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Introduction

The conceptual evolution of nuclear reactors for power generation is fundamentally linked with
safety preservation of individuals, society and environment. The main safety objectives is to
ensure that the radiological exposure during normal operation is as low as reasonably achievable
(ALARA concept) and is mitigated in case of accidents. The basic principle for attaining this
objective is the defense in depth, where di�erent levels of protection are introduced including
successive safety barriers. The integrity of the barriers is ensured by some safety criteria based on
physical quantities.

Since severe accidents cannot be reproduced in a reactor, numerical codes are used to model
the main underlying physical phenomena with reasonable approximations and hypothesis. The
computational advancements of the last decades lead to the development of modelings that take
into account the most important phenomena improving the understanding of the underlying physics
and increasing the precision of their predictions. These modelings and the associated numerical
codes are called Best-Estimate (BE) and are used in industrial applications since they have an
a�ordable computational cost.

While the precision of the results improve there are still many approximations and hypothesis in the
calculations that induce errors in forms of bias and variance. It became thus obvious that in order to
be con�dent about the safety analyses these errors or uncertainties must be treated in a consistent
framework with BE modeling. This framework is called Best Estimate Plus Uncertainties (BEPU)
and is currently a �eld of increasing research internationally. While this concept was initially used
for thermal-hydraulics safety calculations of LOCA transients it is being expanded in a broader
spectrum of physics and for di�erent reactor conditions. The Rod Ejection Accident (REA) in
Pressurized Water Reactors (PWR) is a design basis multi-physics transient for which a BEPU is
carried out in this thesis.

REA transients occur in a PWR reactor when a control rod is violently ejected from the core due to
mechanical malfunction. This inserts positive reactivity in the core and the power starts increasing
followed by a fuel temperature increase. This leads to a Doppler negative feedback that creates
a power peak. The power then continues to decrease and when the heat generated in the core
reaches the coolant a second negative feedback from the moderator is added reducing even further
the power. During the whole duration of the REA there is the possibility to loose the �rst safety
barrier (cladding). It is evident that a multi-physics coupling of BE codes is necessary in order to
capture correctly the strong interactions between neutronics, fuel-thermomechanics and thermal-
hydraulics. In order to ensure the safety of the reactor during a REA an uncertainty analysis must
be performed focusing on quantities of interest for the safety such as: the fuel temperature, stored
enthalpy in the fuel, cladding temperature and Departure from Nucleate Boiling Ratio (DNBR).
Many sources of uncertainties are identi�ed in a REA uncertainty analysis. The main ones can be
grouped in the following categories :

� Modeling : The theoretical equations describing a phenomenon include some assumptions
and simpli�cations. Besides that, the use of physical models and correlations induce further
errors.

� Input data : Physical (e.g. cross-sections) and technological ( e.g. geometries) quantities in
the physical models and equations are uncertain. Additionally, boundary and initial condi-
tions are also uncertain. Experimental measurements are usually used to quantify the above
mentioned sources of uncertainties introducing potential correlations.
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� Nodalization : It involves the di�erent steps for solving a speci�ed modeling introducing
errors and uncertainties. The phase space of the equations is discretized and the geometry
is homogenized. Sometimes a smaller scale geometry is employed inducing scaling e�ects.
Numerical algorithms are used to solve the equations on the selected discretization. These
algorithms converge to approximate solutions.

Challenges and objectives

In this thesis we study the multi-physics uncertainty analysis for REA in a PWR core. The BE
modeling available in CEA is used with a coupling of APOLLO3 R© (neutronics) and FLICA4
(thermal-hydraulics).

The main objective is to develop an uncertainty quanti�cation methodology for the multi-physics
BE modeling of REA. Each coupled physic includes various uncertain inputs and thus the inputs
dimension can be potentially very large and with dependencies. Additionally, di�erent outputs of
interest must be considered with also potential large dimension (e.g. functional 2D �elds) and non-
linear behaviors. This creates many challenges accentuated by the fact that the computational cost
for a multi-physics BE modeling limits the number of possible code evaluations. A lot of progress
has been made so far in the statistical analysis for these kind of problems with application in a
variety of �elds including dimension reduction, global sensitivity analysis, surrogate modeling and
many others.

We select to model di�erent uncertain inputs spanning neutronics, fuel-thermomechanics and
thermal-hydraulics. The uncertainty quanti�cation methodology that we will develop must in-
clude at least the following steps :

• Input - Output Identi�cation.

• Input Uncertainty Quanti�cation.

• Uncertainty Propagation.

• Global Sensitivity Analysis.

A second objective of the thesis is to improve the BE modeling in terms of its uncertainty rep-
resentation. A Best E�ort coupling scheme for REA analysis is available at CEA. This includes
ALCYONE V1.4 code for a detailed modeling of fuel-thermomechanics behavior. However, it has
a very high computational cost and its use in uncertainty quanti�cation for REA is prohibitive.
One of the main REA modeling di�erences between BE and Best E�ort coupling is the treatment
of the gap heat transfer Hgap. In FLICA4 a constant value is used as an input of the code while in
ALCYONE V1.4 is calculated taking into account the fuel-cladding gap behavior. For improving
the BE modeling a methodology for calibrating a simpli�ed analytic Hgap model using decoupled
ALCYONE V1.4 REA calculations is developed.

Thesis structure

The thesis is divided in 4 Chapters. In Chapter 1 an overview of nuclear reactor physics is provided.
Neutronics, fuel-thermomechanics and thermal-hydraulics are discussed from basic notions for each
one of them to their modeling options used in the thesis context. An emphasis is given on REA
and its di�erent multi-physics aspects. The coupling framework developed at CEA is presented
and the two available BE and Best E�ort coupling schemes are presented. The Chapter ends with
details about BEPU historical evolution, including the di�erent developed methodologies.

In Chapter 2 an overview of the state of the art of statistical tools used for uncertainty analysis is
provided. This Chapter covers a large variety of topics :

• Input Uncertainty Quanti�cation.

• Uncertainty Propagation.
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• Dimension Reduction.

• Surrogate models.

• Design of Experiments.

• Sensitivity Analysis.

• Model Calibration.

The Chapter ends with some recent works in uncertainty analysis and the use of the di�erent
methods in nuclear application.

In Chapter 3 we develop the Uncertainty Quanti�cation Methodology (UQM) on a small scale
core (MiniCore) representative of a PWR core. This core cannot allow physical conclusions but it
can be used for testing and evaluating the di�erent statistical tools in an environment relatively
close to a PWR core. Various modelings are considered starting from separate stand-alone studies
in neutronics, thermal-hydraulics and fuel-thermomechanics up to the BE coupling. We use the
MiniCore for the development of the Hgap model calibration methodology. The Hgap model is
then introduced in the BE modeling. The UQM is tested on this Improved Best Estimate (IBE)
modeling. The Chapter ends with comparisons between the Best E�ort and the IBE modelings for
the predicted Hgap evolution during the REA.

In Chapter 4 we apply the two methodologies developed in Chapter 3 in a large scale PWR core.
First, the UQM is applied for the BE modeling. Second, the Hgap model calibration methodology
is applied and the resulting Hgap models are used to establish the IBE modeling. The results of
the two methodologies are analyzed and physical conclusions are drawn. The UQM is then applied
on the IBE modeling. The Chapter ends with some complementary studies concerning the IBE
thermal-hydraulics modeling options in an uncertainty analysis context. The impact on a large
variety of outputs up to functional 3D �elds is investigated.

Finally, the thesis ends with some general conclusions together with some interesting perspectives
for future works.
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Chapter 1

Context of the thesis
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1.1 Introduction

The main objective of the thesis is to develop and apply an Uncertainty Quanti�cation Methodol-
ogy (UQM) for multi-physics coupling modeling of a Rod Ejection Accident(REA) in a Pressurized
Water Reactor (PWR). The REA involves a strong interaction between three di�erent disciplines
or 'physics': neutronics, fuel-thermomechanics and thermal-hydraulics. The computational ad-
vancements of last decades lead to the development of Best Estimate (BE) codes that take into
account the most important phenomena of the underlying physics with a reasonable precision.

The REA occurs in a PWR reactor when a control rod is violently ejected from the core due to
mechanical malfunction. A power pulse is created and depending on the core initial conditions
it can be very violent and it can damage the reactor. The power initially increases followed
by a fuel temperature increase in the core. This creates a negative Doppler feedback and the
corresponding power peak. The power then decreases something accentuated by a second negative
feedback due to the coolant (water). This happens at a latter stage of the transient when the
heat produced in the fuel reaches the coolant increasing its temperature and reducing its density.
After around 1-2 seconds the SCRAM1 safety mechanism injects all the control rods in the core
ending the transient. During the whole duration of the REA there is the possibility to loose the �rst
safety barrier (cladding). The correct modeling of these di�erent phenomena and their interactions
necessitate the multi-physics coupling of neutronics, fuel-thermomechanics and thermal-hydraulics
BE codes. This increases the computational cost and creates many challenges for the uncertainty
quanti�cation.

In this Chapter we present the context surrounding the thesis. We start by giving some basic
insights about PWR nuclear reactors design in Section 1.2. We describe how PWR function
and their main components. Since we study the REA it is important to �rst introduce the related
physics. In Sections 1.3 - 1.5 we detail the neutronics, fuel-thermomechanics and thermal-hydraulics
modeling. For all the physics we adopt the same structure:

1. De�nition of some basic notions.

2. Description of the theoretical equations.

3. Details about the modeling of the equations.

4. Presentation of the BE codes used to model the equations: APOLLO3 R© (neutronics),
ALCYONE V1.4 (fuel-thermomechanics) and FLICA4 (thermal-hydraulics).

In Section 1.7 we combine the presented elements so far to detail the REA with its di�erent multi-
physics aspects. In Section 1.7 we discuss the coupling framework used in this thesis to model the
REA. In Section 1.8 we take a step back and give an overview of the general Best Estimate Plus
Uncertainty (BEPU) framework introducing the aspect of uncertainty quanti�cation. Finally, in
Section 1.9 we highlight the main motivations and challenges of this thesis.

1.2 PWR nuclear reactors design

Nuclear reactors are systems in which nuclear �ssion chain reactions are controlled and sustained.
Their applications vary a lot, from submarines propulsion to medical isotopes production but
their main application is for energy production in installations called nuclear power plants. The
nuclear power plants are similar to conventional power plants where a heat source vaporizes water.
The vapor feeds the turbine connected with the generator and electricity is produced. The main
di�erence is that the heat source is provided by �ssion nuclear chain reactions. Fission is an
exothermic reaction occurring when an atom interacts with a neutron and then splits in two
fragments releasing energy. Heavy atoms have more probability to undergo �ssion and a typical
example used in nuclear reactors is uranium 235 (U-235). The heavy atoms are located in the fuel
region of the reactor's core. The energy released by �ssion of one atom U-235 is around 203 MeV
and is distributed among the �ssion fragments, beta radiation, gamma photons, antineutrons and
neutrons as seen in table 1.1.

1Emergency shutdown of the reactor by inserting all the control rods
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Table 1.1: U-235 �ssion reaction energy distribution in MeV

Fission fragments 166
Antineutrinos 10
Prompt gamma photons 8
Beta radiation (electrons) 7
Delayed gamma photons 7
Neutrons 5

Total 203

Fission produces in average 2.5 neutrons2 that in their turn will induce new �ssions and thus
create nuclear chain reactions. The neutrons are released at high energy whilst the �ssion reaction
is more likely to be induced by neutrons of low energy. For this reason a material called moderator
(usually water) surrounds the fuel and its main role is to slow down the neutrons through scattering.
The heat produced by �ssion is extracted from the core with the use of coolant (usually water).
The di�erent combinations of fuel-moderator-coolant and core conditions lead to many di�erent
concepts of nuclear reactors. From those various concept the most frequently used and the one
which we focus on is the PWR. A typical PWR design can be seen in �gure 1.1.

The fuel is a composition of uranium 238 and 235 (typically 3 − 5% of U-235) while the coolant
and the moderator are water. The fuel is located in a vessel pressurized at 155bars in order to
not have boiling of water. The water driven by the pumps enters from the bottom at an average
temperature of 290◦C and exits from the top at an average temperature of 330◦C. Afterwards,
it passes through the steam generator where it transfers energy to water being pressurized at
75bars with a saturation temperature of 290◦C. Steam is produced that is then fed to the turbine-
generator system to produce electricity. The pressurizer is a component that controls the pressure
in the primary circuit (the reactor core and the loop of the water circulation). All this system is
surrounded by a containment building in order to protect the environment in case of a hypothetical
accident. A typical electrical power of a PWR is 1300MWwith an e�ciency of 33% (Rankine cycle).

Figure 1.1: Typical PWR design [1].

The reactor's core has three di�erent scales. The fuel pin scale (about 1cm in diameter) is the
smallest component and consists of small fuel pellets stacked in long tubes (about 4m long) called
fuel pins. The fuel pins have an external region called cladding made from zirconium alloys which
is used mainly to avoid radioactive products dispersion in the coolant. There is a gap between
fuel and cladding for mechanical reasons that is �lled with helium at 10-30bars pressure in order
to increase the heat transfer from the fuel to the cladding.

The next scale is the fuel assembly (about 20cm length) where an assembly is a 17x17 array (typical

2For U-235 nucleus.
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composition) of fuel pins, guide tubes (tubes where the control rods enter) and an instrumental
tube as seen in �gure 1.2. The fuel assemblies have some structural materials to hold together the
fuel pins and they are the parts used to insert or extract fuel from the core. The water circulates
in the space between the fuel pins.

The last scale is the core itself (about 4m in diameter) which is usually composed of 193 fuel as-
semblies and can be seen in �gure 1.3. The control rods, consisting of neutron absorbent materials,
are inserted in the core from the top and into the guide tubes in order to sustain the �ssion chain
reaction. The positioning of those rods is such as to create a power �ux as �at as possible.

Figure 1.2: PWR fuel assembly and pin [2]. Figure 1.3: Typical PWR core composition [3].

The safety of nuclear reactors is of utmost importance. Three physical safety barriers can be
identi�ed in the PWR core, ensuring the con�nement of radioactive material [8]. The fuel rod,
the pressurized vessel and the containment building. Safety calculations and analyses are used to
simulate and predict the behavior of these barriers under both normal and accidental conditions.
Such analyses of nuclear reactor's core physics lead to the identi�cation of three di�erent physics.
The �rst one is neutronics related to the power generation, which is proportional to the neutron
�ux. The second one is fuel-thermomechanics related to the heat di�usion into the fuel pin and
its mechanical behavior. The third one is thermal-hydraulics, related to the extraction of heat
from the coolant and to the distribution of the coolant in the whole core. The phenomena in each
physics are governed by di�erent set of equations that usually are solved by di�erent codes. While
for some applications stand-alone physics can be considered, for transients where the interactions
between physics can be very strong a multi-physics coupling framework is necessary. An example
of such transient is the REA studied in this thesis. Before getting into more details about REA
it is important to get some insights about each interacting physic and the codes used for their
modeling.

1.3 Neutronics modeling

1.3.1 Basics

The �eld of neutronics deals with the calculation of the neutrons density in time and space for the
whole reactor's core. In order to understand the underlying equations we �rst present some basic
notions of neutron physics based on [9], [4] and [10].

1.3.1.1 Neutron spectrum

The neutrons are produced at two signi�cantly di�erent timescales creating two neutron categories.
The �rst are called prompt neutrons and they are generated at an order of 10−14s mainly from
neutron induced �ssion and spontaneous �ssion. The second are called delayed neutrons and they
are emitted by speci�c nuclei of the �ssion fragments, called precursors, at varying timescales from
few milliseconds to minutes depending on the precursor. There are more than 200 precursors
that usually are grouped in groups of 6-8 with similar average half-lives for modeling purposes.
The delayed neutron fraction is the percentage of neutrons emitted as delayed per �ssion and for
U-235 is around 0.6%. The slowing down of neutrons from the high energies at which they are
typically emitted to lower energies where the �ssion is more probable can be seen as a source of
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neutrons at di�erent energies. This phenomenon gives rise to the neutron spectrum of �gure 1.4
for a PWR. During the slowing down process the neutrons have high probabilities to be absorbed
at intermediate energies due to capture resonances that will be detailed later.

Figure 1.4: Typical neutron spectrum in a PWR [4].

The hump at high energies is the neutrons emitted by �ssion and follows the Maxwell distribution
of equation 1.1 with T around 1.3 MeV. The hump at low energies corresponds to the slowed down
neutrons also called thermalized and is usually described by the Maxwell distribution of thermal
agitation.

χ(E)dE =
2π

(πT )
3
2

√
E exp(−E

T
)dE (1.1)

In neutronic analysis the quantity aimed to be calculated is the angular �ux de�ned in equation
1.2. It is the number of neutrons located in ~r, with energy E, moving in a direction of solid angle
~Ω at instant t where, n(~r,E, ~Ω, t) is the neutron density and υ is the neutron velocity.

ψ(~r,E, ~Ω, t) = n(~r,E, ~Ω, t)υ (1.2)

The integration of the angular �ux for all directions leads to the scalar �ux:

φ(~r,E, t) =

∫
4π

ψ(~r,E, ~Ω, t)d2~Ω (1.3)

1.3.1.2 Cross-sections and reaction rates

Each U-235 �ssion, as mentioned, produces in average 2.5 neutrons of high energy. During their
lives these neutrons will interact with the surrounding materials in many di�erent ways. The
microscopic cross-sections represent the probability of the di�erent possible reactions between the
neutron and an atom's nucleus and are measured in barns (10−24cm2). Intuitively it represents the
e�ective surface around the nucleus in which the neutron will interact. The larger is the surface the
higher is the probability of the reaction to occur. Microscopic cross-sections depend on the nucleus
and the energy of the incident neutron. The main cross-sections concerning a nuclear reactor core
are:

• Scattering: After the interaction the nucleus remains as it was. In elastic scattering the
neutron only changes angle while in inelastic scattering the neutron loses also energy and a
photon is emitted.

• Capture: The nucleus absorb the neutron and decays with photons emission.

• Fission: As described previously, the nucleus splits in two fragments with release of radiation
and neutrons.

The macroscopic cross-section for reaction i (Σi) is de�ned in equation 1.4. It can be seen as the
probability of a neutron moving in a straight line to interact with a nucleus of the surrounding
materials in an in�nitesimal distance through reaction i. It is measured in cm−1 and its inverse is
the neutron mean distance without interaction (mean free path).
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Σi(~r,E, t) = σi(E)Nk(~r, t) (1.4)

Where:

� σi(E) is the microscopic cross-section for reaction i.

� Nk(~r, t) (nuclei/cm3) is the nucleus k concentration at a speci�c location and instant.

Since the cross-sections represent probabilities they can be summed giving rise to synthetic mi-
croscopic and macroscopic cross-sections. From those the most used are the absorption and total
cross-sections. The former is the sum of capture and �ssion as seen in equations 1.5 - 1.6 and the
latter is the sum of all the cross-sections.

σa = σf + σc (1.5)

Σa = Σf + Σc (1.6)

Some microscopic cross-sections show regions of resonances around speci�c energies related to the
nucleus excitation levels. This is can be observed in �gure 1.5 created with SCALE [11] code
using ENDF-VII microscopic cross-sections library [12]. The treatment of those resonances is a
fundamental aspect in neutronics modeling.
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Figure 1.5: U-238 capture microscopic cross-section.

An important quantity related to cross-sections is the reaction rate for reaction i de�ned in equation
1.7. It is the number of neutron interactions with matter through reaction i per unit volume and
time and it is measured in cm−3s−1.

τi(~r,E, t) = Σi(~r,E, t)φ(~r,E, t) (1.7)

1.3.1.3 Criticality and reactivity

The balance of the neutronic population of the reactor is described by the e�ective multiplication
factor keff de�ned as the ratio between the production and disappearance of neutrons:

keff =
Production

Absorption+ Leakage

The production of neutrons is due to �ssion, the absorption is all the possible reactions induced
by the neutron that do not create another neutron and the leakage is the neutrons escaping the
core without being absorbed. Using the e�ective multiplication factor we can de�ne three di�erent
states of the reactor:

• keff = 1: The reactor is critical and the neutron population is constant.

• keff > 1: The reactor is super-critical and the neutron population increases.
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• keff < 1: The reactor is sub-critical and the neutron population decreases.

An important quantity derived from the multiplication factor is the static reactivity de�ned as:

ρ =
keff − 1

keff

It can be seen as a relative comparison between the state of the reactor and its critical state. It is
used in neutron kinetics because it is a good measure of modi�cations in the neutron population.
To give an example related to the REA, if the reactor is critical and a control rod is ejected then
there is an insertion of positive reactivity. Less absorbent materials are present in the reactor and
thus the e�ective multiplication factor increases. The reactivity is measured in pcm3 or 10−5.

The reactor's reactivity (ρ) and its e�ective delayed neutron fraction (βeff ) have a major im-
portance in kinetics calculations. The βeff is representing the whole core and is related to its
modeling. It can be seen as a sum of the delayed neutron fraction in di�erent regions weighted
by the corresponding neutron �ux. The importance of ρ and βeff can be highlighted through
point kinetics analysis where the reactor is averaged to a point and thus only temporal variations
are taken into account. The results of this approach shows that for positive injected reactivity
ρ − βeff < 0 the neutronic population increase is governed by delayed neutrons timescales and
thus can be manageable. However, for ρ− βeff > 0 the neutronic population increase is governed
by prompt neutrons leading to rapid power increase. This is called a supercritical prompt driven
transient and as we will see it can occur during a REA. A useful expression of the reactivity is as
a ratio with the e�ective delayed neutron fraction ρ/βeff measured in dollars $.

1.3.1.4 Mechanisms of reactivity change

During the reactor's life variations in reactivity occur. The main physical phenomena inducing
these variations are:

• Fuel composition evolution: The �ssile nuclei are consumed during the reactor operation
reducing its reactivity. Some �ssion products can produce �ssile nuclei through their decay
chains resulting in a reactivity increase. The sum of these two e�ects during the reactor's
life, in general, has a negative impact on reactivity.

• Fission poisons: Fission, either directly or through �ssion fragments decay, produces nuclei
with strong neutron capture cross-section that decrease the reactivity. These nuclei are called
�ssion poisons and the most important ones in PWR are Xe-135 and Sm-149. Particularly Xe-
135 is produced directly from �ssion and from �ssion fragments decay while it is consumed
by neutron induced capture and beta decay. During reactor's shutdown the neutron �ux
rapidly decreases and Xe-135 increases reaching its peak in 8 hours. For similar reasons in
regions where the �ux is tilted towards one region, the region with higher �ux will exhibit
a decrease in Xe-135 while the other region an increase. This initially enhances the �ux tilt
but after few hours it can reverse it creating spatial oscillations. In PWR this phenomenon
can occur axially in the assemblies where the control rods are inserted [13].

• Reactor's conditions change: During accidents the materials temperatures and densities
can change rapidly and induce reactivity modi�cations. The most important ones are: the
fuel temperature increase resulting in the increase of neutron capture called Doppler e�ect
(detailed in Section 1.3.1.5) and the moderator density decrease and temperature increase.
In PWR for safety reasons all these e�ects must have a negative impact on reactivity.

The reactor during nominal operation is maintained at a critical state. Since the above mentioned
phenomena alter the reactivity of the core, di�erent mechanisms are used to counterbalance and
control these reactivity variations:

• Control rods: They consist of nuclei with high neutron absorption cross-section and they
are inserted from the top in the fuel assemblies guide tubes. They are extracted slowly with
reactor's life to compensate the decrease in reactivity due to fuel composition evolution.

3From french "pour cent mille".
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• Burnable poisons: Some fuel pins can be replaced by absorbent pins that consist of nu-
clei with high neutron absorption cross-section that deplete with the reactor's life (usually
gadolinium Gd or boron B). They are used for the initial reactivity excess at the reactor
start in order to keep the global reactivity e�ect negative. With time their concentration
become negligible.

• Soluble boron: Quantities of boric acid (neutron absorbent) are dissolved in the coolant.
It has a more uniform and precise impact in the core than the control rods but is limited by
the safety requirement to maintain a negative density reactivity e�ect in the coolant. It is
used in conjunction with control rods for slow reactivity variations.

1.3.1.5 Doppler e�ect

The microscopic cross-sections at T=0K can be represented by analytic expressions on a continuous
energy range. These cross-sections thus assume the target nucleus to be immobile but in reality
the nucleus is always in thermal agitation due to its real temperature. This agitation a�ects the
relative velocity between the nucleus and the neutron which in its turn a�ects the microscopic
cross-section. While the e�ect for most nuclei and energy ranges is negligible, for heavy nuclei
and in the region of resonances the e�ect is very important and must be taken into account. This
phenomenon is called Doppler e�ect and it tends to decrease the amplitude and increase the width
of the resonance.
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Figure 1.6: Doppler e�ect on U-238 capture resonance at 6.67eV

The widening of the resonance is more important than the decrease in amplitude and thus the
resulting e�ect is an increase of the interactions. The modeling of this e�ect is called Doppler
broadening of the microscopic cross-sections. In a PWR the Doppler e�ect is more prominent
in the capture cross-section of U-238 as can be seen in �gure 1.64. This e�ect is crucial during
transients where a sharp power increase is followed by a fuel temperature increase. The Doppler
e�ect then will act as a feedback by injecting negative reactivity and moderating the transient.

1.3.2 Transport and evolution equations

The �eld of neutronics, as mentioned, deals with the calculation of the neutrons density in time
and space for the whole reactor's core. There are two types of coupled fundamental equations
describing the neutrons density spatial and temporal evolution. They are going to be presented
based on [9].

1. Transport (Boltzmann) integro-di�erential equation describing the balance between the pro-
duction and disappearance of neutrons. The solution of the equation is the neutronic angular
�ux ψ(~r,E, ~Ω, t). It can also be expressed in an integral form.

2. Generalized evolution (Bateman) equations describing the isotopic evolution in the core dur-
ing its whole life. The solutions of the equations are the nuclei concentrations Nk(~r, t). A
simpli�cation of these equations are used in transient calculations where only the precursors
concentrations are taken into account. In these calculations it is assumed that due to the
small time period considered the isotopic state does not change [14].

4Created with SCALE using ENDF-VII library.
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The transport integro-di�erential equation is established in an elementary volume D = d~r dE d~Ω
around the point P = (~r,E, ~Ω).

1

υ

∂ψ(~r,E, ~Ω, t)

∂t
=− ~Ω∇ψ(~r,E, ~Ω, t)

−
∑
k

(
Nk(~r, t)σt,k(E)ψ(~r,E, ~Ω, t)

)
+
∑
k

(
Nk(~r, t)

∫ ∞
0

dE′
∫

4π

σs,k(E′ → E, ~Ω′ → ~Ω)ψ(~r,E′, ~Ω′, t)d~Ω′
)

+
1

4π

∑
k

(
Nk(~r, t)

∫ ∞
0

νp,k(E′)σf,k(E′)χp,k(E′ → E)φ(~r,E′, t)dE′
)

+
1

4π

∑
k

νp,f,kλf,kNk(~r, t)χp,f,k(E)

+
1

4π

∑
k

λd,kNk(~r, t)χd,k(E)

+ Sext(~r,E, ~Ω, t)

(1.8)

• The �rst term on the left side is the derivative of the angular �ux variation with respect to
time.

• The �rst term on the right side is neutrons escaping D through its boundaries (leakage).

• The second term on the right is the disappearance of neutrons due to either absorption or
scattering to a di�erent state (E,Ω) through nucleus k. Nk(~r, t) is the nucleus concentration
and σt,k the total microscopic cross-section of nucleus k for an incident neutron of energy E.

• The third term on the right side is the neutrons reaching the state (E,Ω) due to scattering
from all the other angles and energies. The transfer microscopic cross-section σs,k(E′ →
E, ~Ω′ → ~Ω) represents this probability for nucleus k.

• The fourth and �fth terms on the right are the production of prompt neutrons from �ssion
reactions induced by neutrons and by spontaneous �ssion of nucleus k. The average number
of prompt neutrons emitted by �ssion of nucleus k for an incident neutron of energy E′

is νp,k. Additionally, σf,k(E′) is the corresponding �ssion microscopic cross-section and
χp,k(E′ → E) the emitted neutron spectrum. The average prompt neutrons emitted from
spontaneous �ssion of nucleus k is νp,f,k with λf,k the �ssion decay constant and χp,f,k the
emitted neutrons spectrum.

• The sixth term on the right is the production of delayed neutrons due to decay of precursors,
where λd,k is their decay constant and χd,k the delayed neutrons �ssion spectrum.

• The seventh and last term on the right accounts for all the possible external neutron sources
present in D.

As in the case of neutrons in transport equation the evolution equations are a balance between
production and disappearance of the di�erent nuclei Nk(~r, t).

dNk(~r, t)

dt
= +

∑
m 6=k

(∑
q

∫ ∞
0

σq,k←m(E)φ(~r,E, t)dE

)
Nm(~r, t) +

∑
m 6=k

λm→kNm(~r, t)

− λkNk(~r, t)−
(∑

q

∫ ∞
0

σq,k(E)φ(~r,E, t)dE

)
Nk(~r, t)

(1.9)

• The �rst term on the left is the rate of change in time of the nucleus k concentration.

• The �rst term on the right is the production of nucleus k by nuclear reaction q on nucleus
m induced by an incident neutron of energy E. The corresponding microscopic cross-section
is σq,k←m.
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• The second term on the right is the production of nucleus k due to decay of nucleus m, with
λm→k its corresponding decay constant.

• The third term on the right is the disappearance of nucleus k due to decay with λk its decay
constant.

• The fourth and last term on the right is the disappearance of nucleus k through nuclear
reaction q induced by a neutron of energy E. The corresponding microscopic cross-section is
σq,k.

The derivation of the equations includes some basic assumptions:

1. The neutrons population in the reactor is su�cient large in order to be able to de�ne the
neutron's density. In a typical reactor the order of magnitude of the neutron's population is
108 neutrons/cm3 satisfying this hypothesis.

2. The neutron-neutron interactions are negligible in comparison to the neutron - materials
interaction in the reactor. This essentially means that the neutrons density is orders of
magnitudes smaller than the density of the materials in the reactor and thus the probability
for the neutron to interact with an atom of the materials is orders of magnitude higher than
to interact with another neutron. This hypothesis leads to the linear form of the transport
equation.

3. The relativistic e�ects of neutrons are negligible. In fact the maximum kinetic energy of the
neutrons in a reactor is about 2MeV and thus satis�es this hypothesis.

4. The neutrons decay to protons is negligible. The decay period of this reaction is in the order
of 10 minutes while the neutrons average life time in the reactor is 10−5 − 10−3s satisfying
this hypothesis.

5. The gravity e�ect is neglected (straight paths for particles).

There are two broad methods for the solution of the equations: the Monte Carlo and the deter-
ministic. In the Monte Carlo the equations are not solved directly but through simulations of
random walks of neutrons. Each possible neutron event is sampled through distributions from
the moment it appears until its absorption. With the simulation of large number N of neutrons
paths their density population converges to the solution with a rate of 1√

N
. In the deterministic

approach the equations are solved by phase space discretization introducing further approxima-
tions. In this thesis we use the deterministic neutronic code APOLLO3 R©. For this reason in
the following Section we focus on the deterministic approach and the di�erent modeling options
relevant to APOLLO3 R©.

1.3.3 Deterministic modeling

The deterministic approach consists in discretizing the phase space of the equations [13], [15]. The
combined discretized meshes needed for the space (core volume), the solid angle (sphere of surface
4π), the energy (1e−2eV − 2e+6eV ) and the time is more than 1016 meshes. This discretization
size is far too large for the computational power currently available. To this purpose a three step
approach is adopted. Before detailing each phase space discretization we will describe the general
aspects of the di�erent steps presented in �gure 1.7.
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Figure 1.7: Three step deterministic neutronics calculation scheme.

In the �rst step the microscopic cross-sections are condensed from continuous pointwise to a multi-
group discrete energy mesh (about 280 energy groups) based on typical neutron spectrum.

In the second step the so called "lattice" calculations are performed. They are usually horizontal 2D
assembly calculations on the previous discretized energetic mesh. These calculations are performed
for each assembly of the core with an in�nite medium hypothesis and leakage adjustment. The
result of the calculations are condensed in energy and homogenized in space cross-sections that
preserve the reaction rates. It is important to notice that during this process self-shielding is
performed in order to take into account the �ux reduction in the resonances peaks of the cross-
sections that will reduce the reaction rates as well. This step is performed for di�erent core isotopic
states resulting from the solution of the evolution equations and for various core conditions (fuel
temperature, moderator temperature, etc.) [14]. The typical result of the second step is multigroup
macroscopic cross-sections of few energy groups (2-33 groups for PWR ) for each assembly in a
multiparametric tabulation form.

The third step is a full core 3D calculation where each assembly is homogenized and represented
by its macroscopic cross-section. The transport equation or an approximation of it is solved (e.g.
Di�usion equation). This calculations scheme has some limitations mainly coming from the in�nite
medium hypothesis in the second step and the di�erent approximated solvers of the 3D transport
equation in the third step.

Since in any deterministic calculation the cross-sections are in a multigroup format it is useful to
present the multigroup form of the transport equation. If we consider G energy groups with bounds
[Eg,Eg+1] for g ∈ G the multigroup angular �ux of each group is de�ned as:

ψg(~r, ~Ω, t) =

∫ Eg+1

Eg

ψ(~r,E, ~Ω, t)dE (1.10)

The multigroup nuclear data are described by a superscript g and the multigroup approximation
of the transport equation can be expressed as:
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+

1

4π

∑
k

νp,f,kλf,kNk(~r, t)χgp,f,k

+
1

4π

∑
k

λd,kNk(~r, t)χgd,k

+ Sgext(~r, ~Ω, t)

(1.11)

Three di�erent types of calculations can be identi�ed based on the treatment of time:

• The stationary calculation, where the time dependent terms of the transport equation are

omitted ( 1
υg

∂ψg(~r,~Ω,t)
∂t , 1

4π

∑
k νp,f,kλf,kNk(~r, t)χgp,f,k,

1
4π

∑
k λd,kNk(~r, t)χgd,k).

• The so called Burn-up calculations, where the isotopic evolution of the materials (Bateman
equations) are calculated during the whole life of the reactor while the power does not vary
much (load of the power plant).

• The transient calculations, in short time scales where strong variations of important quantities
can occur. For these calculations the initial state of the reactor prior to the transient is
calculated by Burn-up calculations and then the kinetic equations are used.

In the following Sections we are going to detail the phase space discretization for the deterministic
modeling of transport equation and the di�erent types of calculations related to the time parameter
concerning the thesis.

1.3.3.1 Energy discretization

The �rst two steps in the deterministic approach handle the energy discretization in order to
produce multigroup cross-sections. It is quite challenging due to the large energy bounds (from meV
to MeV) and to the complicated behavior of the microscopic cross-sections in di�erent energetic
regions with the presence of sharp resonances. A big e�ort is made across the world to create
nuclear data libraries based on measurements. These libraries store microscopic cross-sections
parameters for a large variety of isotopes and permit their pointwise reconstruction in the whole
energy domain. Besides that, they also store neutronic kinetic parameters, �ssion yields (�ssion
fragments probability), radioactive decay constants, quantities for other particles interaction with
matter and uncertainties. More details can be found in [12] and [16]. Some of the most currently
used nuclear data libraries are:

� ENDF/B-VII.1: United States Evaluated Nuclear Data Library.

� JEFF-3.2: Joint Evaluated Fission and Fusion File.

� JENDL-4.0: Japanese Evaluated Nuclear Data Library.

� BROND-2.2: Russia Evaluated Nuclear Data Library.

� CENDL-3.1: Chinese Evaluated Nuclear Data Library.

The pointwise reconstruction of the cross-sections is carried out using various nuclear formalisms
based on "R matrix" [17]. The most used formalisms are the single or multilevel Breit-Wigner and
the Reich-Moore. The obtained cross-sections are at T=0K and the Doppler broadening is applied
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in order to calculate the pointwise cross-sections at di�erent temperatures of interest. These cross-
sections can be used directly in Monte Carlo codes but for deterministic ones an initial cross-section
preprocessing is necessary. This is the 1st step of the deterministic approach where the goal is to
condense the cross-section from pointwise to few hundred groups selected in an optimum way to
include the most important resonances. The pointwise-multigroup cross-section comparison can be
seen for two resonances of U-238 capture in �gure 1.8 plotted with SCALE. This step is performed
once per type of reactor under study.
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Figure 1.8: U-238 capture multigroup microscopic cross-section

The condensation in energy group g, for nucleus k and reaction i is performed by a weighting of the
pointwise cross-section with the pointwise neutron �ux of equation 1.12. Since the �ux cannot be
known prior to solving the transport equation, a "representative" in a macroscopic sense neutron
spectrum (e.g. Maxwellian) φM (E) is used. Examples of codes that are used for this purpose
are NJOY, CALENDF, AMPX and PREPRO. The codes provide also �ner, in terms of energy
discretization, cross-section information that will be used in the self shielding process of the second
step. The results are stored in a multigroup library.

σgi,k =

∫
g
σi,k(E)φM (E)dE∫
g
φM (E)dE

(1.12)

The second step, as mentioned, consists in a further condensation of the cross-sections in energy
and an homogenization in space. It is a case depended calculation5 at an assembly level with an
in�nite medium hypothesis (re�ective boundary conditions). It aims at conserving the reaction
rates between the initial heterogenous assembly geometry and the resulting homogenous one. The
di�erent stages of this calculation are well describted in [18] and can be summarized as:

1. Self shielding: It is a phenomenon with both energy and space aspects. The �ux in the
resonances of the cross-sections exhibits a strong decrease that must be modeled in order to
obtain correct reaction rates and not overestimate them. Besides that, spatially some fuel
regions can see more neutrons and thus have large di�erences in �ux. The energy aspect is
treated through the �ner cross-section information stored in the �rst step while the spatial
aspect by considering di�erent concentric fuel regions. This process is applied for speci�c
resonant nuclei and the result is an adjustment of their microscopic cross-section to take into
account the local depression of the neutrons �ux.

2. Condensation: The transport equation is solved at the �ner multigroup level. The �ux
obtained is used to further condensate the microscopic cross-section to few groups. If the
index g corresponds to the initial �ne energy structure and index G to the condensed one
the condensation is expressed by equation 1.13 where i is the reaction and k the nucleus.

σGi,k =

∑
g σ

g
i,kφ

g∑
g φ

g
(1.13)

3. Homogenization: The assembly is homogenized both spatially and isotopically either in
the whole assembly or in subregions by preserving important quantities of interest. There is

5It has to be performed for each di�erent reactor modeling
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the possibility to treat some isotopes of interest separately, typically this is done for poison
isotopes (Xe, Sm). The desired quantities to be preserved are the reaction rates in the
homogenization region and the �ux currents at the boundaries. Di�erent approaches exist
to derive the homogenized macroscopic cross-sections [13] taking into account discontinuities
between assemblies. A rather simplistic approach for illustration purposes is:

ΣGi,R =

∑
r ΣGi,rφ

G
r Vr∑

r φ
G
r Vr

(1.14)

The second step is performed for the di�erent core assemblies, for various assembly isotopic states
calculated by solving the evolution equation and for di�erent temperature and density conditions.
For each assembly a multiparametric cross-section library is produced that will be used in the third
step where the core calculations would be performed. Examples of codes treating the second step
lattice calculations are SCALE [11], APOLLO2 [18] and APOLLO3 R© [19].

The �rst two steps of the deterministic approach handle mainly the energy discretization with
some aspects of space and solid angle through the homogenization phase. In the third step the
heterogeneities of the assemblies are lost and they are instead represented by the condensed ho-
mogenized macroscopic cross-sections obtained in step 2. These quantities will be used to perform
the di�erent deterministic calculations at the core level where the space, solid angle and time
discretizations will be addressed.

1.3.3.2 Solid angle discretization

There are di�erent methods used to treat the solid angle discretization ~Ω for the solution of
transport equation in lattice and core calculations [15]. Some of them treat at the same time both
solid angle and space.

• Spherical harmonics (PN): The �ux angular dependence is expanded in spherical har-
monics that are truncated at an order N .

• Simpli�ed spherical harmonics (SPn): In general the PN equations are quite complicated
to solve and thus most of the codes solve a simpli�ed version of them (SPN ). The assumption
of locally plane geometry is applied corresponding to a 1D− PN with slow variations in space.
The spherical harmonics become now the Legendre polynomials.

• Di�usion approximation: It is the method used in this thesis. The transport equation
is simpli�ed. The main assumption is that the angular �ux does not depend much on the
direction ~Ω and that the �ux is mainly from scattering, something not true near sources or
sinks.

• Discrete ordinates (SN): The solid angle is discretized in N directions covering the 4π
solid angle and approximating the integral by a quadrature.

• Collision probabilities (Pij): It is based on the calculations of probabilities for a neutron
in one region i to undergo a collision in a di�erent region j. It treats both solid angle and
space and solves the integral form of transport equation.

• Method of Characteristics (MOC): It treats both space and solid angle. It solves the
integral form of transport equation using SN trajectories on non structured homogeneous
meshes [9].

For lattice calculations (2nd step) MOC and Pij are typically used while SN, SPN and Di�usion
are used in core calculations (3rd step).

1.3.3.3 Space discretization

Space is discretized in meshes of di�erent sizes axially and radially. The way in which the �ux
and currents are calculated inside the meshes and on the boundaries creates di�erent discretization
methods [9]:

38



• Finite di�erences: It is the classical way used to solve di�erential equations. The geometry
is discretized and the derivatives in the transport equation are approximated by a �rst order
Taylor expansion computed on two neighboring points.

• Nodal: It is also called �nite volume method and is based on a semi-analytic resolution
of the equation in a volume. Usually a polynomial approximation is used for the solution.
The solution is obtained �rst by integrating in each direction (x,y,z) to calculate transverse
leakages and then integrating in the whole volume to obtain the integral �ux.

• Finite elements: It is the method used in the thesis. The geometry is discretized in volumes
and the solution is expanded on a polynomials basis of chosen order. The unknowns now are
the coe�cients of the �ux on this basis. The convergence depends on the degree of the basis
and the mesh size.

All of the methods are used for core calculations in conjunction with the corresponding solid
angle discretization method. Finite di�erences and Nodal methods are mainly used with Di�usion
approximation while Finite elements are used for all the solid angle methods.

1.3.3.4 Stationary calculations

The stationary transport equation is solved for a given core isotopic state and condition. In general
the stationary transport equation has solution only when the reactor is at a critical state. In order
to obtain solutions for non critical states an unknown variable λ is used:

~Ω∇ψg(~r, ~Ω) = −
∑
k

(
Nk(~r)σgt,kψ

g(~r, ~Ω)
)

+
∑
g′

∑
k

(
Nk(~r)

∫
4π

σg
′→g
s,k (~Ω′ → ~Ω)ψg

′
(~r, ~Ω′)d~Ω′

)
+

1

λ

1

4π

∑
g′

∑
k

(
Nk(~r)νg

′

p,kσ
g′

f,kχ
g′→g
p,k φg

′
(~r)
) (1.15)

It is an eigenvalue problem with the largest eigenvalue equal to the e�ective multiplication factor
λ = keff . The corresponding eigenfunction is the angular �ux solution. For convenience purposes
the steady-state transport equation can be written in a form of operators:

Tφ =
1

λ
Fφ (1.16)

Where:

� T is a disappearance multigroup operator.

� F is the multigroup production operator.

This eigenvalue problem is solved through power iterations [20] as described in the following algo-
rithm.

Power iterations algorithm

1: Initialize λ0, φ0, and convergence criteria ελ, εφ and n = 1
2: while (λ(n) − λ(n−1) > ελ) & (|φ(n) − φ(n−1)‖ > εφ) do
3: Compute angular �ux: Tφ(n) = 1

λ(n−1)Fφ
(n−1).

4: Compute λ(n)

λ(n−1) = ‖Fφ(n)‖
‖Fφ(n−1)‖ .

5: n = n+ 1
6: end while

1.3.3.5 Burn-up calculations

Nuclei isotopic compositions change with time during the reactor's life due to transmutations by
nuclear reactions and due to radioactive decay. A quantity describing the historical usage of the
fuel is the Burn-up measured in MWd/t6. The concentrations of nuclei thus vary in space and time

6Megawatt days per ton of fuel nuclei.
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following the evolution equations 1.9. The equations for di�erent isotopes can be lumped into the
following matrix notation for a time step ∆t:

∆N

∆t
= S +AN (1.17)

Where S is a direct source term while A is the matrix representing the nuclear reactions and decay.
If the �ux solution during the whole reactor history is known at di�erent time steps a Runge-
Kutta numerical scheme can be used to solve the equations. This is not usually the case since the
evolutions equations are coupled with the transport equation. In this case, a sequential approach
is adopted where the solution of the �ux at time step n is used to compute the new concentrations
at time step n+ 1 that will update the transport equation. Predictor-corrector techniques can be
used to anticipate the �ux variation in the interval.

1.3.3.6 Transient calculations

Transient calculations aim to describe the reactor's behavior under accidental situations where for
a short period of time large �ux variations can occur. For these short time periods the Burn-up
evolutions of the nuclei are not considered, only the precursors are taken into account due to their
important role in the delayed neutron production. The precursors are grouped in 6-8 groups of
similar disintegration periods ranging from 50µs to 50s. The multigroup transport equation and
the precursors evolution equations are expressed in equations 1.18a and 1.18b respectively.

1

υg
∂ψg(~r, ~Ω, t)

∂t
=− ~Ω∇ψg(~r, ~Ω, t)

−
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∑
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1
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λd,iCi(~r, t)χ
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d,i

(1.18a)

dCi(~r, t)

dt
= +

∑
k

Nk(~r, t)βki
∑
g′

νg
′

t,kσ
g′

f,kφ
g′(~r, t)

− λiCi(~r, t) (1.18b)

Where:

� Ci is each precursor group concentration.

� βki the precursors delayed neutron fraction.

� λi the precursors decay constant.

The solution of these equations is performed in the third step of the deterministic resolution
method. In the second step together with the homogenized macroscopic cross-section for each
assembly of the reactor the kinetic quantities are also homogenized in e�ective quantities repre-
senting the heterogeneities of the assembly. This leads to the e�ective delayed neutrons and decay
constants.

Two categories of methods for the solution of the above system of equations exist:
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• Neutron �ux form - amplitude separation: The neutron �ux φ(~r,E, t) space and time
variations are decomposed in two functions. Function a that represents rapid amplitude vari-
ations in broad discretization regions (~R). Function f that represents mainly slow amplitude
variations (T ) in the form of the �ux. The �ux becomes then φ(~r,E, t) = a(~R,E, t)f(~r,E, T ).
Depending on the T and ~R size di�erent methods are de�ned. The most general is the Multi-
Fidelity method and corresponds to the use of large discretization regions for ~R and large
time steps for T . The Improved Quasi static method follows the amplitude variations in
the whole core (a(t)) using point kinetics and updates the �ux form on large time steps
T . The point kinetics method where the �ux form is not updated and the core is averaged
over energy, space and angle resulting in a simpli�ed set of equations that represent average
variations in time of important quantities. With this method local e�ects are not accessible
something very important for transients like REA [1].

• Direct discretization: It consist in discretizing the equations 1.18a and 1.18b and is the
method used in this thesis. The equations are integrated in time with �nite time discretiza-
tion. Assumptions are made on the form of the variation of parameters inside each time
step. The velocities are considered constant while the cross-sections are considered to vary
lineary. The �ux is discretized using a theta scheme, where depending on the θ value a
Crank-Nikolson scheme or implicit scheme can be used. Usually in transient calculation a
mix of those two options are used. The Crank-Nikolson is used in the phase of the power
increase and the implicit scheme when the power decreases. The precursors equation 1.18b is
formally integrated by considering linear �ux variation in the time step. The spatial behavior
of the �ux is projected on a basis of �nite elements. The integration now is possible for each
time step and the solution is obtained by solving a linear system of size N × G , where N
the number of points in the �nite elements and G the number of energy groups.

1.3.3.7 Boundary conditions

For the solution of the equations boundary conditions must be imposed. In neutronics deterministic
modeling the angular �ux is described at the boundaries of the studied geometry. Assuming a
domain V ∈ R3 and its boundary S = ∂V the angular �ux of on the boundary is ψ(~rs, E, ~Ω, t)
with ~rs ∈ S. Considering ~ne the unit outward normal vector on S the albedo β is de�ned as :

β =

∫
~ne·~Ω<0

|~Ω · ~ne|ψ(~rs, E, ~Ω, t)d~Ω∫
~ne·~Ω>0

~Ω · ~neψ(~rs, E, ~Ω, t)d~Ω
(1.19)

The albedo is the ratio between the neutrons current entering and exiting through S. Based on
this de�nition three di�erent boundary conditions are de�ned:

� β = 0: Void condition where no neutrons are assumed to be re�ected in V . It is used mainly
for the core calculations.

� β = 1: Re�ective condition where all the neutrons are re�ected into V with a solid angle
symmetrical to the outgoing. It is used for the lattice calculations representing the in�nite
medium approach.

� 0 < β < 1: A fraction of the neutrons are re�ected. If the solid angle at which they are
re�ected is uniformly distributed then it is called di�usion condition.

Besides the neutronic boundary conditions there are also thermal and hydraulic conditions that
need to be de�ned. They concern the e�ective fuel temperature strongly related with the Doppler
e�ect, the moderator density and the moderator temperature. The macroscopic cross-sections
are tabulated using these quantities and once they are provided, usually as a result of other
codes, the core state can be de�ned and the equations can be solved. For the moderator density
and temperature there is no ambiguity. For the fuel temperature the problem is that its radial
distribution inside the fuel pellet is not uniform. The neutronic modeling cannot take this into
account since the pellet is homogenized. If the radial temperature is calculated from thermal
modeling of the fuel pellet on discretized radial meshes then di�erent expressions exist to compute
an e�ective fuel temperature representing the radial temperature pro�le. The Rowlands expression
is used in this thesis de�ned by the fuel temperature in the center T fc and the external surface of
the pellet T fs :
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TReff =
4

9
T fc +

5

9
T fs (1.20)

The e�ective Rowlands temperature TReff is based on a parabolic pro�le of the fuel temperature.
This is not always true and Santamarina [21] proposed a di�erent expression that is adequate for
both parabolic and non-parabolic temperature pro�les. More details about both expressions can
be found in [22].

1.3.4 APOLLO3 R© code

The code used for the neutronics modeling in this thesis is APOLLO3 R© [19] developed at CEA in
a common project between CEA, Framatome and EDF. This project concerned the development of
state of the art codes for nuclear reactor physics with improved accuracy, �exible architecture and
high computation capabilities. APOLLO3 R© is a deterministic neutronic code that can perform
both lattice and core calculations including most of the methods for energy, space, angle and time
discretization previously described. It is used for evolution calculations to reach the reactor's initial
state prior to the REA and for the transient core calculations. The 3D kinetics method is used
with two group Di�usion [23] as described in equations 1.21a and 1.21b. The cross-sections are
homogenized at an assembly level using APOLLO2 code [18]. For the space discretization RTN
Finite Element of 1st order are used. Void boundary conditions are considered.
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dCi(~r, t)

dt
= +

2∑
g′=1

βg
′

i ν
g′Σg

′

f φ
g′(~r, t)− λiCi(~r, t) (1.21b)

Where:

� Dg, Σgt and Σgf are the di�usion coe�cient, the total macroscopic cross-section and the �ssion
macroscopic cross-section for group g.

� Σg
′→g
s is the transfer cross-section from group g′ to g.

� χgp, ν
g′ and βg are the �ssion prompt spectrum, the average neutrons emitted through �ssion

and the the total e�ective delayed neutron fraction for group g.

� A total of 6 precursor groups are considered with Ci, λi, χ
g
i,d, β

g
i their concentration, e�ective

decay constant, delayed neutron spectrum and e�ective delayed neutron fraction. The total
e�ective delayed neutron fraction is obtained by βg =

∑6
i=1 β

g
i .

.

1.4 Fuel-thermomechanics modeling

1.4.1 Basics

The power generated in the reactor's fuel rods a�ects the conditions of the fuel pellets, cladding
and the gap between them. In PWR the fuel pellets are made from uranium oxide UO2, the
cladding from a zirconium alloy (Zircalloy IV among the di�erent ones) and the gap is �lled with
helium due to its high thermal conductivity. Thermal, irradiation and chemical phenomena impact
both the mechanical aspects of fuel rods (stress and strains) and the head conduction. These
phenomena range from the atomic scale to the fuel pellet macroscopic scale. Their modeling is
very important for the fuel rod integrity, which is as mentioned the �rst safety barrier, in both
nominal and accidental situations [24]. In this Section we are going to describe some basic fuel-
thermomechanical notions and phenomena based on [25] and [5].
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1.4.1.1 Fuel pellet behavior

• Cracking: With the �rst power increase a radial temperature gradient induces a di�erential
thermal expansion leading to cracking of the fuel pellet radially and axially. The gap between
the fragmented pellet and the cladding reduces enhanced by their thermal expansion. This
leads to an increased heat conduction and thus a decrease of fuel temperature in the beginning
of the fuel rods life in the reactor. Besides that, the cracks increase the fuel external surface
facilitating the release of �ssion products in the gap a�ecting the conductivity.

• Densi�cation: During the initial irradiation phase (< 10GWd/t) the generated �ssion prod-
ucts interact with the small pores leading to di�usion of vacancies on the grain boundaries.
The fabrication porosity is reduced and the fuel density increases about 1% with a corre-
sponding shrinkage of the pellet. This phenomenon slows down the fuel-to-pellet gap closure.
Some of the important quantities for densi�cation are: burn-up, fabrication porosity, radial
temperature and �ssion rate.

• Swelling and gas releases: The �ssion products are generated along the irradiation of
the fuel. They can be solid or gas and contribute to the increase of fuel volume. This
phenomenon is called swelling. In general, the gaseous �ssion products contribution is much
more important than the solid one. The fuel volume evolution after 15GWd/t is dominated
by swelling.

