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Résumé - Abstract

Résumé. Les algebres £, ,,(H) ont été introduites par Alekseev-Grosse-Schomerus et Buffenoir—
Roche au milieu des années 1990, dans le cadre de la quantification combinatoire de l'espace de
modules des G-connexions plates sur la surface X, de genre g avec n disques ouverts enlevés.
L’algebre de Hopf H, appelée algebre de jauge, était a l'origine le groupe quantique U,(g), avec
g = Lie(G). Dans cette these nous appliquons les algebres £, ,,(H) a la topologie en basses dimensions
(groupe de difféotopie et algebres d’écheveaux des surfaces), sous I'hypotheése que H est une algebre de
Hopf de dimension finie, factorisable et enrubannée mais pas nécessairement semi-simple, 'exemple
phare d’une telle algebre de Hopf étant le groupe quantique restreint U,(sly) (olt ¢ est une racine
2p-ieme de 'unité).

D’abord, nous construisons en utilisant £,,,(H) une représentation projective des groupes de
difféotopie de X, 0\ D et de X, (ot D est un disque ouvert). Nous donnons des formules pour les
représentations d'un ensemble de twists de Dehn qui engendre le groupe de difféotopie; en particulier
ces formules nous permettent de montrer que notre représentation est équivalente a celle construite
par Lyubashenko-Majid et Lyubashenko wvia des méthodes catégoriques. Pour le tore X; avec
I'algebre de jauge U,(sly), nous calculons explicitement la représentation de SLy(Z) en utilisant une
base convenable de I'espace de représentation et nous en déterminons la structure.

Ensuite, nous introduisons une description diagrammatique de £, ,,(H) qui nous permet de définir
de fagon tres naturelle 'application boucle de Wilson W. Cette application associe un élément de
L,.(H) a chaque entrelac dans (X,,\ D) x [0,1] qui est parallélisé, orienté et colorié par des H-
modules. Quand l'algebre de jauge est H = Uq(slg), nous utilisons W et les représentations de
Ly, (H) pour construire des représentations des algebres d’écheveaux S,(%,,). Pour le tore 3
nous étudions explicitement cette représentation.

Abstract. The algebras L,,(H) have been introduced by Alekseev—Grosse-Schomerus and
Buffenoir—-Roche in the middle of the 1990’s, in the program of combinatorial quantization of the
moduli space of flat G-connections over the surface >, ,, of genus g with n open disks removed. The
Hopf algebra H, called gauge algebra, was originally the quantum group U,(g), with g = Lie(G). In
this thesis we apply these algebras L,,,(H) to low-dimensional topology (mapping class groups and
skein algebras of surfaces), under the assumption that H is a finite dimensional factorizable ribbon
Hopf algebra which is not necessarily semisimple, the guiding example of such a Hopf algebra being
the restricted quantum group U, (sly) (where g is a 2p-th root of unity).

First, we construct from L,,(H) a projective representation of the mapping class groups of
Y,0\D and of ¥, (D being an open disk). We provide formulas for the representations of Dehn
twists generating the mapping class group; in particular these formulas allow us to show that our
representation is equivalent to the one constructed by Lyubashenko-Majid and Lyubashenko via
categorical methods. For the torus ;o with the gauge algebra U,(sly), we compute explicitly the
representation of SLy(7Z) using a suitable basis of the representation space and we determine the
structure of this representation.

Second, we introduce a diagrammatic description of £, ,,(H) which enables us to define in a very
natural way the Wilson loop map W. This map associates an element of £, ,,(H) to any link in
(X4, \D) x [0, 1] which is framed, oriented and colored by H-modules. When the gauge algebra is
H = U,(sly), we use W and the representations of £,,,(H) to construct representations of the skein
algebras S,(3,,). For the torus ¥ o we explicitly study this representation.
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Chapter 1

Introduction

1.1 Introduction en francais

Soit ¥, , une surface compacte orientée de genre g avec n disques ouverts enlevés. “L’algebre de
graphe” L, a été introduite et étudiée par Alekseev [Ale94], Alekseev—Grosse-Schomerus [AGS95,
AGS96] et Buffenoir-Roche [BR95, BR96] au milieu des années 1990, dans le cadre de la quantification
combinatoire de I'espace de modules des connexions plates sur >, ,. C’est une algebre associative
(non commutative) définie par générateurs et relations, les relations étant données sous une forme
matricielle. Le theme principal de cette these est d’appliquer ces algebres a la construction de
représentations quantiques des groupes de difféotopie et des algebres d’écheveaux des surfaces aux
racines de l'unité.

Dans la section 1.1.1 ci-dessous, nous expliquons le contexte et les idées de la quantification
combinatoire et la définition de l'algebre L,,. Puis de la section 1.1.2 a la section 1.1.5 nous
énongons et expliquons nos principaux résultats. Enfin, la section 1.1.6 contient des conjectures et
problemes qui peuvent étre le point de départ d’autres travaux.

1.1.1 Quantification combinatoire

Nous rappelons rapidement les principaux ingrédients de la quantification combinatoire. Soit G' un
groupe de Lie algébrique (généralement supposé connexe et simplement connexe, par exemple G =
SLy(C)) et 3, ,, une surface compacte orientée de genre g avec n disques ouverts enlevés. On considere
espace de modules des G-connexions plates M, = A;/G, ot A = Q'(2,,,,9) est identifié avec
I'espace de toutes les G-connexions, Ay est le sous-espace des connexions plates, et G = C°(%,,,, G)
est le groupe de jauge. Ces objets peuvent étre décrits de fagon discrete et combinatoire, en utilisant
les holonomies le long des arétes d’un graphe remplissant. Il s’agit d'un graphe orienté plongé sur
Yyn (ses sommets v € V sont des points de X ,, et ses arétes e € E sont des courbes simples
orientées sur ¥ ., qui relient deux sommets et qui ne se croisent pas entre elles) tel que 3,,\I" est
une réunion de disques ouverts. Soit A; = GF. Un élément de A, est appelé une connexion discrete;
il doit étre pensé comme la collection (h.)ecr des holonomies d’une connexion le long des arétes de
[. Siy=(ey,...,ex) est un chemin dans I', on définit I'holonomie discrete d’une connexion discrete
(he)ecr le long v comme étant le produit he, ...he,. Une connexion discrete est dite plate si son
holonomie le long de toute face du graphe vaut 1. Ceci donne ’ensemble Ay C Ay des connexions
discretes plates. Enfin, le groupe de jauge G agit par conjugaison sur ’holonomie le long d’une courbe
d’une connexion dans A. Ainsi, nous définissons le groupe de jauge discret comme étant G; = GV et
son action sur les connexions discrétes est (hy)vev - (he)ecr = (he-heh ), olt e est le point de départ
de e et ™ est son point d’arrivée. Un résultat connu affirme que Aq/Gy = Hom(m1(%,,), G)/G (en
principe le quotient est a considérer dans le cadre de la théorie géométrique des invariants (quotient
GIT), mais ici la discussion est informelle). Donc cette construction est équivalente a la variété des
caracteres, qui est un modele pour M, ,,. Pour plus d’informations sur l'espace de modules et sa
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Chapter 1. Introduction

description combinatoire, une référence accessible est [Labl13]. Cette description est aussi appelée
une théorie de jauge discrete, cf. [BFK98a].

L’espace de modules A;/G est muni de la structure de Poisson d’Atiyah-Bott-Goldman [AB83,
Gol86], c’est-a-dire qu'on a un crochet de Poisson sur I'algebre des fonctions C[A;/G] = C[Af]9. La
structure de Poisson correspondante sur la discrétisation Ay /Gy a été décrite par Fock-Rosly [FR93];
c’est un crochet de Poisson définit de fagon matricielle sur 'algebre des fonctions C[A4] et qui induit
un crochet de Poisson sur C[Ag]% (ou le groupe de jauge agit a droite sur les fonctions de fagon
évidente). L’algebre £, , est une quantification de C[A4]. Nous n’avons pas besoin de détailler plus
ce fait puisque nous ne l'utilisons pas dans cette these. Dans la suite, nous expliquons simplement
'analogie entre L, ,, et C[A4].

Ici nous utiliserons toujours le graphe I' = I'y,, C X, qui a un seul sommet et dont les arétes
forment un systeme de générateurs du groupe fondamental :

Fg,n = ({.}a {bh aiy ..., bg7 Qg, Mg41; - - - 7mg+n})‘

Il est représenté ci-dessous :

[

On a 3,,\I';,, = D, ou D est un disque ouvert. Ainsi, le voisinage tubulaire fermé de I';,, est
homéomorphe a ¥, ,\ D :

[mg+n]

ol [z] dénote la classe d’homotopie libre de x € m(X,,\ D). L'unique face du graphe I'y,, est la
courbe induite par la suppression de D :

11 —1p—1
Cgn = bra; b7 ay .. .bgag bg AgMgit - - Mgin.

Avec ce choix de graphe, une connexion discrete Ay € Ay associe un élément de G a chaque générateur
de m(X,,\ D), et peut donc étre identifiée avec une liste d’éléments de G :

Ag = (hoy hayy oo oy By b Ningyn) € GP9H.

Mg419 9 P Mgyn

Une connexion discrete plate A; € Age associe un élément de G a chaque générateur de m(%,,,) =
T1(Zgn \D)/(cgn). 1l sagit d'une liste (hoy, hays- - -, o, hay, b Py, ) d’éléments de G qui
vérifie que

Mgt1°*

Hol(Ad, ¢gn) = by bty by -y ity B

al ag

P, = 1. (1.1)

Mg+1 *** ""Mg4n
Le groupe de jauge discret est simplement G; = G (puisque V' = {e}). L’action de h € G sur une
connexion discrete se fait par conjugaison :
B (hoys hays - By hayy g1y - s By )
= (hhy,h ™" hho, h™Y o Ry B By B Rby, BT R, BT,



1.1. Introduction en francais

En d’autres termes :

Ad == HOIH(Tﬁ(Eg’n\D), G), Adf - HOIH(TH(EQW), G)7
Ad/gd = Hom(m(Eg,n\D), G)/G, Adf/gd = Hom(m(Eg,n), G) /G,

et on retrouve la variété des caracteres.

Il est pertinent pour la suite de décrire ’algébre commutative des fonctions C[Ay] = C[G]®(29+7)
en termes de matrices (ou C[G] est I'algebre des fonctions sur G). Soit V' une représentation (de
dimension finie) de G avec une base (v;) et une base duale (v7). On rappelle que les coefficients

v v ,
matriciels de V' dans cette base sont 7% € C[G], définit par T%(h) = v'(h - v;). Ceci donne une
v v,
matrice T qui a ses coefficients dans C[G]. Les coefficients matriciels 7%, ou V' parcourt I'ensemble

vV v v
des G-modules de dimension finie, engendre linéairement C[G]. Définissons B(k), A(k), M(l) €
Mat dim(v) (C[Ad]) par

\%4 . V.
BE): (hogs Bays - s oy Bags g - s ngn) = T (B ),
\4 . V.
AR By s+ By g B s+« P ) = T (hay),

|4 . .
M) (hoys by, - by hagy Bang v - s Bing ) = T (B, ).

Les coefficients de ces matrices engendrent C[A,] en tant qu’algebre (V' parcourant I'ensemble des
G-modules de dimension finie). Le groupe de jauge G agit sur C[A4] a droite : (f - h)(z) = f(h-x).
En termes de matrices, ’action se fait par conjugaison :

1% Vv |4
VheG, UMk)-h=hUk)h™ (1.2)

vV v

ou h =T(h) est la représentation de h sur V et U est B, A ou M. Les fonctions invariantes forment
une sous-algebre, C[A,/G] = C[A4]%, et sont appelées observables (classiques) dans le contexte des
théories de jauge discretes. On a ainsi décrit C[A,4] de fagon matricielle.

Dans le but de quantifier la structure de Poisson de Fock—Rosly, Alekseev [Ale94], Alekseev—
Grosse—Schomerus [AGS95, AGS96] et Buffenoir-Roche [BR95, BR96] ont remplacé le groupe de Lie
G par un groupe quantique U,(g), avec g = Lie(G) (mentionnons tout de suite que d’un point de
vue purement algébrique on peut prendre n’importe quelle algebre de Hopf enrubannée a la place de
U,(g)). lls ont défini une algebre associative (non-commutative)

I I oI .
Lyn= C<B(k)§7 A(k)5, M(1); ‘ relations (R)>”J7k7l

I S S
qui est une déformation de C[Ay], engendrée par les variables B(k), A(k)}, M(1); ou I parcourt
maintenant ’ensemble des U,(g)-modules de dimension finie. Les relations (R) sont données sous
forme matricielle. Elles font intervenir la R-matrice de U,(g) et sont congues de sorte que L, est

un U,(g)-module-algebre a droite pour I'action

VheUa), Uk)-h=hUk)SH

qui est 'analogue de (1.2), S étant 'antipode de U,(g), A(h) = b’ ® h” le coproduit et U = B, A ou
M. En particulier, on a une sous-algebre des éléments invariants LL‘};’L, qui est I'analogue de la sous-
algebre des observables classiques C[A4]. Notons que £,,, est vraiment une algebre quantique de
fonctions, dans le sens qu’il est possible d’évaluer n’importe quel élément de £, ,, sur une connexion

discrete; ceci est discuté en détail dans les Remarques 4.1.9, 4.2.9 et dans la section 5.1.3.
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I1 est plus difficile de mettre en oeuvre 'analogue quantifié de la contrainte de platitude (1.1), a
savoir que pour tout [ :

1 I 1 I I I 1 I I

Cyn = BOAQL) B A(L)... B(g)A(g)"B(g) " A(g)M(g + 1) ... M(g+ 1) = Lymp.  (1.3)

)

I . )

En effet, il n’est pas possible de considérer le quotient Em" ((Cyn)s — 0%) 1,5, puisque les éléments
I

(Cy, n) — (5’ ne sont pas invariants. Il n’est pas non plus possible de quotienter toute ’algebre L,

(avant de se restreindre aux éléments invariants) car I'algeébre qui en résulte peut étre réduite a 0.

La mise en oeuvre de la contrainte de platitude, qui donne lieu a “I’algebre de modules” (qui est un

analogue quantique de C[A4/G]), differe selon les auteurs et leurs hypotheses sur I'algebre de jauge.

Par exemple :

e Dans [AGS95, AGS96, AS96al, I'algebre de jauge n’est pas U,(g) mais plutot une algebre de
Hopf modulaire (pensée comme une troncation semi-simple de U,(g), ol ¢ est une racine de
I'unité). Ils construisent des “projecteurs caractéristiques” grace aux bonnes propriétés de la
S-matrice dans le cadre modulaire et utilisent ces projecteurs pour définir I’algebre de modules
comme une sous-algebre de E;‘" (c’est-a-~dire le produit de [,mv par ces projecteurs).

° Dans [BNRO2], I’algebre de jauge est U,(g) avec ¢ générique. Ils considerent toutes les matri-
ces Y € Lyn ® Endc(7) (ou I n'est pas fixé) qui satisfont 1[/ ~h = é’EI/S(ﬁz”) (les produits
de B( ), jl( ),M (k) sont des exemples immédiats de telles matrices). La trace quantique
tr gY (C n— ]Idimg)) (ot g est 1’élément pivot) est un élément invariant et on peut con-

sidérer 'idéal Z C Em" engendré par toutes ces traces quantiques. Alors ils définissent ’algebre
de modules comme etant Em" v/Z. Cette construction est insuffisante quand I’ algebre de jauge
n’est pas semi-simple car dans ce cas il y a des invariants qui ne peuvent pas s’écrire sous la

I
forme tr (gX).

e Dans [MW15], 'algebre de jauge K est de dimension finie et semi-simple pour la construction
de 'algebre de modules. Ils utilisent une cointégrale bilatere de H (appelée intégrale de Haar
dans leur article, et dont I'existence est assurée par ces hypotheses sur K) pour construire
des projecteurs associés a chaque face du graphe I'. Ils définissent alors 'algebre de modules
comme 'image de 1’algebre des observables par ces projecteurs (ceci donne une sous-algebre de
I'algebre des observables, équivalente a celle de [AGS95, AGS96, AS96a]). Notons cependant
que le formalisme de leur article (qui contient une axiomatisation et une étude des théories de
jauge avec les algebres de Hopf) est différent de celui utilisé ici.

Une définition possible de 1'algebre de modules sous nos hypotheses sur l'algebre de jauge (qui
n’incluent pas la semi-simplicité) est donnée dans la section 1.1.2 ci-dessous.

En plus des articles déja mentionnés, ces algebres de fonctions quantifiées et leurs généralisations
apparaissent dans de nombreux travaux. Par exemple : [BFK98b] (définition d’une comultiplication
sur les connexions (duale au produit dans L, ,,, voir section 5.1.3), de I'holonomie et des boucles de
Wilson au moyen de multitangles, qui sont des transformations agissant sur le graphe I' et sur les
connexions discretes), [BZBJ18] (généralisation de £,,, dans un cadre catégorique avec I'homologie
de factorisation), [AGPS18] (étude de Ly avec la (super-) algebre de jauge U, (gl(1]1)) et de la
représentation de SLy(Z) associée), [GJS19] (variétés de caractéres quantifiées aux racines de 1'unité
et définition de 'algebre de modules via leur procédé de réduction Hamiltonienne quantique).

1Par exemple, sous nos hypotheses sur algebre de jauge détaillées ci-dessous, £1 o(H) est isomorphe & une algebre
de matrices sur C et son seul quotient possible est 0.
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Comme nous 'avons déja dit, la définition de L, est purement algébrique et n’importe quelle
algebre de Hopf enrubannée H peut jouer le role de ’algebre de jauge; ’algebre de graphe correspon-
dante sera notée L, ,(H). Dans cette these, nous supposons de plus que H est de dimension finie et
factorisable, mais pas nécessairement semi-simple. L’exemple phare d’une telle algebre de Hopf sera
pour nous le groupe quantique restreint Uq(ﬁ[g), noté Uq dans la suite; le Chapitre 3 est dédié aux
propriétés de U,

Nous présentons maintenant nos principaux résultats en détail.

1.1.2 Propriétés de £, ,(H), implémentation de la contrainte de platitude

Sous nos hypotheses sur H (dimension finie, factorisable, enrubannée), I’algebre de boucle Lo (H ) est
isomorphe a H (Proposition 4.1.8), I'algebre de anse £, ¢(H) est isomorphe au double d’Heisenberg
H(O(H)) et donc a une algebre de matrices sur C (Proposition 4.2.8), et I'isomorphisme d’Alekseev
reste vrai (Proposition 5.1.3) :

£071(H) = H, EL()(H) = H(O(H)) = El’ld(c(H*>, Eg,n(H) = ,CL()(H)@‘Q X £0’1(H)®n.
Il s’ensuit que les représentations indécomposables de L, ,,(H) sont de la forme
(HY oL ... oI,

ol H* est 'unique représentation indécomposable (et simple) de H(O(H)) = Endc(H*) et I, ..., 1,
sont des représentations de H.

Comme nous ne supposons pas que H est semi-simple, les définitions de ’algebre de modules
mentionnées plus haut ne peuvent pas étre utilisées. A la place, nous allons implémenter la con-

trainte de platitude au niveau des représentations : pour chaque représentation V' de L, (H ), nous
I
définissons un sous-espace Inv(V') par la condition que les matrices C,, agissent trivialement sur

Inv(V) :
Inv(V) = {v eV

I
\V/I, ngn DU = ]Idim(])v} .

Notons que la relation qui définit Inv(V') correspond géométriquement a recoller le disque D a X, ,,\D
(puisque la boucle ¢, qui engendre ker (m; (3, \ D) — m1(Z,,,)) est détruite).

En fait, le sous-espace Inv(V') est stable sous 'action de la sous-algebre des éléments invariants
L (H) -
g7n

Théoréme 5.2.6. 1) Un élément v € Ly, (H) est invariant sous Uaction de l'algébre de jauge H si,
I I
et seulement si, pour tout H-module I, Cy,x = xC,.

2) Soit V' une représentation de Ly, (H). AlorsInv(V') est stable sous laction des éléments invariants
et fournit donc une représentation de L)'y (H).

I
Les matrices C,, utilisées dans ce théoreme étaient déja dans [Ale94] (avec H = U,(g), ¢
générique), mais ici nous avons besoin de généraliser et d’adapter la construction des représentations
des éléments invariants a nos hypotheses sur H.

Quand (g,n) = (1,0), £ ,0(H) est isomorphe a une algebre de matrices et son unique représentation
indécomposable (et simple) est H*; dans ce cas, nous avons une représentation de Ly§(H) sur
Inv(H*) = SLF(H) (Théoreme 4.2.13), ou SLF(H) est 'algebre des formes linéaires symétriques sur
H:

SLF(H)={p e H" |VYz,y € H, p(zy) =¢(yx)}.

La définition de l'algebre de modules dans [AGS95, AGS96, AS96a, BNR02] requiert de mar-
quer les cercles de bord par des H-modules Iy,...,I,. Alors V = (H*)® @ [; ® ... ® I,, est une

11
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représentation de Ly, (H); soit pi, la représentation associée de L (H) sur Inv(V). L’algebre
Py (ﬁigf;(H )) implémente & la fois les contraintes d’invariance et de platitude. C’est donc un ana-
logue quantique de C[Ag/G] et c’est le candidat naturel pour la définition de I’algebre de modules
sous nos hypotheses sur H :

Myu(H L. 1) = pl™ @@t (pim py), (1.4)

inv

Cependant, nous n’aurons pas besoin de ’algebre de modules dans cette these. Ala place, 'objet
important pour nos desseins est la représentation Inv(V') de LI (H) (qui est aussi une représentation
de l'algebre de modules).

1.1.3 Représentations de groupes de difféotopie

Le groupe de difféotopie MCG(%, ,,) agit sur C[Hom(m (2,,), G)/G]| = C[Ag/G]. Dans les Chapitres
4 (cas du tore) et 5 (cas général), nous construisons ’analogue de cette représentation (pour n = 0)
basé sur L,0(H) et nous obtenons une représentation projective de MCG(X,0\ D) et surtout de
MCG(X,,0). Nous utilisons 'idée, proposée dans [AS96al, de remplacer les générateurs b;, a;, m; de

I I I
m1(X40\ D) par les matrices B(k), A(k), M(l) a coefficients dans L,0(H). De cette fagon, chaque
classe de difféotopie f € MCG(X, o\ D) peut étre vue comme un automorphisme de L, o(H ), noté f
et que nous appelons le relevé de f. En effet, f détermine un automorphisme de m1(X,0\ D) et en

remplagant les (classes d’homotopie des) boucles par des matrices on définit f (& une normalisation
pres, cf. Définition (5.3.9)). Grace aux isomorphismes de la section précédente

Loo(H) = L1o(H)® = H(O(H))™ = Endc((H")?),

et on obtient que £, (H) est une algebre de matrices, son unique représentation indécomposable (et
simple) étant (H*)®9. Il s’ensuit que tout automorphisme de L, o(H) est intérieur; en particulier,
a la classe de difféotopie f est associé un élément f € L,,(H), unique a scalaire pres, et tel que f
est la conjugaison par f Un tel élément fest H-invariant (Corollaire (5.3.17)). En représentant les
éléments [ sur (H*)®9 on obtient une représentation projective de MCG(X, 0\D) et en représentant les

éléments fsur Inv((H *)®9 ) on obtient une représentation projective de MCG(X, ), ce qui correspond
au fait que le disque D est “recollé” dans Inv ((H*)®).

Le cas du tore X est considéré en premier et a part car il mérite une attention particuliere. Le
résultat est énoncé comme suit :

Théoreme 4.3.7 (cas du tore). 1) L’affectation

Ta > p(vgl) ,  Tp > p(vgl)
ot p est la représentation de Lo(H) sur H*, définit une représentation 0P de MCG(X1\ D) sur
H.
2) L’affectation
-1 -1
Ta b7 ,OSLF(UA ) v Th PSLF(UB )

ot psLr est la représentation de llng(H) surInv(H*) = SLF(H), définit une représentation projective
6, de MCG(X10) = SLy(Z) sur SLF(H). Si de plus S(v0) = ¢ pour tout p € SLF(H), alors ceci
définit en réalité une représentation projective de PSLo(Z) = SLo(Z) /{£1L:}.

Les éléments v;l, v;l € ify‘g(H ) qui apparaissent dans le théoreme sont définis de la fagon suivante.
I, I.
Les coefficients (Aj) L (resp. (Bj) I,i,j) engendrent une sous-algebre de £, o(H) isomorphe a Lo 1 (H),
I
qui est lui-méme isomorphe & H. Donc on a un morphisme j4 : H — C<A}>”j C L1o(H) (resp.

I
jp: H — C<B§>“j C L1o(H)), et on définit v;' = ja(v™1) (resp. vz' = jp(v™1)) ot v est 'élément

12
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ruban de H. Ces éléments implémentent les relevés 7,, 7, des twists de Dehn 7,, 7, respectivement
(voir Figure 4.2): v,;' = 7,,v5" = 7 (Proposition 4.3.3). En combinant les Propositions 2.3.4 et
4.2.14, nous obtenons que les représentations de 7, et 7, sur ¢ € H* sont explicitement données par :

_ o1
07 (ra) () =vg' b =9,
o1
07 (1) () = v > = p' () (1! (970 ?) ¢")
ot pour tout 3 € H* et h € H, 3" € H* est défini par 8"(z) = B(hx), u' € H* est l'intégrale a

gauche de H et g est I’élément pivot (la forme linéaire p'(v)tul(g v ?) : & — pl(v) tpt(g o) est
reliée a l'inverse de I’élément ruban, cf. Proposition 2.3.4).

(1.5)

Pour une surface de genre quelconque >, , le résultat est énoncé comme suit :
Théoréme 5.3.19 (cas général). 1) L’application
00 . MCG(Z,0\D) — GLA((H*)&’J)
fo= p(f)

ot p est la représentation de L, o(H) sur (H*)®9, est une représentation projective.
2) L’application

0,: MCG(Z,0) — GL(Inv((H*)®9))
f = pinv(f)
ol piny €St la représentation de ;‘jg(H) sur Inv((H*)®9), est une représentation projective.

Un résultat similaire a été donné dans [AS96a] sous I'hypotheése que I'algebre de jauge H est mod-
ulaire, I’espace de représentation étant 1’algebre de modules. Ainsi, notre travail fournit une preuve
et généralise a un cadre non semi-simple leur résultat. Notons qu’on a une représentation projective
car les éléments f sont définis a un scalaire pres. Notons aussi que ¢, est juste une restriction de
I’espace de représentation :

VfeMCG(Eg0), 0y(f) = 9f(f)|lnv((H*)®g)-

Le résultat est énoncé pour ¥, , mais nous discutons son extension a une surface générale X, ,, dans
la section 5.3.5.

Le relevé 7, d'un twist de Dehn autour d’'une courbe simple v est implémenté par conjugaison
par 1’élément %—1 € L,,(H); en d’autres termes, 7, = %—1 (Proposition 5.3.16). Cet élément est
défini comme ceci. Tout d’abord, exprimons « en fonction des générateurs b;, a;, m; de m (X, ,,\ D).

I I I /

Puis remplagons b;, a;, m; par les matrices B(i), A(7), M(j) (& une normalisation pres par v"); ceci
I I

donne une matrice 7, appelée le relevé de v (Definition 5.3.7). Enfin, les coefficients (%) Lij satisfont

les relations qui définissent Lo 1(H) (Proposition 5.3.14), qui est lui-méme isomorphe a H. Ainsi,
I .
nous avons un morphisme jy : H — C<§}>”j C Ly,(H) et nous définissons vgl = Jz(v71), ot v est

I’élément ruban de H. Grace a ces éléments vy ! nous obtenons des formules pour les représentations

des twists de Dehn autour des courbes fermées simples a;, b;, d;, ¢; (représentées dans la Figure 5.7)
sur (H*)®9 .

Théoréme 5.3.22. Soit 0 : MCG(2,0\ D) — PGL((H*)®?) la représentation projective obtenue
dans le Théoreme 5.3.19. On a les formules suivantes :

95(7'@)(901 ®...0 QOQ) =1 Q... Y1 ® 91D(Ta)(90z’) Q Pit1 X ... R pg,

0P (m)(p1®...®pg) =01 ®...®pi1 @0 (1:)(0:) ® 0i1 ® ... ® @y,

QQD(Tdi) ((,01 R...Q gog) =01 ®...Q P9 ® Pi_1 (S_l(aj)ak?bkv”_lbj) ® gp,-(S_l(al)S_l(U'_l)am?bmbl)
R Pit1 Q... Q g,

95(%)(901 ®...®p,) =@ (Sfl(U(2i72)71)?v(2i71)71) 2...® S01,71(Sq(1)(2)71)f_;v(3)71)
® (571(%)571 (U(l)fl) ak?bkb]’) QY1 ... Q Yg,
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avec i > 2 pour les deuzx derniéres égalités, R = a; ® bj € H ® H est la R-matrice?, et les formules
pour 0P (1,),0P (1) sont données dans (1.5) ci-dessus.

Pour le tore ¥ et l'algebre de jauge H = U, = U,(sly), nous étudions explicitement la
représentation projective de SLy(Z) sur SLF(U,).> Pour ce faire, nous avons besoin d’une base
convenable de SLF(U,), qui est une algebre de dimension 3p — 1. Cette base est celle introduite
dans [GTO09] et [Aril0] et que nous appelons la base GTA; sa définition est rappelée en détail dans la
section 3.2. Elle contient les caracteres x¢ des modules simples X¢(s), avec € € {+} et 1 < s < p; ceci
donne 2p éléments. Les p — 1 formes manquantes, notées G (1 < s < p — 1), sont construites grace
aux propriétés des U,-modules projectifs P¢(s). Une propriété importante de cette base pour nos
desseins est que ses régles de multiplication, determinées dans le Théoreme 3.4.1 (et indépendamment
avant dans [GT09], voir les commentaires au début du Chapitre 3), sont simples. Cette particularité
nous permet de calculer les formules suivantes :

Théoréme 4.4.6. Soit 0, : SLy(Z) — PG ((_];) la représentation projective obtenue dans le
Théoréme 4.3.7, avec Ualgébre de jauge U, = U,(sly). Les représentations des twists de Dehn T,
et , sur la base GTA sont données par :

€ — € — ~ p_sl 5/ —
Ou(r) () = VX B1(7a)(G) = U3k Gy — vt (Wx:,——x,,_s,)

[

et

01() (x5) = Ee(—e)Ptsq~ Y (Z @) () o (= )(—1)8x;>

=1

p—1
+Ee(=1)°q DY (=) 1] Gy,
7=1
i —J j
s’ s2—

01(1)(Gy) = E(=1)"q~ D2y (=17 ]S (26’ e ]),

s = 7] 7]

—i 1 —(p—

avece € {+},0<s<p, 1< <p—1et& 1—2\[[2171}( 1)pg=(=3)/2,
De ces formules, on déduit la structure de la représentation :
Théoreme 4.4.9. Le sous-espace P = vect (Xj + Xp—s> X;;, X;)l<s<pfl des caractéres des U,-modules

projectifs, qui est de dimension p+ 1, est stable sous l'action de Slis(Z) calculée dans le Théoréme
4.4.6. De plus, il existe une représentation projective W de SLy(Z), de dimension p — 1, telle que

SLF(U,) =P & (CCoW)

ou C? est la représentation naturelle de SLy(Z) (action par multiplication a gauche). Les formules
pour laction sur W sont données dans (4.39).

1.1.4 Equivalence avec la représentation de Lyubashenko

En utilisant des méthodes catégoriques basées sur le coend d’'une catégorie enrubanné, Lyubashenko-
Majid [LM94] (cas du tore avec une catégorie de modules) et Lyubashenko [Lyu95b, Lyu96] (cas
général) ont construit des représentations projectives de groupes de difféotopie. Nos hypotheses sur

2Nous utilisons la sommation implicite sur I'indice dans I’expression de R; il ne faut pas confondre les composants
a;,b; de la R-matrice et les boucles a;,b; € m1(X40\D).

3Notons que I’algebre de Hopf Uq n’est pas tressée. Cependant, 'extension de Uq par une racine carrée de K est
enrubannée; de plus, la R-matrice et I’élément ruban satisfont de bonnes propriétés qui nous permettent d’appliquer
le Théoreme 4.3.7 avec H = U,. Voir sections 3.1.3, 4.4.1, 4.4.2.

14



1.1. Introduction en francais

H nous permettent d’appliquer leurs constructions a la catégorie enrubannée mod;(H), c’est-a-dire
la catégorie des H-modules a gauche de dimension finie, et d’obtenir les formules correspondantes.
Grace aux formules de (1.5) et du Théoreme 5.3.22, nous montrons que ces représentations sont
équivalentes a celles construites ici :

Théoréme 4.3.10 (cas du tore). La représentation projective de MCG(X) = SLo(Z) définie dans
le Théoreme 4.5.7 est équivalente a celle définie dans [LM94].

Pour H = U,, la représentation de Lyubashenko-Majid de SLy(Z) sur Z(U,) a été étudiée explicite-
ment dans [FGST06a] en relation avec la théorie conforme logarithmique des champs. En particulier,
ils ont déterminé la structure de la représentation, et le Théoreme 4.4.9 est en parfait accord avec
leur résultat.

Théoreme 5.4.4 (cas général). Les représentations projectives de MCG(X,\ D) et MCG(X,)
définies dans le Théoréme 5.3.19 sont équivalentes a celles définies dans [Lyu95b, Lyu96].

Cette équivalence est intéressante car la construction de la représentation projective dans le cadre
de la quantification combinatoire utilise des techniques différentes du cadre de Lyubashenko-Majid
et Lyubashenko, et est peut-étre plus élémentaire puisque le point de départ est simplement d’imiter
I’action du groupe de difféotopie sur le groupe fondamental au niveau de ’algebre. De plus, bien
que les représentations de groupes de difféotopie résultantes sont équivalentes, dans la quantification
combinatoire nous avons aussi les algebres d’observables E;};’Z(H ) et leurs représentations; ceci donne
lieu a des représentations des algebres d’écheveaux des surfaces (aux racines de 'unité), ce qui est

un des sujets du Chapitre 6.

1.1.5 Calcul graphique et théorie d’écheveau

Dans le Chapitre 6, nous développons tout d’abord un calcul graphique pour £, (H) et nous re-
formulons les relations qui définissent L£,, (H) en termes de diagrammes. Puis nous utilisons ce
calcul graphique pour définir 'application boucle de Wilson, qui associe un élément de L,,(H) a
chaque entrelac parallélisé, orienté et colorié (Définition 6.2.1 et Figure 6.3). Notre définition est
completement naturelle étant donné qu’elle est entierement diagrammatique. Elle est équivalente
mais différente de celles donnés dans [BR96] et [BFK98b]. Il n’est pas difficile de montrer que (entre
autres) 'application boucle de Wilson prend ses valeurs dans ’algebre des observables et surtout
qu’elle est compatible avec le produit en pile de deux entrelacs (ces propriétés sont aussi dans [BRI6|
et [BFK98b] bien str, mais sont démontrées en utilisant leurs formalismes et définitions respectifs) :

Théoreme 6.2.7. L’application boucle de Wilson W est compatible avec le produit en pile :

Avec notre définition de W, la preuve de ce théoreme est entierement diagrammatique (Figure 6.7).

Quand Palgebre de jauge est U, = U,(sly), la boucle de Wilson est indépendante de 1'orientation
de 'entrelac et satisfait la relation d’écheveaux du crochet de Kauffman. Ces faits impliquent que
nous avons une représentation de l'algebre d’écheveaux du crochet de Kauffman S,(2,,\ D) sur
n’importe quelle représentation V' de L,,,(U,) et si nous nous restreignons a Inv(V'), nous obtenons
une représentation de S,(2,,), grace au fait que le disque D est “recollé” dans Inv(V'). La derniere
partie de cette affirmation est énoncée et prouvée pour n = 0 dans le théoreme ci-dessous, mais est

probablement vraie pour tout g, n.

Théoréme 6.4.1. 1. Soit p : L,,(U,) — Endc (V) une représentation (avec V- = (UN® e L ®
. ®1,, ou Iy,..., I, sont des représentations de U,). L’application

Sy(Sgn\D) — Endc(V)
L — p(W(L))
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est une représentation de Sy(X,,\D). ) )
2. Supposons n =0 et soit py,, la représentation de %(Uq) sur Inv((U;)®9). L’application

S(3g0) — Endc(Inv((U;)%9))
L — pinv<W(Lo>>

est bien définie et est une représentation de Sy(X40).

Dans le théoreme, L° est n’importe quel entrelac dans (3,0\D) x [0, 1] tel que (j x id)(L°) = L, ou
J:X50\D — X, est 'injection canonique.

Pour le tore 3 o, nous étudions explicitement cette représentation sur SLF(U, ), en utilisant encore
la base GTA et ses regles de multiplication. Il suffit de considérer ’action des boucles a, b puisqu’elles

engendrent l'image de 1’application boucle de Wilson (Proposition 6.3.5). Les sous-espaces

P = vect (X: + Xp—s X;r’ X;)lgsgpfl’ U = vect (X3+>1§s§p71’ V = vect (Gs)gsgpq

déterminent la structure de cette représentation. De plus, nous avons une représentation naturelle
de §,(X1p) sur le module d’écheveaux S,(H;), ou Hp est un corps a anses de genre 1 (i.e. un
anneau épaissi). Le module d’écheveaux réduit S;Ed(Hl) est isomorphe a un facteur de composition

de SLF(U,):
Propositions 6.5.2 et 6.5.5. J, =P C J, = Vect(P UL[) C J3 = vect(P Ul u V) est une série

de composition de SLF(U,) sous laction de S;(X10). Cette représentation est indécomposable et sa
structure est schématisée par le diagramme suivant :

U V
WA A Ws
P

De plus, les Sy(X1,0)-modules S (Hy) et U = Jo/Jy sont isomorphes.

Nous conjecturons que la derniere affirmation est vraie en genre quelconque, c’est-a-dire que S;Ed([-[ 9)
est un facteur de composition de Inv((U,)®¢) sous l'action de S;(3,0) (Conjecture 6.5.6).

1.1.6 Perspectives

Plusieurs questions et problemes basés sur cette these peuvent faire 'objet de travaux supplémentaires,
en particulier lorsque 'algebre de jauge est U, = U,(sly).

Le premier groupe de questions concerne la description de l'algebre des observables E;‘;(Uq).
C’est un fait général (Proposition 6.2.9) que la valeur de la boucle de Wilson d’'une courbe fermée
simple x € m(X,,\D) coloriée par I est la trace quantique de son relevé :

I Ir r
W (z) = tr(K"*'%),

I

ot le relevé = (Définition 5.3.7) est défini en remplagant les générateurs de m; (3, ,\D) par des matrices
I I I

dans 'expression de x via la correspondance B(i) <+ b;, A(j) <> a;, M (k) <> my, a une normalisation

pres. Ces éléments sont des “observables semi-simples” car ils se scindent sur les extensions :

v I J
0—1—-V—>J—=0exacte = W(z)=W(x)+W(x).

Dans la section 6.3, tous les entrelacs sont coloriés par la représentation fondamentale X*(2):

XH(2) xt(2)

W(z) =tr(K"*" 2 ),
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X<(s) _
C’est suffisant pour retrouver tous les W (x) (ou les X“(s) sont les U,-modules simples) grace aux
formules (qui sont des conséquences de la Proposition 5.3.14 et de (3.31)) :

Xe(s) Xe(s—1) X€(s+1) X<(p) Xe(p—1) XE(1)

W) Wx)= W (z)+ W (z), W(z) Wx)=2 W (x)+2 W (x).

En revanche, c’est insuffisant pour retrouver tous les observables. En effet, il y a aussi des observables
non semi-simples basés sur les pseudo-traces G (voir (3.24)) :

P (5) Pt (s) P~ (p=)P~ (p—s)
Vi(a) = tr(e, K F ) bir(o, K F ) (1<s<p-1)

Ce V* est un analogue non semi-simple de I'application boucle de Wilson W et n’est défini que sur
les boucles simples pour le moment. Ceci nous amene aux problémes suivants (qui peuvent avoir une
solution ou pas) :

e Définir V*(L) pour n’importe quel entrelac orienté parallélisé L € (3,,\D) x [0,1].
e Déterminer les relations d’écheveau satisfaites par ’application V*.

e Est-ce que la collection des observables W (x), V*(x) (pour 1 < s < p — 1 et x une boucle
simple)? engendre I'algébre LmV(U ) 7 Plus généralement, décrire aussi précisément que possible
Linv(U )

g)n

Le dernier point est probablement tres difficile. Ala place, on peut recoller le disque D en étudiant la
représentation de LI (U,) sur Inv(V), ot V = (U)® @ [; ® ... ® I,. Ceci pourrait étre un premier
pas pour comprendre la structure de l'algebre de modules M, (H, I3, ..., 1,) telle que définie en
(1.4). Ces questions sont encore tres difficiles et il vaut mieux se restreindre a n = 0 afin d’éviter le
choix de I4,...,I,. La section 4.4.4 contient des remarques sur le cas (g,n) = (1,0). La premiere
difficulté de ce type de questions en genre supérieur est que nous ne connaissons pas de base de

Inv((U;)®7) qui généraliserait la base GTA de SLF(U,) = Inv(U;).
e Déterminer une base “convenable” de Inv ((U;)®7).

e Déterminer la structure de la représentation de Em"((_] ) sur Inv(( U o) ) et déduire des conséquences
sur la structure de l'algebre de modules ./\/lg7o(H )

La partie semi-simple de £‘nv (U ) mérite cependant une attention particuliere puisque c¢’est I'image
par W (avec tous les entrelacs coloriés par X*(2)) de l'algebre d’écheveaux S,(3,,\D). De plus,
Inv((Ur)®) est une représentation de S;(X40). Pour g = 1, la structure de cette représentation est
déterminée dans la Proposition 6.5.2, et dans la Proposition 6.5.5 il est montré qu’elle contient la
représentation naturelle de S;(X1,0) sur S;*/(Hy) en tant que facteur de composition.

e Déterminer la structure de la représentation de S,(X,,0) sur Inv((UF)®7).

e Prouver que la représentation naturelle de S,(3y) sur S;*(Hy) est un facteur de composition
de la représentation de S;(3,,0) sur Inv((U;)®?) (Conjecture 6.5.6).

Un autre probleme est de généraliser le Théoreme 4.4.9 en genre supérieur :

e Déterminer la structure de la représentation projective de MCG(X, ) sur Inv(((_]; )€9).

4Nous pouvons prendre s = 1 grace a la relation W(z)V?(z) = %stl(m) + %V”l(x), qui est due a la
Proposition 5.3.14 et au Théoreme 3.4.1.
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Enfin, on peut essayer de généraliser les algebres £, dans un contexte catégorique. Ceci peut
avoir plusieurs sens. On sait que Lo(H) est un coend (Proposition 5.4.3); en utilisant ceci, on peut
partir d’une catégorie enrubannée avec coend K et tout réécrire de facon catégorique grace a la
propriété universelle du coend (par exemple, £, o(H) serait K ® K et son produit serait décrit par un
morphisme qui factorise une certaine famille dinaturelle). Nous pouvons aussi essayer de catégorifier
L, (par exemple avec l'algebre de jauge U,(sly), ¢ générique), ce qui signifie qu’on cherche une
catégorie monoidale C,,, telle que Ky(Cy,) = L, ,; il serait intéressant de voir ce qui joue le role de
I’algebre des observables dans une telle catégorification.

1.2 Introduction in english

Let X ,, be a compact oriented surface of genus g with n open disks removed. The “graph algebra”
L,, has been introduced and studied by Alekseev [Ale94], Alekseev-Grosse-Schomerus [AGS95,
AGS96] and Buffenoir-Roche [BR95, BR96] in the middle of the 1990’s, in the program of the
combinatorial quantization of the moduli space of flat connections over X,,. It is an associative
(non-commutative) algebra defined by generators and relations, the relations being given in a matrix
form. The main theme of this thesis is to apply these algebras to the construction of quantum
representations of mapping class groups and of skein algebras of surfaces at roots of unity.

In section 1.2.1 below we explain the context underlying the combinatorial quantization and the
definition of the algebra L, ,. Then from section 1.2.2 to section 1.2.5 we state and explain our main
results. Finally, the section 1.2.6 contains conjectures and problems that can serve as a starting point
for further work.

1.2.1 Combinatorial quantization

Let us recall quickly the main ingredients of combinatorial quantization. Let G be an algebraic Lie
group (generally assumed connected and simply-connected, e.g. G = SLy(C)) and X,,, be a compact
oriented surface of genus g with n open disks removed. We consider the moduli space of flat G-
connections M,,, = A;/G, where A = Q(3,,,, g) is identified with the space of all G-connections,
Ay is the subspace of flat G-connections, and G = C*(%,,,, G) is the gauge group. These objects can
be described in a discrete and combinatorial way, using holonomies along the edges of a filling graph
I' = (V, £)). This is an embedded oriented graph on X, (its vertices v € V" are points of ¥, ,, and its
edges e € E are simple oriented curves on X, ,, between two vertices which do not intersect pairwise)
such that ,,\I" is a union of open disks. Let A; = G¥. Call an element of A, a discrete connection;
it is to be thought as the collection (h.)ccp of holonomies of a connection along the edges of I'. If
v = (e1,...,ex) is a path in I', we define the discrete holonomy of a discrete connection (he).cg along
v as the product he, ... h,. A discrete connection is called flat if its holonomy along any face of the
graph is 1. This gives a set Ag C Ay of flat discrete connections. Finally, the gauge group G acts by
conjugation on the holonomy along a curve of a connection in .A. Hence, we define the discrete gauge
group to be G; = GV and its action on discrete connections is (hy)ver * (he)ecr = (he- heh;}), where
e” is the source of e and e* its target. It is a result that Ag /Gy = Hom(7m(%,,), G)/G (usually
the quotient is in the sense of geometric invariant theory but our discussion is informal). Hence, this
construction is equivalent to the character variety, which is a model for M, ,,. For more informations
about the moduli space and its combinatorial description, an accessible reference is [Lab13]. This
description is also called a lattice gauge field theory, see e.g. [BFK98a].

The moduli space A;/G carries the Atiyah-Bott-Goldman Poisson structure [AB83, Gol86],
namely a Poisson bracket on the algebra of functions C[A;/G] = C[Af]9. The corresponding Poisson
structure on the discretization Ag /Gy has been described by Fock-Rosly [FR93]; this is a Poisson
bracket defined in a matrix way on the algebra of functions C[.A4] and which induces a Poison bracket
on C[Ag]9% (the gauge group acts on functions on the right in the obvious way). The algebra L, ,, is
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a quantization of C[A4,]. We will not need to discuss this fact for the purposes of that thesis. Instead,
in the sequel, we simply explain the analogy between L,, and C[Ay].

Here we always take the graph I' = I'y , C X, ,, with one vertex and whose edges represent a
generating system of the fundamental group:

Fg,n = ({.}7 {bh ag, ..., bg7 Qg, Mg41, - - - 7mg+n})‘

It is represented below:

It holds X, ,\I'y,, = D, where D is an open disk. Hence, the closed tubular neighborhood of Iy, is
homeomorphic to 3, ,\ D:

[mg+n]

where [z] denotes the free homotopy class of z € m;(2,,,\ D). The unique face of the graph I, is
the curve induced by the deletion of D:

R P | —1p-1
Cgn = bra; b7 ay .. .bgag bg AgMgit - . Mgin.

With this choice of graph, a discrete connection A; € Ay assigns an element of G to each generator
of m1(X,,,\D), and can thus be identified with a tuple

Ag = (hoy hayy oo oy By b Pingin) € G291

Mgt19 ' mgyn
A flat discrete connection Ay € Ay assigns an element of G to each generator of m(2,,,) = m1 (X, \
D)/{cgn). It is given by a tuple (hy,, hay, ..., hs,, ha,, b , hing..,) such that

Mgi1r®**

Hol(Ag, ¢gn) = hoyhg by by < By by Mg B iy = 1. (1.6)

aj Mg+n

The discrete gauge group is just G; = G (since V' = {e}). The action of h € G on a discrete
connection is by conjugation:

B (hoyshays - By hayy gy - s Py )

— (hhy,h ™ hhay Y by bt hha B Bl Y Bl BT,

Mg+1 ’ Mg+4n

In other words

Ad = Hom(m(Eg,n\D), G), Adf - Hom(ﬂ—1<2g,n)u G)7
Ad/gd = HOHI(’/Tl(Zg,n\D), G)/G, Adf/gd = Hom('ﬂl(zg,n% G) /G7
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Chapter 1. Introduction

and we recover the character variety.

For our purposes, it is worthwhile to describe the commutative algebra of functions C[A4] =
C[G)®29+™ in terms of matrices (where C[G] is the algebra of functions on G). Let V be a (finite di-
mensional) representation of G with basis (v;) and dual basis (v7). Recall that the matrix coefficients

V. V. . 1%
of V in that basis are T, € C[G], defined by T%(h) = v*(h-v;). This gives a matrix 7" with coefficients
V.
in C[G]. The matrix coefficients T %, where V' runs in the set of finite dimensional G-modules, span

|4 14 |4
linearly C[G]. Define B(k), A(k), M(l) € Mataim(C[A4]) by

\% . V.
BE): (hogs Bays - s oy Bags g -« s ngn) = T (B,
14 . V.
AR By hars -+ By g B s+ P o) = T (hay),

Voo
M(l);(hbl,hm, oy hay gy By ) = T ().

