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Résumé

Le système de Saint-Venant joue un rôle important dans la simulation de modèles océaniques,
d’écoulements côtiers et de ruptures de barrages. Plusieurs sortes de termes sources peuvent être
pris en compte dans ce modèle, comme la topographie, les effets de friction de Manning et la
force de Coriolis. Celle-ci joue un rôle central dans les phénomènes à grande échelle spatiale
car les circulations atmosphériques ou océaniques sont souvent observées autour de l’équilibre
géostrophique qui correspond à l’équilibre du gradient de pression et de cette force. La capacité
des schémas numériques à bien reproduire le lac au repos a été largement étudiée; en revanche,
la question de l’équilibre géostrophique (incluant la contrainte de vitesse à divergence nulle) est
beaucoup plus complexe et peu de travaux lui ont été consacrés.

Dans cette thèse, nous concevons des schémas volumes finis qui préservent les équilibres
géostrophiques discrets dans le but d’améliorer significativement la précision des simulations
numériques de perturbations autour de ces équilibres. Nous développons tout d’abord des schémas
colocalisés et décalés sur des maillages rectangulaires ou triangulaires pour une linéarisation
du modèle d’origine. Le point commun décisif de ces méthodes est d’adapter et de combiner
les stratégies dites "topographie apparente", "bas Mach" et "pénalisation de divergence" pour
contrôler l’effet de la diffusion numérique contenue dans les schémas, de telle sorte qu’elle ne
détruise pas les équilibres géostrophiques. Enfin, nous étendons ces stratégies au cas non-linéaire
et montrons des résultats prometteurs.

Mots Clés— équilibre géostrophique, bas nombre de Froude, système hyperbolique, méthode
de volumes finis, schéma de Godunov, diffusion numérique, schéma équilibre, force de Coriolis.
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Abstract

The shallow water system plays an important role in the numerical simulation of oceanic models,
coastal flows and dam-break floods. Several kinds of source terms can be taken into account in
this model, such as the influence of bottom topography, Manning friction effects and Coriolis
force. For large scale oceanic phenomena, the Coriolis force due to the Earth’s rotation plays
a central role since the atmospheric or oceanic circulations are frequently observed around the
so-called geostrophic equilibrium which corresponds to the balance between the pressure gradient
and the Coriolis source term. The ability of numerical schemes to well capture the lake at rest,
has been widely studied. However, the geostrophic equilibrium issue, including the divergence
free constraint on the velocity, is much more complex and only few works have been devoted to
its preservation.

In this manuscript, we design finite volume schemes that preserve the discrete geostrophic
equilibrium in order to improve significantly the accuracy of numerical simulations of perturbations
around this equilibrium. We first develop collocated and staggered schemes on rectangular and
triangular meshes for a linearized model of the original shallow water system. The crucial
common point of the various methods is to adapt and combine several strategies known as the
Apparent Topography, the Low Mach and the Divergence Penalisation methods, in order to
handle correctly the numerical diffusions involved in the schemes on different cell geometries,
so that they do not destroy geostrophic equilibria. Finally, we extend these strategies to the
non-linear case and show convincing numerical results.

Keywords— Geostrophic equilibrium, low Froude number, hyperbolic system, finite volume
method, Godunov scheme, numerical diffusion, well-balanced scheme, Coriolis force.
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Introduction

“Creativity requires the courage to let go of certainties .

”Erich Fromm

The shallow water equations (also called Saint-Venant equations), a hyperbolic system of
partial differential equations, can be used to model many interesting phenomena in geophysical
fluid mechanics. This system is an appropriate approximation for the atmospheric and oceanic
flows since in these situations, the scale of horizontal motions is much larger than that of the
vertical motion. At large scale motion, it is worth including in this model the effects of the
geometry of the Earth and the Coriolis force induced by its rotation. We can incorporate the
influence of these factors by including some additional source terms in the shallow water equations.
Then, these rotating shallow water equations (RSWE) can be written as





∂th+ ∇ · (hu) = 0, (1a)

∂t(hu) + ∇ · (hu ⊗ u) + ∇
(
g
h2

2

)
= −gh∇b−hΩu

⊥, (1b)

where h and u = (u,v) are functions of time t > 0 and space (x,y) ∈ R2. These variables denote
respectively the vertical height of the water and the horizontal velocity. In this model, the Coriolis
parameter Ω stands for the angular velocity and u

⊥ = (−v,u) is the orthogonal velocity. Let us
mention that the complete detail for the derivation of the RSWE from the there dimensional
rotating incompressible Euler or Navier-Stokes equations can be found in several textbooks [1, 2].
It is necessary to take into account the magnitudes of the parameters. Let us denote by U the
typical velocity scale of the fluid flows, L the typical length scale, T the time scale and H the
height scale. Then, we introduce the nondimensional variables by

x̄ =
x

L
, t̄=

t

T
, h̄=

h

H
, and ū =

u

U
.

We now begin with the nondimensionalization process by substituting all the dimensional variables
in RSWE (1) by their nondimensional variables. By doing that, we obtain the following system
with only nondimensional quantities





H

T
∂t̄h̄+

HU

L
∇x̄ · (h̄ū) = 0, (2a)

HU

T
∂t̄(h̄ū) +

HU2

L
∇x̄ ·

(
h̄ū ⊗ ū

)
+
gH2

L
∇x̄

(
h̄2

2

)
= −gH2

L
h̄∇x̄b−HΩUh̄ū

⊥. (2b)

For the sake of simplicity, we now drop the notation bar of the variables in (2) and multiply
respectively the first and second equations with the quantities L

HU and L
HU2 . As a result, we
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derive the dimensionless shallow water equations in rotating frame given by





St∂th+ ∇ · (hu) = 0, (3a)

St∂t(hu) + ∇ · (hu ⊗ u) +
1

Fr
2 ∇

(
h2

2

)
= − 1

Fr
2h∇b− 1

Ro
hu

⊥, (3b)

where dimensionless numbers St, Fr and Ro are known as the Strouhal, the Froude and the
Rossby numbers respectively defined by

St =
L

UT
, Fr =

U√
gH

, Ro =
U

ΩL
.

The Froude number, given by the ratio between the typical fluid velocity U and the gravity wave
speed

√
gH, is related to the compressibility effect of the shallow water equation. This is an

analogue of the well known Mach number in the Euler equations.
The Rossby number is the ratio of the inertial force to the Coriolis force. A large Rossby

number (because of small scale motion L, large speeds U or slow rotation Coriolis Ω) signifies
that the system is dominated by inertial forces. On the contrary, a small Rossby number indicates
that the system is strongly affected by the rotation.

Since we are interested in large scale oceanographic flows, we shall focus on cases where

Ro = O(M) and Fr = O(M)

with M a small parameter. The Strouhal number St has a strong relation to the time scale of
the motions. In particular, we first consider the case where the reference time scale is set up to
be equal to the convection time scale, i.e. T = L

U . In this long time scale, the Strouhal number is
obviously equal to one.
We now consider solutions of system (3) with the help of an asymptotic expansion of the unknowns

f(t,x) = f0(t,x) +Mf1(t,x) +M2f2(t,x) + O(M3) (4)

where the order of magnitude is equal to the small Froude and Rossby numbers.
By inserting these expansions (4) into the non-dimensional shallow water and collecting the
terms with power of M , the momentum equation gives us

O(M−2) : ∇(h0 + b) = 0, (5)

O(M−1) : ∇h1 = −u⊥
0 . (6)

We now turn to short time scales when the Strouhal number is of order O(M−1) and we restrict
our study to flat topography. The lake at rest (5) immediately leads to ∇h0 = 0 which means
that h0 is a constant in space. Moreover, by using periodic boundary conditions for the mass
equation, we obtain that h0 is also a constant in time. Therefore, we will denote that h0 = h⋆,
which allows us to write

h(t,x) = h⋆ +Mh1(x,t) + · · ·

Then, we obtain respectively from the mass and momentum equations of (3) the following
relations

O(1) : ∂th1 +h0∇ · u0 = 0, (7)

O(M−1) : ∂tu0 + ∇h1 = −u⊥
0 . (8)
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0.1 Motivations and purposes of the thesis

When considering the homogeneous system (in the absence of source terms), there are several
conservative numerical fluxes which can be used in numerical schemes, such that when the
discretization steps tend to 0, the limits of these schemes are weak solutions of the system
hyperbolic conservation law. We mention the textbooks [3, 4] for such kinds of Riemann solvers.
However, with the presence of source terms, it is still a challenge to discretize them appropriately
in order to ensure the preservation of some desirable properties of the continuous system, as well
as to avoid stability issues.

In the absence of Coriolis force, an essential requirement for numerical schemes is that they
should capture well the "lake at rest" particular solutions given by (5) because many observations
are actually small perturbations around this steady state, and the accuracy of the numerical
simulations is directly linked to the preservation of this steady state. Many studies are devoted
to the preservation of the lake at rest by numerical schemes. For instance, the hydrostatic
reconstruction, introduced in [5] based on a local reconstruction at the interfaces of cells, is
one of the well-known methods for the shallow water equations with non-flat topography. This
technique is then extended to schemes with an arbitrary order of accuracy in [6]. We also mention
one its modification [7] and a new reconstruction [8] motivated by the wet-dry front. For the
moving equilibrium case, the problem is more complicated and we mention the works [9, 10] that
deal with the one dimensional case.

However, in the presence of Coriolis force, the question for the preservation of the geostrophic
equilibrium (6) is a difficult problem and needs to be studied carefully. In particular, this non
trivial equilibrium implies the divergence free constraint

∇ · u0 = 0, (9)

and the steady state now becomes much more complex. There are very few works related to
this topic. In the finite elements framework, we can point out the works of Le Roux et al. in
[11, 12]. The authors study the dispersion relation and the possible spurious modes of several
types of finite elements applied to the linearized shallow water equations. In the collocated finite
volume framework, the authors in [13] adapt the hydrostatic reconstruction to the presence of
Coriolis source term by introducing a new topography. This result leads to the so called Apparent
Topography method and works well in the one dimensional case. This strategy is then extended
to the two dimensional case on Cartesian meshes in [14].

However, as mentioned above, with the geostrophic equilibrium, we do not only have to deal
with the balance between the pressure gradient and Coriolis force, but we also have to take into
account the divergence free condition (9). This implies that the low Froude number situation
(for the shallow water) will experience the same difficulties as the low Mach number situation
(for Euler equations).

Fortunately, a substantial amount of research articles have been devoted to the low Mach
number problem. Guillard and Viozat in [15] perform the analysis of the first order Roe scheme
to show that in the low Mach number limit, the discrete equations imply pressure fluctuations of
the order of the Mach number, while the solutions of the continuous equations have pressure
fluctuations that scale with the square of the Mach number. They followed the preconditioning
technique in [16, 17] to modify the viscosity matrix on the purpose of recovering the correct
scaling of the pressure. In [18], Li and Gu introduced an All-Speed Roe type scheme by changing
non-linear eigenvalues in the numerical expression of the Roe-type schemes. Their flux is quite
simple and this scheme has the same behaviour in the low Mach number limit as the original
continuous equations. More importantly, unlike the traditional preconditioned Roe scheme, the
All-Speed-Roe scheme recover the divergence constraint of the zero order velocity at the discrete
level.
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In 2011, Felix Rieper introduced a low Mach number fix for Roe’s approximate Riemann
solver (LMRoe) [19] based on the modification of the characteristic variable. In particular, the
correction is simply achieved by multiplying the jump in the normal velocity component with
the local Mach number on the purpose of removing the accuracy problem. Moreover, Stéphane
Dellacherie proposed in [20] a theoretical framework based on the Hodge decomposition to clearly
explain the inaccuracy of the classical Godunov scheme applied to compressible Euler system on
Cartesian meshes. He and his co-authors also explained in [21] that the behavior of the Godunov
scheme not merely depends on the space dimension but also on the type of mesh. Then, the work
in [22] proposed an all Mach Godunov type schemes applied to the compressible Euler system by
using the strategy which is named all Mach correction.

The main goal of this thesis is to create stable numerical schemes with explicit time discretiza-
tion, i.e.with no linear systems to solve, such that these schemes can preserve the geostrophic
equilibrium including the divergence constraint, in order to improve the accuracy of the numerical
schemes when the perturbations take place around this non trivial equilibrium. To do that, we
follow the framework in [20] and pay attention to the following purposes:

• Explain the wrong behavior of the classical Godunov type schemes applied to the linear
wave equation and point out the main reasons of the inaccuracy problem.

• Propose modified Godunov schemes which are able to capture the consistent discrete
geostrophic equilibrium or at least are accurate around this steady state.

• Figure out the influence of the cell geometry on the Godunov scheme applied to the linear
wave equation with Coriolis source term. In particular, we perform the analysis for the
kernel of the Godunov schemes on rectangular and triangular grids. This is motivated by
the fact that on triangular grids, all the jumps in the normal velocity components disappear
at the cell faces

∆U = (ui − uj) · nij = 0

for discrete velocities that are divergence free in the sense to be specified; which is
investigated in [21, 23, 24].

• Develop staggered type schemes with appropriate numerical diffusions and compare the
obtained results with those obtained by collocated schemes in terms of dispersion relation,
damping error, phase and group velocities.

• Extend the results in the linear case to the full non-linear shallow water equations with
various convincing test cases.

0.2 Outline of the thesis

To illustrate all purposes mentioned above, this thesis is organized into three big parts and seven
chapters.

Part I of this thesis is devoted to the study of numerical schemes applied to the linear wave
equation with Coriolis source term in dimension one. In particularly, we first assume that the
solution does not depend on the y direction and we consider the quasi-1D linear wave equation
with Coriolis source term1 




∂tr+ a⋆∂xu= 0,

∂tu+ a⋆∂xr = ωv,

∂tv = −ωu
(10)

1For the sake of simplicity, we note r = h1, u = u0 and v = v0 in (10).
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where a⋆ and ω are constants of order one, respectively related to the wave velocity and to the
rotating velocity. The stationary state corresponding to Equation (10) is the 1D version of the
geostrophic equilibrium (6) and is called 1D geostrophic equilibrium. It is such that

u= 0, a⋆∂xr = ωv. (11)

The main goal of this part is to construct and analyze schemes that capture the 1D geostrophic
equilibrium (11) and this part consists of there chapters:

• In chapter 1, we use a Hodge decomposition to analyze the kernel of the modified equation
associated to the Godunov scheme applied to (10). This work shows that unlike for the
homogeneous system (no Coriolis force), the inaccuracy of the classical Godunov type
schemes already appear in dimension one with the presence of the Coriolis source term.
The numerical viscosity in the pressure equation is responsible for this problem. Because of
it, the kernel of the modified equation becomes trivial and only includes the constant state.
As a consequence, the kernel of the classical scheme is not rich enough to approximate
(11). To recover the accuracy, this work proposes two new schemes which are named the
collocated Low Froude scheme and All Froude scheme by respectively deleting the diffusion
term on the pressure equation and keeping it small enough with size O(M). The first
correction exactly capture the steady state (11) and although the second correction still
does not have discrete kernel which discretizes well the continuous one, the All Froude
scheme is proved to be accurate at Low Froude number locally in time, which means that
when the initial condition is close to the discrete kernel, the numerical solution of this
scheme is still close to this kernel within a simulation time t= O(1). Moreover, with an
appropriate time discretization for the Coriolis force, both of these schemes are proved to
be stable under some time step condition which turn out to be less restrictive than that of
the classical one.

• Chapter 2 is motivated by [13, 25]; we adapt the Apparent Topography strategy presented
in these works to the linear wave system (10) in order to construct a well-balanced scheme.
Unlike the Low Froude and All Froude schemes, the discrete kernel of the Apparent
Topography scheme is defined at the interfaces of the cells, instead of at the cell centers. It
is another consistent discretization of the 1D geostrophic equilibrium (11). In this chapter,
we prove the discrete Hodge decomposition with the kernel and its orthogonal subspace
defined at the interfaces of the cells, and from the numerical point of view, we prove that
the Apparent Topography scheme is still accurate at low Froude number locally in time.
This scheme has a larger damping rate than the well balanced schemes proposed in chapter
1. Due to the structure of the discrete kernel at the interface, we do not have various
choices for the discretization in time of the Coriolis force. As a consequence, the time step
of this scheme has a strong relation to the Coriolis parameter ω. However, in this chapter,
by using a Von Neumann analysis, we also show that the optimal time step of the Apparent
Topography scheme is just the combination of the classical one and the stability time step
of the inertial oscillation.

• In Chapter 3, we are interested in the adaptation of Low Froude and Apparent Topography
strategies on staggered meshes. A Fourier analysis is performed in this chapter to show
that the staggered schemes have better dispersion relations than those of the collocated
schemes. Particularly, only staggered schemes can ensure that the dispersion law is a
monotone function like it is at the continuous level. This property has a strong impact
on the accuracy of numerical schemes and helps us avoid numerical oscillations caused by
the waves with shortest wavelength 2∆x, see e.g [26]. This chapter also shows that the
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Low Froude staggered scheme is really robust with respect to the time step and to the
relation between the Rossby deformation radius and the space step. On the other hand,
we also point out that, unlike the classical and Apparent Topography schemes, the Low
Froude scheme is an orthogonality preserving scheme, which means that it can capture the
orthogonal subspace of the kernel, in addition to the kernel itself. Therefore, the behaviors
of the Apparent Topography and Low Froude schemes are totally different one from the
other with respect to the transient states. Finally, the stability condition of the staggered
type schemes is also obtained in this chapter by using a Von Neumann analysis.

Part II of this thesis is related to the preservation of the 2D geostrophic equilibrium. Particularly,
we focus on the following linear wave equation with Coriolis source term

{
∂tr+ a⋆∇ · u = 0

∂tu + a⋆∇r = −ωu⊥.
(12)

The steady state of this equations is clearly given by

∇. · u = 0, a⋆∇r = −ωu⊥. (13)

This Part is composed of there chapters which emphasize on the accuracy of numerical schemes
around the discrete version of the steady state (13).

• The objective of Chapter 4 in this manuscript is to derive modified collocated Godunov
finite volume schemes applied to (12). The Hodge decomposition in 2D is introduced
and the analysis of the modified equation shows us a new difficulty. Unlike the one
dimensional case, troubles not only come from the pressure equation, but also from the
velocity equations. As a consequence, naive extensions of the works in Part I are not
enough to ensure the well-balanced property of numerical schemes in 2D. Of course, we are
unable to delete all diffusion terms since the explicit schemes obtained that way are always
unstable. To overcome this challenge, we study the extension of the Apparent Topography
scheme by using the strategy which is named Divergence Penalisation based on the idea
in [20]. Moreover, we also investigate the combination of these strategies on the purpose
of combining their respective advantages. Due to the structure of the discrete kernel, we
develop in this chapter two types of schemes: the cell-centered and vertex-based schemes.
These schemes are then proved to be stable under some CFL conditions.

• Chapter 5 of the thesis presents how we can adapt the Apparent Topography and Divergence
Penalisation techniques on staggered Cartesian meshes. In particular, we compute the
velocity field on the primary cells and the pressure on dual cells. We also define some
discrete operators which possess mimetic properties and we construct the discrete Hodge
decomposition on staggered grids. Unlike the vertex based scheme on collocated grids, we
can clearly define the discrete orthogonal subspace. On the other hand, we also perform the
analysis for the discrete Fourier modes to investigate the behavior of the dispersion relation
and damping error of the staggered type schemes. The CFL condition is also shown in this
chapter for the staggered type schemes.

• In Chapter 6, we investigate the effect of the cell geometry on the Godunov type schemes
applied to (12). Without Coriolis source term, the work [21] indicates that there is no
problem related to the divergence constraint on triangular grids. However, for the case
with Coriolis force, the study in this chapter points out some drawbacks of the collocated
scheme on triangular grids. In particular, the analysis of the kernel of the collocated scheme
leads to the fact that some gradient of a P1 conforming function should be equal to the
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gradient of some P1 non-conforming function. Therefore, it is essential to use a staggered
scheme on triangular grids to avoid this problem and also to keep the satisfaction of the free
divergence condition. As a result, we only have to deal with the problem on the pressure
equation to obtain numerical schemes which can capture the discrete kernel defined on
triangular grid.

Part III of this manuscript is used for the study of the non-linear shallow water equation in a
rotating framework.

• In Chapter 7, the final chapter in this thesis, we extend some satisfactory strategies
developed in the linear case to the non-linear shallow water equation with Coriolis force.
The results in [22] clearly shows that the Low Froude strategy in the non-linear case is
not a good modification since the obtained scheme is unconditionally unstable. Therefore,
in this chapter, for stability reasons, the Low Froude strategy will be replaced by the All
Froude one. Moreover, we also point out that this modification is still good for the linear
wave equation since the obtained schemes are accurate at low Froude number locally in
time. Although we do not have theoretical evidence to show that the proposed schemes
actually work well in the non-linear case, various good numerical results in this chapter
indicate that the modified schemes are much better than the classical one.

The appendix A of this manuscript is devoted to the study of the inertial oscillation. It explains
the behavior of the time discretization applied to the Coriolis force. This appendix clearly shows
that the totally explicit scheme is always unstable and we have to use a time discretization of the
Coriolis source term which is implicit enough. Therefore, it is highly recommended not to use an
explicit treatment of the Coriolis source term in both the linear wave equation and shallow water
equations.
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between theory and practice.
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Lawrence “Yogui” Berra,1925
New York Yankees baseball player

This work has been done in collaboration with Emmanuel Audusse, Stephane Dellacherie,
Pascal Omnes and Yohan Penel. It has been published in ESAIM: Proceedings and Surveys,
Volume 58, 2017, pages 1-26.

We propose a method to explain the behaviour of the Godunov finite volume scheme
applied to the linear wave equation with Coriolis source term at low Froude number. In
particular, we use the Hodge decomposition and we study the properties of the modified
equation associated to the Godunov scheme. Based on the structure of the discrete kernel
of the linear operator discretized by using the Godunov scheme, we clearly explain the
inaccuracy of the classical Godunov scheme at low Froude number and we introduce a way
to modify it to recover a correct accuracy.
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1.1 Introduction

In this communication, we study some procedures to make finite volume Godunov type schemes
accurate when solving perturbations around a steady-state. In what follows, we restrict the
analysis to the quasi-1d linear wave equation with Coriolis term. Nevertheless, our future main
objective is to derive accurate and stable finite volume collocated schemes for the dimensionless
shallow water equations





St∂th+ ∇ · (hū) = 0, (1.1a)

St∂t(hū) + ∇ · (hū ⊗ ū) +
1

Fr
2 ∇

(
h2

2

)
= − 1

Fr
2h∇b− 1

Ro
hū

⊥, (1.1b)

in a rotating frame when the flow is a perturbation around the so-called geostrophic equilibrium.
In System (1.1) unknowns h and ū respectively denote the water depth and the velocity of the
water column and function b(x) denotes the topography of the considered oceanic basin and is a
given function. Dimensionless numbers St, Fr and Ro respectively stand for the Strouhal, the
Froude and the Rossby numbers defined by

St =
L

UT
, Fr =

U√
gH

, Ro =
U

ΩL

where the parameter g and Ω denote the gravity coefficient and the angular velocity of the Earth.
Constants U , H, L and T are some characteristic velocity, vertical and horizontal lengths and
time. In the sequel, we shall focus on cases where

Ro = O(M) and Fr = O(M) (1.2)

with M a small parameter. For large scale oceanographic flows, typical values lead to M ∼ 10−2

since
U ≈ 1m · s−1, L≈ 106

m, H ≈ 103
m, Ω ≈ 10−4

rad · s−1.

In order to exhibit some asymptotic regimes for small Froude and Rossby numbers, we perform
an expansion of the unknowns such that

f(t,x) = f0(t,x) +Mf1(t,x) +M2f2(t,x) + O(M3) (1.3)

given the orders of magnitude (1.2). We first focus on long time regimes, i.e. for Strouhal number
of order O(1). At the leading order, solutions of equations (1.1) satisfy the so-called lake at rest
equilibrium

∇(h0 + b) = 0. (1.4)

At the next order, the flow satisfies the so-called geostrophic equilibrium

∇h1 = −ū
⊥
0 . (1.5)

Note that this relation implies
∇ · ū0 = 0. (1.6)

The ability of numerical schemes to well capture the particular solutions (1.4) and (1.5) is of
great practical interest since it has a direct consequence on the accuracy of the numerical solution
when perturbations around these equilibria are considered. A substantial amount of articles in
the literature has been devoted to the preservation of the lake at rest equilibrium (1.4), see in
particular [25] and references therein.

The question of the geostrophic equilibrium (1.5) including the divergence constraint (1.6) is
more complex. It has been studied in a finite element framework by Le Roux [12]. The author
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considers in his work the linearised version of System (1.1) and studies the behaviour of several
types of finite elements. He shows that spurious modes are created, in particular when the
number of degrees of freedom is not the same for height and velocity unknowns. In the finite
volume framework, the nonlinear case has been studied in [25, 27, 28]. In particular, Bouchut
and coauthors introduce in [13] the apparent topography method that allows to adapt to this
problem the hydrostatic reconstruction method [5] that was developed to ensure the preservation
of the lake at rest equilibrium (1.4).

Let us now focus on the behaviour of solutions of System (1.1) for short times, i.e. for Strouhal
number of order O(M−1). Here the study is restricted to some flat topography and solutions
independent of the y direction. The asymptotic expansion (1.3) is inserted in System (1.1). At
the leading order, any solution of System (1.1) satisfies the quasi-1d linear wave equation with
Coriolis source term1 




∂tr+ a⋆∂xu= 0,

∂tu+ a⋆∂xr = ωv,

∂tv = −ωu
(1.7)

where a⋆ and ω are constants of order one, respectively related to the wave velocity and to the
rotating velocity. The stationary state corresponding to Equation (1.7) is the 1d version of the
geostrophic equilibrium (1.5) and is called 1D geostrophic equilibrium. It is such that

u= 0, a⋆∂xr = ωv. (1.8)

Many works were devoted to the study of the homogeneous wave equations. In particular, in a
serie of articles [20, 21], Dellacherie and coauthors studied the behavior of Godunov type schemes
for the 2d linear wave equation. Their works are part of a more general study about the use of
Godunov type schemes in the context of the incompressible limit for Euler equations, i.e. for low
Mach number flows, see for example [15, 19, 23, 24, 29]. Similar works are related to low Froude
flows [30, 31]. In the present work, we extend the aforementioned approach from Dellacherie and
coauthors to take into account the Coriolis source term. First, in Section 1.2, we analyze the
continuous case by using a Hodge type decomposition. Then, in Section 1.3 and 1.4, we study
three Godunov type numerical schemes to compute approximate solutions of Equation (1.7):

• The Classical Godunov scheme;

• The Low Froude Godunov scheme;

• The All Froude Godunov scheme.

For each scheme, we study the kernel of the discrete operator and we compare it to the continuous
kernel (1.8). Then, we study the accuracy of the scheme at low Froude number, i.e. when the
initial solution is close to the kernel. This is done first for the modified equation associated to
the scheme in Section 1.3 and then in the fully discrete case in Section 1.4. Moreover we study
the stability of each discrete scheme by using Fourier analysis. Finally we present in Section 1.5
some numerical results to illustrate our purpose.

1.2 Properties of the linear wave equation with Coriolis source term

We first focus on the properties of the linear wave equation on the 1d torus T. To begin with, we
introduce the Hilbert space

(
L2(T)

)3
=
{
q = (r,u,v)

∣∣∣∣
∫

T
r2

dx+
∫

T

(
u2 + v2

)
dx <∞

}

1For the sake of simplicity, we note r = h1, u = u0 and v = v0 in (1.7).
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equipped with the scalar product

〈q1, q2〉 =
∫

T
r1r2 dx+

∫

T
(u1u2 + v1v2) dx.

1.2.1 Structure of the kernel of the original model

Let us define the following space

Eω,0 =
{
q = (r,u,v) ∈

(
L2(T)

)3
∣∣∣∣ u= 0, ∀φ ∈ C∞

c (T),
∫

T
a⋆r∂xφ dx= −

∫

T
ωvφ dx

}
. (1.9)

We then prove this preliminary result:

Lemma 1.1. The orthogonal of Eω,0 is

E⊥
ω,0 =

{
q = (r,u,v) ∈

(
L2(T)

)3
∣∣∣∣ ∀ϕ ∈ C∞

c (T),
∫

T
a⋆v∂xϕ dx= −

∫

T
ωrϕ dx

}
.

Moreover, we have Eω,0 ⊕ E⊥
ω,0 =

(
L2(T)

)3
. In other words, any q ∈

(
L2(T)

)3
can be uniquely

decomposed into
q = q̂+ q̃ (1.10)

where q̂ ∈ Eω,0 and q̃ ∈ E⊥
ω,0.

The Hodge decomposition (1.10) allows us to define the orthogonal projection

P :

{
(L2(T))3 −→ Eω,0

q 7−→ q̂
(1.11)

Remark 1.1. The kernel and its orthogonal set can be described in a simpler way due to the
definition of Sobolev spaces, namely

Eω,0 =
{
q = (r,u,v) ∈

(
L2(T)

)3
∣∣∣∣ r ∈H1(T), u= 0, v =

a⋆

ω
r′
}
,

E⊥
ω,0 =

{
q = (r,u,v) ∈

(
L2(T)

)3
∣∣∣∣ v ∈H1(T), r =

a⋆

ω
v′
}
.

Moreover, the fact that we consider periodic functions implies that for q̂ ∈ Eω,0 and q̃ ∈ E⊥
ω,0, we

have ∫

T
v̂ dx= 0 and

∫

T
r̃ dx= 0

due to boundary conditions.

Proof. Our purpose is to prove that E⊥
ω,0 =A where

A=
{
q =

(
a⋆

ω
v′,u,v

) ∣∣∣∣ u ∈ L2(T), v ∈H1(T)
}
.

Firstly, let us prove that A⊂ E⊥
ω,0. For q̃ ∈A, we have

∀q ∈ Eω,0, 〈q̃, q〉 =
∫

T
r
a⋆

ω
ṽ′

dx+
∫

T

a⋆

ω
r′ṽ dx=

a⋆

ω

(∫

T
rṽ′

dx+
∫

T
r′ṽ dx

)
.

According to [32, Corollary 8.10] with (r, ṽ) ∈
(
H1(T)

)2, we have rṽ ∈H1(T) and (rṽ)′ = r′ṽ+rṽ′.
Therefore, we obtain, thanks to periodic boundary conditions on T

∫

T
rṽ′

dx+
∫

T
r′ṽ dx=

∫

T
(rṽ)′

dx= 0,
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which leads to 〈q̃, q〉 = 0, ∀q ∈ Eω,0. It means that q̃ ∈ E⊥
ω,0 .

Secondly, we prove that E⊥
ω,0 ⊂A. Let q̃ ∈ E⊥

ω,0. Therefore

∀r ∈H1(T),
∫

T
r̃r dx+

∫

T

a⋆

ω
ṽr′

dx= 0,

which implies

∀r ∈ C∞
c (T),

∫

T
ṽr′

dx= − ω

a⋆

∫

T
r̃r dx.

As a result, ṽ ∈H1(T) and a⋆ṽ
′ = ωr̃. We come to the conclusion that

E⊥
ω,0 =A=

{
q = (r,u,v) ∈

(
L2(T)

)3
∣∣∣∣ ∀ϕ ∈ C∞

c (T),
∫

T
a⋆v∂xϕ dx= −

∫

T
ωrϕ dx

}
.

We eventually have to prove that

Eω,0 ⊕ E⊥
ω,0 =

(
L2(T)

)3
.

We only have to check
(
L2(T)

)3 ⊂ Eω,0 ⊕ E⊥
ω,0, because of the fact that Eω,0 ⊕ E⊥

ω,0 ⊂
(
L2(T)

)3

is trivial.
For q = (r,u,v) ∈

(
L2(T)

)3, let us set

r̂ = µ(r) −h, r̃ = r−µ(r) +h,

û= 0, ũ= u,

v̂ = −a⋆

ω
∂xh, ∂xṽ =

ω

a⋆

(
r−µ(r) +h

)
and

∫

T
ṽ dx=

∫

T
v dx,

where µ(r) = 1
|T|
∫
T r dx and h ∈H1(T) is the unique solution of the variational formulation

∀ ϕ ∈H1(T),
∫

T
∂xh∂xϕ dx+

ω2

a2
⋆

∫

T
ϕh dx= − ω

a⋆

∫

T
v∂xϕ dx− ω2

a2
⋆

∫

T

(
r−µ(r)

)
ϕ dx.

The existence and uniqueness of h ∈H1(T) results from the Lax-Milgram theorem for ω , 0.
We easily check that q̂ ∈ Eω,0 and q̃ ∈ E⊥

ω,0. To reach the conclusion, we have to check that
q̂+ q̃ = q. The equalities r̂+ r̃ = r and û+ ũ= u are trivially verified. For v, we have:

∀ Φ ∈ C∞(T),
∫

T
(v−v̂−ṽ)∂xΦ dx=

∫

T
v∂xΦ dx+

a⋆

ω

∫

T
∂xh∂xΦ dx+

ω

a⋆

∫

T

(
r−µ(r)+h

)
Φ dx= 0

due to the choice of h. Using the density of C∞(T) in H1(T), we obtain that v− (v̂+ ṽ) = c. By
using the fact that

∫
T v̂dx= 0 and

∫
T ṽdx=

∫
T vdx, we get c= 0. Therefore, we have v̂+ ṽ = v.

1.2.2 Behaviour of the solution

By using Lemma 1.1, we obtain the following properties for the linear wave equation (1.7):

Proposition 1.1. Let q be a solution of (1.7) on T with initial condition q0. Then:

i. ∀q0 ∈ Eω,0, we have q(t > 0, ·) = q0 ∈ Eω,0.

ii. ∀q0 ∈ E⊥
ω,0, we have q(t > 0, ·) ∈ E⊥

ω,0.
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Proof. We note that System (1.7) can be written as

∂tq+A∂xq+Bq = 0 where A=




0 a⋆ 0
a⋆ 0 0
0 0 0


 and B =




0 0 0
0 0 −ω
0 ω 0


 .

Due to the fact that matrix A has 3 real distinct eigenvalues (λ= 0, λ= −a⋆ and λ= a⋆), System
(1.7) is strictly hyperbolic. Therefore this system has a unique solution [33, Th. 2.22]. And for
any initial condition q0 = (r0,u0,v0) in Eω,0, it is obvious that this unique solution is given by
q(t > 0, ·) = q0 , which proves (i).

Let q0 = (r0,u0,v0) ∈ E⊥
ω,0. We notice that





r = r0 − a⋆
∫ t

0 ∂xu dτ,

u= u0 −
∫ t

0(a⋆∂xr−ωv) dτ,

v = v0 −
∫ t

0 ωu dτ.

Therefore, for all q̂ ∈ Eω,0, we obtain

〈q, q̂〉 = 〈q0, q̂〉 − a⋆

∫

T

∫ t

0
∂xur̂ dx dτ −

∫

T

∫ t

0
ωuv̂ dx dτ

= 〈q0, q̂〉 −
∫ t

0

∫

T
a⋆∂xur̂ dx dτ −

∫ t

0

∫

T
ωuv̂ dx dτ

= 〈q0, q̂〉 +
∫ t

0

∫

T
a⋆∂xr̂u dx dτ −

∫ t

0

∫

T
ωv̂u dx dτ = 〈q0, q̂〉 = 0.

As a result, we conclude that q(t > 0, ·) ∈ E⊥
ω,0, which proves (ii).

Corollary 1.1. Let q be the solution of (1.7) with initial condition q0. Then, q can be decomposed
into

q = Pq0 + (q−Pq0) ∈ Eω,0 ⊕ E⊥
ω,0.

1.2.3 Evolution of the energy

Let us define the energy as E = 〈q,q〉.

Proposition 1.2. Let q be the solution of (1.7) on T. Then, the energy is conserved

E(t > 0) = E(t= 0).

Proof. Because q is the solution of (1.7), we have




∂tr = −a⋆∂xu,

∂tu= ωv− a⋆∂xr,

∂tv = −ωu
which allows to obtain

1
2

d

dt
〈q,q〉 = a⋆

∫

T
r(−∂xu) dx+

∫

T
u(ωv− a⋆∂xr) dx+

∫

T
v (−ωu) dx

= a⋆

∫

T
r(−∂xu) dx+ a⋆

∫

T
u(−∂xr) dx= 0.

Hence we have E′(t) = 0 which concludes the proof.
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Corollary 1.2. For all times t > 0, we have ‖q(t, ·) −Pq0‖ = ‖q0 −Pq0‖.

1.3 Properties of the first order modified equation associated to the Godunov finite
volume scheme

It is well known that the classical Godunov scheme is not accurate at low Mach number (or low
Froude number). With the homogeneous linear wave equation (ω = 0), the problem appears
only in the 2d case over rectangular meshes. The work in [20, 21] clearly points out the main
reason of the inaccuracy. Shortly, this is because the classical Godunov scheme suffers from the
loss of invariance of the well-prepared subspace E when the numerical diffusion related to the
velocity equation is not equal to 0. However in our case with Coriolis source term, the problem
appears already in 1d due to the numerical diffusion related to the pressure equation. We shall
explain this point by studying the properties of the first-order modified equation associated to
1d Godunov like schemes which is given by





∂tr+ a⋆∂xu− νr∂
2
xxr = 0,

∂tu+ a⋆∂xr− νu∂
2
xxu= ωv,

∂tv = −ωu,
(1.12)

where

νr =
κr|a⋆|∆x

2
, νu =

κu|a⋆|∆x
2

, (1.13)

for some mesh size ∆x > 0 and viscosity parameters κr > 0 and κu > 0 (see [20] for more details).
The classical Godunov scheme corresponds to κr = κu = 1. In the sequel, we rewrite (1.12) under
a vector formulation 



∂tq+Lνq = 0,

q(t= 0,x) = q0(x)
(1.14)

where Lν is the following spatial differential operator

Lν = L−Bν , Lq =




a⋆∂xu
a⋆∂xr−ωv

ωu


 and Bνq =



νr 0 0

0 νu 0

0 0 0






∂2

xxr

∂2
xxu

0


 .

1.3.1 Evolution of the energy

Lemma 1.2. Let qν be the solution of System (1.14) on T. Then:

i. If we define the energy by Eν = 〈qν , qν〉 = ‖r‖2 + ‖u‖2 + ‖v‖2, we obtain

Eν(t≥ 0) ≤ Eν(t= 0)

which means that System (1.14) is dissipative.

ii. If we define the average of energy by Ēν = ‖r̄‖2 + ‖ū‖2 + ‖v̄‖2 with

r̄(t) =
1

|T|

∫

T
r(t,x) dx, ū(t) =

1
|T|

∫

T
u(t,x) dx, v̄(t) =

1
|T|

∫

T
v(t,x) dx,

we obtain
Ēν(t= 0) = Ēν(t > 0).
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iii. Moreover, we have
∀ t > 0, Ēν(0) = Ēν(t) ≤ Eν(t) ≤ Eν(0).

Proof. We have
1
2

d

dt
‖qν‖2(t) = −〈Lqν , qν〉 + 〈Bνqν , qν〉.

However,
〈Lqν , qν〉 = 〈a⋆∂xu,r〉 + 〈a⋆∂xr−ωv,u〉 + 〈ωu,v〉 = 0

and

〈Bνqν , qν〉 =

〈
νr
∂2r

∂x2
, r

〉
+

〈
νu
∂2u

∂x2
,u

〉
= −νr‖∂xr‖2 − νu‖∂xu‖2.

For this reason, we obtain E′
ν(t) ≤ 0 which means that Eν(t≥ 0) ≤ Eν(t= 0).

By integrating the first order modified equation over T and using periodic boundary conditions,
we obtain

d

dt
r̄(t) = 0,

d

dt
ū(t) = ωv̄(t) and

d

dt
v̄(t) = −ωū(t)

which leads to

d

dt
r̄(t)2 = 0,

d

dt
ū(t)2 = 2ωv̄(t)ū(t) and

d

dt
v̄(t)2 = −2ωū(t)v̄(t).

As a result, we get
d

dt

[
r̄(t)2 + ū(t)2 + v̄(t)2

]
= 0,

which means that Ēν(t= 0) = Ēν(t > 0). It is interesting to note that

E⋆(t) :=
∫

T
(r− r̄)2

dx+
∫

T
(u− ū)2

dx+
∫

T
(v− v̄)2

dx

=
∫

T
(r2 +u2 + v2) dx− 2r̄

∫

T
r dx− 2ū

∫

T
u dx− 2v̄

∫

T
v dx+

∫

T
(r̄2 + ū2 + v̄2) dx

=
∫

T
(r2 +u2 + v2) dx−

∫

T
(r̄2 + ū2 + v̄2) dx= Eν(t) − Ēν(t).

Therefore, we obtain E′
⋆(t) = E′

ν(t) ≤ 0 and Eν(t) ≥ Ēν(t) (since E⋆(t) ≥ 0).

1.3.2 Structure of the kernel of the modified equation

Interestingly, the structure of the kernel of the operator Lν is deeply related to the value of νr.
Indeed, we have:

Lemma 1.3.

i. When νr = 0, the subspace Eω,0 is also the kernel of the modified equation

kerLνr=0 = Eω,0.

Moreover, E⊥
ω,0 is invariant by the modified equation.

ii. When νr , 0, the subspace Eω,0 is not invariant for the modified equation since

kerLνr,0 = {q := (r,u,v) |r = const,u= 0,v = 0} ( Eω,0.
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Proof. With νr = 0, it is easy to see that

kerLνr=0 = Eω,0.

As for the orthogonal space, the proof of Prop. 1.1 (ii) stands for νr = 0.
We now focus on the case νr , 0. Let us suppose that q = (r,u,v) ∈ kerLν . As u= 0, we have

a⋆∂xr−ωv = 0. Then, from Lνq = 0, we deduce

0 = 〈Lνq,q〉 = νr‖∂xr‖2

which implies that ∂xr = 0 or equivalently r is a constant. This leads to v = 0 and q =
(const,0,0).

The result in Lemma 1.3 indicates that the classical Godunov scheme (κr = 1) does not capture
all states q ∈ Eω,0 because of the fact that the corresponding kernel is a proper subset of Eω,0.
This gives rise to the loss of invariance. However, when the numerical viscosity on the pressure
vanishes (νr = 0), we recover all states q ∈ Eω,0.

1.3.3 Behaviour of the solution of the modified equation

We recall that M is a small parameter. Let us introduce the following definitions:

Definition 1.1. A state q0 is said to be well-prepared if ‖q0 −Pq0‖ = O(M), where P is defined
by (1.11).

Definition 1.2. The solution qν of System (1.14) is said to be accurate at low Froude number
at any time if:

∀C1 > 0, ∃C2 > 0,‖q0 −Pq0‖ ≤ C1M =⇒ ∀ t≥ 0, ‖qν −Pq0‖(t) ≤ C2M,

where C2 is a positive parameter that does not depend on M .

Definition 1.3. The solution qν of System (1.14) is said to be accurate at low Froude number
locally in time if:

∀C1 > 0, ∀C2 > 0 : C2 = O(1), ∃C3 > 0, ‖q0−Pq0‖ ≤ C1M =⇒ ∀ t≤ C2, ‖qν −Pq0‖(t) ≤ C3M,

where C3 = O(1).

Remark 1.2. We notice that if the solution is accurate at low Froude number, it is free of spurious
acoustic waves (refer to [20] for more details).

We have the following result. We recall that ν# = κ#|a⋆|∆x
2 .

Theorem 1.1. Let qν is the solution of System (1.14). Then:

i. When κr = 0, the solution is accurate at low Froude number at any time. Moreover, it
satisfies ‖qν −Pq0‖(t) ≤ ‖q0 −Pq0‖.

ii. When κr = O(M), the solution is accurate at low Froude number locally in time.

iii. When κr = O(1), the solution is accurate at low Froude number locally in time if
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∆x= O(M).

Remark 1.3. From Point (iii), we can state that for κr = O(1), it is enough to consider a very
fine mesh to obtain accurate results. We shall see in the sequel that we actually need to consider
fine meshes which is a strong restriction from the computational point of view.

Proof. Let qa
ν be the solution of




∂tq+Lνq = 0,

q(t= 0,x) = Pq0(x)

and qb
ν be the solution of 



∂tq+Lνq = 0,

q(t= 0,x) = q0(x) −Pq0(x).

Then by linearity the solution of (1.14) is qν = qa
ν + qb

ν . If we suppose that ‖q0 −Pq0‖ = C1M ,
then by applying Lemma 1.2, we obtain

‖qb
ν‖(t) ≤ ‖qb

ν‖(0) = ‖q0 −Pq0‖ = C1M. (1.15)

We also notice that

‖qν −Pq0‖(t) = ‖qa
ν + qb

ν −Pq0‖(t) ≤ ‖qa
ν −Pq0‖(t) + ‖qb

ν‖(t). (1.16)

If κr = 0, then qa
ν = Pq0 according to Lemma 1.3 (i). This proves Point (i).

As for Points (ii) and (iii), we set q̂0 = (r̂0, û0, v̂0) := Pq0 and qa
ν = (ra

ν ,u
a
ν ,v

a
ν). Then, we

obtain




∂t(ra
ν − r̂0) + a⋆∂x(ua

ν − û0) − νr∂
2
xx(ra

ν − r̂0) + a⋆∂xû
0 − νr∂

2
xxr̂

0 = 0,

∂t(ua
ν − û0) + a⋆∂x(ra

ν − r̂0) − νu∂
2
xx(ua

ν − û0) + a⋆∂xr̂
0 − νu∂

2
xxû

0 = ω(va
ν − v̂0) +ωv̂0,

∂t(va
ν − v̂0) +ω(ua

ν − û0) +ωû0 = 0.
(1.17)

On the other hand, since Pq0 ∈ Eω,0, we have that û0 = 0 and a⋆∂xr̂
0 = ωv̂0. Therefore, (1.17)

reduces to 



∂t(ra
ν − r̂0) + a⋆∂x(ua

ν − û0) − νr∂
2
xx(ra

ν − r̂0) − νr∂
2
xxr̂

0 = 0,

∂t(ua
ν − û0) + a⋆∂x(ra

ν − r̂0) − νu∂
2
xx(ua

ν − û0) = ω(va
ν − v̂0),

∂t(va
ν − v̂0) = −ω(ua

ν − û0).

(1.18)

Multiplying Equation (1.18) by qa
ν −q̂0, integrating over T and using periodic boundary conditions,

we obtain

1
2

d

dt
‖qa

ν −Pq0‖2 = −νr‖∂x(ra
ν − r̂0)‖2 − νu‖∂x(ua

ν − û0)‖2 + νr

〈
∂2

xxr̂
0, ra

ν − r̂0
〉

which yields

1
2

d

dt
‖qa

ν −Pq0‖2 ≤ νr‖∂2
xxr̂

0‖ · ‖ra
ν − r̂0‖ ≤ νr‖∂2

xxr̂
0‖ · ‖qa

ν −Pq0‖.

This leads to
d

dt
‖qa

ν −Pq0‖ ≤ νr‖∂2
xxr̂

0‖.
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We deduce from the latter inequality that

‖qa
ν −Pq0‖(t) ≤ νrt‖∂2

xxr̂
0‖ (1.19)

since qa
ν(0) = Pq0. From (1.15), (1.16) and (1.19), we infer

‖qν −Pq0‖(t) ≤ C1M + νrt‖∂2
xxr̂

0‖.

Given (1.13), we deduce Points (ii) and (iii) respectively for κr = O(M) and ∆x= O(M).

1.3.4 Fourier analysis

To go further in the study of the accuracy of the numerical scheme, we perform a Fourier analysis
to investigate diffusion and dispersion effects. Let us consider functions of the form

q(t,x) = ei(τt+kx)q̂ (1.20)

where k is the wave number and τ is the frequency of the wave. These functions can be solutions
to the modified equation only under a dispersion relation between τ and k which is commonly
written as τ = τ(k). In general, this relation lies in the complex set: the real part ℜ(τ) and the
imaginary part ℑ(τ) indicate respectively propagation and decay of Fourier modes.

Given a wave number k, we only consider mesh sizes satisfying

k <
π

∆x
(1.21)

so that the associated wave is captured by the scheme.
Functions (1.20) are solutions to the modified equation (1.12) if

iτ q̂+Aq̂ = 0, where A(k,νr,νu,a⋆,ω) =




νrk
2 a⋆ik 0

a⋆ik νuk
2 −ω

0 ω 0


 . (1.22)

This means that −iτ is an eigenvalue of A. We shall denote by λ the eigenvalues of A in the
sequel. Hence the decay of Fourier mode k corresponds to ℜ(λ) ≥ 0.

Proposition 1.3. Under Hypothesis (1.21), the damping of Fourier modes is parametrised by
κr as follows.

i. When κr = 0, the wave associated to the kernel of the wave operator is preserved (λ= 0).

ii. When κr = O(M), the wave resulting from λ(νr = 0) = 0 is damped at an O(M) speed.

iii. When κr = O(1) and ∆x = O(1), all Fourier modes are strongly damped at an O(1)
speed.

Proof. The linear system (1.22) reads in terms of eigenvalues λ

νrk
2 r+ ika⋆u= λr, (1.23a)

ika⋆r+ νuk
2u−ωv = λu, (1.23b)

ωu= λv. (1.23c)

The characteristic polynomial of Matrix A is

χ(λ,νr) := λ3 − k2(νr + νu)λ2 + (ω2 + k2a2
⋆ + k4νrνu)λ− k2ω2νr = 0. (1.24)
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It is a third order polynomial whose highest order coefficient is equal to one. It thus has either
one real root and two complex conjugate roots (denoted respectively by λ0, λc and λ̄c) or three
real roots (denoted respectively by λ0, λ+ and λ−).

It is possible to determine its three roots when νr = 0:

λ0(νr = 0) = 0,

λc(νr = 0) =
1
2

[
k2νu + i

√
4(ω2 + k2a2

⋆) − k4ν2
u

]
.

We mention that the term under the square root is actually positive under Hyp. (1.21) (see (1.13)
for the definition of νu). Point (i) is proven.

We remark that ∂λχ does not vanish as soon as

k2
∆x2

(
(κr −κu)2 +κrκu

)
< 12

(
1 +

ω2

a2
⋆k

2

)
. (1.25)

Due to Hyp. (1.21), this inequality always holds for κr and κu in [0,1]. Hence by means of
the implicit function theorem, we can define a function νr 7→ λ0(νr) for νr small enough. Since
coefficients multiplying λk in (1.24) are affine functions in νr, we infer that λ0 is continuous and
analytic with respect to νr [34]. This shows that

λ0(νr) ∼
νr→0

λ′
0(νr = 0)νr = −∂νrχ(0,0)

∂λχ(0,0)
νr =

k2ω2

k2a2
⋆ +ω2

νr.

In particular, we deduce that if κr = O(M), then λ0(νr) = O(M). This proves Point (ii).
Let us now provide other properties of the eigenvalues. We substitute (1.23c) into (1.23b)

and then multiply (1.23a) by r̄ and (1.23b) by ū to obtain

1
λ
ω2|u|2 +λ(|r|2 + |u|2) = k2(νr|r|2 + νu|u|2) + ika⋆(ur̄+ rū). (1.26)

On the one hand, the real part of (1.26)

ℜ(λ)

[
ω2|u|2
|λ|2 + |r|2 + |u|2

]
= k2

(
νr|r|2 + νu|u|2

)
,

shows that all eigenvalues have positive real parts (unless k = 0 for which eigenvalues are pure
imaginary), which ensures the decay for all Fourier modes.

The three roots of (1.24) satisfy

λ1 +λ2 +λ3 = k2(νr + νu), (1.27a)

λ1λ2 + (λ1 +λ2)λ3 = ω2 + k2a2
⋆ + k4νrνu, (1.27b)

λ1λ2λ3 = k2ω2νr. (1.27c)

Substituting λ1λ2 from (1.27c) into (1.27b), we get

(λ1 +λ2)λ3 +
k2ω2νr

λ3
= ω2 + k2a2

⋆ + k4νrνu. (1.28)

Let us first focus on the case of a single real eigenvalue: we take λ1 = λc, λ2 = λ̄c and λ3 = λ0.
Eq. (1.28) yields

λ0 ≥ k2ω2νr

ω2 + k2a2
⋆ + k4νrνu

(1.29)
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since it has been proven that ℜ(λc) ≥ 0.
We also notice that χ(0,νr) = −k2ω2νr < 0 and χ(k2νr,νr) = k4a2

⋆νr > 0. Hence, since there
is a single real eigenvalue, this implies that λ0 ≤ k2νr and we have

ω2

ω2 + k2a2
⋆ + k4νrνu

k2νr ≤ λ0 ≤ k2νr. (1.30)

As for the complex conjugate roots, we get from (1.27a) and (1.28) that µ := 2ℜ(λc) verifies

f(µ) := µ2 − k2(νr + νu)µ− k2ω2νr

k2(νr + νu) −µ
+ω2 + k2a2

⋆ + k4νrνu = 0. (1.31)

We remark that f(µ) ≥ g(µ) where

g(µ) := −k2(νr + νu)µ− k2ω2νr

k2(νr + νu) −µ
+ω2 + k2a2

⋆ + k4νrνu. (1.32)

Since f(0) = g(0)> 0, this implies that any root µ of (1.31) is larger than the smallest positive
root of (1.32).

Equation g(µ) = 0 can be written as

k2(νr+νu)µ2−
[
k4(νr + νu)2 + (ω2 + k2a2

⋆ + k4νrνu)
]
µ+(ω2+k2a2

⋆+k4νrνu)k2(νr+νu)−k2ω2νr = 0.
(1.33)

Due to the fact that

∆ =
[
k4(νr + νu)2 − (ω2 + k2a2

⋆ + k4νrνu)
]2

+ 4k4(νr + νu)νrω
2 > 0,

Equation (1.33) has two real positive solutions so that

2ℜ(λc) ≥ (ω2 + k2a2
⋆ + k4νrνu)k2(νr + νu) − k2ω2νr

k4(νr + νu)2 + (ω2 + k2a2
⋆ + k4νrνu)

. (1.34)

In the case of three real roots, (1.29) holds for each of them by symmetry as they are all
positive. Lower bounds (1.29) and (1.34) ensure that real parts of all eigenvalues are of order 1
when νr is of order 1. This proves Point (iii).

1.4 Analysis of fully discrete Godunov schemes

There are two main possible time strategies for Godunov type schemes applied to the linear wave
equation with Coriolis source term. The first one is a classical splitting discretisation where one
deals with the problem without source term in a first step and then the Coriolis source term is
considered in a second step, which then consists in solving an ordinary differential equation. It is
well known that this splitting strategy is not well adapted to preserve stationary states and then
to compute small perturbations around them [25, 35], see also Appendix 1.A. Thus we focus on
the analysis of the second strategy that consists in computing acoustic and Coriolis effects in a
single step. As a matter of fact, there are many ways to take into account the Coriolis source
term. For example, we can discretise this term using explicit, implicit and even Crank-Nicolson
strategies. Hence, we introduce two new parameters θ1 and θ2 to parametrise the strategy.
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1.4.1 Study of the discrete kernel of the one step Godunov scheme

We consider a homogeneous cartesian mesh (xi)1≤i≤N . The one step fully discrete Godunov
scheme is given by





rn+1
i − rn

i

∆t
+ a⋆

un
i+1 −un

i−1

2∆x
− νr

rn
i+1 − 2rn

i + rn
i−1

∆x2
= 0,

un+1
i −un

i

∆t
+ a⋆

rn
i+1 − rn

i−1

2∆x
− νu

un
i+1 − 2un

i +un
i−1

∆x2
= ω

[
θ1v

n
i + (1 − θ1)vn+1

i

]
,

vn+1
i − vn

i

∆t
= −ω

[
θ2u

n
i + (1 − θ2)un+1

i

]

(1.35)

for i ∈ {1, . . . ,N} and 0 ≤ θ1,θ2 ≤ 1. Periodic boundary conditions read

qn+1
0 = qn+1

N , qn+1
N+1 = qn+1

1 . (1.36)

We now investigate the kernel of the fully discrete one step scheme. It is strongly related to
the value of the numerical viscosity κr. In particular we have the following result:

Lemma 1.4.

i. When νr = 0, the kernel of the one step scheme is

Eh
ω,0 := kerLνr=0,h =

{
q = (r,u,v) ∈ R3N

∣∣∣∣ ui = 0,
a⋆

2∆x
(ri+1 − ri−1) = ωvi

}
.

ii. When νr , 0, the kernel of the one step scheme is

kerLνr,0,h =
{
q = (r,u,v) ∈ R3N

∣∣∣ ∃C ∈ R : ri = C,ui = 0,vi = 0
}
.

