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0.1 Summary

0.1.1 English

In this thesis we prove that the Tamarkin-Tsygan calculus of a finite dimensional

associative algebra over a field k is a derived invariant. In other words, the main

result of this work goes as follows: a derived equivalence between two finite di-

mensional associative algebras over a field k induces an isomorphism between

Hochschild homology and Hochschild cohomology that respects simultaneously

the cup product, the cap product, the Gerstenhaber bracket and the Connes differ-

ential, see Theorem 5.2.15 in page 94.

We use homological constructions developed by Rickard [50, 51, 52] and

Keller [34, 38] to extend results on derived invariance.

First, we use Morita theory for derived categories of Noetherian algebras over

a commutative ring k that are finitely generated and projective as k-modules to

obtain derived invariance of the cup product with coefficients in bimodules whose

image under a derived equivalence is concentrated in degree zero, see Theorem

4.2.6 in page 70. We do this by extending the construction of the cup product in

terms of morphisms in the derived category of the enveloping algebra given by

Rickard in [50], see Proposition 4.2.4 in page 68.

We show that the cap product with coefficients in an algebra is a derived in-

variant of algebras over a field that have finite dimensional Hochschild homology

in each degree, see Theorem 4.3.1 in page 71. The cap product is expressed in

terms of Hochschild cohomology by using a canonical isomorphism. We then ex-

press the cap product in terms of morphisms in the derived category and with that

interpretation the derived invariance of the cap product with coefficients in the

algebra is obtained. In case k is a commutative ring, we have obtained with Keller

[2] a generalization allowing bimodule coefficients whose image under a derived

equivalence is concentrated in degree zero for k-projective Noetherian algebras

that are finitely generated as k-modules, see Theorem 4.4.5 in page 79.

For the derived invariance of the Connes differential we assume k to be a field

and consider two approaches. The first one gives an interpretation of the Connes

differential in terms of morphisms in the derived category for algebras with finite

dimensional Hochschild homology in each degree, see Proposition 5.1.4 in page

83 and the remark following it. However, it does not appear to be successful so far.

It does not consider the relation of the Connes differential with cyclic homology.

The second approach was published in another joint work with Keller [3]. We

prove derived invariance of the Connes periodicity long exact sequence for alge-
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bras over a field using the cyclic functor defined by Keller in [34], see Corollary

5.2.13 in page 93. As a consequence we obtain the derived invariance of the

Connes differential, see Corollary 5.2.14 in page 94.

Nevertheless, the isomorphism between homologies for the derived invariance

of the Connes differential is not, a priori, the same than the one used for derived

invariance of the cap product. Since the Tamarkin-Tsygan calculus of an algebra

is the information given by the graded k-vector spaces of Hochschild homology

and Hochschild cohomology, the cup product, the cap product, the Gerstenhaber

bracket and the Connes differential, it is necessary that both isomorphisms coin-

cide. We prove that this follows from the uniqueness of the cyclic functor, see

Theorem 5.2.12 in page 89.

The results of this thesis can be summarized as follows. Let k be a field and

let ALGk be the category of differential graded algebras over k whose morphisms

are complexes of bimodules X : A→ B such that X is isomorphic to a bounded

complex with finitely generated B-projective components. The composition is

induced by the derived tensor product. Let Ak be the full subcategory of ALGk of

finite dimensional algebras.

Let A ∈ Ak and define H(A) to be the Tamarkin-Tsygan calculus of A given

by its Hochschild theory. Let Ĥ(A) be the Tamarkin-Tsygan calculus given by the

interpretations of the Hochschild theory of A in terms of Hochschild cohomology.

Define also H̃(A) as the Tamarkin-Tsygan calculus given by the interpretations of

the Hochschild theory of A as morphisms in the derived category of the enveloping

algebra of A. See pages 96-98 for the constructions. Let TT− calc be the category

of Tamarkin-Tsygan calculi. We conclude with Theorem 5.3.2 in page 98.

Theorem. Let k be a field. The assignments

A 7→H(A), A 7→ Ĥ(A) and A 7→ H̃(A)

define functors

H,Ĥ,H̃ : Ak→ TT-calc

that are constant on each class of derived equivalent algebras.

We finish this thesis by giving an example which shows that the Tamarkin-

Tsygan calculus of an algebra is not a complete derived invariant.
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0.1.2 French

Dans cette thèse nous démontrons que le calcul de Tamarkin-Tsygan d’une algèbre

associative de dimension finie sur un corps k est un invariant dérivé. En d’autres

mots, le résultat principal de ce travail est le suivant: une équivalence dérivée

entre deux algèbres de dimension finie sur un corps k induit un isomorphisme

entre l’homologie de Hochschild et la cohomologie de Hochschild qui respecte

simultanément le cup produit, le cap produit, le crochet de Gerstenhaber et la

différentielle de Connes, voir le Théorème 5.2.15 à la page 94.

Nous utilisons des constructions développées par Rickard [50, 51, 52] et Keller

[34, 38] pour étendre des résultats sur l’invariance dérivée.

D’abord nous utilisons la théorie de Morita pour les catégories dérivées d’algè-

bres noethériennes sur un anneau commutatif k qui sont de génération finie et

projectives comme k-modules pour obtenir l’invariance dérivée du cup produit

avec des coefficients dans des bimodules dont l’image par une équivalence dérivée

sont concentrés en degré zéro, voir le Théorème 4.2.6 à la page 70. Nous le

faisons en étendant la construction du cup produit en termes de morphismes de la

catégorie dérivée de l’algèbre enveloppante donnés par Rickard dans [50], voir le

Proposition 4.2.4 à la page 68.

Nous montrons que le cap produit à coefficients dans une algèbre est un in-

variant dérivé pour des algè bres sur un corps dont l’homologie de Hochschild

est de dimension finie en chaque degré, voir Théorème 4.3.1 à la page 71. Le cap

produit est exprimé en termes de la cohomologie de Hochschild en utilisant un iso-

morphisme canonique. Nous exprimons alors le cap produit via les morphismes

dans la catégorie dérivée et avec cette interprétation l’invariance dérivée du cap

produit avec des coefficients dans l’algèbre est obtenue. Lorsque k est un anneau

commutatif, nous avons obtenu avec Keller [2] une généralisation permettant des

bimodules de coefficients dont l’image par une équivalence dérivée est concentrée

en degré zéro pour des algèbres noethériennes k-projectives et de génération finie

comme k-modules, voir Théorème 4.4.5 à la page 79.

Pour l’invariance dérivée de la différentielle de Connes, nous supposons que

k est un corps et nous considérons deux approches. La première fournit une in-

terprétation de la différentielle de Connes en termes de morphismes de la catégorie

dérivée pour des algèbres dont l’homologie de Hochschild est finie en chaque

degré, voir Proposition 5.1.4 à la page 83 et la remarque à la suite. Toutefois cette

approche ne semble pas réussir, du moins jusqu’à maintenant. Elle ne considère

pas la relation de la différentielle de Connes avec l’homologie cyclique.

La seconde approche a été publiée dans un autre travail en collaboration avec
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Keller [3]. Nous prouvons l’invariance dérivée de la suite exacte longue de périodi-

cité de Connes pour des algèbres sur un corps, en utilisant le foncteur cyclique

défini par Keller dans [34], voir le Corollaire 5.2.13 à la page 93. En conséquence

nous obtenons l’invariance dérivée de la différentielle de Connes, voir Corollaire

5.2.14 à la page 94.

Néanmoins l’isomorphisme entre les homologies pour l’invariance dérivée de

la différentielle de Connes n’est pas, a priori, le même que celui utilisé pour

l’invariance dérivée du cap produit. Puisque le calcul de Tamarkin-Tsygan d’une

algèbre est l’information donnée par l’espace vectoriel gradué de l’homologie de

Hochschild et celui de la cohomologie de Hochschild, le cup produit, le cap pro-

duit, le crochet de Gerstenhaber et la différentielle de Connes, il est nécessaire de

montrer que les deux isomorphismes coı̈ncident. Nous montrons que cela suit de

l’unicité du foncteur cyclique, voir le Théorème 5.2.12 à la page 89.

Les résultats de cette thèse peuvent être résumés comme suit. Soit k un corps

et soit ALGk la catégorie des algèbres différentielles gradués sur k dont les mor-

phismes sont les complexes de bimodules X : A→ B tels que X est isomorphe

à un complexe borné avec des composants B-projectifs de génération finie. La

composition est induite par le produit tensoriel. Soit Ak la sous-catégorie pleine

de ALGk des algèbres de dimension finie.

Soit A∈Ak et définissons H(A) comme étant la calcul de Tamarkyn-Tsygan de

A donné par sa théorie de Hochschild. Soit Ĥ(A) le calcul de Tamarkyn-Tsygan

donné par les interprétations de la théorie de Hochschild de A en termes de la co-

homologie de Hochschild. Définissons aussi H̃(A) comme le calcul de Tamarkyn-

Tsygan donné par les interprétations de la théorie de Hochschild de A en tant

que morphismes de la catégorie dérivée de l’algèbre enveloppante de A. Voir les

pages 96-98 pour les constructions. Soit TT− calc la catégorie des calculs de

Tamarkyn-Tsygan . Nous concluons avec le Théorème 5.3.2 à la page 98.

Théorème. Soit k un corps. Les associations

A 7→H(A), A 7→ Ĥ(A) et A 7→ H̃(A)

définissent des foncteurs

H,Ĥ,H̃ : Ak→ TT-calc

qui sont constants sur chaque classe d’équivalence dérivée d’algèbres.

Nous finissons cette thèse en donnant un exemple qui montre que le calcul de

Tamarkin-Tsygan dune algèbre n’est pas un invariant dérivé complet.
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Chapter 1

Introduction

In this thesis we prove that the Tamarkin-Tsygan calculus of a finite dimensional

associative algebra over a field k is a derived invariant. In other words, the main

result of this work goes as follows: a derived equivalence between two finite di-

mensional associative algebras over a field k induces an isomorphism between

Hochschild homology and Hochschild cohomology that respects simultaneously

the cup product, the cap product, the Gerstenhaber bracket and the Connes differ-

ential, see Theorem 5.2.15 in page 94.

Derived categories where introduced by Grothendieck and Verdier [18, 63],

who used them as a formalism for hyperhomology. For algebras they have been

studied by Happel [19], by Rickard [51, 50, 52] and Keller [34, 39, 37, 38].

Hochschild theory was introduced in [23] and [24], then Gerstenhaber [17] proved

that Hochschild cohomology of an algebra has the structure of a Gerstenhaber

algebra, which is a graded commutative algebra with a degree −1 Lie bracket

such that the cup product is a derivation for the bracket. Then in [61] and [15]

it was proven that Hochschild cohomology with these operations together with

Hochschild homology, the cap product and Connes differential has the structure

of a Tamarkin-Tsygan calculus. Since it has also been proven that the cup product

and the Gerstenhaber bracket are derived invariants, the question arises to analyze

the possible derived invariance of the cap product, of the Connes differential as

well as of the entire Tamarkin-Tsygan calculus.

Next, we provide a summary of each Chapter.

In Chapter 2, we fix notation and give a quick review on the construction of

(relative) derived categories of (differential graded) algebras [33, 35]. We also in-

troduce derived functors of the tensor product and Hom functors [35, 63, 66, 70]

on the three types of derived categories that we will be working with, namely
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derived categories of (ordinary) algebras, of differential graded algebras and rel-

ative derived categories of differential graded algebras. For example, we use the

relative derived tensor product functor for differential graded algebras to define

the R-relative derived Picard group introduced by Keller in [38], that he used

to prove derived invariance of the Gerstenhaber bracket. We note that the non-

relative version of the derived Picard group was introduced in [68] and in [54]. In

the last section we recall Rickard’s Morita theory for derived categories as well

as Keller’s work on the subject [32, 33, 35, 50, 51, 52]. We focus on the case of

derived equivalences of standard type for Noetherian algebras that are finitely gen-

erated and projective over a commutative ring k, since we will strongly use them

in Chapter 4. This Chapter ends with Proposition 2.3.16 in page 38, that fixes

explicit natural transformations between equivalences of standard type, which are

used in the next Chapters.

Chapter 3 is an introduction to Hochschild [7, 23, 24, 66, 67] and cyclic [14,

25, 26, 44] theories and their relation to derived categories [25, 34, 38, 52]. We

present known results of derived invariance of Hochschild (co)homology, of the

cup product and of the Gerstenhaber bracket. We recall the definition of the cap

product and the Connes differential. The latter has (at least) three versions that we

make explicit. We recall an expression of cyclic homology given by Kassel [25]

in terms of derived functors of differential graded algebras and mixed complexes,

used by Keller [34] to prove derived invariance of cyclic homology. At the end of

this Chapter we give the definition of the Tamarkin-Tsygan calculus of an algebra

provided by its Hochschild theory and we recall the Tamarkin-Tsygan calculus of

Weyl algebras.

Chapters 4 and 5 are the main ones of this thesis. Chapter 4 begins by giving

explicit morphisms between the spaces of morphisms in the derived categories in

relation with Hochschild theory for Noetherian algebras that are finitely generated

and projective as modules over a commutative ring k. We then make a detailed

analysis of each of the operations in the theory. For the cup product we extend the

interpretation in terms of morphisms in the derived category given by Rickard [52]

to allow coefficients in arbitrary bimodules, by using the natural isomorphism

γN : Hn(A,N) ∼→ HomDb(Ae)(A,N[n]),

for an algebra A projective over a commutative ring k and an A-bimodule N, where

Ae denotes A⊗Aop and Aop being the algebra with the same k-module structure,

but opposite multiplication to that of A. Namely, for A-bimodules N and M we
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define an operation

HomDb(Ae)(A,N[n])⊗HomDb(Ae)(A,M[m])
∪̃ // HomDb(Ae)(A,(N⊗A M)[n+m])

and in Proposition 4.2.4 in page 68 we show that this is an extension of Rickard’s

interpretation of the cup product for k-projective algebras, by providing a commu-

tative diagram

Hn(A,N)⊗Hm(A,M) ∪ //

γN⊗γM

��

Hn+m(A,N⊗A M)

γ(N⊗AM)

��
HomDb(Ae)(A,N[n])⊗HomDb(Ae)(A,M[m])

∪̃ // HomDb(Ae)(A,(N⊗A M)[n+m]).

For Noetherian algebras which are projective and finitely generated as k-modules

we prove derived invariance of the ∪̃-product with coefficients in a bimodule M

that is concentrated in degree zero under a derived equivalence, see Theorem 4.2.6

in page 70. As a consequence we get derived invariance of the cup product with

coefficients in a bimodule M that is concentrated in degree zero under a derived

equivalence for Noetherian algebras which are projective and finitely generated as

k-modules.

The case of the cap product is more intricate. We consider k to be a field and

we use the canonical morphism

ϕN : H•(A,N)→ H•(A,N∗)∗

which is defined via a morphism first considered in [7] page 181, where N∗ is

the k-dual of N, to provide a link of the cap product with Hochschild cohomology.

The morphism ϕN is a monomorphism if k is a field, and is an isomorphism if each

Hn(A,N) is finite dimensional. In particular, for every k-algebra A that has finite

dimensional Hochschild homology in each degree with coefficients in A there is

an isomorphism

ϕA : HH•(A)
∼→ H•(A,A∗)∗.

This also follows if the algebra is finite dimensional. We define an operation

∩̂ : Hn(A,N∗)∗⊗Hm(A,M)→ Hn−m(A,(N⊗A M)∗)∗,
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that fits into a commutative diagram

Hn(A,N)⊗Hm(A,M) Hn−m(A,(N⊗A M))

Hn(A,N∗)∗⊗Hm(A,M) Hn−m(A,(N⊗A M)∗)∗,

∩

∩̂

ϕN⊗1 ϕN⊗AM

for A an algebra over field k and A-bimodules N and M. Observe that, for ex-

ample, the vertical arrows are isomorphisms if A is a finite dimensional algebra

and N and M are finite dimensional A-bimodules, see Proposition 4.3.7 in page

73. Moreover, we show that in the case of algebras that have finite dimensional

Hochschild homology in each degree with both coefficients equal to A the ∩̂-

product is closely related to the cup product with coefficients in A∗. We extend

the ∩̂-product to morphisms in the derived category via the isomorphism γ , by

first defining an operation

HomDb(Ae)(A,N
∗[n])∗⊗HomDb(Ae)(A,M[m]) HomDb(Ae)(A,(N⊗A M)∗[n−m])∗∩̃

for which we prove that the following diagram is commutative

Hn(A,N∗)∗⊗Hm(A,M) ∩̂ //

(γ∗
N∗)
−1⊗γM

��

Hn−m(A,(N⊗A M)∗)∗

(γ∗(N⊗AM)∗)
−1

��
HomDb(Ae)(A,N

∗[n])∗⊗HomDb(Ae)(A,M[m])
∩̃

// HomDb(Ae)(A,(N⊗A M)∗[n−m])∗.

The definition of the ∩̂-product does not depend on the morphism ϕ , so the last

diagram is commutative for an algebra A projective over a commutative ring k.

Nevertheless, the ∩̂-product is related to the cap product via isomorphisms if k is a

field and Hochschild homology is finite dimensional in each degree. For example

if A is finite dimensional and N and M are finite dimensional A-bimodules. We

obtain the derived invariance of the usual cap product with both coefficients equal

to A by proving the derived invariance of the ∩̃-product, for algebras over a field

with finite dimensional Hochschild homology in each degree.

There is another interpretation of the cap product, published in a joint work

with Keller [2], for algebras that are projective over a commutative ring k. This
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interpretation of the cap product is given by the bottom morphism of the following

commutative diagram

Hn(A,M)
−∩[ f ]

//

∼=
��

Hn−m(A,M)

∼=
��

H0

(
M⊗L

Ae A[−n]
)

H0(1⊗[ f ][−n])
// H0

(
M⊗L

Ae A[m−n]
)
,

for [ f ]∈HHm(A) and M an A-bimodule. This enables to give another proof for de-

rived invariance of the cap product that allows bimodule coefficients in Hochschild

homology for Noetherian algebras that are finitely generated and projective over

a commutative ring k in the following way, see page 79. Let M be an A-bimodule

such that under a derived equivalence F : D(Ae) ∼→ D(Be) the complex N := FM

is concentrated in degree zero. In page 79 we prove the following.

Theorem. 4.4.5 Let A and B be derived equivalent Noetherian algebras that are

projective and finitely generated as k-modules. For each

[ f ] ∈ HHm(A) = HomDb(Ae)(A,A[m])

there is a commutative diagram

Hn(A,M)
∼= //

−∩[ f ]
��

Hn(B,N)

−∩F̃([ f ])
��

Hn−m(A,M) ∼=
// Hn−m(B,N).

This can also be proved for k-projective algebras by the use of model cate-

gory theory, see [32] and [2]. However, in this work we make the constructions

for Noetherian algebras that are finitely generated and projective as k-modules.

Derived invariance of the cap product with this kind of coefficients in Hochschild

homology for Noetherian algebras that are projective and finitely generated as

k-modules follows from the last theorem. This proof extends the one given for al-

gebras over a field with finite dimensional Hochschild homology in each degree.

In Chapter 5, we pursue by proving the derived invariance of the Connes dif-

ferential for algebras over a field k. For this we give two approaches. The first

one does not consider the relation of the Connes differential with cyclic homol-

ogy. We use the canonical isomorphism ϕ to interpret the Connes differential in
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terms of Hochschild cohomology with coefficients in A∗ for algebras with finite

dimensional Hochschild homology in each degree with coefficients in A. Then we

express the Connes differential in terms of morphisms in the derived category via

the isomorphism γ . Namely, we define morphisms

B̂A : Hn+1(A,A∗)→ Hn(A,A∗)

and

B̃A : HomD(Ae)(A,A
∗[n+1])→ HomD(Ae)(A,A

∗[n])

such that the diagrams

HHn(A) Hn+1(A)

Hn(A,A∗)∗ Hn+1(A,A∗)∗

BA

B̂∗A

ϕA ϕA

and

HHn+1(A,A∗) Hn(A,A∗)

HomDb(Ae)(A,A
∗[n+1]) HomDb(Ae)(A,A

∗[n]).

B̂A

B̃A

γA γA

are commutative. The last two diagrams are commutative for any k-projective

algebra A over a commutative ring k, but the Connes differential is related to the

B̃A via isomorphisms only if k is a field and A has finite dimensional Hochschild

homology in each degree with coefficients in A. We make explicit the reasons

why the morphism B̃A does not appear to be useful to prove derived invariance of

the Connes differential.

The second approach is a joint work with Keller [3], in which we obtain

derived invariance of the Connes periodicity long exact sequence by the use of

the cyclic functor defined by Keller in [34]. As a consequence we get the de-

rived invariance of the Connes differential between Hochschild homologies in the

Tamarkin-Tsygan setting for algebras over a field k.

Note however that the isomorphism between homologies for the derived in-

variance above is not, a priori, the same than the one used for derived invariance of

the cap product. In order to prove the derived invariance of the Tamarkin-Tsygan
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calculus of a finite dimensional algebra we use the uniqueness of the cyclic func-

tor [34] to get that both isomorphisms are the same. The Connes differential in

terms of Hochschild homology can be expressed as the composition of two maps

in Connes periodicity long exact sequence, namely the periodicity map and the

connecting morphism. These two maps involve cyclic homology, which is known

to be a derived invariant by the work of Keller [34].