The coefficients of these matrices span C[.A,] as an algebra (V running in the set of finite dimensional
G-modules). The gauge group G acts on C[Ay] on the right: (f-h)(z) = f(h-z). In terms of matrices,

the action is by conjugation:
v Vv Vv
Vhed, UKk)-h=hU(k)h? (1.7)

vV oV

where h = T'(h) is the representation of h on V and U is B, A or M. The invariant functions form a
subalgebra, C[A;/G] = C[A,4]¢, and are called (classical) observables in the context of lattice gauge
field theory. This is the matrix description of C[A44].

In order to quantize the Fock—Rosly Poisson structure, Alekseev [Ale94], Alekseev—Grosse—Schomerus
[AGS95, AGS96] and Buffenoir-Roche [BR95, BR96| replaced the Lie group G by a quantum group
U,(g), with g = Lie(G) (but from a purely algebraic point of view we can take any ribbon Hopf
algebra instead of U,(g)). They defined an associative (non-commutative) algebra

1 oI o1 .
Ly, = C(B(k)%, A(k):, M (1)} | relations (R))

I7i7j7k7l

I S S
which is a deformation of C[Ay], generated by variables B(k);, A(k), M (1); where I now runs in the

set of finite dimensional U, (g)-modules. The defining relations (R) are given in a matrix form. They
involve the R-matrix of U,(g) and are designed so that £, ,, is a right U,(g)-module-algebra for the
action

VheUa), Uk)-h=hUk)SH

which is the analogue of (1.7), S being the antipode of U,(g), A(h) = b’ ® 1" the coproduct and
U = B,A ou M. In particular, we have a subalgebra of invariant elements ,Cigrj;’l, which is the
analogue of the algebra of classical observables C[.A4]“. Note that £,,, really is a quantum algebra
of functions, in the sense that it is possible to evaluate any element of £, ,, on a discrete connection;

this is discussed in detail in Remarks 4.1.9, 4.2.9 and in section 5.1.3.

It is more difficult to implement the quantized analogue of the flatness constraint (1.6), namely
for all I:

Cow = BAYAQ) " B()" A1) ... Blg)Alg) " Blg) " Alg)M(g +1)... M(g + 1) = Tgmqry.  (1.8)

. o Lo
Indeed, it is not possible to consider the quotient L /{(Cly.,)% —65) 1.7 since the elements (C'y ,,)j — 95

are not invariant. It is also not possible to quotient the whole algebra L, ,, (before taking the invariant
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1.2.  Introduction in english

elements) because the resulting algebra may be equal to 0°. The implementation of the flatness
constraint, giving rise to the “moduli algebra” (which is a quantum analogue of C[ A4 /G]), differs
depending on the authors and their assumptions on the gauge algebra. For instance:

e In [AGS95, AGS96, AS96a], the gauge algebra is not U,(g) but rather a modular Hopf algebra
(thought of as a semisimple truncation of U,(g), where ¢ is a root of unity). They construct
“characteristic projectors” thanks to the nice properties of the S-matrix in the modular setting
and use these projectors to define the moduli algebra as a subalgebra of E;‘,VL (namely the
product of E;nv by these projectors).

v

I
e In [BNRO2|, the gauge algebra is U,(g) with ¢ generic. They consider all the matrices Y €

I Ir I I I
Ly, ®@Endc(I) (where I is not fixed) satisfying Y -h = K'Y S(h”) (products of B(i), A(j), M (k)

I
are obvious examples of such matrices). The quantum trace tr (g]Y (ngn — gim( I)) (g being

nv

the pivotal element) is an invariant element and we can consider the ideal Z C Eigm generated

by all these quantum traces. Then they define the moduli algebra as the quotient ﬁg% /Z. This

construction is not sufficient when the gauge algebra is not semisimple because in this case
I

there are invariants which cannot be written as tr (éX )

e In [MW15], the gauge algebra K is assumed finite dimensional and semisimple for the construc-
tion of the moduli algebra. They use a two-sided cointegral of H (called Haar integral in their
paper, and whose existence is guaranteed by these assumptions on K') to construct projectors
associated to each face of the graph I'. Then they define the moduli algebra as the image of the
algebra of observables by these projectors (this gives a subalgebra of the algebra of observables,
equivalent to the one of [AGS95, AGS96, AS96a]). Note however that the formalism of their
paper (which contains an axiomatisation and study of Hopf algebra gauge theory) is different
from the one used here.

A possible definition of the moduli algebra under our assumptions on the gauge algebra (which do
not include semisimplicity) is given in section 1.2.2 below.

In addition to the papers already mentionned, these quantized algebras of functions and their
generalizations appear in various works. For instance: [BFK98b] (definition of a comultiplication
on the connections (dual to the product in L, ,, see section 5.1.3), of the holonomy and of the
Wilson loops by means of multitangles, which are transformations acting on the graph I' and on the
discrete connections), [BZBJ18| (generalization of L£,, in a categorical setting using factorization
homology), [AGPS18] (study of £ o with the gauge (super-) algebra U, (gl(1|1)) and of the associated
representation of SLy(Z)), [GJS19] (quantized character varieties at roots of unity and definition of
the moduli algebra via their process of quantum Hamiltonian reduction).

As already said, the definition of L, is purely algebraic and any ribbon Hopf algebra H can
play the role of the gauge algebra; the corresponding graph algebra will be denoted L,,(H). In
that thesis, we assume furthermore that H is finite dimensional and factorizable, but not necessarily
semisimple. For us, the guiding example of such a Hopf algebra will be the restricted quantum group
U,(sly), denoted U, in the sequel; Chapter 3 is devoted to the properties of U,.

We now discuss our main results in detail.

1.2.2 Properties of £, ,(H), implementation of the flatness constraint

Under our assumptions on H (finite dimensional, factorizable, ribbon), the loop algebra Lo (H) is
isomorphic to H (Proposition 4.1.8), the handle algebra £, o(H) is isomorphic to the Heisenberg dou-

®For instance, under our assumptions on the gauge algebra stated below, £1 o(H) is isomorphic to a matrix algebra
over C and its only possible quotient is 0.
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ble H(O(H)) and thus to a matrix algebra over C (Proposition 4.2.8), and the Alekseev isomorphism
remains valid (Proposition 5.1.3):

‘CO,l(H) = H, ;CL()(H) = H(O(H)) = EndC(H*), Eg’n(H) = £170(H>®9 X ,Co’l(H)®n.
It follows that the indecomposable representations of £, ,(H) have the form
(HYoL®... oI,

where H* is the only indecomposable (and simple) representation of H(O(H)) = Endc(H*) and
I, ..., I, are representations of H.

Since we do not assume that H is semisimple, the definitions of the moduli algebra mentionned
above cannot be used. Instead, we will implement the flatness constraint (1.8) at the level of the
representations: for each representation V of £, ,(H), we define a subspace Inv(V') by the requirement

I
that the matrices C,, act trivially on Inv(V):
I
Inv(V) = {v eV “v’], Cynbv= Hdim([)v} )

Note that the defining relation of Inv(V') corresponds geometrically to gluing back the disc D to
20\ D (since the loop ¢, generating ker(m(X,,,\D) — m1(Z,,,)) is killed).

In fact, the subspace Inv(V') is stable under the action of the subalgebra of invariant elements
Loy (H):
Theorem 5.2.6. 1) An element x € L,,,(H) is invariant under the action of the gauge algebra H

if, and only if, for every H-module I, ég,nx = x(IZ’g,n.
2) Let V' be a representation of Ly, (H). Then Inv(V) is stable under the action of invariant elements
and thus provides a representation of L3y (H).

The matrices (Il'g,n used in that theorem already appeared in [Ale94] (with H = U,(g), g generic),
but here we need to generalize and adapt the construction of the representations of the invariant
elements to our assumptions on H.

When (g,n) = (1,0), £19(H) is isomorphic to a matrix algebra and its unique indecomposable

(and simple) representation is H*; in that case, we have a representation of L1j(H) on Inv(H*) =
SLF(H) (Theorem 4.2.13), where SLF(H) is the algebra of symmetric linear forms on H:

SLF(H) ={p e H* |Va,y € H, o(zy)=p(yz)}.

The definition of the moduli algebra in [AGS95, AGS96, AS96a, BNRO02] requires to label the
boundary circles by H-modules I3,...,I,. Then V = (H*)®Y ® [} ® ... ® I, is a representation of
L (H); let plr, be the corresponding representation of L% (H) on Inv(V). The algebra py (L™ (H))
both implements the invariant and flatness constraints. Hence it is a quantum analogue of C[ Ay /G|
and is the natural candidate for the definition of the moduli algebra under our assumptions on H:

Myn(H Lo 1) = pl S0 (L (). (1.9)
However, we will not need the moduli algebra in this thesis. The important object for our purposes is
instead the representation Inv(V') of L (H) (which is also a representation of the moduli algebra).

1.2.3 Representations of mapping class groups

The mapping class group MCG(%,,,) acts on C[Hom(m(3,,),G)/G] = C[Ay/G]. In Chapters
4 (case of the torus) and 5 (general case), we construct the analogue of this representation (for
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n = 0) based on L,(H) and we get a projective representation of MCG(X,\ D) and above all of
MCG(Z,,). We use the idea, proposed in [AS96a], of replacing the generators b;, a;, m; of m (2, 0\D)

I I I
by the matrices B(k), A(k), M (l) with coeflicients in £,,(H). In that way, each mapping class

f € MCG(X,0\ D) can be seen as an automorphism of £, (H), denoted by f and which we call
the lift of f. Indeed, f determines an automorphism of m(2,0\D) and replacing (homotopy classes

of) loops by matrices defines f (up to some normalization, see Definition (5.3.9)). Thanks to the
isomorphisms of the previous section

[,g,()(H) = ;Cl,o(H)(gg = ’H(O(H))@g ~ Endc((H*)®g>

and hence £, o(H) is a matrix algebra, its unique indecomposable (and simple) representation being
(H*)®9. It follows that each automorphism of £, (H) is inner; in particular, to the mapping class f
is associated an element J?e L, (H), unique up to scalar, and such that f is the conjugatlon by f
Such an element f is H-invariant (Corollary (5.3.17)). Representing the elements Fon (H*)®9 gives
a projective representation of MCG(X,\ D) and representing the elements onn Inv( (H*)®9 ) gives
a projective representation of MCG(X, ), which corresponds to the fact that the disk D is “glued
back” in Inv((H*)®7).

The case of the torus ¥ o is considered first because it deserves particular interest. The result is
stated as follows:

Theorem 4.3.7 (case of the torus). 1) The assignment

o> p(vg'), T p(vg')

where p is the representation of L1o(H) on H*, defines a representation 0F of MCG(X,0\D) on H*.
2) The assignment
-1 -1
Ta F7 PSLF(UA ) s Th PSLF(UB )

where psyr is the representation of L% (H) on Inv(H*) = SLF(H), defines a projective representation
0, of MCG(X19) = SLa(Z) on SLF(H). If moreover S(¢) = for all yp € SLF(H), then this defines
actually a projective representation of PSLa(Z) = SLy(Z)/{£ls}.

The elements v;', v5' € LY5(H) appearing in the theorem are defined as follows. The coefficients
I I.
(A L (resp. (BY) Li,j) generate a subalgebra of £, o(H) isomorphic to Lo(H), which is itself
I
isomorphic to H. Hence we have a morphism j,4 : H — (C<A3>”j C Lio(H) (resp. jp : H —

(C<B’>I C L1o(H)), and we define v;' = ja(v™!) (resp. vz' = jp(v™!)) where v is the ribbon
element of H. These elements implements the lifts 7,, 7, of the Dehn twists 7,, 7, respectively (see
Figure 4.2): v,* = 7., v5" = 7, (Proposition 4.3.3). Combining Propositions 2.3.4 and 4.2.14, we get
that the representations of 7, and 7, on ¢ € H* are explicitly given by:
_ o1

07 (ra)(0) =vi' b =¢" (110
vl '
07 (1) () = vg' b o = p'(v) 7 (1 (g0 ?) ¢°)

where for any 3 € H* and h € H, 8" € H* is defined by 8"(z) = B(hx), u' € H* is the left integral
of H and g is the pivotal element (the linear form p!(v) tu'(g= v ?) : 2 — pl(v) Ll (gtvx) is related
to the inverse of the ribbon element, see Proposition 2.3.4).

For a surface of arbitrary genus X, , the result is stated as follows:

Theorem 5.3.19 (general case). 1) The map

60 : MCG(3g0\D) — GL((H*)®)
f o= p(f)
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where p is the representation of Ly o(H) on (H*)®9, is a projective representation.
2) The map
0,: MCG(Z,0) — GL(Inv((H*)®9))
f — pinv(f)

(H) on Inv((H*)®9), is a projective representation.

inv

g,0
A similar result was given in [AS96a] under the assumption that the gauge algebra H is modular,
the representation space being the moduli algebra. Thus our work provides a proof and generalizes
their result to a non-semisimple setting. Note that we have a projective representation because the
elements f are defined only up to scalar. Also note that 6, is just a restriction of the representation
space:

where piny 1S the representation of L

VfeMCG(Eg0), 04(f) = 9f(f)|lnv((H*)®g)-

The result is stated for ¥, , but we discuss its extension to a general surface X, in section 5.3.5.

The lift 7, of a Dehn twist about a simple closed curve 7 is implemented by conjugation by an
element vy '€ L,,(H); in other words, 7, = vy ! (Proposition 5.3.16). This element is defined as
follows. First, express v in terms of the generators b;, a;, m; of m(X,,\ D). Then replace b;, a;, m;

I I I I
by the matrices B(i), A(i), M(j) (up to some normalization by 1[)’"); this gives a matrix 7, called
I
the lift of v (Definition 5.3.7). Finally, the coefficients ﬁ;) Lij satisfy the defining relations of
Lo1(H) (Proposition 5.3.14), which is itself isomorphic to H. Hence we have a morphism j5 : H —

I .
(C<A7'}>“j C Ly,(H) and we define v;l = jz(v™!), where v is the ribbon element of H. Thanks to
these elements (0~ ! we obtain formulas for the representations of the Dehn twists about the simple
closed curves a;, b;, d;, e; (depicted in Figure 5.7) on (H*)®9:

Theorem 5.3.22. Let 07 : MCG(3,0\D) — PGL((H*)®9) be the projective representation obtained
i Theorem 5.3.19. The following formulas hold:

07 (Ta) (01 ® ... @ @g) =01 ® ... ® i1 @07 (72)(0:) ® Pis1 ® ... ® g,

Qf(Tbi)(% ®...0¢p)) =P1®...0 pis1 RO (T)(0i) ® Pit1 ® ... ® @y,

95(7}11.) (Pp1®...0p) =p1®...Q 2 @ @1 (S (a;)ar?brv""b;) ® i (S~ (@) S~ (V") an b bi)
® Pit1 @ ... Q g,

95(@-)(@1 ® ... ®p,) =1 (5—1(U(2¢—2)—1>?U(2i—1)—1) 2...® 901'—1(5_1(1}(2)_1)?0(3)_1)
® @i(S(a;)S™ (VW) ar?birby) ® i1 ® ... ® @,

with i > 2 for the two last equalities, R = a; ® b; € H ® H 1is the R-matria®, and the formulas for
0P (7,),0P (1) are given in (1.10) above.

For the torus ¥ and the gauge algebra H = U, = U,(sly), we explicitly study the projective
representation of SLy(Z) on SLF(U,).” To do so, we need a suitable basis of SLF(U,), which is a
(3p — 1)-dimensional algebra. This basis is the one introduced in [GT09] and [Aril0], which we call
the GTA basis; its definition is recalled in detail in section 3.2. It contains the characters x¢ of the
simple modules X¢(s), with € € {£} and 1 < s < p; this gives 2p elements. The missing p — 1 forms
G, (1 < s < p—1) are constructed thanks to the properties of the U -projective modules P<(s).
An important property of this basis for our purposes is that its multiplication rules, determined in
Theorem 3.4.1 (and independently before in [GT09], see the comments at the begining of Chapter
3), are simple. This feature allows us to compute the following formulas:

®We use implicit summation on the index in the expression of R; do not confuse the components a;,b; of the
R-matrix and the loops a;, b; € m1(2,,0\D).

"We mention that the Hopf algebra Uq is not braided. But the extension of Uq by a square root of K is ribbon;
moreover, the R-matrix and the ribbon element satisfy nice properties which allow us to apply Theorem 4.3.7 with
H = U,. See sections 3.1.3, 4.4.1, 4.4.2.
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1.2.  Introduction in english

Theorem 4.4.6. Let 0 : SLy(Z) — PGL(U;) be the projective representation obtained in Theorem
4.8.7, with gauge algebra U, = U,(sly). The representations of the Dehn twists 7, and 7, on the GTA
basis are given by:

€ — € — ~ p_sl S/ —
O () = VX B1(7a)(G) = U3k o Gy — Vit o (Wx;——xp_s,)

[']

and

01(73)(X5) = Ee(—e)P1sq~ " (i(—l)s(—ﬁ)p‘g (@ +a") O +xm0) + x50+ (—e)p(—l)sx;>

/=1

+§€ s —s—UZ 3+1 G

] < ]

1 <
withe e {£},0<s<p, 1< <p—1andé = 2f[3>p i (— 1)Pq=(P=3)/2.

From these formulas, we deduce the structure of the representation:

0(m,)(G) = g(—l)S’q—“’Q—”i—? ;(—1)j+1[j][js’] <2G Sy qé - J) ,

Theorem 4.4.9. The (p + 1)-dimensional subspace P = Vect()(;r + X;,S,X;;,X;)KK%1 of the

characters of the projective [_]q-modules is stable under the SLa(Z)-action of Theorem 4.4.6. Moreover,
there exists a (p — 1)-dimensional projective representation W of SLo(Z) such that

SLF(U,) =P & (CCoW)

where C? is the natural representation of SLy(Z) (action by left multiplication). The formulas for
the action on W are given in (4.39).

1.2.4 Equivalence with the Lyubashenko representation

Using categorical methods based on the coend of a ribbon category, Lyubashenko-Majid [L.M94]
(case of the torus and with a category of modules) and Lyubashenko [Lyu95b, Lyu96] (general case)
constructed projective representations of mapping class groups. Our assumptions on H allow us to
apply their constructions to the ribbon category mod;(H), namely the category of finite dimensional
left H-modules, and to obtain the corresponding formulas. Thanks to the formulas of (1.10) and
Theorem 5.3.22, we show that these representations are equivalent to those constructed here:

Theorem 4.3.10 (case of the torus). The projective representation of MCG(X) = SLo(Z) defined
in Theorem 4.3.7 is equivalent to that defined in [LM94].

For H = U,, the Lyubashenko-Majid representation of SLy(Z) on Z(U,) was studied explicitly in
[FGSTO06a] in relation to logarithmic conformal field theory. In particular, they determined the
structure of that representation, and Theorem 4.4.9 is in perfect agreement with their result.

Theorem 5.4.4 (general case). The projective representations of MCG(X,\ D) and MCG(X,)
defined in Theorem 5.3.19 are equivalent to those defined in [Lyu95b, Lyu96].

This equivalence is interesting because the construction of the projective representation of the
mapping class group in the combinatorial quantization setting uses different techniques than in the
Lyubashenko-Majid and Lyubashenko settings, and is perhaps more elementary since the starting
point is simply to mimic the action of the mapping class group on the fundamental group at the
level of the algebra. Moreover, even though the resulting representations of mapping class groups
are equivalent, in the combinatorial quantization setting we also have the algebras of observables
E%(H ) and their representations; they give rise to representations of the skein algebras of surfaces
(at roots of unity), which is one of the subjects of Chapter 6.
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1.2.5 Graphical calculus and skein theory

In Chapter 6, we first develop a graphical calculus for £, ,(H) and we reformulate the defining
relations of £,,(H) in terms of diagrams. Then we use this graphical calculus to define the Wilson
loop map, which assigns an element of £, ,(H) to any colored oriented framed link (Definition
6.2.1 and Figure 6.3). Our definition is completely natural since it is entirely diagrammatic. It is
equivalent but different from the ones of [BR96] and [BFK98b]. It is not difficult to show that (among
other things) the Wilson loop map take values in the algebra of observables and above all that it is
compatible with the stack product of two links (these properties are also in [BR96] and [BFK98b] of
course, but are proved by using their respective formalisms and definitions):

Theorem 6.2.7. The Wilson loop map W is compatible with the stack product:
With our definition of W, the proof of that theorem is purely diagrammatic (Figure 6.7).

When the gauge algebra is U, = U,(sly), the Wilson loop map is independent of the orientation
of the link and satisfies the Kauffman bracket skein relation. These facts imply that we have a
representation of the Kauffman bracket skein algebra S, (%, ,\D) on any representation V of £, ,,(U,)
and, if we restrict to Inv(V'), we obtain a representation of S,(X, ), due to the fact that the disk D
is “glued back” in Inv(V'). The last part of the claim is stated and proved for n = 0 in the theorem

below, but is probably true for any g, n.
Theorem 6.4.1. 1. Let p : L,,,(U,) = Endc(V) be a representation (withV = (U)*@L®...®1,,

where I, ..., I, are representations of U,). The map
S,(2,,\D) — Endc(V)
L = p(W(L))

is a representation of Sy(X,,\D).

2. Assume n =0 and let pwy be the representation of LI (Uy) on Inv((Ur)®9). The map

S¢(Eg0) — Endc(lnv((_;)®g))
L = piy(W(L°))

is well-defined and is a representation of Sy(X,0)-

In the theorem, L° is any link in (X,0\D) x [0, 1] such that (j xid)(L°) = L, where j : £,0\D — 3,
is the canonical injection.

For the torus % o, we explicitly study this representation on SLF(U,), using again the GTA basis
and its multiplication rules. It suffices to consider the action of the loops a, b since they generate the

image of the Wilson loop map (Proposition 6.3.5). The subspaces
P = vect (X: + Xp—ss X;r’ X;)lgsgpfl’ U = vect (X3+>1§s§p71’ V = vect (Gs)gsgpq

determine the structure of the representation. Moreover, we have a natural representation of S, (X1 )
on the skein module S,(H;), where H; is a genus 1 handlebody (i.e. a thickened annulus). The
reduced skein module S}*!(H) is isomorphic to a composition factor of SLF(U,):

Propositions 6.5.2 and 6.5.5. J, = P C J, = vect(P UL{) C J3 = Vect(P Ui u V) s a

composition series of SLF(U,) under the action of S;(X10). This representation is indecomposable
and its structure is schematized by the following diagram:

U V
V;\ AA:WB
P

Moreover, the Sy(1,0)-modules Si*(Hy) and U = Jo/J1 are isomorphic.

We conjecture that the last claim is true in any genus, namely that S}]"ed(Hg) is a composition factor
of Inv((U,)®?) under the action of S;(%,,) (Conjecture 6.5.6).
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1.2.6 Perspectives

Several questions and problems based upon this thesis can be investigated in further work, especially
when the gauge algebra is U, = U,(sl).

The first set of questions is about the description of the algebra of observables E;‘X(UQ). It
is a general fact (Proposition 6.2.9) that the value of the Wilson loop map around a simple loop
x € m (X, \D) colored by I is the quantum trace of its lift:

I r r
W (z) = tr(K"*'%),

T

where the lift  (Definition 5.3.7) is defined by replacing generators of m;(2,,\D) by matrices in the
I I I

expression of x via the correspondence B(i) <+ b;, A(j) <+ aj, M (k) <+ my, up to some normalization.

These elements are “semisimple observables” since they split on extensions:

v I J
0=>1—-V —=>J—=0eact = W(x)=W(x)+W(x).

In section 6.3, all the links are colored by the fundamental representation X'*(2):

X1 (2) x+(2)

W(z) =tr(K"*™ 7 ),

X<(s) _
This is enough to recover all the W (z) (where the X(s) are the simple U,-modules) thanks to the
formulas (which follows from Proposition 5.3.14 and (3.31)):

X<(s) Xe(s—1) Xe(s+1) X<(p) X<(p—-1) x=e(1)
Wix) Wx)= W (z)+ W (x), W(x)W(@)=2 W (z)+2 W ().

However, this is insufficient to recover all the observables. Indeed, there are also non-semisimple
observables based on the pseudo-traces G (see (3.24)):

PH(s) Pt (s) P~ (p—=5)P~ (p—s)
Vi(z) =tr(o, K" T ) +tr(ops KPT' 7 ) (1<s<p-1).

This V* is a non-semisimple analogue of the Wilson loop map W and is defined only on simple loops
for the moment. This leads to the following problems (which may be solvable or not):

e Define V*(L) for any oriented framed link L € (X,,\D) x [0, 1].
e Determine skein relations satisfied by the map V*.

e Does the collection of observables W(z),V*(z) (for 1 < s < p — 1 and z a simple loop)®
generates the algebra £

(Uy) ? More generally, describe as precisley as possible LI (U, ).

inv
g7n

The last item is probably very difficult. Instead, we can glue back the disk D by studying the
representation of LI (U,) on Inv(V'), where V = (U7)®? ® [, ® ... ® I,. This would be a first step to

g’n
understand the structure of the moduli algebra M, ,,(H, I, ..., I,) defined in (1.9). These questions
are still very difficult and it is better to restrict to n = 0 in order to avoid the choices of I1,..., I,.

Section 4.4.4 contains remarks about the case (g,n) = (1,0). The first difficulty for this kind of
questions in higher genus is that we do not know a basis of Inv((U ;‘)@’9) which would generalize the

GTA basis of SLF(U,) = Inv(Uy).

8We can take s = 1 thanks to the relation W (z)V*(x) = %V‘“*l(z) + %V”l(x)7 which follows from Propo-
sition 5.3.14 and Theorem 3.4.1.
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e Determine a “suitable basis” of Inv((U7)%9).

e Determine the structure of the representation of £2%(U,) on Inv((U;)®?) and deduce conse-

quences about the structure of the moduli algebra M, o(H).

The semisimple part of Eig‘f,vl((_]q) deserves however a special interest since it is the image by W
(with all the links colored by X¥(2)) of the Kauffman bracket skein algebra S,(3,,\ D). More-
over, Inv((U7)®9) is a representation of S;(3,0). For g = 1, the structure of this representation
is determined in Proposition 6.5.2 and it is shown in Proposition 6.5.5 that it contains the natural
representation of Sq(¥1,0) on S;*)(Hy) as a composition factor.

e Determine the structure of the representation of Sy(3,,0) on Inv((U7)%9).

e Prove that the natural representation of S;(3g0) on S;*/(Hy) is a composition factor of the
representation of S;(X,0) on Inv((U;)®9) (Conjecture 6.5.6).

Another problem is to generalize Theorem 4.4.9 in higher genus:

e Determine the structure of the projective representation of MCG(X,,0) on Inv((U7)®9).

Finally, we can try to generalize the algebras £, ,, in a categorical setting. This can have differents
meanings. We know that Lo, (H) is a coend (Proposition 5.4.3); using this, we can start with a ribbon
category with coend K and rewrite all in categorical terms using the universal property of the coend
(for instance, £ ¢(H) would be K ® K and its product would be described as a morphism which
factorizes a certain dinatural family). We can also try to categorify L£,, (for instance with gauge
algebra U,(sly), ¢ generic), which means finding a monoidal category C, ,, such that K(C,,) = L, ,; it
would be interesting to see what plays the role of the algebra of observables in such a categorification.
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Chapter 2

Notations and preliminaries

In this chapter, we set the notations and collect important facts which will be intensively used in
the subsequent chapters. We assume that the reader is familiar with the basic notions about Hopf
algebras, knot theory and tensor categories explained for instance in the three first parts of [Kas95].

2.1 General notations and conventions

In order to simplify notations, we will use implicit summations. First, we use Einstein’s notation for
the computations involving indices: when an index variable appears twice in a litteral expression,
one time in upper position and one time in lower position, it implicitly means summation over all
the values of the index. Second, we use Sweedler’s notation (see [Kas95, Not. III.1.6]) without
summation sign for coproducts, that is we write

A(z) =2 @ 2", A(2)(x) =(A®id)oA(z) = (ld®A)oAlx) =2'@z" 2", ...,
AV () =2V @ .. @z,

We write the universal R-matrix as R = a; ® b; with implicit summation on ¢ and define R’ = b; ® a;.
We also denote RR' = X; ®Y;, (RR)' =X, QY.

The symbol “?” will mean a variable in functional constructions. For instance if H is a finite
dimensional Hopf algebra and ¢,v € H* a,b € H, then for all z,y € H, ¢(a?) : z — ¢(ax),
©(?7a) @ Y(b?) : x @y — p(za)(by) and p(?a)Y(b?) : x — p(z'a)(bx”) (thanks to the dual Hopf
algebra structure on H*, see section 2.3). We will often use the notation ¢ as a shortand for ¢(a?).

All the algebras under consideration in this text are finite dimensional C-algebras. If A is a finite

dimensional C-algebra, V' is a finite dimensional A-module and x € A, we denote by T e Endc¢ (V)
the representation of z on the module V. Hence, if (v;) is a basis of V', we have

v = gzvl (2.1)

More generally, if X € A®™ and if V4,...,V, are A-modules, we denote by VIXVH the representation
of XonVi®...0V,.

As in [CR62], we will use the abbreviation PIM for Principal Indecomposable Module. Recall
that the PIMs P; are the indecomposable direct summands of the regular representation of A:

AA:anl@@nkPk

where the integer n; > 0 is the multiplicity of P; in that decomposition. Since we assume that A is
finite dimensional, it is well-known (see e.g. [CR62]) that every finite dimensional projective module
is a direct sum of PIMs. Hence the projective cover of any finite dimensional module is a direct sum
of PIMs, and it follows that any finite dimensional module is a quotient of a direct sum of PIMs.
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Chapter 2. Notations and preliminaries

We will work only with finite dimensional modules and “module” will implicitly mean “finite
dimensional left module”. When we use right modules we explicitly mention it at each time. The
socle of V| denoted by Soc(V') is the largest semi-simple submodule of V. The top of V', denoted by
Top(V'), is V/Rad(V'), where Rad (V') is the Jacobson radical of V. See [CR62, Chap. IV and VIII]
for background material about representation theory.

For ¢ € C\ {—1,0,1}, we define the g-integer [n] (with n € Z) and the g-factorial [m]! (with
m € N) by:

=L o) =1, [m)!=[1][2]...[m] form>1.
q—q
We will denote § = ¢ — ¢! to shorten formulas. In what follows ¢ is a primitive 2p-root of unity
(where p is a fixed integer > 2), say ¢ = ¢"/P. Observe that in this case [n] = S;?n((nﬂ% 7;), [p] = 0 and
[p—n] = [n].
As usual d,; or 07 is the Kronecker symbol and I, is the identity matrix of size n.

The letter H will always denote a finite dimensional, factorizable, ribbon Hopf algebra (over C).
More notations are defined in the next two sections.

We denote by X ,, the compact oriented surface of genus g with n open disks removed.

2.2 Matrices and tensors

Let A be a finite dimensional associative algebra. We denote by Mat,,(A) the algebra of n x n-matrices
with coefficients in A:
Mat, (A) = A ® Mat,,(C).

Every M € Mat,,(A) is written as M = 3~ . Mj®@E}, where E} is the matrix with 1 at the intersection
of the ¢-th row and the j-th column and 0 elsewhere More generally7 every L € A ® Mat,,, (C) ®
.. ® Mat,,, (C) can be written as

L= Z L' @Bl ®...0 E]

Ji--Jn
11,01 5-5805]1

and the elements LZ1 ;l € A are called the coefficients of L. If f: A — B (with B an algebra) is a
morphism we define f (L) € B® Mat,,,, (C) ® ... ® Mat,,, (C) component-by-component:

f(L) = Z fLMYQE®... .0 B!

11,01 5-500,01

or equivalently f (L)z'll'f.'.?l = f(L;l1 ’Jll)

Let M € A ® Mat,,(C), N € A® Mat,(C). We embed M, N in A ® Mat,,(C) ® Mat,(C) =
Mat,,,,(A) by

=Y Mi®E/®L, Ny=)» N&l,®E]
ij ij
where I, = ZZ | E! is the identity matrix of size k. This can also be written as
(My)pg = My'og,  (N2)pg = 05 Ng
(where 5; is the Kronecker symbol), or also

M, =M®I,, Ny =1,®N

where ® is the Kronecker product. Note that M; Ny (resp. NoM;) contains all the possible products
of coefficients of M (resp. of N) by coefficients of N (resp. of M): (MiNy)% = M;Ny (resp.
(Nle)ﬂ = NfM;) In particular, M; Ny = N M if and only if the coefficients of M commute with
those of N.
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Example 2.2.1. Let M, N € Maty(A):

11 11
M = my My N = ny Ny
=\m2 m2 ) =2 2
1M 1 1
Then
mi 0 mi 0 ni nd 0 0
M milly mil, 0 mj 0 md N N 0 n? ni 0 0
1: pu— 2: =
mily, mil, mi 0 m3 0 |’ 0 N 0 0 ni ni
2 2 2 2
0 mi 0 mj 0 0 ny n;
and
miny ming mony man, nimy nymy nimy  nom,

1,2 1,2 1,2 1,2 2.1 2.1 .21 ,2 1
miny MmNy Mony  Molly nimy Ny NyMy N5y

m2n}l minl m3n] m3ni nim? nim? nimi nim?
mini min3 mini minj nimi nimi nimi n3mj
A

This is obviously generalized to more general embeddings. For instance, L € A ® Mat,,(C)®? can
be embedded in A ® Mat,,(C)®? in two ways:

(Lio)pg = Lhgs  (Law)spg = Ligy
and can be embedded in A ® Mat,,(C)®? in several ways, e.g.
(Lr2)pr = Loads,  (Lus)sgy = Lig0a,  (Ls2)agp = Ljady -

1J JI
Note that (R'),, = (R)zv where R=a; ®b; € H®? and R' = b; ® a,.

Recall that we use Einstein’s notation for the computations involving indices. For instance if
XY € A® Mat,(C), L, M € Mat,(C)®?> ® A and N € Mat, (C)®3 ® A, then
(XY); = X7Yy, (X1 Mia)pg = X My, (LsxMysNaio)gss = Lis Mg NGy,

We will extensively use matrices which are labelled by finite dimensional representations of A.

Such matrices will be denoted by ]\‘;[ , V being a finite dimensional A-module. The matrix J\VI will
be an element of Matgim)(B), where B is some algebra, but since we want to record that it is
associated with the A-module V', it is better to consider it as an element of B ® End¢ (V).

An important example of such matrices labelled by modules is provided by representation mor-

1%
phisms. Indeed, let V' be A-module; then by definition we have a map 7' : A — End¢(V):

(2.2)

v : . . .
where we denote by x the representation of z € A on V. In other words, if (v;) is a basis of V' and
(v') is its dual basis, then

¢

v'(z - vy)

v v V.
Hence T is a matrix with coefficients in A*: T' € A*®@Endc(V'). The linear form 77 is called a matrix
coefficient associated to the A-module V. By definition, if f : V — W is an A-morphism it holds

w |4
Tf=fT (2.3)
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where we identify f with its matrix. We call this relation the naturality of the (family of) matrices
1% 1% W
T. Also note that if V' is a submodule or a quotient of W, then T is a submatrix of 7" and thus the

v
matrix coefficients of V' are contained in those of W. If A is a Hopf algebra, then T is a matrix with
coefficients in the dual Hopf algebra O(A), see (2.15).
The algebra A being finite dimensional, its dual A* is generated as a vector space by the matrix
coefficients of the PIMs. Indeed, let (z1,...,2,) be a basis of A with z; = 1, let (z!,...,2") C A*

AA
be the dual basis and let 4A be the regular representation. It is readily seen that 7\ (z;) = J;; and

AA, .
thus 7'} = x*. Since the PIMs are the direct summands of 4A, the claim is proved. Note however
that the matrix coefficients of the PIMs do not form a basis of A* in general. Indeed, even if we fix

a family (F,) representing each isomorphism class of PIMs, it is possible for P, and Ps to have a
Po Pg s
composition factor S in common. In this case, both 7" and 7" contain 7" as submatrix. This is what

happens for A = U,(sly), see (3.22). In the semi-simple case this phenomenon does not occur.

4
If A is a Hopf algebra with pivotal element g (see section 2.3), V' is an A-module and M €
v
B ® End¢ (V) (where B is some algebra), the quantum trace of M is

v vV
tr,(M) =tr(gM) € B.

2.3 Braided Hopf algebras, factorizability, ribbon element

In all this thesis, H is a finite dimensional, factorizable, ribbon Hopf algebra. We recall the meaning
of these assumptions and for further use we record some properties of such algebras.

Let H = (H,-,1,A,&,S, R) be a braided Hopf algebra with universal R-matrix R = a; ® b; (see
e.g. [Kas95, Chap. VIII]). Recall that:

RA = AP R,

(A ®id)(R) = Ri3Ry3, (id ® A)(R) = RysRys.
(S®id)(R) = (id® S ™) (R) =R, (S®9)(R)=R.
R12R13R23 - R23R13R12

- O Ut~
N’ N N

o~ o~~~

with R12 =a; ® bz X 1, R13 =a; X 1® bi, Rgg =1® a; bz < H®3. The relation (27) is called the
(quantum) Yang-Baxter equation.

Consider
v: H* — H
g — (F®id)(RR)

where R’ = b; ® a;. We say that H is factorizable if ¥ is an isomorphism of vector spaces. Since we

I
assume that H is finite dimensional, we can restrict 8 to be a matrix coefficient 7% of some H-module
I, by the remarks of section 2.2.

Define R = R, R) = (R')™', and let

I I 1
L = (T ®id)(R™) = (a;”) b € Mataum(n)(H) (28)

7 (2

I
where R = agi) & bgi) (note that (a-i)) b'® is the matrix obtained by multiplying each coefficient
I

(which is a scalar) of the matrix (agi)

) by the element b; € H). Recall that R is also a universal
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R-matrix and in particular it satisfies the properties (2.4)—(2.7) above. We use the letters I, J,. ..
for modules over H. Note that

I
L = §7H(LO) = (o) 5 ().

()

I
If H is factorizable, the coefficients of the matrices L'*) generate H as an algebra, since

I oI
(T ®id)(RR') = LW L()~1, These matrices satisfy nice properties which are consequences of (2.5)
and (2.7):

I J I®J

10T = 1)

IJ I J J I I1J

RYLYLY = LY LR Veo € {£}, (2.9)
Dol T _ 1@ 3e

RY; LY Ly" = Ly Ly Ri3 Ve, o€ {%},

T I | 1
ALY} =L, @ L7, e(L9) = Liim(n)-

For instance, here is a proof of the first equality with e = +:
1®J

I, .J
Lg) = (Igij)n bi = (GIZ ® d]j>12 bib; = (C{i)1 (d]j)Q bib; = (C{i)1 b (dfj)2 b = Lg+)Lg+)

where we used (2.5); note that these are equalities between matrices in Matgim(r)(C) ® Matgim(s)(C) ®
H which imply equalities among the coefficients. If the representations I and J are fixed and
arbitrary, we will simply write these relations as:

M= 010, RQLOLO = LOLORY,  RYLOLY = LOLRY

Y

the space 1 (resp. 2) corresponding implicitly to the evaluation in the representation I (resp. J).

I .
Remark 2.3.1. The set of generators (L(i));. is not at all minimal. However, in practice, due to

the fusion relation (the first relation in (2.9)) we can restrict I to belong to a set G of well-chosen
H-modules which generate every other module by tensor products, in the sense that every H-module
is isomorphic to a submodule or a quotient of a tensor product of elements of G. For instance, in the
case of H = U,(sl,), we can restrict I to be the fundamental representation X*(2). Also see Remark
2.3.2 and section 3.1.4. A

Recall that the Drinfeld element u and its inverse are:
u=S(b)a; =b;S""(a;) and u'=S"2(b)a; =S (b;)S(a;) = b:S*(a;). (2.10)
We assume that H contains a ribbon element v. It satisfies:
v is central and invertible, A(v) = (R'R) 'w®wv, SE)=v, e0)=1, v*=uS(u). (2.11)

The two last equalities can be deduced easily from the others. A ribbon element is in general not
unique. A ribbon Hopf algebra (H, R,v) is a braided Hopf algebra (H, R) together with a ribbon
element v.

We say that g € H is a pivotal element if:
Alg)=g®g and Vo e H, S*(z)=gxg (2.12)

Note that g is invertible since it is grouplike: S(g) = ¢g~!. A pivotal element is in general not unique.
But in a ribbon Hopf algebra (H, R, v) there is a canonical choice:

g=uv". (2.13)
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We will always take this canonical pivotal element ¢ in the sequel.
The canonical Hopf algebra structure on H* is defined by:

(pP)(z) = (P @Y)(A(2)), 1a- = ¢, Alp)(z®@y) = p(zy), e(p) = ¢(1), S(p) =poS.  (2.14)

with ¢, € H* and z,y € H. When it is endowed with this structure, H* is called dual Hopf
algebra, and denoted O(H) in the sequel. Recall that H* is generated as a vector space by the

I
matrix coefficients 7% (see section 2.2). In terms of these elements, the structure of O(H) is:

I J I®J C I I I I I I,
T1T2 == Tlg, ?7(1) == T, A(Tba) — T,L-a ® sz, €(T) — ]Idim(I)p S(T) == T y (215)

where C is the trivial representation. For instance, here are proofs of the first and last equalities
(with h € H):

(T = (1), = (1 0 17),, = (), (1), = T Do) = (T30,
h I I

(h
(S(T)T) (k) = S(TYR)T(h") = T(S(W))T(h") = T(S(R)K") = e(h)T(1) = () Ly
Note that , b
S(T) = 'T (2.16)

* is the transpose. Indeed, let (v;) be a basis of I and ( 7) be the dual basis. Denote

where
vf = /. Then by (2.1), we have (zv7,v;) = (zv},v;) = gnf(v,’;,vﬁ = :17 . But using (2.36) we also get
I I I

(vl vy = (v, S(x)v;) = S(x)¥(v9,v,) = S(x)]. This shows that T = tS(x) as desired. Recall the
well-known exchange relation

orJ JIlJ

RIQTITQ - T2T1R12, (217)
which is simply due to (2.15), (2.35) below and (2.3):

JroJ 107 Jol J I g I
RTVTy=PrjergT =Py Tery=PyThTo Py R=TT R

where Py is the flip tensor Prj(x ® y) = y ® x or (Pry)§s = 0505. As before, if the representations /
and J are fixed and arbitrary, we will simply write

T12 == T1T2 and R12T1T2 == TQTlng.

I I,

Remark 2.3.2. Exactly as for the matrices L™, the set of generators T is not at all minimal. Due
to the fusion relation of (2.15), we have the same comments that in Remark 2.3.1 (see section 3.1.4,
where this is discussed in detail for H = U,(sly)). A

We denote by Z(H) the subalgebra of central elements of H and by SLF(H) C O(H) the
subalgebra of symmetric linear forms on H:

SLF(H) ={p € H" |Vaz,y € H, ¢(xy) = p(yx)}.
SLF(H) is a subalgebra because the coproduct is a morphism of algebras:
py(ay) = o((zy) ) ¥ ((zy)") = w(@'y )0 (z"y") = oy ) (y"") = ¢((yz) )L ((y2)") = i (yz).
Consider the following map, called Drinfeld morphism:

D: H — H

¢ = (p®id)((g® 1)RR') = p(gab;)bia; (2.18)

where g is the pivotal element (2.12).
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Lemma 2.3.3. If H is factorizable, D : H* — H is an isomorphism of vector spaces and it provides

an isomorphism of algebras
D:SLF(H) — Z(H).

In particular, SLF(H) is a commutative algebra.

Proof. D is an isomorphism by assumption since g is invertible. Consider the following actions of H
on itself and on H*:
hoa=h"aS ' (K), hop=p(S(H")?N).

It is easy to see that
a€ Z(H) < VheH, hoa=ce(h)a, p € SLF(H) <= VYheH, hop=c(h)p.
Moreover, using (2.4), we get that D intertwines these actions:
D(hop) =D(p(S(h")2H)) = o(S(h")gab;h')bia; = ¢(S(h™)gab;h" ) bia;h" S~ (K)
= o(S(h™)ga;h"b;)b;h" a; STHR') = o(S(hW)gh” a;b;) h"ba; S~ (W)
= go(gaibj)h”biajS’l(h’) =hoD(p)

Hence, D brings symmetric linear forms to central elements. To show that it is a morphism of
algebras, we use (2.14), (2.12) and (2.5):

D(p1p) = @o(gaib;)bia; = (gaib}) v (gaiby)bia; = ©(gasb)(garb;)bibraja
= @(ga;bi)b;D()a; = @(gaib)b;a;D (V) = D(p)D(1))
since D(v) is central. O

Recall that a left integral (resp. right integral) is a non-zero linear form p' (resp. p”) on H which
satisfies:

Vee H (id®p')oA(z)=p(x)l (resp. (1" ®id) o A(z) = p"(2)1). (2.19)
Since H is finite dimensional, this is equivalent to:
Vi€ O(H), yu'=e()u’ (resp. ' =e(y)u"). (220)

It is well-known that left and right integrals always exist if H is finite dimensional. Moreover, they
are unique up to scalar. We fix p!. Then p! o S7! is a right integral, and we choose

u=ptoS7h (2.21)

Integrals will be important for our purposes because they are related to the ribbon element, as
explained in the following proposition (the points 2. and 3. are well-known thanks to results of
Radford, see e.g. [Radll]).

Proposition 2.3.4. Let ¢,, p,~1 € H* defined by:
oo =p' () (g ?), e =gl (0) Tl (g7 7).
Then:

It follows that:

1. @y, -1 € SLF(H),
2. Va,y e H, p'(gay) = (gyx), (g~ wy) = p' (g ya), (2.22)
3. Va,ye H, p'(xy) = p' (S*(y)a), p'(zy) = p'(S73(y)x). (2.23)
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Proof. Consider the following computation, where we use (2.11) and (2.19):

D(p (g1 7)) = (g7 v ") ®id, (@ )RR = (4 (g v " ?) ®@id, gv(v™")" @ v(v™")")
— Ml((v—l)//) U(U_l)/ _ ,ul(v_l)v.
Since H is factorizable, the map D is an isomorphism of vector spaces. The left integral u' is non-
zero, so p!(g~ v™'?) is non-zero either. Since D is an isomorphism, it follows that D (p!(g7 v ?)) =
p(vHw #£ 0, and thus p!(v=') # 0. Hence the formula for ¢, is well defined. Moreover, we have the
restriction D : SLF(H) = Z(H), so since v € Z(H), we get that ¢, € SLF(H). This allows us to

deduce the properties stated about u!. Using (2.21), we obtain the properties 1, 2 and 3 for u". We
can now proceed with the computation for ¢,-1:

D' (g 'v?)) = (p(g'v?) ®id, (¢ ® 1)RR') = p (vasb;) bia,
= " (v5(b;)S(a:)) bia; = 1" (vS(a:) S (b)) bia;
— (i oid, (08 DER)) = (@) "o = i (o) = (o)

where we used (2.21), the property 3 previously shown and (2.11). We conclude as before. O

Let us record an useful formula:
Vhe H Vo e OH), wh?)p=p(R?)e(STH(R"). (2.24)
Indeed, thanks to (2.19)

</1/r(h/ 7)¢7 x) — /f(hl',)@/)([t”) — MT(h,x/)¢(S_l(h”/>h/”l'”) — 77/)(S_l(h/,/)LLT(h/:E,)h/,J}/,)
= (ST (Wa)') (W) = (W) (S~ (h)

Finally, it holds (see Lemma 4.3.8)
p= " (g?7). (2.25)

2.4 Heinsenberg double of O(H)

The Heisenberg double of O(H), denoted by H(O(H)), is the vector space O(H) ® H endowed with
the product

(p@h)(Y@Fk)=p(?h) @ h"k

where ¥ (?y) € O(H) is defined by ¥(?y)(x) = ¢(zy) (for x € H) and p¢(?y) is the product
of ¢ and ¥(?y) in O(H): (¥ (?y),z) = @(a’)(z"y). See e.g. [Mon93, 4.1.10]. Let us identify
Y1 e H(OH)) with p € O(H) and e ® h € H(O(H)) with h € H. Then we have ¢ ® h =
(p ® 1)(e ® h) = ph and the structure of algebra on H(O(H)) is entirely defined by the following
exchange relation:

hi = (?h)R". (2.26)
There is a faithful representation > of H(O(H)) on O(H) (see [Mon93, Lem. 9.4.2]) defined by

Ve =1vp, hep=p(7h). (2.27)

Hence we have an injective morphism p : H(O(H)) — Endc(H*); by equality of the dimensions, it
follows that
H(O(H)) = Endc(H). (2.28)

In other words, H(O(H)) is isomorphic to a matrix algebra. In particular, the elements of H(O(H))
can be defined by their action on O(H) under >.
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I I

In terms of matrix coefficients, H(O(H)) is generated as an algebra by T* and L&) ; for I running
in the set of finite dimensional H-modules. This set of generators is of course not at all minimal and
in practice we can restrict to well-chosen representations, as explained in Remarks 2.3.1 and 2.3.2.

