C.1 Criticality methods eect for the MiniCore . . . . . . . . . . . . . . . . . . . . . . C.2 Criticality methods eect for geometry with 1 added fuel ring (4x4 fuel cluster) . . C.3 Criticality methods eect for geometry with 2 added fuel ring (5x5 fuel cluster) . . C.4 ρ worth Shapley indices with boron adjustment and ssion adjustment. . . . . . . .

List of Figures

H 3D

gap estimated mean and relative standard deviation in the axial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study. . . . . . . . . . . .

H 3D

gap estimated mean and relative standard deviation in the radial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study. . . . . . . . . . . .

D 3D

w estimated mean and relative standard deviation in the axial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study. . . . . . . . . . . .

D 3D

w estimated mean and relative standard deviation in the radial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study. . . . . . . . . . . . 4 

Introduction

The conceptual evolution of nuclear reactors for power generation is fundamentally linked with safety preservation of individuals, society and environment. The main safety objectives is to ensure that the radiological exposure during normal operation is as low as reasonably achievable (ALARA concept) and is mitigated in case of accidents. The basic principle for attaining this objective is the defense in depth, where dierent levels of protection are introduced including successive safety barriers. The integrity of the barriers is ensured by some safety criteria based on physical quantities.

Since severe accidents cannot be reproduced in a reactor, numerical codes are used to model the main underlying physical phenomena with reasonable approximations and hypothesis. The computational advancements of the last decades lead to the development of modelings that take into account the most important phenomena improving the understanding of the underlying physics and increasing the precision of their predictions. These modelings and the associated numerical codes are called Best-Estimate (BE) and are used in industrial applications since they have an aordable computational cost.

While the precision of the results improve there are still many approximations and hypothesis in the calculations that induce errors in forms of bias and variance. It became thus obvious that in order to be condent about the safety analyses these errors or uncertainties must be treated in a consistent framework with BE modeling. This framework is called Best Estimate Plus Uncertainties (BEPU) and is currently a eld of increasing research internationally. While this concept was initially used for thermal-hydraulics safety calculations of LOCA transients it is being expanded in a broader spectrum of physics and for dierent reactor conditions. The Rod Ejection Accident (REA) in Pressurized Water Reactors (PWR) is a design basis multi-physics transient for which a BEPU is carried out in this thesis.

REA transients occur in a PWR reactor when a control rod is violently ejected from the core due to mechanical malfunction. This inserts positive reactivity in the core and the power starts increasing followed by a fuel temperature increase. This leads to a Doppler negative feedback that creates a power peak. The power then continues to decrease and when the heat generated in the core reaches the coolant a second negative feedback from the moderator is added reducing even further the power. During the whole duration of the REA there is the possibility to loose the rst safety barrier (cladding). It is evident that a multi-physics coupling of BE codes is necessary in order to capture correctly the strong interactions between neutronics, fuel-thermomechanics and thermalhydraulics. In order to ensure the safety of the reactor during a REA an uncertainty analysis must be performed focusing on quantities of interest for the safety such as: the fuel temperature, stored enthalpy in the fuel, cladding temperature and Departure from Nucleate Boiling Ratio (DNBR). Many sources of uncertainties are identied in a REA uncertainty analysis. The main ones can be grouped in the following categories :

Modeling : The theoretical equations describing a phenomenon include some assumptions and simplications. Besides that, the use of physical models and correlations induce further errors.

Input data : Physical (e.g. cross-sections) and technological ( e.g. geometries) quantities in the physical models and equations are uncertain. Additionally, boundary and initial conditions are also uncertain. Experimental measurements are usually used to quantify the above mentioned sources of uncertainties introducing potential correlations.

Nodalization : It involves the dierent steps for solving a specied modeling introducing errors and uncertainties. The phase space of the equations is discretized and the geometry is homogenized. Sometimes a smaller scale geometry is employed inducing scaling eects. Numerical algorithms are used to solve the equations on the selected discretization. These algorithms converge to approximate solutions.

Challenges and objectives

In this thesis we study the multi-physics uncertainty analysis for REA in a PWR core. The BE modeling available in CEA is used with a coupling of APOLLO3 R (neutronics) and FLICA4 (thermal-hydraulics).

The main objective is to develop an uncertainty quantication methodology for the multi-physics BE modeling of REA. Each coupled physic includes various uncertain inputs and thus the inputs dimension can be potentially very large and with dependencies. Additionally, dierent outputs of interest must be considered with also potential large dimension (e.g. functional 2D elds) and nonlinear behaviors. This creates many challenges accentuated by the fact that the computational cost for a multi-physics BE modeling limits the number of possible code evaluations. A lot of progress has been made so far in the statistical analysis for these kind of problems with application in a variety of elds including dimension reduction, global sensitivity analysis, surrogate modeling and many others.

We select to model dierent uncertain inputs spanning neutronics, fuel-thermomechanics and thermal-hydraulics. The uncertainty quantication methodology that we will develop must include at least the following steps :

• Input -Output Identication.

• Input Uncertainty Quantication.

• Uncertainty Propagation.

• Global Sensitivity Analysis.

A second objective of the thesis is to improve the BE modeling in terms of its uncertainty representation. A Best Eort coupling scheme for REA analysis is available at CEA. This includes ALCYONE V1.4 code for a detailed modeling of fuel-thermomechanics behavior. However, it has a very high computational cost and its use in uncertainty quantication for REA is prohibitive. One of the main REA modeling dierences between BE and Best Eort coupling is the treatment of the gap heat transfer H gap . In FLICA4 a constant value is used as an input of the code while in ALCYONE V1.4 is calculated taking into account the fuel-cladding gap behavior. For improving the BE modeling a methodology for calibrating a simplied analytic H gap model using decoupled ALCYONE V1.4 REA calculations is developed.

Thesis structure

The thesis is divided in 4 Chapters. In Chapter 1 an overview of nuclear reactor physics is provided. Neutronics, fuel-thermomechanics and thermal-hydraulics are discussed from basic notions for each one of them to their modeling options used in the thesis context. An emphasis is given on REA and its dierent multi-physics aspects. The coupling framework developed at CEA is presented and the two available BE and Best Eort coupling schemes are presented. The Chapter ends with details about BEPU historical evolution, including the dierent developed methodologies.

In Chapter 2 an overview of the state of the art of statistical tools used for uncertainty analysis is provided. This Chapter covers a large variety of topics :

• Input Uncertainty Quantication.

• Uncertainty Propagation.

• Dimension Reduction.

• Surrogate models.

• Design of Experiments.

• Sensitivity Analysis.

• Model Calibration.

The Chapter ends with some recent works in uncertainty analysis and the use of the dierent methods in nuclear application.

In Chapter 3 we develop the Uncertainty Quantication Methodology (UQM) on a small scale core (MiniCore) representative of a PWR core. This core cannot allow physical conclusions but it can be used for testing and evaluating the dierent statistical tools in an environment relatively close to a PWR core. Various modelings are considered starting from separate stand-alone studies in neutronics, thermal-hydraulics and fuel-thermomechanics up to the BE coupling. We use the MiniCore for the development of the H gap model calibration methodology. The H gap model is then introduced in the BE modeling. The UQM is tested on this Improved Best Estimate (IBE) modeling. The Chapter ends with comparisons between the Best Eort and the IBE modelings for the predicted H gap evolution during the REA.

In Chapter 4 we apply the two methodologies developed in Chapter 3 in a large scale PWR core. First, the UQM is applied for the BE modeling. Second, the H gap model calibration methodology is applied and the resulting H gap models are used to establish the IBE modeling. The results of the two methodologies are analyzed and physical conclusions are drawn. The UQM is then applied on the IBE modeling. The Chapter ends with some complementary studies concerning the IBE thermal-hydraulics modeling options in an uncertainty analysis context. The impact on a large variety of outputs up to functional 3D elds is investigated.

Finally, the thesis ends with some general conclusions together with some interesting perspectives for future works. [START_REF] Baudron | Parareal in time 3D numerical solver for the LWR Benchmark neutron diusion transient model[END_REF] Chapter 1

Context of the thesis 1.1 Introduction

The main objective of the thesis is to develop and apply an Uncertainty Quantication Methodology (UQM) for multi-physics coupling modeling of a Rod Ejection Accident(REA) in a Pressurized Water Reactor (PWR). The REA involves a strong interaction between three dierent disciplines or 'physics': neutronics, fuel-thermomechanics and thermal-hydraulics. The computational advancements of last decades lead to the development of Best Estimate (BE) codes that take into account the most important phenomena of the underlying physics with a reasonable precision.

The REA occurs in a PWR reactor when a control rod is violently ejected from the core due to mechanical malfunction. A power pulse is created and depending on the core initial conditions it can be very violent and it can damage the reactor. The power initially increases followed by a fuel temperature increase in the core. This creates a negative Doppler feedback and the corresponding power peak. The power then decreases something accentuated by a second negative feedback due to the coolant (water). This happens at a latter stage of the transient when the heat produced in the fuel reaches the coolant increasing its temperature and reducing its density. After around 1-2 seconds the SCRAM 1 safety mechanism injects all the control rods in the core ending the transient. During the whole duration of the REA there is the possibility to loose the rst safety barrier (cladding). The correct modeling of these dierent phenomena and their interactions necessitate the multi-physics coupling of neutronics, fuel-thermomechanics and thermal-hydraulics BE codes. This increases the computational cost and creates many challenges for the uncertainty quantication.

In this Chapter we present the context surrounding the thesis. We start by giving some basic insights about PWR nuclear reactors design in Section 1.2. We describe how PWR function and their main components. Since we study the REA it is important to rst introduce the related physics. In Sections 1.3 -1.5 we detail the neutronics, fuel-thermomechanics and thermal-hydraulics modeling. For all the physics we adopt the same structure:

1. Denition of some basic notions.

2. Description of the theoretical equations.

3. Details about the modeling of the equations. 4. Presentation of the BE codes used to model the equations: APOLLO3 R (neutronics), ALCYONE V1.4 (fuel-thermomechanics) and FLICA4 (thermal-hydraulics).

In Section 1.7 we combine the presented elements so far to detail the REA with its dierent multiphysics aspects. In Section 1.7 we discuss the coupling framework used in this thesis to model the REA. In Section 1.8 we take a step back and give an overview of the general Best Estimate Plus Uncertainty (BEPU) framework introducing the aspect of uncertainty quantication. Finally, in Section 1.9 we highlight the main motivations and challenges of this thesis.

PWR nuclear reactors design

Nuclear reactors are systems in which nuclear ssion chain reactions are controlled and sustained. Their applications vary a lot, from submarines propulsion to medical isotopes production but their main application is for energy production in installations called nuclear power plants. The nuclear power plants are similar to conventional power plants where a heat source vaporizes water. The vapor feeds the turbine connected with the generator and electricity is produced. The main dierence is that the heat source is provided by ssion nuclear chain reactions. Fission is an exothermic reaction occurring when an atom interacts with a neutron and then splits in two fragments releasing energy. Heavy atoms have more probability to undergo ssion and a typical example used in nuclear reactors is uranium 235 (U-235). The heavy atoms are located in the fuel region of the reactor's core. The energy released by ssion of one atom U-235 is around 203 MeV and is distributed among the ssion fragments, beta radiation, gamma photons, antineutrons and neutrons as seen in table 1.1. 1 Emergency shutdown of the reactor by inserting all the control rods Total 203

Fission produces in average 2.5 neutrons2 that in their turn will induce new ssions and thus create nuclear chain reactions. The neutrons are released at high energy whilst the ssion reaction is more likely to be induced by neutrons of low energy. For this reason a material called moderator (usually water) surrounds the fuel and its main role is to slow down the neutrons through scattering. The heat produced by ssion is extracted from the core with the use of coolant (usually water).

The dierent combinations of fuel-moderator-coolant and core conditions lead to many dierent concepts of nuclear reactors. From those various concept the most frequently used and the one which we focus on is the PWR. A typical PWR design can be seen in gure 1.1.

The fuel is a composition of uranium 238 and 235 (typically 3 -5% of U-235) while the coolant and the moderator are water. The fuel is located in a vessel pressurized at 155bars in order to not have boiling of water. The water driven by the pumps enters from the bottom at an average temperature of 290 • C and exits from the top at an average temperature of 330 • C. Afterwards, it passes through the steam generator where it transfers energy to water being pressurized at 75bars with a saturation temperature of 290 • C. Steam is produced that is then fed to the turbinegenerator system to produce electricity. The pressurizer is a component that controls the pressure in the primary circuit (the reactor core and the loop of the water circulation). All this system is surrounded by a containment building in order to protect the environment in case of a hypothetical accident. A typical electrical power of a PWR is 1300MW with an eciency of 33% (Rankine cycle). The reactor's core has three dierent scales. The fuel pin scale (about 1cm in diameter) is the smallest component and consists of small fuel pellets stacked in long tubes (about 4m long) called fuel pins. The fuel pins have an external region called cladding made from zirconium alloys which is used mainly to avoid radioactive products dispersion in the coolant. There is a gap between fuel and cladding for mechanical reasons that is lled with helium at 10-30bars pressure in order to increase the heat transfer from the fuel to the cladding.

The next scale is the fuel assembly (about 20cm length) where an assembly is a 17x17 array (typical composition) of fuel pins, guide tubes (tubes where the control rods enter) and an instrumental tube as seen in gure 1.2. The fuel assemblies have some structural materials to hold together the fuel pins and they are the parts used to insert or extract fuel from the core. The water circulates in the space between the fuel pins.

The last scale is the core itself (about 4m in diameter) which is usually composed of 193 fuel assemblies and can be seen in gure 1.3. The control rods, consisting of neutron absorbent materials, are inserted in the core from the top and into the guide tubes in order to sustain the ssion chain reaction. The positioning of those rods is such as to create a power ux as at as possible. The safety of nuclear reactors is of utmost importance. Three physical safety barriers can be identied in the PWR core, ensuring the connement of radioactive material [START_REF]Defence in Depth in Nuclear Safety[END_REF]. The fuel rod, the pressurized vessel and the containment building. Safety calculations and analyses are used to simulate and predict the behavior of these barriers under both normal and accidental conditions. Such analyses of nuclear reactor's core physics lead to the identication of three dierent physics. The rst one is neutronics related to the power generation, which is proportional to the neutron ux. The second one is fuel-thermomechanics related to the heat diusion into the fuel pin and its mechanical behavior. The third one is thermal-hydraulics, related to the extraction of heat from the coolant and to the distribution of the coolant in the whole core. The phenomena in each physics are governed by dierent set of equations that usually are solved by dierent codes. While for some applications stand-alone physics can be considered, for transients where the interactions between physics can be very strong a multi-physics coupling framework is necessary. An example of such transient is the REA studied in this thesis. Before getting into more details about REA it is important to get some insights about each interacting physic and the codes used for their modeling.

Neutronics modeling 1.3.1 Basics

The eld of neutronics deals with the calculation of the neutrons density in time and space for the whole reactor's core. In order to understand the underlying equations we rst present some basic notions of neutron physics based on [START_REF] Cea | La neutronique -Les méthodes de la neutronique[END_REF], [4] and [START_REF] Hébert | Neutronique[END_REF].

Neutron spectrum

The neutrons are produced at two signicantly dierent timescales creating two neutron categories. The rst are called prompt neutrons and they are generated at an order of 10 -14 s mainly from neutron induced ssion and spontaneous ssion. The second are called delayed neutrons and they are emitted by specic nuclei of the ssion fragments, called precursors, at varying timescales from few milliseconds to minutes depending on the precursor. There are more than 200 precursors that usually are grouped in groups of 6-8 with similar average half-lives for modeling purposes.

The delayed neutron fraction is the percentage of neutrons emitted as delayed per ssion and for U-235 is around 0.6%. The slowing down of neutrons from the high energies at which they are typically emitted to lower energies where the ssion is more probable can be seen as a source of neutrons at dierent energies. This phenomenon gives rise to the neutron spectrum of gure 1.4 for a PWR. During the slowing down process the neutrons have high probabilities to be absorbed at intermediate energies due to capture resonances that will be detailed later.

Figure 1.4: Typical neutron spectrum in a PWR [4].

The hump at high energies is the neutrons emitted by ssion and follows the Maxwell distribution of equation 1.1 with T around 1.3 MeV. The hump at low energies corresponds to the slowed down neutrons also called thermalized and is usually described by the Maxwell distribution of thermal agitation.

χ(E)dE = 2π (πT ) 3 2 √ E exp(- E T )dE (1.1)
In neutronic analysis the quantity aimed to be calculated is the angular ux dened in equation 1.2. It is the number of neutrons located in r, with energy E, moving in a direction of solid angle Ω at instant t where, n( r, E, Ω, t) is the neutron density and υ is the neutron velocity.

ψ( r, E, Ω, t) = n( r, E, Ω, t)υ (1.
2)

The integration of the angular ux for all directions leads to the scalar ux:

φ( r, E, t) = 4π ψ( r, E, Ω, t)d 2 Ω (1.3) 1.3.1.

Cross-sections and reaction rates

Each U-235 ssion, as mentioned, produces in average 2.5 neutrons of high energy. During their lives these neutrons will interact with the surrounding materials in many dierent ways. The microscopic cross-sections represent the probability of the dierent possible reactions between the neutron and an atom's nucleus and are measured in barns (10 -24 cm 2 ). Intuitively it represents the eective surface around the nucleus in which the neutron will interact. The larger is the surface the higher is the probability of the reaction to occur. Microscopic cross-sections depend on the nucleus and the energy of the incident neutron. The main cross-sections concerning a nuclear reactor core are:

• Scattering: After the interaction the nucleus remains as it was. In elastic scattering the neutron only changes angle while in inelastic scattering the neutron loses also energy and a photon is emitted.

• Capture: The nucleus absorb the neutron and decays with photons emission.

• Fission: As described previously, the nucleus splits in two fragments with release of radiation and neutrons.

The macroscopic cross-section for reaction i (Σ i ) is dened in equation 1.4. It can be seen as the probability of a neutron moving in a straight line to interact with a nucleus of the surrounding materials in an innitesimal distance through reaction i. It is measured in cm -1 and its inverse is the neutron mean distance without interaction (mean free path).

Σ i ( r, E, t) = σ i (E)N k ( r, t) (1.4) 
Where:

σ i (E) is the microscopic cross-section for reaction i.

N k ( r, t) (nuclei/cm 3 ) is the nucleus k concentration at a specic location and instant.

Since the cross-sections represent probabilities they can be summed giving rise to synthetic microscopic and macroscopic cross-sections. From those the most used are the absorption and total cross-sections. The former is the sum of capture and ssion as seen in equations 1.5 -1.6 and the latter is the sum of all the cross-sections.

σ a = σ f + σ c (1.5) Σ a = Σ f + Σ c (1.6)
Some microscopic cross-sections show regions of resonances around specic energies related to the nucleus excitation levels. This is can be observed in gure 1.5 created with SCALE [START_REF] Dehart | Reactor physics methods and analysis capabilities in SCALE[END_REF] code using ENDF-VII microscopic cross-sections library [START_REF] Herman | Endf-6 formats manual[END_REF]. The treatment of those resonances is a fundamental aspect in neutronics modeling. An important quantity related to cross-sections is the reaction rate for reaction i dened in equation 1.7. It is the number of neutron interactions with matter through reaction i per unit volume and time and it is measured in cm -3 s -1 .

τ i ( r, E, t) = Σ i ( r, E, t)φ( r, E, t) (1.7) 1.3.1.

Criticality and reactivity

The balance of the neutronic population of the reactor is described by the eective multiplication factor k ef f dened as the ratio between the production and disappearance of neutrons:

k ef f = P roduction Absorption + Leakage
The production of neutrons is due to ssion, the absorption is all the possible reactions induced by the neutron that do not create another neutron and the leakage is the neutrons escaping the core without being absorbed. Using the eective multiplication factor we can dene three dierent states of the reactor:

• k ef f = 1:
The reactor is critical and the neutron population is constant.

• k ef f > 1:
The reactor is super-critical and the neutron population increases.

• k ef f < 1: The reactor is sub-critical and the neutron population decreases.

An important quantity derived from the multiplication factor is the static reactivity dened as:

ρ = k ef f -1 k ef f
It can be seen as a relative comparison between the state of the reactor and its critical state. It is used in neutron kinetics because it is a good measure of modications in the neutron population.

To give an example related to the REA, if the reactor is critical and a control rod is ejected then there is an insertion of positive reactivity. Less absorbent materials are present in the reactor and thus the eective multiplication factor increases. The reactivity is measured in pcm3 or 10 -5 .

The reactor's reactivity (ρ) and its eective delayed neutron fraction (β ef f ) have a major importance in kinetics calculations. The β ef f is representing the whole core and is related to its modeling. It can be seen as a sum of the delayed neutron fraction in dierent regions weighted by the corresponding neutron ux. The importance of ρ and β ef f can be highlighted through point kinetics analysis where the reactor is averaged to a point and thus only temporal variations are taken into account. The results of this approach shows that for positive injected reactivity ρβ ef f < 0 the neutronic population increase is governed by delayed neutrons timescales and thus can be manageable. However, for ρβ ef f > 0 the neutronic population increase is governed by prompt neutrons leading to rapid power increase. This is called a supercritical prompt driven transient and as we will see it can occur during a REA. A useful expression of the reactivity is as a ratio with the eective delayed neutron fraction ρ/β ef f measured in dollars $.

Mechanisms of reactivity change

During the reactor's life variations in reactivity occur. The main physical phenomena inducing these variations are:

• Fuel composition evolution: The ssile nuclei are consumed during the reactor operation reducing its reactivity. Some ssion products can produce ssile nuclei through their decay chains resulting in a reactivity increase. The sum of these two eects during the reactor's life, in general, has a negative impact on reactivity.

• Fission poisons: Fission, either directly or through ssion fragments decay, produces nuclei with strong neutron capture cross-section that decrease the reactivity. These nuclei are called ssion poisons and the most important ones in PWR are Xe-135 and Sm-149. Particularly Xe-135 is produced directly from ssion and from ssion fragments decay while it is consumed by neutron induced capture and beta decay. During reactor's shutdown the neutron ux rapidly decreases and Xe-135 increases reaching its peak in 8 hours. For similar reasons in regions where the ux is tilted towards one region, the region with higher ux will exhibit a decrease in Xe-135 while the other region an increase. This initially enhances the ux tilt but after few hours it can reverse it creating spatial oscillations. In PWR this phenomenon can occur axially in the assemblies where the control rods are inserted [START_REF] Stacey | Nuclear Reactor Physics[END_REF].

• Reactor's conditions change: During accidents the materials temperatures and densities can change rapidly and induce reactivity modications. The most important ones are: the fuel temperature increase resulting in the increase of neutron capture called Doppler eect (detailed in Section 1.3.1.5) and the moderator density decrease and temperature increase.

In PWR for safety reasons all these eects must have a negative impact on reactivity.

The reactor during nominal operation is maintained at a critical state. Since the above mentioned phenomena alter the reactivity of the core, dierent mechanisms are used to counterbalance and control these reactivity variations:

• Control rods: They consist of nuclei with high neutron absorption cross-section and they are inserted from the top in the fuel assemblies guide tubes. They are extracted slowly with reactor's life to compensate the decrease in reactivity due to fuel composition evolution.

• Burnable poisons: Some fuel pins can be replaced by absorbent pins that consist of nuclei with high neutron absorption cross-section that deplete with the reactor's life (usually gadolinium Gd or boron B). They are used for the initial reactivity excess at the reactor start in order to keep the global reactivity eect negative. With time their concentration become negligible.

• Soluble boron: Quantities of boric acid (neutron absorbent) are dissolved in the coolant.

It has a more uniform and precise impact in the core than the control rods but is limited by the safety requirement to maintain a negative density reactivity eect in the coolant. It is used in conjunction with control rods for slow reactivity variations.

Doppler eect

The microscopic cross-sections at T=0K can be represented by analytic expressions on a continuous energy range. These cross-sections thus assume the target nucleus to be immobile but in reality the nucleus is always in thermal agitation due to its real temperature. This agitation aects the relative velocity between the nucleus and the neutron which in its turn aects the microscopic cross-section. While the eect for most nuclei and energy ranges is negligible, for heavy nuclei and in the region of resonances the eect is very important and must be taken into account. This phenomenon is called Doppler eect and it tends to decrease the amplitude and increase the width of the resonance. The widening of the resonance is more important than the decrease in amplitude and thus the resulting eect is an increase of the interactions. The modeling of this eect is called Doppler broadening of the microscopic cross-sections. In a PWR the Doppler eect is more prominent in the capture cross-section of U-238 as can be seen in gure 1.6 4 . This eect is crucial during transients where a sharp power increase is followed by a fuel temperature increase. The Doppler eect then will act as a feedback by injecting negative reactivity and moderating the transient.

Transport and evolution equations

The eld of neutronics, as mentioned, deals with the calculation of the neutrons density in time and space for the whole reactor's core. There are two types of coupled fundamental equations describing the neutrons density spatial and temporal evolution. They are going to be presented based on [START_REF] Cea | La neutronique -Les méthodes de la neutronique[END_REF].

1. Transport (Boltzmann) integro-dierential equation describing the balance between the production and disappearance of neutrons. The solution of the equation is the neutronic angular ux ψ( r, E, Ω, t). It can also be expressed in an integral form.

2. Generalized evolution (Bateman) equations describing the isotopic evolution in the core during its whole life. The solutions of the equations are the nuclei concentrations N k ( r, t). A simplication of these equations are used in transient calculations where only the precursors concentrations are taken into account. In these calculations it is assumed that due to the small time period considered the isotopic state does not change [START_REF] Poinot-Salanon | Methode de calcul neutronique des coeurs[END_REF].

The transport integro-dierential equation is established in an elementary volume D = d r dE d Ω around the point P = ( r, E, Ω).

1 υ ∂ψ( r, E, Ω, t) ∂t = -Ω ∇ ψ( r, E, Ω, t) - k N k ( r, t)σ t, k (E)ψ( r, E, Ω, t) + k N k ( r, t) ∞ 0 dE 4π σ s,k (E → E, Ω → Ω)ψ( r, E , Ω , t)d Ω + 1 4π k N k ( r, t) ∞ 0 ν p,k (E )σ f,k (E )χ p,k (E → E)φ( r, E , t)dE + 1 4π k ν p,f,k λ f,k N k ( r, t)χ p,f,k (E) + 1 4π k λ d,k N k ( r, t)χ d,k (E) + S ext ( r, E, Ω, t) (1.8) 
• The rst term on the left side is the derivative of the angular ux variation with respect to time.

• The rst term on the right side is neutrons escaping D through its boundaries (leakage).

• The second term on the right is the disappearance of neutrons due to either absorption or scattering to a dierent state (E, Ω) through nucleus k. N k ( r, t) is the nucleus concentration and σ t, k the total microscopic cross-section of nucleus k for an incident neutron of energy E.

• The third term on the right side is the neutrons reaching the state (E, Ω) due to scattering from all the other angles and energies. The transfer microscopic cross-section σ s,k (E → E, Ω → Ω) represents this probability for nucleus k.

• The fourth and fth terms on the right are the production of prompt neutrons from ssion reactions induced by neutrons and by spontaneous ssion of nucleus k. The average number of prompt neutrons emitted by ssion of nucleus k for an incident neutron of energy E is ν p,k . Additionally, σ f,k (E ) is the corresponding ssion microscopic cross-section and χ p,k (E → E) the emitted neutron spectrum. The average prompt neutrons emitted from spontaneous ssion of nucleus k is ν p,f,k with λ f,k the ssion decay constant and χ p,f,k the emitted neutrons spectrum.

• The sixth term on the right is the production of delayed neutrons due to decay of precursors, where λ d,k is their decay constant and χ d,k the delayed neutrons ssion spectrum.

• The seventh and last term on the right accounts for all the possible external neutron sources present in D.

As in the case of neutrons in transport equation the evolution equations are a balance between production and disappearance of the dierent nuclei N k ( r, t).

dN k ( r, t) dt = + m =k q ∞ 0 σ q,k←m (E)φ( r, E, t)dE N m ( r, t) + m =k λ m→k N m ( r, t) -λ k N k ( r, t) - q ∞ 0 σ q,k (E)φ( r, E, t)dE N k ( r, t) (1.9) 
• The rst term on the left is the rate of change in time of the nucleus k concentration.

• The rst term on the right is the production of nucleus k by nuclear reaction q on nucleus m induced by an incident neutron of energy E. The corresponding microscopic cross-section is σ q,k←m .

• The second term on the right is the production of nucleus k due to decay of nucleus m, with λ m→k its corresponding decay constant.

• The third term on the right is the disappearance of nucleus k due to decay with λ k its decay constant.

• The fourth and last term on the right is the disappearance of nucleus k through nuclear reaction q induced by a neutron of energy E. The corresponding microscopic cross-section is σ q,k .

The derivation of the equations includes some basic assumptions:

1. The neutrons population in the reactor is sucient large in order to be able to dene the neutron's density. In a typical reactor the order of magnitude of the neutron's population is 10 8 neutrons/cm 3 satisfying this hypothesis.

2. The neutron-neutron interactions are negligible in comparison to the neutron -materials interaction in the reactor. This essentially means that the neutrons density is orders of magnitudes smaller than the density of the materials in the reactor and thus the probability for the neutron to interact with an atom of the materials is orders of magnitude higher than to interact with another neutron. This hypothesis leads to the linear form of the transport equation.

3. The relativistic eects of neutrons are negligible. In fact the maximum kinetic energy of the neutrons in a reactor is about 2MeV and thus satises this hypothesis.

4. The neutrons decay to protons is negligible. The decay period of this reaction is in the order of 10 minutes while the neutrons average life time in the reactor is 10 -5 -10 -3 s satisfying this hypothesis.

The gravity eect is neglected (straight paths for particles).

There are two broad methods for the solution of the equations: the Monte Carlo and the deterministic. In the Monte Carlo the equations are not solved directly but through simulations of random walks of neutrons. Each possible neutron event is sampled through distributions from the moment it appears until its absorption. With the simulation of large number N of neutrons paths their density population converges to the solution with a rate of 1 √ N . In the deterministic approach the equations are solved by phase space discretization introducing further approximations. In this thesis we use the deterministic neutronic code APOLLO3 R . For this reason in the following Section we focus on the deterministic approach and the dierent modeling options relevant to APOLLO3 R .

Deterministic modeling

The deterministic approach consists in discretizing the phase space of the equations [START_REF] Stacey | Nuclear Reactor Physics[END_REF], [START_REF] Hébert | Applied Reactor Physics[END_REF]. The combined discretized meshes needed for the space (core volume), the solid angle (sphere of surface 4π), the energy (1e -2 eV -2e +6 eV ) and the time is more than 10 16 meshes. This discretization size is far too large for the computational power currently available. To this purpose a three step approach is adopted. Before detailing each phase space discretization we will describe the general aspects of the dierent steps presented in gure 1.7. In the rst step the microscopic cross-sections are condensed from continuous pointwise to a multigroup discrete energy mesh (about 280 energy groups) based on typical neutron spectrum.

In the second step the so called "lattice" calculations are performed. They are usually horizontal 2D assembly calculations on the previous discretized energetic mesh. These calculations are performed for each assembly of the core with an innite medium hypothesis and leakage adjustment. The result of the calculations are condensed in energy and homogenized in space cross-sections that preserve the reaction rates. It is important to notice that during this process self-shielding is performed in order to take into account the ux reduction in the resonances peaks of the crosssections that will reduce the reaction rates as well. This step is performed for dierent core isotopic states resulting from the solution of the evolution equations and for various core conditions (fuel temperature, moderator temperature, etc.) [START_REF] Poinot-Salanon | Methode de calcul neutronique des coeurs[END_REF]. The typical result of the second step is multigroup macroscopic cross-sections of few energy groups (2-33 groups for PWR ) for each assembly in a multiparametric tabulation form.

The third step is a full core 3D calculation where each assembly is homogenized and represented by its macroscopic cross-section. The transport equation or an approximation of it is solved (e.g. Diusion equation). This calculations scheme has some limitations mainly coming from the innite medium hypothesis in the second step and the dierent approximated solvers of the 3D transport equation in the third step.

Since in any deterministic calculation the cross-sections are in a multigroup format it is useful to present the multigroup form of the transport equation. If we consider G energy groups with bounds [E g , E g+1 ] for g ∈ G the multigroup angular ux of each group is dened as:

ψ g ( r, Ω, t) = Eg+1 Eg ψ( r, E, Ω, t)dE (1.10)
The multigroup nuclear data are described by a superscript g and the multigroup approximation of the transport equation can be expressed as:

1 υ g ∂ψ g ( r, Ω, t) ∂t = -Ω ∇ ψ g ( r, Ω, t) - k N k ( r, t)σ g t, k ψ g ( r, Ω, t) + g k N k ( r, t) 4π σ g →g s,k ( Ω → Ω)ψ g ( r, Ω , t)d Ω + 1 4π g k N k ( r, t)ν g p,k σ g f,k χ g →g p,k φ g ( r, t) + 1 4π k ν p,f,k λ f,k N k ( r, t)χ g p,f,k + 1 4π k λ d,k N k ( r, t)χ g d,k + S g ext ( r, Ω, t) (1.11)
Three dierent types of calculations can be identied based on the treatment of time:

• The stationary calculation, where the time dependent terms of the transport equation are omitted ( 1

υ g ∂ψ g ( r, Ω,t) ∂t , 1 4π k ν p,f,k λ f,k N k ( r, t)χ g p,f,k , 1 4π k λ d,k N k ( r, t)χ g d,k
). • The so called Burn-up calculations, where the isotopic evolution of the materials (Bateman equations) are calculated during the whole life of the reactor while the power does not vary much (load of the power plant).

• The transient calculations, in short time scales where strong variations of important quantities can occur. For these calculations the initial state of the reactor prior to the transient is calculated by Burn-up calculations and then the kinetic equations are used.

In the following Sections we are going to detail the phase space discretization for the deterministic modeling of transport equation and the dierent types of calculations related to the time parameter concerning the thesis.

Energy discretization

The rst two steps in the deterministic approach handle the energy discretization in order to produce multigroup cross-sections. It is quite challenging due to the large energy bounds (from meV to MeV) and to the complicated behavior of the microscopic cross-sections in dierent energetic regions with the presence of sharp resonances. A big eort is made across the world to create nuclear data libraries based on measurements. These libraries store microscopic cross-sections parameters for a large variety of isotopes and permit their pointwise reconstruction in the whole energy domain. Besides that, they also store neutronic kinetic parameters, ssion yields (ssion fragments probability), radioactive decay constants, quantities for other particles interaction with matter and uncertainties. More details can be found in [START_REF] Herman | Endf-6 formats manual[END_REF] and [START_REF] Koning | Status of the JEFF Nuclear Data Library[END_REF]. Some of the most currently used nuclear data libraries are:

ENDF/B-VII.1: United States Evaluated Nuclear Data Library. JEFF-3.2: Joint Evaluated Fission and Fusion File.

JENDL-4.0: Japanese Evaluated Nuclear Data Library. BROND-2.2: Russia Evaluated Nuclear Data Library.

CENDL-3.1: Chinese Evaluated Nuclear Data Library.

The pointwise reconstruction of the cross-sections is carried out using various nuclear formalisms based on "R matrix" [START_REF] Mosca | Conception et développement d'un mailleur énergétique adaptif pour la génération des bibliothèques multigroupes des codes de transport[END_REF]. The most used formalisms are the single or multilevel Breit-Wigner and the Reich-Moore. The obtained cross-sections are at T=0K and the Doppler broadening is applied in order to calculate the pointwise cross-sections at dierent temperatures of interest. These crosssections can be used directly in Monte Carlo codes but for deterministic ones an initial cross-section preprocessing is necessary. This is the 1st step of the deterministic approach where the goal is to condense the cross-section from pointwise to few hundred groups selected in an optimum way to include the most important resonances. The pointwise-multigroup cross-section comparison can be seen for two resonances of U-238 capture in gure 1.8 plotted with SCALE. This step is performed once per type of reactor under study. The condensation in energy group g, for nucleus k and reaction i is performed by a weighting of the pointwise cross-section with the pointwise neutron ux of equation 1.12. Since the ux cannot be known prior to solving the transport equation, a "representative" in a macroscopic sense neutron spectrum (e.g. Maxwellian) φ M (E) is used. Examples of codes that are used for this purpose are NJOY, CALENDF, AMPX and PREPRO. The codes provide also ner, in terms of energy discretization, cross-section information that will be used in the self shielding process of the second step. The results are stored in a multigroup library.

σ g i,k = g σ i,k (E)φ M (E)dE g φ M (E)dE (1.12)
The second step, as mentioned, consists in a further condensation of the cross-sections in energy and an homogenization in space. It is a case depended calculation 5 at an assembly level with an innite medium hypothesis (reective boundary conditions). It aims at conserving the reaction rates between the initial heterogenous assembly geometry and the resulting homogenous one. The dierent stages of this calculation are well describted in [START_REF] Sanchez | Apollo2 year[END_REF] and can be summarized as:

1. Self shielding: It is a phenomenon with both energy and space aspects. The ux in the resonances of the cross-sections exhibits a strong decrease that must be modeled in order to obtain correct reaction rates and not overestimate them. Besides that, spatially some fuel regions can see more neutrons and thus have large dierences in ux. The energy aspect is treated through the ner cross-section information stored in the rst step while the spatial aspect by considering dierent concentric fuel regions. This process is applied for specic resonant nuclei and the result is an adjustment of their microscopic cross-section to take into account the local depression of the neutrons ux.

Condensation:

The transport equation is solved at the ner multigroup level. The ux obtained is used to further condensate the microscopic cross-section to few groups. If the index g corresponds to the initial ne energy structure and index G to the condensed one the condensation is expressed by equation 1.13 where i is the reaction and k the nucleus.

σ G i,k = g σ g i,k φ g g φ g
(1.13)

3. Homogenization: The assembly is homogenized both spatially and isotopically either in the whole assembly or in subregions by preserving important quantities of interest. There is the possibility to treat some isotopes of interest separately, typically this is done for poison isotopes (Xe, Sm). The desired quantities to be preserved are the reaction rates in the homogenization region and the ux currents at the boundaries. Dierent approaches exist to derive the homogenized macroscopic cross-sections [START_REF] Stacey | Nuclear Reactor Physics[END_REF] taking into account discontinuities between assemblies. A rather simplistic approach for illustration purposes is:

Σ G i,R = r Σ G i,r φ G r V r r φ G r V r (1.14)
The second step is performed for the dierent core assemblies, for various assembly isotopic states calculated by solving the evolution equation and for dierent temperature and density conditions.

For each assembly a multiparametric cross-section library is produced that will be used in the third step where the core calculations would be performed. Examples of codes treating the second step lattice calculations are SCALE [START_REF] Dehart | Reactor physics methods and analysis capabilities in SCALE[END_REF], APOLLO2 [START_REF] Sanchez | Apollo2 year[END_REF] and APOLLO3 R [START_REF] Schneider | APOLLO3 R : CEA/DEN deterministic multi-purpose code for reactor physics analysis[END_REF].

The rst two steps of the deterministic approach handle mainly the energy discretization with some aspects of space and solid angle through the homogenization phase. In the third step the heterogeneities of the assemblies are lost and they are instead represented by the condensed homogenized macroscopic cross-sections obtained in step 2. These quantities will be used to perform the dierent deterministic calculations at the core level where the space, solid angle and time discretizations will be addressed.

Solid angle discretization

There are dierent methods used to treat the solid angle discretization Ω for the solution of transport equation in lattice and core calculations [START_REF] Hébert | Applied Reactor Physics[END_REF]. Some of them treat at the same time both solid angle and space.

• Spherical harmonics (P N ): The ux angular dependence is expanded in spherical harmonics that are truncated at an order N .

• Simplied spherical harmonics (SP n ): In general the P N equations are quite complicated to solve and thus most of the codes solve a simplied version of them (SP N ). The assumption of locally plane geometry is applied corresponding to a 1D -P N with slow variations in space.

The spherical harmonics become now the Legendre polynomials.

• Diusion approximation: It is the method used in this thesis. The transport equation is simplied. The main assumption is that the angular ux does not depend much on the direction Ω and that the ux is mainly from scattering, something not true near sources or sinks.

• Discrete ordinates (S N ): The solid angle is discretized in N directions covering the 4π solid angle and approximating the integral by a quadrature.

• Collision probabilities (P ij ): It is based on the calculations of probabilities for a neutron in one region i to undergo a collision in a dierent region j. It treats both solid angle and space and solves the integral form of transport equation.

• Method of Characteristics (MOC): It treats both space and solid angle. It solves the integral form of transport equation using S N trajectories on non structured homogeneous meshes [START_REF] Cea | La neutronique -Les méthodes de la neutronique[END_REF].

For lattice calculations (2nd step) MOC and P ij are typically used while S N , SP N and Diusion are used in core calculations (3rd step).

Space discretization

Space is discretized in meshes of dierent sizes axially and radially. The way in which the ux and currents are calculated inside the meshes and on the boundaries creates dierent discretization methods [START_REF] Cea | La neutronique -Les méthodes de la neutronique[END_REF]:

• Finite dierences: It is the classical way used to solve dierential equations. The geometry is discretized and the derivatives in the transport equation are approximated by a rst order Taylor expansion computed on two neighboring points.

• Nodal: It is also called nite volume method and is based on a semi-analytic resolution of the equation in a volume. Usually a polynomial approximation is used for the solution.

The solution is obtained rst by integrating in each direction (x,y,z) to calculate transverse leakages and then integrating in the whole volume to obtain the integral ux.

• Finite elements: It is the method used in the thesis. The geometry is discretized in volumes and the solution is expanded on a polynomials basis of chosen order. The unknowns now are the coecients of the ux on this basis. The convergence depends on the degree of the basis and the mesh size.

All of the methods are used for core calculations in conjunction with the corresponding solid angle discretization method. Finite dierences and Nodal methods are mainly used with Diusion approximation while Finite elements are used for all the solid angle methods.

Stationary calculations

The stationary transport equation is solved for a given core isotopic state and condition. In general the stationary transport equation has solution only when the reactor is at a critical state. In order to obtain solutions for non critical states an unknown variable λ is used:

Ω ∇ ψ g ( r, Ω) = - k N k ( r)σ g t, k ψ g ( r, Ω) + g k N k ( r) 4π σ g →g s,k ( Ω → Ω)ψ g ( r, Ω )d Ω + 1 λ 1 4π g k N k ( r)ν g p,k σ g f,k χ g →g p,k φ g ( r) (1.15) 
It is an eigenvalue problem with the largest eigenvalue equal to the eective multiplication factor λ = k ef f . The corresponding eigenfunction is the angular ux solution. For convenience purposes the steady-state transport equation can be written in a form of operators:

T φ = 1 λ F φ (1.16)
Where:

T is a disappearance multigroup operator.

F is the multigroup production operator.

This eigenvalue problem is solved through power iterations [START_REF] Duderstadt | Nuclear Reactor Analysis[END_REF] as described in the following algorithm.

Power iterations algorithm 1: Initialize λ 0 , φ 0 , and convergence criteria λ , φ and n = 1

2: while (λ (n) -λ (n-1) > λ ) & (|φ (n) -φ (n-1) > φ ) do 3: Compute angular ux: T φ (n) = 1 λ (n-1) F φ (n-1) . 4: Compute λ (n) λ (n-1) = F φ (n) F φ (n-1) . 5: n = n + 1 6: end while 1.3.3.

Burn-up calculations

Nuclei isotopic compositions change with time during the reactor's life due to transmutations by nuclear reactions and due to radioactive decay. A quantity describing the historical usage of the fuel is the Burn-up measured in MWd/t 6 . The concentrations of nuclei thus vary in space and time following the evolution equations 1.9. The equations for dierent isotopes can be lumped into the following matrix notation for a time step ∆t:

∆N ∆t = S + AN (1.17)
Where S is a direct source term while A is the matrix representing the nuclear reactions and decay.

If the ux solution during the whole reactor history is known at dierent time steps a Runge-Kutta numerical scheme can be used to solve the equations. This is not usually the case since the evolutions equations are coupled with the transport equation. In this case, a sequential approach is adopted where the solution of the ux at time step n is used to compute the new concentrations at time step n + 1 that will update the transport equation. Predictor-corrector techniques can be used to anticipate the ux variation in the interval.

Transient calculations

Transient calculations aim to describe the reactor's behavior under accidental situations where for a short period of time large ux variations can occur. For these short time periods the Burn-up evolutions of the nuclei are not considered, only the precursors are taken into account due to their important role in the delayed neutron production. The precursors are grouped in 6-8 groups of similar disintegration periods ranging from 50µs to 50s. The multigroup transport equation and the precursors evolution equations are expressed in equations 1.18a and 1.18b respectively.

1 υ g ∂ψ g ( r, Ω, t) ∂t = -Ω ∇ ψ g ( r, Ω, t) - k N k ( r, t)σ g t, k ψ g ( r, Ω, t) + g k N k ( r, t) 4π σ g →g s,k ( Ω → Ω)ψ g ( r, Ω , t)d Ω + 1 4π g k N k ( r, t)ν g p,k σ g f,k χ g →g p,k φ g ( r, t) + 1 4π k ν p,f,k λ f,k N k ( r, t)χ g p,f,k + 1 4π k λ d,i C i ( r, t)χ g d,i
(1.18a)

dC i ( r, t) dt = + k   N k ( r, t)β k i g ν g t,k σ g f,k φ g ( r, t)   -λ i C i ( r, t) (1.18b)
Where:

C i is each precursor group concentration.

β k i the precursors delayed neutron fraction.

λ i the precursors decay constant.

The solution of these equations is performed in the third step of the deterministic resolution method. In the second step together with the homogenized macroscopic cross-section for each assembly of the reactor the kinetic quantities are also homogenized in eective quantities representing the heterogeneities of the assembly. This leads to the eective delayed neutrons and decay constants.

Two categories of methods for the solution of the above system of equations exist:

• Neutron ux form -amplitude separation: The neutron ux φ( r, E, t) space and time variations are decomposed in two functions. Function a that represents rapid amplitude variations in broad discretization regions ( R). Function f that represents mainly slow amplitude variations (T ) in the form of the ux. The ux becomes then φ( r, E, t) = a( R, E, t)f ( r, E, T ).

Depending on the T and R size dierent methods are dened. The most general is the Multi-Fidelity method and corresponds to the use of large discretization regions for R and large time steps for T . The Improved Quasi static method follows the amplitude variations in the whole core (a(t)) using point kinetics and updates the ux form on large time steps T . The point kinetics method where the ux form is not updated and the core is averaged over energy, space and angle resulting in a simplied set of equations that represent average variations in time of important quantities. With this method local eects are not accessible something very important for transients like REA [START_REF] Targa | Development of multi-physics and multi-scale Best Eort Modelling of pressurized water reactor under accidental situations[END_REF].

• Direct discretization: It consist in discretizing the equations 1.18a and 1.18b and is the method used in this thesis. The equations are integrated in time with nite time discretization. Assumptions are made on the form of the variation of parameters inside each time step. The velocities are considered constant while the cross-sections are considered to vary lineary. The ux is discretized using a theta scheme, where depending on the θ value a Crank-Nikolson scheme or implicit scheme can be used. Usually in transient calculation a mix of those two options are used. The Crank-Nikolson is used in the phase of the power increase and the implicit scheme when the power decreases. The precursors equation 1.18b is formally integrated by considering linear ux variation in the time step. The spatial behavior of the ux is projected on a basis of nite elements. The integration now is possible for each time step and the solution is obtained by solving a linear system of size N × G , where N the number of points in the nite elements and G the number of energy groups.