Fission gases (e.g. Xe, Sm) precipitate into bubbles in intragranular or intergranular spaces.
The also di�use towards the grain boundaries. The gases generated closer to the fuel surfaces
can be released in the free spaces of the rod by athermal di�usion. The gas releases increase
constantly with irradiation due to the �ssion products and fuel surface evolution. This is
the main gas release mechanism up to 30GWd/t. At higher burn-up the gas releases rate
accelerates due to the activation of thermal mechanisms. The result of the �ssion gas releases
is an increase in the internal fuel rod pressure and a decrease the gap conductivity.

• Thermal expansion: An increase in temperature of fuel leads to its expansion. It is an
important contributor to the closing of the gap between fuel pellet and cladding. Axially the
thermal expansion gives an "hourglass" shape in the fuel pellet.

• Creep: It is a slow irreversible deformation of the fuel pellet due to stresses. Irradiation and
temperature have an important impact on creep.

• High burn-up structure: On the fuel periphery there is more Pu-239 production during
fuels life due to epithermal neutron absorption in U-238 resonances. Fission of Pu-239 atoms
results in an increased burn-up in this region and thus high �ssion products concentration.
Additionally, the lower temperature in the periphery induces slower �ssion products di�usion
and defects annealing. Around 40GWd/t restructuring of this region occurs, where the grains
divide into smaller ones and the porosity increases up o 10%. This new microstructure is
called high burn-up structure or 'rim e�ect' and a�ects signi�cantly the �ssion gas releases.

1.4.1.2 Cladding behavior

• Creep: The di�erential pressure between coolant and gap pressure compress the cladding.
The fast neutron �ux and temperature impact the resulting creep deformation.

• Thermal expansion: As fuel pellet, cladding exhibits thermal expansion but with a slower
temperature rate.

• Oxidation: The water interacts by oxidation with the Zr of the external cladding surface
creating an external zircon oxide layer up to 120µm. This layer has poor conductivity mod-
ifying thus the thermal transfer between clad and coolant. Additionally, it is an exothermic
reaction increasing the cladding temperature.

Zr + 2H2O → ZrO2 + 2H2

The hydrogen produced from the reaction can form hybrids reducing the ductility of the clad
and causing embrittlement. Oxidation increases with coolant temperature increase.

43



• Cladding damage: Fast neutrons cause microstructural defects reducing the cladding duc-
tility.

1.4.1.3 Fuel-cladding gap

Initially, due mainly to cladding creep down, fuel swelling and thermal expansion, the gap closes
around 30 GWd/t as seen in �gure 1.9. The contact occurs �rst at the edges of the "hourglass"
shaped fuel pellet and then the cladding continuous to deform to take exactly the shape of the
pellet. This is called pellet cladding mechanical interaction (PCMI). The gap stays closed for a
period and the cladding follows the fuel swelling. At the end of the fuel's life the gap re-opens.
The gap width and its properties (pressure, �ssion gases) have a signi�cant impact on the thermal
conductivity of the fuel pin. In transient situations, PCMI can lead to cladding failure. The
temperature gradient increases rapidly and the corresponding fuel swelling and �ssion gas releases
induce high tensile stresses on the cladding that may lead to its ballooning and burst.

Figure 1.9: Fuel-cladding gap width evolution with Burn-Up.

A simpli�ed synthetic presentation of the main phenomena a�ecting the fuel rod behavior can be
seen in �gure 1.10.

Figure 1.10: Fuel rod main phenomena during irradiation [5].

1.4.2 Thermomechanical equations

The fuel rod behavior is governed by two equations representing the mechanical and thermal
phenomena [26]. Mechanically di�erent states emerge due to loadings of thermal, mechanical
and chemical origins in the di�erent parts of the rod related to the basic phenomena described
previously. Each state is described by displacements in relation to its previous state that satisfy
the static mechanical equilibrium constraint of equation 1.22. Thermally the heat equation (1.23)
describes the temperature spatial and temporal evolution in the fuel rod. Both equations are
coupled since the mechanical displacements a�ect the e�ciency of the heat distribution in the rod
and the temperature variations impact the loadings.

∇σ = 0 (1.22)
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ρ(~r)cp(~r)
dT (~r)

dt
−∇λ(~r)∇T (~r) = Pv(~r) (1.23)

Where:

� σ is the stress tensor and ρ is the density.

� cp is the speci�c heat capacity and λ is the thermal conductivity.

� T is the temperature and Pv is the volumetric power generation.

The basic assumptions for the derivation of these equations are:

1. Quasi static mechanical behavior of the fuel rod

2. Isotropic heat �ux di�usion

There many ways to model the above mentioned equations. In the following Section we will focus
on the modeling aspects relevant to ALCYONE V1.4 code since it is the code used in this thesis
for the fuel-thermochanics modeling.

1.4.3 Modeling

The two equations are quite general and in order to solve them di�erent physical and empirical
models are used to represent the contribution of each phenomenon. The di�erent models are
de�ned separately for the phenomena in the fuel pellet, the cladding and the gap between them
[27], [28].

1.4.3.1 Mechanical

The constitutive mechanical laws describe the relation between stress and strain. Strain is directly
linked with the displacements. For example in radial direction er = dur

dR with er, ur, R the radial
strain, radial displacement and the radius. The total induced di�erential strain can be decomposed
in elastic and non-elastic parts:

dεt
dt

=
dεe
dt

+
dεi
dt

(1.24)

The relation between stress and elastic strain is:

dσ

dt
= C :

dεe
dt

(1.25)

Finally we can combine both equations to:

dσ

dt
= C :

[dεt
dt
− dεi

dt

]
(1.26)

Where C = f(E, ν) is the 4th order elastic tensor of the material which is a function of ν the
Poisson's ratio and of E the Young's modulus that depends on temperature and porosity. With this
de�nition we can de�ne the di�erent stress-strain equations for fuel and cladding by introducing
their inelastic strain contributions. For the fuel it is the cracking, creep, swelling and thermal
expansion. In the swelling term solid and gas swelling together with the densi�cation are taken
into account.

dσf
dt

= Cf :
[dεf,t
dt
− dεf,crack

dt
− dεf,creep

dt
− dεf,swell

dt
− dεf,thermal

dt

]
(1.27)

• Cracking
Once the yield stress is reached the development of micro-cracking until the rupture is mod-
eled by a linear softening stress strain law. The strain will increase as the stress decreases
until zero when the rupture occurs. The yield stress criterion is de�ned as:

Fcrack = ni :
[
σf −Rf (εf,crack))

]
= 0 (1.28)
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Where Rf is the tensile strength tensor and is the above mentioned linear function of the
inelastic cracking strain tensor εf,crack. The strain rate can be calculated by the consistency
of the above equation described as dF = 0 for the conditions between the yield stress reach
and the rupture.

ni :
dεf,crack

dt
=

ni :
dσf
dt

ni :
dRf

dεf,crack
: ni

(1.29)

Where Ecrack =
dRf

dεf,crack
is the 4th order tensor softening modulus. More details are provided

in [29] and [1].

• Creep
The creep strain rate in the fuel is modeled by an incompressible viscoplastic formulation:

dεf,creep
dt

=
3

2

dεeqf,creep(σ
eq
f , τf , Tf , pf )

dt

Sf
σeqf

(1.30)

Where:

� σeqf is the Von-Mises equivalent stress.

� Sf = σf − 1
3 tr(σf )I is the deviatoric stress tensor with I the identity tensor.

� εeqf,creep is the equivalent plastic strain deformation. It is a function of the Von-Mises
equivalent stress, the �ssion reaction rates τf , fuel temperature Tf and fuel porosity pf .

• Swelling
The swelling strain rate is the sum of the solid swelling, densi�cation, and gas swelling.

dεf,swell
dt

=
dεf,ss
dt

+
dεf,d
dt

+
dεf,gs
dt

(1.31)

The solid swelling depends on the �ssion products evolution and thus is modeled by a function
of fuel density ρf and burn-up evolution dBU

dt .

dεf,ss
dt

=
1

3
Aρf

dBU

dt
I (1.32)

The densi�cation is a function of burn-up f(BU):

dεf,d
dt

=
1

3

df(BU)

dt
I (1.33)

The porosity evolution due to densi�cation is calculated by the empirical correlation of equa-
tion 1.34, where P0 is the fabrication porosity and G is the solid �ssion product swelling.

P =
P0 −G
1−G (1.34)

The gas swelling strain rate is modeled by a set of di�erential equations describing its gen-
eration, di�usion, release in free volumes and other main phenomena. More details can be
found in [30]

• Thermal expansion
The thermal strain rate tensor is proportional to the fuel temperature rate.

dεf,thermal
dt

= af
Tf
dt

(1.35)

Where af is the diagonal tensor with elements the fuel dilatation coe�cients for each direc-
tion.
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For cladding constitutive stress-strain equation the strain is decomposed in viscoplastic, creep and
thermal expansion contributions.

dσc
dt

= Cc :
[dεc,t
dt
− dεc,v

dt
− dεc,creep

dt
− dεc,thermal

dt

]
(1.36)

• Viscoplastic
Using the Hill's quadrature yield criterion σeqc,hill =

√
σc : Hc : σc, where H

c is a 4th order

tensor depending on cladding temperature and fast neutron �ux, the viscoplastic strain rate
is written as:

dεc,v
dt

=
dεeqc,v
dt

Hc :
σc

σeqc,hill
(1.37)

Where
dεeqc,v
dt is the equivalent viscoplastic strain rate depending on cladding temperature,

stress tensor and fast neutron �ux. More details can be found in [31].

• Creep
The cladding creep strain rate is modeled in a similar way with the fuel with the di�erence
that the equivalent strain plastic deformation is a function of time t, cladding temperature
Tc and fast neutron �ux φp.

dεc,creep
dt

=
3

2

dεeqc,creep(σc,eq, φ
p, Tc)

dt

Sf
σc,eq

(1.38)

• Thermal expansion
Similarly to fuel the thermal strain rate tensor is proportional to the cladding temperature
rate.

dεc,thermal
dt

= ac
Tc
dt

(1.39)

Where ac is the diagonal tensor with elements the cladding dilatation coe�cients for each
direction.

1.4.3.2 Thermal

The modeling of thermal heat equation is done by using laws for thermal conductivity and thermal
capacity of cladding and fuel detailed in [32] and [26]. The fuel thermal conductivity is a function
of burn-up, porosity and temperature λf (BU,P, Tf ). The cladding thermal conductivity λc(Tc)
and the speci�c heat capacities for both cladding and fuel are functions of temperature cp,f (Tf ),
cp,c(Tc). While now the heat equations can be solved in the fuel and cladding, the temperature
di�erence in the gap must still be determined. This is done by a dedicated gap heat transfer model
calculating the coe�cient hgap [33]. The temperature di�erence, with some simpli�cations, can be

seen as ∆Tgap =
q′′gap
hgap

, where q′′gap is the thermal heat �ux reaching the gap. The gap heat transfer
model de�nes the hgap as the sum of three heat transfer terms hgap = hrad + hcond + hcont. The
radiation hrad, conduction hcond and contact hcont.

• Radiation
The radiative contribution is small during normal operation where the temperatures are low
but under accidental situations it can potential have an important impact. It is described by
the relation:

hrad =
Cs

1
ef

+ 1
ec
− 1

T 4
f,s − T 4

c,s

Tf,s − Tc,s
(1.40)

Where:
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� Cs is the Stefan-Boltzmann constant.

� ef and ec are the fuel and cladding emissivities.

� Tf,s and Tc,s are the external fuel and internal cladding surface temperatures.

• Conduction
The conduction heat transfer term can be seen as a series of thermal resistances in the gap
and the fuel and cladding surfaces. With some simpli�cation the conduction term can be
written as:

hcond =
λgap

s+ β2(∆Rf + ∆Rc) + lf + lc
(1.41)

Where:

� λgap is the gap thermal conductivity a�ected by the �ssion gas releases.

� ∆Rf and ∆Rc are the arithmetic mean roughness for fuel and cladding surfaces.

� s is the gap width and β2 is a model parameter.

� lf and lc are the gas extrapolation lengths for fuel and cladding surface. The extrapo-
lation lengths allow to take into account the e�ective gap seen by the gas molecules. It
is especially important when the gap width is small in comparison with the gas mean
free path.

• Contact
When there is contact between the fuel pellet and the cladding the heat transfer improves
depending mainly on the contact pressure [34]. It is modeled by the contact heat transfer
coe�cient.

hcont = β5λ∆R

(
Pc

∆R
2
σg

)β6

(1.42)

Where:

� Pc is the contact pressure.

� β5 and β6 are model parameters.

� λ and ∆R are the mean conductivity and roughness of fuel and cladding.

� σg is the minimum between the fuel and cladding yield stress tensor.

It is important to notice that there are additional models for calculating the high burn up struc-
ture and cladding oxidation detailed in [26]. These models have a direct impact in reducing the
conductivity of the fuel and the cladding. Indirectly they a�ect the �ssion gas releases in the gap
and the cladding ductility. These aspects can have a very important role during accidents.

1.4.3.3 Boundary conditions

In order to solve the equations mechanical and thermal boundary conditions are needed. The
mechanical ones are:

� The loading on the external surface of the cladding is the �uid pressure.

� There is no �uid penetration through the walls.

� Unilateral fuel pellet cladding contact

� Equal axial strains for fuel and cladding.

The thermal boundary conditions are related to the quantities provided by other codes or by
integrated simpli�ed models:

� The power generation in the fuel rod. Usually average values are given in the whole fuel
pellet and the radial pro�le is reconstructed based on simpli�ed neutronic models or empirical
correlations.

� The cladding wall temperature.
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1.4.3.4 Numerical discretization

In thermal-hydraulics we will see that di�erent channels are de�ned (e.g. quarter of assembly).
Usually for each channel one representative fuel pin is modeled by the fuel-thermomechanics code.
The di�erent fuel pins are treated independently and their modeling can be easily parallelized. For
their space discretization �nite elements are used. The fuel pin is discretized axially and radially
in meshes as illustrated in �gure 1.11.

Figure 1.11: Axial and radial discretization of a fuel pin [1].

Each axial mesh is modeled using a 1D axisymmetric radial geometry with plane strain deformation.
The axial stress is considered independent of the axial position and depends on the gap pressure
creating a coupling between the slices. The mechanical equilibrium equation is integrated and the
radial displacements ur together with the axial strain εzz are calculated. The heat equation is solved
and the temperatures are calculated on the de�ned radial grid for each slice. Concerning the time
discretization, a Gauss-Seidel coupling between thermal and mechanical modeling is performed for
each slice and time step. This is presented in �gure 1.12. The iterations stop based on convergence
criteria for radial temperature distribution, gap width and gas swelling [26].

Boundary 
conditions

Thermal

t

Mechanical Convergence
Gap   

Pressure

Yes

No

Iterations on the axial slices

t + dt

Figure 1.12: Thermal - Mechanical coupling scheme.

1.4.4 ALCYONE V1.4 code

ALCYONE V1.4 [35] is a 3D �nite element code PWR fuel code developed by a common project
between CEA, EDF and Framatome within the PLEIADES framework [36]. The CASTEM [37]
�nite elements code is used for space discretization in both the thermal and mechanical modeling.
ALCYONE V1.4 [35] can treat the fuel rod evolution under both nominal and transients conditions.
For the thesis purposes the 1D approach described in the Section 1.4.3.4 is used.

1.5 Thermal-hydraulics modeling

1.5.1 Basics

The �eld of thermal-hydraulics studies the coolant �ow behavior in the di�erent systems of the
PWR from core to steam generator and condenser. In the context of the thesis we focus in the
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core region where, at nominal conditions, liquid water is entering from the bottom of the fuel
assemblies with an average mass �ow rate of 18000kg/s at an average temperature 290◦C. It
receives heat from the power generation along the core and exits from the top at an average
temperature of 330◦C under nominal pressure of 155 bars. The reactor conditions, the geometry
and the power produced in the core have an important impact on the water �ow. Before presenting
the constitutive equations we introduce basic thermal-hydraulic phenomena occurring in a PWR
and related quantities [25], [38].

1.5.1.1 Heat transfer

The heat generated in the core leads to temperature increase in the fuel and cladding. The liquid
water �owing through the assemblies serves as a coolant and extracts the generated heat. This
can result in the formation of vapor bubbles. Two-phase �ow regimes are created with di�erent
mechanisms of heat transfer:

• Single phase �ow: The cladding wall temperature is inferior to the saturation temperature
of the liquid and thus the liquid temperature does not reach saturation. There is no vapor
formation resulting in a single phase �ow convective heat transfer.

• Sub-cooled boiling: In this case the cladding wall temperature is superior to the �uid
saturation temperature but the �uid bulk temperature has not reach saturation yet. This is
called sub-cooled boiling. At a �rst phase initiated at the Onset of Nucleate Boiling (ONB),
small vapor bubbles are created near the cladding wall but cannot leave the wall because
they instantly condensate. Both the liquid and wall temperature increase weakly in this
phase. When the water temperature is high enough (Onset of Signi�cant Void) the bubbles
can leave the wall and transfer to the bulk of the water.

• Vapor �lm boiling: If the heat �ux coming from the fuel is higher than a critical threshold
called Critical Heat Flux (CHF) then the �uid around the cladding vaporizes enough creating
a vapor �lm. The heat transfer reduces signi�cantly leading to an instant increase of the
cladding temperature. The phenomenon is called Departure from Nucleate Boiling (DNB)
and is a crucial phenomenon for safety studies.

1.5.1.2 Mass transfer

During the axial �ow, as we mentioned, vapor can be produced from sub-cooled boiling. Since
the vapor bubbles are generated near the cladding surface where the temperature is higher can
condense as they move towards the bulk of the water. There is thus a mass transfer between vapor
and liquid.

1.5.1.3 Pressure drop

There is a pressure drop on the coolant along the axial �ow due to three main e�ects: gravity,
acceleration and friction. Friction is a result of the continuous along the �ow wall friction and of
the singular friction due to local obstacles like mixture grids. The presence of vapor a�ects the
friction and thus must be taken into account. The acceleration pressure drop is related to the
density decrease and is signi�cant only when vapor appears due to the density di�erences between
the two phases.

1.5.2 Balance equations

The behavior of the coolant �ow in the core is described by a general set of local instantaneous
balance equations of mass, momentum and energy on a constant control volume V (eulerian form).
There is one set of equations for each �eld and one for the interface between two �elds. Since we
focus on liquid and vapor phases of water there are a total of 9 equations. For liquid and vapor
phase k = l, v the local mass balance equation and the balance at their interface are:

∂ρk
∂t

+ ~∇ · (ρk ~υk) = 0 (1.43a)

ρl(~υi − ~υl) · ~nl + ρv(~υi − ~υv) · ~nv = 0 (1.43b)
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Where:

� ρk and ~υk are the phasic densities and velocities.

� ~υi is the velocity of the interface between the two phases and ~nl = − ~nv the normal vector
on the interface.

The local momentum balance equation and the balance at their interface are:

∂ρk ~υk
∂t

+ ~∇ · (ρk ~υk ⊗ ~υk) = ρk~g + ~∇ · (τ − pI) (1.44a)

ρl(~υl − ~υi) · ~nl(~υl − ~υv) = (τ − pI)l · ~nl + (τ − pI)v · ~nv (1.44b)

Where:

� ~g is the gravity force per unit mass.

� τ is the shear stress tensor per unit area.

� p is the isotropic pressure and I the unitary tensor.

The local energy balance equation and the balance at their interface are:

∂ρkuk
∂t

+ ~∇ · ρkhk ~uk = ρk~g · ~uk + ~∇ · (τ · ~υk)− ~∇ · ~qk′′ + q′′′ (1.45a)

ρl(~υl − ~υi) · ~nl(ul − uv) = (τl · ~υl − τv · ~υv) · ~nl − (pl · ~υl − pv · ~υv) · ~nl − (~ql
′′ − ~qv

′′) · ~nl (1.45b)

Where:

� uk = ui + 1
2υ

2 is the stagnation energy and hk = uk − p
ρk

its corresponding enthalpy.

� q′′′ expresses both the volumetric heat source due to the heat �ux at the cladding external
surface and the power density deposition in the �uid.

� ~qk
′′ is the heat �ux induced by thermal conductivity and turbulent mixing.

All the above equations are derived without considering surface tension on the interface. If the
surface tension is included additional terms are included in the interface equations to represent the
resulting accumulation of mass, momentum and energy. More details can be found in [38].

The modeling of these equations in the reactor core has rapidly evolved the last decades with
the increase of computational power. Computational Fluid Dynamics (CFD) codes have been
developed for two-phase �ow with various degrees of approximations. The di�erent CFD currently
available methods di�er on the treatment of time and space linked to the turbulunces and two-
phase interfaces. A state of the art of these methods can be found in [39] and [40] from local Direct
Numerical Simulations (DNS) to open medium Large Eddy Simulations (LES), (U)RANS and
porous medium approaches at an assembly channel or fuel rod/sub-channel scale. A qualitative
representation of a quantity with the di�erent methods is illustrated in �gure 1.13.
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Figure 1.13: Modeling of a thermal-hydraulic quantity using DNS, LES, RANS, URANS and
Porous methods.

In DNS the local instantaneous equations are solved directly taking into account all the turbulences
and the two-phase interfaces. For this reason it is a computationally expensive method used for
very local phenomena at the scale of µm. LES method can be a computationally more e�cient
alternative for larger scales of the order of mm. They are used for simulations inside an assembly.
The interfaces are treated through space �ltering where interfaces with length larger than the
�lter size are simulated directly while the ones with length smaller than the �lter size are treated
statistically. This method can be applied when the �lter size is smaller than the turbulence scales.
(U)RANS is a method using statistical time averaging for both the turbulences an the interfaces
leading to average quantities such as the void fraction. For 3D core design and safety studies the
computational cost of the previously mentioned methods is still prohibitive. Besides that, there
is no need to go beyond the subchannel scale (cm), calculate the �ne pro�les of the important
quantities (e.g. velocity) and track the exact evolution of the interfaces. For these reasons, porous
medium methods are used to calculate the evolution of macroscopic quantities up to the subchannel
scale. The physical quantities in the balance equations are both averaged spatially at this scale
and in time using (U)RANS techniques. The time �lter size must be large enough to average the
high frequency turbulences but small enough for the transient evolution. Additionally, since in the
subchannel scale there are solid structures, the equations have to be multiplied by a characteristic
�uid/solid function representing the presence presence of �uid or solid in the considered volume
respectively. The interfaces are treated statistically or implicitly by heat, mass and momentum
transfer models.

The porous medium modeling with 4 equations is used in this thesis with the thermal-hydraulic
code FLICA4. In the following Section the modeling aspects relevant to FLICA4 are presented.

1.5.3 Porous medium modeling with 4 equations

The balance equations for the two-phase mixture and the mass balance for the vapor consist a total
of 4 equations to be solved [41]. The integration is performed on an elementary volume without
explicit modeling of the �uid and solid structures and thus a characteristic function called porosity
is applied to distinguish between �uid and solid. Besides that, for the two phases a space and time
averaging of quantities governing the equation is applied. Finally closure laws are necessary to
solve the equations together with boundary conditions and a numerical discretization.

1.5.3.1 Space averaging

In the elementary volume V , where both solid structures and �uid are present in the medium, the
volumetric average of a quantity w(~r) with ~r ∈ V is de�ned as:

< w(t) >=
1

V

∫
V

w(~r, t)dr (1.46)
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Considering Vf as the volume of the �uid in V and if we assume that the solid structures are
immobile, the porosity of the medium can be de�ned as:

φ ≡< χf (t) >=
Vf
V

(1.47)

Where χf (~r, t) is the local �uid/solid characteristic function. With this de�nition of the porosity
we obtain the following equivalence for the �uid volumetric average of a quantity:

< w(t) >f=
< χf (t)w(t) >

< χf (t) >
(1.48)

1.5.3.2 Time averaging

The time is descritized for the solution of the equations and in each time step average quantities
are computed:

w(~r) =
1

∆T

∫
∆T

w(~r, t)dt (1.49)

The ∆T size must be large enough to average high frequency two phase �uctuations but small
enough compared to the evolution of transient phenomena that we want to study.

1.5.3.3 Phase function

The presence of phase k = l, v is described by the phase characteristic function αk(~r, t) that equals
1 when phase k is present and 0 otherwise. This leads to the de�nition of void fraction as:

< α >=
1

V

∫
V

αv(~r, t)dr =
Vv
V

(1.50)

Where Vv is the volume occupied by the vapor in the volume V . This phase function is used
together with the phasic densities to de�ne the average phasic quantities:

{w}kf =
< αk ρk w >f
< αk ρk >f

(1.51)

Where αv =< α > and αl = 1− < α >. The mixture quantities are averaged with a similar
ponderation:

{w}f =
< ρk w >f
< ρk >f

(1.52)

1.5.3.4 Balance equations

There are a total of 4 equations: mixture mass balance (sum of liquid and vapor mass balance
equations), vapor mass balance, mixture momentum balance and mixture energy balance. For each
quantity of the two phase �ow balance equations we will use its corresponding phasic or mixture
average but we will keep the same notation as in the general previous framework by omitting the
averaging symbols. The 4 equations are written as:

φ
∂ρ

∂t
+ ~∇ · (φρ~υ) = 0 (1.53a)

φ
∂ρc

∂t
+ ~∇ · (φρc~υ) = −~∇ ·

[
φρc(1− c) ~υr

]
+ ~∇ ·KT

~∇c+ Γv (1.53b)

φ
∂ρ~υ

∂t
+ ~∇ · (φρ~υ ⊗ ~υ) = −~∇ ·

[
φρc(1− c) ~υr ⊗ ~υr

]
+ φρ~g + ~∇ · φ(τ − pI) + φτf (1.53c)

φ
∂ρu

∂t
+ ~∇ · φρh~υ = −~∇ ·

[
φρc(1− c)(hv − hl) ~υr

]
+ φρ~g · ~u+ ~∇ · φ(τ · ~u)− ~∇ · φ~q′′ + φq′′′ (1.53d)

• Equation 1.53a is the mixture mass balance. The two terms correspond to the temporal and
advective contributions with ρ and ~υ the mixture density and velocity.
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• Equation 1.53b is the vapor mass balance. The �rst two terms again correspond to the
temporal and advective contribution with c = αvρv

ρ and ~υr = ~υv − ~υl is the relative velocity.
The third and forth are the dispersions average and turbulent contributions with KT the
turbulence di�usion coe�cient. The �fth term Γv is the vapor mass production due to
vaporization occuring in contact with the heating walls and due to mass exchange at the
liquid-vapor interface.

• Equation 1.53c is the mixture momentum balance. The �rst three terms represent the tem-
poral, advenction and average dispersion contributions. The forth and �fth are the gravity
and stress contributions. The sixth is the friction force.

• Equation 1.53d is the mixture energy balance. The �rst three terms represent the temporal,
advenction and average dispersion contributions. The forth and �fth are the gravity and
stress contributions while the sixth and seventh are the wall heat �ux and volumetric heat
sources contributions.

Some of the main assumption made to derive these equations are:

1. The mixture is considered isobaric.

2. The vapor is considered to be at saturation.

The derived set of equations need some closure laws in order to be solved since terms like the
relative velocity and the stress gradient must be modeled.

1.5.3.5 Closure laws

There are many options for each closure law. In the following we list the ones used in this thesis
detailed in [42] and [43].

• Equations of state: The phasic properties (e.g. density, enthalpy, viscosity) are functions
of pressure and temperature. We consider isobaric pl = pv = p and isothermal Tl = Tv = T
conditions. Vapor is considered to be at saturation and thus the equations of state for
densities and enthalpies reduce to:

ρl = ρl(p, T ) , hl = hl(p, T ) , ρv = ρv(p), , hv = hv(p) (1.54)

The mixture density and enthalpy are de�ned as ρ = αρv + (1− a)ρl and h = chv + (1− c)hl
respectively.

• Relative velocity: Drift �ux models are used expressing the vapor velocity as:

υv = C0J + υvj (1.55)

Where:

� J is the volumetric �ux.

� C0 is a concentration parameter representing the global e�ects due to void and velocity
pro�les.

� υvj is the e�ective drift velocity and represents the local relative velocity e�ects.

Ishii correlations are used for calculating C0 and υvj .

• Heat transfer: The temperature on the cladding wall Tw, the �uid temperature Tf and the
wall heat �ux Φw describe the three heat transfer modes presented in the thermo-hydraulics
basics. They are modeled by di�erent correlations and transitions conditions:
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� Single phase �ow: Tw < Tsat + ∆Tsat, where Tsat is the saturation temperature and
∆Tsat is modeled by the Jens & Lottes correlation. The temperature di�erence is
calculated by:

(Tw − Tl) =
Φw
Hc

(1.56)

Where Hc is the convective heat transfer coe�cient calculated by Dittus Boelter ex-
pression.

� Sub-cooled boiling: Tw = Tsat+∆Tsat and Tl < Tsat. This heat transfer is characterized
by a constant wall temperature. The thermal �ux now is divided in two fractions,
one that heats the sub-cooled water (moderate heat transfer) and one that creates
the vaporization (very e�cient heat transfer). The vaporization fraction increases as
the �uid temperature increases. In PWR nominal operating conditions the saturation
temperature is not reached and thus nucleate boiling does not occur.

� Vapor �lm boiling: It is initiated when DNBR = Φc
Φw

< 1.3. DNBR is the Departure
From Nucleate Boiling Ratio. Φc is the CHF depending mainly on the pressure, mass
�ux and quality and is calculated by W3 correlation. The value 1.3 is a penalization
taking into account the uncertainties of the CHF correlation. When this limit is reached
a post-DNB vapor �lm heat transfer occurs described by:

(Tw − Tfilm) =
Φw
HBST

(1.57)

Where Tfilm = 0.5(Tw + Tsat) and HBST is the heat transfer coe�cient calculated by
Bishop-Sandberg-Tong expression.

• Mass transfer: It models the vaporization of liquid that is divided in two parts Γv =
Γv,w + Γv,I . The �rst term represents the vapor generation on a heating surface:

Γv,w = XSh
Φw

hv,sat − hl,sat
(1.58)

Where Sh is the heated surface in the elementary volume and X is a fraction representing the
fraction of the heat �ux used to vaporize the liquid. If Tw < Tsat+∆Tsat there is single phase
�ow and X = 0 and if Tl = Tsat there is nucleate saturated boiling and X = 1. Between the
two conditions:

X =
Tw − Tsat −∆Tsat
Tw − Tl −∆Tsat

(1.59)

The second term represents the mass transfer at the interface (e.g. condensation) and it is
calculated by:

Γv,I =
ΦI

hv,sat − hl,sat
(1.60)

Where ΦI is the heat transfer at the interface calculated by a recondensation model.

• Momentum transfer: It is the modeling of friction and shear stress related contributions.
Friction occurs with the solid structures in contact with the �uid �ow. It is modeled by:

τf = −1

2
ρ~υ‖~υ‖

(
Λk
Dh

+Ks

)
(1.61)

Where:

� Dh = 4A
Pw

is the hydraulic diameter with A the cross-section �ow area and Pw and
wetted perimeter.
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� The tensor Λk accounts for the continuous friction distributed along the wall and is
calculated by a correlation based on an isothermal friction coe�cient and corrections
taking into account the heated wall and the two phase �ow.

� The tensor Ks accounts for singular pressure drops due to local obstacles (e.g. mixing
grids) and is provided by the user when the geometry is de�ned.

The shear stress tensor is modeled by:

τkij = µk(1 +M t
k)

(
∂υik
xj

+
∂υjk
xi

)
(1.62)

Where µkM t
k is the turbulent viscosity for each phase k.

• Thermal source: They consist the two last terms in the mixture energy balance. The �rst
one is the heat �ux induced by thermal conductivity and turbulent mixing:

~q′′ =
λl
cp,l

(1 +KT )∇hdeb (1.63)

Where:

� λl and cp,l are the �uid conductivity and speci�c capacity.

� hdeb is the debiting enthalpy de�ned as hdeb = Gvhv+Glhl
G with Gk and G the phasic

and mixture mass �ow rates.

The second term accounts for the heat �ux at the cladding external surface and the volumetric
heat sources in the elementary volume mainly due to photon energy deposition.

q′′′ = Qf +
ΦwSw
Vf

(1.64)

Where:

� Sw is the wall surface.

� Vf is the �uid volume.

� Qf = γ PtotVf
is the power density deposition in the �uid calculated as a small fraction

γ = 0.026 of the total power Ptot produced in the core.

1.5.3.6 Boundary conditions

Two di�erent categories of boundary conditions are necessary:

� Thermal power conditions: they require the computation of the heat sources. They are
provided by solving the power generation (neutronics) and heat conduction equations (fuel
thermomechanics). Di�erent codes can be used to solve thoses equations.

� Hydraulic �ow conditions: a selection of the mass �ow, �uid enthalpy and pressure are
given at the inlet and outlet of the geometry. For the 4 equation porous modeling in this
thesis the mass �ow and enthalpy are given at the inlet while the pressure is given at the
outlet.

For REA calculations the thermal power boundary conditions vary in time.

1.5.3.7 Numerical Discretization

For space discretization �nite volume method are used where the balance equations are integrated
on a discretized mesh. In each mesh the solutions (ρ, ρc, ρυ, ρu) are considered constant. The
integration of the equations leads to the calculation of these quantities on the interface between the
meshes. For the convective terms an approximate Riemann solver is used while for the di�usive a
VF9 calculation scheme is adopted. For time discretization an implicit scheme solved by a Newton
method is used where the Newton residual is calculated by a preconditioned conjugate gradient.
More details can be found in [1] and [42].
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1.5.4 FLICA4 code

The code used for the thermal-hydaulics modeling in this thesis is FLICA4 [44] [45], a 3D two-
phase �ow code specially devoted to reactor core and developed at CEA. It uses porous medium 4
equation modeling presented previously. Most of the types of reactors and experimental facilities
can be modeled under both stationary and transient conditions. In the context of the thesis the
radial discretization is one thermal-hydraulic channel per quarter of assembly and the axial is 30
meshes along the active fuel length. The re�ector is not modeled. FLICA4 is used in a multi-1D
axial modeling by considering the channels to be isolated.

1.6 Multi-physics Rod Ejection Accident (REA)

REA may occur in a nuclear reactor if there is an unwanted increase in �ssion rate and reactor
power due to a control rod ejection that may damage the reactor. It is a design basis accident,
classi�ed as a category 4 event (i.e. with a frequency of occurrence evaluated at 10−4 − 10−6 per
reactor, per year). A control rod is ejected after experiencing a mechanical failure of the driven
mechanism resulting in a strong pressure di�erence between the internal (155bar) and the external
(1bar) of the core. The ejection duration is very short (0.1s) due to this pressure di�erence. The
control rod is made of neutrons absorbents to control the �ssion rates in the reactor and thus its
fast removal will induce an insertion of positive reactivity in the core that will increase rapidly the
�ssion rates and consequently the power. The radial map of the power is expected to be deformed
leading to a high deformation factor around the area of the ejection as can be seen in �gure 1.14.

The intensity of the transient will depend on the reactivity inserted ρinj and the e�ective delayed
neutron fraction βeff . If ρinj > βeff the transient evolution is governed by the prompt neutrons
and thus is more violent (supercritical prompt transient). In REA studies two reactor initial con-
ditions prior to the ejection are considered: Hot Full Power (HFP) when the reactor is at nominal
power and temperature conditions and Hot Zero Power (HZP) when the reactor is shutdown but
still with a reactor temperature of 290◦C. The latter leads to more violent transients and poten-
tially prompt neutron driven because at HZP the control rods are inserted deeper in the core. This
means that the control rod worth and thus the injected reactivity is larger. For this reason we
consider HZP initial conditions. Three di�erent phases can be identi�ed during REA governed by
di�erent physical aspects:

1. The �rst phase, where the transient starts followed by rapid local increase in power due to
the insertion of positive reactivity. The phenomenon is considered quasi-adiabatic because
the temperatures of the cladding and coolant do not increase signi�cantly due to thermal
inertia of the fuel. This phase is governed mainly by neutronics.

2. The second phase, where the temperature of the fuel starts rapidly to increase leading to
a Doppler feedback e�ect. As we have seen the increase of fuel temperature will lead to
the broadening of the U-238 absorption resonances resulting in more neutrons absorptions
and thus exerting a negative feedback e�ect on the reactivity and a corresponding decrease
of power. It is important to notice that until the end of this phase the heat �ux does not
reach the coolant, and thus the coolant temperature and density are more or less constant
at its initial value. This phase is governed mainly by neutronics strongly coupled with fuel-
thermomechanics.

3. The third phase, where the heat is transferred to the coolant leading in a thermal-hydraulic
evolution of the system. The cladding temperature increases during this phase and if DNB oc-
curs it can exceed its melting point inducing a failure of the cladding. The coolant-moderator
temperature is increasing and the density decreasing. This leads to a negative moderator
feedback e�ect due to the less e�ective slowing down of neutrons (spectrum hardening). The
Doppler combined now with the moderator feedback e�ect decrease the power even more. At
the end of this phase the SCRAM safety system will react and insert the remaining control
rods. The whole transient duration is of the order of 1-2 seconds. This phase is governed by
strong coupling between neutronics, fuel-thermomechanics and thermal-hydraulics.

Under the REA three phases, fuel pellet and cladding experience di�erent phenomena a�ecting
their integrity and properties.
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Figure 1.14: Power evolution during REA.

1.6.1 Fuel pellet behavior

The main phenomena occurring in UO2 fuel pellets are: heat up, fragmentation, swelling and
�ssion gas releases. Adiabatic heat up occurs in the initial phase and the radial temperature
follows the radial power pro�le with peak at the periphery for irradiated fuel. In the later stages of
the transient (phase 3) when the heat is conducted the temperature pro�le approaches its normal
parabolic shape. This behavior can be seen in �gure 1.15. For this reason the fuel melting, if
it occurs in the �rst two phases of the transient, will happen close to the fuel pellet periphery.
The local melting UO2 temperature for un-irradiated fuel is 3120K and the associated enthalpy is
1150J/g. For irradiated fuel these limits are reduced.

Figure 1.15: Radial fuel temperature distribution during a REA [6].

Circumferential cracks can occur in fuel pellets during the phase 1 and 2 due on the boundary of
the high burn-up structure induced by tensile stresses. During the late stages of the transient radial
cracks are created due to tensile hoop stresses. Additionally, retained �ssion gases are released in
the gap and increase the internal gas pressure creating �ne fragments. This is enhanced by the
fuel cracks and the higher fuel temperature and gas concentration in the "rim" region that induce
grain boundary decohesion. Fuel transient swelling by the growth of pores and bubbles is shown
by experimental results to be less important than thermal expansion in their contribution to the
gap closure. This can lead to a pellet cladding mechanical interaction (PCMI) during the initial
phase of the transient.

1.6.2 Cladding behavior

The main phenomena occurring in the zircaloy IV cladding are: heat up, transient deformation,
water corrosion and failure. The heat up occurs mainly by heat conduction from the fuel pellets
in the third phase of REA and depends strongly on the width and condition of the gap (delayed
heating). Besides that, heat up occurs also through gamma attenuation directly with the power
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increase in the �rst two phases of the transient (prompt heating). Since heat up occurs mainly
through conduction the cladding inner surface temperature is higher than the outer one inducing
thermal stresses and a�ecting the local ductility. In the third phase the heat extracted by the
coolant can lead to DNB resulting in a rapid increase in cladding temperature. The local melting
temperature for the cladding is 2035K.

Thermal expansion, pressure di�erence and the potential PCMI lead to cladding deformation
during the transient. In the �rst phase of the transient PCMI may have a big impact whereas
pressure di�erence on the later phase.

High cladding temperatures occurring in post-DNB conditions accelerates cladding corrosion through
oxidation with UO2 fragments in the inner surface and with coolant water on the outer surface.
This causes embrittlement and decrease of ductility that can lead to failure during the last phase
of the transient. Besides that, hydrogen is also produced and di�uses to the cold surface of the
cladding. When its local concentration exceeds the maximum solid solubility zirconium hydrides
precipitations occur further reducing the ductility of the cladding.

Failure of the cladding causes fuel dispersion in the coolant generating pressure pulses that induce
mechanical damages in the nearby components such as the fuel assemblies and the pressure vessel.
There are three main failure modes.

• PCMI occurring in the �rst and second phase of the transient when the fuel pellet heats up
mainly due to expansion. The cladding is at low temperature with low ductility increasing
the probability of failure. This mode depends strongly on the initial conditions of the fuel
rod.

• Cladding ballooning and burst under high temperatures due to post-DNB conditions.

• Cladding disruption under quenching from post-DNB high temperatures during the third
phase of the transient. It occurs due to cladding embrittlement by the enhanced oxidation
under high temperatures.

For HZP initial conditions and prompt driven power pulses the �rst mechanism is more prominent
for high burn-up fuel rods while the other two are more probable for low burn-up rods. A simpli�ed
synthetic overview of the di�erent phenomena and the resulting failure mechanisms is provided in
�gure 1.16.

Figure 1.16: Main phenomena occuring during REA [6].
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1.6.3 Safety

The important quantities determining the general fuel rod behavior under REA are the power
pulse characteristics (peak, width), the coolant conditions (pressure, temperature, �ow rate), the
burn-up state (gap width, cladding corrosion, internal pressure, radial power distribution) and the
fuel rod design (initial geometries, fuel composition, �ll gas pressure). For ensuring the safety of
the reactor during REA, meaning that no failure will occur, limits are being imposed on di�erent
quantities. The limits vary in di�erent countries. We present the main ones based on [46] and [47]:

• Enthalpy limit of the fuel (radial average) in relation with the mechanical stress exerted by
the fuel to the cladding: Deposed enthalpy 837J/g for irradiated fuel and 942J/g for fresh
(Fuel dispersion) → PCMI e�ect.

• Limit on the cladding maximum temperature due to embrittlement and oxidation: Tmaxc <
1482◦C (Cladding fragmentation risk)→ above this temperature uncontrolled hydrogen pro-
duction (exothermic reaction) that can lead to explosion.

• Additional limits: Fuel melt volume < 10% of the total (core melt risk), number of pins with
Boiling crisis < 10% of the total.

1.7 Coupling framework

Multi-physics coupling modeling for PWR transients has been the subject of research across the
world with undergoing projects such as CASL [48] [49] and NEAMS [50] in USA and NURESAFE
[51] in Europe. At CEA, CORPUS project [52] based on SALOME [53] open source software was
developed and recently has been extended to treat REA with neutronics, fuel-thermomechanics
and thermal-hydraulcis [1] BE and Best E�ort coupling capabilities. BE is a coupling representing
the most important phenomena with reasonable accuracy and an optimized computational cost.
Best E�ort is a time consuming coupling with each physic being detailed with few assumptions in
order to model as good as possible the phenomena of interest.

In this thesis the Best E�ort coupling is established between APOLLO3 R©, FLICA4 and ALCY-
ONE V1.4 codes respectively as seen in �gure 1.17. The coupling scheme starting from HZP initial
core conditions involves, at each time step, an initial ALCYONE1 calculations alimenting FLICA4
with the resulting cladding wall heat �ux Φwall. This together with the previous step APOLLO3 R©
results allows FLICA to calculate the cladding wall temperature and coolant density. The cladding
wall temperature is given to ALCYONE1 for a second more accurate calculation and the resulting
e�ective fuel temperature calculated by Rowlands formula is provided to APOLLO3 R© together
with the coolant density from FLICA4. A new neutronic calculation is performed and the itera-
tions continue until a user de�ned threshold. All the exchange quantities are spatial �elds. The
Best E�ort coupling scheme is illustrated in �gure 1.18.

The BE coupling is between APOLLO3 R© and FLICA4. The simpli�ed thermal module of FLICA4
is used without mechanical consideration. It is an explicit coupling starting from HZP initial core
condition. At �rst a FLICA4 calculations is performed using the previous step APOLLO3 R© re-
sults for the power injected in the fuel and the �uid. FLICA4 then calculates the temperature
distribution in the fuel and the corresponding Rowlands e�ective fuel temperature. It also com-
putes internally the cladding wall heat �ux in order to solve the thermal-hydraulics equations and
calculate the moderator temperature and density. These results are given APOLLO3 R© to update
the neutronic results before advancing to the new time step. The iterations continue until a user
de�ned threshold is reached. This coupling can be seen in �gure 1.19. As in the Best E�ort
coupling all the exchange quantities are spatial �elds.
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Figure 1.17: CORPUS coupling framework.

Figure 1.18: Best E�ort coupling scheme.

Figure 1.19: BE coupling scheme.

1.8 Best Estimate Plus Uncertainties (BEPU)

BEPU is a systematic approach where calculations taking into account the most important physical
phenomena with reasonable approximations and estimation of their respected uncertainties are used
for licensing and safety evaluations. The phenomena are usually identi�ed by PIRT7 approaches.
BEPU is a step forward from conservative approaches permitting to reduce the margins in safety
criteria as illustrated in �gure 1.20. The goal is not to eliminate completely conservatism but

7Phenomena Identi�cation and Ranking Table it is an approach applied to di�erent safety scenario. The most
important phenomena are identi�ed together with their degree of knowledge or uncertainty.
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to minimize it based on our current state of knowledge. It is based on the ALARA (As low as
reasonable achievable) principle concerning the radiation risks for human beings and it is a very
complex approach evolving in time. Historically the BEPU concept is around for the last 30 years
with various documents released by NRC, IAEA and other institutions shaping its form. BEPU
has been used in the licensing of two reactors so far: the Angra-2 (Brazil) and the Atucha-2
(Argentina) [54].

Figure 1.20: Safety margins and acceptance licensing criteria [7].

1.8.1 BEPU short history

The rapid increase of nuclear reactors size in USA (60s) lead to the need of new requirements for
safety regulations because the ones applied on smaller scale reactors could not be extrapolated on
the new reactors. Based on the principle of defense in depth the US NRC adopted a conservatism
approach by the release of 10 CFR 50.46b document and some guidance rules in its appendix-K
(70s). In this approach penalized safety acceptance criteria were identi�ed for important quantities
of the reactor and basic guidelines for the modeling of important underlying physical phenomena
were provided.

The increase in the development of Best Estimate codes (mainly concerning Thermal-Hydraulics)
in the 80s highlighted the large margins in the safety calculations. US NRC in 1987 allowed the use
of Best Estimate codes together with a validated uncertainty evaluation methodology for safety
calculations. This lead to a rapid increase in BEPU research in 90s and the release of CSAU: Code
scaling, applicability and uncertainty, a roadmap with 14 general steps that need to be followed for
safety calculations. These steps treated aspects of code validation and veri�cation, applicability,
scaling distortions, nodalization optimization, uncertainty evaluation and many other. A variation
of CSAU with clearer steps was EMDAP: Evaluation model development and assessment process.
Both of these were not complete methodologies but roadmaps that the proposed methodologies will
need to follow. Since then in USA and Europe a big e�ort was made to develop consistent BEPU
methodologies in the following years. In order to apply and compare the di�erent methodologies
international projects like UMS [55] and BEMUSE [56] were created. The results of these projects
highlighted the importance of the input uncertainty quanti�cation and the user and code e�ect.
This lead to the PREMIUM benchmark [57] focusing mainly on the input uncertainty quanti�ca-
tion of the physical models and comparing the results between the existing methodologies. The
results were not satisfactory and the conclusion was that a more systematic approach needed to be
de�ned. This systematic approach was called SAPIUM [58] and is currently under development.
Additionally, UAM benchmark [59] was launched and is currently ongoing concerning multiscale
and multi-physics uncertainty analysis. Di�erent exercises from separate physics at pin scale to
coupled multi-physics at the core scale for both steady state and transient scenarios are included.
More details about BEPU evolution are provided in [60].

1.8.2 BEPU types methodologies

Various BEPU methodologies were developed so far across USA and Europe from both industry
and research institutions [61], [62]. Most of them follow the CSAU roadmap and can be grouped
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in three categories depending on the method used to evaluate the uncertainties: the stochastic
propagation of inputs uncertainties (SPIU), the extrapolation of output uncertainty (EOU) also
called "propagation of output uncertainties") and the deterministic uncertainty estimation (DUE)
[63].

1.8.2.1 Stochastic propagation of input uncertainties

The inputs are treated as uncertain quantities with assigned probability density functions (pdf).
Their uncertainties are propagated to the output quantities of interest using the code. Two di�erent
general approaches exist. In the �rst one Monte Carlo sampling is used to approximate the output's
pdf by the empirical measure of the output sample. This empirical estimation of expectations or
probabilities converge slowly with the sample size8. For this reason the usually time consuming
code is used to explore the inputs domain and then approximated by a surrogate model that can
generate enough evaluations. The empirical measure can then be used to estimate the desired
quantile by the empirical quantile. In the second one the non-parametric Wilk's method is applied
to get a conservative quantile estimation. More exactly the number of simulations needed to
estimate the quantile of interest with a given tolerance is evaluated and the Wilks quantile is then
de�ned as the maximum of the output sample (typically 95% quantile with 95% tolerance is used
in nuclear safety studies). This method uses directly the code for the uncertainty propagation.
The �rst approach was used initially in CSAU while later BEPU methodologies like: GRS, IRSN
and ENUSA used the second one.

1.8.2.2 Extrapolation of output uncertainty

This method consists in identifying Separate E�ect Test (SET) and Integral Test Facilities (ITF)
relevant to the under study nuclear power plant and extract experimental data. The code cal-
culation is run on this reduced scale facilities and its discrepancy with the available data is used
to quantify the uncertainty in the reduced scale and then extrapolate it to the reactor scale. An
emphasis is given on minimizing the user e�ect on nodalization and on the scalability of the ex-
trapolated uncertainties. UMAE and CIAU are examples of this approach.

1.8.2.3 Deterministic uncertainty evaluation

In this method the code is used to calculate the sensitivity of the inputs on the output and then
using the "sandwich rule" estimate the �rst and second moment of the output. The "sandwich rule"
is presented in the following Chapter. The most e�cient method uses only two code evaluations,
the forward and the adjoint solutions to estimate the sensitivities. This method is well adapted
for cases of large systems with many inputs. The Adjoint Sensitivity Analysis Procedure (ASAP)
calculates the local sensitivities assuming linear relationship between inputs and output. The
Global Adjoint Sensitivity Analysis Procedure (GASAP) generalizes ASAP for critical points in
the inputs-output phase-space. Data adjustment and assimilation (DAA) can be used to include
knowledge from experimental measurements in a Bayesian framework. CASUALIDAD [64], [65] is
an approach that includes ASAP/GASAP and DAA in their uncertainty estimation.

1.8.2.4 Synthetic comparison

Each BEPU methodology for estimating the uncertainty of the safety quantities of interest has ad-
vantages and drawbacks. The stochastic propagation of input uncertainties with surrogate models
(SPIU-SM) can estimate the complete output's pdf. However, it introduces an additional approxi-
mation error due to the use of surrogate models and it depends on the inputs assigned pdf. Besides
that, a limited number of inptus must be selected. Stochastic propagation of inputs uncertainties
using Wilk's formula (SPIU-WF) does not have the limitation on input's size, does not introduce
an additional error and is using an optimal number of code calculations but it is limited to esti-
mate the quantile of an output and it assumes that the inputs' pdf are true. The extrapolation of
output uncertainty needs only one core calculation and does not make any assumption on inputs
uncertainty but it needs experimental dataset relevant to the safety analysis and the demonstra-
tion of scaling. The deterministic uncertainty evaluation needs two code evaluations and thus is
well adapted for large scale calculations with many inputs. It can assimilate experimental data to

8For a sample size N the empirical mean converges in 1/
√
N .

63



improve the initial input uncertainty quanti�cation. However, it makes assumptions of linearity
between inputs and outputs, although for critical points this can be overcome. It requires the codes
capabilities of calculating adjoint solutions, something di�cult to be implemented in multi-physics
transient calculations using coupling of di�erent codes. A synthetic comparison of the methods
related to the inputs and outputs uncertainty quanti�cation, the number of code calculations, the
possibility of integrating experimental data and their practical implementation is given in table
1.2. A more detailed comparison is provided in [66].

Table 1.2: Comparison of di�erent types of BEPU methodologies

Inputs Outputs Code calculations Experimental data Implementation

SPIU-SM pdf pdf many no easy
SPIU-WF pdf quantile few no easy
EOU none standard deviation one yes medium
DUE covariance covariance two potentially di�cult

1.8.3 Sources of uncertainties

In a full core PWR transient analysis there are many sources of uncertainties [67]. The main ones
can be grouped in the following categories:

� Modeling: The theoretical equations describing a phenomenon include some assumptions and
simpli�cations. Besides that physical models and correlations induce further errors.

� Input data: Physical (e.g. cross-sections) and technological ( e.g. geometries) quantities in
the physical models and equations are uncertain. Additionally, boundary and initial condi-
tions are also uncertain. Experimental measurements are usually used to quantify the above
mentioned sources of uncertainties introducing potential correlations.

� Nodalization: It involves the di�erent steps for solving a speci�ed modeling introducing
errors and uncertainties. The phase space of the equations is discretized and the geometry
is homogenized. Sometimes a smaller scale geometry is employed inducing scaling e�ects.
Numerical algorithms are used to solve the equations on the selected discretization. These
algorithms converge to approximate solutions.

It is important to highlight that the user e�ect can have a great impact on the sources of uncer-
tainties (mainly on the modeling and nodalization) due to discrepancies in data interpretation and
lack of experience. However, this e�ect is di�cult to quantify.

1.8.4 BEPU research

The continuous development and improvement of BE codes together with increasing BEPU safety
needs motivates the currently ongoing research for applying and improving the current method-
ologies. Some examples of recent works are following. In [68] improvements in thermohydraulic
LWR code assessment and validation and in the input uncertainty quanti�cation of the code inputs
are presented. FFTB method is used to de�ne the variation ranges of each input. In [69] GRS
method is applied for neutronic lattice and core BWR steady state calculations. This method
is also applied on PWR transient control rod drop focusing on thermal-hydraulics inputs. In [70]
they explore di�erent non-parametric methods alternative to Wilks' formula in a PWR Large-Break
LOCA transient. In [71] a BEPU methodology is extended to include knowledge from probabilistic
safety analysis and is applied on a PWR "Loss of feed Water" scenario. In [72] a neutronics, fuel-
thermomechanics, thermal-hydraulics multi-physics BEPU analysis for PWR Large-Break LOCA
transient is performed.

