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Abstract

The present thesis is part of the beyond the sea® project which aims to develop tethered
kite systems as auxiliary devices for ship propulsion in order to reduce greenhouse gas
emissions and fuel costs. In a design stage, it is necessary to be able to estimate the
traction that can provide a kite according to its trajectory. As a kite is a flexible struc-
ture, its geometry depends on its aerodynamic loading, which depends on its geometry.
For that reason, fluid-structure interaction has to be taken into account to calculate the
flying shape and aerodynamic performances of the wing. Knowing the computational
time needed to carry out a fully coupled simulation using Finite Element and Com-
putational Fluid Dynamics methods; it can be very useful in a design stage to use
fast, reliable and simple models to estimate rapidly the kite performances. Moreover
fast simulations allow the studies of different trajectories and the determination of the
critical loading case, where more complex and more time-consuming models can be
used.

A 3D Non-Linear Lifting Line model has been developed, based on the lifting line
of Prandtl. This extension of the Prandtl lifting line is intended to deal with non-
straight kite wings, with dihedral and sweep angles variable along the span and take
into account the non-linearity of the lift coefficient. The model is also able to deal with
any general flight kinematic including translation velocities and turning rates, diverse
angles of incidence or angles of sideslip.

The model has been checked with 3D RANSE simulations over various geometries
and produces satisfactory results for range of incidence and sideslip up to 15°, with
typical relative differences of few percent for the overall lift. The local results, needed
for further fluid-structure interaction, are also correctly estimated; the model is able
to predict the position of the minimum and maximum loading along the span, even
in sideslip. Special attention has been given to the estimation of the accuracy of the
provided numerical results.

The model has also been introduced in a new equilibrium iterative procedure for the
kite, which has been used to estimate the loading of a dynamic kite flying on a circular
path. This case points out the influence of the rotation rates on the loading of the
kite. A parametric study has finally been conducted to analyze the evolution of the
aerodynamic coefficients and the flight characteristics according to the tether length or
the radius of the trajectory.

Simultaneously, a structure model has been developed. The core idea of the Kite as
a Beam model is to approximate a Leading Edge Inflatable kite by an assembly of
equivalent beam elements. Over the span, the kite is divided into several elementary
cells, each one composed of a portion of the inflatable leading edge, two inflatable
battens and the corresponding canopy. First of all, the cell is put under pressure and
then subject to different linear displacement perturbations in order to calculate the
tangent stiffness of the equivalent beam.
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The Kite as a Beam model has been compared to a complete kite Finite Element model
over elementary comparison cases. The structure models are put under a constant pres-
sure and then the same elementary displacement is applied, a translation along one of
the three global axes or a rotation of the wing tip. The results shows the behavior dif-
ferences of the two models, for example the torsion stiffness is globally overestimated
by the Kite as a Beam model.

Eventually, the Kite as a Beam model coupled with the 3D Non-Linear Lifting Line
model is compared to the complete Finite Element model coupled with the 3D Non-
Linear Lifting Line model. The gain in computation time is really significant as the
Kite as a Beam model takes only a few minutes to compute while the complete Finite
Element model needs one or two hours. However, the results show the necessity of
model calibration to make both models coincide.
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Résumé

La présente thèse s’inscrit dans le cadre du projet beyond the sea®, projet qui a pour but
de développer l’exploitation de cerfs-volants pour la propulsion auxiliaire de navires.
En effet, afin de réduire l’émission de gaz à effet de serre, la consommation d’énergie
fossile (et donc le coût du transport maritime), l’utilisation de cerfs-volants pour la
traction des navires apparaît comme une solution réalisable (Wellicome & Wilkinson
(1984); Naaijen et al. (2006); Leloup et al. (2016); Erhard & Strauch (2013)). Le pro-
jet beyond the sea®, fondé en 2007, a reçu le soutien de l’Agence de l’Environnement
et de la Maîtrise de l’Énergie en 2014 et associe des entreprises privées et des parte-
naires académiques. L’utilisation de cerfs-volants présente de nombreux avantages, le
système d’accroche et de contrôle du kite prend moins de place sur le pont d’un navire
qu’un mât et ses voiles par exemple, un cerf-volant peut aller chercher le vent en al-
titude, où il est plus régulier et plus fort (Archer & Jacobson (2005); Archer (2013)).
De plus, un cerf-volant en vol dynamique aura une vitesse propre, ce qui augmente son
vent apparent et donc la force de traction qu’il peut produire.

Pour pouvoir développer de telles ailes, capables de tracter des navires de transport
par exemple, des modèles numériques sont nécessaires afin de pouvoir estimer les per-
formances d’un cerf-volant, sa puissance et sa résistance, sans avoir à réaliser et tester
différents prototypes, de plus ou moins grande taille. De plus, de nombreux paramètres
peuvent influer sur les performances d’un cerf-volant, sa géométrie, les matériaux uti-
lisés pour sa fabrication, le jeu de brides utilisé et leurs points d’accroche sur le cerf-
volant, etc, ce qui augmente d’autant le nombre de tests à réaliser. Les cerfs-volants
utilisés dans le cadre de ce projet sont des ailes à boudins gonflables (voir Figure 1.2).
Ces boudins gonflés permettent de donner une première forme au kite, et de rigidifier
légèrement la structure mais le cerf-volant reste une structure souple, dont la déforma-
tion dépend du chargement subi. Or, en vol, la vitesse et donc le chargement du kite
dépend de sa géométrie. Il est donc nécessaire pour pouvoir estimer correctement les
performances de ce genre de cerf-volant de mettre en place des modèles numériques
prenant en compte l’interaction fluide-structure.

Aujourd’hui, il est possible de modéliser complètement un cerf-volant en interaction
fluide-structure avec un modèle éléments finis pour la structure (Leloup (2014); Bosch
et al. (2014)) et volumes finis pour la partie fluide (Duport et al. (2017); Scupi et al.
(2015)), mais ces modèles restent très coûteux en terme de puissance et de temps de
calcul, surtout pour mettre en place un couplage en interaction fluide-structure. C’est
pourquoi l’objectif de cette thèse est de développer des modèles rapides et fiables,
capables d’estimer rapidement les performances d’un cerf-volant afin de pouvoir tester,
pour une première phase de conception, différentes géométries d’ailes, dans différentes
conditions. Des modèles plus complexes pourront ensuite être utilisé sur quelques cas
particuliers, un cas de chargement critique par exemple, afin de finir la conception du
cerf-volant.

Le modèle fluide est présenté dans le Chapitre 2. Ce modèle est une extension de la
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théorie de la ligne portante de Prandtl, conçu pour pouvoir gérer des ailes arrondies,
avec des angles de dièdre, de vrillage ou de flèche variables le long de l’envergure. Le
modèle est aussi capable de prendre en compte le taux de rotation du kite, différents
angles d’incidence ou de dérapage du kite, ainsi que la non-linéarité du coefficient
de portance en se basant sur un algorithme proposé par Anderson (Anderson (2011)).
La construction des sections de segments tourbillonnaires est basée sur une géométrie
proposé par Katz et Plotkin (Katz & Plotkin (2001)). Le tourbillon lié est placé au quart
de corde de l’aile et est orthogonal aux deux tourbillons libres adjacents, qui s’étendent
parallèle à la corde sur une longueur de corde. Le sillage de l’aile est représenté par
deux autres segments tourbillonnaires, parallèles au vent apparent, qui s’étendent sur
plusieurs longueurs de corde. Un dernier segment permet de refermer la section (voir
Figure 2.5). L’algorithme permet de calculer la circulation de chacun des segments et
ainsi la portance, la trainée et le moment, en local le long de l’envergure ou global
sur l’aile. Pour la bonne convergence de l’algorithme, un coefficient de relaxation est
utilisé. Le programme ne met que quelques secondes pour converger, sans avoir été
efficacement optimisé. De nombreux tests numériques permettent de recommander une
discrétisation entre 60 et 100 sections sur l’envergure de l’aile (voir Figure 2.11), ainsi
qu’une longueur de sillage entre 10 et 20 fois la corde à la racine (voir Figure 2.9),
pour une bonne convergence du modèle. Enfin, le modèle coïncide correctement avec
les valeurs prévues par la théorie ligne portante sur des géométries d’ailes classiques
(aile elliptique avec ou sans vrillage, voir Figures 2.13 et 2.14).

Ce modèle est vérifié dans le Chapitre 3 grâce à des simulations RANSE 3D, sur diffé-
rentes géométries d’aile avec des angles d’incidence et de dérapage allant de −4° à 16°
et de 0° à 15° respectivement. Tous les calculs sont faits avec la section NACA2412,
différente d’une section aérodynamique de kite à boudins gonflés, mais beaucoup plus
facile et moins coûteuse à mailler correctement. Premièrement, des simulations sont
faites pour calculer les coefficients aérodynamiques utilisés dans le modèle ligne por-
tante (afin qu’ils correspondent aux simulations RANSE) et pour estimer la précision
numérique des résultats produits (voir Figures 3.7, 3.8 et 3.6). Les résultats concordent
avec moins de 5% d’écart sur l’estimation en portance, pour une aile avec des lois de
flèche et de vrillage non nuls, en incidence pure avec des angles compris entre −4° et
16°. L’estimation de la traînée est aussi très correct en gardant à l’esprit la différence
de temps de calcul, les résultats diffèrent seulement pour des angles d’incidence su-
périeur à 10°. Pour l’aile en incidence et en dérapage jusqu’à 15°, le modèle est aussi
parfaitement capable de suivre l’évolution des simulations RANSE (voir Figure 3.18).
Enfin, ces simulations permettent de vérifier le chargement local calculé par le modèle
ligne portante. Le modèle Ligne Portante 3D Non-Linéaire est capable d’estimer cor-
rectement la position du minimum et du maximum de chargement, pour des ailes avec
des angles d’incidence et de dérapage dans la zone stationnaire (voir Figures 3.19 et
3.20).

Le modèle est ensuite implémenté dans une nouvelle procédure itérative d’équilibrage
du kite, qui est utilisée pour estimer le chargement du cerf-volant en vol sur une tra-
jectoire circulaire (voir Figure 4.1). Dans ce cas, l’influence des taux de rotation sur le
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chargement est mise en évidence (voir Figure 4.2). Une étude paramétrique est aussi
menée pour évaluer et analyser les variations des coefficients aérodynamiques caracté-
ristiques du vol en fonction de la longueur des lignes et du rayon de la trajectoire (voir
Figures 4.3 et 4.4).

Le modèle structure Kite as a Beam est présenté dans le Chapitre 5 ainsi qu’un modèle
éléments finis plus complet, le modèle IDK, évolution du modèle proposé par Leloup
Leloup (2014). L’idée centrale de ce modèle est de représenter un cerf-volant à boudins
gonflés par un ensemble de poutres (voir Figure 5.5). Le kite est divisé en plusieurs cel-
lules élémentaires, chacune composé d’une partie du bord d’attaque (un boudin gon-
flé), de deux lattes et de la canopée correspondante. Chacune de ces cellules élémen-
taires est remplacé par une poutre aux propriétés mécaniques équivalentes. D’un point
de vue structurel les boudins gonflés, lattes et bord d’attaque, sont représentés par des
éléments poutre dont les propriétés mécaniques sont estimées à partir des propriétés
du tissu qui les composent (voir Section 5.1.1). La canopée est elle modélisée par des
éléments coque, plus stable numériquement que des éléments membrane (voir Section
5.1.2). Pour le calcul des propriétés mécaniques des poutres équivalentes, la cellule
élémentaire est tout d’abord gonflée avec une pression uniforme, ses quatre coins étant
encastrés. Différentes perturbations sont ensuite appliquées à la cellule, sous la forme
de déplacement élémentaire. Les raideurs équivalentes de la poutre sont calculées à
partir des efforts et des moments de la cellule en réaction à ces déplacements élémen-
taires (voir Section 5.3.2).

Ce modèle structure Kite as a Beam est ensuite comparé à l’autre modèle éléments fi-
nis, le modèle IDK. Pour pouvoir comparer correctement ces deux modèles, et comme
le modèle Kite as a Beam fonctionne avec une pression uniforme sur l’envergure, le
modèle IDK est tout d’abord gonflé avec une pression constante (voir Figure 6.1).
Les déformations de la géométrie sont ensuite estimées et appliquées au modèle Kite
as a Beam dont les propriétés ont été calculées au préalable avec la même pression.
Enfin, les deux modèles sont soumis aux mêmes déplacements élémentaires avec des
conditions aux limites supposées équivalentes. Les cas de comparaison se composent
de trois déplacements suivant les axes globaux du kite et d’une rotation de l’oreille du
cerf-volant, une de ses extrémités (voir Figure 6.3). Les forces et les moments de ré-
action sont comparés sur deux géométries différentes, l’une étant issu d’un kite conçu
par beyond the sea® et l’autre étant beaucoup plus académique, circulaire et à corde
constante. Ces deux géométries permettent de tester les différences d’un point de vue
structure pour une géométrie de kite classique et aussi d’évaluer l’influence des ap-
proximations géométriques faites lors de la construction du modèle Kite as a Beam.
Les résultats montrent que le modèle Kite as a Beam surestime grandement la torsion
en partie à cause de ses approximations géométriques (voir Figures 6.5 et 6.7). De plus,
le modèle Kite as a Beam n’est pas capable de suivre les évolutions en fonction de la
pression du modèle IDK pour les déplacements dans le plan orthogonal au plan de
symétrie du kite, même si les résultats restent dans le même ordre de grandeur. Enfin,
une étude montre l’influence de la géométrie de la cellule élémentaire (le maximum de
creux et sa position) sur les propriétés des poutres équivalentes (Figures 6.12 et 6.13).
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Finalement, le couplage des modèles structures et du modèle fluide est présenté dans
le Chapitre 7. La modélisation des brides est détaillée dans la Section 7.2.1. L’échange
des données (déformations de l’aile et chargement aérodynamique) entre les deux mo-
dèles est très simple pour l’interaction fluide-structure avec le modèle Kite as a Beam
car les maillages sont équivalents. Pour le modèle IDK, le chargement du modèle struc-
ture se fait à partir de l’angle d’incidence effectif calculé le long de l’envergure de
l’aile, qui permet de retrouver la distribution de pression équivalente sur le profil, cal-
culée avec XFOIL (voir Section 7.2.2). La comparaison des deux modèles se fait sur
un cas relativement simple, où la corde dans le plan de symétrie de l’aile est à inci-
dence fixée. Après convergence de l’itération structure, les déformations de l’aile sont
donc calculés en enlevant le mouvement de corps rigide du kite au bout de ses lignes.
Le gain en temps de calcul du modèle Kite as Beam est réellement important, le mo-
dèle Kite as a Beam ne mettant que quelques minutes à converger alors que le modèle
IDK nécessite une ou deux heures. En revanche, la raideur en torsion et la raideur en
flexion dans le plan des poutres du modèle Kite as Beam doit être calibré pour pouvoir
retrouver les résultats du modèle IDK (voir Figures 7.3 et 7.18). De plus, une étude de
convergence en maillage montre que l’interaction fluide-structure avec le modèle Kite
as a Beam est sensible à la discrétisation du maillage (voir Figure 7.14).
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1 Introduction

Global warming and global sea trade

Global warming and emissions reduction of greenhouse gas effect are the challenges
of our century as greenhouse gas emissions from human activities are the primary
cause of global warming (Pachauri & Meyer (2014)). The conclusion of the special
report (IPCC (2018)) of the Intergovernmental Panel on Climate Change (IPCC) on the
impacts of a global warming of 1.5°C are highly alarming. At the current rate, global
warming is likely to reach 1.5°C before mid century and climate-related risk such as
drought, floods or extreme storms are projected to be higher for each tenth of degree
Celsius. Global warming means long lasting and irreversible changes and even loss of
some land ecosystems and thus species extinctions. In the oceans, global warming is
projected to induce increases in ocean temperature and acidity, and decreases in ocean
oxygen levels which will impact the growth, development and survival of a broad range
of species (IPCC (2018)). These changes will have an impact on human activities, on
economic growth, health, food security or water supply of human communities. A
slower and limited global warming enables greater opportunities for adaptation in the
human and ecological systems.

To limit global warming to 1.5°C, the IPCC special report (IPCC (2018)) recommends
a decrease of 45% of the global net anthropogenic CO2 emissions from 2010 levels by
2030 and to reach net zero around 2050. On the other hand shipping emissions were
responsible for 2.6% of global CO2 emissions from fossil fuel use in 2015 (Olmer et al.
(2017)). International shipping generates the most emissions (87% of total shipping,
8% for domestic shipping and 5% for fishing) and represents CO2 emissions equivalent
to a country like Germany, and can be considered as the sixth largest emitter of energy-
related CO2 in 2015 (Olivier et al. (2016)). Most of the CO2 emissions come from
three ship classes, container ships (23%), bulk carriers (19%) and oil tankers (13%)
which represents 84% of total shipping transport supply. Even though the CO2 intensity
of most ship classes decreased from 2013 to 2015, the total shipping CO2 emissions
increased by 2.4% due to an increase of transport supply.

Indeed, maritime transport represents more than 80% of the global trade volume, and
more than 70% of its value, around 10.3 billion tons in 2016 (UNCTAD (2017)). In
2016, world fleet capacity increased by 3.2%, and the United Nations Conference
on Trade and Development (UNCTAD) estimated an annual growth rate of 3.2% for
seaborne trade volume until 2022, as the expansion of the cross-border electronic com-
merce increases the demand for container shipping.
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In April 2018, the International Maritime Organization (IMO) has therefore recently
adopted a resolution describing an initial greenhouse gas strategy for international
shipping. The objectives are the reduction by 40% in carbon intensity by 2030, 70%

by 2050 compared to 2008 levels and a full decarbonization by 2100. The measures
include the improvement of the existing fleet, the development and the provision of
zero-carbon or fossil-free fuels or the reduction of the global ship speed.

Wind as a source of energy

Global warming is forcing us to rethink our consumption of energy, to discover or
rediscover energy sources. Wind as a source of energy has been used since at least the
5th millennium B.C.. Indeed, one of the oldest known representation of a sailing boat
is a painted disc found in Kuwait, dating from the 5th millennium (Figure 1.1) while
windmills can be found as early as the first century.

Figure 1.1 – Left, painted ceramic disc representing a boat with two mast Carter (2006).
Right, De Vlijt windmill in the Netherlands

Wind is a green energy, readily available. Furthermore, Archer (Archer & Jacobson
(2005)) collected data from wind stations around the world and shows the great po-
tential of wind energy if we are able to collect it efficiently. Archer also showed that
regions with sufficient wind resources are widespread around the world. In Europe, for
example, the regions with the largest potential are the northern coast, near the North
Sea or the coast of the United Kingdom. The capacity of offshore wind farm can not
be neglected either. Indeed, above the water, the surface roughness is reduced, which
increases the wind speed and the wind power production in comparison to onshore
plants. Archer points out the fact that offshore stations receive average wind speed
which can be 90% greater than land-stations.
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The wind power density, the wind power per unit area, depends linearly from the air
density and with a cubic dependency on the wind speed (Archer (2013)), thus the
importance of the wind speed estimation. Near the Earth’s surface (below 500m), to
describe analytically the wind speed V Archer (Archer (2013)) used Equation 1.1,

V (z) = V (zref )

(
z

zref

)γ
(1.1)

with z the height and γ a friction coefficient varying from 0.1 above calm water, to 0.4

above big cities, zref a reference height at which a measured velocity V (zref ) is done.
The power law of Equation 1.1 has been proven empirically to be a good approximation
for the wind speed below 500m (Archer (2013)).

The wind velocity is therefore faster at high altitude, which means more energy to
capture. The wind is also steadier at high altitude and also above water as there is
no obstacles. To reduce our fossil fuel consumption, it perfectly makes sense to look
again, and with new ideas, at the way of capturing wind energy.

Kites to produce energy?

The first known kites were developed in China around the 5th century B.C. Since then,
their use have varied, from military applications to scientific purposes or just as toys.
Pocock (Pocock (1827)), for example, investigated the potential of kite for towing
vehicles as soon as the 19th century. Hobbs (Hobbs (1986)) summarizes a big part of
kite history for scientific or industrial applications between the 18th century and the
end of the 20th century.

Kites can have many shapes depending on their application (see Figure 1.2). Nowa-
days, the design of a kite for kite surfing is still mainly done on the basis of trial and
error, by looking for a compromise between stability, performance and maneuverabil-
ity.

As the power potential of the wind increases with the wind speed, it is interesting
to look for wind at high altitude, which is steadier and stronger . Kites, contrary to
windmills are less limited in altitude because of the tethers length than can be adjusted.
For that reason, the idea of capturing wind energy with kites has been investigated since
the end of the 20th century (Goela et al. (1986); Loyd (1980)). Loyd, for example,
describes various ways of producing power with kite, a kite in static flight exerting a
tensile stress on the tether and unwinding them from a drum, a kite in crosswind motion
here again pulling on the tether or by adding an air turbine on the kite in dynamic flight.
The study highlights the power potential of the kite but also points out the engineering
challenges for the implementation of such a project. The first idea has been further
investigated these last years (Fechner & Schmehl (2013); Olinger & Goela (2010);
Argatov & Silvennoinen (2009)), providing lots of developments on kite control or on
the modeling of kite dynamics.
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Figure 1.2 – Left, kite from the Bali Kite Festival. Right, kite from the beyond the sea®
project

Another application for towing kites, already mentioned by Pocock in the 19th century,
is the use of kites for towing ships. This idea was popularized during the 1980s by the
speed record of the Jacob’s Ladder (Wellicome & Wilkinson (1984)), a boat towed by
kite; or in the 2000s with the growth of kite surfing and the new speed records.

Overview of the study

The use of kites for towing ships is therefore not a new idea. In the 1980s, Duck-
worth (Duckworth (1985)) carried out experiments with an 8 ton workboat, using sta-
ble parachute sails. Wellicome (Wellicome & Wilkinson (1984); Wellicome (1985))
developed a first model to predict the kite aerodynamic forces and its performance.
He concluded that, for a medium-sized commercial vessel (4500 ton ship), the kite
needed to ensure a full propulsion of the ship is really large and that the most practical
application at the time is for fuel saving wind assistance or emergency use.

Naaijen (Naaijen et al. (2006)) estimated the fuel saving potential of kite towing ships.
As the estimation depends on the wind velocity, he showed the necessity to optimize
the shipping route. His estimation of fuel saving can go up to 50% at Beaufort 7 using
a kite of 500m2 attached to a 350m towing line for a 50 000 dwt (dead weight tonnage)
tanker. Leloup (Leloup et al. (2016)) also implemented a procedure to predict the fuel
saving potential by optimizing the elevation of the kite and the trajectory orientation
and position (azimuth and elevation). The prediction are higher than Naaijen’s because
Leloup introduced additionally the modeling of static flight in the optimization process,
when Naaijen only took into account the dynamic flight. The kite can also switch
between horizontal and vertical flight paths, which is useful for upwind conditions.
Leloup predicted a fuel saving of about 10% for a 50 000 dwt tanker using a kite of
320m2with a wind velocity of 10m.s−1.
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The German company SkySails was one of the first to equip a cargo ship with a kite
as an auxiliary propulsion device. In 2008, the company set up a prototype of kite
propulsion system of 320m2 on a 132m ship (Erhard & Strauch (2013); Fritz (2013)).
In 2017, the company equipped the 35m catamaran Race For Water with a 40m2 ram
air kite (see Figure 1.3). An other vessel towed by kite was launched in 2017, Energy
Observer (see Figure 1.3), but this time equipped with a Leading Edge Inflatable (LEI)
kite from the beyond the sea® project.

