10.
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Thus, the encoded round function is the 256-bit to 256-bit mapping

F (r) =
(
A(r+1)

)−1
◦
(
AES(r),AES(r)

)
◦ A(r),

where A(r) are affine mappings on 256 bits. However, using a random affine mapping would result
in some impractical tables since these mappings are of input size 256.

Therefore, they proposed to build 32 tables from 16 bits to 256 bits for each round, using some
structured affine mappings as follows: Let Ar be an invertible linear map of dimension 256 over
F2, and denote the (i, j)-th 8 × 8 block of Ar by Ari,j , i, j = 0, . . . , 31. Then Ar is built such that
Ari,j is the zero matrix for all (i, j) 6= (i, i), (i, i+ 1) and (31, 0). Finally, let ar = (ar0, . . . , ar31) be a
random 256-bit vector, where each ari is an 8-bit block. Then we define the input encoding of the
r-th round A(r) with:

A(r)(x) = Ar · x⊕ ar =


Ar0,0 Ar0,1 0 0 . . . 0

0 Ar1,1 Ar1,2 0 . . . 0
...

...
...

... . . . ...
Ar31,0 0 0 0 . . . Ar31,31



x0
x1
...
x31

⊕

ar0
ar1
...
ar31

 . (4.1)

To generate the tables, we will merge
(
A(r+1)

)−1
with the linear part of AES, that is, we define

M(r) =
(
A(r+1)

)−1
◦ (MC ◦ SR,MC ◦ SR) which is an affine mapping of size 256. Then, as depicted

on Fig. 4.3 our encoded round function becomes F (r) =M(r)◦(S, . . . , S)◦ARK◦A(r) for r = 1, . . . , 9,
where Kr is the r-th round key. The last round (r = 10) is slightly different and will be treated in
a later part.

Table construction. We split the linear part of M (r) into 32 linear blocks of size 256× 8 M r
i

such that M(r)(x) = (M r
0 , . . . ,M

r
31) · x ⊕mr where mr is a 256-bit vector representing the affine

part ofM(r). Also take 31 random 256-bit vectors mr
i , i = 0, . . . , 30 and mr

31 = mr⊕mr
0⊕· · ·⊕mr

30.
Then for i = 0, . . . , 31, we have the 16-bit to 256-bit tables F (r)

i defined as:

F
(r)
i = ACmr

i
◦M r

i ◦ S ◦ ACKr
i ⊕a

r
i
◦
(
Ari,i A

r
i,i+1

)
where ACa is defined as ACa(x) = x⊕ a and the index are taken modulo 32 when necessary. Thus,
one can evaluate the encoded round function F (r) as the sum of F (r)

i :

F (r) (x0, x1, . . . , x31) =
31⊕
i=0

F
(r)
i (xi, xi+1) .

Therefore to implement our encoded round function F (r), instead of having an unreasonable 256-bit
to 256-bit table, we juste need to store 32 tables from 16 bits to 256 bits.

However, the partial application F (r)
i (x, 0) = ACmr

i
◦M r

i ◦ S ◦ ACKr
i ⊕a

r
i
◦ Ari,i(x) is an 8-bit to

256-bit mapping which can be reduced to an 8-bit bijection by applying a projection. Then it is
affine equivalent to S, and one can efficiently recover the affine mappings with the affine equivalence
algorithm described in [22] in about 225 operations. To prevent this weakness, Baek et al. proposed
to replace F (r)

i by T (r)
i such that

T
(r)
i (x, y) = F

(r)
i (x, y)⊕ h(r)

i (x)⊕ h(r)
i+1(y),
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where h(r)
i is a random 8-bit to 256-bit function, and we get

31⊕
i=0

T
(r)
i (xi, xi+1) =

31⊕
i=0

F
(r)
i (xi, xi+1) = F (r) (x0, x1, . . . , x31)

using the fact that the index are taken modulo 32. We will later see that this choice was not enough
to hide the structure of F (r)

i .

External encodings. Consider two random 256-bit affine functions Min and Mout. The
external input encoding function is then defined by F (0) =

(
A(1)

)−1
◦Min, which is implemented

with a 256 × 256 matrix and a 256-bit vector. The external output encoding Mout allows us to
define the last encoded round function as

F (10) =Mout ◦
(
AES(10),AES(10)

)
◦ A(10),

where AES(10) = ACK11 ◦ SR ◦ (S, . . . , S) ◦ ACK10 .
This function is then split into 32 tables T (10)

i using the same technique as above. That way, we
have

F (10) ◦ · · · ◦ F (1) ◦ F (0) =Mout ◦ (AES,AES) ◦Min.