All of the above implies that the Tamarkin-Tsygan calculus of finite dimen-

sional algebras is a derived invariant. Indeed, while the derived invariance of the

cap product only requires that the algebras are Noetherian and finitely generated

projective as modules over a commutative ring k, the derived invariance of the

Connes differential is obtained when k is a field. In the meantime, the cup product

and the Gerstenhaber bracket are derived invariants also with the finite dimen-

sional hypothesis.

Finally, we summarize our results in Theorem 5.3.2 in page 98 for a field k. Let

Algk, as in [34], be the category whose objects are the associative DG k-algebras

A such that the functor Hom(A,−) sends quasi-isomorphisms to isomorphisms,

and whose morphisms are morphisms of DG k-algebras which do not necessarily

preserve the unit. Define ALGk to be the category whose objects are those of Algk

and morphisms from A to B are the isomorphism classes of A−B bimodule com-

plexes that are perfect over B, that is, the covariant Hom functor commutes with

coproducts. The composition of morphisms in ALGk is given by the total derived

tensor product. The identity of A ∈ ALGk is the isomorphism class of the bimod-

ule AAA. Let Ak be the full subcategory of ALGk formed by the finite dimensional

k-algebras and let TT-calc be the category of Tamarkin-Tsygan calculi.

Let A ∈ Ak and define H(A) to be the Tamarkin-Tsygan calculus of A given

by its Hochschild theory. Let Ĥ(A) be the Tamarkin-Tsygan calculus given by the

interpretations of the Hochschild theory of A in terms of Hochschild cohomology.

Define also H̃(A) as the Tamarkin-Tsygan calculus given by the interpretations of

the Hochschild theory of A as morphisms in the derived category of the enveloping

algebra of A. See pages 96-98 for the constructions. Let TT− calc be the category

of Tamarkin-Tsygan calculi. We conclude with Theorem 5.3.2 in page 98.
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Theorem. Let k be a field. The assignments

A 7→H(A), A 7→ Ĥ(A) and A 7→ H̃(A)

define functors

H,Ĥ,H̃ : Ak→ TT-calc

that are constant on each class of derived equivalent algebras.

This complements the results of Rickard [50, 51, 52], Keller [28, 34, 38] and

Zimmermann [69] on derived invariance of Hochschild (co)homology, the cup

product with coefficients in the algebra, the Gerstenhaber bracket and cyclic ho-

mology.

We finish this thesis by giving an example which shows that the Tamarkin-

Tsygan calculus of an algebra is not a complete derived invariant.
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Chapter 2

Derived homological algebra

In this Chapter we introduce derived categories of algebras and of differential

graded algebras, as well as relative derived categories of differential graded alge-

bras. We recall from [27], that the machinery needed to define a derived category

in full generality tends to obscure the simplicity of the phenomena. We focus on

the applications and properties of derived categories. Along this work we will

denote by 1 the identity morphisms and by id the identity functors. We denote

by ”∼= ” the isomorphisms of objects in categories and isomorphisms of functors.

Equivalences between categories will be denoted with the symbol ”≃ ”.

In general, one can construct the derived category of an abelian category, al-

though this thesis focuses on the derived categories of the abelian categories of

(differential graded) modules over (differential graded) algebras.

We assume the reader is familiar with the usual homological algebra of abelian

and module categories, tensor product, Hom functors and their usual derived func-

tors Tor and Ext. Let k be a commutative ring and let A be an associative k-

algebra. For the tensor product over k we write⊗ instead of⊗k, and we also write

Hom(X ,Y ) instead of Homk(X ,Y ). Let Mod(A) (resp. A−Mod) be the category

of right (resp. left) A-modules and Pro j(A) (resp. A−Pro j) the full subcate-

gory of projective right (resp. left) A-modules. We will denote by mod(A) (resp.

A−mod) the full subcategory of the category Mod(A) (resp. A−Mod) formed by

the finitely generated right (resp. left) A-modules and by pro j(A) (resp. A− pro j)

the full subcategory of mod(A), (resp. A−mod) formed by the finitely generated

projective right (resp. left) A-modules. If A is Noetherian, then the categories

mod(A) and pro j(A) (resp. A−mod and A− pro j) are abelian. Moreover, the

objects of pro j(A) (resp. A− pro j) are the projective objects of mod(A) (resp.

A−mod).
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The derived category of an algebra is constructed in three steps. First, one

forms the category of differential complexes Ch(A) of A-modules (we chose right

modules unless specified otherwise), whose objects are pairs (X ,d) where

X =
⊕

n∈Z

Xn

in which each Xn is an A-module and d : X• → X•+1 is a graded map of degree

1, which means that the n-th component of d is a map dn : Xn → Xn+1, called

the differential of X such that d2 = 0. The morphisms f : X → Y in Ch(A) are

families of morphisms of A-modules ( fn : Xn→ Yn)n∈Z that commute with the

differentials.

Second, one constructs the homotopy category in the following way. A zero-

homotopic morphism of complexes f : X → Y is a morphism that admits a mor-

phism h : X → Y of degree −1, i.e. h is equal to a family (hn : Xn→ Yn−1)n∈Z,

such that f = hd +dh. Two morphisms of complexes f ,g : X → Y are called ho-

motopic if f − g is zero-homotopic. The homotopy category K(A) has the same

objects as Ch(A) and the morphisms are homotopy equivalence classes of mor-

phisms of complexes.

Finally, the derived category is described in terms of homology.

2.1 The derived category

The n-th homology of a complex X is defined as Hn(X) = ker(dn)/Im(dn−1) and

a morphism of complexes f : X → Y inducing an isomorphism Hn( f ) : Hn(X)→
Hn(Y ) for all n is called a quasi-isomorphism.

Lemma 2.1.1. ([66] page 17) A zero-homotopic morphism of complexes induces

the zero map in homology. Therefore, two homotopic morphisms of complexes

induce the same map in homology.

Definition 2.1.2. ([66] page 17) We say that a morphism of complexes h : X → Y

is a homotopy equivalence if there is a morphism of complexes t : Y → X such

that t ◦h is homotopic to the identity morphism of X and h◦ t is homotopic to the

identity morphism of Y .

The derived category identifies all complexes for which there is a specified

quasi-isomorphism between them. Of course, this last result proves that in par-

ticular homotopic complexes are quasi-isomorphic. We will follow [70] chapter

19



3 for the construction of the derived category. Other equivalent construction con-

cerning localization of categories can be found in [18, 19, 63, 66].

Consider diagrams of the form X
v
←− Z

α
−→ Y in the category Ch(A), where v is

a quasi-isomorphism. We say that a diagram X
v
←− Z

α
−→ Y covers X

v′

←− Z′
α ′
−→ Y if

there is a morphism of complexes γ : Z → Z′ such that the following diagram is

commutative

Z′

v′

��
γ

��

α ′

  
X Y.

Z

v

``

α ′

>>

Since v′ = vγ , then H(γ) = H(v′)H(v)−1 and therefore γ is necessarily a quasi-

isomorphism. Two diagrams X
v
←− Z

α
−→ Y and X

v′

←− Z′
α ′
−→ Y are equivalent if

there is a third diagram X
v′′

←− Z′′
α ′′
−→Y covering both of them, or equivalently one

of them covers the other. The derived category D(A) of A is the category whose

objects are complexes of A-modules and the morphisms HomD(A)(X ,Y ) are the

equivalence classes by the covering relation of diagrams
[
X

v
←− Z

α
−→ Y

]
, which

are called roofs or fractions. The identity morphism of a complex X is the roof[
X

1
←− X

1
−→ X

]
. To define composition we need the following result. Recall that

the morphisms from X to Y in the homotopy category K(A) of A are homotopy

equivalence classes of morphisms of complexes from X to Y .

Lemma 2.1.3. ([66] page 381) Given objects Z,Y,Z′ ∈ K(A), a morphism α :

Z → Y and a quasi-isomorphism β : Z′ → Y there exists Z′′ ∈ K(A), a quasi-

isomorphism γ : Z′′ → Z and a morphism δ : Z′′ → Z′ such that the following

diagram is commutative in the category K(A)

Z′′
δ //

γ

��

Z′.

β
��

Z
α

// Y.

Given two roofs X
v
←− Z

α
−→ Y and Y

v′

←− Z′
α ′
−→W we use the last lemma to
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construct a diagram

Z′′

v′′

��

α ′′

  
Z

v

��

α

  

Z′

v′

~~

α ′

  
X Y W.

In which v′′ is a quasi-isomorphism. Define composition of roofs as

[
Y

v
←− Z′

α
−→W

]
◦
[
X

v
←− Z

α
−→ Y

]
=

[
X

vv′′

←−− Z
α ′α ′′
−−−→W

]
.

This composition does not depend on the representative of the roof and it is as-

sociative with units given by roofs of the form
[
X

1
←− X

1
−→ X

]
, see [70] section

3.4. The categories Ch(A),K(A) and D(A) are equipped with an auto-equivalence

called the shift-functor. The shift X [1] of a complex X is defined as X [1]n = Xn−1

with differential dn[1] = −dn−1, and we inductively define X [n] = X [n− 1][1]
and dm[n] = dm[n− 1][1], analogously for morphisms. The category Ch(A) is an

abelian category with component-wise direct sum (kernel, cokernel) as biproduct

(kernel, cokernel). The shift functor endows the homotopy category K(A) and

the derived category D(A) with triangulated category structures. The categories

K(A) and D(A) are not abelian in general, but they have another similar and rich

structure, that of a triangulated category. Triangulated categories are constructed

to mimic the structure of abelian categories and short exact sequences.

Let T be an additive category with an autoequivalence T : T→ T and let X ,Y
and Z be objects of T. A triangle on (X ,Y,Z) is a triple (u,v,w) of morphisms in

T such that

X
u // Y

v // Z
w // T X .

Given exact triangles (u,v,w) on (X ,Y,Z) and (u′,v′,w′) on (X ′,Y ′,Z′), a mor-

phism of triangles is a triple ( f ,g,h) of morphisms of T such that f : X → X ′

together with g : Y →Y ′ and h : Z→ Z′ make commutative the following diagram

X
u //

f
��

Y
v //

g
��

Z
w //

h
��

T X

T f
��

X ′
u′ // Y ′

v′ // Z′
w′ // T X ′.
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Two triangles are called isomorphic if there is a morphism of triangles ( f ,g,h)
such that f ,g and h are isomorphisms.

Definition 2.1.4. [63] An additive category T is called a triangulated category if it

is equipped with an autoequivalence T :T→T, called the translation functor, and

with a distinguished family of triangles called exact triangles, which are subject

to the following four axioms:

• Every morphism u : X→Y can be embedded in an exact traingle (u,v,w). If

X =Y and Z = 0, then the triangle (1,0,0) is exact. If (u,v,w) is a triangle

on (X ,Y,Z), isomorphic to an exact triangle (u′,v′,w′) on (X ′,Y ′,Z′), then

(u,v,w) is also exact.

X
u //

∼=
��

Y
v //

∼=
��

Z
w //

∼=
��

T X

∼=
��

X ′
u′ // Y ′

v′ // Z′
w′ // T X ′.

• If (u,v,w) is an exact triangle on (X ,Y,Z), then both its rotates (v,w,−Tw)
and (−T−1w,u,v) are exact triangles on (Y,Z,T X) and (T−1Z,X ,Y ), re-

spectively.

• Given exact triangles (u,v,w) on (X ,Y,Z) and (u′,v′,w′) on (X ′,Y ′,Z′) with

morphisms f : X → X ′ and g : Y → Y ′ such that gu = u′ f , there exists a

morphism h : Z→ Z′ such that ( f ,g,h) is a morphism of triangles

X
u //

f
��

Y
v //

g
��

Z
w //

∃ h
��

T X

T f
��

X ′
u′ // Y ′

v′ // Z′
w′ // T X ′

• Given objects X ,Y,Z,X ′,Y ′,Z′ in T suppose there are exact triangles (u, j,∂ )
on (X ,Y,Z′) and (v,x, i) on (Y,Z,X ′) as well as (vu,y,δ ) on (X ,Z,Y ′). Then

there is an exact triangle ( f ,g,(T j)i) on (Z′,Y ′,X ′) such that the following

equations are satisfied:

x = gy, ∂ = (T j)i f , (T j)i = (T x)i, ig = (Tu)δ , f j = yv.

Remark 2.1.5. The last axiom of triangulated category is commonly known as the

octahedral axiom. It is called this way because it can be represented in a three-

dimensional diagram with the form of an octahedral given by the involved exact

triangules. More details about the octahedral axiom can be found in [66, 70].
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Proposition 2.1.6. ([66] pages 376 and 382) The categories K(A) and D(A) are

triangulated categories.

Proof. Define the translation functor as the shift functor. Let u : X → Y be a

morphism of complexes. Define the cone of u as the complex

Cone(u) =
⊕

n∈Z

(Xn−1⊕Yn)

with differential (
−dX 0

u dY

)
.

The embedding into the first component gives a morphism of complexes v : Y →
Cone(u) and the projection onto the second component gives a morphism of com-

plexes w : Cone(u)→ X [1]. The triangles isomorphic to triangles of the form

X
u // Y

v // Cone(u)
w // X [1]

are the exact triangles. The rest of the proof consists on the verifications that this

exact triangles triangulate the categories K(A) and D(A). For details we refer to

[66, 70].

We will denote by Ch+(A) the full subcategory of Ch(A) formed by the bounded

from below complexes, i.e. complexes X for which there is an n such that Xi =
0 for all i < n. Let Ch−(A) be the full subcategory of Ch(A) formed by the

bounded from above complexes, i.e. complexes X for which there is an n such

that Xi = 0 for all i > n. We will also denote Chb(A) the full subcategory of Ch(A)
formed by the bounded complexes, that is, complexes that are in Ch+(A) and in

Ch−(A) at the same time. Likewise for K+(A), K−(A), Kb(A), D+(A), D−(A) and

Db(A). Let Ch−,b(A) (resp. Ch+,b(A)) be the full subcategory of Ch(A) formed

by the bounded from above (resp. below) complexes with bounded homology, i.e.

bounded from above (resp. below) complexes for which there is an integer m≥ 0

such that for all i > 0 the homology in degree i (resp. degree−i) is zero. Similarly

for K+,b(A) and K−,b(A).

Corollary 2.1.7. ([66] page 382 and 386) The categories K+(A), K−(A), Kb(A),
K+,b(A), K−,b(A), D+(A), D−(A) and Db(A) are triangulated categories.

Definition 2.1.8. ([66] page 377) A morphism of triangulated categories is an

additive functor F : T→T′ that commutes with the translation functors and sends

exact triangles to exact triangles.
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There is a canonical morphism of triangulated categories Q : K(A)→ D(A)
called the localization functor, that is equal to the identity on objects and it sends

a morphism f : X → Y to the roof
[
X

1
←− X

f
−→ Y

]
. Observe that if f is a quasi-

isomorphism then Q( f ) is an invertible morphism in D(A). This property charac-

terizes the derived category as the following well known result shows.

Theorem 2.1.9. ([66] page 386) (Universal property) Let T be a triangulated cat-

egory and let F : K(A)→ T be an additive functor that sends quasi-isomorphisms

to invertible morphisms. Then there exists a unique functor G : D(A)→ T such

that F = G◦Q, i.e. the following diagram is commutative

K(A)
Q //

F
��

D(A).

∃! Gzz
T

The functor Q induces equivalences of triangulated categories when we restrict

it to certain subcategories, depending on the algebra.

Proposition 2.1.10. ([70] page 332) Let A be an algebra over a commutative ring

k. Then the functor Q induces triangulated equivalences

• D−(A)≃ K−(A−Pro j)

• Db(A)≃ K−,b(A−Pro j)

and if A is Noetherian, then Q also induces triangulated equivalences

• D−(A−mod)≃ K−(A− pro j)

• Db(A−mod)≃ K−,b(A− pro j).

Proof. The proof proceeds by constructing a quasi-inverse of the functor Q. For

each object X in D−(A) we construct an object PX in K−(A− Pro j) such that

X ∼= PX in D−(A). We call PX a projective resolution of X . Without loss of gen-

erality, we can assume that X is isomorphic to a complex whose negative degree

components are 0, and H0(X) 6= 0. That is,

X : · · · // X2
d2 // X1

d1 // X0
// 0 // · · ·
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where d1 is not surjective. Let P0→X0 be a projective cover and form the pullback

with d1:

Q1

δ ′1 //

��

P0
//

��

0

· · · // X2
d2 // X1

d1 // X0
// 0.

In general, Q1 will not be projective, so we take a projective cover ρ1 : P1→ Q1

and define δ1 = δ ′1ρ1 : P1→ P0. Then form the following pullback with d2:

Q2
//

��

kerδ1

��
P1

δ1 //

��

P0
//

��

0

· · · // X2
d2 // X1

d1 // X0
// 0.

This gives a commutative diagram whose rows are complexes

Q2

δ ′2 //

��

P1
δ2 //

��

P0

��

// 0

· · ·
d3 // X2

d2 // X1
d1 // X0

// 0.

Inductively we obtain a complex (P,δ ) of projective modules and a morphism of

complexes φ : P→ X

· · ·
δ3 // P2

δ2 //

φ2

��

P1
δ1 //

φ1

��

P0
//

φ0

��

0

· · ·
d3 // X2

d2 // X1
d1 // X0

// 0.

The rest of the proof are straightforward verifications. For a detailed proof we

refer to [70] page 333.

Our next aim is to extend the constructions of derived categories from algebras

to differential graded algebras. Once we do this, we will introduce relative derived

categories of differential graded algebras. Let k be a commutative ring.
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Definition 2.1.11. [31] A differential graded k-algebra A (DG-algebra) is a Z-

graded associative k-algebra

A =
⊕

n∈Z

An

endowed with a k-linear differential d : A→ A which is homogeneous of degree 1,

that is d(An) ⊂ An+1 for each n ≥ 0. The differential satisfies the graded Leibniz

rule

d(ab) = (da)b+(−1)na(db) ∀a ∈ An, ∀b ∈ A.

For example, if B is an algebra, it gives rise to a DG-algebra A defined by

An =
{

B, n = 0

0, n 6= 0,

with differential zero and the product of A in degree zero is the product of B and

zero otherwise. Conversely, any DG-algebra A which is concentrated in degree 0

is obtained in this way.

Definition 2.1.12. [31] Let A be a DG-algebra. A differential graded A-module

(DG-module) is a Z-graded module over A,

M =
⊕

n∈Z

Mn

endowed with a k-linear differential d : M→M which is homogeneous of degree

1 and satisfies the graded Liebniz rule

d(ma) = (dm)a+(−1)nm(da), ∀m ∈Mn, ∀a ∈ A.

A morphism of DG-modules is a morphism of the underlying graded k-modules

f : M→ N which is homogeneous of degree 0 and commutes with the differen-

tials. In the situation that the DG-algebra A comes from an associative algebra B

concentrated in degree 0, the category of DG A-modules identifies with the cate-

gory of complexes of B-modules.

Let A be a DG k-algebra, we will define its derived category D(A) as the

category with objects the DG A-modules and morphisms given by roofs [g f−1] of

DG A-modules whose representatives are diagrams

Z
f

��

g

��
X Y
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where f is a quasi-isomorphism. For example, if A is an algebra and we consider

it as a DG k-algebra concentrated in degree 0, then D(A) is the usual derived

category of A.

Let R be a commutative DG-algebra over k, that is rs = (−1)|r||s|sr for homo-

geneous elements r,s ∈ R.

Definition 2.1.13. [31] Let E be a DG-algebra over R. A morphism of DG E-

modules is an R-relative quasi-isomorphism if it is a homotopy equivalence as

morphism of DG R-modules.

Definition 2.1.14. [38] Let E be a DG-algebra over R. The R-relative derived

category DR(E) of E has as objects all the DG E-modules, and the morphisms are

roofs [g f−1] where f is an R-relative quasi-isomorphism.

For example, Dk(E) is the usual derived category D(E) of the DG-algebra E.

Of course, all the properties we have proved for derived categories also hold for

derived categories of DG-algebras and relative derived categories of DG-algebras.

Namely, they are triangulated categories and satisfy an analogous universal prop-

erty, as well as the analogous to Proposition 2.1.10 in page 24.

2.2 Derived functors

We follow [66] chapter 10 and [70] chapter 3 for the construction of derived

functors. The fact that module categories have enough projectives and injec-

tives allows us to lift the tensor product functor and the Hom functor to the de-

rived category. Let A and B be k-algebras. Suppose given an additive functor

F : Mod(A)→ Mod(B), since F preserves chain homotopy equivalences it ex-

tends to additive functors Ch(A)→Ch(B) and K(A)→ K(B). We would like to

extend F to a functor D(A)→D(B). If F : Mod(A)→Mod(B) is an exact functor,

then it sends quasi-isomorphisms to quasi-isomorphisms and therefore the functor

F is well-defined in the derived category

F : D(A)→ D(B).