Proof. A stationary state verifies rn+1
i = rn

i , un+1
i = un

i and vn+1
i = vn

i . Therefore, we easily
obtain from (1.35) that





a⋆
un

i+1−un
i−1

2∆x − νr
rn

i+1−2rn
i +rn

i−1

∆x2 = 0, (1.37a)

a⋆
rn

i+1−rn
i−1

2∆x − νu
un

i+1−2un
i +un

i−1

∆x2 = ωvn
i , (1.37b)

0 = −ωun
i . (1.37c)

Point (i) is straightforward: we get from (1.37c) that un
i = 0, and then (1.37a) is trivially satisfied

since νr = 0. Then, (1.37b) yields that

a⋆

2∆x
(rn

i+1 − rn
i−1) = ωvn

i .

Now we consider the case νr , 0. According to (1.37c), un
i = 0 for all i. Together with (1.37a)

and νr , 0, we get rn
i+1 − rn

i = rn
i − rn

i−1. By induction we get rn
N+1 − rn

N = rn
N − rn

N−1 = . . . =
rn

2 − rn
1 = rn

1 − rn
0 = c where c is a constant. This implies rn

N = rn
0 +Nc. On the other hand,

periodic conditions require to have rn
N = rn

0 . Therefore, we get c = 0 and rn
i = constant. This

leads to vn
i = 0 by using (1.37b). Point (ii) is proven.
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1.4.2 Stability of the discrete one step Godunov scheme

For 0 ≤ θ1,θ2 ≤ 1, let us denote

Θ1 = 1 − θ1 − θ2, Θ2 = θ1θ2 + (1 − θ1)(1 − θ2) ∈ [0,1], Θ3 = (1 − 2θ1)(1 − 2θ2) ∈ [−1,1].

Lemma 1.5. For κr = 0 and κu > 0, we have:

i. When θ1 + θ2 > 1, the one step scheme (1.35) is unstable.

ii. When θ1 + θ2 ≤ 1, we consider two cases:

(a) If κ2
ua2

⋆
ω2∆x2 ≤ Θ3, the one step scheme (1.35) is stable provided that

∆t≤ ∆ta :=
κu∆x

2|a⋆|
1(

1 − ω∆x
|a⋆|

√
Θ1

)
+

; (1.38a)

(b) If κ2
ua2

⋆
ω2∆x2 >Θ3, the one step scheme (1.35) is stable provided that

∆t≤ min{∆ta,∆tb} where ∆tb :=
∆x

κu|a⋆| ×





2κ2
ua2

⋆
ω2∆x2Θ3

[
1 −

√
1 − ω2∆x2

κ2
ua2

⋆
Θ3

]
, if Θ3 , 0,

1, otherwise.

(1.38b)

Remark 1.4. The standard CFL condition for the homogeneous case (ω = 0) reads [20]

∆t≤ ∆t0 :=
∆x

|a⋆| min
{
κu

2
,

1
κu

}
.

Inequality (1.38a) clearly shows that taking Coriolis forces into account requires a less restrictive
CFL condition. It is also the case for (1.38b) when Θ3 ≥ 0 thanks to the convexity of the function
x 7→ 1 −

√
1 −x. We also notice that for the Crank-Nicolson scheme θ1 = θ2 = 1

2 , we recover the
standard bound ∆t0.

Remark 1.5. An asymptotic expansion for ∆x≪ 1 in the bound ∆ta and ∆tb in (1.38a-1.38b)
yields

∆ta =
κu∆x

2|a⋆| + O(∆x2), ∆tb =
∆x

κu|a⋆| + O(∆x3)

and then one still recovers the classical bound ∆t0 for the homogeneous problem.

Remark 1.6. For large values of the Coriolis parameter ω, the constraint (1.38a) is always
satisfied (∆ta = +∞) while for the second constraint (1.38b), it depends on the sign of Θ3:

• If Θ3 ≥ 0, there is no constraint upon ∆t for ω large enough;

• If Θ3 < 0, the asymptotic bound reads

∆tb ≈ 2
ω
.

We then recover the standard stability condition for the ODE system solved by means of a
θ-scheme (1.A.1b).
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Remark 1.7. Figure 1.1 specifies the stability area. In the red zone, the scheme is unstable
according to Point (i). In the green zone, the scheme is stable under a CFL-like constraint
(characterised by ∆ta or min(∆ta,∆tb)) that is less restrictive than the homogeneous bound ∆t0
while in the blue zone, the scheme is stable provided ∆t is smaller than min(∆ta,∆tb) ≤ ∆t0.

Figure 1.1: Region of stability condition.

Proof. We perform a Von Neumann analysis to investigate the stability condition for Scheme (1.35).
Let us denote

σ =
∆t

∆x
, γ = ω∆t and s= sin

(
k∆x

2

)
.

We now substitute

qn
j =



rn

j

un
j

vn
j


=



Rn

Un

Vn


eikj∆x

into (1.35) in order to obtain
Aqn+1

j =Bqn
j (1.39)

where the matrices A and B are given by

A=




1 0 0

0 1 −(1 − θ1)γ

0 (1 − θ2)γ 1


 and B =




1 − 2κr|a⋆|σs2 −a⋆σisin(k∆x) 0

−a⋆σisin(k∆x) 1 − 2κu|a⋆|σs2 θ1γ

0 −θ2γ 1


 .

In addition, we have

A−1 =
1

Λ(θ1,θ2)




Λ(θ1,θ2) 0 0

0 1 γ(1 − θ1)

0 −γ(1 − θ2) 1




with
Λ(θ1,θ2) = 1 + γ2(1 − θ1)(1 − θ2). (1.40)
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Therefore, we can rewrite (1.39) as the following equation

qn+1
j = Cqn

j

where the amplification matrix C =A−1B is given by

C =
1

Λ(θ1,θ2)




(1 − 2κr|a⋆|σs2)Λ(θ1,θ2) −a⋆σisin(k∆x)Λ(θ1,θ2) 0

−a⋆σisin(k∆x) 1 − γ2θ2(1 − θ1) − 2κu|a⋆|σs2 γ

γ(1 − θ2)a⋆σisin(k∆x) −γ[1 − (1 − θ2)2κu|a⋆|σs2] 1 − γ2θ1(1 − θ2)


 ,

(1.41)
whose characteristic polynomial will be denoted by P(λ). We now consider the modes which are
constant in space (k = 0). In this case, the amplification matrix in (u,v) is given by

1
1 + γ2(1 − θ1)(1 − θ2)

(
1 − γ2θ2(1 − θ1) γ

−γ 1 − γ2θ1(1 − θ2)

)
.

Therefore the characteristic equation P(λ) = 0 reduces to

λ2 − 2 − γ2(θ1 + θ2 − 2θ1θ2)
Λ(θ1,θ2)

λ+
1 + γ2θ1θ2

Λ(θ1,θ2)
= 0, (1.42)

and the condition |λ1λ2| ≤ 1 is equivalent to

1 + γ2θ1θ2 ≤ 1 + γ2(1 − θ1)(1 − θ2),

that is fulfilled if and only if
γ2[(θ1 + θ2) − 1] ≤ 0,

which leads to the condition θ1 + θ2 ≤ 1. This proves Point (i).
Now we consider the case of interest κr = 0 (c.f. Lemma 1.4). The characteristic polynomial

P(λ) reduces to

P0(λ) = (1−λ)

[
λ2 − 2 − γ2(θ1 + θ2 − 2θ1θ2) − 2κu|a⋆|σs2

Λ(θ1,θ2)
λ+

1 + γ2θ1θ2 − 2κu|a⋆|σs2 + 4a2
⋆σ

2s2(1 − s2)
Λ(θ1,θ2)

]
.

(1.43)
One root of this polynomial is λ0 = 1 and the two others roots λ± are the solutions of the
following second degree equation

λ2 + ξλ+ ζ = 0 (1.44)

with

ξ = −2 − γ2(θ1 + θ2 − 2θ1θ2) − 2κu|a⋆|σs2

Λ(θ1,θ2)
and ζ =

1 + γ2θ1θ2 − 2κu|a⋆|σs2 + 4a2
⋆σ

2s2(1 − s2)
Λ(θ1,θ2)

.

In order to ensure that the roots of (1.44) are in the unit circle (|λ±| ≤ 1), the coefficients ξ
and ζ must satisfy

|ζ| ≤ 1 and |ξ| ≤ 1 + ζ.

• Firstly, the condition ζ ≤ 1 is equivalent to

1 + γ2θ1θ2 − 2κu|a⋆|σs2 + 4a2
⋆σ

2s2(1 − s2)
Λ(θ1,θ2)

≤ 1
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which leads to

f1(s2) := −γ2
Θ1 − 2κu|a⋆|σs2 + 4a2

⋆σ
2s2(1 − s2) ≤ 0.

With s varying in [−1,1], the previous condition holds provided max[0,1] f1 ≤ 0. As Function

f1 is maximal over R at X1 := 1
2

(
1 − κu

2|a⋆|σ
)
, we deduce that

max
[0,1]

f1 =

{
f1(0), if X1 ≤ 0,

f1(X1), otherwise.

If X1 ≤ 0 which is equivalent to σ ≤ κu
2|a⋆| , the condition f1(0) ≤ 0 is always satisfied. If

X1 > 0, f1(X1) ≤ 0 reads

(
|a⋆|σ− κu

2

)2

≤ γ2
Θ1 ⇐⇒

( |a⋆|
∆x

−ω
√
Θ1

)
∆t≤ κu

2
.

Hence ∆t≤ ∆ta.

• Next, the condition ζ ≥ −1 can be written as

f2(s2) := γ2
Θ2 + 2(1 −κu|a⋆|σs2) + 4a2

⋆σ
2s2(1 − s2) ≥ 0.

We shall see below that this constraint is weaker that another one (f3(s2) ≥ 0) and needs
not be taken into account.

• Let us now turn to the condition upon ξ. The first case −ξ ≤ 1 + ζ reads

2−γ2(θ1+θ2−2θ1θ2)−2κu|a⋆|σs2 ≤ 2+γ2[1−(θ1+θ2)+2θ1θ2]−2κu|a⋆|σs2+4a2
⋆σ

2s2(1−s2)

which comes down to
−γ2 − 4a2

⋆σ
2s2(1 − s2) ≤ 0.

The latter inequality always holds and does not imply an additional constraint upon ∆t.

• Finally, we consider the case ξ ≤ 1 + ζ. This leads to

−2+γ2(θ1+θ2−2θ1θ2)+2κu|a⋆|σs2 ≤ 2+γ2[1−(θ1+θ2)+2θ1θ2]−2κu|a⋆|σs2+4a2
⋆σ

2s2(1−s2).

It follows that

f3(s2) := γ2
Θ3 + 4(1 −κu|a⋆|σs2) + 4a2

⋆σ
2s2(1 − s2) ≥ 0.

From Θ3 = 2Θ2 − 1, we infer that 2f2(s2) − f3(s2) ≥ 0 over [0,1]. This implies that the
condition f2(s2) ≥ 0 is a consequence of f3(s2) ≥ 0.

Function f3 is maximal over R at X3 := 1
2

(
1 − κu

|a⋆|σ
)

≤ 1
2 . The minimum over [0,1] is

reached for s2 = 1 and the condition f3(s2) ≥ 0 reduces to

0 ≤ f3(1) = ω2
Θ3∆t

2 − 4κu|a⋆|
∆x

∆t+ 4 =:Q3(∆t).

The resolution of the second order equation Q3(∆t) = 0 leads to the stability condi-
tion (1.38b) depending on the sign of ω2

Θ3∆x
2 −κ2

ua
2
⋆.
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Lemma 1.6 (Stability of the All Froude Godunov scheme). The CFL condition (1.38a-1.38b)
obtained for κr = 0 still ensures the stability of the All Froude Godunov scheme, i.e. for the
choice κr = O(M).

Proof. The proof is obtained by using a classical continuity argument. The key point is to prove
the modulus of the eigenvalue λ0 is increasing when κr → 0+. Particularly, the characteristic
polynomial P(λ) of the amplification matrix (1.41) is given by

P(λ) = (1−λ−2κr|a⋆|σs2)

(
λ2 − 2 − γ2(θ1 + θ2 − 2θ1θ2) − 2κu|a⋆|σs2

Λ(θ1,θ2)
λ+

1 + γ2θ1θ2 − 2κu|a⋆|σs2

Λ(θ1,θ2)

)

+ (1 −λ)
4a2

⋆σ
2s2(1 − s2)

Λ(θ1,θ2)
,

which can be decomposed as
P(λ) = P0(λ) +κrP1(λ), (1.45)

where P0 is given by (1.43) and

P1(λ) = −2|a⋆|σs2

(
λ2 − 2 − γ2(θ1 + θ2 − 2θ1θ2) − 2κu|a⋆|σs2

Λ(θ1,θ2)
λ+

1 + γ2θ1θ2 − 2κu|a⋆|σs2

Λ(θ1,θ2)

)
.

Since the roots of polynomial P0 are simple – see the proof of Lemma 1.5 – a classical continuity
argument [34] allows us to write the roots of the polynomial P by using an asymptotic expansion

λ= λ(0) +κrλ
(1) + O(κ2

r) (1.46)

where λ(0) is a root of P0. The stability of the scheme is obtained if the modulus of all roots
of P is smaller than one. If λ(0) = λ±, the results is obvious since one can ensure |λ±| < 1 by
considering

∆t≤Kmin{∆ta,∆tb},
with K < 1 small enough and ∆ta, ∆tb given in (1.38a-1.38b). The case λ(0) = λ0 = 1 is a bit
more tricky. By inserting the asymptotic expansion (1.46) into relation (1.45), we obtain

P(λ) = κr
[
λ1P ′

0(λ0) + P1(λ0)
]
+ O(κ2

r).

The condition P(λ) = 0 thus implies

λ1 = −P1(λ0)
P ′

0(λ0)
.

Easy computations lead to

P1(λ0) = −2|a⋆|σs2

(
1 − 2 − γ2(θ1 + θ2 − 2θ1θ2) − 2κu|a⋆|σs2

Λ(θ1,θ2)
+

1 + γ2θ1θ2 − 2κu|a⋆|σs2

Λ(θ1,θ2)

)

= − 2|a⋆|σs2

Λ(θ1,θ2)
γ2 < 0.

On the other hand, since P0(λ) = (1 −λ)P̃0(λ), we have

P ′
0(1) = −P̃0(1) = −1 +

2 − γ2(θ1 + θ2 − 2θ1θ2) − 2κu|a⋆|σs2

Λ(θ1,θ2)
− 1 + γ2θ1θ2 − 2κu|a⋆|σs2

Λ(θ1,θ2)

− 4a2
⋆σ

2s2(1 − s2)
Λ(θ1,θ2)

= −γ2 + 4a2
⋆σ

2s2(1 − s2)
Λ(θ1,θ2)

< 0.
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It follows that
−2|a⋆|σ < λ1 < 0,

and the scheme is stable.

1.5 Numerical results

1.5.1 Test case with the initial condition close to the the kernel

Let us fix the parameters a⋆ = 1, ω = 1 , M = 10−3 and consider the initial condition

q0
i = q̂0

i +M
q̃0

i

‖q̃0
i ‖

with q̂0
i =




sin(ωxi)
0

a⋆ cos(ωxi)
sin(ω∆x)

ω∆x


 ∈ Eh

ω,0, q̃0
i =



a⋆ cos(ωxi)

sin(ω∆x)
ω∆x

1
sin(ωxi)


 ∈ Eh,⊥

ω,0,

that is close to the kernel Eh
ω,0 (see Lemma 1.4) up to a perturbation of order M .

We solve the 1D linear wave equation (1.7) by means of the schemes we analyzed in the
previous sections, namely the low Froude scheme (1.35) for κr = 0, the all Froude scheme (1.35)
for κr = O(M), and the classical Godunov scheme (1.35) for κr = 1. In a first step, we take
θ1 = 1 and θ2 = 0.
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Froude number

 

 

Classical Godunov scheme

All Froude scheme

Low Froude scheme

Figure 1.2: Evolution of maxt ‖qh −Pq0
h‖(t) for t= O(1) when the Froude number goes to 0 for the Low

Froude Godunov, the All Froude Godunov and the Classical Godunov schemes.

We observe on Figure 1.2 that the two schemes designed for the low Froude regime have the
correct behaviour as the Froude number goes to 0, unlike the classical Godunov scheme which is
not accurate as stated before.

We now investigate the accuracy with time at a fixed Froude number. As it was stated in
Theorem 1.1(i), we see on Figures 1.3(a)-(c) that the two aforementioned schemes are accurate
for times t= O(1) since the numerical solutions remain close to the projection of the initial data
onto the kernel (the norm of the difference is of order 10−3). However for large times the all
Froude scheme turns out be inaccurate as the corresponding solution is moving away from the
kernel. It illustrates the result from Theorem 1.1(ii).
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(b) Deviation on the velocity
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Figure 1.3: Comparisons of schemes: proximity to the discrete kernel as time increases.

Next, we now focus on Theorem 1.1(iii) by means of Figures 1.4(a)-(b), where we see that
the total deviation of the Classical Godunov scheme is of order M when the mesh is sufficiently
refined (∆x= O(M)). Note that even in this case, the behaviour of the low/all Froude Godunov
schemes is better than that of the classical Godunov scheme.

In Figures 1.5 and 1.6, we change the value θ1 and θ2 of the Low/All Froude schemes. These
figures indicate that the total deviation depends on the value of θ1 + θ2.

1.5.2 Stability test case with discontinuous initial condition

In the second test case, we consider the initial condition given by




r0
i = χ[− 1

2
, 1

2
](xi),

u0
i = 1,

v0
i = 1.

(1.47)

In this test, we choose ω = 1, ∆x = 0.01 and a⋆ such that the Rossby deformation is equal to
Rd := a⋆

ω = ∆x and κu = 1. In Figure 1.7(a), we choose θ1 = 0.5 and θ2 = 0. Hence, in this case
we have Θ1 = 0.5 and Θ3 = 0 which leads to ∆ta = 0.5

1−
√

0.5
, ∆tb = 1 and ∆t0 = 0.5. Therefore, the

new time step ∆t = min{∆ta,∆tb} = 1 is less restrictive than the classical time step ∆t0 = 0.5.
Figure 1.7(a) shows that the new time step is optimal since when ∆t= 0.999< 1 the Low Froude
scheme is stable while when ∆t= 1.001 the Low Froude scheme is unstable.
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Figure 1.4: Comparisons of schemes: proximity to the discrete kernel as time increases.
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Figure 1.5: Comparisons of Low Froude schemes: proximity to the discrete kernel as time increases.
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Figure 1.6: Comparisons of All Froude schemes: proximity to the discrete kernel as time increases.
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Figure 1.7: Influence of the time step upon the Low Froude scheme

On the other hand, if we take θ1 = 0 and θ2 = 0, then Θ1 = 1 and Θ3 = 1. Due to the fact
that κ2

ua2
⋆

ω2∆x2 ≤ Θ3, the constraint over the time step for the Low Froude scheme is prescribed by
∆ta. However as a⋆ = ω∆x

√
Θ1, ∆ta = +∞ and the Low Froude scheme is always stable without

regard to the time step ∆t. Figure 1.7(b) confirms this statement by showing that the Low
Froude scheme is stable even for ∆t= 10.

In Figure 1.8, we take ∆t= ∆t0 = 0.5 and change the value of θ1 and θ2. This figure indicates
that the behaviour of the energy of the Low Froude scheme depends on the value of θ1 and θ2.
The choice θ1 = θ2 = 1

2 (Crank-Nicolson approximation for the Coriolis term) is able to preserve
the energy exaclty although this choice requires a more restrictive constraint upon the time step
than for θ1,θ2 ≤ 1

2 .

1.6 Conclusion

It is well known that the classical Godunov scheme applied to the linear wave equation is not
accurate at low Froude number on cartesian meshes in dimension 2 [20]. In this work, we have
shown that, when a Coriolis source term is involved, the classical Godunov scheme is not accurate
at low Froude number even in dimension 1.

This is because the stationary space of the classical Godunov discrete operator is not a good
approximation of the invariant subspace Eω,0. The loss of invariance of Eω,0 is explained by
studying the associated modified equation. It is strongly related to the numerical diffusion κr on
the pressure equation. In particular when we set κr = 0, the inaccuracy problem does not occur.
As a result, we derived two modified schemes by decreasing the value of the numerical diffusion
κr on the pressure equation. From this, we deduce that:

• The Low Froude Godunov scheme (κr = 0) is accurate at low Froude number.

• The All Froude Godunov scheme (κr = M) is accurate at low Froude number locally in
time.

We then proved that both schemes are stable under suitable constraints upon the time step. These
stability conditions turn out to be less restrictive than classical ones for a suitable treatment of
the Coriolis source term.

In forthcoming works, we shall extend our analysis to the two-dimensional case and to the
nonlinear framework in order to derive and analyse accurate and stable numerical schemes for
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Figure 1.8: Comparisons of Low Froude schemes depending on the time step
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System (1.1). In particular we aim at comparing our work with previous approaches from [25,
27, 28].

1.A Analysis of splitting scheme

Let us define a two-step Godunov scheme using a splitting strategy to take into account the
Coriolis source term. The first step is related to the acoustic term





r⋆
i − rn

i + a⋆∆t
un

i+1−un
i−1

2∆x − νr∆t
rn

i+1−2rn
i +rn

i−1

∆x2 = 0,

u⋆
i −un

i + a⋆∆t
rn

i+1−rn
i−1

2∆x − νu∆t
un

i+1−2un
i +un

i−1

∆x2 = 0,

v⋆
i − vn

i = 0,

(1.A.1a)

and we use a θ-scheme to deal with the Coriolis term in the second step




rn+1
i = r⋆

i ,

un+1
i −u⋆

i = ω∆t
[
θ1v

⋆
i + (1 − θ1)vn+1

i

]
,

vn+1
i − v⋆

i = −ω∆t
[
θ2u

⋆
i + (1 − θ2)un+1

i

]
,

(1.A.1b)

for 0 ≤ θ1,θ2 ≤ 1.

Lemma 1.7. With the splitting scheme, we have:

i. For νr = 0, the splitting scheme preserves steady states only if θ2 = 0.

ii. For νr , 0, steady states are not preserved without regard to the value of θ1 and θ2.

Proof. Let us assume that the numerical solution at time tn = n∆t belongs to the discrete kernel
Eh

ω,0

∀i ∈ Z, un
i = 0 and a⋆

rn
i+1 − rn

i−1

2∆x
= ωvn

i .

We shall show that at the next time step the numerical solution does not lie in the discrete kernel
anymore. After the first step, we easily obtain





r⋆
i = rn

i + νr∆t
rn

i+1−2rn
i +rn

i−1

∆x2 ,

u⋆
i = un

i − a⋆∆t
rn

i+1−rn
i−1

2∆x = −ω∆tvn
i ,

v⋆
i = vn

i .

Then the second step leads to




rn+1
i = rn

i + νr∆t
rn

i+1−2rn
i +rn

i−1

∆x2 ,

un+1
i = ω∆t(1 − θ1)(vn+1

i − vn
i ),

vn+1
i +ω∆t(1 − θ2)un+1

i =
[
1 + (ω∆t)2θ2

]
vn

i .

As a result, we have

vn+1
i + (ω∆t)2(1 − θ1)(1 − θ2)(vn+1

i − vn
i ) =

[
1 + (ω∆t)2θ2

]
vn

i

from which it follows that
[
1 + (ω∆t)2(1 − θ1)(1 − θ2)

]
vn+1

i =
[
1 + (ω∆t)2(1 − θ1)(1 − θ2) + (ω∆t)2θ2

]
vn

i .

Therefore, vn+1
i = vn

i (and un+1
i = 0) if and only if θ2 = 0. The kernel is recovered if νr = 0 as

rn+1
i = rn

i .
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Let us now note that the choice θ2 = 0 is not really a splitting method since it can be written as
a one-step method





rn+1
i − rn

i + a⋆∆t
un

i+1−un
i−1

2∆x − νr∆t
rn

i+1−2rn
i +rn

i−1

∆x2 = 0,

un+1
i −un

i + a⋆∆t
rn

i+1−rn
i−1

2∆x − νu∆t
un

i+1−2un
i +un

i−1

∆x2 = ω∆t[θ1v
n
i + (1 − θ1)vn+1

i ],

vn+1
i − vn

i = −ω∆tun+1
i .

Remark 1.8. Let us mention about the relation between the Von Neumann condition and the
L2 stability. We begin with the standard Godunov scheme (κr = κu = 1). In this case, the
amplification matrix of the first step (acoustic step) is a normal matrix. We can obtain the L2

stability for this step due to the fact that in this case the Von Neumann condition is not only
necessary but also sufficient. We mention [20] for this stability condition. On the other hand,
we have the L2 stability for the Coriolis step when θ1 = θ2 ≤ 1

2 . As a result, we can ensure L2

stability for the standard Godunov splitting scheme.
However, the numerical viscosity on the pressure (κr) is a crucial for the inaccuracy of standard
Godunov scheme. To recover the expected accuracy, we have modify this diffusion term in order
to obtain low Froude Godunov scheme (κr = 0) or All Froude Godunov scheme (κr =M). This
makes the amplification matrix for the first step is no more symmetric. As a consequence, the Von
Neumann condition is just necessary condition for L2 stability (see [36] for details ). Therefore,
in this case, to find the stability condition of the splitting scheme, we have to investigate the
Von Neumann analysis for the amplification matrix combined by two steps instead of using the
stability condition satisfied for both steps. In fact, from the numerical point of view, the modified
splitting scheme is unstable when θ2 > 0 (see Figure (1.9)).

1.B Discrete Hodge decomposition

For the Low Froude Godunov scheme (κr = 0), the discrete kernel defined at the center of each
cell is given by

Eh
ω,0 =

{
q̂h = (r̂h, ûh, v̂h) ∈ R3N : ui = 0,

a⋆

2∆x
(ri+1 − ri−1) = ωvi

}
(1.B.2)
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and then we have the following result

Lemma 1.8. The orthogonal space of Eh
ω,0 is given by

Eh,⊥
ω,0 =

{
q̃h = (r̃h, ũh, ṽh) ∈ R3N : a⋆

(ṽi+1 − ṽi−1)
2∆x

= ωr̃i

}
.

Moreover, we also have the discrete Hodge decomposition Eh
ω,0 ⊕ Eh,⊥

ω,0 = R3N .

Proof. Let us denote that

Ah =
{
q̃h = (r̃h, ũh, ṽh) ∈ R3N :

a⋆

2∆x
(ṽi+1 − ṽi−1) = ωr̃i

}
.

To begin with, we take an arbitrary q̃h = (r̃h, ũh, ṽh) ∈ R3N , then ∀q̂h = (r̂h, ûh, v̂h) ∈ Eh
ω,0, by

using periodic boundary condition, we obviously get

〈q̃h, q̂h〉 =
N∑

i=1

∆x(r̃ir̂i + ṽiv̂i) =
N∑

i=1

∆xr̃ir̂i + ṽi
a⋆

2ω
(r̂i+1 − r̂i−1)

=
N∑

i=1

∆x

[
r̃i − a⋆

(ṽi+1 − ṽi−1)
2∆xω

]
r̂i.

Therefore, if q̃h ∈ Ah we clearly obtain 〈q̃h, q̂h〉 = 0 ∀q̂h ∈ Eh
ω,0 which leads to q̃h ∈ Eh,⊥

ω,0. This
means that Ah is a subset of Eh,⊥

ω,0. On the other hand, if q̃h ∈ Eh,⊥
ω,0, the equation 〈q̃h, q̂h〉 =

0, ∀q̂h ∈ Eh
ω,0 implies that q̃h ∈ Ah. In other words, Eh,⊥

ω,0 is a subset of Ah. For those reasons,
we conclude that Eh,⊥

ω,0 = Ah.
Since we clearly have Eh

ω,0 ⊕ Eh,⊥
ω,0 ⊂ R3N , we only have to prove that each element in R3N can

be written as
qh = q̂h + q̃h whereq̂h ∈ Eh

ω,0 and q̃h ∈ Eh,⊥
ω,0.

Now, ∀(p̃h, s̃h, w̃h) ∈ Eh,⊥
ω,0, by using the orthogonality between Eh

ω,0 and Eh,⊥
ω,0, we obtain

〈r̂h, p̃h〉 + 〈v̂h, w̃h〉 = 0 ⇒ 〈ṽh, w̃h〉 + 〈r̃h, p̃h〉 = 〈rh, p̃h〉 + 〈vh, w̃h〉.

We now denote α= a⋆
2ω∆x and by the definition of the discrete kernel and orthogonal subspace,

the above equation can be written as

〈ṽh, w̃h〉 +α2
N∑

i=1

∆x(ṽi+1 − ṽi−1)(w̃i+1 − w̃i−1) = 〈vh, w̃h〉 +α
N∑

i=1

∆xri(w̃i+1 − w̃i−1)

In consideration of the periodic boundary condition, this equation is equivalent to

〈ṽh, w̃h〉 −α2
N∑

i=1

∆xw̃i(ṽi+2 − 2ṽi + ṽi−2) = 〈vh, w̃h〉 −α
N∑

i=1

∆xw̃i(ri+1 − ri−1).

We now choose the special (p̃h, s̃h, w̃h) ∈ Eh,⊥
ω,0 such that w̃i = 1 and w̃j,i = 0 to obtain

ṽi −α2(ṽi+2 − 2ṽi + ṽi−2) = vi −α(ri+1 − ri−1). (1.B.3)

By doing the same way, we also obtain

r̂i −α2(r̂i+2 − 2r̂i + r̂i−2) = ri −α(vi+1 − vi−1). (1.B.4)
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As a result, we can find r̂ and ṽ by solving the following linear systems

Ar̂ = Br and Aṽ = Bv

where the matrix A, Br and Bv are respectively given by

A =




1 + 2α2 0 −α2 0 0 ..... 0 0 −α2 0
0 1 + 2α2 0 −α2 0 ..... 0 0 0 −α2

−α2 0 1 + 2α2 0 −α2 ..... 0 0 0 0
...

...
... · · · ...

...
...

...
−α2 0 0 0 0 · · · −α2 0 1 + 2α2 0

0 −α2 0 0 0 · · · 0 −α2 0 1 + 2α2




,

Br =




r1 −α(v2 − v0)
r2 −α(v3 − v1)
r3 −α(v4 − v2)

...
rN−1 −α(vN − vN−2)
rN −α(vN+1 − vN−1)




and Bv =




v1 −α(r2 − r0)
v2 −α(r3 − r1)
v3 −α(r4 − r2)

...
vN−1 −α(rN − rN−2)
vN −α(rN+1 − rN−1)




.

We note that the matrix A is a M-matrix, so it is invertible. Therefore, we have the uniqueness
of r̂h and ṽh and then we can easily obtain v̂h and r̃h by using the definition of the discrete
kernel and orthogonal subspace. We can also check again rh = r̂h + r̃h and vh = v̂h + ṽh.

Remark 1.9. Let us note that when the numerical solution qh ∈ Eh
ω,0, the right hand side of the

linear system Bv is equal to 0. From (1.B.3), we obviously have ṽh = 0 which leads to r̃h = 0 by
using the definition of the orthogonal subspace. On the contrary, when the numerical solution qh

belongs to the orthogonal subspace Eh,⊥
ω,0, we will obtain r̂h = 0 from (1.B.4) and v̂h = 0 with the

definition of the discrete kernel.



40 Chapter 1. Analysis of Godunov type schemes



2

C
h

a
p

t
e

r

Analysis of Apparent Topography scheme applied to the
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The only way of discovering the

limits of the possible is to venture a

little way past them into the

impossible.

Clarke’s Second Law.

This work has been done in collaboration with Emmanuel Audusse, Pascal Omnes and
Yohan Penel. It has been published in Finite Volumes For Complex Applications VIII, Springer
Proceedings in Mathematics.

The shallow water equations can be used to model many phenomena in geophysical fluid
mechanics. For large scales, the Coriolis force plays an important role and the geostrophic
equilibrium which corresponds to the balance between the pressure gradient and the Coriolis
force is an important feature. In this communication, we investigate the stability condition
and the behavior of the so-called Apparent Topography scheme which is capable of capturing
a discrete version of the geostrophic equilibrium.
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2.1 Introduction

In order to study the Shallow Water equations with Coriolis source term, we consider the
dimensionless formulation on the rotating frame which is given by





St∂th+ ∇ · (hū) = 0, (2.1a)

St∂t(hū) + ∇ · (hū ⊗ ū) +
1

Fr
2 ∇

(
h2

2

)
= − 1

Fr
2h∇b− 1

Ro
hū

⊥, (2.1b)

where unknowns h and ū respectively denote the water depth and the average velocity over the
water column and function b(x) denotes the topography of the considered oceanic basin and is a
given function. Dimensionless numbers St, Fr and Ro respectively stand for the Strouhal, the
Froude and the Rossby numbers defined below. In the sequel, we shall focus on cases where

St :=
L

UT
= O

(
1
M

)
, Fr :=

U√
gH

= O(M), Ro :=
U

ΩL
= O(M),

with M a small parameter. The parameters g and Ω denote the gravity coefficient and the angular
velocity of the Earth. Constants U , H, L and T are some characteristic velocity, vertical and
horizontal lengths and time. These orders of magnitude correspond to the study of short-time
dynamics and standard conditions for large scale oceanic flows.

For data independent of y and with a flat topography, the solution of System (2.1) then
satisfies at the leading order the quasi-1d linear wave equation with Coriolis source term (see
[37] for the derivation) 




∂tr+ a⋆∂xu= 0,

∂tu+ a⋆∂xr = ωv,

∂tv = −ωu,
(2.2)

where a⋆ and ω are constants of order O(1) – respectively related to the wave velocity and to
the rotating velocity – r is the first order perturbation of the water depth h and (u,v) is the
leading order for the velocity field. The stationary state corresponding to System (2.2) is the 1d
version of the so-called geostrophic equilibrium and is given by

u= 0, a⋆∂xr = ωv. (2.3)

A first study of the accuracy of numerical schemes applied to system (2.2) for initial data that are
close to the kernel (2.3) was performed in [37]. It was shown that the standard Godunov scheme
applied to the linear wave equation with Coriolis source term is inaccurate at low Froude number
and the numerical viscosity on the pressure equation is the main reason for this inaccuracy. A
modified low Froude Godunov scheme was proposed to cure the problem. The scheme was shown
to be L2 stable under a suitable CFL condition. The proofs extend the ideas introduced in [20]
for the study of the homogeneous wave equations in low Mach number regimes.

In this paper, our objective is to study in the same context the numerical scheme introduced
in [13] as a well-balanced (WB) scheme for the Shallow Water equations with Coriolis source
term (2.1). In particular we prove the L2 stability of the scheme under suitable CFL conditions.
Moreover we compare this scheme, called apparent topography scheme in the following, and the
low Froude one in terms of dispersion relations and accuracy for some test cases.Note that a
high order extension of the apparent topography scheme for the non-linear SW equations with
Coriolis source term has been studied in [27], where the authors also paid attention to the linear
dispersion relation (hence related to (2.2)).
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2.2 The numerical schemes

Both low Froude and apparent topography schemes are colocated finite volume schemes and can
be interpreted as a way to modify the numerical diffusion of the classical Godunov scheme on
the pressure equation. In the low Froude scheme proposed in [37], the numerical diffusion on
the pressure equation is simply deleted. In the apparent topography scheme introduced in [13],
the diffusion term of the classical Godunov scheme remains and an additional consistent term is
introduced in the pressure equation such that the numerical diffusion vanishes when applied to
an element of the linear kernel (2.3). The name apparent topography comes from the fact that
the scheme was first developed in the context of WB methods for the shallow water equation
with topography, see[5]. The two aforementioned semi-discrete schemes applied to (2.2) read





d

dtrj + a⋆
uj+1−uj−1

2∆x − κra⋆∆x
2

rj+1−2rj+rj−1

∆x2 + κrω
2

vj+1−vj−1

2 = 0,

d

dtuj + a⋆
rj+1−rj−1

2∆x − κua⋆∆x
2

uj+1−2uj+uj−1

∆x2 = ωf(vj−1,vj ,vj+1),

d

dtvj = −ωf(uj−1,uj ,uj+1).

(2.4)

where Low Froude scheme corresponds to

κr = 0 and f(x,y,z) = y

and the Apparent Topography scheme to

κr = κu and f(x,y,z) =
x+ 2y+ z

4
.

.

2.2.1 Study of the semi-discrete scheme - Dispersion relations

We now study the stability of the semi-discrete Godunov type schemes by means of Fourier
modes:

rj(t) = ϕr(t)eikxj , uj(t) = ϕu(t)eikxj and vj(t) = ϕv(t)eikxj .

Substituting these expressions into (2.4), we obtain the following linear system of differential
equations




ϕ′
r(t)

ϕ′
u(t)

ϕ′
v(t)


+




κra⋆
sin2( k∆x

2
)

∆x
2

ia⋆
sin(k∆x)

∆x iκrω∆x
2

sin(k∆x)
∆x

ia⋆
sin(k∆x)

∆x κua⋆
sin2(k∆x/2)

∆x/2 −ωζ
0 ωζ 0







ϕr(t)

ϕu(t)

ϕv(t)


=




0

0

0


 (2.5)

where ζ = 1 for the low Froude scheme and ζ = cos2(k∆x
2 ) for the apparent topography scheme.

The first eigenvalue of the amplification matrix is λ= 0, corresponding to the discrete stationary
state (2.3). The other two, corresponding to the inertia-gravity modes, are given in Table 2.1.
Their real part ℜ(λ) characterizes the decay of Fourier modes k. Since ℜ(λ)> 0, both low Froude
and apparent topography schemes are damping. The damping rate of the apparent topography
scheme is twice larger than that of the low Froude scheme. The imaginary part ℑ(λ) characterizes
the propagation properties of the Fourier modes. Note that for the low Froude scheme, the
eigenvalues may be real for k∆x close to π which means the corresponding modes do not propagate
and are only damped. For small a∗k/ω, the dispersion relation ℑ(λ)/ω of the low Froude scheme
is closer to the exact one (for the rotating wave equation (2.2)) whereas the converse holds for
large a∗k/ω.
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Wave equation ±i
√
a2

⋆k
2 +ω2

Low Froude a⋆
κu
2

sin2( k∆x
2

)
∆x
2

± i

√
a2

⋆

(
sin(k∆x/2)

∆x/2

)2 [
cos2(k∆x

2 ) −
(κu

2

)2 sin2(k∆x
2 )
]

+ω2

Apparent Topography a⋆κu
sin2( k∆x

2
)

∆x
2

± i

√
a2

⋆

(
sin(k∆x)

∆x

)2
+ω2

(
1+cos(k∆x)

2

)2

Table 2.1: The eigenvalues corresponding to the inertia-gravity modes for small k∆x.
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Figure 2.1: Numerical properties of the semi-discrete schemes with the Rossby deformation Rd := a⋆
ω = ∆x

and (κr,κu) = (0,1) for LF, (κr,κu) = (1,1) for AT.

2.3 Study of the fully discrete scheme: kernel and L
2-stability

The fully discrete apparent topography scheme applied to (2.2) can be written as





rn+1
j −rn

j

∆t + a⋆
un

j+1−un
j−1

2∆x − κra∗∆x
2

rn
j+1−2rn

j +rn
j−1

∆x2 + κrω
2

(vn
j+1−vn

j−1)

2 = 0,

un+1
j −un

j

∆t + a⋆
rn

j+1−rn
j−1

2∆x − κua∗∆x
2

un
j+1−2un

j +un
j−1

∆x2

= ω

[
θ1

vn
j+1+2vn

j +vn
j−1

4 + (1 − θ1)
vn+1

j+1
+2vn+1

j +vn+1
j−1

4

]
,

vn+1
j −vn

j

∆t = −ω
[
θ2

un
j+1+2un

j +un
j−1

4 + (1 − θ2)
un+1

j+1
+2un+1

j +un+1
j−1

4

]

(2.6)

for j ∈ {1, . . . ,N} and 0 ≤ θ1,θ2 ≤ 1. Setting q = (r,u,v), periodic boundary conditions read

qn+1
0 = qn+1

N , qn+1
N+1 = qn+1

1 .

For practical reasons, we assume that the cell number N is odd.

2.3.1 Analysis of the discrete kernel and orthogonal space

Lemma 2.1. The kernel of the Apparent Topography scheme (2.6) is given by

Eh
ω,0 = kerLκ,h =

{
q = (r,u,v)

∣∣∣∣ uj = 0, a⋆
rj+1 − rj

∆x
= ω

vj+1 + vj

2

}
. (2.7)
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Proof. A stationary state consists in rn+1
j = rn

j , un+1
j = un

j and vn+1
j = vn

j . Therefore, we obtain





a⋆
un

j+1−un
j−1

2∆x − κra⋆∆x
2

rn
j+1−2rn

j +rn
j−1

∆x2 + κrω
2

vn
j+1−vn

j−1

2 = 0,

a⋆
rn

j+1−rn
j−1

2∆x − κua⋆∆x
2

un
j+1−2un

j +un
j−1

∆x2 = ω
vn

j+1+2vn
j +vn

j−1

4 ,

0 = −ω un
j+1+2un

j +un
j−1

4 .

(2.8)

As a result, we have the homogeneous linear recurrence un
j+1 + 2un

j +un
j−1 = 0. This implies that

the solution of this recurrence relation is

un
j = (α+βj)(−1)j , ∀j ∈ {0, . . . ,N + 1}

where α and β are constants.
If we consider N is an even number, by using periodic boundary condition, we will obtain
un

j = α(−1)−j which is the checkerboard mode. In the other case, when N is an odd number,
the periodic boundary condition leads to

α= −(α+βN) and − (α+β) = α+β(N + 1).

It follows that α = β = 0. As a result, we have un
j = 0, ∀j ∈ {0, . . . ,N + 1}. We then deduce

from (2.8)

a⋆

rn
j+1 − 2rn

j + rn
j−1

∆x
= ω

vn
j+1 − vn

j−1

2
and a⋆

rn
j+1 − rn

j−1

∆x
= ω

vn
j+1 + 2vn

j + vn
j−1

2
.

Summing the two equations yields the discrete kernel (2.7). Conversely, any element satisfying
(2.7) is a stationary state of relations (2.6). This discrete kernel is a consistent discretization,
defined at the cell interfaces, of the continuous kernel (2.3).

Remark 2.1. Let us recall that the discrete kernel of the low Froude scheme is

uj = 0, a⋆
rj+1 − rj−1

2∆x
= ωvj

(see [37]) which is another consistent discretization, defined at the cell centers, of the continuous
kernel (2.3).

Remark 2.2. When the number of points is even, checkerboard modes for velocity u may exist in
the discrete kernel of the apparent topography scheme. Note that the low Froude scheme suffers
the same drawback, but for the pressure r.

Lemma 2.2. The orthogonal space of Eh
ω,0 is verified by

Eh,⊥
ω,0 =

{
q̃ = (r̃, ũ, ṽ) ∈ R3N :

a⋆

∆x
(ṽi+1 − ṽi) = ω

r̃i+1 + r̃i

2

}
.

Proof. We denote

Ah =
{
q̃ = (r̃, ũ, ṽ) ∈ R3N :

a⋆

∆x
(ṽi+1 − ṽi) = ω

r̃i+1 + r̃i

2

}
.
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We firstly show that Ah is a subset of Eh,⊥
ω,0. Let q̃ = (p,s,w) ∈ Ah, then ∀q = (r,u,v) ∈ Eh

ω,0, we
have

〈q̃, q〉 =
N∑

i=1

∆xpiri +∆xviwi (2.9)

Moreover, by using periodic boundary condition, we obtain

N∑

i=1

∆xviwi =
1
2




N∑

i=1

∆xviwi +
N∑

i=1

∆xvi+1wi+1


=

1
2

N∑

i=1

∆x(vi + vi+1)wi+1 − 1
2

N∑

i=1

∆xvi(wi+1 −wi)

=
N∑

i=1

a⋆

ω
(ri+1 − ri)wi+1 −

N∑

i=1

∆x
vi

2
(wi+1 −wi)

= −
N∑

i=1

a⋆

ω
(wi+1 −wi)ri −

N∑

i=1

∆x
vi

2
(wi+1 −wi) = −

N∑

i=1

∆x

(
ri +

ω∆x

2a⋆
vi

)
a⋆

ω

wi+1 −wi

∆x
.

(2.10)
Similarly, we also have

N∑

i=1

∆xripi =
1
2




N∑

i=1

∆xripi +
N∑

i=1

∆xri+1pi+1


=

N∑

i=1

∆x
(pi + pi+1)

2
ri +

N∑

i=1

∆xpi+1
ω∆x

a⋆

(vi+1 + vi)
2

=
N∑

i=1

∆x
(pi + pi+1)

2
ri +

N∑

i=1

∆x
ω∆x

a⋆
vi

(pi+1 + pi)
2

=
N∑

i=1

∆x(ri +
ω∆x

a⋆

vi

2
)
pi+1 + pi

2
.

(2.11)
Therefore, from (2.9),(2.10) and (2.11), we clearly have

〈q̃, q〉 =
N∑

i=1

(ri − ∆x

2
vi)
(
pi + pi−1

2
− wi −wi−1

∆x

)
= 0 ⇒ Ah ⊂ Eh,⊥

ω,0.

Next, let us consider er,i is a vector with a value 1 in the ith coordinate and 0 elsewhere. Then,
corresponding to each er,i, we can construct vector ev,i such that (er,i,0,ev,i) belongs to the
discrete kernel. Particularly, we can define ev,i with a value − 2a⋆

ω∆x in the the (i−1)th coordinate,
a value 2a⋆

ω∆x in the the (i+ 1)th coordinate and 0 elsewhere. Hence, we can say that we have N
degrees of freedom with the discrete kernel. This implies that dim(Eh

ω,0) =N . We now apply the
same strategy for the subset Ah of Eh,⊥

ω,0 in order to have N degrees of freedom for ṽ. Moreover,
it is obvious to see that we can have N degrees of freedom for ũ. As a result, we obtain

dim(Ah) = 2N ⇒ Ah = Eh,⊥
ω,0.

Remark 2.3. We have the discrete Hodge decomposition R3N = Eh
ω,0 ⊕ Eh,⊥

ω,0 which means that
an element q in R3N can be decomposed into

q = q̂+ q̃ where q̂ ∈ Eh
ω,0 and q̃ ∈ Eh,⊥

ω,0.

This allow us to define projection on the discrete kernel by Pq = q̂. Moreover, q̂ can be written as

q̂ =
N∑

i=1

αiei
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where the coefficients α1, · · · ,αN are real numbers and the set {ei : 1 ≤ i ≤ N} is one basis of

the discrete kernel. By orthogonality between Eh
ω,0 and Eh,⊥

ω,0, vector α= (α1, · · · ,αN ) is simply
verified by solving the following linear system

〈q,ej〉 =
N∑

i=1

αi〈ei,ej〉 ∀j ∈ {1, · · · ,N}.

2.3.2 Stability condition of the fully discrete scheme

We will now investigate the L2 stability of the apparent topography scheme. Let us first mention
that when 0 < θ1,θ2 < 1, the apparent topography scheme requires to solve a linear system
at each time step, which leads to an additional computational cost. On the other hand,
the case θ1 = θ2 = 1, that corresponds to a fully explicit scheme, is known to be unstable –
see [27]. Therefore, we restrict our study to the two cases θ1 = 0,θ2 = 1 and θ1 = 1,θ2 = 0.
Note that in [37], the L2 stability of the low Froude scheme was studied for all values of
(θ1,θ2) ∈ [0,1]2.

Lemma 2.3. Under the hypothesis

κrκu ≤ 1 +
ω2

∆x2

4a2
⋆
, (2.12)

the apparent topography scheme is L2 stable under the CFL condition

∆t≤ min{∆ta,∆tb,∆tc}

where

∆tb := min

{
1
κr
,

1
κu

}
∆x

|a⋆| , ∆tc :=
2
ω

and ∆ta is given by the following cases:

i. When θ2 = 0 ,θ1 = 1, we have

∆ta :=
κr +κu

2
∆x

|a⋆| .

ii. When θ2 = 1, θ1 = 0, we obtain

∆ta :=





− |a⋆|
∆x

+

√
a2

⋆
∆x2 +(κr+κu)κrω2

κrω2 if κr , 0,
κu
2

∆x
|a⋆| otherwise.

Remark 2.4. Note that the choice κr = 0 is similar to the low Froude scheme, but with a
discretisation of the Coriolis term at the interfaces. We then retrieve the same CFL condition as
that of the cell-centered low Froude scheme, see [37].

Remark 2.5. Hypothesis (2.12) is not restrictive since the low Froude scheme always satisfies
this condition and the classical choice for the apparent topography scheme is to take κr = κu = 1.

Remark 2.6. The bound ∆tc is the classical CFL condition for the inertial oscillations phe-
nomenon.
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Remark 2.7. The bound ∆tb is one of the classical CFL conditions for the problem without
rotation. For ∆x≪ 1, the asymptotic expansion of the bound ∆ta leads to the other classical CFL
condition for the problem without rotation

∆ta =
κr +κu

2
∆x

|a⋆| .

Proof. We perform a Von Neumann analysis to investigate the stability condition. Let us denote

σ =
∆t

∆x
, γ = ω∆t, s= sin

(
k∆x

2

)
, µ= cos2

(
k∆x

2

)
= 1 − s2.

By substituting the discrete Fourier modes rn
j = ϕn

r e
ikxj , un

j = ϕn
ue

ikxj and vn
j = ϕn

v e
ikxj into the

fully discrete scheme (2.6), we obtain Aϕn+1 = Bϕn where the matrices A and B are given by

A =




1 0 0
0 1 −(1 − θ1)γµ
0 (1 − θ2)γµ 1




and

B =




1 − 2κr|a⋆|σs2 −a⋆σisin(k∆x) −κrω∆t
2 isin(k∆x)

−a⋆σisin(k∆x) 1 − 2κu|a⋆|σs2 θ1γµ
0 −θ2γµ 1


 .

We then search for the eigenvalues of the amplification matrix C = A−1B, that are the roots of
the third order polynomial P(λ) = det(B −λA). Easy computations lead to

P(λ) = (1 −λ)(Λλ2 + ξλ+ ζ) (2.13)

with

Λ = 1 + γ2µ2(1 − θ1)(1 − θ2)> 0

ξ = −2 + γ2µ2(θ1 + θ2 − 2θ1θ2) + 2(κr +κu)|a⋆|σs2 + 2κr|a⋆|σs2γ2µ2(1 − θ1)(1 − θ2)

ζ = 1 + γ2µ2θ1θ2 − 2(κr +κu)|a⋆|σs2 + 4a2
⋆σ

2s2(1 − s2) + 4κrκua
2
⋆σ

2s4

+2κr|a⋆|σs2γ2µ2θ2(1 − θ1).

The eigenvalue λ0 = 1 corresponds to the discrete kernel (2.7). In order to ensure that the other
two roots of (2.13) are in the unit circle (|λ±| ≤ 1), the coefficients Λ, ξ and ζ have to satisfy
|ζ| ≤ Λ and |ξ| ≤ Λ + ζ. Computations are then similar to the ones in [37]. More precisely,
condition ζ ≤ Λ will lead to the condition involving ∆ta and condition |ξ| ≤ Λ + ζ will lead to
conditions involving ∆tb and ∆tc. Particularly, we consider the following cases:

• Firstly, the condition ζ ≤ Λ is equivalent to

F1(s2) := −2(κr +κu)|a⋆|σs2 + 4a2
⋆σ

2s2(1 − s2) + 4κrκua
2
⋆σ

2s4

− [1 − (θ1 + θ2)]γ2(1 − s2)2 + 2κr|a⋆|σs2γ2µ2θ2(1 − θ1) ≤ 0.

We now consider the special case θ1 = 1,θ2 = 0. In this case, the stability condition reduces
to

G1(s2) := −(κr +κu) + 2|a⋆|σ(1 − s2) + 2κrκu|a⋆|σs2 ≤ 0.

Therefore, we obtain the time step ∆t according to the value of κrκu

∆t≤ ∆t⋆ :=





κr+κu
2

∆x
|a⋆| if κrκu ≤ 1

κr+κu
2κrκu

∆x
|a⋆| if κrκu > 1.
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Next, we consider another special case with θ1 = 0,θ2 = 1. The stability condition becomes

G1(s2) := −(κr +κu) + 2|a⋆|σ(1 − s2) + 2κrκu|a⋆|σs2 +κrγ
2(1 − s2)2 ≤ 0.

Moreover, we also have

G′
1(s2) = −2|a⋆|σ+ 2κrκu|a⋆|σ− 2κrγ

2(1 − s2).

We now notice that G′
1(s2) = 0 at S = 1 + (1 − κrκu) |a⋆|σ

κrγ2 . Therefore, if we now assume
that κrκu ≤ 1, we need the condition G1(0) ≤ 0. This condition can be written as

κrγ
2 + 2|a⋆|σ− (κr +κu) ≤ 0 ⇒ ∆t≤

− |a⋆|
∆x +

√
a2

⋆
∆x2 + (κr +κu)κrω2

κrω2

When κrκu > 1, we have to take into account the condition G1(1) ≤ 0 which is equivalent to

−(κr +κu) + 2κrκu|a⋆|σ ≤ 0 ⇒ ∆t≤ (κr +κu)
2κrκu

∆x

|a⋆| .

• Next, the condition ζ ≥ −Λ can be written as

F2(s2) := 2 − 2(κr +κu)|a⋆|σs2 + 4a2
⋆σ

2s2(1 − s2) + 4κrκua
2
⋆σ

2s4

+ γ2µ2[1 − (θ1 + θ2) + 2θ1θ2] + 2κr|a⋆|σs2γ2µ2θ2(1 − θ1) ≥ 0.

We shall see below that this constraint is weaker that another one (F4(s2) ≥ 0) and needs
not be taken into account.

• Let us now turn to the condition upon ξ. The first case −ξ ≤ Λ + ζ reads

F3(s2) := −γ2µ2 − 4a2
⋆σ

2s2(1 − s2) − 4κrκua
2
⋆σ

2s4 − 2κr|a⋆|σs2γ2µ2(1 − θ1) ≤ 0.

This inequality always holds and does not imply an additional constraint upon ∆t.

• Finally, we consider the case ξ ≤ Λ + ζ. This leads to

F4(s2) := γ2µ2(1 − 2θ1)(1 − 2θ2) + 4(1 − (κr +κu)|a⋆|σs2) + 4a2
⋆σ

2s2(1 − s2)

+ 4κrκua
2
⋆σ

2s4 + 2κr|a⋆|σs2γ2µ2(1 − θ1)(2θ2 − 1) ≥ 0.

Let us note that 2F2(s2)−F4(s2) ≥ 0 over [0,1]. This implies that the condition F2(s2) ≥ 0 is
a consequence of F4(s2) ≥ 0. It is obvious to see that the condition to ensure that F4(s2) ≥ 0
of the case the θ1 = 1,θ2 = 0 is more restrictive than that of the case θ1 = 0,θ2 = 1, so we
only consider the special case θ1 = 1,θ2 = 0 and in this case, we have

F4(s2) := −γ2µ2 + 4(1 − (κr +κu)|a⋆|σs2) + 4a2
⋆σ

2s2(1 − s2) + 4κrκua
2
⋆σ

2s4

which leads to

F ′
4(s2) = 2γ2(1 − s2) − 4(κr +κu)|a⋆|σ+ 4a2

⋆σ
2 − 8a2

⋆σ
2s2 + 8κrκua

2
⋆σ

2s2.