Since one encoded round function is implemented with 32 tables from 16 bits to 256 bits, the
memory required for each encoded round function is

32× 216 × 256 bits = 64 MB,

leading to 640MB for the full scheme with external encodings. In their paper, Baek et al. evaluate
the security of this construction to 2110 using their toolbox. However, as we will show in the
next section, we are able to decrypt any message in ∼ 10× 230 operations, and fully break this
construction by recovering the key in ∼ 231 operations.

4.4 Cryptanalysis of the Scheme by Baek et al.
Baek et al. assessed the security level of their proposition to 110 bits. Recall that each encoded
round function is of the form F = M ◦ (S, . . . , S) ◦ A where M and A are affine mappings.
Therefore, our generic algorithm from Section 4.2 can be used to compute an equivalent round
function F = M′ ◦ (S, . . . , S) ◦ A′ where A′ and M′ are known affine mappings, in about ∼ 234.6

operations. However, one can exploit the specific structure of the encodings to mount a more
efficient dedicated attack on their scheme. We will first begin by giving a method of complexity
∼ 230 to recover a computationally easy to invert equivalent representation of one encoded round
function. Next, we will show that instead of using this method 10 times (for each round function),
we are able to fully break this scheme in ∼ 231 operations, that is, recovering the secret key used
in the underlying AES as well as the external encodingsMin andMout.

4.4.1 Building an Equivalent Representation of the Scheme

Let us consider one encoded round function and drop the exponent notation for the round as it is
not relevant here, and also merge the key addition with the input affine encoding. Given an encoded
round function F of the formM◦(S, . . . , S)◦A whereM andA are secret affine mappings, andA has
the structure depicted in (4.1), our goal is to provide a computationally easy to invert representation
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of F , that is, finding two equivalent affine mappingsM′ and A′ such that F =M′◦(S, . . . , S)◦A′. In
that case, inverting one round would only cost two inversions of 256-bit affine mappings. Remember
that the encoded round function is hidden in the tables Ti(x, y) = Fi(x, y)⊕ hi(x)⊕ hi+1(y) where
hi are random functions.

Reducing the Problem to Block Diagonal Input Encodings

Finding the input encoding can easily be done if this encoding is a block diagonal affine mapping
where each block is of size 8. By applying an appropriate projection, one can obtain some 8-bit
bijections that are affine equivalent to the AES S-box. In that case, recovering the affine mappings
used can be done in about 225 operations with the affine equivalence algorithm from [22]. Because
of the random mappings hi, one cannot use this algorithm directly on the tables in the Baek et al.
proposal. However, we will show that we can decompose the secret input encoding A in A = B ◦ Ã
where:

• B is a secret block diagonal affine mapping, built from blocks Bi of size 8× 8,

• Ã is a known linear mapping which has the same structure as A (4.1).

Let us denote the 16-bit to 8-bit linear mapping Li = (Ai,i Ai,i+1), which is unknown by the
attacker. By construction, since we want the affine encodings to be invertible, we know that Li is of
rank 8. If one is able to recover Ker Li, which is then a linear space over F16

2 of dimension 16−8 = 8,
then there exists an 8× 8 invertible matrix Bi such that Li = Bi ◦ (08 Id8) ◦ V −1

i , where the linear
mapping Vi is built as (v1 . . . v16) with {v1, . . . , v8} a basis of Ker Li and {v9, . . . , v16} a completion
of this basis. In that case, while the matrices Bi are still unknown for the attacker and will form
the block diagonal matrix B, one can build the matrix Ã from the 8× 16 blocks (08 Id8) ◦ V −1

i .
So now, we only need a way to compute Ker Li from the tables Ti, which can be done using the

following lemma.

Lemma 4.4.1. For any (a, b) ∈ F8
2 × F8

2:
1. x ∈ Ker Ai,i ⇒ y 7→ Ti(a⊕ x, b⊕ y)⊕ Ti(a, b⊕ y) is constant,

2. y ∈ Ker Ai,i+1 ⇒ x 7→ Ti(a⊕ x, b⊕ y)⊕ Ti(a⊕ x, y) is constant,

3. (x, y) ∈ Ker Li ⇒ Ti(a, b)⊕ Ti(a⊕ x, b)⊕ Ti(a, b⊕ y)⊕ Ti(a⊕ x, b⊕ y) = 0.