1.9 Motivation and challenges

We saw that in REA strong multi-physics interactions occur between neutronics, fuel-thermomechanics
and thermal-hydraulics that need to be modeled in order to predict accurately the transient evo-
lution. We also presented the di�erent state of the art codes, their modeling and the di�erent
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available coupling schemes developed at CEA. The motivation of this thesis is to use these mod-
eling advancements in an uncertainty quanti�cation framework. This creates many challenges
related to the high computational cost, the large input and output dimensions, dependencies and
interactions between inputs and potential non-linearities and discontinuities in the multi-physics
transient calculations.

In the previously presented BEPU framework it is clear that there is an e�ort to develop methodolo-
gies for uncertainty analysis with industrial applications that can integrate the modeling advance-
ments of state of the art codes. In this thesis the objective is to explore di�erent statistical tools
and di�erent multi-physics coupling schemes to develop an uncertainty quanti�cation methodology
(UQM) that could address the challenges facing the REA modeling.

There are three di�erent levels of homogenization for multi-physics transient modeling: the fuel
pin, the fuel assembly and the whole core. In an equivalent way we can identify three di�erent levels
of uncertainty quanti�cation modeling. These two aspects are used as axes in �gure 1.21 where
their di�erent possible combinations are illustrated. In order to better illustrate this categorization
we focus on the neutronics modeling only.
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(1, 1)
Point kinetics with uncertainties on the core effective quantities (control rod 
worth, Doppler coefficient, etc.).

(1, 2)
Assembly level of homogenization with uncertainties on macroscopic cross-
section applied homogeneously in the whole core.

(1, 3)
Pin by Pin level of homogenization with uncertainties on macroscopic cross-
section applied homogeneously in the whole core.

(2, 2)
Assembly level of homogenization with uncertainties on macroscopic cross-
section taking into account spatial correlations.

(2, 3)
Pin by Pin level of homogenization with uncertainties on macroscopic cross-
section taking into account spatial correlations.

(3, 3)
Pin by Pin level of homogenization with uncertainties on microscopic cross-
sections.

Figure 1.21: Di�erent levels of possible transient (blue) and uncertainty quanti�cation (green)
modeling with examples for neutronics. With red borders we highlight the levels used in this
thesis.

The �rst level for transient modeling is the homegenization of the whole core as used in point
kinetics. This leads to globally averaged physical quantities. The corresponding level for uncer-
tainty modeling would be the homogeneous application of inputs uncertainties in the whole core.
It can be seen as considering the uncertainties spatially fully correlated. The second level for
transient modeling is the assembly scale homogenization as presented in the three step determin-
istic approach of �gure 1.7. This creates 3D physical quantities averaged in each assembly. The
equivalent uncertainty modeling level would be to consider spatial correlations for the inputs. For
example the uncertainty propagation of microscopic cross-sections in lattice calculations can pro-
vide estimate of the correlations between macroscopic cross-sections of each assembly. The third
level for the transient modeling is the homogenization at a pin scale allowing the representation of

65



local heterogeneities inside the assembly. This level for uncertainty modeling would be the uncer-
tainty propagation directly from microscopic physical quantities (e.g. microscopic cross-sections in
neutronics). The dashed arrow indicates the potential evolution of the transient and uncertainty
modeling since we consider that there is no interest for the other modeling combinations. Using
this categorization, the REA study of this thesis is situated in the (1, 2) level. We use an assembly
scale of homogenization for the transient modeling and we apply the uncertainties homogeneously
in the whole core.
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Chapter 2

Overview of Uncertainty

Quanti�cation Methods
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2.1 Introduction

The complexity of Best Estimate (BE) codes increases as we take into account more phenomena.
While this results in an improvement of their accuracy, their predictions will still exhibit uncer-
tainties. This is attributed to various reasons among which the main are: physical quantities,
technological data, physical modeling and phase space discretization. Moreover, in cases of strong
multi-physics coupling interdisciplinary interactions can occur rendering the uncertainty analysis
quite challenging. Large input and output dimensions with dependencies and interactions between
inputs and non-linear inputs-outputs relationships are some of the main challenges. This highlights
the necessity to consider an adequate uncertainty quanti�cation framework, especially for safety
calculations. In such a framework di�erent statistical tools are used in order to take into account
the input uncertainties, propagate them through the codes to outputs of interest and calculate
important statistical quantities. A typical framework for uncertainty quanti�cation is presented in
�gure 2.1.

INPUT UNCERTAINTY 
QUANTIFICATION

MODEL SELECTION

UNCERTAINTY PROPAGATION

SENSITIVITY ANALYSIS

SURROGATE 
MODELS

DESIGN OF 
EXPERIMENTS

CODE OUTPUTSINPUTS

MODEL/ANALYSIS

DIMENSION 
REDUCTION

MODEL CALIBRATION

Figure 2.1: Typical uncertainty quanti�cation framework.

The framework consists of di�erent steps that will be detailed in dedicated Sections. The �rst and
central step is the selection of the Model/Analysis. The scenario to be studied is de�ned and
the codes that will model it together with their di�erent options and nodalization. The inputs -
outputs of interest and the statistical quantities to be studied are identi�ed. This step was mainly
discussed in the Chapter 1. For presenting the rest of the steps it is easier to start from the
end goals: Uncertainty Propagation and Sensitivity Analysis discussed in Section 2.3 and
Section 2.7 respectively. In the latter the qualitatively or quantitatively outputs sensitivity to each
input is estimated while in the former the inputs uncertainties are propagated to the outputs. In
order to achieve those goals many code evaluations are needed, something that in most of the cases
is prohibitive due to the computational cost of each evaluation. This issue is overcome by using
Surrogate Models to approximate the underlying function between inputs and outputs. They
are detailed in Section 2.5. The design and training of surrogate models can be di�cult when
the inputs and outputs dimensions are large. To this purpose the Dimension Reduction step
presented in Section 2.4 aims at identifying a reduced e�ective input subspace. Code evaluations
are needed for the training of the surrogate models. The selection of the inputs points on which
the code will be evaluated is called Design of Experiments (DOE) and consist the subject of
Section 2.6. There are di�erent ways to create DOE but in general it is required that they explore
the input space as good as possible. These DOE are called space-�lling designs. The inputs
probabilistic space from which the DOE will be created is de�ned in the Input Uncertainty
Quanti�cation step. Di�erent methods exist that are detailed in Section 2.2. In this thesis we
deal with continuous input variables so that their joint distribution is characterized by a joint
probability density function (pdf). Model calibration discussed in Section 2.8 can be used
in order to improve the initial uncertainty quanti�cation of the inputs based on observed data
coming from either measurements or from higher �delity codes. Finally, in the last Section 2.9 of
this Chapter we give an overview of some state of the art research related to all these steps of the
uncertainty quanti�cation framework.

Before detailing each step we will introduce basic notations and statistical attributes that will be
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used in the whole Chapter. We consider the code to be a function between the random input
variables X ∈ Rd and random output variables Y ∈ Rq.

Y = F (X) : Rd → Rq (2.1)

Depending on the case the variables could be scalar (d, q = 1) or functional (d, q >> 1). Often
a dataset of code evaluations will be required to estimate di�erent quantities. We will consider
the dataset of size N denoted by DN =

[
Xn,Yn = F (Xn)

]N
n=1

. The nth realization of ith input
is the scalar Xi

n. The matrix (vector) containing the observations of functional (scalar) input is
de�ned as XDN with elements Xij

DN
= Xj

i for i = 1 . . . N , j = 1 . . . d. The functional (scalar) nth
realization of the inputs is a vector (scalar) Xn = (Xi

n)di=1 of size d while Xi = (Xi
n)Nn=1 is the

vector of size N containing the evaluations of the ith scalar variable. Equivalent de�nitions are
considered for the outputs. The pdf of the inputs is denoted by pX .

Now we will de�ne some basic statistical attributes. We will consider the case of scalar input and
output X,Y (d = q = 1). The random variable X has mean value µX and variance σ2

X de�ned
in equations 2.2a and 2.2b together with their empirical estimators µ̂X , σ̂2

X based on the observed
dataset. The former is the expected value of the random variable while the latter is a measure of
spreading around its mean value.

µX = E[X] =

∫
XpX(X)dX, µ̂X =

1

N

N∑
i=1

Xi (2.2a)

σ2
X =V ar(X) = E[(X − E[X])2] =

∫
(X − µX)2pX(X)dX, σ̂2

X =
1

N − 1

N∑
i=1

(Xi − µ̂X)2

(2.2b)

The covariance cXY between the two random variables X,Y is de�ned in equation 2.3a and its
empirical estimator ĉXY in equation 2.3b.

cXY = Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] (2.3a)

ĉXY =
1

N − 1

N∑
i=1

(Xi − µ̂X)(Yi − µ̂Y ) (2.3b)

The covariance can be normalized between -1 and 1 in what it is called the correlation coe�cient
ρXY de�ned in equation 2.4 together with its empirical estimator. A value of zero indicates no
correlation. The correlation increases as the absolute value of the coe�cient increases towards 1.
It is important to notice that uncorrelated variables do not imply that they are independent while
independent variables are necessary uncorrelated.

ρXY =
cXY
σXσY

, ρ̂XY =
ĉXY
σ̂X σ̂Y

(2.4)

Another statistical quantity of the random variable X is the quantile xa, which is de�ned as the
value of the random variable for which P (X ≤ xa) = a. For example if a = 95% then x95 is the
quantile and the random variable has 95% of being less than this value.

P (X ≤ x95) = 0.95 (2.5)

Finally, the notion of con�dence intervals is related to an empirical estimation of a statistical
quantity (e.g. mean, variance, quantile). It is independent of the quantity to be estimated and
depends only on the sample used for the estimation. For example a 95% con�dence interval for
the mean value µX based on the dataset will be [âN , b̂N ], where the âN and b̂N depend only on
the dataset, is such that:

P (µX ∈ [âN , b̂N ]) ≥ 0.95 (2.6)
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2.2 Input uncertainty quanti�cation

There are various sources of uncertainties in the inputs variables of a physical phenomenon mod-
eling. In general two broad types are distinguished:

� Stochastic (aleatoric) uncertainty: concerning variables that show natural variability.
This means that for the same physical phenomenon and conditions these variables will vary
stochastically (e.g. temperature of a room).

� Epistemic uncertainty: related to variables that have an uncertainty due to lack of knowl-
edge (e.g. constant variable in a physical law). This uncertainty is reducible by acquiring
more observations and insights about the physical phenomenon.

The �rst step of the uncertainty analysis is the quanti�cation of the input uncertainties. In liter-
ature [73] di�erent approaches exist based on the prior available knowledge and on the nature of
the uncertain variables.

2.2.1 Experts judgment

If not much is known for the uncertainty of a variable and no experimental observations are
available then the uncertainty can be quanti�ed from experts based on experience and intuition.
If some information is known about the behavior of the uncertainty (e.g. moments, positiveness,
bounds) then the principle of maximum entropy can be used to assess the most appropriate pdf.
The di�erential entropy for the scalar variable X with pdf pX is de�ned in equation 2.7.

H(X) = −
∫ ∞
−∞

pX(X) log (pX(X))dX (2.7)

For example in the case where we know that the variable is centered around a mean value µX
with variance σ2

X and that there are no bounds the equation 2.7 is maximized with the following
constraints:∫ ∞

−∞
pX(X)dX = 1,

∫ ∞
−∞

XpX(X)dX = µX ,

∫ ∞
−∞

(X − µX)2pX(X)dX = σ2
X

The Lagrange multipliers method can be used to maximize the entropy under these equality con-
straints. The objective function for the optimization J and its derivative with respect to pX are
shown in equations 2.8a and 2.8b.

J(pX) = −
∫ ∞
−∞

pX(X) log (pX(X))dX + λ0

(∫ ∞
−∞

pX(X)dX − 1

)
+ λ1

(∫ ∞
−∞

XpX(X)dX − µX
)

+ λ2

(∫ ∞
−∞

(X − µX)2pX(X)dX − σ2
X

)
(2.8a)

∂J(pX)

∂pXdX
= − log (pX(X))− 1 + λ0 + λ1X + λ2(X − µX)2 (2.8b)

By taking ∂J(pX)
∂pX

= 0 the pdf that maximizes the entropy takes the form of equation 2.9.

pX(X) = eλ0−1+λ1X+λ2(X−µX)2 (2.9)

The pdf is replaced in the equality constraints in order to calculate the Lagrange multipliers. This
results in the values λ0 − 1 = log( 1√

2πσX
), λ1 = 0, λ2 = − 1

2σ2
X
. The obtained pdf is the normal

distribution N (µX , σ
2
X) with mean µX and variance σ2

X .

pX(X) =
1√

2πσX
e
− (X−µX )2

2σ2
X (2.10)

In a similar way the pdf maximizing the entropy with other information can be derived. For
example if the distribution is bounded in [a, b] then the maximum entropy pdf is the uniform
distribution in this bounds U(a, b).
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2.2.2 Statistical inference

In the case where enough observations exist the pdf can be inferred through parametric and non-
parametric methods. The parametric methods assume the pdf of the random scalar variable X
to belong to a family of pdfs pX(X,θ) with hyperparameters θ that are usually estimated by two
possible methods. The �rst one is the Method of Moments where θ is estimated by equating
the moments of the analytic distributions with the empirically estimated moments (equations 2.2a
and 2.2b ). The second one is the Maximum Likelihood. The observations are considered
independent and identically distributed (i.i.d) and thus the likelihood of obtaining them is:

L(θ,XDN ) =

N∏
i=1

pX(Xi,θ) (2.11)

The θ is estimated by maximizing this likelihood function. Usually the log likelihood is used
because it is easier to maximize:

θ̂ML = argmax
θ∈Θ

(
N∑
i=1

log (pX(Xi,θ))

)
(2.12)

The non-parametric methods do not assume that the pdf belongs to some prede�ned family of
distributions but instead estimates it directly from the observations. Their main drawback is that
they need many observations for the estimation to converge. The Histogram is an example of
such method, where the variable domain is divided into bins and the probability of each bin is
estimated by counting the percentage of the observations falling into this bin. A better method
is the Kernel Smoothing where the pdf is estimated through a kernel function. For a function
kX to be used as kernel it needs to be positive and normalized to

∫∞
−∞ kX(X)dX = 1. The pdf

estimation using a Gaussian kernel of isotropic variance σ2
h is expressed as:

p̂X =
1

Nh

N∑
i=1

(
1√

2πσh
e
− (X−Xi)

2

2σ2
h

)
(2.13)

2.2.3 Bayesian inference

This method uses observations of the random variable to improve prior knowledge about its pdf.
The posterior pdf is calculated based on the Bayes' rule. For example let us assume that the
variable pdf as previously belongs to a speci�c pdf family pX(X,θ) with hyperparameters θ. In
addition, we assume that the prior knowledge for θ is described by its corresponding pdf pθ(θ).
The posterior pdf of θ (i.e. the pdf of the distribution of the hyperparameters given the data) then
is described by:

ppostθ (θ) =
L(θ,XDN )pθ(θ)∫∞

−∞ L(θ′,XDN )pθ(θ′)dθ′
(2.14)

The likelihood L is the same as the one de�ned in the Section 2.2.2. The posterior distribution of
X can be integrated then through ppostX (X) =

∫∞
−∞ pX(X,θ)ppostθ (θ)dθ. Usually this is not done

but instead an estimator θ̂ is used e.g. maximum a posteriori (MAP).

2.2.4 Stochastic inverse

In some cases it is very di�cult to obtain observations for an input variable or even impossible (e.g.
empirical correlations uncertainties) but it can be easy to obtain observations for some outputs.
Thus through inverse uncertainty propagation the input variables pdf can be estimated. It is
used often in model calibration which we will detail in Section 2.8. Bayesian approaches are used
as previously with the di�erence that the likelihood now is described by the model relating the
inputs to the outputs. Usually instead of using the integrals for the calculation of the posterior
distribution it is sampled using Markov Chain Monte Carlo techniques (MCMC).
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2.3 Uncertainty propagation

In this section we are interested in studying the model of equation 2.1 behavior with regards to
uncertainty. We already saw that the input of the model X can be uncertain. The model's output
Y , considered scalar, is a random quantity due to the propagation of uncertainty from the inputs
through the code and to the output. The goal of the uncertainty propagation is to estimate the pdf
of the output pY or some quantities of interest (e.g. mean, variance). Based on this, uncertainty
propagation methods can be clustered in the following categories:

• Statistical moments analysis: the goal is to calculate or estimate the statistical moments
of the output (usually mean and variance). Di�erent methods exist based on quadrature,
Monte Carlo simulations or Taylor expansions.

• Reliability analysis: the aim is to calculate the probability of Y exceeding a threshold.
Usually it is a rare event corresponding to the tail of pY .

• Probability density function analysis: here the goal is to estimate the whole pdf of
the output. It is evident that this case encompasses the two previous ones. Monte Carlo
simulations are used to estimate this pdf.

2.3.1 Monte Carlo simulation

Random sampling of inputs and outputs are evaluated and gathered in the previously de�ned
dataset of size N . The output's mean µY and variance σ2

Y can be estimated through equations
2.2a and 2.2b. It is important to note that this method does not require any regularity on F
and that the convergence is independent of the dimension of X but slow (1/

√
N for any empirical

estimator). For each estimated statistical quantity con�dence intervals can be computed using the
Central Limit Theorem (CLT) [74]. We assume that the output is i.i.d and thus the variance of
the mean estimator becomes:

V ar(µ̂Y ) = V ar

(
1

N

N∑
n=1

Yn

)
=

1

N2

N∑
n=1

V ar(Yn) =
1

N2
Nσ2

Y =
σ2
Y

N
(2.15)

The CLT states that the sum of i.i.d variables, as is the case µ̂Y , follows a normal distribution
described by equation 2.16.

√
N(µ̂Y − µY )

σY
∼ N (0, 1) (2.16)

We know from the law of large numbers that σ̂Y /σY → 1 and with the use of Slutsky's theorem
we obtain:

√
N(µ̂Y − µY )

σ̂Y
∼ N (0, 1)

This allows us to calculate con�dence intervals for the mean value. For example the 95% con�dence
interval will be:

P (µY ∈ [µ̂Y − 1.96
σ̂Y√
N
, µ̂Y + 1.96

σ̂Y√
N

]) ' 0.95

The variance estimator σ̂2
Y distribution is more complicate to calculate and it depends on the

kurtosis (fourth statistical moment). For the speci�c case of normal distribution for Y and with
large N the distribution can be approximated by:

σ̂2
Y ≈ N (σ2

Y ,
2σ4

Y

N − 1
)

The complete pdf of Y can be estimated as well through statistical inference and the cumulative
distribution function (CDF) can be computed easily in order to calculate quantiles.
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2.3.2 Integration methods

In this method the moments are estimated by the evaluation of the integrals. For the mean
and variance it is the integrals of equations 2.2a and 2.2b. In rare cases of the integrals can be
computed analytically. In most cases this is impossible and thus quadrature is used to approximate
the integral through a sum of weighted code evaluations. If the input variables are i.i.d, the
weighted sums are shown in equations 2.17a and 2.17b with wi and Xi the corresponding weights
and quadrature points. The weights and points depend on the marginal input pdfs and in these
equations identical pdf are considered.

µ̃Y =

N∑
i1=1

· · ·
N∑
id=1

wi1 . . . widF (X1
i1 , . . . , X

d
id

) (2.17a)

σ̃2
Y =

N∑
i1=1

· · ·
N∑
id=1

wi1 . . . wid
(
F (X1

i1 , . . . , X
d
id

)− µ̃Y
)2

(2.17b)

This method requires some regularity conditions on the underlying function to be integrated and
it can be applied in cases of low dimensionality due to the numerous model evaluations needed.
Sparse quadratures are used to in order to alleviate the last drawback.

2.3.3 Perturbation methods

If the model is close to linear it can be written as linear combination of the inputs with weights
their partial derivatives. This method requires the calculations of all the partial derivatives of the
model ∂F

∂Xi and the evaluation of the model on the mean input vector µX . If the covariance matrix
of the inputs is CX , and the vector of size d containing the partial derivatives evaluated at µX is
SX then the estimators for the mean and variance of the output are the following:

µ̂Y = F (µX) (2.18)

σ̂2
Y = STXCXSX (2.19)

SX =


∂F
∂X1

(µX)
∂F
∂X2

(µX)
...

∂F
∂Xd

(µX)

 (2.20)

The estimator of the variance in equation 2.19 is also called "Sandwich rule". Usually the deriva-
tives of the model are approximated by a �rst order Taylor expansion or by adjoint calculations
based on generalized perturbation theory. This method is fast because it needs only d + 1 model
evaluations (in the case of adjoint only 2) and it can calculate the �rst and second moments. It
has the constraint of the model to be linear or at least to be linearized.

2.3.4 Reliability methods

To compute rare events or failure probabilities can be quite costly for Monte Carlo methods due
to slow convergence. In this case First and Second order of Reliability Methods (FORM/SORM)
[73] give an approximation of those probabilities with reduced computational cost. These methods
are based on a transformation of the input parameters in the standard normal space followed by
an approximation of the failure domain by a domain whose boundary is a hyperplane (FORM)
or a quadratic surface (SORM). Then the probability can be evaluated with integration on the
standard normal space.
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2.4 Dimension reduction

Many statistical analyses su�er from the "curse of dimensionality". When the inputs or outputs
are functional quantities then there is a strong interest in dimension reduction techniques. Such
techniques aim at reducing the e�ective dimensions of the functional quantity. With the term
e�ective we mean either by restricting the dimension reduction on the variables of interest or
by transformation to variables where dimension reduction is more e�cient. There are two broad
categories of dimension reduction techniques. The �rst one is based on screening and the sensitivity
between inputs and outputs are qualitatively estimated to discarding the non important inputs.
In this Section we focus on the second one which is better adapted for functional quantities. It
is called feature selection and we will detail two methods that use information from potential
correlations which is often the case for spatial or temporal quantities. The Principal Component
Analysis (PCA) that can be applied independently to inputs or outputs. It identi�es hyperplanes
of maximum variance in the functional space. For a speci�c reduction size the PCA is the method
that explains better the approximated functional quantity in terms of mean square error. The
Partial Least Square (PLS), proposed by [75], is a method that �nds a linear regression between
projections of inputs and outputs that maximize their cross-covariance. Synthetically we can say
that PCA reduces the functional dimension in an optimal way with respect to the functional
variance while PLS reduces dimension by taking into account the relationship between inputs and
outputs and assuming it is linear.

2.4.1 Principal Components Analysis (PCA)

It is a method closely linked with Karhunen-Loève (KL) decomposition [76], where a stochastic
process is represented by a linear combination of in�nite orthogonal basis functions. The basis
functions are not prede�ned but depend on the stochastic process itself. They are the eigenfunc-
tions corresponding to the covariance function of the stochastic process. PCA can be seen as the
discretized version of KL [77]. We consider the functional output Y , which means that it is Rq-
valued with q >> 1, as a discretized stochastic �eld. PCA is applied, without loss of generality, on
centered processes. To this purpose, from the collected N evaluations YDN in a N × q matrix the
empirical mean vector is estimated µ̂Y and extracted to create the centered around zero matrix
Yc,N . PCA �nds the orthogonal linear projection of Yc,N where the basis vector are called prin-
cipal components and express the functional variance in a descending order. These basis vectors
are the eigenvectors of Yc,N covariance matrix. If Yc,N has strong correlations the number of
principal components needed to represent most of the variance can be quite small. This is carried
out by �rst computing the empirical covariance matrix and its eigenvalue decomposition. The
q × q matrix W contains the eigenvectors, with ith eigenvector at the ith column, and the q × q
diagonal matrix Λ contains the eigenvalues with the ith one on Λii. The eigenvalues represent the
variance explained by each eigenvector/principal component and are in a descending order. The
transformed coordinates of the original quantity in the projected space T are called scores.

C =
YT
c,NYc,N

N
, C = WΛW−1, T = Yc,N W (2.21)

Using prede�ned variance explanation threshold (e.g. 99%) the l << q �rst eigenvectors needed for
this variance representation are kept only. This can result in a signi�cantly reduced projected space
(N × l). An approximation of the original observations ỸDN can be calculated by the truncated
matrices Tl (N × l), Wl (q × l) and the extracted mean vector through equation 2.22. MY is the
matrix of size N × q with each row containing the mean vector µ̂Y .

ỸDN = TLWL
T + MY (2.22)

The truncated eigenvectors matrix is stored and the functional quantity can be reduced to few
scalar quantities represented by the scores. For example if a prediction at a new point Xnew

is sought then it su�ces to construct a surrogate model to approximate the underlying function
between the inputs and the scores. This will allow to predict the corresponding scores for the new
point and calculate the predicted Ỹnew from equation 2.22.
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2.4.2 Partial Least Squares (PLS)

PLS shares some similarities with PCA in the sense that it �nds as well linear projections of the
functional quantities. The di�erence is that it does not aim at �nding the projections representing
the maximum variance of a functional quantity but instead aims at taking into account the relation
between two functional quantities by �nding their projections that maximize the cross-covariance.
It is essentially a linear regression in the projected input and output spaces. We consider X and Y
as both functional inputs and outputs (d >> 1, q >> 1). PLS decomposes them through equations
2.23a and 2.23b with a prede�ned dimension reduction size set to l.

X = TXPT
X + EX (2.23a)

Y = TYPT
Y + EY (2.23b)

Where TX and TY are matrices of size N × l representing the coordinates of X and Y in their
projected reduced spaces of dimension l << d, q. PT

X and PT
Y are the orthogonal matrices of size

d × l containing the projection basis vectors. EX and EY are the residual errors assumed i.i.d.
normal variables. The decomposition is perform in such a way that maximizes the cross-covariance
between TX and TY. Di�erent iterative algorithms exist for the computation of TX, TY, PT

X and
PT

Y [78].

2.4.3 Stochastic warping

PCA and PLS are simple and powerful techniques to reduce dimensions. Nevertheless, in some
cases they might require many scores that can have complicated relationships with the inputs.
This creates di�culties in their approximation by surrogate models and increases the prediction
error. To overcome this a stochastic warping can be applied. This method for temporal functional
quantities is used and detailed in [79]. It consists in applying a translation and scaling of the obser-
vations prior to the dimension reduction. This is performed by a change of variable. Considering
the functional output Y (u, ω) as a stochastic process with u the variable of the �eld of size q (e.g.
time, space) and ω the sample space. Y (u, ωn) = Yn is the nth stochastic functional realization
and Y (ui, ω) = Y i is the scalar ith random variable. The change of variable is seen in equations
2.24a and 2.24b, where the variable u is replaced by υ a linear function of u and ω.

Ỹ (υ, ω) = Y (u, ω) (2.24a)

υ(u, ω) = Qωu+Dω (2.24b)

For the thesis purposes we will focus only in the case of translation, meaning that Qω = 1, reducing
the unknown to only Dω. This translation is a random variable and must be computed for each
sample. There are various methods to do so and we will limit to presenting the two most relevant
for the thesis. In the �rst method a weighted average �eld value is calculated for each sample of
the dataset YDN through equation 2.25.

um,ω =

∑q
i=1 uiY (ui, ω)2∑q
i=1 Y (ui, ω)2

(2.25)

Then a reference �eld ur is selected as the empirical mean of um,ω and the translation Dω is de�ned
as the di�erence of each sample's averaged �eld value to the reference one.

Dω = um,ω − ur , ur =
1

N

N∑
n=1

um,ωn (2.26)

In the second method the translation is the result of an optimization process. The function to be
optimized is a function of similarity c of each sample to a reference one. The empirical mean of Y
denoted by µ̂Y (u) is used as the reference function. Dω is the the optimal value D that maximizes
the function c.

c(D) =

∑q
i=1 Y (ui +D,ω)µ̂Y (ui)√∑q
i=1 Y (ui +D,ω)2

√
µ̂Y (ui)2

(2.27)
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Dω = argmax
D

c(D)

Once the values of Dω are computed, with one of the two methods, the translation in equations
2.24a and 2.24b is performed. The stochastic process now is centered and dimension reduction
can be applied on Ỹ more e�ciently. In order to make predictions for new input design points
an additional surrogate model must be constructed between the model inputs X and the �eld
translation values Dω. The prediction for a new input value Xnew will give a predicted �eld
translation Dnew that will be applied on the predicted centered �eld Ỹnew using the scores of
the dimension reduction method. Finally the inverse translation is applied to retrieve the original
functional output Ynew through equation 2.28.

Ynew(u) = Ỹnew(υ −Dnew) (2.28)

In the process of the translation in the discrete case it is clear that depending on the translation,
�eld values will be missing from the beginning or the end of the �eld space. To overcome this the
last value is extended until the start or the end of the �eld limits.

2.5 Surrogate models

The code usually is based on a set of discretized equations in space (3D) and time. In order to solve
them, various numerical methods are applied that can become very time consuming. This acts as a
budget constraint for analyses that require numerous code evaluations like Monte Carlo uncertainty
propagation or sensitivity analysis. Surrogate models are used to alleviate this budgetary constraint
by approximating the inputs-outputs underlying function. They are constructed based on a inputs-
outputs dataset, usually obtained from speci�c DOE that are detailed in the Section 2.6. The
code is considered as a black-box and the surrogate models are simple analytic functions (e.g.
polynomials) permitting very fast evaluations of new points. There are plenty of possible models.
We will focus on four of them: generalized linear models [80], polynomial chaos expansion (PCE)
[73] [81] [82], kriging [83] [84] and arti�cial neural networks (ANN) [80]. Before presenting the
di�erent surrogate models it is important to highlight that the approximation induces an error
that must be estimated. We will detail di�erent ways to estimate this error. For the whole Section
a scalar output is considered Y = F (X) and the surrogate model is denoted by F̃ (X) constructed
on the dataset DN of size N .

2.5.1 Error evaluation

The induced approximation error by the surrogate model is de�ned as:

ε(X) = F (X)− F̃ (X) (2.29)

Three di�erent error estimators are considered. The �rst one is the interpolation error. It is
the mean square error on the dataset used for the surrogate model construction and is estimated
empirically through the following equation:

εint =
1

N

N∑
n=1

(F (Xn)− F̃ (Xn))2 (2.30)

The error is usually normalized to the output's variance empirical estimator σ̂2
Y . The R

2
int quan-

tity representing the percentage of the output's variance represented by the surrogate model is
computed as well.

R2
int = 1− εint

σ̂2
Y

(2.31)

A value close to 1 indicates indicates how well the surrogate model interpolates on the dataset. It
is a cheap estimator because it does not need any other code evaluations but it does not quantify
well the predictive capability of the surrogate model on new input points due to the over�tting.
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The second error estimator is the prediction error. It is the mean square error on a new dataset
D′M =

[
X′m,Y

′
m = F (X′m)

]M
m=1

of size M not seen by the surrogate model. It is exactly the same
equations as the interpolation error but on this new dataset.

εpred =
1

M

M∑
m=1

(F (X′m)− F̃ (X′m))2 (2.32)

R2
pred = 1− εpred

σ̂2
Y

(2.33)

The prediction error is a good estimator of the surrogate model's predictive capability but requires
code evaluations on a new dataset, something time consuming and in some cases even not feasible.

Finally, the third error estimator used in the thesis is the Leave-One-Out (LOO), where for each
point i of the original dataset of size N the surrogate model is constructed based on all the points
except i. The response of this model is called F̃∼i(X) and the error on the prediction of the ith
point is calculated. The mean square error for all i leads to the LOO error estimator of equation
2.34 and its corresponding R2

loo quantity in equation 2.35.

εloo =
1

N

N∑
i=1

(F (Xi)− F̃∼i(Xi))
2 (2.34)

R2
loo = 1− εloo

σ̂2
Y

(2.35)

This estimator is a compromise between the two previous ones. It has better predictive capabilities
than the empirical error but not as good as the prediction error. It does not require new code
evaluations but N surrogate models must be constructed. Depending on the surrogate model used
there are analytic equations to compute it directly.

2.5.2 Generalized Linear Models (GLM)

This methods considers that Y = F (X) can be approximated by a linear combinations of p
prede�ned functions [hi(X)]pi=0. The �rst function is assumed to be the constant h0(X) = 1. The
output can be expressed by:

Y = F̃ (X) + ε =

p∑
i=1

βihi(X) + ε (2.36)

Where βi is the unknown coe�cients associated to each function and ε the residual error. Using
now the dataset DN we de�ne H the matrix of size N × p containing the function evaluations on
this dataset Hij = hj(Xi). The unknown coe�cients vector of size p is denoted by β while the
residual error vector by E = (εi)

N
i=1.

YDN
= Hβ +E (2.37)

The most used estimator of the coe�cients is the least squares one, where the residual sum of
square errors

∑N
i=1 ε

2
i is minimized. The resulting estimator is described in equation 2.38.

β̂ = (HTH)−1HTYDN
(2.38)

If the model of equation 2.36 is correct with normal residual error ε ∼ N (0, σ2) then the coe�cients
estimator is also a normal random variable β̂ ∼ N (β, (HTH)−1σ2). The Gauss-Markov theorem
shows that the least square estimator of the coe�cients is the Best Linear Unbiased Estimator
(BLUE). Nevertheless, by using other biased estimator like Ridge regression or Lasso smaller
residual errors can be achieved. More details about those estimators can be found in [80].
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2.5.3 Polynomial Chaos Expansion (PCE)

PCE belongs to the general category of spectral representation methods. The random response Y is
expanded through equation 2.39, where φα are the basis functions spanning the Hilbert functional
subspace L2 with measure density equal to the joint pdf of X.

Y = F̃ (X) + ε =
∑
α∈Nd

wαφα(X) + ε (2.39)

The output is considered a scalar second-order random quantity satisfying E[Y 2] < ∞. For
independent inputs Xi, i = 1 . . . d their multivariate pdf pX(X) can be written as products of the
marginals pdf pXi :

pX(X) =

d∏
i=1

pXi(X
i) (2.40)

In the marginal Hilbert functional subspace L2
i with measure density equal to the marginal pdf

pXi we assume φij a complete family of orthonormal basis functions with j ∈ N:

< φis, φ
i
t >H=

∫
R
φis(Xi)φ

i
t(Xi)pXi(X

i)dXi = δst (2.41)

It can be shown that the tensor product of these marginals bases is a basis of the original Hilbert
space and thus:

φα(X) =

d∏
i=1

φαi(X
i) (2.42)

where α = (α1, . . . , αd) ∈ Nd is a vector index of the corresponding univariate bases indices αi = j
of φij . The output then has the spectral decomposition of equation 2.39.

Having made those assumptions the univariate functions are selected as orthonormal polynomials
that can be derived from the marginals pdf of the inputs. If the input are independent with
Gaussian distribution then the obtained polynomials are the Hermite polynomials visualized in
�gure 2.2 and the expansion of the output Y is called polynomial chaos expansion.
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Figure 2.2: hermite polynomials Hen(x) up to fourth order (n = 4).

In the case of dependent parameters either a transformation is performed to render them indepen-
dent similar to the PCA projection or di�erent marginal basis functions have to be calculated that
are no longer polynomials. The next step to build the PCE is to truncate the expansion in order
to get a tractable form for the surrogate model (with a �nite number of coe�cients to estimate).
A usual truncation law is:

Ad,pq = { α ∈ Nd :

(
d∑
i=1

αqi

)1/q

≤ p }
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Where p is the maximum total degree of the multivariate polynomial basis and q ∈ [0,∞] is
the index of isotropic reduction. For q = 1 the total number of polynomials to be evaluated is
(d+ p)!/d!p!. The �nal formulation of the truncated PCE is:

Y = F̃t(X) + ε =
∑

α∈Ad,pq

wαφα(X) + ε (2.43)

Having selected the basis functions the wα coe�cients remain to be calculated. There are two
general methods to calculate them: the intrusive and the non intrusive methods. Since we consider
our code as black-box we are going to present the latter methods for whom only model evaluations
are needed without demanding modi�cations in the code. There are two di�erent non intrusive
methods: the projection and the regression. In the projection method due to the orthonormality
the PCE coe�cients are estimated through equation 2.44 either by MC (or quasi MC) simulations
either by quadrature methods.

wα = E[Y φα(X)] =

∫
Rd
F (X)φα(X)pX(X)dX (2.44)

In the regression method the vector of coe�cients w = (wi)
k−1
i=0 of size k are calculated by mini-

mizing the squared least squares residual error based on the dataset of size N .

w = argmin
1

N

N∑
n=1

(wTΦ(Xn)− F (Xn))2 (2.45)

Where Φ(Xn) is a k dimensional vector of the multivariate polynomials evaluations,with k the
cardinality of Ad,pq . Finally, if we de�ne H as the (N x k) matrix of the evaluations of the
multivariate polynomials for all the realizations the solution of the minimization problem is the
same with the GLM:

w = (HTH)−1HTYN (2.46)

The regression problem for PCE is much better conditioned than for GLM. Once the coe�cients are
computed then the PCE is fully de�ned. In order to assess the quality of the PCE approximation
the di�erent error estimations can be computed. Concerning the LOO error and if the coe�cients
of the PCE are computed by regression there is an analytic expression for its calculation:

εloo =
1

N

N∑
n=1

(
wTΦ(Xn)− F (Xn)

1− θn

)2

, θn =
(
H(HTH)−1HT

)
nn

(2.47)

A big advantage of PCE is that the statistical moments and the sensitivity analysis can be derived
directly as a post-processing of the PCE coe�cients. For a speci�c set of input indices α the weight
wα is the value in the estimated weight vector w corresponding to the φα. The mean value and
the variance of the output are given directly from:

µ̃Y = w0 (2.48)

σ̃2
Y =

∑
A∼0

w2
a (2.49)

Where A∼0 are all the indices except the zero one. The higher order moments can be calculated as
well. Concerning now the sensitivity analysis the Sobol indices (see Section 2.7.4.1), that demand
a lot of evaluations, can be estimated directly. We de�ne the set of indices Di containing only the
variable i as:

Di = {α : αj > 0, j = i and αj = 0, j 6= i}
Then the �rst order Sobol index of parameter Xi is estimated by:

Ŝi =
∑
Di∩A

w2
α / σ̃2

Y (2.50)

If we de�ne the set DT
i then total Sobol index of parameter Xi can be estimated in the same way:
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DT
i = {α : αj > 0, j = i}

ŜTi =
∑
DTi ∩A

w2
α / σ̃2

Y (2.51)

The PCE is well adapted for smooth models but can face di�culties when dealing with disconti-
nuities. The generalization to other input distributions can be performed with the use of di�erent
polynomials. As we said the main advantage is the direct computation of sensitivity indices from
the coe�cients and the easy explicit form of the surrogate model. The main disadvantage is the er-
ror induced from the truncation, that is di�cult to assess and that this method is not well adapted
for high dimensional inputs or dependent inputs.

2.5.4 Kriging

This surrogate model is constructed with the use of Gaussian processes. At �rst we should de�ne
the concept of Gaussian vectors. A vector is considered Gaussian when all the possible linear com-
binations of the components are random variables with Gaussian distributions. The distribution
of a Gaussian vector is de�ned by its mean vector and its variance-covariance matrix. We de�ne
y1 ∈ Rd1 as a Gaussian vector of size d1 with mean vector µy1 and variance-covariance matrix Ky1 .

y1 ∼ N(µy1 ,Ky1)

Having de�ne the Gaussian vector we can introduce the theorem of Gaussian conditioning states
that if we have two Gaussian vectors y1 ∈ Rd1 and y2 ∈ Rd2 and the vector (y1, y2)T ∈ Rd with
d = d1 + d2 is a Gaussian vector as well:[

y1

y2

]
∼ N

([
µy1

µy2

]
,

[
Ky1 Ky1y2

Ky2y1 Ky2

])
Where Ky1 and Ky2 are the covariance matrices of size d1×d1 and d2×d2 respectively. Ky1y2 and
Ky2y1 are the cross-covariance matrices of size d1× d2 and d2× d1 with Ky1y2 = Ky2y1

T . In this
case there is an analytic expression for the distribution of y2 conditioned to y1. The conditioned
distribution is Gaussian with mean and covariance described by:

E[y2|y1] = µy2 + Ky2y1K−1
y1

(y1 − µy1) (2.52a)

V ar(y2|y1) = Ky2 −Ky2y1K−1
y1

Ky1y2 (2.52b)

The equations 2.52a and 2.52b state that we can adjust the expectation and the variance of a part
of a Gaussian vector conditioned that we have observations of the rest of the vector. Now we can
de�ne the continuous Gaussian process as a family y(x) of random variables de�ned over x ∈ X
such that any linear combination is Gaussian distributed. Its distribution can be characterized by
a mean function µy(x) : X → R and a covariance function k(x, x′) : X × X → R.

y(x) ∼ GP (µy(x), k(x, x′)) (2.53)

If the covariance and mean functions are known and we have a deterministic data set of observations
xobs = (xi)

N
i=1,yobs = (y(xi))

N
i=1 of size N then we can use the Gaussian conditioning to predict

the value at a new point y(x0).

E[y(x0)|yobs] = ŷ(x0) = µy(x0) + kT (x0)K−1(yobs − µobs) (2.54)

V ar[y(x0)|yobs] = σ̂2(x0) = k(x0, x0)− kT (x0)K−1k(x0) (2.55)

Where k(x0) = (k(x0, xi))
N
i=1 is a vector of size N . K is a matrix of size N × N corresponding

to the covariance matrix of the observations and thus Kij = k(xi, xj), i = 1, . . . , N, j = 1, . . . , N .
µobs = (µy(xi))

N
i=1 is the vector of size N created by the evaluations of the mean function on the

data set and k(x0, x0) corresponds to the unconditioned variance of Y (x0). The Gaussian process
passes exactly through the points of the data set (perfect interpolation). It is also interesting that
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beyond the expected value the process also predicts the variance and thus can create con�dence
intervals. An illustration for d = 1 and N = 7 is presented in �gure 2.3.
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Figure 2.3: Typical Gaussian process predictions.

The Kriging surrogate model considers the input-output input-output function Y = F (X) : Rd →
R to be a Gaussian processes, where the output is considered a scalar. The output then can be
expressed as:

Y = F̃ (X) + ε = µ(X) + Z(X) (2.56)

Where µ(X) : Rd → R is a mean function and Z(X) is a centered Gaussian process (E[Z(X)] = 0)
with isotropic stationary covariance function k(X,X ′) : Rd × Rd → R. The concept of isotropic
stationarity for a covariance function means that it depends only on the distance between the
points:

k(X,X ′) = k(|X −X ′|)
The covariance function is chosen to be a positive de�nite function and usually is selected from
speci�c families of parametric functions (e.g. Exponential, Matérn). In the thesis we used the
Matérn 5/2 function. The function is parametric, meaning that it contains parameters that must
be estimated. The vector of parameters of the function θ are called hyper-parameters and they can
be estimated through Maximum Likelihood , Restricted Maximum Likelihood and Cross Validation
[83]. The stationarity implies that the variance of the Gaussian process is the same for all Y since
k(|X −X|) = k(0) = σ2. The variance σ2 is usually unknown and is added the hyper-parameters
that must be estimated. The mean function can be of any form but in general two cases are studied.
The �rst one is the case of linear combination of known basis functions and unknown coe�cients
called Universal Kriging:

µ(X) =

p∑
i=1

hi(X)βi = h(X)Tβ (2.57)

The second one is the case of Simple Kriging where the mean function is assumed to be known
(equivalent to known β). There can be di�erent combinations of known and unknown parameters
but we will focus on the Universal Kriging with unknown variance and hyper-parameters. In
this case the unknown vector of coe�cients β of size p (the number of basis functions) must be
estimated as well. We can see that the total parameters that must be estimated in order to have
a well de�ned Kriging model are: (θ, σ,β). We mentioned that the covariance function depends
on the hyper-parameters θ and that is why we will change its notation to kθ(X,X ′). Using the
dataset DN the prediction of a new point Y (Xnew) for its expected value1 and variance is given
by the following equations:

Ŷ (Xnew) = h(Xnew)T β̂ + kθ̂(Xnew)TK−1

θ̂
(YDN

−Hβ̂) (2.58)

1It is the Best Linear Unbiased Predictor
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σ̂2(Xnew) = σ̂2 − kθ̂(Xnew)TK−1

θ̂
kθ̂(Xnew) + BT

(
HTK−1

θ̂
H
)−1

B (2.59)

In the equations above B = h(Xnew) − HTK−1

θ̂
kθ̂(Xnew) and h(Xnew) is a vector of size p of

the evaluations of the mean function basis functions. The estimated parameters are β̂, θ̂, σ̂ and
kθ̂(Xnew) and Kθ̂ are de�ned similar to equation 2.54. H with Hij = hj(Xi) for i = 1 . . . N j =
1 . . . p is the matrix of sizeN×p containing all the evaluations of the basis functions on the complete
dataset. We can see that in equation 2.59 a term is added in comparison to equation 2.55. This
term is non-negative and is coming from the uncertainty propagation of the β̂ estimation. There
is no uncertainty propagation of parameters (σ̂, θ̂)2. When the uncertainty of those parameters is
taken into account the method is called full Bayesian.

Once the equations 2.58 and 2.55 are constructed the only thing remaining is the estimation of
the parameters. We present the Maximum Likelihood Estimator. If we decompose the covariance
function in kθ(X,X ′) = σ2rθ(X,X

′) then the covariance matrix becomes Kθ̂ = σ̂2(θ̂)Rθ̂. The like-
lihood is not maximized directly but instead the likelihood criterion of equation 2.60 is minimized.
The criterion is derived by a monotonic transformation of the likelihood [83].

L(θ) =
1

N
log(|σ̂2(θ)Rθ̂|) +

1

Nσ̂2(θ)

(
YDN

−Hβ̂(θ)
)T

Rθ̂
−1
(
YDN

−Hβ̂(θ)
)

(2.60)

θ̂ = argmin
θ∈Θ

L(θ)

The estimator of σ̂2 and β̂ are presented in equations 2.61 and 2.62

σ̂2(θ̂) =
1

N

(
YDN

−Hβ̂(θ̂)
)T

R−1

θ̂

(
YDN

−Hβ̂(θ̂)
)

(2.61)

β̂(θ̂) =
(
HTR−1

θ̂
H
)−1

HTR−1

θ̂
YDN

(2.62)

This estimation is unbiased with covariance matrix which corresponds to the term added in equation
2.55:

Qβ̂ =
(
HTK−1

θ̂
H
)−1

(2.63)

In the Bayesian case a prior distribution is assigned β ∼ N (βprior,Qprior) and the posterior
expected value and covariance matrix are estimated by:

β̂post = βprior +
(
Q−1

prior + HTK−1

θ̂
H
)−1

HTK−1

θ̂
(YDN

−Hβprior) (2.64)

Qpost =
(
Q−1

prior + HTK−1

θ̂
H
)−1

(2.65)

We can now use this posterior distribution of β to calculate the posterior distribution of Y (Xnew):

Ŷ (Xnew) = h(Xnew)T β̂post + kθ̂(Xnew)TK−1

θ̂
(YDN

−Hβ̂post) (2.66)

σ̂2(Xnew) = σ̂2 − kθ̂(Xnew)TK−1

θ̂
kθ̂(Xnew) + BTQpostB (2.67)

If we assume that the observations of the Gaussian process have noise then the Kriging model
becomes:

F̃ (X) = µ(X) + Z(X) + ε(X) (2.68)

Usually the errors on the observations ε = (ε1, . . . , εn) is considered a centered Gaussian vector
of size N with covariance matrix Kε. To estimate now the parameters and to predict the value
Y (Xnew) the same equations that we saw in the case without the noise can be used with only
di�erence that now the covariance matrix of the observations becomes: K′

θ̂
= Kθ̂ + Kε. In the

2Plugin method
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case where the noises of the observation are considered i.i.d with the variance σ2
ε the covariance

matrix of the observations becomes: K′
θ̂

= Kθ̂ + σ2
ε I.

Finally, to assess if the Kriging model representing the model is a good approximation the typical
error estimators for the empirical error and the prediction error can be used. For the Leave-One-
Out error there is an analytic expression for its calculation:

εLOO =
1

N

N∑
i=1

(
(K̃θ̂Y)i

(K̃θ̂)i,i

)2

(2.69)

where K̃θ̂ = K−1

θ̂
−K−1

θ̂
H(HtK−1

θ̂
H)−1HtK−1

θ̂
for the universal kriging.

The main advantage of Kriging is that it has an explicit formulation for the Best Linear Unbiased
Predictor (BLUP) and it can estimate its variance. Besides that, it can treat noisy cases or models
that are not so regular. The main disadvantage is that it cannot be used in cases of high input
dimensions and can become time consuming if the dataset of observations increases a lot.

2.5.5 Arti�cial Neural Networks (ANN)

ANN is a surrogate model inspired from the biological neural networks of the brain. It is constructed
from a collection of neurons divided in hidden layers. Each neuron is a non linear function g. The
neurons of the �rst layer has as input a linear combination of the input variables and as output
the non linear transformation through an activation function g as shown in �gure 2.4. If more
layers exist then the input of a hidden layer neuron will be a linear combination of the output's of
the previous hidden layer's neurons. More information about the motivation behind ANN can be
found in [80].

I1

I2

I3

H1

H2

H3

O1

B1 B2

Figure 2.4: An example of an ANN with 1 hidden layer and 3 inputs.

In the case where we want to replace the model: Y = F (X) : Rd → R we have d inputs. If we
select M = d neurons for one hidden layer (options used in this thesis) and we de�ne the weight
of an input i for a neuron j as wij and the weight of the neuron's output as wj the ANN output's
function will be:

Y = F̃ (X) + ε =

M∑
j=1

wjg

(
d∑
i=1

wijX
i + wj0

)
+ w0 + ε (2.70)

with wj0 and w0 the bias weight on each neuron and the output.

For this ANN model the only thing that remains in order to be complete is to estimate the weights
and select the activation function. We have a total of N(d+ 2) + 1 weights to be estimated. The
activation function usually used is the sigmoid:

g(u) =
1

1 + e−u
(2.71)

The weights of the ANN are estimated through a procedure called learning of the ANN. In general
a cost or error function c is de�ned and the weights are the result of minimizing the cost function
(or at least close to minimum). For our case where we have the dataset DN of size N and the
ANN goal is to approximate as best as possible the underlying function between X and Y and we
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are in the supervised learning category. In the supervised learning the cost function usually used
is the mean squared error:

c(w) =
1

N

N∑
i=1

|F (Xi)− F̃ (Xi)|2 =
1

N

N∑
i=1

|εi|2 (2.72)

Having de�ned the cost function the weights are calculated through the following general algorithm:

• In the �rst iteration only, the weights are initialized.

• The Ỹi,w = F̃ (Xi,w) are computed with forward propagation through the ANN and the cost
is evaluated.

• Calculate the gradient of the weights vector: ∂c
∂w .

• Update the weights vector as stochastic gradient descent.

Di�erent algorithms of backpropagation exist [85] but we will not look into it because it is not in the
scope of the thesis. Once the ANN model is constructed and the supervised learning is performed
the surrogate model is validated through the typical error estimators. The main advantage of ANN
is that they can treat high input dimensions but they might need a very large training set for the
supervised learning. The optimization method can lead to local minima far from the global and
that's why di�erent initialization weights must be considered.

2.6 Design of Experiments

The Design of Experiments (DOE) is the selected code evaluations on the inputs X space to create
the dataset DN . This design will be mainly used to construct the surrogate models and the goal
is to explore as much as possible the inputs space Rd in order to capture potential non-linearities.
Such DOE are called space-�lling designs [86]. The most popular methods for constructing DOE
are the following:

• Full Factorial designs: Each input variable is discretized separately. The result is a full
tensorized grid of points that can be symmetric or asymmetric (size of discretization can
vary among the variables). It su�ers from the "curse of dimensionality" since the number of
design points increase exponentially.

• Sparse Factorial designs: They are used to alleviate the limited use of full factorial designs
in high input dimensions. These designs discard some of the tensorized grid points and create
a sparse grid based on some rules [87].

• Random Sampling: It is a simple Monte Carlo sampling where the input variables are
sampled randomly from their joint pdf. These designs do not su�er from the "curse of
dimensionality" since the sample size is independent of the input dimensions. Nevertheless,
as the dimension increases the input space increases as well and for a constant sample size
the space will be explored poorly.

• Latin Hypercube Sampling (LHS): The previous poor exploratory properties of random
sampling in high dimensions can be overcome using the LHS designs. We consider uniform
inputs distribution. For a prede�ned sample size N the marginal input space is uniformly
divided in N intervals creating Nd hypercubes. From these hypercubes N are selected and a
sample is generated in each one. The hypercubes selection has to preserve the Latin Hyper-
cube property of each sample being the only one in each axis-aligned hyperplane containing
it [86]. An optimization process is applied on the generated samples in order to cover the
input space as good as possible. LHS are mainly used in this thesis for the surrogate model
construction and will be detailed in the Sections 2.6.1 -2.6.2 discussing particularly the case
of arbitrary input distribution with independent coordinates.

• Quasi Monte Carlo Sampling: This method is based on algorithms that produce low
discrepancy sequences (e.g. Halton sequence) that try to �ll as much as possible the input
space.

Typical designs generated by these methods are illustrated in the following �gure.
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(a) (b)

(c) (d) (e)

Figure 2.5: Examples of DOE: Full Factoral (a), Sparse Factorial (b), Random Sampling (c), LHS
(d) and Quasi Monte Carlo Sampling (e).