With these generators, the exchange relation is

+ J I :I:IJ:I:
LTy = T, LR

Indeed, using (2.8), (2.26), (2.5) and obvious commutation relations:

L) 7 (£)y ()7 oy A o) () b (o op(E) (%)
L T (CL )1b T2 = (CLi )1 T(bl )le = ( i aj )1T( bj ) bz
I J I J

where R®) = agi) ® bgi). Similarly, the representation > is

I
I J I®J I J J
TioTy= T, L oTy= (00" Ty = ()T, =ToRE.

For h € H, let h € H(O(H)) be defined by
he o =p(S71(h)?).
It is easy to see that

Vge H Vi eOH), Gh=gh, gh=hg, hp=(S" (h")?)N.

1
Applying this to the matrices L(*) of generators of H, we define

L ~ L !
L) = a;b;, IO = 57 (b) @ € Matamr (H(O(H)))

or equivalently
I

~ J 1J
Lgi) > T2 =

J
+)-1

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

Using the standard properties of the R-matrix, it is not difficult to show the following relations:

oo %o 20le) Lo
L1€ LQe = L127 Ll Lza :Lza Ll )
g, L J LGN g, Lo L Lo L qg

ROLVYLY) = LYLYRY) Ve o e {£}, ROLOLY) = LT RY Ve o€ {£).

1, L J L
RYLEOTy =T,L1,

For instance, here is a proof of the fourth equality with e = +,0 = —:
Lo L rooJd o~ J B I N __
R LTVLE = (@ (bi)a (a5)1 b 57" (br)y @ = (diay), (0157 (b)), by

— J I o~ 1 NG

i 5 . N T8 AR C
= (aja;), (S7'(br)bs), arb; = S™1(br)y ax (a;)1 b; (a:)1 (bi)2 = Ly 'Ly RYy’.

We simply used a Yang-Baxter relation:

aiaj X blsil(bk) X b]’ak = R12R13R521 = R§21R13R12 = CL]'CLZ' X Sil(bk)bi X akbj.

(2.34)
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2.5 Category mod;(H), Reshetikhin—Turaev functor

Let H be as above, with R-matrix R = a; ® b;, ribbon element v and pivotal element g = uv™.

We recall the ribbon structure of mod;(H), the category of finite dimensional left H-modules. The
notations and conventions are those of [Kas95, Chap. XIV]. The objects of mod,(H) will be denoted
by I, J... as previously. The unit object is C; its H-module structure is given by h -z = e(h)z.

The braiding ¢y ; and twist 0; are defined by

. (2.35)

Cr,Jj: I®J — J®I 91: I
T T

o — I
xRy — PyR(x®y)=>by® aax = v
where Pry: I ® J — J® I is the flip map Prj(z ® y) = y ® x. Note that cilj(y ® ) = S(a;)r ® by.

The dual I* of the H-module I is defined by
Vhe H VYoelI, hp=p(Sh)?). (2.36)

The duality morphisms are defined by

by: C — I®I* dr: IYewel — C
1 = vy peRr = o)
and
by: C - I"®I di: ITel* - C
1 — v"® gy T — @(gr)

The name “ribbon category” comes from the well-known fact ([RT90], see also [KM91] and
[Kas95, XIV.5.1]) that there is a tensor functor Frr : RGy — mod;(H), where RGy is the category
of mod;(H )-colored ribbon graphs. We call Frr the Reshetikhin-Turaev functor; it takes the following
values:

I J
Fre( | ) =1idy, Fre( | ) =1ds-, Frr( )=(f:1—J),
I I
K
n J L
Fre( gy ) =(g9of:1—K), FRT(I:‘C']‘:|>(f®92]®K—>J®L),
1l Ik

I

oI L
FRT( X):(C],Jil(ghj—)(]@[), FRT( X\)—(CI’}]J@I—)I@J),

I I

FRT(/\):(dI:]*®I—>C), FRT(m):(d}:I@)I*—MC),

I I
FRT(U):(bI:C%]@{)I*), FRT(U):(I)}:C%I*®I),

[\ I

I I
Frr( [\D ) = Frr( C\j\v y=(0;: I — 1), FRT('/b ) = Frr( C/\)v )= (07T —1).
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In the sequel we will identify a colored ribbon graph with its evaluation through Fgrr. Note that we
read diagrams from bottom to top.

We record some facts about duality in a ribbon category and more specifically in mod,;(H). First,
the duality * is a contravariant functor. Indeed, recall that the transpose of f : [ — Jis f*: J* — I*,
defined by

f* = (id]* (%9 di]) ¢) (ld]* X f X ldJ*) l¢) (b/I X ldJ*) = (dJ X id]*) o (idj* X f X id]*) o (idJ* & b[)

This is represented diagrammaticaly as follows:

In mod;(H), f* is simply the usual transpose: f*(¢) = po f. The families (d;), (d}), (bs), (b)) satisfy:
dyo(idy @ f) =dyo (f* ®idy), d/JO (f ®idy) =djo(id; @ f7),

. ) . . 2.
(F@idr)ob = (id, ® [)oby. (i@ ol = (f* @idy) ob). (237
This is represented diagrammaticaly as follows:
J
- -
I J I I J I J
J I J I
- =
I J 1 J
Let N
er: I — I (238)

(7,2) — gl

be the identification with the bidual, where (?,7) = d; : [* ® I — C is the duality pairing. The
morphism e; and its inverse can be written in terms of duality morphisms:

= (idr ® dj) o (by ® idp=+) = (d~ ®1dy) o (idf= ® V),
I_ = (1d[ ®d[) (bl* ®1d]) (dl®ld[**) (1d[®b[*)

This is represented diagrammaticaly as follows:

I” I
o = - = | g | -
I I*
The family of morphisms (e;) is natural:
and satisfies the following property:
er = (e )" (2.39)

This last equality is easy to see diagramatically:
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Finally, note that:
by = (idp- @ep) b, dy =dp o (e @idye),
b] :bII* O(€[®id[*), d[ :d}* O(id[* ®€;1),

where the second line of equalities follows from the first line thanks to (2.37) and (2.39). This is
represented diagrammaticaly as follows:

(2.40)
In particular, we see that it is possible to define the morphisms d}, ¥, using b;,d; and e;. We will

use this remark to define the value of a negatively oriented strand going through an handle in the
graphical calculus of Chapter 6 (see (6.4)).
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Chapter 3

The restricted quantum group U, (sly)

The restricted quantum group Uq(ﬁ[g) is an important example of a factorizable and ribbon! finite
dimensional Hopf algebra. This algebra is interesting because it is sufficiently simple and well-studied
to allow us to carry explicit computations when we use it as a gauge algebra in the combinatorial
quantization (see sections 4.4 and 6.3). Moreover, its R-matrix satisfies the Jones skein relation when
evaluated in the fundamental representation. We will use this property to construct representations
of skein algebras, thanks to the Wilson loop map, in Chapter 6.

Note that the aim of this chapter is to collect technical properties which will be used when
applying the general constructions of the subsequent chapters to the (important) example of U, (sl);
the reader can skip this chapter at the first reading and just refer to it from the sections 4.4, 6.3,
6.4, 6.5.

We first recall the definition of U, = U,(sly) and explain some facts about its structure, its
representation theory and its matrix coefficients. The material of sections 3.1.1, 3.1.2, 3.1.3 comes
from [FGSTO06a] (it is also recalled in detail in [Ibal5]).

Then we define the GTA basis of SLF(U,) (symmetric linear forms on U,), introduced in [GT09]
and in [Aril0]. This basis will be a crucial tool when studying explicitly the representations of

SLy(Z) and of S;(X10) on SLF(U,) (sections 4.4.3 and 6.5). A key property of this basis is that its
multiplication rules, determined in section 3.4, are simple. I mention that such multiplication rules
were already given in [GT09], but I was not aware of the existence of their paper when preparing this

work (in [GT09] they work in the space of g-characters qCh(U,), which is isomorphic as an algebra

to SLF(U,) by the shift of the pivotal element; ; also note that they use a normalized version of Gy).
It turns out that our proofs are different. In [GT09], they use the fact that the multiplication in
the canonical basis of Z(U,) is very simple. They first express the image of their basis of qCh(U,)
(which is the GTA basis shifted by the inverse of the pivotal element) through the Radford mapping

in the canonical basis of Z(U,). This gives a basis of Z(U,) called the Radford basis. Then they

use the S-transformation of the SLy(Z) representation on Z(U,) to express the Drinfeld basis (which
is the image of their basis of qCh(U,) by the Drinfeld map) in the Radford basis. This gives the
multiplication rules in the Drinfeld basis. Since the Drinfeld map is an isomorphism of algebras
between qCh(U,) and Z(U,), this gives also the multiplication rules in the GTA basis. Here we
directly work in SLF(Uq). We take advantage of the decomposition rules for tensor products to see
that there are not many coefficients to determine, and then we compute these coefficients by using

the evaluation on suitable elements of Uq.

Section 3.3 is a digression on the link between the GTA basis and traces on projective U,-modules.
We also compute the decomposition of u”(KP™'?) (right integral shifted by the pivotal element) in the
GTA basis (to be used in the proof of Theorem 4.4.6). A particular trace on projectives U,-modules
is the modified trace computed in [BBGel7], and we observe that p”"(K?*1?) is the symmetric linear

EThese two properties are an abuse of terminology due to the subtlety that the R-matrix belongs to an extension of
of U,(slz) by a square root K 1/2 But this square root does not appear in the double braiding RR’ nor in the ribbon
element v, see section 3.1.3.
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form corresponding to the modified trace. This last fact is not specific to U,: it has been proved under
general assumptions (which cover the case of U,) in [BBGal8] that there is a unique (up to scalar)
modified trace on the ideal of finite-dimensional projective H-modules and that the corresponding
symmetric linear form is the right integral shifted by the pivotal element.

The material of this chapter is mainly the content of [Fail8a]. However, the present chapter
contains more details and comments.

3.1 Properties of U,

Let ¢ = €™/? be a primitive root of unity of order 2p, with p > 2. Recall that U,(sly), the restricted
quantum group associated to sly(C), is the C-algebra generated by F, F, K together with the relations

K- K
EP =FP =0, K*=1, KE=¢EK, KF=q°FK, EF=FE+—.
q—q

It will be simply denoted by U, in the sequel. It is a 2p3-dimensional Hopf algebra, with comultipli-
cation A, counit € and antipode S given by the following formulas:

AE)=1 E+E®K, A(F)=F®1+K'®F AK)=K®K,
e(F) =0, e(F) =0, e(K) =1,
S(E)=-EK™!, S(F) = —KF, S(K)= K.

The monomials E™F"K' with 0 < m,n < p—1,0 <[ < 2p — 1, form a basis of Uq, usually
referred as the PBW-basis. Recall the formula (see [Kas95, Prop. VII.1.3]):

A EanKl Z Z qz m—i)+j(n—35)—2(m—i)(n—j) |:m:| |:7’L:| EmfiFjKl+jfn ® EianjKl+mfi (31)
J

(]
=0 7=0

where the ¢g-binomial coefficients are defined by [ } [b]'T for a > b.

Since K is annihilated by the polynomial X 2» — 1, which has simple roots over C, the action of
K is diagonalizable on each Uj,-module, and the eigenvalues are 2p-roots of unity.

The elements K and KP*! both satisfy the properties of a pivotal element, see (2.12). In the
sequel and as in [FGST06a], we always take K?*! for the pivotal element of U,:

g= K", (3.2)

Due to the Hopf algebra structure on U,, its category of modules is a monoidal category with
duals. It is not braided (see [KS11]).

3.1.1 Simple and projective Uq—modules

The finite dimensional representations of U, are classified ([Sut94] and [FGSTO06b]). Two types of
modules are important for our purposes: the simple modules and the projective modules. As in
[FGSTO06a] (see also [Ibal5]), we denote the simple modules by X*(s), with a € {+},1 < s < p.
X*(2) is called the fundamental representation. The modules X*(p) are simple and projective
simultaneously. The other indecomposable projective modules are not simple. We denote them by
P(s) with v e {£},1 <s<p-—1.

The module X“(s) admits a canonical basis (v;)j<;<,_, such that
Kv; = aq¢®* "%, Evg =0, Ev; = ali][s — i|vi_y, Fv; = vy, Fo,_, =0. (3.3)

The module P(s) admits a standard basis (b, xj, yx, &) o<ij<s—1 such that
0<j,k<p—s—1
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Kbl = C(qs_l_%bi, Ebl = Od[l] [S — i]bl;l + a;—1, Fbl = bi+1,
EbO = Tp—s—1, Fby_y = Yo,
Kzj=—aq"*"""x;, Ez;=—aljllp—s—jlrj1, Frj =5,
EZL‘[) = O, FIL'p_S_l = Ao, (3 4)
Ky, = —ag"* """y, By, = —alk][p— s — klye—1, Fyp = yrsa, '
Ey[) = as-1, pr,5,1 = 07
Ka; = ag® 17 2q, Ea; = o[l][s — l]a;_1, Fa; = aj41,
ECLQ == O, FCLs_l =0.

Note that such a basis is not unique up to scalar since we can replace b; by b; + Aa; (with A € C)
without changing the action.

In terms of composition factors, the structure of P%(s) can be schematically represented as follows
(with the basis vectors corresponding to each factor and the action of E and F):

Top (P(s)) = X(s), (bi)o<i<s—1 (3.5)

())o<j<p—s—1, XQK 2 (/Xa(p $), (Ur)o<k<p—s—1
Soc (P(s)) = X(s), (ar1)o<i<s—1

If we need to emphasize the module in which we are working, we will use the following notations:

vi*(s) for the canonical basis of X%(s) and b¢'(s), ¥5(s), yi(s), ai'(s) for a standard basis of P(s)

(these are the notations used in [Aril0]).

Let us recall the Uq—_morphisms between these modules. Observe that X°(s) is Uq-generat_ed
by v§(s) and P*(s) is U,-generated by bj(s), so the images of these vectors suffice to define U,
morphisms. X*(s) is simple, so by Schur’s lemma Endg, (X*(s)) = CId. Since

A% (s) = Top (P*(s)) = Soc (P(s))
there exist injection and projection maps defined by:

X%(s) = PYs) and P(s) — X(s)
vg(s) = ag(s) by(s) = vg(s).

We have Endy, (P(s)) = Cld @ Cp¢ and Homy, (P(s),P~*(p — s)) = CP* @ CP;, where:

PG () = ai(s),  PIB3(s) =2g%(p—s),  PL(b5(s)) = 5" (p — 5). (3.6)

The other Hom-spaces involving only simple modules and indecomposable projective modules are
null.

3.1.2  Structure of the bimodule ((_]q ;. and the center of U,

Recall that if M is a left module (over any k-algebra A), then M* = Hom¢(M, k) is endowed with a
right A-module structure, given by:

Vae A, Ype M, pa=p(a)

where - is the place of the variable. We denote by R*(M) the so-defined right module. Note that if we
define R*(f) as the transpose of f, then R* becomes a contravariant functor. If A is a Hopf algebra,
one must be aware not to confuse R*(M) with the categorical dual M*, which is a left module on
which A acts by:

Vae A, Vo e M*, ap=p(S(a)).
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Chapter 3. The restricted quantum group U,(sly)

Lemma 3.1.1. The right Uj-module R*(X(s)) admits a basis (0;)y<;<,_, such that

T)Z‘K = O[C]1 5+2’vz, @iE = Oé[Z] [S - i]@i—h ’DOE = 07 UZ‘F = ?72'_‘_1, T}s—lF = 0.
The right Uq—module R*(P(s)) admits a basis (l_)i, Zj, Ug, dl) o<il<s—1 Such that
0<j k<p—s—1
biK = ag' %, @E = a1 + ali][s — i]b_1, @F = b1,
. bOE = :Ep—s—la bs—lF = Yo,
i'jK = —Oéq_p+s+1+2jfl_3j, ii‘jE = —Ck[j] [p — S — j]if’jfl, ij = fij+1,
Zf()E = O, 'fpfsle = Qo
UK = —aq Pty g B = —alk]lp — s — Klgk—1, UkF = Y1,
%E = Qs_1, gp—s—lF = O;
a K = aql st2lg 1 aF = O./[l] [S — l]al—h aF = apq,
C_loE = O, asle = 0

Such basis will be termed respectively the canonical basis and a standard basis in the sequel.

Proof. Let (v')g<i<s—1 be the basis dual to the canonical basis given in (3.3). Then 9; = v5~!7 gives

the desired result. Similarly, let (bi, 2, y’“ , al) o<iji<s—1 be the basis dual to a standard basis given

0<j k<p—s—1
n (3.4). Then
A s—1—1 = —s—1—j7 = —s—1-k = s—1-1
bi =a , Ty =yb Ty = b , a=>

gives the desired result. O

We denote by g, (Uq) 5. the regular bimodule, where the left and right actions are respectively the
q

left and right multiplication of U, on itself. Recall that a block of 7, (Uq) 7. is just an indecomposable

two-sided ideal (see [CR62, Section 55]). The block decomposition of U, is (see [FGST06a])

p
Uq (UQ) Uq - @ Q(S)
s=0
where the structure of each block Q(s) as a left U,-module is:
)

=pX~(p), Q(p) =pX™(p), (3.7)
Q(s)%sP+(s)€B(p—s)P_(p—s) for1<s<p-1 '

and the structure of each block as a right U,-module is:

= pR (X~ (p)), Q(p) = pR"(X*(p)),
Q(s) = sR*(PH(s) @ (p—s)R*(P (p—s)) for1<s<p-—1.

The following proposition is a reformulation of [FGST06a, Prop. 4.4.2] (see also [Ibal5, Th.
I1.1.4]). It will be used for the proof of Theorem 3.3.4.

Proposition 3.1.2. For 1 < s <p—1, the block Q(s) admits a basis
(B (), Xeg" (5), Yoy H(5), A (5), By (5), X3 (8), Yo (), A5, (5))

with 0 < a,b,d, f,g,h,k,m <s—1, 0<¢,e,i,5,l,n,0,r <p—s—1, such that
1.V0<j<s—1, (Bfi(s), Xiit(s), Y, (s), A;j(s))og%fgﬁ:l is a standard basis of P+(s) for
the left action.
2.¥0 < j <p-s—1 (B;(s), X7 (s ),Yzf(s),A;}(s))ogﬁ,%i_sl_l is a standard basis of
P~(p—s) for the left action.
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3.1.  Properties of U,

3. Y0 <i<s—1, (B} (s), X5 (5), Yy (), ALF(5)) o<jms<s—1 is a standard basis of R* (P*(s))
0<k,l<p—s—1
for the right action.

4.V0 < i <p—s—1, (B (s),X;7(5),Y; (s), A (5)) o<kics—1 is a standard basis of
0<j,m<p—s—1
R* (P~ (p — s)) for the right action.
The block Q(0) admits a basis (A;;(0)), _. . _, such that

0<i,5<p

1.V0<j<p-1, (Ai_(o))0<i<p71 is a standard basis of X~ (p) for the left action.

)

2.V0<i1<p-—1, (AZ_]_( is a standard basis of R* (X~ (p)) for the right action.

0))0< j<p—1

The block Q(p) admits a basis (A" (p such that

)OSi,jﬁp—l

is a standard basis of X T (p) for the left action.

LY0<j<p—1, (A5 (1) oese,
(

0<i<
2.V0<i1<p-—1, (A;;Jr p))ogjgp—l is a standard basis of R* (X (p)) for the right action.

As in [FGSTO06a], the structure of Q(s) in terms of composition factors can be schematically repre-
sented as follows (each vertex represents a composition factor and is labelled by the basis vectors of

this factor):

(Bay' (5)) (B (9)
/4/ \Q\ /4/ \Q\
(X' () B (Y (s)) (X () 2 (Yo (5))
(Ag () (A5 (s))
for the left action, and
(B () (B ()

(A () (Ao (s))

for the right action.
The knowledge of the structure of the bimodule g, (U‘I)U allows us to determine the center of

U,. Indeed, each central element determines a bimodule endomorphism and conversely. Recall from
[FGST06a] that Z(U,) is a (3p — 1)-dimensional algebra with basis elements e, (0 < s < p) and

£ (1 <t <p—1). The element e, is just the unit of the block Q(s), thus by (3.7) and (3.5) the
action of e, on the simple and the projective modules is given by

For s =0, eovg () = egp (t) = 0t pvq (D), eobi (t) = 0,
For1<s<p-1, ewi(t)= stvo(s) evo(t) o stvo(p—s), (3.8)

¢ b+(t)-—-5 tb+(8), by (t) = 5tp by (p — 5), '
For s = p, epvy () = depvg (), 6107)0 (t) = epby (t) =0

while for the elements wZ:

wivy (t) =0, wibf(t) =dseaf(s), wiby(t) =0,
wvg (t) =0, wybf(t) =0, wyby () = b p—sag (p — 5).



Chapter 3. The restricted quantum group U,(sly)

Observe that

P (s) P (p—s)
wi =pS,  w; =p, .

The action of the central elements on P%(s) is enough to recover their action on every module, using
projective covers. From these formulas, we deduce the multiplication rules of these elements:

+ + + 4
eser = 0165, €Wy = 0gwy, wiw; = 0. (3.10)

Let us mention that the idempotents e, are not primitive: there exists primitive orthogonal idempo-
tents e, ; such that e, =) . ey, see [Aril0].

Definition 3.1.3. The basis {e;,wE} (0<s<p, 1 <t <p—1) will be called the canonical basis of
Z(U,).

If z is a central element and S is a simple module, we know by Schur lemma that - zgidg for
some scalar zg € C. For a simple U;-module, we see thanks to (3.8) and (3.9) that the scalars zya ()
satisfy a symmetry property:

V1 <s< P — 1, RX+(s) = RX~(p—s)- (3.11)

We will sometimes use the convention zx+y = 2x-(p) to unify formulas.
An important and useful central element of U, is the Casimir element C, defined by

gK + ¢ 'K
C=FE+ ——mF—-— 3.12
(¢g—q')? (312
Since Cb(s) = af(s )—i—a( ba( ), we get that the expression of C' in the canonical basis of Z(U,)
is
p p—1
= T k=1

Moreover, thanks to [FGST06a, Formula (D.7)], we know that the subalgebra of Z(U,) generated by
Cis

C(C) = vect(e,, w; + w;) (3.14)

0<s<p, 1<t<p-1°

This means that any of the elements ey, w;” + w; can be written as a polynomial in C.

3.1.3 The braided extension of Uq

The Hopf algebra U, is not braided. Indeed, for p > 2, one can find (see [KS11]) two U,-modules
V, W such that V ® W and W ® V are not isomorphic, which immediately implies that Uq cannot
contain a R-matrix; the remaining case p = 2 is considered in [GR17a] where it is shown directly
that there is no R-matrix either. However, U, is very close to be braided, since its extension by a
square root of K is braided. Let Uql /2 be this extension; the universal R-matrix R € Uql ) Uql 2 i
given by

p—1 . 4p—1
R= H®QH/2 q m(m—l)/QEm m ith H®H/2 _ —ng/QKn/Q K]/Z 3.15
q mgo —[m]!q ®F™, with ¢ o ngjzoq ® (3.15)

where ¢'/? is a fixed square root of g. We use the notation ¢?®%/? because ¢"®#/2v @ w = ¢*/? if
K2y = ¢*/?y and K'?w = ¢*?w; also recall the notation § = ¢ — ¢~
Even if R ¢ U, ® Uy, the R-matrix satisfies the important property that RR' € U, ® U,. Its value
§ Pl q" m<m 1)y nn=1)
2p > Z DT E U @ FPKIER. (3.16)

m,n=01,j= 0
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3.1.  Properties of U,

with ¢ = ¢ — ¢~!. From this expression, we see that the map

v U; - U,
B = (B®id)(RR)

is an isomorphism of vector spaces. Thus by abuse of terminology we will say that U, is factorizable
(this is an abuse of terminology since the usual definition of factorizability requires braiding (i.e.
existence of a R-matrix) and U, is not braided). Note that the extension Uql /2 is not factorizable
since K/? does not appear in the expression of RR’.

The Drinfeld element u = S(b;)a; (with R = a; ®b;) also belongs to U, (the square root of K does
not appear in its expression). Moreover, U, contains two possible ribbon elements, namely elements

v € U, which satisfy (2.11). Here we take
2p 1 Am . 2
Z _ij+<]+P2“) FmKIE™,

. p—1
1—z
mOJO

With this choice of v, it holds (see (2.13))
g=uv ! = KPP

The choice of the other possible ribbon element would have led to ¢ = uv™' = K, but from the
begining we have decided to take KP*! as pivotal element, which forces the choice of v. The element
v is central and invertible; its expression in the canonical basis of Z(U,) is

p p—1
N p—s s
v = Zv;ﬁ(s)es + qu;ﬁ(s) (ij — st ) :

(3.17)
— -8 + i _
Z Vi Z Vi, ( uf - L, ) |
with ¢ = ¢ — ¢7". The scalar vya () is defined by v( o = Uya(s)id, its value is
s—1 —(s2-1)
Vat(s) = Va-(p-s) = (1) T (3.18)

and vy+(g) is just a notation for vy-(,) used to unify the formula.

3.1.4 Matrix coefficients for U,

This section is an example and will not be used in the rest of the text. The aim is to explain how one
can restrict to well-chosen representations when he deals with algebras defined by means of matrix
coefficients (which is the case of all the algebras considered in this text). Here we will exhibit a
(well-known) minimal set of matrix coefficients which generate O(U,) and give a presentation by
generators and relations of this algebra based on these matrix coefficients. The reasoning is more
interesting than the result because the method presented here can be applied to the algebra Lo 1(U,)
and then to £, (U,) (see section 4.4.2).

The decomposition formulas for tensor products of simple modules and projective modules are
given in [KS11]. First, since

XTRQ) X () 2XT(s—1)DXT(s+1)
for 2 < s < p— 1, we see that X+ (p) = P*(p) is a direct summand of X*(2)®®~1). Second, since
Xt (2)oX T (p) 2P (p—1), XT(2)@P(s) X P (s—1)®PT(s+1), XT(2)@P* (1) 22X (p)®dP*(2)
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Chapter 3. The restricted quantum group U,(sly)

for 2 < s < p—1, we see that P7(j) is a direct summand of X (2)®?%=7~1 and that X~ (p) = P~ (p)
is a direct summand of X+ (2)®?~!. Finally, since

XT2) X (=P (p—1), XT2Q)@P (s)XP (s—1)dP (s+1)

for 2 < s < p— 1, we see that P~(j) is a direct summand of X+ (2)®%~7~1 Tt follows that every
P Xt (@)En
PIM P is a direct summand of some tensor power X*(2)®" and that T is a submatrix of T
ar@en ,
Hence the coefficients (T )jl’""j" linearly span O(U,). But thanks to the fusion relation (2.15)

Lyeees n

I
of the matrices T, it holds:

x+(2)8n

= (T ) (7)) (3.19)

Xt _
and this shows that the matrix coefficients ( T )j generate O(U,) as an algebra.

We denote
X7(2) a b
- ( d).

Let us seek relations between these generators. All the relations are implied by the existence of
certain well-chosen morphisms. First, one has the exchange relation (2.17) (which comes from the
existence of the braiding isomorphism ¢ : X (2)%? — X*(2)®?). The R-matrix (3.15) evaluated in
Xt(2)%% is

o

—-1/2

O O o
O O = O
O =

< O O O

(with ¢ = ¢ — ¢~ ') and relation (2.17) is equivalent to
ba = qab, db = qbd, ,ca = qac, dc= qcd, bc=cb, ad—da= (q~' — q)bc.

Second, since XT(2)®? =2 X+ (1) & X (3), there exists a unique (up to scalar) morphism

¢:C=XT(1) = XM (2)%% it is given by ®(1) = qug ® v; — v; ® vg. By naturality (2.3) and fusion
XT(2)x*(2) Xt (2)%2 C

(2.15), we have Ty To & = T & = ®T = &. This gives just one new relation, the quantum

determinant:

ad —q 'be = 1. (3.20)
Next, since P*(p — 1) is a direct summand of X*(2)®P, there exists® an injection f : P*(p — 1) —
XT(2)®P. For instance, one can check that the assignment

Fgp—1) =" Veu

does the job, and we have f(z{(p —1)) = vg®, f(yd(p — 1)) = Af? for some A (# 0 since f is
injective). Endowing the tensor basis of X' (2)®F with the lexicographic order and using (3.19) above
and (3.22) below, we get that the matrices under consideration have the following shapes:

2Such a morphism is far from unique. Indeed, using the decomposition rules recalled above, one can show that
XT(2)9P =W (p—2)XT(p—1)@® P (p—1), and thanks to the description of Hom-spaces in section 3.1.1, we get
that dim(Homg, (P*(p — 1), X% (2)®7) = p.
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3.2.  Symmetric linear forms and the GTA basis

(bi)) xo wo (aj) v?p v?p
0 1 0 0)\uv? e Ak BN up”
f= * 0O 0 * : T = * * * :
0 0 X 0/uo” & dP) PP
(bi) Zo Yo (a;)
Xt (p-1)
T 0 0 0 (b;)
X~ (1)
Pen oAb, T o 0 |
o . X—(1)
N N N X*(p-1)
Hp—l Dp—l Cp—l T (aj)

To obtain the blocks of 0’s in the matrix of f, just compare the weights of the elements. The relation
Pr(p—1)  XT(2)®P
= T f implies 0" = ¢* = 0. Finally, P~ (p — 1) is a direct summand of X" (2)®%_ and it

is not difficult to check that the assignments
fi (ba(p - 1)) = U?@%D & vy, fa (b;—2(p - 1)) =1 ® Ui@@pfl)

define injective morphisms fi, fo : P~ (p — 1) = XT(2)%%, and we have fi(zy(p — 1)) = v
Po(p-1) At

folyg(p— 1)) = v One can compute as above that the relation fi T = T f; (resp.
P~ (p-1)  XT()E x+(1)
fo T = T fy) implies a® =1 (resp. d*» = 1), where 1 =¢ = T . We then arrive to the

following Proposition, which is certainly well-known.

Proposition 3.1.4. The algebra O(U,) admits the following presentation:
(b,c,d | db=qbd, dc=qcd, bc=cb, B’ =c =0, d*=1)

Proof. Note first that the generator a is not required. Indeed since d is invertible, we have a =
d='4 ¢ tbed'. Let A be the algebra defined by this presentation. Then by the computations above,
we have a surjection p : A — O(U,) and thus dim(O(U,)) < dim(A). But it is clear that any
element of A is a linear combination of monomials b'c/d* with 0 < 4,5 < p—1,0 < k < 2p — 1.
Hence dim(4) < 2p* = dim(O(U,)) and p is an isomorphism. O

3.2 Symmetric linear forms and the GTA basis

Let
SLF(U,) = {¢ € U} |Va,y € Uy, ¢(zy) = (yz)} .

From the general comments of section 2.3, SLF(U,) is a subalgebra of O(U,). O(U,) is more precisely

a Hopf algebra, but SLF(U,) is not a sub-coalgebra of O(U,), see Remark 3.2.5 below; it is however
stable by the antipode S.

Since U, is factorizable (in the generalized sense of section 3.1.3), we know thanks to Lemma
2.3.3 that B )
dim (SLF(U,)) = dim(Z(U,)) = 3p — 1.
An interesting basis of SLF(U,) was found by Gainutdinov and Tipunin in [GT09] and by Arike

in [Aril0]. To be precise, a basis of the space qCh(U,) of ¢g-characters is constructed in [GT09], but
the shift by the pivotal element ¢ = K?*! provides an isomorphism

th(Uq) = SLF(Uq)a Y= P(g-).
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Chapter 3. The restricted quantum group U,(sly)

This basis is built from the simple and the projective modules. First, define 2p linear forms® ¢,
ae{£},1<s<p, by:
X%(s)
Xe=tr( T ). (3.21)

They are obviously symmetric. Observe that y; = ¢ is the unit for the algebra structure on SLF((_Jq)
described above. To construct the p — 1 missing linear forms, observe with the help of (3.5) that the
matrix of the action on P%(s) has the following block form in a standard basis:

(i) (z5) () (@)

T 0 0 0\ (b)
« X~ (p—s)
| A T 0 0 | (2) (3.22)
X~%(p—s)
By 0 T 0 | (wk)
X% (s)
H*  De co T ) ().

It is not difficult to see that these matrices satisfy the following symmetries:
- _ o+ - _ p+ - _ p+ - A+

Ap_s =C7, Bp_S =D, Dp_S = B, C’p_s = Al

P pr(sypH(s

By computing the matrices (zy) = =y ) and (zy) = = yis), these symmetries allow us
to see that the linear form G, (1 < s < p — 1) defined by

Pr®=s)  po(ps)P=(p

G, = tr(HF) + tr(H ) (3.23)

pP—s
is a symmetric linear form. This can also be written as

Pt(s) P~ (p—s)
Gsztr(as T )—i—tr(ap_s T ) (3.24)

where o; : P*(s) — P*(s) is the linear map (which is not a U,-morphism) sending Soc(P*(s)) to
Top(P(s)) (see (3.5)):

(i) () () (@)

0 O 0 L\ ()
o—| O 0 0 0 | (z))
"o 0o 0o 0 )(w

0 0 0 0/ ().

It is instructive for our purposes to see a proof that these symmetric linear forms are linearly
independent. Let us begin by introducing important elements for 0 < n < p — 1 (they are discrete
Fourier transforms of (K")o<j<2p—1):

2p—1

a 1 —n\!
@n:%Z(aq )Kl.

=0

The following easy lemma shows that these elements allow one to select vectors which have a given
weight, and this turns out to be very useful.

3The correspondence of notations with [Aril0] is: TS = xT, o = x.,. The letter T is here reserved for the

s p—s*

1%
matrices T described above.
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3.2.  Symmetric linear forms and the GTA basis

Lemma 3.2.1. 1) Let M be a left U,-module, and let mj (s) be a vector of weight ¢*~1=% m; (p—s)

be a vector of weight —qP=9)7172 = 757172 ;7 (s) be a vector of weight —q*~' %, m (p — s) be a

vector of weight ¢P~°)"17% = —¢=s=1=2 Then:
O ymf (s) = diomg (s), @ ym; (p—s) =0,
O ymy (s) = diomg (s), ®_ym(p—s)=0.
2) Let N be a right U,-module, and let nj (s) be a vector of weight ¢'=57%', n7 (p — s) be a vector of

weight —q'~P=)F20 = g1+5%20 = (s) be a vector of weight —q'~*7%, nf(p — s) be a vector of weight
ql (p— s)+21 — q1+s+2i. Then.:

nf(8)®y = disanl_i(s), n;(p—s)®_; =0,
g ()0, = bisangi(s), ni(p—s)®; =0.
Proof. 1t follows from easy computations with sums of roots of unity. O

We can now state the key observation.

Proposition 3.2.2. Let

P p—1
p=> (AIxi+A0x:) + ) neGy € SLF (T,) .
s=1 s'=1

Then:
)‘: = (@:—165) ) /\s_ =@ (cbs_—lep—s> y Ms' = =

g p— g
Proof. 1t is a corollary of (3.8) and (3.9). Indeed, we have:
Xt (s) Xt (s) L X~ (s)
T <€t) = 557,5_[5, T (wt ) = O, T (Gt) = 5s,p—t157
X~ (s) 3.25
T (w) =0, HE(e) =0, HE(w)) = 6541, (3:25)
Hj(w;) = 07 sz—s(w;r) = 07 Hz;—s(w;) = 557151'1’*
This gives the formula for . The formulas for A follow from this and Lemma 3.2.1. [

If we have S°_ (AfFxT +A7xs) + 0 neGy = 0, we can evaluate the left-hand side on the
elements appearing in Proposition 3.2.2 to get that all the coefficients are equal to 0. Thus we have
a free family of cardinal 3p — 1, hence a basis of SLF(U,).

Theorem 3.2.3. The symmetric linear forms x; (1 < s <p) and Gy (1 < s’ <p—1) form a basis
of SLE(T,).

Definition 3.2.4. The basis of Theorem 3.2.3 will be called the GTA basis (for Gainutdinov, Tipunin,
Arike).

Remark 3.2.5. Let ¢ € SLF(U,). It is easy to see that (K7E"F™) = 0 if n # m. From this we
deduce that SLF(U,) is not a sub- coalgebra of Ur. Indeed, write A(x3) = >, ¢ ® ¢, and assume

that ¢;,v; € SLF(U,). Then 1 = x5 (EF) =Y, gpz( )i (F) = 0, a contradiction. A
Remark 3.2.6. If we choose a basis of Z(U) then its dual basis can not be entirely contained in
SLF(U,). Indeed, let » = S>P_ MxF + 377 .G, € SLF(U,). Then o(w) = spus, p(w;) =
(p — s)us, and we see that there does not exist ¢ € SLF(U,) such that ¢(wy) = 1, p(w;) = 0.
Hence, SLF(U,) C Uy is not the dual of Z(U,) C U,. A
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We have an obvious action of Z(U,) on SLF(U,):
Vze Z2(U,), Vo € SLF(T,), ¢ = p(2?). (3.26)

For further use, we record the values of this action with the canonical basis of Z(U,) and the GTA

basis of SLF(U,):

(X:)Et = 5S,tX;r7 (X;)Et = P—SJX;7 Gset = 5S,th

wt w- B 3.27
G =0, (G =0, GE =Gt G =G (3.27)

This is jut a consequence of (3.25).

3.3 Traces on projective U,-modules and the GTA basis

The material of this section is independent of the rest of the text and will not be used elsewhere
(except for the equality (3.29)).

3.3.1 Correspondence between traces and symmetric linear forms

Let A be a finite dimensional k-algebra. We have an anti-isomorphism of algebras:
A — Enda(A), aw— p, defined by p,(z) = za.

Observe that the right action of A naturally appears. Let ¢ be a trace on A, that is, an element of
SLF(Enda(A)). Then:

t(pav) = t(pp © pa) = t(pa © pb) = t(Pba)-

So we get an isomorphism of vector spaces

SLF(A)

{Traces on End4(A)} = SLF (End4(A))
t ¢ defined by ¢'(a) = t(pa)-

%
H

whose inverse is:

SLF(A) — {Traces on Ends(A)} = SLF (Enda(A))
@ > t? defined by t%(p,) = ¢(a).

In the case of A = U,, we can express ¢’ in the GTA basis, which will be the object of the next
section.

Let Proj, be the full subcategory of the category of finite dimensional A-modules whose objects
are the projective A-modules.

Definition 3.3.1. A trace on Proj, is a family of linear maps t = (tv : Enda(U) = k)yep,o;, Such
that
Vf € Homa(U, V), Vg € Homa(V,U), ty(go f) =tu(foyg).

We denote by Tproj, the vector space of traces on Proj,.

This cyclic property of traces on Proj, is one of the axioms of the so-called modified traces,
defined for instance in [GKP11]. Note that this definition could be restated in the following way
(and could be generalized to other abelian full subcategories than Proj,).

Lemma 3.3.2. Let t = (ty : Enda(U) = k)veproj, be a family of linear maps. Then t is a trace on
Proj, uf and only if:

o Vf,geEnds(U), tu(go f) =tu(foyg),
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3.3. Traces on projective U -modules and the GTA basis

o tyav(f) =tu(puo foiy)+ty(pyo foiv), where py,py are the canonical projection maps and
iy, ty are the canonical injection maps.

Proof. If t is a trace and f € Ends(U & V'), we have:

tvav (f) = tvev((ivpu +ivpy)f) = tu(pu fiv) + tv(pv fiv).
Conversely, let f : U — V, g:V — U. Define F =iy fpy,G = iygpy. Then FG = iy fgpy and
GF =1iygfpy. We have pyGFiy = gf, pyGFiy =0, py FGiy = 0, py FGiy = fg, thus:
tv(fg9) = tvev(FG) = trev(GF) = ty(gf).

This shows the equivalence. O

Now, consider:
Iy : Trroj, — SLF(Enda(A)) = SLF(A4)
t = (tv)veob(Proj,) ta — " defined by ¢'(a) = ta(pa)-
Theorem 3.3.3. The map 14 is an isomorphism. In other words, t4 entirely characterizest = (ty).

Proof. For all the facts concerning PIMs (Principal Indecomposable Modules) and idempotents in
finite dimensional k-algebras, we refer to [CR62, Chap. VIII]. We first show that I, is surjective.
Let:

l=e+...+¢,

be a decomposition of the unit into primitive orthogonal idempotents (e;e; = 0; je;). Then the PIMs
of A are isomorphic to the left ideals Ae; (possibly with multiplicity). We have isomorphisms of
vector spaces:

HomA(Aei,Aej) = eiA€j7 f — f(el)
For every ¢ € SLF(A), define %, by:
the, () = o(f(ei)).
Let f : Ae;, — Aej, g : Ae; — Ae;, and put f(e;) = ejare;, g(e;) = ejaze;. Then using the
idempotence of the e;’s and the symmetry of ¢ we get:
the (g0 f) = plgo f(e:) = v ((eiarej)(ejages) = ¢ ((ejaqei)(eiare;)) = o(f 0 g(e;)) = th, (f 0 9).

We know that every projective module is isomorphic to a direct sum of PIMs, so we extend ¥ to

Proj, by the following formula:

tg, a(f) =Y tacivo fop)
l

where p; and 4; are the canonical injection and projection maps. By Lemma 3.3.2; this defines a trace
on Proj,. We then show that I14(¢¥) = ¢, proving surjectivity:

TL4(t7)(a) = t5(pa) = Zt P;© pa©ij) Zw P; © pale;)) Zwmeje]

_ Z pAe] e]aek = Zcp (ejae;) = ng (aej) = p(a).

J,k=1

Note that we used that the e;’s are idempotents and that a = Z?:1 ae;. We now show injectivity.
Assume that [14(¢) = 0. Then:

Vae A, ta(pa) Zt"‘ea ;0 pg 0i;) =0.
Let f: Ae; — Ae;, with f(e;) = ejare;. Since pf(ej)(el) = dj,ejape;, we have p; o pye;y 0i; = f and
PO pse;) 0t = 0if [ # j. Hence:
tac;(f) =talpse,) = 0.
Then t 4., = 0 for each j, so that ¢t = 0. O]
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Chapter 3. The restricted quantum group U,(sly)

3.3.2 Link with the GTA basis

We leave the general case and focus on A = U,. The following theorem expresses ITg, in the GTA
basis.

Theorem 3.3.4. Lett = (tU)Ueproqu be a trace on Projg, . Then:

p—1
Iy, (t) = ta+d)x; + ta-(Id)x, + Z (tpr (o) (IA)XT + tp- (5 (Id) x5 + tpr (o) (p)Gs) -
s=1

Proof. First of all, we write the decomposition of the left regular representation of U,, assigning an
index to the multiple factors:

gAaN (@ P (s) 7>;<s>> DX W), 1)

Thus, since t is a trace:

p—1
to,(pa) =) (ZW (pP+ Opaoims)) Tlp(s) <p7> (s) © Pa O lp <>>)
s=1
p—1
2t (px+(>opaozx+<p>) tlx ()(px () © Pa O lx ())
7=0

Consider the following composite maps for 1 < s < p — 1 (note that the blocks appear because p, is
the right multiplication by a):

WP P S Q) Q) S P B ),
WP s) () S Q- ) 2 Qo —s) S () s (),

where I;'j and I_; are the isomorphisms defined by (see Proposition 3.1.2):
L7565 (s)) = By (s), 1J5(a7 () = X5 (s), I (s)) = Yi; 7 (s), I5(a (s)) = AT (s),
L7 (s)) = By~ (p — ), I5;(a(s) = X5~ (p = 9), I (ui (5) = Yy~ (p— 9),
I ;(a; (s)) = Aj~(p = 5).

For s = p, consider:

1

W) ) 28 Q) o T ) e xe),
) ) 28 Q) ) L a-() L x-

+ J— . . o . .
where [, and I, are the isomorphisms defined by (see Proposition 3.1.2):

L (p)) = A" (p) and  I;(v;7 (p)) = Aj;(0).

ij
Then for 1 < s <p-—1:
tpa(s) (PP;(S) O Pg © iP;@)) tpags) (he)0)
and for s = p:
txa(p) (p;c;l(p) O Pq © Z'X;r(p)> = txagy (M5 .4) -
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3.3. Traces on projective U -modules and the GTA basis

We must determine the endomorphism £g; , when a is replaced by the elements given in Proposition
3.2.2. Using (3.9), we get:

Vs #£s,Y7, hi wr =0 and A =0

and:
vj? hjj ,w+ - ps
Since this does not depend on j and since the block Q(s) contains s copies of P*(s), we find that
tg,(put) = stp+(s(pF). So by Proposition 3.2.2, the coefficient of G is tp+ () (p7).
Next, assume that 1 <s<p-—1, and let us compute h* By (3.8), we see that

/ (I)+
Vs & {s,p—s},Vj, hjE o on =0 and Vj, h_ O e 0, h;—s,j,éj_les =0.
Then, Proposition 3.1.2 together with Lemma 3.2.1 gives:
- _ + _ + _
V7, hpsjq>81s 0 and V0<j<s—2, h]q)SIS 0 and h 10t e, Id.

It follows that tg, <p¢+_les> = tp+(5)(Id). So by Proposition 3.2.2, the coefficient of x 7 is tp+ () (Id).

We now consider h This time, (3.8) shows that

s —
’7(p‘51ps

Vs & {s,p—s},Vj, hij<1> =0 and Vj, h_ =0, h" = 0.

’ s—16p—s 7-7 <I>s 16p—s 7] és 16p—s

Then, Proposition 3.1.2 together with Lemma 3.2.1 gives:
Vi, bt =0 and V0<j<s—2 h_ =0 and A~ _ = 1d.

p_sajv‘bsflepfs END q>s 1€p—s 575_17q>5,15p75

It follows that ¢, <p<1>*_lepfs> = tp-(5)(Id). So by Proposition 3.2.2, the coeflicient of x; is tp- (4 (Id).
Finally, in the case where s = p:

Vs #p, Vi, hE =0 and h_ =0.

s'.7, <I>+ ,],‘I)p 1€p
Then, Proposition 3.1.2 together with Lemma 3.2.1 gives:
VO<j<p-2, hJr =0 and At =1d.

P ®) jep pp—1,9) jep
It follows that t7, <p¢,+ 1€p> = tx+(p)(Id). So by Proposition 3.2.2, the coefficient of X" is tx+,)(Id)
h
One similarly gets the coefficient of x, . O]

By Proposition 3.2.2; the coefficient of G is also given by: p%stgq (py-). Taking back the notations
of the proof above, we see using (3.9) that

Vs #£p—s,Vj, h;'fjw =0 and h:sjw =0
and:
VJ, hpfs,j,w; :pp_s.

Since this does not depend on j and since the block Q(s) contains p — s copies of P~ (p — s), we find
that g, (p,-) = (P — 8)tp-(p—s)(Pp—s). So by Proposition 3.2.2, the coefficient of G is tp-(,—)(P,_s)-
We thus have:
tp-(p—s)(Pps) = tp(s)(Dd)- (3.28)
Note that there is an elementary way to see this. Indeed, the morphisms P;" and Pp_,s defined in
(3.6) satisfy: ) )
P~ oPl=pf, PfoP ,=p, ..

Hence, we recover (3.28) by property of the traces. From this, we deduce the following corollary.
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Chapter 3. The restricted quantum group U,(sly)

Corollary 3.3.5. Let

p p—1
p=> (MxF+Ax:) + > Gy € SLF (T,) .
s=1 s'=1

Then the trace t¥ = H(}ql(go) associated to ¢ is given by:

Xi( )(Id) — )\j: t,’ﬁi(s)<]:d) - )\Si, t;‘;+( )(ps) t;’; (p s/ )(p;_sl) = /-1/8/'

3.3.3 Symmetric linear form corresponding to the modified trace on
Projg,
Let H be a finite dimensional Hopf algebra. Let us recall that a modified trace t on Proj, is a
trace which satisfies the additional property that for U € Proj, for each H-module V' and for
f € Endg(U ® V') we have:
tvev (f) = tu(trr(f))

where trg = Id ® tr, is the right partial quantum trace (see [GKP11, (3.2.2)]). These modified traces
are actively studied, having for motivation the construction of invariants in low dimensional topology.
We refer to [GKP11] for the general theory in a categorical framework which encapsulates the case
of Projy.

In [BBGel7], it is shown that there exists a unique up to scalar modified trace t = (ty) on Projg, .
Uniqueness comes from the fact that Xt (p) is both a simple and a projective module. The values of
this trace are given by:

tae(p)(Id) = (=177, ta-(p(Id) =1, t7>+(s (Id) = (=1)*(¢" +¢7),
tp- s)(Id) ( )p o 1<q +q )7 tP*’(s)(p;r) = (_1)5[5]2 ()(ps) _tP+(p s)(pp—s)'

Let H be a finite dimensional unimodular pivotal Hopf algebra with pivotal element g and let
u" € H* be a right integral on H, which means that

Vee H, (p @Id)(A(z)) = p(x)l.