Proof. We will only prove the first and the last points, since the second one is very similar to the
first. From the construction of Ti, we can write it as

Ti(x, y) = S̃i [Ai,i(x)⊕Ai,i+1(y)⊕ ci]⊕ hi(x)⊕ hi+1(y)

where S̃i = Mi ◦ S.
1. Let us take (a, b) a fixed element in F8

2 × F8
2 and x ∈ Ker Ai,i. Then for any y ∈ F8

2 we have

Ti(a⊕ x, b⊕ y)⊕ Ti(a, b⊕ y)
= S̃i [Ai,i(a⊕ x)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a⊕ x)⊕ hi+1(b⊕ y)
⊕ S̃i [Ai,i(a)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a)⊕ hi+1(b⊕ y)

= S̃i [Ai,i(a)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a⊕ x)
⊕ S̃i [Ai,i(a)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a)

= hi(a⊕ x)⊕ hi(a),



116
CHAPTER 4. ON RECOVERING AFFINE ENCODINGS IN WHITE-BOX

IMPLEMENTATIONS

which does not depend on y, therefore y 7→ Ti(a⊕ x, b⊕ y)⊕ Ti(a, b⊕ y) is constant.
3. First note that (x, y) ∈ Ker Li ⇔ Li(x, y) = 0⇔ Ai,i(x) = Ai,i,+1(y).
So let take (a, b) a fixed element in F8

2 × F8
2 and (x, y) ∈ Ker Li, then

Ti(a, b)⊕ Ti(a⊕ x, b)⊕ Ti(a, b⊕ y)⊕ Ti(a⊕ x, b⊕ y)
= S̃i [Ai,i(a)⊕Ai,i+1(b)⊕ ci]⊕ hi(a)⊕ hi+1(b)
⊕ S̃i [Ai,i(a⊕ x)⊕Ai,i+1(b)⊕ ci]⊕ hi(a⊕ x)⊕ hi+1(b)
⊕ S̃i [Ai,i(a)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a)⊕ hi+1(b⊕ y)
⊕ S̃i [Ai,i(a⊕ x)⊕Ai,i+1(b⊕ y)⊕ ci]⊕ hi(a⊕ x)⊕ hi+1(b⊕ y)

= S̃i [Ai,i(a)⊕Ai,i+1(b)⊕ ci]
⊕ S̃i [Ai,i(a)⊕Ai,i(x)⊕Ai,i+1(b)⊕ ci]
⊕ S̃i [Ai,i(a)⊕Ai,i+1(b)⊕Ai,i+1(y)⊕ ci]
⊕ S̃i [Ai,i(a)⊕Ai,i(x)⊕Ai,i+1(b)⊕Ai,i+1(y)⊕ ci]

= S̃i [Ai,i(a)⊕Ai,i+1(b)⊕ ci]
⊕ S̃i [Ai,i(a)⊕Ai,i(x)⊕Ai,i+1(b)⊕ ci]
⊕ S̃i [Ai,i(a)⊕Ai,i+1(b)⊕Ai,i(x)⊕ ci]
⊕ S̃i [Ai,i(a)⊕Ai,i(x)⊕Ai,i+1(b)⊕Ai,i(x)⊕ ci] = 0.

Note that the third point is a strict implication. Indeed, if one takes x ∈ Ker Ai,i, one can easily
see that for any y ∈ F8

2, the third equation holds while (x, y) is not necessarily in Ker Li. So to
compute Ker Li, we first need to recover Ker Ai,i and Ker Ai,i+1.

We can safely assume that if x /∈ Ker Ai,i, the function fx : y 7→ Ti(a ⊕ x, b ⊕ y) ⊕ Ti(a, b ⊕ y)
behaves like a random function and then is constant with overwhelmingly low probability. Therefore,
by choosing any (a, b) ∈ F8

2×F8
2, one can check if x ∈ Ker Ai,i by computing fx and checking whether

or not fx is constant. Obviously, the same method can be applied to recover Ker Ai,i+1.
Once Ker Ai,i and Ker Ai,i+1 are recovered, one can recover the remaining elements (x, y) ∈

Ker Li with x /∈ Ker Ai,i and y /∈ Ker Ai,i+1 by using the third implication: if (x, y) /∈ Ker Li, we
can assume that the resulting value of the equation behaves like a random variable over F8

2 and is
then equal to 0 with probability 2−8. Therefore, one can check if (x, y) ∈ Ker Li by choosing a few4

values for (a, b) and checking if the equation stands for all these (a, b).
In that way, we can recover Ker Li in roughly ∼ 218 table lookups using the method described

above and which is summarized in Algorithm 7. Since we need to repeat this operation 32 times,
we end up with a complexity of ∼ 223 table lookups to decompose A into A = B ◦ Ã.

Building an Equivalent Representation of the Round Function

At this point, our encoded round function is F =M◦ (S, . . . , S) ◦ B ◦ Ã where Ã is known and B
is block diagonal, built with 8 × 8 affine mappings B0, . . . ,B31, but is still secret. Our goal is to
find an equivalent representation of the round function, that is, finding affine mappingsM′ and B′
which behave likeM and B in the sense that F =M′ ◦ (S, . . . , S) ◦ B′ ◦ Ã.

The idea is to find 32 affine mappings B′i of size 8 to build B′. Note that here, these B′i will
not necessarily be equal to Bi, but we will see that we can then buildM′ in a way that solves this
problem.