Figure 1.3 – Left, catamaran Race For Water, project which fight against plastic pollution in
the oceans. Right, catamaran Energy Observer, project seeking to develop solutions for
the energy transition.

Presentation of the beyond the sea® project

The beyond the sea® project started in 2007 with the aim to develop kite as an auxiliary
propulsion for any kind of vessels, to reduce the environmental impact of shipping. The
advantages of the kite for the use of wind energy are numerous. The kite and its fixation
take less room on the deck than a rig, the heeling moment of a kite is much lower than
a sail. Kite can also fly higher, where the winds are stronger and steadier, thanks to
adjustable tether lengths. Furthermore, kites have their own velocity in dynamic flight,
which increases the apparent wind, and then the towing forces. The inflatable leading
edge is an other advantage, it shapes the kite and makes the launch easier.

The project got the support of the French Environment and Energy Management Agency
(ADEME) in 2014 and formed a consortium made of the following companies: beyond
the sea® , Porcher Industries, Cousin Trestec, BOPP, CMA-CGM and ENSTA Bre-
tagne. The beyond the sea® company manages the various aspects of kite design and
automatic control, as well as the launching and recovery procedures. This problematic
led to the thesis of Du Pontavice (Du Pontavice (2016)) for example. The technical
fabrics needed for the kite conception are made by Porcher Industries. Indeed, fabrics
as light as possible are needed, so that the kite can fly with a minimum wind, but it
must also resist to the large aerodynamic loadings, as well as to maritime environment
exposure. Cousin Trestec manufactures the tethers and bridles used in the beyond the
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sea® project. Here again, it needs to be as light as possible but also able to resist to
the maritime environment. BOPP provides the deck equipment needed to control the
kite and to fix it to the deck. CMA-CGM, the third biggest shipowner in the world,
can provide appropriate ships for full scale tests. Eventually, ENSTA Bretagne is a
research partner of beyond the sea® since early 2010 and the PhD program of Richard
Leloup (Leloup (2014)).

This first thesis (Leloup (2014)) has investigated various research axes, such as the
estimation of the fuel saving potential or a first fluid-structure model of the kite. It was
followed by two other PhD programs, expanding further some problematics. Nedeleg
Bigi (Bigi (2017)) focused on the interactions between ship and kite. Indeed, the kite
can impact the maneuverability of the ship and the waves can impact the stability of
the kite. For this reason, a dynamic model of the system formed by the kite and the
ship is necessary. Bigi showed the importance of taking into account the motion of the
ship and its influence on the kite flight.

The second PhD program was pursued by Morgann Behrel (Behrel (2017)). The aim of
his work was to produce experimental data to check the numerical models. A test bed
has been developed which allows the control of the kite and the measures of various
parameters, such as the tension in the tethers. Several measurement campaigns have
been done, including one on land with the test bed fixed on the ground and one at sea,
on a boat specifically build for this purpose.

Introduction to the thesis

The beyond the sea project® thus aims to equip ships with kites of various shapes and
sizes. Kites far larger than the ones used for common kite surfing need to be designed.
For such large kites, a design method based of trial and error with real testing is not
possible anymore. Therefore a need arose for numerical models able to determine
the kite performances and the loads in the structure. As a kite is a flexible structure,
these models have to take into account the fluid-structure interactions (FSI). Indeed,
the aerodynamic performances of a kite depend on its geometry, which depends on its
loading. Coupling the fluid and the structure problems is a necessity to get the flying
shape of the kite.

Even if the structural problem can be modeled by a complete Finite Element (FE)
model (Leloup (2014)) and the fluid problem by a Computational Fluid Dynamics
(CFD) method, a fully coupled FSI simulation using FE and CFD methods is still
highly computationally demanding. It can then be very useful in a design stage to use a
fast, reliable and simple model to estimate rapidly the kite aerodynamic performances.
Moreover fast simulations allow the studies of different wind conditions and the deter-
mination of the critical loading case, where more complex and more time-consuming
models can’t be used so easily.

A fast FSI model should be able to compute the geometrical deformations of the wing,
the tensions in the tethers, the aerodynamic loading distribution and the aerodynamic
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coefficients of the wing by taking into account the geometry of the wing, the charac-
teristics of the wing fabrics; the mechanical properties of the tethers or various sets of
bridles. As the kite can follow a complex trajectory, the method has also to take into
account the wind direction, the wing angle of incidence or its sideslip angle, or the turn
rate of the kite. A fast model can be used in a first design stage to test rapidly different
kite geometries, shapes and sizes, or different sets of bridles as well as different wind
conditions. In this thesis, it was chosen to build the fluid model and the structure model
separately. In that way, each model can be used or improved independently.

The present document is divided into three main parts. The first part (Chapters 2, 3 and
4) focuses on the fluid model. Chapter 2 presents the fluid model algorithm and some
numerical tests, such as an estimation of the numerical accuracy. Chapter 3 is devoted
to the comparison of the fast fluid model with RANSE simulations, in order to validate
the obtained results. Chapter 4 presents an use of the fluid model to simulate the kite
in flight as a rigid body.

The second part (Chapters 5 and 6) deals with the structural problem. Two structure
models are presented in Chapter 5, the fast one developed over this thesis and an evo-
lution of a complete Finite Element model developed in the beyond the sea® project.
Chapter 6 describes some elementary comparison cases carried out to check the differ-
ences between the two models.

Finally, the last part and last Chapter of this document is the implementation of the
fluid-structure interactions. Chapter 7 presents the coupling between both models and
few computation cases.
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2 Fluid model presentation

2.1 Introduction to the Lifting Line problem

The 3D Non-Linear Lifting Line model is based on the classical Prandtl’s lifting line
theory, which is summarized in this Section. For more details, refer to Katz and Plotkin
(Katz & Plotkin (2001)), Anderson (Anderson (2011)) or Bertin and Cummings (Bertin
& Cummings (2009)).

The Prandtl’s lifting line theory models a wing by a number of horseshoe vortices.
Each horseshoe vortex is composed of one bound vortex placed at the quarter chord
of the wing section along the span. Since a vortex filament cannot end in a fluid,
according to the Helmholtz’s vortex theorem, two free vortices aligned with the face
stream finish the horseshoe vortex (see Figure 2.2). The strength of the vortex filament
is defined by its circulation Γ which is constant all along, in accordance with the second
part of the Helmholtz’s vortex theorem.

The velocity induced by the vortex filament is given by the Biot-Savart law (see Karam-
cheti (1980)). For example, Equation 2.1 gives the velocity induced at point M by the
vortex filament (L) of Figure 2.1 with P a point on (L),

#     »

dLP = dLP
#»
tP and #»

tP the unit
tangent vector at point P .

#     »

Vind =
Γ

4π

∫

(L)

#»
tP ×

#      »

PM

‖ #      »

PM‖3
(2.1)

For a planar wing with a planar wake (case presented in Figure 2.2), the induced veloc-
ity at point M , #     »

Vind(M) is given by computing Equation 2.1 for each vortex segment.

#     »

Vind(M) = − 1

4π

∫ b/2

−b/2

Γ′(y)

y0 − y
dy #»z (2.2)

The Kutta-Joukowski theorem states that lift per unit span on a two-dimensional wing
is directly proportional to the circulation around the wing:

L = ρ
#   »

V∞ × Γ
# »

dy = ρV∞Γdy (2.3)

Therefore, in Prandtl’s lifting line theory, the determination of the circulation provides
the aerodynamic specs of the wing, the lift and induced drag, and also the induced
wind on the wing, which gives its effective angle of incidence.
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(L)

# »
tP

Figure 2.1 – Induced velocity by a vortex filament of strength Γ Anderson (2011)

Finite wing

b
2

− b
2 ∞

∞

∞

∞

∞

Γ(y + dy)

Γ(y)

#»x

#»y

#»z
M(0, y0, 0)

P (0, y, 0)
Γ(y + dy)− Γ(y) = Γ′(y)dy

Lifting Line model

Figure 2.2 – Prandtl’s lifting line model (Anderson (2011)) with L the lift andDi the induced
drag on the wing

Graf (Graf et al. (2014)) uses a non-linear iterative lifting line method similar to the
method described by Anderson (Anderson (2011)) to predict the lift and drag of a two-
element straight wing for AC72 catamaran. This method is not based on the linear
relationship between the section lift coefficient and the section angle of attack and for
that reason it could be used to take into account the effects of stall. The comparison
with RANSE simulations shows a good agreement for attached flow regime and in the
first part of the nonlinear range before the maximum lift. Furthermore, the method is
computationally efficient enough for some optimization. However, in case of larger
angles of incidence, the lifting line method shows its limits as it is sometimes unable
to converge. This may be a problem for the modeling of the kite in extreme flight
conditions.

Phillips (Phillips & Snyder (2000)) also developed a non-linear lifting line method
able to deal with wings with both sweep and dihedral angles. The method is validated
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for classic elliptic wings and then compared with results obtained from a numerical
panel method, from an inviscid CFD solution and from experimental data. The results
shows a good agreement between the CFD and the lifting line method, which shows
the possibilities of the lifting line method for wings with dihedral and sweep angles.

Gaunaa (Gaunaa et al. (2011)) developed a computationally efficient method to de-
termine the aerodynamic performances of kites. The approach iteratively couples a
Vortex Lattic Method to 2D airfoil data to consider the effects of airfoil thickness and
of viscosity. The results are compared with RANSE simulations and show a good
agreement for cases only in incidence and without stall. Gaunaa also presents results
for a kite in translation with a sideslip angle, which are consistent, at least for low
angles of sideslip.

Leloup (Leloup et al. (2013); Leloup (2014); Leloup et al. (2012)) adapted the lifting
line method for 3D kite wings with variable dihedral and sweep angles along the span.
However this strategy is a direct solving based on a collocation method, which pro-
hibits to take into account the non-linearity of the lift coefficient. This limits the use of
this lifting line method to small angles of incidence.

This Chapter describes the 3D non-linear lifting line model developed to enable the es-
timation of the aerodynamic performances of a wing with variable dihedral and sweep
angles. Section 2.2 explains the construction of the lifting line, the algorithm used
for the circulation computation and the post-processing, the determination of the aero-
dynamic coefficients. Section 2.3 presents the influence of the initial parameters, the
discretization or the wake length. An estimation of the numerical accuracy of the
method is presented, as well as a first verification of the results thanks to the analytical
solution of the elliptic wing.

2.2 3D Non Linear Lifting Line model

This part is devoted to the presentation of the 3D non-linear lifting line algorithm.
Section 2.2.1 is committed to the presentation of the lifting line geometry while Section
2.2.2 presents the way chosen to solve the circulation distribution. Section 2.2.3 details
the computation of the aerodynamic coefficients of the wing.

2.2.1 Parametric definition of the lifting line

The kite geometry is defined in the Cartesian reference frame (K, #»xb,
#»yb,

#»zb) (see Figure
2.3). A generatrix line is given as a parametric planar curveM(s) in the plane (K, #»yb,

#»zb),
M denoting the current point and s the curvilinear abscissa. This curve is elliptical and
symmetrical with respect to the axis (K, #»zb). At the current pointM(s), the section of the
kite is defined in the normal plane with respect to the tangent vector to the generatrix
line #»

t(s) =
#    »

dM/ds. This plane is denoted by (M(s), #»xb,
#»n(s)), where #»n(s) = #»xb × #»

t(s)
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is the normal vector to the generatrix line in the (K, #»yb,
#»zb) plane. The local chord

direction of the section #»xs(s) is obtained from the rotation of the vector #»xb of an angle
αv(s) around #»

t(s), where αv(s) is a given twist law. Since M(s) is supposed to be the
quarter chord point of the current section, the leading edge A(s) and the trailing edge
F(s) are then located along the chord axis (M(s), #»xs(s)) according to a given chord law
c(s), following #     »

AM(s) = 0.25c(s) #»xs(s) and #      »

MF(s) = 0.75c(s) #»xs(s). This finally leads to the
local chord reference frame of the kite section (A(s), #»xs(s),

#»zs(s)) with #»zs(s) = #»xs(s)× #»
t(s),

where the points of the extrados and intrados can be placed; for example from a given
non dimensional section definition, scaled with the chord law c(s). In the case of a
kite wing with sweep angle, the local section points are finally translated by the vector
f(s) #»xb, with f(s) a given sweep law. Appendix 7.4.3 details the different twist, sweep and
chord laws implemented in the house made LP3DNL program as well as the various
geometrical parameters used for the construction of the geometry.

#»n

#»zs

αv

#»yb

#»
t

M

#»xb

# »xsαv
K

#»zb

#»xb

M ′ c

# »xsf #»xb
αv

A

F

M

Figure 2.3 – Definition of the lifting line

Lastly each section must be coupled to its aerodynamic properties. For the model,
these aerodynamic specs consist of three 2D polar curves, lift, additional drag and
moment, with respect to the angle of incidence. These 2D polar curves are described
by a combination of polynomials of various degrees, which have been chosen in order
to make easier the copy of polar curves obtained via experimental measures or CFD
simulations. Figure 2.4 shows an example of the division of the lift polar curve and the
different parameters needed for the lifting line algorithm. The details on the definition
of polar curves are given in Appendix 7.4.3.
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Figure 2.4 – Lift polar curve. Parts I, II and V are linear while parts III and IV are polynomial
(3rd and 2nd degree respectively)

2.2.2 The lifting line method

The 3D non-linear lifting line is based on an extension of the Prandtl’s lifting line
theory. This extension is intended to address cases of wings with variable dihedral and
sweep angles. Leloup introduced this technique in Leloup et al. (2013) with a linear
implementation while the present method is taking into account the non-linearity of
the lift coefficient, generalizing the work of Anderson (Anderson (2011)) and Graf
(Graf et al. (2014)) for straight wings. Assuming a rigid kite, the wing is supposed
to fly in a given wind #      »

VRW , with a given velocity #  »

VK at the quarter chord point K in
its symmetry plane, and with a given turn rate #»

Ω. In this general case, the kite global
apparent wind is # »

Va =
#      »

VRW −
#  »

VK and its direction is denoted by # »xa. The finite wing
and its wake are represented by a set of horseshoe vortices of different strengths Γ =

(Γi)i=1...2n. The aim of the algorithm presented thereafter is to calculate the circulation
Γi of each horseshoe vortex. Once these strengths are obtained, the local effective
flow for each wing section allows local aerodynamic forces and torques calculation
along the span of the wing. The numerical iterative solution is taken from Anderson
(Anderson (2011)), but the calculation of the local effective angles of incidence is
adapted to the cases of wings which are non-straight and non-planar. The horseshoe
vortices used for discretization, and the calculation of their influences, are for their part
derived from Katz and Plotkin (Katz & Plotkin (2001)).

The wing is divided in a finite number 2n of plane sections normal to #»
t i, as defined

in section 2.2.1, each one is represented by a horseshoe vortex. The horseshoe vortex
number i consists of six vortex segments. The bound vortex Γi

#»
t ili is located at the

local quarter chord length, perpendicular to the plane of the considered section. Each
of the two trailing vortices are separated into two parts: the first which extends parallel
to the chord over one chord length, ±Γi #»xs

ici, and the second which extends parallel
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#»

VRW

#»

VK

#»

Ω

K

#»xb

#»zb

#»yb

Lifting line points

Leading edge

Trailing edge

Local forces

Horseshoe vortices

Figure 2.5 – Example of a low discretized lifting line model. Red vectors are proportional to
the local aerodynamic resulting forces. To improve the readability local torques were not
represented.

to the global relative free stream direction # »xa and over several chords length leading
to Lwake length, ±Γi # »xaLwake. The starting vortex −Γi

#»
t ili is finally used to close the

horseshoe vortex. An example of the discretized model is presented in Figure 2.5 and
the geometry of the section is described in Figure 2.6. It can be noticed that even with
a swept wing, the bound vortex along the lifting line is orthogonal to the two adjacent
trailing vortices. This leads to a piecewise constant discretization of the lifting line
as it can be seen in Figure 2.5, but a correct match is needed between the local lift
calculated from the Kutta formula and from the polar of the section, as theoretically
required by such models.

M

A

FP1

P2

P3

P4

P5

P6

li

#»
t

#»xs

c
#»xa

Lwake

Figure 2.6 – Section geometry

For the section i of the kite, the local apparent wind is given by Equation 2.4 (see
Figure 2.5 for the notations).

# »

Va
i =

#      »

VRW − (
#  »

VK +
#»

Ω ×
#        »

KM i) (2.4)

The numerical iterative solution for the circulation Γi of each horseshoe vortex is de-
scribed hereafter with p the counter of the recursive steps. The local circulation values
are first initialized by an elliptical or other distribution along the wing span (see Sec-
tion 2.3.1), denoted Γi(0) for p = 0. At step p, starting from the Γi(p) values, the Γi(p+1)

values are updated as follows.

For each point M i of the lifting line, the induced velocities by each vortex segment
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of the whole wing model are calculated from Γi(p) values with the Biot-Savart law and
then summed, leading to the induced velocity #     »

Vind
i
(p).

#     »

Vind
i
(p) =

2n∑

j=1

Γj(p)
1

4π

(
#»v ij53 + #»v ij31 + #»v ij12 + #»v ij24 + #»v ij46 + #»v ij65

)
(2.5)

with
#»v ijkl =

( #        »

P j
kP

j
l ·

#          »

P j
kM

i

‖
#          »

P j
kM

i‖
−

#        »

P j
kP

j
l ·

#          »

P j
l M

i

‖
#          »

P j
l M

i‖

) #          »

P j
kM

i ×
#          »

P j
l M

i

‖
#          »

P j
kM

i ×
#          »

P j
l M

i‖2

In Equation 2.5, it can be noticed that only the circulation depends of the step p. The
value of the second part of the equation is thus computed only once, at the beginning
of the algorithm, and then stored in order to save some computation time.

The local effective wind is obtained by combining the induced wind and the local free
stream velocity:

#»

Ve
i
(p) =

# »

Va
i +

#     »

Vind
i
(p) (2.6)

This velocity is projected in the plane of the section, leading to #     »

Vprj
i
(p) and to the section

angle of effective incidence αiprj (p) (see Figure 2.7).

#     »

Vprj
i
(p) =

#»

Ve
i
(p) − (

#»

Ve
i
(p) ·

#»
t i)

#»
t i (2.7)

Using the 2D lift polar curve of the section, one obtains the local lift per unit length
dLi(p), in the section plane, orthogonal to #     »

Vprj
i
(p).

dLi(p) = 0.5ρ(V i
prj)

2
(p)c

iCi
l (α

i
prj (p)) (2.8)

By construction this local lift is orthogonal to the (
#»

Ve
i
(p),

#»
t i) plane, as it should be

according to the Kutta formula
#  »

dLi(p) = ρ
#»

Ve
i
(p) × Γi(p)

#»
t i = ρ

#     »

Vprj
i
(p) × Γi(p)

#»
t i applied to

the bound vortex.

The value of the bound vortex strength Γi(p+1) is finally settled so that the Kutta formula
also leads to the previous modulus dLi(p). In other words, Γi(p+1) is calculated by solving
Equation 2.9 for the unknown Γi(p+1).

∥∥∥ρ #     »

Vprj
i
(p) × Γi(p+1)

#»
t i
∥∥∥ = dLi(p) (2.9)

Equation 2.9 naturally leads to:

Γi(p+1) = 0.5V i
prj (p)c

iCi
l (α

i
prj (p)) (2.10)
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Figure 2.7 – Local effective wind projected in the section plane

The use of a damping factor is necessary for the convergence of the algorithm. An-
derson (Anderson (2011)) recommends for example a damping factor in the order of
magnitude of 0.05. In the present lifting line algorithm, this factor is self adaptive in
order to reduce the computational time. If the difference between Γi(p+1) and Γi(p) de-
creases, the damping factor is increased and if this difference increases, the damping
factor is decreased following Equation 2.11.

if

√√√√√√

2n∑

i=1

(Γi(p+1) − Γi(p))
2

2n
<

√√√√√√

2n∑

i=1

(Γi(p) − Γi(p−1))
2

2n
then

w = min (wmax, w ∗ (1 + ew))

else
w = max(wmin, w ∗ ew)

endif (2.11)

with w the damping factor, wmin and wmax the interval of the damping factor and ew
the coefficient used to vary the damping factor. For more details on the adjustment of
the user defined values wmin, wmax and ew, refer to Section 2.3.1.

The circulation value is ultimately updated by weighting between current Γ(p+1) and
previous Γ(p) values using the damping factor:

Γ(p+1) ← Γ(p) + ω
(
Γ(p+1) − Γ(p)

)
(2.12)

This whole process is repeated and, as expected, the circulation distribution is found
to converge according to a stopping criteria of the form:
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√√√√√√

2n∑

i=1

(Γi(p+1) − Γi(p))
2

2n
<


10 ∗

√√√√
2n∑

i=1

(Γi(p+1))
2

2n
+ 1


 ∗ 10−(ncs+1) (2.13)

where ncs is approximately the number of converged digits required by the user.

2.2.3 Post-processing

After the convergence of the algorithm, the circulation is known on each section of
the wing. The next step is to calculate the local loads which are needed for the fluid-
structure interaction. For the computation of the local lift effects

#    »

dRl
i, two methods

were implemented, one using the Kutta formula (Equation 2.14) and one using the lift
polar of the section (Equation 2.15).

The Kutta formula gives directly the load in the kite coordinate system with #»

Ve
i the ef-

fective wind on the section, Γi its converged circulation and li the width of the section.

#    »

dRl
i = ρΓi

#»

Ve
i × li #»

t i (2.14)

For the calculation of the local lift with the lift polar curve, the effective wind is pro-
jected in the section plane in order to get the meaningful effective wind V i

prj , and the
effective angle of incidence of the section αiprj . By definition,

#    »

dRl
i is perpendicular to

the projected effective wind.

dRi
l =

1

2
ρ
(
V i
prj

)2
ciCi

l (α
i
prj)l

i (2.15)

Similarly, the local additional drag effects are computed with the drag polar curve,
Equation 2.16 and they are collinear to the projected effective wind.

dRi
d =

1

2
ρ
(
V i
prj

)2
ciCi

d(α
i
prj)l

i (2.16)

The local moment at the quarter chord is orthogonal to the plane of the section and its
magnitude is given by Equation 2.17:

dM i =
1

2
ρ
(
V i
prj

)2
ci

2
Ci
m(αiprj)l

i (2.17)

The global aerodynamic loads are then calculated by summing the local loads :

# »

Fa =

2n∑

i

#    »

dRl
i +

#     »

dRd
i (2.18)
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The global drag #»

D is collinear to the apparent wind # »

Va while the lift #»

L is orthogonal to
the apparent wind (Equation 2.19).

