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Preamble: Brief presentation of Sano�

Sano� is a multinational pharmaceutical company headquartered in Paris, France, as of 2013
the world's �fth-largest by prescription sales. The company was formed as Sano�-Aventis in
2004 by the merger of Aventis and Sano�-Synthélabo, which were each the product of several
previous mergers. It changed its name to Sano� in May 2011. Sano� engages in the Research
and Development (R&D), manufacturing and marketing of pharmaceutical drugs principally
in the prescription market, but the �rm also develops over-the-counter medication. It is one of
the global leading companies in its �eld, pledged to innovate and develop healthcare solutions
to its patients from all around the world. More than 110,000 people at Sano� are dedicated
to make a di�erence on patients' daily life, wherever they live and enable them to enjoy a
healthier life. Sano� transforms scienti�c innovation into healthcare solutions from the pre-
vention stage to the �nal treatment. The company covers 7 major therapeutic areas: : human
vaccines, rare diseases, multiple sclerosis, oncology, immunology, infectious diseases, diabetes
and cardiovascular solutions and consumer healthcare.

Figure 1: Clinical trials, a very important role in biostatistics.

Medicine has had a massive evolution in the last century. Sano� was one of the companies who
helped in this evolution because of the hard work of its >100,000 employees who committed
their e�orts to improve patient's everyday life by ensuring them a healthier heart and soul. In-
novating in the researches of serious diseases treatment over the past years had a great impact
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on human's life. In fact, the average life expectancy of people all over the world has doubled
in that time. To be committed to the uninterrupted advancement of health is one of Sano�'s
trademarks. Because of the quality of its individuals, Sano� has proved her character and
excellence on the healthcare market by expanding new treatments not only to treat diseases,
but also to prevent them in the future for anyone, worldwide.

Sano� helped the developing world throughout the years with its employees expertise. Thus,
her employees invented and developed the �rst to be known vaccine for dengue virus that
infected 390 million of people every year which range is threatened to enlarge due to climate
change.

Sleeping sickness treatments have rescued more than 180,000 people. Yet, they started the �rst
vaccinations campaigns in the Philippines and they are close to eradication polio! Further-
more, they developed new innovative treatments for killer diseases like cardiovascular diseases
and diabetes and there is more yet to come.

Furthermore, health inequalities is threatening people all around the world (1/3 of world's
population have no contact with healthcare support), and Sano�'s task in providing health-
care solution products is just one part of the job to exterminate this crisis.

At Sano�, they take notice to its stakeholders with a collaborative approach to accommodate
the way they operate to meet their commitment to health and bring to light those innovations
between people who are in need. To do so, Sano� partnered with the GAVI Alliance, the
World Health Organization, the Bill and Melinda Gates Foundation and many more.

Lastly, the goal at Sano� goes beyond producing medicine, they are dedicating their work
to make a real positive impact in people's lives and as a leader they do not reckon this as a
task but as a responsibility.

My thesis work was accomplished (thanks to CIFRE PhD funding), in Sano� R&D (almost
26% of employees works for R&D), in the Biostatistics and Programming department, sup-
ported by the demand and need of Sano�. Indeed, the idea of the thesis was identi�ed following
the problems related to phase II, in particular, dose selection problems, intermediate analyzes
to evaluate the sample size, within the framework of saving the recruitment of patients (bud-
getary saving), without loss of power, etc. These problems are related to di�erent therapeutic
areas (Diabetes, oncology, etc.) and may concern several types of drugs.
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Résumé

Contexte, Motivation

Les études de recherche de dose constituent une étape majeure du développement de médica-
ments et doivent être menées avec soin. De façon plus générale, la méthode de détermination
de la dose est un facteur clé du succès ou de l'échec de la phase III et des phases ultérieures du
développement du médicament. Par exemple, [Sacks et al.2014] a�rment qu'environ 16% des
échecs de développement de médicaments sont dus à une sélection inadéquate des doses et,
plus globalement, une sélection inadéquate des doses a été considérée comme l'une des raisons
du déclin observé de la productivité de la R&D dans l'industrie pharmaceutique à la �n des
années 90.

Hormis les indications en Oncologie, dans la plupart des cas, les méthodes traditionnelles
de détermination de la dose étaient essentiellement fondées sur les procédures de tests mul-
tiples: la dose bien tolérée la plus élevée parmi les doses signi�cativement (en utilisant une
procédure de test multiple appropriée qui contrôle l'erreur globale de type I) supérieures au
placebo, par rapport au critère d'e�cacité de l'étude de phase II, a été choisie pour les phases
ultérieures. La méthodologie de tests multiples n'étant pas assez robuste et informative, ceci
a motivé le développement d'approches plus récentes, fondées sur la modélisation, comme
l'approche MCP-Mod [Bretz et al.2005].

Aujourd'hui, la tendance actuelle, dans le même esprit, est clairement de considérer le choix de
la dose comme un problème d'estimation statistique et non plus comme un problème d'essais
multiples.

Cependant, les méthodologies les plus récentes se sont surtout concentrées sur la caractérisa-
tion de la relation dose-réponse liée à l'e�cacité (même si la méthodologie MCP-Mod tenait
compte d'une fonction dose-réponse non monotone qui fait implicitement référence aux con-
traintes de limitation de dose liées à la sécurité). Il est maintenant clair que le processus de
sélection des doses doit explicitement tenir compte de la toxicité potentielle liée à la dose du
médicament.

La motivation de mon travail de thèse était d'examiner le problème de la sélection des doses
dans le cadre de la théorie de la décision et d'évaluer les propriétés des procédures de sélection
des doses basées sur l'utilité.
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Objectifs

L'objectif global de cette thèse était d'aborder le problème de la sélection des doses en
développement clinique sous l'angle de la théorie de la décision et des fonctions d'utilité.
Les thèmes de la sélection des doses et des études de détermination des doses devaient être
étudiés sous leurs di�érents aspects:

� Règles de décision

� Plans d'étude

� Méthodologie d'analyse statistique

L'objectif de départ de mon travail de thèse était de proposer et d'étudier divers cadres dé-
cisionnels fondés sur les fonctions d'utilité et les règles de décision associées. Ces fonctions
d'utilité doivent être appropriées et pertinentes par rapport aux décisions que le promoteur doit
prendre: concevoir l'essai de phase II (taille totale de l'échantillon de phase II et l'allocation
des patients aux doses), dé�nir le moment de l'analyse intermédiaire dans le cas des études
"Seamless" de phase II/phase III, décider de poursuivre ou non la phase III et choisir la dose
pour la phase III quand cela est pertinent.

Le problème de la conception optimale a déjà été étudié par de nombreux auteurs dans un
contexte général ainsi que dans le contexte spéci�que de la sélection des doses. Le plus sou-
vent, dans ces travaux, la notion de D-optimalité a été utilisée (basée sur le déterminant de la
matrice d'information de Fisher). Ainsi, un des objectifs initiaux de la thèse était de classer
les conceptions en fonction de leur capacité à maximiser l'utilité moyenne et d'identi�er une
conception optimale de cette manière.

L'objectif principal de cette thèse était de proposer une méthodologie statistique spéci�que
pour analyser les données de l'étude de détermination des doses a�n d'éclairer les règles de
décision dé�nies dans le cadre décisionnel proposé.

Principaux résultats

Premièrement, dans le contexte d'un plan d'étude "Seamless" de phase II/phase III, nous
avons dé�ni un cadre de décision statistique dans lequel le promoteur doit prendre des dé-
cisions séquentielles dans le but de maximiser l'utilité future attendue. Pour ce faire, nous
avons proposé et discuté diverses formes de fonctions d'utilité: pour chacune d'elles, le calcul
de leurs espérances impliquait le calcul de la Probabilité de Succès (PoS) en phase III. En ter-
mes de méthodologie statistique, nous avons considéré une approche fréquentiste: le promoteur
analyse les données de l'analyse intermédiaire (la partie phase II du Seamless design) à l'aide
d'un modèle paramétrique de type Emax via une estimation du maximum de vraisemblance,
mais nous avons considéré la possibilité que le promoteur prenne en compte l'incertitude con-
cernant son estimation de la fonction dose-réponse pour prendre ces décisions. Nous nous
attendions à ce que ce cadre de travail permette de comparer di�érents Seamless designs, un
plan d'échantillonnage, un 'design' étant dé�ni par le ratio entre la taille de l'échantillon au
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moment de l'analyse intermédiaire et la taille totale de l'échantillon, ainsi que par la réparti-
tion des patients entre les groupes de dose au début de la phase II. À cette �n, nous avons
e�ectué des simulations d'essai dans le but d'identi�er les conceptions "Seamless" optimales,
pour certaines des fonctions d'utilité les plus pertinentes parmi l'ensemble des fonctions pro-
posées, mais cet exercice a été abondonné par la suite: les conceptions optimales identi�ées
étaient, dans la plupart des cas, très proches de la conception équilibrée standard. Mais ce
travail a également souligné l'importance cruciale de la taille de la phase II avec, pour certains
scénarios, une allocation optimale allouant plus de patients en phase II qu'en phase III, ce qui
n'est pas réaliste dans la pratique.

Par conséquent, la partie majeure de la thèse portait sur la situation encore plus fréquente de
la sélection des doses dans le contexte de l'étude de phase II de détermination de la dose, avec
un échantillon de taille �xe et un plan équilibré. Pour ce faire, nous avons proposé un cadre de
décision statistique un peu plus simple que celui mentionné ci-dessus, où les valeurs d'utilité
sont attribuées aux doses elles-mêmes, puis indirectement attribuées aux décisions à la �n de
l'étude de phase II, et sont égales à la valeur d'utilité de la dose choisie pour la phase III ou
une valeur nulle si l'on décide de ne pas poursuivre le développement du médicament après la
phase II. Maintenant, le problème du promoteur est de trouver la meilleure dose, c'est-à-dire
celle qui a l'utilité la plus élevée.

Nous avons considéré une valeur d'utilité intégrant deux composantes: une composante liée à
l'e�cacité (la probabilité de succès = la puissance d'une étude de phase III - avec 1000 patients
par exemple - de cette dose par rapport au placebo) et une composante liée à la sécurité. Nous
avons choisi de caractériser l'e�cacité de la dose de cette manière parce que cette dé�nition
est directement applicable à tous les types de critères d'e�cacité (quantitatifs, binaires, temps
jusqu'à l'événement, etc.) et même si elle peut être exprimée de manière équivalente en terme
de taille de l'e�et, elle a une interprétation plus directe, notamment pour les cliniciens, en ter-
mes de puissance pour une étude de référence de phase III. Pour la composante sécurité, nous
avons choisi de la caractériser par la probabilité d'observer un taux de toxicité inférieur ou égal
à un seuil donné (que nous avons �xé à 0.15 pour nos simulations) en phase III (toujours pour
une étude de 1000 patients au total). Cette approche présente l'avantage d'être similaire aux
concepts utilisés dans les essais de phase I en Oncologie, qui visent notamment à trouver la
dose liée à une toxicité limitante (notion de "Drug limiting Toxicity"). Nous avons élaboré un
cadre décisionnel basé sur la fonction d'utilité suivante : U(d) = PoS(d)× P(toxobs ≤ 0.15)2,
mais la même méthodologie serait facilement applicable à d'autres fonctions d'utilité similaires
(en considérant par exemple un exposant k 6= 2 pour la composante sécurité).

Pour réaliser l'analyse et identi�er la dose optimale, nous préconisons l'utilisation d'une méth-
ode bayésienne, au lieu d'une approche fréquentiste de maximum de vraisemblance: elle a
l'avantage de fournir un ensemble plus riche de règles de sélection des doses et, par dé�nition
de l'approche, de permettre au promoteur d'utiliser des informations externes déjà disponibles.

Pour sélectionner la dose optimale, nous avons proposé une règle de décision originale basée
sur la probabilité a posteriori qu'une dose donnée soit la dose optimale. Nos simulations ont
montré que cette nouvelle méthode est supérieure à la règle de sélection de dose basée sur le
classement des utilités calculées après l'estimation bayésienne des paramètres (moyennes ou
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médianes a posteriori) et a des performances similaires à la règle de sélection de dose basée
sur le classement des doses par l'utilité espérée a posteriori. De plus, nous pensons que notre
méthodologie proposée prend mieux compte de l'incertitude que les dernières approches plus
traditionnelles et présente l'avantage d'être facilement adaptée à la dé�nition des règles d'arrêt
pour les analyses intermédiaires de l'essai de phase II: nous avons proposé une règle d'arrêt
comme "s'arrêter à l'analyse intermédiaire si la probabilité a posteriori que la dose choisie soit
la dose optimale est ≥ 0.80", qui peut être facilement comprise par une équipe clinique.

En outre, pour améliorer l'e�cacité de l'identi�cation de la dose optimale, nous avons proposé
une application originale de l'algorithme MCMC de Metropolis-Hastings. Nous avons d'abord
formé des moyennes par lots de longueur 150 des valeurs MCMC d'utilité simulées, et nous
avons utilisé ces moyennes de lots pour calculer les probabilités a posteriori d'intérêt. Ces
versions lissées et plus concentrées de la probabilité a posteriori permettent une di�érencia-
tion plus facile des doses, et par exemple, une augmentation de la probabilité de s'arrêter aux
analyses intermédiaires (sur la base de la règle d'arrêt dé�nie ci-dessus).

Nous avons étudié les propriétés des règles de décision en simulant des essais de phase II
de di�érentes tailles : 250, 500 et 1000 patients. Pour les deux derniers plans (500 et 1000
patients en phase II), nous avons également évalué l'intérêt d'e�ectuer une analyse intermédi-
aire lorsque la moitié des patients sont recrutés (c'est-à-dire avec les 250 premiers et les 500
premiers patients respectivement). L'objectif était alors d'évaluer si, pour les essais de phase
II de plus grande taille, la possibilité de choisir la dose au milieu de l'étude et de poursuivre
l'étude jusqu'à la �n si l'analyse intermédiaire n'est pas concluante, pouvait réduire la taille
de l'essai de phase II tout en préservant la pertinence du choix �nal des doses.

Les simulations montrent que l'estimation d'une dose optimale est une tâche di�cile et ex-
igeante. Par exemple, pour la plupart des scénarios présentant un pro�l d'e�cacité satisfaisant,
la probabilité de choisir d'aller en phase III suite à une étude de phase II avec 250 patients
était le plus souvent égale à moins de 60%. Heureusement, ces probabilités de prendre la bonne
décision augmentent avec la taille de l'échantillon. Nous avons constaté, lors de la simulation
d'un seul essai (mais avec une taille d'échantillon croissante), que la distribution a posteriori
des valeurs de l'utilité se concentrait progressivement autour des vraies valeurs à mesure que
la taille de l'échantillon augmentait, mais ce processus peut être lent dans certaines situations.
En ce qui concerne le choix de la dose, la probabilité de choisir la bonne dose (conditionnelle
à la décision du promoteur d'aller en phase III) augmente également en fonction de la taille
de l'échantillon. En termes d'estimation des valeurs de l'utilité elles-mêmes (c'est-à-dire en
mettant de côté l'adéquation des règles de décision), nous avons constaté une convergence
des estimations bayésiennes (moyenne ou médiane a posteriori) vers la valeur vraie, mais la
moyenne a posteriori présentait moins de variabilité que la médiane.

Pour les pro�ls d'e�cacité et de sécurité montrant un pic clair de la valeur d'utilité pour
une seule dose donnée, une sélection précise de la dose peut être atteinte avec une taille
d'échantillon limitée. Si plusieurs doses adjacentes présentent des valeurs d'utilité similaires,
l'identi�cation de la dose optimale est plus di�cile et nécessite plus de patients.

En e�et, quelles que soient les contraintes de temps et de budget, le promoteur a toujours

18



intérêt à mener de grandes études de phase II pour prendre des décisions précises concernant
la �n du programme de développement ou le choix de la dose. Mais, dans la pratique, la
taille de l'échantillon de l'étude de phase II est nécessairement limitée par des contraintes
budgétaires et des contraintes de temps. Raison pour laquelle nous avons évalué si le fait
de permettre une analyse intermédiaire, lorsque la moitié des patients sont recrutés, peut
réduire, en moyenne, la taille de l'échantillon de l'essai de phase II tout en préservant les
caractéristiques opérationnelles (comme la capacité à prendre les bonnes décisions) du design
et des règles de décision. Comme nous l'avons mentionné ci-dessus, nous avons arrêté l'essai
à l'analyse intermédiaire lorsque la probabilité a posteriori que la dose choisie soit la dose op-
timale était ≥ 0.80. Nous avons également évalué d'autres types de règles d'arrêt, sur la base
des valeurs d'utilité estimées lors de l'analyse intermédiaire, et donc moins faciles à interpréter
que notre règle d'arrêt retenue, mais celles-ci n'ont apporté aucune amélioration signi�cative
par rapport à notre approche. C'est la raison pour laquelle nous ne les avons pas consid-
érées davantage, dans la suite du travail. De plus, nous avons évalué d'autres valeurs seuils,
comme 0.70 ou 0.90, mais la valeur de 0.80 a apparemment montré le meilleur compromis
entre l'exactitude de la sélection de la dose et la fréquence de terminaison précoce de l'étude
à l'examen intermédiaire (le plus souvent l'essai se termine prématurément avec une bonne
prise de décision, mieux c'est). Pour certains scénarios, en particulier lorsque la meilleure
dose présente un avantage évident en termes d'utilité par rapport aux autres, cette approche
présente de bonnes propriétés: avec une probabilité assez importante d'arrêt à l'analyse inter-
médiaire, elle permet de réduire considérablement la taille de l'échantillon tout en maintenant
les propriétés de la grande taille d'échantillon du design �xe. Pour d'autres scénarios, elle est
moins utile, car l'étude est rarement interrompue au moment de l'analyse intermédiaire, le
promoteur n'étant pas en mesure de déterminer clairement la meilleure dose à ce stade-là. De
façon générale, nous avons conclu que ces analyses intermédiaires n'augmentaient que légère-
ment le risque de prendre à tort la décision d'aller en phase III tout en réduisant la taille
moyenne de l'échantillon de l'essai de phase II.

En conclusion, nous avons élaboré un cadre �exible de sélection des doses fondé sur la théorie
de la décision et l'utilité pour les études de phase II de détermination de doses, présentant des
caractéristiques de fonctionnement satisfaisantes. Ce cadre de travail a également permis de
plani�er des analyses intermédiaires avec des règles d'arrêt qui peuvent être facilement dé�nies
et interprétées par l'équipe clinique dans ce même cadre.
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Summary

Context, Motivation

Dose-�nding studies are a major milestone in drug development and should be attentively
coordinated. More generally, the dose-�nding methodology is a key factor of success or fail-
ure in the phase III and later phases of the drug development. As an example, it is claimed
in [Sacks et al.2014], that approximately 16% of the failed drug development are due to inade-
quate dose selection and more globally, inadequate dose selection was considered as one of the
reason of the observed decline of the productivity of pharmaceutical industry R&D observed
in the late 90's.

Apart from the oncology indications, in most cases, traditional dose-�nding methodologies
were essentially driven by multiple testing procedures: the highest well tolerated dose amongst
those signi�cantly (in using a suitable multiple testing procedure that controls the global type
I error) superior to the control, with respect to the e�cacy criterion in the dose-�nding phase
II study, was selected for later phases. As the need for more sound and informative approaches
became more clear, more recent approaches moved the methodology from the multiple testing
methods to the "modeling" based methods with the MCP-Mod [Bretz et al.2005] approach.
Now current trend, in this same spirit, is clearly to consider the dose selection as a statistical
estimation problem and not anymore as a multiple testing problem.

But still those most recent methodologies mostly focused on characterizing the dose-response
relationship related to e�cacy (even though the MCP-Mod methodology considered non
monotonic dose-response function which implicitly refers to safety related dose limitation con-
straints). It is now clear that the dose selection process must explicitly consider the potential
dose related toxicity of the drug.

The motivation of this work was to consider the dose selection problem in the framework
of Decision Theory and assess properties of utility-based dose selection procedures.

Objectives

The global objective of this thesis was to address the problem of dose selection in clinical
development with the point of view of Decision Theory and utility functions. The topics of
dose selection and also of dose-�nding studies were to be studied in their various aspects:

� Decision rules
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� Study designs

� Statistical analysis methodology

The �rst objective of this work was to propose and study various decision-making framework
based on utility functions and related decision rules. Those utility functions must be suitable
and relevant with respect to the decisions the sponsor has to make: design the phase II trial
(total phase II sample size and weights of the doses arm), de�ne the timing of the interim
analysis in case of seamless phase II/phase III designs, decide to continue in phase III or not
and choose the dose for phase III when relevant.

The problem of optimal design was already studied by many authors in general settings as
well as in the speci�c context of dose selection. Most often, in those works, the notion of
D-optimality (based on the determinant of the Fisher information matrix) was used. One of
the objectives was to rank designs with respect to their ability to maximize the mean utility
and identify an optimal design in this manner.

The last objective of this thesis was to propose a speci�c statistical methodology to analyze
the dose-�nding study data in order to inform the decision rules de�ned within the proposed
decision-making framework.

Main Results

First, in the context of seamless phase II/phase III study design, we have de�ned a Statistical
Decision framework in which the sponsor needs to take sequential decisions with the objective
of maximizing the expected future utility. For this matter, we proposed and discussed various
forms of utility functions: for all of them, the calculation of their expectations involved the
calculation of the Probability of Success (PoS) in phase III. In terms of statistical methodology,
we considered there a frequentist approach: the sponsor analyzes the data of the intermediate
analysis (the phase II part of the seamless design) using a parametric model of the Emax
type via maximum likelihood estimation but we considered the possibility that the sponsor
takes into account the uncertainty regarding his estimation of the dose-response function to
take these decisions. We expected this framework to enable comparisons of di�erent seamless
designs, a design being de�ned by the ratio between the sample size at the interim analysis
and the total sample size and also by the distribution of patients among the dose groups at
the beginning of phase II. For this purpose, we performed trial simulations with the objectives
of identifying the optimal seamless designs, for some of the most relevant utility functions
discussed, but this exercise was not fully successful: the optimal designs identi�ed were, in
most cases, very close to the standard balanced design. But this work has also highlighted
the crucial importance of the size of phase II with, for some scenarios, an optimal allocation
allocating more patients in phase II than in phase III, which is not realistic in practice.

Therefore, the major part of the thesis was focused on the even more frequent situation of
dose selection in the context of the phase II dose-�nding study with a �xed sample size and a
balanced design. For this purpose, we have proposed a statistical decision framework a little
bit simpler than the one above mentioned: utility values are assigned to the doses themselves,
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and then indirectly assigned to the decisions at the end of the phase II study: as being equal
to the utility value of the selected dose for phase III or a null value if it is decided not to
pursue the drug development after phase II. Now the sponsor's problem is to �nd the best
dose, that is to say, the one having the highest utility.

We considered a utility value integrating two components: an e�cacy-related component (the
PoS = the power of a phase III trial - with 1000 patients for instance - of this dose versus
placebo) and a safety-related component. We have chosen to characterize the e�cacy of the
dose in this manner because this de�nition is directly applicable for all types of e�cacy crite-
rion (quantitative, binary, time to event, etc.) and even though it can be equivalently expressed
in term of e�ect size, it has a more direct interpretation, especially for clinicians, in terms of
power for a reference phase III study with total sample size of 1000 patients for instance. For
the safety component, we chose to characterize it by the probability of observing a toxicity rate
lower or equal to a given threshold (that we set to 0.15 for our simulations) in phase III (still
for a trial of 1000 patients in total). This approach has the advantage of being similar to the
concepts used in phase I trials in oncology, which particularly aim to �nd the dose related to
a limiting toxicity (notion of "Drug limiting Toxicity"). We have developed a decision-making
framework based on the following utility function: U(d) = PoS(d)×P(toxobs ≤ 0.15)2, but the
same methodology would be easily applicable for other similar utility functions (considering
for instance an exponent k 6= 2 for the safety component).

For conducting the analysis and identifying the optimal dose, we advocate for the use of a
Bayesian method, instead of a frequentist maximum likelihood approach: it has the advantage
of providing a richer set of dose selection rules and, by de�nition of the Bayesian approach,
allows the sponsor to use external information already available.

To select the optimal dose we proposed an original decision rule based on the posterior proba-
bility for a given dose to be the optimal one. Our simulations have shown that this new method
is superior to dose selection rule based on the ranking of utilities computed following Bayesian
estimation of the parameters (posterior means or posterior median) and has similar perfor-
mance than dose selection rule based on the ranking of the doses by the posterior expected
utility. However we believe that our proposed methodology better accounts for uncertainty
than the latter more traditional approaches, and has the advantage to be easily adapted for
de�ning stopping rules for interim analyses of the phase II trial: we proposed stopping rule
such as "stop at interim analysis if the posterior probability for the selected dose to be the
optimal dose is ≥ 0.80", which can be easily understandable by a clinical team.

In addition, to improve e�ciency in the identi�cation of the optimal dose we proposed an
original application of Metropolis-Hastings MCMC algorithm. We �rst formed batch means
of length 150 of the mcmc simulated utility values and used those batch means to compute
the posterior probabilities of interest. These smoothed and more concentrated version of the
posterior probability allow an easier di�erentiation of the doses and for instance, increase the
probability to stop at the the interim analyses (based on the stopping rule de�ned above).

We studied the properties of decision rules by simulating phase II trials of di�erent sizes:
250, 500 and 1000 patients. For the last two designs (500 and 1000 patients in phase II), we
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have also evaluated the interest of performing an interim analysis when half of the patients
are enrolled (i.e. with the �rst 250 and the �rst 500 patients included respectively). The
purpose was then to evaluate whether or not, for larger phase II trials, allowing the possibility
of choosing the dose in the middle of the study and continuing the study to the end if the
interim analysis is not conclusive, could reduce the size of the phase II trial while preserving
the relevance of the �nal dose choice.

The simulations show that estimating an optimal dose is a di�cult and demanding task.
For instance, for most of the scenarios with a satisfactory e�cacy pro�le, the probability of
making the choice of going to phase III following a phase II study with 250 patients was most
often less than 60%. These probabilities of making the good decision increase with the sample
size. We noticed, in simulating one single trial (but with sequentially increasing sample size)
that the posterior distribution of the utility values progressively concentrated around the true
values as the sample size increases, but this process can be slow in some situations. Concerning
the dose selection, the probability of selecting the right dose (conditional on sponsor's decision
to go to phase III) also increases as the sample size increases. In terms of estimation of utility
values themselves (i.e. in putting aside adequacy of decision rules), we noticed convergence of
the Bayesian estimates (posterior mean or median) towards the true value, but the posterior
mean showed less variability.

For those e�cacy and safety pro�les that show a clear peak of utility value for one given
dose, accurate dose selection can be achieved with limited sample size. In case several adja-
cent doses show similar utility values, the identi�cation of the optimal dose is more challenging
and requires more patients.

In fact, regardless of time and budget constraints, the sponsor has always interest to run
large phase II studies to make accurate decisions regarding the termination of the develop-
ment program or the selection of the dose. But, in practice, the sample size of the phase II
study is necessarily limited by budget and time constraints. This is why we assessed whether
allowing an interim analysis, when half of the patients are enrolled, can reduce, on average, the
sample size of the phase II trial while preserving the operational characteristics (like ability to
make the good decisions) of the design and decisions rules. As mentioned above we stopped
the trial at the interim analysis when the posterior probability for the selected dose to be
the optimal dose was ≥ 0.80. We also assessed other types of stopping rules, based on the
utility values estimated at the interim analysis, and therefore less easily interpretable than our
retained stopping rule, but they did not bring any signi�cant improvement compared to our
approach, this is why we did not consider them further. Moreover, we assessed other threshold
values, 0.70 or 0.90, but the value of 0.80 showed apparently the best trade-o� between the
accuracy of the dose selection and the frequency of termination of the trial at the interim ex-
amination (the more often the trial is terminated prematurely with the good decision-making
the better). For some scenarios, in particular when the best dose shows a clear bene�t in utility
as compared to the others, this approach has good properties: with a quite large probability of
study termination at interim analysis, it enables to reduce the sample size while maintaining
the properties of the �xed large sample size design. For some other scenarios, it is less useful
as the study is rarely terminated at the interim analysis, the sponsor being unable to clearly
identify the best dose at interim analysis. In general, we concluded that those interim analyses
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only slightly increased the risk of wrongly taking the decision to go to phase III while reducing
the average sample size of the phase II trial.

To conclude, we developed a �exible Decision Theory/ utility-based dose selection frame-
work for phase II dose-�nding studies that has satisfactory operating characteristics. This
framework allowed also to plan interim analyses with stopping rules that can be easily de�ned
and interpreted by the clinical team within this same framework.
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Chapter 1

Introduction

1.1 Drug Development

Figure 1.1: Summary of clinical trial phases (Source: Sano�).

Before digging into the thesis subject, here are the steps for a drug development in clinical
research (see Figure 1.1 above).

There are mainly three major axes in the clinical development of a new drug: the research
phase (pre-clinical phase including biological and animal research), the development phase
(research in human: phase I, phase II and phase III), and the marketing part (phase IV).
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After the discovery phase, preclinical and animal testing studies are conducted (1 to 2 years),
followed by phase I of tolerance and human volunteer trials (less than 100 subjects for a du-
ration of about one year), then "Go / NoGo" decision step for Phase II, i.e. the decision to
perform (or not) the late phase study.

Phase II is often divided into two parts for a duration of 2 to 3 years: phase IIa and phase
IIb. The phase IIa consists in a relatively small (from 10 to 100 patients) Proof of Con-
cept (PoC) study where the aim is to con�rm the pharmacological or clinical activity of the
drug, very often with a high dose. The phase IIb often consists in a dose-�nding study, where
the objective is to identify the optimal dosage of the product in terms of e�cacy and tolerance.

Then, there is the "Go / NoGo" step to decide wether or not to proceed with phase III.
In phase III, which usually takes 3 to 5 years, the trials are conducted on several thousand
patients representative of the population to which the treatment is intended. These are com-
parative trials in which the developing drug is compared to an already marketed e�ective
treatment or to a placebo, i.e. a treatment without pharmacological activity.

Finally, there is the phase IV, where trials of this phase are carried out once the drug is
marketed, on a often very large number of patients (up to tens of thousands of people) for a
duration of about 10 years. These trials allow to deepen the knowledge of the drug under the
actual conditions of use and to evaluate its tolerance on a large scale. Pharmacovigilance thus
makes it possible to detect very rare undesirable side e�ects (also called adverse events) which
could not be detected before, during other test phases.

1.2 Methodologies for dose selection in drug development

De�nition of the dosage and dosage schedule is a key question during clinical development of
a new drug, and it is the objective of the so-called dose-�nding studies. It is now well docu-
mented that poor dose selection is a root cause for failures or delays in drug approval [Sacks
et al.2014]. The goal is to satisfy the requirement that patients should be exposed only to the
amount of drug that they really need. In other words, the idea is to determine an acceptable
dose level and ideally, the characterization of the dose-response relationship. Safety problems
will de�nitely be generated when the dose is too high, although a failed program will result
due to a di�culty of authenticating a satisfactory e�ectiveness, when the selected dose is too
low. Here comes the major role of dose-�nding studies in drug development, these studies
should be rigorously implemented.

Traditionally, apart from oncology indication, the search of the optimal dose resulted from
a sequential process: �rst the set of e�cacious doses (it could include only one dose or in the
worst case scenario, none) was identi�ed and second, the highest dose considered as "safe" or
"well tolerated" was selected for the late development phases. Also, the �rst step related to
the identi�cation of the e�cacious doses were driven by multiple-testing procedures: the set of
e�cacious doses was de�ned as the set of doses that were signi�cantly di�erent from placebo in
the dose �nding study after adjustment for multiplicity. Various multiple-testing procedures
can be considered: Dunnett's procedure is widely used for the quantitative variables, more
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recent general gatekeeping procedures [Dmitrienko and Tamhane2007] are also used.

A more recent approach that requires the assessment of the dose-response (for e�cacy) rela-
tionship is the Multiple Comparison Procedure and Modeling (MCP-Mod) [Bretz et al.2005].
It uses a prede�ned set of candidate models for the dose-response relationship. Once the ev-
idence of a drug e�ect is established at the MCP step using multiple contrast tests, a Mod
step is used to estimate the dose meeting the expectations of the sponsor.

It is now becomingly accepted that �nding the right dose should be rather considered as
an estimation problem than a multiple testing problem [Li et al.2017]. This latter traditional
approach, as well as the more recent MCP-Mod procedures generally consider e�cacy and
safety sequentially: doses associated with statistically signi�cant di�erences versus the con-
trol, for the multiple testing approach, or doses with desired di�erence versus control, for the
MCP-Mod approach, are identi�ed �rst and then the highest dose amongst them considered
as "well tolerated" is generally chosen. An alternative approach should rather rank the doses
using e�cacy and safety assessments simultaneously, via utility functions.

On the other hand, in many settings the dose selection is mainly driven by e�cacy. In absence
of safety considerations, one typically searches for the dose which is near the plateau, e.g.
the dose reaching 90% or 95% of the maximal e�cacy denoted by ED90 and ED95. This
holds for monotonic dose-responses. Higher doses will unduly expose the patients to potential
toxicity issues while lower doses may represent a substantial loss of e�cacy. Another dose
of interest is the Minimum E�ective Dose (MED), i.e. the smallest dose associated with a
statistically signi�cant and clinically relevant e�ect. The range of doses between the MED
and the ED90/ED95 constitutes the interesting dose zone. When serious safety issues arise
within this interesting zone, the dose selection becomes more challenging and involves multiple
criteria. Additional toxicity may counterbalance a gain of e�cacy and one needs to introduce
some utility score balancing both e�cacy and safety.

This thesis aims to extend the modeling approach based on Decision Theory and utility func-
tions to optimize decision rules (dose choice) and designs. The choice of the utility function
approach was driven by Decision Theory [Savage1954] that claims that utility functions are
the most natural and consistent way to describe and rank preferences or decisions.

1.3 Designs for dose-�nding studies: �xed and adaptive designs

studies

The standard dose �nding study is parallel arms study with 4 or 5 doses and a control group
(in general a placebo group) with a balanced design. One of the objectives of the thesis is
to propose utility functions based decision rules in this �xed sample size design but also use
utility-based considerations to optimize the design as well. The problem of optimizing the
design for the purpose of dose selection has already been addressed (see for example [Bretz
et al.2010] where the aim is to establish e�cient study designs to estimate relevant target
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doses) but the methodology is most often based on C- or D-optimality. Some work dedicated
to the optimization of designs based on utility functions exist but they are rather sparse: we
can mention [Foo and Du�ull2017], in which the design is optimized by minimizing the expec-
tation of a cost. But as of today, one lacks of a uni�ed framework based on Decision Theory
aimed at assessing and comparing several dose-�nding strategies and designs.