If F is not exact we proceed as follows. Let K be any of the subcategories K+(A),
K−(A) or Kb(A) of K(A) and let D be the image of K under the localization functor

Q, considered as a full subcategory of D(A).
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Definition 2.2.1. ([66] page 391) Let F : K→K(B) be a morphism of triangulated

categories. A right derived functor of F on K is a morphism RF : D→ D(B) of

triangulated categories together with a natural transformation η : QF → (RF)Q
which is universal in the sense that if G : D→D(B) is another morphism equipped

with a natural transformation ε : QF → GQ then there exists a unique natural

transformation σ : RF → G such that εX = σQ(X) ◦ηX for all X ∈ D.

K
F //

Q

��

K(B)

Q
��

D
RF

// D(B)

η : QF → (RF)Q.

The left derived functor of a functor F : K→ K(B) is a morphism of triangulated

categories LF : D→ D(B) together with a natural transformation η : (LF)Q→
QF satisfying the dual univeral property. That is, for any morphism of triangu-

lated categories G : D→D(B) and any natural transformation ε : GQ→QF there

exists a unique natural transformation σ : G→ LF such that εX = ηX ◦σQ(X) for

all X ∈ K.

K
F //

Q

��

K(B)

Q
��

D
LF

// D(B)

η : (LF)Q→ QF.

Theorem 2.2.2. ([66] page 392) Let F : K+(A)→ K+(B) be a morphism of tri-

angulated categories, then the right derived functor RF exists on D+(A), i.e. the

following diagram is commutative

K+(A) F //

Q
��

K+(B)

Q
��

D+(A)
RF

// D+(B)

,

and if I is a bounded from below complex of injectives then

RF(I) = QF(I).

Dually, let G : K−(A)→K−(B) be a morphism of triangulated categories, then the
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left derived functor LG exists on D−(A), i.e. the following diagram is commutative

K−(A)
G //

Q
��

K−(B)

Q
��

D−(A)
LG

// D−(B)

,

and if P is a bounded from above complex of projectives then

LG(P) = QG(P).

Remark 2.2.3. The proof relies on the fact that module categories have both

enough injectives and enough projectives.

The tensor product of modules can be extended to complexes in the following

way. Let X be a complex of right A-modules and Y be a complex of left A-

modules. Define a complex X⊗A Y which degree n component is

(X⊗A Y )n =
⊕

i+ j=n

Xi⊗A Yj

and differential

dn =
(
(−1) jdX

i ⊗1+1⊗dY
j

)
i+ j=n

.

If X is a complex in Ch(A⊗Bop) (complexes of A−B bimodules), then the functor

−⊗A X takes values in Ch(B). In fact, the tensor product of complexes can be

extended to an additive bifunctor

−⊗B− : Ch(A⊗Bop)×Ch(B⊗Cop)→Ch(A⊗Cop).

Since the tensor product is an additive functor, if we take X a bounded from above

complex of A−B bimodules, then the tensor product with X over A defines an

additive functor

−⊗A X : K−(A)→ K−(B).

By the existence theorem of derived functors we can define the following.

Definition 2.2.4. ([70] page 354) Let X be a bounded from above complex of

right A-modules and Y be a bounded from above complex of left A-modules. The

total tensor product of X and Y is defined as the left derived functor of the tensor

product −⊗A Y : K−(A)→ K−(B), that is

X⊗L
A Y := L(−⊗A Y )(X).
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Categories of modules have enough projective objects and therefore every ob-

ject X has a projective resolution PX as in Proposition 2.1.10 in page 24, then the

functor X ⊗L
A Y can be calculated as PX ⊗A Y . One can also consider the complex

X ⊗A PY . The next result shows that both procedures give the same value and

therefore X⊗L
A Y can be calculated on either way. We say that the functor −⊗L

A−
is balanced.

Proposition 2.2.5. ([66] page 395) Let X be a complex in K−(A) of right A-

modules and Y a complex in K−(A) of left A-modules. Then there is an isomor-

phism

L(X⊗A−)(Y )∼= L(−⊗A Y )(X).

We define HomA(X ,Y ) for X and Y complexes of right A-modules, to be the

complex with degree n component

HomA(X ,Y )n = ∏
i− j=n

HomA(Xi,Yj)

and differential

dn = ∏
i− j=n

(dY
j )∗+(−1) j(dX

i+1)
∗,

see for example [70] page 354. Where we have denoted (dY
j )∗ = HomA(X ,dY

j )

and (dX
i+1)

∗ = HomA(di+1,Y ). This defines an additive bifunctor

HomA(−,−) : Ch(A)×Ch(A)→Ch(k).

If X is a bounded from below complex of B− A bimodules, then we have an

additive functor

HomA(X ,−) : Ch+(A)→Ch+(B).

The Hom-functor is an additive functor and therefore it extends to an additive

functor

HomA(X ,−) : K+(A)→ K+(B),

in case X is a bounded from below complex of B−A bimodules.

Definition 2.2.6. ([70] page 355) Let X and Y be complexes of right A-modules.

The right derived functor of the Hom functor is defined as the right derived functor

of the functor HomA(X ,−) : K+(A)→ K+(B), that is

RHomA(X ,Y ) = RHomA(X ,−)(Y ).
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This construction can be extended to a bifunctor

RHomA(−,−) : Ch(A⊗Bop)×Ch(A⊗Cop)→Ch(B⊗Cop).

Categories of modules have both enough projectives and enough injectives. Con-

struct IY an injective resolution of the complex Y dual to the projective resolu-

tion defined in Proposition 2.1.10 in page 24. We can compute RHomA(X ,Y ) as

HomA(X , IY ). Of course, this derived functor is also balanced, and can be com-

puted as HomA(PX ,Y ).

Proposition 2.2.7. ([66] page 400) Let X and Y be complexes in K+(A). Then

there is an isomorphism

RHomA(X ,−)(Y )≃ RHomA(−,Y )(X).

It is well-known that the tensor product of modules and the Hom functor form

an adjoint pair of functors. Under certain circumstances this is the case for their

derived functors.

Proposition 2.2.8. ([70] page 358) Let A and B be k-algebras and let X be a

bounded complex of A−B bimodules. Suppose A is k-projective. Then

−⊗L
A X : D−(A)→ D−(B)

has a right adjoint

RHomB(X ,−) : D−(B)→ D−(A).

Remark 2.2.9. These definitions of derived functors generalize the definitions of

Tor and Ext in the sense that there are natural isomorphisms

Hn(X⊗
L
A Y )∼= TorA

n (X ,Y )

and

Hn(RHomA(X ,Y ))∼= Extn
A(X ,Y ),

for each n≥ 0. It is also true that there is a natural isomorphism

Hn(RHomA(X ,Y ))∼= HomD(A)(X ,Y [n]),

for each n ≥ 0. Intuitively, one can think that the derived category and derived

functors comprise the homological algebra of the functors Tor and Ext
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Remark 2.2.10. Let k be a field, then the tensor product of complexes ⊗k is its

own left derived functor ⊗L
k . Then it is also symmetric, i.e. X⊗L

k Y ∼= Y ⊗L
k X.

Consider DG-algebras A and B, the tensor product and Hom functors can be

defined in an analogous way in the derived categories of the DG-algebras A and B.

Let X be a DG A⊗Bop-module bounded as a complex, we denote these derived

functors as

−⊗L
A X : D−(A)→ D−(B)

and

RHomA(X ,−) : D+(A)→ D+(B).

Let R be a commutative DG-algebra over k. Consider DG-algebras A and B over

R and take X a DG A⊗Bop-module. The tensor product functor also allows a

derived functor on the relative derived category, namely

−⊗L,rel
A X : DR(A)→ DR(B).

Definition 2.2.11. [38] Let A be an algebra. A complex U ∈ DR(R⊗Ae) is R-

semifree if its underlying graded R-module is free.

We will now define the derived Picard group of an (ordinary) algebra A. An

object of the R-relative derived category U ∈ Dr(R⊗Aop⊗A) is invertible if it

is R-semifree and there exists an R-semifree complex V ∈ DR(R⊗A⊗Aop) such

that there are isomorphisms

U⊗L,rel
A⊗R V ∼= R⊗A and V ⊗L,rel

A⊗R U ∼= R⊗A.

This group was defined by Keller in [38] to prove derived invariance of the Ger-

stenhaber bracket in Hochschild cohomology.

2.3 Morita theory for derived categories

We follow [70] for the introduction to the work of Keller and Rickard in [29, 30,

36, 33, 35, 32, 51, 52]. Let k be a commutative ring and let A and B be k-algebras.

Let F : B−Mod→ A−Mod be a functor, and let M := F(B) which is an A−B

bimodule. If EndA(M)∼= B, Morita theory tells that

M⊗B− : B−Mod
∼→ A−Mod
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is an equivalence. Furthermore, whenever there is a bimodule M which is projec-

tive as an A-module, projective as a B-module and such that EndA(M) ∼= B and

EndB(M)∼= A, then

M⊗B− : B−Mod
∼→ A−Mod

is an equivalence. There is an embedding of A−Mod as full subcategory of

D−(A), that takes a module M to the complex that has M concentrated in degree

0. This is called the stalk complex of M. We will denote as M the image of

M under this embedding. Let F : D−(A)→ D−(B) be an additive functor that

commutes with the shift functor, then there is a morphism of algebras

Aop ∼= EndA(A)∼= EndD−(A)(A)→ EndD−(B)(F(A))

and if F is an equivalence, then EndD−(B)(F(A)) ∼= Aop as algebras. Moreover,

since Ext i
A(A,A) = 0 for all i 6= 0, then

HomD−(B)(F(A),F(A)[i]) ∼= HomD−(B)(F(A),F(A[i]))
∼= HomD−(A)(A,A[i])
∼= Ext i

A(A,A)
= 0

for all i 6= 0. Also, the smallest triangulated subcategory of D−(A) containing all

direct summands of finite direct sums of A is Kb(A− pro j). The following lemma

characterices Kb(A−Pro j) as a subcategory of K−(A−Pro j).

Lemma 2.3.1. ([70] page 559) Kb(A−Pro j) is the subcategory of K−(A−Pro j)
consisting of those objects X such that for all object Y of K−(A−Pro j) there is

an integer i(Y ) such that

HomK−(A−Pro j)(Y,X [i]) = 0

for all i < i(Y ).

The notion of compact objects, described below, is linked to the definition of

a tilting complex, which is crucial for derived equivalences.

Definition 2.3.2. ([70] page 283) Let C be an additive category. An object X ∈C

is compact if the covariant Hom-functor commutes with arbitrary coproducts, i.e.

there is an isomorphism

HomC(X ,
⊕

λ∈Λ

Yλ )∼=
⊕

λ∈Λ

HomC(X ,Yλ ),

for every family {Yλ}λ∈Λ of objects of C.
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It is straightforward, but tedious, to prove the following characterization about

the compact objects of D−(A).

Proposition 2.3.3. ([70] page 560) The compact objects in D−(A) are the objects

isomorphic to objects in Kb(A− pro j).

A tilting complex is a special kind of compact object, that generalizes the ideas

behind tilting modules in tilting theory [19, 30, 50], see for example Chapter VI

of [5] in page 184 for tilting theory.

Definition 2.3.4. [51] Let A be an algebra over a commutative ring k. A tilting

complex T over A is a compact object of D−(A) such that

• HomD−(A)(T,T [i]) = 0 for all i 6= 0.

• The smallest triangulated full subcategory of D−(A) containing all direct

factors of finite direct sums of T is Kb(A− pro j).

The following proposition gives a direct construction of a tilting complex

given a derived equivalence between algebras.

Proposition 2.3.5. [51] Let F : D−(A)→ D−(B) be a triangulated equivalence.

Then T := F(A) is a tilting complex over B with endomorphism ring Aop.

As observed in [70] section 6.1, the disadvantage of Rickard’s theorem is that

it just gives a necessary and sufficient criterion for the existence of an equivalence

between derived categories of algebras, but it does not give an explicit equiva-

lence. However, Keller [36] gave a constructive proof of an explicit X once T is

known.

Theorem 2.3.6. [36] Let A and B be k-algebras and suppose that A is k-projective.

Let T be a bounded complex of projective B-modules and suppose given a mor-

phism of k-algebras α : A→ EndK−(B−Pro j)(T ). Suppose moreover that

HomK−(B−Pro j)(T,T [n]) = 0

for each n > 0. Then there is a complex X in K−(B−Pro j), a quasi-isomorphism

ϕ : T→X in K−(B−Pro j), and a morphism of complexes β : A→EndC−(B−Pro j)(X)
such that for all a ∈ A the diagram

T
ϕ //

α(a)
��

X

β (a)
��

T
ϕ // X

is commutative in K−(B−Pro j).
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This theorem is proved using strong homotopy actions and is due to Keller. It

has the following very useful consequence.

Corollary 2.3.7. [36] Let k be a commutative ring and let A and B be k-algebras

and suppose that A is k-projective. Let X be a right bounded complex of B−
A bimodules. Then there is a complex X ′ of B− A bimodules such that X ′ ∼=
X in D−(B⊗Aop) and such that the image of X ′ in D−(B) is a right bounded

complex of projective B-modules. If B⊗Aop is Noetherian, and if all homogeneous

components of X are finitely generated, then all homogeneous components of X ′

can be chosen to be finitely generated.

Let T be a bounded complex of projective B-modules and suppose that X ∼= T

in D−(B). Then there is a bounded complex X ′′ isomorphic to X in D−(B⊗Aop)
such that each homogeneous component of X ′′ is projective as a B⊗Aop-module

except the component in the highest degree m, where X ′′m is B-projective. Moreover,

if Ti = 0, then X ′′i = 0.

If B is also k-projective, and if there is a bounded complex T ′ of projective

A-modules which is isomorphic to X in D−(A), then X ′′ can be chosen so that all

its homogeneous components are A-projective and B-projective.

We will always mean equivalence given by a morphism of triangulated cat-

egories when we refer to equivalences of derived categories. The original result

[51] of Rickard is as follows, see [70] on pages 589-593 for a detailed proof.

Theorem 2.3.8. [51] Let k be a commutative ring and let A and B be k-algebras

such that A is k-projective. Then

• D−(A) and D−(B) are equivalent if and only if there is a tilting complex T

over B with endomorphism algebra Aop. If there is an equivalence D−(A)≃
D−(B), then T is the image of A under this equivalence.

• Moreover,

D−(A)≃ D−(B) ⇐⇒ Db(A)≃ Db(B)
⇐⇒ Kb(A− pro j)≃ Kb(B− pro j)
⇐⇒ Kb(A−Pro j)≃ Kb(B−Pro j)
⇐⇒ K−(A−Pro j)≃ K−(A−Pro j).

• If A and B are Noetherian and finitely generated projective as k-modules,

then

D−(A)≃ D−(B) ⇐⇒ Db(A−mod)≃ Db(B−mod).
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Remark 2.3.9. Let k be a field and let A and B be finite dimensional k-algebras.

If Db(A)≃ Db(B), then there is a complex X of A−B bimodules such that

−⊗L
A X : Db(A)→ Db(B)

is an equivalence. It is not known if this implies that every equivalence of derived

categories is of this form, see [70] on page 593. No equivalence is known which

is not given by a tensor product with a complex of bimodules.

Remark 2.3.10. Since we are interested in finite dimensional algebras, we can

restrict our study to equivalences of the form

Db(A−mod) ∼→ Db(B−mod).

We will denote Db(A) := Db(A−mod) when we assume that A is a Noetherian

algebra which is k-projective and finitely generated as k-module.

Definition 2.3.11. ([70] page 594) Let A and B be algebras projective over a

commutative ring k. A triangulated equivalence F : Db(A)→ Db(B) is called of

standard type if there is a complex X of A−B bimodules such that

F ∼=−⊗L
A X .

Although not all equivalences of derived categories have to be of standard

type, every equivalence of derived categories gives an equivalence of standard

type.

Proposition 2.3.12. ([70] page 594) Let A and B be algebras over a commutative

ring k. Assume B is a projective k-module. If there is an equivalence F : Db(B)→
Db(A) then there is an equivalence of standard type −⊗L

A X : Db(A)→ Db(B).
Moreover, we can choose X = F(B).

It turns out that once one has an equivalence of standard type, a quasi-inverse,

also of standard type, can be described.

Proposition 2.3.13. ([70] page 594) Let k be a commutative ring and let A and B

be Noetherian k-projective algebras, and suppose that they are finitely generated

k-modules. Let

−⊗L
A X : Db(A)→ Db(B)

be an equivalence of standard type. Then

RHomB(X ,−) : Db(B)→ Db(A)
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is a quasi-inverse of −⊗L
A X. Moreover, there is an isomorphism of functors

RHomB(X ,−)∼=−⊗L
B RHomB(X ,B).

Corollary 2.3.14. ([70] page 595) Let k be a commutative ring and let A and B

be Noetherian k-projective algebras that are finitely generated as k-modules. Let

−⊗L
A X : Db(A)→ Db(B)

be an equivalence of standard type. Then there is a complex X∨ of B− A bi-

modules, such that it has components which are projective as A-modules and as

B-modules, and

X∨⊗L
A X ∼= B in Db(Be) and X⊗L

B X∨ ∼= A in Db(Ae).

Of course, we put X∨ := RHomB(X ,B). Let Ae = A⊗k Aop be the enveloping

algebra of A with product

(a⊗b)(a′⊗b′) = aa′⊗b′b,

for a,a′ ∈ A and b,b′ ∈ Aop. The category of A-bimodules is equivalent to the

category of left Ae-modules and to the category of right Ae-modules. Indeed, an

A-bimodule M is turned into a left Ae-module by (a⊗ b)m = amb and a right

Ae-module by m(a⊗b) = bma.

Proposition 2.3.15. ([70] page 612) Let k be a commutative ring and let A and B

be Noetherian k-algebras that are finitely generated and projective as k-modules.

Let

−⊗L
A X : Db(A)→ Db(B)

be a derived equivalence with quasi-inverse

−⊗L
A X∨ : Db(B)→ Db(A).

Then

F :=
(
X∨⊗L

A−
)
⊗L

A X : Db(Ae)→ Db(Be)

is an equivalence of triangulated categories of standard type. Moreover, there is

an isomorphism of functors

F ∼= X∨⊗L
A (−⊗L

A X).
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Proof. Since both A and B are Noetherian and finitely generated projective k-

modules, we may choose X and Y so that all their homogeneous components are

projective except for the last one which is projective as left and as right module,

by Keller’s theorem [36]. We then can replace the derived tensor product by the

tensor product of complexes. This argument also shows that the tensor product

is associative. The fact that A is k-projective implies that A⊗Bop is a finitely

generated free right B-module, and likewise for A. The quasi-inverse of F is given

by

G := X⊗L
B−⊗

L
B X∨ : Db(Be)→ Db(Ae).

Finally,

X∨⊗A−⊗A X ∼=−⊗Ae (X⊗X∨),

therefore

X∨⊗L
A−⊗

L
A X ∼=−⊗L

Ae (X⊗X∨).

The following result will be extensively used in Chapters 4 and 5.

Proposition 2.3.16. [52] Let k be a commutative ring and let A and B be derived

equivalent Noetherian k-algebras that are finitely generated and projective as k-

modules. There are isomorphisms

u : A
∼→ X⊗L

B X∨ and v : X∨⊗L
A X

∼→ B

in D(Ae) and D(Be) respectively, that induce a functor

F =−⊗L
Ae (X⊗L

k X∨)∼= X∨⊗L
A−⊗

L
A X : Db(Ae) ∼→ D(Be)

and a quasi-inverse for it

G =−⊗L
Be (X∨⊗L

k X)∼= X⊗L
B−⊗

L
B X∨ : D(Be) ∼→ Db(Ae).

Proof. As in the proof of the previous result, we can replace the derived tensor

product by the tensor product of complexes. Consider an equivalence of standard

type

−⊗L
A X : Db(A) ∼→ Db(B)

it has as quasi-inverse the functor

−⊗L
B X∨ : Db(B) ∼→ Db(A),
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and therefore there is a natural transformation

u : idDb(A)
∼→−⊗L

A X⊗L
B X∨,

which is an isomorphism of functors. This natural transformation extends to

u : idDb(Ae)
∼→−⊗L

A X⊗L
B X∨,

by functoriality. Evaluating on the Ae-module A we get an isomorphism in Db(Ae)
that we also denote as

u : A
∼→ X⊗L

B X∨.

We choose v : X∨⊗L
A X → B as the preimage of the identity morphism 1X of X

under the following composition of isomorphisms in D(k)

HomD(k)(X
∨⊗L

B X ,B) ∼→ HomD(k)(X⊗
L
B X∨⊗L

A X ,X⊗L
B B)

∼→ HomD(k)(A⊗
L
A X ,X⊗L

B B)
∼→ HomD(k)(X ,X).

