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ABSTRACT

Abstract

The numerical simulation of the free-surface flows for marine engineering appli-

cations is a very challenging issue in the field of computational fluid dynamics

(CFD). In this thesis, we propose a solution, which is to use the regularized lat-

tice Boltzmann method (RLBM) with a volume-of-fluid (VOF) based single-phase

free-surface lattice Boltzmann (LB) model, and we investigate its feasibility and

its reliability.

The theoretical insights of the lattice Boltzmann method (LBM) are given at

first, through the Hermite expansion and the Chapman-Enskog analysis. From this

perspective, the idea of the RLBM is summarized as the Hermite regularization of

the distribution functions. On the test-cases of the Taylor-Green vortex and the

lid-driven cavity flow, the RLBM is verified to have a 2nd-order accuracy and an

improved stability.

The adopted free-surface model is then implemented into the RLBM and vali-

dated through simulating a viscous standing wave and a dambreak flow problems.

It is shown that the regularization not only strongly stabilizes the calculation

by reducing spurious pressure oscillations, which is very beneficial for obtaining

accurate free-surface motions, but also does not introduce any extra numerical

dissipation.

Furthermore, a new reconstruction method for the distribution functions at the

free-surface is proposed. The present model is more consistent with the RLBM,

which provides an effective way for simulating high-Reynolds-number free-surface

flows in marine engineering.

Keywords: marine engineering, LBM, free-surface, regularization

v





RÉSUMÉ

Résumé

La simulation numérique des écoulements à surface libre pour les applications

du génie maritime est un problème qui présente de grands défis dans le domaine

de la dynamique des fluides numérique (CFD). On propose dans cette thèse une

solution, qui consiste à utiliser la méthode de Boltzmann sur réseau régularisée

(RLBM) avec un modèle de surface libre basé sur le volume-de-fluide (VOF), et

on étudie sa faisabilité et sa fiabilité.

Les connaissances théoriques de la méthode de Boltzmann sur réseau (LBM)

sont présentées dans un premier temps, sur la base d’un développement polynomial

d’Hermite et d’une analyse de Chapman-Enskog. De cette perspective, l’idée de

la RLBM se résume comme étant la régularisation d’Hermite des fonctions de

distribution. Dans les cas tests suivants du vortex de Taylor-Green et de la cavité

entraînée, il est vérifié que la RLBM possède une précision de second ordre et une

stabilité améliorée.

On a alors ensuite implémenté le modèle de surface libre dans la RLBM. Sur

la simulation d’une onde de gravité visqueuse stationnaire et d’un écoulement

de dambreak, il est montré que la régularisation stabilise fortement le calcul en

réduisant les oscillations de pression, ce qui est très bénéfique pour obtenir des

écoulements à surface libre précis, et que la RLBM n’introduit pas non plus de

dissipation numérique supplémentaire.

De plus, une nouvelle méthode de reconstruction des fonctions de distribution

à la surface libre est proposée. Le modèle proposé est ainsi plus consistent avec la

RLBM, ce qui offre un moyen efficace pour simuler des écoulements à surface libre

à un grand nombre de Reynolds en génie maritime.

Mot clés: génie maritime, LBM, surface libre, régularisation
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Symbols and Notations

Latin letters
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H Hilbert space
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m molecule mass
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Chapter 1

Introduction

This chapter consists of three prin-

cipal parts. The first part illustrates

the demand of a reliable numerical

tool for simulating free-surface flows,

which motivates the present study on

the lattice Boltzmann method (LBM)

for free-surface flows. In the follow-

ing part, the LBM history, the exist-

ing stabilization techniques for LBM

and the state-of-the-art of free-surface

models for LBM are reviewed, respec-

tively. Finally, the selection of the

adopted free-surface model and stabi-

lization technique, as well as the choice

of developing an in-house code, are ex-

plained. The outline of the thesis is

listed in the end.

Ce chapitre comprend trois parties

principales. La première partie illustre

la motivation de cette étude quant

à l’utilisation de la LBM pour simu-

ler des écoulements à surface libre,

qui fait face à la demande d’un ou-

til numérique fiable dans ce domaine.

Dans la partie suivante, sont respecti-

vement revus l’histoire de la LBM, les

techniques existantes pour stabiliser la

LBM, et l’état de l’art des modèles de

surface libre pour la LBM. Enfin, la

sélection du modèle de surface libre

adopté et de la technique de stabilisa-

tion utilisée sont expliquées, ainsi que

le choix de développer un code interne.

Les structure de cette thèse est présen-

tée à la fin.
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1.1. BACKGROUND AND MOTIVATION

1.1 Background and motivation

The computational fluid dynamics (CFD) has been of great significance and at-

tention in marine engineering researches of the last decades, since it is both less

expensive and more risk-free than full-scale experiments, and also able to provide

numerical approximations of the governing equations for fluid flows, for which the

fluid mechanics theory cannot provide exact solutions. Owing to the fast develop-

ment in computer science and the prosperous pioneer works in advanced numerical

methods, CFD is now adapted into powerful tools, and still has much potential

for further amelioration. One of the challenging direction of amelioration is the

free-surface problems in marine engineering. Among those, one can give examples

as the advance of a ship on the free-surface, the motion of offshore structures

like the floating production storage and offloading units (FPSOs), the behavior

of renewable marine energy converters in waves, etc. All these applications share

some common ingredients, such as fluid-structure interaction, large density ratio,

moving free-surface and even large deformation like in wave breaking, which bring

large difficulties for CFD simulations. To provide a reliable numerical tool for such

phenomena with good performance on both accuracy and efficiency, much efforts

are in demand.

One of the successful numerical method for marine sciences is the inviscid po-

tential flow theory, which is combined with the boundary element method (BEM)

using the complex Green function or Rankine source on the fluid-structure inter-

face and free-surface with some far-field boundary condition. The potential the-

ory plays a pivotal role in solving linear physical problems. Nevertheless, highly

nonlinear situations and viscous effects, for example wave breaking and merge,

water entry, boundary layer separation, etc., are beyond the capability of the

potential theory [131, 112]. In this aspect, the CFD methods directly solve the

viscous Navier-Stokes (N-S) equations, and are able to capture nearly all the non-

linear hydrodynamic effects. As a price, conventional incompressible CFD methods

compute the pressure by solving a Poisson equation, which involves global data

communication and turns out to be time-consuming [115]. Other limitations of

the conventional CFD can be seen as the existence of nonlinear convective terms

and the hardness of implementing boundary conditions on complex geometries

[115, 77]. Indeed, there do exist a substitutive category of methods, called the

meshfree methods, of which the smooth particle hydrodynamics (SPH) [48, 128]

and the moving particle semi-implicit method (MPS) [95] are two representatives.

The mesh-free methods use free-moving Lagrangian particles to describe the fluid,

thus eliminate the convection term and simplify the treatment of boundary condi-

tions at material surfaces. In this thesis, another alternative method is spotlighted,

3



CHAPTER 1. INTRODUCTION

which is the lattice Boltzmann method (LBM).

The LBM is based on the continuous Boltzmann equation (CBE), which de-

scribes the motion of microscopic molecules. Strict mathematical proof shows that

the lattice Boltzmann equation (LBE) is a special discretization of the CBE, and

that the N-S equations are recovered from the LBE if proper lattice parameters

are chosen, despite the information loss during the discretization [158]. The de-

tails of the LBM will be elaborated in the rest of the thesis, but one is still able

to summarise the advantages of the LBM from the literature. Firstly, the complex

convection is reduced to a simple advection by distribution function streaming.

Secondly, the LBM gets rid of solving any Poisson equation. Lastly, the data com-

munication is always local, which is ideal for parallel computing. Besides, the LBM

has been shown to have a 2nd-order accuracy both in time and space. Despite these

appealing features of the LBM, its imperfections can also be assessed [162] mainly

in the fact that the requirement for lattice symmetry determines the lattice to be

a uniform space-time grid which is not well suited to body-fitted coordinates and

adaptive time-stepping, that it is not a good choice for steady-state computation

due to its explicit solving, and that the boundary treatment sometimes becomes

laborious although the underlying mechanism is simple.

Fairly speaking, the benefits of the LBM largely outweigh its demerits, which

motivates the author to investigate the applicability of the LBM into the free-

surface hydrodynamic problems.

1.2 A brief LBM history

1.2.1 Emergence of the LBM from the LGA

In the past three decades, the study of the LBM has become a flourishing branch of

numerical methodologies for simulating fluid flows. Mordern researches often start

directly from introducing the LBE. The standard LBE with a single-relaxation-

time (SRT) Bhatnagar-Gross-Krook (BGK) [12] collision operator reads

fi (x+ ξi∆t, t+ δt)− fi (x, t) = −1

τ
[fi (x, t)− f eq

i (x, t)] . (1.1)

If one takes for granted the classic forms of the collision operator, the stream-

ing rule, the symmetric characters of the chosen lattices, as well as the various

boundary conditions, it is able to build up simple codes to simulate fluid flows

without encountering too many difficulties. However, it may be more helpful for

the understanding of the underlying physics if one keeps in mind some knowl-

edge about the historical origin of the methodology. Dating back in time, one can

4
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find out that the LBM has an intimate relation with its precursor, the lattice

gas automata (LGA). The LGA stands on a microscopic viewpoint by defining a

boolean population variable, which indicates the presence state of the particles at

the lattice nodes. The evolution of the boolean population describes the particle

behavior that each particle can move to its nearest lattice node within one time

unit and change its direction immediately at its arrival due to some scattering

rules [26]. After an averaging process over calculations of large regions of the lat-

tice, long times and a wide range of initial conditions, the macroscopic flow fields

can be approximately obtained [11]. In 1973, Hardy, de Pazzis and Pomeau (HPP)

[64, 63] casted the LGA evolution on a square lattice and observed two typical hy-

drodynamical modes, the sound waves and the vorticity diffusion. Neverthless, the

HPP model failed to fully reproduce the N-S equations due to the lack of isotropy

of their lattice [11]. This problem was solved by Frisch, Hasslacher and Pomeau

(FHP) [45] with a triangular lattice for 2-dimensional cases and by d’Humière et

al. [37, 44] with the face-centered hypercubic (FCHC) lattice for 3-dimensional

cases. However, as pointed out in [142], although these models are suitable for

parallel processing and irregular boundary conditions, they have the common dis-

avantages of large statistical noises. In order to remove this noise, McNamara and

Zannetti [132] proposed to substitute the boolean population in the LGA evolu-

tion equation with an ensemble-averaged one under the Boltzmann assumption of

molecular chaos, making it more efficient than the original post-averaging LGA

[90, 162]. This work is regarded as an important stepping stone as the earliest

LB scheme for simulating hydrodynamic problems [162]. Inspired by this, a series

of developments were intensively achieved in the following several years. Higuera

and Jiménez [73] expanded the distribution function about its local equilibrium

value and thus linearized the collision operator. Later on, Qian et al. [140] further

simplified the calculation by replacing the collision operator with a relaxation pro-

cess with one single relaxation coefficient, which coincided with the SRT model

proposed by BGK [12]. In the same year, Chen et al. [24] obtained a similar SRT

model and proved it to be not only inheritably noiseless but also able to eliminate

the nonphysical effects of the FHP model in terms of the non-Galilean invariance

and the velocity-dependent equation of state.

1.2.2 Derivation of the LBE from the CBE

The aforementioned articles briefly outline the historical story of the birth of LBM

within a LGA configuration. Alternatively, another branch of studies showed that

the LBM can be directly derived from the continuous Boltzmann equation (CBE),

and such an a priori derivation is completely independent of the LGA [69]. Starting

5



CHAPTER 1. INTRODUCTION

from the continuous Boltzmann equation with the BGK collision operator, He

and Luo [68] obtained the D2Q9 lattice Boltzmann equation by descretization in

both time and space. Not long after, they provided more details of the derivation

from the CBE to the LBE in their following paper [69]. By integrating the CBE

over a time step along its characteristic line, the CBE was discretized in time

and 2nd-order accuracy in time was proved. Besides, they showed that with a

properly chosen lattice (where the weighting function and lattice speeds along the

lattice directions are specifically designed) and a coupled equilibrium distribution

function, the hydrodynamic macroscopic variables can be precisely calculated on

the descretized phase space and the necessary symmetries required by the N-S

equations are retained. As a demonstration, they carried out such a discretization

procedure on D2Q6, D2Q7, D2Q9 and D3Q15 lattices. Furthermore, He and

Luo [67] illustrated the recovery of the incompressible N-S equations from the

LBE through a multi-scale Chapman-Enskog analysis. The works in [68, 69, 67]

carefully proved that the LBE is a special discretized form of the CBE [115],

and that the LBM is a very good alternative incompressible solver of the N-S

equations. Likewise, the same foundamental foundings of the LBM theory were

published by other researchers almost simutaneously with He and Luo, in the

fruitful period of the 1990s. For example, Abe [1] pointed out, as what He and

Luo stated in [69], that the equilibrium distribution function is in fact a truncated

small velocity expansion of the Maxwell-Boltzmann distribution, and that the

discrete lattice velocities turn out to be the abscissae of the Gaussian-Hermite

quadratures to ensure the accurate evaluation of the hydrodynamic moments of

the distribution functions. Shan and He [157] provided a clearer mathmetical proof

of such features. Nevertheless, rigorous and systematic analysis of the underlying

physics of the LBM was in lack in the existing literatures until Shan et al. [158]

published their phenomenal paper in 2006. Based on the sound mathematical

ground of Hermite expansion, Shan et al. projected the Boltzmann-BGK equation

onto the Hermite basis, including the equilibrium distribution function. Then they

proved that different levels of macroscopic conservation equations can be recovered

from the LBE if the Hermite expansions are truncated at sufficient orders. For

instance the leading 2nd-order terms are enough for hydrodynamic equations and

a truncation up to the 3rd-order is necessary for thermo-hydrodynamic equations.

In short, the LBM was revealed to be a powerful tool for solving even beyond the

N-S equation with a sound theoretical basis.
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1.3 Challenges and improvements of the stability

of the LBM

1.3.1 Assessment of the numerical instability of the LBM

The CBE governs the evolution of the fluid particles with a Maxwellian velocity

distribution function, of which the macroscopic behavior follows the N-S equations

of fluid flows [143, 70]. From the admirable works listed in the former Section

1.2.2, one can understand that the N-S equations are ultimately the macroscopic

statement of mass and momentum conservation, which are not sensitive to the

details of the underlying microscopic dynamics [11]. In other words, although the

CBE is discretized on a discrete velocity space and some high-order components

in the equilibrium distribution function are casted away, the basic ingredients at

the macroscopic N-S level are still retained [11, 158]. In this spirit, the LBM is

developed to use the simplest microscopic description that gives the macroscopic

behavior of interest [161]. However, numerical instability arises during such a sim-

plification. The cause of the instability has been noticed and explained by several

authors [161, 22, 26, 182, 137]. Among those, Cao et al. [22] argued that in terms

of the Courant-Friedricks-Lewey (CFL) condition which meets the requirement for

stable numerical schemes, this CFL condition is usually marginally satisfied or even

not satisfied in the common lattice arrangements, which gives rise to instability for

small viscosities. Others held an opinion based on the traditional kinetic theory.

In traditional kinetic theory, the H-theorem states that the Maxwellian equilib-

rium distribution function corresponds to the maximum entropy state, hence the

relaxation from any initial state towards the equilibria experiences an increase of

entropy and subsequently ensures the complete stability of the CBE. However,

the H-theorem is no longer satisfied in the LBE, where only a small set of dis-

crete velocities is used and the Maxwellian equilibrium distribution function is

substituted by its truncated expansion. Since the H-theorem is not guaranteed,

the LBM is subjected to numerical instability. In this context, stability analysis is

imposed to the LBM. A von Neumann linearized stability analysis was carried out

by Sterling and Chen [161] and Worthing et al. [179], and conclusions were made

that the LBM is linearly stable for positive viscosities, i.e. when the dimension-

less relaxation time τ is bigger than 0.5. In addition, several other analyses were

reported by Lallemand and Luo [99] and Ricot et al. [145]. They found that the

LBM is stable when the mean flow velocity is below a maximum value which is

associated with the sound speed, the relaxation time and the wave number. More-

over, evidence accumulates from various researchers such as Chen et al. [27] and

Behrend et al. [10]. All these investigations pointed to a common knowledge that
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the LBM encounters instability when the dimensionless relaxation time is close to

0.5. For high-Reynolds number problems, the relaxation time inevitably aproaches

0.5, which makes it very challenging for LBM computation. Additionally, numeri-

cal instability can also be generated from inadequate initial conditions, geometric

singularities or in regions with large numerical approximation like at the interface

of grid refinements [145].

1.3.2 Stabilization techniques for the standard LBM

Many researches have been reported in literature, aiming to alleviate the numerical

instability of the standard SRT-LBM at high Reynolds numbers. In this section,

all the different stabilization techniques are included to the best knowledge of the

author.

Multi-relaxation-time lattice Boltzmann method The multi-relaxation-

time lattice Boltzmann method (MRT-LBM) revives the early form of the LBM

scheme where the collision is described by a scattering matrix (as previously re-

viewed in Section 1.2.1). The basic idea is to construct a generalized LBE in the

moment space based on a given discrete velocity set [35], hence allowing the re-

sulting moments to be relaxed in freely adjustable rates which are known as the

multiple relaxation times [99]. Such a separation of the relaxation rates for dif-

ferent physical and kinetic modes was shown to effectively enhance the numerical

stability [99, 96, 125]. Indeed, there exists another MRT scheme proposed by Shan

and Chen [156], which was derived from a Hermite expansion representation of

the LBE. The most widely used MRT-LBM scheme refers to the one introduced

by Lallemand and Luo [99] and d’Humière et al. [36]. Unfortunately, the large

freedom of choosing the multiple relaxation times leads to a new problem, which

is that there is not yet a universal principle for optimizing the parameter choosing

strategy, despite that several well-known value sets were given in [99, 123] and

some nice tries could be seen such as the adjoint lattice Boltzmann model for

parameter identification proposed by Tekitek et al. [168].

Two-relaxation-time lattice Boltzmann method The two-relaxation-time

lattice Boltzmann method (TRT-LBM) was carefully and comprehensively in-

troduced by Ginzburg et al. in [57], based on the former works of Ginzburg

[51, 52, 53, 54]. The two relaxation times correspond to the relaxation rate of

the symmetric and anti-symmetric components of the distribution function. If

properly choosing the free relaxation paramer, it is expected to perform better

stability and to reduce the spatial errors with respect to the standard SRT-LBM
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[57]. It is also noticed that the TRT-LBM can be regarded as a special form of

the MRT-LBM, and the SRT-LBM can be obtained if the two relaxation times

are equal.

Cascaded lattice Boltzmann method Geier et al. [46] came up with a cas-

caded LBM scheme which is closly related to the MRT-LBM. They regarded the

relaxation as an act on the central moments defined in the reference frame moving

with the fluid. Because the central moments can be expressed as a polynomial

of the raw moments defined in the fixed lattice reference frame up to the same

order, it was pointed out that the relaxed raw moments by MRT-LBM will af-

fect higher order central moments, and they identified this insufficient degree of

Galilean invariance as a source of instability [46, 126]. Therefore in the cascaded

LBM, the relaxation parameters are adjusted in a single way from low orders to

high orders, and a non-commuting collision operator is constructed. With support

from sufficient lattices, a stabilized collision operator with higher order of Galilean

invariance is achieved. Moreover, Dubois et al. [38] presented a LB scheme with

relative velocities that the velocity moments of distribution functions are depend

on an arbitrary velocity field, which provided a generalized form for the cascaded

LBM and the MRT-LBM.

Entropic lattice Boltzmann method Recalling the statements in Section

1.3.1, the numerical instability of the LBM is caused by the lack of the H-theorem.

In this context, a possible way to enhance the LBM stability is to comply a discrete

entropy H-theorem [145]. Some early works were done by Karlin et al. [88, 87] and

Wagner [176], and an entropic lattice Boltzmann method (ELBM) was introduced

by Karlin et al. [86] later. For a chosen H function, the collision operator should

guarantee a non-increasing H value [13]. The ELBM firstly finds an equivalent

state which is of same entropy level in the H function and another state with

the maximized entropy. Then an over-relaxation parameter is chosen to relax the

distribution function to a middle state between the equivalent state and the maxi-

mum entropy state. By re-introducing the H-theorem to the LBM, the ELBM has

been validated to be a stablized LB scheme by various researchers [5, 4, 29, 89].

Regularized lattice Boltzmann method Compared with other stabiliza-

tion methods, the regularized lattice Boltzmann method (RLBM) is theoretically

straightforward, easy to implement, and effective. Based on the sound ground of

the Hermite formulation of the LBE [158], the regularization concept is to con-

struct a set of pre-collision distribution functions that are only related to the

macroscopic hydrodynamic moments, while the higher order components are fil-
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tered out [134, 163, 21]. Different regularization techniques have been proposed and

investigated in the literature. For example, through the Chapman-Enskog analy-

sis, Latt and Chopard [100, 101] proposed to reconstruct the non-equilibrium part

of the pre-collision distribution function using the gradient of the macroscopic

fluid velocity. In the same spirit, Latt et al. [102] also proposed a straight velocity

boundary condition treatment. Another regularization procedure was introduced

by Zhang et al. [189] where the non-equilibrium part of the pre-collision distribu-

tion function was projected onto the Hilbert sub-space spanned by the Hermite

polynomials. Both these procedures are simple extensions of the original SRT-

LBM scheme, therefore an overall simplicity can be inherited in the RLBM. The

effectiveness of the RLBM in terms of enhancing the stability was validated by

various tests [138, 82, 127].

Some other stabilization strategies Li et al. [111] observed the appearance

of negative values in the distribution function under low viscosity condition and

the accompanying instability. To prevent the negative distribution function from

occurring, they simply allowed the relaxation time to locally increase in order to

ensure the positivity of distribution functions. Qian [141] and Fan et al. [41] pro-

posed another solution based on the fractional volumetric LB scheme [23, 188],

where numerical dissipation was added. The mechanism is to introduce a numeri-

cal diffusion at higher than the viscous order (the so-called hyper-viscosity effect).

Similarly, by testing different interpolation schemes of the LBE, Niu et al. [137]

found out that the upwind interpolations are more stable than the central in-

terpolations because of the hyper-viscosity effect. Alternatively, Ricot et al. [145]

designed a selective viscosity filtering method, of which the filter coefficients are

optimized in the Fourier space. This filter damps the unphysical instabilities with-

out affecting the physical shear and acoustic waves. In addition, Dellar [33] showed

that a larger bulk viscosity is helpful for better stability. Hence a method that ad-

justs the bulk viscosity independently from the shear viscosity was introduced in

[33].

1.4 Existing free-surface models in LBM

1.4.1 Multi-phase LB models for two fluid flows with large

density ratios

Physically, the free-surface flow in marine engineering can be classified into multi-

phase flows with a density ratio of the liquid density to the gas density as large as

1.0×103. In the past two decades of profuse developments in the LBM, the multi-
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phase problem has always been one of the most attractive issues. Several numerical

models for simulating multi-phase flows have been inserted into the LBM. These

models were reviewed by Li et al. [110] and Liu et al. [121] independently in 2016

in their retrospective papers, in which four major categories were distinguished,

i.e. the color-gradient model, the free-energy model, the pseudo-potential model

and the phase-field model. Here, the author keeps this four-category classification

while examining the existing multi-phase LB models.

The color-gradient LB model The color-gradient LB model simulates two

immiscible fluids with two colored particle distribution functions. Its title "color-

gradient" comes from the fact that the interface is located where the local color

gradient reaches the maximum value. In the collision step, a perturbation is added

to the particle distribution near the interface, and a following recoloring step is

designed to redistribute the mass with a zero mass diffusivity of one color into

the other, and subsequently ensure a separation of the two fluids. This idea was

firstly proposed by Rothman and Keller [147] for the FHP lattice-gas model and

later brought to the LBM by Gunstensen et al. [60]. The model of Gunstensen

et al. [60] is only suitable for two fluids with same density and viscosity. It is

extended by Grunau et al. [58] for two fluids with unequal densities and viscosities

in a D2Q7 lattice and later by Tölke et al. [175] for a D3Q19 lattice. Besides, the

original model in [60] is also improved by Lishchuk et al. [119] by modifying the

perturbation step and by Latva-Kokko and Rothman [103] and Reis and Phillips

[144] with adapted recoloring rules.