4In practice, 4 values are sufficient.
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Algorithm 7 Computing Ker Li
1: Compute Ker Ai,i using implication 1
2: (a, b)← random element in F8

2 × F8
2

3: for x ∈ F8
2 do

4: if fx is constant then
5: Ker Ai,i ← Ker Ai,i ∪ {x}
6: end if
7: end for

8: Compute Ker Ai,i+1 using implication 2
9: (a, b)← random element in F8

2 × F8
2

10: for y ∈ F8
2 do

11: if fy is constant then
12: Ker Ai,i+1 ← Ker Ai,i+1 ∪ {y}
13: end if
14: end for

15: Compute the remaining elements of Ker Li using implication 3
16: Ker Li ← (F8

2 × F8
2)\(Ker Ai,i ×Ker Ai,i+1)

17: for i = 1...4 do
18: (a, b)← random element in F8

2 × F8
2

19: for (x, y) ∈ Ker Li do
20: if the equation does not holds then
21: Ker Li ← Ker Li\{(x, y)}
22: end if
23: end for
24: end for
25: return Ker Li ∪ (Ker Ai,i ×Ker Ai,i+1)

Recall that we can evaluate the encoded round function F by summing over the tables Tj . For
xi ∈ F8

2, let consider the function

31⊕
j=0

Tj ◦ Ã−1(0, . . . , xi, . . . , 0).

Since B is block diagonal with blocks of size 8, only one S-box will be active, and so this function
is a 8-bit to 256-bit mapping of the form H◦ S ◦ Bi where H is some affine function of size 8× 256.
Note that H, S and Bi are all injective (at least) by construction. So we can compute this function
and deduce an affine projection P such that P ◦ H ◦ S ◦ Bi is a bijection over F8

2. This bijection is
then affine equivalent to the AES S-box, and we can use the affine equivalence algorithm from [22]
to recover Bi in ∼ 225.

However, there are some self-equivalence relations on the AES S-box, which means there exist
some5 affine mappings A1,A2 of size 8×8 such that A2◦S◦A1 = S. Therefore, the affine equivalence
algorithm will not exactly recover Bi, but one B′i = A1 ◦ Bi without knowing which A1 is used. In
our present case where we only want to provide an equivalent representation of the round function,
this does not really matter. We can choose any candidate for each B′i, and we will show how to
build an affine mappingM′ to compensate the action of A1.

5There are 2040 such pairs (A1,A2), see [22].
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Figure 4.4: Building M̃i

So we are looking at our equivalent round-functionM′ ◦ (S, . . . , S) ◦ B′ ◦ Ã, where B′ and Ã are
known, but we still need to findM′. The overall strategy for that is depicted in Fig. 4.4 and detailed
below. As in the description of the scheme, let us split the linear part ofM′ into (M ′0 . . .M ′31) where
M ′i is of size 256× 8. Algorithm 2 gives the procedure to compute M ′i . The idea is just to compute
the image each vector of the canonical basis through M ′, which can be done using the fact that we
fixed one candidate for each B′i.

Algorithm 8 Computing M ′i
1: x0

i ← random element in F8
2

2: x0 ← (0 . . . x0
i . . . 0) ∈ F256

2
3: z0 ←

⊕
T ◦ Ã−1(x0)

4: y0
i ← S(B′i(x0

i )) since we know B′i
5: for each ej = (0 . . . 1 . . . 0) ∈ F8

2 do with a 1 at the j-th position
6: yji ← y0

i ⊕ ej
7: xji ← B

′−1
i (S−1(yji ))

8: xj ← (0 . . . xji . . . 0)
9: zj ←

⊕
T ◦ Ã−1(xj)

10: ∆zj ← z0 ⊕ zj
11: j-th column of M ′i ← ∆zj since ∆yj = (0 . . . ej . . . 0)
12: end for

We can apply this method for all 32 blocks B′i to recover the linear part ofM′. After that, to
recover the affine translation m′ ofM′, we only need to compute

z′ = M ′.(S, . . . , S) ◦ B ◦ Ã(x)

and z =
⊕
Ti(x) for one x ∈ F256

2 , then we can easily recover m′ since in that case z = z′ ⊕m′.
So we are able to provide a computationally easy to invert equivalent representation of the

encoded round function as M′ ◦ (S, . . . , S) ◦ B′ ◦ Ã. The complexity of building M′ and B′ is
dominated by the 32 calls to the affine equivalence algorithm to get each B′i, which lead to a
complexity of about 32× 225 = 230, which is therefore the complexity of this whole 1-round attack.
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Building an Equivalent Representation of the Scheme

Therefore, we can already provide an attack on the full 10-round scheme: indeed, we just need to
apply the above method on each encoded round function F (r). Note that the external encodings do
not pose any problem here. For the external input encoding Min, recall that we know the affine
mapping F (0) =

(
A(0)

)−1
◦Min. Using the previous technique, we are able to recover an equivalent

representation F̃ (1) of F (1), such that F̃ (1) = F (1) while F̃ (1) is easy to invert. So since we then
have F̃ (1) ◦ F (0) = F (1) ◦ F (0), we do not need to do anything aboutMin to provide an equivalent
representation of the scheme.