2.6.1 Latin Hypercube Sampling (LHS) presentation

LHS as mentioned are DOE with space-�lling properties. We consider the construction of a size
N LHS like the case of DN in the input space of X ∈ Rd. The LHS is initially constructed for the
independent variables Z ∈ Rd in the domain of their cumulative distribution function (cdf) FZ(Z)
which is [0, 1]d. The marginal domain of each input variable Zi is divided into N uniform intervals.
The combination of all this intervals creates Nd hypercubes. From these hypercubes N are selected
in such a way that the projections of the centers of the hypercubes on the axis of each variable
is uniformly distributed. This is achieved by selecting d permutations of 1 . . . N . In a 2D design
with N = 5 it means that there cannot be two samples in the same row or column as illustrated
in the left of �gure 2.6. In this example the corresponding permutations are π1 = (3; 1; 4; 5; 2) and
π2 = (2; 5; 1; 3; 4). In each selected hypercube one sample is drawn randomly. The projection of
the sample n on each variable is denoted by uin and the transformation to the Z variables space
is performed through the inverse transform of the cdf Zin = F−1(uin). Using the previous example
the transformation process is seen in the right part of �gure 2.6.
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Figure 2.6: LHS marginal projection property (a) and inverse transformation using the cdf (b).
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Although the nature of LHS assures that marginally the points are well distributed this is not
necessarily the case for the points in the input space. The resulting LHS can have good or bad
space-�lling properties as it can be seen in �gure 2.7. To this purpose an optimization of the
LHS with respect to some criteria that quantify the space-�lling quality is applied. The di�erent
optimization methods are detailed in Section 2.6.2.
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Figure 2.7: LHS with bad (a) and good (b) space-�lling properties.

We consider now our input X as multivariate normal N (µX , CX) with mean µX and covariance
CX . We de�ne Z as standard normal variables N (0, 1). The LHS in the X space is expressed
by equation 2.73, where Z is the previously obtained dataset of size N × d with Zij = Zji for
i = 1 . . . N , j = 1 . . . d and MX the matrix of size N × d containing µX at each row.

√
CX is the

matrix square root of the covariance matrix (positive semide�nite).

XDN
= MX +

√
CXZ (2.73)

2.6.2 LHS optimization

As we observed previously, some LHS can have poor space-�lling properties in the input space.
This means that in this space some points can be close to each other and thus this reduces the
amount of information gained by evaluating those points by the code. Di�erent optimal criteria
are used in order to avoid such designs and enhance the LHS by ensuring the spreading of the
points in the space. A good overview of the developed criteria is given in [88]. We will present
some of the most used criteria on the un ∈ [0, 1]d uniform variables for the design DN.

• Geometric criteria: They are based on the euclidean distances between the DOE points
dij = ‖ui − uj‖2. Two main criteria exist. The �rst one is called "minimax" and aims at
minimizing the maximum distance of any point in [0, 1]d to its nearest design point. This is
equivalent to minimizing the criterion:

φmM (DN) = max
u∈[0,1]d

min
i=1...N

‖u− ui‖2 (2.74)

The second one is called "maximin" and aims at maximizing the minimum distance between
the design points. This is equivalent to maximizing the criterion:

φMm(DN) = min
i,j=1...N
i6=j

dij (2.75)

The minimax criterion is more attractive for surrogate model construction, since it takes into
account the whole domain. Its computation is, however, infeasible for dimensions larger than
4 or 5 [89]. On the other hand the maximin is much easier to compute but is di�cult to
optimize. For this reason a new criterion φp more e�cient to optimized can be used.
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φp(DN) =
[ ∑
j,k≤N
j<k

d−pjk
] 1
p (2.76)

The asymptotic equivalence between minimizing φp and maximizing φMm is shown in [89].
In practice a value of p = 50 can be used as proposed by [90].

• Uniformity criteria: They are based on discrepancy measures evaluating how close the
DOE is to a uniform design. Discrepancy is de�ned as the di�erence between the uniform
cdf U(u) and the empirical cdf of the DOE UN (u).

D∗(DN) = max
u∈[0,1]d

|UN (u)− U(u)| (2.77)

By minimizing this discrepancy the LHS is optimized. Discrepancy measures are constructed
based on the L2-norm discrepancy, an alternative to D∗ [91]. From the many existing mea-
sures two prominent ones are the centered C2 and wrap-around W 2 discrepancies.

C2(DN ) =

(
13

12

)d
− 2

N

N∑
n=1

d∏
i=1

(
1 +

1

2
|uin − 0.5| − 1

2
|uin − 0.5|2

)

+
1

N2

N∑
n,k=1

d∏
i=1

(
1 +

1

2
|uin − 0.5|+ 1

2
|uik − 0.5| − 1

2
|uin − uik|

)
(2.78a)

W 2(DN ) =

(
4

3

)d
+

1

N2

N∑
n,k=1

d∏
i=1

(
3

2
− |uin − uik|(1− |uin − uik|)

)
(2.78b)

• Minimum Spanning Tree (MST) criteria: They were recently developed [88] and build
trees by connecting with edges all the DOE points. The MST is the tree with minimum sum
of edge lengths. The mean mMST and standard deviation σMST of the edge lengths can be
estimated for each DOE. Designs with large mMST and small σMST have good space-�lling
properties.

When the dimensions and size of the LHS are small all the possible LHS can be compared based
on the selected criterion. This is not possible in large dimensions and sample sizes. Optimization
iterative methods are used in order to �nd an approximation of the best LHS. We will present two
main methods applied to the minimization of φp criterion:

• Simulated Annealing (SA): It is a metaheuristic global optimization method [91]. Starting
from a random initial LHS an iterative process is conducted where at each iteration an
elementary permutation by random permutation of two coordinates in the LHS is performed.
The designs that improve φp are always accepted, while the ones that do not improve can
be accepted with a probability that depends on the increment of φp (between the original
design and the transformed one) and a temperature parameter T. This is done in order to
avoid getting stuck in a local minimum. The temperature is progressively decreased from
an initial temperature T0 so as to decrease the probability to accept a worse design. The
optimization stops when the selected number of iterations is reached. The quantities that
need to be initialized are: the temperature T0, the number of iterations, the selection of the
temperature decrease method and its parameters. The selected pro�le for the temperature
evolution along the iterations is the geometric pro�le T = cT [92], with c that must be de�ned
in order to get extensive exploration of possible designs and fast minimization of φp. The
pseudo algorithm of one of the possible implementations of this method for optimizing an
initial design D0 of size N in Rd with initial temperature T0, pro�le parameter 0 < c < 1
and number of iterations Ni is:
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SA pseudo algorithm

1: Dbest = D0, Cbest = φp(D0), T = T0: initialization of the best design, best criterion and
temperature

2: for (i = 1, i ≤ Ni, i+ +) do
3: Create new design Di by elementary permutation and evaluate Ci = φp(Di)
4: a = min(exp(Cbest−CiT ), 1)
5: Sample b from bernoulli distribution with parameter a
6: if (b == 1) then
7: Dbest = Di and Cbest = Ci
8: end if
9: T = cT
10: end for

• Enhanced Stochastic Evolutionary algorithm (ESE): It is a stochastic optimization
method sharing many similarities with SA [93]. It consists of two nested iteration loops. In
the inner one J LHS are created by random elementary permutations and among them the
one with the minimum φp is selected. The acceptance/rejection of the design is based on a
temperature T parameter, similar to SA, where large values indicate more bad designs being
accepted. At the end of each step of the inner iterations the acceptance ratio is calculated and
the temperature is adjusted accordingly. If the ratio is smaller than a threshold (< 0.1) then
the temperature is increased, otherwise is decreased. The pseudo algorithm of one possible
implementation of this method for optimizing an initial design D0 of size N in Rd with initial
temperature T0, number of random LHS J and number of inner and outer iterations No, Ni
is:

ESE pseudo algorithm

1: Dbest = D0, Cbest = Cc = φp(D0), T = T0: initialization of the best design, best and compar-
ison criterion and temperature

2: for (o = 1, o ≤ No, o+ +) do
3: Do

best = Dbest, Cobest = Cbest
4: for (i = 1, i ≤ Ni, i+ +) do
5: Create J LHS by random elementary permutations
6: Select the design Di

best with minimum Cibest = φp(D
i
best)

7: ∆C = Cibest − Cc, u = Uniform(0, 1)
8: if (∆C ≤ Tu) then
9: Cc = Cibest
10: if (Cibest ≤ Cobest) then
11: Dbest = Di

best, Cbest = Cibest
12: end if
13: end if
14: end for
15: Compute the ratio of accepted designs τa
16: if (Cbest < Cobest) then
17: T :↘ (τa > 0.1) or T :↘ (τa ≤ 0.1)
18: else
19: T :↗ (τa ≤ 0.1) or T :↘ (τa > 0.1)
20: end if
21: end for

2.7 Sensitivity analysis

In our model Y = F (X) the output is a random quantity due to the uncertainty propagation
of the inputs. Sensitivity analysis goal is to identify which input variables have an impact on
the output's uncertainty (qualitative) and then quantify this impact (quantitative). This can
be used subsequently to reduce the dimensions of the input space. The methods that give a
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qualitative information on the inputs are called screening methods. The quantitative methods
focus on explaining the part of the output's uncertainty that belongs to each input variable or
combination of variables. The sensitivity analysis methods can also be divided in local and global
depending on if they concentrate on the local impact of the input parameters or on the whole
domain of variation. Besides that, one might be interested in the sensitivities of di�erent statistical
quantities of the output, from its variance to quantiles and even the whole distribution. An overview
of the main methods for sensitivity analysis will be presented [94]. In general scalar output is
considered except in the dedicated Section 2.7.6 to the functional output sensitivity analysis.

2.7.1 Screening

This category is about methods that are based on partial derivatives, increments of the inputs
around some reference value or some empirical correlation estimation. They are usually used for
screening of independent inputs by allowing an initial fast estimation of the inputs importance.

2.7.1.1 One factor at a Time (OAT)

OAT is a simple local method where the derivatives of each variable evaluated at the mean value
µX are used as sensitivity indices. For the ith variable Xi it is expressed by:

SiOAT =
∂

δXi
(µX) (2.79)

The derivatives can be estimated either by �nite di�erences or by adjoint methods. In the thesis
context with coupled multi-physics transient calculations the former one can be only used. The
derivatives are thus estimated by small perturbation δh > 0 around the mean value.

ŜiOAT =
F (µX + δhei)− F (µX)

δh
(2.80)

Where ei is the standard basis vector. The OAT index is the absolute value |ŜiOAT |. The sensitivity
depends on the choice of the reference value and cannot capture non-linear or interaction e�ects

2.7.1.2 Morris method

Morris method can be seen as a global OAT method for screening. M reference values Xm are sam-
pled and for each value the OAT sensitivity index Ŝim,OAT is calculated for all the variables. Using
these sensitivity indices the mean and variance of the Morris method are de�ned and estimated
through equations 2.81a and 2.81b.

µiM = E[|SiOAT |], µ̂iM =
1

N

M∑
m=1

|Ŝim,OAT | (2.81a)

V iM = E[(SiOAT − E[SiOAT ])2], V̂ iM =
1

M − 1

M∑
m=1

(Ŝim,OAT −
1

M

M∑
m′=1

Ŝim′,OAT )2 (2.81b)

The mean Morris index µ̂iM represents the direct sensitivity of the input parameters to the output.
The variance Morris index V̂ iM captures the sensitivity through interactions with the rest of the
inputs and the non-linearities between the inputs and the output. These two e�ects cannot be
separated. Usually the result of Morris method is plotted as in �gure 2.8, where 10 inputs are
considered.
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Figure 2.8: A typical Morris plot for 10 inputs.

This method allows to neglect directly some inputs with small computational cost (the ones close to
the origin of the plot: X2, X4, X5, X6, X9). The remaining inputs can be separated in parameters
with linear e�ects (close to the µ̂iM axis: X3, X6), with non-linear or interaction e�ects (X1,X7)
and with both (X10) depending on their place in the Morris plot. The method does not make any
hypothesis on the model but it is more e�cient if there is some regularity.

2.7.2 Correlation based indices

2.7.2.1 Pearson Coe�cient (PC)

Pearson coe�cient SiPC is a measure of linear correlation between output Y and each input Xi.
With σY , σXi the corresponding standard deviations and cXiY the input-output covariance PC is
de�ned as:

SiPC =
cXiY
σXiσY

(2.82)

It is bounded in [−1, 1]. A value of 0 indicates that Y and Xi are uncorrelated while a value of
1 (−1) indicates full positive (negative) linear correlation. We remind that uncorrelated variables
does not imply independent variables while independent variables are necessary uncorrelated. The
empirical estimator of PC is:

ŜiPC =

∑N
n=1(Xi

n − µ̂Xi)(Yn − µ̂Y )√∑N
n=1(Xi

n − µ̂Xi)2

√∑N
n=1(Yn − µ̂Y )2

(2.83)

Where µ̂Xi and µ̂Y are the mean empirical estimators of Xi and Y .

2.7.2.2 Standardized Regression Coe�cient (SRC)

The SRC is derived from the standardized3 linear regression between Y and Xi, which are consid-
ered independent. SRC score is de�ned based on the regression coe�cients αi:

SRCi = αi
σXi

σY
(2.84)

The estimator ŜRCi of the SRC score can be obtained from the empirical estimators α̂i, σ̂Xi
and σ̂Y based on the dataset DN . The SRC sensitivity index is de�ned as SiSRC = (SRCi)

2

and estimated by ŜiSRC = (ŜRCi)
2. If the linearity is valid then the variance of the output is

decomposed to combinations of the input variables variances in equation 2.85.

V ar(Y ) =

d∑
i=1

α2
iV ar(X

i) (2.85)

3Standardized in the sense that from the variables the mean is extracted and the standard deviation is divided
in order to render them standard normal.
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SiSRC is then bounded in [0, 1] with
∑d
i=1 S

i
SRC = 1. In this case ŜiPC and ŜRCi are identical with

ĉXiY = αiσ̂Xi . If for the uncertainty propagation the perturbation method is used then the partial
derivatives of the inputs are equal to αi and the SRC can be calculated directly from equation 2.84
using the results of the "Sandwich rule".

2.7.2.3 Partial Correlation Coe�cient (PCC)

When a controlling variable Z is a�ecting both Xi and Y the result of PC coe�cient can be
misleading. To this purpose PCC removes the e�ect of Z focusing on the intrinsic correlation
between Xi and Y . It is the correlation coe�cient conditioned on the di�erent values of Z.
The controlling variables can be other inputs correlated to Xi. In that sense PCC can detect
redundancies between inputs, the situation when two inputs are highly correlated but only one
of them is important for the output. The PC for both of them will have similar values while
PCC will identify the input impacting the output and the PCC of the other input will have an
estimated value close to zero. The PCC sensitivity index SiPCC can be de�ned in relation to the

PC coe�cients of Xi − Y (SX
iY

PC ), of Xi − Z (SX
i,Z

PC ) and of Y − Z (SY ZPC ) :

SiPCC =
SX

iY
PC − SX

iZ
PC SY ZPC√

1− (SX
iZ

PC )2

√
1− (SY ZPC )2

(2.86)

The PCC can be then estimated empirically by the PC empirical estimators:

ŜiPCC =
ŜX

iY
PC − ŜX

iZ
PC ŜY ZPC√

1− (ŜX
iZ

PC )2

√
1− (ŜY ZPC )2

(2.87)

2.7.3 Monotonic model coe�cients

When the model is non-linear SRC, PC and PCC fail to correctly estimate the output's sen-
sitivities to the inputs. This limitation can be alleviated for monotonic models. The dataset
DN =

[
Xn,Yn

]N
n=1

is replaced by DR
N =

[
Rxn,Ryn

]N
n=1

with Rxn and Ryn the rank of each
sample in the dataset. The estimation of the previous coe�cients on this dataset gives rise to
the Standardized Rank Regression Coe�cient (SRRC), Spearman coe�cient (SC) and the Partial
Rank Correlation Coe�cient (PRCC)

2.7.4 Analysis of Variance (ANOVA) indices

Analysis of variance (ANOVA) is called the decomposition of the output's variance on the di�erent
inputs. For the case of linear model and independent inputs the SRC can be seen as ANOVA
indices. In this Section we present two indices that go beyond these constraints. The Sobol indices
[95] that do not make any assumption on the model but are applied on independent inputs. The
Shapley indices [96] that like Sobol do not make any model assumption but can treat dependent
inputs. Both Sobol and Shapley indices are methods of Global Sensitivity Analysis (GSA).

2.7.4.1 Sobol

It is the main global sensitivity analysis method. No hypothesis is made on the model Y = F (X).
The main hypothesis is made on the inputs parameters which should be independent. The goal is to
de�ne indices by decomposing the variance of Y (ANOVA). In order to perform this decomposition
Y must be square integrable. This is achieved by decomposing the model in sum of subfunctions:

Y = f0 +

d∑
i=1

fi(X
i) +

∑
1≤i<j≤d

fij(X
i, Xj) + · · ·+ f1...d(X

1, . . . , Xd) (2.88)

Where the subfunctions are de�ned by:
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f0 = E[Y ]

fi(X
i) = E[Y |Xi]− f0

fij(X
i, Xj) = E[Y |Xi, Xj ]− fi(Xi)− fj(Xj)− f0

...

which are such that f0 is constant and the rest of the subfunctions are orthogonal to each other.
If we apply the ANOVA on this decomposition we obtain:

V ar(Y ) =

d∑
i=1

Di +
∑

1≤i<j≤d
Dij + · · ·+D1...d (2.89)

with

D = V ar(Y )

Di = V ar(E[Y |Xi])

Dij = V ar(E[Y |Xi, Xj ]− E[Y |Xi]− E[Y |Xj ])

...

The Di explains the part of the output's variance directly from the parameter Xi while the Dij

explains the part of the output's variance due to the interaction between parameter Xi and Xj .
We de�ne the set Ai containing all the possible combinations of indices containing i. Based on
these quantities the following Sobol indices are de�ned [97]:

Si =
Di

D
, Sij =

Dij

D
, STi =

∑
αi∈Ai

Sαi

with the following properties:

Si ≥ 0, Sij ≥ 0,

d∑
i=1

Si +
∑

1≤i<j≤d
Sij + · · ·+ S1...d = 1

The Si is called the 1st order Sobol index and represents the direct e�ect of parameter Xi on the
outputs variance . The Sij is called the 2nd order Sobol index and represents the e�ect of the
interaction between parameters Xi and Xj . The STi is called the total Sobol index and represents
the total e�ect of parameter Xi, directly and through all its possible interactions with the other
parameters. It is obvious that if the inputs dimension is large the number of sensitivity indices
to be computed increases rapidly. That is why usually we calculate only the �rst order and total
Sobol indices. In order to estimate those indices large sample size are needed4 and they are usually
obtained by using surrogate models. To this purpose, we consider 2 large input samples of size M
are generated X(m,1) and X(m,2) with m = 1 . . .M . The typical estimators for f0 and D are:

f̂0 =
1

M

M∑
m=1

F (X1
(m,1), . . . , X

i
(m,1), . . . , X

d
(m,1)) (2.90)

D̂ =
1

M

M∑
m=1

F (X1
(m,1), . . . , X

i
(m,1), . . . , X

d
(m,1))

2 − f̂2
0 (2.91)

To estimate the Si index the Di is estimated through:

D̂i =
1

M

M∑
m=1

F (X1
(m,1), . . . , X

i
(m,1), . . . , X

d
(m,1))F (X1

(m,2), . . . , X
i
(m,1), . . . , X

d
(m,2))− f̃2

0 (2.92)

4At the order of 105
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Where f̃2
0 is a better adapted estimator of f2

0 than the previous one for the 1st order index
estimation [97]:

f̃2
0 =

1

M

M∑
m=1

F (X1
(m,1), . . . , X

i
(m,1), . . . , X

d
(m,1))F (X1

(m,2), . . . , X
i
(m,2), . . . , X

d
(m,2)) (2.93)

The 1st order Sobol indice is estimated then by:

Ŝi =
D̂i

D̂
(2.94)

For the total index the notion of D∼i is introduced as the complement quantity of Di and X∼i =
(Xj)j∈A\i as the complement of Xi, where A = {1 . . . d}.

D∼i = V ar(E[Y |X∼i])
Then D∼i is estimated from equation 2.95 and the corresponding total Sobol index from equation
2.96.

D̂∼i =
1

M

M∑
m=1

F (X1
(m,1), . . . , X

i
(m,1), . . . , X

d
(m,1))F (X1

(m,1), . . . , X
i
(m,2), . . . , X

d
(m,1))− f̂2

0 (2.95)

ŜTi = 1− D̂∼i
D̂

(2.96)

For this estimation of the whole Sobol indices N(2d+ 2) model calls are necessary.

2.7.4.2 Shapley indices

This method is starting to be used quite recently and is a generalization of Sobol indices that can
treat dependent input parameters. It is based on the Shapley values used in game theory. The main
idea is to calculate the impact of an input on the output at all its possible combinations with the
other inputs. If we could calculate all the Sobol indices we could also calculate the Shapley indices
as well. To do so is very time consuming and it su�ers from the "curse of dimensionality". The
Shapley indices o�er an approximate evaluation much less time consuming and independent of the
inputs dimensions. In order to estimate the Shapley indices we will introduce some de�nitions. For
the inputs X ∈ Rd we de�ne K = {1, 2, . . . , d} the set containing all the indices of the parameters,
π a permutation of the indices in K and Pi(π) as the set that includes all parameters preceding
index i in π. For example if d = 6 then K = {1, 2, 3, 4, 5, 6} , π could be {3, 6, 2, 1, 5, 4} and then
P1(π) = {3, 6, 2}. The next step now is to de�ne a cost function that relates a set of parameters
to a value. In the context of global sensitivity the possible cost functions are:

c̃(J) = V ar(Y )− E[V ar(Y |XJ)] (2.97)

c(J) = E[V ar(Y |X∼J)] (2.98)

with J ⊆ K and X∼J = (Xi)i∈K\J complement of XJ

The c̃(J) cost function is interpreted as the expected reduction in the outputs variance when the
values of the parameters XJ are known. The c(J) cost function is interpreted as the expected
remaining outputs variance if all the parameters except J are known. The function c(J) is used
and if we de�ne Π(K) the set of all possible perturbations of K then the exact Shapley index for
parameter Xi is:

Shi =
∑

π∈Π(K)

1

d!
(c(Pi(π) ∪ {i})− c(Pi(π))) (2.99)

The cost function can be estimated by two loop Monte Carlo simulations [98] and the corresponding
estimation of the Shapley index is:
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Ŝhi =
∑

π∈Π(K)

1

d!
(ĉ(Pi(π) ∪ {i})− ĉ(Pi(π))) (2.100)

The number of possible permutations of d inputs is d! and increases factorialy with the dimension
of the input vector. To overcome this limitation N random permutations πr are generated and an
approximate Shapley index is calculated by:

Ŝh
rand

i =
1

N

N∑
r=1

(ĉ(Pi(πr) ∪ {i})− ĉ(Pi(πr))) (2.101)

2.7.5 Dependence measures

The dependence measures [99] can be used to overcome some limitations of ANOVA indices. The
�rst one is that they estimate the impact of each input on the output's variance only, while
dependence measures can estimate the impact on the whole output's distribution. The second one
is that they are used only for quantitative analysis and cannot be used for screening purposes based
on a selected sample while dependence measure can be used for both. The third and last one is
that ANOVA indices cannot adapt easily to functional outputs. We will see in Section 2.7.6 that
they can still be used in conjunction with PCA. Dependence measures can be used straightforward
for functional outputs. We remind that we consider the model Y = F (X) : Rd → R. Dependence
measures are based on estimating the statistical dependence between Y and Xi with zero value
indicating independent variables. Di�erent approaches exist and we will detail some of the main
ones.

2.7.5.1 Mutual information

Mutual information I dependence measure is based on the entropy H de�ned in equation 2.7 of
Xi, Y and of joint (Y,Xi). The sensitivity index is expressed as:

SiMI = I(Xi;Y ) = H(Xi) +H(Y )−H(X,Y ) =

∫
pXiY (Xi, Y ) ln

(
pXiY (Xi, Y )

pXi(Xi)pY (Y )

)
dXidY

(2.102)
This index is always positive and zero in case of independent variables (pXiY = pXipY ).

2.7.5.2 Distance correlation

Distance correlation [100] is based on the notion of distance covariance dcov(Xi, Y ). It is the
distance between the joint characteristic function of (Xi, Y ) denoted by φXiY and the product of
their marginals φXi and φY . The characteristic function for a random variable Z is the Fourier
transform of its pdf and is de�ned as φZ(t) = E[eitZ ]. The distance covariance is expressed
through equation 2.103, where w is a positive weighting function de�ned in [100]. The weight
function ensures that the distance covariance is 0 when the variables are independent and positive
when they are dependent.

d2
cov(X

i, Y ) = ‖φXiY − φXiφY ‖2w =

∫
|φXiY (Xi, Y )− φXi(Xi)φY (Y )|2w(Xi, Y )dXidY (2.103)

The distance correlation sensitivity index is de�ned as:

Sidcor =
dcov(X

i, Y )√
dcov(Xi, Xi) dcov(Y, Y )

(2.104)

2.7.5.3 Hilbert-Schmidt Independence Criterion (HSIC) indices

HSIC indices were proposed by [101] for the detection of non-linear dependencies between two
random variables. This is achieved by computing the cross-covariance between non-linear trans-
formations of the variables. We consider the scalar input X ∈ X and the scalar output Y ∈ Y.
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The main motivation to derive the HSIC indices is based on searching an independence criterion
CXY with the property: " If (X, Y ) are independent if and only if CXY = 0".

We introduce the notion of the Reproducing Kernel Hilbert-Schmidt (RKHS) function space F
from X to R. It is a Hilbert space of functions f : X → R for which the application f → f(x) is
continuous for all x ∈ X . The Riesz theorem [102] states that for any x ∈ X there exists a unique
evaluation function φx ∈ F with the following reproducing property for all f ∈ F :

f(x) =< f, φx > (2.105)

This evaluation function de�nes the reproducing kernel kX : X × X → R for F as:

kX(x, x′) = φx(x′) =< φx, φx′ > (2.106)

The Moore-Aronszanj theorem [103] states that if kX : X × X → R is a symmetric and positive
de�nite kernel then there is a unique RKHS on X for which kX is the reproducing kernel.

We introduce G a second RKHS of functions g from Y to R with reproducing kernel kY . The
cross-covariance operator CXY between X and Y is the linear operator G → F de�ned by:

< f,CXY g >= EX,Y [f(X)g(Y )]− EX [f(X)]EY [g(Y )] (2.107)

for f ∈ F , g ∈ G.

The Hilbert-Schmidt Independence Criterion (HSIC) is de�ned as SHSIC = ‖CXY ‖2HS and can be
expressed using the reproducing kernels [101] by:

SHSIC = ‖CXY ‖2HS = EX,X′,Y,Y ′ [kX(X,X ′) kY (Y, Y ′)]

+ EX,X′ [kX(X,X ′)]EY,Y ′ [kY (Y, Y ′)]

− 2EX,Y [EX′ [kX(X,X ′)]EY ′ [kY (Y, Y ′)]]

(2.108)

In [101] the HSIC indices are estimated empirically through:

ŜHSIC =
Tr(KX H KY H)

N2
(2.109)

Where:

• KX and KY are the Gram matrices of the kernel functions de�ned as Kjk
X = kX(Xj , Xk)

and Kjk
Y = kY(Yj , Yk) for j ≤ N, k ≤ N .

• H is a centering matrix with elements Hjk = δjk − 1
N for j ≤ N, k ≤ N .

The important propery of HSIC indices is the following: "If kX and kY are universal and X and
Y are compact then SHSIC = 0 if and only if X and Y are independent.". The universal property
means that the corresponding RKHS function spaces F and G are dense in the space of continuous
functions on X and Y with respect to the in�nity norm [104]. There is no clear way for the selection
of the kernel functions. In this thesis we use Gaussian kernels (satisfying the universal property).

2.7.5.4 HSIC statistical signi�cance test

While the HSIC indices measure non-linear dependencies between Xi and Y they are not robust
enough to be used directly for screening. It is preferable that they are used in statistical signi�cance
tests. The non-asymptotic signi�cant test based on resampling presented in [105] can be used for
screening purposes. The null hypothesis "H0 : Xi and Y are independent" is adopted with a
signi�cance level α = 0.05. The following procedure is applied for each input to identify which of
them are important.
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HSIC signi�cance test

1: Initialize α = 0.05, B bootstrap (with replacement) size and p = 0

2: Compute ŜiHSIC for (Xi, Y )
3: Realize B bootstrap (with replacement) samples Y b of Y
4: for (b = 1, b ≤ B, b+ +) do
5: Compute HSIC indice between Xi and Y b: Ŝi,bHSIC for (Xi, Y b)
6: p = p+ 1

B 1Ŝi,bHSIC>ŜiHSIC
7: end for
8: If p < α the H0 is rejected and the variable Xi is considered important for Y

2.7.6 Functional sensitivity indices

So far the sensitivity indices were calculated for scalar outputs. In the case of functional ones
Y ∈ Rq di�erent approaches have been proposed recently.

2.7.6.1 ANOVA aggregated indices

ANOVA indices decompose the variance of a scalar output on each input. For functional outputs
PCA can be used to reduce the output's dimension to few scalar scores using equation 2.21. Based
on a DOE surrogate models are used to approximate the underlying functions between the scalar
PCA scores and the inputs. The surrogate models are used to perform the needed evaluations in
order to estimate the Sobol or Shapley indices. An aggregate index is computed through equation
2.110 weighted by the scores variance representation V l = Λll

Tr(Λ) over the total variance of the
functional output. For the Sobol indices this method was introduced by [106]. We present the

equivalent expression for the aggregated Shapley index in equation 2.110, where Ŝh
i

l is the Shapley
index between the input Xi and the output PCA score Tl.

Ŝh
i

agg =

L∑
l=1

Ŝh
i

lV
l (2.110)

2.7.6.2 Dependence measures

For mutual information and distance covariance the extension to both functional inputs and outputs
is straightforward for X ∈ Rd and Y ∈ Rq. For HSIC indices it is more complicated since the
kernel is applied on a metric for functional variables. For such kernels the universal property is not
guaranteed [99]. As a consequence the independence detection cannot be guaranteed. However,
approaches based on PCA have been presented for temporal and spatial outputs in [107] and [108].
The intuition behind these approaches is to de�ne a distance metric in the functional space based
on the scores of the PCA. The distance between each pair of functional realizations is calculated
and the kernel function is applied on these distances.

2.8 Model calibration

Physical phenomena are often quite complex and in order to describe them simpli�ed models are
used. Often these models apart from the input variables contain also unknown parameters to be
determined in order to enhance the model prediction capabilities. We consider a model G(X,θ),
with unknown parameters θ, aiming at replacing the scalar underlying function Y = F (X). In
this example we use the input-outputs general notations but any intermediate inputs or outputs
quantities can be used as well.

Y = G(X,θ) + ε (2.111)

Model calibration consists of the estimation of θ, with ε the calibration error. Various approaches
exist based on an obtained dataset DN . This dataset can be the result of experimental measure-
ments or of a higher �delity model. We are going to detail two approaches. Mean square error
minimization, where θ is estimated by minimizing E[ε2]. Bayesian calibration, where a prior es-
timate of θ is updated through the likelihood of observing DN . The calibration model for the
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obtained dataset is expressed in equation 2.112, with EDN the vector of size N of the calibration
errors (εi)Ni=1.

YDN = G(XDN ,θ) + EDN (2.112)

2.8.1 Mean Square Error minimization

The calibration parameters θ are estimated by minimizing the mean square error of the calibration
model:

θ̂ = argmin
θ∈Θ

1

N

N∑
i=1

(Yi −G(Xi,θ))2 (2.113)

Di�erent optimization methods can be used to �nd this minimum. This approach aims at �nding
the best �tting of the model on the dataset.

2.8.2 Bayesian calibration

The previous method is very limited since it cannot include model inadequacy, observation errors
and other sources of uncertainties. Bayesian calibration is a more mathematically rigorous approach
since it de�nes a statistical framework. It updates a prior knowledge of θ by conditioning on the
observed dataset. The posterior pdf of θ can take into account various sources of uncertainties
(e.g. observation uncertainties) and allow to include the calibration parameters uncertainty. The
general statistical framework is described by equation 2.114, where εi are N realizations of i.i.d.,
the error related to the observations ε ∼ N (0, σ2

ε).

Yi = F (Xi) + εi (2.114)

The Bayes rule as we saw in Bayesian inference (Section 2.2.3) need the de�nition of the likeli-
hood function of observing the dataset. This likelihood function depends on both the model and
error de�nitions and assumptions. In [109] an overview on the di�erent statistical frameworks is
presented. The deterministic calibration model G is either computationally cheap and can be used
directly or it is computational expensive and is approximated by a Gaussian process similar to the
one presented for Kriging in Section 2.5.4. Besides that, the model can be considered as repre-
senting exactly the undergoing physical phenomena or as introducing a model discrepancy. The
combination of these modeling and error options create 4 di�erent frameworks M1,M2,M3,M4 of
increasing complexity:

1. Cheap code without discrepancy (M1): The code model is fast enough to be used
directly and is assumed to completely replace the physical phenomena. This results in the
M1 framework described by:

Yi = G(Xi,θ) + εi (2.115)

2. Expensive code without discrepancy (M2): The code model is computationally ex-
pensive and thus a Gaussian process is used to replace it. The Gaussian process as in
Kriging is constructed on the joint domain (X,θ) by a dedicated DOE of size M DF

M =[
(Xm,θm),Ym

]M
m=1

. It is de�ned by its mean µF (X,θ) and covariance function cF ((X,θ), (X ′,θ′)).
As in Kriging the mean function is usually is a linear combination of prede�ned functions
µF (X,θ) = hF (X,θ)βF and the covariance function is selected from a family of kernel func-
tions with hyperparameters (σF ,ψF ). No discrepancy is considered between the Gaussian
process and the physical phenomena. This results in the M2 framework described by:

Yi = GP (µF , cF )i + εi (2.116)

Together with θ the Gaussian process parameters (βF , σF ,ψF ) must be estimated as well.
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3. Cheap code with discrepancy (M3): The code model is computationally fast and is
used directly. The discrepancy between the model and the physical phenomena δ(Xi) =
F (Xi) − G(Xi,θ) is modeled by a Gaussian process. It is de�ned by its mean function
µd(X) = hd(X)βd and covariance function cd(X,X ′) with hyperparameters (σd,ψd). This
results in the M3 framework described by:

Yi = G(Xi,θ) +GP (µd, cd)i + εi (2.117)

Together with θ the Gaussian process parameters (βd, σd,ψd) must be estimated as well.
There is an identi�ability issue arising from the fact that multiple pairs of (θ, δ(X)) can
verify the discrepancy de�nition. This can be solved by setting the mean function µd = 0
[110].

4. Expensive code without discrepancy (M4):The code model is computationally expensive
and thus a Gaussian process is used to replace it as in M2. The discrepancy is modeled by
a Gaussian process as in M3. The resulting framework M4 introduced in the seminal work
[110] is described by:

Yi = GP (µF , cF )i +GP (µd, cd)i + εi (2.118)

Together with θ the two Gaussian process parameters (βF , σF ,ψF ) and (βd, σF dψd) must
be estimated as well.

For each model the likelihood must be de�ned prior to the estimation of the parameters. The
parameters are usually grouped in two categories: the calibration parameters θ common for all the
statistical frameworks and the rest called nuance parameters depending on the framework. Once
the framework is selected and its corresponding likelihood de�ned the estimation of the parameters
can be performed either through Maximum Likelihood Estimation (MLE) or Bayesian Estimation.
In MLE the parameters that maximize the likelihood are estimated either altogether in what is
called full MLE or in separate steps (for M2 and M4). In the M2 �rst the model Gaussian process
hyperparameters are estimated through MLE on their partial likelihood and then plugged into the
full likelihood. Secondly, θ are estimated by maximizing this modi�ed likelihood. For M4 the θ
are estimated by mean square error minimization and then plugged into the calibration model to
estimate the discrepancy by non-parametric regression on (XDN , YDN − G(XDN , θ̂). In Bayesian
Estimation a prior is assigned to all the parameters to be estimated. Usually Je�reys priors are
used [111]. In full Bayesian Estimation the joint posterior of the outputs is estimated. This means
that the nuance parameters must be integrated in order to estimate the marginal posterior pdf of
θ. This approach is di�cult due to the large number of nuance parameters. To this purpose [110]
and [112] used an approach in separate steps called Modular Bayesian Estimation similar to the
one in MLE. The di�erence is that the posterior pdf is sampled using Monte Carlo Markov Chains
(MCMC) methods.

2.9 State of the art research

Most of the above mentioned topics are of high interest in research and development. We present
some recent works on statistics and on application of these or similar methods in nuclear engineer-
ing.

2.9.1 Research in Statistics

With the rise of machine learning and data science an emphasis is given in feature selection methods
that can be seen as methods for dimension reduction either on the inputs or outputs. The best
representation of high dimensional non-linear data is sought. In [113] two methods based on HSIC
indices are proposed to deal with interactions and redudancies between inputs in high dimensional
spaces. Both methods use sup − HSIC measure wich can be seen as the maximum HSIC value
among di�erent kernel functions. In [114] a novel method is proposed for feature selection based on
HSIC indices and Lasso regularization which penalizes for large input sets. The method is applied
to millions of inputs with very promising results. An interesting method for feature selection is
presented in [115] where the conditional covariance is used as a metric of conditional dependence.
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The input subset is calculated by minimizing the conditional covariance that is estimated using
kernel functions. Another promising method gaining popularity for dimension reduction is the
autoencoders, which consists of speci�c types of neural networks where their outputs are their
inputs. This means that they �nd a representation that is as close as possible to the original
inputs. Autoencoders are used in [116].

Uncertainty analysis in presence of functional inputs and outputs is a very challenging �eld of
ongoing research. In [78] a methodology based on PCA and PLS is used for uncertainty propagation
in the presence of both scalar and functional dependent inputs. An advanced uncertainty analysis
methodology based on HSIC indices for screening and kriging for surrogate model was developed
recently in [117]. In [118] and [119] PLS and PCA are combined with kriging for constructing
surrogate models in high dimensional input spaces. Non linear PCA in conjuction with kriging
and chaos polynomials are used for constructing surrogate models in high dimensional input spaces
in [120].

Design of experiments research focus mainly on developing DOE adapted for speci�c purposes
(e.g. failure probability estimation). In [88] di�erent space-�lling designs are studied and new ones
are proposed. In [89] the applicability of di�erent space-�lling designs is studied and the need to
consider non space-�lling designs for speci�c cases is highlighted. In [121] sequential designs are
presented for failure probability uncertainty estimation in a multi�delity framework. The high and
low �delity codes are modeled by two kriging models. In [122] an adaptive design construction
for calibration purposes is studied. Kriging models are used to replace the actual code and the
design is sequentially constructed based on Expected Improvement criterion in order to reduce the
calibration error.

Sensitivity analysis is a �eld of constant research undergoing a lot of evolution in recent years. In
[123] a generalization of Sobol indices for dependent variables is presented. A new sensitivity index
called RDC measuring the non-linear dependency between two random variables is proposed in
[124]. It is based on random non-linear copula projections of the variables, it is computationally
cheaper than HSIC indices and it is possible to adapt it to functional random variables. Various
sensitivity indices based on dependence measures are introduced in [99]. Besides that, their use in
feature selection for large dimensions is evaluated. Johnson indices where used for high dimensional
dependent inputs for linear model in [125]. In [126] the concept of goal oriented sensitivity indices
was introduced based on contrast functions. An example of these goal oriented sensitivity indices
is the quantile sensitivity indices studied in [127]. Besides that, sensitivity indices evaluating the
sensitivity on the uncertainty of the inputs probability density function are developed in [128].

2.9.2 Research in Nuclear Engineering

Statistical state of the art methods are starting to being used in nuclear applications. In fuel-
thermal, [129] used URANIE platform for uncertainty analysis of PWR fuel under irradiation
modeled using METEOR code. Monte Carlo uncertainty propagation and sensitivity analysis by
estimating Sobol indices were performed. The results are compared to experimental measurements.
In [130] BISON code and the DAKOTA platform were used for �ssion gas sensitivity analysis based
on a similar approach to Morris method. In [131] FRAPCON a comparative sensitivity analysis
using Pearson correlations and Sobol indices highlight the necessity of using sensitivity indices
that capture interactions between inputs on the outputs. An interesting approach is carried out in
[132] for a thermal-hydraulic modeling of a conceptual reactor design. Adjoint sensitivity analysis
showed the need to calculate second order sensitivities due to non-linearities. In neutronics [133]
applied an uncertainty propagation and sensitivity analysis (Sobol indices) for functional outputs
on a neutronic transient modeled by point kinetics. Kriging and PCE were used in conjuction with
PCA for dimension reduction. An interesting approach is presented in [134]. A methodology for
dimension reduction using of linear projections similar to PCA, including calculation of bounds
for the reduction error, is used to replace neutronic/fuel-thermal coupled codes. A lot of research
is done for cross-sections uncertainty analysis in large cores. In [135] assembly depletion in lattice
calcualtions is studied while in [21] full detailed PWR core static uncertainty analysis using adjoint
solutions. In [136] the di�erences between core assembly and pin by pin homegenization level
is highlighted in an uncertainty analysis using COBAYA code. Both Monte Carlo and adjoint
approaches were applied.

99



100



Chapter 3

Development and Testing of an

Uncertainty Quanti�cation
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3.1 Introduction

Pressurize Water Reactors (PWR) computational modeling evolves with the available computa-
tional power. The complexity of Best Estimate (BE) codes increases and coupling frameworks are
developed in order to simulate strong multi-physics transients. An example of such transient is the
Rod Ejection Accident (REA) detailed in Section 1.6. In Chapter 1 we saw that three di�erent
disciplines or 'physics' are identi�ed as important for REA. The �rst one is neutronics model-
ing the power generation by calculating the neutrons' distribution in the core. The second one
is fuel-thermomechanics modeling the heat distribution inside the fuel pin induced by the power
generation. Mechanical and temperature evolution are computed from the fuel pellet center until
the cladding external surface. The third one is thermal-hydraulics modeling the heat extraction
by the coolant. The temperature, density and other thermal-hydraulics quantities are calculated
as the coolant circulates in the pressurized core.

In a multi-physics coupling framework the di�erent neutronic, fuel-thermomechanic and thermal-
hydraulic BE codes are coupled in order to improve the transient modeling. In this thesis we use
the coupling framework developed at CEA for the REA modeling. It is based on CORPUS tool
for the coupling of APOLLO3 R© (neutronics), FLICA4 (thermal-hydraulics) and ALCYONE V1.4
(fuel-thermomechanics). As discussed in Section 1.7 two couplings are available. The BE coupling
of APOLLO3 R© - FLICA4 and the Best E�ort coupling of APOLLO3 R© - FLICA4 - ALCYONE
V1.4.

Driven by the need of improving the safety margins uncertainty analyses are carried out and
Best Estimate Plus Uncertainty (BEPU) methods are developed with industrial applications. In
Chapter 2 we saw an overview of statistical tools that could be used in an uncertainty quanti�cation
methodology (UQM). The use of the CORPUS coupling framework to develop an UQM for a REA
creates many challenges:

• Computationally expensive modeling not allowing many code evaluations.

• Large input and output dimensions that can create di�culties for the application of the
di�erent statistical tools.

• Input dependencies that can lead to redundant inputs. This is the case when two inputs are
strongly dependent and one is very important for an output while the other one is not. Most
of the sensitivity methods will detect both of the inputs as very important.

• Interaction between inputs on the outputs variance. This can occur when one input is not
directly signi�cant to an output but only in conjunction with another input.

• Non-linear output behavior. It is not always easy for the surrogate model to correctly ap-
proximate a non-linear function, especially where there are discontinuities.

The objective is to explore the di�erent statistical tools to address some of these challenges in the
UQM.

In this Chapter we present the development and testing of the UQM on a small scale core called
MiniCore that is representative of a PWR core behavior. In Section 3.2 we detail the MiniCore
geometry with all its modeling aspects (e.g. discretization) the initial state and the reference
characteristics of the REA. In Section 3.3 we identify the inputs and outputs for the UQM and
discuss the inputs uncertainty quanti�cation. In Section 3.4 we perform preliminary decoupled
stand-alone uncertainty analysis studies for each code. Depending on the nature of the inputs and
outputs relevant statistical tools are tested.

In Section 3.5, we study the multi-physics APOLLO3 R© - FLICA4 BE coupling scheme with all
the identi�ed inputs and outputs. An input dimension reduction method is developed to identify
important input subspaces. Additionally, an adaptation of the simulated annealing LHS optimiza-
tion algorithm is developed to guarantee good space-�lling properties in both the original input
space and the identi�ed important input subspace. Both methods and relevant statistical tools are
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tested on the BE coupling scheme. The conclusions drawn from the preliminary decoupled and
multi-physics coupled studies are used to develop the UQM step by step scheme.

In Section 3.6, the case of the gap heat transfer (Hgap) is studied in order to improve the multi-
physics BE modeling used in Section 3.5. Since the inclusion of ALCYONE V1.4 increases dra-
matically the computational cost there is a strong interest in trying to extract knowledge from
decoupled ALCYONE V1.4 analyses. We present a methodology to calibrate a simpli�ed Hgap

model and to quantify its uncertainty. The calibrated model is introduced then in the BE coupling
scheme creating an improved BE modeling. The originality of the proposed Hgap model is that
its uncertainty can be quanti�ed and propagated through the APOLLO3 R© - FLICA4 coupling.
The UQM is tested again on this improved coupling and for selected design points comparisons are
made with APOLLO3 R© - FLICA4 - ALCYONE V1.4 Best E�ort coupling scheme. The Chapter
ends with some general conclusions in Section 3.7.

In general the pre-treatment, the calculations and the post-treatment of the results are performed
with Python language scripts. For testing the di�erent statistical tools and developing the UQM
R statistics language is used. The Best E�ort calculations were carried out on the new TGCC
Joliot-Curie cluster.

3.2 REA modeling and description

3.2.1 Core design

The REA is studied in a small scale core geometry called MiniCore for the test and development
phase of the UQM. The MiniCore is representative of a PWR core behavior and was used as a
proof of concept in [1]. The small size allows to test di�erent coupling levels and statistical tools in
order to develop the UQM in an environment relatively close to a PWR. The geometry is presented
in �gure 3.1 and consists of a 5 × 5 assembly lattice. The 3 × 3 inner lattice are fuel assemblies
with three di�erent burn-ups: 0, 15 and 30 GWd/t while the outer assemblies are water re�ector
assemblies. The fuel has a typical UO2 composition except the central assembly where it has a
mixture composition of UO2−GdO3. The total height of the core is 468.72 cm with a bottom and
top re�ector of 21 cm leading to a fuel active height of 426.72 cm. The assemblies are a 17 × 17
lattice of fuel pins as typical PWR assemblies with pitch 21.504 cm. The control rod at the initial
core state is injected from the top in the central assembly and is covering 82 cm of the active fuel
height.

Pin pitch (cm) 1.26

Assembly pitch (cm) 21.504

Active height (cm) 426.72

Full height (cm) 468.72

Control rod cover rate 82
426.72

Figure 3.1: MiniCore geometry and characteristic dimensions.

3.2.2 Modeling

The REA in the MiniCore geometry is modeled by the CORPUS coupling framework presented in
Section 1.6 that includes the codes: APOLLO3 R© for neutronics , FLICA4 for thermal-hydraulics
and ALCYONE V1.4 for fuel-thermomechanics. Two multi-physics couplings exist: the APOLLO3
R© - FLICA4 BE coupling and the APOLLO3 R© - FLICA4 - ALCYONE V1.4 Best E�ort coupling.
Besides that, each code includes simpli�ed modelings of the other branches of physics allowing
computationally cheap stand-alone simulator modeling of REA. The phase space of the equations
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of each code are discretized and boundary conditions are applied in order to establish the modeling
of the REA.

In APOLLO3 R© a two group Di�usion approximation (equations 1.21a and 1.21b) is used with void
boundary conditions on the neutron current (Section 1.3.3). The geometry is discretized radially
at the level of quarter of assembly and axially in 34 axial meshes of which 30 are dividing the active
fuel height and 4 are used for bottom and top re�ector. A total number of 3400 meshes is used.
The interaction with other disciplines arises from the multiparametric macroscopic cross-sections.
More precisely, the parameters of fuel temperature and moderator density are the ones estimated
by fuel-thermomechanics and thermal-hydraulics respectively.

In FLICA4 the 4 equations porous modeling is used with a multi-1D axial �ow approximation
(Section 1.5.3). The porous modeling consists in averaging the thermal-hydraulic quantities in
both time and space. The presence of coolant and solid structures is taken into account through
the calculated e�ective porosity of the medium. The coolant is treated as a mixture of vapor
and liquid. A system of 4 equation is solved (equations 1.53a - 1.53d): mixture mass balance,
vapor mass balance, mixture momentum balance and mixture energy balance. The boundary
conditions consist in determining the inlet mass �ow and enthalpy and the outlet pressure. One
thermal-hydraulic channel is used for each quarter of assembly in accordance with the neutronics
discretization and only the fuel active part is modeled. A total number of 1080 meshes is used.
The interactions with neutronics comes from the power directly injected in the coolant by gamma
emission and with fuel-thermomechanics by the heat �ux reaching the coolant due to head di�usion
in the fuel.

Both APOLLO3 R© and FLICA4 spatial discretizations are illustrated in �gure 3.2. The green
border indicates the complete geometry modeled by APOLLO3 R©. The blue border the fuel
active geometry part modeled by FLICA4 excluding thus the re�ector assemblies.

Figure 3.2: APOLLO3 R© and FLICA4 radial (left) and axial discretization (right). The green
borders indicate the part of the geometry modeled by APOLLO3 R© and the blue borders the part
of the geometry modeled by FLICA4.

In ALCYONE V1.4 a 1D radial approximation is used for solving the fuel-thermomechanics equa-
tions as described in Section 1.4.3. The boundary conditions consist in determining the loadings
such as the external pressure on the fuel pin and by determining the power generated in the fuel
and the cladding external wall temperature. The two last ones are the interactions with neutron-
ics and thermal-hydraulics respectively. One average fuel pin is used for each thermal-hydraulic
channel with the same axial discretization of 30 meshes in accordance with both neutronics and
thermal-hydraulics modeling. For the radial discretization the fuel is divided into 25 regions with
�ner discretization at the external part. The power distribution inside a fuel pin is not uniform
and changes with its burn-up (Section 1.4.1.1). During the fuel evolution in the core the U-238 at
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external part interacts with the epithermal neutrons producing Pu-239 that has high probability
to exhibit �ssion. This creates an external fuel zone with higher power and thus higher burn-up.
Beyond 40GWd/t this zone restructures to what is called the high burn-up structure with increased
porosity. That is why a �ner discretization needs to be used at the fuel periphery. The cladding
is divide into 3 regions. At this point is important to mention the simpli�ed thermal model of
FLICA4 because it is the one used for the UQM development. In FLICA4 a 1D radial fuel thermal
modeling is available with a discretization of 7 regions in the fuel and 3 regions in the cladding.
The thermal equations are solved in the fuel and the cladding are linked through the gap heat
transfer that is modeled by a constant value. The two radial fuel pin discretizations of FLICA4
and ALCYONE V1.4 are presented together in �gure 3.3.

Figure 3.3: Fuel thermal radial discretization in FLICA4 (left) and ALCYONE V1.4 (right) for
the MiniCore geometry.

The time discretization for the REA is the same for all the codes for each coupling or stand-alone
modeling. A total transient duration of 0.4 s is considered with a constant incremental time step
of 0.001 s. The control rod is ejected in 0.1 s.

The two group macroscopic cross-sections are generated for each assembly by APOLLO2 lattice
calculations. They are the same cross-sections used in [1] and are parameterized in burn-up, boron
concentration, moderator density and fuel temperature. More information about the range of the
cross-section parametrization can be found in Appendix A. For the isotopic composition of the
fuel in ALCYONE V1.4 a typical PWR power evolution is applied. The core is set at a Hot Zero
Power (HZP) condition, meaning that the temperature is around 290◦C and the power negligible.

For the REA study in this core an important aspect is the xenon (Xe − 135) distribution since
it can radically alter the control rod worth and consequently the transient evolution. To this
purpose a Xe − 135 axial pro�le is applied in all the fuel assemblies. The pro�le is the result of
a xenon transient calculation with APOLLO3 R©. The pro�le leading to higher control rod worth
is selected and applied homogeneously in all the fuel assemblies. This is done in order to simplify
the MiniCore modeling. The selected Xe− 135 axial pro�le is visualized in �gure 3.4.
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Figure 3.4: Xe − 135 concentration in 1015 atoms/cm3 axial pro�le applied homegenously in all
the fuel assemblies of the MiniCore.

We observe that the maximum is located towards the bottom of the fuel assembly. This pushes
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more neutrons to the top of the assembly where the control rod is located. The e�ective absorption
of the control rod thus increases resulting in a higher control rod worth and thus a more violent
transient.

3.2.3 Initial state and reference transient

The MiniCore, as mentioned, is at a HZP conditions with the control rod inserted in the top
part of the central assembly. The core is critical and the initial negligible power distribution is
illustrated in �gure 3.5, where we can see the peaked towards the top power exactly under the
control rod position. In table 3.1 some characteristic core conditions are given. The initial core
power is 0.11W and the fuel and moderator temperatures are both at 290◦C.

The reference (without uncertainties) REA characteristics obtained by an APOLLO3 R© - FLICA4
modeling are presented in table 3.2 and �gure 3.6. The control rod worth is ρworth = 1.7 $ indicating
a strongly prompt driven transient. It is the injected reactivity in the core due to the control rod
extraction as de�ned in Section 1.3.1.3. In the �gure on the right we can observe the created power
pulse of width Γ = 17ms with a maximum power of Pmax

core = 60Pnom at instant tmax = 160ms.
Where Pnom is the MiniCore nominal power. The power at the end of the transient reduces to
Pend

core = 0.72Pnom. The deformation factor Fxyz is de�ned as the ratio between the maximum local
power and the average local power. The Fxyz in time is plotted starting from 3.5 and reaching up
to 4.1 when the control rod is fully ejected (0.1 s).