Boundary conditions

For the solution of the equations boundary conditions must be imposed. In neutronics deterministic modeling the angular ux is described at the boundaries of the studied geometry. Assuming a domain V ∈ R 3 and its boundary S = ∂V the angular ux of on the boundary is ψ( r s , E, Ω, t) with r s ∈ S.

Considering n e the unit outward normal vector on S the albedo β is dened as :

β = ne• Ω<0 | Ω • n e |ψ( r s , E, Ω, t)d Ω ne• Ω>0 Ω • n e ψ( r s , E, Ω, t)d Ω (1.19)
The albedo is the ratio between the neutrons current entering and exiting through S. Based on this denition three dierent boundary conditions are dened: β = 0: Void condition where no neutrons are assumed to be reected in V . It is used mainly for the core calculations.

β = 1: Reective condition where all the neutrons are reected into V with a solid angle symmetrical to the outgoing. It is used for the lattice calculations representing the innite medium approach. 0 < β < 1: A fraction of the neutrons are reected. If the solid angle at which they are reected is uniformly distributed then it is called diusion condition.

Besides the neutronic boundary conditions there are also thermal and hydraulic conditions that need to be dened. They concern the eective fuel temperature strongly related with the Doppler eect, the moderator density and the moderator temperature. The macroscopic cross-sections are tabulated using these quantities and once they are provided, usually as a result of other codes, the core state can be dened and the equations can be solved. For the moderator density and temperature there is no ambiguity. For the fuel temperature the problem is that its radial distribution inside the fuel pellet is not uniform. The neutronic modeling cannot take this into account since the pellet is homogenized. If the radial temperature is calculated from thermal modeling of the fuel pellet on discretized radial meshes then dierent expressions exist to compute an eective fuel temperature representing the radial temperature prole. The Rowlands expression is used in this thesis dened by the fuel temperature in the center T f c and the external surface of the pellet T f s :

T R ef f = 4 9 T f c + 5 9 T f s (1.20)
The eective Rowlands temperature T R ef f is based on a parabolic prole of the fuel temperature. This is not always true and Santamarina [START_REF] Chabert | Calcul du coecient Doppler pour les réacteur à eau[END_REF] proposed a dierent expression that is adequate for both parabolic and non-parabolic temperature proles. More details about both expressions can be found in [START_REF] Pallec | Modelisation réaliste d'un accident de réactivité dans les REP et analyse d'incertitudes[END_REF].

APOLLO3 R code

The code used for the neutronics modeling in this thesis is APOLLO3 R [START_REF] Schneider | APOLLO3 R : CEA/DEN deterministic multi-purpose code for reactor physics analysis[END_REF] developed at CEA in a common project between CEA, Framatome and EDF. This project concerned the development of state of the art codes for nuclear reactor physics with improved accuracy, exible architecture and high computation capabilities. APOLLO3 R is a deterministic neutronic code that can perform both lattice and core calculations including most of the methods for energy, space, angle and time discretization previously described. It is used for evolution calculations to reach the reactor's initial state prior to the REA and for the transient core calculations. The 3D kinetics method is used with two group Diusion [START_REF] Baudron | Parareal in time 3D numerical solver for the LWR Benchmark neutron diusion transient model[END_REF] as described in equations 1.21a and 1.21b. The cross-sections are homogenized at an assembly level using APOLLO2 code [START_REF] Sanchez | Apollo2 year[END_REF]. For the space discretization RTN Finite Element of 1st order are used. Void boundary conditions are considered.

1 υ g ∂φ g ( r, t) ∂t = + ∇D g ∇ φ g ( r, t) -Σ g t φ g ( r, t) + 2 g =1 Σ g →g s φ g ( r, t) + χ g p 2 g =1 (1 -β g )ν g Σ g f φ g ( r, t) + 6 i=1 λ i χ g i,d C i ( r, t) (1.21a 
)

dC i ( r, t) dt = + 2 g =1 β g i ν g Σ g f φ g ( r, t) -λ i C i ( r, t) (1.21b) 
Where:

D g , Σ g t and Σ g f are the diusion coecient, the total macroscopic cross-section and the ssion macroscopic cross-section for group g. Σ g →g s is the transfer cross-section from group g to g. χ g p , ν g and β g are the ssion prompt spectrum, the average neutrons emitted through ssion and the the total eective delayed neutron fraction for group g.

A total of 6 precursor groups are considered with C i , λ i , χ g i,d , β g i their concentration, eective decay constant, delayed neutron spectrum and eective delayed neutron fraction. The total eective delayed neutron fraction is obtained by

β g = 6 i=1 β g i .
.

1.4 Fuel-thermomechanics modeling

Basics

The power generated in the reactor's fuel rods aects the conditions of the fuel pellets, cladding and the gap between them. In PWR the fuel pellets are made from uranium oxide U O 2 , the cladding from a zirconium alloy (Zircalloy IV among the dierent ones) and the gap is lled with helium due to its high thermal conductivity. Thermal, irradiation and chemical phenomena impact both the mechanical aspects of fuel rods (stress and strains) and the head conduction. These phenomena range from the atomic scale to the fuel pellet macroscopic scale. Their modeling is very important for the fuel rod integrity, which is as mentioned the rst safety barrier, in both nominal and accidental situations [START_REF]State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels[END_REF]. In this Section we are going to describe some basic fuelthermomechanical notions and phenomena based on [START_REF] Tong | Thermal analysis of pressurized water reactors[END_REF] and [START_REF]Nuclear fuels[END_REF].

Fuel pellet behavior

• Cracking: With the rst power increase a radial temperature gradient induces a dierential thermal expansion leading to cracking of the fuel pellet radially and axially. The gap between the fragmented pellet and the cladding reduces enhanced by their thermal expansion. This leads to an increased heat conduction and thus a decrease of fuel temperature in the beginning of the fuel rods life in the reactor. Besides that, the cracks increase the fuel external surface facilitating the release of ssion products in the gap aecting the conductivity.

• Densication: During the initial irradiation phase (< 10GW d/t) the generated ssion products interact with the small pores leading to diusion of vacancies on the grain boundaries. The fabrication porosity is reduced and the fuel density increases about 1% with a corresponding shrinkage of the pellet. This phenomenon slows down the fuel-to-pellet gap closure. Some of the important quantities for densication are: burn-up, fabrication porosity, radial temperature and ssion rate.

• Swelling and gas releases: The ssion products are generated along the irradiation of the fuel. They can be solid or gas and contribute to the increase of fuel volume. This phenomenon is called swelling. In general, the gaseous ssion products contribution is much more important than the solid one. The fuel volume evolution after 15GW d/t is dominated by swelling.

Fission gases (e.g. Xe, Sm) precipitate into bubbles in intragranular or intergranular spaces.

The also diuse towards the grain boundaries. The gases generated closer to the fuel surfaces can be released in the free spaces of the rod by athermal diusion. The gas releases increase constantly with irradiation due to the ssion products and fuel surface evolution. This is the main gas release mechanism up to 30GW d/t. At higher burn-up the gas releases rate accelerates due to the activation of thermal mechanisms. The result of the ssion gas releases is an increase in the internal fuel rod pressure and a decrease the gap conductivity.

• Thermal expansion: An increase in temperature of fuel leads to its expansion. It is an important contributor to the closing of the gap between fuel pellet and cladding. Axially the thermal expansion gives an "hourglass" shape in the fuel pellet.

• Creep: It is a slow irreversible deformation of the fuel pellet due to stresses. Irradiation and temperature have an important impact on creep.

• High burn-up structure: On the fuel periphery there is more Pu-239 production during fuels life due to epithermal neutron absorption in U-238 resonances. Fission of Pu-239 atoms results in an increased burn-up in this region and thus high ssion products concentration. Additionally, the lower temperature in the periphery induces slower ssion products diusion and defects annealing. Around 40GW d/t restructuring of this region occurs, where the grains divide into smaller ones and the porosity increases up o 10%. This new microstructure is called high burn-up structure or 'rim eect' and aects signicantly the ssion gas releases.

Cladding behavior

• Creep: The dierential pressure between coolant and gap pressure compress the cladding.

The fast neutron ux and temperature impact the resulting creep deformation.

• Thermal expansion: As fuel pellet, cladding exhibits thermal expansion but with a slower temperature rate.

• Oxidation: The water interacts by oxidation with the Zr of the external cladding surface creating an external zircon oxide layer up to 120µm. This layer has poor conductivity modifying thus the thermal transfer between clad and coolant. Additionally, it is an exothermic reaction increasing the cladding temperature.

Zr + 2H 2 O → ZrO 2 + 2H 2
The hydrogen produced from the reaction can form hybrids reducing the ductility of the clad and causing embrittlement. Oxidation increases with coolant temperature increase.

• Cladding damage: Fast neutrons cause microstructural defects reducing the cladding ductility.

Fuel-cladding gap

Initially, due mainly to cladding creep down, fuel swelling and thermal expansion, the gap closes around 30 GWd/t as seen in gure 1.9. The contact occurs rst at the edges of the "hourglass" shaped fuel pellet and then the cladding continuous to deform to take exactly the shape of the pellet. This is called pellet cladding mechanical interaction (PCMI). The gap stays closed for a period and the cladding follows the fuel swelling. At the end of the fuel's life the gap re-opens.

The gap width and its properties (pressure, ssion gases) have a signicant impact on the thermal conductivity of the fuel pin. In transient situations, PCMI can lead to cladding failure. The temperature gradient increases rapidly and the corresponding fuel swelling and ssion gas releases induce high tensile stresses on the cladding that may lead to its ballooning and burst.

Figure 1.9: Fuel-cladding gap width evolution with Burn-Up.

A simplied synthetic presentation of the main phenomena aecting the fuel rod behavior can be seen in gure 1.10. 

Thermomechanical equations

The fuel rod behavior is governed by two equations representing the mechanical and thermal phenomena [START_REF] Marelle | ALCYONE V1.4: Notice de Présentation[END_REF]. Mechanically dierent states emerge due to loadings of thermal, mechanical and chemical origins in the dierent parts of the rod related to the basic phenomena described previously. Each state is described by displacements in relation to its previous state that satisfy the static mechanical equilibrium constraint of equation 1.22. Thermally the heat equation (1.23) describes the temperature spatial and temporal evolution in the fuel rod. Both equations are coupled since the mechanical displacements aect the eciency of the heat distribution in the rod and the temperature variations impact the loadings.

∇σ = 0 (1.22) ρ( r)c p ( r) dT ( r) dt -∇λ( r)∇T ( r) = P v ( r) (1.23)
Where:

σ is the stress tensor and ρ is the density.

c p is the specic heat capacity and λ is the thermal conductivity.

T is the temperature and P v is the volumetric power generation.

The basic assumptions for the derivation of these equations are:

1. Quasi static mechanical behavior of the fuel rod

Isotropic heat ux diusion

There many ways to model the above mentioned equations. In the following Section we will focus on the modeling aspects relevant to ALCYONE V1.4 code since it is the code used in this thesis for the fuel-thermochanics modeling.

Modeling

The two equations are quite general and in order to solve them dierent physical and empirical models are used to represent the contribution of each phenomenon. The dierent models are dened separately for the phenomena in the fuel pellet, the cladding and the gap between them [START_REF] Williamson | Multidimensional multiphysics simulation of nuclear fuel behavior[END_REF], [START_REF] Van Uelen | Modelling of Nulcear Fuel Behavior[END_REF].

Mechanical

The constitutive mechanical laws describe the relation between stress and strain. Strain is directly linked with the displacements. For example in radial direction e r = du r dR with e r , u r , R the radial strain, radial displacement and the radius. The total induced dierential strain can be decomposed in elastic and non-elastic parts:

d t dt = d e dt + d i dt (1.24)
The relation between stress and elastic strain is:

dσ dt = C : d e dt (1.25) 
Finally we can combine both equations to:

dσ dt = C : d t dt - d i dt (1.26)
Where C = f (E, ν) is the 4th order elastic tensor of the material which is a function of ν the Poisson's ratio and of E the Young's modulus that depends on temperature and porosity. With this denition we can dene the dierent stress-strain equations for fuel and cladding by introducing their inelastic strain contributions. For the fuel it is the cracking, creep, swelling and thermal expansion. In the swelling term solid and gas swelling together with the densication are taken into account.

dσ f dt = C f : d f,t dt - d f,crack dt - d f,creep dt - d f,swell dt - d f,thermal dt (1.27)
• Cracking

Once the yield stress is reached the development of micro-cracking until the rupture is modeled by a linear softening stress strain law. The strain will increase as the stress decreases until zero when the rupture occurs. The yield stress criterion is dened as:

F crack = n i : σ f -R f ( f,crack )) = 0 (1.28)
Where R f is the tensile strength tensor and is the above mentioned linear function of the inelastic cracking strain tensor f,crack . The strain rate can be calculated by the consistency of the above equation described as dF = 0 for the conditions between the yield stress reach and the rupture.

n i : d f,crack dt = n i : dσ f dt n i : dR f d f,crack : n i (1.29) Where E crack = dR f d f,crack
is the 4th order tensor softening modulus. More details are provided in [START_REF] Michel | 3D fuel cracking modelling in pellet cladding mechanical interaction[END_REF] and [START_REF] Targa | Development of multi-physics and multi-scale Best Eort Modelling of pressurized water reactor under accidental situations[END_REF].

• Creep

The creep strain rate in the fuel is modeled by an incompressible viscoplastic formulation:

d f,creep dt = 3 2 d eq f,creep (σ eq f , τ f , T f , p f ) dt S f σ eq f (1.30)
Where:

σ eq
f is the Von-Mises equivalent stress.

S f = σ f -1
3 tr(σ f )I is the deviatoric stress tensor with I the identity tensor.

eq f,creep is the equivalent plastic strain deformation. It is a function of the Von-Mises equivalent stress, the ssion reaction rates τ f , fuel temperature T f and fuel porosity p f .

• Swelling

The swelling strain rate is the sum of the solid swelling, densication, and gas swelling.

d f,swell dt = d f,ss dt + d f,d dt + d f,gs dt (1.31)
The solid swelling depends on the ssion products evolution and thus is modeled by a function of fuel density ρ f and burn-up evolution dBU dt .

d f,ss dt = 1 3 Aρ f dBU dt I (1.32)
The densication is a function of burn-up f (BU ):

d f,d dt = 1 3 df (BU ) dt I (1.33)
The porosity evolution due to densication is calculated by the empirical correlation of equation 1.34, where P 0 is the fabrication porosity and G is the solid ssion product swelling.

P = P 0 -G 1 -G (1.34)
The gas swelling strain rate is modeled by a set of dierential equations describing its generation, diusion, release in free volumes and other main phenomena. More details can be found in [START_REF] Noirot | MARGARET: A comprehensive code for the description of ssion gas behavior[END_REF] • Thermal expansion

The thermal strain rate tensor is proportional to the fuel temperature rate.

d f,thermal dt = a f T f dt (1.35)
Where a f is the diagonal tensor with elements the fuel dilatation coecients for each direction.

For cladding constitutive stress-strain equation the strain is decomposed in viscoplastic, creep and thermal expansion contributions.

dσ c dt = C c : d c,t dt - d c,v dt - d c,creep dt - d c,thermal dt (1.36)
• Viscoplastic

Using the Hill's quadrature yield criterion σ eq c,hill = σ c : H c : σ c , where H c is a 4th order tensor depending on cladding temperature and fast neutron ux, the viscoplastic strain rate is written as:

d c,v dt = d eq c,v dt H c : σ c σ eq c,hill
(1.37) Where

d eq c,v
dt is the equivalent viscoplastic strain rate depending on cladding temperature, stress tensor and fast neutron ux. More details can be found in [START_REF] Saux | Comportement et rupture de gaines en Zircaloy-4 détendu vierges hydrurées ou irradiées en situation accidentelle de type RIA[END_REF].

• Creep

The cladding creep strain rate is modeled in a similar way with the fuel with the dierence that the equivalent strain plastic deformation is a function of time t, cladding temperature T c and fast neutron ux φ p .

d c,creep dt = 3 2 d eq c,creep (σ c,eq , φ p , T c ) dt S f σ c,eq (1.38) 

• Thermal expansion

Similarly to fuel the thermal strain rate tensor is proportional to the cladding temperature rate.

d c,thermal dt = a c T c dt (1.39)
Where a c is the diagonal tensor with elements the cladding dilatation coecients for each direction.

Thermal

The modeling of thermal heat equation is done by using laws for thermal conductivity and thermal capacity of cladding and fuel detailed in [START_REF] Matpro (nurec) | MATPRO -VERSION 11, A HANDBOOK OF MATERIALS PROP-ERTIES FOR USE IN THE ANALYSIS OF LIGHT WATER REACTOR FUEL ROD[END_REF] and [START_REF] Marelle | ALCYONE V1.4: Notice de Présentation[END_REF]. The fuel thermal conductivity is a function of burn-up, porosity and temperature λ f (BU, P, T f ). The cladding thermal conductivity λ c (T c ) and the specic heat capacities for both cladding and fuel are functions of temperature c p,f (T f ), c p,c (T c ). While now the heat equations can be solved in the fuel and cladding, the temperature dierence in the gap must still be determined. This is done by a dedicated gap heat transfer model calculating the coecient h gap [START_REF] Lassmann | The revised urgap model to describe the gap conductance between fuel and cladding[END_REF]. The temperature dierence, with some simplications, can be seen as ∆T gap = q gap hgap , where q gap is the thermal heat ux reaching the gap. The gap heat transfer model denes the h gap as the sum of three heat transfer terms h gap = h rad + h cond + h cont . The radiation h rad , conduction h cond and contact h cont .

• Radiation

The radiative contribution is small during normal operation where the temperatures are low but under accidental situations it can potential have an important impact. It is described by the relation:

h rad = C s 1 e f + 1 ec -1 T 4 f,s -T 4 c,s T f,s -T c,s (1.40) 
Where:

C s is the Stefan-Boltzmann constant. e f and e c are the fuel and cladding emissivities. T f,s and T c,s are the external fuel and internal cladding surface temperatures.

• Conduction

The conduction heat transfer term can be seen as a series of thermal resistances in the gap and the fuel and cladding surfaces. With some simplication the conduction term can be written as:

h cond = λ gap s + β 2 (∆R f + ∆R c ) + l f + l c (1.41)
Where:

λ gap is the gap thermal conductivity aected by the ssion gas releases. ∆R f and ∆R c are the arithmetic mean roughness for fuel and cladding surfaces. s is the gap width and β 2 is a model parameter. l f and l c are the gas extrapolation lengths for fuel and cladding surface. The extrapolation lengths allow to take into account the eective gap seen by the gas molecules. It is especially important when the gap width is small in comparison with the gas mean free path.

• Contact

When there is contact between the fuel pellet and the cladding the heat transfer improves depending mainly on the contact pressure [START_REF] Brochard | Modelling of pellet cladding interaction in pwr fuel[END_REF]. It is modeled by the contact heat transfer coecient.

h cont = β 5 λ∆R P c ∆R 2 σ g β6 (1.42) 
Where:

P c is the contact pressure. β 5 and β 6 are model parameters. λ and ∆R are the mean conductivity and roughness of fuel and cladding. σ g is the minimum between the fuel and cladding yield stress tensor.

It is important to notice that there are additional models for calculating the high burn up structure and cladding oxidation detailed in [START_REF] Marelle | ALCYONE V1.4: Notice de Présentation[END_REF]. These models have a direct impact in reducing the conductivity of the fuel and the cladding. Indirectly they aect the ssion gas releases in the gap and the cladding ductility. These aspects can have a very important role during accidents.

Boundary conditions

In order to solve the equations mechanical and thermal boundary conditions are needed. The mechanical ones are:

The loading on the external surface of the cladding is the uid pressure.

There is no uid penetration through the walls.

Unilateral fuel pellet cladding contact

Equal axial strains for fuel and cladding.

The thermal boundary conditions are related to the quantities provided by other codes or by integrated simplied models:

The power generation in the fuel rod. Usually average values are given in the whole fuel pellet and the radial prole is reconstructed based on simplied neutronic models or empirical correlations.

The cladding wall temperature.

Numerical discretization

In thermal-hydraulics we will see that dierent channels are dened (e.g. quarter of assembly).

Usually for each channel one representative fuel pin is modeled by the fuel-thermomechanics code.

The dierent fuel pins are treated independently and their modeling can be easily parallelized. For their space discretization nite elements are used. The fuel pin is discretized axially and radially in meshes as illustrated in gure 1.11.

Figure 1.11: Axial and radial discretization of a fuel pin [START_REF] Targa | Development of multi-physics and multi-scale Best Eort Modelling of pressurized water reactor under accidental situations[END_REF].

Each axial mesh is modeled using a 1D axisymmetric radial geometry with plane strain deformation. The axial stress is considered independent of the axial position and depends on the gap pressure creating a coupling between the slices. The mechanical equilibrium equation is integrated and the radial displacements u r together with the axial strain zz are calculated. The heat equation is solved and the temperatures are calculated on the dened radial grid for each slice. Concerning the time discretization, a Gauss-Seidel coupling between thermal and mechanical modeling is performed for each slice and time step. This is presented in gure 1.12. The iterations stop based on convergence criteria for radial temperature distribution, gap width and gas swelling [START_REF] Marelle | ALCYONE V1.4: Notice de Présentation[END_REF]. [START_REF] Marelle | New developments in ALCYONE 2.0 fuel performance code[END_REF] is a 3D nite element code PWR fuel code developed by a common project between CEA, EDF and Framatome within the PLEIADES framework [START_REF] Planco | PLEIADES: a unied environment for multi-dimensional fuel performance modelling[END_REF]. The CASTEM [37] nite elements code is used for space discretization in both the thermal and mechanical modeling. ALCYONE V1.4 [START_REF] Marelle | New developments in ALCYONE 2.0 fuel performance code[END_REF] can treat the fuel rod evolution under both nominal and transients conditions. For the thesis purposes the 1D approach described in the Section 1.4.3.4 is used.

Thermal-hydraulics modeling 1.5.1 Basics

The eld of thermal-hydraulics studies the coolant ow behavior in the dierent systems of the PWR from core to steam generator and condenser. In the context of the thesis we focus in the core region where, at nominal conditions, liquid water is entering from the bottom of the fuel assemblies with an average mass ow rate of 18000kg/s at an average temperature 290 • C. It receives heat from the power generation along the core and exits from the top at an average temperature of 330 • C under nominal pressure of 155 bars. The reactor conditions, the geometry and the power produced in the core have an important impact on the water ow. Before presenting the constitutive equations we introduce basic thermal-hydraulic phenomena occurring in a PWR and related quantities [START_REF] Tong | Thermal analysis of pressurized water reactors[END_REF], [START_REF] Todreas | Nuclear Systems I: Thermal Hydraulic Fundamentals[END_REF].

Heat transfer

The heat generated in the core leads to temperature increase in the fuel and cladding. The liquid water owing through the assemblies serves as a coolant and extracts the generated heat. This can result in the formation of vapor bubbles. Two-phase ow regimes are created with dierent mechanisms of heat transfer:

• Single phase ow: The cladding wall temperature is inferior to the saturation temperature of the liquid and thus the liquid temperature does not reach saturation. There is no vapor formation resulting in a single phase ow convective heat transfer.

• Sub-cooled boiling: In this case the cladding wall temperature is superior to the uid saturation temperature but the uid bulk temperature has not reach saturation yet. This is called sub-cooled boiling. At a rst phase initiated at the Onset of Nucleate Boiling (ONB), small vapor bubbles are created near the cladding wall but cannot leave the wall because they instantly condensate. Both the liquid and wall temperature increase weakly in this phase. When the water temperature is high enough (Onset of Signicant Void) the bubbles can leave the wall and transfer to the bulk of the water.

• Vapor lm boiling: If the heat ux coming from the fuel is higher than a critical threshold called Critical Heat Flux (CHF) then the uid around the cladding vaporizes enough creating a vapor lm. The heat transfer reduces signicantly leading to an instant increase of the cladding temperature. The phenomenon is called Departure from Nucleate Boiling (DNB) and is a crucial phenomenon for safety studies.

Mass transfer

During the axial ow, as we mentioned, vapor can be produced from sub-cooled boiling. Since the vapor bubbles are generated near the cladding surface where the temperature is higher can condense as they move towards the bulk of the water. There is thus a mass transfer between vapor and liquid.

Pressure drop

There is a pressure drop on the coolant along the axial ow due to three main eects: gravity, acceleration and friction. Friction is a result of the continuous along the ow wall friction and of the singular friction due to local obstacles like mixture grids. The presence of vapor aects the friction and thus must be taken into account. The acceleration pressure drop is related to the density decrease and is signicant only when vapor appears due to the density dierences between the two phases.

Balance equations

The behavior of the coolant ow in the core is described by a general set of local instantaneous balance equations of mass, momentum and energy on a constant control volume V (eulerian form). There is one set of equations for each eld and one for the interface between two elds. Since we focus on liquid and vapor phases of water there are a total of 9 equations. For liquid and vapor phase k = l, v the local mass balance equation and the balance at their interface are:

∂ρ k ∂t + ∇ • (ρ k υ k ) = 0 (1.43a) ρ l ( υ i -υ l ) • n l + ρ v ( υ i -υ v ) • n v = 0 (1.43b)
Where:

ρ k and υ k are the phasic densities and velocities.

υ i is the velocity of the interface between the two phases and n l =n v the normal vector on the interface.

The local momentum balance equation and the balance at their interface are:

∂ρ k υ k ∂t + ∇ • (ρ k υ k ⊗ υ k ) = ρ k g + ∇ • (τ -pI) (1.44a) ρ l ( υ l -υ i ) • n l ( υ l -υ v ) = (τ -pI) l • n l + (τ -pI) v • n v (1.44b)
Where:

g is the gravity force per unit mass.

τ is the shear stress tensor per unit area.

p is the isotropic pressure and I the unitary tensor.

The local energy balance equation and the balance at their interface are:

∂ρ k u k ∂t + ∇ • ρ k h k u k = ρ k g • u k + ∇ • (τ • υ k ) -∇ • q k + q (1.45a) ρ l ( υ l -υ i ) • n l (u l -u v ) = (τ l • υ l -τ v • υ v ) • n l -(p l • υ l -p v • υ v ) • n l -( q l -q v ) • n l (1.45b)
Where:

u k = u i + 1 2 υ 2
is the stagnation energy and h k = u k -p ρ k its corresponding enthalpy.

q expresses both the volumetric heat source due to the heat ux at the cladding external surface and the power density deposition in the uid.

q k is the heat ux induced by thermal conductivity and turbulent mixing.

All the above equations are derived without considering surface tension on the interface. If the surface tension is included additional terms are included in the interface equations to represent the resulting accumulation of mass, momentum and energy. More details can be found in [START_REF] Todreas | Nuclear Systems I: Thermal Hydraulic Fundamentals[END_REF].

The modeling of these equations in the reactor core has rapidly evolved the last decades with the increase of computational power. Computational Fluid Dynamics (CFD) codes have been developed for two-phase ow with various degrees of approximations. The dierent CFD currently available methods dier on the treatment of time and space linked to the turbulunces and twophase interfaces. A state of the art of these methods can be found in [START_REF] Bestion | From the direct numerical simulation to system codes-perspective for the multiscale analysis of LWR thermal hydraulics[END_REF] and [START_REF] Bestion | Applicability of two-phase CFD to nuclear reactor thermalhydraulics and elaboration of Best Practice Guidelines[END_REF] In DNS the local instantaneous equations are solved directly taking into account all the turbulences and the two-phase interfaces. For this reason it is a computationally expensive method used for very local phenomena at the scale of µm. LES method can be a computationally more ecient alternative for larger scales of the order of mm. They are used for simulations inside an assembly. The interfaces are treated through space ltering where interfaces with length larger than the lter size are simulated directly while the ones with length smaller than the lter size are treated statistically. This method can be applied when the lter size is smaller than the turbulence scales.

(U)RANS is a method using statistical time averaging for both the turbulences an the interfaces leading to average quantities such as the void fraction. For 3D core design and safety studies the computational cost of the previously mentioned methods is still prohibitive. Besides that, there is no need to go beyond the subchannel scale (cm), calculate the ne proles of the important quantities (e.g. velocity) and track the exact evolution of the interfaces. For these reasons, porous medium methods are used to calculate the evolution of macroscopic quantities up to the subchannel scale. The physical quantities in the balance equations are both averaged spatially at this scale and in time using (U)RANS techniques. The time lter size must be large enough to average the high frequency turbulences but small enough for the transient evolution. Additionally, since in the subchannel scale there are solid structures, the equations have to be multiplied by a characteristic uid/solid function representing the presence presence of uid or solid in the considered volume respectively. The interfaces are treated statistically or implicitly by heat, mass and momentum transfer models.

The porous medium modeling with 4 equations is used in this thesis with the thermal-hydraulic code FLICA4. In the following Section the modeling aspects relevant to FLICA4 are presented.

Porous medium modeling with 4 equations

The balance equations for the two-phase mixture and the mass balance for the vapor consist a total of 4 equations to be solved [START_REF] Gregoire | Établissement formel d'un modèle diphasique macroscopique à 6 equations, lien avec le modèle macroscopique à 4 equations[END_REF]. The integration is performed on an elementary volume without explicit modeling of the uid and solid structures and thus a characteristic function called porosity is applied to distinguish between uid and solid. Besides that, for the two phases a space and time averaging of quantities governing the equation is applied. Finally closure laws are necessary to solve the equations together with boundary conditions and a numerical discretization.

Space averaging

In the elementary volume V , where both solid structures and uid are present in the medium, the volumetric average of a quantity w( r) with r ∈ V is dened as:

< w(t) >= 1 V V w( r, t)dr (1.46)
Considering V f as the volume of the uid in V and if we assume that the solid structures are immobile, the porosity of the medium can be dened as:

φ ≡< χ f (t) >= V f V (1.47)
Where χ f ( r, t) is the local uid/solid characteristic function. With this denition of the porosity we obtain the following equivalence for the uid volumetric average of a quantity:

< w(t) > f = < χ f (t)w(t) > < χ f (t) > (1.48) 1.5.3.

Time averaging

The time is descritized for the solution of the equations and in each time step average quantities are computed:

w( r) = 1 ∆T ∆T w( r, t)dt (1.49)
The ∆T size must be large enough to average high frequency two phase uctuations but small enough compared to the evolution of transient phenomena that we want to study.

Phase function

The presence of phase k = l, v is described by the phase characteristic function α k ( r, t) that equals 1 when phase k is present and 0 otherwise. This leads to the denition of void fraction as:

< α >= 1 V V α v ( r, t)dr = V v V (1.50)
Where V v is the volume occupied by the vapor in the volume V . This phase function is used together with the phasic densities to dene the average phasic quantities:

{w} k f = < α k ρ k w > f < α k ρ k > f (1.51)
Where α v =< α > and α l = 1-< α >. The mixture quantities are averaged with a similar ponderation:

{w} f = < ρ k w > f < ρ k > f (1.52)

Balance equations

There are a total of 4 equations: mixture mass balance (sum of liquid and vapor mass balance equations), vapor mass balance, mixture momentum balance and mixture energy balance. For each quantity of the two phase ow balance equations we will use its corresponding phasic or mixture average but we will keep the same notation as in the general previous framework by omitting the averaging symbols. The 4 equations are written as:

φ ∂ρ ∂t + ∇ • (φρ υ) = 0 (1.53a) φ ∂ρc ∂t + ∇ • (φρc υ) = -∇ • φρc(1 -c) υ r + ∇ • K T ∇c + Γ v (1.53b) φ ∂ρ υ ∂t + ∇ • (φρ υ ⊗ υ) = -∇ • φρc(1 -c) υ r ⊗ υ r + φρ g + ∇ • φ(τ -pI) + φτ f (1.53c) φ ∂ρu ∂t + ∇ • φρh υ = -∇ • φρc(1 -c)(h v -h l ) υ r + φρ g • u + ∇ • φ(τ • u) -∇ • φ q + φq (1.53d)
• Equation 1.53a is the mixture mass balance. The two terms correspond to the temporal and advective contributions with ρ and υ the mixture density and velocity.

• Equation 1.53b is the vapor mass balance. The rst two terms again correspond to the temporal and advective contribution with c = αvρv ρ and υ r = υ vυ l is the relative velocity. The third and forth are the dispersions average and turbulent contributions with K T the turbulence diusion coecient. The fth term Γ v is the vapor mass production due to vaporization occuring in contact with the heating walls and due to mass exchange at the liquid-vapor interface.

• Equation 1.53c is the mixture momentum balance. The rst three terms represent the temporal, advenction and average dispersion contributions. The forth and fth are the gravity and stress contributions. The sixth is the friction force.

• Equation 1.53d is the mixture energy balance. The rst three terms represent the temporal, advenction and average dispersion contributions. The forth and fth are the gravity and stress contributions while the sixth and seventh are the wall heat ux and volumetric heat sources contributions.

Some of the main assumption made to derive these equations are:

1. The mixture is considered isobaric.

2. The vapor is considered to be at saturation.

The derived set of equations need some closure laws in order to be solved since terms like the relative velocity and the stress gradient must be modeled.

Closure laws

There are many options for each closure law. In the following we list the ones used in this thesis detailed in [START_REF] Aniel | Flica4: status of numerical and physical models and overview of applications[END_REF] and [START_REF] Fillion | Version 1.11.2 PUB, User guide, Reference manual of modules and procedures[END_REF].

• Equations of state: The phasic properties (e.g. density, enthalpy, viscosity) are functions of pressure and temperature. We consider isobaric p l = p v = p and isothermal T l = T v = T conditions. Vapor is considered to be at saturation and thus the equations of state for densities and enthalpies reduce to:

ρ l = ρ l (p, T ) , h l = h l (p, T ) , ρ v = ρ v (p), , h v = h v (p) (1.54) 
The mixture density and enthalpy are dened as ρ = αρ v + (1a)ρ l and h = ch v + (1c)h l respectively.

• Relative velocity: Drift ux models are used expressing the vapor velocity as:

υ v = C 0 J + υ vj (1.55)
Where:

J is the volumetric ux.

C 0 is a concentration parameter representing the global eects due to void and velocity proles.

υ vj is the eective drift velocity and represents the local relative velocity eects.

Ishii correlations are used for calculating C 0 and υ vj .

• Heat transfer: The temperature on the cladding wall T w , the uid temperature T f and the wall heat ux Φ w describe the three heat transfer modes presented in the thermo-hydraulics basics. They are modeled by dierent correlations and transitions conditions:

Single phase ow: T w < T sat + ∆T sat , where T sat is the saturation temperature and ∆T sat is modeled by the Jens & Lottes correlation. The temperature dierence is calculated by:

(T w -T l ) = Φ w H c (1.56)
Where H c is the convective heat transfer coecient calculated by Dittus Boelter expression.

Sub-cooled boiling: T w = T sat +∆T sat and T l < T sat . This heat transfer is characterized by a constant wall temperature. The thermal ux now is divided in two fractions, one that heats the sub-cooled water (moderate heat transfer) and one that creates the vaporization (very ecient heat transfer). The vaporization fraction increases as the uid temperature increases. In PWR nominal operating conditions the saturation temperature is not reached and thus nucleate boiling does not occur.

Vapor lm boiling: It is initiated when DN BR = Φc Φw < 1.3. DN BR is the Departure From Nucleate Boiling Ratio. Φ c is the CHF depending mainly on the pressure, mass ux and quality and is calculated by W 3 correlation. The value 1.3 is a penalization taking into account the uncertainties of the CHF correlation. When this limit is reached a post-DNB vapor lm heat transfer occurs described by:

(T w -T f ilm ) = Φ w H BST (1.57)
Where T f ilm = 0.5(T w + T sat ) and H BST is the heat transfer coecient calculated by Bishop-Sandberg-Tong expression.

• Mass transfer: It models the vaporization of liquid that is divided in two parts

Γ v = Γ v,w + Γ v,I .
The rst term represents the vapor generation on a heating surface:

Γ v,w = XS h Φ w h v,sat -h l,sat (1.58) 
Where S h is the heated surface in the elementary volume and X is a fraction representing the fraction of the heat ux used to vaporize the liquid. If T w < T sat +∆T sat there is single phase ow and X = 0 and if T l = T sat there is nucleate saturated boiling and X = 1. Between the two conditions:

X = T w -T sat -∆T sat T w -T l -∆T sat (1.59)
The second term represents the mass transfer at the interface (e.g. condensation) and it is calculated by:

Γ v,I = Φ I h v,sat -h l,sat (1.60) 
Where Φ I is the heat transfer at the interface calculated by a recondensation model.

• Momentum transfer: It is the modeling of friction and shear stress related contributions.

Friction occurs with the solid structures in contact with the uid ow. It is modeled by:

τ f = - 1 2 ρ υ υ Λ k D h + K s (1.61)
Where:

D h = 4A
Pw is the hydraulic diameter with A the cross-section ow area and P w and wetted perimeter.

The tensor Λ k accounts for the continuous friction distributed along the wall and is calculated by a correlation based on an isothermal friction coecient and corrections taking into account the heated wall and the two phase ow. The tensor K s accounts for singular pressure drops due to local obstacles (e.g. mixing grids) and is provided by the user when the geometry is dened.

The shear stress tensor is modeled by:

τ k ij = µ k (1 + M t k ) ∂υ i k x j + ∂υ j k x i (1.62)
Where µ k M t k is the turbulent viscosity for each phase k.

• Thermal source: They consist the two last terms in the mixture energy balance. The rst one is the heat ux induced by thermal conductivity and turbulent mixing:

q = λ l c p,l (1 + K T )∇h deb (1.63)
Where:

λ l and c p,l are the uid conductivity and specic capacity. h deb is the debiting enthalpy dened as

h deb = Gvhv+G l h l G
with G k and G the phasic and mixture mass ow rates.

The second term accounts for the heat ux at the cladding external surface and the volumetric heat sources in the elementary volume mainly due to photon energy deposition.

q = Q f + Φ w S w V f (1.64) 
Where:

S w is the wall surface.

V f is the uid volume.

Q f = γ Ptot
V f is the power density deposition in the uid calculated as a small fraction γ = 0.026 of the total power P tot produced in the core.

Boundary conditions

Two dierent categories of boundary conditions are necessary: Thermal power conditions: they require the computation of the heat sources. They are provided by solving the power generation (neutronics) and heat conduction equations (fuel thermomechanics). Dierent codes can be used to solve thoses equations.

Hydraulic ow conditions: a selection of the mass ow, uid enthalpy and pressure are given at the inlet and outlet of the geometry. For the 4 equation porous modeling in this thesis the mass ow and enthalpy are given at the inlet while the pressure is given at the outlet.

For REA calculations the thermal power boundary conditions vary in time.

Numerical Discretization

For space discretization nite volume method are used where the balance equations are integrated on a discretized mesh. In each mesh the solutions (ρ, ρc, ρυ, ρu) are considered constant. The integration of the equations leads to the calculation of these quantities on the interface between the meshes. For the convective terms an approximate Riemann solver is used while for the diusive a VF9 calculation scheme is adopted. For time discretization an implicit scheme solved by a Newton method is used where the Newton residual is calculated by a preconditioned conjugate gradient. More details can be found in [START_REF] Targa | Development of multi-physics and multi-scale Best Eort Modelling of pressurized water reactor under accidental situations[END_REF] and [START_REF] Aniel | Flica4: status of numerical and physical models and overview of applications[END_REF].

FLICA4 code

The code used for the thermal-hydaulics modeling in this thesis is FLICA4 [START_REF] Toumi | FLICA4: a three dimensional two-phase ow computer code with advanced numerical methods for nuclear applications[END_REF] [45], a 3D twophase ow code specially devoted to reactor core and developed at CEA. It uses porous medium 4 equation modeling presented previously. Most of the types of reactors and experimental facilities can be modeled under both stationary and transient conditions. In the context of the thesis the radial discretization is one thermal-hydraulic channel per quarter of assembly and the axial is 30 meshes along the active fuel length. The reector is not modeled. FLICA4 is used in a multi-1D axial modeling by considering the channels to be isolated.

Multi-physics Rod Ejection Accident (REA)

REA may occur in a nuclear reactor if there is an unwanted increase in ssion rate and reactor power due to a control rod ejection that may damage the reactor. It is a design basis accident, classied as a category 4 event (i.e. with a frequency of occurrence evaluated at 10 -4 -10 -6 per reactor, per year). A control rod is ejected after experiencing a mechanical failure of the driven mechanism resulting in a strong pressure dierence between the internal (155bar) and the external (1bar) of the core. The ejection duration is very short (0.1s) due to this pressure dierence. The control rod is made of neutrons absorbents to control the ssion rates in the reactor and thus its fast removal will induce an insertion of positive reactivity in the core that will increase rapidly the ssion rates and consequently the power. The radial map of the power is expected to be deformed leading to a high deformation factor around the area of the ejection as can be seen in gure 1.14.

The intensity of the transient will depend on the reactivity inserted ρ inj and the eective delayed neutron fraction β ef f . If ρ inj > β ef f the transient evolution is governed by the prompt neutrons and thus is more violent (supercritical prompt transient). In REA studies two reactor initial conditions prior to the ejection are considered: Hot Full Power (HFP) when the reactor is at nominal power and temperature conditions and Hot Zero Power (HZP) when the reactor is shutdown but still with a reactor temperature of 290 • C. The latter leads to more violent transients and potentially prompt neutron driven because at HZP the control rods are inserted deeper in the core. This means that the control rod worth and thus the injected reactivity is larger. For this reason we consider HZP initial conditions. Three dierent phases can be identied during REA governed by dierent physical aspects:

1. The rst phase, where the transient starts followed by rapid local increase in power due to the insertion of positive reactivity. The phenomenon is considered quasi-adiabatic because the temperatures of the cladding and coolant do not increase signicantly due to thermal inertia of the fuel. This phase is governed mainly by neutronics.

2. The second phase, where the temperature of the fuel starts rapidly to increase leading to a Doppler feedback eect. As we have seen the increase of fuel temperature will lead to the broadening of the U-238 absorption resonances resulting in more neutrons absorptions and thus exerting a negative feedback eect on the reactivity and a corresponding decrease of power. It is important to notice that until the end of this phase the heat ux does not reach the coolant, and thus the coolant temperature and density are more or less constant at its initial value. This phase is governed mainly by neutronics strongly coupled with fuelthermomechanics.

3. The third phase, where the heat is transferred to the coolant leading in a thermal-hydraulic evolution of the system. The cladding temperature increases during this phase and if DNB occurs it can exceed its melting point inducing a failure of the cladding. The coolant-moderator temperature is increasing and the density decreasing. This leads to a negative moderator feedback eect due to the less eective slowing down of neutrons (spectrum hardening). The Doppler combined now with the moderator feedback eect decrease the power even more. At the end of this phase the SCRAM safety system will react and insert the remaining control rods. The whole transient duration is of the order of 1-2 seconds. This phase is governed by strong coupling between neutronics, fuel-thermomechanics and thermal-hydraulics.

Under the REA three phases, fuel pellet and cladding experience dierent phenomena aecting their integrity and properties. 

Fuel pellet behavior

The main phenomena occurring in U O 2 fuel pellets are: heat up, fragmentation, swelling and ssion gas releases. Adiabatic heat up occurs in the initial phase and the radial temperature follows the radial power prole with peak at the periphery for irradiated fuel. In the later stages of the transient (phase 3) when the heat is conducted the temperature prole approaches its normal parabolic shape. This behavior can be seen in gure 1.15. For this reason the fuel melting, if it occurs in the rst two phases of the transient, will happen close to the fuel pellet periphery. The local melting U O 2 temperature for un-irradiated fuel is 3120K and the associated enthalpy is 1150J/g. For irradiated fuel these limits are reduced. Circumferential cracks can occur in fuel pellets during the phase 1 and 2 due on the boundary of the high burn-up structure induced by tensile stresses. During the late stages of the transient radial cracks are created due to tensile hoop stresses. Additionally, retained ssion gases are released in the gap and increase the internal gas pressure creating ne fragments. This is enhanced by the fuel cracks and the higher fuel temperature and gas concentration in the "rim" region that induce grain boundary decohesion. Fuel transient swelling by the growth of pores and bubbles is shown by experimental results to be less important than thermal expansion in their contribution to the gap closure. This can lead to a pellet cladding mechanical interaction (PCMI) during the initial phase of the transient.

Cladding behavior

The main phenomena occurring in the zircaloy IV cladding are: heat up, transient deformation, water corrosion and failure. The heat up occurs mainly by heat conduction from the fuel pellets in the third phase of REA and depends strongly on the width and condition of the gap (delayed heating). Besides that, heat up occurs also through gamma attenuation directly with the power increase in the rst two phases of the transient (prompt heating). Since heat up occurs mainly through conduction the cladding inner surface temperature is higher than the outer one inducing thermal stresses and aecting the local ductility. In the third phase the heat extracted by the coolant can lead to DNB resulting in a rapid increase in cladding temperature. The local melting temperature for the cladding is 2035K.

Thermal expansion, pressure dierence and the potential PCMI lead to cladding deformation during the transient. In the rst phase of the transient PCMI may have a big impact whereas pressure dierence on the later phase.

High cladding temperatures occurring in post-DNB conditions accelerates cladding corrosion through oxidation with U O 2 fragments in the inner surface and with coolant water on the outer surface. This causes embrittlement and decrease of ductility that can lead to failure during the last phase of the transient. Besides that, hydrogen is also produced and diuses to the cold surface of the cladding. When its local concentration exceeds the maximum solid solubility zirconium hydrides precipitations occur further reducing the ductility of the cladding.

Failure of the cladding causes fuel dispersion in the coolant generating pressure pulses that induce mechanical damages in the nearby components such as the fuel assemblies and the pressure vessel.

There are three main failure modes.

• PCMI occurring in the rst and second phase of the transient when the fuel pellet heats up mainly due to expansion. The cladding is at low temperature with low ductility increasing the probability of failure. This mode depends strongly on the initial conditions of the fuel rod.

• Cladding ballooning and burst under high temperatures due to post-DNB conditions.

• Cladding disruption under quenching from post-DNB high temperatures during the third phase of the transient. It occurs due to cladding embrittlement by the enhanced oxidation under high temperatures.

For HZP initial conditions and prompt driven power pulses the rst mechanism is more prominent for high burn-up fuel rods while the other two are more probable for low burn-up rods. A simplied synthetic overview of the dierent phenomena and the resulting failure mechanisms is provided in gure 1.16. 

Safety

The important quantities determining the general fuel rod behavior under REA are the power pulse characteristics (peak, width), the coolant conditions (pressure, temperature, ow rate), the burn-up state (gap width, cladding corrosion, internal pressure, radial power distribution) and the fuel rod design (initial geometries, fuel composition, ll gas pressure). For ensuring the safety of the reactor during REA, meaning that no failure will occur, limits are being imposed on dierent quantities. The limits vary in dierent countries. We present the main ones based on [START_REF] Le Pallec | Uncertainties propagation in the framework of a rod ejection accident modeling based on a multiphysics approach[END_REF] and [START_REF] Nea | Fuel safety criteria in NEA member countries[END_REF]:

• Enthalpy limit of the fuel (radial average) in relation with the mechanical stress exerted by the fuel to the cladding: Deposed enthalpy 837J/g for irradiated fuel and 942J/g for fresh (Fuel dispersion) → PCMI eect.