For several years adaptive designs became more and more popular in the pharmaceutical
industry and in particular much attention was brought on adaptive seamless designs. In fact,
these designs o�er the prospect to incorporate di�erent drug development phases into a single
trial, allowing the use of accumulated data and information of the trial, and consequently a
promising dose-�nding strategy. Because of the growing importance of those designs we aim
also to develop a utility-based decision-making framework (for dose selection) for those designs
also. A corollary objective is to propose some utility-based tools to optimize the designs: �rst
in terms of ratio between phase II and phase III sample sizes, and, second, in patient allocation
to doses at the beginning of phase II.

1.4 Objectives of the thesis

The global objective of this thesis is to address the problem of dose selection in clinical devel-
opment with the point of view of Decision Theory and utility functions. The problem is to be
addressed in its various aspects:

� Use Decision theory and utility functions to rationalize and optimize decision-making
related to the choice of dose

� Use this same framework to optimize the design of the phase II trial. This work is
conducted in both contexts of �xed sample size phase II trials and adaptive seamless
phase II/phase III trials

So this thesis starts by a comprehensive review of the bibliography addressing the utility ap-
proach, adaptive designs and dose optimality: the literature review is summarized in Chapter
2.

The �rst section of Chapter 3 is devoted to the common materials and methods applied to
most of the work contained within this thesis. It describes all the required denotations, as well
as the mathematical formalization of the e�cacy dose-response modeling approach, along with
the model-based framework, including Probability of Success (PoS) computation in particular.

Because of the growing importance of adaptive designs in the pharmaceutical industry, we
consider this framework �rst. So in the following sections of Chapter 3, we study the prob-
lem of optimizing the dose selection as well as the design, in the context of adaptive seamless
designs: for this latter objective the aim is to identify the best timing for the interim analysis
(ratio between the sample size at interim analysis and the total sample size) and the optimal
allocation of patients within the doses arms at start of the study. We �rst propose and dis-
cuss several types of utility functions and then we assess, through simulations, their ability to
identify an optimal design.

28



The Chapter 4 is dedicated to the problem of optimizing the dose selection in the con-
text of phase II trial with a �xed sample size design, this is the most frequent case in practice.
For this purpose, a two-component utility-based approach is proposed to optimize the dose
selection process in order to maximize the PoS in phase III. The �rst component is for e�cacy
and the second component is for safety. So we consider, for a dose d, a utility function of the
form: U(d) = (efficacy term(d))h × (safety term(d))k, and we propose decision rules based
on a Bayesian methodology. Properties of these decisions rules are compared using simula-
tions assuming various e�cacy and safety pro�les of the drug. More precisely, we propose a
dose-ranging trial (phase IIb) comparing J doses of a new product versus placebo followed by
a pivotal phase III trial with a single dose selected versus placebo. E�cacy is characterized by
a unique continuous endpoint which is supposed to be the same in phase II and in phase III.
Safety is modelled using a binary endpoint, with "0" denoting no toxicity and "1" denoting the
presence of toxicity, mimicking the Drug Limiting Toxicity (DLT) commonly used approach
in oncology. In general, de�nition of toxicity will typically be project dependent but as a
generic example one may think of permanent treatment discontinuation due to Adverse Event
(AE). Toxicity could also be de�ned as a composite endpoint involving multiple AEs of interest.

The key question to which this thesis aims to respond is to know, the sample size of phase III
being �xed, how the sample size of the phase IIb study impacts the quality of dose selection
and the chances of successful development, in order to provide recommendations on this sam-
ple size.

Moreover, a sequential design (with futility and e�cacy rules at the interim analysis) is com-
pared to a �xed design in order to allow one to hasten the decision to perform the late phase
study. Operating characteristics of this approach are extensively assessed by simulations under
a wide range of dose-response scenarios.

InChapter 5, we assess the properties of the posterior distributions (posterior means or poste-
rior medians), by simulating trials with sequentially increasing sample size, and we graphically
examine (through violin plots) the properties of the estimated posterior distributions of the
utility values. We also perform exploratory analyzes, comparing di�erent designs, alternative
decision rules for dose selection, relative utility loss criterion to make recommendations on
phase II sample size, and several stopping criteria for interim analysis.

Finally, Chapter 6 summarizes our Bayesian decision-making framework, addressing the pro-
posed method, and discussing the choice of the utility function, thresholds related to decision
rules, and decision criteria for interim analysis. Some perspectives are highlighted at the end
of the chapter, suggesting, for instance, prior assessment to guide the sponsor and improve
the decisions, and advocating a re-evaluation of the choice of dose-response models, in terms
of robustness, with the possibility to perform a Model Averaging approach.
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Chapter 2

A brief literature review

2.1 Adaptive designs

In general, adaptive designs consist in using information and accumulated data in a trial, in or-
der to modify some aspects of the design without compromising the validity of the study [Pall-
mann et al.2018]. Thus, the de�ned changes can then be implemented according to the interim
analyses results, carried out at some planned time points in advance. In practice, an adaptive
design allows one to modify characteristics such as the number of patients, the possibility
of combining two phases in the same trial, the eligibility criteria in the trial, randomization
rules, treatment's dose and duration, treatment groups (closure, enrichment, etc.), or even
evaluation criteria.

It is worth noting that an adaptive seamless design [Pallmann et al.2018]; [Bretz et al.2006];
[Bauer and Kieser1999] is a particular de�nition of adaptive designs, and is used to combine
two clinical studies into a single study, it could be a seamless phase I/II design, or a seamless
phase II/III design. For example, a seamless phase I/II design consists in combining safety and
activity assessment into one trial. A seamless phase II/III consists in combining selection and
con�rmatory stages into one trial, "Seamless phase II/III designs are aimed at interweaving
the two phases of full development by combining them into one single, uninterrupted study
conducted in two stages" [Bretz et al.2006]: at the interim (after stage 1), one selects a treat-
ment for instance, this treatment is maintained together with the comparator arm (placebo or
control arm) in stage 2. The �nal comparison of the privileged treatment with the comparator
arm may incorporate both stages patients (stage 1 + stage 2), and is ful�lled while controlling
the multiple type I error rate at a pre-speci�ed level α.

In [Bretz et al.2006], authors discussed �exible test procedure allowing for adaptively selecting
hypothesis at interim and allowing combination of learning and con�rming in a single seam-
less trial. In other words, they discussed all necessary tools required for an adaptive design
implementation: adaptive tests, hypothesis selection, combination tests, the closure principle
and multiple testing in adaptive designs. [Bretz et al.2006] is deeply rooted in the frequentist
framework, mentioning that the �exibility of the adaptive approach allows use of Bayesian
decision tools in the interim.

Con�rmatory adaptive designs with Bayesian decision tools for a targeted therapy in oncology
were assessed in [Brannath et al.2009]. Authors used adaptive multiple test design: combina-
tion tests for time-to-event data (examples of time-to-event data could be: time from entry
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to hospital until discharged, time from being registered into a research study until the disease
of interest is occured, time from an examination and diagnosis of a disease until death, etc.).
They used Bayesian decision tools as well, de�ning decision rules and thresholds and calculat-
ing posterior and predictive probabilities. In the same context, a Bayesian adaptive approach
was proposed in [Grieve et al.2013], for pulmonary hypertension disease, in order to select
a dose for phase III, accounting for both e�cacy and safety modeling as well. Authors put
more emphasis on such designs, and recommend the improvement of methodological aspects
compared to traditional designs, with the purpose of modifying some characteristics such as
sample size re-estimation, patient-enrichment, and other components intending to reach the
goal, in an optimal and e�cient way, to select the �nal dose.

Adaptive (seamless) designs have always been essentially used in the last two decades, in order
to select doses. Recently, these designs were used in a di�erent context, which is the optimiza-
tion of stage 2 by optimizing patients allocation, see [MacCallum and Bornkamp2015]; [Geiger
et al.2012]; [Christen et al.2004]; [Grieve2017]. In their most general de�nition, seamless de-
signs can be described in Figure 2.1 below.

Figure 2.1: Clinical trial steps.

This �gure illustrates the di�erent stages of a general seamless design. There are di�erent
stages (usually 2 as in the graph), each step ending with a decision impacting the next stage
and the study ends with a �nal decision:

� Yi,j represents the data of the ith arm at step j.

� Di,j is the decision on the ith arm at the end of the j step. The decisions Di,j can impact
the data Yi,j+1 of the following step, in very di�erent ways:

� The decision may simply consist of stopping or keeping the ith arm in the study.

� The decision may consist of changing the sample size of the ith arm (and possibly
all the arms).

� The decision can change the probability of patient allocation in the ith arm for the
next step j + 1.
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This work was explored at the beginning of my thesis (see Chapter 3 and Appendix A.1):
no real gain was noticed when optimizing patient's allocation to doses, and according to
several scenarios, the optimal design was almost the balanced design. So, optimizing the dose
allocation ratio in stage 2 of the dose-�nding study o�ered very little improvement in regard
to signi�cantly increased operational complexity and consequently, this optimization part was
removed from the scope of this thesis (see Chapter 3 and Appendix 1).
Note that the dose allocation optimization for stage 2 may be handled in two ways: based
on observed stage 1 data only (by applying adaptive randomization, for example see recent
publications such as [Lin et al.2016]; [Geiger et al.2012]; [Christen et al.2004]; [Grieve2017])
or based on observed stage 1 data and expected data in stage 2 (by computing the PoS
or the conditional power [Li et al.2002] for example). In [Grieve2017], the author discusses
adaptive designs, Bayesian designs and adaptive randomization based on the medical literature,
highlighting some speci�c case studies, basically aiming to select doses, with a particular
interest in using both e�cacy and toxicity information. However, despite all the highlighted
bene�ts, the author does not hesitate to emphasize the disadvantages that can result from
such designs (including di�erent sources of bias, such as time bias, accrual bias, etc.).

Conversely, it is noted that despite some disadvantages of adaptive designs, these designs are
more robust than conventional designs, and have less impact on type I error and other sources
of bias, see [Bretz et al.2009] for example, where multiple topics were discussed, such as adap-
tive tests for a single null hypothesis, conditional error function for adaptive combination tests,
multiple testing in con�rmatory adaptive designs and closure principle.

In [Geiger et al.2012], the work includes highly adaptive designs and dose-response/dose-
toxicity detection. The interesting part of this publication was the real application in a par-
ticular therapeutic axis, more precisely, type 2 Diabetes mellitus. The aim of the study was to
apply a Bayesian adaptive plan for stage 1 to allocate patients to doses, and a �xed plan for
stage 2, in order to select two doses of 'Dulaglutide' for phase III. Dose-selection was based
on decision rules along with safety and e�cacy modeling. Sample size re-estimation was also
performed in order to increase the probability of showing superiority to a comparator arm (an
e�ective treatment). Advantages of their implemented adaptive design have been clearly high-
lighted, compared to a classic �xed design. The gain o�ered by deviating from the classical
balanced randomization scheme was marked by the possibility to optimize the dose allocation
ratio for stage 2. In addition, authors demonstrated e�cacy using all accumulated data before
and after the adaptive interim analysis while preserving a strong control of type I error. Ad-
ditional trials were conducted to evaluate the performance of the recommended doses of the
drug.

A new approach aiming to handle these problematics (safety and e�cacy combination, dose
selection, etc.) has been proposed in [Christen et al.2004]; [Houede et al.2010]; [Gajewski
et al.2015]; [Kirchner et al.2016]. The idea is based on maximising a utility function. Utility
functions represent the bene�ts of the stage 2 and the �nal dose recommendation. In [Gajewski
et al.2015] and [Christen et al.2004], a Bayesian adaptive design is built according to the utility
approach (see Section 2.4).
This approach will be discussed in more detail in Section 2.4, where the utility concept is
de�ned, along with some examples of utility functions.
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2.2 Modeling procedures

2.2.1 Dose-response modeling

Modeling the dose-concentration-e�ect relationship is an important aspect in clinical research
studies, and can be done using various dose-response models [Pinheiro et al.2014]; [Ting2006],
linear or nonlinear, such as: linear, logistic, Emax (simple, Sigmoid or standardized form),
quadratic, exponential and linear in log-dose models.

The most frequently used model is the Emax model. Its simplest form can be given by
f(d, θ) = E0 + Emax × d/(ED50 + d) where d is the dose, θ represents the model parameters
vector to estimate. In other words, θt = (E0, Emax, ED50), E0 is the placebo e�ect, Emax is
the maximum e�ect change of a dose compared to placebo, and ED50 is the dose giving half of
the maximum e�ect change. A more complex form of this model is its Sigmoid version, where
an additional parameter is included, ensuring greater shape �exibility. It has the following
form: f(d, θ) = E0 +Emax× dg/(EDg

50 + dg) where g is called the "Hill" exponent (the slope)
re�ecting the shape of the dose-e�ect curve.
Statistical analysis of dose-response curves may also be performed by a linear model, having
the following general form: f(d, θ) = E0 + δ × d, where θt = (E0, δ). However, the concept
of linear dose-response relationship has its disadvantages since it may not apply to non-linear
situations, see [Vandenberg et al.2012].
Another possible model to be considered would be the linear in log-dose model, having the
following form: f(d, θ) = E0 + δ × log(d + c), where θt = (E0, δ), E0 represents the placebo
e�ect, c represents a positive �xed value aiming to avoid placebo problems (when d = 0) and
δ represents the slope associated with log(d+ c).
Other models may be more appropriate, depending on the circumstances such as the expo-
nential / power model, having the following form: f(d, θ) = E0 × exp(d/δ), where δ handles
the increase or decrease rate in the e�ect (δ could be either positive or negative). This model
may detect the existence of a convex or sub-linear dose-response relationship.
On the other hand, another dose-response model could be the quadratic one, having the fol-
lowing form: f(d, θ) = E0+β1d+β2d

2, where θt = (E0, β1, β2). This model has the advantage
of detecting the existence of a non-monotonic dose-response relationship, in a convex/U-shape
(when β2 > 0), or in a concave/umbrella-shape (when β2 < 0).
Finally, there is the logistic model, with the following form: f(d, θ) = E0 + Emax/(1 +
exp[(ED50 − d)/δ]), where θt = (E0, Emax, ED50, δ). Note that parameters E0, ED50 and
Emax have the same de�nitions as the Emax model previously described. δ controls the
change with dose rate in e�ect. This model has the advantage of allowing both e�ect increase
and decrease (Emax parameter could be either positive or negative).
It is worth noting that in general, the maximum likelihood is applied in order to estimate the
model's parameters.
The Emax model is the most frequently used one for e�cacy in dose-�nding framework [Miller
et al.2007]; [Comets2010]; [Pinheiro et al.2014]. This model assumes a monotonic (either in-
creasing or decreasing) dose-response. It also o�ers the possibility to estimate the maximal
treatment e�ect, the dose which produces 50% of the maximal e�ect and the placebo e�ect.
This is the main reason that led us to model our e�cacy via an Emax dose-response model in
the following chapters of this thesis. However, since it is also known that the Emax model (es-
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pecially in its Sigmoid version [Pinheiro et al.2014], i.e. with an exponential parameter known
as 'Hill' exponent, which determines steepness) can be very di�cult to estimate, with much
imprecision, if the design is not rich enough [Dutta et al.1996], we chose a three-parameter
Emax function to describe our dose-response model (i.e. exponent=1) in the following work of
this thesis (see Chapters 3, 4, 5, and Appendix A.1). Speaking of the di�culty of estimating
the Emax model, it is speci�ed in [Dutta et al.1996] that parameters estimation of a Sigmoid
Emax model de�nitely leads to an eventual imprecision (i.e. the amount or degree of random
error in a calculation, usually represented by the standard deviation, coe�cient of variation, or
range), and if the concentration-e�ect relationship extremes are not empirically investigated,
this imprecision could be enormous. However, these extremes are not �rmly examinated in
general, due to safety issues. Note that, as speci�ed in [Dutta et al.1996], when parameters
of the model are used as metrics, pharmacometric imprecision (as a result of a de�cient study
design) can be an essential cause of the common considerable variability stated in pharmaco-
dynamics. If one seeks to reduce the variability in pharmacodynamics characterization, using
data descriptors based on parameters of the estimated model could be a good solution. In
fact, in pharmacodynamics, when testing clinically signi�cant covariates, using data descrip-
tors could be a powerful indicator for these tests.
In the modeling approach, one seeks to validate a given model, which is usually a di�cult
step in a clinical study. To do this, several methods could be applied. A possibility to choose
a given model among a set of candidate ones, is to apply a model-selection approach. The
model with minimum criteria value is chosen as the best model to �t the data. The most
used criteria to select models are: AIC (Akaike's Information Criterion, [Akaike1975]), BIC
(Bayesian Information Criterion, [Schwarz1978]) and AICc (Second-order Akaike Information
Criterion, [Snipes and Taylor2014]). These criteria are brie�y described below.
The AIC criterion has the following form: AIC = −2logL(θ̂) + 2 × dim(θ), where θ is the
vector of the model's parameters, θ̂ is the estimate of θ, L(θ̂) is the maximized likelihood
function and dim(θ) is the number of free parameters in the model.
The BIC criterion is de�ned as: −2logL(θ̂) + log(n)× dim(θ), where n is the sample size and
log(n) is the penalty for the number of parameters depending on the model selection criterion.
The AICc was proposed in order to avoid over�tting issues: there is a large probability that
AIC may over�t (by selecting models that have too many parameters) when the sample size
is small. So AICc is an AIC with a correction for small sample sizes.

The AICc criterion has the following form: AIC +
2dim(θ)2 + 2dim(θ)

n− dim(θ)− 1
. AICc is accordingly

an AIC with an additional penalty term for the parameters number.
The choice of a particular criterion may be conditioned by the �nal objective of the analysis.
From the literature, AIC seems to perform better than BIC in selecting a predictive model,
see [Chakrabarti and Ghosh2011] for example.
Instead of selecting a speci�c model as described above, one may prefer to consider a weighted
combination of the candidate models. This approach is presented in the following subsection.

2.2.2 Model Averaging approach

Since it is possible to select the dose with a bad dose-response model, one might search for
more robust models than others, and this is where Model Averaging becomes more interest-
ing. It is shown that Model Averaging is better than obtaining estimates from one model
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only [Turkheimer et al.2003] when the true model is unknown.
Model Averaging has the advantage of substituting model selection (even though this might be
a heavy approach in some cases, depending on the situation, when one already has too many
parameters to estimate) by allocating weights to di�erent pre-speci�ed models of interest. For
example, for a given function F of the mean di�erence versus placebo ∆, with the Model
Averaging approach, the sponsor chooses the dose d∗ = dj∗ : j∗ = arg maxj≤J

∑
l wlF (∆̂Ml

dj
/s)

where ∆̂Ml
dj

is the mean di�erence between the dose dj and the placebo estimated with the Ml

model, and where wl are model weights to specify or compute.
These weights can be all equal (balanced), or can be calculated with AIC or log-likelihood
[Liukko2007].
It is worth noting that there is the R package MuMIn [Barto«2018] for model selection
and Model Averaging based on information criteria (AIC, AICc, log-likelihood and alike).
The Bayesian Model Averaging (BMA) [Hoeting et al.1999] is the most used method for weight
speci�cation. Let's say one has only one true model from several potential models. One speci-
�es a prior over parameters for each potential model, followed by a prior probability that each
one of them is the true model. At that time, the posterior distribution is the weighted average
of the individual models meaning that the weights are Bayesian posterior probabilities that
the given model is the true model, conditional on the data.
Likewise, the use of the square error loss in the derivation of optimal weights for Model Av-
eraging is investigated in [Nguefack-Tsague2014]. One does not really know if there is an
optimal weighting scheme or not. Numerous authors have proven their existence in others
methodological frameworks, for example see [Liukko2007]; [Turkheimer et al.2003]; [Giatting
et al.2007]; [Forster2000]. In [Nguefack-Tsague2014], the investigations continue its work on
the derivation of optimal weights for Model Averaging using square error loss. The presence of
these weights can be proved on a theoretical level, however, when one tries to estimate these
weights, one can clearly see that they are no longer optimal. An example of linear regression
is used to demonstrate that the estimated weights concluded by those Model Averaging esti-
mators probably do not have a better e�ciency compared to post-model selection and other
averaging estimators [Nguefack-Tsague2014]. A theoretical justi�cation is provided for this
phenomenon in their publication [Nguefack-Tsague2014]. One must therefore be wary of the
least squares approach, especially for the purpose of deriving optimal weights.

Once dose-response e�ects are detected, based on model selection or Model Averaging pre-
sented in Section 2.2, and depending on speci�c testing procedures such as MCP-Mod (multiple
comparison procedures and modeling, this part is not developed in this thesis) [Thomas2017];
[Jones et al.2011]; [Pinheiro et al.2014], one may then proceed with the determination of opti-
mal designs, described by optimal doses d1,...,dJ and their weights w1,...,wJ , by de�ning some
speci�c algorithms, according to di�erent optimality criteria. Here, d1,...,dJ are assumed to
be already determined. So the problem is now to maximize the objective (e.g. D-optimality,
de�ned below) over the K + 1-dimensional vector (w1,...,wJ) which is a constrained optimiza-
tion problem.
All these possible strategies will be listed in the following section.

35



2.3 Optimization procedures

2.3.1 Optimal designs

In [Wong1994], robust properties of several optimality criteria such as A, C, D, E, T and
G-optimal designs are compared and the relationships among these optimality criteria were
studied in [Rady et al.2009]. The most common criteria used are D and C-optimality, where D-
optimality does not address the speci�c issue of identifying at best a pre-de�ned dose of interest
(e.g. MED (Minimum e�ective dose), ED50 (dose giving half of the maximum change in
e�ect), ED90 (dose giving 90% of the maximum change in e�ect), etc.) but instead maximizes
the determinant of the global Fisher information matrix. Conversely, C-optimality consists
in minimizing the variance of the best linear unbiased estimator of a predetermined linear
combination of model parameters. The linearity constraint might be a genuine issue when
the dose of interest is a rather complex function of model parameters. This is notably the
case when e.g. one searches for the dose which achieves a minimum pre-de�ned e�cacy versus
placebo within the Emax model.

An algorithm for searching the best two-stage designs under di�erent criteria (for example, de-
signs that minimize the maximum sample size, optimum and "minimax" designs) was proposed
in [Tsai2006].

Practical considerations for optimal designs in clinical dose-�nding studies were also discussed
in [Bretz et al.2010]: in this paper, the aim is to establish e�cient study designs to estimate
relevant target doses. Authors consider two optimal designs, derived from C-optimality cri-
terion. This criterion is used to minimize a function depending on the minimum e�ective
dose, or to minimize a function depending on the dose achieving a certain percentage (100p%,
0 < p < 1) of the maximum treatment e�ect. They also compare these optimal designs with
D-optimal designs for two dose-response models: linear and Emax models. Furthermore, they
discuss extensions to robust designs accounting for model uncertainty. A particular issue could
be the misspeci�cation of the regression model. In fact, when the true model is unknown, the
problem of uncertainty could be generated, and therefore, it is better to consider robust de-
signs under uncertainty, where the concept of robustness here is highlighted by its ability to
prevent its functioning from being a�ected by noises, coming from di�erent sources.

In [Miller et al.2007], authors talk about how to construct a "good" design: acquiring valuable
designs adopting the best design theory helps us determine a suitable model for describing the
dose-e�ect relationship.
One needs to keep in mind that only one or two doses must be adopted in phase III. Numer-
ous sources will help achieve presumptive knowledge or guesses based on prior information,
mentioning the preclinical information, data with similar drug and earlier trials with the same
drug [Miller et al.2007]. Sometimes, it is also possible to formulate assumptions for expected
e�ects, which is not an obvious thing to do, even hard to advise, requiring a certain level of
expertise, and a consensus with a panel of experts (doctors, clinicians, statisticians).
But a key point here, is to identify the main purpose of dose-�nding trial. The purpose could
be for instance, the recommendation of one dose, after checking the e�cacy level and the
toxicity rate, so basically after evaluating the bene�t / risk ratio. However, these targets and
recommendations may be exposed to unexpected changes due to external factors, or updates
of some speci�c information/data during the development phase [Miller et al.2007].
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Another interesting publication [Musuamba et al.2017] presents some guidance and method-
ologies establishing a bundle of interesting materials and methods for regulators and drug
developers. These methods include three methods for study design optimization: clinical trial
simulations, Fisher information matrix (FIM)-based methods (D-optimality), and adaptive
studies. In addition, there are �ve advanced methods for data analysis (empirical regres-
sion models, MCP-Mod, Model Averaging, quantitative systems pharmacology models and
pharmacometrics models). There is also evidence of pairwise comparisons (mainly because of
historical reasons). In fact, this paper confers the challenges faced when implementing these
methods alongside with their bene�ts and disadvantages. Obviously, it was con�rmed that
the selection of the dose for phase III must not be approached by hypothesis testing because
it is an estimation issue. The precise choice of what method(s) to adopt is not advised nor
suggested as a systematic scheme for attaining some particular object and will rely on lots of
features. Therefore, one can state that dose selection for phase III trials should be enlightened
by appropriate and well-planned dose-�nding studies. Thus, methods should be adopted to-
gether to establish a reliable and accurate study of the dosing regimen philosophy as well as
dose-�nding reasoning, because there are a lot of bene�cial and applicable methods which are
consistent.
In [Musuamba et al.2017], authors underlined some applications in several therapeutic areas,
such as oncology, immunology, etc.
Despite a few limitations, PK / PD modeling (pharmacokinetic / pharmacodynamic model-
ing [Meibohm and Derendorf1997]) appears to be well justi�ed and valued in these areas, due
to its ability to describe dose-response relashionships, through mathematical equations such
as linear or Emax models, and its possibility to account for the temporal evolution of the
intensity of the dose-response e�ect. Authors also discussed antibiotics and dose-�nding in
special populations (children and elderly people) in [Musuamba et al.2017]. In such popula-
tions, several factors are related, like age, organ degradation or evolution, and such factors
should not be neglected because of their potential e�ect on PK/PD. In fact, these factors
could cause the risk of bleeding, or some dysfunctions at certain levels.

2.3.2 Bayesian optimal designs

A large number of dose-�nding studies are conducted in a Bayesian framework. In this context,
one can apply both non-adaptive or adaptive Bayesian optimal design, but this is where an
important question arises: should one prefer an adaptive or a non-adaptive Bayesian optimal
design?

A non-adaptive Bayesian optimal design is obtained by implementing the theory of optimal
design. It is a design that does not vary according to information acquired from an interim
analysis of the available data.

An adaptive Bayesian optimal design is de�ned by considering the contribution of supple-
mentary information about the dose-response relationship when expanding it upon an interim
analysis which is often performed in the dose-�nding trials.

As proposed in [Miller et al.2007], optimal designs could be based on the asymptotic variance of
the nonlinear least squares estimate of the dose-e�ect function at dose d compared to placebo,
via a non-adaptive Bayesian optimal design or an adaptive Bayesian optimal designs deriving
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a posteriori probabilities for each scenario (an adaptive Bayesian optimal design arises here
because of the adjustment made on the allocation ratios for the dose arms). Authors seek to
compare the adaptive Bayesian optimal design with the e�ciencies of the non-adaptive one.
Although an adaptive design is more challenging from an operational angle, however, and as
reported in [Miller et al.2007], no one has ever given a reasonable and satisfying disadvan-
tage of the non-adaptive Bayesian optimal design regarding the e�ectiveness compared to the
adaptive one. Adopting a non-adaptive design could help us avoid a slight e�ect on the distri-
butional abilities and quality of the estimates produced by the adaptation. Accordingly, in this
situation, it is more likely preferable to adopt a non-adaptive Bayesian optimal design [Miller
et al.2007].
Practically, adopting a non-adaptive Bayesian optimal design without changing the design for
stage 2 can be for example implemented if an interim analysis is necessary because of ethical
reasons or any other reason.
On the other hand, the adaptation causes some deviations from the normal distribution, yet,
these deviations are not so crucial. Thus, if the adaptive design shows good e�ciency gain
then apparently, one needs to welcome this matter positively. Similarly, on a practical level,
it is more likely to perform an adaptive design at the expense of other distributional proper-
ties of the resulting estimates, if there is a con�rmation of these results from an e�ectiveness
perspective [Miller et al.2007].
As elaborated in [Miller et al.2007], if the adaptive design has advantages over a non-adaptive
optimal design, do these advantages count principally on the accuracy of the deductive knowl-
edge? If the deductive information is perfectly false, the application of adaptive designs may
then have advantages. Hence, either the �rst part in the trial itself (stage 1) must be adopted
or a distinct pilot trial must be performed to derive the �nal design of the trial. In [Miller
et al.2007], authors de�ne these approaches when there is de�nitely no information concerning
the dose-e�ect curve previously accessible.
Not to forget that there is frequently an attainable prior information and the implementation
of non-adaptive optimal designs is con�rmed in phase IIb trials. Again, this emphasizes the
preference of using non-adaptive Bayesian optimal designs.

In the following section, a more �exible approach compared to the optimal designs will be
presented. As highlighted below, this approach, based on a utility function, allows to take into
account some speci�c aspects of interest.

2.4 Utility functions

Utility functions are generally introduced and de�ned within the decision theory framework.
Utility describes the preferences of the "decision maker" and classi�es/orders decisions. A de-
cision theory result suggests that, in a risky environment, all decision rules can be compared
and classi�ed using the expectation of a certain function, called the utility function.
When conducting a clinical trial, there is an alternation of decisions (choice of doses, allocation
of patients, etc.) and observation of random data (as in patients responses). The multitude
of these possible cases can be translated into utility functions to be de�ned according to ex-
pectations and goals. Optimization can be formalized thanks to such functions, representing
the bene�ts of the stage 2 and the �nal dose recommendation.
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This utility approach is more �exible compared to the optimal design approach because it
enables to account for: safety issues, economical/�nancial aspects, etc.
An example of utility function is the Bayesian predictive Probability of Success (PoS) in
phase III, which can be maximized across all doses tested in stage 2, see [Temple2012]; [Pa-
tel et al.2012]; [Patel et al.2013]; [Kirchner et al.2016]; [Antonijevic et al.2013]; [Antonijevic
et al.2010]; [Gajewski et al.2015] for example. Such a utility function incorporating a PoS
component is also proposed in this thesis report, see Chapters 3 and 4. Note that the PoS
is the power of a test weighted by the uncertainty on the parameters: by applying a Bayesian
approach, one assigns distributions for the parameters, and for each value of the parameter
one computes the power of the study to be predicted, the PoS is then the average power,
averaged on the distribution of the parameters (see Chapters 3 and 4).
Other examples of utility functions could be functions including a safety / penalty term pe-
nalizing high doses, rewards, global costs and/or costs per patient, see [Kirchner et al.2016];
[Temple2012]; [Antonijevic et al.2013]; [Patel et al.2012]; [Patel et al.2013]; [Foo and Duf-
full2017]; [Antonijevic et al.2010]; [Gajewski et al.2015]. Several examples of utility functions
de�ned by economic or �nancial considerations are proposed and assessed in this thesis, see
Chapter 3. A new type of utility functions, including both a PoS component related to
e�cacy, and a probability of controlling over toxicity component related to safety, is proposed
in this thesis report, see Section 2.5.

In [Christen et al.2004], the authors assume that it is complicated to generalize a single utility
function. A realistic and rational choice of utility function is not so obvious, and may be highly
dependent on the treatment or the therapeutic axis, functions may incorporate safety, costs
and rewards parameters, which can be di�cult to prede�ne or arbitrarily �x without prior
knowledge. Instead, they propose considering a set of possible utility functions, rather than
focusing on one particular function: "we denote with V a set of utility functions, and assume

the decision maker is unwilling or unable to further specify a single utility function u ∈ V .

The problem has been studied from the perspective of sensitivity analysis to mis-speci�cations

in the utility function and prior distribution" [Christen et al.2004].
Authors propose a dynamic programming rule which consists in doing backward induction,
and a well detailed algorithm is described in particular, alternating sequence of expectation
and maximization. Utility-based decisions consist of dose selection, within a Bayesian frame-
work, based on posterior probabilities: at every stage of the trial, the next patient is allocated
to the selected dose, the trial may be stopped for futility, with no treatment recommendation,
and doses may be dropped during the trial, if they are judged to be less e�ective than others.
However, these doses are not totally excluded from the trial and may be reused in random-
ization, which consists in allocating patients to doses within the "non-dominated" set. And
here, "non-dominated" set refers to the set of superior doses, dominating the others. Indeed,
dropped doses may dominate other doses later on, when the posterior probabilities change: a
dose may be inferior at a given time point, than superior at another time. Hence an adaptive
randomization for dose allocation, carried out from sequential design, based on expected util-
ity, to de�ne the set of "non-dominated" doses. In other words, authors "describe a Phase II

clinical trial for �nding optimal dose levels". They use the algorithm above in order to design
a sequential clinical trial (which is a particular type of clinical trials among many others, see
https://www.scientific-european-federation-osteopaths.org/
different-types-of-clinical-trials/), in which observations are evaluated as they
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are produced and the total number of participants depends on the accumulated results, "using
backward induction, where non dominated treatments (actions) are randomized to select the

treatment for the next patient in the trial" [Christen et al.2004].
A study example was conferred in the oncology �eld, in order to �nd the optimal dose pegy-
lated interferon for platinum resistant ovarian cancer, see [Christen et al.2004].

In the following, several utility functions recently proposed in the literature are presented.