Recall from (2.22) that p"(g-) is a symmetric linear form. In the recent paper [BBGalg], it is shown
that modified traces on Proj; are unique up to scalar, and that the corresponding symmetric linear
forms are scalar multiples of i"(g-). Here, we show how Theorem 3.3.4 and computations made in
[GT09] (see also [Aril0]) and [FGSTO06a] quickly allow us to recover this result in the case of H = U,.
First, recall that right integrals g of U, are given by:

pe(FME"K7) = COmp-10np-107p+1,
where ( is an arbitrary scalar. Hence:
(KPP FMEKY) = (Omp-16np-1050-
Using formulas given in [GT09] (see also [Aril0]?), we have (1 < s <p—1):

p—1 2p—1

ep = ([pl_ e Z Z q TRV EPLEPL K 4 (terms of lower degree in E and F),
t=
o 0 1=0
es = Qg Z Z g AV EPLErl K (terms of lower degree in E and F),
=0 1=0
1 p—1 2p—1
ep = R Z Z q PRI PPl KU 4 (terms of lower degree in E and F),
=0 =0

“In notations of [Aril0], we have e; = > ;_, et (s,t) + >0 e (p — s, u).
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3.4. Multiplication rules in the GTA basis

where a5 is given in the last page of [Aril0] as:

p—s—1 s—1 p—s—1
o = — (-1) Z
2p[p — s — 1]1?[s — 1]!2 s—l —s—l]

=1 =1

M

In order to simplify this, it is observed in [Murl?7, Proof of Proposition 2], that

s—1 p—s—1

[ 1 _ (@ +q7)
;[l][s—ﬂ ZU][P—S—Z] s

=1

So, since:
— 1]
e )Rs— e P
[p—s J¥[s ] [s2
we get:
—1)p—s—1
) (¢"+q7).

b g1
Using formulas given in [FGST06a] (see also [Ibalb, Prop. 11.3.19]), we have:

—1)p—s—1
wh = ﬁ[s]stplEpl + (other monomials),
pp— L
(=t p—1 p—1 .
wy = w[s] (p— s)FP~"EP~" + (other monomials).

We now use Proposition 3.2.2 to get the coefficients of y7(K?*!-) in the GTA basis. For instance:

ME(K}MFIU}:) (_1)p—s—1

_ 2
s - C2p[p_ 1]|2[$] )
p—1 2p—1
+1 g+ +1 1 1 (s—1)(I+5)+2t i+
p (K7 9! 165)—2u (Kp FP'EP Y Y g 2l e J)
t=0 1,j=0
a p—1 2p—1
= (5, ¢ = Ca
t=0 1=0

Choose the normalization factor to be ¢ = (—1)P~*2p[p—1]!?, and let u" be the so-normalized integral.
Then:

KPR = (=177 g + ) ((C1D(@ 4+ ¢ )+ (CDP N + ¢ 7)xG
+ (=1)°[s]*Gy) -
By Theorem 3.3.4, we recover Il (t) = p"(KP*!.).

(3.29)

3.4 Multiplication rules in the GTA basis

We mentioned in section 3.2 that SLF(U,) is a commutative algebra. In this section, we address the
problem of the decomposition in the GTA basis of the product of two elements in this basis. The
resulting formulas are surprisingly simple.

Let us start by recalling some facts. For every Uq—module V', we define the character of V' as (see
v
(2.2) for the definition of T'):
1%
XY = tr(7).
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Chapter 3. The restricted quantum group U,(sly)

This splits on extensions:
0=V >M—-W =0 exact = M =x"+".

Due to the fact that U, is finite dimensional, every finite dimensional U,-module has a composition
series (i.e. is constructed by successive extensions by simple modules). It follows that every x" can
be written as a linear combination of the x¢ = x**(). Moreover, we see by definition of the product
on (_]; that

VW

T =TT, (3.30)
1% 1% w w

where Ty = T'® Igimw) and T’y = Igimy ® T'. Thus VoW = VW, Hence multiplying two x’s is

equivalent to tensoring two simples modules and finding the decomposition into simple factors. This

means that

vect (XD )aefet1<s<p — B(Uy) @2 C, X'+ [1]

where &(U,) is the Grothendieck ring of U,. By [FGST06a], we know the structure of &(U,). Recall
the decomposition formulas (with 2 < s <p—1):

X (1) @X%s) XX (s), XT2)@X(s) XX (s—1)DXY(s+1), XT(2Q)X%(p)=P*(p—-1)

so that

XTXS = X2 % XaXS = Xoa + X0 Xa Xy =2xp1 + 2% (3.31)
We see in particular that x5 generates the subalgebra vect(X$)ac{+},1<s<p- The x& are expressed as
Chebyschev polynomials of x5, see [FGSTO06a, section 3.3] for details.

Theorem 3.4.1. The multiplication rules in the GTA basis are entirely determined by (3.31) and
by the following formulas:

X3 G1 = [2]Gh, (3.32)
-1 1

X3 G, = 5 B ]Gs_l + %GS“ for2<s<p-2, (3.33)

X3 Gp1 = [2]Gp_a, (3.34)

X1 Gs = —Gp_s for all s, (3.35)

GGy =0 for all s,t. (3.36)

Before giving the proof, let us deduce a few consequences.

Corollary 3.4.2. For all1 < s <p—1 we have:
1
Gy =—=x;G1, x,G1=0.
[5] 8

It follows that (xT+x,_s)G: = 0, and that P = vect(xT+X,_s» X;+ Xp )1<s<p—1 is an ideal of SLF(U,).

Proof of Corollary 3.4.2. The formulas for x[G; are proved by induction using x7; = xIx3 — x7;
together with formula (3.33). We deduce:

+ +

- X - X _
(XS +Xps)Ge = ﬁ(xiGl +xmG1) = [Tt]([S]Gs +[s]x1 Gp-s) = 0.
It is straightforward that P is stable by multiplication by x5, so it is an ideal. O]

Remark 3.4.3. We have x”"() =2 (x¢ + x,; %) for 1 < s < p—1. Thus P is generated by characters
of the projective modules. It is well-known that if H is a finite dimensional Hopf algebra, then the
full subcategory of finite dimensional projective H-modules is a tensor ideal. Thus we can deduce
without any computation that P is stable under the multiplication by every x?. A
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3.4. Multiplication rules in the GTA basis

We now proceed with the proof of the theorem. Observe that we cannot apply Proposition 3.2.2
to show it since we do not know expressions of A(e,) and A(wE) which are easy to evaluate in the
GTA basis. Recall ([KS11], see also [Ibal5]) the following fusion rules:

X (1) ®@P*(s) =P %s) foralls, (3.37)
XT(2) ® PY(1) = 24 %(p) & P(2), (3.38)
XtT2)@PY(s) 2P (s—1) PP (s+1) for2<s<p-—1, (3.39)

(2) ( (3.40)

They imply the following key lemma.

Lemma 3.4.4. There exist scalars v, Bs, As, s, 05 such that

X3 Gs = BsGso1 + 7sGsi1 + As (X:—l T Xp—sg1 — Xor1 — x;,s,l) (for2<s<p-2),
XaGr=mGa+ M, = X3 = Xpe2)» X3Gp1=Bp1Gpat X a(Xgo+t Xz — X5 )
X1 Gs = 0:Gpes + 0 (Xis + X5 ) -

Proof. Let us fix 2 < s < p—2; by (3.21), (3.23), (3.30) and (3.39) we have:

Xt(©2) PT(s) XT(2) P~ (p—s) Xt (2)ePt(s) XT(2)@P~ (p—s)
xaGs€vect| Ty - T, Ty - Tu = vect Tijr Tij
ijkl ikl

Pt(s—1) Pt (s+1) P~ (p—s+1) P~ (p—s—1)
=vect| T,; , T; , T,; , Ty
tj

1% 1%
where T;; is the matrix element at the ¢-th row and j-th column of the representation matrix 7" and
Vew

Tiji is the matrix element at the (7, )-th row and (k,[)-th column of the representation matrix
Vew

T . Hence, since x5 G is symmetric, it is necessarily of the form

X;GS = ﬁsGsfl + ’YsGerl + ZlX:—l + 22X5++1 + Z3X;fs+1 + 24X;;7371'
Evaluating this equality on K and K2, we find (since Gy(K"') = 0 for all ¢ and 1):

s = 1)(z1 —2z3) + [s+1(z2 —24) =0, [s—1]p2(21 — 23) + [s + 1]2(22 — 2z4) =0,
with [n]ez = %. The determinant of this linear system with unknowns 2y — 23,20 — 24 is

2Sin((si;(lggiiigﬁs/;)l)w/p) (cos((s + 1) /p) —cos((s — 1) /p)) # 0. Hence z; = z3, 29 = z4. Moreover,

evaluating the above equality on 1, we find p(z; + 25) = 0. Letting Ay = 21, the result follows. The
other formulas are obtained in a similar way using (3.37), (3.38) and (3.40). O

We will use the Casimir element C' (see (3.12)) to make computations easier. Observe that, due
to (3.13) and (3.27), we have

Va e (7q> X (Cr) = acx§(r), Gs(Cr) = c,Gy(x) + (x5 + X;—s)(x)‘ (3.41)
where ¢, = (Q+—€1)2 Then by induction we get G4(C™) = npc?~! for n > 1. We will also denote
qa—4q
 qK + g 'Kt

C
. (q—q1)?
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Proof of Theorem 3.4.1.

e Formula (3.33).  We first evaluate the corresponding formula of Lemma 3.4.4 on FE. It
holds Gy(FE) = Gy(C) = p, (Xi + x,0)(FE) = (xi + x,_1)(C) = pe, for all t and x5 G,(FE) =
X3 (K™HG(FFE) = [2]p. Thus we get:

B+ Vs + (CS—I - Cs+1))‘s = Bs +vs — [5]/\8 = [2] (3‘42)
Next, we evaluate the formula of Lemma 3.4.4 on (FE)?. On the one hand,
(G CI((FER) = \EK )G, ((FEP) = x§ (K6 (C? - 20k + )
=3 (K7)GL(C%) = 2p(¢” + ¢ 7%)es.

For the first equality, we used that p(E'FIK!) = 6, ;0(E'F'K') for all ¢ € SLF(U,), that G,(K') =0
and that Go(FEK') =0 for 1 <1 < p— 1. The third equality is due to (3.41) and to the fact that
(X§ +x,_s)(K') =0for 1 <1< p—1. On the other hand, using again the Casimir element,

BiGit (FE)?) + %G1 (FE)) + A (XF1 + Xpai1 = Xos1 = Xpa1) (FE)?)

= B:Gs1 (02) + Y5Gst1 (02) + As (X:—l T Xp—st1 — Xi1 — X;—s—l) (02)

= 2pCs-1 s + 2pCs11%s + P(Ei_y — i) As.
Since ¢_; — 2., = —(q+ ¢ ')es[s], we get

205—165 + 265—}—175 - (q + (]_1)05 [3])\5 = 2((]2 + C]_Q)CS. (343)

In order to get a third linear equation between f;, v, and \,, we use evaluation on EP~1FP~! This
has the advantage to annihilate all the xy* appearing in the formula of Lemma 3.4.4. First:

EPLFPIG(s) = By (s) = (=) p — s — PETYg(s)

= (—a)y Lo p — s — 1]12[s — 1]1%a3(s) (3.44)

— (_a)p—s—las—l [p — 1]' aa(s)

[s2
and EP~LFP~1 annihilates all the other basis vectors. Hence:

p—s—1 [p B 1]'2

G (EP1EP~ 1) = 2(-1) BE

Next by (3.1), we have:
X3 @Id (A(EP ' FPY)) = —[2]EPTEPT — PEPTPRPTK.

As in (3.44), we find:

B (s) = (ap ey P

[p_ 1]'2 et

Ep_QFp_QKb?(S) — (_a)p—s—las—lqs—S [S — 1] [3]2a1 (S)

and all the others basis vectors are annihilated. Hence:

e
s [s—=1][s+1]

G (EP2FP2K) = 2(—1)

We obtain:
2]

X ® Gy (A(EP FPY)) = 2(—1)P[p — Wm
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3.4. Multiplication rules in the GTA basis

and thus: 5 9
S /75
= ) 3.45
F-1F  s+1F -1+ (3.45)
As a result, we have a linear system (3.42)—(3.43)—(3.45) between [, 75 and X,. It is easy to check that
Bs = [s[;]l] Vs = [Sﬁl] As = 0 is a solution. Moreover this solution is unique. Indeed, a straightforward
computation reveals that

det 201_1 20;_1 —(q —f-_q[S]l)CS[S] _ [3]2 N [3]2 -
1 1 0 [S — 1]2 [S + 1]2

[s—1]  [s+1]°

e Formulas (3.32) and (3.35). Evaluating as above the corresponding formulas of Lemma 3.4.4
on FE and (FFE)? one gets linear systems with non-zero determinants. It is then easy to see that
p1=[2],\y =0 and ns = —1,95; = 0 are the unique solutions of each of these two systems.

e Formula (3.34). It can be deduced from the formulas already shown:
Xo Gp1 = —Xs X1 G1 = —x7 [2]Ga = [2]Gp 2.

e Formula (3.36). Recall the isomorphism of algebras D defined in (2.18). Taking into account
that (K'F™E™) = 0 if n # m for any ¢ € SLF(U,) and that G4(K*) = 0 for all i, and making use
of the expression of RR' given in (3.16), we get:

p—12p—1 /2p—1 l)n
Z Z (Z qn(j—i—l)—ijGS(Kp—i-i-l-lEnFn)) KanEn
n

n=0 75=0 =0
p—1 2p—1
i T
=3 Y N.KIF'E
n=1 j=0

for some coefficients \;, (observe that n > 1). From this it follows that for all a € {£} and
1 <r<p-—1: D(Gs)by(r) € Cag(r). By (3.8), we deduce that D(Gy) € vect(wi)i<,<,-1 for all s.
Thus D(GG;) = 0, thanks to (3.10). O
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Chapter 4

Ly1(H), £L1(H) and representation of the
modular group SLy(Z)

In this chapter, we focus on the surfaces
X1 =201 \D, X{y=%1p\D

where D is an embedded open disk, and on the associated algebras Lo1(H) and £;0(H). These
algebras deserve a particular interest and are a necessary preliminary step because they are the
building blocks of L, ,,(H) (we will see what does this means in Definition 5.1.1).

Figures 4.1 and 4.2 are the pictures that one should always keep in mind. We see Y7, and 3,
as thickenings (i.e. tubular neighborhoods) of the embedded oriented graphs vy = ({e},{m})
and I'1p = ({e},{b,a}) whose vertex is the basepoint and whose edges are the generators of the
fundamental group represented below. To get the second view from the first in Figure 4.2}, retract
to a tubular neighborhood of the loops b and a. Note that with this choice of generators, the boundary
loop of %7 4 is expressed as

c=ba b la. (4.1)

I
M

Figure 4.1: Surface 3§ ; with basepoint, canonical loop and matrices of generators.

To each generating loop, or equivalently to each handle, is associated a family of matrices, indexed
by the H-modules and whose coefficients are generators of the algebra. The defining relations are
given in Definitions 4.1.1 and 4.2.1, following [AGS95, BR95, AGS96]. The difference with these
original papers is that we directly restrict to the canonical graphs I'g; and I'ip and that we do
not use Clebsch-Gordan operators to write the fusion relation; indeed, these operators have good
properties in the semisimple case only and computations are simpler without using them. Also, the

!Compared to the Figure 1 of [Fail8b], we have done a 180°-rotation around the horizontal axis of R?, in order to
have the handles at the bottom of the Figure. The reason of this change comes from the definition of the graphical
calculus and the Wilson loop map in Chapter 6.
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Figure 4.2: Two views of the surface 39 ;, with basepoint, canonical loops and matrices of generators.

relations may vary from one paper to another due to different choice of R-matrices (R'~! instead or
R) or different labellings of the matrices associated to loops.

The main results of this chapter are

e The representation of the algebra of invariant elements L{j(H) on SLF(H) (Theorem 4.2.13).

I
Note that the matrices C' (which correspond to the boundary of X7, see (4.1)) used for the
proof of that Theorem already appeared in [Ale94] (with H = U,(g)), but here we need to
generalize and adapt the construction of the representation to our assumptions on H.

e The construction of a projective representation of SLy(Z) (mapping class group of the torus
Y1) on SLF(H) (Theorem 4.3.7). This complete and generalize to a non-semisimple setting
the idea of Alekseev—Schomerus [AS96a].

e The equivalence of the representation of SLy(Z) with the one constructed by Lyubashenko—
Majid in [LM94] (Theorem 4.3.10).

e The explicit description of the representation of SLy(Z) when H = U,(sly) (Theorems 4.4.6
and 4.4.9).

The material of this chapter is mainly the content of [Fail8b]. However here we give more details
and comments.

4.1 The loop algebra Ly;(H)

We assume that H is a finite dimensional factorizable Hopf algebra. The ribbon assumption is not
needed in this section.

4.1.1 Definition of £y;(H) and H-module-algebra structure

Let T(H*) be the tensor algebra of H*, which by definition is linearly spanned by all the formal
products @1 -+ - ¢, (with n > 0 and ¢; € H*) modulo the obvious multilinear relations. There is a

I I I I
canonical injection j : H* — T(H*) and we define M = j(T), i.e. My = j(Ty).
Definition 4.1.1. The loop algebra Ly 1(H) is the quotient of T(H™) by the following fusion relations:

I®J I 1J J

1J
M12 = Ml(R/)12M2(R/71)12
for all finite dimensional H-modules I, J.
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4.1. The loop algebra Lo (H)

The right hand-side of the fusion relation in Definition 4.1.1 above is the one of [BNR02, Def 1];
the one of [AGS96, Def 12] and [AS96a, eq (3.11)] is different, due to different choices of the action
of H on Ly(H) and to particular normalization of Clebsch-Gordan operators. Moreover, in the

I®J
papers [AGS96, AS96a, BNR02] the matrix M did not appeared, instead it was always decomposed
as a sum of the matrices of the irreducible direct summands of I ® J thanks to Clebsch-Gordan

operators, which is relevant in the semisimple case only; in [Sch98|, I and J are restricted to the
1®J
regular representation and the matrix M is denoted by A,(M) (the relation is again different due

to different choices). In the semisimple setting, the algebras resulting from each of these definitions
are isomorphic.

Note that the fusion relation is a relation between matrices in Lo 1 (H)®Matqim(r)(C) @Mat gim(s) (C)
(for all finite dimensional I, J) which implies relations among elements of Ly ;(H) (the coefficients
of these matrices). Explicitly, in terms of matrix coefficients it is written as

I®J I IJ g 1J .
VI, J,abc,d,  Miyg=M{(R)5M; (R,

see the definition of the subscripts 1 and 2 in section 2.2. If the two representations I and J are fixed
and arbitrary, we can simply write

My = My Ry My Ry (4.2)

(I®)RK  IR(JRK)
Moreover, one can check that M = M  holds thanks to the Yang-Baxter equation.

Note that if f: I — J is a H-morphism it holds
J I
Mf=fM (4.3)

T I T _J _J

where we identify f with its matrix (indeed, by (2.3), fM = fj (T) = j(fT) = j(Tf) = j(T)f =
J -

M f where j is the linear map H* — T(H*) — Lo1(H)). We call this relation the naturality of the

I
(family of) matrices M.
I J
Remark 4.1.2. If I is a submodule or a quotient of J, then M is a submatrix of M thanks to (4.3).

Let G be a set of H-modules which generate mod;(H) by tensor products, in the sense that every
H-module is isomorphic to a submodule or a quotient of a tensor product of elements of G. Then

by the fusion relation, we see that every matrix coefficient J\II; is a linear combination of matrix
coefficients of the modules in G. In practice, we restrict ourselves to such a well-chosen set G to
obtain presentations of Lo (H) with no many generators. For instance, if H = U,(sly), we take
G = {X7(2)}, see section 4.4.2. A

We have an useful analogue of relation (2.17).

Proposition 4.1.3. The following exchange relation holds in Lo (H):

Jg 1 1J J J I1J 1 1J

R12M1(R/)12M2 = M2312M1(R/)12'

This relation is called the reflection equation. It can be written in a shortened way if the represen-
tations [ and J are fixed and arbitrary:

Ryo My Ry My = Moy Ryo My Ry . (4.4)
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Chapter 4. Lo1(H), L10(H) and representation of the modular group SLy(Z)

1J
Proof. We have the braiding isomorphism ¢;; = PR : I ® J — J ® I where P is the flip tensor
P(r ®y) =y ® x. Hence:

1J I 1J J 1J 1JI®J 1®J J®I JI I JI 1J
ngMl(R) M (R/>12 =R M = PC[JM PMC[J—Plng(R) MQ(R/>1_21P12R12
J o JI I JI 1J J IJ I
My (R, My (R)5)! Rig = My Ryp M.

JI JI J
We simply used the fusion relation, the naturality (4.3) and Pio(R'), P12 = (R')y, = Rio. O

Consider the following right action - of H on L(H), which is the analogue of the right action
of the gauge group on the functions:

I
M- h = WMS(HY. (4.5)

As in [BR95], one can equivalently work with the corresponding left coaction Q : Lo1(H) — O(H)®
Lo1(H) defined by

I I I, I
Q(Mg) = T7S(Ty) © Mj

so that we recover - by evaluation: z-h = ((?,h) ® id) o Q(z). If we view O(H) and Ly1(H) as
I I
subalgebras of O(H) ® Ly1(H) in the canonical way, then  is simply written as Q(M) = TMS(T).

Proposition 4.1.4. The right action - is a H-module-algebra structure on Lo1(H). Equivalently, Q
is a left O(H)-comodule-algebra structure on Lo1(H).

Proof. One must show for instance that €2 is a morphism of algebras (i.e. that it preserves the fusion
relation), as in [BR95]. With the shortened notation explained before, the computation is as follows:

Q(M)12 = Tio My S(Th2)
=T,T5 My Ry M2Rm S(T)25(T)
—T1 M1T2R21 M2R21 S( ) S(T)l
=T1 My Ty Ryy My S(T ) S(T)2 Ry
=Ty My Ty Roy S(T)1 M S(T)3 Ry
— T1 M1 S(T) R21 TQ M2 (T)Q R2_11
= Q(M)l R21 Q(M) R21

(definition)

(eq. (2.15) and (4.2))

(commuting elements in tensor product algebra)
(ea. (2.17))

(commuting elements in tensor product algebra)
(ea. (2.17))

(d eﬁmtlon)

]

We say that an element x € Ly, (H) is invariant if for all h € H, x - h = (h)z (or equivalently,
Q(z) = e ®x) and we denote by L} (H) the subalgebra of invariant elements of L1 (H) (also called
“observables”).

Example 4.1.5. For any representation 7, the element

Vg/ = tr, (]\14) = tr(é]\l/[) (4.6)

1s 1nvariant:
I

I TR Lo I
tr(gM) - h = tr(gh’ MS(h")) = tr(gS~ (W)W’ M) = e(h)tr(gM).
However, this splits on extensions:

K I J
0] —-K—->J—=0exact = W=W+W

I
and in general (when H is non-semisimple), the span of the 1W’s is strictly smaller than the subalgebra
of invariant elements. A
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4.1. The loop algebra Lo (H)

4.1.2 Isomorphism L,(H) = H

Recall the right adjoint action of H on itself defined by a - h = S(h')ah” with a,h € H, whose
invariant elements are the central elements of H.

Proposition 4.1.6. If we endow H with the right adjoint action, the following map is a morphism
of (right) H-module-algebras:

\110712 ,Cg’l(H) — H
I I I I
M — (T®id)(RR) = LH) L1

In particular, Wy, brings invariant elements to central elements.
Proof. Using the relations of (2.9)?, we check that W, ; preserves the relation of Definition 4.1.1:
Wo1 (M) Ry o1 (M)oRy) = LV L T Ry LSV L) Ry = LV LSY Ry L7 L) Ry
- L L — s ()

For the H-linearity:

Uon (WMS(H") = (T @ id)(W © 1 RR S(h") & 1)
_ (T@id)(K ® 1 RR S(h)" @ S(h)'h"™)
(f ®id)(h'S(h)" @ S(h)" RR'1 ® h")
— (T ®id)(1® S(W) RR 1@ 1) = S(h) o1 (M)N'.
We used the basic properties of S and the fact that A°®R = RA, with A®(h) =h" @ . O

We call Uy, the Reshetikhin — Semenov-Tian-Shansky — Drinfeld morphism (RSD morphism for
short) [RS88, Dri89]. The difference with the morphism ¥ of section 2.3 is that the source spaces
are different.

Write T(H*) = 6,y Tn(H*), where T, (H*) is the subspace generated by all the products
WPy -+ -1, with ¢; € H* for each 1.

Lemma 4.1.7. Each element of T(H*) is equivalent modulo the fusion relation of Lo1(H) to an
element of T1(H*). It follows that dim(Ly(H)) < dim(H™).

Proof. Tt suffices to show that the product of two elements of 77 (H*) is equivalent to a linear com-
bination of elements of T;(H*), and the result follows by induction. We can restrict to matrix
coefficients since they linearly span H*. If we write R = a; ® b;, then the fusion relation is rewritten

as: 1o) U/ ,
M12(R )12 = (az) M1M2(bi)1

2More precisely, we use relations easily implied by (2.9). For instance for the second equality, we
used the relation Lgf)flengJr) = Lg+)R21L§7)717 which is obtained as follows: exchanging I and J
JI T, N1 I, \J \JI
in the second relation of (2.9) we have R12L§+)Lé_) = L(_)L( )ng and then applying the flip map
P: H®Ende(J)®@Endc(I) — H®Endc(I)® Endc(J) o Tl Ldmd o
rOYRL s 20ZOY we get Ro1Ly 'Ly ' = Ly 'Ls"’ Ro; which is written
R21Lg+)L(1_) = Lg_)LéﬂRgl in the shortened notation. Recall that in the shortened notation the index 1 (resp. 2)

JI 1J
implicitly means evaluation in a representation I (resp. J) (thus Rg; means R = (R’ )12). More generally, any
permutation of the indices in defining relations is allowed when one does computations with the shortened notation.
We will no longer give such details in subsequent computations.
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Using aja; ® b;S(b;) =1® 1, we get:

I J J o IeJ 17 J
M1M2 == (ai>2 Mlg(R )125(61')1 (47)
I J I
and this give the result since MM 4 contains all the possible products between the coefficients of M
J
and those of M. ]

Proposition 4.1.8. Recall that we assume that H is a finite dimensional factorizable Hopf algebra.
Then the RSD morphism Vo, gives an isomorphism of H-module-algebras Lo1(H) = H. It follows
that LY (H) = Z(H).

Proof. Since H is factorizable, W, is surjective. Hence dim(Ly1(H)) > dim(H). But by Lemma
4.1.7, dim(Lo1(H)) < dim(H*) = dim(H). Thus dim(Ly1(H)) = dim(H). O

I
Let us point out obvious consequences. First, the matrices M are invertible since RR' is invertible.

I 1,1
Second, this theorem allows us to identify Lo;(H) with H via M = L) L7~ where the matrices
L&) are defined in (2.8). We will always work with this identification in the sequel.

Remark 4.1.9. Due to Proposition 4.1.8, there is an isomorphism of vector spaces f : Lo1(H) — H*

T I
given by M’ +— T%. We define a H-module-algebra structure on H*, denoted by Fo1(H) and with
product *, by requiring f to be an isomorphism of (right) H-module-algebras. The right H-action is

w-h=@Mh?5(")).

Using (4.7), (2.15) and obvious commutation relations we have

I I I J\Y J IgJ 1J I a J I¢J I I J oy
1+ 3 = 1 (W508) = (@0, Bhal®as(0,) = (@ Ta 6,500,

pé Bs B8
11 I g J g o I
= ((Tb]S(bz))l (CLiTCLj)2) == Tﬁ(r?bJS(bZ)) T5 (ai?aj) .
85

In other words,

P =(T0;S(b) Y(ai?ay), zm > p(27,0;5(b:) Y(aizh,a;) - (4.8)
This is the product of the functions ¢, ¢ € Fo1(H) and its evaluation on the discrete connection
which assigns x,, € H to the loop m, see Figure 4.3 and the Introduction. A

m
Tm

Figure 4.3: A discrete connection z,, € H on X ;.
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4.2. The handle algebra Lq0(H)

Recall that we denote by SLF(H) the space of symmetric linear forms on H:

SLF(H) ={¢ € H"|Vx,y € H, (xy) = Y(yz)}

and that SLF(H) is obviously a subalgebra of O(H). Also recall from section 2.3 the Drinfeld
morphism
D: H* — H
v (@ eid)((g@ DRR) = v(gab;)bia;

By Lemma 2.3.3, D induces an isomorphism of algebras between SLF(H) and Z(H). Hence SLF(H) =
Z(H) = Loy (H).
FExample 4.1.10. Consider the invariant elements of Example 4.1.5; then it holds by definition

I

D(x") = Vo (W), (4.9)

I

where y! = tr (T) is the character of the representation I. Due to (2.15), we have x'®/ = yIx”/ and
I

hence the same fusion rule applies to the observables W:

®J I J
W =WWw.

I .
This implies that the span of the W’s is a subalgebra of L§(H) (in general strictly smaller, see for
instance (4.31)). A

I,
Let us fix a notation. Every ¢ € H* can be written as ¢ = >, ., AT with A, € C. In order

to avoid the indices, define for each I a matrix A; € Mataimr)(C) by (A7)} = M. Then ¢ can be
expressed as:

I
Y=Y tr(AT).
I
We record these observations as a lemma.

Lemma 4.1.11. Every x € Lo1(H) can be expressed as:
I I
= Ztr(AIgM)
T

I
such that D™ (x) = =, tr(A[T). Moreover, if x € L§Y(H), then D~'(x) € SLF(H).

Remark 4.1.12. Let us stress that, due to non-semi-simplicity, this way of writing elements of Lo 1(H)
and of SLF(H) is in general not unique, see the comments in section 2.2. A

4.2 The handle algebra £, ((H)

We assume that H is a finite dimensional factorizable ribbon Hopf algebra. Note however that the
ribbon assumption is not needed in sections 4.2.1 and 4.2.2.

4.2.1 Definition of £, ((H) and H-module-algebra structure

Consider the free product Lo1(H) * Lo1(H), and let j; (resp. j2) be the canonical injection in the

I I I I
first (resp. second) copy of Lo1(H). We define B = j; (M) and A = jo(M).
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Definition 4.2.1. The handle algebra L o(H) is the quotient of Lo1(H) * Lo1(H) by the following

exchange relations:

1J 1 IJ/ J J 1J 1 IJ_l
R12Bl<R )12142 = AQngBlng

for all finite dimensional H-modules I, J.
The exchange relation above is the same as in [BNRO2, Def 1] except that A and B are switched,;
the one of [AGS96, Def 12] and [AS96a, eq (3.14)] is different, due to a different choice of the action

of H on L1 ¢(H). In the semisimple setting, the algebras resulting from each of these definitions are
isomorphic.

The exchange relation is a relation between matrices in £ o(H) ® Matgim(r)(C) ® Matgim(.s)(C)
(for all finite dimensional I, J) which implies relations among elements of £y o(H) (the coefficients
of these matrices), namely

IJac Ii ]J/ kj Jl JcIJai Ij IJ—l Ik
VI, Ja,b,cd, Rij By, (R )bl Ad = Ai ik Bl (R )bd'

Like the other relations before, the £ o(H)-exchange relation can be written more simply as:
R12 Bl R21 AQ - AQ R12 Bl Rl_zl. (410)

By (4.3), if f : I — J is a morphism it holds

J I J I
Bf=fB, Af=fA (4.11)

where we identify f with its matrix. We call this relation the naturality of the (families of) matrices

I I

B, A. Also note that the content of Remark 4.1.2 also applies to £, o(H): in practice, we can restrict
I I

to a set G of well-chosen H-modules and when we write B and A, we can assume that [ € G. For

instance, if H = U,(sls), we take G = {X(2)}, see section 4.4.2.

Similarly to Lo 1(H), consider the following right action of H on £, (H), which is the analogue
of the action of the gauge group on the functions:

1 Ir I I 17 I
B-h=WBS(l'), A-h=HASH". (4.12)

As above and like in [BR95], it is equivalent to work with the corresponding left coaction 2 :
;CL()(H) — O(H) X ;CL[)(H) defined by

Proposition 4.2.2. The right action - is a H-module-algebra structure on Ly o(H). Equivalently, Q
is a left O(H)-comodule-algebra structure on L4 0(H).

Proof. One must show that € is an algebra morphism, as in [BR95]. This amounts to check that
is compatible with the exchange relation, which is similar to the proof of Proposition 4.1.4 and is
left to the reader. m

We denote by L§(H) the subalgebra of invariant elements of £1¢(H) (also called “observables”).
For instance, the elements

19 1 1T g1
t1f12< g12PA (R )1232R12) (4.13)
with ® € Endy (I ® J) and tris = tr ® tr, are invariant.
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I I I
Notation. Let N = QI}mN?l ... NJ" € Matgimr)(L£1,0(H)), where m,n; € Z and each N; is A or B.
By definition of the right action of H on £, ¢(H ), we have a morphism of H-modules

jN: £0,1<H) — £170(H>

Let z € Ly1(H), we introduce the notation

Since we identify Lo,1(H) with H through ¥y, we also use this notation when z € H: xy = ¥y 1(z)y.
Note that if z € L§}(H) = Z(H), then zy € LI} (H). The following lemma is an obvious fact.

I0J T oy I
Lemma 4.2.3. If N satisfies the fusion relation of Lo1(H), Niz = N(i)1 (R), N(i)2 (R)15, then

Jn s a morphism of H-module-algebras: (xy)ny = TNYN-

I
Note that we allow ™ in the formula of N due to the fusion relation. Indeed, a suitable product

I I
of matrices A*!, B*! satisfies the fusion relation when it is correctly normalized by some power of v,
see e.g. (4.26), (4.27) and Proposition 4.3.2.

Ezrample 4.2.4. Taking back the elements introduced in Example 4.1.5, we have

I I I I I (L1
Wa =trg(4), Wp=tr,(B), Wyp-1a=tr,(vB"A),... (4.15)
These are invariant elements of £, o(H). A

Remark 4.2.5. Recall from remark 4.1.12 that the matrix coefficients do not form a basis of Lo (H).
They just linearly span this space. However, the maps j,amigni. am g are well-defined. Indeed,
first observe that

0’1(H> * ,CQJ(H) # ,CL()(H)
071(H> * EQJ(H) —ﬂ-» ;Cl,o(H)

jB . EO,I(H) ‘J—1>
J

2

L
jA : £071(H) <L

are well-defined. Let us show for instance that the map js-1p-14 is well-defined. Assume that

I
MNT? = 0. Applying the coproduct in O(H) twice and tensoring with idg, we get:
I I I
MT@idy @ T @idg @ Th @ idy = 0.
We evaluate this on (RR) " @ (RR')"' ® RR’:
L1y Lk o i
Ab (Mfl)k ® (Mﬁl)z ®M,=0.
Finally, we apply the map js ® jp ® ja and multiplication in £ o(H):
I
M(ATIBTTAY =0

as desired. A similar proof can be used to show that all the other maps defined by means of matrix
coefficients (like ¥y or «, 5 below etc..) are well-defined. A
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Chapter 4. Lo1(H), L10(H) and representation of the modular group SLy(Z)

4.2.2 Isomorphism £ ((H) = H(O(H))

Recall that the definition and properties of the Heisenberg double H(O(H)) are summarized in
section 2.4.

Proposition 4.2.6. The following map is a morphism of algebras:

\111’02 £1’0<H) — %(O(H))
B LOTLO-
I I I
A — [HpE)-1

Proof. We have to check that the fusion and exchange relations are compatible with ¥, 5. Observe
that the restriction of W, to the first copy of Lo1(H) C L1(H) is just the RSD morphism W,
thus ¥, o is compatible with the fusion relation over A. For the fusion relation over B, we have:

Uy o(B)12 ZLS) T ng)_l (definition)
=L L L (eq. (2.9) and (2.15))
= L7 LY Ry T L) L(_)_l (Lemma 2.29)
— 5” TlL ) Ry Ty Roy LSOV LT RS (eq. (2.9))
= {1 LS )32 Lty L 11%211 (Lemma 2.29)
_L§+)T1L )= 321L(+)T LRy (eq. (2.9))
:\I’l O(B) R21 \Ijl o(B) R21 ( eﬁnltlon)

The same kind of computation allows one to show that ¥, is compatible with the £; g-exchange
relation. O

We wish to show that ¥, is an isomorphism.

Lemma 4.2.7. Every element in L o(H ) can be written as Y .(x;)p(yi)a with z;,y; € Lo1(H). It
follows that dim (L, o(H)) < dim(Lo,(H))? = dim(H)?.

Proof. This is the same proof as in Lemma 4.1.7. It suffices to show that an element like y4xp can
be expressed as ), (z;)p(yi)a. The exchange relation can be rewritten as:

I J J L g1y 1 1J I
A1Bsy = (a;)y(1) 1, B2 R1a A1 (R') 155 (bi),. (4.16)
I J I
and the result follows since A; B, contains all the possible products between the coefficients of A and
J
those of B. O

Proposition 4.2.8. Recall that we assume that H is a finite dimensional factorizable Hopf algebra.
Uy o gives an isomorphism of algebras L£q0(H) = H(O(H)). 1t follows that L1 o(H) is a matric
algebra: L o(H) = Matgimm)(C) and in particular has trivial center.

Proof. Observe that W goj4 =igoWg, Where ig: H— H(O(H)) is the canonical inclusion. Since
W1 is an isomorphism, there exist matrices A(jE such that

I I
U, o(AF) = LE) € Mat i) (H(O(H))).

Moreover, we have:
I

I 1
U, o(ADTBAD)) = T € Matgy ) (H(O(H))).

Thus W, ¢ is surjective, and hence dim(L o(H )) dim(H(O(H))) = dim(H)?. This together with
Lemma 4.2.7 gives dim (L, 0(H)) = dim(H(O(H))). The last claim is a general fact, see (2.28). [
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Remark 4.2.9. Due to Proposition 4.2.8, there is an isomorphism of vector spaces f : L1 o(H) —

H* ® H* given by é;jlf — 71’3 ® ij We define a H-module-algebra structure on H* ® H*, denoted
by Fi0(H) and with product *, by requiring f to be an isomorphism of (right) H-module-algebras.
The right H-action is

(p @) - h=ph?S(h") @p(h"?S(hW)) .

For p € H* let pp = p® ¢ and ¢, = € ® . It is clear that
%*%Iﬁp@i/% %*%: ((p*w)m @b*wb: (90*1/1)1) (417)
(recall the algebra Fy1(H) defined in Remark 4.1.9). Moreover, using (4.16):

(T5)x (T3 = f(ilég)w _ f(< i)y (R >12é2%1221<§%’/>1255m>1)m
Bé B85

IR AN I ;11 I N\ J
= f (aiaijkal) f (b]akAblS(bl)) Tg(azaﬂbkal) (29 Tﬁ (b ak7bl5’(b ))
) B

and it follows that
Pa ES 1/)b = @/}(aiaj?bkal)b % gp(b]ak‘?blS(bZ))a (418)
Combining (4.17) and (4.18), we obtain the general formula:

(01 @ 1) * (02 @ ha) = 01 (?bm S (bn)) P2 (@i an ?ambrar) @ Y1 (bjar?boS (bp)biS (bs) )2 (ap?as),
Ty R Ty > 1 (mgbmS(bn))gpg (aza]anxbambkal) ® U (b arxlboS (by)byS (b ))¢2 (apx ao).

This is the product of the functions p; ® ¥y, @2 ® 19 € Fio(H) and its evaluation on the discrete
connection which assigns x; to the loop b and z, to the loop a, see Figure 4.4 and the Introduction.

A

Ty Lq

Figure 4.4: A discrete connection z, ® z, € H®? on 20

4.2.3 Representation of LI"j(H) on SLF(H)

In this section we construct representations of the subalgebra of invariants £%(H). This will be
extended to any g,n in the next chapter.

Recall from (2.27) that there is a faithful representation > of H(O(H)) on O(H). Using the
isomorphism V¥, o, we get a representation of £y (H) on O(H), still denoted >:

Vo € Lio(H), Vv € OH), 51 =W, o(z)> . (4.19)

Using (2.29), it is easy to get:

I J J IJ/ I J I I®J I®J IJ/ 1 I®J I J IJI
Arp Ty =T(RR),, and  BioTh = (a;); Tia(bi)i5(R)15 = (aia;); Tia(by),(0:),(R),  (4.20)
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Chapter 4. Lo1(H), L19(H) and representation of the modular group SLo(Z)

where as usual R = a; ® b; and the last equality is obtained using (2.5).
I
Let us define matrices (see section 2.4 for the definition of L(+))

I 11 1 I I 1L
C="BA'B A, O® = u (LHLH) (4.21)

I
Observe that geometrically, C' corresponds to the boundary of the surface X% , see (4.1) and Figure

4.2.

Lemma 4.2.10. [t holds:
I N
C=CcHcH
I
Moreover, the matrices C satisfy the fusion relation of Lo1(H):

I1®J 1 J J

1J
Cra=0C1 (R, Ca (R
Proof. We have
T AR Ny 1 1501 I I\ I
\PI,O (U2BAlBlA) — L(+) (,UzTL(+)1L()S(T)> L(,)fll
Let us simplify the middle term. It is equal to:

I I I I I

TS (a:)S (b )bsa; S(T) = TS (a) S~ (b;)S () S(Y,

J

~

S
S~—
(@p)
—~
N~
N—
S
Q\

I

11 1 I I I I I I
= 2TS(alak)S*1(bjbg)S(aj)S(bk)S(T)bzag = TS(bgCl,L)S(T)agbl

The first equality is the exchange relation (2.26) in H(O(H)) and the second follows from the
properties of the R-matrix. The third equality is obtained as follows: denoting m : H ® H — H the
multiplication, we can write

v2S(a;ar) S~ (be) S~ (b;)S(a;) S (br) @ biag = vS(azar)S™" (brbe)g ™" @ biay
= vS(ara;) S~ (bebr)g ™" @ agh; = vS5(a;)S (S (br)ar) S~ (be)g ™" @ aeh; = S(a;)S(be) ® agb;.

For the second equality, we used the Yang-Baxter relation Ri3Ri2R3s = Rs3sRi12Rq3; the others
equalities follows from (2.10) and the standard properties for g and v. Now, we have:

I 1 J I 1 J

I I J J I J I J
T15<bgai)IS(T)1agbi > TQ = Tls(bgai)IS(T)ng(agbi)Q = S(bgai)1<agbi)2T2 = (aib[)lbi@} > TQ.
For the second equality, we used that for any h € H:

1 I J

I I J J 1 J I J J
<S(bgai)IS(T)1T2(agbi>2, h> = S(h/bgai)l(h”agbi>2 = S(bgaih/)l(agbih”)2 = <S(T>1S(bz(l¢)1(a4bi)2T2, h>
Since > is faithful, we finally get

R ! I o L L
UQTS(ai)S_l(bj)biajS(T) = (Clgbi)bgdvi = L(+)L(_)—1.

Hence
! ro Lo L I 1
W10(C) = DOLR(LOLO) =, (CHCO)
as desired. Now, consider the morphism of algebras
f: H — H(O(H))
h — RhAh
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4.2. The handle algebra L, 0(H)

and observe that

I I I ~ I

I —
Ty o(CH)) = a: by Uy 0(CH)) = 571(by) dial U 0(C) = X; VY, (4.22)

171

where X; ® Y; = RR’. Then we have a morphism

Loa(H) 223 H N 7—[((’)( ) =3 Li0(H)

I I
M — Xin- — XiYi’Y;” — C.

I I ro Lo L I
It follows that C satisfies the fusion relation. Alternatively, one can write ¥, o(C) = L) LH (-1 (=)-1
and check the fusion relation directly using (2.9) and (2.34). O

Thanks to Lemmas 4.2.3 and 4.2.10, we have a morphism

jC’ . ,C(),l(H) — £170(H)
I I .
M — C

The previous proof shows that jo = \Ifi(l)o foWy,. Moreover, the algebra generated by the coefficients
I

4 I.
C (i); equals the vector space generated by the coefficients C':

I I,
CUCDi )i = veet(C)) g

( flﬂ”)

I
Indeed, since H is factorisable, it is generated as an algebra by the coefficients L!

I I
and as a Vector space by the coefficients (Xl) Y;. The claim follows from C i)z = Jjo ( () b( )) and

I
Ci = jc((Xl)} Y1)

+)?

()
J bl

J

Lemma 4.2.11. It holds
1J

1
O 17, O = RO T, B
where U is A or B.
Proof. We use the isomorphism V¥, o together with relations (2.9), (2.29) and (2.34):
U, (Cl(i)A2C£i)—1) _ Lgi)Egi)Lg+)Lg—)—1zgi)_1L§i)_1 _ ng:)Lg—i-)Lé—)—ng:t)—l
_ R(i)_lLH—)L(i)R(i)L(z_)_ngi)_l _ RS:)—ngF)Lg—)—lRS:)
(R )
and
\111,0 (C{i)BQO{i)—1> L( )L(i)L(+)T L( )— IL( )= L(i) L( )L(+)L(i)T L(i) IL( )= L(i)
+)-1 +)— (+)-1 -1
L@ [ R, [ L pEml L) B p -1 ()
= RO LI LB R L L = g L, LT RE)
- \11170<R§2 - BQR§>> .
The subscript 1 (resp. 2) implicitly means evaluation in a representation I (resp. J). O
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Chapter 4. Lo1(H), L10(H) and representation of the modular group SLy(Z)

Thanks to Lemma 4.2.3, we can define an action of H (identified with Ly ;(H) through Uy ;) on
H* by
h-p=hc>oe. (4.23)

Lemma 4.2.12. The action (4.23) of H on H* is
ho= (ST (I)?h").

It follows that we have the equivalence
I
NS SLF(H) <~ Cr> p = Hdim([)gp-

I
Proof. Since H is factorizable, we can assume that h = (X;)¢ Y;, where RR' = X; ®Y;. Due to (4.19)
and (4.22), we obtain

I I I — I
heo= (X)) (V)ebp=Civp=(X) Y)Y >bp= w((X»lewm”) = (S ()"

as desired. Next, it is easy to see that ¢ € SLF(H) if, and only if, h - ¢ = e(h)yp for all h € H.
I

Applying this to h = (X;)¢Y; and using that X;e(Y;) = 1, we find that ¢ € SLF(H) if, and only if,

I

Ci>p=odppforall I,a,b. O

It follows from this lemma that, in the case of the torus, SLF(H) implements the flatness constraint
(1.8) discussed in the Introduction.

Theorem 4.2.13. 1) An element x € L1 o(H) is invariant under the action of H (or equivalently
I I
under the coaction ) of O(H)) if, and only if, for every H-module I, Cx = zC.
2) The restriction of > to LT§(H) leaves the subspace SLF(H) C H* stable:
Vo e LY (H), Vi € SLF(H), x> € SLF(H).
Hence, we have a representation of LT(H) on SLF(H). We denote it psre.

Proof. 1) Letting U be A or B, R®) = az(-i) ® bgi) and using Lemma 4.2.11, we have that the right
action - of H on Ly o(H) satisfies:

A 1 () L@ oG
Us- Ly =U,- S (bz’ )(ai )1257 (bi )2U2<b' )2<a' )1
J J J I J oI
= SO Ua(b7), (0 af™), = BTN UL Ry = CFY U2 07

We have thus shown that

or in other words

I
Vo€ Lig(H), z-SH(LW)=CHgCcH!

I
Since H is factorizable, the elements S™!'(L(*))? generate H as an algebra. Hence the previous
equation shows that z is an invariant element if, and only if, it commutes with the cofficients of the

I I
matrices C*). As remarked above, the algebra generated by the coefficients C’(i); equals the algebra

I
generated by the coefficients C. Hence, an element is invariant if, and only if, it commutes with the
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4.2. The handle algebra L, 0(H)

I
coeflicients of the matrices C.

2) Let z € LP§(H) and ¢ € SLF(H), then
I I I I
Co(z>p)=(Cr)pp=(2C)>p =z (C>¢) = Linmmn(z> )
and it follows that = > ¢ € SLF(H) thanks to Lemma 4.2.12. O

We now need to determine explicit formulas for the representation of particular types of invariant
elements that will appear in the proof of the modular identities in section 4.3. If ¢» € H* and a € H,
we define:

" =y(a?)

where ¢(a?) : © — ¢(az). This defines a right representation of H on H*. Obviously, if z € Z(H)
and ¢ € SLF(H) then ¢* € SLF(H).
I I
Recall that z4 = ja(2) (resp. zp = jp(2)) is the image of z € Ly 1(H) by the map ja(M) = A
I I
(resp. jp(M) = B). See (4.14) for the general definition.

Proposition 4.2.14. Let z € L{{(H) = Z(H) and let 1 € SLF(H). Then:

sab =9 and e = (DY)
where D is the isomorphism defined in (2.18).