Therefore, F ′
4(s2) = 0 at S = −4(κr+κu)|a⋆|σ+4a2

⋆σ2+2γ2

8(1−κrκu)a2
⋆σ2+2γ2 . Now, if we assume that

κrκu ≤ 1 +
ω2

∆x2

4a2
⋆
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the minimum value of F4(s2) is either F4(0) or F4(1). Then,

F4(0) = −γ2 + 4 ≥ 0 ⇒ ∆t≤ 2
ω

Next, the condition F4(1) = 4 − 4(κr +κu)|a⋆|σ+ 4κrκua
2
⋆σ

2 ≥ 0 leads to

∆t≤
[
κr +κu

2
− |κr −κu|

2

]
∆x

a⋆κrκu
⇒ ∆t≤ min{ 1

κr
,

1
κu

}∆x
a⋆
.

2.4 Numerical results

2.4.1 Accuracy test case

Let us fix the parameters a⋆ = 1, ω = 1, θ1 = 1,θ2 = 0 and consider the initial condition on the
domain (0,2π)

q0
i = q̂0

i +M
q̃0

i

‖q̃0
i ‖ where




q̂0

h(x) =
(
sin(ωx),0,a⋆ cos(ωx)

)
∈ Eh

ω,0,

q̃0
h(x) =

(
a⋆ cos(ωx),1,sin(ωx)

)
∈ Eh,⊥

ω,0,

which is close to the kernel Eh
ω,0 up to a perturbation of order M . We solve the 1D linear wave

equation (2.2) by means of the Apparent Topography scheme (2.6), the low Froude scheme and
the classical Godunov scheme. We observe on Figure 2.2 (left) that the classical Godunov scheme
is inaccurate since the deviation from the kernel does not remain of order M , while the two
schemes designed for the geostrophic regime have the correct behaviour as the Froude number
goes to 0. We now investigate the accuracy with time at a fixed Froude number. As exhibited
for the semi-discrete scheme, we see on Figure 2.2 (right) that the Apparent Topography scheme
is more diffusive than the low Froude scheme for the part of the signal which is in the orthogonal
of the kernel.

00.020.040.060.080.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Froude number

 

 

Classical Godunov scheme

Low Froude scheme

Apparent Topography scheme

(a) Maximum in time of the deviation ‖qh − q̂0
h‖

depending on the Froude number

0 2 4 6 8 10 12
8.8

9

9.2

9.4

9.6

9.8

10

10.2
x 10

−4

t

 

 

Low Froude scheme

Apparent Topography scheme

(b) Evolution of the deviation ‖qh−q̂0
h‖ for M = 10−3

Figure 2.2: Comparisons of classical and WB schemes
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2.4.2 Stability test case

We now turn to another test case when we consider the initial condition given by




r0 = χ[− 1
2

, 1
2

](x), x ∈ [−1,1]

u0 = 0,

v0 = 0.

In this test case, we choose κr = κu = 1, a⋆ = ω = 1, ∆x= 0.01 and θ1 = 1,θ2 = 0. Therefore, in
this case, the the time step of the Apparent Topography scheme must satisfies

∆t≤ min{∆ta,∆tb,∆tc} = min{∆x
a⋆
,

2
ω

} = ∆x= 0.01.

Figure (2.3) present that the the time step is optimal. This is because the Apparent Topography
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Figure 2.3: Influence of time step upon the Apparent Topography scheme.

scheme is stable with ∆t = 0.01 while this scheme is unstable with the time step ∆t = 0.0101
which is slightly greater than ∆t= 0.01.

2.5 Conclusion

In this work, we extend the study done in [37] to the Apparent Topography scheme proposed in
[13]. Particularly, we investigate the stability condition for this scheme as well as we compare
their results to the Low Froude scheme obtained in [37] in terms of dispersion relations and
accuracy. Both schemes are well balanced due to the fact that they can capture the discrete
steady state and the kernel of the spatial operator of both schemes correspond to a consistent
discretization of the geostrophic equilibrium.

In future works, the authors will apply the two schemes to linear 2D cases before considering
nonlinear applications in order to discriminate them.
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Analysis of staggered scheme for the linear wave equation

with Coriolis force

Our greatest weakness

lies in giving up.

The most certain way to succeed is

always to try just one more time.

Thomas A. Edison.

The standard Godunov scheme applied to the linear wave equation with Coriolis source
term is inaccurate at low Froude number. By analyzing the kernel of the first order modified
equation, the work in [37] shows that the numerical viscosity on the pressure equation
is responsible for this inaccuracy problem. One simple correction for this problem is to
cancel the numerical diffusion related to the pressure equation to obtain the Low Froude

scheme. Another correction based on the Apparent Topography method developed in [13]
and [25] is to introduce an additional term to this numerical diffusion such that this term
will cancel the diffusion at the equilibrium. The present work deals with those strategies
to construct well-balanced schemes on staggered meshes. Moreover, a Fourier analysis is
performed for a class of well-balanced schemes on staggered and collocated meshes. The
numerical dispersion law and damping error are also investigated for the semi-discrete in
space and fully discrete staggered type schemes. Finally, stability conditions of the fully
discrete scheme are obtained through a Von Neumann analysis.
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3.1 Introduction

The shallow water equations (SWE), a simplified 2D model from the 3D incompressible Euler
system, is currently used to simulate rivers, coastal flows, dam-break floods and oceans. At large
scale, it is important to take into account the Coriolis force coming from the rotation of the
Earth and the dimensionless shallow water system in the rotating frame is given by





∂th+ ∇ · (hū) = 0, (3.1a)

St∂t(hū) + ∇ · (hū ⊗ ū) +
1
Fr2

∇
(
h2

2

)
= − 1

Fr2
h∇b− 1

Ro
hū

⊥ (3.1b)

In System (3.1) unknowns h and ū respectively denote the water depth and the velocity of the
water column and function b(x) denotes the topography of the considered oceanic basin and is a
given function. Dimensionless numbers St, Fr and Ro respectively stand for the Strouhal, the
Froude and the Rossby numbers. In the sequel, we shall focus on cases where

Ro= O(M) and Fr = O(M)

with M a small parameter. For large scale oceanographic flows, typical values lead to M ∼ 10−2.
Let us now suppose the topography is flat and the solution is independent of the y direction. For
a Strouhal number of order O( 1

M ), i.e for short time, the solution of system (3.1) satisfies at the
leading order the quasi-1D linear wave equation with Coriolis term





∂tr+ a⋆∂xu= 0,

∂tu+ a⋆∂xr = ωv,

∂tv = −ωu

(3.2)

where a⋆ and ω being constants of order one, respectively related to the wave velocity and
to the rotating velocity. We mention [37] for details of this derivation. The stationary state
corresponding to Equation (3.2) is the 1D version of the geostrophic equilibrium which is given
by

u= 0, a⋆∂xr = ωv. (3.3)

The ability of a numerical scheme to capture this non trivial steady state currently receives a
great attention. In the collocated framework, the Low Froude strategy introduced in [37] and
Apparent Topography proposed in [13] by adapting hydrostatic reconstruction [5] are shown to
capture well the balance state (3.3). Moreover, the Apparent Topography method applied to the
linear wave equation (3.2) is proved to be stable under some CFL conditions in [38] and this
strategy is also extended to high order schemes in [27] for the 2D nonlinear shallow water system.
However, the dispersion law of these well-balanced schemes on collocated grids is not a monotone
function like it is in the continuous system. This property is required to avoid oscillations for
the modes with the shortest wavelength 2∆x and to ensure that the waves move in the correct
direction [26].
In the present work, we adapt the Low Froude and Apparent Topography strategy to staggered
grids to obtain new schemes which possess all satisfactory properties of the collocated scheme
such as preserving the nontrivial steady state and accuracy at low Froude number when the
initial condition is around the geostrophic equilibrium. Moreover, the new staggered schemes
have much better dispersion relation than the collocated schemes. In section 3.2, we first propose
a version of the Low Froude and Apparent Topography schemes on staggered grids. Secondly,
we perform the analysis for the semi-discrete staggered scheme with focus on the well-balanced
and orthogonality preserving property. The dispersion relation, damping error, group and phase
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velocity are also investigated in this section. In Section 3.3, we introduce the time discretization
and perform the Fourier analysis for the fully discrete scheme. More importantly, in this section,
we show that the proposed staggered schemes are stable under some CFL conditions. Section 3.4
gathers numerical simulations that illustrate our purposes.

3.2 Analysis of the semi-discrete staggered schemes

One of the most common schemes applied to the linear wave equation (3.2) on collocated grid is
the leapfrog scheme. This second order accurate scheme can be written as





rn+1
i −rn−1

i
2∆t + a⋆

un
i+1−un

i−1

2∆x = 0

un+1
i −un−1

i
2∆t + a⋆

rn
i+1−rn

i−1

2∆x = ωvn
i

vn+1
i −vn−1

i
2∆t = −ωun

i .

(3.4)

It is worth pointing out that in this collocated scheme, all the space derivatives are taken over

Figure 3.1: Primary (green) cell and dual (blue) cell.

the distance 2∆x. However, the distance between adjacent grid nodes is only ∆x. Therefore, it is
reasonable to use staggered schemes which still ensure second order accuracy in space, but the
derivative is performed over the distance ∆x. As a result, with a staggered grid (see Fig. 3.1), we
obtain a scheme which is more compact than the one defined on a collocated grid. There exist
some classical staggered schemes without numerical diffusion than can be applied to the linear
wave equation (3.2). For instance, the well known Marker and Cell (MAC) scheme which is
staggered not only in space but also in time and the forward-backward scheme obtained by using
an explicit discretization in time for one equation and an implicit one for the other equations. The
analysis of the MAC and forward-backward is performed in Appendix 3.A. However, the numerical
scheme without diffusion terms can introduce some unphysical oscillations for discontinuous
initial solutions (see Figure 3.2). Hence, in this section, we will analyze the behavior of the semi
discrete staggered scheme with some diffusion terms coming from the Godunov scheme. This
staggered scheme can be written as




d
dtri+1/2(t) + a⋆

∆x [ui+1 −ui] − κra⋆
2∆x

[
ri+3/2 − 2ri+1/2 + ri−1/2

]
+ ηrω

2 (vi+1 − vi) = 0

d
dtui(t) + a⋆

∆x

[
ri+1/2 − ri−1/2

]
− κua⋆

2∆x [ui+1 − 2ui +ui−1] = ωvi

d
dtvi(t) = −ωui

(3.5)

where κr, κu stand for the parameters of the standard diffusion term and ηr corresponds to the
correction term based on the Apparent Topography method introduced in [13]. We also note that
the classical staggered scheme (with some additional diffusion) corresponds to κr = κu = 1,ηr = 0,
the Low Froude staggered scheme corresponds to κr = ηr = 0 and the Apparent Topography
staggered scheme has κr = ηr > 0.
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Remark 3.1. Since the stationary state of the collocated Apparent Topography scheme is defined
as the interface, it is necessary to use more than one cell to approximate the Coriolis source term.
We mention the work [38] for more details. However, with the staggered Apparent Topography
scheme, the Coriolis force is computed by using only one cell.

−5 −4 −3 −2 −1 0 1 2 3 4 5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 

 

FB

MAC

(a) r(x,t) at time t = 2

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.8

1

1.2

1.4

1.6

1.8

2

 

 

FB

MAC

(b) r(x,t) at time t = 400

Figure 3.2: The pressure r(x,t) of the forward-backward and MAC scheme with initial fluid at rest
(u0 = v0 = 0) and discontinuous initial height given by r0(x) = 1 +χ[−1,1](x) on domain [−5,5].

3.2.1 Discrete operators

To analyze the behavior of the semi-discrete staggered type schemes, it is convenient to construct
the discrete version of some differential operators. Let uh = (ui)i∈[1,N ] be in RN , we define ∂x,huh

and ∂2
x2,huh respectively by

∀i ∈ [1,N ] : (∂x,huh)i+1/2 :=
ui+1 −ui

∆x
and ∀i ∈ [1,N ] : (∂2

x2,huh)i :=
ui+1 − 2ui +ui−1

∆x2
.

Let rh = (ri+1/2)i∈[1,N ] be in RN , we define ∂x,hrh and ∂2
x2,hrh respectively by

∀i ∈ [1,N ] : (∂x,hrh)i :=
ri+1/2 − ri−1/2

∆x
and ∀i ∈ [1,N ] : (∂2

x2,hrh)i+1/2 :=
ri+3/2 − 2ri+1/2 + ri−1/2

∆x2
.

In these definitions, we use periodic boundary conditions when needed (uN+1 = u1, u0 = uN ,
r1/2 = rN+1/2 and rN+3/2 = r3/2).

Moreover, for q1
h = (r1

h,u
1
h,v

1
h) ∈ R3N and q2

h = (r2
h,u

2
h,v

2
h) ∈ R3N , let us define the following

discrete scalar products

〈r1
h, r

2
h〉 =

N∑

i=1

∆xr1
i+1/2r

2
i+1/2

〈u1
h,u

2
h〉 =

N∑

i=1

∆xu1
i ·u2

i

〈q1
h, q

2
h〉 =

N∑

i=1

∆xr1
i+1/2r

2
i+1/2 +

N∑

i=1

∆xu1
i · u2

i ,

where we denote us
i = (us

i ,v
s
i ) for s ∈ {1;2} and all i. Although we use the same notations for all

three different scalar products, the context in which they will be used in the sequel cannot bring
any confusion.
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We have the following properties for the above discrete operators. For all uh = (ui)i∈[1,N ],
vh = (vi)i∈[1,N ] and all rh = (ri+1/2)i∈[1,N ], φh = (φi+1/2)i∈[1,N ], it holds that:

Lemma 3.1. With periodic boundary conditions, the discrete operators satisfy the following
discrete integration by part formula:

〈∂x,huh, rh〉 = −〈∂x,hrh,uh〉. (3.6)

which also implies that

〈∂2
x2,huh,vh〉 = −〈∂x,huh,∂x,hvh〉 and 〈∂2

x2,hrh,φh〉 = −〈∂x,hrh,∂x,hφh〉.

Proof. The result comes from simple direct computations.

3.2.2 Evolution of the discrete energy

Lemma 3.2. Let qh(t) = (rh(t),uh(t),vh(t)) be the solution of system (3.5). With ηr = 0 and
the discrete energy defined as follows

Eh(t) = 〈qh(t), qh(t)〉, (3.7)

we have the dissipation of the discrete energy

d

dt
Eh(t) ≤ 0.

Proof. We take the discrete scalar product of the semi-discrete staggered scheme (3.5) with qh(t)
and we obtain

1
2
d

dt
Eh(t) = −a⋆〈∂x,huh, rh〉 − a⋆〈∂x,hrh,uh〉 −ω〈u⊥

h ,uh〉

+
κra⋆∆x

2
〈∂2

x2,hrh, rh〉 +
κua⋆∆x

2
〈∂2

x2,huh,uh〉,

where we denote u⊥
h = (−vh,uh). By using the properties of the discrete operators stated in

Lemma 3.1, the above equation implies that

d

dt
Eh(t) = −κra⋆∆x




N∑

i=1

∆x

(
ri+3/2 − ri+1/2

∆x

)2

−κua⋆∆x




N∑

i=1

∆x

(
ui+1 −ui

∆x

)2

≤ 0

3.2.3 Analysis of the discrete kernel and orthogonal subspace

In this section, we will carry out an analysis of the well-balanced properties of the staggered
type schemes. To begin with, let us define the discrete kernel as

Eh
ω,0 =

{
qh = (rh,uh,vh) ∈ R3N : ui = 0, a⋆

ri+1/2 − ri−1/2

∆x
= ωvi

}

which is exactly the steady state of the staggered scheme without diffusion term, as obviously
seen in (3.5) when κr = νr = 0 and κu = 0. In order to figure out whether one numerical scheme
can capture this discrete steady state or not, we analyze the discrete kernels of the staggered
type schemes. In particular, we have the following results:
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Lemma 3.3. The discrete kernel of the staggered scheme strongly depends on the numerical
viscosity in the pressure equation. Particularly, the discrete kernel of the standard scheme
(κr > 0, ηr = 0, and κu ≥ 0)

kerLh
κr,0,ηr=0 =

{
qh = (rh,uh,vh) ∈ R3N : ri+1/2 = const,ui = 0,vi = 0,∀i ∈ [1,N ]

}
. (3.8)

Moreover, the Low Froude (κr = ηr = 0) and the Apparent Topography scheme (κr = ηr > 0)
have the same discrete kernel which is given by

kerLh
κr=ηr

=
{
qh = (rh,uh,vh) ∈ R3N : ui = 0, a⋆

ri+1/2 − ri−1/2

∆x
= ωvi

}
= Eh

ω,0. (3.9)

Proof. The semi-discrete staggered scheme (3.5) can be written as

d

dt
qh +Lh

κ,ηqh = 0 (3.10)

where qh = (rh,uh,vh) ∈ R3N , Lh
κ,η = (L1

κ,η, ..,L
i
κ,η, ..,L

N
κ,η)T and

Li
κ,ηqh =




a⋆
∆x [ui+1 −ui] − κra⋆

2∆x

[
ri+3/2 − 2ri+1/2 + ri−1/2

]
+ ηrω

2 (vi+1 − vi)

a⋆
∆x

[
ri+1/2 − ri−1/2

]
− κua⋆

2∆x [ui+1 − 2ui +ui−1] −ωvi

ωui



.

• In any case, we always have ui = 0 for all i ∈ [1,N ], as soon as ω > 0.

• We then consider the case ηr = 0 and κr , 0. Any element in the kernel verifies Lh
κ,ηqh = 0

and thus 〈Lh
κ,ηqh, qh〉 = 0. The computation performed in Lemma 3.2 leads to

−κra⋆

N∑

i=1

(ri+3/2 − ri+1/2)2 −κua⋆

N∑

i=1

(ui+1 −ui)2 = 0

which implies that rh = const when the numerical diffusions are such that κr > 0 and
κu ≥ 0. Therefore, in this case, the discrete kernel is given by (3.8).

• We now turn to the other cases when κr = ηr. With ui = 0, the second condition in
Lh

κ,ηqh = 0 obviously leads to the fact that Eh
ω,0 ⊂ kerLh

κr=ηr
, and then this is sufficient to

obtain the first condition in Lh
κ,ηqh = 0, so that (3.9) is verified.

Remark 3.2. For the collocated scheme, the kernel of the low Froude scheme introduced in [37]
and the Apparent Topography scheme discussed in [38] are different one from the other since
the first one is defined at the cell center and the second one is defined at the interface. On the
contrary, we have exactly the same discrete kernel with those strategies on a staggered grid.

Remark 3.3. The relation (3.8) indicates that kerLh
κr,0,ηr=0 is a poor subspace of Eh

ω,0, so it is
unable to approximate the continuous kernel Eω,0. On the contrary, with relation (3.9), we can
say that kerLh

κr=ηr
is accurate enough to approximate Eω,0 correctly.
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Lemma 3.4. The orthogonal space of Eh
ω,0 is given by

Eh,⊥
ω,0 =

{
qh = (rh,uh,vh) ∈ R3N : a⋆

vi+1 − vi

∆x
= ωri+1/2

}
.

This leads to the following discrete Hodge decomposition R3N = Eh
ω,0 ⊕ Eh,⊥

ω,0, which means that
an element qh ∈ R3N can be decomposed into

qh = q̂h + q̃h with q̂h ∈ Eh
ω,0 and q̃h ∈ Eh,⊥

ω,0.

Proof. Let us denote Ah the set

Ah =
{
qh = (rh,uh,vh) ∈ R3N : a⋆

vi+1 − vi

∆x
= ωri+1/2

}
.

Next, we consider an arbitrary q̃h = (r̃h, ũu, ṽh), then for all q̂h = (r̂h, ûh, v̂h) ∈ Eh
ω,0, using the

properties of Eh
ω,0 and the discrete integration by part formula of Lemma 3.1 we obtain

〈q̃h, q̂h〉 =
N∑

i=1

r̃i+1/2r̂i+1/2 +
N∑

i=1

ṽiv̂i =
N∑

i=1

r̃i+1/2r̂i+1/2 +
a⋆

ω

N∑

i=1

ṽi

r̂i+1/2 − r̂i−1/2

∆x

=
N∑

i=1

r̂i+1/2

(
r̃i+1/2 − a⋆

ω

ṽi+1 − ṽi

∆x

)
.

Therefore, if q̃h belongs to Ah, we obviously have 〈q̃h, q̂h〉 = 0 which leads to Ah ⊂ Eh,⊥
ω,0. Now

we consider q̃h ∈ Eh,⊥
ω,0. Since r̂h can be arbitrary in RN (as can be seen from the definition of

Eh
ω,0), then for each i ∈ {1, · · · ,N} we can choose one special q̂h ∈ Eh

ω,0 such that rh has value 1
in i+ 1/2 and 0 elsewhere to ensure that r̃i+1/2 − a⋆

ω
ṽi+1−ṽi

∆x = 0. This implies that Eh,⊥
ω,0 ⊂ Ah.

To sum up, we have Eh,⊥
ω,0 = Ah.

Remark 3.4. The discrete Hodge decomposition allows us to define the discrete orthogonal
projection

Ph :

{
R3N −→ Eh

ω,0

qh 7−→ q̂h
(3.11)

which is computed in the following way: Consider qh = (rh,uh,vh) ∈ R3N , and an arbitrary

(p̃h, s̃h, w̃h) ∈ Eh,⊥
ω,0. By using the fact that ûh = 0 and the orthogonality property, we easily obtain

〈r̂h, p̃h〉 + 〈v̂h, w̃h〉 = 0 ⇒ 〈r̃h, p̃h〉 + 〈ṽh, w̃h〉 = 〈rh, p̃h〉 + 〈vh, w̃h〉

which implies, using the properties of elements of Eh,⊥
ω,0

(
a⋆

ω

)2

〈∂x,hṽh,∂x,hw̃h〉 + 〈ṽh, w̃h〉 =
a⋆

ω
〈rh,∂x,hw̃h〉 + 〈vh, w̃h〉.

Using the discrete integration by part formula of Lemma 3.1, we obtain

〈ṽh, w̃h〉 −
(
a⋆

ω∆x

)2 N∑

i=1

w̃i(ṽi+1 − 2ṽi + ṽi−1) = 〈vh, w̃h〉 − a⋆

ω∆x

N∑

i=1

w̃i(ri+1/2 − ri−1/2).
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We now choose the special (p̃h, s̃h, w̃h) ∈ Eh,⊥
ω,0 such that w̃i = 1 and w̃j,i = 0 to obtain

ṽi −
(
a⋆

ω∆x

)2

(ṽi+1 − 2ṽi + ṽi−1) = vi − a⋆

ω∆x
(ri+1/2 − ri−1/2). (3.12)

Similarly, we can obtain

r̂i+1/2 −
(
a⋆

ω∆x

)2

(r̂i+3/2 − 2r̂i+1/2 + r̂i−1/2) = ri+1/2 − a⋆

ω∆x
(vi+1 − vi). (3.13)

As a result, we can find ṽh and r̂h by solving the linear systems (3.12) and (3.13). We also note
that the matrix of the above linear systems are the same and is an M-matrix, so it is invertible.
This implies that r̂h and ṽh are well defined by (3.12) and (3.13). Then, we can easily construct
v̂h and r̃h by using the definition of the discrete kernel and orthogonal subspace.

3.2.4 Orthogonality preserving property

In the previous section, the well-balanced properties of the staggered type schemes were inves-
tigated. We can say that both Low Froude and Apparent Topography schemes can capture
the discrete geostrophic equilibrium: they both have a discrete kernel which is a consistent
discretization of the continuous kernel (3.3). In other words, it is possible to accurately discretize
an initial continuous geostrophic equilibrium and the numerical solution of those well balanced
schemes will remain constant at any time.

In this section, we will consider another important aspect which is named "the orthogonality
preserving property". At the continuous level, when the initial condition is in the subspace
orthogonal to the kernel, the solution of the linear wave equation remains in this orthogonal
subspace. Since this is one property of the continuous model, we want to investigate whether this
property is also verified at the discrete level with the numerical schemes. If one scheme satisfies
this property, we say that it is an orthogonality preserving scheme.

Lemma 3.5. For the staggered type scheme, we have:

i. The standard staggered scheme and the Apparent Topography scheme (κr = ηr > 0) are
not orthogonality preserving schemes.

ii. The Low Froude staggered scheme (κr = ηr = 0) is an orthogonality preserving scheme.

Proof. Consider the solution of (3.5) with initial condition qh(0) = q0
h ∈ Eh,⊥

ω,0. and an arbitrary
element q̂h ∈ Eh

ω,0. If d
dt〈qh(t), q̂h〉 = 0, then 〈qh(t), q̂h〉 = 〈qh(0), q̂h〉 = 0.

For all q̂h ∈ Eh
ω,0, we have

ûh = 0 and a⋆∂x,hr̂h = ωv̂h.

Then, using (3.5) and the discrete integration by part, we obtain
〈
d

dt
qh(t), q̂h

〉
= −a⋆〈∂x,huh, r̂h〉 −ω〈uh, v̂h〉 +

κra⋆∆x

2
〈∂2

x2,hrh, r̂h〉 − ηrω∆x

2
〈∂x,hvh, r̂h〉

=
κra⋆∆x

2
〈∂2

x2,hrh, r̂h〉 − ηrω∆x

2
〈∂x,hvh, r̂h〉.

It is important to see that with the standard scheme or the Apparent Topography staggered
scheme, the right-hand side of the above equation does not vanish. Therefore, Point (i) is proved.
However, the Low Froude staggered scheme imposes κr = ηr = 0, and the above right-hand side
vanishes. Therefore, we conclude that qh(t) ∈ Eh,⊥

ω,0 for the solution of the Low Froude staggered
scheme. This proves Point (ii).
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3.2.5 Behavior of the solution of the staggered scheme

In this section, we will show some properties of the numerical solution of the staggered type
schemes. Particularly, we focus on the accuracy around the discrete geostrophic equilibrium.
The analysis in the previous sections helps us understand which kind of scheme can preserve
discrete geostrophic equilibria, or their orthogonal states. We will go further with the analysis
and consider the case when the initial condition is close to a discrete geostrophic equilibrium
and we want to figure out if the numerical solution of the staggered type schemes remains close
to the it at any time or at least in short time, which is a property of the continuous system. We
will see that the classical scheme does not fulfill this requirement. We mention the works [20–22]
for such kind of analysis on collocated meshes using the first order modified equation associated
to the homogeneous linear wave equation and [39] for the same equation taking into account
porosity effects.

In order to perform the analysis conveniently, we shall denote the parameters of the standard
diffusion terms by

νr =
κra⋆∆x

2
and νu =

κua⋆∆x

2
.

and the parameter corresponding to the correction term by

γr =
ηra⋆∆x

2
.

Theorem 3.1. Let qκ,h(t) be the solution of (3.5). Then

i. When κr = ηr = 0 , if ‖q0
h − Ph(q0

h)‖ = C1M with C1 ∈ R+, then we have ∀t ≥ 0,
‖qκ,h(t) −Ph(q0

h)‖ ≤ C1M .

ii. Let κr = O(M), ηr = 0, and ‖q0
h −Ph(q0

h)‖ = C1M with C1 > 0. Then, ∀C2 = O(1)> 0,
there exists C3 = O(1) ∈ R+ not depending on M such that ∀t≤ C2, we have ‖qκ,h(t) −
Ph(q0

h)‖ ≤ C3M .

iii. Let κr = O(1), ηr = 0, and ∆x= O(M). Let ‖q0
h −Ph(q0

h)‖ = C1M with C1 > 0. Then,
∀C2 = O(1)> 0, there exists C3 = O(1) ∈ R+ not depending on M such that ∀t≤ C2, we
have ‖qκ,h(t) −Ph(q0

h)‖ ≤ C3M .

Proof. By linearity, the solution of semi-discrete staggered scheme qh(t) can be written as

qκ,h(t) = qa
κ,h(t) + qb

κ,h(t)

where qa
κ,h(t) is the solution of (3.10) with the initial condition

qa
κ,h(0) = Ph(q0

h)

and qb
κ,h(t) is the solution of (3.10) with the initial condition

qb
κ,h(0) = q0

h −Ph(q0
h).

Then, we have

‖qκ,h(t) −Ph(q0
h)‖ = ‖qa

κ,h(t) + qb
κ,h(t) −Ph(q0

h)‖ ≤ ‖qa
κ,h(t) −Ph(q0

h)‖ + ‖qb
κ,h(t)‖

Moreover, Lemma 3.2 about the dissipation of the semi-discrete staggered scheme when ηr = 0
leads to the conclusion that ‖qb

κ,h(t)‖ ≤ ‖qb
κ,h(0)‖ = C1M . For this reason, the accuracy of the
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scheme is linked to the behavior of qa
κ,h(t). When κr = ηr = 0, we obviously have qa

κ,h(t) = Ph(q0
h)

which leads to Point (i).
To be convenient, we denote the discrete projection of q0

h on the discrete kernel Eh
ω,0 by q̂0

h = Ph(q0
h).

By using the fact that q̂0
h is in the discrete kernel Eh

ω,0, and thus verifies û0
h = 0 and a⋆∂x,hr̂

0
h = ωv̂0

h,
we obtain ∀i ∈ {1, · · · ,N}




∂t(ra
κ,i+1/2 − r̂0

i+1/2) + a⋆∂x,h(ua
κ,h − û0

h)i+1/2 − νr∂
2
x2,h(ra

κ,h − r̂0
h)i+1/2 − νr∂

2
x2,h(r̂0

h)i+1/2 = 0

∂t(ua
κ,i − û0

i ) + a⋆∂x,h(ra
κ,h − r̂0

h)i − νu∂
2
x2,h(ua

κ,h − û0
h)i = ω(va

κ,i − v̂0
i )

∂t(va
κ,i − v̂0

i ) = −ω(ua
κ,i − û0

i )
(3.14)

Therefore, by multiplying (3.14) with qa
κ,i − q̂0

i , performing discrete integrations by part and
using the periodic boundary condition, we deduce that

1
2
d

dt
‖qa

κ,h − q̂0
h‖2 = −νr||∂x,h(ra

κ,h − r̂0
h)||2 − νu||∂x,h(ua

κ,h − û0
h)||2 + νr〈∂2

x2,h(r̂0
h),(ra

κ,h − r̂0
h)〉

which leads to

1
2
d

dt
‖qa

κ,h − q̂0
h‖2 ≤ νr‖∂2

x2,h(r̂0
h)‖‖qa

κ,h − q̂0
h‖

and to
d

dt
‖qa

κ,h − q̂0
h‖ ≤ ‖∂2

x2,h(r̂0
h)‖.

This inequality leads to
‖qa

κ,h − q̂0
h‖ ≤ tνr‖∂2

x2,h(r̂0
h)‖.

As a result, we get

‖qκ,h(t) −Ph(q0
h)‖ ≤ ‖q0

h −Ph(q0
h)‖ + tνr‖∂2

x2,h(r̂0
h)‖.

We then deduce Points (ii) and (iii) respectively for κr = O(M) and ∆x= O(M).

3.2.6 Fourier analysis for the semi-discrete staggered schemes

We now construct the plane wave solutions for the 3 × 3 system of equation in (3.2). Let us
denote q the column vector q = (r,u,v)T , then the linear wave equation (3.2) can be written in
the general form

∂tq+A∂xq+Bq = 0 (3.15)

where A=




0 a⋆ 0
a⋆ 0 0
0 0 0


 and B =




0 0 0
0 0 −ω
0 ω 0


 are constant-coefficient matrices. We look for

the plane wave solutions of (3.15) of the form

q = ei(kx+τt)q̂ (3.16)

where k is the wave number and τ is the frequency of the wave. These functions can be solutions
to the linear wave equation only under a dispersion relation between τ and k which is commonly
written as τ = τ(k). In general, this relation lies in the complex set: the real part ℜ(τ) and the
imaginary part ℑ(τ) indicate respectively propagation and decay of Fourier modes. In order to
find q̂ as well as τ(k), we substitute the plane wave solutions (3.16) into (3.15) to obtain

iτ(k)q̂+ A(k)q̂ = 0
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and conclude that −iτ(k) and q̂ are the right eigenvalue and eigenvector of the matrix A(k)
which is given by

A(k) = ikA+B =




0 a⋆ik 0
a⋆ik 0 −ω

0 ω 0




then, the eigenvalues of this matrix are given by

λ= 0,±i
√
a2

⋆k
2 +ω2.

Therefore, the dispersion relations of the linear wave equation are given by

τ(k) = 0,±
√
a2

⋆k
2 +ω2,

corresponding to the steady wave (geostrophic mode) and Poincaré wave (inertia-gravity modes).
Phase (C) and group (G) velocities are given by

C =
τ

k
and G=

∂τ

∂k
.

It is important to see that the phase velocity depends on the wave number, so wave components of
different wavelengths travel at different speeds. On the other hand, τ(k) is a monotone function
which indicates the free spurious oscillations of the shortest wave, namely 2∆x [26].
The numerical dispersion relation of the semi-discrete staggered scheme is found by using the
discrete Fourier modes and we only consider k∆x on the range (0,π]. It is expected that in the
region of interest, i.e k∆x≤ 0.1, the dispersion relation of the numerical scheme has the same
behavior as that of the continuous modes and it preserves the amplitude of the waves which
means that there is no damping error with the numerical scheme. Let us emphasize that most of
energy transfer occurs in this long wave region. On the other hand, since the phase error of the
waves with the shortest wavelength 2∆x might produce some oscillations, numerical damping
is really useful for high frequencies. However, numerical diffusion also affects the wave speed,
and waves might therefore transfer with incorrect speed. Hence, we have to control numerical
viscosity such that it does not destroy the steady state, ensures the stability of the scheme and
has a minimal impact on the wave speed.
In order to obtain the dispersion relation of the semi-discrete Godunov scheme, we look for the
solution of the semi-discrete Godunov type scheme under discrete Fourier modes:

ri+1/2(t) = ϕr(t)eik(xi+
∆x
2

), ui(t) = ϕu(t)eikxi and vi(t) = ϕv(t)eikxi .

Substituting these expressions in the semi-discrete scheme and setting ηr = κr (because both
Low Froude and Apparent Topography schemes use this equality), we obtain the following linear
system of differential equations:




ϕ′
r(t)

ϕ′
u(t)

ϕ′
v(t)


+




κra⋆
2sin2( k∆x

2
)

∆x ia⋆
2sin( k∆x

2
)

∆x iκrω∆x
2

2sin( k∆x
2

)
∆x

ia⋆
2sin( k∆x

2
)

∆x κua⋆
2sin2( k∆x

2
)

∆x −ω

0 ω 0







ϕr(t)

ϕu(t)

ϕv(t)


=




0

0

0


 . (3.17)

We shall denote by A(k,∆x) the matrix of the linear differential equation (3.17). The first
eigenvalue of the matrix A(k,∆x) is λ= 0, corresponding to the discrete stationary state. The
other two eigenvalues, corresponding to the inertia-gravity modes, are given by

λ± =
νr + νu

2
α2

∆x2
± i

√

ω2 + a2
⋆
α2

∆x2
−
(
νr − νu

2

)2( α2

∆x2

)2

with α= 2sin
(
k∆x

2

)
. (3.18)
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The real part of eigenvalues ℜ(λ±) indicate the decay of Fourier modes k. Due to the fact
that ℜ(λ±) > 0, both Low Froude and Apparent Topography schemes are damping. More
importantly, the damping rate of the Apparent Topography staggered scheme is larger than that
of the Low Froude staggered scheme (which uses ηr = 0) especially for the shortest wavelength
2∆x for which k∆x

2 = π
2 and thus α is maximal. Therefore, from the numerical point of view, the

Apparent Topography scheme will probably present fewer oscillations than the Low Froude scheme.
Moreover, the imaginary parts ℑ(λ±) are of different signs, which means that the inertia-gravity
modes move in different directions, which is the same behavior as the continuous system.

Remark 3.5. On a collocated mesh, the eigenvalues λ± of the Godunov type scheme can be
written as

λ± =
νr + νu

2
α2

∆x2
± i

√

ω2ϑ2 + a2
⋆
sin(k∆x)2

∆x2
−
(
νr − νu

2

)2( α2

∆x2

)2

(3.19)

where

ϑ=

{
1 Low Froude scheme,

cos2(k∆x
2 ) Apparent Topography scheme.

We mention [38] for more details.

Remark 3.6. It is highly recommended to use the same numerical diffusion term on the pressure
and velocity equation for the Apparent Topography scheme on both collocated and staggered mesh,
since the final term in the eigenvalue of the inertia-gravity modes disappears with νr = νu.

We have the following comments based on the Fourier analysis of the semi-discrete scheme:

• We see in Figure 3.3a that the staggered schemes give better dispersion laws than the
corresponding collocated schemes. Since the term sin(k∆x

2 ) of ℑ(λ±) in (3.18) is a monotone
function until k = π

∆x , we get monotonic curves for the dispersion laws of the staggered
schemes. However, this important property does not hold with the collocated schemes. We
can observe that when k∆x≈ 0.4π, the dispersion laws of the collocated schemes start to
decrease. This problem can be explained by the non-monotonic function sin(k∆x) in (3.19).
Therefore, we do not have the spurious 2∆x oscillations with the staggered schemes but we
might have them with the collocated schemes.

• The error phase velocity error is shown in Figure 3.3b where the following quantity is
plotted:

MC =
Ch −C0

C0

where Ch and C0 respectively stand for the numerical and exact phase velocity. This figure
shows us another important property of the staggered schemes: We can notice that the
phase velocity error is much smaller with the staggered scheme than with the collocated
scheme.

• Figure 3.3c indicates that the group velocity of the staggered schemes is always positive
while it becomes negative with the collocated schemes when k∆x > 0.4π. Hence, in the
short wave region, i.e for high frequencies, the energy of the collocated schemes moves in
the wrong direction.

• Considering the staggered type schemes, from Figure 3.3, we can see that the Apparent
Topography staggered scheme curves are closer to the analytical ones than those of the Low
Froude staggered scheme in terms of dispersion law, phase and group velocity.
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• From Figure 3.3d, the damping rate of the Apparent Topography schemes is twice larger
than that of the Low Froude schemes (the damping rates do not depend on the type of
mesh, collocated or staggered). As a result, on a collocated mesh, we may expect fewer
oscillations with the Apparent Topography schemes, especially for the waves with shortest
wavelength 2∆x.

• Figure 3.3 also indicates that in order to make sure that the properties of the numerical
solution are similar to those of the exact solution, with the collocated schemes, we have to
consider meshes which satisfy k∆x

π ≤ 0.2, while the staggered schemes require k∆x
π ≤ 0.4. It

means that we can reduce the mesh size by a factor of two with the staggered schemes.
Hence, the staggered schemes are preferred rather than the collocated schemes in terms of
efficiency.

• Figures 3.4 and 3.6 indicate that the behaviors of the dispersion law and group velocity
strongly depend on the Rossby deformation radius. When Rd < ∆x, the Low Froude
collocated scheme produces much better dispersion law and group velocity than the Apparent
Topography collocated scheme in the region k∆x < 0.4. More importantly, the group velocity
of the Apparent Topography collocated scheme is negative even in the region of interest
which indicates the wrong moving of the energy. Moreover, Figure 3.5 shows that the error
of phase velocity of the Low Froude collocated scheme is smaller than that of the Apparent
Topography collocated scheme. For example, with the shortest wavelength 2∆x, the error of
phase velocity is 50% with the low Froude scheme and 100% with the Apparent Topography
scheme. However, in the regime Rd > ∆x, the Apparent Topography collocated scheme
is preferable. This is because with the Low Froude collocated scheme, waves with short
wavelengths (k∆x > 0.8) do not propagate at all since the corresponding eigenvalues are
real numbers (their imaginary part vanishes) and thus the error in the phase velocity for
short wavelengths is larger with the Low Froude Collocated scheme and their energy does
not propagate.

3.3 Analysis of fully discrete staggered scheme

3.3.1 Fourier analysis of fully discrete scheme

The numerical properties of the semi-discrete scheme may change a lot when we take into account
the time discretization. In this section, we investigate the numerical dispersion law and damping
error (amplification) of the fully discrete schemes. We mention the work of Manuel J. Castro et
al. in [27] for the study of these properties with high order schemes in space an in time.
In general, when a θ-scheme is applied to the Coriolis term, the first order time discretization of
the staggered schemes can be written as

Tθq
n+1
i = qn

i −∆tLi,θ
κ,η(qn) (3.20)

where the matrix Tθ is given by

Tθ =




1 0 0

0 1 −(1 − θ1)ω∆t

0 (1 − θ2)ω∆t 1


 (3.21)
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(a) Dispersion law
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(b) Phase velocity error
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(c) Group velocity
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Figure 3.3: Numerical properties of the semi-discrete Godunov type schemes with Rossby deformation
Rd = ∆x.

and Li,θ
κ,η is the operator corresponding to the spatial discretization defined by

Li,θ
κ,ηq

n =




a⋆
∆x

[
un

i+1 −un
i

]
− κra⋆

2∆x

[
rn

i+3/2 − 2rn
i+1/2 + rn

i−1/2

]
+ ηrω

2 (vn
i+1 − vn

i )

a⋆
∆x

[
rn

i+1/2 − rn
i−1/2

]
− κua⋆

2∆x

[
un

i+1 − 2un
i +un

i−1

]
− θ1ωv

n
i

θ2ωu
n
i



.

It is useful to see that equation (3.20) can be rewritten under the following form

qn+1
i = T −1

θ [qn
i −∆tLi,θ

κ,ηq
n], (3.22)

where the matrix T −1
θ is given by

T −1
θ =

1
Λ(θ1,θ2)




Λ(θ1,θ2) 0 0

0 1 ω∆t(1 − θ1)

0 −ω∆t(1 − θ2) 1


 with Λ(θ1,θ2) = 1+(ω∆t)2(1−θ1)(1−θ2).

(3.23)
We now conduct a Fourier analysis for the fully discrete scheme by substituting the discrete
Fourier modes

rn
i = ϕn

r e
ikxi , un

i = ϕn
ue

ikxi and vn
i = ϕn

v e
ikxi (3.24)
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Figure 3.4: Dispersion laws of semi-discrete Godunov type schemes with different values of Rossby
deformation.
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Figure 3.5: The errors of phase velocity of semi-discrete Godunov type schemes with different values of
Rossby deformation.

into the fully discrete scheme (3.22) in order to obtain

ϕn+1 = Mθϕ
n (3.25)

where the matrix Mθ is given by

Mθ = T −1
θ [I −∆tAθ] (3.26)

with

Aθ =




κra⋆
sin2( k∆x

2
)

∆x
2

ia⋆
sin( k∆x

2
)

∆x
2

iκrω∆x
2

sin( k∆x
2

)
∆x
2

ia⋆
sin( k∆x

2
)

∆x
2

κua⋆
sin2( k∆x

2
)

∆x
2

−θ1ω

0 θ2ω 0



.

Remark 3.7. We now consider one special case when θ1 = 1 and θ2 = 0. In this case, let us note
that the one step scheme is the same as the following splitting scheme, in which the first order
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Figure 3.6: Group velocity of semi-discrete Godunov type schemes with different values of Rossby defor-
mation.

time discretization of the fully discrete scheme is composed of two steps:

q
(1)
i = qn

i −∆tBLi
κ,ηq

n

qn+1
i = q

(1)
i −∆tCLi

κ,ηq
(1)

(3.27)

where

B =




1 0 0
0 1 0
0 0 0


 and C =




0 0 0
0 0 0
0 0 1


 .

Therefore, we obtain
M = (I −∆tCA).(I −∆tBA). (3.28)

For every eigenvalue α of matrix M (or Mθ), the discrete frequency of the wave is defined
by

ℜ(τ) =
arg(α)
∆t

(3.29)

where arg(α) represents the argument of the complex number α.
The amplification factor after a time ∆x

a⋆
is given by

̺= |α|
∆x

a⋆∆t . (3.30)

Now if we denote CFL= a⋆∆t
∆x , the amplification factor can be written as ̺= |α|1/CF L.

Figures 3.7 and 3.8 show the numerical dispersion laws and damping of the fully discrete schemes
with first order time discretization and θ1 = θ2 = 0.5. Those figures indicate the effects of the
time step through the CFL parameter and of the value of the Rossby deformation radius.

• We observe that the properties of the fully discrete scheme are nearly the same as those of
the semi-discrete scheme when the time step is small (CFL= 0.01). More importantly, we
still have monotonic curves for the dispersion laws of the fully staggered schemes, like in
the semi-discrete case. However, when the time step is large, there appears a drawback
with the Apparent Topography staggered scheme: This scheme produces numerical waves
that are faster than the exact ones. Hence, we can say that this scheme is very sensitive to
the time step ∆t. On the contrary, the Low Froude staggered scheme is not sensitive to the
CFL parameter.
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• In consideration of the Apparent Topography collocated scheme, the numerical dispersion
law is closer to the exact one when the CFL value is larger (i.e. for large time steps).

• About the damping error, when the time step is small, there is no difference between the
collocated and staggered schemes. The damping rate of the Apparent Topography scheme
is twice larger than that of the Low Froude scheme. However, the damping rate of those
schemes are different one from the other when the time step gets larger. We can observe
that the greater the CFL value, the less damping error there is with the staggered schemes.

• The properties of the Low Froude collocated scheme also depend on the ratio between the
Rossby deformation radius and the space step ∆x. The dispersion law goes faster to zero
in the regime Rd > ∆x than in the regime Rd ≤ ∆x.
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(b) Dispersion law with CF L =
0.1
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(c) Dispersion law with CF L =
0.4
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(d) Damping error with CF L =
0.01
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(e) Damping error with CF L =
0.1
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(f) Damping error with CF L =
0.4

Figure 3.7: Numerical properties of Godunov type schemes with first order time discretization when
θ1 = θ2 = 1

2 , with Rossby deformation radius Rd = ∆x and κr = κu = 1 for the staggered and collocated
Apparent Topography schemes, while κr = 0,κu = 1 for the staggered and collocated Low Froude schemes.
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(a) Dispersion law with CF L =
0.01
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(b) Dispersion law with CF L =
0.1
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(c) Dispersion law with CF L =
0.4
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(d) Damping error with CF L =
0.01
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(e) Damping error with CF L =
0.1
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(f) Damping error with CF L =
0.4

Figure 3.8: Numerical properties of Godunov type schemes with first order time discretization when
θ1 = θ2 = 1

2 , with Rossby deformation radius Rd = 2∆x and κr = κu = 1 for the staggered and collocated
Apparent Topography schemes, while κr = 0,κu = 1 for the staggered and collocated Low Froude schemes.

3.3.2 Stability condition of the staggered type schemes

We consider a homogeneous cartesian mesh. The one step fully discrete staggered scheme is
given by




rn+1
i+1/2 − rn

i+1/2

∆t
+ a⋆

(
un

i+1 −un
i

∆x

)
− κra⋆∆x

2

(
rn

i+3/2 − 2rn
i+1/2 + rn

i−1/2

∆x2

)
+ κrω∆x

2

(
vn

i+1 − vn
i

∆x

)
= 0,

un+1
i −un

i

∆t
+ a⋆

(
rn

i+1/2 − rn
i−1/2

∆x

)
− κua⋆∆x

2

(
un

i+1 − 2un
i +un

i−1

∆x2

)
= ω

[
θ1v

n
i + (1 − θ1)vn+1

i

]
,

vn+1
i − vn

i

∆t
= −ω

[
θ2u

n
i + (1 − θ2)un+1

i

]

(3.31)
for i ∈ {1, . . . ,N} and 0 ≤ θ1,θ2 ≤ 1.
To be convenient, let us denote:

Θ1 = 1 − θ1 − θ2, Θ2 = θ1θ2 + (1 − θ1)(1 − θ2) ∈ [0,1], Θ3 = (1 − 2θ1)(1 − 2θ2) ∈ [−1,1].

Theorem 3.2. We have:

i. When θ1 + θ2 > 1, the staggered scheme (3.31) is unstable.

ii. For the Low Froude staggered scheme (κr = 0 and κu > 0), we consider the following
two cases:
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(a) If κ2
ua2

⋆
ω2∆x2 ≤ 4a2

⋆
ω2∆x2 +Θ3, the Low Froude staggered scheme is stable under the sufficient

condition:

∆t≤ ∆ta :=
κu∆x

2
(
|a⋆| − ω2∆x2

4|a⋆| Θ1

)
+

; (3.32a)

(b) If κ2
ua2

⋆
ω2∆x2 >

4a2
⋆

ω2∆x2 +Θ3, the Low Froude staggered scheme is stable under the sufficient
condition:

i. When Θ3 ≥ 0,
∆t≤ min{∆ta,∆tb} (3.32b)

where ∆tb :=





2κu|a⋆|
4a2

⋆
∆x

+ω2Θ3∆x

[
1 −

√
1 − 4a2

⋆+ω2Θ3∆x2

κ2
ua2

⋆

]
, if 4a2

⋆ +ω2
Θ3∆x

2 , 0,

∆x
κu|a⋆| , otherwise.

ii. When Θ3 < 0,

∆t≤ min{∆ta,∆tb,∆tc} where ∆tc :=
2

ω
√

|Θ3|
. (3.32c)

iii. For the Apparent Topography staggered scheme (κr > 0), we have the following sufficient
CFL condition:

∆t≤ min{∆ta,∆tb}
where

∆ta :=





− |a⋆|
∆x

(1+κrκu)+
√

( a⋆
∆x

)2(1+κrκu)2+κr(κr+κu)ω2θ2(1−θ1)

κrω2θ2(1−θ1) , if θ2(1 − θ1) , 0
κr+κu

2(1+κrκu)
∆x
|a⋆| otherwise.

(3.32d)

and

∆tb :=





min
{

1
κr
, 1

κu

}
∆x
a⋆
, if θ2 = 1

2 ,

min
{

1
2(κr+κu)

∆x
a⋆
, 1

ω

}
, otherwise.

(3.32e)

Remark 3.8. The time step of the Low Froude staggered scheme is more restrictive upon ∆ta
than the one of the Low Froude collocated scheme. However, it is less restrictive in consideration
of ∆tb. Moreover, in the general case, we normally have κu ≤ 1 and if we only consider the
case 0 ≤ θ1,θ2 ≤ 1

2 , we will obtain Θ3 ≥ 0. As a result, the CFL condition in this case is only
restricted by ∆ta and we can conclude that the CFL condition of the Low Froude staggered scheme
does not depend on the Coriolis parameter ω.

Proof. We perform a Von Neumann analysis to investigate the stability condition for the staggered
scheme (3.31). To begin with, let us denote

σ =
∆t

∆x
, γ = ω∆t and s= sin

(
k∆x

2

)
.

Next, we substitute

qn
j =



rn

j

un
j

vn
j


=



Rn

Un

Vn


eikj∆x
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into (3.31) in order to obtain

Tθq
n+1
j =Bqn

j (3.33)

where the matrix Tθ is given by (3.21) and B is given by

B =




1 − 2κr|a⋆|σs2 −2a⋆σis −iκrω∆ts

−2a⋆σis 1 − 2κu|a⋆|σs2 θ1γ

0 −θ2γ 1


 .

In addition, T −1
θ is given by (3.23). Therefore, we can rewrite (3.33) as qn+1

j = Cqn
j where the

amplification matrix C is given by

C = T −1
θ B =

1
Λ(θ1,θ2)




(1 − 2κr|a⋆|σs2)Λ(θ1,θ2) −2a⋆σisΛ(θ1,θ2) −iκrω∆tsΛ(θ1,θ2)

−2a⋆σis 1 − γ2θ2(1 − θ1) − 2κu|a⋆|σs2 γ

2γ(1 − θ2)a⋆σis −γ[1 − (1 − θ2)2κu|a⋆|σs2] 1 − γ2θ1(1 − θ2)


 .

The characteristic polynomial P(λ) of this amplification matrix has one solution λ0 = 1 and the
other two roots λ± are the solutions of a second degree equation

λ2 + ξλ+ ζ = 0 (3.34)

where the coefficients ξ and ζ are given by

ξ = −2 − γ2(θ1 + θ2 − 2θ1θ2) − 2κu|a⋆|σs2

Λ(θ1,θ2)
+ 2κr|a⋆|σs2

and

ζ =
1 + γ2θ1θ2 − 2κu|a⋆|σs2 + 4a2

⋆σ
2s2

Λ(θ1,θ2)
− 2κr|a⋆|σs2 1 − 2κu|a⋆|σs2

Λ(θ1,θ2)
+ 2κr|a⋆|σs2 γ

2θ2(1 − θ1)
Λ(θ1,θ2)

.

In order to ensure that the roots of (3.34) are in the unit circle (|λ±| ≤ 1), the coefficients ξ and
ζ must satisfy

|ζ| ≤ 1 and |ξ| ≤ 1 + ζ. (3.35)

First of all, we consider the modes which are constant in space (k = 0, so s= 0). In this case
the condition |ζ| ≤ 1 reduces to

1 + γ2θ1θ2 ≤ 1 + γ2(1 − θ1)(1 − θ2).

This condition is fulfilled if and only if

γ2[(θ1 + θ2) − 1] ≤ 0.

Therefore, the parameters θ1 and θ2 must satisfy the stability condition θ1 + θ2 ≤ 1. This proves
Point 1. Therefore, in what follows, we consider the case θ1 + θ2 ≤ 1, which implies in particular
that Θ1 ≥ 0.
Next, we consider the Low Froude staggered scheme by setting the numerical viscosity κr = 0.
In this case, condition (3.35) can be expressed by the following procedures:
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• Firstly, the condition ζ ≤ 1 is equivalent to

1 + γ2θ1θ2 − 2κu|a⋆|σs2 + 4a2
⋆σ

2s2

Λ(θ1,θ2)
≤ 1

which leads to
f1(s2) := −γ2

Θ1 − 2κu|a⋆|σs2 + 4a2
⋆σ

2s2 ≤ 0.

With s varying in [−1,1], the previous condition holds provided max[0,1] f1 ≤ 0. We notice
that

max
[0,1]

f1 =

{
f1(0), if |a⋆|σ ≤ κu

2 ,

f1(1), otherwise.

We first note that with |a⋆|σ ≤ κu
2 , the condition f1(0) ≤ 0 is always satisfied. So the

condition ∆t≤ κu∆x
2|a⋆| is sufficient to have ζ ≤ 1.

On the other hand, if ∆t > κu∆x
2|a⋆| , which means |a⋆|σ > κu

2 , the condition f1(1) ≤ 0 reads

−γ2
Θ1 − 2κu|a⋆|σ+ 4a2

⋆σ
2 ≤ 0 ⇐⇒

(
(2|a⋆|)2

∆x2
−ω2

Θ1

)
∆t≤ 2|a⋆|

∆x
κu,

which means ∆t ≤ ∆ta defined in (3.32a). So by gathering the two cases, the condition
ζ ≤ 1 will be satisfied if and only if ∆t≤ ∆ta.

• Next, the condition ζ ≥ −1 can be written as

f2(s2) := γ2
Θ2 + 2(1 −κu|a⋆|σs2) + 4a2

⋆σ
2s2 ≥ 0.

We shall see below that this constraint is weaker than another one (f3(s2) ≥ 0) and needs
not be taken into account.

• Let us now turn to the condition upon ξ. The first case −ξ ≤ 1 + ζ reads

2 − γ2(θ1 + θ2 − 2θ1θ2) − 2κu|a⋆|σs2 ≤ 2 + γ2[1 − (θ1 + θ2) + 2θ1θ2] − 2κu|a⋆|σs2 + 4a2
⋆σ

2s2

which comes down to
−γ2 − 4a2

⋆s
2 ≤ 0.