Where the first one is induced by 1X ⊗
L
B−, the second one by u⊗L

A 1X and the last

one is induced by the canonical identifications A⊗L
A X = X and X⊗L

B B = X . That

is,

1X = (1X ⊗
L
B v)◦ (u⊗L

A 1X),

therefore 1X ⊗
L
B v−1 = (u⊗L

A 1X) and so the diagram

X
u⊗L

A1
//

1
&&

X⊗L
B X∨⊗L

A X

1⊗L
Bv

��
X

is commutative. We can extend v to an isomorphism of functors

v :−⊗L
B X∨⊗L

A X → idDb(Be)

and as a consequence the following diagram is commutative

X∨⊗L
A X⊗L

B X∨⊗L
A X

1⊗L

A1⊗L
Bv

//

v⊗L
B1⊗L

A1
��

X∨⊗L
A X

v

��
X∨⊗L

A X v
// B.
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The way we have chosen v implies also that the diagram

X∨⊗L
A X

1⊗L

Au⊗L
B1

//

1 **

X∨⊗L
A X⊗L

B X∨⊗L
A X

1⊗L

A1⊗L
Bv

��

X∨⊗L
A X

is commutative. From this we get that the following diagram commutes

X∨⊗L
A X⊗L

B X∨
1⊗L

Au
//

v⊗L
B1 ))

X∨

1

��
X∨.

Since the isomorphism id→ FG is induced by u and the isomorphism GF → id

is induced by v, we get that F and G are quasi-inverse functors.
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Chapter 3

Hochschild and cyclic theories

3.1 Hochschild (co)homology

Hochschild (co)homology of an algebra is the algebraic analogue of the topologi-

cal (co)homology theory of a topological space, see [7] Chapter IX, section 4 and

[21] Chapter 2. It was introduced by Hochschild [23, 24] then Cartan-Eilenberg

[7], Gerstenhaber [17], Happel [20], have studied its structure given by opera-

tions and more generally by Keller [37, 38] in the context of differential graded

algebras and B∞-algebras. More recently, computations of the theory with some

of its operations has been developed by Cibils, Lanzilotta, Marcos, Redondo and

Solotar [10, 11, 12, 13, 48, 49, 55, 56], as well as Suárez-Alvarez [58, 60], Lam-

bre [41, 42], Kordon and Suárez-Alvarez [40], Negron and Witherspoon [47],

Volkov [65, 64], Witherspoon [67] and several other authors, see for example

[1, 4, 8, 9, 22, 46].

Let k be a commutative ring and let A be a k-algebra. Denote by µ : A⊗A→ A

the product of the algebra A. Denote the n-folded tensor product of A as

A⊗n = A⊗·· ·⊗A︸ ︷︷ ︸
n copies

.

The Bar resolution of A is denoted by µ : Bar•(A)→ A where we consider µ as

a morphism concentrated in degree 0. It is given by Barn(A) = A⊗(n+2) for n≥ 0

and Bari(A) = 0 for i < 0, that is

Bar•(A) : · · · → A⊗n→ A⊗(n−1)→ ·· · → A⊗A→ 0,
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with δn : A⊗(n+2)→ A⊗(n+1) as differential, where

δn(a1⊗·· ·⊗an+2) =
n+1

∑
i=1

(−1)ia1⊗·· ·⊗aiai+1⊗·· ·⊗an+2.

Let N be an Ae-module, where Ae = A⊗Aop. The complexes N⊗Ae Bar•(A) and

HomAe(Bar•(A),N) are called Hochschild complexes.

Definition 3.1.1. [23] The Hochschild homology k-modules of A with coefficients

in the Ae-module N are defined as

Hn(A,N) := Hn

(
N⊗Ae Bar•(A)

)
,

for every n ≥ 0. The Hochschild cohomology k-modules of A with coefficients in

the Ae-module N are defined as

Hn(A,N) := Hn
(
HomAe(Bar•(A),N)

)
,

for every n≥ 0. In case N = A, we write

HHn(A) := Hn(A,A) and HHn(A) := Hn(A,A).

If the algebra is projective as a module over k, Hochschild (co)homology is

given by the classical derived functors of the tensor product and Hom functors.

Lemma 3.1.2. ([70] page 341) If A is projective as a k-module, then the complex

Bar•(A) is exact and each Barn(A) is an Ae-projective module for every n ≥ 0.

Therefore, Bar•(A) is a projective resolution of A as an Ae-module.

Corollary 3.1.3. ([70] page 342) If A is a projective k-module then there are

natural isomorphisms

Hn(A,N)∼= TorAe

n (N,A)

and

Hn(A,N)∼= Extn
Ae(A,N)

for every n≥ 0.

We will construct the Hochschild complexes and define the operations we are

interested in, given in terms of them. There are natural isomorphisms

N⊗Ae A⊗(n+2) → N⊗A⊗n

x⊗a0⊗·· ·⊗an+1 7→ (an+1xa0)⊗a1⊗·· ·⊗an
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for every n≥ 0, that induce an isomorphism of complexes, in which the complex

N⊗A⊗• has differential

d : N⊗A⊗n → N⊗A⊗(n−1)

x⊗a1⊗·· ·⊗an 7→ xa1⊗·· ·⊗an−1

+
n−1

∑
i=1

(−1)ix⊗a1⊗·· ·⊗aiai+1⊗·· ·⊗an

+(−1)nanx⊗a1⊗·· ·⊗an−1,

for n > 1, and d(x⊗a) = xa−ax when n = 1. Dually, there are isomorphisms

HomAe(A⊗(n+2),N) → Hom(A⊗n,N)
f 7→ f ′

for every n≥ 0, where f ′(a1⊗·· ·⊗an) = f (1⊗a1⊗·· ·⊗an⊗1), and such that

they extend to an isomorphism of complexes where the complex Hom(A⊗•,M)
has the differential

∂ : Hom(A⊗n,N) → Hom(A⊗(n+1),N)

defined as

∂ f (a1⊗·· ·⊗an+1) = a1 f (a2⊗·· ·⊗an+1)

+
n

∑
i=1

(−1)i f (a1⊗·· ·⊗aiai+1⊗·· ·⊗an+1)

+(−1)n+1 f (a1⊗·· ·⊗an)an+1,

for all f ∈ Hom(A⊗n,N). From now on we will be working with the Hochschild

complexes (N⊗A⊗•,d) and (Hom(A⊗•,N),∂ ), unless specified otherwise.

Definition 3.1.4. ([7] pages 216-219) Let N and M be A-bimodules. The cup

product in the Hochschild complex Hom(A⊗•,M) is given by morphisms

∪ : Hom(A⊗n,N)⊗Hom(A⊗m,M)→ Hom(A⊗(n+m),N⊗A M)

for every pair of integers n and m, defined as

α ∪β (a1⊗·· ·⊗an+m) := α(a1⊗·· ·⊗an)⊗A β (an+1⊗·· ·⊗an+m).

for α ∈Hom(A⊗n,N) and β ∈Hom(A⊗m,M). In here we establish the convention

that A⊗0 = k. If n = 0, we define

α ∪β (a1⊗·· ·⊗am) := α(1)⊗A β (a1⊗·· ·⊗am).
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If m = 0, we define

α ∪β (a1⊗·· ·⊗an) := α(a1⊗·· ·⊗an)⊗A β (1).

This operation passes to cohomology,

∪ : Hn(A,N)⊗Hm(A,M)→ Hn+m(A,N⊗A M)

by defining [α]∪ [β ] := [α ∪β ]. When N = M = A this product can be interpreted

in terms of the Yoneda product of exact sequences, and also as the shift functor

followed by the composition in the derived category of Ae, see [50].

Theorem 3.1.5. [17] The k-module

HH•(A) :=
⊕

n≥0

HHn(A)

equipped with the cup product is a graded commutative algebra.

We will consider Extn
Ae(A,A) as the k-module of equivalence classes of exact

sequences with length n of Ae-modules starting and ending in A, see for example

section 2.6 in page 38 of [6]. The Yoneda product of two exact sequences starting

and ending in A is defined as their concatenation, i.e. given two exact sequences

of Ae-modules

X : 0 // A
ε0 // X1

ε1 // · · ·
εn−1 // Xn

εn // A // 0

and

Y : 0 // A
η0 // Y1

η1 // · · ·
ηm−1 // Ym

ηm // A // 0

their Yoneda product X♦Y is defined as the exact sequence

0 // A
ε0 // X1

ε1 // · · ·
εn−1 // Xn

η0εn // Y1
η1 // · · ·

ηm−1 // Ym
ηm // A // 0.

Theorem 3.1.6. ([45] page 85) The k-module

Ext•Ae(A,A) :=
⊕

n≥0

Extn
Ae(A,A)

with the Yoneda product is a graded commutative algebra.
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Let f ∈ HomDb(Ae)(A,A[n]) and g ∈ HomDb(Ae)(A,A[m]), define f ⋆ g as the

morphism g[n]◦ f from A to A[n+m] in Db(Ae), so that we have a morphism

⋆ : HomDb(Ae)(A,A[n])⊗HomDb(Ae)(A,A[m])→ HomDb(Ae)(A,A[n+m]).

Theorem 3.1.7. ([70] page 613) The k-module

HomDb(Ae)(A,A[•]) :=
⊕

n≥0

HomDb(Ae)(A,A[n])

with the ⋆-product is a graded commutative algebra.

The last result can be proved also with the methods of [59]. There is a well

known result relating these three algebras. We will use the Hochschild complex

HomAe(Bar(A),A) in the following proof.

Theorem 3.1.8. ([67] pages 23-26) Let A be a k-projective algebra. The graded

commutative algebras HH•(A) and Ext•Ae(A,A) as well as HomDb(Ae)(A,A[•]) are

isomorphic.

Proof. We will describe the isomorphisms

Ext•Ae(A,A)
∼→ HH•(A)

and

Ext•Ae(A,A)
∼→ HomDb(Ae)(A,A[•]),

as well as the isomorphism

HH•(A) ∼→ HomDb(Ae)(A,A[•])

to which we also give its inverse. The last one will be extensively used in the next

Chapters. Let

X = ( 0 // A
ε0 // X1

ε1 // · · ·
εn−1 // Xn

εn // A // 0 )

be an exact sequence of Ae-modules representing an element of Extn
Ae(A,A). Since

Bar(A) is a projective resolution of A as an Ae-module, by the comparison the-

orem, see [53] pages 340 and 341, there exists a morphism of complexes φ• :
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Bar•(A)→ X unique up to homotopy, lifting the identity map of A, that is, there

is a commutative diagram with exact rows

A⊗(n+3)

��

// A⊗(n+2)

φn

��

δ // A⊗(n+1)

φn−1

��

δ // · · ·
δ // A⊗A

δ //

φ0

��

A //

1
��

0

0 // A
ε0 // X1

ε1 // · · ·
εn−1 // Xn

εn // A // 0.

The isomorphism η : Extn
Ae(A,A)

∼→ HHn(A) maps X to [φn]. It can be shown by

direct computations that

η(X♦Y ) = η(X)∪η(Y ).

For the isomorphism λ : Extn
Ae(A,A)

∼→ HomDb(Ae)(A,A[n]) consider X as before

and define

X ′ = ( 0 // A
ε0 // X1

ε1 // · · ·
εn−1 // Xn

// 0 ).

Denote by εn the morphism of complexes X ′→ A given by εn concentrated in de-

gree 0. Observe that εn is a quasi-isomorphism. Using the morphism of complexes

1′A : X ′→ A[n] defined as the identity morphism of A concentrated in degree n, we

form the roof

λ (X) := [1′Aε−1
n ] =

[
A X ′

εnoo
1′A // A[n]

]

which represents a morphism from A to A[n] in Db(Ae). This defines the isomor-

phism λ : Extn
Ae(A,A)

∼→ HomDb(Ae)(A,A[n]), which satisfies that

λ (X♦Y ) = λ (X)⋆λ (Y ).

We will now describe the isomorphism

HHn(A) ∼→ HomDb(Ae)(A,A[n])

and its inverse. Let [ f ] ∈ HHn(A) be represented by a map f : A⊗(n+2) → A

of A-bimodules. The image of [ f ] in HomDb(Ae)(A,A[n]) is given by the roof

represented by the diagram

A Bar•(A)
µoo f // A[n],
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where f is considered as a morphism concentrated in degree n. That is, we define

γ : HHn(A)→ HomDb(Ae)(A,A[n])

as the roof γ[ f ] := [ f µ−1]. This isomorphism sends the cup product to the ⋆-

product,

γ([ f ]∪ [g]) = γ[ f ]⋆ γ[g].

Let f = [ f2 f−1
1 ] be a morphism from A to A[n] in Db(Ae), i.e. f is represented by

the diagram

A Z
f1oo f2 // A[n].

Since the bar resolution is a projective resolution of A as an Ae-module, by the

comparison theorem, see for instance [53] pages 340 and 341, there is a morphism

of complexes ω : Bar•(A)→ Z such that f1ω = µ , which means that the following

diagram is commutative

Bar•(A)
µ

||

ω
��

A Z
f1oo f2 // A[n].

Compose f2 with the n-th component of ω , namely

ωn : A⊗(n+2)→ Zn,

to obtain a morphism f2 ◦ωn : A⊗(n+2)→ A of Ae-modules whose homology is an

element γ−1[ f2 f−1
1 ] := [ f2ωn] in HHn(A). The rest of the proof are straightforward

verifications.

The following result was first proven by Happel in [19] Chapter 3, in the tilting

approach. The proof presented here is due to Rickard [52]. It uses the algebra

identification

HH•(A) = HomDb(Ae)(A,A[•])

to obtain a direct proof of derived invariance of the cup product.

Theorem 3.1.9. [52] Let A and B be derived equivalent algebras that are pro-

jective and finitely generated as k-modules with equivalence −⊗L
A X : Db(A) ∼→

Db(B), then X induces an isomorphism of graded (commutative) k-algebras

HH•(A) ∼→ HH•(B).
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Proof. Since the equivalence F :=−⊗L
A X respects composition and the shift we

get that

F( f ∪g) = F(g[n]◦ f ) = F(g[n])◦F( f ) = F(g)[n]◦F( f ) = F( f )∪F(g).

The Hochschild cohomology of an algebra has a deeper structure that is also

preserved under derived equivalence [38], namely the structure of a Gerstenhaber

algebra [17].

Definition 3.1.10. [17] Let H• be a graded k-module. We say that (H•,∪, [−,−])
is a Gerstenhaber-algebra if

1. For every pair of integers n and m, there exists a morphism

∪ : Hn⊗Hm→ Hn+m

such that it induces an associative graded commutative product on H•.

2. For every pair of integers n and m, there exists a morphism

[−,−] : Hn⊗Hm→ Hn+m−1

such that

[α ∪β ,γ] = [α,γ]∪β +(−1)|α|(|γ|−1)α ∪ [β ,γ]

for homogeneous elements α,β ,γ ∈ H•.

3. The morphism [−,−] also satisfies the graded Jacobi identity

[α, [β ,γ]] = [[α,β ],γ]+ (−1)(|α|−1)(|β |−1)[β , [α,β ]]

for homogeneous elements α,β ,γ ∈ H•.

We will now construct an operation [−,−] that will endow (HH•(A),∪) with

the structure of a Gerstenhaber algebra [17]. Let α ∈ Hom(A⊗n,A) and β ∈
Hom(A⊗m,A) and let i be an integer such that 1 ≤ i ≤ n− 1. Define α •i β ∈
Hom(A⊗(n+m−1),A) as the morphism that maps a1⊗·· ·⊗an+m−1 to

α(a1⊗·· ·⊗ai−1⊗β (ai⊗·· ·⊗ai+m−1)⊗ai+m⊗·· ·⊗an+m−1).

The Gerstenhaber product is by definition

α •β =
n

∑
i=1

(−1)(i−1)(m−1)α •i β .
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Definition 3.1.11. [17] The Gerstenhaber bracket is defined as

[α,β ] = α •β − (−1)(|α|−1)(|β |−1)β •α,

for homogeneous elements α,β ∈ HH•(A).

Theorem 3.1.12. [17] Hochschild cohomology of an algebra endowed with the

Gerstenhaber bracket is a Gerstenhaber algebra.

Theorem 3.1.13. [38] Let A and B be derived equivalent k-projective algebras.

There is a canonical isomorphism of Gerstenhaber algebras

HH•(A) ∼→ HH•(B).

Keller proves this by showing that the Gerstenhaber bracket is the induced

bracket of the Lie algebra of a group valued functor defined on a category of

commutative algebras. That group is the R-relative derived Picard group, which

is immediately a derived invariant. We make the required constructions and sketch

the proof of the following theorem. Next we recall the definition of the R-relative

derived Picard group.

Definition 3.1.14. [38] Let R be a commutative DG-algebra over k and let A be

a k-algebra. The R-relative derived Picard group of R, denoted DPicA(R) is the

set of isomorphism classes of invertible objects of the relative derived category

DR(R⊗Aop⊗A). The product in DPicA(R) is given by the relative derived tensor

product.

The relative derived Picard group of R can be considered as a group val-

ued functor defined on the category CDGk of commutative differential graded

k-algebras. Denote Gps the category of groups, then we have a functor

DPicA : CDGk→ Gps.

For every group valued functor there exists a Lie algebra associated to it. Let

G : CDGk→ Gps be a functor, define

ev0 : k[ε]/(ε2)→ k

the morphism that evaluates at ε = 0. Then the Lie algebra of G is the kernel of

the map G(ev0), i.e. the space of tangent vectors at the origin. The bracket is

induced from the commutator of G(k[ε]/(ε2)).
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Let i be an integer and define Ri = k[ε]/(ε2) where ε is of degree −i. For

the relative derived Picard group, we get a graded Lie algebra whose i-th degree

LieDPici
A is the set of isomorphism classes of objects U ∈ DRi

(Ri⊗Aop⊗A) that

are Ri-semifree and U⊗Ri
k ∼= A in D(Ae). Denote

LieDPic•A :=
⊕

i∈Z

LieDPici
A.

Let A and B be derived equivalent Noetherian k-projective finitely generated alge-

bras, then there is an isomorphism

DPicA(R)
∼→ DPicB(R)

U → X∨⊗L
A U⊗L

A X .

Therefore, the product of DPicA(R) is a derived invariant for A. Keller proves in

[38] that the Lie bracket of the Lie algebra of the relative derived Picard group

coincides with the Gerstenhaber bracket. As a consequence the Gerstenhaber al-

gebra structure on Hochschild cohomology is derived invariant.

Theorem 3.1.15. [38] There is a canonical isomorphism of graded Lie algebras

HH•+1(A)op ∼→ LieDPic•A

which is functorial with respect to invertible bimodule complexes X ∈D(Aop⊗B).

Note that HH•+1(A)op is the graded algebra HH•+1(A) with opposite Lie

bracket. The Hochschild homology of an algebra HH•(A) :=
⊕

n≥0 HHn(A) is

also a derived invariant. The first appearance of the isomorphism between Hochschild

homologies of two derived equivalent algebras that are projective over a commu-

tative ring k was in [28]. It is also proved in [69] which we follow now for the

proof. Let A and B be derived equivalent Noetherian algebras that are finitely gen-

erated and projective as k-modules and take X and X∨ as in Proposition 2.3.16 in

page 38, then

A⊗L
Ae A

∼→ A⊗L
Ae (X⊗L

B X∨)
∼→ A⊗L

Ae (X⊗L
k X∨)⊗L

Be B
∼→ B⊗L

Be (X∨⊗L
k X)⊗L

Ae A
∼→ B⊗L

Be (X∨⊗L
A X)

∼→ B⊗L
Be B,

and by taking homology we get the following.
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Theorem 3.1.16. [69] Let A and B be derived equivalent Noetherian k-algebras

that are finitely generated and projective as k-modules. There is a canonical iso-

morphism

HH•(A)
∼→ HH•(B).

Hochschild homology and cohomology interact via a pairing, called the cap

product. This is an algebraic version of the topological cap product which gives

rise to Poincaré duality on homology and cohomology of topological manifolds,

see [21] Chapter 3 section 3.

Definition 3.1.17. ([7] page 217) The cap product in the Hochschild complexes

∩ :
(
N⊗A⊗n

)
⊗Hom(A⊗m,M)→ N⊗A M⊗A⊗(n−m),

is defined as

z∩β := (−1)nmx⊗A β (a1⊗·· ·⊗am)⊗am+1⊗·· ·⊗an,

for β ∈ Hom(A⊗m,M) and every z = x⊗a1⊗·· ·⊗an ∈ N⊗A⊗n.

The cap product also provides a well-defined cap product in (co)homology,

see [7] pages 216-219.

∩ : Hn(A,N)⊗Hm(A,M)→ Hn−m(A,N⊗A M).

3.2 Cyclic homology

We consider now cyclic homology, as used by Connes [14]. This theory can be

defined for non-unital algebras, but in this work we develop it for unital algebras.

We follow [44] to introduce cyclic homology. Let k be a commutative ring. Recall

that a bicomplex is a Z2-graded k-module M•,• with differentials ∆v of bidegree

(1,0) and ∆h of bidegree (0,1) such that

∆v∆h +∆h∆v = 0.

Every bicomplex M gives rise to a complex, called its total complex Tot(M),
where the n-th component of the total complex of M is by definition

Tot(M)n =
⊕

i+ j=n

Mi, j
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with differential

∆ : Tot(M)n→ Tot(M)n+1

given by

∆ = ∆h +∆v.