I
Proof. The first relation is obvious. For the second formula, we write zp = > ; tr(AIgI]B) with

I J
D !(z) = Y ,;tr(A;T) € SLF(H) by Lemma 4.1.11. We also write ¢ = Y, tr(©,7"). Then, using
(4.20):

I
2p> Y = Z trio ((A1)1<@J)2 élB1 > T2)
1.7

= 3t (O (e, i), (00, (1), )

=D '(2)(ga;a;7b;b) ¥ (?hiar) = D' (2) (2b;b1.5%(asa5)g) ¥ (?biay,)
with tris = tr ® tr, R = a; ® b;. Thanks to the Yang-Baxter equation, we have:
bibr ® a;a; ® bjay = RogRo1 R31 = Rg1 Ro1 Rog = bibj ® ajar ® a;by.
It follows that:

2> = D_l(z)(?bibjSz(ajak)g) »(?a;by)
=D (2) (v biar) ¥ (?abe) = D (2) (P00 ) ¢ (To(vh)”)

where we used (2.10), (2.13) and (2.11). Hence for z € H:

(zpp ) () =D (2) (0™ ) ) (v(™!)"2") = (D' () ¥") (v 2) = (D' (2)¥")" ()
as desired. O]
Lemma 4.2.15. Let z € L§Y(H) = Z(H) and let ) € SLF(H). Then:
spav = (S(D71(2)) )"
It follows that if S(v) =1 for all yp € SLF(H), then psir(zp-1) = psLr(2B).
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Chapter 4. Lo1(H), L10(H) and representation of the modular group SLo(Z)

I
Proof. This proof is quite similar to that of the previous proposition. Using the fact that ¥y o(B™!) =

1 I 1
LE)S(T) L)~ together with Lemma 2.29 and formulas (2.16), (2.6) and (2.5), it is not too difficult
to show that

L, J teid I* 1eJ _é* J
Bl I>T2 = (ai)l T12 (CljS (b]bk))l(akb,)Q

t®id

I
where means transpose on the first tensorand. Write zp-1 = ), tr(A[éBfl) with D71(z) =

I J
> tr(A;T) € SLF(H) by Lemma 4.1.11, and ¢ = >, tr(©,T). Observe using (2.16) that:

= Su(ush) - ()

Using the fact that S(g) = g~! and (2.16), we thus get:

I R Y r J
2pa b =Y tria | (Arg)a(©.)s (ai); Tiz (a;S™"(bjbk)), (arbi)y

1,J

=3 <<tAI>1<@J>2 (@), Tiz (05" 2<bjbk>gl>1<aibi>2)
( 1(2)) (a5 7 a;872(bibr)g™") (7 axbs)
= S(D71(2)) (? a;S72(bibr)g ™ ai) (2 axby) = S(D7'(2)) (2(v™1)) w(?v(v™")") .

For the last equality we used (2.10), (2.13) and (2.11). Hence we get as in the previous proof
1}71
21> = (S(D71(2))¥")" . O

)
)

4.3 Projective representation of Sl (7Z)

As previously, H is a finite dimensional factorizable ribbon Hopf algebra.

4.3.1 Mapping class group of the torus
First, recall the general definition (see [FM12]).

Definition 4.3.1. If S is a compact oriented surface, we denote by MCG(S) its mapping class
group, that is the group of isotopy classes of orientation preserving homeomorphisms of S which fix
the boundary pointwise.

For this chapter we focus on the torus ¥, = St x St Let Y10 = 210 \ D, where D is an
embedded open disk. The surface 39, together with the canonical curves a and b are represented
in Figure 4.2. The groups MCG(X$ ;) and MCG(X; o) are generated by the Dehn twists 7,, 7, about
the free homotopy classes of the curves a and b. It is well-known (see [FM12]) that

MCG(X9) = Bs = (Tay To | TaToTa = ToTaTh)
MCG(E1,0) = SLa(Z) = {70, 7 ‘TaTbTa = TyTaTh, (Ta™)’ =1).

This presentation is not the usual one of SLy(Z), which is:
SLy(Z —<St‘$t 254:1>.

The link between the two presentations is s = 7, 7, ‘7. L, t = 7,.
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4.8.  Projective representation of SLo(Z)

Recall that if we have two simple closed curves v,z then 7., (x) is obtained as follows: at each
intersection point between x and 7, resolve the intersection by plugging a copy of v into x, in such
a way that z turns left into the copy of v:

i ek (4.24)

Since MCG(%9 ) fixes the boundary, it fixes the basepoint (see Figure 4.2) and hence we have an
action of MCG(X9 ) on m1(X9,). The actions of the Dehn twists 7, and 7, are given by:

ro(a) =a, 7,(b) =ba and 7,(a)=0b"ta, 7(b) =b. (4.25)

For instance, the action of 7, on b is depicted by:

Ta ba

N2

The fundamental idea, proposed in [AS96a] and [AS96b], is to lift the action of the Dehn twists of

MCG(E,,, \ D) on m(X,, \ D) at the level of the algebra L, ,(H). Let us be more precise. In
I I
m1(X9) we have the two canonical curves a and b, while in £ o(H) we have the matrices A and B.

Using (4.25), let us try to define two morphisms f,, f, : £10(H) — L10(H) by the same formulas:

4.3.2 Automorphisms 7, and 7

L) =A,  fuB)=BA
I I I

f(A)=BA, f(B)=B.

Let us see the behavior of these mappings under the fusion and exchange relations. For the exchange
relation, no problem arises:

R12 fa(B)l R21 fa(A)2 = R12 B Al Rgl AQ (deﬁnltlon)
= R15 By Ryt Ay Rip A1 Ry (eq. (4.4))
= Ay Ris By A1 Ry (eq. (4.10))
= fu(A)2 Raa fo(B)1 Ry (deﬁnltlon)

and a similar computation holds for f,. The fusion relation is almost satisfied:

fa(B)lz = By Aip
A( )12 By vy Ug R21 R12 A12

definition)
trick)

(
(
A(’U)lg B1 RngQ R21 Ul U2 R21 ng Al Rgl A2 R21 (e ( )) (4 26)
A(?})lg ?)1 ’U2 Bl Rngg ng Al Rgl AQ R21 (’U 1S central) ’
A(’U) 12 ’U1 ’U2 Bl Al R21 BQ Ag RQI ( (4 10))
= A()12v7 vy fa(B)1 Roy fo(B)2 Ryt (deﬁmtlon)
and we get similarly:
fo(A)12 = By Ao = A(v™ V) 1av1va f5(A)1 Ray fr(A)g Ryl (4.27)
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1T I
From this we conclude that the elements v~'BA and vB~1A satisfy the relation (4.2). Since v is
central, we see that the exchange relation still holds with these elements. We thus have found the

morphisms which lift 7, and 7,; we denote them by 7, and 7, respectively (these morphisms appeared
first in [AS96a, Lem. 2] and [AS96b, eqs (4.1), (4.2)]).

Proposition 4.3.2. We have two automorphisms T,, T, of L10(H) defined by:

I ;LI
= v 1BA
I
7(A) = 0B~'A, 7(B) = B.

Moreover, these automorphisms are inner: there exist 7,,7, € L10(H) unique up to scalar such
that
Vo€ Lig(H), Tu(z) =TT, ", T(z)="n027, "

Proof. By Proposition 4.2.8, £,0(H) is a matrix algebra. Hence, by the Skolem-Noether theorem,
every automorphism of £; o(H) is inner. O

A natural question is then to find explicitly the elements 7,,7,. The answer is amazingly simple
(it has been given in [AS96a, eq (9.7)] for the modular case; there they express these elements as
linear combinations of traces which form a basis in the modular case only). Recall the notation
(4.14).

Proposition 4.3.3. Up to scalar, 7, = vy € Li%Y(H) and 7, = vg' € LT(H).
Proof. We must show that:

A A LI L1 Y NP A Lo
vy A=Av,, vy, B=v "BAv,  and vz A=vB "Avy, vy B = Bvg.

It is obvious that vy' (resp. vjz') commutes with the matrices ;1 (resp. é) since it is central in
ja(Lo1(H)) (vesp. in jp(Lo1(H))). Let us show the other commutation relation for v;'. We use the
isomorphism W, 5. Observe that U, o(z4) = « for all z € H. Hence, using the exchange relation of
Definition 2.26 and (2.11), we have:

I I 11 I 1 I I
Uy o(v,'B) = Ly 7L L<+>T( ' 1O L<+>T( IRy A
I 1 1
LT v a, DO = B LT by db, L)1y

I 1T I I
= o LT L L L7l = xI:LO(U*lBAvAjl)

~

as desired. We now apply the morphism 7, 1 to the equality v AlB — 1BA?J

1 ~1, L IS ~1~11_1111 Ll L
T, o7, (v, B)=wvwg BA™ =7, o7, (v BAv, )= BA Bug.

I
Using that v and B commute, we easily get the desired equality. O]

4.3.3 Projective representation of SLy(Z) on SLF(H)

Observe that
TaToTa = ToTaTo,  (TaTy)" # id in m(X9,).

Since 74(c) = 7(c) = ¢ where ¢ = ba~'b'a is the boundary loop induced by the deletion of the open
disk D, 7, and 7, are well-defined in m;(¥10) = 71(X9,)/(c), and we have

TaToTa = ToTaTh, (TaTb)G =id in m(X1).
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Recall that £, o(H) is associated to ¥, and it is easy to check that
TaToTa = ToTaTo,  (TaT)® #1d in L10(H).
It follows from Propositions 4.3.2 and 4.3.3 that
vitvgtot ~vgto ot (021051)6 %1 in £y0(H)

where ~ means equality up to scalar (we will see that ~ is actually = for the braid relation). Hence,
if we want a representation of MCG(X; o) based on the elements vy' and v3', we have to glue back

I
the disc D. Recall that the matrices C' corresponding to the boundary circle are killed on SLF(H)
(Lemma 4.2.12). Hence, it is natural to think that representing v and v on SLF(H) (see Theorem
4.2.13) will provide a projective representation of MCG(X;):

PSLE (Ugl U;l UAjl) ~ pSLE (Ugl U;l U;l) ’ PSLF (UATl 051)6 ~ 1.

We will show that this indeed holds.
Recall from Proposition 2.3.4 the symmetric linear forms
oo =) (g ?), e =l (0) T (g7 7).
satisfying D(p,+1) = vEL Due to the fact that ¢,-1 = ;! (since D is an isomorphism of algebras),
we see that o
2 (v

Pp-1p-1 = ———€. 4.98
W) (4.28)

where " = B(h?) for all 3 € H*,h € H. By Proposition 4.2.14, the actions of v and vz on
SLF(H) are:

Vo € SLE(H), vi'sv=¢" =¢(0™?) and vg'o1 = (p,10*)" . (4.29)
Lemma 4.3.4. ¢, 19" = ¢",.

Proof. For x € H:

(ot @) = (o) i (vg™0!) (g 7'0") = p'(0) > () il g7 a)

We simply used (2.20). O
This lemma has an important consequence.
Proposition 4.3.5. The following braid relation holds in L1 o(H):
v;l vgl v;l = vgl vzl vgl.

Proof. The morphisms 7, and 7, satisfy the braid relation 7,77, = 7,7,75. Hence by Proposition
4.3.3 and since Z(L;(H)) = C, we have: \v' vp' v = vl vy ' vy' for some A € C. We evaluate
on the counit:

Mitvgtvtve = wtvgipe= Mt > gag: = )\cpgj
1,1, ~1 1,1 o} v2 1\ o\ v2
UB UA UB [>€ = UB UA I> 801}71 = UB [> 901}*1 = (gOv—ISD,U71> = <80U71> = 901}*1'
We used €(v?) = e(v)e = € and Lemma 4.3.4. It follows that A\ = 1. O
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Consider @ = v vz' vy € L1o(H), which implements the automorphism w = 7,7,7,: w(z) =
Wxw ! The key observation is the following lemma.

Lemma 4.3.6. For all ¢ € SLF(H):

Proof. First, we show the formula for ¢) = e:

1 1

1)2 2)v*1 - p(v™) A CE

~ _ _ _ — — _ -2 _ -
Wre = (vt vgtvy ) ee =vitvgt v el = vt e (-1l

I A R S | I
where we used (4.29) and (4.28). Second, note that w(A) = $?A'B~'A = B~'C and w(B) = A. It
follows that, for every z € Z(H) = L§Y(H), w?(2p) = w(z4) = zp-1¢ and thus
O?zp = zg-10W°.
Observe by Proposition 4.2.14 that for every ¢ € SLF(H) we have ¢ = D(¢V) 3 > e. Hence, we get
P C
p(v) p(v)

51 = D*D(Y") b€ = DY) por B b =

W) e oY)
=i W = T

We simply used Lemmas 4.2.12 and 4.2.15. Also recall that if ¢ € SLF(H) then

I I
Zp-10 > p = Z tr <AIéBlC > go) = Z tr (AIéBl > gp) = zp-1D,
I I

with the notation of Lemma 4.1.11. O

DY) prove = D) v e

S).

Recall that the group PSLy(Z) = SLy(Z)/{£ls} admits the following presentations:
PSLy(Z) = <Ta,7'b ‘TaTbTa = TyTaTh, (TaTs)® = 1> — <s,t ‘ (st)P =1, $* = 1> '

We denote by p the representation of Lo1(H) on H* and by psir the representation of L§}(H) on
SLF(H).

Theorem 4.3.7. Recall that we assume that H is a finite dimensional factorizable ribbon Hopf
algebra.
1) The assignment

Tq p(vgl) ,  TptH> p(vgl)
defines a representation 07 of MCG(XS,) = B3 on H*.
2) The assignment
Ta = pser(vy') s T psir(vg))
defines a projective representation ¢, of MCG(X1) = SLa(Z) on SLF(H). If moreover S(¢) =
for all € SLF(H), then this defines actually a projective representation of PSLy(7Z).

Proof. By Proposition 4.3.5, we know that the braid relation is satisfied in £, 0(H), thus the first
claim holds. By Lemma 4.3.6, we have:

(vilvg' )P oy =@ by = S(w).
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If S|SLF(H) = ld, then

Otherwise,

(valvg!) o =

Observe that the quantity & (( does not depend on the choice of p! since it is unique up to scalar.

4.3.4 Equivalence with the Lyubashenko-Majid representation

Recall that H is a finite dimensional factorizable ribbon Hopf algebra. Under this assumption, two
operators S, 7 : H — H are defined in [LM94]:

Sz)=([deou)(R'1lex)R™"), T()=v'z

It is shown that they are invertible and satisfy (ST)? = A\S?, §% = S™!, with A € C\{0}. We warn
the reader that in [LM94], they consider the inverse of the ribbon element (see the bottom of the
third page of their paper). That is why there is v™! in the formula for 7.

Now we introduce two maps. The first is

x: H* - H

g — (B®id)(R'R)

while the second is
vy: H — HO*

x = p(Sx)?).
The map x is a slight variant of the map W of section 2.3 and is called Drinfeld morphism in
[FGSTO06a]. The map = is denoted qb in [FGSTO06a| and is the inverse of the Radford map (¢)(g0) =
()", where ¢ is the two-sided cointegral of H; see [Rad94, Radll]). Consider the space of left
g-characters:

Ch'(H ={B e H" |Va,y € H, B(zy) =pB((y)z) }.

These maps satisfy the followmg restrictions:

x : Chl(H) — Z(H), ~ : Z(H) — Ch'(H).

This is due to the fact (observed by Drinfeld [Dri89] and Radford [Rad94] respectively) that they
intertwine the adjoint and the coadjoint actions (for the first the computation is analogous to that
of the proof of Proposition 4.1.6, while the second is immediate by Proposition 2.3.4).

It is not too difficult to show (see e.g. [Ibal5, Remark IV.1.2]) that
Ve Z(H), S(x) = xo(2)

It follows that Z(H) is stable under S and 7. But since S? is inner, we have §*(z) = S7%(z) = 2 for
each z € Z(H). Thus there exists a projective representation ppy of SLy(Z) on Z(H), defined by:

pm(s) = Sz,  pum(t) = Tz

The left g-characters are nothing more than shifted symmetric linear forms. More precisely, we
have an isomorphism of algebras:
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Chapter 4. Lo1(H), L10(H) and representation of the modular group SLy(Z)

Let us define shifted versions of x and of ~:
X, =xo0 (g71)" : SLF(H) — Z(H), ~,=g" 0o~ : Z(H) — SLF(H).

The equality § = x,-1 0, still holds, but we have now SLF(H) instead of Ch'(H).

We will need the following relation between left and right integrals.
Lemma 4.3.8. Under our assumptions H is unibalanced, which means that u' = u"(g*?).

Proof. The terminology “unibalanced” is picked from [BBGal8], where some facts about integrals
and cointegrals are recalled. Recall (see e.g. [EGNO15, Prop. 8.10.10]) that a finite dimensional
factorizable Hopf algebra is unimodular, which means that there exists ¢ € Z(H), called two-sided
cointegral, such that xc = e(z)c for all x € H. Let a € H be the comodulus of p": Yu” = (a)u”
for all v € O(H) (see e.g. [BBGal8, eq. 4.9]). By a result of Drinfeld (see [Mon93, Prop. 10.1.14],
but be aware that in this book the notations and conventions for a and ¢ are different from those we
use), we know that:

uS(u)™! = a(a®id)(R)

where a € H* is the modulus of the left cointegral ¢! of H. Here, since ¢ = ¢ is two-sided, we have
a=c. Thus ¢ = v?>v? = uS(u)~! = a by (2.11) and (2.13). We deduce that

ph=p" oS =y (a?) = p(4*7)
where the second equality is [BBGal8, Prop. 4.7]. O

Lemma 4.3.9. It holds:
PSLF (0,24 UB) = ,ul(vil)il ’Vg © Xg*l

Proof. We compute each side of the equality. On the one hand:

Vg0 X1 () =7, (W @id) (g7 (v v @ (b)) =g (v v) w (gS (™)) v 7?)

whereas on the other hand:

(00 ) = (0™ ) (u (g~ 7)w?)"
P ™) [ (g™ ) (g STH (D))
= ' (v™ ) ! T(QUS(( DY) (vgH(07hY)

as desired. We used the formulas (which are analogous to (4.29))

vivp ) =

vab =" =?),  wpe =) (W (g v ) )"

together with Lemma 4.3.8, the property (2.24) and the equality (v™!) ® S~!((v™1)") = S((v™1)") ®
(v™1)" which is due to S(v) = v. O

The link between the two presentations of SLy(Z) is s = 7, 17, ' 7.

operators ', 7" : SLF(H) — SLF(H) by:

t = 7,. Hence we define two

a 7

S' = 0,(s) = pstr(vavpva), T =01(t) = psrr(vy').

Theorem 4.3.10. Recall that we assume that H is a finite dimensional factorizable ribbon Hopf
algebra. Then the projective representation 61 of Theorem 4.3.7 is equivalent to pyn-
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44. The case of H = U,(sly)

Proof. Consider the following isomorphism of vector spaces:
f=psr(vy) oy, Z(H) — SLF(H)
2o ()7 = (gvS(2) 7).
By Lemma 4.3.9:
S = p (™) psur(vy') 0 v, 0 X1 © psLr(va).

Thus:
foS=psir(vy') oy ox,1 0, =p (v )8 of.
Next,
foT(z)=f(v'2) = ’)’g(Z)U_2 = PSLF(U,Zl)('Yg(Z)”_1> =T o f(2)
Then f is an intertwiner of projective representations. m

4.4 The case of H = U(sly)

Let ¢ be a primitive root of unity of order 2p, with p > 2. We now work in some detail the case of
H = U, = U,(sly), the restricted quantum group associated to sly(C). We take back all the notations
and results from Chapter 3. In particular, to explicitly describe the representation of SLy(Z), we will
use the GTA basis of SLF(U,) introduced in section 3.2.

4.4.1 Technical details

In principle, since U, is not braided (see section 3.1.3), it is not clear that the previous definitions

and results remain valid. In practice, the universal R-matrix simply belongs to the extension Uql /2 of
U, by a square root of K, and although some computations occur in the extension, the final result
always belongs to U,. The important things are that the M-matrix RR’ belongs to U ®2 that the
ribbon element v belongs to U, and that U, is factorizable (recall that this last claim is an abuse of
terminology since U, is not bralded see detalls in section 3.1.3).

In order to define Lo 1(U,) and L, (U,) we introduce some terminology. Let I be a U,"*-module.
Since U, C Uql/Q, I determines a U,-module, which we denote I,g,. We say that a U,module J is
liftable if there exists a Uql /2_module J such that j\Uq = J. Not every U,-module is liftable. Indeed, if

it was the case, this would imply that V@ W =2 W ® V (since Uql /s braided) for every U,-modules
V, W, which is false: a counter-example is given in [KS11]. However, the simple modules and the
PIMs are liftable, which is enough for us. It suffices to define the action of K/ on these modules.
Take back the notations of section 3.1.1 for the canonical basis of modules. For the simple module
X¢(s) (e € {#}), there are two choices for ¢'/2, and so the two possible lifts are defined by

Kl/Zvj _ 61/2q(s—1—2j)/2vj

and the action of ' and F' is unchanged. Similarly, the two possible lifts of the PIM P¢(s) are defined
by
K1/2hy = €/24(5-D/2p,, K122y = (1/2g7/2) g1/,
K12y = (—€l/2gr/2) q=s=D/2y, - KV/2q, = ¢l/2g(s=1/2g,
and the action of E and F' is unchanged.
Let C~ be the 1-dimensional U,'/?>-module with basis v defined by Fv = Fv = 0, K*/?v = —v
(which is a lift of X*"(1) = C). If I is a lift of a simple module or a PIM [, then we have seen that

the only possible lift of I are [ [*=Tand I~ =I®C". Moreover, using (2.5), we get equalities which
will be used in the next section:

(~R )12 - (]RJ)12 (K];p)w (?{)12 - (ié )12 ([E{p)l (4.30)
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Chapter 4. Lo1(H), L10(H) and representation of the modular group SLy(Z)

4.4.2 Ly1(U,) and L,(U,)
We define Lo(U,) as the quotient of T(U}) by the fusion relation

1@J 1 Iy 1T

Mz = My(R'),M2(R™),
where I, J are simple modules or PIMs and I, .J are lifts of / and J. From (4.30) and the fact that
K? is central, we see that this does not depend on the choice of I and J. As we saw in section 2.2, the
matrix coefficients of the PIMs linearly span Ly (H), thus we can restrict to them in the definition.
However, it is important to have the matrices associated to simple modules and more precisely to
X*(2), as we shall see below. All the results of section 4.1 remain true for £o,(U,). In particular,
Wy,1 is an isomorphism since Uq is factorizable.

We now describe Ly ;(U,) by generators and relations. Let

o qg 0 0 O
x+(2) a b ~  AXT(2)XT(2) 1 0146 0

B B _ _—1/2 q
M= M = <c d> and R = R =q 00 10
00 0 g¢q

where X (2) is the lift of X (2) defined by K/2v, = ¢"/2v,. Using the same reasoning as in section
x*(2)®n _
3.1.4, we know that the coefficients of M (n € N) linearly span Ly;(U,). But thanks to the

fusion relation, each such coefficient is a linear combination of products of the elements a, b, ¢, d:
Xt X+ (2) Xt(2)

M) = MG, (MO (M)

,,,,, In Jlsesdn 3eey ln >

which is the analogue of (3.19). It follows that a, b, ¢, d generate Lo1(U,). Let us determine relations
between these elements. First, we have the reflection equation, which comes from the existence of
the braiding morphism ¢ : X+ (2)%? — X+ (2)%%

Rya My Roy My = MaR1o M Ry,
This equation is equivalent to the following exchange relations:

da = ad, db = ¢*bd, dc = q2cd,
ba = ab+ ¢ 'qbd, cb=bc+ ¢ '¢(da — d*), ca = ac— q tqde.

with ¢ = ¢ — ¢~'. Second, since X*(2)%* = X*(1) & X" (3)3, there exists a unique (up to scalar)
morphism @ : C = X (1) — X+ (2)%2 It is easily computed:

(I)(l) = qug ® V1 — V1 K Vg.
By fusion and naturality (4.3), we have

~ ~ Xt (2)®2 C
MlelMQRgll(D = M12(I) - (DM = (I)

This gives just one new relation, which is the analogue of the quantum determinant (3.20):
ad — ¢*bc = 1.
Finally, let us compute the RSD isomorphism on M:
o (@ VY _TE SN (KGR (K 0\ (K+q 'PFE g\F
O1\e¢ d) — L0 K'Y )\Ggx'V*E K-'?) GK'F K1)

We deduce the relations b = ¢® = 0 and d* = 1 from the defining relations of U,.

3This decomposition does not hold if p = 2: in that case, we have X*(2)®2 = P*(1). But there is still the
morphism ¥ : C — X+ (2)®2 which corresponds to sending C = X*(1) in Soc(PT(1)).
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44. The case of H = U,(sly)

Theorem 4.4.1. The algebra Lo (U,) admits the following presentation:

da = ad, db = ¢*bd, de = g 2cd
<a, b,c,d | ba=ab+ q tqbd, cb=bc+ q'¢(da—d?*), ca=ac—qtqde >
ad — ¢*bc = 1, P =cP =0, a» =1

A basis is given by the monomials b'c/d* with 0 <i,j <p—1,0<k <2p—1.

Proof. Let A be the algebra defined by this presentation. It is readily seen that a = d~! + ¢?bed ™t
and that the monomials b'c/d* with 0 < 4,5 < p—1, 0 < k < 2p — 1 linearly span A. Thus
dim(A) < 2p*. But we know that 2p* = dim(U,) = dim (Lo (U,)) since the monomials E*F7K* with
0<4,j<p—1,0<k<2p—1 form the PBW basis of U,. It follows that dim(A) < dim (Lo (U,)).

Since these relations are satisfied in Lo1(U,), there exists a surjection p : A — L1(U,). Thus
dim(A) > dim(Lo1(U,)), and the theorem is proved. O

Remark 4.4.2. Tt is possible to get the relations b» = ¢? = 0, d*? = 1 by fusion and naturality, as it was

done in section 3.1.4. The big difference is that the fusion relation of £y ;(U,) is more complicated
_ Xt (2)®n
than the fusion relation of O(U,) and consequently the matrices A  are much more complicated
xt+(2)®n
than the matrices T . First one must show by induction via tedious matrix reasonings that

p ®p
UO .« .. Ul ®
7
A+ @)on * x o A0M\ v
M = * *
n mn p
pnC® % d Oh

where A\, i, are non-zero scalars. Then one can take back the reasoning of section 3.1.4: the
morphism f : P*(p — 1) — X*(2)®? will imply b” = ¢* = 0 and the morphism f, will imply d*» = 1.
In contrast, the relation a?” = 1 is not true in Lg(U,). A

Remark 4.4.3. Theorem 4.4.1 indicates that £y 1(U,) is a restricted version (i.e. a finite dimensional
quotient by monomial central elements) of Ly ;(U,)®™°, the specialization at our root of unity ¢ of the
algebra Ly 1(U,). A complete study of the algebra Ly ;(U,)*®° will appear in [BaR]. A

Applying the isomorphism of algebras D defined in (2.18) to the GTA basis of SLF(U,) (defined
in section 3.2), we get a basis of Z(U;) = L§ (U;). We introduce notations for these basis elements®:

X<(s) ,
W =D(5), V' =D(Gy) (4.31)

with 1 < s <p,e € {£t}and 1 < ¢ < p— 1. They satisfy the same multiplication rules than the
elements of the GTA basis, see Theorem 3.4.1. Unwinding the definitions, this reads

X<(s) Xe(s) xe(s)
W = (x{®id) (K" @ 1)RR') = tr(K"*' M) 139
PH(s) p+(s) P~ (p—s)P~(p—s) (4:32)

Ve = (G, ®id) (K" @ 1)RR') 2 tr(o, K™ M ) + tr(op—s KP*" M )

since we choose KPT! as pivotal element and where 2 is the identification Lo (U,) = U, via W,
(recall that usually we use this identification without mention). In particular, the expression (3.16)
of RR' allows us to compute that

XI;?)—— — g ld=DH) = —G*FFE —¢K — ¢ 'K~! = —¢2C 4.33
=—qa—q d=D(x3)=—q qK —q =—q (4.33)

4The elements x(s) defined in [GT09] correspond to [s]V* here
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where C' is the Casimir element (3.12).

Similarly, we define £, ¢(U,) as the quotient of Lq1(U,) * Lo1(U,) by the exchange relations:

Tilff/J J I T le
R12B1(R')y A2 = AgR12 B (™),

where I, J are simple modules or PIMs and f, J are liftings of I and J. From (4.30), we see again
~ ~ x*(2) Xt (2)
that this does not depend on the choice of I and .J. The coefficients of A and of B :

XXQ)_ a; by XEQ)_ as by
N ¢ dy)’ N cy dy

generate L o(U,). Using the commutation relations of the Heisenberg double, it is easy to show that
U, o indeed takes values in H(O(U,)) (the square root of K does not appear). In order to obtain a
presentation of £1(U,), one can again restrict to I = J = X*(2) and write down the corresponding
exchange relations together with the relations coming from the fact that the variables a;, b;, ¢;, d;

(i = 1,2) generate a copy of Ly1(U,). We do not give this presentation of £, o(U,) since it is quite
cumbersome and we will not use it in this work. Let us just mention that the monomials

v dibberdy, 0<ijlm<p—1, 0<kn<2p—1 (4.34)

form a basis. Indeed, they are a generating set thanks to the exchange relations and to the restriction
relations b = & = Wb = & = 0,d = d = 1; moreover, the number of such monomials is
4pb = dim(ﬁlﬁo(Uq)). The generators aq, as do not appear in the monomial basis because they can
be expressed as a; = d1_1 + qzblcldl_l, ay = d;l + q2b202d2_1.

In view of the next section, let us precise that by definition (see (4.14) and (4.32)) we have

Xe(s) Xe(s) xe(s) PF(s) pt(s) P~ (p—5)P—(p—s)
Wy = tr(K"* X ), Vi =tr(o, K71 X ) +tr(op—s K7 X ), (4.35)

where X is any product of the matrices B, A with some normalization by v", for instance X = A,
X =B, X =vB'A.

4.4.3 Explicit description of the SL.(Z)-projective representation

Note that it can be shown directly that (_]q is unimodular and unibalanced, see for instance [Ibal5,
Cor. I1.2.8] (also note that in [BBGal8] it is shown that all the simply laced restricted quantum
groups at roots of unity are unibalanced).

Proposition 4.4.4. For all z € Z(U,), S(z) = z and for all ¥ € SLF(U,), S(¢) = ¢. It follows
that in the case of Uy, psir is in fact a projective representation of PSLy(Z).

Proof. By [FGST06a, Appendix D], the canonical central elements are expressed as e, = P,(C),
wE = 12Q,(C) where P, and Q, are polynomials, C' is the Casimir element (3.12) and 7% are
discrete Fourier transforms of (K7)o<j<ap—1. It is easy to check that S(C') = C and that S(7F) = 75,
thus S(e,) = e, and S(wy) = wF. Next, let ¢) € SLF(U,). Since -, is an isomorphism, we can write

Y =,(2) = p"(gS(2)?) with z € Z(U,). Then:

S(W) = S(u'(gz?)) = p" 0 S(22g™") = 1l (g7"27) = " (927) = 0.
We used that S(z) = z, Proposition 2.3.4 and the fact that U, is unibalanced. ]

We want to determine the action of 0;(7,) = psLr(v,') and 6, (7,) = pSLF(g;) on the GTA basis.
For this, we will need the expression (3.17) of v®! in the canonical basis of Z(U,), the formulas (3.27)

for the action (3.26) of Z(U,) on SLF(U,), the multiplication rules in the GTA basis (Theorem 3.4.1)
and the following lemma (in which we use the notation (4.14)).
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44. The case of H = U,(sly)

Lemma 4.4.5. Let z € L§Y(H) = Z(H) and let 1) € SLF(H). Then:
ZyB-1A DY = S(D_l(z)) 1.

Proof. The proof is analogous to those of the two similar results in section 4.2.3 and is thus left to
the reader. Note that this lemma is not specific to the case of Uj,. []

Theorem 4.4.6. Let 0y : SLy(Z) — PGL(U;) be the projective representation obtained in Theorem
4.8.7, with gauge algebra U, = U,(sly). The representations of the Dehn twists 1, and 7, on the GTA
basis are given by:

€ - € — — (D~ s' s' —
6 (Ta>(Xs) = ng(s)Xsa el(Ta)(GS’) = ,UX}F(S/)GS/ - UX}L(S/)Q < [ ] Xs [s ]Xp—s/)

and

01(7) (x5) = Ee(—e)" ' sq Y (Z(—l)s(—e)”e (@®+a7") (X +x0) + X + (—6)p<—1)sxp>

(=1

+ 56 (3271) Z ]+1

01(1)(Gy) = 5(—1)8/61‘(8'2‘1)@Z(—l)’“[]][ | <2G Apm]XT +q[§]Xp ]) )

5] 2

withe € {£},0<s<p, 1< <p—1landé'= %%(—1)”({(7’*3”2.
Proof. The formulas for 0,(7,) = pspr(vy') are easily deduced from Proposition 4.2.14, (3.17) and
(3.27). Computing the action of 6;(m) = psLr(vg') is more difficult. We will use the commutation

relations of v with the A, B-matrices, namely

T S A U A
vg A=vB "Avg, vz B = Bug (4.36)

to compute the action of vgl by induction. The multiplication rules of the GTA basis (Theorem
3.4.1) will be used several times. Let us denote

p—1
v > XS = Z Z)\e (€, 5) Zéj(e, s)Gj.
oce{£} (=1 j=1

X2 xt(2)
Taking the quantum trace of relation (4.36) provides vg' Wi = W,p-14v5" (recall (4.35)). On the
one hand, we obtain by (4.33), (3.13) and (3.27):

Xt(2) p p—1
vt Wi xS =vg > xS(—¢*C?) = E —e(q® + q )] (e, 5)x7 + E —e(¢® +q7%)d;(e, 5)G;.
=1 j=1
ce{+}

On the other hand, we use Lemma 4.4.5 together with (4.31) and the multiplication rules:

Xt (2)

WvalAU;DXs = Z Z)‘e (€,8)X5 X7 +Z5 (6,8)x3 G
oce{+} L=1
p—2
= > (M s) +20,7(e,9))xT + ) (A 1(€,8) + A7 (6, 8)) X7 + (A7_o(e, ) + 247 (€, 8)) x4
oe{+} =2
o j-1(68) | 0j41(€ 8) , Jp—2(€, )
+ 2716, 9)X5 G1+Z ( G + Gl )Gj—l— 3 Gpr.
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This gives recurrence equations between the coefficients which are easily solved:

vg' > xs = A, 5) (2_}—1)5(—6)1”‘Z (@ +a7) (& +xm0) +xp + (=P (=1)°x, )
=1

p—1 AT -
+ (5(6, S) Z(_E)j+1 [j][]S] Gj.
B
The coefficients (e, s) = A7 (€, s) and d(¢, s) = 61 (¢, ) are still unknown. In order to compute them
X*(2) X2
by induction, we use the relation v;' Wz = Wpvy', which is another consequence of (4.36) (and of
(4.35)). Before, note that

Xt(2) vl Vxe(s Uxye(s et l sl
W xs=(xa(x2)") = G e+ e = eI — RN
Vxe(s—1) Vxe(s+1)

with 1 < s < p—1 and the convention that X(jf = 0. It follows that

X+(2)
- € —s—1 - € —aS,, T €
U > Xor = —€q "2 Wb (UBl > Xs) —q v e XSy (4.37)

Due to (3.17), (3.27) and the multiplication rules, we have
x*(2) -1

W (vp' > x5) = (63 (v5' > x5)")" ”;‘;—f()” (A1 (e, 8) + G6,1(e,8)) X + “’E]@’ 5s(e, 8)Gy + . ..

where the dots (...) mean the remaining of the linear combination in the GTA basis. After replacing
by the values found previously and inserting in relation (4.37), this yields

Ae,s+1)x; +0(e, s +1)Gr+ ...
= (@ + a7 s) = ¢ Me s = 1) + (=€) H(=1)" g Vo (e, )X
+ (=g (g + q)d(e,s) — g 0(e, s — 1)) Gr+ ..
These are recurrence equations. It just remains to determine the first values A(e, 1), d(¢,1). Observe

that, since Uq is unibalanced:

—1

vp' e Xt = (o ()" = o) (BP0 ?) = ()T (KPT). (4.38)

In (3.29), the decomposition of p"(KP*1?) in the GTA is given (when y” is suitably normalized).
Thanks to this, we obtain

vp' B X = A DX +0(+ DG+ = E(=1)P N — G+
and
X(l) x—(1) vy vl
vp' BXT = va-yvp Wb Xi = vx-) Webvp' b xi = va-a) (X1 (v5' 2 x{)")
:—§Xp+§G1+..._>\(—,1)Xp+5(—,1)G1+....

The scalar ¢ does not depend on the choice of y" thanks to the factor p!(v)™! = pto S(v)~t = p"(v)
n (4.38). Using the formulas [FGST06a] for p" and v in the PBW basis to compute p"(v) gives the
value of £&. We are now in position to solve the recurrence equations. It is easy to check that the

solutions are
2

3(e,s) = Ee(—1)°g" " D[s],  A(e,s) = Ee(—e)Psg Y.
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44. The case of H = U,(sly)

We now proceed with the proof of the formula for G. Relation (4.36) implies v5'VE = Vivg' (see
(4.35)). By (3.17), (3.27) and the multiplication rules, we have on the one hand:

—1

v Ve xi =vp' e (GI(XD)")" = Islug' > Ge = q(p — s)vg' > xT + Gsvg' > x; s

whereas on the other hand:
11, 4 _ —1 A\ s N I ST
Veug b Xy = (G1(UB > Xy ) ) = pZéj(Jr,s) (Gj — =X +q—.xp_j) )

Equalizing both sides and inserting the previously found values, we obtain the desired formula. [

Remark 4.4.7. The guiding principle of the previous computations was that the mutiplication of two
symmetric linear forms in the GTA basis is easy when one of them is x5, x; or G; (see Theorem
3.4.1), and that all the formulas can be derived from v5' > x7 using only such products. A

Recall that the standard representation C* of SLy(Z) = MCG(X ) is defined by

(10 N
Ta 1 1) "7 \o 1)

Lemma 4.4.8. Let V' be a (projective) representation of SLo(Z) which admits a basis (xs,ys) such
that

TaTs = ), a(8)m, ToTs = D be(8) (w0 + )

TaYs = D0 ae(8)(Ye — ), ToYs = D, be(8)ye.
Then there exists a (projective) representation W of SLo(Z) such that V= C2@ W. More precisely,
W admits a basis (ws) such that

TaWs = Y, a0(8)we, Tovs =, be(8)wy.

Proof. 1t is easy to check that the formulas for 7, w, and 7, ws indeed define a SLy(Z)-representation
on W. Let (e, es) be the canonical basis of C2. Then

€1®ws'_>y57 €2 @ Ws = Tg
is an isomorphism which intertwines the SLy(Z)-action. O

Theorem 4.4.9. The (p + 1)-dimensional subspace P = vect(x] + x,_s, Xp X;) is stable

1<s<p—1
under the SLy(Z)-action of Theorem 4.4.6. Moreover, there exists a (p — 1)-dimensional projective

representation W of SLy(Z) such that

SLF(U,) =P ® (C°@W).

Proof. By Corollary 3.4.2, P is an ideal of SLF(U,). It is easy to see that P is moreover stable under

the action (3.27) of Z(U,). Thus we deduce without any computation that P is SLy(Z)-stable. Next,
in view of the formulas in Theorem 4.4.6, it is natural to define

= Ap — S + —_ Ai - = G —
'IS q [S] Xs Q[S] Xp—s? ys S ':ES'

Then:
02(72) (1) = vk . () = €10 S s + )
01 (Ta)(yS) = U)_&l%(s) (ys - xs)a 91 (Tb) (ys) = 6(_1)561—(52—1)[;_]] ' (_1)j+1[j] []S]y]
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Chapter 4. Lo1(H), L10(H) and representation of the modular group SLy(Z)

The result follows from Lemma 4.4.8. O

We precise that, explicitly, the projective representation W has a basis (ws)1<s<p—1 such that

-1

— s, —(s°— p j 0 4
Taws = vk ywe,  Tw, = E(=1)"¢ 1)?] (=17 [j]ls]w;. (4.39)
1

”8

<.
Il

The structure of the Lyubashenko-Majid representation on Z(U,), which by Theorem 4.3.10 is equiv-
alent to the one constructed here, was described in [FGST06a] in relation to logarithmic conformal
field theory. Theorem 4.4.9 is in perfect agreement with their result.

Remark 4.4.10. The subspace P appearing in Theorem 4.4.9 is spanned as a vector space by the

characters of the projective Uj,-modules. Indeed, since the characters split on extensions, we have

XPTE) =xP ) =2(xF +x,_,) for 1 < s < p—1 and the simple projective modules X*(p) = P*(p)
: +

give x;, -

4.4.4 A conjecture about the representation of LIj(U,) on SLF(U,)

Another natural (but harder) question is to determine the structure of SLF(U,) under the action of
% (Uy)°. As mentioned in the proof of Theorem 4.4.9, the subspace P = vect (X 4 X, s X&) I<spt
is quite “stable”. We propose the following conjecture. o

Conjecture 4.4.11. P is a L (U,)-submodule of SLF(U,).

In order to prove this conjecture one needs to find a basis or a generating set of E‘nV(Uq), and
then to show that P is stable under the action of the basis elements (or of the generating elements).
Both tasks are difficult.

Recall that since P is an ideal of SLF(U,) which is stable under the action (3.27) of Z(U,),
it follows from the formulas of Proposition 4.2.14 and Lemma 4.4.5 that P is stable under the
representations of 24, 25 and zp-1, for all z € Z(U,) = C‘nV(Uq). Also recall the wide family of
invariants given in (4.13); we can try to test the conjecture with them. A long computation (which
is not specific to U,) shows that

0] I 1J g 1J I®K oK
t1"12( G12P12A1(R') |, BaR12 > X" =wvstria| Tis vig 1=‘3IJ,K(CI)>13

: J . .
where X is the character of K, v = vid (note that we may assume that I, .J, K are simple modules)
and

JK JK
S[JJ((q)) = trg <g2 R23(D12(R) 3) .

Proving that P is stable under the action of these invariants amounts to show symmetry properties
between srjx+(s) and srjx-(p—s) for all simple (_Jq—modules I,J. We have checked that it is true if
¢ = idsg, (in this case s;jk(idrigs) = ssxidigr, where s,k is the usual S-matrix) for all simple
modules I, J, and also that it holds for I = J = A" (2) with every ®.

Proposition 4.4.12. 1) SLF(U,) is indecomposable as a LY (U,)-module.
2) Assume that Conjecture 4.4.11 holds. Then the L (U,)-modules P and SLF(U,) /P are simple.
It follows that SLF(U,) has length 2 as a LT(U,)-module.

A weakened version of this problem will be solved in section 6.5.1, where we determine the structure of SLF(U,)
X*t(2) xt(2) o Xt (2) X" (2)

under the action of the subalgebra C( Wa , Wp ) C L"§(U,); this subalgebra generated by Wi and Wp is the
image of the skein algebra of the torus S;(X;) by the Wilson loop map W, which will be defined in Chapter 6.
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44. The case of H = U,(sly)

Proof. These are basically consequences of (3.27) and of the multiplication rules in the GTA basis
(Theorem 3.4.1). To avoid particular cases, let x5 =0, X;.1 = X1 X2 = X5 and ey = e,1 = 0.

1) Observe that SLF(U,) is generated by xi" = ¢ as a LI§(U,)-module: this is a general fact which
follows immediately from Lemma 4.4.5. Explicitly:

Xe(s)

Wog-1abXT = Xoxi = X5 Vipabxi = Goxi =G,
Write SLF(U,) = Uy @ Us. At least one of the two subspaces Uy, Uy necessarily contains an element
of the form u = Gy + 37, NG+, 15x;; assume that it is U;. Then (wi)abu=x; € Uy thanks
to (3.27). It follows that U; = SLF(U,) and Uy = {0}, as desired.
2) Let 0 # U C P be a submodule, and let v = ;’:0 )\j(X;r +Xx,_;) € U with A, # 0 for some s.
Then using Proposition 4.2.14 and (3.27), we get (e;)a>v = A\(XF +x,_,), and thus x7 +x, , € U.

X+(2)

Apply W,p-14 (we use Lemma 4.4.5 and Proposition 4.4.4):

Xt (2)
Wop-14> (X3 +X-s) = X3 (XF +X-0) = (X1 + Xper1) + (X + Xpe1)-

Hence:

Xt (2)

(es—1)a Wop—1a> (X7 + X;s) =Xiq+ Xp—s+1
xt(2)

(€s+1)a Wyp-14D (Xs+ + X;—s) = X;—l + Xp—s—1-

It follows that x ; + Xp—s+1s Xs++1 + Xp—s—1 € U. Continuing like this, one gets step by step that all
the basis vectors belong to U, hence U = P.
Next, let G, and X be the classes of G and x[ modulo P (with X5 = X = 0). Let 0 # U C

SLF(U,)/P be a submodule and w = ?;i v;Gj + o;X; € U be non-zero. If all the v; are 0,

then there exists o, # 0 and (e5)a > w = o,x; € U. If one of the v;, say vg, is non-zero, then
(wH)a>w=v, xS € U. In both cases we get YI € U. Now we proceed as previously:

X+(2) xt(2)
(esfl)A WvB—lA > Y: = X:—lu <€s+1)A W’L}B_IA > Y: = ijrl'

Thus we get step by step that X; € U for all j. Apply V,';_,, and use Corollary 3.4.2:

Vigia> X, =Gix] +P =[G, +P.

v

It follows that G; € U for all j, and thus U = SLF(U,)/P as desired. ]

Remark 4.4.13. As suggested to me by A. Gainutdinov, we can extend Conjecture 4.4.11 to any finite
dimensional, factorizable, ribbon Hopf algebra H. Let Py = vect (XP ) PeProj(i) SLF(H), where

Proj(H) C mod;(H) is the subcategory (in fact, the ideal) of finite dimensional projective H-modules
P

and x” = tr(T') is the character of P (we can restrict P to be some PIM).

Generalized Conjecture 4.4.11. Py is a L (H)-submodule of SLF(H).

Note that it is known that Py is stable under the Lyubashenko-Majid SLsy(Z)-action ([CWO08], also
see [GR17b]). Hence, by Theorem 4.3.10, Py is stable under the action of v;' and vg'.
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Chapter 5

L, n(H) and projective representations of
mapping class groups

Let 3, be the compact oriented surface of genus g with n open disks removed. Let D C ¥,,, be
an open disk, then we define 3¢ | =3, \ D. Of course, 25 n = Zgn+1, but the boundary circle ¢,
induced by the deletion of D plays a particular role since we put a basepoint on it, see Figure 5.1.
In this chapter, we consider the algebra L, ,(H) associated to Xf  (as everywhere in this thesis, H
denotes a finite dimensional, factorizable, ribbon Hopf algebra).

Figure 5.2 is the picture that one should always keep in mind!. In this picture, we see Yo, asa
thickening (i.e. tubular neighborhood) of the embedded oriented graph

I_‘g,n = ({.}a {bla Ay, ... 7bg7 Qg, Mg41,--- amg—i-n})

where the loops b;, a;, m; generating the free group m (¥ ) are represented in Figure 5.1. Note that
with these generators, the loop ¢4, induced by the deletion of the disc D is expressed as

R R P 1,1
Con = bray by ay...bya, b agmgyy .. Mgy (5.1)

Figure 5.1: Surface ¥ , with basepoint (e) and generators for m (37 ,,).

To each generating loop, or equivalently to each handle, is associated a family of matrices, in-
dexed by the H-modules and whose coefficients are generators of the algebra L, ,,(H). The defining
relations are given in (5.6), following [AGS95, BR95, AGS96] (modulo the same remarks that in the
introduction of Chapter 4). We define £, ,,(H) as a braided tensor product, as in [AS96b]. This has
the advantage to show immediately that £,, (H) is a H-module-algebra and to emphasize the role
of the two building blocks of the theory, namely £y ;(H) and £ (H).

The main results of this chapter are

e The construction of a representation Inv(V') of the algebra of invariant elements £y (H) for any

I
representation V' of £, ,(H) (Theorem 5.2.6). Note that the matrices C|,,, (which correspond

!Compared to the Figure 1 of [Fail8¢c|, we have done a 180°-rotation around the horizontal axis of R3, in order to
have the handles at the bottom of the Figure. The reason of this change comes from the definition of the graphical
calculus and the Wilson loop map in Chapter 6.
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Chapter 5. L, ,(H) and projective representations of mapping class groups

L
[bl] [al] [bg] [%] [mgﬂ] [mg+n]
B AQ) Blg) Alg) Mg+ 1) Mg +n)

Figure 5.2: 3 | represented as a thickened graph and matrices of generators of Ly, (H).

to the loop ¢4, see (4.1)) used for the proof of that theorem already appeared in [Ale94] (with
H = U,(g)), but here we need to generalize and adapt the construction of the representation
to our assumptions on H.

e The construction of a projective representation of the mapping class group of ¥, = ¥, on
Inv((H*)®?) (Theorem 5.3.19). This implements and generalizes to a non-semisimple setting
an idea of Alekseev—Schomerus [AS96a, Section 9].

e The explicit formulas for the representation of the Dehn twists about the circles depicted in
Figure 5.7 (Theorem 5.3.22).

e The equivalence of the representation of Theorem 5.3.19 with the one constructed by Lyubashenko
using categorical techniques in [Lyu95b, Lyu96] (Theorem 5.4.4).

Most of the material presented in this chapter is the content of [Fail8c|. Here we added section
5.1.3 to explain how L, (H) is related to the work of [BFK98a, BFK98b]. We also added section
5.3.2 in which we define the normalization of a simple closed curve and this allows us to define the
lift of any simple loop in section 5.3.3 (the difference with [Fail8c] is explained in Remark 5.3.13).