The free-energy LB model The free-energy LB model was firstly introduced

by Swift et al. [166, 165], where a non-ideal thermodynamic pressure tensor was

included into the 2nd-order moment of the distribution function, enabling the phase

seperation to be governed by the non-ideal equation of state [110]. However, Luo

[124] criticised that this model suffers from several drawbacks such as leading to

incorrect energy balance equation, among which the non-Galilean invariant nature

has also been widely noticed by other researches [165, 70, 79]. In this context,

studies were made to bring back the Galilean invariance by adding some correction

terms to the distribution function [79, 85, 139]. What is more, Wagner [177] and

Pooley and Furtado [139] observed spurious velocities around the interface between

the two fluids due to the fact that the interfacial tension force was introduced by

imposing additional constraints on the equilibrium distribution function. The free-

energy model is also extended to simulating bubble motion under gravity [167]

by considering buoyancy effect and to investigating contact line motion [20] by

introducing a wetting boundary condition.
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The pseudo-potential LB model The pseudo-potential LB model, proposed

by Shan and Chen [154, 155], defines an inter-particle potential based force to

mimick particle interactions. This model owes its great popularity to its simplicity

in the sense that the inter-particle force is written in a general form for every lat-

tice node and the automatic phase seperation frees the model from extra interface

tracking or capturing operation. In contrast, the demerits of the model can be

summarized [25] as: the existence of spurious currents, the thermodynamic incon-

sistency and the limited density and viscosity ratios. In response to these issues,

several countermeasures were developed in the literature. Shan [153] and Sbra-

gaglia et al. [151] identified the cause of the spurious velocities as the anisotropic

contributions of the discrete gradient operator. Yuan and Schaefer [186] and Zhang

and Tian [187] incorporated different equations of state into the model, trying to

reduce the spurious velocities. Incorporating realistic equations of state was also

found to be useful for larger density ratios [97, 8]. Besides, improved forcing terms

were proposed by Huang et al. [75], Li et al. [109] and Sun et al. [164]. It is also

found that when adopting relatively more stable LB schemes like the MRT-LBM,

the applicable density ratios increased as a by-product effect [151, 185].

The phase-field LB model The phase-field LB model came up in the work of

He et al. [66, 71], where an index distribution function and a pressure distribution

function were employed, instead of only one density distribution function used

in the original LBM. As pointed out by Lee and Lin [106], the evolution of the

index distribution function leads to a macroscopic equation that is similar to the

Cahn-Hilliard equation which describes the phase separation [83], hence Li et al.

[110] classified this model into the phase-field category. Similarly to the strategy

used by He et al. [66, 71], Inamuro et al. [80] and Lee and Lin [107] proposed

their two-distribution-function systems, where Cahn-Hilliard-liked equation can be

recovered. Zheng et al. [191] noted that the Cahn-Hilliard equation was not truly

recovered by the three mentioned models [66, 80, 107], and provided a modified

discretization form of the LBEs for the index distribution function and a newly

defined distribution function for the average density of the two fluids. Additionally,

there exist other extensions of Inamuro’s, Lee’s and Zheng’s model, which made

efforts to simulate multi-phase flows with large density ratios [108, 39, 81].

1.4.2 Single-phase free-surface LB models

A typical feature of marine free-surface flow phenomena is that the liquid flow is

usually considered to be free from being affected by the gas motion. Such a common

assumption enables one to use single-phase models for free-surface simulation. This
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assumption is valid for the liquid flow up to when gas is entrapped within the

liquid. When the latter occurs, this assumption is questionable as investigated in

[129]. As an alternative to the multi-phase models in simulating free-surface flows,

the single-phase models are innovated by the idea of reducing the multi-phase flow

with phase separation to a single-phase approach with a free-surface boundary. In

this spirit, Ginzburg et al. [50, 56] proposed a free-surface model within the color-

gradient framework, where the small density phase is considered as vaccum and

the original recoloring step is replaced by a boundary condition based on the local

2nd-order boundary method [49].

VOF-based LB models Körner et al. [94] developed a free-surface model di-

rectly in a single-phase fashion. They borrowed the free-surface representation

from the volume-of-fluid (VOF) method, where the cell flag is labeled by the vari-

able of liquid volume fraction. The mass flux calculation between lattice cells is a

built-in operation in the streaming step, and the unknown distribution functions

on the interface are given by a dynamic boundary condition that ensures a bal-

anced hydrodynamic force against the gas pressure. The free-surface evolution is

driven by the cell mass change, which means the cell flag shall change if the volume

fraction reaches zero or one. As a complement to the original model, Thürey et

al. [171] described the meticulous rules of the flag evolution. Thürey et al. [172]

introduced a scheme with adaptive time-steps. Thürey and Rüde [173] employed

the free-surface model on adaptively refined grids by implementing a LB turbu-

lence model [160, 74, 184], adaptive time-step [172], and grid refinement technique

[43]. Besides, this model was extended for thermal free-surface flows with liquid-

solid phase transition [7]. Further, though this model involves careful operations

on cell mass computing and flag change, the total number of required operations

for interface cells is a small percentage within the whole domain, which guarantees

an overall simplicity and good efficiency. Thanks to its easy implementation, this

family of free-surface model has been used in various problems such as bubble

motion [3], wetting effect [6], droplet falling [180, 159], floating body [16], viscous

wave [190], metal foaming [94, 91], electron beam melting [92, 93, 9, 2], physical

animation [174, 170], etc.

Another free-surface model was introduced by Janssen and Krafczyk [84], which

is very similar to Körner’s model [94]. Instead of using a cell-centered lattice as

done in [94], Janssen and Krafczyk constructed a node-centered lattice which is

more friendly for the mass flux calculation with grid refinement technique. In

terms of the free-surface boundary, the reconstruction of the unknown distribution

function on the interface remained the same as in [94], whereas a piecewise linear

reconstruction method (PLIC) [183, 59] was adopted for free-surface capturing.
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They also used a LB turbulence model [96] and the MRT-LBM scheme [36] to

achieve better stability for high Reynolds numbers.

Level-set LB model In addition, Thürey and Rüde [148] mentioned a level-

set free-surface model based on the free-surface model in [94], where a level-set

front tracking method [152] was used to determine flag change. The benefits are a

smooth surface in case of insufficient number of particles and the easy calculation

of the normal vector and the curvature. However, the mass conservation cannot

be perfectly guaranteed.

As an appraisal, the single-phase models serve as a successful substitute for

multi-phase models in free-surface simulations. Indeed, the physical nature of the

free-surface is a fluid-fluid interface, but the common hypothesis of the negligible

influence of the gas makes the single-phase model feasible in the limit already

mentioned that the air phase is not significantly mixed in the liquid. Moreover, the

absence of calculation in the gas domain not only massively saves computational

time but also avoids the great difficulty of dealing with large density ratio in multi-

phase models. In return, it requires careful treatment of the free-surface boundary.

LBM for shallow-water We should also mention here the LB models for sim-

ulating shallow-water flows where a free-surface naturally exists. It is a branch

of the LBM targeting the shallow-water equations, which can be derived from

depth-integrating the N-S equations under the assumption that the horizontal

length scale is much greater than the vertical one [169]. The shallow-water LB

model was introduced by Salmon [149, 150] for studying ocean circulation due

to the planetary geostrophy. Various applications have been simulated using this

model, such as wind-driven ocean circulation [118], two-layers shallow-water flow

[146], tidal waves [192], flows in open channel junctions [120], etc. However, if one

seeks a general free-surface model without being constrained by the shallow-water

limit, or if one wants to study complex free-surface flows like wave breaking, these

shallow-water models shall be discarded.

1.5 Strategy for adopting appropriate numerical

tools

In order to make use of the previously reviewed various free-surface LB models and

stabilization techniques for marine engineering applications, one should determine

a strategy of establishing a reliable numerical tool, by answering to the following

three questions:

14



1.5. STRATEGY FOR ADOPTING APPROPRIATE NUMERICAL TOOLS

(i) Which one to choose among the existing free-surface LB models?

(ii) Which stabilization technique is ideal for free-surface LB computing?

(iii) Whether find and learn how to use an open-source software or develop an

in-house code?

1.5.1 Multi-phase LB models or single-phase LB models?

The single-phase free-surface models automatically dodge the difficulty of the large

ratio at the water-air interface. Therefore, it is very interesting and important to

assess the capacity of dealing with large density ratios of the four mainstream

multi-phase free-surface LB models that are mentioned in Section 1.4.1.

Firstly, the original phase-field model [60] can only be applied to two fluids with

same density. In the later version suitable for density variations [58], tests with a

density ratio of O (10) were presented. Meanwhile, it was noticed in [58] that this

model cannot simulate high velocity flows due to the inevitable accumulation of

rest particles in the embedded operation of high particle mass ratio assignment.

The possible density ratio was improved to O (100) by Leclaire et al. [105]. Later

on, Lesclaire et al. [104] showed a simulation with a density ratio of O (1000),

but only for steady bubbles. These evidences coincide with the comments in [58,

121, 110] that the applicable density ratio for color-gradient model can be up to

O (1000) for stationary bubble or droplet tests, whereas it is restricted to O (10)

for dynamic problems due to numerical instability.

Secondly, to the best of the author’s knowledge, the free-energy model has

not been frequently used for large density ratio fluids. From the original model

of Swift et al. [166, 165] to its extensions in [79, 167], the presented test-cases

are of a density ratio less than 10. Distinctively, Mazloomi et al. [30] adopted the

ELBM for stable calculation and succeeded to simulate a bubble motion with a

density ratio of O (100). The cause of the instability of the free-energy model at

large density ratios were assessed [110] as the common operation in the mentioned

papers of adding density-gradient associated correction terms in order to remove

the non-Navier-Stokes terms in the macroscopic equations.

Thirdly, as for the pseudo-potential model, its early forms also start from low

density ratios about O (10) [40, 25]. Several advanced techniques have been pro-

posed including modifying the equation of state [186, 187], increasing the isotropy

order of the inter-particle interaction force [153, 151], improving the forcing term

[97, 75, 109, 164] and adopting stable collision operators [151, 98, 185]. All these

improvements are beneficial in enlarging the density ratio range, for an example

the density ratio was reported to be able to reach O (100) in [151] and O (1000)
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in [186, 185, 75].

Lastly, among the implementations of the phase-field category for large den-

sity ratios, the more representative models are those proposed by Inamuro et al.

[80], Lee and Lin [107] and Zheng et al. [191]. The original Inamuro’s model [80]

is applicable for density ratios only of O (50) but it was renovated to O (1000)

in a recent version by Inamuro et al. [81]. The other two, i.e. Lee’s model [107]

and Zheng’s model [191], tolerate density ratios of O (1000) since their emergence.

Many applications of these models can be found in the literature including but

not limited to [181, 135, 28, 108, 178]. However, one should be aware of the other

side of the coin. Consensual critical statements can be found in [191, 39, 110] that

Inamuro’s model involves solving a Poisson equation for pressure correction which

reduces the efficiency, and that Lee’s model not only is powerless for large veloc-

ity flows and fast deformation but also executes different discretization forms for

the gradients before/after the streaming step which adds some extra complexity.

Furthermore, [39, 110] analyzed Zheng’s model and demonstrated its shortcoming

of using the distribution function for the mean density of both phases, so that the

numerical tests on two fluids with different combination of densities will produce

exactly the same results if the average value of the two fluid densities is kept the

same.

To summarize, compared with the color-gradient model and the free-energy

model, the pseudo-potential model and the phase-field model are relatively more

effective in simulating lage-density-ratio multi-phase flows (up to O (1000)) and

enjoy better popularity. Nevertheless, their applications reported in the literature

did not provide much evidence of their applicability for real marine applications,

compared with those of the single-phase free-surface LB models. It seems that, in

the viewpoint of the author, the single-phase free-surface LB models are more fit

for the present study. The free-surface model adopted in this thesis would be the

VOF-based single-phase model proposed by Körner et al. [94].

1.5.2 Which stabilization technique to be adopted?

Among all the free-surface LBM applications mentioned in this introduction, some

have already adopted the stabilization techniques aforementioned in Section 1.3.2.

To give an example, one can find the use of the TRT-LBM [14, 17, 15], the MRT-

LBM [84], the ELBM [78] and the cascaded LBM [126], for free-surface simulations

in the literature. However, the study of the implementation of the RLBM for stable

calculation of free-surface flows at high Reynolds numbers is rarely seen, which

is quite a pity since the RLBM is a successful and simple variation of the LBM,

with a sound mathematical backup. In fact, the present work is targeting at the
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numerical validation of the combination of the free-surface LBM for large-density-

ratio free-surface flows and the RLBM for high-Reynolds number conditions.

1.5.3 Open-source software or in-house code?

It is a primary and painful question for many CFD researchers. Indeed, both

options have obvious advantages and disadvantages. An open-source software is

usually well coded in a way that many existing models are already embedded,

but its documentation is sometimes very complex in order to achieve a maximum

applicability for all kinds of problems. In this context, an open-source software

requires much time for learning and getting familiar with the coding logic. On

the contrary, by developing an in-house code, one can take full charge of every

command, however the overall efficiency and applicability of the code may not be

as good as the open-source software.

In the early stage of this thesis work, the author spent a lot of time in learn-

ing how to use the PALABOS (i) open-source LBM code. Like other open-source

software, PALABOS is equipped with numerous embedded modules for things like

discretizing complex geometries, boundary treatments, extracting data into files,

animation making, etc. However, its huge framework is a barrier to the author

from fully understanding the code and freely manipulating the implemented mod-

els. After several months, it appeared that the learning cost largely overshadowed

the benefits of adopting PALABOS, hence a decision was made to develop an in-

house LBM code, without trying other open-source LBM codes like OpenLB (ii)

or waLBerla (iii). The attempts that were made with PALABOS are illustrated in

Appendix C.

1.6 Outline of the thesis

The thesis is organized as follows.

In Chapter 2, the necessary ingredients of the standard LBM are elaborately

presented, which are: the basic equation, the lattice arrangements, the force models

and the boundary conditions, as well as the dimensionless formulation. Particu-

larly, the basic equation is illustrated step by step from the CBE all the way to

the LBE, including the derivation of the discrete LB equation from the CBE, the

derivation of the LBE from the discrete LB equation under the single-relaxation-

time collision operator, and the strict mathematical proof of the recovery of the

N-S equation from the LBE through a multi-scale analysis.

(i)http://www.palabos.org
(ii)https://www.openlb.net
(iii)http://walberla.net
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Chapter 3 is focused on the regularized LBM. Based on the Hermite representa-

tion of the LBE, the core idea of the RLBM is clarified as a Hermite regularization

of the distribution function. Specifically, it is highlighted that the adopted force

model requires a correction in the regularization formula, which is validated in a

Poiseuille flow test-case. Then, two more test-cases are simulated. The first one

is the Taylor-Green vortex flow, for which a convergence and efficiency study is

carried out. The other is the lid-driven cavity flow, on which the RLBM is com-

pared with other LBM schemes, in terms of accuracy, CPU time and ability of

stabilizing the LB solution.

In Chapter 4, the adopted free-surface model is introduced comprehensively, in-

cluding the VOF-based representation, the cell mass evolution, the cell flag update

and the free-surface treatment. The present free-surface LBM is validated through

two test-cases, which are the viscous standing wave and the dambreak flow. Af-

terwards, by observing that the original free-surface model might be caught in a

dilemma about how many distribution functions should be reconstructed, a new

technique is proposed for determining the distribution functions at the interface.

A dambreak test-case is used for the validation of the new model.

Finally the conclusions and perspectives are drawn in Chapter 5.
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Chapter 2

Lattice Boltzmann method

The theory of lattice Boltzmann

(LB) method is presented in this chap-

ter. In the first part, the deriva-

tion of the lattice Boltzmann equa-

tion (LBE) from the continuous Boltz-

mann equation is elaborately pre-

sented by means of the Hermite expan-

sion. In the meantime, the force mod-

els and the lattice arrangements are

discussed. Then, through a multi-scale

analysis, the LBE is validated to re-

cover the weakly compressible Navier-

Stokes equation. Next, the boundary

conditions adopted in this thesis are

illustrated. Finally, the rescaling fac-

tors for non-dimensionalizing the LBE

are introduced, and the present LB al-

gorithm is given.

La théorie de la méthode de Boltz-

mann sur réseau (LB) est présentée

dans ce chapitre. La première partie

présente la dérivation de l’équation

de Boltzmann sur réseau (LBE) à

partir de l’équation de Boltzmann

continue, à l’aide du développement

d’Hermite. Au passage, les modèles

de force et les configurations du ré-

seau sont discutés. Ensuite, on va-

lide par une analyse multi-échelles

que l’équation de Navier-Stokes faible-

ment compressible peut être obtenue

à partir de la LBE. Puis, les condi-

tions limites utilisées dans cette thèse

sont illustrées. Enfin, les facteurs pour

l’adimensionnalisation de la LBE sont

introduits, et l’algorithme de LB déve-

loppé est présenté.
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2.1. BOLTZMANN DESCRIPTION OF FLUID FLOW

2.1 Boltzmann description of fluid flow

2.1.1 Descriptions of fluid flow

The fluid mechanics is a branch of physical science developed to analyze the prob-

lems that involve fluid flows. In this discipline, a variety of ways to observe the

fluid can be found throughout the spectrum of scales, i.e., from the macroscopic

scale all the way down to the microscopic scale. Specifically, in the macroscopic

scale, the state of a fluid can be described by several variables, such as the fluid

density ρ, the flow velocity u, the pressure p, the internal energy E and the tem-

perature Θ, etc. These variables are all defined in a continuum level, which means

that their quantities are considered to be varying continuously in space and time.

Meanwhile, their values at one point show the statistic properties of the numer-

ous fluid molecules inside the small volume represented by the point, while the

particulate nature of the molecule motions are neglected. For the isothermal prob-

lems that are commonly studied in marine engineering, the internal energy and

temperature are not variables of interest. Hence the governing equation that only

involves the rest of the variables is adequate for marine hydrodynamic problems.

Such governing equation, which is known as the Navier-Stokes (N-S) equation, can

be obtained from the conservation laws of mass and momentum as

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

∂ (ρu)

∂t
+∇ · (ρuu) = −∇ · (pI) +∇ ·

{
µ
[
∇u+ (∇u)T

]}

+∇ · [ζ (∇ · u) I] + F ,

(2.2)

where µ and ζ respectively stand for the dynamic shear viscosity and the bulk

viscosity, I is the identity tensor, and F = ρg is the external body force with

g being the acceleration. It is worth noticing that Equations (2.1) and (2.2) are

written in a compressible form for Newtonian fluids. In that case, an equation of

state is needed to relate pressure p and density ρ and thus close the system. As

for incompressible fluids, the density is a constant value in space and time, i.e.

ρ ≡ ρ0, therefore the mass conservation equation becomes

∇ · u = 0. (2.3)

With the simplified mass conservation equation (2.3), the viscous term associated

with the bulk viscosity in the momentum conservation equation (2.2) automati-
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cally disappears, which gives

∂u

∂t
+∇ · (uu) = −1

ρ
∇ · (pI) +∇ ·

{
ν
[
∇u+ (∇u)T

]}
+ F , (2.4)

where ν = µ/ρ is the kinetic viscosity. Equation (2.3) and (2.4) are called the

incompressible N-S equations. No matter the compressible form or the incom-

pressible corm, the N-S equations give the dynamic relations between the macro-

scopic variables, and the task of the computational fluid dynamics (CFD) is to

find numerically the approximate solution of the N-S equation using appropriate

numerical methods.

Alternatively, the fluid motion can be studied in a different way. Since the

physicists in molecular dynamics (MD) revealed an inner world by observing the

basic contruction of all materials, it is now known to us that every macroscopic

property has a microscopic nature. From a microscopic point of view, a fluid con-

sists of numerous, randomly moving molecules. Despite the fact that the motion

of each molecule is irregular, a huge amount of molecules exhibit some common

macroscopic features. Thus it is theoretically possible to compute the macroscopic

variables by tracking every molecule’s behavior and through some statistical meth-

ods. Although the capacity of computer calculation has witnessed a mind-blowing

breakthrough thanks to the quick development of the computer science, it is still

unrealistic to use full MD simulations to study flows at micro-scales because of

memory and computational time limitations [136].

As a substitute, the lattice Boltzmann method (LBM), which can be regarded

as a mesoscopic method, lies between the macroscopic and microscopic method-

ology. It describes the fluid by defining a distribution function f (x, ξ, t), which

represents the proportion of the molecules having a microscopic velocity of ξ at

position x and time t. This mesoscopic concept has both macroscopic and micro-

scopic characteristics. Firstly, the macroscopic variables can be computed from the

velocity moments of the distribution functions. Secondly, the distribution function

has particulate behaviors, i.e. collision and streaming. In the following sections,

the governing equation of the distribution function behavior which is known as

the Boltzmann equation, as well as the recovery of the N-S equations from the

lattice Boltzmann equation, will be elaborately discussed.

2.1.2 Continuous Boltzmann equation

As aforementioned in the previous section, the distribution function f (x, ξ, t) is a

mesoscopic concept, which indicates the probability that the molecules move with
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a velocity ξ at (x, t). This definition may sound a little tortuous and complex,

but the relation between the distribution function and the macroscopic variables

is clear and straightforward, and it helps to better understand the definition of the

distribution function. Taking the fluid density as an example, the total number

of the molecules of any speed at (x, t) can be computed from the integral of the

distribution function with respect to ξ as
∫

f (x, ξ, t) dξ. Assuming the molecule

weight is m, the fluid density at (x, t) can be expressed as

ρ (x, t) = m

∫
f (x, ξ, t) dξ. (2.5)

Similarly, the momentum and the internal energy can be respectively computed

from the velocity moments of the first several orders as

ρu (x, t) = m

∫
ξf (x, ξ, t) dξ, (2.6)

ρE (x, t) = m

∫
1

2
(ξ − u)2 f (x, ξ, t) dξ, (2.7)

where u is the fluid velocity, and E is the internal energy. The molecule mass m

is hereafter assumed to be unit for simplicity.

Based on the definition of the distribution function, the streaming process can

be expressed as

f (x+ ξ∆t, ξ +∆ξ, t+∆t) = f (x, ξ, t) . (2.8)

It means that the molecules of a speed ξ at (x, t) will move to (x+ ξ∆t, t+∆t)

during a small time period ∆t, with
∆ξ

∆t
=

F

m
= g being the acceleration due to

the external force F . This equation describes a pure streaming process, without

considering the collisions between molecules. Notice that the collision process is so

complex that it is difficult to find a simple mathematical expression for it. Here a

general form of the collision operator, i.e. Ω, is used, which denotes the changing

rate of the distribution function during a collision process as

f (x+ ξ∆t, ξ +∆ξ, t+∆t)− f (x, ξ, t) = Ω∆t. (2.9)

Taking the limit where ∆t → 0 and ∆ξ → 0 yields:

∂f

∂t
+ ξ · ∇f + g · ∇ξf = Ω, (2.10)

where the gradient operator ∇ denotes the space gradient, and ∇ξ denotes the gra-

dient in the velocity space. Equation (2.10) is known as the continuous Boltzmann

equation (CBE).
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2.1.3 Single-relaxation-time collision model

One can observe that the collision operator Ω plays a vital and fundamental role

in the Boltzmann equation (2.10). However its expression is still undefined for the

moment due to the very different possibilities of particle collisions. Therefore the

major barrier in solving the Boltzmann equation is the difficulty of addressing a

proper approximation of the collision operator. In 1954, an efficient and widely

used single-relaxation-time (SRT) model is introduced by Bhatnagar, Gross and

Krook (BGK) [12]. In their model, the collision operator Ω is replaced by a relax-

ation process from a distribution state slightly off-set from its equilibrium as

Ω = − 1

τ∆t
(f − f eq) , (2.11)

where τ is the dimensionless relaxation time and f eq is the so-called equilibrium

distribution function. f eq is chosen to be the continuous Maxwell-Boltzmann dis-

tribution function, which is expressed as

f eq =
ρ

(2πRΘ)
dim/2

exp

[
−(ξ − u)2

2RΘ

]
, (2.12)

where dim is the spatial dimension, u is the macroscopic fluid velocity, R is the

gas constant, and Θ is the temperature.

The Boltzmann equation with the SRT collision model reads

∂f

∂t
+ ξ · ∇f + g · ∇ξf = − 1

τ∆t
(f − f eq) , (2.13)

which gives the simplest and the most widely used governing equation of the

distribution function, up to now. For this reason, the author will hereafter refer

to Equation (2.13) when mentioning the standard Boltzmann equation.

2.2 From the continuous Boltzmann equation to

the lattice Boltzmann equation

The N-S equations have been successfully recovered from the standard CBE (2.13)

in [76], hence Equation (2.13) can be assessed as an elegant description of fluid

flow considering its simplicity and effectiveness. However, the molecule velocity ξ

in the distribution function f (x, ξ, t) represents infinite degrees of freedom since it

can be of an arbitrary value in the continuous velocity space, while the computer

calculation can only handle a finite number of variables. Therefore, an appropriate

discretization of the CBE is desired in a way that it is numerically solvable without
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damaging the recovery of the N-S equation. In this context, the lattice Boltzmann

equation (LBE) is developed following such an idea. To give a direct impression,

the LBE is presented here as

fi (x+ ξi∆t, t +∆t)− fi (x, t) = −1

τ
[fi (x, t)− f eq

i (x, t)] +∆tFi (x, t) , (2.14)

where x denotes the coordinate of a point in the discretized space (the lattice),

and {ξi} represents a set of discretized microscopic velocities associated with the

chosen lattice where (i = 0, 1, · · · , q − 1) indicates one of the q possible directions

of the lattice velocity ξi. Correspondingly, fi (x, t) is the distribution function of

the fluid particles with a lattice velocity ξi at position (x, t), and f eq
i (x, t) is its

equilibrium. ∆t is the time increment within one time step. The derivation of

Equation (2.14) from the CBE (2.13) will be analyzed step by step in this section.