#»

D =
(

# »

Fa · # »xa

)
# »xa and #»

L =
# »

Fa −
#»

D (2.19)

The global moment of the wing expressed at point K, point at the quarter chord in the
middle of the wing is given by Equation 2.20:

#     »

MK =
2n∑

i

#    »

dM i +
#        »

KM i ×
(

#    »

dRl
i +

#     »

dRd
i
)

(2.20)

The aerodynamic coefficients of the wing can now be computed with S the surface of
the wing and cr the chord length at the root of the wing, in the symmetry plane:

CL =
|| #»L||

1
2
ρSV 2

a

(2.21)

CD =
|| #»D||

1
2
ρSV 2

a

(2.22)

CM =
|| #     »

MK ||
1
2
ρcrSV 2

a

(2.23)

The lift-to-drag ratio is conventionally defined by Equation 2.24.

ε =
L

D
=
CL
CD

(2.24)

2.3 Numerical tests

This part consists of a series of numerical tests and checks of the 3D non-linear lifting
line program. Section 2.3.1 describes the influence of the initial parameters and of
some computation parameters such as: initial circulation, damping factor, wake length
and lift per section post processing. Section 2.3.2 gives an estimation of the numerical
accuracy of the method and Section 2.3.3 compares the results with the classical and
analytical Prandtl’s lifting line theory on an elliptic wing.

2.3.1 Initial conditions and computation parameters

Initial circulation distribution

The algorithm needs to be initialized with a circulation distribution along the wing
span. Three different initial circulation distributions have been tested, see Equations
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2.25, 2.26, 2.27, Figure 2.8 and Table 2.1. Equation 2.25 is the circulation distribution
derived from the Kutta-Joukowski theorem applied to each section and neglecting the
3D effects. Equation 2.26 is the circulation distribution derived from the circulation
at the root, weighted by an elliptic distribution along the span. Equation 2.27 is a
circulation distribution constant along the span, computed as the average of the local
circulation values from Equation 2.25.

the average of the local circulations, constant along the span.

Γi(0) =
1

2
V i
prjc

iCi
l (α

i
prj) (2.25)

Γi(0) =
1

2
V n
prjcrC

n
l (αnprj)gcoeff

√
1− (si − smax)2

smax2
(2.26)

Γi(0) =
1

2n

2n∑

k=1

(
1

2
V k
prjc

kCk
l (αkprjk)

)
(2.27)

With V i
prj the apparent wind # »

Va
i projected in the section plan, ci the section chord, si its

curvilinear abscissa, αiprj the effectif angle of incidence of the section (which depends
of the twist and of the apparent wind of the section), n the number of sections on the
half-wing and gcoeff a user defined coefficient (often gcoeff = 0.5).
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Figure 2.8 – Initial and converged circulations along the span of the wing

It is found that all these initial circulation distributions have no influence on the con-
verged circulation distribution, the differences between each case bring of the same
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order of magnitude than the numerical error, see Figure 2.8 where no notable differ-
ences can be observed between the converged curves. However the initial circulation
distribution has an influence on the number of iterations needed to obtain the converged
solution, as shown in Table 2.1. The fastest distribution is found to be the closest of the
converged solution. Therefore the initial elliptic distribution of circulation (Equation
2.26) with a coefficient gcoeff = 0.5 is recommended .

Kutta-Joukowski
theorem (1)

Weighted elliptic
distribution (2)

Mean value (3)

Iterations number 147 135 137

Table 2.1 – Number of iterations for each of the initial circulations.

Adaptive damping factor

As explained in Section 2.2.2, an adaptive damping coefficient is used to achieve the
convergence of the iterative calculation of the circulation distribution. It is found that
the initial damping coefficient has no influence on the convergence outside of the num-
ber of iterations if chosen very small (< 0.1). The limits wmin and wmax of the coeffi-
cient and the parameter ew are by contrast really significant. wmax can be close to 0.9

but wmin has to be lower or equal to 10−2 (ideally 10−3) for the correct convergence
of the algorithm. Similarly, a parameter ew of 0.1 has proved to be very robust and
effective during the different uses of the algorithm. Whatever the values chosen for the
relaxation bounds and factor wmin, wmax and ew, they have no influence on final results
if the algorithm is correctly converged.

Lift per section post processing

As stated in Section 2.2.2 the geometry of the lifting line model is made in order to
have a correct match between the local lift calculated from the Kutta formula and from
the polar of the section. This point was checked, and for any sideslip or incidence
angle, the difference between the two calculation methods is in the order of magnitude
of the numerical error (10−10).

Wake length

To evaluate the influence of the wake length, the aerodynamic coefficients of a Leading
Edge Inflatable wing have been computed with a wake length ranging from cr to 1000cr.
The results are shown in Figure 2.9.
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Figure 2.9 – |CX(N)−CX(103)|
|CX(103)| Relative error on the aerodynamic coefficients with respect to

the wake length nondimensionalized by the root chord length.

For Lwake ∈ [10c; 20c], the three aerodynamic coefficients have at least 3 continuous
shapes which is satisfactory taking into account the intrinsic accuracy of the lifting
line model. It can be noticed that the wake length has almost no influence on the
number of iterations.

2.3.2 Numerical accuracy estimation

Eventually, the influence of the mesh has to be evaluated. First, it is necessary to check
the influence of the sections number per half-wing on the computation time. The lifting
line program has been run for a wing with between 10 and 500 sections, 50 times each.
Figure 2.10 (a) shows the averaged computation time for 50 runs on a classic computer.
The purpose here is not to give a precise estimation of the computation time as the
program is not properly optimized but more to give an idea of the evolution of the
computation time as a function of the number of sections on the wing. The number of
iterations can be seen in Figure 2.10 (b).

As can be seen in Figure 2.10, the computation time and the number of iterations
start to increase significantly for more than 100 sections per half-wing. Under 100

sections, the influence of the iterations number is harder to evaluate as the other parts
of the program, especially files writing, take comparatively more time. Furthermore, as
shown in Figure 2.11, for 30 sections per half-wing the estimation of the aerodynamic
coefficients has three significant figure which is considered enough, taking into account
the intrinsic accuracy of the lifting line model. Indeed, for a large number of sections,
the numerical accuracy is certainly superior to the accuracy of the lifting line model
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Figure 2.10 – (a) Averaged computation time with respect to the number of sections per
half-wing. (b) Number of iterations vs. the number of sections per half-wing.

itself. That is why, for the use of the lifting line program, a discretization between 30

and 50 sections per half-wing is recommended.
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Figure 2.11 – Evolution of the relative variation of the aerodynamic coefficients with re-
spect to the number of sections per half-wing. The relative variation is estimated as
|CX(N)−CX(N−1)|

10|CX(N)|+1 , using the results of two consecutive cases, N − 1 and N .

For a number of sections per half-wing in the range of [30; 100], the standard deviation
relative to the mean value is estimated, which gives the 95% confidence interval. This
interval is evaluated for the linear range (angle of incidence typically lower than 10°) at
2° of incidence and for the non-linear range (angle of incidence greater than 10°) at 12°
of incidence. It is assumed that results from these two angles are sufficient to estimate
the numerical precision of the lifting line model. In the same way, results obtained
with this geometry and this aerodynamic section are resumed in Table 2.2 and will be
extrapolated to other geometries.
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Lift Drag Moment

2°, α < 10° 3.4% 1.3% 1.6%

12°, α ≥ 10° 5.0% 15.3% 14.1%

Table 2.2 – Estimation of the confidence interval for a number of sections n between [30; 100],
α is the angle of incidence of the wing

2.3.3 Verification again an analytical case

The first verification case is the elliptic wing of Prandtl (see Figure 2.12). This wing
has an elliptic circulation distribution of the form:

Γ(y) = Γmax

√
1−

(
y

d2

)2

(2.28)

#»zb

#»yb

#»xb

d2

Circulation

Leading edge

Trailing edge

Horsheshoe vortices

Figure 2.12 – Wing with an elliptic plan form and an elliptic circulation distribution

For more details on the calculation of the analytical solution, refers to Katz and Plotkin
(Katz & Plotkin (2001)) or Anderson (Anderson (2011)). The lift of the wing is given
by Equation 2.29 (Anderson (2011)).

L = ρVa

∫ d2

−d2
Γ(y)dy =

πρd2VaΓmax
2

(2.29)

Which gives the lift coefficient:

CL =
L

1
2
ρSV 2

a

=
πd2Γmax
SVa

(2.30)

Katz and Plotkin (Katz & Plotkin (2001)) give the expression for Γmax:
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Γmax =
4d2Va(αi − αL0)

1 +
8d2
m0cr

(2.31)

with αi the angle of incidence of the wing, αL0 the zero-lift angle and m0 the lift
coefficient slope (αi belongs to the linear part of the section lift coefficient).
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Figure 2.13 – (a) Circulation along the span of the wing. (b) Lift coefficient with respect to
the angle of incidence

For the first validation test, the wing has a root chord cr = 1m and a span of 8m,
d2 = 4m, the section is assumed constant along the span. The angle of incidence varies
between −5° and 10°, which corresponds to the linear part of the lift coefficient. Figure
2.13 (a) shows the circulation distribution along the span of the wing and Figure 2.13
(b) presents the wing lift coefficient as a function of the angle of incidence for the
wing with 30 sections per half-wing (n = 30). The results match admirably, for 10°
of incidence, the gap between the analytical solution and the 3D non-linear lifting line
method is of 0.5%, which is within the margin of error of the method.

The second validation case is still an elliptical wing but with a linear twist (Katz &
Plotkin (2001), Filotas (1971)). For this case, the circulation is described by the fol-
lowing Fourier expansion (Equation 2.32) with y = d2 cos(θ), θ ∈ [0;π], which gives
the linear twist αv = α0|y/d2| = α0| cos(θ)| and the elliptic chord c(θ) = cr sin(θ).

Γ(θ) = 4d2Va

∞∑

k=1

Ak sin(kθ) (2.32)

Using this circulation expression, the equation for the coefficients Ak using lifting line
theory is:

∞∑

k=1

Ak sin(kθ)

(
8d2

m0cr sin(θ)
+

k

sin(θ)

)
= αi − αL0 + α0| cos(θ)| (2.33)
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∞∑

k=1

Ak sin(kθ)

(
8d2
m0cr

+ k

)
= (αi − αL0 + α0| cos(θ)|) sin(θ) (2.34)

With the Fourier series principle, one can express the coefficients Ak from Equation
2.34:

Ak =
2

π

m0cr
8d2 + km0cr

∫ π

0

(αi − αL0 + α0| cos(θ)|) sin(θ) sin(kθ)dθ (2.35)

Katz and Plotkin (Katz & Plotkin (2001)) demonstrate that the wing lift coefficient
depends only of the first term of the Fourier expansion:

CL =
4πd22A1

S
=

16d2m0

π(8d2 +m0cr)

∫ π

0

(αi − αL0 + α0| cos(θ)|) sin2(θ)dθ (2.36)

CL =
16d2m0

π(8d2 +m0cr)

[∫ π

0

(αi − αL0) sin2(θ)dθ + 2

∫ π
2

0

α0 cos(θ) sin2(θ)dθ

]

CL =
16d2m0

π(8d2 +m0cr)

[
(αi − αL0)

π

2
+

2α0

3

]
(2.37)

Figure 2.14 shows the spanwise circulation (a) and the lift coefficient (b) of an elliptic
wing with a maximal twist of 5° in red and −5° in blue. The angle of incidence varies
between [−5°; 5°] and [0°; 10°] in order to stay in the linear range of the section lift
coefficient. This is enough to confirm the good agreement between the 3D non-linear
lifting line method and the lifting line theory for these classic wing geometries.
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Figure 2.14 – (a) Spanwise circulation for a wing at 5° of incidence (b) Lift coefficient with
respect to the angle of incidence. Wing with a maximal twist of 5° in red, or −5° in blue.
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3 Fluid model comparison against
RANSE simulations

In order to validate the 3D non-linear lifting line method, results were compared to
those obtained from 3D RANSE simulations. All the necessary simulations were
performed with the CFD code STAR-CCM+®. As a first step, 2D simulations of a
NACA2412 wing section were used to adjust the settings of the simulations and for
convergence studies, but also to obtain the 2D polar curves of the section, which are
required to feed the 3D non-linear lifting line model. In a second step, 3D simulations
of various kite geometries were used to calculate local and global aerodynamic forces
on a kite in translation, including variations of the angle of incidence and the sideslip
angle.

3.1 Numerical settings

Within this study, all RANSE simulations were conducted in an incompressible, steady
and fully turbulent framework. The retained turbulence model was the two-equation k-
ε realizable model with a two-layer formulation for the wall treatment. The segregated
flow solver was based on the SIMPLE algorithm, and a second-order discretization
scheme. It was chosen to work with a kite section or a kite wing fixed with respect
to the computational domain, and to enable the direction of the inlet velocity to vary
in order to model the angle of incidence and the sideslip angle. The inlet boundary
conditions were such that the chord based Reynolds number was 3.1 ∗ 106, for the root
section of the kite. The turbulence intensity was set to 0.5% and the turbulent viscosity
ratio was set to 1.

The meshed computational domain is presented in Figures 3.1 and 3.2 for the 2D sim-
ulations and in Figure 3.3 for the 3D simulations. The domain was meshed using the
trimmed cell mesher, which led to predominantly hexahedral mesh (Figure 3.1). It
was controlled by a cell base size (0.1cr), and targeted cell sizes at some boundaries:
inlet and outlet (0.5cr), wing extrados and intrados (0.025cr), wing leading and trailing
edges (0.00625cr). Cells size growth rate was very slow, which means at least 8 cell
layers of same size per transition (Figure 3.2 (a)). Around the wing a prism layer mesh
was used in order to get orthogonal cells next to the wall (Figure 3.2 (b) and (c)). It
was controlled by its thickness (0.0125cr), a number of layers (10), and a growth rate
between adjacent cells in the wall normal direction (1.2). For the 2D simulations two
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Ncr
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2Ncr

Figure 3.1 – 2D mesh of the computational domain

anisotropic wake refinements were also prescribed in the mean free stream direction
from the trailing edge, one finely meshed of one chord long and a coarse mesh for the
other , and being extended over several chords (15cr) (Figure 3.1 and 3.2 (a)).

(a) (b)

(c)

Figure 3.2 – (a) View of the mesh around the profile section. View of the near wall mesh in
the vicinity of (b) the leading edge and (c) the trailing edge.

For 3D simulations, wake refinements were prescribed on the cylinder which is sup-
ported by the trailing edge and whose axis is parallel to the mean free stream, over the
same extent as in the 2D case. In order to partially resolve the tip vortex, a supplemen-
tary refinement was also prescribed in a conical region, which includes the wing tip
and whose axis is parallel to the mean free stream. These refinements are illustrated
Figure 3.4. The 2D and 3D meshes obtained were coarse, of about 16 ∗ 103 cells in 2D
and 4.7 ∗ 106 cells in 3D, and they led to a mean value of about 35 for y+ over the wing
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20cr

Domain
Radius :

10cr

Figure 3.3 – The 3D computational domain

surface for each simulated cases. The stop criteria of the simulations were based on
the monitor of the lift and drag coefficients, specifying a |max −min| tolerance over
the 10 last calculated values. The tolerance was set to 10−6 for both coefficients, and
it was found that it corresponded to the drop of the non-dimensional residuals over at
least 4 or 5 decades.

These simulations were also necessary to check the local results of the lifting line
method. Within the lifting line, the local loading distribution is calculated via the
lift polar curve and the drag polar curve for each section of the wing (see Section
2.2.3). With STAR-CCM+®, it is necessary to cut slices of finite thickness in the wing
geometry, in order to calculate the forces and torques on this slice. These are then
divided by the thickness of the slice to get the local loading distribution. The mesh
was refined around the slice (0.00625cr) to minimize the irregularities in the mesh due
to the slices (see Figures 3.4 (a) and (b)).

(a) (b)

Figure 3.4 – (a) Slices in the wing geometry, (b) 3D sections and mesh refinements in the
wake, around the tip vortex and the slices
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A parametric study was needed to evaluate the influence of the slice thickness on the
results (see Figure 3.5). For this purpose, three slices have been cut on the wing, one
near the root of the wing, one near the tip and one in the middle of the half-wing.
Thicknesses between 0.25cr and 0.001cr were tested. The converged thickness was
estimated at e = 0.025cr. This thickness was used for all following simulations.
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Figure 3.5 – Total force per unit length on each slice function of the slice thickness, (a) at
the wing root, (b) in the middle of the half-wing, (c) at the tip. In gray, the estimated
converged value. The blue triangle is the chosen thickness.

RANSE simulations also allow the computation of the out-of-plane component of the
local force on the section, which is not possible with the lifting line method. Simula-
tions show that this component counts in average for 1.5% to 2.5% of the total force on
the section.
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3.2 2D results on the NACA2412 profile

For validation purpose, it has been decided to work with the NACA2412 profile instead
of a LEI kite profile. Indeed the NACA2412 can be more accurately and easily meshed.
Furthermore in following simulations, the profile was kept constant along the span of
the wing.

2D RANSE simulations were carried out on the NACA2412 section for 14 angles of
incidence within the range of [−8°; 16°]. Numerical results were compared with ex-
perimental ones obtained in a wind tunnel (Abbott & Doenhoff (1959)) at the same
Reynolds number, Re = 3.1 ∗ 106. The parameters of the parametric polar curves used
for the lifting line method were chosen to fit the RANSE results at best. All these
results are presented Figure 3.6. The agreement between experimental and numeri-
cal results is excellent for the lift coefficient and satisfactory for drag and moment
coefficients. One explanation for the differences encountered for drag and moment is
that simulations were conducted in a fully turbulent regime, whereas experiments were
performed on a smooth section in a low residual turbulence wind tunnel.

−10 0 10 20
−1.0

0.0

1.0

2.0

Angle of incidence

2D
lif

tc
oe

ffi
ci

en
t

−1.0 0.0 1.0 2.0
0.00

0.02

0.04

0.06

2D lift coefficient

2D
dr

ag
co

ef
fic

ie
nt

−10 0 10 20
−0.10

−0.05

0.00

0.05

0.10

Angle of incidence

2D
m

om
en

tc
oe

ffi
ci

en
t Parametric polar

StarCCM+®
Experimental

Figure 3.6 – 2D polar curves obtained via STAR-CCM+® (filled squares), compared with
experimental data Abbott & Doenhoff (1959) (filled triangles), and fitted with parametric
polar curves used for the lifting line method (plain line).
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3.3 Estimation of the numerical accuracy of the
RANSE simulations

An attempt was done to estimate a numerical accuracy of 2D and 3D RANSE results.
It was assumed that results from 2D simulations were sufficient for that purpose and
that they could be extrapolated to the 3D cases. In addition, it was assumed sufficient to
examine a single angle of incidence of 2 ° for the root kite section, to be representative.
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Figure 3.7 – Convergence history of the lift coefficient for variations (a) of the computational
domain size, (b) of the number of cells in the mesh, (c) of the number of layers of the near
wall mesh and of the turbulence model.

Three elementary variations of the general numerical set up were considered. Only
results in terms of lift and drag coefficients are presented in Figures 3.7 and 3.8. Curves
obtained are similar for the coefficients of moment. First (Figures 3.7 and 3.8 (a)),
the size of the computational domain was varied, parameter N varying from 1 to 27
keeping constant the base size, the absolute targeted size at the section, the near wall
mesh parameters, and the growth rate (see Figure 3.1). Second (Figures 3.7 and 3.8
(b)), the targeted size at each boundary being defined relatively to base size, the base
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Figure 3.8 – Convergence history of the drag coefficient for variations (a) of the computa-
tional domain size, (b) of the number of cells in the mesh, (c) of the number of layers of
the near wall mesh and of the turbulence model.

size ranged from 0.6cr to 0.02cr, leading to a number of cells from 6 ∗ 103 to 120 ∗ 103,
keeping constant the near wall mesh parameters and the size of the computational
domain (N = 10). Third (Figures 3.7 and 3.8(c)), the number of layers of the near wall
mesh ranged from 4 to 32, leading to mean y+ values from 156 to 0.5, keeping constant
all the other mesh parameters, that means the size of the computational domainN = 10,
and the base size 0.1cr. In this last case, two other turbulence model were also tested
(k-ω SST and Spalart-Allmaras).

For the variations of the domain size and of the number of cells (Figures 3.7 and 3.8,
(a) and (b)), based on the limited number of computed points, for each aerodynamic
coefficient, it was estimated a mean converged value (denoted cvg), a standard devi-
ation relative to this mean value (denoted rms), and then a 95% confidence interval.
For the variations of the near wall mesh and of the models (Figures 3.7 and 3.8 (c)),
the mean value of the coefficients from the different models (also denoted cvg) was
estimated first, respectively around y+ ∼ 1 and y+ ∼ 30, then their standard deviations
relative to these means due to model variations (also denoted rms). These are plotted
in black Figures 3.7 and 3.8, and it was found that in each case the confidence interval
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encloses the red filled point corresponding to the general numerical set up. As a sec-
ond step, the relative difference between coarse and fine mesh mean results (denoted
dif) was calculated. It can also be noticed in Figures 3.7 and 3.8 (c) that intermediate
meshes in the buffer layer, for y+ in the range of [5; 30], led as expected to highly model
dependent results, and that the Spalart-Allmaras model is valid only for fine meshes
around y+ = 1.

Figure (c)

Figure (a) Figure (b) y+ ∼ 1 y+ ∼ 30
Cdif

2Crms/Ccvg 2Crms/Ccvg 2Crms/Ccvg 2Crms/Ccvg

Lift 0.6% 0.7% 0.8% 1.2% 1.2%

Drag 1.7% 2.5% 5.0% 1.5% 2.0%

Moment 0.9% 1.5% 1.5% 2.4% 2.3%

Table 3.1 – Estimation of the confidence intervals, coming from the variations of the domain
size, of the mesh and of the turbulence model. C stands for coefficient.

Estimated confidence intervals for the coefficients of lift, of drag and of moment, are
resumed in the Table 3.1. Summing the first two and the last two columns of the
Table 3.1, it was finally estimated that numerical results provided by the coarse meshed
numerical set up of section were unconfined, mesh converged, and model independent,
with the following relative accuracies: ±3.7% for the lift,±7.7% for the drag and±7.1%

for the moment.

3.4 3D numerical results

For the validation of the lifting line method, 3D RANSE simulations have been car-
ried out for some semi-circular wing geometries, from an un-twisted and un-swept
wing with a linear chord law to a twisted wing with non-linear chord law and sweep
law, the latter being close to a true kite geometry. The three different geometries are
summarized in Table 3.2.

Chord Sweep angle Twist angle
case 1 linear null null
case 2 linear constant (30°) null
case 3 non-linear non-linear Linear

Table 3.2 – Overview of the different validation cases

These wings were set up at different angles of incidence and of sideslip. For the global
aerodynamic results, the drag is computed as the component of the aerodynamic resul-
tant in the direction of the relative wind, while the lift is computed as the component of
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the aerodynamic resultant in the normal plane to the relative wind. The aerodynamic
moment is computed at the quarter chord point in the symmetry plane of the wing,
along #»yb for the wing purely in incidence. For the wing in sideslip, the coefficients are
computed from the norm of the aerodynamic forces. Global aerodynamic coefficients
variations with respect to the angle of incidence or the angle of sideslip will be pre-
sented for each geometries. The error bars on these graphs are the estimated confidence
interval at 95% for the STAR-CCM+® results (see Section 3.3) and for the mesh de-
pendency of the lifting line method as described Section 2.3.2. Local results presented
in following sections are the norm of the local force per unit length distribution along
the span.