The latter inequality always holds and does not imply any additional constraint upon ∆t.

• Finally, we consider the case ξ ≤ 1 + ζ. This leads to

−2+γ2(θ1 +θ2 −2θ1θ2)+2κu|a⋆|σs2 ≤ 2+γ2[1−(θ1 +θ2)+2θ1θ2]−2κu|a⋆|σs2 +4a2
⋆σ

2s2.

It follows that
f3(s2) := γ2

Θ3 + 4(1 −κu|a⋆|σs2) + 4a2
⋆σ

2s2 ≥ 0.

From Θ3 = 2Θ2 − 1, we infer that 2f2(s2) − f3(s2) ≥ 0 over [0,1]. This implies that the
condition f2(s2) ≥ 0 is a consequence of f3(s2) ≥ 0.

With s varying in [−1,1], the previous condition holds provided min[0,1] f3 ≥ 0. Moreover,
we have

min
[0,1]

f3 =

{
f3(0), if |a⋆|σ > κu,

f3(1), otherwise.
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When |a⋆|σ > κu, the condition f3(0) ≥ 0 is given by

f3(0) = γ2
Θ3 + 4 ≥ 0

which is always satisfied when Θ3 ≥ 0 and in case Θ3 < 0, this condition leads to

∆t≤ 2
ω
√

|Θ3|
. (3.36)

When |a⋆|σ ≤ κu, the condition f3(1) ≥ 0 is equivalent to

Q3(∆t) =

(
ω2

Θ3 +
4a2

⋆

∆x2

)
∆t2 − 4κu

|a⋆|
∆x

∆t+ 4 ≥ 0

When κ2
ua2

⋆
ω2∆x2 ≤ 4a2

⋆
ω2∆x2 +Θ3, this condition is always satisfied. If not, then the solutions of

the second order equation Q3(∆t) = 0 are given by

∆t=
2κu|a⋆|

4a2
⋆

∆x +ω2Θ3∆x

[
1 ±

√
1 − 4a2

⋆ +ω2Θ3∆x2

κ2
ua

2
⋆

]
(3.37)

which leads to the stability condition

∆t≤ ∆tb =





2κu|a⋆|
4a2

⋆
∆x

+ω2Θ3∆x

[
1 −

√
1 − 4a2

⋆+ω2Θ3∆x2

κ2
ua2

⋆

]
, if 4a2

⋆ +ω2
Θ3∆x

2 , 0,

∆x
κu|a⋆| , otherwise.

(3.38)

This concludes Point 2.
We now consider the Apparent Topography scheme with κr > 0. In this case, in order to find

a sufficient CFL condition based on (3.35), we combine the following conditions:

• First, the condition ζ ≤ 1 is equivalent to

f1(s2) := −2(κr+κu)|a⋆|σs2+4a2
⋆σ

2s2+4κrκua
2
⋆σ

2s4+2κr|a⋆|σs2γ2θ2(1−θ1)−γ2 [1 − (θ1 + θ2)] ≤ 0.

With s varying in [−1,1], the maximum value of f1(s2) is either f1(0) or f1(1) due to
the the fact that 4κrκua

2
⋆σ

2 > 0. Moreover, we have f1(0) = −γ2 [1 − (θ1 + θ2)], so the
condition f1(0) ≤ 0 is always satisfied since we only consider the case θ1 + θ2 ≤ 1. We now
focus on the condition f1(1) ≤ 0 which is given by

−2(κr+κu)|a⋆|σ+4a2
⋆σ

2+4κrκua
2
⋆σ

2+2κr|a⋆|σγ2θ2(1−θ1)−γ2 [1 − (θ1 + θ2)] ≤ 0. (3.39)

We note that a sufficient condition for (3.39) to hold is when we have

−2(κr +κu)|a⋆|σ+ 4a2
⋆σ

2 + 4κrκua
2
⋆σ

2 + 2κr|a⋆|σγ2θ2(1 − θ1) ≤ 0. (3.40)

We now notice that when θ2 = 0 or θ1 = 1, condition (3.40) reduces to

−2(κr +κu)|a⋆|σ+ 4a2
⋆σ

2 + 4κrκua
2
⋆σ

2 ≤ 0 ⇒ ∆t≤ κr +κu

2(1 +κrκu)
∆x

a⋆
.

On the other hand, when θ2(1 − θ1) , 0, (3.40) leads to the condition

∆t≤ ∆ta :=
− |a⋆|

∆x (1 +κrκu) +
√

( a⋆
∆x)2(1 +κrκu)2 +κr(κr +κu)ω2θ2(1 − θ1)

κrω2θ2(1 − θ1)
. (3.41)
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• Next, the condition ζ ≥ −1 can be written as

f2(s2) := 2 − 2(κr +κu)|a⋆|σs2 + 4a2
⋆σ

2s2 + 4κrκua
2
⋆σ

2s4

+2κr|a⋆|σs2γ2θ2(1 − θ1) + γ2[1 − (θ1 + θ2) + 2θ1θ2] ≥ 0.

We shall see below that this constraint is weaker that another one (f3(s2) ≥ 0) and needs
not be taken into account.

• The condition −ξ ≤ 1 + ζ reads

2 − γ2(θ1 + θ2 − 2θ1θ2) − 2(κr +κu)|a⋆|σs2 ≤ 2 − 2(κr +κu)|a⋆|σs2 + 4a2
⋆σ

2s2 + 4κrκua
2
⋆σ

2s4

+ 2κr|a⋆|σs2γ2(1 − θ1) + γ2[1 − (θ1 + θ2) + 2θ1θ2]

which comes down to

−γ2 − 4a2
⋆σ

2s2 − 4κrκua
2
⋆σ

2s4 − 2κr|a⋆|σs2γ2(1 − θ1) ≤ 0.

This inequality always holds, so we do not need any additional constraint upon ∆t.

• Finally, we consider the case ξ ≤ 1 + ζ. This leads to

−2 + γ2(θ1 + θ2 − 2θ1θ2) + 2(κr +κu)|a⋆|σs2 ≤ 2 − 2(κr +κu)|a⋆|σs2 + 4a2
⋆σ

2s2 + 4κrκua
2
⋆σ

2s4

+ 2κr|a⋆|σs2γ2(1 − θ1)(2θ2 − 1)

+ γ2[1 − (θ1 + θ2) + 2θ1θ2]

It follows that

f3(s2) := γ2
Θ3+2κr|a⋆|σγ2s2(1−θ1)(2θ2−1)+4−4(κr+κu)|a⋆|σs2+4a2

⋆σ
2s2+4κrκua

2
⋆σ

2s4 ≥ 0.
(3.42)

We note that 2f2 ≥ f3 so that indeed f2 ≥ 0 is a consequence of f3 ≥ 0.

Since Θ3 ≥ −1 and (1 − θ1)(2θ2 − 1) ≥ −1, this condition is always satisfied when

g3(s2) := −γ2 −2κr|a⋆|σγ2s2 +4−4(κr +κu)|a⋆|σs2 +4a2
⋆σ

2s2 +4κrκua
2
⋆σ

2s4 ≥ 0. (3.43)

The minimum of g3 is reached in s2 =X3 with

X3 =
κr
2 γ

2 + (κr +κu) − |a⋆|σ
2κrκu|a⋆|σ .

We realize that under the condition ∆t≤ κr+κu
2(1+κrκu)

∆x
|a⋆| (which implies (κr +κu) ≥ 2|a⋆|σ(1+

κrκu)) we have

X3 ≥ 1 +
1

2κrκu
> 1.

Therefore, the stability condition is satisfied when

g3(s2 = 1) = −γ2 − 2κr|a⋆|σγ2 + 4 − 4(κr +κu)|a⋆|σ+ 4a2
⋆σ

2 + 4κrκua
2
⋆σ

2 ≥ 0. (3.44)

One sufficient condition for (3.44) is given by

∆t≤ ∆tb := min
{

1
2(κr +κu)

∆x

|a⋆| ,
1
ω

}
.

because then γ ≤ 1, moreover 2κr|a⋆|σγ2 ≤ κr
κr+κu

and 4(κr +κu)|a⋆|σ ≤ 2.
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As a special case, going back to (3.42), we now notice that when θ2 = 1
2 the first two terms

of (3.42) vanish and the condition f3(s2) ≥ 0 leads to

4 − 4(κr +κu)|a⋆|σ+ 4a2
⋆σ

2 + 4κrκua
2
⋆σ

2 ≥ 0.

This condition is fulfilled when

1 − (κr +κu)|a⋆|σ+κrκua
2
⋆σ

2 ≥ 0. (3.45)

Solving (3.45) is easy and leads to the following sufficient condition

∆t≤ ∆tb := min
{

1
κr
,

1
κu

}
∆x

|a⋆| .

3.4 Numerical results

3.4.1 Well balanced test case

Let us fix the parameters a⋆ = 1, ω = 1, θ1 = 1
2 ,θ2 = 1

2 and consider the initial condition on the
periodic domain (0,2π)

q0 =
(
sin(ωx),0,a⋆ cos(ωx)

)
(3.46)

which is in the kernel Eω,0. At the discrete level, in order to ensure that q0
h is in the discrete

kernel, we first interpolate r0 to where it is located according to the scheme (ri+1/2 for staggered
schemes and ri for collocated schemes), and then use the definitions of the discrete kernels to
compute vi from ri+1/2 and ri−1/2 for the staggered schemes and from ri+1 and ri−1 for the
collocated schemes.

Figure 3.9 indicates that the classical scheme is unable to capture the discrete kernel since
it introduces spurious waves in the orthogonal subspace (Figure 3.9b). Moreover, the damping
of the kernel part in Figure 3.9a is another evidence to show the incorrect behaviour of the
classical scheme. On the contrary, the Low Froude and Apparent Topography strategies are
well-balanced schemes. This is because they preserve the kernel part and do not create any wave
in the orthogonal part as well.
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Figure 3.9: Well-balanced test case: the evolution of the kernel and orthogonal components of the fully
discrete scheme.
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3.4.2 Orthogonality preserving test case

In this test case, we investigate the behavior of the numerical scheme with one initial condition
in the orthogonal subspace given by

q0 =
(
a⋆ cos(ωx),1,sin(ωx)

)
(3.47)

At the discrete level, in order to ensure that q0
h is in the discrete kernel, we first interpolate v0 to

define vi, and then use the definitions of the orthogonal of the discrete kernels to compute ri+1/2

from vi+1 and vi for the staggered schemes and ri from vi+1 and vi−1 for the collocated schemes.
Figure 3.10b shows that the orthogonal part is damped much faster with the Apparent

Topography schemes than with the classical and Low Froude schemes. As a result, the Apparent
Topography schemes create waves with larger amplitudes in the kernel than the other schemes,
which is shown in Figure 3.10a. As can be seen, although the classical Low Froude is not
orthogonality preserving, it introduces waves with smaller amplitudes in the kernel than the
other schemes.
In Figure 3.11, we make the analysis for some different Low Froude schemes. The parameter τ
stands for the time discretization of the velocity u in the pressure equation (we replace un by
τun + (1 − τ)un+1. So the explicit choice corresponds to the case τ = 1 (note that the scheme
remains explicit even when τ < 1 because un+1 can be computed independently of rn+1). From
Figure 3.11, we can observe that only the Low Froude scheme with τ = 1

2 can preserve the
orthogonal subspace. On the other hand, this Figure also shows that the damping rate in the
orthogonal part also depends on the parameter τ . The more implicit, the larger the damping
rate.
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Figure 3.10: Orthogonality preserving test case: the evolution of the kernel and orthogonal part of the
fully discrete scheme.

3.4.3 Accuracy at low Froude number test case

We now consider the following condition

q0
i = q̂0

i +M
q̃0

i

‖q̃0
i ‖ where




q̂0(x) =

(
sin(ωx),0,a⋆ cos(ωx)

)
∈ Eω,0,

q̃0(x) =
(
a⋆ cos(ωx),1,sin(ωx)

)
∈ E⊥

ω,0,

which is close to the kernel Eω,0 up to a perturbation of order M , and where the discrete
components q̂0

i and q̃0
i are computed as in the previous two test cases.
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Figure 3.11: Orthogonal preserving test case: the evolution of the kernel and orthogonal components of
the Low Froude type schemes.

We can observe from Figure 3.12 that all the presented well-balanced schemes are accurate at
low Froude number, since, for those schemes, the deviations of the solution from the projection
of the initial condition into the kernel are of size O(M) when the initial condition is close to
the discrete kernel (‖q0 −Pq0‖ = O(M)). On the other hand, the total deviation for the Low
Froude scheme remains with a norm much larger than with the Apparent Topography scheme.
One explanation for this is that we have more damping with the Apparent Topography scheme
in the orthogonal subspace. This also implies that the Low Froude scheme tends to the steady
state slower than the Apparent Topography scheme.
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Figure 3.12: Accuracy at low Froude number test case: deviation of the solution from the initial projection
in the kernel for various fully discrete schemes.
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3.4.4 Water column test case and geostrophic adjustment

In this test, we consider the initial condition given by




r(x,t= 0) =

{
1 +A0, if |x| ≤R0

1, if |x|>R0.

u(x,t= 0) = 0,

v(x,t= 0) = 0.

(3.48)

with periodic boundary condition on the domain [−5,5], θ1 = 1, θ2 = 0, a⋆ = ω = 1 and 100 grid
cells. We note that this initial condition is far from the geostrophic equilibrium.
Figure 3.13 and 3.14 respectively present the evolution of the pressure and vertical velocity. We
can observe that with the classical scheme, the pressure tends to a constant and the vertical
velocity has a tendency to zero. This corresponds to the discrete kernel (3.8). However, the
Low Froude and Apparent Topography schemes tend to another steady state corresponding to
the correct discrete kernel (3.9). On the other hand, as can be seen, there are small oscillations
during the evolution of the LFC scheme. One possible reason for this problem comes from
the fact that the dispersion relation of the collocated schemes is not monotone. Therefore, we
really need the damping effect for the waves with shortest wavelengths to avoid this unwanted
behaviour of the collocated scheme. Since the damping of the ATC is twice larger than that of
the LFC scheme, the oscillation problem is avoided with this scheme.
The adjustment process of the staggered schemes is shown in Figure 3.15 and 3.16. We can see
that the ATS scheme tend to the geostrophic equilibrium faster than the LFS scheme. These
figures are another evidence to confirm that the Low Froude and Apparent Topography strategies
have a correct discrete steady state.
The final state of a well balanced scheme also depends on the parameter A0 and R0. This
property is presented in Figure 3.17. The positive value of A0 stands for the unbalanced height
elevation and the negative value of A0 corresponds to the height depression.
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Figure 3.13: Water column test case: the evolution of the pressure with A0 =R0 = 1
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(a) v(x,t) at time t = 4
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(b) v(x,t) at time t = 10
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(c) v(x,t) at time t = 20
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(e) v(x,t) at time t = 200
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Figure 3.14: Water column test case: the evolution of the vertical velocity with A0 =R0 = 1
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(b) t = 200
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Figure 3.15: The pressure gradient and Coriolis force of the LFS scheme with A0 =R0 = 1
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Figure 3.16: The pressure gradient and Coriolis force of the ATS scheme with A0 =R0 = 1
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Figure 3.17: Water column test case with different values of A0 and R0 at time t= 400: pressure r (top
row) and vertical velocity v (bottom row).

3.5 Conclusion

In the present work, we adapt the Low Froude and Apparent Topography strategies, developed
for collocated grids in [13, 37], to staggered grids in order to obtain the Low Froude staggered
scheme and the Apparent Topography staggered scheme, which are able to capture correctly
discrete steady states. The new schemes on staggered grids have better dispersion laws than
those on collocated grids. More importantly, the Low Froude staggered scheme is robust with
respect to the time step as well as to the relation between the Rossby deformation and space
step. On the other hand, the Low Froude staggered scheme is accurate at low Froude number
when the initial condition is close to the kernel, and this scheme may also be tuned to preserve
the orthogonal subspace. Besides the properties of the numerical schemes, we provide CFL
conditions to ensure the stability of the staggered schemes in Theorem 3.2. We now aim to
extend these results to the 2D case with Arakawa A-E grids [40, 41].

3.A Analysis of staggered type schemes without diffusion term

3.A.1 MAC type schemes

The are some kinds of MAC schemes which can be applied to the linear wave equation (3.2).
One of them is simply given by





un+1
i −un

i
∆t + a⋆

r
n+1/2

i+1/2
−r

n+1/2

i−1/2

∆x = ω
vn+1

i +vn
i

2 ,

vn+1
i −vn

i
∆t = −ω un+1

i +un
i

2 ,

r
n+3/2

i+1/2
−r

n+1/2

i+1/2

∆t + a⋆
un+1

i+1
−un+1

i

∆x = 0

(3.A.1)
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which computes the velocities at the cell centers and the pressures at the interfaces. In this
scheme, we use a staggered discretization in time, in which the unknowns are not defied at the
same time. Particularly, the pressure field is defined at tn+1/2 = (n+ 1

2)∆t and the velocity
field is defined at tn = n∆t. Let us note that since we do not have the velocity field at time
tn+1/2 = (n+ 1

2)∆t, we use a semi-implicit discretization in time for the Coriolis source term.
One may think that we can also use a staggered grid in time for the velocity field by defining the
discrete horizontal and vertical velocities respectively at tn and tn+1/2 in order to get another
kind of MAC scheme, namely MAC-ω. This scheme can be written as





un+1
i −un

i
∆t + a⋆

r
n+1/2

i+1/2
−r

n+1/2

i−1/2

∆x = ωv
n+1/2
i ,

v
n+3/2

i −v
n+1/2

i
∆t = −ωun+1

i ,

r
n+3/2

i+1/2
−r

n+1/2

i+1/2

∆t + a⋆
un+1

i+1
−un+1

i

∆x = 0.

(3.A.2)

Remark 3.9. The MAC type schemes (3.A.1) and (3.A.2) are second order accurate in space
and in time.

Stability condition

Lemma 3.6. [(i)]

i. The MAC scheme (3.A.1) is stable when the following CFL condition is satisfied

∆t

(
a⋆

∆x

)
≤ 1. (3.A.3)

ii. The MAC-ω scheme (3.A.2) is stable under the following condition

∆t

(
a⋆

∆x
+
ω

2

)
≤ 1. (3.A.4)

Proof. To begin with, we multiply the first equation of (3.A.1) with un+1 +un in order to obtain

‖un+1‖2 − ‖un‖2

∆t
+ a⋆〈∂x,hr

n+1/2,un+1 +un〉 =
ω

2
〈vn+1 + vn,un+1 +un〉. (3.A.5)

Next, by multiplying the second equation with vn+1 + vn, we easily get

‖vn+1‖2 − ‖vn‖2

∆t
= −ω

2
〈un+1 +un,vn+1 + vn〉. (3.A.6)

On the other hand, we now multiply the final equation with rn+3/2 + rn+1/2 to get the following
relation

‖rn+3/2‖2 − ‖rn+1/2‖2

∆t
+ a⋆〈∂x,hu

n+1, rn+3/2 + rn+1/2〉 = 0. (3.A.7)

By using the discrete integration by part and taking the sum of all equations from (3.A.5) to
(3.A.7), we obtain one kind of conservation of energy

Eh = ‖rn+3/2‖2+‖un+1‖2+‖vn+1‖2+a⋆∆t〈∂x,hu
n+1, rn+3/2〉 = ‖rn+1/2‖2+‖un‖2+‖vn‖2+a⋆∆t〈∂x,hu

n, rn+1/2〉

As a result, we have

‖rn+3/2‖2 + ‖un+1‖2 + ‖vn+1‖2 − a⋆∆t‖rn+3/2‖ .‖un+1‖ ≤ Eh (3.A.8)
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Due to the fact that ‖∂x,hu
n+1‖ ≤ 2

∆x‖un+1‖, inequality (3.A.8) leads to

‖rn+3/2‖2 − 2
a⋆∆t

∆x
‖un+1‖ .‖r3+1/2‖ + ‖un+1‖2 + ‖vn+1‖2 ≤ Eh.

By the inequality (1 −α)(x2 + y2) ≤ x2 − 2αxy+ y2, this leads to
(

1 − a⋆∆t

∆x

)(
‖rn+3/2‖2 + ‖un+1‖2 + ‖vn+1‖2

)
≤ Eh.

Therefore, under the stability condition given by (3.A.3), it follows that the energy is always
bounded a constant

‖rn+3/2‖2 + ‖un+1‖2 + ‖vn+1‖2 ≤ Eh

1 − a⋆

(
∆t
∆x

) .

This proves Point (i).
For Point (ii), we follow the same way and easily obtain the conservation of the following
quantity

‖rn+3/2‖2 + ‖un+1‖2 + ‖vn+3/2‖2 + a⋆∆t〈∂x,hu
n+1, rn+3/2〉 +ω∆t〈un+1,vn+3/2〉 = Eh

This relation implies that
(

1 − a⋆∆t

∆x

)
‖rn+3/2‖2 +

(
1 − a⋆∆t

∆x
− ω∆t

2

)
‖un+1‖2 +

(
1 − ω∆t

2

)
‖vn+3/2‖2 ≤ Eh

Therefore, the condition given by (3.A.4) is sufficient for stability.

The dispersion law

We look for the solution of the MAC scheme (3.A.2) under the following discrete Fourier modes

r
n+1/2
j+1/2 = r̂ei(k(j+1/2)∆x−ℓ(n+1/2)∆t), un

j = ûei(kj∆x−ℓn∆t) and v
n+1/2
j = v̂ei(kj∆x−ℓ(n+1/2)∆t).

(3.A.9)
Introducing these expressions in (3.A.2), we obtain the following system




a⋆

(
ei k∆x

2 −e−i k∆x
2

∆x

)
e− iℓ∆t

2 −e
iℓ∆t

2

∆t −ω

0 ω e− iℓ∆t
2 −e

iℓ∆t
2

∆t

e− iℓ∆t
2 −e

iℓ∆t
2

∆t a⋆

(
ei k∆x

2 −e−i k∆x
2

∆x

)
0







r̂

û

v̂




= 0. (3.A.10)

It is clear that (3.A.10) have nontrivial solutions when the determinant is zero. It leads to the
following dispersion relation

sin
(
k∆x

2

)
= 0 ( steady states) or

2sin( ℓ∆t
2 )

∆t
= ±

√√√√ω2 + a2
⋆

(
2sin(k∆x

2 )
∆x

)2

(3.A.11)

Let us note that from the dispersion relation (3.A.11), we can say that the necessary condition
for stability is

∆t

√(
a⋆

∆x

)2

+
(
ω

2

)2

≤ 1, (3.A.12)

which is actually better than (3.A.4), which was obtained by energy estimates.
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3.A.2 The forward-backward type schemes

The forward-backward scheme applied to the linear wave equation (3.2) is given by





un+1
i −un

i
∆t + a⋆

rn
i+1/2

−rn
i−1/2

∆x = ω
[
θ1v

n
i + (1 − θ1)vn+1

i

]
,

vn+1
i −vn

i
∆t = −ω

[
θ2u

n
i + (1 − θ2)un+1

i

]
,

rn+1

i+1/2
−rn

i+1/2

∆t + a⋆
un+1

i+1
−un+1

i

∆x = 0.

(3.A.13)

Remark 3.10. The forward-backward scheme (3.A.13) is second-order accurate in space, but only
first-order accurate in time.

Remark 3.11. Although the term un+1 appear in the second and the third equation, the forward-
backward scheme is totally explicit in the sense that the quantity un+1 is calculated in the first
equation and then it is used in the other equations without having to invert any matrix.

Lemma 3.7. With θ1 + θ2 ≤ 1 and Θ = (1 − 2θ1)(1 − 2θ2), we consider the following cases:

i. If Θ ≥ 4a2
⋆

ω2∆x2 , the forward-backward scheme (3.A.13) is always stable.

ii. If Θ < 4a2
⋆

ω2∆x2 , the stability condition of the the forward-backward scheme (3.A.13) is
given by

∆t≤ 1√( a⋆
∆x

)2 −
(ω

2

)2
Θ

(3.A.14)

Proof. The characteristic polynomial of the amplification matrix associated to the forward-
backward scheme (3.A.13) has one solution λ = 0. The other roots are the solutions of the
following equation

λ2 + ξλ+ ζ = 0

where

ξ = −2 − γ2(θ1 + θ2 − 2θ1θ2) − 4a2
⋆σ

2s2

Λ(θ1,θ2)
and ζ =

1 + γ2θ1θ2

Λ(θ1,θ2)
.

Let us note that the parameters σ, γ and Λ(θ1,θ2) are defined in the proof of theorem 3.2. When
the parameters θ1 and θ2 satisfy the stability relation θ1 + θ2 ≤ 1, it is obvious to see that the
conditions |ζ| ≤ 1 and −ξ ≤ 1 + ζ are always true. Hence, the stability of this scheme is obtained
when ξ ≤ 1 + ζ, which leads to

γ2
Θ + 4 − 4a2

⋆σ
2 ≥ 0.

Therefore, we deduce Point (i) and (ii).
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The study deals with colocated Godunov type finite volume schemes applied to the two-
dimensional linear wave equation with Coriolis source term. The purpose is to explain the
wrong behaviour of the classical scheme and to modify it in order to avoid accuracy issues
around the geostrophic equilibrium and in geostrophic adjustment processes. To do so,
a Hodge-like decomposition is introduced. Then three different well-balanced strategies
are introduced. Some properties of the associated modified equation are proven and then
extended to the semi-discrete case. Stability of fully discrete schemes under a classical
CFL condition is established thanks to a Von Neumann analysis. Some numerical results
reinforce the purpose.
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4.1 Introduction

The primitive equations of the ocean are widely used to model oceanographic flows at global or
regional scales, see [42] and [43, 44] for a mathematical study. The presence of specific source
terms, in particular those accounting for Coriolis force and non trivial bathymetry, plays an
important role and is not obvious to deal with in numerical simulations. A good model to study
the impact of the discretisation of these source terms on the quality of numerical solutions is
the shallow water system (4.1) presented below. It is simpler than the primitive equations, in
particular due to the reduction of dimension from 3D to 2D, but still contains most of the issues
raised by the presence of source terms. In this context, the discretisation of the topographic
source term in a collocated finite volume framework has been dealt with in many works over
the last two decades, see the reference book [25] or [45] for a more recent review. In the present
work, we focus on the collocated finite volume discretisation of the Coriolis source term.

At large scales, many oceanographic flows are perturbations of the so-called geostrophic
equilibrium (4.3) that corresponds to a balance between the pressure gradient and the Coriolis
force. It follows that the accuracy of numerical methods is strongly related in many situations
to their ability to maintain this balance. In the collocated finite volume framework, very few
works were devoted to this question. In [13], see also [14, 25], the authors propose to extend a
technique originally developed for the topographic term in [5]. The resulting scheme is named the
Apparent Topography method. It turns out to yield good results for one dimensional experiments.
In [27] the technique is extended to higher order schemes and assessed on two-dimensional
problems. One of the main results in the present work is to prove that the Apparent Topography
method alone is not accurate around the two-dimensional geostrophic equilibrium and has to
be supplemented by other developments. In [28] the authors propose an alternative method,
namely the Finite Volume Evolution Galerkin (FVEG) method, but they also mainly consider
the one-dimensional geostrophic equilibrium, i.e.when the two-dimensional velocity is function
of only one space variable. Very recently [46], an RS-IMEX scheme (for Reference Solution
IMplicit EXplicit scheme) was designed for shallow water equations with Coriolis force and
proven to be asymptotically consistent with the Quasi-Geostrophic Equations. Here we only
consider time discretisations that lead to explicit computations, i.e.with no linear systems to
solve. As previously mentioned, the present work is also restricted to the collocated finite volume
framework, we refer to [12, 47] for other approaches.

The velocity field associated with the geostrophic equilibrium (4.3) is obviously divergence
free. This implies that our study will share important properties with works devoted to the study
of low Mach number (for Euler equations) or low Froude number (for shallow water equations)
regimes. The reader is referred to [15, 20–22, 48–50] where some accurate numerical schemes are
proposed. In particular, we shall often refer to the framework introduced in [20].

In the present work we investigate the preservation of the geostrophic equilibrium in the
context of the two-dimensional wave equation with Coriolis force (4.2), that is the linearised
version of the shallow water equations. It generalises a study initiated in [37, 38] in the one
dimensional context. In Section 4.2 we recall the main characteristics of the wave equation with
Coriolis force. In Section 4.3 we show that the classical collocated finite volume Godunov scheme
is not accurate in the vicinity of the geostrophic equilibrium. This inaccuracy is mainly related to
the numerical diffusion terms that make the stationary states of the scheme not consistent with
those of the continuous model. In Section 4.4, we show that the Apparent Topography (AT)
method proposed in [13] and a Divergence Penalisation (DP) method mentioned in [20] can be
used to cure the problem, provided they are combined together or to other Low Froude strategies
inspired from [20–22]. For that, we analyze the modified equations related to the aforementioned
corrections. In Section 4.5 we turn to the related semi-discrete (in space) analysis. In particular
we construct discrete operators that possess mimetic properties that are proven to be necessary
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for accuracy, see also [47]. We also propose two consistent discretisations of the continuous steady
states and we design the corresponding numerical schemes. Finally we exhibit the dispersion
relations associated to the different numerical schemes and we prove that one of the proposed
scheme is energy dissipative. In Section 4.6 we introduce the time discretisation and we prove
the main result of this work which is that some of the proposed schemes are accurate and linearly
stable under some CFL conditions. In Section 4.7 we illustrate the previous properties through
some two dimensional numerical results.

4.2 Properties of the linear wave equation with Coriolis source term in 2D

In order to study the dimensionless shallow water equation in the rotating frame




St∂th+ ∇ · (hū) = 0,

St∂t(hū) + ∇ · (hū ⊗ ū) +
1

Fr
2 ∇

(
h2

2

)
= − 1

Fr
2h∇b− 1

Ro
hū

⊥,
(4.1)

we focus on the linear wave equation with Coriolis source term
{
∂tr+ a⋆∇ · u = 0

∂tu + a⋆∇r = −ωu⊥ ⇐⇒ ∂tq+Lwq = 0 (4.2)

with u = (u,v)T , u⊥ = (−v,u)T , q = (r,u,v) and

Lωq =

(
a⋆∇ · u

a⋆∇r+ωu⊥

)
.

In the sequel, we assume that a∗ > 0 is a constant.
System (4.2) is obtained from the shallow water equation (4.1) when the Froude number

(Fr) and the Rossby number (Ro) are of order O(M) and the Strouhal number (St) is of order
O(M−1), i.e. for short times, for a small parameter M ≪ 1, and b≡ cte.

To begin with, let us introduce the Hilbert space
(
L2(T2)

)3
=
{
q = (r,u,v)

∣∣∣∣
∫

T2
r2

dx +
∫

T2

(
u2 + v2

)
dx<∞

}

equipped with the scalar product

〈q1, q2〉 =
∫

T2
r1r2 dx +

∫

T2
(u1u2 + v1v2) dx.

4.2.1 Structure of the kernel of the original model

Since the preservation of steady-states of (4.2) is crucial in the design of accurate numerical
schemes, especially in the limit M → 0, we recall some well-known results about those steady-
states. Let us define the kernel of the linear operator Lω as

Eω,0 := kerLω,0 =
{

(r,u) ∈H1(T2) ×
(
L2(T2)

)2
∣∣∣∣ a⋆∇r = −ωu⊥

}
. (4.3)

Since ωu = a⋆(∇r)⊥ implies that ∇·u = 0, being a steady-state of (4.2) is equivalent to belonging
to Eω,0. Let us mention that Eω=0 is named the incompressible subspace (see [20] for more
details). We shall keep the same terminology in the present work. As we shall see later on,
the orthogonal space of the kernel plays an important role in the analysis of the behaviour of
numerical schemes. Hence the following statement:
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Proposition 4.1. The orthogonal space of Eω,0 is given by

E⊥
ω,0 =

{
(p,v) ∈ L2(T2) × H(curl,T2)

∣∣∣ ωp= a⋆∇ × v
}
, (4.4)

where ∇ × u := ∂xuy − ∂yux and H(curl,T2) :=
{

u ∈
(
L2(T2)

)2 ∣∣∣∇ × u ∈ L2(T2)
}
.

Moreover, we have Eω,0 ⊕ E⊥
ω,0 =

(
L2(T2)

)3
. In other words, any q ∈

(
L2(T2)

)3
can be

decomposed into
q = q̂+ q̃

where q̂ ∈ Eω,0 and q̃ ∈ E⊥
ω,0 and this decomposition is unique.

The proof of this proposition can be found in Appendix 4.A.

Remark 4.1. The periodic boundary condition implies that for all elements q̃ = (p,v) ∈ E⊥
ω,0, we

have

p ∈ L2
0(T2) :=

{
f ∈ L2(T2)

∣∣∣∣
∫

T2
f dx = 0

}
.

4.2.2 Energy conservation

Let us define the energy as E = 〈q,q〉.

Proposition 4.2. Let q be a solution of System (4.2) on T2. Then, the energy is preserved

E(t > 0) = E(t= 0).

Proof. To compute the energy estimate associated to System (4.2), we directly obtain

1
2
d

dt
〈q,q〉 = −〈Lωq,q〉 = 0

since Lω is antisymmetric.

Remark 4.2. Energy conservation and linearity imply uniqueness of the solution of System (4.2).

4.2.3 Behaviour of solutions

Proposition 4.3. Let q be the solution of System (4.2) with initial condition q0(x). Then:

i. ∀ q0(x) ∈ Eω,0, we have q(t > 0,x) = q0(x) ∈ Eω,0.

ii. ∀ q0(x) ∈ E⊥
ω,0, we have q(t > 0,x) ∈ E⊥

ω,0.

Proof. Any initial condition q0 = (r0,u0,v0) ∈ Eω,0 is obviously a solution of (4.2); by the
uniqueness property mentioned above, Point i. is proven.

As far as Point ii. is concerned, we consider q0 ∈ E⊥
ω,0. For all q̂ = (r̂, û) belonging to the

kernel Eω,0, due to periodic boundary conditions, we obtain

〈
d

dt
q, q̂

〉
= −a⋆

∫

T2
r̂∇ · u dx − a⋆

∫

T2
∇r · û dx −ω

∫

T2
u⊥ · û dx

=
∫

T2
u ·
(
a⋆∇r̂+ωû⊥

)
dx + a⋆

∫

T2
r∇ · û dx = 0
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which implies that

∀ q̂ ∈ Eω,0,
d

dt
〈q, q̂〉 = 0 =⇒ 〈q(t, ·), q̂〉 = 〈q(t= 0, ·), q̂〉 = 0

that is to say
q(t, ·) ∈ E⊥

ω,0.

This proves Point ii.

Corollary 4.1. Let q be the solution of System (4.2) with initial condition q0. Let Pq0 be the
orthogonal projection of q0 onto the incompressible subspace Eω,0. Then, q can be decomposed
into

q(t, ·) = Pq0 + q̃(t, ·) ∈ Eω,0 ⊕ E⊥
ω,0

where q̃ is the solution of System (4.2) with initial condition (q0 −Pq0).
Moreover, the conservation of the energy for q̃ implies that for all times t > 0, ‖q(t, ·) −

Pq0‖ = ‖q0 −Pq0‖ which allows to say that

‖q0 −Pq0‖ = O(M) =⇒ ∀t > 0,‖q−Pq0‖(t) = O(M). (4.5)

In other words, when the initial condition q0 is close to the incompressible subspace Eω,0, the
solution of the linear wave equation (4.2) is still close to the projection of the initial condition
onto Eω,0.

One of the problems encountered with the Godunov scheme applied to (4.2) is that it does not
reproduce this closeness to the projection of the initial condition on Eω,0 for values of M ≪ 1.
This inaccurate behaviour is explained in the next section. A numerical scheme for which the
solution satisfies relation (4.5) will be said accurate at low Froude number at any time, as defined
in [37].

4.3 Inaccuracy of the classical Godunov scheme

4.3.1 Numerical highlighting

We consider a cartesian mesh with mesh sizes ∆x (resp. ∆y) in the x (resp. y) direction. The
semi-discrete Godunov scheme applied to the linear wave equation (4.2) can be written




d

dtri,j + a⋆

(
ui+1,j−ui−1,j

2∆x + vi,j+1−vi,j−1

2∆y

)
− κra⋆

2

(
ri+1,j−2ri,j+ri−1,j

∆x + ri,j+1−2ri,j+ri,j−1

∆y

)
= 0,

d

dtui,j + a⋆
ri+1,j−ri−1,j

2∆x − κua⋆
2

ui+1,j−2ui,j+ui−1,j

∆x = ωvi,j ,

d

dtvi,j + a⋆
ri,j+1−ri,j−1

2∆y − κva⋆
2

vi,j+1−2vi,j+vi,j−1

∆y = −ωui,j ,

(4.6)
where parameters κr, κu and κv lie in [0,1] and represent the standard numerical diffusion of the
Godunov type schemes. The classical Godunov scheme corresponds to κr = κu = κv = 1. The
following facts are now well-known:

• In the 1D case, the classical Godunov scheme applied to the homogeneous system (i.e.with
no Coriolis source term) is accurate for low M . It is no more the case when the Coriolis
force is involved, see [37, 38]. Indeed, in that case the diffusion on the pressure equation is
shown to be responsible for the inaccuracy. A simple correction consists in setting κr = 0
and is proven to be a stable strategy in [37]. This scheme is referred to in the sequel as the
LF-C strategy, since we adapt the diffusion in the pressure equation to the Low-Froude
(LF) case and we keep the classical (C) diffusion on the velocity equation.
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• In the 2D case, the classical Godunov scheme applied to the homogeneous system (i.e.with
no Coriolis source term) is inaccurate for low M on cartesian meshes. This is due to the
numerical viscosity on the velocity equation, see [20, 21] for more details. It is corrected
in [20] by setting κu = κv = 0 to obtain a stable and accurate scheme. This scheme is
referred to in the sequel as the C-LF strategy, since we keep the classical (C) diffusion on
the pressure equation and we adapt the diffusion in the velocity equation to the Low-Froude
(LF) case.

The purpose here is to show that none of these corrections (neither the LF-C nor the C-LF
strategies) cures the inaccuracy of the Godunov scheme applied to the 2D wave equation with a
Coriolis source term for low values of M . To do so, we consider the classical Godunov scheme
and the modified versions proposed in [20, 37] when the initial condition is at the geostrophic
equilibrium (see Fig. 4.1)





r(t= 0,x,y) = 1 − exp
[
−
(

3x
0.5

)2
−
(

3y
0.5

)2
]

u(t= 0,x,y) = − 6y
0.5 exp

[
−
(

3x
0.5

)2
−
(

3y
0.5

)2
]

v(t= 0,x,y) = 6x
0.5 exp

[
−
(

3x
0.5

)2
−
(

3y
0.5

)2
]
.

(4.7)

in the periodic domain T2 = [−0.5,0.5] × [−0.5,0.5]. This initial condition is obviously a steady
state of System (4.2).

In Figures 4.2 and 4.3, we present the numerical results for a 50 × 50 grid at time t = 10.
It indicates that the Godunov type schemes with standard diffusion (Fig. 4.2(b)), and both
corrected LF-C (Fig. 4.2(c)) and C-LF (Fig. 4.2(d)) schemes are unable to capture the steady
state. At the same time, it is not possible to use a LF-LF strategy and completely delete both
diffusion terms (i.e.using κr = κu = κv = 0), because the resulting fully discrete explicit scheme
would then obviously be unstable. Note that for this test, the modification on the diffusion
in the velocity equation provides more substantial improvements than the modification on the
diffusion in the pressure equation: in the first case, the 2D structure of the solution is more
or less preserved, see Figure 4.2, and the solution remains not so far from the exact one, see
Figure 4.3, whereas in the second case, the solution is quite close to the one of the classical
scheme. Nevertheless, this behaviour is related to this particular test case and we need more
investigations to obtain numerical schemes which are able to exactly preserve steady states and
then be accurate in any situation.

Before doing that, let us analyze the discrete kernel of the semi-discrete Godunov scheme in
order to point out the main reason of the inaccuracy problem.

4.3.2 Analysis of the discrete kernel

Let us denote by Lω,κ,h the spatial operator in the semi-discrete scheme (4.6), so that (4.6) reads
q′

i,j +Lω,κ,hqi,j = 0.

Lemma 4.1. Let us define the discrete energy of System (4.6) by

Eh(t) = ∆x∆y


∑

i,j

ri,j(t)2 +
∑

i,j

ui,j(t)2 +
∑

i,j

vi,j(t)2


 .
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(a) Contour of pressure and vector field (b) Pressure r

(c) Horizontal velocity u (d) Vertical velocity v

Figure 4.1: Initial condition: stationary vortex.
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(b) Classical Godunov scheme
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(c) LF-C scheme
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(d) C-LF scheme

Figure 4.2: Contours of the pressure r.

Then for any κr,u,v ∈ [0,1]
d

dt
Eh(t) ≤ 0,

which means that the energy associated to Godunov type schemes is dissipated.

Proof. Let us multiply the semi-discrete scheme (4.6) by qi,j∆x∆y and sum over all cells (i, j).
Due to periodic boundary conditions, we obtain by standard calculations

〈
dq

dt
,q

〉
= −κra⋆∆y

2

∑

i,j

(ri+1,j − ri,j)2 − κra⋆∆x

2

∑

i,j

(ri,j+1 − ri,j)2

− κua⋆∆y

2

∑

i,j

(ui+1,j −ui,j)2 − κva⋆∆x

2

∑

i,j

(vi,j+1 − vi,j)2 ≤ 0. (4.8)

Although the semi-discrete scheme is energy-dissipative, the fact still remains that it is not
consistent with the incompressible space.

Lemma 4.2.

• For κr , 0, κu , 0 and κv , 0, i.e. for the classical Godunov scheme, we have

kerLω,κ,h =
{
q = (r,u,v) ∈ R3N

∣∣∣ ∃ c ∈ R, r = c,u= 0,v = 0
}

(4.9a)
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Figure 4.3: Cross-section (y = 0) of the pressure r.

• For κr , 0, κu = κv = 0, i.e. for the C-LF strategy, we have

kerLω,κ,h =
{
q = (r,u,v) ∈ R3N

∣∣∣ ∃ c ∈ R, r = c,u= 0,v = 0
}

(4.9b)

• For κr = 0, κu , 0 and κv , 0, i.e. for the LF-C strategy, we have

kerLω,κ,h =

{
q = (r,u,v) ∈ R3N

∣∣∣∣∣ ∃(uj ,vi) ∈ RN ×RN , ∀ (i, j), ui,j = uj , vi,j = vi,

a⋆




ri+1,j−ri−1,j

2∆x
ri,j+1−ri,j−1

2∆y


= −ω

(
−vi

uj

)}
(4.9c)

Remark 4.3. Although all kernels above correspond to discrete versions of the exact relation
a∗∇r = −ωu⊥, constraints upon the velocity field are too strong, so that those kernels do not
match with the exact one Eω,0 defined in (4.3).

Proof. Since any steady state of (4.6) satisfy dqi,j

dt = 0, Equation (4.8) implies

∑

i,j

[
κr

(
∆y(ri+1,j − ri,j)2 +∆x(ri,j+1 − ri,j)2

)
+κu∆y(ui+1,j −ui,j)2 +κv∆x(vi,j+1 − vi,j)2

]
= 0.

(4.10)

• When κr , 0, we easily get from (4.10)

∀ (i, j) ∈ [1,Nx] × [1,Ny], ri+1,j = ri,j and ri,j+1 = ri,j =⇒ r = const. (4.11)

When κu , 0 and κv , 0, we also have ui+1,j = ui,j and vi,j+1 = vi,j for all (i, j), which
implies that there exist (uj ,vi) ∈ RN ×RN such that

ui,j = uj and vi,j = vi ∀(i, j).

Going back to (4.6), r = const implies that u= 0 and v = 0. Therefore, this leads to (4.9a).

• Likewise, when κr , 0 but κu = κv = 0, (4.11) still holds. Then we deduce from (4.6) that
ui,j = vi,j = 0 and consequently (4.9b).
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• Now, we consider the case κr = 0 (and κu , 0, κv , 0). We deduce from (4.10) that ui,j = uj

and vi,j = vi. Hence, the steady version of (4.6) now reads

a⋆

2∆x
(ri+1,j − ri−1,j) = ωvi and

a⋆

2∆y
(ri,j+1 − ri,j−1) = −ωuj

which is nothing but (4.9c).

4.4 Properties of the first order modified equation with correction terms

In the previous section, we have shown that the classical Godunov scheme is inaccurate near the
geostrophic equilibrium and that simple corrections consisting in deleting diffusion terms (LF-C
or C-LF strategies) are not enough to ensure the accuracy. As it is not possible to delete all
diffusion terms at the same time for stability reasons, it is essential to introduce some correction
terms for the standard diffusion.

We aim at deriving a numerical scheme which is able to preserve steady states or to be
accurate around steady states. It is worth pointing out that we not only have to deal with the
balance between the pressure gradient and the Coriolis force but also to take into account the
divergence free condition.

4.4.1 Definition of the schemes

We mention below two strategies to deal with diffusion terms. Each strategy leads to a different
numerical scheme which will be referred to as X-Y scheme where X is related to the diffusion on
the pressure equation and Y to the diffusion on the velocity equation.

i. The Apparent Topography scheme was introduced in [13], see also [27], to deal with the
geostrophic equilibrium in the 1D nonlinear shallow water system. This strategy was proven
to be stable in [38] for the 1D linear wave equation. Here we extend the procedure to the
2D linear wave equation. We notice that the steady state defined by a⋆∇r = −ωu⊥ also
satisfies

∇ ·
(

∇r+
ω

a⋆
u⊥
)

= 0.

It suggests that the numerical diffusion on the pressure equation can be modified into
∇·(∇r+ ω

a⋆
u⊥) instead of the classical operator ∆r – see (4.6). As for the velocity equations,

either we keep the classical diffusion to obtain the Apparent Topography-Classical scheme
(AT-C) or we delete diffusion terms which leads to the Apparent Topography-Low Froude
scheme (AT-LF). In 1D, they are shown to be both stable and accurate [38].

ii. The Divergence Penalisation method consists in a modification on the diffusion on the
velocity equation that is based on the operator ∇(∇ · u) instead of the classical diffusion
in (4.6) since the equilibrium states satisfy ∇·u = 0. This idea was mentioned in [20, § 5.6]
to be applied to the homogeneous linear wave equation, but not studied. We propose to
extend it to the present case and to analyze its properties. As for the pressure equation, we
can choose the classical diffusion to obtain the Classical-Divergence Penalisation scheme
(C-DP) or delete this diffusion term to get the Low Froude-Divergence Penalisation scheme
(LF-DP).

iii. Finally, we can combine both strategies to get the Apparent Topography-Divergence Penali-
sation method (AT-DP). It comes down to considering ∇ · (∇r+ ω

a⋆
u⊥) for the diffusion on

the pressure equation and ∇(∇ · u) for the velocity equation.
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Schemes κr κu κv ηr ηu ηv

AT-LF O(1) 0 0 κr 0 0
AT-C O(1) O(1) O(1) κr 0 0

LF-DP 0 O(1) O(1) 0 κu κv

C-DP O(1) O(1) O(1) 0 κu κv

AT-DP O(1) O(1) O(1) κr κu κv

Table 4.1: Parameters of Godunov type schemes with corrections.

We shall prove below that the AT-LF, LF-DP and AT-DP approaches are accurate and stable. The
AT-C and C-DP strategies, like the LF-C and C-LF ones previously mentioned in paragraph4.3.1,
will not be able to cure the problem since only one issue is taken into account.

To carry out the accuracy analysis, we shall analyze the first order modified equation which
is the common tool to study stability and accuracy of finite difference schemes. We refer to
[51] for more details about this method. The first order modified equation corresponding to the
aforementioned strategies is given by




∂tr+ a⋆(∂xu+ ∂yv) − κx
ra⋆∆x

2
∂2r

∂x2
− κy

ra⋆∆y

2
∂2r

∂y2
+
ηx

r a⋆∆x

2
ω

a⋆

∂v

∂x
− ηy

ra⋆∆y

2
ω

a⋆

∂u

∂y
= 0,

∂tu+ a⋆∂xr− κua⋆∆x

2
∂2u

∂x2
− ηua⋆∆x

2
∂2v

∂x∂y
= ωv,

∂tv+ a⋆∂yr− κva⋆∆y

2
∂2v

∂y2
− ηva⋆∆y

2
∂2u

∂y∂x
= −ωu,

(4.12)
where parameters ηx

r ≥ 0, ηy
r ≥ 0, ηu ≥ 0 and ηv ≥ 0 stand for the correction terms. We recall

that κx,y
r,u,v ∈ [0,1]. The modified equation reads in a compact form

{
∂tq+ Lq = 0, (4.13a)

q(t= 0,x) = q0(x). (4.13b)

The spatial operator is defined by L = Lω − Bκ,η, with Lω as in (4.2) and

Bκ,ηq =




κx
r a⋆∆x

2
∂2r
∂x2 + κy

r a⋆∆y
2

∂2r
∂y2

κua⋆∆x
2

∂2u
∂x2

κva⋆∆y
2

∂2v
∂y2




+




−ηx
r a⋆∆x

2
ω
a⋆

∂v
∂x + ηy

r a⋆∆y
2

ω
a⋆

∂u
∂y

ηua⋆∆x
2

∂2v
∂x∂y

ηva⋆∆y
2

∂2u
∂y∂x


 .

The choices of parameters in (4.12-4.13) corresponding to the aforementioned strategies are
summarised in Table 4.1.

Remark 4.4. For the numerical diffusion on the velocity equation to be consistent with ∇(∇·u), we
have to take κu∆x= κv∆y and ηu = κu, ηv = κv. Likewise, to recover the operator ∇·(∇r+ ω

a⋆
u⊥),

we must consider the case κx
r∆x= κy

r∆y, ηx
r = κx

r and ηy
r = κy

r .

From now on, we shall denote and assume that

νr =
κx

ra⋆∆x

2
=
κy

ra⋆∆y

2
, νu =

κua⋆∆x

2
=
κva⋆∆y

2
,

γr =
ηx

r a⋆∆x

2
=
ηy

ra⋆∆y

2
, γu =

ηua⋆∆x

2
=
ηva⋆∆y

2

(4.14)
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in the correction terms. With such assumptions, the action of the diffusion operator may be
rewritten as follows

Bκ,ηq =Bν,γq =




∇ · (νr∇r+ γr
ω
a⋆

u⊥)
∂

∂x(νu
∂u
∂x + γu

∂v
∂y )

∂
∂y (γu

∂u
∂x + νu

∂v
∂y )


 .

Then we can study the behaviour of the schemes for an initial solution in the incompressible
space Eω,0 or in its orthogonal E⊥

ω,0, see Prop. 4.3.

Proposition 4.4.

i. A solution in the incompressible space Eω,0 is preserved for all time by the LF-DP,
AT-LF and AT-DP schemes.

ii. The orthogonal subspace E⊥
ω,0 is preserved by the LF-DP scheme.

Proof. All schemes such that γr = νr and γu = νu (namely LF-DP, AT-LF and AT-DP) satisfy
q ∈ Eω,0 =⇒ Bν,γq = 0 (Point i).
The proof for Point ii is very similar to the one in Prop. 4.3 up to the term

νu

∫

T2
û · ∇(∇ · u) dx = −νu

∫

T2
(∇ · û)(∇ · u) dx = 0

since û is in the incompressible subspace Eω,0.

For the LF-DP strategy, we can also study the evolution of the energy, see Prop 4.2.

Proposition 4.5. The LF-DP and C-DP schemes are energy-dissipative.

Proof. Due to the fact that 〈Lωq,q〉 = 0 as Lω is antisymmetric, when γr = 0 and νu = γu, we
have

1
2
d

dt
‖q‖2 = 〈Bν,γq,q〉 = −νr‖∇r‖2 − νu‖∇ · u‖2 ≤ 0.

This means that the modified equation associated to the LF-DP and C-DP schemes is dissipative.

Hence the LF-DP strategy enables to mimic Corollary 4.1.

Corollary 4.2. The solution qν,γ of the modified equation for the LF-DP parameters satisfies
the inequality

∀ t≥ 0, ‖qν,γ −Pq0‖(t) ≤ ‖q0 −Pq0‖,
which means the solution is accurate at low Froude number at any time, as defined at the end
of Section 4.2.

Proof. Let us first notice that Pq0 is the solution of Eq. (4.13a) for the LF-DP parameters
(νr = γr = 0 and νu = γu) with initial condition Pq0 due to Prop. 4.4.i. We deduce by linearity
that any solution of (4.13) reads qν,γ(t,x) = Pq0(x) + q̃(t,x) where q̃ satisfies

{
∂tq̃+ Lq̃ = 0,

q̃(t= 0,x) = q0(x) −Pq0(x).
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As the energy is decreasing (Prop. 4.4.ii), we have

‖qν,γ −Pq0‖(t) = ‖q̃‖(t) ≤ ‖q̃0‖ = ‖q0 −Pq0‖.

4.4.2 Stability properties

For the AT strategy, we are not able to establish energy estimates as for the LF-DP strategy. So
we investigate the stability of this approach by studying the behaviour of the Fourier modes of
the solution.

Lemma 4.3. Fourier modes associated to the LF-DP, C-DP, AT-LF and AT-DP schemes are
damped.

Proof. We now look for plane wave solutions of the modified equation (4.12) under the form

q(t,x) = exp[ı(τt+ k · x)] q̂ (4.15)

where k = (kx,ky) is the wave number and τ is the wave frequency. To ensure that these waves
are captured by the scheme, we assume

|k| ≤ π

∆x
. (4.16)

Such functions are generally solutions of the modified equation under a dispersion relation, i.e.a
relation between τ and k commonly written as τ = τ(k). In the present case, the Fourier modes
(4.15) are some solutions provided

Aq̂ = −ıτ q̂ (4.17)

and the matrix A is given by

A =




νrk
2
x + νrk

2
y a⋆ıkx − γr

ω
a⋆
ıky a⋆ıky + γr

ω
a⋆
ıkx

a⋆ıkx νuk
2
x γukxky −ω

a⋆ıky γukxky +ω νuk
2
y.




The statement of the lemma is equivalent to saying that the real part of all eigenvalues are
positive. Indeed, −ıτ is an eigenvalue due to (4.17). The decrease for long times in (4.15) requires
a negative coefficient for t.

The characteristic polynomial P(λ) reads

P(λ) = λ3 − (νr + νu) |k|2λ2 +
[
a2

⋆|k|2 +ω2 + νrνu|k|4 + (ν2
u − γ2

u)k2
xk

2
y

]
λ

− (νr − γr)ω2|k|2 − (ν2
u − γ2

u)νrk
2
xk

2
y|k|2 − (νu − γu)2a2

⋆k
2
xk

2
y − γr(νu − γu)kxkyω(k2

x − k2
y).

Let us mention that Prop. 4.4.i corresponds to the fact that λ= 0 is a root of P for the LF-DP,
AT-LF and AT-DP schemes.

• For the LF-DP scheme (νr = γr = 0 and νu = γu), λ0 = 0 is an eigenvalue while the other
two are given by

λc =
νu|k|2

2
± ı

√

ω2 + a2
⋆|k|2 −

(
νu

2

)2

|k|4.

Hypothesis (4.16) and κu ∈ [0,1] ensure that the term in the square root is positive. Hence
ℜ(λc)> 0.
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• For the C-DP scheme (γr = 0 and νu = γu), the linear system Aq = λq reads

νr|k|2 r+ ıa⋆kxu+ ıa⋆kyv = λr, (4.18a)

ıa⋆kxr+ νuk
2
xu+ (νukxky −ω)v = λu, (4.18b)

ıa⋆kyr+ (νukxky +ω)u+ νuk
2
y v = λv. (4.18c)

We now multiply (4.18a) by r̄, (4.18b) by ū and (4.18c) by v̄ in order to obtain

λ
(
|r|2 + |u|2 + |v|2

)
= νr|k|2|r|2 + νu(k2

x|u|2 + k2
y|v|2) + 2νukxkyℜ(uv̄)

+ 2ı [a⋆ℜ(r(kxū+ ky v̄)) +ωℑ(uv̄)]

which implies that ℜ(λ) > 0 by using the fact that k2
x|u|2 + k2

y|v|2 ≥ 2|kxky||uv| and
ℜ(uv̄) ≥ −|uv|.