• Limit on the cladding maximum temperature due to embrittlement and oxidation: T max c < 1482 • C (Cladding fragmentation risk) → above this temperature uncontrolled hydrogen production (exothermic reaction) that can lead to explosion.

• Additional limits: Fuel melt volume < 10% of the total (core melt risk), number of pins with Boiling crisis < 10% of the total.

Coupling framework

Multi-physics coupling modeling for PWR transients has been the subject of research across the world with undergoing projects such as CASL [START_REF] Turinsky | Update on capabilities development at casl[END_REF] [49] and NEAMS [START_REF] Neams | [END_REF] in USA and NURESAFE [START_REF]NURESAFE[END_REF] in Europe. At CEA, CORPUS project [START_REF] Le Pallec | Neutronics/Fuel Thermomechanics coupling in the framework of a REA (Rod Ejection Accident) Transient Scenario Calculation[END_REF] based on SALOME [START_REF]SALOME[END_REF] open source software was developed and recently has been extended to treat REA with neutronics, fuel-thermomechanics and thermal-hydraulcis [START_REF] Targa | Development of multi-physics and multi-scale Best Eort Modelling of pressurized water reactor under accidental situations[END_REF] BE and Best Eort coupling capabilities. BE is a coupling representing the most important phenomena with reasonable accuracy and an optimized computational cost. Best Eort is a time consuming coupling with each physic being detailed with few assumptions in order to model as good as possible the phenomena of interest.

In this thesis the Best Eort coupling is established between APOLLO3 R , FLICA4 and ALCY-ONE V1.4 codes respectively as seen in gure 1.17. The coupling scheme starting from HZP initial core conditions involves, at each time step, an initial ALCYONE1 calculations alimenting FLICA4 with the resulting cladding wall heat ux Φ wall . This together with the previous step APOLLO3 R results allows FLICA to calculate the cladding wall temperature and coolant density. The cladding wall temperature is given to ALCYONE1 for a second more accurate calculation and the resulting eective fuel temperature calculated by Rowlands formula is provided to APOLLO3 R together with the coolant density from FLICA4. A new neutronic calculation is performed and the iterations continue until a user dened threshold. All the exchange quantities are spatial elds. The Best Eort coupling scheme is illustrated in gure 1.18.

The BE coupling is between APOLLO3 R and FLICA4. The simplied thermal module of FLICA4 is used without mechanical consideration. It is an explicit coupling starting from HZP initial core condition. At rst a FLICA4 calculations is performed using the previous step APOLLO3 R results for the power injected in the fuel and the uid. FLICA4 then calculates the temperature distribution in the fuel and the corresponding Rowlands eective fuel temperature. It also computes internally the cladding wall heat ux in order to solve the thermal-hydraulics equations and calculate the moderator temperature and density. These results are given APOLLO3 R to update the neutronic results before advancing to the new time step. The iterations continue until a user dened threshold is reached. This coupling can be seen in gure 1.19. As in the Best Eort coupling all the exchange quantities are spatial elds. 

Best Estimate Plus Uncertainties (BEPU)

BEPU is a systematic approach where calculations taking into account the most important physical phenomena with reasonable approximations and estimation of their respected uncertainties are used for licensing and safety evaluations. The phenomena are usually identied by PIRT 7 approaches. BEPU is a step forward from conservative approaches permitting to reduce the margins in safety criteria as illustrated in gure 1.20. The goal is not to eliminate completely conservatism but to minimize it based on our current state of knowledge. It is based on the ALARA (As low as reasonable achievable) principle concerning the radiation risks for human beings and it is a very complex approach evolving in time. Historically the BEPU concept is around for the last 30 years with various documents released by NRC, IAEA and other institutions shaping its form. BEPU has been used in the licensing of two reactors so far: the Angra-2 (Brazil) and the Atucha-2 (Argentina) [START_REF] Auria | BEPU status and perspectives[END_REF].

Figure 1.20: Safety margins and acceptance licensing criteria [START_REF] D'auria | Strengthening nuclear reactor safety and analysis[END_REF].

BEPU short history

The rapid increase of nuclear reactors size in USA (60s) lead to the need of new requirements for safety regulations because the ones applied on smaller scale reactors could not be extrapolated on the new reactors. Based on the principle of defense in depth the US NRC adopted a conservatism approach by the release of 10 CFR 50.46b document and some guidance rules in its appendix-K (70s). In this approach penalized safety acceptance criteria were identied for important quantities of the reactor and basic guidelines for the modeling of important underlying physical phenomena were provided.

The increase in the development of Best Estimate codes (mainly concerning Thermal-Hydraulics) in the 80s highlighted the large margins in the safety calculations. US NRC in 1987 allowed the use of Best Estimate codes together with a validated uncertainty evaluation methodology for safety calculations. This lead to a rapid increase in BEPU research in 90s and the release of CSAU: Code scaling, applicability and uncertainty, a roadmap with 14 general steps that need to be followed for safety calculations. These steps treated aspects of code validation and verication, applicability, scaling distortions, nodalization optimization, uncertainty evaluation and many other. A variation of CSAU with clearer steps was EMDAP: Evaluation model development and assessment process. Both of these were not complete methodologies but roadmaps that the proposed methodologies will need to follow. Since then in USA and Europe a big eort was made to develop consistent BEPU methodologies in the following years. In order to apply and compare the dierent methodologies international projects like UMS [START_REF] Wickett | Report of the Uncertainty Method Study for advanced best estimate thermal-hydraulic code application[END_REF] and BEMUSE [START_REF] Reventos | Main Results of the OECD BEMUSE Programme[END_REF] were created. The results of these projects highlighted the importance of the input uncertainty quantication and the user and code eect. This lead to the PREMIUM benchmark [START_REF] Nea | A Benchmark on the Quantication of the Uncertainty of the Physical Models in System Thermal-hydraulic Codes[END_REF] focusing mainly on the input uncertainty quantication of the physical models and comparing the results between the existing methodologies. The results were not satisfactory and the conclusion was that a more systematic approach needed to be dened. This systematic approach was called SAPIUM [START_REF] Baccou | SAPIUM: A Systematic Approach for Input Uncertainty Quantication[END_REF] and is currently under development.

Additionally, UAM benchmark [START_REF] Ivanov | Benchmarks for uncertainty analysis in modelling (UAM) for the design, operation and safety analysis of LWRs[END_REF] was launched and is currently ongoing concerning multiscale and multi-physics uncertainty analysis. Dierent exercises from separate physics at pin scale to coupled multi-physics at the core scale for both steady state and transient scenarios are included. More details about BEPU evolution are provided in [START_REF] Rohatgi | Historical perspectives of BEPU research in US[END_REF].

BEPU types methodologies

Various BEPU methodologies were developed so far across USA and Europe from both industry and research institutions [START_REF] D'auria | Approaches for computing uncertainties in predictionsof complex-codes[END_REF], [START_REF] Glaeser | Methodologies for uncertainty evaluation of Best Estimate results: advangates and disadvantages of dierent approaches[END_REF]. Most of them follow the CSAU roadmap and can be grouped in three categories depending on the method used to evaluate the uncertainties: the stochastic propagation of inputs uncertainties (SPIU), the extrapolation of output uncertainty (EOU) also called "propagation of output uncertainties") and the deterministic uncertainty estimation (DUE) [START_REF] D'auria | Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation[END_REF].

Stochastic propagation of input uncertainties

The inputs are treated as uncertain quantities with assigned probability density functions (pdf).

Their uncertainties are propagated to the output quantities of interest using the code. Two dierent general approaches exist. In the rst one Monte Carlo sampling is used to approximate the output's pdf by the empirical measure of the output sample. This empirical estimation of expectations or probabilities converge slowly with the sample size 8 . For this reason the usually time consuming code is used to explore the inputs domain and then approximated by a surrogate model that can generate enough evaluations. The empirical measure can then be used to estimate the desired quantile by the empirical quantile. In the second one the non-parametric Wilk's method is applied to get a conservative quantile estimation. More exactly the number of simulations needed to estimate the quantile of interest with a given tolerance is evaluated and the Wilks quantile is then dened as the maximum of the output sample (typically 95% quantile with 95% tolerance is used in nuclear safety studies). This method uses directly the code for the uncertainty propagation.

The rst approach was used initially in CSAU while later BEPU methodologies like: GRS, IRSN and ENUSA used the second one.

Extrapolation of output uncertainty

This method consists in identifying Separate Eect Test (SET) and Integral Test Facilities (ITF) relevant to the under study nuclear power plant and extract experimental data. The code calculation is run on this reduced scale facilities and its discrepancy with the available data is used to quantify the uncertainty in the reduced scale and then extrapolate it to the reactor scale. An emphasis is given on minimizing the user eect on nodalization and on the scalability of the extrapolated uncertainties. UMAE and CIAU are examples of this approach.

Deterministic uncertainty evaluation

In this method the code is used to calculate the sensitivity of the inputs on the output and then using the "sandwich rule" estimate the rst and second moment of the output. The "sandwich rule" is presented in the following Chapter. The most ecient method uses only two code evaluations, the forward and the adjoint solutions to estimate the sensitivities. This method is well adapted for cases of large systems with many inputs. The Adjoint Sensitivity Analysis Procedure (ASAP) calculates the local sensitivities assuming linear relationship between inputs and output. The Global Adjoint Sensitivity Analysis Procedure (GASAP) generalizes ASAP for critical points in the inputs-output phase-space. Data adjustment and assimilation (DAA) can be used to include knowledge from experimental measurements in a Bayesian framework. CASUALIDAD [START_REF] Petruzzi | Uncertainties in predictions by system thermal-hydraulic codes: The CASUALIDAD Method[END_REF], [START_REF] Petruzzi | The CASUALIDAD method for uncertainty evaluation of Best Estimate system Thermal-Hydraulics calculations[END_REF] is an approach that includes ASAP/GASAP and DAA in their uncertainty estimation.

Synthetic comparison

Each BEPU methodology for estimating the uncertainty of the safety quantities of interest has advantages and drawbacks. The stochastic propagation of input uncertainties with surrogate models (SPIU-SM) can estimate the complete output's pdf. However, it introduces an additional approximation error due to the use of surrogate models and it depends on the inputs assigned pdf. Besides that, a limited number of inptus must be selected. Stochastic propagation of inputs uncertainties using Wilk's formula (SPIU-WF) does not have the limitation on input's size, does not introduce an additional error and is using an optimal number of code calculations but it is limited to estimate the quantile of an output and it assumes that the inputs' pdf are true. The extrapolation of output uncertainty needs only one core calculation and does not make any assumption on inputs uncertainty but it needs experimental dataset relevant to the safety analysis and the demonstration of scaling. The deterministic uncertainty evaluation needs two code evaluations and thus is well adapted for large scale calculations with many inputs. It can assimilate experimental data to 8 For a sample size N the empirical mean converges in 1/ √ N .

improve the initial input uncertainty quantication. However, it makes assumptions of linearity between inputs and outputs, although for critical points this can be overcome. It requires the codes capabilities of calculating adjoint solutions, something dicult to be implemented in multi-physics transient calculations using coupling of dierent codes. A synthetic comparison of the methods related to the inputs and outputs uncertainty quantication, the number of code calculations, the possibility of integrating experimental data and their practical implementation is given in table 1.2. A more detailed comparison is provided in [START_REF] Brigs | Uncertainty quantication approaches for advanced reactor analyses[END_REF]. In a full core PWR transient analysis there are many sources of uncertainties [START_REF] Oberkampf | Error and uncertainty in modeling and simulation[END_REF]. The main ones can be grouped in the following categories:

Modeling: The theoretical equations describing a phenomenon include some assumptions and simplications. Besides that physical models and correlations induce further errors.

Input data: Physical (e.g. cross-sections) and technological ( e.g. geometries) quantities in the physical models and equations are uncertain. Additionally, boundary and initial conditions are also uncertain. Experimental measurements are usually used to quantify the above mentioned sources of uncertainties introducing potential correlations.

Nodalization: It involves the dierent steps for solving a specied modeling introducing errors and uncertainties. The phase space of the equations is discretized and the geometry is homogenized. Sometimes a smaller scale geometry is employed inducing scaling eects. Numerical algorithms are used to solve the equations on the selected discretization. These algorithms converge to approximate solutions.

It is important to highlight that the user eect can have a great impact on the sources of uncertainties (mainly on the modeling and nodalization) due to discrepancies in data interpretation and lack of experience. However, this eect is dicult to quantify.

BEPU research

The continuous development and improvement of BE codes together with increasing BEPU safety needs motivates the currently ongoing research for applying and improving the current methodologies. Some examples of recent works are following. In [START_REF] Lutsanych | Improving Best Estimate approaches with uncertainty quantication in nuclear reactory Thermal-Hydraulics[END_REF] improvements in thermohydraulic LWR code assessment and validation and in the input uncertainty quantication of the code inputs are presented. FFTB method is used to dene the variation ranges of each input. In [START_REF] Mesado | Uncertainty Quantication and Sensitivity Analysis for Cross Sections and Thermohydraulic Parameters in Lattice and Core Physics Codes[END_REF] GRS method is applied for neutronic lattice and core BWR steady state calculations. This method is also applied on PWR transient control rod drop focusing on thermal-hydraulics inputs. In [START_REF] Sanchez-Saez | Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using nonparametric methods[END_REF] they explore dierent non-parametric methods alternative to Wilks' formula in a PWR Large-Break LOCA transient. In [START_REF] Martorell | An extended bepu approach integrating probabilistic assumptions on the availability of safety systems in deterministic safety analyses[END_REF] a BEPU methodology is extended to include knowledge from probabilistic safety analysis and is applied on a PWR "Loss of feed Water" scenario. In [START_REF] Blakely | Demonstration of lotus multiphysics bepu analysis framework for lb-loca simulations[END_REF] a neutronics, fuelthermomechanics, thermal-hydraulics multi-physics BEPU analysis for PWR Large-Break LOCA transient is performed.

Motivation and challenges

We saw that in REA strong multi-physics interactions occur between neutronics, fuel-thermomechanics and thermal-hydraulics that need to be modeled in order to predict accurately the transient evolution. We also presented the dierent state of the art codes, their modeling and the dierent available coupling schemes developed at CEA. The motivation of this thesis is to use these modeling advancements in an uncertainty quantication framework. This creates many challenges related to the high computational cost, the large input and output dimensions, dependencies and interactions between inputs and potential non-linearities and discontinuities in the multi-physics transient calculations.

In the previously presented BEPU framework it is clear that there is an eort to develop methodologies for uncertainty analysis with industrial applications that can integrate the modeling advancements of state of the art codes. In this thesis the objective is to explore dierent statistical tools and dierent multi-physics coupling schemes to develop an uncertainty quantication methodology (UQM) that could address the challenges facing the REA modeling.

There are three dierent levels of homogenization for multi-physics transient modeling: the fuel pin, the fuel assembly and the whole core. In an equivalent way we can identify three dierent levels of uncertainty quantication modeling. These two aspects are used as axes in gure 1.21 where their dierent possible combinations are illustrated. In order to better illustrate this categorization we focus on the neutronics modeling only.

Transient modeling

Uncertainties quantification modeling

1 2 3 1 2 3 (1, 1)
Point kinetics with uncertainties on the core effective quantities (control rod worth, Doppler coefficient, etc.).

(1, 2) Assembly level of homogenization with uncertainties on macroscopic crosssection applied homogeneously in the whole core.

(1, 3) Pin by Pin level of homogenization with uncertainties on macroscopic crosssection applied homogeneously in the whole core.

(2, 2) Assembly level of homogenization with uncertainties on macroscopic crosssection taking into account spatial correlations.

(2, 3) Pin by Pin level of homogenization with uncertainties on macroscopic crosssection taking into account spatial correlations.

(3, 3) Pin by Pin level of homogenization with uncertainties on microscopic crosssections. The rst level for transient modeling is the homegenization of the whole core as used in point kinetics. This leads to globally averaged physical quantities. The corresponding level for uncertainty modeling would be the homogeneous application of inputs uncertainties in the whole core.

It can be seen as considering the uncertainties spatially fully correlated. The second level for transient modeling is the assembly scale homogenization as presented in the three step deterministic approach of gure 1.7. This creates 3D physical quantities averaged in each assembly. The equivalent uncertainty modeling level would be to consider spatial correlations for the inputs. For example the uncertainty propagation of microscopic cross-sections in lattice calculations can provide estimate of the correlations between macroscopic cross-sections of each assembly. The third level for the transient modeling is the homogenization at a pin scale allowing the representation of local heterogeneities inside the assembly. This level for uncertainty modeling would be the uncertainty propagation directly from microscopic physical quantities (e.g. microscopic cross-sections in neutronics). The dashed arrow indicates the potential evolution of the transient and uncertainty modeling since we consider that there is no interest for the other modeling combinations. Using this categorization, the REA study of this thesis is situated in the (1, 2) level. We use an assembly scale of homogenization for the transient modeling and we apply the uncertainties homogeneously in the whole core.

Introduction

The complexity of Best Estimate (BE) codes increases as we take into account more phenomena. While this results in an improvement of their accuracy, their predictions will still exhibit uncertainties. This is attributed to various reasons among which the main are: physical quantities, technological data, physical modeling and phase space discretization. Moreover, in cases of strong multi-physics coupling interdisciplinary interactions can occur rendering the uncertainty analysis quite challenging. Large input and output dimensions with dependencies and interactions between inputs and non-linear inputs-outputs relationships are some of the main challenges. This highlights the necessity to consider an adequate uncertainty quantication framework, especially for safety calculations. In such a framework dierent statistical tools are used in order to take into account the input uncertainties, propagate them through the codes to outputs of interest and calculate important statistical quantities. A typical framework for uncertainty quantication is presented in gure 2.1. The framework consists of dierent steps that will be detailed in dedicated Sections. The rst and central step is the selection of the Model/Analysis. The scenario to be studied is dened and the codes that will model it together with their dierent options and nodalization. The inputsoutputs of interest and the statistical quantities to be studied are identied. This step was mainly discussed in the Chapter 1. For presenting the rest of the steps it is easier to start from the end goals: Uncertainty Propagation and Sensitivity Analysis discussed in Section 2.3 and Section 2.7 respectively. In the latter the qualitatively or quantitatively outputs sensitivity to each input is estimated while in the former the inputs uncertainties are propagated to the outputs. In order to achieve those goals many code evaluations are needed, something that in most of the cases is prohibitive due to the computational cost of each evaluation. This issue is overcome by using Surrogate Models to approximate the underlying function between inputs and outputs. They are detailed in Section 2.5. The design and training of surrogate models can be dicult when the inputs and outputs dimensions are large. To this purpose the Dimension Reduction step presented in Section 2.4 aims at identifying a reduced eective input subspace. Code evaluations are needed for the training of the surrogate models. The selection of the inputs points on which the code will be evaluated is called Design of Experiments (DOE) and consist the subject of Section 2.6. There are dierent ways to create DOE but in general it is required that they explore the input space as good as possible. These DOE are called space-lling designs. The inputs probabilistic space from which the DOE will be created is dened in the Input Uncertainty Quantication step. Dierent methods exist that are detailed in Section 2.2. In this thesis we deal with continuous input variables so that their joint distribution is characterized by a joint probability density function (pdf). Model calibration discussed in Section 2.8 can be used in order to improve the initial uncertainty quantication of the inputs based on observed data coming from either measurements or from higher delity codes. Finally, in the last Section 2.9 of this Chapter we give an overview of some state of the art research related to all these steps of the uncertainty quantication framework.

INPUT UNCERTAINTY QUANTIFICATION

Before detailing each step we will introduce basic notations and statistical attributes that will be used in the whole Chapter. We consider the code to be a function between the random input variables X ∈ R d and random output variables

Y ∈ R q . Y = F (X) : R d → R q (2.1)
Depending on the case the variables could be scalar (d, q = 1) or functional (d, q >> 1). Often a dataset of code evaluations will be required to estimate dierent quantities. We will consider the dataset of size N denoted by

D N = X n , Y n = F (X n ) N n=1
. The nth realization of ith input is the scalar X i n . The matrix (vector) containing the observations of functional (scalar) input is dened as X D N with elements X ij D N = X j i for i = 1 . . . N , j = 1 . . . d. The functional (scalar) nth realization of the inputs is a vector (scalar)

X n = (X i n ) d i=1 of size d while X i = (X i n ) N n=1
is the vector of size N containing the evaluations of the ith scalar variable. Equivalent denitions are considered for the outputs. The pdf of the inputs is denoted by p X . Now we will dene some basic statistical attributes. We will consider the case of scalar input and output X, Y (d = q = 1). The random variable X has mean value µ X and variance σ 2 X dened in equations 2.2a and 2.2b together with their empirical estimators μX , σ2 X based on the observed dataset. The former is the expected value of the random variable while the latter is a measure of spreading around its mean value.

µ X = E[X] = Xp X (X)dX, μX = 1 N N i=1 X i (2.2a) σ 2 X = V ar(X) = E[(X -E[X]) 2 ] = (X -µ X ) 2 p X (X)dX, σ2 X = 1 N -1 N i=1 (X i -μX ) 2 (2.2b)
The covariance c XY between the two random variables X, Y is dened in equation 2.3a and its empirical estimator ĉXY in equation 2.3b.

c XY = Cov(X, Y ) = E[(X -E[X])(Y -E[Y ])]
(2.3a)

ĉXY = 1 N -1 N i=1 (X i -μX )(Y i -μY ) (2.3b)
The covariance can be normalized between -1 and 1 in what it is called the correlation coecient ρ XY dened in equation 2.4 together with its empirical estimator. A value of zero indicates no correlation. The correlation increases as the absolute value of the coecient increases towards 1.

It is important to notice that uncorrelated variables do not imply that they are independent while independent variables are necessary uncorrelated.

ρ XY = c XY σ X σ Y , ρXY = ĉXY σX σY (2.4)
Another statistical quantity of the random variable X is the quantile x a , which is dened as the value of the random variable for which P (X ≤ x a ) = a. For example if a = 95% then x 95 is the quantile and the random variable has 95% of being less than this value.

P (X ≤ x 95 ) = 0.95 (2.5)
Finally, the notion of condence intervals is related to an empirical estimation of a statistical quantity (e.g. mean, variance, quantile). It is independent of the quantity to be estimated and depends only on the sample used for the estimation. For example a 95% condence interval for the mean value µ X based on the dataset will be [â N , bN ], where the âN and bN depend only on the dataset, is such that:

P (µ X ∈ [â N , bN ]) ≥ 0.95 (2.6)

Input uncertainty quantication

There are various sources of uncertainties in the inputs variables of a physical phenomenon modeling. In general two broad types are distinguished:

Stochastic (aleatoric) uncertainty: concerning variables that show natural variability.

This means that for the same physical phenomenon and conditions these variables will vary stochastically (e.g. temperature of a room).

Epistemic uncertainty: related to variables that have an uncertainty due to lack of knowledge (e.g. constant variable in a physical law). This uncertainty is reducible by acquiring more observations and insights about the physical phenomenon.

The rst step of the uncertainty analysis is the quantication of the input uncertainties. In literature [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models Contributions to structural reliability and stochastic spectral methods[END_REF] dierent approaches exist based on the prior available knowledge and on the nature of the uncertain variables.

Experts judgment

If not much is known for the uncertainty of a variable and no experimental observations are available then the uncertainty can be quantied from experts based on experience and intuition. If some information is known about the behavior of the uncertainty (e.g. moments, positiveness, bounds) then the principle of maximum entropy can be used to assess the most appropriate pdf.

The dierential entropy for the scalar variable X with pdf p X is dened in equation 2. [START_REF] D'auria | Strengthening nuclear reactor safety and analysis[END_REF].

H(X) = - ∞ -∞ p X (X) log (p X (X))dX (2.7)
For example in the case where we know that the variable is centered around a mean value µ X with variance σ 2 X and that there are no bounds the equation 2.7 is maximized with the following constraints:

∞ -∞ p X (X)dX = 1, ∞ -∞ Xp X (X)dX = µ X , ∞ -∞ (X -µ X ) 2 p X (X)dX = σ 2 X
The Lagrange multipliers method can be used to maximize the entropy under these equality constraints. The objective function for the optimization J and its derivative with respect to p X are shown in equations 2.8a and 2.8b.

J(p X ) = - ∞ -∞ p X (X) log (p X (X))dX + λ 0 ∞ -∞ p X (X)dX -1 + λ 1 ∞ -∞ Xp X (X)dX -µ X + λ 2 ∞ -∞ (X -µ X ) 2 p X (X)dX -σ 2 X (2.8a) ∂J(p X ) ∂p X dX = -log (p X (X)) -1 + λ 0 + λ 1 X + λ 2 (X -µ X ) 2 (2.8b) By taking ∂J(p X )
∂p X = 0 the pdf that maximizes the entropy takes the form of equation 2.9.

p X (X) = e λ0-1+λ1X+λ2(X-µ X ) 2 (2.9)
The pdf is replaced in the equality constraints in order to calculate the Lagrange multipliers. This results in the values

λ 0 -1 = log( 1 √ 2πσ X ), λ 1 = 0, λ 2 = -1 2σ 2 X . The obtained pdf is the normal distribution N (µ X , σ 2 X ) with mean µ X and variance σ 2 X . p X (X) = 1 √ 2πσ X e - (X-µ X ) 2 2σ 2 X (2.10)
In a similar way the pdf maximizing the entropy with other information can be derived. For example if the distribution is bounded in [a, b] then the maximum entropy pdf is the uniform distribution in this bounds U(a, b).

Statistical inference

In the case where enough observations exist the pdf can be inferred through parametric and nonparametric methods. The parametric methods assume the pdf of the random scalar variable X to belong to a family of pdfs p X (X, θ) with hyperparameters θ that are usually estimated by two possible methods. The rst one is the Method of Moments where θ is estimated by equating the moments of the analytic distributions with the empirically estimated moments (equations 2.2a and 2.2b ). The second one is the Maximum Likelihood. The observations are considered independent and identically distributed (i.i.d) and thus the likelihood of obtaining them is:

L(θ, X D N ) = N i=1 p X (X i , θ) (2.11)
The θ is estimated by maximizing this likelihood function. Usually the log likelihood is used because it is easier to maximize:

θML = argmax θ∈Θ N i=1 log (p X (X i , θ)) (2.12)
The non-parametric methods do not assume that the pdf belongs to some predened family of distributions but instead estimates it directly from the observations. Their main drawback is that they need many observations for the estimation to converge. The Histogram is an example of such method, where the variable domain is divided into bins and the probability of each bin is estimated by counting the percentage of the observations falling into this bin. A better method is the Kernel Smoothing where the pdf is estimated through a kernel function. For a function k X to be used as kernel it needs to be positive and normalized to

∞ -∞ k X (X)dX = 1.
The pdf estimation using a Gaussian kernel of isotropic variance σ 2 h is expressed as:

pX = 1 N h N i=1 1 √ 2πσ h e - (X-X i ) 2 2σ 2 h (2.13)

Bayesian inference

This method uses observations of the random variable to improve prior knowledge about its pdf.

The posterior pdf is calculated based on the Bayes' rule. For example let us assume that the variable pdf as previously belongs to a specic pdf family p X (X, θ) with hyperparameters θ. In addition, we assume that the prior knowledge for θ is described by its corresponding pdf p θ (θ).

The posterior pdf of θ (i.e. the pdf of the distribution of the hyperparameters given the data) then is described by:

p post θ (θ) = L(θ, X D N )p θ (θ) ∞ -∞ L(θ , X D N )p θ (θ )dθ (2.14)
The likelihood L is the same as the one dened in the Section 2.2.2. The posterior distribution of X can be integrated then through

p post X (X) = ∞ -∞ p X (X, θ)p post θ (θ)dθ.
Usually this is not done but instead an estimator θ is used e.g. maximum a posteriori (MAP).

Stochastic inverse

In some cases it is very dicult to obtain observations for an input variable or even impossible (e.g. empirical correlations uncertainties) but it can be easy to obtain observations for some outputs. Thus through inverse uncertainty propagation the input variables pdf can be estimated. It is used often in model calibration which we will detail in Section 2.8. Bayesian approaches are used as previously with the dierence that the likelihood now is described by the model relating the inputs to the outputs. Usually instead of using the integrals for the calculation of the posterior distribution it is sampled using Markov Chain Monte Carlo techniques (MCMC).

Uncertainty propagation

In this section we are interested in studying the model of equation 2.1 behavior with regards to uncertainty. We already saw that the input of the model X can be uncertain. The model's output Y , considered scalar, is a random quantity due to the propagation of uncertainty from the inputs through the code and to the output. The goal of the uncertainty propagation is to estimate the pdf of the output p Y or some quantities of interest (e.g. mean, variance). Based on this, uncertainty propagation methods can be clustered in the following categories:

• Statistical moments analysis: the goal is to calculate or estimate the statistical moments of the output (usually mean and variance). Dierent methods exist based on quadrature, Monte Carlo simulations or Taylor expansions.

• Reliability analysis: the aim is to calculate the probability of Y exceeding a threshold.

Usually it is a rare event corresponding to the tail of p Y .

• Probability density function analysis: here the goal is to estimate the whole pdf of the output. It is evident that this case encompasses the two previous ones. Monte Carlo simulations are used to estimate this pdf.

Monte Carlo simulation

Random sampling of inputs and outputs are evaluated and gathered in the previously dened dataset of size N . The output's mean µ Y and variance σ 2 Y can be estimated through equations 2.2a and 2.2b. It is important to note that this method does not require any regularity on F and that the convergence is independent of the dimension of X but slow (1/ √ N for any empirical estimator). For each estimated statistical quantity condence intervals can be computed using the Central Limit Theorem (CLT) [START_REF] Omey | Central limit theorems for variances and correlation coecients[END_REF]. We assume that the output is i.i.d and thus the variance of the mean estimator becomes:

V ar(μ Y ) = V ar 1 N N n=1 Y n = 1 N 2 N n=1 V ar(Y n ) = 1 N 2 N σ 2 Y = σ 2 Y N (2.15)
The CLT states that the sum of i.i.d variables, as is the case μY , follows a normal distribution described by equation 2. [START_REF] Koning | Status of the JEFF Nuclear Data Library[END_REF].

√ N (μ Y -µ Y ) σ Y ∼ N (0, 1) (2.16)
We know from the law of large numbers that σY /σ Y → 1 and with the use of Slutsky's theorem we obtain:

√ N (μ Y -µ Y ) σY ∼ N (0, 1)
This allows us to calculate condence intervals for the mean value. For example the 95% condence interval will be:

P (µ Y ∈ [μ Y -1.96 σY √ N , μY + 1.96 σY √ N ]) 0.95
The variance estimator σ2 Y distribution is more complicate to calculate and it depends on the kurtosis (fourth statistical moment). For the specic case of normal distribution for Y and with large N the distribution can be approximated by:

σ2 Y ≈ N (σ 2 Y , 2σ 4 Y N -1 )
The complete pdf of Y can be estimated as well through statistical inference and the cumulative distribution function (CDF) can be computed easily in order to calculate quantiles.

Integration methods

In this method the moments are estimated by the evaluation of the integrals. For the mean and variance it is the integrals of equations 2.2a and 2.2b. In rare cases of the integrals can be computed analytically. In most cases this is impossible and thus quadrature is used to approximate the integral through a sum of weighted code evaluations. If the input variables are i.i.d, the weighted sums are shown in equations 2.17a and 2.17b with w i and X i the corresponding weights and quadrature points. The weights and points depend on the marginal input pdfs and in these equations identical pdf are considered.

μY = N i1=1 • • • N i d =1 w i1 . . . w i d F (X 1 i1 , . . . , X d i d ) (2.17a) σ2 Y = N i1=1 • • • N i d =1 w i1 . . . w i d F (X 1 i1 , . . . , X d i d ) -μY 2 (2.17b)
This method requires some regularity conditions on the underlying function to be integrated and it can be applied in cases of low dimensionality due to the numerous model evaluations needed. Sparse quadratures are used to in order to alleviate the last drawback.

Perturbation methods

If the model is close to linear it can be written as linear combination of the inputs with weights their partial derivatives. This method requires the calculations of all the partial derivatives of the model ∂F ∂X i and the evaluation of the model on the mean input vector µ X . If the covariance matrix of the inputs is C X , and the vector of size d containing the partial derivatives evaluated at µ X is S X then the estimators for the mean and variance of the output are the following:

μY = F (µ X ) (2.18) σ2 Y = S T X C X S X (2.19) S X =      ∂F ∂X1 (µ X ) ∂F ∂X2 (µ X ) . . . ∂F ∂X d (µ X )      (2.20)
The estimator of the variance in equation 2.19 is also called "Sandwich rule". Usually the derivatives of the model are approximated by a rst order Taylor expansion or by adjoint calculations based on generalized perturbation theory. This method is fast because it needs only d + 1 model evaluations (in the case of adjoint only 2) and it can calculate the rst and second moments. It has the constraint of the model to be linear or at least to be linearized.

Reliability methods

To compute rare events or failure probabilities can be quite costly for Monte Carlo methods due to slow convergence. In this case First and Second order of Reliability Methods (FORM/SORM) [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models Contributions to structural reliability and stochastic spectral methods[END_REF] give an approximation of those probabilities with reduced computational cost. These methods are based on a transformation of the input parameters in the standard normal space followed by an approximation of the failure domain by a domain whose boundary is a hyperplane (FORM) or a quadratic surface (SORM). Then the probability can be evaluated with integration on the standard normal space.

Dimension reduction

Many statistical analyses suer from the "curse of dimensionality". When the inputs or outputs are functional quantities then there is a strong interest in dimension reduction techniques. Such techniques aim at reducing the eective dimensions of the functional quantity. With the term eective we mean either by restricting the dimension reduction on the variables of interest or by transformation to variables where dimension reduction is more ecient. There are two broad categories of dimension reduction techniques. The rst one is based on screening and the sensitivity between inputs and outputs are qualitatively estimated to discarding the non important inputs.

In this Section we focus on the second one which is better adapted for functional quantities. It is called feature selection and we will detail two methods that use information from potential correlations which is often the case for spatial or temporal quantities. The Principal Component Analysis (PCA) that can be applied independently to inputs or outputs. It identies hyperplanes of maximum variance in the functional space. For a specic reduction size the PCA is the method that explains better the approximated functional quantity in terms of mean square error. The Partial Least Square (PLS), proposed by [START_REF] Wold | Estimation of principal components and related models by iterative least squares[END_REF], is a method that nds a linear regression between projections of inputs and outputs that maximize their cross-covariance. Synthetically we can say that PCA reduces the functional dimension in an optimal way with respect to the functional variance while PLS reduces dimension by taking into account the relationship between inputs and outputs and assuming it is linear.

Principal Components Analysis (PCA)

It is a method closely linked with Karhunen-Loève (KL) decomposition [START_REF] Alexanderian | A brief note on the Karhunen-Loève expansion[END_REF], where a stochastic process is represented by a linear combination of innite orthogonal basis functions. The basis functions are not predened but depend on the stochastic process itself. They are the eigenfunctions corresponding to the covariance function of the stochastic process. PCA can be seen as the discretized version of KL [START_REF] Ramsey | Functional Data Analysis[END_REF]. We consider the functional output Y , which means that it is R qvalued with q >> 1, as a discretized stochastic eld. PCA is applied, without loss of generality, on centered processes. To this purpose, from the collected N evaluations Y D N in a N × q matrix the empirical mean vector is estimated μY and extracted to create the centered around zero matrix Y c,N . PCA nds the orthogonal linear projection of Y c,N where the basis vector are called principal components and express the functional variance in a descending order. These basis vectors are the eigenvectors of Y c,N covariance matrix. If Y c,N has strong correlations the number of principal components needed to represent most of the variance can be quite small. This is carried out by rst computing the empirical covariance matrix and its eigenvalue decomposition. The q × q matrix W contains the eigenvectors, with ith eigenvector at the ith column, and the q × q diagonal matrix Λ contains the eigenvalues with the ith one on Λ ii . The eigenvalues represent the variance explained by each eigenvector/principal component and are in a descending order. The transformed coordinates of the original quantity in the projected space T are called scores.

C = Y T c,N Y c,N N , C = WΛW -1 , T = Y c,N W (2.21)
Using predened variance explanation threshold (e.g. 99%) the l << q rst eigenvectors needed for this variance representation are kept only. This can result in a signicantly reduced projected space (N × l). An approximation of the original observations ỸD N can be calculated by the truncated matrices T l (N × l), W l (q × l) and the extracted mean vector through equation 2.22. M Y is the matrix of size N × q with each row containing the mean vector μY .

ỸD N = T L W L T + M Y (2.22)
The truncated eigenvectors matrix is stored and the functional quantity can be reduced to few scalar quantities represented by the scores. For example if a prediction at a new point X new is sought then it suces to construct a surrogate model to approximate the underlying function between the inputs and the scores. This will allow to predict the corresponding scores for the new point and calculate the predicted Ỹnew from equation 2.22.

Partial Least Squares (PLS)

PLS shares some similarities with PCA in the sense that it nds as well linear projections of the functional quantities. The dierence is that it does not aim at nding the projections representing the maximum variance of a functional quantity but instead aims at taking into account the relation between two functional quantities by nding their projections that maximize the cross-covariance.

It is essentially a linear regression in the projected input and output spaces. We consider X and Y as both functional inputs and outputs (d >> 1, q >> 1). PLS decomposes them through equations 2.23a and 2.23b with a predened dimension reduction size set to l.

X = T X P T X + E X (2.23a) Y = T Y P T Y + E Y (2.23b)
Where T X and T Y are matrices of size N × l representing the coordinates of X and Y in their projected reduced spaces of dimension l << d, q. P T X and P T Y are the orthogonal matrices of size d × l containing the projection basis vectors. E X and E Y are the residual errors assumed i.i.d. normal variables. The decomposition is perform in such a way that maximizes the cross-covariance between T X and T Y . Dierent iterative algorithms exist for the computation of T X , T Y , P T X and P T Y [START_REF] Nanty | Stochastic methods for uncertainty treatment of functional variables in computer codes : application to safety studies[END_REF].

Stochastic warping

PCA and PLS are simple and powerful techniques to reduce dimensions. Nevertheless, in some cases they might require many scores that can have complicated relationships with the inputs. This creates diculties in their approximation by surrogate models and increases the prediction error. To overcome this a stochastic warping can be applied. This method for temporal functional quantities is used and detailed in [START_REF] Mai | Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping[END_REF]. It consists in applying a translation and scaling of the observations prior to the dimension reduction. This is performed by a change of variable. Considering the functional output Y (u, ω) as a stochastic process with u the variable of the eld of size q (e.g. time, space) and ω the sample space. Y (u, ω n ) = Y n is the nth stochastic functional realization and Y (u i , ω) = Y i is the scalar ith random variable. The change of variable is seen in equations 2.24a and 2.24b, where the variable u is replaced by υ a linear function of u and ω.

Ỹ (υ, ω) = Y (u, ω) (2.24a) υ(u, ω) = Q ω u + D ω (2.24b)
For the thesis purposes we will focus only in the case of translation, meaning that Q ω = 1, reducing the unknown to only D ω . This translation is a random variable and must be computed for each sample. There are various methods to do so and we will limit to presenting the two most relevant for the thesis. In the rst method a weighted average eld value is calculated for each sample of the dataset Y D N through equation 2. [START_REF] Tong | Thermal analysis of pressurized water reactors[END_REF].

u m,ω = q i=1 u i Y (u i , ω) 2 q i=1 Y (u i , ω) 2 (2.25)
Then a reference eld u r is selected as the empirical mean of u m,ω and the translation D ω is dened as the dierence of each sample's averaged eld value to the reference one.

D ω = u m,ω -u r , u r = 1 N N n=1 u m,ωn (2.26) 
In the second method the translation is the result of an optimization process. The function to be optimized is a function of similarity c of each sample to a reference one. The empirical mean of Y denoted by μY (u) is used as the reference function. D ω is the the optimal value D that maximizes the function c.

c(D) = q i=1 Y (u i + D, ω)μ Y (u i ) q i=1 Y (u i + D, ω) 2 μY (u i ) 2
(2.27)

D ω = argmax D c(D)
Once the values of D ω are computed, with one of the two methods, the translation in equations 2.24a and 2.24b is performed. The stochastic process now is centered and dimension reduction can be applied on Ỹ more eciently. In order to make predictions for new input design points an additional surrogate model must be constructed between the model inputs X and the eld translation values D ω . The prediction for a new input value X new will give a predicted eld translation D new that will be applied on the predicted centered eld Ỹnew using the scores of the dimension reduction method. Finally the inverse translation is applied to retrieve the original functional output Y new through equation 2. [START_REF] Van Uelen | Modelling of Nulcear Fuel Behavior[END_REF].

Y new (u) = Ỹnew (υ -D new ) (2.28)
In the process of the translation in the discrete case it is clear that depending on the translation, eld values will be missing from the beginning or the end of the eld space. To overcome this the last value is extended until the start or the end of the eld limits.

Surrogate models

The code usually is based on a set of discretized equations in space (3D) and time. In order to solve them, various numerical methods are applied that can become very time consuming. This acts as a budget constraint for analyses that require numerous code evaluations like Monte Carlo uncertainty propagation or sensitivity analysis. Surrogate models are used to alleviate this budgetary constraint by approximating the inputs-outputs underlying function. They are constructed based on a inputsoutputs dataset, usually obtained from specic DOE that are detailed in the Section 2.6. The code is considered as a black-box and the surrogate models are simple analytic functions (e.g. polynomials) permitting very fast evaluations of new points. There are plenty of possible models. We will focus on four of them: generalized linear models [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF], polynomial chaos expansion (PCE) [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models Contributions to structural reliability and stochastic spectral methods[END_REF] [81] [START_REF] Blatman | Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis[END_REF], kriging [START_REF] Bachoc | Estimation paramétrique de la fonction de covariance dans le modèle de Krigeage par processus Gaussiens : application à la quantication des incertitues en simulation numérique[END_REF] [84] and articial neural networks (ANN) [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF]. Before presenting the dierent surrogate models it is important to highlight that the approximation induces an error that must be estimated. We will detail dierent ways to estimate this error. For the whole Section a scalar output is considered Y = F (X) and the surrogate model is denoted by F (X) constructed on the dataset D N of size N .

Error evaluation

The induced approximation error by the surrogate model is dened as:

ε(X) = F (X) -F (X) (2.29)
Three dierent error estimators are considered. The rst one is the interpolation error. It is the mean square error on the dataset used for the surrogate model construction and is estimated empirically through the following equation:

ε int = 1 N N n=1 (F (X n ) -F (X n )) 2 (2.30)
The error is usually normalized to the output's variance empirical estimator σ2 Y . The R 2 int quantity representing the percentage of the output's variance represented by the surrogate model is computed as well.

R 2 int = 1 - ε int σ2 Y (2.31)
A value close to 1 indicates indicates how well the surrogate model interpolates on the dataset. It is a cheap estimator because it does not need any other code evaluations but it does not quantify well the predictive capability of the surrogate model on new input points due to the overtting.

The second error estimator is the prediction error. It is the mean square error on a new dataset

D M = X m , Y m = F (X m ) M m=1
of size M not seen by the surrogate model. It is exactly the same equations as the interpolation error but on this new dataset.

ε pred = 1 M M m=1 (F (X m ) -F (X m )) 2 (2.32) R 2 pred = 1 - ε pred σ2 Y (2.33)
The prediction error is a good estimator of the surrogate model's predictive capability but requires code evaluations on a new dataset, something time consuming and in some cases even not feasible.

Finally, the third error estimator used in the thesis is the Leave-One-Out (LOO), where for each point i of the original dataset of size N the surrogate model is constructed based on all the points except i. The response of this model is called F ∼i (X) and the error on the prediction of the ith point is calculated. The mean square error for all i leads to the LOO error estimator of equation 2.34 and its corresponding R 2 loo quantity in equation 2. [START_REF] Marelle | New developments in ALCYONE 2.0 fuel performance code[END_REF].

ε loo = 1 N N i=1 (F (X i ) -F ∼i (X i )) 2 (2.34) R 2 loo = 1 - ε loo σ2 Y (2.35)
This estimator is a compromise between the two previous ones. It has better predictive capabilities than the empirical error but not as good as the prediction error. It does not require new code evaluations but N surrogate models must be constructed. Depending on the surrogate model used there are analytic equations to compute it directly.

Generalized Linear Models (GLM)

This methods considers that Y = F (X) can be approximated by a linear combinations of p predened functions [h i (X)] p i=0 . The rst function is assumed to be the constant h 0 (X) = 1. The output can be expressed by:

Y = F (X) + ε = p i=1 β i h i (X) + ε (2.36)
Where β i is the unknown coecients associated to each function and ε the residual error. Using now the dataset D N we dene H the matrix of size N × p containing the function evaluations on this dataset H ij = h j (X i ). The unknown coecients vector of size p is denoted by β while the residual error vector by

E = (ε i ) N i=1 . Y D N = Hβ + E (2.37)
The most used estimator of the coecients is the least squares one, where the residual sum of square errors N i=1 ε 2 i is minimized. The resulting estimator is described in equation 2. [START_REF] Todreas | Nuclear Systems I: Thermal Hydraulic Fundamentals[END_REF].

β = (H T H) -1 H T Y D N (2.38)
If the model of equation 2.36 is correct with normal residual error ε ∼ N (0, σ 2 ) then the coecients estimator is also a normal random variable β ∼ N (β, (H T H) -1 σ 2 ). The Gauss-Markov theorem shows that the least square estimator of the coecients is the Best Linear Unbiased Estimator (BLUE). Nevertheless, by using other biased estimator like Ridge regression or Lasso smaller residual errors can be achieved. More details about those estimators can be found in [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF].

Polynomial Chaos Expansion (PCE)

PCE belongs to the general category of spectral representation methods. The random response Y is expanded through equation 2. [START_REF] Bestion | From the direct numerical simulation to system codes-perspective for the multiscale analysis of LWR thermal hydraulics[END_REF], where φ α are the basis functions spanning the Hilbert functional subspace L 2 with measure density equal to the joint pdf of X.

Y = F (X) + ε = α∈N d w α φ α (X) + ε (2.39)
The output is considered a scalar second-order random quantity satisfying E[Y 2 ] < ∞. For independent inputs X i , i = 1 . . . d their multivariate pdf p X (X) can be written as products of the marginals pdf p X i :

p X (X) = d i=1 p X i (X i ) (2.40)
In the marginal Hilbert functional subspace L 2 i with measure density equal to the marginal pdf p X i we assume φ i j a complete family of orthonormal basis functions with j ∈ N:

< φ i s , φ i t > H = R φ i s (X i )φ i t (X i )p X i (X i )dX i = δ st (2.41)
It can be shown that the tensor product of these marginals bases is a basis of the original Hilbert space and thus:

φ α (X) = d i=1 φ αi (X i ) (2.42)
where α = (α 1 , . . . , α d ) ∈ N d is a vector index of the corresponding univariate bases indices α i = j of φ i j . The output then has the spectral decomposition of equation 2.39.