For the external output encoding Mout, recall that the last encoded round function F (10) is
defined by

F (10) =Mout ◦
(
AES(10),AES(10)

)
◦ A(10) =M(10) ◦ (S, . . . , S) ◦ A(10)

whereM(10) =Mout ◦ ⊕K11 ◦ SR. Then our technique applied on F (10) gives us 3 affine mappings
M′(10),B′(10) and A′(10) such that

F (10) = F̃ (10) =M′(10) ◦ (S, . . . , S) ◦ B′(10) ◦ A′(10)

while F̃ (10) is easy to invert, so again,Mout does not pose any problem here.
All in all, we have built 10 easy to invert equivalent round-functions F̃ (r) such that

F̃ (10) ◦ · · · ◦ F̃ (1) ◦ F (0) = F (10) ◦ · · · ◦ F (1) ◦ F (0) =Mout ◦ (AES,AES) ◦Min,

which is the original scheme. The cost for doing this is to repeat 10 times the 1-round attack,
which gives us a complexity of 10× 230. While this is already practical, we only have an equivalent
representation of the scheme, but we did not recover the key nor the encodings.

4.4.2 Recovering the Key

While we could just use the previous method 10 times on each encoded round function to provide
an easy to invert representation of the full scheme, we can do better and fully break the scheme by
recovering the key in a more efficient way by exploiting two consecutive rounds.

So let us start at the point where we decomposed one round into F = M◦ (S, . . . , S) ◦ B ◦ Ã,
with Ã known and B an affine diagonal mapping. Recall that using the affine equivalence algorithm
from [22] for each block does not give us exactly Bi, but roughly 211 candidates B′i. If we want to
recover exactly the key and the encodings, we need to identify which candidate is exactly Bi. Note
that since we have 211 candidates for each of the 32 Bi, we cannot exhaust them all.

To be able to quickly identify the correct candidate, one can first apply the previous method on
two consecutive rounds. By doing so, we decompose these two rounds into

F (r+1) =M(r+1) ◦ (S, . . . , S) ◦ B ◦ Ã
F (r) =M(r) ◦ (S, . . . , S) ◦ C ◦ Â

where Ã, Â are known and B, C are affine block diagonal mappings, which are still secret, but for
which we know 211 candidates for each block Bi and Ci.

In that case, we can write F (r) as

Ã−1 ◦ B−1 ◦ (MC ◦ SR,MC ◦ SR) ◦ (S, . . . , S) ◦ C ◦ Â.
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Figure 4.5: Identifying correct blocks.

Since B is block diagonal, so is its inverse, and we know Ã and Â. Our problem in then reduced
to block diagonal input and output encodings for one encoded round function, with 211 candidates
for each block Bi and Ci. We now need to recover which are the correct Bi and Ci. To do so, we
will use a Meet-in-the-Middle approach depicted in Fig.4.5 and detailed below.

The MixColumns operation of AES works on words of four bytes, so we restrict our work on four
Bi and the corresponding four Ci that will be used as input of the same MixColumns operation. For
example, as depicted in Fig.4.5, we can first consider B0, B1, B2, B3 and C0, C5, C10, C15 which will
be on the same MixColumns operation after the application of ShiftRows. For an easier understand-
ing, we will describe our MITM method using these blocks, as it will be exactly the same for the
other Bi and Ci. The detailed procedure is given in Algorithm 9.

We want to use the MITM to identify the correct (B0, C0), for which we have 222 candidates
in total. As we will search a match with ∆z1

0 , . . . ,∆zm0 where each ∆zji is an 8-bit value, taking
m = 4 leads to a 32-bit filter, which is enough to leave only the right candidates. Building the hash
table costs ∼ 211, and so does the matching step. Once B0 and C0 are recovered, we only need to go
through all the candidates for the remaining Bi and Ci, which is done separately. Since we have 211

candidates for each of them, the total cost of this step is roughly 8× 211 = 214. Finally, we need to
do this method on each of the 8 groups of 4 Bi and 4 Ci, leading to a complexity of ∼ 217 to recover
B and C.