As an indication, the computation time for the non-linear lifting line method takes
around a second on a desktop computer (Intel E3-1220, 4 cores, 3.10GHz, 4Go RAM)
while each RANSE simulations lasted about 20 minutes on a cluster (Intel E5-2670, 8

cores, 2.6GHz, 128Go RAM).

3.4.1 Un-twisted and un-swept semi-circular wing

First, simulations have been carried out on a semi-circular with a 1.5m radius, un-
twisted and un-swept. The chord law varies linearly along the span from 1.0m at the
root to 0.5m at the tips for an aspect ratio of 6.0.
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Figure 3.9 – Un-twisted and un-swept geometry (case 1), (a) side view, (b) front view, (c)
developed view
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Figure 3.10 – 3D aerodynamic coefficients as a function of angle of incidence, obtained via
STAR-CCM+® (filled squares) and the lifting line method (plain line) on the wing (case
1). Error bars are the estimated numerical accuracy. No angle of sideslip.

The results for this wing purely in incidence are presented in Figure 3.10. The dif-
ference between RANSE results and the lifting line method are around 5% for the lift
coefficient. For the drag coefficient, there is a 5% gap at low angle of incidence up to
20% for the higher angles of incidence. The difference between the two approaches for
the moment coefficient is of 12% in average over the investigated range.

Simulations were also carried out for this wing at 2° of incidence with different sideslip
angles (see Figure 3.11). The difference is approximately of 10% for the lift coefficient,
and of a few percent for the moment coefficient and the drag coefficient with a sideslip
angle in the range of [0°; 15°]. At 15° of sideslip angle, results start to differ more
significantly for the drag coefficient. As it can be seen, the loading and the moment on
the wing increases considerably with the sideslip angle.
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Figure 3.11 – 3D aerodynamic coefficient as a function of sideslip angle obtained via STAR-
CCM+® (filled squares) and the lifting line method (plain line) on the wing (case 1) at 2°
of incidence. Error bars are the estimated numerical accuracy.

For the use of the lifting line in a Fluid-Structure interaction, the local aerodynamic
load per unit length has to be validated. In Figure 3.12, nondimensionalized magnitude
of local forces per unit length are presented. Four simulations have been carried out,
three at 2° of incidence with 0°, 7.5°, and 15° of sideslip (Figure 3.12 (a), (c) and (d)

respectively) and another one at 12° of incidence only (Figure 3.12 (b)). Lifting line
results follow the same trend as RANSE simulations and even in sideslip, minimum
and maximum loading points are well predicted. The gap between the two methods is
maximum for the maximum loading spot, and always lower than 15%.
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Figure 3.12 – Magnitude of the local aerodynamic force per unit length on the case 1 wing
obtained via STAR-CCM+® (filled squares) and the lifting line method (filled triangles).
(a) Wing at 2° of incidence and 0° of sideslip. (b) Wing at 12° of incidence, 0° of sideslip.
(c) Wing at 2° of incidence and 7.5° of sideslip. (d) Wing at 2° of incidence and 15° of
sideslip.

3.4.2 Un-twisted and linearly swept semi-circular wing

To further validate the lifting line model, simulations have been carried out on a lin-
early swept wing with an aspect ratio of 7.5. The geometry is semi-circular with a
1.5m radius, un-twisted, with a constant sweep law of 30° along the span of the wing.
This creates a very sharp angle at the center of the wing, thus a conical mesh refine-
ment was added to enhance the simulation of the flow around the symmetry plane (see
Figure 3.13).

Figure 3.14 shows the lift, drag and moment coefficient for the kite purely in inci-
dence. The relative difference between the RANSE results and the lifting line model
are around a few percent for the drag coefficient and 9% for the moment coefficient.
For the lift coefficient, the relative gap is around 7% and the difference between the
two slopes of the lift coefficients in the linear range is of 10%.
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Figure 3.13 – Un-twisted and linearly swept geometry (case 2), (a) side view, (b) front view,
(c) developed view

Local aerodynamic forces have also been computed for the wing at −4°, 0°, 10° and
15° of incidence, see Figure 3.15. The curves show a good consistency at the sides
of the kite in contrast with the center of the wing, where local forces can differ of
almost 60%. These results have to be put in perspective with the fact that the sweep
angle is high (30°), therefore the angle in the middle of the wing is really sharp. This
local singularity of the variation of the geometry induces locally a strong increase of
the vorticity of the wake. This is well captured by the lifting line model which is
intrinsically non diffusive. On the contrary, for the RANSE simulations, the mesh
is coarse (y+ = 35), even with the addition of the conical mesh refinement in the
symmetry plane. The RANSE simulations are too diffusive to resolve the local wake
vortex, and thus the associated loading variations. The local loading differences of
Figures 3.15 and 3.16 can then be explained by the two different modelings of the
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Figure 3.14 – 3D aerodynamic coefficients as a function of angle of incidence, obtained via
STAR-CCM+® (filled squares) and the lifting line method (plain line) on the wing (case
2). Error bars are the estimated numerical accuracy. No angle of sideslip.

sharp angle effects on the flow.

One simulation on this wing (case 2) with a sideslip angle has been carried out. The
kite is at 5° of incidence with a sideslip angle of 7.5%. For the global coefficients, the
gap between RANSE and lifting line results is of 19% for the lift coefficient and less
than 6% for the drag coefficient. The local loading has also been computed on this
swept wing and is shown in Figure 3.16 alongside the case at 5° of incidence and 0° of
sideslip. Even with the difference in the middle of the wing, the position of minimum
and maximum loading are still correctly estimated for the case in sideslip.

These results are obviously less satisfying than the first test case (case 1, un-swept
and un-twisted wing) even if global results were still well predicted. Eventually a last
investigation has been performed on a more realistic case, closer to a kite geometry,
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(d) α = 15°β = 0°

Figure 3.15 – Magnitude of the local aerodynamic force per unit length on the case 2 wing
obtained via STAR-CCM+® (filled squares) and the lifting line method (filled triangles).
No angle of sideslip. (a) Wing at -4° of incidence. (b) Wing at 0° of incidence. (c) Wing
at 10° of incidence. (d) Wing at 15° of incidence.

with a non-linear variation of the sweep law and without discontinuity in the symmetry
plane.
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Figure 3.16 – Magnitude of the local aerodynamic force per unit length on the swept wing
(case 2) obtained via STAR-CCM+® (filled squares) and the lifting line method (filled
triangles). (a) Wing at 5° of incidence and 0° of sideslip. (b) Wing at 5° of incidence and
7.5° of sideslip.

3.4.3 Linearly twisted and non-linearly swept wing

The wing has a circular geometry with a 1.0m radius for an aspect ratio of 5.2, and a
non-linear swept law (maximum swept at the tips of the wing : 0.5m). The chord law
is also non-linear along the span and varies between 1.0m at the root and 0.1m at the
tips. This wing is twisted linearly from 0° at the root to 5° at the tips (see Figure 3.17).
This last wing is close to the geometry of a commercial leisure kite.

As previously, simulations were carried out for different angles of incidence ([−4°; 15°])
and for two angles of sideslip at 5° of incidence (see Figure 3.18). Purely in incidence,
the lift difference stays below 5% and and moment coefficient difference is around
20%. The drag coefficient difference at low angles is only of a few percent, up to 30%

at 15° of incidence. With an angle of sideslip, the difference is of 8% for the lift, from 2

to 15% for the drag and roughly 10% for the moment coefficient. Once more, the total
loading of the wing increases with the sideslip angle and the variation in moment is a
far more significant function of the angle of sideslip than the angle of incidence.

Local aerodynamic results are presented in following figures, in Figure 3.19, the wing
was at −4°, 0°, 10° and 15° strictly in incidence. Once again, lifting line results follow
the same trend as STAR-CCM+ ® . The gap between the two methods at −4° and
0° of incidence is larger than at higher angles of incidence but this has to be put in
perspective since the global force is also lower than for the high angles of incidence,
therefore the estimation error is eventually less significant than the one at higher angles
of incidence. Furthermore, these low angles of incidence are not the usual flying angles
of kites (see Borobia et al. (2018); Williams et al. (2008b)).

Finally, Figure 3.20 shows the local results on a wing at 5° of incidence and 0°, 7.5° and
15° of sideslip (respectively Figure 3.20 (a), (b) and (c)). The position of the maximum
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Figure 3.17 – Linearly twisted and non-linearly swept geometry (case 3), (a) side view, (b)
front view, (c) developed view

loading point is slightly worse than for un-swept geometries but trends are still the
same. The distortion of the local loading distribution due to the angle of sideslip is
well depicted with the lifting line.
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Figure 3.18 – 3D aerodynamic coefficients as a function of angle of incidence or angle of
sideslip (at 5° of incidence), obtained via STAR-CCM+® (filled squares) and the lifting
line method (plain line) on the kite wing (case 3). Error bars are the estimated numerical
accuracy.
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(d) α = 15°β = 0°

Figure 3.19 – Magnitude of the local aerodynamic force per unit length on the kite wing
(case 3) obtained via STAR-CCM+® (filled squares) and the lifting line method (filled
triangles). No angle of sideslip. (a) Wing at -4° of incidence. (b) Wing at 0° of incidence.
(c) Wing at 10° of incidence. (d) Wing at 15° of incidence.
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(c) α = 5°β = 15°

Figure 3.20 – Magnitude of the local aerodynamic force per unit length on the kite wing
(case 3) obtained via STAR-CCM+® (filled squares) and the lifting line method (filled
triangles). (a) Wing at 5° of incidence and 0° of sideslip. (b) Wing at 5° of incidence and
7.5° of sideslip. (c) Wing at 5° of incidence and 15° of sideslip.
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3.5 Conclusion

As shown previously, the global results of the 3D non linear lifting line method are
really satisfying in comparison with the RANSE simulations, despite a very different
approximation level, and over a large range of angle of incidence and of sideslip angle
typically included between 0° and 15°. For the tested geometries, and especially for
the one close to a LEI kite wing, lift coefficient estimations have less than 5% differ-
ence. The gap for the drag coefficient is a bit more significant for angles of incidence
greater than 10° but this represents only a small portion of aerodynamic forces predic-
tion on the wing. In sideslip, the lifting line is able to predict correctly the evolution of
aerodynamic coefficients. Furthermore, the gap between the two methods is roughly
maintained constant between the kite purely in incidence and the kite with a sideslip
angle, which means that the error in incidence is kept but not increased with a sideslip
angle. Local results are also satisfying, the lifting line is able to predict correctly the
position of the minimum and maximum loading along the span, even in sideslip.
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4 Fluid model application

4.1 Introduction

The modeling of a kite in flight is a challenging research topic as a kite develops its
maximum power during a dynamic flight thanks to its own velocity. Most of the time
the problem is studied from an aerodynamic point of view, with a rigid body kite, for
simplification purposes. Dadd et al. (Dadd et al. (2011)) used the zero-mass model
to predict the kite forces evolution along an eight shaped trajectory. In this model, the
weights of the kite and of the tethers are neglected. This assumption is discussed in
Dadd et al. (Dadd et al. (2010)). The results of the zero mass model are compared with
a concentrated mass model, where the kite is modeled as a point mass at the end of the
tether. Dadd showed that the mass of the kite and the tether can be neglected if the
weight is small enough in comparison with aerodynamic forces. But he assumed that
the aerodynamic coefficients are constant, as well as the angle of attack of the kite. The
tether is considered straight, inextensible and dragless. Eventually, Dadd shows that
the zero mass model is able to give a correct first approximation of the kite velocity in
dynamic flight.

The hypothesis of a straight line for the modeling of the kite is widespread (see Alexan-
der & Stevenson (2001); Terink et al. (2011)). Stevenson (Stevenson (2003)) studied
the stability of the kite during flight in a plane in order to find equilibrium points.
Stevenson compared experimental measures and kite models with straight lines or
curved ones. The modeling of the tethers has only a small impact on the results and
Stevenson recommended the use of straight lines, even when there are several lines.
Furthermore, according to Groot (de Groot et al. (2011)), the tethers can be assumed
straight for lengths inferior to 150m.

Leloup (Leloup (2014)) proposed an iterative procedure based on the zero mass model
to calculate the effective value of the lift-to-drag ratio at each point of a given trajectory.
Nevertheless, the kite is always assumed to be in pure translation against the apparent
wind, and its turn rate is neglected, while it certainly induces an asymmetrical loading
and may change significantly the equilibrium.

Williams (Williams et al. (2008b)) uses on the contrary a point mass model of the
kite in order to determine the optimal trajectory to maximize power generation while
keeping low the efforts needed to control the kite. Here again, the tethers are supposed
straight but mass and drag effects are taken into account, assuming that the aerody-
namic forces tangential to the line are negligible. The computation of the drag forces
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are discretized to consider the variation of movement speed, and thus wind velocity
along the tethers. The aerodynamic forces on the kite are this time a linear function
of the angle of attack and roll angle of the kite. However, as the kite is modeled as a
point, its turn rate is yet again not considered.

In this chapter, a new procedure is proposed to calculate the effective lift-to-drag ratio
of a kite along a prescribed flight path, taking into account the turn rate influence
by means of the 3D Non-Linear Lifting Line model (LP3DNL). In a first step, the
investigated trajectory is a circular trajectory around the full power point. Due to
symmetry consideration, the flight of the kite is steady in this case and its turn rate
can easily be calculated.

4.2 Kite in circular flight

In this model, the kite is reduced to the point K, and the tethers are reduced to only one
rectilinear equivalent tether, whose direction and constant length are #  »zk0 and LT , such
that #     »

OK = −LT #  »zk0, O being the anchor point (see Figure 4.1). The weights of the kite
and of the tethers are neglected. The trajectory is circular around the full power point,
(O, #      »xRW ); the wind speed does not depend on altitude.

#        »
VRW

#       »zRW

#        »xRW
#       »yRW

# »
Va

#      »xVK

#    »xk0

#   »yk0

#   »zk0

R

O

K

#»xb

#»yb

#»zb

Figure 4.1 – Circular path of the kite, with ~VRW the wind, ~xVK
the kite velocity direction, ~Va

the apparent wind seen by the kite, O the anchor point and R the radius of the trajectory.

The wind VRW #      »xRW , the length LT of the equivalent tether, the radius R of the trajectory
of the point K, and the kite geometry being prescribed, the goal in this approach is to
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find the equilibrium position of the kite, still assuming zero mass and the relative wind
# »

Va = Va
# »xa parallel to the symmetry plane (K, #»xb,

#»zb). The vector #   »xk0 is defined as the
direction vector of the projection of # »xa or #»xb on the tangent plane in K at the flight
sphere. The basis of the tangent plane is completed with #  »yk0 = #  »zk0 × #   »xk0. Three
pseudo-degrees of freedom are introduced to set the kite relatively to the tangent plane
in K at the flight sphere: a geometrical angle of incidence αg around (K, #  »yk0) from
#»xb to #   »xk0, a roll angle γ around (K, #   »xk0) from − #  »yk0 to the projection of #»yb, and a yaw
angle β around the tether axis (K, #  »zk0) from #   »xk0 to − #     »xVK . αg is given, is kept fix, and
is supposed to result from an adjustment of the real front/back tethers. γ and β are
unknown variables. γ is supposed to result from an adjustment of the real left/right
tethers, while β is supposed to result from a self-positioning of the kite.

Since this flight case is steady, the choice of point K along the studied circular tra-
jectory doesn’t matter, the flight direction #     »xVK is known, and the iterative algorithm
starts with an estimated lift-to-drag ratio ε(0) and a roll angle γ(0) = 0. Denoting the
counter of the recursive steps p, the kite velocity V (p)

K can be calculated via the zero-
mass model formula with Equation 4.1 proposed by Leloup (Leloup (2014)), then the
apparent wind by V (p)

a
# »xa

(p) = VRW
#      »xRW − V (p)

K
#     »xVK . The rotation rate of the kite is also

calculated with Equation 4.3.

V
(p)
K = VRW


( #      »xRW · #     »xVK

)
+

√
(

#      »xRW · #     »xVK
)2

+

(
#      »xRW · #  »zk0
sin(ε(p))

)2

− 1


 (4.1)

V
(p)
K = VRW

√(
#      »xRW · #  »zk0
sin(ε(p))

)2

− 1 = VRW

√√√√ 1− R2

L2
T

sin2(ε(p))
− 1 (4.2)

#»

Ω(p) =
V

(p)
K

R
#      »xRW (4.3)

By the projection of # »

Va
(p) on the tangent plane, #   »xk0

(p) and β(p) are obtained. Using the
3D Non-Linear Lifting Line model for the kite in the wind #      »

VRW at αg, γ(p), and β(p),
its kinematic defined by #  »

VK
(p) and #»

Ω(p), one obtain the aerodynamic resultant # »

Fa
(p)

and the updated lift-to-drag ratio ε(p+1). This force is naturally misaligned with respect
to the equivalent tether direction #  »zk0, while it should not be the case according to the
zero-mass hypothesis. To partially satisfy this equilibrium condition, the roll angle
is firstly updated to γ(p+1) in order to get # »

Fa
(p) in the (K, #   »xk0

(p), #  »zk0) plane. This has
the effect of getting the apparent wind velocity out of the symmetry plane of the kite
(K, #»xb,

#»zb). To recover this condition, the yaw angle is secondly updated to β(p+1). The
whole process is then iterated until convergence of ε, γ, β, according to some small
numerical tolerance of 10−8.

It is found that this algorithm converges rapidly, and requires between approximately
5 iterations in the case of trajectories of big relative radius R/LT (leading to small roll
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angles), and 20 iterations for small relative radius cases (leading to high roll angles).
When convergence is reached, the expected equilibrium is obtained and characterized
by: the effective lift-to-drag ratio, the remaining attitudes angles γ and β, the aerody-
namic resultant being effectively aligned with the equivalent tether and the apparent
wind effectively parallel to the symmetry plane.

4.3 Results

Numerous calculations have been carried out in order to evaluate the variations of the
lift-to-drag ratio ε, of the aerodynamic force # »

Fa, and of the angles of yaw β and of
roll γ, with respect to the radius of the trajectory R, the tether length LT or the wind
velocity VRW . A fixed angle of incidence αg of 3° have been chosen for the kite.
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Figure 4.2 – (a) Non-dimensional norm of the local aerodynamic resultant along the kite as
obtained from the equilibrium procedure, with and without taking into account the turn
rate influence. The local norms are divided by the average value of the local norms in the
case of the kite in pure translation motion. (b) General flight specs.

Figure 4.2 shows the influence of the turn rate on the local loading of the kite. The
kite follows a trajectory of radius 10m, with 50m of tether length, in a wind velocity
of 5m/s. At convergence, the kite has a velocity of 51m/s for a lift-to-drag ratio of
10.41, with the lift estimated from the aerodynamic resultant taken orthogonal to the
apparent wind direction. The black curve represents the relative local loading on the
kite as obtained by the iterative equilibrium procedure described section 4.2, while the
gray one shows the local loading of the kite with the same apparent wind but assumed
to be purely in translation, the turn rate being neglected. The asymmetry of the loading
caused by the induced velocities by the turn rate is clearly highlighted.
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Figure 4.3 – Evolution of (a) the lift-to-drag ratio, (b) the lift coefficient and (c) the drag
coefficient depending on the radius of the trajectory divided by the tether length, and for
different lengths of tether from 25m to 200m.

Figure 4.3 (a) shows the evolution of the lift-to-drag ratio depending on the relative
radius, for different lengths of the tether between 25m and 200m. The lift-to-drag ratio
is quasi-constant for longer tether lengths, in contrast it varies substantially for the
smaller tether lengths. The same kind of variations can be found for the coefficients of
lift and of drag (Figure 4.3 (b) and (c)). However in this particular case, a diminution
of the lift-to-drag ratio corresponds to an increase of the lift coefficient and a faster
increase of the drag coefficient.

Figure 4.4 shows the roll angle, the kite velocity, and the kite turn rate for the same
trajectories and the same tether lengths as Figure 4.3. The results for the roll angles
seem to be consistent with intuitive physics of kite: the large angles of roll are obtained
in the case of the small radii of trajectory, and vice versa. For high ratio of radius over
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Figure 4.4 – Evolution of (a) the roll angle, of (b) the kite velocity and of (c) its turn rate
depending on the radius of the trajectory divided by the tether length, for different lengths
of tether from 25m to 200m.

tether length, the kite velocity is almost the same, while it is more disparate for small
relative radius (Figure 4.4 (b)). Nevertheless, despite the velocity decrease, the turn
rate stays high due to the small radius of the trajectory.

4.4 Discussion

A first analysis have been made to study the influence of the real wind velocity VRW by
keeping constant all other parameters. By dimensional analysis, the lift-to-drag ratio,
the roll and yaw angle do not vary with respect to VRW while the kite velocity VK , its
turn rate Ω and the apparent wind Va depend linearly on VRW . This derives logically
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from the linearity of Equation 4.1 and Equation 4.3 (see Section 4.2).

As it can be seen in Figure 4.3 (a), the lift-to-drag ratio tends to a constant value when
the radius of the trajectory increases, the tether length being fixed. The relative radius
being fixed, the limit values also reach a constant, when the tether length is increased.
This constant value is the lift-to-drag ratio which is obtained neglecting the turn rate
influence. Indeed, by increasing the radius or the relative radius of the trajectory one
comes closer to cases of pure translation motion.

The lift-to-drag ratio decreases for small radii of the trajectory, while the lift and drag
increase (Figure 4.3), even with a drop of the kite velocity (Figure 4.4 (b)). This aug-
mentation of the aerodynamic forces is due to the high turn rate of the kite for the small
radii of trajectory, which induces high local effective velocities. For the higher radius
over tether length ratio, the lift-to-drag ratio is more important for the small tether
length. For these cases, the drag force is quasi-identical (between 0.041 and 0.0460)
while the lift force differs more (between 0.463 and 0.486).

The kite velocity is quite significant. It should be noticed that the equivalent tether
drag is not taken into account in the iterative equilibrium solution presented in section
4.2. The following values are given as an example for the case recalled in Figure 4.2.
The tethers drag has been calculated as Argatov et al. (Argatov et al. (2011)) and Bigi
(Bigi (2017)) by using the formulas from Hoerner (Hoerner (1965)) with four lines,
each with a diameter of δ = 2mm. The new lift-to-drag ratio is 9.13 instead of 10.41,
which reduces the kite velocity to 44.7m/s instead of 51.0m/s, after convergence. Fur-
thermore, the results are coherent with Dadd (Dadd et al. (2011)) and Loyd (Loyd
(1980)), who stated that the velocity of the kite near the downwind position is close to
the wind velocity times the lift-to-drag ratio of the kite.