The homology of the bicomplex M•,• is defined to be the homology of its total

complex (Tot(M),∆), that is

Hn(M) := Hn(Tot(M)),

for all integers n. We apply this to specific operations in the tensor powers of a k-

algebra A involving an action of the cyclic group. The multiplicative cyclic group

of order n+1 with generator t = tn acts on A⊗(n+1) by

tn(a0⊗·· ·⊗an) = (−1)nan⊗a0⊗·· ·⊗an−1.

Let N = 1+ t + t2 + · · ·+ tn denote the norm operator on A⊗(n+1). Define the

operations d0(a0⊗a1⊗·· ·⊗an) := a0a1⊗·· ·⊗an and dn(a0⊗a1⊗·· ·⊗an) :=
ana0⊗·· ·⊗an−1, as well as

di(a0⊗a1⊗·· ·⊗an) := a0⊗a1⊗·· ·⊗aiai+1⊗·· ·⊗an

for all 1≤ i≤ n−1 and all generators a0⊗a1⊗·· ·⊗an of A⊗(n+1). Define

b :=
n

∑
i=0

(−1)idi : A⊗A⊗n→ A⊗A⊗(n−1)

and

b′ =
n−1

∑
i=0

(−1)idi : A⊗A⊗n→ A⊗A⊗(n−1).

The cyclic bicomplex C(A) = C•,•(A) of an algebra A is defined as the following

first quadrant bicomplex

...

��

...

��

...

��

...

��

A⊗3

b
��

A⊗31−too

−b′
��

A⊗3

b
��

Noo A⊗3

−b′
��

1−too · · ·oo

A⊗2

b
��

A⊗21−too

−b′

��

A⊗2

b
��

Noo A⊗2

−b′

��

1−too · · ·oo

A A
1−too A

Noo A
1−too · · · .oo
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By direct computations one checks that b and b′ are differentials and that Nb+
b′N = 0 and also that b(1− t) = (1− t)b′.

Definition 3.2.1. ([44] page 53) The n-th cyclic homology of the algebra A is

HCn(A) := Hn(C•,•(A)),

for all n≥ 0.

Next we will construct other (bi)complexes whose homology will also be

cyclic homology. First we consider the multiplication by 1− t as an endomor-

phism of A⊗(n+1). Let Cλ
n (A) :=Coker(1− t) be the cokernel of 1− t : A⊗(n+1)→

A⊗(n+1). The Connes complex [14] is defined as

Cλ
• (A) : · · ·

b // Cλ
n (A)

b // Cλ
n−1(A)

b // · · ·
b // Cλ

0 (A).

We can consider Cλ
• (A) as a bicomplex in which the 0-column is Cλ

• (A), and

zero elsewhere. Define a morphism of bicomplexes p : C•(A)→ Cλ
• (A), i.e. it

commutes with both differentials, defined as the quotient by the action of 1− t

A⊗(n+1)→Cλ
n (A)

on the 0-column, and zero on the others.

Theorem 3.2.2. ([44] page 54) For any algebra A over a ring k which contains

Q the natural map

p• : HC•(A)
∼→ H•(C

λ (A))

is an isomorphism.

We now construct a bicomplex B̄(A) = B̄•,•(A) whose (p,q)-term is

B̄p,q(A) = A⊗(q−p+1).

The vertical differential is the map b and the horizontal differential of B̄(A) is by

definition

B̄A = (1− t)sN,

where s : A⊗n→ A⊗(n+1) is called extra-degeneracy and is given by

s(x) = 1⊗ x.
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That is, B̄•,•(A) is the bicomplex

...

b

��

...

b

��

...

b

��

...

b

��
A⊗4

b
��

A⊗3

b
��

B̄A

oo A⊗2

b

��

B̄A

oo A
B̄A

oo

A⊗3

b
��

A⊗2

b

��

B̄A

oo A
B̄A

oo

A⊗2

b
��

A
B̄A

oo

A

Theorem 3.2.3. ([44] page 57) For any k-algebra A there are isomorphisms

HCn(A)∼= Hn(B̄(A))

for every n≥ 0.

The bicomplex B̄(A) can be reduced further to a normalized complex B(A).
Consider Ā = A/k, the quotient by the module generated by the identity of A.

Let B(A)p,q be equal to A⊗ Ā⊗(q−p), let b be its vertical differential and let the

horizontal differential be BA := sN, that is

BA(a0⊗·· ·⊗an) =
n

∑
i=0

(−1)in(1⊗ai⊗·· ·⊗an⊗a0⊗·· ·⊗ai−1),
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for every a0⊗·· ·⊗an ∈ A⊗ Ā⊗n. That is, B•,•(A) is the bicomplex

...

b

��

...

b

��

...

b

��

...

b

��
A⊗ Ā⊗3

b
��

A⊗ Ā⊗2

b
��

BA

oo A⊗ Ā

b

��

BA

oo A
BA

oo

A⊗ Ā⊗2

b
��

A⊗ Ā

b
��

BA

oo A
BA

oo

A⊗ Ā

b
��

A
BA

oo

A

Theorem 3.2.4. ([44] page 58) For any k-algebra A there are canonical isomor-

phisms

HCn(A)∼= Hn(B(A)),

for every n≥ 0.

Another interpretation of cyclic homology has been given by Kassel, as a Tor

functor over the DG-algebra of dual numbers.

Definition 3.2.5. ([44] page 75) The triple (M,b,B) is called a mixed complex if

M is a Z-graded k-module, b and B are graded endomorphisms of M of degrees

1 and −1, respectively, that satisfy the equations b2 = 0 and B2 = 0 as well as

bB+Bb = 0.

Definition 3.2.6. ([44] page 76) The cyclic homology of the mixed complex (M,b,B)
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is the homology of the bicomplex

...

b

��

...

b

��

...

b

��

...

b

��
M3

b
��

M2

b
��

BA

oo M1

b
��

BA

oo M0BA

oo

M2

b
��

M1

b
��

BA

oo M0BA

oo

M1

b
��

M0BA

oo

M0.

For example, the triple (B(A),b,BA) is a mixed complex that we presented

as a bicomplex and cyclic homology of this bicomplex is cyclic homology of the

algebra A. We will now interpret mixed complexes as DG-modules over the DG-

algebra of dual numbers.

Let Λ be the DG-algebra of dual numbers, i.e. Λ := k[ε]/(ε2) where the degree

of ε is −1 and the differential vanishes, so that its underlying complex is

0 // k
0 // kε // 0.

As in [25, 34], the category of DG Λ-modules and the category of mixed com-

plexes are identified. The identifications is defined as follows. Given a mixed

complex (M,b,B), we regard (M,b) as a DG k-module and the action of ε is

given by εm := B(m) for every m ∈M. If (M,b) is a DG Λ-module we define a

mixed complex (M,b,B) by B(m) := εm for every m ∈M.

Theorem 3.2.7. [25] Let (M,b,B) be a mixed complex, or equivalently a DG-

module over Λ. There is an isomorphism

HCn(M)∼= TorΛ
n (k,M),

for every n≥ 0, where k is the Λ-module given by the augmentation.

Proof. The DG Λ-module k has the following free Λ resolution

· · · → Λ[2]→ Λ[1]→ Λ→ k.
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Denote by L the deleted resolution of k. Define XM to be the complex with degree

n component given by

Mn⊕Mn−2⊕Mn−4⊕·· ·

with differential

d(mn,mn−2,mn−4, · · ·) = (bmn +Bmn−2,bmn−2 +Bmn−4,bmn−4 +Bmn−6, · · ·).

Note that HCn(M) = Hn(XM). Since the total complex of the bicomplex L⊗Λ M

coincides with XM, we get the desired isomorphism.

Consider the cyclic bicomplex C(A), denote by C(A){2} the bicomplex equal

to C(A) on the first two columns and zero elsewhere. Let C(A)[2,0] be the bi-

complex shifted as C(A)[2,0]p,q = Cp−2,q(A), then there is an exact sequence of

bicomplexes, where kernels and images are taken bidegreewise,

0→C(A){2}→C(A)→C(A)[2,0]→ 0.

In which the first map is the inclusion of the first two columns. The last map is

induced by moding out by the first two columns of C(A). The homology of this

exact sequence gives the well-known Connes periodicity long exact sequence. Let

IA and SA be the homology of the inclusion and the homology of the quotient maps

of the last exact sequence, respectively. Let B′A to be the connecting morphism.

Theorem 3.2.8. [14] For any k-algebra A there is a natural long exact sequence

· · · // HHn(A)
IA // HCn(A)

SA // HCn−2(A)
B′A // HHn−1(A)

IA // · · · .

We have identified HHn(A) with Hn(C(A){2}) via the inclusion of the first

column

A⊗(•+1)→ Totn(C(A){2}),

which is a quasi-isomorphisms. The maps IA and B′A can be composed to give a

morphism between Hochschild homologies defined as

B′AIA : HHn(A)→ HHn+1(A).

Let A be an associative unital algebra over a commutative ring k. Then it is

straightforward to prove that BA = B′AIA.

Definition 3.2.9. ([44] pages 55-66) The maps B̄A, B′A and BA are called Connes

differential’s.
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The map BA is given in terms of Hochschild homology, which gives an extra

structure to the Hochschild theory of an algebra, first studied by Tamarkin and

Tsygan in [61] and by Dalentski, Gelfand and Tsygan in [15]. It has been studied

further, for example in [42] and [62].

3.3 Tamarkin-Tsygan calculus of an algebra

Definition 3.3.1. [61] A Tamarkin-Tsygan calculus (or differential calculus) is

the datum (H•,H
•,∪, [−,−],∩,B), where

1. (H•,∪, [−,−]) is a Gerstenhaber algebra.

2. For every pair of integers n,m there is a map

∩ : Hn⊗Hm→ Hn−m

that provides H• with the structure of a graded (H•,∪)-module.

3. For each j ≥ 0 define iα : H j→ H j−n by

iα(z) := (−1) jnz∩α,

for α ∈ Hn. Let α ∈ Hn and β ∈ Hm, the map B : H•→ H•+1 is such that

B2 = 0 and

[[B, iα ]gr, iβ ]gr = i[α,β ],

where the graded bracket [−,−]gr is defined as

[B, iα ]gr := Biα − (−1)niαB.

Remark 3.3.2. Let (H•,H
•,∪, [−,−],∩,B) be a Tamarkin-Tsygan calculus. The

statement (2) from the previous definition is equivalent to the commutativity of the

following diagram

Hn⊗Hm⊗H l 1⊗∪ //

∩⊗1
��

Hn⊗Hm+l

∩
��

Hn−m⊗H l
∩

// Hn−m−l
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for every triple of integers n,m and l. The equation (3) from the previous definition

is given by the commutativity of the following diagram

Hi⊗H j⊗H l 1⊗[−,−]
//

[[B,iα ]gr,iβ ]gr ))

Hi⊗H j+l−1

∩
��

Hi− j−l+1,

for every triple of integers n,m and l.

The main example of a Tamarkin-Tsygan calculus is the Hochschild theory

of an algebra endowed with the cup product, the Gerstenhaber bracket, the cap

product and the Connes differential.

Theorem 3.3.3. [61] Let A be a k-algebra. The datum

(HH•(A),HH•(A),∪A, [−,−]A,∩A,BA)

is a Tamarkin-Tsygan calculus.

We call (HH•(A),HH•(A),∪A, [−,−]A,∩A,BA) the Tamarkin-Tsygan calcu-

lus of A.

3.4 Weyl algebras

In the following we will make explicit the Tamarkin-Tsygan calculus of Weyl

algebras. Let n≥ 1 be an integer. The Weyl algebra An is the quotient of the free

algebra on 2n variables

k < x1, · · · ,xn,y1, · · · ,yn >

modulo the relations
xix j = x jxi for i 6= j,
yiy j = y jyi for i 6= j,
xiy j = y jxi for i 6= j,
yixi− xiyi = 1.

It was calculated in [57] that

HHi(An) =
{

0 i 6= 2n

k i = 2n.
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As it is well-known, see for example [55], we have

HH i(An) =
{

0 i > 0

k i = 0.

Since Hochschild homology of the Weyl algebra An is concentrated in degree 2n,

the Connes differential is the zero map. The cap product of An

∩ : HH•(An)⊗HH0(An)→ HH•(An).

has as only non-zero component

∩ : HH2n(An)⊗HH0(An)→ HH2n(An),

and is the multiplication action of HH0(An)∼= k on HH2n(An)∼= k. These opera-

tions describe the Tamarkin-Tsygan calculus structure of the Weyl algebra An.

Observe now that for integers n,m≥ 0, the Weyl algebras An and Am have iso-

morphic Gerstenhaber algebra structure on their Hochschild cohomology. Indeed,

the Gerstenhaber bracket of A1 is trivial because the Hochschild cohomology is

concentrated in degree 0. The cup product of An is the product of its center

∪ : HH0(An)⊗HH0(An)→ HH0(An),

and likewise for Am,

∪ : HH0(Am)⊗HH0(Am)→ HH0(Am).

In other words, the Gerstenhaber algebra structure does not enables to distin-

guish possible different derived equivalence classes. On the other hand, Hochschild

homology of An is concentrated in degree 2n, so that the Weyl algebras An and Am

are derived equivalent if and only if n = m.
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Chapter 4

Derived invariance of operations

This Chapter presents the main results of this thesis. We begin by giving construc-

tions between morphisms in the derived categories of the enveloping algebras of

derived equivalent algebras. Then we perform a careful analysis of the cup prod-

uct and the cap product. We let k be a commutative ring unless stated otherwise.

4.1 Morphisms induced by derived equivalences

We will consider interpretations in the derived category of Hochschild homology

and cohomology. In this section we construct morphisms between these interpre-

tations induced by derived equivalent algebras. Let k be a commutative ring and

let A and B be derived equivalent Noetherian k-projective algebras that are finitely

generated as k-modules. We will strongly use Proposition 2.3.16 given in page

38. There are bimodule complexes X and X∨ that are projective on either side, so

that the derived tensor product is associative, such that

−⊗L
A X : Db(A) ∼→ Db(B) and −⊗L

BX∨ : Db(B) ∼→ Db(A)

are equivalences. The equivalence F := X∨⊗L
A−⊗

L
A X : Db(Ae) ∼→D(Be) induces

an isomorphism

F̃A : HomDb(Ae)(A,A[n])
∼→ HomDb(Be)(B,B[n]),

see for instance [38], given by F̃A( f ) = v[n]◦F( f )◦v−1. Its inverse is induced by

G := X⊗L
B−⊗

L
B X∨ : Db(Be) ∼→ Db(Ae), namely

G̃A : HomDb(Be)(B,B[n])
∼→ HomDb(Ae)(A,A[n])
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which is given by G̃A(g) = u−1[n]◦G(g)◦u.

Proposition 4.1.1. Let A and B be Noetherian algebras that are finitely gener-

ated and projective as k-modules. For each f ∈ HomDb(Ae)(A,A[n]) and each

g ∈ HomD(Be)(B,B[n]) the following equations hold

f = (u−1 ◦G(v))[n]◦GF( f )◦G(v−1)◦u and

g = (v◦F(u−1))[n]◦FG(g)◦F(u)◦ v−1.

Proof. We prove the first equation, the second is dual. We choose u, v and the

equivalences F and G as well as the complexes X and X∨ as in Proposition 2.3.16

in page 38 and recall that the natural isomorphism id
∼→ GF is induced by u, that

is, the diagram

A
f //

u⊗L

Au

��

A[n]

u⊗L

Au[n]
��

GF(A)
GF( f )

// GF(A)[n]

is commutative for all f . We have that

G(v−1) = 1X ⊗
L
B v−1⊗L

B 1X∨ ,

and since 1X ⊗
L
B v−1 = u⊗L

A 1X we get G(v−1) = u⊗L
A 1X ⊗

L
B 1X∨ . then

(u−1⊗L
A u−1)◦G(v−1) = (u−1⊗L

A u−1)◦ (u⊗L
A 1)

= (u−1 ◦u)⊗L
A (u−1 ◦1)

= 1A⊗
L
A u−1

= u−1

that is, the diagram

G(B)
u−1

//

G(v−1)
��

A

G(X∨⊗L
A X)

(u⊗L

Au)−1

66

is commutative and therefore G(v−1) = (u⊗L
A u)◦u−1. Observe that

GF( f )◦G(v−1)◦u = (u⊗L
A u)[n]◦ f ◦ (u⊗L

A u)−1 ◦ (u⊗L
A u)◦u−1 ◦u

= (u⊗L
A u)[n]◦ f
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and recall from the bottom diagram of the previous page that

G(v) = u◦ (u⊗L
A u)−1,

then
u−1[n]◦G(v)[n]◦GF( f )◦G(v−1)◦u

= u−1[n]◦G(v)[n]◦ (u⊗L
A u)[n]◦ f

= u−1[n]◦u[n]◦ (u⊗L
A u)[n]−1 ◦ (u⊗L

A u)[n]◦ f

= f .

Recall from Theorem 3.1.8 in page 45, that we may consider Hochschild co-

homology as morphisms in the derived category via the following isomorphism.

Definition 4.1.2. For a k-projective algebra A and an A-bimodule N we define

γN : Hn(A,N)→ HomDb(Ae)(A,N[n])

as the morphism that sends a class [ f ] to the roof
[
A

µ
←− Bar•(A)

f
−→ N[n]

]
where

f is considered as a morphism concentrated in degree n.

For an arbitrary A-bimodule N define a map

F̃N : HomDb(Ae)(A,N[n])→ HomD(Be)(B,F(N)[n])

given by F̃N( f ) = F( f )◦ v−1. As in the last proposition, one checks that it has an

inverse induced by G, which is given by

G̃N : HomD(Be)(B,F(N)[n]) → HomDb(Ae)(A,N[n])

g 7→ (u⊗L
A 1N⊗

L
A u)−1[n]◦G(g)◦u.

Remark 4.1.3. In general, F(N) is not concentrated in a single degree since F

is a functor D(Ae)→ D(Be). If N = A we have that F(A) ∼= B, then there exists

A-bimodules N such that F(N) is concentrated in degree zero.

If we assume that N is an A-bimodule such that FN is concentrated in degree

zero, we can consider FN as a B-bimodule and define the isomorphism

Hn(A,N) ∼→ Hn(B,FN)
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as the composition γ−1
B ◦ F̃N ◦ γA, that is,

Hn(A,N) ∼→ HomDb(Ae)(A,N[n])
∼→ HomD(Be)(B,FN[n])
∼→ Hn(B,FN).

Let us analyze the particular case when N is equal to the k-dual of A. We denote

(−)∗ = Hom(−,k). Moreover, we give the canonical A-bimodule structure to A∗

a f b(x) = f (bxa) ∀a,b,x ∈ A, f ∈ A∗.

Proposition 4.1.4. ([70] page 617) Let A and B be derived equivalent Noetherian

algebras that are projective and finitely generated as k-modules. Then there are

isomorphisms which are given by taking homology

Z : F(A∗) ∼→ F(A)∗ and Z′ : G(B∗) ∼→ G(B)∗,

in Db(Be) and Db(Ae), respectively.

Proof. By using several adjointness formulas we get the following sequence of

isomorphisms,

HomDb(Be)(B⊗Bop,F(A∗)[n])
∼= HomDb(Ae)(X⊗RHomA(X ,A),Hom(A,k)[n])
∼= HomDb(A)(X ,HomAop(RHomA(X ,A),Hom(A,k)[n]))
∼= HomDb(A)(X [−n],Hom(RHomA(X ,A)⊗A A,k))
∼= HomDb(A)(X [−n],Hom(RHomA(X ,A),k))
∼= Hom(RHomA(X ,A)⊗L X [−n],k)
∼= Hom(HomDb(A)(X ,X [−n]),k)

Since X is isomorphic to a tilting complex T , the homology of F(A∗) is

HomDb(A)(T,T [n])
∗, which is F(A)∗[n] = B∗ if n = 0 and zero elsewhere. In ho-

mology we get that Z : F(A∗) ∼→ F(A)∗ is an isomorphism in Db(Be). The isomor-

phism Z′ is constructed dually.

Let A and B be as above. We define a morphism of k-modules

F̃A∗ : HomDb(Ae)(A,A
∗[n])→ HomD(Be)(B,B

∗[n])

given by

F̃A∗( f ) := (v−1)∗[n]◦Z[n]◦F( f )◦ v−1,
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that is, F̃A∗( f ) is equal to the following composition

B
v−1

// F(A)
F( f )

// F(A∗)[n]
Z[n]

// F(A)∗[n]
(v−1)∗[n]

// B∗[n].

Dually, we define

G̃A∗ : HomD(Be)(B,B
∗[n])→ HomDb(Ae)(A,A

∗[n]),

by

G̃A∗(g) := u∗[n]◦Z′[n]◦G(g)◦u.

Remark 4.1.5. Although F̃ and G̃ are canonical morphisms, the author do not see

why they should be inverse to each other. In the following result we give sufficient

conditions for this to hold.