Extracting the Key

Note that the reason why we used the differences ∆zi instead of the values are because when we
decomposed F (r+1) intoM(r+1) ◦ (S, . . . , S)◦B ◦ Ã, B contains the key in its affine translation: that
is, we have B(x) = B.x⊕(b⊕K(r+1)) such that B.Ã.x⊕b = A(r+1). The same phenomenon happens
with C, which we recover as C(x) = C.x⊕ (c⊕K(r)). So when we need to use Bi for the MITM, the
affine translation will not be the good one, while the linear part is. However, once we recovered the
correct B and C, we can use this fact to recover the key K(r+1), and thus also recovering exactly
the affine translation of B and C. Indeed, denote z = (MC ◦ SR,MC ◦ SR) ◦ (S, . . . , S) ◦ C ◦ Â(x) and
y = Ã ◦ F (r)(x) where again, F (r) is computed using the tables. Then we know that B.z ⊕ b = y,
and since we know B, y and z, we can easily compute b. Finally, since we previously recovered
B(x) = B.x⊕ (b⊕K(r+1)), we get K(r+1).

Since the key schedule of AES is invertible, one can do this procedure on the first two rounds,
given through the tables T (1) and T (2). That way we can compute K(1), which is the master key
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Algorithm 9 Identifying correct blocks
1: x0, . . . , xm ← messages with byte xj0 taking different values and xji = 0 if i 6= 0
2: for each candidate for C0 do
3: ∆wj0 ← S(C0(x0

0))⊕ S(C0(xj0)) xji is constant if i 6= 0, so ∆wji = 0 if i 6= 0
4: (∆zj0,∆z

j
1,∆z

j
2,∆z

j
3)← MC.(∆wj0, 0, 0, 0)

5: Store C0 in a hash table Tz indexed by ∆z1
0 , . . . ,∆zm0

6: end for
7: yj ← Ã ◦ F (r) ◦ Â−1(xj) F (r) can be evaluated using the tables Tj
8: ∆yj0 ← y0

0 ⊕ y
j
0

9: for each candidate for B0 do
10: ∆z̃j0 ← B0.∆yj0
11: if ∆z̃1

0 , . . . ,∆z̃m0 ∈ Tz then
12: We have the correct B0 and C0 = Tz[∆z̃1

0 , . . . ,∆z̃m0 ]
13: break
14: end if
15: end for
16: Once we have the correct C0, we know the correct values of ∆zji , so we do not need any hash

table
17: for each candidate for Bi, i = 1, 2, 3 do
18: if Bi.∆yji = ∆zji then
19: We have the correct Bi
20: end if
21: end for
22: Once we have all the correct B0,B1,B2,B3, we can use the same kind of

computation to identify the correct remaining Ci using messages with xji taking different values
and xjl constant for l 6= i

Mout ◦ (AES,AES) ◦ Min

z y x

tables lookup

Figure 4.6: Recovering Mout

used in AES, from K(2). This only leaves the external encodings to be recovered, which is an
easy task now. We can recover exactly which affine translation was used for C for which we knew
C(x) = C.x⊕ (c⊕K(1)). Then we can recover the first input encoding A(1) as A(1)(x) = C.Â.x⊕ c.
Now recall that the external input encoding we knew was F (0) =

(
A(1)

)−1
◦ Min. We recovered

A(1) so it is easy to computeMin.
Recovering Mout is not hard either, see Fig. 4.6. We know the key, meaning we can easily

compute the two parallel AES, and we also know Min. So for any y ∈ F256
2 , one can compute x

such that y = (AES,AES) ◦Min(x), then z = Mout(y) from x by using the tables. Therefore, we
only need to do this for 257 values of y: the zero vector to get the affine translation of Mout and
then each of the 256 canonical basis vectors.

All in all, we recovered the key of the AES as well as both external encodings. The cost of
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Diagonal decomposition ∼ n · 222

Inverting one encoding ∼ n3 · 221

Affine equivalence ∼ n · 230

MITM ∼ n · 216

Implementation size n2 · 160 MB

Figure 4.7: Complexity of our attack and implementation size for n parallel AES instances.

doing this is dominated by the cost of the 64 calls to the affine equivalence algorithm to get some
candidates for Bi and Ci, which leads to complexity of ∼ 231.

Implementation. We implemented the attack in C++, relying on NTL [123] for linear algebra.
The total time to recover both the key and the external encodings is about 12 seconds, with roughly
10 seconds spent on the 64 affine equivalences, and using a negligible amount of memory. This was
run on a Intel Core i7-6600U CPU @ 2.60GHz on a single core. Our implementation is
available at http://wbcheon.gforge.inria.fr/.

4.4.3 Using More AES Instances in Parallel

A natural question is whether the white-box scheme by Baek et al. could be made secure by
increasing the number n of AES instances encoded in parallel. However in this section, we show
that this is not the case, as the storage requirement of storing the actual white-box implementation
quickly becomes limiting.

More precisely, Table 4.7 shows the complexity of each step of our dedicated attack as n increases,
together with the size of the corresponding white-box implementation. Recall that in this section,
n denotes the number of parallel AES instances (rather than the total block size).