The aerodynamic moment is also not taken into account. For the case recalled in
Figure 4.2, the aerodynamic moment at point K is non null, but represents only a small
part of the aerodynamic forces on the kite. The pseudo-roll component along #   »xk0 is
found to be the major one, the pseudo-pitch component along #  »yk0 is the medium one
(5 times smaller), and the pseudo-yaw component along #  »zk0 is the minor one (15 times
smaller). This last result for the yawing moment is consistent with the assumption
made in section 4.2, which states that the yaw angle only results from a self-positioning
of the kite.
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5 Structure models presentation

5.1 Introduction

A leading edge inflatable (LEI) kite is made of an inflated tube as leading edge, a
canopy and several battens to shape the canopy (see Figure 5.1). As a flexible structure,
the modeling of the kite is a complex structural problem where optimal design still
remains a crucial need.

Leading edge

Inflatable battens

Canopy

Figure 5.1 – Denomination of the main kite elements

Williams et al. (Williams et al. (2007a,b, 2008a)) modeled the kite as an assembly of
flat rigid plates. In this model, each plate is linked at the leading edge by a frictionless
hinge. Torsional springs are used to couple pitch and roll motions of each plates, but
aerodynamic forces, that denote the pressure load, have no influence on the structural
properties of the kite. As these models are quite simple, they only provide an overall
idea of the deformation of the wing.

Breukels (Breukels (2011); Breukels & Ockels (2010)) and then de Groot (de Groot
et al. (2011); Groot (2010)) developed a multi-body model to simulate the dynamics
of the kite. The inflatable beams are modeled as a chain of rigid elements, linked by
spherical joints which allow rotation along the three axis. The behavior of the inflatable
beams is modeled by a torque vector on each joints. The torque vectors values come
from experimental data and depend in particular of the internal pressure of the tube.
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The kite canopy is modeled as a chordwise wire composed of discrete elements with
an infinite stiffness. Those elements are linked together with hook joints which allow
all rotations except twisting. Eventually the shear modulus of the fabric is modeled by
springs which connect the nodes of the canopy but their stiffness do not depend on the
aerodynamic pressure. The model is able to show global and local deformations, in
particular a skewing deformation along the global X axis.

An even more complex model is described by Bosch (Bosch (2012); Bosch et al.
(2014)), with a finite element discretization of the wing. The canopy is modeled by
nonlinear triangular shell elements, the beams by a linear Bernoulli beam element. In
this model, the canopy is attached to the midpoint of the beam instead of its top. Bosch
used a very coarse mesh and do not model small-scale phenomena such as wrinkling
in the fabric because of computation cost.

For the mechanical properties of the fabric, tensile tests at 0° (warp direction), 45° and
90° (weft direction) allowed the identification of the orthotropic membrane stiffness
matrix (in N/m) without measuring the thickness of the fabric, which is difficult to
do. The tests have been carried out by Porcher Industries (a company member of
the consortium) and by the laboratory 3SR in Grenoble, France. The longitudinal
modulus Emc and Emt, the Poisson ratio νct, the shear modulus Gmct, the longitudinal
linearity limits Xmc and Ymt and in shear Smct have been determined, where subscript
m indicates the membrane aspect, c for the warp direction and t for the weft direction.

5.1.1 Inflatable beam modeling

The modeling of the inflatable beams, leading edge or battens, is quite significant for
the global stiffness of the kite. Indeed, inflatable tubes serve both as a buoyancy for
the kite and as stiffeners even without aerodynamic loading. As a structure exposed
to significant stresses in various directions, the kite can be subjected to local buckling
phenomena. A large bending due to a heavy aerodynamic loading for example, can
trigger a sudden buckling of the leading edge beam initiated by local wrinkling of the
fabric (see Figure 5.2).

This buckling phenomenon on inflatable beams has been increasingly studied as the use
of inflatable tubes for structural applications have been growing. Veldman (Veldman
(2005); Veldman et al. (2004); Veldman (2006)) investigated the wrinkling of inflatable
beams under torsion and bending loads with experimental and finite element analysis.
Veldman shows that a thin shell element can be preferred to a membrane element
for the modeling of the fabric of the tube depending on the internal pressure of the
inflatable beam.

Le Van and Wielgosz (Le van & Wielgosz (2005)) developed a model with linearized
equations from the Timoshenko beam theory for the study of the bending and buckling
cases of an isotropic inflated beam. The analytical solution was then compared to finite
element analysis, the inflatable tube being modeled by membrane elements. The paper
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Figure 5.2 – Buckling of a LEI kite during flight. Picture taken during experimental tests of
Behrel Behrel (2017)

shows the influence of internal pressure on mechanical properties of the beam and
highlights the better results of the Timoshenko beam theory compared to the Euler-
Bernoulli beam theory for the modeling of inflatable beam.

Apedo (Apedo et al. (2010)) presents two finite element models (a linear and a non-
linear) of an inflatable orthotropic woven fabric beam. These two models are compared
with a finely meshed thin-shell model and show a good agreement. Consequently beam
models can be used for the modeling of inflatable beam if there is no wrinkling.

However, since the aim of this thesis is not to develop a new beam model, the three-
dimensional linear Timoshenko beam of Abaqus™ (B31 element) will be used. Due
to this modeling, the internal pressure of the inflatable beams is not taken into account.
Nevertheless, the internal pressure has been used in Maison (Maison et al. (2017)) in
post processing, in order to determine the stress state in the tube wall.

The properties of the inflatable tubes are described by following notations: RB denotes
the beam radius, Emc and Gmct denote the mechanical properties of the fabric.

Following Expressions 5.2 to 5.9 were introduced in order to determine the different
elementary section stiffnesses of the tube (see Equation 5.1):





Elongation stiffness: EBA0 = 2πRBEmc

Bending stiffness: EBI = πR3
BEmc

Transverse shear stiffness of the section: GB(0.53A0) = k

Torsion stiffness: GBJ = 2πR3
BGmct

(5.1)

The section area of the beam is set to:
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A0 = πR2
B (5.2)

The Young modulus is given by:

EB = 2
Emc
RB

(5.3)

Which leads to the correct bending stiffness:

I =
π

2
R4
B (5.4)

The shear modulus is set as:

GB = 2
Gmct

RB
(5.5)

and the torsion stiffness as:

J = πR4
B (5.6)

The transverse shear stiffness of the section is computed according to Cowper (Cowper
(1966)) as:

k = 1.06πRBGmct (5.7)

Abaqus™ defines a Slenderness Compensation Factor (SCF) (SIMULIA (2014)) to
prevent the shear stiffness from becoming too large in slender beam element. The
transverse shear stiffness of a linear beam element of length L is defined in Equation
5.8:

k

1 + SCF
L2A0
12I

(5.8)

In order to obtain the transverse shear stiffness of a Timoshenko beam of length L,
SCF has been set to:

SCF =
k

A0EB
(5.9)

The option *GENERAL SECTION of Abaqus™ allows also to split the centroid of
the beam section from the element which can be useful in some instances (see Section
5.3).
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5.1.2 Modeling of the canopy

The second part of the modeling of a LEI kite focuses on the canopy. To model such
a piece of fabric, one can draw from sail modeling (see Augier et al. and Trimarchi et
al. Augier (2012); Augier et al. (2013); Trimarchi et al. (2010)). The canopy has the
mechanical behavior of a membrane element, with a very small bending and transverse
shear stiffness. Therefore modeling the canopy with a membrane element could be a
logical choice. But a membrane has no bending stiffness and no compressive strength
(Lu et al. (2001)), which means that buckling or wrinkling can happen under a very
low compressive load level. With a bending stiffness equal to zero, it is really difficult
to predict the wrinkling or buckling phenomenon with a membrane element. However,
it is possible to add a wrinkling model to the formulation of the membrane element (see
Jarasjarungkiat et al., Schoop et al. and Barsotti et al. Jarasjarungkiat et al. (2008);
Schoop et al. (2002); Barsotti & Ligaro (2014)).

An other option for the modeling of this membrane behavior is the use of a thin-shell
element. The shell element, with 5 degrees of freedom per node when the membrane
element has only 3 per node, is generally more complex and computationally expensive
(see Onate et al. Oñate et al. (2008)). However, the computation is also more stable
(see Trimarchi et al. and Jetteur at al. Trimarchi et al. (2010); Jetteur & Bruyneel
(2008)) since the missing of of bending and transverse shear stiffness creates some
numerical instabilities. Trimarchi, Jetteur and Onate show the interest of thin-shell
element to model a membrane structure, from an inflated tube to a spinnaker sail.

Because numerical instabilities and numerical convergence were a real problem when
using membrane element, notably with the first Kite as Beam model presented in
Solminihac (Solminihac et al. (2015)), the kite canopy is therefore modeled by the
thin-shell element S4R5 of Abaqus™ . The Discrete Kirchhoff constraint is imposed
on this shell element, which means that the Kirchhoff constraint is satisfied at discrete
points on the shell surface ( see SIMULIA manual SIMULIA (2014)). To enforce this
constraint, Abaqus uses the transverse shear stiffness, defined as:

K̄ts
αβ = fpK

ts
αβ (5.10)

where K̄ts
αβ is the component of the section shear stiffness (α, β refer to the local direc-

tion 1, 2 associated with the shell section), fp is a dimensionless factor used to prevent
the shear stiffness from becoming too large in thin shells and Kts

αβ is the actual shear
stiffness of the section. fp is defined as:

fp =
1

1 + 2.5× 10−5 A
t2

(5.11)

where A is the area of the element and t is the thickness of the shell.

The goal of the following paragraph is to estimate a realistic value of the transverse
shear stiffness of the shell element. The material is assumed to have an isotropic be-
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havior. The bending and transverse shear stiffness of the shell element is assumed to
be equivalent to those of a Timoshenko beam of length L, height t and width b.

For the canopy, the shear stiffness of a beam element of length L is:

12EI

L3

(
1 + 12EI

GA0L
2

) (5.12)

As the transverse shear stiffness should be negligible compared to the bending stiff-
ness:

12EI

GA0L2
� 1 (5.13)

The shear stiffness becomes for a rectangular section of height t and width b:

12EI

L3
= Eb

(
t

L

)3

(5.14)

Assuming a square mesh, b = L, with t the thickness of the shell and A the area of the
element:

Eb

(
t

L

)3

= Et

(
t2

A

)
(5.15)

According to Equations 5.10, 5.11 and 5.15, the actual shear stiffness has to be set to:

Kts
11 = Kts

22 = Et

(
t2

A
+ 2.5× 10−5

)
(5.16)

Subsequently, the ratio between the membrane stiffness and the bending stiffness of
the shell elements are also carefully chosen in order to obtain the same mechanical
behavior between membrane and shell element and also to avoid numerical instabilities
due to wrinkling. The numerical tests presented in Section 5.3.4 show that 10−8 is an
appropriate value for this ratio.

The bending stiffness D and the membrane stiffness C for an isotropic material behav-
ior are defined as:

D =
Et3

12(1− ν2) and C =
Et

(1− ν2) (5.17)

Which leads to following equation, for a given surface S of the modeled object, either
a kite or an elementary cell (see Sections 5.2 or 5.3)

D

CS
=

t2

12S
= 10−8 (5.18)
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The thickness t of the shell element is then defined in relation to the surface of the
modeled object; such as

t =
√

12S10−8 (5.19)

5.2 Complete Finite Element Model

This model is an evolution of the Finite Element Model presented by Leloup (Leloup
(2014)). This Section includes a lot of developments previously done by Maison (Mai-
son et al. (2017)) who worked on the beyond the sea project at the same time of this
thesis. In the rest of this document, we will refer to this model called the IDK model,
acronym for the french abbreviation “Intégration fluide-structure Dimensionnement
Kite”.

As the IDK model is quite heavy, only the half of the kite is modeled. This reduces
the simulation possibilities to symmetric cases but on the other hand also decreases
the computation time. The chosen Abaqus™ solver is based on an implicit dynamic
method with a quasi-static application (backward Euler time integration). This method
is used for nonlinear quasi-static applications on structures of small stiffness and large
displacement. It avoids convergence issues since high numerical damping is produced
with this integration scheme. With this method, it is necessary to carry out indepen-
dently a study of the eigen frequencies in order to determine the lowest eigen frequency
since the total time of the dynamic simulation should be at least slightly above the
equivalent period. In order to confirm the correct convergence of the simulation, it is
necessary to check the global kinetic energy which should be negligible in comparison
to the global strain energy. If not, the total time step should be increased.

The shape of the canopy is defined from the LEI kite profile determined by Leloup
(Leloup (2014)) and presented in Figure 5.3. In the IDK model, it is assumed that the
same dimensionless profile is used along the span of the wing. As the inflatable leading
edge is modeled as a beam, the beam elements are put at the end of the canopy, on the
black cross of the Figure 5.3.

The radius of the leading edge beams vary linearly from the middle of the kite to the
tips as a function of the span of the wing. The inflatable battens are placed on the
canopy mesh. Thus, they have the same shape than the canopy, that means the LEI
kite profile. The radius of the inflatable beams varies also linearly between the leading
edge and the trailing edge of the wing. Figure 5.4 shows an example of a LEI kite
according to the IDK model.

The properties of the inflatable beams and the canopy are defined respectively in Sec-
tion 5.1.1 and 5.1.2. Eventually, a leech line is implemented in the canopy. A leech line
is a rope located at the hem of the trailing edge that prevents the wing from flapping and
thus increases the durability of the wing. In Abaqus™ the leech line is modeled with
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Figure 5.3 – Real profile of a LEI kite. The black cross denotes the position of the sewing
between the inflatable tube and the canopy. The blue curve represents the canopy in the
IDK model.

Figure 5.4 – Example of a LEI kite according to the IDK model

truss elements T3D2. Those elements have no bending stiffness, no transverse shear
stiffness and only transmit axial force. The compression stiffness can be suppressed
too. They are implemented on the trailing edge of the canopy mesh. The material
properties of the leech line is equivalent to the Dyneema properties with a density ρDY
and a Young modulus EDY .

For the loading of the model, a pressure can be applied on the shell element, which
accounts for the canopy. Forces and moments due to pressure integration on the 3D
leading edge can also be applied on the leading edge beam elements.
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5.3 Kite as a Beam

The Kite as a Beam (KaB) described here is an evolution of the model presented by
de Solminihac (Solminihac et al. (2015, 2018)). The core idea of the Kite as a Beam
model is to approximate a LEI kite by an assembly of equivalent beam elements (see
Figure 5.5). Only isotropic behavior of the canopy material is implemented in this
version, but it can be upgraded to orthotropic formulation with some adjustments. For
the isotropic modeling of the fabric, the mean value of Young modulus and Poisson
ratio in warp and weft directions is used. The wing is partitioned into several ele-
mentary cells (see Section 5.3.1), each one modeled with a Timoshenko’s beam of
equivalent mechanical properties (see Section 5.3.2). Eventually, the equivalent beams
are re-discretized in order to match with the lifting line mesh (see Section 5.3.3). The
structural analysis is performed with the finite element solver Abaqus™.

Elementary cell

Inflatable batten

Equivalent beam

Figure 5.5 – Kite as a Beam concept and division of the kite in several elementary cells

5.3.1 The elementary cell concept

The concept of the Kite as a Beam is to model an LEI kite as an assembly of equiv-
alent beams. The kite is discretized in several elementary cells, which consist of two
inflatable battens, the leading edge tube in between and the corresponding canopy. In
this model, the tips of the wing are considered as battens (as shown in Figure 5.5).

To simplify the computation of the mechanical properties, the elementary cell is ap-
proximated by a rectangle and its four corners belong to the same plane. The spanwise
width LLE and the chordwise length LBA of the cell are extracted from the geometry
of the kite (see Figures 5.6 and 5.7).
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Figure 5.6 – Elementary cell geometry
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(5.20)

LLE = ‖ #             »

MRML‖ (5.21)

LBA =
1

2

(
‖ #          »

ARFR‖+ ‖ #         »

ALFL‖
)

(5.22)

The local coordinate system of the cell ( #»xc,
#»yc,

#»zc) is calculated as follows:

#»xc =

#             »

MLMR

LLE
(5.23)

#»zc =

#          »

ALFR ×
#          »

ARFL

‖ #          »

ALFR ×
#          »

ARFL‖
(5.24)

#»yc = #»zc × #»xc (5.25)

Eventually, the geometry of the canopy in the elementary cell has to be determined. In-
deed the geometrical stiffness of the canopy can not be neglected and its initial shape
has an influence on the total stiffness of the cell (see Section 6.3). The aim of the tech-
nique is to be close to the geometry of the real kite but also to keep a straightforward
geometry construction. To this end, the battens are straight and the canopy is curved
following #»xc, as it can be seen in Figure 5.7. The curvature is the sum of a 2nd degree
polynomial according to #»xc and a sine according to #»yc (see Equation 5.27). The 2nd
degree polynomial represents the distance between the real geometry of the kite and
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the plane of the cell and the sine represents the camber of the Leading Edge Inflatable
kite section. The geometry is given by Equations 5.26 to 5.28 with x ∈ [0;LLE] and
y ∈ [0;LBA]. LHT is defined as the distance between the middle of the segment MRML

and the middle point of the lifting line included between MR and ML. Knowing the
geometry of the kite section profile, CMX represents its camber and RLA the relative
position of the maximum camber (see Figure 5.7). The following values CMX = 0.065

and RLA = 0.3 allow the description of a canopy adequately close to the LEI kite sec-
tion. Each point of the surface thus created can be defined by the vector position #»x

according to the following expression:

#»x = x #»xc + y #»yc + z #»zc (5.26)

with

z = −4LHT
L2
LE

(x− LLE
2

)2 + LHT + CLBA sin

((
y

LBA

)γ
π

)
(5.27)

where

C = x
4CMX

LLE

(
1− x

LLE

)
and γ =

log(1/2)

log(RLA)
(5.28)
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Figure 5.7 – Geometry of the elementary cell

As it can be seen in Figure 5.7, the inflatable battens (leading edge and battens) are
modeled by linear beam elements. Starting from the known beam radius RB, the fabric
properties Emc and Gmct, the section properties are estimated as described in Section
5.1.1.

Because in the complete wing model the elementary cells are connected, the following
linear superposition assumption is made: the stiffness of the finite element beam rep-
resenting a batten between two cells is only 50% of the stiffness of the full batten. For
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the battens at the tips of the wing, the stiffness of the finite element beam is the full
stiffness of the batten.

For the modeling of the canopy, shell elements have been chosen (see Section 5.1.2).
The Young modulus ECA, the density and the Poisson ratio are known. The thickness
of the shell element eCA depends of the geometry of the cell (see Equation 5.19):

eCA =
√

12LBALLE10−8 (5.29)

K11 = ECAeCA

(
e2CA
Aelem

+ 2.5e−5
)

(5.30)

The last part of the modeling of the elementary cell is the leech line on the trailing edge
of the wing. This is modeled by truss elements with Dyneema properties: the density
ρDY and the Young modulus EDY .

Both the leading edge and the inflatable battens are discretized with 200 beam elements
and the canopy with about 4000 shell elements (see Section 5.3.4).

5.3.2 The equivalent beam properties

To compute the equivalent beam properties, the elementary cell is set under pressure
and then subjected to various linear perturbations. Knowing the reaction forces to
these linear perturbations allows the determination of the equivalent beam mechani-
cal properties. Many options can be used to estimate the equivalent beam properties.
In particular, several elementary cases of loading and associated boundary conditions
have been tested. The model presented in this subsection has been selected considering
that the global opening (distancing between the two opposites tips) and twist of the kite
are the most influent deformations that govern the aerodynamic loading.

The first computation step is a non-linear dynamic analysis for quasi-static application.
The four corners of the elementary cell are clamped and the cell is loaded with an
estimated homogeneous pressure. Each cell can have its own pressure. Equation 5.31
gives a good estimation of the pressure, with ρ the air density, CL the lift coefficient of
the wing for the respective apparent wind Va.

P0 =
1

2
ρCLV

2
a (5.31)

A second non-linear static computation step is then conducted with the same conditions
to check the validity of the solution obtained. A representative simulation result is
shown in Figure 5.8.

Starting from this pressurized structure, six linear perturbation calculation cases were
completed in order to evaluate the stiffnesses of the elementary cell with respect to
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Figure 5.8 – Shape of the canopy under homogeneous pressure loading with contour value
representing the out-of-plane displacement along −→zc (in meter)

the different global degrees of freedom. The cases are listed in Table 5.1 where (α)

represents traction along #»xc, (β) the out-of-plane shear along #»zc, (γ) the in-plane shear
along #»yc, (δ) the in-plane bending about #»zc, (ε) the torsion about #»xc and (φ) the bending
about #»yc. The elementary displacement is given by a and the elementary rotation by
ω. The subscripts 1, 2 and 3 are usually employed in Abaqus™ to represent the global
axis directions ( #»xc, #»yc, #»zc) in our model. For all cases, the beam BL (see Figure 5.8)
is clamped while various boundary conditions are applied to each nodes of the whole
beam BR. The results for the case (β) can be seen in Figure 5.9.

Case (α) (β) (γ) (δ) (ε) (φ)

U




a

0

0







0

0

a







0

a

0


 U3 = 0 U1 = 0 U2 = 0

UR
#»
0

#»
0

#»
0




0

0

ω







ω

0

0







0

ω

0




Table 5.1 – Boundary conditions on the beam BR in displacements (U) and rotations (UR)
for the load cases (α)-(φ), components expressed in the frame (−→xc,−→yc ,−→zc)

Numerical results depend linearly on a and ω since a linear perturbation mode is used.
Reaction forces and moments on the right beam BR are measured for each load case
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Figure 5.9 – Case (β): out-of-plane shear along ~zc. The contour value represents the dis-
placement along ~zc.

in the direction of the elementary displacement and rotation. FR(X) is the sum over all
the nodes of the reaction forces RF on the right beam while MR(X) is the sum over all
the nodes of the reaction moments RM .

In order to separate transverse shear and torsion, the distance of the median line of the
equivalent beam from the leading edge is computed as:

D =
MR(β)

FR(β)

with MR(β) =
∑

BR

(
yRF3(β) +RM1(β)

)
(5.32)

where y is the coordinate of the considered node, RF3 is the node reaction force com-
ponent along #»zc and RM1 the node reaction moment along #»xc.

The equivalent beam extremities PL and PR are given by the following equation, where
ML and MR are the points of the lifting line:

PL = ML −
(
LBA

4
−D

)
#»yc and PR = MR −

(
LBA

4
−D

)
#»yc (5.33)

The elongation stiffness is calculated as:

EA0 =
LLE
a
FR(α) (5.34)

and the torsional stiffness as:

GJ =
LLE
ω

MR(ε) (5.35)
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The in-plane bending stiffness about #»zc is determined by:

EI3 =
LLE
ω

MR(δ) (5.36)

and the bending stiffness about #»yc by:

EI2 =
LLE
ω

MR(φ) (5.37)

Abaqus™ computes the transverse shear stiffness as (see Equation 5.10):

Ki1 = f ipKi1 (5.38)

with
f ip =

1

1 + SCF
l2A0
12Ij

(5.39)

where i, j ∈ {2, 3} and j 6= i.