5.1 Definition and properties of £, ,(H)

5.1.1 Braided tensor product and definition of £, ,,(H)

Let mod,(H) be the category of finite dimensional right H-modules (or, equivalently, of finite di-
mensional left O(H)-comodules). The braiding in mod,.(H) is given by:

Cr,j: [®J — J®I
VRW — w-a;QU-b;

with R = a; ® b;. Let (A,ma,14) and (B, mp, 15) be two algebras in mod, (H) (that is, H-module-
algebras), and define:

Myzp = (Ma®@mp)o(ida®cpa®idp) : (A®B)®(A®B) - A® B,
lysp=1a®1p : C— A® B,
This endows A® B with a structure of algebra in mod, (H), denoted A ® B and called braided tensor
product of A and B (see [Maj95, Lemma 9.2.12]). Note that ® is associative.
There are two canonical algebra embeddings j4,jp : A, B — A® B respectively defined by

ja(z) =z ®1p, jp(y) = la®y. We identify z € A (resp. y € B) with ja(z) € A® B (resp. j5(y)).
Under these identifications, the multiplication rule in A ® B is entirely given by:

Vee AVye B, yr=(z-a;)(y - b). (5.2)
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5.1. Definition and properties of L, ,(H)

Since Ly 1(H) and £, ¢(H) are algebras in mod,. (H ), we can apply the braided tensor product to
them.

Definition 5.1.1. £,,,(H) is the H-module-algebra Ly o(H)® @ Lo, (H)®".

It is essential to keep in mind that the H-module-algebra L, ,(H) is associated with the surface
30, = Ygn \ D; in order to make this precise we now define the matrices introduced in Figure 5.2.
There are canonical algebra embeddings j; : L1 0(H) — L,,(H) for 1 <i < gand j; : Lo1(H) —
Lyn(H) for g+1 <i < g+n, given by j;(x) = 197! @ 2 ® 199t"~*, Define

I I I I I
A(i) = j4i(A), B(i)=y4i(B) for 1 <i<g and M(@i)=j(M) forg+1<i<g+n.

The right action of H on L, (H) (or equivalently the left coaction © of O(H)) is of course

1

I I I I I
U(i)-h=HU(@E)S(")  (or equivalently Q(U(i)) = TU(i)S(T) ) (5.3)
where U is B, A or M. By (4.3) and (4.11), if f : I — J is a morphism of H-modules it holds

J . I . J . I . J . I .
B(i)f = fB(i), A(G)f=fA@G), M@G)f=[fM3) (5.4)
for all 4, j, where we identify f with its matrix. We call this relation the naturality of the (families
I I I
of) matrices B(i), A(i), M (7).

Relation (5.2) indicates that £, ,,(H) is an exchange algebra. Let us write the exchange relations
in a matrix form. Let U,V be B or A or M. Then, by definition of the right action and by (5.2):

J 1 1 I I J J J I IJ 1 1J J 1J J
V(5)2U (1)1 = (aj)1U ()15 (ag); (b,)2V (7)25(b5)y = (@)1 R12U (i)1 Ri3 V (§)2 R12S (by), (5.5)

where for the second equality we applied properties of the R-matrix and obvious commutation rela-
tions in End¢ (/) ® Ende(J) ® L,,(H). Using that a,,a; ® S(b)b, = 1 ® 1 together with obvious
commutation relations, we obtain the desired exchange relation:

IJ I ) IJ_lJ ] J ) IJ I ) IJ—l
RpU(i)1 RV (5)2 = V(j)2Ri12U ()1 R -

To sum up, the presentation of £, ,(H) by generators and relations is:

I1®J I 1J J 1J

U(i)12 = U@)l (R/)u U(i)Q (R/)fgl for1<i<g+n

1J I 1J J J 1J 1 1J

RiuU®i) R V(i) =V(j)a R U(iy Ry for1<i<j<g+n (5.6)

1J I‘ IJ/ J‘ J.IJ I.IJ_1 )
R12 B(Z)l (R )12 A(Z)Q = A(Z)Q ng B(Z)1 R12 for 1 S 7 S qg

where U(i) (resp. V(7)) is A(i) or B(i) if 1 < i < g and is M(i) if g+ 1 < i < g+ n. These
are relations between matrices in L, (H) ® Matgim(r)(C) ® Matgim(s)(C) (for all finite dimensional
I,J) which imply relations among elements of L,, (H) (the coefficients of these matrices). Such
a presentation was first introduced in [Ale94] and [AGS95]. Recall that the first line of relations
is the Lo (H )-fusion relation on each loop, the second line is the exchange relation of the braided
tensor product and the third line is the £ o(H)-exchange-relation. These are the same relations as
in [BNRO02], except that A(i) and B(i) are switched for all 1 < i < g; the ones of [AGS96, Def 12]
and [AS96a, eqs (3.11)—(3.21)] are different, due to a different choice of the action of H on £, o(H),
but yield the same algebra when H is semisimple. Thanks to these relations, we see that a generic
element in £, ,(H) is a linear combination of elements of the form

Ipgin

g +

j2g+n .

I I Iag—1 . Iag4a

i i g 12 —1I2g 12 12941
B AM)2 ... Blg)2 A(g)> Mg+ 1)+ ..

Jog—1 Jog J2g+1
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Chapter 5. L, ,(H) and projective representations of mapping class groups

Note that the content of Remark 4.1.2 also applies to £, ,(H): in practice, we can assume that the
representations labelling the matrices belong to a set G of well-chosen H-modules. For instance, if

H = U,(sly), we take G = {XT(2)}.

I I I
Notation. Let N = {}mN?l ... N € Matgim(r)(Lgn(H)), where m,n; € Z and each N; is one
of the A(j), B(j), M (k) for some j or k. By definition of the right action on £, ,(H), we have a
morphism of H-modules

jN: £071(H) — ﬁm(H)
I . (5.7)
M — N
Let © € Ly1(H), then we denote
Since we identify Lo, (H) with H we also use this notation when x € H. Note that if z € L§ (H) =

Z(H), then zy € L (H). The following lemma is an obvious fact.

I0J I oy I
Lemma 5.1.2. If N satisfies the fusion relation of Lo1(H), Niz = N(i); (R');, N(i)2 (R)1s, then

Jn s a morphism of H-module-algebras: (xy)y = Tnyn.

See e.g. (5.13) for an application of this lemma.

5.1.2 The Alekseev isomorphism

Consider the tensor product algebra £ 0(H)®9 ® Lo 1(H)®". We have canonical algebra embeddings
jz . £170(H) — £170(H)®g X £071(H)®n for 1 S 1 S g and jl . EoJ(H) — £170(H)®g X 5071(H)®n

I I I
for g+ 1 < i < g+ n, defined by j;(z) = 197! @ 2 ® 1%97"~", Define A(i) = j;(A), B(i) = j:(B)

I I
for 1 <i < gand M(i) = j;(M) for g+ 1 < i < g+ n. We underline these matrices to avoid
confusion with prior matrices having coefficients in £, ,(H). By definition, the exchange relation
between copies in L1o(H)® @ Lo (H)®" is simply

where i £ j, U(i),V (i) is A(i) or B(i) if 1 <i<gandis M(i)if g+1<i<g+n.

T I
The next result is due to Alekseev (see [Ale94]). Consider the matrices M) = W1 (L7)) and

I ro L

C) = U §(LELO)) (recall (2.8) and (2.33)). Let

I I I I
Ay = gimay, M= cH1).. -Q(_)(
I
r

1) for2<i<g+1,
1 I I I I
i =N M (g+1)... MI(i—1) forg+2<i<g+n.

(5.9)

be matrices with coefficients in £ 0(H)®9 @ Lo1(H)®" (with I, the identity matrix of size s).

Proposition 5.1.3. The map

Qg : Lgm(H):5170(H)®9<§>£0,1(}€)®” — 5173(H>®g®501< yen
Ai) = MNAGA?T for1<i<yg
Bli) — MNB@HA? fori<i<g
Z\I/[(z') — fﬁ(z)l“ Vforg+1<i<g+n

18 an isomorphism of algebras, which we call the Alekseev isomorphism.
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Proof. In order to show that it is a morphism of algebras, one must check using various exchange
relations that the defining relations (5.6) of £, ,(H) are preserved under «, ,. This is a straightfor-
ward but tedious task and we will not give the details. Let us prove that ay, is bijective. We
first show that o, is surjective for all g by induction. For g = 1, a; is the identity. For
I I I I
g > 2, we embed L, 10(H) in L,0(H) in an obvious way by A(i) — A(i) and B(i) — B(¢) for
1 < i < g—1. Then the restriction of ayo to L,_10(H) is ay_10, and by induction we assume
I ) )
that oy_10(Ly10(H)) = L1o(H)®. Since A; € Matgimn)(L1,0(H)® ™t @ C¥9H171) | there exists
I I I 11T I
matrices N; (1 <4 < g) such that a,o(N;) = A;. Then ayo(N;'UG)N;) = U(i), with U = A or B
and oy is surjective. Similarly, for g fixed and n > 1, we can embed L,,_(H) into L, ,(H) and
reproduce the same reasoning. Hence «y,, is surjective for all g,n. Since the domain and the range
of ag,, have the same dimension, it is an isomorphism. O

We generalize the isomorphisms W ; and W, o by
Voo = (VT @UFT) 0y © Lyn(H) = H(O(H))® @ H". (5.10)
In particular £,o(H) is a matrix algebra, since H(O(H)) is.

Thanks to Uy, the representation theory of £, ,,(H) is entirely determined by the representation
theory of H. Indeed, the only indecomposable (and simple) representation of H(O(H)) = End¢(H™)
is H*, thus it follows that the indecomposable representations of L, (H) are of the form

(HYoL®.. oI,

where [4,. .., I, are indecomposable representations of H. We will denote the action of £,, (H) on
(H)®*® @ ®...® I, by >, namely:

TP (P1® .. 0P, QU1 ®...Q0U,) =Y, (2) (L1 Q.. P, Q1 Q... R vy) (5.11)

for v € L, ,(H), where - is the action component-by-component of ¥, (z) on (H*)® L ®...® I,.

5.1.3 L,,(H) as an algebra of functions and LGFT

In this section, we discuss the fact that £, ,,(H) is the algebra of gauge fields of a lattice gauge field
theory (LGFT) as defined in [BFK98a, BFK98b]; this is independent of the rest of the text and will
not be used elsewhere.

First, we describe L, ,,(H) as an algebra of functions. Let E,,, = {b1, a1,...,by,ag, Mgi1, ..., Mgin}?
and let 7, ,(H) be the vector space @,  H., where H} is a copy of H" labelled by e. For e € E,
and ¢ € H*, define an element ¢, € F,,,(H) by

Pe (® xa) = ¢(Te) H e(%a).

aclE a€Ey n\{e}
Consider the linear map f : L, ,(H) = F,,(H) defined by

[2g+n 12g+n.

. I .
M(g+n)2ot »—>71’;.11 ®..0 T 2o

J2g+n J2g+n"

I Is Iog—1 . Iz . I2g41

BOJZAQ - Bla)a Al Mg+ D3

J1 J2 J2g J2g+1

Thanks to the Alekseev isomorphism, dim(L, ,,(H)) = dim(F,,(H)), and thus f is an isomorphism
of vector spaces. We define a structure of right H-module-algebra (with product denoted by *) on
Fyn(H) by requiring f to be an isomorphism of right H-module-algebras.

*We endow Ey,, with the total order by < a1 < ... <by < ag < mgi1 < ... < Mgin.
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Chapter 5. L, ,(H) and projective representations of mapping class groups

Proposition 5.1.4. The right H-module-algebra F, ,(H) is generated by the elements @., with ¢ €
H* and e € E,,,. These elements satisfy

1 e h=o(W2S(H")), (with h € H),

2. (@1)oy * (P2)ar * - - * (P2g-1)b, * (P2g)ay * (P2g41)mgsr * - - * (L2040 )mysns = P1 O .. ® P2gin,
8. Puy * Yy, = zp(sisj?S(sk)sl)ua * go(tjt/k?t“S’(Q))vﬁ where u,v are a orb or m and o < f3,

4. Pa, * Uy, = w(S@'Sj?tkSZ)bi * @(tjsk?tlS(ti))ai foralll1 <i<y,

5. Yo ¥ e = [go(?th(ti))w(si?sj)L foralle € E,,,

where exceptionally we denote R = s; @ t; to avoid confusion between the usual notation R = a; ® b;
and the loops a; and b;. These formulas allow one to compute the product of any two elements in
Fyn(H).

C
Proof. Since U(i) =1 for any U = A, B,M and 1 < i < 2g + n, we have

I I I I I I
FB)) = (T, FAGOR) = (Th)a  F(M(i)) = (T)m,-
This implies the first claim and the first and second equalities (recall that any ¢ € H* is a linear

I,
combination of matrix coefficients T%). For the third equality, (5.5) gives

J I ac

(B3, (050, = 1 (VU0

;o1 I Lo o J e
= fl (8:)2Ra1U(a)2 Ry V(B)1 Ra1 S(t:),
bd bd

I I 1 I I ¢ JJJ J J a I J
= f (SiSjU(Oé)S(Sk)Sl) f <tjth(ﬁ)tlS<tl>> = Tz(SiSj?S(Sk)Sl)ua * Tg(tjtk?tlS(ti))Uﬁ
d b

as desired. The fourth and firth equalities are (4.8) and (4.18). O

Now, let I' = (V, E) be a filling graph of ¥, ,, (an embedded oriented graph such that £,, \I"is a
union of open discs). Recall (see [BFK98a, BFK98b] for the precise definitions) that a lattice gauge
field theory on I' consists of

- a space of (discrete) connections Ar = @), He,

- a space of gauge fields C[Ar] = &) ., H! (functions on Ar),

ecE “Te
- a gauge algebra Gr = Q) oy, H,.

In [BFK98a, BFK98b], an action of Gr on Ar as well as a H-equivariant comultiplication
V : Ar — A2? are defined. Dualizing this, we get a structure of (right) H-module-algebra (with
product denoted by *) on C[Ar]:

VheH, Vo, €ClAr], ¢ -h=ph?), oxp=(p@¢)oV.
Here we take the most natural graph
Lyn=V={e}, E;p, ={b1,a1,...,bg,ag, Mgs1,....,Mgin}),
(see Figure 5.3) and we denote Ar, , = Ay, Gr,, = H. With this choice, a discrete connection is
hy, @ hay @ ... @ hy, @ hay @ hanypy @ .o @ By, € Agin

We will consider the examples of X1 and X o, write down the H-action and the product in C[A4, ]
and observe that it is isomorphic to F,,(H) (and hence to L£,,(H)). We use the rules given in
[BFK98a] without explanation.

For X1, we have the graph at the left below (with ciliation and cyclic order, see [BFK98a| and
the references therein):
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\ 4
,\[bi ai] b la] [mgi) [mysa]

Figure 5.3: Surface 37 | viewed as a thickening of Iy ,, canonical loops and a discrete connection.

) )
v = /\ hev = /\\
xout rin R/ zon i S(h")

A connection is an assignment of an element of H to each edge (the holonomy of that edge), so here
a connection is simply z,,. To compute the action of H on z,,, we determine the action on the vertex
v as represented above. Then, gluing 2% ~ =i we get h - z,, = W'z, S(h"). Hence the right action
on p € C[Ap1] is p-h = @(R'?S(h")). To compute V, we consider the operator F, : H®? — H®*
associated to the vertex v:

a

Evaluating the tangle? yields F, (z0'" @ zi) = (299) ® (22)'b;S(b;) @ a;j(z5*)" @ (212)”a;. Then,

gluing 29" ~ 2z we get V(z,,) = 21,0;5(b;) @ a;z!, a; and thus

o x = o(70;S(b;)) Y(a;?a;) .

We see that C[Ag ;] = Fo1(H) (see Remark 4.1.9).
For X, we have the graph at the left below:

¥ _ _
TN e W™ N 7 S(htY)

xout x;)n h// Igut (E;)n S ( h///)

r ion is xp ® x, . uing 9" ~ 7 0% ~ i in 1 vertex
Here a connection is z, ® ¥, € H*2. Gluing zj"* i and 29" ™ in the action on the vertex,

we get that the left action of H on A is h- (1, ® 14) = WapS(h") @ h"2,S(h™). Hence the right
action of H on ¢ ® ¢ € C[A; ] is

(e @) -h =R ?S(h")) @ (k7S (hV))

To compute V, we consider the operator F, : H®* — H®® associated to the vertex v:

3We point out a misprint in [BFK98a, Fig. 11]: the second and third crossings are inverted.
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Chapter 5. L, ,(H) and projective representations of mapping class groups

Evaluating the tangle yields
Fy(ap™ @ 20" @ o) @ 7)) = (23™) @ be(2™) @ (23") biS(00) S (bn) @ (2) 001 S (bo) S (D)
® apanar(re™)” @ a,a;(z2")" @ (2)" a0, @ ()" a;.
Then, gluing 2" ~ z* and 22" ~ 2", we get
V(xp ® x4) = 2biS(b)S(by) @ bpalbibyS(b,)S(by) ® apanarry @ity @ auaxha;
and thus

(01 @) * (P2 @) = @r(P0:S(0r) S (bn)) pa(apanar?aiam) @ Pr(b?0;bm S (06) S (by)) Y2(aoai?ay)

Recall that we defined ¢, = ¢ ® € and ¢, = ¢ ® . We have
b * Yo = @(75(b:) @ ¥(a;?) = o(?75(bi)), * ¥(ai?),

and this suggests to consider

n: C[AL()] — .Flo(H)
Y = o(h) @ Y(a;?)
A straightforward computation using (2.5) and (2.7) shows that 7 is indeed an isomorphism of H-
modules-algebras (see Remark 4.2.9). The H-module-algebras C[A,,] and F,,(H) are isomorphic

for any g,n. The example of 3 ; is generalized as follows: for each crossing in the graph T'y ,, use an
R-matrix as above to define the isomorphism.

5.2 Representation of L) (H)

An element = € L,,(H) is called invariant if x - h = e(h)z for all h € H, or equivalently, if
Q(z) = e®z. Such elements are also called “observables”. In this section we construct representations
of the subalgebra of invariant elements L (H).

Recall from section 4.2.3 that the matrices

T O SR S S L
C=v'BA'BTA, CH =T (LHLE) € Matgunr) (L1,0(H))

I I 1
satisfy the decomposition C' = CH)C()~1 and allow for a simple characterization of the invariant
I
elements. We generalize this to any g,n. For i < g, let C () be the embeddmg of C’ previously
I I
defined on the i-th copy of £y o(H) in L, ,(H): C(i) = U2B( )A (i)B_l(z’)A(i).

I I I I
Definition 5.2.1. Cy,, = C(1)...C(9)M(g+1)...M(g +n) € Matgim)(Lyn(H)).
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I I I
In particular Cq o = C. Geometrically (see (5.1) and Figure 5.2), for each I the matrix Cy,, corre-

sponds to the boundary circle induced by the removal of the disk D in ¥, ,,.

There is a decomposition analogous to Lemma 4.2.10. Indeed, let

M) ot () ¢ A ! )
Cg,n = ag,n C ( ) C ( ) (g + 1) M (g + n) € Matdim(])([,g’n(H)) )

~
N

L I
where C Itl)(L(i)L )) and ]\4(jE \I/01(L(i)) (recall (2.8) and (2.33)).

Proposition 5.2.2. The following equality holds in Ly, (H):
Cym = O CEI1,

I
Moreover, the matrices Cy,, satisfy the fusion relation of Lo1(H):

1®J 1 1J J

1J
( Cg,n)12 = (Og,n>1 (R/)m (Cg,n)Z (R/_1)12

Proof. The first claim is a simple consequence of the definition of ¢, and of Lemma 4.2.10. The
fusion relation is a consequence of a more general fact which is easy to show, namely: if 1; < ... <1

I I

and if X'(i1),..., X*(i;) are matrices satisfying the fusion relation of Lo (H), then their product
I I

X1(iy) ... X*(iy) also satisfies the fusion relation of Lo (H). O

The image of these matrices have simple expressions in H(O(H))®9 @ H®™:

Lemma 5.2.3. It holds

I
\Ifgm(C(H) _ aIZ- b£2g71+n)b§29+n) Q... .® b§1+n)b£2+n) ® bz('n) Q... .® 62(1)

g7n

I I
U, (CON = 571(0) a® ™™ @ @™ 2 al” ... @a"

g,n %
I I
\Ijg,n(cg;n) =X, }/;(29—1-*'")}/;(29'*‘") ®..® Y;'(l‘*‘”)y;@"'") ® Y;(") ®...® Y;(l)

where X; ® Y; = RR' and the superscripts mean iterated coproduct.

Proof. As an immediate consequence of quasitriangularity, we have for all n > 2

with implicit summation on iy,...,,. It follows that

I I I I I I I
W, (CS)) = L) LO(1)... L (9) L ()L (g + 1) ... L) (g + n)

I I —
= Qjy - - - Qiggy, bini1 ®...Q b'Lngngfl ® bi2g+1 ®...® bi2g+n

= q; BT @ @ pIFIE @ M g @ bV

as desired. The second is shown similarly since R'~! is also an universal R-matrix. The third is an
immediate consequence. O
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Chapter 5. L, ,(H) and projective representations of mapping class groups

Lemma 5.2.3 indicates that the algebra generated by the coefficients C' i)’ equals the vector space

generated by the coefficients C’j-:

I ] I
C<C(i)§>l,z}j = vect(Ch) 1, (5.12)

I
The matrices C,, satisfying the fusion relation of Ly;(H), we can apply Lemma 5.1.2 and define
a representation of H on V = (H*)® @ [ ® ... ® I, by

h-v=hg,,>v. (5.13)
Recall that

JCgm

oy
H — Loa(H) Lyn(H)
I

()I(Z)Y; —_ ]\14 — C'g,n

I
Since H is factorizable, each h € H is a linear combination of coefficients of the matrices L(+) L(-)=1 =

I I
(X;)Y; and thus he, , = je,,, © ¥o1(h) is a linear combination of coefficients of the matrices Cly . It
follows from Lemma 5.2.3 that the action (5.13) is explicitly given by

h-p1 ®@...0 o QUi ® ... AU,

=1 (S—l(h(2g—1+n))?h(2g+n)) Q... S09(5—1(h(1+n))r_7h(2+n)) ® Wy @ ... KOy, (5.14)

I

As in the case of £y ¢(H), the matrices C,, allow one to give a simple characterization of the

invariant elements of L, ,(H) and to construct representations of them. We begin with a technical
lemma.

Lemma 5.2.4. It holds
J IJ

I J I IJ, .\ '
(CENU(i)2 (CENTT = RS U(0)s R

where U 1s A, B or M.

Proof. The case (g,n) = (1,0) is Lemma 4.2.11. The case (g,n) = (0, 1) is easy with (2.9). Similarly,
thanks to (2.9), (2.29) and (2.34), we obtain

1J 1 J J 1J

1J 1
RO CE HE) 2 A0 G® R R @) o) fro) ) pe)

Using these preliminary facts, we can carry out the general computation. For instance, for i < g

R
I J IJ
CHE )OO, RE?

The case 7 > g is treated in a similar way. O
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5.3.  Projective representation of the mapping class group

For (V,>) a representation of L, ,,(H), let
I
Inv(V) = {v eV ‘V[, Cynduv= ]Idim(l)v} ={veV |VYheH, h-v=¢e(hv} (5.15)

where [}, is the identity matrix of size k, and the action - of H on V is defined in (5.13) and (5.14).
This subspace Inv(V') implements the flatness constraint (1.8) discussed in the Introduction.

Remark 5.2.5. For (g,n) = (1,0), Inv(H*) = SLF(H) thanks to Lemma 4.2.12. A

Theorem 5.2.6. 1) An element v € L,,(H) is invariant under the action of H (or equivalently

I I
under the coaction Q0 of O(H)) if, and only if, for every H-module I, C,,x = xC,,.
2) Let V' be a representation of Ly, (H). Then Inv(V) is stable under the action of invariant elements

and thus provides a representation of Ly (H).

Proof. 1) Letting U be A(i), B(i) or M(j), R® = a{® @ b and using Lemma 5.2.4, we have that
the right action - of H on £ o(H) satisfies:

Joo Loy, J + Ii Ji J i Ii
Us- L™ = Uy - ST 0 (0, = 871 (05,0 (0 (0 ),
J J I IJ J 1J I J I
= SO, UL(08), (Pl = R T UL R = (C8)), Us (CE)Y),

or in other words

I I I
o€ L), @570 = bl b

I
Since H is factorizable, the elements S‘l(L(i))g generate H as an algebra. Hence the previous

equation shows that x is an invariant element if, and only if, it commutes with the cofficients of

I I .
the matrices C(g,in). As remarked in (5.12), the algebra generated by the coefficients (C(gin)); equals

I .
the algebra generated by the coefficients (Cgﬁn);. Hence, an element is invariant if, and only if, it

1
commutes with the coefficients of the matrices C,.
2) Let z € L (H) and v € Inv(v), then

I I I I
Cond(xpv) = (Cypx)>v=(2C,,)>pv=0a>(Cy,>v)= ]Idim(l)(x > )

and thus z > ¢ € Inv(V') by definition. O

5.3 Projective representation of the mapping class group

Recall that the mapping class group MCG(X,,,) is the group of all isotopy classes of orientation-
preserving homeomorphisms which fix the boundary pointwise.

For simplicity we will mainly consider the case of ¥, (n = 0)*. The particular features in this
case are that the presentation of the mapping class group is easier and that the associated algebra
L,0(H) = H(O(H))* is isomorphic to a matrix algebra. We discuss the extension of the construction
to the case of n > 0 in subsection 5.3.5.

4except in section 5.3.2 and at the beggining of section 5.3.3 were we deal with the general case (n > 0).
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Chapter 5. L, ,(H) and projective representations of mapping class groups

5.3.1 Mapping class group of >,

We begin with some terminology. A curve on X7 is called simple if it does not contain self-crossings
(up to free homotopy). A simple closed curve (not necessarily oriented) on a surface up to free
homotopy is simply called a circle. Elements of 71(33) (oriented based curves up to homotopy) are
called loops. We say that a loop is simple if it does not contain self-crossing (up to homotopy). If
v € m(¥;), we denote by [y] the free homotopy class of . For a a circle, recall that we denote by
To the Dehn twist about a (see [FM12]). If v € m(¥9), then 7, is a shortand for 71}, thus defined as
follows: consider a circle +' freely homotopic to v and which does not intersect the boundary circle
Cqg = 8(22), then 7, = 7.,. Of course all these notions make sense for ¥, ,, as well.

Recall that we take the loops b;,a; (1 < i < g) represented in Figure 5.4 as generators for the
free group 71'1(22). With these generators, the boundary circle ¢, has the following expression:

<©

Figure 5.4: Surface ¥y with basepoint (e), generators for m(39) and boundary circle c,.

_p =1yl —1p-1
Cg =bray by ayr...bga, b, a,.

Retracting 2 to a tubular neighborhood of the loops b; and a;, we get Figure 5.5. In other words,
35 is homeomorphic to the thickening of the embedded oriented graph I'j o with vertex e and with
edges b; and a;.

b; a;
B(1)  AQ) Bl) A Blg) Alg)

Figure 5.5: Surface XJj viewed as a thickening of the graph I'y o, and matrices of generators of L, o(H).

An important notion for the sequel is that of a positively oriented simple loop.

Definition 5.3.1. We say that a loop in m,(%) (or more generally in m (35 ,,)) is positively oriented
if its orientation is counterclockwise, as indicated in Figure 5.6°; we say that it is negatively oriented
if it is mot positively oriented.

Note that it is possible to have two simple loops x,x_ € m (ngn) such that z is positively oriented,
x_ is negatively oriented and [z, ] = [z_]. For instance in 3¢ take z; = ba~'b~! and z_ = a~!. Thus
it makes no sense to say that a circle is positively or negatively oriented. Also recall that a simple loop

®Compared to the Figure 5 of [Fail8¢], we have done a 180°-rotation around the horizontal axis of R3, in order
to have the handles of X | at the bottom of the Figure. The reason of this change comes from the definition of the

graphical calculus and the Wilson loop map in Chapter 6.
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5.3.  Projective representation of the mapping class group

Figure 5.6: A positively oriented loop near the basepoint fixed in Figure 5.2 or 5.5.

or a circle is non-separating if it does not cut the surface into two connected components, otherwise
it is called separating. All these properties (simple, non-separating, positively oriented) are preserved
under the action of Dehn twists on the loops, hence they are preserved under the action of MCG(E;)

on the loops.
In addition to the generating loops b; and a;, we define the following loops on ¥37:

dl = bl(ll_lbl_l, dl = ai_lbial-_lbl-_l for 2 S 1 S g,
e = blal_lbl_l, €, = blaflbflal c. bi_lai__llbi__llai_lbiai_lbi_l for 2 S 1 S g, (516)
S; = blaflbflal ce biajlbflai for 1 S 7 S g.

The loops b;,a;,d;, e; are simple, non-separating and positively oriented; their free homotopy class
are depicted in Figure 5.7.

[a‘g—l] [a‘g]

Figure 5.7: A canonical set of non-separating curves on the surface 3.

The loops s; are simple, separating and positively oriented; their free homotopy class are depicted
in Figure 5.8. Note that s, = ¢,.

[3‘1] [52] [8‘9—2] [S‘g—l] EA

Figure 5.8: Canonical separating curves on the surface 3.

The Dehn twists 7,, 7, 74, are called the Humphries generators. There exists presentations of
MCG(%,) and MCG(%9) due to Wajnryb [Waj83] (also see [FM12, Sect. 5.2.1]): MCG(X) is gener-
ated by the Humphries generators together with four families of relations called disjointness relations,
braid relations, 3-chain relation and lantern relation, see [FM12, Theorem 5.3] (the correspondence of
notations with [FM12, Figure 5.7] is ¢y = [ea], c2j = [bj], c2j—1 = [d;]). The presentation of MCG(X,)
is obtained as the quotient of MCG(X9) by the hyperelliptic relation:

(Tbgng e To Tdy Tdy Ty - - -ngTbg) w=w (Tbgng e To Tdy Tdy Ty - - - ngTbg) (517)
where w is any word in the Humphries generators which equals 7, .
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Chapter 5. L, ,(H) and projective representations of mapping class groups

Since the mapping class group fixes the boundary pointwise, the basepoint is fixed and we can
consider the action of MCG(X9) on m(%7). The actions of the Humphries generators on the funda-
mental group are easily computed (see (4.24)). We just indicate the non-trivial actions:

,(ar) = 62_1&162, Teo (b1) = 62_15162, Tey(b2) = 62_152,
T, (a;) = bi_la,-,

Ta,(b1) = bia;  (note that [a1] = [d;!]),
Tdi(ai_l) = d;lai_ldi, Tdi(bi—l) = bi—ldi7 Tdi(bi) = dl_lbz (Wlth Z 2 2)

3

(5.18)

5.3.2 Normalization of simple closed curves

In this section, we associate an integer to any oriented circle and to any simple loop in Wl(E;n) (we
define this integer for the general case n > 0). To define these quantities, we use the view of X |
depicted in Figure 5.2. Note that it is not the assignment defined in [AS96a, Section 9] (it gives
different values). This comes from the fact that their normalizations by powers of v of particular
product of matrices (see section 5.3.3) differ from ours. This is maybe due to their normalization of
Clebsch-Gordan operators (which are not used here since they are defined in the semi-simple case
only).

Let v C X7, be an oriented circle (which is not isotopic to a point). Using isotopy, we may
assume that the handles of Figure 5.2 contain only bunches of parallel strands. Since 7 is simple,
the “rectangle” in Figure 5.2 can contain only vertical strands, caps N and cups U. We choose the
following preferred direction on %7

We define Ny(v) as the number of cups and strands-in-handle which run against this preferred

direction; snmlarly, we define Nn(7) as the number of caps which run against this preferred direction.
More precisely, Ny(7) (resp. Nn(7)) is the number of pieces of v which look like the following:

(resp. ﬂ )

If 2 € m (32,,) is a non-trivial loop, we define Ny(z) and Nn(z) by the same formula (we stress that
the junction of the loop at the basepoint is not considered as a cap).

Definition 5.3.2. Let n be an oriented circle C X3, or a loop € m (E;n). The normalization of
is N(n) = Nu(n) — Na(n) € Z.

It is clear that N(n) does not depend of the homotopy class of . Note that if z € m; (Eg n), We
have

N(z) = {N([w]) + 1 if x is positively oriented (5.19)

N([z]) if x is negatively oriented
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Also observe that if v is an oriented circle, then

N(y™')=—=N() (5.20)

1

where v~ is v with the opposite orientation.

Example 5.3.3. Consider the oriented circle v and the loop x depicted below:

W @

We have N,(7) = 2 and No(y) = 1, thus N(y) = 1. For x = ba " 'b!, we have N,(x) = 2 and
Nn(z) =0, thus N(z)=2. A

We can define N in a different manner. Consider the following figure:

4g—3 49g—249—1 4g 49+1 4942 4g+2n—1 49+ 2n

The extremities of each handle are endowed with the blue lines, which we call “gates”, numbered
from 1 to 4g+2n. First, let x € m (E;n) be a simple loop. Starting from the basepoint and following
x along its orientation, we meet a first gate numbered ¢;, then a second gate numbered g, and so
on. This provides a sequence g(x) = (g1, ..., gox) and we have

k -1

N(z) = Z 0(gai-1 > g2i) — ) (g2 = Gais1) ,

1

S

=1 7

where 0(a > b) (resp. d(a > b)) is 1 if @ > b (resp. a > b) and 0 otherwise. Now, if v is a
circle, we do not have a canonical starting point. Instead, choose a point where v meets one of the
gates to enter in a handle, numbered g¢;, and follow ~ along its orientation. This gives a sequence
as previously except that we meet g; two times, at the begining and at the end. In other words,

9(7) = (91, <oy 92k 92k+1 = gl), and we have

k k
N(v) = 25(9%—1 > goi) — 25(922' > Goit1) -
i=1 i=1
It is clear that this quantity does not depend on the choice of the starting point.

FExample 5.3.4. Take back the cases of Example 5.3.3. For the circle v, we put the starting point
at the left of the gate 1. Then we obtain ¢g(y) = (1, 3, 4, 2, 3, 1, 1) and we recover N(v) = 1.
We might as well have started from the left of the gate 3 or from the gate 4. For the loop =z,
g(x) = (1, 3,4, 2, 3, 1) and we recover N(x) = 2. A

Let w be the algebraic intersection form of simple curves (simple loops or oriented circles); recall
that w(a, ) is the sum of the indices of the intersection points of a and 3, as follows:
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£ £ £+

Lemma 5.3.5. Let v be a circle endowed with an arbitrary orientation and let x € 7r1 be a
simple loop, it holds

N(7y(x)) = N(x) + w(z, 7)N (7).
This formula is also true if x is an oriented circle.

Proof. Let py1,...,pr be the intersection points between x and . By the method for computing the
action of a Dehn twist on a simple closed curve (see (4.24)), it is clear that N(7,(x)) = N(x) +
eeN(y)+ ...+ eN(y), with ¢, = £1. Moreover, it is not difficult to check that each ¢; indeed is the
index of the intersection point p;, as defined above. For instance, assume that the intersection looks
like in the figure below

We see that in the resulting curve we follow a copy of v in the sense of its orientation. Hence, the
contribution of this operation to the final result is + N (7). And indeed we have w(z,v) = —w(y,x) =
+1.

O

Now, let 7} (Eg’n) be the group Z x m (Eg’n). The elements of 7} (Eg’n) are of the form v"z,
where z € 7 (X9,,) and v is a formal element commuting with m (39,,).
For the remaining of this section, we restrict to n = 0 (see however the discussion in section

5.3.5). We define group automorphisms 72,7, 74 : 7} (E;j) — 7y (EE) which are normalized versions
of (5.18):

627

v)=v, 1) =v, 7,0 =v, 75(V)=0,

(
77 (al) = 651&162, 7':2 (bl) = €;1b1€2, T:Q(b2> =V € lbg,
(

a;) = vb; ta;, (5.21)

We just indicate the values on the generators of m (Eg) which are not fixed. Note that we have
defined these group automorphisms in the following way:

o (u;) = UN(Ty(ui))Ty(ui) — Uw(ui,[y])N([y])Ty(ui) (5.22)
where wu; is b; or a; and y is es, b; or d;°.
Proposition 5.3.6. 1) The assignment
Tey V= Tons Toy = Ty Td, 7 Tg,

extends to a morphism of groups MCG(Xj) — Aut (Wi) (Zg))
2) For f € MCG(X), denote by f*: 7} (Zg) — 7 (Zg) the image of f by this morphism. Then for
all simple loop x € m (Eg), 1t holds

FroN@ ) = oNU@) £ (g), (5.23)

5We recall from section 5.3.1 that if y € m; (Eg), then 7, is a shortand for 7, and in this case y must be considered
as a circle.
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5.3.  Projective representation of the mapping class group

Proof. Thanks to Lemma 5.3.5 and to (5.22), we see that
7_;1 o 7_;2 (,UN(I)x) — ,UN(TyloTyz(I))Tyl O Ty, (.T) (524)

for all x € m; (E;), where y1,yo are ez, b; or d;. Let 7,1 ... 7k = id be a relation in MCG(E;) (where

each y; is ez, b; or d; and ¢; € Z), then we have T TyEI’:(UZ) = y,; for each u; = a; or b;. It follows

that (72) ... (72 )% (u;) = vV “)u; = u; and thus (72)% ... (72 )% (u;) = id. Alternatively, one can
check tediously that the assignment preserve the Wajnryb relations. The second claim follows from

(5.24) and the fact that 7.,, 7, 74, generate MCG(%9). O

5.3.3 Lifting simple loops and mapping classes to £, ((H)

We define the lift of a simple loop in the general case (n > 0). In the group 77 (%) defined in
the previous section, we have the loops b;, a;,m; and the formal variable v, while in £, ,(H) we

I I
have the matrices B(i), A(i), M(j) and 4. Hence for each H-module I , we have an evaluation map
evy: i (X9,,) = Lyn(H) @ Endc(I) defined by

I I I
b, — B(i), a; — A(i), m;— M(j), v~ 111, evi(zy) = evi(z)evi(y).

This observation together with the normalization introduced in section 5.3.2 will allow us to define
the lift of a simple loop for any g,n and the lift of a homeomorphism for n = 0 (see however the
discussion in section 5.3.5).

Definition 5.3.7. Let x € mi(X9,) be a positively oriented simple loop. The lift of x (in the
representation 1) is

I
T =evy (UN(“)QU) .

Let v € m(X5,,) be a negatively oriented simple loop. The lift of x (in the representation I) is

I LN
T=[xz! )

In Remark 6.2.10, we will see why we must distinguish the positively oriented case from the negatively
L I I I
oriented case in the definition of the lift. Of course, b; = B(i), a; = A(i), m; = M(j) since N(b;) =

Until now, we restrict to n = 0. For the loops of (5.16), we have (1 <i < g):

I I

&; = evi (v?ds) = $2AG — 1) BEAG) " BG) ™,
é- = evy(v¥e;) = 121'1]3(1);1(1)—1113(1)—1;1(1) . f?(z' — 1)?1(1' - 1)‘1119(2' - 1)‘1;1(7; - 1)119(2');1(2')‘1115’(2')‘1,

U~

1 I I I

. I 1 1 I
si=evi(v¥s;) = éZ’B(l)A(l)*lB(l)*lA(l) ... B@)A@G) T B(@)TA®).
We note that these lifts satisfy the Lo (H )-fusion relation:

I I 15  J 1J IoJ I IJ g IJ IoJ I IJ J IJ

di = di(R,)IQdi(R,)l_Qla € = gi(R/>12gi(R,);217 S = Q(R,)ugi(R/)l_;- (5‘25)
! I I I

S I I
To check this easily, observe that d; = A(i —1)C1 A1), €; = C;0A(7) ! and use Lemma 4.2.10 and
relations (5.6) to write the fusion and reorder the matrices, which is a straightforward computation.
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Chapter 5. L, ,(H) and projective representations of mapping class groups

Now, we define maps 7., , 7,, 7a, : L4.0(H) = L40(H) which lift the action (5.18) of the Humphries
generators on the fundamental group by the following formulas (recall (5.21)):

Tep(evi(uy)) = evy (73, (wy)) T (evi(uy)) = evi(m(uy)) , 7o, (evi(uy)) = evy(rg(u;))  (5.26)

where u; is a; or b;. Thanks to (5.23) and the fact that N(u;) = 0, this can also be written as

—_—— —_— —_—
—~

T@(@) = 7_62<uj)7 ﬁ:(@) = Tbi(”j)? a:(@) = Tdi(uj)‘
More explicitly:

1 1 1

I oA (5.27)
Ta (B(1)) = v 'B(1)A(1) (recall that [a,] = [d]]),

A IR >~ . 1L >~ . 1~ L
T, (A(J —1)) =d; A = d;, 73,(B(j —1)) =v'B(j = 1)d;, 74,(B(j)) = vd; ' B(j),
for j > 2, and the other matrices are fixed.

Proposition 5.3.8. 1) The maps ey, Tv,, Ta, are automorphisms of L, o(H).
2) The assignment
Teqy — 7/—;;7 Th; — 7—;7 Td; — 7/—;[:

extends to a morphism of groups MCG(39) — Aut(Lyo(H)).

Proof. 1) We have to check that these maps are compatible with the defining relations (5.6). This
I
relies on straightforward but tedious computations. For instance, let us show that 74 (B(j — 1))

satisfies the fusion relation. First, it is easy to establish the following exchange relation:

1J j L I 15y
R'B(j —1)2 R(dj)1 R' = (dj)1 ' B(j — 1)a.

Hence, using (5.25),

1®J 187 I®J I®J [®JI@J I®J IJ1J I1®J

v VB(G-1)d; = B(j—1Dv'd, = Bj—1)R Ru;'v;" d;

I J
I J 1J IJ L 1J 2 1J

I
=v;' 0y  B(j — 1)1 R'B(j — 1)2 R(d;)1 R (dj)s R
1L L ol L L Ly
_ ( VBG - 1) <dj>) R ( LB —1) <dj>) B,
1 2

I
This computation reveals the role of the power of v which appears in 74, (B(j — 1)): it replaces R'~!

by R and allows us to apply the previously established exchange relation. We used (2.11) and the

K K
fact that Isz(k‘) =U(k) © where U is B or A. Note that the normalizations by powers of v have no
importance when one checks the compatibility with the other defining relations of £, (H), they are

only used for the fusion relation.
2) This is obvious thanks to Proposition 5.3.6 and (5.26). O

Definition 5.3.9. The lift of an element f € MCG(X), denoted by f, 18 its image by the morphism
of Proposition 5.3.8.

Due to (5.26), it holds fo evy = evro fU. In other words, f* and fare formally identical. Moreover,
we have the following lemma which is an expected fact.
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5.3.  Projective representation of the mapping class group

Lemma 5.3.10. Ifx € m; (Zg) 1s a simple loop it holds

iy
f(@) = f(@).
Proof. 1f x is positively oriented, so is f(z) and we have

I

1 - L
f(@) = f(eVI(vN(’”):r;)) = eVI(f”('UN(’“")x)) = evI(vN(f(z))f(:U)) = f(x)
thanks to (5.3.6) and (5.23). If x is negatively oriented, so is f(z) and we have

—1 —_— — —1 —_—
-1 —1 _

F@=F ) =f@) = fe) =i = i), m

If 71,7, are circles on a surface which have the same topological type’, there exists a homeo-
morphism f such that f(,) is freely homotopic to v, (see e.g. [FM12, Sect. 1.3.1]). Here we need
to consider fixed-point homotopies. We say that two simple loops x1, 22 € 7T1<E(g)) have the same
topological type if the circles [z1], [23] have the same topological type.

Lemma 5.3.11. Let x1, 73 be positively oriented simple loops in m1(%5) which have the same topo-
logical type, then there exists f € MCG(X)) such that f(x1) = xy in m (%),

Proof. As mentionned, we already know that there exists n € MCG(X}) such that n(z,) = 7y =
ofrila~® in m1(25) for some loop o and some e € {£1}. =} is positively oriented, non-separating
and simple since z; is, and thus we can assume that « is simple and does not intersect xs (except at
the basepoint). There are six possible configurations for the loops a and x5 in a neighbourhood of

the basepoint:

DS o

In case 1, 74 = arya™!, and then 7,(z5) = o 'rha = xy. Case 2 is impossible because none of the

four possible loops afr3'a~* is simple. In case 3, ¥, = axsa~!. For 8 = ax,, we have m5(a) = 7 tap,
75(x2) = B 293, and thus 75(xh) = zo. In case 4, 2, = o 'zpa. For § = zya, we get similarly to case
3 that 75 ! (24) = 025071 = z9. In case 5, ) = a~lz; 'a. Observe that 7,(z) = 220, 7., (@) = 25 '@,

and then

-2 1,1 1y =120 1\ _ _—1 _
T Toy To (@ Ty ) =7, 7, (25 a) = 7, (v20) = 3.
In case 6, ¥, = ax; !, and we get similarly to case 5 that 7,72 7a(2}) = z». O

Example 5.3.12. We have

b, Ta; (i) = a, Tcl_ilT{:ll(di> = b;_1, Ty_ilTa_il b;llTy_il(ai) =b;_1, Ty_QlTb_llTe2Ty2(€2) =b

where y; = a;_1b;. This allows to transform any of the loops a;, b;, d;, es into ay. A

"Two circles 71,72 on a surface S are said to have the same topological type if the cut surfaces S,,,S,, are the
same (up to homeomorphism), see [FM12, p. 38].
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Chapter 5. L, ,(H) and projective representations of mapping class groups

Remark 5.3.13. In [Fail8c|, Lemma 5.3.11 was the starting point to define the lift of non-separating
positively oriented simple loops. More precisely, we first defined the lifts of the Humphries generators
and checked that they satisfy the Wajnryb relations. This defines the lift of every f € MCG (E;).

I
Then we declared that the lift of a; (in the representation I) is A(1) and that the lift of a non-
1
separating positively oriented simple loop = € m1(X9) is f(A(1)) where f is such that z = f(a;).

For this, it was necessary to show that f(a;) = g(a;) implies f(jl(l)) = @“(A(l)), which was done
in [Fail8c, Lemma 5.5]. This had the advantage to be shorter than the construction presented here
since it does not require to define the normalization N. However, it is less general because it is not
adapted to non-separating loops. A

Lemma 5.3.11 has the following important consequence.

Proposition 5.3.14. Let x € m,(X5) be a positively oriented simple loop. Then the lift of x satisfies

the fusion relation of Lo1(H):
I®J I 1JJ 1)
R/ ~ R/ 1
I I
It follows that there exists a morphism of H-module-algebras jz : Lo1(H) — Ly o(H) given by M — 7.

Proof. There are g 4+ 1 possible topological types for loops in 37. The more simple positively ori-

ented loops representing each topological type are ay, s1,...,s, (whose cut surfaces are respectively

Y3, 211 UXg10,...,251 UX2, see Figures 5.7 and 5.8). These particular loops satisfy the fusion
I I I
relation. This is obviously true for a; = A(1) . For s;, observe that s; = j(C; ), where C, ¢ is defined

is defined in section 5.2 and j : £;0(H) — L,0(H) is the obvious embedding. Since by Proposition
5.2.2, C; satifies the fusion relation, so does s;. By Lemma 5.3.11, there exists f € MCG(E;) such
that f(z)is a; or s;... or s, and hence by Lemma 5.3.10:

10J 197 -2 oL J [ 1) 1J
P =) = () = 7 (fa B R, ) =5 R R
as desired. O

Recall that £,0(H) = Endc((H*)®9) is a matrix algebra. By the Skolem-Noether theorem, every

automorphism of £, o(H) is inner. Hence to each f € MCG(X) is associated an element fe Lyo(H),
unique up to scalar, such that

Va € Lyo(H), flz)=fuf (5.28)
We will determine the elements 7, associated to Dehn twists about non-separating circles and use
this to show that f € LS (H).

Lemma 5.3.15. We have 7,, = UA( - In other words:
Vo e Lyo(H), To(x) = UAT(II) T VA1)
I I I
Proof. We have vg(ll)A(l) = A(l)vg(ll) = ?;(A(l))vA . Indeed, since v~! is central in H, vg(ll) is

I
central in the subalgebra generated by the coefficients of the matrices A(1). Next, let j; : H(O(H)) —
H(O(H))® be the canonical embedding on the first copy. Observe that for all v € H, ¥y o(xanq)) =
J1(x). Then:

Aaib‘v—li(—%l) — (b 1) T L1 L) ()= o)
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5.3.  Projective representation of the mapping class group

We used the exchange relation (2.26) of H(O(H)) together with (2.11) and the definition of the matri-

I
ces L®). Finally, recall the matrices (5.9) which occur in the definition of the Alekseev isomorphism.
The same argument as in the proof of Lemma 5.2.3 shows that

——~—

1 I ) . N
PN = S (be) o Vel @ ... @ b,

I
From this we see that j;(v™!) commutes with wﬁg(/\i). Eventually it follows that \11970(1);(11)) com-

I T
mutes with Wy o(U(i)) = Uyo <7";: (U(z))), where U is A or B. O

Recall the notation (5.8). If v is a simple loop, 7 satisfies the fusion relation and thus (v™1)5 = (vs) "

¢]

Proposition 5.3.16. For any non-separating circle v on X7,

we have ﬁ = v;l. In other words:
Vo e Lyo(H), m(x) = v;lxv:,.

If v,6 € m(X5) are positively oriented non-separating simple loops such that [y] = [0], then vy is
proportional to vs.