Table 3.1: Characteristic conditions of the MiniCore initial state.

Initial core power Pinit
core (W) 0.11

Moderator density Dmod (g/cm3) 0.745

Pressure P (bar) 155

Volumetric �ow rate Q (m3/h) 4241

Fuel temperature Tf (◦C) 290

Moderator temperature Tm (◦C) 290

Boron concentration Cbor (ppm) 694

(a)

(b)

Figure 3.5: Initial power distribution in the MiniCore for the radial (a) and axial (b) cross-sections
at the center.
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Table 3.2: Characteristic quantities for the reference REA in the MiniCore.

E�ective delayed neutron fraction βeff (pcm) 569

Control rod worth ρworth ($) 1.7

Maximum core power Pmax
core 60Pnom

Final core power Pend
core 0.72Pnom

Power pulse width Γ (ms) 17

Time of maximum core power tmax (ms) 160

Maximum 3D deformation factor Fmax
xyz 4.1
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Figure 3.6: Integral power and Fxyz deformation factor evolution for the reference REA in the
MiniCore.

3.3 Input uncertainties modeling

Before testing di�erent statistical tools and developing the UQM it is important to identify the
uncertain inputs and outputs of interest for the REA. Additionally, the input uncertainties must
be quanti�ed prior to the di�erent uncertainty studies.

3.3.1 Inputs-Outputs identi�cation

The inputs and outputs were identi�ed based on PIRT approaches and expert opinions. We remind
that PIRT (Phenomena Identi�cation and Ranking Table) is an approach applied to di�erent
safety scenarios where the most important phenomena are identi�ed together with their degree
of knowledge or uncertainty. A total of 22 scalar inputs and 4 outputs (three scalars and one
functional) were selected spanning the di�erent interacting physics and are presented in table 3.3.

For the inputs, in neutronics we identi�ed the di�erent macroscopic cross-sections and kinetic
parameters. The considered two group macroscopic cross-sections are the disappearance cross-
section1 TD1 and TD2, ν × fission cross-section NF1 and NF2, di�usion coe�cient D1 and D2

and scattering cross-section from energy group 1 (fast) to 2 (thermal) S1→2. The kinetic parameters
are the e�ective delayed neutron fraction βeff , the e�ective decay constant λeff and the group
inverse velocities IV1 and IV2.

In fuel-thermomechanics the materials laws of thermal conductivity and speci�c heat capacity for
the fuel and the cladding are considered (λf , λc, Cpf , Cpc). Additionally, the gap heat transfer
Hgap, the Rowlands temperature TR used as the e�ective Doppler temperature and the power
radial pro�le Pr were also taken into account. As discussed in Section 1.3.3.7, since in neutronics
there is no �ne description of the fuel pin temperature compared to fuel-thermomechanics an
e�ective temperature must be used for the Doppler e�ect taking into account the radial variation.
In our case we use the Rowlands temperature as the e�ective Doppler temperature. Concerning

1De�ned as the total cross-section minus the self-scattering
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Pr, as mentioned in Section 1.4.1, with the fuel evolution in the core the power is peaked towards
the periphery. This radial pro�le is modeled by a parametric function described in [137] and the
uncertainty is considered on the fuel external surface power.

In thermal-hydraulics di�erent models were identi�ed as important: the convective heat transfer
Hc, the recondensation Kv0, the threshold Rcrit determining when the DNB is reached and the
post-DNB heat transfer Hdnb beyond this threshold. All these models are discussed in Section
1.5.3.5.

Table 3.3: Inputs and outputs uncertain quantities in neutronics , thermal-hydraulics and fuel
thermal.

Inputs (22 scalars)

TDg(2) Disappearance cross-section of group g NFg(2) ν × fission cross-section of group g

Dg(2) Di�usion coe�cient of group g S1→2 Scattering cross-section of group 1 to 2

IVg(2) Inverse velocity of group g βeff E�ective delayed neutrons

λeff E�ective decay constant

λf Fuel thermal conductivity λc Cladding thermal conductivity

Cpf Fuel speci�c heat capacity Cpc Cladding speci�c heat capacity

Hgap Fuel-cladding gap heat transfer TR Rowland temperature

Pr Power radial pro�le

Hc Convective heat transfer Rcrit Criterion for post-DNB heat transfer

Kv0 Recondensation Hdnb Post-DNB heat transfer

Outputs (3 scalars + 1 functional)

Pmax
lin Local linear power (max in time) P2D

lin (x,y) Radial distribution of

Hmax
f Fuel stored enthalpy (max in time) linear power at the time and

DNBmin Distance from Rcrit (min in time) axial position of Pmax
lin

For the outputs, in neutronics we consider the maximum local linear power during the REA
Pmaxlin and the radial linear power distribution P 2D

lin at the time and radial plane of Pmaxlin . In
fuel-thermomechanics we selected the maximum local stored enthalpy Hmax

f while in thermal-
hydraulics the minimum distance to DNB DNBmin. The latter output is de�ned as the di�erence
between the DNBR (Section 1.5.3.5) and the DNB threshold Rcrit.

The identi�ed inputs and outputs will be used for the application of the UQM. For the testing of
di�erent statistical tools in order to derive the UQM more outputs will be studied related to each
analysis. This will allow to highlight advantages and disadvantages of some methods and to avoid
the applicability restriction of the UQM only on the identi�ed inputs and outputs.

3.3.2 Input uncertainty quanti�cation

In Section 2.2 we saw that there are di�erent methods for the uncertainty quanti�cation from
expert judgment to statistical or Bayesian inference. In this thesis for the identi�ed inputs we use
the UAM recommendations where they are available and expert opinions for the rest. More details
about the quanti�cation of the input uncertainties can be found in Appendix B. We remind that
UAM is an international uncertainty analysis benchmark [59]. The resulting pdf for the inputs are
presented in table 3.4.

For the neutronic inputs, the two group macroscopic cross-sections and the kinetic parameters, a
multivariate normal distribution is used based on statistical inference. The mean vector of the pdf is
the reference cross-sections produced in CEA ΣCEA and the covariance matrix CUAM empirically
estimated by the results of UAM. The UAM provided a dataset of two group macroscopic cross-
sections resulting from neutronic lattice uncertainty propagation. This dataset of 100 realizations
was adapted for the cross-sections used by APOLLO3 R© by assuming:
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1. Negligible uncertainties on the up-scattering cross-section S2→1.

2. Negligible n− 2n, n− 3n . . . cross-sections uncertainties.

The adapted macroscopic cross-sections dataset was used to estimate the correlation matrix and
the relative standard deviations of the cross-sections. Finally, CUAM is calculated using the
correlation matrix, the relative standard deviations and the reference CEA cross-sections. The
correlation matrix for the neutronic inputs is illustrated in �gure 3.7, where we can see large
positive and negative correlations. The TD1 is strongly positively correlated with S1→2 and IV1

and negatively with D1. The βeff is strongly positively correlated with λeff and both are in
general uncorrelated to the other neutronic inputs.

Table 3.4: Inputs uncertainty quanti�cation results.

Neutronics Fuel-thermomechanics

TDg, NFg, Dg, S1→2, IVg, βeff , λeff N (ΣCEA,CUAM) λf N (1, 0.05)

Thermal-hydraulics λc N (1, 0.05)

Hc N (1, 0.15) Cpf N (1, 0.015)

Rcrit N (1, 0.15) Cpc N (1, 0.015)

Kv0 N (1, 0.125) Hgap U(2000, 50000)

Hdnb U(0.8, 1.2) Pr U(1, 1.08) +N (0, 0.0175)

TR U(0, 1)

The rest of the inputs are considered independent of the neutronic inputs and between them. The
thermal-hydraulic input distributions are mainly based on CEA experts opinions and are applied
as random multiplication coe�cients with mean 1 on the di�erent models. The Rcrit usually is
penalized to 1.3 and in this thesis we considered this value as the 95% upper quantile of a normal
distribution with mean value 1. For HDNB a uniform distribution is used re�ecting the limited
current knowledge about this phenomenon.

In fuel-thermomechanics inputs and more speci�cally for the thermal conductivities and speci�c
heat capacities the UAM recommendations were used. For the Rowlands temperature a uniform
distribution was considered on the weight fraction of the fuel centerline temperature. In the
reference situation (equation 1.20) the Rowlands temperature has a 4/9 weight on the fuel centerline
temperature and 5/9 on the fuel external surface temperature. By using an uncertain multiplication
factor with U(0, 1) distribution on the centerline temperature weight we consider that it can only
decrease uniformly between 4/9 and zero with a corresponding increase in the external surface
temperature weight. The Hgap is a particular input quantity since in the BE coupling Hgap is an
uncertain constant in FLICA4 with uniform pdf bounded by its value for a complete open gap
(2e3Wm−2K−1) and for a pellet-cladding contact (5e4Wm−2K−1). In the Best E�ort coupling
Hgap becomes a result of ALCYONE V1.4 and thus is not considered. We will see that a part
of the thesis work is dedicated to calibrating a Hgap model in order to introduce it in the BE
coupling and improve its modeling without increasing its computational cost. The uncertainties
of the calibrated model will be estimated as well and added to the uncertain inputs. Finally, the
power radial pro�le uncertainty is modeled by a multiplication factor on the fuel external surface
power with a pdf resulting from the convolution of a normal and an uniform distribution. The
power radial pro�le is peaked towards the periphery for the high burn-up fuel pins as was described
in Section 1.4.1. The deformation is increasing with burn-up and to model it an explicit function of
burn-up is used [137]. The uncertainty results from two independent e�ects and is modeled by the
sum of two independent variables: the uncertainty of the function used is modeled by a random
variable with distribution N (0, 0.0175) and the uncertainty due to the presence or not of a guide
tube near the fuel pin is modeled by a random variable with distribution U(1, 1.08).
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Figure 3.7: Correlation matrix for neutronic inputs.

3.4 Preliminary stand-alone studies

3.4.1 Introduction

Some of the di�erent available uncertainty analysis tools from Chapter 2 are tested initially in
cheap stand-alone calculations. This will allow to evaluate their e�ciency in an environment
relatively close to the BE coupling on which the UQM will be developed. The tools that do not
perform well will be rejected. Besides that, it is interesting to start from separate physics analyses
and progressively add more layers of coupling rendering the REA modeling more complex. It is
important to remember that with the MiniCore geometry we cannot extract physical conclusions
and thus we focus mainly on the conclusions drawn for each statistical tool. We perform three
di�erent analyses, one for each code:

• Neutronics stand-alone: Two di�erent analyses are carried out using only APOLLO3 R©.
The �rst is for the static initial state where only the macroscopic cross-sections are uncertain.
The second is for the REA transient using an adiabatic fuel thermal treatment in order to
model the Doppler feedback. Both analyses include inputs with strong dependencies and
thus the performance of the di�erent global sensitivity methods for dependent inputs will
be tested. From the ones presented in Section 2.7 we focus on the ANOVA indices (Section
2.7.4) that decompose the variance of the output on each input. Shapley indices are compared
to the Sobol indices. The former are estimated without using the "pick-freeze" method, as
presented in Section 2.7.4.2. The latter are estimated by the "pick-freeze" method of Section
2.7.4.1. This method is not adapted for dependent inputs but it is used throughout the
thesis since we focus on the more robust Shapley indices for the dependent inputs. There are
methods for estimating Sobol indices that are better adapted for dependent inputs such as
in the work of T. A. Mara [138], but we consider that they are not of interest in the context
of the thesis. Additionally, we test the performance of the HSIC indices. They belong to the
dependence measures (Section 2.7.5) that estimate the sensitivity on the whole output pdf
and not only its variance. The HSIC screening capabilities in statistical signi�cance tests
are evaluated, as de�ned in Section 2.7.5.4. These tests verify the null hypothesis that the
input and output are independent. If the hypothesis is rejected the input is considered as
signi�cant. Uncertainty propagation is carried out and the complete outputs histograms are
estimated. For testing all the previous statistical tools surrogate models must be trained.
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The behavior of three di�erent surrogate models of Section 2.5 is evaluated: linear, kriging
and arti�cial neural networks (ANN). The transient analysis gives the opportunity to test
functional outputs using Principal Components Analysis (PCA). This method was described
in Section 2.4.1 and essentially derives basis functions adapted for the best representation
of each functional output. In cases that PCA might not be enough it can be enhanced by
stochastic warping (Section 2.4.3) which aims at translating the output observations in order
to render them as similar as possible. The functional output sensitivity is estimated using
aggregate Shapley indices de�ned in equation 2.110 of Section 2.7.6.1.

• Thermal-hydraulics stand-alone: The reference power pulse from the APOLLO3 R©
stand-alone study is used as an imposed power evolution in FLICA4. The uncertainty of
both fuel-thermal and fuel-thermomechanics is considered as described in table 3.4. The
performances of the previously mentioned sensitivity methods are evaluated for independent
inputs with various pdfs.

• Fuel-thermomechanics stand-alone: The reference power pulse from APOLLO3 R© stand-
alone study and the corresponding cladding wall temperature evolution from FLICA4 are
applied in ALCYONE V1.4. For testing purposes the modeling is restricted to the axial slice
where the maximum linear power occurs. In this analysis only the four fuel and cladding
thermal laws will be considered as uncertain. This study allows us to test the performance
of the sensitivity methods and surrogate models on di�erent outputs than the ones acces-
sible to the BE coupling that will be used for the UQM development. An example is the
detailed radial evolution of the fuel temperature or the Hgap evolution with time. This will
increase our con�dence that the tools could be used also in a Best E�ort coupling where the
computational cost is too high to perform these tests.

3.4.2 Neutronics stand-alone studies

APOLLO3 R© stand-alone modeling is used for two uncertainty studies. The �rst is for the static
initial state and the second one is for the REA using an adiabatic fuel thermal treatment.

3.4.2.1 Static

For this study an the macroscopic cross-sections are the uncertain inputs. Since at its reference
state the core is critical, for each cross-section sampling the core has to be rendered critical. There
are three methods that can be used to do so: �ssion adjustment, boron concentration adjustment
or leakage adjustment. Each method can have an impact on the uncertainty analysis. We selected
boron concentration adjustment since it is the one that is the closest to the real operation of the
core.

In the study [139] that part of it can also be found in the Appendix C the criticality method was
found to have a sensitivity up to 20%. Three criticality methods were studied: �ssion adjustment,
boron concentration adjustment and leakage adjustment. An additional uncertain input was con-
sidered corresponding to the criticality option with probability 1/3 for each option. The sensitivity
on the maximum local linear power for an APOLLO3 R© stand-alone REA modeling was studied.
The result is the variance represented by the Shapley indice of this new input for the control rod
worth.

In this study for each cross-section perturbation a �rst static calculation computes the multipli-
cation factor keff . The boron concentration Cbor is then adjusted in order to render the core
critical. This criticality method will be used for the rest of the studies. Finally a second static
calculation is performed with the control rod extracted in order to compute the control rod worth
ρworth and the deformation factor when the control rod is ejected F ejxyz. The computational time
needed for one code evaluation is 15 seconds. The inputs, outputs and statistical methods tested
are the following:

• Inputs: TD1, TD2, NF1, NF2, D1, D2, S1→2.

• Outputs: keff , ρworth, Cbor and F ejxyz.

• Statistical tools:
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� Surrogate models: Linear, kriging and ANN. They are trained on a learning DOE
and their prediction error is estimated using a second DOE.

� Uncertainty propagation: Brute Monte Carlo method using di�erent surrogate mod-
els for histogram empirical estimation.

� Global sensitivity analysis: Shapley and Sobol indices using surrogate models and
HSIC indices estimated directly from the obtained code evaluations.

� Screening method: HSIC statistical signi�cance tests directly from the obtained code
evaluations.

A LHS of size 150 is created in order to train the di�erent surrogate models for each output. The
prediction error of each surrogate is estimated based on a second LHS of size 75. The results for the
interpolation and prediction errors are presented in table 3.5. It is clear that all the outputs have
a linear relationship with the inputs and consequently all the surrogate models have very small
errors. The kriging interpolation errors are zero since by its de�nition (Section 2.5.4) it passes
from all the design points.

Table 3.5: Surrogate models interpolation and prediction errors for neutronics stand-alone static
study in the MiniCore.

Linear Kriging ANN

εint (%) εpred (%) εint (%) εpred (%) εint (%) εpred (%)

keff 2.36e−3 2.15e−3 0.00 1.56e−4 1.96e−3 1.69e−2

Cbor 2.33e−3 2.36e−3 0.00 2.14e−4 1.26e−3 2.90e−2

ρworth 7.09e−2 7.60e−2 0.00 8.24e−2 4.84e−2 1.68e−1

Fej
xyz 9.94e−3 1.52e−2 0.00 5.75e−4 1.55e−3 1.87e−2

Having trained the surrogate models we use the linear one to propagate the uncertainties to the
outputs and estimate empirically their histograms. Brute Monte Carlo is used with 1e5 samples
and in �gure 3.8 we can see the obtained histograms together with the estimated �rst two moments.

µ = 1.00  σ = 0.55 %
0.98 0.99 1.00 1.01 1.02

keff

µ = 694.43 [ppm] σ = 9.73 %
400 500 600 700 800 900

Cbor

µ = 4.15  σ = 1.29 %
4.0 4.1 4.2 4.3 4.4

Fej
xyz

µ = 958.74 [pcm] σ = 1.31 %
900 920 940 960 980 1000

ρworth

µ = 958.81 [pcm] σ = 1.28 %
930 940 950 960 970 980

ρLHS
worth

Figure 3.8: Outputs histograms estimation for neutronics stand-alone static study in the MiniCore.

We observe that since the inputs are multivariate normal and the underlying function is linear then
all the outputs have also a normal pdf. For highlighting the need of surrogate models to correctly
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estimate the histograms we provide the histogram estimated directly with the code evaluations for
ρworth. It is the histogram indicated by ρLHSworth. It is clear that it is not converged although the
dataset is large enough for the estimation of the �rst two moments.

For the quanti�cation of the outputs sensitivity to each input Shapley and Sobol indices are esti-
mated using the linear model. Both of these indices analyze the sensitivity on the outputs variance
(second moment). Additionally we estimate also the HSIC sensitivity indices that capture the
sensitivity on the whole pdf of the output. We present the results for keff , F ejxyz and ρworth in
�gures 3.9 - 3.11 respectively. The sensitivities for Cbor are similar with keff and are not shown.
For Shapley indices 1e4 output evaluations were used while for Sobol 1e5. These will be the sam-
pling size for each of their estimation in the following studies as well. What we clearly observe
is that the Sobol indices fail to provide sensitivity indices that can be meaningfully interpreted
with large negative indices. This is something expected since the inputs have strong correlations.
This is especially the case for the TD1, D1 and S1→2 cross-sections as we can see in �gure 3.7. A
second observation that can be drawn is the fact that the HSIC indices do not add up to 1 always,
something also expected by their de�nition in Section 2.7.5.3. However, this does not impact their
use as screening method since we can see that they manage to correctly identify which inputs are
the most important.
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Figure 3.9: keff sensitivity analysis results for neutronics stand-alone static study in the MiniCore.

The HSIC indices are not so robust since they use a small dataset for their estimation. To this
purpose statistical signi�cance tests are used based on bootstrap resampling as described in Section
2.7.5.4. The result of these tests is a rejection or not of the null hypothesis that each output and
input are independent. The rejected inputs are considered the statistically signi�cant ones. A
bootstrap size of 200 was used with an alpha value of 0.05. These options will be used in all the
following studies. The results are gathered in table 3.6. We conclude that all the inputs with
non-zero Shapley indices are selected as statistically signi�cant something that shows that this
method can be used for screening of inputs with strong correlations.
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Table 3.6: HSIC statistical signi�cance test results for neutronics stand-alone static study in the
MiniCore.

Statistical signi�cant inputs
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Figure 3.10: F ejxyz sensitivity analysis results for neutronics stand-alone static study in the Mini-
Core.
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Figure 3.11: ρworth sensitivity analysis results for neutronics stand-alone static study in the Mini-
Core.
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3.4.2.2 Transient

For this study the macroscopic cross-sections and the kinetic parameters are the uncertain inputs.
Starting from a critical state the control rod is ejected in 0.1s and the fuel thermal is considered
adiabatic with constant speci�c heat capacity. This essentially means that all the power is stored in
the fuel and the temperature follows the power increase without any heat conduction. The Doppler
negative feedback is thus obtained creating the power pulse. During the transient we follow the
evolution in time of the maximum local linear power P tlin, compute its maximum value Pmaxlin and
the radial linear power P 2D

lin at the time and axial slice of the maximum. Additionally, the pulse
width Γ is also calculated. The computational time needed for one code evaluation is 1.5 minutes.
The inputs, outputs and statistical methods tested are the following:

• Inputs: TD1, TD2, NF1, NF2, D1, D2, S1→2, IV1, IV2, βeff , λeff .

• Outputs: Pmaxlin (scalar), Γ (scalar), P tlin (functional in time) and P 2D
lin (functional in space).

• Statistical tools:

� Surrogate models: Linear, kriging and ANN. They are trained on a learning DOE
and their prediction error is estimated using a second DOE.

� Uncertainty propagation: Brute Monte Carlo method using di�erent surrogate mod-
els for histogram empirical estimation.

� Global sensitivity analysis: Shapley and Sobol indices using surrogate models and
HSIC indices estimated directly from the obtained code evaluations.

� Screening method: HSIC statistical signi�cance tests directly from the obtained code
evaluations.

� Functional outputs: PCA is used to reduce the functional output dimensions. The
principal components needed to represent 95% of the variance are retained and used for
functional uncertainty propagation and global sensitivity analysis by aggregate Shapley
indices.

A LHS of size 150 is created in order to train the di�erent surrogate models for each output. In
this study, since we already saw the application of the statistical methods on scalar outputs in
Section 3.4.2.1, we focus mainly on the functional outputs. For P 2D

lin there is not need of stochastic
warping, meaning that there is no radial translation of the linear power among the pulses. The
two �rst principal components P 2D

lin,pc1, P
2D
lin,pc2 are kept. For P tlin stochastic warping improves

considerably the dimension reduction from 11 principal components to 2 (P tlin,pc1, P
t
lin,pc2) adding

also the translation time P tlin,dt as a third uncertain variable needed for the reconstruction of P tlin.
We note that it is easy to approximate the weights of the �rst principal components by surrogate
models but it becomes increasingly di�cult to do so for high-order principal components. The
stochastic warping is performed with a comparison to reference pulse selected as the empirical
mean. In �gures 3.12 - 3.13 we can see on the former the original maximum linear power pulses
of the training LHS and on the latter the translated pulses due to the stochastic warping. For the
warped P tlin and the P 2D

lin we plot the eigenfuctions of the �rst two principal components in �gure
3.14. We can see that higher eigenfunctions include higher frequencies of variation.

A second LHS of size 75 was used to estimate the approximation error of each surrogate model.
The result for the interpolation and prediction errors are presented in table 3.7. For the functional
outputs their �rst principal components and the shift time are treated as scalar outputs and
the errors of the surrogate models are presented as well. The kriging surrogate models behave
signi�cantly better in most of the cases and especially for the approximation of the principal
components. For this reason it will be the model used in the uncertainty propagation and sensitivity
analysis. The maximum predictive error of kriging is 4% for the Γ while for the rest outputs it has
an error of less than 1%.
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Figure 3.12: All the maximum linear power power pulses of the training LHS for neutronics stand-
alone REA study in the MiniCore.
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Figure 3.13: Stochastic warping results of the maximum linear power pulses of the training LHS
for neutronics stand-alone REA study in the MiniCore.

Table 3.7: Surrogate models interpolation and prediction errors for neutronics stand-alone REA
study in the MiniCore.

Linear Kriging ANN

εint (%) εpred (%) εint (%) εpred (%) εint (%) εpred (%)

Pmax
lin 1.20 1.45 0.00 6.06e−2 2.80e−3 2.42e−1

Γ 4.73 6.26 0.00 4.3 1.61e−2 1.60e+1

P2D
lin,pc1 1.19 1.48 0.00 8.57e−2 3.35e−3 4.10e−1

P2D
lin,pc2 5.96 5.93 0.00 9.39e−1 9.54e−3 1.37

Pt
lin,pc1 4.43e−1 5.04e−1 0.00 3.70e−2 4.86e−3 3.52e−1

Pt
lin,pc2 1.25 1.69 0.00 7.94e−1 2.13e−2 3.08

Pt
lin,dt 2.13 2.37 0.00 4.28e−1 4.36e−3 1.14

Brute Monte Carlo is used for uncertainty propagation with 1e5 samples for each output. The
obtained histograms for the scalar outputs and the relative standard deviations for the functional
ones are presented in �gures 3.15 - 3.16. The Pmaxlin and Γ histograms show a non normal pdf. For
the former one a comparison with a point kinetics analytical uncertainty analysis is performed in
Appendix D. The relative standard deviation of P 2D

lin does not vary radially while for P tlin strong
variations occur mainly around the time of the power peak.

The Shapley, Sobol and HSIC indices for Pmaxlin are illustrated in �gure 3.17. All the indices are
similar for Γ. In �gure 3.18 we present the aggregated Shapley indices for P 2D

lin and P tlin. As in the
static study we see that the Sobol indices are not well adapted for inputs with strong correlations.
The βeff and λeff are the dominant variables based on both HSIC and Shapley indices for Pmaxlin ,
P 2D
lin and P tlin.
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Figure 3.14: P 2D
lin and P tlin 1st and 2nd principal components for neutronics stand-alone REA study

in the MiniCore.
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Figure 3.15: Pmaxlin and Γ histograms for neutronics stand-alone REA study in the MiniCore.
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Figure 3.16: P 2D
lin and P tlin relative standard deviation distribution for neutronics stand-alone REA

study in the MiniCore.

It is important to notice that there is a strong correlation between βeff and λeff , meaning that one
of them could have an important sensitivity index just through their correlation and not by their
impact on output. This is called redundancy and cannot be detected by the sensitivity methods.
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We will try to address this e�ect in the screening process, where the goal will be to select the least
number of inputs that represent most of the output variation.
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Figure 3.17: Pmaxlin sensitivity analysis results for neutronics stand-alone REA study in the Mini-
Core.
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Figure 3.18: P 2D
lin and P tlin aggregate Shapley indices for neutronics stand-alone REA study in the

MiniCore.

The HSIC statistical signi�cance tests results are presented in table 3.8. For all the considered
outputs, including the principal components of the functional ones, the selected inputs are the
dominant ones based on the Shapley indices. The inputs with large sensitivities are always selected
and sometimes even inputs with very small sensitivities.
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Table 3.8: HSIC statistical signi�cance test results for neutronics stand-alone REA study in the
MiniCore.

Statistical signi�cant inputs

Pmax
lin TD1, D1, S1→2, βeff , λeff

P2D
lin,pc1 D1, βeff , λeff

P2D
lin,pc2 TD1, NF1, D1, D2, S1→2, IV1, βeff , λeff

Pt
lin,pc1 TD1, D1, S1→2, βeff , λeff

Pt
lin,pc2 TD1, D1, βeff , λeff

Pt
lin,dt TD1, D1, S1→2, βeff , λeff

3.4.3 Thermal-hydraulics stand-alone study

The reference REA pulse from the previous study is applied in FLICA4. The fuel-thermomechanics
and the thermal-hydraulics inputs from table 3.4 are considered for this study. For these physics
their identi�ed outputs of interest in table 3.3 are calculated. The interest in this study lies in
evaluating that the statistical tools perform well also for independent inputs with various pdf.
The computational time needed for one code evaluation is 4.5 minutes. The inputs, outputs and
statistical methods tested are the following:

• Inputs: λf , λc, Cpf , Cpc, Hgap, Pr, TR, Hc, Rcrit, Rv0, Hdnb.

• Outputs: Hmax
f , DNBmin.

• Statistical tools:

� Surrogate models: Linear, kriging and ANN. They are trained on a learning DOE
and their prediction error is estimated using a second DOE.

� Uncertainty propagation: Brute Monte Carlo method using di�erent surrogate mod-
els for histogram empirical estimation.

� Global sensitivity analysis: Shapley and Sobol indices using surrogate models and
HSIC indices estimated directly from the obtained code evaluations.

� Screening method: HSIC statistical signi�cance tests directly from the obtained code
evaluations.

A LHS of size 150 is created in order to train the di�erent surrogate models for each output.
The results of the surrogate models training are gathered in table 3.9. The outputs behavior are
strongly non-linear and that is why the linear model shows large errors. The ANN has a low
interpolation error, however, it has a very large prediction error indicating a strong over�tting.
Only the kriging model shows satisfactory approximation errors and for this reason it will be used
for the rest of the analyses in this study.

Table 3.9: Surrogate models interpolation and prediction errors for thermal-hydraulics stand-alone
study in the MiniCore.

Linear Kriging ANN

εint (%) εpred (%) εint (%) εpred (%) εint (%) εpred (%)

Hmax
f 2.50e+1 2.74e+1 0.00 4.38e−2 3.30e−3 7.12e+1

DNBmin 3.95e+1 4.02e+1 0.00 1.27e−1 2.87e−2 6.93e+1

Brute Monte Carlo is used for uncertainty propagation with 1e5 samples for each output. The
obtained histograms are drawn in �gure 3.19. The sensitivity indices are similar for both outputs
and are shown in in �gure 3.20. A �rst observation is the agreement between Shapley and Sobol
indices in the case of independent inputs. It is clear that Hgap is the only dominant parameter due
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to its large range of variation. Additionally, we observe that the distance to boiling crisis shows
variation of 77% with very small probability around 0.002% of reaching it (DNBmin < 0).

µ = 1.61e+05 [J/Kg] σ = 3.45 %
1.55e+05 1.65e+05 1.75e+05

Hmax
f

µ = 1.88  σ = 76.85 %
0 2 4 6 8

DNBmin

Figure 3.19: Hmax
f and DNBmin histograms for thermal-hydraulics stand-alone study in the

MiniCore.

Finally, the results of HSIC statisical signi�cance tests are shown in table 3.10. TheHgap is selected
for both of the outputs as expected from the Shapley indices and additionally for DNBmin the
Rcrit is also selected even if it had a negligible Shapley index. This is not strange since it appears
explicitly in the DNBmin computation: DNB = DNBR−Rcrit.
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Figure 3.20: Hmax
f and DNBmin sensitivity results for thermal-hydraulics stand-alone study in

the MiniCore.

Table 3.10: HSIC statistical signi�cance test results for thermal-hydraulics stand-alone study in
the MiniCore.

Statistical signi�cant inputs

Hmax
f Hgap

DNBmin Hgap, Rcrit

3.4.4 Fuel-thermomechanics stand-alone study

The reference REA power pulse from the APOLLO3 R© study and the corresponding cladding wall
temperature from FLICA4 are imposed as boundary conditions in ALCYONE V1.4. Only the
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axial slice with the maximum linear power is modeled. This axial slice is located in the assembly
of 0 burn-up. The fuel and cladding material laws are consider as uncertain inputs, since Hgap

now is an output and the other fuel-thermomechanics inputs cannot be used in ALCYONE V1.4.
In this study the goal will be to focus mainly on outputs that are not available in a Best Estimate
coupling and verify that the statistical tools perform well for those as well. For this purpose we will
focus on the maximum gap heat transfer during the REA Hmax

gap and two functional outputs, the
temporal evolution of the cladding internal surface temperature T tci and the radial distribution of
the fuel pin temperature at the end of the transient T r0.4. The computational time needed for one
code evaluation is 6 minutes. The inputs, outputs and statistical methods tested are the following:

• Inputs: λf , λc, Cpf , Cpc.

• Outputs: Hmax
gap , T tci, T

r
0.4.

• Statistical tools:

� Surrogate models: Linear, kriging and ANN. They are trained on a learning DOE
and their prediction error is estimated using a second DOE.

� Uncertainty propagation: Brute Monte Carlo method using di�erent surrogate mod-
els for histogram empirical estimation.

� Global sensitivity analysis: Shapley and Sobol indices using surrogate models and
HSIC indices estimated directly from the obtained code evaluations.

� Screening method: HSIC statistical signi�cance tests directly from the obtained code
evaluations.

� Functional outputs: PCA is used to reduce the functional output dimensions. The
principal components needed to represent 95% of the variance are retained and used for
functional uncertainty propagation and global sensitivity analysis by aggregate Shapley
indices.

A LHS of size 80 is created in order to train the di�erent surrogate models for each output. Smaller
size LHS is used compared to the previous studies because the input dimension is signi�cantly
smaller. For both functional outputs 2 principal components are needed (T tci,pc1, T

t
ci,pc2,T

r
0.4,pc1,

T r0.4,pc2) for representing 95% of the variance and are plotted in �gure 3.21. There was no need of
stochastic warping.

The prediction error of each surrogate was estimated based on a second LHS of size 40. The results
of the surrogate models training are gathered in table 3.11. All the models have satisfactory errors
with kriging showing slightly better results. For this reason it will be used for the uncertainty
propagation and sensitivity analysis.

Brute Monte Carlo is used for uncertainty propagation with 1e5 samples for each output. The
obtained histograms of Hgap and the relative standard deviation for T tci and T

r
0.4 are presented in

�gure 3.22. We see that in general there are very small variations around the mean values.
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Figure 3.21: T tci and T
r
0.4 1st and 2nd principal components for fuel-thermomechanics stand-alone

study in the MiniCore.
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Table 3.11: Surrogate models interpolation and prediction errors for fuel-thermomechanics stand-
alone study in the MiniCore.

Linear Kriging ANN

εint (%) εpred (%) εint (%) εpred (%) εint (%) εpred (%)

Hmax
gap 3.55e−1 3.62e−1 0.00 1.32e−4 2.37e−3 5.05e−3

Tt
ci,pc1 5.14e−1 5.92e−1 0.00 1.02e−2 8.99e−3 1.95e−2

Tt
ci,pc2 2.48e−1 1.85 0.00 1.65 1.17e−2 1.62

Tr
0.4,pc1 1.96e−1 3.42e−1 0.00 1.92e−1 1.36e−3 1.95e−1

Tr
0.4,pc2 5.78e−1 5.24 0.00 4.74 6.53e−2 4.78

µ = 4.75e+03 [W/m2K] σ = 0.13 %
4.72e+03 4.74e+03 4.76e+03 4.78e+03
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Figure 3.22: Hmax
gap histogram and T tci and T r0.04 relative standard deviation evolution for fuel-

thermomechanics stand-alone study in the MiniCore.

The Shapley, Sobol and HSIC indices for Hmax
gap are presented in �gure 3.23. There is an agreement

among all the indices, something expected since the inputs are independent. The most important
input is the λf responsible for 70% of Hmax

gap variance while λc is responsible for the rest 30%. The
aggregated Shapley indices for the two functional outputs can be seen in �gure 3.24. For T tci the
λc is more important while for T r0.4 the λf .
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Figure 3.23: Hmax
gap sensitivity results for for fuel-thermomechanics stand-alone study in the Mini-

Core.
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Figure 3.24: T tci and T
r
0.04 aggregate Shapley indices for fuel-thermomechanics stand-alone study

in the MiniCore.

The results for HSIC statistical signi�cance tests are presented in table 3.12. For all the considered
outputs, including the principal components of the functional ones, the selected inputs are the
dominant ones based on the Shapley indices. An interesting observation is the selection of λf for
T r0.04,pc1 and λc for T r0.04,pc2. This can be explained by the corresponding eigenfunctions of �gure
3.21. For T r0.04,pc1 the main variations are located in the fuel region (1-26) and thus λf is more
important. However, for T r0.04,pc2 the main variations are located in the cladding region (27-30)
and thus λc is more important.

Table 3.12: HSIC statistical signi�cance test results for fuel-thermomechanics stand-alone study
in the MiniCore.

Statistical signi�cant inputs

Hmax
gap λf , λc

Tt
ci,pc1 λc

Tt
ci,pc2 λf , λc

Tr
0.04,pc1 λf

Tr
0.04,pc2 λc

3.4.5 Conclusions

The stand-alone preliminary analysis for each code allowed to test and evaluate the performances
of di�erent statistical tools under di�erent conditions. In APOLLO3 R© we studied their behavior
for inputs with strong correlations and for di�erent outputs from scalar up to 2D functional �elds.
Most of the outputs were not far from having a linear behavior and that is why all the surrogate
models show relatively small prediction errors with kriging performing slightly better, especially
for the principal components of the functional outputs. We saw that Sobol indices cannot give
meaningful sensitivities due to the inputs correlations, while the Shapley indices are well adapted.
In FLICA4 the statistical tools performance was evaluated for independent inputs. There were
strong non-linearities and only the kriging showed satisfactory prediction errors. As expected from
there de�nitions there was an agreement between Shapley and Sobol indices. In ALCYONE V1.4
we focused mainly on outputs that could be accessible only in a Best E�ort coupling. An emphasis
was given in functional quantities such as the radial temperature distribution. All the statistical
tools performed well in this study. For all the above mentioned studies HSIC indices showed that
they can be very useful in the screening process. Particularly their use in statistical signi�cance
tests managed to identify for all the outputs the relevant subset of inputs. Finally, the conclusions
concerning the UQM that can be drawn from these studies are:

• Kriging models will be used as surrogate models

• Shapley indices will be used for both dependent and independent inputs as the global sensi-
tivity indices.
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• HSIC indices and their use in statistical signi�cance tests are promising for screening or
dimension reduction process.

• Functional outputs will be analyzed using PCA. The stochastic warping is necessary mainly
for translated outputs such as the maximum linear power evolution in time. Aggregated
Shapley indices are used as sensitivity indices for the whole functional output.

3.5 Development of Uncertainty Quanti�cation Methodology
(UQM)

3.5.1 Introduction

From the preliminary studies we concluded that kriging surrogate models will be used in UQM
in conjunction with PCA for functional outputs. Shapley indices and aggregated Shapley indices
will be used for scalar and functional outputs respectively. HSIC indices can be used in statistical
signi�cance tests to identify a small subset of important inputs just by using a dataset of code eval-
uations. In this subsection we are going to use these conclusions in a multi-physics BE APOLLO3
R© - FLICA4 coupling. The goal is to use this modeling to develop the UQM that will be applied
to a large scale PWR core.

While in the preliminary studies the inputs dimension was relatively low, in this multi-physics
modeling we use all the identi�ed inputs from table 3.3. The kriging models face di�culties when
they are trained in large inputs dimension and thus there is a strong interest in identifying e�ective
input subspaces with reduced dimension. We have also to keep in mind that the derived UQM must
be also extendable to a larger input dimension. To this purpose we develop two methodologies
in order to address the potential large inputs dimension. The �rst consist in identifying a subset
of important inputs based on the HSIC statistical signi�cance tests. This aims at addressing the
challenges of dependent inputs, with potential interactions and redundancies. The second is related
to the training of the kriging models. The optimization of a LHS in the original input space does
not guarantee good space-�lling properties in the important input subspaces. Besides that, the
use of LHS optimized only in the subspace for the kriging training leads to an unquanti�ed error
due to the dimension reduction. What we propose is a method that optimizes the LHS in both the
original input space and the identi�ed important input subspaces. This allows an e�cient surrogate
model construction with an error estimation that includes the dimension reduction error. For the
description of the two methods we de�ne the function Y = F (X) : Rd → R to be the underlying
function between the random inputs of dimension d and a random scalar output2.

Both of these methods will be �rst presented and then tested on the APOLLO3 R© - FLICA4
multi-physics BE coupling together with the statistical tools selected from the preliminary studies.
At the end of this subsection we will combine the conclusion drawn from this study to develop the
UQM scheme.

3.5.2 Input Dimension Reduction Method (IDRM)

The dimension of the input space is large and potentially only a small subspace is important for a
scalar output Y . The goal of this method is to identify this important input subspace. We denote
by Sd the set of size (cardinal) d containing the inputs indices and Xd the corresponding inputs.
There are many challenges related to the dependencies between inputs, potential interactions,
redundancies and the non-linear behaviors between inputs and outputs. There is no methodology
that can deal e�ciently with all of these constraints.

In this work we use the HSIC signi�cance tests, as used in the preliminary studies, to treat de-
pendencies, non-linearities and interactions. The result is an initial subset of inputs considered as
important (Sd0, Xd0). Using Sd0 a kriging model (Kr) is trained and its leave-one-out (LOO) error
is estimated (εLOO). If the error is not satisfactory, inputs are sequentially added until the user
decides to stop or until all the inputs are included (Sd1, Xd1). This is applicable to our case of

2For functional outputs the methods are applied on the selected scalar scores of the principal components
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22 inputs but it could also be extended to larger dimension. For larger dimension it can become
prohibitive.

Finally, in order to treat the redundancies, the resulting subspace de�ned by the set Sd1 from the
previous step is subjected to a sequential extraction of one input at a time and the corresponding
LOO error is computed. If the error stays close to constant within a small δε when the input is
extracted then the input is rejected from the subspace. After applying this to all inputs of Sd1 the
�nal subspace de�ned by the set Sd2 and corresponding to Xd2 inputs is identi�ed. This step has
to be used with caution, it can reduce the e�ective inputs subspace in term of representation but
still the correlated rejected inputs should be mentioned. This input dimension reduction method
is carried out with an initial random DOE. The following procedure details the input dimension
reduction method. The inputs Xdi are de�ned by the set of indices Sdi.

IDRM process

1: Code evaluations on initial random DOE.
2: HSIC signi�cance test → initial important subspace Sd0 and Xd0 ∈ Rd0

3: Compute εLOO for Kr(Xd0, Y ), set Sr0 as the rejected inputs subspace of dimension r0 = d− d0 and
Sd1 = Sd0

4: while User decision based on error evolution do
5: for (i = 1, i ≤ r0, i+ +) do
6: Compute εiLOO for Kr(Xd1 ∪Xi

r0, Y )
7: end for
8: Selection of Xi

r0 and its corresponding index Si
r0 with minimum εiLOO

9: Update Sd1 = Sd1 ∪ Si
r0

10: end while
11: Set Sd2 = Sd1, update εLOO for Kr(Xd1, Y ) and de�ne error threshold δε
12: for (i = 1, i ≤ d2, i+ +) do
13: Compute εiLOO for Kr(Xd2,i, Y ) with Xd2,i the inputs corresponding to Sd2,i = Sd2 \ Si

d2

14: if (εiLOO − εLOO < δε ) then
15: Sd2 = Sd2,i
16: end if
17: end for
18: Set of reduced inputs subspaces Sd2 and the corresponding inputs Xd2 ∈ Rd2

The proposed IDRM was tested on the famous Morris function Y = Fmorris(X, k) [140] used in
sensitivity studies. The function has a �xed parameter k determining how many of the inputs will
be signi�cant.

Fmorris(X, k) = α

k∑
i=1

Xi + β

k∑
i<j=2

XiXj

 (3.1)

Where:

� α =
√

12− 6
√

0.1(k − 1)

� β = 12
√

0.1(k − 1)

For the testing purposes we used 22 inputs, as the dimension of the inputs in the UQM. Each input
is independent and has U(0, 1) pdf. A sampling of 100 (X,Y ) realizations is used with parameter
k = 10, meaning that only (Xi)i≤10 are signi�cant. In order to test the redundancy capability the
last variable while not used in the function has a strong correlation of 0.9 with X10. The input
dimension reduction method was tested and the results for the selected input sets at the di�erent
steps (Sd0, Sd1, Sd2) are gathered in the table 3.13. The method in the initial step identi�es all
the signi�cant inputs together with one non-signi�cant (X11) and the correlated output that we
added (X22). In the second step no other input is added since the kriging error is already low.
Finally on the third step the redundant variable and the non-signi�cant one are rejected and thus
the optimal dimension reduction is achieved.
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Table 3.13: Input dimension reduction method result on Morris function

Selected inputs

Sd0 X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X22

Sd1 X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X22

Sd2 X1, X2, X3, X4, X5, X6, X7, X8, X9, X10

3.5.3 Latin Hypercube Sampling subspaces optimization

The kriging models for each output are constructed on space-�lling LHS. The training of these
models is more e�cient in a reduced input space responsible for most of the output variation.
The identi�cation of this subspace of the original input space is achieved through the previously
described IDRM. The construction of LHS in the original input space does not guarantee good
space-�lling properties in the identi�ed input subspaces. Besides that, the construction of a LHS
only in these subspaces creates an unquanti�ed dimension reduction error.

To this purpose we adapted the Simulated Annealing (SA) optimization algorithm of the LHS to
improve the φp space-�lling criterion also in the speci�ed subspaces of interest. The minimization
of φp leads to designs with better space-�lling properties. The SA is described in Section 2.6.2 and
consist in applying random permutations of two design points. Starting from an initial random
LHS many iteration of such permutations are performed and the φp criterion is evaluated. The
permutations that improve the criterion are kept. In order to avoid to get stuck in local minima a
trade-of is used between exploring and improving the LHS. This means that with some probability
worse LHS might be kept in order to explore better the space of available LHS. If we denote with
Iprj the identi�ed inputs subspaces of dimension dp and with D[Iprj ] the projections of a LHS
design D the modi�ed algorithm is:

SA improved subspaces pseudo algorithm

1: Dbest = D0, Cbest = φp(D0), Cp,best = φprjp (D0[Iprj ]), T = T0: initialization of the best
design, best criterion and temperature

2: for (i = 1, i ≤ Ni, i+ +) do
3: Create new design Di by elementary permutation and evaluate Ci = φp(Di) and Cp,i =
φprjp (Di[Iprj ])

4: a = min(exp(Cbest−CiCbestT
+
∑dp
j

Cjp,best−C
j
p,i

Cjp,bestT
), 1)

5: Sample b from bernoulli distribution with parameter a
6: if (b == 1) then
7: Dbest = Di, Cbest = Ci and Cp,best = Cp,i

8: end if
9: T = cT
10: end for

We can see that compared to the SA algorithm in Section 2.6.2 we modi�ed only the α variable.
This quantity is above 1 when the LHS is improved and below 1 when is worsened. In our modi�ed
algorithm we added the φp criterion in the desired subspaces. When φp is improved in the complete
space and all the important subspaces the value is above 1. When φp is worsened in the complete
space and all the important subspaces the value is below 1. In the intermediate cases depending
on the relative improve in each space it can be above or below 1.

It is important to notice that as the number of subspaces increase the optimization becomes less
e�ective. In the case where a large number of subspaces must be optimized, maximum projections
can be used, developed recently by [141], where all the input subspaces are optimized based on
a modi�ed version of φp criterion. For testing purposes we use a design of size N = 50 in d = 5
dimension with two subspaces of importance I1 = {1, 2}, I2 = {3, 4, 5}. The φp criterion evolution
results can be seen in �gure 3.25.
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Figure 3.25: Comparison of an optimized LHS in d = 5 and an improved one in the two subspaces
with indices I1 and I2 in the complete input space (a), the I1 subspace (b) and the I2 subspace
(c).

We compare the criterion in the original space with a LHS only optimized in this space and we
observe that they are quite close for both designs. In the subspaces we compare the criterion with
two LHS, one optimized only in the original input space and one optimized only in the subspace.
The two LHS with which we compare our optimized LHS can be seen as limiting cases. We observe
a signi�cant gain in the criterion with a converging behavior. In contrast, the LHS optimized only
in the original input space the criterion behavior is random. The obtained φp value at the end of
the iterations is close to the value of the LHS only optimized in each subspace, a very promising
result.

3.5.4 Multi-physics Best Estimate (BE) coupling study

The APOLLO3 R© - FLICA4 multi-physics BE coupling will be used to test and develop the
UQM. We remind that it is an explicit coupling with 0.001s incremental time step for a total REA
duration of 0.4s. The complete inputs and outputs identi�ed in table 3.3 will be studied. An
emphasis will given in testing the IDRM and the LHS subspace optimization. The computational
time needed for one code evaluation is 6 minutes. The inputs, outputs and statistical methods
that will be tested are summarized:

• Inputs: TD1, TD2, NF1, NF2, D1, D2, S1→2, IV1, IV2, βeff , λeff , λf , λc, Cpf , Cpc, Hgap,
Pr, TR, Hc, Rcrit, Rv0, Hdnb.

• Outputs: Pmaxlin , P 2D
lin (functional), Hmax

f , DNBmin.

• Statistical tools:
� IDRM: Identi�cation of an e�ective reduced input space.

� LHS subspaces optimization: Construction of LHS with good space-�lling properties
in both the original input space and the subspaces identi�ed by IDRM.

� Uncertainty propagation: Brute Monte Carlo method using kriging surrogate models
for histogram empirical estimation.

� Global sensitivity analysis: Shapley indices estimated using kriging models.

� Functional outputs: PCA is used to reduce the functional output dimension. The
principal components needed to represent 95% of the variance are retained and used for
functional uncertainty propagation and global sensitivity analysis (aggregated Shapley
indices).
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An initial random sampling of size 125 is used as DOE for the IDRM. The result for each output
including the �rst two principal components of P 2D

lin retained by the PCA are presented in table
3.14. We can observe that the λeff while having large sensitivities indices in the preliminary
studies was rejected by the IDRM. This is due to its high correlation with βeff but eventually its
direct e�ect is negligible. The identi�ed subspaces can be grouped in two: I1 = (TD1, NF1, NF2,
D1, S1→2, βeff , Cpf , Hgap, TR) and I2 = (βeff , Cpc, Hgap, Rcrit).

Table 3.14: Input dimension reduction method result for multi-physics BE coupling study in the
MiniCore.

Selected inputs

Pmax
lin TD1, NF1, NF2, D1, S1→2, βeff , Cpf , Hgap, TR

P2D
lin,pc1 TD1, NF1, NF2, D1, S1→2, βeff , Cpf , Hgap, TR

P2D
lin,pc2 TD1, NF1, NF2, D1, βeff

Hmax
f TD1, NF1, NF2, βeff , Cpf , Hgap

DNBmin βeff , Cpc, Hgap, Rcrit

For the training of the kriging models a learning LHS of size 250 with optimized subspaces I1 and
I2 was constructed. The comparative results for the φp criterion are presented in �gure 3.26. We
can see the signi�cant gain in the criterion optimization with an obtained value close to the LHS
optimized only in the subspaces.
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Figure 3.26: Comparison of an optimized LHS in d = 22 and an improved one in the two subspaces
with indices I1 and I2 in the complete input space (a), the I1 subspace (b) and the I2 subspace
(c).

The kriging models are trained on the identi�ed input subspaces. The leave-one-out error is
directly estimated while the prediction error is estimated using a second LHS of size 125 optimized
in the original input space. The result for the interpolation, leave-one-out and prediction error are
presented in table 3.15. For all the outputs the prediction errors are small with maximum value
1.46% for DNBmin.
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Table 3.15: Kriging model interpolation, leave-one-out and prediction errors for multi-physics BE
coupling study in the MiniCore.

Kriging

εint (%) εloo (%) εpred (%)

Pmax
lin 0.00 8.21e−2 1.07e−1

P2D
lin,pc1 0.00 8.2557e−2 1.11e−1

P2D
lin,pc2 0.00 5.79e−1 5.92e−1

Hmax
f 0.00 1.436e−1 1.61e−1

DNBmin 0.00 1.82 1.46

Brute Monte Carlo is used for uncertainty propagation with 1e5 samples for each output. The
obtained histograms for the scalar outputs and the relative standard deviation for the functional
one are presented in �gure 3.27. We observe a normal pdf for Hmax

f , a close to normal for Pmaxlin and
a strongly non-normal pdf for DNBmin. The relative standard deviations of the radial variation
for P 2D

lin , as in the APOLLO3 R© stand-alone study, is very small. For DNBmin we observe a very
large relative standard deviation of 76% with a probability of 0.02% to reach boiling crisis.
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Figure 3.27: Pmaxlin , Hmax
f and DNBmin histograms and P 2D

lin relative standard deviation distribu-
tion for multi-physics BE coupling study in the MiniCore.

Concerning the global sensitivity analysis, for each scalar output the Shapley indices are estimated
while for the functional output the aggregate Shapley indices are estimated. The results are shown
in �gure 3.28. The βeff is the dominant input for Pmaxlin , P 2D

lin and Hmax
f responsible for more

than 80% of their variations. For DNBmin the dominant input is Hgap responsible for 90% of the
variation. This is attributed to the large uncertainty range of Hgap and thus there is an increased
motivation to improve its modeling. This will be addressed in the following subsection.

129



●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●●●●●

●

●●●
●●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●

●●

●

●●●●

●

●

●●

●

●●

●

●

●

●●
●

●●

●

●

●

●

●●

●●

●

●

●

●●

●

●●●●

●

●●
●

●

●●

●

●●

●

●

●●

●

●
●

●

●

●

●●●●●

●●

●

●

●

●●●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●
●
●

●●●

●

●●

●

●

●

●

●

●●●●

●

●
●●

●

●●●●
●

●

●●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●●●

●

●

●●

● ●

●
●●

●
●●

●

●●

●●●●●

●●●

●
●

●
●
●●

●
●
●

●

●

●●●●●

●
●
●

●

●

●

●
●

●●

●
●
●

●

●

●
●

●
●

●
●
●

●

●

●●

●

●●●●

●

●

●●
●

●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●
●●●
●

●●●●

●
●

●●

●●

●

●●

●
●

●●●●●

●●●

●●

●

●

●●●

●

●●

●

●
●

●●●●

●

●

●●

●●

●
●●●●●●

●●
●
●

●
●●●●

●●●

●●

●●●●

●
●

●
●●

●

●●●

●
●

●●

●

●

●

●●●

●●

●

●

●
●
●

●
●
●
●

●
●●
●●

●●
●

●●

●●

●●●●

●
●●●

●

●

●●●●

●●●●

●

●●

●●

●

●●

●

●

●●

●

●●●●●

●●

●●●

●●

●

●

●●●

●●

●●●

●●●

●●

●●●

●

●●

●

●●
●

●

●●●●

●

●

●
●●

●

●

●

●●●

●●

●●

●

●

●●●

●●
●

●

●●

●●

●●●

●

●●●

●

●

●

●●
●

●

●●

●

●●

●

●
●
●●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●●

●●●

●●

●●●●●

●

●●●

●
●

●●

●

●

●
●
●●
●
●

●●

●●
●●

●
●●

●

●
●
●●

●●

●●

●

●

●

●

●

●●●●

●●●●

●

●●

●

●●

TD1 NF1 NF2 D1 S1→2 βeff Cpf Hgap TR

0
0.