2.2.1 Hermite expansion of the distribution function

Before starting, it is important to note that from Equation (2.15) to (2.48), the

following analysis is based on a dimensionless form of the continuous Boltzmann

equation (2.13), namely the microscopic velocity ξ̃ and the fluid velocity ũ are

dimensionless variables scaled by the sound speed cs, and the temperature Θ is

replaced by the dimensionless temperature Θ̃.

As just stated, the LBE uses a minimized number of discretized velocities to

provide as many macroscopic details as the CBE. This is done with the help of

the Hermite polynomials and the Gauss-Hermite quadrature, and some necessary

mathematical support is given in Appendix A.4.

Starting from the CBE (2.13), the distribution function f
(
x, ξ̃, t

)
is chosen

to be expanded by the Hermite polynomials as

f
(
x, ξ̃, t

)
= ω

(
ξ̃
) ∞∑

n=0

1

n!
a(n) (x, t) : H(n)

(
ξ̃
)
, (2.15)

where ω
(
ξ̃
)

is the weighting function, H(n)
(
ξ̃
)

is the nth-order Hermite polyno-

mial, and a(n) (x, t) is the corresponding expansion coefficient.

The weighting function ω
(
ξ̃
)

is given as

ω
(
ξ̃
)
=

1

(2π)
dim/2

exp

(
− ξ̃ · ξ̃

2

)
, (2.16)
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and the nth-order Hermite polynomial can be calculated from ω
(
ξ̃
)

as

H
(n)
(
ξ̃
)
=

(−1)n

ω
(
ξ̃
)∇n

ξ̃
ω
(
ξ̃
)
. (2.17)

The corresponding expansion coefficient a(n) (x, t) is computed from

a(n) (x, t) =

∫
f
(
x, ξ̃, t

)
H

(n)
(
ξ̃
)
dξ̃. (2.18)

More specifically, the first several Hermite polynomials can be obtained from Equa-

tion (2.17) as





H(0)
(
ξ̃
)
= 1,

H
(1)
(
ξ̃
)
= ξ̃,

H
(2)
(
ξ̃
)
= ξ̃ξ̃ − I,

(2.19)

and the first several expansion coefficients are

{
a(0) (x, t) = ρ (x, t)

a(1) (x, t) = ρ (x, t) ũ (x, t) .
(2.20)

One can observe that the expansion coefficient at the leading orders are the mo-

ments of the distribution function in the velocity space, which correspond to the

macroscopic variables. Such observation is vital in this analysis, and it is the rea-

son of applying the Hermite expansion to the distribution function. The readers

are suggested to keep this observation in mind, and it will be mentioned again in

the following analysis.

2.2.2 Discretizing the velocity space

Equation (2.15) indicates that the distribution function can be identically com-

puted through the summation of an infinite number of terms which correspond to

the Hermite polynomials. However, the distribution function contains more infor-

mation than just the hydrodynamics of fluid flows, because what matter in the

N-S equations are only the first several velocity moments of the distribution func-

tion. Hence, it would be more convenient if less information can be included in

the calculation while keeping the first several velocity moments unaffected. Fortu-

nately, the Hermite polynomials provide a possible solution. Consider a truncated
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Hermite expansion to the N th-order, which is marked as

fN
(
x, ξ̃, t

)
= ω

(
ξ̃
) N∑

n=0

1

n!
a
(n)
N (x, t) : H(n)

(
ξ̃
)
, (2.21)

the first N expansion coefficients of the truncated expansion fN
(
x, ξ̃, t

)
are ex-

actly the same as those for the full expansion of f
(
x, ξ̃, t

)
, thanks to the mutual

orthogonality of the Hermite polynomials as expressed in Equation (A.13). The

leading expansion coefficients are thus the same as before, i.e. the leading velocity

moments, as formerly pointed out in the previous section. Therefore the truncation

of the higher order terms does not affect the leading velocity moments.

To achieve one step further, another feature of the Hermite polynomials is used.

As being pointed out in [158], the integrand in Equation (2.18) for calculating the

expansion coefficient of the truncated expansion fN
(
x, ξ̃, t

)
can be written as

fN
(
x, ξ̃, t

)
H

(n)
(
ξ̃
)
= ω

(
ξ̃
)
Ψ
(
x, ξ̃, t

)
, (2.22)

where Ψ
(
x, ξ̃, t

)
is a polynomial in ξ̃ of a degree not greater than 2N . Hence the

expansion coefficient a
(n)
N for fN

(
x, ξ̃, t

)
is computed as

a
(n)
N =

∫
fN
(
x, ξ̃, t

)
H

(n)
(
ξ̃
)

dξ̃ =

∫
ω
(
ξ̃
)
Ψ
(
x, ξ̃, t

)
dξ̃. (2.23)

Note that the form of Ψ
(
x, ξ̃, t

)
is not important here, and it is obvious that the

integral on the right-hand side matches the form of the Gauss-Hermite quadrature

in Equation (A.7). Thus the expansion coefficient becomes

a
(n)
N =

∫
ω
(
ξ̃
)
Ψ
(
x, ξ̃, t

)
dξ̃ =

q∑

i=1

wiΨ
(
x, ξ̃i, t

)

=

q∑

i=1

wi

ω
(
ξ̃i

)fN
(
x, ξ̃i, t

)
H

(n)
(
ξ̃i

)
,

(2.24)

where wi and ξ̃i are respectively the weights and the abscissae of a Gauss-Hermite

quadrature, and q is the number of the chosen discretized velocities ξ̃i. Now, the

expansion coefficients of the truncated expansion fN
(
x, ξ̃, t

)
are accurately deter-

mined by a set of distribution functions with discrete velocities fN
(
x, ξ̃i, t

)
. As a

result, the truncated expansion fN
(
x, ξ̃, t

)
is also determined by the distribution

functions of discrete velocities, through Equation (2.21).

The task of developing the LBE becomes seeking a governing equation of
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fN
(
x, ξ̃i, t

)
that contains the same level of hydrodynamic information as the

original CBE (2.13). This is done by enforcing the same truncated Hermite expan-

sion, as presented in this section, to every term in the CBE (2.13). Such operations

on the equilibrium distribution function and the force term will be shown in the

following paragraphs.

Equilibrium distribution function The equilibrium distribution function in

the form of Equation (2.12) is to be substituted by its truncated Hermite expansion

f eq
N

(
x, ξ̃, t

)
as

f eq
N

(
x, ξ̃, t

)
= ω

(
ξ̃
) N∑

n=0

1

n!
a
(n)
N,eq (x, t) : H

(n)
(
ξ̃
)
, (2.25)

where the expansion coefficient a
(n)
N,eq (x, t) of leading orders are identical with

those of f eq
(
x, ξ̃, t

)
as

a(n)
eq (x, t) =

∫
f eq
(
x, ξ̃, t

)
H

(n)
(
ξ̃
)
dξ̃. (2.26)

In order to calculate the first several expansion coefficients, the equilibrium

distribution function is firstly written as

f eq (x, t) =
ρ (x, t)
(√

Θ̃
)dim ω

(
ξ̃ − ũ (x, t)√

Θ̃

)
, (2.27)

with the help Equation (2.12) and (2.16), where Θ̃ is the dimensionless temper-

ature and Θ̃ = 1 for isothermal systems as in this study. Let η̃ =
ξ̃ − ũ√

Θ̃
, then

ξ̃ =
√
Θ̃η̃ + ũ. Thus one has

f eq =
ρ

(√
Θ̃
)dim ω (η̃) (2.28)

and

a(n)
eq = ρ

∫
ω (η̃)

(√
Θ̃
)dim−1

H
(n)
(√

Θ̃η̃ + ũ
)
dη̃. (2.29)

In an isothermal system where Θ̃ = 1, the first several expansion coefficients can
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be easily computed as 




a
(0)
N,eq = a(0)

eq = ρ,

a
(1)
N,eq = a(1)

eq = ρũ

a
(2)
N,eq = a(2)

eq = ρũũ.

(2.30)

Hence f eq
N can be obtained from Equation (2.25) as

f eq
N = ω

(
ξ̃
)



0th-order︷︸︸︷
ρ +

1st-order︷ ︸︸ ︷
ρũ · ξ̃ +

2nd-order︷ ︸︸ ︷
1

2
ρũũ :

(
ξ̃ξ̃ − I

)
+ · · ·

︸ ︷︷ ︸
(N+1) terms




= ω
(
ξ̃
)






0th-order︷︸︸︷
ρ +

1st-order︷ ︸︸ ︷
ρũ · ξ̃ +

2nd-order︷ ︸︸ ︷[
1

2
ρ
(
ũ · ξ̃

)2
− 1

2
ρũ2

]
+ · · ·

︸ ︷︷ ︸
(N+1) terms





.

(2.31)

Note that the three terms listed in the braces above are respectively the 0th-, 1st-,

and 2nd-order terms.

Force term Adopting the Hermite expansion (2.15), the gradient of the distri-

bution function in the velocity space, i.e. ∇
ξ̃
f
(
x, ξ̃, t

)
in the CBE (2.13), can be

written as

∇
ξ̃
f
(
x, ξ̃, t

)
= ∇

ξ̃

[
ω
(
ξ̃
) ∞∑

n=0

1

n!
a(n) (x, t) : H(n)

(
ξ̃
)]

. (2.32)

By inserting the gradient operator and the weighting function ω
(
ξ̃
)

into the

summation and using Equation (2.18) repeatedly, ∇
ξ̃
f
(
x, ξ̃, t

)
can be expressed

as

∇
ξ̃
f =

∞∑

n=0

1

n!
a(n)∇

ξ̃

[
ω
(
ξ̃
)
H

(n)
(
ξ̃
)]

=
∞∑

n=0

(−1)n

n!
a(n)∇n+1

ξ̃
ω
(
ξ̃
)

= −ω
(
ξ̃
) ∞∑

n=0

1

n!
a(n)

H
(n+1)

(
ξ̃
)
,

(2.33)

where the products of two tensors of different orders means the sum of all possible

permutations of tensor product [158].

Let the force term in the CBE (2.13) take the form of

F
(
x, ξ̃, t

)
= −g (x, t) · ∇ξf

(
x, ξ̃, t

)
= −g (x, t)

cs
· ∇

ξ̃
f
(
x, ξ̃, t

)
(2.34)
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which shall appear on the right-hand side in (2.13). Then, one has

F
(
x, ξ̃, t

)
= ω

(
ξ̃
) ∞∑

n=0

1

n!

g (x, t)

cs

[
a(n) (x, t)H(n+1)

(
ξ̃
)]

(2.35)

by introducing the expression (2.33). Being substituted by a truncated Hermite

expansion, the force term becomes

FN
(
x, ξ̃, t

)
= ω

(
ξ̃
) N∑

n=0

1

n!

g (x, t)

cs

[
a(n) (x, t)H(n+1)

(
ξ̃
)]

. (2.36)

The first several expansion coefficients are given as





a(0) (x, t) = ρ (x, t)

a(1) (x, t) = ρ (x, t) ũ (x, t) .

(2.37)

Therefore the force term in Equation (2.36) can be computed as

FN =
ω
(
ξ̃
)

cs




1st-order︷ ︸︸ ︷
ρ
(
g · ξ̃

)
+

2nd-order︷ ︸︸ ︷
(ρgũ) :

(
ξ̃ξ̃ − I

)
+ · · ·

︸ ︷︷ ︸
N terms




=
ω
(
ξ̃
)
ρ

cs





1st-order︷︸︸︷
g · ξ̃ +

2nd-order︷ ︸︸ ︷[(
g · ξ̃

)(
ũ · ξ̃

)
− g · ũ

]
+ · · ·

︸ ︷︷ ︸
N terms





.

(2.38)

Note that the two terms listed in the brace above are respectively the 1st- and

2nd-order terms.

2.2.3 Lattice Boltzmann equation

From the analysis in the previous Section 2.2.2, it is now known that following

a truncated Hermite expansion and a Gauss-Hermite quadrature, a set of distri-

bution function with discrete velocities are adequate to accurately compute the

hydrodynamic moments of the original distribution function, as expressed in Equa-

tion (2.24). More specifically, in the expression (2.24) the first several orders are

given as 



ρ (x, t) =

q∑

i=1

wif
N
(
x, ξ̃i, t

)

ω
(
ξ̃i

) ,

ρ (x, t) ũ (x, t) =

q∑

i=1

wif
N
(
x, ξ̃i, t

)
ξ̃i

ω
(
ξ̃i

) .

(2.39)
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2.2. FROM CBE TO LBE

Defining

fi (x, t) ≡
wif

N
(
x, ξ̃i, t

)

ω
(
ξ̃i

) (2.40)

with (i = 1, 2, · · · , q), the above equations become





ρ (x, t) =

q∑

i=1

fi,

ρ (x, t) ũ (x, t) =

q∑

i=1

fiξ̃i.

(2.41)

Similarly, a discrete equilibrium distribution function and a discrete force term

are respectively defined as

f eq
i (x, t) ≡

wif
eq
N

(
x, ξ̃i, t

)

ω
(
ξ̃i

) , (2.42)

Fi (x, t) ≡
wiF

N
(
x, ξ̃i, t

)

ω
(
ξ̃i

) , (2.43)

where (i = 1, 2, · · · , q). Using Equations (2.31) and (2.38), f eq
i and Fi can be writ-

ten as

f eq
i = wiρ




0th-order︷︸︸︷
1 +

1st-order︷︸︸︷
ũ · ξ̃ +

2nd-order︷ ︸︸ ︷
1

2

(
ũ · ξ̃

)2
− 1

2
ũ2+ · · ·

︸ ︷︷ ︸
(N+1) terms


 , (2.44)

and

Fi =
wiρ

cs





1st-order︷︸︸︷
g · ξ̃ +

2nd-order︷ ︸︸ ︷[(
g · ξ̃

)(
ũ · ξ̃

)
− g · ũ

]
+ · · ·

︸ ︷︷ ︸
N terms





. (2.45)

Based on the three definitions in Equation (2.40), (2.42) and (2.43), the fol-

lowing Boltzmann equation in a discretized velocity space is obtained, i.e.

∂fi
∂t

+ ξ̃i · ∇fi = − 1

τ∆t
(fi − f eq

i ) + Fi. (2.46)

Equation (2.46) can be further discretized in space and time by employing a 1st-

order up-wind finite-difference approximation of the derivatives on the left-hand

side as

∂fi
∂t

+ ξ̃i · ∇fi ≈
fi

(
x+ ξ̃i∆t, t +∆t

)
− fi (x, t)

∆t
. (2.47)
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Hence the standard LBE is finally obtained as

fi

(
x+ ξ̃i∆t, t +∆t

)
− fi (x, t) = −1

τ
[fi (x, t)− f eq

i (x, t)] +∆tFi (x, t) . (2.48)

It is very important to remember that in the former part of the analysis in the

present Section 2.2, the variables related to the micro- and macroscopic velocities,

i.e. ξ̃, ũ and ξ̃i, are all dimensionless variables scaled by the sound speed cs. From

now on, these variables will be rewritten in a dimensional form as was commonly

done in the literature. The standard LBE becomes

fi (x+ ξi∆t, t +∆t)− fi (x, t) = −1

τ
[fi (x, t)− f eq

i (x, t)] +∆tFi (x, t) , (2.49)

Usually this equation is separated into two steps, the collision step

fpc
i (x, t) = fi (x, t)−

1

τ
[fi (x, t)− f eq

i (x, t)] +∆tFi (x, t) (2.50)

and the streaming step

fi (x+ ξi∆t, t +∆t) = fpc
i (x, t) , (2.51)

where the superscript "�pc" denotes a post-collision term, and ξi is one of the q

lattice speeds. The equilibrium distribution function reads

f eq
i = wiρ

[
1 +

ξi · u
c2s

+
(u · ξi)2

2c4s
− u2

2c2s

]
, (2.52)

and the force term becomes

Fi = wiρg ·
[
ξi − u

c2s
+

(ξi · u) ξi
c4s

]
. (2.53)

Note that in the expressions of the equilibrium distribution function and the force

term, the Hermite expansions are both truncated at the order N = 2. It will be

proved in Section 2.5 that this truncation is adequate for retaining the hydrody-

namic moments.

In addition, for the force term in Equation (2.53), its first several velocity

moments can be easily computed as





∑

i

Fi = 0

∑

i

ξiFi = ρg.

(2.54)
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2.3 Lattice arrangement

The analysis in the previous Section 2.2 shows that the standard LBE is able to re-

produce the hydrodynamic velocity moments of the original distribution function

only when the lattice parameters, i.e. the discrete lattice speeds ξi and their corre-

sponding weights wi, are chosen in a way to make the Gauss-Hermite quadrature

(2.24) accurate enough. In order to guarantee such accuracy, the weights corre-

sponding to the discrete lattice speeds are required to satisfy Equation (A.8). Here,

in this section, the parameters for the D2Q9 lattice, which is the lattice adopted

in this thesis, are directly given. For more details on determining the weights for

a given lattice, the reader is surggested to refer to [69, 158].

The D2Q9 lattice is named after a common rule of DdQq, where Dd stands for

a d-dimensional system, and Qq means the number of the chosen discrete lattice

speeds is q. Figure 2.1 schematically shows the configuration of D2Q9 lattice. The

0

1

2

3

4

56

7 8
Δx

Δ
x

Figure 2.1 – D2Q9 lattice

nine discretized speed lie in the directions of the lattice linkages, i.e.

ξi =





(0, 0) , i = 0

c
(
cos
[
(i−1)π

2

]
, sin

[
(i−1)π

2

])
, i = 1, ..., 4

√
2c
(
cos
[
(2i−9)π

4

]
, sin

[
(2i−9)π

4

])
, i = 5, ..., 8

(2.55)

where i indicates a lattice direction, and c = ∆x/∆t is a lattice constant representing

the ratio of the lattice spacing ∆x to the time step ∆t. Note that the index i is

set to be (i = 0, 1, · · · , 8), which indicates a slight shift to (0, 1, · · · , q − 1) from

(1, 2, · · · , q) in Equations (2.40), (2.42) and (2.43). The term (ξi∆t) is the distance

between two lattice nodes in the i direction.
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The fluid density and flow velocity in the D2Q9 lattice are defined as the first

two velocity moments of the distribution function, i.e.




ρ =
∑

i

fi,

u =
∑

i

ξifi.

(2.56)

The equilibrium distribution function for the SRT collision model reads

f eq
i = wiρ

[
1 +

ξi · u
c2s

+
uu : (ξiξi − c2sI)

2c4s

]
, (2.57)

where the sound speed equals to cs =
c√
3

according to [158], in which c = ∆x/∆t = 1

in our study. The weighting coefficient wi is given as

wi =





4/9, i = 0,

1/9, i = 1, 2, 3, 4,

1/36, i = 5, 6, 7, 8,

(2.58)

The velocity moments of the equilibrium distribution function are




∑

i

f eq
i = ρ,

∑

i

ξif
eq
i = ρu,

∑

i

ξiξif
eq
i = ρuu+ ρc2sI.

(2.59)

In addition, the defined lattice speeds and the weights satisfy the following

lattice symmetry





∑

i

wi = 1,

∑

i

wieij = 0,

∑

i

wieijeik = c2sδjk,

∑

i

wieijeikeil = 0,

∑

i

wieijeikeileim = c4s (δjkδlm + δjlδkm + δjmδkl) ,

∑

i

wieijeikeileimein = 0.

(2.60)
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2.4 Force model

A force model is crucial to the LBM because it takes into account the external

forces in the fluid system and affects the accuracy of the numerical scheme. Fol-

lowing the aforementioned Hermite expansion procedure, the standard LBE with

a force term is given in Equation (2.49), where the force term takes the form of

Equation (2.53). Alternatively, He et al. [65] proposed to integrate the discrete

Boltzmann equation (2.46) along the characteristic line ξ over one time-step in

order to derive the LBE with 2nd-order accuracy, which is expressed as

f orig
i (x+ ξi∆t, t +∆t)− f orig

i (x, t)

=
∆t

2

{
− 1

τ∆t

[
f orig
i (x, t)− f eq,orig

i (x, t)
]
+ F orig

i (x, t)

}

+
∆t

2

{
− 1

τ∆t

[
f orig
i (x+ ξi∆t, t +∆t)− f eq,orig

i (x+ ξi∆t, t+∆t)
]

+ F orig
i (x+ ξi∆t, t +∆t)

}
,

(2.61)

where the right hand side of Equation (2.46) is integrated over one time-step using

the trapezoidal rule that ensures the 2nd-order accuracy of this implicit lattice

Boltzmann equation. By means of a change of variables [65, 34], an equivalent but

explicit version of Equation (2.61) can be obtained as

fi (x+ ξi∆t, t +∆t)− fi (x, t)

=− 1

τ
[fi (x, t)− f eq

i (x, t)] +∆t

(
1− 1

2τ

)
F orig
i (x, t) .

(2.62)

It is important to note that in Equation (2.62), the definition of the distribution

function fi has changed from the original one in Equation (2.49). In this section,

the new distribution function is kept being marked as fi, while the original dis-

tribution function, as well as the original relaxation time, the original equilibrium

distribution function in Equation (2.57) and the original force term in Equation

(2.53), are denoted by the superscript "orig". The relation between fi and f orig
i is

fi (x, t) =

(
1 +

1

2τ

)
f orig
i (x, t)− 1

2τ
f eq,orig
i (x, t)− ∆t

2
F orig
i (x, t) , (2.63)

where τ = τ orig + 0.5 is the new dimensionless relaxation time. The first two

velocity moments of the new distribution function are computed as follows based
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on Equations (2.54), (2.56) and (2.59), i.e.





∑

i

fi = ρ

∑

i

ξifi = ρu− ∆t

2
ρg.

(2.64)

Guo et al. [62] also obtained the same equations via a posteriori matching in order

to eliminate the errors related to the body force term.

Following this procedure, the LBE with different force terms can be expressed

in a more general form by introducing a coefficient χ as

fi (x+ ξi∆t, t+∆t)− fi (x, t)

=− 1

τ
[fi (x, t)− f eq

i (x, t)] +∆t
(
1− χ

τ

)
F orig
i (x, t) .

(2.65)

where the distribution function is defined as

fi (x, t) =

(
1 +

1

2τ

)
f orig
i (x, t)− 1

2τ
f eq,orig
i (x, t)− χ∆tF orig

i (x, t) . (2.66)

The first two velocity moments of the newly defined distribution function fi (x, t)

are calculated as 



∑

i

fi = ρ

∑

i

ξifi = ρu− χ∆tρg.

(2.67)

One may observe that adopting different values of χ leads to different integration

schemes for the force term:

(I) Explicit scheme (χ = 0): This force model, as previously discussed in Section

2.2, was firstly proposed by Martys et al. [130]. It is observed that the time

integration of the force term F orig
i (x, t) over one time-step is treated with

a 1st-order explicit scheme. Since χ = 0, the first two moments of fi (x, t)

in Equation (2.67) are as the same as the ones of f orig
i (x, t). Hence there

is no need to take into account the body force effect when calculating the

macroscopic velocity. However, by means of the Chapman-Enskog analysis,

Guo et al. [62] showed that this explicit scheme introduces some errors in

the presence of a time-varying non-uniform body force.

(II) Semi-implicit scheme (χ = 0.5): This force model is previously shown as

Equation (2.61) to (2.63), which is proposed by Guo et al. in [62]. As shown

in Equation (2.61), the collision and force terms are both integrated in time
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using a 2nd-order trapezoidal scheme. Guo et al. [62] showed that this model

introduces the lowest errors among the existing force models.

(III) Implicit scheme (χ = 1): The last case uses a fully implicit scheme for

integrating the force term in time along the characteristic line, which is

however 1st-order accurate in time and also needs the body force effect to

be considered in the computation of macroscopic velocities.

For more comparisons of these force models, one can refer to our submitted

paper in [113]. Here we shall only extract the following discussion of the choice of

the force model in this study. In the present work, the semi-implicit force model

(II) is adopted, because: (1) it can be systematically derived from the discrete

Boltzmann equation with the help of the Hermite expansions; (2) a 2nd-order

accuracy can be assured via a change of variables; (3) it introduces less errors

than other force models, especially when the body force is not constant in space

and time.

2.5 Multi-scale analysis

Before moving on to the numerical application of the LBM, it is necessary to verify

that through calculating the distribution functions in the LBE, the coresponding

macroscopic variables satisfy the N-S equations. The underlying philosophy can

be found through a multi-scale Chapman-Enskog analysis. Such Chapman-Enskog

analysis on the LBE has been illustrated in many published articles such as [24, 67],

however it is difficult to include all the details in an article, which may add barri-

ers for fully understanding the procedure. Besides, the Chapman-Enskog analysis

with complete details on the LBE with Guo’s force term [62] is rarely seen in the

literature. In this section, the Chapman-Enskog multi-scale analysis will be em-

ployed for the LBE with Guo’s force term [62] with all the necessary details and

middle terms, among which the most important ones are marked in boxes.