So the dominating cost comes from either the computation of the inverse of one encoding or
the calls to the affine equivalence algorithm. For n ≤ 22, the affine equivalence is dominating and
lead to a complexity of ∼ 235 for an implementation of size ∼ 64 GB when n = 22. Otherwise
the inversion is dominating, and obtaining even a 60-bit security would need n = 213 parallel AES,
which lead to an implementation of size ∼ 213 TB, which is definitely not realistic.

4.5 Conclusion

In this chapter, we propose a generic algorithm to recover affine encodings for SPN ciphers, in the
context of white-box schemes following the framework of Chow et al. More generally, our algorithm
solves the affine equivalence problem in the special case where one of the two maps is composed of
the parallel application of distinct S-boxes. We illustrate the efficiency of our attack on a white-
box implementation of AES with external encodings proposed by Baek, Cheon and Hong, which
was precisely designed to make a generic ASA approach out of computational reach. Nevertheless
our generic attack breaks the scheme in 235 basic operations, compared to the assessment by its
authors that 2110 would be required. We then took a closer look at the Baek et al. scheme, and
identified another attack vector, which reduces the attack to a simple standalone problem. This

http://wbcheon.gforge.inria.fr/
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second approach results recovers the secret key in time complexity 231. A full implementation of
the attack confirms the complexity estimate.

It may be fair to suggest that a secure white-box implementation in anything resembling the
CEJO framework is implausible, considering every attempt to date has been closely followed by
a devastating attack. In a nutshell, in this work we showed that obfuscating the round function
of an SPN cipher (such as AES) using affine encodings is essentially impossible. In this light, our
result suggests that non-linear encodings should play a central role in any future endeavor in this
direction.



"We’re in the endgame now."
— Dr. Strange



Conclusion

In this thesis, we saw several ways of studying and optimizing different components of block ciphers
algorithms, as well as some new cryptanalysis results. We often focused on a specific criterion to
optimize, and used different tools such as Constraint Programming, meta-heuristics, Mixed Integer
Linear Programming, theoretical arguments or just plain coding. Our results gave a better idea of
how to design some block ciphers components as well as different strategies to be considered. Still,
some open problems remains.

In the first chapter, we study the choice of the permutation used to build a Generalized Feistel
Network, focusing on finding the best permutations w.r.t the diffusion round. We gave a new
characterization for a permutation to reach full diffusion, leading us to an efficient algorithm to
search for optimal permutations. As a result, we were able to give new results for up to 42 blocks,
either by giving optimal permutations or better lower bounds on the diffusion round. Specifically,
we solved a 10-year-old problem, first given in [131], by finding all optimal permutations for a 32-
block GFN. While our algorithm should be scalable to a few more blocks, it seems to be difficult
go up to 64 blocks and beyond. We thus leave open the problem of finding optimal permutations
for even more blocks than what we exhibited, even though the application of such a large GFN
might be thin. Another interesting way of research is that our optimal permutations (w.r.t diffusion
round) have slightly worse security results when considering differentials attacks, compared to the
non-optimal ones given in [39]. As such, it would be interesting to try to find the best possible
trade-off between a given set of criteria, which is a work that will be pursued in the future.

In Chapter 2, we gave some new insight about division property cryptanalysis. We showed
that the representation of a block cipher is crucial when trying to find a division property based
distinguisher, as some representation can lead to better distinguishers. We described an efficient
algorithm to take care of a specific case of such different representation, namely when considering a
linearly equivalent block cipher Lout ◦E ◦Lin when Lout and Lin are block diagonal linear mappings.
As a result, we were able to find a new distinguisher for RECTANGLE over one more rounds than
previously known. We also gave a new criterion to build S-boxes so that they have better resistance
against division property. Specifically, we proved that a certain class of S-boxes are optimal w.r.t
to division property, and proposed new S-boxes for RECTANGLE and PRESENT to improve their
resistance by 2 rounds, even when considering our previous extension technique. A natural limita-
tion to our current algorithm is that it is costly to try to find distinguisher with a reduced data
complexity. The same can be said if we want to study a block cipher using 8-bit S-boxes, not only
because our algorithm needs more calls to the MILP solver, but also because the resulting MILP
models are way more costly to solve. Another improvement that could be made would be to try
considering a larger class of block cipher. Indeed, we focused on SPN block-ciphers, but some idea
should be reusable for Feistel for example.

Then in Chapter 3, we tried to find a better key-schedule algorithm for AES. Specifically, we
looked to replace the AES key-schedule with a permutation, so that we have a higher minimal
number of active S-boxes. Along with giving some theoretical bounds, we used a combination of
Constraint Programming and meta-heuristics to exhibit permutations which are close to the optimal
goal for AES, namely, reaching 22 active S-boxes over 6 rounds. Even if our permutations do not
reach 22 active S-boxes, all of them still have the property that no differential characteristic with
probability higher than 2−128 exists. An obvious open question is whether we can actually reach 22
active S-boxes over 6 rounds. In the same idea, we proved that 5 rounds cannot lead to 18 or more
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S-boxes, and we found a permutation reaching 16 active S-boxes, thus the 17 S-boxes case is still
open. Essentially, a more general question is whether we could build an AES-like block cipher such
that, using a permutation a key-schedule, we have at least 22 active S-boxes over 6 rounds.