The Slenderness Compensation Factor SCF is set to 0.25 which is the default value
of Abaqus™ and l is the length of the micro-beam element (a re-discretization of the
equivalent beam to correspond to the mesh of the lifting line model, see Section 5.3.3
for more details).

Since the value of K31 should be:

K31 =
LLE
a
FR(β) (5.40)

The value of the transverse shear stiffness of a micro-beam element introduced in
Abaqus™ is:

K31 =

(
1 +

l2EA0

48EI2

)
LLE
a
FR(β) (5.41)

In the same way:

K21 =

(
1 +

l2EA0

48EI3

)
LLE
a
FR(γ) (5.42)

5.3.3 Kite construction

The kite is now modeled as an assembly of several equivalent beams, whose mechani-
cal properties are known. Since this model is supposed to be used in a Fluid-Structure
interaction scheme, the properties of the equivalent beams are attached to the lifting
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line mesh (see Section 2.2.1). This means that the points M of the lifting line (see Sec-
tion 2.2) define the tips of small finite element beams, called micro-beams (see Figure
5.10). The structural analysis of the kite is then conducted from this geometry.

Leading edge
Trailing edge
Rigid body
Micro-beam/Lifting line
Equivalent beam

Figure 5.10 – Micro-beams and equivalent beams with the kite respective geometry

Since the geometrical location of the finite element micro-beam lies on the lifting line,
its local section direction # »n1 is determined in the following manner. The point C is
defined as the middle of the micro-beam element. The point PC is the orthogonal
projection of C on the correspondent equivalent beam (see Figure 5.11).

PC = PL + (
#      »

PLC · #»xc)
#»xc (5.43)

If #»
t stands for the unit vector along the micro-beam element axis, the unit vector # »n1 is

obtained from:

# »n1 =

#       »

CPC − (
#       »

CPC · #»
t )

#»
t

dmb
(5.44)

with

dmb = ‖ #     »

CPc − (
#       »

CPC · #»
t )

#»
t ‖ (5.45)

It is assumed that the location of the micro-beam element section centroid is expressed
as dmb # »n1. The second local section direction of the micro-beam element # »n2 is such that:

# »n2 =
#»
t × # »n1 (5.46)

The micro-beam element section properties are the same as defined in Section 5.3.2
assuming the micro-beam element frame (

#»
t , # »n1,

# »n2) is matching the equivalent beam
frame ( #»xc,

#»yc,
#»zc). Figure 5.11 is distorted for the explanation, #»

t is almost parallel to
#»xc. This assumption is discussed in Section 6.3.

For the loading of the model, forces and moments can be applied on the lifting line
points, tips of the micro-beams.
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Figure 5.11 – Determination of the centroid of a micro-beam

5.3.4 Numerical tests for the elementary cell

A mesh convergence study is needed to evaluate the influence of the elements number
on the results. The mesh of the cell is controlled through Nbeam the number of beam
elements. All the leading edge and the two inflatable battens are composed of Nbeam

beam elements of equal size which generates a mesh with almost square element (as
it can be seen in Figure 5.9). In Figure 5.12 and in Table 5.2, Nbeam ranges from 50

to 500 beam elements. Figure 5.12 represents the relative error (Equation 5.47) for the
traction case (α) on the cell in the middle of the kite.

err =
FR(α)(Nbeam = X)− FR(α)(Nbeam = 500)

FR(α)(Nbeam = 500)
∗ 100 (5.47)
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Figure 5.12 – Relative error on the (α) traction case with respect to the number of beam
elements for the largest cell of the kite.
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Nbeam 50 100 200 300 400 500
Total CPU time (s) 4.0 11.3 44.7 102.9 193.8 614.8

Table 5.2 – Computation time (total CPU time) of all the linear cases with respect to the beam
numbers for the largest cell of the kite.

For Nbeam = 200, it is estimated that the results are converged enough (err = 0.16%).
Furthermore, as it can be seen in Table 5.2, the computation time starts to increase
significantly for Nbeam > 200.

As explained in Section 5.1.2, the ratio between the membrane stiffness time surface
area C S and the bending stiffness D is crucial for the choice of the shell thickness.
Figure 5.13 shows the relative error in the reaction forces of the (α) case for a ratio
between 10−5 and 10−11.
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Figure 5.13 – Convergence study of the D/CS ratio

As the computation time increases to a not negligible extent with the ratio diminution
since it also decreases the shell thickness, 10−8 is chosen with a relative error of 5.94%.
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6 Structure models comparison

The aim of this chapter is the comparison of two structure models: the Kite as a Beam
(KaB) model and the more complex Finite Element model (IDK). The comparison
cases considered are elementary displacements along the three global axes and a tor-
sion of the wing tip, as the twist of the wing can be a significant deformation of the kite
in flight condition. Comparison cases are detailed in Section 6.1, results are presented
in Section 6.2 and discussed in Section 6.3

6.1 Description of the comparison cases

In order to correctly compare the two models, applied boundary conditions should be
as consistent as possible, keeping in mind that the IDK model is a complete kite geom-
etry and the KaB model is an 3D assembly of beams. As a working pressure has to be
chosen to compute the properties of the equivalent beams in the KaB model (see Sec-
tion 5.3.2), the IDK model should also be put under pressure. To compare the global
stiffness given by the two models, they have to be applied for the same conditions. As
the IDK model is deformed when put under pressure, the same deformations have to be
applied to the beam assembly of the KaB model so that the two geometries are as close
as possible. Both models are then successively submitted to the different elementary
cases, using Abaqus™ .

6.1.1 Kite under pressure

As a first step, the IDK model is put under a uniform pressure (see Figure 6.1). For the
computation, following boundary conditions are chosen. In the symmetry plane, the
displacement along the X and Y axis are null as well as the angular velocity along the
X and Z axis. At the tip, the displacement along the Z axis is canceled.

A kinematic coupling is implemented at the plane of symmetry in order to suppress the
rigid body translation of the kite along X, without over constraining the canopy. The
point S, closest point of the quarter chord in the symmetry plane, is the reference point
for this constraint (UX(S) = 0) which links each point of the symmetry plane.

At the end of the simulation, the positions of the leading and trailing edge are extracted.
This allows the computation of the displacement #         »

DIDK of the equivalent lifting line
geometry of the IDK model:
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VRX = VRZ = 0
Kinematic coupling, UX = 0 at S

UZ = 0

Uniform pressure

S

Figure 6.1 – Boundary conditions in displacements (U ) and angular velocity (VR) of the kite
under pressure load

#         »

Di
IDK = (

3

4

#      »

Aidef +
1

4

#      »

F i
def )− (

3

4

#       »

Aiinit +
1

4

#      »

F i
init) (6.1)

where i is the identification number of the meshed canopy, with Ai the leading edge
point, F i the trailing edge point, def and init stand for the distorted and the initial
geometries respectively.

The next step is to apply the displacement calculated from Equation 6.1 to the mesh of
the KaB model, that means the lifting line. The mesh of the KaB model is identified
with the superscript k while the mesh of the IDK model is identified with the super-
script i. As the two meshes do not correspond since the models do not have the same
discretization, a correspondence between KaB points and IDK mesh nodes has to be
found. Therefore, the point of the KaB trailing edge F k

init is assumed to be between the
points of the IDK trailing edge F i

init and F i+1
init when d1 < d and d2 < d, as shown in

Figure 6.2. The displacement to apply to the KaB geometry
#         »

Dk
KaB is then computed as

described in Equation 6.2.

#         »

Dk
KaB = (

d2
d1 + d2

)
#         »

Di
IDK + (

d1
d1 + d2

)
#         »

Di+1
IDK (6.2)

It was chosen to work with the trailing edge to estimate the corresponding points of
each geometry because it was easier to make them be coincident. The last step is
eventually to re-estimate the orientation axis of the micro-beam function of the applied
deformation. This is done by applying the computed displacement to the tips of the
equivalent beam and then calculating the local frame of the micro-beam as described
in Section 5.3.3.
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Figure 6.2 – Details of the notations used for the distorted geometry equivalence between
KaB and IDK

6.1.2 The four elementary comparison cases

Four test cases were chosen in order to evaluate the elementary deformation that can
encounter a kite in flight. The first case is a displacement along the X axis of the wing
tip. To evaluate the opening and closing of the kite, the second and third cases are
respectively a displacement along the Y axis of the wing tip and along the Z axis of
the kite root. The last case is the torsion of the wing tip (see Figure 6.3).

As the movement should be equivalent for the IDK and KaB models, a particular at-
tention has been given to the boundary condition applied. For the IDK model, same
boundary conditions as for KaB are propagated for the pressure step in addition to a
velocity condition of the type:

V =
a

T
(6.3)

with T the simulation time and a the chosen displacement for the prime three cases.
Indeed a velocity condition was the best way to apply the same displacement on the
set of points after the deformation of the pressure step.

For the torsion case, discrete displacement conditions are applied in order to impose
a rotational motion. The rotation center C is the closest point from the quarter chord
which is constrained along the Y axis. The displacement UY imposed on a point P of
the wing tip is calculated as follows:

UY (P ) = (P − C).
#»

X tan(ω) (6.4)

where ω is the angle of rotation along Z axis. The displacement UZ is set to zero at the
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Figure 6.3 – Description of the different comparison cases

wing tip for all the four cases. Table 6.1 resumes the boundary conditions for the IDK
model.

Symmetry plane (S) Wing tip

X axis
UX = UY = 0 UZ = 0

VRX = VRZ = 0 VX = a/T

Y axis
UX = UY = 0 UZ = 0

VRX = VRZ = 0 VY = a/T

Z axis
UX = UY = 0

VRX = VRZ = 0 UZ = 0

VZ = a/T

Torsion
UX = UY = 0 UZ = 0

VRX = VRZ = 0 UY (P ) = (P − C).
#»

X tan(ω)

Table 6.1 – Boundary conditions in displacements (U ), velocity (V ) and angular velocity
(VR) on the IDK model for the different comparison cases

Boundary conditions for the KaB model are described in Table 6.2. With these condi-
tions, it is assumed that the movement for each comparison cases are equivalent.
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Root (K) Tip (O)

X axis
UX = UY = 0 UZ = 0

VRX = VRZ = 0 VRX = VRY = VRZ = 0

UX = a

Y axis
UX = UY = 0 UZ = 0

VRX = VRZ = 0 VRX = VRY = VRZ = 0

UY = a

Z axis
UX = UY = 0 UZ = 0

VRX = VRY = VRZ = 0 VRX = VRY = 0

UZ = a

Torsion
UX = UY = 0 UY = UZ = 0

VRX = VRZ = 0 VRX = VRY = 0

URZ = ω

Table 6.2 – Boundary conditions in displacements (U ), rotation (UR) and angular velocity
(VR) on the KaB model for the different comparison cases

6.2 Comparison of the two models

For the analysis of the results provided by the two models, reaction forces at the wing
tip along the X and Y axis are added for the X and Y cases respectively. For the Z
case, the reaction forces at the symmetry plane along the Z axis are summed. For the
torsion case, the reaction moment at the point O along the Z axis is an output of the
KaB simulation. For the IDK model, the moment RM is computed from the reaction
forces RF2 along the Y axis and the distance projected on the X axis between the point
P and the rotation center C (see Equation 6.5).

RMIDK =
∑

P

(P − C).
#»

XRF2 (6.5)

The difference between the two models is calculated as following with RF the reaction
force result and RM the reaction moment:

error = 100
|RFIDK −RFKaB|

RFIDK
for the translation cases (6.6)

error = 100
|RMIDK −RM3 KaB|

RMIDK

for the torsion case (6.7)

Table 6.3 shows the average simulation time (on a classic computer) for the two mod-
els. As it can be seen in Table 6.3, the IDK computation time nearly doubles be-
tween a pressure of 100Pa and 400Pa while the increase is only of 25% for the KaB
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model computation time (see table 0.3). Actually, there is more than a factor 100 in the
computation time between the two models , keeping in mind that the inflation step is
included in the IDK simulation time. If the computation of the equivalent beams prop-
erties is taken into account, the comparison is less favorable for the KaB model, with
a computation time of about 40s per cell. However, these computations are conducted
just once for a given pressure.

Pressure (Pa) 100 400

KaB model 0.3s 0.375s

IDK model 67s 117.7s

Table 6.3 – Average CPU time for a comparison case, the inflation step is included in the IDK
simulation (usual Desktop computer)

The used range of pressure (from 100Pa to 400Pa) corresponds to classic flight con-
ditions (Behrel (2017)) and is in the intended use range, considering a maximal wind
loading for the use of kites of 100kg/m2.

6.2.1 Comparison for a LEI kite geometry

Firstly the two models are compared on a classic LEI kite geometry. The chosen kite
was designed by beyond the sea® for a surface of 50m2, see Figure 6.4. The geometry
is the same for the two models beside the geometrical approximation made to build
the elementary cell of the KaB model. The kite has a mean radius of 4.3m, the chord
length varies from 4m at the root to 1.3m at the tips with a maximal sweep of 0.36m.
The radius of the leading edge and the inflatable battens vary in the same way for the
two models, the material properties of the canopy and the battens are identical and
modeled with the same finite elements. The elastic behavior of the canopy fabrics is
isotropic while the behavior of the inflatable tubes is orthotropic.

Simulation results can be seen in Figure 6.5 and the difference between the two models
computed as described in Equation 6.6 can be seen in Table 6.4.

Pressure (Pa) 100 200 400
Displacement along X 15 2 24

Displacement along Y 21 22 53

Displacement along Z 5 24 41

Torsion 49 60 64

Table 6.4 – Gap (in %) between the IDK and the KaB models for the kite geometry displace-
ment.
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Figure 6.4 – Complex Finite Element model of the LEI kite.

As it can be seen in Figure 6.5, the two models can differ significantly depending
on the pressure. The IDK model varies quasi linearly with the pressure while it is
not necessarily the case for the KaB model. For the Y and Z displacements, which
characterize the closing and opening of the kite, the KaB reaction force is almost a
constant function of the pressure. The gap between the two models are less than 50%

except for the torsion case, where the KaB model overestimates largely the IDK results.
But for the torsion case the majority of the deformation are at the tip of the wing,
which is trapezoidal in the complex model and rectangular in the KaB model. This
overestimation of the tip geometry may play a significant part in the gap between the
two results.
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Figure 6.5 – Reaction forces and moment of the kite wing for the different comparison cases.

6.2.2 Comparison with a cylindrical geometry

To evaluate the difference related to the geometric approximation of the KaB model,
that is the elementary cell as a square, another set of simulations have been carried out
with a basic geometry which can be seen in Figure 6.6. The kite is a half-cylinder, with
a radius of 4m and a constant chord of 1m. There is no twist and no wingsweep. This
wing geometry reduces the geometrical approximation when building the elementary
cells to a minimum. The four corners of the cell already belong to a plan, each cell is
already rectangular and without wingsweep the cell is perfectly oriented.

Simulation results can be seen in Figure 6.5 and the difference between the two models
computed as described in Equations 6.6 and 6.7 can be seen in Table 6.4.

The stiffnesses given by the KaB model are still almost constant for the Y and Z

cases, with a non-negligible difference compared to the stiffnesses obtained by the
IDK model, except for the torsion and the X cases where the results are a bit closer.
Results for the displacement along the X axis follow almost the same trend, with a
gap lower than 25%. For the torsion case the gap is almost lower than 20% which is a
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Figure 6.6 – Complex Finite Element model of the cylindrical wing

significant improvement.

Pressure (Pa) 100 200 400
Displacement along X 20 16 9

Displacement along Y 78 46 8

Displacement along Z 36 17 5

Torsion 7 13 20

Table 6.5 – Gap (in %) between the IDK and the KaB models for the cylindrical wing.
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Figure 6.7 – Reaction forces and moment of the cylindrical wing for the different comparison
cases.

6.3 Discussion

Even when considering the level of approximation of the two models, there is still a
significant gap between them. For the closing and the opening of the kite, i.e. the Y and
Z displacement, the two models do not follow the same trend, even if they can coincide
on some pressure values. For the X case, the results are more satisfying with a gap
lower than 25% on both geometries. Eventually, the torsion is largely overestimated
by the KaB model for the first geometry and this seems mostly due to the geometric
approximations made when building the elementary cell. But the evolution of the KaB
results for the cylindrical wing on the Y and Z axis shows that the difference is not just
due to the geometric approximations.

For the computation of the properties of the equivalent beams, the boundary conditions
are applied on the whole batten, meaning that the batten is assumed as a rigid body.
The validity of this assumption has not been discussed before. Figure 6.8 shows the
deformation of the battens in the IDK model under a pressure of 200Pa and after an

84



elementary displacement along the X axis. The batten deforms of about 3% at most
from the geometry under pressure after displacement. Assuming the battens as rigid
bodies does not seem to be the major explanation for the difference between the two
models.

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

Initial
Under Pressure
After Displacement

Figure 6.8 – Deformation of one batten during the first pressure step (in red) and after the
displacement step (in green). Case at 200Pa and displacement along the X axis.

A second explanation of the difference between KaB and IDK results is the description
of the aerodynamic profile, that means the shape of the canopy. Indeed, the shape of
the canopy in the KaB model is described analytically (see Section 5.3.1) as close as
possible from the section of a LEI kite while the canopy of the IDK model is estimated
directly from the aerodynamic profile of a LEI kite (see Section 5.2). As it can be
seen in Figure 6.9, the difference may be significant depending on the influence of the
canopy shape on the kite stiffness.
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IDK canopy

Figure 6.9 – Initial profile of the canopy

In order to evaluate the influence of the canopy shape on the kite stiffness, equiva-
lent beam properties have been computed for different maximum camber and position
of maximum camber (respectively coefficient CMX and RLA of Figure 5.7). The pa-
rameters CMX and RLA vary around the values chosen for the previous comparisons
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(CMX = 0.065 and RLA = 0.3). Figure 6.10 shows the different maximum camber po-
sition tested from RLA = 0.25 to RLA = 0.5 for a [100; 500Pa] pressure range. Figure
6.11 shows the different maximum camber coefficient tested from 0.001 (flat canopy)
up to 0.1 for the same pressures. The properties of only one cell (for the whole kite) are
presented here for reasons of clarity. The cell is the middle cell of the kite of Section
6.2.1 with a length LBA = 2.70m and a width LLE = 3.88m.
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Figure 6.10 – Shape of the canopy for a coefficient RLA in range [0.25; 0.5], CMX = 0.065
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Figure 6.11 – Shape of the canopy for a coefficient CMX in range [0.001; 0.1], RLA = 0.3

Figure 6.12 shows the equivalent beam properties for the cell with various positions
of maximum camber (RLA ∈ [0.25; 0.5]) for the same maximum camber CMX = 0.065

under the tested range of pressure. The case RLA = 0.2 is not represented here since
the sine discretization along #»yc creates a very deformed mesh around the leading edge
which distorts the results of the simulation. The evolution of the properties are globally
linear except for the in-plane bending stiffness about #»zc, EI3and the transverse shear
stiffness about #»yc, K21. The curve slope of the stretching stiffness and the bending
stiffness about #»yc (respectively EA0 and EI2) is quite small, which may explain the
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results of the KaB model for the comparison cases about the Y and Z axis, that means
the small evolution of global stiffness function of the pressure.

There is almost no influence of the position of maximum camber on the torsional stiff-
ness GJ , on the bending stiffnesses EI2 and EI3, or on the stretching stiffness EA0

and the transverse shear stiffness along #»zc, K31. However, the distance of the equiva-
lent beam from the leading edge D increases with the rise of the coefficient RLA. The
transverse shear stiffness along #»yc also vary with the increase of the coefficient RLA.
Nevertheless the modification of the position of the maximum camber does not change
drastically the curve of the mechanical properties, and will not change either the results
for the comparison cases.

Figure 6.13 shows the equivalent beam properties for the middle cell of the kite under
a pressure from 100Pa to 500Pa, for a maximum camber CMX between 0.001 and 0.1,
with the same position of maximum camber RLA = 0.3. As it can be seen in Figure
6.13, the properties are very similar for CMX values close to CMX = 0.065. Only
CMX = 0.001 and CMX = 0.1 seem to differ significantly, in particular for the distance
of the equivalent beam from the leading edge D. Figure 6.13 and 6.12 show that the
shape of the canopy (if kept close from the LEI kite section) has only a small influence
on the mechanical properties of the equivalent beam and thereafter on the difference
between the IDK and the KaB models.
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Figure 6.12 – Evolution of the equivalent beam properties for position of maximum camber
RLA ∈ [0.25; 0.5] for a range of pressure [100; 500Pa], CMX = 0.065
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Figure 6.13 – Evolution of the equivalent beam properties for different camber CMX ∈
[0.001; 0.1] for a range of pressure [100; 500Pa], RLA = 0.3
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Another major assumption of the KaB model is the equivalence between the equiv-
alent beam frame ( #»xc, #»yc, #»zc) and the micro-beam frame ( #»

t , # »n1, # »n2) as described in
Section 5.3.3. Figure 6.14 shows the two frames in the middle of the kite, where the
approximation is the largest. In the middle of the cell, #»

t and #»xc are equivalent but the
angle difference between # »n1, #»yc and # »n2, #»zc is about 18°. On the contrary, around the
battens, the largest difference is between #»

t and #»xc, and also about 18° for this LEI kite
geometry. This hypothesis is inherent to the KaB model and the choice to match the
structure and the lifting line mesh, and also to the description of the beam element in
Abaqus™ .

Lifting line points
Leading edge
Trailing edge
Inflatable battens
Micro-beam
Equivalent beam
Micro-beam axis
Equivalent beam axis

# »xc

#»yc
#»zc

# »n1

# »n2

Figure 6.14 – Equivalent beam frame and micro-beam frame from the Kite as a Beam model
of a kite geometry.
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7 Fluid-structure interaction

7.1 Introduction

Fluid-Structure interactions (FSI) is a growing field of research with the increase of
available computational power. FSI are used in various domains, from civil engineer-
ing to biomedical (De Nayer (2008)), for compressible or incompressible fluids. This
chapter will focus on FSI in the maritime industry, on interactions between incompress-
ible air and membrane fabric such as sails. Indeed, sails problems are very similar to
kite ones. The sail is a membrane structure with or without battens subjected to aero-
dynamic loadings and large displacements. As the performances of the sails depend on
their shapes, FSI have been used since several years in sailing in order to predict the
performances.

Charvet (Charvet (1991)) in 1991 uses a 3D particle method to determine the effects of
the interaction between the jib and the main-sail and couples this method with a shell
finite element model to take into account the deformations of the sail in a stationary
case. Hauville (Hauville & Roux (2003); Hauville et al. (2004)) uses a wire grid to
represent the sail, the warp and the weft of the fabric. This model is coupled with a
particle method which allows the computation of the strain on the sail. As the structure
mesh is triangular while the fluid mesh is quadrangular, the pressure on each node of
the structure mesh is estimated with a bi-cubic interpolation. The iterations between
the two models continue until an equilibrium is found. The dynamic effects can also
be estimated with an iterative method, function of time.

Malpede (Malpede & Baraldi (2008)) also worked on sails and developed a method
to find the optimal fiber layout distribution in fiber membrane sails. As geometric
nonlinearities can occur due to large displacement, the structure model uses a nonlinear
finite element method even if the material properties are kept linear. An adaptation
of a vortex lattice aerodynamic model is used for the aerodynamic analysis. Here
again, the method iterates between structure and aerodynamic models and a bi-cubic
interpolation method is used to apply the pressure load on the finite element nodes.