2.5.1 Starting from the lattice Boltzmann equation

The starting point is the standard LBE with Guo’s force term [62], i.e.

fi (x+ ξi∆t, t +∆t)− fi (x, t) = −1

τ
[fi (x, t)− f eq

i (x, t)] +∆tFi (x, t) , (2.68)
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where the distribution function is defined in a way that the macroscopic fluid

density and the flow velocity are calculated as




ρ =
∑

i

fi,

ρu∗ =
∑

i

ξifi +
∆t

2
F ,

(2.69)

in which the fluid velocity is newly marked as u∗ to be distinguished from Equation

(2.56), and F = ρg is the external body force. The coefficient of the force term in

Equation (2.62) is absorbed into the force term, defined as

Fi =

(
1− ∆t

2τ

)
wi

[
ei − u∗

c2s
+

(ei · u∗) ei

c4s

]
· F . (2.70)

The equilibrium distribution function in Guo’s model [62] is given as

f eq
i = wiρ

[
1 +

ξi · u∗

c2s
+

u∗u∗ : (ξiξi − c2sI)

2c4s

]
. (2.71)

Once again, one should keep in mind that the involved velocity term u∗ in Equation

(2.71) is different from that in Equation (2.57), although the two equations are

written in the same appearance. The leading velocity moments of the equilibrium

distribution function are




∑

i

f eq
i = ρ,

∑

i

ξif
eq
i = ρu∗,

∑

i

ξiξif
eq
i = ρu∗u∗ + ρc2sI.

(2.72)

2.5.2 Adopting Taylor expansion and multi-scale expansion

The very first step of the multi-scale analysis is applying a 2nd-order Taylor ex-

pansion around (x, t) in Equation (2.68), which yields

∆t
∂fi
∂t

+ ξi∆t · ∂fi
∂x

+
1

2

[
∆t2

∂2fi
∂t2

+2∆t (ξi∆t) · ∂2fi
∂t∂x

+∆t2 (ξiξi) :
∂2fi
∂x2

]

+
1

τ
(fi − f eq

i )−∆tFi = 0.

(2.73)

Then, a series of multi-scale expansions is introduced here to analyze Equation

(2.73), which are expressed as

fi = f
(0)
i + εf

(1)
i + · · · , (2.74)
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∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
+ · · · , (2.75)

∂

∂x
= ε

∂

∂x1

+ · · · , (2.76)

Fi = εF
(1)
i + · · · , (2.77)

F = εF (1) + · · · , (2.78)

where ε is a small positive parameter that leads to two smaller space scales and

one smaller time scales, i.e. t1 = εt, t2 = ε2t, and x1 = εx. F (1) is the external

force at the scale of O (ε1), and F
(1)
i is the discrete force term at O (ε1) scale. It is

important to note that these multi-scale expansions are not written in a complete

form, for instance the time derivative at t0 time scale and the space derivative at

x0 space scale are not emphasized here. We will not dig deep into the underlying

mechanism in this study. Instead, by knowing that the expansions (2.74-2.78) is

commonly used for illustrating the recovery of the N-S equations from the LBE, as

being adopted in [24, 67], we shall accept these formulas and focus on the details

of the following discussion on the recovery of the N-S equations.

Introducing the above multi-scale expansions to substitute the derivatives in

Equation (2.73) and reserving only the terms up to the order of O (ε2), the deriva-

tives are expanded as

∂fi
∂t

= ε
∂f

(0)
i

∂t1
+ ε2

∂f
(0)
i

∂t2
+ ε2

∂f
(1)
i

∂t2
+O

(
ε3
)
, (2.79)

∂fi
∂x

= ε
∂f

(0)
i

∂x1
+ ε2

∂f
(1)
i

∂x1
+O

(
ε3
)
, (2.80)

∂2fi
∂t2

= ε2
∂2f

(0)
i

∂t21
+O

(
ε3
)
, (2.81)

∂2fi
∂t∂x

= ε2
∂2f

(0)
i

∂t1∂x1
+O

(
ε3
)
, (2.82)

∂2fi
∂x2

= ε2
∂2f

(0)
i

∂x2
1

+O
(
ε3
)
. (2.83)
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Thus Equation (2.73) becomes:

1

τ∆t

(
f
(0)
i − f eq

i + εf
(1)
i + ε2f

(2)
i

)
− εF

(1)
i + ε

∂f
(0)
i

∂t1
+ εξi ·

∂f
(0)
i

∂x1

+ ε2
∂f

(0)
i

∂t2
+ ε2

∂f
(1)
i

∂t1
+ ε2ξi ·

∂f
(1)
i

∂x1

+ ε2
∆t

2

(
∂2f

(0)
i

∂t21
+ 2ξi ·

∂2f
(0)
i

∂t1∂x1
+ ξiξi :

∂2f
(0)
i

∂x2
1

)
+O

(
ε3
)
= 0.

(2.84)

Neglecting the high order terms and comparing the two sides of the above equation,

the equation at each scale reads

O
(
ε0
)
: 0 =

1

τ∆t

(
f
(0)
i − f eq

i

)
, (2.85)

O
(
ε1
)
: 0 =

1

τ∆t
f
(1)
i + D1f

(0)
i − F

(1)
i , (2.86)

O
(
ε2
)
:

− 1

τ∆t
f
(2)
i =

∂f
(0)
i

∂t2
+ D1f

(1)
i

+
∆t

2

(
∂2f

(0)
i

∂t21
+ 2ξi ·

∂2f
(0)
i

∂t1∂x1

+ ξiξi :
∂2f

(0)
i

∂x2
1

)
,

(2.87)

where the operator Dk is defined as Dkf =
f

∂tk
+ ξi ·

f

xk

. By calculating the time

and space derivatives of the terms from Equation (2.86) at O (ε1), which are

∂2f
(0)
i

∂t21
+ ξi ·

∂2f
(0)
i

∂t1∂x1
= − 1

τ∆t

∂f
(1)
i

∂t1
+

∂F
(1)
i

∂t1
, (2.88)

∂2f
(0)
i

∂t1∂x1

+ ξi ·
∂2f

(0)
i

∂x2
1

= − 1

τ∆t

∂f
(1)
i

∂x1

+
∂F

(1)
i

∂x1

, (2.89)

the terms inside the parentheses in Equation (2.87) can be further simplified as

∂2f
(0)
i

∂t21
+ 2ξi ·

∂2f
(0)
i

∂t1∂x1
+ ξiξi :

∂2f
(0)
i

∂x2
1

= − 1

τ∆t
D1f

(1)
i + D1F

(1)
i . (2.90)

Hence the balance of the coefficients at O (ε2) reads

O
(
ε2
)
: − 1

τ∆t
f
(2)
i =

∂f
(0)
i

∂t2
+

(
1− 1

2τ

)
D1f

(1)
i +

∆t

2
D1F

(1)
i . (2.91)
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2.5.3 Velocity moments of associated ingredients

Based on the equality of the coefficients at different scales, i.e. Equation (2.85),

(2.86) and (2.91), the core procedure of the Chapman-Enskog analysis can be

carried out by calculating the velocity moments on both sides of these equations.

For the sake of simplicity and the clarity of this procedure, the velocity moments of

all the ingredients at each scales are better to be specified in advance. The velocity

moments concerned are the ones up to the 3rd-order of f (0), Fi and F
(1)
i , as well

as the ones up to the 2nd-order of f (1). Hereinafter, we note the 2nd-order moment

of distribution functions as Π and the 3rd-order moment as Γ , i.e. Π =
∑
i

ξiξifi

and Γ =
∑
i

ξiξiξifi. Additional superscripts like "�(0)" can be added to indicate

the operations at the corresponding scales, for example Γ (0) =
∑
i

ξiξiξif
(0)
i .

It can be obviously obtained from Equation (2.85) that

f
(0)
i = f eq

i . (2.92)

Based on Equation (2.72), the distribution function f
(0)
i satisfies





∑

i

f
(0)
i = ρ,

∑

i

ξif
(0)
i = ρu∗,

Π(0) = ρu∗u∗ + ρc2sI.

(2.93)

It is also known that the velocity moments of the distribution function can be

computed by definition, as shown in Equation (2.69). Combining Equation (2.69),

(2.93) and the truncated expansion fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i , the several moments

of f (1)
i and f

(2)
i can be obtained after simple arithmetic operations, which are





∑

i

f
(1)
i = 0

∑

i

ξif
(1)
i = −∆t

2
F ,

(2.94)

and ∑

i

f
(2)
i = 0. (2.95)

For the moment, the 3rd-order moment of f (0)
i and the 2nd-order moment of f (1)

remain unclear, we will come to them later.

As for the force term Fi, it is obviously observed that its definition in Equation

(2.70) matches the form of Equation (A.5), hence its velocity moments can be
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easily obtained as 



∑

i

Fi = 0,

∑

i

ξiFi =

(
1− 1

2τ

)
F ,

∑

i

ξiξiFi =

(
1− 1

2τ

)
2u∗F .

(2.96)

Similarly, based on the definition of the force term at O (ε1) scale in Equation

(2.77), the following moments can be obtained,





∑

i

F
(1)
i = 0,

∑

i

ξiF
(1)
i =

(
1− 1

2τ

)
F (1),

∑

i

ξiξiF
(1)
i =

(
1− 1

2τ

)
2u∗F (1)

(2.97)

2.5.4 Velocity moment of O
(
ε1
)

and O
(
ε2
)

terms

By adopting Equations (2.93-2.97), the velocity moments on both sides of Equation

(2.86) and (2.91) can be specified.

(i) The 0th-order velocity moment of the O (ε1) Equation (2.86) is computed as

∂ρ

∂t1
+∇1 · (ρu∗) = 0 , (2.98)

where the operator ∇ represents the space derivative: ∇ =
∂

∂x
, and the

subscript number indicates the operation scale, for example ∇1 =
∂

∂x1
.

(ii) The 1st-order moment of the O (ε1) Equation (2.86) reads

∂ (ρu∗)

∂t1
+∇1 ·Π(0) = F (1) . (2.99)

(iii) Similarly, The 0th-order velocity moment of the O (ε2) Equation (2.91) is

∂ρ

∂t2
= 0 . (2.100)
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(iv) The 1st-order velocity moment of the O (ε2) Equation (2.91) is

∂ (ρu∗)

∂t2
+

(
1− 1

2τ

)(
∇1 ·Π(1)

)
= −∆t

(
1− 1

2τ

)
∇1 ·

(
u∗F (1)

)
. (2.101)

Note that the 2nd-order moment term Π(1) is still unclear for the moment.

In the next paragraph, Π(1) will be specified.

2.5.5 Specifying Π(1)

From Equation (2.86), f (1)
i can be expressed as

f
(1)
i = −τ∆t

(
D1f

(0)
i − F

(1)
i

)
. (2.102)

Thus Π(1) becomes

Π(1) = −τ∆t

[
∂Π(0)

∂t1
+∇1 · Γ (0) −

(
1− 1

2τ

)
2u∗F (1)

]

= −τ∆t

[
∂ (ρu∗u∗)

∂t1
+ c2s

∂ρ

∂t1
I +∇1 · Γ (0) −

(
1− 1

2τ

)
2u∗F (1)

] (2.103)

where Equations (2.93) and (2.97) are adopted. The four terms in the square

bracket above will be computed one by one, in a tensor form where l, m and n are

indexes.

(i) Specifying
∂ (ρu∗u∗)

∂t1
, i.e.

∂ (ρu∗
l u

∗
m)

∂t1
, needs much work. We shall start from

rewriting Equation (2.98) and Equation (2.99) in a tensor form, which gives

∂ρ

∂t1
+

∂ (ρu∗
n)

∂x1n

= 0 (2.104)

and
∂ (ρu∗

m)

∂t1
+

∂

∂x1n

(
ρu∗

mu
∗
n + ρc2sδmn

)
= F (1)

m , (2.105)

where δmn is the Kronecker delta symbol. By noting that
∂ (ρu∗

m)

∂t1
= ρ

∂u∗
m

∂t1
+

u∗
m

∂ρ

∂t1
and using Equation (2.104), Equation (2.105) can be rewritten as

ρ
∂u∗

m

∂t1
− u∗

m

(ρu∗
n)

∂x1n
+

∂

∂x1n

(
ρu∗

mu
∗
n + ρc2sδmn

)
= F (1)

m . (2.106)

We also have
∂ (ρu∗

l u
∗
m)

∂t1
= ρu∗

l

∂u∗
m

∂t1
+ u∗

m

∂ (ρu∗
l )

∂t1
. (2.107)
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The two components at the right-hand side can be found in Equations (2.105)

and (2.106). A small trick is done here to match the first term in Equation

(2.105) with the second component, by using another set of indexes to rewrite

Equation (2.105) as

∂ (ρu∗
l )

∂t1
+

∂

∂x1n

(
ρu∗

l u
∗
n + ρc2sδln

)
= F

(1)
l . (2.108)

Based on Equations (2.106) and Equation (2.108),
∂ρu∗

l u
∗
m

∂t1
can be temporar-

ily expressed as

∂ (ρu∗
l u

∗
m)

∂t1
= ρu∗

l

∂u∗
m

∂t1
+ u∗

m

∂ (ρu∗
l )

∂t1

= u∗
lF

(1)
m + u∗

mF
(1)
l

+ u∗
l u

∗
m

∂ (ρu∗
n)

∂x1n

− u∗
l

∂ (ρu∗
mu

∗
n)

∂x1n

− u∗
m

∂ (ρu∗
l u

∗
n)

∂x1n

− c2s

(
u∗
l

∂ρ

∂xm
+ u∗

m

∂ρ

∂xl

)
.

(2.109)

Furthermore, the three terms in the second line of the above equation can

be further condensed as

u∗
l u

∗
m

∂ (ρu∗
n)

∂x1n

− u∗
l

∂ (ρu∗
mu

∗
n)

∂x1n

− u∗
m

∂ (ρu∗
l u

∗
n)

∂x1n

= −∂ (ρu∗
l u

∗
mu

∗
n)

∂x1n

. (2.110)

Finally,

∂ (ρu∗
l u

∗
m)

∂t1
= u∗

lF
(1)
m + u∗

mF
(1)
l

− c2s

(
u∗
l

∂ρ

∂x1m
+ u∗

m

∂ρ

∂x1l

)
− ∂ (ρu∗

l u
∗
mu

∗
n)

∂x1n

. (2.111)

(ii) The term c2s
∂ρ

∂t1
I is written in tensor form as

c2sδlm
∂ρ

∂t1
. (2.112)

(iii) Using a tensor form, Γ (0) can be rewritten as

Γ
(0)
lmn = ρc2s (u

∗
nδlm + u∗

mδln + u∗
l δmn) (2.113)
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with the help of Equation (2.71). Hence, ∇1 · Γ (0) can be expressed as

∂Γ
(0)
lmn

∂x1n
= c2s

[
δlm

∂ (ρu∗
n)

∂x1n
+

∂ (ρu∗
m)

∂x1l
+

∂ (ρu∗
l )

∂x1m

]
. (2.114)

(iv) The last term

[
−
(
1− 1

2τ

)
2u∗F (1)

]
is written in tensor form as

−
(
1− 1

2τ

)(
u∗
lF

(1)
m + u∗

mF
(1)
l

)
. (2.115)

Combining the four boxed expressions (2.111), (2.112), (2.114) and (2.115),

the unknown 2nd-order moment Π(1) can be expressed as

Π
(1)
lm =− τ∆t

[(
c2s
∂ (ρu∗

m)

∂x1l

− c2su
∗
m

∂ρ

∂xl

)
+

(
c2s
∂ (ρu∗

l )

∂x1m

− c2su
∗
l

∂ρ

∂xm

)

+

(
c2sδlm

∂ρ

∂t1
+ c2sδlm

∂ (ρu∗
n)

∂x1n

)
+

1

2τ

(
u∗
lF

(1)
m + u∗

mF
(1)
l

)
− ∂ (ρu∗

l u
∗
mu

∗
n)

∂xn

]

=− τ∆t

[
ρc2s

(
∂u∗

l

∂xm

+
∂u∗

m

∂xl

)
+

1

2τ

(
u∗
lF

(1)
m + u∗

mF
(1)
l

)
− ∂ (ρu∗

l u
∗
mu

∗
n)

∂xn

]
,

(2.116)

where Equation (2.104) is used in the simplification. The last term in the above

square bracket, i.e.

[
−∂ (ρu∗

l u
∗
mu

∗
n)

∂x1n

]
, which is in the order of O (u3), can be ne-

glected when the Mach number is relatively low.

Finally, Π(1) is approximated as

Π(1) = −τ∆tρc2s

[
∇1u

∗ + (∇1u
∗)T
]
−∆tu∗F (1) . (2.117)

Bringing Equation (2.117) back into the 1st-order velocity moments of the O (ε2)

coefficients, i.e. Equation (2.101), one can find out that the terms involving the

body force on both sides are balanced, which yields

∂ (ρu∗)

∂t2
−∆tc2s

(
τ − 1

2

)
∇1 ·

{
ρ
[
∇1u

∗ + (∇1u
∗)T
]}

= 0 . (2.118)

2.5.6 Recovering the Navier-Stokes equation

Till now, the 0th- and 1st-order moments of the coefficients at O (ε1) and O (ε2)

level are obtained, which are given in Equations (2.98), (2.99), (2.100) and (2.118).
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For convenience, they are gathered here as

∂ρ

∂t1
+∇1 · (ρu∗) = 0, (2.119)

∂ (ρu∗)

∂t1
+∇1 ·Π(0) = F (1), (2.120)

∂ρ

∂t2
= 0, (2.121)

∂ (ρu∗)

∂t2
−∆tc2s

(
τ − 1

2

)
∇1 ·

{
ρ
[
∇1u

∗ + (∇1u
∗)T
]}

= 0. (2.122)

By imposing the multi-scale expansion in a reversed direction on Equations (2.119-

2.122), the macroscopic equations at the original scale x and t can be obtained.

Adopting Equation (2.119) and Equation (2.121) yields

∂ρ

∂t
+∇ · (ρu∗) = 0. (2.123)

Using Equation (2.120) and Equation (2.122) yields

∂ (ρu∗)

∂t
+∇ · (ρu∗u∗)

=−∇
(
ρc2s
)
+∆tc2s

(
τ − 1

2

)
∇ ·
{
ρ
[
∇u∗ + (∇u∗)T

]}
+ F .

(2.124)

Comparing the above equation with the moment conservation equation of the

weakly compressible fluid flow, i.e. Equation (2.4), one can find out that in the

LBM, the fluid pressure is defined as

p = ρc2s (2.125)

and the fluid viscosity is defined as

ν = ∆tc2s

(
τ − 1

2

)
. (2.126)

As a summary, the N-S equations are recovered from the LB equation through

the Chapman-Enskog analysis. It is worth noticing that this recovery neglects a

O (u3) order term in the momentum conservation equation, which indicates that

the LBM actually simulates a weakly compressible flow at small Mach numbers to

approximate an incompressible fluid [33]. It is also observed from the Chapman-

Enskog analysis that the convection term and the pressure term in the momentum

conservation come from the 2nd-order velocity moment of f (0)
i , and the viscous term

is contributed from the 2nd-order velocity moment of f (1)
i .
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2.6 Boundary conditions

From the aforementioned Chapman-Enskog analysis, the LB equation is proved

to be 2nd-order accurate. However, the general accuracy of LBM does not only

depend on the LB equation, but also on the treatment of the boundary conditions,

since the distribution functions at the boundary are not calculated from the LBE.

Hence the mechanism of the distribution function behavior at the boundaries will

largely influence LBM’s overall performance. Not like the boundary conditions

in traditional CFD methods that directly involve the macroscopic variables, the

conditions for particle distribution functions in LBM need special consideration.

In this section, different types of boundary conditions used in the subsequent

simulations are presented.

2.6.1 Bounce back boundary condition

A non-slip solid wall can be mimicked by a bounce back boundary condition. The

particle distribution functions are assumed to bounce back without any loss in

the opposite direction after they hit the non-slip boundary. Since the distribution

function moves from one lattice node to its neighbor within one time-step, the

exact timing of the bounce back and its mathematical expression vary depending

on the location of the non-slip wall.

Figure 2.2 shows the case where the wall is located in the middle of two layers

of lattice nodes. The three post-collision distribution functions, which depart at

f8
pcf7

pc

i-1 i i+1

j-1

j

wall

f2 f5f6

f4
pc

Figure 2.2 – Half-way bounce back boundary condition

time t from node (i, j) towards the wall, will reach the wall at time (t+ 0.5∆t).

In the same way as for the collision procedure, the bounce back of the distribu-

tion function is assumed to take place instantaneously. Under this hypothesis, the

bounced back post-collision distribution functions go back to node (i, j) at the end

of the streaming process at time (t +∆t). This operation is called the half-way

bounce back. The missing distribution functions are computed as

f2 ((i, j) , t+∆t) = fpc
4 ((i, j) , t) , (2.127)
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f5 ((i, j) , t+∆t) = fpc
7 ((i, j) , t) , (2.128)

f6 ((i, j) , t+∆t) = fpc
8 ((i, j) , t) . (2.129)

Otherwise, if the wall is represented by lattice nodes as shown in Figure 2.3,

the unknown distribution functions of the boundary nodes at time (t+∆t) are

obtained from the post-collision distribution functions which come from the neigh-

boring inner layer of nodes at time t and reverse when colliding with the wall at

time instant (t +∆t). In this so-called full-way bounce back boundary condition,

f8
pc f7

pc

i-1 i i+1

f2

f5f6

f4
pc

wall

j+1

j

Figure 2.3 – Full-way bounce back boundary condition

the unknown distribution functions are calculated as

f2 ((i, j) , t+∆t) = fpc
4 ((i, j + 1) , t) , (2.130)

f5 ((i, j) , t+∆t) = fpc
7 ((i+ 1, j + 1) , t) , (2.131)

f6 ((i, j) , t+∆t) = fpc
8 ((i− 1, j + 1) , t) . (2.132)

It is noted here that in the standard bounce back model, a collision rule which

is similar to that of the full-way bounce back is employed in the fluid node closest

to the wall, instead of the boundary node. To be distinguished from the standard

bounce back, the full-way bounce back model presented here is also called the

modified bounce back model [72, 61].

The bounce back boundary condition enjoys much popularity due to its easy

implementation and high efficiency, thus it is recommended to apply bounce back

condition on straight walls if possible. For a more general case where the wall

is not located as in Figures 2.2 and 2.3, or even for curved walls, one can find

other appropriate boundary conditions, including the nodal bounce back boundary

condition [61] and the interpolation schemes based on bounce back [43, 133, 19],

etc.

2.6.2 Specular boundary condition

The specular boundary condition [117] is developed for free-slip boundaries. When

a distribution function hit the free-slip wall, its vertical velocity component is

assumed to bounce back in the opposite direction, while its tangential velocity
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remains unchanged. Similarly with the bounce back conditions, different wall po-

sitions should be treated individually. In the case shown in Figure 2.4, the free-slip

boundary lies in the middle between two node layers. Hence the distribution func-

i-1 i i+1

j-1

j

wall

f2 f5f6

f4
pc
f7
pcf8

pc

Figure 2.4 – Half-way specular boundary condition

tions with horizontal components, which are fpc
7 and fpc

8 , will shift to a neighbor

node after one time step. The distribution function with only a vertical compo-

nent, fpc
4 , moves similarly as for the half-way bounce back boundary condition.

Thus the unknown distribution functions of node (i, j) are obtained as

f2 ((i, j) , t +∆t) = fpc
4 ((i, j) , t) , (2.133)

f5 ((i, j) , t +∆t) = fpc
8 ((i− 1, j) , t) , (2.134)

f6 ((i, j) , t +∆t) = fpc
7 ((i+ 1, j) , t) . (2.135)

Specially, the specular boundary condition is identical to the symmetric bound-

ary condition. Taking the case in Figure 2.4 as an example and regarding the wall

as a symmetry axis, the fluid on both sides of the symmetry axis should be moving

in an opposite way, for instance

f2 ((i, j) , t) = f4 ((i, j − 1) , t) , (2.136)

fpc
5 ((i, j) , t) = fpc

8 ((i, j − 1) , t) , (2.137)

and so on. Following a standard streaming process, one can easily obtain the same

equations as for specular boundaries.

2.6.3 Zou-He boundary condition

The Zou-He boundary condition [72] is a pressure and velocity boundary condition

designed for moving boundaries. Taking the lid-driven cavity test case as an ex-

ample, the Zou-He boundary condition can be used for simulating the moving lid.

See Figure 2.5, the upper lid is moving horizontally with a speed of (u, v). For a

boundary node at the lid, the f1, f2, f3, f5 and f6 can be obtained from standard

LBE, while f4, f7 and f8 are unknown. From the definition of the distribution
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f2

f1

f5f6

f3

f7 f4 f8

(u,  v)

Figure 2.5 – Zou-He boundary condition

function, the fluid density and momentum can be expressed as

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8, (2.138)

ρu = f1 + f5 + f8 − f3 − f6 − f7, (2.139)

ρv = f2 + f5 + f6 − f4 − f7 − f8, (2.140)

where ρ is also an unknown variable, so another equation is needed to close the

system. He et al. [72] consider a bounce back mechanism of the non-equilibrium

distribution function

f4 − f eq
4 = f2 − f eq

2 , (2.141)

where the equilibrium part, f eq
2 and f eq

4 , can be calculated from Equation (2.57).