Having made those assumptions the univariate functions are selected as orthonormal polynomials that can be derived from the marginals pdf of the inputs. If the input are independent with Gaussian distribution then the obtained polynomials are the Hermite polynomials visualized in gure 2.2 and the expansion of the output Y is called polynomial chaos expansion. In the case of dependent parameters either a transformation is performed to render them independent similar to the PCA projection or dierent marginal basis functions have to be calculated that are no longer polynomials. The next step to build the PCE is to truncate the expansion in order to get a tractable form for the surrogate model (with a nite number of coecients to estimate). A usual truncation law is:

A d,p q = { α ∈ N d : d i=1 α q i 1/q ≤ p }
Where p is the maximum total degree of the multivariate polynomial basis and q ∈ [0, ∞] is the index of isotropic reduction. For q = 1 the total number of polynomials to be evaluated is

(d + p)!/d!p!.
The nal formulation of the truncated PCE is:

Y = Ft (X) + ε = α∈A d,p q w α φ α (X) + ε (2.43)
Having selected the basis functions the w α coecients remain to be calculated. There are two general methods to calculate them: the intrusive and the non intrusive methods. Since we consider our code as black-box we are going to present the latter methods for whom only model evaluations are needed without demanding modications in the code. There are two dierent non intrusive methods: the projection and the regression. In the projection method due to the orthonormality the PCE coecients are estimated through equation 2.44 either by MC (or quasi MC) simulations either by quadrature methods.

w α = E[Y φ α (X)] = R d F (X)φ α (X)p X (X)dX (2.44)
In the regression method the vector of coecients w = (w i ) k-1 i=0 of size k are calculated by minimizing the squared least squares residual error based on the dataset of size N .

w = argmin 1 N N n=1 (w T Φ(X n ) -F (X n )) 2 (2.45)
Where Φ(X n ) is a k dimensional vector of the multivariate polynomials evaluations,with k the cardinality of A d,p q . Finally, if we dene H as the (N x k) matrix of the evaluations of the multivariate polynomials for all the realizations the solution of the minimization problem is the same with the GLM:

w = (H T H) -1 H T Y N (2.46)
The regression problem for PCE is much better conditioned than for GLM. Once the coecients are computed then the PCE is fully dened. In order to assess the quality of the PCE approximation the dierent error estimations can be computed. Concerning the LOO error and if the coecients of the PCE are computed by regression there is an analytic expression for its calculation:

ε loo = 1 N N n=1 w T Φ(X n ) -F (X n ) 1 -θ n 2 , θ n = H(H T H) -1 H T nn (2.47)
A big advantage of PCE is that the statistical moments and the sensitivity analysis can be derived directly as a post-processing of the PCE coecients. For a specic set of input indices α the weight w α is the value in the estimated weight vector w corresponding to the φ α . The mean value and the variance of the output are given directly from:

μY = w 0 (2.48) σ2 Y = A ∼0 w 2 a (2.49)
Where A ∼0 are all the indices except the zero one. The higher order moments can be calculated as well. Concerning now the sensitivity analysis the Sobol indices (see Section 2.7.4.1), that demand a lot of evaluations, can be estimated directly. We dene the set of indices D i containing only the variable i as:

D i = {α : α j > 0, j = i and α j = 0, j = i}
Then the rst order Sobol index of parameter X i is estimated by:

Ŝi = Di∩A w 2 α / σ2 Y (2.50)
If we dene the set D T i then total Sobol index of parameter X i can be estimated in the same way:

D T i = {α : α j > 0, j = i} ŜT i = D T i ∩A w 2 α / σ2 Y (2.51)
The PCE is well adapted for smooth models but can face diculties when dealing with discontinuities. The generalization to other input distributions can be performed with the use of dierent polynomials. As we said the main advantage is the direct computation of sensitivity indices from the coecients and the easy explicit form of the surrogate model. The main disadvantage is the error induced from the truncation, that is dicult to assess and that this method is not well adapted for high dimensional inputs or dependent inputs.

Kriging

This surrogate model is constructed with the use of Gaussian processes. At rst we should dene the concept of Gaussian vectors. A vector is considered Gaussian when all the possible linear combinations of the components are random variables with Gaussian distributions. The distribution of a Gaussian vector is dened by its mean vector and its variance-covariance matrix. We dene y 1 ∈ R d1 as a Gaussian vector of size d 1 with mean vector µ y1 and variance-covariance matrix K y1 .

y 1 ∼ N (µ y1 , K y1 )
Having dene the Gaussian vector we can introduce the theorem of Gaussian conditioning states that if we have two Gaussian vectors y 1 ∈ R d1 and y 2 ∈ R d2 and the vector (y 1 , y 2 ) T ∈ R d with d = d 1 + d 2 is a Gaussian vector as well:

y 1 y 2 ∼ N µ y1 µ y2 , K y1 K y1y2 K y2y1 K y2
Where K y1 and K y2 are the covariance matrices of size d 1 ×d 1 and d 2 ×d 2 respectively. K y1y2 and K y2y1 are the cross-covariance matrices of size

d 1 × d 2 and d 2 × d 1 with K y1y2 = K y2y1 T .
In this case there is an analytic expression for the distribution of y 2 conditioned to y 1 . The conditioned distribution is Gaussian with mean and covariance described by:

E[y 2 |y 1 ] = µ y2 + K y2y1 K -1 y1 (y 1 -µ y1 ) (2.52a) V ar(y 2 |y 1 ) = K y2 -K y2y1 K -1 y1 K y1y2 (2.52b)
The equations 2.52a and 2.52b state that we can adjust the expectation and the variance of a part of a Gaussian vector conditioned that we have observations of the rest of the vector. Now we can dene the continuous Gaussian process as a family y(x) of random variables dened over x ∈ X such that any linear combination is Gaussian distributed. Its distribution can be characterized by a mean function µ y (x) : X → R and a covariance function k(x, x ) : X × X → R.

y(x) ∼ GP (µ y (x), k(x, x )) (2.53)
If the covariance and mean functions are known and we have a deterministic data set of observations

x obs = (x i ) N i=1 , y obs = (y(x i )) N i=1
of size N then we can use the Gaussian conditioning to predict the value at a new point y(x 0 ).

E[y(x 0 )|y obs ] = ŷ(x 0 ) = µ y (x 0 ) + k T (x 0 )K -1 (y obs -µ obs ) (2.54) V ar[y(x 0 )|y obs ] = σ2 (x 0 ) = k(x 0 , x 0 ) -k T (x 0 )K -1 k(x 0 ) (2.55)
Where k(x 0 ) = (k(x 0 , x i )) N i=1 is a vector of size N . K is a matrix of size N × N corresponding to the covariance matrix of the observations and thus K ij = k(x i , x j ), i = 1, . . . , N, j = 1, . . . , N . µ obs = (µ y (x i )) N i=1 is the vector of size N created by the evaluations of the mean function on the data set and k(x 0 , x 0 ) corresponds to the unconditioned variance of Y (x 0 ). The Gaussian process passes exactly through the points of the data set (perfect interpolation). It is also interesting that beyond the expected value the process also predicts the variance and thus can create condence intervals. An illustration for d = 1 and N = 7 is presented in gure 2.3. The Kriging surrogate model considers the input-output input-output function Y = F (X) : R d → R to be a Gaussian processes, where the output is considered a scalar. The output then can be expressed as:

Y = F (X) + ε = µ(X) + Z(X) (2.56) Where µ(X) : R d → R is a mean function and Z(X) is a centered Gaussian process (E[Z(X)] = 0) with isotropic stationary covariance function k(X, X ) : R d × R d → R.
The concept of isotropic stationarity for a covariance function means that it depends only on the distance between the points:

k(X, X ) = k(|X -X |)
The covariance function is chosen to be a positive denite function and usually is selected from specic families of parametric functions (e.g. Exponential, Matérn). In the thesis we used the Matérn 5/2 function. The function is parametric, meaning that it contains parameters that must be estimated. The vector of parameters of the function θ are called hyper-parameters and they can be estimated through Maximum Likelihood , Restricted Maximum Likelihood and Cross Validation [START_REF] Bachoc | Estimation paramétrique de la fonction de covariance dans le modèle de Krigeage par processus Gaussiens : application à la quantication des incertitues en simulation numérique[END_REF]. The stationarity implies that the variance of the Gaussian process is the same for all Y since k(|X -X|) = k(0) = σ 2 . The variance σ 2 is usually unknown and is added the hyper-parameters that must be estimated. The mean function can be of any form but in general two cases are studied. The rst one is the case of linear combination of known basis functions and unknown coecients called Universal Kriging:

µ(X) = p i=1 h i (X)β i = h(X) T β (2.57)
The second one is the case of Simple Kriging where the mean function is assumed to be known (equivalent to known β). There can be dierent combinations of known and unknown parameters but we will focus on the Universal Kriging with unknown variance and hyper-parameters. In this case the unknown vector of coecients β of size p (the number of basis functions) must be estimated as well. We can see that the total parameters that must be estimated in order to have a well dened Kriging model are: (θ, σ, β). We mentioned that the covariance function depends on the hyper-parameters θ and that is why we will change its notation to k θ (X, X ). Using the dataset D N the prediction of a new point Y (X new ) for its expected value 1 and variance is given by the following equations:

Ŷ (X new ) = h(X new ) T β + k θ (X new ) T K -1 θ (Y D N -H β) (2.58) σ2 (X new ) = σ2 -k θ (X new ) T K -1 θ k θ (X new ) + B T H T K -1 θ H -1 B (2.59)
In the equations above B = h(X new ) -H T K -1 θ k θ (X new ) and h(X new ) is a vector of size p of the evaluations of the mean function basis functions. The estimated parameters are β, θ, σ and k θ (X new ) and K θ are dened similar to equation 2. [START_REF] Auria | BEPU status and perspectives[END_REF]. H with H ij = h j (X i ) for i = 1 . . . N j = 1 . . . p is the matrix of size N ×p containing all the evaluations of the basis functions on the complete dataset. We can see that in equation 2.59 a term is added in comparison to equation 2. [START_REF] Wickett | Report of the Uncertainty Method Study for advanced best estimate thermal-hydraulic code application[END_REF]. This term is non-negative and is coming from the uncertainty propagation of the β estimation. There is no uncertainty propagation of parameters (σ, θ)2 . When the uncertainty of those parameters is taken into account the method is called full Bayesian.

Once the equations 2.58 and 2.55 are constructed the only thing remaining is the estimation of the parameters. We present the Maximum Likelihood Estimator. If we decompose the covariance function in k θ (X, X ) = σ 2 r θ (X, X ) then the covariance matrix becomes K θ = σ2 ( θ)R θ . The likelihood is not maximized directly but instead the likelihood criterion of equation 2.60 is minimized. The criterion is derived by a monotonic transformation of the likelihood [START_REF] Bachoc | Estimation paramétrique de la fonction de covariance dans le modèle de Krigeage par processus Gaussiens : application à la quantication des incertitues en simulation numérique[END_REF].

L(θ) = 1 N log(|σ 2 (θ)R θ |) + 1 N σ2 (θ) Y D N -H β(θ) T R θ -1 Y D N -H β(θ) (2.60) θ = argmin θ∈Θ L(θ)
The estimator of σ2 and β are presented in equations 2.61 and 2.62

σ2 ( θ) = 1 N Y D N -H β( θ) T R -1 θ Y D N -H β( θ) (2.61) β( θ) = H T R -1 θ H -1 H T R -1 θ Y D N (2.62)
This estimation is unbiased with covariance matrix which corresponds to the term added in equation 2.55:

Q β = H T K -1 θ H -1
(2.63)

In the Bayesian case a prior distribution is assigned β ∼ N (β prior , Q prior ) and the posterior expected value and covariance matrix are estimated by:

βpost = β prior + Q -1 prior + H T K -1 θ H -1 H T K -1 θ (Y D N -Hβ prior ) (2.64) Q post = Q -1 prior + H T K -1 θ H -1
(2.65)

We can now use this posterior distribution of β to calculate the posterior distribution of Y (X new ):

Ŷ (X new ) = h(X new ) T βpost + k θ (X new ) T K -1 θ (Y D N -H βpost ) (2.66) σ2 (X new ) = σ2 -k θ (X new ) T K -1 θ k θ (X new ) + B T Q post B (2.67)
If we assume that the observations of the Gaussian process have noise then the Kriging model becomes:

F (X) = µ(X) + Z(X) + (X) (2.68)
Usually the errors on the observations = ( 1 , . . . , n ) is considered a centered Gaussian vector of size N with covariance matrix K . To estimate now the parameters and to predict the value Y (X new ) the same equations that we saw in the case without the noise can be used with only dierence that now the covariance matrix of the observations becomes: K θ = K θ + K . In the case where the noises of the observation are considered i.i.d with the variance σ 2 the covariance matrix of the observations becomes:

K θ = K θ + σ 2 I.
Finally, to assess if the Kriging model representing the model is a good approximation the typical error estimators for the empirical error and the prediction error can be used. For the Leave-One-Out error there is an analytic expression for its calculation:

LOO = 1 N N i=1 ( Kθ Y) i ( Kθ ) i,i 2 (2.69)
where

Kθ = K -1 θ -K -1 θ H(H t K -1 θ H) -1 H t K -1 θ
for the universal kriging.

The main advantage of Kriging is that it has an explicit formulation for the Best Linear Unbiased Predictor (BLUP) and it can estimate its variance. Besides that, it can treat noisy cases or models that are not so regular. The main disadvantage is that it cannot be used in cases of high input dimensions and can become time consuming if the dataset of observations increases a lot.

Articial Neural Networks (ANN)

ANN is a surrogate model inspired from the biological neural networks of the brain. It is constructed from a collection of neurons divided in hidden layers. Each neuron is a non linear function g. The neurons of the rst layer has as input a linear combination of the input variables and as output the non linear transformation through an activation function g as shown in gure 2.4. If more layers exist then the input of a hidden layer neuron will be a linear combination of the output's of the previous hidden layer's neurons. More information about the motivation behind ANN can be found in [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF]. In the case where we want to replace the model: Y = F (X) : R d → R we have d inputs. If we select M = d neurons for one hidden layer (options used in this thesis) and we dene the weight of an input i for a neuron j as w ij and the weight of the neuron's output as w j the ANN output's function will be:

Y = F (X) + ε = M j=1 w j g d i=1 w ij X i + w j0 + w 0 + ε (2.70)
with w j0 and w 0 the bias weight on each neuron and the output.

For this ANN model the only thing that remains in order to be complete is to estimate the weights and select the activation function. We have a total of N (d + 2) + 1 weights to be estimated. The activation function usually used is the sigmoid:

g(u) = 1 1 + e -u
(2.71)

The weights of the ANN are estimated through a procedure called learning of the ANN. In general a cost or error function c is dened and the weights are the result of minimizing the cost function (or at least close to minimum). For our case where we have the dataset D N of size N and the ANN goal is to approximate as best as possible the underlying function between X and Y and we are in the supervised learning category. In the supervised learning the cost function usually used is the mean squared error:

c(w) = 1 N N i=1 |F (X i ) -F (X i )| 2 = 1 N N i=1 |ε i | 2 (2.72)
Having dened the cost function the weights are calculated through the following general algorithm:

• In the rst iteration only, the weights are initialized.

• The Ỹi,w = F (X i , w) are computed with forward propagation through the ANN and the cost is evaluated.

• Calculate the gradient of the weights vector: ∂c ∂w . • Update the weights vector as stochastic gradient descent.

Dierent algorithms of backpropagation exist [START_REF] De Lozzo | Modèles de substitution spatio-temporels et multidélité : Application à l'ingénierie thermique[END_REF] but we will not look into it because it is not in the scope of the thesis. Once the ANN model is constructed and the supervised learning is performed the surrogate model is validated through the typical error estimators. The main advantage of ANN is that they can treat high input dimensions but they might need a very large training set for the supervised learning. The optimization method can lead to local minima far from the global and that's why dierent initialization weights must be considered.

Design of Experiments

The Design of Experiments (DOE) is the selected code evaluations on the inputs X space to create the dataset D N . This design will be mainly used to construct the surrogate models and the goal is to explore as much as possible the inputs space R d in order to capture potential non-linearities. Such DOE are called space-lling designs [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF]. The most popular methods for constructing DOE are the following:

• Full Factorial designs: Each input variable is discretized separately. The result is a full tensorized grid of points that can be symmetric or asymmetric (size of discretization can vary among the variables). It suers from the "curse of dimensionality" since the number of design points increase exponentially.

• Sparse Factorial designs: They are used to alleviate the limited use of full factorial designs in high input dimensions. These designs discard some of the tensorized grid points and create a sparse grid based on some rules [START_REF] Griebel | Sparse grids and related approximation schemes for higher dimensional problems[END_REF].

• Random Sampling: It is a simple Monte Carlo sampling where the input variables are sampled randomly from their joint pdf. These designs do not suer from the "curse of dimensionality" since the sample size is independent of the input dimensions. Nevertheless, as the dimension increases the input space increases as well and for a constant sample size the space will be explored poorly.

• Latin Hypercube Sampling (LHS): The previous poor exploratory properties of random sampling in high dimensions can be overcome using the LHS designs. We consider uniform inputs distribution. For a predened sample size N the marginal input space is uniformly divided in N intervals creating N d hypercubes. From these hypercubes N are selected and a sample is generated in each one. The hypercubes selection has to preserve the Latin Hypercube property of each sample being the only one in each axis-aligned hyperplane containing it [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF]. An optimization process is applied on the generated samples in order to cover the input space as good as possible. LHS are mainly used in this thesis for the surrogate model construction and will be detailed in the Sections 2.6.1 -2.6.2 discussing particularly the case of arbitrary input distribution with independent coordinates.

• Quasi Monte Carlo Sampling: This method is based on algorithms that produce low discrepancy sequences (e.g. Halton sequence) that try to ll as much as possible the input space.

Typical designs generated by these methods are illustrated in the following gure. The combination of all this intervals creates N d hypercubes. From these hypercubes N are selected in such a way that the projections of the centers of the hypercubes on the axis of each variable is uniformly distributed. This is achieved by selecting d permutations of 1 . . . N . In a 2D design with N = 5 it means that there cannot be two samples in the same row or column as illustrated in the left of gure 2.6. In this example the corresponding permutations are π 1 = (3; 1; 4; 5; 2) and π 2 = (2; 5; 1; 3; 4). In each selected hypercube one sample is drawn randomly. The projection of the sample n on each variable is denoted by u i n and the transformation to the Z variables space is performed through the inverse transform of the cdf Z i n = F -1 (u i n ). Using the previous example the transformation process is seen in the right part of gure 2.6. Although the nature of LHS assures that marginally the points are well distributed this is not necessarily the case for the points in the input space. The resulting LHS can have good or bad space-lling properties as it can be seen in gure 2.7. To this purpose an optimization of the LHS with respect to some criteria that quantify the space-lling quality is applied. The dierent optimization methods are detailed in Section 2.6.2. q q q q q 0.0 0.2 0.4 0.6 0. We consider now our input X as multivariate normal N (µ X , C X ) with mean µ X and covariance C X . We dene Z as standard normal variables N (0, 1). The LHS in the X space is expressed by equation 2. [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models Contributions to structural reliability and stochastic spectral methods[END_REF], where Z is the previously obtained dataset of size

N × d with Z ij = Z j i for i = 1 . . . N , j = 1 . . . d and M X the matrix of size N × d containing µ X at each row.
√ C X is the matrix square root of the covariance matrix (positive semidenite).

X D N = M X + C X Z (2.73)

LHS optimization

As we observed previously, some LHS can have poor space-lling properties in the input space. This means that in this space some points can be close to each other and thus this reduces the amount of information gained by evaluating those points by the code. Dierent optimal criteria are used in order to avoid such designs and enhance the LHS by ensuring the spreading of the points in the space. A good overview of the developed criteria is given in [START_REF] Franco | Exploratory Designs for Computer Experiments of Complex Physical Systems Simulation[END_REF]. We will present some of the most used criteria on the u n ∈ [0, 1] d uniform variables for the design D N .

• Geometric criteria: They are based on the euclidean distances between the DOE points

d ij = u i -u j 2 .
Two main criteria exist. The rst one is called "minimax" and aims at minimizing the maximum distance of any point in [0, 1] d to its nearest design point. This is equivalent to minimizing the criterion:

φ mM (D N ) = max u∈[0,1] d min i=1...N u -u i 2 (2.74)
The second one is called "maximin" and aims at maximizing the minimum distance between the design points. This is equivalent to maximizing the criterion:

φ M m (D N ) = min i,j=1...N i =j d ij (2.75)
The minimax criterion is more attractive for surrogate model construction, since it takes into account the whole domain. Its computation is, however, infeasible for dimensions larger than 4 or 5 [START_REF] Pronzato | Design of computer experiments: space lling and beyond[END_REF]. On the other hand the maximin is much easier to compute but is dicult to optimize. For this reason a new criterion φ p more ecient to optimized can be used.

φ p (D N ) = j,k≤N j<k d -p jk 1 p
(2.76)

The asymptotic equivalence between minimizing φ p and maximizing φ M m is shown in [START_REF] Pronzato | Design of computer experiments: space lling and beyond[END_REF].

In practice a value of p = 50 can be used as proposed by [START_REF] Morris | Exploratory designs for computational experiments[END_REF].

• Uniformity criteria: They are based on discrepancy measures evaluating how close the DOE is to a uniform design. Discrepancy is dened as the dierence between the uniform cdf U (u) and the empirical cdf of the DOE U N (u).

D * (D N ) = max u∈[0,1] d |U N (u) -U (u)| (2.77)
By minimizing this discrepancy the LHS is optimized. Discrepancy measures are constructed based on the L 2 -norm discrepancy, an alternative to D * [START_REF] Damblin | Numerical studies of space-lling designs: optimization of latin hypercube samples and subprojection properties[END_REF]. From the many existing measures two prominent ones are the centered C 2 and wrap-around W 2 discrepancies.

C 2 (D N ) = 13 12 d - 2 N N n=1 d i=1 1 + 1 2 |u i n -0.5| - 1 2 |u i n -0.5| 2 + 1 N 2 N n,k=1 d i=1 1 + 1 2 |u i n -0.5| + 1 2 |u i k -0.5| - 1 2 |u i n -u i k | (2.78a) W 2 (D N ) = 4 3 d + 1 N 2 N n,k=1 d i=1 3 2 -|u i n -u i k |(1 -|u i n -u i k |) (2.78b)
• Minimum Spanning Tree (MST) criteria: They were recently developed [START_REF] Franco | Exploratory Designs for Computer Experiments of Complex Physical Systems Simulation[END_REF] and build trees by connecting with edges all the DOE points. The MST is the tree with minimum sum of edge lengths. The mean m M ST and standard deviation σ M ST of the edge lengths can be estimated for each DOE. Designs with large m M ST and small σ M ST have good space-lling properties.

When the dimensions and size of the LHS are small all the possible LHS can be compared based on the selected criterion. This is not possible in large dimensions and sample sizes. Optimization iterative methods are used in order to nd an approximation of the best LHS. We will present two main methods applied to the minimization of φ p criterion:

• Simulated Annealing (SA): It is a metaheuristic global optimization method [START_REF] Damblin | Numerical studies of space-lling designs: optimization of latin hypercube samples and subprojection properties[END_REF]. Starting from a random initial LHS an iterative process is conducted where at each iteration an elementary permutation by random permutation of two coordinates in the LHS is performed. The designs that improve φ p are always accepted, while the ones that do not improve can be accepted with a probability that depends on the increment of φ p (between the original design and the transformed one) and a temperature parameter T. This is done in order to avoid getting stuck in a local minimum. The temperature is progressively decreased from an initial temperature T 0 so as to decrease the probability to accept a worse design. The optimization stops when the selected number of iterations is reached. The quantities that need to be initialized are: the temperature T 0 , the number of iterations, the selection of the temperature decrease method and its parameters. The selected prole for the temperature evolution along the iterations is the geometric prole T = cT [START_REF] Marrel | Mise en oeuvre et exploitation du métamodèle processus gaussien pour l'analyse de modèles numériques -Application à un code de transport hydrogéologique[END_REF], with c that must be dened in order to get extensive exploration of possible designs and fast minimization of φ p . The pseudo algorithm of one of the possible implementations of this method for optimizing an initial design D 0 of size N in R d with initial temperature T 0 , prole parameter 0 < c < 1 and number of iterations N i is:

SA pseudo algorithm ESE pseudo algorithm 

1: D best = D 0 , C best = C c = φ p (D 0 ), T = T 0 : initialization of

Sensitivity analysis

In our model Y = F (X) the output is a random quantity due to the uncertainty propagation of the inputs. Sensitivity analysis goal is to identify which input variables have an impact on the output's uncertainty (qualitative) and then quantify this impact (quantitative). This can be used subsequently to reduce the dimensions of the input space. The methods that give a qualitative information on the inputs are called screening methods. The quantitative methods focus on explaining the part of the output's uncertainty that belongs to each input variable or combination of variables. The sensitivity analysis methods can also be divided in local and global depending on if they concentrate on the local impact of the input parameters or on the whole domain of variation. Besides that, one might be interested in the sensitivities of dierent statistical quantities of the output, from its variance to quantiles and even the whole distribution. An overview of the main methods for sensitivity analysis will be presented [START_REF] Iooss | A review on global sensitivity analysis methods[END_REF]. In general scalar output is considered except in the dedicated Section 2.7.6 to the functional output sensitivity analysis.

Screening

This category is about methods that are based on partial derivatives, increments of the inputs around some reference value or some empirical correlation estimation. They are usually used for screening of independent inputs by allowing an initial fast estimation of the inputs importance.

One factor at a Time (OAT)

OAT is a simple local method where the derivatives of each variable evaluated at the mean value µ X are used as sensitivity indices. For the ith variable X i it is expressed by:

S i OAT = ∂ δX i (µ X ) (2.79)
The derivatives can be estimated either by nite dierences or by adjoint methods. In the thesis context with coupled multi-physics transient calculations the former one can be only used. The derivatives are thus estimated by small perturbation δh > 0 around the mean value.

Ŝi OAT = F (µ X + δhe i ) -F (µ X ) δh (2.80)
Where e i is the standard basis vector. The OAT index is the absolute value | Ŝi OAT |. The sensitivity depends on the choice of the reference value and cannot capture non-linear or interaction eects 2.7.1.2 Morris method Morris method can be seen as a global OAT method for screening. M reference values X m are sampled and for each value the OAT sensitivity index Ŝi m,OAT is calculated for all the variables. Using these sensitivity indices the mean and variance of the Morris method are dened and estimated through equations 2.81a and 2.81b.

µ i M = E[|S i OAT |], μi M = 1 N M m=1 | Ŝi m,OAT | (2.81a) V i M = E[(S i OAT -E[S i OAT ]) 2 ], V i M = 1 M -1 M m=1 ( Ŝi m,OAT - 1 M M m =1 Ŝi m ,OAT ) 2 (2.81b)
The mean Morris index μi M represents the direct sensitivity of the input parameters to the output. The variance Morris index V i M captures the sensitivity through interactions with the rest of the inputs and the non-linearities between the inputs and the output. These two eects cannot be separated. Usually the result of Morris method is plotted as in gure 2.8, where 10 inputs are considered. This method allows to neglect directly some inputs with small computational cost (the ones close to the origin of the plot: X 2 , X 4 , X 5 , X 6 , X 9 ). The remaining inputs can be separated in parameters with linear eects (close to the μi M axis: X3 , X 6 ), with non-linear or interaction eects (X 1 ,X 7 ) and with both (X 10 ) depending on their place in the Morris plot. The method does not make any hypothesis on the model but it is more ecient if there is some regularity.
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Correlation based indices 2.7.2.1 Pearson Coecient (PC)

Pearson coecient S i P C is a measure of linear correlation between output Y and each input X i . With σ Y , σ X i the corresponding standard deviations and c X i Y the input-output covariance PC is dened as:

S i P C = c X i Y σ X i σ Y (2.82) It is bounded in [-1, 1].
A value of 0 indicates that Y and X i are uncorrelated while a value of 1 (-1) indicates full positive (negative) linear correlation. We remind that uncorrelated variables does not imply independent variables while independent variables are necessary uncorrelated. The empirical estimator of PC is:

Ŝi P C = N n=1 (X i n -μX i )(Y n -μY ) N n=1 (X i n -μX i ) 2 N n=1 (Y n -μY ) 2 (2.83)
Where μX i and μY are the mean empirical estimators of X i and Y .

Standardized Regression Coecient (SRC)

The SRC is derived from the standardized 3 linear regression between Y and X i , which are considered independent. SRC score is dened based on the regression coecients α i :

SRC i = α i σ X i σ Y (2.84)
The estimator SRC i of the SRC score can be obtained from the empirical estimators αi , σX i and σY based on the dataset D N . The SRC sensitivity index is dened as S i SRC = (SRC i ) 2 and estimated by Ŝi SRC = ( SRC i ) 2 . If the linearity is valid then the variance of the output is decomposed to combinations of the input variables variances in equation 2. [START_REF] De Lozzo | Modèles de substitution spatio-temporels et multidélité : Application à l'ingénierie thermique[END_REF].

V ar(Y ) = d i=1 α 2 i V ar(X i ) (2.85) S i SRC is then bounded in [0, 1] with d i=1 S i SRC = 1.
In this case Ŝi P C and SRC i are identical with ĉX i Y = α i σX i . If for the uncertainty propagation the perturbation method is used then the partial derivatives of the inputs are equal to α i and the SRC can be calculated directly from equation 2.84 using the results of the "Sandwich rule".

Partial Correlation Coecient (PCC)

When a controlling variable Z is aecting both X i and Y the result of PC coecient can be misleading. To this purpose PCC removes the eect of Z focusing on the intrinsic correlation between X i and Y . It is the correlation coecient conditioned on the dierent values of Z. The controlling variables can be other inputs correlated to X i . In that sense PCC can detect redundancies between inputs, the situation when two inputs are highly correlated but only one of them is important for the output. The PC for both of them will have similar values while PCC will identify the input impacting the output and the PCC of the other input will have an estimated value close to zero. The PCC sensitivity index S i P CC can be dened in relation to the PC coecients of

X i -Y (S X i Y P C ), of X i -Z (S X i ,Z P C
) and of Y -Z (S Y Z P C ) :

S i P CC = S X i Y P C -S X i Z P C S Y Z P C 1 -(S X i Z P C ) 2 1 -(S Y Z P C ) 2
(2.86)

The PCC can be then estimated empirically by the PC empirical estimators:

Ŝi P CC = ŜX i Y P C -ŜX i Z P C ŜY Z P C 1 -( ŜX i Z P C ) 2 1 -( ŜY Z P C ) 2
(2.87)

Monotonic model coecients

When the model is non-linear SRC, PC and PCC fail to correctly estimate the output's sensitivities to the inputs. This limitation can be alleviated for monotonic models. The dataset 

D N = X n , Y n

Analysis of Variance (ANOVA) indices

Analysis of variance (ANOVA) is called the decomposition of the output's variance on the dierent inputs. For the case of linear model and independent inputs the SRC can be seen as ANOVA indices. In this Section we present two indices that go beyond these constraints. The Sobol indices [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] that do not make any assumption on the model but are applied on independent inputs. The Shapley indices [START_REF] Owen | On Shapley value for measuring importance of depedent inputs[END_REF] that like Sobol do not make any model assumption but can treat dependent inputs. Both Sobol and Shapley indices are methods of Global Sensitivity Analysis (GSA).

Sobol

It is the main global sensitivity analysis method. No hypothesis is made on the model Y = F (X). The main hypothesis is made on the inputs parameters which should be independent. The goal is to dene indices by decomposing the variance of Y (ANOVA). In order to perform this decomposition Y must be square integrable. This is achieved by decomposing the model in sum of subfunctions:

Y = f 0 + d i=1 f i (X i ) + 1≤i<j≤d f ij (X i , X j ) + • • • + f 1...d (X 1 , . . . , X d ) (2.88)
Where the subfunctions are dened by:

f 0 = E[Y ] f i (X i ) = E[Y |X i ] -f 0 f ij (X i , X j ) = E[Y |X i , X j ] -f i (X i ) -f j (X j ) -f 0 . . .
which are such that f 0 is constant and the rest of the subfunctions are orthogonal to each other.

If we apply the ANOVA on this decomposition we obtain:

V ar(Y ) = d i=1 D i + 1≤i<j≤d D ij + • • • + D 1...d (2.89) with D = V ar(Y ) D i = V ar(E[Y |X i ]) D ij = V ar(E[Y |X i , X j ] -E[Y |X i ] -E[Y |X j ]) . . .
The D i explains the part of the output's variance directly from the parameter X i while the D ij explains the part of the output's variance due to the interaction between parameter X i and X j . We dene the set A i containing all the possible combinations of indices containing i. Based on these quantities the following Sobol indices are dened [START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF]:

S i = D i D , S ij = D ij D , S Ti = αi∈Ai S αi
with the following properties:

S i ≥ 0, S ij ≥ 0, d i=1 S i + 1≤i<j≤d S ij + • • • + S 1...d = 1
The S i is called the 1st order Sobol index and represents the direct eect of parameter X i on the outputs variance . The S ij is called the 2nd order Sobol index and represents the eect of the interaction between parameters X i and X j . The S Ti is called the total Sobol index and represents the total eect of parameter X i , directly and through all its possible interactions with the other parameters. It is obvious that if the inputs dimension is large the number of sensitivity indices to be computed increases rapidly. That is why usually we calculate only the rst order and total Sobol indices. In order to estimate those indices large sample size are needed 4 and they are usually obtained by using surrogate models. To this purpose, we consider 2 large input samples of size M are generated X (m,1) and X (m,2) with m = 1 . . . M . The typical estimators for f 0 and D are:

f0 = 1 M M m=1 F (X 1 (m,1) , . . . , X i (m,1) , . . . , X d (m,1) ) (2.90) D = 1 M M m=1 F (X 1 (m,1) , . . . , X i (m,1) , . . . , X d (m,1) ) 2 -f 2 0 (2.91)
To estimate the S i index the D i is estimated through:

Di = 1 M M m=1 F (X 1 (m,1) , . . . , X i (m,1) , . . . , X d (m,1) )F (X 1 (m,2) , . . . , X i (m,1) , . . . , X d (m,2) ) -f 2 0
(2.92) 4 At the order of 10 5
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Where f 2 0 is a better adapted estimator of f 2 0 than the previous one for the 1st order index estimation [START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF]:

f 2 0 = 1 M M m=1 F (X 1 (m,1) , . . . , X i (m,1) , . . . , X d (m,1) )F (X 1 (m,2) , . . . , X i (m,2) , . . . , X d (m,2) ) (2.93)
The 1st order Sobol indice is estimated then by:

Ŝi = Di D (2.94)
For the total index the notion of D ∼i is introduced as the complement quantity of D i and X ∼i = (X j ) j∈A\i as the complement of X i , where A = {1 . . . d}.

D ∼i = V ar(E[Y |X ∼i ])
Then D ∼i is estimated from equation 2.95 and the corresponding total Sobol index from equation 2. [START_REF] Owen | On Shapley value for measuring importance of depedent inputs[END_REF].

D∼i = 1 M M m=1 F (X 1 (m,1) , . . . , X i (m,1) , . . . , X d (m,1) )F (X 1 (m,1) , . . . , X i (m,2) , . . . , X d (m,1) ) -f 2 0 (2.95) ŜTi = 1 - D∼i D (2.96)
For this estimation of the whole Sobol indices N (2d + 2) model calls are necessary.

Shapley indices

This method is starting to be used quite recently and is a generalization of Sobol indices that can treat dependent input parameters. It is based on the Shapley values used in game theory. The main idea is to calculate the impact of an input on the output at all its possible combinations with the other inputs. If we could calculate all the Sobol indices we could also calculate the Shapley indices as well. To do so is very time consuming and it suers from the "curse of dimensionality". The Shapley indices oer an approximate evaluation much less time consuming and independent of the inputs dimensions. In order to estimate the Shapley indices we will introduce some denitions. For the inputs X ∈ R d we dene K = {1, 2, . . . , d} the set containing all the indices of the parameters, π a permutation of the indices in K and P i (π) as the set that includes all parameters preceding index i in π. For example if d = 6 then K = {1, 2, 3, 4, 5, 6} , π could be {3, 6, 2, 1, 5, 4} and then P 1 (π) = {3, 6, 2}. The next step now is to dene a cost function that relates a set of parameters to a value. In the context of global sensitivity the possible cost functions are:

c(J) = V ar(Y ) -E[V ar(Y |X J )] (2.97) c(J) = E[V ar(Y |X ∼J )] (2.98) with J ⊆ K and X ∼J = (X i ) i∈K\J complement of X J
The c(J) cost function is interpreted as the expected reduction in the outputs variance when the values of the parameters X J are known. The c(J) cost function is interpreted as the expected remaining outputs variance if all the parameters except J are known. The function c(J) is used and if we dene Π(K) the set of all possible perturbations of K then the exact Shapley index for parameter X i is:

Sh i = π∈Π(K) 1 d! (c(P i (π) ∪ {i}) -c(P i (π))) (2.99)
The cost function can be estimated by two loop Monte Carlo simulations [START_REF] Song | Shapley eects for global sensitivity analysis: Theory and computation[END_REF] and the corresponding estimation of the Shapley index is:

Sh i = π∈Π(K) 1 d! (ĉ(P i (π) ∪ {i}) -ĉ(P i (π))) (2.100)
The number of possible permutations of d inputs is d! and increases factorialy with the dimension of the input vector. To overcome this limitation N random permutations π r are generated and an approximate Shapley index is calculated by:

Sh rand i = 1 N N r=1 (ĉ(P i (π r ) ∪ {i}) -ĉ(P i (π r ))) (2.101)

Dependence measures

The dependence measures [START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF] can be used to overcome some limitations of ANOVA indices. The rst one is that they estimate the impact of each input on the output's variance only, while dependence measures can estimate the impact on the whole output's distribution. The second one is that they are used only for quantitative analysis and cannot be used for screening purposes based on a selected sample while dependence measure can be used for both. The third and last one is that ANOVA indices cannot adapt easily to functional outputs. We will see in Section 2.7.6 that they can still be used in conjunction with PCA. Dependence measures can be used straightforward for functional outputs. We remind that we consider the model Y = F (X) : R d → R. Dependence measures are based on estimating the statistical dependence between Y and X i with zero value indicating independent variables. Dierent approaches exist and we will detail some of the main ones.

Mutual information

Mutual information I dependence measure is based on the entropy H dened in equation 2.7 of X i , Y and of joint (Y, X i ). The sensitivity index is expressed as:

S i M I = I(X i ; Y ) = H(X i ) + H(Y ) -H(X, Y ) = p X i Y (X i , Y ) ln p X i Y (X i , Y ) p X i (X i )p Y (Y ) dX i dY
(2.102) This index is always positive and zero in case of independent variables (p X i Y = p X i p Y ).

Distance correlation

Distance correlation [START_REF] Székely | Measuring and testing dependence by correlation of distances[END_REF] is based on the notion of distance covariance d cov (X i , Y ). It is the distance between the joint characteristic function of (X i , Y ) denoted by φ X i Y and the product of their marginals φ X i and φ Y . The characteristic function for a random variable Z is the Fourier transform of its pdf and is dened as φ Z (t) = E[e itZ ]. The distance covariance is expressed through equation 2. [START_REF] Aronsjanin | Theory of reproducing kernels[END_REF], where w is a positive weighting function dened in [START_REF] Székely | Measuring and testing dependence by correlation of distances[END_REF]. The weight function ensures that the distance covariance is 0 when the variables are independent and positive when they are dependent.

d 2 cov (X i , Y ) = φ X i Y -φ X i φ Y 2 w = |φ X i Y (X i , Y ) -φ X i (X i )φ Y (Y )| 2 w(X i , Y )dX i dY (2.103)
The distance correlation sensitivity index is dened as:

S i dcor = d cov (X i , Y ) d cov (X i , X i ) d cov (Y, Y ) (2.104)
2.7.5.3 Hilbert-Schmidt Independence Criterion (HSIC) indices HSIC indices were proposed by [START_REF] Gretton | Measuring statistical dependence with hilbert-schmidt norms[END_REF] for the detection of non-linear dependencies between two random variables. This is achieved by computing the cross-covariance between non-linear transformations of the variables. We consider the scalar input X ∈ X and the scalar output Y ∈ Y.

The main motivation to derive the HSIC indices is based on searching an independence criterion C XY with the property: " If (X, Y ) are independent if and only if C XY = 0".

We introduce the notion of the Reproducing Kernel Hilbert-Schmidt (RKHS) function space F from X to R. It is a Hilbert space of functions f : X → R for which the application f → f (x) is continuous for all x ∈ X . The Riesz theorem [START_REF] Friedman | Foundations of Modern Analysis[END_REF] states that for any x ∈ X there exists a unique evaluation function φ x ∈ F with the following reproducing property for all f ∈ F:

f (x) =< f, φ x > (2.105)
This evaluation function denes the reproducing kernel k X : X × X → R for F as:

k X (x, x ) = φ x (x ) =< φ x , φ x > (2.106)
The Moore-Aronszanj theorem [START_REF] Aronsjanin | Theory of reproducing kernels[END_REF] states that if k X : X × X → R is a symmetric and positive denite kernel then there is a unique RKHS on X for which k X is the reproducing kernel.

We introduce G a second RKHS of functions g from Y to R with reproducing kernel k Y . The cross-covariance operator C XY between X and Y is the linear operator G → F dened by:

< f, C XY g >= E X,Y [f (X)g(Y )] -E X [f (X)]E Y [g(Y )] (2.107) for f ∈ F, g ∈ G.
The Hilbert-Schmidt Independence Criterion (HSIC) is dened as S HSIC = C XY 2 HS and can be expressed using the reproducing kernels [START_REF] Gretton | Measuring statistical dependence with hilbert-schmidt norms[END_REF] by:

S HSIC = C XY 2 HS = E X,X ,Y,Y [k X (X, X ) k Y (Y, Y )] + E X,X [k X (X, X )] E Y,Y [k Y (Y, Y )] -2 E X,Y [E X [k X (X, X )] E Y [k Y (Y, Y )]] (2.108) 
In [START_REF] Gretton | Measuring statistical dependence with hilbert-schmidt norms[END_REF] the HSIC indices are estimated empirically through:

ŜHSIC = T r(K X H K Y H) N 2 (2.109)
Where:

• K X and K Y are the Gram matrices of the kernel functions dened as

K jk X = k X (X j , X k ) and K jk Y = k Y (Y j , Y k ) for j ≤ N, k ≤ N . • H is a centering matrix with elements H jk = δ jk -1 N for j ≤ N, k ≤ N .
The important propery of HSIC indices is the following: "If k X and k Y are universal and X and Y are compact then S HSIC = 0 if and only if X and Y are independent.". The universal property means that the corresponding RKHS function spaces F and G are dense in the space of continuous functions on X and Y with respect to the innity norm [START_REF] Gretton | Kernel methods for measuring independence[END_REF]. There is no clear way for the selection of the kernel functions. In this thesis we use Gaussian kernels (satisfying the universal property).

HSIC statistical signicance test

While the HSIC indices measure non-linear dependencies between X i and Y they are not robust enough to be used directly for screening. It is preferable that they are used in statistical signicance tests. The non-asymptotic signicant test based on resampling presented in [START_REF] Lozzo | New improvements in the use of dependence measures for sensitivity analysis and screening[END_REF] can be used for screening purposes. The null hypothesis "H 0 : X i and Y are independent" is adopted with a signicance level α = 0.05. The following procedure is applied for each input to identify which of them are important.

HSIC signicance test 

V l = Λ ll T r(Λ)
over the total variance of the functional output. For the Sobol indices this method was introduced by [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF]. We present the equivalent expression for the aggregated Shapley index in equation 2. [START_REF] Kennedy | Bayesian calibration of computer models[END_REF], where Sh i l is the Shapley index between the input X i and the output PCA score T l .

Sh i agg = L l=1 Sh i l V l
(2.110)

Dependence measures

For mutual information and distance covariance the extension to both functional inputs and outputs is straightforward for X ∈ R d and Y ∈ R q . For HSIC indices it is more complicated since the kernel is applied on a metric for functional variables. For such kernels the universal property is not guaranteed [START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF]. As a consequence the independence detection cannot be guaranteed. However, approaches based on PCA have been presented for temporal and spatial outputs in [START_REF] Ferraty | Nonparametric functional data analysis : theory and practice[END_REF] and [START_REF] Lozzo | Sensitivity analysis with dependence and variance-based measures for spatio-temporal numerical simulators[END_REF]. The intuition behind these approaches is to dene a distance metric in the functional space based on the scores of the PCA. The distance between each pair of functional realizations is calculated and the kernel function is applied on these distances.

Model calibration

Physical phenomena are often quite complex and in order to describe them simplied models are used. Often these models apart from the input variables contain also unknown parameters to be determined in order to enhance the model prediction capabilities. We consider a model G(X, θ), with unknown parameters θ, aiming at replacing the scalar underlying function Y = F (X). In this example we use the input-outputs general notations but any intermediate inputs or outputs quantities can be used as well.

Y = G(X, θ) + ε (2.111)
Model calibration consists of the estimation of θ, with ε the calibration error. Various approaches exist based on an obtained dataset D N . This dataset can be the result of experimental measurements or of a higher delity model. We are going to detail two approaches. Mean square error minimization, where θ is estimated by minimizing E[ε 2 ]. Bayesian calibration, where a prior estimate of θ is updated through the likelihood of observing D N . The calibration model for the obtained dataset is expressed in equation 2. [START_REF] Liu | Modularization in bayesian analysis with emphasis on analysis of computer models[END_REF], with E D N the vector of size N of the calibration errors (ε i ) N i=1 .

Y D N = G(X D N , θ) + E D N (2.112)

Mean Square Error minimization

The calibration parameters θ are estimated by minimizing the mean square error of the calibration model:

θ = argmin θ∈Θ 1 N N i=1 (Y i -G(X i , θ)) 2 (2.113)
Dierent optimization methods can be used to nd this minimum. This approach aims at nding the best tting of the model on the dataset.

Bayesian calibration

The previous method is very limited since it cannot include model inadequacy, observation errors and other sources of uncertainties. Bayesian calibration is a more mathematically rigorous approach since it denes a statistical framework. It updates a prior knowledge of θ by conditioning on the observed dataset. The posterior pdf of θ can take into account various sources of uncertainties (e.g. observation uncertainties) and allow to include the calibration parameters uncertainty. The general statistical framework is described by equation 2. [START_REF] Yamada | Ultra high-dimensional nonlinear feature selection for big biological data[END_REF], where ε i are N realizations of i.i.d., the error related to the observations ε ∼ N (0, σ 2 ε ).