• For the AT-LF scheme (νr = γr and νu = γu = 0), λ0 = 0 is an eigenvalue. The other two
are given by

λc =
νr|k|2

2
± ı

√

ω2 + a2
⋆|k|2 −

(
νr

2

)2

|k|4 =⇒ ℜ(λc) ≥ 0.

• Finally, we consider the AT-DP scheme (νr = γr and νu = γu). It is obvious that λ= 0 is a
solution. The other solutions satisfy the following equation

λ2 − (νr + νu)|k|2λ+ νrνu|k|4 +
[
ω2 + a2

⋆|k|2
]

= 0.

The solution of the above equation is given by

λ=
νr + νu

2
|k|2 ± ı

√

ω2 + a2
⋆|k|2 −

(
νr − νu

2

)2

|k|4.

which means that the Fourier modes are damped with speed νr+νu
2 |k|2.

Remark 4.5. The exact Fourier modes of the linear wave equation (4.2) are such that

λwave = ±ı
√
ω2 + a2∗|k|2. (4.19)

Consequently, we notice that the AT-DP scheme is the only one that can recover the exact
imaginary part by taking νr = νu. This choice will be done in the sequel.

Remark 4.6. For the AT-C scheme (νr = γr and γu = 0), we are not able to prove the Fourier
modes are damped. Nevertheless the Fourier analysis provides some information on the behaviour
of the solution when the diffusion on the velocity equation is small. In that case, the characteristic
polynomial becomes

χ(λ,νu) = λ3 − (νr + νu)|k|2λ2 +
[
ω2 + a2

⋆|k|2 + νrνu|k|4 + ν2
uk

2
xk

2
y

]
λ

− νr|k|2ν2
uk

2
xk

2
y − 2νua

2
⋆k

2
xk

2
y − νrνuωkxky(k2

x − k2
y).

We note that under (4.16) and due to κr,u ∈ [0,1], ∂λχ(λ,νu) does not vanish which means there
is a single real root. Therefore, by the implicit function theorem, we can define for νu small
enough a function νu 7−→ λ0(νu) corresponding to the unique root of the polynomial. We have

λ0(νu) ∼
νu→0

λ′
0(νu = 0)νu = −∂νuχ(0,0)

∂λχ(0,0)
νu =

2a2
⋆k

2
xk

2
y + νrωkxky(k2

x − k2
y)

(
k2

x + k2
y

)
a2

⋆ +ω2
νu.

As a result, we deduce that when κu = O(M), then λ0(νu) = O(M). Note that the sign of the
eigenvalue remains undetermined.
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4.5 Analysis of the semi-discrete Godunov type schemes

In this section, we investigate some ways to construct “well-balanced” schemes, i.e.that preserve
a discrete version of the incompressible subspace. The study of the modified equation leads
us to focus on the numerical viscosity on both pressure and velocity equations. As a result,
it is essential to consider suitable diffusion terms for the Godunov scheme. More specifically,
we proposed to introduce the diffusion operators ∇ · (∇r+ωu⊥) and ∇(∇ · u) for pressure and
velocity equations respectively.

We now turn to the space discretisation of the aforementioned strategies. We consider a
collocated finite volume framework. To ensure that the resulting schemes satisfy properties
similar to those proved at the continuous level, one first has to construct some discrete differential
operators and corresponding discrete kernels consistent with Eω,0. This requires to choose the
location where the differential relation defining the kernels holds: either at the cell centers or at
the vertices. One finally has to verify that the resulting schemes still satisfy stability properties.

4.5.1 Cell-centered scheme

A first possibility consists in locating the kernels at the same place as the unknowns, namely at the
cell centers. Let us denote rh = (ri,j), uh = (ui,j) and vh = (vi,j) be in RN where N =Nx ×Ny.

Discrete operators

We define the gradient ∇c
2h, the divergence ∇c

2h· and the curl ∇c
2h× as

[∇c
2hrh]i,j =




ri+1,j−ri−1,j

2∆x
ri,j+1−ri,j−1

2∆y




[∇c
2h · uh]i,j =

ui+1,j −ui−1,j

2∆x
+
vi,j+1 − vi,j−1

2∆y
,

[∇c
2h × uh]i,j = −∇c

2h · u⊥
h =

vi+1,j − vi−1,j

2∆x
− ui,j+1 −ui,j−1

2∆y
.

Lemma 4.4. These operators satisfy the following mimetic properties:

i.
〈
∇c

2hrh,uh
〉

= −
〈
rh,∇c

2h · uh
〉

which implies that
〈
rh,∇c

2h × uh
〉

= −
〈
(∇c

2hrh)⊥,uh

〉
;

ii. ∇c
2h × ∇c

2hrh = 0.

Such properties turn out to be crucial for stability purposes as claimed in [47, 52].

Discrete kernel

We now define the discrete kernel at the cell centers as the natural equivalent to Eω,0 defined
in (4.3)

Ec
ω,0,h =

{
q̂h = (r̂h, ûh, v̂h) ∈ R3N

∣∣∣ a⋆∇c
2hr̂h = −ωû⊥

h

}
. (4.20)

In particular, we prove the following lemma which is the semi-discrete counterpart to Proposi-
tion 4.1.

Lemma 4.5. The orthogonal space of Ec
ω,0,h is

Ec,⊥
ω,0,h =

{
q̃h = (r̃h, ũh, ṽh) ∈ R3N

∣∣∣ a⋆∇c
2h × ũh = ωr̃h

}
. (4.21)
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This implies the following discrete Hodge decomposition

R3N = Ec
ω,0,h ⊕ Ec,⊥

ω,0,h.

Proof. By definition, an element q̃h = (r̃h, ũh) of the orthogonal of Ec
ω,0,h verifies, for all q̂h =

(r̂h, ûh) in Ec
ω,0,h:

〈r̃h, r̂h〉 + 〈ũh, ûh〉 = 〈r̃h, r̂h〉 + 〈ũ⊥
h , û

⊥
h 〉 = 0.

Using the definition of Ec
ω,0,h and Lemma 4.4 this implies

〈r̃h, r̂h〉 − a⋆

ω
〈ũ⊥

h ,∇c
2hr̂h〉 = 〈r̃h, r̂h〉 +

a⋆

ω
〈∇c

2h · ũ⊥
h , r̂h〉 = 〈r̃h − a⋆

ω
∇c

2h × ũh, r̂h〉 = 0.

Since r̂h can be arbitrary in RN , this is exactly equivalent to ωr̃h − a⋆∇c
2h × ũh.

Remark 4.7. For any qh ∈ R3N , the unique decomposition

qh = q̂h + q̃h with q̂h = (r̂h, ûh, v̂h) ∈ Ec
ω,0,h and q̃h = (r̃h, ũh, ṽh) ∈ Ec,⊥

ω,0,h

may be found by the following process: Let r̂h satisfy the equation

r̂h − a2
∗
ω2

∇c
2h · (∇c

2hr̂h) = rh − a⋆

ω
∇c

2h × uh. (4.22)

It can be shown that (4.22) has a unique solution since it amounts to solving a linear system
involving an M -matrix. Then, let us define ûh by

ûh =
a⋆

ω
(∇c

2hr̂h)⊥ (4.23)

so that q̂h = (r̂h, ûh) ∈ Ec
ω,0,h. Finally, we set q̃h = qh−q̂h and it remains to prove that q̃h ∈ Ec,⊥

ω,0,h.
It suffices to notice that

a⋆∇c
2h × ũh = a⋆

(
∇c

2h × uh + ∇c
2h · û⊥

h

) (4.23)
= a⋆

(
∇c

2h × uh − a⋆

ω
∇c

2h · (∇c
2hr̂h)

)

(4.22)
= a⋆∇c

2h × uh −ω

(
r̂h − rh +

a⋆

ω
∇c

2h × uh

)
= ωr̃h.

Semi-discrete scheme

The cell-centered semi-discrete scheme reads





d

dt
ri,j(t) + a⋆[∇c

2h · uh]i,j − νr

[
∇c

2h ·
(

∇c
2hrh +

ω

a⋆
u⊥

h

)]

i,j
= 0, (4.24a)

d

dt
ui,j(t) + a⋆[∇c

2hrh]i,j − νu [∇c
2h(∇c

2h · uh)]i,j = −ωu⊥
i,j . (4.24b)

The modified equation associated to the scheme (4.24) is (4.12) for coefficients chosen as in
Remark 4.4. The stencil associated to the scheme (4.24) is a 13-point stencil: it involves the 8
points around the considered one (i.e.at a distance ∆x or ∆y) and 4 points to a distance 2∆x
(or 2∆y) in the definition of both diffusion terms. Moreover the definition of the diffusion terms
induces no relation between odd and even cells. This may be the reason for checkerboard type
oscillations. The interface scheme (4.26) we propose in the sequel will not be affected by this
drawback.
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Proposition 4.6.

i. Steady states of the semi-discrete scheme (4.24) are the discrete geostrophic equilibria
from (4.20).

ii. The pressure gradient and Coriolis forces are energy conservative.

iii. The discrete energy of the LF −DP scheme (νr = 0) is decreasing.

Proof. On the one hand, by construction, discrete geostrophic equilibria (4.20) are steady states
of (4.24). On the other hand, let us consider steady states of (4.24). Applying the operator
∇c

2h× to (4.24b), we obtain ∇c
2h · uh = 0 due to Lemma 4.4.ii. This proves Point i.

Point ii is a straightforward consequence of Lemma 4.4 i. Moreover, when νr = 0, the scalar
product with qh leads to

1
2
d

dt
Eh(t) = −a⋆ 〈∇c

2h · uh, rh〉 − a⋆〈∇c
2hrh,uh〉 + νu〈∇c

2h[∇c
2h · uh],uh〉 = −νu‖∇c

2h · uh‖2 ≤ 0

thanks to Lemma 4.4.i. This proves Point iii.

4.5.2 Vertex-based scheme

The original Apparent Topography scheme [13] was designed in 1D so that equilibrium states are
located at the interfaces while the unknowns are still at the cell centers. That is why we are
interested in this part in investigating another version of the scheme.

Discrete kernel

Let us define the discrete kernel by imposing the geostrophic equilibrium at the interfaces of
each cell

Ev
ω,0,h =




q̂h = (r̂h, ûh, v̂h) ∈ R3N

∣∣∣∣∣∣∣
a⋆




r̂i+1,j−r̂i,j

∆x

r̂i,j+1−r̂i,j

∆y


= −ω




− v̂i+1,j+v̂i,j

2

ûi,j+1+ûi,j

2







. (4.25)

Discrete operators

To design the numerical scheme, we first define the discrete operators at the vertices of each cell
(i, j) – see Figure 4.4

[∇v
hrh]i+1/2,j+1/2 =




(ri+1,j+1+ri+1,j)−(ri,j+1+ri,j)
2∆x

(ri+1,j+1+ri,j+1)−(ri+1,j+ri,j)
2∆y




[∇v
h · uh]i+1/2,j+1/2 =

(ui+1,j+1 +ui+1,j) − (ui,j+1 +ui,j)
2∆x

+
(vi+1,j+1 + vi,j+1) − (vi+1,j + vi,j)

2∆y

[∇v
h × uh]i+1/2,j+1/2 = −∇v

h · u⊥
h ,

[fv
h(uh)]i+1/2,j+1/2 =

ui+1,j+1 +ui,j+1 +ui+1,j +ui,j

4
.
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We shall also need dual operators that enable to switch from the vertex grid to the center grid.
For ϕh = (ϕh,ψh) defined at the vertices, we define the following operators

[∇c
hϕh]i,j =

1
2




ϕi+1/2,j+1/2−ϕi−1/2,j+1/2

∆x

ϕi+1/2,j+1/2−ϕi+1/2,j−1/2

∆y


+

1
2




ϕi+1/2,j−1/2−ϕi−1/2,j−1/2

∆x

ϕi−1/2,j+1/2−ϕi−1/2,j−1/2

∆y




[∇c
h · ϕh]i,j =

(ϕi+1/2,j+1/2 +ϕi+1/2,j−1/2) − (ϕi−1/2,j+1/2 +ϕi−1/2,j−1/2)

2∆x

+
(ψi+1/2,j+1/2 +ψi−1/2,j+1/2) − (ψi+1/2,j−1/2 +ψi−1/2,j−1/2)

2∆y

[fc
h(ϕh)]i,j =

ϕi+1/2,j+1/2 +ϕi−1/2,j+1/2 +ϕi+1/2,j−1/2 +ϕi−1/2,j−1/2

4
.

With such operators, we have the following compatibility property:

Lemma 4.6. Any q̂h ∈ Ev
ω,0,h satisfies the geostrophic equilibrium and the divergence free

condition at the vertices:




[∇v

hr̂h]i+1/2,j+1/2 = −ω[fv

h(û⊥
h )]i+1/2,j+1/2,

[∇v

h · ûh]i+1/2,j+1/2 = 0.

Moreover, they satisfy mimetic properties:

Lemma 4.7.

i. ∇v

h × ∇c

h

[
fv

h(rh)
]

= ∇v

h × fc

h

[
∇v

hrh
]

= 0;

ii.
〈
fc

h

[
∇v

hrh
]
,uh

〉
= −

〈
rh,f

c

h

[
∇v

h · uh
]〉

and
〈
fc

h

[
fv

h(uh)
]
,vh
〉

=
〈
uh,f

c

h

[
fv

h(vh)
]〉

.

Proof. Each property results from direct computations. For instance:

〈fc
h [∇v

hrh] ,uh〉

=
∑

i,j

[
1
4

(
ri+1,j+1 − ri−1,j+1

2∆x

)
+

1
2

(
ri+1,j − ri−1,j

2∆x

)
+

1
4

(
ri+1,j−1 − ri−1,j−1

2∆x

)]
ui,j

+
∑

i,j

[
1
4

(
ri+1,j+1 − ri+1,j−1

2∆y

)
+

1
2

(
ri,j+1 − ri,j−1

2∆y

)
+

1
4

(
ri−1,j+1 − ri−1,j−1

2∆y

)]
vi,j

=
∑

i,j

(
ri+1,j − ri−1,j

2∆x

)(
ui,j+1 + 2ui,j +ui,j−1

4

)
+
∑

i,j

(
ri,j+1 − ri,j−1

2∆y

)(
vi+1,j + 2vi,j + vi−1,j

4

)

= −
∑

i,j

ri,j

[
1
4

(
ui+1,j+1 −ui−1,j+1

2∆x

)
+

1
2

(
ui+1,j −ui−1,j

2∆x

)
+

1
4

(
ui+1,j−1 −ui−1,j−1

2∆x

)]

−
∑

i,j

ri,j

[
1
4

(
vi+1,j+1 − vi+1,j−1

2∆y

)
+

1
2

(
vi,j+1 − vi,j−1

2∆y

)
+

1
4

(
vi−1,j+1 − vi−1,j−1

2∆y

)]

= −〈fc
h [∇v

h · uh] , rh〉 .
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Semi-discrete scheme

The semi-discrete scheme with the kernel at the interface is given by




d

dt
ri,j(t) + a⋆f

c
h [∇v

h · uh]i,j − νr∇c
h ·
[
∇v

hrh +ωfv
h(u⊥

h )
]

i,j
= 0,

d

dt
ui,j(t) + a⋆f

c
h [∇v

hrh]i,j − νu∇c
h [∇v

h · uh]i,j = −ωf c
h

[
fv

h(u⊥
h )
]

i,j
.

(4.26)

The modified equation associated to the scheme (4.26) is still (4.12) for coefficients chosen as
in Remark 4.4. The stencil associated to this second scheme (4.26) is a classical 9-point stencil
since it only involves the 8 points around the considered one. It is then more compact than the
one of the cell-centered scheme (4.24).

Figure 4.4: Cell centers (i, j) and vertices (i+ 1/2, j+ 1/2).

Proposition 4.7.

i. Steady states of the semi-discrete scheme (4.26) are the geostrophic equilibria from (4.25).

ii. The pressure gradient and Coriolis forces are energy conservative.

iii. The energy of the LF-DP scheme (νr = 0) is decreasing.

Proof. Point i. results from Lemma 4.6 and from Lemma 4.7.i. Moreover, according to
Lemma 4.7.ii, we have

〈fc
h [∇v

hrh] ,uh〉 + 〈fc
h [∇v

h · uh] , rh〉 = 0 and
〈
fc

h

[
fv

h(u⊥
h )
]
,uh

〉
= 0

which proves Point ii.
After some computations, we have

〈∇c
h [∇v

h · uh] ,uh〉 = −
∑

i,j

[
ui+1,j+1 −ui,j+1

2∆x
+
ui+1,j −ui,j

2∆x
+
vi+1,j+1 − vi+1,j

2∆y
+
vi,j+1 − vi,j

2∆y

]2

.

Therefore, when νr = 0, we deduce that

1
2
d

dt
Eh(t) = νu 〈∇c

h [∇v
h · uh] ,uh〉 = −νu‖∇v

h · uh‖2

which means that the semi-discrete LF-DP scheme is dissipative. This proves Point iii.
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Godunov type scheme α β η

Cell-centered sin(kx∆x) sin(ky∆y) 1

Vertex-based 2sin(kx∆x
2 )cos(ky∆y

2 ) 2sin(ky∆y
2 )cos(kx∆x

2 ) cos(kx∆x
2 )cos(ky∆y

2 )

Table 4.2: Parameters α, β an η in the Fourier analysis of the semi-discrete schemes.

4.5.3 Fourier analysis

Let us carry out a Fourier analysis of the semi-discrete schemes by considering the discrete
Fourier modes

ri,j(t) = ϕr(t)eı(kxxi+kyyj), ui,j(t) = ϕu(t)eı(kxxi+kyyj) and vi,j(t) = ϕv(t)eı(kxxi+kyyj).

that are substituted in the cell-centered scheme (4.24) and in the vertex-based scheme (4.26) to
obtain the differential system




ϕ′
r(t)

ϕ′
u(t)

ϕ′
v(t)


=




−νr

(
α2

∆x2 + β2

∆y2

)
−ıη

(
a⋆

α
∆x − νr

ω
a⋆

β
∆y

)
−ıη

(
a⋆

β
∆y + νr

ω
a⋆

α
∆x

)

−ıa⋆
α
∆xη −νu

α2

∆x2 −νu
α
∆x

β
∆y +ωη2

−ıa⋆
β
∆yη −νu

α
∆x

β
∆y −ωη2 −νu

β2

∆y2







ϕr(t)

ϕu(t)

ϕv(t)




(4.27)
where parameters α, β an η are specified in Table 4.2 depending on the scheme under study. One
eigenvalue of the amplification matrix in (4.27) is λ0 = 0 which corresponds to the stationary
state. The other eigenvalues are given by

λc =
νr + νu

2

(
α2

∆x2
+

β2

∆y2

)
± ı

√

ω2η4 + a2
⋆η

2

(
α2

∆x2
+

β2

∆y2

)
−
(
νr − νu

2

)2( α2

∆x2
+

β2

∆y2

)2

.

As mentioned above, it is essential with the AT −DP scheme to take νr = νu in order to be
as close as possible to the exact dispersion relation (4.19), see Figure 4.5.

Remark 4.8. We notice that the damping rate ℜ(λ) of the AT −DP scheme is larger than those
of the AT −LF and LF −DP schemes.

4.6 Analysis of the fully discrete Godunov type schemes

We consider an explicit discretisation for the advection term. Nevertheless it is well known that
a fully explicit discretisation of the Coriolis term leads in that case to unstable schemes, see [27].
Then let us set

uθ =

(
θ1u

n + (1 − θ1)un+1

θ2v
n + (1 − θ2)vn+1

)

for some θ1, θ2 ∈ [0,1]. In particular, for θ1 = θ2 = θ, then uθ = θun + (1 − θ)un+1.

4.6.1 Stability condition

For the sake of clarity, we shall assume in the sequel that

∆x= ∆y = h.
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(a) Exact dispersion law (b) Dispersion law (cell-centered) (c) Dispersion law (vertex-based)

(d) Exact damping (e) Damping error (cell-centered) (f) Damping error (vertex-based)

Figure 4.5: Dispersion relation and damping for the AT-DP scheme with a∗ = ω∆x.

As a consequence, due to (4.14), we have

κr := κx
r = κy

r = ηx
r = ηy

r , κu = κv = ηu = ηv and ν# =
κ#a∗∆x

2
.

We propose the following time discretisation for the cell-centered scheme




rn+1
i,j − rn

i,j

∆t
+ a⋆[∇c

2h · un
h]i,j − νr

[
∇c

2h ·
(

∇c
2hr

n
h +

ω

a∗
u

n,⊥
h

)]

i,j
= 0,

un+1
i,j − un

i,j

∆t
+ a⋆[∇c

2hr
n
h ]i,j − νu

[
∇c

2h(∇c
2h · un

h)
]
i,j = −ωu

θ,⊥
i,j ,

(4.28)

and for the vertex-based scheme




rn+1
i,j − rn

i,j

∆t
+ a⋆f

c
h

[
∇v

h · un
h

]
i,j − νr∇c

h ·
[
∇v

hr
n
h +ωfv

h

(
un

h

)⊥]
i,j

= 0,

un+1
i,j − un

i,j

∆t
+ a⋆f

c
h

[
∇v

hr
n
h

]
i,j − νu∇c

h

[
∇v

h · un
h

]
i,j = −ωf c

h

[
fv

h(uθ
h)
]⊥

i,j
.

(4.29)

In order to avoid inverting a matrix with a large stencil in the computation of the scheme, the
vertex-based scheme is restricted to the cases (θ1 = 1,θ2 = 0) and (θ1 = 0,θ2 = 1).

Lemma 4.8. Any choice such that θ1 + θ2 > 1 makes schemes (4.28) and (4.29) unstable. In
particular, the explicit case θ1 = θ2 = 1 is unstable, as mentioned before.

The proof of this lemma is embedded in the proof of Theorem 4.1 below.
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Theorem 4.1. For a uniform mesh ∆x = ∆y = h, the LF-DP schemes ( i.e.(4.28) and (4.29)
with νr = 0) are stable under the following conditions

∆t≤ min{∆ta,∆tb} where ∆ta :=
κuh

2a∗
and ∆tb :=

2
ω|θ2 − θ1| .

Remark 4.9. The restriction on the time step ∆ta (resp. ∆tb) is the classical CFL condition for
advection (resp. rotation) phenomena. Note that the choice θ2 = θ1 makes the CFL condition
independent from the Coriolis parameter.

Proof. Let us denote

̟ = ω∆t, σ = a⋆
∆t

h
.

We now perform the Fourier analysis for fully discrete Godunov type schemes by substituting
the fully discrete Fourier mode

rn
i,j = ϕn

r e
ı(kxxi+kyyj), un

i,j = ϕn
ue

ı(kxxi+kyyj) and vn
i,j = ϕn

v e
ı(kxxi+kyyj)

into the fully discrete scheme to obtain

Tθϕ
n+1 = Mθϕ

n

where

Tθ =




1 0 0

0 1 −(1 − θ2)̟η2

0 (1 − θ1)̟η2 1




and

Mθ =




1 − κrσ
2

(
α2 +β2

)
−ıη

(
σα− κr

2 ̟β
)

−ıη
(
σβ+ κr

2 ̟α
)

−ıσαη 1 − κσ
2 α

2 −κσ
2 αβ+ θ2̟η

2

−ıσβη −κσ
2 αβ− θ1̟η

2 1 − κσ
2 β

2


 .

Let us set Λ(θ1,θ2) = 1 +̟2η4(1 − θ1)(1 − θ2) = detTθ. The characteristic polynomial of this
amplification matrix T −1

θ Mθ has one root λ = 1 and the other roots are also roots of the
second-order polynomial

P (λ) := Λλ2 + ξλ+ ζ (4.30)

where

ξ = −2 +̟2η4(θ1 + θ2 − 2θ1θ2) +
κuσ

2

[
α2 +β2 −̟η2αβ(θ2 − θ1)

]
+
κrσ

2

(
α2 +β2

)
Λ

and

ζ = 1 +̟2η4θ1θ2 +
κrσ

2
̟2η4

[
α2θ1(1 − θ2) +β2θ2(1 − θ1)

]
− κrσ

2

(
α2 +β2

)

+σ

(
ση2 − κu

2
+σ

κrκu

4
(α2 +β2)

)[
α2 +β2 −̟η2αβ(θ2 − θ1)

]
.

Let us first prove Lemma 4.8 and consider for that the stationary state, kx = ky = 0, which
implies α= β = 0. The characteristic polynomial then reduces to

P (λ) = Λλ2 +
[
−2 +̟2η4(θ2 + θ1 − 2θ2θ1)

]
λ+ 1 +̟2η4θ2θ1.
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For the scheme to be stable, all eigenvalues must satisfy |λ| ≤ 1. In this simple case, a necessary
condition is |λ1λ2| ≤ 1, which is equivalent to

ζ

Λ
≤ 1 ⇐⇒ ̟2(1 − θ2 − θ1) ≥ 0.

This proves Lemma 4.8. Let us now turn to the proof of Theorem 4.1.
We now consider the fully discrete LF-DP cell-centered scheme:

κr = 0, η = 1 and − 1 ≤ α,β ≤ 1.

Then parameters ξ and ζ involved in (4.30) reduce to

ξ = −2 +̟2(θ2 + θ1 − 2θ2θ1) +
κuσ

2

[
α2 +β2 −̟αβ(θ2 − θ1)

]

and

ζ = 1 +̟2θ2θ1 +σ

(
σ− κu

2

)[
α2 +β2 −̟αβ(θ2 − θ1)

]
.

Imposing |λ| ≤ 1 is equivalent to

|ζ| ≤ Λ and |ξ| ≤ Λ + ζ.

• Firstly, the condition ζ ≤ Λ can be written as

f1(α,β) =̟2 [1 − (θ2 + θ1)] +σ

(
κu

2
−σ

)[
α2 +β2 −̟αβ(θ2 − θ1)

]
≥ 0

which in particular holds when

σ ≤ κu

2
and ̟|θ2 − θ1| ≤ 2. (4.31)

Indeed, the latter constraint implies that α2 +β2 −̟αβ(θ2 −θ1) ∈ [0,4] since α,β ∈ [−1,1].

• The condition ζ ≥ −Λ is equivalent to

f2(α,β) = 2 +̟2 [1 − (θ2 + θ1) + 2θ2θ1] −σ

(
κu

2
−σ

)[
α2 +β2 −̟αβ(θ2 − θ1)

]
≥ 0.

Under (4.31) and due to the fact that κu ∈ [0,1], we have

2 −σ

(
κ

2
−σ

)
4 = 4

(
σ− κu

2

)2

+ 2 − κ2
u

4
≥ 0

which ensures that the requirement f2 ≥ 0 is always satisfied.

• The case −ξ ≤ Λ + ζ reads

f3(α,β) =̟2 +σ2
[
α2 +β2 −̟αβ(θ2 − θ1)

]
≥ 0

which always holds under (4.31).

• Finally, the condition ξ ≤ Λ + ζ reads

f4(α,β) = 4 +̟2(1 − 2θ2)(1 − 2θ1) +σ(σ−κu)
[
α2 +β2 −̟αβ(θ2 − θ1)

]
≥ 0.
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Let us notice that due to (4.31) and θ2, θ1 ∈ [0,1], we have

f4(α,β) ≥ p4 := 4

[
σ2 −σκu − ̟2

4
+ 1

]
.

Either ω2h2 < (4 −κu)a2
∗ and p4 is a second-order polynomial with respect to ∆t that is

always positive: there is no additional constraint upon the time step. Or ω2h2 ≥ (4−κu)a2
∗

and ∆t must be small enough to ensure that p4 ≥ 0, i.e.

∆t≤ h

a∗κu
× 2

1 −
√

1 − 4a2
∗−ω2h2

a2
∗κ2

u

4a2
∗−ω2h2

a2
∗κ2

u

. (4.32)

The convexity of the function x 7→ 1 −
√

1 −x shows that when ω2h2 ≤ 4a2
∗, the bound

in (4.32) is greater than h
a∗κu

≥ h
2a∗

. Hence in that case (4.32) is less restrictive than (4.31).
The study of the monotonicity of the bound with respect to κu shows that it is also the case
when ω2h2 > 4a2

∗. Consequently, the only constraint upon the time step is (4.31) which
ends the proof of Theorem 4.1.

In the vertex-based case, the only difference is that η ∈ [0,1]. It can be shown that η = 1 is
always the most restrictive constraint and the same stability conditions hold.

Proposition 4.8. Let us set ϕ(x) =
√

1+x2−1
x2 . The cell-centered/vertex-based AT-LF and AT-DP

schemes are stable provided that the time step is smaller than

Scheme (θ1 = 0,θ2 = 0) (θ1 = 1,θ2 = 0) or (θ1 = 0,θ2 = 1) (θ1 = 1/2,θ2 = 1/2)

AT-LF κr
2

h
a∗

min
{

2
ω ,

κrh
4a∗

ϕ
(

κrωh
4a∗

)
, 4h

κra∗
ϕ
(

2ωh
κra∗

)}
κrh
a∗
ϕ
(

κrωh
2a∗

)

AT-DP 2κ
2+κ2

h
a∗

min
{

κ
2+κ2

h
a∗
, 1

ω

}
min

{
κ

2+κ2
h
a∗
, 2

ω

}

Proof. The proof relies on same kind of computations than Theorem 4.1.

Remark 4.10. Contrary to the result in Theorem 4.1, for the choice θ1 = θ2 = 1/2, the CFL
conditions in Prop. 4.8 still depend on the Coriolis parameter ω. The only choice for which the
CFL condition does not depend on the Coriolis parameter is a fully implicit discretisation of the
Coriolis term, i.e. θ1 = θ2 = 0.

We also notice that the stability conditions associated to the AT-LF scheme are more restrictive
than the conditions for the LF-DP scheme.

4.6.2 Orthogonality-preserving property

We now turn to another major aspect of the linear wave equation which is the preservation of the
orthogonal subspace, see Prop. 4.3. It means that when the initial condition is in the orthogonal
subspace, the numerical solution remains in this subspace at any time. If the numerical scheme
satisfies such a property, we say that this scheme is an orthogonality-preserving scheme.

As we shall see below, the original schemes (4.28) and (4.29) are not orthogonality-preserving
schemes. That is why we have to modify them. To do so, let us change the time discretisation of
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the velocity divergence on the pressure equation in the cell-centered scheme as




rn+1
i,j − rn

i,j

∆t
+ a⋆[∇c

2h · uτ
h]i,j − νr

[
∇c

2h ·
(

∇c
2hr

n
h +

ω

a∗
(un

h)⊥
)]

i,j
= 0,

un+1
i,j − un

i,j

∆t
+ a⋆[∇c

2hr
n
h ]i,j − νu

[
∇c

2h(∇c
2h · un

h)
]
i,j = −ωu

θ,⊥
i,j ,

(4.33)

and in the vertex-based scheme as




rn+1
i,j − rn

i,j

∆t
+ a⋆f

c
h

[
∇v

h · uτ
h

]
i,j − νr∇c

h ·
[
∇v

hr
n
h +ωfv

h

(
(un

h)⊥
)]

i,j
= 0,

un+1
i,j − un

i,j

∆t
+ a⋆f

c
h

[
∇v

hr
n
h

]
i,j − νu∇c

h

[
∇v

h · un
h

]
i,j = −ωf c

h

[
fv

h(uθ
h)
]⊥

i,j
,

(4.34)

for uτ
h = (τ1u

n + (1 − τ1)un+1, τ2v
n + (1 − τ2)vn+1)T with τ1, τ2 ∈ [0,1]. Note that these modified

schemes are still explicit since the updated velocity can be computed first and then introduced
in the pressure equation.

It is straightforward to prove that these modified schemes still preserve the corresponding
discrete kernels (4.20) and (4.25). They also preserve the orthogonal subspace:

Proposition 4.9. The fully discrete cell-centered (4.33) and vertex-based (4.34) schemes are
orthogonality-preserving schemes provided that

κr = 0 and τ1 = θ1, τ2 = θ2. (4.35)

Proof. Let us assume that qn
h ∈ Ec,⊥

ω,0,h and show that qn+1
h ∈ Ec,⊥

ω,0,h.
Taking the discrete scalar product of (4.33) with q̂h ∈ Ec

ω,0,h, we obtain

〈qn+1
h , q̂h〉 = 〈qn

h , q̂h〉 − a⋆∆t(〈∇c
2h · uτ

h, r̂h〉 + 〈∇c
2hr

n
h , ûh〉)

+ νu∆t〈∇c
2h[∇c

2h · un
h], ûh〉 + νr∆t

〈
∇c

2h ·
[
∇c

2hr
n
h +

ω

a⋆
u

n,⊥
h

]
, r̂h

〉
−ω∆t〈uθ,⊥

h , ûh〉.

Because of ∇c
2h · ûh = 0 and due to Lemma 4.4, we have

〈∇c
2hr

n
h , ûh〉 = −〈rn

h ,∇c
2h · ûh〉 = 0,

〈∇c
2h[∇c

2h · uh], ûh〉 = −〈∇c
2h · uh,∇c

2h · ûh〉 = 0.

Moreover 〈qn
h , q̂h〉 = 0 and

−a⋆∆t〈∇c
2h · uτ

h, r̂h〉 = a⋆∆t〈uτ
h,∇c

2hr̂h〉 = −ω∆t〈uτ
h, û

⊥
h 〉 = ω∆t〈uτ,⊥

h , ûh〉.

As a result, we obtain

〈qn+1
h , q̂h〉 = ω∆t

〈
(uτ

h − uθ
h)

⊥
, ûh

〉
+ νr∆t

〈
∇c

2h ·
[
∇c

2hr
n
h +

ω

a⋆
u

n,⊥
h

]
, r̂h

〉
.

Therefore, in order to ensure that ∀ q̂h ∈ Ec
ω,0,h, 〈qn+1

h , q̂h〉 = 0, we need νr = 0 and τ1 = θ1,
τ2 = θ2.

Similarly, for the vertex-based scheme (4.34), we have

〈qn+1
h , q̂h〉 = 〈qn

h , q̂h〉 − a⋆∆t(〈fc
h [∇v

hr
n
h ] , ûh〉 + 〈fc

h [∇v
h · uτ

h] , r̂h〉) + νu∆t〈∇c
h [∇v

h · un
h] , ûh〉

+ νr∆t
〈
∇c

h ·
[
∇v

hr
n
h +ωfv

h(un,⊥
h )

]
, r̂h

〉
−ω∆t

〈
fc

h

[
fv

h(uθ,⊥
h )

]
, û
〉
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and due to Lemma 4.7

〈qn+1
h , q̂h〉 = νr∆t

〈
∇c

h ·
[
∇v

hr
n
h +ωfv

h(un,⊥
h )

]
, r̂h

〉
+ω∆t

〈
fc

h

[
fv

h(û⊥
h )
]
,uθ

h − uτ
h

〉
.

Therefore, under (4.35), we have 〈qn+1
h , q̂h〉 = 0 for any q̂h ∈ Ev

ω,0,h.

4.7 Numerical results

4.7.1 Well-balanced test case with initial condition in the kernel

We first come back to the test case presented in Section 4.3 to explain the wrong behaviour of
the classical scheme and of the naive corrections referred to as LF-C and C-LF strategies. In
practice we define the initial discrete pressure r by using relation (4.7) applied at the cell centers
and the initial discrete velocity by using the definition of the discrete kernel (4.20). The initial
state is then a discrete stationary solution when we use the scheme defined by (4.28) or (4.33).
As expected, the AT-DP, AT-LF and LF-DP strategies exactly maintain the stationary state,
whereas the results obtained with the AT-C and C-DP strategies are very similar to the ones
obtained with the LF-C and C-LF strategies and are not able to preserve the stationary state,
compare Fig. 4.6 and 4.3.

In Fig. 4.6 we present the results for two different grid sizes and two different final times.
It is clear that the error decreases when the mesh is refined and increases with time, that is
not surprising. As it has already been noticed, it clearly appears that, for this test case, the
correction on the diffusion for the velocity equation, i.e.C-DP strategy, has a much larger impact
than the correction on the diffusion for the pressure equation, i.e.AT-C strategy, but is not
enough to preserve the stationary state. This behaviour will be investigated in more details in
Section 4.7.3.

4.7.2 Orthogonality-preserving test case with initial condition in the orthogonal subspace

In this test case, we consider periodic boundary conditions and an initial velocity field given by




u(t= 0,x,y) = 1
2 exp

[
−
(

4x
0.4

)2
−
(

4y
0.8

)2
]

v(t= 0,x,y) = 1
2 exp

[
−
(

4x
0.8

)2
−
(

4y
0.4

)2
]
.

in the domain T2 = [−0.5,0.5] × [−0.5,0.5]. Then the initial pressure r(t= 0,x,y) is constructed
by using the definition of the discrete orthogonal subspace (4.21). Note that for this test case, we
only present results for the cell-centered scheme (4.28) for which we can compute explicitly the
orthogonal of the kernel. Note that for the vertex-based scheme (4.29), we can also prove that
the LF-DP scheme with the appropriate uτ velocity preserves the orthogonal, but we cannot
provide an explicit expression for this subspace. The time discretisation parameter for Coriolis
term is θ1 = θ2 = 1/2 for all the numerical results. A 50 × 50 grid is used.

As expected, Figure 4.7(a) indicates that, for the choice τ = 1, no scheme is orthogonality-
preserving (if ti were the case, the curves would remain exactly zero). Nevertheless it clearly
appears that the projection q̂ onto the kernel depends on the numerical strategy and is much
larger for the C-C and the AT-C schemes than for the other ones. Figure 4.7(b) shows that the
orthogonal part of the solution is less damped when the LF strategy is used, i.e. for AT-LF and
LF-DP schemes, since the numerical diffusion is canceled for one equation. In Fig. 4.7(c) and
Fig. 4.7(d), we present the same results, but focusing on the LF-DP scheme for different values
of the parameter τ used for the time discretisation of the velocity in the pressure equation. It
appears on Fig. 4.7(c) that the case with τ = θ is the only one for which the projection of the
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(a) r(t = 10,x,y) with a 50 × 50 grid.
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(b) r(t = 20,x,y) with a 50 × 50 grid.
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(c) r(t = 10,x,y) with a 100 × 100 grid.
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(d) r(t = 20,x,y) with a 100 × 100 grid.

Figure 4.6: Cross-section of pressure.

solution in the kernel remains zero for all time, which means that the orthogonal subspace is
stable for the scheme. In Figure 4.7(d), it appears that the damping increases when the time
discretisation becomes more and more implicit, i.e.the parameter τ becomes smaller and smaller.
Note that the choice τ = θ = 1/2 for which the orthogonal is a stable subspace corresponds to
a mean damping: contrary to the previous test case, the solution evolves but remains in the
orthogonal.

4.7.3 Behaviour of the solution with initial condition close to the kernel

We now consider an initial condition close to the discrete kernel up to a perturbation of size
M ≪ 1

q0
h = q̂0

h +M
q̃0

h

‖q̃0
h‖ ,

where q̂0
h stands for the projection onto the kernel given in Section 4.7.1 and q̃0

h is the orthogonal
part considered in Section 4.7.2. Here the Froude number M is set equal to 10−3 and a 50 × 50
grid is used. In Figure 4.8(a) we present the evolution in time of the deviation from the initial
projection q̂0

h. It appears that for the C-C, AT-C and C-DP schemes, that are not able to
maintain steady states, the deviation increases regularly with time. Nevertheless it increases
much faster for C-C and AT-C schemes than for C-DP schemes, which reinforces the conclusions
of the first numerical example, see Section 4.7.1. For C-C and AT-C schemes, the deviation
becomes almost constant when the discrete solution reaches a stationary state of the scheme,
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Figure 4.7: Evolution of the kernel and orthogonal part for θ1 = θ2 = 1
2 .

which is very different from the initial one since the kernels of those scheme are inaccurate
approximations of the continuous ones, see Lemma 4.2. The same phenomenon should occur for
the C-DP scheme but since the deviation increases slowly, one needs to wait for a long time.

In Fig. 4.8(b) we present the norm of the part of the solution that belongs to the orthogonal
subspace. It appears that for each scheme, it is mostly decreasing in time, despite some oscillations,
meaning that, for each scheme, the solution tends to a stationary state that belongs to the kernel
of the considered scheme. Note that the solution of the AT-C scheme tends quite quickly to a
stationary state in its kernel since the orthogonal part vanishes. For C-C and C-DP schemes, the
decreasing of the orthogonal part is slower, which explains that the deviation is still increasing in
Fig. 4.8(a), even if very slowly for large time for the C-C scheme.

In Fig. 4.9, we present for different values of M , the maximum value, over the time interval,
of the deviation from the initial projection q̂0

h. It clearly exhibits that, for the well-balanced
LF-DP, AT-LF and AT-DP strategies, the deviation is proportional to M whereas it remains
constant for the other strategies, even if the constant is smaller for the C-DP scheme than for the
C-C and AT-C schemes. It emphasizes the importance of the well-balanced strategy to ensure
the accuracy near the geostrophic equilibrium.
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Figure 4.8: Evolution in time of the deviation for an initial condition close to the discrete kernel.

10
−5

10
−4

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

 C−C

AT−C

C−DP

AT−LF

LF−DP

AT−DP

(a)
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4.7.4 Water column test case and geostrophic adjustment

In this test case, we consider a discontinuous initial condition which is given by




r(t= 0,x,y) =

{
2, if x2 + y2 ≤ 1

1, if x2 + y2 > 1,

u(t= 0,x,y) = 0,

v(t= 0,x,y) = 0.

with periodic boundary conditions on the domain [−5,5] × [−5,5]. This initial condition corre-
sponds to a circular dam break and is very far from the geostrophic equilibrium (4.3). Hence the
solution of the wave equation with Coriolis term (4.2) will contain a travelling wave that should
go out of the domain (here due to periodic boundary conditions, the waves remain in the domain
but will vanish for long time because of numerical diffusion) and the remaining stationary state
will be the geostrophic equilibrium (4.3) corresponding to the initial data. Discrete solutions
will exhibit the same behaviour but the remaining state will belong to the discrete kernel of each
scheme.

In Fig. 4.10, we present the evolution in time of the pressure r for different schemes. In
Fig. 4.10(f), i.e.for long time, three groups can be exhibited: the one corresponding to the
well-balanced schemes, i.e.the LF-DP, AT-LF and AT-DP schemes, the one corresponding to
the schemes for which the kernel is given by (4.9a), i.e.the C-C and the C-DP schemes, and the
AT-C scheme for which the kernel is given by (4.9c). In Fig. 4.12 we present at the final time
the results for the quantities r, u and v for three schemes, corresponding to the three groups
previously mentioned. Results appear to be very different (note the scale is not the same for the
three figures).

On the left column, solutions of the C-C and C-DP schemes are close to a constant state (see
the scale on the z-axis) that corresponds to the discrete kernel (4.9a). Note that the discrete
kernels (4.9a) and (4.9b) are the same and correspond respectively to the C-C and C-DP schemes.
On the center column, u-velocity (resp. v-velocity) corresponding to the solution of the AT-C
scheme is almost constant in the x-direction (resp. in the y-direction). It is in agreement with
the definition of the kernel (4.9c), that is neither a constant state, nor a good approximation of
the continuous geostrophic equilibrium (4.3).

In the right column, solution for the AT-DP scheme is very similar to the geostrophic
equilibrium plotted in Fig. 4.1, which may indicate that the solution is close to the discrete
kernel (4.20), that has been proven to be a good approximation of the continuous geostrophic
equilibrium (4.3). It is clearly exhibited in Fig. 4.11 where we show that, for long time, the
gradient of the pressure along the x-axis balances exactly the x-component of the Coriolis force,
which characterizes the geostrophic equilibrium (the result would be the same for any cross-section
in any direction). Among the C-C, AT-C and C-DP schemes, that are not well-balanced, note
that, whereas the C-DP scheme appeared to be preferable in the previous test cases since the
deviation from the discrete geostrophic equilibrium remained relatively small, here, the solution
of the C-DP scheme is very similar to the one of the classical C-C scheme and is totally inaccurate.
It allows to conclude that the well-balanced property is absolutely necessary to obtain accurate
solutions for a large range of test cases.

In Fig. 4.10(a) to 4.10(e) we present the transient part of this geostrophic adjustment. It
appears that the time evolution of the solutions of the three well-balanced schemes, even if they
converge to the same state, is not completely similar. In particular the solution for the AT-DP
scheme is different from a group composed by the solutions corresponding to the AT-LF and
LF-DP schemes. Note also that for short time, the solution of the LF-DP scheme presents some
oscillations, that are due to the discontinuity of the initial solution. This difference is highlighted
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in Fig. 4.13 where we present the time evolution of the energy. Indeed, even if the final state is
the same for the three well-balanced schemes, the time evolution is different for, on the one hand,
the AT-DP scheme, and, on the other hand, the AT-LF and the LF-DP schemes, for which the
energy decreases more slowly. Nevertheless note that, as expected from Th. 4.1, the energy is
globally decreasing for all schemes, even if we consider a discontinuous initial condition.
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Figure 4.10: Cross section of the pressure r at y = 0 at different times.
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(c) t = 100

Figure 4.11: Cross section of the pressure gradient and Coriolis force at y = 0 for AT-DP scheme.

4.8 Conclusion

In this work we propose new collocated finite volume Godunov type schemes to compute accurate
approximate solutions of the wave equation with Coriolis term. The main ingredient of the
method is to modify the numerical diffusion of the scheme to make the discrete kernel compatible
with the so-called geostrophic equilibrium. It extends techniques proposed in [13] and [20]. We
propose three different well-balanced schemes, namely the AT-LF (Apparent Topography & Low
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(a) r (b) r (c) r

(d) u (e) u (f) u

(g) v (h) v (i) v

Figure 4.12: Comparison between C-C (left), AT-C ( middle) and AT-DP (right) schemes at time t= 100.

Froude) scheme, the LF-DP (Low Froude & Divergence Penalisation) scheme and the AT-DP
(Apparent Topography & Divergence Penalization) scheme, and two different ways to discretise
the geostrophic equilibrium, namely at the centers of the cell or at the interfaces.

The main result of the paper is the proof of stability, under classical CFL conditions, of all
these modified schemes, see Th. 4.1. Moreover some numerical test cases allow us to investigate
the behaviour of the schemes for different kinds of initial solutions, including discontinuous ones,
and conclude that the well-balanced property is essential to ensure an accurate geostrophic
adjustment. Future works will be dedicated to the extension of these results to the fully nonlinear
two-dimensional shallow water equations with Coriolis term (4.1).

4.A Proof of the Hodge decomposition in the continuous case (Prop. 4.1)

Proof. In order to prove (4.4), let us denote by A the space

A :=
{

(p,v) ∈
(
L2(T2)

)3
∣∣∣∣ ∀ϕ ∈ C∞

c (T2),
∫

T2
a⋆v⊥ · ∇ϕ dx =

∫

T2
ωpϕ dx

}
.
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Figure 4.13: Evolution in time of the energy

We first show that A is a subset of E⊥
ω,0. Let us take q̃ = (p,v) ∈ A. Then for all q = (r,u) ∈ Eω,0,

we have

〈q̃, q〉 =
∫

T2
rp dx +

∫

T2
u · v dx =

∫

T2
rp dx +

a⋆

ω

∫

T2
v · ∇⊥r dx

=
∫

T2

ω

a⋆
pr dx −

∫

T2
v⊥ · ∇r dx = 0.

By density of C∞
c (T2) in H1(T2), it follows that q̃ = (p,v) ∈ E⊥

ω,0. Therefore, we conclude that
A ⊂ E⊥

ω,0.
On the other hand, let us take q̃ = (p,v) ∈ E⊥

ω,0. For any φ ∈ H1(T2) we have q̂ :=
( ω

a⋆
φ,∇⊥φ) ∈ Eω,0 . This provides

〈q̃, q〉 = 0 =⇒
∫

T2

ω

a⋆
φp dx −

∫

T2
v⊥ · ∇φ dx = 0.

As a result, we have

∀ φ ∈H1(T2),
∫

T2

ω

a⋆
φp dx =

∫

T2
v⊥ · ∇φ dx,

which leads to
∀ φ ∈ C∞

c (T2),
∫

T2

ω

a⋆
φp dx =

∫

T2
v⊥ · ∇φ dx.

It implies that q̃ ∈ A, that is to say E⊥
ω,0 is a subset of A. In conclusion, we have

E⊥
ω,0 = A =

{
(p,v) ∈

(
L2(T2)

)3
∣∣∣∣ ∀ϕ ∈ C∞

c (T2),
∫

T2
a⋆v⊥ · ∇ϕ dx =

∫

T2
ωpϕ dx

}
.

We eventually have to prove that

Eω,0 ⊕ E⊥
ω,0 =

(
L2(T2)

)3
.

By the fact that Eω,0⊕E⊥
ω,0 ⊂

(
L2(T2)

)3 is trivial, we only have to check
(
L2(T2)

)3 ⊂ Eω,0⊕E⊥
ω,0

. We suppose q ∈ (L2(T2))3, we shall find q̂ ∈ Eω,0 and q̃ ∈ E⊥
ω,0 such that q = q̂ + q̃. For

q = (r,u,v) ∈
(
L2(T2)

)3, let us denote µ(r) = 1
|T2|

∫
T2 r dx and consider the following variational

form :
Find h ∈H1(T2) such that: ∀ ϕ ∈H1(T2), a(h,ϕ) = F (ϕ), where

a(h,ϕ) :=
∫

T2
∇h·∇ϕ dx+

(
ω

a⋆

)2 ∫

T2
hϕ dx, F (ϕ) :=

ω

a⋆

∫

T2
u⊥·∇ϕ dx−

(
ω

a⋆

)2 ∫

T2
(r−µ(r))ϕ dx.

(4.A.1)
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The existence and uniqueness of h ∈ H1(T2) results from the Lax-Milgram theorem for ω , 0.
We consider the decomposition for r given by

r = r̂+ r̃ with r̂ = µ(r) −h and r̃ = r−µ(r) +h.

For the decomposition of u, we simply construct û by setting

û =
a⋆

ω
∇⊥r̂ and ũ = u − û,

which implies (r̂, û) ∈ Eω,0 and
û⊥ = −a⋆

ω
∇r̂ =

a⋆

ω
∇ĥ.

Therefore, (4.A.1) implies that for all ϕ ∈H1(T2) we have

ω

a⋆

∫

T2
(û − u)⊥ · ∇ϕ dx +

(
ω

a⋆

)2 ∫

T2
r̃ϕ dx = 0

which implies that

∀ϕ ∈ C∞
c (T2),

∫

T2
a⋆ũ⊥ · ∇ϕ dx =

∫

T2
ωr̃ϕ dx.
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sian meshes

Problems are not stop signs,

they are guidelines.

Robert H. Schuller.

The numerical viscosity on both the pressure and velocity equations are responsible for
the inaccuracy problem of the classical Godunov scheme applied to the two dimensional
linear wave equation with Coriolis force. To overcome this difficulty, based on the study
of the modified equation, the work in [53] proposes corrections to the standard diffusion
terms by using a mixture among the Apparent Topography method in [13], the Low Froude

and Divergence penalization method mentioned in [20]. In this work, we develop this idea
to construct some staggered type schemes on the Arakawa B and D grids, such that those
schemes capture well the discrete geostrophic equilibrium which are the stationary states
of the system, as well as the subspace which is orthogonal to these stationary states. A
Fourier analysis is preformed to compare the staggered type schemes on B and D grids in
terms of dispersion laws and damping errors.
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5.1 Introduction

The dimensionless shallow water equation on the rotating frame is given by




∂th+ ∇ · (hū) = 0, (5.1a)

St∂t(hū) + ∇ · (hū ⊗ ū) +
1
Fr2

∇
(
h2

2

)
= − 1

Fr2
h∇b− 1

Ro
hū

⊥ (5.1b)

In System (5.1) unknowns h and ū respectively denote the water depth and the velocity of the
water column and function b(x) denotes the topography of the considered oceanic basin and is a
given function. Dimensionless numbers St, Fr and Ro respectively stand for the Strouhal, the
Froude and the Rossby numbers defined by

St=
L

UT
, Fr =

U√
gH

, Ro=
U

ΩL

where the parameter g and Ω denote the gravity coefficient and the angular velocity of the Earth.
Constants U , H, L and T are some characteristic velocity, vertical and horizontal lengths and
time. In the sequel, we shall focus on cases where

Ro= O(M) and Fr = O(M)

with M a small parameter. For large scale oceanographic flows, typical values lead to M ∼ 10−2.
Let us now suppose that the topography is flat. For a Strouhal number of order O( 1

M ) and for
Rossby and Froude numbers of order O(M), the solution of system (5.1) satisfies at the leading
order the linear wave equation with Coriolis source term

{
∂tr+ a⋆∇.u = 0

∂tu + a⋆∇r = −ωu⊥ (5.2)

where u = (u,v)T , and u⊥ = (−v,u)T . The parameters a⋆ and ω are constants of order one,
respectively related to the wave velocity and to the rotating velocity. The stationary state
corresponding to Equation (5.2) is the geostrophic equilibrium which is given by

a⋆∇r = −ωu⊥. (5.3)

One of the common numerical strategies that can be applied to the linear wave equation (5.2)
is the collocated leapfrog scheme (the so called A-grid model). However, this scheme suffers
from the problem called "checkerboard mode" that has a pressure state alternating between two
constants (see [2] for more details). Hence, it is essential to turn to staggered schemes. Since
there is a variety of ways to distribute the variables in the two dimensional case, we have various
staggered schemes associated to Arakawa’s grids introduced in [40]. A lot of research articles
focus on the analysis of the behavior of the dispersion relation for the numerical discretization
of (5.2) on Arakawa’s grids, e.g. [41, 54]. The main purpose of the present work is to propose
staggered schemes with appropriate diffusion terms that avoid oscillating solutions when the
initial solution is discontinuous, while at the same time the obtained scheme can capture well
the geostrophic equilibrium (5.3).

The outline of this work is the following. In Section 5.2, we perform the analysis for the
semi-discrete staggered schemes. In particular, we construct some discrete operators which fulfill
mimetic properties. Moreover, we analyze the discrete kernel associated to the semi-discrete
staggered scheme to point out the wrong behavior of the classical scheme and we follow the
work performed on collocated grids [53] to adapt the Apparent Topography, Low Froude and
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Divergence Penalisation methods to staggered grids. This provides schemes that possess discrete
steady states which are consistent approximations of the continuous kernel (5.3). On the other
hand, based on a Fourier analysis, we exhibit the dispersion relations and damping errors of the
semi-discrete (in space) schemes. Next, in Section 5.3, we take into account the time discretization
to present fully discrete staggered schemes and we prove some CFL conditions which ensure that
the proposed schemes are stable. Besides, we investigate the orthogonality preserving property
at the fully discrete level. At last, the analysis is followed by numerical tests in Section 5.4 and
the study is completed by some concluding remarks.

5.2 Analysis of the semi-discrete staggered schemes

5.2.1 The semi-discrete staggered scheme on B grids

B grids have velocities discretized at the cell centers, while discrete pressures are located at the
vertices of the grid.

Figure 5.1: B grid.

Discrete Operators for B grid type schemes

We first define the discrete version of the gradient and divergence operator. Let uh = (ui,j) and
vh = (vi,j) be in RN where N = Nx ×Ny. We define the discrete divergence ∇h · (uh) by the
following formula

∀i ∈ [1,Nx],∀j ∈ [1,Ny] : ∇h · (uh)i+1/2,j+1/2 =
(ui+1,j+1 +ui+1,j) − (ui,j+1 +ui,j)

2∆x

+
(vi+1,j+1 + vi,j+1) − (vi+1,j + vi,j)

2∆y
.