Combining the Equations (2.138-2.141) yields

ρ =
1

1 + v
[f0 + f1 + f3 + 2 (f2 + f5 + f6)] , (2.142)

f4 = f2 −
2

3
ρu, (2.143)

f7 = f5 +
1

2
(f1 − f3)−

1

6
ρv − 1

2
ρu, (2.144)

f8 = f6 +
1

2
(f3 − f1)−

1

6
ρv +

1

2
ρu. (2.145)

Similarly, Zou-He boundary condition for east, west or south wall can be easily

obtained.

2.6.4 Periodic boundary condition

The periodic boundary is a common boundary type, for example the inlet and

outlet boundaries of a Poiseuille flow driven by a constant volume force F , as shown
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i0
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iNiN-1

Figure 2.6 – Periodic boundary condition

in Figure 2.6. By definition, the fluid flowing out will enter the inlet again. Hence

the nodes at the inlet can read upstream information from the outlet boundary, and

the nodes at the outlet can read downstream information from the inlet. Taking

the node (i0, j) at the inlet as an example, its unknown distribution functions can

be obtained as

f1 ((i0, j) , t +∆t) = fpc
1 ((iN−1, j) , t) , (2.146)

f5 ((i0, j) , t +∆t) = fpc
5 ((iN−1, j − 1) , t) , (2.147)

f8 ((i0, j) , t +∆t) = fpc
8 ((iN−1, j + 1) , t) . (2.148)

2.6.5 Free-surface boundary condition

In the present study, the free-surface flow is simulated by a single-phase model,

where the free-surface is actually a boundary of the liquid domain. The adopted

boundary condition for the free-surface will be illustrated in Chapter 4.

2.7 Rescaling factors

In the practical implementation, it is suggested to use dimensionless variables in

the LBM code. For an arbitrary variable φ, its value in the physical scale is noted

as φphy, and its value in the lattice scale is noted as φlat. The rescaling factor

is Cφ, which indicates the ratio of the physical value φphy to the lattice value

φlat, i.e. Cφ =
φphy

φlat
. When initializing a simulation, the rescaling factors of the

length, time and density need to be specified at first, i.e. Cx, Ct and Cρ. Cx equals

Cx =
L

N
= δx for a given lattice resolution N in one characteristic length L. Ct is

the time-step, i.e. Ct = ∆t. Then the rescaling coefficients for velocity, viscosity,
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acceleration and pressure can be determined as




Cu =
Cx

Ct
,

Cν =
C2

x

Ct
,

Cg =
Cx

C2
t

,

Cp = CρCuCu

(2.149)

In the post-processing process, the physical variable value can be computed from

the corresponding lattice value and the rescaling factor as

φphy = Cφφ
lat. (2.150)

2.8 Algorithm

The LBM algorithm is summarized as follows, where the external force term is

calculated by Guo’s force model.

Algorithm: SRT-LBM

Initialization: Determine Cx, Ct and Cρ and initialize fi (x, t
0), ρ (x, t0),

u∗ (x, t0) and F (x, t0)

Routine:

Require: fi (x, tn), ρ (x, tn), u∗ (x, tn) and F (x, tn) from the previous time-step

1. Compute f eq
i (x, tn) with Equation (2.71) and Fi (x, t

n) with Equation (2.70),

2. Carry out the SRT collision process in Equation (2.50),

3. Carry out the streaming process in Equation (2.51), for obtaining fi (x, t
n+1),

4. Adapt the missing distribution functions from proper boundary conditions,

5. Compute ρ (x, tn+1) and u∗ (x, tn+1) by the definition (2.69), calculate the pres-

sure by definition (2.125), and adapt F (x, tn+1),

6. Goto 1. for the next time-step.

Post-processing: Output the values of the physical variables by Equation (2.150).
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Chapter 3

Regularized lattice Boltzmann

method

The adopted regularized lattice

Botzmann method (RLBM) [189]

is studied, improved and validated

in this chapter. Through a theo-

retical analysis based on the Her-

mite expansion and the Chapman-

Enskog analysis, it is proved that the

RLBM eliminates the undesired non-

hydrodynamic components in the dis-

tribution function, and subsequently

improves the stability of LBM. In ad-

dition, the starting order of the regu-

larization in the reference [189] is cor-

rected for the adopted force model,

which is verified by a force-driven

Poiseuille flow test-case. Based on this

corrected procedure, the Taylor-Green

vortex and the lid-driven cavity test-

cases are studied, through which the

performance of RLBM is analyzed in

terms of convergence, accuracy, CPU

time and the ability of stabilizing the

LBM scheme.

La méthode adoptée de Botz-

mann sur réseau régularisé (RLBM)

[189] est étudiée ; améliorée et va-

lidée dans ce chapitre. On montre,

par une analyse théorique basée sur

un développment en série de Her-

mite et l’analyse de Chapman-Enskog,

que la RLBM peut éliminer les com-

posants non-hydrodynamiques indési-

rables dans les fonctions de distribu-

tion et améliorer la stabilité de la

LBM. De plus, l’ordre auquel la régu-

larisation commence est adapté pout

le modèle de force adopté, ce qui est

validé par un cas test d’écoulements

de Poiseuille. Ensuite, les cas-tests des

tourbillons de Taylor-Green et de la

cavité entraînée sont étudies avec la

méthode RLB, proposée. Les perfor-

mances de la RLBM sont analysées en

termes de convergence, de précision,

de temps CPU et de capacité de sta-

bilisation.
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3.1. INSTABILITY ANALYSIS FROM THE VIEWPOINT OF REGULARIZATION

3.1 Instability analysis from the viewpoint of reg-

ularization

In the domain of fluid dynamics, the LBM serves as a numerical solver of the

governing equations for fluid flows, hence it has always been interesting and nec-

essary to make clear the potential sources that might cause numerical instabilities.

Different existing instability analyses have been reviewed in Section 1.3.1. Here,

in this section, the instability analysis for LBM is carried out from the viewpoint

of the regularization, based on the theoretical supports of Chapter 2.

3.1.1 Non-hydrodynamic information contained in the LBE

When the word instability is mentioned in this study, we mean the instability

that appears at the N-S level. It is well known that the N-S equation contains the

smallest amount of information compared with LBE and CBE, see Section 1.3.1.

The information loss from the CBE to N-S, as can be found in Chapter 2 for all

the details, is summarized as follows.

From Boltzmann level to lattice level

The continuous Boltzmann equation reads

∂f

∂t
+ ξ · ∇f = − 1

τ∆t
(f − f eq) + F, (3.1)

where F = −g · ∇ξf is the force term. The distribution function f , the equilib-

rium distribution function f eq and the force F can be substituted by full Hermite

expansions without any loss, which gives





f = ω

∞∑

n=0

1

n!
a(n) : H(n),

f eq = ω
∞∑

n=0

1

n!
a(n)

eq : H(n),

F = ω

∞∑

n=0

1

n!
a
(n)
F : H(n).

(3.2)

Then, it is proposed by the LB theory to replace the full Hermite expansions
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with the truncated ones, i.e.




f ≈ fN = ω
N∑

n=0

1

n!
a(n) : H(n),

f eq ≈ f eq,N = ω

N∑

n=0

1

n!
a(n)

eq : H(n),

F ≈ FN = ω
N∑

n=0

1

n!
a
(n)
F : H(n).

(3.3)

A common operation is to truncate the expansions at N = 2. The reason of

doing so is that the hydrodynamic moments of the original distribution function

in the velocity space stay unchanged after the truncation, thanks to the Hermite

polynomials. By making use of the Gauss-Hermite quadrature, the hydrodynamic

moments can be accurately reproduced based on only several distribution functions

with discrete velocities, i.e fN (x, ξi, t). Note that the variables in the CBE (3.1),

such as f (x, ξ, t), f eq (x, ξ, t) and F (x, ξ, t), are functions of x, ξ and t, which

indicates that the CBE (3.1) is valid at every point in the phase-space of (x, ξ, t).

Therefore, by setting ξ = ξi in Equation (3.1), one has

∂f

∂t

∣∣∣
ξ=ξi

+ ξi ·
∂f

∂x

∣∣∣
ξ=ξi

= − 1

τ∆t
[f (x, ξi, t)− f eq (x, ξi, t)] + F (x, ξi, t) . (3.4)

Due to the independence of the variables x, ξ and t, it is possible to rewrite the

derivatives as

∂f

∂t

∣∣∣
ξ=ξi

=
∂f (x, ξi, t)

∂t
and

∂f

∂x

∣∣∣
ξ=ξi

=
∂f (x, ξi, t)

∂x
, (3.5)

which allows one to obtain the Boltzmann equation on a discrete velocity space as

∂fN (x, ξi, t)

∂t
+ ξi · ∇fN (x, ξi, t)

=− 1

τ∆t

[
fN (x, ξi, t)− f eq,N (x, ξi, t)

]
+ FN (x, ξi, t) .

(3.6)

At last, by introducing the following definitions,

fi ≡
wif

N (x, ξi, t)

ω (ξi)
, f eq

i ≡ wif
eq,N (x, ξi, t)

ω (ξi)
and Fi ≡

wiF
N (x, ξi, t)

ω (ξi)
, (3.7)

the Boltzmann equation at the lattice level is obtained as

∂fi
∂t

+ ξi · ∇fi = − 1

τ∆t
(fi − f eq

i ) + Fi. (3.8)
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Notice that the variables, i.e. fi (x, t), f
eq
i (x, t) and Fi (x, t) are defined at the

lattice level. In the practice, a 1st-order up-wind approximation is adopted for the

left-hand side terms, which gives

fi (x+ ξi∆t, t+∆t)− fi (x, t) = −1

τ
[fi (x, t)− f eq

i (x, t)] +∆tFi (x, t) . (3.9)

It is now concluded that the information loss in the LBE (3.9), compared with

the CBE (3.1), is due to the truncation in the Hermite expansion, and the up-wind

approximation.

From lattice level to N-S level

The rest part of the journey from the Boltzmann level to the N-S level starts

from the LBE (3.9) and is guided by the multi-scale Chapman-Enskog analysis

as previously presented in Section 2.5. The Chapman-Enskog analysis expands

the distribution function as a summation of components on small scales that are

characterized by a small parameter ε, which gives

fi = f
(0)
i + εf

(1)
i + · · · . (3.10)

Following the mathematical derivations illustrated in Section 2.5, one may observe

that the high order components, i.e. f (n>3), are neglected in the above expansion.

Yet this truncation is still not explicitly expressed in the N-S equation. In fact,

the N-S equation can be recovered through the Chapman-Enskog analysis, as long

as the following velocity moments are held, i.e.




∑

i

f
(0)
i = ρ,

∑

i

ξif
(0)
i = ρu∗,

Π(0) = ρu∗u∗ + ρc2sI,

(3.11)





∑

i

f
(1)
i = 0,

∑

i

ξif
(1)
i = −∆t

2
F ,

Π(1) = −τ∆tρc2s

[
∇1u+ (∇1u)

T
]
−∆tu∗F (1),

(3.12)

and ∑

i

f
(2)
i = 0, (3.13)
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where u∗ is the fluid velocity, and F (1) is the O (ε1) component of the force F .

Shortly speaking, the N-S equations are only related to the first several velocity

moments of the distritbution function components of orders up to O (ε2). In other

words, as concluded by Zhang et al. [189], the distribution function in LBE (3.9)

may contain high order components that are not useful for recovering the N-S

equations but might destabilize the numerical simulation of LBM.

3.1.2 Hermite regularization of the non-equilibrium distri-

bution function

Discussion about the starting order of the regularization

Introducing the concept of the Hilbert space as used in [189], the truncated Her-

mite expansion (3.3) regularizes the corresponding functions into a sub-space H
N

spanned by the first N leading Hermite basis terms, namely in this case, into

H
2. Noticing that in the LBM algorithm (see Section 2.8), the equilibrium dis-

tribution function and the force term are both computed from the macroscopic

variables through

f eq
i = wiρ

[
1 +

ξi · u∗

c2s
+

u∗u∗ : (ξiξi − c2sI)

2c4s

]
. (3.14)

and

Fi =

(
1− ∆t

2τ

)
wi

[
ei − u∗

c2s
+

(ei · u∗) ei

c4s

]
· F , (3.15)

which guarantees that f eq
i and Fi are naturally inside the H

2 space. However,

the distribution function fi may somehow get some undesired non-hydrodynamic

information during the calculation, for instance from the treatment of boundary

conditions. Hence the purpose of adopting the regularization is to regularize the

distribution function fi into the H
2 space.

Splitting the distribution function fi into an equilibrium part f eq
i and a non-

equilibrium part fneq
i , one can extract the non-equilibrium part as

fneq
i = fi − f eq

i , (3.16)

where fneq
i is the part that contains undesired high order components.

Following the idea proposed in [189], after each streaming step, one replaces

fneq
i by fneq,N

i , which is a Hermite truncation series truncated at order N = 2

fneq,N
i = ω

N∑

n=0

1

n!
a
(n)
neq,N : H(n), (3.17)
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where the nth-order (n 6 N) expansion coefficient is computed as

a
(n)
neq,N = a(n)

neq =
∑

i

fneq,N
i H

(n)
i =

∑

i

(fi − f eq
i )H

(n)
i (3.18)

with the associated Hermite polynomials as





H(0) = 1,

H
(1) =

1

cs
ξi,

H
(2) =

1

c2s
ξiξi − I.

(3.19)

It is important to note here that, it is suggested by Zhang et al. [189] to start

the construction of fneq,N
i directly from the 2nd-order term, since the 0th-order and

1st-order terms are equal to zero by definition. However, this is true only with the

explicit force model (χ = 0, see Item (I) in Section 2.4). With the semi-implicit

force model (χ = 0.5, see Item (II) in Section 2.4) that is adopted in this study,

only the 0th-order expansion coefficient of fneq,N
i is equal to zero, i.e. a(0)

neq = 0 but

a
(1)
neq 6= 0. This is due to the existence of the force term Fi in the definition (2.63)

of fi. As a consequence, the construction of fneq,N
i must start from the 1st-order

term. In the present work, we choose to construct fneq,N
i up to the same order as

f eq
i , i.e. N = 2, which gives

fneq,N=2
i = wi

(
a(1)

neq ·H(1) +
1

2
a(2)

neq : H(2)

)

= wi

{[
∑

j

(
fj − f eq

j

) ej

cs

]
· ei

cs

+
1

2

[
∑

j

(
fj − f eq

j

)( 1

c2s
ejej − I

)]
:

(
1

c2s
ξiξi − I

)}
,

(3.20)

where j is another lattice index.

Validation: Poiseuille flow driven by a body force

A test case of 2D Poiseuille flow is carried out here to verify the importance

of including the 1st-order term in the regularization procedure as discussed in

the previous section. Figure 3.1 illustrates the configuration of the test-case. A

channel between two infinite non-slip plates is full of calm fluid, and a constant

body force F is imposed inside the channel to drive the flow. The body force is

simulated by the semi-implicit force model [62] (χ = 0.5, see Item (II) in Section
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Figure 3.1 – Configuration of the 2D Poiseuille flow test-case. A constant body
force F is imposed inside the channel between two non-slip solid plates. Periodic
boundary condition is applied at the left and right boundaries of the computation
domain.

2.4). The modified bounce-back boundary condition (see Section 2.6.1) is adopted

at the upper and bottom boundaries of the computation domain in order to ensure

the non-slip condition, and the periodic boundary condition (see Section 2.6.4) is

applied at the left and right boundaries. The analytical solution of the horizontal

fluid velocity along a vertical line across the channel is given as

u(y) =
g

2ν
y (H − y) , (3.21)

where H is the channel width, ν is the viscosity, and g is the acceleration induced

by the body force F . y denotes the y-coordinate with y = 0 at the bottom plate

and y = H at the upper plate. The Reynolds number is defined as

Re =
umaxH

ν
, (3.22)

where the maximum velocity is umax =
gH2

8ν
, which appears at the horizonal

centerline of the channel.

Two kinds of regularization procedure of the non-equilibrium distribution func-

tions are adopted. The first one starts from the 2nd-order term, as suggested in

[189]. The other one starts from the 1st-order term, i.e. Equation (3.20). The values

of some necessary parameters for the calculation are listed in Table 3.1.

Table 3.1 – Some necessary parameters for the 2D Poiseuille flow test-case.

Nx Ny Cx Ct τ g Re Ma

5 41 1.0 0.02 0.6697 0.01 10 0.0245

Figure 3.2 shows the numerical results of the two regularization schemes, and

the analytical solution as well. In this comparison, it can be clearly observed

that the regularization including both the 1st-order and the 2nd-order terms gives

a numerical result superimposed to the analytical solution. Whereas the result
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Figure 3.2 – Numerical results and the analytical solution of the horizontal velocity
along the vertical centerline for the 2D Poiseuille flow test-case.

obtained from the regularization starting directly from the 2nd-order term appears

much different from the analytical solution, due to the fact that the body force

effect has not been taken into account in the reconstruction of fneq,N=2
i . This

numerical example verifies the theoretical demonstration in the previous section,

confirming that it is necessary to start the Hermite regularization from the 1st-

order term when using the semi-implicit scheme for the force term.

3.2 Algorithm

Following the common practice, the LBE with a regularized distribution function

can be separated into a collision step and a streaming step as

Collision : fpc
i (x, t) = f eq

i (x, t) +

(
1− 1

τ

)
fneq,N=2
i (x, t) +∆tFi (x, t) ,

(3.23)

Streaming : fi (x+ ei∆t, t+∆t) = fpc
i (x, t) . (3.24)

Accordingly, the present RLBM algorithm can be summarized as follows,

Algorithm: RLBM

Require: fi (x, t
n), ρ (x, tn), u∗ (x, tn) and F (x, tn) from the previous time-step

1. Compute f eq
i (x, tn) with Equation (3.14) and Fi (x, t

n) with Equation (3.15),

2. Extract fneq
i (x, tn) by Equation (3.16),

3. Calculate a
(n)
neq from Equation (3.18),

4. Obtain fneq,N=2
i using Equation (3.20),
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5. Carry out the RSRT collision step in Equation (3.23),

6. Carry out the streaming step in Equation (3.24),

7. Adapt the missing distribution functions from proper boundary conditions,

8. Compute ρ (x, tn+1), u∗ (x, tn+1) by the definition in Equation (2.69),

9. Goto Step.1 for the next time-step.

3.3 Convergency analysis of the RLBM

Taylor-Green vortex

In this section, a Taylor-Green vortex test-case is studied in order to verify numer-

ically that the adopted regularization procedure does not affect the convergence

order of the LBM. As shown in Figure 3.3, the Taylor-Green vortex flow in a

square domain [0, L]× [0, L] with periodic boundary conditions is considered.
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Figure 3.3 – The initial state of the Taylor-Green vortex test-case at t = 0. The
color in the contour represents the relative velocity magnitude. The oriented arrow
indicates the relative velocity.

The analytical solution of the flow field is given as






vx (x, y, t) = −U0 cos (kx) sin (ky) e
−2k2νt,

vy (x, y, t) = U0 sin (kx) cos (ky) e
−2k2νt,

p (x, y, t) = p0 −
ρ0U

2
0

4
[cos (2kx) + cos (2ky)] e−4k2νt,

(3.25)

where vx and vy respectively denote the velocity components in the x- and y-

directions, and p = ρc2s is the pressure. The coefficient k is computed as k =
2π

L
.

U0 and p0 are the characteristic velocity and pressure. ν =
U0L

Re
is the kinematic
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viscosity, where the Reynolds number is chosen as Re = 100 in this test-case.

The total calculation time is set as T =
L

U0
. Figure 3.4 shows that the present

numerical results agree well with the analytical solution.
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(a) Present solution at t = T .
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Figure 3.4 – Comparison of the relative velocity fields of the Taylor-Green vortex
test-case at time t = T . The left subfigure shows the present RLBM solution with
a 513× 513 lattice, and the right one shows the analytical solution.

Convergence study

To evaluate the convergence order, the errors of the velocity fields are measured

for four lattice resolutions, which are Nx×Ny = 65×65, 129×129, 257×257 and

513×513, with Nx and Ny denoting respectively the number of discretization points

in the x- and y-directions. For all the four lattice resolutions, the dimensionless

relaxation time is fixed at τ = 0.596. The error is evaluated as

Error =

√√√√ 1

NxNy

∑

j

‖vnumj − vanaj ‖2
U2
0

, (3.26)

where vnumj = vnum (xj , T ) and vanaj = vana (xj , T ) denote the numerical and ana-

lytical velocity vectors at the jth-node at the final instant t = T . The numerical

results are obtained with both the SRT-LBM and the RLBM for comparison.

Table 3.3 lists the numerical errors for different mesh resolutions and the CPU

times (tCPU) consumed by the SRT-LBM and RLBM, in which the listed CPU

times are all relative to the first result obtained for the 65× 65 SRT-LBM calcu-

lation. One can clearly find out that the RLBM gives a slightly smaller error than

the SRT-LBM, although the RLBM is computationally more demanding than the

SRT-LBM.
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Table 3.3 – Numerical errors obtained for the Taylor-Green vortex test-case at
Re = 100 with τ = 0.596. The listed CPU times are relative to that of the 65×65
SRT-LBM result.

Mesh size ErrorSRT−LBM ErrorRLBM tCPU
SRT−LBM tCPU

RLBM

65× 65 3.1473× 10−4 2.9025× 10−4 1.0 1.5

129× 129 7.8366× 10−5 7.1902× 10−5 13.4 21.4

257× 257 2.0171× 10−5 1.8588× 10−5 253.8 394.2

513× 513 4.9317× 10−6 4.5245× 10−6 3618.2 5812.1
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Figure 3.5 – Convergence order of the SRT-LBM and RLBM on the Taylor-Green
vortex test-case.

Based on the data listed in Table 3.3, Figure 3.5 shows the convergence order of

the SRT-LBM and RLBM. It is observed that both the SRT-LBM and the RLBM

exhibit 2nd-order convergence, which means that the regularization procedure does

not degrade the convergence order of the LBM.

3.4 Numerical validation on the lid-driven cavity

In order to further assess the ability of the adopted RLBM, and to validate the

theoretical analysis in the previous sections that the regularization procedure fil-

ters out the undesired high-order non-equilibrium terms which are surplus for the

recovery of the N-S equation and may introduce instability in the calculation, the

benchmark test-case of the lid-driven cavity flow is studied.

Figure 3.6 illustrates the basic set-up of the simulation. A square cavity L×L

is filled with fluid, which is initially set to have zero velocity and a uniform density
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ρ0. The upper lid is moving with a constant horizontal velocity Ulid. Both the fixed
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Figure 3.6 – Configuration of the lid-driven cavity flow test-case.

walls and the moving lid have non-slip surfaces. The Reynolds number is defined

as

Re =
UlidL

ν
, (3.27)

where ν is the kinetic viscosity.

3.4.1 Regularization-based boundary condition

The equilibrium part In this calculation, a boundary condition for straight

boundaries [102] which reconstructs the distribution functions based on the veloc-

ity gradient is adopted. This boundary condition splits the distribution function

into an equilibrium part and a non-equilibrium part and treats them separately.

Two macroscopic variables, the density and the velocity, are needed for com-

puting the equilibrium distribution function. The boundary velocities are given by

the configuration, i.e. (0, 0) for the fixed walls and (Ulid, 0) for the moving lid. The

density can be calculated from

ρ = ρI + ρII + ρIII, (3.28)

ρun = ρI − ρII, (3.29)

where un is the boundary velocity in the perpendicular direction. ρIII is the sum-

mation of the distribution functions parallel to the boundary, including f0. ρI is

the summation of the distribution functions pointing to the exterior of the compu-

tation domain, which can be obtained from the streaming process, while ρII is the

summation of the distribution functions pointing to the interior of the domain,
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which are unknown. The above equations yield

ρ =
1

1 + un

(ρIII + 2ρI) . (3.30)

Taking a node at the lid as an example,





ρI = f2 + f5 + f6,

ρII = f4 + f7 + f8,

ρIII = f0 + f1 + f3,

un = 0,

(3.31)

hence the density of the lid node is

ρ = f0 + f1 + f3 + 2 (f2 + f5 + f6) . (3.32)

Then the equilibrium distribution function can be computed from the definition

in Equation (3.14).

The non-equilibrium part Latt et al. [102] proposed to compute the non-

equilibrium distribution function fneq
i from the velocity gradient, based on the

Chapman-Enskog analysis as previously presented in Section 2.5. In the following

demonstration, it should be noticed that all the components contributed by the

force term that originally contained in the distribution function equal to zero in

the lid-driven cavity cases, therefore the terms associated with the force disappear.

From Equations (2.85) and (2.86), fneq
i can be expressed as fneq

i ≈ εf
(1)
i , where

f
(1)
i = −τ∆twiD1

[
ρ+

ξi · ρu∗

c2s
+

(ξiξi − c2sI) : ρu
∗u∗

2c4s

]
. (3.33)

Noting that the operator D1 contains two derivatives, for example D1fi =
∂fi
∂t1

+

ξi ·
∂fi
∂x1

, the full expression of the above equation consists of six terms, i.e.

f
(1)
i = −τ∆twi

{
∂ρ

∂t1
+

ξi

c2s
· ∂ρu

∗

∂t1
+

1

2c4s

(
ξiξi − c2sI

)
:
∂ (ρu∗u∗)

∂t1

+ξi ·
∂ρ

∂t1
+

1

c2s
(ξi ·∇1) (ξi · ρu∗) +

1

2c4s
(ξi ·∇1)

[(
ξiξi − c2sI

)
: ρu∗u∗

]}
.