Proof. We represent the circle [y] by a positively oriented, non-separating simple loop v € ().
Let f € MCG(X}) be such that f(a;) =+, then

B = Ty = frad = PR F

Hence, by Lemma 5.3.15,

Vo€ Loo(H), 7 (F(@) = F7 @) = F(vihyovaw) = o5 Fle)vs.

Replacing x by f’l(as), we get the result. The second claim follows from a similar reasoning together
with the fact that 7, depends only of the free homotopy class of . n

An analogous result in the modular setting has been given in [AS96a, eq (9.7)]. The notation v%l
does not appear in their work; instead, they express this element as a linear combination of traces
which form a basis in the modular case only.

Corollary 5.3.17. For all f € MCG(S9), it holds f € L(H).

Proof. Let v be a positively oriented, non-separating simple loop. Then 7 satisfies the fusion relation
of Lo1(H), and thus js is a morphism of H-module-algebras (Lemma 5.1.2). Hence, since v~ €
Z(H) = L§Y(H), we have ~ L e L¥5(H). In particular, the statement is true for the Humphries
generators thanks to Proposition 5.3.16 and thus for any f. O]

5.3.4 Representation of the mapping class group

The only additional fact needed is the following lemma.

Lemma 5.3.18. [t holds: Ug(lg) = vz(lg),l.

Proof. Denote as usual X; ® Y; = RR', X; ® Y; = (RR')™" and let u' be the left integral on H
(unique up to scalar). We have:

P (0X3)Y; = pl(v)v™h = il (vX5)

<

7.
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The first equality is shown in the proof of Proposition 2.3.4 while the second is easy using (2.11)

I
and (2.19). Let us write p'(v)~'p'(v?) = 3, ;7 T% with ¢j; € C. Then, using the identification
I I I L

M = (X;)Y; between Lo 1(H) and H, the fact that M ' = (X,)Y; and the equalities above, we get

o - i g
-1 . i ; ~1yi : 2 : i -1
Va(g) = JA(9) (E ,C}ZM]> = JA(g) <§ ,C}Z(M )]) = JA(g! < dlMJ) = Yagg—

,5,1 5,1 ,5,1

i7j7I

where the morphisms j, are defined at the end of subsection 5.1.1. We used that j44) is a morphism
of algebras (see Lemma 5.1.2). O

It is clear that the lemma holds for the lift of any positively oriented, non-separating simple loop,
but we do not need this.

Recall that we have a representation of L, o(H) on (H*)®, let us denote it p. We also have
the associated representation of L'(H) on Inv((H*)®9), let us denote it pi,,. Also recall that the

elements f are defined in (5.28). We can now state the representation of the mapping class groups
MCG(X5) and MCG(%,). An analogous result was announced in [AS96a] under the assumption that
the gauge algebra is modular.

Theorem 5.3.19. 1) The map

0y : MCG(Z)) — GL((H")®)
fo= plf)
18 @ projective representation.
2) The map
0,: MCG(Y,) — GL(Inv((H*)®9))
f = pinv(f)

18 a projective representation.

Proof. 1) This is an immediate consequence of Proposition 5.3.8.

2) We must show that the hyperelliptic relation (5.17) is projectively satisfied. The word w can
be constructed as follows: take f € MCG(X}) such that f(a;) = a, and express it as a word in
the Humphries generators f = 7,,...7,,. Then 7,, = fro,f~" and w = 7, ... 7, 7,7 ... 7"
The automorphism 7, is implemented by conjugation by fvg(ll) f~! and also by conjugation by
vz(lg) (Proposition 5.3.16). Hence, fvz(ll)f_l ~ vg(lg), where ~ means proportional. Now, let h =

oI I I
ToyTdy - - - Tor Tdy Tdy Toy - - - Tdy To,- A computation gives h(A(g)) = A(g)~'Cyo. Thus

T -1 —17-1 _ 7.-1 7-1_ 7/ -1 -1
hfogm = h™ ~ huy i = hvyg) = Vigic,,

By definition of Inv((H*)®9) and Lemma 5.3.18, we have
Pinv(Vaig)-10, ) = Pinv(Vaigy-1) = Pinv (Va(y))-

It follows that pi,, (ﬁ <]?UAT(11)]?_1> ﬁ*) ~ Piny (fv;(l)f_1>. This shows that the map is well-defined

since MCG(2,) is the quotient of MCG(X9) by the hyperelliptic relation and that it is a projective
representation. O

Note that, as in the case of the torus (see discussion at the beginning of section 4.3.3), the

representation Inv((H *)®g ) allowed us to glue back the disc D, and hence to obtain a representation
of MCG(%,) (and not just of MCG(X9)).
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Remark 5.3.20. I think undoubtedly that, when H is modular, the projective representation of
Theorem 5.3.19 is equivalent to the one of [AS96a, Th. 28]. Let MA3(H) be the moduli algebra
of [AS96a] (whose construction holds under the assumption that H is modular). In [AS96a, Th.
MCG(Z,) — MAE3(H)
. T = h(7)

elements h(y) (which implement the lift of 7, by conjugation in the moduli algebra) are claimed to
satisfy the relations of MCG(X,) up to scalar. Recall that in (1.9) we proposed to take the image
of the representation pi, as a generalization M5 (H) of the moduli algebra MA3(H) in the non-

M Y & (H
modular setting. With this definition, we have a map CG( 79_ ) : //;49,((;)(_1)) which satisfies the
Jo% inv\%y

relations of MCG(X,) up to scalar. If the algebras M 3(H) and MEG(H) are isomorphic when H
is modular, then the representations of MCG(X,) are equivalent in this case. This remark can of
course be generalized to any X, . A

28], each Dehn twist is mapped to an element of MQAS(H ): and these

5.3.5 Discussion for the case n > 0

Let us consider the general case n > 0, see Figure 5.1. Denote %7 = ¥, \ D, where D is an
embedded open disk.
The only difference is that, in general, £,,(H) is not a matrix algebra and we cannot claim

directly the existence and unicity up to scalar of the elements f Nevertheless, we now propose
(without proofs) a program to extend the previous construction which should not be difficult to
apply.

The first task is to define the lifting homomorphism MCG(X9,) — Aut(L,,(H)) generalizing
Definition 5.3.9:

e Consider a generating set gi, ..., gr of MCG(X ) and compute the action of these generators
on m(X5,,).

e Asin (5.21), define the morphisms g¢ € Aut(7}(%2,,)) by the formula
Vo € {by,ar,... by, ag, Mgty .. Mgin}t, go(x) = vN0@) g (),

It is clear that Proposition 5.3.6 is not at all specific to the case n = 0 and remains true for any n. In
particular, the assignment g; — g/ extends to a morphism of groups MCG(X9 ) — Aut(x}(2Z9 ).

e The lift of a simple loop is defined for any g, n, see Definition 5.3.7. Using this, define the lifts
1, - - -, g of the generators g1, ..., gr by the same formula as in 5.26:

Vo € {by,a1,...,bg, ag, Mgi1, ..., Mgin}, gTi(eVI(:U)) = evf(gf(a:))

which can also be written as

1

—_~—

Vo € {b,a,..., by, ag,Mgi1,...,Mgin}t, @(EE) = g;(x).

Then one must show that each g; preserves the defining relations of £, ,(H), and it will follow that
the assignment g; — g; extends to a morphism of groups MCG(X9, ) — Aut (Lyn(H)), which to a

mapping class f associates its lift ]7

Now, we will associate a (not unique) element fto each mapping class f such that f(:v) = f:ﬁf_l
for all x € £,,,(H). We assume g > 1 because in this case there is a generating set of MCG(X ,,)
which consists only of Dehn twists, see [FM12, Figure 4.10]; hence g; = 7., for each i, where ¢; €
m1(%5,,) is a non-separating, positively oriented simple loop.

e Lemma 5.3.11 still holds. In particular, since the loop ¢; is non-separating for each i, it has the
same topological type than a; and there exists f; € MCG(Xg, ) such that fi(a;) = ¢;. Note that it

117



Chapter 5. L, ,(H) and projective representations of mapping class groups

is possible to find the f;’s explicitly as in Example 5.3.12, without invoking Lemma 5.3.11, and this
is sufficient for the sequel.

e Lemma 5.3.15 remains true for n > 0. By reproducing the proof of Proposition 5.3.16 with
the f;’s, we get that 7. (x) = vciilxvgi. Since the 7., are a generating set, it follows that for each

f € MCG(Xg,), there exists an invertible element fe L (H) such that flx) = fzf'. The
elements f are unique only up to an invertible central invariant element of L, (H); in particular
E = zf/g\ for some z € Z(L’g’n(H)).

e Since Z(H(O(H))®?) = C, we have for all z € Z(Ly,(H)):

U,n(2)=10...0102®...Q 2, € H(O(H))® @ H®" (5.29)

with z; € Z(H). Let
pg,Sl vvvv Sn : ﬁg,n(H> — EndC(V(.g:Sla"'asn))

be a representation, with V (g, S1,...,5,) = (H*)® ® S ®...® S, and where Sy, ...,S, are simple
H-modules. Due to (5.29) and to Schur lemma, we see that the representation of z € Z([,g,n(H))

on V(g,St,...,S,) is ascalar \idy (s, s,). Hence, the element p951- S”(f) is unique up to scalar.

Define
9;’751 ..... s, MCG(E;j,n) — GL(V(g,SE,...,Sn))'

This is a projective representation:

[¢]

7777777777

. o . L. . o
where ~ means equality up to scalar. Hence, 0 5 ¢ generalizes the projective representation 6y

of the first part of Theorem 5.3.19 (when Si,...,S, are simple H-modules). Let p%5"°" be the

representation of £;ITZL(H ) on Inv(V(g, Sty ... ,Sn)). The statement generalizing the second part of
Theorem 5.3.19 is the following;:

Statement (to be proved). Let Si,...,S, be simple H-modules. The map
04.51,.5, . MCG(Z,,) — GL(Inv(V(g,5S1,...,5)))

951,15 Sn (P
f = Piny ( )
18 a projective representation.

To prove this, one must use a presentation of MCG(X,,,) based on the generators 7.,,..., 7, and
check that the relations between these generators hold in InV(V(g,Sl, e ,Sn)). Note that the
relations of MCG(2%,,,) which already hold in MCG(X; ) are automatically satisfied; thus it is
relevant to use a presentation of MCG(3,,,,) which is a quotient of MCG(X ) by some extra relations.
For instance, recall that in the case n = 0 we had to prove only the validity of one relation in
Inv((H*)®9) (the hyperelliptic relation) because MCG(%,) was the quotient of MCG(X3) by this
relation.

5.3.6 Explicit formulas for the representation of some Dehn twists

We will compute explicitly the representation on (H*)®9 of the Dehn twists 7., where the curves v
are represented in Figure 5.7. Thanks to Proposition 5.3.16, this amounts to compute the action of
1)%1 on (H*)®9.

We recall that the action > of L£,0(H) on (H*)®9 is defined using ¥, in (5.11) and that we

denote the associated representation by p. Also recall the definition of the elements h in (2.31) and
the notation RR' = X; ® Y;. Note that

XZ' X Y;I X Y;” = anibk X Y; X bjak. (530)
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Recall from Chapter 4 the representation 6 : MCG(X9) — GL(H*) given by the action of the
elements v, v5' € £y (H) on H*:
9 - v 1
0(ra)(p) =vy po=¢"
0 (1) () = vp' > = ! () ! (W' (970 ?) ")
where 8" = B(h?) € H* for any 8 € H*,h € H and p!' is the left integral on H.
We will need the following generalization of Lemma 4.3.6 (in which we restricted to ¢ € SLF(H)).
Lemma 5.3.21. For all p € H*:

(5.31)

l 7}_1
(vitvplvr!) b =E ( %(S-l(ai)g-lv—lS(‘?)bi)

p(v)
(v_lv_lv_l)*2 > = —,ul(v) go(bS_l(?)a'g_lv)
A YB YA ul(’Ufl) J * )Y
I . Lo
Proof. Write o =3, CIDJIZT; thr(CDIT) with @7, € C and let 2(p) = > _; tr(b o5 (a Z)M)

€ Lo1(H). Then z(p)p>e = ¢ (where z(¢)p = jp(2(¥)), see notation at the end of section 5.1.1),
and ¢ is the counit of H). Indeed

(gpgbe—Ztr(b@IS () D1 ) Ztr(b@ls alaJTb> Ztr(@;T)

We simply used (5.11), (2.30), the cyclicity of the trace and the equality S™*(a;)a; ® bjb; = 1 ® 1.
Observe that

g1 [l (L 1 LT

(TaTTa)” (B) =v"A"BA=BC

I
where C' = (' is defined in (4.21). Hence:

1 1

1).
le) > = (v3'vp'vy )22(90)3 >e=2(p)p1c (v4'vp Uil)Q be
_n

,u(l(v) 2(p)p-1cbe = Mu(llév))z(go)Bl >e.

(va'vg

I
We used Proposition 5.3.16, the formula of Lemma 4.3.6 applied to ¢, and the fact that Cbe = Igjm(pn)e
(which follows from 5.14). Now we compute

I I

I I I I I I
Z(()O)B—l >e = Z tr (bzq)[S_l(CLz)L(_)S(T)L(+)_1 > 6) - Z tr (biQ)]S’_l(ai)S—l(bj)aj > S(T))
1 1

~Su (éqns—l}(ai)s—ll(bj)séj)sé)) ~Y (CIDIS_II(ai Il 15(%)12)

= (S (a;)g v S(2)b;) .
We used (2.27) and (2.10). The second formula is easily checked. O

Theorem 5.3.22. Let 0y : MCG(X9) — PGL((H*)®9) be the projective representation obtained in
Theorem 5.3.19. The following formulas hold:

93(%)(901 X...Q® <Pg) =01 ®...Q pi—1 ®07(7) (i) ® Pi1 ® ... ® @y,

() (P1® ... ®pg) =01 ®...® i1 ®05(1) (i) © Piy1 ® ... @ g,

05 (7a;) (gol ®R...Q cpg) =01 ®...Q P2 ® Y1 (S_l(aj)ak?bkv"_lbj) ® Lpi(S_l(al)S_l(v'_l)am?bmbl)
Qi1 ® ... Q g,

) (01 ® .. py) = @1 (S (0(2172)71)%(2171)71) ®...® i (5! (U(2)71)?U(3)71)
® Wi(Sil(aj)Sfl (U(l)fl) ak?bkbj) Qi1 Q... ® Yy,
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Chapter 5. L, ,(H) and projective representations of mapping class groups

with @ > 2 for the two last formulas, R = a; ® b; is the R-matria® and the formulas for 69(1,), 65(1)
are recalled in (5.31) abowve.

Proof. First, it is useful to record that
I —_— —_—

1 I 1 ; . )
WﬁaAozwﬁ%(g“%ly.pr”@——n):=s—%@>@”*h@“”@@”.®any>®1&rw1
(5.32)

P —~

I .
W%@Fﬂ) cwu—w) a BN @ @ b @ 190

I
where the matrix Ay is defined in (5.9). The proof is a simple computation analogous to that of
Lemma 5.2.3. Second, recall from the proof of Lemma 5.3.18 that

()t (v X))V = vt (5.33)

I I
We will write pl(v)~tul(v?) = >, tr <C[T). Then v = 37, tr(cIM) under the identification

. Proof of the formula for the action of UA . By definition and by (5.32), we have

-1 ®g T -1
\Ijg7O<UA(i)) = th WA AQD) A7)

I I T\ o0 o o o ) P )
= Z tr (cISl(bj)Xkbl> a(-27’73)al(2%3)a§-2%2)al(2172) ®...0 a( )a(l)a( d® @ v, @199

—~— ——~——

= g ()" (vSTHb) Xy a§2i_3)al(2i_3)a(.2i_2)al(%_2) ®...0 a( )al( )a@)al ® Y, ® 1997

J

—_——

=g (v) " (0STH(B; ST (b)) Xi) a@i_?’)al(2i_3)a§2i_2)al(21_2) ®...Q a( )al( )a@)al ® Y, ® 1997

j
= 1) T (X)) 19T @ Y, @ 1997 = 19 g ol © 19970

and the formula follows. We used (2.23), the formula R™! = ¢; ® S~!(;) and (5.33).
e Proof of the formula for the action of vg(li). This the same proof as for vz(li) (the conjugation

I
by A; vanishes thanks to (2.23)).

I I
e Proof of the formula for the action of v;, i > 2. We first compute the action of A(i — 1)A(7).

We have
I

I I I I I I I
W, 0 (A(i — l)A(i)) = \I:‘?jg (AH Al — 1) A A AzG) Af)

. I 1(_) . I ) I,
=Ug{ At A= 1) O (i — 1) A(d )O (i—1)7"AT ).
Hence:

I I I T
\Ifg()(vA (i—1)A > Ztr (CI\I! (A¢—1 Al — 1)Q(_)(z’ — 1) A(3) Q(_)(z' —1)" Ai_l))
() e (0STH(by) Xk ST (B1) Xinbnbo ) (22'75)a&2i75)a§-2i74)ag2i_4) ®...Q® ag-l)agl)af)agz)
®al’Yka” //®Y ®1®gz
o)t (UXkS_l(bl)men) 1%72 al ’Yka" "RY,, ® 1997

l(v)_l,ul (’UCLkS_l(bl)men) 1®i 2 ® alanbkan ® Ym ® 1®g—z

I
I

8Do not confuse the components a;, b; of the R-matrix and the loops a;, b; € 71(Z,,0\D).

120
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We used (2.23) and the fact that XS~ (b) ®a)®Yia] = XpS™(b,)S Hb) @ ;@ Yya, = arS™ (b)) ®
a; ® b,. We can assume without loss of generality that ¢ = 2 and ¢ = 2, since the action is “local”.
Moreover, this can be simplified. Let F': H* — H* be the linear map defined by

F(p) = p(a;7b;),  F ') = (S (a;)?;) .
We compute:
(F'®id)o p<v;gl)A(2)) o (F®id)(p® )

= ' () it (varhi X omby) ¢(a;S™ (a,)ar S~ (ao) ?bobranb;) @ ¥(?Y;,)
= (o) i (v Xonbn) (5 (0 )asa1S ™ (a,) ubyb)  $(2Vim) = (3)

We used the formula RA = A°?R. Now, we have a Yang-Baxter identity
arb; ® aja; @ bpb; = Ri3Ro3Roy = Ro1 RosRi3 = biay ® aa; @ bjby,

which allows us to continue the computation:

(%) = p' (v) " (vbrag Xonby) (S~ (a;;)alaj Y(a0)?bobibrar,) @ ¢(?7Y,)
= ul(v)’lul (US (b YorapXom bn) 90( ap aﬂbkan) Q7Y )
= 1 (0) " ! (vaE Xonbn) ©(?bian) © Y(7Y;)
= 0) 7 (0X,) @7V © V(7Y = (") © ('),

We used basic properties of the R-matrix and relations (5.30), (5.33). We have thus shown that

Vatya P P @9 = (8™ (a5)ar?bp" ;) @ ().
I

I I I I I I I L
Recall that dy = é?A(1)B(2)A(2) LB(2)71. Hence (Toy7yy7ay) 2 (A(1)A(2)) = dp. Tt follows that

(Fag TosTag) (UAT(II)A@)) = v~ and thus by Proposition 5.3.16 and Lemma 5.3.21:

v e @Y = (“A(2>”B(12>”A<12>) - VanA) (”A(1 VB )“3(12>> ooy

(02(12)1);(12)1)2(12» > (S (a;)ar?bpv" ;) @ (S (@) g v ST S(?7)b)
(S a;)ar?bv" ;) @ (S a)g o S (VTS (b STH (D amg M) by)
(S a;)ar?bv" b)) @ (S a) ST W' T am 2bybi)
which is the announced formula.

I
e Proof of the formula for the action of véiil, i > 2. We first compute the action of C(1)...C(i—

I
1)A(7). We have

0(CQ1) .. Cli- DAG) ) = ¥ (é<+><1> L CO= 1) (E0).. EO6 - ) R &éumzl)

I I I I I -
= ( EOW).. 606 - DA (€00 L6 - )
_ a{ijbl b§'2173) b(2z (21 2) Q. b(l) b( ) ( ) ® Y ® 1®9— i
= X, Y@yl g g Y,fQ)Y,fg) ® Yk( ) @189~
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thanks to (5.32) and (5.30). Hence, by (5.33):
oo (vaty.cunaw) = #OHEX)REVE Ve ey e v @190

—~— —~—

— p2i-2)-1y2-D-1 & & 4(2)=1H3)~1 & (-1 & 1891,
which means that

U5(11)...C(i—1),4(i) > (% Q...® %) _ @1(571(U(2p2)71)?v(2i71)71) Q... ® g01,_1(571(U(z)fl)?v(:s)ﬂ)
® @i (V™) @ i1 ... ® .

I I I I I I I I I I
Recall that e; = {;20(1) . C(i—1)B(i)A(i)"'B(i)~". Hence (7,7, 75.) > (C(1)...C(i—1)A(i)) = é.
As previously, it follows from Proposition 5.3.16 and Lemma 5.3.21 that

! Lozl ol —1 1,1 -1
Vg P (P11 ®...0p,) = (UA(i)'UB(i)UA(i)) Ve (1)...0(—1)A) <UA(i)UB(i)UA(i)> > (1 ® ... ®p,)
= <p1(S”(v(%*”’l)?v@i*l)’l) Q... g0171(571 U(z)q)?v(g),l)
X @i (Sil(aj)sil (’U(l)il) ak7bkb]) Q Yiy1-.- & Pg;

which is the announced formula. O

5.4 Equivalence with the Lyubashenko representation

In a series of papers [Lyu95a, Lyu95b, Lyu96], V. Lyubashenko has constructed projective repre-
sentations of MCG(X,,,) by categorical techniques based on the coend of a ribbon category. Our
assumptions on H allow to apply his construction to mod;(H), the ribbon category of finite dimen-
sional left H-modules. Here we will show that these two representations are equivalent. For the case
of the torus, we have already shown in Chapter 4 that the projective representation of MCG(3 o) ob-
tained thanks to £, o(H) is equivalent to the Lyubashenko-Majid representation [LM94]. For works
based on the Lyubashenko representation, see e.g. [FSS12, FSS14].

5.4.1 The Lyubashenko representation for mod;(H)

Let us first quickly recall the Lyubashenko representation in the general framework of a ribbon
category C satisfying some assumptions (see [Lyu95b]).

Let K = fXX* ® X be the coend of the functor F': C®P xC — C, F(X,Y) = X*® Y and let
ix : X*® X — K be the associated dinatural transformation (see [ML98, IX.6]). Thanks to the
universal property of the coend K, Lyubashenko defined several morphisms; we will need some of
them which we recall now. The first is an algebra structure K ® K — K (also see [Maj93]). Consider
the following family of morphisms (for each X,Y € C)

idx+Q®cx y*Qidy idx*®idy*®cx,y

dxy X" XQY"'®Y > X"RY " X®Y >y XY Y ®X

SYRX)eYeX 28N K
(5.34)

Since the family dxy is dinatural in X and Y, it exists a unique mg : K ® K — K such that
dxy = mg o (ix ®iy), which is in fact an associative product on K. Actually, K is endowed with a
Hopf algebra structure whose structure morphisms are similarly defined using the universal property,
but we do not need this here.
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5.4. Equivalence with the Lyubashenko representation

Next, consider the following families of morphisms
Do X e X S K,

ldx* ®(CY*,XOCX,Y* )®ldy

OéxiX*(X)X

Bxy : X' @ XY Y y X' XY oY X KoK, (5.35)

idx*® (CY,X OCX,Y)

WX RXQY y X' XY 29 ke

The families ax and 7% (with Y fixed) are dinatural in X, and the family Bxy is dinatural in
X, Y. Hence by universality of K (and also thanks to the Fubini theorem for multiple coends and to
the universality of K ® K and of K ® Y'), there exist unique morphisms 7 : K - K, 0 : K ® K —
KK Qy: K®Y — K®Y such that

OéX:TOiX, 6X’yzoo<ix®iy), ’7§:Qy0<lx®ldy) (536)

Finally, the morphism § : K — K is defined by § = (e ® idg) 0o O o (idg ® Ak ), where e is
the counit on K and Ag is the two-sided cointegral.

Let X be any object of C and Vx = Home (X, K%9). The Lyubashenko projective representation
Zx - MCG(3) — PGL(Vx) [Lyu95b, Section 4.4] takes the following values on f € V:

(7a) () = (M @ T @idg™") o f,

(n)(f) = (™ @ (ST e ToS) @idg ) o f,

(12)(f) = ([P @ (O (T T)) @idZ ) o f fori>2,
Zx (e, )(f (id?}gii ® ((T@ Oei-1) 0 QK®2'71)) of fori>2.
Recall that the curves a;,b;,d;, e; are represented in Figure 5.7. Since these Dehn twists are a
generating set, we have an operator Zx(f) for all f € MCG(%}). If moreover we take X = 1, the
unit object of C, then this defines a projective representation Z; : MCG(X,) — PGL(V;) of the
mapping class group of Y.

ZX Ta;

(5.37)

N

)
)
)
)

Now, let us explicit the above formulas in the case of C = mod;(H). Recall from section 2.5 that
the category mod;(H) has braiding cxy : X ® Y = Y ® X and twist x : X — X given by

cxy(T®y)=b-y®a; -z, Ox(x)=v" -z

and that the action on the dual module X* is h- ¢ = ¢(S(h)-?) for all p € X*, h € H.
It is well-known (and not difficult to see) that K is H* endowed with the coadjoint action:

Vhe H Vo e K, hp=p(Sh)?h")
and that the dinatural transformation of K is
ix(p@z)=¢( z) € K.
Note that 1(?-z) is just a matrix coefficient of the module X. The dinatural family dx y of (5.34) is
dxy(p @x @1 @y) =(S(b:)?; - y)e(laja; - x)
where in the right of the equality it is the usual product in H*: (fg, h) = f(h')g(h”). To compute the

product mg in K explicitly, observe that i, (p ® 1) = ¢, where H, is the regular representation
of H. Thus
M (P @ Y) =M 0 (I @ i) (P O 1R Y 1) = di,y b, (PO 1R Y1)
= P(S(bi) by )p(Paza:) = p(a;7a:)(S(bi)b;?)

where we used RA = A°PR for the last equality. Moreover, the unit element of K is 1x = ¢, the
counit of H. We record the following lemma, already given in [Lyu95b].
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Lemma 5.4.1. Let " € H* be the right integral on H (unique up to scalar). Then p" is the two-sided
cointegral in K (unique up to scalar):

s

Voe K, mg(u" ®@p)=mg(e®u") =cx(p)

where ek (@) = p(1).
Proof. Using (2.23) and the basic properties of R, we get

mi (W ® @) = 1" (a;2a;)0(S(b;)b;?) = 1" (5% (a;)a;7)e(S(b:)b;?) = p'o = ()"

Similarly:

my (e @ p') = p"(S(b:)?b;)e(aja;) = p" (S*(b; S (b:)?)e(Paza;) = p'o = e(L)p".

The dinatural families of (5.35) are

ax(p®a) =7 2),
Bxy(p @ ® ¥ ®y) = p(?hia; - ) ® ¥(S(ab)? - y) = (7' v 2) @Y(S" T ),

X (e ®r@y) = p(?hia;-x) ®@ab; -y = (70" v-2) @0 vy

where we used (2.11). It follows that the morphisms defined in (5.36) are
T(0) =T oin,(¢p®1) =an,lp@1)=pv7),

O(p @) = 0o (ig,, ®ig,)(P@10Y®1) =B, H, (e @1 1) =7 v)@ (S "),
Qy(p®y) = Qy o (in,, ®idy)(p©10y) =7y, (P01 y) = (7' v) 0" v - y.

In view of (5.37), note that (T ® fy) o Qy(p @ y) = ¢(?v'™') @ v~ - 4. Finally, thanks to Lemma
5.4.1, the morphism § is
S(p) = (") " (SO ?) = (ST W) w (v 0?)

where the second equality is due to v'! @ S(v"1) = S~1(v"7!) ® v'~! (which follows from S(v~!) =
v~1). Moreover, we will need the following lemma to prove the equivalence of the representations.

Lemma 5.4.2. Let p be the representation of L19(H) on H*, then the following formulas hold:

T=py")=0w") S=pw")g "' opivs)o g,
§oT oS =(g7"v).0p(vg")o(gv).,

where h.(¢) = @(?h) for allh € H and p € H*.
Proof. The formula for 7T is obvious. Propositions 4.2.14 and 2.3.4 give p(vp) and then we compute
using (2.25) and (2.24):

-1

p(vs)(@) = v b= (™) (g0 )e")" = (o) (" (go )t
— ,ul(v—1>—1,u'r (vl—l?gv—l) (,D(S_l(?}”_l)g_l’l))
= u' () (g07%), (1 (o' 17)) (9 (), STH" o)
= (™) (gv7?), 0 S0 g () = 4 (vT) T p(va?) 0 g 0 S0 g (¢)
where " = o(h?) for h € H. The last claimed formula follows from S = p(v=1)(g7'v).0p(vavpv4)0

(gv1), and the fact that va,vp € L1 (H) satisfy the braid relation vavgvs = vguavp (see Propo-
sition 4.3.5). O
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For the representation space, we take X = H,eg, s0 that Vy = Homp (Hyeg, K®9) = K®9. Then by
the previous formulas, we get the Lyubashenko projective representation of MCG(%9) (5.37) applied
to mod,;(H):

ZHreg (7)1 ® ... ® @g) = ¥1 - @ Pg—it1 (U—l?) X ... Qg
Hee () (21 ® .. @ Pg) =01 © ... ® (g7 0)u 0 p(vél) 0 (gv™)u(Pgoit1) ® ... © g,
2t (70 ) (01 ® ... @ g) = 1 --®sogfi+1(?v N @ @goira (S )® L ® @,
Do (Te) (1 @ ... @ pg) = QP @ <ngz'+1(?’0( )= N @ pg_ira(S(v @12y Ne...

® @, (5(0(21'72)71)?1)(21'71)71) 7
(5.38)

with ¢ > 2 for the two last formulas. If we take X = C, we get
Ve = Homy (C, K®9) = (K®)™ = {f e K®|Vhe H, h-f=¢(h)f}
where by definition of the action of H on K, the action of H on K®9 is
hepr®...0 0, =1 (S(A)?2hPD) & ... & ¢, (S(h*D)7h9) . (5.39)
Then Z¢ is a projective representation of MCG(X,) (note that Zc is just Zy,,, restricted to (K®9)™).

Y

To conclude this section, we explain how to see Ly1(H) as a coend. Recall the algebra Fy,(H) =
Lo1(H) from Remark 4.1.9. We put a left H-module structure on it by letting h-p = ¢ - S71(h) =
o(STHRW")?H). Since h- (@) = (0" ) * (W -1), Fo1(H) is an algebra in mod;(HP), where H“P
is H with opposite coproduct. Moreover, in HP, we replace A by A°?, R by R’ and S by S~}
that the formulas for the product and the H-action in the coend of mod;(HP) are exactly those of
Fo.1(H). We state this as a proposition.

Proposition 5.4.3. [t holds:

X Eemod; (He°P)
£0,1<H)ngo,l(H)2/ X*® X.

5.4.2 Equivalence of the representations
Recall the map F : H* — H*

F(p) = p(ai?h;),  F ' (p) =@(S " (a;)?h;)
(already used in the proof of Theorem 5.3.22) and let o : (H*)®9 — (H*)®9 be the permutation

T(P1® P2 ® ... QP 1®Yy) =P WPy 1@ ...0 P2 X r.
It satisfies o1 = 0.

Theorem 5.4.4. The representation of Theorem 5.3.19 and the Lyubashenko representation of
MCG(X5) and MCG(X,) are equivalent. More precisely:
1) The isomorphism of vector spaces

(FoS)®oo: K® — (H*)®9
P1®...Q¢p; = pg(biS(Na;) ® ... ® e1(biS(?)a;)
18 an intertwiner between the two representations:
[(FoS)*oa]oZu,(f)=05(f)o[(FoS)*oa].
2) The isomorphism of vector spaces
(FoS)®oo: (K®)™ — Inv((H*)%)
18 an intertwiner between the two representations:

[(Fo S)®9 o 0} o Zc(f) =04(f) 0 [(Fo S)®9 o 0] .
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Proof. 1) We show that this isomorphism intertwines the formulas of Theorem 5.3.22 and of (5.38).
Thanks to the properties of v (2.11), it is clear that (F'0.S)®900 0 Zy,,,(74,) = 05(74,) 0 (F 0 S)® 00,
Next, thanks to (5.31), (2.25) and (2.24), we have

05 (1) () = vg' > = p'(v) " (g 0'?) p(vS ™ (gv")) -
Hence, for ¢ € H*,

01(m) o (F o S)(p) = Ml<v (gv v’ ) vbigt/ az = Ml(v)_lﬂr (g?j?) QO(UQbingai)
= p ()" W (95 (a) ST (b)?) 0 (v gS T2 (bi)bjara;) = (%)

with X; ® Y; = (RR')~'. We have a Yang-Baxter relation

S(aj)S_l(bk) & S_Q(bi)bj & ara; = ajS_l(bk) & S_l (b S_l(b )) & ara; = (ld X S_l X id)(ngR?)_lle;)
= (ld & Sil (029 1d> (R321R R12) Sil(bk)S@Lj) &® bjSi2(bi) X a;ar
which allows us to continue the computation:
(%) = ' (0) 1" (9™ (0) S (a5)7) (v gb; S T2 (bi)asar) = ' (v) ™ 1" (9™ (br) S (a5)7)  (vS5*(by)a)
= p'(0) " " (g5 ab)?) plvbjar) = p'(v) " (guS™H (" TH?) (P
We used (2.10) and (2.11). On the other hand, we compute
(Fo8)oZy,,(m)(p)=(FoS)o(S 0T oS)(p) = (FoS)o(g'v).op(vg')o(gv).(e)
= F o () (/2 (57 0) = f (o) (WS (D)ag) (ST ("))
= 10 (08 @)Y S(7) (08 (X0)
=g (v) " " (vS? (@) S (a;) S~ (be)biS(? ) (vS7H(bjar)) = (x%)

where p is the representation of £,o(H) on (H*)®9. We used Lemma 5.4.2, (2.23) and (2.11). As
previously, we have a Yang-Baxter relation

SQ(CLZ‘)S(CL]‘> ® S_l(bk)bz X bjak = S(aj)82(ai) X bZS_l(bk) & CLkbj
which allows us to continue the computation:

()

l(v)_lur(vS(aj)SQ(ai)b»S (bk)S(7)) ¢ ( "(axb;))

"(0) 7" (S(ay)g ST 0k)S (7)) p(vST (ards)) = ' (v) 7 " (9a;bkS (7)) (vbjan)
Z(U)_IMT(QUU” 1S ) ( /— 1) ,U ) M 05(75 ( "— 1)1}9—1)%0 ’U2U/ 1)
l(v)flul(rys 1 v 1 1) 90(1)21}/ 1) /L ) (gvS ( //—1>?)g0 ?}21]/ 1)

We used (2.10) to simplify S%(a;)b; = S(S71(b;)S(a;)) = gv™! and the properties of p! and u”

recorded in section 2.3. Hence, it holds 67(7;) o (F 0 S) = (F o S) o Zy,,,(75), which clearly implies
that 09(m,) o (F o S)® o0 = (FoS)® oooZy,,(m,). Let us now proceed with 74, (i > 2):

r

I
ISR SR SRS

(FoS)®o0o Z ey (Ta;) 00 0 (STTo FHY®(p,®... ©g)
= (FO S)®g Oog o ZHreg(Td,)(gog(S_l(aj)S_l(?)bj) ® e ® gol(S_l(aj)S_l(?)bj))

= (F28)% 00(p,(S7(a)S ™ (D)) © ... ® @i(S™ ()57 (oS (2)by) @ i (S (a)) S ()" by)

® ... @p1(S ™ (a)STH (b))
=01 ®...Qpi_1 (S l(aj)ak?bkv” 1bj) ® gpi(S_l(aj)S_l(v'_l)ak?bkbj) ®...0 @4
= 09(74,) (01 ® ... pg).
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Finally, for 7., (i > 2):

(FoS)*o00Zp,,(r,)oo0 (ST o FTH)™(p1®...¢)

— (Fo$)® 000 Z, (1.)(¢(S a)S () @ ... sm( < PERG >b]))

= (Fo8)*o0(pg(S7a))ST' (M) ® ... ® SOH-I(S )b;) @ @i (S7H( HeWTh ST ()b)
® i1 (S (ag) ST (WP ST M) ® . <P1( Hag)STH (W ) (7)1)(%2)*151))

=1 (S j)Sfl(v(%’l)’l)a 7b v(2i’2)’1bj) ®...Q0 pi_1 ( Ya;)S~ (v® 1)ak?bkv b))

® @i (S~ ( ) G )ak?bkb ) Qi1 ® ... ® @,
=@1(5” PR 7 ) ... Qpi—1 (S_I(U(Z)_l)?v(g)_l) ® ‘pi(S_l(aj)s_l(U(l)_1>ak?bkbj) ®Q Pit1
Q... 0 py

=0%(7e) (1 ® ... ® ).

We used A’ R = RA for the last equality.
2) It is not difficult to see that (F o S)® oo : K® — (H*)® is a morphism of H-modules, where

K®9 is endowed with the action (5.39) and (H*)®9 is endowed with the action (5.14) (with n = 0).
Hence, the restriction of (F 0 .5)% oo to (K®9)™ indeed takes values in Inv((H*)®9). Since

Zc(f)z(ZHreg(f))}(mg)m and eg(f)zeg(f)hm((m)@g),

the result follows from the first part of the theorem. ]
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Chapter 6

Graphical calculus and relation to skein
theory

The main topic of this last chapter is to explain how to compute in £,,(H) in a graphical way
and to define the Wilson loop map W. For that, we introduce a graphical element associated to
a matrix with coefficients in £,,(H) and combine it with the ones recalled in section 2.5. Hence,
this can be seen as an extension of the Reshetikhin-Turaev functor (section 2.5), even though the
map “evaluation of a diagram” is no longer a functor (the evaluation of a diagram is an element of
Lyn,(H)®V, where V is a H-module). Note that such a graphical calculus can be used to compute
in any algebra defined by means of matrix coefficients associated to a braided Hopf algebra (like H,

O(H), H(O(H))).

We first reformulate graphically the defining relations of £, ,,(H). Then we graphically define the
Wilson loop map W, which to an oriented, colored and framed link in 37 associates an element
of Eigrj:’l(H ). This definition and the resulting properties are equivalent, but maybe simpler, to the
Wilson loops of [BR96], whose definition was based on chord diagrams and did not used a graphical
presentation of L,,(H), and to the Wilson loops of [BFK98a, BFK98b]|, whose formal definition
in the setting of F,,(H) (functions on connections, see section 5.1.3) was based on their notion
of multitangles. Here we choose the canonical thickened graph of Figure 5.2; with this choice, the
definition of the Wilson loop map becomes obvious and natural-looking, thanks to the use of the

graphical calculus.

With the gauge algebra H = Uq, we use the Wilson loop map and its particular properties in this
setting to obtain representations of skein algebras. Note that, as in the case of the representations
of mapping class groups, the restriction to Inv(V') allows us to glue back the disc D and to obtain a
representation of S;(¥,0) (and not just of S,(%9 ,)).

The main results of this chapter are

e The definition of the Wilson loop map W (Definition 6.2.1) and its natural and expected
properties (Theorem 6.2.7, Propositions 6.2.3, 6.2.4, 6.2.9), which indicate that the definition
of W is the good one.

e The representation of the skein algebra S,(3y0) on Inv((U,)®?) (Theorem 6.4.1).

e The explicit study of the representation of S,(2;) on SLF(U,) (Propositions 6.5.2 and 6.5.5).

As previously, we assume that H is a finite dimensional factorizable ribbon Hopf algebra, even
though these assumptions can be weakened for this chapter.
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Chapter 6. Graphical calculus and relation to skein theory

6.1 Diagrammatic description of £,,(H)

Let I be a H-module. We have an isomorphism of vector spaces :

~

Lon(H)Y@I®I* — L,,(H)®Endc(])
TRQURP = ® (y— p(yu).

Let us choose a basis (v;) of I and let (v7) be its dual basis. Then £,,(H) ® Endc(I) = L, ,.(H) ®
Matgim(r)(C) = Matgim(r)(Lgn(H)) and the inverse of the above isomorphism is

Matdim([)(ﬁg,n(H)) = Egn( )®[®[*

M — MZ®UZ®UJ (6.1)

In this chapter, we systematically identify a matrix M € Mataum(Lon(H)) with M! @ v; @ v,
written more shortly M} v; @ v7.

T
We denote by X an element of L£,,(H) ® Endc(I) = Matgim)(Lgn(H)). In general, we will
I I T
restrict X to be a product of the matrices of generators A(i), B(j), M (k) up to some normalization
11)’“, namely:
1L T oL T
V" A1) B(j1)™ M (k)™ .. A1) B(js)™ M (ks)™ € Matgim(r)(Lgn(H)) (6.2)
I I I
with 7, 1y, Ma, Ne € Z and 1 < iy, jo < g, g+ 1 < ky < g+n; for instance M(3)72B(1)"1A(2). Using
I I. .
the identification (6.1), we represent graphically X = X% v; ® v’ by the following diagram:

T
X (6.3)

I
The module I colors the strand while the matrix X colors the handle. Mimicking (2.40), we define
a graphical element corresponding to the negative orientation of the strand:

I T l[

ld[*

Ler ]

where ey : I** — [ is the isomorphism (2.38). Let us explain (6.4). To define the graphical element
on the left, we put a ribbon graph atop the one defined in (6. 3) This ribbon graph represents a

morphism I*® I** — [*® [ in mod;(H) (see section 2.5), which can be applied to XZ V'@ (?,v;) and
thus gives a well-defined element in £, (H) ® I* ® I. For further use we record that due to (2.39)
and (6.7) below, the converse of (6.4) is

X X (6.5)
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6.1. Diagrammatic description of L,,,(H)

I J
The tensor product of two matrices X,Y, defined by

I J I.J. , l
X®Y:X}Yl v; QU QW @ w

(where (v;) is a basis of I, (wy) is a basis of J and (v7), (w') are their respective dual bases), is
represented by the gluing of the corresponding graphical elements:

1 J

NS
X ¥ (6.6)

Definition 6.1.1. A diagram is obtained by gluing (as in (6.6)) several copies of the handle diagrams
introduced in (6.3) and (6.4), and by putting atop an oriented and colored ribbon graph G (see
section 2.5). The evaluation of a diagram, depicted in Figure 6.1, is a map ﬁRT which consists of
applying Frr(G) to the matrices associated to the handle diagrams introduced previously, where Fry
is the Reshetikhin-Turaev functor (see section 2.5). The evaluation of a diagram is an element of
Lon(H)®J1 ®...®J), where Jy,...,J; are H-modules.

J1¢ Jl¢
G
Il Ik [1 ]k
FRT == idﬁqn ®FR (G) OﬁR < o <
oy | N N
X1 X

J )
vai®vj®wk®wl

X
I J
Ly oy

I
X
I, \J ” ”
~ ~ Wdrgy | [Mdrer 19J :
Frr @ = Frr :(X)jllcvz'@wk@wl@w
107 \
X 1®J
X

Figure 6.1: The evaluation map ﬁRT (the double arrows in the first equality mean any orientation).

In the sequel, we always identify a diagram with its evaluation through fRT.

For instance, consider the following diagram:
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Chapter 6. Graphical calculus and relation to skein theory

I
A7\
X y

I 1 , I, 11
X}Yfidl(g)d]@idp« (vi®v3 ®Uk®vl) :X;-Yg v; @ vt = (XY)iv; ® o,

It is evaluated as

I
Hence, we see that this diagram represents the matrix product XY. Similarly, the diagram

I

U_
X
11 I

I ] . I I 7
X dy(v; @v7) = X v (gu;) = X%g;, = tr(gX) = trq(X),

is evaluated as

I
and we see that it represents the quantum trace of X.
I I
Recall that the matrices A(i), B(j), M (k) commute with the morphisms (naturality, see (5.4)).

I J
Hence, this is also true for matrices of the form (6.2). Namely we have fX = X f, where f : [ — J
is a morphism and we identify f with its matrix. Let us see the diagrammatic description of this
fact. We have

I ' , I , I , J ,
Xjf®1d1*(vi®v]) :Xjfka(@v] = (fX)jvk®v] = (Xf)jwk@)w]
J T
:Xfwk@)f]l-wj = XTid; @ f*(wp @ w')

where f*: J* — I* is the transpose of f. Thus we get the first diagram below. The second diagram
is a consequence of the first thanks to (6.4) and the equality foe; =ejyo f*.

J J J
N\ B N\ ’ N\ B N\
X X

\.kh(%
~
~
~

N
Pt

(6.7)
Let us now write the defining relations of £, ,,(H) in a diagrammatic form. Note that for a,b € H,
it holds

1T s PR
(aXb)jvi@)v = Xjav; ® S™(b)v. (6.8)

We will use this fact several times in the sequel.

e Fusion relation of Lo1(H): Recall that

I®J 1 1J J 1J I I g JJ
M = MI(R/)12M2(R,)1_21 = (M bz bj) (CLZMS<GJ)) .
1 2



6.1. Diagrammatic description of L,,,(H)

Hence, we have:

0J, z 1IN/ g\ l
M v @ wy, @ W" @' = Mbibj) (aiMS(aj)) Vg @ Wy @ W" @ v

" UE ® AWy @ ajw" @ S_l(bibj)vl
™ok @ S(a;)w, ® S(a;)w" @ biby'!

mid; ®idy ® cj*l’l* (vk ® S(a;)w, @ biv' ® w”)

. B Ee Ee

mo(id; @idy @ ;) o (id; @ ¢ @idy) (ve ® 01 @ Wy @ W)

We thus obtain the diagrammatic identity below:

I J /
ITwJ [JU /

M
(6.9)
e Reflection equation: The reflection equation in Lo;(H) is the following exchange relation :
1J 1 IJ, J J 1J I IJ,
RioM(R')1oMo = MyR1sM(R)12.
The graphical representation of this equation is depicted as follows:
I \ J
I J 7
(o () N (o (o
I J J I
M M M M
(6.10)

A diagrammatic proof of this relation is shown in Figure 6.2; this is simply a graphical reformulation
of the proof of Proposition 4.1.3. For the second equality, we used naturality (6.7) and the fact that

* —
CJ,I — CJ*7I*.

If we plug the inverse of the tangle (which is a braid) and we exchange I and J in the reflection
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Chapter 6. Graphical calculus and relation to skein theory

\ y \\J

JI
M
J]
I J]
- < <
1 J
M M

Figure 6.2: Proof of the reflection equation in Ly ;(H).

equation above, we get the following relation, which we also call reflection equation:

(6.11)

T
e Negative orientation and inverse of M: Recall the algebra Fy1(H) = Ly1(H) of Remark 4.1.9,

which is H* endowed with the product @1 = ¢(70;5(b;)) ¥(a;?a;). We identify Lo (H) and Fo 1 (H)
T I I
by M — T. In other words, we consider M as a matrix Whose coefficients are linear forms on H; the

evaluation of M on x € H is obviously defined by M ()} M Hz) = ié

Lemma 6.1.2. Under the above identification, it holds

M) = (u ' S(b)S (@)as)”

where uw = gv is the Drinfeld element (2.10).
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6.1. Diagrammatic description of L,,,(H)

Proof.
I ,
(M; * ( ) < by S(by) >< k,alx am>
I I 1\’
= ( b bl> < _IS(bn)S( )S( " lan)
k
I I\
= ( 'bmu 1S52(bS~ (bn))S(am)S(x”)alan>
k
I I I I i I I d ,
(xu 152 am)S(:L’”)) = <x’5(m”)) = e(x)d;.
k k
We used that S?(b,,)S(am) = S(bp)am = u. O

*

I
Still under the identification Lo1(H) = Fo1(H) and by (2.16), we have M (z) = 'S(z). It follows
I I
that the formula of Lemma 6.1.2 can be rewritten as M~ (z) = (u='5(b;))" th’i, and finally:

! ;I I
M = (UblM_l»SQ((ZZ))

Let us represent this formula graphically:

o . o ) (L TN .
Miidp ®er(v' @ (7, 05)) = Miv' @ g~ oy = ((ubeM ™' S?(ay) | V' ® g,
1 ' L1 l 1 1 '
= (M)} S(ap)v' @ vbrv; = (M™); (idr- ® 0 7) o cpe (v; @ 0°).
By definition of the value of a negatively oriented strand in a handle (6.4), we get:

I

M M- (6.12)

I

Note that since this formula is true in Lo (H), it will be true for any matrix X with coefficients
in £,,(H) which satisfies the fusion relation. We also mention that (6.12) implies the following
relation, which will be used later:

tr, (M) = tr, (M). (6.13)

Indeed, thanks to (6.4) and (2.40), we have:
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Chapter 6. Graphical calculus and relation to skein theory

e FExchange relation of L£19(H): Recall from (4.16) that this relation can be written
I J Joo g 1 I JgJ LIy I ;11 I
AlBQ = (GZ)Q(R )12B2R12A1<R )12S(bi)1 = (CLZ‘ a; B bk CLZ) (b] Qg A bl S(bz)) .
2 1
Hence we have:

I J
AL By v @ 0" @ w, @ wP
g g LI N\ /I 11 I \N™
= <a,- a; B by al) (bj ap Ab S(bi)> U V" Q w, ® wP
p n

J I
By AT bjagvy, @ STHb S (b)) v ® a;a;w, ® S~ (bray)w?