2
0.

6
1

Pmax
lin

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●●●

●

●
●

●

●●

●

●
●●

●●●

●●

●
●●●●

●

●
●
●

●●●

●●

●

●●

●●●●

●

●
●

●

●
●●
●
●
●

●●●

●●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●
●●

●●●

●

●

●

●
●
●●

●

●●

●●

●●

●●

●

●

●

●●

●

●

●●●

●●●●

●

●
●●

●●
●●
●

●

●

●●●

●
●
●

●

●●

●●
●

●

●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●
●●●

●

●●

●●●

●●●●●●●

●

●

●

●

●●●●

●

●

●●●

●●

●●

●

●●

●●

●●●●●

●

●

●

●

●●

●

●

●

●
●

●●
●
●
●●●

●●●

●●

●●●

●●

●

●

●●●

●

●

●●

●
●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●
●

●●●●●
●

●

●

●●●●

●

●

●●●●
●●●●●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●●
●

●●

●●

●●

●

●

●

●●●●●

●
●
●●●

●

●

●

●

●●●

●
●
●●●

●

●●●●

●●●●

●

●●

●●

●

●

●

●
●

●●

●

●
●

●
●
●
●

●

●
●

●●●

●
●

●●

●
●
●

●
●

●●●

●
●
●●

●

●●●

●

●●

●
●

●●

●

●

●

●●

●

●

●●●●

●

●●

●
●●●

●

●

●●
●

●
●
●●

●
●
●●●

●●

●

●●●

●

●

●●●●

●

●●●

●●

●

●●

●

●●●

●●●

●

●●●

●●●●●●

●
●

●

●
●●
●
●

●

●●

●●

●
●●

●
●
●●●

●●

●●●

●

●

●●

●

●

●
●
●●

●●

●●

●●●●

●

●

●

●●
●●●
●

●

●●●

●
●

●●

TD1 NF1 NF2 D1 S1→2 βeff Cpf Hgap TR

0
0.

2
0.

6
1

Hmax
f

●●●

●

●

●●
●

●

●

●●●

●
●

●
●●

●●●

●

●●

●

●

●

●

●

●

●

●●●●●

●●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●●

●●

●

●

●
●

●

●●●

●

●
●●●
●●
●
●

●
●

●

●
●

●

●

●●

●

●●●●●

●●

●●●

●

●

●

●●

●●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●

●
●

●

●●

●●●

●
●

●●●

●

●

●●

●
●

●●

●
●●●●

●

●

●

●●

●
●
●

●

●

●
●

●

●●●

●
●
●●

●
●

●

●
●
●

●●

●●

●

●●

●

●

●●●

●

●●

●

●●

●

●●●
●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●●

●
●

●

●●

●

●●

●
●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●
●

●

●
●

βeff Cpc Hgap Rcrit

0
0.

2
0.

6
1

DNBmin

●

●

●
●

●
●●●
●●

●

●
●

●

●

●●

●

●
●

●

●●

●

●
●

●

●●●●

●

●

●●●

●

●

●●●●●
●
●●●

●●

●
●●
●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●●●

●

●●

●●●

●

●

●●●

●
●
●●
●

●

●
●

●

●

●

●

●

●●

●
●●

●
●●

●●

●●

●●

●

●

●
●

●

●

●●●
●
●

●

●

●●

●

●

●
●●●
●
●

●

●●

●●●

●●

●●

●
●

●

●●

●

●●
●

●

●

●

●●●●●●

●●

●●●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●●●
●
●

●

●
●●●

●●●●

●●

●●

●

●

●
●
●

●●●

●

●●●

●●●

●

●

●

●
●
●

●●

●

●●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●●

●●

●
●

●
●
●●

●

●

●●

●●●●●●

●●
●
●
●●

●●●
●

●

●●

●

●
●●●

●

●
●
●
●

●

●●●●

●●

●●●
●
●

●
●
●
●

●

●

●
●●

●
●●●●●●

●●●
●

●

●

●

●

●●

●

●●

●

●
●

●
●●●

●

●

●

●

●

●●
●

●●●

●●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●●

●

●

●

●●●

●

●
●

●●

●

●
●

●

●●●●
●

●●

●

●
●

●●
●
●

●
●

●

●●●
●
●●

●

●
●

●●

●●●●●
●
●

●

●●

●

●

●

●
●
●

●

●

●●

●●●

●●●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●●
●●●

●

●
●●●●

●

●●

●

●●●●●●

●●

●

●●

●●●

●

●●

●●
●●●

●
●
●
●●

●

●●
●●●●●

●●
●

●

●

●

●●●

●●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●

●

●●

●●●

●●●

●
●

●

●●

●

●

●
●●
●
●●●

●
●

●●
●

●●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●●

TD1 NF1 NF2 D1 S1→2 βeff Cpf Hgap TR
0.

0
0.

4
0.

8

P 2D
lin

Figure 3.28: Pmaxlin , Hmax
f and DNBmin Shapley indices and P 2D

lin aggregate Shapley indices for
multi-physics BE coupling study in the MiniCore.

3.5.5 Conclusions - UQM scheme

The APOLLO3 R© - FLICA4 multi-physics BE coupling was used to develop and test the input
dimension reduction method and the optimization of LHS in both original input space and the
identi�ed subspaces. Both of the methods showed very compelling results allowing to treat potential
large inputs dimension and addressing dependencies, interactions, redundancies and non-linearities.
Additionally, the prediction errors of the kriging models include the dimension reduction errors
adding more con�dence for the following analyses. The trained surrogate models are used for
uncertainty propagation and global sensitivity analysis. Both scalar and functional outputs are
considered. Based on all these conclusions we derive the Uncertainty Quanti�cation Methodology
(UQM) for REA. In Chapter 4 we apply this methodology in a large scale PWR core. The UQM
consist of four main steps and is illustrated in �gure 3.29.

The initial step 0 is the de�nition of the case study with the desired uncertain inputs and outputs
and the input uncertainty quanti�cation. Since we assume that in the general case the input
dimension can be large the step 1 consists in identifying the important input subspaces using
IDRM for both scalar and functional outputs. This step is based on an initial random sampling.

The step 2 is the training of the kriging models for each output on the identi�ed subspaces. The
training LHS is constructed with good space-�lling properties in both the original input space and
the important subspaces. For the functional outputs the kriging models are constructed for the
�rst principal components that represent 95% of the outputs variance. The prediction errors of
the kriging models are estimated using an independent LHS.

The step 3 is the brute force Monte Carlo uncertainty propagation with the empirical estimations
of the �rst two statistical moments and the histogram. Finally, in step 4 the global sensitivity
analysis is performed using Shapley indices for scalar outputs and aggregated Shapley indices for
functional ones.
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1. Input Dimension Reduction

Code

2. Surrogate models (SM) construction

3. Uncertainty Propagation 4. Global Sensitivity Analysis

0. Case study

Scenario, Modeling, Inputs (X) - Outputs (Y) identification with X є Rd and Y є Rq, Inputs 
Uncertainty Quantification

1.1 Random
Sampling in Rd

1.2 Dataset: X, Y Y scalar

Yes

1. 3 IDRM

No

1.2.1 PCA at 
95%

1. 3 IDRM

1. 4 Aggregated
important inputs 

subspaces Rd’ 

2.1 Training LHS 
optimized in Rd

and Rd’

2.1 Testing LHS 
optimized in Rd

2.2 Dataset: X, Y

2.2 Dataset: X’, Y’

Y scalar

2.3 Kriging

2.2.1 PCA at 95%

Y scalar 2.2.1 PCA at 95%

2.4 Prediction error2.4 Prediction error

2.3 Kriging

No

No
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Code

Code

Y scalar

3.1 Brute Force Monte Caro using
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3.2 Empirical estimation of mean, 
variance and histogram

3.1.1 PCA 
reconstruction

Yes

No

4.1 Shapley sampling using kriging

Y scalar

4.2 Shapley 
indices 

estimation

4.2  Aggregated
Shapley indices 

estimation

NoYes

Figure 3.29: Uncertainty Quanti�cation Methodology scheme
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3.6 Improving the gap heat transfer modeling

3.6.1 Introduction

The gap heat transfer (Hgap) modeling so far in the BE coupling was done using a constant
value during the REA with a uniform distribution over a large interval. This is one of the most
important modeling di�erences between Best E�ort and BE coupling. There is a strong interest
thus to improve the Hgap modeling and introducing it in the previous coupling. In this subsection
we address this challenge by calibrating a simpli�ed Hgap model that is based on fuel thermal
expansion. We consider that this model is adequate for the REA and especially for the gap closing
phase. The calibration is performed through decoupled ALCYONE V1.4 calculations with imposed
power evolution. We �rst detail the model with its calibration parameters. Afterwards, we present
the calibration methodology where we discuss issues such as how the power pulses are selected, how
many Hgap models will be created for the di�erent fuel assemblies etc. Finally, we introduce the
model in the BE coupling, apply the previously developed UQM and compare some selected design
points with the results of the Best E�ort APOLLO3 R© - FLICA4 - ALCYONE V1.4 coupling.

3.6.2 Gap heat transfer simpli�ed model

The sharp power increase in the REA leads to a corresponding sharp fuel temperature increase.
We assume that the Hgap evolution is driven by the gap closing due to fuel thermal expansion and
by the gas conductivity evolution in the gap. This is used to derive the simpli�ed formulation for
Hgap de�ned by equations 3.2a - 3.2c.

Hgap =
λg(Tg, Ef )

e(Tf )
(3.2a)

λg = λg,init

(
1 + θ1

Tg − Tg,init
Tg,init

+ θ2Ef

)
(3.2b)

e(Tf ) = rc,init − rf (Tf ) (3.2c)

Where:

� λg is the gas conductivity in the gap and λg,init =
Hinitgap

einit
its initial value prior to the REA.

The latter is calculated by the initial gap heat transfer Hinit
gap and initial gap width einit.

� Tg is the gas temperature and Tg,init the initial gas temperature prior to the REA.

� Ef is the energy stored in the fuel during the REA.

� θ1 and θ2 are two calibration parameters that have to be estimated.

� e is the pellet-cladding gap width. It is assumed that only the fuel expansion is responsible
for the gap evolution.

� rc,init is the initial internal cladding radius prior to the REA.

� rf = rf,initαf (Tf ) is the fuel external radius. The fuel expansion is modeled using the fuel
expansion coe�cient αf (Tf ) in [26] which is a cubic function of the fuel temperature Tf .

The Hgap predicted by the proposed simpli�ed model is based on fuel thermal expansion and
depends on the evolution of the λg and e. The λg is considered a linear function of Tg and Ef . The
latter allows to include a historical e�ect on the conductivity. The two calibration parameters to
be determined θ1 and θ2 are the coe�cients of Tg and Ef respectively. The e evolution is assumed
to depend only on the fuel thermal expansion while the cladding radius remains constant. For the
modeling of the gas temperature Tg the average between the external fuel temperature and the
internal cladding temperature is proposed. It is a strong assumption since the gradient in the gap
is important but for the purpose of this simpli�ed model we consider that it is justi�ed.
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3.6.3 Development of gap heat transfer calibration methodology

Having de�ned the simpli�edHgap model the next step is to calibrate it. A calibration methodology
was developed in this thesis illustrated in �gure 3.30.

0. APOLLO3-FLICA4 
UQM with uniform Hgap

1.1 Assembly BU grouping
One Hgap model for each group

1.2 Statistical and spatial selection
Mean, 2.5% quantile and 97.5% quantile for 

representative assemblies of each group

Data extraction
Axial linear power and cladding wall

temperature

2. ALCYONE1
REA transient

Data extraction
Initial conditions, temperatures

and Hgap evolutions

3.2 Hgap model uncertainty
Calibration parameters and 

initial conditions

4. APOLLO3-FLICA4
UQM with Hgap 

model

3.1 Hgap model calibration
Mean square error

minimization for maximum 
and final Hgap 

Figure 3.30: Gap heat transfer model calibration methodology scheme.

The starting point is the UQM application in the BE coupling of Section 3.5.4. The temperature
evolution in the fuel depends on the fuel assembly burn-up and the power seen by this assembly
in its position in the core. Since we need to build a Hgap model for every fuel spatial mesh (1080
meshes) a grouping is necessary. In step 1.1 we group the assemblies by similar radial average
burn-up. This means that we will construct one Hgap model for every identi�ed group. In the
MiniCore case it is relatively straightforward to group the assemblies leading to three burn-up
groups: 0, 15 and 30GWd/t. It is important to notice that while there are only three models the
initial conditions are di�erent for each fuel pin leading to a radial and axial Hgap pro�le during
REA.

The next step 1.2 consists in selecting representative pulses from the APOLLO3 R© - FLICA4
uncertainty analysis. The pulses must cover most of the possible Hgap variations inside the group
due to both statistical and spatial aspects. For the statistical aspect three pulses are extracted:
the mean and the 95% upper and lower quantiles of Pmaxlin . For the spatial aspects, when the
mean and the upper 95% quantile are imposed then the quarter assembly seeing the maximum
power is selected. Correspondingly, when the lower quantile is imposed the quarter assembly seeing
the lowest power is selected. This creates for each model three representative axial and temporal
pro�les of linear power and external cladding temperature.

In step 2 the selected pro�les are extracted and imposed in a decoupled ALCYONE V1.4 REA
transient calculation. One representative fuel pin is modeled. The resulting temperature and gap
heat transfer pro�les from ALCYONE V1.4 are extracted and used for the Hgap model calibration.

The calibration is carried out in step 3.1 by �nding the parameters that minimize the mean
square error on the Hgap maximum and �nal value during the REA for each axial slice. Once the
parameters are estimated the �nal step 3.2 is to quantify the calibrated model uncertainty. The
two main sources of uncertainties are the initial conditions and the calibrated parameters. The
former one is quanti�ed as two mutliplication coe�cients on the initial gap width and the initial
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Hgap with pdf N (1.0, 0.1). This is a result of a previous uncertainty analysis for fuel evolution
calculations with ALCYONE V.1.4. The results also showed that the initial gap width and Hgap

are fully negatively correlated. This leads to consider the two coe�cients as fully negatively
correlated (ρ = −1) rendering thus one e�ective uncertain quantity for the initial conditions Hg,i.
The latter uncertainty source is the calibrated parameters. They are considered as fully positively
correlated (ρ = 1) with uniform distributions. The bounds of the distributions are calculated in
order to account for the calibration error. The e�ective uncertain input representing the calibration
uncertainty is Hg,m. More details about how this is implemented are provided in the Section 3.6.4.

Finally, the model of equations equations 3.2a - 3.2c, including its two e�ective uncertain pa-
rameters, is introduced in the multi-physics coupling creating an Improved Best Estimate (IBE)
modeling. It can be seen as an intermediate modeling between the BE and Best E�ort modelings.
The computational cost of IBE is similar to BE.

3.6.4 Test of gap heat transfer calibration methodology

Each step of the Hgap model calibration methodology is tested on the MiniCore in order to evaluate
its performance. For the initial step 0 a multi-physics BE uncertainty propagation study must be
performed. In our case we use the study of Section 6.5.4 where we tested the UQM on the
APOLLO3 R© - FLICA4 BE coupling. The grouping of assemblies in step 1.1 for the MiniCore
geometry (�gure 3.1) as mentioned is rather straightforward since there are three discrete groups of
burn-up. We consider one Hgap model for each burn-up resulting in a total of three models. From
the results of the UQM for Pmaxlin we select the mean, the upper and lower 95% quantile. From
the identi�ed design points and for each model in step 1.2 representative quarter of assemblies are
identi�ed and the results are presented in �gure 3.31. The green circles indicate the selection of the
mean and upper quantile and the yellow indicates the selection for the lower quantile. Following
the de�ned procedure and due to the MiniCore symmetry for the 30GWd/t burn-up group there
is only one possible choice for all three design points. For the 15GWd/t burn-up there are three
possible choices, from which we select the quarter of assembly closer to the control rod ejection
location for the mean and the upper quantile. This is because it is the one with the maximum
linear power. For the lower quantile, the quarter assembly the farthest from the center is selected
as it is the one with the minimum linear power. We follow the same reasoning for the 0GWd/t
burn-up quarter assembly selection.

Figure 3.31: Selected representative quarter of assemblies for each Hgap model group on the sym-
metric 1/4 MiniCore geometry of �gure 3.1.

At the end of this step for each design point there is a corresponding quarter of assembly for
each group. In this quarter of assembly the axial and temporal pro�les of the linear power and
cladding wall temperature are extracted and applied in the decoupled ALCYONE V1.4 calculation.
A representative fuel pin for each selected quarter of assembly in each sampling is modeled. The
axial and temporal evolutions of the Hgap and radial temperature are calculated during the REA.
These results together with the stored fuel energy are extracted. Only the values corresponding to
the time of the maximum and �nal value of Hgap during the REA for all the axial slices are kept for
the calibration in order to simplify the optimization. This creates a total dataset of 30×3×2 = 180
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results on which the simpli�ed Hgap model is calibrated. The calibration parameters are optimized
by minimizing the mean square error (Section 2.8.1) on this dataset. The resulting calibration error
for the three di�erent models are presented in �gure 3.32 and the estimated calibration parameters
in table 3.16.

Table 3.16: MiniCore Hgap model calibration parameters estimation

0 15 30

θ1 2.18e−1 7.90e−2 −1.36e−1

θ2 [J−1] 1.13e−5 1.63e−5 2.02e−5
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Figure 3.32: Hgap model calibration errors for the MiniCore assembly groups at 0GWd/t,
15GWd/t and 30GWd/t.

The next step in the methodology is to quantify the calibration parameters uncertainty. To this
purpose we calculate a map by perturbating both inputs and estimating the maximum calibration
error on the dataset. The result for the 30GWd/t group is illustrated in �gure 3.33. We can
observe the following facts: if both parameters increase, then the error decreases; if both parameters
decrease, then the error increases. Based on this we use the assumption that the parameters are
fully positively correlated in order to cover the maximum calibration error. This essentially means
that the parameters can only vary on the diagonal. By deciding the upper and lower bounds of the
(signed) error that we want to cover we obtain the bounds for each parameter as is shown in �gure
3.33. For the other groups the result of the error evolution has similar behavior just with di�erent
bounds. At this point we make a second assumption that all the groups have parameters that are
fully positively correlated. This is done in order to both simplify our uncertainty quanti�cation
and to be consistent with the uncertainty quanti�cation of the rest inputs. For the all the other
inputs the uncertainties are applied homogeneously on the whole core as depicted in �gure 1.21.
We observe that the calibration error increases with burn-up, meaning that the corresponding
calibration parameters will have a larger range in their uniform pdf. This means that larger
uncertainty will be propagated by the model for higher burn-ups. The results for the estimated
ranges for each parameter are shown in table 3.17.
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Figure 3.33: Maximum calibration error evolution with the calibration parameters for MiniCore
30GWd/t group.

Table 3.17: MiniCore Hgap model calibration parameters pdf estimation.

0 15 30

θ1 U(2.04e−1, 2.334e−2) U(2.90e−2, 1.29e−1) U(−2.36e−1,−3.60e−2)

θ2 [J−1] U(1.04e−5, 1.24e−5) U(1.53e−5, 1.73e−5) U(1.82e−5, 2.22e−5)

Using these bounds the prediction of the Hgap temporal evolution by the calibrated model is
compared to the ALCYONE V1.4 calculation. The results at the axial slice with the maximum
Hgap value for each model and design point are presented in �gures 3.34 - 3.36.
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Figure 3.34: MiniCore 0GWd/t group calibration results including the uncertainty bounds (green).
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Figure 3.35: MiniCore 15GWd/t group calibration results including the uncertainty bounds
(green).
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Figure 3.36: MiniCore 30GWd/t group calibration results including the uncertainty bounds
(green).

The plotted Hgap predictions are also the ones with the larger errors and we can see that in all
the predictions the ALCYONE V1.4 calculation is inside the uncertainty bounds created by the
uncertain calibration parameters.
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3.6.5 UQM tested on Improved Best Estimate (IBE) coupling

The calibratedHgap models are introduced in the BE coupling to create the intermediate APOLLO3
R© - FLICA4 - HGAP multi-physics coupling. The complete UQM is applied on this modeling.
The uncertain inputs and outputs of table 3.3 are used with the replacement of the constant Hgap

uncertain input by the Hgap simpli�ed model uncertainties. We de�ned two uncertain parameters,
one related to the initial conditions of the model Hg,i and one related to the calibration parameters
uncertainty Hg,m. We remind that it is an explicit coupling with 0.001s incremental time step for
a total REA duration of 0.4s. The computational cost of this modeling is similar to the APOLLO3
R© - FLICA4 modeling (about 6 minutes).

For the step 1 of the UQM a random sampling of size 125 is used as DOE for the input dimension
reduction. The result for the identi�ed subspaces are gathered in table 3.18 and can be grouped
in two: I1 = (TD1, NF1, NF2, D1, S1→2, βeff , Cpf , Hg,i, TR) and I2 = (TD1, NF2, βeff , Hg,i,
Hc, Rcrit, TR). In step 2 of the UQM a learning LHS of size 250 with optimized subspaces I1 and
I2 was constructed for the training of the kriging models. The kriging models are trained on the
identi�ed input subspaces. The result for the interpolation, leave-one-out and prediction errors are
presented in table 3.19. The prediction errors are estimated on a second LHS of size 125. For all
the outputs the prediction errors are small with larger errors for DNBmin (2%) and the second
principal component of P 2D

lin (5.5%).

Table 3.18: UQM step 1 results for IBE coupling study in the MiniCore.

Selected inputs

Pmax
lin TD1, NF1, NF2, S1→2, βeff , Cpf , TR

P2D
lin,pc1 TD1, NF1, NF2, S1→2, βeff , Cpf , TR

P2D
lin,pc2 TD1, D1, βeff

Hmax
f TD1, NF1, NF2, S1→2, βeff , Cpf , Hg,i

DNBmin TD1, NF2, βeff , Hg,i, Hc, Rcrit, TR

Table 3.19: UQM step2 results for IBE coupling study in the MiniCore.

εint (%) εloo (%) εpred (%)

Pmax
lin 0.00 1.15e−1 9.98e−2

P2D
lin,pc1 0.00 1.16−1 1.01e−1

P2D
lin,pc2 0.00 6.16e−1 5.53

Hmax
f 0.00 1.62e−1 1.73e−1

DNBmin 0.00 2.10 2.03

In step 3 of the UQM brute force Monte Carlo is used for uncertainty propagation with 1e5 samples
for each output. The results are presented in �gure 3.37. The obtained histogram for Hmax

f and
the relative standard deviation of P 2D

lin are similar to the APOLLO3 R© - FLICA4 study. For
Pmaxlin a shift towards to a lower mean value is observed with similar relative standard deviation.
The histogram of DNBmin is the most impacted by the introduction of Hgap model, something
expected from the previous sensitivities. The mean value is further from the boiling crisis and the
relative standard deviation decreases from 76% to 26%. The histogram now has a close to normal
distribution. This change is attributed to the more realistic modeling of Hgap leading to in average
less heat transfer. The coolant extracts less heat and larger values for DNBmin are obtained.
The probability now for reaching boiling crisis has decreased to 0.002% an order of magnitude of
di�erence.

The �nal step 4 of the UQM is performed and the Shapley indices are estimated for all the outputs.
The results are presented in �gure 3.38. For Pmaxlin , P 2D

lin and Hmax
f as in the previous APOLLO3
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R© - FLICA4 study the only dominant input is βeff responsible for more than 80% of the outputs
variance. A signi�cant di�erence in observed for the DNBmin sensitivities. The gap heat transfer
is not any more the dominant input, instead the βeff accounts for 70% of the outputs variance.
The Hgap initial conditions are responsible for 20% while the rest 10% is divided among the other
inputs.

µ = 3.89e+06 [W/m] σ = 23.69 %
0e+00 2e+06 4e+06 6e+06 8e+06

Pmax
lin

µ = 1.49e+05 [J/Kg] σ = 9.09 %
1.0e+05 1.4e+05 1.8e+05

Hmax
f

µ = 3.40  σ = 25.63 %
0 2 4 6

DNBmin

23.35

23.40

23.45

23.50

 23.45 

 2
3.

45
 

 23.45 

 23.45 

 23.5 

 23.5 

P2D
lin

%

Figure 3.37: Pmaxlin , Hmax
f and DNBmin histograms and P 2D

lin relative standard deviation distribu-
tion for IBE coupling study in the MiniCore.
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Figure 3.38: Pmaxlin , Hmax
f and DNBmin Shapley indices and P 2D

lin aggregate Shapley indices for
IBE coupling study in the MiniCore.
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3.6.6 Comparison with Best E�ort coupling

By introducing the Hgap calibrated model to the BE coupling we improved its REA modeling. The
new IBE coupling has an Hgap modeling much closer to the reality than the constant value used
in the BE coupling. Additionally, the computational cost does not increase and remains around
6 minutes for one code evaluation. While the calibrated models have a small calibration error,
it is important to compare the Hgap predicted evolution in REA with the Best E�ort APOLLO3
R© - FLICA4 - ALCYONE V1.4 modeling. The introduction of ALCYONE V1.4 increases the
computational cost for one code evaluation to 4 hours rendering a complete UQM prohibitive.
For this reason three samples from the previous UQM were selected in order to compare the Best
E�ort and the IBE modelings. Since the Hgap variations in the 0GWd/t burn-up fuel is small
only the results for the 15GWd/t and 30GWd/t are presented. We focus on the temporal Hgap

evolution at the location of the maximum Hgap. The results for the 15GWd/t fuel are illustrated
in �gure 3.39. We observe an underestimation of 13% for the maximum and �nal value of the Hgap

during REA. The results for the 30GWd/t fuel are illustrated in �gure 3.40. There is a very good
agreement for the maximum Hgap but there is an under-estimation for the last value of 17%.

The reasons for these underestimations can be multiple, from the simplistic nature of the model
to the di�erent temperature predictions in the two modelings. We remind that in FLICA4 the
thermomechanics are not considered and that the radial discretization in ALCYONE V1.4 is much
�ner. This leads to di�erent fuel temperatures that are an important aspect for the model. Ad-
ditionally, in the model we use an e�ective gas temperature calculated as an average between the
fuel external and cladding internal temperatures. This is a strong assumption that can explain
part of this underestimation.
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Figure 3.39: Hgap comparison for 15GWd/t burn-up fuel between IBE and Best E�ort coupling.
Three di�erent samples are compared at the location of maximum Hgap.
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Figure 3.40: Hgap comparison for 30GWd/t burn-up fuel between IBE and Best E�ort coupling.
Three di�erent samples are compared at the location of maximum Hgap.

3.6.7 Conclusions

In this subsection we developed and tested the methodology for calibrating a simpli�ed Hgap

model that is based on thermal expansion. We presented the di�erent steps of the methodology
from the selection of the imposed boundary conditions in the ALCYONE V1.4 REA decoupled
calculations to the model calibration by mean square error minimization and the quanti�cation of
the model uncertainty. The methodology was tested on the MiniCore geometry and resulted in
very satisfactory results concerning the calibration error. The de�ned uncertainty ranges of the
calibration parameters covered in all the cases the predicted Hgap evolution during the REA by
ALCYONE V1.4.

TheHgap model was introduced then in the APOLLO3 R© - FLICA4 BE coupling. This lead to IBE
coupling, a signi�cantly more realistic modeling of the REA with no increase on the computational
cost. The UQM was tested on this improved modeling a�ecting mainly the margin to boiling crisis
uncertainty quanti�cation. The sensitivity of the Hgap decreased signi�cantly due to its better
modeling.

Finally, the IBE modeling was compared to the Best E�ort modeling on three di�erent samples
in terms of the Hgap temporal prediction at the location of the maximum Hgap. The resulting
comparison showed an underestimation of the Hgap between 13% − 17%. This is attributed to
the many assumptions of the calibrated model and to the di�erences of the fuel-thermomechanics
modeling in FLICA4 and ALCYONE V1.4. This means that the developed IBE modeling cannot
replace the Best E�ort modeling but it can be used as a cheap realistic estimation in cases where
the latter is unfeasible. This is usually the case in the uncertainty quanti�cation since many code
evaluations are needed and especially in the large scale PWR core study carried out in Chapter 4.

3.7 Conclusions

The goal in this Chapter was to develop and test an uncertainty quanti�cation methodology (UQM)
for a multi-physics REA modeled by an APOLLO3 R© - FLICA4 BE coupling. In Chapter 2 we
discussed the di�erent available statistical tools that could be included in the UQM.

Initially we started with preliminary stand-alone decoupled calculations for each code of the COR-
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PUS coupling framework presented in Section 1.7. These studies allowed to select and validate the
adequacy of some statistical tools. More speci�cally, the kriging models showed better performance
with small prediction error for all the output quantities that were studied and for this reason they
were selected. Concerning the global sensitivity analysis the Shapley and Sobol indices were stud-
ied. The former ones were selected due to the fact that they are well adapted for dependent inputs.
The HSIC statisical signi�cance test screening capabilities were also found to be very promising
since they manage to identify for each output at least all the relevant inputs. Various functional
outputs up to 2D �elds were treated using PCA with 95% of variance with compelling results that
increased our con�dence for their modeling in the UQM.

With the insights gained from the preliminary studies the UQM was developed on an APOLLO3 R©
- FLICA4 coupling. All the identi�ed inputs and outputs were included in this study. Two methods
were developed and tested. The �rst one is the input dimension reduction method (IDRM) based
on HSIC statistical signi�cance tests and showed very good results on the Morris function. The
second one is an adaptation of the Simulated Annealing LHS optimization algorithm to improve
the good space-�lling properties in the identi�ed input subspaces by IDRM. The maximin criterion
is optimized by minimizing the φp criterion (Section 2.6.2) in both the complete inputs space and
the identi�ed subspaces. It was tested on 5 inputs dimension with very compelling results. Both
methods were used then in the APOLLO3 R© - FLICA4 coupling validating their previous testing.
The kriging models and Shapley indices were also tested in this coupling with similar results with
the preliminary studies. The conclusions drawn from all these studies resulted in the development
of the UQM scheme consisting of four steps. The �rst one is the identi�cation of the important
input subspaces. In the second step the kriging models are trained on LHS optimized in these
subspaces and their prediction errors are estimated based on a second LHS. The third step uses
these kriging models for brute force Monte Carlo uncertainty propagation. Finally, in the fourth
step global sensitivity analysis is performed using the kriging models to estimate the Shapley
indices for scalar outputs and the aggregated Shapley indices for the functional ones.

The BE coupling in the UQM development included many modeling simpli�cations. The main one
was the use of a constant uncertain value for the Hgap, something that was re�ected in the global
sensitivity analysis. To improve this modeling, a simpli�edHgap model based on thermal expansion
was calibrated. The calibration methodology was developed including three main steps. In these
steps the assemblies were grouped by burn-up with one model for each group. Boundary conditions
were imposed in ALCYONE V1.4 REA decoupled calculations covering most of theHgap variations.
On the obtained results the Hgap models were calibrated by mean square error minimization.
Additionally, the uncertainty of the models was quanti�ed through two e�ective parameters. The
methodology was tested on the MiniCore geometry with very promising results. Small calibration
errors were observed and the de�ned uncertainty ranges of the calibration parameters covered in all
the cases the predicted by ALCYONE V1.4 Hgap evolution during the REA. The calibrated Hgap

model was then included in the BE coupling creating the IBE modeling without any impact on the
computational cost. The UQM was tested on this improved modeling a�ecting mainly the margin
to boiling crisis uncertainty quanti�cation. The sensitivity of the Hgap decreased signi�cantly due
to its better modeling. Finally, the IBE modeling was compared to the Best E�ort modeling on
three di�erent design points in terms of the Hgap prediction. The resulting comparison showed an
underestimation of the Hgap between 13%− 17%. This is attributed to the many assumptions of
the calibrated model and to the di�erences of the fuel-thermomechanics modeling in FLICA4 and
ALCYONE V1.4. However, we can conclude that we developed an improvement of the BE coupling
without an increase in the computational cost that is much closer to the Best E�ort coupling as
far as the Hgap is concerned. This coupling cannot replace the Best E�ort since there are many
limiting assumptions but it can be used for a more realistic UQM on the large scale PWR core,
where the Best E�ort coupling is unfeasible.

142



Chapter 4

Application of the Uncertainty

Quanti�cation Methodology on

PWR core
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4.1 Introduction

Large scale PWR core transient simulations with a Best Estimate (BE) modeling have high com-
putational cost, especially in the case of Rod Ejection Accident (REA) where a multi-physics
modeling is necessary as discussed in Section 1.6. Furthermore, this budget limitation has even
more constraints if an uncertainty quanti�cation is performed for a REA. Many challenges such
as the potential large input and output dimensions, input dependencies and non-linearities of the
outputs accentuate the complexity.

In Section 3.5 we developed and tested an Uncertainty Quanti�cation Methodology (UQM) that
can address some of these challenges and tested it on a small scale core (MiniCore) representative
of a Pressurized Water Reactor (PWR) behavior. REA was studied using the BE APOLLO3 R© -
FLICA4 modeling of the CORPUS coupling framework presented in Section 1.7. The methodology
includes two main steps. The �rst one is the identi�cation of important input subspaces with
regards to each output of interest. It is detailed in Section 3.5.2 and allows an input dimension
reduction that facilitates the construction of surrogate kriging models. Statistical signi�cance tests
based on HSIC (Section 2.7.5.4) are used to this purpose. The second step detailed in Section 3.5.3
is the training of the kriging models on LHS optimized in both the complete input space and the
identi�ed subspaces. The kriging is trained only on these subspaces with a prediction error that
includes the dimension reduction error. Finally, uncertainty propagation by brute Monte Carlo
and global sensitivity analysis by estimating Shapley indices (Section 2.7.4.2) are carried out using
the trained kriging models. The derived UQM can treat both scalar and functional outputs. For
the latter Principal Components Analysis (PCA) is used by keeping the �rst principal components
responsible for 95% of the outputs variance. PCA was discussed in Secton 2.4.1. For the global
sensitivity analysis aggregate Shapley indices are estimated as de�ned in Section 2.7.6.1.

Another important methodological aspect studied in Section 3.6 was the improvement of the fuel
thermal modeling in the BE coupling for a REA. One of the most important limitations of the BE
coupling is the use of a constant gap heat transfer value (Hgap). A methodology was developed and
tested to calibrate a simpli�ed Hgap model based on thermal expansions. The fuel assemblies of
the core are grouped by their burn-up. One model is used for each group but with di�erent initial
conditions that vary spatially. The calibration is performed on a dataset of Hgap and radial fuel
temperatures evolution during REA created by decoupled ALCYONE V1.4 REA calculations. The
uncertainty of the Hgap model was estimated due to both calibration and initial conditions. The
former one is modeled by the attribution of uniform pdf on the calibration parameters with ranges
that cover the calibration error. The latter is quanti�ed as a multiplication coe�cient on the initial
Hgap and the pellet-cladding gap width by uncertainty propagation in the evolution calculations.
Finally, the Hgap model is introduced in the BE coupling. This allows an uncertainty quanti�cation
for a REA with a good compromise between computational cost and physical modeling.

In this Chapter we apply these two methodologies on a large scale PWR core. The core and its
modeling together with the initial state and characteristics of the reference transient are presented
in Section 4.2. Since the REA modeling and its characteristics in the PWR core are di�erent from
the MiniCore, a preliminary static uncertainty quanti�cation is performed in Section 4.4 in order
to gain some basic insights. Quantities such as the multiplication factor and the control rod worth
are studied. In the following Section 4.5 we apply the UQM on the APOLLO3 R© - FLICA4 BE
coupling. The results are used in Section 4.6 to calibrate the Hgap models for di�erent groups
of fuel assemblies and creating thus an Improved Best Estimate (IBE) modeling. The UQM is
then applied again on this modeling. Finally, in Section 4.7 we use the improved Best Estimate
coupling to perform two uncertainty quanti�cation studies. This time instead of focusing on the
methodology we are mainly interested in the physical modeling options. In the �rst study we
analyze the impact of a 3D thermal-hydraulics modeling instead of a multi-1D modeling where the
thermal-hydraulic channels are considered as closed without transverse �ows. In the second study,
we analyze the impact of using �ner thermal-hydraulic channels modeling.
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4.2 REA modeling and description

4.2.1 Core design

The REA is studied in a large scale PWR core that was used in a previous work [46]. The
geometry has an 1/8 symmetry presented in �gure 4.1. It consists of 193 fuel assemblies with UO2

and UO2 − GdO3 fuel compositions. Two di�erent types of control rods are inserted at di�erent
depths. The black rods (B) with high neutrons absorption that are typically used for the shutdown
of the reactor and the grey rods with less neutrons absorption that are used in the day to day
reactivity control. The core is at HZP conditions at the end of the cycle as will described later.
Around the fuel assemblies there is one ring of water re�ector assemblies creating a total 17× 17
lattice. The total height of the core is 468.72 cm with a bottom and top re�ector of 21 cm leading
to a fuel active height of 426.72 cm. Each assembly is a 17 × 17 lattice of fuel pins with pitch
21.504 cm. The control rod that will be ejected initiating the REA is located on the periphery as
highlighted in �gure 4.1. It is inserted 97 cm from the top into the fuel active region as can be seen
by the control rod cover rate. Due to the extraction of the control rod there is 1/2 symmetry for
the REA. More details about the core can be found in [142]. This geometry will be used for all
the studies of this Chapter.

Pin pitch (cm) 1.26

Assembly pitch (cm) 21.504

Active height (cm) 426.72

Full height (cm) 468.72

Control rod cover rate 97
426.72

UO2 UO2 UO2 UO2

UO2 UO2
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Figure 4.1: PWR 1/8 core geometry and characteristic dimensions. B indicates assemblies with
black control rods, G with grey control rods and N with no control rods. The ejected control rod
location is highlighted with red borders.

4.2.2 Modeling

The REA in the PWR core geometry is modeled using the BE modeling of the CORPUS cou-
pling framework presented in Section 1.7. APOLLO3 R© for neutronics and FLICA4 for thermal-
hydraulic are coupled as in the MiniCore case. The Best E�ort modeling of the CORPUS frame-
work including ALCYONE V1.4 for fuel-thermomechani is currently under development for this
core and thus only the BE can be used for the UQM.

In APOLLO3 R© the same modeling options as in the MiniCore are selected. Two group Di�usion
approximation (quations 1.21a and 1.21b) is used for energy and angle discretization with void
boundary conditions on the neutron current. The radial discretization is at the level of the quarter
of assembly creating 772 meshes. For the axial discretization 34 meshes are used of which 30 are
for the fuel active height and the rest for the top and bottom re�ector. This creates a total of
26248 meshes.

In FLICA4 the 4 equations porous modeling is used with a multi-1D axial �ow approximation
(Section 1.5.3). A system of 4 equation is solved (1.53a - 1.53d): mixture mass balance, vapor
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mass balance, mixture momentum balance and mixture energy balance. The boundary conditions
consist in determining the inlet mass �ow and enthalpy and the outlet pressure. For the radial
discretization one thermal-hydraulic channel is used for each assembly. In Section 4.7 an inves-
tigation of the radial discretization is performed by using one channel per quarter of assembly.
For the axial discretization only the fuel active part is modeled using 30 meshes in accordance to
APOLLO3 R© modeling. Both APOLLO3 R© and FLICA4 spatial discretizations are illustrated
in �gure 4.2. The fuel pin discretization in FLICA4 is �ner than the one used for the MiniCore
with 25 regions for the fuel part and 3 for the cladding. For the time discretization of the REA an
adaptive end time is adopted based on the integral power evolution. For each transient when the
power surpasses half its nominal value then a SCRAM signal is sent. It is considered that from
this time on 0.6 s are needed in order for the SCRAM to take place and end the modeling of the
transient. The incremental time step is constant 0.001 s. The control rod is ejected in 0.1 s.

(a) Radial (b) Axial

Figure 4.2: APOLLO3 R© radial and axial discretization with FLICA4 discretization superimposed
(blue) for the PWR core.

The same two group macroscopic cross-sections as in the MiniCore are used parameterized in burn-
up, boron concentration, moderator density and fuel temperature. The same material laws, power
radial deformation function and thermal-hydraulics model options are used as well.

4.2.3 Initial state and reference transient

The PWR core is critical at the end of the cycle with Hot Zero Power (HZP) condition, meaning
that the temperature is around 290◦C and the power negligible (3.8W ). There is a burn-up
distribution resulting from core evolution calculation as described in [142]. The evolution is carried
out by decoupled neutronic, fuel-thermomechanic, thermal-hydraulic modeling in 4 di�erent steps:

1. Cycle evolution calculation using APOLLO3 R© with its internal multi-1D thermal-hydraulics
model. This results in a burn-up distribution in the core.

2. Extraction of the linear power history for one average fuel pin for each fuel assembly. ALCY-
ONE V1.4 evolution calculation using this linear power history. The results are the detailed
thermomechanical and physico-chemical initial conditions of each fuel pin. These conditions
will be used in the gap heat transfer model calibration in section 4.6.

3. FLICA4 static calculation in order to obtain the initial thermal-hydraulics conditions. Since
the power is negligible there is no need of coupling with APOLLO3 R©.

4. Initiation of xenon oscillation transient with APOLLO3 R©. The ejected control rod is iden-
ti�ed as the one with the highest control rod worth (�gure 4.1). At the xenon oscillation
instant leading to the highest control rod worth and thus the more violent prompt neutron
driven REA.

The obtained radial burn-up distribution at the end of cycle is illustrated in �gure 4.3. The
burn-up averaged at the level of the assembly ranges from 10GWd/t to 52GWd/t. The resulting
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xenon spatial distribution for the initial state is illustrated in �gure 4.4. We can see the radial
distribution at the axial slice with the maximum xenon concentration and the axial pro�le at the
assembly where the control rod is ejected.

Figure 4.3: PWR core burn-up radial distribution in the core.
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Figure 4.4: Xenon concentration in 1015 atoms/cm3 for the PWR core. The radial distribution
(left) is at the axial slice with the maximum xenon concentration and the axial pro�le (right) is at
the assembly where the control rod is ejected.

The core is critical at the initial state with negligible power distribution as can be seen in �gure
4.5. In table 4.1 some of the core conditions are also described with same notation as in Section
3.2.3. The initial integral power is 3.8W and the fuel and moderator temperatures are 290◦C.
Since the core is at the end of the cycle the boron concentration is quite low at 95.5 ppm. As used
for the uncertainty studies in the MiniCore the boron concentration adjustment will be used to
render the core critical since each input perturbation alters its initial critical state. This method
was selected because it is the one that is the closest to the real operation of the core. However, in
this PWR core the low initial boron concentration might not be enough for some cases. Fission
production adjustment will be used in combination with boron adjustment in these cases.
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Table 4.1: Characteristic conditions of the PWR core initial state.

Initial core power Pinit
core (W) 3.8

Moderator density Dmod (g/cm3) 0.745

Pressure P (bar) 155

Volumetric �ow rate Q (m3/h) 90954

Fuel temperature Tf (◦C) 290

Moderator temperature Tm (◦C) 290

Boron concentration Cbor (ppm) 95.5

(a) (b)

Figure 4.5: Initial power distribution in the PWR core for the radial (a) and axial (b) cross-sections
at the assembly where the control rod is ejected.

The reference (without uncertainties) REA characteristics obtained with an APOLLO3 R© - FLICA4
modeling are presented in table 4.2 and �gure 4.6. The control rod worth is ρworth = 1.2 $ indi-
cating a prompt driven transient. We observe a reduced margin to a ρworth − βeff < 0 transition
where the transient behavior changes sharply since it is mainly driven by the delayed neutrons. By
applying the input uncertainties there is a non negligible probability to reach it. This e�ect will
be studied in the preliminary static analysis of the section 4.4. In the �gure on the right we can
observe the created power pulse of width Γ = 38ms with a maximum power of Pmax

core = 2.54Pnom

at instant tmax = 292ms. Additionally, the Fxyz deformation factor evolution in time is plotted.
It starts from a value of 5 and reaches up to 25 when the control rod is fully ejected (0.1 s).

Table 4.2: Characteristic quantities for the reference REA in the PWR core.

E�ective delayed neutron fraction βeff (pcm) 569

Control rod worth ρworth ($) 1.2

Maximum core power Pmax
core 2.54Pnom

Final core power Pend
core 0.09Pnom

Power pulse width Γ (ms) 38

Time of maximum core power tmax (ms) 292

Maximum 3D deformation factor Fmax
xyz 25

If we compare with the MiniCore characteristics of table 3.2 we see that it is a less violent transient.
This is attributed to the reduced leakage and to the more realistic xenon distribution. More realistic
in the sense that its radial and axial distribution is issued from a xenon oscillations calculation with
APOLLO3 R© in the PWR core. In the MiniCore we applied the same axial xenon distribution in
all the fuel assemblies in order to obtain the most penalizing scenario in terms of ρworth.
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Figure 4.6: Integral power and Fxyz deformation factor evolution for the reference REA in the
PWR core.

4.3 Input - Outputs uncertainties modeling

Di�erent uncertainty quanti�cation studies are performed on the PWR core. The identi�ed uncer-
tain inputs and outputs are based on the ones presented in Section 3.3.1. More precisely, all the
inputs are considered except the power radial deformation due to di�culties in its implementation
in the PWR core. The deformation is still modeled but it is not treated as uncertain. This is
not expected to have any impact on the studies since from the MiniCore test its sensitivity was
negligible. All the identi�ed outputs in Section 3.3.1 are considered. This creates an initial input
size of 21 and an output size of 3 scalars and 1 functional:

• Inputs: TD1, TD2, NF1, NF2, D1, D2, S1→2, IV1, IV2, βeff , λeff , λf , λc, Cpf , Cpc, Hgap,
TR, Hc, Rcrit, Rv0, Hdnb

• Outputs: Pmaxlin , P 2D
lin (functional), Hmax

f , DNBmin

These are the main outputs of interest for the application of the UQM in the PWR core. However,
some case dependent outputs are also studied depending on the goal of each analysis. The inputs
uncertainty quanti�cation of Section 3.3.2 is used as well in all the studies of this Chapter.

4.4 Preliminary neutronics stand-alone static study

Before applying the UQM on the BE coupling for the REA it is important to study �rst the
uncertain behavior of the initial static state. This will give us basic insight about the expected
uncertain behavior of the REA. We saw that the reference ρworth is close to the βeff . This study
will allow to investigate if the limit of ρworth − βeff < 0 is reached and with what probability.
The only input parameters a�ecting the initial state are the two group macroscopic cross-sections.
Static APOLLO3 R© stand-alone modeling is used since there is no impact of the other physics.
The PWR core, as mentioned, is critical at HZP conditions. This means that for each cross-section
perturbation the core has to be rendered critical. Similar to the MiniCore the boron concentration
adjustment is used. The core is at the end of the cycle with low initial boron concentration thus
there can be cases where it will not be enough. For these cases �ssion production adjustment is
used by essentially dividing the �ssion production by the keff . For each cross-section perturbation
a �rst static calculation computes the multiplication factor keff . The boron concentration Cbor is
then adjusted in order to render the core critical and the keff is calculated. If it is not enough
the �ssion production is divided by the current keff . Afterwards, a second static calculation is
performed with the control rod extracted. The control rod worth ρworth is calculated together
with the deformation factor when the control rod is ejected F ejxyz. The static neutronics equations
as described in Section 1.3.3.4 are linear and thus linear models are used as surrogates for the
di�erent statistical analyses. The computational time needed for one code evaluation is 1 minute.
The inputs, outputs and statistical tools used are the following:
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• Inputs: TD1, TD2, NF1, NF2, D1, D2, S1→2.

• Outputs: keff , ρworth, Cbor and F ejxyz.

• Statistical tools:

� Surrogate models: Linear.

� Uncertainty propagation: Brute Monte Carlo using linear models for histogram
empirical estimation.

� Global sensitivity analysis: Shapley indices using linear models.

A LHS of size 100 is created in order to train the linear surrogate models for each output. The
prediction error of each surrogate is estimated based on a second LHS of size 50. The result for
the interpolation and prediction error are presented in table 4.3. Since the underlying equations
are essentially linear, both interpolation and prediction errors are small. The largest prediction
error is 2.42 % for Cbor and is attributed to the use of �ssion production adjustment in some few
cases in conjunction with Cbor.

Table 4.3: Linear model interpolation and prediction errors for neutronics stand-alone static study
in PWR core.

Linear

εint (%) εpred (%)

keff 9.37e−3 8.69e−3

ρworth 2.82e−2 6.21e−2

Cbor 1.04 2.42

F ej
xyz 5.60e−2 4.68e−2

The linear models are used to propagate the uncertainties to the outputs and estimate empirically
their histograms. Brute Monte Carlo with 1e5 samples is used and the results are presented in
�gure 4.7.

µ = 1.00  σ = 0.50 %
0.98 0.99 1.00 1.01 1.02

keff

µ = 96.54 [ppm] σ = 57.30 %
−100 0 100 200 300

Cbor

µ = 23.72  σ = 7.71 %
20 25 30

Fej
xyz

µ = 693.94 [pcm] σ = 5.84 %
500 600 700 800

ρworth

Figure 4.7: keff , Cbor, F ejxyz and ρworth estimated histograms for neutronics stand-alone static
study in PWR core.
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We can see the obtained histograms together with the estimated �rst two moments. We observe
that since the inputs are multivariate normal and the underlying function is linear then all the
outputs have also a normal pdf. The keff shows a relative standard deviation of 0.5 % or 500 pcm
while for the Cbor is much larger at 57.30 %. The predicted negative values correspond to the
�ssion production adjustment cases and occur with a probability of 4 %. From the standard
deviation of keff and Cbor the di�erential e�ciency of the boron concentration adjustment is
found to be 9 pcm/ppm. For Fxyz the relative standard deviation is around 8 % and for ρworth is
6% which represents a signi�cant increase compared to the MiniCore. The results for the ρworth
in combination with the βeff relative deviation of 8% around its mean value of 570 pcm show that
there is a non negligible probability of reaching the delayed neutron driven REA limit.

For the quanti�cation of the outputs sensitivity to each input Shapley indices are estimated using
the linear models. The results are presented in �gure 4.8. We see two di�erent types of sensitivities.
For keff and Cbor the most important input is NF2 accounting for almost 50% of their variations.
This can be understood by the fact that both of these quantities are strongly related to each other
and depend on the �ssion production. For F ejxyz and ρworth almost 90% of their variations are
explained by TD1, D1 and S1→2. This means that the neutrons absorption and di�usion are the
dominant phenomena.
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Figure 4.8: keff , Cbor, F ejxyz and ρworth Shapley indices for neutronics stand-alone static study in
PWR core.

The most important results for this study is the fact that delayed neutron driven REA can occur
with non negligible probability. The design points that lead to these transients are not important
since they are less violent transients and thus out of interest. This motivates us to construct a
predictive linear model that will estimate which input design points lead to ρworth−βeff < 0. The
identi�ed input evaluations are rejected resulting in gain in computational cost. This will create
holes in the Design of Experiments (DOE) reducing the surrogate models predictive capabilities
in these regions. Since these regions are of low interest this is not a problem for the application of
the UQM.

The predictive linear model is constructed between (TD1, TD2, NF1, NF2, D1, D2, S1→2, βeff )
and (ρworth−βeff ). The result is visualized in �gure 4.9 for the two main independent dimensions
of the inputs. The �rst is a linear combination of mainly TD1, D1 and S1→2 something expected
by the corresponding Shapley indices in �gure 4.8. The second one is the βeff due to its explicit
presence in the output de�nition and its independence with respect to the macroscopic cross-
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sections. We can see the linear hyperplane and the di�erent design points to be evaluated by the
code. The points crossing the horizontal hyperplane at 0 are the ones in red and are rejected. The
linear model results in very small prediction error, less than 0.1% and thus can be used with strong
con�dence. Using this linear model the probability of rejecting a design point can be calculated
analytically and amounts to 2.25%. In the studied learning sample we see in �gure 4.9 that 2 out
of 100 design points are rejected. Since the ρworth − βeff < 0 does not depend on inputs of the
other physics this model can be used in all the following multi-physics coupled studies. For each
DOE prior to code evaluations the predicted design points by the linear model will be rejected.
The di�erent statistical methods will be applied on this modi�ed DOE.
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Figure 4.9: Linear model for ρworth − βeff < 0 prediction in the PWR core. The red points are
rejected from the DOE.

4.5 UQM application for BE coupling

In Section 3.5 we developed a four step UQM and tested it on the MiniCore. In this section we
apply it on the PWR core for the identi�ed inputs and outputs of section 4.3. The Hgap in this
study is considered uniform as described in Section 3.5. The BE modeling is used with coupling
of APOLLO3 R© - FLICA4. The computational cost of this modeling is 3 hours in average since
the end time is adapted for each sampling.

The �rst step of the UQM consist in identifying important input subspaces using statistical signif-
icance tests based on HSIC indices. It is the IDRM process described in Section 3.5.2. A random
sampling of size 125 is used as DOE for this step. The result for the identi�ed subspaces are
gathered in table 4.4 and can be grouped in two: I1 = (TD1, NF2, D1,S1→2,IV1,IV2, βeff ,Cpf
Hgap, TR) and I2 = (TD1, NF2, D1,S1→2,IV1, βeff , Hgap, Hc).
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Table 4.4: UQM step 1 results for BE coupling study in the PWR core.