(5.4)

Moreover, we can define the discrete curl of the vector field by

∇h × (uh)i+1/2,j+1/2 = −∇h · (u⊥
h )i+1/2,j+1/2

=
(vi+1,j+1 + vi+1,j) − (vi,j+1 + vi,j)

2∆x
− (ui+1,j+1 +ui,j+1) − (ui+1,j +ui,j)

2∆y
.

(5.5)
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Let rh = (ri+1/2,j+1/2) be a scalar function defined on the dual cells (see Figure 5.1). We can
define the discrete gradient by using the following formula

∀i ∈ [1,Nx],∀j ∈ [1,Ny] : ∇h(rh)i,j =
1
2




ri+1/2,j+1/2−ri−1/2,j+1/2

∆x

ri+1/2,j+1/2−ri+1/2,j−1/2

∆y


+

1
2




ri+1/2,j−1/2−ri−1/2,j−1/2

∆x

ri−1/2,j+1/2−ri−1/2,j−1/2

∆y


 .

(5.6)
Let us denote the area of the primary cell ∆i,j = ∆x∆y and the dual cell ∆i+1/2,j+1/2 = ∆x∆y.
Then, we can define the discrete scalar product between q1

h = (r1
h,u

1
h,v

1
h) and q2

h = (r2
h,u

2
h,v

2
h) by

〈q1
h, q

2
h〉 = 〈r1

h, r
2
h〉D + 〈u1

h,u
2
h〉P

=
∑

i,j

∆i+1/2,j+1/2r
1
i+1/2,j+1/2r

2
i+1/2,j+1/2 +

∑

i,j

∆i,j

(
u1

i,ju
2
i,j + v1

i,jv
2
i,j

)
. (5.7)

With the help of the discrete operators, the semi-discrete staggered scheme applied to the
linear wave equation with Coriolis source term can be written as




d
dtri+1/2,j+1/2(t) + a⋆∇h · (uh)i+1/2,j+1/2 − νr∇h ·

[
∇h(rh) + ω

a⋆
u⊥

h

]
i+1/2,j+1/2

= 0

d
dtui,j(t) + a⋆∇h(rh)i,j − νu∇h[∇h · (uh)]i,j = −ωu⊥

i,j .
(5.8)

where νr = κx
r a⋆∆x

2 = κy
r a⋆∆y

2 and νu = κua⋆∆x
2 = κva⋆∆y

2 represent the parameters of the
diffusion terms.

We also note that the Low Froude – Divergence Penalization (LF-DP) scheme corresponds
to νr = 0,νu > 0, the Apparent Topography – Low Froude (AT-LF) scheme corresponds to
νr > 0,νu = 0 and the Apparent Topography – Divergence Penalization (AT-DP) scheme has
νr,νu > 0.

Remark 5.1. It is worth pointing out that in the collocated schemes, all the space derivatives are
taken over the distance 2h where the space step h= ∆x (resp. h= ∆y) in the x (resp.y) direction.
However, the distance between adjacent grid nodes is only h. Therefore, it is reasonable to use
staggered schemes which allow us to perform the derivatives over the distance h. As a result,
staggered schemes are more compact than the collocated schemes proposed in [53].

Properties of the discrete operators

Proposition 5.1. With the discrete divergence, curl, gradient operators and the discrete scalar
product defined respectively by (5.4), (5.5), (5.6) and (5.7), we have the following properties
for the semi-discrete staggered scheme (5.8):

i. Energy conservation for the pressure gradient force (discrete integration by part)

〈∇h · (uh), rh〉D = −〈∇h(rh),uh〉P (5.9)

ii. Energy conservation for the Coriolis force

〈u⊥
h ,uh〉P = 0. (5.10)

iii. No vorticity production for the pressure gradient force

∇h × (∇h(rh)) = 0. (5.11)
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Proof. By using periodic boundary condition, we obtain

〈∇h · (uh), rh〉D =
∑

i,j

∆i+1/2,j+1/2∇h · (uh)i+1/2,j+1/2ri+1/2,j+1/2

=
∑

i,j

∆i+1/2,j+1/2
(ui+1,j+1 +ui+1,j) − (ui,j+1 +ui,j)

2∆x
ri+1/2,j+1/2

+
∑

i,j

∆i+1/2,j+1/2
(vi+1,j+1 + vi,j+1) − (vi+1,j + vi,j)

2∆y
ri+1/2,j+1/2

=
∑

i,j

∆i,jui,j

(
ri−1/2,j−1/2 − ri+1/2,j−1/2

2∆x
+
ri−1/2,j+1/2 − ri+1/2,j+1/2

2∆x

)

+
∑

i,j

∆i,jvi,j

(
ri−1/2,j−1/2 − ri−1/2,j+1/2

2∆y
+
ri+1/2,j−1/2 − ri+1/2,j+1/2

2∆y

)

= −
∑

i,j

∆i,j∇h(rh)i,j · ui,j = −〈∇h(rh),uh〉P ,

which proves Point (i).
Point (ii) is obvious and we now turn to Point (iii); we get, after some simplifications

∇h × (∇h(rh))i+1/2,j+1/2 =
1

2∆y

[(
ri+3/2,j+3/2 − ri−1/2,j+3/2

2∆x

)
−
(
ri+3/2,j−1/2 − ri−1/2,j−1/2

2∆x

)]

− 1
2∆x

[(
ri+3/2,j+3/2 − ri+3/2,j−1/2

2∆y

)
−
(
ri−1/2,j+3/2 − ri−1/2,j−1/2

2∆y

)]

= 0.

Let us emphasize that the new diffusion term on the velocity equation ∇h(∇h ·uh) is a crucial
point to ensure a discrete vorticity-divergence relation written on the dual mesh for the staggered
scheme: If we apply the operator ∇h× to the velocity equation of the staggered scheme (5.8), we
obtain

d

dt
[∇h × (uh)]i+1/2,j+1/2 +ω∇h · (uh)i+1/2,j+1/2 = 0. (5.12)

This is because we have no vorticity production of the gradient term (see (5.11)). Of course,
with the standard diffusion term (∂2

xx,huh,∂
2
yy,hvh)T , we generally have

∇h ×
[
(∂2

xx,huh,∂
2
yy,hvh)T

]
, 0.

As a consequence, we are unable to obtain the vorticity-divergence relation (5.12) with the
standard scheme.

Evolution of the discrete energy

Lemma 5.1. With νr = 0 and the discrete energy defined as follows:

Eh(t) =
∑

i,j

∆i+1/2,j+1/2r
2
i+1/2,j+1/2(t) +

∑

i,j

∆i,j

(
u2

i,j(t) + v2
i,j(t)

)
, (5.13)
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we have the dissipation of the discrete energy for the LF-DP scheme:

d

dt
Eh(t) ≤ 0.

Proof. We take the scalar product of the staggered scheme (5.8) with qh = (rh,uh,vh) to obtain

1
2
d

dt
Eh(t) + a⋆〈∇h · (uh), rh〉D + a⋆〈∇h(rh),uh〉P + 〈u⊥

h ,uh〉P − νu〈∇h[∇h · (uh)],uh〉P = 0.

Moreover, the discrete integration by part formula (5.9) implies that

〈∇h[∇h · (uh)],uh〉P = −〈∇h · (uh),∇h · (uh)〉D (5.14)

Therefore, using (5.9), (5.10) and (5.14), we get

d

dt
Eh(t) = −2νu‖∇h.(uh)‖2,

which means that the energy of the LF-DP scheme is decreasing with time.

Discretized steady-states and their orthogonal subspace on B grids

We now define a set of discretized steady-states with staggered variables on B grids by the
following expression

E�

ω,0,B =
{
qh = (rh,uh) ∈ R3N : a⋆∇h(rh)i,j = −ωu⊥

i,j

}
(5.15)

which is a consistent discretization of the geostrophic equilibrium (5.3). Then we have the
following result

Lemma 5.2. The orthogonal space of E�

ω,0,B is given by

E�,⊥
ω,0,B =

{
qh = (rh,uh) ∈ R3N : a⋆∇h × (uh)i+1/2,j+1/2 = ωri+1/2,j+1/2

}
, (5.16)

which implies the following discrete Hodge decomposition: R3N = E�

ω,0,B ⊕ E�,⊥
ω,0,B.

Proof. First of all, we define the set AB
h by

AB
h :=

{
qh = (rh,uh) ∈ R3N : a⋆∇h × (uh)i+1/2,j+1/2 = ωri+1/2,j+1/2

}
.

For each q̂h ∈ E�

ω,0,B and arbitrary q̃h ∈ R3N , we use the discrete integration by part formula (5.9)
to obtain

〈q̂h, q̃h〉 = 〈r̂h, r̃h〉D + 〈ûh, ũh〉P = 〈r̂h, r̃h〉D + 〈û⊥
h , ũ

⊥
h 〉P

= 〈r̂h, r̃h〉D − a⋆

ω

〈
∇h(r̂h), ũ⊥

h

〉
P

= 〈r̂h, r̃h〉D +
a⋆

ω

〈
r̂h,∇h · (ũ⊥

h )
〉

D

=
〈
r̂h, r̃h − a⋆

ω
∇h × (ũ⊥

h )
〉

D
.

Hence, if q̃h ∈ AB
h , we obviously have 〈q̂h, q̃h〉 = 0 which leads to AB

h ⊂ E�,⊥
ω,0,B . On the other hand,

since r̂h can be arbitrary in RN when q̂h ∈ E�

ω,0,B , then the equality
〈
r̂h, r̃h − a⋆

ω ∇h × (ũ⊥
h )
〉

D
= 0

for all q̂h ∈ E�

ω,0,B implies that r̃h − a⋆
ω ∇h × (ũ⊥

h ) = 0 and thus q̃h ∈ AB
h . It follows that

E�,⊥
ω,0,B ⊂ AB

h .
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Remark 5.2. The discrete Hodge decomposition allows us to define the discrete orthogonal
projection

Ph :

{
R3N −→ E�

ω,0,B

qh 7−→ q̂h

and we can construct q̂h by what follows.
Let qh = (rh,uh) be given in R3N . For all (p̂h, v̂h) ∈ E�

ω,0,B, using orthogonality, we have

〈r̂h, p̂h〉D + 〈ûh, v̂h〉P = 〈rh, p̂h〉D + 〈uh, v̂h〉P .

We then use the definition of the discrete steady-states and the discrete integration by part formula
to get

〈r̂h, p̂h〉D −
(
a⋆

ω

)2

〈∇h · [∇h(r̂h)] , p̂h〉D = 〈rh, p̂h〉D −
(
a⋆

ω

)
〈∇h × uh, p̂h〉D.

As a result, it is possible to find r̂h by solving the following linear system

r̂i+1/2,j+1/2 −
(
a⋆

ω

)2

∇h ·[∇h(r̂h)]i+1/2,j+1/2 = ri+1/2,j+1/2 −
(
a⋆

ω

)
∇h ×(uh)i+1/2,j+1/2. (5.17)

Then, by the definition of the discrete steady-states, the part of the velocity field in E�

ω,0,B is
given by

ûi,j =
(
a⋆

ω

)
∇⊥

h (r̂h)i,j .

Finally, the orthogonal component is simply given by q̃h = qh − q̂h. Moreover, the linear sys-
tem (5.17) defines a unique solution by the fact that the matrix of this linear system is an
M-matrix.

Well-balanced and orthogonality preserving properties

Definition 5.1. A semi-discrete scheme is said to be well-balanced if

q0
h ∈ E�

ω,0,B ⇒ ∀t≥ 0, qh(t) = q0
h ∈ E�

ω,0,B.

Definition 5.2. A semi-discrete scheme is said to be orthogonality preserving if

q0
h ∈ E�,⊥

ω,0,B ⇒ ∀t≥ 0, qh(t) ∈ E�,⊥
ω,0,B .

Lemma 5.3. For the semi-discrete staggered type scheme (5.8), we have:

i. It is a well balanced scheme which can capture the discrete steady state (5.15).

ii. It is an orthogonality preserving scheme if νr = 0 (LF-DP scheme).

Proof. By the fact that we have no vorticity production of the gradients (see (5.11)), with discrete
steady-states, there holds

∇h · (uh)i+1/2,j+1/2 =
(
a⋆

ω

)
∇h ·

[
∇⊥

h (rh)
]

i+1/2,j+1/2
= −

(
a⋆

ω

)
∇h × [∇h(rh)]i+1/2,j+1/2 = 0

(5.18)
which implies the well balanced property of the semi-discrete staggered scheme (5.8). This proves
Point (i).
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We now turn to the second point. By taking the discrete scalar product of the semi-discrete
staggered scheme with the stationary state q̂h ∈ E�

ω,0,B , we obtain

〈
d

dt
qh(t), q̂h

〉
= −a⋆〈∇h · (uh), r̂h〉D + νr

〈
∇h ·

[
∇h(rh) +

ω

a⋆
u⊥

h

]
, r̂h

〉

D
− a⋆〈∇h(rh), ûh〉P + νu〈∇h[∇h · (uh)], ûh〉P −ω〈u⊥

h , ûh〉P .

By using the discrete integration by part formula and (5.18), we have

〈∇h(rh), ûh〉P = −〈rh,∇h · (ûh)〉D = 0 , 〈∇h[∇h · (uh)], ûh〉P = −〈∇h · (uh),∇h · (ûh)〉D = 0

and, using the discrete integration by part formula and the fact that q̂h ∈ E�

ω,0,B , we get

−a⋆〈∇h · (uh), r̂h〉D −ω〈u⊥
h , ûh〉P =

〈
a⋆∇hr̂h +ωû⊥

h ,uh

〉
P

= 0.

As a result, the condition to ensure the orthogonality preserving property of the semi-discrete
staggered scheme is given by

∀q̂h ∈ E�

ω,0,B , νr

〈
∇h.

[
∇h(rh) +

ω

a⋆
u⊥

h

]
, r̂h

〉

D
= 0.

Therefore, the semi-discrete staggered scheme is orthogonality preserving when we have no
diffusion on the pressure equation νr = 0.

Remark 5.3. The orthogonality preserving property of the staggered scheme with νr = 0 allows
to ensure that there is no exchange of energy between the kernel and orthogonal kernel during the
computation process. On the contrary, if the numerical diffusion on the pressure equation does
not vanish (νr , 0), at each time step, the component of the numerical solution in the orthogonal
of the kernel not only damps out, but also partly moves into the kernel. As a result, the kernel
part of the numerical solution may be changed at each time step, until the numerical scheme
tends to the steady state.

5.2.2 The semi-discrete staggered scheme on D grids

D grids have the tangential components of the velocities discretized at the midpoints of the edges,
while discrete pressures are located at the cell centers.

Discrete operators

In order to design numerical schemes on D grids, we shall first define the discrete versions of some
operators. Let rh = (ri,j), uh = (ui,j+1/2) and vh = (vi+1/2,j) be in RN where N =Nx ×Ny (see
Figure 5.2). We first denote fh as an averaging operator that uses 4 points around the location
where the average is computed. We define

fh(rh)i+1/2,j+1/2 =
ri,j + ri+1,j + ri,j+1 + ri+1,j+1

4
,

fh(uh)i+1/2,j =
ui,j−1/2 +ui+1,j−1/2 +ui,j+1/2 +ui+1,j+1/2

4
and

fh(vh)i,j+1/2 =
vi−1/2,j + vi−1/2,j+1 + vi+1/2,j + vi+1/2,j+1

4
.

Moreover, we also need the discrete version of the divergence at the cell corner:

∇v
h · (uh)i+1/2,j+1/2 =

ui+1,j+1/2 −ui,j+1/2

∆x
+
vi+1/2,j+1 − vi+1/2,j

∆y
.
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Figure 5.2: D grid.

Let φh = (φi+1/2,j+1/2) be a discrete function defined by its values at the vertices of the cells, we
then define the discrete version of some differential operators

∂x,h(φh)i,j+1/2 =
φi+1/2,j+1/2 −φi−1/2,j+1/2

∆x
and ∂y,h(φh)i+1/2,j =

φi+1/2,j+1/2 −φi+1/2,j−1/2

∆y
.

Let also rh = (ri,j) be a discrete function defined by its values at the cell centers, we define
another discrete version of the same differential operators:

∂x,h(rh)i+1/2,j =
ri+1,j − ri,j

∆x
and ∂y,h(rh)i,j+1/2 =

ri,j+1 − ri,j

∆y
.

Now, for a discrete vector field ϕh = (ϕh,ψh) where ϕh = (ϕi+1/2,j) and ψh = (ψi,j+1/2), the
discrete divergence at the cell center is defined by

∇c
h · (ϕh)i,j =

ϕi+1/2,j −ϕi−1/2,j

∆x
+
ψi,j+1/2 −ψi,j−1/2

∆y
.

Next, we also define the following discrete scalar products

〈r1
h, r

2
h〉Pr =

∑

i,j

∆x∆yr1
i,jr

2
i,j , 〈u1

h,u
2
h〉Du =

∑

i,j

∆x∆yu1
i,j+1/2u

2
i,j+1/2,

〈v1
h,v

2
h〉Dv =

∑

i,j

∆x∆yv1
i+1/2,jv

2
i+1/2,j , 〈φ1

h,φ
2
h〉Dφ

=
∑

i,j

∆x∆yφ1
i+1/2,j+1/2φ

2
i+1/2,j+1/2,

and
〈q1

h, q
2
h〉 = 〈r1

h, r
2
h〉Pr + 〈u1

h,u
2
h〉Du + 〈v1

h,v
2
h〉Dv .

With the above discrete operators, the semi-discrete staggered type schemes on D grids can be
written as




d
dtri,j(t) + a⋆∇c

h · [fh(uh),fh(vh)]i,j − νr∇c
h · (∂x,hrh − ω

a⋆
vh,∂y,hrh + ω

a⋆
uh)i,j = 0

d
dtui,j+1/2(t) + a⋆∂x,h[fh(rh)]i,j+1/2 − νu∂x,h[∇v

h · (uh)]i,j+1/2 = ωfh(vh)i,j+1/2

d
dtvi+1/2,j(t) + a⋆∂y,h[fh(rh)]i+1/2,j − νu∂y,h[∇v

h · (uh)]i+1/2,j = −ωfh(uh)i+1/2,j

(5.19)
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Properties of the discrete operators

Proposition 5.2. For discrete fields with periodic boundary conditions, we have

i. The discrete integration by part formula

〈∇v

h · (uh),φh〉Dφ
= −〈∂x,h(φh),uh〉Du − 〈∂y,h(φh),vh〉Dv . (5.20)

ii. Energy conservation of the Coriolis force

〈fh(vh),uh〉Du − 〈fh(uh),vh〉Dv = 0. (5.21)

iii. No vorticity production for pressure gradient term

∇c
h ×

[
∂x,hφh,∂y,hφh

]
= −∇c

h ·
[
−∂y,hφh,∂x,hφh

]
= 0.

Proof. These properties are proved by direct computations.

Like with the staggered scheme on B grids, we also obtain a vorticity-divergence relation
with the staggered scheme on D grids. In particular, we have

d

dt
∇c

h × [uh,vh]i,j +ω∇c
h · [fh(uh),fh(vh)]i,j = 0.

Let us emphasize that this relation on D grids is defined at the cell centers.

Evolution of the discrete energy

Lemma 5.4. With νr = 0 and the discrete energy defined by the following expression

ED
h (t) =

∑

i,j

∆x∆y
[
r2

i,j(t) +u2
i,j+1/2(t) + v2

i+1/2,j(t)
]
,

we have the dissipation of the discrete energy of the LF-DP staggered scheme on D-grids

d

dt
ED

h (t) ≤ 0.

Proof. By taking the discrete scalar product of (5.19) with qh = (rh,uh,vh), we obtain

1
2
d

dt
ED

h (t) = −a⋆
(
〈∇c

h · [fh(uh),fh(vh)] , rh〉Pr + 〈∂x,h[fh(rh)],uh〉Du + 〈∂y,h[fh(rh)],vh〉Dv

)

+ω〈fh(vh),uh〉Du −ω〈fh(uh),vh〉Dv + νu〈∂x,h[∇v
h · (uh)],uh〉Du + νu〈∂y,h[∇v

h · (uh)],vh〉Dv .
(5.22)

Using periodic boundary conditions, it may be proved that

〈∇c
h · [fh(uh),fh(vh)] , rh〉Pr = 〈∇v

h · (uh),fh(rh)〉Dφ
.

Hence, we apply the discrete integration by part formula (5.20) for φh = fh(rh) and then for
φh = ∇v

h · (uh) to respectively obtain

〈∇c
h · [fh(uh),fh(vh)] , rh〉Pr = −〈∂x,h[fh(rh)],uh〉Du − 〈∂y,h[fh(rh)],vh〉Dv (5.23)

and
νu〈∂x,h[∇v

h · (uh)],uh〉Du + νu〈∂y,h[∇v
h · (uh)],vh〉Dv = −νu‖∇v

h · (uh)‖2
Dφ

(5.24)
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Therefore, from (5.22), (5.23), (5.21) and (5.24), we conclude that

d

dt
ED

h (t) = −2νu‖∇v
h · (uh)‖2

Dφ
≤ 0.

Discretized steady-states and their orthogonal subspace on D grids

We now define a set of discretized stead-states with staggered variables on D-grids by

E�

ω,0,D =




q̂h = (r̂h, ûh, v̂h) ∈ R3N

∣∣∣∣∣∣∣
a⋆




r̂i+1,j−r̂i,j

∆x

r̂i,j+1−r̂i,j

∆y


= −ω




−v̂i+1/2,j

ûi,j+1/2







, (5.25)

which is a consistent discretization of the geostrophic equilibrium (5.3). Then we have the
following result

Lemma 5.5. The orthogonal space of E�

ω,0,D is given by

E�,⊥
ω,0,D =

{
q̃h = (r̃h, ũh, ṽh) ∈ R3N

∣∣∣∣ a⋆

(
ṽi+1/2,j − ṽi−1/2,j

∆x
−
ũi,j+1/2 −ui,j−1/2

∆y

)
= ωr̃i,j

}
,

(5.26)
which implies the following discrete Hodge decomposition R3N = E�

ω,0,D ⊕ E�,⊥
ω,0,D.

Proof. For all q̂h = (r̂h, ûh, v̂h) ∈ E�

ω,0,D and an arbitrary q̃h = (r̃h, ũh, ṽh) ∈ R3N , by using
periodic boundary condition, we obtain

〈q̂h, q̃h〉 =
∑

i,j

∆x∆y

[
r̂i,j r̃i,j − a⋆

ω

(
r̂i,j+1 − r̂i,j

∆y

)
ũi,j+1/2 +

a⋆

ω

(
r̂i+1,j − r̂i,j

∆x

)
ṽi+1/2,j

]

=
∑

i,j

∆x∆yr̂i,j

[
r̃i,j − a⋆

ω

(
ṽi+1/2,j − ṽi−1/2,j

∆x

)
+
a⋆

ω

(
ũi,j+1/2 − ũi,j−1/2

∆y

)]
.

This equation implies that the subspace which is in the right-hand side of (5.26) is included in
the orthogonal of E�

ω,0,D. On the other hand, since r̂h can be arbitrary in E�

ω,0,D, the above
equation implies that any element of the orthogonal of E�

ω,0,D verifies

r̃i,j − a⋆

ω

(
ṽi+1/2,j − ṽi−1/2,j

∆x

)
+
a⋆

ω

(
ũi,j+1/2 − ũi,j−1/2

∆y

)
.

Remark 5.4. With D-grid type schemes, an element qh ∈ R3N can be decomposed into

qh = q̂h + q̃h with q̂h ∈ E�

ω,0,D and q̃h ∈ E�,⊥
ω,0,D

and this decomposition can be obtained by solving the following linear system

r̂i,j −
(
a⋆

ω

)2 [ r̂i+1,j − 2r̂i,j + r̂i−1,j

∆x2
+
r̂i,j+1 − 2r̂i,j + r̂i,j−1

∆y2

]
=

ri,j − a⋆

ω

(
vi+1/2,j − vi−1/2,j

∆x
−
ui,j+1/2 − vi,j−1/2

∆y

)
.

We also note that this system has unique solution since the matrix on the left-hand side is an
M-matrix.
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Well-balanced and orthogonality preserving properties

Lemma 5.6. For the semi-discrete staggered type scheme on D grids (5.19), we have:

i. Discretized steady-states (5.25) are steady-states of (5.19),

ii. It is an orthogonality preserving scheme if νr = 0.

Proof. Any element of (5.25) verifies

∇v
h · (ûh)i+1/2,j+1/2 =

ûi+1,j+1/2 − ûi,j+1/2

∆x
+
v̂i+1/2,j+1 − v̂i+1/2,j

∆y

=
a⋆

ω∆x∆y
[−(r̂i+1,j+1 − r̂i+1,j) + (r̂i,j+1 − r̂i,j) + (r̂i+1,j+1 − r̂i,j+1) − (r̂i+1,j − r̂i,j)]

= 0,

which means that the velocities of (5.25) are divergence free at the cell vertices. Moreover, we
also notice that

∇c
h · [fh(ûh),fh(v̂h)]i,j = fh(∇v

h · (ûh))i,j = 0.

By using the definition of the discrete kernel, we also obtain

ωfh(v̂h)i,j+1/2 =
(
r̂i+1,j − r̂i−1,j

4∆x
+
r̂i+1,j+1 − r̂i−1,j+1

4∆x

)
= a⋆∂x,h[fh(rh)]i,j+1/2

and

ωfh(ûh)i+1/2,j = −
(
r̂i,j+1 − r̂i,j−1

4∆y
+
r̂i+1,j+1 − r̂i+1,j−1

4∆y

)
= −a⋆∂y,h[fh(rh)]i+1/2,j .

On the other hand, with the steady state, we obviously have ∇c
h ·(∂x,hrh− ω

a⋆
vh,∂y,hrh+ ω

a⋆
uh) = 0.

Therefore, the semi-discrete scheme (5.19) captures well the discrete geostrophic equilibrium (5.25).
This proves Point (i).
To investigate the second point, we take the discrete scalar product of (5.19) with q̂h ∈ E�

ω,0,D to
obtain

〈 d
dt
qh(t), q̂h〉 = −a⋆〈∇c

h · [fh(uh),fh(vh)] , r̂h〉Pr − a⋆〈∂x,h[fh(rh)], ûh〉Du − a⋆〈∂y,h[fh(rh)], v̂h〉Dv

+ω〈fh(vh), ûh〉Du −ω〈fh(uh), v̂h〉Dv + νu〈∂x,h[∇v
h · (uh)], ûh〉Du + νu〈∂y,h[∇v

h · (uh)], v̂h〉Dv

+ νr〈∇c
h · (∂x,hrh − ω

a⋆
vh,∂y,hrh +

ω

a⋆
uh), r̂h〉Pr .

By using the discrete integration by part formula and properties of the discrete kernel, we also
have

−a⋆〈∇c
h · [fh(uh),fh(vh)] , r̂h〉Pr = 〈∂x,h[fh(r̂h)],uh〉Du + 〈∂y,h[fh(r̂h)],vh〉Dv

= 〈ωfh(v̂h),uh〉Du − 〈ωfh(ûh),vh〉Dv

= ω〈fh(uh), v̂h〉Dv −ω〈fh(vh), ûh〉Du ,

〈∂x,h[fh(rh)], ûh〉Du + 〈∂y,h[fh(rh)], v̂h〉Dv = −〈∇v
h · (ûh),fh(rh)〉Dφ

= 0
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and

〈∂x,h[∇v
h · (uh)], ûh〉Du + 〈∂y,h[∇v

h · (uh)], v̂h〉Dv = −〈∇v
h · (uh),∇v

h · (ûh)〉Dφ
= 0.

Therefore, the staggered scheme on the D grid (5.19) is orthogonality preserving if

〈qh, q̂h〉 = νr〈∇c
h · (∂x,hrh − ω

a⋆
vh,∂y,hrh +

ω

a⋆
uh), r̂h〉Pr = 0 ∀q̂h ∈ E�

ω,0,D,

which is the case if νr = 0. This leads to Point (ii).

5.2.3 Behavior of the solutions of the staggered schemes

The discrete Hodge decompositions on B or D grids allow us to define the discrete orthogonal
projection

Ph :

{
R3N −→ E�

ω,0

qh 7−→ q̂h
(5.27)

Lemma 5.7. Let qν,h(t) be the solution of the semi-discrete scheme (5.8) on B grids or (5.19)
on D grids. Then, with νr = 0, we obtain

∀C1 ∈ R+, if ‖q0
h −Ph(q0

h)‖ = C1M then ‖qν,h(t) −Ph(q0
h)‖ ≤ C1M, ∀t≥ 0,

which means that the LF-DP scheme is accurate at low Froude number at any time.

Proof. By linearity, the solution of semi-discrete staggered scheme qν,h(t) can be written as

qν,h(t) = qa
ν,h(t) + qb

ν,h(t)

where qa
ν,h(t) and qb

ν,h(t) are the solutions of (5.8) or (5.19) with the initial condition respectively
given by

qa
ν,h(0) = Ph(q0

h) and qb
ν,h(0) = q0

h −Ph(q0
h).

Then, we have

‖qν,h(t) −Ph(q0
h)‖ = ‖qa

ν,h(t) + qb
ν,h(t) −Ph(q0

h)‖ ≤ ‖qa
ν,h(t) −Ph(q0

h)‖ + ‖qb
ν,h(t)‖

Moreover, when νr = 0, the dissipation of the semi-discrete staggered schemes leads to the
conclusion that ‖qb

ν,h(t)‖ ≤ ‖qb
ν,h(0)‖. For this reason, the accuracy of the scheme is linked to the

behavior of qa
κ,h(t). Since the semi-discrete schemes (5.8) or (5.19) are well-balanced schemes,

we obviously have qa
ν,h(t) = Ph(q0

h). Therefore, we obtain

∀t≥ 0, ‖qν,h(t) −Ph(q0
h)‖ ≤ C1M.

Remark 5.5. Since it is difficult to prove the dissipation of the energy for the semi-discrete scheme
(5.8) or (5.19) when νr , 0, we do not have enough evidence to conclude that the well-balanced
schemes based on the Apparent Topography method, like the AT-DP or AT-LF schemes are
accurate at low Froude number at any time. However, we can prove the conditional stability of
those schemes at the fully discrete level and, from the numerical point of view, the well-balanced
schemes with the Apparent Topography method for the diffusion on the pressure equation are still
accurate at low Froude number.
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5.2.4 Fourier analysis for the semi-discrete staggered schemes

In this subsection, we perform the Fourier analysis which is a useful tool to analyze the influence
of the discrete scheme on some important quantities such as dispersion law, damping error,
phase and group velocities. We note that this method was already used to study the behavior of
numerical schemes applied to linear wave equation with Coriolis force that use finite differences
(e.g. [41, 54]), finite elements ([11]) and finite volumes ([55]).

We now look for the solution of this semi-discrete scheme under the form of discrete Fourier
modes

ri,j(t) = ϕr(t)ei(kxxi+kyyj), ui,j(t) = ϕu(t)ei(kxxi+kyyj) and vi,j(t) = ϕv(t)ei(kxxi+kyyj).
(5.28)

Substituting discrete Fourier modes (5.28) into the semi-discrete scheme (5.8) or (5.19), we obtain
the following linear system of differential equation




ϕ′
r(t)

ϕ′
u(t)

ϕ′
v(t)


+




νr

(
α2

∆x2 + β2

∆y2

)
ia⋆η

α
∆x − iνr

ω
a⋆

β
∆y ia⋆η

β
∆y + iνr

ω
a⋆

α
∆x

ia⋆η
α
∆x νu

α2

∆x2 νu
α
∆x

β
∆y −ωη

ia⋆η
β
∆y νu

α
∆x

β
∆y +ωη νu

β2

∆y2







ϕr(t)

ϕu(t)

ϕv(t)


= 0 (5.29)

where parameters α, β an η are specified in Table 5.1 depending on the scheme under study.

Staggered type scheme α β η

B grid 2sin(kx∆x
2 )cos(ky∆y

2 ) 2sin(ky∆y
2 )cos(kx∆x

2 ) 1

D grid 2sin(kx∆x
2 ) 2sin(ky∆y

2 ) cos(kx∆x
2 )cos(ky∆y

2 )

Table 5.1: Parameters α, β an η in the Fourier analysis of the semi-discrete staggered schemes.

We shall denote the amplification matrix of (5.29) by A(ν,∆x,∆y). One eigenvalue of this
amplification matrix is λ1 = 0 corresponding to the stationary state and the other eigenvalues
corresponding to the inertia-gravity modes are given by

λ=
νr + νu

2

(
α2

∆x2
+

β2

∆y2

)
± i

√

ω2η2 + a2
⋆η

2

(
α2

∆x2
+

β2

∆y2

)
−
(
νr − νu

2

)2( α2

∆x2
+

β2

∆y2

)2

.

The real part ℜ(λ) of the eigenvalues indicates the damping rate of the Fourier modes and the
imaginary part ℑ(λ) represents the propagation. Moreover, the quantity ℑ(λ)

ω is the numerical
dispersion law of the scheme. In case νr = νu, the dispersion law of the staggered scheme reduces
to

ℑ(λ)
ω

=

√
R2

dη
2

(
α2

∆x2
+

β2

∆y2

)
+ η2,

where Rd = a⋆
ω stands for the Rossby deformation radius. Let us note that in this case, the

numerical dispersion law only depends on parameters kx∆x, ky∆y, Rd
∆x , and Rd

∆y .
Let us denote h be the grid size assumed to the same in x and y direction; various choices of the
ratio Rd

h are discussed in this section.
Figure 5.3a indicates that the dispersion relation of the exact model is a monotone function

and we do not recover this property at the discrete level for the staggered schemes, as shown
in Figures 5.3b, 5.3c and 5.3d. However, we can observe that the dispersion relation of the
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well-balanced staggered schemes is monotonic in the region of interest, which is the low frequency
region. Since the energy transfers a lot in this region, i.e. for waves with long wavelengths, it is
a strong requirement for the numerical scheme to possess as many good properties as possible in
this important region. In the other regions, the dispersion law of the numerical scheme is usually
not the same as that of the continuous model, and we therefore need a strong damping effect by
the numerical viscosity to ensure the that the waves move in correct direction. Moreover, on B
grids, the dispersion law of the AT-DP scheme is better than that of the LF-DP scheme. We
can also notice that the dispersion law of the B grid scheme is more accurate than that of the
scheme on D grid in the region of low frequency in x and high frequency in y direction or vice
versa. One explanation for this result is that on the B grid scheme, it is easy to evaluate the
Coriolis force without averaging since the velocities u and v are located at the same points while
we need the average for this source term on D grids.

In consideration of the damping error, the damping rate of the AT-DP is twice larger than
that of the LF-DP scheme on both B and D grids. Figure 5.4 shows that unlike the AT-DP
scheme on B grids, the AT-DP scheme on D grids has a strong damping rate in the region of high
frequencies, i.e for short wavelengths. This is one evidence that we may expect fewer oscillations
for the waves with short wavelengths with the staggered type schemes on D grids.

Figure 5.5 and 5.6 show the dispersion law of AT-DP scheme on B and D grids with different
vales of the ratio between the Rossby deformation radius Rd and the space step (h). These
figures indicate that the dispersion law of the AT-DP scheme on B grids has the same shape for
both resolved (Rd

h = 2) and under-resolved cases (Rd
h = 1

2), while on D grids, the dispersion law
is better in the resolved case.

5.3 Analysis of fully discrete staggered schemes

We now introduce two new parameters θ1 and θ2 involved in the time discretization of the Coriolis
source term. For the sake of simplicity, we denote

u⊥,θ =

(
−θ1v

n − (1 − θ1)vn+1

θ2u
n + (1 − θ2)un+1

)
.

We now propose the following time discretizations for the staggered scheme on B grids




rn+1
i+1/2,j+1/2 = rn

i+1/2,j+1/2 − a⋆∆t∇h.(un
h)i+1/2,j+1/2 + νr∆t∇h.

[
∇h(rn

h) + ω
a⋆

u
⊥,n
h

]
i+1/2,j+1/2

un+1
i,j = un

i,j − a⋆∆t∇h(rn
h)i,j + νu∆t∇h[∇h.(un

h)]i,j −ω∆tu⊥,θ
i,j .

(5.30)
and on D grids





rn+1
i,j = rn

i,j − a⋆∆t∇c
h ·
[
fh(un

h),fh(vn
h)
]
i,j + νr∆t∇c

h · (∂x,hr
n
h − ω

a⋆
vn

h ,∂y,hr
n
h + ω

a⋆
un

h)i,j

un+1
i,j+1/2 = un

i,j+1/2 − a⋆∆t∂x,h[fh(rn
h)]i,j+1/2 + νu∆t∂x,h[∇v

h · (un
h)]i,j+1/2 +ωfh(vθ

h)i,j+1/2

vn+1
i+1/2,j = vn

i+1/2,j − a⋆∆t∂y,h[fh(rn
h)]i+1/2,j + νu∆t∂y,h[∇v

h · (un
h)]i+1/2,j −ωfh(un

h)i+1/2,j

(5.31)

5.3.1 Stability condition of the fully discrete scheme

In this subsection, for the sake of simplicity, we only consider the case

κr = κx
r = κy

r = ηx
r = ηy

r and κ= κu = κv = ηu = ηv.
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(a) Exact dispersion (b) LFDP on B grid

(c) ATDP on B grid (d) ATDP on D grid

Figure 5.3: Dispersion relation ℑ(λ)
ω of the staggered type schemes, depicted as a function of kx∆x

π and
ky∆y

π with Rd
∆x = Rd

∆y = 1.
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(a) Exact damping (b) LFDP on B grid

(c) ATDP on B grid (d) ATDP on D grid

Figure 5.4: Damping error e−ℜ(λ) of the staggered type schemes, depicted as a function of kx∆x
π and

ky∆y
π

with Rd
∆x = Rd

∆y = 1.

(a) ATDP on B grid (b) ATDP on D grid

Figure 5.5: Dispersion relation of the staggered type schemes, depicted as a function of kx∆x
π and

ky∆y
π

with Rd
∆x = Rd

∆y = 1
2 .
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(a) ATDP on B grid (b) ATDP on D grid

Figure 5.6: Dispersion relation of the staggered type schemes, depicted as a function of kx∆x
π and

ky∆y
π

with Rd
∆x = Rd

∆y = 2.

It is important to use a discretization of the Coriolis force which is implicit enough in order to
ensure the stability of the numerical scheme. Therefore, we only consider the parameters θ1 and
θ2 belonging to the domain θ1 + θ2 ≤ 1

2 . We mention [37] for more details of this stability region.

Lemma 5.8. For a uniform mesh ∆x = ∆y = h, the LF-DP schemes ( i.e.(5.30) with νr = 0)
are stable under the following conditions

∆t≤ min{∆ta,∆tb} where ∆ta :=
κuh

2a∗
and ∆tb :=

2
ω|θ2 − θ1| .

Let us set ϕ(x) =
√

1+x2−1
x2 . The AT-LF and AT-DP schemes are stable provided that the time

step is smaller than

Scheme (θ1 = 0,θ2 = 0) (θ1 = 1,θ2 = 0) or (θ1 = 0,θ2 = 1) (θ1 = 1/2,θ2 = 1/2)

AT-LF κr
2

h
a∗

min
{

2
ω ,

κrh
4a∗

ϕ
(

κrωh
4a∗

)
, 4h

κra∗
ϕ
(

2ωh
κra∗

)}
κrh
a∗
ϕ
(

κrωh
2a∗

)

AT-DP 2κ
2+κ2

h
a∗

min
{

κ
2+κ2

h
a∗
, 1

ω

}
min

{
κ

2+κ2
h
a∗
, 2

ω

}

Proof. The characteristic polynomial of the fully discrete staggered schemes can be obtained from
that of the collocated vertex-based scheme in [53] by using η = 1 instead of η = cos(kx∆x

2 )cos(ky∆y
2 ).

Therefore, the proof is similar to the one in [53].

Remark 5.6. Let us note that with the staggered scheme on D grids, because of the structure
of the discrete kernel at the interface, it is essential to use the average for the Coriolis force.
As a consequence, it is necessary to use either θ1 = 1,θ2 = 0 or θ1 = 0,θ2 = 1 to ensure that the
proposed scheme is totally explicit. Hence, the stability condition of that scheme really depends
on the Coriolis parameter ω. However, with the staggered scheme on B grids, we can overcome
this drawback by the fact that the velocity u and v are defined at the same place. As a result, we
can use a larger domain for the parameters θ1 and θ2. For instance, one can choose θ1 = θ2 ≤ 1

2
to ensure that the stability condition of the LF-DP scheme does not depend on the Coriolis source
term.
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5.3.2 Orthogonality preserving scheme

Let us introduce two new parameters τ1 and τ2 involved in the time discretization of the velocity
divergence in the pressure equation. We shall denote

uτ =

(
τ1u

n + (1 − τ1)un+1

τ2v
n + (1 − τ2)vn+1

)
.

Then, the LF-DP-τ scheme on B grids can be written as





rn+1
i+1/2,j+1/2 = rn

i+1/2,j+1/2 − a⋆∆t∇h · (uτ
h)i+1/2,j+1/2

un+1
i,j = un

i,j − a⋆∆t∇h(rn
h)i,j + νu∆t∇h[∇h · (un

h)]i,j −ω∆tu⊥,θ
i,j .

(5.32)

The LF-DP-τ scheme on D grids is given by





rn+1
i,j = rn

i,j − a⋆∆t∇c
h ·
[
fh(uτ

h),fh(vτ
h)
]
i,j

un+1
i,j+1/2 = un

i,j+1/2 − a⋆∆t∂x,h[fh(rn
h)]i,j+1/2 + νu∆t∂x,h[∇v

h · (un
h)]i,j+1/2 +ωfh(vθ

h)i,j+1/2

vn+1
i+1/2,j = vn

i+1/2,j − a⋆∆t∂y,h[fh(rn
h)]i+1/2,j + νu∆t∂y,h[∇v

h · (un
h)]i+1/2,j −ωfh(un

h)i+1/2,j

(5.33)

Remark 5.7. The LF-DP-τ scheme (5.32) on B grids or (5.33) on D grids is still explicit
although the velocity field un+1 appears in the pressure equation. In fact, we can compute the
velocity field first and then use it to compute uτ in the pressure equation without having to solve
any linear system.

Lemma 5.9. The Low Froude - Divergence penalization-τ scheme (LF-DP-τ) is an orthogonality
preserving scheme if

τ1 = θ2 and τ2 = θ1,

which means that the velocity field in the Coriolis source term and in the pressure equation
must be computed using the same time strategy.

Proof. We note that the proof of this property for both B and D grid schemes are very similar,
so we only present the explanation for the B grid scheme. By taking the product of the fully
discrete scheme (5.32) with the steady state q̂h ∈ E�

ω,0,B, using periodic boundary conditions,
the discrete integration by part formula and the properties of elements of the discrete kernel, we
will obtain

〈
qn+1

h , q̂h

〉
= −a⋆∆t〈∇h · (uτ

h), r̂h〉D −ω∆t〈u⊥,θ
h , ûh〉P

= 〈a⋆∆t∇hr̂h,u
τ
h〉P +

〈
ω∆tû⊥

h ,u
θ
h

〉
P
.

Therefore, using that when τ1 = θ2 and τ2 = θ1, we get uτ
h = uθ

h, it follows that

〈
qn+1

h , q̂h

〉
= 0,∀q̂h ∈ E�

ω,0,B .
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5.4 Numerical test case

5.4.1 Well-balanced test case

In this test case, we investigate the behavior of the Godunov type schemes with a geostrophic
equilibrium as initial condition. Particularly, we consider the stationary vortex in the square
domain T2 = [−0.5,0.5] × [−0.5,0.5] with the initial pressure r0 given by

r(x,y, t= 0) = 1 − exp

[
−
(

3x
0.5

)2

−
(

3y
0.5

)2
]
.

Then we construct the initial velocity field u0 by using the definition of the discrete kernel (5.15)
so that we can obtain a nontrivial stationary state which is shown in Figure 5.7.
In what follows, various schemes are tested; they are denominated as X-Y schemes, the first letter
referring to the diffusion strategy in the pressure equation, the second to the diffusion strategy
in the velocity equation. The "Classical" strategy indicates that the standard formulations with
diffusion −νr∆r in the pressure equation or −νu(∂xxu,∂yyv)T in the velocity equation are used.

Figure 5.8 indicates that the Classical–Classical (C-C), Apparent Topography–Classical
(AT-C) and Classical–Divergence Penalization (C-DP) schemes are unable to capture the discrete
steady state. However, we can see that the correction related to the velocity diffusion in this
test case is more important than the correction related to the pressure diffusion because the
C-DP scheme is more accurate than the AT-C scheme. On the contrary, the AT-LF, LF-DP and
AT-DP schemes are well-balanced since their discrete kernel includes the discrete geostrophic
equilibrium.
Figure 5.9 shows that the structure of the vortex of the non well-balanced schemes (C-C and
AT-C) is different from that of the initial condition while they are exactly the same with all
well-balanced schemes (AT-LF, LF-DP and AT-DP). Moreover, this figure also indicates that
unlike the other non well-balanced schemes, the C-DP scheme can preserve the structure of the
solution. This is another evidence to say that in this test case, the correction related to the
velocity diffusion is really important.
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(a) Contours of r(x,y, t) and vector field at t = 0 (b) r(x,y, t) at t = 0

(c) u(x,y, t) at t = 0 (d) v(x,y, t) at t = 0

Figure 5.7: A stationary vortex as initial condition with 100 × 100 grid cells.
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(a) r(x,y, t = 10) with 50 × 50 grid cells
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(b) r(x,y, t = 20) with 50 × 50 grid cells

Figure 5.8: 1D-cut of stationary vortex for staggered B type schemes.
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(a) C − C scheme
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(c) C − DP scheme
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(d) AT − LF scheme
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(e) LF − DP scheme
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(f) AT − DP scheme

Figure 5.9: Contours of r at t= 20 for Godunov type schemes with 50 × 50 grid cells.
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5.4.2 Orthogonality preserving test case

In this test case, we consider periodic boundary conditions and the initial vector field is given by





u(x,y, t= 0) = 1
2 exp

[
−
(

4x
0.4

)2
−
(

4y
0.8

)2
]

v(x,y, t= 0) = 1
2 exp

[
−
(

4x
0.8

)2
−
(

4y
0.4

)2
]
.

(5.34)

in the domain T2 = [−0.5,0.5] × [−0.5,0.5]. Then the initial pressure r(x,y, t= 0) is constructed
by using the definition of the discrete orthogonal subspace.
Figure (5.10a) indicates that all presented schemes are not orthogonality preserving schemes
because they create some waves in the discrete kernel. The LF-DP scheme is better than the
other schemes since it creates very small errors. Figure (5.10b) shows that the orthogonal parts
of the solutions obtained by the AT-LF and LF-DP schemes damp slower than those obtained
by the other schemes. On the other hand, (5.10c) points out that only the LF-DP scheme with
τ1 = τ2 = 1

2 (the parameters τ1 and τ2 correspond to the time discretization for the divergence of
the velocity field in the pressure equation) preserves the orthogonality property. Moreover, the
damping rate of the orthogonal part which depends on the parameters τ1 and τ2 is presented in
Figure (5.10d). However, the effect of those parameters is small.
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Figure 5.10: Orthogonality preserving test case: the evolution of the kernel and orthogonal parts with
50 × 50 grid cells and θ1 = θ2 = 1

2 .
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5.4.3 Accuracy at low Froude number test case

We now consider an initial condition close to the discrete kernel up to a perturbation of size M .
This initial condition is simply given by

q0
h = q̂0

h +M
q̃0

h

‖q̃0
h‖

where q̂0
h stands for the kernel part given in § 5.4.1 and q̃0

h is the orthogonal part considered in
§ 5.4.2.
Figure 5.11 confirms the analysis in section § 5.2.3 . While the C-C, AT-C and C-DP schemes
are not accurate at low Froude number since the norm of ‖q−Pq0‖ is not of size O(M) (figure
(5.11b)), all the well-balanced schemes (AT-LF, LF-DP and AT-DP schemes) are accurate at low
Froude number because the norms of the total deviation in Figures 5.11c and 5.11d remain of
order O(M). Moreover, in consideration of the C-C and AT-C schemes, we can see in Figure 5.11b,
that the norm of the total deviation is an increasing function of time. Since the initial projection
Pq0 is exactly a non-trivial steady state, the numerical solutions obtained by the C-C and AT-C
schemes are far from the correct kernel. On the other hand, Figure 5.11a shows that the norm of
the spurious waves of the C-C and AT-C schemes tend to decrease with time. This phenomena
implies that the numerical solution of those schemes tend to the trivial steady state.
Figure 5.12 shows that when the Froude number decrease, the maxt ‖q−Pq0‖(t) of all presented
non well-balanced schemes seem to be constants. The well-balanced schemes show a good
behavior since the maxt ‖q−Pq0‖(t) is a function decreasing linearly with the Froude number.

5.4.4 Water column test case

In this test case, we consider a discontinuous initial condition which is given by




r(t= 0,x,y) =

{
2, if x2 + y2 ≤ 1

1, if x2 + y2 > 1,

u(t= 0,x,y) = 0,

v(t= 0,x,y) = 0.

with periodic boundary conditions on the domain [−5,5] × [−5,5]. This initial condition cor-
responds to a circular dam break and is very far from the geostrophic equilibrium (5.15) and
(5.25).
Figure 5.13 shows the final state of all numerical staggered type schemes on B and D grids.
The three well balanced schemes, namely the AT-DP, LF-DP and AT-LF schemes tend to the
geostrophic equilibrium while the solution obtained from the C-C and C-DP schemes seem to
tend to a constant state. Although the solution obtained with the AT-C scheme is better than
that obtained with the classical scheme, this strategy does not converge the non-trivial steady
state. This is in agreement with the results of these strategies on A grids (collocated schemes),
as presented in [53].
Figure 5.14 presents the contours of the solutions obtained by the AT-DP scheme on B and D
grids. As can be seen, there is small oscillation in the numerical solution on B grids while we do
not have this problem on D grids. One possible explanation is that the scheme on B grids has
damping rate for the waves with shortest wavelengths that is lower than that on D grids. We
can also observe this small oscillation in the final state shown in Figure 5.15.

5.5 Conclusion

This study deals with the ability of staggered type schemes on Cartesian meshes to capture
discrete non-trivial steady states characterized by the balance between the pressure gradient and
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Figure 5.11: Evolution of the spurious wave and total deviation with 50 × 50 grid cells, with an initial
condition close to the discrete kernel.

the Coriolis force. The AT-DP and LF-DP scheme on both B and D grid- are well-balanced
schemes, but only the LF-DP strategy with the same time discretization for the velocity field in
the Coriolis source term and in the pressure equation can preserve the orthogonal subspace of
the kernel.
Unlike on B grids, the horizontal and vertical velocity components on D grids are not defined
on the same cell, so we need some approximation for the Coriolis force. As a consequence, the
dispersion laws on D grids are less accurate than on B grids. However, since the D grid schemes
have a larger damping rate on the waves with shortest wavelengths, the obtained schemes on D
grids present fewer oscillations.
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Figure 5.12: The log-log graph of maxt ‖q−Pq0‖(t) for t= 2 and Froude number= 10−2, 10−3, 10−4 and
10−5.
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Figure 5.13: Cross section of the pressure r at y = 0 at time t= 100.
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Figure 5.14: Contours of AT-DP solutions on B and D grids at time t= 1.
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(a) r on B grid (b) r on D grid
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Figure 5.15: AT-DP solutions on B and D grids at time t= 100.
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Analysis of staggered type schemes applied to the linear

wave equation with Coriolis source term. Part 2: on trian-

gular meshes

In order to succeed,

we must first believe that we can.

Nikos Kazantzakis.

By analyzing the discrete kernel of the linear acoustic operator of the Godunov type
schemes applied to the linear wave equation with Coriolis source term, we clearly show
that there are some drawbacks in the collocated Godunov scheme on triangular meshes.
To overcome this difficulty, we propose a staggered strategy which computes the pressure
field at the vertices of the triangles (centers of dual cells) and the velocity field at the
(primary) cell centers. Our analysis shows that, with periodic boundary conditions, and
unlike the Cartesian mesh case, the numerical diffusion on the velocity equations is no
more the reason of the inaccuracy problem. Therefore, in order to capture the discrete
geostrophic equilibrium, we only have to correct the diffusion on the pressure equation by
simply deleting this diffusion term (see [37] ) or applying the Apparent Topography method
introduced in [13].
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6.1 Introduction

The Navier-Stokes equations can be reduced to the shallow water equation in large scale oceanic
phenomena. This is because in this model, the horizontal scale is much larger than the vertical
one. The mathematical details of this reduction procedure can be found in [1]. More importantly,
in large scale atmospheric circulations, the effect of the Earth’s rotation is clearly noticeable and
the balance between the pressure gradient and Coriolis force leads to the so-called geostrophic
equilibrium. As a matter of fact, circulations normally take place around this geostrophic
equilibrium, so it is very important to have appropriate numerical schemes which can correctly
describe the waves under these circumstances. Obviously, it is highly expected that the numerical
schemes can capture a discrete version of the geostrophic equilibrium or at least produce
numerical solutions that remain close to this state with acceptable small errors. For the purpose
of deriving numerical schemes with such kind of properties, we begin with the investigation of
the dimensionless shallow water system of equations on the rotating frame which is given by





∂th+ ∇ · (hū) = 0, (6.1a)

St∂t(hū) + ∇ · (hū ⊗ ū) +
1
Fr2

∇
(
h2

2

)
= − 1

Fr2
h∇b− 1

Ro
hū

⊥. (6.1b)

In System (6.1) unknowns h and ū respectively denote the water depth and the velocity of the
water column and function b(x) denotes the topography of the considered oceanic basin and is
a given function. Dimensionless numbers St, Fr and Ro respectively stand for the Strouhal,
the Froude and the Rossby numbers. As mentioned above, we are interested in the large scale
oceanographic flows, so we will focus on the case in which the Froude and Rossby numbers are
small. In particularly, we shall assume that

Ro= O(M) and Fr = O(M)

with M a small parameter (typical values lead to M ∼ 10−2). For a Strouhal number of order
O( 1

M ), i.e.for small time scale, the solution of system (6.1) satisfies at the leading order the
linear wave equation with Coriolis source term

{
∂tr+ a⋆∇.u = 0

∂tu + a⋆∇r = −ωu⊥ (6.2)

where u = (u,v)T , and u⊥ = (−v,u)T . The parameters a⋆ and ω are constants of order one,
respectively related to the wave velocity and to the rotating velocity. The stationary state
corresponding to Equation (6.2) is the geostrophic equilibrium which is given by

a⋆∇r = −ωu⊥. (6.3)

It is well known that the classical Godunov scheme applied to (6.2) will fail to capture the
discrete steady state (6.3). Unlike in the 1D case, for which the reason for the accuracy problem
is only linked to the numerical diffusion in the pressure equation [37], the numerical diffusion in
the velocity equations in the 2D case is also a reason for the inaccurate behavior of the Godunov
type schemes. This comes from the fact that the steady state (6.3) also implies the divergence
free condition ∇ · u = 0, while the numerical diffusion in the velocity equations of the Godunov
scheme, on 2D cartesian meshes, does not vanish on velocities satisfying a discrete equivalent of
this condition. Therefore, modified Godunov schemes on Cartesian meshes are introduced in [53]
to correctly capture the discrete steady state; these schemes use a combination of the Apparent
Topography strategy in [25] and of the idea named Divergence Penalisation in [20].
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The present work is strongly motivated by the fact that [21] pointed out that there is no more
problem related to the divergence free constraint on the velocity solution of the Godunov type
schemes applied to the homogeneous linear wave equation on triangular meshes. Reference [21]
provides a detailed explanation based on the discrete kernel of the Godunov scheme on triangular
meshes. Therefore, one may think that we can apply the Apparent Topography strategy on (6.2)
on triangular meshes to be able to correctly capture discrete steady states. However, the main
purpose of this work is to point out that the collocated scheme applied to the rotating linear
wave equation (6.2) still suffers from some problems, and we propose a staggered strategy to
avoid these problems.