Y i = F (X i ) + ε i (2.114)
The Bayes rule as we saw in Bayesian inference (Section 2.2.3) need the denition of the likelihood function of observing the dataset. This likelihood function depends on both the model and error denitions and assumptions. In [START_REF] Carmassi | Bayesian calibration of a numerical code for prediction[END_REF] an overview on the dierent statistical frameworks is presented. The deterministic calibration model G is either computationally cheap and can be used directly or it is computational expensive and is approximated by a Gaussian process similar to the one presented for Kriging in Section 2.5.4. Besides that, the model can be considered as representing exactly the undergoing physical phenomena or as introducing a model discrepancy. The combination of these modeling and error options create 4 dierent frameworks M 1 , M 2 , M 3 , M 4 of increasing complexity:

1. Cheap code without discrepancy (M 1 ): The code model is fast enough to be used directly and is assumed to completely replace the physical phenomena. This results in the M 1 framework described by:

Y i = G(X i , θ) + ε i (2.115)
2. Expensive code without discrepancy (M 2 ): The code model is computationally expensive and thus a Gaussian process is used to replace it. The Gaussian process as in Kriging is constructed on the joint domain (X, θ) by a dedicated DOE of size M D

F M = (X m , θ m ), Y m M m=1 .
It is dened by its mean µ F (X, θ) and covariance function c F ((X, θ), (X , θ )). As in Kriging the mean function is usually is a linear combination of predened functions µ F (X, θ) = h F (X, θ)β F and the covariance function is selected from a family of kernel functions with hyperparameters (σ F , ψ F ). No discrepancy is considered between the Gaussian process and the physical phenomena. This results in the M 2 framework described by:

Y i = GP (µ F , c F ) i + ε i (2.116)
Together with θ the Gaussian process parameters (β F , σ F , ψ F ) must be estimated as well.

3. Cheap code with discrepancy (M 3 ): The code model is computationally fast and is used directly. The discrepancy between the model and the physical phenomena δ(X i ) = F (X i ) -G(X i , θ) is modeled by a Gaussian process. It is dened by its mean function µ d (X) = h d (X)β d and covariance function c d (X, X ) with hyperparameters (σ d , ψ d ). This results in the M 3 framework described by:

Y i = G(X i , θ) + GP (µ d , c d ) i + ε i (2.117)
Together with θ the Gaussian process parameters (β d , σ d , ψ d ) must be estimated as well.

There is an identiability issue arising from the fact that multiple pairs of (θ, δ(X)) can verify the discrepancy denition. This can be solved by setting the mean function µ d = 0 [START_REF] Kennedy | Bayesian calibration of computer models[END_REF].

4. Expensive code without discrepancy (M 4 ):The code model is computationally expensive and thus a Gaussian process is used to replace it as in M 2 . The discrepancy is modeled by a Gaussian process as in M 3 . The resulting framework M 4 introduced in the seminal work [START_REF] Kennedy | Bayesian calibration of computer models[END_REF] is described by:

Y i = GP (µ F , c F ) i + GP (µ d , c d ) i + ε i (2.118)
Together with θ the two Gaussian process parameters (β F , σ F , ψ F ) and (β d , σ F dψ d ) must be estimated as well.

For each model the likelihood must be dened prior to the estimation of the parameters. The parameters are usually grouped in two categories: the calibration parameters θ common for all the statistical frameworks and the rest called nuance parameters depending on the framework. Once the framework is selected and its corresponding likelihood dened the estimation of the parameters can be performed either through Maximum Likelihood Estimation (MLE) or Bayesian Estimation.

In MLE the parameters that maximize the likelihood are estimated either altogether in what is called full MLE or in separate steps (for M 2 and M 4 ). In the M 2 rst the model Gaussian process hyperparameters are estimated through MLE on their partial likelihood and then plugged into the full likelihood. Secondly, θ are estimated by maximizing this modied likelihood. For M 4 the θ are estimated by mean square error minimization and then plugged into the calibration model to estimate the discrepancy by non-parametric regression on (X D N , Y D N -G(X D N , θ). In Bayesian Estimation a prior is assigned to all the parameters to be estimated. Usually Jereys priors are used [START_REF] Jereys | Theory of Probability[END_REF]. In full Bayesian Estimation the joint posterior of the outputs is estimated. This means that the nuance parameters must be integrated in order to estimate the marginal posterior pdf of θ. This approach is dicult due to the large number of nuance parameters. To this purpose [START_REF] Kennedy | Bayesian calibration of computer models[END_REF] and [START_REF] Liu | Modularization in bayesian analysis with emphasis on analysis of computer models[END_REF] used an approach in separate steps called Modular Bayesian Estimation similar to the one in MLE. The dierence is that the posterior pdf is sampled using Monte Carlo Markov Chains (MCMC) methods.

State of the art research

Most of the above mentioned topics are of high interest in research and development. We present some recent works on statistics and on application of these or similar methods in nuclear engineering.

Research in Statistics

With the rise of machine learning and data science an emphasis is given in feature selection methods that can be seen as methods for dimension reduction either on the inputs or outputs. The best representation of high dimensional non-linear data is sought. In [START_REF] Balasubramanian | Ultrahigh dimensional feature screening via rkhs embeddings[END_REF] two methods based on HSIC indices are proposed to deal with interactions and redudancies between inputs in high dimensional spaces. Both methods use sup -HSIC measure wich can be seen as the maximum HSIC value among dierent kernel functions. In [START_REF] Yamada | Ultra high-dimensional nonlinear feature selection for big biological data[END_REF] a novel method is proposed for feature selection based on HSIC indices and Lasso regularization which penalizes for large input sets. The method is applied to millions of inputs with very promising results. An interesting method for feature selection is presented in [START_REF] Chen | Kernel feature selection via conditional covariance minimization[END_REF] where the conditional covariance is used as a metric of conditional dependence.

The input subset is calculated by minimizing the conditional covariance that is estimated using kernel functions. Another promising method gaining popularity for dimension reduction is the autoencoders, which consists of specic types of neural networks where their outputs are their inputs. This means that they nd a representation that is as close as possible to the original inputs. Autoencoders are used in [START_REF] Wang | Auto-encoder based dimensionality reduction[END_REF].

Uncertainty analysis in presence of functional inputs and outputs is a very challenging eld of ongoing research. In [START_REF] Nanty | Stochastic methods for uncertainty treatment of functional variables in computer codes : application to safety studies[END_REF] a methodology based on PCA and PLS is used for uncertainty propagation in the presence of both scalar and functional dependent inputs. An advanced uncertainty analysis methodology based on HSIC indices for screening and kriging for surrogate model was developed recently in [START_REF] Iooss | Advanced methodology for uncertainty propagation in computer experiments with large number of inputs[END_REF]. In [START_REF] Bouhlel | Improving kriging surrogates of high-dimensional design models by partial least squares dimension reduction[END_REF] and [START_REF] Aversano | Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting ow applications[END_REF] PLS and PCA are combined with kriging for constructing surrogate models in high dimensional input spaces. Non linear PCA in conjuction with kriging and chaos polynomials are used for constructing surrogate models in high dimensional input spaces in [START_REF] Lataniotis | Extending classical surrogate modelling to ultrahigh dimensional problems through supervised dimensionality reduction: a data-driven approach[END_REF].

Design of experiments research focus mainly on developing DOE adapted for specic purposes (e.g. failure probability estimation). In [START_REF] Franco | Exploratory Designs for Computer Experiments of Complex Physical Systems Simulation[END_REF] dierent space-lling designs are studied and new ones are proposed. In [START_REF] Pronzato | Design of computer experiments: space lling and beyond[END_REF] the applicability of dierent space-lling designs is studied and the need to consider non space-lling designs for specic cases is highlighted. In [START_REF] Demeyer | Surrogate model based sequential sampling estimation of conformance probability for computationally expensive systems: application to re safety science[END_REF] sequential designs are presented for failure probability uncertainty estimation in a multidelity framework. The high and low delity codes are modeled by two kriging models. In [START_REF] Damblin | Adaptive numerical designs for the calibration of computer codes[END_REF] an adaptive design construction for calibration purposes is studied. Kriging models are used to replace the actual code and the design is sequentially constructed based on Expected Improvement criterion in order to reduce the calibration error.

Sensitivity analysis is a eld of constant research undergoing a lot of evolution in recent years. In [START_REF] Chastaing | Generalized sobol sensitivity indices for dependent variables: numerical methods[END_REF] a generalization of Sobol indices for dependent variables is presented. A new sensitivity index called RDC measuring the non-linear dependency between two random variables is proposed in [START_REF] Lopez-Paz | The randomized dependence coecient[END_REF]. It is based on random non-linear copula projections of the variables, it is computationally cheaper than HSIC indices and it is possible to adapt it to functional random variables. Various sensitivity indices based on dependence measures are introduced in [START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF]. Besides that, their use in feature selection for large dimensions is evaluated. Johnson indices where used for high dimensional dependent inputs for linear model in [START_REF] Clouvel | Shapley and johnson values for sensitivity analysis of pwr power distribution in fast uence calculation[END_REF]. In [START_REF] Fort | New sensitivity analysis subordinated to a contrast[END_REF] the concept of goal oriented sensitivity indices was introduced based on contrast functions. An example of these goal oriented sensitivity indices is the quantile sensitivity indices studied in [START_REF] Browne | Estimate of quantile-oriented sensitivity indices[END_REF]. Besides that, sensitivity indices evaluating the sensitivity on the uncertainty of the inputs probability density function are developed in [START_REF] Lemaître | Density modication-based reliability sensitivity analysis[END_REF].

Research in Nuclear Engineering

Statistical state of the art methods are starting to being used in nuclear applications. In fuelthermal, [START_REF] Bouloré | Uncertainty and sensitivity analysis of the nuclear fuel thermal behavior[END_REF] used URANIE platform for uncertainty analysis of PWR fuel under irradiation modeled using METEOR code. Monte Carlo uncertainty propagation and sensitivity analysis by estimating Sobol indices were performed. The results are compared to experimental measurements.

In [START_REF] Pastore | Uncertainty and sensitivity analysis of ssion gas behavior in engineering-scale fuel modeling[END_REF] BISON code and the DAKOTA platform were used for ssion gas sensitivity analysis based on a similar approach to Morris method. In [START_REF] Ikonen | The importance of input interactions in the uncertainty and sensitivity analysis of nuclear fuel behavior[END_REF] FRAPCON a comparative sensitivity analysis using Pearson correlations and Sobol indices highlight the necessity of using sensitivity indices that capture interactions between inputs on the outputs. An interesting approach is carried out in [START_REF] Cacuci | Second-order adjoint sensitivity and uncertainty analysis of a heat transport benchmark problemii: Computational results using g4m reactor thermal-hydraulic parameters[END_REF] for a thermal-hydraulic modeling of a conceptual reactor design. Adjoint sensitivity analysis showed the need to calculate second order sensitivities due to non-linearities. In neutronics [START_REF] Wu | Kriging-based surrogate models for uncertainty quantication and sensitivity analysis[END_REF] applied an uncertainty propagation and sensitivity analysis (Sobol indices) for functional outputs on a neutronic transient modeled by point kinetics. Kriging and PCE were used in conjuction with PCA for dimension reduction. An interesting approach is presented in [START_REF] Huang | Dimensionality reducibility for multi-physics reduced order modeling[END_REF]. A methodology for dimension reduction using of linear projections similar to PCA, including calculation of bounds for the reduction error, is used to replace neutronic/fuel-thermal coupled codes. A lot of research is done for cross-sections uncertainty analysis in large cores. In [START_REF] Rochman | Nuclear data uncertainties for typical lwr fuel assemblies and a simple reactor core[END_REF] assembly depletion in lattice calcualtions is studied while in [START_REF] Chabert | Calcul du coecient Doppler pour les réacteur à eau[END_REF] full detailed PWR core static uncertainty analysis using adjoint solutions. In [136] the dierences between core assembly and pin by pin homegenization level is highlighted in an uncertainty analysis using COBAYA code. Both Monte Carlo and adjoint approaches were applied. 99

Introduction

Pressurize Water Reactors (PWR) computational modeling evolves with the available computational power. The complexity of Best Estimate (BE) codes increases and coupling frameworks are developed in order to simulate strong multi-physics transients. An example of such transient is the Rod Ejection Accident (REA) detailed in Section 1.6. In Chapter 1 we saw that three dierent disciplines or 'physics' are identied as important for REA. The rst one is neutronics modeling the power generation by calculating the neutrons' distribution in the core. The second one is fuel-thermomechanics modeling the heat distribution inside the fuel pin induced by the power generation. Mechanical and temperature evolution are computed from the fuel pellet center until the cladding external surface. The third one is thermal-hydraulics modeling the heat extraction by the coolant. The temperature, density and other thermal-hydraulics quantities are calculated as the coolant circulates in the pressurized core.

In a multi-physics coupling framework the dierent neutronic, fuel-thermomechanic and thermalhydraulic BE codes are coupled in order to improve the transient modeling. In this thesis we use the coupling framework developed at CEA for the REA modeling. It is based on CORPUS tool for the coupling of APOLLO3 R (neutronics), FLICA4 (thermal-hydraulics) and ALCYONE V1.4 (fuel-thermomechanics). As discussed in Section 1.7 two couplings are available. The BE coupling of APOLLO3 R -FLICA4 and the Best Eort coupling of APOLLO3 R -FLICA4 -ALCYONE V1.4.

Driven by the need of improving the safety margins uncertainty analyses are carried out and Best Estimate Plus Uncertainty (BEPU) methods are developed with industrial applications. In Chapter 2 we saw an overview of statistical tools that could be used in an uncertainty quantication methodology (UQM). The use of the CORPUS coupling framework to develop an UQM for a REA creates many challenges:

• Computationally expensive modeling not allowing many code evaluations.

• Large input and output dimensions that can create diculties for the application of the dierent statistical tools.

• Input dependencies that can lead to redundant inputs. This is the case when two inputs are strongly dependent and one is very important for an output while the other one is not. Most of the sensitivity methods will detect both of the inputs as very important.

• Interaction between inputs on the outputs variance. This can occur when one input is not directly signicant to an output but only in conjunction with another input.

• Non-linear output behavior. It is not always easy for the surrogate model to correctly approximate a non-linear function, especially where there are discontinuities.

The objective is to explore the dierent statistical tools to address some of these challenges in the UQM.

In this Chapter we present the development and testing of the UQM on a small scale core called MiniCore that is representative of a PWR core behavior. In Section 3.2 we detail the MiniCore geometry with all its modeling aspects (e.g. discretization) the initial state and the reference characteristics of the REA. In Section 3.3 we identify the inputs and outputs for the UQM and discuss the inputs uncertainty quantication. In Section 3.4 we perform preliminary decoupled stand-alone uncertainty analysis studies for each code. Depending on the nature of the inputs and outputs relevant statistical tools are tested.

In Section 3.5, we study the multi-physics APOLLO3 R -FLICA4 BE coupling scheme with all the identied inputs and outputs. An input dimension reduction method is developed to identify important input subspaces. Additionally, an adaptation of the simulated annealing LHS optimization algorithm is developed to guarantee good space-lling properties in both the original input space and the identied important input subspace. Both methods and relevant statistical tools are tested on the BE coupling scheme. The conclusions drawn from the preliminary decoupled and multi-physics coupled studies are used to develop the UQM step by step scheme.

In Section 3.6, the case of the gap heat transfer (H gap ) is studied in order to improve the multiphysics BE modeling used in Section 3.5. Since the inclusion of ALCYONE V1.4 increases dramatically the computational cost there is a strong interest in trying to extract knowledge from decoupled ALCYONE V1.4 analyses. We present a methodology to calibrate a simplied H gap model and to quantify its uncertainty. The calibrated model is introduced then in the BE coupling scheme creating an improved BE modeling. The originality of the proposed H gap model is that its uncertainty can be quantied and propagated through the APOLLO3 R -FLICA4 coupling.

The UQM is tested again on this improved coupling and for selected design points comparisons are made with APOLLO3 R -FLICA4 -ALCYONE V1.4 Best Eort coupling scheme. The Chapter ends with some general conclusions in Section 3.7.

In general the pre-treatment, the calculations and the post-treatment of the results are performed with Python language scripts. For testing the dierent statistical tools and developing the UQM R statistics language is used. The Best Eort calculations were carried out on the new TGCC Joliot-Curie cluster.

3.2 REA modeling and description

Core design

The REA is studied in a small scale core geometry called MiniCore for the test and development phase of the UQM. The MiniCore is representative of a PWR core behavior and was used as a proof of concept in [START_REF] Targa | Development of multi-physics and multi-scale Best Eort Modelling of pressurized water reactor under accidental situations[END_REF]. The small size allows to test dierent coupling levels and statistical tools in order to develop the UQM in an environment relatively close to a PWR. The geometry is presented in gure 3. Pin pitch (cm)
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Modeling

The REA in the MiniCore geometry is modeled by the CORPUS coupling framework presented in Section 1.6 that includes the codes: APOLLO3 R for neutronics , FLICA4 for thermal-hydraulics and ALCYONE V1.4 for fuel-thermomechanics. Two multi-physics couplings exist: the APOLLO3 R -FLICA4 BE coupling and the APOLLO3 R -FLICA4 -ALCYONE V1.4 Best Eort coupling. Besides that, each code includes simplied modelings of the other branches of physics allowing computationally cheap stand-alone simulator modeling of REA. The phase space of the equations of each code are discretized and boundary conditions are applied in order to establish the modeling of the REA.

In APOLLO3 R a two group Diusion approximation (equations 1.21a and 1.21b) is used with void boundary conditions on the neutron current (Section 1.3.3). The geometry is discretized radially at the level of quarter of assembly and axially in 34 axial meshes of which 30 are dividing the active fuel height and 4 are used for bottom and top reector. A total number of 3400 meshes is used. The interaction with other disciplines arises from the multiparametric macroscopic cross-sections. More precisely, the parameters of fuel temperature and moderator density are the ones estimated by fuel-thermomechanics and thermal-hydraulics respectively.

In FLICA4 the 4 equations porous modeling is used with a multi-1D axial ow approximation (Section 1.5.3). The porous modeling consists in averaging the thermal-hydraulic quantities in both time and space. The presence of coolant and solid structures is taken into account through the calculated eective porosity of the medium. The coolant is treated as a mixture of vapor and liquid. A system of 4 equation is solved (equations 1.53a -1.53d): mixture mass balance, vapor mass balance, mixture momentum balance and mixture energy balance. The boundary conditions consist in determining the inlet mass ow and enthalpy and the outlet pressure. One thermal-hydraulic channel is used for each quarter of assembly in accordance with the neutronics discretization and only the fuel active part is modeled. A total number of 1080 meshes is used. The interactions with neutronics comes from the power directly injected in the coolant by gamma emission and with fuel-thermomechanics by the heat ux reaching the coolant due to head diusion in the fuel.

Both APOLLO3 R and FLICA4 spatial discretizations are illustrated in gure 3.2. The green border indicates the complete geometry modeled by APOLLO3 R . The blue border the fuel active geometry part modeled by FLICA4 excluding thus the reector assemblies. In ALCYONE V1.4 a 1D radial approximation is used for solving the fuel-thermomechanics equations as described in Section 1.4.3. The boundary conditions consist in determining the loadings such as the external pressure on the fuel pin and by determining the power generated in the fuel and the cladding external wall temperature. The two last ones are the interactions with neutronics and thermal-hydraulics respectively. One average fuel pin is used for each thermal-hydraulic channel with the same axial discretization of 30 meshes in accordance with both neutronics and thermal-hydraulics modeling. For the radial discretization the fuel is divided into 25 regions with ner discretization at the external part. The power distribution inside a fuel pin is not uniform and changes with its burn-up (Section 1.4.1.1). During the fuel evolution in the core the U-238 at external part interacts with the epithermal neutrons producing Pu-239 that has high probability to exhibit ssion. This creates an external fuel zone with higher power and thus higher burn-up. Beyond 40GW d/t this zone restructures to what is called the high burn-up structure with increased porosity. That is why a ner discretization needs to be used at the fuel periphery. The cladding is divide into 3 regions. At this point is important to mention the simplied thermal model of FLICA4 because it is the one used for the UQM development. In FLICA4 a 1D radial fuel thermal modeling is available with a discretization of 7 regions in the fuel and 3 regions in the cladding. The thermal equations are solved in the fuel and the cladding are linked through the gap heat transfer that is modeled by a constant value. The two radial fuel pin discretizations of FLICA4 and ALCYONE V1.4 are presented together in gure 3.3. The time discretization for the REA is the same for all the codes for each coupling or stand-alone modeling. A total transient duration of 0.4 s is considered with a constant incremental time step of 0.001 s. The control rod is ejected in 0.1 s.

The two group macroscopic cross-sections are generated for each assembly by APOLLO2 lattice calculations. They are the same cross-sections used in [START_REF] Targa | Development of multi-physics and multi-scale Best Eort Modelling of pressurized water reactor under accidental situations[END_REF] and are parameterized in burn-up, boron concentration, moderator density and fuel temperature. More information about the range of the cross-section parametrization can be found in Appendix A. For the isotopic composition of the fuel in ALCYONE V1.4 a typical PWR power evolution is applied. The core is set at a Hot Zero Power (HZP) condition, meaning that the temperature is around 290 • C and the power negligible.

For the REA study in this core an important aspect is the xenon (Xe -135) distribution since it can radically alter the control rod worth and consequently the transient evolution. To this purpose a Xe -135 axial prole is applied in all the fuel assemblies. The prole is the result of a xenon transient calculation with APOLLO3 R . The prole leading to higher control rod worth is selected and applied homogeneously in all the fuel assemblies. This is done in order to simplify the MiniCore modeling. The selected Xe -135 axial prole is visualized in gure 3.4. We observe that the maximum is located towards the bottom of the fuel assembly. This pushes more neutrons to the top of the assembly where the control rod is located. The eective absorption of the control rod thus increases resulting in a higher control rod worth and thus a more violent transient.

Initial state and reference transient

The MiniCore, as mentioned, is at a HZP conditions with the control rod inserted in the top part of the central assembly. The core is critical and the initial negligible power distribution is illustrated in gure 3.5, where we can see the peaked towards the top power exactly under the control rod position. In table 3.1 some characteristic core conditions are given. The initial core power is 0.11 W and the fuel and moderator temperatures are both at 290 • C.

The reference (without uncertainties) REA characteristics obtained by an APOLLO3 R -FLICA4 modeling are presented in table 3.2 and gure 3.6. The control rod worth is ρ worth = 1.7 $ indicating a strongly prompt driven transient. It is the injected reactivity in the core due to the control rod extraction as dened in Section 1.3.1.3. In the gure on the right we can observe the created power pulse of width Γ = 17 ms with a maximum power of P max core = 60P nom at instant t max = 160 ms. Where P nom is the MiniCore nominal power. The power at the end of the transient reduces to P end core = 0.72P nom . The deformation factor F xyz is dened as the ratio between the maximum local power and the average local power. The F xyz in time is plotted starting from 3.5 and reaching up to 4.1 when the control rod is fully ejected (0.1 s). 

Input uncertainties modeling

Before testing dierent statistical tools and developing the UQM it is important to identify the uncertain inputs and outputs of interest for the REA. Additionally, the input uncertainties must be quantied prior to the dierent uncertainty studies.

Inputs-Outputs identication

The inputs and outputs were identied based on PIRT approaches and expert opinions. We remind that PIRT (Phenomena Identication and Ranking Table ) is an approach applied to dierent safety scenarios where the most important phenomena are identied together with their degree of knowledge or uncertainty. A total of 22 scalar inputs and 4 outputs (three scalars and one functional) were selected spanning the dierent interacting physics and are presented in table 3.3.

For the inputs, in neutronics we identied the dierent macroscopic cross-sections and kinetic parameters. The considered two group macroscopic cross-sections are the disappearance crosssection 1 T D 1 and T D 2 , ν × f ission cross-section N F 1 and N F 2 , diusion coecient D 1 and D 2 and scattering cross-section from energy group 1 (fast) to 2 (thermal) S 1→2 . The kinetic parameters are the eective delayed neutron fraction β ef f , the eective decay constant λ ef f and the group inverse velocities IV 1 and IV 2 .

In fuel-thermomechanics the materials laws of thermal conductivity and specic heat capacity for the fuel and the cladding are considered (λ f , λ c , Cp f , Cp c ). Additionally, the gap heat transfer H gap , the Rowlands temperature T R used as the eective Doppler temperature and the power radial prole P r were also taken into account. As discussed in Section 1.3.3.7, since in neutronics there is no ne description of the fuel pin temperature compared to fuel-thermomechanics an eective temperature must be used for the Doppler eect taking into account the radial variation. In our case we use the Rowlands temperature as the eective Doppler temperature. Concerning P r , as mentioned in Section 1.4.1, with the fuel evolution in the core the power is peaked towards the periphery. This radial prole is modeled by a parametric function described in [START_REF] Maunier | Simulation par le code APOLLO2 de l'evolution du combustible REP enrichi à 4.5des concentrations globales et radiales avec les résultats expérimentaux[END_REF] and the uncertainty is considered on the fuel external surface power.

In thermal-hydraulics dierent models were identied as important: the convective heat transfer H c , the recondensation K v0 , the threshold R crit determining when the DNB is reached and the post-DNB heat transfer H dnb beyond this threshold. All these models are discussed in Section 1.5.3.5. For the outputs, in neutronics we consider the maximum local linear power during the REA P max lin and the radial linear power distribution P 2D lin at the time and radial plane of P max lin . In fuel-thermomechanics we selected the maximum local stored enthalpy H max f while in thermalhydraulics the minimum distance to DNB DN B min . The latter output is dened as the dierence between the DNBR (Section 1.5.3.5) and the DNB threshold R crit .

The identied inputs and outputs will be used for the application of the UQM. For the testing of dierent statistical tools in order to derive the UQM more outputs will be studied related to each analysis. This will allow to highlight advantages and disadvantages of some methods and to avoid the applicability restriction of the UQM only on the identied inputs and outputs.

Input uncertainty quantication

In Section 2.2 we saw that there are dierent methods for the uncertainty quantication from expert judgment to statistical or Bayesian inference. In this thesis for the identied inputs we use the UAM recommendations where they are available and expert opinions for the rest. More details about the quantication of the input uncertainties can be found in Appendix B. We remind that UAM is an international uncertainty analysis benchmark [START_REF] Ivanov | Benchmarks for uncertainty analysis in modelling (UAM) for the design, operation and safety analysis of LWRs[END_REF]. The resulting pdf for the inputs are presented in table 3.4.

For the neutronic inputs, the two group macroscopic cross-sections and the kinetic parameters, a multivariate normal distribution is used based on statistical inference. The mean vector of the pdf is the reference cross-sections produced in CEA Σ CEA and the covariance matrix C UAM empirically estimated by the results of UAM. The UAM provided a dataset of two group macroscopic crosssections resulting from neutronic lattice uncertainty propagation. This dataset of 100 realizations was adapted for the cross-sections used by APOLLO3 R by assuming:

1. Negligible uncertainties on the up-scattering cross-section S 2→1 .

2. Negligible n -2n, n -3n . . . cross-sections uncertainties.

The adapted macroscopic cross-sections dataset was used to estimate the correlation matrix and the relative standard deviations of the cross-sections. Finally, C UAM is calculated using the correlation matrix, the relative standard deviations and the reference CEA cross-sections. The correlation matrix for the neutronic inputs is illustrated in gure 3.7, where we can see large positive and negative correlations. The T D 1 is strongly positively correlated with S 1→2 and IV 1 and negatively with D 1 . The β ef f is strongly positively correlated with λ ef f and both are in general uncorrelated to the other neutronic inputs. 

H dnb U (0.8, 1.2) Pr U (1, 1.08) + N (0, 0.0175) T R U (0, 1)
The rest of the inputs are considered independent of the neutronic inputs and between them. The thermal-hydraulic input distributions are mainly based on CEA experts opinions and are applied as random multiplication coecients with mean 1 on the dierent models. The R crit usually is penalized to 1.3 and in this thesis we considered this value as the 95% upper quantile of a normal distribution with mean value 1. For H DN B a uniform distribution is used reecting the limited current knowledge about this phenomenon.

In fuel-thermomechanics inputs and more specically for the thermal conductivities and specic heat capacities the UAM recommendations were used. For the Rowlands temperature a uniform distribution was considered on the weight fraction of the fuel centerline temperature. In the reference situation (equation 1.20) the Rowlands temperature has a 4/9 weight on the fuel centerline temperature and 5/9 on the fuel external surface temperature. By using an uncertain multiplication factor with U(0, 1) distribution on the centerline temperature weight we consider that it can only decrease uniformly between 4/9 and zero with a corresponding increase in the external surface temperature weight. The H gap is a particular input quantity since in the BE coupling H gap is an uncertain constant in FLICA4 with uniform pdf bounded by its value for a complete open gap (2e 3 W m -2 K -1 ) and for a pellet-cladding contact (5e 4 W m -2 K -1 ). In the Best Eort coupling H gap becomes a result of ALCYONE V1.4 and thus is not considered. We will see that a part of the thesis work is dedicated to calibrating a H gap model in order to introduce it in the BE coupling and improve its modeling without increasing its computational cost. The uncertainties of the calibrated model will be estimated as well and added to the uncertain inputs. Finally, the power radial prole uncertainty is modeled by a multiplication factor on the fuel external surface power with a pdf resulting from the convolution of a normal and an uniform distribution. The power radial prole is peaked towards the periphery for the high burn-up fuel pins as was described in Section 1.4.1. The deformation is increasing with burn-up and to model it an explicit function of burn-up is used [START_REF] Maunier | Simulation par le code APOLLO2 de l'evolution du combustible REP enrichi à 4.5des concentrations globales et radiales avec les résultats expérimentaux[END_REF]. The uncertainty results from two independent eects and is modeled by the sum of two independent variables: the uncertainty of the function used is modeled by a random variable with distribution N (0, 0.0175) and the uncertainty due to the presence or not of a guide tube near the fuel pin is modeled by a random variable with distribution U(1, 1.08). 3.4 Preliminary stand-alone studies

Introduction

Some of the dierent available uncertainty analysis tools from Chapter 2 are tested initially in cheap stand-alone calculations. This will allow to evaluate their eciency in an environment relatively close to the BE coupling on which the UQM will be developed. The tools that do not perform well will be rejected. Besides that, it is interesting to start from separate physics analyses and progressively add more layers of coupling rendering the REA modeling more complex. It is important to remember that with the MiniCore geometry we cannot extract physical conclusions and thus we focus mainly on the conclusions drawn for each statistical tool. We perform three dierent analyses, one for each code:

• Neutronics stand-alone: Two dierent analyses are carried out using only APOLLO3 R .

The rst is for the static initial state where only the macroscopic cross-sections are uncertain.

The second is for the REA transient using an adiabatic fuel thermal treatment in order to model the Doppler feedback. Both analyses include inputs with strong dependencies and thus the performance of the dierent global sensitivity methods for dependent inputs will be tested. From the ones presented in Section 2.7 we focus on the ANOVA indices (Section 2.7.4) that decompose the variance of the output on each input. Shapley indices are compared to the Sobol indices. The former are estimated without using the "pick-freeze" method, as presented in Section 2.7.4.2. The latter are estimated by the "pick-freeze" method of Section 2.7.4.1. This method is not adapted for dependent inputs but it is used throughout the thesis since we focus on the more robust Shapley indices for the dependent inputs. There are methods for estimating Sobol indices that are better adapted for dependent inputs such as in the work of T. A. Mara [START_REF] Mara | Variance-based sensitivity indices for models with dependent inputs[END_REF], but we consider that they are not of interest in the context of the thesis. Additionally, we test the performance of the HSIC indices. They belong to the dependence measures (Section 2.7.5) that estimate the sensitivity on the whole output pdf and not only its variance. The HSIC screening capabilities in statistical signicance tests are evaluated, as dened in Section 2.7.5.4. These tests verify the null hypothesis that the input and output are independent. If the hypothesis is rejected the input is considered as signicant. Uncertainty propagation is carried out and the complete outputs histograms are estimated. For testing all the previous statistical tools surrogate models must be trained.

The behavior of three dierent surrogate models of Section 2.5 is evaluated: linear, kriging and articial neural networks (ANN). The transient analysis gives the opportunity to test functional outputs using Principal Components Analysis (PCA). This method was described in Section 2.4.1 and essentially derives basis functions adapted for the best representation of each functional output. In cases that PCA might not be enough it can be enhanced by stochastic warping (Section 2.4.3) which aims at translating the output observations in order to render them as similar as possible. The functional output sensitivity is estimated using aggregate Shapley indices dened in equation 2.110 of Section 2.7.6.1.

• Thermal-hydraulics stand-alone: The reference power pulse from the APOLLO3 R stand-alone study is used as an imposed power evolution in FLICA4. The uncertainty of both fuel-thermal and fuel-thermomechanics is considered as described in table 3.4. The performances of the previously mentioned sensitivity methods are evaluated for independent inputs with various pdfs.

• Fuel-thermomechanics stand-alone: The reference power pulse from APOLLO3 R standalone study and the corresponding cladding wall temperature evolution from FLICA4 are applied in ALCYONE V1.4. For testing purposes the modeling is restricted to the axial slice where the maximum linear power occurs. In this analysis only the four fuel and cladding thermal laws will be considered as uncertain. This study allows us to test the performance of the sensitivity methods and surrogate models on dierent outputs than the ones accessible to the BE coupling that will be used for the UQM development. An example is the detailed radial evolution of the fuel temperature or the H gap evolution with time. This will increase our condence that the tools could be used also in a Best Eort coupling where the computational cost is too high to perform these tests.

Neutronics stand-alone studies

APOLLO3 R stand-alone modeling is used for two uncertainty studies. The rst is for the static initial state and the second one is for the REA using an adiabatic fuel thermal treatment.

Static

For this study an the macroscopic cross-sections are the uncertain inputs. Since at its reference state the core is critical, for each cross-section sampling the core has to be rendered critical. There are three methods that can be used to do so: ssion adjustment, boron concentration adjustment or leakage adjustment. Each method can have an impact on the uncertainty analysis. We selected boron concentration adjustment since it is the one that is the closest to the real operation of the core.

In the study [START_REF] Delipei | Multi-physics uncertainty propagation in a PWR rod ejection accident modeling-Analysis methodology and rst results[END_REF] that part of it can also be found in the Appendix C the criticality method was found to have a sensitivity up to 20%. Three criticality methods were studied: ssion adjustment, boron concentration adjustment and leakage adjustment. An additional uncertain input was considered corresponding to the criticality option with probability 1/3 for each option. The sensitivity on the maximum local linear power for an APOLLO3 R stand-alone REA modeling was studied.

The result is the variance represented by the Shapley indice of this new input for the control rod worth.

In this study for each cross-section perturbation a rst static calculation computes the multiplication factor k ef f . The boron concentration C bor is then adjusted in order to render the core critical. This criticality method will be used for the rest of the studies. Finally a second static calculation is performed with the control rod extracted in order to compute the control rod worth ρ worth and the deformation factor when the control rod is ejected F ej xyz . The computational time needed for one code evaluation is 15 seconds. The inputs, outputs and statistical methods tested are the following:

• Inputs: T D 1 , T D 2 , N F 1 , N F 2 , D 1 , D 2 , S 1→2 .
• Outputs: k ef f , ρ worth , C bor and F ej xyz .

• Statistical tools: Surrogate models: Linear, kriging and ANN. They are trained on a learning DOE and their prediction error is estimated using a second DOE.

Uncertainty propagation: Brute Monte Carlo method using dierent surrogate models for histogram empirical estimation.

Global sensitivity analysis: Shapley and Sobol indices using surrogate models and HSIC indices estimated directly from the obtained code evaluations.

Screening method: HSIC statistical signicance tests directly from the obtained code evaluations.

A LHS of size 150 is created in order to train the dierent surrogate models for each output. The prediction error of each surrogate is estimated based on a second LHS of size 75. The results for the interpolation and prediction errors are presented in table 3.5. It is clear that all the outputs have a linear relationship with the inputs and consequently all the surrogate models have very small errors. The kriging interpolation errors are zero since by its denition (Section 2.5.4) it passes from all the design points. Table 3.5: Surrogate models interpolation and prediction errors for neutronics stand-alone static study in the MiniCore.

Linear

Kriging ANN

ε int (%) ε pred (%) ε int (%) ε pred (%) ε int (%) ε pred (%) k eff 2.36e -3 2.15e -3 0.00 1.56e -4 1.96e -3 1.69e -2 C bor 2.33e -3 2.36e -3 0.00 2.14e -4 1.26e -3 2.90e -2 ρ worth 7.09e -2 7.60e -2 0.00 8.24e -2 4.84e -2 1.68e -1 F ej xyz 9.94e -3 1.52e -2 0.00 5.75e -4 1.55e -3 1.87e -2
Having trained the surrogate models we use the linear one to propagate the uncertainties to the outputs and estimate empirically their histograms. Brute Monte Carlo is used with 1e 5 samples and in gure 3.8 we can see the obtained histograms together with the estimated rst two moments. We observe that since the inputs are multivariate normal and the underlying function is linear then all the outputs have also a normal pdf. For highlighting the need of surrogate models to correctly estimate the histograms we provide the histogram estimated directly with the code evaluations for ρ worth . It is the histogram indicated by ρ LHS worth . It is clear that it is not converged although the dataset is large enough for the estimation of the rst two moments.

For the quantication of the outputs sensitivity to each input Shapley and Sobol indices are estimated using the linear model. Both of these indices analyze the sensitivity on the outputs variance (second moment). Additionally we estimate also the HSIC sensitivity indices that capture the sensitivity on the whole pdf of the output. We present the results for k ef f , F ej xyz and ρ worth in gures 3.9 -3.11 respectively. The sensitivities for C bor are similar with k ef f and are not shown. For Shapley indices 1e 4 output evaluations were used while for Sobol 1e 5 . These will be the sampling size for each of their estimation in the following studies as well. What we clearly observe is that the Sobol indices fail to provide sensitivity indices that can be meaningfully interpreted with large negative indices. This is something expected since the inputs have strong correlations. This is especially the case for the T D 1 , D 1 and S 1→2 cross-sections as we can see in gure 3.7. A second observation that can be drawn is the fact that the HSIC indices do not add up to 1 always, something also expected by their denition in Section 2.7.5.3. However, this does not impact their use as screening method since we can see that they manage to correctly identify which inputs are the most important. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 TD 2 NF 1 NF 2 D 1 D 2 S 1→2 0 0.2 0.6 1 Shapley q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 TD 2 NF 1 NF 2 D 1 D 2 S 1→2 0 0.2 0.6 1 HSIC q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 TD 2 NF 1 NF 2 D 1 D 2 S 1→2 0 0.4 0.8 1st Sobol q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 TD 2 NF 1 NF 2 D 1 D 2 S 1→2 0 0.4 0.8

Total Sobol

Figure 3.9: k ef f sensitivity analysis results for neutronics stand-alone static study in the MiniCore.
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Statistical signicant inputs

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 TD 2 NF 1 NF 2 D 1 D 2 S 1→2 0 0.2 0.6 1 Shapley q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 TD 2 NF 1 NF 2 D 1 D 2 S 1→2 0 0.2 0.6 1 HSIC q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 TD 2 NF 1 NF 2 D 1 D 2 S 1→2 0 0.4 1 1st Sobol q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 TD 2 NF 1 NF 2 D 1 D 2 S 1→2 0 0.4 1

Total Sobol

Figure 3.11: ρ worth sensitivity analysis results for neutronics stand-alone static study in the Mini-Core.

Transient

For this study the macroscopic cross-sections and the kinetic parameters are the uncertain inputs.

Starting from a critical state the control rod is ejected in 0.1s and the fuel thermal is considered adiabatic with constant specic heat capacity. This essentially means that all the power is stored in the fuel and the temperature follows the power increase without any heat conduction. The Doppler negative feedback is thus obtained creating the power pulse. During the transient we follow the evolution in time of the maximum local linear power P t lin , compute its maximum value P max lin and the radial linear power P 2D lin at the time and axial slice of the maximum. Additionally, the pulse width Γ is also calculated. The computational time needed for one code evaluation is 1.5 minutes. The inputs, outputs and statistical methods tested are the following:

• Inputs: T D 1 , T D 2 , N F 1 , N F 2 , D 1 , D 2 , S 1→2 , IV 1 , IV 2 , β ef f , λ ef f .
• Outputs: P max lin (scalar), Γ (scalar), P t lin (functional in time) and P 2D lin (functional in space).

• Statistical tools:

Surrogate models: Linear, kriging and ANN. They are trained on a learning DOE and their prediction error is estimated using a second DOE.

Uncertainty propagation: Brute Monte Carlo method using dierent surrogate models for histogram empirical estimation.

Global sensitivity analysis: Shapley and Sobol indices using surrogate models and HSIC indices estimated directly from the obtained code evaluations.

Screening method: HSIC statistical signicance tests directly from the obtained code evaluations.

Functional outputs: PCA is used to reduce the functional output dimensions. The principal components needed to represent 95% of the variance are retained and used for functional uncertainty propagation and global sensitivity analysis by aggregate Shapley indices.

A LHS of size 150 is created in order to train the dierent surrogate models for each output. In this study, since we already saw the application of the statistical methods on scalar outputs in Section 3.4.2.1, we focus mainly on the functional outputs. For P 2D lin there is not need of stochastic warping, meaning that there is no radial translation of the linear power among the pulses. The two rst principal components P 2D lin,pc1 , P 2D lin,pc2 are kept. For P t lin stochastic warping improves considerably the dimension reduction from 11 principal components to 2 (P t lin,pc1 , P t lin,pc2 ) adding also the translation time P t lin,dt as a third uncertain variable needed for the reconstruction of P t lin . We note that it is easy to approximate the weights of the rst principal components by surrogate models but it becomes increasingly dicult to do so for high-order principal components. The stochastic warping is performed with a comparison to reference pulse selected as the empirical mean. In gures 3.12 -3.13 we can see on the former the original maximum linear power pulses of the training LHS and on the latter the translated pulses due to the stochastic warping. For the warped P t lin and the P 2D lin we plot the eigenfuctions of the rst two principal components in gure 3.14. We can see that higher eigenfunctions include higher frequencies of variation.

A second LHS of size 75 was used to estimate the approximation error of each surrogate model. The result for the interpolation and prediction errors are presented in table 3.7. For the functional outputs their rst principal components and the shift time are treated as scalar outputs and the errors of the surrogate models are presented as well. The kriging surrogate models behave signicantly better in most of the cases and especially for the approximation of the principal components. For this reason it will be the model used in the uncertainty propagation and sensitivity analysis. The maximum predictive error of kriging is 4% for the Γ while for the rest outputs it has an error of less than 1%. It is important to notice that there is a strong correlation between β ef f and λ ef f , meaning that one of them could have an important sensitivity index just through their correlation and not by their impact on output. This is called redundancy and cannot be detected by the sensitivity methods.
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Statistical signicant inputs

P max lin T D1, D1, S1→2, β ef f , λ ef f P 2D lin,pc1 D1, β ef f , λ ef f P 2D lin,pc2 T D1, N F1, D1, D2, S1→2, IV1, β ef f , λ ef f P t lin,pc1 T D1, D1, S1→2, β ef f , λ ef f P t lin,pc2 T D1, D1, β ef f , λ ef f P t lin,dt T D1, D1, S1→2, β ef f , λ ef f

Thermal-hydraulics stand-alone study

The reference REA pulse from the previous study is applied in FLICA4. The fuel-thermomechanics and the thermal-hydraulics inputs from table 3.4 are considered for this study. For these physics their identied outputs of interest in table 3.3 are calculated. The interest in this study lies in evaluating that the statistical tools perform well also for independent inputs with various pdf. The computational time needed for one code evaluation is 4.5 minutes. The inputs, outputs and statistical methods tested are the following:

• Inputs: λ f , λ c , Cp f , Cp c , H gap , P r , T R , H c , R crit , R v0 , H dnb . • Outputs: H max f , DN B min .
• Statistical tools: Surrogate models: Linear, kriging and ANN. They are trained on a learning DOE and their prediction error is estimated using a second DOE.

Uncertainty propagation: Brute Monte Carlo method using dierent surrogate models for histogram empirical estimation.

Global sensitivity analysis: Shapley and Sobol indices using surrogate models and HSIC indices estimated directly from the obtained code evaluations.

Screening method: HSIC statistical signicance tests directly from the obtained code evaluations.

A LHS of size 150 is created in order to train the dierent surrogate models for each output. The results of the surrogate models training are gathered in table 3.9. The outputs behavior are strongly non-linear and that is why the linear model shows large errors. The ANN has a low interpolation error, however, it has a very large prediction error indicating a strong overtting. Only the kriging model shows satisfactory approximation errors and for this reason it will be used for the rest of the analyses in this study. Table 3.9: Surrogate models interpolation and prediction errors for thermal-hydraulics stand-alone study in the MiniCore.

Linear
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Fuel-thermomechanics stand-alone study

The reference REA power pulse from the APOLLO3 R study and the corresponding cladding wall temperature from FLICA4 are imposed as boundary conditions in ALCYONE V1.4. Only the axial slice with the maximum linear power is modeled. This axial slice is located in the assembly of 0 burn-up. The fuel and cladding material laws are consider as uncertain inputs, since H gap now is an output and the other fuel-thermomechanics inputs cannot be used in ALCYONE V1. 4.

In this study the goal will be to focus mainly on outputs that are not available in a Best Estimate coupling and verify that the statistical tools perform well for those as well. For this purpose we will focus on the maximum gap heat transfer during the REA H max gap and two functional outputs, the temporal evolution of the cladding internal surface temperature T t ci and the radial distribution of the fuel pin temperature at the end of the transient T r 0.4 . The computational time needed for one code evaluation is 6 minutes. The inputs, outputs and statistical methods tested are the following:

• Inputs: λ f , λ c , Cp f , Cp c . • Outputs: H max gap , T t ci , T r 0.4 .
• Statistical tools:

Surrogate models: Linear, kriging and ANN. They are trained on a learning DOE and their prediction error is estimated using a second DOE.

Uncertainty propagation: Brute Monte Carlo method using dierent surrogate models for histogram empirical estimation.

Global sensitivity analysis: Shapley and Sobol indices using surrogate models and HSIC indices estimated directly from the obtained code evaluations.

Screening method: HSIC statistical signicance tests directly from the obtained code evaluations.

Functional outputs: PCA is used to reduce the functional output dimensions. The principal components needed to represent 95% of the variance are retained and used for functional uncertainty propagation and global sensitivity analysis by aggregate Shapley indices.

A LHS of size 80 is created in order to train the dierent surrogate models for each output. Smaller size LHS is used compared to the previous studies because the input dimension is signicantly smaller. For both functional outputs 2 principal components are needed (T t ci,pc1 , T t ci,pc2 ,T r 0.4,pc1 , T r 0.4,pc2 ) for representing 95% of the variance and are plotted in gure 3.21. There was no need of stochastic warping.

The prediction error of each surrogate was estimated based on a second LHS of size 40. The results of the surrogate models training are gathered in table 3.11. All the models have satisfactory errors with kriging showing slightly better results. For this reason it will be used for the uncertainty propagation and sensitivity analysis.