Finally in the last chapter, we gave new improvements for the cryptanalysis of some white-box
schemes. We described a generic algorithm to efficiently solve a special case of the affine equivalent
problem, namely, given two affine equivalent functions F and S such that S is the concatenation
of several S-boxes, find affine mappings A and B such that F = B ◦ S ◦ A. This is the core prob-
lem of white-box schemes derived from the CEJO framework, and solving efficiently this problem
essentially allows us to create the decryption function when given the white-box implementation
of the encryption function, thus completely breaking the security of the scheme. Our algorithm
scales very well, and when considering AES parameters for example, has a complexity of about
232 operations. We then focused on a dedicated cryptanalysis of a white-box scheme from Baek
et al.. While our generic algorithm applies here, we were able to go further and do a key-recovery
attack of complexity 231, while our previous generic algorithm would need about 235 operations to
find the decryption function. Thus, for any white-box scheme based on the CEJO framework, the
so-called "affine encodings" only bring a negligible security factor, and thus cannot provide a secure
white-box implementation. Using non-linear encodings would be the only way, but considering the
known attacks, it would quickly lead to an implementation of unreasonable size even for a decent
level of security. As such, we need to find a totally new framework to build white-box schemes, as
the CEJO framework seems to have reached its limits.
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Titre :  Optimisation des Principaux Composants des Chiffrements par Bloc

Mots clés : Cryptographie, symétrique, conception, cryptanalyse

Résumé : La sécurité des chiffrements par bloc
évolue constamment au fur et à mesure que de
nouvelles  techniques  de  cryptanalyse  sont
découvertes. Lors de la conception de nouveaux
chiffrements par bloc, il est donc nécessaire de
considérer  ces  nouvelles  techniques  dans
l'analyse  de  sécurité.  Dans  cette  thèse,  nous
montrons  comment  construire  certaines
opérations  internes  des  chiffrements  par  bloc
pour  améliorer  la  résistance  à  certaines
attaques.
Nous  commençons  par  donner  une  méthode
pour  trouver  les  permutations  paires-impaires
optimales  selon  un  certain  critère  pour  les
Réseaux de Feistel  Généralisés.  Grâce à  une
nouvelle  caractérisation  et  à  un  algorithme
efficace, nous sommes notamment capables de
résoudre un problème ouvert depuis 10 ans.

Nous donnons ensuite de nouvelles techniques
de  cryptanalyse  pour  améliorer  la  division
property,  qui  nous  permet  également  de
donner  un  nouveau  critère  optimal  pour  la
conception de boîtes-S.
Nous  continuons  avec  de  nouvelles
observations  pour  un  cadencement  de  clé
alternatif  pour  AES.  Ceci  nous  permet  de
donner un nouveau cadencement de clé, à la
fois plus efficace et augmentant la sécurité face
à certaines attaques par rapport à l’original.
Pour  finir,  nous  présentons  un  algorithme
général  très  efficace  permettant  d’attaquer  la
majorité des propositions pour la cryptographie
en boîte blanche, ainsi qu’une attaque dédiée
sur un schéma non attaqué jusque là, donnant
lieu  à  une  attaque  qui  n’a  besoin  que  de
quelques secondes pour retrouver la clé.

Title : Optimization of Core Components of Block Ciphers

Keywords : Cryptography, symmetric, design, cryptanalysis

Abstract  :  Along  with  new  cryptanalysis
techniques,  the  security  of  block  ciphers  is
always  evolving.  When  designing  new  block
ciphers,  we  thus  need  to  consider  these  new
techniques during the security analysis.  In this
thesis,  we  show  how  to  build  some  core
operations  for  block  ciphers  to  improve  the
security against some attacks.
We  first  start  by  describing  a  method  to  find
optimal (according to some criterion) even-odd
permutations for a Generalized Feistel Network.
Using  a  new  characterization  and  an  efficient
algorithm, we are able to solve a 10-years old
problem.

We then give new cryptanalysis techniques to
improve the division property, along with a new
proven optimal criterion for designing S-boxes.
We  continue  with  new  observations  for  the
design of an alternative key-schedule for AES.
We  thus  give  a  new  key-schedule,  which  is
both  more  efficient  and  more  secure  against
some attacks compared to the original one.
Finally,  we  describe  a  very  efficient  generic
algorithm to break most proposals in white-box
cryptography, as well as a dedicated attack on
a previously not analyzed scheme, leading to a
key-recovery attack in a few seconds.
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