This work is organized as follows. In Section 6.2, we clearly present the problem we encounter
with the collocated Godunov scheme on triangular meshes by showing the discrete kernel of
the collocated scheme. Then we propose a staggered scheme in Section 6.3 to overcome this
difficulty. Particularly, we define discrete differential operators which satisfy mimetic properties
and perform the analysis of the staggered scheme, in which we focus on some essential properties
such as the preservation of the kernel and of its orthogonal subspace. We then take into account
in Section 6.4 the time discretization to introduce the appropriate one step as well as splitting
schemes, such that they still possess the same good properties as the semi-discrete scheme. Some
numerical test cases are shown in Section 6.5 to confirm the analysis led in the theoretical part
and we discuss some perspectives. Concluding remarks complete the study in Section 6.6.

6.2 Explanation of the wrong behavior of collocated schemes

In this section, we perform the analysis of the Godunov collocated scheme applied to the linear
wave equation (6.2) to clearly point out that it is necessary to use a staggered scheme to capture
well the geostrophic equilibrium (6.3).
We shall denote by Ti a generic triangular cell used for the discretization of the computational
domain. Let Aij be the common edge of the neighboring cells Ti and Tj , and nij the unit normal
vector to Aij pointing from Ti to Tj . Moreover, we also denote the area of the cell Ti by |Ti|
and the length of the edge Aij by |Aij |. Then, the semi-discrete collocated scheme for the linear
wave equation (6.2) can be written as





d
dtri + a⋆

2|Ti|
∑

Aij⊂∂Ti

|Aij | [(ui + uj) · nij +κr(ri − rj)] = 0

d
dtui + a⋆

2|Ti|
∑

Aij⊂∂Ti

|Aij | [(ri + rj) +κu(ui − uj) · nij ]nij = −ωu⊥
i

(6.4)

where κr and κu represent the parameters of the diffusion terms. The classical Godunov scheme
corresponds to the case κr = κu = 1. We mention [21] for the construction of the scheme applied
to the homogeneous wave equation. Here, we take into account the effect of the Coriolis force in
the right-hand side of the semi-discrete scheme.
Let us also note that the semi-discrete collocated Godunov scheme (6.4) can be written in the
following compact form

d

dt
qh +Lκ,hqh = 0

where

qh :=

(
rh

uh

)
∈ R3N and Li

κ,hqh =




a⋆
2|Ti|

∑

Aij⊂∂Ti

|Aij |[(ui + uj) · nij +κr(ri − rj)]

a⋆
2|Ti|

∑

Aij⊂∂Ti

|Aij |[(ri + rj) +κu(ui − uj) · nij ]nij +ωu⊥
i


 .
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Let rh = (ri) be in RN and uh = (ui) in R2N where N is the number of triangles. To be
convenient, we now define the discrete gradient of rh and divergence of velocity uh respectively
by the following formulas

(∇hrh)i =
1

|Ti|
∑

Aij⊂∂Ti

|Aij |(ri + rj)
2

nij (6.5)

and

(∇h · uh)i =
1

|Ti|
∑

Aij⊂∂Ti

|Aij |(ui + uj)
2

· nij . (6.6)

Moreover, considering two cell-centered vectors q1
h = (r1

h,u
1
h) and q2

h = (r2
h,u

2
h), we also define

discrete scalar products by

〈r1
h, r

2
h〉c :=

N∑

i=1

|Ti|r1
i r

2
i , 〈u1

h,u
2
h〉c :=

N∑

i=1

N∑

i=1

|Ti|u1
i ·u2

i , 〈q1
h, q

2
h〉c := 〈r1

h, r
2
h〉c + 〈u1

h,u
2
h〉c. (6.7)

We use the same notations for these three scalar products, but the context in which they are
used avoids any ambiguity.

Proposition 6.1. With the discrete operators defined by (6.5), (6.6) and the discrete scalar
products in (6.7), and using periodic boundary conditions, we obtain the following discrete
integration by part formula on a collocated mesh:

〈∇h · uh, rh〉c = −〈∇hrh,uh〉c. (6.8)

Proof. First, by using the fact that
∑

Aij⊂∂Ti

|Aij |nij = 0, we get

∑

Aij⊂∂Ti

|Aij |ui · nij = 0 and
∑

Aij⊂∂Ti

|Aij |rinij = 0.

Therefore, using that nji = −nij , we obtain

〈∇h · uh, rh〉c =
1
2

N∑

i

∑

Aij⊂∂Ti

|Aij |[(ui + uj) · nij ]ri =
1
2

N∑

i

∑

Aij⊂∂Ti

|Aij |uj · nijri

=
1
2

∑

Aij

|Aij |uj · nijri +
1
2

∑

Aij

|Aij |ui · njirj = −1
2

∑

Aij

|Aij |riuj · nji − 1
2

∑

Aij

|Aij |rjui · nij

= −1
2

N∑

i

∑

Aij

|Aij |rjnij · ui = −1
2

N∑

i

∑

Aij

|Aij |(ri + rj)nij · ui

= −〈∇hrh,uh〉c.

Lemma 6.1. On a triangular mesh, with the collocated Godunov scheme, we have:

KerLκr,0,h =

{
qh :=

(
rh

uh

)
∈ R3N such that ∃a ∈ R : ri = a and u = 0

}
. (6.9)

Moreover, we also have
KerLκr=0,h = C1

h ∩C2
h (6.10)
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with the following definitions for C1
h and C2

h:

C1
h :=



qh :=

(
rh

uh

)
∈ R3N such that

a⋆

|Ti|
∑

Aij⊂∂Ti

|Aij |ri + rj

2
nij = −ωu⊥

i



 .

C2
h :=

{
qh :=

(
rh

uh

)
∈ R3N such that ∃φLh ∈ C0

♯ (Ω),(φLh)|Ti
∈ P 1(Ti),ui = (∇ ×φLh)|Ti

,∀i ∈ [1,N ]

}
,

where C0
♯ (Ω) denotes the space of periodic continuous functions over Ω.

Proof. We have

N∑

i

∑

Aij⊂∂Ti

|Aij |[κr(ri −rj)]ri =
∑

Aij

|Aij |κr(ri −rj)ri +
∑

Aij

|Aij |κr(rj −ri)rj = κr

∑

Aij

|Aij ||ri −rj |2.

(6.11)
and

N∑

i

∑

Aij⊂∂Ti

|Aij |[κu(ui − uj) · nij ]nij · ui =

∑

Aij

|Aij |[κu(ui − uj) · nij ]nij · ui +
∑

Aij

|Aij |[κu(uj − ui) · nji]nji · uj =

κu

∑

Aij

|Aij ||(ui − uj) · nij |2.

(6.12)

Moreover, we also have the energy conservation for the Coriolis force

〈u⊥
h ,uh〉 = 0. (6.13)

Let us denote qh :=

(
rh

uh

)
, then by using (6.8),(6.11), (6.12) and (6.13), we obtain

〈Lκ,hqh, qh〉 =
a⋆κr

2

∑

Aij

|Aij ||ri − rj |2 +
a⋆κu

2

∑

Aij

|Aij ||(ui − uj).nij |2. (6.14)

We now suppose that κu , 0 and we will consider the influence of κr on the structure of the
kernel KerLκ,h. From (6.14), a necessary condition to be in the kernel is

∀(i, j) : (ui − uj) · nij = 0. (6.15)

This obviously implies that ∑

Aij⊂∂Ti

|Aij |(ui − uj) · nij = 0.

But since
∑

Aij⊂∂Ti

|Aij |nij = 0, this also implies that

∑

Aij⊂∂Ti

|Aij |(ui + uj) · nij = 0.

In the case κr , 0, (6.14) also implies that

∀(i, j), ri = rj
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and it follows that r must be a constant: ∃a ∈ R such that ri = a for all i ∈ [1,N ]. Then, the
equation Lκ,hqh = 0 reduces to

a⋆

2|Ti|
∑

Aij⊂∂Ti

|Aij |(ri + rj)nij = −ωu⊥
i .

But since ri = rj = a we obtain

2a
a⋆

2|Ti|
∑

Aij⊂∂Ti

|Aij |nij = −ωu⊥
i and so u⊥

i = 0. (6.16)

This leads to the conclusion that

KerLκr,0,h =

{
qh :=

(
rh

uh

)
∈ R3N such that ∃a ∈ R : ri = a and u = 0

}
.

In the other case , when κr = 0, we recall from [21, Lemma 5.1] that (6.15) is equivalent to the
fact that there exists a periodic Lagrange piecewise P 1 conforming function, denoted by φLh,
defined by its values at the vertices of the mesh, and constants (b,c) ∈ R2 such that on each
triangle Ti there holds

ui = (b,c)T + (∇ ×φLh)|Ti
. (6.17)

Moreover, from Lκ,hqh = 0 and (6.15), we get that

a⋆

|Ti|
∑

Aij⊂∂Ti

|Aij |(ri + rj)
2

nij = −ωu⊥
i , (6.18)

which means that qh ∈ C1
h. Moreover, by multiplying (6.18) by |Ti| and summing over all

i ∈ [1,N ], we obtain by periodicity that
∑

i=1,N

|Ti|ui = 0, which implies that (b,c)T in (6.17)

vanishes. Therefore, (6.17) with b= c= 0 implies that qh ∈ C2
h. In conclusion, we obtain

KerLκr=0,h ⊂ C1
h ∩C2

h

and the converse inclusion is also true.

Remark 6.1. With the discrete energy defined by

Eh =
∑

i

|Ti|(r2
i + |ui|2),

relation (6.14) implies the following L2-stability result for the collocated Godunov type schemes:

1
2
d

dt
Eh = −a⋆κr

2

∑

Aij

|Aij ||ri − rj |2 − a⋆κu

2

∑

Aij

|Aij ||(ui − uj).nij |2 ≤ 0.

Remark 6.2. The kernel given by (6.9) clearly shows that the standard Godunov scheme (κr , 0)
is not able to preserve general geostrophic equilibria. On the other hand, the situation is less
clear when the diffusion in the pressure equation vanishes. Indeed, let us consider (6.10). An
important property is that

1
|Ti|

∑

Aij⊂∂Ti

|Aij |ri + rj

2
nij
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is exactly the gradient on the cell Ti of the non-conforming P 1 finite element function r̃CRh which

is defined by the values
ri+rj

2 at the midpoints of the mesh edges Aij. So C1
h tells us that uh is,

up to a multiplicative constant, the curl of the non-conforming P 1 function r̃CRh , while C2
h tells

us that uh is the curl of a conforming P 1 function φLh. The equality

(curlφLh)|Ti
=
a⋆

ω
(curl r̃CRh )|Ti

(6.19)

for all i ∈ [1,N ] provides 2N constraints while r has N degrees of freedom but φCRh only has a
number of degrees of freedom equal to the number of vertices of the mesh. In a periodic triangular
mesh with no holes, the number of vertices is half of the number of cells, so that (6.19) is actually
probably too constraining to admit non trivial solutions.

With the previous remark, it becomes obvious that one possibility is to define the pressure
field at the vertices and to replace the gradient of r̃CRh by the gradient of the conforming Lagrange
P 1 function defined by these values at the vertices. Of course then, we have to change the
pressure evolution equation accordingly. This new staggered scheme is what we explore in the
sequel of this chapter.

6.3 Analysis of the semi-discrete staggered schemes

6.3.1 Definition of the discrete operators and the semi-discrete staggered scheme

We first define the discrete version of the gradient and divergence operators. As mentioned
above, the discrete gradient will be defined over the cells from values at the vertices. The discrete
divergence operator will then be defined such that a discrete integration by parts holds; in this
way we shall still be able to prove stability of the scheme by energy estimates.

Let (rk)k∈[1,Nr] be a discrete scalar field defined by its values at the vertices of the mesh,
where Nr is the number of vertices. Let us denote by rh the globally continuous function that is
piecewise P 1 on each cell and defined by the values (rk)k∈[1,Nr] at the vertices of the mesh. We
can define the discrete gradient on the (primal) cells by using the following formula

(∇T
h rh)i =

1
|Ti|

∑

Aij⊂∂Ti

|Aij |rh(Sij) + rh(Nij)
2

nij , (6.20)

where for any edge Aij , we have denoted by Nij and Sij its extremities (see Figure 6.1(b)). It is
easily checked that (6.20) is the gradient of the P 1 Lagrange function rh.

Let (ui)i∈[1,N ] be a discrete vector field defined by its values on the triangular cells. We shall
define its divergence on a dual mesh constructed as follows. To each vertex is associated a dual
cell obtained by joining the barycenters of the cells which share the vertex to the midpoints of
the edges (see Figure 6.1(a)). Let us denote the area of the dual cell Dk by |Dk|. Then, we can
define the discrete divergence (∇h · uh) on the dual cell by the following formula

(∇D
h · uh)k =

1
|Dk|

∑

Ti|Ti∩Dk,∅
ui · 1

2
liknik, (6.21)

where for a triangle Ti and a vertex k, lik is the length of the edge of Ti that is opposite to vertex
k and nik the unit normal vector pointing outside Ti on this edge. This edge will be named Aik

below.
Moreover, we can define the discrete curl of the vector field by

(∇D
h × uh)k = −(∇D

h · u⊥
h )k = − 1

|Dk|
∑

Ti|Ti∩Dk,∅
u⊥

i · 1
2
liknik. (6.22)



6.3. Analysis of the semi-discrete staggered schemes 163

(a) Dual cell

(b) Two neighbor triangles

Figure 6.1: Staggered scheme.

On the other hand, we can define the discrete scalar product between q1
h = (r1

h,u
1
h) and

q2
h = (r2

h,u
2
h) by

〈q1
h, q

2
h〉 := 〈r1

h, r
2
h〉D + 〈u1

h,u
2
h〉P :=

Nr∑

k=1

|Dk|r1
kr

2
k +

N∑

i=1

|Ti|u1
i · u2

i . (6.23)

We propose the following semi-discrete staggered scheme applied to the linear wave equation
with Coriolis source term.





d
dtrk(t) + a⋆(∇D

h · uh)k − νr

[
∇D

h ·
(
∇T

h rh + ω
a⋆

u⊥
h

)]
k

= 0

d
dtui(t) + a⋆(∇T

h rh)i − νu(∇CR~uh · n�)i = −ωu⊥
i ,

(6.24)

where νr = κra⋆h
2 , with h a typical mesh size and νu = κua⋆

2 represent the parameters that control
the diffusion terms and (∇CR~uh · n�)i is given by the following expression

(∇CR~uh · n�)i :=
1

|Ti|
∑

Aij⊂∂Ti

|Aij |[(uj − ui) · nij ]nij . (6.25)

We also note that the Low Froude (LF) staggered scheme corresponds to νr = 0 and the
Apparent Topography (AT) scheme corresponds to νr > 0. Moreover, the term defined by (6.25)
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is the standard diffusive upwinding term in the velocity equation. The notation ∇CR is here to
recall that the right-hand side in (6.25) is the gradient of the non-conforming P 1 function with
value [(uj − ui) · nij ] at the midpoint of edge Aij .

6.3.2 Properties of the discrete operators

Proposition 6.2. With the discrete divergence, curl, gradient and scalar product defined respec-
tively by (6.21), (6.22), (6.20) and (6.23), we have the following properties for the semi-discrete
staggered scheme (6.24):

i. Discrete integration by part (energy conservation for the pressure gradient force)

〈∇D
h · uh, rh〉D = −〈∇T

h rh,uh〉P (6.26)

ii. Energy conservation for the Coriolis force

〈u⊥
h ,uh〉P = 0. (6.27)

iii. No vorticity production for the pressure gradient force

∇D
h ×

(
∇T

h rh

)
= 0. (6.28)

Proof. Using periodic boundary conditions, we obtain

〈∇T
h rh,uh〉P =

N∑

i=1

|Ti|(∇T
h rh)i · ui =

N∑

i=1

∑

Aij⊂∂Ti

|Aij |
2

[rh(Sij) + rh(Nij)]nij · ui

=
Nr∑

k=1

∑

Ti|Ti∩Dk,∅

1
2
rkui ·

∑

j|Aij⊂∂Ti
Aij,Aik

|Aij |nij =
Nr∑

k=1

∑

Ti|Ti∩Dk,∅

1
2
rkui · (−liknik)

= −
Nr∑

k=1


 ∑

Ti|Ti∩Dk,∅
ui · 1

2
liknik


rk = −〈∇D

h · uh, rh〉D.

which proves point (i).
Point (ii) is obvious and now we turn to point (iii); we have

[
∇D

h ×
(
∇T

h rh

)]
k

= −
[
∇D

h ·
(
∇T

h rh

)⊥]

k
= − 1

|Dk|
∑

Ti|Ti∩Dk,∅

(
∇T

h rh

)⊥
i

· 1
2
liknik

=
1

|Dk|
∑

Ti|Ti∩Dk,∅

(
∇T

h rh

)
i
· 1
2
likn⊥

ik

=
1

2|Dk|
∑

Ti|Ti∩Dk,∅
[rh(Nik) − rh(Sik)] = 0,

where Nik and Sik are the vertices of edge Aik oriented such that
−−−−→
NikSik = likn⊥

ik and where we
have used that, since rh is a P 1 function

(
∇T

h rh

)
i
· likn⊥

ik =
(
∇T

h rh

)
i
· −−−−→
NikSik = ∇rh · −−−−→

NikSik = rh(Nik) − rh(Sik).
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6.3.3 Evolution of the discrete energy

Lemma 6.2. With νr = 0 and the discrete energy defined with the following expression

Eh(t) = 〈qh, qh〉 =
Nr∑

k=1

|Dk|r2
k +

N∑

i=1

|Ti| |ui|2, (6.29)

we obtain
d

dt
Eh(t) ≤ 0

which means that the Low Froude scheme dissipates the discrete energy.

Proof. We take the scalar product of the staggered scheme (6.24) with qh = (rh,uh) to obtain

1
2
d

dt
Eh(t) +

〈
∇D

h · uh, rh

〉
D

+
〈
∇T

h rh,uh

〉
P

+
〈
u⊥

h ,uh

〉
P

+ νu

〈
∇CR~uh · n�,uh

〉
P

Moreover, with periodic boundary conditions, we also have (see (6.12))

−
〈
∇CR~uh · n�,uh

〉
P

=
∑

Aij

|Aij ||(ui − uj).nij |2. (6.30)

Therefore, using (6.26), (6.27) and (6.30), we get

d

dt
Eh(t) = −2νu

∑

Aij

|Aij ||(ui − uj).nij |2.

which means that the energy of the LF scheme is decreasing in time.

6.3.4 Analysis of the discretized steady-states and their orthogonal subspace

We now define a set of discretized steady-states with staggered variables on triangular meshes by
the following expression

E△
ω,0 =

{
q̂h = (r̂h, ûh) ∈ RNr ×R2N : a⋆(∇T

h r̂h)i = −ωû⊥
i

}
(6.31)

which is a consistent discretization of the geostrophic equilibrium (6.3). Then we have the
following discrete Hodge decomposition:

Lemma 6.3. The orthogonal space of E△
ω,0 is given by

E△,⊥
ω,0 =

{
q̃h = (r̃h, ũh) ∈ RNr ×R2N : a⋆(∇D

h × ũh)k = ωr̃k

}
. (6.32)

Proof. First of all, we define the set Ah by

Ah =
{
qh = (rh,uh) ∈ RNr ×R2N : a⋆(∇D

h × uh)k = ωrk

}
.

For each q̂h = (r̂h, ûh) ∈ E△
ω,0 and arbitrary q̃h = (r̃h, ũh) ∈ RNr × R2N , we use the discrete

integration by part formula (6.26) to obtain

〈q̂h, q̃h〉 = 〈r̂h, r̃h〉D + 〈ûh, ũh〉P = 〈r̂h, r̃h〉D + 〈û⊥
h , ũ

⊥
h 〉P

= 〈r̂h, r̃h〉D − a⋆

ω

〈
∇T

h r̂h, ũ
⊥
h

〉
P

= 〈r̂h, r̃h〉D +
a⋆

ω

〈
r̂h,∇D

h · ũ⊥
h

〉
D

=
〈
r̂h, r̃h − a⋆

ω
∇D

h × ũh

〉

D
.
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Hence, if q̃h ∈ Ah , we obviously have 〈q̂h, q̃h〉 = 0 which leads to Ah ⊂ E△,⊥
ω,0 . On the other hand,

since r̂h can be arbitrary in RNr when q̂h ∈ E△
ω,0, then the equality

〈
r̂h, r̃h − a⋆

ω ∇D
h × ũh

〉
D

= 0

for all q̂h ∈ E△
ω,0 implies that r̃h − a⋆

ω ∇D
h × ũh = 0 and thus q̃h ∈ Ah. It follows that E△,⊥

ω,0 ⊂ Ah.

Remark 6.3. The discrete Hodge decomposition allows us to define the discrete orthogonal
projection

Ph :

{
RNr+2N −→ E△

ω,0

qh 7−→ q̂h

and we can construct q̂h by what follows.

Let qh = (rh,uh) be given in RNr+2N . For all (p̂h, v̂h) ∈ E△
ω,0, using orthogonality, we have

〈r̂h, p̂h〉D + 〈ûh, v̂h〉P = 〈rh, p̂h〉D + 〈uh, v̂h〉P .

We then use the definition of the discrete steady-states and the discrete integration by part formula
to get

〈r̂h, p̂h〉D −
(
a⋆

ω

)2〈
∇D

h ·
(
∇T

h r̂h

)
, p̂h

〉
D

= 〈rh, p̂h〉D − a⋆

ω
〈∇D

h × uh, p̂h〉D.

As a result, since p̂h can be arbitrary in RNr , it is possible to find r̂h by solving the following
linear system

r̂k −
(
a⋆

ω

)2 [
∇D

h ·
(
∇T

h r̂h

)]
k

= rk − a⋆

ω
(∇D

h × uh)k. (6.33)

Then, by the definition of the discrete steady-states, the part of the velocity field in E△
ω,0 is given

by

ûi =
a⋆

ω
(∇T

h r̂h)⊥
i .

Finally, the orthogonal component is simply given by q̃h = qh − q̂h. Moreover, the linear system
(6.33) defines a unique solution since −∇D

h · and ∇T
h are adjoint operators as shown by the

discrete integration by part formula (6.26).

6.3.5 Well-balanced and orthogonality preserving properties

Definition 6.1. A semi-discrete scheme is said to be well-balanced if

q0
h ∈ E△

ω,0 ⇒ ∀t≥ 0, qh(t) = q0
h ∈ E△

ω,0.

Definition 6.2. A semi-discrete scheme is said to be orthogonality preserving if

q0
h ∈ E△,⊥

ω,0 ⇒ ∀t≥ 0, qh(t) ∈ E△,⊥
ω,0 .

Lemma 6.4. We have:

i. The semi-discrete staggered type scheme (6.24) is a well-balanced scheme in the sense
that it can capture the discrete steady state (6.31).

ii. The Low Froude semi-discrete staggered scheme (νr = 0) is an orthogonality preserving
scheme.
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Proof. With the discrete steady state (6.31), the velocity field can be written as

ûi =
a⋆

ω
(∇T

h r̂h)⊥
i .

Since we have no vorticity production of the gradient term (see (6.28)), we get

(∇D
h · ûh)k =

a⋆

ω

[
∇D

h · (∇T
h r̂h)⊥

]
k

= −a⋆

ω

[
∇h × (∇T

h r̂h)
]

k
= 0. (6.34)

On the other hand, since u is the curl of a discrete piecewise P 1, globally continuous function,
then its normal jumps through edges vanishes, as recalled in the lines before (6.17):

(ûi − ûj) · nij = 0. (6.35)

Therefore, the definition of the discrete kernel (6.31), the divergence free property (6.34) and the
vanishing of the jumps of the velocity field through the edges Aij (6.35) imply the well-balanced
property of the semi-discrete staggered scheme (6.24). This proves Point (i).
In consideration of the orthogonality preserving property, by taking the discrete scalar product
of the semi-discrete staggered scheme with the stationary state q̂h ∈ E△

ω,0, we obtain
〈
d

dt
qh(t), q̂h

〉
= − a⋆〈∇D

h · uh, r̂h〉D + νr

〈
∇D

h ·
(

∇T
h rh +

ω

a⋆
u⊥

h

)
, r̂h

〉

D
− a⋆〈∇T

h rh, ûh〉P + νu〈∇CR~uh · n�, ûh〉P −ω〈u⊥
h , ûh〉P .

By using the discrete integration by part formula and (6.34) , we have

〈∇T
h rh, ûh〉P = −

〈
rh,∇D

h · ûh

〉
D

= 0.

Moreover, by calculations similar to (6.12), we get, thanks to (6.35):

−
〈
∇CR~uh · n�, ûh

〉
P

=
∑

Aij

|Aij |[(ui − uj) · nij ]nij · ûi +
∑

Aij

|Aij |[(uj − ui) · nji]nji · ûj

=
∑

Aij

|Aij |[(ui − uj).nij ][(ûi − ûj) · nij ] = 0.

Using a final discrete integration by part formula and the fact that q̂h ∈ E△
ω,0, we get

−a⋆〈∇D
h · uh, r̂h〉D −ω〈u⊥

h , ûh〉P =
〈
a⋆∇T

h r̂h +ωû⊥
h ,uh

〉
P

= 0.

As a result, the condition to ensure the orthogonality preserving property of the semi-discrete
staggered scheme is given by

∀q̂h ∈ E△
ω,0, νr

〈
∇D

h ·
(

∇T
h rh +

ω

a⋆
u⊥

h

)
, r̂h

〉

D
= 0.

Therefore, the semi-discrete staggered scheme is orthogonal preserving when we have no diffusion
on the pressure equation νr = 0.

Remark 6.4. Although both Low Froude and Apparent Topography staggered schemes can capture
the discrete geostrophic equilibrium (6.31), the behavior of each strategy is very different. Let us
decompose the numerical solution into two parts

qh(t) = q̂h(t) + q̃h(t).
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Since the Low Froude scheme is orthogonality preserving, the orthogonal part q̃h(t) does not move
into the kernel. As a result, we can ensure that

q̂h(t) = Phq
0
h , ∀t≥ 0.

This means that the kernel part of the numerical solution is always equal to the initial projection
Phq

0
h which is also the final state of the numerical solution when the orthogonal part is damped

to zero by the numerical diffusion of the scheme.
However, when the numerical scheme has some diffusion on the pressure equation like the
Apparent Topography scheme, it is impossible to ensure the orthogonality preserving property.
As a consequence, the orthogonal part not only damps out, but also partly moves into the kernel.
Therefore, the kernel part of this scheme may be changed at each time step until there is no
energy left in the orthogonal of the kernel.

6.3.6 Behavior of the solution of the staggered scheme

Lemma 6.5. Let qν,h(t) be the solution of the semi-discrete scheme (6.24). Then, with νr = 0,
we obtain

∀C1 ∈ R+, if ‖q0
h −Ph(q0

h)‖ = C1M, then ‖qν,h(t) −Ph(q0
h)‖ ≤ C1M,

which means that the LF scheme is accurate at low Froude number at anytime.

Proof. By linearity, the solution of semi-discrete staggered scheme qν,h(t) can be written as

qν,h(t) = qa
ν,h(t) + qb

ν,h(t)

where qa
ν,h(t) and qb

ν,h(t) are the solution of (6.24) with initial conditions respectively given by

qa
ν,h(0) = Ph(q0

h) and qb
ν,h(0) = q0

h −Ph(q0
h).

Then, we have

‖qν,h(t) −Ph(q0
h)‖ = ‖qa

ν,h(t) + qb
ν,h(t) −Ph(q0

h)‖ ≤ ‖qa
ν,h(t) −Ph(q0

h)‖ + ‖qb
ν,h(t)‖.

Moreover, when νr = 0, the dissipation of the semi-discrete staggered scheme proved in Lemma 6.2
leads to the conclusion that ‖qb

ν,h(t)‖ ≤ ‖qb
ν,h(0)‖. For this reason, the accuracy of the scheme is

linked to the behavior of qa
κ,h(t). Since the semi-discrete scheme (6.24) is a well-balanced scheme,

we obviously have qa
ν,h(t) = Ph(q0

h). Therefore, we obtain

∀t≥ 0, ‖qν,h(t) −Ph(q0
h)‖ ≤ C1M.

Remark 6.5. Since it is difficult to prove the dissipation of the energy for the semi-discrete
scheme (6.24) when νr , 0, we do not have enough evidence to conclude that the well-balanced
scheme based on the Apparent Topography method is accurate at low Froude number at anytime.

6.4 Analysis of fully discrete staggered schemes

We present two types of time discretization for the scheme (6.24). The first is a one-step scheme,
while the second, inspired by the so-called "Boris push" [56] from plasma physics, splits the
velocity rotation due to the Coriolis force from the other effects.
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6.4.1 The fully discrete one step scheme

We now introduce two new parameters θ1 and θ2 corresponding to the time discretization of the
Coriolis source term. To be convenient, we denote

u⊥,θ =

(
−θ1v

n − (1 − θ1)vn+1

θ2u
n + (1 − θ2)un+1

)
.

The fully discrete one step staggered scheme can be written as




rn+1
k = rn

k − a⋆∆t(∇D
h · un

h)k + νr∆t
[
∇D

h ·
(
∇T

h r
n
h + ω

a⋆
(un

h)⊥
)]

k

un+1
i = un

i − a⋆∆t(∇T
h r

n
h)i + νu∆t

(
∇CR~un

h · n�
)

i
−ω∆tu⊥,θ

i .
(6.36)

Well-balanced scheme

Lemma 6.6. The fully discrete one step scheme (6.36) is a well-balanced scheme.

Proof. We now assume that at time tn = n∆t, the numerical solution is in the discrete kernel
which reads

a⋆(∇T
h r

n
h)i = −ω(un

i )⊥. (6.37)

Then, we will show that the numerical does not change in the next time step:

rn+1 = rn, un+1 = un and vn+1 = vn.

We note that the state (6.37) also implies that

(∇D
h · un

h)k = 0 and ∇CR~un
h · n�i = 0. (6.38)

Therefore, the pressure equation of the fully discrete one step scheme (6.36) reduces to rn+1
k = rn

k .
Moreover, the velocity equation leads to

(
1 −ω∆t(1 − θ1)

ω∆t(1 − θ2) 1

)(
un+1

i

vn+1
i

)
=

(
1 −ω∆t(1 − θ1)

ω∆t(1 − θ2) 1

)(
un

i

vn
i

)

which implies that un+1
i = un

i and vn+1
i = vn

i .

Orthogonality preserving scheme

Let us introduce two new parameters τ1 and τ2 used for the time discretization of the divergence
field in the pressure equation. We shall denote

uτ =

(
τ1u

n + (1 − τ1)un+1

τ2v
n + (1 − τ2)vn+1

)
.

Then, we specialize to the case νr = 0 and introduce the LF-τ scheme which we define by




rn+1
k = rn

k − a⋆∆t(∇D
h · uτ

h)k

un+1
i = un

i − a⋆∆t(∇T
h r

n
h)i + νu∆t

(
∇CR~un

h · n�
)

i
−ω∆tu⊥,θ

i .
(6.39)

Remark 6.6. The LF-τ scheme (6.39) is still explicit although the velocity field un+1 appears
in the pressure equation. In fact, we can compute the velocity field first and then it is used to
compute uτ in the pressure equation without having to solve any linear system.
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Lemma 6.7. The Low Froude-τ scheme (LF-τ) is an orthogonality preserving scheme if

τ1 = θ2 and τ2 = θ1.

which means that the velocity field used in the Coriolis source term in the velocity equation
and that used to compute the divergence term in the pressure equation should be the same.

Proof. By taking the product of the fully discrete scheme (6.39) with the steady state q̂h ∈ E△
ω,0,

using periodic boundary conditions, the discrete integration by part formula and the properties
of elements in the discrete kernel, we will obtain

〈
qn+1

h , q̂h

〉
= −a⋆∆t〈∇D

h · uτ
h, r̂h〉D −ω∆t〈u⊥,θ

h , ûh〉P

=
〈
a⋆∆t∇T

h r̂h,u
τ
h

〉
P

+
〈
ω∆tû⊥

h ,u
θ
h

〉
P
.

We realize that when τ1 = θ2 and τ2 = θ1, we get uτ
h = uθ

h, from which it follows that

〈
qn+1

h , q̂h

〉
= 0,∀q̂h ∈ E△

ω,0.

Therefore, we conclude that qn+1
h ∈ E△,⊥

ω,0 .

6.4.2 The fully discrete splitting scheme

Let us define a four-step staggered scheme applied to (6.2) by using a strategy that splits the
effect of rotation induced by the Coriolis force from the rest of the effects:

• 1st step (1 − θ velocity advance without rotation):

u∗
i = un

i − (1 − θ)a⋆∆t(∇T
h r

n
h)i + (1 − θ)νu∆t

(
∇CR~un

h · n�
)

i
(6.40)

• 2nd step (velocity full rotation):

u∗∗ − u∗ = −ω∆t [θu∗ + (1 − θ)u∗∗]⊥ (6.41)

• 3rd step (θ velocity advance without rotation) :

un+1
i = u∗∗

i − θa⋆∆t(∇T
h r

n
h)i + θνu∆t

(
∇CR~un

h · n�
)

i
(6.42)

• 4th step (pressure update):

rn+1
k = rn

k − a⋆∆t
(
∇D

h · [θu∗
h + (1 − θ)u∗∗

h ]
)

k
+ νr∆t

[
∇D

h ·
(

∇T
h r

n
h +

ω

a⋆
(un

h)⊥
)]

k
. (6.43)

Lemma 6.8. We have:

i. The four-step splitting staggered scheme is a well-balanced scheme.

ii. When νr = 0, the four-step splitting staggered scheme is an orthogonality preserving
scheme.



6.4. Analysis of fully discrete staggered schemes 171

Proof. We first assume that at time tn = n∆t, the numerical solution is in the discrete kernel
(6.31). Therefore, we have (6.37) and (6.38). Hence, the first step reduces to

u∗
i = un

i − (1 − θ)a⋆∆t(∇T
h r

n
h)i (6.44)

and the third to
un+1

i = u∗∗
i − θa⋆∆t(∇T

h r
n
h)i. (6.45)

Using (6.37), the rotation step can be written as

u∗∗
i + (1 − θ)ω∆t(u∗∗

i )⊥ = un
i − (1 − θ)a⋆∆t(∇T

h r
n
h)i − θω∆t

[
un

i − (1 − θ)a⋆∆t(∇T
h r

n
h)i

]⊥

= un
i + θa⋆∆t(∇T

h r
n
h)i +ω∆tun,⊥

i − θω∆t
[
un

i − (1 − θ)a⋆∆t(∇T
h r

n
h)i

]⊥

=
[
un

i + θa⋆∆t(∇T
h r

n
h)i

]
+ (1 − θ)ω∆t

[
un

i + θa⋆∆t(∇T
h r

n
h)i

]⊥
.

By a straightforward uniqueness argument, this leads to

u∗∗
i = un

i + θa⋆∆t(∇T
h r

n
h)i. (6.46)

Thanks to (6.45), this implies that un+1
i = un

i . On the other hand, from (6.44) and (6.46), we
easily obtain (

∇D
h · [θu∗

h + (1 − θ)u∗∗
h ]
)

k
=
(
∇D

h · un
h

)
k

= 0,

from which it follows that rn+1
k = rn

k . This proves Point (i).
In consideration of the orthogonality preserving property of the four-step staggered scheme, we
assume that at time tn, the numerical solution verifies qn

h ∈ E△,⊥
ω,0 and we will show that at next

time step, the numerical solution qn+1
h is still in this subspace. For any state q̂ = (r̂h, ûh) ∈ E△

ω,0,
by the discrete integration by part formula, we have

〈∇T
h rh, ûh〉P = −

〈
rh,∇D

h · ûh

〉
D

= 0,

and 〈
∇CR~uh · n�, ûh

〉
P

= −
∑

Aij

|Aij |[(ui − uj).nij ][(ûi − ûj).nij ] = 0.

Hence, from (6.40) and (6.42), we clearly get

〈u∗
h, ûh〉 = 〈un

h, ûh〉 and 〈un+1
h , ûh〉 = 〈u∗∗

h , ûh〉

Then, the rotation step (6.41) leads to

〈un+1
h , ûh〉 = 〈u∗∗

h , ûh〉 = 〈u∗
h, ûh〉 −ω∆t

〈
[θu∗

h + (1 − θ)u∗∗
h ]⊥ , ûh

〉

= 〈un
h, ûh〉 +ω∆t

〈
[θu∗

h + (1 − θ)u∗∗
h ] , û⊥

h

〉
. (6.47)

On the other hand, when νr = 0, the 4th step (6.43) gives us

〈rn+1
h , r̂h〉 = 〈rn

h , r̂h〉 − a⋆∆t
〈
∇D

h · [θu∗
h + (1 − θ)u∗∗

h ] , r̂h

〉

= 〈rn
h , r̂h〉 + a⋆∆t

〈
[θu∗

h + (1 − θ)u∗∗
h ] ,∇T

h r̂h

〉
. (6.48)
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Therefore, gathering (6.47) and (6.48), using the fact that qn
h ∈ E△,⊥

ω,0 and the fact that q̂h ∈ E△
ω,0,

we obtain

〈qn+1
h , q̂h〉 = 〈rn

h , r̂h〉 + 〈un
h, ûh〉 +∆t

〈
[θu∗

h + (1 − θ)u∗∗
h ] ,a⋆∇T

h r̂h +ωû⊥
h

〉
= 0.

In conclusion, we have

〈qn+1
h , q̂h〉 = 0 , ∀q̂h ∈ E△

ω,0 which implies qn+1
h ∈ E△,⊥

ω,0 .

6.5 Numerical test cases

6.5.1 Well-balanced test case

In this test case, we investigate the behavior of the Godunov type schemes with a geostrophic
equilibrium as in initial condition. Particularly, we consider the stationary vortex in the square
domain T2 = [−0.5,0.5] × [−0.5,0.5] with initial pressure r0 given by

r(x,y, t= 0) = 1 − exp

[
−
(

3x
0.5

)2

−
(

3y
0.5

)2
]
,

and we construct the discrete initial pressure by interpolating this pressure field at the mesh
vertices. Then, we construct the initial velocity field u0 by using the definition of the discrete
kernel (6.31) so that we can obtain a discrete stationary state (see Fig. 6.2).
Figure 6.3 indicates that the Classical (C) staggered scheme is not well-balanced since it produces
some spurious wave in the orthogonal subspace and also damps the kernel part. On the contrary,
the LF and AT staggered schemes are well-balanced schemes. This is because the orthogonal
part of those scheme is always equal to zero (Figure 6.3b) during the computation and the kernel
part of these scheme is a constant function in time (Figure 6.3a). On the other hand, Figure 6.4
clearly shows that the contour of the pressure of the classical scheme is different from that of the
other schemes. This is another evidence to show that the classical scheme is unable to capture
the steady state. However, as can be seen and unlike the classical scheme on Cartesian meshes
(see [53]), this scheme still preserves the structure of the vortex on triangular mesh. One possible
explanation for this property is the influence of the cell geometry. Indeed, the discrete divergence
free velocity space is a much better approximation of the continuous one on triangular meshes
than on cartesian ones, so that fewer problems are expected. Then, from the numerical point of
view, the classical staggered scheme on triangular meshes is similar to the collocated Classical -
Divergence Penalization (C-DP) scheme on Cartesian meshes, as introduced in [53] (that scheme
also has a satisfactory discrete divergence free velocity space).
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Figure 6.2: Stationary vortex as initial condition.
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Figure 6.3: Vortex test case: evolution of the kernel and orthogonal parts.
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Figure 6.4: Pressure contours r(x,y, t) at time t= 20 obtained from staggered type schemes.
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6.5.2 Orthogonality preserving test case

In this test case, we consider periodic boundary conditions and an initial vector field given by

u(x,y, t= 0) =
1
2

exp

[
−
(

4x
0.4

)2

−
(

4y
0.8

)2
]

and v(x,y, t= 0) =
1
2

exp

[
−
(

4x
0.8

)2

−
(

4y
0.4

)2
]

in the domain T2 = [−0.5,0.5] × [−0.5,0.5] and we construct the discrete initial velocity by
interpolating this velocity field at the cell centers. Then the initial pressure r(x,y, t = 0) is
constructed at the mesh vertices by using the definition of the discrete orthogonal subspace
(6.32). In all cases, we choose θ1 = θ2 = 1

2 for the time discretization of the Coriolis force i (6.36).
Figure 6.5a and 6.5c show that the classical, Apparent Topography and even Low Froude schemes
are not orthogonality preserving since the kernel components of these schemes are not equal
to zero. Moreover, since the kernel part is updated at each time step, it is not a constant in
time. Only the LF-τ scheme with τ1 = τ2 = 1

2 is able to preserve the orthogonal kernel since
this strategy does not create waves in the incompressible subspace during the computational
process, as proved by Lemma 6.7. Figure 6.5b shows that the damping rate of the orthogonal
parts of the Classical and Apparent Topography schemes is larger than that of the Low Froude
scheme. On the other hand, the damping rate of the orthogonal part of the LF-τ scheme shown
in Figure 6.5d indicates that when the scheme gets more implicit for the divergence velocity field
on the pressure equation, then the damping of the numerical schemes increases. Although the
classical and Apparent Topography schemes are not orthogonality preserving, these strategies
on triangular grid create waves with much smaller amplitudes in the kernel than that on the
Cartesian grid (see [53]).

6.5.3 Accuracy at low Froude number test case

We now consider an initial condition close to the discrete kernel, up to a perturbation of size M .
This initial condition is simply given by

q0
h = q̂0

h +M
q̃0

h

‖q̃0
h‖ ,

where q̂0
h stands for the kernel part given in Section 6.5.1 and q̃0

h is the orthogonal part considered
in Section 6.5.2.
Figure 6.6b and 6.6c indicate that the classical scheme is not accurate at low Froude number
because the norm of ‖q(t)−Pq0‖ does not depend on the parameter M . By contrast, the proposed
LF and AT schemes are accurate at low Froude number because the norm of the wave in the
orthogonal space remains of order O(M) (see Figure 6.6d and 6.6e). On the other hand, we can
observe in Figure 6.6a that the norm of the orthogonal component of the solution of the classical
scheme globally decreases in time, while the total deviation is an increasing function. This implies
that the solution of the classical scheme will tend in long time to a stationary solution in the
wrong discrete kernel, which will be different from the projection of the initial condition.

6.5.4 Circular dam-break test case

In this test case, we consider the initial condition which is given by




r(x,y, t= 0) =

{
2, if x2 + y2 ≤ 1

1, if x2 + y2 > 1.

u(x, ,y, t= 0) = 0,

v(x, ,y, t= 0) = 0.
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Figure 6.5: Orthogonality preserving test case: evolution of the kernel and orthogonal parts with θ1 = θ2 = 1
2

for the time discretization of the Coriolis force.
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Figure 6.6: Evolution of the orthogonal component and deviation from the initial condition, when the
initial condition is close to the discrete kernel.

with periodic boundary condition, a⋆ = 1 and the domain [−5,5] × [−5,5]. Figure 6.7 presents
the projection into the kernel of the initial pressure field.
Figure 6.8 presents the evolution of the pressure when using the classical scheme with one initial
condition which is very far from the geostrophic equilibrium. This figure clearly shows that in
long time, the solution of the classical scheme tends to a trivial steady sate which consists of
only a constant pressure field. This is an evidence to show that, although the classical scheme on
triangular grids behaves much better than that on Cartesian grids in the previous test cases, this
scheme eventually tends to the wrong kernel. On the contrary, the Low Froude scheme pressure
solution presented in Figure 6.9 tends to the geostrophic equilibrium, since the final state is
similar to projection Pq0 of the initial condition, as shown in Figure 6.7.
On the other hand, Figure 6.10 clearly shows that the kernel part of the classical scheme is
damped during the simulation while it is nearly a constant with the LF or AT schemes. Moreover,
the distance between the numerical solution of the classical scheme and the initial projection
(total deviation) increases in time, while it tends to zero with the other schemes. This is another
evidence to conclude that the classical scheme will tend to the wrong kernel, while the other
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schemes have solutions that, as expected, tend to the correct geostrophic equilibrium.
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Figure 6.7: The initial projection of r(x,y) .

6.6 Conclusion

In this work, we explain the disadvantage of the collocated Godunov scheme applied to the
linear wave equation with Coriolis force on triangular meshes. Then, we propose new staggered
type schemes that are accurate for the simulation of flows near the geostrophic equilibrium.
The construction of these schemes is based on the adaptation of the Low Froude and Apparent
Topography strategies on triangular grids. The time discretization leads to two strategies: the
one step and the four-step splitting schemes. Theoretical analysis and numerical results show that
the new schemes are well-balanced. On the other hand, unlike the Apparent Topography method,
the Low Froude one step or spitting scheme is orthogonality preserving under an appropriate
discretization in time.

Future works will be dedicated to the optimal time step choice of these schemes and the
extensions to the nonlinear shallow water equations.
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Figure 6.8: The pressure solution r(x,y, t) of the Classical staggered scheme.
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Figure 6.9: The pressure solution r(x,y, t) of the Low Froude staggered scheme.
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Godunov type schemes for nonlinear rotating shallow water

equation

You cannot have a positive life

and a negative mind.

Joyce Meyer.

The shallow water equations, a simplified model from Euler or Navier-Stokes equations,
can be used to model many phenomena in geophysical fluid mechanics. At large scale
phenomena, the Coriolis force, due to the Earth’s rotation, plays an important role and
the atmospheric or oceanic circulations are frequently observed to take place near the
geostrophic equilibrium, which is the balance between the pressure gradient and the Coriolis
force. The analysis and the numerical preservation of trivial equilibria with zero velocity
(i.e. lake at rest equilibrium) has been studied in the last fifteenth years and the study of
non trivial equilibria with non-zero velocity receives now a great attention but is still an
open question. We are interested in designing a modified Godunov scheme that captures
the discrete version of this geostrophic equilibrium or that can be accurate around this state
with acceptable small errors, in order to improve the accuracy of the classical Godunov
scheme significantly.
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7.1 Introduction

To model complex systems such as the atmosphere or an ocean, it is very common to use the
shallow water equations which is a simplified system obtained from the fully compressible Euler
equations in the case where the horizontal length scale is much larger than the vertical one, but
still retains some main characteristics of the original system. For instance, they share very similar
conservation laws. In the atmospheric and ocean modeling, the typical length scales are hundreds
of kilometers and it is essential to consider the geometry of the earth and its rotation as source
terms for the shallow water equations since they become important at that scale. Moreover, the
observed phenomena usually take place around the so called geostrophic equilibrium which is
the balance between the pressure gradient and the Coriolis force. In order to study the rotating
shallow water model, we introduce the two-dimensional system of partial differential equations





∂th+ ∇ · (hu) = 0, (7.1a)

∂t(hu) + ∇ · (hu ⊗ u) + ∇
(
g
h2

2

)
= −gh∇b−hΩu

⊥, (7.1b)

where h and u = (u,v) are functions of time t > 0 and space (x,y) ∈ R2. These variables denote
respectively the vertical height of the water and the horizontal velocity. In this model, the
Coriolis parameter Ω stands for the angular velocity and u

⊥ = (−v,u) is the orthogonal velocity.
The first numerical method which can be applied to this model is the finite difference method. We
mention [36, 57] and references therein for this approach. One common advantage of this method
is its simplicity of implementation and the fact that it produces results with good accuracy for
regions with smooth solutions. However, since the rotating shallow water system admits shock
waves [58, 59], in these regions with non-smooth solutions, the finite difference scheme usually
introduces unphysical oscillations.
It is crucially important for numerical schemes to capture exactly or at least very accurately
some particular solutions of system (7.1) at the discrete level. Without Coriolis source term
(Ω = 0), the above system (7.1) reduces to the model with topography, and the observations are
small perturbations around the lake at rest equilibrium which is given by

u = 0 and h+ b= cst. (7.2)

Among numerical strategies that are able to preserve the particular solution (7.2), we mention
the so called well-balanced schemes, see, e.g [5, 6], and we refer to [9, 10] for schemes that can

handle more general one dimensional moving equilibriums (hu= cst and |u|2
2 + g(h+ b) = cst).

In the case with Coriolis source term, it is a challenge to design schemes able to capture the
nontrivial geostrophic equilibrium given by

∇ · u = 0 and g∇h= −Ωu
⊥. (7.3)

In [13], Bouchut et al. introduced a technique named Apparent Topography method to obtain a
well-balanced scheme with Coriolis force in the one-dimensional case. The idea is to modify the
numerical diffusion introduced by standard schemes in the pressure equation so that it applies
only on states that do not verify the geostrophic equilibrium. This method is then extended to
the two dimensional case on Cartesian grids in [14]. However, the 2D geostrophic equilibrium is
more complex in 2D than in 1D, because it implies that the velocity field is divergence free, while
standard schemes also fail to maintain divergence free velocities. As a result, it was shown [53]
by studying the linear wave equation that it is necessary to modify not only the diffusion on the
pressure equation, but also on the velocity equations to design schemes that are able to capture
discrete equivalents of the nontrivial steady state (7.3). This gives rise to strategies combining
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the Apparent Topography method with the Divergence Penalisation or Low Froude strategies
introduced in [20].

In this work, we extend the results obtained for the linear wave equation in [53] to the
nonlinear rotating shallow water system. The outline of this work is as follows: in Section 7.2,
we investigate the properties of All Froude type schemes for linear wave equations with Coriolis
source term. In particular, we focus on the accuracy around geostrophic equilibriums at low
Froude number. We then explain in Section 7.3 how to use the combination of the Apparent
Topography method with other corrections such as the All Froude and Divergence Penalisation
techniques in the nonlinear case. Moreover, the time discretization of the Coriolis source term
is also investigated in this section. Many numerical results are then shown in Section 7.4 to
illustrate the fact that the proposed scheme is more accurate than the classical ones.

7.2 Behavior of All Froude type schemes applied to the linear wave equation with Coriolis
source term

By analyzing the discrete kernel of the modified equation associated to the discretization of
the linear acoustic operator by the classical Godunov scheme, the work in [53] shows that it is
essential to modify the numerical diffusion terms in both pressure and velocity equations since
they are responsible for the inaccuracy problems encountered by standard Godunov type schemes.
That work also proposes some numerical strategies that combine the Apparent Topography
method presented in [13], with the Divergence Penalization and Low Froude methods inspired
by [20, 37]. However, for stability reasons, the Low Froude strategy may not be a good option
in the nonlinear case since it is proved in [22] to be unstable when used on the standard Euler
system with no Coriolis source term. Therefore, in this section we will replace the Low Froude
strategy by the All Froude one, as advocated in [22]. To investigate the effect of the All Froude
strategy, let us start with the compact form of the modified equation of the various schemes
which is given by

{
∂tq+ Lq = 0, (7.4a)

q(t= 0,x) = q0(x). (7.4b)

The spatial operator is defined by L = Lω − Bκ,η, with

Lωq =

(
a⋆∇ · u

a⋆∇r+ωu⊥

)

and

Bκ,ηq =




κx
r a⋆∆x

2
∂2r
∂x2 + κy

r a⋆∆y
2

∂2r
∂y2

κua⋆∆x
2

∂2u
∂x2

κva⋆∆y
2

∂2v
∂y2




+




−ηx
r a⋆∆x

2
ω
a⋆

∂v
∂x + ηy

r a⋆∆y
2

ω
a⋆

∂u
∂y

ηua⋆∆x
2

∂2v
∂x∂y

ηva⋆∆y
2

∂2u
∂y∂x


 . (7.5)

The Classical (C) Godunov scheme uses κr
x = κr

y = κu = κv = 1 and ηx
r = ηy

r = ηu = ηv = 0.
The Apparent Topography (AT) strategy uses ηx

r = κx
r and ηy

r = κy
r to typically transform the

diffusion operator in the pressure equation from −1
2a⋆h∆r into −1

2h∇ · (a⋆∇r+ ωu⊥), where
h is the mesh step. The Divergence Penalization (DP) strategy uses ηu = κu and ηv = κv to
transform the −1

2a⋆h(∂xxu,∂xxv)T diffusion term in the velocity equation into −1
2a⋆h∇(∇ · u).

The All Froude (AF) strategy can be applied to the pressure or to the velocity equation (but
not to both equations at the same time for stability reasons) and amounts to replace κx

r and κy
r

or κu and κv by O(M) functions, instead of 0 in the Low Froude strategy.
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AF schemes κr κu κv ηr ηu ηv

AT-AF O(1) O(M) O(M) κr 0 0
C-AF O(1) O(M) O(M) 0 0 0

AF-DP O(M) O(1) O(1) 0 κu κv

AF-C O(M) O(1) O(1) 0 0 0

Table 7.1: Parameters of All Froude type schemes.

The choices of parameters in (7.4) corresponding to the All Froude strategies are summarised
in Table 7.1.

Let us note that the behavior of the All Froude schemes are similar to the corresponding
Low Froude schemes in the linear case when M ≪ 1. Although the AT-AF and AF-DP do not
have a correct kernel, their behavior around the geostrophic equilibrium remains satisfactory.
Particularly, we obtain

Lemma 7.1. The solution qκ,η of the modified equation for the AF-DP parameters is accurate
at low Froude number locally in time.

Proof. Let P be the orthogonal projector on the sets of states that verify Lωq = 0, and let qa
κ,η(t)

and qb
κ,η(t) be the solutions of (7.4) with initial conditions respectively given by Pq0(x) and

q0(x) −Pq0(x). Then, by linearity, the solution of (7.4) is simply given by

qκ,η(t) = qa
κ,η(t) + qb

κ,η(t).

Moreover, the dissipation of energy by the AF-DP scheme leads to

‖qb
κ,η(t)‖ ≤ ‖qb

κ,η(0)‖ = ‖q0 −Pq0‖. (7.6)

We also notice that the triangular inequality leads us to

‖qκ,η(t) −Pq0‖ = ‖qa
κ,η(t) + qb

κ,η(t) −Pq0‖ ≤ ‖qa
κ,η(t) −Pq0‖ + ‖qb

κ,η(t)‖. (7.7)

We now try to find a bound for the quantity ‖qa
κ,η(t)−Pq0‖. By using the fact that Pq0 ∈KerLω,

we have Lω(Pq0) = 0. This implies that

∂t(qa
κ,η(t) −Pq0) +Lω(qa

κ,η(t) −Pq0) =Bκ,η(qa
κ,η(t) −Pq0) +Bκ,ηPq

0.

By multiplying the above equation with qa
κ,η(t) −Pq0 and integrating over T2, we will get

〈∂t(qa
κ,η(t) −Pq0), qa

κ,η(t) −Pq0〉 = 〈Bκ,η(qa
κ,η(t) −Pq0), qa

κ,η(t) −Pq0〉 + 〈Bκ,ηPq
0, qa

κ,η(t) −Pq0〉.

Moreover, we also have 〈Bκ,η(qa
κ,η(t) −Pq0), qa

κ,η(t) −Pq0〉 ≤ 0. Thus, we obtain

1
2
d

dt
‖qa

κ,η(t) −Pq0‖2
L2 ≤

∣∣∣〈Bκ,ηPq
0, qa

κ,η(t) −Pq0〉
∣∣∣≤ ‖Bκ,ηPq

0‖L2‖qa
κ,η(t) −Pq0‖L2

which allows us to write that

d

dt
‖qa

κ,η(t) −Pq0‖L2 ≤ ‖Bκ,ηPq
0‖L2 .