In [Temple2012], a utility function taking into account safety is proposed and de�ned as follows:
costs and rewards are included, the author considers a �xed phase III sample size N3. The
PoS is de�ned not only in terms of statistical signi�cance, but also "clinical" signi�cance, and
by implicitly taking into account the safety. A utility function is used to select doses; the aim
is not to optimize the sample size in phase II nor the allocation ratio, but to �nd the optimal
dose for phase III. As for the choice of the utility function, the author precises that to claim
success in phase III, two things need to be observed: two phase III trials with a signi�cant
di�erence from placebo and a reasonable safety pro�le.
Therefore, for each of the two trials of phase III, the author adopts a two-arm parallel group
design while taking into consideration the active dose diagnosed in phase II against the placebo
dose. Each arm contains n3 = N3/2 subjects, selected to insure suitable ability of identifying
a clinically signi�cant di�erence from placebo. The �nal inference in phase III amounts to a
pairwise comparison among both the placebo dose dose0 and the active dose dosej ; that's why
one can identify this inference as frequentist. Hence, the awaited responses within subjects in
phase III are assumed to be normally distributed with variance σ2.
In [Temple2012], the type I error is controlled in each phase III trial at the two sided 5%
alpha level. Thence, if the inferior bound of the two-sided 95% con�dence interval for the
di�erence against placebo is greater than 0, then the author assumes that there is a meaningful
di�erence from placebo, in other words, an actual dose-response. To calculate and evaluate
the probability of detecting a treatment e�ect in one phase III trial, denoted by PDR, the
author uses the following equation:

PDR(vj , v0) = 1−Φ(−1.96 +
vj − v0√
2σ2/n3

), where Φ denotes the N(0, 1) distribution function,

vj denotes the true mean response at dose dosej and v0 denotes the true mean response at
placebo.
Due to safety apprehensions, it is probable for a drug to fail the marketing process although it
is e�ective; hence, the author added a concept of safety to her criteria for overall achievement
and success. Here's where the author introduces a quadratic function for the probability of
the unsu�cient drug due to safety manners, denoted by PSF (probability of safety failure):

PSF (j) = 0.2(
dosej
doseJ

)2 with j = 1, ..., J , where J is the number of doses. Note that from now

on, dose1 < ... < doseJ is assumed.
The value 0.2 is the maximum probability of phase III failing because of safety issues, according
to the function above. The reason behind the choice of a quadratic function is to insure that,
at higher doses, the increment of safety from a dose to another is bigger than at lower doses.
For the sake of balancing the gain in e�ciency from enlarging a dose level with the growing
risk in the safety pro�le, the author had to integrate a term for safety purposes in the utility
function. If one does not include the safety concept into the study, the dose with the bigger
di�erence in mean e�cacy response from placebo would readably be chosen (which is the
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highest dose in light of monotonic dose-response pro�les), because it leads to the highest
utility. One always has to seek an adequate safety pro�le and also seek success in both of the
two phase III trials so that one can go to the market. In this case, the PoS in phase III for dose
dosej is calculated as follows: P(vj , v0) = (the power of each test)2(1− 0.2(dosej/doseJ)2) =
PDR(vj , v0)

2(1− PSF (j)).
A utility function is proposed here in order to take into account rewards and costs issues, the
PoS in phase III and safety issues. Let N2 be the total sample size of the phase II dose-�nding
trial. Each phase III trial has two arms, and to the extent of going to the market, one requires
successful phase III trials. The total sample size of every phase III trial is N3 = 2n3, where
n3 is the number of subjects in each arm. Suppose that c2 and c3 are costs per subject in
phase II and phase III respectively. If a drug makes it to the market, one designates the
plausible reward or bene�t for the company as 'R'. If the PoS in phase III is too low, then the
development process will be interrupted directly after phase II, which will reveal the cost of
the failed phase II trial through the utility for this dose. The author represented this utility
function, denoted by u(v, a), as follows (with j = 1, ..., J):

u(v, a) =

{
−c2N2 if a = 0
P(vj , v0)R− c2N2 − 2c3N3 if a = j

In other words, the utility function is de�ned with the following components: R which is
the multiplicative factor of the reward and P(., .) which is a form of POS, it integrates the
power of the test in phase III (PDR(vj , v0)) and an implicit safety-dependent term (PSF (j)).
There are two phase III studies and the overall power corresponds to (the power of each test)2

= PDR(vj , v0)
2.

In [Temple2012], the author proposed then three di�erent decision rules.

Decision rule 1: "we select the minimum dose estimated to have a 1.3 change from placebo",
which is done by selecting the minimum dose with a clinically meaningful di�erence (CMD)
from the placebo to be taken into phase III.

Decision rule 2: "we select the dose that maximizes the PoS in phase III based on a point

estimate of the dose-response curve". Taking the �tted dose-response curve as a base for this
decision rule, the author chooses the dose that maximizes the PoS in phase III. Not to forget
that the author mentioned a supplemental condition to advance to phase III, which is that
the PoS in phase III must be higher than the prespeci�ed threshold x. This value took place
in her study so that a feasible chance of success to advance to phase III is guaranteed.

Decision rule 3: "we select the dose that maximizes the posterior PoS in phase III ". This
is a Bayesian decision rule, so here one chooses the dose that maximizes the posterior PoS.
Repeatedly, the author added a condition to advance to phase III, that is to say, the PoS
in phase III must be higher than the pre-speci�ed threshold x. The author applies a prior
distribution to the model parameters in order to take decisions depending on the posterior
distribution for each vj , given the phase II data Y = y.
Finally, concerning the choice of reward R and cost per patient, this could usually be based
on prior knowledge, already conducted trials, the knowledge of experts, etc.
Note that, in [Temple2012], the author does not justify the choice of cost = 1 and R = 12000:
"We assume the cost of a subject in phase II is the same as a subject in phase III and assign

c2 = c3 = 1, where this represents 1 unit of some larger monetary value. One assigns a reward

for successfully getting the drug to market of R = 12000. Hence the return for a compound to

market is 12000 times the cost of a phase II or phase III subject". These choices are arbitrary
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and one could have very di�erent values depending on the study.
In the end, the author does not try to directly maximize her utility but instead, considers
three di�erent decision criteria (choice of dose) and detects the one engendering the highest
utility.
In her discussion, one of her conclusions is that: "Using decision rule 2 also improves the

expected gain and reduces the gain bias compared with decision rule 1". In the beginning
of my thesis work, I assessed this same utility function proposed by [Temple2012], but with
di�erent decision rules, in order to select the optimal dose, and to optimize seamless designs
(in terms of patient allocation to doses, and global patient repartition between phase II and
phase III, assuming a �xed total sample size phase II + phase III = constant), see Chapter
3 and Appendix A.1 for further details.

In the same way, there is a publication for Diabetes [Antonijevic et al.2013], and another one
for Neuropathic pain [Patel et al.2012], where authors show that the choice of dose based on
the maximization of utility is superior, for all examined criteria, to the method which consists
in choosing the closest dose to a target one, i.e. the one that gives an average target ∆, where
∆ is the mean di�erence versus the placebo or the comparator arm, identi�ed as relevant.

Di�erent types of utility functions can be used: with or without economic consideration (i.e.
costs, phase II & phase III, potential gains if success, etc.). Utilities with Reward are utilities
with a systematic cost for Phase II, a cost for Phase III if one decides to 'Go' to this phase,
and a reward if Phase III is successful. Apparently, in the literature, this type of utility (called
"Expected Net Present Value (ENPV))" is rarely used to select doses. However, these criteria
are sometimes used to evaluate and classify various dose selection methods [Temple2012];
[Antonijevic et al.2010].

In [Foo and Du�ull2017], an initial exploration of a fully cost-driven design was presented. A
design criterion was proposed that represented the minimum expected cost of an early phase
clinical study, where costs include resource use as well as study failure. In other words, the
design is optimized by simply minimizing E(cost).
As already brie�y mentioned in Section 2.1, authors of [Gajewski et al.2015] carried out a
Bayesian adaptive design based on a utility function, along with decision rules to stop the trial
for success. This function aims to combine both e�cacy and safety, posterior distributions
generated by MCMC (Markov Chain Monte Carlo [Ravenzwaaij et al.2018]; [Geyer et al.2011])
are used within utility-based decision rules to stop the trial at interim, modify the sample
size, etc. The decision rule suggested in [Gajewski et al.2015] is based on maximizing the
utility function, accounting for e�cacy and safety and comparing several treatment arms. The
criterion to stop the trial early for success is de�ned as follows: Ppost[Uarmi = Umax] > 0.90,
where U represents the utility. Authors also proposed an algorithm called SSA (Sweet Spot
Accrual rate), where �nding the 'sweet spot' refers to three main parameters: the average
time to �nish the study, the average patients number required and the study cost [Gajewski
et al.2015]. This rate algorithm is highly related to the Bayesian adaptive design and could
be used to carry out a sensitivity analysis, aiming to assess the cost-bene�t of a design,
and to judge the status of the trial: a trial could not be achieved if the rate is very slow,
whereas acquiring valuable information for adaptation could not be garanteed if the rate is
very fast [Gajewski et al.2015].
Despite the fact that this algorithm is limited by size and duration criteria, it is �exible
because it could be applied to di�erent utility-based criteria to stop the trial, di�erent types
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and number of endpoints, types of studies, and could even be used in an adaptive version (i.e.
changing the accrual rate design and patterns).

In [Kirchner et al.2016], authors mention some interesting points regarding the utility function
de�nition: they work in the context of oncology, more speci�cally in a time-to-event setting.
Note that in clinical trials, patients are recruited over a period and followed up to a �xed date
or possible event such as death or recurrence of a tumour (negative), conception or discharge
from hospital (usually positive) or cessation of breast feeding (neutral). The time between
recruitment and the event is 'time to event' or survival (even when death is not the event in
question). Subjects in the trial who survive to the �xed date but for whom the event has not
occurred are said to have a censored survival time. So in [Kirchner et al.2016], authors present
methods for a program-wise phase II/III planning that aim at determining optimal phase II
sample sizes and Go/NoGo decisions in a time-to-event setting. Optimization is based on a
utility function that takes into account �xed and variable costs of the drug development pro-
gram and potential gains after successful launch. They sometimes use the Bayesian approach
(but in some cases, they do not consider a prior law on parameters, but particular �xed values),
they optimize the utility according to the phase II sample size and the threshold (e�ciency)
to go to phase III; they have no design concern: there are only 2 arms and the designs are
balanced, the sample size of phase III is variable, it is calculated according to the result of
phase II with the classical approach. The utility is de�ned by U = gain-cost: there is a unit
cost per patient (not the same in phase II as in phase III), and also a �xed cost (independent
of the sample size). The gain here depends on the results of phase III; the better the result
of phase III, the greater the gain; this is why 3 levels of e�ciency in phase III are introduced:
small, medium, wide; bene�ts correspond to each level respectively.
Some work extensions are also mentionned: 'multiple arms' for dose selection, case where the
gain decreases with the sample size of phase III, and interim analysis.
Safety consideration is not addressed in [Kirchner et al.2016], however this point is very fun-
damental in oncology and elsewhere, in other therapeutic areas.

2.5 Summary and outlook

Adaptive seamless designs for clinical trials have attracted a lot of attention because they o�er
the possibility to combine di�erent phases of drug development into a single trial. A very
popular adaptation consists of selecting / dropping doses based on accumulating data. Such
designs typically start with a learning dose-response curve phase (stage 1). At some interim
time-point, one looks at the data to estimate and model the dose-response relationship.
Adaptation may also turn into a modi�cation to the dose allocation ratio putting more empha-
sis on the most promising doses or even increasing sample size to tentatively rescue a poorly
responsive trial.
Consequently, it is proposed to use modeling procedures within two-stage adaptive trials in
order to obtain model-based dose-e�ect estimates at interim to guide early futility stopping
and/or re-design stage 2 (e.g. choice of doses, sample size, dose allocation ratio) and analysis
(e.g. dropping of inadequate dose-response models). The dose selection and testing strategies
will obviously depend on sponsor's objectives and its degree of expectations from the dose-
�nding trial (e.g. detection of dose-response signal only, type I error control among pairwise
comparisons of individual doses against placebo, soundness of selection of dose(s) for phase
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III, etc.).
Adaptive combination tests ensuring a strong control of type I error could be developed for
con�rmatory purposes. More liberal testing procedures (such as those including both stage
one data and second stage data in the �nal testing) may also be studied (these procedures
were not developed in this thesis).
One can investigate adaptive designs where both the interim and the �nal decision are made
either on a clinically relevant endpoint and/or appropriate surrogate endpoint.
It is also important to check if it is worth increasing the number of candidate dose-response
models compared to some standard set such as Linear, Emax, Exponential, Quadratic, and to
possibly consider incorporating model-averaging strategies to achieve better dose selection at
interim.
At interim, data may be used to re-design stage 2 by selecting remaining doses according to
some pre-de�ned optimality criteria. As previously stated, the most commonly used optimal-
ity criteria are C- and D-optimality.
Another optimality criteria may be the Bayesian posterior probability for a dose of being
within a pre-de�ned optimum range of e�cacy (against placebo) that could be used to help
the sponsor select doses for stage 2. Bayesian posterior probabilities associated with each dose
may also guide the dose allocation ratio to be used for stage 2 putting more weight on those
doses with high posterior probabilities. Such criteria are deemed to be more speci�c than
traditional C- or D- optimality criteria.

As an alternative/more recent approach, optimization can also be formalized thanks to
utility functions which represent the bene�ts of the stage 2 and the �nal dose recommenda-
tion, and enable to account for safety issues, economical/�nancial aspects, etc. Gain should
be de�ned and there are various possibilities to do it, and gain expressed via utility functions
should be maximized.
Another important aspect of this approach is how to de�ne the decision rules to "Go" to phase
III. Choosing the optimal dose and the optimal phase II sample size could be based on several
constraints in the decision rule, depending on prior knowledge and expected goals.
Some main perspectives/extensions are to put uncertainty on the penalty of toxicity, in other
words put e�cacy and safety at the same level and avoid arbitrary choices for toxicity. More
speci�cally, one could fully characterize subject's safety by using a binary safety outcome
mimicking the drug limiting toxicity (DLT) concept commonly applied to oncology. Trans-
posing the DLT concept to phase II / phase III trials this could correspond to the permanent
treatment discontinuation due to adverse event coded yes/no. The penalty considered for each
subject would depend on the expected probability of DLT / treatment discontinuation at the
given dose. Prior distributions could also be used for these probabilities. The optimization
framework would consist of optimizing the patient global allocation ratio between phase II
and phase III looking for the best trade-o� between selecting the best/good dose(s) for phase
III and maximizing the PoS in phase III.
One could therefore consider the e�cacy component as a PoS involving both the e�ect size
of the dose d and the sample size of the phase III study. For the toxicity, what will generally
count is to control it under a maximum admissible threshold with a su�ciently high level of
con�dence. This threshold can be expressed in several ways: independently from the placebo
arm or not. It may just consist of controling the toxicity of the dose d under an acceptable
threshold t, without taking into account the toxicity of the placebo (supposed to be negligible),
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or, on the contrary, controling for example the relative risk versus placebo under an admissible
threshold RRA, or the absolute di�erence versus placebo under a threshold ∆A (where ∆A is
an admissible di�erence versus placebo). The toxicity component of the utility function could
then be related to the probability of observing an upper bound of the 1− α′ level con�dence
interval of the relative risk RR < RRA at the end of phase III, under the hypothesis that the
true toxicity rates of placebo and dose d are those estimated by the model that one chooses
in advance at the end of phase II.
The α′ notation is used to emphasize that the required con�dence level is not necessarily 1−α
here, where α is the signi�cance level used for e�cacy in phase III. If the reference to placebo
is deleted, the toxicity component could then just be the probability of observing an upper
bound for the estimated rate of toxicity lower than t at the end of phase III, under the as-
sumption that the true toxicity rate of the dose d is the one estimated by the chosen model
at the end of phase II. An even simpler alternative could also be the probability of observing
a toxicity rate lower than t at the end of phase III. If the estimated RR at the end of phase
II is already greater than RRA for the dose d, or if the toxicity rate of the dose d estimated
at the end of phase II is already greater than t, then this should be a reason for not selecting
this dose for phase III (in other words, this becomes the toxicity �lter).
Consequently, the utility function could have a theoretical form, depending on: the PoS func-
tion, the toxicity penalty representing the probability of observing a toxicity rate greater than
t in phase III, the dose and tuning parameters re�ecting the respective contribution of e�cacy
and safety to the utility function, as illustrated in Figure 2.2.

Figure 2.2: Theoretical curves (see text for details).

Figure 2.2 illustrates an example of a feasible utility function aiming to de�ne an optimal dose
and an optimal patient distribution between phase II and phase III. For a given dose-response
model, four doses and a placebo: the PoS is represented in black, the probability of having
more than t of toxicity observed in phase III in red, the theoretical toxicity in purple, and the
utility in green. Utility function optimization could be done in a Bayesian context, putting
non-informative or informative prior distributions on the model parameters, and computing
posterior distributions with an MCMC approach.
In addition, it is also interesting to assess whether or not an interim data inspection strategy
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for phase II, with the possibility of re-evaluating the sample size of the phase II study, signif-
icantly improves the decision quality of the dose for the phase III (several criteria could be
proposed to decide whether to stop or not at interim). One must quantify the loss of utility
of the design with an interim analysis compared to the �xed design with the maximum of
patients. This should be weighed against the number of patients saved on average.

One could also organize and re�ect upon simulations around practical questions such as:
in case the interim analysis does not identify "for sure" a better dose, but clearly identi�es
useless doses (because they are not e�ective or toxic), is it then possible to abandon one or
two doses for the �nal analysis, without unduly diminishing the �nal utility?

All these perspectives correspond to the following work developed in this thesis.
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Chapter 3

Utility functions: how to build them

and what contributions for design

optimization can we expect?

The aim of this chapter is to give guidance on an operationally seamless design, in terms of:
timing of the interim analysis, design of the �rst part (known as stage 1) of phase II. The
main underlying hypothesis is that the sponsor takes its decisions (decision to continue the
trial after interim analyses, choice of dose) in maximizing a utility function that assigns a
value to each decision. Several utility functions will be proposed and their properties will be
discussed.

3.1 General notations and main notions

In this section, we delineate the common materials and methods applied to most of the work
contained within this thesis. We speci�cally describe the mathematical formalization of a phase
II/phase III development program, aiming to de�ne all necessary notations and calculations
related to the dose-response modeling of e�cacy, and to the PoS.

� Dose values are denoted by d, and dose indices are denoted by dj , j = 1, ..., J where J
is the maximal dose index.

� Yd,i represents the random e�cacy response of patient i in dose d arm, with i = 1, ..., ndj ,
where ndj is the number of patients for the dose dj in phase II study. It is assumed that

Yd,i
iid∼ N(m(d; θ), σ2) where m(d; θ) is the expected mean e�ect of dose d, and σ is the

residual variability (standard deviation of residual error). The empirical mean responses
in dose d and placebo are denoted by Ȳd and Ȳ0 respectively, and we note ∆̄(d) the
di�erence of the two.

� N2 and N3 denote the phase II and III sample size respectively.

� w is a vector in RJ , representative of the phase II design: wdj is the proportion of

patients allocated to dose arm dj (
J∑
j=1

wdj = 1).
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� It is assumed that the expected mean dose-response for e�cacy m(d; θ) follows an Emax
model:

m(d; θ) = θ1 +
θ2 × d
θ3 + d

, θ = (θ1, θ2, θ3)
t

� θ1 = E0 is the placebo e�ect

� θ2 = Emax is the maximum e�ect compared with placebo

� θ3 = ED50 is the dose with half of the maximum e�ect

� The expected mean di�erence versus placebo is called ∆(d) = m(d; θ)−m(0; θ).

The computation of the Probability of Success (PoS)

The PoS that we consider for e�cacy in our utility functions is de�ned as follows.

Suppose that ∆̄(d) = Ȳd − Ȳ0 is the di�erence in observed mean e�ects between dose d and
the placebo in phase III.

The expectation of ∆̄(d), ∆(d), is equal to m(d; θ)−m(0; θ); this di�erence m(d; θ)−m(0; θ)
does not depend on E0 parameter.

Our null hypothesis H0 assumes that m(d; θ)−m(0; θ) = 0. Our statistic of interest is de�ned

as Z =
∆̄(d)√
2SE2

, where SE2 = σ2/(N3/2) = 2σ2/N3, and N3 is divided by 2 because we only

have two doses in phase III, the placebo and the chosen dose. Under H0, Z follows a standard
Normal distribution. The "Success" is de�ned by a signi�cant test versus placebo in the phase
III. In other words, a successful phase III trial means that ∆̄(d) ≥ z1−α ×

√
2SE2 (assuming

without loss of generality that positive values favor the test drug), where z1−α is the 1 − α
quantile of the standard Normal distribution. A unilateral α level of 0.025 is considered in our
calculations: if Z > 1.96, H0 is rejected in favor of H1 : m(d; θ) > m(0; θ).

Assuming a particular alternative hypothesis H1 : m(d; θ) − m(0; θ) > 0, the true PoS can
then be written as:

PoS(d, θ) = PH1 (Z ≥ 1.96) = PH1(∆̄(d) ≥ 1.96×
√

2SE2)

= Φ

(
m(d; θ)−m(0; θ)− 1.96×

√
2SE2

√
2SE2

)
,

where Φ denotes the standardized Normal distribution function.

3.2 Utility functions: constructions and properties

In order to de�ne and construct our utility functions, we consider the following assumptions:

(i) In the context of a seamless design, N2 +N3 is a �xed constant, Ntot.
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(ii) The relative sample size of the phase II study with respect to the total sample size (phase
II + phase III) is described with a parameter f , 0 ≤ f ≤ 1.

(iii) The N2 (= f ×Ntot) patients are distributed in 4 doses and 1 placebo.

(iv) The N3 (= (1 − f) × Ntot) patients are distributed in two arms: the selected dose and
the placebo, each one with N3/2 patients.

In this chapter we de�ne utility functions that assign numerical values to the sponsor deci-
sions at the end of the phase II part of the study. A typical example is the following utility
function [Temple2012], that assign values to a combination of two decisions (these decisions
are described in more detail in Section 3.4):

� First, there is the Go/NoGo decision for entering phase III. Let us denote the cost per
patient by γ, and the �nancial reward if the program is successful by R, then:

� if we choose not to go to phase III, then we have the cost of the phase II trial, equal
to −γN2;

� if we decide to go to phase III, then the value depends on a random event, success
or not of the phase III trial: if the phase III trial is successful, then we have the
�nal gain, G, equal to reward-total cost, G = R−γNtot; if it is not successful, then
there is only a total cost (no reward), and the �nal gain is negative, G = −γNtot.
This can also be expressed as a function of an indicator function, 1(′Success′), as
follows: G = R × 1(′Success′) − γNtot, where 'Success' refers to the Success of
phase III.

� Second, if the decision is to go to phase III, then the sponsor must choose the adequate
dose within the doses tested in the phase II study.

The utility is in fact random after the phase II stage, as the �nal gain depends on the success,
or not, of the phase III part. Therefore, from the sponsor's point of view, the expectation of
�nal gain, E(G|phase II,Go) = R×E1(′Success′)−γNtot, if the decision is to go to phase III,
is the key quantity to assess. This expectation can be represented by a utility function U , that
the sponsor will assess at the end of the phase II, U(d, f) = E(G|phase II,Go); it depends
on the expectation of the �nal gain after the phase III, and, as a consequence, depends on the
PoS of the phase III part, because E1(′Success′) = PoS(d, f).

In the example of the utility function proposed in [Temple2012], the success of the phase
III trial is de�ned by both simultaneously a statistically signi�cant comparison with the con-
trol in the phase III trial and the absence of safety issues in the same phase III trial. As it is
assumed that e�cacy is independent from the safety, the probability of success is then equal
to the product of the probability of a statistically signi�cant di�erence with the control which
corresponds to the power function of the phase III trial, and the probability of absence of safety
issues: this latter probability is modeled by a function of the dose d, equal to 1− sa(d/dJ)2,
where dJ is the maximal dose, and sa a �xed value related to the safety. We will note this
global Probability of Success by PoSadj(d, f) = PoS(d, f)× (1− sa(d/dJ)2, where PoS(d, f)
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is the standard Probability of Success related to e�cacy, i.e. the power function of the phase
III trial. The obtained utility function, named U0 in the following, has appealing properties,
in particular the easy interpretation of the parameters. But the problem with such type of
utility functions is that some of the parameters (in particular, the reward R, and the safety
parameter sa) are not known with enough con�dence or precision at the beginning of the drug
clinical development.

More generally, a proper utility function should have the following properties:

� It must depend on success of the phase III study (higher utility in case of success)

� It must be a non-monotonic (preferably concave) function of the dose with a unique
maximum value (increasing then decreasing): such a shape re�ects the bi-dimensional
aspect of the utility function, one increasing with the dose (e�cacy component) the other
one decreasing with the dose (safety component)

Examples of utility functions capable of verifying these conditions according to the appropri-
ate parameters, are shown below and are discussed thereafter. All the utility functions below
include an increasing function of the dose (a function of the PoS, representative of the drug
e�cacy) multiplied by a decreasing penalty function of the dose (representative of the drug
toxicity). Note that for U0, U1, U2, U3 and U7 de�ned below, those conditions are veri�ed
in case of a 'Go' decision for phase III only. In some of the following utility functions, in order
to normalize the e�ect of the dose (so that it does not depend on the dose unit), the e�ect is
expressed as a function of the relative e�cacy, denoted by δ = e�cacy / maximum e�cacy.
So with the Emax dose-response model, we have:

δ =
Emax × d/(ED50 + d)

Emax
= d/(ED50 + d).

Therefore δ varies between 0, for a null dose (placebo), and 1, for a very large (or "in�nite")
dose.

For the sake of simplicity, and in order to facilitate the reading, in the following of the
manuscript (next sections of Chapter 3, Chapter 4 and Chapter 5), we will drop the
parameters in the notations of the quantities of interest when there is no ambiguity. For in-
stance, we will note PoS(d, f) instead of PoS(d, f, θ), U(d, f) instead of U(d, f, θ), etc. For
all the utility functions below, we assume that Emax > 0 and ED50 > 0. Parameter c > 0
(introduced in some of the utility functions below) will represent a parameter penalizing high
doses, the higher the c, the higher the penalty for safety:
U0(d, f) = −γN21(NoGo) + 1(Go)(−γNtot +R× PoSadj(d, f))
U1(d, f) = −γN21(NoGo) + 1(Go)(−γNtot + PoS(d, f)× (R− c(δ − 0.95)2))
U2(d, f) = −γN21(NoGo) + 1(Go)(−γNtot + PoS(d, f)×R(1− δ))
U3(d, f) = −γN21(NoGo) + 1(Go)(−γNtot + PoS(d, f)×R(1− δ)2)
U4(d, f) = PoS(d, f)× (1− c(δ − 0.95)2)
U5(d, f) = PoS(d, f)× (1− c× δ)
U6(d, f) = PoS(d, f)× (1− c× δ)2
U7(d, f) = −γN21(NoGo) + 1(Go)(−γNtot + PoS(d, f)× (R− c(δ − 0.95)21(δ > 0.95)))
U8(d, f) = PoS(d, f)× (1− c(δ − 0.95)21(δ > 0.95))
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U9(d, f) = PoS(d, f)× (1− c× (
d

dJ
)2) (where dJ is the highest dose)

U10(d, f) = PoS(d, f)h× (1−PoT (d))k (where PoT (d) is the probability of toxicity for dose
d)
U11(d) = PoS(d)h × P(toxobs(d) ≤ t)k (where toxobs is the observed proportion of patients
having a toxicity in phase III, and t is a safety parameter controlling over-toxicity, see Chap-
ter 4 for further details).

In U10 and U11, parameters h and k re�ect the respective contributions of e�cacy and safety
to the utility function; for instance, the higher the k, the higher the penalty for safety.

The utility functions U1 to U8 suggest di�erent e�cacy penalties which do not explicitly
refer to a safety component. For these utility functions, in order to normalize the dose e�ect
(so that it does not depend on the dose unit), the e�ect is expressed as a function of δ: the
main problem with such a de�nition is that, from the sponsor's point of view, the utility
function depends also on the estimation of the e�cacy dose-response model (the penalty de-
pends on δ) which may lead to an increase in uncertainty and bad choices after phase II; on
the contrary, U9, U10 and U11 utility functions do not depend on the e�cacy dose-response
model, this could be a more rational choice intending to avoid estimation problems. But the
major di�erence between these three utility functions is that safety is implicitly considered in
U9, through the probability of absence of safety issues, 1 − c × (d/dJ)2, whereas the utility
functions U10 and U11 explicitly identify both an e�cacy and a safety component. These
particular functions will be discussed in Section 3.3.2.

3.3 Seamless design and utility function: some �rst quite dis-

appointing results

The aim of this section is to give guidance on an operationally seamless design, in terms
of: timing of the interim analysis, design of the phase II part (stage 1), and choice of the
optimal dose. The main underlying hypothesis is that the sponsor takes its decisions (decision
to continue the trial after interim analyses, choice of dose) in maximizing a utility function
that assigns a value to each decision. To do that, some of the utility functions de�ned in the
previous section will be discussed according to their related simulation results.

3.3.1 Introduction and notations

When the sponsor takes the decisions regarding the dose or the Go/NoGo choices, it uses the
parameter estimates. When computing the global/empirical utility expectation and the PoS
of the chosen dose (for all simulated phase II studies), in order to assess the performance of
the decision rules, one uses the true parameter values.

Before study starts: sponsor's general strategy is to maximize (in phase II design, w, and
N2/Ntot ratio, f) the expected utility. A frequentist approach was used to compute the param-
eter estimates of dose-response model: sponsor's decisions are driven by maximum likelihood
estimations of the model parameters (see Appendix A.1 for further details). Decision rule of
the sponsor is only based on point estimate θ̂ of model parameter vector θ. We compared
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the e�ciency of the decision rules through clinical trial simulations, corresponding results are
shown in Appendix A.1. In order to save computational time, simulations were not conducted
in simulating individual patients but in simulating directly the maximum likelihood parame-
ter estimates by sampling them with a Normal distribution N(θ; I−1θ ), where I is the Fisher
information matrix.

3.3.2 Optimal patient allocation: unattractive results

All utility functions presented in Section 3.2 were assessed through several simulation scenarios,
but for sake of simplicity, only some particular functions of interest are presented in Appendix
A.1. Regarding the optimisation of patient allocation to doses as well as the global patient
allocation between phase II and phase III, we compared in Appendix A.1, through simulations,
results obtained in using respectively the utility functions U5 (because it is representative of
utility functions de�ned with the relative e�ect δ) and U9 (because it does not depend on the
e�cacy dose-response model, and implicitly refers to a safety component) only. We do not
detail those simulations further in this chapter (we leave the description of the methodology
and the discussion for Appendix A.1) as the results obtained were not fully satisfactory: the
optimal designs identi�ed were, in most cases, very close to the standard balanced design.

Therefore, for the major part of the thesis we have chosen to abandon the seamless design
framework and to focus on the even more frequent situation of dose selection in the context of
the phase II dose-�nding study with a �xed sample size and a balanced design. For this pur-
pose we considered that utility functions of the form U10 or U11 were the most appropriate,
because they explicitly identify both an e�cacy and a safety component. The construction of
U10 was motivated by [Temple2012]: the idea was to improve the utility function proposed
by the author (which has a similar form to U9), by explicitly modeling the safety component
(instead of considering the absence of safety issues probability through a �xed parameter,
c). But, what is striking about U10 is that e�cacy and toxicity are not treated at the same
level. Indeed, the e�cacy component, PoS(d, f), involves both the e�ect size of the dose d
and the sample size of the phase III study whereas in comparison, the toxicity component,
(1−PoT (d))k, only involves the toxicity level of the dose d without involving the sample size
of the phase III study at all. This asymmetry is troublesome when it comes to optimizing the
allocation of patients between phase II and phase III. For this reason for the next chapters and
the major part of the thesis, we considered a utility function of the form U11, and we focused
on the optimization of the dose selection process by maximizing the success probability in
phase III.

However, we describe in Section 3.4 a general decisional framework related to the optimization
of adaptive designs (in terms of patient allocation to doses and allocation ratio between phase
II and phase III) suitable for various utility functions, even though this optimization part is
abandoned in the following chapters.

3.4 Sponsor's strategy: Optimal dose and decision rules

Our utility-based decision framework can be described in the context of a Markov Decision
Process [Bellman1957]. In particular, the most comprehensive decision framework in our con-
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text, the one corresponding to the utility U0(d, f) = E(G|phase II,Go), can be described by
the following graph:

Action: design(f, w) Go/NoGo, choice of dose
↓ ↓

State: before phase II
phase II−→ after phase II

phase III−→
if 'Go'

after phase III

↓ ↓ ↓

Gain: -cost phase II: -γN2 -cost phase III if 'Go': -γN3 �nal gain: G=

 R - γNtot if success

- γNtot if not

This graph can be understood as follows:

� At start of the study, the sponsor can act on the design of the trial: the timing of the
interim analysis (the ratio, f , of the phase II sample size by the total sample size) and
the allocation of the phase II patients to the dose arms (vector w). This action has a
cost which is proportional to sample size in phase II: γN2.

� When the phase II part is completed, the sponsor analyzes the data and takes two
decisions: decides to go the phase III or not and, in case of positive answer, chooses the
dose for the phase III.

� When the phase III is completed: if it is successful then there is a reward, R, and the
�nal gain is G = R − γN2 − γN3 = R − γNtot; if it is not successful then there is total
cost, and the �nal gain is negative, G = −γNtot.

In an uncertain environment like this one, the sponsor's strategy (the set of actions) is to
optimize the �nal gain expectation (if the decision is to go to phase III) before phase II,
E(G|Go) = EphaseIIE(G|phase II,Go). We remind that U0(d, f) = E(G|phase II,Go). Ac-
cording to the Bellman Dynamic Programming principle [Bellman1957], which consists in
optimizing a decision by breaking it down into a sequence of decision steps over time, this
optimisation should be performed backwards:

1. given the phase II trial has been performed, the optimal decisions (Go/NoGo, choice of
the optimal dose that we denote by d∗) maximize U0(d∗, f) = maxdU0(d, f); at this
stage only the �nal gain is random: it depends on the success or not of the phase III trial;
therefore: U0(d∗, f) = maxd[R × Ed(1(′Success′)) − γNtot], where Ed(1(′Success′)) =
PoSadj(d, f) as de�ned in Section 3.2; in other words, U0(d∗, f) depends on PoSadj ,
which plays a key role in the calculations, as already discussed in Section 3.2

2. the sponsor chooses 'Go' if the estimated PoSadj associated to the best dose d∗, that we
note P̂OSadj(d∗, f), is large enough, say greater than 0.30 for instance, and if Û0(d∗, f) is

greater than 0. This is equivalent to P̂ oSadj(d∗, f) ≥ 0.30 and R×P̂ oSadj(d∗, f) > γNtot,
otherwise the sponsor should choose 'NoGo'

3. the optimal design maximizes the expected gain EU0(d∗, f)

For the utility functions U1, U2, U3 and U7, the same decision process is applied, as these
functions also depend on costs and rewards.
For the utility functions U4, U5, U6, U8 and U9, the decision process has been slightly sim-
pli�ed: because for those utilities there is no reference to economic costs, we have proposed to
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base the decision to go to phase III or not on a minimal value of the PoS only, that we have
also set to 0.30: the sponsor decides to go in to phase III if the estimated PoS associated to
the best dose is ≥ 0.30.
For U10 and U11, additional constraints are considered for the safety components: the spon-
sor decides to go to phase III if the estimated PoS associated to the best dose is ≥ 0.30 and
P̂ oT (d∗) < 0.15 (for U10), or if the estimated PoS associated to the best dose is > 0.60 and
P̂(toxobs(d∗) ≤ t) > 0.50 (for U11); see Chapters 4, 5 and 6 for further details regarding
U11 and the choice of these minimal/maximal thresholds.

In the following, we detail the methodology related to the PoS computation and to the design
optimization, for all utility functions U0,..., U11.

The computation of Probability of Success (PoS)

The Emax model will be used also by the sponsor as "working" model to estimate the mean
dose-response relationship. The e�cacy PoS computed by the sponsor, for dose selection, uses
the point estimate θ̂ of θ.