(3.34)

Among the six terms in the brace, the term
1

2c4s
(ξiξi − c2sI) :

∂ (ρu∗u∗)

∂t1
is
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simplified as follows. The time derivative term is firstly written as

∂ (ρu∗u∗)

∂t1
= u∗

∂ (ρu∗)

∂t1
+

∂ (ρu∗)

∂t1
u∗ − ∂ρ

∂t1
u∗u∗. (3.35)

With the help of Equation (2.98), the last term becomes − ∂ρ

∂t1
u∗u∗ = ∇1 ·

(ρu∗)u∗u∗, which turns out to be a high-order term O (u3) and can be neglected

at low Mach numbers. Bringing Equation (3.35) back, and using the symmetric

nature of the tensor (ξiξi − c2sI) yields

1

2c4s

(
ξiξi − c2sI

)
:
∂ (ρu∗u∗)

∂t1
=

1

c4s

(
ξiξi − c2sI

)
:
∂ (ρu∗)

∂t1
u∗. (3.36)

Using Equation (2.99) and neglecting the resulting O (u3) term yields

1

2c4s

(
ξiξi − c2sI

)
:
∂ (ρu∗u∗)

∂t1
= − 1

c2s

(
ξiξi − c2sI

)
: (∇1ρ)u

∗. (3.37)

By inserting Equation (3.37), (2.98) and (2.99) into Equation (3.34), f (1)
i equals

f
(1)
i = −τ∆twi

[
−∇1 · (ρu∗)− ξi · ∇1 : ρu

∗u∗

c2s

]

− τ∆twi

[
−ξi · ∇1ρ−

(ξiξi − c2sI) : (∇1ρ)u
∗

c2s

]

− τ∆twi

[
ξi · ∇1ρ+

ξiξi : ∇1 (ρu
∗)

c2s
+

1

2c4s
ξi · ∇1

((
ξiξi − c2sI

)
: ρu∗u∗

)
]
,

(3.38)

where the underlined terms can be further simplified as

−∇1 · (ρu∗)− (ξiξi − c2sI) : (∇1ρ)u
∗

c2s
+

ξiξi : ∇1 (ρu
∗)

c2s

=
1

c2s

(
ξiξi − c2sI

)
: [∇1 (ρu

∗)− (∇1ρ)u
∗]

=
ρ

c2s

(
ξiξi − c2sI

)
: ∇1u

∗.

(3.39)

Finally the f
(1)
i is obtained as

f
(1)
i =− τ∆twi

[
ρ

c2s

(
ξiξi − c2sI

)
: ∇1u

∗ − ξi · ∇1 : ρu
∗u∗

c2s

+
1

2c4s
ξi · ∇1

((
ξiξi − c2sI

)
: ρu∗u∗

)] (3.40)

During the evaluation of the moment tensor Π(1), only the first term contributes,
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while the other two vanish. Hence Latt et al. suggest to approximate f
(1)
i as f (1)

i =

−τ∆twiρ

c2s
(ξiξi − c2sI) : ∇1u

∗.

To validate this, Π(1) is checked.

Π(1) =
∑

i

(
Q+ c2sI

)
f
(1)
i =

∑

i

Qf
(1)
i

= −τ∆tρ

c2s

∑

i

wiQQ : (∇1u
∗)

(3.41)

where Q is the abbreviation for Q = ξiξi − c2sI. Based on the property of the

lattice basis as presented in Equation (2.60), Π(1) becomes

Π(1) = −τ∆tρc2s

[
∇1u

∗ + (∇1u
∗)T
]
, (3.42)

which is identical to the original one in Equation (2.117). As the moment ten-

sor Π(1) has remained the same, the suggested approximation is proved to be

reasonable. Thus, the non-equilibrium distribution function is obtained as

fneq
i ≈ εf

(1)
i = −ρτ∆twi

c2s

(
ξiξi − c2sI

)
: ∇u∗. (3.43)

A regularization explanation of the boundary condition Such evolution of

the non-equilibrium distribution function substitute introduced in [102] is delicate

and complex. Alternatively, following the regularization idea presented in Section

3.1.2, the same substitute can be obtained straightforwardly and succinctly. With-

out obstructing the recovery of the N-S equation, the non-equilibrium distribution

function can be replaced by a substitute obtained from a regularization procedure

up to the 2nd-order, as shown in Equation (3.17). For an explicit force model as

used in [102], or a system without external forces as in this case, the first several

Hermite expansion coefficients of fneq
i are





a(0)neq = ε
∑

i

f
(1)
i = 0,

a(1)
neq =

ε

cs

∑

i

ξif
(1)
i = 0,

a(2)
neq =

ε2

c2s
Π(1) − Iε

∑

i

f
(1)
i = τ∆tρ

[
∇u∗ + (∇u∗)T

]
.

(3.44)
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Hence the regularized non-equilibrium distribution function is computed as

fneq
i = wi

[
a(0)neqH

(0) + a(1)
neq ·H(1) +

1

2
a(2)
neq : H

(2)

]

=
τ∆tρwi

2

[
∇u∗ + (∇u∗)T

]
: H(2)

=
τ∆tρwi

c2s

(
ξiξi − c2sI

)
: ∇u∗,

(3.45)

where the last step is obtained from the symmetry of the tensor H(2). The expres-

sion (3.45) is coincident with Equation (3.43), which additionally explains that

this boundary treatment (I) takes into account the viscous effect, since the vis-

cous term in the N-S equation is completely contributed from the term Π(1), as

can be seen in the Chapman-Enskog analysis in Section 2.5; (II) constructs the

non-equilibrium distribution function on the H
2 space, and makes it more coher-

ent with the RLBM scheme compared with the alternatively adoptable Zou-He

boundary condition (see Section 2.6.3).

3.4.2 Numerical results

The numerical results at a Reynolds number of Re = 1000 are obtained by the

RLBM with lattice resolutions of 65×65, 129×129, 257×257 and 513×513. For

the four lattice resolutions, the dimensionless relaxation time is kept at τ = 0.506.

Some necessary parameters are listed in Table 3.4.

Table 3.4 – Some necessary parameters for the lid-driven cavity flow test-case.

Lattice resolution Cx Ct τ Re Ma

65× 65 1.00× 100 1.0000× 100 0.506 1000 5.413× 10−2

129× 129 5.00× 10−1 2.5000× 10−1 0.506 1000 2.706× 10−2

257× 257 2.50× 10−1 6.2500× 10−2 0.506 1000 1.353× 10−2

513× 513 1.25× 10−1 1.5625× 10−2 0.506 1000 6.766× 10−3

Besides, the results obtained by the widely used multi-relaxation-time (MRT)

LBM are used for comparison. The MRT collision model [99] is a widely known

collision model, which projects the distribution functions onto a moment space by

a transformation matrix, and enforces the collision model on the resulting moments

with different artificial relaxation times. The readers can refer to Appendix B for

more details of the implementation of the MRT-LBM. The calculation parameters

for the MRT-LBM are of the same values as listed in Table 3.4.
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It is important to note here that the MRT collision model is actually a precur-

sor to the SRT collision model, as reviewed in Section 1.2.1. The LBM is originally

developed with an MRT collision model, before SRT collision model became more

popular due to its great simplicity. However, since the SRT-LBM has numerical

instability problems in some situations, the MRT-LBM came back to the stage,

because it allows one to freely choose relaxation rates for different modes of distri-

bution functions and thus offers a possibility to reduce non-hydrodynamic noises.

Such freedom of freely choosing relaxation parameters makes MRT-LBM a more

general form of LBM scheme. To give an example, it is well known that when all

the nine relaxation parameters for D2Q9 lattice are fixed at 1/τ , where this τ is

related to the fluid viscosity, the MRT-LBM degenerates to the SRT-LBM [99]

.It is also pointed out in [56] that when the free relaxation parameters, i.e. the

parameters other than those for conserved modes or viscous modes, are chosen to

be −1, the MRT-LBM is coincident with the regularized LBM.

To be frank, the rule for optimizing the multiple relaxation parameters is not

very clear to us. Throughout the thesis, we chose to use the parameter set in

[55, 123] for the MRT-LBM calculations, and we refer to this ad hoc configuration

of MRT-LBM when we analyze numerical results.
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Velocity profiles along the centerlines

Botella and Peyret [18] provide a solution to the benchmark using the high-order

spectral (HOS) method, which is a more accurate result than the classic reference

by Ghia et al. [47]. In this section, the present results are compared with the

results from [18]. To give a visual impression, the horizontal velocity profile on the

vertical centerline and the vertical velocity profile on the horizontal centerline are

shown in Figure 3.7. The presented results are obtained with a 257× 257 lattice.

One can observe that the present results agree very well with the reference.
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Figure 3.7 – Velocity components along the centerlines of the cavity at Re = 1000,
obtained by the RLBM with a 257× 257 lattice.

Accuracy and efficiency

Table 3.5 and 3.6 provide the data obtained with the 257× 257 lattice, and they

also include the results obtained by the standard SRT-LBM and the MRT-LBM.

The L2-error of the velocity components is computed, with repect to the bench-

mark results from [18]. For example the L2-error of the listed horizontal velocity

components is

Error =

√∑
(u− uRef)

2

√∑
u2
Ref

. (3.46)

From the comparison in Table 3.5 and 3.6, it can be clearly observed that the

RLBM results are the closest to the reference data at nearly all the given positions,

among the three schemes.
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Table 3.5 – Horizontal velocity components obtained by
RLBM, SRT-LBM, and MRT-LBM schemes at the positions
given in [18] and their relative errors Error. The lattice reso-
lution is 257× 257.

y/L uRef/Ulid uRSRT/Ulid uSRT/Ulid uMRT/Ulid

0.0000 0.0000000 0.0000000 0.0000000 0.0000000

0.0547 -0.1812881 -0.1815121 -0.1820047 -0.1795431

0.0625 -0.2023300 -0.2026170 -0.2031464 -0.2006022

0.0703 -0.2228955 -0.2232416 -0.2238035 -0.2210958

0.1016 -0.3004561 -0.3007684 -0.3010249 -0.2983061

0.1719 -0.3885691 -0.3889747 -0.3893449 -0.3871512

0.2813 -0.2803696 -0.2805875 -0.2805801 -0.2798501

0.4531 -0.1081999 -0.1082245 -0.1081470 -0.1079095

0.5000 -0.0620561 -0.0620681 -0.0620034 -0.0619087

0.6172 0.0570178 0.0570890 0.0571987 0.05684200

0.7344 0.1886747 0.1888557 0.1889682 0.1881098

0.8516 0.3372212 0.3375879 0.3378672 0.3359855

0.9531 0.4723329 0.4728675 0.4732317 0.4694680

0.9609 0.5169277 0.5176146 0.5179538 0.5139478

0.9688 0.5808359 0.5807513 0.5810100 0.5769885

0.9766 0.6644227 0.6641956 0.6644091 0.6607027

1.0000 1.0000000 1.0000000 1.0000000 1.0000000

Error(%) – 0.0733860 0.1440734 0.4695529

Table 3.6 – Vertical velocity components obtained by RLBM,
SRT-LBM, and MRT-LBM schemes at the positions given in
[18] and their relative errors Error. The lattice resolution is
257× 257.

x/L vRef/Ulid vRSRT/Ulid vSRT/Ulid vMRT/Ulid

0.0000 0.0000000 0.0000000 0.0000000 0.0000000

0.0625 0.2807056 0.2811274 0.2814148 0.2791190

0.0703 0.2962703 0.2967280 0.2971174 0.2946330

0.0781 0.3099097 0.3103925 0.3107283 0.3082328

0.0938 0.3330442 0.3334273 0.3338186 0.3311815

0.1563 0.3769189 0.3773262 0.3776694 0.3752602

0.2266 0.3339924 0.3342824 0.3344441 0.3329850

0.2344 0.3253592 0.3256191 0.3258275 0.3243955

0.5000 -0.0257995 -0.0257725 -0.0257910 -0.0257658

0.8047 -0.3202137 -0.3203897 -0.3205207 -0.3192220

0.8594 -0.4264545 -0.4267146 -0.4268297 -0.4256038

0.9063 -0.5264392 -0.5269581 -0.5275407 -0.5247051

0.9453 -0.4103754 -0.4106261 -0.4115131 -0.4076321

0.9531 -0.3553213 -0.3554337 -0.3561798 -0.3525346

0.9609 -0.2936869 -0.2736557 -0.2943594 -0.2909414

0.9688 -0.2279225 -0.2285921 -0.2291229 -0.2261418

1.0000 0.0000000 0.0000000 0.0000000 0.0000000

Error(%) – 0.1070014 0.2263028 0.5209056
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Moreover, the numerical errors of the 12 cases, i.e. with the three numerical

schemes in the four lattice resolutions, are listed in Table 3.7, and Figure 3.8 is

drawn based on the relative errors. From these error slopes, one can observe an

Table 3.7 – L2-error of the velocity components on the centerlines, with the SRT-
LBM, MRT-LBM and RLBM schemes, and their consumed CPU times. The listed
CPU times are relative values compared with that of the 65× 65 SRT-LBM case.

Numerical scheme Lattice resolution Erroru Errorv tCPU

SRT-LBM

65× 65 5.1765 9.9370 1.00

129× 129 0.5637 0.9638 14.08

257× 257 0.1441 0.2263 199.49

513× 513 0.0505 0.0663 3008.21

MRT-LBM

65× 65 9.7068 14.6869 1.07

129× 129 1.9448 1.6764 16.11

257× 257 0.4696 0.5209 225.28

513× 513 0.1103 0.1443 3456.85

RLBM

65× 65 5.2084 9.8242 1.27

129× 129 0.5753 1.0117 18.93

209× 209 0.1843 0.1979 199.46

257× 257 0.0734 0.1070 266.12

513× 513 0.0389 0.0487 4077.48
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Figure 3.8 – L2-error of the velocity components along the centerlines. The results
are obtained by the SRT-LBM, MRT-LBM and RLBM schemes.

overall convergence between 1st-order and 2nd-order for the three schemes. The

convergence speed has a decay when the lattice resolution gets larger, which may

be due to the existence of the difference between the converged LBM results and

the HOS result, since the relative error is already of less than 1% for the RLBM

73



CHAPTER 3. REGULARIZED LATTICE BOLTZMANN METHOD

between the two. Considering the numerical errors of the velocity components, the

SRT-LBM and the RLBM show a better accuracy than the MRT-LBM with the

same lattice resolution, and the RLBM is slightly more accurate than the SRT-

LBM. The consistency of the adopted boundary condition and the RLBM may

contribute to this advantage.

It is more practically meaningful to consider the CPU time to accuracy ratio

when discussing numerical accuracy. In Table 3.7, the listed CPU times are relative

values compared with that for the 65×65 SRT-LBM case. The CPU times in Table

3.7 indicate that the RLBM is more time-consuming than the other two schemes.

However, if we compare the RLBM results with a 209 × 209 lattice, which cost

almost the same CPU time for one time-step than the 257×257 SRT-LBM, the two

schemes show an equivalent accuracy, thus a comparable CPU time to accuracy

ratio. In this context, the relatively larger time demanding nature of the RLBM

is acceptable, and it offers better accuracy with the same lattice resolution.

Pressure field

As pointed out in Section 3.1.2, the RLBM is thought to be numerically more

stable than the original SRT-LBM, as it filters out the undesired high-order non-

equilibrium modes. In the lid-driven cavity flow test-case, the discontinuous ve-

locity at the upper corners makes it difficult to predict the flow field in their

neighborhood. Figure 3.9 shows the pressure fields obtained with the SRT-LBM,

MRT-LBM and RLBM with four different lattice resolutions. In the SRT-LBM

results, one can clearly observe some chessboard-liked pressure fluctuations in-

troduced from the singularity at the upper corners. With the lattice resolution

augmenting, this fluctuation weakens in terms of magnitude, but is still visible.

As for the MRT-LBM and RLBM, the pressure fields are much smoother. The

RLBM succeeds in filtering out the pressure fluctuations, as expected. The MRT-

LBM is indeed helpful in stablizing the pressure field, but considering the efficiency

analysis in the previous section, the RLBM scheme seems more suitable for this

test-case.
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(b) MRT-LBM, 64× 64
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(c) RLBM, 64× 64
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(d) SRT-LBM, 128 × 128
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(e) MRT-LBM, 128× 128
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(f) RLBM, 128× 128
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(g) SRT-LBM, 256 × 256
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(j) SRT-LBM, 512× 512
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(k) MRT-LBM, 512 × 512
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Figure 3.9 – Pressure fields of the SRT-LBM, MRT-LBM and RLBM results.
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Chapter 4

Free-surface model

Following the original idea in [94],

the adopted single-phase free-surface

model is elaborated thoroughly in this

chapter, including the free-surface rep-

resentation, the flag evolution, the

mass conservation and the treatment

of boundary condition. By implement-

ing the free-surface model in the

RLBM, two validation test-cases are

carried out, i.e. the viscous standing

wave and the dambreak flow. In the

last part, the free-surface model is

modified to provide a countermeasure

against the dilemma of the original

model in certain situations. The new

model is validated in the dambreak

test-case.

Le modèle de surface libre mo-

nophase adopté est détaillé dans ce

chapitre suivant l’idée original dans

[94], en termes de représentation de

la surface libre, d’évolution de la fonc-

tion indicatrice, de conservation de la

masse et de traitement des conditions

aux limites. Deux cas tests, la vague

visqueuse stationnaire et un écoule-

ment de dambreak, sont étudiés pour

valider ce modèle de surface libre dqns

la RLBM. Dans la dernière partie,

le modèle de surface libre est modi-

fié pour traiter le dilemme du modèle

original dans certaines situations. Le

nouveau modèle est validé sur le cas

test du dambreak.
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4.1. FREE-SURFACE REPRESENTATION

4.1 Free-surface representation

The adopted single-phase free-surface model uses a volume-of-fluid (VOF) ap-

proach to represent the free-surface. Figure 4.1 shows the mesh generation for

a free-surface flow case. A background mesh is projected on the computation do-

gas

liquid

interface

gas

Figure 4.1 – Mesh generation for free-surface flows

main. The cells, where the free-surface profile passes, are called interface cells. The

rest of the discretized cells which contain only the liquid or the gas are respectively

liquid cells and gas cells. These three categories of cells are characterized by the

volume fraction α, which indicates the volume proportion of the liquid component

in one unit control volume. The volume fraction value can vary from 0 to 1, where

α = 1 for liquid cells, 0 < α < 1 for interface cells, and α = 0 for gas cells. Based

on the volume fraction, the mass of the liquid component within an individual cell

can be computed as

M = αρV0, (4.1)

where ρ is the liquid density, and V0 is the fixed cell volume which can be set

as unit. It is very important to point out that there should be always a layer

of interface cells lying between the liquid cells and the gas cells, i.e. the direct

attachment of a fluid cell and a gas cell is forbidden.

The Cartesian nature of the background mesh coincides with the requirement

of the lattice representation of the LBM. Here, a cell-centered lattice is adopted,

where the lattice nodes are located in the center of the cells. In addition to the

distribution functions, the cell information, i.e. the cell flag, the volume fraction
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and the cell mass, are also stored in the lattice nodes.

4.2 Flag evolution

The fluid flow causes mass fluxes between the lattice cells. As a result, the volume

fraction changes at every time step, and the cell flag may have to change accord-

ingly. Thus, the criterion for the volume fraction that will trigger flag changes

should be built up. In this model, two types of transformation are defined. If an

interface cell gets enough mass during one time-step ∆t and its resulting volume

fraction temporarily passes 1, then this cell will be reinitialized as a liquid cell at

the new time-step. For simplicity, we call this cell a filled interface cell. Figure 4.2

shows this transformation. One may notice that this flag change leads to a direct

contact of a liquid cell and a gas cell, which should be avoided. Hence the neigh-

boring gas cells will turn into interface cells to guarantee a continuous interface

layer. Similarly, the other transformation procedure is shown in Figure 4.3. If the

Figure 4.2 – When an interface cell turns into a liquid cell, its neighboring gas
cells will become interface cells

Figure 4.3 – When an interface cell turns into a gas cell, its neighboring liquid
cells will become interface cells

volume fraction of an interface cell temporarily drops down to 0 due to negative

mass flux, this cell, which is named an emptied interface cell here, will become a

gas cell. As an accompanying reactivity, its neighboring liquid cells will turn into

interface cells.

The mentioned criteria for the two types of flag change, namely α > 1 for

filled interface cells and α < 0 for emptied interface cells, are a little bit extreme,

because cells that marginally satisfy these conditions will trigger flag changes in

itself and its neighbors, and also the accompanying mass exchanges. Based on this
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consideration, a small margin is added in this study, which means an interface cell

with a volume fraction α > 1 + β is identified as a filled interface cell, and with

α < −β as an emptied cell. The small positive value β is set to be β = 0.001 in

the simulations presented in this thesis.

Apart from these basic rules of interface movement, we shall also highlight four

key points that should be carefully treated.

(I) Firstly, all the flag changes during one time-step must be completed simul-

taneously. Due to the sequence nature of code implementation, the interface

cells are treated one by one. If the flag change is a real-time process, the

final state of the flag array after one time step will be highly depending

on the treating order. In order to avoid this uncertainty, when determining

which cell should change its flag at time t, the searching process must be

based on the same flag array of time t. The cells who will experience a flag

change are recorded in a waiting-to-change list, and their flags are changed

at the same time, after all the cells are examined.

(II) Secondly, filled interface cells and emptied interface cells cannot be adjoin-

ing, see Figure 4.4. A filled interface cell and an adjacent emptied interface

cell will lead to an interrupted free-surface profile and a direct contact be-

tween a liquid cell and a gas cell, which disobeys the basic rules of free-

surface representation as aforementioned in Section 4.1. This phenomenon

is not expected to occur, because it indicates a too violent mass flux, but it

may happen numerically in practice. Although this problem might be solved

if a refined lattice or a smaller time step is adopted, we still desire a robust

numerical model that won’t be interrupted by this accidental error. In this

context, a compromising solution is provided here, that the flag change is

operated to only one cell between the two adjacent filled and emptied inter-

face cells. The criterion is based on the volume fractions of the two involved

cells. If the volume fraction of the filled interface cell is relatively farther

from 0.5 than that of the emptied interface cell, the flag change is imposed

to the filled interface cell, while the emptied cell remains unchanged as an

interface cell, and vice versa.

(III) Thirdly, if isolated interface cells are found inside the liquid or gas domain,

they are forced to turn into a liquid or a gas cell, respectively.

(IV) Lastly, the newly formed interface cells due to the flag change in their filled

interface cell neighbors need to be reinitialized. Their density and velocity
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(a) A filled interface cell and an emptied interface cell are neighbours in the x- or the y-
direction.

(b) A filled interface cell and an emptied interface cell are neighbors in the diagonal
direction.

Figure 4.4 – If a filled interface cell and an emptied interface cell are neighbors, the
resulting free-surface profile will be discontinuous, and a direct contact of liquid
cells and gas cells may occur, which should be prevented.

are interpolated from the surrounding liquid and interface cells as




ρ (x, t) =

∑
i

ρ (x+ ξi∆t, t)

∑
i

1
,∀flag (x+ ξi∆t, t) 6= gas,

u (x, t) =

∑
i

u (x+ ξi∆t, t)

∑
i

1
,∀flag (x+ ξi∆t, t) 6= gas.

(4.2)

Then the distribution function is initialized with the equilibrium distribu-

tion function calculated from interpolated macroscopic parameters in Equa-

tion (4.2).

4.3 Mass conservation

The mass conservation is very important for the adopted free-surface model, be-

cause frequent cell reinitializations are carried out during the calculation, which

are accompanied with complex mass exchange with surrounding cells. The cell

mass is adapted two times in one time-step. The first one is a global operation for

all the lattice cells which takes place during the streaming process, while the sec-

ond one is a regional manipulation after the flag change, which is imposed to the

cells that are involved in the flag change. In the present model, the mass evolution
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method is developed in a way that the total mass of the fluid system is conserved

by definition, which can be concluded from the following analysis.

4.3.1 Mass evolution during the streaming process

The definition (2.69) indicates that the distribution function fi (x, t) represents

a proportion of fluid at position x that propagates in the i direction. Hence the

streaming process of the distribution functions brings mass advection between

lattice cells. In the present model, the mass of one cell is modified from its value

at time t by adding the temporal summation of the mass increment in all the

lattice directions, which can be expressed as

M (x, t+∆t) = M (x, t) +
∑

i

∆Mi (x, t). (4.3)

∆Mi is the net mass increment in direction i, which is computed as

∆Mi (x, t) = Ci

[
fpc
ī

(x+ ξi∆t, t)− fpc
i (x, t)

]
, (4.4)

where ī indicates the opposite direction of i, and Ci is a coefficient related to the

cell flags and the volume fractions of the cells at x and x+ ξi∆t. The value of the

coefficient Ci is given in Table 4.1.