It follows that
‖qa

κ,η(t) −Pq0‖L2 ≤ t‖Bκ,ηPq
0‖L2 . (7.8)
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Therefore, from (7.7), (7.6) and (7.8), we obtain

‖qκ,η(t) −Pq0‖ ≤ ‖q0 −Pq0‖ + t‖Bκ,ηPq
0‖L2 . (7.9)

For the sake of convenience, we denote Pq0 = q̂0 = (r̂0, û0, v̂0) . From the numerical diffusion
term (7.5), we clearly get for the AF-DP scheme

‖Bκ,η q̂
0‖L2 ≤ νr‖∆r̂0‖L2 (7.10)

where νr = κx
r a⋆∆x

2 = κy
r a⋆∆y

2 = O(M∆x). Therefore, when the initial condition is close to the
kernel, i.e. when ‖q0 −Pq0‖ = O(M), (7.9) and (7.10) show that the numerical solution of the
AF-DP scheme is still close to the kernel locally in time t= O(1).

As a numerical illustration, we now consider an initial condition which is close to the discrete
kernel up to a perturbation of size O(M). In particular, this initial condition is given by

q0
h = q̂0

h +M
q̃0

h

‖q̃0
h‖ ,

where q̂0
h belongs to the kernel and q̃0

h is in the orthogonal subspace. They are respectively given
by

q̂0 =





r̂(t= 0,x,y) = 1 − exp
[
−
(

3x
0.5

)2
−
(

3y
0.5

)2
]

û(t= 0,x,y) = − 6y
0.5 exp

[
−
(

3x
0.5

)2
−
(

3y
0.5

)2
]

v̂(t= 0,x,y) = 6x
0.5 exp

[
−
(

3x
0.5

)2
−
(

3y
0.5

)2
]

and

q̃0 =





r̃(t= 0,x,y) = − 4x
0.8 exp

[
−
(

4x
0.8

)2
−
(

4y
0.4

)2
]

+ 4y
0.8 exp

[
−
(

4x
0.4

)2
−
(

4y
0.8

)2
]

ũ(t= 0,x,y) = 1
2 exp

[
−
(

4x
0.4

)2
−
(

4y
0.8

)2
]

ṽ(t= 0,x,y) = 1
2 exp

[
−
(

4x
0.8

)2
−
(

4y
0.4

)2
]

in the periodic domain T2 = [−0.5,0.5] × [−0.5,0.5].
In Fig. 7.1, we present the maximum value of the deviation from the initial projection q̂0

h over the
time interval with different values of M . This figure shows that like the well-balanced AT-DP
scheme, the total deviation of both AT-AF and AF-DP strategies is proportional to M whereas
it remains constant for the other strategies and we also notice that the constant is smaller for
the C-AF scheme than for the C-C and AF-C schemes.

7.3 Modified Godunov type schemes applied to the nonlinear shallow water equation

In this section, we present some methods to modify the classical Godunov type schemes in order
to derive new numerical strategies which are more accurate around the geostrophic equilibrium
and in the adjustment process. To discretize the shallow water equations, we first exhibit the
general form of the finite volume method which has received a great interest in the context of
hyperbolic conservation laws since this method is conservative, among other properties.
The shallow water equation (7.1) can be expressed in terms of conservative variables as

∂U

∂t
+ ∇ ·F (U) = S(U)
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Figure 7.1: maxt∈[0,2] ‖q−Pq0‖(t) as a function of the Froude number (log-log scale)

where F (U) = (Fx(U),Fy(U)T and

U =



h

hu

hv


 , Fx(U) =




hu

hu2 + 1
2gh

2

huv


 , Fy(U) =




hv

huv

hv2 + 1
2gh

2


 , S(U) =




0

Ωhv

−Ωhu


 .

Let us now suppose that the domain T2 is discretized into N cells Ti. Let Aij be the common
edge of two neighboring cells Ti and Tj . The notation nij stands for the unit normal vector to
Aij pointing from Ti to Tj . Considering the homogeneous equations and integrating over the
space domain Ti, we obtain the following relation

d

dt
Ui(t) +

1
|Ti|

∑

Aij⊂∂Ti

∫

Aij

F (U) · nijds= 0,

where Ui(t) is an average of the unknowns on cell Ti given by Ui(t) = 1
|Ti|
∫

Ti
U(x, t) dx. For the

sake of simplicity, let us denote the numerical flux by

Φij = Φ(Ui,Uj ,nij) ≈ 1
|Aij |

∫

Aij

F (U) · nijds.

Then the general form of finite volume scheme can be written as

d

dt
Ui(t) +

1
|Ti|

∑

Aij⊂∂Ti

|Aij |Φij = 0. (7.11)

The purpose of the finite volume method is to update the cell average of the unknown at every
time step by computing fluxes across cell interfaces. There are several kinds of flux Φij which
can be used in (7.11). In this work, we are interested in the modification of the so called Roe
approximate Riemann soler [60] for the interface fluxes. To do so, let us note that the Roe flux
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can be written as

Φ
Roe
ij =

1
2

(
(hiui +hjuj) · nij

hi(ui · nij)ui +hj(uj · nij)uj

)
+

1
2

(
0

g
2(h2

i +h2
j )nij

)

− 1
4

|uij · nij − cij |
(
∆h− hij

cij
∆(u · nij)

)(
1

uij − cijnij

)

− 1
2

|uij · nij |hij∆(u · n
⊥
ij)

(
0

n
⊥
ij

)
− 1

4
|uij · nij + cij |

(
∆h+

hij

cij
∆(u · nij)

)(
1

uij + cijnij

)
,

(7.12)
(see Appendix 7.B for more details).
In the subsonic case |uij · nij | ≤ cij , the Roe flux becomes

Φ
Roe
ij =

1
2

(
(hiui +hjuj) · nij

hi(ui · nij)ui +hj(uj · nij)uj

)
+

1
2




0
g
2(h2

i +h2
j )nij




− 1
2




hij

cij
uij · nij∆(u · nij)

cij∆h [uij + (uij · nij)nij ] + hij

cij
uij · nij∆(u · nij)uij +hij |uij · nij |∆(u · n

⊥
ij)n⊥

ij




− 1
2

(
cij∆h

cijhij∆(u · nij)nij

)
.

(7.13)

7.3.1 The correction for the mass equation

Apparent Topography strategy

The hydrostatic reconstruction has been introduced in [5] for the shallow water equation with
non-flat topography based on a local reconstruction at the interface. By using this technique, we
can obtain a well-balanced scheme from any solver of the homogeneous problem. In the presence
of Coriolis source term, the work in [13] (see also [25]) adapts this strategy to derive the scheme
named Apparent Topography scheme. Before going into the detail of this method, let us review
the hydrostatic reconstruction with topography b(x) on a Cartesian mesh by considering the
semi-discrete scheme applied to the shallow water equations

∂

∂t
Ui,j(t) +

1
∆x

(
Fi+1/2,j −Fi−1/2,j

)
+

1
∆y

(
Gi,j+1/2 −Gi,j−1/2

)
= Si,j

where the numerical fluxes are given by

Fi+1/2,j = F
(
Ui+1/2−,j ,Ui+1/2+,j

)
, and Gi,j+1/2 = G

(
Ui,j+1/2−

,Ui,j+1/2+

)
.

In the above formula, the conservative variables are defined by

Ui+1/2−,j =

(
hi+1/2−,j

hi+1/2−,jui,j

)
, Ui+1/2+,j =

(
hi+1/2+,j

hi+1/2+,jui+1,j

)

and

Ui,j+1/2−
=

(
hi,j+1/2−

hi,j+1/2−
ui,j

)
, Ui,j+1/2+

=

(
hi,j+1/2+

hi,j+1/2+
ui,j+1

)

where the hydrostatic reconstruction is defined by

hi+1/2−,j = (hi,j + bi,j − max{bi,j , bi+1,j})+ , hi+1/2+,j = (hi+1,j + bi+1,j − max{bi,j , bi+1,j})+
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hi,j+1/2−
= (hi,j + bi,j − max{bi,j , bi,j+1})+ , hi,j+1/2+

= (hi,j+1 + bi,j+1 − max{bi,j , bi,j+1})+ .

Then, in order to ensure the well balanced property, the topography source term is approximated
by

Si,j =




0
g
2h

2
i+1/2−,j − g

2h
2
i−1/2+,j

g
2h

2
i,j+1/2−

− g
2h

2
i,j−1/2+


 .

In order to apply this technique to the Coriolis source term, the apparent topography scheme
has been introduced in [25] by considering the Coriolis as a new topography

g∆b1
i+1/2,j = −ωvi,j + vi+1,j

2
∆x, and g∆b1

i,j+1/2 = ω
ui,j +ui,j+1

2
∆y

Remark 7.1. It is important to note that with ∆bi+1/2,j = bi+1,j −bi,j and ∆bi,j+1/2 = bi,j+1 −bi,j,
the hydrostatic reconstruction can be written as

hi+1/2−,j =
(
hi,j − (∆bi+1/2,j)+

)
+
, hi+1/2+,j =

(
hi+1,j − (−∆bi+1/2,j)+

)
+

and

hi,j+1/2−
=
(
hi,j − (∆bi,j+1/2)+

)
+
, hi,j+1/2+

=
(
hi,j+1 − (−∆bi,j+1/2)+

)
+
,

which implies that we do not have to solve for the explicit new topography when we apply this
technique to the Coriolis source term.

The All Froude strategy

We now propose two ways to adapt the All Froude strategy to the mass equation. The first is
simply to keep all diffusion terms on this equation "small enough". In particular, we multiply
these diffusion terms by the local Froude number and the Roe flux becomes

Φ
AF1, Roe
ij =

1
2

(
(hiui +hjuj) · nij

hi(ui · nij)ui +hj(uj · nij)uj

)
+

1
2

(
0

g
2(h2

i +h2
j )nij

)

− 1
4

|uij · nij − cij |
(
∆h− hij

cij
∆(u · nij)

)(
θij

uij − cijnij

)

− 1
2

|uij · nij |hij∆(u · n
⊥
ij)

(
0

n
⊥
ij

)
− 1

4
|uij · nij + cij |

(
∆h+

hij

cij
∆(u · nij)

)(
θij

uij + cijnij

)
,

(7.14)
where θij = θ(Mij) with θ(M) = min{M,1} and Mij stands for the local Froude number.

The other way is to introduce anti-diffusion related to the numerical viscosity in the pressure
equation. To derive an All Mach (Froude) scheme in this way, the classical flux of any X-scheme
is modified as follows

Φ
AF,X
ij = Φ

X
ij + (θij − 1)

cij

2

(
hi −hj

0

)
.

In other words, only the final term in (7.13) is modified by multiplication with the local Froude
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number. Then, in the subsonic case, this modified Roe flux can be written as

Φ
AF2,Roe
ij =

1
2

(
(hiui +hjuj) · nij

hi(ui · nij)ui +hj(uj · nij)uj

)
+

1
2




0
g
2(h2

i +h2
j )nij




− 1
2




hij

cij
uij · nij∆(u · nij)

cij∆h [uij + (uij · nij)nij ] + hij

cij
uij · nij∆(u · nij)uij +hij |uij · nij |∆(u · n

⊥
ij)n⊥

ij




− 1
2

(
θijcij∆h

cijhij∆(u · nij)nij

)
.

(7.15)

7.3.2 The correction for the velocity equation

All Froude strategy

In [20], the inaccuracy of Godunov type schemes applied to the compressible Euler system is
investigated. In particular, the author points out that the numerical viscosity of the classical
Godunov type schemes in the velocity equation is responsible for the inaccuracy problem at low
Mach number. As a consequence, the numerical solution of the classical Godunov scheme may
be far form the incompressible solution at low Mach number.

The All Mach (Froude) Godunov scheme proposed in [22] is as follows: The classical flux of
any X-scheme is modified by setting

Φ
AF,X
ij = Φ

X
ij + (θij − 1)

hijcij

2

(
0

[(ui − uj) · nij ]nij

)
, (7.16)

where θij = θ(Mij) with θ(M) = min{M,1} and Mij , hij , cij respectively stand for the local
Froude number, water depth and sound velocity. Therefore, in the subsonic case, the modified
Roe flux can be written as

Φ
C,AF
ij =

1
2

(
(hiui +hjuj) · nij

hi(ui · nij)ui +hj(uj · nij)uj

)
+

1
2




0
g
2(h2

i +h2
j )nij




− 1
2




hij

cij
uij · nij∆(u · nij)

cij∆h [uij + (uij · nij)nij ] + hij

cij
uij · nij∆(u · nij)uij +hij |uij · nij |∆(u · n

⊥
ij)n⊥

ij




− 1
2

(
cij∆h

θijcijhij∆(u · nij)nij

)
.

(7.17)

Remark 7.2. The correction (7.16) is different from a low Mach number fix introduced in [19]
by multiplying the jump in the normal velocity component of the Riemann problem with the local
Mach number. In fact, this LMRoe flux can be written as

Φ
LMRoe
ij =

1
2

(
(hiui +hjuj) · nij

hi(ui · nij)ui +hj(uj · nij)uj

)
+

1
2

(
0

g
2(h2

i +h2
j )nij

)

− 1
4

|uij .nij − cij |
(
∆h− θij

hij

cij
∆(u · nij)

)(
1

uij − cijnij

)

− 1
2

|uij .nij |hij∆(u · n
⊥
ij)

(
0

n
⊥
ij

)
− 1

4
|uij .nij + cij |

(
∆h+ θij

hij

cij
∆(u · nij)

)(
1

uij + cijnij

)
.
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Divergence Penalisation

Instead of using the classical numerical diffusion in the velocity equation, this diffusion is replaced
by −∇(h∇·u). It is essential to use values of ∇·u computed at the corners of the cells to define
the numerical diffusion at the cell centers. In order to design this diffusion term, let us first
define the discrete operators at the vertices of each cell (i, j)

[∇v · u]i+1/2,j+1/2 =
(ui+1,j+1 +ui+1,j) − (ui,j+1 +ui,j)

2∆x
+

(vi+1,j+1 + vi,j+1) − (vi+1,j + vi,j)
2∆y

[fv(h)]i+1/2,j+1/2 =
hi+1,j+1 +hi,j+1 +hi+1,j +hi,j

4
.

We shall also need dual operators that enable to switch from the grid vertices to the cell centers.
For any ϕ defined at the vertices, we define the following discrete gradient

[∇cϕ]i,j =
1
2




ϕi+1/2,j+1/2−ϕi−1/2,j+1/2

∆x

ϕi+1/2,j+1/2−ϕi+1/2,j−1/2

∆y


+

1
2




ϕi+1/2,j−1/2−ϕi−1/2,j−1/2

∆x

ϕi−1/2,j+1/2−ϕi−1/2,j−1/2

∆y


 .

Therefore, the discrete version of the term ∇(h∇.u) can be obtained by applying the operator
∇c on ϕ defined by

ϕi+1/2,j+1/2 = [fv(h)∇v · u]i+1/2,j+1/2 .

7.3.3 Time discretization method

For the purpose of our study, we now only consider Cartesian grids. Then, the fully discrete
finite volume scheme for the nonlinear shallow water equation is given by

Un+1
i,j = Un

i,j − ∆t

∆x

(
Fn

i+1/2,j −Fn
i−1/2,j

)
− ∆t

∆y

(
Gn

i,j+1/2 −Gn
i,j−1/2

)
+∆tSθ

i,j (7.18)

where Un
i,j is the cell average at time level tn, Fn

i+1/2,j and Gn
i,j+1/2 are respectively the numerical

flux in x and y directions defined at the interface between two neighboring cells. The term Sθ
i,j

is an approximation of the Coriolis source term which is defined by

Sθ
i,j =




0

θ1S
n
u + (1 − θ1)Sn+1

u

θ2S
n
v + (1 − θ2)Sn+1

v


 ,

where the parameters θ1 and θ2 are both in [0,1]. The terms Su and Sv represent the approxima-
tions of the Coriolis source term in horizontal and vertical directions, respectively. Particularly,
for the classical approximation, we have

Su = hi,jvi,j and Sv = −hi,jui,j .

However, for the Apparent Topography strategy, these terms are defined by

Su =
g

2
h2

i+1/2−,j − g

2
h2

i−1/2+,j and Sv =
g

2
h2

i,j+1/2−
− g

2
h2

i,j−1/2+
.

Let us emphasize that the totally explicit scheme (θ1 = θ2 = 1) is unstable (see Figure 7.2).
Therefore, for stability reasons, we have to consider a discretization in time for the Coriolis force
which will be implicit enough. In fact, the parameters θ1 and θ2 must be in the stability region
θ1 + θ2 ≤ 1 (see [37] for more details in the context of the linear wave equation). On the other
hand, let us note that due to the approximation of the Coriolis force in the Apparent Topography
method, we restrict our study to the two cases θ1 = 1,θ2 = 0 and θ1 = 0,θ2 = 1 to ensure that
the proposed schemes are still explicit without having to solve any algebraic system of equations
at each time step.
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Figure 7.2: The total energy of the explicit scheme (θ1 = θ2 = 1) and semi-implicit scheme (θ1 = 1,θ2 = 0)
with initial velocity fluid at rest and initial height given by h0(x) = 1 +χ[−1,1](x).

7.4 Numerical results

7.4.1 Stationary vortex test case

We now begin with the stationary vortex test case proposed in [61] (see also in [62]) to investigate
the behaviour of the finite volume scheme applied to the rotating shallow water equations.
By using this test case, we can compare all proposed schemes in terms of error between the
numerical solution and the exact solution. We consider the stationary vortex in the square
domain Ω = [−0.5,0.5] × [−0.5,0.5] with periodic boundary conditions and the initial velocity
field given by

u0(r,θ) = νθ(r)ēθ, νθ(r) = ε

[
5rχ

(
r <

1
5

)
+ (2 − 5r)χ

(
1
5

≤ r <
2
5

) ]
(7.19)

where r stands for the distance to the center of the domain and χ is the characteristic function.
Let us note that the vortex is a stationary solution of the shallow water equation if the water
depth is the solution of the ODE

∂rh
0 =

1
g

(
ωνθ +

ν2
θ

r

)
(7.20)

Figure 7.3 shows such kind of initial condition with parameter ε= 0.1. Let us emphasize that
when the water depth and Coriolis parameter ω are of order O(1), then the parameter ε has a
strong impact on the order of the Froude number and Rossby number. In particular, we obtain
Fr = Ro ≈ O(ε). We will investigate the influence of ε on the modified Godunov type schemes
proposed in the previous sections.
Figures 7.5 and 7.6 show a cut of the water fluid depth along the x-axis at y = 0 for some values
of the parameter ε at time t= 5 and t= 10. These figures together with Figure 7.4 clearly show
that the AT-DP, AT-AF and AF-DP schemes which are obtained by using a combination of the
corrections for both mass and velocity equations have smaller errors than the other schemes.
Since the behavior of the AT-C and AF-C are similar to the C-C scheme, we can say that
the correction in the mass equation, which works well in the one dimensional case, does not
improve too much the accuracy of numerical schemes in the 2D case. Moreover, as can be seen
on these figures, the correction on the velocity equation seems to be much more important than
the correction on the mass equation. This is a conclusion which is similar to the study of the
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Figure 7.3: Initial condition with 40 × 40 grid cells and ε= 0.1.
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Figure 7.4: Time evolution of the water depth and discharge errors up to time t= 5 with parameter ε= 0.1

approximation of the linear wave equation in 2D by these schemes. We mention [53] for more
details of the analysis of these strategies in the linear case. Figure 7.4 also shows that the error
is smaller for the water depth (10−3) than the discharge hu (10−2).
On the other hand, we also observe that the smaller the value of ε, the better the approximation
of the exact solution by the solutions of the AT-DP, AT-AF and AF-DP schemes. The reason
for this is that when ε tends to zero, the nonlinear convection term gets significantly small as
compared to the other terms, and the behavior of the rotating shallow water equations is really
dominated by the acoustic linear wave equation. Therefore, the numerical schemes which work
well with the linear wave equation provide some convincing results.
Moreover, another evidence to illustrate that those schemes are better than the other schemes is
that the errors of those schemes behave like ε2, as can be seen from the log-log graphs displayed
in Figure 7.7, while the errors of the classical scheme or even of the schemes with the correction
on the pressure equation behave roughly like ε.
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Figure 7.5: Horizontal cut of water depths computed by Godunov type schemes at time t= 5
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Figure 7.6: Horizontal cut of water depths computed by Godunov type schemes at time t= 10
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Figure 7.7: Log-log graph of the error at time t= 5 as a function of ε
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7.4.2 Nonlinear geostrophic adjustment simulation

We now consider the test case proposed in [59] (see also in [27]) with the initial condition given
by

h(x,y,0) = 1 +
A0

2


1 − tanh




√
(
√
λx)2 + ( y√

λ
)2 −Ri

RE




 , u(x,y,0) = 0, v(x,y,0) = 0

where the parameters A0, λ, RE and Ri respectively stand for the amplitude of the initial
unbalanced height field, the aspect ratio, the edge width and the initial radius of the mass
imbalance. Let us also note that positive and negative values of parameter A0 respectively
correspond to elevations and depressions of the height perturbation. The parameter RE is
strongly related to the smoothness of the initial imbalance and we will fix RE = 0.1 for the
purpose of this test case.
In this test case, we consider a uniform mesh with 200 × 200 grid cells for the domain [−10,10] ×
[−10,10] with periodic boundary conditions. The gravity and the Coriolis force have been fixed
to g = ω = 1.
Since the rotating shallow water equation admit shock solutions, the work in [59] uses a very
high order scheme with a fine mesh (500 × 500 grid cells) on the purpose to accurately capture
the behavior of the time adjustment process. In particular, they adapt the weighted essentially
non-oscillatory method (WENO) from [63] to obtain a fully discrete scheme with fifth-order
accuracy in space in smooth regions, third-order accurate near discontinuities and use a fourth-
order Runge-Kutta integration scheme in time. The main goal in this test case is to show that the
first-order modified Godunov type schemes with appropriate corrections for numerical diffusions
can obtain promising results in comparison to the ones obtained in [59].

Figures 7.8 and 7.9 show the axisymmetric adjustment (λ= 1) of the elevation and depression.
As can be seen, all presented solutions look similar during the transient state, but totally different
at the final state. The final adjustment of the solution obtained by the classical scheme is far
from the other solutions and the top height of this scheme is much lower than the reference
solution in [59]. Moreover, the correction on the velocity equation now becomes less important
than in the previous test case, since the result obtained here with this strategy is just a little
higher than that of the classical scheme, while we can gain more with the correction on the mass
equation. Since the top height of the final adjustment computed with the AT-DP, AT-AF and
AF-DP schemes are close to the reference one in [59], we have an evidence that they behave
much better than the other schemes. On the other hand, Figure 7.8 shows that the AT-AF and
AT-DP schemes seem to be better than the AF-DP scheme for the elevation while the converse
holds for the depression, as shown in Figure 7.9.

We now turn to non-axisymmetric mass adjustment with an elliptical initial condition obtained
by increasing the aspect ratio to λ = 2.5. The initial velocity is also set up with zero. The
time dependent mass adjustment computed by the AT-DP scheme is plotted in a sequence of
times in Figures 7.10 (elevation) and 7.11 (depression). Similar results for the AT-AF scheme
are shown in Figures 7.12 and 7.13. Those figures show that the elevation leads to two shock
waves propagating outwards while the depression leads to a rarefaction wave followed by a shock.
On the other hand, as can be seen in Figures 7.14 and 7.15, when time evolves, we observe a
clockwise rotation in the test case with A0 = 0.5, while a counter-clockwise rotation occurs with
A0 = −0.5. This is an agreement with the results in [59].
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Figure 7.8: Time-dependent mass adjustment with initial elevation: evolution of the perturbation height h
with parameters A0 = 0.5, λ= 1, RE = 0.1 and Ri = 1.
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Figure 7.9: Time-dependent mass adjustment with initial depression: evolution of the perturbation height
h with parameters A0 = −0.5, λ= 1, RE = 0.1 and Ri = 1.
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(a) t = 2 (b) t = 4 (c) t = 6
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Figure 7.10: Time-dependent mass adjustment with initial elevation (AT-DP scheme): evolution of the
perturbation height h with λ= 2.5
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Figure 7.11: Time-dependent mass adjustment with initial depression (AT-DP scheme): evolution of the
perturbation height h with λ= 2.5
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Figure 7.12: Time-dependent mass adjustment with initial elevation (AT-AF scheme): evolution of the
perturbation height h with λ= 2.5

(a) t = 2 (b) t = 4 (c) t = 6
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Figure 7.13: Time-dependent mass adjustment with initial depression (AT-AF scheme): evolution of the
perturbation height h with λ= 2.5
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Figure 7.14: Time-dependent mass adjustment with initial elevation (AT-DP scheme): evolution of the
perturbation height (flat view) and velocity field with λ= 2.5
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Figure 7.15: Time-dependent mass adjustment with initial depression (AT-DP scheme): evolution of the
perturbation height (flat view) and velocity field with λ= 2.5
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7.4.3 Water column test case with discontinuous initial condition (circular dam-break test case)

In this test case, we consider the initial condition given by




h(x,y, t= 0) =

{
1 +A0, if x2 + y2 ≤R0

1, if x2 + y2 >R0.

u(x, ,y, t= 0) = 0,

v(x, ,y, t= 0) = 0.

(7.21)

with the domain Ω = [−5,5] × [−5,5]. The gravity and Coriolis force are fixed to g = Ω = 1.
Parameters A0 and R0 respectively stand for the amplitude of the initial mass imbalance and
for its radius. Let us note that this initial condition is very similar to the one in the previous
test case with the smoothness parameter RE = 0. The purpose of this test case is to check the
stability of all proposed schemes with discontinuous initial condition and the long time behavior
of the numerical solution. Since we use periodic boundary conditions in this test case, whenever
a wave goes out, another wave goes in the domain. However, the waves are damped by numerical
diffusion and after long time the remaining wave is nearly the geostrophic equilibrium.

In Figure 7.16, we present the evolution of the water depth for different schemes. There is a
drawback with the AF-DP scheme since this strategy introduces some oscillations at time t= 1.
Therefore, for the rest of the figures, we do not show the result of this scheme. We can observe
that the transient states of the proposed schemes are quite similar for short times, but totally
different for the longtime behavior. In particular, the AT-DP scheme which captures well the
discrete geostrophic equilibrium in the linear case has the top of the water height higher than
the other schemes. Moreover, since the C-DP and C-AF solutions are very close to that of the
classical scheme in general, the correction on the mass equation seems to be more important than
that on the velocity equations. In consideration of the modified schemes with correction on the
mass equation, the water height of the Apparent Topography scheme with All Froude correction
for velocity equations (AT-AF) is higher than with the Apparent Topography - Classical scheme
(AT-C). On the other hand, it is more useful to modify the scheme by the Apparent Topography
or Divergence Penalisation methods than by the All Froude technique, since those strategies
have diffusion terms that exactly cancel on geostrophic equilibriums in the linear wave equation
(see [53] for more detail), while the All Froude strategy retains a small but non-zero diffusion
which therefore has a noticeable effect in the long run.
In Figure 7.17, we plot the final state of three different types of schemes: C-C, AT-C (correction
only for the mass equation) and AT-DP (correction for both mass and velocity equations). As
can be seen, the water height of the classical scheme is very close to a constant state and its
velocity filed is nearly equal to zero. The horizontal velocity u and the vertical velocity v of
the AT-C scheme are close to a constant in the x and y direction respectively. The solution of
the AT-DP scheme is very close to the geostrophic equilibrium. These results for the nonlinear
rotating shallow water equations are similar to the results of those schemes applied to the linear
wave equation with Coriolis force [53].

7.5 Conclusion

In this work, we point out that the preservation of the geostrophic equilibrium including the
divergence constraint is a difficult issue. It is necessary to combine the Apparent Topography
strategy with some correction to the Low Froude number problem, such as the All Froude strategy
and Divergence Penalisation technique in the aim to derive new schemes which are more accurate
than the classical ones. Some numerical test cases are investigated to show that the AT-DP and
AT-AF have good behavior around geostrophic equilibriums while the classical schemes totally
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Figure 7.16: Water column test case: evolution of the water height h with A0 =R0 = 1 and 100 × 100 grid
cells

fail to capture this important phenomena.
In a future work, we aim to study a theoretical proof for the stability of the proposed schemes.
Another interesting investigation is the influence of the cell geometry on the Godunov type
scheme applied to the nonlinear rotating shallow water equations. It is motivated by [21] with
the fact that the divergence constraint is no more a problem on triangular meshes.

7.A Conservation properties of rotating shallow water equation.

Let us define ∇⊥ = (−∂y,∂x) and if ϕ is a scalar field, we can define the orthogonal gradient as

∇⊥ϕ=
(

−∂ϕ

∂y
,
∂ϕ

∂x

)
.

For a velocity vector field u = (u,v), the relative vorticity is defined as

ζ = curl(u) = ∇⊥ · u =
∂v

∂x
− ∂u

∂y
.

We now note that the convection term of the momentum equation can be written as u · ∇u =
∇
( |u|2

2

)
+ ζu⊥ which leads to

curl(u · ∇u) = ∇⊥ · (ζu⊥) = ∇ · (ζu).

This implies that the momentum equation can be written as the evolution of vorticity

∂ζ

∂t
+ ∇ · [(ζ +Ω)u] = 0.

If we assume that ∂tΩ = 0, we have the conservation form of the absolute vorticity

∂

∂t
(ζ +Ω) + ∇ · [(ζ +Ω)u] = 0. (7.A.1)
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(a) h (b) h (c) h

(d) u (e) u (f) u

(g) v (h) v (i) v

Figure 7.17: Water column test case: final states of C-C (left column), AT-C (center) and AT-DP (right
column) schemes with A0 =R0 = 1 and 100 × 100 grid cells

We now denote the material derivative as D
Dt() = ∂

∂t()+u ·∇(); then the equation for the absolute
vorticity can be written as

D

Dt
(ζ +Ω) + (ζ +Ω)∇ · u = 0. (7.A.2)

By multiplying the mass equation with ζ+Ω

h and subtracting to the equation (7.A.2), we obtain

D

Dt
(ζ +Ω) −

(
ζ +Ω

h

)
D

Dt
h= 0.

We then divide this equation by h to get

D

Dt

(
ζ +Ω

h

)
= 0. (7.A.3)

Therefore, the potential vorticity q = ζ+Ω

h is conservative. If we now assume that the Coriolis
parameter Ω is a constant, the conservation of the potential vorticity provides us with a relation
between the water depth h and the vorticity ζ. For example, when h increases, the vorticity
must increase to ensure the conservation.
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Another important property of the rotating shallow water equation is the conservation of
energy. We now denote the kinetic energy and potential energy respectively by

KE =
h

2
|u|2 and PE =

gh(h+ 2b)
2

.

By using the mass equation, we have

∂

∂t

(
h

2
|u|2

)
+ ∇ ·

[(
h

2
|u|2

)
u

]
=

|u|2
2

(
∂

∂t
h+ ∇ · (hu)

)
+h

[
∂

∂t

(
|u|2

2

)
+ u · ∇

(
|u|2

2

)]

= hu ·
(
∂

∂t
u + u · ∇u

)
= hu ·

(
−g∇(h+ b) −Ωu⊥

)

= −gu · ∇
(
h2

2

)
− ghu · ∇b. (7.A.4)

Moreover, we also have

∂

∂t

(
1
2
gh(h+ 2b)

)
+ ∇ ·

(
1
2
gh(h+ 2b)u

)
= h

[
∂

∂t

(
g(h+ 2b)

2

)
+ u · ∇

(
g(h+ 2b)

2

)]

= −1
2
gh2∇ · u + ghu · ∇b. (7.A.5)

We now define the total energy as the sum of the kinetic energy and the potential energy
E = KE + PE ; then, adding (7.A.4) and (7.A.5), we obtain

∂

∂t
E + ∇ · (Eu) + ∇ ·

(
1
2
gh2u

)
= 0. (7.A.6)

If we consider the rotating shallow water equation on the domain T with periodic boundary
condition, we get

d

dt

∫

T
E(x, t) dx = 0. (7.A.7)

For any function G(q) of the potential vorticity, we have

∂

∂t
(hG(q)) = G(q)

∂

∂t
h+h

∂

∂t
G(q) = −G(q)∇ · (hu) −hu · ∇G(q)

which leads to the conservation of the quantity hG(q)

∂

∂t
(hG(q)) + ∇ · (hG(q)u) = 0. (7.A.8)

As a result, we obtain
∂

∂t

∫

T
hG(q) dx = 0. (7.A.9)

We can apply this property to G(q) = q2 to obtain the conservation of the total enstrophy

∂

∂t

∫

T
hq2

dx = 0.
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7.B The Roe solver applied to the shallow water equation

To derive the formula of the numerical flux, we need to evaluate the flux Fx(U)nx +Fy(U)ny

over the borders Aij separating the cell Ti ans its neighbors the cell Tj . On the purpose to do
that we rewrite the homogeneous shallow water equation as quasi-linear form

∂U

∂t
+
∂Fx(U)
∂U

∂U

∂x
+
∂Fy(U)
∂U

∂U

∂y
= 0

where ∂Fx(U)
∂U and ∂Fy(U)

∂U are the Jacobians of flux functions respectively given by

∂Fx(U)
∂U

=




0 1 0
−u2 + gh 2u 0

−uv v u


 and

∂Fy(U)
∂U

=




0 0 1
−uv v u

−v2 + gh 0 2v


 .

Let us denote c=
√
gh , then we have

A=
∂(F (U).n)

∂U
=




0 nx ny

(c2 −u2)nx −uvny 2unx + vny uny

(c2 − v2)ny −uvnx vnx unx + 2vny


 .

The eigenvalues of the Jacobian matrix A are verified by

λ1 = unx + vny − c, λ2 = unx + vny, and λ3 = unx + vny + c.

Let denote R be the matrix of right eigenvectors

R=




1 0 1

u− cnx −ny u+ cnx

v− cnx nx v+ cny


 .

Then, the inverse of this matrix is given by

R−1 =
1
2c



c+unx + vny −nx −ny

2c(uny − vnx) −2cny 2cnx

c−unx − vny nx ny


=




1
2 + u.n

2c
−nx
2c

−ny

2c

−u.n⊥ −ny nx

1
2 − u.n

2c
nx
2c

ny

2c




One possible way to compute the numerical flux at the interface ∂Ti ∩ ∂Tj is using the solution
of the local one-dimensional Riemann problem





∂tU + ∂(F (U).n)
∂U ∂ξ(U) = 0

U(t= 0, ξ) =




UL if ξ < 0

UR if ξ > 0

(7.B.10)

We now denote the approximation of the above Jacobian matrix by Anij
(Ui,Uj) and this

approximation must fulfill some classical requirements. In particular:

i. It must depend on right and left value Uj and Ui.

ii. (F (Uj) −F (Ui)) .nij= Anij
(Ui,Uj)(Uj −Ui).

iii. It must have distinct real eigenvalues and a complete set of eigenvectors.
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iv. It must become exact flux Jacobian when Uj = Ui

The Roe solver in [60] satisfies those requirements and this upwind type scheme can be written as

Φ
Roe
ij =

F (Ui) +F (Uj)
2

.nij −
|Anij

(Ui,Uj)|
2

(Uj −Ui)

where the Roe matrix Anij
(Ui,Uj) =Anij

(Uij) is defined with the help of the Roe averages

hij =
√
hihj , uij =

√
hiui +

√
hjuj√

hi +
√
hj

, vij =

√
hivi +

√
hjvj√

hi +
√
hj

, cij =
√
ghij .

Let us note that the approximate Jacobian Anij
(Uij) has the shape of A, but it is evaluated at

Roe average states

Anij
(Uij) =




0 nx ny

(c2
ij −u2

ij)nx −uijvijny 2uijnx + vijny uijny

(c2
ij − v2

ij)ny −uijvijnx vijnx uijnx + 2vijny




On the other hand, we also notice that

|Anij
(Uij)| =R|Λ|R−1

where the diagonal matrix Λ is simply given by

Λnij
(Uij) =




|uij .nij − cij | 0 0
0 |uij .nij | 0
0 0 |uij .nij + cij |




As a result, with notation ∆(·) = (·)j − (·)i and n
⊥
ij = (−ny,nx)T , the Roe flux can be rewritten

as

Φ
Roe
ij =

F (Ui) +F (Uj)
2

.nij − R(Uij ,nij)|Λnij (Uij)|R−1(Uij ,nij)
2

(Uj −Ui)

=
F (Ui) +F (Uj)

2
.nij − 1

4
|uij .nij − cij |

(
∆h− hij

cij
∆(u · nij)

)(
1

uij − cijnij

)

− 1
2

|uij .nij |hij∆(u · n
⊥
ij)

(
0

n
⊥
ij

)
− 1

4
|uij .nij + cij |

(
∆h+

hij

cij
∆(u · nij)

)(
1

uij + cijnij

)
.

The well known disadvantage of the Roe scheme is that it is does not satisfy entropy condition,
so we need entropy fix to overcome this problem. The entropy fix according to Harten and
Hyman in [64] is applied to the acoustic waves (k = 1 and k = 3)

QH(λk) =





1
2

(
λ2

k
δk

+ δk

)
if |λk| ≤ δk

|λk| if |λk|> δk

where
δk = max{0,λk −λk(UL),λk(UR) −λk}.
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The HLL solver proposed by Harten , Lax and van Leer in [65] is also used to calculate the flux
at the interface. It can be expressed as

Φ
HLL
ij =





F (Ui).nij if SL ≥ 0

SRF (Ui).nij−SLF (Uj).nij+SRSL(Uj−Ui)
SR−SL

if SL ≤ 0 ≤ SR

F (Uj).nij if SR ≤ 0.

(7.B.11)

where SL and SR are verified by

SL = min{Ui.nij −
√
ghi,Uj .nij −

√
ghj}

and
SR = max{Ui.nij +

√
ghi,Uj .nij +

√
ghj}.
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Part IV

Outlooks and conclusion
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Conclusion

“Any intelligent fool can make things bigger, more complex,
and more violent. It takes a touch of genius and a lot of
courage to move in the opposite direction.

”E. F. Schumacher

The ocean circulation is strongly influenced by the rotation of the Earth through the fictitious
force known as the Coriolis force. The aim of this dissertation is to develop finite volume schemes
which are able to preserve the well known geostrophic equilibrium which is a balance between
the horizontal Coriolis force and pressure gradient. The main part of this thesis is devoted to the
study of the linear wave equation with Coriolis source term which is obtained from the rotating
shallow water equations by using an asymptotic expansion. We follow the framework proposed
in [20] to analyse the behaviour of the Godunov type scheme applied to this linear wave equation.
The main contributions of this work can be summarised as:

In the one dimensional case, unlike the homogeneous equations, the inaccuracy problem of
the Godunov scheme appears in the presence of Coriolis source term. By analysing the kernel of
the modified equation associated to the classical scheme, this work pointed out that the numerical
diffusion on the pressure equation is responsible for this drawback. One simple correction consists
in making this diffusion term vanish which provides a “Low Froude” scheme. Another correction
is to adapt the “Apparent Topography” technique in [13]. Both schemes are proven to well
capture the discrete 1D geostrophic equilibrium. However, the kernel of the Low Froude scheme
is defined at cell centers while it is located at the cell interfaces for the Apparent Topography
scheme.

Fourier analysis is also performed to compare these strategies on collocated meshes in terms
of dispersion relation and damping error. We also provide the stability condition of those schemes
by using the Von Neumann method. These stability conditions are less restrictive than the
classical ones using an appropriate discretisation in time of the Coriolis source term. Due to the
structure of the discrete kernel and to ensure the obtained schemes are totally explicit, the time
step of the Apparent Topography scheme strongly depends on the Coriolis parameter. On the
other hand, since the dispersion law of the collocated schemes is not a monotonic curve like in
the continuous model, we propose a staggered strategy based on the aforementioned corrections
in order to obtain the staggered type schemes. They turn out to have a better dispersion law
than that on collocated grids. More importantly, we can ensure that the dispersion of staggered
schemes is a monotonic function which helps us avoid the oscillation of the shortest wave. Some
numerical results lead to the conclusion that the Low Froude staggered scheme seems to be the
best candidate since its dispersion law is robust with time step as well as the relation between
Rossby deformation radius and mesh sizes. This scheme also preserves the subspace which is
orthogonal to the kernel.
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In the two dimensional case, it is more challenging for numerical schemes to preserve the
non-trivial steady state (2D geostrophic equilibrium). In this dissertation, we point out that
unlike the 1D case, the problem for the inaccuracy is also linked to the numerical viscosity on the
velocity equation. This is because the 2D geostrophic equilibrium also implies the free divergence
constraint and the classical scheme are unable to handle it. To improve the accuracy of numerical
schemes, this thesis proposes the extension of the Apparent Topography scheme by a coupling
with Low Mach and Divergence Penalisation strategies mentioned in [20].

For collocated meshes, we propose two strategies: cell-centered and vertex-based schemes.
Moreover, we also introduce the staggered type schemes on both B and D grids. Fourier analysis
indicates that the dispersion law of B grid scheme is more accurate than that of D grid. This
is because the B grid allows to evaluate the Coriolis force easily, without averaging while the
average is required for the Coriolis source term on D grid. However, the D grid scheme has
a good damping rate in the short wave region. As a result, the staggered schemes on D grid
induces fewer oscillations than the one on B grid. We also provide some CFL conditions of both
collocated and staggered schemes. Unlike the B grid scheme, the stability condition of staggered
scheme on D grid actually depends on the magnitude of the Coriolis parameter. The proposed
staggered type schemes on both B and D grid are proven to well capture the corresponding
discrete kernel and only the Low Froude–Divergence Penalisation scheme with suitable time
discretisation for the velocity field on the Coriolis force and pressure equation is an orthogonality
preserving scheme.

In this dissertation, we investigated the influence of cell geometry on the Godunov type
scheme applied to the linear wave equation with Coriolis source term. This work clearly points
out the disadvantage of the collocated scheme on triangular grids since the kernel of this scheme
requires that the gradient of a P1 conforming function is equal to that of a non-conforming
function. To overcome this obstacle, we propose some new staggered strategies where the velocity
field is computed at the primary cell centers and the pressure at the vertices. By the fact that
all jumps of normal velocity components are equal to zero, the divergence constraint is no more
an issue in this case and we can use all the developed strategies in the one dimensional case to
cure the inaccuracy. The resulting scheme is proven to be a well-balanced scheme. Moreover, we
also show that unlike the Apparent Topography scheme, the Low Froude scheme is orthogonality
preserving.

Finally, we extended satisfying strategies in the linear case to the non-linear rotating shal-
low water equations. Various numerical test cases such as stationary vortex and geostrophic
adjustment are investigated on the purpose of showing that the AT-DP (Apparent Topography–
Divergence Penalisation) and AT-AF (Apparent Topography–All Froude) are more accurate for
the simulations around the geostrophic equilibrium than the classical or even AT-C schemes.

There are some natural extensions of this thesis. The first thing is to prove that an energy
estimate is satisfied by the Apparent Topography scheme. This would help ensure that the
obtained scheme is accurate at low Froude number at any (or locally in) time which is only
investigated with numerical test cases. The second point is the optimal time step for the
staggered scheme on triangular grids. Also, the other kind of staggered mesh like C grid must be
investigated since this grid with finite difference schemes provides good dispersion relations. An
important task is to develop the theoretical analysis for the collocated scheme applied to the
rotating shallow water equations as well as to extend the staggered scheme on triangular meshes
to the non-linear case.
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Inertial Oscillation

Many of life’s failures are people

who did not realize how close they

were to success when they gave up.

Thomas A. Edison

The inertial oscillation is one of the simplest model to express the time dependent motion
under the Coriolis force due to the Earth’s rotation. In this work, we review some basic
properties of the inertial oscillation and perform the analysis for the θ-scheme applied to
the Coriolis source term.
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A.1 Preliminary result

Lemma A.1. Let us consider the second-order polynomial P =X2 +BX +C. The roots X±
of P lie in the unit circle ( i.e.|X±| ≤ 1) iff

|C| ≤ 1 and |B| ≤ 1 +C. (A.1)

A.2 Basic properties of the inertial oscillation

The inertial oscillation is prescribed by the following system




∂u

∂t
−ωv = 0,

∂v

∂t
+ωu= 0.

(A.2)

which shows the relation between the horizontal velocity u and the vertical velocity v under
the Coriolis force characterised by the parameter ω. In particular, System (A.2) indicates that
because of the positivity of the angular velocity (ω > 0), a change in y-direction velocity v causes
a change in x-direction velocity u and vice-versa. The general solution of System (A.2) is

u(t) = V sin(ωt+φ) and v(t) = V cos(ωt+φ)

where φ is an arbitrary constant and the speed V is also a constant determined by using the
conservation of the energy

V =
√
u(t)2 + v(t)2 =

√
u(0)2 + v(0)2. (A.3)

The trajectory of a particle governed by this velocity field is defined by

d

dt
x(t) = u(t) and

d

dt
y(t) = v(t),

which implies that

(x− a0)2 + (y− b0)2 =
V 2

ω2

where (a0, b0) =
(
x(0) + V

ω cosφ,y(0) − V
ω sinφ

)
. It means that the trajectory of a particle is a

circle whose center is (a0, b0) and radius r = V
ω .

A.3 Analysis of θ-scheme applied to the inertial oscillation

The θ-scheme based on the weighted average between explicit and implicit scheme apply to the
system (A.2) 




un+1 −un

∆t
= ω

[
θ1v

n + (1 − θ1)vn+1
]
,

vn+1 − vn

∆t
= −ω

[
θ2u

n + (1 − θ2)un+1
]

(A.4)

where 0 ≤ θ1,θ2 ≤ 1 and tn = n∆t. When θ1 = θ2 = 1, the scheme (A.4) is totally explicit
(forward Euler method). On the contrary, the case θ1 = θ2 = 0 corresponds to the implicit scheme
(backward Euler method). Moreover, the case θ1 = θ2 = 1

2 is known as the Crank-Nicolson scheme
(semi-implicit). One of the main advantages of the explicit scheme is its simplicity since the next
values are calculated by using the current values. However, this algorithm has an unacceptable
behaviour since the kinetic energy increases. In other words, the explicit scheme is unstable. To
go further, we prove the following result:
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Lemma A.2.

i. When θ1 + θ2 > 1, the θ-scheme (A.4) is unstable. Therefore, a necessary condition for
stability is θ1 + θ2 ≤ 1.

ii. When 0 ≤ θ1,θ2 ≤ 1
2 , the θ-scheme (A.4) is stable.

iii. When (1 − 2θ1)(1 − 2θ2)< 0, the θ-scheme (A.4) is stable provided that

∆t≤ 2
ω
√

|(1 − 2θ1)(1 − 2θ2)|
. (A.5)

Proof. From (A.6), we have

(
un+1

vn+1

)
=

1
1 + (ω∆t)2(1 − θ1)(1 − θ2)

(
1 − (ω∆t)2θ2(1 − θ1) ω∆t

−ω∆t 1 − (ω∆t)2θ1(1 − θ2)

)(
un

vn

)
.

(A.6)
Therefore, the characteristic equation of the amplification matrix in (A.6) reads

λ2 + ξλ+ ζ = 0 (A.7)

where

ξ = −2 − (ω∆t)2(θ1 + θ2 − 2θ1θ2)
1 + (ω∆t)2(1 − θ1)(1 − θ2)

and ζ =
1 + (ω∆t)2θ1θ2

1 + (ω∆t)2(1 − θ1)(1 − θ2)
.

In order to ensure that the roots of (A.7) are in the unit circle (|λ±| ≤ 1), we apply Lemma A.1:

• The first condition |ζ| ≤ 1 leads to (ω∆t)2 [1 − (θ1 + θ2)] ≥ 0. This proves Point 1.

• The next condition −ξ ≤ 1 + ζ reduces to (ω∆t)2 ≥ 0 which does not imply any additional
constraint upon ∆t.

• The final condition ξ ≤ 1 + ζ reads

−(ω∆t)2(1 − 2θ1)(1 − 2θ2) ≤ 4.

This implies Points 2 and 3.

Remark A.1. When (1 − 2θ1)(1 − 2θ2) ≥ 0, the CFL condition of the θ-scheme does not depend
on the magnitude of the Coriolis parameter ω. Otherwise, the time step must satisfy the condition
(A.5).

Remark A.2. When θ1 = θ2 = θ, the choice of the parameter θ has a strong impact on the kinetic
energy. In particular, from Equation (A.6), we obtain

(un+1)
2

+ (vn+1)
2

=
1 + (ω∆t)2θ

1 + (ω∆t)2(1 − θ)

[
(un)2 + (vn)2

]
.

Therefore, the kinetic energy of the inertial oscillation increases, remains constant or decreases
over the time if the parameter θ is greater, equal to or less than 1

2 .
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A.4 Numerical test

We now investigate the behaviour of the θ-scheme by considering the domain [−2,2] × [−2,2]
with 201 × 201 grid cells and the Coriolis parameter ω = 0.1.

Figure A.1 confirms the result from Lemma A.2: the explicit scheme is unstable since it makes
the kinetic energy increase. We have the conservation of the energy with the case θ1 = θ2 = 1

2
and strictly decreasing energy for the case θ1 = θ2 <

1
2 and the more implicit, the more damped

the energy. For the case θ1 , θ2 and θ1 + θ2 ≤ 1, Figure (A.1b) indicates that the energy is not
strictly decreasing, but the scheme is still stable under the CFL condition (A.5). Moreover, from
the numerical point of view, this figure also shows that the behaviour of the numerical energy
depends on the quantity θ1 + θ2.

In Figure A.2 we fix the initial velocity field u0 = 0.1, v0 = 0 and show the influence of the
parameters θ1 and θ2 on the trajectory of a particle. Trajectories associated to the Crank-Nicolson
scheme (θ1 = θ2 = 0.5) is a circle at a center (a0, b0) = (0,−1) with the radius r = 1. The radius
of the particle changes in the other cases. Particularly, it increases in time for the explicit case
since this scheme is unstable and it decreases in time for the case θ1 = θ2 ≤ 1

2 by the fact that
this scheme makes the kinetic energy decrease.

Figure A.3 indicates that the initial condition has a strong impact on the trajectory of the
particle since the circle center and the radius is prescribed by the initial condition.

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

 θ
1
=1, θ

2
=1

θ
1
=0.5, θ

2
=0.5

θ
1
=0.2, θ

2
=0.2

θ
1
=0, θ

2
=0

θ
1
=1, θ

2
=0

θ
1
=0, θ

2
=1

(a)

0 100 200 300 400 500 600 700

0.3

0.32

0.34

0.36

0.38

0.4

0.42

 

 

 θ
1
=1, θ

2
=0

θ
1
=0.5, θ

2
=0.5

θ
1
=0, θ

2
=1

θ
1
=0.8, θ

2
=0

θ
1
=0.4, θ

2
=0.4

θ
1
=0, θ

2
=0.8

(b)

Figure A.1: The kinetic energy of the inertial oscillation with various values of θ1 and θ2 for the initial
condition u0 = 0.1,v0 = 0 and the time step ∆t= 0.5.



A.5. Conclusion 219

−5 −4 −3 −2 −1 0 1 2 3 4 5
−6

−5

−4

−3

−2

−1

0

1

2

3

4

(a) θ1 = θ2 = 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

(b) θ1 = θ2 = 1
2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

(c) θ1 = θ2 = 1
5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

(d) θ1 = θ2 = 0

Figure A.2: Trajectory of the particle with various values of θ1 and θ2 with starting point (red circle),
final point (blue star) and the initial condition u0 = 0.1,v0 = 0.

A.5 Conclusion

The explicit scheme applied to the inertial oscillation is unstable since it makes the kinetic energy
increase. Consequently so does the radius of the trajectory of a moving particle. Therefore, it
is essential to make the Coriolis source term implicit enough when we apply the θ-scheme to
the inertial oscillation. In particular, the parameters θ1 and θ2 must lie in the stability region
θ1 + θ2 ≤ 1.

Moreover, the parameters θ1 and θ2 has a strong influence on the kinetic energy. The more
implicit, the more damped the energy. Especially it is a constant like the continuous model with
the choice θ1 = θ2 = 1

2 .
There is no CFL condition for the θ-scheme when the parameters involved in the discretisation

of the Coriolis source term satisfy 0 ≤ θ1,θ2 ≤ 1
2 . In any other case, we need a restriction for the

time step which depends on the magnitude of the Coriolis.
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Figure A.3: Trajectory of the particle with various values of the initial condition.
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Figure A.4: Trajectory of the particle in for the view in 3D with various values of θ1 and θ2 with starting
point (red circle), final point (blue star) and the initial condition u0 = 0.1,v0 = 0.
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Titre : Analyse mathématique de schémas volume finis pour la simulation des
écoulements quasi-géostrophiques à bas nombre de Froude.

Mots clefs : équilibre géostrophique, bas nombre de Froude, système hyperbolique, méthode de
volumes finis, schéma de Godunov, diffusion numérique, schéma équilibre, force de Coriolis.

Résumé : Le système de Saint-Venant joue un rôle important dans la simulation de modèles
océaniques, d’écoulements côtiers et de ruptures de barrages. Plusieurs sortes de termes sources
peuvent être pris en compte dans ce modèle, comme la topographie, les effets de friction de
Manning et la force de Coriolis. Celle-ci joue un rôle central dans les phénomènes à grande
échelle spatiale car les circulations atmosphériques ou océaniques sont souvent observées autour
de l’équilibre géostrophique qui correspond à l’équilibre du gradient de pression et de cette force.
La capacité des schémas numériques à bien reproduire le lac au repos a été largement étudiée; en
revanche, la question de l’équilibre géostrophique (incluant la contrainte de vitesse à divergence
nulle) est beaucoup plus complexe et peu de travaux lui ont été consacrés.
Dans cette thèse, nous concevons des schémas volumes finis qui préservent les équilibres
géostrophiques discrets dans le but d’améliorer significativement la précision des simulations
numériques de perturbations autour de ces équilibres. Nous développons tout d’abord des schémas
colocalisés et décalés sur des maillages rectangulaires ou triangulaires pour une linéarisation du
modèle d’origine. Le point commun décisif de ces méthodes est d’adapter et de combiner les
stratégies dites "topographie apparente", "bas Mach" et "pénalisation de divergence" pour contrôler
l’effet de la diffusion numérique contenue dans les schémas, de telle sorte qu’elle ne détruise pas
les équilibres géostrophiques. Enfin, nous étendons ces stratégies au cas non-linéaire et montrons
des résultats prometteurs.

Title : Analysis of finite volume schemes for the quasi-geostrophic flows at low
Froude number.

Keywords : Geostrophic equilibrium, low Froude number, hyperbolic system, finite volume
method, Godunov scheme, numerical diffusion, well-balanced scheme, Coriolis force.

Abstract : The shallow water system plays an important role in the numerical simulation of
oceanic models, coastal flows and dam-break floods. Several kinds of source terms can be taken
into account in this model, such as the influence of bottom topography, Manning friction effects
and Coriolis force. For large scale oceanic phenomena, the Coriolis force due to the Earth’s
rotation plays a central role since the atmospheric or oceanic circulations are frequently observed
around the so-called geostrophic equilibrium which corresponds to the balance between the
pressure gradient and the Coriolis source term. The ability of numerical schemes to well capture
the lake at rest, has been widely studied. However, the geostrophic equilibrium issue, including
the divergence free constraint on the velocity, is much more complex and only few works have
been devoted to its preservation.
In this manuscript, we design finite volume schemes that preserve the discrete geostrophic
equilibrium in order to improve significantly the accuracy of numerical simulations of perturbations
around this equilibrium. We first develop collocated and staggered schemes on rectangular and
triangular meshes for a linearized model of the original shallow water system. The crucial common
point of the various methods is to adapt and combine several strategies known as the Apparent
Topography, the Low Mach and the Divergence Penalisation methods, in order to handle correctly
the numerical diffusions involved in the schemes on different cell geometries, so that they do not
destroy geostrophic equilibria. Finally, we extend these strategies to the non-linear case and show
convincing numerical results.

Université Paris-13
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