In the last years, as the use of kites for energy production has developed, Fluid-
Structure Interactions on kites became a research subject, which is still under the high-
lights. Breukels (Breukels (2011); Breukels et al. (2013)) uses a multi-body system
to model the kite with canopy and battens, and the tethers (see Section 5.1). Breukels
carried out CFD simulation on a 2D airfoil to compute its lift, drag and moment co-
efficients as a function of the angle of incidence, thickness and camber of the airfoil.
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The pressure distribution can also be determined with the CFD simulation, which gives
the forces distribution on the nodes of the canopy. The section angle of incidence are
calculated with a vortex lattice method for the kite wing. Breukels compared a model
simulation with experimental data, tension in the four lines of various kites during a
loop. The velocity of the kite and the wind speed were also measured. Measured forces
on the steering line are used as control input for the simulation, while the forces in the
power lines and the velocity of the kite are compared to the experiment results.

Bosch (Bosch (2012); Bosch et al. (2014)) is an other example of FSI on kites. For
the structure model, Bosch chose a complete finite element modeling of the wing, the
canopy is modeled by triangular shell elements and the battens by beam elements. The
fluid model is the same as the one used by Breukels (Breukels (2011)) and gives the
forces distribution on the canopy as a function of the angle of incidence, thickness and
camber of the section. The dynamic behavior of the wing is determined in an outer
loop, where the tethers and the bridles are modeled. Bridle lines are modeled by linear
spring-damper elements and tethers by a distance constraint. The deflection of the
tethers are then neglected. For each integration step, the structure model in interaction
with the fluid model gives the resultant forces applied by the wing on the bridle lines.
The results of the outer dynamic loop are set as displacement boundary conditions
on the attachment point of the bridles in the structure model. This system allows the
modeling of a kite in flight, for example a 8 shape-trajectory. However, it should be
noticed that Bosch works is based on specific kite wings called C-shape, with only four
bridle attachment points, at the tips of the wing.

All these cases are examples of partitioned Fluid-Structure Interactions where the fluid
model and the structure model are segregated. An other approach to FSI problems is
the monolithic coupling where fluid and structure are solved simultaneously (Le Tal-
lec & Mouro (2001)). Monolithic coupling is more stable and more accurate than
partitioned coupling (Michler et al. (2004)) but also more computationally expensive.
Furthermore, partitioned coupling allows the development of each model separately
and is then easier to adapt to various problems. This option was therefore chosen.
Nevertheless, an iterative process is necessary due to the range of deformations to deal
with.

7.2 Fluid-structure coupling

This Section is devoted to the presentation of the interactions between the fluid model
and the structure model. Bridles and tethers models are presented in Section 7.2.1, the
data exchange between the two models is presented in Section 7.2.2.
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7.2.1 Bridles and tether implementation

The aim of this Section is not to develop the computation of the aerodynamic forces on
the tethers (see Section 4) but to describe the tether from a structural perspective. The
rope used for kite applications in the beyond-the-sea® project are made of Dyneema,
a lightweight and high-strength fiber. Tethers are the link between the kite and the
ground, cables which allow the control of the kite. The set of bridles has also a sig-
nificant role to keep the kite in shape and to transfer stresses between the kite and
the tethers. As a light and very long cable, the model of the tethers triggers different
challenges if the kite is modeled in static or in dynamic flights.

For example, Williams and Breukels worked on the dynamic behavior of the kite.
Williams (Williams et al. (2007c)) modeled the tethers with a series of point masses
connected by inelastic links. This allows to take into account the tether drag function
of the relative velocity of the wind, gravity and the aerodynamic forces on the kite,
applied at the end of the tethers. However the elastic properties of the tethers are
neglected.

Breukels (Breukels & Ockels (2007)) models the tether as a chain of discrete ele-
ments with a mass and an infinite stiffness, that means the elongation of the tether is
neglected. The cable elements are linked with hook joints and can rotate in every di-
rection beyond their own direction axis. Indeed, twisting has only a small effect on the
flight dynamics of the kite and would force a very small time integration step. Breukels
takes into account the aerodynamic drag on the tethers but also a material-based damp-
ing, which depends of the tension in the cable. The model is compared to an analytical
and an experimental case of a simple pendulum and shows good agreement for both.
Breukels shows that the aerodynamic drag has the most significant effects on the tether
behavior.

Groot (de Groot et al. (2011)) on the contrary, chose to model the tethers as a massless
straight line, neglecting the sag of the cable. The aerodynamic drag is also neglected
as Groot affirmed that this approximation is valid for short tethers, up to 100m.

For the following studies, the simulation case of the kite will be static or quasi-static.
Therefore, the dynamic behavior of the tethers are not modeled. In order to simplify
the inputs of the structure model, the set of bridles and the tethers are modeled by
straight elements, denoted by T3D2 in Abaqus™ . This type of element has no bend-
ing stiffness, no transverse shear stiffness and transfers axial force only. The compres-
sion stiffness can also be suppressed, which is the expected behavior of a line without
tension. As for simplification purpose the tether is just one straight element, the aero-
dynamic drag is not added as a load in the structure model and is therefore neglected.
These modeling choices allow to get the deformation and strain in the wing and also
the tension in the tethers and the set of bridles.

For the IDK model, the complete finite element model, the tethers and the set of bridles
are connected to the nodes of the leading edge structure mesh, or the trailing edge for
the back tether (see Figure 7.1). For the KaB model, as the wing is modeled as an
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Figure 7.1 – Set of bridles, tethers and connection to the wing for the IDK model (left) and
the KaB model (right).

assembly of beams, the bridles are connected to rigid bodies (see Figure 7.1), which
themselves are connected to the micro-beams. The length of the rigid bodies is function
of the local chord length and thus the wing and its set of lines can be modeled.

7.2.2 Data exchange

As presented before in Section 7.1, the interaction between the fluid and structure
model in our case is an exchange of deformation data and aerodynamic loading. It
should be noticed that, even if the distortion of the canopy is available with the IDK
model, the aerodynamic section is supposed rigid for both models (Maison et al.
(2017)), that means that the set of aerodynamic coefficients do not take into account
the deformations of the wing.

FSI with the Kite as a Beam structure model

Simplicity was the leading principle during the development of the KaB model. For
that reason, the mesh of the structure model is based on the fluid mesh (see Section 5.3).
After the computation of the fluid model, aerodynamic forces and moments are known
in each point Mi of the lifting line, corresponding to the tips of the micro-beams. The
loads are then implemented in the structure model. It should be noticed that the initial
geometry in the structure model is always the same and is only modified for each fluid
computation. After convergence of the structure iteration, displacements and rotations
are known for each point Mi. As the kite is modeled in Abaqus™ based on its bridles
and tethers, there is a rigid body motion. In order to remove this movement from
the fluid iteration, the rotation and displacement of the point K, point at the quarter
chord in the symmetry plane of the wing, is computed. By deducting the point K
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displacement from the global movement of the points Mi, only the deformations of the
wing are taken into account for the fluid computation.

Mdef
i = M init

i +
#            »

U(Mi)−
#         »

U(K) (7.1)

The rotation computed at Mi is then applied to the whole horseshoe vortex. Abaqus™
gives the rotation in the form of a vector #»r , the axis of rotation and of norm η, the angle
of rotation. The rotation of the horseshoe vortex is computed by following Equation
7.2:

P def = Mdef
i + cos η

#       »

MiP + (1− cos η)
(

#       »

MiP .
#»r
)

#»r + sin η
(

#»r × #       »

MiP
)

(7.2)

Where P is the Mi corresponding point from the leading or trailing edge, or from the
horseshoe vortex (see Figure 2.6 and Section 2.2).

This rigid body motion, and especially the rotation of the point K is also used after
the first structure iteration for the loading of the wing. Indeed, in Abaqus™ , the
loads described by force and moment vectors do not follow the deformations of the
structure. For that reason, for each structure iteration k, the local aerodynamic loads are
implemented on the initial geometry, non deformed, but in the converged coordinates
of the structure iteration k − 1. This means that a rotation corresponding to the rigid
body motion of iteration k − 1 is applied on the aerodynamic loads of iteration k.

FSI with the complete finite element model IDK

The interaction between the complete finite element model IDK and the nonlinear
lifting line is obviously more complex since the two meshes do not even coincide. The
output of the fluid model is here the distribution of effective angle of incidence αprj
along the span. As a reminder, the effective angle of incidence is defined as the angle
between the chord of the section and the projected effective wind, which is actually the
local effective wind projected in the plane of the section. (see Section 2.2.3 and Figure
7.2).

The aerodynamic loading in the IDK model consists to apply a pressure on the canopy
and forces and moments on the nodes of the leading edge. The method presented
thereafter to determine the aerodynamic loading in the IDK model is an evolution of
the FSI couplings presented by Leloup (Leloup (2014)) and Maison (Maison et al.
(2017)). In order to estimate the aerodynamic coefficients, required for the lifting line
model, and the pressure along the section, a set of 2D simulations on a Leading Edge
Inflatable (LEI) kite section has been carried out with XFOIL from angle of incidence
ranging from −4° to 19°. The effective angle of incidence is given by the 3D Non-
Linear Lifting Line (LP3DNL, see Section 2.2) model and the pressure coefficient
curve is determined from the set of 2D simulations with a cubic interpolation. As a
strict LEI kite section is hard to model because of the junction between the tube and
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Figure 7.2 – Description of the effective angle of incidence

the canopy, the section has been slightly modified. A large part of the recirculation
area is now assumed as a solid, see Figure 7.3 and Leloup (Leloup (2014)) for more
details. The evolution of the pressure coefficient Cp along the section at 4° of incidence
can be seen in Figure 7.4.
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Figure 7.3 – Real section of a LEI kite (in red and blue) and XFOIL section (in blue, red and
black). SJ denotes the beginning of the added solid part in XFOIL, SS denotes the sewing
point between the canopy and the inflatable tube.

Subsequently, the pressure on the shell element of the canopy has to be evaluated. It
is assumed that the pressure in the recirculation area is constant, with a value equal
to the pressure at the detachment point SD (see Figure 7.4). For the first part of the
canopy (X ∈ [XJ ; 1] in Figure 7.3), the pressure coefficient is deduced directly from
the XFOIL curve:

Cp(X ∈ [XJ ; 1]) = Cp(Top side)− Cp(Bottom side) (7.3)

For the second part of the canopy, X ∈ [XS;XJ ], as the pressure is constant in the
recirculation area, the pressure coefficient is given by the following equation:

Cp(X ∈ [XS;XJ ]) = Cp(Top side)− Cp(SD) (7.4)
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Figure 7.4 – Pressure coefficient provided by the XFOIL simulation on a LEI kite section at
4° of incidence

Each node of the structure mesh can therefore receive a pressure coefficient value. The
local pressure P on the shell element is then calculated as:

P =
1

2
ρV 2

prj

1

4
(Ci

p + Cj
p + Ck

p + C l
p) (7.5)

with #     »

Vprj the projected effective wind and Ci
p, Cj

p, Ck
p and C l

p the respective pressure
coefficient of each node of the quadrilateral shell element.

The last step is to compute the forces #     »

FLE on the leading edge node, that means the
loading on the inflatable tube. XFOIL provides the pressure coefficient evolution from
the sewing point SS to the detachment point SD. The remaining part of the tube is
considered in the recirculation area and subjected to a constant pressure.

#     »

FLE =
1

2
ρV 2

prj

(∫ SD

SS

Cp(S) #»nds+ Cp(SD)

∫ SS

SD

#»nds

)
cdl (7.6)

With #»n the surface normal to the tube, s the curvilinear abscissa of point S around the
tube, c and dl the local chord and the local width of the mesh respectively. As with the
Kite as a Beam model, a rotation is applied on the force and moment vectors, rotation
corresponding to the rigid body motion of the previos structure iteration.

After convergence of the structure iteration, the deformation of the leading edge and
the trailing edge are known. The rigid body motion is here again removed from the
global deformation and a new fluid mesh is computed from the distorted leading and
trailing edge.
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7.3 Comparison between IDK and KaB models

This Section presents a FSI computation carried out with both structure models. The
wing used for the comparison tests is a kite of 5m2 designed by beyond the sea®. This
wing has a classic kite geometry, with twist and a nonlinear swept law. The case of
study has been chosen from an experimental case conducted by Behrel (Behrel (2017)).
In this case, the wing was flying in a dynamic flight on a 8 shape-trajectory with a tether
length of 50m. The computation case is extracted from the middle of the flight, where
the wing has almost a straight trajectory. In this situation, the apparent wind seen by
the wing is estimated at 20.45m/s. The traction exerted by the wing was measured and
reached 737N . Apparent wind and force magnitude values give an order of magnitude
for the following simulations.

As the purpose of the IDK FSI model is to predict the stress distribution in the kite for
various angles of incidence in the symmetry plane, the KaB FSI model has to follow
the same procedure. An angle of incidence is chosen and for each fluid iteration, the
angle of incidence of the chord in the symmetry plane of the wing is set at the chosen
angle. In the IDK model, based on symmetry considerations only the half of the wing
is modeled. The translation along #»y and the rotation around #»x and #»z of the chord in
the symmetry plane are blocked. To avoid any non-symmetrical motion, the translation
along #»y and rotation around #»x and #»z of the point K in the symmetry plane of the KaB
model are also blocked. Eventually, the three translations of the attachment points of
the tethers on the ground are blocked (see Figure 7.5). The pressure chosen for the
computation of the equivalent beam properties is 150Pa, estimated from experimental
results. As presented in Section 5.2, the computations are carried out in Abaqus™ ,
with an implicit dynamic solver applied for a quasi-static case.

Each FSI models take around 3 − 5 iterations to converge as it can be seen in Figure
7.6. Each IDK structure iteration takes in average 1500s of CPU time whereas the
computation time takes only of 21s for the KaB structure model, on a desktop computer
(Intel E3-1220, 4 cores, 3.10GHz, 4Go RAM). Figure 7.6 shows also the necessity of
a FSI kite model as the loading of the kite can increase by about 40% in some cases.
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Figure 7.5 – Boundary conditions on the IDK model for the structure iteration, global view
(left) and close up (right).
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Figure 7.6 – Magnitude of the aerodynamic loading on the kite for each fluid-structure it-
eration step. The IDK FSI model was run for the case of a 7° of incidence with a wind
velocity of 20.45m.s−1, with another wind velocity of 12m.s−1 in blue and the KaB FSI
model was tested for the case of 3° of incidence with a wind velocity of 20.45m.s−1( in
black).
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7.3.1 Global results

The results presented here are those after convergence for the wing at 7° of incidence
with a wind of 20.45m/s . The global results are presented in Table 7.1. The final posi-
tion is the angle in the plane (O; #»x ; #»z ) between #»z and the front tether. The wingsweep
is the displacement along the #»x axis at the tips. The opening is the displacement of the
tips of the wing in #»y direction, that means the distortions of the wing along the #»y axis.
The tether loading is the magnitude of the reaction force vector at the attachment points
on the ground. The relative difference between the two models is given by taking the
IDK FSI as reference.

IDK model KaB model
Final position (°) 8 34

Aerodynamic loading (N) 929 312

Lift coefficient 0.712 0.192

Drag coefficient 0.378 0.145

Wingsweep displacement (m) −0.249 −0.372

Opening displacement (m) 0.13 −0.16

Front tether loading (N) 560 222

Back tether loading (N) 365 91

Table 7.1 – Global results of the two FSI simulations at 7° of incidence

The differences between the two models are really significant. The relative difference
for the aerodynamic loading is 66%. The initial loading for the undeformed wing is
560N , thus according to the IDK model, the wing is distorted and hence increases
the aerodynamic loading, while it is the contrary for the KaB model. The same order
of magnitude can be found for the difference in position in the plane (O; #»x ; #»z ), for
the lift and drag coefficient or for the loading of the tethers, which is linked to the
position of the kite in the symmetry plane (O; #»x ; #»z ). The geometrical deformations
can also be seen in Figures 7.7 and 7.8. Both models predict the same direction in
wingsweep displacement, but the KaB estimation is way larger (by 50%). The opening
of the kite, the distance between the tips of the wing, is equal to 2.8m non-deformed
which represents an evolution of 4.6% for the IDK model. If the wing opens in the IDK
model, it closes in the KaB model, of 5.7%. Therefore it seems that the models agree
only for the direction of the wingsweep displacement.

The global deformations of the wing can be seen in Figures 7.7 and 7.8. The leading
edge (solid lines) and the trailing edge (dashed lines) are represented here, the IDK
model in red, the KaB model in blue and the initial geometry in gray. In Figure 7.8,
only the lifting line is represented for the sake of clarity. The wingsweep can be seen
again in Figure 7.7 as well as the opening of the wing in Figure 7.8. The variations of
the aerodynamic sections length is visible in Figure 7.7 with the deformations of the
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Figure 7.7 – Global deformations of the wing at 7° of incidence for the IDK model (in red)
and for the KaB model (in blue). In gray the initial geometry. Solid lines represent the
leading edges, dashed lines the trailing edges.
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Figure 7.8 – Deformations of the lifting line of the wing at 7° of incidence for the IDK model
(in red) and for the KaB model (in blue). In gray the initial geometry.

IDK model. The relative variation of chord length from the initial geometry is around
5 − 6% at the tips of the wing and 1 − 2% in the symmetry plane. Even if the models
disagree on the opening of the wing, it should be noted that the deformations which
can be seen in Figure 7.8 are not very large. Finally the twist of the wing, which plays
a significant part for the aerodynamic loading, is detailed in the following Section.

7.3.2 Local results

Figures 7.9, 7.10 and 7.11 show the most significant local results on the wing. Figure
7.9 is the geometrical twist after convergence along the span of the wing, which de-
pends of the initial geometry and of the deformations of the wing. Figure 7.9 shows a
major difference between the behavior of the two models. The local twist of the KaB
model is almost constant at −3° in the center of the wing (value of the initial twist) and
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increases up to 11.5°at the tips. After convergence, the twist of the KaB wing varies
only at the tips. On the contrary, the local twist of the IDK model decreases almost
linearly from −3° in the center to −32° at the tips.
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Figure 7.9 – Local twist of the aerodynamic sections after convergence for the wing at 7° of
incidence. The initial geometry twist is in gray.

Figure 7.10 shows the projected effective angle of incidence and the projected wind
velocity on the local sections after convergence. As defined in the LP3DNL model, a
negative twist induces a positive angle of incidence. The effective angle of incidence is
directly linked to the twist of the wing and depends also on the local induced wind (see
Section 7.2.2 or Section 2.2 for the definition of the effective angle of incidence). The
differences shown in Figure 7.9 are therefore propagated in Figure 7.10. The effective
angle of the KaB model is almost constant around 1° over most of the span of the wing
and decreases until−8° at the tips. The effective angle of the IDK model is in the range
[6°; 9°] in the middle of the wing and increases sharply up to 22° and eventually 35° at
the tips of the wing.

The projected wind velocities of the two models are in the same range of values, the
skip in the IDK effective angle can be found again in the effective wind curve around
the abscissa −1m and 1m, even if it is less pronounced.

Eventually, Figure 7.11 shows the magnitude of the local loading per unit length along
the span of the wing. The effect of the differences in the local twist can be found
here also. The local aerodynamic loading per unit length is overall larger for the IDK
model, as expected with the global aerodynamic loading presented in Section 7.3.1 and
also with the effective angle of incidence of Figure 7.10.
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Figure 7.10 – Local effective angle of incidence and local projected wind velocity after con-
vergence for the wing at 7° of incidence
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Figure 7.11 – Magnitude of the local aerodynamic loading per unit length after convergence
for the wing at 7° of incidence.

7.4 Discussion

The differences between the two models observed in Chapter 6 are still present in
Fluid-Structure Interaction results, the set of bridles is not enough to smooth out the
gap between the two structure models. The two major geometrical differences are the
wingsweep and the twist at the tips of the wing which can be seen in Figures 7.7 and 7.9
respectively. The most significant difference is the resulting twist of the wing which
increases for the KaB model and decreases to large angles for the IDK model. Such
large angles are quite unexpected however, in reality, the kite designed by beyond-the-
sea® has a pulley between the front and back tether which is not modeled here. This
pulley, fastened near the tips of the wing, transfers part of the stress between the front
and back tethers and would come into play in our case since the equivalent bridle in
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the simulation is not loaded. Secondly for the pressure loading, the IDK model works
with a set of pressure coefficient distribution computed with XFOIL for a limited range
of incidence. If the angle of incidence of the section is outside of this range, the lower
or upper limit is taken, which limits the influence of the angle of incidence when the
section is stalled and may prevent to come back to lower angles of incidence. The
upper limit of the computed range of incidence for the previous simulations was 19°,
beginning of the stalling range of the section. It will be certainly useful to have a wider
range of angles of incidence for further simulations.

A first source of differences between the two models may be the way the bridles are
attached to the wing. For the IDK model, the tethers are fastened to a beam element
which models the inflatable leading edge. The volume of the tubes are not represented.
For the KaB model, the tethers are linked to the wing beams by a rigid body and of
the length of the complete LEI kite section. Figure 7.12 shows that the tethers are not
attached exactly at the same position. However, as the fluid computation was done with
a constant angle of incidence, this does not seem to be the major source of difference
between the two models.
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−0.2

0
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LKaB

LIDK

X

Z

Figure 7.12 – Attachment point on the aerodynamic section of the KaB model (LKaB) and
the IDK model (LIDK)

Figure 7.13 shows the local twist for the initial geometry, after the first fluid-structure
iteration and after convergence for the IDK and the KaB models. After only one itera-
tion the twist is already very close to the converged twist. Even if the lifting line model
has not been validated for high twist angles, after only one iteration with an equivalent
aerodynamic loading, the models already differ significantly. The same phenomena
can be found for the other deformations (wingsweep or opening of the wing). Section
6.2 has shown the gap between the two models for the modeling of the twist, as the
torsion stiffness of the KaB model is significantly higher. Figure 7.13 and the previous
results of Section 7.3 show the consequence of this overestimation.

The second major difference is the wingsweep of the wing, the displacement along the
#»x axis. The two models deform in the same direction, towards the reduction of the
initial wingsweep. However the distortion of the KaB model is definitely bigger. This
is still consistent with the results of Section 6.2. The local pressure on the IDK model
after convergence is in the range [250; 300Pa] while the chosen pressure for the KaB
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Figure 7.13 – Local twist of the kite wing for both model at 7° of incidence, after the first
structure iteration in black and after convergence in red. (initial geometry twist in gray)

model is 150Pa, the stiffness of the IDK model along the #»x axis is then also bigger
than the KaB one.

Section 6.2 also showed a large difference in stiffness along the #»y and #»z axis but these
stiffnesses do not seem to play a critical role in our case.