In the method shown in Section 3.1, the sponsor uses the raw value of the estimate of the
model parameters to estimate the PoS as if it was the true parameter value. In a more conser-
vative approach, the sponsor might want to consider the uncertainty in the parameter value:
in that case, a semi-Bayesian/hierarchical approach can be used, hierarchical in the sense that
it characterizes the law of ∆̄(d) conditional on phase II and on m(d; θ), then the law of m(d; θ)
conditional on the estimate θ̂ (i.e. conditional on phase II). In order to introduce uncertainty,
the sponsor can consider that θ is random: a classical way to do this (see [Ghosh et al.2007]
chapter 4) is to consider that, conditionally on the phase II data, θ follows a Normal dis-
tribution, centered at the estimated parameter vector obtained with the maximum likelihood
approach, θ̂, and with covariance matrix equal to the inverse of the Fisher matrix of θ̂. In other
words it is considered that θ is a random variable following N(θ̂, I−1

θ̂
). Therefore, in the se-

quel of this paragraph, θ̂ denotes the non-random vector of the maximum likelihood estimates.

With the delta-method, sponsor deduces the distribution of m(d; θ) given phase II, and then
deduces the distribution of ∆̄(d) given phase II.

Hierarchical model The hierarchical model approach is as follows:

� ∆̄(d) | θ ∼ N(m(d, θ) − m(0, θ), 2SE2), this can be written as: ∆̄(d) = m(d, θ) −
m(0, θ) + e, with e ∼ N(0, 2SE2).

� It is then assumed that θ | θ̂ ∼ N(θ̂, Iθ̂
−1). By application of the delta-method: m(d, θ)−

m(0, θ) | θ̂ ∼ N(m(d, θ̂) −m(0, θ̂),∇
(
m(d, θ̂)−m(0, θ̂)

)t
Iθ̂
−1∇

(
m(d, θ̂)−m(0, θ̂)

)
),

which can be written as m(d, θ)−m(0, θ) = m(d, θ̂)−m(0, θ̂) + ε,

where ε ∼ N(0,∇
(
m(d, θ̂)−m(0, θ̂)

)t
Iθ̂
−1∇

(
m(d, θ̂)−m(0, θ̂)

)
),

and ∇
(
m(d, θ̂)−m(0, θ̂)

)
denotes the gradient of m(d, θ̂)−m(0, θ̂).
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� Therefore, ∆̄(d) = m(d, θ̂) − m(0, θ̂) + e + ε ⇔ ∆̄(d) ∼ N(m(d, θ̂) − m(0, θ̂), 2SE2 +

∇
(
m(d, θ̂)−m(0, θ̂)

)t
Iθ̂
−1∇

(
m(d, θ̂)−m(0, θ̂)

)
).

As a consequence, the estimated PoS, P̂ oS(d; f), is equal to:

Φ

 m(d, θ̂)−m(0, θ̂)− 1.96×
√

2SE2√
2SE2 +∇

(
m(d, θ̂)−m(0, θ̂)

)t
Iθ̂
−1∇

(
m(d, θ̂)−m(0, θ̂)

)
.

Accounting for uncertainty induces decrease of the estimated PoS, consequently,
sponsor is encouraged to increase the dose to compensate.

We essentially considered the case in which the sponsor only uses the estimate of the parameter
to compute the PoS (i.e. without taking into account the uncertainty in the parameter value),
but in the next chapter we consider a full Bayesian approach, see Section 4.1.2.1 of Chapter 4.

Optimizing the design

We remind that the choice of the optimal dose d∗ depends on θ̂, therefore, we will note
d∗
θ̂
instead of d∗ in the sequel, in order to explicitly refer to this dependency for the com-

putation of the overall expectation of the maximized utility function in d. We remind that
the maximized utility in d can be written as U(d∗, f) = maxd U(d, f). Therefore, for a given
design (summarized by the quantitities f, w), the overall expectation EphaseIIw,f (U(d∗, f)) of the

maximized utility function in d can also be written as Eθ̂w,fU(d∗
θ̂
, f) where θ̂ has a Normal

distribution N(θ, I−1θ ), see Section 3.3.1.

The expectation Eθ̂w,fU(d∗
θ̂
, f) can be computed by numerical integration, or by simulations

(if there is a large number of parameters or if the computation time of the expectations with
numerical integration routines is very long).

Regarding U0, the expectation was computed via numerical integration:
Eθ̂w,fU0(d∗

θ̂
, f) = EphaseIIw,f (U0(d∗, f)) =

∫
(((−γ × N2) × 1(NoGo(θ̂))) + (−γ × Ntot + R ×

PoSadj(d
∗
θ̂
, f)× 1(Go(θ̂))))p(θ̂)dθ̂, where 1(Go(θ̂)) and 1(NoGo(θ̂)) are the random decisions

to go or not to phase III, depending on θ̂, and p(θ̂) is the density of the Gaussian distribution
N(θ, I−1θ ). With this approach, computation time was very long.

For U1,..., U10, as we anticipated very long computation time with numerical integration
routines (like the case of U0), we used simulations instead, and we computed the expectation

via a Monte Carlo approach. The expectation Eθ̂w,fU(d∗
θ̂
, f) can therefore be estimated by:

1

Nsim

Nsim∑
r=1

U(d∗
θ̂r
, f)

55



where the θ̂r are sampled from N(θ, I−1θ ), and Nsim designates the number of simulations.

For U11, the estimation approach is di�erent (the reason is explained in Chapter 4) and
is applied in a di�erent context (see Sections 3.3.2 and 3.5); it is based on MCMC iterations,
and the posterior utility distribution is computed using a particular method called the batch-
ing method, see Chapter 4 for further details.

For more details regarding the computation of the Fisher information matrix and other com-
putational/programming aspects, see Appendix A.1.

We remind that the sponsor's strategy is to optimize the �nal gain expectation (if the de-
cision is to go to phase III) before phase II, E(G|Go) = EphaseIIE(G|phase II,Go), and this
optimization is performed backwards (see previous discussion regarding the Bellman Dynamic
Programming). In the end, the strategy can be summarized as follows:

� After phase II, for a given utility U(d, f):
The sponsor computes U(d, f) for each dose d, then computes the optimal dose d∗ =
d∗
θ̂

= arg maxd U(d, f), then decides to go or not to phase III (see pages 53 and 54 for
details)

� for U0, U1, U2, U3 and U7, decides if worth going to pase III if P̂ oS(d∗, f) ≥ 0.30
and if Û(d∗, f) > 0

� for U4, U5, U6, U8 and U9, decides if worth going to phase III if P̂ oS(d∗, f) ≥ 0.30
only

� for U10 and U11, uses additional rules and di�erent e�cacy/safety thresholds pre-
viously discussed (page 54)

� Before phase II:
The sponsor's strategy before the phase II consists in optimizing the timing of the in-
terim analysis (the ratio, f , of the phase II sample size divided by the total sample size)
as well as the allocation of the phase II patients to the dose arms (vector w). Math-
ematically this can be written as: (w∗, f∗) = arg maxEphaseIIw,f (U(d∗, f)). In practice,

EphaseIIw,f (U(d∗, f)) is computed via numerical integration or estimated through simula-
tions, as already explained. The optimisation is conducted using Nelder-Mead algorithm
(after logistic transforms to ensure that 0 < f < 1 and

∑
dwd = 1) with the R 'optim'

function. This optimisation could be conducted either separately (optimize in f value
while w is �xed at a standard value like the one for the balanced design, or in w value
while f is �xed at a desired value corresponding to sample size of interest, see Appendix
A.1 for simulation results examples, related to U5 and U9) or simultaneously (optimize
f and w at the same time, see Appendix A.6 for simulation result example related to
U2).

3.5 Conclusions

In this chapter, we have proposed a general decision-making framework, suitable for comparing
and optimizing seamless phase II/ phase III designs, based on utility functions. We have re-
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viewed and discussed various forms of utility functions, that either were previously mentioned
in the literature or appeared reasonable for us.

Because we think that utility functions de�ned by economic or �nancial considerations (such
as the cost of phase III, expected �nancial reward in case of successful launch of the drug) are
di�cult to specify with enough con�dence or precision at the beginning of the drug clinical
development, we preferred to focus on utility functions only de�ned by e�cacy and safety
(explicitly or implicitly) considerations. We performed then a simulation study with those
utility functions that appeared the most appropriate to us, in particular the U5 and U9 utility
functions. Unfortunately, the results obtained (shown in Appendix A.1) were not fully sat-
isfactory, as the optimal designs identi�ed were surprisingly, in most cases, very close to the
standard balanced design.

For this reason, we preferred, for the major part of this thesis that will be described in
the next chapters, to abandon the seamless design framework and to focus on the even more
frequent situation of dose selection in the context of the phase II dose-�nding study with a
�xed sample size and a balanced design (in this case, PoS and utility U do not depend on f
anymore, i.e. f is now removed from all previous formulas, we will denote PoS(d) instead of
PoS(d, f), U(d) instead of U(d, f), etc.). For this purpose, we used a utility function of the
following family only: U11(d) = PoS(d)h × P(toxobs(d) ≤ t)k, where PoS is the power of the
comparison versus placebo in a reference phase III trial with N3/2 patients per arm (N3 is
now �xed) and P(toxobs(d) ≤ t) is the probability of observing a toxicity rate lower than t in
the dose arm of this same phase III reference trial. Further details and explanations will be
provided in the next chapter.
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Chapter 4

Dose selection in the context of a

phase II dose-�nding study

In this chapter, we propose a phase II design within a decision-making framework, based on
our �nal utility function. Unlike the previous chapter (seamless design) where we aimed to
optimize the allocation ratio and patients distribution between phase II and phase III, while
searching for the best dose for phase III, the idea here is to drive sponsor's decision with
respect to the continuation, or not, of the drug development as well as the selection of the
best dose for the phase III.

In fact, for the speci�c analysis of phase II, we thought it would be interesting to consider
a utility function of the following form U(d, θ, λ) = (efficacy(d))h × (safety(d))k, where d
represents the dose, and, θ and λ are the vectors of e�cacy and safety dose-response model
parameters respectively. For the sake of simplicity, and in order to facilitate the reading, we
will drop the parameters in the notations of the quantities of interest when there is no ambigu-
ity (as done in Chapter 3); we will write U(d) instead of U(d, θ, λ). E�cacy is an increasing
component of the dose, this term depends on the e�ectiveness of doses, particularly on e�ect
sizes. We chose to express it depending on the PoS, i.e. the power of a phase III trial, of N3

patients: this has the advantage of "normalizing" this component by varying it between 0 and
1. De�ning e�cacy in terms of PoS can be used for any type of e�cacy criterion: quantitative,
binary, time to event criterion, etc. Contrarily, safety is a decreasing term depending on the
dose. This term depends on the toxicity of the doses. We chose to express it according to the
probability of observing a toxicity rate lower than t in the dose arm, during a phase III trial of
N3 patients in total: this also has the advantage of "normalizing" this component by varying
it between 0 and 1.

If the choice of dose was left to an expert panel, the question it would have to face would
be to note and prioritize a treatment according to its PoS in phase III and the probability
of controlling the over-toxicity in phase III in accordance with a pre-speci�ed threshold that
depends mostly on the therapeutic area. The question would be "with which treatment would
you prefer to go to phase III ?". Clearly, a strong PoS would be mitigated by a low probability
of controlling the over-toxicity. So "best" doses do not necessarily correspond to highest PoS
since toxicity is also taken into account. This can be translated by our �nal utility function
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proposal, U11(d) = PoS(d)h× P(toxobs(d) ≤ t)k, where h and k are parameters re�ecting the
respective contributions of e�cacy and safety to the utility function; the higher the k, the
higher the penalty for safety, and t is a safety parameter controlling over toxicity in phase
III. PoS re�ects the dose e�cacy, and P(toxobs(d) ≤ t) is the probability of controlling over-
toxicity, i.e. the probability of observing a toxicity rate less than or equal to t in phase III.
The detailed calculation of each of these two components will be presented in Section 4.1.2.1.

A speci�c characteristic of the proposed utility function is that both its e�cacy and safety
components depend on the sample size of the phase III study. This choice is intended to re�ect
real life conditions where Go/NoGo decisions and dose selection at the end of phase II always
relate to the sample size the sponsor can a�ord for a superiority phase III trial. This can be
viewed as a pragmatic choice.

4.1 Materials and Methods

4.1.1 Dose-response modeling

We chose to model e�cacy via an Emax model (de�ned in Chapter 3), and safety via a Probit
model. Note that the probability of toxicity is usually given by a logistic regression, but in
practice, it is known that Probit and logistic models are almost indistinguishable (both link
functions are symmetric). So we expect similar results with a logistic or probit type safety
model. However, logistic model may be better suited if one seeks to interpret parameters
and outputs in terms of Odds Ratio. Contrariwise, the Probit model has some advantages if
one has to model several events simultaneously: using a multivariate normal distribution and
subsequently a Probit link to each of its components, makes it possible to model occurences
of several correlated events. It is less straightforward to model occurence of correlated events
using a logistic link function.

Here is the mathematical formalization of our modeling approach with all the necessary nota-
tions and calculations:

(i) The N3 (the sample size of the phase III study) is now assumed to be constant.

(ii) For safety, we used the following Probit model: π(d) = P(W = 1|d) = Φ(λ1 + λ2 × d),
λ = (λ1, λ2)

t, where λ1 = a is the intercept parameter, λ2 = b is the dose e�ect, W is
the binary toxicity outcome for one patient, 1 for toxicity and 0 if no toxicity, and Φ is
the Cumulative Distribution Function (CDF) of the standard normal distribution.

(iii) For e�cacy, the Emax model de�ned in Section 3.1 is used.

4.1.2 Decision-making framework

In the following, we will discuss our proposed utility function, as well as computations of each
of its components (e�cacy and toxicity-related components).
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4.1.2.1 Utility function

As already mentioned in Chapter 3 and at the beginning of this chapter, we chose the fol-
lowing utility function U(d) = U11(d) = PoS(d)h×P(toxobs(d) ≤ t)k. Each of its components
calculation will be presented below. In all the following of this chapter, the random vectors of
e�cacy and safety model parameters, speci�ed in a Bayesian framework by the sponsor, will
be denoted by θ and λ respectively.

The PoS (which is also the phase III power) that we consider in our utility function is de�ned
in Chapter 3. The formulas are given for the case of balanced treatment groups.

We use a MCMC approach, [Ravenzwaaij et al.2018]; [Geyer et al.2011], particularly a Metropolis-
Hastings algorithm to capture the posterior of the model parameters and key quantities of
interest: utility, PoS, etc. For instance, samples from the posterior of the PoS can be obtained
from MCMC iterations:
P̂OSi(d) = Φ

((
m(d; θ(i))−m(0; θ(i))− 1.96×

√
2SE2

)
/
√

2SE2
)
, where θ(i) is the vector of

e�cacy model parameters θ simulated at iteration i. The advantage of Bayesian framework
over a purely frequentist approach lies in its ability to account for the uncertainty in parameter
values in the decisional process and also, in allowing greater �exibility in the de�nition of the
decision rules (de�ned in Section 4.1.2.2).

On the other hand, the number of patients having a toxicity is a binomial distribution of
parameters N3/2 and π(d), where π(d) represents the probability of toxicity corresponding to
dose d as de�ned in Section 4.1.1. The observed proportion of patients having a toxicity in
phase III, toxobs(d) = #patients with toxicity/(N3/2), gives an estimation of π(d). The safety
component P̂(toxobs(d) ≤ t) is then the estimated probability of controlling over-toxicity, i.e.
the probability of observing a toxicity rate less than or equal to t in phase III. Likewise, a pos-
terior distribution of toxicity model parameters is obtained using a MCMC approach, where
λ(i) is the simulated value of the toxicity model parameter vector λ obtained at iteration i.

Note that e�cacy and toxicity are modelled and simulated as independent random variables.

4.1.2.2 Optimal dose and decision rules

For each study, the sponsor makes two decisions:

(i) Identi�cation of the recommended dose: at each MCMC iteration, one identi�es the best
dose as the dose with the highest utility score: for all doses dj , we compute an estimation
(MCMC) of Ppost(dj has the highest utility), written as P̂post(dj = optimal dose|data)
in all the following of the manuscript; the recommended dose d∗ for phase III is the
dose for which this probability is the highest one, i.e. the dose being the most often
identi�ed as the best one among all MCMC iterations. In (the unlikely) case two doses
have exactly the same probability of being the best dose, the lower dose is chosen and
recommended for phase III. We call this Decision rule 1 (we compared alternative decision
rules, Decision rule 1*, Decision rule 2, Decision rule 3 and Decision rule 4, see Chapter
5).
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(ii) Go / NoGo choice decision: the sponsor computes the average of estimated PoSs and the
average of the estimated toxicity probabilities for the recommended dose d* among all
MCMC iterations denoted by meanMCMC(P̂ oS(d∗)) and meanMCMC(P̂(toxobs(d∗) ≤
t)) respectively. The 'Go' for phase III is then decided if these averages pass pre�xed
e�cacy and toxicity thresholds denoted by threshold.e� and threshold.safe respectively.
In other words, the sponsor chooses 'Go' if meanMCMC(P̂ oS(d∗)) > threshold.e� and
meanMCMC(P̂(toxobs(d∗) ≤ t)) > threshold.safe. These thresholds are at the study
level, they depend on the therapeutic area and the objectives of the study.

Sequential design We consider also the case of a sequential design and propose an adapted
utility-based decisional framework. The sequential design consists in performing an interim
analysis when a fraction (for instance half, as in the simulations we preformed) of the total
sample size has been enrolled: following the interim analysis, the sponsor might decide to
terminate the study or to continue until the total planned sample size is enrolled. Regarding
the interim analysis, we propose a simple and intuitive method: one stops at the interim
analysis if the posterior probability for the selected dose to be the optimal dose is higher than
or equal to a threshold l, i.e. if P[U(d∗) > U(dj) for all the other doses dj |data] ≥ l, where
l ∈ [0, 1]. The details related to the computational aspects (estimation) of this interim analysis
criterion are given in the following Section 4.1.2.3. Threshold l should be wisely prede�ned
by the sponsor, it should be high enough to guarantee accuracy of the dose choice, but not
too high, otherwise frequency of early termination will be decreased and studies will be rarely
terminated at interim. The design of the study is the following: the sponsor plans a phase II
study with N2 patients (for example N2 = 500 patients), and decides to do an interim analysis
withN ′2 patients (N

′
2 < N2, for exampleN ′2 = 250). Then, the strategy is as follows: if the dose

choice is obvious with N ′2 patients, one stops at the interim analysis (and then chooses whether
to go or not to phase III with the chosen dose, see following discussion), otherwise one goes to
the end of the phase II study with N2 patients in total. To decide to stop the phase II study, we
took advantage of the Bayesian framework of data analysis: we stop the phase II study with N ′2
patients if the identi�ed dose d∗ is very likely to be (conditional to data) the best one, i.e. we
stop if "P[U(d∗) > U(dj) for all the other doses dj |data] ≥ l". Note that an early termination
of the trial at the interim analysis is not necessarily a positive outcome: we can also stop the
analysis for futility, i.e. we stop at interim and we do not Go to phase III, with the same
decision criteria as the ones for the �xed design (if meanMCMC(P̂ oS(d∗)) <threshold.e� and
meanMCMC(P̂(toxobs(d∗) ≤ t)) <threshold.safe at interim). The values of these thresholds
could be di�erent for the interim analysis compared to those prede�ned for the �nal analysis.
One could imagine more restrictive thresholds for the interim, and less constraining ones for
the �nal analysis. In our work, the interim and �nal analyses are conducted the same way.
But in fact, according to sponsor's objectives related to the interim analysis, they could be
conducted completely di�erently. For instance, if the only aim of the interim analysis is to
assess if the drug shows some e�cacy or not (with no further objective to identify the optimal
dose), then a speci�c decision rule could be built in relation to the e�cacy of the largest dose
only (for instance the decision rule could be de�ned as a minimal PoS in phase III for the
largest dose; studies would be stopped if e�cacy of the largest dose is insu�cient). In this
example, studies would be stopped only for futility (we only stop for failure, never for success).
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4.1.2.3 Optimal dose estimation method: Batching approach

Posterior distributions could be computed with a MCMC approach. More precisely, it could be
done via subsampling method (also known as thinning), [Geyer et al.2011], to remove autocor-
relations, or via batching method, [Alexopoulos and Seila1996]; [Fishman and Yarberry1997];
[Schmeiser and Song1996]; [Geyer et al.2011], to avoid both information loss and autocor-
relations, and to possibly estimate the variance of a MCMC estimator (the latter issue was
not particularly the purpose of implementing this method in this chapter). In this chapter,
a batching method is implemented for a di�erent purpose: govern the dose selection process
in re�ning the dose selection rule mentionned in the previous section. Indeed, the main idea
is to select the dose d∗ = dj such that P̂post(dj = optimal dose|data) has the highest value
amongst all doses. Instead of simply computing standard MCMC estimates of those posterior
probabilities (i.e. P̂post(dj = optimal dose|data) for all doses dj), we will apply a batching
method that will be described thereafter: it consists in computing, �rst, partial sums of the
MCMC utilities iterates over batches of a su�ciently large length. With the latter method,
smoother and more concentrated posterior distributions are obtained and therefore, two as-
pects are ensured: reducing variability and avoiding information loss within the chain. In the
following, we delineate the statistical process of this method, and we give a detailed expla-
nation of why this method should not be applied directly to model parameters, but only to
estimated utilities (based on parameter estimates).

In the following, we de�ne the Markov chain (X) by Xi = (X1i , X2i)
t, where X1i and X2i

represent the MCMC Markov chains related to e�cacy and safety parameters respectively.
The ith element of our Markov chain (X) represents candidate vectors θ(i) and λ(i) of θ and
λ respectively, at each iteration i. Let niter be the total number of MCMC iterations.

Subsampling the original Markov chain at spacing k, is the classical process that takes ev-
ery kth element of the Markov chain X1, X2, etc., forming a new Markov chain X1, Xk+1,
X2k+1, etc. This method is mainly used to reduce autocorrelations. The spacing of iterations
that contributes to the thinning process of the Markov chain is usually denoted by nspac.
Subsampling consists then in keeping one iteration every 'nspac' iterations.

Batching the Markov chain is a di�erent process. In our context, we are not primarily in-
terested by Eπpostθ,λ (θ, λ), where πpostθ,λ is the posterior distribution of θ and λ, but rather by
the mean of our utility function U(d, θ, λ), Eπpostθ,λ (U(d, θ, λ)). However, if a classic MCMC
batch form is applied to model parameters and de�ned by partial averages of length B,

(θ(i)B, λ(i)B)t =
1

B

∑B−1
s=0 X(i−1)B+s approximates Eπpostθ,λ (θ, λ), for B large enough (B is cho-

sen so that the partial averages θ(i)B and λ(i)B have the lowest possible autocorrelation). The
total number of iterations of a Markov chain, niter, corresponds to n×B where n is the num-
ber of iterations in the �nal output. In other words, U(d, θ(i)B, λ(i)B) ' U(d,Eπpostθ,λ (θ, λ))

and partial averages (θ(i)B, λ(i)B)t will lead to an estimation of U(d,Eπpostθ,λ (θ, λ)) instead of
Eπpostθ,λ (U(d, θ, λ)).

So with this classic batching method (applied directly to model parameters estimates) and
with a large B, we estimate the utility of the posterior mean of the parameters instead of
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estimating the posterior mean of the utility, this means that results would be di�erent (see
Section 5.2.1 for instance).

In order to correctly estimate our desired posterior distributions, we can do the same discus-
sion as above but with the following changes: based on the initial Markov chain representing
estimates of our model parameters, we apply the batching method to the estimated utilities
(calculated for each (θ(i), λ(i))t), in order to compute posterior probabilities. The MCMC
estimator of interest (described thereafter) is then the empirical mean of the batched utility
partial means.
So this is what happens in our actual context, we do not particularly want to calculate the
posterior average of the parameters of the e�cacy and toxicity models, but to choose the dose,
and for that, we must estimate the four posterior probabilities for each of the four active doses,
based on Bayesian estimates of U(d, θ, λ). In the following, we remind that d1, d2, d3 and d4
represent the active dose indices, and correspond to dose values d = 2, 4, 6, 8 respectively.

For a given iteration i, and for j = 1, ..., J , we form partial sums γ =
1

B

∑B−1
s=0

 U(d1;X(i−1)B+s)
...

U(dJ ;X(i−1)B+s)

;
this vector of partial sums approximately follows a normal distribution N(mU ,ΣU/B), cen-
tered on the posterior utility mean mU , with a covariance matrix equal to ΣU/B, which is
the asymptotic covariance matrix divided by the length of the batch B. In fact, by de�ni-
tion, the asymptotic covariance is the matrix Σ such that the covariance matrix of any MCMC

mean of length L,
1

L

∑L−1
l=0 Ul, is approximately equal to Σ/L, see [Geyer et al.2011] chapter 1.

The desired batching is then directly applied to the utility posterior distribution. Conse-
quently, the posterior probability that the batched utility is largest at a certain dose is:

η =
1

n

∑n
i=1

 1
(
uBi (d1) > uBi (dj), ∀j 6= 1

)
...

1
(
uBi (dJ) > uBi (dj), ∀j 6= J

)
, where uBi =

1

B

∑B−1
s=0 U(dj , X(i−1)B+s).

Consequently, an estimation of the posterior probabilities computed to choose the optimal
dose can be written as follows:

η =

 P̂
(
uB(d1) > uB(dj),∀j 6= 1

)
...

P̂
(
uB(dJ) > uB(dj),∀j 6= J

)
, where

 uB(d1)
...

uB(dJ)

 ∼ N(mU ,ΣU/B).

Those estimated probabilities correspond to P̂post(dj = optimal dose|data) for the four doses
dj , de�ned in Section 4.1.2.2. Based on these quantities, we recommend dose d∗ for phase III for
which this probability is the highest one compared to the others (i.e. the dose being the most
often identi�ed as the best one among all batches). The interpretation of the dose selection rule
after application of the batching method is as follows: we select the dose that has the highest
probability P̂(uB(d) > uB(dj), ∀dj 6= d) where the vector uB is normally distributed, centered
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at the vector of the posterior mean utility values and covariance matrix equal to the asymptotic
covariance matrix of the MCMC mean estimates of utilities divided by the length of the batch.
By using this Gaussian distribution to drive the dose selection, we expect more robust dose
selection rules (that can be monitored by the choice of the batch length B) than in simply us-
ing the raw MCMC estimates of the posterior distribution of the utility values. Regarding the
interim analysis, we stop at interim if this latter probability (of the chosen dose d∗) is higher
than a threshold l, in other words, if P̂[uB(d∗) > uB(dj) for all the other doses dj |data] ≥ l.
This is an estimation of the interim analysis criterion de�ned in Section 4.1.2.2.

Convergence properties of the estimates

Posterior means of utility values The posterior means of the utility values are the
quantities Eπpostθ,λ (U(d, θ, λ)). The MCMC estimates of those values are the empirical means:

1
niter

∑
i≤niter

U(d, θ(i), λ(i)) = 1
niter

∑
i≤niter

U(d,Xi) where Xi is the value at iteration i of the

Markov chain generated by the Metropolis-Hastings algorithm (Xi = (θ(i), λ(i))t are the esti-
mates of the θ and λ parameters respectively at iteration i of the algorithm) whose stationary
distribution, πpostθ,λ , is the posterior distribution of the vector model parameters θ and λ
conditional on phase II data, and niter is the total number of iterations. The convergence of
the empirical means 1

niter

∑
i≤niter

U(d,Xi) towards Eπpostθ,λU(d, θ, λ) when niter →∞ is justi�ed

by the application of the ergodic theorem (see Theorem 6.63 in [Robert and Casella2004]):
the necessary condition of irreducibility of the Markov chain (X) is guaranteed by the ap-
plication of Lemma 7.6 in [Robert and Casella2004]. Indeed, we are using a 'random-walk'
version of Metropolis-Hastings algorithm with a normal working conditional density of the

form q(y|x) =
1√

2πτ2
exp(− 1

2τ2
(y − x)2), and then one can easily �nd a value δ such that

|x−y| < δ ⇒ q(y|x) > 1
2

1√
2πτ2

for instance; therefore Lemma 7.6 in [Robert and Casella2004]

can be used, showing the irreducibility of the Markov Chain, then combined with Lemma 7.3
in [Robert and Casella2004], proving the validity of the ergodic theorem.

Batching method Concerning the partial sums uBi =
1

B

∑B−1
s=0 U(d,XB(i−1)+s), we can

notice the two following points:

� The justi�cation of approximate normality of the partial sums uBi relies on the validity
of the central limit theorems for random-walk Metropolis-Hastings algorithms; a result
on this validity can be found in [Roberts and Tweedie1996]: it requires some additional
technical assumptions as compared to the ergodic theorem.

� The empirical means 1
n

∑n
i=1 u

B
i converge also towards Eπpostθ,λU(d, θ, λ) when niter →

∞, since the empirical mean of the partial sums is in fact the overall mean over the

MCMC iterations: indeed 1
n

∑n
i=1 u

B
i = 1

n

∑n
i=1

1

B

∑B−1
s=0 U(d,XB(i−1)+s)

=
1

n

1

B

∑niter−1
r=0 U(d,Xr) =

1

niter

∑niter−1
r=0 U(d,Xr) (since niter = n×B);
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the convergence of 1
niter

∑
r≤niter

U(d,Xr) towards Eπpostθ,λU(d, θ, λ) is justi�ed in the para-

graph above. Therefore, even though the use of the batching method does not decorre-
late consecutive MCMC iterations (when not applied directly on the model parameter
estimates but on the utility estimates instead), the obtained utility estimates are still
consistent despite potential autocorrelation within iterations: those estimates as well as
the estimates for PoS(d) and P(toxobs(d) ≤ t) are used for the Go/NoGo decision rules.

4.1.3 Simulations

In the following, we describe our simulation protocol and our chosen e�cacy/safety dose-
response scenarios. Note that all the chosen values stated thereafter are applied for the analysis
of each simulated phase II trial and are the same in each scenario.

4.1.3.1 Simulation protocol

We simulated 1000 phase II studies in total (stability of the results was checked, by simulating
5000 phase II studies for a given scenario for instance). For each simulated trial, we made the
following assumptions.

Indeed, our models can be applied to di�erent numbers of doses (or even di�erent dosages)
but for our simulations, we consider four active doses with the following values, d = 2, 4, 6, 8,
and one placebo with the following value, d = 0.

We consider informative priors for E0 and ED50, and non-informative prior for Emax: Emax ∼
N(0, 100), ED50 ∼ U [1, 10] and E0 ∼ N(0, 1). Regarding ED50, we considered this prior as
it is consistent with the fact that at this stage of drug development, phase II or phase IIb, the
sponsor has quantitative information (based on pre-clinical or phase I/pharmacodynamic stud-
ies) about the relevant dose range and that this re�ects in design doses. Regarding the prior for
E0, we assume that, similarly, the sponsor has some information on the range of placebo e�ect.

The following informative prior distributions for the parameters of the Probit model are con-
sidered: intercept a ∼ N(q0.05, 0.102), where q0.05 ' −1.65 is the normal distribution quantile
which corresponds to 5% of adverse event in placebo arm, and dose e�ect b ∼ U [0, 1]. The
sponsor is considered here to have information on the percentage of toxicity in the placebo
group (from epidemiological data, for instance), so the Probit model parameter a is centred
around its true value and with limited variability: a coe�cient of variation (i.e. ratio between
standard deviation (=0.10) and mean (=|q0.05| ' 1.65) roughly equal to 6%). In real life,
these choices are never completely non-informative, we often have an idea on the incidence
of adverse event in the placebo arm. Concerning the slope, b, the choice of this prior was
motivated by a conservative approach, assuming that the incidence of toxicity was necessarily
increasing with the dose.

Sensitivity analyses were conducted in order to examine the performance of the designs with
respect to di�erent priors (by considering non informative priors for all model parameters for
instance). Results were promising as they were consistent with the ones obtained with the
chosen priors in this section, but needed more patients to reach similar properties and decision
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rule qualities (see Appendix A.7). Some additional guidelines for prior elicitations are given
in Chapter 6. Density plots of our prior dose-response distributions are given in Appendix
A.7.

We consider N3 = 1000. In practice, phase III sample size is usually set to achieve a sta-
tistical power between 80% and 95%. It should be de�ned based on our understanding of the
endpoint, relevant e�ect and what the drug might achieve. In case overwhelming e�cacy is
expected by the project team, a smaller phase III sample size can be envisaged as well.

E�cacy and toxicity are modelled and simulated as independent random variables to limit
autocorrelation problem. We simulate niter = 150000 safety and niter = 150000 e�cacy pa-
rameters separately, and then we combine both datasets in order to build the utility score for
each dose / iteration. Among these iterations, we discard an initial portion of the Markov
chain sample so that the e�ect of initial values on the posterior inference is minimized: burn-
in=150000/2=75000 �rst iterations.

PoS, toxicity component and utility are computed at each MCMC iteration level. Once utili-
ties are estimated based on each θ(i) and λ(i) (75000 estimated utilities after burn-in process,
see Appendix A.2 for further details), we implement the batching method to compute poste-
rior probabilities based on the estimated utilities. We consider a batch length, B = 150 (the
choice of this value is also discussed in Appendix A.2). In the �nal output, we will then have:
n = 75000/150 = 500 batches, each batch representing the posterior partial mean of the utility
for each dose. Sponsor will use these partial means to rank doses according to utility scores
and choose the optimal one as explained in Sections 4.1.2.2 and 4.1.2.3. Tables summarizing
simulation results of the 1000 simulated studies are presented in Section 4.2, each result is an
average value calculated over all phase II studies.

Regarding the Go/NoGo decision (for the �xed design), we have proposed the decision criteria
based on threshold values for the PoS and for the probability of observing a toxicity rate lower
than t in phase III. These values will depend on the therapeutic area and the objectives of the
study; for e�cacy, it could be equal to 0.30 in Oncology for instance; we tested threshold.e�
= 30%, and it turned out to be too weak and not strict enough (see simulation results in
Appendix A.3), we also tested threshold.e� = 90% which, as expected, was too restrictive and
with this threshold we do not go often enough to phase III (see simulation results in Appendix
A.4); we �nally kept an intermediate threshold (moderate and reasonable) between the two
(threshold.e� = 60%). So in simulations, we �nally retained an e�cacy decision criterion for
the PoS, with 60% set as lower bound, and a safety decision criterion for the probability of
observing a toxicity rate lower than t, with 50% set as lower bound. For simplicity purposes,
the same threshold values are retained for the interim analysis.

We choose l = 0.80 for the interim analysis criterion.
We stop at interim if P[U(d∗) > U(dj) for all the other doses dj |data] ≥ 0.80.
The choice of this threshold is discussed in Chapter 6 (l = 0.90 is tested in Chapter 5). We
compare �xed designs (N2 = 250, N2 = 500 and N2 = 1000 patients) with sequential designs
with an interim analysis when half of the patients are enrolled (N2 = 500 and N2 = 1000
patients with an interim analysis at N ′2 = 250 and N ′2 = 500 patients respectively). Note
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that we also examined the performance of the designs with 50 and 100 patients, but with such
small sample sizes, the posterior distributions did not permit to rank the utilities consistently
with their true values. Therefore, results related to those designs are not given in this chapter
(see Chapter 5).