Selected inputs

Pmax
lin TD1, NF2, D1,S1→2, βeff , Hgap

P2D
lin,pc1 TD1, NF2, D1,S1→2, βeff , Hgap

P2D
lin,pc2 TD1, NF2, D1,S1→2, βeff , Hgap

Hmax
f TD1, NF2, D1, βeff , Cpf , Hgap,TR

DNBmin TD1, NF2, D1,S1→2,IV1, βeff , Hgap, Hc

The second step of the UQM is the training of the kriging models for each output on LHS optimized
in both the complete input space and the important subspaces as described in Section 3.5.3. A
learning LHS of size 250 with optimized subspaces I1 and I2 is constructed for the training of the
kriging models. The kriging models are trained on the identi�ed input subspaces. The resulting
prediction errors include the dimension reduction error. The interpolation, leave-one-out and
prediction error are presented in table 4.5. The prediction error is estimated on an independent
LHS of size 125. For all the outputs the prediction errors are small with larger errors for DNBmin

(2%) and the second principal component of P 2D
lin (5.5%).

Table 4.5: UQM step 2 results for BE coupling study in the PWR core.

εint (%) εloo (%) εpred (%)

Pmax
lin 0.00 1.15e−1 1.35e−1

P2D
lin,pc1 0.00 1.16−1 1.01e−1

P2D
lin,pc2 0.00 6.16e−1 5.53

Hmax
f 0.00 1.62e−1 4.58e−1

DNBmin 0.00 2.10 1.89

In the third step of the UQM the kriging models are used to propagate the uncertainties to the
outputs and estimate empirically their histograms. Brute force Monte Carlo is used with 1e5

samples and the results are presented in �gure 4.10. We observe quite larger relative standard
deviation for Pmaxlin of around 57 % compared to the MiniCore case. The result for P 2D

lin shows
that the relative standard deviation distribution does not vary radially. For Hmax

f a 20 % relative
standard deviation is obtained with a normal distribution. For DNBmin a large mean value is
obtained with large relative standard deviation of 57 % resulting in a very small probability of
reaching boiling crisis.

The fourth and �nal step of the UQM is the global sensitivity analysis. Shapley indices are
estimated for the scalar outputs and aggregate Shapley indices for the functional ones as de�ned
in Chapter 2. The results are presented in �gure 4.11. For Pmaxlin , P 2D

lin and Hmax
f the βeff is

responsible for 50% of the outputs variance with the other 50% attributed to the cross-sections
TD1, D1, S1→2 and IV1. All these cross-sections are highly correlated to each other and thus it is
di�cult to distinguish their separate contributions. This increased sensitivity of the cross-section
compared to the MiniCore explains also the increased variance of Pmaxlin . For the DNBmin the
Hgap is the dominant input responsible for 50% of the outputs variation while the remaining 50%
is attributed to the cross-sections and the βeff . This is due to its large uncertainty ranges and thus
gives an incentive to improve its modeling. The application of the methodology for the calibration
of a simpli�ed Hgap model and its introduction in the current BE modeling is the topic of the
Section 4.6.
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Figure 4.10: Pmaxlin , Hmax
f and DNBmin histograms and P 2D

lin relative standard deviation distribu-
tion for BE coupling study in the PWR core.
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Figure 4.11: Pmaxlin , Hmax
f and DNBmin Shapley indices and P 2D

lin aggregate Shapley indices for
BE coupling study in the PWR core.

4.6 IBE coupling taking into account simpli�ed fuel-thermomechanics

4.6.1 Application of gap heat transfer calibration methodology

The Best E�ort APOLLO3 R© - FLICA4 - ALCYONE V1.4 is not available for the PWR core and
even if it was available the computational cost for the application of UQM would be prohibitive.
As we observed in the study of Section 4.5 the BE APOLLO3 R© - FLICA4 coupling models quite
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poorly the Hgap using a constant value with large ranges of variations. We saw that this has a
signi�cant impact on the DNBmin.

In Section 3.6 we developed and tested a methodology for the calibration of a simpli�ed Hgap

model on the MiniCore. We remind that the model is based on thermal expansions and includes
two calibration parameters θ1 and θ2. The �rst one is related to the fuel temperature variations
governing the thermal expansions. The second one is related to the energy deposed in the fuel and
thus accounts for a historical e�ect. The methodology for the calibration of this model is based on
decoupled ALCYONE V1.4 calculations and includes di�erent steps. In this study we apply the
complete methodology illustrated in �gure 3.30 on the PWR core.

The initial preliminary step 0 consists in performing a multi-physics BE REA uncertainty analysis.
To this purpose we consider the study of Section 4.5 where the UQM was applied on the PWR
core using the BE APOLLO3 R© - FLICA4 coupling. Steps 1.1 and 1.2 consist in identifying
the imposed boundary conditions in ALCYON3 V1.4. These boundary conditions are the axial
and temporal evolution of the linear power and the cladding wall temperature and should cover
most of the possible evolutions of the Hgap. There are both spatial variations due to the burn-up
distribution in the core and random variations due to the inputs uncertainties.

The �rst step 1.1 consist in clustering assemblies with similar burn-ups in groups for which one
Hgap model will be considered. In the MiniCore case this was straightforward since there where
only three discrete values of burn-up. In the PWR core this is more complex since there is a 3D
burn-up distribution. This leads to a total of 193 × 4 × 30/2 = 11580 meshes (due to symmetry)
with di�erent Hgap evolutions due to di�erent burn-ups and power histories. In order to avoid
constructing one Hgap model for each mesh the grouping of the assemblies of di�erent burn-ups
is carried out. At �rst we consider only radial burn-ups, by averaging the axial variations. Thus
decreases the di�erent burn-ups to 772. Secondly, we observe that the burn-ups have radially
small variations around three main values 15GWd/t, 30GWd/t and 45GWd/t due to the PWR
fuel loading pattern. We select thus to group the assemblies based on these three values and we
add one group for the minimum 10GWd/t and maximum burn-up 52GWd/t. This is done in
order to have models covering all the burn-up variations. Additionally, it could be potentially used
in the future for an application of the full 3D burn-up distribution by constructing models that
interpolate the calibration parameters.

To recapitulate we consider a total of 5 fuel assembly groups and for each group a Hgap model
will be constructed. We have to select for each group representative boundary conditions that
vary both randomly and spatially since each group includes di�erent assemblies. This is performed
in step 1.2. The selected boundary conditions are presented in �gure 4.12. We know that the
REA is a local phenomenon located in the upper part of the core around the ejected control rod
position as seen in the radial cross-section of the �gure. We thus expect large variations of Hgap

on the upper part and low to negligible variations in the lower part. For the random aspects we
use from the results of step 0. More speci�cally, we consider that Pmaxlin gives a good indicator of
Hgap variations in REA. Based on this we select samples corresponding to the mean, the upper
and lower 95% quantile of Pmaxlin . From these samples we extract the linear power and cladding
wall temperature axial and temporal evolutions. We combine both random and spatial aspects
by selecting representative assemblies at the upper part for the mean and upper quantile while
we select their mirror assemblies from the lower part. The selected assemblies are presented in
4.12 where each assembly has the burn-up value of its group. The green circles correspond to
the selection for the mean and upper quantile while the yellow circles for the lower quantile. For
the 10GWd/t and 52GWd/t groups there is only one possible assembly for each group. For the
other groups from the many available options we prefer the assemblies close to the ejected control
rod location. For 15GWd/t and 30GWd/t group we select two di�erent assemblies while for the
45GWd/t we select three, since we consider that this group will have the largest Hgap variations
due to its high burn-up.
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Figure 4.12: Selected assemblies on the symmetric 1/2 PWR geometry for each Hgap model group.
The green circles indicate the selection of the mean and upper quantile and the yellow indicates
the selection for the lower quantile

In step 2 the extracted boundary conditions are imposed in ALCYONE V1.4 and the REA stand-
alone calculations are performed for each group. A representative fuel pin for each selected assembly
in each sampling is modeled with the same axial discretization as the BE modeling. The Hgap and
radial temperatures axial and temporal evolution during the REA are computed. These results
together with the stored fuel energy are extracted and used for the Hgap model calibration of
each group. Only the values corresponding to the time of the maximum and last value of Hgap

during the REA for all the axial slices are kept for the calibration as in the MiniCore. The created
dataset size varies for the di�erent groups depending on the number of representative assemblies.
For 10GWd/t and 52GWd/t groups the size is: 30(axial slices) × 3(samples) × 1 (assemblies) × 2
(Hgap values) = 180. For 15GWd/t and 30GWd/t groups the size is: 30 × 3 × 2 × 2 = 360. For
45GWd/t group the size is: 30 × 3 × 3 × 2 = 540. The calibration parameters are optimized by
minimizing the mean square error on these datasets. The resulting calibration errors for the three
di�erent models are presented in �gure 4.13 and the estimated calibration parameters in table 4.6.
As in the MiniCore, we observe that the calibration errors increase in general with burn-up. For
the 52GWd/t this is not the case because its far from the REA location and thus the corresponding
variations are very small.

Table 4.6: Hgap model calibration parameters for the PWR core

10 15 30 45 52

θ1 2.9e−1 1.7e−1 −1.7e−2 −7.3e−1 −2.4e−1

θ2 [J−1] 6.0e−6 1.1e−5 1.6e−5 2.0e−5 4.4e−6

For the uncertainty quanti�cation of the calibration parameters θ1, θ2 we adopt the same process as
for the MiniCore in Section 3.6.4. We make the assumption that they are positively fully correlated,
which makes it possible to simplify signi�cantly their uncertainty quanti�cation. Additionally, as
for all the other inputs they are also fully correlated spatially. This means that the calibration
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Figure 4.13: Hgap model calibration errors for the di�erent assembly groups of the PWR core.

parameters of each group vary homogeneously. We attribute uniform pdf to each calibration
parameter with ranges that cover the calibration errors. The results for the estimated ranges for
each parameter are shown in table 4.7. The maximum error is of the order of 8 % for the 45GWd/t
group. For the 45GWd/t group is 2.5,% and for the other groups is less than 1 %.

Table 4.7: Hgap model calibration parameters pdf estimation for the PWR core

10 15 30 45 52

θ1 U(2.4e−1, 3.4e−1) U(1.4e−1, 2.0e−1) U(−1.7e−1, 1.3e−1) U(−1.3,−1.8e−1) U(−4.4e−1,−4.0e−2)

θ2 [J−1] U(5.8e−6, 6.3e−6) U(8e−6, 1.4e−5) U(1.3e−5, 1.8e−5) U(1.6e−5, 2.4e−5) U(2.4e−6, 6.4e−6)

The pdf bounds are used for the prediction of the Hgap temporal evolution by the calibrated
models. The results are compare to the ALCYONE V1.4 calculation and are illustrated in �gures
4.14-4.16. For the comparison the axial slice with the maximum Hgap value for the three main
groups is presented. The main groups are the 15GWd/t, 30GWd/t and 45GWd/t since they are
the groups closer to the REA location. The plotted Hgap predictions are also the ones with the
largest errors and we can see that, as in the MiniCore, for all the predictions the ALCYONE V1.4
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calculation is inside the uncertainty bounds created by the uncertain calibration parameters.
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Figure 4.14: PWR core 15GWd/t group calibration results including the uncertainty bounds
(green).
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Figure 4.15: PWR core 30GWd/t group calibration results including the uncertainty bounds
(green).
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Figure 4.16: PWR core 45GWd/t group calibration results including the uncertainty bounds
(green).

There are two di�erent sources of uncertainties for the models. The �rst one is due to the calibration
error and is quanti�ed by the calibration parameters pdf. The parameters are assumed fully
positively correlated. The second one is due to the initial conditions. Similar to the MiniCore case,
a multiplication coe�cient is used on the initial Hgap and pellet-cladding gap width with normal
pdf and 10 % relative standard deviation N (1.0, 0.1). The results of an uncertainty propagation
on fuel-thermomechanics evolution calculations with ALCYONE V1.4 showed that the two initial
conditions are strongly (> 0.9) negatively correlated. We make thus the simpli�cation assumption
by considering them fully negatively correlated.

At the end, two new uncertain parameters replace the constant Hgap of the BE modeling. The one
is related to the calibration error of the modelsHg,m and the other is related to the initial conditions
Hg,i. In the following study of Section 4.6.2 the calibrated models together with their uncertainty
quanti�cation are introduced in the APOLLO3 R© - FLICA4 coupling without increasing the
computational cost. This creates an Improved Best Estimate (IBE) modeling. The UQM is then
applied again on this new modeling.

4.6.2 UQM application on IBE coupling

The calibrated Hgap models from Section 4.6.1 are introduced in the BE coupling to create an
intermediate IBE multi-physics coupling. The complete UQM is applied on this improved modeling.
It is important to mention that the computational cost does not increase. The uncertain inputs
and outputs of Section 4.3 are used with the replacement of the constant Hgap uncertain input
by the Hgap models uncertainties. The two new uncertain inputs are Hg,m and Hg,i related to
the Hgap models calibration error and initial conditions. We remind that it is an explicit coupling
with 0.001s incremental time step for adaptive total REA duration. The computational cost of
this modeling is 3 hours.

For the step 1 of the UQM a random sampling of size 125 is used as DOE for the input dimension
reduction. The result for the identi�ed subspaces are gathered in table 4.8 and can be grouped in
two: I1 = (TD1, NF2, D1, βeff , Cpf ,Hg,i, TR) and I2 = (TD1, NF2, D1, βeff , Hg,i, Hc, Rcrit,
TR).
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Table 4.8: UQM step 1 results for IBE on PWR core

Selected inputs

Pmax
lin TD1, NF2, D1, βeff , TR

P2D
lin,pc1 TD1, NF2, D1, βeff , TR

P2D
lin,pc2 TD1, D1, βeff

Hmax
f TD1, NF2, D1, βeff , Cpf ,Hg,i, TR

DNBmin TD1, NF2, D1, βeff , Hg,i, Hc, Rcrit, TR

Compared to Section 4.5 we observe the inclusion of the Hg,i in both subspaces while the Hg,m is
rejected. This means that for the outputs of interest the initial conditions are more important than
the calibration parameters uncertainties. In step 2 of the UQM a learning LHS of size 250 with
optimized subspaces I1 and I2 is constructed for the training of the kriging models. The result
for the interpolation, leave-one-out and prediction error are presented in table 4.9. The prediction
error is estimated on a second LHS of size 125. For all the outputs the prediction errors are small
with larger errors for DNBmin (1.3%) and the second principal component of P 2D

lin (5.5%).

Table 4.9: UQM step2 results for IBE on PWR core

εint (%) εloo (%) εpred (%)

Pmax
lin 0.00 4.921.15e−1 4.82e−1

P2D
lin,pc1 0.00 16.1−1 1.01e−1

P2D
lin,pc2 0.00 6.16e−1 5.53

Hmax
f 0.00 8.45e−1 8.36e−1

DNBmin 0.00 1.38 1.28

In step 3 of the UQM brute force Monte Carlo is used for uncertainty propagation with 1e5 samples
for each output. The results are presented in �gure 4.17. The obtained histogram for Hmax

f is
normal as for the UQM application with APOLLO3 R© - FLICA4. We observe small increase of
2 % in the mean value and a reduced relative standard deviation from 20 % to 16 %. For Pmaxlin the
mean value decreased signi�cantly by 10 % with similar relative standard deviation. Concerning
the relative standard deviation of P 2D

lin it is not a�ected by the improved Hgap. The quantity most
impacted is the DNBmin with a an increase of 14 % for the mean value and a decrease of the
relative standard deviation from 57 % to 42 %. This means that there is smaller probability to
reach boiling crisis.

The impact on the di�erent mean values is attributed to the more realistic modeling of the Hgap

evolution during the REA. In the BE modeling the mean constant value of Hgap is 2.4e4W/m2K
much higher than the one predicted by the calibrated models and it is applied during the whole
duration of the transient. This leads to a higher heat extracted from the fuel by the coolant.
The fuel temperatures are lower with a corresponding weaker Doppler feedback and thus a higher
maximum linear power. The increased heat extracted from the coolant in the BE modeling explains
also the smaller minimum distance to boiling crisis compared to the IBE modeling. The lower fuel
temperatures induce also the observed lower stored enthalpy.

The �nal step 4 of the UQM is performed and the Shapley indices are estimated for all the outputs.
The results are presented in �gure 4.18. For Pmaxlin , P 2D

lin and Hmax
f as in the BE modeling the

βeff is responsible for around 50% of the outputs variance and the TD1 and D1 are responsible
for the remaining 50%. A signi�cant di�erence in observed for the DNBmin sensitivities. The gap
heat transfer is not any more the dominant input, instead as for the other outputs the βeff and
the TD1 and D1 account for most of the DNBmin variations. This explains also the signi�cant
reduction of the DNBmin relative standard deviation.
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Figure 4.17: Pmaxlin , Hmax
f and DNBmin histograms and P 2D

lin relative standard deviation distribu-
tion for multi-physics IBE coupling study in PWR core.
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Figure 4.18: Pmaxlin , Hmax
f and DNBmin Shapley indices and P 2D

lin aggregate Shapley indices for
multi-physics IBE coupling study in PWR core.

4.7 Complementary physical studies on the IBE modeling

4.7.1 Introduction

In this �nal Section we shift our focus from the uncertainty quanti�cation to the physical modeling
aspects. We study a large variety of outputs up to 3D �elds in order to extract the maximum
information. The e�ect of di�erent modeling choices is compared. Three physical modelings are
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compared with increasing computational cost:

1. The previously studied IBE modeling.

2. An IBE modeling with 3D thermal-hydraulics in order to investigate the impact of the trans-
verse �ows .

3. An IBE modeling using 3D thermal-hydraulic channels at the level of quarter of assembly in
order to study the impact of the �ner termal-hydraulic discretization.

The identi�ed outputs for this study are the ones used in the UQM together with some quantities
that are relevant to the transient modeling (e.g. exchanged quantities). The latter one are studied
as 3D �elds on a particular instant, usually where the maximum during REA is located. For
all these outputs we perform uncertainty propagation and sensitivity analysis. The 3D functional
quantities are treated using PCA representing 95% of the variance. Kriging models are constructed
to approximate the underlying function between the inputs and the �rst principal components. For
complex 3D �elds the kriging models prediction error for the higher order principal components
can become very large. In these cases the PCA representation variance will be decreased to 85%
reducing the number of required principal components. It can be seen as a trade of between
bias (number of principal components) and variance (prediction errors of higher order principal
components). The selected 3D �elds are:

• Linear power P 3D
lin at the instance of its local maximum.

• Stored enthalpy in the fuel H3D
f at the instance of its local maximum.

• Cladding wall heat �ux W 3D
f at the instance of its local maximum.

• Gap heat transfer H3D
gap at the instance of its local maximum.

• Coolant density D3D
w at the instance of its local minimum.

The 3D �elds are di�cult to visualize and to this purpose two cross-sections will be presented for
each output: the radial and axial cross-sections at the position of the local maximum (or minimum).
The mean and relative standard deviation distributions are calculated for these cross-sections. The
sensitivity results are estimated for the whole 3D output �elds. Since we do not focus on the UQM,
the learning LHS of 250 that was used in the Section 4.5 is used for all the modelings. This allows
also to obtain a point by point comparison. The inputs, outputs and statistical tools studied in
the di�erent physical modelings are:

• Inputs: TD1, TD2, NF1, NF2, D1, D2, S1→2, IV1, IV2, βeff , λeff , λf , λc, Cpf , Cpc,
Hg,m, Hg,i, TR, Hc, Rcrit, Rv0, Hdnb.

• Outputs: Pmaxlin , Hmax
f , DNBmin, P 3D

lin (95%), H3D
f (95%), W 3D

f (85%), H3D
gap (95%), D3D

w

(95%).

• Statistical tools:

� Surrogate models: Kriging.

� Uncertainty propagation: Brute Monte Carlo method using kriging surrogate models
for histogram empirical estimation.

� Global sensitivity analysis: Shapley indices estimated using kriging models.

� Functional outputs: PCA is used to reduce the functional output dimensions. The
principal components that represent 95 % for most quantities is used. In some cases
where the kriging models show large prediction error the represented variance is reduced.

Since we do not apply the UQM, the surrogate models between the inputs and the principal
components of the 3D �elds are trained on one of the two subspaces identi�ed by the UQM in
Section 4.6. The one with smaller prediction error is used. For the estimation of the prediction error
the leave-one-out error is used because there is no evaluation LHS. The uncertainty propagation is
performed with brute Monte Carlo using 1e4 samples.
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4.7.2 IBE modeling

In this study the IBE APOLLO3 R© - FLICA4 - HGAP coupling is used with multi-1D thermal-
hydraulics modeling and one thermal-hydraulic channel per assembly. It is the same modeling used
for the application of UQM in Section 4.5. Since the UQM outputs were presented there in this
study we present only the identi�ed 3D output �elds. We remind the selected modeling options of
this study:

• APOLLO3 R©: Two group di�usion with void boundary conditions. The discretization radi-
ally is 4 meshes per assembly and axially 34 meshes of which 30 for the fuel active height.

• FLICA4: 4 equation porous modeling with multi-1D axial �ow. There are no transverse
�ows and only the fuel active part is considered. The discretization radially is one thermal-
hydraulic channel per assembly and axially is 30 meshes corresponding to the fuel active
height.

• Hgap: 5 simpli�ed models calibrated on decoupled ALCYONE V1.4 calculations. Di�erent
initial conditions are used for the di�erent types of assemblies creating a similar spatial mesh
with FLICA4.

For P 3D
lin two principal components are needed to represent 95 % of its variance. For each principal

component a kriging model is trained on subspace I1 with prediction errors 0.5 % and 0.9 % for
the �rst and second one respectively. The estimated mean and standard deviation for the radial
and axial cross-sections at the location and instant of the local maximum are presented in �gures
4.19 - 4.20.
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Figure 4.19: P 3D
lin estimated mean and relative standard deviation in the axial cross-section for

IBE coupling study in PWR core.

We can see that we manage to obtain similar radial distribution as in Section 4.6 where we treated
only the radial cross-section as functional output. The REA is very local both axially and radially
explaining the large Fxyz deformation factor. The local maximum is located in the assembly where
the control rod is ejected at one axial slice from the top. Usually for REA occurring in the periphery
of the core the local maximum linear power is expected in the assembly between the re�ector and
the assembly with the control rod. This is not the case here due to the large thermal-hydraulic
channels and the important gradient close to the REA position. In the last study we will investigate
the impact of using smaller thermal-hydraulic channels. The relative standard deviation does not
vary signi�cantly and is in the order of 58 %. A small impact of the re�ector can be observed in
increasing slightly the uncertainty on the peripheral assemblies.
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Figure 4.20: P 3D
lin estimated mean and relative standard deviation in the radial cross-section for

IBE coupling study in PWR core.

The aggregate Shapley indices for P 3D
lin are estimated and presented in �gure 4.21. As in Section 4.6

the βeff explains 50 % of the variance while the remaining 50 % is explained by TD1 and D1. The
latter macroscopic cross-sections represent the uncertainty of the control rod worth. We could say
that the control rod worth and the e�ective delayed neutron fraction are responsible for the linear
power variations. This is something expected by the underlying REA physics since the quantity
ρworth − βeff determines the violence of the transient.
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Figure 4.21: P 3D
lin Shapley indices for IBE coupling study in PWR core.

For H3D
f two principal components are needed to represent 95 % of its variance. For each principal

component a kriging model is trained on subprojection I1 with prediction errors 0.95 % and 0.96 %
for the �rst and second one respectively. The estimated mean and standard deviation for the
radial and axial cross-sections at the location and instant of the local maximum are presented in
�gures 4.22 - 4.23. The local maximum is located at the same axial and radial position as the
maximum local linear power. This is expected since the stored enthalpy depends strongly on the
power generated in the fuel. The relative standard deviation distribution varies from 15 % to 22 %.
The part of the core further from the REA location is the one exhibiting largest variations.
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Figure 4.22: H3D
f estimated mean and relative standard deviation in the axial cross-section for

IBE coupling study in PWR core.
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Figure 4.23: H3D
f estimated mean and relative standard deviation in the radial cross-section for

IBE coupling study in PWR core.

The aggregate Shapley indices for H3D
f are estimated and presented in �gure 4.24. Similar indices

with P 3D
lin are obtained. It is interesting that while the Cpf is directly involved in the enthalpy

calculation its sensitivity is very small. This can be attributed to the small standard deviation in
combination with the dominance of the generated power that is represented by the macroscopic
cross-sections and the βeff .
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Figure 4.24: H3D
f Shapley indices for IBE coupling study in PWR core.
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For W 3D
f two principal components are needed to represent 85 % of its variance. We cannot

represent more because the prediction errors of the higher principal components are very large.
Kriging models are trained on subprojection I2 for the �rst and second principal components with
prediction errors 1.0 % and 5.5 % respectively.

The estimated mean and standard deviation for the radial and axial cross-sections at the location
and instant of the local maximum are presented in �gures 4.25 - 4.26. The local maximum is
located at the assembly on the right and left of the assembly with the ejected control rod. This is
because the fuel wall heat �ux depends strongly on the gap heat transfer and the pellet-cladding
gap width. These assemblies belong to the 45GWd/t group and are close to the REA location.
This means that the initial gap heat transfer is high with a corresponding small gap. The power
evolution seen by the assemblies create a temperature increase that drives the thermal expansion
and closes even further the gap increasing the fuel wall heat �ux. The relative standard deviation
distribution exhibits large variations between 20 % to 34 % with larger uncertainties at the locations
with high fuel wall heat �ux.
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Figure 4.25: W 3D
f estimated mean and relative standard deviation in the axial cross-section for

IBE coupling study in PWR core.
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Figure 4.26: W 3D
f estimated mean and relative standard deviation in the radial cross-section for

IBE coupling study in PWR core.
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The aggregate Shapley indices for W 3D
f are estimated and presented in �gure 4.27. Similar indices

with P 3D
lin and H3D

f are obtained. The Hg,i has very small sensitivity meaning that while it is
important for the mean value it does not have any impact on the variance.
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Figure 4.27: W 3D
f Shapley indices for IBE coupling study in PWR core.

For H3D
gap two principal components are needed to represent 95 % of its variance. For each principal

component a kriging model is trained on subprojection I1 with prediction errors 0.08 % and 2.0 %
for the �rst and second one respectively. The estimated mean and standard deviation for the radial
and axial cross-sections at the location and instant of the local maximum are presented in �gures
4.28 - 4.29.
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Figure 4.28: H3D
gap estimated mean and relative standard deviation in the axial cross-section for

IBE coupling study in PWR core.

As expected by the calibrated Hgap models the assemblies with higher burn-up have also higher
Hgap. The maximum value is obtained at the assemblies on the right and left of the assembly with
the ejected control rod. This is for the same reason as for the W 3D

f due to the important power
seen by these assemblies in combination with their high burn-up. The relative standard deviation
distribution exhibits strong variations from 10 % up to 32 %. The assemblies with the maximum
Hgap are the ones with the largest uncertainties.

The aggregate Shapley indices for H3D
gap are estimated and presented in �gure 4.30. In this case

the Hg,i is the dominant input responsible for 80 % of the outputs variance. The remaining 20 %
is mainly explained by βeff . This result is not surprising since the initial conditions determine the
Hgap evolution as described in the calibration methodology of Chapter 3.
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Figure 4.29: H3D
gap estimated mean and relative standard deviation in the radial cross-section for

IBE coupling study in PWR core.
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Figure 4.30: H3D
gap Shapley indices for IBE coupling study in PWR core.

Finally, for D3D
w three principal components are needed to represent 95 % of its variance. For

each principal component a kriging model is trained on subprojection I2 with prediction errors
0.7 %, 0.6 % and 5.5 % for the �rst, second and third one respectively. The estimated mean and
standard deviation for the radial and axial cross-sections at the location and instant of the local
maximum are presented in �gures 4.31 - 4.32. The coolant density decreases as it �ows through the
thermal-hydraulic channel due to the heat extracted from the fuel and thus it is expected to obtain
the minimum value at the top of the core. The extracted heat is much higher at the location of
the control rod ejection and thus in this assembly is obtained the minimum coolant density. The
relative standard deviation has very small values ranging from 0.1 % to 0.7 %. This means that
for the REA and speci�cally when the boiling crisis is not reached and thus the coolant is mainly
liquid water the coolant density remains essentially constant.
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Figure 4.31: D3D
w estimated mean and relative standard deviation in the radial cross-section for

IBE coupling study in PWR core.
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Figure 4.32: D3D
w estimated mean and relative standard deviation in the axial cross-section for

IBE coupling study in PWR core.

The aggregate Shapley indices for D3D
w are estimated and presented in �gure 4.33. As for most of

the quantities the βeff and the macroscopic cross-sections TD1 and D1 are the most important
inputs.
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Figure 4.33: D3D
w Shapley indices for IBE coupling study in PWR core.

4.7.3 IBE modeling with 3D thermal-hydraulics

The IBE APOLLO3 R© - FLICA4 coupling is used in this study with a 3D thermal-hydraulics
modeling in FLICA4. The computational cost of this modeling is 3.5 hours. The impact of the
transverse �ows in X and Y direction is estimated. We remind the selected modeling options for
this study:

• APOLLO3 R©: Two group di�usion with void boundary conditions. The discretization radi-
ally is 4 meshes per assembly and axially 34 meshes of which 30 for the fuel active height.

• FLICA4: 4 equation porous modeling with 3D �ow in direction X, Y and Z (axial). The
fuel active part is considered and the discretization radially is one thermal-hydraulic channel
per assembly and axially is 30 meshes.

• Hgap: 5 simpli�ed models calibrated on decoupled ALCYONE V1.4 calculations. Di�erent
initial conditions are used for the di�erent types of assemblies creating a similar spatial mesh
with FLICA4.
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In �gures 4.34 - 4.35 we present the mean distribution of the two velocities V 3D
X and V 3D

Y . Two
representative radial and axial cross-sections are illustrated a few time steps after the power peak.
The impact of the REA on the two velocities is obvious but still we see that their values are quite
low compared to the axial �ow velocity of around 4m/s.
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Figure 4.34: V 3D
X and V 3D

Y estimated mean distribution in the axial cross-section for 3D IBE
coupling study.
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Figure 4.35: V 3D
X and V 3D

Y estimated mean distribution in the radial cross-section for 3D IBE
coupling study.

The only quantity impacted by the transverse �ows is the DNBmin. The constructed kriging
models has a prediction error of 1.4 %. We can see the obtained histogram and Shapley indices in
�gure 4.36. We can conclude that the mean value of the DNBmin has decreased by 7 % increasing
the probability of boiling crisis. This is due to the fact that the axial �ow is reduced by the presence
of transverse �ows. The axial �ow is slower and thus extracts more fuel heat �ux leading to lower
DNBmin. A secondary reason for the DNBmin decrease is due to the critical heat �ux decrease.
The critical heat �ux correlation is a function of the axial �ow. As the axial �ow decreases the
critical heat �ux decreases as well. This leads to lower DNBR and thus lower DNBmin The
relative standard deviation and the sensitivities are not impacted by the transverse �ows.

170



µ = 6.46  σ = 42.57 %
0 5 10 15

●

●

●

●●●

●

●●●

●

●

●

●
●

●●●●
●
●●

●

●●●
●
●●●
●●●●●●

●●

●●
●

●

●

●
●

●●

●●

●
●

●

●

●

●●

●●

●

●●

●

●●●

●

●●

●●●

●●●●

●

●

●

●

●●●

●

●

●●

●●●

●

●

●
●●

●
●

●●●
●●●●

●

●●

●●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●●
●●

●
●●●

●

●

●
●

●
●

●

●

●

●

●

●●●

●●
●

●●●

●
●
●●

●●●

●
●●

●
●

●●●

●

●

●●

●●●

●●

●

●●

●

●

●●●●●●

●

●

●●

●●

●
●

●

●
●

●●●●
●●●●●●

●
●

●

●

●

●

●

●
●

●
●
●

●●

●

●●

●●
●●●●

●

●
●

●

●●

●
●●●●

●

●●

●
●●
●●

●

●●

●

●●●●

●

●
●
●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●●
●●

●

●●●●
●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●
●
●●

●

●

●

●●●

●

●●●
●

●●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●●●

●●●

●●●
●

●●

●●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●●●
●●●

●●
●

●●

●

●●

●

●

●

●●●●●

●
●

●

●●

●

●●

●●

●

●

●●

●●

●

●●●●

●

●

●

●●●●

●●●

●

●●●

●
●●●

●●

●

●

●●

●

●

●●
●
●

●
●

●
●
●●●●

●

●

●

●

●●●●

●

●

●

●●●

●●●

●●

●

●●

●●
●
●

●

●●●●

●●

●●

●●

●●●

●

●

●

●●●

●●●

●

●

●
●●

●

●

●

●

●●
●

●

●●

●

●●

●

●

●●
●

●●●

●

●

●●

●

●

●
●●
●
●

●

●

●●
●●

TD1 NF2 D1 βeff Hg,i Hc Rcrit TR

0
0.

2
0.

6
1

Figure 4.36: DNBmin estimated histogram and Shapley indices for 3D IBE coupling study.

4.7.4 IBE modeling with 3D thermal-hydraulics and �ner spatial dis-
cretization

The �nal modeling option that we investigate is the thermal-hydraulic channel discretization size.
More speci�cally based on the IBE 3D thermal-hydraulics modeling of Section 4.7.3 we use now
one thermal-hydraulic channel per quarter of assembly. This leads to 4 times more spatial meshes
and an increase in the computational cost at 12 hours. We remind the selected modeling options
of this study:

• APOLLO3 R©: Two group di�usion with void boundary conditions. The discretization radi-
ally is 4 meshes per assembly and axially 34 meshes of which 30 for the fuel active height.

• FLICA4: 4 equation porous modeling 3D �ow in direction X, Y and Z (axial). The fuel
active part is considered and the discretization radially is four thermal-hydraulic channels
per assembly and axially is 30 meshes corresponding to the fuel active height.

• Hgap: 5 simpli�ed models calibrated on decoupled ALCYONE V1.4 calculations. Di�erent
initial conditions are used for the di�erent types of assemblies creating a similar spatial mesh
with FLICA4.

We can see the obtained V 3D
X and V 3D

Y 3D �elds of transverse velocities in �gures 4.37 - 4.38. We
do not observe any signi�cant impact of the discretization. This could mean that the transverse
�ows e�ects are the same with the modeling of Section 4.7.3 and thus any quantity with di�erent
behavior will be solely due to the spatial discretization e�ect.
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Figure 4.37: V 3D
X and V 3D

Y estimated mean distribution in the radial cross-section for 3D IBE with
�ner thermal-hydraulic channels coupling study.

All the identi�ed outputs will be presented starting from the scalar outputs of the UQM. The
kriging models were trained for Pmaxlin , Hmax

f and DNBmin on the identi�ed subspaces of Section
4.6 and based on the same LHS as the previous studies of this Section. The prediction error
estimated by the leave-one-out error for the three scalar outputs are: 0.5 % for Pmaxlin , 0.7 % for
Hmax
f and 1.6 % for DNBmin.
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Figure 4.38: V 3D
X and V 3D

Y estimated mean distribution in the axial cross-section for 3D IBE with
�ner thermal-hydraulic channels coupling study.

Using the trained kriging models the uncertainties are propagated using 1e5 samples to estimate
their histograms and �rst two moments. The results are presented in �gure 4.39. The Pmaxlin is not
impacted. This can be justi�ed by the fact that the neutronics modeling, which is more important
for this quantity, is the same. We observe a 10 % increase in the mean Hmax

f attributed to the
thermal-hydraulics spatial discretization. Hmax

f is a quantity calculated on the FLICA4 mesh and
thus in the previous studies the neutronics power is averaged in the whole assembly. Speci�cally
in the location of the maximum, that is close to the periphery, the gradient is quite strong leading
to lower linear power values and thus lower Hmax

f . For DNBmin a decrease of 4 % is seen in the
mean value. This is for the same reason as Hmax

f . In the study of Section 4.7.3 the averaged
linear power at the level of assembly seen by FLICA4 is lower than this study leading to less fuel
heat �ux reaching the coolant and thus larger distance to the boiling crisis. The relative standard
deviations of all the scalar outputs is not impacted.

µ = 8.80e+05 [W/m] σ = 56.90 %
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µ = 6.18  σ = 44.48 %
0 5 10 15

DNBmin

Figure 4.39: Pmaxlin , Hmax
f and DNBmin histograms for 3D IBE with �ner thermal-hydraulic

channels coupling study.

The global sensitivity analysis for the scalar outputs is carried out by using the kriging models to
estimate the Shapley indices. The results are presented in �gures 4.40 - 4.41. We conclude that
the sensitivities are not impacted by the thermal-hydraulics spatial discretization.
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Figure 4.40: Pmaxlin and Hmax
f Shapley indices for 3D IBE with �ner thermal-hydraulic channels

coupling study.

●●●●

●

●●●●●●

●●

●

●●●

●

●

●

●

●●

●
●

●●●
●
●

●

●
●

●

●●●●

●●

●
●●

●

●●

●●●

●●

●

●●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●●

●
●●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●●
●
●

●●

●●●

●

●

●

●

●●

●

●

●●

●●

●●

●
●●●

●

●●●

●●

●

●●

●●●

●●●

●●●●

●●
●
●●●

●

●

●

●
●●
●

●●●

●
●●
●

●

●●●

●●●

●
●●●

●
●
●●●●
●

●
●

●●●

●●●

●

●

●

●

●

●

●

●
●
●●
●

●●●●●

●

●

●
●

●●●●

●●

●●

●●
●

●●●

●

●●●●
●●

●●●●●●

●●●

●
●
●

●●

●●●

●●●●

●●●

●●●

●

●
●
●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●●

●

●●●●●●
●●

●●●

●●
●●

●

●

●

●●●

●●●●
●●

●

●●
●

●

●●

●

●

●

●

●
●●

●

●
●

●
●

●●

●●

●

●●●

●●
●
●

●

●●

●●●

●

●
●●●

●●●

●

●

●●●

●●

●

●
●

●●●

●

●●
●

●●

●

●
●●

●
●
●
●

●●

●●

●

●

●

●

●●

●●●●

●●●●●●●

●

●●●

●

●

●●

●●●

●

●

●
●

●

●

●●
●
●

●

●

●

●●●●
●
●
●

●

●

●●●●

●●
●
●●

●

●●●

●

●●

●

●

●

●

●

●
●

●
●●

●●●

●

●

●

●

●●

●●●
●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●●●●●

●●

●

●

●●●

●●●

●●●

●
●

●●

●

●●

●

●

●

●●●●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●●●●

●

●●

●

●●●●
●

●

●

●
●
●

●●●

●

●●●
●
●

●

●●●

●●●●●●●

●

●

●●●
●●

●

●

●
●●

●●
●●

●

●●

●●
●
●●

●●

●

TD1 NF2 D1 βeff Hg,i Hc Rcrit TR

0
0.

2
0.

6
1

DNBmin

Figure 4.41: DNBmin Shapley indices for 3D IBE with �ner thermal-hydraulic channels coupling
study.

The functional UQM output P 2D
lin is not presented explicitly because it is identical to the radial

cross-section of P 3D
lin . For the latter two principal components are needed to represent 95 % of

its variance. For each principal component a kriging model is trained on subprojection I1 with
prediction errors 0.5 % and 0.8 % for the �rst and second one respectively. The estimated mean
and standard deviation for the radial and axial cross-sections at the location and instant of the
local maximum are presented in �gures 4.42 - 4.43.
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Figure 4.42: P 3D
lin estimated mean and relative standard deviation in the axial cross-section for 3D

IBE with �ner thermal-hydraulic channels coupling study.
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Figure 4.43: P 3D
lin estimated mean and relative standard deviation in the radial cross-section for

3D IBE with �ner thermal-hydraulic channels coupling study.

The results show a shift of the local maximum value radially towards the assembly between the
re�ector and the assembly with the ejected control rod as expected by the REA physics. There is
also an axial shift of one axial slice lower than the previous studies. We observe the large gradient
in the proximity of the REA location leading to a higher maximum linear power in FLICA4.
The relative standard deviations are not impacted by the thermal-hydraulics discretization. The
aggregate Shapley indices for P 3D

lin are not impacted by the thermal-hydraulics discretization with
βeff explaining 50 % of the variance while the remaining 50 % is explained by TD1 and D1.

For H3D
f two principal components are needed to represent 95 % of its variance. For each principal

component a kriging model is trained on subprojection I1 with prediction errors 0.8 % and 0.7 %
for the �rst and second one respectively. The estimated mean and standard deviation for the radial
and axial cross-sections at the location and instant of the local maximum are presented in �gures
4.44 - 4.45. The local maximum follows the P 3D

lin and is shifted both axially and radially for the
same reason. Neither the relative standard deviations or the estimated aggregated Shapley indices
are impacted by the thermal-hydraulics discretization.
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Figure 4.44: H3D
f estimated mean and relative standard deviation in the axial cross-section for 3D

IBE with �ner thermal-hydraulic channels coupling study.
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Figure 4.45: H3D
f estimated mean and relative standard deviation in the radial cross-section for

3D IBE with �ner thermal-hydraulic channels coupling study.

For W 3D
f two principal components are needed to represent 85 % of its variance. We cannot

represent more because the prediction errors of the higher principal components are very large.
Kriging models are trained on subprojection I2 for the �rst and second principal components with
prediction errors 1.1 % and 7 % respectively.

The estimated mean and standard deviation for the radial and axial cross-sections at the location
and instant of the local maximum are presented in �gures 4.46 - 4.47. TheW 3D

f distribution and its
local maximum position does not change. This is because it is governed mainly by the burn-up and
since the burn-up distributions in all the studies is the same the position is not a�ected. Neither the
relative standard deviations or the estimated aggregated Shapley indices are signi�cantly impacted
by the thermal-hydraulics discretization.
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Figure 4.46: W 3D
f estimated mean and relative standard deviation in the axial cross-section for

3D IBE with �ner thermal-hydraulic channels coupling study.

175



0e+00

2e+05

4e+05

6e+05

8e+05

 2e+05 

 4
e+

05
  6e+05 

 8e+05 
 8e+05 

W
/
m

2

(a) Mean

20

22

24

26

28

30

32

34

 25 

 25 

 2
5 

 25 

 25 

 25 
 25 

 2
5 

 25 

 25 

 25 

 25 

 25 

 25 

 25 

 25 

 25 

 25 

 25 
 25 

 2
5 

 25 

 25 
 25 

 25 

 25 

 25 

 25 

 2
5 

 25 

 25 

 25 

 25 

 25 

 25 

 25 

 2
5 

 25  25 

 2
5 

 30 

 30 

 30 

 30 

%

(b) Relative standard deviation

Figure 4.47: W 3D
f estimated mean and relative standard deviation in the radial cross-section for

3D IBE with �ner thermal-hydraulic channels coupling study.

For H3D
gap two principal components are needed to represent 95 % of its variance. For each principal

component a kriging model is trained on subprojection I1 with prediction errors 0.07 % and 2.0 %
for the �rst and second one respectively.

The estimated mean and standard deviation for the radial and axial cross-sections at the location
and instant of the local maximum are presented in �gures 4.48 - 4.49. For the same reason as W 3D

f

the Hgap distribution and its local maximum does not change in comparison with the previous
studies. Neither the relative standard deviations or the estimated aggregated Shapley indices are
signi�cantly impacted by the thermal-hydraulics discretization.
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Figure 4.48: H3D
gap estimated mean and relative standard deviation in the axial cross-section for

3D IBE with �ner thermal-hydraulic channels coupling study.
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Figure 4.49: H3D
gap estimated mean and relative standard deviation in the radial cross-section for

3D IBE with �ner thermal-hydraulic channels coupling study.

Finally, for D3D
w two principal components are needed to represent 90 % of its variance. We cannot

represent more because the prediction errors of the higher principal components are very large.
For each principal component a kriging model is trained on subprojection I2 with prediction errors
0.7 % and 0.9 % for the �rst and second one respectively. The estimated mean and standard
deviation for the radial and axial cross-sections at the location and instant of the local maximum
are presented in �gures 4.50 - 4.51.
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Figure 4.50: D3D
w estimated mean and relative standard deviation in the axial cross-section for 3D

IBE with �ner thermal-hydraulic channels coupling study.

The coolant density depends on the heat extracted by the coolant as it �ows through the thermal-
hydraulic channels. Since we saw that the cladding wall heat �ux distribution is not impacted
by the thermal-hydraulic discretization, the coolant density is not impacted either. Neither the
relative standard deviations or the estimated aggregated Shapley indices are signi�cantly impacted
by the thermal-hydraulic discretization.
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Figure 4.51: D3D
w estimated mean and relative standard deviation in the radial cross-section for

3D IBE with �ner thermal-hydraulic channels coupling study.

4.7.5 Conclusions

In this Section we compared three di�erent thermal-hydraulics modeling options for the IBE mod-
eling established in Section 4.6. The three options are an increasing order of computational cost:

• M1: Multi-1D axial �ow with one thermal-hydraulic channel per assembly. This was the
option used in Section 4.6.

• M2: 3D �ow with one thermal-hydraulic channel per assembly.

• M3: 3D �ow with four thermal-hydraulic channels per assembly.

Di�erent 3D functional outputs of interest for the coupling were studied together with the identi�ed
scalar outputs for the UQM. The same training LHS is used for all the models in order to study
the e�ect on the uncertainty propagation and sensitivity analysis. The main observation from the
comparison are summarized:

• The M2 compared to M1 has an impact only on the minimum distance to boiling crisis
DNBmin. Its mean value decreases by 7 % due to the reduce of the axial �ow caused by
the presence of transverse �ows. The impact is relatively small because the transverse �ows
are small. Reduced axial �ow means that the coolant stays more time in the core and thus
extracts more fuel heat �ux leading to lower DNBmin. This increases the probability of
boiling crisis.

• The M3 compared to both M2 and M1 shifts the position of the local maximum linear power
Pmaxlin from the assembly with the ejected control rod to the next assembly at the border of
the re�ector. Axially it is located at the third axial slice from the top, one axial slice lower
than in M1 and M2. Additionally, the Pmaxlin seen by FLICA4 is slightly higher because in M1
and M2 the value is a result of an averaging process since APOLLO3 R© has a discretization
of four meshes for one assembly. This a�ects also the position of the local maximum stored
enthalpy Hmax

f , since it follows the position of Pmaxlin . The Hmax
f mean value is also increased.

• The M3 compared to M2 reduces even further the mean value ofDNBmin due to the increased
Pmaxlin seen by FLICA4. This leads to higher heat �ux to be extracted by the coolant that
reduces DNBmin.

• The relative standard deviations of all the quantities and their sensitivities are in general not
impacted by the modeling option.

We can conclude that M3 is more penalizing concerning Pmaxlin and DNBmin and thus should
de�nitely be used for safety analysis in comparison to M1 and M2. However, the computational
cost is multiplied by four, something that renders di�cult the uncertainty quanti�cation. If we are
mainly interested in sensitivities studies the model M2 is preferred since it is a good compromise
in computational cost between M1 and M3.
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4.8 Conclusions

In this Chapter we applied the UQM that was developed in Chapter 3 on a large scale PWR core
for the study of a REA with a BE modeling. Additionally, we applied the calibration methodology
of a simpli�ed gap heat transfer Hgap model based on thermal expansions that was also developed
in Chapter 3. The integration of the Hgap model in the BE coupling improves the REA modeling.
Some complementary physical analyses were also carried out in order to investigate the impact of
di�erent thermal-hydraulics modeling options on a large set of outputs up to 3D �elds.

Before applying the UQM a �rst preliminary static analysis showed that the uncertainty on the
ρworth is larger than in the MiniCore. This can be attributed to the increased e�ect of the two
group macroscopic cross-sections and mainly TD1, D1 and S1→2. Besides that, for this core it
was found out that there is a 2.25 % probability of reaching ρworth − βeff < 0 conditions. These
conditions are not interesting since they lead to less violent REA. A linear model was constructed
in order to predict for each following DOE the points that lead to these non interesting conditions.
The identi�ed points are thus excluded from the DOE resulting in both a computational gain and
allowing us to focus on the more interesting transients.

The application of the UQM on the PWR core resulted in the following conclusions for the outputs
of interest:

• The local maximum linear power Pmaxlin shows a relative standard deviation of 57% which is
twice the value in the MiniCore. This is due to the increased sensitivity on the macroscopic
cross-sections something re�ected by the Shapley indices. The βeff is responsible for 50 %
of the variance and TD1, D1 and S1→2 are responsible for the remaining 50 %.

• The linear power radial distribution P 2D
lin at the axial position and time instant of Pmaxlin

shows relative standard deviations with small spatial distribution ranging between 53 % and
57 %. The location of Pmaxlin is the one that exhibits the highest relative standard deviation.
The aggregate Shapley indices showed similar sensitivities to the Pmaxlin .

• The maximum stored enthalpy Hmax
f has 20 % relative standard deviation with a normal

histogram. This re�ects the linear behavior of this output. The same inputs as for Pmaxlin are
the dominant ones.

• The minimum distance to boiling crisis DNBmin is quite further than in the MiniCore case
with a mean value of 6 and a relative standard deviation of 57 %. The Hgap is responsible for
50 % of the variance and βeff , TD1, D1 and S1→2 are responsible for the remaining 50 %.

For the calibration of the Hgap models 5 assembly groups were identi�ed with one model per group.
The resulting calibration errors for all the calibrated data are less than 8 %. The uncertainty of the
calibration parameters was quanti�ed using uniform pdf with bounds that cover the calibration
errors. The uncertainty of the models initial conditions was quanti�ed with N (1, 0.1) as in the
MiniCore tests. The calibratedHgap models were introduced in the Best Estimate coupling without
increasing the computational cost. The UQM was applied again on this improved modeling. The
most signi�cant impact was on the DNBmin with an increase 14 % of its mean value reducing the
probability of boiling crisis. The standard deviation of DNBmin was reduced to 42 %. The reason
is the decreased sensitivity on the Hgap uncertainty due to its better uncertainty quanti�cation
and modeling. This is observed in the Shapley indices where now βeff is responsible for 50 % of
the variance and TD1, D1 and S1→2 are responsible for the remaining 50 %.

In Section 4.7 we compared three di�erent thermal-hydraulics modeling options for the IBE mod-
eling of Section 4.6. The �rst option M1 is the Multi-1D axial �ow thermal-hydraulic channel per
assembly. The second option M2 is 3D �ow with one thermal-hydraulic channel per assembly. The
third one M3 is 3D �ow with four thermal-hydraulic channels per assembly. Di�erent 3D functional
outputs of interest for the coupling were studied together with the identi�ed scalar outputs for the
UQM. The main observation that can be made are the following:

• The M2 compared to M1 has an impact only on the minimum distance to boiling crisis
DNBmin. Its mean value decreases by 7 % due to the reduce of the axial �ow caused by the
presence of transverse �ows.
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• The M3 compared to both M2 and M1 shifts the position of Pmaxlin . from the assembly with
the ejected control rod to the next assembly at the border of the re�ector. Axially it is also
shifted to one axial slice lower.

• The M3 compared to M2 reduces even further the mean value ofDNBmin due to the increased
Pmaxlin seen by FLICA4. This leads to higher heat �ux to be extracted by the coolant that
reduces DNBmin.

We can conclude that M3 is more penalizing concerning Pmaxlin and DNBmin and thus should
de�nitely be used for safety analysis in comparison to M1 and M2. However, this comes at a four
times more computational cost that renders di�cult the uncertainty analysis. If we are mainly
interested in sensitivities studies the model M2 is preferred since it is a good compromise in
computational cost between M1 and M3.
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Conclusions and Perspectives

Conclusions

The main objective of this thesis was to develop an Uncertainty Quanti�cation Methodology
(UQM) for the multi-physics Best Estimate (BE) modeling of Rod Ejection Accident (REA). To
this purpose the CORPUS coupling framework developed at CEA was used and more speci�cally
the BE coupling between APOLLO3 R© and FLICA4 (thermal-hydraulics). This created many
challenges:

• Computationally expensive modeling not allowing many code evaluations.

• Large input and output dimensions that can create di�culties for the application of the
di�erent statistical tools.

• Input dependencies that can lead to redundant inputs. This is the case when two inputs are
strongly dependent and one is very important for an output while the other one is not. Most
of the sensitivity methods will detect both of the inputs as very important.

• Interaction between inputs on the outputs variance. This can occur when one input is not
directly signi�cant to an output but only in conjunction with another input.

• Non-linear output behavior. It is not always easy for the surrogate model to correctly ap-
proximate a non-linear function, especially where there are discontinuities.

Fortunately as we saw in Chapter 2 there is a large variety of statistical tools that can be used
in order to address some of these challenges. In Sections 3.4 - 3.5 these di�erent statistical tools
were tested on a small scale core (MiniCore) representative of a PWR in order to derive the UQM.
Di�erent tests were identi�ed in order to select the statistical tools that will consist the UQM. Tests
were carried out for neutronics, thermal-hydraulics, fuel-thermomechanics stand-alone studies using
the CEA codes APOLLO3 R©, FLICA4 and ALCYONE V1.4 respectively. Afterwards, a multi-
physics BE APOLLO3 R© - FLICA4 test was performed. The conclusions drawn from all these
studies were used to develop the UQM presented in 4.52.

The UQM consists of four main steps. The initial step 0 is the de�nition of the case study with the
desired uncertain inputs and outputs and the input uncertainty quanti�cation. Since we assume
that in the general case the input dimension can be large the step 1 consists in identifying the
important input subspaces using Input Dimension Reduction Method (IDRM) for both scalar and
functional outputs. This step is based on an initial random sampling. IDRM was developed based
on HSIC statistical signi�cance tests. This method aims at identifying an important input subspace
by addressing the dependence of inputs, potential interactions and redundancies. The method was
tested on the Morris function and on multi-physics BE REA coupling with very satisfactory results.
The step 2 is the training of the kriging models for each output on the identi�ed subspaces. The
training LHS is constructed with good space-�lling properties in both the original input space and
the important subspaces. To achieve this the maximin criterion is maximized by minimizing the φp
criterion. A modi�ed version of the Simulated Annealing optimization algorithm was implemented
in order to optimize the criterion in both the original space and the important subspaces. The
test on the multi-physics BE modeling showed a signi�cant gain for the space-�lling criterion
optimization in the identi�ed subspaces. Using the improved LHS kriging models are trained
directly for the scalar outputs while for the functional ones the kriging models are constructed for
the �rst principal components that represent 95% of the outputs variance. The prediction errors
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of the kriging models are estimated using a second LHS. The step 3 is the brute force Monte Carlo
uncertainty propagation with the empirical estimations of the �rst two statistical moments and
the histogram. Finally, in step 4 the global sensitivity analysis is performed using Shapley indices
for scalar outputs and aggregated Shapley indices for functional ones.