Proposition 4.1.6. Let A and B be derived equivalent Noetherian algebras that

are projective and finitely generated as k-modules. Assume that the diagrams

GF(A∗)
G(Z)

//

u−1⊗L

A(1A∗)⊗
L

Au−1

��

G(F(A)∗)
G((v−1)∗)

%%
G(B∗)

Z′yy
A∗

(u−1)∗
// G(B)∗

and

FG(B∗)
F(Z′)

//

v⊗L
B(1B∗)⊗

L
Bv

��

F(G(B)∗)
F(u∗)

%%
F(A∗)

Zyy
B∗

v∗
// F(A)∗

are commutative. There are isomorphisms induced by F̃ and G̃

Hn(A,A∗)∼= Hn(B,B∗)

for every n≥ 0.
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Proof. We will prove that for every morphism f : A→ A∗[n] in D(Ae) we have

G̃F̃( f ) = f . The natural isomorphism GF → idDb(Ae) implies that

GF( f ) =
(

u⊗L
A (1A∗ [n])⊗

L
A u
)
◦ f ◦ (u⊗L

A u)−1.

The way we have chosen u and v implies that

G(v) = (u⊗L
A u)−1 ◦u.

Therefore

G̃F̃( f )

= G̃
(
(v−1)∗[n]◦Z[n]◦F( f )◦ v−1

)

= u∗[n]◦Z′[n]◦G
(
(v−1)∗[n]◦Z[n]◦F( f )◦ (v−1)

)
◦u

= u∗[n]◦Z′[n]◦G
(
(v−1)∗[n]

)
◦G(Z)[n]◦GF( f )◦G(v−1)◦u.

We will compute this from right to left. Observe that GF( f )◦G(v−1)◦u is equal

to (
u⊗L

A (1∗A[n])⊗
L
A u
)−1

◦ f .

The commutativity of the first diagram in the statement implies that

G̃F̃( f )

= u∗[n]◦Z′[n]◦G
(
(v−1)∗[n]

)
◦G(Z)[n]◦

(
u⊗L

A (1∗A[n])⊗
L
A u
)−1
◦ f

= f .

Dually, the natural isomorphism FG→ idDb(Be) and the second diagram in the

statement imply that F̃G̃(g) = g for all morphism g : B→ B∗[n] in D(Be).

4.2 Cup product

Let A be a k-projective algebra. Let N and M be A-bimodules. We extend the

interpretation of the cup product in terms of the derived category of the enveloping

algebra given by Rickard [52], to allow coefficients in arbitrary bimodules in the

following way.

Lemma 4.2.1. Let A be a k-projective algebra. For every roof represented by

A Z
g1oo g2 // M[m]
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in Db(Ae), the diagram

N N⊗A Z
1N⊗Ag1oo 1N⊗Ag2 // N⊗A M[m]

represents a roof in Db(Ae), that we will denote by 1N⊗A g.

Proof. Apply the functor N⊗A− to the diagram A Z
g1oo g2 // M[m] to obtain

N N⊗A Z
1N⊗Ag1oo 1N⊗Ag2 // N⊗A M[m] .

Since A is k-projective the universal coefficient theorem, see [53] page 448, asserts

that the natural morphism

N⊗A H0(Z) → H0(N⊗A Z)
n⊗ [x] 7→ [n⊗ x],

has cokernel given by TorA
0 (H−1(Z),N). Observe that A being k-projective im-

plies that Z and Bar(A) are quasi-isomorphic, then

H−1(Z)∼= H−1(Bar(A)) = 0.

Therefore N⊗A H0(Z)∼= H0(N⊗A Z). We have a commutative diagram

N⊗A H(Z)

1N⊗AH(g1)

((

∼=
��

H(N⊗A Z)
H(1N⊗Ag1)

// N.

Since g1 is a quasi-isomorphism we get that 1N⊗A g1 is a quasi-isomorphism and

then

1N⊗A g :=

[
N N⊗A Z

1N⊗Ag1oo 1N⊗Ag2 // N⊗A M[m]

]

is a morphism in Db(Ae).

Definition 4.2.2. Let N and M be A-bimodules for A a k-projective algebra. For

each pair of integers n and m let

∪̃ : HomDb(Ae)(A,N[n])⊗HomDb(Ae)(A,M[m])→HomDb(Ae)(A,(N⊗A M)[n+m])

be the operation defined by

f ∪̃g := (1N⊗A g[n])◦ f .
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Remark 4.2.3. Let A be a k-projective algebra. The tensor product of complexes

over A commutes with the shift functor, and then we can define 1N ⊗A g[n] :=
1N ⊗A (g[n]), which is also equal to (1N ⊗A g)[n]. Therefore f ∪̃g is given by the

following composition of morphisms in Db(Ae)

A
f // N[n]

1N⊗Ag[n]
// N⊗A M[n+m].

Proposition 4.2.4. Let A be a k-projective algebra. The following diagram is

commutative

Hn(A,N)⊗Hm(A,M)
∪ //

γN⊗γM

��

Hn+m(A,N⊗A M)

γN⊗AM

��
HomDb(Ae)(A,N[n])⊗HomDb(Ae)(A,M[m])

∪̃ // HomDb(Ae)(A,(N⊗A M)[n+m]).

Moreover, the following diagram is commutative in Db(Ae)

A
f //

g

��

N[n]

1N⊗Ag[n]
��

M[m]
f⊗A1M [m]

// N⊗A M[n+m]

for all morphisms f : A→ N[n] and g : A→M[m] in D(Ae).

Proof. Let [ f ] ∈ Hn(A,N) and [g] ∈ Hm(A,M), then

γN⊗AM([ f ]∪ [g]) = [( f ∪g)µ−1].

On the other hand

γN([ f ])∪̃γM([g]) = [ f µ−1]∪̃[gµ−1]
= (1N⊗A [gµ−1][n])◦ [ f µ−1].

The composition (1N ⊗A [gµ−1][n]) ◦ [ f µ−1] is represented by the following dia-

gram

Bar•(A)

1

yy

f̃

((
Bar•(A)

µ

||

f

%%

N⊗A Bar•(A)[n]
1⊗Aµ[n]

ww

1⊗Ag[n]

))
A N[n] N⊗A M[n+m],
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where f̃ is chosen to be f̃ (a1⊗·· ·⊗ai) = f (a1⊗·· ·⊗an⊗1)⊗1⊗an+1⊗·· ·⊗ai

in case i≥ n+1 and zero otherwise. Then

(1⊗g[n])◦ f̃ (a1⊗·· ·⊗ai)

= (1⊗g[n])
(

f (a1⊗·· ·⊗an⊗1)⊗1⊗an+1⊗·· ·⊗ai

)

= f (a1⊗·· ·⊗an⊗1)⊗g(1⊗an+1⊗·· ·⊗ai)

and recall from [67] section 2.2 page 27 that in terms of the Hochschild complex

HomAe(Bar•(A),N⊗A M) we have

f (a1⊗·· ·⊗an⊗1)⊗g(1⊗an+1⊗·· ·⊗ai) = f ∪g(a1⊗·· ·⊗ai).

Therefore

γN⊗AM([ f ]∪ [g]) = γN([ f ])∪̃γM([g]),

and then the first diagram in the statement commutes. To prove that

( f ⊗A 1M[m])◦g = (1N⊗A g[n])◦ f

we observe that there is a morphism g̃ : Bar(A)→ Bar•(A)⊗A M[m] given by

g̃(a1⊗·· ·⊗ai) = a1⊗·· ·⊗ai−m⊗1⊗g(1⊗ai−m+1⊗·· ·⊗ai),

for i ≥ m+ 1 and zero otherwise. Therefore the composition ( f ⊗A 1[m]) ◦ g is

represented by the diagram

Bar•(A)

1

yy

g̃

((
Bar•(A)

µ

||

g

%%

Bar•(A)⊗A M[m]
1⊗Aµ[n]

vv

f⊗A1[m]

))
A M[m] N⊗A M[n+m]

.

The analogous argument as before gives ( f ⊗A 1[m]) ◦ g = f ∪ g = (1⊗A g[n]) ◦
f .

Remark 4.2.5. Observe that if N = A, then f ∪̃g = g[n] ◦ f and if M = A, then

f ∪̃g = f [m]◦g.
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Theorem 4.2.6. Let A and B be derived equivalent Noetherian k-algebras that

are projective and finitely generated as k-modules. Let N and M be bounded

complexes of A-bimodules. Then there are commutative diagrams

HomDb(Ae)(A,N[n])⊗HomDb(Ae)(A,A[m]) HomDb(Ae)(A,N[n+m])

HomD(Be)(B,F(N)[n])⊗HomD(Be)(B,B[m]) HomD(Be)(B,F(N)[n+m])

F̃N⊗ F̃A F̃N

∪̃A

∪̃B

and

HomDb(Ae)(A,A[n])⊗HomDb(Ae)(A,M[m]) HomDb(Ae)(A,M[n+m])

HomD(Be)(B,B[n])⊗HomD(Be)(B,F(M)[m]) HomD(Be)(B,F(M)[n+m]).

F̃A⊗ F̃M F̃M

∪̃A

∪̃B

Proof. Let f ∈ HomDb(Ae)(A,N[n]) and g ∈ HomDb(Ae)(A,A[m]), then

F̃N( f )∪̃BF̃A(g) =
(
F( f )◦ v−1

)
∪̃B

(
v[m]◦F(g)◦ v−1

)

= F( f )[m]◦ v−1[m]◦ v[m]◦F(g)◦ v−1

= F( f )[m]◦F(g)◦ v−1

= F
(

f [m]◦g
)
◦ v−1

= F̃N

(
f [m]◦g

)

= F̃N( f ∪̃Ag).

For the second diagram consider morphisms f : A→ A[n] and g : A→ M[m] in

Db(Ae), then

F̃A( f )∪̃BF̃M(g) =
(
v[n]◦F( f )◦ v−1

)
∪̃B

(
F(g)◦ v−1

)

= F(g)[n]◦ v−1[n]◦ v[n]◦F( f )◦ v−1

= F(g)[n]◦F( f )◦ v−1

= F
(

g[n]◦ f
)
◦ v−1

= F̃M

(
g[n]◦ f

)

= F̃M( f ∪̃Ag).
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Corollary 4.2.7. Let A and B be derived equivalent k-projective Noetherian al-

gebras that are finitely generated as k-modules. Let N and M be A-bimodules

such that F(N) and F(M) are concentrated in degree zero. There are canonical

isomorphisms

γ−1
FN ◦ F̃N ◦ γN : Hn(A,N) ∼→ Hn(B,FN)

and

γ−1
FM ◦ F̃M ◦ γM : Hm(A,M) ∼→ Hm(B,FM)

such that the diagrams

HHn(A)⊗Hm(A,M)
∪A //

∼=
��

Hn+m(A,M)

∼=
��

HHn(B)⊗Hm(B,FM)
∪B

// Hn+m(B,FM)

and

Hn(A,N)⊗HHm(A)
∪A //

∼=
��

Hn+m(A,N)

∼=
��

Hn(B,FN)⊗HHm(B)
∪B

// Hn+m(B,FN)

are commutative.

4.3 Cap product with coefficients in an algebra over

a field

In this section we let k be a field. Our next aim is to provide an interpretation of

the cap product in terms of the derived category to prove the following.

Theorem 4.3.1. The cap product is a derived invariant of algebras over a field

with finite dimensional Hochschild homology in each degree with isomorphisms

HH•(X) : HH•(A)→ HH•(B)

and

HH•(X) : HH•(A)→ HH•(B)

given by the following formulas:

HH•(X) = ϕ−1
B ◦ γ∗B∗ ◦ G̃∗A∗ ◦ (γ

−1
A∗ )
∗ ◦ϕA
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and

HH•(X) = γ−1
B ◦ F̃A ◦ γA.

We consider Hochschild cohomology with coefficients in the dual of an alge-

bra to give an interpretation of the cap product in terms of cohomology by using

the following morphism.

Definition 4.3.2. Let ϕN : H•(A,N)→ H•(A,N∗)∗ be the graded map defined by

ϕN [x⊗a1⊗·· ·⊗an][ f ] = f (a1⊗·· ·⊗an)(x),

for each [x⊗a1⊗·· ·⊗an] ∈ Hn(A,N) and [ f ] ∈ H•(A,N∗).

Lemma 4.3.3. Let A be a k-algebra and N an A-bimodule. The morphism ϕN is a

monomorphism. Moreover, if Hn(A,N) is finite dimensional for every n≥ 0, then

ϕN is an isomorphism.

Proof. The morphism ϕN is equal to the composition

Hn(A,N)→ Hn(A,N)∗∗→ Hn(A,N∗)∗

where the first map is the evaluation map, which is a monomorphism and an iso-

morphism when Hn(A,N) is finite dimensional. The second is the k-dual of the

map

P : Hn(A,N∗)→ Hn(A,N)∗

defined by

P[ f ][x⊗a1⊗·· ·⊗an] = f (a1⊗·· ·⊗an)(x).

Since P is an isomorphism when k is a field, see [7] page 181, and the evaluation

map is a monomorphism of vector spaces, we get that ϕN is a monomorphism.

This implies that if each Hn(A,N) is finite dimensional then ϕN is an isomorphism.

Proposition 4.3.4. If A is a finite dimensional algebra over a field k and N is a

finitely generated A-bimodule, then ϕN is an isomorphism.

Proof. Note first that a finitely generated A bimodule is finite dimensional. For

finite dimensional algebras, the Hochschild complex is finite dimensional in each

degree. Since Hochschild homology is a subquotient in each degree, the dimen-

sion of Hn(A,N) is finite for all n≥ 0. The previous lemma implies that ϕN is an

isomorphism.
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Remark 4.3.5. The Weyl algebra A1 is infinite dimensional but HH2(A1) = k and

HHn(A) = 0 for n 6= 2, see [57].

We consider the cap product in terms of cohomology by using ϕ . Define a

morphism ΩN,M : M⊗A (N⊗A M)∗→ N∗ given by

ΩN,M(y⊗σ)(x) = σ(x⊗ y).

Observe that ΩN,A is the identity morphism of N∗ after the identifications N⊗A

A = N and A⊗A N∗ = N∗. The inverse of ΩN,A is Ω−1
N,A : N∗→ A⊗A (N⊗A A)∗

which is given by

Ω−1
N,A(σ) = 1⊗ σ̃

where σ̃(x⊗a) = σ(xa). Clearly ΩA,M : M⊗A M∗→ A∗ is not an isomorphism in

general. We identify ΩA∗,A with the identity morphism of A∗∗.

Definition 4.3.6. Let

∩̂ : Hn(A,N∗)∗⊗Hm(A,M)→ Hn−m(A,(N⊗A M)∗)∗

be given by

(σ ∩̂[ f ])[g] := σ([ΩN,M ◦ f ∪g]),

for n≥ m≥ 0, and is defined as zero otherwise.

If [ f ] ∈ Hm(A,M) and [g] ∈ Hn−m(A,(N⊗A M)∗), then

[ f ∪g] ∈ Hn(A,M⊗A (N⊗A M)∗)

in which f ∪g is a cocycle from A⊗(n+2) to M⊗A (N⊗A M)∗ and can be composed

with ΩN,M to get a cocycle from A⊗(n+2) to N∗ to which we can apply σ . We will

consider ΩN,M as a morphism concentrated in degree zero in the derived category,

i.e. as the roof represented by the diagram

M⊗A (N⊗A M)∗

1

uu

ΩN,M

''
M⊗A (N⊗A M)∗ N∗.
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Proposition 4.3.7. Let A be an algebra over a field k. For every pair of integers

n,m≥ 0, the following diagram is commutative

Hn(A,N)⊗Hm(A,M) Hn−m(A,N⊗A M)

Hn(A,N∗)∗⊗Hm(A,M) Hn−m(A,(N⊗A M)∗)∗.

∩

∩̂

ϕN⊗1 ϕN⊗AM

Proof. If n < m, then the bottom and the top maps are zero. Assume n ≥ m ≥ 0

and let [z] = [x⊗ a1⊗ ·· ·⊗ an] ∈ Hn(A,N) and [ f ] ∈ Hm(A,M) as well as [g] ∈
Hn−m(A,(N⊗A M)∗), then

ϕN⊗AM[z∩ f ][g] = ϕN⊗AM[x⊗ f (a1⊗·· ·⊗am)⊗am+1⊗·· ·⊗an][g]
= g(am+1⊗·· ·⊗an)

(
x⊗ f (a1⊗·· ·⊗am)

)

= [ΩN,M( f ∪g)](a1⊗·· ·⊗an)(x)
= ϕN [z][ΩN,M( f ∪g)]
=

(
ϕN [z]∩̂[ f ]

)
[g].

Remark 4.3.8. The diagram in Proposition 4.3.7 is commutative even if k is

a commutative ring and A is an arbitrary k-algebra. The vertical maps are

monomorphisms if k is a field, and they are isomorphisms if in addition Hn(A,N)
and Hn−m(A,N⊗A M) are finite dimensional. For example, if k is a field, A is a

finite dimensional k-algebra and the A-bimodules N and M are finite dimensional,

then the vertical maps are isomorphisms.

The previous result shows that via the morphism ϕ , the cap product is related

to the cup product in cohomology. We use this to define a cap product in terms of

the derived category by using the ∪̃-product. Assume given morphisms g : A→
M[m] and h : A→ (N⊗A M)∗[n−m] in Db(Ae). Their ∪̃-product is a morphism

g∪̃h : A→M⊗A (N⊗A M)∗[n],

and therefore g∪̃h can be composed with ΩN,M[n] in Db(Ae) to get a morphism

A→ N∗[n].

Definition 4.3.9. Let

∩̃ : HomDb(Ae)(A,N
∗[n])∗⊗HomDb(Ae)(A,M[m])→HomDb(Ae)(A,(N⊗A M)∗[n−m])∗
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be given by

σ ∩̃g(h) := σ(ΩN,M[n]◦g∪̃h),

for every σ ∈HomDb(Ae)(A,N
∗[n])∗ and every morphisms g∈HomDb(Ae)(A,M[m])

and h ∈ HomDb(Ae)(A,(N⊗A M)∗[n−m]).

Proposition 4.3.10. Let k be a commutative ring and A be a k-projective algebra.

The following diagram is commutative

HomDb(Ae)(A,N
∗[n])∗⊗HomDb(Ae)(A,M[m]) HomDb(Ae)(A,(N⊗A M)∗[n−m])∗

Hn(A,N∗)∗⊗Hm(A,M) Hn−m(A,(N⊗A M)∗)∗.

∩̃

∩̂
(γN∗)

∗⊗ (γM)−1 (γ(N⊗AM)∗)
∗

Proof. Let σ ∈ HomDb(Ae)(A,N
∗[n])∗ and [gµ−1] ∈ HomDb(Ae)(A,M[m]).

Let [h] ∈ Hn−m(A,(N⊗A M)∗), then
(
γ(N⊗AM)∗

)∗
(σ ∩̃[gµ−1])([h]) =

(
σ ∩̃[gµ−1]

)
[hµ−1]

= σ
(
ΩN,M[n]◦ ([gµ−1]∪̃[hµ−1])

)
.

On the other hand

(γN∗)
∗(σ)∩̂(γM)−1[gµ−1]([h]) = (σ ◦ γN∗)∩̂[g]([h])

= σ ◦ γN∗
(
ΩN,M[n]◦ ([g]∪ [h])]

)

= σ
(
ΩN,M[n]◦ ([g]∪ [h])µ−1

)
.

Since [gµ−1]∪̃[hµ−1] =
[
([g]∪ [h])µ−1

]
the proof is finished.

Remark 4.3.11. Observe that we do not require k to be a field for the last propo-

sition. We only need the algebra A to be k-projective in order for γ to have an

inverse.

Theorem 4.3.12. Let k be a commutative ring and let A and B be derived equiva-

lent algebras which are finitely generated and projective as k-modules. There are

commutative diagrams

HomDb(Ae)(A,A
∗[n])∗⊗HomDb(Ae)(A,A[m]) HomDb(Ae)(A,A

∗[n−m])∗.

HomDb(Be)(B,B
∗[n])∗⊗HomDb(Be)(B,B[m]) HomDb(Be)(B,B

∗[n−m])∗

∩̃A

∩̃B

(G̃A∗)
∗⊗ F̃A (G̃A∗)

∗
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and

HomDb(Be)(B,B
∗[n])∗⊗HomDb(Be)(B,B[m]) HomDb(Be)(B,B

∗[n−m])∗

HomDb(Ae)(A,A
∗[n])∗⊗HomDb(Ae)(A,A[m]) HomDb(Ae)(A,A

∗[n−m])∗,

∩̃B

∩̃A

(F̃A∗)
∗⊗ G̃A (F̃A∗)

∗

where FA and GA are equivalences of standard type chosen as in Proposition

2.3.16 in page 38.

Proof. We will prove the commutativity of the second diagram. The other one

is dual. Recall that we identify ΩA∗,A with the identity morphism of A∗∗. Let

σ ∈ HomDb(Be)(B,B
∗[n])∗ and g ∈ HomDb(Be)(B,B[m]). Let Z : F(A∗)→ F(A)∗

be the isomorphism from Proposition 4.1.4. Recall from Proposition 4.1.1 that we

have an equality

v−1[m]◦g = F(u−1)[m]◦FG(g)◦F(u)◦ v−1.