Table 4.1 – Value of the coefficient Ci in the mass evolution equation (4.3).

flag (x) flag (x+ ξi∆t) Ci

gas
gas 0

interface 0

interface

gas 0

interface
1

2
[α(x) + α(x+ ξi∆t)]

liquid 1

liquid
interface 1

liquid 1

The coefficient Ci is assigned based on three considerations.

(I) Since the gas is not considered in this model, the coefficient Ci is zero for

any gas cell and its neighbors.

(II) Concerning the mass exchange between two interface cells, the coefficient

is set to be Ci =
1

2
[α(x) + α(x+ ξi∆t)]. This is designed in a way that
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the mass fluxes across the cell interface from both sides are balanced, where

the local volume fraction at the cell interface is interpolated from a linear

approximation, as shown in Figure 4.5.

i

x��

cell interface

x

i

Figure 4.5 – Mass exchange between two adjacent interface cells. The mass fluxes
across the cell interface are balanced.

(III) If a liquid cell is associated in the mass exchange, the coefficient Ci should

always equals 1 due to the constraint of α = 1 in the liquid domain. It is

argued [94] that such assignment is reasonable since the interface of a liquid

cell and an interface cell is also fully occupied by liquid.

By selecting the coefficient Ci as mentioned above, Equation (4.4) satisfies a

kind of symmetry from a global viewpoint, because for two adjacent cells, the

amount of mass loss in one cell is always equal to the mass gained in others. In

this way, the total mass of the system is conserved by construction.

4.3.2 Mass evolution due to the flag change

The mass change also takes place when the cell flag changes. Figure 4.6 shows an

example of a filled interface cell. The volume fraction of a filled interface cell is

n

i i+1i-1

j

j-1

j+1

Figure 4.6 – When a filled interface cell at position x turns into a liquid cell, the
excess cell mass is distributed to the neighboring interface cells at position x+ξi∆t
that satisfy n · ξi > 0. The distribution is based on a weighting coefficient related
to the interface normal vector n.
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originally such that α > 1 + β before the flag change, while it is fixed at 1 in the

newly formed liquid cell after the flag change. Hence a sudden drop in the cell

mass appears, i.e. ∆Mex = (α− 1) ρV0, where ∆Mex denotes the excess mass that

is distributed to the neighboring interface cells for the sake of mass conservation.

In the present model, the distribution is based on a weighting function asso-

ciated with the normal vector at the interface, which leads the excess mass to be

transferred in the interface motion direction. It is important to note here that by

saying in the interface motion direction, we mean the trend of distributing larger

percentage of the excess mass along the normal vector direction, since the normal

vector as being calculated in the following formula is not exactly the real interface

motion direction, i.e.

n (i, j) =
∇α

‖∇α‖ , (4.5)

where

∇α ≈
(
α (i+ 1, j)− α (i− 1, j)

2∆x
,
α (i, j + 1)− α (i, j − 1)

2∆x

)
. (4.6)

Marking the position of the filled interface cell as x, the interface cell at position

x+ ξi∆t and time t +∆t will receive a cell mass of

∆Mreceive (x+ ξi∆t) =
wM

i∑
i ωi

∆Mex (x) , (4.7)

where the weighting coefficient wM
i is calculated as

wM
i =

{
n · ξi∀n · ξi > 0,

0∀n · ξi 6 0.
(4.8)

Similarly, for emptied interface cells, the excess mass is ∆Mex = −αρV0, and the

weighting coefficient for distributing the excess mass is computed as

wM
i =

{
−n · ξi∀n · ξi < 0,

0∀n · ξi > 0.
(4.9)

These distributions of excess cell mass are both designed to ensure a perfect bal-

ance of the cell mass loss and the cell mass gain.

In addition, if single isolated interface cells exist as described in the (III) situa-

tion in Section 4.2, the excess mass due to the enforced flag change in the isolated

cells are equally distributed to all the interface cells.

∆Mreceive =
∆Mex

NI

, (4.10)
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where NI is the number of interface cells, and ∆Mex = ρ (α− 1)V0 for the isolated

cells in the liquid domain, and ∆Mex = ραV0 for the isolated cells in the gas

domain.

4.4 Reconstruction of the distribution functions at

the free-surface

As the gas motion is not considered, the distribution functions at the free-surface

that ought to be streamed from the gas side are missing. The present model

reconstructs the missing distribution functions based on the dynamic free-surface

boundary condition that the gas pressure imposed on the interface is balanced by

the hydrodynamic force from the liquid domain.

The reconstruction procedure [94] is given as

fpc
i (x− ξi∆t, t) = f eq

i + f eq
ī

− fpc
ī

(x, t) , (4.11)

where the subscript i indicates a direction pointing to an interface cell from a

neighboring gas cell, and ī indicates the opposite direction of i. The equilibrium

distribution functions involved are calculated from the gas density ρG and the

interface velocity uI, where the gas density is proportional to the gas pressure

as ρG =
1

c2s
pG under the ideal gas assumption with cs being the sound speed.

The resulting distribution function is stored in the involved gas cell, and it is

transmitted to the interface cell in a standard streaming process, so a post-collision

mark pc is added to it.

It is worth noticing that half of the distribution functions at the interface

should be reconstructed, no matter whether the resourcing post-collision distribu-

tion functions come from gas cells or not. As shown in Figure 4.7, the distribution

function in the direction i that satisfies n · ei 6 0 are reconstructed by Equation

(4.11). The underlying mechanism can be found in the calculation of the hydro-

dynamic force exerted at the interface. Let us mark the interface cell as x, then

the hydrodynamic force per unit area exerted on the interface can be computed

from the velocity moment of all the distribution functions that pass through the
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FREE-SURFACE

gas

liquid

interface

Figure 4.7 – At the interface, distribution functions in the direction i that satisfies
n · ei 6 0 are reconstructed.

interface, which can be expressed [94] as

F = n ·
[
∑

i,n·ξi>0

fpc
i (x, t) (ei − u) (ei − u)

+
∑

i,n·ξi60

fpc
i (x− ξi∆t, t) (ei − u) (ei − u)

]

= n ·
∑

i,n·ξi60

(
f eq
i + f eq

ī

)
(ei − u) (ei − u)

= n ·
∑

i

f eq
i (ei − u) (ei − u) .

(4.12)

By recalling the expression of the velocity moments of the equilibrium distribution

function in Equation (2.93), the dynamic force finally equals

F = n ·
[
∑

i

f eq
i ξiξi − 2u

∑

i

f eq
i + uu

∑

i

f eq
i

]

= n · (ρGuu+ pGI − 2ρGuu+ ρGuu)

= n · pGI.

(4.13)

From the above derivation, one can find out that the hydronamic force per

unit area and the gas pressure are balanced when half of the distribution func-

tions at the interface are reconstructed by Equation (4.11). The reconstruction in

[94] is originally designed for simulating metal foaming phenomenon, where the

gas pressure pG varies in time. Here in the marine engineering applications, the

pressure in the open air can be regarded as constant, so the gas pressure is set to

be pG = ρLc
2
s, where ρL is the liquid density.

Discussion on the dynamic free-surface boundary condition The adopted

reconstruction method is shown to guarantee the pressure continuity across the
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free-surface. However, to what extent the real physical boundary condition at the

free-surface is satisfied remains to be specified.

The dynamic free-surface boundary condition describes the continuity of stresses

across the free-surface [31]. For Newtonian fluids, the stress field at the free-surface

can be expressed as

t = T · n = (−p∗ + ζtrD)n+ 2µD · n, (4.14)

where p∗ = p−pG is the relative pressure and T is the stress tensor of a Newtonian

fluid as

T = (−p∗ + ζtrD)1+ 2µD, (4.15)

with D being the rate of strain tensor as

D =
1

2

[
∇u+ (∇u)T

]
. (4.16)

If the surface tension is negligible, as in this case, the stress vector at the free-

surface should be zero, i.e. t = 0 [31]. Projecting this expression onto the normal

and tangential direction at the free-surface, the zero normal stress and zero tan-

gential shear stress can be expressed as

p∗ = ζ∇ · u+ 2µn · ∂u
∂n

, (4.17)

τ · D · n = 0. (4.18)

By comparing the dynamic boundary condition that the adopted reconstruction

method satisfies, i.e. Equation (4.13), and the physical one, i.e. Equation (4.17)

and (4.18), one can observe that the adopted reconstruction method (4.11) only

considers the normal stress continuity without any viscous effects. Considering

that the viscosity is usually neglected near the free-surface in marine engineering

problems, the current reconstruction method is acceptable.

4.5 Algorithm

With all the operations expounded in the previous sections, a robust free-surface

model is developed. The implementation of the free-surface model in the RLBM

(FS-RLBM) is summarized as
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Algorithm: FS-RLBM

Require: fi (x, t
n), ρ (x, tn), u (x, tn), F (x, tn), α (x, tn), m (x, tn) and flag array

from the previous time-step
1. For liquid and interface cells, implement the collision and streaming procedure

(i.e. from Step.1 to Step.6 in the RLBM algorithm shown in Section3.2),

2. For interface cells, compute the missing distribution functions by Equation

(4.11),

3. For liquid and interface cells, calculate ρ (x, tn+1), u (x, tn+1) by Equation

(2.69),

4. For liquid and interface cells, adapt m (x, tn+1) by Equation (4.3) and compute

α (x, tn+1),

5. Copy the flag array at tn to an array flag∗,

6. For interface cells, check α (x, tn+1) with the criterion in Section 4.2 based on

the flag, and the temporary flag (x, tn+1) is stored in flag∗ array,

7. Check if filled interface cells and emptied interface cells are adjacent and if

isolated interface cell exists, and determine the flag∗ array,

8. Modify flag (x, tn+1) by copying data from flag∗ array,

9. Initilize the newly formed interface cells by Equation (4.2),

10. For the cells involved in the flag change, modify m (x, tn+1) by Equation (4.7)

and adapt α (x, tn+1),

11. Goto Step.1 for the next time-step.

4.6 Validations

4.6.1 Viscous standing wave

In this problem, a periodic standing wave of wavelength λ = 2.0m and wave

steepness ε = 0.05 is considered. The wave steepness is the ratio of the wave

height 2A to the wavelength λ, i.e. ε = 2A/λ where A is the wave amplitude. It

is pointed out in [31, 116] that the potential theory gives an approximate solution

to this problem, and the velocity potential reads

ϕ (x, y, t) = −Ag

ω

cosh [k (y +H)]

cosh (kH)
cos (kx) cos (ωt) , (4.19)
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where g is the gravity acceleration, k = 2π/λ is the wave number, H is the

water depth of calm water, and consequently ω =
√
gk tanh (kH) is the angular

frequency, and T = 2π/ω is the wave period. One can observe that Equation

(4.19) not only is periodic in the x-direction, but also satisfies symmetry at x =
iλ

2
, ∀i ∈ Z. Hence the computation domain is chosen to be of width L = λ/2 with

symmetric boundary conditions used on the two vertical walls, as shown in Figure

4.8.
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Figure 4.8 – Initial state of the viscous standing wave problem.

At time t = 0, the free surface profile is a horizontal line at y = 0, and the

pressure field is assumed to be hydrostatic. Besides, the velocity field is initialized

as the gradient of the velocity potential ∇ϕ0, where ϕ0 = ϕ (x, y, 0). From simple

computation, one can calculate that the maximum velocity appears at t = 0, which

is umax =
Agk

ω
. Consequently, the Reynolds number is defined as Re =

λumax

ν
.

If the fluid is inviscid, the total kinetic energy of the system is conserved in

time, and the Reynolds number is infinite. However, for a viscous case as discussed

here, the Reynolds number is of finite value, and the kinetic energy dissipates due

to the viscous effect. For the viscous standing wave at Reynolds number Re = 100,

the snapshots of the flow field at some typical time instants are shown in Figure

4.9, where the results are obtained from the present RLBM scheme with a lattice

resolution of 80 in one wave height.

Generally speaking, the RLBM scheme works well with the adopted free-surface

model and provides reasonable results. However, small horizontal velocities are ob-

served in the area close to the free-surface at t = 0.25T and t = 0.75T when the

velocity in the fluid domain is supposed to be zero, and the free-surface is not

perfectly horizontal at t = 0.50T and t = 1.00T . One of the reasons is that a

slight difference of the time period exists between the numerical and the analyt-

ical solutions, and another reason may lie in the discrete nature of the interface
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Figure 4.9 – Snapshots of the viscous standing wave flow at Re = 100, where the
color indicates the relative velocity magnitude u/umax. The results are obtained
from the present RLBM scheme with a lattice resolution of 2A/∆x = 80.

evolution mechanism of the adopted free-surface model which might introduce

small perturbations from the staircase-liked interface layer.

For a more precise validation, we extract the evolution of the total kinetic

energy of the system in Figure 4.10, where the analytical solution of the kinetic

energy damping is given in [31, 116] as

Et =
λA2g

8
e−4νk2t [1 + cos (2ωt)] . (4.20)

As one can observe, for the adopted four lattice resolutions (2A/∆x = 20, 40, 60

and 80), the results converge as the grid is refined. The numerical results have a

time period very close to the analytical solution, whereas the damping rate of the

kinetic energy is a little higher than in the analytical prediction. It is necessary to

note that the analytical solution, which is obtained from the linear theory, has its

own error at the wave steepness ε = 0.05. This error would be reduced for smaller
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Figure 4.10 – Decay of the total kinetic energy in the viscous standing wave prob-
lem.

amplitude waves. However, in order to get converged numerical results with an ad-

equate lattice resolution, the calculation would become extremely costly, therefore

we stop at the present wave steepness for the moment. In addition, the relative

kinetic energy value is close to 0 at t = 0.25T and t = 0.75T , which suggests

that the aforementioned velocity errors near the surface are acceptable. Moreover,

the numerical results of the SRT-LBM and RLBM schemes are compared to each

other, where the same lattice resolution 2A/∆x = 80 is adopted.

Figure 4.11a and 4.11b show the time evolution of the total kinetic energy

and the water depth at the left (x = 0) and the right (x = L) boundaries of the

computation domain. These two results are nearly coincident, which indicates that

the regularization procedure brings no extra numerical dissipation for free-surface

flows at small Reynolds numbers.
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(b) Water depth at the left (x = 0) and the
right (x = L) boundaries

Figure 4.11 – Time evolution of the total kinetic energy of the system and the
water depth at both the left (x = 0) and the right (x = L) boundaries of the
computation domain, based on the results obtained with SRT-LBM and RLBM
with a lattice resolution of 2A/∆x = 80.

92



4.6. VALIDATIONS

4.6.2 Dambreak flow

The dambreak flow is a much more violent situation. Figure 4.12 gives the initial

configuration of the simulation, which is of the same size as in the experiment

conducted by Lobovsky et al. [122]. A 600mm (L)× 300mm (H) water column is

Figure 4.12 – Initial configuration of the dambreak problem (the unit length is
1mm)

reserved to the right side in a 1610mm × 900mm water tank. The water column

collapses due to gravity and impacts on the left vertical wall. Four pressure sensors

are distributed vertically on the left wall to record the impact pressure signals,

which are fixed at the heights 3mm, 15mm, 30mm and 80mm and respectively

marked as P1, P2, P3 and P4. Apart from the impact pressures, the free-surface

shape is also of great interest. In the experiment [122], the free-surface shape is

depicted by the water front position and the water level at several chosen locations,

which are positioned downstream from the right wall at 300mm, 865mm, 1114mm

and 1362.5mm and hereafter labeled as H1, H2, H3 and H4. Here we examine the

same variables. We must mention that there are two major differences between the

numerical and the experimental configurations. The first one is that the water tank

in the simulation is a sealed one, whereas it has an open roof in the experiment.

The sealed tank will limit the water jet within a finite height and makes it fall

back earlier than in the experiment. This falling back behavior occurs late in

time, outside the period that we are interested in, hence the open boundary is not

considered in the simulation for now. The second one is that the dambreak flow

in the experiment is triggered by fast releasing a vertical wall which initially hold

the water column, while in the numerical simulation the flow automatically begins

when the clock starts to tick.

93



CHAPTER 4. FREE-SURFACE MODEL

Free-surface profile and the pressure field

In the present work, the water column is discretized by a 600 × 300 lattice and

initialized as hydrostatic. The discrete time step is ∆t = 1 × 10−5s. The gravity

acceleration is g = −9.81m/s2. The equivalent Reynolds number of this first sim-

ulation is Re = Au/ν = 2.0 × 104 and the Froude number is Fr = u/
√
gH = 2,

where the characteristic velocity u is the predicted water front speed
√
2gH, and

the characteristic length A is chosen to be the same as in the experiment which is

the distance between the water column and the left wall. Since the viscous effect

is not dominant, a half-way specular reflecting boundary condition (see Section

2.6.2) is adopted to mimic free-slip solid walls.

Figure 4.13 shows a time series of free-surface profiles obtained by the SRT-

LBM and RLBM schemes, in comparison with the ones from the experiment [122].

Right after the experiment begins, one can observe in Figure 4.13b that some fluid

is lifted up near the upper-left corner of the water column by the releasing gate,

whereas the numerical free-surface remains smooth because of the absence of a

numerical moving gate. At t = 449.9ms the water front reaches the left wall (see

Figure 4.13e), then the leading water climbs upwards by inertia (see Figure 4.13f)

and falls back due to gravity (see Figure 4.13g-4.13h). The falling water and the

spreading current form an air bubble and a water jet (see Figure 4.13i).

In general, both the SRT-LBM and RLBM schemes succeed to reproduce the

dambreak flow. However in the SRT-LBM results, small perturbations are observed

on the free-surface throughtout the whole process, especially at the top of the water

column and near the water front. Correspondingly, some abrupt pressure signals

are introduced into the pressure field from these perturbations. These pressure

signals ripple on the main pressure field, propagate inwards from the free-surface

and reflect on the water tank boundaries, which can clearly be seen in Figure

4.13d, 4.13g and 4.13h. The resulting fluctuating pressure field results from the

instability of the SRT-LBM scheme with a relaxation time too close to 0.5 which

is unavoidable in order to reach high Reynolds numbers. This phenomenon was

previously discussed for the lid-driven cavity flow test-case in Section 3.4. What

makes it even worse in this case, in the adopted free-surface model, so that the

interface movement highly depends on the volume fraction change, which is calcu-

lated from the exchanges of density between the lattice cells. Since the density is

proportional to the pressure in the LB method, these abrupt pressure values will

lead to unexpected volume fractions and finally result in the perturbations on the

interface profile. On the contrary, the RLBM scheme provides smooth free-surface

shape and pressure field, even when the water impacts on the left wall.
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Figure 4.13 – Snapshots of free-surface profiles and pressure fields at time 0.0, 159.9, 276.6, 373.3, 449.9, 573.3, 862.3, 1023.3, 1166.6ms.
The experimental results (left), the SRT-LBM results (middle) and the RLBM results (right) are shown.

97



CHAPTER 4. FREE-SURFACE MODEL

Water front position and the water levels

The evolution of the water front position is shown in Figure 4.14, and the time

history of the water levels at the given locations [122] is shown in Figure 4.15.
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Figure 4.14 – Evolution of the water front position.
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Figure 4.15 – Evolution of the water levels at H1, H2, H3 and H4 positions.

It is observed that the simulated water front moves faster than the experimental

one. The same phenomenon can be observed in the water level evolution in Figure

4.15: in the numerical results the water level at H1 position drops faster than

in the experiment, and the water level rises earlier at H3 and H4. Two facts may

contribute to this time difference. The first one is the effect of gate motion, namely
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in the experiment, a boundary layer is developed near the lifted gate, which will

hold the water front for a while and thus make it slower than the numerical results.

The other reason may be the use of free-slip boundary condition in the simulation.

In this aspect, the study of Marrone et al. [128] provides some evidences, where

both free-slip boundary and non-slip boundary conditions are tested in terms of

the arriving time when the water front hits the wall. Their results confirmed that

the water impact did occur earlier in the free-slip case than in the non-slip cases,

even when the Reynolds number for the non-slip case is as large as Re = 10000.

This indicates that adopting the non-slip boundary condition may be closer to

the physics nature, but it requires accurately discretizing the boundary layer and

thus needs a very fine mesh close to the boundary, which is considered to be

expensive for a simulation. Besides, the SPH results in [128] also showed that

the time difference of the water impact is reduced when the Reynolds number is

increasing for the non-slip case. Based on this consideration, we think that the

present practice of applying the free-slip boundary condition is acceptable.

In addition, the smooth RLBM curve indicates a smooth free-surface evolu-

tion, while the high-frequency vibration on the SRT-LBM curve corresponds to a

disturbed free-surface, as already discussed for the snapshots in Figure 4.13.

Pressure signal

The pressure signals recorded at P1, P2, P3 and P4 are plotted in Figure 4.16,

where the numerical curves are based on raw pressure data without any filtering

operation. As discussed in the previous analysis, the numerical water front has a

larger speed than the experimental one due to the free-slip numerical tank assump-

tion, hence the first peaks of the numerical pressure signals appear earlier than

the experimental ones for the same reason. It is also observed from the snapshots

in Figure 4.13 that a smooth free-surface profile and pressure field are obtained

by the RLBM while the smoothness cannot be maintained by the SRT-LBM. This

is confirmed in Figure 4.16 with more details. The first peaks of the SRT-LBM
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Figure 4.16 – Evolution of the pressure signals at P1, P2, P3 and P4 positions.

pressure goes up to extremely high values at the four pressure sensors, whereas the

RLBM pressure peaks are similar with the experimental ones. Furthermore, the

SRT-LBM pressure is oscillating wildly, while this severe fluctuation is remarkably

reduced by the RLBM scheme. From this comparison, the regularization in the

RLBM scheme is verified to be able to largely improve the numerical stability of

the LB method in high Reynolds number applications.

Reynolds number dependency study

The previously presented numerical results are obtained at a Reynolds number

of Re = 2.0 × 104, but the Reynolds number in the experiment [122] is as high

as Re = 3.8 × 106. Hence it is necessary to understand the role of the Reynolds

number in the simulations. In this context, several other simulations are carried

out using the same lattice, whose Reynolds number respectively equals 1.0× 104,

4.0× 104 and 8.0× 104. Their water front position and water level evolutions are

shown in Figure 4.17 and 4.18. The RLBM result does not change much when

the Reynolds number is increased by one order of magnitude, which indicates that

even Reynolds number 1.0× 104 is large enough for the simulation, meaning that
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Figure 4.17 – Evolution of the water front position obtained with the RLBM at
Re = 1.0× 104, 2.0× 104, 4.0× 104 and 8.0× 104.
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Figure 4.18 – Evolution of the water level at H1, H2, H3 and H4 positions, obtained
with the RLBM at Re = 1.0× 104, 2.0× 104, 4.0× 104 and 8.0× 104.

the viscous effect is relatively too small to be observed, apart in the boundary layer

which is not modeled as already discussed. With a Reynolds number starting from

Re = 4.0×104, small oscillations can be seen on the RLBM curves, which indicates

that perturbations begin to occur on the free-surface. However, the oscillation of

the RLBM result at Re = 8.0 × 104 is still weaker than that of the SRT-LBM

result at Re = 2.0× 104 (see Figure 4.15).

The pressure signals at the different Reynolds numbers are shown in Figure

4.19. One can observe that the peak values at the four pressure sensors tend to

increase when the Reynolds number augments, and the scale of pressure oscilla-

tions also grows a lot. Once again, compared to the SRT-LBM results at the lower

Reynolds number Re = 2.0 × 104, i.e. Figure 4.19, the pressure evolution of the

RLBM results are still more stable.

Short comment on MRT-LBM

It is worth mentioning here that the MRT-LBM is absent in this test-case because

its calculation is interrupted very fast due to numerical instability and it is not

able to reproduce the dambreak completely. For example with Re = 1.0 × 104,

the MRT-LBM calculation is interrupted after the water front impacts on the left

wall. The snapshot of the fluid system at a time closely before the interruption is
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Figure 4.19 – Pressure signals at P1, P2, P3 and P4 positions, obtained with the
RLBM at Re = 1.0× 104, 2.0× 104, 4.0× 104 and 8.0× 104.
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Figure 4.20 – Snapshot of the MRT-LBM result at t = 449.9ms.

shown in Figure 4.20. Although the pressure field near the bottom looks as smooth

as in the RLBM result, a strange bump appears on the free-surface near the water

front. This area is also where similar but smaller perturbations are observed in

the SRT-LBM case as shown in Figure 4.13. As for the case Re = 2.0 × 104, the

interruption of the MRT-LBM computation occurs even earlier due to the disorder

of the free-surface.

102



4.7. AN IMPROVED FREE-SURFACE LB MODEL

4.7 An improved free-surface LB model

In the previous section, the adopted VOF-based free-surface model [94] with

RLBM has been validated through two simulations. Although good results have

been obtained, compared with analytical or experimental solutions, there is still

some room for improvements. In this section, a new way of reconstructing the

distribution functions at the free-surface is proposed.