Brute Monte Carlo is used for uncertainty propagation with 1e 5 samples for each output. The obtained histograms of H gap and the relative standard deviation for T t ci and T r 0.4 are presented in gure 3.22. We see that in general there are very small variations around the mean values. 
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Conclusions

The stand-alone preliminary analysis for each code allowed to test and evaluate the performances of dierent statistical tools under dierent conditions. In APOLLO3 R we studied their behavior for inputs with strong correlations and for dierent outputs from scalar up to 2D functional elds. Most of the outputs were not far from having a linear behavior and that is why all the surrogate models show relatively small prediction errors with kriging performing slightly better, especially for the principal components of the functional outputs. We saw that Sobol indices cannot give meaningful sensitivities due to the inputs correlations, while the Shapley indices are well adapted. In FLICA4 the statistical tools performance was evaluated for independent inputs. There were strong non-linearities and only the kriging showed satisfactory prediction errors. As expected from there denitions there was an agreement between Shapley and Sobol indices. In ALCYONE V1.4 we focused mainly on outputs that could be accessible only in a Best Eort coupling. An emphasis was given in functional quantities such as the radial temperature distribution. All the statistical tools performed well in this study. For all the above mentioned studies HSIC indices showed that they can be very useful in the screening process. Particularly their use in statistical signicance tests managed to identify for all the outputs the relevant subset of inputs. Finally, the conclusions concerning the UQM that can be drawn from these studies are:

• Kriging models will be used as surrogate models

• Shapley indices will be used for both dependent and independent inputs as the global sensitivity indices.
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• HSIC indices and their use in statistical signicance tests are promising for screening or dimension reduction process.

• Functional outputs will be analyzed using PCA. The stochastic warping is necessary mainly for translated outputs such as the maximum linear power evolution in time. Aggregated Shapley indices are used as sensitivity indices for the whole functional output.

3.5 Development of Uncertainty Quantication Methodology (UQM)

Introduction

From the preliminary studies we concluded that kriging surrogate models will be used in UQM in conjunction with PCA for functional outputs. Shapley indices and aggregated Shapley indices will be used for scalar and functional outputs respectively. HSIC indices can be used in statistical signicance tests to identify a small subset of important inputs just by using a dataset of code evaluations. In this subsection we are going to use these conclusions in a multi-physics BE APOLLO3 R -FLICA4 coupling. The goal is to use this modeling to develop the UQM that will be applied to a large scale PWR core.

While in the preliminary studies the inputs dimension was relatively low, in this multi-physics modeling we use all the identied inputs from table 3.3. The kriging models face diculties when they are trained in large inputs dimension and thus there is a strong interest in identifying eective input subspaces with reduced dimension. We have also to keep in mind that the derived UQM must be also extendable to a larger input dimension. To this purpose we develop two methodologies in order to address the potential large inputs dimension. The rst consist in identifying a subset of important inputs based on the HSIC statistical signicance tests. This aims at addressing the challenges of dependent inputs, with potential interactions and redundancies. The second is related to the training of the kriging models. The optimization of a LHS in the original input space does not guarantee good space-lling properties in the important input subspaces. Besides that, the use of LHS optimized only in the subspace for the kriging training leads to an unquantied error due to the dimension reduction. What we propose is a method that optimizes the LHS in both the original input space and the identied important input subspaces. This allows an ecient surrogate model construction with an error estimation that includes the dimension reduction error. For the description of the two methods we dene the function Y = F (X) : R d → R to be the underlying function between the random inputs of dimension d and a random scalar output 2 .

Both of these methods will be rst presented and then tested on the APOLLO3 R -FLICA4 multi-physics BE coupling together with the statistical tools selected from the preliminary studies. At the end of this subsection we will combine the conclusion drawn from this study to develop the UQM scheme.

Input Dimension Reduction Method (IDRM)

The dimension of the input space is large and potentially only a small subspace is important for a scalar output Y . The goal of this method is to identify this important input subspace. We denote by S d the set of size (cardinal) d containing the inputs indices and X d the corresponding inputs.

There are many challenges related to the dependencies between inputs, potential interactions, redundancies and the non-linear behaviors between inputs and outputs. There is no methodology that can deal eciently with all of these constraints.

In this work we use the HSIC signicance tests, as used in the preliminary studies, to treat dependencies, non-linearities and interactions. The result is an initial subset of inputs considered as important (S d0 , X d0 ). Using S d0 a kriging model (Kr) is trained and its leave-one-out (LOO) error is estimated ( LOO ). If the error is not satisfactory, inputs are sequentially added until the user decides to stop or until all the inputs are included (S d1 , X d1 ). This is applicable to our case of 2 For functional outputs the methods are applied on the selected scalar scores of the principal components 124

22 inputs but it could also be extended to larger dimension. For larger dimension it can become prohibitive.

Finally, in order to treat the redundancies, the resulting subspace dened by the set S d1 from the previous step is subjected to a sequential extraction of one input at a time and the corresponding LOO error is computed. If the error stays close to constant within a small δε when the input is extracted then the input is rejected from the subspace. After applying this to all inputs of S d1 the nal subspace dened by the set S d2 and corresponding to X d2 inputs is identied. This step has to be used with caution, it can reduce the eective inputs subspace in term of representation but still the correlated rejected inputs should be mentioned. This input dimension reduction method is carried out with an initial random DOE. The following procedure details the input dimension reduction method. The inputs X di are dened by the set of indices S di .

IDRM process end if 17: end for 18: Set of reduced inputs subspaces S d2 and the corresponding inputs X d2 ∈ R d2

The proposed IDRM was tested on the famous Morris function Y = F morris (X, k) [START_REF] Morris | Sampling plans based on balanced incomplete block designs for evaluating the importance of computer model inputs[END_REF] used in sensitivity studies. The function has a xed parameter k determining how many of the inputs will be signicant.

F morris (X, k) = α k i=1   X i + β k i<j=2 X i X j   (3.1)
Where:

α = √ 12 -6 0.1(k -1) β = 12 0.1(k -1)
For the testing purposes we used 22 inputs, as the dimension of the inputs in the UQM. Each input is independent and has U(0, 1) pdf. A sampling of 100 (X, Y ) realizations is used with parameter k = 10, meaning that only (X i ) i≤10 are signicant. In order to test the redundancy capability the last variable while not used in the function has a strong correlation of 0.9 with X 10 . The input dimension reduction method was tested and the results for the selected input sets at the dierent steps (S d0 , S d1 , S d2 ) are gathered in the table 3.13. The method in the initial step identies all the signicant inputs together with one non-signicant (X 11 ) and the correlated output that we added (X 22 ). In the second step no other input is added since the kriging error is already low. Finally on the third step the redundant variable and the non-signicant one are rejected and thus the optimal dimension reduction is achieved. Selected inputs

S d0 X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 , X 11 , X 22 S d1 X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 , X 11 , X 22 S d2 X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 

Latin Hypercube Sampling subspaces optimization

The kriging models for each output are constructed on space-lling LHS. The training of these models is more ecient in a reduced input space responsible for most of the output variation. The identication of this subspace of the original input space is achieved through the previously described IDRM. The construction of LHS in the original input space does not guarantee good space-lling properties in the identied input subspaces. Besides that, the construction of a LHS only in these subspaces creates an unquantied dimension reduction error.

To this purpose we adapted the Simulated Annealing (SA) optimization algorithm of the LHS to improve the φ p space-lling criterion also in the specied subspaces of interest. The minimization of φ p leads to designs with better space-lling properties. The SA is described in Section 2.6.2 and consist in applying random permutations of two design points. Starting from an initial random LHS many iteration of such permutations are performed and the φ p criterion is evaluated. The permutations that improve the criterion are kept. In order to avoid to get stuck in local minima a trade-of is used between exploring and improving the LHS. This means that with some probability worse LHS might be kept in order to explore better the space of available LHS. If we denote with We can see that compared to the SA algorithm in Section 2.6.2 we modied only the α variable. This quantity is above 1 when the LHS is improved and below 1 when is worsened. In our modied algorithm we added the φ p criterion in the desired subspaces. When φ p is improved in the complete space and all the important subspaces the value is above 1. When φ p is worsened in the complete space and all the important subspaces the value is below 1. In the intermediate cases depending on the relative improve in each space it can be above or below 1.

I
It is important to notice that as the number of subspaces increase the optimization becomes less eective. In the case where a large number of subspaces must be optimized, maximum projections can be used, developed recently by [START_REF] Gul | Maximum projection designs for computer experiments[END_REF], where all the input subspaces are optimized based on a modied version of φ p criterion. For testing purposes we use a design of size N = 50 in d = 5 dimension with two subspaces of importance I 1 = {1, 2}, I 2 = {3, 4, 5}. The φ p criterion evolution results can be seen in gure 3.25. We compare the criterion in the original space with a LHS only optimized in this space and we observe that they are quite close for both designs. In the subspaces we compare the criterion with two LHS, one optimized only in the original input space and one optimized only in the subspace.

The two LHS with which we compare our optimized LHS can be seen as limiting cases. We observe a signicant gain in the criterion with a converging behavior. In contrast, the LHS optimized only in the original input space the criterion behavior is random. The obtained φ p value at the end of the iterations is close to the value of the LHS only optimized in each subspace, a very promising result.

Multi-physics Best Estimate (BE) coupling study

The APOLLO3 R -FLICA4 multi-physics BE coupling will be used to test and develop the UQM. We remind that it is an explicit coupling with 0.001s incremental time step for a total REA duration of 0.4s. The complete inputs and outputs identied in table 3.3 will be studied. An emphasis will given in testing the IDRM and the LHS subspace optimization. The computational time needed for one code evaluation is 6 minutes. The inputs, outputs and statistical methods that will be tested are summarized:

• Inputs: T D 1 , T D 2 , N F 1 , N F 2 , D 1 , D 2 , S 1→2 , IV 1 , IV 2 , β ef f , λ ef f , λ f , λ c , Cp f , Cp c , H gap , P r , T R , H c , R crit , R v0 , H dnb .
• Outputs:

P max lin , P 2D lin (functional), H max f , DN B min .
• Statistical tools:

IDRM: Identication of an eective reduced input space. LHS subspaces optimization: Construction of LHS with good space-lling properties in both the original input space and the subspaces identied by IDRM.

Uncertainty propagation: Brute Monte Carlo method using kriging surrogate models for histogram empirical estimation.

Global sensitivity analysis: Shapley indices estimated using kriging models. Functional outputs: PCA is used to reduce the functional output dimension. The principal components needed to represent 95% of the variance are retained and used for functional uncertainty propagation and global sensitivity analysis (aggregated Shapley indices).

An initial random sampling of size 125 is used as DOE for the IDRM. The result for each output including the rst two principal components of P 2D lin retained by the PCA are presented in table 3.14. We can observe that the λ ef f while having large sensitivities indices in the preliminary studies was rejected by the IDRM. This is due to its high correlation with β ef f but eventually its direct eect is negligible. The identied subspaces can be grouped in two:

I 1 = (T D 1 , N F 1 , N F 2 , D 1 , S 1→2 , β ef f , Cp f , H gap , T R ) and I 2 = (β ef f , Cp c , H gap , R crit ).
Table 3.14: Input dimension reduction method result for multi-physics BE coupling study in the MiniCore.

Selected inputs

P max lin T D1, N F1, N F2, D1, S1→2, β ef f , Cp f , Hgap, TR P 2D lin,pc1 T D1, N F1, N F2, D1, S1→2, β ef f , Cp f , Hgap, TR P 2D lin,pc2 T D1, N F1, N F2, D1, β ef f H max f T D1, N F1, N F2, β ef f , Cp f , Hgap DNB min β ef f , Cpc, Hgap, Rcrit
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Conclusions -UQM scheme

The APOLLO3 R -FLICA4 multi-physics BE coupling was used to develop and test the input dimension reduction method and the optimization of LHS in both original input space and the identied subspaces. Both of the methods showed very compelling results allowing to treat potential large inputs dimension and addressing dependencies, interactions, redundancies and non-linearities. Additionally, the prediction errors of the kriging models include the dimension reduction errors adding more condence for the following analyses. The trained surrogate models are used for uncertainty propagation and global sensitivity analysis. Both scalar and functional outputs are considered. Based on all these conclusions we derive the Uncertainty Quantication Methodology (UQM) for REA. In Chapter 4 we apply this methodology in a large scale PWR core. The UQM consist of four main steps and is illustrated in gure 3.29.

The initial step 0 is the denition of the case study with the desired uncertain inputs and outputs and the input uncertainty quantication. Since we assume that in the general case the input dimension can be large the step 1 consists in identifying the important input subspaces using IDRM for both scalar and functional outputs. This step is based on an initial random sampling.

The step 2 is the training of the kriging models for each output on the identied subspaces. The training LHS is constructed with good space-lling properties in both the original input space and the important subspaces. For the functional outputs the kriging models are constructed for the rst principal components that represent 95% of the outputs variance. The prediction errors of the kriging models are estimated using an independent LHS. The step 3 is the brute force Monte Carlo uncertainty propagation with the empirical estimations of the rst two statistical moments and the histogram. Finally, in step 4 the global sensitivity analysis is performed using Shapley indices for scalar outputs and aggregated Shapley indices for functional ones. The gap heat transfer (H gap ) modeling so far in the BE coupling was done using a constant value during the REA with a uniform distribution over a large interval. This is one of the most important modeling dierences between Best Eort and BE coupling. There is a strong interest thus to improve the H gap modeling and introducing it in the previous coupling. In this subsection we address this challenge by calibrating a simplied H gap model that is based on fuel thermal expansion. We consider that this model is adequate for the REA and especially for the gap closing phase. The calibration is performed through decoupled ALCYONE V1.4 calculations with imposed power evolution. We rst detail the model with its calibration parameters. Afterwards, we present the calibration methodology where we discuss issues such as how the power pulses are selected, how many H gap models will be created for the dierent fuel assemblies etc. Finally, we introduce the model in the BE coupling, apply the previously developed UQM and compare some selected design points with the results of the Best Eort APOLLO3 R -FLICA4 -ALCYONE V1.4 coupling.

Gap heat transfer simplied model

The sharp power increase in the REA leads to a corresponding sharp fuel temperature increase. We assume that the H gap evolution is driven by the gap closing due to fuel thermal expansion and by the gas conductivity evolution in the gap. This is used to derive the simplied formulation for H gap dened by equations 3.2a -3.2c.

H gap = λ g (T g , E f ) e(T f ) (3.2a) λ g = λ g,init 1 + θ 1 T g -T g,init T g,init + θ 2 E f (3.2b) e(T f ) = r c,init -r f (T f ) (3.2c)
Where:

λ g is the gas conductivity in the gap and λ g,init =

H init gap einit its initial value prior to the REA. The latter is calculated by the initial gap heat transfer H init gap and initial gap width e init .

T g is the gas temperature and T g,init the initial gas temperature prior to the REA.

E f is the energy stored in the fuel during the REA.

θ 1 and θ 2 are two calibration parameters that have to be estimated.

e is the pellet-cladding gap width. It is assumed that only the fuel expansion is responsible for the gap evolution.

r c,init is the initial internal cladding radius prior to the REA.

r f = r f,init α f (T f )
is the fuel external radius. The fuel expansion is modeled using the fuel expansion coecient α f (T f ) in [START_REF] Marelle | ALCYONE V1.4: Notice de Présentation[END_REF] which is a cubic function of the fuel temperature T f .

The H gap predicted by the proposed simplied model is based on fuel thermal expansion and depends on the evolution of the λ g and e. The λ g is considered a linear function of T g and E f . The latter allows to include a historical eect on the conductivity. The two calibration parameters to be determined θ 1 and θ 2 are the coecients of T g and E f respectively. The e evolution is assumed to depend only on the fuel thermal expansion while the cladding radius remains constant. For the modeling of the gas temperature T g the average between the external fuel temperature and the internal cladding temperature is proposed. It is a strong assumption since the gradient in the gap is important but for the purpose of this simplied model we consider that it is justied. The starting point is the UQM application in the BE coupling of Section 3.5.4. The temperature evolution in the fuel depends on the fuel assembly burn-up and the power seen by this assembly in its position in the core. Since we need to build a H gap model for every fuel spatial mesh (1080 meshes) a grouping is necessary. In step 1.1 we group the assemblies by similar radial average burn-up. This means that we will construct one H gap model for every identied group. In the MiniCore case it is relatively straightforward to group the assemblies leading to three burn-up groups: 0, 15 and 30 GW d/t. It is important to notice that while there are only three models the initial conditions are dierent for each fuel pin leading to a radial and axial H gap prole during REA.

The next step 1.2 consists in selecting representative pulses from the APOLLO3 R -FLICA4 uncertainty analysis. The pulses must cover most of the possible H gap variations inside the group due to both statistical and spatial aspects. For the statistical aspect three pulses are extracted: the mean and the 95% upper and lower quantiles of P max lin . For the spatial aspects, when the mean and the upper 95% quantile are imposed then the quarter assembly seeing the maximum power is selected. Correspondingly, when the lower quantile is imposed the quarter assembly seeing the lowest power is selected. This creates for each model three representative axial and temporal proles of linear power and external cladding temperature.

In step 2 the selected proles are extracted and imposed in a decoupled ALCYONE V1.4 REA transient calculation. One representative fuel pin is modeled. The resulting temperature and gap heat transfer proles from ALCYONE V1.4 are extracted and used for the H gap model calibration.

The calibration is carried out in step 3.1 by nding the parameters that minimize the mean square error on the H gap maximum and nal value during the REA for each axial slice. Once the parameters are estimated the nal step 3.2 is to quantify the calibrated model uncertainty. The two main sources of uncertainties are the initial conditions and the calibrated parameters. The former one is quantied as two mutliplication coecients on the initial gap width and the initial H gap with pdf N (1.0, 0.1). This is a result of a previous uncertainty analysis for fuel evolution calculations with ALCYONE V.1.4. The results also showed that the initial gap width and H gap are fully negatively correlated. This leads to consider the two coecients as fully negatively correlated (ρ = -1) rendering thus one eective uncertain quantity for the initial conditions H g,i . The latter uncertainty source is the calibrated parameters. They are considered as fully positively correlated (ρ = 1) with uniform distributions. The bounds of the distributions are calculated in order to account for the calibration error. The eective uncertain input representing the calibration uncertainty is H g,m . More details about how this is implemented are provided in the Section 3.6.4.

Finally, the model of equations equations 3.2a -3.2c, including its two eective uncertain parameters, is introduced in the multi-physics coupling creating an Improved Best Estimate (IBE) modeling. It can be seen as an intermediate modeling between the BE and Best Eort modelings. The computational cost of IBE is similar to BE.

Test of gap heat transfer calibration methodology

Each step of the H gap model calibration methodology is tested on the MiniCore in order to evaluate its performance. For the initial step 0 a multi-physics BE uncertainty propagation study must be performed. In our case we use the study of Section 6.5.4 where we tested the UQM on the APOLLO3 R -FLICA4 BE coupling. The grouping of assemblies in step 1.1 for the MiniCore geometry (gure 3.1) as mentioned is rather straightforward since there are three discrete groups of burn-up. We consider one H gap model for each burn-up resulting in a total of three models. From the results of the UQM for P max lin we select the mean, the upper and lower 95% quantile. From the identied design points and for each model in step 1.2 representative quarter of assemblies are identied and the results are presented in gure 3.31. The green circles indicate the selection of the mean and upper quantile and the yellow indicates the selection for the lower quantile. Following the dened procedure and due to the MiniCore symmetry for the 30 GW d/t burn-up group there is only one possible choice for all three design points. For the 15 GW d/t burn-up there are three possible choices, from which we select the quarter of assembly closer to the control rod ejection location for the mean and the upper quantile. This is because it is the one with the maximum linear power. For the lower quantile, the quarter assembly the farthest from the center is selected as it is the one with the minimum linear power. We follow the same reasoning for the 0 GW d/t burn-up quarter assembly selection. At the end of this step for each design point there is a corresponding quarter of assembly for each group. In this quarter of assembly the axial and temporal proles of the linear power and cladding wall temperature are extracted and applied in the decoupled ALCYONE V1.4 calculation. A representative fuel pin for each selected quarter of assembly in each sampling is modeled. The axial and temporal evolutions of the Hgap and radial temperature are calculated during the REA. These results together with the stored fuel energy are extracted. Only the values corresponding to the time of the maximum and nal value of H gap during the REA for all the axial slices are kept for the calibration in order to simplify the optimization. This creates a total dataset of 30×3×2 = 180 results on which the simplied H gap model is calibrated. The calibration parameters are optimized by minimizing the mean square error (Section 2.8.1) on this dataset. The resulting calibration error for the three dierent models are presented in gure 3.32 and the estimated calibration parameters in table 3.16. The next step in the methodology is to quantify the calibration parameters uncertainty. To this purpose we calculate a map by perturbating both inputs and estimating the maximum calibration error on the dataset. The result for the 30GW d/t group is illustrated in gure 3.33. We can observe the following facts: if both parameters increase, then the error decreases; if both parameters decrease, then the error increases. Based on this we use the assumption that the parameters are fully positively correlated in order to cover the maximum calibration error. This essentially means that the parameters can only vary on the diagonal. By deciding the upper and lower bounds of the (signed) error that we want to cover we obtain the bounds for each parameter as is shown in gure 3.33. For the other groups the result of the error evolution has similar behavior just with dierent bounds. At this point we make a second assumption that all the groups have parameters that are fully positively correlated. This is done in order to both simplify our uncertainty quantication and to be consistent with the uncertainty quantication of the rest inputs. For the all the other inputs the uncertainties are applied homogeneously on the whole core as depicted in gure 1.21. We observe that the calibration error increases with burn-up, meaning that the corresponding calibration parameters will have a larger range in their uniform pdf. This means that larger uncertainty will be propagated by the model for higher burn-ups. The results for the estimated ranges for each parameter are shown in table 3.17 Table 3.17: MiniCore H gap model calibration parameters pdf estimation.

θ1 2.18e -1 7.90e -2 -1.36e -1 θ2 [J -1 ] 1.13e -5 1.63e -5 2.02e
0 15 30 θ1 U(2.04e -1 , 2.334e -2 ) U(2.90e -2 , 1.29e -1 ) U(-2.36e -1 , -3.60e -2 ) θ2 [J -1 ] U(1.04e -5 , 1.24e -5 ) U(1.53e -5 , 1.73e -5 ) U(1.82e -5 , 2.22e -5 )
Using these bounds the prediction of the H gap temporal evolution by the calibrated model is compared to the ALCYONE V1.4 calculation. The results at the axial slice with the maximum H gap value for each model and design point are presented in gures 3.34 -3.36. The plotted H gap predictions are also the ones with the larger errors and we can see that in all the predictions the ALCYONE V1.4 calculation is inside the uncertainty bounds created by the uncertain calibration parameters.

UQM tested on Improved Best Estimate (IBE) coupling

The calibrated H gap models are introduced in the BE coupling to create the intermediate APOLLO3 R -FLICA4 -HGAP multi-physics coupling. The complete UQM is applied on this modeling. The uncertain inputs and outputs of table 3.3 are used with the replacement of the constant H gap uncertain input by the H gap simplied model uncertainties. We dened two uncertain parameters, one related to the initial conditions of the model H g,i and one related to the calibration parameters uncertainty H g,m . We remind that it is an explicit coupling with 0.001s incremental time step for a total REA duration of 0.4s. The computational cost of this modeling is similar to the APOLLO3 R -FLICA4 modeling (about 6 minutes).

For the step 1 of the UQM a random sampling of size 125 is used as DOE for the input dimension reduction. The result for the identied subspaces are gathered in table 3.18 and can be grouped in two:

I 1 = (T D 1 , N F 1 , N F 2 , D 1 , S 1→2 , β ef f , Cp f , H g,i , T R ) and I 2 = (T D 1 , N F 2 , β ef f , H g,i , H c , R crit , T R ).
In step 2 of the UQM a learning LHS of size 250 with optimized subspaces I 1 and I 2 was constructed for the training of the kriging models. The kriging models are trained on the identied input subspaces. The result for the interpolation, leave-one-out and prediction errors are presented in table 3. [START_REF] Schneider | APOLLO3 R : CEA/DEN deterministic multi-purpose code for reactor physics analysis[END_REF]. The prediction errors are estimated on a second LHS of size 125. For all the outputs the prediction errors are small with larger errors for DN B min (2%) and the second principal component of P 2D lin (5.5%).

Table 3.18: UQM step 1 results for IBE coupling study in the MiniCore.

Selected inputs

P max lin T D1, N F1, N F2, S1→2, β ef f , Cp f , TR P 2D lin,pc1 T D1, N F1, N F2, S1→2, β ef f , Cp f , TR P 2D lin,pc2 T D1, D1, β ef f H max f T D1, N F1, N F2, S1→2, β ef f , Cp f , Hg,i DNB min
T D1, N F2, β ef f , Hg,i, Hc, Rcrit, TR 0.00 6.16e -1 5.53

H max f 0.00 1.62e -1 1.73e -1
DNB min 0.00 2.10 2.03

In step 3 of the UQM brute force Monte Carlo is used for uncertainty propagation with 1e 5 samples for each output. The results are presented in gure 3.37. The obtained histogram for H max f and the relative standard deviation of P 2D lin are similar to the APOLLO3 R -FLICA4 study. For P max lin a shift towards to a lower mean value is observed with similar relative standard deviation. The histogram of DN B min is the most impacted by the introduction of H gap model, something expected from the previous sensitivities. The mean value is further from the boiling crisis and the relative standard deviation decreases from 76% to 26%. The histogram now has a close to normal distribution. This change is attributed to the more realistic modeling of H gap leading to in average less heat transfer. The coolant extracts less heat and larger values for DN B min are obtained. The probability now for reaching boiling crisis has decreased to 0.002% an order of magnitude of dierence.
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Comparison with Best Eort coupling

By introducing the H gap calibrated model to the BE coupling we improved its REA modeling. The new IBE coupling has an H gap modeling much closer to the reality than the constant value used in the BE coupling. Additionally, the computational cost does not increase and remains around 6 minutes for one code evaluation. While the calibrated models have a small calibration error, it is important to compare the H gap predicted evolution in REA with the Best Eort APOLLO3 R -FLICA4 -ALCYONE V1.4 modeling. The introduction of ALCYONE V1.4 increases the computational cost for one code evaluation to 4 hours rendering a complete UQM prohibitive. For this reason three samples from the previous UQM were selected in order to compare the Best Eort and the IBE modelings. Since the H gap variations in the 0 GW d/t burn-up fuel is small only the results for the 15 GW d/t and 30 GW d/t are presented. We focus on the temporal H gap evolution at the location of the maximum H gap . The results for the 15GW d/t fuel are illustrated in gure 3.39. We observe an underestimation of 13% for the maximum and nal value of the H gap during REA. The results for the 30GW d/t fuel are illustrated in gure 3.40. There is a very good agreement for the maximum H gap but there is an under-estimation for the last value of 17%.

The reasons for these underestimations can be multiple, from the simplistic nature of the model to the dierent temperature predictions in the two modelings. We remind that in FLICA4 the thermomechanics are not considered and that the radial discretization in ALCYONE V1.4 is much ner. This leads to dierent fuel temperatures that are an important aspect for the model. Additionally, in the model we use an eective gas temperature calculated as an average between the fuel external and cladding internal temperatures. This is a strong assumption that can explain part of this underestimation. 

Conclusions

In this subsection we developed and tested the methodology for calibrating a simplied H gap model that is based on thermal expansion. We presented the dierent steps of the methodology from the selection of the imposed boundary conditions in the ALCYONE V1.4 REA decoupled calculations to the model calibration by mean square error minimization and the quantication of the model uncertainty. The methodology was tested on the MiniCore geometry and resulted in very satisfactory results concerning the calibration error. The dened uncertainty ranges of the calibration parameters covered in all the cases the predicted H gap evolution during the REA by ALCYONE V1. 4.

The H gap model was introduced then in the APOLLO3 R -FLICA4 BE coupling. This lead to IBE coupling, a signicantly more realistic modeling of the REA with no increase on the computational cost. The UQM was tested on this improved modeling aecting mainly the margin to boiling crisis uncertainty quantication. The sensitivity of the H gap decreased signicantly due to its better modeling.

Finally, the IBE modeling was compared to the Best Eort modeling on three dierent samples in terms of the H gap temporal prediction at the location of the maximum H gap . The resulting comparison showed an underestimation of the H gap between 13% -17%. This is attributed to the many assumptions of the calibrated model and to the dierences of the fuel-thermomechanics modeling in FLICA4 and ALCYONE V1.4. This means that the developed IBE modeling cannot replace the Best Eort modeling but it can be used as a cheap realistic estimation in cases where the latter is unfeasible. This is usually the case in the uncertainty quantication since many code evaluations are needed and especially in the large scale PWR core study carried out in Chapter 4.

Conclusions

The goal in this Chapter was to develop and test an uncertainty quantication methodology (UQM) for a multi-physics REA modeled by an APOLLO3 R -FLICA4 BE coupling. In Chapter 2 we discussed the dierent available statistical tools that could be included in the UQM.

Initially we started with preliminary stand-alone decoupled calculations for each code of the COR-PUS coupling framework presented in Section 1.7. These studies allowed to select and validate the adequacy of some statistical tools. More specically, the kriging models showed better performance with small prediction error for all the output quantities that were studied and for this reason they were selected. Concerning the global sensitivity analysis the Shapley and Sobol indices were studied. The former ones were selected due to the fact that they are well adapted for dependent inputs. The HSIC statisical signicance test screening capabilities were also found to be very promising since they manage to identify for each output at least all the relevant inputs. Various functional outputs up to 2D elds were treated using PCA with 95% of variance with compelling results that increased our condence for their modeling in the UQM.

With the insights gained from the preliminary studies the UQM was developed on an APOLLO3 R -FLICA4 coupling. All the identied inputs and outputs were included in this study. Two methods were developed and tested. The rst one is the input dimension reduction method (IDRM) based on HSIC statistical signicance tests and showed very good results on the Morris function. The second one is an adaptation of the Simulated Annealing LHS optimization algorithm to improve the good space-lling properties in the identied input subspaces by IDRM. The maximin criterion is optimized by minimizing the φ p criterion (Section 2.6.2) in both the complete inputs space and the identied subspaces. It was tested on 5 inputs dimension with very compelling results. Both methods were used then in the APOLLO3 R -FLICA4 coupling validating their previous testing. The kriging models and Shapley indices were also tested in this coupling with similar results with the preliminary studies. The conclusions drawn from all these studies resulted in the development of the UQM scheme consisting of four steps. The rst one is the identication of the important input subspaces. In the second step the kriging models are trained on LHS optimized in these subspaces and their prediction errors are estimated based on a second LHS. The third step uses these kriging models for brute force Monte Carlo uncertainty propagation. Finally, in the fourth step global sensitivity analysis is performed using the kriging models to estimate the Shapley indices for scalar outputs and the aggregated Shapley indices for the functional ones.

The BE coupling in the UQM development included many modeling simplications. The main one was the use of a constant uncertain value for the H gap , something that was reected in the global sensitivity analysis. To improve this modeling, a simplied H gap model based on thermal expansion was calibrated. The calibration methodology was developed including three main steps. In these steps the assemblies were grouped by burn-up with one model for each group. Boundary conditions were imposed in ALCYONE V1.4 REA decoupled calculations covering most of the H gap variations. On the obtained results the H gap models were calibrated by mean square error minimization. Additionally, the uncertainty of the models was quantied through two eective parameters. The methodology was tested on the MiniCore geometry with very promising results. Small calibration errors were observed and the dened uncertainty ranges of the calibration parameters covered in all the cases the predicted by ALCYONE V1.4 H gap evolution during the REA. The calibrated H gap model was then included in the BE coupling creating the IBE modeling without any impact on the computational cost. The UQM was tested on this improved modeling aecting mainly the margin to boiling crisis uncertainty quantication. The sensitivity of the H gap decreased signicantly due to its better modeling. Finally, the IBE modeling was compared to the Best Eort modeling on three dierent design points in terms of the H gap prediction. The resulting comparison showed an underestimation of the H gap between 13% -17%. This is attributed to the many assumptions of the calibrated model and to the dierences of the fuel-thermomechanics modeling in FLICA4 and ALCYONE V1.4. However, we can conclude that we developed an improvement of the BE coupling without an increase in the computational cost that is much closer to the Best Eort coupling as far as the H gap is concerned. This coupling cannot replace the Best Eort since there are many limiting assumptions but it can be used for a more realistic UQM on the large scale PWR core, where the Best Eort coupling is unfeasible.

Introduction

Large scale PWR core transient simulations with a Best Estimate (BE) modeling have high computational cost, especially in the case of Rod Ejection Accident (REA) where a multi-physics modeling is necessary as discussed in Section 1.6. Furthermore, this budget limitation has even more constraints if an uncertainty quantication is performed for a REA. Many challenges such as the potential large input and output dimensions, input dependencies and non-linearities of the outputs accentuate the complexity.

In Section 3.5 we developed and tested an Uncertainty Quantication Methodology (UQM) that can address some of these challenges and tested it on a small scale core (MiniCore) representative of a Pressurized Water Reactor (PWR) behavior. REA was studied using the BE APOLLO3 R -FLICA4 modeling of the CORPUS coupling framework presented in Section 1.7. The methodology includes two main steps. The rst one is the identication of important input subspaces with regards to each output of interest. It is detailed in Section 3.5.2 and allows an input dimension reduction that facilitates the construction of surrogate kriging models. Statistical signicance tests based on HSIC (Section 2.7.5.4) are used to this purpose. The second step detailed in Section 3.5.3 is the training of the kriging models on LHS optimized in both the complete input space and the identied subspaces. The kriging is trained only on these subspaces with a prediction error that includes the dimension reduction error. Finally, uncertainty propagation by brute Monte Carlo and global sensitivity analysis by estimating Shapley indices (Section 2.7.4.2) are carried out using the trained kriging models. The derived UQM can treat both scalar and functional outputs. For the latter Principal Components Analysis (PCA) is used by keeping the rst principal components responsible for 95% of the outputs variance. PCA was discussed in Secton 2.4.1. For the global sensitivity analysis aggregate Shapley indices are estimated as dened in Section 2.7.6.1.

Another important methodological aspect studied in Section 3.6 was the improvement of the fuel thermal modeling in the BE coupling for a REA. One of the most important limitations of the BE coupling is the use of a constant gap heat transfer value (H gap ). A methodology was developed and tested to calibrate a simplied H gap model based on thermal expansions. The fuel assemblies of the core are grouped by their burn-up. One model is used for each group but with dierent initial conditions that vary spatially. The calibration is performed on a dataset of H gap and radial fuel temperatures evolution during REA created by decoupled ALCYONE V1.4 REA calculations. The uncertainty of the H gap model was estimated due to both calibration and initial conditions. The former one is modeled by the attribution of uniform pdf on the calibration parameters with ranges that cover the calibration error. The latter is quantied as a multiplication coecient on the initial H gap and the pellet-cladding gap width by uncertainty propagation in the evolution calculations. Finally, the H gap model is introduced in the BE coupling. This allows an uncertainty quantication for a REA with a good compromise between computational cost and physical modeling.

In this Chapter we apply these two methodologies on a large scale PWR core. The core and its modeling together with the initial state and characteristics of the reference transient are presented in Section 4.2. Since the REA modeling and its characteristics in the PWR core are dierent from the MiniCore, a preliminary static uncertainty quantication is performed in Section 4.4 in order to gain some basic insights. Quantities such as the multiplication factor and the control rod worth are studied. In the following Section 4.5 we apply the UQM on the APOLLO3 R -FLICA4 BE coupling. The results are used in Section 4.6 to calibrate the H gap models for dierent groups of fuel assemblies and creating thus an Improved Best Estimate (IBE) modeling. The UQM is then applied again on this modeling. Finally, in Section 4.7 we use the improved Best Estimate coupling to perform two uncertainty quantication studies. This time instead of focusing on the methodology we are mainly interested in the physical modeling options. In the rst study we analyze the impact of a 3D thermal-hydraulics modeling instead of a multi-1D modeling where the thermal-hydraulic channels are considered as closed without transverse ows. In the second study, we analyze the impact of using ner thermal-hydraulic channels modeling.

REA modeling and description

Core design

The REA is studied in a large scale PWR core that was used in a previous work [START_REF] Le Pallec | Uncertainties propagation in the framework of a rod ejection accident modeling based on a multiphysics approach[END_REF]. The geometry has an 1/8 symmetry presented in gure 4.1. It consists of 193 fuel assemblies with U O 2 and U O 2 -GdO 3 fuel compositions. Two dierent types of control rods are inserted at dierent depths. The black rods (B) with high neutrons absorption that are typically used for the shutdown of the reactor and the grey rods with less neutrons absorption that are used in the day to day reactivity control. The core is at HZP conditions at the end of the cycle as will described later. Around the fuel assemblies there is one ring of water reector assemblies creating a total 17 × 17 lattice. The total height of the core is 468.72 cm with a bottom and top reector of 21 cm leading to a fuel active height of 426.72 cm. Each assembly is a 17 × 17 lattice of fuel pins with pitch 21.504 cm. The control rod that will be ejected initiating the REA is located on the periphery as highlighted in gure 4.1. It is inserted 97 cm from the top into the fuel active region as can be seen by the control rod cover rate. Due to the extraction of the control rod there is 1/2 symmetry for the REA. More details about the core can be found in [START_REF] Le Pallec | Modélisation de type besteort d'un transitoire ria sur un coeur rep1300 en gestion gemmes mise en oeuvre d'un couplage apollo3 R /ica4/alcyone-v1 dans corpus v2[END_REF]. This geometry will be used for all the studies of this Chapter.
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Modeling

The REA in the PWR core geometry is modeled using the BE modeling of the CORPUS coupling framework presented in Section 1.7. APOLLO3 R for neutronics and FLICA4 for thermalhydraulic are coupled as in the MiniCore case. The Best Eort modeling of the CORPUS framework including ALCYONE V1.4 for fuel-thermomechani is currently under development for this core and thus only the BE can be used for the UQM.

In APOLLO3 R the same modeling options as in the MiniCore are selected. Two group Diusion approximation (quations 1.21a and 1.21b) is used for energy and angle discretization with void boundary conditions on the neutron current. The radial discretization is at the level of the quarter of assembly creating 772 meshes. For the axial discretization 34 meshes are used of which 30 are for the fuel active height and the rest for the top and bottom reector. This creates a total of 26248 meshes.

In FLICA4 the 4 equations porous modeling is used with a multi-1D axial ow approximation (Section 1.5.3). A system of 4 equation is solved (1.53a -1.53d): mixture mass balance, vapor mass balance, mixture momentum balance and mixture energy balance. The boundary conditions consist in determining the inlet mass ow and enthalpy and the outlet pressure. For the radial discretization one thermal-hydraulic channel is used for each assembly. In Section 4.7 an investigation of the radial discretization is performed by using one channel per quarter of assembly.

For the axial discretization only the fuel active part is modeled using 30 meshes in accordance to APOLLO3 R modeling. Both APOLLO3 R and FLICA4 spatial discretizations are illustrated in gure 4.2. The fuel pin discretization in FLICA4 is ner than the one used for the MiniCore with 25 regions for the fuel part and 3 for the cladding. For the time discretization of the REA an adaptive end time is adopted based on the integral power evolution. For each transient when the power surpasses half its nominal value then a SCRAM signal is sent. It is considered that from this time on 0.6 s are needed in order for the SCRAM to take place and end the modeling of the transient. The incremental time step is constant 0.001 s. The control rod is ejected in 0.1 s.

(a) Radial (b) Axial 

Initial state and reference transient

The PWR core is critical at the end of the cycle with Hot Zero Power (HZP) condition, meaning that the temperature is around 290 • C and the power negligible (3.8W ). There is a burn-up distribution resulting from core evolution calculation as described in [START_REF] Le Pallec | Modélisation de type besteort d'un transitoire ria sur un coeur rep1300 en gestion gemmes mise en oeuvre d'un couplage apollo3 R /ica4/alcyone-v1 dans corpus v2[END_REF]. The evolution is carried out by decoupled neutronic, fuel-thermomechanic, thermal-hydraulic modeling in 4 dierent steps:

1. Cycle evolution calculation using APOLLO3 R with its internal multi-1D thermal-hydraulics model. This results in a burn-up distribution in the core.

2. Extraction of the linear power history for one average fuel pin for each fuel assembly. ALCY-ONE V1.4 evolution calculation using this linear power history. The results are the detailed thermomechanical and physico-chemical initial conditions of each fuel pin. These conditions will be used in the gap heat transfer model calibration in section 4.6.

3. FLICA4 static calculation in order to obtain the initial thermal-hydraulics conditions. Since the power is negligible there is no need of coupling with APOLLO3 R .

4. Initiation of xenon oscillation transient with APOLLO3 R . The ejected control rod is identied as the one with the highest control rod worth (gure 4.1). At the xenon oscillation instant leading to the highest control rod worth and thus the more violent prompt neutron driven REA.

The obtained radial burn-up distribution at the end of cycle is illustrated in gure 4.3. The burn-up averaged at the level of the assembly ranges from 10 GW d/t to 52 GW d/t. The resulting xenon spatial distribution for the initial state is illustrated in gure 4.4. We can see the radial distribution at the axial slice with the maximum xenon concentration and the axial prole at the assembly where the control rod is ejected. The core is critical at the initial state with negligible power distribution as can be seen in gure 4.5. In table 4.1 some of the core conditions are also described with same notation as in Section 3.2.3. The initial integral power is 3.8 W and the fuel and moderator temperatures are 290 • C. Since the core is at the end of the cycle the boron concentration is quite low at 95.5 ppm. As used for the uncertainty studies in the MiniCore the boron concentration adjustment will be used to render the core critical since each input perturbation alters its initial critical state. This method was selected because it is the one that is the closest to the real operation of the core. However, in this PWR core the low initial boron concentration might not be enough for some cases. Fission production adjustment will be used in combination with boron adjustment in these cases. Volumetric ow rate

Q (m 3 /h) 90954 Fuel temperature T f ( • C) 290
Moderator temperature The reference (without uncertainties) REA characteristics obtained with an APOLLO3 R -FLICA4 modeling are presented in table 4.2 and gure 4.6. The control rod worth is ρ worth = 1.2 $ indicating a prompt driven transient. We observe a reduced margin to a ρ worthβ ef f < 0 transition where the transient behavior changes sharply since it is mainly driven by the delayed neutrons. By applying the input uncertainties there is a non negligible probability to reach it. This eect will be studied in the preliminary static analysis of the section 4.4. In the gure on the right we can observe the created power pulse of width Γ = 38 ms with a maximum power of P max core = 2.54P nom at instant t max = 292 ms. Additionally, the F xyz deformation factor evolution in time is plotted. It starts from a value of 5 and reaches up to 25 when the control rod is fully ejected (0.1 s). Maximum 3D deformation factor

Tm ( • C) 290 Boron concentration C bor (ppm) 95.5 (a) (b) 
F max xyz 25
If we compare with the MiniCore characteristics of table 3.2 we see that it is a less violent transient. This is attributed to the reduced leakage and to the more realistic xenon distribution. More realistic in the sense that its radial and axial distribution is issued from a xenon oscillations calculation with APOLLO3 R in the PWR core. In the MiniCore we applied the same axial xenon distribution in all the fuel assemblies in order to obtain the most penalizing scenario in terms of ρ worth . 

Input -Outputs uncertainties modeling

Dierent uncertainty quantication studies are performed on the PWR core. The identied uncertain inputs and outputs are based on the ones presented in Section 3.3.1. More precisely, all the inputs are considered except the power radial deformation due to diculties in its implementation in the PWR core. The deformation is still modeled but it is not treated as uncertain. This is not expected to have any impact on the studies since from the MiniCore test its sensitivity was negligible. All the identied outputs in Section 3.3.1 are considered. This creates an initial input size of 21 and an output size of 3 scalars and 1 functional:

• Inputs: T D 1 , T D 2 , N F 1 , N F 2 , D 1 , D 2 , S 1→2 , IV 1 , IV 2 , β ef f , λ ef f , λ f , λ c , Cp f , Cp c , H gap , T R , H c , R crit , R v0 , H dnb • Outputs: P max lin , P 2D lin (functional), H max f , DN B min
These are the main outputs of interest for the application of the UQM in the PWR core. However, some case dependent outputs are also studied depending on the goal of each analysis. The inputs uncertainty quantication of Section 3.3.2 is used as well in all the studies of this Chapter.

Preliminary neutronics stand-alone static study

Before applying the UQM on the BE coupling for the REA it is important to study rst the uncertain behavior of the initial static state. This will give us basic insight about the expected uncertain behavior of the REA. We saw that the reference ρ worth is close to the β ef f . This study will allow to investigate if the limit of ρ worthβ ef f < 0 is reached and with what probability. The only input parameters aecting the initial state are the two group macroscopic cross-sections. Static APOLLO3 R stand-alone modeling is used since there is no impact of the other physics. The PWR core, as mentioned, is critical at HZP conditions. This means that for each cross-section perturbation the core has to be rendered critical. Similar to the MiniCore the boron concentration adjustment is used. The core is at the end of the cycle with low initial boron concentration thus there can be cases where it will not be enough. For these cases ssion production adjustment is used by essentially dividing the ssion production by the k ef f . For each cross-section perturbation a rst static calculation computes the multiplication factor k ef f . The boron concentration C bor is then adjusted in order to render the core critical and the k ef f is calculated. If it is not enough the ssion production is divided by the current k ef f . Afterwards, a second static calculation is performed with the control rod extracted. The control rod worth ρ worth is calculated together with the deformation factor when the control rod is ejected F ej xyz . The static neutronics equations as described in Section 1.3.3.4 are linear and thus linear models are used as surrogates for the dierent statistical analyses. The computational time needed for one code evaluation is 1 minute. The inputs, outputs and statistical tools used are the following:

• Inputs: T D 1 , T D 2 , N F 1 , N F 2 , D 1 , D 2 , S 1→2 .
• Outputs: k ef f , ρ worth , C bor and F ej xyz .

• Statistical tools: Surrogate models: Linear. Uncertainty propagation: Brute Monte Carlo using linear models for histogram empirical estimation.

Global sensitivity analysis: Shapley indices using linear models.

A LHS of size 100 is created in order to train the linear surrogate models for each output. The prediction error of each surrogate is estimated based on a second LHS of size 50. The result for the interpolation and prediction error are presented in table 4.3. Since the underlying equations are essentially linear, both interpolation and prediction errors are small. The largest prediction error is 2.42 % for C bor and is attributed to the use of ssion production adjustment in some few cases in conjunction with C bor . Table 4.3: Linear model interpolation and prediction errors for neutronics stand-alone static study in PWR core.