Using this in the sixth equality of the following sequence of equalities for

h ∈ HomDb(Ae)(A,A
∗[n−m]), we get that

((
(F̃A∗)

∗(σ)
)
∩̃A

(
(G̃A(g)

))
(h)

=
(

σ ◦ F̃A∗

)
∩̃A

(
u−1[m]◦G(g)◦u

)
(h)

=
(

σ ◦ F̃A∗

)(
h∪̃A(u

−1[m]◦G(g)◦u)
)

=
(

σ ◦ F̃A∗

)(
h[m]◦u−1[m]◦G(g)◦u

)

= σ
(
(v−1)∗[m]◦Z[m]◦F

(
h[m]◦u−1[m]◦G(g)◦u

)
◦ v−1

)

= σ
(
(v−1)∗[m]◦Z[m]◦F(h)[m]◦F(u−1)[m]◦FG(g)◦F(u)◦ v−1

)

= σ
(
(v−1)∗[m]◦Z[m]◦F(h)[m]◦ v−1[m]◦g

)

= (σ ∩̃Bg)
(
(v−1)∗[n−m]◦Z[n−m]◦F(h)[n−m]◦ v−1[n−m]

)

= (σ ∩̃Bg)◦ F̃A∗(h)

=
(

F̃A∗

)∗
(σ ∩̃Bg)(h).
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Proposition 4.3.13. Let A and B be derived equivalent algebras over a field k.

Assume that A has finite dimensional Hochschild homology HHn(A) for each n≥
0. For every pair of integers n and m, the following diagram is commutative

HHn(A)⊗HHm(A)

∼=
��

∩A // HHn−m(A)

∼=
��

HHn(B)⊗HHm(B)
∩B

// HHn−m(B).

Proof. Since A has finite dimensional Hochschild homology in each degree, it is

sufficient, due to Propositions 4.3.7 and 4.3.10, to prove derived invariance of the

∩̃-product. This is given by Theorem 4.3.12.

Remark 4.3.14. We do not require Hochschild cohomology to be finite dimen-

sional. Observe that the finite dimension hypothesis on Hochschild homology is

used to express the cap product as the ∩̂-product, see Proposition 4.3.7.

4.4 Cap product with coefficients in a bimodule over

an algebra over a commutative ring

Next we will provide a different proof of the derived invariance of the cap product

through another interpretation of the cap product in the derived category. This

approach was considered in a joint work with Keller [2] and is valid for k a com-

mutative ring.

Lemma 4.4.1. [2] Let A be a k-projective algebra and let [ f ] ∈ HHm(A). There

is a commutative diagram

Hn(A,M)
−∩[ f ]

//

∼=
��

Hn−m(A,M)

∼=
��

H0

(
M⊗L

Ae A[−n]
)

H0(1⊗[ f ][−n])
// H0

(
M⊗L

Ae A[m−n]
)
.

Proof. Since A is k-projective, then Bar•(A) is a projective Ae-resolution of A and

therefore

M⊗L
Ae A = Tot (M⊗Ae Bar•(A)) = M⊗Ae Bar•(A).
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We have that

H0(1⊗ [ f ][−n])[x⊗ y] = [x⊗ [ f ](y)] = [x⊗ y]∩ [ f ],

for every x ∈M and y ∈ Bar•(A).

Remark 4.4.2. Observe that the hypothesis on the algebras being Noetherian and

finitely generated projective as k-modules is not required since we are not using

morphisms induced by a derived equivalence, see Proposition 2.3.16 in page 38.

Assume that A and B are derived equivalent Noetherian algebras that are pro-

jective and finitely generated as k-modules. Let M be an A-bimodule and suppose

that N = FM is concentrated in degree zero. There are canonical isomorphisms

M⊗L
Ae A∼= M⊗L

Ae

(
X⊗L

B X∨
)
∼= M⊗L

Ae

(
X∨⊗L

k X
)
⊗L

Be B∼= FM⊗L
Be B = N⊗L

Be B,

first given in [28] and more explicitly in [69]. In homology we obtain isomor-

phisms

Hn(A,M) ∼→ Hn(B,N),

for every n ≥ 0. We will use the following result that can be proved by straight-

forward computations.

Lemma 4.4.3. [69] Let A, B and C be algebras over a field k. Let X be a complex

of A−B bimodules and Y a complex of B−C bimodules. The complex of vector

spaces X⊗Y is a complex of (A⊗Cop)−Be bimodules with action given by

(a⊗ c)(x⊗ y)(b1⊗b2) := (axb1)⊗ (b2yc).

Moreover, the isomorphism

X⊗L
B Y

∼→ (X⊗Y )⊗L
Be B

x⊗ y 7→ x⊗ y⊗1

has inverse given by x⊗ y⊗b 7→ xb⊗ y.

Remark 4.4.4. In case C = A, we have that the components of the complex X⊗Y

consist of Ae−Be bimodules.
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Theorem 4.4.5. [2] Let A and B be derived equivalent Noetherian algebras that

are projective and finitely generated as k-modules. For each [ f ] ∈ HHm(A) ∼=
HomDb(Ae)(A,A[m]) there is a commutative diagram

Hn(A,M)
∼= //

−∩[ f ]
��

Hn(B,N)

−∩F̃([ f ])
��

Hn−m(A,M) ∼=
// Hn−m(B,N).

Proof. Since the algebras are Noetherian and finitely generated projective as k-

modules, we can choose morphisms u and v as in Proposition 2.3.16 in page 38.

The following diagram is commutative

X⊗L
B X∨⊗L

A A⊗L
A X⊗L

B X∨
1⊗L

Av⊗L

A1

∼=
//

GF( f )
��

X⊗L
B B⊗L

B X∨

G
(

F̃A( f )
)
��

X⊗L
B X∨⊗L

A A[m]⊗L
A X⊗L

B X∨
1⊗L

Av⊗L

A1[m]

∼= // X⊗L
B B[m]⊗L

B X∨.

Let ω : X⊗L
B X∨

∼→ (X∨⊗L
k X)⊗L

Be B be the isomorphism given by the last lemma.

The following diagram is commutative

X⊗L
B B⊗L

B X∨
ω
∼=

//

G
(

F̃A( f )
)
��

(X∨⊗L
k X)⊗L

Be B

1⊗F̃( f )
��

X⊗L
B B[m]⊗L

B X∨
ω[m]

∼= // (X∨⊗L
k X)⊗L

Be B[m].

The naturality of the isomorphism of functors id
∼→ GF and the commutativity of

the above diagrams imply that the square

A
∼= //

f

��

(X∨⊗L
k X)⊗L

Be B

1⊗F̃( f )
��

A[m]
∼= // (X∨⊗L

k X)⊗L
Be B[m]

is commutative. Recall that

F ∼=−⊗L
Ae (X∨⊗X),
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therefore, applying the functor M⊗L
Ae?[−n] to the last commutative diagram gives

a commutative diagram

M⊗L
Ae A[−n]

∼= //

1⊗ f [−n]
��

N⊗L
Be B[−n]

1⊗F( f )[−n]
��

M⊗L
Ae A[m−n]

∼= // N⊗L
Be B[m−n],

by taking homology and using last lemma we get the expected diagram.

Theorem 4.4.6. Let A and B be derived equivalent Noetherian algebras that are

finitely generated and projective as k-modules. Let M be an A-bimodule such that

N := FM is concentrated in degree zero. There are canonical isomorphisms

H•(A,M) ∼→ H•(B,N) and HH•(A) ∼→ HH•(B)

such that the following diagram is commutative

Hn(A,M)⊗HHm(A)

∼=
��

∩A // Hn−m(A,M)

∼=
��

Hn(B,N)⊗HHm(B)
∩B

// Hn−m(B,N)

for all n,m≥ 0.

Proof. First we put the cap products of A and B in the form of Lemma 4.4.1. The

result follows from the previous theorem since A and B are Noetherian algebras

that are finitely generated and projective as k-modules.

Remark 4.4.7. The Theorems 4.4.5 and 4.4.6 hold for algebras projective over a

commutative ring due to an argument of model category theory. In this thesis we

make the explicit constructions for Noetherian algebras that are finitely generated

and projective over a commutative ring.
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Chapter 5

Derived invariance of the Connes

differential

Let A be an algebra over a field k. Recall that the multiplicative cyclic group of

order n+ 1 acts on the k-vector space A⊗(n+1) via its generator t by permutation

of the factors. The morphism N = 1+ t + · · ·+ tn is the norm operator and s is

the extra-degeneracy operator. There are three versions of Connes differential, as

provided in page 53. The first one is given as the horizontal differential of the

bicomplex B̄(A) in which

B̄A := (1− t)sN.

When passing to the normalized bicomplex B(A), Connes differential is expressed

as

BA := sN.

Connes differential also appears as the connecting morphism on the homology

long exact sequence obtained by applying homology to the short exact sequence

of bicomplexes

0→C(A){2}→C(A)→C(A)[2,0]→ 0

namely

· · · // HHn(A)
IA // HCn(A)

SA // HCn−2(A)
B′A // HHn−1(A)

IA // · · · .

It can be proved that BA = B′A ◦ IA, and therefore we can consider Connes differ-

ential between Hochschild homologies, that is

BA : HHn(A)→ HHn+1(A).
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We will consider the derived invariance of Connes differential in two different

ways. In the first one, we will not consider that Connes differential has a relation

with cyclic homology and we will use the canonical isomorphisms γA and ϕA to

give an interpretation of

BA : HHn(A)→ HHn+1(A)

in terms of the derived category in case k is a field and A has finite dimensional

Hochschild homology in each degree. We will see that it is not clear how this

could be useful.

The second approach to prove derived invariance of Connes differential re-

lies on more fruitful properties. We prove that Connes periodicity long exact

sequence is a derived invariant. Therefore the morphisms IA,SA and B′A are de-

rived invariants and as a consequence the Connes differential between Hochschild

homologies BA is also a derived invariant since BA = B′A ◦ IA.

However, the isomorphism induced by a derived equivalence between the

Hochschild homologies appearing in Connes periodicity long exact sequence is

not, a priori, the same than the one we used when we proved derived invariance

of the cap product. This means that we have to prove that these isomorphisms are

the same in order to prove derived invariance of the Tamarkin-Tsygan calculus

structure on the Hochschild theory of an algebra. We use the uniqueness of the

cyclic functor introduced in [34] to prove that the last mentioned isomorphisms

are equal. This was proved in another joint work with Keller [3].

5.1 The Connes differential in the derived category

We proceed to use the morphisms ϕ and γ , given in Theorem 3.1.8 on page 45

and Definition 4.3.2 on page 72. Let k be a commutative ring and A a k-projective

algebra. Recall that

BA[a0⊗·· ·⊗an] =
n

∑
i=0

(−1)ni [1⊗ai⊗·· ·⊗an⊗a0⊗·· ·⊗ai−1] ,

for [a0⊗·· ·⊗an] ∈ HHn(A).

Definition 5.1.1. Let B̂A : Hn+1(A,A∗)→Hn(A,A∗) be the morphism obtained by

sending a class [ f ] ∈ Hn+1(A,A∗) to the homology class of the morphism

B̂A[ f ] : A⊗n→ A∗
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defined as

B̂A[ f ](a1⊗·· ·⊗an)(a0) :=
n

∑
i=0

(−1)ni f (ai⊗·· ·⊗an⊗a0⊗·· ·⊗ai−1)(1),

for a1⊗·· ·⊗an ∈ A⊗n and a0 ∈ A.

Definition 5.1.2. Let A be a k-projective algebra. We define

B̃A : HomDb(Ae)(A,A
∗[n+1]) → HomDb(Ae)(A,A

∗[n])

[ f µ−1] 7→ [B̂A[ f ]µ
−1].

Remark 5.1.3. The map B̃A is well-defined since for roofs [ f1µ−1] and [ f2µ−1]
representing the same morphism, a roof covers the other via a quasi-isomorphism

η : Bar(A)→ Bar(A), i.e. there is a commutative diagram

Bar(A)
µ

||

η
��

f1

&&
A Bar(A)

µ
oo

f2

// A∗[n+1].

Therefore f1 = f2 ◦ η and then [ f1] = [ f2] as elements of Hn+1(A,A∗), hence

B̂A[ f1] = B̂A[ f2] and as a consequence

B̃A[ f1µ−1] = B̃A[ f2µ−1].

Proposition 5.1.4. Let k be a commutative ring and let A be a k-algebra. The

following diagram is commutative

HHn(A) HHn+1(A)

Hn(A,A∗)∗ Hn+1(A,A∗)∗,

BA

B̂∗A

ϕA ϕA

for each n≥ 0. Moreover, if A is k-projective the following diagram is commuta-

tive

Hn+1(A,A∗) Hn(A,A∗)

HomDb(Ae)(A,A
∗[n+1]) HomDb(Ae)(A,A

∗[n]).

B̂A

B̃A

γA γA
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Proof. Let [a0⊗·· ·⊗an] ∈ HHn(A), and for [g] ∈ Hn+1(A,A∗) we have that

ϕA(BA[a0⊗·· ·⊗an])[g]

= ϕA

([
n

∑
i=0

(−1)in1⊗ai⊗·· ·⊗an⊗a0⊗·· ·⊗ai−1

])
[g]

=
n

∑
i=0

(−1)inϕ(1⊗ai⊗·· ·⊗an⊗a0⊗·· ·⊗ai−1)[g]

=
n

∑
i=0

(−1)ing(ai⊗·· ·⊗an⊗a0⊗·· ·⊗ai−1)(1)

= B̂A[g](a1⊗·· ·⊗an)(a0)
= ϕA[a0⊗·· ·⊗an]

(
B̂A[g]

)

= B̂∗A
(
ϕA[a0⊗·· ·⊗an]

)
[g],

and then the upper square is commutative. For the commutativity of the second

diagram let [g] ∈ Hn+1(A,A∗), then

γ ◦ B̂A[g] = (B̂A[g])µ
−1

= B̃A[gµ−1]

= B̃A ◦ γ[g].

Remark 5.1.5. Observe that if k is a field and HHn(A) is finite dimensional for

all n≥ 0, then the map BA is related by isomorphisms to the k-dual of B̃A.

Remark 5.1.6. This interpretation of Connes differential in terms of the derived

category does not allows us to give a direct proof of derived invariance as for the

cup and the cap products. Let k be a field and let A and B be derived equivalent

algebras with finite dimensional Hochschild homology in each degree. Choose

isomorphisms u and v as in Proposition 2.3.16 in page 38. We would like the

following diagram to be commutative

HomDb(Ae)(A,A
∗[n+1])

B̃A //

F̃A∗
��

HomDb(Ae)(A,A
∗[n])

F̃A∗
��

HomDb(Be)(B,B
∗[n+1])

B̃B // HomDb(Be)(B,B
∗[n]).

Let [ f µ−1] be a morphism from A to A∗[n+1] in Db(Ae), then

F̃A∗ ◦ B̃A

(
[ f µ−1]

)
= F̃A∗

(
(B̂A[ f ]µ

−1
)

= (v−1)∗[n]◦Z[n]◦F
(
B̂A[ f ]µ

−1
)
◦ v−1.
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On the other hand,

B̃B ◦ F̃A∗ [ f µ−1] = B̃B

(
(v−1)∗[n+1]◦Z[n+1]◦F [ f µ−1]◦ v−1

)
,

for which we need a roof of the form [hµ−1] to represent the morphism

(v−1)∗[n+1]◦Z[n+1]◦F [ f µ−1]◦ v−1

in order to apply B̃B. There is, at least for the author, no way to pursue from this

point.

5.2 Derived invariance of the Connes periodicity long

exact sequence over a field

In this section we let k be a field. All versions of Connes differential involve cyclic

homology in a way or another, then it is natural to prove derived invariance of

Connes differential using the ideas of [34], in which it is proved derived invariance

of cyclic homology. This was done in another joint work with Keller in [3].

5.2.1 The cyclic functor

We now follow the work of Keller [34] for the construction of the cyclic functor,

which uses ideas of Kassel [25, 26] about mixed complexes. After this, we will

prove derived invariance of Connes differential as in [3]. We need the following

definitions.

Definition 5.2.1. [25] Let Algk be the category whose objects are the associative

DG k-algebras A such that the functor Hom(A,−) sends quasi-isomorphisms to

isomorphisms, and whose morphisms are morphisms of DG k-algebras which do

not necessarily preserve the unit.

The idea is to consider a category of DG-algebras that allows to manage de-

rived invariance. It turns out that the right choice of morphisms in such a category

are as follows.

Definition 5.2.2. [25] For A,B ∈ Algk define rep(A,B) as the full subcategory of

the derived category D(Aop⊗B) whose objects are the DG bimodules X such that

the restriction XB is perfect in D(B), that is, the covariant Hom functor commutes

with coproducts.
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Definition 5.2.3. [34] Define ALGk to be the category whose objects are those

of Algk and morphisms from A to B are the isomorphism classes of objects of

rep(A,B). The composition of morphisms in ALGk is given by the total derived

tensor product. The identity morphism of an object A ∈ ALGk is the isomorphism

class of the bimodule AAA.

Definition 5.2.4. [34] The localization functor is the functor

L : Algk→ ALGk

given as the identity on objects and that associates to a morphism f : A→ B of

DG-algebras the bimodule f BB with underlying space f (1)B := { f (1)b|b ∈ B}
and A−B-action given by

a. f (1)b.b′ := f (a)bb′ = f (1) f (a)bb′

for all a ∈ A and all b,b′ ∈ B.

The cyclic functor is a functor from the category Algk that will extend to ALGk

via the localization functor. The values of the cyclic functor will be on a derived

category associated to mixed complexes.

Definition 5.2.5. [34] The derived mix category DMix is the derived category of

the DG-algebra of dual numbers Λ = k[ε]/(ε2), where ε is considered to be of

degree −1.

Definition 5.2.6. [34] The cyclic functor

C : Algk→ DMix

is defined as follows. Let A be an object of Algk, then C (A) is the mixed complex

whith underlying graded k-vector space the mapping cone over 1− t viewed as a

morphism of complexes

1− t : (A⊗•+1,b′)→ (A⊗•+1,b).

The first and second differentials of the mixed complex C (A) are
[

b 1− t

0 −b′

]

and [
0 0

N 0

]
,

respectively.
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Remark 5.2.7. When there is no confusion, we will also denote by C (A) the

complex obtained from the image of A under the cyclic functor by forgetting the

second differential.

Each morphism of DG-algebras f : A→ B, even if it does not preserves the

unit, induces morphisms of complexes (A⊗•+1,b′)→ (B⊗•+1,b′) and (A⊗•+1,b)→
(B⊗•+1,b) and therefore f induces a morphism of mixed complexes

C ( f ) : C (A)→ C (B),

i.e. a graded map of degree 0 that commutes with both differentials.

Remark 5.2.8. Observe that the underlying complex of C (A) is equal to the total

complex of the bicomplex C(A){2} formed by the two first columns of the cyclic

bicomplex C(A) in page 52, namely

...

b

��

...

−b′

��

A⊗3

b
��

A⊗31−too

−b′

��

A⊗2

b
��

A⊗21−too

−b′

��
A A.

1−too

Keller extends the cyclic functor C to ALGk in the sense that there is a com-

mutative diagram

Algk
C //

L

��

DMix

ALGk,

C

::

in the following way. Let X : A→ B be a morphism in ALGk. Since XB is perfect

as a DG B-module, there is an isomorphism of functors

HomD(B)(X ,−)∼= HomK(B)(X ,−).

Define a morphism αX : A→ EndB(B⊕X) given by

αX(a)(b,x) := (0,ax)
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where EndB(B⊕X) is the differential graded endomorphism algebra of the DG

B-module B⊕X . Let βX : B→ EndB(B⊕X) be defined as

βX(b
′)(b,x) := (b′b,0).

Note that the morphisms αX and βX do not preserve the units.

Proposition 5.2.9. [34] The morphism C (βX) : C (B)→ C (EndB(B⊕X)) is in-

vertible in DMix.

Consider the diagram of DG-algebras

A
αX // EndB(B⊕X) B

βXoo

and define a morphism in DMix by

C (X) := C (βX)
−1 ◦C (αX) : C (A)→ C (B).

Theorem 5.2.10. ([34] page 231) The functor C : Algk→DMix extends uniquely

to a functor C : ALGk→ DMix.

5.2.2 Derived invariance

Let X : A→ B be a morphism in ALGk. We choose morphisms uX : A→ X⊗L
B X∨

and vX : X∨⊗L
B X → B as in Proposition 2.3.16 in page 38. Define functors

F := X∨⊗L
A−⊗

L
A X ∼=−⊗L

Ae (X⊗X∨) : Db(Ae)→ D(Be)

and

G := X⊗L
B−⊗

L
B X∨ ∼=−⊗L

Be (X∨⊗X) : D(Be)→ Db(Ae),

induced by uX and vX as in Proposition 2.3.16 in page 38. This ensures that (F,G)
is an adjoint pair of functors. Indeed, the morphisms uX and vX are given by the

adjointness of the functors

−⊗L
A X : D(A)→ D(B) and −⊗L

BX∨ : D(B)→ D(A),

and therefore for each Y ∈ D(Ae) the morphism

uX ⊗
L
A 1Y ⊗

L
A uX : GF(Y )→ Y
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defines the unit, and for each Z ∈ D(Be) the morphism

vX ⊗
L
B 1Z⊗

L
B vX : Z→ FG(Z)

defines the co-unit of the adjoint pair (F,G).
We identify X ⊗L

B X∨ with (X ⊗X∨)⊗L
Be B and X∨⊗L

A X with (X∨⊗X)⊗L
Ae

A via the isomorphism described by Lemma 4.4.3 in page 78. For the sake of

simplicity, we still denote by uX and vX the same morphisms when composed

with this identifications.