4.7.1 Dilemmas of the original free-surface LB model

The original free-surface model [94] calculates the missing distribution functions

at the free-surface in a way to satisfy the dynamic boundary condition that the

gas pressure imposed on the interface is balanced by the hydrodynamic force from

the liquid side. Recalling Equations (4.12) and (4.13), the procedure reconstructs

a target distribution function based on the post-collision one in the inversed di-

rection. Such paired nature requires one to employ the reconstruction operation

to four of the nine distribution functions, i.e. ∀n · ξi < 0. However, this strict

requirement may encounter some dilemma in certain situations.

One of the possible dilemma can be found at the edge of a convex free-surface

profile. Figure 4.21 gives an example of the initial state of the dambreak test-

case. The interface cell at the corner of the water column has five missing dis-

gas

liquid

interface

Figure 4.21 – Boundary treatment for the convex free-surface profile.

tribution function, which are f3, f4, f6, f7 and f8. The criterion of ∀n · ξi < 0

only involves f3, f4 and f7. In order to include the other two, one has to take

∀n · ξi = 0 into consideration. More generally, the criterion should be modified

as ∀ (n · ξi 6 0) ∨ (flag (x− ξi∆t) is gas) for all the possible situations, where

the symbol ∨ denotes the logical "or". This new criterion may lead to an over-

reconstructed set of distribution functions at the interface and hence disobeys the
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hydrodynamic condition.

Another dilemma occurs at the three-phase point at the water front in the

dambreak test-case, see Figure 4.22. At a boundary cell close to the free-slip solid

gas

liquid

interface

Figure 4.22 – Boundary treatment at the three-phase point.

wall, the distribution functions f2, f5 and f6 need to be computed by the specular

boundary condition (see Section 2.6.2). However, the original free-surface model

requires f3, f4, f6 and f7 to be reconstructed and f1, f2, f5 and f8 to be streamed.

In this way, the two boundary conditions conflict, which means that if the dynamic

condition is satisfied by the reconstruction procedure, then the free-slip condition

cannot be guaranteed, and vice versa. To make matters worse, sometimes the

number of distribution functions that can be streamed from neighboring cells are

very limited, due to the incomplete neighborhood lattice near the wall, which

causes greater confusion in the priority sequence among streaming, the specular

rule and the reconstruction.

4.7.2 A new distribution method for the distribution func-

tions at the free-surface

To provide a countermeasure for the aforementioned dilemmas of the original

model, a new way of reconstructing the distribution functions at the free-surface

is proposed here. The idea is inspired by the work of Latt et al. [102], where

a similar boundary condition was introduced for straight walls. The new recon-

struction method deals with the equilibrium part of the distribution function and

the non-equilibrium part separately. The equilibrium distribution function can be
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computed from its definition, i.e.

f eq
i = wiρ

[
1 +

ξi · u∗

c2s
+

u∗u∗ : (ξiξi − c2sI)

2c4s

]
, (4.21)

if the density ρ and the fluid velocity u∗ are known. The non-equilibrium part is

calculated in the same way as previously introduced in Section 3.4.1, which reads

fneq
i ≈ τ∆tρ

c2s

(
ξiξi − c2sI

)
: ∇u∗. (4.22)

Afterwards, the distribution function can be reconstructed as

fi = f eq
i + fneq

i . (4.23)

The remaining part is to determine the values of the macroscopic variables at

the interface. In the present work, an inverse distance extrapolation is adopted.

For an interface cell at position x, its macroscopic variables are extrapolated from

its neighboring liquid cells within a searching radius of r. The inverse distance

weight of each supporting liquid cell at position xi reads

w†
i =

1

dpi
, (4.24)

where di is the distance between x and xi. Then any variable φ(x), such as the

density and the flow velocity, can be calculated from

φ(x) =

∑
i

w†
iφ(xi)

∑
i

w†
i

. (4.25)

Consequently, the velocity gradient in Equation (4.22) can be obtained.

It is important to note here that the reconstruction (4.22) of the non-equilibrium

distribution function is based on a Hermite regularization, as previously discussed

in Section 3.4.1, so the present reconstruction method is expected to be more

consistent with the RLBM scheme.
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4.7.3 Algorithm

The proposed reconstruction method is to substitute the original one, while the

rest ingredients of the free-surface model stay unchanged. The present algorithm

is summarized as

Algorithm: FS-RLBM with new reconstruction procedure

Require: fi (x, t
n), ρ (x, tn), u (x, tn), F (x, tn), α (x, tn), m (x, tn) and flag array

from the previous time-step
1. For liquid and interface cells, implement the collision and streaming procedure

(i.e. from Step.1 to Step.6 in the RLBM algorithm shown in Section 3.2),

2. For interface cells, compute the missing distribution functions by Equation

(4.11),

3. For liquid cells, adapt ρ (x, tn+1), u (x, tn+1) by Equation (2.69),

4. Extrapolate ρ (x, tn+1), u (x, tn+1) by Equation (4.25) for interface cells,

5. Reconstruct the distribution functions for interface cells by Equation (4.21-

4.23),

6. Adapt ρ (x, tn+1), u (x, tn+1) by Equation (2.69) for interface cells,

7. Follow Step.4 to Step.10 in Algorithm 4.5,

8. Goto Step.1 for the next time-step.

4.7.4 Validation

The new method is tested in the dambreak test-case, where the initialization of

the simulation is as the same as that in Section 4.6.2. For comparison, the present

modified free-surface model and the original one are employed with the standard

SRT-LBM and the RLBM, respectively. Besides, in order to focus on the influence

of the free-surface models, the Reynolds number in the simulation is reduced to

Re = 3200 so that the standard SRT-LBM can stay stable.

Several snapshots of the numerical results are exhibited in Figure 4.23. One can

see that the dambreak flow is reproduced successfully by the four schemes, and the

numerical flows are very similar to the experimental one although the Reynolds

number is largely reduced in the simulation. From the pressure contours, one can

observe that the present model performs as well as the original one, if not better,

and it is the regularization procedure in the RLBM which dominates in smoothing

the pressure field.
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(a) t = 0.0ms: Experiment (left), FS1-SRT-LBM (middle left), FS2-SRT-LBM (middle), FS1-RLBM (middle right), and FS2-RLBM (right).
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(b) t = 159.9ms: Experiment (left), FS1-SRT-LBM (middle left), FS2-SRT-LBM (middle), FS1-RLBM (middle right), and FS2-RLBM (right).
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(c) t = 276.6ms: Experiment (left), FS1-SRT-LBM (middle left), FS2-SRT-LBM (middle), FS1-RLBM (middle right), and FS2-RLBM (right).
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(d) t = 373.3ms: Experiment (left), FS1-SRT-LBM (middle left), FS2-SRT-LBM (middle), FS1-RLBM (middle right), and FS2-RLBM (right).
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(e) t = 449.9ms: Experiment (left), FS1-SRT-LBM (middle left), FS2-SRT-LBM (middle), FS1-RLBM (middle right), and FS2-RLBM (right).
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(f) t = 573.3ms: Experiment (left), FS1-SRT-LBM (middle left), FS2-SRT-LBM (middle), FS1-RLBM (middle right), and FS2-RLBM (right).
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(g) t = 862.3ms: Experiment (left), FS1-SRT-LBM (middle left), FS2-SRT-LBM (middle), FS1-RLBM (middle right), and FS2-RLBM (right).
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(h) t = 1023.3ms: Experiment (left), FS1-SRT-LBM (middle left), FS2-SRT-LBM (middle), FS1-RLBM (middle right), and FS2-RLBM (right).
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(i) t = 1166.6ms: Experiment (left), FS1-SRT-LBM (middle left), FS2-SRT-LBM (middle), FS1-RLBM (middle right), and FS2-RLBM (right).

Figure 4.23 – Snapshots of the free-surface profiles and the pressure fields at time 0.0, 159.9, 276.6, 373.3, 449.9, 573.3, 862.3, 1023.3,
1166.6ms. The exhibited results are from the experiment (left), the original model with SRT-LBM (middle left, marked as FS1-SRT-
LBM), the present model with SRT-LBM (middle, marked as FS2-SRT-LBM), the original model with RLBM (middle right, marked as
FS1-RLBM) and the present model with RLBM (right, marked as FS2-RLBM).
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However, if we zoom in a little by extracting the pressure signals at positions

P1, P2, P3 and P4 (the coordinates of these positions can be found in Section

4.6.2), the advantage of the present model can be seen. Figure 4.24 gives the

pressure signals recorded with the four schemes, where the results of both free-

surface models with the standard SRT-LBM are shown in the left panels, and those

of the two free-surface models with the RLBM are plotted in the right panels.

In association with the standard SRT-LBM, the present model provides results

that are close to the results with the original model: the pressure oscillations are

in the same range. As a contrast, in the RLBM framework, although the pressure

oscillations have already been remarkably reduced by the RLBM, the present

model is able to achieve even better results. Indeed, this improvement is not that

prominent in the pressure curves, but this is due to the fact that the number

of interface cells that are caught in the aforementioned dilemmas of the original

model, is of a relatively small percentage during the whole calculation. Fairly

speaking, one is still able to conclude that the present free-surface model is more

consistent with the RLBM.
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Figure 4.24 – Pressure signals at P1, P2, P3 and P4 positions, obtained from the
original model with SRT-LBM, the present model with SRT-LBM, the original
model with RLBM and the present model with RLBM.
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5.1 Conclusions

The principal object of this thesis is to assess the applicability of the lattice Boltz-

mann method (LBM) to the free-surface flows with marine engineering problems

as long-term objective. Taking into account the existence of extreme ocean con-

ditions, the desired numerical method is expected to include a robust free-surface

model for simulating large deformations of the interface, and to be stable for high

Reynolds number flows. Aiming at such goal, the thesis can be concluded from

the following four aspects.

Firstly, a comprehensive review has been made in Chapter 1 on the free-surface

lattice Boltzmann (LB) models and the LB stabilization techniques. Between the

two categories of free-surface LB models, the multi-phase LB models are usually

easy to implement due to their global operations, but the insuperable difficulty

is the large density ratio at the water-air interface, which is only asymptotically

approached by few published articles. On the contrary, the single-phase model is

born to be friendly to large density ratios; as a return it requires much work on

the treatment of the free-surface boundary. As for the stabilization techniques, the

regularized LBM (RLBM) is considered to be the most appealing one among the

various possibilities, since it is more consistent with the Hermite representation of

LBM and consequently requests the smallest modification to the standard LBM. In

this way, an optimized strategy for simulating high-Reynolds-number free-surface

flow has been made, which is to employ a volume-of-fluid (VOF) based single-phase

LB model within the RLBM.

The second part, consisting of Chapters 2 and 3, elaborately reformulates the

underlying theory of how the LBM tackles incompressible fluid flows. By adopting

a truncated Hermite expansion and making use of the Gauss-Hermite quadrature,

the concept of the LBM is stated as using a minimized discrete velocity set to

include the same amount of macroscopic hydrodynamic information as the contin-

uous Boltzmann equation. Besides, the Navier-Stokes equations are proved to be

recovered from the LB equation through a detailed multi-scale analysis. From this

perspective, the RLBM is explained as a Hermite regularization of the distribu-

tion function onto the Hilbert subspace spanned by the first several Hermite basis

elements. Specifically, it is pointed out that the starting order of the regularization

should vary for different force models, which is verified on a Poiseuille flow simu-

lation. Afterwards, two simulations are carried out: both the Taylor-Green vortex

and the lid-driven cavity flows show that the RLBM has 2nd-order accuracy, and

that the benefits in accuracy outshines its relatively large demand of CPU time.

Furthermore, on the lid-driven cavity flow, it is also shown how the RLBM permit

to get a drastic reduction of the spurious pressure oscillations introduced from
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the boundary treatment and the intrinsic instability of the standard LBM at high

Reynolds numbers.

In the third part, in Chapter 4, the implementation of the adopted VOF-based

single-phase free-surface model in the RLBM is described. In addition to the ba-

sic ingredients of the original model [94], some additional techniques that ensure

the robustness are highlighted, including the adapted criteria of flag change, the

dos and don’ts of the cell flag evolution, and the normal vector based distribu-

tion rule of the excess cell mass. The adopted model with the RLBM is exam-

ined in two test-cases. Good results have been obtained for the viscous standing

wave test-case, compared with the analytical solution, and it is validated that

the truncation of high-order components during the regularization does not gen-

erate extra numerical dissipation. In the following test-case, the dambreak flow

has been successfully reproduced, and the pressure signals are very well compared

with benchmark experiment data. It is shown that the RLBM can afford large

Reynolds number dambreak flows, for it remarkably reduces the pressure oscilla-

tion and consequently maintains smooth free-surface profiles and pressure fields.

Shortly speaking, the RLBM with the adopted free-surface model does provide a

reliable way for simulating free-surface flows.

Lastly, the original free-surface model is modified with a new reconstruction

method for the distribution functions at the interface, which is presented in the

latter part of Chapter 4. The dilemmas of determining how many distribution

functions should be reconstructed, that the original model encounters, are exem-

plified at first. In order to get rid of these awkward situations, a new reconstruction

method is proposed, which computes the equilibrium distribution function from

macroscopic variables that are extrapolated from the neighboring liquid cells by

an inverse distance weighting, and obtains the non-equilibrium part through a reg-

ularization procedure. Such reconstruction method is proven to be more consistent

with the RLBM, as expected, as it provides the smallest level of spurious pressure

oscillation in the dambreak test-case.

5.2 Perspectives

Based on what has been achieved in this thesis work, our present in-house LB

solver can be further extended from the following several perspectives.

Firstly, in terms of accelerating the calculation, the present code will be armed

with parallel computing technique. Noting that the adopted free-surface model

involves frequent searching operation and information exchange between lattice

cells, this part should be carefully considered in order to reach optimized acceler-

ation ratio. Furthermore, other advanced acceleration techniques may be applied,
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such as parallel GPU implementation [32].

Secondly, for large scale test-cases and long-term simulation, developing adap-

tive mesh refinement and adaptive time step modules can be beneficial, since they

may get rid of the constraint of the uniform time-space lattice in the standard

LBM and thus improve the efficiency.

Thirdly, in the long-term future where real marine engineering applications are

the targets, some necessary models need to be implemented to the present solver,

including the fluid-structure interaction. The very first step could be developing a

hybrid solver of the immersed boundary (IB) method and the LBM [42, 114] and

introducing the present free-surface model into it. Then, starting from some simple

test-cases such as the flow past a full immersed object or fixed moving rigid body,

one could step by step simulate freely moving floating body, simple-shaped ship

resistance, multiple floating body, etc., and eventually study real marine applica-

tion like moored floating platforms, floating or immersed wave energy converter

farm, and so on.
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Appendix A

Some mathematical tools

A.1 Operations on vectors and matrices

A.1.1 Dot product of two vectors

The dot product of two vectors a = [a1, a2, · · · , an] and b = [b1, b2, · · · , bn], marked

as c = a · b, is a scalar calculated as

c =
n∑

i=1

aibi. (A.1)

Specially, the dot product of a vector a and itself is marked as a2 = a · a in the

thesis.

A.1.2 Dyadic product of two vectors

The dyadic product of two vectors a = [a1, a2, · · · , am] and b = [b1, b2, · · · , bn],
marked as c = ab, is a [m× n] matrix where its element cij is calculated as

cij = aibj . (A.2)

A.1.3 Double dot product of two matrices

The double dot product of two [m× n] matries A and B, marked as c = A : B,

is a scalar calculated as

c =

m∑

i=1

n∑

j=1

AijBij . (A.3)

Specifically, if A and B are vectors, the double dot product shall degenerate into a

dyadic product. Moreover, if matrix A and B are respectively the dyadic product

of two pairs of n-rank vectors, i.e., A = ab and B = cd, then the following
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equation can be obtained based on Equation (A.1), (A.2) and (A.3)

ab : cd = (a · c) (b · d) . (A.4)

A.2 Velocity moments of functions in a special form

In addition, for any function, defined on the D2Q9 lattice, that takes the following

form,

φi = wi

[
A+

B · ξi
c2s

+
C : (ξiξi − c2sI)

2c4s

]
, (A.5)

its first several velocity moments can be easily computed as





∑
i

φi = A,

∑
i

ξiφi = B,

∑
i

ξiξiφi = Ac2sI +
C +CT

2
.

(A.6)

Here wi, ξi and cs are respectively the weights, the lattice speeds and the sound

speed in the D2Q9 lattice.

A.3 Gauss-Hermite quadrature

For any function φ (x), the integral in the form of
∫ +∞

−∞
φ (x) e−x2

can be approxi-

mated by the Gauss-Hermite quadrature as

∫ +∞

−∞

φ (x) e−x2 ≈
n∑

i=1

wiφ (xi) , (A.7)

where n is the number of the chosen sample points, xi with (i = 1, 2, · · · , n) are

the roots of the Hermite polynomial Hn (x), and the associated weights are given

as

wi =
2n−1n!

√
π

n2 [Hn−1 (xi)]
2 . (A.8)

A.4 Hermite expansion by Hermite polynomials

For any function φ (ξ) that is square integrable, it can be expanded by the Hermite

polynomials as

φ (ξ) = ω (ξ)

∞∑

n=0

1

n!
a(n) : H(n) (ξ), (A.9)
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where ω (ξ) is the weighting function, H(n) (ξ) is the nth-order Hermite polynomial,

and a(n) is the corresponding expanding coefficient. Respectively, the weighting

function ω (ξ) is given as

ω (ξ) =
1

(2π)
D/2

exp

(
−ξ · ξ

2

)
, (A.10)

the nth-order Hermite polynomial H(n) (ξ) is

H
(n) (ξ) =

(−1)n

ω (ξ)
∇n

ξω (ξ), (A.11)

and the corresponding expanding coefficient a(n) (ξ) is computed as

a(n) =

∫
φ (ξ)H(n) (ξ) dξ. (A.12)

It is important to note that the Hermite polynomials are mutually orthogonal

in a way that

∫
ω (ξ)H(m) (ξ)H(n) (ξ)dξ =

{
0, (if m 6= n)

1. (if m = n)
(A.13)
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Appendix B

Multi-relaxation-time collision

model

As an altenative collision operator, the multi-relaxation-time (MRT) collision

model is introduced to reduce the numerical instability of the SRT scheme un-

der high Reynolds number conditions. The MRT model was designed with an idea

of relaxing different distribution function momenta to their equilibrium states in

different rates. A standard MRT equation can be expressed as:

fi (x+ eidt, t + dt)− fi (x, t) = −Λ̃ij

[
fj − f eq

j

]
(B.1)

where Einstein notation is adopted. Λ̃ = M−1
ΛM is the collision matrix, in which

M is an orthogonal transformation matrix. In D2Q9 lattice, the transformation

matrix is given as:

M =




1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1




(B.2)

Subsequently the distribution functions are projected onto the moment space:

m = Mf = (ρ, e, ς, jx, qx, jy, qy, pxx, pxy)
T (B.3)
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The corresponding equilibrium moments are:

meq =
(
ρ, eeq, ςeq, jx, q

eq
x , jy, q

eq
y , peqxx, p

eq
xy

)T

= ρ
(
1,−2 + 3|v|2, 1− 3|v|2, vx,−vx, vy,−vy, v

2
x − v2y , vxvy

)T (B.4)

where f = (f1, f2, · · · , f8)T, |v|2 = v · v, e is the energy mode, ς is related to

the energy square, (jx, jy) are the momentum components, (qx, qy) correpond to

energy flux.

120



Appendix C

A choice between an open-source

software and an in-house code

Before starting a numerical research in the field of computational fluid dynamics

(CFD), one should choose an appropriate numerical tool at first. The various nu-

merical tools based on the lattice Boltzmann method (LBM) lies in two categries,

that are either to use an open-source LBM solver like PALABOS (i), OpenLB (ii)

and waLBerla (iii), or to develop one’s own in-house code. The author made the

decision after spending more than six months in the begining of this study, trying

to use the open-source PALABOS.

The advantages of PALABOS can be illustrated by showing the following two

simple tests. In the first example, see Figure (C.1), which is the flow around an

airfoil, the major difficulty for LBM coding can be addressed as the lattice rep-

resentation of the complex geometry and the implementation of the bounce-back

non-slip boundary condition on the airfoil surface. As a contrast, the PALABOS

provides embedded modules for allocating the boundary lattice nodes based on

the airfoil profile and setting up the bounce-back rule along the complex curve.

The second example, see Figure (C.2) which is the Rayleigh-Taylor instability, is

more related to the present study, since the multi-phase flow offers an access to

the marine free-surface flows if it is capable for simulating large density ratios.

Nevertheless, the example showed here is to state that the PALABOS has been

equipped with multi-phase modules. Besides, the PALABOS also benifits from its

built-in modules for conveniently extracting datas into files.

In one word, the PALABOS might be a powerful tool for those who truly

understand the underling mechanisms in the basic modules beneath the simple

call statements. However, the configuration of the PALABOS solver with multiple

(i)http://www.palabos.org
(ii)https://www.openlb.net
(iii)http://walberla.net

http://www.palabos.org
https://www.openlb.net
http://walberla.net


APPENDIX C. OPEN-SOURCE SOFTWARE OR IN-HOUSE CODE

Figure C.1 – Snapshots of the velocity contour of the flow around an airfoil, where
the upper one is the initial state.

Figure C.2 – Snapshots of the pressure contour of the Rayleigh-Taylor instability,
where the left one is the initial state.

layers is very enormous and complex. The author personally find out that it is

hard to make changes to the embedded modules. For this subjective reason, it

seems to the author that the disadvantages of adopting PALABOS overshadow its

advantages, so the author decided to develop an in-house code, which is elaborately

explained in the thesis.
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Titre : Étude de l’applicabilité de la méthode de Boltzmann sur réseau aux problèmes 
hydrodynamiques à surface libre du génie maritime 

Mots clés : génie maritime, LBM, surface libre, régularisation 

Résumé : La simulation numérique des 
écoulements à surface libre pour les 
applications du génie maritime est un problème 
qui présente de grands défis dans le domaine 
de la dynamique des fluides numérique (CFD). 
On propose dans cette thèse une solution, qui 
consiste à utiliser la méthode de Boltzmann sur 
réseau régularisée (RLBM) avec un modèle de 
surface libre basé sur le volume-de-fluide (VOF), 
et on étudie sa faisabilité et sa fiabilité. 

Les connaissances théoriques de la 
méthode de Boltzmann sur réseau (LBM) sont 
présentées dans un premier temps, sur la base 
d'un développement polynomial d'Hermite et 
d'une analyse de Chapman-Enskog. De cette 
perspective, l’idée de la RLBM se résume 
comme étant la régularisation d'Hermite des 
fonctions de distribution. Dans les cas tests 
suivants du vortex de Taylor-Green et de la 
cavité entraînée, il est vérifié que la RLBM 
posse 

possède une précision de second ordre et une 
stabilité améliorée. 

On a alors ensuite implémenté le modèle 
de surface libre dans la RLBM. Sur la 
simulation d'une onde de gravité visqueuse 
stationnaire et d'un écoulement de dambreak, il 
est montré que la régularisation stabilise 
fortement le calcul en réduisant les oscillations 
de pression, ce qui est très bénéfique pour 
obtenir des écoulements à surface libre précis, 
et que la RLBM n'introduit pas non plus de 
dissipation numérique supplémentaire. 

De plus, une nouvelle méthode de 
reconstruction des fonctions de distribution à la 
surface libre est proposée. Le modèle proposé 
est ainsi plus consistent avec la RLBM, ce qui 
offre un moyen efficace pour simuler des 
écoulements à surface libre à un grand nombre 
de Reynolds en génie maritime. 
 

  

Title : Investigation of the applicability of the lattice Boltzmann method to free-surface 
hydrodynamic problems in marine engineering 

Keywords : marine engineering, LBM, free-surface, regularization 

Abstract : The numerical simulation of the free-
surface flows for marine engineering 
applications is a very challenging issue in the 
field of computational fluid dynamics (CFD). In 
this thesis, we propose a solution, which is to 
use the regularized lattice Boltzmann method 
(RLBM) with a volume-of-fluid (VOF) based 
single-phase free-surface lattice Boltzmann (LB) 
model, and we investigate its feasibility and its 
reliability. 

The theoretical insights of the lattice 
Boltzmann method (LBM) are given at first, 
through the Hermite expansion and the 
Chapman-Enskog analysis. From this 
perspective, the idea of the RLBM is 
summarized as the Hermite regularization of the 
distribution functions. On the test-cases of the 
Taylor-Green vortex and the lid-driven cavity 
flow, the RLBM is verified to have a 2nd-order  
acc 

accuracy and an improved stability. 
The adopted free-surface model is then 

implemented into the RLBM and validated 
through simulating a viscous standing wave 
and a dambreak flow problems. It is shown that 
the regularization not only strongly stabilizes 
the calculation by reducing spurious pressure 
oscillations, which is very beneficial for 
obtaining accurate free-surface motions, but 
also does not introduce any extra numerical 
dissipation. 

Furthermore, a new reconstruction method 
for the distribution functions at the free-surface 
is proposed. The present model is more 
consistent with the RLBM, which provides an 
effective way for simulating high-Reynolds-
number free-surface flows in marine 
engineering. 
 

 