Linear

ε int (%) ε pred (%) k ef f 9.37e -3 8.69e -3 ρ worth 2.82e -2 6.21e -2 C bor 1.04 2.42 F ej xyz 5.60e -2 4.68e -2
The linear models are used to propagate the uncertainties to the outputs and estimate empirically their histograms. Brute Monte Carlo with 1e 5 samples is used and the results are presented in gure 4.7. We can see the obtained histograms together with the estimated rst two moments. We observe that since the inputs are multivariate normal and the underlying function is linear then all the outputs have also a normal pdf. The k ef f shows a relative standard deviation of 0.5 % or 500 pcm while for the C bor is much larger at 57.30 %. The predicted negative values correspond to the ssion production adjustment cases and occur with a probability of 4 %. From the standard deviation of k ef f and C bor the dierential eciency of the boron concentration adjustment is found to be 9 pcm/ppm. For F xyz the relative standard deviation is around 8 % and for ρ worth is 6% which represents a signicant increase compared to the MiniCore. The results for the ρ worth in combination with the β ef f relative deviation of 8% around its mean value of 570 pcm show that there is a non negligible probability of reaching the delayed neutron driven REA limit.
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The predictive linear model is constructed between (T D 1 , T D 2 , N F 1 , N F 2 , D 1 , D 2 , S 1→2 , β ef f ) and (ρ worthβ ef f ). The result is visualized in gure 4.9 for the two main independent dimensions of the inputs. The rst is a linear combination of mainly T D 1 , D 1 and S 1→2 something expected by the corresponding Shapley indices in gure 4.8. The second one is the β ef f due to its explicit presence in the output denition and its independence with respect to the macroscopic cross-sections. We can see the linear hyperplane and the dierent design points to be evaluated by the code. The points crossing the horizontal hyperplane at 0 are the ones in red and are rejected. The linear model results in very small prediction error, less than 0.1% and thus can be used with strong condence. Using this linear model the probability of rejecting a design point can be calculated analytically and amounts to 2.25%. In the studied learning sample we see in gure 4.9 that 2 out of 100 design points are rejected. Since the ρ worthβ ef f < 0 does not depend on inputs of the other physics this model can be used in all the following multi-physics coupled studies. For each DOE prior to code evaluations the predicted design points by the linear model will be rejected. The dierent statistical methods will be applied on this modied DOE. worth -β eff q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Figure 4.9: Linear model for ρ worthβ ef f < 0 prediction in the PWR core. The red points are rejected from the DOE.

UQM application for BE coupling

In Section 3.5 we developed a four step UQM and tested it on the MiniCore. In this section we apply it on the PWR core for the identied inputs and outputs of section 4.3. The H gap in this study is considered uniform as described in Section 3.5. The BE modeling is used with coupling of APOLLO3 R -FLICA4. The computational cost of this modeling is 3 hours in average since the end time is adapted for each sampling.

The rst step of the UQM consist in identifying important input subspaces using statistical significance tests based on HSIC indices. It is the IDRM process described in Section 3.5.2. A random sampling of size 125 is used as DOE for this step. The result for the identied subspaces are gathered in table 4.4 and can be grouped in two: The second step of the UQM is the training of the kriging models for each output on LHS optimized in both the complete input space and the important subspaces as described in Section 3.5.3. A learning LHS of size 250 with optimized subspaces I 1 and I 2 is constructed for the training of the kriging models. The kriging models are trained on the identied input subspaces. The resulting prediction errors include the dimension reduction error. The interpolation, leave-one-out and prediction error are presented in table 4.5. The prediction error is estimated on an independent LHS of size 125. For all the outputs the prediction errors are small with larger errors for DN B min (2%) and the second principal component of P 2D lin (5.5%). In the third step of the UQM the kriging models are used to propagate the uncertainties to the outputs and estimate empirically their histograms. Brute force Monte Carlo is used with 1e 5 samples and the results are presented in gure 4.10. We observe quite larger relative standard deviation for P max lin of around 57 % compared to the MiniCore case. The result for P 2D lin shows that the relative standard deviation distribution does not vary radially. For H max f a 20 % relative standard deviation is obtained with a normal distribution. For DN B min a large mean value is obtained with large relative standard deviation of 57 % resulting in a very small probability of reaching boiling crisis.

I 1 = (T D 1 , N F 2 , D 1 ,S 1→2 ,IV 1 ,IV 2 , β ef f ,Cp f H gap , T R ) and I 2 = (T D 1 , N F 2 , D 1 ,S 1→2 ,IV 1 , β ef f , H gap , H c ).
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The initial preliminary step 0 consists in performing a multi-physics BE REA uncertainty analysis. To this purpose we consider the study of Section 4.5 where the UQM was applied on the PWR core using the BE APOLLO3 R -FLICA4 coupling. Steps 1.1 and 1.2 consist in identifying the imposed boundary conditions in ALCYON3 V1.4. These boundary conditions are the axial and temporal evolution of the linear power and the cladding wall temperature and should cover most of the possible evolutions of the H gap . There are both spatial variations due to the burn-up distribution in the core and random variations due to the inputs uncertainties.

The rst step 1.1 consist in clustering assemblies with similar burn-ups in groups for which one H gap model will be considered. In the MiniCore case this was straightforward since there where only three discrete values of burn-up. In the PWR core this is more complex since there is a 3D burn-up distribution. This leads to a total of 193 × 4 × 30/2 = 11580 meshes (due to symmetry) with dierent H gap evolutions due to dierent burn-ups and power histories. In order to avoid constructing one H gap model for each mesh the grouping of the assemblies of dierent burn-ups is carried out. At rst we consider only radial burn-ups, by averaging the axial variations. Thus decreases the dierent burn-ups to 772. Secondly, we observe that the burn-ups have radially small variations around three main values 15GW d/t, 30GW d/t and 45GW d/t due to the PWR fuel loading pattern. We select thus to group the assemblies based on these three values and we add one group for the minimum 10GW d/t and maximum burn-up 52GW d/t. This is done in order to have models covering all the burn-up variations. Additionally, it could be potentially used in the future for an application of the full 3D burn-up distribution by constructing models that interpolate the calibration parameters.

To recapitulate we consider a total of 5 fuel assembly groups and for each group a H gap model will be constructed. We have to select for each group representative boundary conditions that vary both randomly and spatially since each group includes dierent assemblies. This is performed in step 1.2. The selected boundary conditions are presented in gure 4.12. We know that the REA is a local phenomenon located in the upper part of the core around the ejected control rod position as seen in the radial cross-section of the gure. We thus expect large variations of H gap on the upper part and low to negligible variations in the lower part. For the random aspects we use from the results of step 0. More specically, we consider that P max lin gives a good indicator of H gap variations in REA. Based on this we select samples corresponding to the mean, the upper and lower 95% quantile of P max lin . From these samples we extract the linear power and cladding wall temperature axial and temporal evolutions. We combine both random and spatial aspects by selecting representative assemblies at the upper part for the mean and upper quantile while we select their mirror assemblies from the lower part. The selected assemblies are presented in 4.12 where each assembly has the burn-up value of its group. The green circles correspond to the selection for the mean and upper quantile while the yellow circles for the lower quantile. For the 10GW d/t and 52GW d/t groups there is only one possible assembly for each group. For the other groups from the many available options we prefer the assemblies close to the ejected control rod location. For 15GW d/t and 30GW d/t group we select two dierent assemblies while for the 45GW d/t we select three, since we consider that this group will have the largest H gap variations due to its high burn-up. parameters of each group vary homogeneously. We attribute uniform pdf to each calibration parameter with ranges that cover the calibration errors. The results for the estimated ranges for each parameter are shown in table 4.7. The maximum error is of the order of 8 % for the 45GW d/t group. For the 45GW d/t group is 2.5, % and for the other groups is less than 1 %. 
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The pdf bounds are used for the prediction of the H gap temporal evolution by the calibrated models. The results are compare to the ALCYONE V1. There are two dierent sources of uncertainties for the models. The rst one is due to the calibration error and is quantied by the calibration parameters pdf. The parameters are assumed fully positively correlated. The second one is due to the initial conditions. Similar to the MiniCore case, a multiplication coecient is used on the initial H gap and pellet-cladding gap width with normal pdf and 10 % relative standard deviation N (1.0, 0.1). The results of an uncertainty propagation on fuel-thermomechanics evolution calculations with ALCYONE V1.4 showed that the two initial conditions are strongly (> 0.9) negatively correlated. We make thus the simplication assumption by considering them fully negatively correlated.

At the end, two new uncertain parameters replace the constant H gap of the BE modeling. The one is related to the calibration error of the models H g,m and the other is related to the initial conditions H g,i . In the following study of Section 4.6.2 the calibrated models together with their uncertainty quantication are introduced in the APOLLO3 R -FLICA4 coupling without increasing the computational cost. This creates an Improved Best Estimate (IBE) modeling. The UQM is then applied again on this new modeling.

UQM application on IBE coupling

The calibrated H gap models from Section 4.6.1 are introduced in the BE coupling to create an intermediate IBE multi-physics coupling. The complete UQM is applied on this improved modeling. It is important to mention that the computational cost does not increase. The uncertain inputs and outputs of Section 4.3 are used with the replacement of the constant H gap uncertain input by the H gap models uncertainties. The two new uncertain inputs are H g,m and H g,i related to the H gap models calibration error and initial conditions. We remind that it is an explicit coupling with 0.001s incremental time step for adaptive total REA duration. The computational cost of this modeling is 3 hours.

For the step 1 of the UQM a random sampling of size 125 is used as DOE for the input dimension reduction. The result for the identied subspaces are gathered in table 4.8 and can be grouped in two: Compared to Section 4.5 we observe the inclusion of the H g,i in both subspaces while the H g,m is rejected. This means that for the outputs of interest the initial conditions are more important than the calibration parameters uncertainties. In step 2 of the UQM a learning LHS of size 250 with optimized subspaces I 1 and I 2 is constructed for the training of the kriging models. The result for the interpolation, leave-one-out and prediction error are presented in table 4.9. The prediction error is estimated on a second LHS of size 125. For all the outputs the prediction errors are small with larger errors for DN B min (1.3%) and the second principal component of P 2D lin (5.5%). In step 3 of the UQM brute force Monte Carlo is used for uncertainty propagation with 1e 5 samples for each output. The results are presented in gure 4.17. The obtained histogram for H max f is normal as for the UQM application with APOLLO3 R -FLICA4. We observe small increase of 2 % in the mean value and a reduced relative standard deviation from 20 % to 16 %. For P max lin the mean value decreased signicantly by 10 % with similar relative standard deviation. Concerning the relative standard deviation of P 2D lin it is not aected by the improved H gap . The quantity most impacted is the DN B min with a an increase of 14 % for the mean value and a decrease of the relative standard deviation from 57 % to 42 %. This means that there is smaller probability to reach boiling crisis.

I 1 = (T D 1 , N F 2 , D 1 , β ef f , Cp f ,H g,i , T R ) and I 2 = (T D 1 , N F 2 , D 1 , β ef f , H g,i , H c , R crit , T R ).
The impact on the dierent mean values is attributed to the more realistic modeling of the H gap evolution during the REA. In the BE modeling the mean constant value of H gap is 2.4e 4 W/m 2 K much higher than the one predicted by the calibrated models and it is applied during the whole duration of the transient. This leads to a higher heat extracted from the fuel by the coolant. The fuel temperatures are lower with a corresponding weaker Doppler feedback and thus a higher maximum linear power. The increased heat extracted from the coolant in the BE modeling explains also the smaller minimum distance to boiling crisis compared to the IBE modeling. The lower fuel temperatures induce also the observed lower stored enthalpy.
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1. The previously studied IBE modeling.

2. An IBE modeling with 3D thermal-hydraulics in order to investigate the impact of the transverse ows .

3. An IBE modeling using 3D thermal-hydraulic channels at the level of quarter of assembly in order to study the impact of the ner termal-hydraulic discretization.

The identied outputs for this study are the ones used in the UQM together with some quantities that are relevant to the transient modeling (e.g. exchanged quantities). The latter one are studied as 3D elds on a particular instant, usually where the maximum during REA is located. For all these outputs we perform uncertainty propagation and sensitivity analysis. The 3D functional quantities are treated using PCA representing 95% of the variance. Kriging models are constructed to approximate the underlying function between the inputs and the rst principal components. For complex 3D elds the kriging models prediction error for the higher order principal components can become very large. In these cases the PCA representation variance will be decreased to 85% reducing the number of required principal components. It can be seen as a trade of between bias (number of principal components) and variance (prediction errors of higher order principal components). The selected 3D elds are:

• Linear power P 3D lin at the instance of its local maximum. • Stored enthalpy in the fuel H 3D f at the instance of its local maximum.

• Cladding wall heat ux W 3D f at the instance of its local maximum.

• Gap heat transfer H 3D gap at the instance of its local maximum.

• Coolant density D 3D w at the instance of its local minimum.

The 3D elds are dicult to visualize and to this purpose two cross-sections will be presented for each output: the radial and axial cross-sections at the position of the local maximum (or minimum).

The mean and relative standard deviation distributions are calculated for these cross-sections. The sensitivity results are estimated for the whole 3D output elds. Since we do not focus on the UQM, the learning LHS of 250 that was used in the Section 4.5 is used for all the modelings. This allows also to obtain a point by point comparison. The inputs, outputs and statistical tools studied in the dierent physical modelings are: Global sensitivity analysis: Shapley indices estimated using kriging models. Functional outputs: PCA is used to reduce the functional output dimensions. The principal components that represent 95 % for most quantities is used. In some cases where the kriging models show large prediction error the represented variance is reduced.

• Inputs: T D 1 , T D 2 , N F 1 , N F 2 , D 1 , D 2 , S 1→2 , IV 1 , IV 2 , β ef f , λ ef f , λ f , λ c , Cp f , Cp c , H g,m , H g,i , T R , H c , R crit ,
Since we do not apply the UQM, the surrogate models between the inputs and the principal components of the 3D elds are trained on one of the two subspaces identied by the UQM in Section 4.6. The one with smaller prediction error is used. For the estimation of the prediction error the leave-one-out error is used because there is no evaluation LHS. The uncertainty propagation is performed with brute Monte Carlo using 1e 4 samples. lin are estimated and presented in gure 4.21. As in Section 4.6 the β ef f explains 50 % of the variance while the remaining 50 % is explained by T D 1 and D 1 . The latter macroscopic cross-sections represent the uncertainty of the control rod worth. We could say that the control rod worth and the eective delayed neutron fraction are responsible for the linear power variations. This is something expected by the underlying REA physics since the quantity ρ worthβ ef f determines the violence of the transient. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 NF 2 D 1 For H 3D f two principal components are needed to represent 95 % of its variance. For each principal component a kriging model is trained on subprojection I 1 with prediction errors 0.95 % and 0.96 % for the rst and second one respectively. The estimated mean and standard deviation for the radial and axial cross-sections at the location and instant of the local maximum are presented in gures 4.22 -4.23. The local maximum is located at the same axial and radial position as the maximum local linear power. This is expected since the stored enthalpy depends strongly on the power generated in the fuel. The relative standard deviation distribution varies from 15 % to 22 %. The part of the core further from the REA location is the one exhibiting largest variations. lin are obtained. It is interesting that while the Cp f is directly involved in the enthalpy calculation its sensitivity is very small. This can be attributed to the small standard deviation in combination with the dominance of the generated power that is represented by the macroscopic cross-sections and the β ef f . q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 NF 2 D 1 For W 3D f two principal components are needed to represent 85 % of its variance. We cannot represent more because the prediction errors of the higher principal components are very large. Kriging models are trained on subprojection I 2 for the rst and second principal components with prediction errors 1.0 % and 5.5 % respectively.
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The estimated mean and standard deviation for the radial and axial cross-sections at the location and instant of the local maximum are presented in gures 4.25 -4.26. The local maximum is located at the assembly on the right and left of the assembly with the ejected control rod. This is because the fuel wall heat ux depends strongly on the gap heat transfer and the pellet-cladding gap width. These assemblies belong to the 45GW d/t group and are close to the REA location. This means that the initial gap heat transfer is high with a corresponding small gap. The power evolution seen by the assemblies create a temperature increase that drives the thermal expansion and closes even further the gap increasing the fuel wall heat ux. The relative standard deviation distribution exhibits large variations between 20 % to 34 % with larger uncertainties at the locations with high fuel wall heat ux. lin and H 3D f are obtained. The H g,i has very small sensitivity meaning that while it is important for the mean value it does not have any impact on the variance. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 NF 2 D 1 β eff H g,i H c R crit T R 0.0 0.4 0.8 For H 3D gap two principal components are needed to represent 95 % of its variance. For each principal component a kriging model is trained on subprojection I 1 with prediction errors 0.08 % and 2.0 % for the rst and second one respectively. The estimated mean and standard deviation for the radial and axial cross-sections at the location and instant of the local maximum are presented in gures 4.28 -4.29. As expected by the calibrated H gap models the assemblies with higher burn-up have also higher H gap . The maximum value is obtained at the assemblies on the right and left of the assembly with the ejected control rod. This is for the same reason as for the W 3D f due to the important power seen by these assemblies in combination with their high burn-up. The relative standard deviation distribution exhibits strong variations from 10 % up to 32 %. The assemblies with the maximum H gap are the ones with the largest uncertainties.

The aggregate Shapley indices for H 3D

gap are estimated and presented in gure 4.30. In this case the H g,i is the dominant input responsible for 80 % of the outputs variance. The remaining 20 % is mainly explained by β ef f . This result is not surprising since the initial conditions determine the H gap evolution as described in the calibration methodology of Chapter 3. gap estimated mean and relative standard deviation in the radial cross-section for IBE coupling study in PWR core. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 NF 2 Finally, for D 3D w three principal components are needed to represent 95 % of its variance. For each principal component a kriging model is trained on subprojection I 2 with prediction errors 0.7 %, 0.6 % and 5.5 % for the rst, second and third one respectively. The estimated mean and standard deviation for the radial and axial cross-sections at the location and instant of the local maximum are presented in gures 4.31 -4.32. The coolant density decreases as it ows through the thermal-hydraulic channel due to the heat extracted from the fuel and thus it is expected to obtain the minimum value at the top of the core. The extracted heat is much higher at the location of the control rod ejection and thus in this assembly is obtained the minimum coolant density. The relative standard deviation has very small values ranging from 0.1 % to 0.7 %. This means that for the REA and specically when the boiling crisis is not reached and thus the coolant is mainly liquid water the coolant density remains essentially constant. w estimated mean and relative standard deviation in the axial cross-section for IBE coupling study in PWR core.
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IBE modeling with 3D thermal-hydraulics

The IBE APOLLO3 R -FLICA4 coupling is used in this study with a 3D thermal-hydraulics modeling in FLICA4. The computational cost of this modeling is 3.5 hours. The impact of the transverse ows in X and Y direction is estimated. We remind the selected modeling options for this study:

• APOLLO3 R : Two group diusion with void boundary conditions. The discretization radially is 4 meshes per assembly and axially 34 meshes of which 30 for the fuel active height.

• FLICA4: 4 equation porous modeling with 3D ow in direction X, Y and Z (axial). The fuel active part is considered and the discretization radially is one thermal-hydraulic channel per assembly and axially is 30 meshes.

• H gap : 5 simplied models calibrated on decoupled ALCYONE V1.4 calculations. Dierent initial conditions are used for the dierent types of assemblies creating a similar spatial mesh with FLICA4.

In gures 4.34 -4.35 we present the mean distribution of the two velocities V 3D X and V 3D Y . Two representative radial and axial cross-sections are illustrated a few time steps after the power peak. The impact of the REA on the two velocities is obvious but still we see that their values are quite low compared to the axial ow velocity of around 4 m/s. The only quantity impacted by the transverse ows is the DN B min . The constructed kriging models has a prediction error of 1.4 %. We can see the obtained histogram and Shapley indices in gure 4.36. We can conclude that the mean value of the DN B min has decreased by 7 % increasing the probability of boiling crisis. This is due to the fact that the axial ow is reduced by the presence of transverse ows. The axial ow is slower and thus extracts more fuel heat ux leading to lower DN B min . A secondary reason for the DN B min decrease is due to the critical heat ux decrease. The critical heat ux correlation is a function of the axial ow. As the axial ow decreases the critical heat ux decreases as well. This leads to lower DN BR and thus lower DN B min The relative standard deviation and the sensitivities are not impacted by the transverse ows. µ = 6.46 σ = 42.57 % 0 5 10 15 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q TD 1 NF 2 D 1 β eff H g,i H c R crit T R 0 0.2 0.6 

IBE modeling with 3D thermal-hydraulics and ner spatial discretization

The nal modeling option that we investigate is the thermal-hydraulic channel discretization size. More specically based on the IBE 3D thermal-hydraulics modeling of Section 4.7.3 we use now one thermal-hydraulic channel per quarter of assembly. This leads to 4 times more spatial meshes and an increase in the computational cost at 12 hours. We remind the selected modeling options of this study:

• APOLLO3 R : Two group diusion with void boundary conditions. The discretization radially is 4 meshes per assembly and axially 34 meshes of which 30 for the fuel active height.

• FLICA4: 4 equation porous modeling 3D ow in direction X, Y and Z (axial). The fuel active part is considered and the discretization radially is four thermal-hydraulic channels per assembly and axially is 30 meshes corresponding to the fuel active height.

• H gap : 5 simplied models calibrated on decoupled ALCYONE V1.4 calculations. Dierent initial conditions are used for the dierent types of assemblies creating a similar spatial mesh with FLICA4.
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The estimated mean and standard deviation for the radial and axial cross-sections at the location and instant of the local maximum are presented in gures 4.46 -4.47. The W 3D f distribution and its local maximum position does not change. This is because it is governed mainly by the burn-up and since the burn-up distributions in all the studies is the same the position is not aected. Neither the relative standard deviations or the estimated aggregated Shapley indices are signicantly impacted by the thermal-hydraulics discretization. Finally, for D 3D w two principal components are needed to represent 90 % of its variance. We cannot represent more because the prediction errors of the higher principal components are very large. For each principal component a kriging model is trained on subprojection I 2 with prediction errors 0.7 % and 0.9 % for the rst and second one respectively. The estimated mean and standard deviation for the radial and axial cross-sections at the location and instant of the local maximum are presented in gures 4.50 -4.51. w estimated mean and relative standard deviation in the axial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.

The coolant density depends on the heat extracted by the coolant as it ows through the thermalhydraulic channels. Since we saw that the cladding wall heat ux distribution is not impacted by the thermal-hydraulic discretization, the coolant density is not impacted either. Neither the relative standard deviations or the estimated aggregated Shapley indices are signicantly impacted by the thermal-hydraulic discretization. w estimated mean and relative standard deviation in the radial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.

Conclusions

In this Section we compared three dierent thermal-hydraulics modeling options for the IBE modeling established in Section 4.6. The three options are an increasing order of computational cost:

• M1: Multi-1D axial ow with one thermal-hydraulic channel per assembly. This was the option used in Section 4.6.

• M2: 3D ow with one thermal-hydraulic channel per assembly.

• M3: 3D ow with four thermal-hydraulic channels per assembly. Dierent 3D functional outputs of interest for the coupling were studied together with the identied scalar outputs for the UQM. The same training LHS is used for all the models in order to study the eect on the uncertainty propagation and sensitivity analysis. The main observation from the comparison are summarized:

• The M2 compared to M1 has an impact only on the minimum distance to boiling crisis DN B min . Its mean value decreases by 7 % due to the reduce of the axial ow caused by the presence of transverse ows. The impact is relatively small because the transverse ows are small. Reduced axial ow means that the coolant stays more time in the core and thus extracts more fuel heat ux leading to lower DN B min . This increases the probability of boiling crisis.

• The M3 compared to both M2 and M1 shifts the position of the local maximum linear power P max lin from the assembly with the ejected control rod to the next assembly at the border of the reector. Axially it is located at the third axial slice from the top, one axial slice lower than in M1 and M2. Additionally, the P max lin seen by FLICA4 is slightly higher because in M1 and M2 the value is a result of an averaging process since APOLLO3 R has a discretization of four meshes for one assembly. This aects also the position of the local maximum stored enthalpy H max f , since it follows the position of P max lin . The H max f mean value is also increased.

• The M3 compared to M2 reduces even further the mean value of DN B min due to the increased P max lin seen by FLICA4. This leads to higher heat ux to be extracted by the coolant that reduces DN B min .

• The relative standard deviations of all the quantities and their sensitivities are in general not impacted by the modeling option.

We can conclude that M3 is more penalizing concerning P max lin and DN B min and thus should denitely be used for safety analysis in comparison to M1 and M2. However, the computational cost is multiplied by four, something that renders dicult the uncertainty quantication. If we are mainly interested in sensitivities studies the model M2 is preferred since it is a good compromise in computational cost between M1 and M3.

In this Chapter we applied the UQM that was developed in Chapter 3 on a large scale PWR core for the study of a REA with a BE modeling. Additionally, we applied the calibration methodology of a simplied gap heat transfer H gap model based on thermal expansions that was also developed in Chapter 3. The integration of the H gap model in the BE coupling improves the REA modeling. Some complementary physical analyses were also carried out in order to investigate the impact of dierent thermal-hydraulics modeling options on a large set of outputs up to 3D elds.

Before applying the UQM a rst preliminary static analysis showed that the uncertainty on the ρ worth is larger than in the MiniCore. This can be attributed to the increased eect of the two group macroscopic cross-sections and mainly T D 1 , D 1 and S 1→2 . Besides that, for this core it was found out that there is a 2.25 % probability of reaching ρ worthβ ef f < 0 conditions. These conditions are not interesting since they lead to less violent REA. A linear model was constructed in order to predict for each following DOE the points that lead to these non interesting conditions. The identied points are thus excluded from the DOE resulting in both a computational gain and allowing us to focus on the more interesting transients.

The application of the UQM on the PWR core resulted in the following conclusions for the outputs of interest:

• The local maximum linear power P max lin shows a relative standard deviation of 57% which is twice the value in the MiniCore. This is due to the increased sensitivity on the macroscopic cross-sections something reected by the Shapley indices. The β ef f is responsible for 50 % of the variance and T D 1 , D 1 and S 1→2 are responsible for the remaining 50 %.

• The linear power radial distribution P 2D lin at the axial position and time instant of P max lin shows relative standard deviations with small spatial distribution ranging between 53 % and 57 %. The location of P max lin is the one that exhibits the highest relative standard deviation. The aggregate Shapley indices showed similar sensitivities to the P max lin . • The maximum stored enthalpy H max f has 20 % relative standard deviation with a normal histogram. This reects the linear behavior of this output. The same inputs as for P max lin are the dominant ones.

• The minimum distance to boiling crisis DN B min is quite further than in the MiniCore case with a mean value of 6 and a relative standard deviation of 57 %. The H gap is responsible for 50 % of the variance and β ef f , T D 1 , D 1 and S 1→2 are responsible for the remaining 50 %.

For the calibration of the H gap models 5 assembly groups were identied with one model per group. The resulting calibration errors for all the calibrated data are less than 8 %. The uncertainty of the calibration parameters was quantied using uniform pdf with bounds that cover the calibration errors. The uncertainty of the models initial conditions was quantied with N (1, 0.1) as in the MiniCore tests. The calibrated H gap models were introduced in the Best Estimate coupling without increasing the computational cost. The UQM was applied again on this improved modeling. The most signicant impact was on the DN B min with an increase 14 % of its mean value reducing the probability of boiling crisis. The standard deviation of DN B min was reduced to 42 %. The reason is the decreased sensitivity on the H gap uncertainty due to its better uncertainty quantication and modeling. This is observed in the Shapley indices where now β ef f is responsible for 50 % of the variance and T D 1 , D 1 and S 1→2 are responsible for the remaining 50 %.

In Section 4.7 we compared three dierent thermal-hydraulics modeling options for the IBE modeling of Section 4.6. The rst option M1 is the Multi-1D axial ow thermal-hydraulic channel per assembly. The second option M2 is 3D ow with one thermal-hydraulic channel per assembly. The third one M3 is 3D ow with four thermal-hydraulic channels per assembly. Dierent 3D functional outputs of interest for the coupling were studied together with the identied scalar outputs for the UQM. The main observation that can be made are the following:

• The M2 compared to M1 has an impact only on the minimum distance to boiling crisis DN B min . Its mean value decreases by 7 % due to the reduce of the axial ow caused by the presence of transverse ows.

• The M3 compared to both M2 and M1 shifts the position of P max lin . from the assembly with the ejected control rod to the next assembly at the border of the reector. Axially it is also shifted to one axial slice lower.

• The M3 compared to M2 reduces even further the mean value of DN B min due to the increased P max lin seen by FLICA4. This leads to higher heat ux to be extracted by the coolant that reduces DN B min . We can conclude that M3 is more penalizing concerning P max lin and DN B min and thus should denitely be used for safety analysis in comparison to M1 and M2. However, this comes at a four times more computational cost that renders dicult the uncertainty analysis. If we are mainly interested in sensitivities studies the model M2 is preferred since it is a good compromise in computational cost between M1 and M3.

Conclusions and Perspectives

Conclusions

The main objective of this thesis was to develop an Uncertainty Quantication Methodology (UQM) for the multi-physics Best Estimate (BE) modeling of Rod Ejection Accident (REA). To this purpose the CORPUS coupling framework developed at CEA was used and more specically the BE coupling between APOLLO3 R and FLICA4 (thermal-hydraulics). This created many challenges:

• Computationally expensive modeling not allowing many code evaluations.

• Large input and output dimensions that can create diculties for the application of the dierent statistical tools.

• Input dependencies that can lead to redundant inputs. This is the case when two inputs are strongly dependent and one is very important for an output while the other one is not. Most of the sensitivity methods will detect both of the inputs as very important.

• Interaction between inputs on the outputs variance. This can occur when one input is not directly signicant to an output but only in conjunction with another input.

• Non-linear output behavior. It is not always easy for the surrogate model to correctly approximate a non-linear function, especially where there are discontinuities.

Fortunately as we saw in Chapter 2 there is a large variety of statistical tools that can be used in order to address some of these challenges. In Sections 3.4 -3.5 these dierent statistical tools were tested on a small scale core (MiniCore) representative of a PWR in order to derive the UQM. Dierent tests were identied in order to select the statistical tools that will consist the UQM. Tests were carried out for neutronics, thermal-hydraulics, fuel-thermomechanics stand-alone studies using the CEA codes APOLLO3 R , FLICA4 and ALCYONE V1.4 respectively. Afterwards, a multiphysics BE APOLLO3 R -FLICA4 test was performed. The conclusions drawn from all these studies were used to develop the UQM presented in 4.52.

The UQM consists of four main steps. The initial step 0 is the denition of the case study with the desired uncertain inputs and outputs and the input uncertainty quantication. Since we assume that in the general case the input dimension can be large the step 1 consists in identifying the important input subspaces using Input Dimension Reduction Method (IDRM) for both scalar and functional outputs. This step is based on an initial random sampling. IDRM was developed based on HSIC statistical signicance tests. This method aims at identifying an important input subspace by addressing the dependence of inputs, potential interactions and redundancies. The method was tested on the Morris function and on multi-physics BE REA coupling with very satisfactory results. The step 2 is the training of the kriging models for each output on the identied subspaces. The training LHS is constructed with good space-lling properties in both the original input space and the important subspaces. To achieve this the maximin criterion is maximized by minimizing the φ p criterion. A modied version of the Simulated Annealing optimization algorithm was implemented in order to optimize the criterion in both the original space and the important subspaces. The test on the multi-physics BE modeling showed a signicant gain for the space-lling criterion optimization in the identied subspaces. Using the improved LHS kriging models are trained directly for the scalar outputs while for the functional ones the kriging models are constructed for the rst principal components that represent 95% of the outputs variance. The prediction errors of the kriging models are estimated using a second LHS. The step 3 is the brute force Monte Carlo uncertainty propagation with the empirical estimations of the rst two statistical moments and the histogram. Finally, in step 4 the global sensitivity analysis is performed using Shapley indices for scalar outputs and aggregated Shapley indices for functional ones. 

Yes

The developed UQM was applied to REA BE modeling in a large scale PWR core in Section 4.5. The studied outputs of interest where: the local maximum linear power P max lin , the linear power radial distribution P 2D lin at the axial position and time instant of P max lin , the maximum stored enthalpy H max f , the minimum distance to boiling crisis DN B min . The main conclusions drawn are:

• P max lin shows a relative standard deviation of 57% which is twice the value in the MiniCore tests. This is due to the increased sensitivity on the macroscopic cross-sections something reected by the Shapley indices. The β ef f is responsible for 50 % of the variance and T D 1 , D 1 and S 1→2 are responsible for the remaining 50 %.

• P 2D

lin shows relative standard deviations with small spatial distribution ranging between 53 % and 57 %. The location of P max lin is the one that exhibits the highest relative standard deviation. The aggregate Shapley indices showed similar sensitivities to the P max lin .

• H max f has 20 % relative standard deviation with a normal histogram. This reects the linear behavior of this output. The same inputs as for P max lin are the dominant ones.

• DN B min is quite further than in the MiniCore case with a mean value of 6 and a relative standard deviation of 57 %. The H gap is responsible for 50 % of the variance and β ef f , T D 1 , D 1 and S 1→2 are responsible for the remaining 50 %.

A second objective of the thesis was the development of a methodology for improving the BE modeling in terms of its uncertainty representation. Apart from the BE coupling in the CORPUS framework there exists a Best Eort coupling including ALCYONE V1.4 code for a detailed modeling of fuel-thermomechanics behavior. However, this modeling has a very high computational cost and its use for uncertainty quantication of REA is prohibited. One of the main REA modeling dierences between BE and Best Eort coupling is the treatment of the gap heat transfer H gap . In FLICA4 a constant value is used as an input of the code while in ALCYONE V1.4 the gap heat transfer is calculated taking into account the pellet-cladding gap behavior during the REA. Additionally, in the UQM application for the PWR core we observed that the H gap is the most important input concerning DN B min . There is thus a strong interest in extracting knowledge from ALCYONE V1.4 about the H gap evolution during REA and apply it into the BE modeling.

We used a simplied H gap model based on thermal expansions and including two calibration parameters: one related to the fuel temperature and one related to the stored energy. The latter captures a historical impact during the REA. In Section 3.6 we developed a methodology for calibrating this H gap model that is presented in in gure 4.53. As for the UQM, this methodology was tested on the MiniCore and then applied to a PWR core in Section 4.6.

The H gap calibration methodology includes three main steps. In step 1.1 the assemblies are grouped by burn-up with one model for each group. In step 1.2 the REA linear power and cladding wall temperature proles are selected in such a way to cover the possible H gap variations due to both spatial and statistical aspects. In step 2 these proles are used as boundary conditions imposed in ALCYONE V1.4 REA decoupled calculations. In step 3.1, on the obtained results, the H gap models are calibrated by mean square error minimization. Additionally, in step 3.2 the uncertainty of the models is quantied through two eective parameters, one representing the calibration error H g,m and one representing the model initial conditions H g,i . The quantication of the H gap models uncertainty is very interesting since it allows to propagate this uncertainty through the BE coupling. Finally, the calibrated H gap models are introduced in the BE coupling improving its REA modeling.

In Section 3.6 the methodology was tested on the MiniCore geometry with very promising results. Small calibration errors were observed and the dened uncertainty ranges of the calibration parameters covered in all the cases the H gap evolution during the REA predicted by ALCYONE V1.4.

The calibrated H gap models were then included in the BE coupling. This created the Improved Best Estimate (IBE) modeling. The UQM was tested on this improved modeling aecting mainly the margin to boiling crisis uncertainty quantication. The sensitivity of the H gap decreased signicantly due to its better modeling. Finally, the IBE modeling was compared to the Best Eort modeling on three dierent design points in terms of the H gap prediction. The resulting comparison showed an underestimation of the H gap between 13% -17%. This is attributed to the many assumptions of the calibrated model and to the dierences of the fuel-thermomechanics modeling in FLICA4 and ALCYONE V1.4. This indicates that IBE cannot replace the Best Eort modeling since there are many limiting assumptions but it can be used for a more realistic UQM on the large scale PWR core, where the Best Eort coupling is unfeasible.

APOLLO3-FLICA4

UQM with uniform Hgap The H gap model calibration methodology was applied to the PWR core in Section 4.6. For the calibration of the H gap models 5 assembly groups were identied with one model per group. The resulting calibration errors for all the calibrated data are less than 8 %. The calibrated H gap models were introduced in the BE coupling and the UQM was applied again on the established IBE. The most signicant impact was on the DN B min with an increase 14 % of its mean value reducing the probability of boiling crisis. This is attributed to the more realistic modeling of the H gap evolution during the REA. In the BE modeling the mean constant value of H gap is 2.4e 4 W/m 2 K much higher than the one predicted by the calibrated models and it is applied during the whole duration of the transient. This leads to a higher heat extracted from the fuel by the coolant in the BE modeling, something that explains the smaller DN B min compared to the IBE modeling. The standard deviation of DN B min was reduced to 42 %. The reason is the decreased sensitivity on the H gap uncertainty due to its better uncertainty quantication and modeling. This is observed in the Shapley indices for DN B min where now β ef f is responsible for 50 % of the variance and T D 1 , D 1 and S 1→2 for the remaining 50 %.

In the last part of Chapter 4 (Section 4.7) three dierent thermal-hydraulics modeling options were compared for the IBE modeling. The rst option M1 is the Multi-1D axial ow thermal-hydraulic channel per assembly. The second option M2 is 3D ow with one thermal-hydraulic channel per assembly. The third one M3 is 3D ow with four thermal-hydraulic channels per assembly. Dierent 3D functional outputs of interest for the coupling were studied together with the identied scalar outputs for the UQM. The main observation that can be made are the following:

• The M2 compared to M1 has an impact only on the minimum distance to boiling crisis DN B min . Its mean value decreases by 7 % due to the reduction of the axial ow caused by the presence of transverse ows.

• The M3 compared to both M2 and M1 shifts the position of P max lin from the assembly with the ejected control rod to the next assembly at the border of the reector. Axially it is also • Improvement of the functional outputs treatment in the UQM by including advanced reduce order modeling techniques. This can even lead to a complete replacement of parts of the codes.

• Use of advanced feature extraction methods to improve the identication of important subspaces in the UQM.

• Application of the UQM in other types of transients such as LOCA.

• Investigate other sources of uncertainties such as: modeling and discretization options.

• Increase the complexity of the H gap model. The simplied model used in this thesis is based on thermal expansions. This does not consider important phenomena such as: the "rim" region, ssion gas releases and physico-chemical reactions. Simplied models for these phenomena could be included in the calibrated H gap model.

• Adapt the H gap model for allowing interpolation of the calibration parameters for each spatial mesh based on local quantities such as: burn-up and power. With this approach we could avoid the grouping of dierent fuel assemblies. The H gap models will have the same discretization as the neutronics and thermal-hydraulics.

• More extensive comparison with Best Eort modeling and better quantication of the approximation error.

The possibility to increase the level of either the transient modeling or the uncertainty quantication modeling leads to the following perspectives:

• Extension of the UQM to functional inputs. This will allow for example to take into account spatial correlations of the macroscopic cross-sections. It can be seen as the level 2 uncertainty quantication modeling of gure 4.54. The correlations can be estimated by neutronic lattice calculations or as a rst approach an articial correlation distribution in the core can be used (e.x. based on the distance).

• Use a pin by pin level of homogenization. It can be seen as the level 3 the transient modeling of gure 4.54 and is very challenging due to increase of the computational cost. However, as a rst approach the MiniCore geometry could be used. The uncertainty quantication modeling could be either at level 1 or 2.

In fuel-thermomechanics the following inputs are considered as independent: λ f , λ c , Cp f , Cp c , H gap , P r , T R . For the fuel and cladding material laws ( λ f , λ c , Cp f , Cp c ) the UAM recommendations were followed by using normal pdf for multiplication coecients on the dierent laws as presented in table 3.4. For H gap in the initial Best Estimate coupling a uniform pdf bounded by its value for a complete open gap (2e 3 W m -2 K -1 ) and for a pellet-cladding contact (5e 4 W m -2 K -1 ) is used. However, in the IBE coupling simplied H gap models were calibrated for dierent assembly groups. The models included two calibration parameters. For their uncertainty quantication as for the cross-section they were considered as fully positevely correlated with bounds that cover the calibration error as discussed in Section 3.6. This leads to one uncertain quantity representing the calibration error H g,m . Additionally, uncertain initial conditions are considered for the models. More specically the initial gap heat transfer H init gap and gap width e init gap . Based on previous uncertainty propagation results of ALCYONE V1.4 fuel evolution calculations these two quantities were found fully negatively correlated. The estimated relative standard deviation is 10%. The uncertainty is applied as a multiplication coecient on both quantities with pdf N (1.0, 0.1). This leads to a second uncertain quantity representing the initial conditions H g,i . The power radial prole is modeled by a burn-up function P 1D r = f (BU ) dened in [START_REF] Maunier | Simulation par le code APOLLO2 de l'evolution du combustible REP enrichi à 4.5des concentrations globales et radiales avec les résultats expérimentaux[END_REF]. The problem is that the we have uncertainty of 1.75% relative standard deviation for the power at the external surface due to the radial discretization used for the tting of the function. Besides, that we also know that there is an 8 % impact of the presence or not of a guide tube near the fuel pin as was found in [START_REF] Pallec | Modelisation réaliste d'un accident de réactivité dans les REP et analyse d'incertitudes[END_REF]. We model these two uncertainties as a sum of two independent pdf N (0, 0.0175) and U(1, 1.08) applied as a multiplication coecient on the power at the external surface. For the Rowlands temperature T R a uniform distribution was considered on the weight fraction of the fuel centerline temperature. In the reference situation the Rowlands temperature has a 4/9 weight on the fuel centerline temperature and 5/9 on the fuel external surface temperature. By using an uncertain multiplication factor with U(0, 1) on the centerline temperature weight we consider that it can only decrease uniformly between 4/9 and zero with a corresponding increase in the external surface temperature weight.

In thermal-hydraulics the following uncertain inputs are considered: H c , R crit , K v0 , H dnb . All of them are quantied based on expert judgments and presented in table 3.4. discrete input parameter indicating the criticality method used. The three dierent methods were considered with 1/3 probability. The resulting Shapley indices indicate that the criticality method amounts up to 20% of the maximum local linear power variance. Appendix D

Point kinetics REA uncertainty analysis

It is possible to obtain an analytic expression for the local maximum linear power during the REA if point kinetics is used for the neutronic modeling. It is called the Nordheim-Fuchs model and is valid for prompt neutron driven REA [START_REF] Avvakumov | Spatial Eects and Uncertainty Analysis for Rod Ejection Accidents in a PWR[END_REF]. The reactivity evolution during the transient can be written as:

ρ(t) = ρ worth + θ d E(t) (D.1)
Where:

ρ worth is the control rod worth of the ejected rod.

θ d is the feedback parameter.

E is the energy deposition in the fuel.

The maximum power during the transient can be expressed then as:

P max = (ρ worth -β ef f ) 2 2Λθ d (D.2)
Where:

Λ is the prompt neutron lifetime.

By making the following assumptions the θ d can be calculated as in [START_REF] Avvakumov | Spatial Eects and Uncertainty Analysis for Rod Ejection Accidents in a PWR[END_REF] :

• Adiabatic fuel thermal treatment.

• Constant Doppler coecient during REA .

• Constant specic fuel heat capacity during REA.

The values used in [START_REF] Avvakumov | Spatial Eects and Uncertainty Analysis for Rod Ejection Accidents in a PWR[END_REF] are adopted for this study and are synthesized together with the values related to the MiniCore case in table D.1. For the maximum local linear power the multiplication coecient of the MiniCore is used. For the uncertainty analysis we consider the following uncertain inputs: ρ worth , β ef f and θ d . This is done in order to be closer to the MiniCore study. For ρ worth a normal distribution is used with mean and standard deviation from the results of Section 3. In this study the inputs are considered independent. It is thus interesting to investigated the eect of xing some of the uncertain inputs in their reference values and see the remaining part of the variance. This would be equivalent to estimating the total Sobol indices of each input. The inputs considered as uncertain for the dierent analyses are:

• A1: ρ worth , β ef f , θ d .

• A2: ρ worth , β ef f .

• A3: ρ worth , θ d .

• A4: β ef f , θ d .

• A5: ρ worth .

• A6: β ef f .

• A7: θ d .

The results for the dierent analyses are gathered in table D. [START_REF] Jouaultn | New calculation method for PWR control rod assemblies with APOLLO3 R[END_REF]. We can see that the dominant input as in the MiniCore is the β ef f . The control rod worth uncertainty amounts to a total of 6.5% of output's relative standard deviation. The feedback (Doppler) parameter leads to a total of 5% of output's relative standard deviation.

Relative Standard Deviation (%) A1 

Additionally, for each functional output we provide the result for the mean and standard deviation distributions at 6 dierent cross-sections. Axially we focus on three cross-sections along the Y axis at the locations seen in gure E.1. Two cross-section around the location of the maximum linear power at Y 1 and Y 3 and one cross-section at the center of the core (Y 8). Radially we focus on three cross-sections along the Z axis at the bottom (Z1), middle (Z15) and top (Z30) axial slices.

We present rst all the results and afterwards at the end we analyze them. For P 3D lin we observe similar non normal pdf for all the histograms of the considered radial crosssections. The axial cross-sections Y 1 and Y 3 close to the location of the control rod ejection show similar mean distribution as in Section 4.7.2 with lower maximum value since they are farther from the local maximum. The value is higher for Y 1 than Y 3. This can be explained by the reector eect. At Y 8 cross-section the estimated mean has values of one order of magnitude lower with a distribution that is impacted strongly by the reector and the burn-up. The relative standard deviation distribution of the axial cross-sections is similar to Section 4.7.2. Concerning the radial cross-sections the mean distribution remains the same. Compared to Section 4.7.2 the estimated values vary from two orders of magnitudes lower for Z1, one order of magnitude for Z15 and similar order of magnitudes for Z30. The relative standard deviation distribution varies from almost constant at the bottom of the core to the distribution of Section 4.7.2 at the top.

For H 3D f we observe similar normal pdf for all the histograms of the examined radial cross-section. The conclusions drawn for H 3D f follow the ones of P 3D lin . The axial cross-sections Y 1 and Y 3 close to the location of the control rod ejection show similar mean distribution as in Section 4.7.2 with lower maximum value since they are farther from the local maximum. The value is higher for Y 1 than Y 3 attributed to the reector presence. At Y 8 cross-section the mean has values of one order of magnitude lower than Section 4.7.2 with a distribution that is impacted strongly by the reector. The radial cross-sections compared to Section 4.7.2 show similar mean distribution with values that vary from two orders of magnitudes lower for Z1, one order of magnitude for Z15 and similar order of magnitudes for Z30. The relative standard deviation distributions for both axial cross-sections are similar to Section 4.7.2.

For W 3D f we observe a dierent behavior in some histograms. This happens for meshes farther from the control rod ejection location, especially for their values at low quantiles. This can be attributed to the fact that W 3D f is the only quantity for which we decreased the PCA variance representation to 85%. It is quite possible that to capture correctly the behavior at locations far from the ejection location we need higher variance representation and thus more principal components. The distributions of mean and relative standard deviation on the dierent crosssections depend strongly on both the burn-up and the power. In cross-section Y 1 where all the assemblies have similar burn-up we clearly see only the impact of the power. By inspecting the other cross-sections we observe that in the meshes close to the control rod ejection, where the power is high, there is an impact of the burn-up as well. As we move farther from the control rod ejection location we see that the power impact is mainly driven by the reector presence. This means that for assemblies of similar burn-up the ones closer to the reector have higher mean and relative standard deviation than the ones closer to the control rod ejection location. It is easier to see this behavior in Y 8 and Z30 cross-sections where the assemblies with high burn-up (45GW d/t) and closer to the reector have the highest mean and relative standard deviation. The assemblies towards the center of the core with similar or higher burn-up and closer to the control rod ejection location exhibit lower mean and relative standard deviation. In general we can conclude that for the mean value distribution the power is more important than the burn-up but for the relative standard deviation the burn-up is more signicant.