In this work, we consider t = 0.15. Note that this is an arbitrary choice, and usually de-
pends on the therapeutic area. For instance, a threshold of 0.30 (or 0.40) is more common in
oncology and may vary in other areas; see Appendix A.7 for sensitivity analysis related to the
choice of this threshold.

In the following, we consider h = 1 and k = 2 (respective weights given to the contribu-
tion of e�cacy and safety to the utility function). The choice of these parameters is discussed
in Chapter 6. Sensitivity analysis related to the choice of these parameter values were also
conducted, see Appendix A.7.

The residual variability σ is assumed to be known and set to the value of 0.5 in the simula-
tions. This value has been chosen in order to have, for one of our most important scenarios,
named "Sigmoid" (de�ned in the following Section 4.1.3.2), a standardized e�ect of 0.25 for
the highest dose (d = 8) of our design. This e�ect size is in the range/order of magnitude of
e�ect size generally targeted in drug development (it is admitted that the standard e�ect size
of clinical importance observed from most clinical trials is within the range of 0.25 and 0.5,
see [Cohen1988]). According to simulation results, σ = 0.5 seemed to be a reasonable choice
in terms of estimation quality and dose choice.

The R package mcmc was used for sampling the posterior distribution. Computations were
parallelized using R package parallel to speed up computation.

4.1.3.2 Simulation scenarios for e�cacy and toxicity

We remind that E0 = θ1, Emax = θ2, ED50 = θ3 for the e�cacy model parameters, and
a = λ1, b = λ2 for the toxicity model parameters.

We consider three main e�cacy scenarios assumed to be the true ones re�ecting the real
dose-response:

(i) Sigmoid scenario: this scenario corresponds to a smooth increase of the e�ect over the
dose range of the design: plateau e�ect barely reached for the highest design dose (see
Figures 4.4, 4.5, 4.6 and 4.7); for this scenario, the true e�cacy model parameters values
are: (Emax, ED50, E0)=(0.22, 6, 0).

(ii) Plateau scenario: this scenario begins with an almost linear growth, followed by an
in�ection, and then stabilizes at the end, which means that the last two doses have the
same e�cacy (see Figure 4.8); for this scenario, the true e�cacy model parameters values
are: (Emax, ED50, E0)=(0.14, 0.9, 0).

(iii) No activity scenario: it is considered to evaluate the type I error (see Figures 4.1, 4.2
and 4.3): the idea is to verify that the clinical trial stops for lack of activity, and not

67



because of excessive toxicity; for this scenario, the true e�cacy model parameters values
are: (Emax, ED50, E0)=(0, 6, 0).

We also consider �ve main toxicity scenarios (each of the e�cacy scenario was combined
with each of the following toxicity scenarios; in total, 15 scenarios were assessed through
simulations and for sake of simplicity, only some particular scenarios of interest are presented
in this chapter):

(i) Scenario with a progressive toxicity; for this scenario, the true toxicity model parameters
values are: (a, b)=(-1.645, 0.076), and the theoretical toxicities for d = 0, d = 2, d = 4,
d = 6 and d = 8 doses are: 0.05, 0.07, 0.09, 0.12, 0.15 respectively, so the toxicity
probability for the highest dose (d = 8) is equal to the �xed over-toxicity threshold
(=0.15, see Section 4.1.3.1), see Figure 5.2.

(ii) Scenario with a progressive toxicity; for this scenario, the true toxicity model parameters
values are: (a, b)=(-1.645, 0.100), and the theoretical toxicities for d = 0, d = 2, d = 4,
d = 6 and d = 8 doses are: 0.05, 0.07, 0.11, 0.15, 0.20 respectively, so the toxicity
probability is strictly higher than 0.15 for the highest dose (d = 8), see Figures 4.1, 4.4
and 4.8.

(iii) Scenario where the safety of all doses is acceptable, except for the highest dose d = 8 (in
this case d = 4 and d = 6 doses became quite close in terms of utility); for this scenario,
the true toxicity model parameters values are: (a, b)=(-2.054, 0.152), and the theoretical
toxicities for d = 0, d = 2, d = 4, d = 6 and d = 8 doses are: 0.02, 0.04, 0.07, 0.13, 0.20
respectively, see Figure 4.5.

(iv) Scenario with low toxicity; for this scenario, the true toxicity model parameters values
are: (a, b)=(-1.645, 0.045), and the theoretical toxicities for d = 0, d = 2, d = 4, d = 6
and d = 8 doses are: 0.05, 0.06, 0.07, 0.08, 0.10 respectively, so the toxicity is at 10%
even for the highest dose, see Figures 4.2 and 4.6.

(v) Scenario with high toxicity; for this scenario, the true toxicity model parameters values
are: (a, b)=(-1.645, 0.152), and the theoretical toxicities for d = 0, d = 2, d = 4, d = 6
and d = 8 doses are: 0.05, 0.09, 0.15, 0.23, 0.33 respectively, so the toxicity is already at
15% from the second active dose, see Figures 4.3 and 4.7.

4.2 Results

Denoting a simulation scenario by the product of the associated e�cacy and toxicity scenar-
ios, eight particular simulation scenarios are considered: no activity scenario × scenario with
progressive toxicity (and toxicity of highest dose = 0.20), no activity scenario × scenario with
low toxicity, no activity scenario × scenario with high toxicity, Sigmoid scenario × scenario
with progressive toxicity (and toxicity of highest dose = 0.20), Sigmoid scenario × scenario
with acceptable safety except for highest dose, Sigmoid scenario × scenario wit low toxicity,
Sigmoid scenario × scenario with high toxicity, and Plateau scenario × scenario with pro-
gressive toxicity (and toxicity of highest dose = 0.20). For each simulation scenario, a graph
highlighting the corresponding theoretical curves is drawn (see Figures 4.1 to 4.8), where 'Tox-
icity penalty' red curve represents the probability of observing more than 15% of toxicity in
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phase III, and a table summarizing all the results is given (see Tables 4.1 to 4.8). This table
contains the following:

(i) 'E(U)' is the empirical utility expectation of the chosen dose for the 1000 simulated
phase II studies among 'Go' and 'NoGo' decisions (utility is set to 0 when it is a 'NoGo'
decision)

(ii) 'Prob(choose(Go))' is the empirical probability of going to phase III with the chosen
dose

(iii) 'Distribution selected doses (Conditional to 'Go')' represents the empirical probabilities
of choosing the d = 2, 4, 6 and 8 dose respectively among the 'Go'

(iv) 'Distribution selected doses (Conditional to 'Go') at interim analysis' is the empirical
distribution of the chosen doses if we choose 'Go' for the interim analysis

(v) 'Distribution selected doses (Conditional to 'Go') at �nal analysis' is the empirical dis-
tribution of the chosen doses if we continue to the �nal analysis and we choose 'Go'

(vi) 'POS(conditional to 'Go')' is the empirical PoSs mean among the 'Go' with the chosen
dose

(vii) 'Prob(Stop at interim)' is the empirical probability of stopping at the interim analysis

(viii) '% Stop for futility' is the empirical probability of stopping for futility at interim (so this
percentage is included in (vii))

(ix) 'Mean(N2)' is the mean sample size of the sequential plan

(x) 'Power' is the global power of the combined phase II / phase III program, de�ned as the
product (ii)×(vi)

4.2.1 No activity scenario with progressive toxicity scenario (and toxicity
of highest dose = 0.20)

We started by considering a scenario with no activity to evaluate the type I error: the idea is
to verify that the clinical trial stops for lack of activity, and not because of excessive toxicity.
The utility function is illustrated in Figure 4.1 and results are given in Table 4.1.
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Figure 4.1: Theoretical curves, no activity scenario with progressive toxicity scenario (and
toxicity of highest dose = 0.20).

Table 4.1: Simulation results, no activity scenario with progressive toxicity scenario (and
toxicity of highest dose = 0.20).

In this scenario, the sponsor should not decide to go to phase III since no dose is e�cacious
as compared to placebo. In terms of probability of wrong decision (decide to go to phase III),
it is quite high (' 11%) with a phase II study with N2 = 250 patients. But, as expected,
the probability of wrong decision decreases as the sample size increases, reaching the value of
approximately 2% for the largest phase II study (N2 = 1000 patients). In the unfavourable
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case of wrong decision to go into phase III, the chosen dose is most often d = 4. This is due to
the fact that the analysis conducted by the sponsor identi�es the second dose as the highest
"well tolerated" dose (based on the probability of observing more than 15% of toxicity in the
phase III study). In such a scenario, the usefulness of conducting an interim analysis when
half of the patients are enrolled is debatable. Indeed, the probability of stopping at interim
analysis is not negligible (it is around 25% and 29% for sample size of 250 and 500 at interim,
respectively) this leads to a decrease of the mean sample size of the phase II study of around
12% and 14% as compared to a �xed sample size design of 500 and 1000 patients respectively.
But at the same time, even though the probability of interrupting the study and choose to
go directly in phase III is small, conducting an interim analysis in�ates the risk of wrongly
choosing to go in phase III as compared to the �xed sample size design (risk increases from
6% to 8% with the phase II study with 500 patients and the risk increases from 2% to 5%
with the phase II study with 1000 patients).

4.2.2 No activity with low toxicity scenario

Figure 4.2: Theoretical curves, no activity scenario with low toxicity scenario. The PoS and
utility curves are superimposed.

71



Table 4.2: Simulation results, no activity scenario with low toxicity scenario.

In this scenario in which, again, the sponsor should not decide to go to phase III, the conclu-
sions are roughly similar as for the previous scenario.

� The probablity of wrong decision are even slightly larger than in the previous scenario.
This is due to the fact that, because of the good safety pro�le of the drug, the wrong
identi�cation of a satisfactory e�cacy (as assessed by the estimated POS) is not counter-
balanced by toxicity warnings. Because of that, the probability of wrong decison is a
little bit high with a phase II study of 250 patients sample size. It reaches the more
acceptable levels of 10% and 5% with phase II studies of size 500 and 1000 patients
respectively.

� Because of the absence of toxicity, the model on which are based the sponsor's decisions
most often identi�es the largest dose as the optimal one: especially for the largest phase
II studies.

� The impact of the interim analysis is similar as in the previous scenario, but with a lower
magnitude because the probability to stop at the interim analysis was slightly lower as
in the previous scenario.
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4.2.3 No activity scenario with high toxicity scenario

Figure 4.3: Theoretical curves, no activity scenario with high toxicity scenario. The PoS and
utility curves are partially superimposed, especially for low doses.

Table 4.3: Simulation results, no activity scenario with high toxicity scenario.

This is the worst case scenario: the drug does not show any e�cacy but at the same time the
safety is poor with a quasi linear steep dose-toxicity curve. The same conclusions as for the
previous scenarios apply:
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� The probability of making the good decision (stop after phase II) increases with the
sample size of the phase II study. But the pro�le of the drug is so "bad" that decision
making is easy: with only 250 patients in the phase II study, the probability of taking
the wrong decision is as low as 5% and is equal to 0.1% for the largest phase II study.

� In this scenario, the interim analyses are very useful since, because taking the right
decision (stop for futility because of the high toxicity and the lack of e�cacy) does not
require many patients, the probability to stop at the interim analysis is extremely high:
equal to 65% (equal to 62% for futility) with 250 patients at the interim analysis and
equal to 75% (equal to 74% for futility) with 500 patients at the interim analysis.

4.2.4 Sigmoid scenario with progressive toxicity scenario (and toxicity of
highest dose = 0.20)

Figure 4.4: Theoretical curves, Sigmoid scenario with progressive toxicity scenario (and toxic-
ity of highest dose = 0.20). The PoS and utility curves are partially superimposed, especially
for low doses.
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Table 4.4: Simulation results, Sigmoid scenario with progressive toxicity scenario (and toxicity
of highest dose = 0.20).

In this scenario, the optimal dose is the second one (d = 4) and the true associated PoS and
utility are both approximately equal to 0.8 (see Figure 4.4). With this scenario we can see
that the probability of making the good decision (go to phase III with the second dose) is
clearly dependent on the sample size of the phase II study, the probability of good decision
increasing signi�cantly with the phase II sample size. When it is equal to 250, the sponsor
decides to go to phase III with a probability approximately equal to 56%, whereas the global
power is equal to 42%: this sample size does not seem large enough for a su�ciently accurate
estimation of both e�cacy and safety models to allow good decisions. With 1000 patients
in phase II, i.e. the largest phase II study, the probability of choosing to go to phase III
signi�cantly increases and reaches 70% with the largest phase II study: concomitantly, when
the sample size is increased from 250 to 1000 patients, the mean utility and the global power
relative increase is approximately equal to 15% .
In terms of choice of dose, the best dose (d = 4) is the selected one in most of the cases,
even with only 250 patients (chosen with probability equal to 83%). But again, increasing the
sample size signi�cantly improves further the dose selection: with 500 patients in the phase II
study, the best dose is selected for phase III with a probability approaching 95%.
In this scenario, performing an interim analysis when half of the patients are recruited has
some interest: the probability of stopping at interim analysis is quite high (but the probability
of wrong stop for futility is not negligible, equal to 13% and 20% for the interim analyses
at 250 and 500 patients respectively) which leads to relative decrease of the mean sample
size of 20% and 33% as compared to the �xed sample size design with 500 and 1000 patients
respectively. This is interesting because this reduction of sample size does not degrade the
properties of the design: considering either the probability of going to phase III, the mean
utility, the selected doses or the global power, the design with an interim analysis with half
patients has very similar properties as the �xed sample size design.
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4.2.5 Sigmoid scenario with acceptable safety scenario (except for highest
dose)

Figure 4.5: Theoretical curves, Sigmoid scenario with acceptable safety scenario (except for
highest dose). The PoS and utility curves are partially superimposed, especially for low doses.

Table 4.5: Simulation results, Sigmoid scenario with acceptable safety scenario (except for
highest dose).

In this scenario, two doses are very similar in terms of utility: the best dose is the third one
(d = 6) with a utility approximately equal to 0.84, but the second dose (d = 4) is very close
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with a true utility approximately equal to 0.79 (see Figure 4.5).

Most of the conclusions related to the previous scenario apply. The probability of choos-
ing to go to phase III increases with the sample size of the phase II study. For the two largest
phase II studies (500 or 1000 patients), planning an interim analysis when half of the patients
are enrolled, enables to reduce the mean sample size while maintaining the properties of the
design. In this scenario the gain in mean sample size is less than in the previous one; this is
due to the fact that the probability of stopping at interim analysis is reduced as compared to
the previous scenario: this is explained by the similarity in true utility values of the doses 4
and 6, the interim analysis is less likely to identify a dose with posterior probability of being
the optimal dose ≥ 0.80.

As the sample size increases, the probability of selecting the true optimal dose increases as
well, but is only equal to 30% when the sample size of the phase II is equal to 1000 patients.

Under this scenario, doses d = 4 and d = 6 have very similar utilities according to Fig-
ure 4.5. Yet dose d = 4 is very predominantly and consistently selected from N2 = 250 to
N2 = 1000. The reason is that the toxicity penalty is dramatically growing just beyond dose
d = 6. The uncertainty in the toxicity rate estimation in phase II will result in a signi�cant
proportion of simulated trials with a quite high toxicity penalty for dose d = 6 disqualifying
that dose. Thus, our approach tends to disadvantage doses with a true toxicity rate close to
the threshold of 0.15. This can be viewed as a conservative property to protect the patient.

This scenario illustrates the di�culty and the requirements in terms of necessary sample
size for the models to provide su�ciently accurate estimations, for both e�cacy and toxicity
models simultaneously, to enable a proper ranking of doses with very similar utility values.
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4.2.6 Sigmoid scenario with low toxicity scenario

Figure 4.6: Theoretical curves, Sigmoid scenario with low toxicity scenario. The PoS and
utility curves are almost identical.

Table 4.6: Simulation results, Sigmoid scenario with low toxicity scenario.

In this scenario, the drug has very low toxicity, therefore the highest dose (d = 8) is the
optimal one, with a utility value close to 0.98. The utility value of the preceding dose (d = 6)
is equal to 0.94, it is quite close to the optimal value.
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The same conclusions related to the previous scenarios apply as well. This scenario points out
the following facts:

� For a drug pro�le with several adjacent doses showing similar utility values, identifying
the optimal dose with su�cient "assurance" requires a phase II study with quite a large
sample size. Indeed with only 250 patients in phase II, the optimal dose (the highest
dose) is properly identi�ed with a probability as low as 41%. With 1000 patients, this
probability is raised to 71%.

� In this scenario, the interim analysis conducted when half of the planned 500 patients
are enrolled is not very useful as the probability to stop the trial is low: around 14%.
This is due to the fact that 250 patients are not su�cient to clearly identify the best
dose (the distribution of the chosen dose with the �xed design with 250 patients is an
illustration of this). With the interim analysis conducted when the �rst half of the 1000
patients are enrolled the probability to stop the trial raises to approximately 25%: this
corresponds to an approximate reduction of the mean sample size of 12%: this is not
negligible but it is much lower than in some of the previous scenarios.

4.2.7 Sigmoid scenario with high toxicity scenario

Figure 4.7: Theoretical curves, Sigmoid scenario with high toxicity scenario. The PoS and
utility curves are partially superimposed, especially for low doses.
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Table 4.7: Simulation results, Sigmoid scenario with high toxicity scenario.

This scenario is interesting in the sense that due to very high toxicity, the best dose is the
smallest one (d = 2), see Figure 4.7. But at the same time, the PoS asssociated with this
dose is too low, according to the sponsor's criteria (PoS ' 0.4 which is much lower than the
sponsor's threshold of 0.60). Therefore, in this scenario, the good decision is not to go to phase
III because the only "safe" dose is not e�ective enough.
Like for the other scenarios the probability of taking the good decision increases with the
sample size: it ranges from 64% for the study with the smallest sample size to 72% with the
largest one.
Just like the scenario with no e�cacy of the drug (for which the best decision is also not to
go to phase III) planning an interim analysis reduce the mean sample size but, at the same
time, slightly in�ates the probability of wrong decision.
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4.2.8 Plateau scenario with progressive toxicity scenario (and toxicity of
highest dose = 0.20)

Figure 4.8: Theoretical curves, Plateau scenario with progressive toxicity scenario (and toxicity
of highest dose = 0.20). The PoS and utility curves are partially superimposed, especially for
low doses.

Table 4.8: Simulation results, Plateau scenario with progressive toxicity scenario (and toxicity
of highest dose = 0.20).
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As illustrated in Figure 4.8, in this scenario, the dose-response function reaches a plateau from
the �rst dose: the PoS of the lowest dose (d = 2) is approximately equal to 0.86 and is superior
to 0.95 for all other doses. Therefore, with very small di�erences in e�cacy between the doses,
the best dose will be the highest dose with toxicity lower than 15%: this corresponds to the
second dose, d = 4. In fact, our approach is able to di�erentiate between doses d = 2 and
d = 4 which nevertheless have close utilities, favoring dose d = 4. This is due to the fact
that both doses have a negligible toxicity penalty and their respective true toxicity rates are
rather far below the threshold of 0.15. Despite the uncertainty in the toxicity rate estimation
in phase II, the risk of having a large toxicity penalty is low for both doses. Thus the dose
selection is mainly driven by the PoS, i.e. favoring dose d = 4.

The results observed with the previous scenarios apply here as well: the probability of making
the good decision increases with the sample size; also, the probability of selecting the optimal
dose increases with the phase II sample size. Performing an interim analysis reduces the mean
sample size by approximately 20% and 32% as compared to the design with �xed sample size
of 500 and 1000 patients respectively.

We can also notice a quite large percentage of studies stopped for futility. This is probably due
to a quite high toxicity of the doses d = 6 and d = 8 that induces, for some occurences of the
simulations, a 'NoGo' decision after the interim analysis, due to the wrongly high estimated
toxicity rate of the chosen dose.

4.3 Conclusions

In this chapter, we aimed to propose a decision-making framework, based on the utility function
selected amongst those studied at the previous chapter (Chapter 3). This decision-making
framework enables the sponsor to make the two following decisions after completion of the
phase II dose-�nding study: decide to go to phase III or not and, in case of positive answer,
choose the dose for the phase III trial. The properties of these decision rules were assessed,
through simulations, under various safety and e�cacy pro�les and several sample sizes of the
phase II study (250, 500 and 1000 patients). Those simulations con�rmed that estimating an
optimal dose, optimal with respect to a utility function, is a demanding task: they illustrated
the di�culty of simultaneously estimating two complex dose-response models with enough ac-
curacy to properly rank doses using an utility function combining the two. This is due to the
fact that, in particular for the smallest sample sizes, the posterior distribution of the utilities,
for each of the doses, is not su�ciently concentrated around the true values of the utilities:
this often leads to imprecise estimations of the posterior probabilities of the dose with the
highest utility score (computed for all doses dj), which are the quantities used for dose selec-
tion, and then to wrong selection of the optimal dose. Without surprises, it appeared that
the probability of making the good decision increases with the sample size, but even with the
largest sample size, the probability of making the good decision with a large phase II study
of 1000 patients only reaches 80% when the drug does not show any toxicity. The simulations
clearly show that, regardless of time and budget constraints, the sponsor has always interest
in running large phase II studies to make accurate decisions regarding the termination of the
development program or the selection of the dose.
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We assessed the possibility to conduct an interim analysis, when half of the patients are
enrolled, and try to make the selection at this stage: we proposed to stop the trial at the
interim analysis if P[U(d∗) > U(dj) for all the other doses dj |data] ≥ 0.80. For some scenar-
ios, in particular when the best dose shows a clear bene�t in the utility as compared to the
others, this approach has good properties: with a quite large probability of study termination
at interim analysis, it enables to reduce the sample size while maintaining the properties of
the �xed large sample size design.
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Chapter 5

Utility-based dose-�nding in practice:

some empirical contributions and

recommendations

In this chapter, the aim is to highlight some contributions and recommendations related to
the utility function proposed in Chapter 4 with the same parameter values for h, k and t:
U(d) = PoS(d)×P(toxobs(d) ≤ 0.15)2. In Section 5.1, we assess the properties of the posterior
distributions (posterior means or posterior medians), by simulating trials with sequentially
increasing sample size, and we graphically examine (through violin plots) the properties of the
estimated posterior distributions of the utility values. In Section 5.2, we perform exploratory
analyzes, comparing alternative decision rules for dose selection. Section 5.3 is dedicated to
the relative utility loss criterion that we suggest in order to make recommendations on phase
II sample size. In Section 5.4, we compare several stopping criteria for interim analysis, by
comparing di�erent �xed/sequential designs. Finally, Section 5.5 summarizes the main �ndings
of this chapter, and underlines some recommendations regarding speci�c decision rules for the
dose selection and for the interim data inspection. As a reminder, the e�cacy and safety
models are:

� E�cacy: Emax model de�ned in Chapter 2 page 33 and in Chapter 3 page 48.

� Toxicity: Probit model de�ned in Chapter 4 page 59.

We used the same prior distributions as de�ned in Chapter 4 page 65, as well as the optimal
dose estimation method (batching approach) described in Section 4.1.2.3.

5.1 Estimation of the posterior distribution of the utility values

The aim of this section is only to describe, through two examples (Sigmoid scenario combined
with a progressive toxicity scenario where the toxicity of the highest dose is equal to 0.15,
and Sigmoid scenario combined with a progressive toxicity scenario where the toxicity of the
highest dose is equal to 0.20), the behaviour of the MCMC estimates of the utility values and
how their properties are modi�ed by the sample size of the study.

84



5.1.1 Exploring properties of MCMC based posterior distributions: exam-
ples of two particular single simulated studies

To visualize the posterior distribution of the utility values (using the MCMC simulations), we
used the violin plots. They are much more convenient and informative than boxplots (see Ap-
pendix A.5) to characterize multimodal distributions. Distribution plots are an e�cient tool
to evaluate the quality of the MCMC utility estimates. The boxplot is a classic approach for
visualizing basic distributions. It is convenient for comparing usual summary statistics (such
as range and quartiles) for unimodal distributions, but is of poor interest for multimodal dis-
tributions. The violin plot is a hybrid of a boxplot and a kernel density plot, with the ability to
show multiple peaks of the data distribution. Note that kernel density estimation [Chen2017]
is a non-parametric method of estimating the Probability Density Function (PDF) of a contin-
uous random variable. Essentially, at every datum, a symmetric kernel function is created with
the datum at its centre. The PDF is then estimated by adding all of these kernel functions
and dividing by the number of data to ensure that it satis�es the two properties of a PDF:
every possible value of the PDF is non-negative, and the de�nite integral of the PDF over its
support set equals to 1.

More precisely, violin plots are built as follows:

� A kernel estimator of the density function (non-parametric estimator of the density
curve) is computed as follows:

� starting from a kernel v, i.e. a symetric PDF, in general chosen such that the
variance is equal to 1.

� the density estimate at point y based on sample (Yi)1≤i≤n is de�ned by:

f̂(y) =
1

nz

n∑
i=1

v

(
y − Yi
z

)
, where z is a key tuning parameter, the bandwidth; in

general, the magnitude of the chosen bandwidth is of order n−1/5

� On each side of the black line, at the middle of the violin plot, the kernel density
estimation is displayed.

Violin plots have many of the same summary statistics as boxplots (see Figure 5.1):

� The colored point represents the mean

� The black line represents the median

� The thick white bar in the center represents the interquartile range. Bounderies represent
the Q1 and Q3 values

� The thin black line represents the 95% con�dence interval under normality assumption

On each side, the black curve is a kernel density estimation to show the distribution shape of
the data. Wider sections of the violin plot represent a higher probability that members of the
population will take on the associated area (see Zone A in Figure 5.1); the skinnier sections
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represent a lower probability (see Zone B in Figure 5.1).

Figure 5.1: Violin plot example.

As already mentioned in the beginning of this subsection, violin plots are more convenient and
informative than boxplots to understand the distribution of a dataset. Therefore, in order to
highlight the challenges that might occur under real life operating conditions, we simulate one
single trial (but with sequentially increasing sample size) and we graphically examine (through
violin plots) the properties of the estimated posterior distributions of the utility values. The
aim is to �nd out potential and/or atypical patterns that might occur in the distribution
of the MCMC simulated data. Indeed, in real life, we only have one study of interest; the
idea here is to inform the sponsor on the complexities that one may encounter in practice,
especially with small phase II sample sizes, and to underline di�culties that might arise in the
worst case scenarios. Note that the �rst 50 observations for N2 = 100 are identical to those
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generated with N2 = 50 and similarly, the �rst 100 observations for N2 = 250 are identical
to those generated with N2 = 100, etc. In other words, we do not start over from scratch
each time we change N2. This amounts to generating 1000 observations in one go, and then
considering the �rst 50, the �rst 100, the �rst 250, the �rst 500, etc. We have performed
this exercise for two scenario combinations: �rst with the Sigmoid scenario with progressive
toxicity scenario and the second one with a slightly more increased toxicity (toxicity of the
highest dose equal to 0.20 instead of 0.15 for the �rst scenario). Each violin plot is followed
by its corresponding summary table of parameter estimates for the Emax and Probit models
respectively (summarized by the parameter posterior means over all MCMC iterations), as
well as the table of the mean estimates (over all MCMC iterations of the relative study) of
the e�cacy e�ects versus placebo and toxicity dose-response respectively. Each mean estimate
is computed by meanMCMC(m(d; θ) −m(0; θ)) for the e�cacy versus placebo e�ect, and by
meanMCMC(P̂(W = 1|d, λ)) for the toxicity dose-response.

5.1.1.1 Sigmoid scenario with progressive toxicity scenario (and toxicity of high-
est dose = 0.15)

In the following, theoretical curves of the utility function and each of its components are rep-
resented in Figure 5.2, for the Sigmoid scenario with progressive toxicity scenario (and toxicity
of highest dose = 0.15), followed by the violin plots of the corresponding estimated utilities for
each dose, for one simulated phase II trial, and forN2 = 50, 100, 250, 500 and 1000 respectively.

Figure 5.2: Theoretical curves, Sigmoid scenario with progressive toxicity scenario (and tox-
icity of highest dose = 0.15). The PoS and utility curves are superimposed for small dose
values.

Based on Figure 5.2, we can clearly see that this chosen scenario combination is a very
challenging one: two doses have very similar utility values, the toxicity rate is low for all
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doses but the last one, and consequently, this could be an unfavorable framework to assess the
quality of the estimation, which becomes more challenging in this kind of situation.

In the sequel, we focus on results from a particular simulation of the considered model, to
illustrate the type of behaviour that can be obtained according to the values of N2.

In all the following violin plots, the true range of the data varies between 0 and 1 (utili-
ties are actually bounded between 0 and 1), but the tails of the violins are not trimmed to the
range of the data because of the kernel estimation smoothing. The star symbol represents the
true (theoretical) utility value.

Figure 5.3: Violin plots for one simulated study, N2 = 50, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15).

− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.08

Estimates -0.10 6.00 0.06 -1.68 0.05

Table 5.1: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.15), N2 = 50.
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− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

-0.02 -0.04 -0.05 -0.06

True
toxicity

0.07 0.09 0.12 0.15

Toxicity
Estimate

0.06 0.07 0.09 0.10

Table 5.2: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.15), N2 = 50.

The mean and median values are quite far from their true values in this example of study
with only 50 patients in phase II. The posterior distribution do not permit to rank the utilities
consistently with their true values.

Figure 5.4: Violin plots for one simulated study, N2 = 100, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15).
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− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.08

Estimates 0.18 6.04 -0.00 -1.65 0.06

Table 5.3: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.15), N2 = 100.

− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

0.05 0.07 0.09 0.10

True
toxicity

0.07 0.09 0.12 0.15

Toxicity
Estimate

0.06 0.08 0.10 0.12

Table 5.4: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.15), N2 = 100.

With 50 more patients and a total of 100 patients, doses are now ranked according to their
true ranking, except for d = 8 (according to Figure 5.4, the estimated utility of d = 8 is higher
than the estimated one of d = 2, whereas the true utility of d = 8 is lower than the true one
of d = 2). But posterior median and mean values are quite far from their true values.
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Figure 5.5: Violin plots for one simulated study, N2 = 250, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15).

− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.08

Estimates 0.34 6.03 -0.04 -1.67 0.06

Table 5.5: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.15), N2 = 250.

− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

0.09 0.13 0.17 0.19

True
toxicity

0.07 0.09 0.12 0.15

Toxicity
Estimate

0.06 0.07 0.09 0.11

Table 5.6: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.15), N2 = 250.
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With 150 more patients and a total of 250 patients, the properties of the posterior distribution
worsened a little bit, with a lack of di�erentiation of the doses and a global over-estimation of
the utility values. This is due to the fact that the posterior distribution is not stable yet with
250 patients, and this result is related to one particular study.

Figure 5.6: Violin plots for one simulated study, N2 = 500, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15).

− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.08

Estimates 0.23 5.79 0.03 -1.65 0.07

Table 5.7: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.15), N2 = 500.
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− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

0.06 0.10 0.12 0.13

True
toxicity

0.07 0.09 0.12 0.15

Toxicity
Estimate

0.07 0.09 0.11 0.14

Table 5.8: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.15), N2 = 500.

Violin plots above show us that with this chosen toxicity scenario (progressive toxicity scenario
and toxicity of highest dose = 0.15) with N2 = 500, estimated utilities are spread out over the
whole possible area, with a slight concentration around the lower quartile (Q1) and the upper
quartile (Q3) for d = 8. We can also see that the estimated utilities are highly concentrated on
the biggest values for doses d = 4 and d = 6. Accordingly, the estimate is consistent with the
true value. Globally, with 500 patients, the ranking is close to the correct one: in particular
the doses d = 4 and d = 6 are clearly identi�ed as better than the other two doses, but the
utility of the largest dose seems overestimated. This is probably due to uncertainty on safety
parameters of this dose, especially that its toxicity is equal to the prede�ned threshold, 0.15,
in our utility function. This uncertainty is also study-related (we remind that this is only
one simulated phase II trial), we need to simulate several studies in order to make a general
assessment of the estimation quality.

The major di�erence observed with 500 patients, compared with 250 patients, lies in the
distribution of the estimated utilities which became much more dispersed, and less concen-
trated (compared to 250 patients) around high values. And since this behavior is related to the
study, according to the estimations of the model parameters and the dose-response functions
(Tables 5.5 and 5.6), it is clear that with 250 patients, the Emax parameter is overestimated,
and consequently the e�cacy is overestimated too, but the toxicity is underestimated, which
explains the global overestimation of the utility distribution showing that all the doses are
"wrongly" good, with "wrongly" good e�cacy and low toxicity. With 250 additional patients
(i.e. a total of 500 patients), see Tables 5.7 and 5.8, this phenomenon is adjusted by the
inclusion of this new patients cohort: according to the related tables, a better estimate of
the Emax parameter is clearly noticed (and is close to the true value), which implies a better
estimation of the e�cacy dose-response function; in addition, a signi�cant improvement of the
toxicity estimate is well detected also, and is much closer to the true values.
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Figure 5.7: Violin plots for one simulated study, N2 = 1000, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15).

− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.08

Estimates 0.25 6.02 -0.00 -1.66 0.08

Table 5.9: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.15), N2 = 1000.

− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

0.06 0.10 0.13 0.14

True
toxicity

0.07 0.09 0.12 0.15

Toxicity
Estimate

0.07 0.09 0.12 0.16

Table 5.10: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.15), N2 = 1000.
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With N2 = 1000, no signi�cant changes are noticed compared to N2 = 500, except for the
dose d = 8, where the additional information provided allows the concentration of the obtained
utilities in an area close to the true value of utility, with an underestimation leading to an
overconcentration around Q1. As shown in Figure 5.8, previous results are reinforced as the
sample size of the phase II study grows. With 1000 patients, the posterior distribution of the
utilities clearly identify the doses d = 4 and d = 6 as the two best doses and the highest dose
(d = 8) as the worst one. But the posterior distribution of the doses d = 4 and d = 6 are very
close to each other even though, for those two doses the mean and the median of the posterior
distribution are close to the true values.

Figure 5.8: Violin plots for one simulated study, N2 = 2000, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15).

− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.08

Estimates 0.31 6.17 -0.02 -1.75 0.10

Table 5.11: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.15), N2 = 2000.
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− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

0.08 0.12 0.15 0.17

True
toxicity

0.07 0.09 0.12 0.15

Toxicity
Estimate

0.06 0.09 0.12 0.16

Table 5.12: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.15), N2 = 2000.

We conclude, based on this simulated study, with sequentially increasing sample size, that:

� The posterior distribution of the utility values quite quickly identi�y the two middle
doses as superior to the two others

� Globally, as the sample size increases, the distributions get more concentrated around the
true values (see Figure 5.8) as we could naturally hope, but the shape of the distribution
is very "unstable" for the lowest sample sizes

� A large number of patient is required (2000 patients), for this particular example, to
di�erentiate the two middle-doses and clearly identify d = 6 as the optimal one: with
this example of study, even with 1000 patients, the two doses d = 4 and d = 6 could
not be distinguished by their posterior distribution of the utility values. This can be
explained by the proximity of the two utility values: the utility value of d = 6 being only
slightly larger than the one of d = 4.