We will now define a functor

ψ : Algk→ D(k)

that induces the isomorphism we used to prove derived invariance of the cap prod-

uct. Put

ψ(A) = A⊗L
Ae A

and ψ( f ) = f ⊗ f for a morphism f : A→ B of DG-algebras. We define ψ on

morphisms of ALGk as follows. Let X : A→ B be a morphism in ALGk. The

morphism ψ(X) is defined as the following composition

A⊗L
Ae A → A⊗L

Ae X⊗X∨⊗L
Be B

∼→ B⊗L
Be X∨⊗X⊗L

Ae A

→ B⊗L
Be B.

That is, we put ψ(X) := (1⊗ vX)◦ τ ◦ (1⊗uX).

Remark 5.2.11. The twist isomorphism τ for the tensor product over k is given

by a⊗ x⊗ y⊗ b 7→ b⊗ y⊗ x⊗ a. We will also denote by τ the twist morphisms

over other tensor products, though they are not in general isomorphisms.

Theorem 5.2.12. The assignments A 7→ ψ(A), X 7→ ψ(X) define a functor on

ALGk that extends the cyclic functor. Therefore C = ψ .

Proof. There is a canonical quasi-isomorphism ψ(A)→ Tot(C(A){2}) induced by

the inclusion in the first column

ψ(A) = A⊗L
Ae A = Bar(A)⊗Ae A →֒Cone(1− t) = C (A),

for any algebra A. Therefore, the functors C and ψ provide isomorphic values on

objects. Let f : A→ B be a morphism of Algk. The associated morphism in ALGk
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via the localization functor is X = f BB. Note that X∨ ∼= RHomB(X ,B) ∼= BB f in

Db(Be). The following diagram is commutative

A⊗L
Ae ( f B⊗L

B B f )

≃

))
≃
��

A⊗L
Ae ( f B⊗B f )⊗

L
Be B ≃

// A⊗L
Ae f B f .

The isomorphism on the left is given by

a⊗ f (1)b1⊗b2 f (1) 7→ a⊗ ( f (1)b1⊗b2 f (1))⊗1,

and the one in the bottom is given by

a⊗ f (1)b1⊗b2 f (1)⊗b 7→ a⊗ f (1)b1bb2 f (1).

Consider Lemma 4.4.3 in the case where C = A, and the complexes X = f B and

Y = X∨ = B f . The isomorphism that the lemma describes is

f B⊗L
B B f

∼→ ( f B⊗B f )⊗
L
Be B.

The isomorphism on the left of last diagram is equal to this isomorphism tensored

on the left by A. The bottom isomorphism of the same diagram is the inverse of the

isomorphism described by Lemma 4.4.3 tensored on the left by A. The following

diagram is also commutative

A⊗L
Ae ( f B⊗B f )⊗

L
Be B ≃

//

τ
��

A⊗L
Ae f B f

τ
��

B⊗L
Be B f ⊗ f B⊗L

Ae A
≃ //

f B f ⊗
L
Ae A,

where the bottom isomorphism is given by

b⊗b1 f (1)⊗ f (1)b2⊗a 7→ f (1)b2bb1 f (1)⊗a.

This isomorphism can be described in terms of the dual of Lemma 4.4.3. The

diagram

f B f ⊗
L
Ae A

τ //

1⊗ f
��

A⊗L
Ae f B f

f⊗1
��

B⊗L
Be B

τ // B⊗L
Be B
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is commutative and the bottom morphism equals the identity since

τ(b⊗b′) = b′⊗b = 1⊗ (bb′) = b⊗b′.

We get that ψ( f BB) is the morphism induced by f from A⊗L
Ae A to B⊗L

Be B. There-

fore

ψ( f BB) = C ( f BB).

Let X : A→ B and Y : B→C be morphisms in ALGk and define Z = X⊗L
B Y . We

have canonical isomorphisms

RHomC(Y,C)⊗L
B RHomB(X ,B)∼= RHomB(X ,RHomC(Y,C))

∼= RHomC(X⊗
L
B Y,C).

Therefore we can identify

(X⊗L
B Y )∨ = Y∨⊗L

B X∨.

There are canonical isomorphisms

γ : Y∨⊗L
B X∨⊗X⊗L

B Y
∼→ Y∨⊗Y ⊗L

Be X∨⊗X

and

δ : X⊗X∨⊗L
Be Y ⊗Y∨

∼→ X⊗L
B Y ⊗Y∨⊗L

B X∨

given by the obvious reordering of the factors, that make the diagrams

C⊗L
Ce Y∨⊗Y ⊗L

Be X∨⊗X⊗L
Ae A

1⊗vX //

1⊗γ⊗1
��

C⊗L
Ce Y∨⊗Y ⊗L

Be B

1⊗vY

��

C⊗L
Ce Y∨⊗L

B X∨⊗X⊗L
B Y ⊗L

Ae A
1⊗vZ

// C⊗L
Ce C

and

A⊗L
Ae A

1⊗uX //

1⊗uZ

��

A⊗L
Ae X⊗X∨⊗L

Be B

1⊗uY

��

A⊗L
Ae X⊗L

B Y ⊗Y∨⊗L
B X∨⊗L

Ce C
1⊗δ⊗1

// A⊗L
Ae X⊗X∨⊗L

Be Y ⊗Y∨⊗L
Ce C
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commutative. By definition, ψ(X ⊗L
B Y ) = (1⊗ uZ)τ(1⊗ vZ), and therefore it is

equal to the following composition

A⊗L
Ae A → A⊗L

Ae

(
X⊗X∨⊗L

Be B
)

→ A⊗L
Ae X⊗X∨⊗L

Be

(
Y ⊗Y∨⊗L

Ce C
)

∼→ A⊗L
Ae

(
X⊗L

B Y ⊗Y∨⊗L
B X∨

)
⊗L

Ce C

∼→ C⊗L
Ce Y∨⊗L

B X∨⊗X⊗L
B Y ⊗L

Ae A

∼→ C⊗L
Ce

(
Y∨⊗Y ⊗L

Be X∨⊗X
)
⊗L

Ae A

→ C⊗L
Ce Y∨⊗Y ⊗L

Be B

→ C⊗L
Ce C.

There is also a canonical isomorphism

η : A⊗L
Ae X⊗X∨⊗L

Be Y ⊗Y∨⊗L
Ce C

∼→C⊗L
Ce Y∨⊗Y ⊗L

Be X∨⊗X⊗L
Ae A

that fits into a commutative diagram

A⊗L
Ae X⊗X∨⊗L

Be B
1⊗uY //

τ
��

A⊗L
Ae X⊗X∨⊗L

Be Y ⊗Y∨⊗L
Be B

η
��

B⊗L
Be X∨⊗X⊗L

Ae A
uY⊗1

// C⊗L
Ce Y∨⊗Y ⊗L

Be X∨⊗X⊗L
Ae A.

This diagram together with the following commutative diagram

B⊗L
Be X∨⊗X⊗L

Ae A
uy⊗1

//

1⊗vX

��

(Y ⊗Y∨⊗L
Ce C)⊗L

Be X∨⊗X⊗L
Ae A

τ⊗1
��

B⊗L
Be B

1⊗uX

��

C⊗L
Ce Y∨⊗Y ⊗L

Be X∨⊗X⊗L
Ae A

1⊗vX

��

B⊗L
Be Y∨⊗Y ⊗L

Ce C
τ

// C⊗L
Ce Y∨⊗Y ⊗L

Be B,
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imply that ψ(Y )◦ψ(X) is equal to the following composition

A⊗L
Ae A → A⊗L

Ae

(
X⊗X∨⊗L

Be B
)

→ A⊗L
Ae X⊗X∨⊗L

Be

(
Y ⊗Y∨⊗L

Ce C
)

∼→ C⊗L
Ce Y∨⊗Y ⊗L

Be X∨⊗X⊗L
Ae A

→ C⊗L
Ce Y∨⊗Y ⊗L

Be B

→ C⊗L
Ce C.

Finally, since η = (1⊗ γ⊗1)τ(1⊗δ ⊗1) we get that

ψ(X⊗L
B Y ) = ψ(Y )◦ψ(X).

Let A and B be derived equivalent algebras over a field k and let X : A→ B

be an isomorphism in ALGk, so that the functor −⊗L
A X : D(A) ∼→ D(B) is an

equivalence. Then C (X) is an isomorphism of DMix and also an isomorphism of

D(k), and there is an isomorphism of functors

−⊗L
Λ C (A) ∼→−⊗L

Λ C (B),

where Λ is the DG-algebra of dual numbers k[ε]/(ε2).

Corollary 5.2.13. [3] Let A and B be derived equivalent algebras over a field k.

There is an isomorphism of exact sequences induced by a derived equivalence

· · · // HCn−1(A)
B′n−1 //

∼=
��

HHn(A)
In //

∼=
��

HCn(A)
Sn //

∼=
��

HCn−2(A) //

∼=
��

· · ·

· · · // HCn−1(B)
B′n−1 // HHn(B)

In // HCn(B)
Sn // HCn−2(B) // · · · .

Proof. There is a canonical short exact sequence of DG Λ-modules

0→ k[1]→ Λ→ k→ 0

which gives rise to a triangle in the derived category D(Λ)

k[1]
B′ // Λ

I // k
S // k[2] .
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We apply the isomorphism of functors −⊗L
Λ C (A) ∼→−⊗L

Λ C (B) to this triangle

to get an isomorphism of triangles in D(k),

k[1]⊗L
Λ C (A)

B′A //

∼=
��

C (A)
IA //

∼=
��

k⊗L
Λ C (A)

SA //

∼=
��

k[2]⊗L
Λ C (A)

∼=
��

k[1]⊗L
Λ C (B)

B′A // C (B)
IA // k⊗L

Λ C (B)
SA // k[2]⊗L

Λ C (B).

We consider homology and recall from Theorem 3.2.7 on page 56 that for every

j ≥ 0 there are isomorphisms H j(k⊗
L
Λ C (A))∼= HC j(A). This gives the expected

diagram.

Corollary 5.2.14. [3] Let A and B be derived equivalent algebras over a field k.

Then for every n≥ 0 there is a commutative diagram

HHn(A)

∼=
��

BA // HHn+1(A)

∼=
��

HHn(B)
BB // HHn+1(B).

Proof. From Corollary 5.2.13 we get that there is a commutative diagram

HHn(A)

∼=
��

IA // HCn(A)
B′A //

∼=
��

HHn+1(A)

∼=
��

HHn(B)
IB // HCn(B)

B′B // HHn+1(B).

We conclude by noticing that BA = B′A ◦ IA.

Theorem 5.2.15. [3] Let A and B be derived equivalent algebras over a field k.

The Tamarkin-Tsygan calculi of A and B are isomorphic.

Proof. Let −⊗L
A X : D(A) ∼→ D(B) be an equivalence of standard type. Let

HH•(X) : HH•(A)→ HH•(B)

and

HH•(X) : HH•(A)→ HH•(B)
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be the isomorphisms

HH•(X) := H•
(
(1⊗ vX)◦ τ ◦ (1⊗uX)

)

and

HH•(X) := γ−1
B ◦ F̃A ◦ γA

respectively. It was proved by Rickard [50] that the isomorphism HH•(X) re-

spects the cup product. Keller [38] proved that this isomorphism also respects

the Gerstenhaber bracket. The isomorphisms HH•(X) and HH•(X) preserve the

cap product, see Theorem 4.4.6 on page 80 and Theorem 5.2.12 in page 89. The

isomorphism induced by the cyclic functor

C (X) : C (A) ∼→ C (B)

preserves the Connes differential and it sends derived tensor products to com-

position, see the previous corollary. Therefore, it only remains to prove that

C (X) = HH•(X). This is precisely Theorem 5.2.12 on page 89.

5.3 The category of Tamarkin-Tsygan calculi

We now summarize our results in terms of the category of Tamarkin-Tsygan

calculi. In this section we let k be a field. Let H = (H•,H
•,∪, [−,−],∩,B)

and K = (K•,K
•,∪, [−,−],∩,B) be Tamarkin-Tsygan calculi. A morphism of

Tamarkin-Tsygan calculi is a pair of graded maps ( f ,g) : H → K of k-vector

spaces such that f : H• → K• and g : H • → K • satisfy the following com-

mutative diagrams

H n⊗H m

gn⊗gm

��

∪ // H n+m

gn+m

��
K n⊗K m

∪
// K n+m,

H n⊗H m

gn⊗gm

��

[−,−]
// H n+m−1

gn+m−1

��

K n⊗K m

[−,−]
// K n+m−1,

Hn⊗H m

fn⊗gm

��

∩ // Hn−m

fn−m

��
Kn⊗K m

∩
// Kn−m

and Hn

fn
��

B // Hn+1

fn+1

��
Kn

B
// Kn+1.
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Denote TT-calc the category of Tamarkin-Tsygan calculi, whose objects are Tamarkin-

Tsygan calculi and morphisms are morphisms of Tamarkin-Tsygan calculi. The

composition of morphisms in TT-calc is the obvious one

( f ,g)◦ (h, l) := ( f ◦h,g◦ l).

The identity morphism of an object H is (1H• ,1H •). Denote Ak the full subcat-

egory of ALGk formed by the finite dimensional k-algebras. For A ∈ Ak let H(A)
be equal to the Tamarkin-Tsygan calculus

(
HH•(A),HH•(A),∪A, [−,−]A,∩A,BA

)
.

Recall from Proposition 4.3.7 in page 73 that there is a commutative diagram

HHn(A)⊗HHm(A) HHn−m(A)

Hn(A,A∗)∗⊗HHm(A) Hn−m(A,A∗)∗,

∩

∩̂

ϕA⊗1 ϕA

for all n,m ≥ 0, where the vertical maps are isomorphisms. From Proposition

5.1.4 in page 83 there is also a commutative diagram

HHn(A) HHn+1(A)

Hn(A,A∗)∗ Hn+1(A,A∗)∗,

BA

B̂∗A

ϕA ϕA

where the vertical maps are isomorphisms. Therefore,

Ĥ(A) :=
(
HH•(A,A∗)∗,HH•(A),∪A, [−,−]A, ∩̂A, B̂

∗
A

)

is a Tamarkin-Tsygan calculus by transport of structure. Let

H̃(A) :=
(
HomDb(Ae)(A,A

∗[•])∗,HomDb(Ae)(A,A[•]), ∪̃A, [̃−,−]A, ∩̃A, B̃
∗
A

)
,

where the bracket [̃−,−]A is defined as

˜[
[ f µ−1], [gµ−1]

]
A

:=
[
[ f ,g]µ−1

]
.
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The morphism µ : A⊗A→ A is the product of A and we represent morphisms

A→ N of Db(Ae) as roofs [ f µ−1] since k is a field. It is easy to see that the

bracket [̃−,−] fits into a commutative diagram

HHn(A)⊗HHm(A) HHn+m−1(A)

HomDb(Ae)(A,A[n])⊗HomDb(Ae)(A,A[m]) HomDb(Ae)(A,A[n+m−1]).

[−,−]

[̃−,−]
γA⊗ γA γA

Therefore H̃(A) is a Tamarkin-Tsygan calculus by transport of structure since

there are also commutative diagrams whose vertical maps are isomorphisms

HHn(A)⊗HHm(A)
∪ //

γA⊗γA

��

HHn+m(A)

γA

��
HomDb(Ae)(A,A[n])⊗HomDb(Ae)(A,A[m])

∪̃ // HomDb(Ae)(A,A[n+m])

and

HomDb(Ae)(A,A
∗[n])∗⊗HomDb(Ae)(A,A[m]) HomDb(Ae)(A,A

∗[n−m])∗

Hn(A,A∗)∗⊗HHm(A) Hn−m(A,A∗)∗

∩̃

∩̂
(γ−1

A∗ )
∗⊗ γ−1

A
(γA∗)

∗

as well as

Hn+1(A,A∗) Hn(A,A∗)

HomDb(Ae)(A,A
∗[n+1]) HomDb(Ae)(A,A

∗[n]),

B̂A

B̃A

γA∗ γA∗

see Proposition 4.2.4 in page 68, Proposition 4.3.10 in page 75 and Proposition

5.1.4 in page 83. We have proved the following.
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Theorem 5.3.1. Let k be a field. For any algebra A ∈ Ak there are isomorphisms

of Tamarkin-Tsygan calculi

H(A)
(ϕA,1)

∼= // Ĥ(A)
((γ−1

A∗
)∗,γA)

∼= // H̃ (A).

Recall from Theorem 4.3.12 in page 75 that there is a commutative diagram

HomDb(Ae)(A,A
∗[n])∗⊗HomDb(Ae)(A,A[m]) HomDb(Ae)(A,A

∗[n−m])∗

HomDb(Be)(B,B
∗[n])∗⊗HomDb(Be)(B,B[m]) HomDb(Be)(B,B

∗[n−m])∗

∩̃A

∩̃B

(G̃A∗)
∗⊗ F̃A (G̃A∗)

∗

for any morphism X : A→ B of Ak. We define the morphism of Tamarkin-Tsygan

calculi

H̃(X) : H̃(A)→ H̃(B)

by the tensor factors of the map on the left of the previous commutative diagram

in each degree. Let Ĥ(X) be equal to the following composition of morphisms of

Tamarkin-Tsygan calculi

Ĥ(A)∼= H̃(A)→ H̃(B)∼= Ĥ(B).

Finally, we define the morphism

H(X) : H(A)→H(B)

as the following composition of morphisms of Tamarkin-Tsygan calculi

H(A)∼= Ĥ(A)∼= H̃(A)→ H̃(B)∼= Ĥ(B)∼=H(B).

Theorem 5.3.2. Let k be a field. The assignments

A 7→H(A), A 7→ Ĥ(A) and A 7→ H̃(A)

define functors

H,Ĥ,H̃ : Ak→ TT-calc

that are constant on each class of derived equivalent algebras.
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Proof. The identity morphism of an object A ∈ Ak is the A-bimodule A. Since

the tensor product −⊗L
A A is isomorphic to the identity functor we can choose

u = v = 1A and therefore the morphism induced in TT-calc from H̃(A) to itself is

equal to the identity morphism. This implies that Ĥ and so does H map identities

to identities. Let X : A→ B and Y : B→C be morphisms in Ak. We get

H̃(X⊗L
B Y ) = H̃(Y )◦ H̃(X),

since the morphisms uX ,uY ,vX and vY are natural and the cyclic functor induces

the isomorphism we defined in homology, see Theorem 5.2.12 in page 89. There-

fore, H̃ is a functor. Since the morphisms ϕ and γ are natural we conclude that Ĥ
and so does H are functors.

Finally, Theorem 5.2.15 in page 94 ensures that the Tamarkin-Tsygan calculus

of an algebra is invariant under derived equivalences. This finishes the proof.

We finish this thesis by giving an example which shows that the Tamarkin-

Tsygan calculus of an algebra is not a complete derived invariant.

Remark 5.3.3. Let k be an algebraically closed field. Let A be the path algebra

of the quiver

2

��

3

��
1

4

OO

and let B be the path algebra of the following quiver

1 // 2 // 3 // 4.

Observe that both quivers are trees and the algebras A and B are hereditary.

Then their Hochschild homology, see [10], and Hochschild cohomology, see [11]

Proposition 2.6, vanishes in degrees greater or equal than 1. From [10] we get

that

HH0(A)∼= k4 ∼= HH0(B).

It is clear that the centers of A and B are of dimension one, that is

HH0(A)∼= k ∼= HH0(B).
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Therefore, the Gerstenhaber bracket and the Connes differential of both algebras

A and B are zero in every degree. Their cup product is given by the product of k in

degree (0,0) and is zero in every other degree. Their cap product is given by the

k-vector space structure of k4 in degree (0,0) and it is zero in every other degree.

Then the Tamarkin-Tsygan calculi of A and B are isomorphic.

Recall from [16] Proposition 2.3 page 908, that the Coxeter polynomial is

a derived invariant for algebras of finite global dimension, see also [43]. The

Coxeter polynomial of A is

φA(x) = (x+1)2(x2− x+1)

and the Coxeter polynomial of B is

φB(x) = x4 + x3 + x2 + x+1.

Therefore A and B are not derived equivalent and then the Tamarkin-Tsygan cal-

culus of an algebra is not a complete derived invariant.

100



References

[1] H. Abbaspour, On algebraic structures of the Hochschild complex, Free loop

spaces in geometry and topology, IRMA Lect. Math. Theor. Phys. Eur. Math.
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