For the H 3D gap histograms an interesting behavior is observed. While in most of the meshes the pdf are close to normal for few meshes close to the control rod ejection location this is not the case. This behavior is observed in assemblies with high power and high burn-up (above 30GW d/t). This could be attributed to the impact of the H gap model initial conditions uncertainty H g,i . Uniform pdf is used for H g,i and their impact increases with burn-up since the gap width is smaller. This creates the strongly non normal pdf. The distributions of mean and relative standard deviation on the dierent cross-sections similarly to W 3D f depend strongly on both the burn-up and the power. In cross-section Y 1 where all the assemblies have similar burn-up we clearly see only the impact of the power. From the rest cross-sections we conclude that in the meshes close to the control rod ejection, where the power is high, the impact of both burn-up and the power. In general we can conclude that the burn-up eect is stronger than the power due to the H g,i increasing impact.

For D 3D

w we observe similar close to normal pdf for all the histograms of the examined radial cross-section. The mean and relative standard deviation follow an expected behavior similar to Section 4.7.2 results. The density decreases axially as the coolant extracts heat from the core with In general for all the 3D elds one main dierence arises from the fact that Y 3 is at an assembly that is dierent from the one identied in Appendix E due to the ner discretization. We cannot thus make comparisons for this cross-section. from investigating all the other cross-sections we can conclude that for all the 3D elds there is no signicant impact of the 3D thermal-hydraulics modeling with ner radial discretization. The only main impact is at the cross-section of the maximum linear power that was presented in Section 4.7.4.

What is interesting is the fact the we managed to include large 3D elds in our Uncertainty Quantication Methodology. The are a total of 23160 meshes in each eld increasing the diculty of their treatment. As we are entering a world of Big Data and Machine Learning many perspectives open for the handling of such 3D elds. However, maybe the most important is rst to assess in which situations we really need such large elds and what new can they bring on the table for industrial applications. Abstract : The computational advancements of the last decades lead to the development of numerical codes for simulating the reactor physics with increasing predictivity allowing the modeling of the behavior of a nuclear reactor under both normal and accidental conditions. An uncertainty analysis framework consistent with Best Estimate (BE) codes was developed in order to take into account the different sources of uncertainties. This framework is called Best Estimate Plus Uncertainties (BEPU) and is currently a field of increasing research internationally. In this thesis we study the multi-physics uncertainty quantification for Rod Ejection Accident (REA) in Pressurized Water Reactors (PWR). The BE modeling available in CEA is used with a coupling of APOLLO3 R (neutronics) and FLICA4 (thermal-hydraulics and fuel-thermal) in the framework of SALOME/CORPUS tool. In the first part of the thesis, we explore different statistical tools available in the scientific literature in-cluding: dimension reduction, global sensitivity analysis, surrogate modeling and design of experiments. We then use them in order to develop an uncertainty quantification methodology. In the second part of the thesis, we improve the BE modeling in terms of its uncertainty representation. A Best Effort coupling scheme for REA analysis is available at CEA. This includes ALCYONE V1.4 code for a detailed modeling of fuel-thermomechanics behavior. However, the use of such modeling increases significantly the computational cost for a REA transient rendering the uncertainty analysis prohibited. To this purpose, we develop a methodology for calibrating a simplified analytic gap heat transfer model using decoupled ALCYONE V1.4 REA calculations. The calibrated model is finally used to improve the previous BE modeling. Both developed methodologies are tested initially on a small scale core representative of a PWR and then applied on a large scale PWR core.
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 4 Figure 4.34: V 3D X and V 3D Y estimated mean distribution in the axial cross-section for 3D IBE coupling study.

YFigure 4 .

 4 Figure 4.35: V 3D X and V 3D Y estimated mean distribution in the radial cross-section for 3D IBE coupling study.
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 436 Figure 4.36: DN B min estimated histogram and Shapley indices for 3D IBE coupling study.
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 4 Figure 4.37: V 3D X and V 3D Y estimated mean distribution in the radial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.

YFigure 4 .

 4 Figure 4.38: V 3D X and V 3D Y estimated mean distribution in the axial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.
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 4 Figure 4.39: P max lin , H max f and DN B min histograms for 3D IBE with ner thermal-hydraulic channels coupling study.

Figure 4 .

 4 Figure 4.40: P max lin and H max f Shapley indices for 3D IBE with ner thermal-hydraulic channels coupling study.

Figure 4 . 41 :

 441 Figure 4.41: DN B min Shapley indices for 3D IBE with ner thermal-hydraulic channels coupling study.
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 4 Figure 4.45: H 3D f estimated mean and relative standard deviation in the radial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.

Figure 4 .

 4 Figure 4.46: W 3D f estimated mean and relative standard deviation in the axial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.

Figure 4 .

 4 Figure 4.47: W 3D f estimated mean and relative standard deviation in the radial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.For H 3D gap two principal components are needed to represent 95 % of its variance. For each principal component a kriging model is trained on subprojection I 1 with prediction errors 0.07 % and 2.0 % for the rst and second one respectively.The estimated mean and standard deviation for the radial and axial cross-sections at the location and instant of the local maximum are presented in gures 4.48 -4.49. For the same reason as W 3D f the H gap distribution and its local maximum does not change in comparison with the previous studies. Neither the relative standard deviations or the estimated aggregated Shapley indices are signicantly impacted by the thermal-hydraulics discretization.
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 4 Figure 4.48: H 3Dgap estimated mean and relative standard deviation in the axial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.
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 4 Figure 4.49: H 3Dgap estimated mean and relative standard deviation in the radial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.
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 4 Figure 4.50: D 3Dw estimated mean and relative standard deviation in the axial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.
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 4 Figure 4.51: D 3Dw estimated mean and relative standard deviation in the radial cross-section for 3D IBE with ner thermal-hydraulic channels coupling study.
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 453 Figure 4.53: H gap model calibration methodology
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 1 Figure C.1: Criticality methods eect for the MiniCore
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 1 Figure D.1: Estimated histogram of P max lin for point kinetics study.
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 346 Figure E.3: P 3Dlin estimated mean and relative standard deviation in the axial cross-section at Y 1 for IBE coupling study in PWR core.
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 525274296 Figure E.19: W 3D f estimated mean and relative standard deviation in the axial cross-section at Y 3 for IBE coupling study in PWR core.
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 15 Figure F.1: P 3Dlin estimated mean and relative standard deviation in the axial cross-section at Y 1 for IBE with 3D and ner discretized thermal-hydraulic channels coupling study in PWR core.• Z1 cross-section

  Figure F.8: H 3D f estimated mean and relative standard deviation in the radial cross-section at Z1 for IBE with 3D and ner discretized thermal-hydraulic channels coupling study in PWR core.

  Figure F.13: W 3D f estimated mean and relative standard deviation in the axial cross-section at Y 1 for IBE with 3D and ner discretized thermal-hydraulic channels coupling study in PWR core.
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 225 Figure F.15: W 3D f estimated mean and relative standard deviation in the axial cross-section at Y 3 for IBE with 3D and ner discretized thermal-hydraulic channels coupling study in PWR core.
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 2022624 Figure F.20: H 3Dgap estimated mean and relative standard deviation in the radial cross-section at Z1 for IBE with 3D and ner discretized thermal-hydraulic channels coupling study in PWR core.
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 296 Figure F.29: D 3Dw estimated mean and relative standard deviation in the axial cross-section at Y 16 for IBE with 3D and ner discretized thermal-hydraulic channels coupling study in PWR core.

  Titre : D éveloppement d'une m éthodologie de Quantification d'Incertitudes pour une analyse Mutli-Physique Best Estimate et application sur un Accident d' Éjection de Grappe dans un R éacteur à Eau Pressuris ée Mots cl és : Quantification d'incertitudes, Couplage Multi-Physique, Éjection de Grappe (REA), Best Estimate Plus Uncertainty (BEPU) R ésum é : Durant les derni ères d écennies, l' évolution de la puissance de calcul a conduit au d éveloppement de codes de simulation en physique des r éacteurs de plus en plus pr édictifs pour la mod élisation du comportement d'un r éacteur nucl éaire en situation de fonctionnement normal et accidentel. Un cadre d'analyse d'incertitudes coh érent avec l'utilisation de mod élisations Best Estimate (BE) a ét é d évelopp é. On parle d'approche Best Estimate Plus Uncertainties (BEPU) et cette approche donne lieu à de nombreux travaux de R&D à l'international en simulation num érique. Dans cette th èse, on étudie la quantification d'incertitudes multi-physiques dans le cas d'un transitoire d' Éjection de Grappe de contr ôle (REA-Rod Ejection Accident) dans un R éacteur à Eau Pressuris ée (REP). La mod élisation BE actuellement disponible au CEA est r éalis ée en couplant les codes APOLLO3 R (netronique) et FLICA4 (thermohydraulique-thermique du combustible) dans l'environnement SALOME/CORPUS. Dans la premi ère partie de la th èse, on examine diff érents outils statistiques disponibles dans la litt érature scientifique dont la r éduction de dimension, l'analyse de sensibilit é globale, des mod èles de substitution et la construction de plans d'exp érience. On utilise ces outils pour d évelopper une m éthodologie de quantification d'incertitudes. Dans la deuxi ème partie de la th èse, on am éliore la mod élisation du comportement du combustible. Un couplage Best Effort pour la simulation d'un transitoire REA est disponible au CEA. Il comprend le code ALCYONE V1.4 qui permet une mod élisation fine du comportement thermom écanique du combustible. Cependant, l'utilisation d'une telle mod élisation conduit à une augmentation significative du temps de calcul ce qui rend actuellement difficile la r éalisation d'une analyse d'incertitudes. Pour cela, une m éthodologie de calibrage d'un mod èle analytique simplifi é pour le transfert de chaleur pastille-gaine bas é sur des calculs ALCYONE V1.4 d écoupl és a ét é d évelopp ée. Le mod èle calibr é est finalement int égr é dans la mod élisation BE pour am éliorer sa pr édictivit é. Ces deux m éthodologies sont maquett ées initialement sur un coeur de petite échelle repr ésentatif d'un REP puis appliqu ées sur un coeur REP à l' échelle 1 dans le cadre d'une analyse multi-physique d'un transitoire REA. Title : Development of an Uncertainty Quantification methodology for Multi-Physics Best Estimate analysis and application to the Rod Ejection Accident in a Pressurized Water Reactor Keywords : Uncertainty Quantification, Multi-Physics coupling, Rod Ejection Accident (REA), Best Estimate Plus Uncertainty (BEPU)

  

  2D lin relative standard deviation distribution for multi-physics BE coupling study in the MiniCore. . . . . . . . . . . . . . 3.28 P max lin , H max f and DN B min Shapley indices and P 2D lin aggregate Shapley indices for multi-physics BE coupling study in the MiniCore. . . . . . . . . . . . . . . . . . . . 3.29 Uncertainty Quantication Methodology scheme . . . . . . . . . . . . . . . . . . . 3.30 Gap heat transfer model calibration methodology scheme. . . . . . . . . . . . . . . 3.31 Selected representative quarter of assemblies for each H gap model group on the symmetric 1/4 MiniCore geometry of gure 3.1. . . . . . . . . . . . . . . . . . . . . 3.32 H gap model calibration errors for the MiniCore assembly groups at 0 GW d/t, 15 GW d/t and 30 GW d/t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.33 Maximum calibration error evolution with the calibration parameters for MiniCore 30GW d/t group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.34 MiniCore 0GW d/t group calibration results including the uncertainty bounds (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.35 MiniCore 15GW d/t group calibration results including the uncertainty bounds (green). 2D lin relative standard deviation distribution for IBE coupling study in the MiniCore. . . . . . . . . . . . . . . . . . . . . 3.38 P max lin , H max f and DN B min Shapley indices and P 2D lin aggregate Shapley indices for IBE coupling study in the MiniCore. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.39 H gap comparison for 15GW d/t burn-up fuel between IBE and Best Eort coupling. Three dierent samples are compared at the location of maximum H gap . . . . . . 3.40 H gap comparison for 30GW d/t burn-up fuel between IBE and Best Eort coupling. Three dierent samples are compared at the location of maximum H gap . . . . . . 4.1 PWR 1/8 core geometry and characteristic dimensions. B indicates assemblies with black control rods, G with grey control rods and N with no control rods. The ejected control rod location is highlighted with red borders. . . . . . . . . . . . . . . . . . 4.2 APOLLO3 R radial and axial discretization with

	. . . . .
	3.27 P max lin , H max

f and DN B min histograms and P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.36 MiniCore 30GW d/t group calibration results including the uncertainty bounds (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.37 P max lin , H max f and DN B min histograms and P

  . . . . . 4.13 H gap model calibration errors for the dierent assembly groups of the PWR core. 4.14 PWR core 15GW d/t group calibration results including the uncertainty bounds 2D lin relative standard deviation distribution for multi-physics IBE coupling study in PWR core. . . . . . . . . . . . . . . 4.18 P max lin , H max

(green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.15 PWR core 30GW d/t group calibration results including the uncertainty bounds (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.16 PWR core 45GW d/t group calibration results including the uncertainty bounds (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.17 P max lin , H max f and DN B min histograms and P

  .52 Uncertainty Quantication Methodology scheme . . . . . . . . . . . . . . . . . . . 4.53 H gap model calibration methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 4.54 Dierent levels of possible transient (blue) and uncertainty quantication (green) modeling with examples for neutronics. With red borders we highlight the levels used in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E.1 1/2 PWR geometry with highlighted (red borders) the locations for which we estimate the histograms of the dierent 3D outputs. . . . . . . . . . . . . . . . . . . . E.2 P 3D lin estimated histograms for IBE coupling study in PWR core. . . . . . . . . . . E.3 P 3D lin estimated mean and relative standard deviation in the axial cross-section at Y 1 for IBE coupling study in PWR core. . . . . . . . . . . . . . . . . . . . . . . . E.4 P 3D lin estimated mean and relative standard deviation in the radial cross-section at Z1 for IBE coupling study in PWR core. . . . . . . . . . . . . . . . . . . . . . . . E.5 P 3D lin estimated mean and relative standard deviation in the axial cross-section at Y 3 for IBE coupling study in PWR core. . . . . . . . . . . . . . . . . . . . . . . . E.6 P 3D lin estimated mean and relative standard deviation in the radial cross-section at Z15 for IBE coupling study in PWR core. . . . . . . . . . . . . . . . . . . . . . . E.7 P 3D lin estimated mean and relative standard deviation in the axial cross-section at Y 8 for IBE coupling study in PWR core. . . . . . . . . . . . . . . . . . . . . . . . E.8 P 3D lin estimated mean and relative standard deviation in the radial cross-section at Z30 for IBE coupling study in PWR core. . . . . . . . . . . . . . . . . . . . . . . E.9 H 3D f estimated histograms for IBE coupling study in PWR core. . . . . . . . . . . E.10 H 3D f estimated mean and relative standard deviation in the axial cross-section at Y 1 for IBE coupling study in PWR core. . . . . . . . . . . . . . . . . . . . . . . . E.11 H 3D f estimated mean and relative standard deviation in the radial cross-section at Z1 for IBE coupling study in PWR core. . . . . . . . . . . . . . . . . . . . . . . . E.12 H 3D

Table 1 .

 1 1: U-235 ssion reaction energy distribution in MeV

	Fission fragments	166
	Antineutrinos	10
	Prompt gamma photons	8
	Beta radiation (electrons) 7
	Delayed gamma photons	7
	Neutrons	5

Table 1

 1 

		.2: Comparison of dierent types of BEPU methodologies
	Inputs	Outputs	Code calculations Experimental data Implementation
	SPIU-SM pdf SPIU-WF pdf EOU none DUE covariance covariance pdf quantile standard deviation one many few two	no no yes potentially	easy easy medium dicult
	1.8.3 Sources of uncertainties	

  D best = D 0 , C best = φ p (D 0 ), T = T 0 : initialization of the best design, best criterion and temperature 2: for (i = 1, i ≤ N i , i + +) do 3:Create new design D i by elementary permutation and evaluate C i = φ p (D i ) Enhanced Stochastic Evolutionary algorithm (ESE): It is a stochastic optimization method sharing many similarities with SA[START_REF] Jin | An ecient algorithm for constructing optimal design of computer experiments[END_REF]. It consists of two nested iteration loops. In the inner one J LHS are created by random elementary permutations and among them the one with the minimum φ p is selected. The acceptance/rejection of the design is based on a temperature T parameter, similar to SA, where large values indicate more bad designs being accepted. At the end of each step of the inner iterations the acceptance ratio is calculated and the temperature is adjusted accordingly. If the ratio is smaller than a threshold (< 0.1) then the temperature is increased, otherwise is decreased. The pseudo algorithm of one possible implementation of this method for optimizing an initial design D 0 of size N in R

	4: 5:	a = min(exp( C best -Ci T Sample b from bernoulli distribution with parameter a ), 1)
	6:	if (b == 1) then
	7:	D best = D i and C best = C i
	8:	end if
	9:	T = cT
	10: end for

1:

• d with initial temperature T 0 , number of random LHS J and number of inner and outer iterations N o , N i is:

  Initialize α = 0.05, B bootstrap (with replacement) size and p = 0 2: Compute S i HSIC for (X i , Y ) 3: Realize B bootstrap (with replacement) samples Y b of Y 4: for (b = 1, b ≤ B, b + +) do If p < α the H 0 is rejected and the variable X i is considered important for Y2.7.6 Functional sensitivity indicesSo far the sensitivity indices were calculated for scalar outputs. In the case of functional ones Y ∈ R q dierent approaches have been proposed recently.2.7.6.1 ANOVA aggregated indicesANOVA indices decompose the variance of a scalar output on each input. For functional outputs PCA can be used to reduce the output's dimension to few scalar scores using equation 2.21. Based on a DOE surrogate models are used to approximate the underlying functions between the scalar PCA scores and the inputs. The surrogate models are used to perform the needed evaluations in order to estimate the Sobol or Shapley indices. An aggregate index is computed through equation 2.110 weighted by the scores variance representation

	5: 6: 7: end for Compute HSIC indice between X i and Y b : S i,b HSIC for (X i , Y b ) p = p + 1 B 1 S i,b HSIC > S i HSIC
	8:

1:

Table 3 .

 3 1: Characteristic conditions of the MiniCore initial state.

	Initial core power	P init core (W)	0.11
	Moderator density	D mod (g/cm 3 )	0.745
	Pressure	P (bar)	155

Table 3 .

 3 2: Characteristic quantities for the reference REA in the MiniCore.

	Eective delayed neutron fraction β eff (pcm)	569
		Control rod worth		ρ worth ($)	1.7
		Maximum core power		P max core	60Pnom
			Final core power		P end core	0.72Pnom
		Power pulse width		Γ (ms)	17
	Time of maximum core power	t max (ms)	160
	Maximum 3D deformation factor	F max xyz	4.1
		1.2e+10				
	P [W]	6.0e+09				
		0.0e+00	0.0 0.0	0.1 0.1	0.2 0.2	0.3 0.3	0.4 0.4
					t [s]	

Table 3 .

 3 3: Inputs and outputs uncertain quantities in neutronics , thermal-hydraulics and fuel thermal.

		Inputs (22 scalars)	
	TDg(2)	Disappearance cross-section of group g	NFg(2)	ν × fission cross-section of group g
	Dg(2)	Diusion coecient of group g	S 1→2	Scattering cross-section of group 1 to 2
	IVg(2)	Inverse velocity of group g	β eff	Eective delayed neutrons
	λ eff	Eective decay constant		
	λ f	Fuel thermal conductivity	λc	Cladding thermal conductivity
	Cp f	Fuel specic heat capacity	Cpc	Cladding specic heat capacity
	Hgap	Fuel-cladding gap heat transfer	T R	Rowland temperature
	Pr	Power radial prole		
	Hc	Convective heat transfer	R crit	Criterion for post-DNB heat transfer
	K v0	Recondensation	H dnb	Post-DNB heat transfer
		Outputs (3 scalars + 1 functional)
	P max lin	Local linear power (max in time)	P 2D lin (x, y)	Radial distribution of
	H max f	Fuel stored enthalpy (max in time)		linear power at the time and
	DNB min	Distance from R crit (min in time)		axial position of P max lin

Table 3 .

 3 4: Inputs uncertainty quantication results. TDg, NFg, Dg, S 1→2 , IVg, β eff , λ eff N (Σ CEA , C UAM )

	Neutronics		Fuel-thermomechanics
			λ f	N (1, 0.05)
	Thermal-hydraulics		λc	N (1, 0.05)
	Hc	N (1, 0.15)	Cp f	N (1, 0.015)
	R crit	N (1, 0.15)	Cpc	N (1, 0.015)
	K v0	N (1, 0.125)	Hgap	U (2000, 50000)

Table 3 .

 3 6: HSIC statistical signicance test results for neutronics stand-alone static study in the MiniCore.

Table 3 .

 3 Sobol and HSIC indices for P max lin are illustrated in gure 3.17. All the indices are similar for Γ. In gure 3.18 we present the aggregated Shapley indices for P 2D lin and P t lin . As in the static study we see that the Sobol indices are not well adapted for inputs with strong correlations. The β ef f and λ ef f are the dominant variables based on both HSIC and Shapley indices for P max lin ,

	7: Surrogate models interpolation and prediction errors for neutronics stand-alone REA
	study in the MiniCore.					
		Linear	Kriging	ANN
	P max lin	1.20	1.45	0.00	6.06e -2	2.80e -3	2.42e -1
	Γ	4.73	6.26	0.00	4.3	1.61e -2	1.60e +1
	P 2D lin,pc1	1.19	1.48	0.00	8.57e -2	3.35e -3	4.10e -1
	P 2D lin,pc2	5.96	5.93	0.00	9.39e -1	9.54e -3	1.37
	P t lin,pc1	4.43e -1	5.04e -1	0.00	3.70e -2	4.86e -3	3.52e -1
	P t lin,pc2	1.25	1.69	0.00	7.94e -1	2.13e -2	3.08
	P t lin,dt	2.13	2.37	0.00	4.28e -1	4.36e -3	1.14
	Brute Monte Carlo is used for uncertainty propagation with 1e 5 samples for each output. The
	obtained histograms for the scalar outputs and the relative standard deviations for the functional
	ones are presented in gures 3.15 -3.16. The P max lin	and Γ histograms show a non normal pdf. For
	the former one a comparison with a point kinetics analytical uncertainty analysis is performed in
	Appendix D. The relative standard deviation of P 2D lin does not vary radially while for P t lin strong
	variations occur mainly around the time of the power peak.		
	The Shapley, P 2D lin and P t lin .						

ε int (%) ε pred (%) ε int (%) ε pred (%) ε int (%) ε pred (%) Γ

Figure 3.15: P max lin and Γ histograms for neutronics stand-alone REA study in the MiniCore.

  1 NF 2 D 1 D 2 S 1→2 IV 1 IV 2 β eff λ eff

	P t lin Shapley
	0.8
	0.4
	0.0
	Figure 3.18: P 2D lin and P t lin aggregate Shapley indices for neutronics stand-alone REA study in the
	MiniCore.
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 3 8: HSIC statistical signicance test results for neutronics stand-alone REA study in the MiniCore.

  gap is the only dominant parameter due to its large range of variation. Additionally, we observe that the distance to boiling crisis shows variation of 77% with very small probability around 0.002% of reaching it (DN B min < 0).

		H max f					DN B min
	1.55e+05	µ = 1.61e+05 [J/Kg] σ = 3.45 % 1.65e+05 1.75e+05		0	2	µ = 1.88 σ = 76.85 % 4 6	8
		50e +1	2.74e +1	0.00	4.38e -2	3.30e -3	7.12e +1
	DNB min	3.95e +1	4.02e +1	0.00	1.27e -1	2.87e -2	6.93e +1

Brute Monte Carlo is used for uncertainty propagation with 1e 5 samples for each output. The obtained histograms are drawn in gure 3.19. The sensitivity indices are similar for both outputs and are shown in in gure 3.20. A rst observation is the agreement between Shapley and Sobol indices in the case of independent inputs. It is clear that H

Table 3 .

 3 10: HSIC statistical signicance test results for thermal-hydraulics stand-alone study in the MiniCore.

Table 3 .

 3 11: Surrogate models interpolation and prediction errors for fuel-thermomechanics standalone study in the MiniCore.

1 :

 1 Code evaluations on initial random DOE. 2: HSIC signicance test → initial important subspace S d0 and X d0 ∈ R d0 3: Compute LOO for Kr(X d0 , Y ), set Sr0 as the rejected inputs subspace of dimension r0 = d -d0 and

	S d1 = S d0 4: while User decision based on error evolution do 5: for (i = 1, i ≤ r0, i + +) do
	6: 7:	Compute i LOO for Kr(X d1 ∪ X i r0 , Y ) end for
	8:	Selection of X i r0 and its corresponding index S i r0 with minimum i LOO
	9: 10: end while Update S d1 = S d1 ∪ S i r0

11: Set S d2 = S d1 , update LOO for Kr(X d1 , Y ) and dene error threshold δ 12: for (i = 1, i ≤ d2, i + +) do 13:

Compute i LOO for Kr(X d2,i , Y ) with X d2,i the inputs corresponding to S d2,i = S d2 \ S i d2 14:

if ( i LOO -LOO < δ ) then 15:

S d2 = S d2,i 16:

Table 3 .

 3 13: Input dimension reduction method result on Morris function

Table 3 .

 3 15: Kriging model interpolation, leave-one-out and prediction errors for multi-physics BE coupling study in the MiniCore.

			Kriging	
		ε int (%)	ε loo (%)	ε pred (%)
	P max lin	0.00	8.21e -2	1.07e -1
	P 2D lin,pc1	0.00	8.2557e -2	1.11e -1
	P 2D lin,pc2	0.00	5.79e -1	5.92e -1
	H max f	0.00	1.436e -1	1.61e -1
	DNB min	0.00	1.82	1.46

  1 NF 2 D 1 S 1→2 β eff Cp f H gap T R 2D lin aggregate Shapley indices for multi-physics BE coupling study in the MiniCore.

	P 2D lin
	0.8
	0.4
	0.0
	Figure 3.28: P max lin , H max

f and DN B min Shapley indices and P

  3.6.3 Development of gap heat transfer calibration methodologyHaving dened the simplied H gap model the next step is to calibrate it. A calibration methodology was developed in this thesis illustrated in gure 3.30.

	0. APOLLO3-FLICA4		
	UQM with uniform Hgap		
	1.2 Statistical and spatial selection Mean, 2.5% quantile and 97.5% quantile for representative assemblies of each group	1.1 Assembly BU grouping One Hgap model for each group
	Data extraction Axial linear power and cladding wall temperature		2. ALCYONE1 REA transient
			Data extraction
			Initial conditions, temperatures
			and Hgap evolutions
	3.1 Hgap model calibration Mean square error minimization for maximum and final Hgap	3.2 Hgap model uncertainty Calibration parameters and initial conditions	4. APOLLO3-FLICA4 UQM with Hgap model

Table 3 .

 3 [START_REF] Koning | Status of the JEFF Nuclear Data Library[END_REF]: MiniCore H gap model calibration parameters estimation

	0	15	30

Table 3 .

 3 [START_REF] Schneider | APOLLO3 R : CEA/DEN deterministic multi-purpose code for reactor physics analysis[END_REF]: UQM step2 results for IBE coupling study in the MiniCore.

	P max lin	0.00	1.15e -1	9.98e -2
	P 2D lin,pc1	0.00	1.16 -1	1.01e -1
	P 2D lin,pc2			

int (%)

loo (%) pred (%)

  1 NF 2 D 1 S 1→2 β eff Cp f H g,i T R

	P 2D
	0.8
	0.4
	0.0

lin Figure 3.38: P max lin , H max f and DN B min Shapley indices and P 2D lin aggregate Shapley indices for IBE coupling study in the MiniCore.

  Figure 3.39: H gap comparison for 15GW d/t burn-up fuel between IBE and Best Eort coupling. Three dierent samples are compared at the location of maximum H gap . Figure 3.40: H gap comparison for 30GW d/t burn-up fuel between IBE and Best Eort coupling. Three dierent samples are compared at the location of maximum H gap .
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Table 4 .

 4 1: Characteristic conditions of the PWR core initial state.

	Initial core power	P init core (W)	3.8
	Moderator density	D mod (g/cm 3 )	0.745
	Pressure	P (bar)	155

Table 4 .

 4 2: Characteristic quantities for the reference REA in the PWR core.

	Eective delayed neutron fraction β eff (pcm)	569
	Control rod worth	ρ worth ($)	1.2
	Maximum core power	P max core	2.54Pnom
	Final core power	P end core	0.09Pnom
	Power pulse width	Γ (ms)	38
	Time of maximum core power	t max (ms)	292

Table 4 .

 4 4: UQM step 1 results for BE coupling study in the PWR core.

Table 4 .

 4 5: UQM step 2 results for BE coupling study in the PWR core.

		int (%)	loo (%)	pred (%)
	P max lin	0.00	1.15e -1	1.35e -1
	P 2D lin,pc1	0.00	1.16 -1	1.01e -1
	P 2D lin,pc2	0.00	6.16e -1	5.53
	H max f	0.00	1.62e -1	4.58e -1
	DNB min	0.00	2.10	1.89

  1 IV 2 β eff λ f Cp f H gap T R

		P 2D lin
		0.8
		0.4
		0.0
	Figure 4.11: P max lin , H max f	and DN B min Shapley indices and P 2D lin aggregate Shapley indices for
	BE coupling study in the PWR core.

Table 4 .

 4 7: H gap model calibration parameters pdf estimation for the PWR core

	10	15	30	45	52
	θ1				

  4 calculation and are illustrated in gures 4.14-4.16. For the comparison the axial slice with the maximum H gap value for the three main groups is presented. The main groups are the 15GW d/t, 30GW d/t and 45GW d/t since they are the groups closer to the REA location. The plotted H gap predictions are also the ones with the largest errors and we can see that, as in the MiniCore, for all the predictions the ALCYONE V1.4 calculation is inside the uncertainty bounds created by the uncertain calibration parameters.
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Table 4 .

 4 9: UQM step2 results for IBE on PWR core

		int (%)	loo (%)	pred (%)
	P max lin	0.00	4.921.15e -1	4.82e -1
	P 2D lin,pc1	0.00	16.1 -1	1.01e -1
	P 2D lin,pc2	0.00	6.16e -1	5.53
	H max f	0.00	8.45e -1	8.36e -1
	DNB min	0.00	1.38	1.28

  R v0 , H dnb .

	lin , H max f • Outputs: P max (95%).	, DN B min , P 3D lin (95%), H 3D f	(95%), W 3D f	(85%), H 3D gap (95%), D 3D w
	• Statistical tools:			
	Surrogate models: Kriging.		
	Uncertainty propagation: Brute Monte Carlo method using kriging surrogate models
	for histogram empirical estimation.		

Table D

 D 

.1: Point kinetic model parameters values.

  4.2.1. For β ef f a normal distribution is used with mean and standard deviation as in the inputs uncertainty quantication of table 3.4. For θ d a normal law is used with the relative standard deviation of [143]. The uncertainty quantication is summarized in table D.2. Table D.2: Point kinetic model parameters uncertainty quantication. The results of applying all the uncertain parameters is presented in gure D.1, where we can see the estimated histogram. It is quite close to the 3D APOLLO3 R study indicating the persistence of the point kinetics concerning the P max

	ρ worth (pcm)	N (970, 13.58)
	β ef f (pcm)		N (970, 43.89)
	θ d (MJ -1 )	N (2.56e -6 , 1.28e -7 )
	lin	calculation.	
	2e+06	4e+06	6e+06	8e+06
	µ = 4.05e+06 [W/m] σ = 23.71 %

  Table D.3: Point kinetic uncertainty analysis results.

		23.7
	A2	23.2
	A3	8.2
	A4	22.9
	A5	6.4
	A6	22.3
	A7	5.0

For U-235 nucleus.

From french "pour cent mille".

Created with SCALE using ENDF-VII library.

It has to be performed for each dierent reactor modeling

Megawatt days per ton of fuel nuclei.

Phenomena Identication and Ranking Table it is an approach applied to dierent safety scenario. The most important phenomena are identied together with their degree of knowledge or uncertainty.

It is the Best Linear Unbiased Predictor

Plugin method

Standardized in the sense that from the variables the mean is extracted and the standard deviation is divided in order to render them standard normal.

Dened as the total cross-section minus the self-scattering
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Code Code Y scalar 3.1 Brute Force Monte Caro using Code Code Y scalar 3.1 Brute Force Monte Caro using

In step 2 the extracted boundary conditions are imposed in ALCYONE V1. 4 and the REA standalone calculations are performed for each group. A representative fuel pin for each selected assembly in each sampling is modeled with the same axial discretization as the BE modeling. The H gap and radial temperatures axial and temporal evolution during the REA are computed. These results together with the stored fuel energy are extracted and used for the H gap model calibration of each group. Only the values corresponding to the time of the maximum and last value of H gap during the REA for all the axial slices are kept for the calibration as in the MiniCore. The created dataset size varies for the dierent groups depending on the number of representative assemblies. For 10GW d/t and 52GW d/t groups the size is: 30(axial slices) × 3(samples) × 1 (assemblies) × 2 (Hgap values) = 180. For 15GW d/t and 30GW d/t groups the size is: 30 × 3 × 2 × 2 = 360. For 45GW d/t group the size is: 30 × 3 × 3 × 2 = 540. The calibration parameters are optimized by minimizing the mean square error on these datasets. The resulting calibration errors for the three dierent models are presented in gure 4.13 and the estimated calibration parameters in table 4.6.

As in the MiniCore, we observe that the calibration errors increase in general with burn-up. For the 52GW d/t this is not the case because its far from the REA location and thus the corresponding variations are very small. θ1 2.9e -1 1.7e -1 -1.7e -2 -7.3e -1 -2.4e -1 θ2 [J -1 ] 6.0e -6 1.1e -5 1.6e -5 2.0e -5 4.4e -6 For the uncertainty quantication of the calibration parameters θ 1 , θ 2 we adopt the same process as for the MiniCore in Section 3.6.4. We make the assumption that they are positively fully correlated, which makes it possible to simplify signicantly their uncertainty quantication. Additionally, as for all the other inputs they are also fully correlated spatially. This means that the calibration In this study the IBE APOLLO3 R -FLICA4 -HGAP coupling is used with multi-1D thermalhydraulics modeling and one thermal-hydraulic channel per assembly. It is the same modeling used for the application of UQM in Section 4.5. Since the UQM outputs were presented there in this study we present only the identied 3D output elds. We remind the selected modeling options of this study:

• APOLLO3 R : Two group diusion with void boundary conditions. The discretization radially is 4 meshes per assembly and axially 34 meshes of which 30 for the fuel active height.

• FLICA4: 4 equation porous modeling with multi-1D axial ow. There are no transverse ows and only the fuel active part is considered. The discretization radially is one thermalhydraulic channel per assembly and axially is 30 meshes corresponding to the fuel active height.

• H gap : 5 simplied models calibrated on decoupled ALCYONE V1.4 calculations. Dierent initial conditions are used for the dierent types of assemblies creating a similar spatial mesh with FLICA4.

For P 3D lin two principal components are needed to represent 95 % of its variance. For each principal component a kriging model is trained on subspace I 1 with prediction errors 0.5 % and 0.9 % for the rst and second one respectively. The estimated mean and standard deviation for the radial and axial cross-sections at the location and instant of the local maximum are presented in gures 4.19 -4.20. We can see that we manage to obtain similar radial distribution as in Section 4.6 where we treated only the radial cross-section as functional output. The REA is very local both axially and radially explaining the large F xyz deformation factor. The local maximum is located in the assembly where the control rod is ejected at one axial slice from the top. Usually for REA occurring in the periphery of the core the local maximum linear power is expected in the assembly between the reector and the assembly with the control rod. This is not the case here due to the large thermal-hydraulic channels and the important gradient close to the REA position. In the last study we will investigate the impact of using smaller thermal-hydraulic channels. The relative standard deviation does not vary signicantly and is in the order of 58 %. A small impact of the reector can be observed in increasing slightly the uncertainty on the peripheral assemblies. The results show a shift of the local maximum value radially towards the assembly between the reector and the assembly with the ejected control rod as expected by the REA physics. There is also an axial shift of one axial slice lower than the previous studies. We observe the large gradient in the proximity of the REA location leading to a higher maximum linear power in FLICA4. The relative standard deviations are not impacted by the thermal-hydraulics discretization. The aggregate Shapley indices for P 3D lin are not impacted by the thermal-hydraulics discretization with β ef f explaining 50 % of the variance while the remaining 50 % is explained by T D 1 and D 1 .

For H 3D f two principal components are needed to represent 95 % of its variance. For each principal component a kriging model is trained on subprojection I 1 with prediction errors 0.8 % and 0.7 % for the rst and second one respectively. The estimated mean and standard deviation for the radial and axial cross-sections at the location and instant of the local maximum are presented in gures 4. 44 -4.45. The local maximum follows the P 3D lin and is shifted both axially and radially for the same reason. Neither the relative standard deviations or the estimated aggregated Shapley indices are impacted by the thermal-hydraulics discretization. • The M3 compared to M2 reduces even further the mean value of DN B min due to the increased P max lin seen by FLICA4. This leads to higher heat ux to be extracted by the coolant that reduces DN B min . We can conclude that M3 is more penalizing concerning P max lin and DN B min and thus should denitely be used for safety analysis in comparison to M1 and M2. However, this comes at a four times more computational cost that renders dicult the uncertainty analysis. If we are mainly interested in sensitivities studies the model M2 is preferred since it is a good compromise in computational cost between M1 and M3.

Perspectives

The work done in this thesis can be seen as a rst approach on a very complex problem. We remind its position in the identied transient and uncertainty quantication modeling evolution of gure 4.54. In this gure the example of the neutronic modeling is used. The developed methodologies for both uncertainty quantication and H gap model calibration leave room for many improvements. The improvements can be inside the current modeling level or towards higher ones.

Transient modeling

Uncertainties quantification modeling

Point kinetics with uncertainties on the core effective quantities (control rod worth, Doppler coefficient, etc.).

(1, 2) Assembly level of homogenization with uncertainties on macroscopic crosssection applied homogeneously in the whole core.

(1, 3) Pin by Pin level of homogenization with uncertainties on macroscopic crosssection applied homogeneously in the whole core.

(2, 2) Assembly level of homogenization with uncertainties on macroscopic crosssection taking into account spatial correlations.

(2, 3) Pin by Pin level of homogenization with uncertainties on macroscopic crosssection taking into account spatial correlations.

(3, 3) Pin by Pin level of homogenization with uncertainties on microscopic crosssections. At the current (1,2) level, where we have an assembly level of homogenization for the REA and we apply the uncertainties homogeneously on the whole core, some interesting perspectives are identied :

• Extension of the UQM to include treatment of discontinuities. An example can be the post-DNB conditions.

Appendix A

Multi-parametric two group cross-sections

For the dierent studies in this thesis the two group macroscopic cross-sections of [START_REF] Targa | Development of multi-physics and multi-scale Best Eort Modelling of pressurized water reactor under accidental situations[END_REF] are used.

They are calculated at dierent core conditions and stored in multi-parametric tabulations. These tabulations of the cross-sections were created with APOLLO2 lattice calculations. The parameters of the tabulation are the burn-up BU , boron concentration C bor , the fuel temperature T f , the moderator density D mod and the control rod presence CR. --

--

In transient calculations the core conditions change and the cross-sections are linearly interpolated from their multi-parametric tabulation. For the CR parameter there are four dierent values indicating: the absence of control rod or the presence one out of three dierent types of control rods. The dierent types are based on their neutrons absorption capabilities. In each assembly the cross-sections represent a macro-isotope resulting from the homogenization of the dierent isotopes in the fuel assembly at Step 2 of the neutronic deterministic method presented in gure 1.7. However, some isotopes are not lumped in the macro-isotope and are treated separately. This usually is done for some isotopes with particular functionality like the poison isotopes. In this thesis the main isotopes are: Xe -135, I -135, N d -147, P m -147, P m -148, P m -149, Sm -149, B -10 and B -11. Each individual isotope is described by its concentration and its microscopic cross-section. This allows the reconstruction of the nal two group macroscopic cross-section including these isotopes.

Appendix B

Input uncertainty quantication

For the Uncertainty Quantication Methodology (UQM) development and application we identied 22 uncertain inputs spanning neutronics, fuel-thermomechanics and thermal-hydraulics. The inputs uncertainty quantication is based on a mixture of expert judgment and previous uncertainty propagation results.

In neutronics we have 11 inputs:

For their uncertainty quantication multivariate normal distribution is considered N (Σ CEA , C UAM ) with mean vector Σ CEA the reference two group macroscopic cross-sections generated using AP OLLO2 and covariance matrix C UAM estimated using data from UAM benchmark. The data from UAM are in the form of 100 cross-section evaluations. In order to apply these uncertainties on our reference cross-sections we estimate the relative standard deviation and the correlation matrix from UAM data. The provided cross-sections are:

. We see that the absorption cross-section A 1 and A 2 are provided instead of the total cross-sections T 1 and T 2 used by APOLLO3 R . We can write the total cross-sections as:

Where:

N exc1 and N exc2 are the n -2n, n -3n . . . cross-sections producing more than one neutron for the two groups.

S 1→1 and S 2→2 are the self-scattering cross-sections.

We dene the disappearance cross-sections as T D 1 = T 1 -S 1→1 and T D 2 = T 2 -S 2→2 and re-write the previous equations as:

By neglecting the uncertainties on the up-scattering cross-section S 2→1 and the n -2n, n -3n . . . cross-sections then the T D 1 and T D 2 from UAM can be calculated. Then the correlation matrix R UAM and the relative standard deviation vector Sr UAM are estimated empirically. By multiplying the Sr UAM with the reference values Σ CEA we obtain the standard deviation vector S UAM .

Finally the covariance matrix for our reference cross-sections is calculated by:

For simplifying the neutronic input uncertainty quantication they are considered fully positively correlated in all the spatial meshes and for all the multi-parametric points.

Appendix C

Criticality method impact on sensitivity

The core prior to the REA is at critical state, meaning that for each perturbation of cross-sections the core has to be rendered critical. The method used to achieve this can aect the uncertainty analysis of the transient. In this study we investigate the criticality method impact on APOLLO3 R static stand-alone calculations. Three dierent methods are tested in order to identify the most suitable:

1. Fission rate adjustment: the k eff is computed and the ssion rate is normalized by this value, establishing the balance between production and absorption.

2. Boron adjustment: The boron absorbs neutrons and by modifying its concentration in the whole core criticality can be achieved.

Leakage adjustment:

The leakage of neutrons is adjusted by modifying the reector's diusion coecient of fast neutrons.

Each method alters the neutron spectrum and the leakage at the reector-fuel interface. The eect on those quantities is estimated by the average ux ratio of fast and thermal neutrons ( φ1 φ2 ) for the rst and by the average of the albedo on the reector-fuel surface (a) for the second. Besides that, criticality method's eect on the neutron spectrum and the albedo should not vary signicantly with the core's size in order to be applicable to larger scale cores. The original MiniCore geometry and two larger cores by adding 1 and 2 fuel rings respectively were studied. For each geometry the neutron spectrum and albedo were estimated at the reference and ±2σ of their k eff pdf. In Section 3.4.2.1 we saw that k eff has a standard deviation of 550 pcm.

The criticality methods have eects that may vary with the core geometry. We show such variations in gures C.1 -C.3. The rst observation is that the leakage adjustment is the only method that varies with geometry passing from 5% eect on albedo to 80% and thus is rejected. The other two methods are not impacted signicantly but it should be noted that as expected the boron concentration adjustment alters the neutron spectrum due to the increase of epithermal neutrons absorption, impacting the S 1→2 cross-section.

Criticality methods have an impact on two quantities directly linked to REA: control rod worth ρ worth and 3D deformation factor F xyz ext with the control extracted. For the two remaining methods their impact on the sensitivity analysis is studied. The results for F xyz ext do not show any eect of the methods. However, the results on ρ worth vary signicantly as shown in gure C.4. The Shapley indices of N F 1 and N F 2 are strongly reduced in ssion adjustment. This indicates that the criticality method selection has an important eect on the static analysis sensitivity.

Boron concentration adjustment is selected for the transient analysis, because it is applicable on larger cores and it is a more realistic method from the reactor operation point of view.

In [START_REF] Delipei | Multi-physics uncertainty propagation in a PWR rod ejection accident modeling-Analysis methodology and rst results[END_REF] a sensitivity analysis was carried out for REA transient APOLLO3 R stand-alone modeling. As uncertain inputs the two group macroscopic cross-sections together with an additional Appendix E

Complementary results for PWR IBE coupling

In Section 4.7.2 we presented uncertainty quantication results for the Improved Best Estimate (IBE) modeling. We focused on the analysis of 3D elds for the following identied outputs of interest:

• Linear power P 3D lin at the instance of its local maximum. • Stored enthalpy in the fuel H 3D f at the instance of its local maximum.

• Cladding wall heat ux W 3D f at the instance of its local maximum.

• Gap heat transfer H 3D

gap at the instance of its local maximum.

• Coolant density D 3D

w at the instance of its local minimum. The 3D elds are dicult to visualize and for this reason in Section 4.7.2 two cross-sections were presented for each output: the radial and axial cross-sections at the position of the local maximum (or minimum). For these cross-section the mean and relative standard deviation distributions were estimate. In this Section we present a larger variety of results. For each functional 3D output we illustrate the histograms for the highlighted part of gure E.1 at the axial slice of the P max lin . This part corresponds to the 1/8 of the PWR core and includes the assembly with the ejected control rod. minimum value at the top axial slice. We see that the D 3D w behavior follows the P 3D lin . This is due to the fact that the coolant heating by gamma deposition is stronger than by the heat ux reaching the cladding external surface. In the location of higher P 3D lin the density decreases faster. The relative standard deviation is very small for all the cross-sections.

Appendix F

Complementary results for PWR IBE coupling with 3D thermal-hydraulic ner discretized channels In Section 4.7.4 we presented uncertainty quantication results for the Improved Best Estimate (IBE) modeling with 3D ows and ner thermal-hydraulics channels. We focused on the analysis of 3D elds for the following identied outputs of interest:

• Linear power P 3D lin at the instance of its local maximum. • Stored enthalpy in the fuel H 3D f at the instance of its local maximum.

• Cladding wall heat ux W 3D f at the instance of its local maximum.

• Gap heat transfer H 3D

gap at the instance of its local maximum.

• Coolant density D 3D w at the instance of its local minimum.

The 3D elds are dicult to visualize and for this reason in Section 4.7.4 two cross-sections were presented for each output: the radial and axial cross-sections at the position of the local maximum (or minimum). For these cross-section the mean and relative standard deviation distributions were calculated for these cross-sections. In this Section we present a larger variety of results. For each functional 3D output we provide the result for the mean and standard deviation distributions at 6 dierent cross-sections. Axially we focus on three cross-sections along the Y axis similar to the locations presented in gure E.1. The only dierence is that now we have four channels for each assembly. Two cross-section around the location of the maximum linear power (Y 2) at Y 1 and Y 3 and one cross-section at the center of the core (Y 16). Radially we focus on three cross-sections along the Z axis at the bottom (Z1), middle (Z15) and top (Z30) axial slices. First we present all the results and afterwards at the end we analyze them. w estimated mean and relative standard deviation in the radial cross-section at Z15 for IBE with 3D and ner discretized thermal-hydraulic channels coupling study in PWR core.

Results for P 3D