We noticed also that the posterior median is generally di�erent from the posterior mean indi-
cating a possible non-symetric posterior distribution.

On the other hand, we observed in this speci�c example, a particular chronology in the pat-
terns that occured in the posterior distributions, as the sample size increased: the posterior
distribution was �rst concentrated on low values (with 50 patients, see Figure 5.3), then dis-
persed (with 100 patients, see Figure 5.4), then concentrated on high values (with 250 patients,
see Figure 5.5), and �nally stabilized for large phase II studies (N2 ≥ 500, see Figures 5.6, 5.7
and 5.8).
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In the following, we will check the bias related to posterior estimates for this same simulated
trial, where bias refers to the di�erence between the estimated utility mean or median of
the posterior distribution and the true utility value, for each dose d, i.e. Bias(d)=Estimated
utility(d)-theoretical utility(d). We will rather express the bias in percent of the true value
and then report the relative bias. We preferred to report the relative bias in order to permit a
more straightforward comparison of the bias across the doses [Morris et al.2019]. Let's consider
N2 = 500, that corresponds to the sample size of a typical large phase IIb study. We denote
the Relative Estimation Bias by REB, and we compute it for the estimated median/mean, for
each dose, as follows: REB(d)=Bias(d)/theoretical utility(d), over all batches for the Sigmoid
scenario, with progressive toxicity scenario (and toxicity of highest dose = 0.15):

− REB(d = 2) REB(d = 4) REB(d = 6) REB(d = 8)

REB of
posterior
mean

(0.50-0.41)/0.41=0.22 (0.79-0.80)/0.80=-0.01 (0.85-0.92)/0.92=-0.08 (0.57-0.29)/0.29=0.97

REB of
posterior
median

(0.49-0.41)/0.41=0.20 (0.82-0.80)/0.80=0.03 (0.93-0.92)/0.92=0.01 (0.58-0.29)/0.29=1

Table 5.13: Mean and median relative estimation bias per dose, Sigmoid, with progressive
toxicity scenario (and toxicity of highest dose = 0.15), N2 = 500.

We can see that the relative bias is rather low for most of the doses, except for d = 8, where
the relative bias is much more pronounced. Again, this is due to a greater uncertainty for the
safety of this dose.

In this example, we simulated a particular trial and we studied the posterior distribution
of the utility values, sampled using a Metropolis-Hastings algorithm. Due to the closeness
of the true utility values of the two middle doses in this example, we pointed-out that the
posterior distribution is very sensitive to the study sample size: small values of N2 can have
dramatic e�ects. For intermediate values (N2 = 250, 500 patients), the estimated posterior
distribution quickly identi�ed the two middle doses as superior to the others, but only with
N2 > 1000 patients, the posterior median and mean values of the utility values got really close
to the true values, and consequently, the optimal dose was distinctly identi�ed.

This example con�rms the importance of the sample size of the phase II trial for the iden-
ti�cation of the optimal dose. In the following, we will represent the same violin plots, but
this time with a less challenging scenario combination, where the two middle doses are clearly
distinguished, as compared to their relative utilities, and consequently, the optimal dose is
clearly identi�ed.

5.1.1.2 Sigmoid scenario with progressive toxicity scenario (and toxicity of high-
est dose = 0.20)

In order to assess how a change in safety pro�le can modify the properties of the MCMC
estimated posterior distribution, we simulated, in the following, the same study (same e�cacy
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data), only modifying the toxicity data (simulated with another safety parameter value): we
show the violin plots of the estimated utilities for the Sigmoid scenario (same data) with pro-
gressive toxicity scenario (and toxicity of highest dose = 0.20), for each dose, for one simulated
phase II trial, and for N2 = 50, 100, 250, 500 and 1000 respectively. Theoretical curves of
the utility function and each of its components corresponding to this scenario combination are
represented in Figure 4.4 (see Chapter 4 page 74).

Based on Figure 4.4, we can clearly see that d = 4 has the highest utility value, and thus,
d = 4 is the optimal dose.

Figure 5.9: Violin plots for one simulated study, N2 = 50, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20).

− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.10

Estimates -0.10 6.00 0.06 -1.68 0.05

Table 5.14: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.20), N2 = 50.
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− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

-0.02 -0.04 -0.05 -0.06

True
toxicity

0.07 0.11 0.15 0.20

Toxicity
Estimate

0.06 0.07 0.09 0.10

Table 5.15: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.20), N2 = 50.

The mean and median values are quite far from their true values in this example of study
with only 50 patients in phase II. The posterior distribution do not permit to rank the utilities
consistently with their true values.

Figure 5.10: Violin plots for one simulated study, N2 = 100, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20).
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− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.10

Estimates 0.18 6.02 -0.00 -1.65 0.07

Table 5.16: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.20), N2 = 100.

− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

0.04 0.07 0.09 0.10

True
toxicity

0.07 0.11 0.15 0.20

Toxicity
Estimate

0.07 0.09 0.11 0.14

Table 5.17: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.20), N2 = 100.

With 50 more patients and a total of 100 patients, doses are now ranked according to their
true ranking. But posterior median and mean values are quite far from their true values.

The same behavior (according to the value of N2) is noticed in this scenario combination
(see Figures 5.9 to 5.14), compared to the previous one (see Figures 5.3 to 5.8). This is pre-
cisely due to the fact that both simulated studies share the same e�cacy data, but di�er in
their safety data.
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Figure 5.11: Violin plots for one simulated study, N2 = 250, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20).

− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.10

Estimates 0.33 6.04 -0.04 -1.67 0.08

Table 5.18: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.20), N2 = 250.

− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

0.08 0.13 0.17 0.19

True
toxicity

0.07 0.11 0.15 0.20

Toxicity
Estimate

0.07 0.09 0.12 0.16

Table 5.19: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.20), N2 = 250.
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With 150 more patients and a total of 250 patients, the properties of the posterior distribution
slightly improved, with the ability to di�erentiate the doses but with a global over-estimation
of the utility values.

Figure 5.12: Violin plots for one simulated study, N2 = 500, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20).

− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.10

Estimates 0.23 5.81 0.02 -1.65 0.10

Table 5.20: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.20), N2 = 500.
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− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

0.06 0.10 0.12 0.14

True
toxicity

0.07 0.11 0.15 0.20

Toxicity
Estimate

0.07 0.10 0.14 0.19

Table 5.21: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.20), N2 = 500.

Violin plots above show us that with this chosen toxicity scenario (progressive toxicity scenario
and toxicity of highest dose = 0.20) with N2 = 500, estimated utilities are highly concentrated
around the true values for most of the doses. The dose d = 4 is clearly identi�ed as the optimal
one.

With 250 patients, and according to the estimations of the model parameters and the dose-
response functions (Tables 5.18 and 5.19), it is clear that the Emax parameter is overestimated,
and consequently the e�cacy is overestimated too, but the toxicity is underestimated, which
explains the global overestimation of the utility distribution showing that almost all the doses
are "wrongly" good (except for d = 8), with "wrongly" good e�cacy and low toxicity. With
250 additional patients (i.e. a total of 500 patients), see Tables 5.20 and 5.21, this phenomenon
is adjusted by the inclusion of this new patients cohort: according to the related tables, a bet-
ter estimate of the Emax parameter is clearly noticed (and is close to the true value), which
implies a better estimation of the e�cacy dose-response function; in addition, a signi�cant
improvement of the toxicity estimate is well detected also, and is much closer to the true
values. Unlike the previous scenario combination, the toxicity of the highest dose (=0.20) is
higher than the 0.15 threshold prede�ned in the safety component of our utility function; so
with 500 patients, and because of the decrease in uncertainty due to the inclusion of the new
patients cohort (more information is brought), the toxicity probability of d = 8, equal to 0.19
according to Table 5.21, is correctly estimated (close to its true toxicity probability, 0.20), with
the following tight 95% con�dence interval (CI)1: CI=[0.15; 0.23], covering the true value of
0.20 with a quite good accuracy/precision. Consequently, d = 8 is highly penalized (because of
the toxicity penalty imposed when the toxicity rate is higher than 0.15), and its related utility
estimate dropped to zero (compared with 250 patients only). Again, this highlights a good
property of our utility function, which tends to disadvantage doses with a toxicity probability
close/equal or higher than the threshold of 0.15.

For N2 = 1000 and N2 = 2000 patients, conclusions are similar, even slightly better.

1note that not all con�dence intervals are presented in the estimation tables because this is not the primary
objective of this subsection; this is only an example of one particular simulated phase II study
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Figure 5.13: Violin plots for one simulated study, N2 = 1000, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20).

− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.10

Estimates 0.25 5.90 -0.00 -1.67 0.11

Table 5.22: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.20), N2 = 1000.

− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

0.07 0.10 0.13 0.14

True
toxicity

0.07 0.11 0.15 0.20

Toxicity
Estimate

0.07 0.11 0.15 0.21

Table 5.23: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.20), N2 = 1000.
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Figure 5.14: Violin plots for one simulated study, N2 = 2000, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20).

− Emax ED50 E0 a b

True
values

0.22 6 0 -1.65 0.10

Estimates 0.31 6.24 -0.02 -1.75 0.12

Table 5.24: Parameter estimates, Sigmoid, with progressive toxicity scenario (and toxicity of
highest dose = 0.20), N2 = 2000.

− d = 2 d = 4 d = 6 d = 8

True
e�cacy

0.06 0.09 0.11 0.13

E�cacy
Estimate

0.08 0.12 0.15 0.17

True
toxicity

0.07 0.11 0.15 0.20

Toxicity
Estimate

0.07 0.10 0.15 0.21

Table 5.25: Dose-response estimates, Sigmoid, with progressive toxicity scenario (and toxicity
of highest dose = 0.20), N2 = 2000.
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We conclude, based on this simulated study, with new safety data (compared to the previous
example) and with sequentially increasing sample size, that:

� The posterior distribution of the utility values quite quickly identi�es d = 4 as superior
to the others

� Globally, as the sample size increases, the distributions get more concentrated around
the true values as we could naturally hope

� For this particular example, there is no need for a very large sample size to di�erentiate
the doses and clearly identify d = 4 as the optimal one, and the highest dose is well
estimated

� With N2 higher than or equal to 1000 patients, estimations have remarkably improved,
and the posterior distributions are highly concentrated around the true values

� Posterior median and posterior means showed similar values

In the following, we will check the bias related to posterior estimates regarding this scenario
combination. By considering N2 = 500 as in the previous example, we get the following results:

− REB(d = 2) REB(d = 4) REB(d = 6) REB(d = 8)

REB of
posterior
mean

(0.50-0.41)/0.41=0.22 (0.78-0.80)/0.80=-0.03 (0.49-0.30)/0.30=0.63 NA2

REB of
posterior
median

(0.49-0.41)/0.41=0.20 (0.83-0.80)/0.80=0.04 (0.49-0.30)/0.30=0.63 NA

Table 5.26: Mean and median relative estimation bias per dose, Sigmoid, with progressive
toxicity scenario (and toxicity of highest dose = 0.20), N2 = 500.

We can see that the relative bias is low for almost all doses (except for d = 6), and contrary
to the previous scenario, the highest dose d = 8 is very well estimated, because its related
toxicity is clearly larger than the 0.15 threshold.

5.1.1.3 Conclusions

In order to highlight the challenges that might occur under real life operating conditions, we
simulated one single trial (but with sequentially increasing sample size) and we graphically
examined the properties of the estimated posterior distributions of the utility values, through
violin plots, for two di�erent scenario combinations. The aim was to �nd out potential and/or
atypical patterns that might occur in the distribution of the MCMC simulated data.

2true value too close to 0 to compute relative bias
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Regarding the Sigmoid scenario with progressive toxicity scenario (and toxicity of highest dose
= 0.15), leading to a non-obvious true optimal dose:

� With the �rst 50 patients, the distribution appeared quite di�use, apart from peaks at
very lowest values.

� With 50 more patients, we start to observe the true values getting closer to the high
probability regions. But at this stage, the posterior distribution shape is still very
sensitive to the adding of new data, as with 250 patients, unexpectedly, the distribution
appears very concentrated around the highest values.

� But starting from 500 patients, the true values of the utility are clearly located within the
regions with highest probability, except for the highest dose, for which the convergence
appears slower.

Regarding the Sigmoid scenario with progressive toxicity scenario (and toxicity of highest dose
= 0.20), leading to an obvious true optimal dose:

� The optimal dose is identi�ed with only 250 patients, and the distribution is less sensitive
to the adding of new data, compared to the previous scenario combination

� With more than 500 patients, the posterior distribution appears more and more concen-
trated around the true values, especially for the highest dose, because in this scenario,
the toxicity of this dose is clearly higher than the 0.15 threshold, and dose d = 4 is
clearly identi�ed as the optimal dose

We noticed based on these single-trial simulations in two di�erent, but similar, scenario com-
binations (that di�er in their safety data but share the same e�cacy data) that, globally, there
is some concentration of the posterior distribution around the true values as the sample size
increases. But in the �rst scenario combination, the posterior distribution could not properly
capture the utility in the highest dose, unlike in the second scenario combination for which for
N2 > 500, predicted values were close to the true values for all doses.

Those �ndings illustrate how the ability to properly rank doses can depend on slight dif-
ferences in the true dose toxicity relationship for instance. However, those �ndings concern
only one single trial. In order to con�rm and generalize them, we simulated, in the following,
1000 trials (for sample size varying from 50 to 2000 patients) and we assessed the properties
of the two Bayesian estimates: the posterior mean and the posterior median, for both scenario
combinations.
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5.1.2 Properties of Bayesian estimators of utilities - posterior means and
medians

5.1.2.1 Sigmoid scenario with progressive toxicity scenario (and toxicity of high-
est dose = 0.15): posterior means of utilities

In the following, we represent the violin plots of posterior means of utilities, for the 1000
simulated phase II studies, for the Sigmoid scenario with progressive toxicity scenario (and
toxicity of highest dose = 0.15), and for several values of N2.

Figure 5.15: Violin plots of posterior means of utilities, N2 = 50, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).
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Figure 5.16: Violin plots of posterior means of utilities, N2 = 100, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).

Figure 5.17: Violin plots of posterior means of utilities, N2 = 250, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).
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Figure 5.18: Violin plots of posterior means of utilities, N2 = 500, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).

Figure 5.19: Violin plots of posterior means of utilities, N2 = 1000, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).
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Figure 5.20: Violin plots of posterior means of utilities, N2 = 2000, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).

With 1000 simulated phase II studies, even with low values of N2, the particular behaviors
visualized for one single trial are no longer perceived. Concerning the posterior mean of the
utilities, and for the smallest sample size, N2 = 50 patients, the utility values of the two middle
doses appear quite underestimated. As expected, the quality of the estimators improves as the
sample size grows. But even for a phase II study with 1000 patients, the distribution of the
estimates of the middle doses are still quite close, whereas the true value of the utility of d = 6
is slightly larger than for d = 4. This underestimation of the utility value for d = 6 can be due
to a less stable estimation of the safety pro�le, which can be explained by a lower probability
of toxicity for the doses < 6, leading to an inaccurate estimation of the slope. More precisely,
the toxicity penalty is dramatically growing just beyond dose d = 6. The uncertainty in the
toxicity rate estimation in phase II will result in a signi�cant proportion of simulated trials
with a quite high toxicity penalty for dose d = 6, penalizing that dose. Thus, our approach
tends to disadvantage doses with a true toxicity rate close or equal to the threshold of 0.15.
This can be viewed as a conservative property to protect the patient. A very large phase II
sample size (2000 patients, see Figure 5.20) is needed to distinguish d = 6 from d = 4 and
to detect d = 6 as the optimal one. However, still with this very large sample size, d = 6 is
identi�ed as the optimal dose with a very slight di�erence as compared to the true di�erence
between the doses.
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5.1.2.2 Sigmoid scenario with progressive toxicity scenario (and toxicity of high-
est dose = 0.15): posterior medians of utilities

In the following, we represent the violin plots of posterior medians of utilities, for the 1000
simulated phase II studies and for the Sigmoid scenario with progressive toxicity scenario (and
toxicity of highest dose = 0.15).

Figure 5.21: Violin plots of posterior medians of utilities, N2 = 50, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).
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Figure 5.22: Violin plots of posterior medians of utilities, N2 = 100, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).

Figure 5.23: Violin plots of posterior medians of utilities, N2 = 250, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).
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Figure 5.24: Violin plots of posterior medians of utilities, N2 = 500, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).

Figure 5.25: Violin plots of posterior medians of utilities, N2 = 1000, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).
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Figure 5.26: Violin plots of posterior medians of utilities, N2 = 2000, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.15).

For the distribution of the posterior median, it appears that it has a larger range, with some
bimodality for the low sample sizes (see Figures 5.21 and 5.22), as compared to the posterior
mean distribution: the posterior median showing clearly more variability than the posterior
mean. But in terms of ability to correctly rank doses, the posterior mean and the posterior
median distributions look similar, both estimators have di�culty to capture the utility value of
the d = 6: the posterior median appears wrongly more accurate due to its increased variability
that makes the true value appear within the interquartile interval of the distribution, but in
terms of median values, both estimators (posterior mean and posterior median) show a similar
bias, even for the phase II study of 1000 patients. According to the violin plots, it takes 2000
patients to properly estimate the dose d = 6 with both the posterior mean and median, which
is not very realistic according to real life conditions.

5.1.2.3 Sigmoid scenario with progressive toxicity scenario (and toxicity of high-
est dose = 0.20): posterior means of utilities

In the following, we represent the violin plots of posterior means of utilties, for the 1000
simulated phase II studies, for the Sigmoid scenario with progressive toxicity scenario (and
toxicity of highest dose = 0.20), and for several values of N2.
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Figure 5.27: Violin plots of posterior means of utilities, N2 = 50, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).

Figure 5.28: Violin plots of posterior means of utilities, N2 = 100, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).

116



Figure 5.29: Violin plots of posterior means of utilities, N2 = 250, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).

Figure 5.30: Violin plots of posterior means of utilities, N2 = 500, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).
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Figure 5.31: Violin plots of posterior means of utilities, N2 = 1000, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).

Figure 5.32: Violin plots of posterior means of utilities, N2 = 2000, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).
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Concerning the posterior mean of the utilities, and for the smallest sample size, N2 = 50
patients, estimated values are not so far from the true values (except maybe for d = 4),
despite the fact that the posterior distributions appear quite di�use. As expected, the quality
of the estimators improves as the sample size grows. For a phase II study with only 250
patients, the distributions of the estimates of the doses become more concentrated around the
true values of the utility, and doses are already well ranked. With more than 250 patients,
estimates and dose rankings continue to improve in a remarkable way, reaching their best
performances with 2000 patients.

5.1.2.4 Sigmoid scenario with progressive toxicity scenario (and toxicity of high-
est dose = 0.20): posterior medians of utilities

In the following, we represent the Violin plots of posterior medians of utilties, for the 1000
simulated phase II studies and for the Sigmoid scenario with progressive toxicity scenario (and
toxicity of highest dose = 0.20).

Figure 5.33: Violin plots of posterior medians of utilities, N2 = 50, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).
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Figure 5.34: Violin plots of posterior medians of utilities, N2 = 100, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).

Figure 5.35: Violin plots of posterior medians of utilities, N2 = 250, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).
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Figure 5.36: Violin plots of posterior medians of utilities, N2 = 500, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).

Figure 5.37: Violin plots of posterior medians of utilities, N2 = 1000, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).
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Figure 5.38: Violin plots of posterior medians of utilities, N2 = 2000, Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20).

If we consider now the distribution of the posterior median, and similarly to the previous
scenario combination, it appears that it has a larger range as compared to the posterior
mean distribution: the posterior median showing clearly more variability than the posterior
mean. But in terms of ability to correctly rank doses, the posterior mean and the posterior
distribution median look similar.

5.1.2.5 Conclusion

We conclude from these simulations that an accurate estimation of the utility values and a
correct ranking of the doses can be very demanding in terms of sample size, especially in the
case of a challenging scenario combination where two doses have similar utilities. Estimating
the utility values is not the primary goal of the sponsor's analysis (the primary objective is
to rank the doses with respect to the utility function), but even though both posterior means
and medians do not show any apparent bias for large phase II sample size, the posterior mean
appears to be a better estimate, the posterior median showing an in�ated variability. So
globally, distribution of posterior mean and median are quite di�erent, even if they are both
centered around the true value (for the largest sample size), the posterior median seems to
exhibit a larger range (with some bimodality for the lowest sample size).
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5.2 Sponsor's strategy: Optimal dose and decision rules

The aim of this section is to compare various decision rules related to the choice of dose by the
sponsor. In addition to the decision rule that we have used up to now (Decision rule 1: the
sponsor chooses the dose that has the highest probability to be the optimal one, see Chapter
4), we will consider four other decision rules that are described thereafter. We remind that
1000 phase II studies are simulated, each study contains 500 batches after burn-in and batch-
ing process (applied on 75000 MCMC iterations, see Appendix A.2 for further details).

For each study, the sponsor makes two decisions:

� Identi�cation of the recommended dose:
the sponsor chooses the optimal dose d∗ according to one of the decision rules discussed
in the following Section 5.2.1: Decision rule 1, Decision rule 1*, Decision rule 2, Decision
rule 3 and Decision rule 4.

� 'Go / NoGo' decision:
the same rule as in Section 4.1.2.2 is applied: the sponsor computes the average of the
estimated PoSs and the average of the estimated toxicity probabilities for the recom-
mended dose d* among all MCMC iterations denoted by meanMCMC(P̂ oS(d∗)) and
meanMCMC(P̂(toxobs(d∗) ≤ 0.15)) respectively. The 'Go' for phase III is then decided
if these averages pass pre�xed e�cacy and toxicity thresholds denoted by threshold.e�2
and threshold.safe2 respectively (these thresholds are simply denoted by threshold.e�
and threshold.safe in Chapter 4, since no numbering was needed in the absence of
thresholds at the MCMC level, see following discussion). In other words, the sponsor
chooses 'Go' if:

meanMCMC(P̂ oS(d∗)) > threshold.e�2

and

meanMCMC(P̂(toxobs(d∗) ≤ 0.15)) > threshold.safe2.

5.2.1 Comparisons of alternative decision rules

The aim of this subsection is to compare various decision rules, through simulations, and
visualize their performances through the relative utility loss (de�ned below) graph (see Figure
5.39 and Table 5.27). To do so, we will work on the decision rule of the sponsor (choice of
dose), by comparing simulation results with di�erent possible alternatives:

� Decision rule 1: dose that has the greatest probability of being the best, de�ned in
Chapter 4 page 60

� Decision rule 1*: dose that has the greatest probability of being the best, with addi-
tional constraints at the MCMC level (modi�ed version of Decision rule 1, see following
discussion), is selected

� Decision rule 2: dose that maximizes EMCMC(U) is selected
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� Decision rule 3: dose that maximizes U(EMCMC(parameter)) is selected (the batching
here is applied directly to the model parameters, see Section 4.1.2.3)

� Decision rule 4: dose that maximizes U(MedianMCMC(parameter)) is selected (the
batching here is also applied directly to the model parameters, see Section 4.1.2.3)

Decision rule 1* is a slightly di�erent version of Decision rule 1; it is de�ned as follows: the
main idea is the same, selecting the dose that is the most likely (according to posterior dis-
tribution) to be the optimal dose, but the implementation is slightly di�erent. In order to
avoid that the selected dose although having likely the highest utility has at the same time
either a too low PoS or a too high probability to have an observed toxicity rate > 0.15, we
modi�ed the dose selection algorithm. We selected the dose with highest probability to be the
optimal one with respect to a modi�ed utility denoted by U ′(d). This latter utility U ′(d) has
the same values than U(d), but is set to 0 when the estimated PoS is either lower to a given
threshold (threshold.e�1) or when the estimated probability of having an observed toxicity
≤ 0.15 is lower than another threshold (threshold.safe1), these thresholds are applied at the
MCMC level. In other words, this modi�ed utility function can be de�ned, at each MCMC
iteration, as follows:

U ′(d) =

{
U(d) if P̂ oS(d) > threshold.e�1 and P̂(toxobs(d) ≤ 0.15) > threshold.safe1
0 if not.

By applying e�cacy and safety rules (at both MCMC and study levels), the sponsor is more
restrictive regarding the dose choices.

We have chosen the relative utility loss as a metric to rank these �ve decision rules pro-
posed above; it is de�ned as the di�erence between the expectation of the utility induced by
the considered decision rule and the maximum true utility value within the four doses, named
Umax, divided by this same maximal value Umax. It enables to characterize the quality of the
decision rule, through its relative proximity to the ideal best decision rule (always select the

optimal dose). It can be de�ned as follows:
Umax − E(U)

Umax
, where E(U) is the empirical utility

expectation of the chosen dose d∗ for the 1000 simulated phase II trials.

5.2.2 Simulation results

In the following, the graph and the simulation results are given for Sigmoid scenario with
progressive toxicity scenario (and toxicity of highest dose = 0.20), for each of the decision
rules de�ned above, for 1000 simulated phase II studies, by considering threshold.e�1=0.30,
threshold.safe1=0.30, threshold.e�2=0.30 and threshold.safe2=0.50 (these thresholds values
are also used in the next sections of this chapter).

The relative utility loss functions corresponding to the �ve decision rules we considered are
presented in Figure 5.39.
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Figure 5.39: Relative utility loss graph comparing the �ve decision rules.

N2 Decision rule 1 Decision rule 1* Decision rule 2 Decision rule 3 Decision rule 4
50 0.58 0.58 0.47 0.62 0.62
100 0.40 0.40 0.37 0.51 0.51
150 0.32 0.32 0.30 0.44 0.45
200 0.27 0.27 0.26 0.40 0.41
250 0.24 0.24 0.22 0.35 0.37
300 0.21 0.22 0.20 0.32 0.33
350 0.19 0.20 0.18 0.30 0.32
400 0.18 0.19 0.17 0.27 0.29
450 0.17 0.18 0.15 0.25 0.28
500 0.15 0.16 0.14 0.23 0.25
550 0.14 0.15 0.13 0.21 0.24
600 0.13 0.14 0.12 0.20 0.22
650 0.12 0.13 0.12 0.19 0.21
700 0.11 0.12 0.10 0.18 0.20
750 0.10 0.11 0.10 0.16 0.18
800 0.09 0.10 0.09 0.14 0.16
850 0.09 0.10 0.10 0.14 0.16
900 0.08 0.09 0.08 0.14 0.16
950 0.07 0.08 0.07 0.13 0.14
1000 0.07 0.08 0.07 0.12 0.14

Table 5.27: Values of the relative utility loss depending on N2.

In Figure 5.39, and its related table (Table 5.27), we can see that Decision rule 1, Decision
rule 1* and Decision rule 2 are consistently better than Decision rule 3 and Decision rule 4
for all values of the sample size, but the di�erence between Decision rule 1, Decision rule 1*
and Decision rule 2 versus Decision rule 3 and Decision rule 4 is particularly important for the
sample size between 200 and 400 patients.

The Decision rule 2 is consistently better than Decision rule 1* and Decision rule 1, but

125



the di�erence is small. However, Decision rule 2 (as well as Decision rule 3 and 4) does not
take into account uncertainty. Here, the uncertainty is the same for all doses due to the
balanced treatment groups, but in case of an unbalanced design or patients drop-outs, this
property will no longer be valid for Decision rule 2. Decision rule 1 or Decision rule 1* will
then be more robust and more e�ective. Based on the graph and the table, Decision rule 1 is
slightly better than Decision rule 1*.

In order to con�rm these results, we made, in the following, a more advanced comparison
of these �ve decision rules, based on the 1000 simulated phase II studies, and we discussed, in
Section 5.5, the decision rule that we chose for our �nal/main results of this thesis.

Simulation results

We remind that in the following tables, 'E(U)' is de�ned as in Section 4.2 of Chapter 4:
it is the empirical utility expectation of the chosen dose for the 1000 simulated phase II stud-
ies among 'Go' and 'NoGo' decisions (utility is set to 0 when it is a 'NoGo' decision).

For N2 = 250 Decision rule 13 Decision rule 1* Decision rule 2 Decision rule 3 Decision rule 4
E(U) 0.61 0.61 0.62 0.51 0.50

Prob(choose 'Go') 0.84 0.85 0.85 0.78 0.77
Distribution of
selected doses

(conditional to 'Go')

0.09 0.84 0.07 0.00 0.07 0.84 0.06 0.04 0.08 0.85 0.06 0.00 0.05 0.73 0.18 0.04 0.05 0.72 0.19 0.05

POS (conditional to
'Go')

0.77 0.78 0.78 0.81 0.81

Power 0.65 0.66 0.66 0.63 0.62

Table 5.28: Simulation results, N2 = 250, comparison of �ve decision rules for dose selection.

For N2 = 500 Decision rule 1 Decision rule 1* Decision rule 2 Decision rule 3 Decision rule 4
E(U) 0.68 0.67 0.68 0.61 0.60

Prob(choose 'Go') 0.90 0.90 0.90 0.86 0.85
Distribution of
selected doses

(conditional to 'Go')

0.02 0.92 0.06 0.00 0.01 0.89 0.09 0.00 0.01 0.93 0.06 0.00 0.01 0.84 0.15 0.00 0.01 0.81 0.17 0.01

POS (conditional to
'Go')

0.80 0.80 0.80 0.81 0.82

Power 0.71 0.72 0.72 0.70 0.70

Table 5.29: Simulation results, N2 = 500, comparison of �ve decision rules for dose selection.

3full results corresponding to Decision rule 1, for threshold.e�2=0.30, are given in Appendix A.3
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For N2 = 1000 Decision rule 1 Decision rule 1* Decision rule 2 Decision rule 3 Decision rule 4
E(U) 0.74 0.73 0.74 0.70 0.68

Prob(choose 'Go') 0.95 0.96 0.95 0.93 0.92
Distribution of
selected doses

(conditional to 'Go')

0.00 0.96 0.04 0.00 0.00 0.94 0.06 0.00 0.00 0.96 0.04 0.00 0.00 0.91 0.09 0.00 0.00 0.90 0.10 0.00

POS (conditional to
'Go')

0.80 0.80 0.80 0.81 0.81

Power 0.76 0.77 0.76 0.75 0.75

Table 5.30: Simulation results, N2 = 1000, comparison of �ve decision rules for dose selection.

Based on these tables, we can see that with Decision rule 2, the dose choice is slightly better
compared to Decision rule 1 and Decision rule 1*: one chooses d = 4 a bit more often (which
is the true optimal dose according to theoretical curves), but the di�erence is small. However,
results are quite similar in terms of expected utilities, probabilities of going to phase III, PoSs
and global powers. Decision rule 1 is slightly better than Decision rule 1* in terms of expected
utilities and dose choice. Decision rule 3 is clearly worse than Decision rule 1, Decision rule 1*
and Decision rule 2. A possible explanation could be that the extreme values of the parameter
estimates have an impact on the mean values used and accentuate an estimation bias. How-
ever, when considering the estimates median rather than estimates mean (Decision rule 4), we
can see that results are very close to those obtained with the mean, even slightly worse.

Globally, Decision rule 1, Decision rule 1* and Decision rule 2 lead to almost similar re-
sults and are consistently better than Decision rule 3 and Decision rule 4.

This result is also visually established by Figure 5.39.

We retained Decision rule 1 for our �nal/main results in Chapter 4 (without e�cacy/safety
rules at the MCMC level) and for the next sections of this chapter: the di�erence is small
between Decision rule 1, Decision rule 1* and Decision rule 2, but, the Decision rule 1 (or
Decision rule 1*) is easily understandable/interpretable by a clinical team, it better accounts
for uncertainty in parameter values, and it �ts well to a suitable rule for interim analysis. The
reason why Decision rule 1 was retained in preference to Decision rule 1* is discussed in more
detail in Section 5.5.
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5.3 In�uence of phase II sample size - sample size recommen-

dations

In this section, I propose a criterion allowing to choose the sample size of phase II: I will
discuss the necessary sample size according to a utility criteria (and not according to power
criteria as usually done). For instance, the sample size would be de�ned as follows: "if the
pro�les of e�cacy and safety are of such type then X patients are required in phase II to have
90% of the maximal utility. If the e�cacy and safety pro�les are of another type then it takes
Y patients in phase II to have 90% of the maximal utility".
This necessary sample size obviously depends on the pro�le that is unknown, but this is com-
mon practice; in order to have more robustness for the power calculations, several alternative
scenarios are assessed or, more recently (see [Chuang-Stein2006]), prior distributions are con-
sidered for ∆, the true mean di�erence versus placebo (de�ned in Section 3.1), and σ, in order
to have some Bayesian-averaged sample size calculation. A very similar approach can be used
with the new mehodology we propose: in the simulation-based sample size calculation, instead
of simulating studies with the same hypothesized �xed value of the e�cacy and safety param-
eters, those structural parameters could be sampled from prior distribution representative of
the sponsor's expectation related to the new drug.

Our recommendations will be of the same type, even richer (assumptions on both e�cacy
and safety) and the sample size will not guarantee a power of 90%, if the assumptions are
true, but 90% of the maximum utility: this could be a new approach consistent with the true
objective of the phase II study (recommending a safe and active dose for phase III study).

In the following, we apply the above criterion allowing to judge whether the phase II sample
size is su�cient or not. This criterion is based on the importance of the relative loss of utility
de�ned in Section 5.2: one can say that the size N2 is su�cient if the global empirical expec-
tation E(U) of the chosen dose (over all 1000 simulations) reaches 90% (or maybe less, 80%
for example) of the maximum utility. This gives an idea of necessary sample size of phase II.
Then we can vary the e�cacy and safety scenarios and decide which is the necessary sample
size of phase II according to the e�cacy and safety pro�les. For each pro�le, the determination
of this sample size will be based on the relative loss of utility graphs, which will be plotted for
each pro�le.

We also compare the phase II recommendations based on this relative utility loss criterion
to their corresponding phase II powers using a Student test, denoted by Powert.test(d). These
powers can be considered as reference values allowing to judge the interest of this new ap-
proach, i.e. of choosing between 80% or 90% of the maximum utility. The phase II power
is calculated for each dose separatly versus placebo, for a unilateral test at 5% level, which
corresponds to the standards of phase II studies. No adjustment for multiplicity is performed.
These powers increase as the dose increases, because they depend on ∆(d), which necessarily
increases with the dose.
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Below are the results of the sample size determination based on the utility criterion (relative
utility loss) de�ned in Section 5.2, with Decision rule 1. In Figures 5.40, 5.41, 5.42 and 5.43,
the values of 0.2 and 0.1 (pointed out by red lines) correspond to a relative utility loss of 20%
and 10%, respectively. So we will assess in the following, the number of patients required to
reach 80% and 90% respectively of the maximal utility.