J I
By AT 0;S(ar)vm @ bibv™ @ aaw, @ abrw?

J I
By A id; @ e @id (bjS(ak)vm ® a;w, ® bu" ® albkwp)

J I
B;AZI (ld] X Cjr* X ldj*) ¢) (CJ’[ X CJ*J*)(U)O X S(ak)vm X bkwp & Un)
J I
:B;AZL (id[@C‘]’[* ®1dj*> O (CJ,I®CJ*7I*) @) (1dJ®C;b* ®id1*)(wo®w1’®vm®vn)

and this yields the diagrammatic identity below.
I

S

Remark that, as above, the tangle appearing in (6.14) is in fact a braid and it can be inverted in

(6.14)

J I
order to exchange B and A.
e Exchange relation of L,,(H): Recall from (5.5) that for o < 8

J I 1J I 1J J IJ J IT I I I
V(B Ula)s = () U (@) BV (B)a FruaS(bi), = (aiajU(a>s<ak)al) ( ~
1

where U,V are A or B. Hence we have:

=
S 3
T~

()p vm @ V" @ w, @ w?

=~
~

8

IS

<.
T~

I (\°/J JJ J J \™
(a)S(ak)al) (b] bk V(ﬁ) bl S(bl)) Uy, &@ v" R W, X wP

p

" bibrvm @ STH0S(0:)0" @ aza;w, @ STH(S (ag)ar)w?

n

bbby @ bibv" ® aa;w, ® aagw?

w(idy @ g ®@idye) o (cpr @ o) (Wo @ byt @ apw? @ v™)

Se 5% 56 S-S S

(8)
(@)
(a)mid; @ ¢y @ id - (bjbkvm ® ajw, ® bv" & alakwp)
(@)
(@)

m(id; @ ey @idy) o (cyg @ cyeg+) 0 (idy ® o g ®id1*)(wo R uwP ® v, ®U")

136



6.2. The Wilson loop map

and this yields the diagrammatic identity below:

(6.15)

6.2 The Wilson loop map

In what follows, we will consider framed links which are oriented and colored, up to isotopy (equiva-
lently, oriented and colored ribbons up to isotopy). By colored we mean that any connected compo-
nent of the link is labelled by a H-module. We denote by ROC the set of isotopy classes of orlented
framed and colored links in ¥ |, x [0, 1], and by (CT\’, ., the C- Vector space whose basis is R (formal
linear combinations of elements of ROC)

Recall the view of 9 | depicted in Figure 5.2 and assume that it represents 35 , x{0} C X9 %[0, 1]
(thickened surface). If we have a (framed oriented) link L € %9 | x [0, 1], we may assume up to isotopy
that each of the thickened handles simply contains a bunch parallel arcs (i.e. it does not contains
cups, caps or crossings) and that the thickened rectangle contains a (m,0)-tangle (with m even)
projecting onto 3¢ |, x {0}, as follows:

(m,0)-tangle T

Hence we see that L can be represented by a (non-unique) (m,0)-tangle 7. The non-unicity comes
from the fact that we can drag crossings, cups and caps of T along the handles and obtain another
T" which also represents the link L.

Definition 6.2.1. Let L be an oriented and colored framed link represented by a (m,0)-tangle as
explained above. The Wilson loop around L is an element W (L) € L, (H) defined as the evaluation
of the diagram at the bottom of Figure 6.3 (recall Definition 6.1.1). We extend W to CRgS by
linearity and this gives a map W : CR&S — Ly n(H), which we call the Wilson loop map.

Observe that since a tangle 1" representing the link L is of type (m,0) (no outgoing strands), Frr(7)
is a morphism with values in C. Hence, by Definition 6.1.1, the evaluation of the diagram in Figure
6.3 is indeed an element of £, ,(H) @ C = L,,(H).

We note that W (L) does not depend on the choice of a tangle T' representing L. First, since
the Reshetikhin-Turaev functor is an isotopy invariant, the evaluation of the diagram in Figure 6.3
depends only on the isotopy class of T'. Moreover, if we drag certain crossings, cups and caps along
the handles in order to obtain another tangle T” representing L, then this does not change the value
of W(L) thanks to naturality (6.7), see Figure 6.4.

137



Chapter 6. Graphical calculus and relation to skein theory

Tangle associated to the oriented, framed and colored link L

Figure 6.3: Definition of the Wilson loop map W.

J\] J\ 1 \ I I
\ B U ’ O - O

I®J J®I I®I* C
M(j) M(j) M(5) M(j) =1

Figure 6.4: Examples of consequences of the naturality.

We stress that the diagrammatic rules introduced above allow us to compute the value of W in a

purely graphical way. In order to clarify the definition of W, we will compute two examples below.
I I I I
Recall from (4.15) the notations W4 = tr,(A) and W = tr,(B), which corresponds to Wilson loops

I I I
around the loops a and b. More generally if X is a matrix of the form (6.2) we let Wx = tr, (X),
according to (4.6) and (5.8).

Example 6.2.2. In Figure 6.5, we compute the value of the Wilson loop around the simple closed
curve b~'a C 39 x {0}. The result is not surprising: this is simply the quantum trace of the lift of
the simple closed curve b~ la, that is the quantum trace of the holonomy of the closed curve b~'a.
This property is always true, see Proposition 6.2.9. A

We now state the properties of W; they are all natural-looking. The first property is that Wilson

loops are invariant elements.

Proposition 6.2.3. For any L € CRJS, it holds W (L) € L (H).

g7n7

Proof. We give a detailed proof although it is rather obvious. Keep Figure 6.3 in mind. The link L
is represented by some (m,0)-tangle 7. We can assume that the orientations of the strands in the
handles are all positively oriented. Indeed, if in the original link a strand enters an handle with the
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—6
I
- & o - = Wopma
B! A B! A

Figure 6.5: Example of computation of a Wilson loop.

negative orientation then we apply (6.4) and we push the coupons id;- and e; near the tangle T,
obtaining a ribbon graph denoted T”. Moreover, we can assume that there is only one strand passing
in each handle. Indeed, if there are several strands, we use the coupons (6.16) below and we push
them near 7", obtaining a new ribbon graph denoted T".

L o
id id
Vi®.. oV ie... oV (6.16)

The diagram of W (L) now looks as follows:

R Ay

1(1 J(1 J(g) K( g+1) K(g+n)
B(1) A(l) B(Q) Alg)  M(g+1) M(g+n)
where I(i),J(i), K(j) are tensor products as in (6.16). Let (u(a);) (resp. (v(a);), (w(B):)) be a

basis of I(«) (resp. J(«), K(f)), then

W(L)-h
9 I(a) ) (@) ; (@) J(a) Je) - gtn KB) k(@) K(B) .
_ H h(4a 3) (Oé (h(4a—2)>) a(h(4a 1) A( )S<h(4a)>)l: H (h(4g+25—1) M(ﬁ)s(h(4g+2ﬁ)))pﬁﬁ
a=1 p=g+1
g gt+n
Fia(T) (@ ula, & ey @ v(ak, ©ola) & @ w(Ehn, ©u(3)” )
a=1 B=g+1
9 I(a J(a 9t g
=TI Bloyz: Ateote [T M3 Frar (®h4a D), @ HE ()i
a=1 B=g+1
g+n
® h** Vo(a), @ W) @ Q) hHH - Dw(B),, ®h<49+25>w<5)m) = e(h)W(L).
B=g+1
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J
A
1
J I J I
J I J I
A B A B

Figure 6.6: Example of computation of a Wilson loop.

We simply used (5.3), (6.8) and the fact that Frr(7¢) is a morphism @?_, I(«) ® I(a)* ® J(a) ®
J(@) @ @5, K(B) @ K(B8)* — C. O

Let us see the behaviour of W under change of orientation. This is the generalization of the
corresponding fact for the Reshetikhin-Turaev functor (see e.g. [KM91, Lemma 3.18]). Let L be an
oriented framed link; we have L = (Lq, I;)U. . .U(Ly, Ix) where the L;’s are the connected components
of L and the I;’s are their colors. We denote by L; ' the oriented framed curve whose orientation is
opposite to that of L;.

Proposition 6.2.4. With the notation above, it holds
WL L)U. . U (L, Ip)) = W((Ly, IT) U ... U (Ly, L))

Proof. We can assume that L = L;. The result follows from the application of the local equalities
(2.40), (6.4) and (6.5) on W(L;) together with the fact that the diagram W (L;) contains an equal
number of cups and caps (a part of strand crossing a handle is considered as a cup). O

Now we show that W is compatible with the stack product.

Definition 6.2.5. Let Ly, Ly € RS and let Ly € 39, x [0, 5[ be isotopic to Ly and Ly € X9, x]3, 1]

be isotopic to Ly. The stack product of Ly and Ly is L1 % Ly = Ly ULJ € Rgg. We extend the stack
product bilinearly to CRgS.

FExample 6.2.6. In Figure 6.6, we compute the value of W on the stack product a x b. We get that
the Wilson loop around the stack product of the two links is the product of the Wilson loops around
each of these links: W (a x b) = W (a)W (b). This is a general fact, as we shall see now. A

Theorem 6.2.7. The map W : CR?S — L,,(H) is a morphism of algebras:

Proof. The proof is purely diagrammatic. For instance, the proof for ¢ = 1,n = 0 is depicted in
Figure 6.7. We used the definition of W (Figure 6.3), the fusion relation (6.9), the exchange relation
(6.14) and obvious topological simplifications. The proof for the general case is similar: use the
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6.2. The Wilson loop map

definition of W, then use the fusion relation and simplify the diagram, and finally use the exchange
relations and simplify the diagram. As explained in the proof of Proposition 6.2.3, we can assume
that all the strands are positively oriented when they go through the handles and that there is only
one strand in each handle. O

Finally, we show that the Wilson loop around a simple closed curve (simple loop or oriented
circle!) is simply the quantum trace of its holonomy. We restrict to 35, where X, = 3, o; however,
Proposition 6.2.9 and its corollaries are undoubtedly true for 37

An oriented circle v C 37 can be seen as an oriented framed hnk lying in 3% x {0} and thus W (y)
makes sense. Let x € WI(ZO) be a simple loop colored by some H-module / and let [z] be its free
homotopy class. We define

I
Recall the lift Z of a simple loop = from Definition 5.3.7 (express x in terms of the generators b;, a;

I
of m1(%7) and replace the loops b;, a; by the matrices B(i), A(7) up to the normalization V@)

N(z) is defined in section 5.3.2) and the lift f of a homeomorphism f € MCG(%3) from Definition
I

I 1L
5.3.9 (it satisfies f(z) = f(x) for any simple loop = € m(X9)).

Where

Lemma 6.2.8. Let f € MCG(%}) and let v C 9 x {0} be an oriented circle (colored by a H-module),
then

W(f(7) = F(W(y)).

Proof. We can assume that f is one of the Humphries generators. The proof is purely diagrammatic.
Let I be the color of 7. We represent v by a tangle 7" which does not contains crossings. As explained
in the proof of Proposition 6.2.3, we can assume that all the strands are positively oriented when they
go through the handles and that there is only one strand in each handle. Here since there is just one
color, a strand going through a handle will be colored by I(¢) = [ ®...® %, where € = (€1,. .., €x)
is a sequence of + signs and It = 1,1~ = I*. Now, if f = 7,,, we can restrict to ¥¢ and we perform
the graphical computation represented in Figure 6.8. We used the fusion relation and the reflection
equation (6.11). The equalities for the others Humphries generators are shown similarly (but the
diagrammatic computations are more cumbersome): for 7, we can also restrict to X9 and for 74, 7,
we can restrict to . O

Proposition 6.2.9. Let x € Wl(Z;) be a simple loop colored by a H-module I, then

W(x) = tr, (é)

Proof. Assume first that = is positively oriented (recall Definition 5.3.1). Then by Lemma 5.3.11
there exists a homeomorphism f such that x = f(y) where y is either a; or s ... or s, (recall (5.16)).

One can check by direct computation that the result is true for these particular loops. Note that
[f(y)] = f(ly]) and hence, due to Lemmas 6.2.8 and 5.3.10, we get:

I

—_— I

W) = W (W) = FWw) = (trq (57)) —tr, (f(é)) — b1, (F(3) = try (7).

Assume now that x is negatively oriented. Thanks to Proposition 6.2.4, we have W (z) = W ((z™")*)

where (z71)* is 7! colored by I*. Moreover, since x~! is positively oriented, we have a morphism
J

J I
J=i  Loi(H) — Lyo(H) defined by M+ x~! (see (5.7)). Hence applying j— to (6.13) yields

'Recall that according to the terminology fixed in section 5.3.1, a circle is a simple closed curve up to free homotopy
(not necessarily oriented, unless stated) while a loop (element of the fundamental group) is a based oriented curve up
to fixed-basepoint homotopy (not necessarily simple, unless stated).
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Chapter 6. Graphical calculus and relation to skein theory

Ll*LQZ

- < < < <
Jo I I J1 Jo
A B B A A

T

3 | I || T |
w Sl

o/r = W(L)W (L)
A

I
B
Figure 6.7: Compatibility of W with the stack product.
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Ta

T | | T |

| T | | 2 '
I(e) I(p) I(e) I(p) /
% Y
I(e) I(u)®1(e) B A A

| T |

v1BA)!

Figure 6.8: Proof of the equality W o 7,(v) = 7, 0o W (7).
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I I
tr, (.:El) = trg, ((.Tl)l . Thus, using the formula just established for positively oriented circles

and the definition of the lift of a negatively oriented loop, we get

W) = W (")) = tr, (ﬁ) :trq((;%)_l) — tr, (7).
as desired. O

Remark 6.2.10. The second part of the above proof (and more precisely the formula (6.13)) reveals
why we have been forced to distinguish the positively oriented case from the negatively oriented case
when we have defined the lift of a simple loop (Definition 5.3.7). Indeed, if we use the same formula
to define the lifts of the positively oriented simple loops and the negatively oriented simple loops,

I I
then we get that the lift of a;* (for instance) is QIJA(l)_l; but W(a;') = try(A(1)7!) and thus with
this definition W (a;"') would not have been the trace of the holonomy of a;*.

Corollary 6.2.11. Ifz,y € (X5 ,) are simple loops colored by a H-module I and such that [z] = [y],

it holds:
I

b, (F) = b, ().

Proof. trq(é) =W(z)=W(z]) =W([y]) =W(y) = trq(é). O

Corollary 6.2.12. Let v C X ; X {0} be an oriented circle colored by a H-module I, then

W(v) = trg (%) :

I I
Here 5 is a lift of 7y, defined by 7 =y, where y € m(X5) is a simple loop such that [y] = 7.

To conclude this section we mention that, thanks to Corollary 6.2.11, different choices of base-
points on an oriented circle imply equalities between traces. For instance in £y o(H), the equality

I ; I
tr, (UB_lA) = tr, (v_lAB_l)

follows from choosing two basepoints on the circle [b~'a] = [ab™!], which are depicted at the top of

: : : . o : I 1 b
Figure 6.9. Reversing the orientation, we similarly obtain tr, (UBA_I) = t1, (v_lA_lB). In contrast,

;I I
tr, (vaA) # tr, (U"AB).

for all m,n € Z. This is due to the fact that if we choose the basepoint numbered 2 on [ba] at the
bottom Figure 6.9, we do not get a simple loop and the previous results do not apply. For instance,

if H=U,(sly) and I = X*(2) (see Chapter 3), b is just a scalar and a computation reveals that
I1 . .
trq(AB) = —qaiay — gbico — ¢ c1by — ¢ dids
I1
trq(BA) = —ajas + (1 — ¢ Hardy — ¢*brcy — c1by + (1 — ¢ Hdrag + (=1 + ¢ % — ¢ d1ds.

These two elements are not proportional since the monomials (4.34) are linearly independent. Hence
such relations between traces in £y (H) follow from the geometry of simple closed curves on ¥ and
are not simply algebraic coincidences.
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Q) Q) Qs
QR QR

Figure 6.9: Basepoints on the oriented circles [b~'a] and [bal.

6.3 Graphical calculus when H = U,(sl,)

We take H = U, = U,(sly). Moreover from now on, and otherwise indicated explicitly, we assume that
all the strands are colored by the fundamental representation X+(2).2 In this case, the diagrammatic
calculus (and a fortiori the Wilson loop map) explained in the previous sections satisfies the Jones

skein relation:
q'? \ - ql/Q\/( = (¢—q")
\ / (6.17)

This relation means that if d,,d_ and d)| are three diagrams which are equal except in a small disk
D, such that d, looks like a positive crossing in D, d_ looks like a negative crossing in D and d|
looks like two vertical strands in D, then it holds ¢*/2d, — ¢~'/2d_ = 4d,.

An important fact is that X*(2) is self-dual. Using this and the same kind of argument that
in [KM91, Lem 3.18]3, we are going to show that the Wilson loop map W does not depend of the
orientation of the link.

Let {vg,v1} be the canonical basis of X*(2) and {v°, v'} be its dual basis, then

D : XT(2) 5 X1(2)
V0 = —qu (6.18)
vl Vo

is an isomorphism of U,-modules. We denote e : X*(2)** = X*(2) the isomorphism with the bidual
(see (2.38)).

Lemma 6.3.1. [t holds e o D* = D and it follows that

2Recall from section 3.1.3 that the R-matrix belongs to an extension of U, by a square root of K. In order to
evaluate a crossing between two strands colored by Xt(2), we obviously define the action of K/2 on X*(2) = Cvo®Cu;
by ]:{1/21}0 _ q1/2v07 K1/2U1 _ q71/2vl'

3Be aware that the algebra U, of [KM91] is not exactly Uq since their K is a square root of our K, and that
they choose g = K2 for the pivotal element (K in our notations). This choice of g changes some signs between their
formulas and ours, see for instance [KM91, Th 4.3].
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Chapter 6. Graphical calculus and relation to skein theory

Proof. One checks easily that

D*(0%) = (2,v1), D*(v') = —q(?,vp).

Hence e o D*(v°) = e((?,v1)) = KP~ vy = —qu; = D(vY) and similarly for v'. Using this and (6.4),

and the proofs of the others equalities are similar. O

Remark 6.3.2. If we choose K instead of KP*! for the pivotal element g of U,, then a minus sign
appears in the equalities of Lemma 6.3.1. In this case, the value of W(L) may depend of the
orientation of L up to a sign. A

Corollary 6.3.3. When H = U,, g = KP™' and all the strands of L are colored by X*(2), W (L)
does not depend of the orientation of the strands of L.

Proof. We can assume that L simply contains one connected component. Apply W to L. Then in
the diagram representing W (L), introduce two coupons D and D~! in the strand, according to the
orientation of L. Between these coupons, the orientation of the strand is reversed. Using the previous
lemma, we move D along L: at each time it passes through a cup, a cap or a crossing, it changes
the orientation. At the end, the coupon D arrives on the other side of D! and they both collapse,
leaving W (L) with the opposite orientation. See the figure above, where we have introduced D and
D! near a cap in W(L).

q ) D ) D! ) q

]

Hence, we can define the value of W on a non-oriented link: this is just the value of W on L with
an arbitrary orientation (and colored by X*(2)). Equivalently, we can define directly a non-oriented

diagrammatic calculus for £, (U,), with unoriented cups, caps, crossings and handles:
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6.3. Graphical calculus when H = U,(sly)

X+ (2)
Note that until now we simply write X for the matrices X labelling the handles. As in section
4.4.2, we denote by a, b, ¢, d the coefficients of the matrix M, which generate Ly 1(U,):

M= ( o ) € Maty (Lo (U,))

The explicit values of the unoriented graphical elements are:

o (wow) =0 Nl w1
U(1) = v1 ® v — qup ® vy, N(v1 @) = —¢~", N @) =0,
g 000 ¢t 000
\ = q*l/z 00 10 / = 91/2 oo
\ 01q 0 |’ / 0100 |
0 0 0 ¢ 0 00

_@_:—QGUO®U1+bUO®UO_qcvl®Ul+dvl®vo'
M

A simple computation yields the Kauffman skein relation:

\ — 2 > < + q—1/2\/
\ /\ (6.19)

Alternatively, one can derive this relation from the Jones skein relation (6.17) and the independence
of the orientation. Relation (6.19) means that if d.,d) and d- are three diagrams which are equal
except in a small disk D, such that d looks like a positive crossing in D, d| looks like two vertical
strands in D and d_ looks like two horizontal strands in D, it holds d, = q1/2d|| + ¢ Y2d_. Tt is also
useful to record the relation for negative crossings, for twists and for contractible circles:

X X
\ | S )
pdqm {bqﬂ O_—[z]@
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Chapter 6. Graphical calculus and relation to skein theory

where & is the empty diagram. The Kauffman skein relation allows us to resolve all the crossings
in the diagrammatic calculus and is very useful to derive identities in L, ,(U,), like the following
proposition.

Proposition 6.3.4. It holds:
M+ ¢ " WyM +q¢ %, =0

x+(2)
where we recall that Wy = try(M) = tr(KPY M) and Iy is the 2 x 2 identity matriz. We call this
relation the quantum Cayley-Hamilton identity.

Proof. Using (6.12) and the Kauffman skein relation, we get:
A
\ \_/
w = w = —93/2'@- = QQ-U- 'U:)
M1 M M

which means that M~ = —¢?M — qW,,I,. The desired identity immediately follows.

. " d —q°b .
The proof of the previous proposition also shows that M ~! = R . Moreover, it is
p p prop ( —q?c q2a—qqd)
easy to show by induction that
M" = (=1)"" g "R, (War) M + (=1)" g " R,y (W) (6.20)

where the polynomials R,, are defined by Ry(X) =0, R (X) = 1and R,,11(X) = XR,(X)—R,-1(X)
for n > 1 (Chebychev polynomials of the second kind).

We now focus on X7, and we want to prove the following proposition. In fact, it follows from
the property that S,(X;) is generated by the isotopy classes [b], [a]. However, we want to show it
on the £ o(U,) side, with the graphical calculus. Moreover, enhancing slightly the proof of Lemma
6.3.7, we can show a more general result: if X is any product of B*', A*! then Wy € (Wy, Wp).

Proposition 6.3.5. For any framed link L C ¥, x [0,1] (whose all strands are colored by X*(2)),
we have W(L) € C(Wa, Wg). In other words, every W (L) can be written as a (non-commutative)
polynomial in Wy and Wpg.

We need two lemmas.

Lemma 6.3.6. We have:

AW, = WA, BWg = WiB, BAWgs = WeaBA,

AWg = ¢ 'WsA — q¢BA,

BWy = qWaB + ¢*qBA,

BAW, = ¢ 'WaBA — ¢ 4B,

BAWg = ¢qWgBA + ¢ '§A,

Wpa = q 2 WeWy — ¢ ¢ WaWsp (in particular, W € C(Wy, Wg)).

AN ol S

It follows that, if P € C(x1,x9) is a (non-commutative) polynomial, then there exist Q,R,S €
C(x1, x2) such that:

BP(WA, WB) = Q(WA, WB)A —+ R(WA7 WB)B + S(WA, WB)BA

This is also true if we replace B by A or BA but we will not need it.
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6.3. Graphical calculus when H = U,(sly)

Proof. Since Wy is central in Lo (H), we have MWy, = Wy, M. But A, B and* v"'BA = —¢*?BA
satisfy the fusion relation of Ly;(H), thus we can apply the morphisms ja, jg, j,~1pa defined by
Jja(M) = A, jp(M) = B, j,-1p4a(M) = v"'BA and we get the three equalities of 1. Next, using the
exchange relation between A and B (6.14), we prove relations 2 and 3 diagramatically, see Figures
6.10 and 6.11. Relations 4 and 5 are immediate consequences. For instance:

BAW, = BWjA = gWyBA+¢*GBA* = (W BA—qGBAW,—{B = ¢WyBA—¢* BAW,+BAW,—{B.

We used the quantum Cayley-Hamilton identity. It follows that 0 = ¢WiBA — ¢? BAW, — ¢B,

Figure 6.10: Proof of relation 2.

kR

U
A AR ICRTC)

= —qGBA+q 'BW,4
Figure 6.11: Proof of relation 3.

as desired. To show relation 6, simply apply tr, to relation 2. For the second part of the lemma,

4Recall that in this section, all is evaluated in X+ (2) and thus v is identified with the scalar —g=3/2, by (3.18).
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we observe that it is a consequence of a more general fact, namely: if P € C(xy,z5) is a (non-
commutative) polynomial, then there exist Q;, R;, S; € C(z1,x9), i = 1,2, 3, such that:
AP(Wa, Wg) = Q1(Wa, Wg)A + R1(Wa, Wg)B + S1(Wa, Wg)BA,
BP(Wy, Wg) = Qa(Wa, Wg)A + Ry(Wa, Wg)B + So(Wa, Wg)BA,
BAP(Wx, Wg) = Q3(Wa, W) A + R3(Wa, Wg)B + S3(Wa4, Wg)BA.
Indeed, we can assume that P is a monomial and show this set of three equalities by induction

on the length of P (for instance, P = x1x92} has length 4) thanks to the previous commutation
relations. O

Lemma 6.3.7. For any a framed link L C X9, x [0,1] (whose all strands are colored by X*(2)),
W(L) is a linear combination of elements of the form

namely Wi'tr,(B ... try(Btr,(BA)A) ... A) W}.

Proof. Apply the fusion relation to the two handles (B and A) of W (L). Then resolve all the crossings
with the Kauffman relation. We get a diagram without crossings, with a lot of handles labelled B
which contain only one strand at the left and a lot of handles labelled A which contain only one
strand at the right. In general, after this transformation, the diagram will contain pieces which for

instance look like
: :

U U U (6.21)

where U is B or A. But these elements can be transformed in a polynomial in W, thanks to (6.20).
For instance, with the piece of diagram below:

try (Utrg(U*)U?) = trg (Utry(—g "Wy U — ¢ *1)U?) = (—q¢ "W + ¢ 24)tr, (U?)
= (=" WG + ¢ @ty (2 (WF = DU + ¢ *Wyly)
= (¢ "W + a2 P(a (W — Wy — Gg—* W)
Then, since WyU = UWy, we can drag the powers of Wg on the left and the powers of W4 on the
right:
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The remaining strands are of the following form: from left to right, they meet several consecutive
handles labelled B and then they meet several consecutive handles labelled A (note that thanks to
the above transformations, the strands cannot meet several handles with the same label (B or A)
which are not consecutive). Again, this is resolved thanks to (6.20). For instance, with B and two
consecutive handles:

1

where U is B or A. As above, we drag the circle (= Wp) in the first term to the left. We know
that the strand ~ in the second term does not meet any handle labelled by B and using isotopy it is
evaluated as tr,(A") for some i; we transform this into a polynomial in W, thanks to (6.20) and we
drag the result to the right. This gives the desired form. O

Proof of Proposition 6.3.5. It suffices to show that the result is true for the elements of Lemma 6.3.7.
These elements form a sequence which can be defined by induction:

Zfl = WBA, tn+1 = trq(BtnA) .

Thanks to Lemma 6.3.6, t; € C(Wy,Wg). Let us assume that ¢, = P(W,4, Wp) for some non-
commutative polynomial P € C(xy, z3), then due to Lemma 6.3.6:

tng1 = trg(BP(Wa, Wp)A) = try (Q(Wa, Wg)A® + R(Wa, Wg)BA + S(Wa, W) BA?)
= trq(—q‘lQ(WA, W)W A — ¢ 2Q(Wy, W)y + R(Wy, W) BA — ¢~ 1S(Wa, W) BAW,
—q 2S5 (Wy, WB)B)
= —q¢ ' Q(Wa, We)WZ + ¢ ' [2]Q(Wa, Wi) + R(Wa, W) Wpa — ¢~ ' S(Wa, Wg)Wia Wi
- q_QS<WA7WB)WB
=T (Wy, Wg),

for some T € C(xq,xs), again due to the fact that Wiy € C(Wy, Wg). This proves the result by
induction. O

6.4 Representation of the skein algebra at roots of unity

Recall that ¢ = €7 is a 2p-th root of unity. Let ¥ be a compact oriented surface. We denote
by R(X) the set of isotopy classes of framed links (i.e. ribbons) in 3 x [0, 1], and by CR(X) the
C-vector space whose basis is R(X) (formal linear combinations of elements of R(X)). Recall that
the stack product * endows CR(X) with an associative algebra structure. Let K(X) be the ideal
generated by the Kauffman skein relation (6.19). The Kauffman skein algebra of 3, denoted by
S,(2),is CR(X)/K(%).

Thanks to Corollary 6.3.3, we have a map W : CR(X?,) — Lyn(U;) (where we implicitly
color all the elements of R(X9 ) by X" (2)). Since for H = U, the diagrammatic calculus satisfies
the Kauffman skein relation, we get a morphism of algebras W : S (39 ,) — L;,(U,), and more
precisely W : Sg(X¢ ) — LI (U,). This provides representations of the skein algebra of X9  for all
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g,n. Analogously to the representation of the mapping class group, we can glue back the disk D by
passing to the invariants of the representation, and for n = 0 we will see that this indeed provides a
representation of S;(3,) (the result is probably true for any %, ,,).

Let j : X9 — ¥, be the canonical embedding and let j = j x id : X9 x [0,1] — ¥, x [0,1] be
the corresponding embedding. The corresponding map j : R(¥)) — R(3,) is surjective, as well as

the corresponding morphism j : §(X) — S,(3,). If L € S§;(3,), we denote by L° any element of
S,(35) such that j(L°) = L. Since j is a morphism, it holds (L; * L3)° = L LS.

Theorem 6.4.1. 1. Letp: L, (U,) — Endc(V') be a representation (with V' = (UN¥L®... )L,

where Iy, ..., I, are representations of U,). The map
S,(%5,) — Endc(V)
L = p(W(L))

is a representation of Sy(Xy ).
2. Assume n =0 and let pmv be the representation of LY (U,) on Inv((UF)®9). The map

S,(2,) — End@(InV<(U;)®9))
L = pum(W(L°))

is well-defined and is a representation of Sy(3,).

Proof. 1. is obvious.

2. Since j is a morphism, it holds (L; * Ly)° = L$ * L§. It remains to show that it is well-defined.
Thanks to the Kauffman skein relation, we can assume that L is a simple closed curve in ¥, x {0}.
Hence, since m(%,) = m1(X5)/(cg0) (Where ¢gp is the boundary curve), it suffices to check that
Piv(W () = pinv(W (7e)), Where ¥, % C ¥y x {0} are the simple closed curves depicted below:

These pictures represent a neighborhood of the boundary (see Figure 5.4). Take a basepoint on each
circle and endow it with the positive orientation as follows:

X

We get two positively oriented simple loops z,z. = 7 '¢g0 € m1(X9) such that [z] = v, [z.] = 7.

—

It holds® 7. = x1Cy 0, with Cyo = ¢,0 (the lifts are implicitly considered in the fundamental
representation X*(2)). Indeed, to join the loops 7! and ¢, we must necessarily add a cap going
from right to left and thus N(z.) = N(z7')+ N(c,0) — 1 (see section 5.3.2). Moreover, due to (5.19)
and (5.20),

N(z™') =N(y') ==N(y) = =N(z) + 1

This yields

N(z™1)+N(eg,0)—1 —N(z)+N(cg,0)

x’lcgio)

$_1)6VX+(2) (UN(Cg’O)Cgvo) = eVy+(2) (’UN(I)I)_leVXJr(Q) (UN(Cng)cg’O) = ;\—/10970

fc = eVai() (UN(I_lcg,O)xflcgp) = evVy+(2) ('U :L’ilcg’o) = EVx+(2) (U

= eVyx+(2) (U_N(x)

5In general it is of course not true that zy = 7.
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Hence, by Proposition 6.2.9 we have

Pinv (W(’yc)) = Pinv (W($_1cg,0)) = Pinv (trq(lil\c_;O)> = Pinv (trq(;’jcg,O)) = Pinv (trq( 1))
= Pinv (W(ﬁ_l)) = Pinv(W(l")) = Pinv (W(W))

We used that piny(Cyo) = I (by definition) and that W does not depend of the basepoint (always
true) nor of the orientation (when H = U,). O

6.5 Explicit study of the representation of S,(>)

By Theorem 6.4.1, we have a representation of S,;(31) on Inv(U;) = SLF(U,) and by Proposition
6.3.5, W(S,(X29)) = (W4, Wg). Hence, to study the representation of S;(X;) on SLF(U,), it suffices
to study the action of the operators pi,,(Wa) and pi,(Wp). For this, we use again the GTA basis.

6.5.1 Structure of the representation

Recall that we denote by > the representation of £, (U,) on U, o Also recall the formulas (which are
consequences of Proposition 4.2.14 and of (4.9)):
-1

Wirp=—3¢ Wreo=(3¢")" .

where p* = ¢(27) and

gK+¢ 'K ¢ q“rqf — -
C:FE+((]T Z ej—i—Zwk —i—wk)EZ(Uq)

is the Casimir element, with its decomposition in the canonical basis of the center (see Definition
3.1.3) . We denote by

—(s2-1)

Vs = Ux+(s) = Vx—(p—s) = (—1)Silq 2 (6.22)
the scalar corresponding to the action of v on the simple module X*(s) or X~ (p — s)° (vy being
U/y—(p)).

Let us compute the actions of Wy and W on the GTA basis. First, using the expression of C' in
the canonical basis of Z(U,) above and the formulas (3.27) for the action of Z(U,) on SLF(U,), we
get:

Was xS =—elg® +q°)x5, WarGy=—(¢"+q )G — F(xT + Xps)- (6.23)
To compute the action of Wz, we must use the multiplication rules in the GTA basis (Theorem 3.4.1),
the expressions of v and v~" in the canonical basis of Z(U,) (3.17) and the the formulas (3.27) for
the action of Z(U,) on SLF(U,). If 1 <s < p:

€ vl € € vl /UXE(S) € UXC(S) €
Wb X, = UXG(S)(X;XD = Vae(s)(Xso1 T X511)" = Xs—1t —Xsy1-
Vxe(s—1) Vxe(s+1)
For o 1: € + . € vl e\v ! UXe(l) €
W x| = UXe(l)(XQ Xy’ = "UXf(l)(XQ) = 2
Vxe(2)
And for s = p:
€ eyv! € —e\v 1 UVxe € Uxe —€
Wp Xp = UXe(p)(X;Xp) = "UXf(p)(2Xp—1 +2x7°) =2 ®) Xp_1 T2 ®) 1
Vxe(p-1) Vx=e(1)
UXE(P) € —€
=2 Xp—1 T X1,
UXE(p—l)( p—1 1 )

6The symmetry property expressed in the second equality of (6.22) is true for any central element of U,, see (3.11)
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thanks to the (6.22).
Let
- +
P = vect (Xj + Xp—ss Xp )1§s§p71 = vect (XP) Peprojy,

be the subspace generated by the characters of the projective U,-modules. Introduce notation for
the basis elements of P:

Xo:x,j, Xs:X:+X;_5 for1<s<p-1, Xp:X;~

The formulas above and (6.22) give

War X, = —(¢°+q¢°)X, for 0 < s < p,
W Xo = 220X, = —2¢3X,,
U1
Wp> X, = U X1+ U Xsi1 = —q_8+%X5_1 - qs+%XS+1 for1<s<p-—1.
Vs—1 Vs+1
Wee X, = 2—2X, | =2¢3X, .
Up—1

In particular, P is a submodule of SLF(U,) under the action of S,(3;).
Now we compute the action on G,. First, note that

P .
GV = 0,G Lot o X,
t Velay + qut [t] Xt qut [t] t
w1 _ ~ 1P . gt
Gy = ‘G, — qu, lszr + qu, 1th-

Hence:

vl

Web Gy = (xiG)" =v, (xFGy)" +dus [p ()" — v [8] (Gx)”

[s —1] L [s+1] 1 . vs p L Us P O L vs S
= v, Gy_y + s Go+i— X Xt — = X — = X
[s] ' s R s T [T T 8] T [s)
vs [s—1] vs [s—1] Vs D vy s—1 L Us D
= Gso1 + Gopr ———=Xe 1 T4 X1 — — x4
ver 8] e [T e T Tey I T T [
vg s+1 Vs P . Us P Vs S Vs S
+q ——Xop1 + q Xj 1 T : —— X1 = ——Xsp1
Usy1 [8] Vs—1 (8] VUsy1 [8 Vs—1 [8] Vsy1 [5]
v |s—1 vy [s+1 Lvs 1 Lvs 1
= uqu + _uGs+1 —— =X 1+ ——=X1
Us—1 [8] Us1  [8] Us—1 8] Vs 8]
_eql |85 — 1 PENCE 1 s 11 A ol 1
=—q +3 ]Gs_l—q“uG T = X — 4T X,
[s] [s] [s] [s]

for all 1 < s <p—1 (with the convention that for s = 1 and s = p — 1 the undefined terms are 0).
Consider the following subspaces of SLF(U,):

U = VeCt(Xj)lgsgp—l , Y = VeCt(GS)lgsgp—l .

The formulas above reveal that the structure of SLF(U,) under the action of S,(3;) has the following

shape:
U V
W\B\ A:WB
P

Let us check that this gives rise to a composition series:

J1:P C JQZJl@u C J3:J2@V:SLF<Z7(1)
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Lemma 6.5.1. Recall Definition 3.1.3 and notation (4.14). Then (es)a € C(Wy) for all0 < s <p
and (w; +w; )4 € C(Wy) for all 1 <t < p — 1; in particular these elements belong to W(Sq(Zl)).

Proof. Recall from (3.14) that the central elements e, and w;,” + w,_, belong to the subalgebra of
Z(U,) generated by the Casimir element C. Now, in (4.33), we computed that

x+(2) Xt(2) x+(2)

Wy = tr(KP* M ) = —¢°C

with ¢ = ¢ — ¢!, under the identification Wy ; between Lo;(U,) and U,. It follows that the elements
X+t (2) _
es,w;” +w; can be written as polynomials of W), . Hence, applying the morphism ja : Lo1(U,) —

_ I I

L1(U,) defined by M +— A, we get that the elements (e5)a = ja(es), (Wi +w; )a = jalw! +wy)
Xt (2) Xt (2)

can be written as polynomials in Wy = Wy = ja( Wi ) ]

Proposition 6.5.2. J; C Jy C Js is a composition series of SLF(U,) under the action of S,(%4).
More precisely, the structure of the representation is schematized by the following diagram:

U 1%
V‘E\ A%WB
)

Moreover, this representation is indecomposable.

Proof. We will use the element W (b~'a) = W, p-14 which by Lemma 4.4.5 implements the multipli-
cation by x3:
Wop-14> ¢ = X3 4.

o J; is simple: Let 0 # S C J; be a submodule, and let 0 # ¢ = 20Xy + ... + 2,X, € S. Thanks
to Lemma 6.5.1 we can use the elements (e;)4. Note that (3.27) gives (e;)a > X; = 0, ;X;, and thus

VO<j<p (eari=1(e?) =z;X; €8
Since x # 0 one of the z;, say z,, is not 0. Then X, € S, and using Y we get

(6871>AI/I/’UB_1A [>Xs = (esfl)A > (Xsfl + Xerl) = Xsfl € S,
(es—i—l)AWJB*lA > Xs = (es—l—l)A > (Xs—l + Xs—i—l) = Xs+l €s.

Continuing like this, we get step by step that all the X;’s belong to S, and hence S = J; as desired.

o Jy/Jy is simple: Let YT = xI + Jy for 1 < s < p — 1; these elements form a basis of Jy/J;. We
have

(e)a>X; = 0iX;

Wop1abXT =X3, Wop1aPXe =Xe 1 +Xapy for2<s<p—2,  WpaabX, 1 =X, 2

The same reasoning as for J; gives the result.

o J3/Jy is simple: Let G, =G, + J, for 1 < s < p—1; these elements form a basis of J3/Jo. We
have

(61')14 Daj = 6i,jGj,
W)B—IA Dal = 2]62
11 11—
i ]G3_1+MGS+1 for2<s<p-2,
“=TH B
W)B_IA > Gp,1 = [2]Gp,2.

—_—

melA D@S =
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The same reasoning as for .J; gives the result.

For the last claim, write SLF(U,) = Uy @ Us. At least one of the two subspaces U; or U, contains
an element of the form ¢ = G; + 2#1 NG+ >0 e DX Assume for instance that it is U;. Then,
thanks to Lemma 6.5.1 we can use the elements (w] + w; )4 and (3.27) yields

(wi +wi)av e =¢((wf +wy)?) =G ((wf +wy)?) =x{ +x,_, € PNUL
It follows that P C Uy. Now, let ¢ = 3. miGi + 3, V5x§ € Us; then

Vi<i<p-—1, (w+w;)avy=mn(x;j+x,;) € PNU;={0} and thusn =0,
VO<j<p, (e)av®=nGi+% X +% X0 =V XS TV iXp; € U2
with the convention that xg = x, = 0. Now for any j, we have

(ej—1) aWup-1a® (VX7 + % iXp—i) = Y X—1 + Vo jXpji1 € Un,
(ej+1)aWup—14> (% X + % X)) =V X1 + W iXp_j1 € Ua.

Continuing as long as necessary to apply (e€j4x)aWyp-14, we will get that ’ijz,fyfxg € Uy. But
X;, X, € P C Uy and it follows that 7;” = 0,7; = 0. Hence ¢ = 0 and U, = {0}, as desired. O

Remark 6.5.3. The first claim of Proposition 4.4.12 is a consequence of the previous proposition.
Indeed, SLF(U,) is indecomposable under the action of W (S,(X1)) = C(Wa, W) C LI(U,), and

hence it is indecomposable under the action of the whole algebra Eifjg(Uq).

6.5.2 Relationship with the skein representation

Consider a handlebody H, C R?, such that H, = ¥, C R?, for instance H, = ¥ ,41 x [0,1]. Let d
be the Euclidean distance on R3, let ¢ > 0 and define

Hi = (o e Hy|d(e 0, <5}, Hy={re H|droH)>c).  (621)

Take e sufficiently small, so that Hgga/ ? is diffeomorphic to Y, % [0,1] and H, 925 is diffeomorphic to

H,. This dichotomy gives a representation p of the skein algebra S,(%,) = Sq(HgSE/ 2) on the skein
module S,(H,) = S,(H;*), defined by:

p(La)(L2) = (L1 U L), (6.25)

where (L) is the value of L in S;(H,). In practice, this just means that we put the link L; C ¥, %[0, 1]
very close to 0H, and the link L, C Hy very close to the core of H,,.

Recall, for 0 < n < p — 1 (where ¢** = 1), the n-th Jones-Wenzl idempotent f,. This is an
element of the Temperley-Lieb algebra on n strands TL,, = Enqu(X T(2)®") (see e.g. [CFS95]
and the references therein)”. The properties of these elements f,, are listed in Figure 6.12. Note
that X*(2)®" 2V @ X*(n+ 1), where V does not contain X*(n + 1) as a direct summand; then
fn € Endp, (X*(2)®") is the unique (up to scalar) morphism which factorizes through X*(n + 1):
XT(2)%" -5 Xt (n+1) = XT(2)%".

For each n, we have a closure map cl : TL,,, — S,(H;) (note that H; is a thickened annulus
St x [0,1] x [0,1]):

cl

"Note that for n > p the identification between the Temperley-Lieb algebra on n strands and the centralizer of Uq
on X (2)®" is not true: instead we have a strict embedding TL,,, — Endg, (X*(2)®").

(n strands)
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|...ﬂ...| ||...|
N EanEa |

(n strands) e

[ ]-2 rEn I |

Rl L

Figure 6.12: Jones-Wenzl idempotents.
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|
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Since ¢ is a 2p-th root of unity, we can consider the reduced skein module S;ed(Hg), which
is a quotient of S,(H,) by relations involving the Jones-Wenzl idempotents, see e.g. [Cosl5]. In
particular, any diagram containing f,—; is null in the reduced skein module. Here we consider the
case g = 1, and a basis of S}l"ed(Hl) is given by the (classes of the) closures cl(f,), with 0 <n < p—2.

Let us study the representation of S;(X1) on Si!(Hy). It is known that Sy(3;) is generated by
the circles [a] and [b]; by definition of the representation, their actions are given by

where we denote p(a), p(b) instead of p([a]), p([b]).

Lemma 6.5.4. In Si*)(Hy) it holds

pla) (el(f)) = —(@"*" + ¢~ D)el(fa),
p(0)(cl(fo)) = cl(fr),  p(0)(cl(fn)) = cl(fu-1) + L furr), PO (cl(fp-2)) = cl(fp-s)-

Proof. Observe that, for n > 2,

I B IR
] ]

L
| n
cl ‘/‘/ = ¢ ' "-// = ¢ 'c "—/
H |
— = ()

We used the fact that the composition of a cup or a cap with the Jones-Wenzl idempotents is 0 and
the cyclicity of cl. Now, assume by induction that p(a)(cl(f,)) = Ancl(f,) for a family of scalars A,.
It is easily checked that A\g = —(¢+¢7'), A1 = —(¢* + ¢2). Applying the Kauffman skein relation
twice in TL,,,, we obtain
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L1 I R

[ n+1 ] n+1 | | n+1
(D) -] ) e =P

| ! | | H
= (A + (1= ¢7*)g ") el(far1)

For the second equality we used the recurrence formula for the Jones-Wenzl idempotents together with
the induction hypothesis. Hence \,4+1 = g\, +(1—¢2)¢™™, and it follows that )\, = —(g"+' —q¢~ ("),
as desired. To compute the action of p(b), note first that thanks to the reccurence formula, we have

| ... ] B n + 1]
|| — | @ O

Hence, using again the recurrence formula of the f,,’s and the cyclicity of cl, we get

cl<‘> —cl< n+1 >— [n—l—l]d A

H_’_H

() e (29)
= cl(fn-1) +cl(fas1)

The case n = 0 is obvious and the case n = p — 2 follows from the previous equality and the fact
that f,—y =0 in S;*(Hy). O

Let U = Jo/J1 = vect(x)) where Y is the class of x modulo P (see Proposition 6.5.2).

1<s<p—1’

Proposition 6.5.5. The S,(31)-modules S;*(H) and U are isomorphic. The isomorphism is given
by
F: S(H,) — U
A(fa) = 3P Xin = Vet X

where vy is defined in (6.22).
Proof. Recall that

W(a)>xs =—(¢" +q )X,

— V1 _ — Vs __ Vs _ _ Up—1__
W) exi =—x3, WO>rX:=—Xe1+—Xer1», WO >X ==X o
V2 Vs—1 Vs+1 ’Up_Q

The result follows by comparison with the formulas of Lemma 6.5.4. n
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The representation S}°!(H;) can be described in terms of the Reshetikhin-Turaev topological
quantum field theory (RT TQFT for short). Recall the cobordism category C for this TQFT: the
objects are closed oriented surfaces and the morphisms Home (S, S;) are pairs (M, L), where M
is a compact oriented 3-manifold endowed with a p;-structure such that OM = (—5;) U Sy and
L C M is a framed link up to isotopy. For more informations, see [RT91, BHMV95], the lecture
notes [Cosl5| and also [BW16], where the representation of S,(X,) given by the RT TQFT is shown

to be irreducible. The 3-manifolds H fs/ 2% % [0,1], HZ* = H; of (6.24) with framed links inside
them are cobordisms:

(21 X [0, 1],L1> c Homc(Zl,El), (Hl,Lg) c Homc(Q,El).

The functor Z : C — Vectc of the RT TQFT (which depends on the primitive root of unity ¢), gives
linear maps

Z(Sy x [0,1],L1) : Z(S1) = Z(%1),  Z(Hy, L) : Z(2) = C — Z(%y).

Hence Z(H,, Ls) is just a choice of an element of Z(3;). As recalled in [BW16, Lemma 5], every
element of Z(X;) can be written Z(H;y, Lo) for some link Ly, C H;. Moreover, the maps Z(M, )
satisfy the Kauffman skein relation:

Z(M, L) =q¢"*Z(M, L)) + ¢ *Z(M, L-)

where L, Ly, L C M are identical except in a little ball in which they look like in (6.19). It follows
that Z(3; x [0,1],-) : §,(21) — Endc(Z(%1)) furnishes a representation of S,(¥;) on Z(%):

Ly Z(Hy, Ly) = Z((S1 x [0,1], Ly) o (Hy, Ly)) € Home(Z(2), Z(51)) = Z(51). (6.26)

The map Zy, : S,(Hy) — Z(%,) defined by Zy, (L) = Z(H,, L) is surjective, and more precisely it
gives rise to an isomorphism Zj¢ : Si*Y(Hy) — Z(341). Moroever, Z® is an isomorphism of 8,(31)-
modules between S;ed(Hl) endowed with the action (6.25) and Z(3;) endowed with the action (6.26).

We have seen that, for X, the representation of Theorem 6.4.1 “contains” the natural skein
representation (6.25) on S;*/(Hp) (or equivalently (6.26)), in the sense that it is the composition
factor Jo/Jy. By [BW16, Theorem 7], we know that the representation (6.26) is irreducible in any
genus. Hence we conjecture the following.

Conjecture 6.5.6. The representation (6.25) of Sg(3,) on Si*Y(H,) is a composition factor Jiy1/J;
of the representation of Theorem 6.4.1 (namely the representation induced by the Wilson loop map

W 2 84(5g) = Lg0(U,) and the representation of Lo(Uy) on (UF)®9).
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