1. Input Dimension Reduction

Code

2. Surrogate models (SM) construction

3. Uncertainty Propagation 4. Global Sensitivity Analysis

0. Case study

Scenario, Modeling, Inputs (X) - Outputs (Y) identification with X є Rd and Y є Rq, Inputs 
Uncertainty Quantification

1.1 Random
Sampling in Rd

1.2 Dataset: X, Y Y scalar
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1. 3 IDRM
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1.2.1 PCA at 
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2.1 Training LHS 
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Figure 4.52: Uncertainty Quanti�cation Methodology scheme
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The developed UQM was applied to REA BE modeling in a large scale PWR core in Section
4.5. The studied outputs of interest where: the local maximum linear power Pmaxlin , the linear
power radial distribution P 2D

lin at the axial position and time instant of Pmaxlin , the maximum stored
enthalpy Hmax

f , the minimum distance to boiling crisis DNBmin. The main conclusions drawn
are:

• Pmaxlin shows a relative standard deviation of 57% which is twice the value in the MiniCore
tests. This is due to the increased sensitivity on the macroscopic cross-sections something
re�ected by the Shapley indices. The βeff is responsible for 50 % of the variance and TD1,
D1 and S1→2 are responsible for the remaining 50 %.

• P 2D
lin shows relative standard deviations with small spatial distribution ranging between 53 %

and 57 %. The location of Pmaxlin is the one that exhibits the highest relative standard devia-
tion. The aggregate Shapley indices showed similar sensitivities to the Pmaxlin .

• Hmax
f has 20 % relative standard deviation with a normal histogram. This re�ects the linear

behavior of this output. The same inputs as for Pmaxlin are the dominant ones.

• DNBmin is quite further than in the MiniCore case with a mean value of 6 and a relative
standard deviation of 57 %. The Hgap is responsible for 50 % of the variance and βeff , TD1,
D1 and S1→2 are responsible for the remaining 50 %.

A second objective of the thesis was the development of a methodology for improving the BE
modeling in terms of its uncertainty representation. Apart from the BE coupling in the CORPUS
framework there exists a Best E�ort coupling including ALCYONE V1.4 code for a detailed model-
ing of fuel-thermomechanics behavior. However, this modeling has a very high computational cost
and its use for uncertainty quanti�cation of REA is prohibited. One of the main REA modeling
di�erences between BE and Best E�ort coupling is the treatment of the gap heat transfer Hgap.
In FLICA4 a constant value is used as an input of the code while in ALCYONE V1.4 the gap
heat transfer is calculated taking into account the pellet-cladding gap behavior during the REA.
Additionally, in the UQM application for the PWR core we observed that the Hgap is the most
important input concerning DNBmin. There is thus a strong interest in extracting knowledge
from ALCYONE V1.4 about the Hgap evolution during REA and apply it into the BE modeling.

We used a simpli�ed Hgap model based on thermal expansions and including two calibration
parameters: one related to the fuel temperature and one related to the stored energy. The latter
captures a historical impact during the REA. In Section 3.6 we developed a methodology for
calibrating this Hgap model that is presented in in �gure 4.53. As for the UQM, this methodology
was tested on the MiniCore and then applied to a PWR core in Section 4.6.

TheHgap calibration methodology includes three main steps. In step 1.1 the assemblies are grouped
by burn-up with one model for each group. In step 1.2 the REA linear power and cladding wall
temperature pro�les are selected in such a way to cover the possible Hgap variations due to both
spatial and statistical aspects. In step 2 these pro�les are used as boundary conditions imposed
in ALCYONE V1.4 REA decoupled calculations. In step 3.1, on the obtained results, the Hgap

models are calibrated by mean square error minimization. Additionally, in step 3.2 the uncertainty
of the models is quanti�ed through two e�ective parameters, one representing the calibration
error Hg,m and one representing the model initial conditions Hg,i. The quanti�cation of the Hgap

models uncertainty is very interesting since it allows to propagate this uncertainty through the
BE coupling. Finally, the calibrated Hgap models are introduced in the BE coupling improving its
REA modeling.

In Section 3.6 the methodology was tested on the MiniCore geometry with very promising results.
Small calibration errors were observed and the de�ned uncertainty ranges of the calibration param-
eters covered in all the cases the Hgap evolution during the REA predicted by ALCYONE V1.4.
The calibrated Hgap models were then included in the BE coupling. This created the Improved
Best Estimate (IBE) modeling. The UQM was tested on this improved modeling a�ecting mainly
the margin to boiling crisis uncertainty quanti�cation. The sensitivity of the Hgap decreased sig-
ni�cantly due to its better modeling. Finally, the IBE modeling was compared to the Best E�ort
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modeling on three di�erent design points in terms of the Hgap prediction. The resulting compari-
son showed an underestimation of the Hgap between 13% − 17%. This is attributed to the many
assumptions of the calibrated model and to the di�erences of the fuel-thermomechanics modeling
in FLICA4 and ALCYONE V1.4. This indicates that IBE cannot replace the Best E�ort modeling
since there are many limiting assumptions but it can be used for a more realistic UQM on the
large scale PWR core, where the Best E�ort coupling is unfeasible.

0. APOLLO3-FLICA4 
UQM with uniform Hgap

1.1 Assembly BU grouping
One Hgap model for each group

1.2 Statistical and spatial selection
Mean, 2.5% quantile and 97.5% quantile for 

representative assemblies of each group

Data extraction
Axial linear power and cladding wall

temperature

2. ALCYONE1
REA transient

Data extraction
Initial conditions, temperatures

and Hgap evolutions

3.2 Hgap model uncertainty
Calibration parameters and 

initial conditions

4. APOLLO3-FLICA4
UQM with Hgap 

model

3.1 Hgap model calibration
Mean square error

minimization for maximum 
and final Hgap 

Figure 4.53: Hgap model calibration methodology

The Hgap model calibration methodology was applied to the PWR core in Section 4.6. For the
calibration of the Hgap models 5 assembly groups were identi�ed with one model per group. The
resulting calibration errors for all the calibrated data are less than 8 %. The calibrated Hgap models
were introduced in the BE coupling and the UQM was applied again on the established IBE. The
most signi�cant impact was on the DNBmin with an increase 14 % of its mean value reducing
the probability of boiling crisis. This is attributed to the more realistic modeling of the Hgap

evolution during the REA. In the BE modeling the mean constant value of Hgap is 2.4e4W/m2K
much higher than the one predicted by the calibrated models and it is applied during the whole
duration of the transient. This leads to a higher heat extracted from the fuel by the coolant in the
BE modeling, something that explains the smaller DNBmin compared to the IBE modeling. The
standard deviation of DNBmin was reduced to 42 %. The reason is the decreased sensitivity on
the Hgap uncertainty due to its better uncertainty quanti�cation and modeling. This is observed
in the Shapley indices for DNBmin where now βeff is responsible for 50 % of the variance and
TD1, D1 and S1→2 for the remaining 50 %.

In the last part of Chapter 4 (Section 4.7) three di�erent thermal-hydraulics modeling options were
compared for the IBE modeling. The �rst option M1 is the Multi-1D axial �ow thermal-hydraulic
channel per assembly. The second option M2 is 3D �ow with one thermal-hydraulic channel per
assembly. The third one M3 is 3D �ow with four thermal-hydraulic channels per assembly. Di�erent
3D functional outputs of interest for the coupling were studied together with the identi�ed scalar
outputs for the UQM. The main observation that can be made are the following:

• The M2 compared to M1 has an impact only on the minimum distance to boiling crisis
DNBmin. Its mean value decreases by 7 % due to the reduction of the axial �ow caused by
the presence of transverse �ows.

• The M3 compared to both M2 and M1 shifts the position of Pmaxlin from the assembly with
the ejected control rod to the next assembly at the border of the re�ector. Axially it is also
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shifted to one axial slice lower.

• The M3 compared to M2 reduces even further the mean value ofDNBmin due to the increased
Pmaxlin seen by FLICA4. This leads to higher heat �ux to be extracted by the coolant that
reduces DNBmin.

We can conclude that M3 is more penalizing concerning Pmaxlin and DNBmin and thus should
de�nitely be used for safety analysis in comparison to M1 and M2. However, this comes at a four
times more computational cost that renders di�cult the uncertainty analysis. If we are mainly
interested in sensitivities studies the model M2 is preferred since it is a good compromise in
computational cost between M1 and M3.

Perspectives

The work done in this thesis can be seen as a �rst approach on a very complex problem. We remind
its position in the identi�ed transient and uncertainty quanti�cation modeling evolution of �gure
4.54. In this �gure the example of the neutronic modeling is used. The developed methodologies
for both uncertainty quanti�cation and Hgap model calibration leave room for many improvements.
The improvements can be inside the current modeling level or towards higher ones.
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Uncertainties quantification modeling

1 2 3

1
2

3

(1, 1)
Point kinetics with uncertainties on the core effective quantities (control rod 
worth, Doppler coefficient, etc.).

(1, 2)
Assembly level of homogenization with uncertainties on macroscopic cross-
section applied homogeneously in the whole core.

(1, 3)
Pin by Pin level of homogenization with uncertainties on macroscopic cross-
section applied homogeneously in the whole core.

(2, 2)
Assembly level of homogenization with uncertainties on macroscopic cross-
section taking into account spatial correlations.

(2, 3)
Pin by Pin level of homogenization with uncertainties on macroscopic cross-
section taking into account spatial correlations.

(3, 3)
Pin by Pin level of homogenization with uncertainties on microscopic cross-
sections.

Figure 4.54: Di�erent levels of possible transient (blue) and uncertainty quanti�cation (green)
modeling with examples for neutronics. With red borders we highlight the levels used in this
thesis.

At the current (1,2) level, where we have an assembly level of homogenization for the REA and
we apply the uncertainties homogeneously on the whole core, some interesting perspectives are
identi�ed :

• Extension of the UQM to include treatment of discontinuities. An example can be the post-
DNB conditions.
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• Improvement of the functional outputs treatment in the UQM by including advanced reduce
order modeling techniques. This can even lead to a complete replacement of parts of the
codes.

• Use of advanced feature extraction methods to improve the identi�cation of important sub-
spaces in the UQM.

• Application of the UQM in other types of transients such as LOCA.

• Investigate other sources of uncertainties such as: modeling and discretization options.

• Increase the complexity of the Hgap model. The simpli�ed model used in this thesis is
based on thermal expansions. This does not consider important phenomena such as: the
"rim" region, �ssion gas releases and physico-chemical reactions. Simpli�ed models for these
phenomena could be included in the calibrated Hgap model.

• Adapt the Hgap model for allowing interpolation of the calibration parameters for each spa-
tial mesh based on local quantities such as: burn-up and power. With this approach we
could avoid the grouping of di�erent fuel assemblies. The Hgap models will have the same
discretization as the neutronics and thermal-hydraulics.

• More extensive comparison with Best E�ort modeling and better quanti�cation of the ap-
proximation error.

The possibility to increase the level of either the transient modeling or the uncertainty quanti�ca-
tion modeling leads to the following perspectives:

• Extension of the UQM to functional inputs. This will allow for example to take into account
spatial correlations of the macroscopic cross-sections. It can be seen as the level 2 uncertainty
quanti�cation modeling of �gure 4.54. The correlations can be estimated by neutronic lattice
calculations or as a �rst approach an arti�cial correlation distribution in the core can be used
(e.x. based on the distance).

• Use a pin by pin level of homogenization. It can be seen as the level 3 the transient modeling
of �gure 4.54 and is very challenging due to increase of the computational cost. However,
as a �rst approach the MiniCore geometry could be used. The uncertainty quanti�cation
modeling could be either at level 1 or 2.
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Appendix A

Multi-parametric two group

cross-sections

For the di�erent studies in this thesis the two group macroscopic cross-sections of [1] are used.
They are calculated at di�erent core conditions and stored in multi-parametric tabulations. These
tabulations of the cross-sections were created with APOLLO2 lattice calculations. The parameters
of the tabulation are the burn-up BU , boron concentration Cbor, the fuel temperature Tf , the
moderator density Dmod and the control rod presence CR. There are two fuel assemblies types and
one re�ector: the UO2, UO2 −GdO3 and REFL. Their multi-parametric tabulation is presented
in table A.1.

Table A.1: Multi-parametric tabulation of the two group macroscopic cross-section.

UO2 U02 −GdO3 REFL

Range Points Range Points Range Points

Cbor [ppm] [0, 2000] 4 [0, 2000] 4 [0, 1800] 6

Tf [◦C] [286, 2000] 5 [286, 2000] 5 - -

Dmod [g/cm3] [0.598, 0.754] 4 [286, 2000] 5 - -

CR [0, 3] 4 [0, 3] 4 - -

BU [GWd/t] [0, 72] 31 [0, 72] 57 - -

In transient calculations the core conditions change and the cross-sections are linearly interpolated
from their multi-parametric tabulation. For the CR parameter there are four di�erent values
indicating: the absence of control rod or the presence one out of three di�erent types of control
rods. The di�erent types are based on their neutrons absorption capabilities. In each assembly
the cross-sections represent a macro-isotope resulting from the homogenization of the di�erent
isotopes in the fuel assembly at Step 2 of the neutronic deterministic method presented in �gure
1.7. However, some isotopes are not lumped in the macro-isotope and are treated separately. This
usually is done for some isotopes with particular functionality like the poison isotopes. In this
thesis the main isotopes are: Xe − 135, I − 135, Nd − 147, Pm − 147, Pm − 148, Pm − 149,
Sm − 149, B − 10 and B − 11. Each individual isotope is described by its concentration and
its microscopic cross-section. This allows the reconstruction of the �nal two group macroscopic
cross-section including these isotopes.
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Appendix B

Input uncertainty quanti�cation

For the Uncertainty Quanti�cation Methodology (UQM) development and application we identi�ed
22 uncertain inputs spanning neutronics, fuel-thermomechanics and thermal-hydraulics. The in-
puts uncertainty quanti�cation is based on a mixture of expert judgment and previous uncertainty
propagation results.

In neutronics we have 11 inputs: TD1, TD2, NF1, NF2, D1, D2, S1→2, IV1, IV2, βeff , λeff . For
their uncertainty quanti�cation multivariate normal distribution is considered N (ΣCEA,CUAM)
with mean vector ΣCEA the reference two group macroscopic cross-sections generated using
APOLLO2 and covariance matrix CUAM estimated using data from UAM benchmark. The data
from UAM are in the form of 100 cross-section evaluations. In order to apply these uncertainties on
our reference cross-sections we estimate the relative standard deviation and the correlation matrix
from UAM data. The provided cross-sections are: A1, A2, NF1, NF2, D1, D2, S1→2, IV1, IV2,
βeff , λeff . We see that the absorption cross-section A1 and A2 are provided instead of the total
cross-sections T1 and T2 used by APOLLO3 R©. We can write the total cross-sections as:

T1 = A1 + S1→2 + S1→1 +Nexc1 (B.1)

T2 = A2 + S2→1 + S2→2 +Nexc2 (B.2)

Where:

� Nexc1 and Nexc2 are the n− 2n, n− 3n . . . cross-sections producing more than one neutron
for the two groups.

� S1→1 and S2→2 are the self-scattering cross-sections.

We de�ne the disappearance cross-sections as TD1 = T1−S1→1 and TD2 = T2−S2→2 and re-write
the previous equations as:

TD1 = A1 + S1→2 +Nexc1 (B.3)

TD2 = A2 + S2→1 +Nexc2 (B.4)

By neglecting the uncertainties on the up-scattering cross-section S2→1 and the n− 2n, n− 3n . . .
cross-sections then the TD1 and TD2 from UAM can be calculated. Then the correlation matrix
RUAM and the relative standard deviation vector SrUAM are estimated empirically. By multiply-
ing the SrUAM with the reference values ΣCEA we obtain the standard deviation vector SUAM.
Finally the covariance matrix for our reference cross-sections is calculated by:

CUAM = SUAM SUAM
TRUAM (B.5)

For simplifying the neutronic input uncertainty quanti�cation they are considered fully positively
correlated in all the spatial meshes and for all the multi-parametric points.
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In fuel-thermomechanics the following inputs are considered as independent: λf , λc, Cpf , Cpc,
Hgap, Pr, TR. For the fuel and cladding material laws ( λf , λc, Cpf , Cpc) the UAM recommen-
dations were followed by using normal pdf for multiplication coe�cients on the di�erent laws as
presented in table 3.4. For Hgap in the initial Best Estimate coupling a uniform pdf bounded by its
value for a complete open gap (2e3Wm−2K−1) and for a pellet-cladding contact (5e4Wm−2K−1)
is used. However, in the IBE coupling simpli�ed Hgap models were calibrated for di�erent assembly
groups. The models included two calibration parameters. For their uncertainty quanti�cation as
for the cross-section they were considered as fully positevely correlated with bounds that cover the
calibration error as discussed in Section 3.6. This leads to one uncertain quantity representing the
calibration error Hg,m. Additionally, uncertain initial conditions are considered for the models.
More speci�cally the initial gap heat transfer Hinit

gap and gap width einitgap . Based on previous uncer-
tainty propagation results of ALCYONE V1.4 fuel evolution calculations these two quantities were
found fully negatively correlated. The estimated relative standard deviation is 10%. The uncer-
tainty is applied as a multiplication coe�cient on both quantities with pdf N (1.0, 0.1). This leads
to a second uncertain quantity representing the initial conditions Hg,i. The power radial pro�le is
modeled by a burn-up function P 1D

r = f(BU) de�ned in [137]. The problem is that the we have
uncertainty of 1.75% relative standard deviation for the power at the external surface due to the
radial discretization used for the �tting of the function. Besides, that we also know that there is an
8 % impact of the presence or not of a guide tube near the fuel pin as was found in [22]. We model
these two uncertainties as a sum of two independent pdf N (0, 0.0175) and U(1, 1.08) applied as a
multiplication coe�cient on the power at the external surface. For the Rowlands temperature TR
a uniform distribution was considered on the weight fraction of the fuel centerline temperature. In
the reference situation the Rowlands temperature has a 4/9 weight on the fuel centerline tempera-
ture and 5/9 on the fuel external surface temperature. By using an uncertain multiplication factor
with U(0, 1) on the centerline temperature weight we consider that it can only decrease uniformly
between 4/9 and zero with a corresponding increase in the external surface temperature weight.

In thermal-hydraulics the following uncertain inputs are considered: Hc, Rcrit, Kv0, Hdnb. All of
them are quanti�ed based on expert judgments and presented in table 3.4.
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Appendix C

Criticality method impact on

sensitivity

The core prior to the REA is at critical state, meaning that for each perturbation of cross-sections
the core has to be rendered critical. The method used to achieve this can a�ect the uncertainty
analysis of the transient. In this study we investigate the criticality method impact on APOLLO3
R© static stand-alone calculations. Three di�erent methods are tested in order to identify the most
suitable:

1. Fission rate adjustment: the keff is computed and the �ssion rate is normalized by this value,
establishing the balance between production and absorption.

2. Boron adjustment: The boron absorbs neutrons and by modifying its concentration in the
whole core criticality can be achieved.

3. Leakage adjustment: The leakage of neutrons is adjusted by modifying the re�ector's di�usion
coe�cient of fast neutrons.

Each method alters the neutron spectrum and the leakage at the re�ector-fuel interface. The e�ect
on those quantities is estimated by the average �ux ratio of fast and thermal neutrons (φ1

φ2
) for the

�rst and by the average of the albedo on the re�ector-fuel surface (a) for the second. Besides that,
criticality method's e�ect on the neutron spectrum and the albedo should not vary signi�cantly
with the core's size in order to be applicable to larger scale cores. The original MiniCore geometry
and two larger cores by adding 1 and 2 fuel rings respectively were studied. For each geometry the
neutron spectrum and albedo were estimated at the reference and ±2σ of their keff pdf. In Section
3.4.2.1 we saw that keff has a standard deviation of 550 pcm.

The criticality methods have e�ects that may vary with the core geometry. We show such variations
in �gures C.1 - C.3. The �rst observation is that the leakage adjustment is the only method that
varies with geometry passing from 5% e�ect on albedo to 80% and thus is rejected. The other
two methods are not impacted signi�cantly but it should be noted that as expected the boron
concentration adjustment alters the neutron spectrum due to the increase of epithermal neutrons
absorption, impacting the S1→2 cross-section.

Criticality methods have an impact on two quantities directly linked to REA: control rod worth
ρworth and 3D deformation factor Fxyzext with the control extracted. For the two remaining
methods their impact on the sensitivity analysis is studied. The results for Fxyzext do not show
any e�ect of the methods. However, the results on ρworth vary signi�cantly as shown in �gure C.4.
The Shapley indices of NF1 and NF2 are strongly reduced in �ssion adjustment. This indicates
that the criticality method selection has an important e�ect on the static analysis sensitivity.

Boron concentration adjustment is selected for the transient analysis, because it is applicable on
larger cores and it is a more realistic method from the reactor operation point of view.

In [139] a sensitivity analysis was carried out for REA transient APOLLO3 R© stand-alone mod-
eling. As uncertain inputs the two group macroscopic cross-sections together with an additional
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discrete input parameter indicating the criticality method used. The three di�erent methods were
considered with 1/3 probability. The resulting Shapley indices indicate that the criticality method
amounts up to 20% of the maximum local linear power variance.

Figure C.1: Criticality methods e�ect for the MiniCore

Figure C.2: Criticality methods e�ect for ge-
ometry with 1 added fuel ring (4x4 fuel cluster)

Figure C.3: Criticality methods e�ect for ge-
ometry with 2 added fuel ring (5x5 fuel cluster)

Boron adjustment Fission adjustment

Figure C.4: ρworth Shapley indices with boron adjustment and �ssion adjustment.
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Appendix D

Point kinetics REA uncertainty

analysis

It is possible to obtain an analytic expression for the local maximum linear power during the REA
if point kinetics is used for the neutronic modeling. It is called the Nordheim-Fuchs model and is
valid for prompt neutron driven REA [143]. The reactivity evolution during the transient can be
written as:

ρ(t) = ρworth + θdE(t) (D.1)

Where:

� ρworth is the control rod worth of the ejected rod.

� θd is the feedback parameter.

� E is the energy deposition in the fuel.

The maximum power during the transient can be expressed then as:

Pmax =
(ρworth − βeff )2

2Λθd
(D.2)

Where:

� Λ is the prompt neutron lifetime.

By making the following assumptions the θd can be calculated as in [143] :

• Adiabatic fuel thermal treatment.

• Constant Doppler coe�cient during REA .

• Constant speci�c fuel heat capacity during REA.

The values used in [143] are adopted for this study and are synthesized together with the values
related to the MiniCore case in table D.1.

ρworth (pcm) 959

βeff (pcm) 569

Λ (s) 1.87e−5

θd (MJ−1) 2.56e−6

Table D.1: Point kinetic model parameters values.
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For the maximum local linear power the multiplication coe�cient of the MiniCore is used. For the
uncertainty analysis we consider the following uncertain inputs: ρworth, βeff and θd. This is done
in order to be closer to the MiniCore study. For ρworth a normal distribution is used with mean
and standard deviation from the results of Section 3.4.2.1. For βeff a normal distribution is used
with mean and standard deviation as in the inputs uncertainty quanti�cation of table 3.4. For θd
a normal law is used with the relative standard deviation of [143]. The uncertainty quanti�cation
is summarized in table D.2.

ρworth (pcm) N (970, 13.58)

βeff (pcm) N (970, 43.89)

θd (MJ−1) N (2.56e−6, 1.28e−7)

Table D.2: Point kinetic model parameters uncertainty quanti�cation.

The results of applying all the uncertain parameters is presented in �gure D.1, where we can see
the estimated histogram. It is quite close to the 3D APOLLO3 R© study indicating the persistence
of the point kinetics concerning the Pmaxlin calculation.

µ = 4.05e+06 [W/m] σ = 23.71 %
2e+06 4e+06 6e+06 8e+06

Figure D.1: Estimated histogram of Pmaxlin for point kinetics study.

In this study the inputs are considered independent. It is thus interesting to investigated the e�ect
of �xing some of the uncertain inputs in their reference values and see the remaining part of the
variance. This would be equivalent to estimating the total Sobol indices of each input. The inputs
considered as uncertain for the di�erent analyses are:

• A1: ρworth, βeff , θd.

• A2: ρworth, βeff .

• A3: ρworth, θd.

• A4: βeff , θd.

• A5: ρworth.

• A6: βeff .

• A7: θd.

The results for the di�erent analyses are gathered in table D.3. We can see that the dominant
input as in the MiniCore is the βeff . The control rod worth uncertainty amounts to a total of
6.5% of output's relative standard deviation. The feedback (Doppler) parameter leads to a total
of 5% of output's relative standard deviation.
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Relative Standard Deviation (%)

A1 23.7

A2 23.2

A3 8.2

A4 22.9

A5 6.4

A6 22.3

A7 5.0

Table D.3: Point kinetic uncertainty analysis results.
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Appendix E

Complementary results for PWR

IBE coupling

In Section 4.7.2 we presented uncertainty quanti�cation results for the Improved Best Estimate
(IBE) modeling. We focused on the analysis of 3D �elds for the following identi�ed outputs of
interest:

• Linear power P 3D
lin at the instance of its local maximum.

• Stored enthalpy in the fuel H3D
f at the instance of its local maximum.

• Cladding wall heat �ux W 3D
f at the instance of its local maximum.

• Gap heat transfer H3D
gap at the instance of its local maximum.

• Coolant density D3D
w at the instance of its local minimum.

The 3D �elds are di�cult to visualize and for this reason in Section 4.7.2 two cross-sections were
presented for each output: the radial and axial cross-sections at the position of the local maximum
(or minimum). For these cross-section the mean and relative standard deviation distributions were
estimate. In this Section we present a larger variety of results. For each functional 3D output we
illustrate the histograms for the highlighted part of �gure E.1 at the axial slice of the Pmaxlin . This
part corresponds to the 1/8 of the PWR core and includes the assembly with the ejected control
rod.

Y1

Y3

Y8

Figure E.1: 1/2 PWR geometry with highlighted (red borders) the locations for which we estimate
the histograms of the di�erent 3D outputs.
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Additionally, for each functional output we provide the result for the mean and standard deviation
distributions at 6 di�erent cross-sections. Axially we focus on three cross-sections along the Y axis
at the locations seen in �gure E.1. Two cross-section around the location of the maximum linear
power at Y 1 and Y 3 and one cross-section at the center of the core (Y 8). Radially we focus on
three cross-sections along the Z axis at the bottom (Z1), middle (Z15) and top (Z30) axial slices.
We present �rst all the results and afterwards at the end we analyze them.
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Results for P 3D
lin

• Histograms
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Figure E.2: P 3D
lin estimated histograms for IBE coupling study in PWR core.
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• Y1 cross-section
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Figure E.3: P 3D
lin estimated mean and relative standard deviation in the axial cross-section at Y 1

for IBE coupling study in PWR core.

• Z1 cross-section
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Figure E.4: P 3D
lin estimated mean and relative standard deviation in the radial cross-section at Z1

for IBE coupling study in PWR core.

208



• Y3 cross-section
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Figure E.5: P 3D
lin estimated mean and relative standard deviation in the axial cross-section at Y 3

for IBE coupling study in PWR core.

• Z15 cross-section
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Figure E.6: P 3D
lin estimated mean and relative standard deviation in the radial cross-section at Z15

for IBE coupling study in PWR core.
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• Y8 cross-section
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Figure E.7: P 3D
lin estimated mean and relative standard deviation in the axial cross-section at Y 8

for IBE coupling study in PWR core.

• Z30 cross-section
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Figure E.8: P 3D
lin estimated mean and relative standard deviation in the radial cross-section at Z30

for IBE coupling study in PWR core.
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Results for H3D
f

• Histograms
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Figure E.9: H3D
f estimated histograms for IBE coupling study in PWR core.
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• Y1 cross-section

0e+00

2e+04

4e+04

6e+04

8e+04

 2
e+

04
 

 4
e+

04
 

 6e+04 

 8e+04 

J
/
k
g

(a) Mean

16.5

17.0

17.5

18.0

 16.5 

 1
6.

5 

 17 

 17
 

 17.5 

 18 

%

(b) Relative standard deviation

Figure E.10: H3D
f estimated mean and relative standard deviation in the axial cross-section at Y 1

for IBE coupling study in PWR core.

• Z1 cross-section
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Figure E.11: H3D
f estimated mean and relative standard deviation in the radial cross-section at

Z1 for IBE coupling study in PWR core.
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• Y3 cross-section
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Figure E.12: H3D
f estimated mean and relative standard deviation in the axial cross-section at Y 3

for IBE coupling study in PWR core.

• Z15 cross-section
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Figure E.13: H3D
f estimated mean and relative standard deviation in the radial cross-section at

Z15 for IBE coupling study in PWR core.

213



• Y8 cross-section
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Figure E.14: H3D
f estimated mean and relative standard deviation in the axial cross-section at Y 8

for IBE coupling study in PWR core.

• Z30 cross-section
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Figure E.15: H3D
f estimated mean and relative standard deviation in the radial cross-section at

Z30 for IBE coupling study in PWR core.
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Results for W 3D
f

• Histograms
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Figure E.16: W 3D
f estimated histograms for IBE coupling study in PWR core.
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• Y1 cross-section
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Figure E.17: W 3D
f estimated mean and relative standard deviation in the axial cross-section at Y 1

for IBE coupling study in PWR core.

• Z1 cross-section
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Figure E.18: W 3D
f estimated mean and relative standard deviation in the radial cross-section at

Z1 for IBE coupling study in PWR core.
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• Y3 cross-section
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Figure E.19: W 3D
f estimated mean and relative standard deviation in the axial cross-section at Y 3

for IBE coupling study in PWR core.

• Z15 cross-section
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Figure E.20: W 3D
f estimated mean and relative standard deviation in the radial cross-section at

Z15 for IBE coupling study in PWR core.
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• Y8 cross-section
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Figure E.21: W 3D
f estimated mean and relative standard deviation in the axial cross-section at Y 8

for IBE coupling study in PWR core.

• Z30 cross-section
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Figure E.22: W 3D
f estimated mean and relative standard deviation in the radial cross-section at

Z30 for IBE coupling study in PWR core.
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Results for H3D
gap

• Histograms
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Figure E.23: H3D
gap estimated histogram for IBE coupling study in PWR core.
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• Y1 cross-section
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Figure E.24: H3D
gap estimated mean and relative standard deviation in the axial cross-section at Y 1

for IBE coupling study in PWR core.

• Z1 cross-section
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Figure E.25: H3D
gap estimated mean and relative standard deviation in the radial cross-section at

Z1 for IBE coupling study in PWR core.
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• Y3 cross-section
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Figure E.26: H3D
gap estimated mean and relative standard deviation in the axial cross-section at Y 3

for IBE coupling study in PWR core.

• Z15 cross-section
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Figure E.27: H3D
gap estimated mean and relative standard deviation in the radial cross-section at

Z15 for IBE coupling study in PWR core.
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• Y8 cross-section
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Figure E.28: H3D
gap estimated mean and relative standard deviation in the axial cross-section at Y 8

for IBE coupling study in PWR core.

• Z30 cross-section
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Figure E.29: H3D
gap estimated mean and relative standard deviation in the radial cross-section at

Z30 for IBE coupling study in PWR core.
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Results for D3D
w

• Histograms
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Figure E.30: D3D
w estimated histograms for IBE coupling study in PWR core.
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• Y1 cross-section
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Figure E.31: D3D
w estimated mean and relative standard deviation in the axial cross-section at Y 1

for IBE coupling study in PWR core.

• Z1 cross-section
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Figure E.32: D3D
w estimated mean and relative standard deviation in the radial cross-section at

Z1 for IBE coupling study in PWR core.
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• Y3 cross-section
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Figure E.33: D3D
w estimated mean and relative standard deviation in the axial cross-section at Y 3

for IBE coupling study in PWR core.

• Z15 cross-section
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Figure E.34: D3D
w estimated mean and relative standard deviation in the radial cross-section at

Z15 for IBE coupling study in PWR core.

225



• Y8 cross-section

7.435e+02

7.440e+02

7.445e+02

7.450e+02

7.455e+02

7.460e+02

7.465e+02

 7
.4

4e
+0

2 

 7.44e+02 

 7
.4

45
e+

02
 

 7
.4

45
e+

02
 

 7
.4

5e
+

02
 

 7
.4

5e
+0

2 

 7
.4

5e
+0

2 

 7
.4

5e
+0

2 

 7.455e+02 

 7.46e+02 

 7.465e+02 

k
g
/
m

3

(a) Mean

0.00

0.02

0.04

0.06

 0
.0

2 

 0
.0

4 

 0
.0

4 

 0
.0

6 

 0.06 

%

(b) Relative standard deviation

Figure E.35: D3D
w estimated mean and relative standard deviation in the axial cross-section at Y 8

for IBE coupling study in PWR core.

• Z30 cross-section
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Figure E.36: D3D
w estimated mean and relative standard deviation in the radial cross-section at

Z30 for IBE coupling study in PWR core.
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For P 3D
lin we observe similar non normal pdf for all the histograms of the considered radial cross-

sections. The axial cross-sections Y 1 and Y 3 close to the location of the control rod ejection show
similar mean distribution as in Section 4.7.2 with lower maximum value since they are farther
from the local maximum. The value is higher for Y 1 than Y 3. This can be explained by the
re�ector e�ect. At Y 8 cross-section the estimated mean has values of one order of magnitude
lower with a distribution that is impacted strongly by the re�ector and the burn-up. The relative
standard deviation distribution of the axial cross-sections is similar to Section 4.7.2. Concerning
the radial cross-sections the mean distribution remains the same. Compared to Section 4.7.2 the
estimated values vary from two orders of magnitudes lower for Z1, one order of magnitude for Z15
and similar order of magnitudes for Z30. The relative standard deviation distribution varies from
almost constant at the bottom of the core to the distribution of Section 4.7.2 at the top.

For H3D
f we observe similar normal pdf for all the histograms of the examined radial cross-section.

The conclusions drawn for H3D
f follow the ones of P 3D

lin . The axial cross-sections Y 1 and Y 3 close
to the location of the control rod ejection show similar mean distribution as in Section 4.7.2 with
lower maximum value since they are farther from the local maximum. The value is higher for
Y 1 than Y 3 attributed to the re�ector presence. At Y 8 cross-section the mean has values of one
order of magnitude lower than Section 4.7.2 with a distribution that is impacted strongly by the
re�ector. The radial cross-sections compared to Section 4.7.2 show similar mean distribution with
values that vary from two orders of magnitudes lower for Z1, one order of magnitude for Z15 and
similar order of magnitudes for Z30. The relative standard deviation distributions for both axial
cross-sections are similar to Section 4.7.2.

For W 3D
f we observe a di�erent behavior in some histograms. This happens for meshes farther

from the control rod ejection location, especially for their values at low quantiles. This can be
attributed to the fact that W 3D

f is the only quantity for which we decreased the PCA variance
representation to 85%. It is quite possible that to capture correctly the behavior at locations
far from the ejection location we need higher variance representation and thus more principal
components. The distributions of mean and relative standard deviation on the di�erent cross-
sections depend strongly on both the burn-up and the power. In cross-section Y 1 where all the
assemblies have similar burn-up we clearly see only the impact of the power. By inspecting the
other cross-sections we observe that in the meshes close to the control rod ejection, where the
power is high, there is an impact of the burn-up as well. As we move farther from the control rod
ejection location we see that the power impact is mainly driven by the re�ector presence. This
means that for assemblies of similar burn-up the ones closer to the re�ector have higher mean and
relative standard deviation than the ones closer to the control rod ejection location. It is easier to
see this behavior in Y 8 and Z30 cross-sections where the assemblies with high burn-up (45GWd/t)
and closer to the re�ector have the highest mean and relative standard deviation. The assemblies
towards the center of the core with similar or higher burn-up and closer to the control rod ejection
location exhibit lower mean and relative standard deviation. In general we can conclude that for
the mean value distribution the power is more important than the burn-up but for the relative
standard deviation the burn-up is more signi�cant.

For the H3D
gap histograms an interesting behavior is observed. While in most of the meshes the pdf

are close to normal for few meshes close to the control rod ejection location this is not the case.
This behavior is observed in assemblies with high power and high burn-up (above 30GWd/t). This
could be attributed to the impact of the Hgap model initial conditions uncertainty Hg,i. Uniform
pdf is used for Hg,i and their impact increases with burn-up since the gap width is smaller. This
creates the strongly non normal pdf. The distributions of mean and relative standard deviation on
the di�erent cross-sections similarly to W 3D

f depend strongly on both the burn-up and the power.
In cross-section Y 1 where all the assemblies have similar burn-up we clearly see only the impact
of the power. From the rest cross-sections we conclude that in the meshes close to the control rod
ejection, where the power is high, the impact of both burn-up and the power. In general we can
conclude that the burn-up e�ect is stronger than the power due to the Hg,i increasing impact.

For D3D
w we observe similar close to normal pdf for all the histograms of the examined radial

cross-section. The mean and relative standard deviation follow an expected behavior similar to
Section 4.7.2 results. The density decreases axially as the coolant extracts heat from the core with
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minimum value at the top axial slice. We see that the D3D
w behavior follows the P 3D

lin . This is
due to the fact that the coolant heating by gamma deposition is stronger than by the heat �ux
reaching the cladding external surface. In the location of higher P 3D

lin the density decreases faster.
The relative standard deviation is very small for all the cross-sections.
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Appendix F

Complementary results for PWR

IBE coupling with 3D

thermal-hydraulic �ner discretized

channels

In Section 4.7.4 we presented uncertainty quanti�cation results for the Improved Best Estimate
(IBE) modeling with 3D �ows and �ner thermal-hydraulics channels. We focused on the analysis
of 3D �elds for the following identi�ed outputs of interest:

• Linear power P 3D
lin at the instance of its local maximum.

• Stored enthalpy in the fuel H3D
f at the instance of its local maximum.

• Cladding wall heat �ux W 3D
f at the instance of its local maximum.

• Gap heat transfer H3D
gap at the instance of its local maximum.

• Coolant density D3D
w at the instance of its local minimum.

The 3D �elds are di�cult to visualize and for this reason in Section 4.7.4 two cross-sections were
presented for each output: the radial and axial cross-sections at the position of the local maximum
(or minimum). For these cross-section the mean and relative standard deviation distributions were
calculated for these cross-sections. In this Section we present a larger variety of results. For each
functional 3D output we provide the result for the mean and standard deviation distributions at
6 di�erent cross-sections. Axially we focus on three cross-sections along the Y axis similar to the
locations presented in �gure E.1. The only di�erence is that now we have four channels for each
assembly. Two cross-section around the location of the maximum linear power (Y 2) at Y 1 and Y 3
and one cross-section at the center of the core (Y 16). Radially we focus on three cross-sections
along the Z axis at the bottom (Z1), middle (Z15) and top (Z30) axial slices. First we present all
the results and afterwards at the end we analyze them.
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Results for P 3D
lin

• Y1 cross-section
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Figure F.1: P 3D
lin estimated mean and relative standard deviation in the axial cross-section at Y 1

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.

• Z1 cross-section
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Figure F.2: P 3D
lin estimated mean and relative standard deviation in the radial cross-section at Z1

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.

230



• Y3 cross-section
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Figure F.3: P 3D
lin estimated mean and relative standard deviation in the axial cross-section at Y 3

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.

• Z15 cross-section
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Figure F.4: P 3D
lin estimated mean and relative standard deviation in the radial cross-section at Z15

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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• Y16 cross-section
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Figure F.5: P 3D
lin estimated mean and relative standard deviation in the axial cross-section at Y 16

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.

• Z30 cross-section

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

 1e+05 

 1e+05 

 2e+05 

 3e+05 

 4e+05 

 5e+05 

 6e+05 

W
/
m

(a) Mean

52

53

54

55

56

 52 

 53 

 54 

 54 

 54 

 55 

 55 

 55 

 56 

%

(b) Relative standard deviation

Figure F.6: P 3D
lin estimated mean and relative standard deviation in the radial cross-section at Z30

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Results for H3D
f

• Y1 cross-section
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Figure F.7: H3D
f estimated mean and relative standard deviation in the axial cross-section at Y 1

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Figure F.8: H3D
f estimated mean and relative standard deviation in the radial cross-section at Z1

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.

233



• Y3 cross-section
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Figure F.9: H3D
f estimated mean and relative standard deviation in the axial cross-section at Y 3

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Figure F.10: H3D
f estimated mean and relative standard deviation in the radial cross-section at

Z15 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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• Y16 cross-section
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Figure F.11: H3D
f estimated mean and relative standard deviation in the axial cross-section at Y 16

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Figure F.12: H3D
f estimated mean and relative standard deviation in the radial cross-section at

Z30 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Results for W 3D
f

• Y1 cross-section
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Figure F.13: W 3D
f estimated mean and relative standard deviation in the axial cross-section at Y 1

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Figure F.14: W 3D
f estimated mean and relative standard deviation in the radial cross-section at

Z1 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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• Y3 cross-section

0e+00

2e+05

4e+05

6e+05

8e+05

 2e+05 

 4e+05 

 6e+05 

 8e+05 

W
/
m

2

(a) Mean

20

25

30

35

 20 

 20 

 25 

 25 

 2
5 

 30 

 30 

%

(b) Relative standard deviation

Figure F.15: W 3D
f estimated mean and relative standard deviation in the axial cross-section at Y 3

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Figure F.16: W 3D
f estimated mean and relative standard deviation in the radial cross-section at

Z15 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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• Y16 cross-section
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Figure F.17: W 3D
f estimated mean and relative standard deviation in the axial cross-section at

Y 16 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR
core.
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Figure F.18: W 3D
f estimated mean and relative standard deviation in the radial cross-section at

Z30 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Results for H3D
gap

• Y1 cross-section
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Figure F.19: H3D
gap estimated mean and relative standard deviation in the axial cross-section at Y 1

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.

• Z1 cross-section
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Figure F.20: H3D
gap estimated mean and relative standard deviation in the radial cross-section at

Z1 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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• Y3 cross-section

5.0e+03

1.0e+04

1.5e+04

2.0e+04

2.5e+04

 5
e+

03
  5e+

03  5
e+

03
  5e+

03 

 1e+
04 

 1e+
04 

 1
e+

04
 

 1.5e+
04 

 1.5e+
04 

 2
e+

04
 

 2
e+

04
 

 2
.5

e+
04

 

 2.5e+
04 

W
/
m

2
K

(a) Mean

10

15

20

25

30

 15 

 20 

 20 

 2
5 

 2
5 

 30 

 3
0 

%

(b) Relative standard deviation

Figure F.21: H3D
gap estimated mean and relative standard deviation in the axial cross-section at Y 3

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Figure F.22: H3D
gap estimated mean and relative standard deviation in the radial cross-section at

Z15 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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• Y16 cross-section
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Figure F.23: H3D
gap estimated mean and relative standard deviation in the axial cross-section at Y 16

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.

• Z30 cross-section
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Figure F.24: H3D
gap estimated mean and relative standard deviation in the radial cross-section at

Z30 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Results for D3D
w

• Y1 cross-section
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Figure F.25: D3D
w estimated mean and relative standard deviation in the axial cross-section at Y 1

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Figure F.26: D3D
w estimated mean and relative standard deviation in the radial cross-section at

Z1 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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• Y3 cross-section
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Figure F.27: D3D
w estimated mean and relative standard deviation in the axial cross-section at Y 3

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Figure F.28: D3D
w estimated mean and relative standard deviation in the radial cross-section at

Z15 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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• Y16 cross-section
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Figure F.29: D3D
w estimated mean and relative standard deviation in the axial cross-section at Y 16

for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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Figure F.30: D3D
w estimated mean and relative standard deviation in the radial cross-section at

Z30 for IBE with 3D and �ner discretized thermal-hydraulic channels coupling study in PWR core.
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In general for all the 3D �elds one main di�erence arises from the fact that Y 3 is at an assembly
that is di�erent from the one identi�ed in Appendix E due to the �ner discretization. We cannot
thus make comparisons for this cross-section.

from investigating all the other cross-sections we can conclude that for all the 3D �elds there is no
signi�cant impact of the 3D thermal-hydraulics modeling with �ner radial discretization. The only
main impact is at the cross-section of the maximum linear power that was presented in Section
4.7.4.

What is interesting is the fact the we managed to include large 3D �elds in our Uncertainty
Quanti�cation Methodology. The are a total of 23160 meshes in each �eld increasing the di�culty
of their treatment. As we are entering a world of Big Data and Machine Learning many perspectives
open for the handling of such 3D �elds. However, maybe the most important is �rst to assess in
which situations we really need such large �elds and what new can they bring on the table for
industrial applications.
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Résumé

Durant les dernières décennies, l'évolution de la puissance de calcul a conduit au développement de
codes de simulation en physique des réacteurs de plus en plus prédictifs pour la modélisation du
comportement d'un réacteur nucléaire en situation de fonctionnement normal et accidentel. Quand
les phénomènes physiques les plus importants sont modélisés avec des approximations et hypothèses
maitrisées, les modélisations sont quali�és Best Estimate (BE). Le caractère BE implique la prise
en compte des sources d'incertitudes sous la forme de biais et de variance. Un cadre d'analyse
d'incertitudes cohérent avec l'utilisation de modélisations BE a été développé pour bien prendre en
compte ces incertitudes. On parle d'approche Best Estimate Plus Uncertainties (BEPU) et cette ap-
proche donne lieu à de nombreux travaux de R&D à l'international en simulation numérique. L'étude
BEPU d'un transitoire multi-physique avec fort couplage comporte de nombreux dé�s tant en modéli-
sation physique qu'en analyse d'incertitudes. Les plus importants sont: les augmentations du temps
de calcul et du nombre d'entrées-sorties associées au couplage multi-physique BE, les dépendances et
interactions entre les entrées et les non-linéarités de comportement des sorties.

Dans cette thèse, on étudie la quanti�cation d'incertitudes multi-physiques dans le cas d'un transitoire
d'Éjection de Grappe de contrôle (REA- Rod Ejection Accident) dans un Réacteur à Eau Pressurisée
(REP). Il s'agit d'un transitoire avec de forts e�ets de couplage entre les comportements neutronique,
thermohydraulique et thermique du combustible. La modélisation BE actuellement disponible au CEA
est réalisée en couplant les codes APOLLO3 R© (netronique) et FLICA4 (thermohydraulique-thermique
du combustible) dans l'environnement SALOME/CORPUS.

Dans la première partie de la thèse, on examine di�érents outils statistiques disponibles dans la lit-
térature scienti�que dont la réduction de dimension, l'analyse de sensibilité globale, des modèles de
substitution et la construction de plans d'expérience. On utilise ces outils pour aborder certains de ces
dé�s prélistés pour �nalement développer une méthodologie de quanti�cation d'incertitudes pour une
modélisation multi-physique BE d'un transitoire REA. On met l'accent sur deux points: la prise en
compte des sorties fonctionnelles et la réduction de la dimension des entres pour faciliter la construction
des modèles de substitution. Pour le premier point, des indices Shapley agrégés ont été utilisés pour
l'analyse de sensibilité globale. Pour le deuxième, deux méthodes ont été développées. La première
méthode a pour but d'identi�er des sous-espaces des entrées importants par rapport aux di�érents
sorties d'intérêt, basée sur des mesures de dépendance (indices HSIC). La deuxième méthode optimise
des plans d'expérience space-�lling dans l'espace complet des entrées et des sous-espaces important
identi�és par la méthode précédente. Les modèles de substitution sont construits dans ces sous-espaces
en incluant l'erreur de la réduction de dimension dans leur erreur d'approximation.

Dans la deuxième partie de la thèse, on améliore la modélisation du comportement du combustible.
Un couplage Best E�ort pour la simulation d'un transitoire REA est disponible au CEA. Il comprend
le code ALCYONE V1.4 qui permet une modélisation �ne du comportement thermomécanique du
combustible. Cependant, l'utilisation d'une telle modélisation conduit à une augmentation signi�cative
du temps de calcul du transitoire REA ce qui rend actuellement di�cile la réalisation d'une analyse
d'incertitudes à partir d'une approche Best E�ort. Pour cela, une méthodologie de calibrage d'un
modèle analytique simpli�é pour le transfert de chaleur pastille-gaine (Hgap) basée sur des calculs
ALCYONE V1.4 découplés a été développée. L'incertitude du modèle est quanti�ée basée sur l'erreur
de calibrage en prenant en compte l'incertitude de l'état initial. Le modèle calibré est �nalement
intégré dans la modélisation BE pour améliorer sa prédictivité sans augmenter le temps de calcul.
Cette modélisation est appelée IBE (Improved Best Estimate).

Les deux méthodologies développées sont maquettées initialement sur un c÷ur de petite échelle représen-
tatif d'un REP puis appliquées sur un c÷ur REP à l'échelle 1 dans le cadre d'une analyse multi-physique
d'un transitoire REA. Les conclusions des applications montrent que les entrées dominantes sont les



paramètres neutroniques: sections e�caces et fraction e�ective des neutrons retardés. L'écart à la crise
d'ébullition est très sensible à la modélisation du Hgap. En améliorant sa modélisation et sa quan-
ti�cation d'incertitudes entre BE et IBE, l'importance du Hgap est fortement diminuée. Finalement,
on a utilisé la modélisation IBE pour propager les incertitudes et e�ectuer une analyse de sensibilité
globale sur des sorties fonctionnelles 3D.

Mots-clés: Quanti�cation d'incertitudes, Couplage Multi-Physique, Éjection de Grappe (REA), Best
Estimate Plus Uncertainty (BEPU)
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Plus Uncertainty (BEPU)

Résumé : Durant les dernières décennies, l’évolution
de la puissance de calcul a conduit au développement
de codes de simulation en physique des réacteurs
de plus en plus prédictifs pour la modélisation du
comportement d’un réacteur nucléaire en situation
de fonctionnement normal et accidentel. Un cadre
d’analyse d’incertitudes cohérent avec l’utilisation de
modélisations Best Estimate (BE) a été développé.
On parle d’approche Best Estimate Plus Uncertain-
ties (BEPU) et cette approche donne lieu à de
nombreux travaux de R&D à l’international en si-
mulation numérique. Dans cette thèse, on étudie
la quantification d’incertitudes multi-physiques dans
le cas d’un transitoire d’Éjection de Grappe de
contrôle (REA- Rod Ejection Accident) dans un
Réacteur à Eau Pressurisée (REP). La modélisation
BE actuellement disponible au CEA est réalisée en
couplant les codes APOLLO3 R© (netronique) et
FLICA4 (thermohydraulique-thermique du combus-
tible) dans l’environnement SALOME/CORPUS. Dans
la première partie de la thèse, on examine différents
outils statistiques disponibles dans la littérature scien-
tifique dont la réduction de dimension, l’analyse de

sensibilité globale, des modèles de substitution et la
construction de plans d’expérience. On utilise ces
outils pour développer une méthodologie de quan-
tification d’incertitudes. Dans la deuxième partie de
la thèse, on améliore la modélisation du comporte-
ment du combustible. Un couplage Best Effort pour
la simulation d’un transitoire REA est disponible au
CEA. Il comprend le code ALCYONE V1.4 qui per-
met une modélisation fine du comportement ther-
momécanique du combustible. Cependant, l’utilisa-
tion d’une telle modélisation conduit à une augmen-
tation significative du temps de calcul ce qui rend ac-
tuellement difficile la réalisation d’une analyse d’in-
certitudes. Pour cela, une méthodologie de calibrage
d’un modèle analytique simplifié pour le transfert de
chaleur pastille-gaine basé sur des calculs ALCYONE
V1.4 découplés a été développée. Le modèle calibré
est finalement intégré dans la modélisation BE pour
améliorer sa prédictivité. Ces deux méthodologies
sont maquettées initialement sur un cœur de petite
échelle représentatif d’un REP puis appliquées sur un
cœur REP à l’échelle 1 dans le cadre d’une analyse
multi-physique d’un transitoire REA.
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Abstract : The computational advancements of the
last decades lead to the development of numerical
codes for simulating the reactor physics with increa-
sing predictivity allowing the modeling of the beha-
vior of a nuclear reactor under both normal and acci-
dental conditions. An uncertainty analysis framework
consistent with Best Estimate (BE) codes was develo-
ped in order to take into account the different sources
of uncertainties. This framework is called Best Esti-
mate Plus Uncertainties (BEPU) and is currently a
field of increasing research internationally. In this the-
sis we study the multi-physics uncertainty quantifi-
cation for Rod Ejection Accident (REA) in Pressuri-
zed Water Reactors (PWR). The BE modeling avai-
lable in CEA is used with a coupling of APOLLO3
R© (neutronics) and FLICA4 (thermal-hydraulics and
fuel-thermal) in the framework of SALOME/CORPUS
tool. In the first part of the thesis, we explore different
statistical tools available in the scientific literature in-

cluding: dimension reduction, global sensitivity analy-
sis, surrogate modeling and design of experiments.
We then use them in order to develop an uncer-
tainty quantification methodology. In the second part
of the thesis, we improve the BE modeling in terms of
its uncertainty representation. A Best Effort coupling
scheme for REA analysis is available at CEA. This in-
cludes ALCYONE V1.4 code for a detailed modeling
of fuel-thermomechanics behavior. However, the use
of such modeling increases significantly the compu-
tational cost for a REA transient rendering the uncer-
tainty analysis prohibited. To this purpose, we deve-
lop a methodology for calibrating a simplified analytic
gap heat transfer model using decoupled ALCYONE
V1.4 REA calculations. The calibrated model is finally
used to improve the previous BE modeling. Both de-
veloped methodologies are tested initially on a small
scale core representative of a PWR and then applied
on a large scale PWR core.
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