Figure 5.40: Relative utility loss, Sigmoid scenario - Bad safety (progressive toxicity scenario
(and toxicity of highest dose = 0.20)).

Figure 5.41: Relative utility loss, Plateau scenario - Bad safety (progressive toxicity scenario
(and toxicity of highest dose = 0.20)).
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Figure 5.42: Relative utility loss, Sigmoid scenario - Good safety pro�le (low toxicity scenario).

Figure 5.43: Relative utility loss, Plateau scenario - Good safety pro�le (low toxicity scenario).
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One could of course develop or imagine other scenarios (like scenarios presented in Chapter
4 for instance).

Results:

Regarding the bad Safety pro�le (progressive toxicity scenario, and toxicity of highest dose =
0.20), we have the following simulation results.

Sigmoid scenario (Figure 5.40):

� ' 350 patients in phase II to reach 80% of maximal utility
Powert.test(2) = 0.16, Powert.test(4) = 0.27, Powert.test(6) = 0.37, and
Powert.test(8) = 0.44

� ' 700 patients in phase II to reach 90% of maximal utility
Powert.test(2) = 0.23, Powert.test(4) = 0.43, Powert.test(6) = 0.58, and
Powert.test(8) = 0.68

Plateau scenario (Figure 5.41):

� ' 280 patients in phase II to reach 80% of maximal utility
Powert.test(2) = 0.27, Powert.test(4) = 0.33, Powert.test(6) = 0.36, and
Powert.test(8) = 0.38

� ' 700 patients in phase II reach 90% of maximal utility
Powert.test(2) = 0.49, Powert.test(4) = 0.61, Powert.test(6) = 0.65, and
Powert.test(8) = 0.68

Regarding the good safety pro�le (low toxicity scenario), we have the following simulation
results.

Sigmoid scenario (Figure 5.42):

� ' 200 patients in phase II to reach 80% of maximal utility
Powert.test(2) = 0.12, Powert.test(4) = 0.20, Powert.test(6) = 0.25, and
Powert.test(8) = 0.30

� ' 420 patients in phase II to reach 90% of maximal utility
Powert.test(2) = 0.18, Powert.test(4) = 0.31, Powert.test(6) = 0.41, and
Powert.test(8) = 0.49

Plateau scenario (Figure 5.43):

� ' 140 patients in phase II to reach 80% of maximal utility
Powert.test(2) = 0.11, Powert.test(4) = 0.16, Powert.test(6) = 0.21, and
Powert.test(8) = 0.24
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� ' 400 patients in phase II reach 90% of maximal utility
Powert.test(2) = 0.17, Powert.test(4) = 0.30, Powert.test(6) = 0.40, and
Powert.test(8) = 0.48

Conclusions:

� In those examples, the sample sizes proposed appear quite small, as compared to those
necessary to reach the standard 80% or 90% of the classic phase II power. But one should
keep in mind that selecting a dose for phase III (showing a favorable trade-o� between
e�cacy and safety) is a totally di�erent objective from that of searching for statistical
signi�cance of the di�erence of the mean response of the doses versus placebo. In fact
reaching statistical signi�cance is not the main objective of phase II (it is an objective
for phase III), it is rather to propose the most appropriate dose for phase III.

� To go from 80% of the maximal utility to 90%, it is quite demanding in terms of sam-
ple size: we should almost double the number of patients, regardless of e�cacy/safety
pro�les.

� If the dose choice is more di�cult (when the safety of the high dose is not very good, i.e.
bad safety pro�le), it is more demanding in terms of number of patients to make good
choices.

� So globally, and as for classic phase II power calculation, each incremental probability
to achieve the study goal is more and more expensive (in terms of sample size). But
we would recommend, in this case, the smaller sample sizes, as they are su�cient to
reach 80% of the maximal utility, whereas reaching 90% would require to double the
sample size and probably is not worth the investment. Therefore, we would recommend
for instance 350 patients for phase II (rather than 700 patients) for the Sigmoid scenario
combined with a bad safety pro�le. This new approach is we think more consistent with
the true objective of the phase II study (recommending a safe and active dose for phase
III study).
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5.4 Alternative criteria for interim analysis

A sub-issue of this thesis was to perceive if an interim data inspection strategy for phase II,
when N ′2 < N2 patients are enrolled, can signi�cantly reduce the mean sample size (conse-
quently, budget and time as well) while maintaining the properties of the design (good decision
quality of the dose for the phase III). To do so, a sequential design (with futility and e�cacy
rules at the interim analysis) is compared to a �xed design in order to check the usefulness of
interim analysis.

In this section, we considered alternative stopping rules criteria for the interim analysis in
addition to the one proposed in Chapter 4 page 61, as well as several threshold values to
stop at interim.

In the following, we reconsider the same interim analysis criterion proposed in Chapter 4
page 61, by testing this time di�erent l values, 0 < l < 1, and di�erent designs (smaller
phase II sample sizes compared to the ones considered in Chapter 4). We recall that the
value of threshold l should be prede�ned by the sponsor, it should be high enough to guar-
antee accuracy of the dose choice, but not too high, otherwise frequency of early termination
will be decreased and studies will be rarely terminated at interim. We compared simulation
results for l = 0.80 and l = 0.90. The choice of these thresholds is also discussed inChapter 6.

We started by comparing the four following �xed/sequential designs via simulation (1000
simulated studies):

� Design 1: 100 patients in phase II.

� Design 2: 500 patients with interim analysis at 100 patients → at interim (with 100
patients), one determines the dose d∗:

� if P[U(d∗) > U(dj) for all the other doses dj |data] ≥ l → stop the study, and
choose the optimal dose d∗

� otherwise continue to the �nal analysis with 500 patients.

� Design 3: 500 patients with interim analysis at 250 patients → at interim (with 250
patients), one determines the dose d∗:

� if P[U(d∗) > U(dj) for all the other doses dj |data] ≥ l → stop the study, and
choose the optimal dose d∗

� otherwise continue to the �nal analysis with 500 patients.

� Design 4: 500 patients in phase II.

Our aim here is to obtain a simulation-based comparison between the four designs: Design 1,
Design 2, Design 3 and Design 4. The empirical utility expectation of the chosen dose will be
the metric used to compare the designs. We will denote these four empirical expectations by
E(UD1), E(UD2), E(UD3) and E(UD4) respectively.
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Normally, as we know that the utility increases with the sample size, E(UD1) < E(UD2) <
E(UD3) < E(UD4) is expected. But we hope to illustrate that Design 2 or Design 3 leads
to quite similar expectation as Design 4, even if they are slightly less e�cient (in terms of
expected utility) than the latter one. Moreover, for situations where there is a dose that is
clearly di�erent/distinguished from others, we hope to stop often at 100 patients or at 250
patients, and these designs will be more economical than Design 4.

In this section, we consider the following combination of e�cacy and safety scenarios: Sigmoid
scenario with progressive toxicity scenario (and toxicity of highest dose = 0.20).

Here also, the choice of the dose is governed by Decision rule 1, with values threshold.e�2=0.30
and threshold.safe2=0.50.

Table 5.31: Simulation results, interim atN ′2 = 100 andN ′2 = 250, stop at interim if P[U(d∗) >
U(dj) for all the other doses dj |data] ≥ l, l = 0.80, 0.90.

Based on Table 5.31, we can see that the utilities are well ordered (the larger the N2, the
larger the empirical expectation E(U) of the chosen dose). The interim analysis with l = 0.80
is e�ective, with a signi�cant probability of stopping at interim (around 30% for both sequen-
tial designs with 100 and 250 patients at interim analysis respectively). However, the interim
analysis with l = 0.90 appears too restrictive even though the global power is slightly larger
than for l = 0.80. But for instance, for the interim analysis with N ′2 = 250 patients, the
increase in power appears very small as compared to the expected reduction in the sample size
obtained with l = 0.80. This also implies that there is not much more stopping for futility
with l = 0.80 than with l = 0.90, otherwise the global power would be much lower.

On the other hand, we can clearly see that E(UD1) < E(UD2) < E(UD3) < E(UD4), for
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both values of l. But E(UD3) is much closer to E(UD4) than E(UD2), and the best dose is
clearly di�erent/distinguished from others with this design (the probability of choosing d = 4
dose, which is the optimal dose according to theory, is higher with Design 3 compared to
Design 2), which makes it more economical and more bene�cial than Design 4.

So we have concluded that:

� l = 0.90 may appear too restrictive even though the global power is slightly larger
than for l = 0.80. But for instance, for the interim analysis with N ′2 = 250 patients,
the increase in power appears very small as compared to the expected reduction in the
sample size obtained with l = 0.80

� l = 0.80 is economically more interesting: we stop more often at interim analysis → we
save patients (the average sample size of the phase II trial is reduced)

� In this example, Design 2 (design with N ′2 = 100), underperforms Design 3 (design with
N ′2 = 250), for both values of l, 100 patients is not enough and yet we stop too often,
which consequently leads to bad decisions

� Design 3 with l = 0.80 is bene�cial because we stop quite often at interim (so we save
patients) while maintaining the properties of Design 4 (�xed design with N2 = 500).

Another possible criterion for the interim analysis, inspired by [Christen et al.2004], could be
based on the di�erence of the means or medians of the utilities. The idea is to estimate the
posterior median or mean of the utility for each dose, then to compute the mean or median
di�erences between each dose dj and dk (for j6=k) and to check if these di�erences are at least
equal to 0.15 or 0.20 for example, in favor of a given dose. In other words, a dose dj would dom-
inate another dose dk and could be preferred, if the di�erence between the two relative utility
medians or means is at least X (X = 0.10, 0.15 or 0.20 for instance) in favor of dj . So we could
de�ne these criteria as follows: stop at interim if EMCMC(U(d∗) − U(other doses)) ≥ 0.10
or 0.20, or, stop at interim ifMedianMCMC(U(d∗))−Median(U(other doses)) ≥ 0.10 or 0.20.

In other words, to justify a dose choice, one could imagine the following two domination
criteria:

� Domination criterion 1: a dose dj would dominate another dose dk and could therefore
be preferred if the di�erence between the two means of the utility is at least X (for
example X = 0.10 or 0.15 or 0.20) in favor of dj

� Domination criterion 2: a dose dj would dominate another dose dk and could therefore
be preferred if the di�erence between the two medians of the utility is at least X (for
example X = 0.10 or 0.15 or 0.20) in favor of dj

The decision for the interim analysis, based on the selected dose d∗ (with Decision rule 1)
could then be de�ned as follows: if d∗ dominates all other doses for one of the two domination
criteria mentioned above, then stop and go to phase III with d∗.

In Table 5.32, we used the utility mean di�erences criterion (Domination criterion 1), with
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X = 0.10, 0.20, and we compared the same �xed/sequential designs previously described: De-
sign 1, Design 2 (with X = 0.10 and X = 0.20), Design 3 (with X = 0.10 and X = 0.20) and
Design 4.

Table 5.32: Simulation results, utility mean di�erences criterion: Domination criterion 1 with
X = 0.10, 0.20.

Results with the utility median di�erences criterion (Domination criterion 2), with X =
0.10, 0.20, are given in Table 5.33, for the same �xed/sequential designs Design 1, Design
2 (with X = 0.10 and X = 0.20), Design 3 (with X = 0.10 and X = 0.20) and Design 4.
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Table 5.33: Simulation results, utility median di�erences criterion: Domination criterion 2
with X = 0.10, 0.20.

The 'EMCMC(U(d∗)−U(other doses)) ≥ 0.10' criterion is quite e�ective based on simulation
results given in Table 5.32, but considering a higher threshold (0.20) becomes too restrictive,
and consequently, not enough stops are recorded at the interim analysis. On the contrary,
results with the utility median di�erences criterion, given in Table 5.33, are satisfactory when
considering either the smaller threshold (0.10) or the higher one (0.20). The frequency of
stopping at interim analysis decreased with the threshold of 0.20, but the di�erence is quite
small as compared to the one with the �rst domination criterion (Table 5.32).

However, these domination criteria proposed above are complicated and not too intuitive:
the "domination" de�nition is very arbitrary (di�erence of the medians of the utilities > 0.20
or 0.30 is very di�cult to justify given the abstract nature of the utility). But such de�nition
of domination criteria was motivated/inspired by [Christen et al.2004], where authors describe
a Phase II clinical trial for �nding optimal dose levels, in a di�erent context: patients alloca-
tion to doses. They use the following algorithm in order to design a sequential clinical trial:
they propose a dynamic programming rule which consists in doing backward induction, and
a well detailed algorithm is described in particular, alternating sequence of expectation and
maximization. Utility-based decisions consist of dose selection, within a Bayesian framework,
based on posterior probabilities: at every stage of the trial, the next patient is allocated to the
selected dose, the trial may be stopped for futility, with no treatment recommendation, and
doses may be dropped during the trial, if they are judged to be less e�ective than others. How-
ever, these doses are not totally excluded from the trial and may be reused in randomization,
which consists in allocating patients to doses within the "non-dominated" set. Here, "non-
dominated" set refers to the set of superior doses, dominating the others. Indeed, dropped
doses may dominate other doses later on, when the posterior probabilities change: a dose may

137



be inferior at a given time point, than superior at another time. Hence an adaptive random-
ization for dose allocation, carried out from sequential design, based on expected utility, to
de�ne the set of "non-dominated" doses.

The proposal based on stopping at the interim analysis if
P[U(d∗) > U(dj) for all the other doses dj |data] ≥ l has similar performance (in terms of
mean utility, global power) than the stopping rules based on dose domination criteria Domi-
nation criterion 1 and Domination criterion 2 (considering di�erences in the utility numerical
values), but is much more intuitive and simpler to explain to a clinical team.

5.5 Concluding Remarks

We have proposed a sponsor's decision rule based on the posterior probabilities of the doses
to be the optimal one (Decision rule 1 or Decision rule 1*): the chosen dose being the one
that maximizes this posterior probability; we think that such a rule better accounts for the
uncertainty in the parameter values than criteria based on the ordering of numerical estimates
of the utilities (like the posterior mean of the utilities for instance, as in Decision rule 2, or
the utility of the posterior mean and median of the parameter estimates, as in Decision rule 3
and Decision rule 4). In addition, it is an intuitive and understandable rule, that can be used
as the basis to de�ne a stopping rule for the interim analysis (rule based on a lower bound of
probability of the chosen dose to be the optimal one).

Regarding sponsor's strategy to choose the optimal dose with Decision rule 1*, by applying
e�cacy/safety rules at both MCMC and study levels, the sponsor is more restrictive regarding
the dose choices. When comparing results between putting e�cacy/safety constraints at both
MCMC and study levels, and putting e�cacy/safety constraints at the study level only (i.e.
at the Go / NoGo decision level) as with Decision rule 1, it seemed more reasonable to keep
this second approach (Decision rule 1). In fact, this approach is preferred not only because
it showed slightly better results compared to Decision rule 1*, but also because thresholds
are already arbitrarily prede�ned with Decision rule 1*, and it becomes harder to justify the
choice of these thresholds values. In addition, with the �rst approach (Decision rule 1*), dis-
tributions are underestimated because at each MCMC iteration level, the utility is set to zero
if P̂ oS(d) or P̂(toxobs(d) ≤ 0.15) do not pass the �lters (in other words, in the case of utilities
with constraints at the MCMC level for e�cacy and toxicity, the cluster in 0 is more marked).
So the distributions are multimodal with a peak in 0. This is due to our Decision rule 1*,
where we seek to "eliminate", for the selection of the dose, the iterations with too low e�cacy
or too high toxicity.

On the other hand, we conclude that the alternative approaches for the interim analysis
addressed in this chapter do not bring signi�cant improvement compared to our proposed
stopping criterion in Chapter 4 which is more intuitive and simpler to explain to a clinician,
than criteria based on the numerical value of utility, which remains an abstract quantity.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

In the major part of this work, we have attached a utility value to each dose, using the utility
function de�ned as the product of a measure of the dose e�cacy (the PoS = the power of the
comparison versus placebo in a reference phase III trial with N3/2 patients per arm), and a
measure of the dose toxicity (the squared probability of observing a toxicity rate lower than t
in a typical phase III trial of N3/2 patients per arm).

Phase III sample size

The size of phase III that we considered (N3 = 1000) is arbitrary. What is important is
that the PoS is an increasing function of the dose just as the safety component is a decreasing
function of the dose and that these PoS and probabilities of toxicity are representative of the
e�ect size and toxicity pro�les of each dose. Nevertheless, a size of 1000 patients seems to be a
good compromise, it is approximately in the Phase III range (although 1000 is higher than the
average). The considered sample size must not be too high (10000 for instance), otherwise it
would be di�cult to discriminate doses for e�cacy (all PoS will be close to 1). Similarly phase
III should not be too small (e.g. 50) for strictly opposite reasons. Sample size for phase III
is usually set to achieve a statistical power between 80% and 95%. For the safety, increasing
the sample size is equivalent to being more and more radical regarding dose selection: when
N3 is very large (e.g. 10000), if the true percentage of toxicity is higher than t, the safety
part of utility will be almost equal to zero; on the contrary, if the true percentage of toxicity
is lower than t, the safety part of the utility will be almost equal to 1. However, this could
be compensated by exponents h and k assigned to each component of the utility function (see
next paragraph). In practice, if 1000 patients are in the sample size range of phase III trials,
we keep 1000 to de�ne the utility (even if, once the dose is chosen, one can make a calculation
of sample size and choose another sample size for phase III). If 1000 patients are not at all in
the range, it is then better to make adaptations (for example, we would consider between 300
and 500 patients in oncology).
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Choice of the utility function

We do not claim that this utility function is necessarily the best one, but in addition to
the necessary properties that should have utility functions (increase when e�cacy increases
while safety is �xed and decrease when toxicity increases while e�cacy is �xed), it has some
desirable properties: it is a smooth and a concave function (at least around the maximum
of utility), this guarantees the existence of an optimal dose. Therefore, in practice, choos-
ing a utility function U(d) of the form U(d) = (efficacy term(d))h × (safety term(d))k,
with both e�cacy and safety terms ranging from 0 to 1, is a pragmatic option. The choice
of exponents h and k, enables to give more or less weight to the e�cacy and safety terms:
large values of the exponents put more constraint to the corresponding term (for instance,
for a large value of h, an optimal dose should show a very high e�cacy). For instance for
a rare disease indication for which there is a clear unmet medical need, there should be less
constraint on safety: therefore low values of k should be chosen. On the contrary, for a very
competitive therapeutic area, more constraint should be put on the safety side, therefore large
values of k should be chosen. In principle, a good option for the sponsor for choosing the
utility function, could be to gather some experts that would rank some typical e�cacy/safety
pro�les, those reference rankings being then used by the sponsor to choose a consistent utility
function. A possible way to calibrate these values is to adopt the Delphi method [Verhagen
et al.1998], which is a forecasting process framework based on the results of several rounds of
questionnaires sent to a panel of experts. Several rounds of questionnaires are sent out, and
the anonymous responses are aggregated and shared with the group after each round. Con-
cretely, statisticians would propose to experts, depending on the project and the therapeutic
area, various e�cacy and toxicity pro�les. Experts should rank these pro�les, and parameters
h and k would then be determined according to these rankings, once all reviews are collected.
An alternative question to ask clinicians/experts could be, for instance, of the following type:
how much is it necessary to improve the safety so that [PoS = 0.7/P(toxobs ≤ 0.15) = ?] has
the same bene�t risk ratio as [PoS = 0.8/P(toxobs ≤ 0.15) = 0.65]? If we plot Iso-quant or
Iso-product1 utility curves for k = 2 and k = 0.5 for example (see Figure 6.1), with k = 2 we
get [PoS = 0.7/P(toxobs ≤ 0.15) = 0.7], i.e. a small safety improvement of 5% compensates a
loss of e�cacy of 10%, and with k = 0.5 we get [PoS = 0.7/P(toxobs ≤ 0.15) = 1], i.e. a big
safety improvement of 35% is necessary to compensate a loss of e�cacy of 10%.

1curve that shows the di�erent combinations of two factors yielding the same total product
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Figure 6.1: Iso-quant utility curves, Safety as a function of E�cacy, k = 2, 0.5.

Bayesian approach

To make the necessary decisions, the sponsor must estimate the parameters of the two models,
once the data of the phase II study are available. In this work, we have considered the Bayesian
framework for the statistical analysis of the phase II data. We advocate for a Bayesian ap-
proach as we think it is a more �exible framework for specifying the decision rules. We have
proposed a sponsor's decision rule based on the posterior probabilities of the doses to be the
optimal one: the chosen dose being the one that maximizes this posterior probability; we think
that such a rule better accounts for the uncertainty in the parameter values than criteria based
on the ordering of numerical "estimates" of the utilities (like the posterior mean of the utilities
for instance). From a technical point of view, in the simulations we have conducted, we have
used informative and non-informative priors and computed the posterior probabilities using
a MCMC algorithm (Metropolis-Hastings). Informative priors could also be used in order
to improve decisions, however, the choice of these priors should be rigorously done, this is
discussed in Section 6.2.

Choice of e�cacy and toxicity thresholds

Apart from the identi�cation of the best dose, the choice to continue to phase III is a key
decision. We have proposed criteria based on threshold values for the PoS, with 60% set as
lower bound, and for the probability of observing a toxicity rate lower than t in phase III,
with 50% set as lower bound, for the main results of this thesis (see Chapter 4). These
thresholds have to be determined by the sponsor: for the proposed scenarios, they appeared
as a good compromise between the probability of stopping in case of non interesting pro�le
and the probability of going to phase III in case of favourable pro�le. In practice, to apply
the methodology, the sponsor should conduct some simulations to identify the most relevant
e�cacy and safety thresholds for the targeted, or expected, drug pro�le.
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Impact of sample size

In order to assess the properties of the sponsor's decision-making process mentionned above,
we have conducted some simulations (1000 study replicates) under various safety and e�cacy
pro�les and several sample sizes of the phase II study (250, 500 and 1000 patients). The
quality of the decision rules were assessed in the light of the frequency, amongst the 1000
study replicates, of the good decisions either for the Go/NoGo decision or the choice of the
dose for the phase III. The simulations show that estimating an optimal dose is a di�cult and
demanding task. For instance, for most of the scenarios with a satisfactory e�cacy pro�le,
the probability of making the choice of going to phase III following a phase II study with 250
patients was always less than 60%, except in the scenario in which the drug shows almost no
toxicity. This is due to the fact that, with this sample size, the posterior distributions of the
utilities, for each of the doses, are not su�ciently concentrated around the true utility val-
ues. This leads, often, to imprecise estimations of the posterior probabilities of the dose with
the highest utility score (computed for all doses dj), which are the quantities used for dose
selection, and then to wrong selection of the optimal dose. As expected, these probabilities
of making the good decision increase with the sample size, but even with the largest sample
size, the probability of making the good decision with a large phase II study of 1000 patients
only reaches 80% when the drug does not show any toxicity. This is a case where the sponsor
should be aware of the low toxicity via simulations and should therefore adjust the e�cacy
and/or toxicity thresholds. The simulations clearly show that, regardless of time and budget
constraints, the sponsor has always interest in running large phase II studies to make accurate
decisions regarding the termination of the development program or the selection of the dose.
But, in practice, the sample size of the phase II study is necessarily limited by budget and
time constraints: those simulations show that for some e�cacy and safety pro�les, for phase
II study of reasonable size (i.e. 250 patients), the probability of making erroneous decision
(like wrongly terminate the drug development in phase II) is not negligible (varies between
35% and 44%), especially if inadequate choices of e�cacy/toxicity thresholds are made, as it
is the case here.

Concerning the dose selection, the probability of selecting the right dose (conditional on spon-
sor's decision to go to phase III) also increases as the sample size increases. For those e�cacy
and safety pro�les that show a clear peak of utility value for one given dose, accurate dose
selection can be achieved with limited sample size. In case several adjacent doses show similar
utility values, the identi�cation of the optimum dose is more challenging and requires more
patients.

Type I error assessment and risk of wrong decision

An important point is the assessment of the type I error, in order to verify that the clini-
cal trial stops for lack of activity, and not because of excessive toxicity. It appears that this
probability can be as high as 16% for the smallest phase II study in a scenario where the
toxicity is very low. But again, this probability of false decision decreases as the sample size
increases. Regarding the sequential designs, this probability does not exceed 10% when an
interim analysis is conducted with N ′2 = 250 patients, and only reaches 6% at most, when
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an interim analysis is conducted with N ′2 = 500 patients, which globally implies a stricter
control of the type I error. The e�cacy and safety thresholds we have used to specify the
utility functions and decision rules can be determined and calibrated by the sponsor in order
to maintain the type I error below a desired level. In order to improve this type I error,
the sponsor should conduct some simulations to identify the most relevant e�cacy and safety
thresholds for the targeted, or expected, drug pro�le, as previously discussed. In fact, a bad
choice of these thresholds can lead to an undesired increase in the type I error.

Interim analysis

We have seen that for some safety and e�cacy pro�les, it is necessary to run a large phase
II study to make good decisions, whereas for others, a phase II study of moderate sample
size is su�cient to make decisions with acceptable risk of mistakes (including type II error),
between 25% and 35%, in other words, with acceptable phase II power, between 65% and
75% (success rate of phase II is usually between 40%-50%). An appealing strategy could be
to plan upfront a large sample phase II study and perform an interim analysis, when half of
the patients are enrolled, and try to make the selection at this stage. For some scenarios, in
particular when the best dose shows a clear bene�t in utility as compared to the others, this
approach has good properties: with a quite large probability of study termination at interim
analysis, it enables to reduce the sample size while maintaining the properties of the �xed large
sample size design. For some other scenarios, it is less useful as the study is rarely terminated
at the interim analysis, the sponsor being unable to clearly identify the best dose at interim
analysis. This could be seen as a safe approach aiming to choose the optimal dose when half
of the patients are enrolled, only if these analyzes are reliable and clearly identify this dose
as the best one among the others. In all the chosen scenarios, the sponsor decides to stop the
trial when at interim analysis, P[U(d∗) > U(dj) for all the other doses dj |data] ≥ l. This
threshold of l has to be chosen by the sponsor: we tested several values and the threshold of
l = 0.80 seemed to show the best compromise between quality of dose selection (with a high
threshold the choice of dose is more accurate) and frequency of early termination (with a too
high threshold the studies are rarely terminated at interim analysis which reduces the inter-
est of the method). Also, in our simulations, we concluded that those interim analyses only
slightly increased the risk of wrongly taking the decision to go to phase III. For the Sigmoid
scenario with a progressive toxicity pro�le for instance, the probability of taking the wrong
decision with an interim analysis at N ′2 = 250 only increased by 0.2% compared to the �xed
design with N2 = 500 (see Table 4.4).

6.2 Perspectives

Added value of dose-response modeling

The decision rules we have proposed, are based on the estimation of two parametric dose-
response models for e�cacy and safety, using Emax and probit models respectively. Despite
the wide use of these models in regression analyses, they might not necessarily be the "true"
one or the best dose-response models in all applications. In addition, the use of parametric
dose-response models is not necessary to apply the decision-making framework we have pro-
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posed. In this latter case the mean e�cacy response for each dose, the probability of adverse
events of each dose would be speci�ed as independent parameters. This non-parametric ap-
proach is, by de�nition, less sensitive to model mispeci�cation but it complicates the use of
the Bayesian approach we have described and leads to a power loss: in our simulation for
instance, instead of the 5 parameters de�ning the two dose-response models, with non model
based e�cacy and safety responses, 10 parameters would need to be speci�ed, and then 10
prior distribution would need to be de�ned. An interesting complementary work would be to
compare our proposed dose-response modeling approach with this non-parametric approach,
in the case when the model are well speci�ed, but more interestingly, when the Emax and
probit models we have considered are not the good ones.

Model Averaging approach

Still in relation to the study of the method robustness with respect to model misspeci�ca-
tion, a further development of this work would be to assess the interest of Model Averaging.
Model Averaging approaches (see Section 2.2.2) can be easily speci�ed within a Bayesian
framework: by specifying priors, Pr(Mk), on the potential parametric models Mk themselves.
In this framework, quantities such as P(dj = optimal dose|data) (de�ned in Section 4.1.2.2)
can be written as follows:
P(dj = optimal dose|data) =

∑
k P(dj = optimal dose|data;Mk) × P(Mk|data). The terms

P(dj = optimal dose|data;Mk) can be computed using standard MCMC algorithms for
each of the candidate models. More di�cult to calculate, on the computational point of
view, are quantities such as P(Mk|data). Indeed they can be written as: P(Mk|data) =
f(data|Mk)Pr(Mk)∑
l f(data|Ml)Pr(Ml)

, where f(data|Mk) represents the full likelihood, accounting for the

prior of the parameters of model Mk, of the data with model Mk; this expression is di�cult
to compute in practice as each term f(data|Ml) involves integrals over the model param-
eters space. Fortunately, it is possible to use approximate formula [Davison2003], based on
Laplace approximation, linking f(data|Mk) to the BIC (Bayes Information Criterion) of model
Mk : f(data|Mk) ' e−

1
2
BIC(Mk). To conclude, P(dj = optimal dose|data) could be approxi-

mated by
∑

k P(dj = optimal dose|data;Mk)×
e−

1
2
BIC(Mk)Pr(Mk)∑

l e
− 1

2
BIC(Ml)Pr(Ml)

,

and the whole method we have proposed could then be further developped in this multi-model
framework. Improvements brought by such a Model Averaging approach on the robustness of
the method could be assessed through simulations.

Impact of prior distributions

Another topic that could be developped is related to the way the Bayesian analyses are con-
ducted. Risks of wrongly taking the decision to go to phase III are illustrative of the technical
di�culty of simultaneously estimating two complex dose-response models with enough accu-
racy to properly rank doses using a utility function combining the two. In our simulation
example, the sponsor's approach is Bayesian using informative and non-informative priors for
e�cacy (and informative priors for toxicity) as it is usually the case in such context. This
choice was driven by the will to have a "conservative" approach leading to choose priors that
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minimizes "subjectivity" as compared to the information included in the data. But in prac-
tice, as long as those analyses are made for internal decision-making, the sponsor could try
to leverage the information available before the phase II was conducted to improve decisions.
Maybe, for further development, it would be interesting to assess (through simulations) what
level of information brought by the prior would be su�cient to improve the decisions; those
considerations could guide the sponsor with respect to the nature of information to collect,
in pre-clinical development or phase I studies, to inform those priors and then improve the
utility-based decisions and dose selections. This could be done by using more informative
priors related to the available information:

(i) For e�cacy, based on previous studies (like a proof of concept phase IIa trial) some
information could be available related to the Emax parameter for instance: a prior
N(Emax, σ

2
Emax

) not centered on 0, with a not too much in�ated variability could be
used

(ii) For the safety, some precise knowledge could be available such as the probability of
occurence of toxicity in the control group information that can be translated in an
informative prior on the intercept of the Probit model

Interim analysis

In our work, the interim and �nal analyses are conducted the same way. But in fact, according
to sponsor's objectives related to the interim analysis, they could be conducted completely
di�erently. We could also organize and re�ect upon simulations around practical questions
such as: in case the interim analysis does not identify "for sure" a better dose, but clearly
identi�es useless doses (because they are not e�ective or toxic), is it then possible to abandon
one or two doses for the �nal analysis, without unduly diminishing the �nal utility?

On the other hand, if the only aim of the interim analysis is to assess if the drug shows
some e�cacy or not (with no further objective to identify the optimal dose), then a speci�c
decision rule could be built in relation to the e�cacy of the largest dose only (for instance
the decision rule could be de�ned as a minimal PoS in phase III for the largest dose; studies
would be stopped if e�cacy of the largest dose is insu�cient). In this example, studies would
be stopped only for futility (we only stop for failure, never for success).

Transposition to oncology

An interesting perspective to work on is to transpose our proposed utility-based approach to on-
cology, for a phase I/phase II clinical development. However, applying a similar approach to on-
cology would require some signi�cant modi�cation of the methodology. In general, the e�cacy
criterion used in phase II is di�erent from the e�cacy criterion used in phase III. Very often,
Best Overall Response is the phase I or phase II criterion whereas the phase III criterion is the
Progression Free Survival and/or the Overall Survival. Therefore, unless basing calculations
on strong assumptions, it would be di�cult to assess the PoS of a dose in phase III only based
on a phase I/phase II study. Phase II oncology studies with group parallel designs (including
various doses or often various dose regimen) exist, but they are rare: very often the choice of
dose is based on phase I dose escalation studies. Accordingly, an interesting application of our
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approach would be to guide the dose escalation (choice of the next dose cohort) using a utility-
based approach, see [Thall2012a]; [Thall2012b]; [Thall and Cook2004]; [Stallard et al.2004]. A
possible approach for a phase I dose escalation study would be to de�ne a utility function hav-
ing the following form U(d) = P(Response rate(d) ≥ π1)

hP(Toxicity rate(d) ≤ π2)
k. Then,

after each cohort is enrolled, an optimal dose would be chosen, and would be the dose of the
next cohort (other complementary safety rules could be taken into account in addition). Such
a de�nition of utility is only applicable if we can de�ne probability distribution for the model
parameters: the Bayesian framework is the most suitable for this purpose.

Frequentist approach for design optimality

Another approach to investigate is how the objective of identifying the optimal dose, with
respect to a utility function, can also drive the design of the phase II study. Design optimality
consideration are more easily de�ned in a frequentist framework. Even though our analysis
framework is Bayesian, we can nevertheless base the de�nition of the design-optimality crite-
rion on the variance of the maximum likelihood estimates of the utility function, at the doses
of interest. This can be done using the delta-method [Davison2003] for instance. Calling Θ̂
the maximum likelihood estimates of the parameter of the two e�cacy and safety models:

var(U(d; Θ̂, design)) ' (
∂U(x; Θ̂)

∂Θ
)T var(Θ̂, design)(

∂U(x; Θ̂)

∂Θ
)

=trace

(
var(Θ̂, design)(

∂U(x; Θ̂)

∂Θ
)(
∂U(x; Θ̂)

∂Θ
)T

)

where var(Θ̂, design) can be approximated by the inverse of the Fisher information matrix.
Since the utility has to be maximized within a certain range of dose, [dm, dM ], the approach
of [Miller et al.2007] can be used in de�ning the design optimality criterion by:

Φ(design) = trace

(
var(Θ̂; design)

∫ dM
dm

(
∂U(x; Θ̂)

∂Θ
)(
∂U(x; Θ̂)

∂Θ
)Tdx

)
.

6.3 General conclusion

We have proposed a decision-making framework based on a utility function that, following a
phase II study, can drive sponsor's decision with respect to the continuation, or not, of the
drug development as well as the selection of the best dose for the phase III. With a utility
function considering simultaneously the e�cacy and safety drug pro�les, we believe that our
approach is �exible enough to be used for most of the therapeutic areas and indications and
potentially allow to integrate other sources of information than the phase II study data. We
think also that our utility-based dose selection participates to the new methodologies in hands
of the sponsors to rationalize and improve the dose selection and then improve the e�ciency
of drug development to provide better therapeutic solutions to the patients.
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Appendices

A.1. Complementary developments on utility-based seamless de-

sign optimization

The aim of this appendix is the following:

1. illustrate in�uence of relative sample size of phase II (with respect to total sample size)
on the expected utility U0, as well as in�uence of safety (as the dose grows) on the PoS
of U0

2. illustrate how utility U5 and U9 can be used to optimize the seamless phase II/phase
III design study

1. Expanded discussion on utility U0

The aim of this section is to detail the calculations and the statistical methodology to compute
the expected utility for U0. And discuss in�uence of the phase II sample size on E(U0).