7.4.1 Mesh influence on the KaB model

For the previous simulations, a mesh with 30 sections per half-span (60 sections on
the whole wing) was chosen as this discretization is a good compromise between ro-
bustness and accuracy for the 3D Non-Linear Lifting Line model (see Section 2.3.2).
However, as the density of the mesh has an influence on the aerodynamic loading (see
Figure 7.14), the influence of the mesh on the Kite as Beam fluid-structure interaction
has to be investigated. All following results are for the previous kite wing at 7° of
incidence.

Figure 7.14 shows in red the aerodynamic loading on the wing as a function of the
number of sections for the converged result and the first iteration (with an undeformed
wing) in black. The relative difference is computed by considering the finest mesh of
150 sections as reference. As the structural problem stays relatively simple even when
refining the mesh, the computation time does not increase significantly.

As it can be seen in Figure 7.14, the estimation difference on the aerodynamic loading
for the first iteration is quite small, less than 10% between 20 and 150 sections over
the span of the wing. However, this has a large influence on the converged result.
There is almost a 50% gap between the 20 sections and the 150 sections mesh for
the aerodynamic loading. It should be noticed that increasing the number of sections
increases the drag of the wing (18% difference between 20 and 150 sections) and cut
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Figure 7.14 – Wing at 7° on incidence after convergence with 20, 60, 100 or 150 sections
over the span. (a) Magnitude of the aerodynamic loading as a function of the number
of sections on the wing in the range [20; 150] for the FSI converged result in red and
for the first iteration (with an undeformed wing) in black. (b) Relative difference on the
aerodynamic loading with respect to the number of sections on the full span of the wing
for the converged result in red and the first iteration in black.

in half the lift of the wing. To simplify the coupling between the two models, it was
chosen to work with the same mesh density for the fluid model and the structure model.
But Figure 7.14 shows that the influence of discretization should be checked for the
KaB structure model.

Figure 7.15 shows the local twist of the sections and the local aerodynamic per unit
length over the span of the wing for 20, 60 and 150 sections. The number of sections
obviously changes the converged results, the 20 sections wing is overall more loaded,
but the trends over the span are similar.

Figure 7.16 shows the deformation of the wing at 7° of incidence after convergence.
The deformations of the wing only differ at the tips. The wing with the high mesh
density closes more but has also less wingsweep.
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Figure 7.15 – Wing at 7° on incidence after convergence with 20, 60 or 150 sections over the
span,(a) local twist of the aerodynamic sections, (b) magnitude of the local aerodynamic
loading per unit length
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Figure 7.16 – Geometries of the wing at 7° of incidence after convergence with 20, 60 or 150
sections over the span. (a) Solid line represents the lifting line coordinates. (b) Solid line
represents the leading edge, dashed line the trailing edge.

As the IDK model was discretized with 20 sections over the span and as the number of
sections has an influence at least on the aerodynamic loading, it was chosen to work
with this mesh density for the following studies.
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7.4.2 Influence of the work pressure on the KaB model

Previous simulations have all been carried out with the same work pressure, 150Pa,
estimated from experimental results. However in the IDK model, the pressure is recal-
culated after each fluid iteration. To investigate the influence of the work pressure on
the results, the pressure over the span has been extracted from the converged results of
the IDK FSI. Each elementary cell has then a distinct pressure between [250; 300Pa],
averaged from the pressures of the equivalent wing section in the IDK model. The
global results obtained are compared in Table 7.2 with the results from the IDK FSI
and the wing with 20 sections and a work pressure of 150Pa, to serve as a reference.

The converged aerodynamic results are very close and the only significant difference
is the deformation of the wing. The local results and the deformed geometries can
be found in Figure 7.17. As expected, the KaB model with increased pressures has a
global increased stiffness. The wingsweep of the wing at the tips is decreased as well
as the opening of the wing. The work pressure has then a small influence, not on the
aerodynamic loading (the local loads are quasi identical in Figure 7.17 (b)), but on the
deformations of the wing. To take into account the influence of the work pressure,
the equivalent beam properties could be computed for different work pressures, 3 for
example, as Section 6.3 showed that the evolution of the equivalent beam properties
are almost linear. The work pressure of each elementary cell can be estimated from
the lifting line model and as a first approximation, a linear interpolation would give the
equivalent beam properties of each elementary cell as a function of an updated work
pressure.

IDK model KaB 20 Sections KaB IDK pressure
Final position (°) 8 12 15

Aerodynamic loading (N) 929 390 400

Lift coefficient 0.712 0.271 0.280

Drag coefficient 0.378 0.130 0.129

Wingsweep displacement (m) −0.249 −0.407 −0.319

Opening displacement (m) 0.13 −0.02 −0.09

Front tether loading (N) 560 187 202

Back tether loading (N) 365 202 198

Table 7.2 – Converged FSI results of the kite wing at 7° of incidence for the IDK model, for
the KaB model with a work pressure of 150Pa (20 Sections) and for the KaB model with
a work pressure in the range [250; 300Pa] extracted from the IDK results (IDK pressure).
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Figure 7.17 – Wing at 7° of incidence after convergence with the IDK model (in red), the KaB
model with a work pressure of 150Pa (in blue), and with work pressures extracted from
the IDK model (in green). (a) Local twist of the aerodynamic sections. (b) Magnitude of
the local aerodynamic loading per unit length. (c) Solid line represent the leading edge,
dashed line the trailing edge. (d) Deformed lifting line.
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7.4.3 Possibilities of model calibration

As the KaB model is really away from the IDK model, a last computation case has
been done to evaluate its calibration possibilities to improve the results. Since the
twist and the wingsweep are the two largest differences between the two models, it was
chosen to decrease the torsional stiffness of the equivalent beams GJ by a coefficient
0.5 and to increase the in-plane bending stiffness EI3 by a coefficient 2.0. It should be
noticed that the coefficients were constant for each equivalent beam while geometrical
approximations between the two models are the largest at the tips of the wing. The
results presented in Table 7.3 can certainly be improved by adjusting more precisely
the equivalent beams stiffnesses. The local results can be seen in Figure 7.18.

The global aerodynamic loading increases by around 50% and the wingsweep de-
creases from about 15%. However the global opening of the wing also increases signif-
icantly, which is coherent with the modification of the stiffnesses. Indeed, decreasing
the torsional stiffness, increases significantly the twist at the tips of the wing, which
increases the local aerodynamic loading and thus the opening of the wing.

The results can therefore be improved by the use of coefficients to calibrate the KaB
model. However this implies the computation of at least the comparison cases pre-
sented in Section 6.1 for each new geometries to adjust precisely the coefficients.
These simulations cases are not very time consuming, considering the structure model
is already build, but this reduces the ease of use of the Kite as a Beam model.

IDK model KaB 20 Sections KaB Calibrated
Final position (°) 8 12 9

Aerodynamic loading (N) 929 390 580

Lift coefficient 0.712 0.271 0.432

Drag coefficient 0.378 0.130 0.121

Wingsweep displacement (m) −0.249 −0.407 −0.344

Opening displacement (m) 0.13 −0.02 0.52

Front tether loading (N) 560 187 249

Back tether loading (N) 365 202 333

Table 7.3 – Converged FSI results of the kite wing at 7° of incidence for the IDK model, for
the KaB model with a work pressure of 150Pa (KaB 20 Sections) and for the KaB model
with calibrated properties (KaB Calibrated).
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Figure 7.18 – Wing at 7° of incidence after convergence with the IDK model (in red), the KaB
model with a work pressure of 150Pa (in blue), with calibrated properties (in green). (a)
Local twist of the aerodynamic sections. (b) Magnitude of the local aerodynamic loading
per unit length. (c) Solid line represent the leading edge, dashed line the trailing edge. (d)
Deformed lifting line.
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Conclusion

The aim of this study was to develop a fast and reliable modeling approach, able to
predict the structural deformations, the tension in the tethers and the aerodynamic per-
formances of a leading edge inflatable kite according to the wind direction and the
wing kinematic. Two models have been developed and also, the interface needed to a
fluid-structure interaction simulation loop. Each model has been compared to a more
complex and sophisticated one, for validation purposes.

A 3D Non-Linear Lifting Line model has been developed. This model is based on the
lifting line of Prandtl, extended to deal with non straight kite wings. The model uses
non linear aerodynamic coefficients which can easily be extracted from experiment or
simulation data. The finite wing and its wake are represented by a set of horseshoe
vortices which consists of six vortex segments. For each horseshoe vortex, the bound
vortex is orthogonal to the two adjacent trailing vortices, which extend parallel to the
chord over one chord length. The second part of the trailing vortices extends parallel
to the global relative free stream direction. An algorithm was implemented to calcu-
late the circulation of each horseshoe vortex and then the lift, drag and moment of
the wing. A damping factor is necessary for the good convergence of the algorithm.
Numerical studies showed that a wake length equivalent to 20 times the chord in the
symmetry plane of the wing and a discretization between 30 and 50 sections per half-
wing provides converged results in the numerical accuracy range of the model. Finally,
the model showed perfect agreement with the lifting line theory for classic wing ge-
ometries.

To further validate the 3D Non-Linear Lifting Line, RANSE simulations were per-
formed. At first, 2D simulations were carried out to compute the aerodynamic coeffi-
cients used in the lifting line model and also to estimate the numerical accuracy of the
RANSE simulations. 3D simulations have been carried out on three geometries to test
the limits of the lifting line model. For the geometry close to a leading edge inflatable
kite, lift coefficient estimations have less than 5% difference over a large range of angle
of incidence. The estimation of the drag coefficient is also satisfying even if the gap
is a bit more significant for angles of incidence greater than 10°. Simulations with the
wing with a sideslip angle showed that the lifting line model is still able to predict cor-
rectly to evolution of the aerodynamic coefficients. Local results were also computed
on the 3D RANSE simulations. The lifting line model is able to predict the position
of minimum and maximum loading, for a wing with various angles of incidence and a
sideslip angle in the range of [0°; 15°].

The model was also introduced in a new equilibrium iterative procedure for the kite,
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able to calculate the effective lift-to-drag ratio of a kite along a circular flight path,
taking into account its turn rate. A parametric study was conducted to analyze the
evolution of the aerodynamic coefficients and the flight characteristics according to
the tether length or the radius of the trajectory. The results showed the influence of
the turn rate on the aerodynamic loading of the kite and the capacity of the lifting line
model to take this parameter into account.

Simultaneously, a structure model was developed. The core idea of the Kite as a Beam
model is to approximate a Leading Edge Inflatable kite by an assembly of equivalent
beam elements. Over the span, the kite is divided into several elementary cells, each
one composed of a portion of the inflatable leading edge, two inflatable battens and
the corresponding canopy. A cell is made up of beam elements for the battens and
the leading edge and of shell elements for the canopy. If the wing has a leech line, it
is modeled with truss elements at the trailing edge. First of all, the cell is put under
pressure with its four corner clamped. The cell is then subjected to different linear
displacement perturbations applied on one side while the other side is clamped. The
equivalent beam stiffnesses are calculated from the reaction forces and moments com-
puted after each linear perturbation. Eventually, the equivalent beam are re-discretized
in order to match with the lifting line mesh.

The Kite as a Beam model was then compared to a complete kite Finite Element model.
The structure models were put under a constant pressure with equivalent boundary
conditions. The same elementary displacements were then applied, a translation along
one of the three global axes or a rotation of the wing tip. The reaction forces and
moments were compared for two different wings, one modeling a kite designed for
the beyond the sea® project and an academic wing taken cylindrical with a constant
chord. Results showed that the Kite as a Beam model largely overestimates the torsion
for kite geometries, where large geometrical approximations are made when building
the elementary cell. The Kite as a Beam model was also not able to follow the evolution
trend of the complete Finite Element model for the opening of the kite, even if it was
in the order of magnitude of reaction forces.

Nevertheless, the Kite as a Beam model was coupled with the 3D Non-Linear Lifting
Line model to set the basis of a FSI design loop. The fluid model computes the local
aerodynamic load on the wing, which are applied on the structure model. After con-
vergence of the Kite as a Beam model, the deformations are computed by subtracting
the rigid body motion of the wing and are taken as input for the lifting line model.
The same principle was used for the complete Finite Element model, except that the
wing is loaded through pressure on the canopy. The gain in computation time is really
significant as the Kite as a Beam model takes only a few minutes to compute while
the complete Finite Element model needs one or two hours. The results showed the
influence of the mesh density on the converged results, especially for the aerodynamic
loading, which should be kept in mind if the model is used to provide quantitative val-
ues. The comparison between the two fluid-structure models pointed out their behavior
differences, but also the fact that these differences could be reduced by calibrating the
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torsional stiffness and the in-plane bending stiffness of the Kite as a Beam model.

Perspectives

The fluid-structure simulations showed the influence of the mesh density on the Kite
as a Beam results. To simplify the coupling between the two models, it was chosen
to work with the same mesh density for the fluid model and the structure model, but a
mesh convergence study should also be done for the structure model only, to estimate
the impact of the number of beam elements without the influence of the fluid model.
The model could also take into account the pressure resulting from the fluid iteration,
with a linear interpolation between two or three equivalent beam properties computed
at different pressure. However, the purpose of the Kite as a Beam model is to be able to
test rapidly different wing geometries, shapes and sizes, for various wind conditions.
The results are more interesting from a relative point of view than as for quantitative
values. From this perspective, the calibrated Kite as a Beam model should be compared
to the complete Finite Element model for another geometry (with more wingsweep for
example) or another angle of incidence, to check if the calibrated model is able to
follow the evolution trend of the Finite Element model. If the results of the Kite as a
Beam FSI model are not enough for a first estimation in a design phase, then another
model should be developed with less strong assumptions, for example for the tangent
stiffness of the elementary cell.

For the fluid part, the 3D Non-Linear Lifting Line model has been checked for various
angles of incidence and of sideslip, but only in the steady range. Other simulations
could be carried out in the unsteady range or with high twist angles, to further validate
the results of the lifting line. Another simulation could also be done with a LEI kite
profile, to check its influence on the lifting line estimation. In the same way, if the
fluid model is able to take into account the turn rate of the kite, no validation of the
global and local aerodynamic loading of the wing with turn rate has been provided.
Lastly, the lifting line model uses only one set of aerodynamic coefficients. One could
add the option in the program to use another set of aerodynamic coefficients, to take
into account an evolution of the aerodynamic section over the span of the wing, or the
section of the battens.

Finally for the global fluid-structure interaction, if the Kite as Beam model is very
different from the complete Finite Element model, one can not assess on the validity
of either models. Indeed, the twist of the complete Finite Element model was really
significant and the deformations observed during real experiments were not as severe.
To further validate the Fluid-Structure Interactions models, accurate information on
the deformations of the wing would be greatly useful. For example, Augier (Augier
(2012)) used a camera to obtain the deformations of a boat sail and validates a model
of fluid-structure coupling or Breukels (Breukels (2011)) carried out experiments with
a LEI wing in wind tunnel where photogrammetry was used to get the shape of the
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canopy. The second research axis is the modeling of the FSI directly for a kite in
dynamic flight. At the moment, the kinematic of the kite, its velocity and its turn
rate, are inputs of the fluid model. Modeling the kite in dynamic flight would allow
to estimate the traction of the kite according to its geometry, its trajectory and the
apparent wind all along its trajectory. One could then better compare these results with
the real experiments carried out by Behrel (Behrel (2017)).
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Appendix

Appendix: Lifting Line model

Chord law

Different chord laws c(s) are implemented in the program. cr is the chord length at the
root, ct the chord length at the tips. s is the curvilinear abscissa over the span and smax
is the maximal curvilinear abscissa.

• Linear:
c(s) = s

(ct − cr)
smax

+ cr (7.7)

• Elliptic:

c(s) = cr

√∣∣∣∣
(1− s2)(c2r − c2t )

s2maxc
2
r

∣∣∣∣ (7.8)

• Polynomial:
c(s) =

ct − cr
s2max

s2 + cr (7.9)

Twist law

Two twist laws α(s) are possible in the program. αr is the twist at the root of the wing,
αt at the tips. smax is again the maximal curvilinear abscissa.

• Linear:
α(s) =

αt − αr
smax

s+ αr (7.10)

• 3rd degree polynomial: The twist is equal to αr at the root and αt at the tips of
the wing. But one can set the twist at cvsmax with the value αv (cv ∈ [0; 1]).

Wingsweep law

Three wingsweep laws f(s) are implemented in the program. d1 is the wingsweep at
the tip of the wing. s is the curvilinear abscissa over the span and smax is the maximal
curvilinear abscissa.
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• Linear:

f(s) = d1
s

smax
(7.11)

• Polynomial of degree η:

f(s) = d1
sη

sηmax
(7.12)

• Elliptic: The wingsweep is equal to d1 at the tips of the wing with an elliptic dis-
tribution, but one can choose the slope at the tips of the tangent at the wingsweep
curve f(s).

Section coefficients

To finish the description of the wing, one needs to define the aerodynamic section,
which is described by three curves in the lifting line model, the lift coefficient, the drag
coefficient and the moment coefficient curves. It was chosen to work with parametric
curves, to take into account the non-linearity of the lift coefficient. The parameters
are chosen to facilitate the reproduction of curves obtained with experiments or CFD
simulations, by just reading the graph.

Lift coefficient

Part I, II and V of the lift polar curve are linear (see Figure A.1), while part III and IV
are described by a polynomial of degree 3 and 2 respectively. The different curve parts
are tangent in (α2, Cl 2) and in (α3, Cl 3). The points (αi, Cl i) divide the different parts
of the curve which will pass through each point. (α3, Cl 3) is the maximal value of the
lift polar curve. To describe the lift polar curve, one only needs these four points and
two coefficients for the slope of the linear parts I and V.
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Figure A.1 – Description of the lift polar curve
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Drag coefficient

The drag polar curve (see Figure A.2) is divided into two parts, part I is polynomial of
degree 3 and part II is linear. The limit between them is given by αlim. The polynomial
go through the points (αi, Cdi) and (αmin, Cdmin) is the minimum value of this part of
the drag polar curve.
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Figure A.2 – Description of the drag polar curve

Moment coefficient

The moment polar curve (see Figure A.3) is also divided into two parts, but both poly-
nomial of degree 3 for part I and of degree 2 for part II. αlim is the limit between the
two parts of the curve. The first part pass through the points (αi, Cmi) with i ∈ [1; 4]

and the second part through the points (αi, Cmi) with i ∈ [5; 7].
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Figure A.3 – Description of the moment polar curve
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Appendix: Kite as a Beam model

In the following section, the inputs needed for the Kite as a Beam model are listed.

• Nbeam: Total number of beam elements in the elementary cell model

• CMX : Relative height and position of the maximum camber

• PMO: Work pressure of the Kite as a Beam model (Pa)

• For the canopy: Young modulus (N/m2), Poisson’s ratio and grammage of the
fabric (g/m2)

• E: Fictive thickness corresponding to the following mechanical properties of the
fabrics (m)

• For the leading edge tube : Longitudinal modulus Emc and shear modulus Gmc

in N/m. Radius of the leading edge for each elementary cell (m)

• For the battens: Longitudinal modulus Emc and shear modulus Gmc in N/m.
Minimum and maximum radius for each elementary cell (m)

• For the leech line: Density (kg/m3), diameter (m) and Young modulus (N/m2)

• Attachment points of the bridles over the span of the kite

• Bridle diameters (m)

• Diameter of the front tethers (m)

• Diameter of the back tethers (m)

• Density of the tethers (kg/m3) and Young modulus (N/m2)

• Position on the ground of the back tether (m). Front tethers are set in (0; 0; 0).

• Lengths of the various bridles (m)

• Lengths of the front and back tethers (m)
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Résumé : Cette thèse fait partie du projet beyond the sea qui 

a pour but de developer la traction par cerf-volant à boudins 

gonflés (kite) comme système de propulsion auxiliaire des 

navires. Comme le kite est une structure souple, il est 

nécessaire de mettre en place une boucle d’interaction fluide-

structure pour calculer la géométrie du kite en vol et ses 

performances aérodynamiques. Un modèle de Ligne Portante 

3D Non-Linéaire a été développé pour pouvoir gérer ces ailes 

non planes, avec des angles de dièdre et de flèche qui varient le 

long de l’envergure, et également pour pouvoir prendre en 

compte la non-linéarité du coefficient de portance de la section 

aérodynamique. Le modèle a été vérifié par des simulations 

RANSE sur différentes géométries et donne des résultats 

satisfaisants pour des angles d’incidence et de dérapage 

variant jusqu’à 15°, avec des différences relatives de quelques 

pourcent pour l’estimation de la portance globale de l’aile. Les 

résultats locaux sont aussi correctement estimés, le modèle est 

capable d’estimer la position du minimum et du maximum de 

chargement local, selon l’envergure de l’aile, et cela même pour 

une aile en dérapage. 

En parallèle, un modèle structure a été développé. L’idée 

principale du modèle Kite as a Beam est de réduire le kite à un 

ensemble d’éléments poutre, chacun équivalent à une partie du 

kite composé d’une section du boudin d’attaque, de deux lattes 

gonflés et de la canopée correspondante. Le modèle Kite as a Beam 

a été comparé à un modèle Eléments Finis complet du kite sur des 

cas de déplacements élémentaires. Les résultats montrent 

certaines différences de comportement entre les deux modèles, 

avec notamment une surestimation de la raideur en torsion pour 

le modèle Kite as a Beam. Finalement, le modèle Kite as a Beam a 

été couplé avec la Ligne Portante 3D Non-Linéaire, puis comparé 

au modèle Eléments Finis, couplé également avec la Ligne 

Portante. La réduction du temps de calcul est réellement 

importante mais les résultats de la comparaison montrent la 

nécessité de calibrer le modèle Kite as a Beam pour pouvoir 

retrouver correctement les résultats du modèle Eléments Finis. 
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Abstract : The present thesis is part of the beyond the sea 

project which aims to develop tethered kite systems as 

auxiliary devices for ship propulsion. As a kite is a flexible 

structure, fluid-structure interaction has to be taken into 

account to calculate the flying shape and aerodynamic 

performances of the wing. A 3D Non-Linear Lifting Line model 

has been developed to deal with non-straight kite wings, with 

dihedral and sweep angles variable along the span and take 

into account the non-linearity of the section lift coefficient. The 

model has been checked with 3D RANSE simulations over 

various geometries and produces satisfactory results for range 

of incidence and sideslip up to 15°, with typical relative 

differences of few percent for the overall lift. The local results 

are also correctly estimated, the model is able to predict the 

position of the minimum and maximum loading along the 

span, even for a wing in sideslip.  

Simultaneously, a structure model has been developed. The core 

idea of the Kite as a Beam model is to approximate a Leading 

Edge Inflatable kite by an assembly of beam elements, equivalent 

each to a part of the kite composed of a portion of the inflatable 

leading edge, two inflatable battens and the corresponding canopy. 

The Kite as a Beam model has been compared to a complete kite 

Finite Element model over elementary comparison cases. The 

results show the behaviour differences of the two models, for 

example the torsion stiffness is globally overestimated by the Kite 

as a Beam model. Eventually, the Kite as a Beam model coupled 

with the 3D Non-Linear Lifting Line model is compared to the 

complete Finite Element model coupled with the 3D Non-Linear 

Lifting Line model. The gain in computation time is really 

significant but the results show the necessity of model calibration 

if the Kite as a Beam model should be used to predict the results 

of the complete Finite Element model. 

 