General context

� Seamless phase II/phase III study context: �xed total sample size Ntot, phase II →
N2 = f ×Ntot, phase III → N3 = (1− f)×Ntot

� Frequentist approach: one 'true' parameter θ0

� Emax mean dose-response pro�le

� As an example, we consider here the U0 utility function to illustrate this approach,
based on PoS and safety modeling, e�cacy is mitigated by safety: for a given dose, d,
P(safety issue) = sa(d/dJ)2 where dJ is the maximal dose in the design and sa is the
probability of safety problems

� Utility = Reward(if success) - Cost

� success → signi�cant test + lack of safety issue

� Decision rule of the sponsor only based on point estimate of model parameter θ̂
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� after phase II sponsors decides to 'Go' into phase III if the 'best' selected dose d∗
has PoSadj(d∗) ≥ 0.3 & expected utility (=gain) > 0, where:

* ∆̄(d) is the di�erence between chosen dose d arm & placebo in phase III and
SE2 = 2σ2/(N3/2)

* PH1(∆̄d ≥ 1.96×
√

2SE2) = Φ(
m(d; θ)−m(0; θ)− 1.96×

√
2SE2

√
2SE2

);

m(d; θ) = E0 +
Emax.d

ED50 + d
(three-parameter Emax model for the e�cacy)

* expected utility, for the sponsor, after phase II: equal −γN2 if 'NoGo', −γNtot+
REθ̂(Success) if go

� U = U0(d, f) = −γN21(NoGo) + 1(Go)(−γNtot +R× PoSadj(d))

� Before study starts: sponsor's general strategy is to maximize (in phase II design, w (w is
the design, i.e. patients allocation per dose), and N2/Ntot ratio, f) the expected utility.

Eθ0U = E0(U1× (1−Go(θ̂))+U2×Go(θ̂)) = E(θ̂)
0 (E0(U1× (1−Go(θ̂))+U2×Go(θ̂)|θ̂) =

E(θ̂)
0 (E0(U1|θ̂)× (1−Go(θ̂)) + E0(U2|θ̂)×Go(θ̂))

� E0(U1|θ̂) = −γ × f ×Ntot: loss due to cost of phase II if 'NoGo'

� E0(U2|θ̂) = −γ×Ntot+R×PoSadj(θ0)(d(θ̂)): expected gain minus total cost if 'Go'

Therefore, sponsor's strategy is to maximize in w, f the function:

E0U = E(θ̂)
0

(
((−γ × f ×Ntot)× (1−Go(θ̂)) + (−γ ×Ntot +R× PoSadj(θ0)(d(θ̂)))×Go(θ̂))

)
,

where θ̂ ∼ N(θ0, (f × Ntot
∑

dwdId)
−1), Go(θ̂) is the decision based on parameter estimate

and PoSadj(θ0)(d(θ̂))) is the true PoS, depends on true parameter θ0, of the dose chosen (based

on the estimated parameter θ̂); I = −Eθ0∂2ll/∂θ2 is the Fisher information matrix.

Sponsor's strategy

� After phase II:

� compute E(U(d, f)|phaseII) for each dose d

� compute d∗ = arg maxd E(U(d, f)|phaseII)

� decide if worth going into phase III: if PoSadj(d∗) ≥ 0.30 & expected utility (=gain)
> 0

� Before phase II:

� choose N2(= f ×Ntot) sample size of phase II

� choose the design w
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(w∗) = arg maxE(phaseII)
w,f E(U(d∗)|phaseII)

or

(f∗) = arg maxE(phaseII)
w,f E(U(d∗)|phaseII)

Computation of expectation

The expectation is computed via numerical integration: E(U) =
∫

(((−γ × fNtot) × (1 −
Go(θ)) + (−γ ×Ntot+R× PoSadj(θ0)(d(θ)))×Go(θ)))p(θ)dθ, where p(θ) is the density of a
Gaussian distribution centered at the true value of the parameters and with covariance matrix
equal to the inverse of the Fisher matrix.

In practice, the computation was done, in R, as following: the hessian was calculated for
each dose using the symbolic di�erentiation operator 'D', and the three dimensional integral
was computed using the 'cubature' package in R.

Computation of Fisher information matrix

� The �sher information matrix (FIM), denoted by I, is equal to−E(y)∂2(log−likelihood)/∂θ2

� For a patient receiving dose d, Y follows a normal distribution centered in m(d, θ) with
variance equal to σ2

� For one given patient with data y, the likelihood is
1√

2πσ2
exp(− 1

2σ2
× (y −m(d, θ))2),

and by forgetting the π, the log-likelihood is − 1

2σ2
× (y −m(d, θ))2

� So for some patients Nd at some dose d:

Iθ(d) =
Nd

σ2
× 1

2E
(Y )
[
∂2 (y −m(d; θ))2 /∂θ2

]
� For one design, w, and a total of N2 patients in phase II:

Iθ =
N2

2

∑
dwd ×

1
2E

(Y )
[
∂2 (y −m(d; θ))2 /∂θ2

]
� The second derivative ∂2 (y −m(d; θ))2 /∂θ2 is linear in y
⇒ E(y)∂2 (y −m(d; θ))2 /∂θ2 = ∂2 (y −m(d; θ))2 /∂θ2 evaluated at y = EY = m(d; θ)

Concretely, this is how we compute the Fisher information matrix (FIM) with a three-parameter
Emax model:

Log-likelihood, FIM for one patient, ll : θ = (E0, Emax, ED50)

→ − 1

2σ2
× (y − E0 − Emax

d

ED50 + d
)2.
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Fisher information matrix:

FIM = Iθ(d) = −E(∂2ll/∂θ2)

=

(
1 d/(σ2(ED50+d)) d×Emax/(σ2(ED50+d)2)

d/(σ2(ED50+d)) d2/(σ2×(ED50+d)2) −(d2×Emax)/(σ2×(ED50+d)3)

d×Emax/(σ2(ED50+d)2) −(d2×Emax)/(σ2×(ED50+d)3) (d2×E2
max)/(σ

2×(ED50+d)4)

)

For a design w, and for N2 patients in phase II, the global FIM is the sum
N2

σ2
∑

dwdId.

In the following examples, computation done using symbolic di�erentiation function 'D' in
R.

Global computation

� The large sample approximation of the estimate, θ̂, distribution (based on Fisher in-
formation matrix) is used: this enables to avoid simulating the whole set of individual
phase II data.

� The θ parameter is three-dimensional: θ1 = E0, θ2 = Emax, θ3 = ED50. The E0 pa-
rameter is supposed to have a value of zero (no placebo e�ect) in our chosen scenarios.
The ED50 parameter is necessarily > 0 (otherwise the relationship is meaningless and
not de�ned for the dose equal to opposite of ED50); therefore to avoid risk of negative
ÊD50, the model is reparametrized in: θ2 = Emax, θ3 = log(ED50)⇔ ED50 = eθ3

Programming

� Computation of Fisher matrix: for each dose d, the Hessian matrix ∂2ll(d)/∂θ2 is com-
puted using R symbolic di�erentiation operator 'D' (ll is the log-likelihood)

� For computing the expectation, with respect to θ̂, of the conditional utility, we applied
a numerical integration

� for this the 'cubature' package was used
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Results for U0

Mean dose-response

� The maximum e�ect size simulated in the example is 0.4

� Costs/Reward parameter values set to the values in J.Temple thesis [Temple2012]:

� R=reward=12000

� γ=cost per patient=1

� The function for safety assumes that the maximum probability of phase III failing due
to safety is sa

� Ntot = 2000

� σ=residual variability=1
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S

Figure 6.2: E�ect size as a function of the dose.

Impact of safety

The following graph shows the PoS by dose for various values of the safety parameter and
for 600 patients in phase III. For good safety pro�les (low value of 'sa') the PoS increases then
reaches a plateau, whereas for less good safety pro�les the PoS increased to an optimum value
and then decreases.
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Figure 6.3: PoS by dose for various values of the safety parameter.

Computation of mean utility

Two methods of integration were used:

� One based on a quadrature method for multidimensional integrals (cubature package)

� The other one based on successive calls of the R "integrate" function

� The �rst method seems to be the fastest

� They seem more appropriate than use of Monte Carlo simulation to compute the ex-
pectation of U (a lot of simulations are required for having 'smooth' results: otherwise
when plotting EU as a function of phase II sample size, there are oscillations). Monte
Carlo could be more e�cient than numerical integration when there is a larger number
of parameters (> 3 parameters for instance, this method was applied in the next section)
[possible theme or research: use Laplace approximation method to compute the integrals
when optimizing]

For balanced design, utility as a function of phase II sample size

In the following, we plotted E(U) graphs as a function of N2, for several scenarios (where
scenarios refer here to Sigmoid e�cacy pro�le and several values of 'sa'). These graphs are
represented for a balanced design.
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Figure 6.4: Utility as a function of phase II sample size and safety sa.

Based on Figure 6.4, we noticed that whatever the safety pro�le, the expected utility increases
and then reaches a plateau and a maximum value before rapidly decreasing for very low phase
III sample size (when N2/Ntot is large). Also we can notice that the optimal phase II sample
size decreases as the safety gets worse: this is due to the fact that optimal dose decreases as
the safety gets worse and then requires more patients in phase III to be successful .
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Figure 6.5: Utility as a function of phase II sample size for three dose-response pro�les.

In Figure 6.5, we see the expected utility as a function of N2 sample size, for various pro�le of
the dose-response (but the safety and mean response of the highest dose are the same: E�ect
size=0.4 for d = 8)

� The linear pro�le is not favourable: the highest dose has some safety issue whereas the
e�cacy of the previous dose is far behind

� For the two other scenarios, the situation is better: lowest and safer doses have e�cacy
pro�les closer to the highest dose and can be selected for phase III ⇒ increased utility

Note that running the R code was extremely long because of this last graph above, especially
when the model is close to the linear one; the reason is that when the model is almost linear,
the Emax model is badly estimated with enormous variability ⇒ the integration domain is
very large ⇒ huge computational time.
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Figure 6.6: Utility as a function of phase II sample size for two dose-response pro�les.

In Figure 6.6, I represented the graph comparing the e�ciency pro�les but this time, I aban-
doned the almost linear pro�le (Emax = 1000 × 0.4/8 = 50, ED50 = 1000); I chose these
parameters to have a very large ED50 = 1000 compared to dJ = 8, with an e�ect approx-
imately equal to Emax × 8/ED50 = 0.4 at d = 8; the conclusion is that the Emax model
is badly estimated and has no points towards the maximum e�ect; if the pro�le is linear or
almost linear, then it is better to have a linear model and calculate the average utility in this
framework.
The plateau pro�le (Emax = 0.4, ED50 = 0.50) is more favourable than a more typical Emax
model (Emax = 0.7, ED50 = 6): lower doses with similar e�cacy than the maximum dose, but
with a better safety, can be selected ⇒ increased utility.

Conclusion

From these analyses we noticed that, at least for balanced design, the optimal sample size
of the phase II part of the seamless design can be quite large.
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In the following, we will tackle the problem of the optimisation of the design (optimal reparti-
tion of the patients between treatment arms) of the phase II part, in addition to the problem
of optimisation of its total sample size. For this purpose, as we noticed that the computation
time of the expectations EU with numerical integration routines were very long, we will, for
these next parts, rather use simulations.

2. Optimisation of the seamless design based on U5 and U9 utility functions

It is recalled that U5 and U9 are de�ned as follows:

� Utility 5

U5(d, f) = PoS(d)× (1− c× δ)

� Utility 9

U9(d, f) = PoS(d)× (1− c× (
d

dJ
)2)

Methodology

For these utility examples, we have decided to:

� Work in a frequentist context

� Analyse phase II with a parametric model (Emax model with a parameter θ)

� Work with a four-parameter sigmoid Emax model, re�ecting our mean dose-response

function: m(d, θ) = E0 + Emax ×
dg

EDg
50 + dg

= E0 + (Em − E0)×
dg

EDg
50 + dg

� E0 is the placebo e�ect (E0 = 0 for simulations)

� Emax = Em − E0 is the maximum di�erence against placebo, where Em is the
maximal e�ect (Em − E0 = 0.22 for simulations)

� ED50 is the dose that gives half of the maximum e�ect (ED50 = 6 for simulations)

� g is the Hill exponent that describes and determines the steepness of the curve
(g = 3 for simulations)

� 'c' coe�cient is set to 0.8: it was calibrated so that the highest tested dose is located
after the peak of the utility curve, this exempli�es the model's behavior, and shows that
it does not necessarily select the highest dose all the time

� Express conditional PoS only with the estimated parameter in phase II, two possible
approaches:
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� Conditional PoS calculated only with the estimate point of phase II: Ȳd − Ȳ0 ∼
N(m(d; θ̂ML)−m(0; θ̂ML), 2σ2/N3), where ML refers to the maximum likelihood
and I−1 refers to the reverse of the Fisher information matrix; E0 = 0 in simula-
tions so m(0; θ̂ML) = 0

� Conditional PoS computed by taking into account the uncertainty (around the
estimate point), via Delta-method:

⇒ increased variability Ȳd−Ȳ0 ∼ N(m(d; θ̂ML)−m(0; θ̂ML,
t∂m

∂θ
I−1

∂m

∂θ
+2σ2/N3).

PoS given variability:
PoS = PH1(∆̄d ≥ 1.96

√
2SE2), where ∆̄d ∼ N(m(d; θ) − m(0; θ), 2SE2 + V 2),

SE2 = σ2/narm, narm = N3/2 (we divide N3 by 2 because the PoS is computed
for phase III, and in phase III we have the chosen dose and the placebo), ∆̄d is the
di�erence in e�ects between dose d and the placebo after phase III, and V 2 is its

the variability, V 2 =
t∂m

∂θ
I−1

∂m

∂θ

� In the following simulation results, we only retained the �rst approach (without taking
the uncertainty into account), because with the second approach, variability increases
and consequently, the PoS decreases, compared to the �rst approach

Computation of expectation

The di�culty here is that the calculation of the expectation E(U) is done with an integral of
four dimensions instead of three. This is why we have decided to compute the expectation via
simulations, as follows:

E(U(d∗)|phaseII) is a function, U , of θ̂ ⇒ E(phaseII)
w,f E(U(d∗)|phaseII) = E(θ̂)U(θ̂) with

θ̂ ∼ N(θ0, I−1θ0 ).

Then E(phaseII)
w,f E(U(d∗)|phaseII) can be estimated by:

1

Nsim

Nsim∑
r=1

U(θ̂r)

where the θ̂r are sampled from N(θ0, I−1θ0 ).

In the following results, a graph highlighting the theoretical curves related to the Sigmoid
scenario is drawn for each utility function, where the blue curve is the PoS, the dotted curve
is the penalty and the black curve is the utility, i.e. the product of PoS × penalty, and a
table summarizing all the simulation results is given. This table contains the following: w
is the design (patients allocation per dose), f is the parameter repre- senting the distribution
between phase II and phase III, 'Go' is the probability of going to phase III with the chosen
dose, 'doses' represents probabilities of choosing d = 2, d = 4, d = 6 and d = 8 respectively
among the 'Go', POS(go) is the POSs mean among the 'Go' with the chosen dose and E(U)
is the expected utility of the chosen dose for 10000 simulated phase II studies among 'Go' and
'NoGo' decisions (utility is set to 0 when it is a 'NoGo' decision). Optimisations of patient
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allocation to doses and global allocation ratio between phase II and phase III are conducted
separately (for U5, w is optimized while f is �xed, and for U9, f is optimized while w is �xed).
For optimization purpose, as we anticipated very long computation time of the expectations
E(U) with numerical integration routines, we used simulations instead (see Section 3.4 and
discussion above).

Results for U5

For U5, below is a plot containing the three theoretical curves of the utility function:

Figure 6.7: Theoretical curves for U5, Sigmoid scenario.
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Concerning the balanced design (i.e. patients are equally allocated to doses), we have:

Table 6.1: Balanced design -patients are equally allocated to doses- for U5, Sigmoid and
Plateau scenarios.

By comparing results to the theoretical utility graph, we can see that d = 2 is recommended
with a very high probability: d = 2 is chosen in 47% of cases if 'Go', in Sigmoid scenario.

Below are the optimization results in w, with f = 0.20:

Table 6.2: Optimal design -optimizing the dose allocation ratio- for U5, Sigmoid and Plateau
scenarios, with f = 0.20.
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The balanced design is almost the optimal design. In addition, there is no real gain
brought by the optimization compared to the balanced design, the probabilities of 'Go', the
choice of doses, the PoSs mean and the expectations of utility are almost the same (for the
Sigmoid scenario for example, design optimization decreases the average utility by 0.02% com-
pared to the balanced design).

Below are the optimal design results for both Sigmoid and Plateau scenarios, with f = 0.25:

Table 6.3: Optimal design -optimizing the dose allocation ratio- for U5, Sigmoid and Plateau
scenarios, with f = 0.25.

We can see that recommended doses do not seem to be consistent with Sigmoid and Plateau
scenarios: d = 2 is too much recommended, whereas the best two doses d = 4 and d = 6
according to the theoretical utility. Note that for the Plateau scenario, the optimal design
performs slightly better in selecting less often the one of the �rst two doses, in addition,
design optimization does not increase the average utility compared to the balanced design; in
such a favorable scenario -Plateau- there is little/less room for improvement anyway compared
to the Sigmoid scenario. There was no noticed gain either for the Sigmoid scenario: design
optimization does not increase the average utility compared to the balanced design, it remains
almost the same for both designs (optimal and balanced designs).
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Veri�cation / validation of these results

According to the 15000 simulations, we �nd Prob(Go) and the probability of choosing each of
the doses:

� Probability to go to phase III = 63.20%

� Probality of choosing d = 2, if go, = 46.61%

� Probality of choosing d = 4, if go, = 20.92%

� Probality of choosing d = 6, if go, = 18.97%

� Probality of choosing d = 8, if go, = 13.50%

We have similar results for Sigmoid scenario, d = 2 is chosen in 46.61% of cases.

Interpretation / Explanation of these results

I think that these bad dose choices are due to the fact that Phase II sample size is too
small (500 patients) for this sigmoid model ⇒ often bad estimation ⇒ bad decisions.
One can try to show that if Phase II were larger, the decisions would be better and the U5
means would be closer to the theoretical curve previously shown.
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First approach, increase the f

Indeed, it is possible to increase the phase II by increasing the f , but by increasing f , we
decrease phase III: so if we increase the f , we cannot compare ourselves to this curve above
because it is based on theoretical PoS for a phase III of 1500 patients. Nevertheless, we can
verify that if f increases, the probability of choosing d = 2 will decrease, but the utility will
eventually decrease also by lack of patients in phase III (see tables below):

Table 6.4: Simulation results for U5 with the balanced design (patients are equally allocated
to doses), Sigmoid scenario, by increasing f .

Based on these tables, we can clearly see that by increasing the sample size of phase II, we
reduce the probability of choosing d = 2 (but we also make bad choices because the more
f increases, the more we choose the highest dose: we compensate the loss of the number of
Patients in phase III by the selection of the most e�ective dose).
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Second approach

I examined obtained results when we increase the phase II, by considering N2 = 2000 pa-
tients, and by �xing phase III sample size, N3 = 1500 patients.

With N2 = 2000 patients, we obtain:

� Prob(choosing d = 2) = 17%

� Prob(choosing d = 4) = 36%

� Prob(choosing d = 6) = 41%

� Prob(choosing d = 8) = 9%

→ This time better decisions are made: d = 2 is rarely chosen (17% of cases), but
d = 4 or d = 6 are very often chose (one or the other is chosen in 77% of the cases,
optimal dose being d = 6 according to theory).
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It is very important to note that the "theoretical" utility depends on the size of the phase III,
and therefore, the optimal dose depends on the size of the phase III: optimal dose increases
when f increases: since Ntot is constant, when N2 increases, N3 decreases which induces that
higher doses are necessary to have a su�ciently high PoS, see graph below.

Figure 6.8: Theoretical utilities as a function of the dose and f .
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Modi�cation of optimization strategy

In the following, we have decided to work on a global patient allocation between phase II
and phase III optimization, rather than dose allocation optimization, with the U9(d, f) =

PoS(d)× (1− c× (
d

dJ
)2) utility. In fact, according to all previous results, there was no di�er-

ence between the optimal and balanced designs when it comes to patients allocation to doses,
and no real gain was noticed regarding the PoS, the global utility and the 'Go' proportion in
phase III. So now, we will only work with a balanced w design, but this time we will seek to
optimize the patients between phase II and phase III, that is to say, we will proceed an overall
optimization of the patients allocation between phase II and phase III (while maintaining a
�xed total number as before, N2 +N3 = 2000).

The simulations above clearly suggest that the estimation of a four-parameter Emax sigmoid
model is a very challenging task, requiring a large number of patients to obtain su�ciently
accurate estimates. Therefore we decided for the major part of the thesis to drop the Hill
exponent from the dose-response models considered.

It is worth noting that in the dose-�nding framework, despite the fact that the Emax model
is the author's favorite and the most used one, it is known that this model (especially in its
sigmoid version) can be very di�cult to estimate, with much imprecision, if the design is not
rich enough (the model is too rich for a design with very few doses and patients, in our case, we
only have four di�erent doses, a placebo, and 500 patients in phase II, i.e. 100 patients per arm,
which is not enough to correctly estimate such a complex model). Speaking of the di�culty of
estimating the Emax model, it is speci�ed in [Dutta et al.1996] that parameters estimation of
a sigmoid Emax model de�nitely leads to an eventual imprecision (i.e. the amount or degree
of random error in a calculation, usually represented by the standard deviation, coe�cient of
variation, or range), and if the concentration-e�ect relationship extremes are not empirically
investigated, this imprecision could be enormous.

In the following, we also included a second constraint in the decision rule: the PoS must
be > 0.30 and the e�ect di�erence between placebo and the recommended dose must be
> 0.04 (to eliminate low doses).
In fact, the threshold here (0.04) was chosen on the basis of the theoretical e�ect of d = 2
(i.e. the lowest dose) obtained with the three-parameter Emax model (E0, Emax and ED50

only), which was 0.055. In general, these thresholds are pre-clinically de�ned, but here, for
our simulations, we considered a threshold equal to 0.04.
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Results for U9

Below are the theoretical utility, PoS and penalty curves for U9.

Figure 6.9: Theoretical curves for U9, Sigmoid scenario.

Below are the probability results of selecting each dose, as well as the probability of 'Go',
based on 15000 simulations:

� Prob(Go)=0.7352667

� Prob(choosing d = 2)=32.13

� Prob(choosing d = 4)=40.39

� Prob(choosing d = 6)=20.94

� Prob(choosing d = 8)=6.54

We can see that the dose choices are good compared to the theoretical utility curve above.
Here, d = 2 dose is not far from the optimal one, according to the theory.
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Below are the comparisons of the Sigmoid and Plateau scenarios, between the non-optimal
design (i.e. �xed f between phase II and phase III, I compared di�erent �xed values of f),
and the optimal design (optimizing the patients allocation between phase II and phase III).
Reminder: here we are working with a balanced design, so we �x the w and we no longer

optimize it, we only optimize f :

Table 6.5: Optimal versus non-optimal design for U9, where optimal design consists here in
optimizing the global patient allocation between phase II and phase III, Sigmoid and Plateau
scenarios.

We can conclude that with a three-parameter (E0, Emax and ED50) without the 'Hill' expo-
nent, parameters are well estimated and correct decisions and dose choices are made.

On the other hand, according to the optimal design above, it is recommended to have more
patients in phase II to make a better choice, which amounts to the idea that I tried to prove
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previously with U5, by increasing the sample size of phase II.

Below is the graph of utility expectations (after the sponsor's choice: Go and dose choice)
as a function of f , for the Sigmoid scenario:

Figure 6.10: Utility expectations as a function of f , Sigmoid scenario.

Below is the graph of utility expectations (after the sponsor's choice: Go and dose choice) as
a function of f , for the Plateau scenario:

Figure 6.11: Utility expectations as a function of f , Plateau scenario.
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A.2. Convergence and autocorrelations

For each MCMC iteration, we have a candidate parameter vector from which the PoS and
the toxicity component are computed for each dose. In most applications, we might �nd that
keeping a few thousand iterations is su�cient for reasonably accurate posterior inference. In
all our procedures, the relationship between the requested number of iterations, the number
of iterations kept, and the amount of batching is as follows:

kept =

[
(requested− burnin)

batching

]
, that is to say, n =

[
(niter − burnin)

B

]
where 'burnin' is the number of iterations to be discarded, and [ ] is the rounding operator.

To estimate safety and e�cacy data, we generated niter = 150000 MCMC iterations for
each study. Among these iterations, we discarded an initial portion of the Markov chain
sample so that the e�ect of initial values on the posterior inference is minimized: burn-
in=150000/2=75000 �rst iterations. When plotting MCMC iterations, we visually detected
autocorrelations until lag 25 at least (with a slow and gradual decrease in autocorrelations).
This does not mean that autocorrelations are negligible after lag 25. This diagnostic inference
is reliable if the sampler is actually working (has nearly reached equilibrium) and worthless
otherwise. Thus a batch length of 100 for instance should be su�cient, but let's use a length
of 150 to be safe (i.e. B = 150).

Convergence were rechecked afterwards via visual plots.
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A.3. Results for low e�cacy threshold, PoS>0.30

Table 6.6: Simulation results, Sigmoid scenario with progressive toxicity scenario (and toxicity
of highest dose = 0.20).

Table 6.7: Simulation results, Sigmoid scenario with acceptable safety scenario (except for
highest dose).
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A.4. Results for high e�cacy threshold, PoS>0.90

Table 6.8: Simulation results, Sigmoid scenario with progressive toxicity scenario (and toxicity
of highest dose = 0.20).

Table 6.9: Simulation results, Sigmoid scenario with acceptable safety scenario (except for
highest dose).

180



A.5. Boxplots related to the posterior distribution

Boxplots of posterior means of utilities: Sigmoid scenario with progressive toxicity scenario
(and toxicity of highest dose = 0.15)

In the following, we represent the boxplots of posterior means of utilties, for the 1000 simulated
phase II studies, for the Sigmoid scenario with progressive toxicity scenario (and toxicity of
highest dose = 0.15), and for several values of N2. The black line represents the median, and
the golden triangle represents the true (theoretical) utility value.

Figure 6.12: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.15), N2 = 50.
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Figure 6.13: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.15), N2 = 100.

Figure 6.14: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.15), N2 = 250.
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Figure 6.15: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.15), N2 = 500.

Figure 6.16: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.15), N2 = 1000.
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Figure 6.17: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.15), N2 = 2000.

Concerning the posterior mean of the utilities, and for the smallest sample size, N2 = 50
patients, the utility values of the two middle doses appear quite underestimated. As expected,
the quality of the estimators improves as the sample size grows. But even for a phase II study
with 1000 patients, the distribution of the estimates of the middle doses are still quite close,
whereas the true value of the utility of d = 6 is slightly larger than for d = 4. This under-
estimation of the utility value for d = 6 can be due to a less stable estimation of the safety
pro�le, which can be explained by a low probability of toxicity for the doses ≤ 6, leading to
an inaccurate estimation of the slope.

Boxplots of posterior medians of utilities: Sigmoid scenario with progressive toxicity scenario
(and toxicity of highest dose = 0.15)

In the following, we represent the boxplots of posterior medians of utilties, for the 1000 sim-
ulated phase II studies, and for the Sigmoid scenario with progressive toxicity scenario (and
toxicity of highest dose = 0.15).
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Figure 6.18: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15), N2 = 50.

Figure 6.19: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15), N2 = 100.
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Figure 6.20: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15), N2 = 250.

Figure 6.21: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15), N2 = 500.
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Figure 6.22: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15), N2 = 1000.

Figure 6.23: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.15), N2 = 2000.
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If we consider now the distribution of the posterior median, it appears that it has a larger range
as compared to the posterior mean distribution: the posterior median showing clearly more
variability than the posterior mean. But in terms of median of the distribution, the posterior
mean and the posterior distribution median look similar. Both estimators have di�culty to
capture the utility value of the d = 6: the posterior median appears wrongly more accurate due
to its increased variability that makes the true value appear within the interquartile interval of
the distribution, but in terms of median values, both estimators (posterior mean and posterior
median) show a similar bias, even for the phase II study of 1000 patients. According to the
boxplots, it takes 2000 patients to properly estimate the dose d = 6 with both the posterior
mean and median, which is not very realistic according to real life conditions.

Conclusion

We conclude from these simulations, based on this very challenging scenario combination,
that an accurate estimation of the utility values and a correct ranking of the doses can be
very demanding in terms of sample size. Estimating the utility values is not the primary
goal of the sponsor's analysis (the primary objective is to rank the doses with respect to the
utility function), but the posterior mean appears to be a better estimate, the posterior median
showing an in�ated variability.
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Boxplots of posterior means of utilities: Sigmoid scenario with progressive toxicity scenario
(and toxicity of highest dose = 0.20)

In the following, we represent the boxplots of posterior means of utilties, for the 1000 simulated
phase II studies, for the Sigmoid scenario with progressive toxicity scenario (and toxicity of
highest dose = 0.20), and for several values of N2.

Figure 6.24: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.20), N2 = 50.
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Figure 6.25: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.20), N2 = 100.

Figure 6.26: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.20), N2 = 250.
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Figure 6.27: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.20), N2 = 500.

Figure 6.28: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.20), N2 = 1000.
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Figure 6.29: Boxplots of posterior means of utilities, Sigmoid scenario with progressive toxicity
scenario (and toxicity of highest dose = 0.20), N2 = 2000.

Boxplots of posterior medians of utilities: Sigmoid scenario with progressive toxicity scenario
(and toxicity of highest dose = 0.20)

In the following, we represent the boxplots of posterior medians of utilties, for the 1000 sim-
ulated phase II studies, and for the Sigmoid scenario with progressive toxicity scenario (and
toxicity of highest dose = 0.20).
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Figure 6.30: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20), N2 = 50.

Figure 6.31: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20), N2 = 100.
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Figure 6.32: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20), N2 = 250.

Figure 6.33: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20), N2 = 500.
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Figure 6.34: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20), N2 = 1000.

Figure 6.35: Boxplots of posterior medians of utilities, Sigmoid scenario with progressive
toxicity scenario (and toxicity of highest dose = 0.20), N2 = 2000.
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A.6. Results for U2

In the following results, optimisations of patient allocation to doses and global allocation ratio
between phase II and phase III are conducted simultaneously (w and f are optimized at the
same time).

Table 6.10: Optimal versus non-optimal design for U2, where optimal design consists here in
optimizing the patient allocation to doses and the global patient allocation between phase II
and phase III simultaneously, Sigmoid and Plateau scenarios.

Table 6.10 is a typical example highlighting the crucial importance of phase II sample size,
where the optimal design is allocating more patients in phase II than in phase III, which is
not quite realistic in real life.
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A.7. Sensitivity analysis

Prior dose-response distribution plots

Plots of prior dose-response distributions are given in the following Figure 6.36.

Figure 6.36: Prior dose-response distribution plots.

According to the chosen priors of Section 4.1.3.1, we can see that e�cacy mean dose-
response is concentrated around 0, and this is due to the non-informative prior chosen for
Emax parameter. On the other hand, the toxicity probability increases with the dose, and this
is due to the informative/conservative prior chosen for the slope b of the Probit model (the
choice of this prior was motivated by a conservative approach, assuming that the incidence of
toxicity was necessarily increasing with the dose).

Prior choices

In the following Table 6.11, we considered the following non-informative priors for the e�-
cacy and toxicity model parameters (instead of informative priors as the ones considered in
Section 4.1.3.1).

For e�cacy: E0 ∼ N(0, 100), ED50 ∼ U(0, 20), and Emax ∼ N(0, 100). We think that a
log-normal distribution is not adapted for ED50 because it imposes a mode, i.e. a ED50 with
a higher probability; therefore a Uniform distribution better represents uncertainty and we
propose an upper bound of 20 because we think that it is not realistic to go far beyond this
value.

For safety: a ∼ N(0, 1) (Uniform distribution for the placebo toxicity) and b ∼ N(0, 1).
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In Section 4.1.3.1, we considered a positive Uniform distribution on b (conservative prior); we
consider here a symmetrical distribution (allowing the product to have fewer adverse events
than the placebo).

Table 6.11: Simulation results, Sigmoid scenario with progressive toxicity scenario (and toxicity
of highest dose = 0.20).

Sensitivity analyses conducted in Table 6.11 aimed at examining the performance of the de-
signs with respect to di�erent priors (by considering non informative priors for all model
parameters). Results are promising as they are consistent with the ones obtained with the
chosen informative priors (except for Emax parameter) in Section 4.1.3.1, but require more
patients to reach similar properties and decision rule qualities.

Parameters h and k

In Table 6.12, we considered k = 1 instead of k = 2 (still with h = 1 and with the ini-
tial priors of Section 4.1.3.1).
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Table 6.12: Simulation results, Sigmoid scenario with progressive toxicity scenario (and toxicity
of highest dose = 0.20).

As expected, with a lower k value (i.e. less constraint on safety), expected utilities, powers,
optimal dose selection and interim analysis stopping frequencies, 'Go' decisions, and PoSs are
globally higher compared to the ones obtained with k = 2, as we are less demanding in terms
of safety control.

The choice of threshold t

In Figure 6.37 and Table 6.13, we considered t = 0.30 instead of t = 0.15 (with the ini-
tial h and k values, h = 1 and k = 2). The highest dose d = 8 is now the optimal one with
this new threshold (see Figure 8).

Figure 6.37: Theoretical curves, Sigmoid scenario with progressive toxicity scenario (and tox-
icity of highest dose =0.20), t = 0.30.
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Table 6.13: Simulation results, Sigmoid scenario with progressive toxicity scenario (and toxicity
of highest dose = 0.20), t = 0.30.

With a higher t threshold, we are much less restrictive on safety issues, so we choose the
highest dose. Simulation results are consistent with this new utility: according to Table 6.13,
d = 8 is chosen with a signi�cant probability even with the smallest phase II sample size, this
probability reaches 95% with the largest phase II study. The expected utility, the probability
of making the good decision to go to phase III, the PoS and the power are considerably high
as compared to the previous results with t = 0.15. The interim analysis conducted when half
of the planned 500 and 1000 patients are enrolled is useful as the probability to stop the trial
is relatively high. As a consequence, this mid-term data inspection can be considered as an
economic strategy, saving a large number of patients, accordingly, saving budget and time.
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